
Frontend-only browser-based
modeling tools

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

David Jäger, BSc
Matrikelnummer 11723775

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass. Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Mitwirkung: Dipl.-Ing. Dr.techn. Philip Langer

Dr.techn. Martin Fleck

Wien, 3. Mai 2024
David Jäger Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Frontend-only browser-based
modeling tools

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

David Jäger, BSc
Registration Number 11723775

to the Faculty of Informatics

at the TU Wien

Advisor: Ass. Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Assistance: Dipl.-Ing. Dr.techn. Philip Langer

Dr.techn. Martin Fleck

Vienna, 3rd May, 2024
David Jäger Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

David Jäger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Mai 2024
David Jäger

v

Acknowledgements

First and foremost, I would like to thank my supervisor Dominik Bork, for supporting me
with advice and patience. His quick and insightful feedback helped me a lot throughout
the course of my thesis.

Furthermore, I would like to extend my appreciation to Philip Langer and Martin Fleck,
who have been pivotal during the development phase of my thesis by always being helpful
in case of issues.

Most importantly, I would like to thank my family, especially my parents, Nicola
and Ewald Jäger, who have supported me in every phase of my life. Their constant
encouragement has been crucial in enabling me to complete my studies successfully.

To my friends, especially Max, Simon, and Dominik, whose companionship and support
during my time at TU Wien have been integral to this journey.

Lastly, I would like to thank Laura, who always helped me whenever I faced difficulties.
Without her presence, this achievement would not have been possible.

vii

Kurzfassung

In den letzten Jahren hat sich ein Trend weg von funktionsreichen Integrated Develop-
ment Environments (IDE) hin zu leichtgewichtigen Web-Clients abgezeichnet. Um diesen
Wandel zu ermöglichen, wurde für textbasierte Editoren das Language Server Protocol
(LSP) entwickelt, während für grafische Editoren eine Erweiterung des LSP, das Gra-
phical Language Server Platform (GLSP), eingeführt wurde. Die Modellverwaltung für
grafische Editoren wurde jedoch weiterhin von Java-Servern übernommen, einschließlich
der Erstellung von Metamodellen und der Laufzeitverwaltung von Modellen.

Diese Arbeit verfolgt das Ziel, den nächsten Schritt für webbasierte grafische Modell-
Editoren zu gehen und die Modellverwaltung auf einen reinen TypeScript-Technologiestapel
umzustellen. Dazu werden die Funktionalitäten des Next-Generation Language Frame-
works Langium erforscht und um eine Modellserver-API erweitert, die es modellorien-
tierten Clients ermöglicht, auf den Abstract Syntax Tree (AST) zuzugreifen, der von
Langium erstellt wird und den aktuellen Zustand eines Modells darstellt. Zudem wird
eine neue, in TypeScript native Grammatiksprache konzipiert, um eine TypeScript-native
Lösung für die Definition von Metamodellen zu bieten.

Um die Modellserver-API mit der TypeScript-basierten Grammatiksprache zu verbinden,
wird ein Generator erstellt, der die gesamte Modellverwaltung aufbaut. In Java-basierten
Umgebungen wird das Metamodell für die Komponente zur Modellverwaltung üblicher-
weise mit dem EMF (Eclipse Modeling Framework) Ecore Metamodell erstellt. Um den
Übergang von Ecore zu der auf TypeScript basierenden Grammatiksprache zu erleichtern,
wird in die Implementierung des Generators ein Mechanismus integriert, der die Erstel-
lung der auf TypeScript basierenden Grammatikdefinition aus dem Ecore Metamodell
ermöglicht.

Die Evaluierung dieser Arbeit wird in zwei Teilen durchgeführt: Zuerst wird die TypeScript-
basierte Grammatiksprache durch einen Vergleich mit dem weit verbreiteten Ecore-
Metamodell bewertet. Weiters, werden zwei State-of-the-Art Modell-Editoren, die GLSP
nutzen, mithilfe des Generators nachgebaut. Dadurch kann bewertet werden, ob die
Erstellung des Metamodells sowie der Modellverwaltung durch den Generator korrekt
funktioniert.

ix

Abstract

In recent years, a shift from feature-rich Integrated Development Environments (IDE)
to lightweight web clients could be observed. In order to be able to make that shift, for
textual editors, the Language Server Protocol (LSP) has been created, while for graphical
editors, an enhancement of the LSP has been introduced in the Graphical Language
Server Platform (GLSP). However, the model management for graphical editors has still
been handled by heavy-weight Java model servers. This includes both the creation of
metamodels and the runtime handling of models.

This thesis aims to make the next step toward web-based graphical model editors and shift
the model management to a TypeScript-only technology stack. For this, the functionalities
of the next-generation language framework Langium are explored and extended by a
model server API. This enables model-oriented clients to access the Abstract Syntax Tree
(AST), which is created by Langium and holds the current state of a model. Furthermore,
a new TypeScript native grammar language is conceptualized to provide a TypeScript
native solution to define metamodels.

To combine the model server API with the TypeScript-based grammar language, a
generator is created that sets up the entire model management component. Typically,
in Java-based environments, the metamodel for the model management component is
created using the EMF Ecore metamodel. Therefore, to ease the transition from Ecore
to the TypeScript-based grammar language, a mechanism to create the TypeScript-based
grammar definition from the Ecore metamodel is added to the implementation of the
generator.

The work in this thesis is evaluated in two parts: First, the TypeScript-based grammar
language is evaluated by comparing it with the widely used Ecore metamodel. Second, two
state-of-the-art modeling tools, which utilize GLSP, are rebuilt to evaluate the generator
by creating the metamodel and model management using the generator’s capabilities.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Aim of the Thesis and Expected Results 2
1.3 Methodology . 3
1.4 Summary and structure of the work 4

2 Background 5
2.1 Terminology . 5
2.2 Eclipse Modeling Framework (EMF) 9
2.3 GLSP - Graphical Language Server Platform 11
2.4 Langium . 16
2.5 Generator . 21
2.6 Summary . 22

3 State of the art 23
3.1 Model Editors . 23
3.2 Language Engineering . 26
3.3 Summary . 26

4 Requirements 27
4.1 Main idea and general approach . 27
4.2 Model Server API . 28
4.3 TypeScript-based grammar language 30
4.4 Generator . 31
4.5 Summary . 34

5 Concept 35
5.1 Model Server API . 35

xiii

5.2 TypeScript-based grammar language 39
5.3 Generator . 46
5.4 Summary . 56

6 Implementation 57
6.1 Model Server API . 57
6.2 Generator . 67
6.3 Summary . 84

7 Evaluation 85
7.1 Functional Testing . 85
7.2 Descriptive Evaluation - Informed Argument 86
7.3 Descriptive Evaluation - Scenarios . 89
7.4 Interpretation of the evaluation results 101

8 Conclusion 105
8.1 Conclusions and Findings . 105
8.2 Future Work . 106

List of Figures 107

Listings 109

Acronyms 113

Bibliography 115

Appendix 119
Implementation of the mapping from EcoreDefinition TypeScript-based grammar

language definition . 119
Evaluation of Ecore models with TypeScript-based grammar language . . . 120

CHAPTER 1
Introduction

This chapter serves to introduce the problem that will be addressed in the thesis and
explain the reasons behind its significance. The chapter will establish the specific research
questions and the methodology employed. Finally, a brief overview of the remaining
thesis sections will be provided.

1.1 Problem Statement and Motivation
In recent years much effort has been made to move from rich client applications to web
clients. One of the reasons for this trend is the tight coupling of domain-specific language
features into the feature-rich Integrated Development Environment (IDE). To decouple
this tight integration, the Language Server Protocol (LSP), which enables language-
agnostic clients to communicate with language-specific servers [REIWC18], has been
implemented. By using this protocol the client can be a very lightweight editor, while
syntax highlighting, code completion, and cross-references are handled in the language
server. While this protocol works very well for textual editors, graphical editors were still
very tightly coupled to the IDE. As a result, the Graphical Language Server Platform
(GLSP) was introduced to extend the LSP with a graphical notation, allowing graphical
editors to follow this trend.

Recently, another framework, named Langium [Lan], which is a textual language frame-
work written in TypeScript, has been released. This framework offers built-in support
for a lot of different complex problems when dealing with model management including
language parsing, semantic models, and cross-references. While this framework provides
a lot of important features, it is still only a textual language framework. Hence, this
framework only offers solutions for textual representations of a model. Therefore, the
question arises, whether the features of Langium can be made available for model-oriented
clients, which will be one of the main foci of this thesis.

1

1. Introduction

Furthermore, an important topic in language engineering is the definition of Domain-
Specific Modeling Languages (DSL), which traditionally is done by the creation of a
grammar [JBF11]. In recent years, the approach to creating DSLs shifted to first create
the metamodel of a DSL. Nowadays, the creation of a metamodel and the grammar can
be done in parallel, as the metamodel can be created from the grammar and vice versa.
An example of a newer approach is Xtext [Foud] which generates the metamodel from
the grammar. While this eases the development of DSLs, it is Java-based, and therefore
unable to run inside a browser runtime. Hence, it would be very convenient to have a
web-based solution that has native support for the creation of metamodels, that include
more advanced features, such as cross-references. In this work, a TypeScript-based
approach for the creation of metamodels shall be investigated.

1.2 Aim of the Thesis and Expected Results
This thesis aims to expand the functionalities of Langium to provide model-oriented
clients access to its Abstract Syntax Tree (AST). This will be done by implementing a
model management API, which extends Langium via a service. With this enhancement,
the model-oriented clients will be able to manage and manipulate the model state (by
editing the state of the AST). As Langium is written in TypeScript, it can be browser-
packaged, which means the complete model management can be handled inside the
browser. Access to the local file system can be implemented to load model files by adding
another service to Langium.
After implementing the model management API, a process will be introduced to define
metamodels and generate Langium-based model management. This shall be done by creat-
ing a type definition based on TypeScript interfaces or classes, which add meta-information
to model elements by the usage of custom annotations (e.g., @crossReference, which is
used to signal a cross-reference) or custom container types (e.g., CrossReference<T>,
which can also be used to signal a cross-reference). After that, a generator shall be
implemented, which creates a generic JSON grammar from these type definitions.
According to the goals of this work, the following research questions will be answered in
the course of this thesis:

(RQ1) : How can the Abstract Syntax Tree, which is created by Langium, be made
available to model-oriented clients so that the editing of the model can be handled
in the browser?

• The answer to this question provides a solution to how Langium can be used
for the model management of browser-only model editors.

(RQ2) : How should a type definition be conceptualized to create an accurate metamodel
that includes all needed language concepts and cross-references?

• By answering this question, it is ensured that the type definition concept is
complete regarding the language concepts that are included within this thesis.

2

1.3. Methodology

(RQ3) : How can the previously defined type definition be used to generate a language
specification in a generic JSON grammar?

• With the answer to this question, a concept for a generator is created, which
enables generic language specification.

1.3 Methodology
The methodological approach in this thesis follows Design Science Research [HMPR04]
and consists of the following steps:

1. Requirements Analysis:
In the first step, the requirements for the model service API and the type definition
to define metamodels have to be gathered. The model service API will be analyzed
using the implementation of state-of-the-art model editors (e.g., GLSP). Further-
more, for the type definition, the requirements will be specified by examining the
capabilities of the Eclipse Modeling Framework (EMF) [Foub] Ecore metamodel.

2. Conceptualization:
In this step, a concept for the model service API shall be created, which defines
a generic way to create Langium-based model management (RQ1). Furthermore,
a concept for the type definition has to be created, including all needed language
constructs, to generate a metamodel. (RQ2)

3. Build & Evaluate Artifacts:
In this step, the model service API and the generator (RQ3) that creates the
language specification from the previously defined type definition, shall be imple-
mented.

4. Evaluation:
The evaluation of the artifacts that are created within the work of this thesis is
threefold:

• Functional Testing: To ensure the accuracy and dependability of the imple-
mented artifacts, it is essential to create a comprehensive test suite comprising
unit tests. This suite will help detect any potential defects or errors in
the implementation of the artifacts and provide a reliable measure of their
correctness.

• Descriptive Evaluation - Informed Argument: During this evaluation,
the newly implemented artifacts and the existing Ecore metamodel solution will
be tested against predefined criteria. These criteria will assess the functional
requirements and usability of both solutions and reveal any limitations of the
newly implemented artifact. The evaluation will also highlight the advantages
and disadvantages of the new and the existing solutions.

3

1. Introduction

• Descriptive Evaluation - Scenarios: This assessment aims to reconstruct
pre-existing tools using the recently implemented artifacts. The effectiveness of
these artifacts will only be considered valid if the tools - such as the workflow-
diagram example [Eclc] and the bigUML [BIGa] tool - can be rebuilt without
any limitations.

1.4 Summary and structure of the work
This chapter gave an introduction to the thesis by providing the problem statement, as
well as the aim and the methodological approach.

In chapter 2, some important terminology, followed by background information on the
frameworks discussed in this thesis, is presented.

Chapter 3 presents some state-of-the-art graphical model editors and gives some insight
into language engineering in general.

The requirements for the proposed artifacts are discussed in chapter 4. Following that, in
chapter 5, the solution concepts for the requirements are presented. Chapter 6 discusses
the actual implementation of the artifacts using the presented concepts.

Chapter 7 discusses all evaluation steps and results with respect to the research questions
presented in this chapter.

Finally, chapter 8 concludes this thesis by presenting the findings of this thesis and
discussing some possible future work.

4

CHAPTER 2
Background

In this chapter, the terminology around model engineering is introduced first. Next,
the Eclipse EMF Ecore meta-model, which is one of the most popular frameworks for
creating meta-models in the Java ecosystem, will be described. After that, the Language
Server Protocol (LSP), which is a standard interface for connecting code editors and
language servers, will be discussed. Following that, Graphical Language Server Platform
(GLSP), a protocol extension that allows for creating rich graphical editors for Domain-
Specific Modeling Languages, will be introduced. Subsequently, the focus will turn to
Langium, a powerful language development framework based on the Xtext grammar
development toolkit. Finally, this chapter will be wrapped up with a discussion of the
Yeoman generator, which is a powerful tool that can be used to automate the creation of
new projects based on predefined templates.

2.1 Terminology
In this section, some terminologies are presented, which should give an overview in
regards to modeling.

2.1.1 Model
For the term model, there do exist a lot of different notions and definitions. In the
following, a few of those definitions shall be mentioned.

“We can informally define a model as a simplified or partial representation of reality,
defined in order to accomplish a task or to reach an agreement on a topic. Therefore, by
definition, a model will never describe reality in its entirety.” [BCW17]

Bézivin and Gerbé define a model as a simplification of a system built with an intended
goal. The model should be capable of answering all questions in place of the actual
system [BG01].

5

2. Background

Thalheim states that a model is a well-formed, adequate, and dependable instrument
that represents something and functions in scenarios of use [Tha22].

According to Selic, a model has to conform to the following five characteristics [Sel03]:

• Abstraction: A model is a simplified representation of a real system that includes
only the relevant parts.

• Accuracy: A model must accurately represent the important aspects of the real
system.

• Cost-effectiveness: The creation of the model should be more cost-effective than
building the actual system.

• Predictiveness: By analyzing the model it should be possible to predict the
properties of the modelled system.

• Understandability: It is not enough to exclude insignificant elements from the
system. It is also required that the remaining elements inside a model be represented
in an intuitive fashion (e.g. graphical notation).

Another definition of a model is provided by Seidewitz [Sei03]: “A model is a set of
statements about some system under study.“

Models can be used for various purposes and can have different applications. They can
describe an already existing system, like a model of the subway system of a city that only
includes stations and subway lines. Moreover, models can provide instructions on how a
system should be developed. These purposes are known as descriptive and prescriptive,
respectively [SHK12].

2.1.2 Modeling Language
Modeling languages are tools to create a textual or graphical model (see Section 2.1.1) of
a system under study. These languages consist of abstract syntax, concrete syntax, and
semantics [Kle08].

Abstract Syntax

In its original meaning, the term abstract syntax is the hidden, underlying, unifying
structure of a number of sentences. This definition comes from natural-language research
and was introduced by Chomsky [Cho65].

In the field of computer science, the following properties can also define the abstract
syntax:

• hidden: The model’s abstract syntax is hidden, and interaction is done through
its concrete representation.

6

2.1. Terminology

• underlying: The abstract syntax representation is the underlying structure of a
model.

• unifying: The abstract syntax of a model is its unifying structure. This means
that the unifying structure lies within the abstract syntax, regardless of the various
concrete representations.

The abstract syntax is often referred to as the metamodel of a modeling language, and
typically a model’s abstract syntax is saved in the Abstract Syntax Tree (AST).

Concrete Syntax

The concrete syntax of the model enables humans to interact with the model. It can
take on many different forms including a textual notation (see Figure 2.1) or a graphical
notation (see Figure 3.2), which are the most common cases [BKP18]. The concrete
syntax is typically provided via an editor.

Figure 2.1: Textual representation of the Workflow Diagram Model

Semantics

The semantics of a model are used to give meaning to the various symbols and variables
contained in its representation. This meaning should be a part of a domain that is

7

2. Background

well-understood and well-defined [HR04]. An example of semantics can be illustrated by
considering the class diagram from UML [Gro17]. If a specialization edge connects two
classes, the semantics of this specialization edge would inform us that one of the classes
is the subclass of the other class.

Types of Modeling Languages

There are two main classes of modeling languages: General Purpose Modeling Languages
(GPL) and Domain-Specific Modeling Languages (DSL) [BCW17].

• General Purpose (Modeling) Languages (GPL) : GPLs are not implemented
for a certain domain but are rather usable in a lot of different contexts. An example
of a GPL is the Unified Modeling Language (UML).

• Domain Specific (Modeling) Languages (DSL): In contrast to GPLs, DSLs
are modeling languages that are designed for a certain domain. An example of a
widely used DSL is the Hypertext Markup Language (HTML). For DSLs, another
distinction between Internal and External DSLs exist [VBD+13]. An Internal DSL
is a DSL built on top of a GPL. This means that Internal DSLs reuse the syntax
and tooling from the GPL to create a custom DSL that is specific to a particular
domain. On the other hand, External DSLs are designed from scratch, which means
that the syntax and tooling has to be newly defined. This gives External DSLs
a lot of flexibility since they can be tailored specifically to meet the needs of a
particular domain [Fow10].

2.1.3 Metamodeling
Metamodeling is a very important part of model-driven engineering. To understand
metamodeling, first, a definition for a metamodel has to be defined. In simple terms, a
metamodel can be described as a model of a model.

In [Kle08] a metamodel is defined as “a model used to specify a language”.

According to Seidewitz [Sei03], a metamodel defines the structure and constraints of
a group of systems under study (SUS), where each SUS in the group is a model that
conforms to a particular modeling language.

In [BCW17], a metamodel is an abstraction of an already existing model (that describes
a phenomenon in the real world). As with this definition, the metamodel provides a way
of describing the whole class of models that can be represented within the model; it can
be concluded that the metamodel defines a modeling language.

Metamodeling involves specifying a model’s elements, constraints, and interactions in a
particular domain. There are different methods of metamodeling [BKP20], such as using
a grammar to define a metamodel in Xtext [Foud] and Langium [Lan] (see Section 2.4)
or using the metamodeling language provided by EMF Ecore [Ecla] (see Section 2.2) to
define a specific language’s metamodel.

8

2.2. Eclipse Modeling Framework (EMF)

In Figure 2.2, the 4-layer metamodeling stack [Gro16] of the Object Management Group
is illustrated. From top- to bottom-layer, an instance-of relationship exists between the
layers, while the reverse relationship can be characterized as a conforms-to relationship.
In the following, each layer of the stack is described:

• M0-layer: This is the layer containing the actual user data of the model.

• M1-layer: This layer maintains a model that describes the structure and behavior
of the M0-layer-instances.

• M2-layer: This layer holds a model of the M1-layer, making it a metamodel as it
is a model of a model.

• M3-layer: This layer holds a model of the M2-layer, which is a metamodel, making
the model at the M3-layer a meta-metamodel.

As shown in the figure, no additional layer is above the M3-layer. The reason for this
is because the meta-metamodel can function as a model of itself, meaning that it can
describe itself [BCW17].

Figure 2.2: 4-layer metamodeling stack as presented in [BCW17]

2.2 Eclipse Modeling Framework (EMF)
The Eclipse Modeling Framework, commonly known as EMF, is a modeling framework
that serves as a fundamental component of the Eclipse ecosystem. With the help of

9

2. Background

EMF, it is possible to define a model for a system that is under study. EMF enables the
generation of multiple representations of this model in different formats, such as Java
interfaces, UML, or XMI. The ability to unify different representations of the model,
which simplifies the model creation process, is one of the primary functions of EMF. In
EMF, it is enough to create a model using one representation, as the other representations
are automatically generated. The diagram in Figure 2.3 illustrates how an EMF model
unifies these different representations.

Figure 2.3: EMF model unifying multiple different representations based on [Ste09]

For the definition of a model, EMF provides a metamodeling language in Ecore [Ecla].
Ecore allows developers to specify the structure of their models, including their classes,
attributes, and relationships. In [Ste09] the Ecore kernel, which is a simplified representa-
tion of the Ecore metamodel, is presented. Its representation is illustrated in Figure 2.4.
Some of its most important components are the following:

• EClass: These are the main building blocks of a model that represent a class
and can contain EAttributes and EReferences. As can be seen in the figure, an
EClass can have an arbitrary number of eSuperTypes, which are used to represent
inheritance.

• EAttribute: These elements define the properties of a class in an Ecore model.
They provide information about the type of a property and its multiplicity and are
identified by their name.

• EDataType: These elements specify the data type that an EAttribute can hold.
Note that the type of elements an EDataType can represent cannot be modeled as
classes.

• EReference: These elements establish connections between EClasses and specify
the number of elements involved in a relationship. Furthermore, they determine

10

2.3. GLSP - Graphical Language Server Platform

whether the referenced element is a part of the source element or can exist inde-
pendently, indicating a cross-reference.

Figure 2.4: Ecore kernel based on [Ste09]

Next to its tools to implement models, EMF provides first-class support for code gener-
ation, including different types: Model code generation, adapter code generation, and
editor code generation [Foub].

Another important part of EMF is that it can be easily integrated within other Eclipse
Modeling projects such as Xtext [Foud]. Xtext is a language development framework
that can be used for the creation of Domain-Specific Modeling Languages. Using EMF in
conjunction with Xtext allows developers to define the structure of their Domain-Specific
Modeling Languages using EMF’s modeling capabilities.

2.3 GLSP - Graphical Language Server Platform
The Language Server Protocol (see Section 2.3.1) has been gaining popularity due to the
shift from feature-rich Integrated Development Environments (IDE) to lightweight web
clients. The problem with IDEs is the tight coupling of language features to the IDE,
which means that for every DSL, there needs to be a plugin for the respective IDE. For
example, to get syntax highlighting and code completion for Java within a code editor like
Emacs or Vim, a plugin needs to be implemented specifically for the respective editor.

11

2. Background

2.3.1 LSP - Language Server Protocol
The Language Server Protocol [Micb] [BL23] has been introduced to decouple the language
features from the IDEs. With LSP, the web client is just a text editor, while the language
smarts are implemented within a language server. This means, that syntax highlighting,
autocomplete support, and cross-references are all handled within the language server,
while the client is responsible for the representation of the current state and sending
requests to the language server. Figure 2.5 illustrates how the implementation effort can
be reduced using the Language Server Protocol in case one wants to implement language
features for a certain language.

Figure 2.5: Visualization of the coupling of language servers and IDEs with and without
using LSP

The architecture of the Language Server Protocol consists of a client process and a server
process, which communicate using a well-defined protocol. The communication is done
via JSON-RPC requests.
Figure 2.6 represents an example communication procedure between a server and client.
The procedure begins with the user opening a text document on the client, which causes
the client to send a request to notify the language server, that a document has been
opened. Following that, the user edits the document and the client sends a request
to notify the server of the changes. The server then processes this request, creates
diagnostics for the current text document (i.e., checks for syntax errors), and sends the
result back to the client. Subsequently, the user looks up the definition of an element.
Therefore, the client sends a request to the server to request the definition for the element
on the selected position. The server then processes the request and returns the location
of the definition of the element. Finally, the user closes the text document, which causes
the client to notify the server, that the text document has been closed.

2.3.2 GLSP
Although the Language Server Protocol eases the implementation of language support
for multiple different editors, it focuses only on textual languages. Because of this, the

12

2.3. GLSP - Graphical Language Server Platform

Figure 2.6: Sample communication between LSP client and server [Micc]

Graphical Language Server Platform (GLSP) 1 [Eclb], which is built on top of the LSP to
facilitate the development of diagram editors using this decoupled architecture, extending
its capabilities for graphical modeling [BLO23] [MB23], has been introduced.

Figure 2.7 illustrates the structure of GLSP. As can be seen, similar to LSP, in GLSP,
there exists a model client, and a GLSP server, which is responsible for handling the
computation-heavy work like loading, saving, and transforming the model, while also
providing the language smarts. The communication between the server and client is done
using the graphical language server protocol, an extension of the LSP.

Either the GLSP server holds the source model, as depicted in the figure, or the source
model can be integrated within a separate server, which is then called the model server.
In the course of this thesis, such a model server will be created using Langium (see
Section 2.4).

GLSP provides ready-to-use components for each part of its architecture. For the client,
a Visual Studio Code [Micd] extension and a Theia [Foua] extension exist. However, a
diagram editor can also be built inside any web-based application to be used with the
graphical language server protocol.

While the GLSP server can be written in any language, ready-to-use components in
TypeScript and Java exist.

Furthermore, the source model can be saved in any format, like JSON or text. Also, once
again, it is possible to use components that have already been integrated into GLSP,
like EMF [Foub], EMF.cloud [Fouc], or GModel-JSON (which holds the graphical model
directly).

The process of using the graphical language server platform can be described as the
following: After the startup of both the GLSP client and server, the server starts by

1https://eclipse.dev/glsp/

13

https://eclipse.dev/glsp/

2. Background

Figure 2.7: Graphical Language Server Platform structure as presented in [Eclb]

loading the requested model and transforming it into the graphical model. The graphical
model is a serializable representation of the source model and is the central communication
artifact to the client. Subsequently, the server sends the graphical model to the client,
which is then responsible for rendering the model. Additionally, the client requests
information from the server regarding the possible operations on each distinct element of
the model. Using the information provided by the server, the client can then provide the
editing tools for the different kinds of model elements.

In case of an edit on the client side, the client sends a request to the server with
the respective operation. The server then applies the operation on the source model,
regenerates the graphical model from the updated source model, and sends it back to the
client, which renders the graphical model.

On a more technical side, GLSP focuses on customizability and extensibility, as diagram
editors are particular to their respective diagram languages. Both client-side and server-
side are implemented using an inversion of control pattern based on Dependency Injection
(DI). For the node-based implementation, inversify.js2 is used to put every service and
component inside a global DI container. Additionally, these services and components can
easily be extended or replaced by custom implementations.

Having control over the visual representation of a model is crucial when working with
diagram editors. GLSP provides complete command over the technologies used for the
user interface, including Eclipse Sprotty 3, CSS, and SVG. With GLSP, developers have
the freedom to customize their editing tools and user interface controls in HTML, without
any abstraction layers that could limit their power. As a result, they can maintain
complete control over the rendering of the user interface, cf. [CLB22].

2https://github.com/inversify/InversifyJS
3https://sprotty.org/

14

https://github.com/inversify/InversifyJS
https://sprotty.org/

2.3. GLSP - Graphical Language Server Platform

2.3.3 GLSP - Components
As has already been discussed, GLSP offers a lot of extensibility and customizability.
The following will give an introduction to some of the most essential components and
services of GLSP.

Source Model

As we have previously discussed, the source model contains the actual data of the diagram
and can be saved in any format. This is possible because GLSP allows the developer to
define how a source model should be loaded.
For the implementation of the source model, two main components have to be implemented
which are:

• Source Model Storage: This interface consists of two functions, loadSourceModel
and saveSourceModel. As their name states, the implementations of these func-
tions are responsible for the loading and saving of the source model.

• Model State: This is an important class that stores the current state of the
original source model within a client session. Other services and handlers can access
the model state to get the necessary information about the model to perform their
diagram editing tasks.

Graphical Model

The graphical model is a serializable representation of the source model and is the main
communication artifact from the server to the client. The graphical model is created
using the GModelFactory after the source model storage has loaded the source model.
The GModelFactory is very specific to each diagram language. Therefore, it has to be
customized for most GLSP servers.

The graphical model consists of exactly one root element called GModelRoot. All other
elements inside the graphical model can be one of the following:

• GShapeElement: This is the base element of graphical elements and consists of
a shape with visual bounds (position and size). The following concrete subtypes
exist:

– GNode: This elements represents a graphical node.
– GPort: This element is used as a connection point for GEdges.
– GLabel: This element represents a text label.
– GCompartment: This element represents a container for grouping multiple

graphical elements.

• GEdge This element represents an edge between two GShapeElements.

15

2. Background

Model Operations

In order to make changes to the model, model operations need to be provided. These
operations are managed by OperationHandlers. An OperationHandler specifies
which type of operation needs to be managed and how it should be processed. When an
operation is executed, the OperationHandler processes it and produces a Command
that captures the changes made to the source model. This Command is then placed on
the command stack and sent to the server, which updates the source model according to
the Command.

DiagramModule

The DiagramModule plays a crucial role in configuring a GLSP server. It serves as a
central artifact where all custom components and services can be bound to the Dependency
Injection container, seamlessly integrating various functionalities. The importance of the
DiagramModule lies in its ability to simplify the development process, by providing a
single point of reference for all the necessary configurations.

2.4 Langium
Langium4 is a framework designed to develop Domain-Specific Modeling Languages
(DSL). It provides many tools for language engineers to create a custom language tailored
to the specific needs of a certain system. Additionally, Langium is built with TypeScript,
which means that it can be easily integrated within web-based applications.

In the following, the key features of Langium will be described.

2.4.1 Language Server Protocol (LSP) Support
Langium includes comprehensive Language Server Protocol (LSP) support through its
core framework and specific LSP implementations. With its pre-built implementations,
Langium simplifies language tasks such as parsing, Abstract Syntax Tree (AST) generation,
validation, scoping, cross-referencing, and more. Langium also includes a ready-to-use
language server implementation that can be used to build and maintain a language server.

2.4.2 Grammar Definition
Langium provides a concise syntax that can be used to define a DSL. This syntax includes
constructs to define tokens, rules, and the overall structure of the language. The structure
of this grammar language will be described in detail in the following subsections.

Language Declaration The language declaration is done by a grammar file with an
entry rule. This rule declares the name of the language. Listing 2.1 defines a grammar
language named ExampleGrammar.

4https://langium.org/

16

https://langium.org/

2.4. Langium

grammar ExampleGrammar

Listing 2.1: Declaration of the grammar language name

Terminal Rules The initial step in language parsing is lexing, which converts a
character stream into tokens. A token is a sequence of one or more characters that
matches a terminal rule, creating an atomic symbol. Terminal rules are typically written
using Regular Expressions, but it is also possible to write them using Extended Backus-
Naur Form (EBNF) expressions. An example of a terminal rule that parses a stream of
alphabetic characters into a token with the name STRING can be seen in Listing 2.2.

terminal STRING: /[A-Za-z]+/;

Listing 2.2: Terminal rule for a string

Terminal rules return string elements per default if not otherwise specified. If it should
return an element of another type (like a number), it is possible to adapt the rule, as can
be seen in Listing 2.3.

terminal ANUMBER returns number: /[0-9]+/;

Listing 2.3: Terminal rule for a number

A special case of a terminal rule is the hidden terminal rule, which is used to specify
which characters inside a text file need to be ignored by the lexer. Typically, the lexer
should ignore white spaces and comments. Additionally, it should be noted that hidden
terminal rules are applied globally. An exemplary terminal rule, which is used to ignore
white spaces can be seen in Listing 2.4.

hidden terminal WS: /\s+/;

Listing 2.4: Hidden terminal rule to ignore white spaces

Parser Rules “While terminal rules indicate to the lexer what sequence of characters
are valid tokens, parser rules indicate to the parser what sequence of tokens are valid.”
[Lan] Parsers lay the groundwork for creating the Abstract Syntax Tree as they are used
to specify the structure of objects that need to be created.
Parser rules are defined using EBNF expressions; a rule consists of the name of the rule
followed by the definition of the elements that the rule consists of.

For example, Listing 2.5 consists of two rules: The first rule is creating an element of
type Node with the property name, which is a STRING. The other defines an element of
type WeightedNode, which consists of the properties name, which is a STRING, and
weight, which is a number.

Node:
’node’ name=STRING;

WeightedNode:

17

2. Background

’weightedNode’ name=STRING weight=NUMBER

Listing 2.5: Declaration of two kinds of parser rules

Additionally, the entry rule is a special parser rule that serves as the entry point for the
parser. It begins with the keyword entry. This can be seen in the exemplary entry rule
in Listing 2.6, which defines the ExampleGrammar that consists of an arbitrary length
of either Node or WeightedNode elements.

entry ExampleGrammar:
(nodes+=Node | weightedNodes+=WeightedNode)*;

Listing 2.6: Declaration of the grammar language’s entry rule

In Listings 2.1 to 2.6, a lot of options for the definition of elements have already been
used. The following list explains most of the options that can be used to define the
elements of a parser rule:

• Cardinality: With cardinality, the number of elements in a given set is defined;
there exist four options:

– exactly one: no operator
– zero or one: question mark (?) operator
– zero or more: star (*) operator
– one or more: plus (+) operator

• Alternatives: Using the pipe operator (|), it is possible to define multiple different
valid alternatives of how an object is defined.

• Assignments: There do exist three different kinds of assignments:

– Single value assignment: With the assignment operator (=), it is possible to
assign exactly one value to a property.

– Multi-value assignment: With the plus-equals operator (+=), it is possible to
assign multiple values to one property in an array.

– Optional value assignment: With the question-mark assignment operator (?=),
it is possible to assign a boolean value to a property in case a certain element
exists during parsing.

• Cross-References: The definition of cross-references is a very important aspect,
as they can be used to create a reference to other elements inside the model. To
assign a property to a cross-reference, the target type has to be put inside square
brackets. Listing 2.7 contains an example that uses a cross-reference. In this
example, two objects are defined: a Node, which includes a name-property that
is parsed by the terminal rule ID, and an Edge, which includes two references to
Node elements within its source and target property.

18

2.4. Langium

Node: ’node’ name=ID;
Edge: ’edge’ source=[Node:ID] target=[Node:ID];

Listing 2.7: Declaration of cross-reference

• Unassigned Rule Calls: It is not required for a rule call to return a new object.
It is also possible for a rule call to assign sub-rule calls to return the object, as can
be seen in Listing 2.8. In this example, the rule TaskNode is an abstract rule or
unassigned rule call that returns no concrete object; it rather assigns the object
creation to either AutomatedTask or ManualTask, which will return an object
of the associated type with a name property.

TaskNode: AutomatedTask | ManualTask;
AutomatedTask: ’task’ ’automated’ name=STRING;
ManualTask: ’task’ ’manual’ name=STRING;

Listing 2.8: Declaration of unassigned rule calls

• Unordered Groups: If the body of a rule consists of multiple properties, the
parser expects the elements in a certain order. An example of this can be seen
in Listing 2.9, where the parser would detect a WeightedNode only if the text
appears in exactly the order as defined (e.g., “node NodeName 69”).

WeightedNode: ’node’ name=STRING weight=NUMBER;

Listing 2.9: Declaration of parser rule with ordered group of attributes

With the and-operator (&), it is possible to ignore the order of elements as can be
seen in Listing 2.10. With this definition, the parser would recognize both “node
NodeName 69” and “node 69 NodeName” as an object of type WeightedNode.

WeightedNode: ’node’ name=STRING & weight=NUMBER;

Listing 2.10: Declaration of parser rule with unordered group of attributes

A limitation for these unordered groups is the assignment of properties with a
cardinality of either * (zero or more) or + (one or more). For these properties, the
elements of these properties must appear continuously, without being interrupted
by another assignment. An example of this can be seen in Listing 2.11, where
the parser would not be able to parse the text “node NodeName1 69 NodeName2”
as an object of type WeightedNode, as the names elements do not appear in
continuous order.

WeightedNode: ’node’ (names+=STRING)+ & weight=
NUMBER;

Listing 2.11: Declaration of parser rule with unordered group of attributes, with one
attribute being an array type

19

2. Background

2.4.3 Code Generation and Tranformations
Langium provides a flexible and extensible architecture that makes creating custom code
generators that meet specific needs easy. The Langium CLI can be extended to include a
generate command, which can be used to start the generation process. This generate
command can be customized to include various options that control the output of the
generated code.

To enable code generation, a simple JavaScript function can traverse the Abstract Syntax
Tree (AST) and modify the elements as required for the desired output. The JavaScript
function can be designed to perform various operations on the AST, such as adding,
removing, or modifying nodes.

2.4.4 Abstract Syntax Tree (AST) Generation and Document Lifecycle
The Abstract Syntax Tree generation is one of the main features of the Langium framework.
To understand how a source text is transformed into its AST representation, the document
lifecycle of Langium needs to be explained first.

On startup, Langium initializes the opened workspace and loads all files inside the
workspace, which should be processed. This is done by the WorkspaceManager service.
To determine which files need to be loaded, the WorkspaceManager checks the file
extension of all files inside the workspace and loads those whose file extension equals the
one in the Langium configuration file.

All files in the workspace are then represented as instances of TextDocument, which hold
the contents of the respective files as simple strings. After determining which files should
be loaded for each selected document, an instance of LangiumDocument is created using
the LangiumDocumentFactory service. Unlike a TextDocument that represents the
content of a file as a string, a LangiumDocument uses an AST to represent the content.
Therefore, the LangiumDocumentFactory has to parse the source-TextDocuments
and transform the parsed content into an AST. Once the LangiumDocument instances
are created, they are stored inside the LangiumDocuments service, and the documents
possess the state Parsed.

Subsequently, the DocumentBuilder service takes over and starts with the indexing of
symbols, which are AST nodes, that can be used for cross-references. The indexing starts
with the root element of the parsed document and creates an AstNodeDescription
for every descendent. This description allows other documents inside the workspace to
access the symbol. All exported symbols are then saved in the IndexManager. Here,
the ScopeComputation is responsible to select which elements inside a document
should be exported symbols and therefore be available for cross-references. In the default
implementation, all elements that contain a name property are selected for indexing. After
this step is done, the current LangiumDocument is in the state IndexedContent.

Next, the local scope computation is done. This computation collects all the symbols
present in the AST. Once all the symbols are collected, their metadata is stored as

20

2.5. Generator

AstNodeDescription in a multimap, which assigns all symbols in the document to
their respective container. After this process, the document is in the ComputedScopes
state.

Now, the DocumentBuilder starts the linking phase, in which cross-references are
resolved using the Linker service. Here, the ScopeProvider service is used to obtain
a scope that describes all reachable elements from the AST node holding a cross-reference.
Using this scope, the symbol matching the cross-reference identifier is searched, and if a
match is found, the respective AstNode is loaded. Following the linking phase, the state
of the document is Linked.

After this phase, the IndexManager service is used again to index all cross-references. A
ReferenceDescription between source and target documents for the cross-references
is created in this phase. After this, the document is in the state IndexedReferences.

The final phase before the document is ready to process requests from the editor is the
validation. Here, the DocumentBuilder validates the document and creates diagnostics
containing errors during lexing, parsing, and linking, as well as possible errors identified
using custom validation functions. Now, the document is in the state Validated and
ready for requests.

Once the client modifies the document, the LangiumDocument switches its state to
Changed. The modified document is invalidated and removed from the previously
mentioned LangiumDocuments service. All documents connected to the modified
document that could be affected by the change get their references unlinked and run
through the linking phase again. A new LangiumDocument instance is created for the
modified document, and it runs again through all the steps described above.

In Figure 2.8, an overview of the different states of a LangiumDocument is illustrated.

Figure 2.8: Document Lifecycle of LangiumDocuments as presented in [Lan]

2.5 Generator
Generators play an important part in modern software engineering. They can be used in
different contexts, like code generation, which has already been mentioned a few times,
or project generation.

21

2. Background

A very popular tool regarding project generation for web-based tools is the Yeoman5

package. This package allows developers to create an initial structure of an application
through the use of templates, which are called “generators” in the context of Yeoman.

The usage of the yeoman package is very simple. To create an initial project for some
application, all that needs to be done is to install the package and the generator for
the respective application. If, for example, a Langium project is set up, the following
commands need to be executed on the command line:

1. npm install -g yeoman generator-langium

2. yo langium

During the execution of the second command, the generator will prompt the user to
enter some parameters to determine predefined elements inside the application that shall
be generated. In the case of Langium, this will include the name of the language, its
language ID, and its file extension.

After this command is executed successfully, the initial project setup for a Langium
project is created.

Yeoman generators do not only offer an option to set up an initial project structure, but
it is also possible to include these generators throughout the development process. They
can offer a set of subcommands, which can be called through the CLI. In the Langium
generator example, a command can be called to regenerate the AST definition after
editing the grammar definition.

2.6 Summary
In this chapter, some terminology that is relevant to this thesis has been presented.
Additionally, some important technologies have been discussed, such as the Graphical
Language Server Platform, Langium, and Yeoman, whose capabilities will be utilized
in the development of the artifacts that this thesis aims to create. In the following,
some state of the art model editors and how their model management is handled will be
presented.

5https://yeoman.io/

22

https://yeoman.io/

CHAPTER 3
State of the art

This chapter will present selected state of the art model editors. The focus will be
on whether their abilities overlap with the aim of this thesis, which is to develop
model management that is entirely browser-based. Finally, also insight into the current
capabilities of language engineering is given.

3.1 Model Editors
Some approaches already exist for developing web-based modeling tools. In the following,
the functionality of some of these editors will be discussed, and the differences in the
solution that will be created within this thesis will be mentioned.

3.1.1 bigER modeling tool [GB21]

The bigER modeling tool is a hybrid textual-graphical editor solution that can be used
to design entity relationship diagrams. Figure 3.1 illustrates the different views of the
bigER tool.

Figure 3.1: Views of the bigER modeling tool

23

3. State of the art

Similar to the artifacts in this thesis, bigER is distributed as a VSCode extension.
However, it utilizes the Language Server Protocol (see Section 2.3.1) and its language
server is written using Xtext, while the client is implemented with Sprotty. A drawback
of the usage of Xtext, is that it relies on Java in the backend; therefore, it is not possible
to run this tool entirely inside a browser runtime, which would be the goal for this thesis.

3.1.2 GLSP based editors
The Graphical Language Server Platform (see Section 2.3) [Eclb] [MB23] is an extension
of LSP, which is also used within the artifacts of this thesis. Additionally, it uses either
Java or TypeScript in its implementation.

In Figure 3.2, an example model of the workflow diagram example [Eclc] can be seen,
which is the default example of GLSP.

Figure 3.2: Workflow Diagram implemented in GLSP

The bigUML [BIGa] [BIGb] tool is a modeling tool specifically designed for UML
diagrams. It supports multiple different types of diagrams, including the class diagram,
use case diagram, state machine diagram, and more. In contrast to the bigER tool,
the bigUML tool utilizes GLSP. However, bigUMLs implementation of the language
server is written in Java; therefore, to be able to start the tool, it is necessary to have
a Java runtime environment installed, which again means that this tool can not be
used in a browser-only environment. In Figures 3.3a and 3.3b, two example diagrams
created with the bigUML tool can be seen. Additionally, bigUML is distributed as a
VSCode extension [BIGa]. As an example, Figure 3.4 illustrates the different views of
the bigUML tool within the Visual Studio Code editor.

24

3.1. Model Editors

(a) Class Diagram (b) State Machine Diagram

Figure 3.3: Class Diagram and State Machine Diagram created using bigUML [BIGa]

Figure 3.4: Views of the bigUML modeling tool

Furthermore, in [DCLB22], the capabilities of the modern web-based technology stack
used within GLSP are shown, as semantic zoom and off-screen elements are implemented,
which are very advanced model visualization and interaction functionalities. Also in this
work, the model management, which includes editing and validation, is done within a
GLSP server that is written in Java.

3.1.3 Sirius Web

Sirius1 is a well-known modeling tool in the Eclipse community, which has been extended
by Sirius Web2. With this extension, users can access graphical editors in the browser
and work in a cloud environment. However, it is important to note that Sirius Web can
only perform graphical editing in a web browser. Developing the underlying models and
defining the appearances for respective graphical editors are still a part of the Sirius
Eclipse application, which is also still Java-based.

1https://eclipse.dev/sirius/
2https://eclipse.dev/sirius/sirius-web.html

25

https://eclipse.dev/sirius/
https://eclipse.dev/sirius/sirius-web.html

3. State of the art

3.2 Language Engineering
In the field of language engineering, there are various approaches that have been adopted
over time. One approach was to define Domain-Specific Languages (DSLs) by creating a
grammar, as stated in [JBF11]. However, there has been a shift towards defining DSLs
using metamodels, as demonstrated by the Eclipse Modeling Framework (EMF) [Foub].
This approach uses a modeling language called Ecore to define the metamodels for the
DSLs.

Additionally, EMF can be easily integrated with a technology called Xtext [Foud], which
enables the creation of domain-specific languages using a Java technology stack. However,
this thesis uses a different technology called Langium for model management that is
entirely based on TypeScript.

Eclipse provides a solution for managing models within the browser through EMF.cloud
[Fouc]. However, this solution only consists of libraries and frameworks that wrap EMF’s
Java-based solution to enable browser-based model management. As a result, a Java
server is still necessary for implementing the model management; therefore, the tool can
still not run in a browser-based environment.

In [GMGC22], DescribeML has been introduced, which uses Langium to create a model-
driven tool to describe machine learning datasets. In the paper, a DSL is created, and
Langium is extended by a few services to extend its capabilities. This paper provides a
good overview of what is possible in language engineering when using Langium.

This thesis will discuss a new approach to the metamodel definition using annotated
TypeScript classes. This approach allows for the creation of structured definitions
that include the specification of properties, methods, and relationships between entities.
Utilizing TypeScript classes can ensure that the metamodels are consistent, reliable, and
easily maintainable.

3.3 Summary
In this chapter’s first section, various graphical editors with different capabilities have
been presented. It has been shown that none of them is capable of handling model
management in the browser. However, browser-based model management is desired, as it
would enable the shift of the entire modeling tool into the browser. This would then allow
using the modeling tool without any installation steps. As mentioned in the previous
sections, the usage of Java is one of the main obstacles on the path to browser-based
modeling tools. Therefore, this thesis will discuss a new model management approach
using Langium, which is written in TypeScript. Furthermore, in the second section, some
language engineering approaches, including the one used within this thesis, are mentioned
to provide an initial overview. The next chapter will focus on the requirements of the
model management solution that will be implemented during this thesis.

26

CHAPTER 4
Requirements

In this chapter, the requirements of the artifacts that will be implemented in the course
of this thesis are presented. First, the general idea and approach of the implementation
will be explained. Subsequently, the requirements for the different artifacts are presented.

4.1 Main idea and general approach
The main aim of this thesis is to offer an alternative option for graphical modeling that
moves away from the Java-based EMF technology and towards a web-friendly TypeScript
solution. This will be achieved by using Langium, a next-generation textual language
framework that is written in TypeScript and provides out-of-the-box support for the
Language Server Protocol. Langium is highly extensible and as such, it will be extended
to enable graphical editors to access the Abstract Syntax Tree of a model. This will be
done by creating a model server, that provides an interface for graphical clients to access
the AST.

As the definition of a metamodel is also typically done using Eclipse EMFs Ecore
metamodel, another important aspect in this thesis is the definition of metamodels using
a TypeScript-based approach. For this, Langium provides a grammar language that
allows to define a grammar for generating a language metamodel. However, this grammar
is not TypeScript-native. Therefore, this thesis aims to create a grammar definition
language based on TypeScript classes in combination with annotations, interfaces, and
types.

Furthermore, to provide out-of-the-box support for the newly defined grammar language,
which already includes the model service, and to enable seamless integration with graphical
model clients, a project generator shall be created that sets up Langium and the required
services. Additionally, Command Line Interface (CLI) commands will be provided to
update the metamodel in line with the current definition effortlessly.

27

4. Requirements

4.1.1 General approach for the prototype implementation

The approach to implementing the required artifacts is to start by implementing the
model server. For this, an already existing solution from CrossBreeze [NL] will be used
as a starting point and expanded with the required functionalities.

For the creation of the (TypeScript-native) grammar language, first, Ecore’s capabilities
will be analyzed to find the requirements of the grammar definition. Following that, the
grammar definition that uses classes in combination with annotations, interfaces, and
types will be created.

To easily set up a project using the newly created grammar language with Langium, a
Yeoman generator, as described in Section 2.5, will be created that parses the grammar
definition and creates the Langium services according to the specification.

Finally, two approaches are used to evaluate the artifacts. First, a unit testing framework
will be set up to evaluate the generator against predefined criteria. Second, to evaluate
all artifacts, the workflow diagram example [Eclc] and the bigUML tool [BIGa] will be
recreated using the new TypeScript-only technology stack. Both these modeling tools are
built using GLSP (see Section 2.3). This means that both a GLSP client and a server
will be required for the evaluation. For the workflow diagram example, a TypeScript
solution already exists for both the client and the server, which means that it is only
necessary to create the connection from the GLSP server to the Langium model server.
However, for the bigUML tool, there is only a TypeScript solution for the client, which
means that for the evaluation, a new TypeScript GLSP server has to be implemented
that has (mostly) the same functionalities as the Java-based server.

4.2 Model Server API

The model server is the central artifact in the TypeScript-based model management
solution. It has to provide multiple different functionalities, including loading, saving
and editing models.

As already discussed, CrossBreeze [NL] provides an existing solution for the model server
API. This API has been implemented to connect seamlessly with the Graphical Language
Server Protocol, which makes it a perfect starting point for the implementation of the
TypeScript-based model management. It offers two ways to access the AST of a model.
Firstly, via a client-server structure that communicates through JSON-RPC, and secondly,
as a service integrated into the Langium language server.

The following sections discuss the requirements for the model server API in more detail.
They focus on the requirements for model management and the requirements for the
model service integrated within the Langium language server.

28

4.2. Model Server API

4.2.1 Requirements for the model management

The access to a model and its AST is a very important aspect of this thesis. The following
requirements are particularly important for (RQ1):

• open: The model server has to provide functionality to load a file from the file
system. A model can not be modified before the model server has loaded the
associated file into its storage.

• save: The model server has to provide functionality to save a model in its current
state to the file system.

• close: The model server has to provide functionality to close a model so it can no
longer be modified. Upon closing, the model is removed from the model server’s
storage.

• request: The model server has to provide the functionality to request the current
state of a model. If a model is not currently opened, it must be opened and loaded
into the server’s storage before returning the current model state.

To allow users to update the model’s current state within the model server, a functionality
intended for this purpose has to be implemented. This will be achieved using two different
techniques:

• update: In this approach, the graphical client sends the entire updated model
to the model server. Although this method is simple, it can lead to significant
communication overload as the size of the request from the client to the server will
increase with the size of the model.

• patch: In this approach, the graphical client sends the current model update by
providing a JSON patch. With this, only the changes for a selected path must be
sent from the client to the server, which keeps the communication from client to
server very lightweight.

4.2.2 Requirements for the model service

In the current implementation of the model server API, the Langium language server is
enhanced by a custom service called the ModelService. However, this ModelService
is closely tied to CrossBreeze’s specific implementation of the Langium language server.
To make it easier to integrate the ModelService with other language servers, it’s
essential that it is decoupled from the language server and instead included as an external
npm package.

29

4. Requirements

4.3 TypeScript-based grammar language
Before defining the grammar language using TypeScript to create a metamodel, cer-
tain considerations must be taken into account. The following section presents these
considerations. Additionally, the requirements for the grammar’s new definition will be
outlined.

In Section 2.2, a kernel version of Eclipse Ecore’s metamodel has been presented. In this
version, the main elements that define a metamodel have been highlighted. Therefore,
these elements have to be included within the newly defined TypeScript-based grammar
definition.

As the TypeScript grammar definition should be parsed and mapped into a Langium
grammar (see Section 2.4), the structure of Langium’s grammar definition must also be
considered in the gathering of requirements of the new grammar definition. This includes,
for example, the entry element rule. In the TypeScript grammar definition, it is required
to be able to define the entry element, which defines which elements can sit on the root
level of the model.

Considering both the Langium grammar definition and the kernel version of Ecore, the
following requirements need to be fulfilled by the grammar:

• Root/Entry element definition : The grammar definition has to provide a
notation to define a root/entry element.

• Element definition: The grammar definition has to provide a notation to define
model elements.

• Attribute definition: The grammar definition has to provide a notation to define
attributes of model elements.

• Inheritance definition: The grammar definition has to provide a notation to
enable inheritance between different model elements.

• Multiplicity definition: The grammar definition has to provide a notation to
define the multiplicity of an attribute. This multiplicity definition has to support
at least the multiplicities: exactly one (1), zero or one (?), zero or more (*), and
one ore more (+).

• Reference definition: The grammar definition has to provide a notation to define
the following references:

– Containment Reference: A containment reference is a reference to a model
element that is contained within the referencing model element.

– Cross Reference: A cross-reference is a reference to a model element within
the model, meaning that the referenced element can exist independently
without the referencing element.

30

4.4. Generator

• Type alias definition: The grammar definition has to provide a notation to define
type alias elements.

• Grammar validation: It is required to define validation for the grammar definition
to ensure that the parser is able to parse the definition into a valid representation
of the grammar and transform it into a Langium grammar definition.

The definition of the TypeScript-based grammar language plays a vital role in answering
(RQ2).

4.4 Generator
It would be useful to have a tool that combines the functionalities of the two previous
artifacts, enabling the creation of a sample project using these artifacts. Thus, this
section presents the requirements that need to be fulfilled to implement a generator that
can perform this task efficiently.

As already mentioned, the implementation of a generator for this system consists not only
of the initial project setup but also of the regeneration of the metamodel after changes
to the definition file. The different types of requirements that need to be specified for
the generators are discussed in the following sections.

To test the initial setup without creating a graphical model client, the generator should
also create a Visual Studio Code extension [Mica]. This extension can be used to test
the created metamodel in a textual notation, but on startup, it also starts the model
server API, which can then be accessed via JSON-RPC calls.

4.4.1 Initial project properties
Before the generator can create an initial project, it is required to be able to gather the
most important properties of the newly created project:

• Name definition: The generator has to include an option to set the name of the
project that is set up.

• Modeling Language definition: The generator has to include an option to set
the modeling language name.

• File extension definition: The option to set file extensions for language identifi-
cation should be included in the generator.

• Entry/Root element definition: The generator has to include an option to set
the modeling language’s entry/root element name.

• Reference Property definition: The generator has to include an option to set
the reference property of model elements. This reference property is used to identify
elements in cross-references.

31

4. Requirements

4.4.2 Parsing

The generator must be able to create the initial project and regenerate the project
files according to the definition files. To be able to read the definition files, a parsing
mechanism must be implemented.

In the context of this thesis, the generator needs to be able to read three different
kinds of definition files: JSON configuration files, TypeScript files that hold the current
metamodel definition in the TypeScript-based grammar language, and .ecore definition
files. This leads to the following requirements for the parsing of files:

• JSON parser: The generator must be able to read JSON files and its configuration
data.

• TypeScript grammar language parser: The generator must be able to parse the
TypeScript-based grammar language so that it can be validated and transformed
into a Langium grammar.

• Ecore definition files: To ease the transition from the Java-based metamodeling
stack, which uses Ecore, to the TypeScript-based stack, the generator must be able
to parse .ecore definition files so that these definitions can be transformed into
the TypeScript-based grammar language.

4.4.3 Validation & Transformation

After the generator parses the definition files, it is required to validate whether the
definition file has been correctly created. Therefore, the following requirement needs to
be included:

• Validation: The generator must provide validation for the TypeScript-based
definition language. The generator should provide the user with a helpful validation
message upon validation errors.

Before and after the validation step, a transformation must be done inside the generator.
This transformation turns the parsed definition file into a format that can be validated
more easily. After the validation, it turns it into a format that can be easily used to
generate new files.

• Transformation: The generator must provide a transformation from the parsed
definition file to a format that can be easily used to generate different types of files
(Langium files as well as TypeScript files).

32

4.4. Generator

4.4.4 File creation

Before a generator can create files, it is required to understand what files should be
created. In the case of this thesis, multiple TypeScript files, Langium files, and JSON
configuration files need to be created. A distinction needs to be made for these files:
either they can be predefined using template files, or they need to be created from scratch
based on the generator’s inputs. Therefore, the following requirements need to be fulfilled:

• Template file creation: The generator must be able to create files from templates.
In these templates, the generator has to be able to replace the elements according
to the provided definition.

• Scratch file creation: The generator must be able to create files from scratch
according to the current definitions/inputs of the generator. The most important
files that need to be created this way include:

– TypeScript-based grammar language definition: This type of file cre-
ation is optional for the case that the generator takes an .ecore definition
file as input, and should create the TypeScript-based grammar definition from
it.

– Langium Grammar Definition (.langium): The Langium grammar
definition file is used by Langium to generate the metamodel from the definition.
In this thesis, the Langium grammar must be created as a generic JSON
grammar so that it can be easily reused in other contexts. This requirement
is particularly important for research question (RQ3).

– Langium Services (.ts): During file creation, different Langium services
need to be recreated according to the current definition of the language. The
Langium serializer service is particularly important, as this service is always
used in the communication between the language client and the server.

4.4.5 Package Installation & Build

As the generator should provide a ready-to-use solution right after project generation,
the following requirements need to be included for the generator:

• Install Packages: After the project files have been successfully created/updated,
the generator must provide the possibility to install all needed packages for the
project.

• Build Project: After the packages have been installed, the generator must be
able to build the project. After the build process is finished, a Visual Studio Code
extension for the current project is ready to use.

33

4. Requirements

4.5 Summary
This chapter presented the main idea of this thesis, followed by the requirements for
the browser-based model management solution. Additionally, the requirements for the
TypeScript-based grammar language and the generator functionality have been discussed.
Moving forward, the subsequent chapter will focus on the solution concepts for these
requirements.

34

CHAPTER 5
Concept

This chapter will present the solution concepts for the different requirements presented
in Chapter 4.

5.1 Model Server API
As discussed in Section 4.2, the model server API must provide access to a model’s
Abstract Syntax Tree. While the concept of implementing the open, close, save, request,
and update functionality is very straight-forward and therefore not discussed in more
depth in this section, the concept of the patch functionality required various considerations
which are listed in the following.

As a basis for the patch functionality, the model’s AST has to be mapped into a JSON
representation. Langium already provides a service to do that, but in this implementation,
cross-references to elements inside another document are not mapped in a sufficient way,
as they only save the path to the element inside the respective document without
providing the information in which document the source element is. Therefore, a custom
implementation of the JSON serializer service needs to be implemented. The concept of
this implementation will be discussed in more detail in Section 5.3.4.

After a model has been serialized into a JSON format, it is possible to execute the JSON
patch. However, for this step one needs to consider the existence of cross-references inside
one JSON document to other elements inside the same or other documents. Typically,
these cross-references are saved in the JSON document via a $ref property, which holds
the path to the element that the reference refers to. In the custom JSON serializer, this
property can be written in different manners according to the element’s properties. The
first manner is shown in Listing 5.1. In this case, the structure of the $ref property
consists of the properties __id and __documentUri, which hold the reference property

35

5. Concept

element and the document URI of the source element. This is the preferred structure
(which is also enabled per default).

"$ref": {
"__id": "ID_OF_THE_REFERENCED_ELEMENT",
"__documentUri": "DOCUMENT_URI_OF_THE_REFERENCED_ELEMENT"

}

Listing 5.1: Structure of $ref element if the referenced element includes the reference
property

Unfortunately, it is possible that the referenced element does not have the referencing
property; this causes the structure of the $ref property to consist of the path and the
document URI of the source element, which can be seen in Listing 5.2.

"$ref": {
"__path": "PATH_TO_THE_REFERENCED_ELEMENT_IN_THE_DOCUMENT",
"__documentUri": "DOCUMENT_URI_OF_THE_REFERENCED_ELEMENT"

}

Listing 5.2: Structure of $ref element if the referenced element does not include the
reference property

For the JSON patch, special handling must be considered for the second case, because
the path of elements can change during a JSON patch operation.

Listing 5.3 shows an example JSON structure containing two nodes and a nodeReference
that holds a reference to the second node.

{
"nodes": [

{"name": "Node1"},
{"name": "Node2"}

],
"nodeReference": [

{
"name": "nodeReference",
"reference": {

"$ref": {
"__path": "/nodes/1",
"__documentUri": "#"

}
}

}
]

}

Listing 5.3: Example JSON structure

In the following the application and the thereby caused problems of selected patches are
applied to Listing 5.3:

36

5.1. Model Server API

• Delete Patch in Listing 5.4: After this patch is executed, the nodes array only
consists of the first node. Now it is impossible for the nodeReference to rebuild
its reference, as the second node (/nodes/1) can not be found anymore. This
leads to an invalid state inside the document. In this case, the problem can be
fixed rather easily, as it would be possible to look for invalid references and remove
the nodes that hold them. However, in case the deleted element is referenced in
another document in the same manner invalid states can still appear.

{
"op": "remove",
"path": "/nodes/0"

}

Listing 5.4: Example JSON patch deleting the first node

• Add Patch in Listing 5.5: After this patch is executed, the nodes array consists
of three nodes, with the node at position 1 being the newly created element. After
rebuilding the references, the rebuilt reference holds the wrong node. Once again,
it would be possible to recreate the reference by checking what operation is done
during the patch, but this could lead to recursive rework, as each node that holds
a corrupted reference could be referenced somewhere else. Therefore, the rework
needs to be done not only for the initial reference but also for those references who
are referencing the referenced element.

{
"op": "add",
"path": "/nodes/1",
"value": {"name": "Node69"}

}

Listing 5.5: Example JSON patch adding a node on the second position

Patch Concept To mitigate the problems with path-referenced elements inside a
JSON document, this thesis uses a new concept to ensure that the rebuilding of references
works correctly. Within this concept, a service called the PatchManager is used, which
has to perform multiple steps before and after a patch to ensure the references are not
corrupted.

Before each JSON patch, the model that should be changed has to be serialized into
JSON format. However, it is possible that the serialized model is not the only model that
needs to be looked at during a JSON patch, as Langium provides support for references
across the entire workspace. Using the IndexManager-service from Langium, it can
be checked whether a document could be affected by a change of an element inside a
selected document. With this, it is possible to collect all affected documents and their
associated models and then serialize them into JSON format.

37

5. Concept

After the serialization, the PatchManager parses through each JSON document and
adds UUIDs to every element that is of the type object, except for the elements holding
a reference. This UUID is used to uniquely identify each object inside the JSON model.

Subsequently, the PatchManager collects all references inside each document and
replaces their reference path with the UUID of the element at the reference’s path. As an
example, Listing 5.6 shows the JSON model from Listing 5.3 after the PatchManager
prepared the model for the JSON patch.

{
"__tmp_uuid__": "UUID1",
"nodes": [

{"name": "Node1", "__tmp_uuid__": "UUID2"},
{"name": "Node2", "__tmp_uuid__": "UUID3"}

],
"nodeReference": [

{
"__tmp_uuid__": "UUID4"
"name": "nodeReference",
"reference": {

"__tmp_uuid__": "UUID5",
"$ref": "UUID3"

}
}

]
}

Listing 5.6: JSON document after PatchManager prepared Listing 5.3 for JSON patch

Once the document has been prepared, patches can be executed and the previously
mentioned problems with path-referencing problems can be avoided as can be seen in
the following descriptions. For example, after the patch in Listing 5.4 is applied to the
prepared model in Listing 5.6, the document would again consist of exactly one node.
Contrary to the previous execution of the patch, this time it is still possible to recreate
the reference.

To do that, the PatchManager first collects all objects that include a __tmp_uuid__-
property. Next, it collects the path to each element with a __tmp_uuid__ and the value
of the element holding the property. With these elements, it creates a Map, using the
UUID as the key and the path and the value of the node as the value. Using this Map,
the PatchManager parses through each JSON document and replaces every referencing
element with the reference that was used before the PatchManager prepared the model,
which consists of the document URI and either the referencing property or the path to
the referenced element.

When this is done, all references have been correctly rebuilt, and all the PatchManager
has left to do is remove the UUID properties from all objects and remove elements, that
are referencing another element, which have not been correctly rebuilt, i.e. deleted.

38

5.2. TypeScript-based grammar language

Though the JSON references have been correctly rebuilt at this point, the PatchManager
still needs to ensure, that the Langium references are rebuilt correctly. For this, the
AST is parsed and every reference is replaced with the value of the referenced element.
Following this, the LangiumDocument is back to a valid state inside the language
server, but the changes have not been saved yet. To do that, the updated documents
are serialized into the Langium grammar and then the documents are updated using the
Langium DocumentManager.

Additionally, the PatchManager saves the current and previous state of the documents
after each JSON patch, to provide a simple functionality to be able to undo or redo any
change that has been done.

5.2 TypeScript-based grammar language
In the definition of the language concepts, it has to be ensured that the requirements
defined in Section 4.3 are fulfilled while also using TypeScript-native notations. To
illustrate the different language concepts, in Figure 5.1, an example metamodel can be
seen, whose elements will be rebuilt using the TypeScript-based grammar language.

Figure 5.1: Example metamodel built using Ecore

39

5. Concept

To ease the understanding of the TypeScript-based grammar language that will be
described in the following, a graphical representation of the metamodel can be seen
in Figure 5.2. The metamodel consists of Types and ModelElements, which can be
either of type Class or Interface. As seen, ModelElements can consist of multiple
properties, while Types can consist of multiple types. It has to be noted that the
DataType represents built-in data types (like string or number), constant data types
(like actual strings or numbers, e.g., “ENGLISH” or 10), as well as complex data types,
which includes ModelElements and Types.

Figure 5.2: Graphical representation of the metamodel of the TypeScript-based grammar
language

The TypeScript-native class and interface structures can be used to define model
elements. Listing 5.7 demonstrates the use of both keywords. They can be used
interchangeably, as both allow the definition of properties and their types. However,
according to the needs of the language that needs to be defined using the TypeScript-
based grammar language, one of them may be preferred. This is due to the limitations of
the extends keyword in classes and the limitations of the usage of decorators within
interfaces. In the following, next to the definition of language concepts, also the
differences in the usage of classes and interfaces will be discussed.

40

5.2. TypeScript-based grammar language

class University {}
interface Person {}

Listing 5.7: Definition of model elements

To give meaning to model elements, it is necessary to be able to add attributes to them.
This is again done using a default TypeScript notation by assigning properties to elements.
As can be seen in Listing 5.8, the previously defined University element now contains
a name, and the Person element contains an attribute lastName.

class University {
name: string;

}
interface Person {

lastName: string;
}

Listing 5.8: Definition of attributes for model elements

With this definition, it is possible to define which attributes a model element can have,
but it is not clear how many attributes of each type the model element can have. For this,
a notation for different types of multiplicities is introduced, as can be seen in Listing 5.9.
The defined grammar supports four different types of multiplicity, which are listed in the
following:

• exactly one: The lastName attribute is defined using only the property name
and the property type. No additional information is given, thereby showing that
each Person has exactly one name.

• zero or one: The title attribute is defined using the property type and the
property name in combination with the question mark operator, which signals for
the element to be optional.

• one ore more: The firstNames attribute is defined using the property name
and the property type, which is a container of type Array. This signalizes, that the
model expects one or more elements of the type of nationality.

• zero or more: The nickNames attribute is defined using the property name in
combination with the question mark operator and the property type, which is a
container of type Array. As the question mark operator signals for the attribute to
be optional, and the Array type signalizes for one or more elements, the combination
of these two elements leads to the multiplicity of zero or more elements.

41

5. Concept

class Person {
lastName: string;
title?: string;
firstNames: Array<string>;
nickNames?: Array<string>;

}

Listing 5.9: Definition of multiplicity for model elements

Up until now, in all definitions, the model elements consisted only of attributes that were
simple types (e.g., string, number, boolean). However, the grammar should provide
two possibilities to create a reference to another model element. This can be done using
either containment references (see Listing 5.10) or cross-references (see Listing 5.11).
The containment references can be easily built using the default TypeScript notation for
properties. The annotation @crossReference is added to the grammar language to
create the notation for cross-references. Unfortunately, annotations are only supported
for classes. Therefore, if the model element is defined using an interface structure, a
custom container type CrossReference<T> has been defined to be able to create
cross-references in the interface context. By providing the annotation for a property or
setting the type of a property to the container type, it is signalized that the property has
a reference to an element that can exist on its own.

In the example shown in Listing 5.10, the model element University has a containment
reference to Room elements. Due to the containment reference, it is clear that the
Room can not exist on its own, but it can be created within a model element of type
University.

class University {
name: string;
rooms: Array<Room>;

}
class Room {

roomNr: number;
}

Listing 5.10: Definition of containment reference

In the example shown in Listing 5.11, the model element Course is defined using both
a class and a interface structure. The cross-references signalize, that the Room,
Student, and Professor can exist on their own, without being contained within an
element of type Course.

class Course {
courseIdentifier: string;
@crossReference room: Room;
@crossReference students: Array<Student>;

42

5.2. TypeScript-based grammar language

@crossReference professor: Professor;
}
interface Course {

courseIdentifier: string;
room: CrossReference<Room>;
students: Array<CrossReference<Student>>;
professor: CrossReference<Professor>

}

Listing 5.11: Definition of cross-reference

The model element Person has been defined in Listings 5.7 to 5.9. In some cases,
some specialization of this type of element may be needed. The TypeScript-native
extends keyword can be used for this. In Listing 5.12, the model elements Student
and Professor are defined, extending the base model element Person. A major
advantage of using interfaces for defining model elements is the ability to extend
multiple interfaces, which is not possible with classes.

class Student extends Person {
matNr: string;

}
interface Professor extends Person {

isAssociate: boolean;
}

Listing 5.12: Definition of sub-model elements

Sometimes, it may be necessary to define base elements but it should not be possible to
create instances of them, meaning that the base elements are abstract. This can be done
using the abstract keyword for model elements that have been defined using classes. For
interfaces, this keyword can not be used. Therefore, a type named ABSTRACT_ELEMENT
has been added to the grammar language to signalize for an interface model element to
be abstract. In Listing 5.13, examples of the abstract notation for classes and interfaces
are shown.

abstract class Person {
lastName: string;
title?: string;
firstNames: Array<string>;
nickNames?: Array<string>;

}
interface Person extends ABSTRACT_ELEMENT {

lastName: string;
title?: string;
firstNames: Array<string>;
nickNames?: Array<string>;

43

5. Concept

}

Listing 5.13: Definition of abstract model elements

Another requirement for the grammar language is the ability to create type alias elements,
which can be done by the creation of union types. An example of these union types used
in a TypeScript-native way can be seen in Listing 5.14, where the union type Language
is created, which can be either "GERMAN", "ENGLISH", or "FRENCH".

type Language = "GERMAN" | "ENGLISH" | "FRENCH";

Listing 5.14: Definition of type alias element

Using all discussed definitions, it is possible to define the elements which belong to a
model, their multiplicity and how they are connected. However, until now it is impossible
to define the actual structure of the model, i.e., it is not clear how a model can include
the defined model elements. For this, it is necessary to be able to define an entry or root
element, which is the element on the root level of the model.

To enable the entry/root-element functionality for classes, the annotation @root is
added to the grammar language. Additionally, a custom type named ROOT_ELEMENT
has been added to the grammar language for interfaces. To illustrate this functionality, in
Listing 5.15, the root element Model is defined using the annotation, while in Listing 5.16,
the root element Model is defined using the type definition.

@root
class Model {

persons: Array<Person>;
universities: Array<University>;

}

Listing 5.15: Definition of root model element using class

interface Model extends ROOT_ELEMENT {
persons: Array<Person>;
universities: Array<University>;

}

Listing 5.16: Definition of root model element using interface

After combining all the presented rules, the metamodel, which is illustrated in Figure 5.1,
can be built using the TypeScript-based grammar definition as can be seen in Listing 5.17.

44

5.2. TypeScript-based grammar language

@root
class Model {

persons: Array<Person>;
universities: Array<University>;

}
abstract class Person {

lastName: string;
title?: string;
firstNames: Array<string>;
nickNames?: Array<string>;

}
class Student extends Person {

matNr: string;
}
interface Professor extends Person {

isAssociate: boolean;
}
class Course {

courseIdentifier: string;
language: Language;
@crossReference room: Room;
@crossReference students: Array<Student>;
@crossReference professor: Professor;

}
class University {

name: string;
rooms: Array<Room>;

}
class Room {

roomNr: number;
}
type Language = "GERMAN" | "ENGLISH" | "FRENCH";

Listing 5.17: Definition of the metamodel from Figure 5.1 in the TypeScript-based
grammar language

The last requirement of the TypeScript-based grammar language is the validation re-
quirement. For this, the following validation rules have been created:

• The grammar definition must consist of exactly one root element: If the
grammar definition does not include a root element, it is unclear how the model can
contain all defined model elements. In contrast, if the grammar definition includes
multiple root elements, it is unclear which of the root elements is on the model’s
root level.

45

5. Concept

• The grammar definition has to be serializable: To be able to send the model
from the server to the client, the model must be serializable.

5.3 Generator
As already mentioned in Section 4.4, the generator functionality has many requirements.
In Figure 5.3, the workflow of the generator functionality, which will be discussed in the
following subsections, is illustrated.

Figure 5.3: Workflow of the generator functionality

5.3.1 Initial project properties
The generator will use prompting in the Command Line Interface to gather the initial
project properties, such as the project name, language name, and file extension. Once
the generator is started, it needs to check whether it is being executed within an already
existing project. In case it is not, the generator must prompt the user to provide input
for all relevant project properties. The generator should also assign a default value to
each property in case no input is provided.

5.3.2 Parsing
The parsing feature of the generator consists of three types of parsers: a JSON parser,
a TypeScript parser, and an Ecore parser (which is a type of XML parser). As JSON
format is a default structure in TypeScript, JSON files can be easily parsed by just

46

5.3. Generator

reading the file data. For the TypeScript parser and the Ecore parser, a more enhanced
parsing functionality has to be implemented. Therefore, the generator will include two
parser modules that implement the TypeScript parsing mechanism and the Ecore parsing
mechanism. The generator checks before the parsing stage whether it has to parse an
Ecore definition file. If that is the case, the generator parses and transforms the Ecore
definition into the TypeScript-based grammar definition. Otherwise, the generator moves
on to the parsing step of the TypeScript-based grammar language. The functionality of
both parsing modules will be explained in the following paragraphs.

Ecore parser For this parsing module, the functionality of the npm package
fast-xml-parser1 will be utilized, to parse the .ecore file into a format that can
be easily transformed into the required structure to be able to generate the TypeScript-
based grammar language definition. The data structures that are used can be seen in
Listings 5.18 to 5.21. As can be seen, this data structure collects information about
the features of EClasses, EAttributes, EEnums, EDataTypes, and EReferences.
The information of EAttributes and EReferences are collected together within the
EcoreAttribute interfaces (Listing 5.20).

export interface EcoreDefinition {
classes: EcoreClass[];
dataTypes: string[];
types: EcoreType[];

}

Listing 5.18: Defintion of the data structure used for the entire Ecore definition

export interface EcoreClass {
attributes: EcoreAttribute[];
extends: string[];
instanceClassName?: string;
instanceTypeName?: string;
isAbstract: boolean;
isInterface: boolean;
isRoot: boolean;
name: string;

}

Listing 5.19: Defintion of the data structure used for EClasses

export interface EcoreAttribute {
changeable?: boolean;
containment?: boolean;
defaultValueLiteral?: string;
derived: boolean;

1https://github.com/NaturalIntelligence/fast-xml-parser

47

https://github.com/NaturalIntelligence/fast-xml-parser

5. Concept

ID?: string;
lowerBound: string;
multiplicity: string;
name: string;
ordered?: boolean;
reference: boolean;
transient: boolean;
type: string;
unique?: boolean;
unsettable: boolean;
upperBound: string;
volatile: boolean;

}

Listing 5.20: Defintion of the data structure used for EAttributes and EReferences

export interface EcoreType {
name: string;
types: string[];

}

Listing 5.21: Defintion of the data structure used for EEnums

TypeScript parser This parsing module will use the typescript2 npm package to
be able to parse elements according to the AST of the TypeScript file. To validate and
transform the definition file into a Langium grammar, the parser creates a data structure
to store parsed elements. The data structure to be used can be seen in Listings 5.22
to 5.25.

export interface Declaration {
type: "class" | "type";
name?: string;
isAbstract?: boolean;
decorators?: string[];
properties?: Array<Property>;
extends?: string[];

}

Listing 5.22: Data structures used by the parser - Declaration

export interface Property {
name: string;
isOptional: boolean;
decorators: string[];

2https://github.com/Microsoft/TypeScript

48

https://github.com/Microsoft/TypeScript

5.3. Generator

types: Type[];
multiplicity: Multiplicity;

}

Listing 5.23: Data structures used by the parser - Property

export interface Type {
type: "constant" | "simple" | "complex";
typeName: string;

}

Listing 5.24: Data structures used by the parser - Type

export enum Multiplicity {
ZERO_TO_N = "*",
ONE_TO_N = "+",
ONE_TO_ONE = "1",

}

Listing 5.25: Data structures used by the parser - Multiplicity

As the TypeScript-based grammar language, discussed in Section 5.2, supports a limited
amount of elements of the TypeScript definition, special handling needs to be added for
the additional elements.

The base elements the parser needs to be able to understand are classes, interfaces,
and types. These elements are parsed into the Declaration interface. As classes and
interfaces are used to create model elements, they are summarized into the same type
class in the data structure. Additionally, for type aliases, the type type is used as seen
in Listing 5.22. The name attribute of the Declaration should be self-explanatory. The
isAbstract property signalizes whether class definitions include the abstract keyword,
while for interfaces, it is checked if they are extending the ABSTRACT_ELEMENT interface.
For types, this property is always true, as types are used to create unions that represent
abstract elements.

The decorators property is used to collect the annotations from classes, and for
interfaces, it is used to check if it extends the interface ROOT_ELEMENT. In type alias
declarations, this property is ignored.

The extends property collects for each class and interfaces the classes and interfaces
they are extending. This property ignores the elements ABSTRACT_ELEMENT and
ROOT_ELEMENT as they are handled within other properties of the Declaration
interface.

The properties property is used to store the properties of a class, interface, or type.
To be able to parse properties, there is also special handling needed.

The name, isOptional and multiplicity properties of a Property should be
self-explanatory.

49

5. Concept

The decorators property checks if a property is of type CrossReference or if the
property has the annotation @crossReference.

The types property collects the types of an attribute. As it is possible that the type is
defined using a union type, this property is an array type. The Type interface consists
of two attributes: typeName, which saves the name of the type, and type, which is
used to save whether the type argument is a simple type (string, number, boolean),
complex type (type, class, interface) or a constant type (fixed string, fixed number
or fixed boolean).

5.3.3 Validation & Transformation
There are two different kinds of transformations that are implemented in the generator
workflow. In the first transformation, the Declarations that have been created by the
parser have to be transformed into an easily validatable format. The new format that
can be seen in Listing 5.26 is very similar to the initial Declaration-format, which was
shown in Listing 5.22. The only difference in the structure is that the extends-property
has been replaced with the extendedBy-property. So instead of the lower-level model
elements knowing which elements they extend, the upper-level model elements know by
which elements they are extended. This structure facilitates building a tree model, which
eases the transformation later on to the Langium grammar.

export interface LangiumDeclaration {
type: "class" | "type";
name?: string;
isAbstract?: boolean;
decorators?: string[];
properties?: Array<Property>;
extendedBy?: string[];

}

Listing 5.26: Data structures used in first transformation

This first transformation consists of the following steps:

1. Map Declaration to LangiumDeclaration: In this step, the type, name,
isAbstract, and decorators properties are mapped one-to-one to the respec-
tive properties in the LangiumDeclaration. The extendedBy-property is
initially left as an empty array. Additionally, the properties of each Declaration
are combined with the properties of the element it is extending.

2. Fill the extendedBy-property: For this, the initial declarations are used to
search for elements that extend other elements, and according to this property, in
the newly created LangiumDeclarations the extendedBy-property is filled
with the associated elements.

50

5.3. Generator

3. Remove properties from abstract elements: As these abstract elements can
not be instantiated on their own, it is not necessary for them to hold properties.
Furthermore, if they are extended by another model element, the extending model
element already holds the required properties after step one of the transformation.
Therefore, in the last step of this transformation, the abstract elements are removed.

After the transformation is completed, the definition can be validated. As declared in
Section 5.2, the definition is only allowed to hold exactly one root element. To validate
this, the validator iterates through all LangiumDeclarations and counts the elements
that include the root-element decorator. If the amount of elements equals one, the
validation is successful.

Following this first validation part, the second required transformation is performed to
transform the LangiumDeclarations into a LangiumGrammar, whose data structure
and sub-elements can be seen in Listings 5.27 to 5.31. The Multiplicity and Type
types are the same as in the previous Declaration definition.

export interface LangiumGrammar {
entryRule: EntryRule;
typeRules: Array<TypeRule>;
parserRules: Array<ParserRule>;

}

Listing 5.27: Data structures used in second transformation - LangiumGrammar

export interface EntryRule {
name: string;
definitions: Array<Definition>;

}

Listing 5.28: Data structures used in second transformation - EntryRule

export interface TypeRule {
name: string;
definitions: Array<Type>;

}

Listing 5.29: Data structures used in second transformation - TypeRule

export interface ParserRule {
name: string;
isAbstract: boolean;
extendedBy: string[];
definitions: Array<Definition>;

}

Listing 5.30: Data structures used in second transformation - ParserRule

51

5. Concept

export interface Definition {
name: string;
type: Type[];
multiplicity: Multiplicity;
crossReference: boolean;
optional: boolean;

}

Listing 5.31: Data structures used in second transformation - Definition

As can be seen in Listings 5.27 to 5.31, this new data structure has three different types
of rules. The steps for this second transformation are the following:

1. Create the EntryRule from the LangiumDeclaration: The array of
LangiumDeclarations is searched for the element that contains the @root
decorator. The properties of the LangiumDeclaration are mapped to definitions.

2. Create array of TypeRule from the LangiumDeclaration: A TypeRule
represents an unassigned rule call. This transformation itself consists of three steps:

a) Map all elements of type type to TypeRules.
b) Map all elements of type class, which are abstract to TypeRules.
c) Search all properties of all elements of type class. If a property has a type

that consists of multiple different types (i.e., union type), and there does not
already exist a TypeRule that represents this union type, create a TypeRule
for exactly this union type.

3. Create array of ParserRule from the LangiumDeclaration: Search for
all elements that are of type class, do not include the @root-decorator and
are not abstract. For all these elements, create a mapping to the ParserRule
interface. Following the creation of the ParserRules, check if each definition
includes the reference property (see Section 5.1). If the property is not included, add
a definition for it. After that, iterate through all definitions of each ParserRule,
and if a definition has multiple different types, replace this type with the respective
TypeRule representing this type.

Following this transformation, a second validation phase is started to check whether the
grammar can be serialized. Here, it is necessary to define the criteria for determining if a
LangiumGrammar can be serialized.

• Rules without definitions are serializable.

• Rules that include only optional definitions are serializable.

• Rules that include only definitions whose type is simple or constant are serializable.

52

5.3. Generator

• Rules with definitions whose type is complex (i.e., other model elements, type
aliases) are only serializable if the complex type is serializable.

The concept to enable these validations is to create an initial serializable set (which
includes string, number, and boolean types) and iteratively extend this set. After
each iteration, it is checked whether the set has changed between the start and end of
the iteration, and if so, a new iteration is started. After the loop has stopped, i.e. no
new element was added in an iteration, it is checked if all model elements are in the
serializable set. If that is the case, the definition is serializable, and the validation is
successful.

5.3.4 File creation
File creation is a key aspect of the generator’s functionality. It consists of creating files
using templates and the current definition file.

Template File Creation For the template file creation, the files that need to be
created can be predefined according to a certain structure, which includes wildcard
phrases. These phrases are replaced with the actual needed value during the file creation
process. The template file creation step is executed only within the first execution of
the generator after the initial project properties have been defined as can be seen in
Figure 5.3. In Listing 5.32 an example template can be seen.

export class <%= LanguageName %>Example {
getExampleString() {

return "Example";
}

}

Listing 5.32: Template file including wildcard phrase

In this example, a class is created. Notice that before the phrase Example in the class
declaration, there is a string <\%= LanguageName \%>. This string is used as an
identifier for the generator. It tells the generator to replace the identifier with the actual
language name. For instance, if the language name was “WorkflowLanguage”, the class
name would be WorkflowLanguageExample.

In the scope of this thesis, the following seven identifiers are handled by the generator:

• <\%= RawLanguageName \%>: Replaced by the language name including white-
spaces.

• <\%= LanguageName \%>: Replaced by the language name without white-
spaces.

53

5. Concept

• <\%= language-id \%>: Replaced by the language name, where white spaces
have been replaced with hyphens and the characters have been transformed to
lowercase.

• <\%= EntryElementName \%>: Replaced by the entry/root element name.

• <\%= ReferenceProperty \%>: Replaced by the reference property, defined
in the generator config file.

• <\%= file-extension \%>: Replaced by the defined file-extension.

• <\%= extension-name \%>: Replaced by the project name.

Scratch File Creation The second type of files that need to be created in the
generation process need to be regenerated on each change of the definition file. This kind
of file creation can be executed within three different contexts in the generator workflow:
First, it can be optionally executed, if Ecore is used for the metamodel definition to create
the TypeScript-based grammar definition file. Secondly, it is required to be executed to
create the .langium grammar definition. Finally, it is also required to be executed to
create the serializers for the grammar language. The scratch file creation is done either
after parsing the Ecore definition or after the validation of the LangiumGrammar has
been successful.

If Ecore is used for the definition, the parsing mechanism, which has been explained
in Section 5.3.2, puts the definition into the EcoreDefinition data structure (see
Listing 5.18) that can be used to create the TypeScript-based grammar language definition.
For all properties of the EcoreDefinition, either classes, interfaces or types must be
created considering the concept of the TypeScript-based grammar language, which has
been described in Section 5.2. After the TypeScript definition file has been created, the
TypeScript parser parses the definition and transforms it into the LangiumGrammar
data structure.

After this transformation step (explained in Section 5.3.3), the current language definition
is in a format that can be easily transformed into a Langium grammar. An important
aspect of the grammar definition created in this step is that it should be a generic
JSON grammar. Therefore, for each element, not only its attributes are included in
the language definition, but also its type. In Listing 5.33, an example definition in the
Langium grammar is shown.

Person: ’{’ ’__type’ ’:’ ’Person’, ’age’ ’:’ age=INT ’}’

Listing 5.33: Example parser rule for a model element Person

There do exist three types of elements in the current LangiumGrammar definition:
EntryRule, TypeRule, and ParserRule elements. For every type of rule, a different
handling in the mapping to the Langium grammar needs to be added:

54

5.3. Generator

• EntryRule: The entry rule is the entry element rule for the Langium grammar.
As explained in Section 2.4, the entry rule has to start with the identifier entry,
followed by the rule name. In the body of the entry rule, the structure of the model
is defined. The structure has to be in a valid JSON format; therefore, an opening or
closing curly bracket is added before the first and after the last attribute definition.
Furthermore, colons are added between the different attribute definitions.

• TypeRule: The type rule is used for unassigned rule calls. Therefore, creating
a correct JSON grammar is unnecessary for this type of rule, as this should be
handled within the child rule elements.

• ParserRule: The parser rule is used to define the correct structure of a rule
element. The parser rule has the same mapping procedure as the EntryRule,
with the only difference being that the entry keyword is left out in the mapping
of the ParserRule.

In the data structure of the LangiumGrammar, the types of the definitions are saved
as the TypeScript types. The .langium grammar can not handle the assignment to
TypeScript types but rather expects terminal rule, type rule, or parser rule assignments.

Furthermore, if the defined type is a complex type, a parser rule must exist for this
type. Therefore, for complex types, no special handling is required. However, creating a
mapping for the simple types, which include the data types string, number, and boolean,
is necessary. For these elements, the following terminal rules have to be created:

• boolean: terminal LANGIUM_BOOL returns boolean: /true|false/;

• number: terminal LANGIUM_INT returns number: /(-)?[0-9]+([̇0-9]*)?/;

• string: terminal LANGIUM_ID: /[\w_-]+/;

After adding these terminal rules, an attribute of type number can be assigned as seen in
Listing 5.33.

The serializer is the second type of file that needs to be created after each change to
the definition file. To do that, a serialize function is created for every type of rule, and
according to the type of each definition, the respective serialize function is called, with the
exception of simple and constant types, as they can be directly used in the serialization.

5.3.5 Package Installation and Build
After all files have been created, the generator executes the npm install command
inside the project. Following that, the npm run build command is executed, which
creates the build.

If both actions are successful, a ready-to-use extension can be selected and started in the
Visual Studio Code debugging window.

55

5. Concept

5.4 Summary
In this chapter the solution concepts for the requirements that have been presented in
Chapter 4 have been discussed. To achieve this, the challenges that some requirements
may face have been identified and concepts for the solution of them have been presented.
Additionally, the concept for the TypeScript-based grammar language has been defined.
In the following chapter, the actual implementation of the concepts discussed in this
section will be presented.

56

CHAPTER 6
Implementation

In this chapter, the implementation of the model server API and the generator will be
presented.

6.1 Model Server API

The model server API allows graphical editors to access the Abstract Syntax Tree of a
Langium language server. This API provides the functionalities to open, close, load, save,
and update a document.

As the starting point of the implementation, the model server API from CrossBreeze [NL]
has been used. In their implementation, the ModelService component is responsible
for the loading, saving, and manipulation of the model state inside a LangiumDocument.
This ModelService can be utilized in two different ways: Either via an RPC connection
to the ModelServer, which forwards the actions to the ModelService, or it can be
directly integrated into Langium as a custom added service.

As part of the implementation of the model server API, the TextDocuments service,
which is a manager for simple text documents, has been extended so that it is possible
to invoke events from within the language server. This service already provides different
kinds of events that are fired whenever a TextDocument has been opened, updated,
saved, or closed. It also holds the state of documents that are currently open. The name
of this extended service is OpenableTextDocuments.

Another service that has been created in CrossBreeze’s solution is the
OpenTextDocumentManager, which is a manager class that supports the handling of
text documents by providing methods to open, update, save, and close documents.

57

6. Implementation

6.1.1 Model Server API Integration
One of the requirements of the model server API is its easy integration with Langium.
Therefore, the model server API is implemented as an npm package.

This package consists of a module file, which defines extensions to the default Langium
services, including language-specific extensions and extensions that enhance the function-
alities of the language server in general.

In Listing 6.1, the definition for the ExtendedLangiumServices can be seen. This
extension is created to add two different kinds of serializers: The JsonSerializer,
which is essential for the implementation of the JSON patch functionality in the model
server, and the Serializer, which is responsible for the transformation of the AST of
a model into its textual representation.
export interface ExtendedLangiumServices extends LangiumServices {

s e r i a l i z e r : {
J s o n S e r i a l i z e r : J s o n S e r i a l i z e r ;
S e r i a l i z e r : S e r i a l i z e r <AstNode >;

} ;
}

Listing 6.1: Definition of the ExtendedLangiumServices

Due to the addition of the ExtendedLangiumServices, the default implementation
of ServiceRegistry, which provides access to language-specific services, also needs to
be extended. To determine which services to provide based on the language specification,
the ServiceRegistry retrieves the necessary services using the URI of the model.
In Listing 6.2, the definition of the new ExtendedServiceRegistry can be seen.
The implementation of the new service registry is the same as the implementation of
the base registry. Therefore, in the register and the getServices functions, the
implementation of the base registry are called respectively.
export interface ExtendedServ iceReg i s t ry extends S e r v i c e R e g i s t r y {

r e g i s t e r (language : ExtendedLangiumServices) : void ;
g e t S e r v i c e s (u r i : URI) : ExtendedLangiumServices ;

}

Listing 6.2: Definition of the ExtendedServiceRegistry

To be able to add the newly created ExtendedServiceRegistry to a language server
built with Langium, a custom type named AddedSharedServices is created, which
consists of the key ServiceRegistry and the type ExtendedServiceRegistry.

Another definition in the model module is the AddedSharedModelServices, which
can be seen in Listing 6.3. This definition is used to add the ModelService, as well as
the custom services OpenTextDocumentManager and OpenableTextDocuments to
the language server.
export interface AddedSharedModelServices {

workspace : {

58

6.1. Model Server API

TextDocuments : OpenableTextDocuments<TextDocument >;
TextDocumentManager : OpenTextDocumentManager ;

} ;
model : {

ModelService : ModelService ; c l i e n t
} ;

}

Listing 6.3: Definition of the AddedSharedModelServices

As can be deduced, the AddedSharedServices type is used to extend the language-
specific services, while AddedSharedModelServices is used to extend the language
server capabilities in general. Details on how these two definitions are added to the
language server will be given in later sections.

6.1.2 Model Service functionalities
The base functionalities of the model server API are implemented in the ModelService
as well as the OpenableTextDocuments and OpenTextDocumentManager.

Each function in the ModelService expects the URI of the document, for which an
action should be executed, as a parameter. A second optional parameter that can also
be provided for each function call is the client kind. It should be noted that the current
implementation supports two kinds of clients: text and glsp, which is the graphical
client.

In the following, the functionalities of the model server API are described in more detail.

open In order to open a document, the ModelService calls the open-method of the
OpenTextDocumentManager. The parameters for this call include the URI of
the file that should be opened, the language ID, and from which kind of client
the request is coming. The TextDocumentManager checks whether a document
with the provided URI is already contained in its state. If so, the document has
already been opened, and there is nothing left to do. Otherwise, the text document
is read from the file system, and its current state is saved in the state of the
TextDocumentManager.

close To close a document, the ModelService calls the close-method of the
OpenTextDocumentManager. The parameters for this call include the URI
of the file that should be closed and the client kind. The close-function checks
whether the TextDocumentManager holds a currently opened version of the
provided URI. If so, the document is removed from the currently opened documents
in the state.

request The request functionality is used to get the current state of a document. The
ModelService opens the document, using its previously mentioned open-method.
Subsequently, it uses LangiumDocuments-service to get the LangiumDocument-
instance and returns its value.

59

6. Implementation

save The save functionality is used to save the model’s current state to the file sys-
tem. The save function can be called with an optional parameter that holds
the state that should be saved to the file system. If this parameter is unde-
fined, the ModelService requests the current state of the model using the
LangiumDocuments-service and saves the current state of the LangiumDocument
instance to the file system.

update The update functionality offers two different ways to update the model. The
reason for this is that the model server API has been implemented in cooperation
with another master’s thesis, which focuses on the implementation of a textual-
graphical-hybrid model editor. As for this thesis, only the update from the graphical
client is of importance, only this part of the update will be explained.
The update function expects the updated model as a parameter. The parameter
can be sent either in textual form or as the complete AST of the model. If
the model is sent as an AST, it is first serialized into a textual representation.
Following that, the update method for the OpenableTextDocuments-service and
the OpenTextDocumentManager-service is called to update the internal state.
To update the AST, the update method from the Langium-DocumentBuilder is
called. Finally, the current state of the model is returned.

patch The patch functionality expects as a parameter the JSON patch that should be
executed on the current state of the document. This functionality is implemented in
the applyPatch function of the PatchManager-service. The function starts by
collecting all documents that could be affected by a change in the document with
the provided URI. The implementation of this collection can be seen in Listing 6.4.
async co l l e c tAf f ec tedDocuments (docs : Set<s t r i n g >, u r i : s t r i n g) {

docs . add (URI . parse (u r i) . t o S t r i n g ()) ;
f o r (const doc o f this . documents . a l l) {

await this . indexManager . updateReferences (doc) ;
i f (this . indexManager . i s A f f e c t e d (doc , docs)) {

i f (! docs . has (doc . u r i . t o S t r i n g ())) {
docs . add (doc . u r i . t o S t r i n g ()) ;
docs = new Set ([

. . . (await this . co l l e c tAf f ec tedDocuments (docs , doc .
u r i . t o S t r i n g ())) ,

]) ;
}

}
}
re turn docs ;

}

Listing 6.4: Collection of documents that could be affected by a change

As can be seen, the function checks recursively if, for the current documents in
the set, the possibility exists that they could be affected by a change to these
documents.

60

6.1. Model Server API

After the URIs have been collected, for each URI,the OpenTextDocumentManager
opens the document, and following that, the LangiumDocuments-service is used
to load the current AST of the model inside the document. In succession, using the
ServiceRegistry, the JsonSerializer for each document is loaded and the
serialize function is used to transform each respective AST into JSON format.
The combination of URI and JSON format is saved within two Maps, which are
needed, as one of them is used to execute the required JSON patches, while the
other one is utilized to create a JSON patch that represents the current previous
version of the model. This eases the implementation of the redo/undo functionality
in the PatchManager. The described procedure can be seen in Listing 6.5.
f o r (l e t u r i o f documents) {

l e t documentUri = URI . parse (u r i) . path ;
await this . documentManager . open (documentUri , undef ined , c l i e n t) ;
const document = this . documents . getOrCreateDocument (URI . parse (

documentUri)) ;
const j s o n S e r i a l i z e r = this . shared . S e r v i c e R e g i s t r y . g e t S e r v i c e s (

URI . parse (documentUri)
) . s e r i a l i z e r . J s o n S e r i a l i z e r ;
documentMap . s e t (

documentUri ,
JSON. parse (j s o n S e r i a l i z e r . s e r i a l i z e (document . par seResu l t . va lue

))
) ;
originalDocumentMap . s e t (documentUri , document . textDocument . getText
()) ;

}

Listing 6.5: Functionality to load document URIs with models in JSON format into two
Maps

As discussed in Section 5.1, before the JSON patch can be executed, a UUID must
be added to each element in the model. This is done using the addUUID function,
whose implementation can be seen in Listing 6.6. The function defines another
function visit that recursively visits child elements of objects in the JSON object
and adds the __tmp_uuid__ property to those elements that are of type object
and whose parent key is not $ref.
export function addUUID(map : Map<s t r i n g , any>) {

function v i s i t (obj) {
i f (obj && typeo f obj === " o b j e c t ") {

f o r (l e t key in obj) {
i f (obj [key] && obj . hasOwnProperty (key) && key !== "

$ r e f ") {
v i s i t (obj [key]) ;

}
obj ["__tmp_uuid__"] = uuidv4 () ;

}
}

}
map . forEach ((va l) => v i s i t (va l)) ;

61

6. Implementation

}

Listing 6.6: Functionality that adds temporal UUIDs to the JSON model

After the UUIDs have been added to the respective elements in the JSON object,
the references inside the document must be changed so that they use the newly
added UUIDs instead of the initial structure to represent a reference. In Listing 6.7,
the source code on how to replace the initial references can be seen. Once again, a
nested function visit is created, which recursively visits each object and its child
elements. If the key of a child element is $ref, then the getReferenceUUID
(see Listing 6.8) function is called to find the referenced element and replace the
current $ref value with the __tmp_uuid__ value of the reference.
export function updateReferences (map : Map<s t r i n g , any>) {

function v i s i t (obj , i n i t i a l) {
i f (obj && typeo f obj === " o b j e c t ") {

f o r (l e t key in obj) {
i f (key === " $ r e f ") {

l e t va l = getReferenceUUID (
obj [key] . __documentUri
? map . get (obj [key] . __documentUri)
: JSON. parse (JSON. s t r i n g i f y (i n i t i a l)) ,
obj [key]

) ;
obj [key] = va l ? va l : obj [key] ;

} e l s e i f (obj . hasOwnProperty (key)) {
v i s i t (obj [key] , i n i t i a l) ;

}
}

}
}

map . forEach ((va lue) => v i s i t (value , va lue)) ;
}

Listing 6.7: Update the references inside the JSON models after adding the UUIDs

export function getReferenceUUID (json , r e f : any) {
i f (r e f . __id) {

l e t nodes = findNodes (json , ‘__id ‘ , r e f . __id) ?? [] ;
i f (nodes [0] ? . va lue) {

re turn nodes [0] . va lue ["__tmp_uuid__"] ;
}

} e l s e {
const path = r e f . __path . s u b s t r i n g (r e f . __path . indexOf (" / ") + 1)

. s p l i t (" / ") ;
f o r (l e t pathComponent o f path) {

j son = json [pathComponent] ;
}
re turn j son ["__tmp_uuid__"] ;

}
}

Listing 6.8: Get the UUID of the referenced element

62

6.1. Model Server API

In the getReferenceUUID function, the utility function findNodes is used,
which searches the JSON object for elements with an __id property. If this
property is found, it is checked if the value of this property is the same as the
provided one (ref.__id). The function returns the first element that fits the
criteria.
After these steps are done, the JSON objects are ready to be patched. However,
for some kinds of patches, it is necessary to make an adjustment to the patch
value. If the patch executes a replace operation, a reference to the replaced
element can get lost, as the replacing value does not hold the UUID of the initial
reference. In such a case, before the patch can be executed, the value of the patch
is altered so that it holds the UUID of the initial value. The UUID is found using
the findUUID function, whose implementation can be seen in Listing 6.9.
export function findUUID (json , path) {
const pathComponents = path . s u b s t r i n g (path . indexOf (" / ") + 1) . s p l i t (" / "

) ;
f o r (l e t pathComponent o f pathComponents) {

j son = json [pathComponent] ;
}
re turn j son ["__tmp_uuid__"] ;

}

Listing 6.9: Get the UUID of the element that should be replaced

After the patch values have been updated, the patch can be executed. In Listing 6.10,
the code for the patch functionality can be seen. For the execution of the patch, an
external library called fast-json-patch1 is used.
patch . forEach ((patchOp) => {

i f ((patchOp . op === " r e p l a c e " | | patchOp . op === " add ") &&
typeo f patchOp . va lue === " o b j e c t ") {
i f (patchOp . op === " r e p l a c e ") {

patchOp . va lue ["__tmp_uuid__"] = findUUID (
JSON. parse (JSON. s t r i n g i f y (documentMap . get (_uri))) ,
patchOp . path

) ;
} e l s e i f (patchOp . op === " add ") {

patchOp . va lue ["__tmp_uuid__"] = uuidv4 () ;
}

}
r e s u l t = jsonpatch . applyOperat ion (documentMap . get (_uri) , patchOp) ;

}) ;

Listing 6.10: Execute the JSON patch

After the JSON patch is executed, the JSON objects must be rebuilt. This
includes rebuilding the references to the previous structure, which consists of the
__documentUri and either the __id of the referenced element or the __path
to the referenced element.

1https://github.com/Starcounter-Jack/JSON-Patch

63

https://github.com/Starcounter-Jack/JSON-Patch

6. Implementation

This is implemented in the rebuildReferences function, which can be seen in
Listing 6.12. The function starts by collecting all nodes that include a property
with the name __tmp_uuid__. Following that, the found nodes are mapped to
elements that consist of the path and value of the found node. Here, the value of
the node is provided by the getNode function whose implementation can be seen
in Listing 6.11.
export function getNode (json , path) {

f o r (l e t pathComponent o f path . s p l i t (" / ")) {
i f (pathComponent) {

j son = json [pathComponent] ;
}

}
re turn j son ;

}

Listing 6.11: Functionality to get the value of the element by searching the JSON object
with the given path

After the nodes have been collected and mapped into their path and value structure,
the rebuild functionality can be executed. As can be seen in Listing 6.12, the nested
function visit is used to recursively visit all elements inside a JSON object and
checks for the $ref property. If this property is found, the prepared nodes are
searched, and if a node is found whose __tmp_uuid__ is the same as the $ref,
then the UUID is replaced with the __documentUri and the __id or __path
of the found element. If no element is found, the value of the $ref property is set
to an empty object.
export function r ebu i ldRe f e r ence s <T extends AstNode>(map : Map<s t r i ng ,

any>) {
l e t nodes : Record<s t r i ng , any> = {} ;
map . forEach ((val , key) => {

const tmpNodes = (nodes [key] = findNodes (val , "__tmp_uuid__") ??
[]) ;
nodes [key] = tmpNodes . map((node) => ({

path : node . path ,
va lue : getNode (val , jsonPathToJsonPatchPath (node . path)) ,

})) ;
}) ;

function v i s i t (obj , docUri) {
i f (obj && typeo f obj === " o b j e c t ") {

f o r (l e t key in obj) {
i f (key === " $ r e f " && typeo f obj [key] !== " o b j e c t ") {

l e t node ;
l e t nodeKey ;
f o r (l e t _key in nodes) {

node = nodes [_key] . f i n d (
(node) => node . va lue . __tmp_uuid__ === obj [key]

) ;
i f (node) {

nodeKey = _key ;

64

6.1. Model Server API

break ;
}

}
i f (node) {

obj [key] = {
__id : node . va lue . __id ,
__path : node . va lue . __id

? undef ined
: jsonPathToJsonPatchPath (node . path) ,

__documentUri : nodeKey === docUri ? undef ined : nodeKey ,
} as unknown as T;

} e l s e {
obj [key] = {} ;

}
} e l s e i f (obj && obj . hasOwnProperty (key)) {

obj [key] = v i s i t (obj [key] , docUri) ;
}

}
}
re turn obj ;

}
map . forEach ((value , key) => v i s i t (value , key)) ;

}

Listing 6.12: Functionality to rebuild the references to the previous reference structure

Once the references have been rebuilt, the JSON object needs to be cleaned. This
includes removing all UUIDs and elements whose references were not rebuildable
(which means that the referenced element has been deleted in the patch). An
element that could not be rebuilt can be recognized as an empty object by the
$ref value.
In succession to the cleanup, the Langium references need to be reconstructed.
For this, the three Langium services AstNodeLocator, NameProvider, and
LangiumDocuments are needed. Here, the AstNodeLocator service is used to
get an AST node or the path to an AST node. Additionally, the NameProvider
service is used to get the name of an AST node; however, this service will be
extended by the generator to return the value of the referenceProperty of an
AST node. Finally, the LangiumDocuments service has already been described
in Section 2.4.
The rebuildLangiumReferences function consists of four nested functions:

• linkNode: This function recursively visits child elements of AST nodes
to recreate the Langium references. It also makes sure that the recon-
structed references are correct Langium nodes, i.e., it adds the $container,
$containerProperty and $containerIndex properties to the recon-
structed references.

• reviveReference: This function transforms a JSON reference into a
Langium reference.

65

6. Implementation

• getRefNode: This function is used to search for an AST node, given a refer-
ence element, which consists of a __documentUri and a __id or __path.

• getAstNodeById: This function expects the root AST node of a document
and an id as input parameters. Using the Langium utility function streamAst,
a stream of AST nodes is created, which is searched for the AST node with
the given id.

After the Langium references have been restored, the AST is serialized, and an
update similar to the discussed update functionality of the ModelService is
executed.

Finally, after each LangiumDocument has been updated, the state before and
after the patch is saved in a redo/undo Map, which is used in the redo/undo
implementation of the PatchManager.

redo and undo To redo or undo a patch, the ModelService calls the respective
functions inside the PatchManager. In the PatchManager, it is checked if there
does exist a redo or undo action by searching the corresponding Maps. If a patch
is found, the redoUndoPatch function is called, whose implementation can be
seen in Listing 6.13.

async redoUndoPatch (map : Map<s t r i ng , s t r i n g >, u r i : s t r i n g , c l i e n t ? :
s t r i n g) {
l e t re tVa l ;
f o r (l e t [key , va lue] o f map . e n t r i e s ()) {

await this . documentManager . open (
URI . parse (key) . path ,
undef ined ,
c l i e n t ?? " g l sp "

) ;
const document = this . documents . getOrCreateDocument (URI . parse (

key)) ;
await this . documentManager . update (

URI . parse (key) . path ,
document . textDocument . v e r s i o n + 1 ,
value ,
c l i e n t ?? " g l sp "

) ;
await this . documentManager . save (URI . parse (key) . path , va lue) ;
i f (URI . parse (key) . path === URI . parse (u r i) . path) {

await this . documentBuilder . update ([URI . parse (key)] , []) ;
r e tVal = document . par seResu l t . va lue ;

}
}
re turn retVal ;

}

Listing 6.13: Execution of redo/undo patch for the given Map of redo/undo actions

66

6.2. Generator

6.2 Generator
The generator consists of multiple implementation modules. The following sections will
explain the implementation of all the generator modules in more detail.

6.2.1 Parsing
There are two modules for parsing: the Ecore parsing module, which can be used
optionally, and the general parsing module, which is used for different types of parsing,
including JSON, TypeScript-config, and TypeScript-based grammar language parsing. In
the following paragraphs, the implementation of these parsing modules will be presented.

Ecore parsing The Ecore parsing module is an extra feature of the implementation.
It is used to parse Ecore definitions into a format that can be used to easily generate a
definition in the newly created TypeScript-based grammar language.

The implementation of the Ecore parser consists of an entry function, which uses the
fast-xml-parser library to parse the .ecore definition into an easily iterable struc-
ture. Listing 6.14 shows the implementation part of the entry function for the Ecore
parser that reads the .ecore file according to the given file path, transforms it using
the XMLParser and starts the parsing mechanism.
export async function p a r s e E c o r e D e f i n i t i o n F i l e (_path : any) : Promise<any> {

const pa r s e r = new XMLParser ({
i g n o r e A t t r i b u t e s : f a l s e ,
att r ibuteNamePref ix : " " ,

}) ;

l e t d e f i n i t i o n F i l e C o n t e n t = f s . readFi l eSync (_path , " u t f 8 ") ;
const parsedXml = par s e r . parse (d e f i n i t i o n F i l e C o n t e n t) ;
const e c o r e D e f i n i t i o n = p a r s e E c o r e D e f i n i t i o n (parsedXml) ;

}

Listing 6.14: Entry function for the Ecore parser

The parseEcoreDefinition file analyzes each property of the given XML structure,
and if the key of a property is ecore:EPackage, gathers the information from this
property and visits its child properties, as can be seen in Listing 6.15.
export function p a r s e E c o r e D e f i n i t i o n (parsedXml : any) : E c o r e D e f i n i t i o n {

const d e f i n i t i o n : E c o r e D e f i n i t i o n = {
c l a s s e s : [] ,
types : [] ,
dataTypes : [] ,

} ;
Object . keys (parsedXml) . forEach ((key) => {

switch (key) {
case " eco re : EPackage " :

v i s i tPackage (parsedXml [key] , d e f i n i t i o n) ;
break ;

67

6. Implementation

}
}) ;
r e turn d e f i n i t i o n ;

}

Listing 6.15: Function that parses the provided XML structure into an EcoreDefintion
structure

In the visitEPackage function, again, all properties of the structure are analyzed; if a
property is an eClassifier, the information of this property is gathered, and according
to the xsi:type property of the classifier, the respective visit-function is called, which
is either visitEClass or visitEEnum. In Listing 6.16, the implementation of the
visitEClass is illustrated. As can be seen, for each child element of the EClass, it is
checked whether the child is of type eStructuralFeatures. If so, the child element is
further examined using the visitStructuralFeatures method (which can be seen
in Listing 6.17). This function checks if the structural feature is of type EAttribute or
EReference and creates an attribute according to its specifications.
function v i s i t E C l a s s (node : any , eClas s : EcoreClass) {

Object . keys (node) . forEach ((key) => {
switch (key) {

case " e S t r uc t u ra l F e a t u r e s " :
i f (Array . i sArray (node [key])) {

node [key] . forEach ((f e a t u r e : any) => {
v i s i t S t r u c t u r a l F e a t u r e s (f ea ture , eClas s) ;

}) ;
} e l s e {

v i s i t S t r u c t u r a l F e a t u r e s (node [key] , eClas s) ;
}
break ;

}
}) ;

}

Listing 6.16: Function that parses elements of type EClass

function v i s i t S t r u c t u r a l F e a t u r e s (node : any , eClas s : EcoreClass) {
switch (node [" x s i : type "]) {

case " eco re : EAttr ibute " :
case " eco re : EReference " :

eClas s . a t t r i b u t e s . push ({
changeable : node [" changeable "] ,
containment : node [" x s i : type "] === " ecore : EAttr ibute " ? t rue : node ["

containment "] === " true " ,
d e f a u l t V a l u e L i t e r a l : node [" d e f a u l t V a l u e L i t e r a l "] ,
de r ived : node [" der ived "] ,
ID : node [" iD "] ,
lowerBound : node [" lowerBound "] ,
m u l t i p l i c i t y : g e t M u l t i p l i c i t y (node [" lowerBound "] , node [" upperBound "]) ,
name : cleanName (node ["name"]) ,
ordered : node [" ordered "] ,
r e f e r e n c e : node [" x s i : type "] === " ecore : EAttr ibute " ? f a l s e

68

6.2. Generator

: ! node [" containment "] | | node [" containment "] === " f a l s e " ,
t r a n s i e n t : node [" t r a n s i e n t "] ,
type : mapType(node [" eType "]) ,
unique : node [" unique "] ,
un s e t t a b l e : node [" un s e t t a b l e "] ,
upperBound : node [" upperBound "] ,
v o l a t i l e : node [" v o l a t i l e "] ,

}) ;
}

}

Listing 6.17: Function that parses elements of type EAttribute and EReference

The parsing of EEnum elements can be seen in Listing 6.18, while the parsing of
EDataTypes is not handled in its own function, as the EDataType information is
gathered in a simple string array.
function visitEEnum (node : any , eType : EcoreType) {

Object . keys (node) . forEach ((key) => {
switch (key) {

case " e L i t e r a l s " :
node [key] . forEach ((l i t e r a l : any) => {

eType . types . push (
JSON. s t r i n g i f y (l i t e r a l [" l i t e r a l "] ?? l i t e r a l ["name"])

) ;
}) ;
break ;

}
}) ;

}

Listing 6.18: Function that parses elements of type EEnum

During the parsing, multiple utility functions, which map Ecore types to the types that
represent them in a TypeScript definition (e.g., EInteger elements are mapped to
number), or clean the name of a data type (e.g., if a data type in the Ecore definition
uses a name, that is a reserved keyword in TypeScript).

Furthermore, after all elements in the Ecore definition have been parsed, a root class
definition must be created that defines which classes can be created at the root level of
the model. This is done by the function seen in Listing 6.19.
function c o l l e c t R o o t C l a s s e s (d e f i n i t i o n : E c o r e De f i n i t i o n) {

re turn d e f i n i t i o n . c l a s s e s
. f i l t e r ((eClas s) => {

return ! d e f i n i t i o n . c l a s s e s . some ((c) =>
c . a t t r i b u t e s . some (

(a t t r i b u t e) => a t t r i b u t e . type === eClas s . name && a t t r i b u t e .
containment

)
) ;

})
. f i l t e r ((eClas s) => {

69

6. Implementation

re turn (
eClas s . extends . l ength === 0 | |
! d e f i n i t i o n . c l a s s e s . some ((c) =>

c . a t t r i b u t e s . some ((a t t r i b u t e) =>
c o l l e c t S u p e r C l a s s e s (d e f i n i t i o n , eClas s)

. map((sc) => sc . name)

. i n c l u d e s (a t t r i b u t e . type)
)

)
) ;

})
. f i l t e r ((eClas s) => ! eClas s . i s A b s t r a c t)
. map((eClas s) => eClass . name) ;

}

Listing 6.19: Function that collects the root-level classes of the model

After the root elements have been collected, the parsing of the Ecore definition is finished.

General parsing The general parser is responsible for parsing documents into the data
structure presented in Section 5.3. The parser module consists of three entry functions
used to parse JSON-based configuration files, TypeScript-based configuration files, or
TypeScript files that include a TypeScript-based grammar language definition.

The parser for the JSON configuration files is very simple; it just needs to read a file
from the file system and return its value.

The parsers for the TypeScript files are more advanced and need to be looked at in
more detail. In Listing 6.20, the entry into the definition file parser can be seen. At
startup, the function uses prettier2, to format the file according to the provided
configurations. This has to be done, as the parser expects strings to have double quotes.
This is particularly important for parsing constant elements representing a fixed element
value. Next, using typescript (ts), a program is created, and a function to visit each
child in the file is called.

export async function p a r s e D e f i n i t i o n F i l e (
path : any

) : Promise<Array<Dec larat ion >> {
l e t d e f i n i t i o n F i l e C o n t e n t = f s . readFi l eSync (path , " u t f 8 ") ;
l e t f o r m a t t e d D e f i n i t i o n F i l e = await p r e t t i e r . format (d e f i n i t i o n F i l e C o n t e n t

, {
pa r s e r : " t y p e s c r i p t " ,
trailingComma : " es5 " ,

}) ;
f s . wr i t eF i l eSync (path , f o r m a t t e d D e f i n i t i o n F i l e) ;
const program = t s . createProgram ([path] , {

t a r g e t : t s . Sc r ip tTarget . ES2022 ,
}) ;

2https://prettier.io/docs/en/install.html

70

https://prettier.io/docs/en/install.html

6.2. Generator

const checker = program . getTypeChecker () ;
const source = program . g e t S o u r c e F i l e (path) ;
const d e c l a r a t i o n s : Array<Dec larat ion > = [] ;
t s . forEachChi ld (source , v i s i t (d e c l a r a t i o n s)) ;
r e turn d e c l a r a t i o n s ;

}

Listing 6.20: Entry function to the parsing of definition files

In the visit function, the parser looks at every child element of the TypeScript file
and checks for their types. Additionally, a Declaration is created according to the
respective type, as shown in Listing 6.21.
export const v i s i t = (t a r g e t : Array<Dec larat ion >) => (node : t s . Node) => {

const d e c l a r a t i o n : Dec la ra t i on = {
type :

t s . i s C l a s s D e c l a r a t i o n (node) | | t s . i s I n t e r f a c e D e c l a r a t i o n (node)
? " c l a s s "
: " type " ,

i s A b s t r a c t : t s . i sTypeAl i a sDec l a ra t i on (node) ,
d e co ra to r s : [] ,
p r o p e r t i e s : [] ,
extends : [] ,

} ;
i f (t s . i s C l a s s D e c l a r a t i o n (node)) {

t a r g e t . push (d e c l a r a t i o n) ;
t s . forEachChi ld (node , v i s i t C l a s s D e c l a r a t i o n (d e c l a r a t i o n)) ;

} e l s e i f (t s . i sTypeAl i a sDec l a ra t i on (node)) {
t a r g e t . push (d e c l a r a t i o n) ;
t s . forEachChi ld (node , v i s i tTypeDec l a ra t i on (d e c l a r a t i o n)) ;

} e l s e i f (t s . i s I n t e r f a c e D e c l a r a t i o n (node)) {
t a r g e t . push (d e c l a r a t i o n) ;
t s . forEachChi ld (node , v i s i t I n t e r f a c e D e c l a r a t i o n (d e c l a r a t i o n)) ;

}
} ;

Listing 6.21: Functionality to create Declaration according to node kind

Following the declaration’s creation, the node’s child elements are visited using different
parser functions according to their type. Though classes and interfaces are mapped into
declarations that represent model elements, the parser handles the child nodes differently.
The reason for this distinction is that decorators are not supported for interfaces in
TypeScript.

In Listing 6.22, the parser implementation that visits the child nodes of an inter-
face declaration can be seen. It is noteworthy that nodes of kind Identifier and
PropertyDeclaration are handled the same way in the parser that visits class
declarations. The Identifier is used to set the model element’s name, while the
PropertyDeclaration is used to parse properties correctly. As decorators and some
keywords are not supported by interfaces, metainformation, such as whether a model
element is abstract or a root element, has to be obtained using a different approach.

71

6. Implementation

Therefore, this information is gathered using heritage clauses. If an interface extends
the interface ABSTRACT_ELEMENT, the isAbstract property of the declaration is set
to true, and if it extends the interface ROOT_ELEMENT, the root decorator is added to
the decorators array of the declaration.
export const v i s i t I n t e r f a c e D e c l a r a t i o n =

(t a r g e t : Dec la ra t i on) => (node : t s . Node) => {
i f (t s . i s I d e n t i f i e r (node)) {

t a r g e t . name = node . t ex t ;
} e l s e i f (t s . i sPrope r tyS igna tu re (node)) {

const property : Property = {
deco ra to r s : [] ,
i sO pt i ona l : f a l s e ,
types : [] ,
m u l t i p l i c i t y : M u l t i p l i c i t y .ONE_TO_ONE,

} as Property ;
t a r g e t . p r o p e r t i e s . push (property) ;
t s . forEachChi ld (node , v i s i t P r o p e r t y D e c l a r a t i o n (property)) ;

} e l s e i f (t s . i s H e r i t a g e C l a u s e (node)) {
t s . forEachChi ld (node , (c h i l d) => {

i f (t s . isExpressionWithTypeArguments (c h i l d)) {
t s . forEachChi ld (ch i ld , (c h i l d) => {

i f (t s . i s I d e n t i f i e r (c h i l d)) {
i f (c h i l d . t ex t === "ABSTRACT_ELEMENT") {

t a r g e t . i s A b s t r a c t = true ;
} e l s e i f (c h i l d . t ex t === "ROOT_ELEMENT") {

t a r g e t . d e c o ra to r s . push (" root ") ;
} e l s e {

t a r g e t . extends . push (c h i l d . getText ()) ;
}

}
}) ;

}
}) ;

}
} ;

Listing 6.22: Functionality to parse an interface declaration

In contrast to the interface declaration, a class declaration would ignore the heritage
clauses ABSTRACT_ELEMENT and ROOT_ELEMENT. However, for a class declaration, it
is possible to check for the abstract keyword to set the isAbstract property, and
it is possible to iterate over all decorators that a class can have to collect them in the
decorators array of the declaration.

Another kind of root-level parser is the type alias parser, whose implementation can be
seen in Listing 6.23.
export const v i s i tTypeDec l a ra t i on =

(t a r g e t : Dec la ra t i on) => (node : t s . Node) => {
const property = {

deco ra to r s : [] ,
i sO pt i ona l : true ,

72

6.2. Generator

types : [] ,
m u l t i p l i c i t y : M u l t i p l i c i t y .ONE_TO_ONE,

} as Property ;
i f (t s . i s I d e n t i f i e r (node)) {

t a r g e t . name = node . t ex t ;
} e l s e i f (t s . isUnionTypeNode (node)) {

t a r g e t . p r o p e r t i e s . push (property) ;
t s . forEachChi ld (node , v is i tUnionType (property)) ;

} e l s e i f (t s . isTypeReferenceNode (node)) {
t a r g e t . p r o p e r t i e s . push (property) ;
t s . forEachChi ld (node , v i s i tTypeReferenceNode (property)) ;

} e l s e i f (t s . i sL i tera lTypeNode (node)) {
t a r g e t . p r o p e r t i e s . push (property) ;
t s . forEachChi ld (node , (c h i l d) => {

i f (
t s . i s S t r i n g L i t e r a l (c h i l d) | |
t s . i s N u m e r i c L i t e r a l (c h i l d) | |
c h i l d . kind === t s . SyntaxKind . TrueKeyword | |
c h i l d . kind === t s . SyntaxKind . FalseKeyword

) {
property . types . push ({ type : " constant " , typeName : c h i l d . getText ()

}) ;
}

}) ;
}

} ;

Listing 6.23: Functionality to parse a type declaration

For the child nodes of PropertyDeclarations, seven different types of nodes need
to be handled:

• Identifier: Used to set the name of the property.

• Decorator: Used to check for the @crossReference decorator.

• TypeReference: This represents a node of a referenced type. The node can be a
container type or another class, interface, or type declaration in the definition file.
TypeReferences are handled separately in their own parser function.

• UnionType: It is possible for the type of an element to have multiple different
valid types. For this, it is possible to define a union type. The parsing of a union
type is handled separately in the visitUnionType function.

• NumberKeyword or BooleanKeyword or StringKeyword: These kinds repre-
sent the simple types number, boolean and string. If the type of a property is
one of them, the type in the declaration is defined as simple.

• LiteralTypeNode: This element represents nodes with a constant value. The
type of the property declaration is set to constant if this kind is encountered.

73

6. Implementation

• QuestionToken: Used to represent elements that are optional. Hence, if this
element is found, the property declaration is set to optional.

In Listing 6.24 and Listing 6.25, the implementations to parse TypeReferenceNodes
and UnionTypes can be seen. In the visitTypeReferenceNode function, the special
handling for the definition of cross-references within interface declarations is implemented.
Cross-references are typically defined using the @crossReference decorator inside
a class declaration. However, as has already been discussed, in interface declarations,
decorators are not supported; therefore, to mark a property as a cross-reference within an
interface declaration, the type of the property has to be set to CrossReference<T>,
where T stands for the type to which a cross-reference should be created.
export const v is i tTypeReferenceNode = (t a r g e t : Property) => (node : t s . Node)

=> {
i f (t s . i s I d e n t i f i e r (node)) {

i f (node . t ex t === " Array ") {
t a r g e t . m u l t i p l i c i t y = t a r g e t . i s Opt i o na l

? M u l t i p l i c i t y .ZERO_TO_N
: M u l t i p l i c i t y .ONE_TO_N;

} e l s e i f (node . t ex t === " CrossReference ") {
t a r g e t . d e c o ra to r s . push (" c r o s s R e f e r e n c e ") ;

} e l s e {
t a r g e t . types . push ({ type : " complex " , typeName : node . t ex t }) ;

}
} e l s e i f (t s . isTypeReferenceNode (node)) {

t s . forEachChi ld (node , v i s i tTypeReferenceNode (t a r g e t)) ;
}

} ;

Listing 6.24: Functionality to parse a type reference declaration

export const vis i tUnionType = (t a r g e t : Property) => (node : t s . Node) => {
i f (

node . kind === SyntaxKind . NumberKeyword | |
node . kind === SyntaxKind . BooleanKeyword | |
node . kind === SyntaxKind . StringKeyword

) {
t a r g e t . types . push ({ type : " s imple " , typeName : node . getText () }) ;

} e l s e i f (t s . isTypeReferenceNode (node)) {
t s . forEachChi ld (node , v i s i tTypeReferenceNode (t a r g e t)) ;

} e l s e i f (t s . i sL i tera lTypeNode (node)) {
t s . forEachChi ld (node , (c h i l d) => {

i f (
t s . i s S t r i n g L i t e r a l (c h i l d) | |
t s . i s N u m e r i c L i t e r a l (c h i l d) | |
c h i l d . kind === t s . SyntaxKind . TrueKeyword | |
c h i l d . kind === t s . SyntaxKind . FalseKeyword

) {
l e t t ex t = c h i l d . getText () . r e p l a c e (/\ ’ /g , " ") ; // ’
t a r g e t . types . push ({ type : " constant " , typeName : JSON. s t r i n g i f y (t ex t

) }) ;
}

74

6.2. Generator

}) ;
}

} ;

Listing 6.25: Parsing of a union type declaration

6.2.2 Validation & Transformation
After parsing the definition and configuration files, the generator transforms and validates
the result. In this section, the implementation of the transformation steps will be shown
first, and then the validation will be explained in more detail.

Transformation of Declaration to LangiumDeclaration In this step, the data
structure returned from the parsing step is transformed into the LangiumDeclaration
data structure. The transformation is done in the transformDeclaration method,
which consists of three steps, as described in Section 5.3.

In the first step, the Declarations are mapped to LangiumDeclarations as can
be seen in Listing 6.26. After that, the extendedBy property is filled correctly by
checking whether each declaration is included in the extends array of another declaration
as can be seen in Listing 6.27. Finally, for every abstract declaration, the properties are
removed, as implemented in Listing 6.28
const lang iumDec larat ions : Array<LangiumDeclaration> = d e c l a r a t i o n s . map(

(d e c l a r a t i o n) => {
i f (d e c l a r a t i o n ? . extends . l ength > 0) {

d e c l a r a t i o n . extends . forEach ((extend) => {
d e c l a r a t i o n . p r o p e r t i e s = d e c l a r a t i o n . p r o p e r t i e s . concat (

d e c l a r a t i o n s . f i n d ((d) => d . name === extend) ? . p r o p e r t i e s | | []
) ;

}) ;
}
re turn {

type : d e c l a r a t i o n . type ,
name : d e c l a r a t i o n . name ,
i s A b s t r a c t : d e c l a r a t i o n . i sAbst rac t ,
d e co ra to r s : d e c l a r a t i o n . decorator s ,
p r o p e r t i e s : d e c l a r a t i o n . p r o p e r t i e s ,
extendedBy : [] ,

} ;
}

) ;

Listing 6.26: Map Declaration to LangiumDeclaration

d e c l a r a t i o n s . forEach ((d e c l a r a t i o n) => {
i f (d e c l a r a t i o n . extends ? . l ength > 0) {

d e c l a r a t i o n . extends . forEach ((extend) => {
lang iumDec larat ions

75

6. Implementation

. f i n d ((lang iumDec larat ion) => lang iumDec larat ion . name === extend)
? . extendedBy . push (d e c l a r a t i o n . name) ;

}) ;
}

}) ;

Listing 6.27: Fill the extendedBy property of the LangiumDeclarations

l ang iumDec larat ions . forEach ((lang iumDec larat ion) => {
i f (lang iumDec larat ion . i s A b s t r a c t &&

lang iumDec larat ion . type === " c l a s s ") {
lang iumDec larat ion . p r o p e r t i e s = [] ;

}
}) ;

Listing 6.28: Remove all properties from abstract LangiumDeclarations

Transform LangiumDeclarations to LangiumGrammar This step is used to pre-
pare LangiumGrammar data structure, which can easily be transformed into the actual
Langium grammar. Again, three steps have to be implemented, as described in Section 5.3.
First, the EntryRule is created. This is done by searching all LangiumDeclarations
for the declaration that includes the @root decorator in its decorators property. The
implementation of the mapping to the EntryRule can be seen in Listing 6.29.
function transformLangiumDeclarationToEntryRule (

lang iumDec larat ion : LangiumDeclaration
) : EntryRule {

re turn {
name : lang iumDec larat ion . name ,
d e f i n i t i o n s : lang iumDec larat ion . p r o p e r t i e s . map((property) => ({

name : property . name ,
type : property . types ,
m u l t i p l i c i t y : property . m u l t i p l i c i t y ,
c r o s s R e f e r e n c e : property . de co ra to r s . i n c l u d e s (" c r o s s R e f e r e n c e ") ,
o p t i o n a l : property . i sOpt iona l ,

})) ,
} ;

}

Listing 6.29: Mapping of LangiumDeclaration to EntryRule

Next, the TypeRules are created by collecting LangiumDeclarations, which repre-
sent an unassigned rule call (see Section 2.4).

First, all LangiumDeclarations whose type is type and those which are abstract
and whose type is class are mapped into the TypeRule format. The implementation
of this mapping can be seen in Listing 6.30.
const typeRules : Array<TypeRule> = lang iumDec larat ions

. f i l t e r ((d e c l a r a t i o n) => d e c l a r a t i o n . type === " type ")

. map((d e c l a r a t i o n) => ({
name : d e c l a r a t i o n . name ,

76

6.2. Generator

d e f i n i t i o n s :
d e c l a r a t i o n . p r o p e r t i e s . map((property) => property . types) ? . f l a t () ??

[] ,
}))
. concat (

lang iumDec larat ions
. f i l t e r (

(d e c l a r a t i o n) =>
d e c l a r a t i o n . i s A b s t r a c t && d e c l a r a t i o n . type === " c l a s s "

)
. map((d e c l a r a t i o n) => ({

name : d e c l a r a t i o n . name ,
d e f i n i t i o n s : d e c l a r a t i o n . extendedBy . map((extendedBy) => ({

typeName : extendedBy ,
type : " s imple " ,

})) ,
}))

) ;
Listing 6.30: Transformation of LangiumDeclarations to TypeRules

Using these initial TypeRules, the remaining LangiumDeclarations are iterated,
and their properties and associated types are checked. If a type represents a union type,
it is checked if a TypeRule that represents this union type already exists, and if so,
the union type is replaced with the name of the found TypeRule. However, if no such
TypeRule can be found, a new TypeRule is created, and the type of the property is
replaced with the name of the newly created TypeRule. After this, the creation of the
TypeRules is complete.

Finally, the mapping of non-abstract LangiumDeclarations whose type is class
needs to be performed. This step includes the mapping and adds a new property for
declarations that do not have the referenceProperty, defined in the generator config file.
Typically, the name of this property is __id.

Validation of LangiumDeclarations This validation step implements the initial
validation, which checks for obvious errors in the declaration. This includes checking
for the existence and uniqueness of the root element and if the root element defines
any properties. Furthermore, it is checked for abstract elements and whether elements
extending these abstract definitions exist. The implementation of these checks is very
straightforward and therefore not explained in more detail within this section.

Validation of LangiumGrammar The validation of the LangiumGrammar is twofold:

• Check for unused elements: This check is a soft check, which means that if
there do exist definitions for elements that are not used in any context in the
overall definition, a warning is shown. The implementation of this check uses the
typescript-graph3 library to build a graph that consists of all rule elements

3https://segfaultx64.github.io/typescript-graph/

77

https://segfaultx64.github.io/typescript-graph/

6. Implementation

and the connections between them. After the graph has been constructed, the
indegree-value is checked for every node, which is a property that counts the
number of incoming edges. If the number of incoming edges is zero and the graph
node does not represent the root element, it is clear that no other definition uses
the definition. In Listing 6.31, the implementation for this check can be seen.

graph . getNodes () . forEach ((node) => {
i f (

! [" s t r i n g " , " number " , " boolean "] . i n c l u d e s (node . typeArgument) &&
graph . indegreeOfNode (node . typeArgument) === 0 &&
node . typeArgument !== langiumGrammar . entryRule . name

) {
conso l e . l og (

cha lk . ye l low (
‘WARNING: Type ${node . typeArgument} has been de f ined but i s never

used . ‘
)

) ;
}

}) ;

Listing 6.31: Implementation of the check for unused elements

• Check if grammar definition is serializable: For this check, first the initial
serializable elements are defined, which are the simple types string, number and
boolean. After they have been defined, a while loop is executed, which searches
for serializable elements in each iteration. If, in an iteration, a new serializable
element is found, it is added to the serializable set. The iteration is stopped if
the serializable set consists of the same elements at the start and end of the while
loop. After the loop is exited, it is checked whether the serializable set contains all
rules. If not, the grammar can not be serialized, and a validation error is shown. If
this validation fails, the generator is unable to create the Langium grammar. In
Listing 6.32 an example code snippet can be seen, which executes a check in the
iteration for elements of type ParserRule. As can be seen, for the definitions, it
is checked if the type of a definition is already included in the serializable set, or
the type of the definition is constant, or the definition is optional (which can be
checked either by the optional flag or the multiplicity). Additionally, for abstract
rule elements, it is checked if all elements that extend the rule element are in the
serializable set, and if so, the ParserRule becomes serializable.

lanigiumGrammar . par se rRu le s . forEach ((parserRule) => {
i f (

parserRule . d e f i n i t i o n s &&
parserRule . d e f i n i t i o n s . l ength > 0 &&
parserRule . d e f i n i t i o n s . every (

(d e f i n i t i o n) =>
s e r i a l i z a b l e R u l e E l e m e n t s . has (d e f i n i t i o n . type [0] . typeName) | |

78

6.2. Generator

d e f i n i t i o n . type [0] . type === " constant " | |
d e f i n i t i o n . o p t i o n a l | |
d e f i n i t i o n . m u l t i p l i c i t y === M u l t i p l i c i t y .ZERO_TO_N

)
) {

s e r i a l i z a b l e R u l e E l e m e n t s . add (parserRule . name) ;
} e l s e i f (parserRule . i s A b s t r a c t && parserRule . extendedBy) {

i f (
parserRule . extendedBy . every ((extendedBy) =>

s e r i a l i z a b l e R u l e E l e m e n t s . has (extendedBy)
)

) {
s e r i a l i z a b l e R u l e E l e m e n t s . add (parserRule . name) ;

}
}

}) ;

Listing 6.32: Check for a ParserRule, to validate whether it is serializable

6.2.3 File Creation
The file creation process starts after the LangiumGrammar has been validated success-
fully. When first called, the generator creates various files based on templates, which do
not need to be regenerated. These files include:

• Configuration files: The configuration files that are created include the
package.json file, which defines which packages need to be installed for the
newly created project but also defines what commands do exist.

• Visual Studio Code Extension code: As the generator builds the project
initially, it would be good to test if the setup has worked correctly and the language
is built as expected. Therefore, a VSCode extension is also created next to the
initial project, which can be started using the extensions debug window in VSCode.
This extension opens a workspace, in which - on the creation of a file with the file
extension of the created language - the language client starts editing the model in
a textual format and starts the model server API in the background.

• Custom implementations of Langium services: Some services are required to
ease the usage of the model server API easier. This includes the JsonSerializer
service, which is used within the PatchManager, but also a custom validator
that is used to validate that in the entire workspace, the referenceProperty is
unique.

• Langium module: In the Langium module, all custom services, as well as the
extension to existing services, can be defined so the language server can use them.

Two files are recreated in every generation process: The .langium definition and the
Serializer. Optionally, at the beginning of the generation, the TypeScript-based

79

6. Implementation

grammar language definition can be created by parsing a .ecore definition and mapping
the parsed structure to the TypeScript grammar language.

TypeScript-based grammar definition Using the data structure created by parsing
an .ecore file (see Section 5.3), the TypeScript-based grammar language definition for
the parsed definition is created according to the concept presented in Section 5.2. In
Section 8.2 the implementation of the mapping can be looked up.

.langium grammar definition To create a .langium grammar definition, which is
a generic JSON grammar, the EntryRule, TypeRules, and ParserRules have to be
mapped according to the rules described in Section 5.3. In Listing 6.33, the implementation
of the mapping of TypeRules can be seen, which is the most straightforward mapping,
as in the case of TypeRules, unassigned rule calls are used, which assign the parsing of
an element to the subelements.
function typeRuleToLangiumText (typeRules : Array<TypeRule>) {

return typeRules
. map((typeRule) => {

const returnType = getReturnTypeFromDefinit ions (typeRule . d e f i n i t i o n s) ;
r e turn ‘ ${ typeRule . name}${

returnType ? " r e tu rn s " + returnType : " "
} : ${ typeRule . d e f i n i t i o n s

. map((element) =>
element . type === " constant "

? getLangiumType (JSON. parse (element . typeName))
: getLangiumType (element . typeName)

)
. j o i n (" | ") } ; ‘ ;

})
. j o i n (" \n ") ;

}

Listing 6.33: Map TypeRule to Langium definition

This function uses two utility functions: getReturnTypeFromDefinitions and
getLangiumType. If an unassigned rule call is a data type rule, it parses an element
of a simple type (like string or number), and the type that the rule should be parsed
to can be defined. For this, the getReturnTypeFromDefinitions function checks if
all definitions of a rule are of type simple, and then checks if all definitions have the
same simple type. If this is the case, the found simple type is used as the return type;
otherwise, the return type defaults to string. If all definitions are of type constant,
it is checked if the type of the constant value is of the same data type, and if so, this
data type is used.

Langium uses terminal rules to parse strings, numbers, and booleans; therefore, in case
the type of a definition is one of these types, they must be mapped to terminal rules.
The generator creates some initial terminal rule definitions representing these types.

80

6.2. Generator

The EntryRule and the ParserRules are mapped using the same functionality, which
makes some adjustments according to the rule type as described in the following:

• Rule Declaration: The rule declaration differs from others so that for EntryRules,
the keyword entry is added before the declaration, as can be seen in Listing 6.34.

l e t t ex t = ‘ ${ entry ? " entry " : " " } ‘ + ‘ ${ r u l e . name } ‘ ;
t ex t += " : " ;

Listing 6.34: Create Declaration for EntryRule and ParserRules

• Alternatives: As it is possible to extend classes that are not abstract, ParserRules,
which are extended by other rules, have to define alternatives. Listing 6.35 shows
the implementation of the alternatives. Additionally, within the code the type-cast
to any is needed, as for the EntryRule, the extendedBy property does not
exist.

i f ((r u l e as any) . extendedBy && (r u l e as any) . extendedBy . l ength > 0) {
text += (r u l e as any) . extendedBy . j o i n (" | ") ;
t ex t += " | " ;

}

Listing 6.35: Create alternatives for non-abstract ParserRules

• Rule Body: In the previous two code examples, the declaration and the alter-
natives for a rule have been defined, but not the Rule Body. For alternatives,
their own rule declaration defines the Rule Body. The body consists of the actual
JSON grammar definition, as the structure of a rule is defined here. Listing 6.36
shows the implementation of the Rule Body. As can be seen, an opening curly
brace is added at the beginning of the code, and at the end, a closing one is added.
In between, a property with the name __type is added, which defines the type
of the rule inside the JSON structure. Furthermore, for each definition in the
rule, the getProperty function is called, which maps the definition to a JSON
property. To check if a definition is optional in the JSON structure, the question
mark operator is added at the end of the definition. This signals to Langium that
this property is optional.
The mapping of the properties inside the getProperty function checks for each
definition the multiplicity, as well as if the definition is used to define a cross-
reference to another element inside the grammar.

t ex t += " ’{ ’ " ;
t ex t += entry ? " " : ‘ ’ " __type " ’ ’ : ’ ’ " ${ r u l e . name}" ’ ‘ ;
t ex t += ‘ ${ r u l e . d e f i n i t i o n s

. map(

81

6. Implementation

(property , index) =>
‘ (${ entry && index === 0 ? " " : " ’ , ’ " } ${ getProperty (

property ,
r u l e s

) }) ‘ +
(property . o p t i o n a l | | property . m u l t i p l i c i t y == M u l t i p l i c i t y .

ZERO_TO_N
? " ? "
: " ")

)
. j o i n (" ") } ‘ ;

t ex t += " ’} ’ ; " ;
Listing 6.36: Create body for rule definition

In Listing 6.37, an example LangiumGrammar can be seen, and in Listing 6.38, the
resulting Langium grammar definition is illustrated. Listing 6.39 illustrates how an
example model instance of this definition can look like.
{

" entryRule " : {
"name" : " Model " ,
" d e f i n i t i o n s " : [

{ "name" : " nodes " , " m u l t i p l i c i t y " : " ∗ " , " c r o s s R e f e r e n c e " : f a l s e ,
→ " o p t i o n a l " : true , " type " : { " type " : " complex " , " typeName " :
→ " Node " }} ,

{ "name" : " r e f s " , " m u l t i p l i c i t y " : " ∗ " , " c r o s s R e f e r e n c e " : f a l s e ,
→ " o p t i o n a l " : true , " type " : { " type " : " complex " , " typeName " :
→ " RefNode " }}

]
} ,
" typeRules " : [

{ "name" : " Node " , " d e f i n i t i o n s " : [{ " type " : " complex " , " SubNode " }] }
] ,
" par se rRu le s " : [

{
"name" : " SubNode " ,
" i s A b s t r a c t " : f a l s e ,
" extendedBy " : [] ,
" d e f i n i t i o n s " : [

{ "name" : "__id" , " m u l t i p l i c i t y " : " 1 " , " c r o s s R e f e r e n c e " : f a l s e ,
→ " o p t i o n a l " : f a l s e , " type " : { " type " : " s imple " , " typeName " :
→ " s t r i n g " }} ,

]
} ,
{

"name" : " RefNode " ,
" i s A b s t r a c t " : f a l s e ,
" extendedBy " : [] ,
" d e f i n i t i o n s " : [

{ "name" : " r e f " , " m u l t i p l i c i t y " : " 1 " , " c r o s s R e f e r e n c e " : true ,
→ " o p t i o n a l " : true , " type " : { " type " : " complex " , " typeName " :
→ " SubNode " }} ,

]

82

6.2. Generator

} ,

]
}

Listing 6.37: Example LangiumGrammar

entry Model : ’ { ’ ’ " nodes " ’ : ’ [’ (nodes+=Node) (’ , ’ nodes+=Node) ∗ ’] ’ ’ , ’ ’ "
r e f s " ’ : ’ [’ (r e f s+=RefNode) (’ , ’ r e f s+=RefNode) ∗ ’] ’ ’ } ’ ;

Node : SubNode ;
SubNode : ’ { ’ ’ " __id " ’ ’ : ’ ’ " ’ __id=ID ’ " ’ ’ } ’ ;
RefNode : ’{ ’ ’ " r e f " ’ ’ : ’ ’ { ’ ’ " __type " ’ ’ : ’ ’ " Reference " ’ ’ , ’ ’ " __refType

" ’ ’ : ’ ’ " Node " ’ ’ , ’ ’ " __value " ’ ’ : ’ ’ " ’ r e f =[Node : ID] ’ " ’ ’ } ’ ’ } ’ ;

Listing 6.38: Example Langium grammar definiton

{
" nodes " : [

{ "__id" : " Id_SubNode1 " } ,
{ "__id" : " Id_SubNode2 " }

] ,
" re fNodes " : [

{
" r e f " : {

" __type " : " Reference " ,
" __refType " : " Node " ,
" __value " : " Id_SubNode1 "

}
}

]
}

Listing 6.39: Example Model instance of the example grammar definiton

Serializer In the implementation of the serializer, a model instance has to be
mapped to the Langium grammar definition in the discussed JSON format. This is done
by creating multiple serializer functions, which are used to serialize the EntryRule,
ParserRules, and TypeRules. In each serializer function, the serialization of each
property of a type is done by either directly returning the value of the property, in case
the type of the property is a complex or simple type; otherwise, the serialization of
the property is done using its own serializer function.

If, for example, a ParserRule has two properties as can be seen in Listing 6.40, where
one property is a simple type (string) and the other property is a complex type (another
ParserRule), the generator would create a serializer function for this rule as can be
seen in Listing 6.41.
{

"name" : " Node " ,
" i s A b s t r a c t " : f a l s e ,
" extendedBy " : [] ,

83

6. Implementation

" d e f i n i t i o n s " : [
{ "name" : "__id" , " m u l t i p l i c i t y " : " 1 " , " c r o s s R e f e r e n c e " : f a l s e ,

→ " o p t i o n a l " : f a l s e , " type " : { " type " : " s imple " , " typeName " :
→ " s t r i n g " }} ,

{ "name" : " otherProperty " , " m u l t i p l i c i t y " : " 1 " , " c r o s s R e f e r e n c e " :
→ f a l s e , " o p t i o n a l " : f a l s e , " type " : { " type " : " complex " ,
→ " typeName " : " OtherProperty " }} ,

]
}

Listing 6.40: Example ParserRule with two properties

s e r i a l i z e N o d e (element : Node) : s t r i n g {
l e t s t r : Array<s t r i ng > = [] ;
s t r . push (' " __type " : " Node " ') ;
i f (e lement . __id !== undef ined && element . __id !== n u l l) {

s t r . push (' "__id" : ' + ' " ' ␣+␣ element . __id␣+␣ ' " ') ;
}
i f (element . otherProperty !== undef ined && element . otherProperty !==

→ n u l l) {
s t r . push (' " otherProperty " : ' +

→ t h i s . s e r i a l i z e O t h e r P r o p e r t y (element . otherProperty)) ;
}
re turn " { " + s t r . j o i n (" ,\n ") + " } " ;

}
Listing 6.41: Example ParserRule with two properties

6.2.4 Initial Project Properties & Package Installation & Build
These three functionalities are implemented in the index.ts file of the generator. For
the initial project properties, prompting is used to gather user inputs for the selected
properties (language-id, language name, etc.). Following the input of the properties, the
previously described functionalities are used to create the initial project structure (parsing,
file creation). After this is done, the generator spawns three commands on the created
project: npm install to install the needed node_modules, npm run generate,
to create the Langium grammar from the initial definition file, and npm run build
to build the initial VSCode extension, to be able to test the functionality of the newly
created project.

6.3 Summary
This chapter provided some insight into the implementation of the model server API
and the generator functionality considering the concepts that have been discussed in
Chapter 5. For the model server API, its most important features and how it can be
utilized as a language server have been discussed, while for the generator, the parsing
features, the validation features, and the file creation features have been presented in
some detail. The following chapter will discuss the evaluation of the implementation of
the artifacts.

84

CHAPTER 7
Evaluation

This chapter presents the results of evaluating the implemented artifacts. The first step
includes functional testing, which aims to verify whether the artifacts’ implementations
are correct. Within the second step, an informed argument will evaluate the differences
between the Typescript-based grammar definition and the Ecore metamodel definition.
Finally, the implementation of the whole system, including the generator, Typescript-
based grammar definition, and the model server API, will be evaluated using two different
scenarios.

7.1 Functional Testing
The evaluation step, which includes functional testing, is a verification step for the
implementation rather than an evaluation of the scientific work in this thesis. However,
with this verification step, it can be ensured that the implementation of selected software
parts is correct. The testing has been done utilizing the functionalities of vitest1.
The following parts of the software have been tested with specified unit tests:

• Parsing of EClasses

• Parsing of EAttributes

• Parsing of EReferences

• Parsing of EEnums

• Parsing of EDataTypes

• Transformation of Declarations to LangiumDeclarations

1https://vitest.dev/

85

https://vitest.dev/

7. Evaluation

• Transformation of LangiumDeclarations to LangiumGrammar

• Validation of the generator-config.ts file

• Validation of the LangiumDeclarations

• Validation of the LangiumGrammar

• Generation of definition in Langium grammar language from the TypeScript-based
grammar definition

• Generation of the Langium serializer service from the TypeScript-based grammar
definition

The testing of the parsing functionality of the TypeScript-based grammar language is
included in the tests for the generation of the Langium grammar and Langium serializer
service. Correct definition files and the resulting serializer and Langium grammar files
have been created for these tests. The process of this test is the following:

1. Parse definition file using the parsing functionality of the generator

2. Transform the parsed Declarations into LangiumDeclarations

3. Transform the LangiumDeclarations into the LangiumGrammar

4. Validate that the grammar definition is correct

5. Generate the Langium grammar text from the LangiumGrammar

6. Check if the created Langium grammar equals the definition in the correct Langium
grammar file

7. Generate the serializer text from the LangiumGrammar

8. Check if the created serializer text equals the serializer in the correct serializer file

After these software parts were successfully tested, it was ensured that the generator
functionality was implemented correctly.

7.2 Descriptive Evaluation - Informed Argument
This evaluation step tests the TypeScript-based grammar language against the Ecore
metamodel definition. For this, the generator transforms three Ecore definitions into the
TypeScript-based grammar language. Then, the newly created language is tested in the
initial VSCode extension to see if it conforms to the initial Ecore definition.

86

7.2. Descriptive Evaluation - Informed Argument

In Section 8.2 the .ecore definition and the resulting TypeScript-based grammar
language, as well as an example model instance in the JSON notation, can be looked up
for the three evaluation examples.

In the three examples, the following features of EClasses, EAttributes, EReferences,
and EEnums are included:

1. EClass features:

a) Definition of EClass element
b) Definition of abstract EClass element
c) Definition of EClass interface element
d) Definition of abstract EClass interface element
e) Definition of EClass element with one super type
f) Definition of EClass element with multiple super types

2. EAttribute features:

a) Definition of EAttribute
b) Definition of derived EAttribute

c) Definition of transient EAttribute
d) Definition of ordered EAttribute

e) Definition of unique EAttribute
f) Definition of changeable EAttribute
g) Definition of volatile EAttribute
h) Definition of unsettable EAttribute
i) Definition of ID EAttribute

j) Definition of EAttribute with lower bound
k) Definition of EAttribute with upper bound
l) Definition of EAttribute with built-in type

m) Definition of EAttribute with custom type

3. EReference features:

a) Definition of EReference
b) Definition of EReference with lower bound
c) Definition of EReference with upper bound
d) Definition of EReference with containment
e) Definition of EReference without containment

87

7. Evaluation

4. EEnum features:

a) Definition of EEnum
b) Definition of EEnumLiteral for EEnum

In comparison to the Ecore EClass definitions, in the TypeScript-based grammar
language, all functionalities except the multiple super types could be represented. However,
it is possible to find a workaround for that by defining the element that should have
two super types as an interface. With this, it is possible to support the definition with
multiple extends clauses in the TypeScript-native representation.

Some features that the Ecore EAttribute supports could not be included in the
TypeScript-based grammar language. This is for two reasons: the functionality is not
supported in a TypeScript-native way, and Langium does not support the functionality.

The TypeScript-based grammar language does not support the following features:

• Definition of derived property

• Definition of transient property

• Definition of ordered property

• Definition of unique property

• Definition of changeable property

• Definition of volatile property

• Definition of unsettable property

As can be seen, the list of functionalities not directly supported by the TypeScript-based
grammar language includes many features. However, most of these features can be added
by extending the TypeScript-based grammar language and creating custom services for
each needed functionality. For example, the derived and volatile features could
be created by adding two new decorators to the TypeScript-based grammar language
(@derived, @volatile). Then, the generator could be extended to create custom
services for Langium, which set the value of a derived or volatile attribute whenever a
document changes.

Next, the definition of ID attributes is not supported, as in the generator, per default an
__id attribute is created, which is used to identify each element in the document.

The lower-bound and upper-bound features of attributes are supported, though there are
limitations. In Ecore, it is possible to define an arbitrary value as lower and upper bound,
whereas, in the TypeScript-based definition, it is only possible to define a lower bound of
zero or one and an upper bound of one or more. To enable arbitrary values for the upper

88

7.3. Descriptive Evaluation - Scenarios

bound and lower bound of attributes, the grammar language could be extended by either
a custom type or two decorators @lowerBound and @upperBound. After these have
been added, the generator implementation needs to be adjusted so that it is possible to
parse the values of lower bound and upper bound and then create the Langium grammar
with these bounds.

Finally, setting the type of an attribute is a very important feature, which is supported
in the TypeScript-based grammar definition.

For EReferences the limitations of the lower and upper bound are the same ones as
for EAttributes. However, it is possible to define attributes as containment attributes
and also as non-containment attributes (which signalizes cross-references) without any
limitations.

The functionality of enums is natively supported in TypeScript, though, in the TypeScript-
based grammar language, enums are represented as union types.

Table 7.1 compares the features supported in Ecore, the TypeScript-based grammar
language, and the TypeScript-based grammar language combined with Langium custom
services.

7.3 Descriptive Evaluation - Scenarios
In this evaluation step, existing graphical modeling tools will be rebuilt and tested for
selected criterias. This evaluation not only tests whether the implementation using the
Langium-based model management reflects the initial implementation but also checks
whether all artifacts created in the course of this thesis work correctly together. In
the first two subsections, the implementation of the scenarios will be discussed, and
following that, in the final subsection, the evaluation of the results of these scenarios will
be discussed.

7.3.1 Workflow diagram - scenario implementation
In this scenario, the workflow diagram model editor, which is the default example of the
Graphical Language Server Platform (GLSP), needs to be rebuilt.

For this rebuild, an implementation of the Langium model management and a GLSP
server and client are required.

Langium model management The workflow diagram is a rather small diagram
consisting of only a few different types of nodes and one type of edge. The definition of
the workflow diagram language, using the TypeScript-based grammar language, can be
seen in Listing 7.1.

89

7. Evaluation

Ecore feature Supported
Definition of EClass element ✓
Definition of abstract EClass element ✓
Definition of EClass interface element ✓
Definition of abstract EClass interface element ✓
Definition of EClass element with one super type ✓
Definition of EClass element with multiple super types (✓)
Definition of EAttribute ✓
Definition of derived EAttribute ✗

Definition of transient EAttribute ✗

Definition of ordered EAttribute ✗

Definition of unique EAttribute ✗

Definition of changeable EAttribute ✗

Definition of volatile EAttribute ✗

Definition of unsettable EAttribute ✗

Definition of ID EAttribute ✗

Definition of EAttribute with lower bound (✓)
Definition of EAttribute with upper bound (✓)
Definition of EAttribute with built-in type ✓
Definition of EAttribute with custom type ✓
Definition of EReference ✓
Definition of EReference with lower bound (✓)
Definition of EReference with upper bound (✓)
Definition of EReference with containment ✓
Definition of EReference without containment ✓
Definition of EEnum ✓
Definition of EEnumLiteral for EEnum ✓

Table 7.1: Comparison of features supported by Ecore and the TypeScript-based grammar
language [✓=supported, (✓)=supported with limitation, ✗=not supported]

type NodeType = " d e c i s i o n " | " f o rk " | " j o i n " | " merge " ;
type TaskType = " manual " | " automated " ;
type Weight = " low " | "medium" | " high " ;
@root
class Model {

nodes ? : Array<Node>;
edges ? : Array<Edge>;
metaInfos ? : Array<MetaInfo >;

}
abstract class Node {

name : s t r i n g ;
}

90

7.3. Descriptive Evaluation - Scenarios

class TaskNode extends Node {
l a b e l ? : s t r i n g ;
durat ion ? : number ;
taskType ? : TaskType ;
r e f e r e n c e ? : s t r i n g ;

}
class Category extends Node {

c h i l d r e n ? : Model ;
l a b e l ? : s t r i n g ;

}
class ActivityNode extends Node {

nodeType ? : NodeType ;
}
class Edge {

@crossReference source : Node ;
@crossReference t a r g e t : Node ;

}
class WeightedEdge extends Edge {

weight : Weight ;
}
abstract class MetaInfo {

@crossReference node : Node ;
}
class S i z e extends MetaInfo {

he ight : number ;
width : number ;

}
class P o s i t i o n extends MetaInfo {

x : number ;
y : number ;

}

Listing 7.1: Definition of the workflow diagram language using the TypeScript-based
grammar language

Using this definition of the workflow diagram language, the generator creates a Langium
grammar, which can be seen in Listing 7.2. By comparing the readability of Listing 7.1 and
Listing 7.2, one can see the advantage of using the TypeScript-based grammar language,
which is then used to automatically generate the not so easily readable Langium grammar.

grammar WorkflowDiagram
import ’ te rmina l s ’
entry Model : ’ { ’ (’ " nodes " ’ ’ : ’ ’ [’ ((nodes+=Node) (’ , ’ nodes+=Node)

∗) ? ’] ’) ? (’ , ’ ’ " edges " ’ ’ : ’ ’ [’ ((edges+=Edge) (’ , ’ edges+=Edge)
∗) ? ’] ’) ? (’ , ’ ’ " metaInfos " ’ ’ : ’ ’ [’ ((metaInfos+=MetaInfo) (’ , ’
metaInfos+=MetaInfo) ∗) ? ’] ’) ? ’} ’ ;

Node : TaskNode | Category | ActivityNode ;
TaskNode : ’{ ’ ’ " __type " ’ ’ : ’ ’ " TaskNode " ’ (’ , ’ ’ " __id " ’ ’ : ’ ’ " ’ __id=ID

’ " ’) (’ , ’ ’ " l a b e l " ’ ’ : ’ ’ " ’ l a b e l=ID ’ " ’) ? (’ , ’ ’ " durat ion " ’ ’ : ’
durat ion=INT) ? (’ , ’ ’ " taskType " ’ ’ : ’ ’ " ’ taskType=TaskType ’ " ’) ? (
’ , ’ ’ " r e f e r e n c e " ’ ’ : ’ ’ " ’ r e f e r e n c e=ID ’ " ’) ? (’ , ’ ’ " name " ’ ’ : ’ ’ " ’
name=ID ’ " ’) ’ } ’ ;

91

7. Evaluation

Category : ’ { ’ ’ " __type " ’ ’ : ’ ’ " Category " ’ (’ , ’ ’ " __id " ’ ’ : ’ ’ " ’ __id=ID
’ " ’) (’ , ’ ’ " c h i l d r e n " ’ ’ : ’ c h i l d r e n=Model) ? (’ , ’ ’ " l a b e l " ’ ’ : ’
’ " ’ l a b e l=ID ’ " ’) ? (’ , ’ ’ " name " ’ ’ : ’ ’ " ’ name=ID ’ " ’) ’ } ’ ;

ActivityNode : ’ { ’ ’ " __type " ’ ’ : ’ ’ " ActivityNode " ’ (’ , ’ ’ " __id " ’ ’ : ’ ’ " ’
__id=ID ’ " ’) (’ , ’ ’ " nodeType " ’ ’ : ’ ’ " ’ nodeType=NodeType ’ " ’) ? (’ , ’
’ " name " ’ ’ : ’ ’ " ’ name=ID ’ " ’) ’ } ’ ;

Edge : WeightedEdge | ’{ ’ ’ " __type " ’ ’ : ’ ’ " Edge " ’ (’ , ’ ’ " __id " ’ ’ : ’ ’ " ’
__id=ID ’ " ’) (’ , ’ ’ " source " ’ ’ : ’ ’ { ’ ’ " __type " ’ ’ : ’ ’ " Reference " ’
’ , ’ ’ " __refType " ’ ’ : ’ ’ " Node " ’ ’ , ’ ’ " __value " ’ ’ : ’ ’ " ’ source =[Node :
ID] ’ " ’ ’ } ’) (’ , ’ ’ " t a r g e t " ’ ’ : ’ ’ { ’ ’ " __type " ’ ’ : ’ ’ " Reference " ’
’ , ’ ’ " __refType " ’ ’ : ’ ’ " Node " ’ ’ , ’ ’ " __value " ’ ’ : ’ ’ " ’ t a r g e t =[Node :
ID] ’ " ’ ’ } ’) ’ } ’ ;

WeightedEdge : ’ { ’ ’ " __type " ’ ’ : ’ ’ " WeightedEdge " ’ (’ , ’ ’ " __id " ’ ’ : ’ ’ " ’
__id=ID ’ " ’) (’ , ’ ’ " weight " ’ ’ : ’ ’ " ’ weight=Weight ’ " ’) (’ , ’ ’ "
source " ’ ’ : ’ ’ { ’ ’ " __type " ’ ’ : ’ ’ " Reference " ’ ’ , ’ ’ " __refType " ’ ’ : ’
’ " Node " ’ ’ , ’ ’ " __value " ’ ’ : ’ ’ " ’ source =[Node : ID] ’ " ’ ’ } ’) (’ , ’ ’ "
t a r g e t " ’ ’ : ’ ’ { ’ ’ " __type " ’ ’ : ’ ’ " Reference " ’ ’ , ’ ’ " __refType " ’ ’ : ’
’ " Node " ’ ’ , ’ ’ " __value " ’ ’ : ’ ’ " ’ t a r g e t =[Node : ID] ’ " ’ ’ } ’) ’ } ’ ;

MetaInfo : S i z e | P o s i t i o n ;
S i z e : ’ { ’ ’ " __type " ’ ’ : ’ ’ " S i z e " ’ (’ , ’ ’ " __id " ’ ’ : ’ ’ " ’ __id=ID ’ " ’) (

’ , ’ ’ " he ight " ’ ’ : ’ he ight=INT) (’ , ’ ’ " width " ’ ’ : ’ width=INT) (’ , ’
’ " node " ’ ’ : ’ ’ { ’ ’ " __type " ’ ’ : ’ ’ " Reference " ’ ’ , ’ ’ " __refType " ’ ’ : ’

’ " Node " ’ ’ , ’ ’ " __value " ’ ’ : ’ ’ " ’ node=[Node : ID] ’ " ’ ’ } ’) ’ } ’ ;
P o s i t i o n : ’{ ’ ’ " __type " ’ ’ : ’ ’ " P o s i t i o n " ’ (’ , ’ ’ " __id " ’ ’ : ’ ’ " ’ __id=ID

’ " ’) (’ , ’ ’ " x " ’ ’ : ’ x=INT) (’ , ’ ’ " y " ’ ’ : ’ y=INT) (’ , ’ ’ " node " ’
’ : ’ ’ { ’ ’ " __type " ’ ’ : ’ ’ " Reference " ’ ’ , ’ ’ " __refType " ’ ’ : ’ ’ " Node " ’
’ , ’ ’ " __value " ’ ’ : ’ ’ " ’ node=[Node : ID] ’ " ’ ’ } ’) ’ } ’ ;

NodeType returns string : " d e c i s i o n " | " f o rk " | " j o i n " | " merge " ;
TaskType returns string : " manual " | " automated " ;
Weight returns string : " low " | "medium" | " high " ;

Listing 7.2: Generated Langium grammar from the TypeScript-based definition

Listing 7.2 is then used to build the metamodel utilizing the generate CLI command of
Langium. After the metamodel has been created, the model management using Langium
is ready to use. As the VSCode extension, which is created by the generator, only
starts the model server API, but not the GLSP server on the extension startup, the
implementation of the language server startup needs to be extended to also start the
GLSP server. This is done in Listing 7.3.
// Star t the language s e r v e r with the shared s e r v i c e s
s tartLanguageServer (shared) ;
shared . workspace . WorkspaceManager . onWorkspace In i t i a l i z ed ((workspaceFolders)

=> {
// Star t the g r a p h i c a l language s e r v e r with the shared s e r v i c e s
startGLSPServer ({ shared , language : WorkflowDiagram } , workspaceFolders

[0]) ;
// Sta r t the JSON s e r v e r with the shared s e r v i c e s
s tar tMode lServer ({ shared , language : WorkflowDiagram } , workspaceFolders

[0]) ;
}) ;

Listing 7.3: Start the Langium language server, Model Server API and GLSP server

92

7.3. Descriptive Evaluation - Scenarios

GLSP client and server The Graphical Language Server Platform already provides a
client implementation and a TypeScript-based GLSP server implementation. Therefore,
the existing implementation can be used to rebuild the workflow diagram example.
However, it needs to be adjusted to create a connection to the newly created model
server API so that the model server API can handle the model management. Also, the
commands that are used to edit the model need to be adjusted so that the model editing
is done using the JSON patch functionality of the model server API instead of directly
editing the source model and sending the updated model to the server.

The following files need to be edited to enable the model loading and editing via the
model server API:

• SourceModelStorage: As discussed in Section 2.3 the loading and saving
of a model are done in the SourceModelStorage. Therefore, the methods
loadSourceModel and saveSourceModel have to be adjusted, as seen in List-
ing 7.4 and Listing 7.5. As can be seen, the model is loaded using the model server
API request method, providing the URI of the model to request.

async loadSourceModel (a c t i on : RequestModelAction) : Promise<void> {
const sourceUr i = this . getSourceUr i (a c t i on) ;
const rootUr i = sourceUr i ;
const r o o t U r i D e t a i l s = ‘ ${ sourceUr i }d ‘ ;
const root = await this . s t a t e . modelServ ice . r eque s t (

rootUri ,
isModel ,
" g l sp "

) ;
this . s t a t e . setSemanticRoot (rootUri , root , r oo tUr iDeta i l s , r o o t D e t a i l s) ;

}
Listing 7.4: Updated implementation of the loadSourceModel function

saveSourceModel (a c t i on : SaveModelAction) : MaybePromise<void> {
const saveUri = this . g e t F i l e U r i (a c t i on) ;
this . s t a t e . modelServ ice . save (saveUri , this . s t a t e . semanticRoot) ;
this . s t a t e . modelServ ice . save (‘ ${ saveUri }d ‘ , this . s t a t e .
semant icRootDeta i l s) ;
s t reamReferences (this . s t a t e . semanticRoot)

. map((r e f I n f o) => r e f I n f o . r e f e r e n c e . r e f)

. nonNul lable ()

. map((r e f) => findRootNode (r e f))

. forEach ((root) =>
this . s t a t e . modelServ ice . save (root . $document ! . u r i . t o S t r i n g () , root)

) ;
}

Listing 7.5: Updated implementation of the saveSourceModel function

• ModelState: By using the model server API, the model state is represented
using Langium’s AST representation. Therefore, the ModelState class has to be

93

7. Evaluation

adjusted so that an AST node represents the current model state. In Listing 7.6,
the implementation of the setSemanticRoot function is illustrated, which sets
the model’s current state. Another important task of the ModelState class
is updating the model’s state. As the model server API implements the model
update using the JSON patch functionality, a method utilizing the JSON patch is
implemented, as can be seen in Listing 7.7.

setSemanticRoot (
u r i : s t r i ng ,
semanticRoot : Model ,
u r i D e t a i l s ? : s t r i n g ,
semant icRootDeta i l s ? : Model

) : void {
this . _semanticUri = u r i ;
this . _semanticRoot = semanticRoot ;
this . _packageId =

this . s e r v i c e s . shared . workspace . PackageManager . getPackageIdByUri (
URI . parse (u r i)

) ;
this . index . indexSemanticRoot (this . semanticRoot , this .
s emant icRootDeta i l s) ;

}

Listing 7.6: Set the current model state in the updated ModelState class

async sendModelPatch (patch : s t r i n g) : Promise<void> {
this . _semanticRoot = await this . modelServ ice . patch (

this . semanticUri ,
patch ,
" g l sp "

) ;
this . index . indexSemanticRoot (this . semanticRoot , this .
s emant icRootDeta i l s) ;

}

Listing 7.7: Set the current model state in the updated ModelState class

The connection to the model server API has been created with the updated implementation
of the SourceModelStorage and ModelState. However, other changes are needed
so that the GLSP server can correctly display model elements and send updates to the
model server API, editing the model’s state.

One of these changes is the custom implementation of the GModelIndex. This class is
needed to provide utility functions to easily access model elements’ IDs and their paths
inside the AST. In Listing 7.8, the setSemanticRoot function of the model index
implementation can be seen. This function is responsible for collecting the IDs of all
elements in the AST, as well as collecting the path to each ID.
indexSemanticRoot (root : Model , r o o t D e t a i l s ? : Model) : void {

this . idToSemanticNode . c l e a r () ;
this . idToPath . c l e a r () ;

94

7.3. Descriptive Evaluation - Scenarios

streamAst (root) . forEach ((node) => this . indexAstNode (node)) ;
this . co l l ec t IdToPath (

JSON. parse (this . s e r v i c e s . language . s e r i a l i z e r . J s o n S e r i a l i z e r .
s e r i a l i z e (root)

)
) ;

}

Listing 7.8: Set the current model state in the updated ModelState class

To display model elements correctly, the GModelFactory class needs to map AST nodes
to model elements. In Listing 7.9, it can be seen how the model is created, while in
Listing 7.10, the (minified) implementation of a mapping to a GNode is illustrated.

protec t ed createGraph () : GGraph | undef ined {
const model = this . modelState . semanticRoot ;
const mode lDeta i l s = this . modelState . semant icRootDeta i l s ;
this . graphBui lder = GGraph . b u i l d e r () . id (this . modelState . semanticUri) ;
model . nodes

. map((node) => this . createNode (node))

. forEach ((node) => this . graphBui lder . add (node)) ;
this . createEdgesAndMissingNodes (model , mode lDeta i l s) . forEach ((element)

=>
this . graphBui lder . add (element)

) ;
r e turn this . graphBui lder . bu i ld () ;

}

Listing 7.9: Create the GModelRoot of a model class

protec t ed createTaskNode (taskNode : TaskNode) : GNode {
const node = GTaskNode . b u i l d e r () . id (taskNode . __id) . type (ModelTypes .

AUTOMATED_TASK) ;
const s i z e = this . modelIndex . f i n d S i z e (taskNode . __id) ;
i f (s i z e) {

node . addLayoutOption (" prefWidth " , s i z e . width) ;
node . addLayoutOption (" pre fHe ight " , s i z e . he ight) ;
node . s i z e (s i z e . width , s i z e . he ight) ;

}
const p o s i t i o n = this . modelIndex . f i n d P o s i t i o n (taskNode . __id) ;
i f (p o s i t i o n) {

node . p o s i t i o n (p o s i t i o n . x , p o s i t i o n . y) ;
}
re turn node . bu i ld () ;

}

Listing 7.10: Create a GNode for an AST node of type TaskNode

After the GModelFactory has been implemented, the final step for the adjusted im-
plementation of the GLSP server is that the operation handlers need to be changed so
that they send JSON patches instead of the updated model to update the model’s state.
For this, a custom Command implementation is added, as can be seen in Listing 7.11.

95

7. Evaluation

In the execute function, the sendModelPatch function of the custom ModelState
implementation is called to patch the model.

Utilizing this custom Command, in Listing 7.12, the implementation for the creation of a
new TaskNode is illustrated.

export class WorkflowCommand implements Command {
c o n s t r u c t o r (

pro tec t ed s t a t e : WorkflowModelState ,
p ro tec t ed modelPatch ? : s t r i n g

) {}

async undo () : Promise<void> {
await this . s t a t e . undo () ;

}

async redo () : Promise<void> {
await this . s t a t e . redo () ;

}

canUndo ? () : boolean {
return true ;

}

async execute () : Promise<void> {
i f (this . modelPatch) {

await this . s t a t e . sendModelPatch (this . modelPatch) ;
}

}
}

Listing 7.11: Custom implementation of Command that is used to update the model state

o v e r r i d e createCommand (opera t i on : CreateNodeOperation) : Command {
const modelPatch = this . createNode (opera t i on) ;
r e turn new WorkflowCommand(this . modelState , modelPatch) ;

}
createNode (opera t i on : CreateNodeOperation , taskType : s t r i n g) : s t r i n g {

const patch = JSON. s t r i n g i f y ({ op : " add " , path : " / nodes/−" ,
va lue : {

$type : " TaskNode " ,
__id : createRandomUUID () ,
name : "newTaskName" ,
taskType : " automated " ,

} ,
}) ;
r e turn patch ;

}

Listing 7.12: Code parts of an operation handler that utilizes the new Command
implementation

96

7.3. Descriptive Evaluation - Scenarios

7.3.2 bigUML Modeling Tool - scenario implementation
The bigUML modeling tool is a graphical editor that can create different kinds of UML
diagrams, including the class diagram, state machine diagram, package diagram, and
use-case diagram [BIGb] [BIGa]. In this scenario, the functionality of the bigUML tool
will be rebuilt. However, implementing the whole UML diagram functionality would
exceed the scope of this thesis; therefore, two selected diagram types will be rebuilt:
the class diagram, which is the biggest diagram in the bigUML tool, and the package
diagram, which is the smallest one.

The current implementation of the bigUML tool [BIGa] uses a Java-based model server
and a Java-based GLSP server. As this thesis aims to move away from the Java-based
technology stack, a TypeScript implementation for the GLSP server of the bigUML
tool is required in this evaluation step. Also, the Java-based model server is replaced by
an implementation of the Langium-based model management solution, which has been
implemented in this thesis.

Langium model management In bigUML, the metamodel used to implement the
model server is the UML metamodel. As in this evaluation step, only two diagram
UML diagram kinds need to implemented, the TypeScript-based grammar definition is a
reduced metamodel of the UML metamodel. Listing 7.13 shows the root element of the
definition of the reduced UML metamodel.
@root
class Diagram {

diagram : ClassDiagram | PackageDiagram ;
metaInfos ? : Array<MetaInfo >;

}

Listing 7.13: Root element definition for the UML metamodel

As can be seen, only the definitions for the ClassDiagram and PackageDiagram
are implemented. However, other diagram kinds can be easily added by extending the
diagram property of the Diagram class with the needed diagram type.

GLSP server

The implementation of the GLSP server for the bigUML tool is based on the already
existing TypeScript-GLSP-server of the workflow diagram example. In the previous
section, it has already been discussed which adjustments are needed for this example GLSP
server to work with the newly created Langium-based model management. Therefore,
only the additional implementation steps required to rebuild the bigUML tool are
discussed in this section.

The bigUML tool offers a property palette next to the graphical editor. This form-based
view can be used to update some properties of model elements that can not be edited
within the graphical model. For example, a class can include attributes and operations

97

7. Evaluation

in the class diagram. For operations, it is not possible to add parameters and their
types within the graphical editor; hence, the property palette can be used. To be able to
handle actions of the property palette, handlers for the following two actions need to be
implemented:

• RequestPropertyPaletteAction: The handler for this action must prepare
the property palette’s form according to the selected element. Therefore, to prepare
this form, a utility class named PropertyPaletteBuilder has been created,
which eases the creation of property palette items using the builder pattern. In
Listing 7.14, the implementation of the builder functions to create a form input for
text elements, bool elements, and choice elements can be seen.

t ex t (e lementId : s t r i n g , propertyId : s t r i ng , t ex t : s t r i ng , l a b e l : s t r i n g) {
this . proxy . i tems . push ({

elementId ,
propertyId ,
type : ’TEXT’ ,
d i s a b l e d : f a l s e ,
text ,
l a b e l

} as ElementTextProperty) ;
r e turn this ;

}
bool (e lementId : s t r i ng , propertyId : s t r i ng , va lue : boolean , l a b e l : s t r i n g)

{
this . proxy . i tems . push ({

elementId ,
propertyId ,
type : ’BOOL’ ,
value ,
l a b e l

} as ElementBoolProperty) ;
r e turn this ;

}
cho i c e (e lementId : s t r i ng , propertyId : s t r i ng , c h o i c e s : Array<{ l a b e l :

s t r i n g ; va lue : s t r i n g }>, cho i c e : s t r i n g , l a b e l : s t r i n g) {
this . proxy . i tems . push ({

elementId ,
propertyId ,
type : ’CHOICE ’ ,
cho i ce s ,
cho ice ,
l a b e l

} as ElementChoiceProperty) ;
r e turn this ;

}

Listing 7.14: Builder functions in the PropertyPaletteBuilder to create form inputs
for text, bool and choice elements

98

7.3. Descriptive Evaluation - Scenarios

• UpdateElementPropertyPaletteAction: The implementation for this han-
dler creates a UpdateOperation, which updates the value of a selected property
inside the property palette.

After these action handlers have been implemented, they need to be added to the
DiagramModule of the selected diagram implementation. Additionally, the function
configureActionHandlers needs to be implemented as seen in Listing 7.15.
protec t ed o v e r r i d e con f i gureAct ionHand le r s (b inding : InstanceMult iBinding <

ActionHandlerConstructor >) : void {
super . con f i gureAct ionHand le r s (b inding) ;
b inding . add (RequestPropertyPaletteAct ionHandler) ;
b inding . add (UpdateElementPropertyActionHandler) ;

}

Listing 7.15: Configure action handlers for the property palette

Figure 7.1 shows an example of the property palette for a model element of type class in
the class diagram. As can be seen, all properties of the class are listed in the property
palette, and input fields, checkboxes, and choice elements exist to change the values of
these properties. Furthermore, references exist for the child elements that can be used
to open the property palette for the selected child element as can be seen next to the
properties and operations.

7.3.3 Evaluation of the scenarios
In this section, the capabilities of the workflow diagram example and the bigUML tool
are gathered to evaluate the scenarios. Following that, these capabilities are compared to
the ones of the rebuilt solutions.

Workflow diagram capabilities The workflow diagram editor is a straight-forward
graphical editor that provides the following functionalities:

1. Create node: It is possible to create nodes at the selected position.

2. Edit node: It is possible to edit the label of a node within the graphical editor.

3. Move node: It is possible to move the node to a different position in the view.

4. Resize node: It is possible to resize a node.

5. Create edge: If at least one node exists in the diagram, an edge can be created
between a source node and a target node.

6. Delete Node: It is possible to delete nodes. If a node has incoming or outgoing
edges, the edges are also deleted during the deletion process.

99

7. Evaluation

Figure 7.1: Property palette in the rebuilt bigUML modeling tool

bigUML modeling tool capabilities The capabilities of the bigUML modeling
tool include the previously mentioned points and the following additional functionalities:

7. Show model element in property palette: It is possible to load the properties
of a model element into the property palette.

8. Create child node via property palette: It is possible to create child nodes for
model elements via the property palette.

9. Edit nodes via property palette: It is possible to edit every property of a model
element via the property palette.

10. Delete child nodes via property palette: It is possible to delete child nodes of
model elements via the property palette.

11. Show model structure in outline view: It is possible to view the model’s
structure in a tree view.

100

7.4. Interpretation of the evaluation results

Table 7.2 gives an overview of whether the respective editor’s functionalities have been
correctly rebuilt. As discussed in section 6.1, the patch functionality is used to make
changes to the model. Therefore, every create and edit operation, as well as the delete
and resize or move operations, have been successfully rebuilt in the tools, utilizing the
model server API JSON patch. The previous section discussed the implementation of
the property palette, which provides all the necessary functionality to rebuild the entire
property palette feature of the bigUML tool. The only functionality that could not be
rebuilt is the outline tree view of the bigUML tool. However, this functionality can
be easily added to the current implementation by creating an action handler for the
RequestOutlineTreeView action, which is responsible for loading and transforming
the model data into the tree view data. The handler would need to access the current
ModelState to request the model data and then transform it as needed for the outline
view.

Requirement workflow diagram bigUML
Create node ✓ ✓
Edit node ✓ ✓
Move node ✓ ✓
Resize node ✓ ✓
Create edge ✓ ✓
Delete Node ✓ ✓
Show model element in property palette ✓
Create child node via property palette ✓
Edit nodes via property palette ✓
Delete child nodes via property palette ✓
Show model structure in outline view (✓)

Table 7.2: Evaluation of the requirements of the rebuilt workflow diagram editor and the
bigUML modeling tool [gray background=initial solution does not support it; ✓=support
implemented, (✓)=support partially implemented]

7.4 Interpretation of the evaluation results
In this section, the research questions of this thesis, which were defined in Section 1.2,
are answered based on the evaluation results presented in Section 7.2 and Section 7.3.

Research Question 1 How can the Abstract Syntax Tree, which is created by Langium,
be made available to model-oriented clients so that the editing of the model can be
handled in the browser?

To enable model-oriented clients to access Langium’s Abstract Syntax Tree (AST), the
requirements for a model server API capable of handling such clients were analyzed by
examining the Graphical Language Server Platform (GLSP). Following that, a concept

101

7. Evaluation

for the model server API (see Section 5.1) has been created, which provided the imple-
mentation ideas to fulfill these requirements. In the implementation process, two types
of access possibilities to the model server API have been created: first, via a JSON RPC
connection, and second, via a Langium service integrated into Langium’s language server.
For that, the language module for the language server has been extended with a package
that implements the model server API.

After the model server API has been successfully integrated within Langium, in the
evaluation, two state of the art graphical model editors utilizing the Graphical Lan-
guage Server Protocol have been rebuilt and tested against some predefined criteria to
check whether the newly created solution provides the same functionality as the initial
implementation.

It was shown that the functionality of the initial solutions could be mainly rebuilt using
the Langium-based model management solution, therefore realizing a browser-only model
management solution for model-oriented clients.

Research Question 2 How should a type definition be conceptualized to create an
accurate metamodel that includes all needed language concepts and cross-references?

Though Langium offers a grammar language to create a metamodel, to enable developers
to stay within the TypeScript technology stack, a metamodeling language that utilizes
TypeScript-native language concepts had to be conceptualized. For this, information
about what elements are required to create a metamodel had to be gathered first. This
has been done by analyzing the Eclipse Ecore metamodel and also the Ecore kernel
[Ste09]. Following that, Langium’s grammar language had to be analyzed to check what
functionalities can be transformed from the Ecore metamodel to the TypeScript-based
grammar language, which then is transformed into the Langium grammar definition.

After gathering all requirements, in Section 5.2, the concept of the TypeScript-based
grammar language has been created. This encompasses the creation of simple model
elements as well as the addition of cross-references between them.

In the evaluation, the TypeScript-based grammar language has been compared to Ecore’s
metamodel (see Section 7.2). Here, it has been highlighted that the TypeScript-based
grammar language is able to mirror a lot of the functionalities that are implemented within
Ecore, but also the limitations of the TypeScript-based grammar have been mentioned.
These limitations exist both because of the limitations of Langium in comparison to
Ecore and because of the limitations of the available language concepts in TypeScript.
However, in spite of these limitations, in the scenario evaluation (see Section 7.3), it has
been shown that the current TypeScript-based grammar language definition provides
enough functionality to rebuild existing tools like the workflow-diagram example [Eclc]
and parts of the functionality of the bigUML Modeling tool [BIGa].

Research Question 3 How can the previously defined type definition be used to
generate a language specification in a generic JSON grammar?

102

7.4. Interpretation of the evaluation results

This research question is not limited to developing a standard JSON grammar. This
thesis also delves into generating the Langium-based model management, utilizing the
TypeScript-based technology stack, using a custom generator implementation. Therefore,
the capabilities of the generator functionality are also discussed in the answer to this
question. For the generator functionality, the requirements to build a metamodel using
the defined TypeScript-based grammar language had to be gathered first. After that, the
required functionalities of the generator, which include the parsing of the TypeScript-
based grammar language and the transformation of this definition to the Langium
grammar, which creates a language in a generic JSON grammar, had to be collected.
Subsequently, the concept for the generator has been presented in Section 5.3, which
discusses how, on every change of the TypeScript definition file, the generator has to
create a new Langium grammar definition, which creates parser rules, conforming a
JSON structure.

After the generator functionality was implemented, the Langium-based model management
for the scenarios was built using the generator. Furthermore, the generator’s functionality
generated the scenarios’ metamodel. Finally, the resulting Langium grammar definition
was tested in a textual editor to validate whether the models are always created as a
generic JSON grammar.

103

CHAPTER 8
Conclusion

This chapter will conclude the thesis by summarizing the work done and presenting the
main findings. Following that, possible future work for the discussed research topic will
be presented.

8.1 Conclusions and Findings
The main objective of this thesis was to create a model management tool built entirely
using a TypeScript-based technology stack, utilizing the next-generation language frame-
work Langium. Furthermore, for the creation of the metamodel in Langium, a new
grammar language, which uses valid TypeScript notations to define model elements,
their attributes, and relations, had to be conceptualized. Finally, a generator had to be
created, which combines the Langium model management with the TypeScript-based
grammar definition, setting up the model management for the metamodel defined in the
TypeScript definition.

The model management using Langium has been implemented by creating a model
server API, which enables model-oriented clients to access the Abstract Syntax Tree
(AST) created by Langium. The model server API had to include functionalities to open,
request, update, close, and patch models. While the first four functionalities could be
implemented straightforwardly, more consideration was needed for the patch functionality,
as the patches could affect cross-references between different documents.

In the concept of the TypeScript-based grammar language, it had to be ensured that
some functionalities like cross-references are supported; for this, decorators and custom
interfaces have been created, which are recognized by the generator, so that it is possible
to create the metamodel from the definition.

The implementation of this thesis has been completed by creating a generator, which
combined all previously implemented artifacts to be able to create the TypeScript-based

105

8. Conclusion

model management from scratch. Due to the fact that the Java-based EMF modeling
stack is widely used among model engineers, the implementation of the generator has
been extended by functionality that eases the transition from Ecore metamodels to the
TypeScript-based grammar language.
The evaluation of the work in this thesis has been performed in three steps: First, unit
tests have been created for the generator functionality to verify the correctness of the
implementation. Secondly, the newly created TypeScript-based grammar language has
been tested against Ecore’s metamodel to find its limitations. Finally, two state-of-the-art
model editors utilizing GLSP have been rebuilt using the TypeScript-only technology
stack. Here, it has been shown that both the grammar definition is expressive enough to
create the metamodels for the respective editors’ models, and the generator is able to set
up a model management system that is capable of handling the requests of these state of
the art model editors.
In summary, the work presented in this thesis demonstrates that the developed artifacts
possess the ability to effectively manage the creation of metamodels and handle the model
management process for advanced model editors.

8.2 Future Work
Although the artifacts developed in this thesis meet the presented requirements, there are
still opportunities for improvement that could be explored in future works. The following
sections discuss some potential improvements and challenges:

Model Server API The model server API currently only supports the editing of
documents that are available via the local file system. Therefore, in future works, it
could be analyzed how the model server API can be extended so that it can load, edit,
and save files that are located on an external server.
Another interesting feature of the model server API would be to extend its functional-
ities to support multi-user editing, which would enable multiple users to edit a model
simultaneously. To achieve this, the language server with the model server API must be
hosted on an external server to provide centralized access. Additionally, the API needs
to be extended with some functionality to notify all users who have the current model
that it may require an update.

TypeScript-based grammar language In the evaluation, it has been shown that
the TypeScript-based grammar language has some limitations in comparison to Ecore’s
metamodel. Therefore, in future works, it could be interesting to investigate ways to
extend the grammar language so that it is possible to support more of Ecore’s functionality,
including exact multiplicities, derived attributes, and opposite references. Langium’s
grammar language limits the integration of some of these features. These functionalities
may need to be added using services instead of being added directly in the grammar
definition.

106

List of Figures

2.1 Textual representation of the Workflow Diagram Model 7
2.2 4-layer metamodeling stack as presented in [BCW17] 9
2.3 EMF model unifying multiple different representations based on [Ste09] . 10
2.4 Ecore kernel based on [Ste09] . 11
2.5 Visualization of the coupling of language servers and IDEs with and without

using LSP . 12
2.6 Sample communication between LSP client and server [Micc] 13
2.7 Graphical Language Server Platform structure as presented in [Eclb] . . . 14
2.8 Document Lifecycle of LangiumDocuments as presented in [Lan] 21

3.1 Views of the bigER modeling tool . 23
3.2 Workflow Diagram implemented in GLSP 24
3.3 Class Diagram and State Machine Diagram created using bigUML [BIGa] 25
3.4 Views of the bigUML modeling tool . 25

5.1 Example metamodel built using Ecore . 39
5.2 Graphical representation of the metamodel of the TypeScript-based grammar

language . 40
5.3 Workflow of the generator functionality 46

7.1 Property palette in the rebuilt bigUML modeling tool 100

107

Listings

2.1 Declaration of the grammar language name 17
2.2 Terminal rule for a string . 17
2.3 Terminal rule for a number . 17
2.4 Hidden terminal rule to ignore white spaces 17
2.5 Declaration of two kinds of parser rules 17
2.6 Declaration of the grammar language’s entry rule 18
2.7 Declaration of cross-reference . 19
2.8 Declaration of unassigned rule calls . 19
2.9 Declaration of parser rule with ordered group of attributes 19
2.10 Declaration of parser rule with unordered group of attributes 19
2.11 Declaration of parser rule with unordered group of attributes, with one

attribute being an array type . 19
5.1 Structure of $ref element if the referenced element includes the reference

property . 36
5.2 Structure of $ref element if the referenced element does not include the

reference property . 36
5.3 Example JSON structure . 36
5.4 Example JSON patch deleting the first node 37
5.5 Example JSON patch adding a node on the second position 37
5.6 JSON document after PatchManager prepared Listing 5.3 for JSON

patch . 38
5.7 Definition of model elements . 41
5.8 Definition of attributes for model elements 41
5.9 Definition of multiplicity for model elements 42
5.10 Definition of containment reference . 42
5.11 Definition of cross-reference . 42
5.12 Definition of sub-model elements . 43
5.13 Definition of abstract model elements 43
5.14 Definition of type alias element . 44
5.15 Definition of root model element using class 44
5.16 Definition of root model element using interface 44
5.17 Definition of the metamodel from Figure 5.1 in the TypeScript-based

grammar language . 45

109

5.18 Defintion of the data structure used for the entire Ecore definition . . 47
5.19 Defintion of the data structure used for EClasses 47
5.20 Defintion of the data structure used for EAttributes and EReferences 47
5.21 Defintion of the data structure used for EEnums 48
5.22 Data structures used by the parser - Declaration 48
5.23 Data structures used by the parser - Property 48
5.24 Data structures used by the parser - Type 49
5.25 Data structures used by the parser - Multiplicity 49
5.26 Data structures used in first transformation 50
5.27 Data structures used in second transformation - LangiumGrammar . 51
5.28 Data structures used in second transformation - EntryRule 51
5.29 Data structures used in second transformation - TypeRule 51
5.30 Data structures used in second transformation - ParserRule 51
5.31 Data structures used in second transformation - Definition 52
5.32 Template file including wildcard phrase 53
5.33 Example parser rule for a model element Person 54
6.1 Definition of the ExtendedLangiumServices 58
6.2 Definition of the ExtendedServiceRegistry 58
6.3 Definition of the AddedSharedModelServices 58
6.4 Collection of documents that could be affected by a change 60
6.5 Functionality to load document URIs with models in JSON format into

two Maps . 61
6.6 Functionality that adds temporal UUIDs to the JSON model 61
6.7 Update the references inside the JSON models after adding the UUIDs 62
6.8 Get the UUID of the referenced element 62
6.9 Get the UUID of the element that should be replaced 63
6.10 Execute the JSON patch . 63
6.11 Functionality to get the value of the element by searching the JSON object

with the given path . 64
6.12 Functionality to rebuild the references to the previous reference structure 64
6.13 Execution of redo/undo patch for the given Map of redo/undo actions 66
6.14 Entry function for the Ecore parser . 67
6.15 Function that parses the provided XML structure into an EcoreDefintion

structure . 67
6.16 Function that parses elements of type EClass 68
6.17 Function that parses elements of type EAttribute and EReference 68
6.18 Function that parses elements of type EEnum 69
6.19 Function that collects the root-level classes of the model 69
6.20 Entry function to the parsing of definition files 70
6.21 Functionality to create Declaration according to node kind 71
6.22 Functionality to parse an interface declaration 72
6.23 Functionality to parse a type declaration 72
6.24 Functionality to parse a type reference declaration 74

110

6.25 Parsing of a union type declaration . 74
6.26 Map Declaration to LangiumDeclaration 75
6.27 Fill the extendedBy property of the LangiumDeclarations . . . 75
6.28 Remove all properties from abstract LangiumDeclarations 76
6.29 Mapping of LangiumDeclaration to EntryRule 76
6.30 Transformation of LangiumDeclarations to TypeRules 76
6.31 Implementation of the check for unused elements 78
6.32 Check for a ParserRule, to validate whether it is serializable 78
6.33 Map TypeRule to Langium definition 80
6.34 Create Declaration for EntryRule and ParserRules 81
6.35 Create alternatives for non-abstract ParserRules 81
6.36 Create body for rule definition . 81
6.37 Example LangiumGrammar . 82
6.38 Example Langium grammar definiton 83
6.39 Example Model instance of the example grammar definiton 83
6.40 Example ParserRule with two properties 83
6.41 Example ParserRule with two properties 84
7.1 Definition of the workflow diagram language using the TypeScript-based

grammar language . 90
7.2 Generated Langium grammar from the TypeScript-based definition . . 91
7.3 Start the Langium language server, Model Server API and GLSP server 92
7.4 Updated implementation of the loadSourceModel function 93
7.5 Updated implementation of the saveSourceModel function 93
7.6 Set the current model state in the updated ModelState class 94
7.7 Set the current model state in the updated ModelState class 94
7.8 Set the current model state in the updated ModelState class 94
7.9 Create the GModelRoot of a model class 95
7.10 Create a GNode for an AST node of type TaskNode 95
7.11 Custom implementation of Command that is used to update the model

state . 96
7.12 Code parts of an operation handler that utilizes the new Command imple-

mentation . 96
7.13 Root element definition for the UML metamodel 97
7.14 Builder functions in the PropertyPaletteBuilder to create form

inputs for text, bool and choice elements 98
7.15 Configure action handlers for the property palette 99

111

Acronyms

AST Abstract Syntax Tree. ix, xi, 2, 7, 16, 17, 20–22, 27–29, 35, 39, 48, 57, 58, 60, 61,
65, 66, 93–95, 101, 105, 111

CLI Command Line Interface. 20, 22, 27, 46, 92

DI Dependency Injection. 14, 16

DSL Domain-Specific Modeling Languages. 2, 5, 8, 11, 16, 26

EBNF Extended Backus-Naur Form. 17

EMF Eclipse Modeling Framework. xi, 3, 5, 8–11, 13, 27, 106, 107

GLSP Graphical Language Server Platform. ix, xi, 1, 3, 5, 12–16, 22, 24, 25, 28, 89,
92–95, 97, 101, 106, 107

GPL General Purpose Modeling Languages. 8

HTML Hypertext Markup Language. 8, 14

IDE Integrated Development Environment. ix, xi, 1, 11, 12, 107

LSP Language Server Protocol. ix, xi, 1, 5, 11–13, 16, 24, 27, 107

UML Unified Modeling Language. 8, 10, 97, 111

URI Uniform Resource Identifier. 36, 38, 58–61, 110

UUID Universally Unique Identifier. 38, 61–65, 110

XMI XML Metadata Interchange. 10

XML Extensible Markup Language. 46, 67, 68, 110

113

Bibliography

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software
engineering in practice. Synthesis lectures on software engineering. Morgan
& Claypool Publishers, [San Rafael, Calif.], second edition edition, 2017.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the omg/mda
framework. In Proceedings 16th Annual International Conference on Auto-
mated Software Engineering (ASE 2001), pages 273–280. IEEE, 2001.

[BIGa] BIGModelingTools. bigUML Modeling Tool. https://marketplace.
visualstudio.com/items?itemName=BIGModelingTools.
umldiagram. Accessed: 17.06.2023.

[BIGb] BIGModelingTools. bigUML modeling tool. https://github.com/
borkdominik/bigUML. Accessed 04.04.2024.

[BKP18] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. Systematic analysis
and evaluation of visual conceptual modeling language notations. In 12th
International Conference on Research Challenges in Information Science,
RCIS 2018, Nantes, France, May 29-31, 2018, pages 1–11. IEEE, 2018.

[BKP20] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. A survey of
modeling language specification techniques. Inf. Syst., 87, 2020.

[BL23] Dominik Bork and Philip Langer. Language server protocol: An introduction
to the protocol, its use, and adoption for web modeling tools. Enterp. Model.
Inf. Syst. Archit. Int. J. Concept. Model., 18:9:1–16, 2023.

[BLO23] Dominik Bork, Philip Langer, and Tobias Ortmayr. A vision for flexible glsp-
based web modeling tools. In João Paulo A. Almeida, Monika Kaczmarek-
Heß, Agnes Koschmider, and Henderik A. Proper, editors, The Practice of
Enterprise Modeling - 16th IFIP Working Conference, PoEM 2023, Vienna,
Austria, November 28 - December 1, 2023, Proceedings, volume 497 of Lecture
Notes in Business Information Processing, pages 109–124. Springer, 2023.

[Cho65] Noam Chomsky. Aspects of the Theory of Syntax. The MIT Press, 50 edition,
1965.

115

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://github.com/borkdominik/bigUML
https://github.com/borkdominik/bigUML

[CLB22] Giuliano De Carlo, Philip Langer, and Dominik Bork. Advanced visualization
and interaction in glsp-based web modeling: realizing semantic zoom and off-
screen elements. In Eugene Syriani, Houari A. Sahraoui, Nelly Bencomo, and
Manuel Wimmer, editors, Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS 2022,
Montreal, Quebec, Canada, October 23-28, 2022, pages 221–231. ACM, 2022.

[DCLB22] Giuliano De Carlo, Philip Langer, and Dominik Bork. Advanced visualization
and interaction in glsp-based web modeling: Realizing semantic zoom and
off-screen elements. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS ’22, page
221–231, New York, NY, USA, 2022. Association for Computing Machinery.

[Ecla] EclipseFoundation. Ecore. https://wiki.eclipse.org/Ecore. Ac-
cessed: 26.02.2024.

[Eclb] EclipseSource. Glsp. https://eclipse.dev/glsp/. Accessed:
14.02.2024.

[Eclc] EclipseSource. Workflow example. https://www.eclipse.org/glsp/
examples/#workflowoverview. Accessed: 24.06.2023.

[Foua] Eclipse Foundation. The eclipse theia platform. https://theia-ide.
org/. Accessed: 22.02.2024.

[Foub] Eclipse Foundation. Emf. https://www.eclipse.org/modeling/
emf/. Accessed: 24.06.2023.

[Fouc] Eclipse Foundation. EMF.cloud. https://www.eclipse.org/
emfcloud/. Accessed: 22.06.2023.

[Foud] Eclipse Foundation. Xtext. https://www.eclipse.org/Xtext/. Ac-
cessed: 24.06.2023.

[Fow10] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[GB21] Philipp-Lorenz Glaser and Dominik Bork. The bigER tool - hybrid textual
and graphical modeling of entity relationships in VS Code. In 2021 IEEE 25th
International Enterprise Distributed Object Computing Workshop (EDOCW),
pages 337–340, 2021.

[GMGC22] Joan Giner-Miguelez, Abel Gómez, and Jordi Cabot. DescribeML: A Tool
for Describing Machine Learning Datasets. In Proceedings of the 25th Inter-
national Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS ’22, page 22–26, New York, NY, USA,
2022. Association for Computing Machinery.

116

https://wiki.eclipse.org/Ecore
https://eclipse.dev/glsp/
https://www.eclipse.org/glsp/examples/#workflowoverview
https://www.eclipse.org/glsp/examples/#workflowoverview
https://theia-ide.org/
https://theia-ide.org/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/Xtext/

[Gro16] Object Management Group. Meta object facility. https://www.omg.
org/spec/MOF/2.5.1, 2016. Accessed: 20.02.2024.

[Gro17] Object Management Group. Unified modeling language. https://www.
omg.org/spec/UML/2.5.1, 2017. Accessed: 20.02.2024.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28(1):75–105, 2004.

[HR04] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of
"semantics"? Computer, 37(10):64–72, 2004.

[JBF11] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model Driven Lan-
guage Engineering with Kermeta, pages 201–221. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[Kle08] Anneke Kleppe. Software language engineering: creating domain-specific
languages using metamodels. Pearson Education, 2008.

[Lan] Langium. Langium. https://langium.org/. Accessed: 17.06.2023.

[MB23] Haydar Metin and Dominik Bork. On developing and operating glsp-based
web modeling tools: Lessons learned from BIGUML. In 26th ACM/IEEE
International Conference on Model Driven Engineering Languages and Sys-
tems, MODELS 2023, Västerås, Sweden, October 1-6, 2023, pages 129–139.
IEEE, 2023.

[Mica] Microsoft. Extension api | visual studio code. https://code.
visualstudio.com/api. Accessed: 22.02.2024.

[Micb] Microsoft. Language server protocol. https://microsoft.github.io/
language-server-protocol/. Accessed 04.04.2024.

[Micc] Microsoft. Language server protocol - overview. https://microsoft.
github.io/language-server-protocol/overviews/lsp/
overview/. Accessed 30.04.2024.

[Micd] Microsoft. Visual studio code. https://code.visualstudio.com/.
Accessed: 22.02.2024.

[NL] CrossBreeze NL. Crossmodel. https://github.com/CrossBreezeNL/
crossmodel. Accessed 05.03.2024.

[REIWC18] Roberto Rodriguez-Echeverria, Javier Luis Cánovas Izquierdo, Manuel Wim-
mer, and Jordi Cabot. Towards a language server protocol infrastructure for
graphical modeling. In Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS
’18, page 370–380, New York, NY, USA, 2018. Association for Computing
Machinery.

117

https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://langium.org/
https://code.visualstudio.com/api
https://code.visualstudio.com/api
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://code.visualstudio.com/
https://github.com/CrossBreezeNL/crossmodel
https://github.com/CrossBreezeNL/crossmodel

[Sei03] Edwin Seidewitz. What models mean. IEEE software, 20(5):26–32, 2003.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE software,
20(5):19–25, 2003.

[SHK12] Martina Seidl, Marion Scholz Christian Huemer, and Gerti Kappel. UML@
Classroom An Introduction to Object-Oriented Modeling. Springer, 2012.

[Ste09] Dave Steinberg. EMF : Eclipse Modeling Framework. The eclipse series
EMF. Addison Wesley, [Place of publication not identified], 2nd ed. edition,
2009.

[Tha22] Bernhard Thalheim. Models: the fourth dimension of computer science.
Software and Systems Modeling, 21:1–10, 02 2022.

[VBD+13] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart CL Kats, Eelco Visser, and GH Wachsmuth. Dsl
engineering-designing, implementing and using domain-specific languages.
2013.

118

Appendix

Implementation of the mapping from EcoreDefinition
TypeScript-based grammar language definition
export function trans formEcoreToTsDef in i t ion (

d e f i n i t i o n : E c o r e D e f i n i t i o n
) : s t r i n g {

l e t t s D e f i n i t i o n = [
’ import { root , c r o s s R e f e r e n c e , CrossReference , ABSTRACT_ELEMENT, ROOT_ELEMENT }
from " generator −langium−model−management " ; ’ ,

] ;
d e f i n i t i o n . types . forEach ((type) => {

t s D e f i n i t i o n . push (‘ type ${ type . name} = ${ type . types . j o i n (" | ") } ‘) ;
}) ;
t s D e f i n i t i o n . push (

d e f i n i t i o n . dataTypes . map((type) => ‘ type ${ type } = s t r i n g ; ‘) . j o i n (" \n ")
) ;
t s D e f i n i t i o n . push (

. . . d e f i n i t i o n . c l a s s e s
. s o r t (

(classA , c l a s s B) =>
(c lassA . extends ? . l e n g t h ?? 0) − (c l a s s B . extends ? . l e n g t h ?? 0)

)
. map((e Cl a s s) => {

i f (e C l a s s . i s I n t e r f a c e) {
const e x t e n d e r s = e C l a ss . extends ?? [] ;
i f (e C l a s s . i s A b s t r a c t) {

e x t e n d e r s . push ("ABSTRACT_ELEMENT") ;
}
i f (e C l a s s . i sRoot) {

e x t e n d e r s . push ("ROOT_ELEMENT") ;
}

r e t u r n ‘ interface ${ e Cl a s s . name} ${
e x t e n d e r s . l e n g t h > 0 ? " extends " + e x t e n d e r s . j o i n (" , ") : " "

} {
${ e Cl a s s . a t t r i b u t e s

. map(
(a t t r) =>

‘ ${ a t t r . name}${
a t t r . m u l t i p l i c i t y === " ? " | | a t t r . m u l t i p l i c i t y === " ∗ "

? " ? "
: " "

} : ${getTsType (att r , t r u e) } ‘
)
. j o i n (" \n ") }

} ‘ ;
} e l s e {

r e t u r n ‘ ${ e C l a s s . i sRoot ? " @root " : " " } ${
e C la s s . i s A b s t r a c t ? " a b s t r a c t " : " "

} class ${ e Cl a s s . name} ${
e C la s s . extends ? . l e n g t h > 0

? " extends " + e C l as s . extends . j o i n (" , ")
: " "

119

} {
${ e Cl a s s . a t t r i b u t e s

. map(
(a t t r) =>

‘ ${ a t t r . r e f e r e n c e ? " @crossReference " : " " } ${ a t t r . name}${
a t t r . m u l t i p l i c i t y === " ? " | | a t t r . m u l t i p l i c i t y === " ∗ "

? " ? "
: " "

} : ${getTsType (a t t r) } ‘
)
. j o i n (" \n ") }

} ‘ ;
}

})
) ;
r e t u r n t s D e f i n i t i o n . j o i n (" \n ") ;

}
function getTsType (a t t r i b u t e : EcoreAttr ibute , i s I n t e r f a c e : boolean = f a l s e) {

l e t type = a t t r i b u t e . type ;
i f (a t t r i b u t e . m u l t i p l i c i t y === " ∗ " | | a t t r i b u t e . m u l t i p l i c i t y === "+") {

type = " Array<" + type + ">" ;
}
i f (a t t r i b u t e . r e f e r e n c e && i s I n t e r f a c e) {

type = ‘ CrossReference <${ type } > ‘;
}
r e t u r n type ;

}

Evaluation of Ecore models with TypeScript-based
grammar language

Example1 - Ecore Model
<?xml version="1.0" encoding="UTF−8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/

XMLSchema−instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="cpsml" nsURI="http://www.example.org/cpsml"

nsPrefix="cpsml">
<eAnnotations source="http://www.eclipse.org/OCL/Import">

<details key="ecore" value="http://www.eclipse.org/emf/2002/Ecore"/>
</eAnnotations>
<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore">

<details key="invocationDelegates" value="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot"/>
<details key="settingDelegates" value="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot"/>
<details key="validationDelegates" value="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot"/>

</eAnnotations>
<eClassifiers xsi:type="ecore:EClass" name="CPS">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="environment" lowerBound="1"
upperBound="−1" eType="#//Environment" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="messagebroker" lowerBound="1"
upperBound="−1" eType="#//MessageBroker" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="controller" lowerBound="1"
upperBound="−1" eType="#//Controller" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="MessageBroker">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="topics" upperBound="−1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="position" lowerBound="1"
eType="#//Position" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="connectionmodule" upperBound="−1"
eType="#//ConnectionModule" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Environment">

120

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="node" lowerBound="1" upperBound="−1"
eType="#//Node" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Controller">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description" eType="ecore:EDataType http://www.
eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="subscriptions" upperBound="−1"
eType="#//MessageLink" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="publications" upperBound="−1"
eType="#//MessageLink" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="topics" upperBound="−1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Node" eSuperTypes="#//ComponentNode">

<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore">
<details key="constraints" value="cons1 cons2"/>

</eAnnotations>
<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot">

<details key="cons1" value="
			(self.status = Status::GOOD and self.component −>
forAll(c : Component | c.status = Status::GOOD)) or self.status <> Status::GOOD"/>

<details key="cons2" value="
			self.publications −> forAll(p : MessageLink | self.
connectionmodule −> exists(c : ConnectionModule | c.connectionmodule −> exists(cm :
ConnectionModule | cm.MessageBroker = p.messagebroker))) and
			self.
subscriptions −> forAll(s : MessageLink | self.connectionmodule −> exists(c : ConnectionModule | c.
connectionmodule −> exists(cm : ConnectionModule | cm.MessageBroker = s.messagebroker)))"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EReference" name="component" upperBound="−1"

eType="#//Component" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="connectionmodule" upperBound="−1"

eType="#//ConnectionModule" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="publications" upperBound="−1"

eType="#//MessageLink" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="subscriptions" upperBound="−1"

eType="#//MessageLink" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="position" eType="#//Position"

containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="Status">

<eLiterals name="GOOD"/>
<eLiterals name="WARNING" value="1"/>
<eLiterals name="CRITICAL" value="2"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Position">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="x" lowerBound="1" eType="ecore:EDataType http://
www.eclipse.org/emf/2002/Ecore#//EFloatObject"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="y" lowerBound="1" eType="ecore:EDataType http://
www.eclipse.org/emf/2002/Ecore#//EFloatObject"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="z" lowerBound="1" eType="ecore:EDataType http://
www.eclipse.org/emf/2002/Ecore#//EFloatObject"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Component" abstract="true" eSuperTypes="#//ComponentNode">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="topic" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="functions" upperBound="−1"
eType="#//Function" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ConnectionModule" abstract="true">

<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore">
<details key="constraints" value="constraintSameType constraintNameStartsWithTopicName

compatibleProtocols"/>
</eAnnotations>
<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot">

<details key="constraintSameType" value="
			self.connectionmodule −> forAll(c:
ConnectionModule | c.oclIsTypeOf(self.oclType()) and c <> self)"/>

<details key="constraintNameStartsWithTopicName" value="
			(self.Node = null or
self.name.size() > self.Node.name.size() and self.name.substring(1, self.Node.name.size()) = self.Node.name
.toUpper()) and
			(self.MessageBroker = null or self.name.size() > self.
MessageBroker.name.size() and self.name.substring(1, self.MessageBroker.name.size()) = self.
MessageBroker.name.toUpper())"/>

121

<details key="compatibleProtocols" value="
			self.connectionmodule−>forAll(c:
ConnectionModule | self.supportedProtocols−>intersection(c.supportedProtocols)−>notEmpty())"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http

://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="supportedProtocols" lowerBound="1"

upperBound="−1" eType="#//CommunicationProtocol"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="connectionmodule" upperBound="−1"

eType="#//ConnectionModule"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="WirelessModule" eSuperTypes="#//ConnectionModule" interface="

true">
<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore">

<details key="constraints" value="rangeRestriction cons4"/>
</eAnnotations>
<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot">

<details key="rangeRestriction" value="
			range > 0"/>
<details key="cons4" value="
			(self.MessageBroker = null or (self.connectionmodule−>

forAll(c: ConnectionModule | (
					(self.MessageBroker.position.x − c.
Node.position.x) ∗ (self.MessageBroker.position.x − c.Node.position.x) +
				
;	(self.MessageBroker.position.y − c.Node.position.y) ∗ (self.MessageBroker.position.y − c.Node.
position.y) +
					(self.MessageBroker.position.z − c.Node.position.z) ∗
(self.MessageBroker.position.z − c.Node.position.z)
).abs() <= (self.

range ∗ self.range))
)) and
			(self.Node = null or (self.
connectionmodule−>forAll(c: ConnectionModule | (
					(self.Node.
position.x − c.MessageBroker.position.x) ∗ (self.Node.position.x − c.MessageBroker.position.x) +

;					(self.Node.position.y − c.MessageBroker.position.y) ∗ (self.Node.position.
y − c.MessageBroker.position.y) +
					(self.Node.position.z − c.
MessageBroker.position.z) ∗ (self.Node.position.z − c.MessageBroker.position.z)
			
;).abs() <= (self.range ∗ self.range))
))"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="range" lowerBound="1" eType="ecore:EDataType http

://www.eclipse.org/emf/2002/Ecore#//EFloatObject"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="WiredModule" eSuperTypes="#//ConnectionModule"/>
<eClassifiers xsi:type="ecore:EEnum" name="CommunicationProtocol">

<eLiterals name="DDS"/>
<eLiterals name="MQTT" value="1"/>
<eLiterals name="SMQTT" value="2"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="MessageLink">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="topics" upperBound="−1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="messagebroker" lowerBound="1"
eType="#//MessageBroker"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ComponentNode" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="status" lowerBound="1"
eType="#//Status"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Sensor" eSuperTypes="#//Component">

<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore">
<details key="constraints" value="cons3"/>

</eAnnotations>
<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot">

<details key="cons3" value="
			self.functions −> forAll(f : Function | f.hasReturn =
true and f.returnDataType <> DataType::NULL)"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="frequency" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EIntegerObject"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Actuator" eSuperTypes="#//Component">

<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore">
<details key="constraints" value="runsRestriction"/>

</eAnnotations>
<eAnnotations source="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot">

<details key="runsRestriction" value="
			runs >= 0"/>
</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="runs" lowerBound="1" eType="ecore:EDataType http

://www.eclipse.org/emf/2002/Ecore#//EIntegerObject"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="ratedRuns" lowerBound="1"

122

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EIntegerObject"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Function">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description" eType="ecore:EDataType http://www.
eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="returnDataType" eType="#//DataType"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="hasReturn" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="parameter" upperBound="−1"

eType="#//Parameter" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="DataType">

<eLiterals name="NULL"/>
<eLiterals name="INTEGER" value="1"/>
<eLiterals name="FLOAT" value="2"/>
<eLiterals name="BOOLEAN" value="3"/>
<eLiterals name="STRING" value="4"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Parameter">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType="ecore:EDataType http
://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="dataType" lowerBound="1"
eType="#//DataType"/>

</eClassifiers>
</ecore:EPackage>

Example1 - TypeScript-based grammar language
import {

root ,
c r o s s R e f e r e n c e ,
CrossReference ,
ABSTRACT_ELEMENT,
ROOT_ELEMENT,

} from " generator −langium−model−management " ;
type Status = "GOOD" | "WARNING" | "CRITICAL" ;
type CommunicationProtocol = "DDS" | "MQTT" | "SMQTT" ;
type DataType = "NULL" | "INTEGER" | "FLOAT" | "BOOLEAN" | "STRING" ;
class CPS {

name : s t r i n g ;
environment : Array<Environment >;
messagebroker : Array<MessageBroker >;
c o n t r o l l e r : Array<C o n t r o l l e r >;

}
class MessageBroker {

name : s t r i n g ;
t o p i c s ? : Array<s t r i n g >;
p o s i t i o n : P o s i t i o n ;
connectionmodule ? : Array<ConnectionModule >;

}
class Environment {

name : s t r i n g ;
node : Array<Node>;

}
class C o n t r o l l e r {

name : s t r i n g ;
d e s c r i p t i o n ? : s t r i n g ;
s u b s c r i p t i o n s ? : Array<MessageLink >;
p u b l i c a t i o n s ? : Array<MessageLink >;
t o p i c s ? : Array<s t r i n g >;

}
class P o s i t i o n {

x : number ;
y : number ;
z : number ;

}
abstract class ConnectionModule {

name : s t r i n g ;
s u p p o r t e d P r o t o c o l s : Array<CommunicationProtocol >;

123

@crossReference connectionmodule ? : Array<ConnectionModule >;
}
class MessageLink {

t o p i c s ? : Array<s t r i n g >;
@crossReference messagebroker : MessageBroker ;

}
abstract class ComponentNode {

s t a t u s : Status ;
name : s t r i n g ;

}
class Function_ {

name : s t r i n g ;
d e s c r i p t i o n ? : s t r i n g ;
returnDataType ? : DataType ;
hasReturn : boolean ;
parameter ? : Array<Parameter >;

}
class Parameter {

name : s t r i n g ;
dataType : DataType ;

}
@root
class Cpsml {

cps ? : Array<CPS>;
}
class Node extends ComponentNode {

component ? : Array<Component>;
connectionmodule ? : Array<ConnectionModule >;
p u b l i c a t i o n s ? : Array<MessageLink >;
s u b s c r i p t i o n s ? : Array<MessageLink >;
p o s i t i o n ? : P o s i t i o n ;

}
abstract class Component extends ComponentNode {

t o p i c : s t r i n g ;
f u n c t i o n s ? : Array<Function_ >;

}
interface WirelessModule extends ConnectionModule {

range : number ;
}
class WiredModule extends ConnectionModule {}
class Sensor extends Component {

f requency : number ;
}
class Actuator extends Component {

runs : number ;
ratedRuns : number ;

}

Example1 - JSON Model
{

" cps " : [
{

" __type " : "CPS" ,
" __id " : " id −0" ,
" name " : " prod " ,
" environment " : [

{
" __type " : " Environment " ,
" __id " : " id −1" ,
" name " : " Product ionFloor " ,
" node " : [

{
" __type " : " Node " ,
" __id " : " id −2" ,
" component " : [

{
" __type " : " Actuator " ,
" __id " : " id −6" ,
" runs " : 70 ,
" ratedRuns " : 100000 ,

124

" t o p i c " : " temp " ,
" f u n c t i o n s " : [

{
" __type " : " Function_ " ,
" __id " : " id −7" ,
" name " : " setTemperature " ,
" d e s c r i p t i o n " : " Set_the_temperature ␣

→ of_the_heated_print_bed " ,
" hasReturn " : true ,
" parameter " : [

{
" __type " : " Parameter " ,
" __id " : " id −8" ,
" name " : " temperature " ,
" dataType " : "INTEGER"

}
]

}
] ,
" s t a t u s " : "CRITICAL" ,
" name " : " HeatedPrintBed "

} ,
{

" __type " : " Actuator " ,
" __id " : " id −123 " ,
" runs " : 70 ,
" ratedRuns " : 200000 ,
" t o p i c " : " product ion " ,
" f u n c t i o n s " : [

{
" __type " : " Function_ " ,
" __id " : " id −12312313 " ,
" name " : " s t a r t P r i n t " ,
" d e s c r i p t i o n " :

→ " Start_the_pr int ing_process " ,
" hasReturn " : t r u e

} ,
{

" __type " : " Function_ " ,
" __id " : " id −1231231331 " ,
" name " : " getRemainingPrintDuration " ,
" d e s c r i p t i o n " : " returns_the ␣

→ remaining_print_duration " ,
" returnDataType " : "INTEGER" ,
" hasReturn " : t r u e

}
] ,
" s t a t u s " : "CRITICAL" ,
" name " : " HeatedPrintBed "

}
] ,
" connectionmodule " : [

{
" __type " : " WirelessModule " ,
" __id " : " id −9" ,
" range " : 100 ,
" name " : "THREEDPRINTER_wl1" ,
" s u p p o r t e d P r o t o c o l s " : [

"MQTT"
] ,
" connectionmodule " : [

{
" __type " : " Reference " ,
" __refType " : " ConnectionModule " ,
" __value " : " id −9"

}
]

}
] ,
" s t a t u s " : "CRITICAL" ,
" name " : " ThreeDPrinter "

}
]

125

}
] ,
" messagebroker " : [

{
" __type " : " MessageBroker " ,
" __id " : " id −3" ,
" name " : " id " ,
" p o s i t i o n " : {

" __type " : " P o s i t i o n " ,
" __id " : " id −4" ,
" x " : 0 ,
" y " : 0 ,
" z " : 0

} ,
" connectionmodule " : []

}
] ,
" c o n t r o l l e r " : [

{
" __type " : " C o n t r o l l e r " ,
" __id " : " id −5" ,
" name " : " id "

}
]

}
]

}

Example2 - Ecore Model
<?xml version="1.0" encoding="UTF−8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/

XMLSchema−instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="test" nsURI="http://www.example.org/test"

nsPrefix="test">
<eClassifiers xsi:type="ecore:EClass" name="League">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="newAttribute" eType="ecore:EDataType http://www.
eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="players" upperBound="−1"
eType="#//Player" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Game">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="frames" eType="ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EIntegerObject"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="player" eType="#//Player"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Player">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="dateOfBirth" eType="ecore:EDataType http://www.
eclipse.org/emf/2002/Ecore#//EDate"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="height" eType="ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EDoubleObject"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="isProfessional" eType="ecore:EDataType http://www.
eclipse.org/emf/2002/Ecore#//EBooleanObject"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Matchup">

<eStructuralFeatures xsi:type="ecore:EReference" name="games" lowerBound="2" upperBound="2"
eType="#//Game" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Tournament">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" eType="#//TournamentType"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="matchup" upperBound="−1"

eType="#//Matchup" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="TournamentType">

<eLiterals name="Pro"/>
<eLiterals name="Amateur" value="1"/>

</eClassifiers>
</ecore:EPackage>

126

Example2 - TypeScript-based grammar language
import {

root ,
c r o s s R e f e r e n c e ,
CrossReference ,
ABSTRACT_ELEMENT,
ROOT_ELEMENT,

} from " generator −langium−model−management " ;
type TournamentType = " Pro " | " Amateur " ;
class League {

newAttribute ? : s t r i n g ;
p l a y e r s ? : Array<Player >;

}
class Game {

frames ? : number ;
@crossReference p l a y e r ? : Player ;

}
class Player {

name ? : s t r i n g ;
dateOfBirth ? : s t r i n g ;
h e i g h t ? : number ;
i s P r o f e s s i o n a l ? : boolean ;

}
class Matchup {

games : Array<Game>;
}
class Tournament {

type ? : TournamentType ;
matchup ? : Array<Matchup>;

}
@root
class Test {

l e a g u e ? : Array<League >;
tournament ? : Array<Tournament >;

}

Example2 - JSON Model
{

" l e a g u e " : [
{

" __type " : " League " ,
" __id " : " id −0" ,
" p l a y e r s " : [

{
" __type " : " Player " ,
" __id " : " id −1" ,
" name " : " John_Doe " ,
" h e i g h t " : 6 . 5 ,
" i s P r o f e s s i o n a l " : t r u e

} ,
{

" __type " : " Player " ,
" __id " : " id −2" ,
" name " : " Jane_Doe " ,
" h e i g h t " : 5 . 5 ,
" i s P r o f e s s i o n a l " : f a l s e

} ,
{

" __type " : " Player " ,
" __id " : " id −3" ,
" name " : " John_Smith " ,
" h e i g h t " : 6 . 0 ,
" i s P r o f e s s i o n a l " : t r u e

}
]

}
] ,
" tournament " : [

{

127

" __type " : " Tournament " ,
" __id " : " id −4" ,
" type " : " Pro " ,
" matchup " : [

{
" __type " : " Matchup " ,
" __id " : " id −5" ,
" games " : [

{
" __type " : "Game" ,
" __id " : " id −6" ,
" p l a y e r " : {

" __type " : " Reference " ,
" __refType " : " Player " ,
" __value " : " id −1"

}
} ,
{

" __type " : "Game" ,
" __id " : " id −7" ,
" p l a y e r " : {

" __type " : " Reference " ,
" __refType " : " Player " ,
" __value " : " id −3"

}
}

]
}

]
}

]
}

Example3 - Ecore Model
<?xml version="1.0" encoding="UTF−8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/

XMLSchema−instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="Model" nsURI="http://www.example.org/test"

nsPrefix="test">
<eClassifiers xsi:type="ecore:EClass" interface="true" name="Fruit" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="fruitType" eType="#//FruitType"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" interface="true" name="WritingObject" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="writingObjectType" eType="#//WritingObjectType"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" interface="true" name="Fruit_WritingObject" eSuperTypes="#//Fruit #//

WritingObject">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="mmmm" eType="#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="WritingObjectType">

<eLiterals name="PEN"/>
<eLiterals name="PENCIL" value="1"/>
<eLiterals name="CRAYON" value="2"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="FruitType">

<eLiterals name="APPLE"/>
<eLiterals name="PINEAPPLE" value="1"/>
<eLiterals name="ORANGE" value="2"/>

</eClassifiers>
</ecore:EPackage>

Example2 - TypeScript-based grammar language
import {

root ,
c r o s s R e f e r e n c e ,
CrossReference ,

128

ABSTRACT_ELEMENT,
ROOT_ELEMENT,

} from " generator −langium−model−management " ;
type WritingObjectType = "PEN" | "PENCIL" | "CRAYON" ;
type FruitType = "APPLE" | "PINEAPPLE" | "ORANGE" ;
interface Frui t extends ABSTRACT_ELEMENT {

fr u i tTy pe ? : FruitType ;
}
interface WritingObject extends ABSTRACT_ELEMENT {

writ ingObjectType ? : WritingObjectType ;
}
@root
class Model {

f r u i t _ w r i t i n g o b j e c t ? : Array<Fruit_WritingObject >;
}
interface Fruit_WritingObject extends Fruit , Writ ingObject {

mmmm? : s t r i n g ;
}

Example3 - JSON Model
{

" f r u i t _ w r i t i n g o b j e c t " : [
{

" __type " : " Fruit_WritingObject " ,
" __id " : " id −1" ,
"mmmm" : "mmmmm_APPLE_PEN" ,
" f ru i tT yp e " : "APPLE" ,
" writ ingObjectType " : "PEN"

} ,
{

" __type " : " Fruit_WritingObject " ,
" __id " : " id −2" ,
"mmmm" : "MMMM_PINEAPPLE_PENCIL" ,
" f ru i tT yp e " : "PINEAPPLE" ,
" writ ingObjectType " : "PENCIL"

} ,
{

" __type " : " Fruit_WritingObject " ,
" __id " : " id −3" ,
"mmmm" : "MMMMMMMM_ORANGE_CRAYON" ,
" f ru i tT yp e " : "ORANGE" ,
" writ ingObjectType " : "CRAYON"

}
]

}

129

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement and Motivation
	Aim of the Thesis and Expected Results
	Methodology
	Summary and structure of the work

	Background
	Terminology
	Eclipse Modeling Framework (EMF)
	GLSP - Graphical Language Server Platform
	Langium
	Generator
	Summary

	State of the art
	Model Editors
	Language Engineering
	Summary

	Requirements
	Main idea and general approach
	Model Server API
	TypeScript-based grammar language
	Generator
	Summary

	Concept
	Model Server API
	TypeScript-based grammar language
	Generator
	Summary

	Implementation
	Model Server API
	Generator
	Summary

	Evaluation
	Functional Testing
	Descriptive Evaluation - Informed Argument
	Descriptive Evaluation - Scenarios
	Interpretation of the evaluation results

	Conclusion
	Conclusions and Findings
	Future Work

	List of Figures
	Listings
	Acronyms
	Bibliography
	Appendix
	Implementation of the mapping from EcoreDefinition TypeScript-based grammar language definition
	Evaluation of Ecore models with TypeScript-based grammar language

