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Abstract in German - Deutsche
Kurzfassung
Die Streuung von Wellen ist in der Natur allgegenwärtig und für Anwendungen oft
nachteilig, da sie verhindert, dass eine Welle ihre Form und Ausbreitungsrichtung
beibehält. Mit den rasanten technologischen Fortschritten des letzten Jahrzehnts
und der Entwicklung so genannter räumlicher Lichtmodulatoren ist jedoch eine
Vielzahl neuer Möglichkeiten zur Steuerung von Licht und damit ein ganz neues
Forschungsgebiet entstanden. Die Möglichkeit, die einfallende Wellenfront in Phase
und Amplitude präzise zu steuern und gleichzeitig die ausgehende gestreute Welle zu
messen, hat die Bestimmung einer der zentralen Größen der Streutheorie ermöglicht:
die Streumatrix.

In dieser Arbeit nutzen wir die in der experimentell zugänglichen Streumatrix
gespeicherte Information, um optimale Wellenfronten für bestimmte Aufgaben zu
erzeugen, die die typischerweise nachteiligen Effekte, die durch das Vorhandensein
einer komplexen Streuumgebung verursacht werden, überwinden. Durch die Verall-
gemeinerung des bekannten Konzepts der Eisenbud-Wigner-Smith-Zeitverzögerung,
das in der Kernstreutheorie entwickelt wurde, zeigen wir, dass ein entsprechender
verallgemeinerter Wigner-Smith-Operator Wellenzustände liefert, die optimal für
die Mikromanipulation geeignet sind. Genauer gesagt zeigen wir, dass die Verwen-
dung verschiedener parametrischer Ableitungen der Streumatrix im verallgemeiner-
ten Operator zu Wellenfronten führt, die eine wohldefinierte Kraft, ein Drehmoment
oder einen radialen Druck auf ein Zielobjekt ausüben oder sogar eine wohldefinierte
Menge an Intensität in ihm speichern. Das in dieser Arbeit vorgestellte Konzept ba-
siert auf einem einfachen Eigenwertproblem und funktioniert für beliebig komplex
geformte Ziele, die sogar tief in ein ungeordnetes Medium eingebettet sein können.
Darüber hinaus stützt es sich ausschließlich auf die Kenntnis der in der Streuma-
trix kodierten Fernfeldinformationen und benötigt keine lokalen Informationen in
der Umgebung des Zielobjekts. Zur Untermauerung unseres Konzepts führen wir
außerdem Experimente in einem Mikrowellen-Wellenleiter durch, die unsere theo-
retischen Erkenntnisse bestätigen.

Durch Nutzung der in der Streumatrix gespeicherten Informationen zeigen wir
außerdem, wie die Auswirkungen der Streuung überwunden werden können, indem
wir Lichtzustände finden, die bei der Ausbreitung durch ein stark streuendes Medi-
um das gleiche Ausgangsfeld (bis auf eine globale Amplitude und Phase) erzeugen
wie bei der Ausbreitung durch Luft. Wir bezeichnen solche Zustände als streuungs-



vi

invariante Moden und zeigen, dass – obwohl diese Zustände intuitiv sehr selten zu
sein scheinen – eine ganze Menge von ihnen aus einem einfachen verallgemeiner-
ten Eigenwertproblem gewonnen werden kann. Darüber hinaus ist das Konzept der
streuungsinvarianten Moden nicht auf die Ausbreitung durch ein stark streuendes
Medium und Luft beschränkt, sondern kann auf zwei beliebige Arten von Medien
angewendet werden. Zusätzlich zu numerischen Simulationen untermauern wir das
untersuchte Konzept auch mit experimentellen Messungen im optischen Bereich.
Wir zeigen auch numerisch, dass diese streuungsinvarianten Moden einen gewissen
Grad an Korrelation mit ballistischem Licht innerhalb ungeordneter Medien beibe-
halten und somit auch zur Verbesserung aktueller Bildgebungsverfahren verwendet
werden können.

Für einige Anwendungen ist die Streuung nicht nachteilig, sondern sogar unerläss-
lich. Ein Beispiel dafür sind Strukturen, die sich die Absorption von Licht zunutze
machen, wie etwa Solarzellen, bei denen das Hauptziel darin besteht, die Absorp-
tion zu maximieren, indem die Verweildauer des Lichts in der Struktur maximiert
wird. Obwohl es eine spezifische Wellenfront mit einer maximalen Verweildauer in
einem gegebenen Medium gibt, wurde auf dem Gebiet der stochastischen Random
Walks gezeigt, dass die mittlere Zeit oder Weglänge von Trajektorien für isotrope
Beleuchtung unabhängig von allen Random-Walk-Parametern ist, die den Diffusi-
onsprozess charakterisieren, und nur von der Geometrie des Systems abhängt. Un-
ter Verwendung des Konzepts der Eisenbud-Wigner-Smith-Zeitverzögerung wurde
theoretisch gezeigt, dass diese bemerkenswerte Invarianzeigenschaft auch für Wellen
im ballistischen und diffusiven sowie im lokalisierten Regime gilt. In dieser Arbeit
gehen wir einen Schritt weiter und verifizieren diese Invarianzeigenschaft experi-
mentell in allen Transportregimen der Unordnungsstreuung. Unter Verwendung ei-
nes Mikrowellen-Wellenleiters zeigen wir sowohl experimentell als auch numerisch,
dass diese Invarianzeigenschaft sogar in Bandlückenstrukturen wie photonischen
Kristallen gilt, in denen die interferierende Natur der Welle zu einer totalen Unter-
drückung der Transmission in einem bestimmten Frequenzbereich führt. Außerdem
untersuchen wir den Einfluss von Dissipation auf die mittlere Weglänge sowohl im
schwachen als auch im starken Absorptionsregime.

Zuletzt führen wir ein lokalisiertes absorbierendes Element in einem stark streuen-
den System ein und zeigen, dass wir die in der Streumatrix gespeicherte Amplituden-
und Phaseninformation nutzen können, um eine andere spezielle Art von optimalem
Zustand zu erzeugen. Konkret zeigen wir, dass wir eine einfallende Wellenfront er-
zeugen können, die an einem lokalisierten Absorber in einem ungeordneten Medium
perfekt absorbiert wird, indem wir die Form und die Frequenz der einfallenden Wel-
lenfront sowie die Absorptionsstärke des verlustbehafteten Elements genau anpas-
sen. Basierend auf dem Effekt der kohärenten perfekten Absorption, der in einfachen
eindimensionalen Systemen eingeführt wurde, demonstrieren wir diesen Effekt nu-
merisch in zweidimensionalen komplexen Streuumgebungen und realisieren ihn zum
ersten Mal experimentell im Mikrowellenbereich.



Abstract
The scattering of waves is ubiquitous in nature and often detrimental to applica-
tions, as it prevents a wave from maintaining its shape and direction of propagation.
With the fast-paced technological advances in the last decade and the development
of so-called spatial light modulators, a plethora of new possibilities to control light
and thus a whole new area of research emerged. Being able to precisely control
the incident wavefront in phase and amplitude while measuring the outgoing scat-
tered wave has further enabled the acquisition of one of the central quantities in
scattering theory: the scattering matrix.

In this thesis, we exploit the information stored in the experimentally accessible
scattering matrix to create optimal wavefronts for specific tasks that overcome the
typically detrimental effects induced by the presence of a complex scattering en-
vironment. Generalizing the well-known concept of Eisenbud-Wigner-Smith time-
delay, which was developed in nuclear scattering theory, we demonstrate that a
corresponding generalized Wigner-Smith operator yields wave states that are opti-
mally suited for micromanipulation. More specifically, we show that using different
parametric derivatives of the scattering matrix in the generalized operator leads to
wavefronts that apply a well-defined force, torque or radial pressure to a target or
even store a well-defined amount of intensity inside it. Most notably, the concept
introduced in this thesis is based on a simple eigenvalue problem and works for arbi-
trarily complex-shaped targets which can even be buried deeply inside a disordered
medium. Beyond that, it exclusively relies on the knowledge of the scattered far
field information encoded in the scattering matrix and does not require any local
information around the target. To substantiate our concept, we further conduct
experiments in a microwave setup which confirm our theoretical findings.

Moreover, by utilizing the information stored in the scattering matrix, we demon-
strate how to overcome the effects of scattering by finding states of light that cre-
ate the same output field (up to a global amplitude and phase) when propagating
through a strongly scattering medium as when propagating through air. We call
such states scattering invariant modes and show that, while intuitively these states
seem to be very rare, a whole set of them can be obtained from a simple generalized
eigenvalue problem. Furthermore, the concept of scattering invariant modes is not
restricted to the propagation through a strongly scattering medium and air, but can
rather be applied to any two types of media. In addition to numerical simulations,
we also corroborate the concept under study with experimental measurements in
the optical domain. Moreover, we numerically show that these scattering invariant
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modes maintain a certain degree of correlation with ballistic light inside scattering
samples and can thus also be used to improve current imaging techniques.

For some applications, scattering is not only disadvantageous, but even essen-
tial. One example are structures which harness the absorption of light such as
solar cells, in which the main goal is to maximize the absorption by maximizing
the light’s dwell time inside the structure. Even though there exists a specific
wavefront with a maximum dwell time in a given medium, it was shown in the
field of stochastic random walks that the mean time or path length of trajecto-
ries for isotropic illumination is independent of all random walk parameters that
characterize the diffusion process and only depends on the system’s geometry. By
utilizing the concept of Eisenbud-Wigner-Smith time-delay, this striking invariance
property has theoretically been shown to also hold for waves in the ballistic and
diffusive as well as in the localized regime. In this thesis, we go one step further and
experimentally verify this invariance property in all transport regimes of disorder
scattering. Using a microwave waveguide setup, we show experimentally as well
as numerically that this invariance property even applies in band-gap structures
like photonic crystals in which the interfering nature of waves gives rise to a total
suppression of transmission in a certain frequency range. Moreover, we investigate
the effect of dissipation on the mean path length in the weak as well as in the strong
absorption regime.

Ultimately, we introduce localized loss in a strongly scattering system and demon-
strate that we can utilize the amplitude and phase information stored in the scat-
tering matrix to create another special type of optimal state. Specifically, we show
that we can create an incident wavefront which gets perfectly absorbed at a local-
ized loss element inside a disordered medium by precisely adjusting the shape and
the frequency of the incident wavefront as well as the absorption strength of the
lossy element. Based on the effect of coherent perfect absorption which was intro-
duced in simple one-dimensional systems, we numerically demonstrate this effect
in two-dimensional complex scattering environments and experimentally realize it
for the first time in the microwave regime.
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Introduction
The scattering of electromagnetic waves has a profound impact on contemporary
society as it is an integral part of applications in our daily life and it typically
leads to a deterioration in performance of the considered application. Over the
past decades, the emerging field of wavefront shaping has enabled the precise mod-
ulation of the spatial shape of waves in order to overcome such detrimental effects
which has proven to be a very fertile ground with realizations in many areas of
wave scattering ranging from sound [1–3] and water waves [4, 5] to electromagnetic
waves in the microwave [6–8] as well as in the optical domain [9–11]. The latter
has been triggered by the advent of so-called spatial light modulators (SLMs) [12,
13] that are nowadays offering coherent control over up to a few million spatial
degrees of freedoms, i.e., pixels [14–16]. In conjunction with digital image sen-
sors that offer a correspondingly large number of degrees of freedom, this brings
the complete characterization of a scattering process via the experimental mea-
surement of the optical scattering matrix within reach. In fact, subparts like the
optical monochromatic transmission matrix are already experimentally accessible
[17–19], giving rise to impressive applications like focusing [20, 21] and transmis-
sion enhancement [22] behind a strongly scattering medium, image transmission
through an opaque medium [23, 24], non-invasive imaging inside complex samples
[25] as well as guidestar-assisted focusing into biological tissue [26]. In addition
to targeting only the spatial degrees of freedom of light, SLMs have also enabled
the control of light in the temporal domain allowing for spatio-temporal focusing
behind strongly scattering layers [27–32] or to focus onto moving targets through
[33] and within scattering samples [34].

With all these recent advances, also the implementation of all possible concepts
derived from the scattering matrix is within reach today. One prominent example is
the intriguing concept of Eisenbud-Wigner-Smith time-delay that was theoretically
introduced in the realm of nuclear scattering [35–37]. Being exclusively based on
the far-field information of a linear scattering process, this concept enables to assign
specific delay times caused by the presence of a potential to the scattered waves,
making it one of the few widely-known concepts of such kind [38, 39]. These delay
times are encoded in the eigenvalues of the corresponding Wigner-Smith time-delay
operator, where its eigenstates also feature a remarkable property that has been
first recognized almost half a century later in the context of optical multi-mode
fibers: Aiming for wave states whose output patterns are spectrally stable to first
order, the so-called principal modes were introduced as eigenstates of the group-
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delay operator [40] which shares an intimate relation with the time-delay operator.
A first experimental realization of these modes succeeded only very recently [41] and
their properties have further been investigated in the strong mode coupling regime
[42] as well as in the transition from weak to strong mode coupling [43]. Based
on these insights, the time-delay concept was put forward and so-called super- and
anti-principal modes were introduced which further enhance or drastically reduce
the frequency stability of the output wavefronts [44]. The concept of time-delay
also enabled to identify a special kind of wave states that features highly collimated
beam-like wave function patterns during the entire propagation [45]. This defining
feature caused the term particle-like states whose existence has already been verified
experimentally in various types of systems [46, 47]. Apart from that, its connection
to the so-called dwell time [48] has led to highly interesting applications in terms
of optimal energy storage inside scattering media [49, 50], where its connection to
the density of states [51, 52] was also exploited very recently [53, 54].

This thesis builds upon all these recent theoretical and experimental advances and
aims to expand the horizon of the Wigner-Smith framework to design novel classes
of wave states that perform at an optimal level. The thesis is divided into two parts,
where the first part is split into Chapter 1 and 2. Chapter 1 provides a review of
scattering theory giving a brief overview over the definition of the scattering matrix
and its symmetries. Furthermore, we also introduce the concept of time-delay and
its connection to group-delay and put it in context with the so-called dwell time and
the density of states. We also review the complete and orthogonal set of transverse
electric and transverse magnetic waveguide modes which will serve as the basis in
which we represent the scattering matrices.

Despite the very exciting developments in wavefront shaping, experimental tech-
niques typically do not allow access to the local behavior of waves inside scattering
systems. Thus we proceed in Chapter 2 with the development of a flexible and ac-
curate numerical tool for solving the time-harmonic Maxwell equations. Utilizing
the framework of the finite element method, we first lay out the solution strategy
for stationary scattering problems in two dimensions. More precisely, we solve the
scalar Helmholtz equation in two-dimensional waveguide-like geometries and use
the obtained solutions to calculate the scattering amplitudes to set up the entire
scattering matrix. Since a scalar description only covers the transverse part of the
electric field, we then continue with full-vectorial stationary scattering problems in
three dimensions, where we solve the vector Helmholtz equation in order to capture
all the physics contained in Maxwell’s equations.

The second part of this thesis is devoted to the applications and results, where
Chapter 3 presents a generalization of the concept of Wigner-Smith time-delay to
a much broader class of novel operators. As the time-delay operator allows for
the creation of wave states with a well-defined time-delay, the eigenstates of these
generalized Wigner-Smith operators enable the application of well-defined forces,
pressures or torques to a target as well as to optimally focus inside of it, where
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the target can even be embedded in a strongly scattering environment. We fur-
ther show that the linear, radial or angular momentum transferred to the target
and the stored intensity inside that target are encoded in the eigenvalues of the
corresponding operator for which we derive analytical expressions. Furthermore,
we present experimental measurements obtained in collaboration with the group of
Ulrich Kuhl from the Université Côte d’Azur together with corresponding numer-
ical simulations that corroborate the analytical findings [55]. In addition, we also
investigate the presented concept in case where only a subpart of the scattering
matrix is available [56].

In Chapter 4 we introduce another novel class of wave states that generalizes the
principal modes’ property of spectral stability to first order. In analogy to their
output patterns which remain unchanged if the frequency of the incident wave is al-
tered, we create waves whose output profiles do not “feel” the presence of a complex
scattering environment and propagate through the latter as through a homogeneous
material. To verify the existence of these so-called scattering invariant modes, we
again perform numerical simulations which are supported by experimental mea-
surements in an optical setup conducted in the group of Allard Mosk from Utrecht
University [57]. We then continue with sparse scattering samples and show that
these modes preferentially propagate through scatterer-free areas thus embodying
one of the defining features of ballistic light. Since the latter is essential for imag-
ing, we also present a first theoretical demonstration of their application to improve
current imaging techniques in two as well as in three dimensions.

Going back to the roots and revisiting the concept of time-delay, we exploit
its close connection to the density of states in Chapter 5. Although the concept
of time-delay allows for the creation of optimal states that propagate fastest or
slowest through a specific scattering system, we show that the average time-delay
of waves in scattering media is invariant with respect to its scattering properties
and only depends on its geometry. Specifically, we extend the results in Refs. [53,
54] and verify in collaboration with Matthieu Davy from the Université de Rennes 1
experimentally, that the so-called mean path length invariance holds in all transport
regimes of disorder scattering [58]. Even more surprisingly, we also show that this
invariance property further extends to periodic materials like photonic crystals that
feature band gaps that fully suppress transmission in a certain frequency interval.
To further substantiate the experimental findings, we perform numerical simulations
of the experimentally used microwave cavity in the absence as well as in the presence
of weak global dissipation to mimic the experimental setup as closely as possible. In
addition, we theoretically investigate the influence of strong absorption on different
time-delay operators, where we analytically encounter the convergence towards the
most direct path in transmission and reflection of the corresponding eigenchannels.

Finally, Chapter 6 is devoted to the search for wave states that get optimally, i.e.,
perfectly absorbed at a localized loss element inside a disordered environment. By
utilizing the effect of coherent perfect absorption, which was introduced in simple
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one-dimensional systems [59], we demonstrate that precisely adjusting the absorp-
tion strength as well as the frequency and the shape of the incident wave allows
for perfect absorption, even in strongly scattering media. Together with the group
of Ulrich Kuhl, we report the first experimental demonstration of this effect in a
two-dimensional waveguide setup and underpin the obtained measurement results
with numerical simulations [60]. To set the results apart from the effect of coherent
enhancement of absorption [61], we utilize the numerically obtained solutions to
investigate the full intensity and Poynting vector distributions inside the scattering
system of the corresponding wave states.



Part I.

Methods





Chapter 1

Theoretical framework

1.1 Scattering formalism
A generic scattering system can be subdivided into two domains: an asymptotic
region in which waves can freely propagate and a scattering region in which the
actual scattering process takes place. A sketch of such a system is shown in Fig. 1.1.
To ensure free propagation, the asymptotic regions feature a uniform refractive
index distribution n(r⃗ ) = const. with r⃗ being the position vector. The scattering
region can be of arbitrary shape and can contain structured or disordered media
with or without gain and loss. Mathematically, a disordered medium is described
by a non-uniform refractive index n(r⃗ ) which becomes a complex quantity in the
presence of gain and loss. If an incident wavefront impinges onto the scattering
region, the inhomogeneity of the refractive index landscape causes a redistribution
of the flux carried by the respective channels. After the scattering process, the
wave is again leaving the scattering region into the asymptotic regions. Due to
the absence of mode-mixing in these asymptotic regions, the incident and outgoing
waves can be decomposed in a suitable and complete set of orthogonal basis states,
where the corresponding expansion coefficients are contained in the vectors u⃗ and v⃗,
respectively. The redistribution of the flux due to the scattering in the scattering
region can then conveniently be described by the so-called scattering matrix 𝑆
which allows for the book-keeping between in- and outgoing flux-carrying channels
via

v⃗ = 𝑆u⃗ , (1.1)
thus containing all the information about the scattering process. Moreover, the
technological advances in the last decade have made it possible to experimentally
measure the scattering matrix (or parts of it) in various types of systems, e.g., in
microwave resonators [7], in disordered media illuminated with optical waves [17–
19, 62], in optical multi-mode fibers [42, 63], for sound waves [64–66] or in elastic
slabs [67].

In the absence of gain and loss, flux is conserved which manifests itself in a
unitary scattering matrix, i.e.,

𝑆†𝑆 = 𝑆𝑆† = 1 . (1.2)
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Figure 1.1: (a) Generic open scattering system featuring a non-uniform refractive index
distribution n(r⃗ ) (structured gray area) and a uniform asymptotic region n(r⃗ ) = const.
(surrounding white area). An incident wavefront (blue) described by a coefficient vector
u⃗ is impinging onto the scattering region Ω and gets scattered into outgoing waves (red)
described by the coefficient vector v⃗. (b) Generic two-port scattering system, in which
the non-uniform refractive index distribution is surrounded by hard walls (solid black
lines) and connected to ports/leads on both sides. The latter serve as asymptotic regions
through which the waves enter and exit the scattering region. Waves incident from the
left and right lead (blue) are described by the coefficient vectors u⃗l and u⃗r, respectively,
whereas the outgoing scattered waves (red) are described by v⃗l and v⃗r. Here, the subscript
l (r) stands for the input from the left (right) waveguide port. In both cases, the scattering
matrix is evaluated at ∂Ω (indicated by dashed black lines).

Assuming normalized input coefficients, i.e., u⃗ †u⃗ = 1, unitarity translates into the
conservation of the norm of the coefficient vector since v⃗ †v⃗ = u⃗ †𝑆†𝑆u⃗ = u⃗ †u⃗ = 1.
However, in the presence of gain or loss, 𝑆†𝑆 ̸= 1.

In this thesis, we mostly consider two-port systems, where an example of such is
shown in Fig. 1.1(b). Here, the coefficient vectors describing incoming and outgoing
flux-normalized channels (see Chapter 2 for details about the flux normalization)
are given by

u⃗ =

(︂
u⃗l

u⃗r

)︂
, v⃗ =

(︂
v⃗l
v⃗r

)︂
, (1.3)

where the subscript l (r) denotes an input from the left (right) waveguide port.
In such a system, the scattering matrix can be written in the following block-
partitioned form

𝑆 =

(︂
r t′

t r′

)︂
. (1.4)

Here, r and t are the reflection and transmission matrix for an input from the left
waveguide port, respectively, and the primed quantities are the corresponding ma-
trices for an input from the right waveguide port. More specifically, the elements of
the sub-matrices t

(′)
mn and r

(′)
mn describe the transmission and reflection amplitudes

from the n-th incident mode into the m-th outgoing mode, where |t(′)mn|2 and |r(′)mn|2
are the corresponding scattered intensities. The total transmission and reflection of
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a certain mode n incident from the left waveguide port is thus given by the sum over
all outgoing propagating modes, i.e., 𝑇n =

∑︀𝑀
m=1 |tmn|2 and 𝑅n =

∑︀𝑁
m=1 |𝑅mn|2,

respectively, with 𝑀 (𝑁) being the number of outgoing modes in the right (left)
lead. Provided that one uses flux-normalized input states, a flux-conserving scat-
tering process with a unitary scattering matrix fulfills 𝑇n+𝑅n = 1, where the same
holds true for an input from the right waveguide port, i.e., 𝑇 ′

n + 𝑅′
n = 1. In turn,

the total scattered output intensity is then equal to the number of flux-carrying
input channels, i.e.,

∑︀𝑁
n=1 𝑇n + 𝑅n = 𝑁 and

∑︀𝑀
n=1 𝑇

′
n + 𝑅′

n = 𝑀 . In this case, the
reflection matrices r and r′ are quadratic with dimensions 𝑁 ×𝑁 and 𝑀 ×𝑀 , re-
spectively, whereas t and t′ are rectangular 𝑀 ×𝑁 and 𝑁 ×𝑀 matrices. Together,
this yields a quadratic scattering matrix of size (𝑀+𝑁)× (𝑀+𝑁). For simplicity,
we will consider the case of equally sized-waveguide ports in the following and thus
𝑀 = 𝑁 yielding transmission and reflection matrices of size 𝑁×𝑁 and a scattering
matrix of size 2𝑁 × 2𝑁 .

Using the block-matrix form Eq. (1.4), the first unitarity condition in Eq. (1.2),
i.e., 𝑆†𝑆 = 1, translates into

t†t+ r†r = t′†t′ + r′†r′ = 1 , (1.5)
r†t′ + t†r′ = t′†r + r′†t = 0 , (1.6)

while the second condition, i.e., 𝑆𝑆† = 1, yields

tt† + r′r′† = t′t′† + rr† = 1 , (1.7)
rt† + t′r′† = tr† + r′t′† = 0 . (1.8)

These relations will be used in Chapter 5 since they relate the eigenvalues and
eigenvectors of the matrices t(′)†t(′) and r(′)†r(′) as well as the ones of t(′)t(′)† and
r(′)r(′)†.

Apart from unitarity, the scattering matrix is also subject to reciprocity as it
fulfills the so-called reciprocity (or Onsager) relations. These relations state that
scattering from a mode n into another mode m and its reverse process, i.e., scat-
tering from mode m into mode n, happen with the same amplitude. In terms
of transmission and reflection amplitudes, this can be expressed as tmn = t′nm,
rmn = rnm and r′mn = r′nm. In matrix notation, the latter read as t = t′𝑇 , r = r𝑇

and r′ = r′𝑇 , which can be summarized by a transposition symmetric scattering
matrix

𝑆 = 𝑆𝑇 . (1.9)

It is important to note that reciprocity should not be confused with time-reversal
symmetry, as the latter implies reciprocity, but not vice versa. For example, ab-
sorption breaks time-reversal symmetry, but not reciprocity. To break reciprocity,
a time-varying refractive index distribution, a magnetic field or non-linear effects
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are required [10]. Both Eqs. (1.2) and (1.9) are important symmetries that will be
used to confirm the numerically calculated scattering matrices in Chapter 2.

On an operator-based level, the scattering matrix can also be written in the
effective Hamiltonian framework [68, 69] as

𝑆 = −1 + 2i𝑉 †𝐺𝑉 , (1.10)

where 𝑉 contains the couplings between the channels in the asymptotic leads and
the resonances (eigenfunctions) of the scattering region and 𝐺 is the Green’s func-
tion serving as the propagator inside the scattering region. The latter is given by
𝐺 = ℒ−1 = (𝐺−1

0 + i𝑉 𝑉 †)−1 with 𝐺0 = ℒ−1
0 , where ℒ0 is the differential opera-

tor of the closed cavity system and the second term i𝑉 𝑉 † provides the coupling
to the asymptotic regions thus opening the system making it non-Hermitian. For
the scalar Helmholtz equation, the differential operator of the closed system reads
ℒ0 = Δ+n2(r⃗ )k2, while ℒ0 = 𝛻⃗×𝛻⃗×−n2(r⃗ )k2 for the vector Helmholtz equation
(see Appendix A). Thus, Eq. (1.10) describes the incoupling into the scattering re-
gion, the propagation therein and the final outcoupling into the asymptotic regions,
where the negative unit matrix −1 is necessary to correctly describe the reflection
process1. Equation (1.10) is very useful as it does not require any basis represen-
tation of the scattering matrix, which makes it essential for the derivation of the
main result of Chapter 3.

Having introduced the scattering matrix, which contains all the information
about a scattering process, we proceed in the following section with the intro-
duction of an operator that is based solely on this quantity.

1.2 The Wigner-Smith time-delay operator
In the following we introduce an operator whose eigenstates are optimal in the
sense that they feature a well-defined propagation time through a given scattering
system. The latter might be simple to determine in case of classical trajectories,
however, the interfering nature of waves together with the ill-defined entrance and
exit time of a wave packet or a time-harmonic plane wave makes this task all but
trivial. The groundwork for the solution to this problem was laid more than 70 years
ago by the PhD student of Eugene Wigner, Leonard Eisenbud, who theoretically
investigated the properties of nuclear collision processes [35]. Eisenbud and Wigner
showed in the field of nuclear scattering theory that the retardation of a wave due
to the scattering at a potential can be extracted from the energy derivative of

1 The −1 is a result from the separation of the total field into incoming and scattered compo-
nents, i.e., the reflected field at a specific port is given by the total field minus the incident
mode one injects for calculating the reflection matrix elements in a certain column. The projec-
tion on the outgoing modes together with their orthonormality then gives rise to the negative
unit matrix [see also, e.g., Eq. (2.31)]
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the scattering phase [36]. A few years later, Felix Smith generalized this result to
multi-channel transport and introduced the lifetime matrix [37], which nowadays
is known as the Wigner-Smith (or Eisenbud-Wigner-Smith) operator. Despite the
complex nature of scattering processes, it takes the surprisingly simple form

𝑄(𝑆)
𝜔 = −i𝑆†𝑑𝑆

𝑑𝜔
(1.11)

and is solely based on the multi-channel scattering matrix 𝑆 introduced in the
previous section. Here, the subscript denotes the quantity with respect to which
the derivative of the scattering matrix is taken and the superscript indicates the
matrix used for the construction of the operator. In the absence of gain and loss,
the scattering matrix is unitary, i.e., 𝑆−1 = 𝑆†, giving rise to a Hermitian time-
delay operator. This can be easily shown by using 𝑆†(𝜔)𝑆(𝜔) = 1, which results in
𝑑
𝑑𝜔

i
[︀
𝑆†(𝜔)𝑆(𝜔)

]︀
= 0. Evaluating and rearranging the latter directly gives

𝑄(𝑆)
𝜔 = −i𝑆†𝑑𝑆

𝑑𝜔
= i

𝑑𝑆†

𝑑𝜔
𝑆 = 𝑄(𝑆)†

𝜔 . (1.12)

The Hermiticity of 𝑄(𝑆)
𝜔 implies real-valued eigenvalues 𝜏𝜔, which can be interpreted

as proper physical time-delays of the scattered waves. Moreover, it gives rise to a
complete and orthonormal set of eigenstates making them optimal in a tempo-
ral sense, e.g., the eigenstate corresponding to the shortest time-delay propagates
fastest through a given scattering system. Just like in the single-channel case, the
time-delays in the multi-channel case are also given by the frequency derivative of
the global scattering phase of the corresponding output vector. More precisely, if
v⃗ = 𝑆u⃗ = v̂|v⃗|𝑒i𝜑 is the corresponding output vector (with v̂ being the unit vector of
v⃗ specifying the direction in the modal coefficient space) for a time-delay eigenstate
input vector u⃗, the corresponding eigenvalue is given by 𝜏𝜔 = 𝑑𝜑/𝑑𝜔 (see below).

With an entirely different motivation in mind, the time-delay operator was in-
dependently re-derived many years later in the field of multi-mode fiber physics.
There, Shanhui Fan and Joseph Kahn introduced so-called principal modes which
do not suffer from modal dispersion to first order [40]. In particular, for a fixed
input wavefront, the corresponding output wavefront – typically given by a speckle
– is independent of a small frequency change to first order (apart from a global
change in brightness in case of a non-unitary scattering or transmission matrix).
To demonstrate the derivation of the time-delay operator based on the demanded
disperionlessness to first order, we consider a fiber transmission matrix t(𝜔) con-
necting an input coefficient vector u⃗l of modal amplitudes with the corresponding
vector of outgoing coefficients v⃗r(𝜔) via v⃗r(𝜔) = t(𝜔)u⃗l. Here, the input vector is
independent of frequency, whereas the output vector is frequency-dependent due to
the frequency-dependence of the transmission matrix. Performing a Taylor expan-
sion of the output coefficient vector around 𝜔0 for a small change in frequency Δ𝜔
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yields

v⃗r(𝜔0 +Δ𝜔) = v⃗r(𝜔0) +
𝑑v⃗r(𝜔)

𝑑𝜔

⃒⃒⃒⃒
𝜔0

Δ𝜔 +O(Δ𝜔2)

≈ t(𝜔0)u⃗l +
𝑑t(𝜔)

𝑑𝜔

⃒⃒⃒⃒
𝜔0

u⃗l Δ𝜔 .

(1.13)

In the last line, we have neglected terms of order Δ𝜔2, where we have also used the
frequency-independence of the input vector u⃗l. To obtain the desired dispersion-
lessness to first order, we now demand that the change in the output vector, i.e., the
second term in the above Taylor-expansion, has to be parallel to the output vector
itself at 𝜔0. More precisely, these two terms can only differ by a global amplitude
and phase described by a complex number z ∈ C, i.e.,

t(𝜔0)u⃗l = z
𝑑t(𝜔)

𝑑𝜔

⃒⃒⃒⃒
𝜔0

u⃗l Δ𝜔 . (1.14)

Multiplying the above equation with −i and rearranging it gives(︂ −i

zΔ𝜔

)︂
u⃗l =

(︃
−it−1(𝜔0)

𝑑t(𝜔)

𝑑𝜔

⃒⃒⃒⃒
𝜔0

)︃
u⃗l . (1.15)

The expression inside the brackets on the right-hand side can then be identified as
the so-called group-delay operator

q(t)𝜔 ≡ −it−1(𝜔0)
𝑑t(𝜔)

𝑑𝜔

⃒⃒⃒⃒
𝜔0

, (1.16)

which slightly differs from Eq. (1.11) due to the inverse transmission matrix being
used instead of its Hermitian conjugate. The corresponding group-delay eigenvalue
is given by the bracketed expression on the left-hand side, i.e., 𝜏𝜔 = (izΔ𝜔)−1.
To shed more light onto the analytical structure of the time-delay eigenvalue, we
multiply Eq. (1.15) with t from the left and use ∂u⃗l/∂𝜔 = 0 to get

𝜏𝜔v⃗r = −i
𝑑v⃗r
𝑑𝜔

⃒⃒⃒⃒
𝜔0

. (1.17)

We now decompose the output vector as v⃗r = v̂r|v⃗r|𝑒i𝜑, where v̂r is the unit vector
pointing in the corresponding direction in the high-dimensional modal coefficient
space, |v⃗r| is its magnitude and 𝜑 is the global scattering phase. Using this decom-
position, Eq. (1.17) becomes

𝜏𝜔v̂r|v⃗r|𝑒i𝜑 = v̂r|v⃗r| 𝑑𝜑
𝑑𝜔

⃒⃒⃒⃒
𝜔0

𝑒i𝜑 − iv̂r
𝑑|v⃗r|
𝑑𝜔

⃒⃒⃒⃒
𝜔0

𝑒i𝜑 , (1.18)
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where we have used that 𝑑v̂r/𝑑𝜔 = 0 due to the demanded frequency-independence
to first order. Finally, the group-delay eigenvalue reads [40]

𝜏𝜔 =
𝑑𝜑

𝑑𝜔

⃒⃒⃒⃒
𝜔0

− i
𝑑 ln |v⃗r|
𝑑𝜔

⃒⃒⃒⃒
𝜔0

. (1.19)

Equation (1.19) now shows, that the real part of the group-delay eigenvalue is given
by the frequency derivative of the global phase of the output vector and can thus
be interpreted as the time-delay of the corresponding wave [36]. Moreover, the
imaginary part is a measure for the change of the transmitted intensity in case of
a frequency detuning. At this stage, one might wonder about the appearance of an
imaginary part in Eq. (1.19), however, q(t)𝜔 and 𝑄

(𝑆)
𝜔 are not exactly the same as

the former only contains the transmission matrix, whereas the latter contains the
full unitary scattering matrix. Since a unitary scattering matrix captures all the
outgoing flux, which is equal to the incident flux, 𝑑 ln |v⃗r|/𝑑𝜔 = 𝑑 ln |u⃗l|/𝑑𝜔 = 0
leaves us with purely real-valued eigenvalues. The imaginary part of the eigenvalues
of q𝜔 thus stems from the sub-unitarity of the transmission (or scattering) matrix
which is typically weakly pronounced in fiber systems due to the lack of back-
reflections (bending losses are dominant instead). However, since we are interested
in strongly scattering systems, the computation of the inverse of t(𝜔) can be difficult
as the latter can be singular. In this case, a pseudo-inverse can be calculated via
the projection onto the non-singular subspace (see Appendix C).

The above derivation can of course also be carried out with the full scattering
matrix (rather than only the transmission matrix) in which case the time-delay
operator reads

q(𝑆)𝜔 = −i𝑆−1𝑑𝑆

𝑑𝜔
. (1.20)

This expression is now identical to Eq. (1.11) if the scattering matrix is unitary
(𝑆−1 = 𝑆†). Non-unitarity, e.g., due to the presence of gain or loss or by not being
able to measure all the outgoing flux-carrying channels, causes these two operator
definitions to give very different results since they are related via

𝑄(𝑆)
𝜔 = 𝑆†𝑆 q(𝑆)𝜔 . (1.21)

Loosely speaking, q(𝑆)𝜔 encodes the phase delays, i.e., the frequency derivative of the
scattering phases, whereas 𝑄

(𝑆)
𝜔 additionally contains a weighting by the outgoing

intensities in the respective channels. Also note that dispersionlessness to first order
is by construction only a property of the eigenstates of q𝜔 and does not apply to
the eigenstates of 𝑄𝜔 in the non-unitary case.

To complete the picture of possible quantities measuring the duration of a scat-
tering process, there also exists the concept of dwell time [38, 39, 70]. In its defini-
tion, the latter is entirely different from the frequency derivative of the scattering
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phases, however, a close relation to the concept of time-delay exists in case of flux-
conserving scattering processes. For a stationary scalar scattering state 𝜓(x⃗), the
dwell time is defined as [71]

𝜏𝑑 =
𝑈Ω

𝑆
(in)
∂Ω

=
2k

i𝑐

∫︀
Ω
𝜓*(x⃗)n2(x⃗)𝜓(x⃗) 𝑑𝑉∫︀

∂Ω
[𝜓(x⃗)𝛻⃗𝜓*(x⃗) + c.c.] · 𝑑𝐴⃗ , (1.22)

where 𝑈Ω is the time-averaged stored intensity inside the scattering region Ω and
𝑆

(in)
∂Ω is the incoming power flux (for the corresponding expressions we refer to

Ref. [71]). Most interestingly, the corresponding dwell time operator 𝑄𝑑 can be
related to the time-delay operator by [48, 49]

𝑄𝑑 = 𝑄(𝑆)
𝜔 +𝑄(𝑒)

𝜔 +𝑄(i)
𝜔 . (1.23)

Here, 𝑄(𝑒)
𝜔 describes contributions from evanescent modes which can typically be

neglected (except at the onset of a new propagating mode) and 𝑄
(i)
𝜔 describes

self-interferences, i.e., interferences of the incident and scattered field, which only
become important in strongly reflecting systems [49]. In the effective Hamiltonian
framework [see Eq. (1.10)], 𝑄(i)

𝜔 can also be traced back to the energy dependence
of the coupling matrix 𝑉 which typically gets neglected [48]. Apart from that, the
average dwell time also shares a close relation with the density of optical states
(DOS) in the scattering system 𝜌(𝜔) [72]

⟨𝜏𝑑(𝜔)⟩ = 2𝜋

𝑁in(𝜔)
𝜌(𝜔) , (1.24)

where 𝑁in(𝜔) is the total number of incoming scattering channels. Assuming that
𝑄𝑑 ≈ 𝑄

(𝑆)
𝜔 , we can thus also relate the average time-delay of all scattering channels

⟨𝑄(𝑆)
𝜔 ⟩ = Tr(𝑄

(𝑆)
𝜔 )/𝑁in with the density of states.

The introduction of Wigner-Smith time-delay has sparked an entire field of re-
search and we extend and generalize this concept in the remaining parts of this
thesis. However, before doing so, we specify our system of choice and the cor-
responding set of basis states in which we represent the scattering matrix in the
following section.

1.3 Waveguide geometries and eigenmodes
In this section, we specify the two-port geometry that we will focus on and its
corresponding eigenmodes which serve as a basis in which we represent a scattering
matrix. Throughout most of this thesis, we consider rectangular, metallic, straight
two-port waveguides of width 𝑊 , height ℎ and length 𝐿 [see Fig. 1.2(a)]. To induce
scattering, we usually add a non-uniform refractive index distribution – either in
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form of a continuous distribution n(r⃗ ) [depicted as dark spots in Fig. 1.2(a)] or
by placing obstacles with a certain refractive index – in its interior. However, the
asymptotic regions, i.e., the waveguide ports, feature a uniform refractive index
making it possible to decompose any incident or scattered wave into the complete
and orthonormal set of eigenstates of the clean waveguide cross section. In general,
there are two sets of modes, namely the transverse electric (TE) and transverse
magnetic (TM) modes, whose electric and magnetic field only features components
transverse to the direction of propagation, respectively.

To obtain an analytical expression of the TE modes, we first write their elec-
tric field as a transverse profile (𝐸x = 0) with a plane-wave propagation in the
longitudinal direction, i.e.,

𝐸⃗ TE(r⃗, t) =

⎛⎝ 0
𝐸TE

y (y, z)
𝐸TE

z (y, z)

⎞⎠ 𝑒i(kxx−𝜔t) . (1.25)

Here, 𝜔 = k𝑐 is the frequency with k = 2𝜋/𝜆 being the free space wave vector
and 𝑐 being the speed of light in vacuum. Next, the perfectly electric conductor
(PEC) boundary conditions impose that the tangential electric field at the waveg-
uide boundaries vanishes, i.e.,

𝐸TE
y (y, 0) = 𝐸TE

y (y, ℎ) = 𝐸TE
z (0, z) = 𝐸TE

z (𝑊, z) = 0 . (1.26)

To calculate 𝐸TE
y (y, z) and 𝐸TE

z (y, z), we insert Eq. (1.25) into Maxwell’s equations.
Thereby, the uniform refractive index in the waveguide ports together with the time-
harmonic excitation in Eq. (1.25) causes Maxwell’s equations to reduce to the scalar
Helmholtz equation (see Appendix A) for all vector components. For n(r⃗ ) = 1 in
the leads, we thus get (︀

Δt + k2 − k2
x

)︀
𝐸TE

y (y, z) = 0 , (1.27)(︀
Δt + k2 − k2

x

)︀
𝐸TE

z (y, z) = 0 , (1.28)

where Δt = ∂2
y + ∂2

z is the transverse Laplacian. Due to the geometrical inde-
pendence of the y- and z-component in the waveguide cross section, we can make
a separation ansatz 𝐸y(y, z) = 𝑓y(y)𝑔y(z) and 𝐸z(y, z) = 𝑓z(y)𝑔z(z). Imposing
now Eq. (1.26) determines 𝑔y(z) and 𝑓z(y), where 𝑓y(y) and 𝑔z(z) get fixed by the
Maxwell equation 𝛻⃗ · 𝐷⃗ = 0 with 𝜀r = n2 = 1 in the leads. Putting everything
together, the electric field of the TE modes is given by

𝐸⃗ TE
mn (r⃗, t) = NTE

𝐸

⎛⎝ 0
−kz,n cos(ky,my) sin(kz,nz)
ky,m sin(ky,my) cos(kz,nz)

⎞⎠ 𝑒i(kx,mnx−𝜔t) , (1.29)

where kx,mn =
√︀
k2 − k2

y,m − k2
z,n is the longitudinal propagation constant of the

mode and its transverse wave vectors are given by ky,m = m𝜋/𝑊 and kz,n = n𝜋/ℎ.
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Figure 1.2: (a) Rectangular, metallic two-port waveguide of length 𝐿, width 𝑊 and
height ℎ featuring an inhomogeneous refractive index distribution in its interior (dark
spots). (b) For ℎ ≪ 𝑊 and a refractive index distribution n = n(x, y) independent of z,
the 3D waveguide geometry from (a) can be mapped to an equivalent 2D waveguide in
which only TEm0 modes propagate.

Moreover, NTE
𝐸 is a normalization factor which ensures that

∫︀∫︀
port |𝐸⃗ TE

mn |2 𝑑y 𝑑z = 1.
From Eq. (1.29) one can see that these modes only exist if m > 0 or/and n > 0,
i.e., there is no solution for both m = n = 0. The corresponding magnetic 𝐻⃗-field
of the TE mode can then be calculated via the Maxwell equation

𝛻⃗ × 𝐸⃗(r⃗, t) = −∂𝐵⃗(r⃗, t)

∂t
= i𝜔𝜇0𝜇r𝐻⃗(r⃗, t) , (1.30)

with 𝜇r = 1 and gives

𝐻⃗ TE
mn (r⃗, t) = NTE

𝐻

⎛⎝−i(k2
y,m + k2

z,n) cos(ky,my) cos(kz,nz)
−kx,mnky,m sin(ky,my) cos(kz,nz)
−kx,mnkz,n cos(ky,my) sin(kz,nz)

⎞⎠ 𝑒i(kx,mnx−𝜔t) . (1.31)

Here, NTE
𝐻 is the corresponding normalization factor for the 𝐻⃗-field ensuring that∫︀∫︀

port |𝐻⃗ TE
mn |2 𝑑y 𝑑z = 1.

The second set of modes are the TM modes which feature a purely transverse
magnetic field, i.e., 𝐻x = 0. To obtain an analytical expression, we can write their
𝐻⃗-field as

𝐻⃗ TM(r⃗, t) =

⎛⎝ 0
𝐻TM

y (y, z)
𝐻TM

z (y, z)

⎞⎠ 𝑒i(kxx−𝜔t) . (1.32)

The PEC boundary condition imposes that the 𝐻⃗-field should be tangential at the
waveguide walls, i.e,

𝐻TM
y (0, z) = 𝐻TM

y (𝑊, z) = 𝐻TM
z (y, 0) = 𝐻TM

z (y, ℎ) = 0 . (1.33)
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Following the derivation above, one can make a similar separation ansatz, impose
the boundary conditions in Eq. (1.33) and use 𝛻⃗ ·𝐵 = 0 to determine all unknowns
which yields

𝐻⃗ TM
mn (r⃗, t) = NTM

𝐻

⎛⎝ 0
kz,n sin(ky,my) cos(kz,nz)
−ky,m cos(ky,my) sin(kz,nz)

⎞⎠ 𝑒i(kx,mnx−𝜔t) . (1.34)

In contrast to the TE modes, Eq. (1.34) shows that TM modes only exist if both
m > 0 and n > 0. Using the Maxwell equation

𝛻⃗ × 𝐻⃗(r⃗, t) =
∂𝐷⃗(r⃗, t)

∂t
= −i𝜔𝜀0𝜀r𝐸⃗(r⃗, t) (1.35)

with 𝜀r = 1 in the leads lets us derive the 𝐸⃗-field of the TM modes

𝐸⃗ TM
mn (r⃗, t) = NTM

𝐸

⎛⎝i(k2
y,m + k2

z,n) sin(ky,my) sin(kz,nz)
−kx,mnky,m cos(ky,my) sin(kz,nz)
−kx,mnkz,n sin(ky,my) cos(kz,nz)

⎞⎠ 𝑒i(kx,mnx−𝜔t) . (1.36)

Alternatively, the analytical expression of the TM modes can also be derived via
the longitudinal field 𝐸x(y, z) which can be obtained by solving the correspond-
ing scalar Helmholtz equation subject to the PEC boundary conditions [73]. The
transverse components of the electric field are then fully determined by its longitu-
dinal component, where the full 𝐻⃗-field can be calculated using Maxwell’s equation
(1.30).

Both sets of basis states are required for a full description of a scattering process in
a waveguide. Most importantly, TEmn and TMmn are degenerate in terms of their
ky,m and kz,n wave vectors which makes a scattering-induced transition between
these two sets of basis states very likely. Thus, both sets of modes have to be taken
into account when determining the scattering matrix as otherwise the latter is not
unitary (see Section 2.2). The 𝐸⃗-field intensities of TE and TM modes are now
depicted in Fig. 1.3 and the corresponding 𝐻⃗-field intensities are shown in Fig. 1.4.

If the height of the considered waveguide in z-direction is small (such that the
TEmn or TMmn modes with n > 0 in this direction cannot be excited) and the
refractive index distribution n(r⃗ ) = n(x, y) does not depend on z, the vectorial 3D
problem can be reduced to a scalar 2D problem in the xy-plane (see Appendix A).
In this case, TM modes do not exist, and the remaining set of TEm0 modes can
be simplified to the only non-zero polarization component of these modes, i.e., the
z-component. The latter are then used as basis functions in a scalar description
and read

𝜒m(r⃗, t) ≡ 𝐸TE
z,m0(r⃗, t) =

√︂
2

𝑊
sin(ky,my)𝑒

i(kx,mx−𝜔t) (1.37)
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with r⃗ = (x, y) and kx,m ≡ kx,m0 =
√︀

k2 − k2
y,m. Note that modes with transverse

wave vectors smaller than k are propagating as their longitudinal propagation con-
stants kx,m are purely real, whereas modes with transverse wave vectors larger than
k have purely imaginary kx-values. The latter then gives rise to exponentially de-
caying waves called evanescent modes which do not contribute to the calculation of
the scattering matrix as they carry no flux (even though they do contribute locally
in a scattering process).

Since the scattering matrix’s unitarity reflects flux conservation, the above men-
tioned basis states also have to be normalized to unit flux (in addition to the already
applied intensity normalization). In other words, to treat all modes equally despite
their different longitudinal flux

jx = Re
[︀
𝑒−ikx,mx(−i∂x)𝑒

ikx,mx
]︀
= kx,m , (1.38)

we have to normalize their transverse profiles by 1/
√︀
kx,m which is essential in order

to obtain a unitary scattering matrix. In the following, we denote flux-normalized
wave functions by a tilde, e.g., 𝜒̃m = 𝜒m/

√︀
kx,m (the same normalization applies in

3D in which case kx,m → kx,mn). The expressions for the scattering matrix elements
for non-flux-normalized input states are also given in Section 2.1 and 2.2.

Considering now two-port devices with one port at x = 0 and the second port at
x = 𝐿, using the longitudinal plane wave propagation factor in the above definitions
of the TE and TM modes at both ports results in a propagation phase relative to
the phase acquired during propagation in free space (since the basis functions at
the second port contain the factor 𝑒ikx,m𝐿). However, typical measurements in
microwave setups yield the absolute acquired phase. To also numerically obtain
the absolute phase, e.g., kx,m𝐿 for a propagation in an empty waveguide section
of length 𝐿, we thus use shifted basis functions with x → (x − 𝐿) at the second
waveguide port at x = 𝐿 which makes the exponential factor of the modes vanish
at both ports (the harmonic time-dependence has already been separated out in
the derivation of the vector or scalar Helmholtz equation).

Last, we want to point out that the choice of basis states is arbitrary, i.e., any
complete and orthogonal set of basis states can be used in the calculation of the
scattering matrix. Apart from the waveguide modes derived above, another pos-
sible choice of basis states are the eigenstates of the transverse position operator.
Each of its eigenstates is located around a certain spatial position given by the cor-
responding eigenvalues and thus they closely resemble the spatially resolved “pixel
basis” of SLMs in optics. To obtain these eigenstates, the transverse position opera-
tor y in 2D is represented in the basis of waveguide modes, where the corresponding
matrix elements read

y{m}
mn =

∫︁ 𝑊

0

𝜒*
m(y) y 𝜒n(y) 𝑑y . (1.39)

Diagonalizing this operator then gives a matrix 𝑌 = (y⃗ (1), . . . , y⃗ (𝑁)) which contains
the modal coefficients of the position eigenstates column-wise. The transformation
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of, e.g., the transmission matrix from the mode basis to the basis of position eigen-
states can then be performed via t{y} = 𝑌 †t{m}𝑌 . The resulting matrix elements
t
{y}
mn then describe the scattering from the n-th spatial position at the first port to

the m-th spatial position at the second port of the waveguide. This set of basis
states will, e.g., be used in Chapter 4. For completeness, we also mention another
popular choice of basis states often used in optics which is given by the angular
basis in which each input state features a single well-defined angle. To numerically
obtain such states, we represent the transverse momentum operator ky = −i∂y in
the modal basis

k{m}
y,mn =

∫︁ 𝑊

0

𝜒*
m(y) (−i∂y)𝜒n(y) 𝑑y . (1.40)

In analogy to the position operator, diagonalizing k
{m}
y yields a matrix 𝐾y which

contains the modal coefficients of the transverse momentum eigenstates column-
wise, where their transverse momentum is given by their corresponding eigenvalue.
Again, transforming the transmission matrix to this basis can be done via t{ky} =
𝐾†

yt
{m}𝐾y.

Having introduced multiple sets of complete and orthonormal basis states in
which we can represent a scattering matrix, we now proceed in the following chap-
ter to the numerical solution of the scattering problem in the specified waveguide
systems, where we focus on the solution of the time-harmonic Maxwell’s equations.
Specifically, Section 2.1 is devoted to numerically solving the two-dimensional scalar
Helmholtz equation, whereas Section 2.2 describes the solution strategy for the full-
vectorial problem in three dimensions.
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Figure 1.3: Transverse electric field intensities of TE (top) and TM (bottom) modes for
the waveguide cross section of the system shown in Fig. 2.5. This set of basis states is also
used in the calculation of the scattering matrix in Fig. 2.6. The TE modes only feature
a transverse electric field, while the TM modes also feature a longitudinal electric field
component.
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Figure 1.4: Transverse magnetic field intensities of TE (top) and TM (bottom) modes
for the waveguide cross section of the system shown in Fig. 2.5. Just like for the 𝐸⃗-field
of the TE modes, the 𝐻⃗-field of the TM modes is exclusively transverse.





Chapter 2

Numerical framework

To numerically solve an electromagnetic scattering problem and thus obtain the
scattering matrix, we have to solve the underlying differential equations, namely
Maxwell’s equations. The most popular choices for full-wave solvers are finite dif-
ference methods like, e.g., the finite difference time-domain method and the finite
element method (FEM). Note that full-wave solvers are required in the strongly
scattering regime mainly considered in this thesis whereas, in other cases, approxi-
mations like, e.g., the paraxial approximation widely used in so-called beam propa-
gation methods can be applied, reducing the complexity of the underlying differen-
tial equations. While finite difference methods are relatively simple to implement
due to their orthogonal grids, this also leads to one of the major drawbacks of these
methods – an inefficiency in modeling complex shapes. Thus, our method of choice
is the FEM, which enables a straightforward treatment of complex geometries and
material discontinuities using irregular grids. Moreover, it also brings the advan-
tage of being able to easily use higher order basis functions as well as curvilinear
elements for a more precise approximation of curved boundaries. For the numerical
implementation, we use the open-source finite element package NGSolve [74, 75]
(https://ngsolve.org) developed by Joachim Schöberl and his group at TU Wien
which provides a very general framework for solving partial differential equations
on unstructured meshes. Based on this framework, we develop an accurate and
flexible numerical tool for solving two- and three-dimensional electromagnetic scat-
tering problems in waveguide-like geometries. Specifically, we discuss the FEM
solution strategy for the two-dimensional scalar Helmholtz equation and the three-
dimensional vector Helmholtz equation as well as the calculation of the scattering
parameters in the subsequent sections. Fore a more detailed description of the
FEM including comparisons to other popular methods, we refer to Ref. [76], a very
thorough description of the FEM can be found in Ref. [77].

The FEM is very well suited for solving partial differential equations subject to
certain boundary conditions and its name stems from the geometric decomposition
of the computational domain into small elements. In their simplest form, these
elements are given by line elements in 1D, triangular elements in 2D and tetrahe-
dral elements in 3D. The core idea of the FEM is the representation of a solution

https://ngsolve.org
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in terms of locally-supported, piecewise basis functions with known shapes but un-
known amplitudes on all the elements. Thus, in contrast to finite difference methods
in which each grid point is associated with a single value, the discretized solution
in a FEM yields amplitudes representing the coefficients of the corresponding basis
functions on each element (in dimensions higher than 1, one cannot only choose the
shape of the basis functions, but also the shape of the elements). In other words,
the FEM approximates the solution of a partial differential equation instead of ap-
proximating the differential operators like in finite difference methods. Since we
deal with partial differential equations, the basis functions have to be differentiable
and thus they are typically chosen to be polynomials. Moreover, their element-wise
definition allows the calculation on a reference element which is then mapped to
the actual element in the mesh. Together, this leads to a discretized differential
operator whose matrix elements are non-zero only in close proximity of each indi-
vidual element in the mesh. Furthermore, these non-vanishing matrix elements are
fairly easy to calculate. This in turn yields sparse matrices whose inversion can be
performed very efficiently. The FEM comes in two formulations: The first one is
the so-called Ritz variational method which is based on the variational problem of a
functional whose minimum yields the discretized solution of the partial differential
equation. The second one is the Galerkin weighted residual (error) method in which
the weighted difference of the left- and right-hand side of a differential equation is
minimized in an average sense (not point-wise). Both methods typically yield the
same results, but since it might be difficult in some cases to find a corresponding
functional, we stick with the Galerkin weighted residual approach in the following.
Also note that boundary conditions must be explicitly imposed as we will show in
the following.

2.1 Stationary scattering in 2D waveguides

Throughout most of this thesis, we will consider time-harmonic, scalar scattering
problems in two dimensions which are governed by the scalar Helmholtz equation
(details about its derivation can be found in the Appendix A). In its most general
form together with (possibly mixed) boundary conditions, it reads[︀

Δ+ n(r⃗ )2k2
]︀
𝜓(r⃗ ) = −𝑓(r⃗ ) in Ω , (2.1)
𝜓(r⃗ ) = 𝑔𝐷(r⃗ ) on Γ𝐷 , (2.2)

∂n𝜓(r⃗ ) = 𝑔𝑁(r⃗ ) on Γ𝑁 , (2.3)

where 𝜓(r⃗ ) = 𝐸z(r⃗ ) is the unknown transverse z-component of the electric field,
r⃗ = (x, y)𝑇 is the position vector, Δ is the Laplace operator in two dimensions and
n(r⃗ ) is the refractive index distribution. Moreover, k = 2𝜋/𝜆 is the free space wave
vector and 𝑓(r⃗ ) is a source (or driving) term. The Helmholtz equation itself is
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defined on the whole domain Ω, whereas the boundary conditions are only applied
on the Dirichlet and Neumann boundaries Γ𝐷 and Γ𝑁 , respectively. There also
exists a third type of boundary condition usually referred to as mixed or Robin
boundary condition2

∂n𝜓(r⃗ ) + 𝜂 𝜓(r⃗ ) = 𝑔𝑅(r⃗ ) on Γ𝑅 (2.4)

with constant 𝜂 that reduces to a Neumann boundary condition for 𝜂 = 0. For
𝜂 > 0, Eq. (2.4) can be implemented as a Neumann boundary, where 𝜓(r⃗ ) on Γ𝑅

must be introduced as an additional unknown.
We now follow Ref. [78] and multiply the differential equation with a so-called

test function (or weighting function) v and integrate it over the whole domain Ω∫︁
Ω

(Δ𝜓) v 𝑑Ω +

∫︁
Ω

n2k2 𝜓 v 𝑑Ω = −
∫︁
Ω

𝑓 v 𝑑Ω . (2.5)

Note that we omitted all spatial dependencies for the sake of clarity. Next, we use
Green’s first identity∫︁

Ω

(Δ𝜓) v 𝑑Ω +

∫︁
Ω

𝛻⃗𝜓 · 𝛻⃗v 𝑑Ω =

∫︁
Γ

(∂n𝜓) v 𝑑Γ

=

∫︁
Γ𝐷

(∂n𝜓) v 𝑑Γ +

∫︁
Γ𝑁

(∂n𝜓) v 𝑑Γ
(2.6)

in order to “shift” one derivative to the test function. This reduces the maximum
order of spatial derivatives acting on the target function 𝜓, which has caused the
term weak form of the differential equation. Thus, we arrive at∫︁

Ω

𝛻⃗𝜓 · 𝛻⃗v 𝑑Ω−
∫︁
Ω

n2k2 𝜓 v 𝑑Ω =

∫︁
Ω

𝑓 v 𝑑Ω+

∫︁
Γ𝑁

𝑔𝑁 v 𝑑Γ+

∫︁
Γ𝐷

(∂n𝜓) v 𝑑Γ , (2.7)

where we already inserted the Neumann boundary condition from Eq. (2.3). Since
we do not know the value of ∂n𝜓 on the Dirichlet boundary Γ𝐷, we impose that v =
0 on Γ𝐷. The latter is not to be confused with the Dirichlet boundary condition for
𝜓 which we have not applied yet. Since the Neumann boundary condition already
appears inside the formulation Eq. (2.7), it is usually called a natural boundary
condition, whereas the Dirichlet boundary condition is called an essential boundary
condition and has to be imposed explicitly on the solution (see below). Thus, the
resulting weak form of the scalar Helmholtz equation reads∫︁

Ω

𝛻⃗𝜓 · 𝛻⃗v 𝑑Ω−
∫︁
Ω

n2k2 𝜓 v 𝑑Ω =

∫︁
Ω

𝑓 v 𝑑Ω +

∫︁
Γ𝑁

𝑔𝑁 v 𝑑Γ . (2.8)

2 One prominent example is the Sommerfeld radiation condition which reads (in two dimensions)
limr→∞ r1/2

[︁
∂𝜓(r⃗ )
∂r − i𝜔𝜓(r⃗ )

]︁
= 0 with r = |r⃗ |.
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Note that 𝜓 is also typically referred to as trial function3. In a next step, we have
to discretize the above equation by expanding the solution 𝜓 in a suitable set of
basis functions. Since the solution corresponds to the transverse part of the electric
field, which has to be continuous according to Eq. (A.7), we use basis functions
that belong to the gradient-conforming Sobolev space 𝐻1(Ω). This function space
is spanned by those square-integrable continuous functions whose gradients are
square integrable as well, i.e., [79]

𝐻1(Ω) = 𝐻(grad; Ω) = {𝜓 ∈ 𝐿2(Ω) : 𝛻⃗𝜓 ∈ [𝐿2(Ω)]
2} . (2.9)

In the discretized formulation of the FEM, the necessity of 𝜓 being differentiable
can be relaxed to being piecewise differentiable. In the simplest form, one typically
chooses piecewise polynomial functions, where a suitable basis of the resulting func-
tion space is given by the so-called nodal basis functions 𝜙i satisfying

𝜙i(p⃗j) = 𝛿ij (2.10)

with 𝛿ij being the Kronecker delta, i.e., they are 1 on their corresponding node p⃗i
and 0 on all the other nodes p⃗j with j ̸= i. In general, the number of nodes is larger
than the number of mesh vertices, which comes from the fact that introducing
higher-order nodal basis functions requires additional supporting points (nodes)
between mesh vertices [78]. Only for the lowest, i.e., first order polynomial basis
functions, the number of vertices is equal to the number of nodes. In that case, the
basis functions can be defined on the reference triangle with vertices p⃗1 = (0, 0),
p⃗2 = (1, 0) and p⃗3 = (0, 1) as

𝜙1(x, y) = 1− x− y , (2.11)
𝜙2(x, y) = x , (2.12)
𝜙3(x, y) = y , (2.13)

which are shown in Fig. 2.1. Using the property in Eq. (2.10), we can discretize
the unknown solution by expanding it into such nodal basis functions

𝜓ℎ =
∑︁
j ∈Ω

𝑐j 𝜙j

=
∑︁
j ∈Ω𝐹

𝑐𝐹,j 𝜙j +
∑︁
j ∈Γ𝐷

𝑔𝐷,j 𝜙j ,
(2.14)

where 𝜓ℎ denotes the discretized solution and 𝑐j = 𝜓ℎ(p⃗j) are the expansion co-
efficients. We have also split the solution in a part defined on the free degrees of

3 This term comes from putting a given alleged solution 𝜓 “on trial”, i.e., one would substitute
it into Eq. (2.8) and check the equality of the left- and right-hand side of Eq. (2.8) for all test
functions v.
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Figure 2.1: Nodal basis functions Eqs. (2.11)-(2.13) on the reference triangle whose
vertices are marked by black dots. The colors represent the values of the basis functions
which fulfill Eq. (2.10).

freedom Ω𝐹 = Ω ∖ Γ𝐷 (denoted by the subscript 𝐹 ) and another part which con-
tains only the prescribed data in order to explicitly enforce the Dirichlet boundary
condition. For the latter, we have already inserted the Dirichlet data, i.e., 𝑐j = 𝑔𝐷,j

for j ∈ Γ𝐷. Following the Galerkin method, we choose the basis functions 𝜙i as
discretized test functions vℎ,i. Replacing 𝜓 and v in Eq. (2.8) with their discretized
versions then yields∑︁

j ∈Ω𝐹

(︂∫︁
Ω

𝛻⃗𝜙j · 𝛻⃗𝜙i 𝑑Ω−
∫︁
Ω

n2k2 𝜙j 𝜙i 𝑑Ω

)︂
𝑐𝐹,j =

∫︁
Ω

𝑓 𝜙i 𝑑Ω

+

∫︁
Γ𝑁

𝑔𝑁 𝜙i 𝑑Γ−
∑︁
j ∈Γ𝐷

(︂∫︁
Ω

𝛻⃗𝜙j · 𝛻⃗𝜙i 𝑑Ω−
∫︁
Ω

n2k2 𝜙j 𝜙i 𝑑Ω

)︂
𝑔𝐷,j

(2.15)

for all indices i ∈ Ω𝐹 . This set of equations can be written in matrix form by
defining the so-called stiffness matrix 𝐾 and (modified) mass matrix 4 𝑀 whose
elements are given by

𝐾ij =

∫︁
Ω

𝛻⃗𝜙j · 𝛻⃗𝜙i 𝑑Ω , (2.16)

𝑀ij = −
∫︁
Ω

n2k2 𝜙j 𝜙i 𝑑Ω , (2.17)

respectively. The right-hand side of Eq. (2.15) only contains known quantities and
the first two integrals can be written as a vector 𝑏⃗ with elements

𝑏i =

∫︁
Ω

𝑓 𝜙i 𝑑Ω +

∫︁
Γ𝑁

𝑔𝑁 𝜙i 𝑑Γ . (2.18)

4 The terminology “stiffnesss” and “mass” matrix stems from mechanical engineering.
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The assembly of the quantities in Eq. (2.16)-(2.18) is provided by NGSolve5 and
defining the matrix 𝐴 = 𝐾 +𝑀 allows us to write Eq. (2.15) in the following form∑︁

j ∈Ω𝐹

𝐴ij 𝑐𝐹,j = 𝑏i −
∑︁
j ∈Γ𝐷

𝐴ij 𝑔𝐷,j . (2.19)

To solve this square system of linear equations, the boundary data 𝑔𝐷 has to be in-
terpolated onto the Dirichlet nodes and extended to zero on all elements in Ω which
have no overlap with Γ𝐷 resulting in the coefficient vector 𝑐⃗𝐷. Thus, Eq. (2.19)
becomes

𝐴𝑐⃗𝐹 = 𝑏⃗− 𝐴𝑐⃗𝐷 , (2.20)

which can also be written as6(︂
𝐴𝐹𝐹 𝐴𝐹𝐷

𝐴𝐷𝐹 𝐴𝐷𝐷

)︂(︂
𝑐⃗𝐹,𝐹
0⃗

)︂
=

(︃
𝑏⃗𝐹
𝑏⃗𝐷

)︃
−
(︂
𝐴𝐹𝐹 𝐴𝐹𝐷

𝐴𝐷𝐹 𝐴𝐷𝐷

)︂(︂
𝑐⃗𝐷,𝐹

𝑐⃗𝐷,𝐷

)︂
. (2.21)

Note that 𝑐⃗𝐷 also contributes to the free degrees of freedom which is a result from
the above mentioned extension of the Dirichlet boundary data into the domain Ω.
The first line of Eq. (2.21) then reads

𝐴𝐹𝐹 𝑐⃗𝐹,𝐹 = 𝑏⃗𝐹 − (𝐴𝐹𝐹 𝑐⃗𝐷,𝐹 + 𝐴𝐹𝐷𝑐⃗𝐷,𝐷)

= 𝑏⃗𝐹 − (𝐴𝑐⃗𝐷)𝐹 .
(2.22)

The solution of this equation can be obtained by utilizing the methods for inverting
the matrix 𝐴𝐹𝐹 on the free degrees of freedom provided by NGSolve. This inversion
can be performed very efficiently since 𝐾 and 𝑀 display a great sparsity character
due their element-wise definition of the basis functions and their property Eq. (2.10).
The full solution coefficient vector is given by the solution on the free degrees of
freedom to which the prescribed Dirichlet data has to be added:

𝑐⃗ =

(︂
𝐴−1

𝐹𝐹 0
0 0

)︂
(⃗𝑏− 𝐴𝑐⃗𝐷) + 𝑐⃗𝐷 . (2.23)

To finally obtain the full discretized solution, these coefficients have to be inserted
back into 𝜓ℎ =

∑︀
j 𝑐j 𝜙j.

Having derived the solution strategy for the scalar Helmholtz equation in a very
general setting, we now apply it to the two-dimensional, two-port waveguide with
metallic boundaries that has been introduced in the preceding section. An example
mesh of such a system can be seen in Fig. 2.2, where we typically use three vertices

5 Since the discretization is performed internally in NGSolve, its syntax allows to set up these
quantities via their corresponding continuous expressions [see Eq. (2.8)].

6 See also the NGSolve documentation at https://docu.ngsolve.org.

https://docu.ngsolve.org
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Figure 2.2: Mesh of a generic 2D waveguide system consisting of a scattering region
(green), which is attached to perfectly matched layers (PMLs, cyan) on both ends which
absorb all outgoing waves. Moreover, the scattering region is filled with scatterers (red)
of different shapes and sizes whose mesh is finer due a refinement based on their refractive
index which we chose here to be 2. Metallic scatterers are cut out of the mesh (not
shown) since they are modeled via homogeneous Dirichlet boundary conditions on their
surface making internal degrees of freedom unnecessary. Also note that the boundaries
of the scatterers are curved due to the usage of third order curvilinear elements. The left
and right interfaces next to the PML interface are the waveguide ports, on which source
terms [Eqs. (2.28) and (2.29)] are defined. Homogeneous Dirichlet boundary conditions
[Eq. (2.24)] are further imposed on the outer rectangular boundary.

per half wavelength, a polynomial order7 of np = 5 and curvilinear elements of
order n𝑐 = 3. The metallic boundaries are modeled by a PEC boundary condition
which demands a vanishing tangential component of the vectorial electric field in
the stationary 3D case. Since in 2D the scalar field is transversely polarized in the
z-direction, the PEC boundary condition translates into a homogeneous Dirichlet
boundary condition at the borders of the waveguide, i.e.,

𝜓 = 0 on Γ𝐷 = ∂Ω . (2.24)

These are easily implementable since Eq. (2.23) has to be solved with 𝑐⃗𝐷 = 0, i.e.,
only 𝐴𝐹𝐹 has to be inverted on the free degrees of freedom. Moreover, Neumann
boundaries are absent in our system, further simplifying Eq. (2.18). Note that

7 Please note that NGSolve does not use only nodal basis functions for np > 1. Instead, it uses
a combination of standard first-order polynomials as vertex basis functions and the hierar-
chical basis of integrated Legendre and Jacobi polynomials as edge and cell basis functions,
respectively [75]. The vertex functions are 1 in the defining vertex and 0 on all the other
vertices, where the edge and cell functions vanish at the mesh vertices and edges, respectively,
thus only being greater zero on the edges between two vertices or inside a triangle. These
hierarchical bases have the advantage that the basis functions of order np can be obtained via
an integration of the basis functions of order np − 1 thus being computationally very efficient.
It is also worth noting that the basis functions within each set of vertex, edge or cell functions
are orthogonal, but functions from different sets are not.
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setting no boundary conditions in the FEM is equivalent to using homogeneous
natural boundary conditions since not including a Neumann term in Eq. (2.18) is
equivalent to setting 𝑔𝑁 = 0.

Since we are interested in waveguides with semi-infinite leads (rather than closed
cavities), the latter have to be terminated and an absorbing layer has to be in-
troduced to prevent the wave from being scattered back into the system. For this
purpose, we use specially tailored materials called perfectly matched layers (PMLs),
which exponentially attenuate the outgoing waves without introducing any reflec-
tions. PMLs can be realized via a complex permittivity 𝜀(r⃗ ) and permeability 𝜇(r⃗ )
in Maxwell’s equations, where an equivalent and more elegant way of implementing
them is given by a complex coordinate stretching of the form [80]

x → x̃ = x+
i

𝜔

∫︁ x

0

𝜎(x′) 𝑑x′ , (2.25)

∂

∂x
→ ∂

∂x̃
=

1

1 + i
𝜔
𝜎(x)

∂

∂x
. (2.26)

Here, 𝜎(x) is the chosen PML absorption profile which is greater than zero only in
the PML region. Considering a transverse waveguide mode propagating inside the
PML along the longitudinal x-direction with

𝑒ikxx̃ = 𝑒ikxx𝑒−𝑐(kx/k)
∫︀ x
0 𝜎(x′) 𝑑x′

(2.27)

and 𝜔 = k𝑐, we see that Eq. (2.25) causes the desired exponential damping inside
the PML. Outside the PML, 𝜎(x) = 0 and thus the solution remains unchanged
causing no reflections at the PML interface8. For plane waves in 1D, the division
by 𝜔 in Eq. (2.25) gives rise to a frequency-independent attenuation in homoge-
neous materials (neglecting material dispersion), whereas in higher dimensions the
different propagation angles of waveguide modes characterized by the ratio kx/k
causes an angle- and thus mode-dependent absorption. This effect becomes espe-
cially important at mode openings at which the longitudinal propagation constant
kx of the new mode is very small and its absorption thus very inefficient. There-
fore, an automatic scaling of the PML length slightly above mode-openings has
been implemented. A similar scaling has also been applied slightly below mode
openings in order to ensure a sufficient decay of evanescent modes that can be ex-
cited at scatterers close to the PML. It’s worth noting, that the complex scaling in
Eq. (2.25) adds an oscillating part to evanescent waves, but does not increase their
decay rate [80]. Also note that if the wave is fully absorbed before reaching the
end of the PML, the choice of the boundary condition is irrelevant such that we

8 This is only true analytically since the discretization together with the finite truncation in the
numerical simulations again introduce reflections. However, these are usually very small and
therefore negligible.
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can impose homogeneous Dirichlet boundary conditions [Eq. (2.24)] at the PML
ends. PMLs for stationary problems are already provided by NGSolve and their
default implementation corresponds to an additional complex transformation of the
form 𝜉 → 𝜉 + 𝛼PML𝜉, which is applied to all elements in the PML region. Here, 𝜉
is the generalized distance to the beginning of the PML and 𝛼PML is the complex
parameter of the linear scaling which we typically set to 𝛼PML = 2i.

Last, we inject waves into the system by utilizing the source term in Eq. (2.1).
Here it is important to note that the amplitude of the source differs from the
amplitude of the actual excitation in the waveguide (an exact analytical expression
of their relation is derived in Appendix B). Summarizing, for injecting a certain
superposition of flux-normalized waveguide modes characterized by the coefficient
vector 𝑎⃗ into the system, the corresponding source terms read

𝑓port 1 =
𝑁∑︁

n=1

−2ikx,n 𝑎n 𝜒̃n(y) , (2.28)

𝑓port 2 =
𝑁∑︁

n=1

−2ikx,n 𝑎n 𝜒̃
*
n(y) . (2.29)

Here, 𝑁 is the total number of propagating modes, kx,n =
√︀
k2 − k2

y,n are their lon-
gitudinal propagation constants and 𝜒̃n(y) = 𝜒n(y)/

√︀
kx,n are the flux-normalized

transverse profiles of the TE modes Eq. (1.37). Note that these transverse profiles
do not contain longitudinal phase factors 𝑒ikx,nxp , where xp is the longitudinal po-
sition of the respective port, since the use of shifted basis functions makes them
vanish (see Section 1.3). Such source terms are then defined on the waveguide ports
in order to excite waves with amplitudes 𝑎n incident from the left and/or right. Note
that the complex conjugation in the source term at port 2 is not relevant in the
considered waveguide case as the basis functions are purely real. However, we also
implemented the periodic boundary conditions provided by NGSolve for which the
basis functions are plane waves, i.e., complex-valued exponentials. In this case, left-
traveling waves have to be complex conjugated, which also has to be considered in
the calculation of the transmission and reflection matrix elements below.

Now that we have all the ingredients to solve the Helmholtz equation numerically,
we aim to calculate the scattering matrix. For this purpose, we inject the individual
flux normalized modes 𝜒̃n at port 1 and calculate the corresponding solution in the
whole waveguide 𝜓n. Next, we project the transmitted part of the solution, i.e., 𝜓n

at port 2 (x = 𝐿), and the reflected part, i.e., 𝜓n − 𝜒̃n at port 1 (x = 0), onto all
modes and normalize each overlap integral by the intensity of the mode onto which
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we project. The resulting transmission and reflection matrix elements thus read9

tmn =

∫︀
port 2 𝜒̃

*
m 𝜓n 𝑑y∫︀

port 2 |𝜒̃m|2 𝑑y

=

√︃
kx,m
kx,n

∫︁
port 2

𝜒*
m 𝜓n 𝑑y ,

(2.30)

rmn =

∫︀
port 1 𝜒̃m (𝜓n − 𝜒̃n) 𝑑y∫︀

port 1 |𝜒̃m|2 𝑑y

=

√︃
kx,m
kx,n

∫︁
port 1

𝜒m (𝜓n − 𝜒n) 𝑑y ,

(2.31)

respectively. Here, the second equal sign was obtained by pulling the flux-factors of
all flux-normalized quantities (denoted by a tilde) in front of the integral. Moreover,
we have used the imposed intensity normalization

∫︀
port |𝜒m(y)|2 𝑑y = 1 leaving us

with expressions valid for non-flux-normalized input states10 𝜒̃n(y) → 𝜒n(y) in
Eqs. (2.28) and (2.29). In analogy to Eqs. (2.30) and (2.31), one can define the
transmission and reflection matrix elements for an input from port 2 as

t′mn =

∫︀
port 1 𝜒̃m 𝜓n 𝑑y∫︀
port 1 |𝜒̃m|2 𝑑y

=

√︃
kx,m
kx,n

∫︁
port 1

𝜒m 𝜓n 𝑑y ,

(2.32)

r′mn =

∫︀
port 2 𝜒̃

*
m (𝜓n − 𝜒̃*

n) 𝑑y∫︀
port 2 |𝜒̃m|2 𝑑y

=

√︃
kx,m
kx,n

∫︁
port 2

𝜒*
m (𝜓n − 𝜒*

n) 𝑑y .

(2.33)

Finally, the scattering matrix is given by Eq. (1.4). Last, we check the numerically
calculated scattering matrix by verifying its required symmetries Eqs. (1.2) and
(1.9) as illustrated in Fig. 2.3.

Since scalar scattering in 2D cannot always capture all the physics contained
in Maxwell’s equations, we therefore continue in the following section with the
numerical solution of the full 3D problem.

9 These expressions are similar to the Fisher-Lee relations derived for the Schrödinger equation
[81, 82]. However, here we do not have direct access to the Green’s function, but only to the
full solution which is given by the integral of the input state times the Green’s function.

10 In this case, the flux normalization has to be applied manually via the prefactor in front of
the integrals in Eqs. (2.30) and (2.31), which is very similar to quantum mechanical scattering
theory, where the scattering problem gets often solved without flux normalization.
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Figure 2.3: Numerically calculated scattering matrix of the system shown in Fig. 2.2 for 4
propagating TEm0 modes. The left plot shows the absolute value of the scattering matrix
elements while the middle and right plot shows the deviation of the scattering matrix
from unitarity and transposition symmetry, respectively. The subscripts L/R indicate the
input from the left/right waveguide port 1/port 2.

2.2 Stationary scattering in 3D waveguides
While in many cases a scalar 2D description of a scattering process might be suf-
ficient, a refractive index distribution depending on all three spatial dimensions
together with strong scattering will inevitably lead to polarization mixing which
cannot be described by the scalar Helmholtz equation. In the following, we therefore
present the numerical solution of the full-vectorial 3D problem. As in the scalar
2D case, we are interested in time-harmonic problems, in which case Maxwell’s
equations can be reduced to the so-called vector Helmholtz equation which reads
(𝜇r = 1, see Appendix A for details about its derivation), together with correspond-
ing boundary conditions, as follows:

𝛻⃗ × 𝛻⃗ × 𝐸⃗(r⃗ )− n2(r⃗ )k2𝐸⃗(r⃗ ) = 𝑓(r⃗ ) in Ω , (2.34)

𝐸⃗(r⃗ )× n⃗ = 𝑔⃗𝐷(r⃗ ) on Γ𝐷 , (2.35)[︁
𝛻⃗ × 𝐸⃗(r⃗ )

]︁
× n⃗ = 𝑔⃗𝑁(r⃗ ) on Γ𝑁 . (2.36)

Here, 𝐸⃗(r⃗ ) is the unknown vectorial electric field, r⃗ = (x, y, z)𝑇 is the position
vector, 𝑓(r⃗ ) is the vectorial source term and n⃗ is the outer normal vector. The
essential boundary condition corresponds to the tangential component of the electric
field, whereas the natural boundary condition (naturally appearing in the weak form
below) is related to a 90 degree rotation of the magnetic field since 𝛻⃗ × 𝐸⃗ ∝ 𝐻⃗.
The mixed or Robin boundary condition can be written as[︁

𝛻⃗ × 𝐸⃗(r⃗ )
]︁
× n⃗+ 𝜂 𝐸⃗(r⃗ )× n⃗ = 𝑔⃗𝑅(r⃗ ) on Γ𝑅 , (2.37)

where the Dirichlet part, i.e., 𝐸⃗(r⃗ ) × n⃗ on Γ𝑅, must be again introduced as an
additional unknown in the weak formulation.
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Multiplying Eq. (2.34) with a vectorial test function v⃗, integrating over the whole
domain and applying the integration by parts formula [79]∫︁

Ω

(𝛻⃗ × u⃗) · v⃗ 𝑑Ω =

∫︁
Ω

u⃗ · (𝛻⃗ × v⃗) 𝑑Ω−
∫︁
Γ

(u⃗× n⃗) · v⃗ 𝑑Γ (2.38)

with u⃗ = 𝛻⃗ × 𝐸⃗ yields∫︁
Ω

(𝛻⃗ × 𝐸⃗) · (𝛻⃗ × v⃗) 𝑑Ω−
∫︁
Ω

n2k2 𝐸⃗ · v⃗ 𝑑Ω =

∫︁
Ω

𝑓 · v⃗ 𝑑Ω

+

∫︁
Γ𝑁

𝑔⃗𝑁 · v⃗ 𝑑Γ +

∫︁
Γ𝐷

[(𝛻⃗ × 𝐸⃗)× n⃗] · v⃗ 𝑑Γ .
(2.39)

Since the last integral is unknown, we rewrite it as∫︁
Γ𝐷

[(𝛻⃗ × 𝐸⃗)× n⃗] · v⃗ 𝑑Γ = −
∫︁
Γ𝐷

(v⃗ × n⃗) · (𝛻⃗ × 𝐸⃗) 𝑑Γ (2.40)

and demand – similar to v = 0 on Γ𝐷 in the scalar case – that v⃗ × n⃗ = 0 on Γ𝐷

[79] such that the integral vanishes. Thus, the resulting so-called curl-curl problem
is given by∫︁

Ω

(𝛻⃗ × 𝐸⃗) · (𝛻⃗ × v⃗) 𝑑Ω−
∫︁
Ω

n2k2 𝐸⃗ · v⃗ 𝑑Ω =

∫︁
Ω

𝑓 · v⃗ 𝑑Ω +

∫︁
Γ𝑁

𝑔⃗𝑁 · v⃗ 𝑑Γ . (2.41)

Next, the above equation has to be discretized by introducing vectorial basis func-
tions. As it turns out, however, the nodal basis functions briefly introduced in the
previous section are not very well suited for describing electromagnetic problems
since they force all field components to be continuous (shared nodes between two
elements feature the same values). The interface conditions derived from Maxwell’s
equations, however, only demand the continuity of the tangential 𝐸⃗-field at mate-
rial interfaces while its normal component can be discontinuous. Moreover, using a
nodal basis also makes it difficult to obtain a scalar degree of freedom on each node
due to the vectorial nature of the electric field. Therefore, so-called edge-based vec-
tor elements11 (also known as Whitney forms, Nédélec or Bossavit elements) have
been introduced, whose degrees of freedom are only associated with the tangential
component of the field on the corresponding edge [76, 84–86]. Thus, tangential
continuity, as required by Maxwell’s interface conditions, can be easily imposed,
while leaving the normal component free to jump across material interfaces. In
fact, such elements give rise to a better description of electromagnetic eigenvalue
problems. In particular, they drastically reduce the number of spurious modes,
11 In computational electromagnetics, the term “element” often refers to the basis functions rather

than to the mathematical definition of the element like, e.g., a tetrahedron, together with a
polynomial space defined on it [83].
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Figure 2.4: Edge-based vector elements of lowest order [Eqs. (2.42)-(2.44)] on the refer-
ence triangle in two dimensions which only have a non-vanishing and constant tangential
component on their defined edge.

which do not satisfy the divergence constraints of Maxwell’s equations [76, 85] and
which thus cannot be excited by the driven vector Helmholtz equation (2.34) con-
sidered here. Moreover, the relaxed continuity conditions of these elements allow a
better description at sharp edges due to the absence of a nodal value at the electric
field singularity [85].

To get a better understanding of these elements, Fig. 2.4 shows the lowest or-
der edge-based vector elements on a reference triangle in two dimensions, whose
analytical expressions are given by [76]

𝑊⃗ 𝑒
1 = 𝜙1𝛻⃗𝜙2 − 𝜙2𝛻⃗𝜙1 , (2.42)

𝑊⃗ 𝑒
2 = 𝜙2𝛻⃗𝜙3 − 𝜙3𝛻⃗𝜙2 , (2.43)

𝑊⃗ 𝑒
3 = 𝜙3𝛻⃗𝜙1 − 𝜙1𝛻⃗𝜙3 . (2.44)

It can be easily shown that t⃗i · 𝑊⃗ 𝑒
i = 1/ℓ𝑒i with t⃗i being the tangential vector of

the i-th edge and ℓ𝑒i being its length. This means that each of these elements
has a constant tangential component on the associated edge which is inversely
proportional to its length and thus one typically normalizes them by using [77]

𝑁⃗ 𝑒
i = ℓ𝑒i𝑊⃗

𝑒
i . (2.45)

These basis functions can further be easily generalized to a reference tetrahedron
in three dimensions by adding the 3 basis functions defined on the edges that
connect the base triangle with the top of the tetrahedron [76, 85]. As can be
seen, each of these edge elements12 has a non-vanishing (and constant) tangential

12 The first order vector elements discussed here are exclusively defined via degrees of freedom on
the edges which has caused the term edge elements. In case of higher order basis functions, one
gets additional degrees of freedom inside the element and therefore one then usually speaks of
edge-based vector elements [76].
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component on its associated edge, whereas its tangential component vanishes on
all the other edges. Most importantly, the above definition and properties of the
considered elements are not only valid on the right-angled reference triangle, but can
be mapped to any triangle [76]. Lastly, we want to emphasize that these elements
are also called curl-conforming since the electric field expanded in such elements has
a curl that is square-integrable. More precisely, this so-called 𝐻(curl; Ω) function
space is defined as

𝐻(curl; Ω) = {𝐸⃗ ∈ [𝐿2(Ω)]
3 : curl 𝐸⃗ ∈ [𝐿2(Ω)]

3} . (2.46)

In the discretized formulation of the FEM, this translates into piecewise continu-
ous vector-valued polynomials featuring tangential continuity – just like the above
defined 𝑁⃗ 𝑒

i .
For simplicity, we now continue the discussion with these edge-based vector ele-

ments of lowest order and write the discretized solution as

𝐸⃗ℎ =
∑︁
j ∈Ω𝐹

𝑐𝐹,j 𝑁⃗
𝑒
j +

∑︁
j ∈Γ𝐷

𝑔𝐷,j 𝑁⃗
𝑒
j , (2.47)

where we have again split the solution into the free degrees of freedom 𝑐𝐹,j and the
prescribed Dirichlet data 𝑔𝐷,j. Next, applying the Galerking method, i.e., using
v⃗ℎ,i = 𝑁⃗ 𝑒

i , yields the discretized weak form of the vector Helmholtz equation∑︁
j ∈Ω𝐹

(︂∫︁
Ω

(𝛻⃗ × 𝑁⃗ 𝑒
j ) · (𝛻⃗ × 𝑁⃗ 𝑒

i ) 𝑑Ω−
∫︁
Ω

n2k2 𝑁⃗ 𝑒
j · 𝑁⃗ 𝑒

i 𝑑Ω

)︂
𝑐𝐹,j

=

∫︁
Ω

𝑓 · 𝑁⃗ 𝑒
i 𝑑Ω +

∫︁
Γ𝑁

𝑔⃗𝑁 · 𝑁⃗ 𝑒
i 𝑑Γ (2.48)

−
∑︁
j ∈Γ𝐷

(︂∫︁
Ω

(𝛻⃗ × 𝑁⃗ 𝑒
j ) · (𝛻⃗ × 𝑁⃗ 𝑒

i ) 𝑑Ω−
∫︁
Ω𝐹

n2k2 𝑁⃗ 𝑒
j · 𝑁⃗ 𝑒

i 𝑑Ω

)︂
𝑔𝐷,j .

The elements of the stiffness and modified mass matrix in the considered vectorial
case are

𝐾ij =

∫︁
Ω

(𝛻⃗ × 𝑁⃗ 𝑒
j ) · (𝛻⃗ × 𝑁⃗ 𝑒

i ) 𝑑Ω , (2.49)

𝑀ij = −
∫︁
Ω

n2k2 𝑁⃗ 𝑒
j · 𝑁⃗ 𝑒

i 𝑑Ω , (2.50)

and the first two integrals on the right-hand side of Eq. (2.48) can again be written
as a vector 𝑏⃗ with elements

𝑏i =

∫︁
Ω

𝑓 · 𝑁⃗ 𝑒
i 𝑑Ω +

∫︁
Γ𝑁

𝑔⃗𝑁 · 𝑁⃗ 𝑒
i 𝑑Γ . (2.51)
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Figure 2.5: Cut through the mesh of a generic 3D waveguide system (only surfaces are
shown) consisting of a scattering region (green), which is attached to PMLs (cyan) on
both ends which absorb all outgoing waves. Moreover, the scattering region is filled with
scatterers (red) of different sizes and shapes, where metallic scatterers are cut out of the
mesh (not shown) since the imposed homogeneous Dirichlet boundary conditions make
internal degrees of freedom unnecessary. Like in 2D, the boundaries of the scatterers
are curved due to the usage of third order curvilinear elements. The planes next to the
PML interfaces are the waveguide ports (marked by the yellow lines), on which source
terms [Eqs. (2.54) and (2.55)] are defined. Homogeneous Dirichlet boundary conditions
[Eq. (2.53)] are further imposed on the whole outer cuboid boundary.

Again, the assembly of the quantities in Eq. (2.49)-(2.51) is provided by NGSolve
and together with the definition 𝐴 = 𝐾 +𝑀 , Eq. (2.48) becomes∑︁

j ∈Ω𝐹

𝐴ij 𝑐𝐹,j = 𝑏i −
∑︁
j ∈Γ𝐷

𝐴ij 𝑔𝐷,j . (2.52)

Similar to the scalar 2D case, we can then extend the Dirichlet data 𝑔𝐷,j defined on
Γ𝐷 into the whole domain resulting in the coefficients 𝑐𝐷,j ∈ Ω. Finally, following
the steps in Eqs. (2.20)-(2.23), we obtain the solution coefficient vector 𝑐⃗ = 𝑐⃗𝐹 + 𝑐⃗𝐷
as a sum of the solution on the free degrees of freedom and the Dirichlet data.

Having again a very general solution strategy for the vectorial problem at hand,
we now specify the system and the parameters in use. The system under consider-
ation is given by a rectangular, metallic two-port waveguide, where Fig. 2.5 shows
a generic mesh of such. We typically use three vertices per half wavelength and
curvilinear elements of order n𝑐 = 3. NGSolve supports Nédélec elements of arbi-
trary order which we typically choose to be np ≥ 3. The PEC boundary condition
demands a vanishing tangential field at the waveguide walls which translates into
a homogeneous Dirichlet boundary condition

𝐸⃗ × n⃗ = 0 on Γ𝐷 = ∂Ω (2.53)

that can be easily implemented by using 𝑐⃗𝐷 = 0 and inverting 𝐴𝐹𝐹 on the free
degrees of freedom. Natural boundary conditions are again absent in our problem
letting the second term in Eq. (2.51) vanish.
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To absorb the waves at both ends of the scattering region, the PMLs provided by
NGSolve are again used with a complex scaling parameter of 𝛼PML = 2i. Similar to
the scalar 2D case, their length is increased automatically close to mode openings
to ensure full absorption and sufficient decay of all propagating and evanescent
waveguide modes at the PML ends, respectively.

To inject a certain superposition of waveguide modes characterized by a coeffi-
cient vector 𝑎⃗ into the system, we use source terms which are structurally identical
to the scalar case, but now contain the full-vectorial form of the TEmn modes:

𝑓port 1 =
𝑁∑︁

n=1

−2ikx,n 𝑎n
˜⃗
𝐸 TE

n (y, z) , (2.54)

𝑓port 2 =
𝑁∑︁

n=1

−2ikx,n 𝑎n
˜⃗
𝐸 TE *

n (y, z) . (2.55)

Here, the indices of all propagating TE-modes have been mapped to a single index,
i.e., (m,n) → n, and a tilde denotes again flux-normalized quantities.

The transmission and reflection matrices can then be calculated similarly to
the previous section, but with the scalar quantities replaced by the vectorial fields.
Assuming flux-normalized input states in Eq. (2.54), the transmission and reflection
matrix elements for an input from port 1 read

tmn =

∫︀∫︀
port 2

˜⃗
𝐸 TE *

m · ˜⃗𝐸n 𝑑y 𝑑z∫︀∫︀
port 2 |

˜⃗
𝐸 TE

m |2 𝑑y 𝑑z

=

√︃
kx,m
kx,n

∫︁∫︁
port 2

𝐸⃗ TE *
m · 𝐸⃗n 𝑑y 𝑑z ,

(2.56)

rmn =

∫︀∫︀
port 1

˜⃗
𝐸 TE

m · ( ˜⃗𝐸n − ˜⃗
𝐸 TE

n ) 𝑑y 𝑑z∫︀∫︀
port 1 |

˜⃗
𝐸 TE

m |2 𝑑y 𝑑z

=

√︃
kx,m
kx,n

∫︁∫︁
port 1

𝐸⃗ TE
m · (𝐸⃗n − 𝐸⃗ TE

n ) 𝑑y 𝑑z ,

(2.57)
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respectively. The corresponding matrix elements for an input from port 2 are

t′mn =

∫︀∫︀
port 1

˜⃗
𝐸 TE

m · ˜⃗𝐸n 𝑑y 𝑑z∫︀∫︀
port 1 |

˜⃗
𝐸 TE

m |2 𝑑y 𝑑z

=

√︃
kx,m
kx,n

∫︁∫︁
port 1

𝐸⃗ TE
m · 𝐸⃗n 𝑑y 𝑑z ,

(2.58)

r′mn =

∫︀∫︀
port 2

˜⃗
𝐸 TE *

m · ( ˜⃗𝐸n − ˜⃗
𝐸 TE *

n ) 𝑑y 𝑑z∫︀∫︀
port 2 |

˜⃗
𝐸 TE

m |2 𝑑y 𝑑z

=

√︃
kx,m
kx,n

∫︁∫︁
port 2

𝐸⃗ TE *
m · (𝐸⃗n − 𝐸⃗ TE *

n ) 𝑑y 𝑑z .

(2.59)

Using Eqs. (2.56)-(2.59) does not yet result in a unitary scattering matrix, since
TEmn modes with m ≥ 1 and n ≥ 1 can scatter into energetically degenerate TMmn

modes. We therefore also have to project onto such outgoing TMmn modes if m ≥ 1
and n ≥ 1 (otherwise these modes do not exist), which results in rectangular ma-
trices that finally satisfy 𝑆†𝑆 = 1. As can be seen in Fig. 1.3, TM modes feature
transverse as well as longitudinal electric field components, with the latter being
neglected when performing surface integrals in an 𝐻(curl; Ω)-conforming function
space13. To calculate the overlap integrals correctly, we either read-out the solution
on the respective waveguide port and perform the integration manually or interpo-
late the full solution onto a vector 𝐻1(Ω)-conforming space of continuous functions
and use the built-in integration function provided by NGSolve. As in the previous
section, we also validate the symmetries Eqs. (1.2) and (1.9) of the numerically
calculated scattering matrix in Fig. 2.6.

The neglection of normal components on surfaces further prevents the solution for
TM modes in the 𝐸⃗-field formulation. However, the developed code can be easily
adapted to the solution of the vector Helmholtz equation in the 𝐻⃗-field formulation
in which the TM modes are exclusively transverse. In this formulation, the PEC
boundary condition Eq. (2.53) corresponds to a homogeneous natural boundary
condition for the 𝐻⃗-field due to Maxwell’s equation (1.35). Moreover, the interface
condition in Eq. (A.6) implies that the 𝐻(div)-conforming finite element space

𝐻(div; Ω) = {𝐸⃗ ∈ [𝐿2(Ω)]
3 : div 𝐸⃗ ∈ 𝐿2(Ω)} (2.60)

spanned by normally-continuous face elements has to be employed [83].
13 On material interfaces, normal components of the electric field are not continuous and thus

not well defined. However, in mathematical terms, the so-called trace operator [79] has to be
continuous across boundaries and thus only the tangential trace is taken into account, even
though there are no material interfaces like, e.g., on the waveguide ports.



40 2.2 Stationary scattering in 3D waveguides

Figure 2.6: Numerically calculated scattering matrix of the system shown in Fig. 2.5 for
8 propagating input TE modes which can additionally scatter into 2 outgoing TM modes
(row 9, 10). The 𝐸⃗-field intensities of the modes used in this calculation are depicted in
Fig. 1.3. The left plot shows the absolute value of the scattering matrix elements, where
the white frames mark the submatrices for in- and outgoing TE modes. The middle plot
shows the deviation of the full rectangular scattering matrix from unitarity and the right
plots shows the deviation of the TE scattering matrix from transposition symmetry. The
subscripts L/R again indicate the input from the left/right waveguide port 1/port 2.
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3.1 The generalized Wigner-Smith operator
The concept of Wigner-Smith time-delay has triggered an entire field of research and
has led to numerous insights and discoveries in the field of complex wave scattering.
Most notably, it enables the creation of wavefronts which feature a well-defined
propagation time through a complex scattering system only based on the knowledge
of the system’s scattering matrix. In this chapter, we push the concept further and
generalize it to a whole new class of operators which we term generalized Wigner-
Smith (GWS) operators whose eigenstates are optimal for micromanipulation tasks
since they – as we show in the following – transfer well-defined amounts of physical
quantities to a target. To generalize the Wigner-Smith operator, we replace the
frequency derivative with a derivative with respect to an arbitrary parameter, i.e.,
𝜔 → 𝜃. The resulting operator then reads

𝑄
(𝑆)
𝜃 = −i𝑆†(𝜃)

𝑑𝑆(𝜃)

𝑑𝜃
, (3.1)

where 𝜃 can now be any parameter on which the scattering matrix depends. Ir-
respective of the chosen parameter 𝜃, the output wavefronts of the eigenstates of
𝑄

(𝑆)
𝜃 for a unitary scattering matrix (𝑆† = 𝑆−1) are by construction invariant with

respect to a small change in 𝜃 – just like the principal modes are invariant with
respect to a change in 𝜔 to first order [40]. To associate physical meaning to the

14 The results presented in this chapter were obtained in collaboration with my former colleagues
Philipp Ambichl and Andre Brandstötter, my current colleagues Michael Horodynski and
Kevin Pichler, our experimental collaborators Ulrich Kuhl and his former PhD student Julian
Böhm from the Université Côte d’Azur and Yan V. Fyodorov from King’s College in London.
The theoretical analysis was carried out by Philipp Ambichl, Michael Horodynski, myself and
Andre Brandstötter under the supervision of Stefan Rotter. The numerical simulations were
mainly performed by myself, whereas the experiments were conducted by Julian Böhm and
Kevin Pichler under the supervision of Ulrich Kuhl. The presented results are based on two
joint publications [55, 56] from which parts of the text and figures have been taken.
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eigenvalues 𝜏𝜃 of 𝑄(𝑆)
𝜃 , we use the fact that the eigenvalues of 𝑄(𝑆)

𝜔 are proper time-
delays [37]. More precisely, the frequency derivative in 𝑄

(𝑆)
𝜔 gives rise to eigenvalues

which are associated to the conjugate quantity (in the sense of a Fourier relation),
i.e., the time. Analogously, the eigenvalues of the operator 𝑄

(𝑆)
𝜃 , which involves a

derivative of the scattering matrix by 𝜃, have to be associated with the quantity
conjugate to 𝜃. To illustrate this correspondence, we can write the shifted scatter-
ing matrix 𝑆(𝜃 + Δ𝜃) with the help of a generalized “translation operator” 𝑒i𝐶𝜃Δ𝜃

as [56, 87]
𝑆(𝜃 +Δ𝜃) = 𝑒−i𝐶𝜃Δ𝜃𝑆(𝜃)𝑒i𝐶𝜃Δ𝜃 , (3.2)

with 𝐶𝜃 being the conjugate operator to 𝜃. In case of very small Δ𝜃, Taylor-
expanding the translation operators gives

𝑆(𝜃 +Δ𝜃) = [1 − i𝐶𝜃Δ𝜃 +O(Δ𝜃2)]𝑆(𝜃) [1 + i𝐶𝜃Δ𝜃 +O(Δ𝜃2)]

≈ 𝑆(𝜃)− i𝐶𝜃𝑆(𝜃)Δ𝜃 + i𝑆(𝜃)𝐶𝜃Δ𝜃 ,
(3.3)

where we neglected terms of the order (Δ𝜃)n with n ≥ 2 in the second line. The
derivative of 𝑆 with respect to 𝜃 appearing in Eq. (3.1) can then be expressed as

𝑑𝑆

𝑑𝜃
= lim

Δ𝜃→0

𝑆(𝜃 +Δ𝜃)− 𝑆(𝜃)

Δ𝜃
= i𝑆(𝜃)𝐶𝜃 − i𝐶𝜃𝑆(𝜃) . (3.4)

Making use of the assumed unitarity of the scattering matrix 𝑆†𝑆 = 1, 𝑄(𝑆)
𝜃 can

finally be written as

𝑄
(𝑆)
𝜃 = −i𝑆†𝑑𝑆

𝑑𝜃
= 𝐶𝜃 − 𝑆†𝐶𝜃𝑆 . (3.5)

Choosing 𝜃 as, e.g., the spatial shift of the system in a certain direction with unit
vector n̂, the corresponding conjugate operator is given by the momentum operator
in shifting direction, i.e., 𝐶𝜃 = k⃗·n̂. In this case, the expectation value of the GWS
operator for an input state |u⟩ in bra-ket notation reads

⟨u|𝑄(𝑆)
n̂ |u⟩ = ⟨u|⃗k·n̂|u⟩ − ⟨v|⃗k·n̂|v⟩

= ⟨k⃗·n̂⟩in − ⟨k⃗·n̂⟩out ,
(3.6)

where |v⟩ = 𝑆|u⟩ is the corresponding output vector. This shows that 𝑄(𝑆)
n̂ measures

the momentum difference between the incident and outgoing wave and is thus
related to the momentum transferred to the system in n̂-direction.

The above derivation has been carried out for a global parameter change and
is not easily adaptable to arbitrary local parameter changes. We therefore utilize
the effective Hamiltonian framework briefly introduced in Section 1.1 to arrive at
a more general expression relating the asymptotic quantities like the input state
and the scattering matrix with the local wave function inside the system. We start
with the scattering matrix [Eq. (1.10)]

𝑆 = −1 + 2i𝑉 †𝐺𝑉 , (3.7)
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where 𝐺 = (𝐺−1
0 + i𝑉 𝑉 †)−1, 𝐺0 = [Δ+𝑈(r⃗ )]−1 is the Green’s function of the scalar

Helmholtz equation and 𝑈(r⃗ ) = n(r⃗ )2k2 is the corresponding potential. Next, the
derivative of Eq. (3.7) with respect to 𝜃 reads

𝑑𝑆

𝑑𝜃
= −2i𝑉 †𝐺

𝑑𝑈

𝑑𝜃
𝐺𝑉 , (3.8)

where we have assumed that the coupling matrices 𝑉 are independent of the pa-
rameter 𝜃. Substituting Eqs. (3.7) and (3.8) into the GWS operator then yields

𝑄
(𝑆)
𝜃 = 2(1 + 2i𝑉 †𝐺†𝑉 )𝑉 †𝐺

𝑑𝑈

𝑑𝜃
𝐺𝑉 . (3.9)

For a unitary scattering matrix, we can further make use of the relation [71]

− 2i𝐺†𝑉 𝑉 †𝐺 = 𝐺−𝐺† (3.10)

and arrive at

𝑄
(𝑆)
𝜃 = 2𝑉 †𝐺†𝑑𝑈

𝑑𝜃
𝐺𝑉 . (3.11)

Since the wave function |𝜓u⟩ for an arbitrary input state |u⟩ can be written as [71]

|𝜓u⟩ = 2i𝐺𝑉 |u⟩ , (3.12)

the expectation value of the GWS operator becomes

⟨u|𝑄(𝑆)
𝜃 |u⟩ = 1

2
⟨𝜓u|𝑑𝑈

𝑑𝜃
|𝜓u⟩ . (3.13)

This relation is very powerful since it relates asymptotic quantities like the input
vector |u⟩ (typically a coefficient vector u⃗ of modal amplitudes) and the GWS
operator with the corresponding wave function inside the scattering system |𝜓u⟩
(typically a spatially resolved electric field distribution) and the local or global
derivative of the potential 𝑑𝑈/𝑑𝜃. In other words, it allows the extraction of in-
formation about the local wave function inside the system via the knowledge of
asymptotic quantities only. This in turn enables us to assign physical meaning to
the eigenvalues of different 𝑄

(𝑆)
𝜃 operators with the advantage that Eq. (3.13) can

be easily evaluated also for a local parameter change such as the position of a single
scatterer inside a disordered medium.

In the following, we investigate different 𝑄(𝑆)
𝜃 operators and show, that choosing

𝜃 to be either the position, the radius, the rotational angle or the refractive index
of an arbitrarily shaped target buried deeply inside a disordered medium results in
GWS eigenstates whose corresponding eigenvalues are related to the transfer of a
well-defined linear, radial or angular momentum to that target or to the intensity
stored inside of it.
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Figure 3.1: Sketch of the microwave waveguide used in the experiment. The length
and width of the scattering region are 𝐿 = 50 cm and 𝑊 = 10 cm, respectively, and its
height is ℎ = 8 mm. Due to the small height, only TEm0 modes can be excited at the
operational frequency reducing the numerical problem to a two-dimensional waveguide
with hard walls in the transverse direction and semi-infinite leads on the left and right.
Experimentally, waves are injected by 8 antennas on each side of the waveguide (not
shown). Red cylinders indicate the randomly distributed Teflon scatterers (with radii of
2.55 mm and 11 mm and a refractive index of n = 1.44), whereas the green cylinder
represents a target scatterer whose material, size and shape is chosen specifically for each
of the different GWS operators we investigate. The surrounding disorder is characterized
by a transport mean free path ℓ* ≈ 35 cm = 0.7𝐿 and a scattering mean free path of
ℓs ≈ 27 cm = 0.54𝐿. The top plate (not shown) features small grid holes through which
the electric field is measured in the red-shaded region around the target.

To set the stage for our investigations, we specify our system of choice which is
given by a rectangular microwave waveguide as depicted in Fig. 3.1. This exper-
imental setup gives access to the full scattering matrix as well as to the electric
field distribution inside the waveguide. Moreover, it allows the injection of arbi-
trary superpositions of waveguide modes from both sides and enables the variation
of the scattering geometry needed for 𝑑𝑈/𝑑𝜃. The waveguide contains randomly
distributed Teflon scatterers simulating a disordered medium and a target scatterer
placed in the middle of the scattering region. The operational frequency is set to
12.75 GHz resulting in a wavelength of 𝜆 = 2𝜋/k = 2.35 cm at which 8 trans-
verse TEm0 modes can propagate. Note that the experimental waveguide suffers
from weak global absorption and thus we use q

(𝑆)
𝜃 containing 𝑆−1 (rather than 𝑄

(𝑆)
𝜃

which contains 𝑆†) such that the eigenvalues are only related to the derivative of
the scattering phase. Since the experimentally measured scattering matrix is only
close to unitary, the resulting eigenvalues will be complex (just like for the princi-
pal modes) and thus we consider their absolute values if we speak about the GWS
eigenvalues in the following. To showcase the good agreement between experimen-
tal measurements and numerical simulations, we also compare the spatial intensity
distributions of the corresponding eigenstates of the first GWS operator considered
below.

As a first parameter, we choose 𝜃 to be the orientation angle 𝜙 (not to be confused
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with the scalar test function in Section 2.1) of a non-circular target in which case the
corresponding GWS operator is given by q

(𝑆)
𝜙 = −i𝑆−1𝑑𝑆/𝑑𝜙. Utilizing Eq. (3.13),

we show in the supplementary material of [55] that the GWS eigenvalue 𝜏
(i)
𝜙 is half

of the torque 𝑀z the corresponding eigenstate u⃗
(i)
𝜙 exerts onto the target if the

latter is metallic:

𝑀z[u⃗
(i)
𝜙 ] ≡

∫︁
C
[m⃗⊥(𝑐⃗ )× n⃗(𝑐⃗ )|∂n⃗𝜓(𝑐⃗ )|2]z 𝑑s = 2𝜏 (i)𝜙 . (3.14)

Here, the integral is taken along the target’s boundary C which is parametrized by
𝑐⃗. The quantity m⃗⊥(𝑐⃗ ) is the lever (the part of the distance from the boundary to
the target’s center of mass that is normal to n⃗) and n⃗(𝑐⃗ )|∂n⃗𝜓(𝑐⃗ )|2 is the normal
force exerted by the electric field 𝜓(𝑐⃗ ) at every point on the boundary. It’s im-
portant to note that no approximations have been applied in the derivation of this
relation and thus the GWS eigenvalue 𝜏

(i)
𝜙 is a direct measure for the torque that is

locally exerted onto a target. Experimentally, the GWS operator q(𝑆)𝜙 is obtained by
approximating the derivative by a finite difference using the angles 𝜙 = ±5∘ (and
𝜙 = 0∘ for 𝑆−1). To visualize how GWS eigenstates manage the optimal transfer of
angular momentum, we consider an empty waveguide with a single complex-shaped
target in its center and experimentally inject the eigenstate corresponding to the
largest eigenvalue. The resulting measured intensity distribution around the tar-
get is shown in Fig. 3.2(a), where one can clearly see that the wave focuses onto
the point of the target with the largest lever, thus maximizing the applied torque.
Moreover, this eigenstate does not only transfer angular, but also linear momentum
to the target causing a force which would move the target in a certain direction.

If one is only interested in rotating the target while keeping the position of
its center of mass fixed, one can choose two eigenstates u⃗

(1)
𝜙 and u⃗

(2)
𝜙 that apply

a high torque in the same direction, but transfer linear momentum in opposite
directions. To minimize the linear momentum transfer, one can then superpose
those two eigenstates s⃗ = u⃗

(1)
𝜙 + u⃗

(2)
𝜙 resulting in an intensity distribution that

focuses onto both of the opposite, most protruding parts of the target, as can be
seen in Fig. 3.2(b).

Figures 3.2(c) and (d) show the corresponding results from numerical simulations
which are in very good agreement with the experimental measurements. However,
the order of the eigenstates featuring the two largest eigenvalues is reversed in the
numerical simulation, i.e., the eigenstate shown in Fig. 3.2(c) features the second
largest eigenvalue. This might be caused by the fact that the experimental setup
suffers from weak global absorption (which is not included in the simulation), noise,
slightly varying antenna couplings as well as small uncertainties in the fabrication
and adjustment of the orientation angle of the target which together can strongly
effect the scattering phase.

To show that this approach also works in the multiple scattering regime, we
consider a metallic square target embedded in a disordered medium formed by
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Figure 3.2: Spatial electric field intensities of q
(𝑆)
𝜙 eigenstates for a complex-shaped

metallic target in an empty waveguide. (a) Experimentally measured intensity distribu-
tion of u⃗ (1)

𝜙 corresponding to the largest eigenvalue |𝜏 (1)
𝜙 | ≈ 8.52 which focuses onto the

point with the maximal lever. (b) Experimentally measured intensity distribution of the
superposition s⃗ = u⃗

(1)
𝜙 + u⃗

(2)
𝜙 of the eigenstates with the two largest eigenvalues (with

|𝜏 (2)
𝜙 | ≈ 7.23) that transfers angular, but almost no linear momentum to the target. The

corresponding intensity builds up on both of the most protruding parts of the target. (c,d)
Corresponding results from a numerical simulation, where (c) shows u⃗

(2)
𝜙 which features

the second largest eigenvalue.

randomly distributed scatterers (similar to the scattering configuration shown in
Fig. 3.1). Figure 3.3(a) shows the intensity distribution of the q

(𝑆)
𝜙 eigenstate fea-

turing the largest eigenvalue, where one can clearly see that even in such a strongly
scattering regime the wave still focuses onto the point with the maximal lever in
order to exert the maximal possible torque onto the target. On the other hand,
eigenstates with a small eigenvalue should transfer very little angular momentum
to the target, which is exactly what can be seen in Fig. 3.3(b). Here, the depicted
eigenstate scatters off both of the square’s side walls in order to exert only a neg-
ligible amount of torque. Figures 3.3(c) and (d) again show the corresponding
results from numerical simulations, where – just like in Fig. 3.2 – the eigenvalues
and thus also their order are slightly different compared to the ones obtained in the
experiment. The latter might again be caused by the experimental imperfections
mentioned above, with additional uncertainties in the placement of the randomly
distributed Teflon scatterers coming into play here.

In a second step, we study the GWS operator in which the parameter 𝜃 = 𝑅
is chosen to be the radius of a metallic circular target surrounded by a disordered
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Figure 3.3: Spatial electric field intensities of q(𝑆)𝜙 eigenstates for a metallic square tar-
get (with a side length of 35 mm) embedded in a disordered medium. (a) Experimen-
tally measured intensity distribution of u⃗

(max)
𝜙 corresponding to the largest eigenvalue

|𝜏 (max)
𝜙 | ≈ 5.85. Even in such a disordered medium, this eigenstate focuses onto the point

with the maximal lever to maximize the exerted torque. (b) Experimentally measured
intensity distribution of an eigenstate with a small eigenvalue of |𝜏 (small)

𝜙 | ≈ 0.2 which
transfers very little angular momentum since it scatters off both of the square’s side
walls. (c,d) Corresponding results from a numerical simulation, where (c) again shows
the eigenstate with the second largest eigenvalue.

medium. As above, using Eq. (3.13) lets us assign physical meaning to the eigen-
values 𝜏

(i)
𝑅 of q(𝑆)𝑅 = −i𝑆−1𝑑𝑆/𝑑𝑅 if the scattering matrix is unitary. As shown in

the supplementary material of [55], the eigenvalues are linearly proportional to the
radiation pressure 𝑃 an eigenstate u⃗

(i)
𝑅 applies to the metallic target:

𝑃 [u⃗
(i)
𝑅 ] ≡

∫︁ 2𝜋

0

|∂r𝜓(r = 𝑅)|2 𝑑𝜙 = −2𝜏
(i)
𝑅

𝑅
. (3.15)

In the above expression, the absolute value squared of the radial derivative of the
electric field 𝜓 gets integrated along the boundary of the target with radius 𝑅. Thus,
the eigenstate featuring the largest (smallest) eigenvalue maximizes (minimizes) the
integrated radial derivative of the electric field resulting in the maximal (minimal)
possible pressure. To verify this experimentally, we set up the GWS operator q

(𝑆)
𝑅

with the derivative 𝑑𝑆/𝑑𝑅 being approximated by a finite difference using cylinders
with radii 𝑅 = 16 and 12 mm (and 𝑅 = 14 mm for 𝑆−1). The resulting eigenstate
corresponding to the largest eigenvalue is shown in Fig. 3.4(a), where one can
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Figure 3.4: Experimentally measured spatial intensity distributions of q(𝑆)𝑅 eigenstates
for a cylindrical metallic target (with a radius of 𝑅 = 14 mm) embedded in a disorder
of randomly placed Teflon scatterers. (a) Intensity distribution of the eigenstate corre-
sponding to the largest eigenvalue |𝜏 (max)

𝑅 | ≈ 709. A focus on the metallic boundary of
the cylinder can clearly be observed, verifying that these states control the applied radi-
ation pressure. (b) Intensity distribution of an eigenstate featuring a small eigenvalue of
|𝜏 (small)
𝑅 | ≈ 86, which avoids the target in order to minimize the applied pressure.

clearly see the intensity build-up on all sides of the target’s boundary to maximize
the applied pressure. On the other hand, an eigenstate featuring a small eigenvalue
minimizes the applied pressure by avoiding the target as can be seen in Fig. 3.4(b).

Another possible parameter to consider is the permittivity 𝜀 = n2 of a dielectric
scatterer resulting in the GWS operator q

(𝑆)
𝜀 = −i𝑆−1𝑑𝑆/𝑑𝜀 with eigenvalues 𝜏

(i)
𝜀 .

In this case, Eq. (3.13) reduces to the simple expression

𝐼[u⃗ (i)
𝜀 ] ≡

∫︁
𝐴

|𝜓(r⃗ )|2 𝑑𝐴 =
2𝜏

(i)
𝜀

k2
, (3.16)

which measures the integrated intensity inside the target area 𝐴 and is thus related
to the local dwell time inside the target scatterer [10, 70]. Therefore, in order to
maximize (minimize) the intensity stored inside a target scatterer, one only has
to inject the eigenstate corresponding to the largest (smallest) eigenvalue into the
system. To experimentally obtain the operator q

(𝑆)
𝜀 = −i𝑆−1𝑑𝑆/𝑑𝜀, the refractive

index of the target scatterer has to be varied. Instead of directly changing the
Teflon target’s refractive index, we vary its height from ℎ = 4 to 6 to 8 mm in
order to obtain the effective permittivity values 𝜀 = 1.4884, 1.7689 and 2.0736,
respectively. The latter is justified by the fact that only TEm0 modes can be
excited at the operational frequency which are constant in the vertical z-direction
(see Fig. 1.3). The experimentally measured intensity distribution of the eigenstate
with the largest eigenvalue obtained in this way is depicted in Fig. 3.5(a). Here,
the corresponding eigenstate focuses directly into the target scatterer in order to
store the maximal amount of intensity inside of it – as predicted. An eigenstate
corresponding to a small eigenvalue again avoids the target and reduces the amount
of stored intensity, as can be seen in Fig. 3.5(b).
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Figure 3.5: Experimentally measured spatial intensity distributions of q(𝑆)𝜀 eigenstates for
a small cylindrical Teflon target (with a radius of 𝑅 = 3.75 mm) surrounded by randomly
placed Teflon scatterers. (a) Intensity distribution of the eigenstate corresponding to the
largest eigenvalue |𝜏 (max)

𝜀 | ≈ 1.96 which clearly focuses inside of the dielectric target. (b)
Intensity distribution of the eigenstate with a small eigenvalue of |𝜏 (small)

𝜀 | ≈ 0.46, which
avoids the target in order to minimize the stored intensity in the target region.

Last, we also consider the spatial shift of a single scatterer into a certain direction
specified by the unit vector n̂ as parameter 𝜃. For a global shift, we have already
shown above that the resulting eigenvalues are related to the momentum difference
between the incident and outgoing wave [see Eq. (3.6)]. In case of a local spatial
shift, i.e., a shift of the position of a single scatterer inside a disordered medium,
Eq. (3.13) enables us to generalize this result and relate the GWS eigenvalue 𝜏

(i)
n̂

to the wave field inside the scattering system. For a metallic circular target with
radius 𝑅, Eq. (3.13) boils down to

𝐹 [u⃗
(i)
n̂ ] ≡ n̂ ·

∫︁ 2𝜋

0

(︂
cos𝜙
sin𝜙

)︂
|∂r𝜓(r = 𝑅)|2 𝑑𝜙 = −2𝜏

(i)
n̂

𝑅
, (3.17)

where the integral runs over the boundary of the target at r = 𝑅. Since Eq. (3.17)
is the generalization of Eq. (3.6) to local position shifts, it corresponds to the
local change in the optical momentum of the field and thus represents the locally
applied force. Therefore, injecting an eigenstate u⃗ (i)

n̂ into a scattering system makes
it possible to apply a well-defined force in n̂-direction to a single target scatterer
inside a disorder. As one example, we experimentally set up the operator q

(𝑆)
x̂ for

which n̂ = (1, 0)𝑇 ≡ x̂ denotes a shift of the target in x-direction, where we shift
a metallic square target (rather than a circular target) by Δx = ±2 mm from its
initial position to calculate the derivative 𝑑𝑆/𝑑x̂. The intensity distributions of
the resulting eigenstates with the largest and smallest eigenvalue are now shown
in Figs. 3.6(a) and (b), respectively. One can clearly see that the eigenstate with
the largest eigenvalue scatters off the target’s back side to apply the maximal force
in the negative x-direction [see Fig. 3.6(a)]. The eigenstate featuring the smallest



52 3.1 The generalized Wigner-Smith operator

Figure 3.6: Experimentally measured spatial intensity distributions of q(𝑆)x̂ eigenstates
for a metallic square target (with a side length of 45 mm) surrounded by a disorder of ran-
domly placed Teflon scatterers. (a) Intensity distribution of the eigenstate corresponding
to the largest eigenvalue |𝜏 (max)

x̂ | ≈ 520.13 which hits the target from the right in order
to apply the maximal force in the negative x-direction. (b) Intensity distribution of the
eigenstate with a small eigenvalue of |𝜏 (small)

x̂ | ≈ 10.84, which avoids the target and only
scatters off the square’s side walls in order to transfer almost no linear momentum in
x-direction.

eigenvalue avoids the front and back face of the target and only scatters off its
sides in order to minimize the momentum transfer in the longitudinal direction [see
Fig. 3.6(b)].

The relations in Eq. (3.14), (3.15) and (3.17) have all been derived for impenetra-
ble metallic targets, however, similar linear relations between the eigenvalues and
the physical quantities can also be found for dielectric targets. For completeness,
the relations for a target with permittivity 𝜀 read as follows (for a derivation and
the numerical verification of these relations we refer to the supplementary material
of [55]):

𝑀z[u⃗
(i)
𝜙 ] ≡

∫︁
C
[m⃗⊥(𝑐⃗ )× n⃗(𝑐⃗ )|𝜓(𝑐⃗ )|2]z 𝑑s = − 2𝜏

(i)
𝜙

k2(𝜀− 1)
, (3.18)

𝑃 [u⃗
(i)
𝑅 ] ≡

∫︁ 2𝜋

0

|𝜓(r = 𝑅)|2 𝑑𝜙 =
2𝜏

(i)
𝑅

𝑅k2(𝜀− 1)
, (3.19)

𝐹 [u⃗
(i)
n̂ ] ≡ n̂ ·

∫︁ 2𝜋

0

(︂
cos𝜙
sin𝜙

)︂
|𝜓(r = 𝑅)|2 𝑑𝜙 =

2𝜏
(i)
n̂

𝑅k2(𝜀− 1)
, (3.20)

where for Eq. (3.19) and (3.20) a circular target with radius 𝑅 has been assumed.
An important point that we have only briefly touched on until now is the question

of optimality. Each GWS operator is Hermitian in case of a unitary scattering
matrix thus providing a complete and orthonormal set of basis states. This means,
that the eigenstate that corresponds to the largest eigenvalue applies the highest
possible torque, pressure or force to the target or optimally focuses inside of it.
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3.2 Optimal focusing compared to the field matrix
method

To showcase the optimality of the GWS eigenstates, we compare the latter to an-
other method for optimal focusing which has been introduced in Ref. [88]. Therein,
the authors achieve an optimal focus onto a point inside a disorder by using the
so-called field matrix 𝑒(x) which relates the incident wave field with the field at a
specific depth x. More precisely, the matrix elements 𝑒𝑏𝑎(x) in a chosen basis relate
the incident wave field 𝜓𝑎 in channel 𝑎 with the field 𝜓𝑏(x) at a specific depth x in
channel 𝑏, i.e., 𝜓𝑏(x) = 𝑒𝑏𝑎(x)𝜓𝑎. The optimal focus onto a target point 𝛽 can then
be achieved by shaping the incident wavefront as

𝜓(opt)
𝑎 (x) = N𝛽(x)𝑒

*
𝛽𝑎(x) . (3.21)

Here, N𝛽(x) = 1/
√︀∑︀

𝑎 |𝑒𝛽𝑎(x)|2 is a normalization factor (see also [22]) which
ensures that the incident flux is unity and the complex conjugate has to be taken
to bring the fields into phase at the focusing point. Interpreting the field matrix
as a transmission matrix into a specific depth of the scattering medium, Eq. (3.21)
is equivalent to selecting a suitable superposition of input channels 𝑎 that focuses
onto the corresponding “output” channel 𝛽 at depth x.

To compare the field matrix method with the GWS approach using q
(𝑆)
𝜀 in the

numerical simulations15, we choose a dielectric sub-wavelength target scatterer em-
bedded in a disorder. For such a sub-wavelength target, our method converges to
the limit of focusing onto a point, as considered in the field matrix method. More-
over, we choose the basis of waveguide modes for the input channels 𝑎, while we
use a spatially-resolved basis for the “output” channels 𝑏 by reading out the field in
the transverse y-direction at depth x. As focus point 𝛽 we choose the center of the
target scatterer. The input coefficients obtained from Eq. (3.21) now only repre-
sent the input from the left waveguide port, however, the optimal GWS eigenstates
are based on the full scattering matrix resulting in an input wave injected from
both waveguide ports. Therefore, we also evaluate Eq. (3.21) for an input from
the right waveguide port and finally inject both of the obtained field matrix states
from their respective sides. Figure 3.7(a) compares the results obtained with both
methods on a transverse slice through the center of the target scatterer, i.e., the
focusing plane, where we find that the q

(𝑆)
𝜀 eigenstate with the largest eigenvalue is

indistinguishable from the one obtained with the field matrix method. Therefore,
both methods deliver an optimal focus in form of a single peak inside the target.

15 Note that we use a much finer finite difference derivative than in the experiment for the
numerical calculation of 𝑑𝑆/𝑑𝜀 in this case which – together with the unitary S-matrix provided
by our numerics – makes the GWS operator Hermitian, i.e., q(𝑆)

𝜀 = 𝑄
(𝑆)
𝜀 = 𝑄

(𝑆)†
𝜀 , and in turn

its eigenstates optimal.
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Figure 3.7: (a) Comparison of the states obtained with the field matrix method and the
GWS approach using the eigenstate of q(𝑆)𝜀 with the largest eigenvalue. Shown are the
intensity distributions on a transverse slice through through the center (at x = 𝐿/2) of
the sub-wavelength Teflon target scatterer. The latter has a diameter of 0.69 mm which
corresponds to 10% of the wavelength inside the target (the grey-shaded region marks
its extension). In these simulations we use the same geometry as in the experiment (see
Fig. 3.1), featuring a disorder, but with a frequency of 30 GHz resulting in 20 propagating
modes and a wavelength of 1 cm. For such an almost point-like scatterer, both states
perfectly coincide confirming our prediction that we can achieve an optimal focus. (b)
Comparison of the spatial intensity distributions of the states obtained with the field
matrix method (left) and the GWS approach (right) for a larger target with a diameter of
10.4 mm. Similar to (a), the focus point for the field matrix method has been chosen as
the target’s center and 𝜀 is varied inside the entire target for the calculation of q(𝑆)𝜀 . For
such a larger scatterer, the GWS approach results in an optimal eigenstate which features
two intensity maxima leading to a two-fold increase of the integrated intensity inside the
target scatterer as compared to the single peak produced by the field matrix method.

In contrast to the field matrix method, which is designed for focusing on a single
point, the GWS concept, however, also enables optimal focusing on extended targets
of arbitrary size. For targets larger than the wavelength, the GWS eigenstate
with the largest eigenvalue manages to deposit the maximal amount of intensity by
creating a wave that features multiple intensity maxima inside the target area. This
can, e.g., be seen in the right plot in Fig 3.7(b), where the larger target leads to a
q
(𝑆)
𝜀 eigenstate that fits two intensity maxima into it. The state obtained with the

field matrix method for a focus on the target’s center, however, only yields a state
which features a single intensity maximum. In the case considered here, the use of
the optimal GWS eigenstate leads to a doubling of the integrated intensity within
the target compared to the field matrix state. Furthermore, it should be noted
that the GWS approach exclusively relies on the knowledge of far field information,
whereas the field matrix method requires local field information at the focusing
plane inside the scattering system which is difficult to obtain.
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3.3 Incomplete access to the scattering matrix
Up to now, we have considered GWS operators based on the full scattering matrix,
which captures all the incoming and outgoing flux, however, the latter is very
challenging to measure experimentally. We therefore investigate in the following
the GWS concept for the case where only a subpart of the scattering matrix is
accessible [56]. Specifically, we consider the scattering setup depicted in Fig. 3.1 at
an operational frequency of 15.5 GHz at which 10 TEm0 modes can propagate and
restrict ourselves to the measurement of the 10 × 10 transmission matrix (instead
of the full scattering matrix). To obtain the GWS operator q

(t)
ŷ = −it−1𝑑t/𝑑ŷ, we

shift a circular brass target with radius 𝑅 = 8.825 mm embedded in a disorder
in the transverse y-direction by Δy = ±𝑅. In contrast to the scattering matrix,
the transmission matrix is now sub-unitary since the reflected part of the incident
wave is not contained in t. Even worse, strong reflections can cause t to be singular
in which case no ordinary inverse exists and the calculation of a pseudoinverse as
described in Appendix C has to be applied.

To verify that the GWS protocol creates eigenstates which transfer momentum
to the central brass target, we calculate the eigenstates of q(t)ŷ , inject them into the
system and measure the intensity distribution in the close vicinity of the target
scatterer. The obtained intensity distributions for the eigenstates with the three
largest eigenvalues are shown in Fig. 3.8(a), where one can clearly see that the
waves hit the target from the side transferring a large amount of linear momentum
in shifting direction. As a second check, Fig. 3.8(b) shows the intensity distribu-
tions of the same eigenstates in a scattering setup in which the central target has
been removed. In this case, the intensity distributions drastically change since the
waves do not get back-reflected anymore, but instead propagate freely through the
area in which the target scatterer was located. Figure 3.9(a) shows the intensity
distributions of the eigenstates with the three smallest eigenvalues which avoid the
target thus transferring almost no linear momentum to it. Therefore, the inten-
sity patterns remain almost unchanged when the target scatterer is removed [see
Fig. 3.9(b)].

Due to the sub-unitarity of t, the eigenvalues of q(t)n̂ are complex and no longer
correspond directly to the transferred momentum, but still can be related to the
momentum transfer described by the Hermitian operator 𝑄

(𝑆)
n̂ as we will show in

the following. The eigenstates of q(t)n̂ are now only injected from the left waveguide
port and in order to compare them to the eigenstates of 𝑄(𝑆)

n̂ which are injected
from both ports, we write the GWS operator 𝑄(𝑆)

n̂ in its block structure

𝑄
(𝑆)
n̂ =

(︃
𝑄

(𝑆,11)
n̂ 𝑄

(𝑆,12)
n̂

𝑄
(𝑆,21)
n̂ 𝑄

(𝑆,22)
n̂

)︃
. (3.22)

Calculating its expectation value for a wave entering only from the left waveguide



56 3.3 Incomplete access to the scattering matrix

Figure 3.8: (a) Measured spatial intensity distributions of the q
(t)
ŷ eigenstates with the

three largest eigenvalues |𝜏ŷ| ≈ 96.9, 81.6 and 66.9 (from left to right). Each of these
eigenstates features an enhanced intensity distribution at one side of the target scatterer
(central white circle) resulting in a large momentum transfer to it. (b) Same as in (a), but
with the central target scatterer removed which strongly changes the intensity patterns.

Figure 3.9: Same as Fig 3.8, but for the eigenstates of q
(t)
ŷ with the three smallest

eigenvalues |𝜏ŷ| ≈ 1.9, 2.1 and 6.0 (from left to right). (a) The measured intensity patterns
clearly avoid the target scatterer in order to minimize the momentum transferred to it.
(b) Same as in (a), but with the central target scatterer removed which leaves the intensity
patterns almost unchanged.
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port, i.e., u⃗ = (u⃗l, 0)
𝑇 gives

⟨𝑄(𝑆)
n̂ ⟩ = u⃗†𝑄(𝑆)

n̂ u⃗

= u⃗†
l𝑄

(𝑆,11)
n̂ u⃗l

= ⟨𝑄(𝑆,11)
n̂ ⟩

= ⟨k⃗·n̂⟩in − ⟨k⃗·n̂⟩out ≡ Δkn̂ ,

(3.23)

where Δkn̂ is the local momentum difference in n̂-direction. Furthermore, 𝑄(𝑆,11)
n̂

is the upper left block of 𝑄(𝑆)
n̂ which can be written as

𝑄
(𝑆,11)
n̂ = −it†

𝑑t

𝑑n̂
− ir†

𝑑r

𝑑n̂

= t†tq(t)n̂ +𝑄
(r)
n̂ .

(3.24)

Calculating now the expectation value of 𝑄(𝑆,11)
n̂ for an eigenstate of q(t)n̂ and resolv-

ing for its complex eigenvalue 𝜏n̂ (in the following we will omit the eigenstate index
for the sake of readability) yields

𝜏n̂ =
1

|t|2
(︁
Δkn̂ − ⟨𝑄(r)

n̂ ⟩
)︁

(3.25)

with |t|2 = ⟨t†t⟩ being the global transmittance of the eigenstate. In analogy to the
derivation of Eq. (1.19), the eigenvalue of the GWS operator can also be written
as [71]

𝜏n̂ =
𝑑𝜑t

𝑑n̂
− i

𝑑 ln(|tu⃗l|)
𝑑n̂

, (3.26)

where the real part is the derivative of the global transmitted scattering phase 𝜑t.
The imaginary part can be interpreted as the global change in the output intensity
with respect to a change of the local transverse position of the target scatterer.
Thus, comparing Eq. (3.25) with (3.26) shows that the imaginary part of the q

(t)
n̂

eigenvalue can be related to global reflections, i.e.,

Im(𝜏n̂) = −𝑑 ln(|tu⃗l|)
𝑑n̂

= − 1

|t|2 Im
(︁
⟨𝑄(r)

n̂ ⟩
)︁
. (3.27)

These reflections have been omitted in the construction of q(t)n̂ , however, they do
affect the corresponding eigenvalues. Most notably, the reflection term ⟨𝑄(r)

n̂ ⟩ in
Eq. (3.25) also features a real part and thus the derivative of the transmitted
scattering phase is not only given by Δkn̂/|t|2. To assign further physical meaning
to the real part of the eigenvalues, we write the expectation value of 𝑄(𝑆)

n̂ as a sum
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of the derivatives of the scattering phases weighted by the output intensities in the
corresponding modes, i.e., [71]

⟨𝑄(𝑆)
n̂ ⟩ =

2𝑁∑︁
n=1

|(𝑆u⃗)n|2𝑑𝜑n

𝑑n̂

=
𝑁∑︁

n=1

|(ru⃗l)n|2𝑑𝜑r,n

𝑑n̂
+

𝑁∑︁
n=1

|(tu⃗l)n|2𝑑𝜑t,n

𝑑n̂
.

(3.28)

In the second line, we have split the sum over all scattering channels into the corre-
sponding reflected and transmitted parts with 𝑁 being the number of propagating
modes. For an evaluation of this expectation value with an eigenstate of q(t)n̂ , we
make use of the fact that the transmitted phase derivatives described by the real
part of its eigenvalues are the same for all modes, i.e., 𝑑𝜑t,n/𝑑n̂ = 𝑑𝜑t/𝑑n̂ = Re(𝜏n̂).
Thus, bringing this factor in front of the sum and rearranging the above expression
yields

Re(𝜏n̂) =
𝑑𝜑t

𝑑n̂
=

1

|t|2
[︁
Δkn̂ − Re

(︁
⟨𝑄(r)

n̂ ⟩
)︁]︁

=
1

|t|2
[︃
Δkn̂ −

𝑁∑︁
n=1

|(ru⃗l)n|2𝑑𝜑r,n

𝑑n̂

]︃
.

(3.29)

This shows that the derivative of the transmitted scattering phase contains not only
the momentum transfer Δkn̂, but also the derivative of the reflected scattering phase
weighted by the corresponding reflected intensities of each mode. Nevertheless, we
show in the supplementary material of [56] that a strong correlation between |𝜏n̂|
and |Δkn̂| for n̂ = x̂ still persists. Notably, we find an even stronger correlation for
|𝜏n̂| and |Δkn̂|/|t|2. However, due to the appearance of ⟨𝑄(r)

n̂ ⟩ in Eq. (3.25), very
strong global reflections will inevitably lead to a decrease of this correlation which
can be restored by projecting onto highly-transmitting channels via the procedure
described in Appendix C (see supplementary material of [56] for more details).

3.4 Conclusion
When the full unitary scattering matrix is available, the GWS concept enables the
creation of optimal wavefronts that locally apply a well-defined torque, pressure or
force to a target or store a well-defined amount of intensity inside of it. Therefore,
we expect the framework of GWS to be optimally suited for optical micromanipu-
lation tasks whose key idea is the application of forces at the position of a target
in order to manipulate them in a non-contact manner. Micromanipulation finds
application in many different research areas, e.g., in cellular manipulation [89, 90],
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in fluid dynamics [91], in microrobotics [92] and in surface imaging [93]. More-
over, it can be used for indirect optical trapping [94], for measuring optical forces
[95] as well as for tests of fundamental physics [96, 97]. However, remaining crit-
ical challenges include the difficulty of manipulating complex-shaped targets, the
embedding of targets in disordered environments and the question of optimality.
Optical tweezers, for example, are a powerful tool for trapping particles [89, 98, 99],
however, they typically operate with Gaussian beams [100, 101] which are not very
well suited for optimally trapping complex-shaped targets. Therefore, recent ad-
vances already exploit the possibilities of structured light [102–105]. The presence
of a surrounding disordered environment is another critical challenge, especially for
applications in biology and soft matter, since a complex medium like, e.g., tissue,
scatters the incoming beam and thus destroys the wave pattern required to locally
manipulate a target efficiently [106]. Although the emerging field of wavefront
shaping has already led to micromanipulation strategies well beyond the standard
Gaussian trap [103], optimality has only been approached via iterative computa-
tional optimization schemes. The latter have, for example, been used to increase
the stiffness of optical traps [107, 108], to enhance micromanipulation capabilities
[109] or to trap nano-particles across highly turbid media [106]. However, such it-
erative schemes do not guarantee the convergence to the global optimum and may
require a large number of computational steps. With the GWS concept, we over-
come all those difficulties since it applies to arbitrarily shaped targets that can even
be embedded in complex scattering environments. Moreover, it provides the opti-
mal solution (in case of having access to the full scattering matrix) only by means
of a simple eigenvalue problem. In addition, the already existing applications to
avoid disorder in multi-mode fibers [110] and to cool a moving gas of particles [111]
as well as its connection to the Fisher information [112, 113] and its extension
to time-periodic systems [114] make us confident, that the presented concept has
great potential for future innovations. In particular, extending the GWS concept to
fully time-dependent systems to enable the optimal spatio-temporal manipulation
of targets would be highly desirable.

In the next chapter, we introduce another set of optimal modes which share a close
relation with the GWS concept introduced in this chapter. More precisely, a further
generalization of the GWS operator gives rise to so-called scattering invariant modes
which propagate through a scattering medium as through a homogeneous medium.
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Scattering invariant modes16

The eigenstates of the GWS operator q𝜃 (containing the inverse of the considered
scattering, transmission or reflection matrix) introduced in the previous chapter do
not only transfer well-defined amounts of a specific physical quantity to a target of
interest, but their output profiles are by construction also invariant with respect to
a small change in 𝜃 [see Section 1.2]. The latter property is caused by the demand
that the change of the corresponding output vector for a change of 𝜃 is parallel to
the unshifted output vector. A natural question that arises in this context is if this
invariance to first order in 𝜃 can be further extended such that the output profiles
of the corresponding eigenstates are invariant with respect to larger changes in the
parameter under consideration. As we will show in the following, this can easily
be achieved by further generalizing the GWS operator and replacing the derivative
of, e.g., the transmission matrix t with respect to 𝜃 with a “coarse” finite difference
quotient enabling the creation of wave states that propagate through a strongly
scattering medium as through a homogeneous medium. More precisely, just as
𝑑t/𝑑𝜃 in q

(t)
𝜃 gives rise to a first-order stability in 𝜃, replacing the derivative with

a finite difference quotient with a larger step size Δ𝜃 will yield eigenstates whose
output profiles are invariant with respect to a change 𝜃 → 𝜃 +Δ𝜃. Note, however,
that this invariance does not apply to values between 𝜃 and 𝜃 + Δ𝜃. To illustrate
that, we use q

(t)
𝜀 and generalize it to a finite change in the permittivity Δ𝜀 using a

forward finite difference quotient to arrive at the following eigenvalue equation:

q
(t)
Δ𝜀u⃗

(i)
Δ𝜀 =

[︂
−it−1(𝜀)

t(𝜀+Δ𝜀)− t(𝜀)

Δ𝜀

]︂
u⃗

(i)
Δ𝜀 = 𝜏

(i)
Δ𝜀u⃗

(i)
Δ𝜀 . (4.1)

This eigenvalue equation can then be rewritten as follows

t(𝜀+Δ𝜀)u⃗
(i)
Δ𝜀 = 𝛼

(i)
Δ𝜀 t(𝜀)u⃗

(i)
Δ𝜀 (4.2)

16 The results presented in this chapter were obtained in collaboration with Allard Mosk and his
former PhD students Pritam Pai and Jeroen Bosch from Utrecht University. The theoretical
analysis and the 2D full-wave numerical simulations were carried out by myself under the
supervision of Stefan Rotter, and the 3D simulations were performed by Allard Mosk. The
experiments were conducted by Pritam Pai and Jeroen Bosch under the supervision of Allard
Mosk. The text and figures in this chapter partially go back to our joint publication [57].



62

Figure 4.1: (a) A SIM is generated by an SLM and propagates through free space. (b)
Using the same SLM configuration, the same input SIM is propagated through a scattering
sample which produces the same output pattern as in (a) apart from a reduction in
overall brightness and a global phase-shift described by the corresponding complex SIM
eigenvalue.

with the eigenvalue
𝛼
(i)
Δ𝜀 = (1 + iΔ𝜀𝜏

(i)
Δ𝜀) . (4.3)

Assuming now that 𝜀 is the permittivity of the scatterers in our disorder configura-
tion, using 𝜀 = 𝜀air = 1 corresponding to the permittivity of air and 𝜀+Δ𝜀 = 𝜀scat

corresponding to the actual permittivity of the scatterers yields

tscatu⃗
(i) = 𝛼(i) tairu⃗

(i) . (4.4)

Here, tscat = t(𝜀scat) and tair = t(𝜀air) are the transmission matrices through the
scattering medium and through air, respectively, where we have also omitted the
subscript Δ𝜀 for the sake of readability. Equation (4.4) is a generalized linear
eigenvalue problem which states that the output profile of an eigenstate u⃗ (i) prop-
agated through the scattering medium [left-hand side of Eq. (4.4)] is the same as
the output profile for a propagation through air [right-hand side of Eq. (4.4)] up
to the eigenvalue 𝛼(i) (see Fig. 4.1 for a corresponding illustration). The latter is
complex-valued and represents the additional attenuation and acquired phase when
transmitted through the scattering medium rather than through air. Due to the
similarity of the output profiles, irrespective of whether they scatter through a dis-
ordered sample or propagate ballistically through a homogeneous medium, these
modes have been termed scattering invariant modes (SIMs). Equation (4.4) can
also be rewritten in terms of an ordinary eigenvalue problem

t−1
air tscatu⃗

(i) = 𝛼(i)u⃗ (i) , (4.5)

which might be ill-posed as the inverse of the reference transmission matrix in
air can be singular. In this case, a pseudo-inverse can again be employed (see Ap-
pendix C). Instead, we approximate the inverse matrix with its Hermitian conjugate
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assuming a close-to-unitary reference matrix to arrive at the following numerically
stable eigenvalue problem:

t†airtscatu⃗
(i) = 𝛼(i)u⃗ (i) . (4.6)

The SIMs resulting from this eigenvalue equation are then invariant in shape with
respect to a forward propagation in the scattering medium followed by a backprop-
agation in air.

4.1 Scattering invariance in a strongly scattering
medium and air

To experimentally realize this concept in the optical domain, a vector wavefront
synthesizer was used to generate coherent fields with controllable amplitude, phase
and polarization ellipse, while the transmitted light was recorded with a vector
wavefront analyzer which measures the same quantities on a hexagonal 2D array of
pixels [62]. The chosen scattering sample consisted of a layer of zinc oxide (ZnO)
nanoparticles deposited on a glass slide, where a cleaned part of the glass slide was
used as the scattering-free reference medium. In a first demonstration, a dense
and hole-free scattering layer of length 𝐿 = 1.5 𝜇m ≈ 2ℓ* ≈ 2ℓs was used (since
the ZnO particles correspond to sub-wavelength scatterers, the transport mean free
path ℓ* equals the scattering mean free path ℓs) and its transmission matrix tscat was
measured. Together with the measured transmission matrix tair of the scatterer-free
part of the glass slide, the SIMs were then obtained via Eq. (4.6).

Figures 4.2(a)-(d) show the experimentally measured transmitted fields of a SIM
with |𝛼| = 0.64 projected through both media. As can bee seen, the fields transmit-
ted through air (𝐸⃗air) and through the scattering medium (𝐸⃗scat) are very similar
in both polarization components which can be quantified by a cosine similarity of
|𝐸⃗*

scat · 𝐸⃗air|/(|𝐸⃗scat||𝐸⃗air|) = 0.79. Ideally, the output profiles of all SIMs should be
perfectly correlated, however, the measured cosine similarity shown in Fig. 4.2(e)
does not exceed 0.82 which is the result of experimental imperfections like noise
and imperfect projection as well as the non-unitarity of the air transmission matrix
t†air ̸= t−1

air in Eq. (4.6). In fact, the latter gives rise to a strong dependence of the
cosine similarity on |𝛼|, where we find a monotonically increasing similarity with
increasing |𝛼|. The experimentally obtained complex SIM eigenvalue spectrum is
shown in Fig. 4.2(f), where the diffusive scattering of the ZnO layer leads to an
almost isotropic distribution of the phase. The density of the eigenvalues gradually
decays from the origin, which is in stark contrast to the eigenvalues obtained from
a complex Gaussian random matrix with the same average transmission shown in
Fig. 4.2(g). The latter are uniformly distributed inside a sharply bounded Ginibre
disk [115] indicating that a random matrix model cannot capture the sample-specific
details and correlations encoded in the actual scattering process.
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Figure 4.2: (a)-(d) Transmitted far-fields of a SIM with |𝛼| = 0.64 propagated (a,c)
through a dense ZnO layer of length 𝐿 = 1.5 𝜇m ≈ 2ℓ* or (b,d) through the same thick-
ness of air, where (a,b) and (c,d) show the fields in the horizontal and vertical polarization
component, respectively. The associated cosine similarity of these fields is 0.79. The color
represents the phase and the brightness represents the amplitude [see inset in (d)]. (e) Co-
sine similarity of all SIM fields versus the magnitude of the corresponding SIM eigenvalues
|𝛼|. (f) Experimentally obtained SIM eigenvalues in the complex plane. (g) Numerically
obtained eigenvalue distribution of a random matrix from the Ginibre ensemble. (h) SIM
eigenvalues from a numerical 2D simulation for a sample with a thickness of 𝐿 ≈ ℓ*.

In a next step, we therefore perform full-wave simulations within the numerical
framework presented in Section 2.1. To mimic the openness of the experimen-
tal system, we use a scattering region which is not only longitudinally, but also
transversally attached to leads featuring PMLs (instead of the hard walls) to ab-
sorb the out-scattered waves. The leads feature transverse homogeneous Dirichlet
boundary conditions representing hard walls which enables us to use the basis of
waveguide modes. Specifically, we use k = 2𝜋/𝜆 = 1000.5𝜋/𝑊 with 𝑊 being the
width of the scattering region and the longitudinal input and output lead. The
scattering matrix is then calculated between the input and output port with the
top and bottom lead serving as loss channels that resemble the finite numerical
aperture of the objectives used in the experiment [116]. The length of the scat-
tering region was scaled to feature the same ratio 𝐿/𝜆 as in the experiment, i.e.,
𝐿 = 𝜆(𝐿exp/𝜆exp) with 𝐿exp = 2.1 𝜇m and 𝜆exp = 633 nm. The ZnO particles are
modeled by circular scatterers with a refractive index of nscat = 2, whose diameters
are also scaled to match the ones in the experiment, i.e., 𝑑scat = 𝜆(𝑑exp

scat/𝜆
exp) with

𝑑exp
scat ≈ 200 nm. Since the ZnO nanoparticles tend to stick together, we mimic
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this by also using scatterers with a larger diameter of 𝑑exp
scat ≈ 400 nm, where we

choose that every scatterer size fills out the same fraction of the total area of the
scattering region. The experimentally used layer of ZnO particles is then modeled
by a scattering region which is 40% filled with such scatterers. To simulate free
space, we remove all the scatterers, leaving us with an empty scattering region in
which waves could escape through the transversally added leads featuring PMLs
that absorb the outgoing waves. The SIM eigenvalues obtained with this numerical
setup are shown in Fig. 4.2(h), where we also observe a non-uniform radial distri-
bution as in the experiment confirming that the non-uniformity of the eigenvalue
spectrum stems from correlations which cannot be captured by a random matrix
approach.

4.2 Scatterer avoidance in sparse scattering layers

To further understand the behavior of SIMs, let us first discuss the ideal case of
an eigenvalue of |𝛼(i)| = 1 which corresponds to an arbitrary phase shift, but no
attenuation. In this case, the latter translates into (1 +Δ𝜀2|𝜏 (i)Δ𝜀|2)1/2 = 1 and thus
|𝜏 (i)Δ𝜀| = 0. Even though 𝜏

(i)
Δ𝜀 cannot be interpreted as the intensity stored inside the

scatterers anymore due to the use of the finite difference quotient in Eq. (4.1), it
still resembles the change of the transmission matrix for a change of the scatterer’s
permittivity. Therefore, eigenstates with a large |𝛼(i)| will be largely unaffected by
a change of the permittivity and thus they tend to avoid scatterers if the sample is
sparse enough to allow some light to pass unscattered.

To check whether SIMs corresponding to large eigenvalues, indeed, minimize the
overlap with the scatterers, we experimentally and numerically use a second sparse
scattering sample as reference (instead of air) to further highlight the versatility
of the SIM concept. In this case, SIMs are wavefronts that produce the same
output pattern when propagated through the principal and the reference scatter-
ing medium. Experimentally, a sparse scattering sample consists of two layers of
sparsely-distributed ZnO nanoparticles separated by a transparent film of optical
glue whose thickness is approximately 15 𝜇m. For the reference medium, a dif-
ferent part of the same film was used. These scattering layers have been imaged
under incoherent illumination, where the resulting scatterer configuration for both
samples is indicated by the white dots in the insets in Figs. 4.3(a,b). The principal
medium has a scatterer coverage of 11% and 32% at the front and back surface,
respectively, resulting in an average coverage of 22%, while the reference medium
has an average coverage of 15%. The transmission matrices for these scattering
samples are then measured, where only a single polarization component is used.
This is justified as the weak scattering in the sparsely-populated layers causes only
weak polarization mixing which further allows a better comparison with the scalar
description in the numerical simulations. The intensity profile of a SIM at the
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input and output interface of the principal and reference medium computed via
the measured transmission matrices is shown in the insets in Figs. 4.3(a,b). Due
to its large eigenvalue, the SIM clearly avoids the scatterers in both the principal
and reference medium as expected. To quantify the behavior of all SIMs, the main
panels in Figs. 4.3(a,b) show the experimentally obtained percentage of intensity of
a SIM wave function that falls onto the scatterers as a function of the correspond-
ing eigenvalue with the color indicating the associated cosine similarity. SIMs with
high values of |𝛼| hardly interact with scatters and are thus almost purely ballistic
light, whereas SIMs with intermediate values of |𝛼| do interact with scatterers, but
still transmit by construction into similar output patterns. The decrease of the
intensity on the scatterers for SIMs with |𝛼| close to zero can be attributed to the
experimental noise floor which becomes dominant for such low-transmitting states.

To verify the experimentally obtained results, we perform numerical simulations
in which we model the double-layer structure by a rectangular scatterer with refrac-
tive index nglue = 1.5 representing the film of optical glue with circular ZnO scatter-
ers along its width on both sides. The thickness of the film is again scaled in order
to match the experimental values, i.e., we set its length to 𝐿glue = 𝜆(𝐿exp

glue/𝜆
exp)

with 𝐿exp
glue = 15 𝜇m. Since the film features small thickness variations in the exper-

iment, we also incorporate these by slightly modifying the shape of the rectangular
scatterer. More precisely, we use a polygonal scatterer with 25 equidistant points
along the width of the rectangle on both of its sides whose longitudinal position we
randomly displace by 𝛿𝐿 = r𝜆 with r being a random number between 0 and 1.
Since the ZnO particles at the output side are immersed in the optical glue film,
we also take this into account by placing the circular scatterers at the output side
inside the polygonal scatterer. As can be seen in the insets in Figs. 4.3(a,b), the
experimental scatterer distributions show a clustering which we also incorporate
by drawing random scatterer positions near the surface of the polygon around two
cluster centers which we also choose randomly. As for the densely-filled scatterer
samples, we use circular scatterers with diameters corresponding to 𝑑exp

scat = 200
and 400 nm, where each scatterer size covers the same fraction of the surface of
the corresponding layer and sample. To determine the overlap of a SIM with the
scatterers, we – similar to the method used in the experiment – transversally read
out its wave function right in front of (after) the circular scatterers at the input
(output) side and integrate the corresponding intensity at the scatterer positions.

Figures 4.3(c,d) show the resulting statistics of SIM intensities on the scatterers
which coincide very well with the experimentally obtained results in (a,b). SIMs
with an eigenvalue close to one completely avoid the scatterers, with the correspond-
ing results from the experiment showing slightly larger intensity values which can
be attributed to the limited resolution in the experiment leading to a slight over-
estimation of the overlap. SIMs with smaller eigenvalues again interact with the
scatterers featuring overlap values that are similar for very small and intermediate
eigenvalues.
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Figure 4.3: Overlap of the SIM intensity distributions with the scatterer positions in
sparsely-occupied double-layer structures in dependence on the magnitude of the corre-
sponding SIM eigenvalues. The color of the dots represents the cosine similarity of the
fields propagated through both media and the respective surface coverages are indicated
by the black dashed lines. (a,b) Experimentally obtained results on the (a) principal and
(b) reference medium, where the insets show the experimentally measured intensity dis-
tribution of a SIM with a high value of |𝛼| on both layers of the corresponding sample.
There, the color represents the normalized intensity on each layer, with the positions of
the scatterers indicated by white dots. (c,d) Corresponding results from a numerical sim-
ulation with similar surface coverages which coincide very well with the experimentally
obtained results in (a,b) thus confirming that SIMs with a large eigenvalue minimize the
overlap with the scatterers if the scattering samples are sparse enough.

To showcase the similarity of SIMs in the numerical simulations, Fig. 4.4 shows
three SIMs with a high value of |𝛼| in the numerically modeled double-layer struc-
ture. As can be seen, the output profiles of these SIMs transmitted through the
principal and the reference medium are indistinguishable. Moreover, they clearly
avoid the scatterer clusters (areas with scatterers are highlighted by a yellow frame)
which gives rise to very similar intensity distributions also inside the polygonal film
scatterer. However, the latter features different thickness variations in the principal
and reference medium and thus the SIM wave functions are not identical, but very
similar inside the film scatterers. Hence, SIMs with a large eigenvalue propagate
purely ballistically in such sparse scattering layers.
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Figure 4.4: Numerically obtained intensity distributions of SIMs in a sparse principal
and reference scattering medium. The shown wave functions correspond to the SIMs with
the three largest eigenvalues which have been propagated through both media. The arrow
indicates the input port and the yellow rectangles highlight the positions of the ZnO
scatterer clusters. Due to their large eigenvalue, these SIMs avoid the ZnO scatterers
leading to an identical wave function at the output of both media and a very similar
intensity distribution inside the polygonal film scatterers.
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4.3 Application to improve scanning fluorescence
imaging

Based on the observations in the previous section, we show in Ref. [57] that also
in case of a densely-filled principal medium and air as reference medium, SIMs are
not only identical at the output side of both media, but still maintain a certain
degree of correlation with the ballistic light (i.e., the wave propagated through air)
also inside the scattering medium. Since current imaging techniques still rely on
the filtering of ballistic light in order to obtain clear images [117–119], SIMs could
thus be used to improve their performance. In fact, we will show in the following
that SIMs can indeed improve scanning fluorescence imaging. For this purpose, we
consider a scattering medium that consists of two dense scattering layers. Between
these scattering layers, we assume a free space section with fluorophores randomly
placed along the transverse line at x = 𝐿/2 which we want to image. Conventional
fluorescence imaging approaches work by back-propagating a focal spot through
the reference medium, i.e., by applying t†air(𝐿/2) to eigenstates of Eq. (1.39), and
injecting the resulting wavefronts into the scattering medium. To improve the
imaging performance using SIMs, we rewrite the SIM operator in Eq. (4.5) using
its spectral decomposition

tscat(𝐿) = tair(𝐿)𝑈diag({𝛼})𝑈−1 , (4.7)

where 𝑈 is a matrix that contains the SIM eigenvector coefficients in the chosen
basis. Instead of using the reference medium for back-propagation, we now assume
that SIMs are correlated with the ballistic propagation through air and thus acquire
half of the phase at x = 𝐿/2 if the scattering is homogeneous. Furthermore,
neglecting multiple reflections between the two scattering layers lets us assume
that the intensity decrease in the middle of the scattering medium can be described
by

√︀|𝛼|. Putting everything together, we can thus approximate the transmission
matrix into the plane at depth x = 𝐿/2 by the square-root of the total transmission
matrix, i.e.,

tscat(𝐿/2) = tair(𝐿/2)𝑈diag
(︁√︀

{𝛼}
)︁
𝑈−1 . (4.8)

Note that the SIM eigenvalues are complex and in order to avoid jumps in the
retrieved phase values we set the branch cut of the square-root in Eq. (4.8) to
the angle in the complex plane at which the SIM eigenvalue distribution has its
lowest density. Back-propagating focal spots 𝐸foc(x = 𝐿/2, y), i.e., eigenstates of
Eq. (1.39), via t†scat(𝐿/2) then results in corrected input focusing fields. Notably,
these fields feature a higher correlation with the desired images inside the scatter-
ing medium compared to conventional images resulting from uncorrected ballistic
light (see below). This SIM correction procedure is now applied to scattering layers
consisting of small circular obstacles with a diameter of 𝑑scat = 𝜆/6 and a refractive
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𝐿/ℓ* 𝐶uncorr. (sd) 𝐶SIM (sd)
1.12 0.903 (0.031) 0.956 (0.018)
1.82 0.778 (0.069) 0.859 (0.073)
3.14 0.740 (0.079) 0.809 (0.082)

Table 4.1: Mean correlation coefficients and standard deviations (sd) for scattering sys-
tems with different transport mean free paths. Here, 𝐶SIM denotes the image correlation
with SIM-corrected focusing states which is improved compared to the correlation 𝐶uncorr.

using uncorrected fields. Each correlation value is an average over 100 different scattering
layer configurations and 20 different fluorescence functions, which we choose to consist
of three randomly chosen spots of width 𝜆/2 in the imaging plane. The first two rows
correspond to systems with a filling fraction of 5% and 10%, respectively, whereas the
systems in the last row consist of two concatenated layers with 5% filling fraction in front
of and after the imaging plane.

index of nscat = 1.44. To characterize the scattering strengths of our layers, we
also calculate the transport mean free path ℓ* which equals the scattering mean
free path, i.e., ℓ* ≈ ℓs, due to the sub-wavelength size of the scatterers. To reduce
computation time, we – in contrast to the results presented above – use a waveguide
geometry (with hard side walls rather than the transverse PMLs used before) and
k = 100.5𝜋/𝑊 , i.e., 100 propagating modes. To determine the pixel values of our
fluorescence images, we numerically inject all the corrected and uncorrected focus-
ing states and calculate the overlap of their spatial intensity distributions with the
fluorescence function at the imaging plane. The latter consists of 3 randomly chosen
spots of width 𝜆/2, where we additionally use Gaussian window functions around
the ideal focusing spots. These window functions simulate the diffusion cones re-
sulting from spatially localized input states thus simulating the effect of the pinhole
in confocal microscopy. Their width is chosen such that 5𝜎 equals the penetration
depth into the focusing plane, i.e., 𝐿/2. The pixel values obtained in this way are
then used for the calculation of the Pearson correlation coefficients. Table 4.1 con-
tains the resulting correlation coefficients for different scattering strengths showing
that the SIM correction yields an improvement compared to the uncorrected fields
up to 4 transport mean free paths.

For more strongly scattering systems, we find that the SIM eigenvalue distri-
butions in the complex plane lose their asymmetry with the latter reflecting the
existence of ballistic contributions. More specifically, the eigenvalues of some SIMs
revolve multiples of 2𝜋 in the complex plane during propagation and thus their
phase cannot be predicted by the argument of their eigenvalues only. To visualize
this, Fig. 4.5 shows the SIM eigenvalue distributions for layers with different filling
fractions, in which the refractive index of the scatterers is increased gradually from
1 to 1.44. For nscat = 1, the principal medium equals the reference medium and
thus 𝛼(i) = 1 for all SIMs since no relative phase is acquired or amplitude is lost.
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Figure 4.5: Evolution of the SIM eigenvalue spectrum in the complex plane for an
increasing refractive index nscat of the circular scatterers in the two scattering layers with
a filling fraction of (a) 5% and (b) 10%. The corresponding scattering strengths of these
systems for nscat = 1.44 can be found in the first two rows of Table 4.1.

Increasing the refractive index then causes the eigenvalues to rotate along the unit
circle in the complex plane. Note that a further increase leads to eigenvalues which
revolve multiples of 2𝜋 or pass through zero causing a loss of the distribution’s
asymmetry with increasing scattering strength. To reduce the number of eigenval-
ues which revolve multiples of 2𝜋, one could use a homogeneous reference medium
with the same effective refractive index as the scattering medium instead of air.
This would lead to a smaller relative phase between the fields propagated through
both media and thus to a slower rotation of the eigenvalue cloud.

Up to now, we have only considered 2D scattering setups, however, in Ref. [57] we
also employ a tight-binding model on a hexagonal grid and obtain similar imaging
improvements in three dimensions. In fact, the SIM correction even outperformed
the conventional uncorrected method up to 9 transport mean free paths which
can be attributed to a correction scheme slightly different from the one outlined
above. Unlike in 2D, the 3D simulations show a strong dependence of the fidelity
and phase of the SIMs on the phases of the corresponding eigenvalues. Rather than
performing a correction based on the square-root of the SIM eigenvalues as in the 2D
case, one can now use heuristically found dependencies to correct their amplitudes
and phases. The obtained improvements of the correlation values compared to the
uncorrected fields are similar to the 2D case, but persist up to scattering strengths of
9 transport mean free paths (a table with the correlation values of the 3D simulation
can be found in Ref. [57], where the corresponding supplementary material contains
all the details about the numerical implementation of the tight-binding model). To
demonstrate the improvements resulting from the SIM correction approach in 3D,
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Figure 4.6: (a) Sketch of the numerical setup used in the 3D simulations in which fluo-
rescent particles (yellow dots) are sandwiched between two scattering layers of thickness
𝐿/2 (one is partially removed for clarity). (b) Plot of the fluorescent object in the imaging
plane which consists of six point-like particles. The inset shows the intensity color scale
used in (c)-(f). (c) and (d) show the uncorrected and SIM-corrected image for a system
thickness of 𝐿 ≈ 5.4ℓ*, respectively, while (e) and (f) show the uncorrected and corrected
image for a system of length 𝐿 ≈ 7.1ℓ*. The white squares indicate the wavelength in the
simulation.

Fig. 4.6 shows a sketch of the simulation setup together with the obtained images for
the uncorrected and corrected case for scattering media with different thicknesses.
Note that the uncorrected image is already heavily distorted even for the weaker
scattering system in Fig. 4.6(e).

4.4 Conclusion

SIMs are based on the transmission matrix whose study has already led to numerous
insights and has greatly extended our understanding of complex wave scattering,
where much research has been done on the transmission eigenchannels [120–125],
i.e., the eigenstates of t†scattscat, and their statistics [126–128]. By further gener-
alizing the eigenvalue problem of the GWS operator introduced in the previous
chapter, we obtain a SIM operator that is structurally very similar to the opera-
tor of the transmission eigenchannels. However, the corresponding SIMs feature
the remarkable property that their output profile is identical up to a global phase
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and amplitude if they are propagated through air or through a strongly scatter-
ing medium. In sparse scattering layers, we then show that SIMs embody the
defining feature of ballistic light since they tend to avoid scatterers. For imaging
applications, the ballistic contributions of light are essential and despite the rapid
progress in advanced optical imaging techniques [129–136], accessing them is still
very difficult, especially in optically thick media where they are exponentially rare
[117]. Since SIMs still maintain a certain degree of correlation with ballistic light
even inside a dense scattering medium, we show in a first demonstration how these
special states of light can be used to improve scanning fluorescence imaging in two
and three dimensions. In a further study, we have already shown that they can also
be used to customize the angular memory effect in order to go beyond the conven-
tional memory effect [137]. Another possible future application could exploit the
SIM’s stability with respect to the presence of scatterers to overcome imperfections
in optical elements if the corresponding transmission matrix of the perfect optical
element has been used as reference in their construction. Moreover, in analogy to
the super-princicpal modes [44], an extension of the SIMs invariance property to a
broader range of parameters, i.e., to more than two media, could also be the scope
of future research. Together with the presented results, the versatility of the SIM
concept due to the possible use of different scattering, transmission or reflection
matrices in the SIM operator makes us believe that SIMs also have the potential
to improve current state-of-the-art techniques in optical as well as in ultrasound
imaging.

Having explored different generalizations of the Wigner-Smith concept, we re-
turn to the roots in the next chapter and revisit the concept of time-delay. More
specifically, we investigate the mean time-delay of waves inside complex scattering
media and encounter a surprising invariance property that holds in all transport
regimes.





Chapter 5

Mean path length invariance beyond
the diffusive regime17

In this chapter, we utilize the concept of time-delay to verify the existence of a
surprising invariance property in wave scattering. More specifically, although states
with well-defined time-delays exist [45] (which can, e.g., be used for optimal energy
storage [50]), we show numerically and experimentally that the mean time-delay
of waves is invariant in all transport regimes of disorder scattering as well as in
structured materials featuring band-gaps.

The so-called mean path length invariance is a fundamental result in the field of
diffusive random walks and states that the mean path length of trajectories under
isotropic uniform incidence is entirely independent of the parameters entering the
random walk such as, e.g., the transport mean free path ℓ* and the scattering mean
free path ℓs (see Appendix D). In fact, no matter how convoluted trajectory paths
might be, their mean length (corresponding to their first exit of the considered
bounded domain) only depends on the systems geometry (see Fig. 5.1). More
precisely, the mean path length ⟨s⟩ only depends on the ratio of the system’s area
𝐴 to its external boundary 𝐶 through which the particles can enter and exit the
system, i.e., [138]

⟨s⟩ = vt⟨t⟩ = 𝜋
𝐴

𝐶
, (5.1)

where ⟨t⟩ is the corresponding mean time and vt is the constant trajectory velocity.
Equation (5.1) is valid in two dimensions, whereas a similar relation also holds in
three dimensions, ⟨s⟩ = 4𝑉/Σ with 𝑉 and Σ being the volume and the external
surface of the considered domain, respectively [138]. This invariance property gen-
eralizes the mean chord length theorem valid in the ballistic limit of straight line
trajectories with infinite mean free path [139], and it has further been extended to

17 The results presented in this chapter were obtained in collaboration with Matthieu Davy from
the Université de Rennes 1 and Sylvain Gigan from the Laboratoire Kastler Brossel. The
theoretical analysis was carried out by Matthieu Davy, myself, Stefan Rotter and Sylvain
Gigan. The numerical simulations were performed by myself under the supervision of Stefan
Rotter, whereas the experiments were conducted by Matthieu Davy. Parts of the text and the
figures in this chapter have been taken from our joint publication [58].
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Figure 5.1: (a) Random walk trajectories inside a two-dimensional bounded domain of
circular shape whose mean length is independent of the characteristic (scattering) mean
free path ℓ and only depends on the ratio of the domain’s area 𝐴 to its circumference 𝐶
[see Eq. (5.1)]. The two presented trajectories correspond to different mean free paths ℓ1
(red) and ℓ2 (blue), where ℓ2 > ℓ1. (b) Probability distribution of path lengths, which
strongly depends on the mean free path, but whose mean value is invariant (reproduced
from Ref. [54]).

trajectories starting from inside the considered domain [140]. Furthermore, it was
shown that a similar invariance property holds in case of disconnected subdomains
with area 𝐴′ of the total area 𝐴 in which case the corresponding mean path length
is given by Eq. (5.1) with 𝐴 replaced by 𝐴′ [141]. Since the invariance property
Eq. (5.1) applies to all research fields where diffusion processes or random walks
occur, it leads to a broad range of applications covering nuclear physics [142], solar
energy harvesting [143] as well as the movement of bacteria [144].

Recently, it was shown that this invariance property is not a peculiar feature of
classical random walks, but also applies to wave scattering in disordered systems in
which case the trajectory velocity has to be replaced by the wave’s energy transport
velocity [53]. This result is far from obvious since coherent wave effects can lead
to very strong deviations from any of the transport regimes that particles can be
in. Consider here, e.g., the regime of Anderson localization [145–147], in which an
exponential suppression of transmission leads to a complete halt of wave diffusion,
or the formation of a band gap in a photonic crystal [148], to cite just two genuinely
wave-like phenomena that both rely on wave interference. The natural question
to ask at this point is whether any such effects going beyond a trajectory-based
description may lead to a violation of the mean path length invariance since they
clearly fall outside the scope of both the mean chord length theorem and a random
walk picture. More specifically, since both Anderson localization and a band gap
prevent incident waves from propagating inside the scattering region, one naturally
expects that the mean path length invariance should break down in these cases.
However, numerical simulations suggest that the invariance property may also hold
in the localized regime [53].

Experimentally, this path length invariance has recently been verified in the dif-
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fusive regime by using an optical setup and a colloidal solution of microbeads in
water. The turbidity of this liquid was then changed from nearly transparent to
very opaque by varying the concentration and size of the particles. The results
confirm that the mean path length of isotropically incoming light stays, indeed,
unchanged over nearly two orders of magnitude in scattering strength [54]. How-
ever, an experimental verification in the localized regime and in band gap materials
remains open. In the following, we therefore close this gap by using an experi-
mental setup that allows the verification of the mean path length invariance in all
transport regimes, i.e., in the ballistic (𝐿 � ℓs), diffusive (ℓ* � 𝐿 � 𝜉 with 𝜉 being
the localization length) and localized (𝐿 � 𝜉) regime [10], as well as in band gap
materials like photonic crystals.

To analytically derive this invariant length in a wave mechanical description, we
follow Ref. [53] and make use of Eq. (1.24) which states that the average dwell
time associated with a scattering process is directly linked to the DOS inside the
scattering region, i.e.,

⟨𝜏𝑑(𝜔)⟩ = 2𝜋

𝑁in(𝜔)
𝜌(𝜔) . (5.2)

The key ingredient is now the so-called Weyl law which states that the DOS satisfies
a universal law in the asymptotic limit of 𝜔 → ∞ that just depends on the geometry
of the system, but not on the specific details of the considered scattering potential.
In this limit, the DOS can be written as [149, 150]

𝜌(𝜔) =
𝐴𝜔

2𝜋𝑐2
. (5.3)

Assuming a straight two port waveguide similar to the one in Fig. 3.1, 𝑁in(𝜔) =
2𝑁(𝜔) with 𝑁(𝜔) being the 𝜔-dependent integer number of propagating modes at
each port. In a waveguide of width 𝑊 , the latter is given by the step-function
𝑁(𝜔) = ⌊𝜔𝑊/𝑐𝜋⌋. To obtain a smooth function of frequency, we smoothen this
expression over one mode interval resulting in 𝑁(𝜔) ≈ 𝜔𝑊/𝜋𝑐− 0.5. Inserting this
and Eq. (5.3) into Eq. (5.2) finally yields

stheo(𝜔) = 𝑐⟨𝜏𝑑(𝜔)⟩ ≈ 𝜋
𝐴

𝐶
, (5.4)

with 𝐶 = 2𝑊 which coincides with Eq. (5.1) for vt → 𝑐. Making use of the close re-
lation between the dwell time and the time-delay operator, i.e., 𝑄𝑑 ≈ 𝑄

(𝑆)
𝜔 , Eq. (5.4)

has been verified in numerical simulations via ⟨𝜏𝑑(𝜔)⟩ = Tr(𝑄
(𝑆)
𝜔 )/[2𝑁(𝜔)] in the

ballistic and the diffusive as well as in the localized regime in Ref. [53]. Therein, a
straight waveguide geometry with a varying number of metallic impenetrable circu-
lar scatterers was used. The obtained results satisfy the analytical prediction very
accurately thus confirming that the trajectory-based result Eq. (5.1) is also valid in
disordered wave scattering. In the localized regime, however, the large number of
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Figure 5.2: Sketch of the experimental setup, where 40 metallic scatterers are randomly
placed inside the scattering region to increase the scattering strength of the system (the
top plate is not shown in order to visualize the interior). The embedded intensity distri-
bution corresponds to the highest transmitting transmission eigenstate in this scattering
configuration obtained from a numerical simulation with the blue arrows indicating the
input leads of the waveguide.

impenetrable scatterers leads to a deviation from Eq. (5.3) since the DOS is reduced
close to their boundaries. To account for this, the following correction proposed by
Weyl must be employed [150, 151]

𝜌(𝜔) =
1

2𝜋𝑐

(︂
𝐴𝜔

𝑐
+

𝐶 − 𝐵

2

)︂
. (5.5)

This next-order correction also involves the internal boundaries 𝐵 which consist
of the waveguide walls and the boundaries of the impenetrable scatterers. Hence,
the internal boundaries 𝐵 are very different compared to the external boundaries
𝐶 through which the waves scatter in and out. Due to the smaller number of
scatterers, this correction term is negligible in the ballistic and diffusive regime,
but cannot be neglected in the localized regime [53]. The resulting mean path
length averaged over all scattering channels then reads

stheo(𝜔) =
1

2𝑁(𝜔)𝑐

(︂
𝐴𝜔 +

𝐶 − 𝐵

2
𝑐

)︂
. (5.6)

For the experimental verification of this relation, we use the microwave waveg-
uide depicted in Fig. 5.2 whose scattering region is formed by an effectively two-
dimensional cavity of length 𝐿 = 0.5 m and width 𝑊 = 0.25 m with two arrays
of 8 leads of length l = 38 mm and width w = 15.79 mm attached on the left and
right interface of the waveguide. Each lead supports a single propagating mode
between 9.493 and 18.986 GHz which can be excited by an antenna that is fully
coupled to the cavity, resulting in 𝑁 = 8 input states from one side of the cavity.
Using the array of antennas on the other side of the waveguide, this setup enables
the measurement of the 𝑁 × 𝑁 transmission matrix t(𝜔). Note that in contrast
to open waveguides (like the one in Fig. 3.1, in which the single-channel leads of
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the geometry in Fig. 5.2 are replaced by a single multi-channel lead with the same
width as the scattering region on each side), the metallic spacings between the left
and right lead interfaces induce strong internal reflections causing the transmission
matrix to be not diagonal in the absence of scatterers. To increase the scattering
strength from the ballistic to the diffusive and the localized regime, we then place
up to 280 metallic aluminum cylinders inside the scattering region.

To determine the mean time-delay in this setup, the measurement of the full
2𝑁 × 2𝑁 scattering matrix including the reflection matrices on both sides of the
sample would be required. Since such a measurement is experimentally highly
challenging, most setups only provide access to either the one-sided reflection or
transmission matrix. To overcome this difficulty, we show that in case of non-
absorbing systems (featuring a unitary scattering matrix), the mean time-delay
can also be obtained by means of the transmission matrix alone. The relation
between the mean path length obtained with the time-delay operator containing
the full scattering matrix q

(𝑆)
𝜔 (𝜔) and the operator featuring only the transmission

matrix q
(t)
𝜔 (𝜔) reads

s[q(𝑆)𝜔 (𝜔)] = s[2q(t)𝜔 (𝜔)] , (5.7)

where s(𝑂) = 𝑐Re[Tr(𝑂)/(2𝑁)] is the mean length obtained with an operator 𝑂.
To analytically prove the above simple relation, which extends the decomposition of
the DOS into a superposition of contributions from each transmission eigenchannel
[122], we rewrite Eq. (5.7) as

Tr(q(𝑆)𝜔 ) = 2Re[Tr(q(t)𝜔 )] . (5.8)

Next, assuming unitarity, i.e., 𝑆−1 = 𝑆†, we can write q
(𝑆)
𝜔 as

q(𝑆)𝜔 = 𝑄(𝑆)
𝜔 =

(︂ −ir† 𝑑r
𝑑𝜔

− it† 𝑑t
𝑑𝜔

−ir† 𝑑t
′

𝑑𝜔
− it† 𝑑r

′
𝑑𝜔

−it′ † 𝑑r
𝑑𝜔

− ir′ † 𝑑t
𝑑𝜔

−ir′ † 𝑑r
′ †

𝑑𝜔
− it′ † 𝑑t

′ †
𝑑𝜔

)︂
, (5.9)

where its trace evaluates to

Tr(𝑄(𝑆)
𝜔 ) = Tr

(︂
−it†

𝑑t

𝑑𝜔
− it′ †

𝑑t′ †

𝑑𝜔
− ir†

𝑑r

𝑑𝜔
− ir′ †

𝑑r′ †

𝑑𝜔

)︂
. (5.10)

To calculate the first term appearing in the trace, we use the singular value de-
composition of the transmission matrix t = 𝑈Σ𝑉 †. Here, 𝑈 = (u⃗1, u⃗2, . . . , u⃗𝑁) and
𝑉 = (v⃗1, v⃗2, . . . , v⃗𝑁) are the matrices which contain column-wise the left and right
singular vectors of t, and Σ = diag({𝜎n}) is a diagonal matrix containing the sin-
gular values 𝜎n. Making further use of 𝑈 †𝑈 = 1 and 𝑉 †𝑉 = 1 and the invariance
of the trace with respect to cyclic permutations, we can write

Tr

(︂
−it†

𝑑t

𝑑𝜔

)︂
= Tr

(︂
−iΣ2𝑈 †𝑑𝑈

𝑑𝜔
− iΣ2𝑑𝑉

†

𝑑𝜔
𝑉 − iΣ

𝑑Σ

𝑑𝜔

)︂
. (5.11)
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Making again use of 𝑉 †𝑉 = 1, we can rewrite the second term as 𝑑𝑉 †
𝑑𝜔

𝑉 = −𝑉 † 𝑑𝑉
𝑑𝜔

.
Since the singular values 𝜎n of t are given by the square-root of the eigenvalues 𝜏n
of t†t and tt†, i.e., 𝜎n =

√
𝜏n, we arrive at

Tr

(︂
−it†

𝑑t

𝑑𝜔

)︂
=

∑︁
n

𝜏n
𝑑𝜗

(t)
n

𝑑𝜔
− i𝜎(t)

n

𝑑𝜎
(t)
n

𝑑𝜔
, (5.12)

where we have defined the transmission eigenchannel delay times as

𝑑𝜗
(t)
n

𝑑𝜔
≡ 1

i

(︃
u⃗ (t)†
n

𝑑u⃗
(t)
n

𝑑𝜔
− v⃗ (t)†

n

𝑑v⃗
(t)
n

𝑑𝜔

)︃
. (5.13)

Since the left and right singular vectors for the different transmission and reflection
matrices are not identical, we have introduced a superscript denoting the matrix
a singular vector (or singular value) belongs to. To calculate the remaining terms
in Eq. (5.10), Eqs. (1.5)-(1.8) can be used to deduce relations between the singular
vectors of the different matrices. For the right singular vectors v⃗n, Eq. (1.5) yields

t†t+ r†r = 1 ⇒ v⃗ (t)
n = v⃗ (r)

n ≡ v⃗ (t,r)
n , (5.14)

t′ †t′ + r′ †r′ = 1 ⇒ v⃗ (t′)
n = v⃗ (r′)

n ≡ v⃗ (t′,r′)
n . (5.15)

Due to Eq. (1.7), the left singular vectors u⃗n are related as follows

tt† + r′r′ † = 1 ⇒ u⃗ (t)
n = u⃗ (r′)

n ≡ u⃗ (t,r′)
n , (5.16)

t′t′ † + rr† = 1 ⇒ u⃗ (t′)
n = u⃗ (r)

n ≡ u⃗ (t′,r)
n . (5.17)

Reciprocity [see Eq. (1.9)] leads to t′ = t𝑇 , which implies that t and t′ share the
same eigenvalues. Thus, 𝜎

(t)
n = 𝜎

(t′)
n and since 𝜎

(t)
n

2
= 𝜏n it follows that 𝜎

(r)
n

2
=

𝜌n = 1 − 𝜏n = 1 − 𝜏 ′n = 𝜌′n = 𝜎
(r′)
n

2
. Setting up the remaining terms in Eq. (5.10)

containing t′, r and r′ in a similar way and inserting them together with Eq. (5.12)
into Eq. (5.10) yields

Tr(𝑄(𝑆)
𝜔 ) =

∑︁
n

1

i

[︃
u⃗ (t,r′)†
n

𝑑u⃗
(t,r′)
n

𝑑𝜔
− v⃗ (t,r)†

n

𝑑v⃗
(t,r)
n

𝑑𝜔

+ u⃗ (t′,r)†
n

𝑑u⃗
(t′,r)
n

𝑑𝜔
− v⃗ (t′,r′)†

n

𝑑v⃗
(t′,r′)
n

𝑑𝜔

]︃

− i

[︃
𝑑𝜎

(t,t′)
n

2

𝑑𝜔
+

𝑑𝜎
(r,r′)
n

2

𝑑𝜔

]︃
,

(5.18)

where we have already used the relations (5.14)-(5.17). Due to the assumed uni-
tarity of 𝑆, the operator 𝑄

(𝑆)
𝜔 is Hermitian and thus the imaginary part of the
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corresponding eigenvalues given by the last term in Eq. (5.18) has to vanish. Using
𝜏
(′)
n + 𝜌

(′)
n = 1 (following from the unitarity of 𝑆) then indeed yields

𝑑𝜎
(t,t′)
n

2

𝑑𝜔
+

𝑑𝜎
(r,r′)
n

2

𝑑𝜔
=

𝑑(𝜏
(′)
n + 𝜌

(′)
n )

𝑑𝜔
= 0 . (5.19)

Making use of the similarity of certain singular vectors as indicated by their super-
scripts, Eq. (5.18) can be written in two different ways:

Tr(𝑄(𝑆)
𝜔 ) =

∑︁
n

𝑑𝜗
(t)
n

𝑑𝜔
+

𝑑𝜗
(t′)
n

𝑑𝜔

=
∑︁
n

𝑑𝜗
(r)
n

𝑑𝜔
+

𝑑𝜗
(r′)
n

𝑑𝜔
.

(5.20)

Finally, we want to connect this result to the trace of q(t)𝜔 which can be simplified
as follows:

Tr(q(t)𝜔 ) =

(︂
−it−1 𝑑t

𝑑𝜔

)︂
= Tr

(︂
−i𝑈 †𝑑𝑈

𝑑𝜔
+ i𝑉 †𝑑𝑉

𝑑𝜔
− iΣ−1𝑑Σ

𝑑𝜔

)︂
=

∑︁
n

𝑑𝜗
(t)
n

𝑑𝜔
− i

𝑑 ln(𝜎
(t)
n )

𝑑𝜔
.

(5.21)

Note that the eigenchannel delay times 𝑑𝜗(t)
n /𝑑𝜔 correspond to the time-delays of the

transmission eigenchannels which are different from the real part of the eigenvalues
of q(t)𝜔 . However, the invariance of the trace under similarity transformations used
in the derivation above keeps their sum the same. To further simplify Eq. (5.20),
we again employ t′ = t𝑇 to rewrite q

(t′)
𝜔 = t′ −1q

(t)𝑇
𝜔 t′. This shows that q

(t′)
𝜔 can be

written as a similarity transformation of q(t)𝜔 which implies that they share the same
eigenvalues resulting in the same trace. Since reciprocity does not relate the reflec-
tion matrices r and r′, no direct relation between the eigenvalues of q(r)𝜔 and q

(r′)
𝜔

exists, but unitarity still enforces that the sum of the corresponding eigenchannel
delay times in transmission and reflection is equal [see Eq. (5.20)]. With the help of
Eq. (5.21) and similar expressions for q(t

′)
𝜔 , q(r)𝜔 and q

(r′)
𝜔 , Eq. (5.20) can then finally

be written as

Tr(𝑄(𝑆)
𝜔 ) = Re[Tr(q(r)𝜔 ) + Tr(q(r

′)
𝜔 )]

= Re[Tr(q(t)𝜔 ) + Tr(q(t
′)

𝜔 )]

= 2Re[Tr(q(t)𝜔 )] .

(5.22)

This proves that the mean path length can be determined by transmission mea-
surements only.
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5.1 Disordered systems

To verify the invariance of the mean path length, we consider the system depicted
in Fig. 5.2 for a varying number of scatterers. Figures 5.3(a) and (b) show the
mean path length obtained via ⟨s[2q(t)𝜔 (𝜔)]⟩ in a single scattering configuration
averaged over a certain frequency range (denoted by the angle brackets) for each
number of scatterers in comparison with the corresponding theoretical prediction
⟨stheo(𝜔)⟩ from the next-order corrected Weyl law Eq. (5.6). The scattering area is
𝐴 = 𝐿𝑊 +2𝑁lw−𝑁scat𝜋r

2
scat with 𝑁scat being the number of impenetrable metallic

scatterers of radius rscat. The external boundaries are given by 𝐶 = 2𝑁w and the
internal boundaries are 𝐵 = 2𝐿+𝑁scat2rscat𝜋+4𝑁l+2(𝑁 − 1)Δw with Δw being
the width of the metallic spacings between the leads. The theoretical estimate and
the numerically obtained values for the mean path length are averaged over the
frequency range of 11-13 GHz in the ballistic and diffusive regime. In the localized
regime, we use the slightly smaller interval of 11-12 GHz since the signatures of
localization are more pronounced in this range. Using these frequency intervals,
the theoretical mean path length decreases from 2.05 m for an empty cavity to
1.76 m for a sample with 280 metallic cylinders. It is also worth noting that the
theoretical mean path length in the empty cavity is ⟨stheo(𝜔)⟩ ∼ 4𝐿 which strongly
exceeds the corresponding value in an open waveguide with the same dimensions
⟨stheo(𝜔)⟩ = 𝜋𝐿/2 [53]. This enhancement is a result of the metallic spacings
between the leads at the left and right interfaces of the cavity which give rise to
states with very long delay times. As shown in the supplementary material of [58],
these states correspond to bouncing orbits between the top and bottom metallic
walls of the cavity (in y-direction).

For the numerical verification of the mean path length invariance, we model the
experimental waveguide by adapting the two-port system introduced in Section 2.1
to a 2𝑁 -port system with 𝑁 leads attached on each side of the cavity (separated
by metallic spacings featuring PEC boundary conditions), again terminating the
lead ends with PMLs. Since the leads only support a single mode, i.e, the TE10

mode, in the considered frequency interval, the transmission matrix tmn describes
the transmission from lead n at the input side to lead m at the output side. Fig-
ure 5.3(a) depicts the mean path lengths ⟨s[2q(t)𝜔 (𝜔)]⟩ obtained in the numerical
simulations in absence of absorption (black crosses) which are in perfect agreement
with the Weyl prediction (red line). There, even the small reduction of the mean
path length predicted for an increasing number of scatterers is well reproduced thus
confirming the validity of the mean path length invariance across the onset of the
localization transition.

The corresponding experimental results shown in Fig. 5.3(b) (blue circles) are also
in good agreement with the Weyl law. To appreciate how non-trivial this result
is, Fig. 5.3(b) also shows the strong enhancement (reduction) of the transmission
(reflection) time-delays across the localization transition (black squares and trian-
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Figure 5.3: (a) Mean path length ⟨s[2q(t)𝜔 (𝜔)]⟩ obtained in numerical simulations without
(black crosses) and with (black circles) absorption as a function of the number of metallic
cylinders within the cavity. The red solid line corresponds to the theoretical prediction
of Weyl’s law [see Eq. (5.6)] and the background colors rose, green and white indicate
the localized, diffusive and the ballistic regime, respectively. (b) The same quantity,
⟨s[2q(t)𝜔 (𝜔)]⟩, found experimentally (blue circles). The black squares and triangles show
the mean path length in transmission and in reflection, respectively. The error bars
represent the corresponding standard deviations. (c) Transmission spectra of a photonic
crystal consisting of a periodic arrangement of aluminum and Teflon cylinders obtained in
measurements (blue line) and in numerical simulations including absorption (black line).
A transmission band gap is clearly observed for this sample with 15 longitudinal layers of
regularly spaced scatterers. (d) Corresponding normalized path length spectra, where the
finite photonic crystal gives rise to a drastically reduced, but not vanishing path length
within the band gap in the numerical simulations. In both the measurements and the
simulations, an enhancement of the path lengths can be observed at the edges of the
corresponding band gap. (e) Integral of the path length normalized by its theoretical
value over a frequency window of width Δ𝑓 around the center of the corresponding band
gap. Both the results obtained in measurements and in numerical simulations converge
towards a value slightly below the theoretical prediction due to the presence of absorption.
Numerical simulations in the absence of absorption (dashed black line) confirm the mean
path length invariance by converging towards the Weyl law.

gles). We also observe a slight underestimation of the mean path length, especially
in the ballistic regime, which can be attributed to the presence of absorption. This
deviation comes as no surprise since the above derivations all rely on the assump-
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tion of a unitary scattering matrix. Thus, even though the DOS integrated over
frequency is independent of absorption [152], the latter breaks unitarity and thus
the correspondence between s[q

(𝑆)
𝜔 (𝜔)] and s[2q

(t)
𝜔 (𝜔)], i.e., Eq. (5.7), as well as the

close similarity of the time-delay and the dwell time operator [49].
To numerically model the uniform absorption in the experiment, we add an imag-

inary part to the effective refractive index of the cavity. The latter is determined by
the comparison of the measured frequency-averaged transmission in the empty cav-
ity with the numerical simulations, resulting in an average uniform imaginary part
of the refractive index of ni = 2× 10−4 which is then also used for all the disorder
configurations. Since the absorption introduced by this imaginary refractive index
is small, the scattering matrix is still sufficiently unitary and thus ⟨s[2q(t)𝜔 (𝜔)]⟩ still
provides a reliable estimator for the theoretical value in absence of absorption. In-
terestingly, stronger deviations from the Weyl law can be found in the empty cavity
which can be traced back to the above-mentioned wave states that correspond to
bouncing orbits between the top and bottom cavity boundary (in y-direction). Due
to their long cavity dwell times, these states are very strongly affected by dissi-
pation which causes significant deviations from the mean path length invariance.
The better agreement with the theoretical prediction for an increasing scattering
strength can then be explained by the disorder scattering which naturally leads to
a suppression of such states.

5.2 Photonic crystal

Having verified the mean path length invariance numerically as well as experimen-
tally in all transport regimes of disorder scattering, we now investigate the opposite
limit of a structured medium with periodic order. More specifically, we consider a
periodic arrangement of alternating aluminum and Teflon cylinders forming a pho-
tonic crystal (PC) with 15 layers in the longitudinal direction (see supplementary
material of Ref. [58]). As shown in Fig 5.3(c), this structure features a band gap
(solid blue line) centered at 𝑓0 = 12 GHz with a width of Δ𝑓0 ≈ 2 GHz. The
periodic arrangement of scatterers fills the whole width of the waveguide and is
longitudinally centered only filling out the middle part of the cavity. Thus, the free
space in front of and after the PC also contributes to s[2q

(t)
𝜔 (𝜔)], and we subtract

the theoretical free space contribution from the obtained mean path length outside
the band gap in order to isolate the impact of the PC. In the band gap, the trans-
mission remains in the noise floor of the experimental setup (≈ 10−6) and we set
s[2q

(t)
𝜔 (𝜔)] = 0.

Numerical simulations are then performed for the same arrangement of aluminum
and Teflon scatterers. However, instead of manually removing the free space con-
tribution, we use a cavity whose length is adjusted to the longitudinal dimension of
the PC. To include possible uncertainties in the experimental scatterer placement,
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we introduce a slight disorder by adding a random value drawn from the interval
[−rscat/10, rscat/10] to the transverse and longitudinal positions of the scatterers.
Furthermore, we add absorption in order to closely mimic the situation in the ex-
periment. The band gap obtained from the numerical simulations [solid black line
in Fig. 5.3(c)] is centered at 𝑓0 = 12.6 GHz with a width of Δ𝑓0 ≈ 3.3 GHz which is
larger than in measurements. These differences might be attributed to tiny air gaps
between the aluminum cylinders and the top plate of the waveguide (which cannot
be captured by a 2D simulation), as scattering off the cylinder’s top edge gives rise
to the excitation of evanescent modes. The latter can then couple to neighbor-
ing Teflon scatterers whose higher refractive index compared to air might enable
an evanescent mode to become propagating thus locally modifying the effective
properties of the scatterers.

Figure 5.3(d) shows the corresponding path length spectra s[2q
(t)
𝜔 (𝜔)] normalized

by the theoretical value stheo(𝜔) in which the area of the Teflon scatterers has to
be multiplied by their refractive index squared to account for the increased DOS in
dielectric materials [153]. The path lengths obtained in the numerical simulations
are now strongly reduced within the band gap, but do not completely vanish (similar
to the transmission) as a consequence of the finite length of the PC. Also note that
the dwell time can be negative as a result of absorption [49] and since the dwell
time operator is related to the time-delay operator and thus also to s[2q

(t)
𝜔 (𝜔)], this

explains the negative values in Fig. 5.3(d).
The appearance of a band gap seems to suggest that the path length invariance

does not hold in such periodic structures. However, prior works on frequency sum
rules [152, 154] show that reductions and enhancements of the DOS should com-
pensate each other in arbitrary systems including band gap materials if the spectral
window is sufficiently broad. Since the DOS is closely related to the path length
s[2q

(t)
𝜔 (𝜔)], its strong decrease within the band gap should therefore be compensated

by a corresponding enhancement right outside the band gap. Figure 5.3(d) shows
that we indeed observe such enhancements close to the band edges, with s[2q

(t)
𝜔 (𝜔)]

even exceeding 3stheo(𝜔) in measurements and simulations.
To verify the mean path length invariance, we normalize the path length by the

theoretical Weyl prediction and integrate it over a frequency window Δ𝑓 around
the center of the corresponding band gap 𝑓0 obtained in the experiment or in the
simulation, i.e.,

𝑁s(Δ𝑓) =

∫︁ 𝑓0+Δ𝑓/2

𝑓0−Δ𝑓/2

s[2q
(t)
𝜔 (𝜔)]

stheo(𝜔)
. (5.23)

Note that the band gap centers are not located in the center of our frequency
interval and thus we continue integration with only the higher frequency range
once the lower end of 9.5 GHz is reached. The Weyl prediction for this quantity
is 𝑁s(Δ𝑓) = Δ𝑓 which increases linearly with the considered frequency range.
Figure 5.3(e) shows the integrated ratio 𝑁s(Δ𝑓) of the experimental data (solid
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blue line) which vanishes for a spectral window smaller than the band gap, but then
increases rapidly and progressively converges towards 𝑁s(Δ𝑓) ≈ 0.86Δ𝑓 at Δ𝑓 =
8.5 GHz. Similar to the empty cavity or the considered disorder configurations, the
14% deviation from the Weyl law can again be attributed to dissipation within the
system. This is confirmed by numerical simulations (solid black line) in which the
presence of absorption (modeled by ni = 2 × 10−4) causes 𝑁s(Δ𝑓) to converge to
the same value as in the measurements. The latter is even more remarkable when
considering that the band gap widths obtained in the simulation and the experiment
are not identical. In numerical simulations without absorption (dashed black line),
𝑁s(Δ𝑓) reaches 𝑁s(Δ𝑓) ≈ 0.975Δ𝑓 thus confirming that the almost vanishing path
length inside the band gap is entirely compensated by the pronounced enhancements
of s[2q(t)𝜔 (𝜔)] at the edges of the band gap.

Note that the numerical calculation of q(t)𝜔 might involve singular transmission
matrices for which an ordinary inverse does not exists. We therefore project each
matrix onto the subspace containing only singular vectors corresponding to singu-
lar values greater than 10−10. This enables us to compute the pseudo-inverse as
presented in Appendix C. Experimentally, transmission eigenvalues smaller than
𝜏n < 10−6 are removed from the data since these eigenchannels may contain time-
delays which are corrupted by the noise level of the experimental setup.

5.3 Influence of absorption
Equation (5.22) enables the estimation of the mean path length by using either
the scattering, the transmission or both reflection matrices. However, absorption
breaks this relation, and therefore we investigate its impact on all the involved
operators in the following to identify the most reliable estimator of the mean path
length in the presence of absorption. To arrive at analytical relations, we consider a
toy model of a straight open waveguide (rather than the system depicted in Fig. 5.2)
which consists of two scattering regions with scattering matrices

𝑆1 =

(︂
r1 t′1
t1 r′1

)︂
, 𝑆2 =

(︂
r2 t′2
t2 r′2

)︂
(5.24)

separated by free space described by the scattering matrix 𝑆free
2 . We also add a

free space section described by 𝑆free
1 (𝑆free

3 ) in front of the first (after the second)
scattering region for generality. The corresponding scattering matrices for the free
space sections are given by

𝑆free
j =

(︂
0 𝑃j

𝑃j 0

)︂
, (5.25)

where the propagation matrices, i.e., the transmission matrices through free space,
are

𝑃j = diag
(︀
𝑒ikx,n𝐿j

)︀
. (5.26)
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Here, j = 1, 2, 3 is the number of the considered section with length 𝐿j, where
kx,n =

√︀
k2 − k2

y,n are the longitudinal propagation constants of the waveguide
modes with ky,n = n𝜋/𝑊 in an open waveguide of width 𝑊 .

To investigate the impact of absorption on Tr(q
(t)
𝜔 ), we make use of the Feynman

path integral formulation to calculate the transmission matrix as a sum over all
possible paths, i.e.,

t =𝑃3t2𝑃2t1𝑃1

+ 𝑃3t2𝑃2r
′
1𝑃2r2𝑃2t1𝑃1

+ 𝑃3t2𝑃2r
′
1𝑃2r2𝑃2r

′
1𝑃2r2𝑃2t1𝑃1 + . . .

=𝑃3t2

∞∑︁
n=0

(𝑃2r
′
1𝑃2r2)

n𝑃2t1𝑃1

=𝑃3t2(1 − 𝑃2r
′
1𝑃2r2)

−1𝑃2t1𝑃1 .

(5.27)

Here, we have employed the Neumann series, i.e., the analog of the geometric series
for operators, assuming a convergent operator norm in which case

∑︀∞
n=0 𝑂

n =
(1−𝑂)−1 for an operator 𝑂. Hence, the inverse of the transmission matrix can be
written as

t−1 = 𝑃−1
1 t−1

1 𝑃−1
2 (1 − 𝑃2r

′
1𝑃2r2)t

−1
2 𝑃−1

3 . (5.28)

Using Eqs. (5.27) and (5.28), the trace of q(t)𝜔 = −it−1𝑑t/𝑑𝜔 then evaluates to

Tr(q(t)𝜔 ) = Tr(q(t)𝜔 )direct + Tr(q(t)𝜔 )multi , (5.29)

with

Tr(q(t)𝜔 )direct =
1

𝑐
Tr

[︂
− i𝑃−1

3

𝑑𝑃3

𝑑k
− it−1

2

𝑑t2
𝑑k

− i𝑃−1
2

𝑑𝑃2

𝑑k
− it−1

1

𝑑t1
𝑑k

− i𝑃−1
1

𝑑𝑃1

𝑑k

]︂ (5.30)

being the time-delay of the direct path. The second term in Eq. (5.29) reads

Tr(q(t)𝜔 )multi =
1

𝑐
Tr

[︂
−i(1 − 𝑃2r

′
1𝑃2r2)

𝑑(1 − 𝑃2r
′
1𝑃2r2)

−1

𝑑k

]︂
(5.31)

and corresponds to contributions from the multiply scattered paths, where we have
used the linearity of the trace and its invariance under cyclic permutations. We
now introduce absorption by adding a uniform imaginary part ni to the refractive
index distribution which causes a change of the total wave vector k → k + i𝜅 with
𝜅 = nik. In case of ni ≪ 1, the propagation constants can be written as

kx,n → k̃x,n

(︁
1 + inik

2/k̃2
x,n

)︁
(5.32)
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with k̃x,n =
√︁

(1− n2
i )k

2 − k2
y,n and thus

𝑃j → diag
(︁
𝑒ik̃x,n𝐿j𝑒−ni𝐿jk

2/k̃x,n
)︁
. (5.33)

The derivative of this quantity with respect to k is given by

𝑑𝑃j

𝑑k
→ diag

(︃
ik𝐿j

k̃x,n
− ni𝐿j

[︃
2k

k̃x,n
− k3

k̃3
x,n

]︃)︃
𝑃j . (5.34)

To further simplify Eq. (5.31), we Taylor-expand the inverse matrix expression

(1 − 𝑃2r
′
1𝑃2r2)

−1 = 1 + 𝑃2r
′
1𝑃2r2 + (𝑃2r

′
1𝑃2r2)

2 + . . . (5.35)

and use Eq. (5.34) to find

𝑑(1 − 𝑃2r
′
1𝑃2r2)

−1

𝑑k
∝ O(𝑃 2

2 ) . (5.36)

Due to the exponential decay of 𝑃j [see Eq. (5.33)], Tr(q(t)𝜔 )multi = O(𝑃 2
2 ) → 0 in

the limit of strong absorption and thus

Tr(q(t)𝜔 ) → Tr(q(t)𝜔 )direct . (5.37)

This reveals that the transmission delay times converge to those of the most direct
path, i.e., the path from the input to the output leads that corresponds to the
shortest time-delay, in the limit of strong absorption. This limit is already reached
for ni ≪ 1 due to the fast exponential decay in Eq. (5.33). In case of a one-
dimensional scattering system featuring barriers of finite height, it can be even
shown that 𝑐q

(t)
𝜔 reduces to the optical path length of the direct path through this

system if absorption is strong. It is also worth pointing out that the contributions
to the direct path in Eq. (5.30) are independent of absorption. In particular, the
exponential decay drops out due to the appearance of 𝑃−1

j and absorption only
enters in form of a correction term in (5.34). However, since usually ni ≪ 1,
these corrections are small and one can approximate k̃x,n ≈ kx,n and 𝑑𝑃j/𝑑k ≈
diag(ik𝐿j/kx,n), where the latter expression yields the free space propagation delay
time in the absence of absorption in Eq. (5.30).

The convergence towards the most direct path in transmission is also reflected in
the Poynting vector. As an example, the Poynting vector of the highest transmit-
ting transmission eigenchannel in the empty cavity is shown in Figs. 5.4(a) and (b)
in the absence and presence of strong absorption, respectively. There, the color of
the vectors corresponds to the longitudinal component of the Poynting vector nor-
malized by its magnitude. Without absorption, the metallic spacings between the
leads of the cavity lead to scattering which in turn yields flux components pointing
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Figure 5.4: Spatial distribution of the time-averaged Poynting vector [Eq. (E.5), colored
arrows] of the highest transmitting transmission eigenstate injected from the left leads
(indicated by the red arrows on the outside) into the empty cavity. Here, the color corre-
sponds to the longitudinal component of the Poynting vector normalized by its magnitude
with red (blue) indicating the flux in the positive (negative) x-direction. (a) In the absence
of absorption, scattering at the interfaces between the leads gives rise to flux-contributions
pointing in the negative x-direction (blue color). (b) Same as (a), but for strong absorp-
tion modeled by a uniform imaginary part of the refractive index of ni = 10−2. One can
clearly see that strong dissipation eliminates multiply scattered paths causing the flux to
align with the positive x-direction (red color) which is a result of the convergence towards
the most direct path in transmission from the input to the output leads as described by
Eq. (5.37).

in the backward direction, i.e, the negative x-direction [blue color in (a)]. Introduc-
ing strong absorption then suppresses all the multiply scattered paths resulting in
a Poynting vector distribution that is almost perfectly aligned with the forward di-
rection, i.e., the positive x-direction [red color in (b)]. This behavior is very general
and thus it can also be observed in the diffusive and localized regime (not shown)
where the most direct paths get elongated due to the presence of scatterers.

Following the same strategy as above, we investigate the effect of absorption on
Tr(q

(r)
𝜔 ). We start with the Feynman path integral representation of the reflection

matrix

r =𝑃1r1𝑃1

+ 𝑃1t
′
1𝑃2r2𝑃2t1𝑃1

+ 𝑃1t
′
1𝑃2r2𝑃2r

′
1𝑃2r2𝑃2t1𝑃1 + . . .

=𝑃1r1𝑃1 + 𝑃1t
′
1𝑃2r2

∞∑︁
n=0

(𝑃2r
′
1𝑃2r2)

n𝑃2t1𝑃1

=𝑃1r1𝑃1 + 𝑃1t
′
1𝑃2r2(1 − 𝑃2r

′
1𝑃2r2)

−1𝑃2t1𝑃1 ,

(5.38)

which we can rewrite as

r = 𝑃1r1𝑃1

[︀
1+𝑃−1

1 r−1
1 t′1𝑃2r2(1 − 𝑃2r

′
1𝑃2r2)

−1𝑃2t1𝑃1

]︀
. (5.39)
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Assuming strong absorption, the second term in the square brackets is small which
allows us to approximate its inverse by (1 + x)−1 ≈ 1− x. Thus we get

r−1 ≈ [︀
1−𝑃−1

1 r−1
1 t′1𝑃2r2(1 − 𝑃2r

′
1𝑃2r2)

−1𝑃2t1𝑃1

]︀
𝑃−1
1 r−1

1 𝑃−1
1 . (5.40)

Using the above expressions, we now calculate 𝑑r/𝑑𝜔 and q
(r)
𝜔 and find

Tr(q(r)𝜔 ) = Tr(q(r)𝜔 )direct + Tr(q(r)𝜔 )multi (5.41)

with the contributions from the direct path being

Tr(q(r)𝜔 )direct =
1

𝑐
Tr

[︂
−i𝑃−1

1

𝑑𝑃1

𝑑k
− ir−1

1

𝑑r1
𝑑k

− i𝑃−1
1

𝑑𝑃1

𝑑k

]︂
. (5.42)

The contributions from the multiply scattered paths are again

Tr(q(r)𝜔 )multi = O(𝑃 2
2 ) . (5.43)

In the limit of strong absorption, we thus again find that Tr(q
(r)
𝜔 )multi → 0 which

yields
Tr(q(r)𝜔 ) → Tr(q(r)𝜔 )direct . (5.44)

Similar to the delay times in transmission, also the delay times in reflection for
strong absorption and ni ≪ 1 reduce to the delay times of the most direct path (in
the absence of absorption) which corresponds to reflections at the first scattering
layer.

To complete the picture, we now also investigate the effect of absorption on
Tr(q

(𝑆)
𝜔 ) which contains the full scattering matrix of the system

𝑆 =

(︂
r t′

t r′

)︂
. (5.45)

Due to the additional information stored in 𝑆, one might be tempted to think that
q
(𝑆)
𝜔 will lead to a better estimate of the Weyl prediction, however, this is not the

case as we will show in the following. To calculate q
(𝑆)
𝜔 , we invert the scattering

matrix blockwise
𝑆−1 =

(︂
r−1 + r−1t′𝑀tr−1 −r−1t′𝑀

−𝑀tr−1 𝑀

)︂
(5.46)

with 𝑀 = (r′ − tr−1t′)−1 which is valid if r and 𝑀 are non-singular. The trace of
q
(𝑆)
𝜔 then evaluates to

Tr(q(𝑆)𝜔 ) =
1

𝑐
Tr

[︃
− ir−1 𝑑r

𝑑k
− ir−1t′𝑀tr−1 𝑑r

𝑑k

+ ir−1t′𝑀
𝑑t

𝑑k
+ i𝑀tr−1𝑑t

′

𝑑k
− i𝑀

𝑑r′

𝑑k

]︃
.

(5.47)
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Since absorption causes an exponential decrease in transmission, strong absorption
will lead to t → 0 and t′ → 0. In this limit, 𝑀 → r′−1 and

Tr(q(𝑆)𝜔 ) → Tr(q(r)𝜔 ) + Tr(q(r
′)

𝜔 ) . (5.48)

Thus, the consideration of the full scattering matrix in the time-delay operator
leads to a substantial underestimation of the mean path length since the direct
paths in reflection are much shorter than the direct paths in transmission which
have to traverse the scattering system.

To validate the above findings, we perform numerical simulations of the experi-
mental setup in the frequency range of 11-13 GHz. Absorption is then introduced
via a uniform imaginary part of the refractive index which is progressively increased
up to ni = 10−2. The resulting mean path lengths obtained with the operators q(𝑆)𝜔 ,
2q

(t)
𝜔 and q

(r)
𝜔 + q

(r′)
𝜔 are shown in Figs. 5.5(a)-(c) for the different transport regimes.

Each data point in the diffusive and localized regime corresponds to an average
over 200 random configurations and 100 frequency values in the considered inter-
val. For the empty system, we use 20000 frequency values between 11 and 13 GHz
to compensate the missing configuration average. For all the different operators,
the corresponding mean path lengths decrease with increasing absorption.

The rapid decrease of ⟨s(2q(t)𝜔 )⟩/⟨stheo⟩ in the empty system can be understood
by the convergence towards the most direct path in transmission as described by
Eq. (5.37). To estimate its length, we use the time-delay of a straight and empty
waveguide section of length ℓ which is ℓk/kx,n. Therefore, the propagation time
corresponding to the shortest possible path is given by the time-delay of the lowest
transverse waveguide mode in the corresponding sections. Thus, we can estimate
the direct path via

⟨𝐿empty
direct (k)⟩ ≈

⟨
2lk

klead
x,1

+
𝐿k

kscat
x,1

⟩
= 0.63 m , (5.49)

where klead
x,1 =

√︀
k2 − (𝜋/w)2 and kscat

x,1 =
√︀

k2 − (𝜋/𝑊 )2 are the propagation con-
stants of the lowest transverse mode in the leads and the scattering region, respec-
tively. Performing the frequency average in the interval 11-13 GHz and using the
corresponding theoretical value ⟨stheo⟩ = 2.05 m then yields

⟨𝐿empty
direct ⟩

⟨stheo⟩ ≈ 0.31 . (5.50)

This estimation is in very good agreement with the ratio ⟨s(2q(t)𝜔 )⟩/⟨stheo⟩ obtained
in the numerical simulations which converges to 0.32 for the strongest considered
absorption [see blue curve in Fig. 5.5(a)]. The latter value is slightly larger than
the estimate since the different modes do not propagate in straight lines, but are
associated with certain propagation angles causing the waves to exit the system
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Figure 5.5: (a)-(c) Normalized mean path lengths in the empty system, the diffusive
and the localized regime obtained in numerical simulations via ⟨s(𝑂)⟩/⟨stheo⟩, where 𝑂
represents the corresponding operators in the legend and stheo is the theoretical path
length in the absence of absorption [Eq. (5.6)]. In the considered frequency range of
11-13 GHz, the latter evaluates to ⟨stheo⟩ = 2.05 m in the empty system, ⟨stheo⟩ =
2.03 m for nscat = 20 in the diffusive regime and ⟨stheo⟩ = 1.76 m for nscat = 280 in
the localized regime. The vertical dashed lines indicate the absorption strength for which
the frequency-averaged conductance in the empty cavity is equal to the experimentally
measured one. The mean path length obtained with each of the considered operators
monotonically decreases with increasing absorption strength, where the convergence of
⟨s(q(𝑆)𝜔 )⟩ to ⟨s(q(r)𝜔 +q

(r′)
𝜔 )⟩ [Eq. (5.48)] can clearly be seen, especially for stronger scattering

strengths. (d)-(f) Normalized transmission eigenchannel contribution to the mean path
length in all the considered transport regimes as a function of the eigenchannel index,
where the index 1 (8) corresponds to the highest (lowest) transmitting eigenchannel.
Increasing absorption leads to a redistribution of the transmission time-delays which all
converge to the length of the most direct path in the limit of strong absorption [see
Eq. (5.37)]. The horizontal grey dashed line marks an estimation of the most direct path
in the empty system which agrees very well with the numerically obtained transmission
delay times for the strongest absorption.

through output ports not exactly opposite to their input port. Moreover, since
⟨s(q(𝑆)𝜔 )⟩ is not fully converged to ⟨s(q(r)𝜔 + q

(r′)
𝜔 )⟩ [Eq. (5.48)] (black and red curve),

this also indicates that the absorption is too weak to suppress all but the direct
path.

The convergence towards the most direct transmission path in the limit of strong
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absorption still holds in the diffusive and localized regime, where the presence of
impenetrable metallic scatterers leads to an elongation of the most direct paths.
This can be seen in Figs. 5.5(b) and (c), where an increasing number of scatterers
causes the normalized mean length in transmission (blue curve) to converge to a
much larger value than for the empty waveguide [Eq. (5.50)]. This effect is especially
pronounced in the localized regime shown in Fig. 5.5(c). Here, the presence of 280
metallic scatterers increases the mean path length compared to the empty system
leading to a better estimate of the value predicted by the Weyl law. Specifically,
we numerically obtain ⟨s(2q(t)𝜔 )⟩ = 0.66⟨stheo⟩ for ni = 10−2.

Considering the mean path length in reflection, ⟨s(q(r)𝜔 + q
(r′)
𝜔 )⟩/⟨stheo⟩ converges

to small values in all transport regimes which resemble the direct paths in reflection
[see Eq. (5.44)], i.e., reflections at the first scattering layer. In case of the time-delay
operator q(𝑆)𝜔 , Figs. 5.5(a)-(c) clearly show the convergence of ⟨s(q(𝑆)𝜔 )⟩ to ⟨s(q(r)𝜔 +

q
(r′)
𝜔 )⟩ [see Eq. (5.48)] which leads to a pronounced underestimation of the Weyl

prediction. Strong absorption thus prevents the accurate prediction of the invariant
mean path length in all transport regimes with the transmission matrix providing
a more reliable estimator of the Weyl prediction than its estimation based on the
reflection matrices or the full scattering matrix. This is particularly pronounced in
strongly scattering systems, i.e., in the localized regime, in which the direct paths
in transmission still have to traverse the entire system in contrast to the direct
paths in reflection that correspond to reflections at the first scattering layer.

The convergence towards the most direct path in the limit of strong absorption
is not a peculiar feature of a single transmission or reflection eigenstate, but holds
for all eigenchannels of t(′)†t(′) and r(′)†r(′). To illustrate that, Figs. 5.5(d)-(f) show
the averaged transmission eigenchannel path lengths normalized by the theoretical
value given by the Weyl law, where an eigenchannel index of 1 (8) corresponds
to the highest (lowest) transmitting eigenchannel. Strong absorption causes all
transmission eigenchannel delay times [see Eq. (5.13)] to converge towards a single
value. For the empty system in Fig. 5.5(d), this value coincides very well with the
estimate of the direct path in Eq. (5.50) which is indicated by the gray dashed
line. In the diffusive and localized transport regime, the elongation of the direct
paths due to the presence of scatterers causes a convergence to a value larger than
⟨𝐿empty

direct ⟩. The suppression of multiply scattered paths is therefore a generic feature
of strong absorption which effects all transmission and reflection eigenchannels thus
generalizing the observations in Ref. [155].

5.4 Conclusion
We demonstrate numerically and experimentally, that the surprising property of an
invariant mean path length holds for waves in the ballistic, diffusive and localized
regime of disorder scattering. In addition, we show that this invariance also applies
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to systems with periodic order like photonic crystals that feature a transmission
band gap in a certain range of frequencies. Here, the suppression of the path length
within the band gap gets compensated by an enhancement right outside the band
gap. Therefore, our results provide a comprehensive bound on the enhancement of
the mean path length of broadband light in a medium and are thus deeply linked
to the so-called Yablonovitch limit [156] enabling applications in, e.g., the design
of structures that enhance light harvesting for solar cells [157] or the enhancement
of the light-matter interaction via the amount of stored light intensity. We further
consider the limit of strong uniform absorption, where we encounter the convergence
towards the most direct paths which applies to all eigenchannels in transmission
as well as in reflection. Based on the close relation between absorption and dwell
time [10, 158], we also envision an extension of the presented results to an invari-
ance property of the mean absorption in scattering media which could be used to
investigate the limits of the Yablonovitch limit in a wave-mechanical description.

In the last chapter, we stay in the realm of non-Hermitian physics and show how
to obtain wave states that get optimally, i.e, perfectly, absorbed at a localized loss
element that is embedded in a complex scattering environment.



Chapter 6

Random anti-lasing through
coherent perfect absorption18

Loss and absorption are detrimental to many applications, however, in some cases
the absorption of radiation is essential as, e.g., in the reception or spectral filtering
of electromagnetic signals or light harvesting processes. For such applications, the
goal is to reach the ultimate limit of perfect absorption which can be achieved by
exploiting the effect of coherent perfect absorption (CPA) [59, 159–161]. CPA is
commonly referred to as “anti-lasing” as it corresponds to the time-reversed pro-
cess of lasing at threshold (where all radiation losses are exactly balanced by the
optical gain). A schematic depiction of the CPA-laser correspondence is shown in
Fig. 6.1. Note, however, that above the lasing threshold non-linear effects lead to
a breakdown of this correspondence.

The effect of CPA has first been theoretically investigated in Ref. [59]. There, a
simple one-dimensional system consisting of a finite region with constant refractive
index and uniform absorption is irradiated from both sides. Provided that a precise
amount of dissipation is added and the amplitudes and phases of the incident
waves are suitably adjusted, such structures can be made perfectly absorbing due
to the interplay of interference and absorption. Specifically, the reflected part of
the beam incident from the left destructively interferes with the transmitted part
of the beam incident from the right and vice versa. Therefore, the wave is trapped
inside the absorbing slab for an infinite time [162, 163] and thus it is entirely lost to
dissipation. Perfect absorption can therefore even occur in systems which feature
very small rates of single-pass absorption as, e.g., a silicon slab which was used in
the first experimental demonstration of this intriguing effect [160].

18 The results presented in this chapter were obtained in collaboration with my former colleagues
Philipp Ambichl and Andre Brandstötter, my current colleague Kevin Pichler, our experimen-
tal collaborators Ulrich Kuhl and his former PhD student Julian Böhm from the Université
Côte d’Azur. The theoretical and numerical tasks were carried out by myself, Kevin Pichler,
Andre Brandstötter and Philipp Ambichl under supervision of Stefan Rotter. The experi-
mental setup was designed by Ulrich Kuhl and Julian Böhm and the measurements and data
evaluation were carried out by Kevin Pichler. The presented results are based on our joint
publication [60] from which parts of the text and figures have been taken.
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Figure 6.1: (a) Schematic of a laser in which a pumped gain medium embedded in
a cavity emits outgoing coherent radiation (in the absence of waves incident from the
exterior). (b) Schematic of CPA, i.e., the time-reversed process of lasing at threshold.
Time-reversing the outgoing wave field of the lasing mode in (a) and replacing the gain
medium by an absorbing medium with the corresponding amount of loss leads to perfect
absorption of the incoming radiation and eliminates all back-reflections to the exterior.

Since then, CPA has been realized experimentally in a wide variety of different
setups [161, 164–170] with the notable exception of a CPA in a disordered medium,
i.e., a medium without an engineered structure. In such a case, a CPA would
correspond to the time-reverse of a random laser [171, 172] in which the multiple
scattering caused by a disordered active medium confines the light leading to a res-
onant enhancement of modes with specific frequencies. Due to the highly complex
nature of the scattering process, the output profiles of such lasing modes are also
spatially complex and not focused like a regular laser beam. Therefore, it is very
challenging to time-reverse such light fields, especially since the time-reversal has
to be applied to all of the field’s degrees of freedom (in both its amplitudes and
phases). In addition, also the absorption strength (time-reversal turns gain regions
into loss regions) and the frequency of the radiation have to be precisely adjusted.
In this chapter, we demonstrate that even for a strongly disordered medium, where
the impinging wavefront first has to penetrate some scattering layers to reach the
absorber, surprisingly the absorption can still be perfect. As in the one-dimensional
case, this is caused by the interplay of absorption and destructive interference which
fully dissipates the wave at the absorber and eliminates all back-reflections to the
exterior.

In the framework of scattering theory, CPA and lasing can be related to the
zeros and poles of the scattering matrix, respectively. Utilizing the input-output
relationship v⃗ = 𝑆u⃗, the injection of an 𝑆-matrix eigenstate u⃗CPA corresponding to
a zero-eigenvalue ΛCPA = 0 leads to a vanishing outgoing field 𝑆u⃗CPA = 0 and thus
to CPA. On the other hand, lasing can be described by the poles rather than the
zeros of the 𝑆-matrix which give rise to a divergent response for a finite input field.
Zeros and poles generally occur at discrete points in the complex frequency plane
where in the absence of gain and loss they are symmetrically distributed around
the real axis, i.e., zeros are complex conjugates of poles. The addition of gain or
loss makes the system non-Hermitian causing the zeros and poles to move in the
complex frequency plane. To illustrate that, we use the Caley transform of the
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scattering matrix in the effective Hamiltonian formalism which can be obtained by
rewriting the latter as follows [71]:

𝑆 = −1 + 2i𝑉 †𝐺𝑉

= −1 + 2i𝑉 †[𝐺−1
0 + i𝑉 𝑉 †]−1𝑉

= −1 + 2i𝑉 †[(1 + i𝑉 𝑉 †𝐺0)𝐺
−1
0 ]−1𝑉

= −1 + 2i𝑉 †𝐺0(1 + i𝑉 𝑉 †𝐺0)
−1]𝑉

= −1 + 2i𝑉 †𝐺0

∑︁
n

(−i𝑉 𝑉 †𝐺0)
n𝑉 .

(6.1)

Here, we have used 𝐺 = (𝐺−1
0 + i𝑉 𝑉 †)−1 and 𝐺0 = (Δ+n2k2)−1. Next, reordering

the terms in the sum according to (𝑉 𝑉 †𝐺0)𝑉 = 𝑉 (𝑉 †𝐺0𝑉 ) yields

𝑆 = −1 + 2i𝑉 †𝐺0𝑉
∑︁
n

(−i𝑉 †𝐺0𝑉 )n

= −1 + 2i𝑉 †𝐺0𝑉 (1 + i𝑉 †𝐺0𝑉 )−1

= −1 − i𝑉 †𝐺0𝑉

1 + i𝑉 †𝐺0𝑉
.

(6.2)

To show the mirror symmetry of zeros and poles, we calculate the determinant of
Eq. (6.2) resulting in

Det(𝑆) = Det

(︂
−1 − i𝑉 †𝐺0𝑉

1 + i𝑉 †𝐺0𝑉

)︂
= (−1)2𝑁

Det(1 − i𝑉 †𝐺0𝑉 )

Det(1 + i𝑉 †𝐺0𝑉 )
. (6.3)

Here, the exponent of 2𝑁 appears due to the 2𝑁 scattering channels in the con-
sidered two-port device. Using Sylvester’s determinant identity Det(1 ± 𝑉 †𝐴𝑉 ) =
Det(1 ± 𝐴𝑉 𝑉 †) with 𝐴 = 𝐺0 then gives

Det(𝑆) =
Det(1 − i𝐺0𝑉 𝑉 †)
Det(1 + i𝐺0𝑉 𝑉 †)

=
Det(𝐺−1

0 − i𝑉 𝑉 †)
Det(𝐺−1

0 + i𝑉 𝑉 †)
=

Det(𝐺)

Det(𝐺†)
=

Det(𝐺̃)

Det(𝐺̃†)
,

(6.4)

where we have used 𝐺0 = 𝐺†
0 and the modified Green’s function of the Helmholtz

equation 𝐺̃ = 𝐺n2 (for more details we refer to Ref. [71]). Since the ratio of products
is equal to the product of the ratios, we can express Eq. (6.4) as a product of the
ratios of the complex eigenvalues 1/(k2 − 𝜆n) of the Green’s function 𝐺̃ and its
complex conjugate, i.e.,

Det(𝑆) =
∏︁
n

k2 − 𝜆*
n

k2 − 𝜆n

=
∏︁
n

𝜔2 − 𝜔2
n − i𝛾n/2

𝜔2 − 𝜔2
n + i𝛾n/2

(6.5)
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with 𝜆n = k2
n − iΓn/2 = (𝜔2

n − i𝛾n/2)/𝑐
2 being the eigenvalues of the Helmholtz

equation. The latter are complex since the term i𝑉 𝑉 † describing the coupling of the
closed system to the leads makes the Helmholtz operator non-Hermitian giving rise
to the imaginary part of the eigenvalues Γn = 𝛾n/𝑐

2. Equation (6.5) is valid in the
unitary regime in which zeros and poles occur at the frequencies 𝜔2

z,n = 𝜔2
n + i𝛾n/2

and 𝜔2
p,n = 𝜔2

n − i𝛾n/2, respectively. This shows, that a unitary scattering matrix
has zeros in the upper half of the complex frequency plane, i.e., Im(𝜔z,n) > 0,
whereas poles are located in the lower half of the complex plane, i.e., Im(𝜔p,n) < 0.
Furthermore, Eq. (6.5) shows that zeros and poles are symmetrically distributed
around the real axis in the absence of gain and loss. In general, zeros and poles
correspond to “unphysical” solutions since their complex frequency values give rise
to exponential growth and decay in time under 𝑒−i𝜔t convention, respectively [161].

To obtain physical solutions, loss and gain can be added to the system in order to
move them onto the real axis. To demonstrate that, we consider uniform absorption
which can be described by 𝜔2 → 𝜔2 + i𝛾𝑎/2 [173], where 𝛾𝑎 > 0 defines the absorp-
tion strength. In this case, the zeros and poles become 𝜔2

z,n = 𝜔2
n + i(𝛾n − 𝛾𝑎)/2

and 𝜔2
p,n = 𝜔2

n − i(𝛾n + 𝛾𝑎)/2, respectively. Thus, when 𝛾𝑎 = 𝛾n, i.e., when atten-
uation losses exactly balance the dissipation through the channels, the imaginary
part of 𝜔z,n vanishes. The disordered medium then turns into a CPA at exactly
those frequencies and loss values at which 𝜔z,n crosses the real 𝜔-axis. Similarly,
uniform gain can be described by 𝛾𝑎 < 0 leading to physical lasing solutions as
soon as the first S-matrix pole hits the real axis which defines the lasing threshold.
Above threshold, nonlinear saturation effects stabilize the S-matrix poles on the
real axis, while no such effects are at work for the S-matrix zeros making it possible
to drag them below the real axis. Thus, as already briefly mentioned, the analogy
between lasing and anti-lasing only holds on the linear level at the mode-specific
lasing thresholds.

6.1 Experimental realization in a microwave setup

In the following, we present the first experimental realization of such a random
anti-laser, i.e., of CPA in a disordered medium. To achieve full level of control, we
use a microwave waveguide setup similar to the one used in Chapter 3 which enables
us to measure the scattering matrix in a large frequency range and to inject any
desired field pattern. The setup is schematically depicted in Fig. 6.2 and consists
of a waveguide in which 60 randomly placed cylindrical Teflon scatterers simulate a
disorder that scatters the incident waves. At the operational frequency range of 6-
7.5 GHz, the waveguide supports four TEm0 modes which can be fully controlled in
both their amplitudes and phases via four antennas on each side (left and right) of
the waveguide. In the middle of the scattering region, we insert a monopole antenna
which provides a localized loss channel that should perfectly absorb the incoming
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Figure 6.2: Sketch of the experimental setup in which microwaves with a well-defined
frequency are generated by a vector network analyzer and equally distributed to eight
in-phase/quadrature (IQ) modulators. The latter enable the control of the amplitudes
and relative phases of the signals which are then injected into an aluminum waveguide
of width 𝑊 = 10 cm and height ℎ = 8 mm via four antennas on each side. The central
scattering region of length 𝐿 = 60 cm contains 60 randomly placed Teflon scatterers
with radius r = 2.55 mm that simulate a disorder. Localized absorption is introduced
via the insertion of a monopole antenna (central antenna) through the top plate of the
waveguide (not shown) in the middle of the disordered region. The absorption strength
of this antenna can be tuned by varying its insertion length which determines its coupling
to the waveguide. Absorbers are placed on both waveguide ends to avoid back-reflections
of the injected and transmitted signals. To determine the scattering matrix, the field is
measured between the external antennas and the scattering region on the left and right
using a movable antenna (not shown) that dips into the waveguide through a grid of holes
in the waveguide’s top plate.

waves. As necessary for the realization of a CPA, the absorption strength of this
antenna has to be precisely adjusted which can be done by varying its penetration
depth into the waveguide thus changing its coupling strength to the system.

To experimentally find the point of CPA, the 𝑆-matrix of the system is measured
in a frequency interval broad enough to contain many 𝑆-matrix zeros and for a
number of penetration depths of the central antenna that cause absorption strong
enough to drag the zeros with the smallest imaginary parts down to the real 𝜔-
axis. We then evaluate the eigenvalues of all these scattering matrices and identify
the parameter combination at which the absolute value of the smallest 𝑆-matrix
eigenvalue is closest to zero. Last, we set the frequency and the absorption strength
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to the point at which CPA occurs and inject the eigenstate corresponding to the
minimum eigenvalue into the system in order to determine its degree of absorption.

Figure 6.3(a) depicts the results obtained by following this approach. There, the
blue curve shows the ratio of outgoing to incoming intensity (𝐼out/𝐼in) of one CPA
state as a function of the frequency, where we find a pronounced minimum at the
corresponding CPA frequency, i.e., the frequency at which the injected CPA state
was evaluated. This minimum corresponds to 99.78% absorption which is a first
hallmark of CPA (the same minimum can also be observed in the minimal 𝑆-matrix
eigenvalue which is not shown).

To ensure that this effect is truly caused by CPA rather than by a coherent en-
hancement of absorption (CEA) [61] or by one of the previously introduced focusing
schemes [3, 8, 174, 175], we perform a number of independent tests. First, since
global absorption in the aluminum waveguide is small, we expect the CPA state to
be primarily absorbed by the central antenna. Since a CPA state is purely incoming
(at its CPA frequency) due to the interferometric cancellation of the back-reflections
to the exterior, the time-reversed situation of injecting a signal at the CPA fre-
quency through the central antenna should yield a state that is purely outgoing.
In this case, back-reflections into the central antenna should vanish as a result of
its critical coupling [176, 177] to the disordered waveguide system. The red dashed
curve in Fig. 6.3(a) shows the back-reflection signal |𝑅|2 into the central antenna,
where we indeed observe a dip very close to the actual CPA frequency. This dip is
slightly shifted in frequency by 0.025% with respect to the dip of 𝐼out/𝐼in which is a
result of experimental imperfections and the imperfect time-reversal (weak uniform
loss in the waveguide walls cannot be turned into uniform gain).

Since CPA requires critical coupling of the central antenna to the disordered
waveguide, we also investigate its dependence on the coupling strength. Due to
the absence of non-linear effects in case of absorption, an 𝑆-matrix zero can also
be pulled below the real axis which in turn should lead to a reduced amount of
absorption not only in the undercoupled (zero above the real axis), but also in
the overcoupled regime (zero below the real axis). The right panels in Fig. 6.3(a)
show the ratio 𝐼out/𝐼in and the back-reflection signal |𝑅|2 in a small frequency range
around the CPA frequency with both being optimal, i.e., minimal, for an antenna
that extends 7 mm into the waveguide (whose height is 8 mm). Moreover, we find
that both under- and overcoupling corresponding to shorter and longer insertion
lengths, respectively, indeed diminish the resonant CPA minimum substantially.

To further illustrate the sensitivity of CPA, we also investigate the effect of
a slight amplitude or phase detuning of only one of the eight external antennas.
Figure 6.3(b) shows the corresponding results, in which the amplitude (left panel) or
the phase (right panel) of the antenna 2, 4 or 6 (the numbers correspond to the ones
in Fig. 6.2) is sightly detuned from the actual CPA state. There, we observe that the
CPA dip, i.e., the minimum of 𝐼out/𝐼in at approximately 7.1 GHz, gets considerably
shifted upwards by factors of up to approximately 103. This illustrates how strongly
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Figure 6.3: (a) Ratio of the outgoing to the incoming intensity 𝐼out/𝐼in (blue curve) of a
CPA state in the disorder configuration shown in Fig. 6.2 as a function of the frequency.
The red dashed curve is the back-reflection signal |𝑅|2 into the central antenna when
microwaves are injected there. Both curves show a pronounced minimum close to the
CPA frequency of 7.1 GHz. As shown in the two panels on the right, this minimum
sensitively depends on the insertion length of the central antenna into the waveguide.
Increasing the antenna length first deepens both dips until they reach a minimum at 7 mm.
Further increasing the loss by increasing the antenna’s length then results in an increase
of both 𝐼out/𝐼in and |𝑅|2 and thus to a reduced absorption efficiency. (b) Sensitivity of
the CPA minimum to a detuning of the amplitude 𝐴 (left panel) or the phase 𝜑 (right
panel) of only one of the input antennas (the antenna numbers correspond to the ones
in Fig. 6.2) from the actual CPA state that is characterized by 𝐴CPA and 𝜑CPA. Each
of these detunings leads to a significant deterioration of the absorption efficiency which
illustrates the sensitivity of the CPA effect.

the absorption is controlled interferometrically and highlights the importance of
precisely adjusting the amplitudes and phases of all degrees of freedom of the input
field in order to reach perfect absorption.

At the point of CPA, waves are exclusively propagating inwards which should be
reflected in the Poynting vector of the corresponding CPA state. Since the Poynting
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vector is experimentally not accessible, we perform numerical simulations using the
framework introduced in Section 2.1 and the scattering configuration shown in
Fig. 6.2. To model the central absorbing antenna in our two-dimensional numerical
simulations, we use a circular dielectric scatterer with a diameter of 𝑑 = 4 mm and
a complex refractive index whose real and imaginary part can be adjusted in order
to control the absorption and the coupling to the waveguide. To find the point
of CPA, we set the frequency to the experimentally obtained CPA frequency and
perform a gradient descent optimization to determine the real and imaginary part of
the absorbing antenna scatterer’s refractive index nant at which the absolute value
of the minimal 𝑆-matrix eigenvalue is very close to zero. Specifically, considering
the vector n⃗ant = (Re(nant), Im(nant))

𝑇 , we iterate

n⃗
(i+1)
ant = n⃗

(i)
ant − 𝛿s𝛻⃗Λmin(n⃗

(i)
ant) (6.6)

with an adaptive step size 𝛿s until we find a pair of Re(nant) and Im(nant) for which
the absolute value of the minimal 𝑆-matrix eigenvalue Λmin is smaller than 10−10.
For the scattering configuration in Fig. 6.2, the resulting refractive index of the
absorbing scatterer is nant = 3.086 + 1.051i.

To check whether the eigenstate corresponding to the obtained minimal 𝑆-matrix
eigenvalue is indeed a CPA state, we perform simulations of the time-reversed
scenario (in the absence of global absorption): Similar to the injection through the
central antenna, we place an emitting point source inside the corresponding antenna
scatterer which serves as a good approximation since the latter is small. A point
source corresponds to 𝑓 ∝ 𝛿(r⃗− r⃗ps) with r⃗ps being the point source position which
we implement as an evaluation of the test function in the first term on the right-hand
side of Eq. (2.18) at a single mesh point that is added in the center of the absorbing
scatterer19. Using such a point source and turning the absorbing scatterer’s loss
into the corresponding amount of gain, we find an intensity correlation between the
CPA state and its time-reverse that is unity up to 10−14.

To verify that the numerically found CPA state coincides with the experimentally
obtained one, we measure the electric field on a 5×5 mm grid around the central ab-
sorbing antenna and compute the correlation of the corresponding intensity profile
with the numerically obtained one. For a meaningful comparison, we also map the
numerically obtained wave field with high resolution to the same coarse 5× 5 mm
grid as in the experiment. Furthermore, since the field cannot be measured in the
close vicinity of the central antenna or at the positions of the Teflon scatterers, we
exclude these points from the data set. The resulting experimental and pixelated
numerical spatial intensity distributions are shown in Fig. 6.4(a), where we see a
striking similarity that can be quantified by a correlation of 95.63%.

19 Alternatively, one can also choose 𝑓 to be either a constant or Gaussian function with a very
small but finite extent whose spatial integral evaluates to one.



Chapter 6 Random anti-lasing through coherent perfect absorption 103

Figure 6.4: Comparison of the numerically obtained (left panels) and experimentally
measured (right panels) intensity distributions of the CPA state in the configuration with
(a) 60 small scatterers (with radius r = 2.55 mm) and (b) 60 mixed scatterers (with
radii r = 2.55 mm and 11 mm). For a meaningful comparison, the numerical solution
defined on a very fine mesh was read out on the coarse measurement grid, where each
pixel corresponds to an area of 5 × 5 mm. The experimentally inaccessible areas in the
close vicinity of the central absorbing antenna and at the scatterer positions are colored
black. The numerical simulations have been performed in absence of global absorption
resulting in intensity correlation values of 95.63% and 83.42% in the configuration with
60 small and 60 mixed scatterers, respectively.

Next, we demonstrate that this high degree of similarity cannot be attributed to
the rather weak scattering strength of the configuration in Fig. 6.2 which can be
characterized by a scattering and transport mean free path of ℓs ≈ ℓ* ≈ 1.3 m ≈
2.17𝐿. To increase the scattering strength, we use a mixture of 28 small and 32 large
Teflon scatterers with radii of r = 2.55 mm and r = 11 mm, respectively, which
are again randomly distributed in the scattering region. Since the diameter of the
larger scatterers is much closer to the operating wavelength 𝜆 ≈ 43 mm, both the
scattering and the transport mean free path are now strongly reduced. Specifically,
they are given by ℓs ≈ 0.08 m ≈ 0.13𝐿 and ℓ* ≈ 0.2 m ≈ 0.33𝐿 which are now
both substantially smaller than the length of the scattering region 𝐿. For this
strongly scattering configuration, the experimentally determined CPA frequency is
6.9 GHz at which 𝐼out/𝐼in = 2.1×10−3. Applying the gradient-based optimization in
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the numerical simulations at the experimentally found CPA frequency then results
in nant = 3.336 + 1.244i. The resulting numerically obtained spatial intensity
distribution of the corresponding CPA state in this configuration is now compared
to the experimentally measured one in Fig. 6.4(b), where their high correlation of
83.42% is again clearly visible.

In both scattering configurations, we observe a slight deviation from perfect cor-
relation which can be attributed to uncertainties of about 1 mm in the experimental
scatterer placement. Since strongly scattering configurations are more sensitive to
such deviations, this also explains the slightly lower correlation in the configuration
with the mixed scatterers compared to the configuration with only small scatterers.
Another aspect we neglected in our numerical simulations is global absorption in
the waveguide as it can typically be considered weak. However, when taking global
absorption based on the material parameters of our aluminum waveguide into ac-
count (following [178]), we find that the intensity correlation values of the CPA
states in the two considered configurations remain unchanged on the percent level.
This rather weak effect of global absorption can be attributed to the loss incurred
at the central antenna which is much more dominant than the weak dissipation in
the waveguide. However, in strongly scattering configurations featuring long dwell
times, this weak effect can also give rise to CPA caused by global absorption (see
supplementary material of [60]). Specifically, the correlation values in the presence
of global absorption are 95.57% and 83.44% in the configuration with 60 small and
60 mixed scatterers, respectively.

This remarkable degree of agreement enables us to investigate the full wave func-
tions as well as the flux patterns of the numerically obtained CPA states which are
shown in Fig. 6.5 for both scattering configurations. The intensity distribution of
the CPA state in the configuration with 60 small scatterers (left panel) shows small
interference maxima due to the weak scattering and a very narrow and pronounced
peak exactly at the position of the absorbing scatterer (marked by the white arrow).
This indicates that the local dwell time inside the absorbing scatterer is very large
in order to cause perfect absorption. The spatial distribution of the time-averaged
Poynting vector (see Appendix E) then clearly shows, that the flux is fully directed
towards the absorbing scatterer (filled white circle), i.e., no flux leaves this scat-
terer due to the perfect absorption. Similarly, the CPA state’s spatial intensity
distribution in the configuration with 60 mixed scatterers (right panel) also shows
interference maxima that are much more pronounced due to the stronger scattering
caused by the larger obstacles. However, also in this case we observe a very narrow
and pronounced peak at the position of the absorbing scatterer as a result of the
long local dwell time as well as a Poynting flux that is fully directed towards the
absorber.

An experimental signature of such a Poynting flux behavior is the transmission
into the central absorbing antenna which should be maximal at the CPA frequency.
As shown in Fig. 6.6, we indeed observe this behavior for both the weak and the



Chapter 6 Random anti-lasing through coherent perfect absorption 105

Figure 6.5: Spatial Poynting vector and intensity distributions of the numerically ob-
tained CPA states in a weakly scattering configuration with 60 small scatterers (left panel)
and a more strongly scattering configuration with 60 mixed scatterers (right panel) in the
absence of global absorption. A white (red) vector color corresponds to a high (low)
magnitude of the Poynting vector, and red (blue) colors in the intensity distributions cor-
respond to high (low) intensity values. The vertical white arrow marks the position of the
central absorbing antenna implemented as an absorbing scatterer in these two-dimensional
simulations. The latter is depicted by a filled white circle and the semi-transparent circles
represent the scatterers of the surrounding disorder. The insets show the Poynting vector
distribution around the absorbing scatterer, where the color scale is adjusted to the local
Poynting vector magnitude in this region. In both configurations, a pronounced peak
can be seen in the spatial intensity distribution at the position of the absorbing scatterer
indicating a locally enhanced dwell time. The corresponding Poynting flux is directed
exclusively to this scatterer which is a result of the perfect absorption that prohibits any
flux from leaving the absorber.

strong scattering configuration. Removing all the surrounding scatterers then dras-
tically reduces the transmission into this antenna since CPA states are customized
for specific scatterer configurations.

Last, we want to emphasize that the intensity peaks of the CPA states at the
position of the absorbing scatterer (marked by the white arrow in the top panels
of Fig. 6.7) are not diffraction-limited spots, but rather have sub-wavelength di-
mensions. This behavior can be explained in terms of Green’s functions [179]: The
radiation of a point source is described by the causal (retarded) Green’s function
that describes an outgoing diverging wave. On the other hand, there also exists
the anti-causal (advanced) Green’s function which describes an incoming converg-
ing wave. In contrast to a diverging wave, a converging wave is never observed
alone since it cannot stop propagating at its focal point in free space, but continues
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Figure 6.6: Measured transmission of the CPA states into the central absorbing antenna
as a function of the frequency for the configuration with (a) 60 small scatterers and (b) 60
mixed scatterers. In both configurations, the normalized transmission into the central an-
tenna |𝑇norm|2 reaches its maximum at exactly the CPA frequency 𝜈CPA, i.e., the frequency
at which the ratio of outgoing to incoming intensity 𝐼out/𝐼in reaches its minimum. As a
reference, we also plot the transmission of the same CPA state into the central antenna
|𝑇 0

norm|2 when all scatterers that form the surrounding disorder are removed (using the
same normalization). In this case, the transmission into the central antenna is drastically
reduced since CPA states are tailored to specific disorder configurations.

propagation as a diverging wave. The superposition of these two waves then results
in a focal spot which is diffraction-limited. As shown in Ref. [179], this limitation
can be overcome by eliminating the outgoing wave, which can be achieved by fully
time-reversing the point source scenario. More precisely, turning the outgoing di-
verging wave into an incoming converging wave and replacing the point source with
a point sink leads to perfect absorption of the incoming wave at the sink, resulting
in a focal spot with sub-wavelength dimensions.

Coming back to CPA, the absorbing scatterer corresponds to the point sink
in the above described scenario which fully dissipates the wave. Thus, despite
the presence of a complex scattering environment, CPA eliminates all outgoing
waves, resulting in an intensity peak at the absorber position with sub-wavelength
dimensions. Removing the absorbing scatterer again introduces an outgoing wave
at its original position, whose superposition with the incoming wave should result in
a diffraction-limited focal spot which is exactly what we observe in Fig. 6.7 (bottom
panels).
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Figure 6.7: Spatial intensity distributions of the CPA states in the configuration with (a)
60 small and (b) 60 mixed scatterers in presence (top panels) and absence (bottom panels)
of the absorbing scatterer (all other parameters and the color scale stay unchanged). The
scatterers are indicated as white circles and the absorbing scatterer is marked by a white
arrow. The presence of the absorbing scatterer causes perfect absorption resulting in an
intensity peak with sub-wavelength dimensions, while its removal changes the latter to a
diffraction-limited focal spot. Moreover, removing the absorbing scatterer also causes con-
siderably higher and differently distributed intensity maxima in the waveguide, stemming
from additional interference contributions of the waves that are no longer absorbed.

6.2 Conclusion

We present the first experimental realization of a random anti-laser, which provides
a proof of principle that CPA can be realized in arbitrarily composed systems such
as disordered media. Our approach only relies on the multi-modal scattering matrix
and does not require information about the inner local structure of the medium.
Moreover, it does not rely on sources like guide-stars [26] inside the medium which
are typically used for focusing inside disordered structures. In this context we em-
phasize that the effect of CPA is highly relevant for focusing electromagnetic signals
[8] or sound fields [3] in complex environments like an office space or biological tis-
sue. Furthermore, its high sensitivity with respect to the field’s degrees of freedom
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can be exploited for creating tunable absorbers that can in turn be used as opti-
cal switches. Beyond that, CPA can also be used for filtering specific frequencies
or modes. On the other hand, a broad bandwidth might be desirable, e.g., for
telecommunications-related applications and thus the search for broadband CPAs
will also be subject of future research [161, 180]. Another interesting observation
is the very narrow peak in the CPA state’s intensity distribution at the position
of the absorber which has sub-wavelength dimensions making the effect of CPA
also highly relevant for sub-wavelength focusing [174, 181]. Instead of tuning the
frequency and absorption strength, one can also consider the opposite scenario of
keeping these quantities fixed and optimizing the medium which then makes it pos-
sible to create CPA on demand [162, 182]. However, real-world applications might
not allow for tweaking a system’s scattering properties and thus another interesting
extension of this work could investigate the related effect of coherent virtual ab-
sorption [183–185] in multi-mode disordered systems. Thereby, the full suppression
of outgoing fields is achieved by injecting an exponentially growing wave in time
whose growth is determined by the imaginary part of an 𝑆-matrix zero in the ab-
sence of material loss making it possible to store the energy of the incoming waves
for arbitrary amounts of time. Thus, the effect of CPA opens up many new excit-
ing possibilities which will serve as a bridge between the communities of wavefront
shaping and non-Hermitian physics.



Summary and outlook
As we show in this thesis, the detrimental effects caused by the presence of disorder
can be overcome by means of wavefront shaping. Exploiting the information stored
in the experimentally accessible scattering matrix, we extend the concept of Wigner-
Smith time-delay and introduce novel classes of wave states that perform at an
optimal level.

In order to test these newly introduced concepts, we develop a flexible numerical
tool in the first part of this thesis, which allows us to obtain full-wave solutions
in waveguide-like geometries using the finite element method. Based on the very
general framework for solving partial differential equations provided by the open-
source software package NGSolve, we first develop the solution strategy for the
scalar Helmholtz equation in two dimensions which we then extend to the full-
vectorial three-dimensional case, where we solve the vector Helmholtz equation in
order to capture all the physics contained in Maxwell’s equations. The obtained
solutions are then used to calculate the scattering matrices of the considered sys-
tems.

The first concept we introduce is based on the Wigner-Smith time-delay operator
which we generalize to a whole new class of operators by replacing the frequency
derivative with a derivative with respect to an arbitrary parameter. By choosing
different parameters, we demonstrate analytically, numerically and experimentally
in a microwave setup that the corresponding eigenstates transfer a well-defined
amount of angular, radial or linear momentum to a target enabling the optimal
control of the applied torque, pressure or force. Moreover, it also enables the
creation of wave states that store a well-defined amount of intensity inside a target
which opens up the possibility to optimally focus inside of it. Our approach is
independent of the target size and shape and even works if the target is embedded
in a strongly scattering medium. Furthermore, it is based on a simple eigenvalue
problem that only depends on the asymptotic information stored in the scattering
matrix which makes it very attractive for real-world applications. In particular,
we are confident that the presented concept will be useful in the field of optical
micromanipulation, where arbitrary target shapes and a surrounding disorder are
still major challenges. Moreover, its application to the cooling of a moving gas
of particles, its close connection to the Fisher information as well as its extension
to time-periodic systems make us confident that it will find many applications in
a wide variety of research areas with one of the ultimate goals being the optimal
spatio-temporal manipulation of targets in fully time-dependent systems.
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The second novel class of waves we introduce in this thesis are special states
of light that propagate through a scattering medium in a similar way as they
propagate through a homogeneous medium yielding the same output pattern up to
a global amplitude and phase. These scattering invariant modes can be obtained
via a generalized eigenvalue problem that is closely related to the above-introduced
generalization of the Wigner-Smith concept. We investigate their defining feature
of the similarity of the output patters after propagation through air or through a
dense scattering layer of zinc oxide particles experimentally in an optical setup and
verify the obtained results numerically. Furthermore, we also show numerically as
well as experimentally that these modes preferentially propagate through scatter-
free areas in sparse scattering samples, just like ballistic light would do. Therefore,
these special states of light embody the defining feature of ballistic light which can
be used to improve scanning fluorescence imaging, as we show. Scattering invariant
modes have already been extended to transmission matrices covering different input
and output angles (rather than different materials) enabling the design of desired
memories for imaging applications which – together with the presented results –
makes us belief that this concept has great potential for further improving current
optical and ultrasound imaging techniques. Beyond that, future applications could
also exploit their property of avoiding scatterers to overcome imperfections, e.g., in
optical elements.

Revisiting the concept of time-delay, we also investigate the mean time that waves
dwell inside scattering media in the ballistic, diffusive and localized regime of dis-
order scattering. Although there exist system-specific optimal states with largest
and smallest time-delays, the mean time-delay of waves is counter-intuitively in-
variant with respect to the scattering properties of a system and solely depends
on its geometry which is a result of its intimate relation to the density of states.
We show numerically as well as experimentally, that this invariance property holds
in all transport regimes of disorder scattering and even applies to periodic struc-
tures that feature transmission band gaps. Moreover, we investigate the effect of
absorption on the mean time-delay and find that strong absorption causes a con-
vergence towards the most direct paths in transmission and reflection. Our results
provide a comprehensive bound on the mean path length in scattering media and
are thus deeply linked to the Yablonovitch limit making it relevant for the design of
structures that enhance light-matter interaction or the efficiency of light harvest-
ing complexes. Since absorption is essential for the mentioned applications and is
furthermore intimately related to the dwell time, we also envision an extension of
the presented results to the invariance of the mean absorption in scattering media.

In the last part of this thesis, we remain in the realm of non-Hermitian physics
and search for special wave states that are perfectly absorbed at a localized loss
element inside a disordered material. Utilizing the phenomenon of coherent perfect
absorption, we show numerically as well as experimentally in a microwave setup
that precisely adjusting the absorption strength, the frequency as well as the shape
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of the incident wavefront can lead to perfect dissipation as a result of the inter-
play between absorption and interference. As the other concepts introduced in this
thesis, this approach also relies solely on the experimentally accessible scattering
matrix without the need of information about the inner structure of the medium.
In terms of applications, coherent perfect absorption is highly relevant for focus-
ing electromagnetic signals or sound fields in complex environments like an office
space or biological tissue. Furthermore, the observed sub-wavelength dimension of
the wave’s intensity peak at the absorber position makes this effect also interesting
for the field of sub-wavelength focusing. The already existing extensions of these
results for achieving perfect absorption on demand by optimizing the medium are
very promising for real-world applications in which the absorption strength might
not be tunable. Moreover, a generalization of the related effect of coherent virtual
absorption to two-dimensional disordered media would also be highly beneficial
as this would fully eliminate the need of tunable absorption or system parame-
ters. Last, since light in real-world applications might not be monochromatic, the
extension to broadband coherent perfect absorbers is also highly desirable.

We hope that the results presented in this thesis set the stage for exciting new
developments in the rapidly evolving field of wavefront shaping. Since the scattering
matrix fully characterizes a scattering process, we believe that the information
stored therein has considerable potential for future innovations that expand the
range of novel and optimal classes of wave states which can be used to overcome or
even benefit from the effects of complex environments.
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A Derivation of wave equations

In the following, we derive the equations describing stationary, time-harmonic, elec-
tromagnetic scattering problems in linear, isotropic and inhomogeneous media. We
start from the macroscopic Maxwell equations (in SI units)

𝛻⃗ · 𝐷⃗(r⃗, t) = 𝜌𝑓 (r⃗, t) , (A.1)

𝛻⃗ · 𝐵⃗(r⃗, t) = 0 , (A.2)

𝛻⃗ × 𝐸⃗(r⃗, t) = −∂𝐵⃗(r⃗, t)

∂t
, (A.3)

𝛻⃗ × 𝐻⃗(r⃗, t) = j⃗𝑓 (r⃗, t) +
∂𝐷⃗(r⃗, t)

∂t
, (A.4)

in which 𝐷⃗ is the displacement field (or electric flux density), 𝐸⃗ is the electric
field strength, 𝐵⃗ is the magnetic flux density and 𝐻⃗ is the magnetic field strength.
Moreover, 𝜌𝑓 and j⃗𝑓 are the free charge and free current density, respectively, and
we assume a source-free medium in the following, i.e., 𝜌𝑓 = 0 and j⃗𝑓 = 0. Equa-
tions (A.1)-(A.4) further give rise to the following interface conditions between two
media:

n⃗ · (𝐷⃗2 − 𝐷⃗1) = 𝜌s , (A.5)

n⃗ · (𝐵⃗2 − 𝐵⃗1) = 0 , (A.6)

n⃗× (𝐸⃗2 − 𝐸⃗1) = 0⃗ , (A.7)

n⃗× (𝐻⃗2 − 𝐻⃗1) = j⃗s , (A.8)

where n⃗ is the outward normal vector of medium 1 pointing into medium 2 and 𝜌s
and j⃗s are the surface charge and surface flux density, respectively. Equations (A.6)
and (A.7) imply the continuity of the normal component of 𝐵⃗ and the tangential
component of 𝐸⃗, whereas Eqs. (A.5) and (A.8) imply that the normal component
of 𝐷⃗ and the tangential component of 𝐻⃗ can be discontinuous.
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The so-called constitutive relations connect the 𝐷⃗- with the 𝐸⃗-field and the 𝐵⃗-
with the 𝐻⃗-field. For a linear medium, they are given by

𝐷⃗(r⃗, t) = 𝜀0𝜀r(r⃗, t)𝐸⃗(r⃗, t) , (A.9)

𝐵⃗(r⃗, t) = 𝜇0𝜇r(r⃗, t)𝐻⃗(r⃗, t) , (A.10)

Here, 𝜀0 and 𝜇0 are the (scalar) vacuum permittivity and permeability, respectively,
whereas 𝜀r and 𝜇r are the relative permittivity and permeability tensors. Since we
only consider static and non-magnetic materials, 𝜀r(r⃗, t) = 𝜀r(r⃗ ) and 𝜇r(r⃗, t) =
𝜇r(r⃗ ) = 1. Depending on the permittivity tensor, one can now classify materials
as follows: Materials with a permittivity tensor proportional to the unit matrix
are called isotropic, whereas media with a diagonal permittivity tensor with two
(three) different diagonal elements are called uniaxial (biaxial). A structure without
any symmetry does not feature a special permittivity tensor and is thus called
anisotropic. In the following, we only consider isotropic materials, for which the
permittivity tensor can simply be replaced by a spatially-dependent scalar, i.e.,
𝜀r(r⃗ ) → 𝜀r(r⃗ ). Last, we also consider non-dispersive materials for which 𝜀r(r⃗ ) is
independent of the frequency 𝜔.

We now apply the curl-operation to Eq. (A.3), use 𝐵⃗(r⃗, t) = 𝜇0𝐻⃗(r⃗, t) and insert
Eq. (A.4) to arrive at the vector wave equation

𝛻⃗ × 𝛻⃗ × 𝐸⃗(r⃗, t) +
n2(r⃗ )

𝑐2
∂2𝐸⃗(r⃗, t)

∂t2
= −𝜇0

∂j⃗i(r⃗, t)

∂t
, (A.11)

where we introduced an impressed current density j⃗i(r⃗, t) on the right-hand side of
Eq. (A.4) that serves as a source. Furthermore, 𝑐 = 1/

√
𝜀0𝜇0 is the speed of light

and n(r⃗ ) =
√︀

𝜀r(r⃗ )𝜇r(r⃗ ) is the spatially-dependent refractive index distribution
with 𝜇r(r⃗ ) = 1. Next, we assume a time-harmonic field and current density, i.e.,
𝐸⃗(r⃗, t) = 𝐸⃗(r⃗ )𝑒−i𝜔t and j⃗i(r⃗, t) = j⃗i(r⃗ )𝑒

−i𝜔t at a frequency 𝜔 = k𝑐, yielding the
vector Helmholtz equation

𝛻⃗ × 𝛻⃗ × 𝐸⃗(r⃗ )− n2(r⃗ )k2𝐸⃗(r⃗ ) = 𝑓(r⃗ ) (A.12)

with 𝑓(r⃗ ) = i𝜔𝜇0j⃗i(r⃗ ) whose numerical solution with the FEM is outlined in
Section 2.2. To further simplify this equation, we make use of the identity 𝛻⃗×𝛻⃗×
𝑉⃗ = 𝛻⃗(𝛻⃗ · 𝑉⃗ )− 𝛻⃗ · (𝛻⃗𝑉⃗ ) and get

Δ𝐸⃗(r⃗ )− 𝛻⃗
[︁
𝛻⃗ · 𝐸⃗(r⃗ )

]︁
+ n2(r⃗ )k2𝐸⃗(r⃗ ) = −𝑓(r⃗ ) , (A.13)

where Δ is the Laplace operator in three dimensions. Using 𝐷⃗(r⃗ ) = 𝜀0𝜀r(r⃗ )𝐸⃗(r⃗ ),
we can rewrite Eq. (A.1) as

𝛻⃗ · 𝐸⃗(r⃗ ) = − 1

𝜀(r⃗ )
𝛻⃗𝜀(r⃗ ) · 𝐸⃗(r⃗ )

= −𝛻⃗ ln[𝜀(r⃗ )] · 𝐸⃗(r⃗ ) .

(A.14)
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Inserting this into Eq. (A.13) results in

Δ𝐸⃗(r⃗ ) + 𝛻⃗
{︁
𝛻⃗ ln[𝜀(r⃗ )] · 𝐸⃗(r⃗ )

}︁
+ n2(r⃗ )k2𝐸⃗(r⃗ ) = −𝑓(r⃗ ) . (A.15)

Next, we consider an electric field which is polarized in the z-direction, i.e., 𝐸⃗(r⃗ ) =
(0, 0, 𝜓(r⃗ ))𝑇 . As outlined in Section 1.3, this assumption is valid in waveguides
whose height is very low, since in this case only TEm0 modes can propagate whose
electric field is only non-vanishing in the z-polarization. Last, assuming an effective
2D medium for which 𝜀(r⃗ ) = 𝜀(x, y) yields a permittivity gradient that lies in the
xy-plane. Thus, 𝛻⃗ ln[𝜀(r⃗ )] · 𝐸⃗(r⃗ ) = 0 results in the scalar Helmholtz equation[︀

Δ+ n2(r⃗ )k2
]︀
𝜓(r⃗ ) = −𝑓(r⃗ ) (A.16)

for the z-component of the electric field 𝜓(r⃗ ) ≡ 𝐸z(r⃗ ) and the source 𝑓(r⃗ ) ≡ 𝑓z(r⃗ )
(the numerical solution of this equation with the FEM is described in Section 2.1).

B Relation between line source and excitation
amplitudes

To derive the relation between the line source amplitudes and the amplitudes of
the actual excitation inside the waveguide, we start by defining the wave function
of the excitation 𝜓(r⃗ ) as a superposition of flux-normalized modes on the left and
right side of the input line

𝜓𝐿(r⃗ ) =
𝑁m∑︁
n

𝑎n√︀
kx,n

𝜒n(y) 𝑒
−ikx,nx , (B.1)

𝜓𝑅(r⃗ ) =
𝑁m∑︁
n

𝑏n√︀
kx,n

𝜒n(y) 𝑒
+ikx,nx , (B.2)

respectively. Demanding the continuity of the wave function at the input line which
we choose to be at x = 0, i.e., 𝜓𝐿(0) = 𝜓𝑅(0), then yields

𝑁m∑︁
n

𝑎n√︀
kx,n

𝜒n =
𝑁m∑︁
n

𝑏n√︀
kx,n

𝜒n . (B.3)

Multiplying with 𝜒*
k, integrating over y and using the orthonormality of our trans-

verse basis functions ∫︁
𝑑y 𝜒*

k𝜒n = 𝛿kn (B.4)

then yields the equality of the amplitudes of the left- and right-traveling waves, i.e.,

𝑎n = 𝑏n . (B.5)
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To relate these amplitudes with the amplitudes of a line source at x = 0, we use the
scalar Helmholtz equation with a source term that consists of a similar superposition
of waveguide modes as in Eq. (B.2), but with different amplitudes 𝑐n, i.e.,

(Δ + n2k2)𝜓 = −
(︃

𝑁m∑︁
n

𝑐n√︀
kx,n

𝜒n

)︃
𝛿(x) . (B.6)

Integrating over a small distance ±𝜀 in x then gives∫︁ 𝜀

−𝜀

∂2𝜓

∂x2
𝑑x+

∫︁ 𝜀

−𝜀

∂2𝜓

∂y2
+ n2k2𝜓 𝑑x = −

𝑁m∑︁
n

𝑐n√︀
kx,n

𝜒n . (B.7)

Next, taking the limit 𝜀 → 0 makes the second integral on the left-hand side of
Eq. (B.7) vanish (due to the continuity of the integrand) leaving us with

∂𝜓𝑅

∂x

⃒⃒⃒⃒
x=0

− ∂𝜓𝐿

∂x

⃒⃒⃒⃒
x=0

= −
𝑁m∑︁
n

𝑐n√︀
kx,n

𝜒n . (B.8)

Inserting the spatial derivatives of Eqs. (B.1) and (B.2) together with Eq. (B.5)
gives

𝑁m∑︁
n

2ikx,n
𝑎n√︀
kx,n

𝜒n = −
𝑁m∑︁
n

𝑐n√︀
kx,n

𝜒n . (B.9)

Multiplying with 𝜒*
k, integrating over y and applying Eq. (B.4) finally results in the

relation between the line source amplitudes 𝑐n and the excitation amplitudes 𝑎n:

𝑐n = −2ikx,n𝑎n . (B.10)

This relation also holds in the three-dimensional case in which the above derivation
has to be carried out with the full-vectorial modes.

C Generalized Wigner-Smith operator for
non-regular matrices

The construction of the generalized Wigner-Smith operators q
(𝑆)
𝜃 = −i𝑆−1𝑑𝑆/𝑑𝜃,

q
(t)
𝜃 = −it−1𝑑t/𝑑𝜃 and q

(r)
𝜃 = −ir−1𝑑r/𝑑𝜃 involves the inversion of the scattering,

transmission and reflection matrix, respectively. However, the latter might be sin-
gular as a result of strong absorption inside the system or due losses caused by scat-
tering into channels that are not considered in the scattering matrix (e.g., scattering
into steep angles that cannot be measured). In this case, zero-eigenvalues make the
corresponding matrix non-invertible, whereas an ordinary inverse also does not exist
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if the matrices themselves are of rectangular shape. However, these problems can
be solved by projecting, e.g., the transmission matrix onto the subspace of highly
transmitting eigenstates which in turn allows the calculation of its so-called pseudo-
inverse. To set up the necessary projection operators, we use the singular value
decomposition of the transmission matrix t = 𝑈Σ𝑉 † in which 𝑈 = (u⃗1, u⃗2, . . . , u⃗𝑁)
and 𝑉 = (v⃗1, v⃗2, . . . , v⃗𝑁) are unitary matrices which contain column-wise the left
and right singular vectors of t, respectively, and Σ = diag({𝜎n}) is a diagonal ma-
trix that contains the real and non-negative singular values 𝜎n. If t is a 𝑀 × 𝑁
matrix, the matrices 𝑈 and 𝑉 have dimensions 𝑀 ×𝑀 and 𝑁 × 𝑁 , respectively,
whereas Σ is a rectangular 𝑀 ×𝑁 matrix. The left singular vectors of t (contained
in 𝑈) correspond to the orthogonal eigenvectors of tt†, the right singular vectors
(contained in 𝑉 ) are the orthogonal eigenvectors of t†t and the singular values 𝜎n

are the square-roots of the common eigenvalues of tt† and t†t. In case of a sin-
gular or rectangular transmission matrix, we proceed with transforming t into the
non-singular eigenspace via ̃︀𝑈 †t̃︀𝑉 = ̃︀Σ. Here, ̃︀𝑈 and ̃︀𝑉 correspond to the matrices
𝑈 and 𝑉 in which singular vectors, i.e., columns, corresponding to singular values
smaller than a chosen threshold 𝜎thr are discarded, and ̃︀Σ is the diagonal matrix in
which the corresponding singular values have been removed. For the threshold, we
typically use 𝜎thr = 10−10. This projection then allows a regular inversion of the
matrix ̃︀Σ, where a subsequent back-transformation into the original vector space
yields the following expression for the pseudo-inverse

̃︀t−1 = ̃︀𝑉 ̃︀Σ−1 ̃︀𝑈 †

= ̃︀𝑉 (̃︀𝑈 †t̃︀𝑉 )−1 ̃︀𝑈 † .
(C.1)

Projecting also the derivative of the transmission matrix onto the non-singular
subspace using the projection operators 𝑃̃︀𝑈 = ̃︀𝑈 ̃︀𝑈 † and 𝑃̃︀𝑉 = ̃︀𝑉 ̃︀𝑉 † yields the
following expression for the projected generalized Wigner-Smith operator:

q
(t)
𝜃 = ̃︀𝑉 (̃︀𝑈 †t̃︀𝑉 )−1 ̃︀𝑈 † ̃︀𝑈 ̃︀𝑈 † 𝑑t

𝑑𝜃
̃︀𝑉 ̃︀𝑉 † . (C.2)

Note that exactly the same procedure can also be applied to q
(𝑆)
𝜃 and q

(r)
𝜃 . Denoting

𝑁s the number of singular values below the threshold, the eigenvalues of the oper-
ator in Eq. (C.2) contain 𝑁s zero eigenvalues which have to be discarded together
with the corresponding eigenvectors since they are non-physical remnants of the
projection procedure. Note that in case of a non-singular matrix, the subspace is
equal to the whole eigenspace of the considered matrix, i.e., ̃︀𝑈 = 𝑈 and ̃︀𝑉 = 𝑉 ,
in which case Eq. (C.2) reduces to the original expression q

(t)
𝜃 = −it−1𝑑t/𝑑𝜃 of the

GWS operator since the projection operators become 𝑃̃︀𝑈 = 1 and 𝑃̃︀𝑉 = 1. How-
ever, if singular vectors are discarded, 𝑃̃︀𝑈 = ̃︀𝑈 ̃︀𝑈 † ̸= 1 and 𝑃̃︀𝑉 = ̃︀𝑉 ̃︀𝑉 † ̸= 1, but̃︀𝑈 † ̃︀𝑈 = 1 and ̃︀𝑉 †̃︀𝑉 = 1 still holds.
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D Determination of mean free paths

The scattering properties of a disordered system can typically be characterized by
two length scales: the transport mean free path ℓ* and the scattering mean free
path ℓs. The transport mean free path characterizes the macroscopic transport
properties and measures the length at which the direction of an incoming photon is
entirely randomized, whereas the scattering mean free path describes the average
distance between two scattering events on a microscopic level. These two length
scales are related via ℓ* = ℓs/(1− 𝑔), where 𝑔 = ⟨cosΘ⟩ is the so-called anisotropy
parameter that describes the average of the cosine of the scattering angle Θ [10].
In case of sub-wavelength obstacles, the isotropic scattering causes 𝑔 = 0 and thus
ℓ* = ℓs.

To determine the transport mean free path in the numerical simulations of our
disordered waveguide systems, we calculate the scattering matrices of many random
configurations with the same density and size distribution of scatterers. Next, we
randomly concatenate many of these scattering matrices until we reach the localized
regime in which the average transmission decays exponentially, i.e.,

⟨ln𝑇 ⟩ ≈ −𝐿

𝜉
, (D.1)

where 𝑇 = Tr(t†t)/𝑁 is the average transmission with t being the 𝑁 ×𝑁 transmis-
sion matrix for 𝑁 propagating modes and 𝜉 is the localization length. Therefore,
averaging the logarithm of 𝑇 for each length of concatenated scattering sections over
many random configurations and fitting ⟨ln𝑇 ⟩ to the linear decay −𝐿/𝜉 yields the
localization length 𝜉 which is in quasi-1D systems (like the waveguides considered
in this thesis) related to the transport mean free path via 𝜉 ≈ 𝑁ℓ* [10].

To estimate the scattering mean free path, we split the disordered waveguide into
shorter subsections with a proportionally smaller number of included scatterers. We
further choose these subsections such that waves still propagate ballistically in them
(transmission is still above 90%). We then quantify how much an incoming mode
is scattered into other modes by studying the decrease of the diagonal transmission
elements 𝑇nn = |tnn|2 which is linear in the ballistic regime, i.e.,

⟨𝑇nn⟩ ≈ 1− 𝐿

ℓs,n
, (D.2)

where we average over many random configurations. Extracting the mode-specific
scattering mean free paths ℓs,n and further averaging over all modes then yields the
average scattering mean free path ℓs = ⟨ℓs,n⟩.
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E Time-averaged Poynting vector
To determine the flux of a stationary state, we start with the general definition of
the Poynting vector

𝑆⃗(r⃗, t) = 𝐸⃗(r⃗, t)× 𝐻⃗(r⃗, t) . (E.1)

Employing the harmonic time-dependence of stationary solutions, i.e., 𝐸⃗(r⃗, t) =

𝐸⃗(r⃗ )𝑒−i𝜔t and 𝐻⃗(r⃗, t) = 𝐻⃗(r⃗ )𝑒−i𝜔t, and using the fact that only the real parts of
these solution describe the physical fields, the Poynting vector can be written as

𝑆⃗(r⃗, t) =Re
[︁
𝐸⃗(r⃗ )𝑒−i𝜔t

]︁
× Re

[︁
𝐻⃗(r⃗ )𝑒−i𝜔t

]︁
= 𝐸⃗r(r⃗ )× 𝐻⃗r(r⃗ ) cos

2(𝜔t) + 𝐸⃗r(r⃗ )× 𝐻⃗i(r⃗ ) cos(𝜔t) sin(𝜔t)

+ 𝐸⃗i(r⃗ )× 𝐻⃗i(r⃗ ) sin
2(𝜔t) + 𝐸⃗i(r⃗ )× 𝐻⃗r(r⃗ ) sin(𝜔t) cos(𝜔t) ,

(E.2)

where the subscripts r and i denote the real and imaginary part of the corresponding
fields, respectively. Averaging this expression over one period in time then yields

𝑆⃗(r⃗ ) =

∫︁ 2𝜋
𝜔

0

𝑆⃗(r⃗, t) 𝑑t

=
1

2

[︁
𝐸⃗r(r⃗ )× 𝐻⃗r(r⃗ ) + 𝐸⃗i(r⃗ )× 𝐻⃗i(r⃗ )

]︁
.

(E.3)

By adding specially constructed purely imaginary terms and taking only the real
part of the resulting expression, the time-averaged Poynting vector can be written
in terms of the total 𝐸⃗- and 𝐻⃗-field:

𝑆⃗ =
1

2
Re

(︁
𝐸⃗r × 𝐻⃗r + 𝐸⃗i × 𝐻⃗i + i𝐸⃗i × 𝐻⃗r − i𝐸⃗r × 𝐻⃗i

)︁
=

1

2
Re

[︁
(𝐸⃗r + i𝐸⃗i)× (𝐻⃗r − i𝐻⃗i)

]︁
=

1

2
Re

(︁
𝐸⃗ × 𝐻⃗*

)︁
.

(E.4)

Since all involved quantities in the above expression do not depend on time anymore,
we have also omitted the spatial dependence for readability. Equation (E.4) can now
be used to calculate the Poynting flux in the three-dimensional vectorial case. In
the two-dimensional scalar case, we can further simplify Eq. (E.4) by considering a
z-polarized electric field 𝐸⃗ = (0, 0, 𝜓)𝑇 . Using Maxwell’s equation (A.3) in the time-
harmonic case with 𝜇r = 1, we can calculate the corresponding 𝐻⃗-field resulting in
𝐻⃗ = 1

𝜔𝜇0
(−i∂y𝜓, i∂x𝜓, 0)

𝑇 . Inserting everything into Eq. (E.4) then finally yields

𝑆⃗ =
1

2𝜔𝜇0

Re
[︁
𝜓(−i𝛻⃗𝜓)*

]︁
=

1

2𝜔𝜇0

Re
[︁
𝜓*(−i𝛻⃗𝜓)

]︁
.

(E.5)
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