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Abstract

Many real world datasets are nowadays multivariate. The last decades have seen an explosion
of the number of methods for multivariate data. Such data, usually considered to be real
valued, and the corresponding statistical methods, are based on the Euclidean geometry.
The underlying property of the Euclidean geometry is to measure similarity of two points
as the length of the line between such. For settings in which data points consist of strictly
positive variables, which are plentiful in the applied sciences, a different approach needs
to be considered. Recently, a concept quickly gaining popularity, called Compositional
Data Analysis (CoDA) has emerged. In CoDA one measures similarity of two multivariate
strictly positive data points by comparing the log-ratios respectively. With this change of
perspective comes the necessity to adapt classical statistical methods. Many such methods
have been extended to this framework in recent years. In this thesis we look into applications
of a combined approach between the log-ratio methodology, which is at the heart of CoDA,
and Generalized Additive Models, to find important elements in a geochemical exploration
setting. Furthermore we explore various extensions of CoDA such as change point detection
of compositional time series, outlier detection of compositional functional data and very
fruitful connections with signal processing on graphs.
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Kurzfassung

Viele reale Datensätze sind zum gegenwärtigen Zeitpunkt multivariat. In den letzten Jahr-
zehnten ist die Zahl der Methoden für multivariate Daten geradezu explodiert. Daten, die
normalerweise als reell angesehen werden, basieren jedoch auf entsprechenden statistischen
Methoden die wiederum auf die euklidische Geometrie zurückzuführen sind. Die zugrun-
deliegende Annahme der euklidischen Geometrie besteht darin, den Abstand zweier Punkte
als die Länge der Linie zwischen diesen zu definieren. In Fällen, in denen Datenpunkte aus
strikt positiven Variablen bestehen, diese Beispiele findet man in den angewandten Wis-
senschaften reichlich, muss ein anderer Ansatz in Betracht gezogen werden. In der jüngsten
Vergangenheit gewinnt ein Konzept namens Compositional Data Analysis (CoDA) immer
mehr an Popularität. In CoDA misst man den Abstand zweier mulivariater strikt positiver
Datenpunkte, indem man die entsprechend jeweiligen logarithmisch transformierten Quo-
tienten aller Variablen vergleicht. Dieser Perspektivenwechsel führt zur Notwendigkeit,
die klassischen statistischen Methoden anzupassen. Zahlreiche klassische Methoden der
letzten Jahre wurden an solche Daten angepasst. In dieser Dissertation untersuchen wir
Anwendungen eines kombinierten Ansatzes zwischen der Log-Ratio-Methodik, welche das
Herzstück von CoDA ist, und generalisierten additiven Modellen, um interessante Elemente
einer geochemischen Exploration zu finden. Darüber hinaus erforschen wir verschiedene
Erweiterungen von CoDA, wie die Erkennung von Änderungspunkten aus Kompositi-
onszeitreihen, der Erkennung von Ausreißern von funktionellen Kompositionsdaten und
außerordentlich fruchtbaren Verbindungen mit der Signalverarbeitung auf Graphen.
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Summary
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1. Introduction

One of the first steps when starting to analyze a dataset is to look at the type of data one has
and consequently which sample space one should use. The choice of methods used for real
valued, categorical, time series, strictly positive, interval, tensor, functional or image data,
and many more, can have a huge impact on the outcome of the analysis. Recent decades
have seen a surge in methods that allows one to incorporate any such knowledge into the
analysis.

Compositional Data Analysis (CoDA) deals with multivariate, strictly positive data whose
components are part of a whole. This loose first definition of CoDA happens to be fulfilled
for many real world datasets we are interested in. A very common example are household
expenditures of different EU countries for categories like food, housing, health, leisure,
transport, etc. Each country represents a multivariate datapoint with strictly positive
entries which can be thought of as percentages in regard to the sum of their expenditures.
Commonly used approaches to such data as to divide each entry by the sum of entries and
then log-transform respectively, ignore spurious correlation effects, see [48], and lead to
false conclusions. Latter is one of the main motivations for the development of CoDA,
such as in [1] and [3]. Working in the right (compositional) geometry incorporates for
these examples the viewpoint of percentages and facilitates any further analysis greatly.
Further examples are omnipresent, such as microbiome data [23] or [51], omics data [49] or
time-use data [16]. However, despite all the work that has gone into this field many applied
areas are still unaware of the advantages [40].

Obviously, different extensions of CoDA arise in case that we also want to include
additional information in an analysis. Consider a setting in which we are interested in
analyzing expenditures of different households in a given city. A natural question that
arises is how strong expenditures vary from one part of the city to another one or if certain
types of expenditures dominate in certain areas. Modeling such geographic dependencies is
commonly done in geostatistics, however methods need to be carefully chosen and adapted
in case a compositional setting is chosen. Additionally to geospatial information, we might
be interested in how expenditures vary over a given period of time and if behaviors and
the general trend changes at some point. Classically, time series are considered to be real
valued. A CoDA approach, on the other hand, considers a different point of view than in
the classical case. At last, assume we are interested to find EU countries that display an
outlying behavior from the average one over time in terms of their expenditures. Such a task
could be modeled by a compostionally adapted approach for functional outlier detection.

Evidently, there are plenty extensions of CoDA which are interesting. In this thesis we
consider variations of the mentioned ones. The structure is as follows. Section 2 gives, after
a short example, an overview of the most important concepts of CoDA, and introduces all
necessary tools and core concepts. In the subsequent sections we give a compact overview
of the main scientific contributions as developed in Papers I to V, which include the use of
Generalized Additive Models phrased in a compositional context for geochemical anomaly
detection, compositional time series trend detection, compositional Functional Data outlier
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detection and a rephrasing of CoDA in the context of Graph Signal Processing. In the last
section we look at possible future research directions and give an outlook.
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2. Basic concepts of CoDA

The following subsections introduce core concepts of CoDA. We will start with a subsection
that motivates the principles and definitions which follow.

2.1. Core philosophy of CoDA

To illustrate core principles of CoDA we look at an example of household expenditures,
as mentioned in the introduction, first. The data is available in the the R package rob-
Compositions [58] and consists of twelve different types of expenditures - such as Food,
Alcohol, Clothing, Housing, Furnishings, Health, Transport, Communications, Recreation,
Education, Restaurants and Other - from households in 27 EU countries. Table 2.1 shows
an excerpt of expenditures in Euros for the countries Denmark (DK), Germany (D), Irland
(IRL), Spain (ES) and France (F). If we are interested in how much an average Irish
household spends on food compared to a Spanish one we see, looking at the absolute
numbers, that in both countries food expenditures are similar - 4491 Euro for Ireland and
4685 Euro for Spain. Something similar holds for a German and Irish household in the
housing category - 8445 Euro for Germany and 8520 Euro for Ireland. However, since
in each country the average total spending budget of a household differs due to different
economic factors it is questionable that such a comparison provides a fair picture. It can
be argued that it is more sensible to compare relative numbers, that is comparing the per-
centages an average household of a country spends in each country compared to their total
expenditures. Table 2.2 shows these percentages and the picture is quite different. The
average Spanish household spends 18% of their total budget on food whereas an average
Irish household only spends 12.35 % on food. As mentioned in the introduction, we might
think of CoDA, in a first approach, as percentages. Percentages have two main properties.
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DK 2872 785 1168 7194 1459 639 3331 583 2738 100 960 2233
D 3185 489 1355 8445 1543 1024 3790 828 3168 236 1212 3226

IRL 4491 2032 1851 8520 2613 904 4203 1255 3670 687 2190 3956
ES 4685 586 1786 7874 1211 577 2743 701 1659 292 2414 1499
F 3733 650 1853 7339 1693 1167 3777 914 1926 165 1277 3392

Table 2.1.: Different types of expenditures in Euros for five EU countries.
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DK 11.94 3.26 4.85 29.90 6.06 2.66 13.84 2.42 11.38 0.42 3.99 9.28
D 11.18 1.72 4.75 29.63 5.41 3.59 13.30 2.91 11.12 0.83 4.25 11.32

IRL 12.35 5.59 5.09 23.42 7.18 2.49 11.56 3.45 10.09 1.89 6.02 10.88
ES 18.00 2.25 6.86 30.25 4.65 2.22 10.54 2.69 6.37 1.12 9.27 5.76
F 13.39 2.33 6.64 26.32 6.07 4.18 13.54 3.28 6.91 0.59 4.58 12.16

Table 2.2.: Different types of expenditures in Euros for five EU countries in percentages of
the sum of expenditures.

The first property is that they are always positive. The second property is that they always
sum to one. In the expenditures example this is enforced by dividing each expenditure
by the sum of expenditures. Such an operation is invariant under rescaling, that is, if we
multiply, for a fixed country, each expenditure by a strictly positive constant, 𝜆 > 0, then
the percentages would not change. We define the space of D-dimensional positive reals
as R𝐷+ := {(𝑥1, . . . , 𝑥𝐷) ′ ∈ R𝐷 | 𝑥 𝑗 > 0∀ 𝑗 = 1, . . . , 𝐷}. For two points 𝒙, 𝒚 ∈ R𝐷+ that fulfill
𝒚 = 𝜆𝒙 we get that their scaled versions, i.e. percentages, are equal, shown by the simple
calculation

1�𝐷
𝑖=1 𝑦𝑖

𝒚 =
1�𝐷

𝑖=1𝜆𝑥𝑖
𝜆𝒙 =

𝜆

𝜆
�𝐷

𝑖=1 𝑥𝑖
𝒙 =

1�𝐷
𝑖=1 𝑥𝑖

𝒙.

The second property can therefore be rephrased as regarding 𝒙 and 𝒚 as equivalent, written
as 𝒙 ∼ 𝒚, if and only if a 𝜆 > 0 exists such that 𝒚 = 𝜆𝒙 holds.

Figure 2.1 shows for different fixed 𝒙 the lines {𝜆𝒙 |𝜆 > 0} starting in zero and extending
to infinity for the case of 𝐷 = 2. Each line starting in zero and passing through 𝒙 can be
identified with the point (�𝐷

𝑖=1 𝑥𝑖)−1𝒙. The set of points {�𝐷
𝑖=1 𝑥𝑖)−1𝒙 |𝒙 ∈ R𝐷+ } is shown as

a line from (0,1) to (1,0). To be able to use most statistical tools a vector space structure,
a distance measure and sometimes an inner product is a prerequisite. Any such definitions
need to be invariant under a chosen point on a line as depicted in Figure 2.1. It is easy to
see that applying log entrywise to any element 𝒙 ∈ R𝐷+ gives the whole of R𝐷 . As R𝐷 is a
vector space with componentwise addition and scalar multiplication we could turn R𝐷+ into
a vector space by taking the inverse of the mapping log : R𝐷+ → R𝐷 . Defining a norm on
R𝐷+ in the same way does however not lead to an invariant norm and thus this approach can
not be used. An appropriate approach to such data was laid out in [3] and [2] leading to the
monograph [4]. This is discussed in the following sections.

2.2. A (very) quick introduction to finite dimensional real Hilbert
spaces

Before defining main principles of the Aitchison geometry we want look at the core concepts
of finite dimensional real Hilbert spaces.
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Fig. 2.1.: Different lines {𝜆𝒙 |𝜆 > 0} starting in zero and extending to infinity. Each line can
be identified with a point on the line from (0,1) to (1,0).

Definition 1. A finite dimensional real Hilbert space (H ,+, ·, ⟨·, ·⟩H) is a finite dimensional
real vector space H equipped with an addition + and scalar multiplication operation ·, see
[52], and a function ⟨·, ·⟩H : H ×H → R, also called an inner product, such that for any
𝒖, 𝒗,𝒘 ∈ H and 𝛼, 𝛽 ∈ R we have

• linearity in the second argument

⟨𝒖, 𝛼𝒗 + 𝛽𝒘⟩H = ⟨𝒖, 𝛼𝒗⟩H + ⟨𝒖, 𝛽𝒘⟩H ,

• symmetry, ⟨𝒖, 𝒗⟩H = ⟨𝒗,𝒖⟩H ,

• and positivity ⟨𝒖,𝒖⟩H ≥ 0, with equality only when 𝒖 = 0.

The definition of an inner product on a Hilbert space is motivated by the inner product
on the Euclidean space (R𝐷 ,+, ·, ⟨·, ·⟩𝐸), that is ⟨𝒗,𝒖⟩𝐸 :=

�𝐷
𝑖=1 𝑣𝑖𝑢𝑖 for any two elements

𝒖, 𝒗 ∈ R𝐷 , and is the core ingredient for abstracting and generalizing the concept of an angle
between any two vectors and the concept of length of a vector to more general spaces. For
real Hilbert spaces we can define a norm and a metric analogously, see [5]:

Definition 2. The induced norm ∥·∥H : H → [0,∞) is defined pointwise as

∥𝒖∥H :=
√︁⟨𝒖,𝒖⟩H

whereas the distance d : H ×H → [0,∞), also called metric, between two elements 𝒖 and
𝒗 is defined as

d(𝒖, 𝒗) := ∥𝒖− 𝒗∥H .
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For any two elements 𝒖, 𝒗 ∈ H and a scalar 𝛼 ∈ R the norm ∥·∥H has the properties

∥𝒖∥H ≥ 0 with equality if and only if 𝒖 = 0 (2.1)
∥𝛼𝒖∥H = |𝛼 | ∥𝒖∥H (2.2)
∥𝒖 + 𝒗∥H ≤ ∥𝒖∥H + ∥𝒗∥H . (2.3)

The metric d(·, ·) fulfills for any three elements 𝒖, 𝒗 and 𝒘 in H :

d(𝒖, 𝒗) = 0 ⇐⇒ 𝒖 = 𝒗 (2.4)
d(𝒖, 𝒗) = d(𝒗,𝒖) (2.5)
d(𝒖, 𝒗) ≤ d(𝒖,𝒘) +d(𝒘, 𝒗). (2.6)

An inner product leads to a very rich structure with several important consequences, see
[11], of which we list only the most important in the next proposition.

Proposition 1. For a finite dimensional real Hilbert space (H ,+, ·, ⟨·, ·⟩H) we have the
following properties:

• Let D be the dimension of H , then there exists a set of elements {𝒘𝑖 |𝑖 = 1, . . . , 𝐷}
with ⟨𝒘𝑖 ,𝒘 𝑗⟩H = 0 and ∥𝒘𝑖 ∥H = 1, for all 𝑖 ≠ 𝑗 - called an orthonormal basis (ONB)
- such that any 𝒖 ∈ H can be written as

𝒖 =
𝐷∑︁
𝑖=1

⟨𝒘𝑖 ,𝒖⟩H𝒘𝑖 . (2.7)

.

• For any ONB we can write 𝒖 as in (2.7).

• For any two elements 𝒖, 𝒗 ∈H the Cauchy-Schwarz inequality, |⟨𝒖, 𝒗⟩H | ≤ ∥𝒖∥H ∥𝒗∥H ,
holds.

• If two vectors 𝒖 and 𝒗 are orthogonal, ⟨𝒖, 𝒗⟩H = 0, then the Pythagorean theorem,
∥𝒖 + 𝒗∥2 = ∥𝒖∥2 + ∥𝒗∥2, holds.

• There exists a Parallelogram Law, i.e for any two elements 𝒖, 𝒗 ∈ H :

∥𝒖 + 𝒗∥2 + ∥𝒖− 𝒗∥2 = 2∥𝒖∥2 +2∥𝒗∥2

• The polarization identity holds for any 𝒖, 𝒗 ∈ H :

⟨𝒖, 𝒗⟩H =
1
4
(∥𝒖 + 𝒗∥2 − ∥𝒖− 𝒗∥2)

All of the definitions and results mentioned so far in this section, with exception of the
statement belonging to (2.7), which has to be replaced with an infinite analogue, remain the
same when allowing for H to become an infinite, but separable, vector space. For more on
Hilbert spaces we refer to [11].
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2.3. Aitchison geometry

In this section we introduce the Aitchison geometry which is of central importance in
CoDA. First, we define the set of reals we are interested in, as mentioned in Section 2.1.

Definition 3. The D-part simplex S𝐷 is defined as the set of strictly positive multivariate
reals summing up to one, i.e.:

S𝐷 :=
�
(𝑥1, . . . , 𝑥𝐷) ′ ∈ R𝐷+

���� 𝐷∑︁
𝑗=1

𝑥 𝑗 = 1


. (2.8)

An element 𝒙 in S𝐷 can be thought of as a vector of percentages, as described in Section
2.1, that must naturally sum up to one. Equivalently, we can also think of an 𝒙 describing a
discrete probability distribution with each entry being the probability of an event associated
with this entry. The condition in (2.8) that all entries must sum up to one is a simple
convention. Any other number than one could be taken, as will become clearer in the
following. To map any point in R𝐷+ to the D-part simplex we define the closure as in [4].

Definition 4. The closure is a function C : R𝐷+ →S𝐷 defined pointwise by

C(𝒙) :=
1�𝐷
𝑖=1 𝑥𝑖

𝒙

for any 𝒙 ∈ R𝐷+ .

The closure projects any multivariate point 𝒙 with strictly positive entries lying on a
line that starts from zero and goes through 𝒙 onto the D-part simplex; as mentioned in
Section 2.1 and depicted in Figure 2.1. To turn the D-part simplex into a vector space two
operations, similar to addition and a scalar multiplication in R𝐷 , are defined.

Definition 5. For two elements 𝒙 = (𝑥1, . . . , 𝑥𝐷) ′ and 𝒚 = (𝑦1, . . . , 𝑦𝐷) ′ in S𝐷 as well as a
scalar 𝛼 ∈ R, we define perturbation as well as powering by

Perturbation: 𝒙 ⊕ 𝒚 := C((𝑥1𝑦1, . . . , 𝑥𝐷𝑦𝐷) ′)
Powering: 𝛼 ⊙ 𝒙 := C((𝑥𝛼1 , . . . , 𝑥𝛼𝐷) ′).

The inverse of an element 𝒙 ∈ S𝐷 is defined as 𝒙−1 := (−1) ⊙ 𝒙 and subtraction, as the
inverse operation to perturbation, is defined as 𝒙 ⊖ 𝒚 := 𝒙 ⊕ 𝒚−1. The unique element
that fulfills for any 𝒙 ∈ S𝐷 , 𝒙 ⊕ 𝒏 = 𝒙, also called the neutral element 𝒏 with respect to
perturbation, is given by 𝒏 := 1

𝐷 (1, . . . ,1) ′.
It can be shown that with these operations (S𝐷 ,⊕,⊙) is a finite dimensional vector

space, see [47]. The vector space structure can be further extended to a Hilbert space. The
standard inner product on S𝐷 is the so called Aitchison inner product and, as mentioned in
the previous section, induces a norm as well as a metric on S𝐷 .

Definition 6. For any two points 𝒙 and 𝒚 in S𝐷 the Aitchison inner product is defined as

⟨𝒙, 𝒚⟩A : =
1

2𝐷

𝐷∑︁
𝑖, 𝑗=1

log
�
𝑥𝑖
𝑥 𝑗

�
log

�
𝑦𝑖
𝑦 𝑗

�
. (2.9)
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The induced Aitchison norm of a point 𝒙 is defined as

∥𝒙∥A :=
√︁⟨𝒙,𝒙⟩A . (2.10)

The induced distance between any two points 𝒙, 𝒚 ∈ S𝐷 is given as

d(𝒙, 𝒚) := ∥𝒙 ⊖ 𝒚∥A . (2.11)

The Aitchison inner product as defined in (2.9) satisfies two important properties:

• Scale invariance: One of the key properties of the Aitchison inner product (2.9) is
that it is scale invariant, that is for any pair 𝒙, 𝒚 ∈ S𝐷 and a positive scalar 𝜆 > 0
we have ⟨𝜆𝒙,𝜆𝒚⟩A = ⟨𝒙,𝜆𝒚⟩A = ⟨𝜆𝒙, 𝒚⟩A = ⟨𝒙, 𝒚⟩A . As discussed in Section 2.1,
for percentages, a point 𝒙 ∈ R𝐷+ and its multiple 𝜆𝒙 are considered to be the same
point. Under the Aitchison geometry such two points are indistinguishable. In fact,
the closure operation C could also be defined such that the entries of C(𝒙) sum up to
a different constant without effecting (2.9).

• Subcompositional coherence: Subcompositional coherence can be summed up by
two subpoints:

– Any arbitrary subscomposition, that is a subvector, denoted 𝒙sub ∈ S𝐷̃ with
𝐷̃ < 𝐷, of 𝒙 ∈ S𝐷 , has smaller norm than the full vector, i.e ∥𝒙sub∥A ≤ ∥𝒙∥A .

– Any subcomposition is also scale invariant.

The Aitchison inner product satisfies the usual conditions, see Section 2.2, which we
give here again in the corresponding operations for a better overview.

Proposition 2. For any three points 𝒙, 𝒚, 𝒛 in S𝐷 and 𝛼, 𝛽 ∈ R we have with perturbation
and powering as addition and scalar multiplication that the Aitchison inner product fulfills:

⟨𝒙, 𝛼 ⊙ 𝒚 ⊕ 𝛽⊙ 𝒛⟩A = 𝛼⟨𝒙, 𝒚⟩A + 𝛽⟨𝒙, 𝒛⟩A (2.12)
⟨𝒙, 𝒚⟩A = ⟨𝒚,𝒙⟩A (2.13)

⟨𝒙,𝒙⟩A ≥ 0 and equality if and only if 𝒙 =
1
𝐷
(1, . . . ,1) ′. (2.14)

All properties as mentioned in Section 2.2 hold as the Aitchison space is a finite dimen-
sional Hilbert space.

2.4. The quotient space view

As mentioned in the previous section, the sum condition in the definition of the D-part
simplex S𝐷 is somewhat arbitrary and will not affect the geometry as the Aitchison inner
product (2.9) is invariant under rescaling. More precisely, a relation, see Section 2.1, can
be defined on R𝐷+ by

𝒙 ∼ 𝒚 ⇐⇒ ∃𝜆 > 0 such that 𝒚 = 𝜆𝒙,

which is equivalent to the relation of the log-transformed quantities

log(𝒙) ∼ log(𝒚) ⇐⇒ ∃𝜆 > 0 such that log(𝒚) = log(𝜆)1+ log(𝒙), (2.15)
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where 1 is a vector of ones. We continue to use log-transformed quantities as the notation is
easier. Both is equivalent however as the coordinate-wise applied logarithm is a one-to-one
map from R𝐷+ to R𝐷 . The relation (2.15) has the following properties:

• For any 𝒙 ∈ R𝐷+ we have log(𝒙) ∼ log(𝒙).
• If for two vectors 𝒙, 𝒚 ∈ R𝐷+ the relation log(𝒙) ∼ log(𝒚) holds, it follows that also

log(𝒚) ∼ log(𝒙) holds.

• If 𝒙, 𝒚, 𝒛 ∈ R𝐷+ are such that log(𝒙) ∼ log(𝒚) and log(𝒚) ∼ log(𝒛) holds then this
implies log(𝒙) ∼ log(𝒛).

A relation that fulfills the prior three points is called an equivalence relation. An
equivalence relation leads to a natural decomposition of the space it is defined on. In
our case log

�
R𝐷+

�
can be decomposed into a union of non-overlapping subsets defined by

[log(𝒙)] := {log(𝒚) | log(𝒚) = log(𝜆)1+ log(𝒙), 𝜆 > 0} for any 𝒙 ∈ R𝐷+ . The sets [log(𝒙)]
are the log-transformed rays as mentioned in Section 2.1. We can fix for each such ray an
arbitrary representative without losing any information as for two elements log(𝒙), log(𝒚)
from the same equivalence class we get [log(𝒙)] = [log(𝒚)]. The whole set of equivalence
classes {[log(𝒙)] |𝒙 ∈ R𝐷+ } can then be described by these representatives. To make the
connections to S𝐷 we could pick for each class a representative 𝒙 ∈ R𝐷+ with

�𝐷
𝑖=1 𝑥𝑖 = 1,

such that {[log(𝒙)] |𝒙 ∈ R𝐷+ } = {[log(𝒙)] |�𝐷
𝑖=1 𝑥𝑖 = 1}. This is possible as for any 𝒙 ∈ R𝐷+

we have log(𝒙) = log

�𝐷

𝑖=1 𝑥𝑖

�
1+ log



1�𝐷

𝑖=1 𝑥𝑖
𝒙
�

and therefore log(𝒙) and log(C(𝒙)) belong
to the same equivalence class. Therefore, after taking the exponential, we can see S𝐷 as the
space of {[log(𝒙)] |𝑥 ∈ R𝐷+ } restricted to special representatives. In the theory of quotient
spaces, see [52], one can define scalar multiplication and addition on the equivalence
classes, such that these operations are invariant to the chosen representatives. For any
𝒙, 𝒚 ∈ R𝐷+ and 𝛼 ∈ R, one defines

[log(𝒙)] + [log(𝒚)] := [log(𝒙) + log(𝒚)] and 𝛼[log(𝒙)] := [𝛼 log(𝒙)] . (2.16)

As mentioned before the elements log(𝒙) and log(C(𝒙)) are in the same equivalence
class and so we can write [log(𝒙)] equivalently as [log(C(𝒙))]. The right-hand side
of (2.16) respectively reads thus as [log(𝒙) + log(𝒚)] = [log(𝒙𝒚)] = [log(C(𝒙𝒚))] and
[𝛼 log(𝒙)] = [log(𝒙𝛼)] = [log(C(𝒙𝛼))]. Taking the exponential we can see that this is
precisely the definition of perturbation and powering with a specific representative. Such a
quotient space approach was considered in [7]. Further constructions, such as the Aitchison
inner product and the Aitchison norm can also be recovered in this setting. For example,
to motivate the norm one can look at the fact that the log-differences log(𝒙) − log(𝒚) of
any two elements, 𝒙 and 𝒚, which are in the same equivalence class, are an element of the
space spanned by 1. As on this space any two elements are regarded as being equal it seems
natural to measure angle, distance and length of an element in the direction orthogonal to
this vector. Projecting any element log(𝒙) onto the orthogonal of this space leads to taking
the (Euclidean) length of log(𝒙) − 1

𝐷

�𝐷
𝑖=1 log(𝑥𝑖)1; this is precisely the Aitchision norm of

𝒙.
In light of this quotient approach we can see that the condition in S𝐷 is arbitrary and can

be discarded in principle, i.e. any 𝒙 ∈ R𝐷+ that is rescaled by a constant is considered to be
the same element when using the Aitchison norm respectively inner product.
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2.5. Important mappings

A number of interpretable linear transformations from S𝐷 to the multivariate reals exist.
The main ingredient of the Aitchison inner product (2.9) are the 𝐷 (𝐷 − 1) pairwise log-
ratios. Therefore, maps which are scale invariant and linear and whose coordinates can
recover all log-ratios, when linearly combined, carry all the information necessary. Histor-
ically, one of the oldest such transformations is the additive log-ratio map (alr𝑘) indexed by
𝑘 ∈ {1, . . . , 𝐷}.
Definition 7. For a fixed index 𝑘 ∈ {1, . . . , 𝐷}, the alr𝑘 map is defined from S𝐷 to R𝐷−1

coordinate-wise by

alr𝑘 (𝒙) :=
�
log

�
𝑥1
𝑥𝑘

�
, . . . , log

�
𝑥𝑘−1
𝑥𝑘

�
, . . . , log

�
𝑥𝑘+1
𝑥𝑘

�
, . . . , log

�
𝑥𝐷
𝑥𝑘

�� ′
∈ R𝐷−1. (2.17)

It is easy to see that any log-ratio log


𝑥𝑖
𝑥 𝑗

�
can be written as a combination of the

coordinates of alr𝑘 (𝒙), log


𝑥𝑖
𝑥 𝑗

�
= log



𝑥𝑖
𝑥𝑘

�
− log



𝑥 𝑗

𝑥𝑘

�
, and contains therefore all important

information. One might be thus lead to think that usual statistical methods inR𝐷−1 could be
applied. However, one can show that alr𝑘 is, for general 𝒙, 𝒚 ∈ S𝐷 , not distance nor angle
preserving, i.e. ⟨𝒙, 𝒚⟩A ≠ ⟨alr𝑘 (𝒙),alr𝑘 (𝒚)⟩𝐸 , and should therefore, in cases that a method
is based on the Euclidean geometry, not be used. Due to this weakness and the additional
disadvantage of having to choose a fixed index 𝑘 the alr𝑘 map is not often utilized. Instead
far more appropriate maps have been investigated. An example is the centered log-ratio map
(clr) which does preserve distances and angles of 𝒙, 𝒚 ∈ S𝐷 with respect to the Euclidean
geometry.

Definition 8. The clr map is defined from S𝐷 to R𝐷 coordinate-wise by

clr(𝒙) :=

�
log

�
𝑥1

𝐷

√︃�𝐷
𝑗=1 𝑥 𝑗

�
, . . . , log

�
𝑥𝐷

𝐷

√︃�𝐷
𝑗=1 𝑥 𝑗

�� ′
. (2.18)

Again, any log-ratio can be written in terms of coordinates of the clr map, log


𝑥𝑖
𝑥 𝑗

�
=

clr(𝒙)𝑖 − clr(𝒙) 𝑗 , which means that the clr map carries all the relevant information. Each
coordinate of the latter can be written as a sum of log-ratios,

clr(𝒙)𝑖 = log

�
𝑥𝑖

𝐷

√︃�𝐷
𝑗=1 𝑥 𝑗

�
=

1
𝐷

�
log

𝑥𝑖
𝑥1

+ . . .+ log
𝑥𝑖
𝑥𝑖−1

+ log
𝑥𝑖
𝑥𝑖+1

+ . . .+ log
𝑥𝑖
𝑥𝐷

�
,

and so the i-th coordinate can be interpreted as an average of all parts involved with said
coordinate. More compactly, we can write (2.18) also as

clr(𝒙) = L log(𝒙), (2.19)

with the centering matrix L := I− 1
𝐷11′, see [52], having the property L2 = L. It can be

shown that the clr map respects the perturbation and powering operation

clr(𝒙 ⊕ 𝒚) = clr(𝒙) + clr(𝒚), clr(𝛼 ⊙ 𝒙) = 𝛼 clr(𝒙), (2.20)
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for any 𝒙, 𝒚 ∈ S𝐷 and 𝛼 ∈ R, and is angle and length preserving with respect to the Euclidean
inner product

⟨𝒙, 𝒚⟩A = ⟨clr(𝒙),clr(𝒚)⟩𝐸 . (2.21)

As the D-part simplex S𝐷 is a subset of a D-dimensional space, exp
�
R𝐷

�
=R𝐷+ , with a sum

constraint, it can be shown that this reduces the dimension to 𝐷 −1. The clr map however
maps S𝐷 into R𝐷 and not R𝐷−1 and can therefore not be bijective. To construct a bijective
map it helps to notice that the sum of all clr(𝒙) coordinates is zero, ⟨clr(𝒙),1⟩𝐸 = 0, for
any 𝒙 ∈ S𝐷 . As the clr map contains all the information about all the log-ratios it spans
an at least 𝐷 − 1 dimensional space and so it can be deduced that the image of the clr
map spans the whole of {𝒛 ∈ R𝐷−1 |⟨𝒛,1⟩𝐸 = 0}. To construct a bijective map the idea is
therefore to take an orthogonal basis of {𝒛 ∈ R𝐷−1 |⟨𝒛,1⟩𝐸 = 0}, typically denoted by vectors
𝒗1, . . . , 𝒗𝐷−1 and collected column-wise into the matrix V ∈ R𝐷×(𝐷−1) , and express for any
𝒙 ∈ S𝐷 the vector clr(𝒙) as a linear combination of the columns of V. This construction
leads to the isometric log-ratio map (ilrV) which can be defined as the unique vector solving
clr (𝒙) = V ilrV(𝒙) for any 𝒙 ∈ S𝐷:

Definition 9. For a given matrix V ∈ R𝐷×(𝐷−1) with columns being an orthogonal basis of
{𝒛 ∈ R𝐷−1 |⟨𝒛,1⟩𝐸 = 0}, we define the ilrV map from S𝐷 to R𝐷−1 pointwise as the unique
solution to

clr (𝒙) = V ilrV(𝒙). (2.22)

From the definition of the ilrV map and the fact that V is an orthogonal matrix, V′V = I,
where I is the identity matrix, we can deduce that ilrV(𝒙) = V′ clr (𝒙) holds for any 𝒙 ∈ S𝐷 .
Furthermore, we can also directly conclude

⟨𝒙, 𝒚⟩A = ⟨clr(𝒙),clr(𝒚)⟩𝐸 = ⟨V ilrV(𝒙),V ilrV(𝒚)⟩𝐸 = ⟨ilrV(𝒙), ilrV(𝒚)⟩𝐸 , (2.23)

and so the ilrV map is also distance and angle preserving. By definition properties (2.20)
will still hold. All in all, we have the following proposition.

Proposition 3. For any 𝒙, 𝒚 ∈ S𝐷 and 𝛼 ∈ R and fixed matrices V and Ṽ with orthogonal
columns spanning {𝒛 ∈ R𝐷−1 |⟨𝒛,1⟩𝐸 = 0} we have:

• ilrV(𝒙) = V′ clr (𝒙) and clr (𝒙) = V ilrV(𝒙).
• A basis change in {𝒛 ∈ R𝐷−1 |⟨𝒛,1⟩𝐸 = 0} changes the ilr map correspondingly

ilrṼ(𝒙) = Ṽ′V ilrV(𝒙). (2.24)

• Perturbation and powering are mapped accordingly

ilrV(𝒙 ⊕ 𝒚) = ilrV(𝒙) + ilrV(𝒚) and ilrV(𝛼 ⊙ 𝒙) = 𝛼 ilrV(𝒙). (2.25)

• Angles and distances are preserved

⟨𝒙, 𝒚⟩A = ⟨ilrV(𝒙), ilrV(𝒚)⟩𝐸 . (2.26)
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• The inverse of ilrV maps from R𝐷−1 to S𝐷 and is defined pointwise for any fixed
𝒛 ∈ R𝐷−1 by

ilr−1
V (𝒛) = C(exp(V𝒛)).

Many choices of orthogonal basis vectors collected in V exist. If the emphasis is on
interpretability, special bases are sought after. The most important and commonly used
ones are known as pivot coordinates, symmetric pivot coordinates and balances, see [19].

2.6. Compositional regression

In the following we will write
�𝐾

𝑘=1 𝒙𝑘 for the perturbation over 𝐾 compositional vectors
𝒙𝑘 ∈ S𝐷 , 𝑘 = 1, . . . , 𝐾 . Many statistical concepts can be phrased in the Hilbert space
framework. As the Aitchison space is a Hilbert space, many concepts can directly be
transferred as such. In this section we give a quick review of compositional regression
models. Three different types of commonly used models come to mind, although more
settings exist:

• Regressing a real variable 𝑦 ∈ R onto a compositional vector 𝒙 ∈ S𝐷 .

• Regressing a compositional variable 𝒚 ∈ S𝐷̃ onto a real vector 𝒙 ∈ R𝐷 .

• Regressing a compositional variable 𝒚 ∈ S𝑫̃ onto a compositional vector 𝒙 ∈ S𝐷 .

Before looking at each case separately it is informative to look at linear models in Hilbert
spaces. Any linear function F from one Hilbert space H1, with dimension 𝐷, to another
Hilbert space H2, with dimension 𝐷̃, can be written in different forms as

F(𝒙) =
𝐷∑︁
𝑙=1

F(𝒖𝑙)⟨𝒖𝑙,𝒙⟩H1 =
𝐷∑︁
𝑙=1

𝐷̃∑︁
𝑚=1

⟨𝒖̃𝑚,F(𝒖𝑙)⟩H2 ⟨𝒖𝑙,𝒙⟩H1 𝒖̃𝑚 (2.27)

=
𝐷∑︁
𝑙=1

𝐷̃∑︁
𝑚=1

𝐹𝑚𝑙 ⟨𝒖𝑙,𝒙⟩H1 𝒖̃𝑚 (2.28)

=
𝐷∑︁
𝑙=1

⟨𝒖𝑙,𝒙⟩H1 𝒃̂𝑙 (2.29)

=
𝐷̃∑︁

𝑚=1
⟨𝒃𝑚,𝒙⟩H1 𝒖̃𝑚, (2.30)

where the sums are understood in the respective Hilbert spaces, the vectors 𝒖𝑙 are an
orthogonal basis in H1, the vectors 𝒖̃𝑚 are an orthogonal basis in H2, 𝐹𝑚𝑙 := ⟨𝒖̃𝑚,F(𝒖𝑙)⟩H2

and 𝒃𝑚 :=
�𝐷

𝑙=1 𝐹𝑚𝑙𝒖𝑙 as well as 𝒃̂𝑙 :=
�𝐷̃

𝑚=1 𝐹𝑚𝑙 𝒖̃𝑚 are coefficient vectors. This chain of
equality is useful as any linear function can be written in the forms of (2.27) - (2.30) where,
in a regression context, we need to find the coefficient vectors 𝒃𝑚 or 𝒃̂𝑙 after having fixed
a basis. From this we can directly deduce the three compositional regression cases as
mentioned above:
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• Using (2.30) and the fact that the basis of H2 = R is the scalar one, we can see
that any linear function from S𝐷 to R is given by ⟨𝒂,𝒙⟩A . For observed samples
(𝑦𝑛,𝒙𝑛) ∈ R×S𝐷 , 𝑛 = 1, . . . , 𝑁 , and errors 𝜖𝑛, the linear regression model takes the
form

𝑦𝑛 = 𝜇+ ⟨𝒂,𝒙𝑛⟩A + 𝜖𝑛, (2.31)

where 𝜇 ∈ R and 𝒂 ∈ S𝐷 are the coefficients to be estimated. To solve (2.31) one uses
property (2.26) to reformulate the model equation as 𝑦𝑛 = 𝜇+⟨ilrV(𝒂), ilrV(𝒙𝑛)⟩𝐸 +𝜖𝑛
which can then be solved by standard methods.

• Using (2.29) and as orthonormal basis in H1 = R𝐷 the standard canonical basis 𝒆𝑙,
which are vectors of zeros with one in the l-th entry - so that ⟨𝒆𝑙,𝒙⟩𝐸 = 𝑥𝑙 - we can
see that any linear function F from R𝐷 to S𝐷̃ can be written as

F(𝒙) =
𝐷�
𝑙=1

𝑥𝑙 ⊙ 𝒃̂𝑙 .

For observed samples (𝒚𝑛,𝒙𝑛) ∈ S𝐷̃ ×R𝐷 , 𝑛 = 1, . . . , 𝑁 , and errors 𝝐𝑛, the linear
regression model takes the form

𝒚𝑛 = 𝝁 ⊕
𝐷�
𝑙=1

𝑥𝑛𝑙 ⊙ 𝒃̂𝑙 ⊕ 𝝐𝑛 (2.32)

where 𝝁 ∈ S𝐷̃ and 𝒃̂𝑙 ∈ S𝐷̃ are coefficient vectors to be estimated. To solve (2.32)
we can use (2.25) reformulating the former as

ilrV(𝒚𝑛) = ilrV(𝝁) +
𝐷∑︁
𝑙=1

ilrV( 𝒃̂𝑙)𝑥𝑛𝑙 + ilrV(𝝐𝑛),

which is a standard multivariate D dimensional regression model with multivariate
𝐷̃ −1 dimensional real response that can easily be solved by standard methods.

• The representation in (2.30) can be used again to deduce that any linear function F
from S𝐷 to S𝐷̃ can be written as

F(𝒙) = C(exp(A log(𝒙))) (2.33)

with a matrix A ∈ R𝐷̃×𝐷 such that A1 = 0 and 1′A = 0′ holds; to show this is however
more cumbersome and will not be done here, instead we refer to [18]. For observed
samples (𝒚𝑛,𝒙𝑛) ∈ S𝐷̃ ×S𝐷 , 𝑛 = 1, . . . , 𝑁 , and errors 𝝐𝑛, the linear regression model
takes the form

𝒚𝑛 = 𝝁 ⊕ exp(A log(𝒙𝑛)) ⊕ 𝝐𝑛,

where 𝝁 ∈ S𝐷̃ and A ∈ R𝐷̃×𝐷 , with A1 = 0 and 1′A = 0, are the coefficients to be
estimated. The latter can be phrased again in ilr coordinates and leads to ilrV2 (𝒚𝑛) =
ilrV2 (𝝁) +V′

2AV1 log(𝒙𝑛) + ilrV2 (𝝐𝑛) where V1 corresponds to the ilr taken in S𝐷

and V2 respectively to the ilr in S𝐷̃ , see [8]. This can be solved by standard methods
after setting B := V′

2AV1, where B can vary without constraints. For a more thorough
introduction to such models and extensions we refer to [8].
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Any of the models mentioned above display difficulties when it comes to interpreting
the estimated coefficients. However, as the linear models for all three cases above do not
depend on which ilr transform is used - they can be phrased solely in a Hilbert space setting
- we can directly switch from one coordinate map, e.g. pivot coordinates, to another, for
example balances. Inference on the estimated coefficient can also be done. One needs
however to pay attention to which coordinate map is used to get meaningful results.
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3. Geographically dependent log-ratios

In this chapter we sum up the main ideas and concepts of Publication I and II. In both papers
we developed a new method for the detection of mineralization given the concentration of
various chemical elements sampled on a linear transect (Publication I) or a whole grid
(Publication II). The method is based on Generalized Additive Models (GAMs) and their
corresponding curvature.

3.1. Modeling scale invariance in a geographical setting

Assume that we are in a geographical setting in which we are interested to model the
dependence of a multivariate quantity 𝒒 on its location 𝒔 ∈ Ω, where Ω is either an interval
in R or a whole area in R2. For each entry 𝑞𝑙 of 𝒒 we are given erroneous samples 𝑞𝑛𝑙,
𝑛 = 1, . . . , 𝑁 , at some location 𝒔𝑛𝑙 ∈ Ω. To construct a global estimator of 𝒒, we regress
for each entry separately, the measurements 𝑞𝑛𝑙 onto the locations 𝒔𝑛𝑙, 𝑛 = 1, . . . , 𝑁 , using
GAMs. One core assumption to be able to use GAMs is that 𝑞𝑙 (𝒔) follows, for fixed 𝒔 ∈ Ω,
a distribution with density belonging to the exponential family

𝑓 (𝑞𝑙 (𝒔) |𝜃) := exp

�
𝜃𝑞𝑙 (𝒔) − 𝑏(𝜃)

𝑎(𝜓) + 𝑐(𝑞𝑙 (𝒔),𝜓)
�
,

where 𝜃 is an unknown parameter, 𝑎, 𝑏, 𝑐 are fixed functions and 𝜓 is a dispersion parameter,
all depending on the chosen distribution, see [45] or [13]. Under appropriate assumptions
it can be shown that

E(𝑞𝑙 (𝒔)) = 𝑏′(𝜃) (3.1)
V(𝑞𝑙 (𝒔)) = 𝑏′′(𝜃)𝑎(𝜓), (3.2)

where E denotes the expectation, V the variance, the ′ superscript the derivative, and
𝑎(𝜓) = 𝜓

𝜔 (𝒔) is taken, hold. The importance of Equation (3.1) is that if we model 𝜃 as some
function dependent on 𝒔 the range of the mean of 𝑞𝑙 (𝒔) will always match the range of our
model 𝑏′(𝜃 (𝒔)). Usually a slightly more general version is preferred, modeling

ℎ(E(𝑞(𝒔))) = 𝜂(𝒔) (3.3)

for a fixed smooth monotonic function ℎ with appropriate domain and a smooth 𝜂, instead;
see [64] for a more thorough explanation. Under this model one can write the log-likelihood
function of 𝑞𝑙 (𝒔) in dependence of 𝜂(𝒔), i.e 𝑙 (𝑞𝑙 (𝒔) |𝜂(𝒔)), instead of 𝜃 (𝒔). To get a smooth
estimate 𝜂 of 𝜂, which is parameterized as

𝜂(𝒔) =
𝐾∑︁
𝑘=1

𝛽𝑘𝑚𝑘 (𝒔) = 𝜷′𝒎(𝒔)
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where 𝜷 := (𝛽𝑘)𝑘=1,...,𝐾 is a coefficient vector that is to be estimated and where 𝑚𝑘 are basis
functions, collected in 𝒎 := (𝑚𝑘)𝑘=1,...,𝐾 , commonly corresponding to the cubic B-spline
basis, see [28], Duchon splines, see [15], tensor product splines, see [65] or soap film
smoothers, see [66], a penalized log-likelihood problem is solved:

𝜷̂
′ := argmax

𝜷∈R𝐾

𝑁∑︁
𝑛=1

𝑤𝑙
𝑛𝑙 (𝑞𝑛𝑙 |𝜷′𝒎(𝒔𝑛)) −𝜆P(𝜷). (3.4)

In (3.4), 𝜆 > 0 is a smoothing parameter, 𝑤𝑙
𝑛 are weights to down or up-weigh certain

samples, and P(𝜷) = 𝜷′S𝜷 is a quadratic penalty, with matrix S ∈ R𝐾×𝐾 that controls
the smoothness of 𝜂. In Publication I we considered the penalty P with corresponding
matrix-entries

S𝑖 𝑗 :=
∫
Ω
𝑚′′

𝑖 (𝑠)𝑚′′
𝑗 (𝑠)𝑑𝑠,

over an interval Ω ∈ R and in Publication II respectively the corresponding matrix-entries

S𝑖 𝑗 :=
∫
Ω


 𝜕2

𝜕𝑠1
𝑚𝑖 (𝒔) + 𝜕2

𝜕𝑠2
𝑚𝑖 (𝒔)

� 
 𝜕2

𝜕𝑠1
𝑚 𝑗 (𝒔) + 𝜕2

𝜕𝑠2
𝑚 𝑗 (𝒔)

�
𝑑𝑠1𝑑𝑠2

over an area Ω ∈ R2, for 𝑖, 𝑗 ∈ {1, . . . , 𝐾}. We refer to [64] for more details on different
smoothing penalties and models. In both publications we assume 𝑞𝑙 (𝒔) to follow a Tweedie
distribution, see [36]. The latter is very flexible and its variance takes the form

V(𝑞𝑙 (𝒔)) = E(𝑞𝑙 (𝒔)) 𝑝 𝜓

𝑤(𝒔)
for a fixed 𝑝 ∈ (1,2). Together with the log-link function, ℎ ≡ log, we obtain a scale
equivariant predictor for the mean, i.e rescaling of 𝑞𝑙 (𝒔) by a constant rescales ℎ−1(𝜂(𝒔))
accordingly; this can be deduced directly from (3.3) and the fact that the Tweedie distribution
is closed under rescaling for any such fixed 𝑝, see [36]. Modeling each 𝑞𝑙 (𝒔) of a strictly
positive multivariate quantity 𝒒(𝒔) ∈ R𝐷+ in the above way leads to pairwise log-ratio
functions, log



𝑞𝑙 (𝒔)
𝑞𝑡 (𝒔)

�
for 𝑙, 𝑡 = 1, . . . , 𝐷 , which are invariant under rescaling.

3.2. An application to geochemical exploration

In Publication I and II we looked at chemical concentrations that belonged to geomchemical
measurements sampled over a linear transect (Publication I) and over a grid (Publication
II). The overall goal was to construct a measure which indicates possible mineralization that
typically occurs in situations where some particular chemical elements display compara-
tively high concentrations. As a preprocessing step the methodology of the previous section
is applied to each of the D-many chemical elements separately, resulting in an estimated
multivariate function 𝒒̂ over Ω, each coordinate 𝑞𝑙, with 𝑙 = 1, . . . , 𝐷, describing a smooth
predictor of the mean of the l-th element. The main idea in both publications is to construct
a measure based on the curvature of the pairwise log-ratio functions

𝒔 ↦→ log

�
𝑞𝑙 (𝒔)
𝑞𝑡 (𝒔)

�
for 𝒔 ∈ Ω, (3.5)
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for any 𝑙, 𝑡 = 1, . . . , 𝐷. The curvature, where in Publication I we used the standard one-
dimensional curvature, see [38], and in Publication II the mean curvature, see [12], can be
thought of as a measure of how quickly a signal changes in 𝒔. Fast spatial changes of (3.5)
in 𝒔 could be an indication of interesting mineralizations and might reveal interesting pairs
of elements in relation to such; this is also the reason for using GAMs in the preprocessing
step to estimate 𝒒 instead of Kriging, see [46], as the penalty, P in (3.4), leads to estimators
that display, loosely speaking, large curvature where necessary. Based on the curvature we
constructed a measure that gives a score in [0,1] for each log-ratio function (3.5), whereas
the closer it is to one the comparatively more spatial variation a log-ratio function displays.
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Publication I: Identification of mineralization
in geochemistry along a transect based on
the spatial curvature of log-ratios

Summary

In Publication I a new method to discover interesting chemical elements that indicate
possible mineralizations, as well as their position along a transect, is developed. The
method is based, in a first step, on smoothing the chemical concentrations over the transect
with Generalized Additive models. The smoothed concentrations are then used to construct
a measure based on the curvature of all possible log-ratio functions.

Bibliographic information

D. Mikšová, C. Rieser, and P. Filzmoser. Identification of mineralization in geochemistry
along a transect based on the spatial curvature of log-ratios. Mathematical Geosciences 53,
1513-1533, 2021. https://doi.org/10.1007/s11004-021-09930-4.

Author’s contribution

C. Rieser contributed to the development of the methodology, implemented most of the
methods in R and wrote Chapter 2 and 3 of the corresponding paper.

19

https://doi.org/10.1007/s11004-021-09930-4


Publication II: Identification of
mineralization in geochemistry for grid
sampling using Generalized Additive Models

Summary

Publication II is an extension of Publication I in regard to the measurements, i.e. the
concentrations of chemical elements, being sampled on a whole two dimensional grid
opposed to a linear transect. As in Publication I, a measure to detect interesting chemical
elements related to possible mineralizations and their position is developed. This measure
is based on a generalized notion of curvature appropriate for functions describing a surface.
Similar to Publication I, surface functions for all possible log-ratios are constructed from a
smoothed version of the individual elements.

Bibliographic information

D. Mikšová, C. Rieser, P. Filzmoser, M. Middleton, and R. Sutinen. Identification
of mineralization in geochemistry for grid sampling using Generalized Additive Mod-
els. Mathematical Geosciences 53, 1861–1880, 2021. https://doi.org/10.1007/
s11004-021-09929-x.

Author’s contribution

C. Rieser developed the methodology of the extension in relation to Generalized Additive
Models and the curvature measure based on differential geometry. Additionally, C. Rieser
implemented much of the R Code and wrote the Methodology as well as the Algorithm
section of the corresponding paper.
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4. Detecting trends in data

In this chapter we recapture the main ideas of Publication III. In the latter we looked
at compositional time series and the fitting of piecewise (compositional) linear trends to
multivariate time series in S𝐷 . The method extends univariate 𝑙1 trend filtering , see [37],
to a compositional setting.

4.1. Univariate trend filtering

Given a univariate time series 𝑥𝑡 ∈ R dependent on a time stamp 𝑡 = 1, . . . ,𝑇 , univariate
trend filtering is a technique to fit piecewise linear trends to 𝑥𝑡 . It is very similar to the
widely used Hodrick–Prescott filter, see [29], which reads as the solution to

𝑎̂𝑡 := argmin
𝑎𝑡 ∈R

𝑇∑︁
𝑡=1

(𝑥𝑡 − 𝑎𝑡 )2 +𝜆
𝑇∑︁
𝑡=3

(𝑎𝑡 −2𝑎𝑡−1 + 𝑎𝑡−2)2 (4.1)

for a 𝜆 > 0 that controls the variation of the estimate 𝑎𝑡 . In [37] the authors consider
replacing the quadratic penalty in the second sum of (4.1) by an 𝑙1 penalty leading to the
reformulated problem

𝑎̂𝑡 := argmin
𝑎𝑡 ∈R

𝑇∑︁
𝑡=1

(𝑥𝑡 − 𝑎𝑡 )2 +𝜆
𝑇∑︁
𝑡=3

|𝑎𝑡 −2𝑎𝑡−1 + 𝑎𝑡−2 |. (4.2)

This change leads to a shrinkage of 𝑎𝑡 −2𝑎𝑡−1 +𝑎𝑡−2, similar as for the Lasso estimator, see
[59], shrinking many of the latter to zero with growing 𝜆. It is easy to see that when for
consecutive times, 𝑡 = 𝑡0, 𝑡1, . . . , 𝑡𝑙, with 𝑙 > 1, 𝑎𝑡 − 2𝑎𝑡−1 + 𝑎𝑡−2 = 0 holds, we have that 𝑎𝑡
is a linear function in 𝑡 for these times, 𝑎𝑡 = 𝑎𝑡 + 𝑏, for some 𝑎, 𝑏 ∈ R. Figure 4.1 shows
an artificial example, with simulated points 𝑥𝑡 , for 𝑡 = 1, . . . ,101, in black, and the trend
filtering fit, 𝑎̂𝑡 in red, with automatic estimate of 𝜆 as implemented in the R package [6].

4.2. Compositional trend filtering

Since its publication, a multitude of extensions to 𝑙1 trend filtering have appeared [63],
[61] or [55]. In Publication III we consider reformulating (4.2) in a compositional context.
The goal is to extract piecewise linear trends of a compositional time series 𝒙𝑡 ∈ S𝐷 , i.e
𝒂𝑡 = 𝒂⊙ 𝑡⊕ 𝒃, for some 𝒂, 𝒃 ∈ S𝐷 , and consecutive 𝑡 = 𝑡0, 𝑡1, . . . , 𝑡𝑙, compare with Section 2.6.
As the 𝑙1 penalty in (4.2) has a shrinkage effect, we replaced it with ∥𝒂𝑡 ⊖ 2⊙ 𝒂𝑡−1 ⊕ 𝒂𝑡−2∥A
to get the compositional multivariate pendant. All in all the problem then reads as

𝑎̂𝑡 := argmin
𝒂𝑡 ∈S𝐷

𝑇∑︁
𝑡=1

∥𝒙𝑡 ⊖ 𝒂𝑡 ∥2
A +𝜆

𝑇∑︁
𝑡=3

∥𝒂𝑡 ⊖ 2⊙ 𝒂𝑡−1 ⊕ 𝒂𝑡−2∥A . (4.3)
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Fig. 4.1.: Simulated data points in black and the corresponding trend filtering fit 𝑎̂𝑡 in red.

Taking the ilr transform leads to the transformed problem

min
ilrV (𝒂𝑡 ) ∈R𝐷−1

𝑇∑︁
𝑡=1

∥ilrV(𝒙𝑡 ) − ilrV(𝒂𝑡 )∥2
𝐸 +𝜆

𝑇∑︁
𝑡=3

∥ilrV(𝒂𝑡 ) −2ilrV(𝒂𝑡−1) − ilrV(𝒂𝑡−2)∥𝐸 .

(4.4)

In the latter a Euclidean penalty is put on the second differences of the ilr transformed
quantities. This corresponds to a group lasso penalty and is known to have the same
shrinkage properties on the second difference of ilrV(𝒂𝑡 ) than the 𝑙1 penalty in the Lasso
case, see [68]. Therefore, with growing 𝜆, more 𝒂𝑡 ⊖2⊙ 𝒂𝑡−1 ⊕ 𝒂𝑡−2 are exactly zero and so,
as in the univariate case, if this holds for consecutive 𝑡 = 𝑡0, . . . , 𝑡𝑙, then compositional linear
trends are extracted. To solve problem (4.3) we developed a fast ADMM based algorithm,
see [62]. Furthermore, we tested the utility of the method on data of COVID-19 infections
in 9 different countries.
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Publication III: Compositional trend filtering

Summary

Publication III considers an extension of univariate trend filtering of real valued time
series to the compositional time series case. The trend filtering optimization problem is
formulated in a compositional context and an efficient ADMM based algorithm for its
solution is developed. The utility of the method is shown in an application to COVID-19
data.

Bibliographic information

C. Rieser, P. Filzmoser. Compositional trend filtering. Annales Mathematicae et Informat-
icae, 53, 257-270, 2021. https://doi.org/10.33039/ami.2021.02.004.

Author’s contribution

C. Rieser developed the methodological part, including the optimization algorithm, imple-
mented the method in R, wrote the first draft of the paper and its revision upon discussion
with the co-author.
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5. Functional outliers

In this chapter we recapture the main ideas for the detection of compositional functional
outliers as developed in Publication IV. The main focus of this publication was to extend
Euclidean based outlier detection for functional data to the compositional case.

5.1. Functional data

In functional data analysis (FDA) one considers samples that are whole functions, e.g.
𝒇 𝑛 : Ω→ R𝐷 , where Ω is typically a compact subset of R𝑝. It is common to assume that
each such data point is in the space of square integrable functions

L2(Ω) :=

�
𝒇 : Ω→ R𝐷

����� 𝐷∑︁
𝑖=1

∫
Ω
𝑓𝑖 (𝒙)2𝑑𝒙

	
. (5.1)

All coordinate functions 𝑓𝑖 that are considered in this section have the same domain Ω,
however, extensions to separate Ω𝑖 are straightforward and are situation specific. Further
extensions that allow different measures on each Ω𝑖 are also possible. Nevertheless, to
facilitate things we only describe the framework for functions with domain Ω = [𝑎, 𝑏] ⊂ R
equipped with the standard Lebesgue measure. For two vector functions 𝒇 , 𝒈 ∈ L2(Ω) an
inner product and a corresponding norm are defined as

⟨ 𝒇 , 𝒈⟩L2 :=
𝐷∑︁
𝑖=1

∫
Ω
𝑓𝑖 (𝒙)𝑔𝑖 (𝒙)𝑑𝒙 and ∥ 𝒇 ∥L2 :=

√︃
⟨ 𝒇 , 𝒈⟩L2 .

As we are interested in 𝒇 as a random element we additionally assume that we have a
probability measure on L2. If for a random element 𝒇 , E(∥ 𝒇 ∥2

L2) < ∞ holds, then the
mean of 𝒇 , denoted as E( 𝒇 ), exists and is defined as the unique element fulfilling

E(⟨ 𝒇 ,𝒖⟩L2) = ⟨E( 𝒇 ),𝒖⟩L2 ,

for any 𝒖 ∈ L2. The covariance operator C : L2 →L2 is typically defined as

𝒖 ↦→ E


⟨ 𝒇 −E( 𝒇 ),𝒖⟩L2 ( 𝒇 −E( 𝒇 ))

�
(5.2)

and is the functional analogue of the covariance matrix for multivariate random vectors.
The covariance operator C has certain attractive properties.

Proposition 4. Let 𝒖, 𝒗 be any two elements in L2 then

1) C is symmetric, i.e. for 𝒖, 𝒗 ∈ L2 we have ⟨C(𝒖), 𝒗⟩L2 = ⟨𝒖,C(𝒗)⟩L2 .

2) C is nonnegative-definite, ⟨C(𝒖),𝒖⟩L2 ≥ 0.

24



3) C has an eigen-decomposition, C(𝒖) =�∞
𝑖=1𝜆𝑖 ⟨𝒖𝑖 ,𝒖⟩L2𝒖𝑖 , for an orthogonal basis

of eigenvectors 𝒖𝑖 to the eigenvalues 𝜆𝑖 ≥ 0, with
�∞

𝑖=1𝜆𝑖 <∞.

4) The random element 𝒇 can be written as

𝒇 = E( 𝒇 ) +
∞∑︁
𝑖=1

𝜁𝑖𝒖𝑖

where 𝜁𝑖 := ⟨𝒖𝑖 , 𝒇 −E( 𝒇 )⟩L2 , with E(𝜁𝑖) = 0, E(𝜁2
𝑖 ) = 𝜆𝑖 and E(𝜁𝑖𝜁 𝑗) = 0, for 𝑖 ≠ 𝑗 .

The decomposition in 4) is known as the Karhunen-Loeve expansion and is the functional
pendant to PCA for multivariate data. For a thorough introduction to FDA we refer to [39]
or [50]. Usually, functional data sets do not come in functional form but in the form of
observed data for certain points in the domain. For each 𝑛 = 1, . . . , 𝑁 , we have erroneous
observations of 𝒇 𝑛 at times 𝑡𝑛𝑚, with 𝑡𝑛𝑚 ∈ Ω and 𝑚 = 1, .., 𝑁𝑛, given as (𝑡𝑛𝑚, 𝒚𝑛𝑚). From
this data a functional data set is constructed. Depending on smoothness assumptions as
well as assumptions on Ω different methods exist. In the case that Ω is an interval a typical
approach is to solve for each 𝑛 an optimization problem of the form

𝒇̂ 𝑛 := argmin
𝑁𝑛∑︁
𝑚=1

��𝒚𝑛𝑚− 𝒇 𝑛 (𝑡𝑛𝑚))
��2
𝐸
+𝜆

∫
Ω

�� 𝒇 ′′𝑛 (𝑡)��2
2𝑑𝑡, (5.3)

for a fixed smoothing parameter𝜆 > 0. The functions 𝒇 𝑛 are usually modeled as multivariate
splines, see [67], 𝒇 𝑛 (𝑡) :=

�𝐾
𝑘=1 𝜷𝑘𝑚𝑘 (𝑡), with 𝜷𝑘 being coefficient vectors to be estimated

and 𝑚𝑘 some basis functions, such as B-splines or Fourier basis functions. Plugging this
expansion into (5.3) leads to a convex optimization problem over the vectors 𝜷𝑘 which
can then be solved by standard methods. In case that observations at time points 𝑡𝑛𝑚 are
scarce, other methods for constructing functional data 𝒇 𝑛, for example methods based on
local polynomial kernel smoothing, exist, see [39]. As the Hilbert space framework is very
general, many methods, such as linear regression, can readily be extended; see Equations
(2.27)-(2.30).

5.2. Functional outliers

In general, an outlier can defined as an observation that is very different from the majority
of the data. For example, in one dimension it is common to speak of outliers as points that
are a certain (robust) deviation away from the (robust) center. In a multivariate setting the
approach is similar. Given data 𝒙𝑛, with 𝑛 = 1, . . . , 𝑁 , a point 𝒙𝑛0 can be flagged as an outlier
if its (robust) Mahalanobis distance,

√︁(𝒙𝒏0 −𝒎) ′C−1(𝒙𝒏0 −𝒎), where 𝒎 respectively C
are robust estimates for the location respectively scatter, is above a certain threshold, see
[53], [54] or [33]. Extending the Mahalanobis distance to functional data for the use of
outlier detection is no easy task as already the non-robust pendant of the covariance matrix
(5.2) is non-invertible, [39]. Some attempts in this direction have been made, [21] or [22],
but most extensions of defining a distance measure that quantifies of how much outlying an
observation is take a different approach by building on the concept of statistical depth. For
example, in the case of univariate functional samples 𝑓𝑛 : Ω→ R, the Fraiman and Muniz
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depth, see [20], of a functional point 𝑓 is defined as

depth( 𝑓 ) :=
∫
Ω

���1− ���12 −𝐹𝑛 (𝑡)
������𝑑𝑡, (5.4)

where 𝐹𝑛 (𝑡) is the empirical distribution function of 𝑓1(𝑡), . . . , 𝑓𝑛 (𝑡) at time point 𝑡. Another
example is the h-mode depth, see [10],

depth( 𝑓 ) = 1
𝑁ℎ

𝑁∑︁
𝑛=1

K
� �� 𝑓 − 𝑓𝑛

��
ℎ

�
, (5.5)

for an appropriately chosen kernel K and tuning parameter ℎ > 0. For multivariate func-
tional data 𝒇̂ 𝑛 it seems natural to define a depth function pointwise, see [9], similar to
(5.4):

depth( 𝒇 ) :=
∫
Ω

D( 𝒇 (𝑡), 𝑃𝑛 (𝑡))𝑤(𝑡)𝑑𝑡 (5.6)

where 𝑃𝑛 (𝑡) is the empirical probability distribution of 𝒇̂ 𝑛 in 𝑡, D : R𝐷 → R+ is a depth
function on R𝐷 and 𝑤 : Ω → R+ is some weighting function. Any depth function D
on R𝐷 needs to satisfy certain desirable properties, [69], of which the most important
ones are invariance under affine transformations, maximality at a uniquely defined center,
monotonicity relative to the center and vanishing at infinity. Functions 𝒇 which are close
to the center have a large depth score and functions far away have a low one. Note that
with the aid of depth functions the concept of quantiles can also be generalized by ordering
observations 𝒇̂ 𝑛 according to the ordered depth statistics. Commonly used depth statistics
on R𝐷 are, for a fixed 𝒙, the halfspace depth

D(𝒙, 𝑃) := inf
∥𝒂 ∥𝐸=1

P(𝒚 |𝒂′𝒚 ≥ 𝒂′𝒙), (5.7)

where P is some probability measure on R𝐷 , and the projection depth

D(𝒙,P) :=
�
1+ sup

∥𝒂 ∥𝐸=1

� |⟨𝒂,𝒙⟩𝐸 −med(⟨𝒂, 𝒚⟩𝐸) |
mad(⟨𝒂, 𝒚⟩𝐸)

��−1
(5.8)

where 𝒚 is distributed as P, med is the median and mad the median absolute deviation, see
[44] and [14].

5.3. Compositional functional outlier detection

In Paper IV we considered an extension of the functional depth (5.6) to the compositional
case. In this paper we looked at compositional functional data 𝑓𝑛 :Ω→S𝐷 , 𝑛 = 1, . . . , 𝑁 . As
in the non-compositional case one needs to estimate in a first step from the raw observations
(𝑡𝑛𝑚, 𝒚𝑛𝑚), with 𝑡𝑛𝑚 ∈ Ω, 𝑚 = 1, . . . , 𝑁𝑛 and 𝒚𝑛𝑚 ∈ S𝐷 , the corresponding functional data.
For this purpose, for each 𝑛 the following optimization problem is solved

𝒇̂ 𝑛 := argmin
𝑁𝑛∑︁
𝑚=1

��𝒚𝑛𝑚 ⊖ 𝒇 𝑛 (𝑡𝑛𝑚)
��2
A +𝜆

∫
Ω

�� 𝒇 ′′𝑛 (𝑡)��2
A𝑑𝑡, (5.9)
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where the superscript ′′ of 𝒇 𝑛 (𝑡) denotes the second compositional derivative, [47], and
𝜆 > 0 is a smoothing parameter controlling the smoothness of 𝒇 𝑛. Problem (5.9) can be
solved for the ilr-transformed quantities through (5.3) and is invariant with respect to the
choice of V. In Paper IV we adapted the adjusted outlyingness to the compositional case,

𝐴𝑂 (𝒙,P) :=

��������
sup∥𝒂 ∥=1

�
𝒂′𝒙−med(𝒂′𝒚)

𝑤2 (𝒂′𝑿 )−med(𝒂′𝒚)

�
if 𝒂′𝒙 > med(𝒂′𝒚)

sup∥𝒂 ∥=1

�
med(𝒂′𝒚)−𝒂′𝒙

med(𝒂′𝑿 )−𝑤1 (𝒂′𝑿 )

�
if 𝒂′𝒙 ≤ med(𝒂′𝒚),

(5.10)

where 𝒚 ∼ P and 𝑤1 and 𝑤2 are functions that adjust for skewness in the projected samples,
see [35] and [34]. The adjusted outlyingness is an extension of the projection depth (5.8)
and was used in [34] to construct a measure of outlyingness of a real valued multivariate
functional data point 𝒇 as

depth( 𝒇 ) :=
∫
Ω
𝐴𝑂 ( 𝒇 (𝑡),P)𝑤(𝑡)𝑑𝑡,

where 𝑤 : Ω → R+ is again some weighting function. Because (5.10) only contains Eu-
clidean inner products inR𝐷 , adapting it to the compositional case corresponds to replacing
the respective inner products with the compositional ones.
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Publication IV: Outlier Detection for
Pandemic-Related Data Using
Compositional Functional Data Analysis

Summary

In Publication IV methods for detecting functional outliers were extended to the compo-
sitional setting. A method to construct compositional functional data points from raw
observations, based on vector smoothing splines, is discussed. Measures for compositional
functional outlyingness based on recently developed adjusted outlyingness for Euclidean
functional data are developed. Graphical tools to analyse the results are also extended.
The utility of the compositional approach as well as its difference to the Euclidean case is
discussed with respect to COVID-19 data.

Bibliographic information

C. Rieser, P. Filzmoser. Outlier Detection for Pandemic-Related Data Using Compositional
Functional Data Analysis. In: Boado-Penas M.C., Eisenberg J., Sahin S (eds). Pandemics:
Insurance and Social Protection. Springer Actuarial, Springer, Cham, 2022, pp. 251-266.
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C. Rieser developed the methodological part, implemented the method in R and wrote the
first draft of the paper after discussion with the co-author.
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6. Compositional data from a graph signal
processing perspective

In this chapter we summarize the main ideas and concepts of Publication V. In the latter we
looked at the connections of CoDA with Graph Signal Processing (GSP). The main idea
was to modify the Aitchison geometry by constructing an inner product that, in contrast to
the Aitchison inner product (2.9), does not penalize each log-ratio pair equally, but instead
puts a different weighting on each. For two different vectors 𝒙, 𝒚 ∈ R𝐷+ we investigated an
extension of the Aitchison inner product as

𝐷∑︁
𝑖, 𝑗=1

log
�
𝑥𝑖
𝑥 𝑗

�
log

�
𝑦𝑖
𝑦 𝑗

�
𝑤𝑖 𝑗 , (6.1)

for some fixed symmetric and non-negative weights 𝑤𝑖 𝑗 . Important properties of CoDA,
such as scale invariance and subcompositional coherence, still hold. Furthermore, we
constructed one-to-one mappings that allow us, as in the Aitchison setting, to map our
data into the Euclidean space where usual methods based on the Euclidean geometry can
be used. Different weighting approaches and investigations into the connection of CoDA
and graph theory have appeared before, as for example in [30], [31], [25] and [26], but no
connection to GSP was made, nor was a new (graph based) geometry investigated.

6.1. Graph signal processing

A graph G is a pair (V,W) with V = {1, . . . , 𝐷} denoting a set of nodes and W =
(𝑤𝑖 𝑗)1≤𝑖, 𝑗 ,≤𝐷 ∈ R𝐷×𝐷 a symmetric matrix with non-negative elements and a zero diagonal.
A graph can be used to model relationships between nodes as explained in the following.
Assume for the moment that we have a real valued variable 𝒇 ∈ R𝐷 . Take for example a
gray color image that is vectorized, that is the columns of the image are stacked into one
vector. For an image it seems sensible to assume that the gray intensities 𝑓𝑖 and 𝑓 𝑗 for the
𝑖-th and the 𝑗-th pixel are close, 𝑓𝑖 ≈ 𝑓 𝑗 , whenever the pixels 𝑖 and 𝑗 are. Setting weights
𝑤𝑖 𝑗 to one when a pixel 𝑖 is close to 𝑗 and zero otherwise we can define a quantity

1
2

𝐷∑︁
𝑖, 𝑗=1

( 𝑓𝑖 − 𝑓 𝑗)2𝑤𝑖 𝑗 , (6.2)

which measures how fast the intensities in neighboring pixels of the image 𝒇 change for the
overall image. After some refactoring, (6.2) above can be rewritten as

1
2

𝐷∑︁
𝑖, 𝑗=1

( 𝑓𝑖 − 𝑓 𝑗)2𝑤𝑖 𝑗 = 𝒇 ′LW 𝒇 , (6.3)
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see [42] for a proof, where LW = diag(W1) −W ∈ R𝐷×𝐷 is the so-called Laplacian matrix.
In fact, for two real valued vectors 𝒇 and 𝒈 a more general result

1
2

𝐷∑︁
𝑖, 𝑗=1

( 𝑓𝑖 − 𝑓 𝑗) (𝑔𝑖 −𝑔 𝑗)𝑤𝑖 𝑗 = 𝒇 ′LW𝒈 (6.4)

also holds. The Laplacian matrix LW has two important properties:

• LW is a symmetric positive semi-definite matrix.

• The constant vector 1 is always in the null space of LW, i.e. LW1 = 0.

For a proof and more on Laplacian matrices see [42] or [43]. The eigenvectors of the Lapla-
cian matrix are of special importance in GSP. Computing the eigenvector corresponding to
the 𝑘-th smallest eigenvalue is equivalent to minimizing the left-hand side of (6.3) over the
vector 𝒇 ∈ R𝐷 under additional constraints :

min
∥ 𝒇 ∥𝐸=1

1
2

𝐷∑︁
𝑖, 𝑗=1

( 𝑓𝑖 − 𝑓 𝑗)2𝑤𝑖 𝑗 such that ⟨ 𝒇 , 𝒇 𝑙⟩𝐸 = 0 for 𝑙 = 1, . . . , 𝑘 −1, (6.5)

where 𝒇 𝑙 are the eigenvectors to the 𝑙-th smallest eigenvalue. As pairs of entries ( 𝑓𝑖 , 𝑓 𝑗) of a
solution 𝒇 of (6.5) are forced to be similar for adjacent nodes, that is nodes 𝑖, 𝑗 ∈ {1, . . . , 𝐷}
for which 𝑤𝑖 𝑗 ≠ 0 holds, 𝒇 can be interpreted as a function that varies comparatively little
over connected nodes. If the graph G is connected, that is from every node 𝑖 ∈ V to any
other 𝑗 ∈ V we can find a sequence of indices 𝑖 = 11, 𝑖2, . . . , 𝑖𝑚 = 𝑗 with positive weights
𝑤𝑖𝑠𝑖𝑠+1 ≠ 0, 𝑠 = 1, . . . ,𝑚 − 1, then 1√

𝐷
1 is the only eigenvector to the zero eigenvalue. A

prominent example is the line graph. For the latter, which is defined as the graph with
weights 𝑤12 = 𝑤23 = . . . = 𝑤 (𝐷−1)𝐷 = 1 and zero otherwise, the eigenvectors of LW are,
besides the trivial eigenvector 1√

𝐷
1, equal to

( 𝒇 𝑙)𝑖 =
√︂

2
𝐷

cos
�
𝜋(𝑙 −1) (𝑖−0.5)

𝐷

�
for 𝑙 = 2, . . . , 𝐷, see [56]. These eigenvectors are smooth with respect to 𝑖 and can be
thought of as a discretized version of squashed cosine functions on R. Similar reasoning
can be applied to LW being the discretized version of the Laplace operator 𝚫 in Analysis
for a grid graph, see [24]. Another example is the ring graph whose eigenvectors lead to
the discrete Fourier transform. For all these reasons one can think of the eigenvectors of
LW as in (6.5) as a graph analogue to the Fourier basis functions. Continuing the analogy,
the Graph Fourier Transform of a signal 𝒈 ∈ R𝐷 is defined as the vector

(𝑔̂)𝑙=2,...,𝐷 := (⟨𝒈, 𝒇 𝑙⟩𝐸)𝑙=2,...,𝐷 ,

see [56]. Through these analogies it is also possible to define in a sensible way a convolution
operation on graphs, see [56] and other extensions, such as wavelets on graphs, see [27].
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6.2. CoDA in a GSP context

The left-hand side of (6.4) is, for the log-transformed variables 𝒇 := log(𝒙) and 𝒈 := log(𝒚),
equal to (6.1). From this and the fact that 1 is in the kernel of LW follows that rescaling
elements 𝒙, 𝒚 ∈ R𝐷+ does not change (6.1). Therefore, in Publication V we investigated a
generalization to the Aitchison geometry building on the semi-inner product

𝐷∑︁
𝑖, 𝑗=1

log
�
𝑥𝑖
𝑥 𝑗

�
log

�
𝑦𝑖
𝑦 𝑗

�
𝑤𝑖 𝑗 = log(𝒙) ′LW log(𝒚). (6.6)

Similar to Section 2.4 one can construct an equivalence relation as

log(𝒙) ∼ log(𝒚) ⇐⇒ LW(log(𝒙) − log(𝒚)) = 0 (6.7)

such that (6.7) becomes an inner product on the set of equivalence classes {[log(𝒙)] |𝒙 ∈
R𝐷+ } with [log(𝒙)] := {log(𝒚) | log(𝒚) ∼ log(𝒙)}. A more convenient way is to fix the
representatives for each class [log(𝒙)], again similar to Section 2.4. In Paper V we defined
in parallel to the D-part simplex, the D-part graph Simplex as

S𝐷
W :=

�
𝒙 ∈ R𝐷+

���� ∑︁
𝑖∈V𝑚

𝑥𝑖 = 1, 𝑚 = 1, . . . , 𝑀



(6.8)

where V𝑚 are non-overlapping connected subsets of nodes that form a partition of V. As in
the Aitchison geometry, one can show that with slightly adapted perturbation and powering
operation this space is again a Hilbert space. A natural extension of the clr-map as well as
one-to-one isometries, bijective maps which are angle and distance preserving, also exist,
and the latter allow us to map data into a lower dimensional Euclidean space R𝐷−𝑀 . One
natural one-to-one isometry follows from the eigen-decomposition of LW = U𝚺U′, where
U ∈ R𝐷×𝐷 is a unitary matrix and 𝚺 is a diagonal matrix with non-negative entries, ordered
from highest to lowest eigenvalue, of which 𝑀 are exactly zero. In Publication V it is shown
that the map

𝒙 ↦→
√︁
Σ𝑖𝑖 ⟨𝒖𝑖 , log(𝒙)⟩𝐸 , (6.9)

with Σ𝑖𝑖 being the diagonal elements of 𝚺 and 𝒖𝑖 the 𝑖-th column of U, 𝑖 = 1, . . . , 𝐷 −𝑀 , is
one-to-one and also fulfills for any 𝒙, 𝒚 ∈ S𝐷

W

log(𝒙) ′LW log(𝒚) =
𝐷−𝑀∑︁
𝑖=1

Σ𝑖𝑖 ⟨𝒖𝑖 , log(𝒙)⟩𝐸 ⟨𝒖𝑖 , log(𝒚)⟩𝐸 .

This property shows that (6.9) is isometric to R𝐷−𝑀 and therefore has the same role than
the ilr map in CoDA. Further isometries as well as interpretable maps are also investigated.

31



Publication V: Extending compositional data
analysis from a graph signal processing
perspective

Summary

In Publication V we show that CoDA can be put into the grander framework of signal
processing on graphs and investigate their link between these two different fields. Major
concepts from CoDA are extend without loss of scale invariance or subcompositional
coherence. An extensive theory is developed and two applications are discussed.

Bibliographic information

C. Rieser, P. Filzmoser. Extending compositional data analysis from a graph signal pro-
cessing perspective. Submitted for publication.

Author’s contribution

C. Rieser developed the methodological part, implemented the method in R, and wrote the
paper upon extensive discussions with the co-author.
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7. Conclusions

Research in CoDA has been and continues to be very active since the core principles were
laid out in groundbreaking works by Aitchison [1], [3] and [2]. Recently, many ideas of
CoDA have been adapted to new areas where the mathematical objects of interest are more
appropriately dealt with as being parts of a whole. One such area is the statistical analysis of
continuous density data, see [17], [60], [32], [57] and [41], which can be seen as an infinite
extension of elements of the 𝐷-part simplex. Adapted tools from CoDA allows handling
continuous density data in a very elegant way. In general, treating data as compositional
can, but not always will, lead to quite different results. As we are more used to the
Euclidean way of thinking, it is important to carefully adapt regular Euclidean methods
when putting them into a CoDA framework. Multivariate positive data are omnipresent,
and quite often the coordinates should be considered as part of a whole. However, in many
areas such as biology, for example, CoDA is still not used as often as it should be, even
though it has long been established that the compositional way is the more appropriate one,
see [40]. Nevertheless, as the body of methods of CoDA grows, so does the amount of
applications spanning over a big number of different areas and helping to shed light onto
data from a different angle. This applicability in many different areas is also reflected in
this thesis, with publications ranging from methodologies developed in the geochemical
sciences, over multivariate time series, functional outliers with application to COVID-19
related data, to more theoretical and emerging areas such as graph signal processing. Many
more extensions can still be considered in a lot of different areas. In this thesis we looked
only at a very small subset, and further research could be carried out for each publication.
For example, as in Publication V the graph Laplacian matrix is of central importance, it
would be very interesting to investigate further different methods of finding the weights and
looking into their implications. Additionally, it would be interesting to investigate these
estimators then under different types of outliers. Another direction could be pursued for
compositional functional data and corresponding outliers, as investigated in Publication IV.
In the latter we investigated a novel version of compositional functional depth to detect
outliers. However, we only considered the case where the image of each functional data
point is compositional and the domain is an interval in R. It might also be interesting
to consider functional data with domain also in the 𝐷-part simplex. Other areas that
are also worth investigating upon are generalized additive models and their interplay with
compositional regressors. All in all, we can say that there are still many open questions
which are worth investigating.
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