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ORIGINAL ARTICLE

Viscoelasticity of hydrating shotcrete as key to realistic tunnel shell stress 
assessment with the New Austrian Tunneling Method

Raphael Scharf, Maximilian Sorgner, Stefan Scheiner, Bernhard Pichler, and Christian Hellmich 

Institute for Mechanics of Materials and Structures, TU Wien (Vienna University of Technology), Vienna, Austria 

ABSTRACT 
The New Austrian Tunneling Method (NATM) essentially rests on observational information concerning 
displacements measured in selected positions at the inner surface of shotcrete tunnel shells. The com-
bination of these measurements with advanced material and structural mechanics, in the course of so- 
called hybrid methods, have successfully delivered, for more than 20 years, practically relevant estima-
tions of internal and external forces and corresponding degrees of utilization. The reliability of the latter, 
however, may crucially depend on the used material model. Based on a recently proposed analytical 
structural mechanics model [Acta Mech 233, 2989–3019 (2022)], and focusing on the benchmark 
example of measurement cross section MC1452 of the Sieberg tunnel, driven in the 1990s in Miocene 
clay marl, the present paper compares the estimations of forces and degrees of utilization arising from 
differently refined constitutive concepts, namely (i) aging elasticity, (ii) aging linear viscoelasticity, and (iii) 
aging nonlinear viscoelasticity. It turns out that only the consideration of aging nonlinear viscoelastic 
material behavior provides access to realistic values for the degree of utilization, being lower than one. 
Simpler material models would indicate local material failure, which was not observed in situ.
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1. Introduction

The New Austrian Tunneling Method (NATM) fundamentally 
relies on the understanding that the primary load carrying 
element in a tunnel is the rock or ground surrounding the 
tunnel shell, rather than the tunnel shell itself. Hence, the 
NATM is based on a careful selection of constructive meas-
ures which induce an effective mechanical interaction between 
the tunnel shell and the surrounding rock, through the estab-
lishment of a sustainable, ring-type compound structure. 
These measures comprise in particular a thin and flexible, steel 
fabric-reinforced shotcrete shell, which may be complemented 
by rock bolts [1, 2]. Ever since the NATM was explained and 
documented by Rabcewicz in the 1960s [3–6], its unparalleled 
success is due to dedicated monitoring systems, in combin-
ation with careful interpretation of corresponding measure-
ments. The monitoring systems have followed the increasing 
state of the art in metrology, where particular advances were 
made in the early 1990s, with the advent and use of laser- 
based optical geodetic measurements [7, 8].

The present contribution deals with a (non-closed) top head-
ing of an NATM tunnel shell, monitored by geodetic displace-
ment measurements at three positions at the inner shell surface. 
We will combine these measurements with engineering mechan-
ics approaches, in the framework of so-called “hybrid methods” 
[9–14], in order to estimate the integrity of the tunnel shell in 
terms of values for the strength-related utilization degree. The 

reliability of the aforementioned hybrid methods, used in tunnel 
engineering practice for more than twenty years [15], crucially 
depends on the displacement distributions estimated between 
the measurement points [12, 16], and on the material model 
chosen for shotcrete [10]. Herein, we will set the focus on the 
effect of shotcrete material modeling on the estimates for the 
material’s utilization degree throughout the tunnel shell, while 
the structural behavior of the latter will be quantified by means 
of a recently proposed analytical structural mechanics model 
[14]. The latter model links ground pressure distributions acting 
on the outer shell surfaces, to displacement distributions along 
the shell arc.

As the shotcrete is still hydrating while being mechanic-
ally loaded, its mechanical properties are changing during 
the tunnel construction process. In other words, the material 
is aging. This motivates us to extend viscoelasticity – the 
fundamental constitutive tool for modeling the creep of con-
crete [17, 18] – toward (i) aging effects, with the degree of 
hydration as the key quantity linking physical chemistry and 
mechanics [19, 20]; and toward (ii) an additional compli-
ance arising from a high stress level [21]. This is covered in 
Section 2 of the present contribution. This section also 
introduces a hydration degree-dependent power-law creep 
function for shotcrete, together with its limit case of instant-
aneous aging elasticity, as the simplest material model used 
in the present context; and displacement-rate-force-rate 
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relations at the tunnel shell level. Thereafter, the governing 
equations of the aging shotcrete shell are discretized in time, 
allowing for transformation of the displacements recorded 
over time in the three measurement points, into correspond-
ing impost forces and spatial distributions of ground pres-
sure, of stresses, and of utilization degrees. This is covered in 
Section 3, for three descriptions of shotcrete behavior, the lat-
ter being based on aging elasticity, aging viscoelasticity, and 
non-linear aging viscoelasticity, respectively. Corresponding 
results, retrieved from the displacements recorded at MC1452 
of the Sieberg tunnel, are reported in Section 4, before the 
paper is concluded in Section 5.

2. Analytical mechanics of aging viscoelastic 
shotcrete tunnel shells

2.1. Boltzmann viscoelasticity generalized for hydration- 
dependent aging and high stress levels

Classical linear viscoelasticity follows the so-called Boltzmann 
superposition principle [22, 23]. It is standardly expressed by 
a tensorial integro-differential equation of the form [24, 25]

eðtÞ ¼
ðt

−1
Jðt − sÞ : _rðsÞ ds, (1) 

whereby e denotes the linearized strain tensor, the evolution 
of which is described through time variable t, s denotes the 
time instants of material loading in terms of the Cauchy 
stress tensor r, ð:Þ

:

stands for the derivative of quantity ð:Þ
with respect to time (of loading), : stands for the second- 
order tensor contraction, and J denotes the 4th-order creep 
function tensor describing a piece of concrete.

Equation (1) describes a material behavior “remembering” 
past events, while staying itself invariant over time. The matter 
becomes more involved in case of material behavior which itself 
changes over time, i.e. for aging material behavior. In the pre-
sent case of shotcrete, aging results from the hydration reaction, 
the extent of which may be appropriately considered through 
the degree of hydration n. We define the latter as the amount 
of already hydrated clinker over the amount of clinker which is 
initially present at the concrete mixing stage [26–29]; and 
accordingly, as the currently released heat over the total heat 
release capacity of the cement contained in the system [30, 31]. 
As regards the extension of viscoelasticity toward such aging 
effects, Scheiner and Hellmich [25] provided a micromechanical 
reasoning involving the correspondence principle [32], together 
with an experimental validation campaign based on pertinent 
data sets [33, 34]. As a result, they showed the relevance of a 
hydration-degree-dependent convolution integral governing the 
strain rate rather than the total strain. Mathematically speaking, 
this aging viscoelasticity expression may be cast in the format

dðtÞ ¼
ðt

−1
JdðnðtÞ, t − sÞ : _rðsÞ ds, (2) 

with the Eulerian strain rate tensor d, d � _e in the case of 
linearized strains, and with the creep rate function tensor Jd 
depending on the current hydration degree. Equation (2)
may be also considered as an extension of hypoelasticity 
[35] or Gibbs potential-driven elasticity [36, 37] toward 

temporal non-locality, in particular so if the stress rate is 
introduced in an objective fashion [38]. Practically speaking, 
the creep rate function tensor can be approximated by the 
partial time derivative of a classical creep function tensor J 
describing a non-aging material associated with a particular 
hydration degree n, according to

JdðnðtÞ, t − sÞ �
@JðnðtÞ, t − sÞ

@t
, (3) 

whereby J standardly comprises terms of the Heaviside func-
tion type, so that @J=@t may well comprise Dirac-peaks, see 
Section 2.2 for further details on this aspect.

Insertion of Eq. (3) into Eq. (2), while considering that 
d � _e in the case of linearized strains, yields [25]

_eðtÞ ¼
ðt

−1

@JðnðtÞ, t − sÞ

@t
: _rðsÞ ds: (4) 

Finally, Ruiz et al. [21] have shown that, at high load lev-
els, the creep compliance is magnified in terms of a stress- 
governed affinity factor g, and generalization of Eq. (4) in 
light of this affinity concept yields an aging nonlinear visco-
elasticity model of the form [39]

_eðtÞ ¼
ðt

−1

@Jr nðtÞ, gðrðtÞÞ, t − sð Þ

@t
: _rðsÞ ds, (5) 

whereby Jr is the creep function associated with highly 
stressed material.

2.2. Creep functions for thin shotcrete shells

The tensorial Eqs. (4) and (5) can be largely simplified in 
case of cylindrical tunnel shell segments under plane strain 
conditions with vanishing strain in axial direction and 
loaded by ground pressure and impost forces. When the 
equilibrium of such shells is governed by virtual rigid body 
motions of the cylindrical shell generator lines [14], then the 
stress tensor reduces to a plane stress state of the form

rðr, uÞ ¼ ruuðr, uÞ euðuÞ � euðuÞ þ rzzðr, uÞ ez � ez, (6) 

with r, u, and z relating to the radial, the azimuthal, and 
the axial coordinates of a cylindrical coordinate system asso-
ciated with a base frame erðuÞ, euðuÞ, ez: � Stress tensors of 
the type (6) imply jerrj � jeuuj, so that the strain tensor 
takes the uniaxial format

eðr, uÞ ¼ euuðr, uÞ euðuÞ � euðuÞ: (7) 

Access to the creep rate function via (3) is particularly 
straightforward in the case where the characteristic time of 
hydration, T hyd, exceeds, by far, the characteristic time of a 
creep test, T cr, i.e. when the material’s microstructure remains 
virtually invariant during the hydration process. In mathematical 
terms, the aforementioned case is characterized by

T hyd ¼
n

_n
� ðt − sÞ ¼ T cr ) Jr � Jrðn, gðrÞ, t − sÞ,

(8) 

and as indicated in Eq. (8), it leads to a simplified format 
of Jr: Corresponding, virtually time-invariant concrete 
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microstructures may prevail at very high ages of creeping 
concrete structures, when all of the water has already been 
consumed in the hydration process. Moreover, such micro-
structures are, up to a satisfactory level, also encountered 
with ultrashort-term creep tests on cement paste and con-
crete [31, 40, 41]: During such tests, which typically last 
only a few minutes, the hydration degree remains virtually 
constant, while creep deformations do evolve.

Furthermore, the shotcrete is considered to be isotropic, so 
that the relevant part of the creep function tensor reads as [14]

JrðnðtÞ, gðrðtÞÞ, t − sÞ ¼ þJrðnðtÞ, gðrðtÞÞ, t − sÞ

½þerðuÞ � erðuÞ � erðuÞ � erðuÞ

þeuðuÞ � euðuÞ � euðuÞ � euðuÞ

þez � ez � ez � ez�

−� JrðnðtÞ, gðrðtÞÞ, t − sÞ

½þerðuÞ � erðuÞ � euðuÞ � euðuÞ

þerðuÞ � erðuÞ � ez � ez
þeuðuÞ � euðuÞ � erðuÞ � erðuÞ

þeuðuÞ � euðuÞ � ez � ez
þez � ez � erðuÞ � erðuÞ

þez � ez � euðuÞ � euðuÞ�,

(9) 

with the uniaxial creep function JrðnðtÞ, gðrðtÞÞ, t − sÞ and 
the constant creep Poisson’s ratio �, typically amounting to 
0.2. As concerns the former, we consider pertinent experi-
mental investigations [31, 42, 43] and adopt a power-law 
format, reading as

JrðnðtÞ, gðrðtÞÞ, t − sÞ

¼ Hðt − sÞ
1

EðnðtÞÞ
þ

gðrðtÞÞ
EcðnðtÞÞ

t − s

t�0

� �b
( )

,
(10) 

where H denotes the Heaviside function, E and Ec denote 
the elastic and the creep modulus, both depending on the 
degree of hydration, where t�0 ¼ 1 d ¼ 86 400 s denotes a ref-
erence time, and where the power-law exponent b typically 
amounts to 0.25 [29]. According to Eq. (10), the use of 
creep tensor expression (9) in the aging viscoelastic formula-
tions (4) and (5) rests on the expression

@Jr

@t
ðnðtÞ, gðrðtÞÞ, t − sÞ ¼ þdðt − sÞ

1
EðnðtÞÞ

þ
gðrðtÞÞ
EcðnðtÞÞ

t − s

t�0

� �b
( )

þHðt − sÞ
gðrðtÞÞ
EcðnðtÞÞ

b

t�0
t − s

t�0

� �b−1
( )

:

(11) 

with d denoting the Dirac function. Furthermore, under iso-
thermal conditions at 20 centigrades, which we adopt for 
the following computations, the evolution of the elastic 
modulus can be given as an explicit function of time, in 
accordance with pertinent codes [44],

EðtÞ ¼ E28d exp sE 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28 days

t

r !" #( )0:5

, (12) 

with the time t given in the unit of measurement “days”, 
resolved down to tens of minutes, and with the dimension-
less evolution parameter sE, see Table 1 for typical values 
concerning shotcrete, and Figure 1(b) for an illustration of 

the Young’s modulus evolution. Moreover, E28d refers to the 
elastic modulus of concrete reached 28 days after production, 
estimated through [44]

E28d ¼ 21:5 GPa� a
fc, 28d

f �c

� �0: _3
, (13) 

with typical values for the parameter a amounting to one for 
quartz- and limestone-based concretes [42], with f �c ¼ 10 MPa 
as a reference strength level, and with fc, 28d as the uniaxial 
compressive strength of concrete reached 28 days after produc-
tion, see Table 1 for typical values concerning shotcrete.

The creep modulus Ec is available from isothermal creep 
tests performed at a temperature of 20 centigrades [42], 
namely in the format

EcðtÞ ¼ Ec, 28d exp sEc 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28 days

t

r !" #( )0:5

, (14) 

with the creep modulus of concrete reached 28 days after 
production Ec, 28d, estimated through

Ec, 28d ¼ 51:9 GPa� a2 fc, 28d

f �c

� �2=3
, (15) 

and with the creep modulus evolution parameter sEc , see 
again Table 1 for typical values concerning shotcrete, and 
Figure 1(c) for an illustration of the creep modulus evolution.

We are left with quantifying the affinity factor g, which is 
linked to the stress-over-strength ratio or utilization degree 
U ð> 0Þ, via [21]

g ¼ 1þ 2 U4: (16) 

In order to define U in a three-dimensional setting, we 
adopt a Drucker-Prager strength criterion [45] specified for 
the stress components occurring in the tunnel shell, so that

Uðr, u, tÞ ¼ þ
aDP

kDP
ruuðr, u, tÞ þ rzzðr, u, tÞ
� �

þ
1

kDP

2
3
ðruuðr, u, tÞÞ2 − ruuðr, u, tÞrzzðr, u, tÞ þ ðrzzðr, u, tÞÞ2
h i�1=2

,

(

(17) 

with parameters aDP and kDP being related to the uniaxial 
and biaxial compressive strengths of shotcrete, denoted as fc 
and fb,

aDP ¼

ffiffiffi
2
3

r
j − 1

2j − 1
, kDP ¼

ffiffiffi
2
3

r

1 −
j − 1

2j − 1

� �

fc, (18) 

where the strength ratio j ¼ fb=fc ¼ 1:15 follows from classical 
mechanical experiments [46]. In analogy to the relations for 
elasticity and creep, which are given in Eqs. (12) and (14), the 
temporal evolution of the uniaxial strength of shotcrete under 

Table 1. Values of sE and sEc for three typical cement types [42]; and of uni-
axial compressive strength reached 28 days after production, fc, 28d, for three 
typical shotcrete strength classes.

cement type sE sEc strength class fc, 28d

CEM II/A-M(S-L) 42.5 N 0.22 0.62 SpC 20/25 20 MPa
CEM II/A-S 42.5 R 0.18 0.61 SpC 25/30 25 MPa
CEM I 52.5 R 0.09 0.50 SpC 30/37 30 MPa
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isothermal conditions at 20 centigrade can be approximated 
according to relevant standards [44],

fcðtÞ ¼ fc, 28d exp sE 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28 days

t

r !" #

, (19) 

see Table 1 for typical values, and Figure 1(a) for a graphical 
illustration.

2.3. Spatial distributions across tunnel segment, of 
displacements, generator rotations, normal forces, 
and bending moments, as functions of ground 
pressure and impost force

In the framework of thin shell theory, force quantities of 
classical 3D continuum mechanics, such as Cauchy stress 
and traction forces, are homogenized into stress and force 
resultants, with the latter performing power on virtual veloc-
ities and virtual angular velocities associated with rigid body 
movements of the shell generator lines [14, 47, 48]. More 
specifically, the normal stress components ruu and rzz are 
integrated over the shell generator lines, along the thickness 
h of the cylindrical shell with radius R, see Figure 2. This 
yields circumferential normal forces (per length measured in 
the tunnel driving direction), reading as [14, 49, 50]

nuðuÞ ¼

ðRþh=2

R−h=2

ruuðr, uÞ dr, (20) 

as well as bending moments (per length measured in the 
tunnel driving direction), reading as

mzðuÞ ¼

ðRþh=2

R−h=2

ruuðr, uÞ � ðr − RÞ dr: (21) 

The corresponding circumferential normal traction forces 
Tu, acting at the imposts on surfaces with normals n ori-
ented in circumferential direction, are summed up over the 
shell thickness as well, yielding impost forces at both ends 
of the tunnel segments, in the form [14]

Np ¼ þ

ðRþh=2

R−h=2

Tu r, uRI ; n ¼ −euðuRIÞ
� �

dr

¼ −
ðRþh=2

R−h=2

ruuðr, uRIÞdr ¼ −nuðuRIÞ

¼ −
ðRþh=2

R−h=2

Tu r, uLI; n ¼ þeuðuLIÞ
� �

dr

¼ −
ðRþh=2

R−h=2

ruuðr, uLIÞdr ¼ −nuðuLIÞ:

(22) 

Furthermore, following classical terminology in tunnel 
engineering [51, 52], the radial normal traction forces Tr 
transferred from the ground onto the tunnel shell are 
referred to as ground pressure,

GpðuÞ ¼ −Tr r ¼ Rþ h=2, u; n ¼ þerðuÞ½ �: (23) 

Thereby, Gp is approximated as the superposition of four 
cubic polynomials, in the format

Gpð�uÞ ¼ þA1ð�uÞGp, 1 þ A2ð�uÞGp, 2 þ A3ð�uÞGp, 3 þ A4ð�uÞGp, 4,

(24) 

with the cubic polynomials Ai, i ¼ 1, 2, 3, 4, reading as

A1ð�uÞ ¼ 1 −
11�u

2Du
þ

9�u2

ðDuÞ
2 −

9�u3

2ðDuÞ
3 ,

A2ð�uÞ ¼
9�u

Du
−

45�u2

2ðDuÞ
2 þ

27�u3

2ðDuÞ
3 ,

A3ð�uÞ ¼ −
9�u

2Du
þ

18�u2

ðDuÞ
2 −

27�u3

2ðDuÞ
3 ,

A4ð�uÞ ¼
�u

Du
−

9�u2

2ðDuÞ
2 þ

9�u3

2ðDuÞ
3 ,

(25) 

whereby Du ¼ uLI − uRI denotes the opening angle of the 
tunnel shell, and �u denotes the inclined azimuthal coordin-
ate, measured from the right impost of the arch-like tunnel 
cross section, see Figure 3 for the example of the Sieberg 
tunnel.

Figure 1. Temporal evolution of material properties of shotcrete with the uniaxial 28-day compressive strength fc, 28d ¼ 20 MPa, and the different cement types 
given in Table 1: (a) uniaxial compressive strength, (b) Young’s modulus, (c) creep modulus.
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In Eq. (24), Gp, 1 is the ground pressure at position �u ¼ 0, 
i.e. at the right impost, Gp, 2 is the ground pressure at position 
�u ¼ Du=3, Gp, 3 is the ground pressure at position �u ¼

2Du=3, and Gp, 4 is the ground pressure at position �u ¼ Du:

The corresponding displacement distributions evolving over 
time can be given in the following rate format [14],

þ _uM
r ð�u, tÞ − _uM

u, RIðtÞ sin ð�uÞ − _uM
r, RIðtÞ cos ð�uÞ þ R _h

M
z, RIðtÞ sin ð�uÞ

¼ þIN!rð�uÞ

ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _N pðsÞds

" #

þ
X4

i¼1
I i!rð�uÞ

ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _Gp, iðsÞds

" #( )

,

(26) 
þ _uM

u ð�u, tÞ − _uM
u, RIðtÞ cos ð�uÞ þ _uM

r, RIðtÞ sin ð�uÞ þ R _h
M
z, RIðtÞfcosð�uÞ − 1g

¼ þIN!uð�uÞ

ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _N pðsÞds

" #

þ
X4

i¼1
I i!uð�uÞ

ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _Gp, iðsÞds

" #( )

,

(27) 

while the temporally evolving distributions of the shell gen-
erator rotations read as [14]

þ _h
M
z ð�u, tÞ − _h

M
z, RIðtÞ

¼ þIN!zð�uÞ

ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _N pðsÞds

" #

þ
X4

i¼1
I i!zð�uÞ

ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _Gp, iðsÞds

" #( )

:

(28) 
In Eqs. (26) and (27), _uM

r and _uM
u denote the radial and cir-

cumferential displacement rates of the midsurface of the 

tunnel shell segment; and in Eq. (28), _h
M
z stands for the rate 

of the rotational angle of the shell generator lying perpen-
dicular to the midsurface of the tunnel segment. This fol-
lows the kinematic reasoning given in [13, 14, 53], so that 
the introduction of generator rotations in the context of a 
right-handed base frame implies that

hM
z ¼ −

1
R

duM
r

du
þ

uM
u

R
: (29) 

Furthermore, in Eqs. (26) – (28), _uM
r, RI , _uM

u, RI , and _h
M
z, RI stand 

for the aforementioned quantities at the right impost of the 
shell, _N p and _Gp, i stand for the rates of the impost force and 
ground pressure values at the positions �u ¼ ði − 1ÞDu=3, �ruu 

and �rzz stand for the circumferential and axial normal stresses 
averaged over the shell thickness, and the influence functions I
are defined in Appendix B: In more detail, the force-to-displace-
ment influence functions IN!r and IN!u are defined through 
Eqs. (B1) and (B6), the pressure-to-displacement influence func-
tions I i!r and I i!u, with i ¼ 1, 2, 3, 4 are defined through 
Eqs. (B2) – (B5) and Eqs. (B7) – (B10), respectively, the force- 
to-rotation influence function IN!z is defined through Eq. 
(B11), and the pressure-to-rotation influence functions I i!z, 
with i ¼ 1, 2, 3, 4 are defined through Eqs. (B12) – (B15).

After temporal discretization, which is described in more 
detail in Section 3, the relations (26) – (28) allow for trans-
lation of displacement values measured at particular posi-
tions on the inner shell surface, into ground pressure and 
impost force values. The latter give access to normal forces 
and bending moments, via [14]

nuð�uÞ ¼ þNp IN!nð�uÞ −
X4

i¼1
R Gp, i I i!nð�uÞ
� �

, (30) 
and

mzð�uÞ ¼ þR Np IN!mð�uÞ þ
X4

i¼1
R2 Gp, i I i!nð�uÞ
� �

, (31) 

with the time-invariant influence functions I given as Eqs. 
(B16) – (B21) in Appendix B. At the imposts, i.e. at �u ¼ 0 
and �u ¼ Du, the bending moments fulfill the following nat-
ural boundary conditions [14]:

1
R

dmz

du
¼ 0: (32) 

Finally, bending moments and normal forces provide access 
to axial and circumferential normal stress tensor 

Figure 2. Illustration of slender arch-like tunnel cross section with radius R 
and thickness h, global Cartesian base frame ex , ey , ez , and local polar base frames 
erðuÞ, euðuÞ, ez; the latter is indicated at the left and right impost of the arch-like 
tunnel cross section, labeled by polar angles uRI and uLI , reproduced from [14], 
copyright by the authors.

Figure 3. Cross section of the Sieberg tunnel with focus on the top heading: definition 
of ex -ey and erð�uÞ-euð�uÞ coordinate frames, geometric properties and locations of 
measurement points MP1, MP2, and MP3, reproduced from [14], copyright by the 
authors.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



components, via [14, 50]

ruuðr, �uÞ ¼
nuð�uÞ

h
þ

12 mzð�uÞ

h3 r − Rð Þ, (33) 

while the axial normal stress tensor component follows from 
the format of the creep function tensor according to Eq. (9), 
reading as

rzzðr, �uÞ ¼ � ruuðr, �uÞ: (34) 

3. Determination of ground actions from 
displacement measurements

3.1. Geological setting and measurement equipment

The present study on the effect of nonlinear viscoelastic 
shotcrete behavior on the stress assessment in NATM tunnel 
shells complements a series of “hybrid analyses” on meas-
urement cross section MC1452 of the Sieberg tunnel [9, 10, 
14, 16, 39, 54]: This tunnel was built in the 1990s as part of 
the high-speed railroad line between Vienna and Salzburg 
and has a total length of 6480 m: The tunnel was driven 
through clay-marl-rich geological layers, by means of two 
different construction methods: Cut-and-cover construction 
was used for 1040 m at the east portal and for 240 m at the 
west portal, while the majority of the tunnel length, the 
remaining 5200 m, were driven according to the New 
Austrian Tunneling Method. In the latter portion of the tun-
nel, the overburden varies between 5 m and 55 m, and it 
amounts to 12 m at the investigated measurement cross sec-
tion MC1452, which was excavated in a zone of Miocene 
clay marl, as can be seen in Figure 4.

There, the cross-sectional area is around 119 m2, falling 
into three portions: 53:5 m2 are associated with the top 
heading, 2� 21 m2 are associated with the benches, and 
23:7 m2 are associated with the invert [55]. The radius of 
the tunnel shell in the top heading amounts to R¼ 6.2 m, 
and its opening angle amounts to Du ¼ 167.3�, see Figure 
3. The top heading was equipped with three measurement 
points (MPs), MP1, MP2, and MP3, see Figure 3, where 
optical reflectors were mounted to the inner surface of the 
shell, allowing for laser-optical measurements of displace-
ment vectors; and we here consider the corresponding meas-
urements over the first 21 days of the lifetime of the Sieberg 
tunnel, see Table A2 in Appendix A.

3.2. Measurement data-motivated piecewisely linear 
evolutions of displacement and force quantities

The measured displacements are not recorded in terms of 
continuous functions, uðtÞ, but rather in terms of values 
recorded at discrete time instants, denoted by tn, whereby 
n ¼ 1, :::, Nt , with Nt as the total number of time instants. 
All these time instants are measured with respect to t0 ¼ 0:
In this context, time intervals are denoted by Dtn ¼

tn − tn−1: More specifically, the records encompass discrete 
values in a Cartesian base frame, uMPi

x ðtnÞ and uMPi
y ðtnÞ, with 

i¼ 1, 2, 3, which can be converted, through the standard vec-
tor component transformation rules, into polar values 
uMPi

r ðtnÞ and uMPi
u ðtnÞ, with i¼ 1, 2, 3, see Appendix A. 

Hence, the relations (26) – (28) need to be transformed 
such that displacement and force quantities appear only as 
values encountered at the aforementioned time instants. For 
this purpose, we consider piecewisely linear evolution of dis-
placement and force quantities between the aforementioned 
time instants, and we identify the slope of the evolution 
between the time instants tn−1, and tn as the rate of the 
respective quantity at time instant tn In mathematical terms, 
the corresponding rates read as

_urðtnÞ �
urðtnÞ − urðtn−1Þ

Dtn
, 8n 2 1, :::, Nt½ �, (35) 

_uuðtnÞ �
uuðtnÞ − uuðtn−1Þ

Dtn
, 8n 2 1, :::, Nt½ �, (36) 

_hzðtnÞ �
hzðtnÞ − hzðtn−1Þ

Dtn
, 8n 2 1, :::, Nt½ �, (37) 

_N pðtnÞ �
NpðtnÞ − Npðtn−1Þ

Dtn
, 8n 2 1, :::, Nt½ �, (38) 

_Gp, iðtnÞ �
Gp, iðtnÞ − Gp, iðtn−1Þ

Dtn
,

8n 2 1, :::, Nt½ �, and 8i 2 1, 2, 3, 4½ �:

(39) 

The correspondingly discretized versions of Eqs. (26)–(28)
are evaluated Nt times. Each of these versions allows for 
computing, from ground pressure and impost values known 
at time instant tn−1, the corresponding force quantities asso-
ciated with time instant tn. This, however, requires, at all 
time instants tn, with n ¼ 1, :::, Nt , the approximation of 
convolution integrals which read as

Figure 4. Geological longitudinal section of the Sieberg tunnel: Representation of the geological conditions in the area of the measurement cross-section MC1452 
installed on December 14, 1997.
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CNðtÞ ¼
ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _N pðsÞds, (40) 

and as

CGðtÞ ¼
ðt

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _Gp, iðsÞds,

8i 2 1, 2, 3, 4½ �:

(41) 

This will be tackled next.

3.3. Evaluation and approximation of convolution 
integrals

Equations (40) and (41) cannot be exactly evaluated at any cur-
rent time instant tn, as the corresponding mean stresses are not 
known yet. Quite contrarily, the latter will be actually deter-
mined from this very equations. Hence, when it comes to the 

additional creep compliance due to high stresses, the mean 
stresses at time instant tn will be simply approximated by those 
already known for time instant tn−1: Correspondingly, the affin-
ity factor can be taken out of the convolution integral. 
Furthermore, the force rates will be considered constant during 
time interval Dtn and approximated through Eqs. (38) and (39), 
and consistently, the creep function rate according to Eq. (11)
will be considered as temporally constant as well. In mathemat-
ical terms, all these steps result in

CNðtnÞ ¼

ðtn

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _N pðsÞds

�
XNt

m¼1

gð�ruuðtn−1Þ, �rzzðtn−1ÞÞ

EcðnðtnÞÞ

b

t�0
tn − tm

t�0

� �b−1
� ½NpðtmÞ − Npðtm−1Þ�

þ
NpðtnÞ − Npðtn−1Þ

EðnðtnÞÞDtn
, 8n 2 1, :::, Nt½ �,

(42) 

Figure 5. Distribution of radial and circumferential displacements at shell midsurfaces (a-f), and of generator rotations (g-i) along the circumference of the top 
heading (index 1) of the Sieberg tunnel at measurement cross section MC1452, and the temporal evolution of maximum and minimum values (index 2) for the 
time points according to Table A2; determined by hybrid analyses based on aging elasticity (a,d,g), on aging viscoelasticity (b,e,h), on aging nonlinear viscoelasticity 
(c,f,i), respectively.
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and

CG, iðtnÞ ¼

ðtn

0

@Jr

@t
ðnðtÞ, gð�ruuðtÞ, �rzzðtÞÞ, t − sÞ _Gp, iðsÞds

�
XNt

m¼1

gð�ruuðtn−1Þ, �rzzðtn−1ÞÞ

EcðnðtnÞÞ

b

t�0
tn − tm

t�0

� �b−1
� Gp, jðtmÞ − Gp, jðtm−1Þ
� �

þ
Gp, jðtnÞ − Gp, jðtn−1Þ

EðnðtnÞÞDtn
, 8n 2 1, :::, Nt½ �, and 8i 2 1, 2, 3, 4½ �:

(43) 

3.4. Sequential displacement-to-force conversion

Insertion of Eqs. (35)–(39), as well as of Eqs. (42)–(43)
together with Eqs. (16) and (17), into the rate Eqs. (26)–(28)
yields displacement-force relations for each time instant tn, 
n ¼ 1, :::, Nt , given in the following format.

þ
uM

r ð�u, tnÞ − uM
r ð�u, tn−1Þ

Dtn
−

uM
r, RIðtnÞ − uM

r, RIðtn−1Þ

Dtn
cos ð�uÞ½ �

−
uM

u, RIðtnÞ − uM
u, RIðtn−1Þ

Dtn
sin ð�uÞ½ � þ

R hM
z, RIðtnÞ − R hM

z, RIðtn−1Þ

Dtn
sin ð�uÞ½ �

¼ þ IN!rð�uÞfgð�ruuðtn−1Þ, �rzzðtn−1ÞÞ
XNt

m¼1

b=t�0
EcðnðtnÞÞ

tn − tm

t�0

� �b−1

� NpðtmÞ − Npðtm−1Þ
� �

þ
NpðtnÞ − Npðtn−1Þ

EðnðtnÞÞDtn
g

þ
X4

j¼1
I j!rð�uÞ gð�ruuðtn−1Þ, �rzzðtn−1ÞÞ

XNt

m¼1

b=t�0
EcðnðtnÞÞ

tn − tm

t�0

� �b−1
((

� Gp, jðtmÞ − Gp, jðtm−1Þ
� �

þ
Gp, jðtnÞ − Gp, jðtn−1Þ

EðnðtnÞÞDtn

��

, (44) 

þ
uM

u ð�u, tnÞ − uM
u ð�u, tn−1Þ

Dtn
þ

uM
r, RIðtnÞ − uM

r, RIðtn−1Þ

Dtn
sin ð�uÞ½ �

−
uM

u, RIðtnÞ − uM
u, RIðtn−1Þ

Dtn
cos ð�uÞ½ � þ

R hM
z, RIðtnÞ − R hM

z, RIðtn−1Þ

Dtn
½cos ð�uÞ − 1�

¼ þ IN!uð�uÞfgð�ruuðtn−1Þ, �rzzðtn−1ÞÞ
XNt

m¼1

b=t�0
EcðnðtnÞÞ

tn − tm

t�0

� �b−1

� NpðtmÞ − Npðtm−1Þ
� �

þ
NpðtnÞ − Npðtn−1Þ

EðnðtnÞÞDtn
g

þ
X4

j¼1
I j!uð�uÞ gð�ruuðtn−1Þ, �rzzðtn−1ÞÞ

XNt

m¼1

b=t�0
EcðnðtnÞÞ

tn − tm

t�0

� �b−1
((

� Gp, jðtmÞ − Gp, jðtm−1Þ
� �

þ
Gp, jðtnÞ − Gp, jðtn−1Þ

EðnðtnÞÞDtn

��

, (45) 

þ
hM

z ð�u, tnÞ − hM
z ð�u, tn−1Þ

Dtn
−

hM
z, RIðtnÞ − hM

z, RIðtn−1Þ

Dtn

¼ þ IN!zð�uÞfgð�ruuðtn−1Þ, �rzzðtn−1ÞÞ
XNt

m¼1

b=t�0
EcðnðtnÞÞ

tn − tm

t�0

� �b−1

� NpðtmÞ − Npðtm−1Þ
� �

þ
NpðtnÞ − Npðtn−1Þ

EðnðtnÞÞDtn
g

þ
X4

j¼1
I j!zð�uÞ gð�ruuðtn−1Þ, �rzzðtn−1ÞÞ

XNt

m¼1

b=t�0
EcðnðtnÞÞ

tn − tm

t�0

� �b−1
((

� Gp, jðtmÞ − Gp, jðtm−1Þ
� �

þ
Gp, jðtnÞ − Gp, jðtn−1Þ

EðnðtnÞÞDtn

��

: (46) 

From Eqs. (44)–(46), displacement data recorded at the 
three measurement points MP1, MP2, and MP3, indicated 
in Figure 3, can be translated, at each time instant tn, n ¼
1, 2, :::, Nt , into ground pressure values Gp, iðtnÞ, i ¼ 1, 2, 3, 4, 
and impost force values NpðtnÞ: In more detail, seven 

unknowns, namely Gp, 1ðtnÞ, Gp, 2ðtnÞ, Gp, 3ðtnÞ, Gp, 4ðtnÞ, 
NpðtnÞ, hM

z, RIðtnÞ ¼ hM
z ð�u ¼ 0Þ, and hM

z, LIðtnÞ ¼ hM
z ð�u ¼ DuÞ, 

need to be determined from a linear system of seven equa-
tions. The latter are obtained as follows:

� Two equations result from specification of the natural 
boundary condition, Eq. (32), for the left and right 
impost of the arch-like tunnel cross section, �u ¼ 0 and 
�u ¼ Du, as well as for Eq. (31).

� Two equations result from specification of the discretized 
format of the radial displacements according to Eq. (44)
for uM

r ð�u ¼ Du=2, tnÞ ¼ uMP1
r ðtnÞ and uM

r ð�u ¼ Du, tnÞ ¼

uMP2
r ðtnÞ, and also for uM

r, RI ¼ uMP3
r and uM

u, RI ¼ uMP3
u :

� Two equations result from specification of the discretized 
format of the tangential displacements according to Eq. 
(45) for uM

u ð�u ¼ Du=2, tnÞ ¼ uMP1
u ðtnÞ and uM

u ð�u ¼

Du, tnÞ ¼ uMP2
u ðtnÞ, and also for uM

r, RI ¼ uMP3
r 

and uM
u, RI ¼ uMP3

u :

� One equation results from specification of the discretized 
format of the rotation angle according to Eq. (46)
for hM

z ð�u ¼ Du, tnÞ ¼ hM
z, LIðtnÞ:

This system is solved at every time instant tn. In addition, 
degenerated forms of Eqs. (44)–(46), arising from the 
choices g¼ 1, and g¼ 0, respectively, are converted into 
simplified systems of equations. The latter give access to 
shells exhibiting linear aging viscoelastic and aging elastic 
behavior.

4. Ground pressure, force, and displacement 
developments in MC1452 of Sieberg tunnel

The following results were obtained for a typical shotcrete 
mixture with cement type CEM II/A-S 42.5 R, and strength 
class SpC 20/25, see Table 1, by solving the linear system of 
seven equations arising from Eqs. (44)–(46), as described 
just below these equations.

The resulting spatial distributions of displacements and 
generator rotations are virtually independent of the chosen 
material model, as can be seen by comparing Figure 5(a1), 
(a2), (d1), (d2), (g1), (g2) with Figure 5(b1), (b2), (e1), (e2), 
(h1), (h2), and Figure 5(c1), (c2), (f1), (f2), (i1), (i2).
As a rule, the largest absolute values of radial displacements 
are encountered at the crown of the tunnel, and the largest 
absolute values of circumferential displacements are encoun-
tered at the imposts, with the radial displacements reflecting 
inward movements and the circumferential displacements 
reflecting settlements of the midsurface of the investigated 
tunnel shell. These inward movements and settlements 
develop during the first five days of the lifetime of the tun-
nel, and after some subsequent fluctuations, they stabilize 
after some 10 days, see Figure 5. The inward movements are 
consistent with a negative (clockwise) generator rotation at 
the left impost (with �u ¼ Du) and a positive (counterclock-
wise) generator rotation at the right impost (with �u ¼ 0). 
Over time, the right imposed-related positive rotation is 
enhanced, while the left imposed-related negative rotation 
diminishes, which is consistent with the left impost showing 
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Figure 6. Midsurface displacement distribution with corresponding shell generator lines of length h ¼ 0:30 m at t ¼ 1:264 d (a), and at t ¼ 21 d, of the Sieberg tunnel 
at the measurement cross-section MC1452 (magnification factor of the displacements: 35); determined by hybrid analysis based on aging nonlinear viscoelasticity.

Figure 7. Distribution of circumferential normal forces (a-c), bending moments (d-f), and of ground pressure (g-i) along the circumference of the top heading (index 
1) of the Sieberg tunnel at measurement cross section MC1452, and the temporal evolution of maximum and minimum values (index 2) for the time points accord-
ing to Table A2; determined by hybrid analyses based on aging elasticity (a,d,g), on aging viscoelasticity (b,e,h), on aging nonlinear viscoelasticity (c,f,i), 
respectively.
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larger radial inward movements than the right impost, see 
Figure 6.

Insertion of the solutions for the variables 
Gp, 1, Gp, 2, Gp, 3, Gp, 4, and Np into the external-to-internal 
force relations (30) and (31), provides spatial distributions 
of axial normal forces and of bending moments, see Figure 
7(a1), (b1), (c1), (d1), (e1), (f1), while the use of ground pres-
sure value solutions in Eq. (24) yields ground pressure dis-
tributions, see Figure 7(g1), (h1), (i1): In terms of magnitude 
of the involved physical quantities, all these distributions are 
heavily dependent on the chosen material model for shot-
crete, with the magnitudes of ground pressure and normal 
force being reduced by a factor of about three when switch-
ing from an aging elasticity model to an aging viscoelastic 
formulation for highly stressed shotcrete; with the aging ver-
sion of linear viscoelasticity delivering results lying right 
between the aforementioned ones. The situation is 

somewhat different for the bending moments, which are, by 
comparison, fairly independent of the chosen material model 
for shotcrete, see Figure 7(d)–(f). As a rule, these bending 
moments vanish at the imposts, in accordance with the used 
structural model not permitting moment transmission from 
the tunnel shell to the surrounding ground. They also vanish 
at the tunnel crown, but they exhibit remarkable non-zero 
values in the lateral portions of the tunnel arch. The latter 
values are negative at the right-hand side of the tunnel arch, 
which, according to Eq. (21), comes with bending moment- 
induced tensile normal stresses at the inner shell surface, 
and the opposite is true for the left-hand side of tunnel 
arch, with positive bending moment values and associated 
tensile normal stresses at the outer shell surface. When com-
pared to the bending moments, the axial normal forces are 
virtually independent of the spatial position, see Figure 
7(a1), (b1), (c1), which is consistent with a virtually uniform 

Figure 8. Distribution of degree of utilization for r ¼ Rþ h=2 (a-c), for r¼ R (d-f), and for r ¼ R − h=2 (g-i), along the circumference of the top heading (index 1) 
of the Sieberg tunnel at measurement cross section MC1452, and the temporal evolution of maximum and minimum values (index 2) for the time points according 
to Table A2; determined by hybrid analyses based on aging elasticity (a,d,g), on aging viscoelasticity (b,e,h), on aging nonlinear viscoelasticity (c,f,i), respectively.
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ground pressure, see Figure 7(g1), (h1), (i1). They are the 
main loading factor of the tunnel shell, as seen by virtually 
constant utilization degree distributions along the midsur-
face of the tunnel shell, see Figure 8(d1), (e1), (f1). 
Somewhat differently, the utilization degrees at the inner 
and outer shell surfaces exhibit an azimuth-dependent fluc-
tuation, see Figure 8(a1), (b1), (c1), (g1), (h1), (i1). These 
fluctuations are a consequence of the bending moment dis-
tributions discussed further above; the latter result from 
fluctuations in the ground pressure, being larger in the right 
portion than in the left portion of the tunnel arch, but of 
such a small magnitude, that they are not discernible in 
Figure 7(g–i). Conclusively, it turns out that only the con-
sideration of aging nonlinear viscoelastic material behavior 
provides access to realistic values for the degree of utiliza-
tion, being lower than one, see Figure 8. Simpler material 
models would indicate local material failure, which was not 
observed in situ.

5. Conclusions

Aging viscoelasticity for highly stressed shotcrete appears as 
necessary ingredient for the realistic assessment of the forces 
acting on and within a tunnel shell constructed according to 
the New Austrian Tunneling Method, with corresponding 
displacement monitoring data feeding an analytical mech-
anic model. This is consistent with recent results concerning 
mechanized tunneling with precast tunnel segments being 
monitored by vibrating wires, where the use of a viscoelastic, 
rather than a simple elastic, material model for the used 
concrete was also key to realistic stress and utilization 
degree assessment [56]. The combination of Boltzmann’s 
superposition principle with power-law creep functions, as 
used here, may also be reformulated in terms of fractional 
derivatives of the Caputo form [57] – this embeds the pre-
sent contribution into a wide field of creep applications, 
comprising not only concrete, but also polymers [58] and 
semiconductors [59]. Finally, the consideration of aging is 
key to realistic mechanics modeling for the NATM: 
Mathematically, this can be met by a constitutive formula-
tion which is exclusively built on stress and strain rates, 
rather than the current total quantities of stress and strain, 
as they appear in the traditional format of Hooke’s law. In 
this context, the overall emerging picture is one where spe-
cific forms of stress-rate-strain-rate laws may be integrated 
so as to deliver total stress-strain laws with clearly limited 
validity, rather than one where rate laws would result from 
temporal derivatives of total stress-strain laws. This is con-
sistent with the steadily growing importance of rate-based 
material modeling ever since Truesdell’s inception of hypoe-
lasticity [35]. In this context, our expression (2) can be seen 
as yet another way of generalizing and broadening more 
traditional elastic and viscoelastic modeling concepts, in 
addition to that resting on Gibbs’ thermodynamic poten-
tial [38].

Acknowledgements

The authors acknowledge TU Wien Bibliothek for financial support 
through its Open Access Funding Programme. They are also grateful 
for interesting discussions with Dr. Rodrigo D�ıaz Flores (TU Wien), 
Dr. Bernd Moritz ( €OBB - Austrian Federal Railways), and Markus 
Brandtner (IGT Consulting).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The authors gratefully acknowledge financial support through project 
FFG-COMET #882504 “Rail4Future: Resilient Digital Railway Systems 
to enhance performance”.

References

0[1] L. M€uller, Removing misconceptions on the New Austrian 
Tunnelling Method, Tunn. Tunn. Int., vol. 10, no. 8, pp. 29–32, 
1978.
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Appendix A. 

Displacement measurements performed at MC1452 
of Sieberg tunnel

Displacements obtained from geodetic reflectors installed at three measure-
ment points, denoted uMPi

x and uMPi
y , with i¼ 1, 2, 3, where recorded in 

Cartesian components, as given in Table A1. Thereafter, they were trans-
formed to polar components uMPi

r and uMPi
u , with i¼ 1, 2, 3, according to

uMPi
r ¼ þ cos ðuiÞ uMPi

x þ sin ðuiÞ uMPi
y , (A1) 

uMPi
u ¼ − sin ðuiÞ uMPi

x þ cos ðuiÞ uMPi
y , (A2) 

with i¼ 1, 2, 3, and with u1 ¼ 90� , u2 ¼ 173:65� , and u3 ¼ 6:35� , see 
Table A2. These polar displacements entered the hybrid analysis 
defined through Eqs. (44)–(46) and the explanations below.

Appendix B. 

Azimuth-dependent influence functions associated 
with ground pressure and impost force

Equation (26), linking rates of ground pressure and impost force to 
rates of radial displacements, contains the following influence 
functions,
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Table A1. Cartesian displacement components uMPi
x , uMPi

y (in meters) measured at three geodetic reflectors installed within cross section MC1452 of Sieberg tun-
nel; as seen in Figure 3.

Viewing time
Measurement point MP1 Measurement point MP2 Measurement point MP3

uMP1
x uMP1

y uMP2
x uMP2

y uMP3
x uMP3

y

t0 ¼ 0:000 d ±0.00000 ±0.00000 ±0.00000 ±0.00000 ±0.00000 ±0.00000
t1 ¼ 0:120 d –0.00002 –0.00185 þ0.00047 –0.00062 –0.00043 –0.00039
t2 ¼ 0:252 d –0.00004 –0.00387 þ0.00098 –0.00130 –0.00093 –0.00084
t3 ¼ 0:464 d –0.00007 –0.00715 þ0.00179 –0.00235 –0.00179 –0.00157
t4 ¼ 0:792 d –0.00013 –0.01177 þ0.00303 –0.00410 –0.00330 –0.00279
t5 ¼ 1:264 d þ0.00010 –0.01621 þ0.00429 –0.00572 –0.00459 –0.00438
t6 ¼ 1:750 d þ0.00057 –0.01772 þ0.00528 –0.00660 –0.00517 –0.00563
t7 ¼ 2:333 d þ0.00053 –0.01921 þ0.00616 –0.00754 –0.00481 –0.00668
t8 ¼ 3:500 d –0.00047 –0.02053 þ0.00725 –0.00882 –0.00354 –0.00750
t9 ¼ 4:667 d þ0.00023 –0.02108 þ0.00865 –0.00890 –0.00389 –0.00833
t10 ¼ 5:833 d þ0.00065 –0.02085 þ0.00813 –0.00928 –0.00342 –0.01000
t11 ¼ 7:000 d þ0.00089 –0.02076 þ0.00879 –0.00917 –0.00385 –0.00876
t12 ¼ 8:167 d þ0.00086 –0.02062 þ0.00926 –0.00960 –0.00335 –0.00877
t13 ¼ 9:333 d þ0.00080 –0.02054 þ0.00971 –0.00955 –0.00338 –0.00872
t14 ¼ 10:50 d þ0.00077 –0.02057 þ0.01010 –0.00961 –0.00345 –0.00861
t15 ¼ 11:67 d þ0.00078 –0.02056 þ0.01047 –0.00960 –0.00351 –0.00857
t16 ¼ 12:83 d þ0.00081 –0.02054 þ0.01092 –0.00963 –0.00357 –0.00850
t17 ¼ 14:00 d þ0.00086 –0.02052 þ0.01122 –0.00966 –0.00361 –0.00845
t18 ¼ 15:17 d þ0.00092 –0.02050 þ0.01114 –0.00943 –0.00362 –0.00847
t19 ¼ 16:33 d þ0.00099 –0.02048 þ0.01099 –0.00951 –0.00361 –0.00854
t20 ¼ 17:50 d þ0.00105 –0.02047 þ0.01081 –0.00941 –0.00357 –0.00858
t21 ¼ 18:67 d þ0.00108 –0.02048 þ0.01061 –0.00939 –0.00353 –0.00858
t22 ¼ 19:83 d þ0.00107 –0.02049 þ0.01043 –0.00932 –0.00348 –0.00857
t23 ¼ 21:00 d þ0.00104 –0.02050 þ0.01026 –0.00928 –0.00344 –0.00861
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ðDuÞ
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þ
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2 sin ðDuÞ

þ
sin ð�uÞ
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−
9 sin ð�uÞ
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2 tan ðDuÞ

þ
sin ð�uÞ

2 sin ðDuÞ
−
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��

:

(B5) 
Equation (27), linking rates of ground pressure and impost force to 

rates of circumferential displacements, contains the following influence 
functions,

IN!uð�uÞ ¼ f1 − �2g

��
R
2h
þ

6R3

h3

��

�u cos ð�uÞ − 3 sin ð�uÞ −
�u sin ð�uÞ
tan ðDuÞ

þ
�u sin ð�uÞ
sin ðDuÞ

�

þ
R
h
½2 sin ð�uÞ� þ

12R3

h3

�

�u −
cos ð�uÞ − 1

tan ðDuÞ
þ

cos ð�uÞ − 1
sin ðDuÞ

��

,
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I 1!uð�uÞ ¼ f1 − �2g
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R2

h
þ

12R4
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−
54 − 54 cos ð�uÞ
ðDuÞ
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þ
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�

þ
R2

h

�

þ
27�u2

2ðDuÞ
3 −

18�u

ðDuÞ
2

−
sin ð�uÞ

2
þ

27 sin ð�uÞ
ðDuÞ

2

�

þ
12R4

h3

�
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ðDuÞ
2 −
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3

−
11�u2
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þ
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2
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−
18 − 18 cos ð�uÞ
ðDuÞ

2 tan ðDuÞ
þ �u

��

,
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I 2!uð�uÞ ¼ f1 − �2g

��
R2

h
þ

12R4
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��

þ
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ðDuÞ
3 −
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Du

−
45�u sin ð�uÞ

2ðDuÞ
2 tan ðDuÞ

−
18�u sin ð�uÞ
ðDuÞ

2 sin ðDuÞ
þ

45�u cos ð�uÞ
2ðDuÞ

2

�

þ
12R4

h3

�

−
81�u2

ðDuÞ
3 þ

27�u4

8ðDuÞ
3 þ

90�u

ðDuÞ
2 −

15�u3

2ðDuÞ
2 þ

9�u2

2Du

þ
45 − 45 cos ð�uÞ
ðDuÞ

2 tan ðDuÞ
þ

36 − 36 cos ð�uÞ
ðDuÞ

2 sin ðDuÞ
−

225 sin ð�uÞ
2ðDuÞ

2

�

þ
R2

h

�

−
81�u2

2ðDuÞ
3 þ

45�u

ðDuÞ
2 −

135 sin ð�uÞ
2ðDuÞ

2

��

,

(B8) 

Table A2. Radial and circumferential displacement components uMPi
r , uMPi

u (in meters) measured at three geodetic reflectors installed within cross section MC1452 
of Sieberg tunnel; as seen in Figure 3.

Viewing time
Measurement point MP1 Measurement point MP2 Measurement point MP3

uMP1
r uMP1

u uMP2
r uMP2

u uMP3
r uMP3

u

t0 ¼ 0:000 d ±0.00000 ±0.00000 ±0.00000 ±0.00000 ±0.00000 ±0.00000
t1 ¼ 0:120 d –0.00185 þ0.00002 –0.00054 þ0.00056 –0.00047 –0.00034
t2 ¼ 0:252 d –0.00387 þ0.00004 –0.00112 þ0.00118 –0.00102 –0.00073
t3 ¼ 0:464 d –0.00715 þ0.00007 –0.00204 þ0.00214 –0.00195 –0.00136
t4 ¼ 0:792 d –0.01177 þ0.00013 –0.00346 þ0.00374 –0.00359 –0.00241
t5 ¼ 1:264 d –0.01621 –0.00010 –0.00490 þ0.00521 –0.00505 –0.00385
t6 ¼ 1:750 d –0.01772 –0.00057 –0.00598 þ0.00598 –0.00576 –0.00502
t7 ¼ 2:333 d –0.01921 –0.00053 –0.00700 þ0.00681 –0.00552 –0.00611
t8 ¼ 3:500 d –0.02053 þ0.00047 –0.00818 þ0.00796 –0.00435 –0.00706
t9 ¼ 4:667 d –0.02108 –0.00023 –0.00958 þ0.00789 –0.00479 –0.00785
t10 ¼ 5:833 d –0.02085 –0.00065 –0.00911 þ0.00832 –0.00450 –0.00956
t11 ¼ 7:000 d –0.02076 –0.00089 –0.00975 þ0.00814 –0.00479 –0.00828
t12 ¼ 8:167 d –0.02062 –0.00086 –0.01026 þ0.00852 –0.00430 –0.00835
t13 ¼ 9:333 d –0.02054 –0.00080 –0.01071 þ0.00842 –0.00432 –0.00829
t14 ¼ 10:50 d –0.02057 –0.00077 –0.01110 þ0.00843 –0.00438 –0.00818
t15 ¼ 11:67 d –0.02056 –0.00078 –0.01147 þ0.00838 –0.00444 –0.00813
t16 ¼ 12:83 d –0.02054 –0.00081 –0.01192 þ0.00836 –0.00449 –0.00805
t17 ¼ 14:00 d –0.02052 –0.00086 –0.01222 þ0.00836 –0.00452 –0.00800
t18 ¼ 15:17 d –0.02050 –0.00092 –0.01211 þ0.00814 –0.00453 –0.00802
t19 ¼ 16:33 d –0.02048 –0.00099 –0.01197 þ0.00824 –0.00453 –0.00809
t20 ¼ 17:50 d –0.02047 –0.00105 –0.01178 þ0.00816 –0.00450 –0.00813
t21 ¼ 18:67 d –0.02048 –0.00108 –0.01158 þ0.00816 –0.00446 –0.00814
t22 ¼ 19:83 d –0.02049 –0.00107 –0.01140 þ0.00811 –0.00441 –0.00813
t23 ¼ 21:00 d –0.02050 –0.00104 –0.01122 þ0.00809 –0.00437 –0.00818
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I 3!uð�uÞ ¼ f1 − �2g

��
R2

h
þ

12R4

h3
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þ
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h

�
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ðDuÞ

2

��

,
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I 4!uð�uÞ ¼ f1 − �2g

��
R2

h
þ

12R4

h3

��

−
1
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þ

54 − 54 cos ð�uÞ
Du3 þ

cos ð�uÞ
Du

−
9�u sin ð�uÞ

2Du2 tan ðDuÞ
þ

�u sin ð�uÞ
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−
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þ
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2Du2

�

þ
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h3

�

−
27�u2
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þ
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−
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sin ðDuÞ

þ
18 − 18 cos ð�uÞ
Du2 sin ðDuÞ

�

þ
R2

h

�

þ
9�u

Du2 −
27�u2
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��

:

(B10) 
Equation (28), linking rates of ground pressure and impost force to 

rates of rotational angle around the z-axis, contains the following influ-
ence functions,

IN!zð�uÞ ¼ f1 − �2g

�
12R2

h3

�

�u −
cos ð�uÞ − 1

tan ðDuÞ
−

1 − cos ð�uÞ
sin ðDuÞ

− sin ð�uÞ
��

,

(B11) 

I1!zð�uÞ ¼ f1 − �2g

�
12R3
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�
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2ðDuÞ
3 −
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þ
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þ
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2 −
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ðDuÞ

2 tan ðDuÞ
−
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2 sin ðDuÞ

��

,
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I 2!zð�uÞ ¼ f1 − �2g

�
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�

−
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2ðDuÞ
3 þ

27�u4

8ðDuÞ
3 þ
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2 −
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−
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��

,
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I 3!zð�uÞ ¼ f1 − �2g

�
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þ
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2ðDuÞ
3 −

27�u4

8ðDuÞ
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,
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I 4!zð�uÞ ¼ f1 − �2g

�
12R3
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�

−
27�u2

2ðDuÞ
3 þ

9�u4

8ðDuÞ
3 þ

9�u

ðDuÞ
2

−
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2Du
−
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2
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9 − 9 cos ð�uÞ
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þ
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−
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��

:

(B15) 
Equation (30), linking ground pressure and impost force to 

(internal) axial forces, contains the following influence functions,

IN!nð�uÞ ¼ þ cos ð�uÞ −
sin ð�uÞ

tan ðDuÞ
þ

sin ð�uÞ
sin ðDuÞ

, (B16) 

I 1!nð�uÞ ¼ þ1þ
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3 −

9�u3

2ðDuÞ
3 −

18
ðDuÞ

2 þ
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2 −
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þ
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2 þ
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tan ðDuÞ
−
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2 tan ðDuÞ
−
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I 2!nð�uÞ ¼ −
81�u

ðDuÞ
3 þ

27�u3

2ðDuÞ
3 þ

45
ðDuÞ

2 −
45�u2

2ðDuÞ
2 þ
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−
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2 þ
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þ
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,
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I 3!nð�uÞ ¼ þ
81�u

ðDuÞ
3 −

27�u3

2ðDuÞ
3 −

36
ðDuÞ

2 þ
18�u2

ðDuÞ
2 −
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2Du

þ
36 cos ð�uÞ
ðDuÞ

2 −
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ðDuÞ
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−
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,
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I 4!nð�uÞ ¼ −
27�u

ðDuÞ
3 þ

9�u3

2ðDuÞ
3 þ

9
ðDuÞ

2 −
9�u2

2ðDuÞ
2 þ

�u

Du

−
9 cos ð�uÞ
ðDuÞ

2 þ
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ðDuÞ
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−
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þ

18 sin ð�uÞ
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:

(B20) 
The latter four influence functions appear also in Eq. (31), linking 

ground pressure and impost force to (internal) bending moments, 
along with the following influence function

IN!mð�uÞ ¼ þ1 − cos ð�uÞ þ
sin ð�uÞ

tan ðDuÞ
−

sin ð�uÞ
sin ðDuÞ

: (B21) 

Nomenclature 

Ai cubic shape functions (with i ¼ 1, 2, 3, 4) 
d Eulerian strain rate tensor 
er, eu, ez unit base vectors of (cylindrical) coordinate system, moving 

along an arc 
ex, ey, ez unit base vectors of Cartesian coordinate system, fixed in 

space 
E elastic modulus (Young’s modulus) of shotcrete 
E28d 28-day value of E 
Ec creep modulus of shotcrete 
Ec, 28d 28-day value of Ec 
fb biaxial compressive strength of shotcrete 
fc uniaxial compressive strength of shotcrete 
f �c reference strength level 
fc, 28d 28-day value of fc 
Gp ground pressure 
Gp, i ground pressure at position i (with i ¼ 1, 2, 3, 4) 
h thickness of tunnel shell segment 
J 4th-order creep function tensor 
Jd 4th-order creep rate function tensor 
Jr 4th-order creep function tensor associated with highly 

stressed material 
J creep function 
kDP strength-like quantity in Drucker–Prager failure criterion 
m index numbering time steps 
mz bending moment around an axis in ez-dircetion and posi-

tioned on the midsurface of the tunnel shell segment (per 
length measured in tunnel driving direction ez) 

Np impost force (per length measured in tunnel driving direc-
tion ez) 

Np, LI , Np, RI forces at the left and the right impost of the arch-like tun-
nel cross section, respectively 

Nt number of time steps 
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n index numbering time steps 
n outward normal onto a surface element 
nu circumferential normal force (per length measured in tun-

nel driving direction ez) 
r radial coordinate 
R radius of the undeformed midsurface of a tunnel shell 

segment 
sE dimensionless parameter quantifying strength and Young’s 

modulus evolution 
sEc dimensionless parameter quantifying creep modulus 

evolution 
t time variable associated with recording of strain or dis-

placement values 
t�0 reference time 
T cr characteristic creep time 
T hyd characteristic hydration time 
Tr radial component of the traction vectors acting onto the 

outer surface of the tunnel shell 
Tu circumferential component of the traction vectors acting 

onto the imposts of the arch-like tunnel cross section 
uM

r , uM
u radial and circumferential displacements at the midsurface 

of the cylindrical tunnel shell segments 
uMPi

r , uMPi
u polar displacements recorded at measurement point i (with 

i ¼ 1, 2, 3) 
uMPi

x , uMPi
y Cartesian displacements recorded at measurement point i 

(with i ¼ 1, 2, 3) 
uM

r, RI , uM
u, RI radial and circumferential displacements of the midsurface 

at the right impost of the arch-like tunnel cross section 
z axial coordinate, associated with tunnel driving direction 
a dimensionless parameter related to the shotcrete aggregates 
aDP dimensionless parameter of Drucker–Prager failure criterion 
b creep-related power-law exponent 
Du central angle of circular tunnel shell arc 
Dt time increment 
e linearized strain tensor 
eii normal strain component associated with direction ei 

(with i ¼ r, u, z) 
g affine creep magnification factor 
hM

z rotational angle of the shell generator line, around an axis 
oriented in ez-direction and positioned on the midsurface 
of the tunnel shell segment 

hM
z, LI , h

M
z, RI rotational angle of the shell generator line, around an axis 

oriented in ez-direction and positioned on the midsurface 

at the left and the right impost of the arch-like tunnel cross 
section, respectively 

j ratio of biaxial to uniaxial compressive strength of shotcrete 
� Poisson’s ratio 
n hydration degree of shotcrete 
r Cauchy stress tensor 
rii normal stress component associated with direction ei 

(with i ¼ r, u, z) 
�ruu, �rzz circumferential and axial normal stress averaged over the 

shell thickness 
s time instant of load application 
u azimuthal coordinate 
�u inclined azimuthal coordinate, measured from the right 

impost of the arch-like tunnel cross section 
uLI , uRI azimuth of the left and the right impost of the arch-like 

tunnel cross section, respectively 
C convolution integral expression 
I i!r azimuth-dependent influence function related to the effect 

of ground pressure at position i, on radial displacement dis-
tribution (with i ¼ 1, 2, 3, 4) 

I i!u azimuth-dependent influence function related to the effect 
of ground pressure at position i, on polar displacement dis-
tribution (with i ¼ 1, 2, 3, 4) 

I i!z azimuth-dependent influence function related to the effect 
of ground pressure at position i, on axial displacement dis-
tribution (with i ¼ 1, 2, 3, 4) 

I i!m azimuth-dependent influence function related to the effect 
of ground pressure at position i, on bending moment distri-
bution (with i ¼ 1, 2, 3, 4) 

I i!n azimuth-dependent influence function related to the effect 
of ground pressure at position i, on axial force distribution 
(with i ¼ 1, 2, 3, 4) 

IN!r azimuth-dependent influence function related to the effect 
of impost force, on radial displacement distribution 

IN!u azimuth-dependent influence function related to the effect 
of impost force, on polar displacement distribution 

IN!z azimuth-dependent influence function related to the effect 
of impost force, on axial displacement distribution 

IN!m azimuth-dependent influence function related to the effect 
of impost force, on bending moment distribution 

IN!n azimuth-dependent influence function related to the effect 
of impost force, on axial force distribution 

U strength-related utilization degree of shotcrete  
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