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Kurzfassung

Der Proton Synchrotron Booster (PSB) besteht aus vier übereinander gestapelten Ringen und ist der erste
Vorbeschleuniger des Large Hadron Collider (LHC), dem derzeit grössten Teilchenbeschleuniger der Welt. Ent-
lang des LHC befinden sich vier große Experimente wo Protonenstrahlen kollidieren. Um eine hohe Kollision-
srate zu haben, benötigt man Strahlen mit möglichst hoher Brillanz, was bedeutet, dass sich möglichst viele
Teilchen in einem möglichst kleinen Phasenraumvolumen befinden. Das Problem ist, dass die elektromagnetis-
che Wechselwirkung zwischen Protonen zu einer inkohärenten Verschiebung der Betatronschwingungszahl
("Tune") im Strahl führt. Diese Verschiebung ("Tune Shift") ist bei niedrigen Energien erhöht und da die In-
jektionsenergie im PSB bei 160MeV liegt, dominiert dieser Effekt im PSB und der Tune Shift ∆Qx,y = -0.6.
Um hohe Brillanz zu gewährleisten, muss der Tune des Strahls viel höher als der ganzzahlige Tune liegen. Bei
der Einspeisung der Protonen ist der eingestellte Tune in einem Bereich, welcher eine hohe Dichte an Reso-
nanzen aufweist. Durch den grossen Tune Shift werden dabei viele Resonanzen überlappt, was zu einemAnstieg
der Emittanz sowie Verlusten führt. Mit steigender Energie sinkt der durch Raumladungseffekte erzeugte Tune
Shift, weshalb während der Beschleunigung der Tune dann in eine resonanzfreie Zone verschoben wird, um den
Strahl dort zu extrahieren. Diese Resonanzen werden unter anderem durch Inhomogenitäten in Magnetfeldern,
Fehlausrichtungen von Magneten und Randfeldern getrieben. Die Abweichungen vom idealen Magneten sind
in jedem der vier Ringe des PSB unterschiedlich und müssen daher individuell kompensiert werden. Diese
Diplomarbeit behandelt die Identifikation und Kompensation der Resonanzen dritter und vierter Ordnung in
allen Ringen des PSB.

Der verwendete Ansatz basiert auf der Minimierung der Verluste, wenn eine Resonanz durchkreuzt wird.
Um individuelle Resonanzen zu durchkreuzen, wird ein Strahl mit hoher Emittanz und niedriger Intensität in
den PSB eingespeist. Dadurch ist der Tune Shift im Vergleich zu den hoch brillanten LHC Strahlen stark re-
duziert und der Strahl wird nur durch eine einzelne Resonanz beeinflusst. Die Verluste, wenn eine Resonanz
durchkreuzt wird, werden gemessen und mithilfe von geeigneten Korrektormagneten können diese Verluste
reduziert werden bzw. werden in der richtigen Einstellung keine Verluste mehr beobachtet. Dies ist genau
dann der Fall, wenn die gekreuzte Resonanz kompensiert wurde. Alle Resonanzen dritter und vierter Ordnung
können individuell vollständig kompensiert werden. Basierend auf der individuellen Resonanzkompensation
kann im weiteren Verlauf analytisch eine Konfiguration von Korrektormagneten gefunden werden, welche alle
Resonanzen global kompensiert. Da der PSB aus vier übereinander liegenden Ringen besteht und die Reso-
nanzen in jedem Ring unterschiedlich sind, variiert der Grad der Kompensation je nach Ring. Im Durchschnitt
konnten die Verluste durch Resonanzen auf weniger als 4% reduziert werden.
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Abstract

The CERN Proton Synchrotron Booster (PSB) is the first synchrotron in the Large Hadron Collider (LHC) injec-
tor chain and is composed of four superposed rings. High brightness beams, delivered by the PSB, are required
in order to have a high collision rate at the interaction points where the physics experiments are located. In com-
bination with the low injection energy of 160MeV, the PSB is operating in a space charge dominated regime.
Space charge causes the particles in the PSB to have a large tune spread with a maximum tune shift of up to
∆Qx,y = -0.6 and in order to optimize brightness, the transverse tunes are set to high values far from the
integer tune. At injection, the tune is in a resonance dominated zone where many resonances are overlapped
by the tune spread. Overlapping excited resonances causes an increase of emittance (blow-up) as well as losses
of high amplitude particles. As the space charge induced tune spread shrinks during acceleration, the tune is
moved to the extraction working point in a resonance free zone. In order to move the tune to the extraction
working point, high order resonances have to be crossed which causes further blow-up and losses. These reso-
nances are driven by magnet imperfections, which are different in each ring. This thesis aims at describing the
process of 3rd and 4th order resonance identification and compensation in the PSB.

The approach used in this study is based on loss minimization when crossing a resonance. In order to
cross individual resonances, low intensity beams were blown up at injection using the stripping foil. This
causes them to have a small tune spread which limits the interaction with other resonances. Then, the tune is
changed in a way that only one resonance is crossed and the losses during the crossing are measured. Using
suitable corrector magnets, which affect the crossed resonance, the induced losses can be altered and, in the
right configuration, completely negated. It was shown that all individual 3rd and 4th order resonances can be
fully compensated in all rings. Further, using a global resonance compensation scheme based on the individual
resonance compensation settings, it was possible to significantly reduce the beam losses when crossing all 3rd

and 4th order resonances. The degree of resonance compensation varies among the rings and on average the
remnant losses can be reduced to less than 4%.
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Chapter 1

Introduction

The current model in particle physics, the Standard Model, has been developed over the last 70 years and has
been a combined effort in theoretical and experimental physics. The experiments, allowing for the discovery
of some of the most important particles, are possible due to the construction of the Large Hadron Collider
(LHC)[1]. The LHC is the last element of the accelerator complex at CERN[2], which consists of four main
synchrotrons, whose goal is to accelerate protons or ions close to the speed of light. A synchrotron is a circular
machine in which charged particles can be kept on a stable orbit while being accelerated, allowing them to
carry more energy. After particles have been accelerated in the first three synchrotrons, they are injected into
the LHC in two counter-rotating beams on two different orbits. These can be deviated and brought together
using strong dipole magnets to collide at four interaction points. At collision, the energy they carry is released
and for a split second the temperature at the collision point is over 200,000 times hotter than the core of the
sun. This energy is freed to form particles, which can then be detected by the experiments situated around the
collision points. In order to have a high rate of collisions, the beams have to be very bright, carrying a lot of
energy in a very small space.

The Proton Synchrotron Booster (PSB) is the first synchrotron in the injector chain of the LHC, which is
currently the largest and most powerful proton synchrotron in the world. The PSB is composed of four super-
posed rings with a circumference of 157 m. H- ions from LINAC4[2] are injected into the PSB and the protons
are then separated from the H- ions through a stripping foil that strips electrons. The protons are injected into
the PSB at an energy of 160MeV and accelerated over 530 ms up to 2GeV. The high intensity beams are then
sent to the isotope facility ISOLDE[3] or are further accelerated in the LHC injection chain. In order to keep
the most particles throughout the LHC injection chain, resulting in high brightness beams in the LHC, beam
blow-up and losses have to avoided as much as possible.

At the relatively low injection energy, space-charge is a dominant electromagnetic interaction between par-
ticles in the beam which causes a strong, incoherent negative tune shift[4]. This causes particles to interact with
resonances, which are driven among other sources by magnet errors and misalignments in the magnet lattice[5,
6]. This interaction causes an increase in beam emittance and losses in intensity[6–9]. In order to maximize
beam brightness, the working point in tune space at injection is thus set far away from the integer tune. As the
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protons are accelerated, the tune shift due to space charge shrinks[10] and the tune is moved to a working point
in a resonance free zone in tune space, at which the beam will be extracted. During this tune change, many
resonance lines are crossed which causes an inevitable interaction of high amplitude particles with resonances.
In order to achieve high brightness beams for the LHC, it is necessary to minimize the interaction with excited
resonances by compensating them. Using different types of corrector magnets allows for the compensation
of individual resonances. The compensating corrector magnet configuration differs from ring to ring as the
magnet imperfections which drive the higher order resonances vary in each ring.

The resonance excitation can be characterized with a complex number called the resonance driving term
(RDT). The amplitude and phase of the resonance driving term of any set of corrector magnets in the ring can
be calculated analytically and, in combination with the experimentally acquired compensating corrector mag-
net configuration, one can represent how individual resonances are driven by certain magnets. All individual
resonances can be fully compensated but as the corrector magnets used in this study drive multiple resonances
simulaneously, the compensation of one resonance might enhance another. In order to compensate all reso-
nances simultaneously, a global resonance compensation configuration using more corrector magnets can then
be determined based on the individual resonance compensation settings. The scope of this thesis will be in-
dividual and global resonance compensation of the excited 3rd and 4th order resonances in all rings using the
available set of corrector magnets.
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Chapter 2

Theoretical Background

2.1 Transverse beam dynamics

The particles motion in the PSB (as well as in all other accelerators at CERN) is described by using a Frenet-
Serret Coordinate System, which is a right-handed coordinate system moving along the particles equilibrium
orbit shown in Figure 2.1. The particles position at any time can be described by the vector r⃗ . r⃗0 + xx̂ + yŷ.

Figure 2.1: Frenet-Serret Frame adapted from [10].

The coordinates x and y describe the particles position on the horizontal and vertical axes respectively. The co-
ordinate s is tangential to the circular trajectory and is used to describe the longitudinal position along the orbit.

The motion of protons in the particle accelerator is governed by the Lorentz force,

F⃗L . dp⃗

dt
. e√E⃗ + v⃗ - B⃗∂, (2.1)

where p⃗ is the particle’s momentum, e . 1.602-10-19 is the elementary charge[11], E⃗ is the electric field, v⃗ is
the particles velocity and B⃗ is the magnetic field[10]. The electric field can transfer energy to the particles and
accelerate them in the longitudinal direction, while the magnetic field is used to steer the beam, i.e. changing
it’s direction in the transverse plane. For the scope of this study pure transverse motion can be assumed, hence
the electric field will be zero in the following theoretical treatment of beam dynamics and resonances.

Dipole magnets bend the particles inwards and keep them on an ideal circular orbit, which is called the
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Figure 2.2: Schematic representation of a quadrupole magnet from [12].

design orbit. The ideal design orbit of a particle with momentum p⃗ and charge q is described by the beam
rigidity

B⃗ρ . p⃗

q
, (2.2)

which is a parameter of the synchrotron with the invariable bending radius ρ and the main dipole magnetic
field B⃗. Actual particle motion deviates from this design orbit and the coordinates √x, y∂ describe the transverse
deviation from the design orbit. In order to keep the particles trajectories close to the design orbit, focusing
quadrupole lenses are used. These quadrupoles generate a magnetic field that increases linearly with the dis-
tance to the magnet center,

B⃗ . g√xx̂ + yŷ∂, (2.3)

where g is the magnetic field gradient, and x and y are the horizontal and vertical planes respectively[10]. These
quadrupoles act as focusing lenses exerting stronger focusing on protons the further away they are from the
design orbit, effectively readjusting their trajectories towards the design orbit.

A transverse representation of a quadrupole magnet can be seen in Figure 2.2. The forces acting on a proton
with velocity v in both transverse planes can be calculated using the Lorentz equation 2.1 which yields:

F⃗ . evgŝ - √xx̂ + yŷ∂ . -evgyŷ + evgxx̂. (2.4)

This force shows that a horizontally focusing quadrupole is simultaneously a vertically defocusing quadrupole.
Alternating between focusing and defocusing quadrupoles allows for net focusing in both planes[10]. These
two types of quadrupoles along with dipoles constitute the so-called FODO cell which will be repeated period-
ically along the ring[13]. Further elements that are part of this cell are sextupoles, various corrector magnets,
and elements for beam instrumentation and monitoring. A schematic representation of a 1

2 -FODO cell can be
seen in Figure 2.3.

It is more convenient to normalize the quadrupole gradient g to the particles momentum p which increases
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Figure 2.3: Schematic representation from [14] of a 1
2 -FODO cell, made up of a focusing and defocusing

quadrupole along with sextupoles for chromaticity correction, a dipole corrector for orbit correction and a
beam position monitor.

during acceleration. Thus, the normalized quadrupole gradient k . g
p[q , that remains constant throughout the

cycle, will be used instead.

Assuming only small deviations from the design orbit and no momentum spread, the equations of motion
in the horizontal and vertical plane are[10]:

x,√s∂ +
(
k√s∂ + 1

ρ2

)
x√s∂ . 0, (2.5)

y,√s∂ - k√s∂y√s∂ . 0. (2.6)

The additional factor 1
ρ2

is necessary to account for the weak focusing effect of the dipole magnets which
bends particles. This factor is usually small in high energy accelerators. These differential equations are called
Hill’s equations and describe an oscillation in the transverse plane, which is called betatron oscillation. The
solution of Hill’s equation in each of the planes is of the following form:

x√s∂ . =
ϵ
]
β√s∂ x cos√Ψ√s∂ + ϕ∂ (2.7)

where the emittance ϵ and the phase ϕ are integration constants. The beta function βx,y√s∂ depends on the
arrangement of quadrupoles in the ring. The beta functions in both planes in a section of the PSB are represented
in Figure 2.4. The beta function defines the beam envelope which defines the maximum amplitude of a particle
and is used to describe the beam size.

As the quadrupoles in the ring do not change their position in the synchrotron, the beta function is periodic
with the synchrotron length L, i.e. β√s∂ . β√s + L∂. The phase advance after the distance s in the ring,

Ψ√s∂ .
, s

0

ds=

β√s=∂ , (2.8)

can be used to define the tune Q, which is the number of betatron oscillations normalized to 2π after a full
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Figure 2.4: Beta functions in a segment of the PSB in the horizontal and vertical planes.

revolution in the ring:

Q . 1

2π

,
ds=

β√s=∂ . (2.9)

In phase space, the particles trajectory is an ellipse which can be seen in Figure 2.5. The shape of this ellipse
is defined by two parameters, α . -β+,s∞

2 and γ . 1+α,s∞2

β,s∞ . These so-called Twiss parameters α, β, γ are used
to define the Courant-Snyder invariant:

ϵ . γ√s∂x√s∂2 + 2α√s∂x√s∂x=√s∂ + β√s∂x=√s∂2. (2.10)

The emittance is a conserved quantity and defines the area of the ellipse which is ϵπ. The betatron oscilla-
tions correspond to revolutions of the particles along the elliptic trajectory in phase space.

Figure 2.5: Trajectory of a single particle in phase space with the Twiss parameters defining the shape and the
orientation of the ellipse. Figure adapted from [10].

Particles in the beam have a momentum spread ∆p
p , and as particles with greater momentum will experience
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a stronger centrifugal force, they will be on a larger orbit larger than the design orbit. The relation between the
varied orbit length and the momentum spread is given by the dispersion function D√s∂. The solution of Hill’s
equations of motion 2.7 is only valid if there is no momentum spread and all particles are on the design orbit.
In order to take dispersion into account, the solution has to be modified as follows[10]:

x√s∂ . xβ√s∂ + D√s∂ x ∆p

p
, (2.11)

where xβ is equation 2.7.

In addition to the altered orbit radius, momentum spread will also cause a tune spread∆Q of the particles as
particles with different momentum will be focused differently. Particles with higher momentum will be focused
less than particles with lower momentum as can be seen in Figure 2.6 on the left. This in turn will affect the
phase advance Ψ for particles with different momentum, resulting in a tune spread in the beam. The relation
between the momentum spread and the tune spread is given by

∆Qx,y . Q=
x,y x ∆p

p
, (2.12)

where Q= is the chromaticity which is defined as

Q= . - 1

4π

,
k√s∂β√s∂ds. (2.13)

This chromaticity-induced detuning can be compensated using sextupole magnets[10]. By introducing sex-
tupoles after quadrupoles, particles are sorted based on their momentum, ensuring convergence at the same
focal point, which reduces the tune spread. The difference in focusing with and without sextupole magnets is
represented schematically in Figure 2.6.

Figure 2.6: Focusing of beam on different orbits without sextupoles (left) and with sextupoles(right) from [12].

Another effect causing detuning of the particles is space charge, which is the electromagnetic interaction
between charged particles in a beam. The maximum tune shift for particles at the center of the bunch is [15]:
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∆Qx,y . - r0λ

2πeβ2γ3

,
βx,y√s∂

σx,y√s∂√σx√s∂ + σy√s∂∂ds , (2.14)

where r0 is the classical radius of the particle, λ the longitudinal line density, e the elementary charge, β . v
c

and γ . 1=
1-β2

the relativistic factors, βx,y the transverse β-functions and σx,y the transverse beam sizes.
The tune spread decreases with energy, which can be deduced from 2.14. For LHC beams, the tune spread

at extraction energy is significantly lower than at injection energy, which is shown in Figure 2.7 where the tune
spread at different energies has been estimated analytically with [4].

Figure 2.7: Space charge induced incoherent tune spread at injection energy (yellow) and at extraction energy
(green). The black dashed line indicates the tune change from the working point at injection to the working
point at extraction. Figure adapted from [16].

The beam dynamics in a linear lattice can be described using the following Hamiltonian[10]:

H . 1

2
√kxx2 + kyy

2 + p2x + p2y∂, (2.15)

where kx,y are the normalized magnetic field gradients and px,y the momenta in both planes. The Hamiltonian
can be transformed from the canonical phase space coordinates √x, y, px, py∂ to a new set of variables called
action Jx,y and angle (phase) ϕx,y using the Floquet transformation[10]

u .
]
2Juβu x cos√Ψu∂, (2.16)

u= . -
|

2Ju
βu

x  sin√Ψ∂ + α cos√Ψ∂(, (2.17)

with u being x or y and α and β being the Twiss parameters.

8



The Hamiltonian 2.15 in action-angle variables can then be written as

H . 1

R
√QxJx + QyJy∂, (2.18)

with the radius R of the ring and the tunes Qx,y .

The solutions of Hills equation can also be rewritten in terms of action-angle variables:

x√s∂ .
]
2Jxβx√s∂ x cos√Ψx√s∂ + ϕ∂ + D√s∂ x ∆p

p
, (2.19)

y√s∂ .
❜
2Jyβy√s∂ x cos√Ψy√s∂ + ϕ∂, (2.20)

with the emittance ϵ . 2J .

2.2 Resonances

There aremanymagnet imperfectionswhich have to be taken into account as they affect the beam dynamics and
drive resonances which cause emittance blow-up and, for high amplitude particles, losses. These imperfections
can be for example misaligned magnets or fringe fields, which induce additional multipolar fields. Further, in
order to compensate for chromaticity, sextupoles have to be used in the machine. These sextupoles have non-
linear magnetic fields which drive higher order resonances. A schematic representation of a sextupole magnet
and its magnetic field can be seen in Figure 2.8.

Figure 2.8: Left: Schematic transverse representation of a sextupole magnet adapted from [17]. Right: Magnetic
field of a sextupole magnet adapted from [14].

In order to account for higher order magnetic fields, a more general description of the magnetic field is
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necessary. Including higher order multipoles, the magnetic field is expressed using the multipole expansion:

By + iBx . B0

",
n-0

√bn + ian∂√x + iy∂n (2.21)

bn . 1

B0n!

≈nBy

≈xn , an . 1

B0n!

≈nBx

≈xn (2.22)

where an and bn represent the 2√n+ 1∂th skew and normal multipole coefficients respectively. A skew magnet
is rotated by an angle π

2n with respect to the normal magnet. In this thesis, multipoles up to order n . 4, i.e.
octupoles, are considered. The explicit magnetic field containing contributions up to octupoles can be expressed
as follows:

By . b0 + b1x - a1y + b2√x2 - y2∂ - a2xy + b3√x3 - 3xy2∂ - a3√-y3 + 3x2y∂ (2.23)

Bx . a0√√√√√√√
Dipole

+ a1x + b1y√√√√√√√√√√√
Quadrupole

+ a2√x2 - y2∂ + b2xy√√√√√√√√√√√√√√√√√√√√√√√√√
Sextupole

+ a3√x3 - 3xy2∂ + b3√-y3 + 3x2y∂√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√
Octupole

(2.24)

(2.25)

The non-linear magnetic field components from 2.24 that arise from multipolar errors in the machine drive
higher order resonances. As the PSB is operating in a space-charge dominated regime, there is strong detuning
of the particles which causes inevitable interaction of the beam with excited higher order resonances. This
interaction can be observed through an increase in beam emittance and particle losses if the tunes Qx,y is close
to the resonance condition:

mQx + nQy . l, (2.26)

with m,n being integers, l being the harmonic and )m) + )n) being the order of the resonance. The PSB
is made up of 16 identical cells, which means the periodicity of the lattice P . 16. If the harmonic l is an
integer multiple of P , then the resonance is called systematic. Systematic resonances are driven by errors that
are evenly distributed in every cell and their kicks will add up constructively. Otherwise, resonances that are
driven by errors that are randomly distributed along the ring are called non-systematic. The resonance lines
where the resonance condition up to 4th order is fulfilled can be seen in Figure 2.9. Normal and skew multipoles
drive normal and skew resonances respectively.

The Hamiltonian in action-angle coordinates including the non-linear terms of the magnet lattice is[14]

H . 1

R
√QxJx + QyJy∂ + V √J, ϕ, s∂, (2.27)

V √J, ϕ, s∂ . ϵ

R

mx,
j-0

my,
l-0

J
j+k
2

x J
l+m
2

y hjklmei(,j-k∞ϕx+,l-m∞ϕy), (2.28)

with the radius of the ring R, the emittance ϵ, the tune Qx,y , the action Jx,y and the phase advance ϕx,y in the
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Figure 2.9: Resonance lines of resonances up to 4th order, with normal resonances in solid lines, skew resonances
in dashed lines. Systematic resonances are plotted in red and non-systematic resonances are plotted in blue.

horizontal and vertical plane respectively. The first term on the left-hand side of 2.27 corresponds to the linear
lattice while the perturbation V contains the non-linear magnetic fields which drive higher order resonances.
The complex coefficients hjklm in Eq. 2.28 are called the resonance driving terms. The indices j, k, l,m are part
of a more generalized form of the resonance condition2.26:

√j - k∂Qx + √l - m∂Qy . n. (2.29)

This equation describes more types of resonances which are explained in further detail in [10, 12], but go beyond
the scope of this study. Instead, the focus lies on resonances where k and m are both equal to zero, in which
case the resonance condition simplifies into 2.26.

3rd order resonances

The pertubating potential 2.28 is a periodic function of s and can be expressed as a Fourier series [18] with
the Fourier harmonics corresponding to different resonances. For this study, two normal and skew 3rd order
resonances are considered, the normal 3Qx . 13 and Qx + 2Qy . 13 resonances and the skew 3Qy . 13 and
2Qx + Qy . 13 resonances. For each of these resonances, an individual perturbating term can be found[10].
For example the case of the resonance 3Qx . l, the Hamiltonian with the pertubation term is

H . 1

R
√QxJx + QyJy∂ + G3,0,lJ

3[2
x cos√3ϕx - lθ + ξ3,0,l∂, (2.30)
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with G3,0,l being the amplitude and ξ3,0,l the phase of the resonance driving term, θ . s
R being the orbiting

angle with R being the radius of the PSB. The resonance driving term can then be further expressed as

G3,0,le
jξ3,0,l .

=
2

24π

,
β3[2
x K2√s∂ej(3χx,s∞-,3Qx-l∞θ)ds, (2.31)

with the normalized sextupole magnet strength K2√s∂, the beta function βx, the phase advance χx√s∂ . ,s
0

ds
βx

.
The amplitude and the phase of the resonance driving term of a corrector magnet at a given position s with a
normalized magnet strength K2√s∂ and the beta function βx√s∂ can be calculated using PTC[19] in MADX[20].
The corrector magnet strengths K2√s∂ that compensate a certain resonance were identified experimentally,
allowing for the representation of the compensating RDTs for each resonance in all rings.

4th order resonances

Excitation of 4th order resonances has not been observed before the LIU. The 4th order resonances that are
excited are 4Qx . 17, 2Qx + 2Qy . 17 and 4Qy . 17. Using MADX[20], it can be calculated how any of the
octupole corrector magnets drive the 4th order resonances. Similarly to the case of the 3rd order resonances,
the experimentally acquired octupole strengths that compensate the resonance can be used to calculate and
represent the compensating RDT.
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Chapter 3

Resonance Compensation

The approach used for individual resonance compensation aims at minimizing the losses when crossing that
resonance. This has been done in previous studies on resonance compensation in the PSB [5, 21–23] as well as
in other proton synchrotrons[24–26]. The excited resonances were identified in each ring with dynamic tune
scans which have been performed in 2021[27]. During these scans, the tune in one plane is kept constant while
the tune in the other plane is varied, which allows for mapping out of the loss rates in tune space when different
resonances are crossed. The excited resonances in all rings can be seen in Figure 3.1.

Figure 3.1: Loss rates in transverse tune space in all four rings of the PSB obtained from dynamic tune scans
from 2021[27]. The loss rate, which corresponds to the resonance excitation strength, is color-coded in tune
space. Resonance lines up to 4th order are plotted, normal resonances in solid lines and skew resonances in
dashed lines. Non-systematic resonances are plotted in blue and systematic resonances in red.
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The scope of the following section will be the individual compensation of each of these excited resonances
using pairs of corrector magnets as it has been done in the past[5]. However, as these corrector magnets
drive multiple resonances, compensating one might enhance another. Thus, in order to compensate all excited
resonances simultaneously, a global resonance compensation scheme using a set of more corrector magnets
will be described in the later section.

3.1 Individual resonance compensation

As high intensity beams in the PSB at injection energy have a very high tune spread due to space charge, they
are not suitable to compensate individual resonances, as the beam would be affected by multiple resonances
simultaneously. In order to eliminate the effect of other resonances, a low intensity and high emittance beam
is used when compensating individual resonances. This beam has low brightness and a much smaller tune
spread than the high brightness beams for the LHC. It is thus sufficiently small to cross a resonance without
being affected by any other resonances, as can be seen in Figure 3.2. The area where each of the normal and
skew resonances are crossed can be seen in Figure 3.3. In order to have an unchanged resonance throughout
the crossing, the entire cycle is at flat bottom energy of 160MeV with a constant magnetic field for the entire
study and the resonance crossing takes about 250ms, which enhances the interaction of the entire bunch with
the resonance and increases the sensitivity for the losses.

Figure 3.2: Tune spread of the low intensity beam used for the resonance compensation studies.
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Figure 3.3: Tune changes for the crossings of each of the 3rd order resonances: 3Qx (top left), Qx + 2Qy (top
right), 3Qy (bottom left), 2Qx + Qy (bottom right).
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3.1.1 3rd order normal resonance compensation

Compensating the normal resonances 3Qx . 13 and Qx + 2Qy . 13 requires normal sextupole corrector
magnets whose RDTs were calculated using MADX and are represented in Figure 3.4. Two magnets, XNO4L1
and XNO9L1, whose RDTs are perpendicular to each other, were chosen for the individual normal resonance
compensation. As the two corrector RDTs are perpendicular, they can be used to cover the entire complex
plane of RDTs. Powering these magnets with different currents affects the excitation strength of the resonance
which can be observed by monitoring the beam intensity with a beam current transformer (BCT). The losses
are then calculated as the relative change in intensity before and after the resonance has been crossed. In a bad
configuration, the corrector magnets can thus further enhance the natural resonance excitation strength which
increases the losses, which is shown by the red curve in Figure 3.5. The resonance is compensated once these
losses are minimized, in which case the intensity, when the resonance is crossed, is represented by the green
curve in Figure 3.5. In order to identify the configuration where each resonance is compensated, the currents
of both corrector magnets are altered, covering a 2D space of corrector currents, and for each configuration the
losses are represented. These losses in terms of the two corrector magnet currents when crossing the 3Qx and
the Qx + 2Qy resonance in all rings can be seen in Figure 3.6 and Figure 3.7 respectively. The compensating
configurations are summarized in Tables 3.1 and 3.2 for both resonances in all rings. Using these currents, the
compensating RDTs of both normal resonances in all rings can be represented in a polar plot as in Figure 3.8.
This representation is convenient as it can be seen right away which corrector magnets from 3.4 will enhance
or reduce resonance excitation if their strength is varied.

Figure 3.4: Normal sextupole corrector RDTs for the 3Qx resonance(left) and the Qx + 2Qy resonance(right).
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Figure 3.5: Beam intensity during the cycle while crossing the 3Qx resonance without any corrector mag-
nets(black), with the corrector magnets in a configuration that further excites the resonance(red) and in the
compensating configuration(green).
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In order to compare the recently identified compensating configurations with previous studies on resonance
compensation, Tables 3.1 and 3.2 also contain the configurations from 2021 and 2018. The latter was before the
LHC Injector Upgrade (LIU)[28], which involved major changes in the accelerator complex and increased the
brightness of PSB beams by a factor of two[29]. Due to LIU, the changes in the PSB between 2018 and 2021 were
significant while only minor changes in the PSB have been made since 2021. This is in line with the observation
that the compensation settings seem generally closer to the settings from 2021 than the ones from 2018. Prior
to 2021, the normal resonances have not been observed in all rings which is why for some rings there are no
values from 2018.

Figure 3.6: Losses when crossing the 3Qx resonance in all rings with different current configurations, the
compensating configuration from 2023 is marked by the black star, the pink and blue stars represent the config-
urations from 2021[30] and 2018[22] respectively. The corresponding configurations can be found in Table 3.1.

18



Figure 3.7: Losses when crossing the Qx + 2Qy resonance in all rings with different current configurations,
the compensating configuration from 2023 is marked by the black star, the pink and blue stars represent the
configurations from 2021[30] and 2018[22] respectively. The corresponding configurations can be found in
Table 3.2.
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3Qx 2023 2021 2018
Ring 4 XNO4L1 = 18.71 A XNO4L1 = 20 A n.a.

XNO9L1 = -35.09 A XNO9L1 = -17.14 A n.a.
Ring 3 XNO4L1 = 12.92 A XNO4L1 = 10.9 A XNO4L1 = 4.28 A

XNO9L1 = -23.72 A XNO9L1 = -39.64 A XNO9L1 = -17.14 A
Ring 2 XNO4L1 = 28.07 A XNO4L1 = 25.7 A n.a.

XNO9L1 = -24.50 A XNO9L1 = -34.99 A n.a.
Ring 1 XNO4L1 = 15.04 A XNO4L1 = 8.57 A n.a.

XNO9L1 = -15.04 A XNO9L1 = -20A n.a.

Table 3.1: Normal sextupole corrector current configurations for the compensation of the 3Qx resonance from
2023, from 2021[30] and from 2018[22].

Qx+2Qy 2023 2021 2018
Ring 4 XNO4L1 = 25.06 A XNO4L1 = 15 A XNO4L1 =7.63 A

XNO9L1 = -17.18 A XNO9L1 = -9.44 A XNO9L1 = -8.68 A
Ring 3 XNO4L1 = 11.46 A XNO4L1 = 3.58 A XNO4L1 =3.15 A

XNO9L1 = -19.33 A XNO9L1 = -39.99 A XNO9L1 = -24.73 A
Ring 2 XNO4L1 = 19.55 A XNO4L1 = 15 A n.a.

XNO9L1 = -6.44 A XNO9L1 = -12.85 A n.a.
Ring 1 XNO4L1 = 4.44 A XNO4L1 = 0 A XNO4L1 = -6.07 A

XNO9L1 = -4.30 A XNO9L1 = -10.56A XNO9L1 = - 9.99 A

Table 3.2: Normal sextupole corrector current configurations for the compensation of the Qx + 2Qy resonance
from 2023, from 2021[30] and from 2018[22].

Figure 3.8: Compensating RDTs for both normal 3rd order resonances in all rings represented in a polar plot.
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Effect of chromaticity correction on normal 3rd order resonances

In the PSB, chromaticity can be controlled with sextupoles installed in each cell (harmonic sextupoles). As
these magnets are connected in series, the chromaticity can not be compensated in both planes at the same
time. This configuration of the harmonic sextupoles should only drive systematic 3rd order resonances, al-
lowing for chromaticity corection without exciting the non-systematic 3rd order resonances in the operational
tune regime, as their individual contributions will cancel out due to the periodicity[10]. However, their impact
on the excited resonances has to be evaluated as any differences between the magnets can lead to non-perfect
cancellation, which breaks the periodicity of the machine and drives non-systematic resonances. The normal
3rd order resonances were crossed with the harmonic sextupoles set to correct horizontal chromaticity as well
as vertical chromaticity. The losses for different corrector strengths while correcting chromaticity in each plane
can be seen in Figure 3.9 and Figure 3.10. As can be seen in these figures, chromaticity correction affects both
non-systematic 3rd order normal resonances differently in all rings. Vertical chromaticity correction does not
significantly affect the 3Qx resonance compensation settings in rings 1 and 3 with the losses being at less than
1% with and without chromaticity correction. Horizontal chromaticity correction however in ring 2 changes
3Qx resonance compensation significantly with the losses being around 10% if chromaticity correction is not
taken into account. Chromaticity correction in either plane affects the Qx + 2Qy resonance more significantly
than the 3Qx resonance in all rings.
For an operational cycle where chromaticity has to be corrected, it is thus important to take into account how
harmonic sextupoles affect non-systematic 3rd order resonances. It was also observed that harmonic sextupoles
affect skew resonances. However, no full dataset was collected to further explore how skew resonance com-
pensation changes specifically due to harmonic sextupoles.
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Figure 3.9: Losses when crossing the 3Qx resonance in all rings with different current configurations. The black
star shows the natural chromaticity and pink and blue the corrected chromaticity in the horizontal and vertical
plane respectively.
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Figure 3.10: Losses when crossing the Qx + 2Qy resonance in all rings with different current configurations.
The black star shows the natural chromaticity and pink and blue the corrected chromaticity in the horizontal
and vertical plane respectively.
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3.1.2 3rd order skew resonance compensation

The 3rd order skew resonances that will be individually compensated are 3Qy . 13 and 2Qx+Qy . 13. These
are driven by skew sextupole-like magnet errors and they can be compensated using skew sextupoles. Similar
to the normal sextupoles, the RDTs of the skew corrector magnets were calculated and plotted in Figure 3.11.

Figure 3.11: Skew sextupole corrector RDTs for the 3Qy resonance (left) and the 2Qx + Qy resonance (right).

While there are more skew sextupole corrector magnets installed, only three of them are equipped with
a power supply, namely XSK2L4, XSK4L1 and XSK6L4. The two correctors whose RDTs are orthogonal and
suitable for compensating the skew resonances are XSK2L4 and XSK6L4. The procedure that was followed is
similar to the case of normal resonance compensation. Each of the skew resonances were crossed individually
in all rings with varied corrector magnet strengths in order to identify the compensating configuration. The
losses when crossing the 3Qy resonance with different corrector magnet currents are plotted in Figure 3.12 with
the corresponding compensating current configurations in Table 3.3.

In ring 1, the 3Qy resonance has been compensated in a study on resonance compensation from 2004[23].
In this study however, the injection energy of the protons was 50MeV and vertical chromaticity was corrected
to zero, thus the experimental circumstances of resonance compensation have been different. Another magnet
has been used for the compensation in 2004, however the compensating RDT can be expressed in terms of
the magnets used in the current study and represented in the same plot in Figure 3.12. Given the changes in
injection energy, in chromaticity correction settings and in the magnet lattice in the last two decades, this com-
parison shows that the resonance has not changed that significantly. Further, the losses with natural resonance
excitation have remained the same over the last two decades, around 20%, indicating that the natural resonance
excitation remained the same.

In ring 2, no losses were observed when crossing the 3Qy resonance in 2004, thus compensation was not
necessary.
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For the 2Qx + Qy resonance, the losses with different corrector magnet currents are plotted in Figure 3.13
with the compensating currents in Table 3.4. The compensating skew RDTs for both resonances in all rings are
shown in a polar plot in Figure 3.14.

Figure 3.12: Losses when crossing the 3Qy resonance in all rings with different current configurations, the
compensating configuration from 2023 is marked by the black star, the pink and blue stars represent the config-
urations from 2021[30] and 2018[22] respectively. The corresponding configurations can be found in Table 3.3.
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3Qy 2023 2021 2018 2004
R4 XSK2L4 = -3.71 A XSK2L4 = -2.43 A n.a.

XSK6L4 = 0.71 A XSK6L4 = -1.86 A n.a.
R3 XSK2L4 = -4.14 A XSK2L4 = -1.33 A XSK2L4 = -0.26 A

XSK6L4 = 4.14 A XSK6L4 = 2.78 A XSK6L4 = 4.47 A
R2 XSK2L4 = -0.83 A XSK2L4 = 0.43 A n.a.

XSK6L4 = 1.67 A XSK6L4 = -1.19 A n.a.
R1 XSK2L4 = -8.674 A XSK2L4 = -8 A XSK2L4 = -8.33 A XSK9L1 = 31 A

XSK6L4 = 2.0 A XSK6L4 = 2.15A XSK6L4 = 2.77 A

Table 3.3: Skew sextupole corrector current configurations for the compensation of the 3Qy resonance from
2023, from 2021[30] and from 2018[22]. In ring 1, the resonance was compensated already in 2004[23].
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Figure 3.13: Losses when crossing the 2Qx + Qy resonance in all rings with different current configurations,
the compensating configuration from 2023 is marked by the black star, the pink and blue stars represent the
configurations from 2021[30] and 2018[22] respectively. The corresponding configurations can be found in
Table 3.4.

27



2Qx+Qy 2023 2021 2018
R4 XSK2L4 = 0.89 A XSK2L4 = -3 A n.a.

XSK6L4 = 0.78 A XSK6L4 = -4.67 A n.a.
R3 XSK2L4 = 3.67 A XSK2L4 = 2.37 A XSK2L4 = -9.99 A

XSK6L4 = 5.33 A XSK6L4 = -3.95 A XSK6L4 = 6.66 A
R2 XSK2L4 = 9.11 A XSK2L4 = 4.83 A XSK2L4 = 4.28 A

XSK6L4 = -0.56 A XSK6L4 = -1.33 A XSK6L4 = -1.42 A
R1 XSK2L4 = -1.89 A XSK2L4 = -4 A n.a.

XSK6L4 = -2.0 A XSK6L4 = -3.67 A n.a.

Table 3.4: Skew sextupole corrector current configurations for the compensation of the 2Qx + Qy resonance
from 2023, from 2021[30] and from 2018[22].

Figure 3.14: Compensating RDTs for both skew resonances represented in a polar plot.
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3.1.3 4th order resonance compensation

The normal 4th order resonances 4Qx, 2Qx + 2Qy and 4Qy are excited in all rings and can be compensated
using normal octupole magnets [27]. The method for the identification of the compensating RDT is the same
as for the 3rd order resonances. The RDTs of the normal octupole corrector magnets for the same normalized
magnet strength were calculated using PTC in MADX and are represented in Figure 3.15.

Figure 3.15: Octupole Corrector RDTs for the 4Qx resonance on the left, the 2Qx+2Qy resonance in the middle
and the 4Qy resonance on the right.

The octupoles used for 4th order resonances are ONO311L1 and ONO816L1. The current configurations
that were used to identify the compensating RDTs are depicted in Figure 3.16. It can be seen that even at the
highest allowed currents, only partial resonance compensation was achieved. Further, as this partial resonance
compensation was found with a flat bottom cycle at injection energy, the degree of compensation will further
deteriorate as particles are accelerated. As the magnetic field is ramped up, the corrector magnet currents have
to be increased accordingly to keep up the compensation, which is not possible due to the currents already be-
ing at their limits. During this study it was also observed that the ONO311L1 was connected with the opposite
polarity with respect to the MADX model, leading to an inconsistency with the calculated RDT.

In order to overcome the current limitations and achieve full resonance compensation, more octupoles were
combined to extended knobs whose effective currents are doubled. Using corrector magnets whose RDTs are
rotated by 180° and powered with opposite currents, they can be combined into a stronger knob. The first knob
was made up of ONO9L1 and ONO4L1( with a negative current) and the second knob was made up of ONO816L1
and ONO12L1(with a negative current). Using these extended knobs, full compensation could be achieved in
all rings as can be seen in Figure 3.17. Further, compensating 4th order resonances with the extended knobs
requires less currents per magnet, allowing for the compensation to be kept up for as long as necessary while
the magnetic field ramps up throughout the cycle. The compensating RDTs were calculated using MADX and
plotted in polar plots in Figure 3.18. As it has been observed previously[5], the settings for the compensation
of all three 4th order normal resonances are identical and achieve global resonance compensation. Further,
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the RDTs of each resonance look very similar in each of the rings. This would indicate that a single localized
octupole-like error drives all of the 4th order resonances.

In the past, the Generic Optimisation Frontend and Framework (GeOFF) [31–34] has been used to identify
the octupole compensation settings. The settings found with this optimisation algorithm are in agreement with
the ones found using the extended knobs, as can be seen in Figure 3.18.

The corresponding settings that have been identified using the initial and extended pair of magnets along
with the optimizer are summarized in Table 3.5.

Figure 3.16: Losses when crossing the 4th order resonance in all rings using a pair of octupoles in different
current configurations.

30



Figure 3.17: Losses when crossing the 4th order resonance in all rings using the two extended knobs in different
current configurations.

Figure 3.18: Compensating RDTs for the 4Qx resonance on the left, the 2Qx + 2Qy resonance in the middle
and the 4Qy resonance on the right. The compensating configurations using the original knobs(dashed lines),
the extended knobs(solid lines) and the optimizer algorithm(dotted lines) in all rings were taken from Table 3.5.
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Rings Extended knobs Original Knobs Optimizer
Ring 1 ONO4L1 = -30.35 A ONO311L1 = 57.9 A ONO4L1 = -49.9 A

ONO9L1 = 30.35 A ONO816L1 = 81.57 A ONO6L1 = 49.9 A
ONO12L1 = -33.69 A ONO9L1 = 49.9 A
ONO816L1 = 33.69 A ONO12L1 = -49.9 A

Ring 2 ONO4L1 = -26.69 A ONO311L1 = 46.11 A ONO4L1 = -49.9 A
ONO9L1 = 26.69 A ONO816L1 = 80 A ONO6L1 = 49.9 A
ONO12L1 = -41.36 A ONO9L1 = 49.9 A
ONO816L1 = 41.36 A ONO12L1 = -49.9 A

Ring 3 ONO4L1 = -23.4 A ONO311L1 = 48.33 A ONO4L1 = -49.9 A
ONO9L1 = 23.4 A ONO816L1 = 78.55 A ONO12L1 = -49.7 A
ONO12L1 = -30.08 A
ONO816L1 = 30.08 A

Ring 4 ONO4L1 = -25.29 A ONO311L1 = 46.11 A ONO4L1 = -49.9 A
ONO9L1 = 25.29 A ONO816L1 = 77.78 A ONO6L1 = 11.8 A
ONO12L1 = -34.3 A ONO9L1 = 18.8 A
ONO816L1 = 34.3 A ONO12L1 = -48.4 A

Table 3.5: Different octupole configurations that compensate the normal 4th order resonances. The original
magnets that were limited by currents were replaced by the extended knobs to determine the compensating
RDT. The compensating configuration found by the optimizer algorithm is also limited by the maximum current
of 50 A.
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3.1.4 Effect of the 4th order resonance compensation on 3rd order resonances

It was observed in previous studies that 4th order resonance compensation affects 3rd order resonances [5].
Individual resonance compensation of 3rd order resonances is still possible with octupoles correctors on and
the altered compensation settings are given in Table 3.7 and 3.8. An effort was made to further investigate
how octupoles drive 3rd order resonances. As magnet misalignments such as displacements or rotations of
magnets cause lower-order feed-down fields, misaligned octupoles induce additional sextupolar fields which
affect 3rd order resonances[12]. In order to estimate this effect, octupole misalignments in the machine have
been measured and were added in the magnet lattice in MADX to calculate the effect of the octupole feed-down
fields on 3rd order resonances. The calculated 3rd order RDTs with the misaligned octupoles were added in Fig-
ures 3.25 to 3.28, from which it is apparent that the estimated RDTs were not consistent with the measured ones.

Compensation of the Qx + 2Qy resonance has been tested with different sets of octupole correctors that
produce the same RDT and all compensate the 4th order resonances as shown in Figure 3.19. However, it was
observed that when using specific octupole correctors, no compensating settings were found for the normal
Qx + 2Qy resonance. The loss pattern with different octupoles depicted in Figure 3.20 points to a splitting of
the resonance. This effect is not yet understood and more studies are needed.

Figure 3.19: Intensity curves when crossing all normal 4th order resonances in ring 4 using different sets of
octupole correctors magnets that all compensate the resonances. The remaining losses are due to limitations in
current for some of the corrector magnets.
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As it turns out, Qx + 2Qy resonance is not possible with the octupoles that were used for the extended
knobs in the previous section. Thus in order to compensate all 3rd and 4th order resonances simultaneously,
only the set of octupoles that do not disturb Qx +2Qy resonance compensation can be used. From this reduced
set of octupoles, the best configuration that fully compensates 4th order resonances was found and is shown
for all rings in Table 3.6.

Figure 3.20: Intensity curves when trying to compensate the Qx + 2Qy resonance with different octupole
correctors on. Sextupole correctors are chosen in a way that the losses are minimized, in three cases (yellow,
pink and light blue) the resonance is almost fully compensated. In the other three cases, the losses could not
be further reduced and resonance compensation is not possible. In the latter cases, it looks like the Qx + 2Qy

resonance is split in two, with losses at two different periods of the cycle.
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Rings Extended knobs Alternative configuration
Ring 1 ONO4L1 = -30.35 A ONO4L1 = -8.55 A

ONO9L1 = 30.35 A ONO12L1 = -50 A
ONO12L1 = -33.69 A ONO311L1 = 74.7 A
ONO816L1 = 33.69 A ONO816L1 = 40.05 A

Ring 2 ONO4L1 = -26.69 A ONO4L1 = -7.52 A
ONO9L1 = 26.69 A ONO12L1 = -50 A
ONO12L1 = -41.36 A ONO311L1 = 65.69 A
ONO816L1 = 41.36 A ONO816L1 = 46.95 A

Ring 3 ONO4L1 = -23.4 A ONO4L1 = -6.6 A
ONO9L1 = 23.4 A ONO12L1 = -43.52 A
ONO12L1 = -30.08 A ONO311L1 = 57.59 A
ONO816L1 = 30.08 A ONO816L1 = 34.97 A

Ring 4 ONO4L1 = -25.29 A ONO4L1 = -7.13 A
ONO9L1 = 25.29 A ONO12L1 = -48.82 A
ONO12L1 = -34.3 A ONO311L1 = 62.24 A
ONO816L1 = 34.3 A ONO816L1 = 39.59 A

Table 3.6: Different octupole configurations that compensate fourth order resonances globally. The extended
knobs have been used to initially determine the compensating RDT and one of the possible alternative config-
urations is given on the right.

Qx+2Qy XNO+OCT 3Qx XNO+OCT
Ring 4 XNO4L1 = 23.56 A Ring 4 XNO4L1 = 15.75 A

XNO9L1 = -2.12 A XNO9L1 = -20.05 A
Ring 3 XNO4L1 = 10.53 A Ring 3 XNO4L1 = 10.02 A

XNO9L1 = -16.76 A XNO9L1 = -17.19 A
Ring 2 XNO4L1 = 17.04 A Ring 2 XNO4L1 = 21.48 A

XNO9L1 = -3.73 A XNO9L1 = -17.18 A
Ring 1 XNO4L1 = -3.84 A Ring 1 XNO4L1 = 7.16 A

XNO9L1 = -2.56 A XNO9L1 = -5.73 A

Table 3.7: Compensating normal sextupole corrector magnet currents for individual 3rd order normal resonance
compensation with the alternative octupole configuration in Table 3.6 in all rings.
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2Qx+Qy XSK+OCT 3Qy XSK + OCT
Ring 4 XSK2L4 = 3.44 A Ring 4 XSK2L4 = -2.89 A

XSK6L4 = 1.83 A XSK6L4 =1.78 A
Ring 3 XSK2L4 = 6.44 A Ring 3 XSK2L4 = -3.83 A

XSK6L4 = 5.66 A XSK6L4 = 4.33 A
Ring 2 XSK2L4 = 13.95 A Ring 2 XSK2L4 = -1.06 A

XSK6L4 = 0.17 A XSK6L4 = 3.61 A
Ring 1 XSK2L4 = 1.83 A Ring 1 XSK2L4 = -8.61 A

XSK6L4 = -2.06 A XSK6L4 = 3.28 A

Table 3.8: Compensating skew sextupole corrector magnet currents for individual 3rd order skew resonance
compensation with the alternative octupole configuration in Table 3.6 in all rings.

36



3.2 Global resonance compensation

Based on the individual resonance compensation settings for all resonances in all rings, a global resonance
compensation scheme can be used to compensate all resonances simultaneously. For 3rd order resonances,
the process for global resonance compensation described in [5] is followed. The transfer matrix in Eq. 3.1 is
constructed with the corrector magnets RDTs for both resonances obtained with PTC in MADX. The subscript
denotes the corresponding resonance (30 ✕ 3Qx, 12 ✕ Qx + 2Qy) and the superscript indicates which cor-
rector magnet is used. The column vector on the right-hand side is filled using the real and imaginary part of
the corrector RDTs obtained from individually compensating each resonance.
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Solving the above for the two normal resonances, one can obtain a configuration using a set of normal
corrector magnets that both normal resonances simultaneously. If the solution using four magnets requires
currents which can not be exceeded in the machine, more or less magnets can be used. In these cases, the trans-
fer matrix can be transformed into a square matrix using using singular value decomposition (SVD). While the
system of equations is solvable using SVD, the solution will be approximate and the settigs can achieve only
partial resonance compensation. For skew resonance compensation, only three skew corrector magnets are
equipped with a power supply and thus the solutions obtained for global skew resonance compensation are
approximate in all rings.

3.2.1 Global 3rd order resonance compensation

The compensating settings for both normal and skew 3rd resonances for all rings with different numbers of
corrector magnets are shown in Tables 3.9 to 3.12. As the sextupole corrector magnets can be powered with
currents of up to 50 A, it is necessary to use more or less magnets if the required currents exceed this limit, thus
the solutions for any number of available magnets are shown. For the normal resonances, an exact solution
using four magnets was found only in ring 3. In the other rings, only partial global resonance compensation
can be achieved. For the skew resonances, only three corrector magnets are equipped with a power supply, thus
global resonance compensation is partial in all rings. However, adding the additional skew corrector magnet
XSK9L1 would allow for full global skew resonance compensation in all rings.

The compensating RDT for each resonances when using the global resonance compensation configuration
can be calculated with MADX and expressed in terms of the two corrector magnets previously used for individ-
ual resonance compensation. This can be used to see how the magnets in the global resonance compensation
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Correctors Normal correctors Expected Losses Skew correctors Expected Losses

6

XNO4 = -18.02 A
XNO6 = 40.78 A
XNO9 = 35.52 A
XNO12 = -59.50 A
XNO311 = -46.16 A
XNO816 = 5.00 A

5

XNO4 = -56.10 A
XNO9 = -62.42 A
XNO12 = 40.12 A
XNO311 = -60.83 A
XNO816 = -2.64 A

4

XNO6 = 65.32 A
XNO12 = -81.80 A
XNO311 = -29.70 A
XNO816 = 8.79 A

3Qx: 0.80 %
Qx+2Qy: 0.44 %

XSK2L4= -13.47 A
XSK4L1= 20.85 A
XSK6L4= 2.87 A
XSK9L1 = -18.46 A

3Qy: 0.40 %
Qx+2Qy: 0.46 %

3
XNO12 = 13.51 A
XNO311 = -31.30 A
XNO816 = -31.84 A

3Qx:5.23%
Qx+2Qy: 0.50 %

XSK2L4= -9.74 A
XSK4L1= 16.11 A
XSK6L4= -3.11 A

3Qy: 4.73 %
2Qx+Qy:0.77%

Table 3.9: Different global 3rd order resonance compensation settings in ring 1

settings drive each of the resonances and how close they are to the respective individual resonance compen-
sation. The losses in terms of corrector magnet currents when crossing individual resonances can be seen in
Figs. 3.21 to 3.24. These plots include both the individual and the global resonance compensation configuration
from Tables 3.9 to 3.12, which allows for the extrapolation of the expected losses.
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Correctors Normal correctors Expected Losses Skew correctors Expected Losses

6

XNO4 = -27.04 A
XNO6 = 62.25 A
XNO9 = 39.18 A
XNO12 = -80.62 A
XNO311 = -98.46 A
XNO816 = 45.92 A

5

XNO4 = -29.60 A
XNO6 = 65.70 A
XNO12 = -108.88 A
XNO311 = -88.17 A
XNO816 = 45.62 A

4

XNO6 = 96.83 A
XNO12 = -104.06 A
XNO311 = -77.79 A
XNO816 = 51.53 A

3Qx: 0.80 %
Qx+2Qy: 0.25 %

XSK2L4= -7.01 A
XSK4L1= 31.30 A
XSK6L4= 1.73 A
XSK9L1 = -16.94 A

3Qy: 1.10 %
Qx+2Qy: 0.76 %

3
XNO6 = -42.44 A
XNO311 = 58.63 A
XNO816 = -70.13 A

3Qx: 17.20 %
Qx+2Qy: 0.85 %

XSK2L4= -3.59A
XSK4L1= 26.95 A
XSK6L4= -3.76 A

3Qy: 6.91 %
2Qx+Qy: 3.05 %

Table 3.10: Different global 3rd order resonance compensation settings in ring 2

Correctors Normal correctors Expected Losses Skew correctors Expected Losses

6

XNO4 = -5.43 A
XNO6 = 16.38 A
XNO9 = 3.03 A
XNO12 = -15.56 A
XNO311 = -37.45 A
XNO816 = 19.33 A

5

XNO6 = 22.01 A
XNO9 = 3.54 A
XNO12 = -14.31 A
XNO311 = -35.69 A
XNO816 = 20.41 A

4

XNO6 = 22.57 A
XNO12 = -16.83 A
XNO311 = -34.68 A
XNO816 = 20.43 A

3Qx: 0.40 %
Qx+2Qy: 0 %

XSK2L4= -7.85 A
XSK4L1= 24.49 A
XSK6L4= 2.74 A
XSK9L1 = -3.86 A

3Qy: 0.61 %
Qx+2Qy: 0.84 %

3
XNO12 = 11.17 A
XNO311 = -46.49 A
XNO816 = 44.78 A

3Qx: 6.08 %
Qx+2Qy: 1.66 %

XSK2L4= -7.07 A
XSK4L1= 23.50 A
XSK6L4= 1.49 A

3Qy: 0.81 %
2Qx+Qy: 1.03%

Table 3.11: Different global 3rd order resonance compensation settings in ring 3
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Correctors Normal correctors Expected Losses Skew correctors Expected Losses

6

XNO4 = -29.51 A
XNO6 = 60.81 A
XNO9 = 10.04 A
XNO12 = -52.08 A
XNO311 = -129.66 A
XNO816 = 97.48 A

5

XNO6 = 101.48 A
XNO9 = 20.44 A
XNO12 = -54.38 A
XNO311 = -121.58 A
XNO816 = 108.93 A

4

XNO6 = 104.69 A
XNO12 = -68.91 A
XNO311 = -115.74 A
XNO816 = 109.04 A

3Qx: 0.46 %
Qx+2Qy:1.06 %

XSK2L4= -5.86 A
XSK4L1= 13.99 A
XSK6L4= -0.03 A
XSK9L1 = -3.65 A

3Qy: 0.50 %
Qx+2Qy: 0.55 %

3
XNO9 = -21.76 A
XNO311 = -43.07 A
XNO816 = 39.25 A

3Qx: 7.87% %
Qx+2Qy: 1.24% %

XSK2L4= -5.12 A
XSK4L1= 13.05 A
XSK6L4= -1.21 A

3Qy: 0.80%
2Qx+Qy: 0.61%

Table 3.12: Different global 3rd order resonance compensation settings in ring 4
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Figure 3.21: Color-coded losses when crossing the 3Qx resonance in all rings with different current configura-
tions, the compensation is marked by the black star, the pink star represents the 3Qx resonance compensation
with the global configuration and the white star marks the natural resonance excitation.
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Figure 3.22: Color-coded losses when crossing the Qx + 2Qy resonance in all rings with different current
configurations, the compensation is marked by the black star, the pink star represents the Qx + 2Qy resonance
compensation with the global configuration and the white star marks the natural resonance excitation.
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Figure 3.23: Color-coded losses when crossing the 3Qy resonance in all rings with different current configura-
tions, the compensation is marked by the black star, the pink star represents the 3Qy resonance compensation
with the global configuration and the white star marks the natural resonance excitation.
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Figure 3.24: Color-coded losses when crossing the 2Qx + Qy resonance in all rings with different current
configurations, the compensation is marked by the black star, the pink star represents the 2Qx +Qy resonance
compensation with the global configuration and the white star marks the natural resonance excitation.
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3.2.2 Global compensation of 3rd and 4th order resonances

Similarly to the process of global 3rd order resonance compensation, global compensation settings based on the
individual 3rd + 4th order resonance compensation can be found by solving the system of equations 3.1. The
octupoles are powered with the settings given in Table 3.6 on the left. The solutions using different numbers of
normal and skew corrector sextupoles in all rings are summarized in Tables 3.13 to 3.16. Expressing the global
compensation RDTs using only one set of magnets allows for an estimation of the remnant losses which are
shown in Figs 3.25 and 3.26 for the two normal resonances 3Qx and Qx + 2Qy and Figs 3.27 and 3.28 for the
skew resonances 3Qy and 2Qx + Qy respectively

In rings 1 and 3, a set of four normal correctors can be used to fully compensate both normal resonances.
In rings 2 and 4, it was not possible to find an exact solution using four normal corrector magnets, thus a con-
figuration obtained through SVD was used instead. This solution is approximate and both resonances are only
partially compensated.

Like for the 3rd order skew resonances without octupoles, adding the skew sextupole XSK9L1 would allow
for full global compensation of skew 3rd order resonances in all rings. Comparing the expected losses when us-
ing three and four corrector magnets, one can see the improved compensation that an additional skew corrector
magnet would offer.
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Number of correctors Normal correctors Losses Skew correctors Losses

6

XNO4 = -6.07 A
XNO6 = 14.71 A
XNO9 = 22.04 A
XNO12 = -28.62 A
XNO311 = -1.70 A
XNO816 = -20.71 A

5

XNO6 = 59.47 A
XNO9 = 37.21 A
XNO12 = -55.37 A
XNO311 =-40.33 A
XNO816 = 8.59 A

4

XNO6 = 20.86 A
XNO9 = 23.54 A
XNO12 = -26.57 A
XNO816 = -19.51 A

3Qx: 1.23 %
Qx+2Qy: 0.79 %

XSK2L4 = -16.37 A
XSK4L1 = 33.49 A
XSK6L4 = 4.18 A
XSK9L1 = -26.26 A

3Qy: 0.17 %
2Qx+Qy: 1.48 %

3
XSK2L4= -11.07 A
XSK4L1= 26.75 A
XSK6L4= -4.33 A

3Qy: 6.24%
2Qx+Qy: 2.38%

Table 3.13: Different global 3rd and 4th order resonance compensation settings in ring 1

Number of correctors Normal correctors Losses Skew correctors Losses

6

XNO4 = -19.80 A
XNO6 = 45.76 A
XNO9 = 25.85 A
XNO12 = -57.36 A
XNO311 = -78.12 A
XNO816 = 41.98 A

5

XNO6 = 90.27 A
XNO9 = 41.72 A
XNO12 = -74.43 A
XNO311 = -89.71 A
XNO816 = 51.31 A

4

XNO6 = 70.64 A
XNO12 = -72.50 A
XNO311 = -63.79 A
XNO816 = 46.08 A

3Qx: 1.77 %
Qx+2Qy: 1.20 %

XSK2L4 = -11.17 A
XSK4L1 = 48.93 A
XSK6L4 = 3.08 A
XSK9L1 = -25.79 A

3Qy: 0.61 %:
2Qx+Qy: 1.48%

3
XNO6 = 23.72 A
XNO12 -51.02 A
XNO311 = -21.52 A

3Qx: 4.45 %
Qx+2Qy: 1.30 %

XSK2L4 = -5.97 A
XSK4L1 = 42.31 A
XSK6L4 = -5.28 A

3Qy: 8.88%
2Qx+Qy: 2.08%

Table 3.14: Different global 3rd and 4th order resonance compensation settings in ring 2
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Number of correctors Normal correctors Losses Skew correctors Losses

6

XNO4 = 4.61 A
XNO6 = -2.65 A
XNO9 = -6.69 A
XNO12 = 4.82 A
XNO311 = -10.05 A
XNO816 = 4.60 A

5

XNO6 = 22.01 A
XNO9 = 3.54 A
XNO12 = -14.31 A
XNO311 = -35.69 A
XNO816 = 20.41 A

4

XNO6 = 22.57 A
XNO12= -16.83 A
XNO311 = -34.68 A
XNO816 = 20.43 A

3Qx: 1.79 %
Qx+2Qy: 1.14 %

XSK2L4 = -9.70 A
XSK4L1 = 34.26 A
XSK6L4 = 2.13 A
XSK9L1 = -5.59 A

3Qy: 0.20 %
2Qx+Qy: 1.01 %

3
XSK2L4 = -8.57 A
XSK4L1 = 32.83 A
XSK6L4 = 0.32 A

3Qy: 0.47 %
2Qx+Qy: 1.66 %

Table 3.15: Different global 3rd and 4th order resonance compensation settings in ring 3

Number of correctors Normal correctors Predicted Losses Skew correctors Losses

6

XNO4 = -33.76 A
XNO6 = 66.46 A
XNO9 = 17.28 A
XNO12 = -62.12 A
XNO311 = -132.52 A
XNO816 = 102.19 A

5

XNO6 = 91.41 A
XNO9 = 12.81 A
XNO12 = -45.32 A
XNO311 = -120.11 A
XNO816 = 103.37 A

4

XNO6 = 93.42 A
XNO12 = -54.411 A
XNO311 = -116.45 A
XNO816 = 103.44 A

3Qx: 0.80 %
Qx+2Qy: 1.47 %

XSK2L4= -6.71 A
XSK4L1= 20.96 A
XSK6L4= 0.79 A
XSK9L1 = -5.83 A

3Qy: 0.19 %
Qx+2Qy: 1.40 %

3
XNO9 = -21.76 A
XNO311 = -43.07 A
XNO816 = 39.25 A

3Qx: 6.08%%
Qx+2Qy: 1.66%%

XSK2L4= -5.54 A
XSK4L1= 19.47 A
XSK6L4= -1.10 A

3Qy: 0.34 %
2Qx+Qy: 1.65%

Table 3.16: Different global 3rd and 4th order resonance compensation settings in ring 4
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Figure 3.25: Color-coded losses when crossing the 3Qx resonance with 4th order resonance compensation in all
rings with different current configurations. The individual compensation is marked by the black star, the pink
star represents the global resonance compensation with the configuration from 3.17 and the white star marks
the natural resonance excitation.
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Figure 3.26: Color-coded losses when crossing theQx+2Qy resonance with 4th order resonance compensation
in all rings with different current configurations. The individual compensation is marked by the black star, the
pink star represents the global resonance compensation with the configuration from 3.17 and the white star
marks the natural resonance excitation.
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Figure 3.27: Color-coded losses when crossing the 3Qy resonance with 4th order resonance compensation in all
rings with different current configurations. The individual compensation is marked by the black star, the pink
star represents the global resonance compensation with the configuration from 3.17 and the white star marks
the natural resonance excitation.
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Figure 3.28: Color-coded losses when crossing the 2Qx+Qy resonance with 4th order resonance compensation
in all rings with different current configurations. The individual compensation is marked by the black star, the
pink star represents the global resonance compensation with the configuration from 3.17 and the white star
marks the natural resonance excitation.
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Ring Normal sextupoles Skew sextupoles Normal octupoles

1

XNO6 = 20.86 A
XNO9 = 23.54 A
XNO12 = -26.57 A
XNO816 = -19.51 A

XSK2L4 = -11.07 A
XSK4L1 = 26.75 A
XSK6L4 = -4.33 A

ONO4L1 = -8.55 A
ONO12L1 = -50 A
ONO311L1 = 74.7 A
ONO816L1 = 40.05 A

2
XNO6 = 23.72 A
XNO12 = -50 A
XNO311 = -21.52 A

XSK2L4 = -5.97 A
XSK4L1 = 42.31 A
XSK6L4 = -5.28 A

ONO4L1 = -7.52 A
ONO12L1 = -50 A
ONO311L1 = 65.59 A
ONO816L1 = 46.95 A

3

XNO6 = -8.55 A
XNO12 = 8.82 A
XNO311 = -13.57 A
XNO816 = 3.64 A

XSK2L4 = -8.57 A
XSK4L1 = 32.83 A
XSK6L4 = 0.32 A

ONO4L1 = -6.6 A
ONO12L1 = -43.52 A
ONO311L1 = 57.59 A
ONO816L1 = 34.97 A

4
XNO9 = -21.76 A
XNO311 = -43.07 A
XNO816 = 39.25 A

XSK2L4 = -5.54 A
XSK4L1 = 19.47 A
XSK6L4 = -1.10 A

ONO4L1 = -7.13 A
ONO12L1 = -48.82 A
ONO311L1 = 62.24 A
ONO816L1 = 39.59 A

Table 3.17: Corrector magnet currents for global 3rd and 4th order resonance compensation in all rings.

3.2.3 Experimental validation of global resonance compensation

In order to confirm the predicted losses experimentally, each resonance was individually crossed using the best
possible configuration in all rings summarized in Table 3.17. The losses were then compared to the estimations
in Figures 3.25 to 3.28. The intensities with individual and global resonance compensation are summarized in
Figure 3.29.

The global resonance compensation should be the same as the individual resonance compensation in rings
1 and 3 for both normal resonances while in rings 2 and 4, only partial normal resonance compensation is
expected. It was observed that in ring 3, the estimated and measured losses using the global resonance com-
pensation settings fully coincide. In all other rings, discrepancies between individual and global resonance
compensation was observed. In ring 1, the losses using the global resonance compensation settings are worse
than the individual resonance compensation. In rings 2 and 4, the observed individual and global resonance
compensation is partial as expected with the accuracy of the prediction varying between different resonances.

The intensities while crossing all resonances in all rings with global resonance compensation and with no
resonance compensation are depicted in Figure 3.30. The corresponding losses after crossing all resonances
are summarized in Figure 3.31. The total reduction in losses when crossing all resonances with global reso-
nance compensation ranges from 71.1 % in ring 2 to 93.4% in ring 3. Averaged over the four rings, the losses
when crossing all resonances with natural resonance excitation are 23.5 % and with global resonance compen-
sation they are 3.7%. Thus on average, global resonance compensation reduced the losses from crossing excited
resonances by almost 85%.

The remaining losses can be attributed to the limited number of skew corrector magnets as well as current
limitations in the normal corrector magnets.
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Figure 3.29: Losses when crossing each of the normal and skew 3rd order resonance with 4th order resonance
compensation in all rings. The blue bar represents themeasured losses with individual resonance compensation,
the pink bar represents the measured losses with global resonance compensation using the configuration from
table 3.17 and the red bar represents the measured losses with natural resonance excitation. The green bar
represents the predicted losses using global resonance compensation configuration (pink stars in Figs. 3.25
to 3.28).
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Figure 3.30: Intensity when crossing both normal and skew 3rd order resonances and all normal 4th order
resonances with global resonance compensation settings (solid) and with natural resonance excitation in all
rings (dashed).
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Figure 3.31: Losses crossing both normal and skew 3rd order resonances and all normal 4th order resonances
with the global resonance compensation settings in all rings (green) and with no corrector magnets (red).
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Chapter 4

Discussion

This study intended to show how 3rd and 4th order resonances in the PSB can be compensated individually
and globally and how the compensation settings have changed compared to past studies. Further, the effect of
chromaticity correction on non-systematic 3rd order normal resonances has been studied in more detail.

Limitations

The approach used is based on minimizing the losses when crossing 3rd and 4th order resonances. Individually,
all resonances can be fully compensated in all rings but global resonance compensation is limited, due to a
limitation in the available magnets or currents. Most magnets can not be powered with currents of more than
50 A, which restricts the global resonance compensation of normal 3rd order resonances. While there are six
normal corrector sextupoles available, not more than four were used for global normal resonance compensation
as using six magnets did not bring any advantage or reduce the power load per magnet.

Skew 3rd order resonance compensation is limited due to only three skew corrector magnets being equipped
with a power supply. Equipping a fourth skew sextupole, namely XSK9L1, with a power supply would allow
for full global skew resonance compensation in all rings as can be seen in Tables 3.9.

4th order resonances can be fully compensated in all rings and it was observed that the compensation set-
tings for 3rd order resonances are different if 4th order resonances are compensated at the same time. It is
not known how exactly octupoles affect 3rd order resonances, but misaligned octupoles induce feed-down sex-
tupolar magnetic fields from which drive 3rd order resonances. The octupole misalignments in the PSB were
measured and included in the magnet lattice modeled in MADX in the compensating configuration from Ta-
ble 3.5. The 3rd order RDTs including the feed-down sextupole fields were then calculated and compared to the
measured 3rd order resonances when both sextupoles and octupoles are used simultaneously. The measured
and the calculated 3rd order resonances do not coincide, thus it can be concluded that feed-down sextupolar
fields from octupoles are not the main influence on the 3rd order resonances. Compensating 3rd and 4th order
resonances separately can not be used to find settings that compensate both 3rd and 4th order resonances si-
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multaneously. Instead, each 3rd resonance has to be compensated while the corrector octupoles are on.

It was also observed that if certain octupoles are used to compensate 4th order resonances, Qx + 2Qy

resonance compensation is not possible anymore. While using certain octupoles, it looks like the Qx + 2Qy

resonance is split in two different resonances with different compensation settings as can be seen in Figure 3.26.
The reason for this effect appearing when using only certain octupoles is not known and is subject to further
investigation.

Previous studies

As these resonances are driven by magnetic field errors, they are different whenever there are changes in the
magnet lattice, which has been observed in the past. Comparison of previous studies on resonance compensa-
tion with the current results shows how the resonance compensation settings have changed over time. In the
PSB there have been some studies on resonance compensation over the last 20 years.

The first study on resonance compensation was done in 2003/2004[23] where corrector magnets have been
used to compensate 3rd order resonances. The comparison to this past study is limited as the working point at
injection used to be different and the proton injection energy was at 50MeV instead of 160MeV. The compen-
sated resonances in the study from 2003 were 3Qy . 16, 2Qx +Qy . 14, 2Qx -Qy . 3 and Qx + 2Qy . 15,
none of which have been compensated in the current study. In 2004 however, the working point was changed
to the one used in the current study and thus the same resonances had to be crossed and compensated during
the tune change. There is one resonance that was compensated in both the current study and 20 years ago,
which is the 3Qy . 13 resonance in ring 1. In the study from 2004, this resonance was compensated with
vertical chromaticity correction, which affects 3rd order resonances and limits the comparability of the two
results. The compensating configuration from 2004 for the 3Qy . 13 resonance in ring 1 did not change very
significantly and compensating this resonance again with vertical chromaticity correction in a further study
could reveal how much of the change can be attributed to chromaticity correction. The 3Qy . 13 resonance
was also crossed in 2004 in ring 2 but no losses were observed and there was no compensation. Rings 3 and 4
were not part of the study from 2004.
The next study on resonance compensation in the PSB is from 2018[22] before LIU[28, 29], which was the most
recent major upgrade of the PSB. Comparing the resonance compensation before and after LIU shows that there
are resonances that were not observed in all rings prior to LIU. The 3rd order resonances that were observed
already before LIU have changed in all rings by varying degrees. Further, 4th order resonance compensation
has not been observed prior to LIU.

In the study on resonance compensation from 2021, all 3rd and 4th order resonances have been observed
for the first time [27]. All resonances were different compared to the pre-LIU study, which is not surprising
due to the major changes in the magnet lattice of the PSB. Using the global resonance compensation scheme all
resonances could be compensated to varying degrees, however remnant losses from some resonances in some
rings were observed due to limitations in magnets.
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Conclusion

In this study, it was shown that individual 3rd and 4th order resonances can be fully compensated using pairs
of different types of corrector magnets in all rings. Further, based on the settings for individual resonance
compensation, a configuration using a larger set of magnets that globally compensates 3rd and 4th order res-
onances was found in each ring. These globally compensating settings were then tested with the operational
cycle during which all resonances were crossed. The losses due to these resonances can be reduced significantly
in all rings. Remnant losses, due to limitations in corrector magnets or currents, vary from ring to ring. The
most remnant losses were measured in ring 2 with 6.8% and the best compensation was achieved in ring 3 with
remnant losses of 1.5%.
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