
Optimizing Constraint
Programming for Real World

Scheduling of Test Laboratories

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Philipp Danzinger, BSc
Matrikelnummer 11775797

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.techn. Nysret Musliu

Wien, 8. Mai 2024
Philipp Danzinger Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Optimizing Constraint
Programming for Real World

Scheduling of Test Laboratories

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Philipp Danzinger, BSc
Registration Number 11775797

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.techn. Nysret Musliu

Vienna, May 8, 2024
Philipp Danzinger Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Philipp Danzinger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Mai 2024
Philipp Danzinger

v

Acknowledgements

I would like to express my gratitude for my supervisor, Associate Prof. Dr. Nysret
Musliu, for his invaluable guidance and encouragement throughout this research. My
heartfelt thanks go to Dr. Florian Mischek, who always provided valuable help and
offered key insights. In addition, I want to thank my other colleagues at TU Wien for
their helpful discussions and insights, and those at our industrial partner for providing
the real-world requirements and feedback that guided this work.

Finally, I am deeply appreciative of the unwavering support of my family throughout
this journey.

This work was financially supported by the Austrian Federal Ministry for Digital and Eco-
nomic Affairs, the National Foundation for Research, Technology and Development and
the Christian Doppler Research Association. Their support is gratefully acknowledged.

vii

Kurzfassung

Das Test Laboratory Scheduling Problem (TLSP) ist ein kürzlich vorgeschlagenes Zeit-
planungsproblem, das auf den realen Zeitplanungsanforderungen eines industriellen Test-
labors basiert. TLSP ist mit dem bekannten Resource Constrained Project Scheduling
Problem (RCPSP) verwandt.

Eine Erweiterung von TLSP im Vergleich zum RCPSP ist die Unterteilung von Ressourcen
in drei Kategorien: Angestellte, Arbeitsbänke und Ausrüstung, die jeweils unterschiedliche
Eigenschaften und Einschränkungen aufweisen. Im Laufe der Zeit stellten neue reale
Zeitplanungsanforderungen diese Taxonomie in Frage.

Der erste Teil dieser Arbeit behandelt dieses Problem, indem eine neue Problemva-
riante vorgeschlagen wird, TLSP with Generalized Resources (TLSP-GR), die diese
Ressourcentypen in ein einziges Konzept vereinheitlicht. Dies löst sofort einige der neuen
Planungsanforderungen und bietet eine elegante Basis für die Implementierung weiterer.
Zur Lösung des TLSP-GR wird ein Constraint-Programming-Modell entwickelt. Durch
sorgfältige Generalisierung und Optimierung des neuen Modells bleibt dessen Leistung
weiterhin konkurrenzfähig mit dem bestehenden State-of-the-Art-Modell für TLSP.

Der zweite Teil dieser Arbeit befasst sich mit der Erweiterung des CP-SAT-Solvers aus der
OR-Tools-Suite von Google, um dessen Leistung bei komplexen Zeitplanungsproblemen
wie TLSP zu verbessern. Obwohl CP-SAT für seine ausgezeichnete Leistung bekannt ist
und regelmäßig Goldmedaillen bei der MiniZinc Challenge gewinnt, hinkte seine Leistung
für TLSP-Instanzen bisher hinter dem akademischen Chuffed-Solver hinterher.

Um diese Lücke zu schließen, wird CP-SAT erweitert, um Priority Search und Such-
strategien mit zufälliger Variablenauswahl zu unterstützen, und es wird eine Hot-Start-
Unterstützung zu seinem MiniZinc-Backend hinzugefügt. Obwohl die Verbesserungen
durch Priority Search überraschenderweise durch eine Suchstrategie repliziert werden
können, die diese Funktion nicht verwendet, machen die Erweiterungen insgesamt den
Solver zu einer kompetitiven Option für TLSP, die mit den state-of-the-art Ergebnissen
übereinstimmt, wenn der Solver in einen bestehenden VLNS-Algorithmus für TLSP
eingebaut wird.

Mit den Methoden aus dieser Arbeit werden 4 neue Optimalitätsergebnisse für TLSP
erzielt. Darüber hinaus werden neue Bestmarken für 17 von 33 Testinstanzen erreicht.

ix

Abstract

The Test Laboratory Scheduling Problem (TLSP) is a recently proposed complex schedul-
ing problem based on the real-world scheduling requirements of an industrial test lab-
oratory. TLSP is related to the well-known Resource Constrained Project Scheduling
Problem (RCPSP).

One extension in TLSP compared to the RCPSP is the division of resources into three
categories: employees, workbenches, and equipment, each with different properties and
constraints. Over time, new real-world scheduling requirements put this taxonomy into
question.

The first part of this Thesis addresses this by proposing a new problem variant, TLSP with
Generalized Resources (TLSP-GR), which unifies these resource types into a single concept.
This immediately solves some of the new scheduling requirements and provides an elegant
basis for implementing others. To solve TLSP-GR, a new Constraint Programming (CP)
model is proposed. Through careful generalization and optimization of the new model,
its performance on TLSP instances is still competitive with the existing state-of-the-art
model for TLSP.

The second part of this Thesis concerns extending the CP-SAT solver from Google’s
OR-Tools suite to improve its performance on complex scheduling problems like TLSP.
While CP-SAT is known for its excellent performance, routinely winning gold medals at
the MiniZinc Challenge, its performance lagged behind the academic Chuffed solver on
TLSP instances.

In an attempt to close this gap, CP-SAT is extended to support priority search and
random variable selection, and hot-start support is added to its MiniZinc backend. While
the improvements from priority search can surprisingly be replicated through a search
strategy not using this feature, the overall extensions to the solver make it a viable option
for TLSP, matching state-of-the-art results when included in an existing VLNS algorithm
for TLSP.

Using the methods from this Thesis, 4 new optimality results are achieved for TLSP. In
addition, new state-of-the-art penalties are achieved for 17 out of 33 test instances.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aim of the Thesis . 2
1.2 Contributions . 3
1.3 Structure of the Thesis . 3

2 Background and Related Work 5
2.1 Constraint Programming . 5
2.2 MiniZinc Search Annotations . 6
2.3 Priority Search . 7
2.4 Test Laboratory Scheduling Problem (TLSP) 8
2.5 Very Large Neighborhood Search (VLNS) 9

3 TLSP-GR (TLSP with Generalized Resources) 11
3.1 Problem Description . 13
3.2 Solution Constraints . 17
3.3 Reducing TLSP to TLSP-GR . 22
3.4 Constraint Programming Model . 25
3.5 Performance Optimizations . 32

4 Extending CP-SAT with Priority Search 37
4.1 Search in CP-SAT . 38
4.2 Priority Search Implementation . 41
4.3 Other Adjustments to CP-SAT . 42

5 Experimental Results 45
5.1 Benchmark Instances . 45
5.2 TLSP with Generalized Resources . 47
5.3 Priority Search in CP-SAT . 49

xiii

5.4 Comparison to State of the Art . 52

6 Conclusion 57

List of Figures 59

List of Tables 61

List of Algorithms 63

Bibliography 65

CHAPTER 1
Introduction

The Test Laboratory Scheduling Problem (TLSP) [MM18b] is a recently introduced
NP-complete scheduling problem that is based on the scheduling requirements of a real-
world industrial test laboratory. TLSP is similar to the well-known Resource-Constrained
Project Scheduling Problem (RCPSP) [BDM+99], albeit with several extensions. For
instance, tasks need to be grouped into jobs before they can be scheduled. There
are multiple projects to schedule, like in [WKS+14], jobs can be scheduled in different
modes similarly to [TPM09], and there are heterogeneous resources like in [DPRL98]. Of
particular relevance to this Thesis, resources are further split into employees, workbenches,
and equipment, each group having different constraints and properties. To give one
example, the number of required employees depends only on the chosen mode, while
the required number of workbenches and equipment depends on the tasks themselves.
TLSP solvers have been successfully deployed for daily scheduling operations in the
laboratory of our industrial partner. Over time, new scheduling requirements emerged
in the industrial partner’s laboratory that went beyond the current TLSP formulation,
and other test laboratories started showing interest. These requirements necessitate
extending TLSP and adding new constraints.
Many of these new requirements are related to employees, workbenches, and equipment.
Directly extending TLSP with new constraints to cover these requirements would have
been quite cumbersome and involved duplicated effort for the different types of resources.
It seemed more worthwhile to unify employees, workbenches, and equipment into a single
concept called resources, which would allow the new requirements to be modeled more
simply and with fewer added constraints. The first part of this Thesis concerns performing
this generalization and solving it with a Constraint Programming (CP) model.
One state-of-the-art solution method for TLSP is a VLNS algorithm whose neighborhood
can be explored by solving small subproblems with CP, as proposed in [DGMM20].
Currently by far the most efficient way to solve these subproblems is using the Chuffed
solver [Chu11] with a custom search strategy based on priority search. Priority search is

1

1. Introduction

a proposed extension to the search annotations in the MiniZinc constraint programming
language that allows the solver to switch between different specified search strategies
based on the bounds of arbitrary variables. The CP-SAT [PD21] solver (part of Google’s
OR-Tools software suite) has shown excellent performance in the MiniZinc Challenge
[SFS+14] in recent years, routinely winning first place and beating both open-source
and commercial solvers. However, in past experiments, CP-SAT has shown mediocre
performance for TLSP. This might be due to its lack of support for priority search, which
has been crucial for achieving high performance on TLSP using the Chuffed solver. The
second part of this Thesis revolves around extending CP-SAT to improve its performance
for TLSP and similar problems.

1.1 Aim of the Thesis
The aim of this Thesis is twofold:

1. To find a way to generalize TLSP such that the different types of resources are
unified and that the problem can still be solved efficiently.

2. To investigate the impact of priority search on the performance of CP-SAT for
TLSP and potentially find other improvements that could make the solver more
competitive for TLSP.

To achieve this, I use the following methodology:

1. Generalizing resources in TLSP involves creating a new problem variant, TLSP
with Generalized Resources (TLSP-GR), that merges employees, workbenches, and
equipment into a single concept called resources, while still being able to model
the original TLSP requirements. Then, a new constraint programming model for
TLSP-GR needs to be created. To ascertain the performance in real-world use, an
existing state-of-the-art VLNS algorithm for TLSP should be adapted to use the
new CP model. Finally, the new CP model and the adapted VLNS algorithm need
to be compared to existing state of the art for solving TLSP instances.

2. Extending CP-SAT with priority search: first, this involves analyzing the source
code of CP-SAT to find out how user-defined search strategies are implemented
and how priority search could be implemented. If possible, priority search needs to
be implemented. To fully support the TLSP VLNS algorithm, randomized variable
selection and hot start should be implemented as well. Then, the modified CP-SAT
solver should be evaluated using both the CP model and the VLNS algorithm. The
results should be compared to an unmodified version of CP-SAT, other solvers, and
the state of the art solution methods for TLSP.

2

1.2. Contributions

1.2 Contributions

• This Thesis proposes TLSP with Generalized Resources (TLSP-GR), a new problem
variant of TLSP that is more general and can adapt to more real-world scheduling
requirements.

• The Thesis further proposes a Constraint Programming model for TLSP-GR and
shows competitive performance with the state-of-the-art on existing TLSP instances.

• This Thesis presents an implementation of the priority search feature in Google’s
CP-SAT solver, showing the necessary changes to internal data structures and
algorithms. Additional features, hot start, and random variable selection are also
considered.

• Using the aforementioned methods, this Thesis presents some new state-of-the-art
results for TLSP instances. To my knowledge, only 2 of the 33 publicly available
TLSP instances have been solved to optimality. Using the solution approaches
in this Thesis, I found optimal solutions for 4 additional instances, and, to my
knowledge, new state-of-the-art penalties for 17 other instances.

1.3 Structure of the Thesis
This Thesis is structured as follows:

• Chapter 2 provides background information on Constraint Programming (CP), CP
search strategies as implemented in the MiniZinc language, the Test Laboratory
Scheduling Problem (TLSP), and the Very Large Neighborhood Search (VLNS)
algorithm for TLSP.

• Chapter 3 introduces the new problem variant TLSP with Generalized Resources
(TLSP-GR). This includes the problem description and a formal specification of
the constraints. Then, a problem reduction from TLSP is described that shows
how TLSP instances can be expressed as TLSP-GR instances. Then, a Con-
straint Programming model for TLSP-GR is proposed. Finally, some performance
optimizations for the CP model are discussed.

• Chapter 4 describes how user-defined search strategies are implemented in Google’s
CP-SAT solver and what changes to its data structures and algorithms are necessary
to implement priority search. It also covers the implementation of hot start and
random variable selection features.

• Chapter 5 presents experimental results to evaluate the performance of the methods
proposed in earlier chapters. First, the performance of the new CP model for
TLSP-GR is compared to the existing state-of-the-art TLSP model, both on its
own and as part of the VLNS algorithm. Next, the impact of priority search and

3

1. Introduction

the other modifications to CP-SAT is analyzed, again using pure CP as well as the
VLNS algorithm to solve TLSP instances. Finally, the results are compared to the
state of the art results on TLSP.

• Chapter 6 concludes the Thesis. It summarizes the main results and contributions
and discusses potential future work.

4

CHAPTER 2
Background and Related Work

This Chapter covers the background and existing research relating to this Thesis. Section
2.1 covers Constraint Programming (CP) in general, then Sections 2.2 and 2.3 go into
detail about search strategies and their implementation in the constraint programming
language MiniZinc. Next, Section 2.4 covers the existing research on the Test Laboratory
Scheduling Problem (TLSP). Finally, Section 2.5 covers the Very Large Neighborhood
Search (VLNS) algorithm that has been proposed for TLSP and represents a state-of-
the-art solution approach.

2.1 Constraint Programming
Constraint Programming (CP) is a declarative programming paradigm based on the
NP-complete Constraint Satisfaction Problem (CSP). A CSP instance consists of a set of
variables with domains, and constraints. Historically, constraint programming has early
roots in interdisciplinary applications in the 60s [Sut63], taking more shape throughout
the 70s [Mon74] [Wal75]. Based on [Bar99], a constraint programming instance formally
consists of:

• A set X of variables, X = {x1, . . . , xn}.

• For each variable, a finite set Di called its domain.

• A set of constraints, each restricting the possible assignments of one or more
variables. Each constraint is described by a subset of the cartesian product of the
domains of the variables it restricts.

A solution to a CSP instance is an assignment that assigns each variable some value from
its domain, such that every constraint is satisfied.

5

2. Background and Related Work

Constraint programming is not limited to satisfiability and can also be used for opti-
mization. A Constraint Satisfaction Optimization Problem (CSOP), or just Constraint
Optimization Problem (COP), is a CSP with an additional objective function that maps
every solution to a numerical objective value to minimize (or maximize). The solution to
a CSOP is any valid solution to the underlying CSP whose objective value is minimal (or
maximal).

Solvers for these problems usually work by combining propagation and search. Propa-
gation means using the constraints to make logically valid inferences that restrict the
possible domains of variables. Since propagation on its own is virtually never enough,
the solver also has to search the space of possible solutions by branching on variables.
Branching often happens on concrete variable assignments, but can, in principle, happen
on any domain restrictions.

To increase performance, optimized data structures and heuristics like VSIDS [MMZ+01]
can be employed. Many modern solvers, like Chuffed [Chu11] and CP-SAT [PD21] (the
main CP solver included in Google’s OR-Tools suite) also employ SAT-solving techniques,
encoding some propositions about the variables as boolean variables. This allows them
to use techniques like conflict-driven clause learning.

When the solver needs to make a decision that further constrains a variable, the decision
can be purely based on heuristics, or guided by a user-specified search strategy. Search
strategies that encode human intuitions about what a ’promising’ or ’good’ solution
looks like can sometimes result in a big performance improvement. MiniZinc [NSB+07]
is a constraint programming language that supports a variety of solvers and allows
the programmer to specify basic rules about the variable and value selection strategies.
Priority search [FGS+17] is a proposed extension to these rules allowing strategies that
switch between different rules based on the current domain bounds of arbitrary variables.
However, the support for priority search across solvers is quite limited. To my knowledge,
it is currently only implemented in the academic Chuffed solver [Chu11] and not included
in commercial or other open-source solvers.

2.2 MiniZinc Search Annotations
MiniZinc [NSB+07] is a solver-independent declarative programming language for Con-
straint Programming.

Of particular interest for this Thesis, MiniZinc includes support for user-specified search
strategies through syntactic objects called annotations. Specifying a good search strategy
can be critical for performance since a good choice of branching order can guide the solver
into promising parts of the search space. For solvers that incorporate clause generation
like Chuffed [Chu11] and CP-SAT [OrT], the branching order also has a strong impact
on what clauses are generated.

6

2.3. Priority Search

ann ::= seq_search(array of ann)

ann ::= int_search(array of var int, varsel, valsel)
ann ::= bool_search(array of var bool, varsel, valsel)
ann ::= set_search(array of var set of int, varsel, valsel)
ann ::= float_search(array of var float, <precision>, varsel,

→ valsel)

varsel ::= [input_order, first_fail, smallest, dom_w_deg]
valsel ::= [indomain_min, indomain_median, indomain_random,

→ indomain_split]

Listing 2.1: Search annotations supported by MiniZinc, as listed in the MiniZinc handbook
version 2.8.3 [SMT24].

Listing 2.1 shows the syntax for the search annotations supported by MiniZinc according
to [SMT24] in an EBNF-like notation. Each basic search annotation (int_search,
bool_search, set_search, float_search) contains an array of decision vari-
ables (of type var int, var bool, var set of int, or var float), a variable
selection strategy and a value selection strategy. When the solver needs to branch, it
uses an annotation by sorting the variables according to the variable selection strategy,
selecting the first non-fixed variable from the list, and branching according to the value se-
lection strategy. seq_search can be used to chain multiple search annotations together.
When all variables in the first annotation are already fixed, the next annotation is used,
and so on. Of the different search annotations above, int_search and seq_search
are most relevant to this thesis, since set_search and float_search are not widely
supported by solvers and bool_search can be viewed as a special case of int_search.

The variable and value selection strategies include some typical heuristics used in Con-
straint Programming. For instance input_order just branches on the variables in the
order in which they appear in the array, while first_fail selects the variable with
the smallest remaining domain. The value selection strategies are quite self-explanatory.
For instance, indomain_min chooses the numerically smallest possible value, while
indomain_random selects randomly. Not every strategy and annotation is supported
by every solver.

2.3 Priority Search
The default search strategies in MiniZinc have limitations: search annotations are always
processed in the same order, and the priority of a variable inside of a search annotation
can only depend on its own domain. For TLSP and TLSP-GR, this means it is not
possible to schedule whole tasks or jobs at once unless the order in which the tasks or
jobs are scheduled is fixed in advance.

7

2. Background and Related Work

Priority search [FGS+17] is a proposed extension to the MiniZinc search annotations
that allows the solver to switch between different search annotations based on its current
state.

ann ::= priority_search(array of var int, varsel, array of ann)

Listing 2.2: Priority search MiniZinc annotation from [FGS+17], extending the
annotations from Listing 2.1.

Listing 2.2 shows how priority search is defined. Like the search annotations before,
it takes in an array of decision variables and a variable selection strategy. However,
instead of a value selection strategy, there is an additional array of search annotations,
which must have the same length as the variable array. During runtime, the solver ranks
the variables according to the variable selection strategy, like before. However, when it
chooses a variable, instead of branching on that variable, it processes its corresponding
annotation instead. If that search strategy yields a branching decision, that decision
is returned. Otherwise, the search strategy corresponding to the next best variable is
considered, and so on.

The TLSP-GR model from Section 3.4 uses priority search to select a task based on
its earliest possible start time (variable selection strategy smallest on ṡa) and then
schedules that task completely by setting the job assignment, start time, resource
assignments and mode assignment.

2.4 Test Laboratory Scheduling Problem (TLSP)
The Test Laboratory Scheduling Problem (TLSP) is an NP-complete scheduling problem
first proposed by [MM18b]. The problem was modeled after the scheduling requirements
of a real-world industrial test laboratory. TLSP is related to the classic Resource-
Constrained Project Scheduling Problem (RCPSP), where tasks belonging to projects
need to be scheduled and assigned resources. However, TLSP includes a substantial
number of features that go beyond the standard RCPSP. For instance, TLSP allows
tasks to be completed in different modes, like in the Multi-Mode Resource-Constrained
Project Scheduling Problem (MRCPSP) [TPM09]. There are multiple projects, similar
to [WKS+14]. There are heterogeneous resource like in [DPRL98]. In addition, TLSP
resources are further divided into different categories: employees, workbenches, and
equipment, which each have slightly different properties and scheduling requirements.
Perhaps most substantially, tasks in TLSP are not scheduled directly. Instead, they first
need to be grouped into jobs, which become the unit of scheduling. The duration and
required resources for a job are computed based on the task it contains. In addition to
the sum of the tasks’ durations, a job’s duration contains an additional set-up time that
encourages a solver to form large jobs. On the other hand, the resources assigned to a
job need to cover all its tasks’ requirements for the job’s whole duration, encouraging
smaller jobs.

8

2.5. Very Large Neighborhood Search (VLNS)

Multiple solution methods have been proposed for TLSP. Originally, these concentrated
on a scheduling sub-problem, TLSP-S (also proposed in [MM18b]), where the grouping
of tasks into jobs is fixed and given as part of the input. The TLSP-S literature covers
Constraint Programming and a hybrid VLNS algorithm [GMM22], Simulated Annealing
[MM21] and Constraint Answer-Set Programming [GMM21]. The full TLSP was first
solved in [DGMM20] using Constraint Programming and a hybrid VLNS algorithm.
Later approaches for the full TLSP also covered Simulated Annealing [MMS23] and
hyper-heuristics [MM23].

2.5 Very Large Neighborhood Search (VLNS)
Very Large Neighborhood Search generally refers to local search techniques where the
neighborhoods themselves have exponential size [AOEOP02]. Regarding TLSP, a VLNS-
based algorithm was first proposed in [GMM22] for the scheduling sub-problem TLSP-S,
and later generalized to the full TLSP by [DGMM20].

The algorithm is based on hill climbing and uses a neighborhood based on a destroy-and-
repair heuristic. Its neighborhood is based on re-scheduling a small number of projects,
as tasks in TLSP instances are grouped into projects, with roughly 5-100 projects in an
instance. Classically, the algorithm starts from a feasible solution that is derived, for
instance, by constraint programming. At a high level, the algorithm then repeatedly
deletes the schedule for a small number of projects and re-schedules those projects with
a constraint programming solver. The algorithm can use two different CP models: one
for the full TLSP and one for TLSP-S, which cannot change the grouping of jobs into
tasks but is faster. Whenever an improvement is obtained, the schedule is updated. The
algorithm further employs a tabu list to avoid retrying unsuccessful project combinations.

This Thesis uses a variant of the VLNS algorithm where the neighborhood is also used
to obtain the initial feasible solution, after starting from an infeasible solution generated
by a greedy construction heuristic. In this case, when using the CP model to re-schedule
a small number of projects, pre-processing ensures that conflicts in other projects are
removed for the sub-instance. This can make instances feasible even if the CP solver
cannot solve them on its own.

What follows is a more detailed description of how the algorithm works. Many aspects of
the algorithm state, including the content of the tabu list and the number of projects to
re-schedule, are duplicated for the TLSP and TLSP-S solvers, which is indicated using
square brackets.

• At the beginning, the neighborhood sizes k are initialized to 1 (for both TLSP and
TLSP-S). The solver timeouts t are initialized to tlsp[s]MoveTimeout.

• For each iteration:

– Randomly choose between TLSP and TLSP-S solver using tlspProb.

9

2. Background and Related Work

– Find a project combination for size k not part of the tabu list. When the
solution is already feasible, the combination has k projects. If it is still
infeasible, every increase of k beyond 1 means that for some random project,
all overlapping projects are added k−1 times.

– Create a CP instance where these projects have their schedule deleted and
tasks in other projects are replaced by dummy tasks to keep their resources
occupied. With probability tlsp[s]HotStartProb, hot-start the solver with the
existing schedule. If the solver is not hot-started, change the search strategy
for resources to random to get more variation in the solutions. Solve the
instance with the current timeout t.

– If successful, update the schedule accordingly, reset k to 1 and t to tlsp[s]MoveTimeout,
and clean up the tabu list, removing all project combinations that overlap
in time with the current project selection. If unsuccessful add the current
combination to the tabu list, also storing whether the instance was infeasible
or whether there was a timeout. If there are no new combinations for size k,
increase it by 1 (or 2 with probability tlsp[s]JumpProb). If there are no new
combinations of any size, increase t by an exponential factor, reset k to 0, and
delete timeout-based entries from the tabu list.

10

CHAPTER 3
TLSP-GR (TLSP with
Generalized Resources)

TLSP solvers have been deployed in a real-world industrial test laboratory, where they
are being used to conduct long-time scheduling operations [DGJ+23].

Over time, additional scheduling requirements emerged that go beyond the current TLSP
formulation and require extending instances with new parameters or adding additional
constraints. At the same time, other test laboratories started showing interest in TLSP
to manage their scheduling operations. Their scheduling requirements differed in some
respects from those in the original laboratory, which would also necessitate extending
TLSP. Many of these new requirements were related to employees, workbenches, and
equipment.

For instance, TLSP contained a constraint that allows tasks to be linked, which denotes
that they must be performed by the same employees. One requirement that emerged was
that this constraint could be applied to workbenches and/or equipment as well. As another
example, TLSP contained a soft constraint where tasks could specify preferred employees,
which are assigned preferentially. Extending this to workbenches and equipment also
turned out to be a useful feature. Finally, an additional requirement by the original
laboratory was to have a constraint that would allow workbench assignment to restrict
equipment assignment. This could be used to model equipment that is hard to move and
should be used near its storage location.

A common thread with all of these additional requirements is that they are all made
more complicated by the distinction between employees, workbenches, and resources. A
large part of what sets employees apart from workbenches or equipment is the ability
to link the employee assignment together for different tasks, and the ability to specify
preferred employees. Yet, it turned out useful for practical scheduling to extend these
properties to workbenches and equipment. The requirement about restricting workbench

11

3. TLSP-GR (TLSP with Generalized Resources)

and equipment assignment based on one another is a bit different but fits into a similar
pattern. In talking with the industrial partner, it turned out that they also had a use-
case for an equivalent feature relating other types of resources, for instance connecting
employee assignment to equipment assignment. However, with the existing description of
TLSP, this would require adding at least 3 new constraints. And even more, should the
requirement arise to also connect, for example, equipment to other equipment, in this
manner.

A more elegant solution might be to unify employees, workbenches, and equipment into
a single concept, resources. Then the first two requirements, linking tasks for identical
workbenches/equipment and preferred workbenches/equipment, could be satisfied with-
out adding any new constraints at all. The third requirement, connecting workbench
assignments to equipment assignments, could be generalized to all types of resources
with a single constraint.

This Chapter proposes a new problem variant, TLSP with Generalized Resources (TLSP-
GR), which can be considered a more general variant of TLSP. Instead of employees,
workbenches and, equipment, TLSP-GR only contains resources. All modeling features
from TLSP that were specific to either employees, workbenches, or equipment, are
generalized in a manner that still allows TLSP instances to be expressed in TLSP-GR
while adding new modeling possibilities. The Chapter also introduces a new constraint
programming model for TLSP-GR, which is evaluated later in Chapter 5.

The rest of this Chapter is structured as follows:

• Section 3.1, the first Section in this Chapter, introduces the new problem variant
TLSP with Generalized Resources (TLSP-GR) and presents its problem description.
The Section describes how instances and solutions are specified, including an
informal description of the intended semantics and constraints. Deviations from
TLSP are highlighted by presenting the TLSP-GR specifications alongside the
existing TLSP ones to provide a comparison, explain the reasoning behind the
generalizations, and detail which modeling decisions had to be made during the
generalization.

• Section 3.2 formally specifies the hard- and soft-constraints of the new TLSP-GR.
Again, differences to the existing TLSP are highlighted.

• Section 3.3 explains how TLSP instances can be solved with a TLSP-GR solver
and specifies the problem reduction from TLSP to TLSP-GR.

• Section 3.4 proposes a new Constraint Programming (CP) model for TLSP-GR. It
encompasses both the grouping and scheduling stages and covers all hard and soft
constraints.

• Section 3.5 explains various redundant constraints and other performance optimiza-
tions for the CP model. It places a strong focus on optimizations that are either

12

3.1. Problem Description

exclusive to TLSP-GR, or whose generalization from its TLSP counterpart proved
particularly challenging.

3.1 Problem Description
Just like for TLSP, a TLSP-GR instance consists of a set of projects to schedule and
an environment. Projects can contain any number of tasks together with their resource
requirements and other information like precedences. The environment contains infor-
mation about the length of the scheduling horizon, the available resources, as well as
information about an existing schedule. A solution consists of a grouping of tasks into
jobs, as well as time slot and resource assignments for these jobs.

Just like TLSP contains the scheduling sub-problem TLSP-S, TLSP-GR has a scheduling
sub-problem TLSP-GR-S. TLSP-GR-S instances look and function just like TLSP-GR
instances, except that the grouping from tasks into jobs is also given as part of the input,
and not determined by the solver.

The rest of this section specifies the problem description for a TLSP-GR instance and
contrasts it with TLSP. In this Section, the parts about TLSP are based on [MM18b],
while the modifications for TLSP-GR are a novel contribution of this thesis.

3.1.1 Environment
In both TLSP and TLSP-GR, the scheduling horizon consists of a set of time slots
t ∈ T = {0, . . . , |T | − 1}. Since the grouping aspect of the problem allows for a more
coarse-grained scheduling, one time slot typically corresponds to half a workday. However,
this is not required.

Next, there is a set of modes m ∈ M = {1, . . . , |M |}. In a solution, each job needs
to be assigned exactly one mode. Modes allow for trade-offs between a job’s duration
and resource consumption. In TLSP, this only concerns employee requirements, but in
TLSP-GR, it can affect other resource requirements as well. Each mode has an associated
time factor vm ∈ R that acts as a multiplier for the duration of tasks performed under
that mode.

Additionally, there are the available resources.

TLSP only
TLSP splits resources into employees, workbenches, and equipment. Resources are
heterogeneous, and individual units may be compatible with different tasks.

• Employees e ∈ E = {1, . . . , |E|} may be assigned to perform jobs.

• Workbenches b ∈ B = {1, . . . , |B|} serve as special locations to perform tasks.
As such, each job may be performed on at most one workbench.

13

3. TLSP-GR (TLSP with Generalized Resources)

• Equipment is split into groups. The set of all groups is denoted
G∗ = {G1, . . . , G|G∗|}. Each group Gi = {1, . . . , |Gg|} with index i contains
|Gi| pieces of equipment, and tasks can require different numbers of equipment
pieces from each group.

Finally, in TLSP the number of employees required to perform a job depends only on
the chosen mode m and is identical for all jobs. Therefore, the number of required
employees for each mode m is part of the Environment and given by em ∈ N0, m ∈ M .

TLSP-GR only
TLSP-GR unifies employees, workbenches, and equipment into a single concept
called resources. Like equipment in TLSP, the resources in TLSP-GR are partitioned
into groups. As explained in detail in Section 3.3, when reducing TLSP instances
to TLSP-GR, employees and workbenches each become a single resource group,
alongside the existing equipment groups.

• Resources are split into groups. The set of all resource groups is denoted
R∗ = {R1, . . . , R|R∗|}. Each resource group with index i consists of individual
resources Ri = {1, . . . , |Ri|}. Tasks may require any number of resources from
any resource group.

Since TLSP-GR needs to account for all types of resources from TLSP, the number
of resources required by a task may depend on the task as well as its chosen mode.
Therefore, the required number of Employees for performing a task is no longer part
of the Environment.

Furthermore, Lrg ⊆ R∗ represents the set of resource groups such that resource
assignments for resources in this group must be identical for tasks that are linked
(as defined later).

Finally, TLSP contained a soft constraint to minimize the number of different
employees working on a project. To generalize it, TLSP-GR instances contain a set
of resource groups Rmin ⊆ R∗ for which the number of different units assigned to
jobs of a project should be minimized.

3.1.2 Projects and Tasks

The basic anatomy of Projects and Tasks is identical for TLSP-GR and TLSP. Each
instance contains a set of projects p ∈ P .

Each project p contains a set of tasks a ∈ Ap. For notational convenience, pa refers to
the project that the task a belongs to. The set of all tasks is A∗ = p∈P Ap. Each task
can only be part of one project, so Ap ∩ Aq = ∅ for all p, q ∈ P, p ̸= q.

14

3.1. Problem Description

Furthermore, the tasks in each project p are partitioned into task families Fp,i ⊆ Ap

indexed by the project p and an additional index i. The family of a task a is denoted
by fa, the set of families for project p is Fp, and the set of all families across projects is
F ∗. The set of tasks belonging to family f is denoted Af . Task families serve a two-fold
purpose: firstly, only tasks from the same family may be grouped together into a job.
Secondly, each family has a setup time sf ∈ R+

0 associated with it. When a job is formed
from tasks in a family f , the setup time sf gets added to the sum of the durations of its
tasks to calculate the total duration of the job. The setup time is also subject to the
mode time factor vm discussed earlier in 3.1.1.

Finally, each project p contains a set Lp of sets of linked tasks. Formally, Lp is an
equivalence relation over the tasks in p. In TLSP, linked tasks need to be performed by
the same employees. In TLSP-GR, this can be toggled for each resource group.

Each task a has various properties associated with it:

• Each task has a release date αa ∈ T , which is the earliest possible start date. It also
has a soft due date ω̄a ∈ T , whose violation incurs a penalty, and a hard deadline
ωa ∈ T , by which it must be completed.

• Each task has a set Ma ⊆ M of available modes.

• Each task has a duration da ∈ R+
0 .

• Each task has a set of predecessor tasks from the same project Pa ⊆ Ap where
p = pa. Each task must be performed after every of its predecessor tasks, or
grouped into the same job.

Next up, each task also has resource requirements. This is where TLSP-GR differs from
TLSP.

TLSP only
In TLSP, each task also has the following properties.

• A set of qualified employees, Ea ⊆ E. In a solution, only employees from Ea

may be assigned to a job containing a. The number of required employees only
depends on the mode and therefore is not part of a task.

• A set of preferred employees EP r
a ⊆ Ea. Assigning a non-preferred employee

to a job containing a incurs a penalty.

• A binary value ba ∈ {0, 1} that specifies whether this task needs to be performed
on a workbench or not. It also has a set of available workbenches Ba ⊆ B,
analogously to qualified employees.

15

3. TLSP-GR (TLSP with Generalized Resources)

• For each equipment group g ∈ G∗, a task may require a number ra,g ∈ N⊬ of
equipment pieces. Again, there is a set of available equipment pieces Ga,g ⊆ Gg

for each equipment group g.

In TLSP, employees, workbenches, and equipment groups are treated in a similar manner
in many respects. In particular, each task has a set of available resources for employees,
workbenches, and each equipment group. And for workbenches and equipment groups,
each task specifies the number of units it requires.
This symmetry is broken in a few ways in TLSP: tasks can only require at most one
workbench and, more importantly, preferred employees do not exist for other resources
and the number of required employees only depends on the chosen mode, not the task.
TLSP-GR addresses the part about preferred employees by generalizing preferred em-
ployees to all resources. Regarding the different sources for the number of required
resources, there are different reasonable ways to generalize this. One way would be
that resource requirements in TLSP-GR can either depend on a job’s mode or its tasks,
but not both. Another option is that resource requirements can be a function of both
tasks and modes, allowing for a more complicated interplay between tasks and modes.
TLSP-GR uses the latter approach, which allows for more flexibility when specifying
resource requirements. This potentially comes at the cost of drastically increasing the
size of the search space and, for the CP model, the number of constraints. However, as
discussed later in Section 3.5, this performance impact can be practically nullified in
the CP model for TLSP-like instances by including additional constraint variants for
special cases. Thus, this increased flexibility only comes at a performance cost where it
is actually used.

TLSP-GR only

• From each resource group with index g in R∗, a task a requires a number
ra,g,m of units that may also depend on the mode m ∈ M . It also has a set
of available resources Ra,g ⊆ Rg, and a set of preferred resources RP r

a,g ⊆ Rg.
Only available resources may be assigned to a job containing a, and assigning
non-preferred resources incurs a penalty.

3.1.3 Initial Schedule

The original formulation of TLSP [MM18b] includes a way of specifying an existing
schedule, including the grouping into jobs and assignments for time slots, modes, and
resources. The specification states that this information can be used to jump-start the
solver or to restrict solutions.

The problem description used for this thesis excludes most of this information, as it
would complicate the model without adding much expressivity. Forcing some assignments

16

3.2. Solution Constraints

in solutions can also be achieved by preprocessing the instance to restrict release dates,
due dates, and available resources and modes.

One part that is still of importance, however, is the set of base jobs J0. Formally, each
base job j ∈ J0 is a set of tasks, so j ⊆ Af for some task family f ∈ F ∗. All tasks from
each base job must be part of the same job in a solution. The tasks a ∈ j are called fixed
tasks. Note that a solution may still add additional tasks to the job.

Additionally, as a subset of the base jobs, there are started jobs J0S ⊆ J0. Started jobs
represent jobs that are already in progress. As such, in a solution, any job formed from
a started job must have start time 0 and incurs no setup time. In practice, resource
assignments for started jobs are usually restricted in preprocessing to prevent the solver
from changing them.

For the scheduling-only subvariant TLSP-GR-S, the initial schedule also contains a
grouping J of tasks into jobs. In this case, the grouping is fixed and given as part of the
input, and not determined by the solver.

3.1.4 Solution Description
A solution to a TLSP-GR instance consists of:

• A grouping J of tasks into jobs. Each job j ∈ J is a set of tasks. Only tasks from
the same task family inside the same project may be grouped together. (For the
scheduling sub-variant TLSP-GR-S, this part of the instance instead.)

• An assigned mode for each job. The mode chosen for a job must be available for
all of its tasks.

• A start and completion time for all jobs. For every job, the start time must be
bigger than or equal to the release time of all of its tasks and its completion
time must be smaller than or equal to the deadline of its tasks. The difference
between completion and start time must equal the job’s duration. The duration
of a job j containing tasks from family f and performed in mode m is given by
⌈vm · (sf + a∈j da)⌉. In the special case where ∃j0 ∈ J0S | j ∩ j0 ≠ ∅, the job is
considered a started job, and sf in the formula is set to 0.

• Resource assignments for each job. For each resource group, the assigned resources
must exactly cover the highest demand of any task in the job, and each assigned
resource must be available for all tasks. Every individual resource unit may only
be used by at most one job at the same time.

3.2 Solution Constraints
The previous Section defined the information a TLSP-GR instance contains and informally
described what conditions a valid solution must meet. This Section formally specifies

17

3. TLSP-GR (TLSP with Generalized Resources)

both the hard constraints a solution must satisfy, as well as the soft constraints that
represent various optimization objectives. Similar to the previous Section, the parts
of this Section concerning TLSP are based on [MM18b] with adjustments to notation
and some changes for consistency with the rest of this Thesis. The new constraints for
TLSP-GR are a novel contribution of this Thesis.

3.2.1 Solution Variables
Formally, a solution consists of assignments for the following variables:

J ⊆ 2A∗
. . . Set of jobs (given in TLSP-GR-S)

ṡj ∈ T j ∈ J . . . Assigned start time
ṅj ∈ T j ∈ J . . . Assigned completion time
ṁj ∈ M j ∈ J . . . Assigned mode

In addition, there are resource assignments. In TLSP, are three different types:

TLSP only

ȧEm
j ⊆ E j ∈ J . . . Employee Assignment

ȧW b
j ∈ B ∪ {⊥} j ∈ J . . . Workbench Assignment

ȧEq
j,g ⊆ Gg j ∈ J, Gg ∈ G∗ . . . Equipment Assignment

In TLSP-GR, there is just one type of resource assignment:

TLSP-GR only

ȧj,g ⊆ Rg j ∈ J, Rg ∈ R∗ . . . Job Resource Assignment

For notational convenience, let ja refer to the job j that task a ∈ A∗ is part of. The first
constraint will ensure that this job always exists and is unique. Similarly, let Jp refer to
the set of jobs that include tasks from project p.

3.2.2 Hard Constraints

∃!j ∈ J : a ∈ J ∀a ∈ A∗ (H1)
pa1 = pa2 ∧ fa1 = fa2 ∀j ∈ J, a1 ∈ j, a2 ∈ j (H2)
∃j ∈ J : j0 ⊆ j ∀j0 ∈ J0 (H3)

18

3.2. Solution Constraints

The Job Assignment constraint (H1) ensures every task is part of exactly one job.
The Job Grouping constraint (H2) enforces that all tasks within a job belong to the
same project and family.
The Fixed Tasks constraint (H3) requires that tasks assigned to a fixed job must all be
assigned to the same job in the solution.

ṅj − ṡj =

(a∈j da) · vṁj if ∃js ∈ J0S : js ⊆ j

(sfj
+ a∈j da) · vṁj otherwise

∀j ∈ J (H4)

ṡj ≥ max
a∈j

αa ∧ ṅj ≤ min
a∈j

ωa ∀j ∈ J (H5)

ja′ ̸= ja =⇒ ṅja′ ≤ ṡja ∀a ∈ A∗, a′ ∈ Pa (H6)
(∃js ∈ J0S : js ⊆ j) =⇒ ṡj = 0 ∀j ∈ J (H7)

The Job Duration constraint (H4) requires the interval from start to finish of a job to
align with the job’s calculated duration, which is based on its task, chosen mode, and
starting time (provided the job does not contain tasks from a started job).
The Time Window constraint (H5) specifies that each job must respect the release
date and deadline of all of its tasks.
The Task Precedence constraint (H6) asserts that a job may only start after the
completion of all its prerequisite jobs. Jobs inherit the precedence relation from their
tasks. Tasks with a precedence relation may also be performed as part of the same job.
The Started Jobs constraint (H7) ensures that a job incorporating fixed tasks from a
started job in the base schedule must begin at time slot 0.

19

3. TLSP-GR (TLSP with Generalized Resources)

TLSP only

{j ∈ J : ṡj ≤ t ∧ ṅj > t ∧ ȧW b
j = b} ≤ 1 ∀b ∈ B, t ∈ T (H8a-TLSP)

{j ∈ J : ṡj ≤ t ∧ ṅj > t ∧ e ∈ ȧEm
j } ≤ 1 ∀e ∈ E, t ∈ T (H8b-TLSP)

{j ∈ J : ṡj ≤ t ∧ ṅj > t ∧ q ∈ ȧEq
j,g } ≤ 1 ∀Gg ∈ G∗, q ∈ Gg, t ∈ T (H8c-TLSP)

(ȧW b
j = ⊥) ⇐⇒ ∀a∈j(ba = 0) ∀j ∈ J (H9a-TLSP)

|ȧEm
j | = eṁj ∀j ∈ J (H9b-TLSP)

|ȧEq
j,g | = max

a∈j
(ra,g) ∀j ∈ J, Gg ∈ G∗ (H9c-TLSP)

(ȧW b
j = ⊥) ∨ ∀a∈j(ȧW b

j ∈ Ba) ∀j ∈ J (H10a-TLSP)
ȧEm

j ⊆
a∈j

(Ea) ∀j ∈ J (H10b-TLSP)

ȧEq
j,g ⊆

a∈j

(Ga,g) ∀j ∈ J, Gg ∈ G∗ (H10c-TLSP)

ȧEm
ja1

= ȧEm
ja2

∀p ∈ P, L ∈ Lp,

a1, a2 ∈ L (H11-TLSP)

The Single Assignment constraints (H8a-TLSP–H8c-TLSP) prevent concurrent
assignment of workbenches, employees, and equipment, respectively. In particular,
(H8a-TLSP) ensures workbench exclusivity for every time slot t ∈ T , (H8b-TLSP)
does the same for employees, and (H8c-TLSP) for equipment in all groups Gg ∈ G∗.

The Resource Requirement constraints (H9a-TLSP–H9c-TLSP) handle resource
requirements. Workbench requirements are handled by (H9a-TLSP) and are binary,
(H9b-TLSP) handles employee requirements depending on a job’s mode, and equip-
ment requirements in (H9c-TLSP) for each job j and equipment group are based on
the task in j with the highest resource requirement for that group.

Similarly, the Resource Suitability constraints (H10a-TLSP–H10c-TLSP) that
assigned workbenches, employees, and equipment are compatible with all tasks in
a job. Like before, (H10a-TLSP) handles workbenches, (H10b-TLSP) ensures that
employees are qualified, and the equipment compatibility is ensured by the constraint
(H10c-TLSP) .

Lastly, the Linked Tasks constraint (H11-TLSP) ensures that linked tasks are
performed by the same employees. Here, this takes the form of demanding that such
tasks are either part of the same job or if they are part of different jobs, those jobs
have the exact same employees assigned.

20

3.2. Solution Constraints

TLSP-GR only

{j ∈ J : ṡj ≤ t ∧ ṅj > t ∧ r ∈ ȧj,g} ≤ 1 ∀Rg ∈ R∗, r ∈ Rg, t ∈ T (H8-GR)
|ȧj,g| = max

a∈j
(ra,g,ṁj) ∀j ∈ J, Rg ∈ R∗ (H9-GR)

ȧj,g ⊆
a∈j

(Ra,g) ∀j ∈ J, Rg ∈ R∗ (H10-GR)

ȧja1 ,g = ȧja2 ,g ∀Rg ∈ Lrg, p ∈ P, L ∈ Lp, a1, a2 ∈ L (H11-GR)

Compared to TLSP, TLSP-GR only needs one variant for each resource constraint.

The Single Assignment constraint (H8-GR) corresponds to (H8a-TLSP) through
(H8c-TLSP) and ensures at any time slot t, each resource unit in every resource
group Rg is assigned to at most one job. Extending this constraint is relatively
straightforward since the original constraints in TLSP are very similar.

The Resource Requirement constraint (H9-GR) unifies (H9a-TLSP) through
(H9c-TLSP) and specifies that for each job j and resource group Rg, the number
of assigned resources exactly matches the highest requirement of any task in j,
considering the job’s mode.

Resource Suitability constraint (H10-GR) guarantees that resources assigned to a
job from each group Rg are compatible with all tasks in the job.

Finally, the Linked Tasks constraint (H11-GR) ensures that linked tasks have the
same resources assigned, for those resource groups included in Lrg.

3.2.3 Soft Constraints
Similarly to TLSP, TLSP-GR contains 5 soft constraints. Each one corresponds to one
optimization objective and has an associated penalty si, i ∈ {1, 2, 3, 4, 5}.

s1 = |J | (S1)
s4 =

j∈J

max(ṅj − min
a∈j

(ω̄a), 0) (S4)

s5 =
p∈P

max
j∈Jp

ṅj − min
j∈Jp

ṡj

(S5)

The Number of Jobs constraint (S1) minimizes the total number of jobs.

The Due Date constraint (S4) penalizes jobs that end after their (soft) due date ω̄j .

The Project Completion Time constraint (S5) seeks to minimize the total completion
time for each project. That is, the time from the start of the first job, to the end of its
last one.

21

3. TLSP-GR (TLSP with Generalized Resources)

TLSP only

s2 =
j∈J

|ȧEm
j \

a∈j

(EP r
a)| (S2-TLSP)

s3 =
p∈P

|
j∈Jp

ȧEm
j | (S3-TLSP)

The Preferred Employee constraint (S2-TLSP) penalizes assigning an employee
to a job when that employee is not preferred for all tasks of that job.

Finally, the Number of Employees constraint (S3-TLSP) minimizes the number
of different employees assigned to complete jobs of a project.

TLSP-GR only

s2 =
j∈J Rg∈R∗

|ȧj,g \
a∈j

(RP r
a,g)| (S2-GR)

s3 =
p∈P Rg∈Rmin

|
j∈Jp

ȧj,g| (S3-GR)

The Preferred Resource constraint (S2-GR) corresponds to (S2-TLSP) and pe-
nalizes assignments of resources to jobs that are not preferred by all of the job’s
tasks.

Lastly, Number of Resources constraint (S3-GR) replaces (S3-TLSP) and mini-
mizes the number of different resources assigned to jobs in every project. It is applied
to the resource groups specified to Rmin.

3.3 Reducing TLSP to TLSP-GR

TLSP-GR is a generalization of TLSP. Accordingly, the TLSP-GR solvers I developed
for this thesis are also designed to function as a drop-in replacement for a TLSP solver.
To solve a TLSP instance, a TLSP-GR solver first converts the TLSP instance to a
TLSP-GR instance. It then obtains a solution and converts the solution back to a TLSP
schedule. The reduction is designed in such a way that solutions for TLSP and TLSP-GR
have a one-to-one correspondence and have the same number of hard- and soft-constraint
violations. In this Section, a line above an instance parameter or variable is used to
denote data associated with a TLSP instance. For instance, G∗ refers to the equipment
groups of the TLSP instance, while R∗ denotes the resource group of the TLSP-GR
instance.

22

3.3. Reducing TLSP to TLSP-GR

3.3.1 Instance Conversion

A TLSP instance is given as input. It has time slots T , employees E, workbenches B,
equipment groups G∗ = {G1, . . . , G|G∗|}. Modes are given by M . Each task requires
em employees based on mode m ∈ M and the speed factor for modes is vm. The set of
projects is P .

Each project p ∈ P contains a set of tasks Ap. Each task a ∈ A∗ has different properties.
αa, ω̄a and ωa refer to the release date, due date, and deadline, respectively. It has
available modes Ma and duration da. The set of predecessor tasks for a is given by Pa.
Each task has available workbenches Ba and whether it requires a workbench is given by
ba ∈ {0, 1}. It has a set Ea of qualified employees and a set EP r

a of preferred employees.
For each equipment group in G∗ with index g, a task requires ra,g units of equipment
from the set of available equipment for that group, Ga,g.

For each project p ∈ P , its linked tasks Lp form an equivalence relation where equivalent
tasks need to be performed by the same employees. Task families for project p ∈ P are
given by Fp,i.The set of all families across projects is F ∗. Finally, J0 is the set of base
jobs and J0S ⊆ J0 is the set of started jobs.

To convert this TLSP instance to TLSP-GR, some parts just have to be copied. The time
slots of the new TLSP-GR instance are given by T := T , its modes by M := M with
speed factors vm := vm for m ∈ M . Projects P := P have tasks with the same indices
Ap := Ap. For each task a, release date αa := αa, due dates ω̄a := ω̄a and deadlines
ωa := ωa can also be copied, as well as available modes Ma := Ma and durations da := da.
Linked tasks are Lp := Lp for p ∈ P . Likewise, task families Fp,i := Fp,i and the set
F ∗ := F ∗ can be copied. Furthermore, J0 := J0 and J0S := J0S .

Still missing are resources (made up of employees, workbenches, and equipment), together
with the tasks’ resource requirements and sets of available and preferred resources.
Additionally, the TLSP-GR instance needs to specify the set of resource groups where
assignments must be identical for linked tasks, Lrg, and the set of resource groups for
which the number of distinct assigned units should be minimized for each project, Rmin.

The reduction works by representing employees and workbenches as their own resource
groups, alongside the existing equipment groups. Thus, the resource groups for the
TLSP-GR instance are given by R∗ := {R1, R2, . . . , R|G∗|, Rem, Rwb}. The original group
elements representing resources can be copied into the new groups: Ri := Gi, i =
{1, 2, . . . , |G∗|}, Rem := E, Rwb := B. Since both linked tasks and resource minimization
only apply to employees in TLSP, Lrg := {Rem} and Rmin := {Rem}. Then the resource
requirements, availabilities, and preferences are given by:

23

3. TLSP-GR (TLSP with Generalized Resources)

ra,em,m := em ∀a ∈ A∗ ∀m ∈ M (3.1)
Ra,em := Ea ∀a ∈ A∗ (3.2)
RP r

a,em := EP r
a ∀a ∈ A∗ (3.3)

ra,wb,m := ba ∀a ∈ A∗ ∀m ∈ M (3.4)
Ra,wb := Ba ∀a ∈ A∗ (3.5)
RP r

a,wb := Rwb ∀a ∈ A∗ (3.6)
ra,g,m := ra,g ∀a ∈ A∗ ∀Gg ∈ G∗ ∀m ∈ M (3.7)

Ra,g := Ga,g ∀a ∈ A∗ ∀Gg ∈ G∗ (3.8)
RP r

a,g := Rg ∀a ∈ A∗ ∀Gg ∈ G∗ (3.9)

Formulas (3.1–3.3) describe the parameters for the employee resource group Rem, indexed
by em. The number of required employees is the same for all tasks and depends only on
the mode, like in TLSP. Available and preferred employees are copied from TLSP as well.

Formulas (3.4–3.6) define the parameters for the workbench group Rwb, indexed by wb.
The required number depends on the task, and since ba is a binary value with domain
{0, 1}, it can also be used to describe the number of required resources. The available
workbenches are copied from TLSP, but in TLSP-GR, every workbench is preferred,
because TLSP has no constraint for preferred workbenches. Including all workbenches in
the set of preferred workbenches ensures that TLSP-GR’s preferred resources constraint
effectively doesn’t apply to workbenches.

Lastly, (3.7–3.9) specify the parameters relating to equipment. This time, the index is
not a constant like em or wb, but a variable g used to quantify over all TLSP equipment
groups. Like with workbenches, the number of required equipment pieces is copied from
the TLSP instance, depending only on the task. Available equipment can be copied as
well. And like with workbenches, all equipment pieces are preferred, since TLSP has no
constraint for preferred equipment pieces. Again, this effectively disables the preferred
resources constraint for equipment.

3.3.2 Solution Conversion

Once a solution has been obtained for the generated TLSP-GR instance, it can be
converted back to a solution for the original TLSP instance.

Let J denote the set of jobs in the solution, and ṡj , ṅj and ṁj the start time, end time
and mode assignment of jobs j ∈ J , respectively. Finally, ȧj,g, j ∈ J, Rg ∈ R∗ denotes
the resource assignment.

Apart from resource assignments, the solution can be copied into the TLSP schedule:

24

3.4. Constraint Programming Model

J := J

ṡj := ṡj ∀j ∈ J

ṅj := ṅj ∀j ∈ J

ṁj := ṁj ∀j ∈ J

The resource assignments need to be split back into employee, workbench, and equipment
assignments:

ȧEm
j := ȧj,em ∀j ∈ J

ȧW b
j := b if ȧj,wb = {b}

⊥ if ȧj,wb = {} ∀j ∈ J

ȧEq
j,g := ȧj,g ∀j ∈ J, Gg ∈ G∗

The formulas above show how to recover the employee, workbench, and equipment
assignment from the TLSP-GR solution. Again, em and wb refer to the indices of the
TLSP-GR resource groups representing employees and workbenches, Rem and Rwb. A
case distinction is required for handling the workbench assignment since it needs to
be converted from a set that may contain zero or one entries from Rwb to the domain
B ∪ {⊥}. Note that the cases are exhaustive for any valid TLSP-GR solution because all
requirements for resources in Rwb in the converted instance are either 0 or 1.

3.4 Constraint Programming Model
This Section presents a Constraint Programming (CP) model for TLSP-GR, which is
a novel contribution of this Thesis. The hard and soft constraints that don’t concern
resources are based on an existing model for TLSP from [DGMM20].

In addition to the model for TLSP-GR, I also developed a model for the problem variant
TLSP-GR-S, where the grouping of jobs into tasks is fixed and given as part of the input.
For brevity, this model is not shown here. The model for TLSP-GR-S is similar to the
TLSP-GR model presented here, with a few differences that amount to simplifications.
In the TLSP-GR-S model, the decision variables and constraints for grouping are missing,
the scheduling requirements for jobs are given as values instead of being calculated from
tasks, and no rounding of durations is needed because the durations of jobs can be
precomputed.

25

3. TLSP-GR (TLSP with Generalized Resources)

The model was implemented in the solver-independent constraint programming language
MiniZinc [NSB+07], and the following description was written with that implementation
in mind. However, the formulation should easily carry over to other modeling languages
or solvers. In fact, it only uses features that are widely supported across many solvers,
staying clear of variables for sets and floating points.
The CP model for TLSP-GR covers the grouping of tasks into jobs as well as scheduling
the jobs. This means that the parameters for scheduling are quite dynamic and change
based on the selected grouping. In order to eliminate as many symmetries as possible
and keep the model as solver-agnostic as possible, the grouping aspect is implemented as
follows: there is an array of variables ξ̇(a) ∈ A∗ that serve as pointers. Each task a points
to the task that serves as a representative for the job that a belongs to. Tasks from the
same job have to point at the same task. Thus a task that is pointed at must also point
to itself. To break the symmetry in selecting the representative task, the representative
task of a job has to be the one with the smallest id (according to some arbitrary total
ordering of the tasks).
To enhance readability, the model description used the shorthand notation J for the
set of tasks that have been chosen as representatives, i.e. J = {a ∈ A∗ | ξ̇(a) = a}.
Note that the contents of this set change during the solving process, so a constraint like
P (a) | a ∈ J will be compiled as (ξ̇(a) = a =⇒ P (a)) | a ∈ A∗.
Finally, the problem description includes real-valued numbers for task durations da, setup
times sf , and mode speed modifiers vm. Since support for real (or floating-point) numbers
is limited across solvers, the model slightly overapproximates the durations using integers.
Overapproximating the durations cannot result in invalid schedules, but it could render
some valid solutions infeasible. Task durations are scaled up to minimize the impact of
rounding. Task durations in the synthetic and real-world instances available for TLSP
are typically between 0.1 and 10 time slots. Past experience [DGMM20] has shown that
a rounding factor of M = 10000 still has a small impact on the model’s runtime and that
further increases usually don’t improve the best achievable solution, at least for small
instances, where it was possible to verify.

3.4.1 Decision Variables
To build a solution, the solver needs to decide on the following variables:

ξ̇(a) ∈ A∗ a ∈ A∗ . . . Assigned representative task
ṁa ∈ M a ∈ A∗ . . . Assigned mode
ṡa ∈ T a ∈ A∗ . . . Assigned start time
ṅa ∈ T a ∈ A∗ . . . Assigned completion time
ḋa ∈ T a ∈ A∗ . . . Assigned duration (for convenience and performance)

In addition, there are variables for resource selection. In TLSP, there are three arrays:

26

3.4. Constraint Programming Model

TLSP only

ȧEm
a,e ∈ {0, 1} a ∈ A∗, e ∈ E . . . Job Employee Assignment

ȧW b
a,b ∈ {0, 1} a ∈ A∗, b ∈ B . . . Job Workbench Assignment

ȧEq
a,q ∈ {0, 1} a ∈ A∗, Gg ∈ G∗, q ∈ Gg . . . Job Equipment Assignment

In TLSP-GR, a single array handles all resources:

TLSP-GR only

ȧa,r ∈ {0, 1} a ∈ A∗, Rg ∈ R∗, r ∈ Rg . . . Job Resource Assignment

3.4.2 Hard Constraints
The first set of constraints concerns the task grouping.

ξ̇(ξ̇(a)) = ξ̇(a) a ∈ A∗ (3.10)
pa = pξ̇(a) ∧ fa = fξ̇(a) a ∈ A∗ (3.11)

all_equal({ξ̇(a) | a ∈ j0}) j0 ∈ J0 (3.12)
ξ̇(a) ≤ a a ∈ A∗ (3.13)

Constraint (3.10) forces representative tasks to point at themselves, which implies that ξ̇(a)
partitions tasks into jobs. (3.11) enforces that tasks may only point at a representative
task from the same project and family, which implies that only tasks from the same
project and family can form a job. (3.12) enforces that tasks from fixed jobs are grouped
together. Together, (3.10–3.12) already describe a legal grouping. (3.14) is technically
redundant for correctness but breaks the symmetry of choosing a representative task.

ṡξ̇(a) ≥ αa ∧ ṅξ̇(a) ≤ ωa a ∈ A∗ (3.14)
ḋa = ṅa − ṡa a ∈ J (3.15)

Setup(a) = 0 for ∃js ∈ J0S , a2 ∈ Ȧjs | ξ̇(a2) = a

sfa · vṁa else
(3.16)

ḋa · M ≥ Setup(a) +
a2∈A∗|ξ̇(a2)=a

da · vṁa a ∈ J (3.17)

(ḋa − 1) · M < Setup(a) +
a2∈A∗|ξ̇(a2)=a

da · vṁa a ∈ J (3.18)

27

3. TLSP-GR (TLSP with Generalized Resources)

Constraints 3.14 through 3.18 concern job durations. (3.14) enforces that the start date
and deadline of every task inside a job must be respected. Constraint (3.15) connects
ḋa to ṡa and ṅa. Even though the duration variables ḋa are redundant, they serve as
a useful notational short-hand and including them in the model empirically improves
performance. Formula (3.16) defines a shorthand notation for the setup time of a job.
The formula accounts for the job’s mode and for whether the job contains started tasks.
Then, constraints (3.17–3.18) calculate and round up the duration of jobs. Note that
the da and sf parameters have already been scaled up by M in preprocessing.

ξ̇(a) = ξ̇(a2) ∨ ṅξ̇(a2) ≤ ṡξ̇(a) a ∈ A∗, a2 ∈ Pa (3.19)

ṡξ̇(a) = 0 j ∈ J0S , a ∈ Aj (3.20)
ṁξ̇(t) ∈ Ma a ∈ A∗ (3.21)

Constraint (3.19) enforces task precedences and (3.20) forces jobs with started tasks
to start at the beginning. Constraint (3.21) enforces that the mode of a job must be
available to all of its tasks.

TLSP only

In TLSP, the resource related constraints are duplicated for employees, workbenches,
and equipment.

cumulative((ṡa)a∈A∗ , (ḋa)a∈A∗ , (ȧEm
a,e)a∈A∗ , 1) e ∈ E

cumulative((ṡa)a∈A∗ , (ḋa)a∈A∗ , (ȧW b
a,b)a∈A∗ , 1) b ∈ B

cumulative((ṡa)a∈A∗ , (ḋa)a∈A∗ , (ȧEq
a,e)a∈A∗ , 1) Gg ∈ G∗, e ∈ Gg

The three constraints above enforce that no employee, workbench, or equipment
piece is used by two jobs at the same time.

TLSP-GR only

In TLSP-GR, the single usage constraints can be merged into one.

cumulative((ṡa)a∈A∗ , (ḋa)a∈A∗ , (ȧa,r)a∈A∗ , 1) Rg ∈ R∗, r ∈ Rg (3.22)

Constraint (3.22) suffices for TLSP-GR to ensure that no resource is used twice at
the same time.

28

3.4. Constraint Programming Model

TLSP only

eṁa =
e∈E

ȧEm
a,e a ∈ J

1 = ba =⇒ 1 =
b∈B

ȧW b
ξ̇(a),b a ∈ A∗

max
a2∈A∗ s.t. ξ̇(a2)=a

ra2,g =
e∈Gg

ȧEq
a,e a ∈ J, Gg ∈ G∗

Although the three constraints above may look very different at first sight, they all
serve a similar purpose in ensuring that the correct number of employees, workbenches,
or equipment pieces is assigned to each job.

TLSP-GR only

r∈Rg

ȧa,r = max
a2∈A∗|ξ̇(a2)=a

ra2,g,ṁa a ∈ J, Rg ∈ R∗ (3.23)

Constraint (3.23) ensures that each job is assigned exactly the correct number of
resources from each resource group. Given the mode that a job is performed in, for
each resource group, the assignment exactly covers the highest demand from any of
its tasks for that group.

TLSP only

ȧEm
ξ̇(a),e =⇒ e ∈ Ea a ∈ A∗, e ∈ E

ȧW b
ξ̇(a),b =⇒ b ∈ Ba a ∈ A∗, b ∈ B

ȧEq

ξ̇(a),e > 0 =⇒ e ∈ Ga,g a ∈ A∗, Gg ∈ G∗, e ∈ Gg

In TLSP, the above constraints enforce that only qualified employees, as well as
available workbenches, and available equipment pieces are assigned. That is, they
must be available for all tasks in the job.

29

3. TLSP-GR (TLSP with Generalized Resources)

TLSP-GR only

ȧξ̇(a),r > 0 =⇒ r ∈ Ra,g a ∈ A∗, Rg ∈ R∗, r ∈ Rg (3.24)

Constraint (3.24) ensures that resources assigned to a job are available to all tasks
that are part of the job.

Finally, there is the linked tasks constraint.

TLSP only

ȧEm
ξ̇(a),e = ȧEm

ξ̇(a2),e e ∈ E, p ∈ P, (a, a2) ∈ Lp

In TLSP, this constraint was called the Linked Employees Constraint and only
applied to employees.

TLSP-GR only

ȧξ̇(a),r = ȧξ̇(a2),r p ∈ P, (a, a2) ∈ Lp, Rg ∈ Lrg, r ∈ Rg (3.25)

In TLSP-GR, linked tasks can apply to different resource groups. Constraint (3.25)
ensures that for all included resource groups (groups Rg ∈ Lrg), the jobs containing
linked tasks have the same resource units assigned.

3.4.3 Soft Constraints

Like TLSP, TLSP-GR contains multiple soft constraints. Since MiniZinc only supports
single-objective optimization, the objective is modeled as a weighted sum of the different
constraint penalties. The test instances considered in this Thesis weigh all constraints
equally.

The weights are given by wi ∈ R+
0 , i ∈ {1, 2, 3, 4, 5}. The objective function is given by

i∈{1,2,3,4,5}(si · wi), where si is given by:

30

3.4. Constraint Programming Model

s1 =
j∈J

1 (3.26)

s4 =
j∈J

max(0, ṅj − min
a∈A∗ s.t. ξ̇(a)=j

(ω̄a)) (3.27)

s5 =
p∈P

(max
a∈Ap

(ṅa) − min
a∈Ap s.t. ξ̇(a)=a

(ṡa)) (3.28)

Constraints (3.26) , (3.27) , and (3.28) are the same for TLSP and TLSP-GR. Soft
constraint (3.26) minimizes the number of created jobs, while (3.27) minimizes the
violations of tasks’ due dates. Next, (3.28) minimizes the duration of projects. The other
soft constraints relate to resources and differ between TLSP and TLSP-GR.

TLSP only

s2 =
j∈J e∈(E\(

a∈A∗|ξ̇(a)=j
EP r

a))
ȧEm

j,e

s3 =
p∈P e∈E

((
a∈Ap

ȧEm
a,e) > 0)

In TLSP, these constraints minimize the assigned non-preferred employees and the
number of different employees assigned to each project, respectively.

TLSP-GR only

s2 =
j∈J Rg∈R∗ r∈(Rg\(

a∈A∗|ξ̇(a)=j
RP r

a,g))
ȧj,r (3.29)

s3 =
p∈P Rg∈Rmin r∈Rg

((
a∈Ap

ȧa,r) > 0) (3.30)

Soft constraint (3.29) minimizes the number of non-preferred assigned resources.
This constraint is similar to TLSP, except it now applies to all resource groups.
Finally, (3.30) minimizes the number of different resources used for each project. It
can apply to any set of resource groups, as specified by Rmin.

31

3. TLSP-GR (TLSP with Generalized Resources)

3.5 Performance Optimizations
The implemented model incorporates various optimizations and redundant constraints
to increase performance. Some of them are quite basic and similar to optimizations for
TLSP from [Dan19], so this Thesis only briefly touches on them. More attention is paid
to two specific optimizations regarding resource constraints, one of which is new and
specific to TLSP-GR, and the other, which was not trivial to adapt to TLSP-GR.

Generally, there are significant performance improvements to be gained by limiting
domains through redundant constraints. One simple but effective example is ξ̇(a) =
a, ∀a ∈ A∗ | a = (minfa a), which enforces that for each family, the task with the smallest
id points to itself. Some of the redundant constraints follow a simple schema: when a
property of a task a limits the domain of a variable concerning task ξ̇(a), it usually follows
that the same limit applies to the equivalent variable for task a itself. For instance, the
resource availability constraint (3.24) implies that ȧr,a > 0 ∧ maxm∈M ra,g,m > 0 =⇒
r ∈ Ra,g also holds (compared to (3.24) , ξ̇(a) has been replaced by a). These new
constraints can be justified with a case distinction. Either ξ̇(a) = a, in which case both
constraints are identical. Or ξ̇(a) ̸= a, in which case the assignment for a is arbitrary,
and adding new bounds does not hurt unless the new bounds are contradictory. Including
such constraints can improve performance because these constraints are usually quite
simple to apply and help the solver in restricting domains.

Aside from these simple cases, two optimizations are of particular interest for TLSP-GR.
The first is exclusive to TLSP-GR and concerns the resource requirements constraint
(3.23) . It is particularly useful when dealing with converted TLSP instances. The second
one concerns merging equivalent resources into single entities. A similar idea already
existed for TLSP, but generalizing it to TLSP-GR was not straightforward.

Resource Requirement Constraint

As TLSP-GR is a generalization of TLSP, resources in TLSP-GR must be able to model
all possible requirements from TLSP. In TLSP, the number of required employees depends
on a job’s mode and the requirement for workbenches and equipment depends on which
tasks are part of the job. In principle, there are two ways to cover these requirements
with the combined concept of resources in TLSP-GR. One possibility is that the number
of required resources can either depend on the mode or on the tasks, depending (for
example) on the resource group in question. The other option is making the number of
required resources a function of both the mode and tasks. The first option more closely
resembles the structure of TLSP. The second option is more general and powerful, but
asymptotically, it could cause (3.23) to generate O(n4) instantiated constraints, compared
to O(n3) for the first option. The iterations contributing to n4 are: iterating over resource
groups, over tasks, over modes, and compiling the indirect reference introduced by ξ̇(a).

The solution I arrived at was to base the specification on the second option, where
resource requirements can depend on modes and tasks. To keep the model performant
in cases where resource requirements effectively depend only on the mode or tasks, I

32

3.5. Performance Optimizations

introduce an optimized variant of (3.23) . During compile time, for each resource group,
the model analyzes whether its requirements depend on the job’s mode, tasks, or both.
Depending on the case, a different optimized version of the constraint is used. This allows
resource requirements in TLSP-GR to flexibly depend on a job’s mode and tasks while
minimizing the performance sacrifice for TLSP-like instances.

Rtask-dependent := {Rg ∈ R∗ | ∀a∈A∗∀m1,m2∈Ma ra,g,m1 = ra,g,m2}
Rmode-dependent := {Rg ∈ R∗ | ∀m∈M ∀a,a′∈A∗((m ∈ Ma ∧ m ∈ Ma′) =⇒ ra,g,m = ra′,g,m)}

Rtask-dependent describes the set of resource groups for which the required amount only
depends on the task in question, which means they are not affected by the mode. In
contrast, Rmode-dependent describes the set of resource groups where the requirement
may depend on the chosen mode, but not on the tasks that make up a job. The sets
are computed during the model compilation and used to select which constraints are
compiled.

r∈Rg

ȧa,r =

ra,g,ṁa if Rg ∈ Rmode-dependent

maxa2∈A∗|ξ̇(a2)=a ra2,g,1 if Rg ∈ Rtask-dependent

maxa2∈A∗|ξ̇(a2)=a ra2,g,ṁa otherwise

 a ∈ J, Rg ∈ R∗

(3.31)

Constraint (3.31) is the optimized version of (3.23) . In the first case, the required number
of resources only depends on the mode, which means that the formula can just use the
requirement for task a instead of finding the maximum across all tasks in the same job.
In the second case, the required number only depends on the task, which means that
instead of ṁa, mode index 1 can be used as an arbitrary value.

Resource Classes

Just like TLSP, TLSP-GR deals with heterogeneous resources, where individual units from
the same group may be suitable to perform different tasks. However, many benchmark
and real-world instances contain some resources that are interchangeable. Interchangeable
in the sense that swapping them for one another in a solution cannot introduce new
constraint violations or change the penalty. Similarly to [Dan19], the model in this
work takes advantage of this fact to improve performance. This is done by merging
equivalent resources into resource classes, whose corresponding assignment variables in
the CP model are converted from boolean to integer. In contrast to existing work, the
optimization presented here is not limited to employees and addresses an issue that would
result from a naive generalization.

33

3. TLSP-GR (TLSP with Generalized Resources)

The idea for TLSP was to consider equipment equivalent if they are available to and
preferred by the same tasks and be required by the same tasks in the same situations.
The latter is automatically satisfied by demanding that the resources are in the same
group. Transferring this idea to TLSP-GR, two resources r1 ∈ Ri, r2 ∈ Ri from the same
resource group i could be considered equivalent if they are available and preferred for
the exact same tasks.

The problem with this idea in TLSP-GR is that the identity of resources may be
relevant for resources affected by the linked tasks hard constraint (3.25) or the resource
minimization soft constraint (3.28) . Straightforwardly picking resource units in post-
processing is no longer possible when linked tasks are involved, and the CP model can’t
calculate the number of different assigned resource units for a project if it doesn’t yet
know what those units are. One possible solution would be re-introducing variables
for the individual resources into the CP model, and to link them to the resource class
assignments, and using those for the resource minimization soft constraint. Enforcing
that there is an assignment for individual resources that fulfills the linked tasks constraint
would then correspond to a graph coloring sub-problem. A simpler solution would be
to consider all resource units to be different for resource groups affected by one of the
two constraints. For this Thesis, I chose the latter option to keep the CP model simpler.
For existing TLSP instances, both artificial and real-world, this is likely also the more
efficient solution overall. This is because only employees are affected by those constraints.
When analyzing existing synthetic and real-world instances, employees are almost never
equivalent according to the criteria above.

Thus we define the equivalence relation Xi for resource group Ri ∈ R∗ by:

r1Xir2 ⇐⇒ Ri ̸∈ (Lrg ∪ Rmin)∧
∀a∈A∗((r1 ∈ Ra,g ⇐⇒ r2 ∈ Ra,g) ∧ (r1 ∈ RP r

a,g ⇐⇒ r2 ∈ RP r
a,g))

Ri ∈ R∗, r1 ∈ Ri, r2 ∈ Ri

For each resource group Ri, the set Ci := Ri/X is the set of resource equivalence classes,
henceforth called resource classes. For some c ∈ Ci, |c| is the number of resource units in
resource class c.

We can now define available and preferred resources for tasks in terms of resource classes:

RC
a,g := {c | c ∈ Cg ∧ (∀r∈cr ∈ Ra,g)} Rg ∈ R∗, a ∈ A∗

RP r,C
a,g := {c | c ∈ Cg ∧ (∀r∈cr ∈ RP r

a,g)} Rg ∈ R∗, a ∈ A∗

The resource-related constraints from the CP model can then be reformulated using
resource classes. The assignment of resource classes to jobs is now given by:

34

3.5. Performance Optimizations

ȧa,c ∈ {0, 1, . . . , |c|} | a ∈ A∗, Ri ∈ R∗, c ∈ Ci . . . Job Resource Assignment

The new hard constraints are:

cumulative((ṡa)a∈A∗ , (ḋṁa,a)a∈A∗ , (ȧa,c)a∈A∗ , |c|) Rg ∈ R∗, c ∈ Cg (3.32)

c∈Cg

ȧa,c = max
a2∈A∗|ξ̇(a2)=a

ra2,g,ṁa a ∈ J, Rg ∈ R∗ (3.33)

ȧξ̇(a),c > 0 ∧ max
m∈M

ra,g,m > 0 =⇒ c ∈ RC
a,g a ∈ A∗, Rg ∈ R∗, c ∈ Cg (3.34)

ȧξ̇(a),c = ȧξ̇(a2),c p ∈ P, (a, a2) ∈ Lp, c ∈ Cg (3.35)
where Rg ∈ Lrg

Constraint (3.32) replaces (3.22) and enforces that resources are not used by multiple jobs
at the same time. Because resources can now be somewhat homogenous, this amounts to
enforcing that the number of units used from any resource class c never exceeds its size,
|c|. Constraint (3.33) replaces (3.23) and enforces that the number of resources assigned
to a job exactly covers the requirement of its most demanding task. It is very similar
to (3.23) , except ȧa,c is now an integer instead of a boolean. Constraint (3.34) enforces
resource availability and replaces (3.24) . Finally, (3.35) replaces (3.25) and enforces that
the jobs formed from linked tasks must have the same amount of resources assigned for
each class. Since resources for groups Rg ∈ Lrg are always considered distinct, the classes
c ∈ Cg have |c| = 1, and the assignment variables are effectively binary here.

s2 =
j∈J Rg∈R∗

c∈(Cg\(
a∈A|ξ̇(a)=j

RP r,C
a,g))

ȧc,j (3.36)

s3 =
p∈P Rg∈Rmin c∈Cg

((
a∈Ap

ȧc,a) > 0) (3.37)

Soft constraint (3.36) replaces (3.29) and penalizes the number of non-preferred assigned
resources. (3.37) replaces (3.30) and penalizes the number of different resources from
groups in Rmin assigned to each project. Like (3.35) , resource classes from affected
groups always have size 1, which ensures that this constraint indeed counts distinct
resource units.

Once a solution to this modified model has been obtained, the assignments for resource
classes can be converted back to resource piece assignments by choosing arbitrary units
from the assigned classes, while keeping track of which units from a class have been
assigned and which are still free. Because resource units from the same class are fungible,
this can never fail.

35

CHAPTER 4
Extending CP-SAT with Priority

Search

Google OR-Tools [OrT] is an open source software suite for solving combinatorial opti-
mization problems. Alongside interfaces to external solvers and a custom MIP solver,
it includes the CP-SAT solver [PD21]. CP-SAT is a portfolio solver for constraint
programming. It combines a SAT-based lazy clause generation CP solver together with
various other techniques like linear relaxations and local neighborhood search. In the past
years, CP-SAT routinely won gold medals in the MiniZinc Challenge [SFS+14], which
compares the performance of different solvers on CP instances from many different prob-
lem categories, each generated from MiniZinc code. For instance, in the 2023 challenge
[min23], CP-SAT won first place in all relevant categories, outperforming open solvers
like Chuffed, but also commercial ones like CPLEX or Gurobi.

However, when the original solver for the Test Laboratory Scheduling Problem (TLSP)
was developed, the Chuffed solver [Chu11] was chosen instead. This is because Chuffed
supports the priority search [FGS+17] annotation, which was crucial for achieving high
performance on TLSP. Compared to traditional search annotations, priority search allows
specifying that the solver should switch between different sub-annotations, depending
on current variable bounds. In the case of TLSP, this allows for a search strategy that
schedules tasks one by one, including time slots as well as resource assignments, and
picks the task with the earliest possible start time each time. In contrast, the possible
strategies with traditional annotations are more restricted: one could schedule all start
times based on the earliest possible start (afterward followed by resource assignments).
To schedule tasks as a unit with traditional annotations (including time slots, resource
assignments, and mode assignments), the order would need to be predetermined. Initial
experimentation with TLSP showed that Chuffed paired with priority search was usually
more performant than other solvers like CP-SAT with simpler strategies.

37

4. Extending CP-SAT with Priority Search

Regarding TLSP and TLSP-GR, the lack of priority search in CP-SAT appears to be a
significant drawback of an otherwise highly promising solver. In fact, in addition to the
great performance at the MiniZinc Challenge, CP-SAT would hold another more practical
advantage for our industrial partner: CP-SAT being a portfolio solver, it features a
robust multi-threading mode. Given the abundance of multicore CPUs in today’s world,
this looks like a promising way to increase performance for their real-world scheduling
operations.

This chapter addresses this challenge by introducing an implementation of priority search
for the CP-SAT solver in Google OR-Tools. The implementation proved challenging
and required several changes to internal data structures and algorithms since CP-SAT
lacks support for nested search annotations. Additionally, other extensions (hot start
and randomized variable selection) are considered.

The rest of this Chapter is structured as follows:

• Section 4.1 explains how search strategies work in CP-SAT, and how it uses
and processes MiniZinc search annotations. It also explains the challenges to
implementing priority search. This Section is based on my own analysis of the
project’s source code.

• Section 4.2 describes my implementation of priority search in CP-SAT, and which
changes to the data structures and algorithms were necessary.

• Section 4.3 briefly describes two other adjustments I made to CP-SAT to support
randomized variable selection and hot starts, both of which are useful for the VLNS
algorithm for TLSP-GR.

4.1 Search in CP-SAT
The implementation of CP-SAT as a backend solver for MiniZinc is split into two parts.
Firstly, the CP-SAT solver itself, which accepts instances in the form of custom data
structures based on protocol buffers [Goo23], a data exchange format by Google. Secondly,
there is a wrapper that converts input and output between MiniZinc’s format and protocol
buffers.

For search, the CP-SAT solver can use internal heuristics as well as a user-specified
search strategy. When using CP-SAT as a MiniZinc backend, search annotations from
MiniZinc are converted into DecisionStrategyProto objects that CP-SAT uses to
receive user-specified decision strategies.

message DecisionStrategyProto {
repeated int32 variables = 1;

enum VariableSelectionStrategy {
CHOOSE_FIRST = 0;

38

4.1. Search in CP-SAT

CHOOSE_LOWEST_MIN = 1;
CHOOSE_HIGHEST_MAX = 2;
CHOOSE_MIN_DOMAIN_SIZE = 3;
CHOOSE_MAX_DOMAIN_SIZE = 4;

}
VariableSelectionStrategy variable_selection_strategy = 2;

enum DomainReductionStrategy {
SELECT_MIN_VALUE = 0;
SELECT_MAX_VALUE = 1;
SELECT_LOWER_HALF = 2;
SELECT_UPPER_HALF = 3;
SELECT_MEDIAN_VALUE = 4;

}
DomainReductionStrategy domain_reduction_strategy = 3;

message AffineTransformation {
int32 index = 1;
int64 offset = 2;
int64 positive_coeff = 3;

}
repeated AffineTransformation transformations = 4;

}

[...]

message CpModelProto {
[...]

repeated DecisionStrategyProto search_strategy = 5;
}

Listing 4.1: Snippet from ortools/date/cp_model_search.cc [PF21a], with
comments removed for brevity. Defines the data structure used for search annotations in
CP-SAT.

Listing 4.1 presents the data format used for search strategies in CP-SAT. A CP instance
(CpModelProto) can contain a list of decision strategies (DecisionStrategyProto
objects). Each decision strategy contains a list of variables to branch on, a variable
selection strategy, and a domain reduction strategy. The transformations field can
be used to preserve search behavior when transformations are applied to variables but is
not relevant to this Thesis.

One DecisionStrategyProto object roughly maps onto one int_search annotation

39

4. Extending CP-SAT with Priority Search

from MiniZinc. In contrast, MiniZinc’s seq_search annotations have no correlate in
this format. This means that the tree structure of MiniZinc search annotations cannot
be directly represented by the input format of CP-SAT. However, representing the tree
is not necessary to support MiniZinc’s seq_search and int_search annotations.
Since the annotations in seq_search are always used in the same order, the CP-SAT
preprocessor can flatten the tree with an in-order traversal, which results in a list of
int_search annotations. This list is then converted into the search_strategy array
in CpModelProto. Traversing this list always yields the same order of search strategies
as traversing the original tree.

This behavior presents a problem for priority_search, since priority_search
annotations require the solver to change the order of search annotations based on dynamic
variable bounds. Therefore, implementing priority_search requires changes to the
way search strategies are represented in CP-SAT.

Algorithm 1 Pseudocode for a simplified version of the CP-SAT implementation of
search heuristics. The original C++ code is from [PF21b], while the pseudocode was
created by me.

function FindNextVariableToFix(strategies, view)
for strategy in strategies do

candidate ← null
candidateV alue ← ∞
for i ← 1 to strategy.variables.size() do

var ← strategy.variables[i]
if view.IsF ixed(var) then

continue
value ← ApplyVariableSelectionStrategy (

strategy.variableSelectionStrategy, var)
if value < candidateV alue then

candidate ← var
candidateV alue ← value

if candidateV alue = ∞ then
continue

return ApplyDomainReductionStrategy (

strategy.domainReductionStrategy, candidate)
return null

Algorithm 1 shows how CP-SAT uses the decision strategies during the search process.
FindNextVariableToFix is called when the solver needs to branch on a new variable.
The parameter strategies contains the search_strategy array from Listing 4.1,
while view contains information about the current solver state. The aim of the function
is to follow the order of the search strategy until it finds a non-fixed variable, and then
return that variable combined with its new domain. The outermost loop iterates over

40

4.2. Priority Search Implementation

all decision strategy objects. Then an inner loop iterates over the variables included in
the strategy. Each non-fixed variable from the strategy is first evaluated based on the
variable selection strategy from the current DecisionStrategyProto object. The
algorithm keeps track of the best variable it found (candidate) and a numerical rating
(candidateValue) based on the heuristic. The implementation of the variable selection
heuristic is abstracted away into a function ApplyVariableSelectionStrategy for
simplicity. After the inner loop, if no non-fixed variables have been found, the outer loop
continues with the next DecisionStrategyProto object. If the inner loop finds a
non-fixed variable to branch on, the best such variable is returned, combined with its
new restricted domain according to the domain reduction strategy.

Like with the data structures earlier, the structure of the algorithm needs to be changed
to account for the dynamic order in which search annotations must be processed with
priority_search.

4.2 Priority Search Implementation
As explained in the previous Section, implementing priority search in CP-SAT requires
changing how decision strategies are represented internally.

Since protocol buffers support recursive data structures, the protocol buffers can be
modified to allow for tree structures.
message DecisionStrategyProto {

repeated int32 variables = 1;

[...]

enum DomainReductionStrategy {
SELECT_MIN_VALUE = 0;
SELECT_MAX_VALUE = 1;
SELECT_LOWER_HALF = 2;
SELECT_UPPER_HALF = 3;
SELECT_MEDIAN_VALUE = 4;
PRIORITY_SEARCH = 5;

}
DomainReductionStrategy domain_reduction_strategy = 3;

[...]

repeated DecisionStrategyProto searches = 5;
}

Listing 4.2: My modifications to the data structures from 4.1, allowing the protocol
buffers to express nested search strategies.

41

4. Extending CP-SAT with Priority Search

Listing 4.2 shows my modifications to the protocol buffers. The intended seman-
tics is as follows: when DomainReductionStrategy is set to a value other than
PRIORITY_SEARCH, searches is ignored and the annotation is used to find a variable
to branch on, like before. If PRIORITY_SEARCH is selected, searches must be popu-
lated and have the same length as variables. In this case, variables are still ranked
based on the variable selection strategy. However, instead of restricting the domain of the
non-fixed variable with the highest score, the solver instead looks for the highest-ranking
variable whose corresponding search heuristic yields a branching decision.

Algorithm 2 shows my new implementation for using user-specified search strategies in CP-
SAT. Instead of looping over a list of search strategies, the algorithm is now recursive and
traverses a tree of search strategies. For compatibility, FindNextVariableToFix still
matches the signature shown in Algorithm 1, taking in a list of search strategies and a view
object containing the solver’s current state. FindNextVariableToFix essentially
contains the outer loop from Algorithm 1, iterating over its list of search strategies. Each
search strategy is handled by the recursive function SearchRecursively.

SearchRecursively is where the heart of the algorithm is implemented. It is split
into two main blocks, based on whether the given search strategy is PRIORITY_SEARCH
or not. For annotations like int_search, the else-block matches the inner loop in
Algorithm 1. The first block implements PRIORITY_SEARCH. Like for other search
annotations, variables are ranked according to the variable selection strategy. However,
unlike before, it is no longer trivial to check whether selecting a variable leads to a valid
branching decision. Instead of a single view.IsFixed(var) check, this would require
a recursive call to SearchRecursively. While replacing the check with a recursive
call would be possible, I decided to rank and sort all variables first, reducing the number
of recursive calls as much as possible. The performance impacts of this choice may
depend on the individual instance. Concretely, the algorithm ranks all variables with
the variable selection heuristic, saving the scores and variables to the allCandidates
array. It then sorts the array based on the scores and attempts recursive calls based on
that order. When a recursive call returns a branching decision, that decision is used.

4.3 Other Adjustments to CP-SAT
In addition to priority search, I also made two more adjustments to CP-SAT to improve
performance with the CP model from Section 3.4 and the VLNS algorithm. Both were
conceptually much simpler and far easier to implement.

• Supporting random variable selection. This is sometimes used for resource assign-
ments by the VLNS algorithm. Implementing it simply involved extending the
VariableSelectionStrategy enum in DecisionStrategyProto from List-
ing 4.1, and implementing the new strategy in Algorithm 2 using a pseudo-random
number generator.

42

4.3. Other Adjustments to CP-SAT

Algorithm 2 My new implementation of search heuristics for CP-SAT, now supporting
priority_search annotations.

function FindNextVariableToFix(strategies, view)
for strategy in strategies do

result ← SearchRecursively(strategy, view)
if result.HasV alue() then

return result
return null

function SearchRecursively(strategy, view)
if strategy.domainReductionStrategy = PRIORITY _SEARCH then

allCandidates ← ∅
for i ← 1 to strategy.variables.size() do

var ← strategy.variables[i]
value ← ApplyVariableSelectionStrategy (

strategy.variableSelectionStrategy, var)
allCandidates ← allCandidates ∪ {(value, i)}

Sort(allCandidates)
for (candidateV alue, candidate) in allCandidates do

next ← strategy.searches[candidate]
recursiveResult ← SearchRecursively(next, view)
if recursiveResult.HasV alue() then

return recursiveResult
return null

else
candidate ← null
candidateV alue ← ∞
for i ← 1 to strategy.variables.size() do

var ← strategy.variables[i]
if view.IsF ixed(var) then

continue
value ← ApplyVariableSelectionStrategy (

strategy.variableSelectionStrategy, var)
if value < candidateV alue then

candidate ← var
candidateV alue ← value

if candidateV alue = ∞ then
return null

return ApplyDomainReductionStrategy (

strategy.domainReductionStrategy, candidate)

43

4. Extending CP-SAT with Priority Search

• Supporting MiniZinc’s warm_start(array of var int, array of int)
annotation. The annotation allows the model to specify an initial variable assign-
ment, for instance, to specify a known feasible solution. Since CP-SAT already
implements a similar feature, this was a matter of translating the FlatZinc anno-
tation to the appropriate protocol buffer. A complication was that the FlatZinc
parser for CP-SAT seemed to strip the array of int part of the annotation.
As a workaround, I used two annotations warm_start_ortools(array of
var int, array of warm_start_value) and warm_start_value(int).
This allowed me to access the data without modifying the parser.

44

CHAPTER 5
Experimental Results

This Chapter contains computational results for the approaches presented in earlier
chapters. It is structured as follows:

• Section 5.1 described the synthetic and real-world benchmark instances used in
this chapter.

• Section 5.2 evaluates the performance of the new TLSP-GR CP model to solve
TLSP instances, both on its own and in conjunction with the VLNS algorithm.

• Section 5.3 shows computational results for the CP-SAT solver and my priority
search implementation.

• Section 5.4 compares select results from the previous sections against the state of
the art.

5.1 Benchmark Instances

The evaluations in this Chapter are based on instances from the literature [MM18a].
Overall, there are 33 instances. 30 of these instances have been randomly generated based
on statistical patterns of real-world data. The other 3 instances have been taken directly
from the day-to-day scheduling operations of the industrial partner. All 33 instances
are available for download online at https://www.dbai.tuwien.ac.at/staff/
fmischek/TLSP/. The instances and some of their properties are shown in table 5.1,
with data from [MM18a].

45

https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/
https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/

5. Experimental Results

Data Set ID |P | |A∗| |T | |E| |B| |G∗|
1 General 000 5 13 88 7 7 3
2 General 001 5 20 88 7 7 3
3 LabStructure 000 5 73 88 7 7 3
4 LabStructure 001 5 58 88 7 7 3
5 General 005 10 86 88 13 13 4
6 General 006 10 62 88 13 13 6
7 LabStructure 005 10 102 88 13 13 3
8 LabStructure 006 10 93 88 13 13 3
9 General 010 20 182 174 16 16 5
10 General 011 20 273 174 16 16 4
11 LabStructure 010 20 224 174 16 16 3
12 LabStructure 011 20 213 174 16 16 3
13 General 020 15 80 174 12 12 5
14 LabStructure 020 15 123 174 12 12 3
15 General 025 30 376 174 23 23 3
16 LabStructure 025 30 422 174 23 23 3
17 General 015 40 405 174 31 31 3
18 LabStructure 015 40 429 174 31 31 3
19 General 030 60 613 174 46 46 6
20 LabStructure 030 60 775 174 46 46 3
21 General 035 20 304 520 6 6 5
22 LabStructure 035 20 280 520 6 6 3
23 General 040 40 714 520 12 12 4
24 LabStructure 040 40 661 520 12 12 3
25 General 045 60 940 520 18 18 6
26 LabStructure 045 60 837 520 18 18 3
27 General 050 60 866 782 13 13 4
28 LabStructure 050 60 891 782 13 13 3
29 General 055 90 1282 782 19 19 5
30 LabStructure 055 90 1573 782 19 19 3
Lab1 Real-world – 74 856 606 22 17 1
Lab2 Real-world – 59 678 700 24 22 1
Lab3 Real-world – 59 660 572 19 17 1

Table 5.1: A table of benchmark instances used for the evaluations in this chapter. The
data for the table is taken from [Mis22]. The first 30 instances are randomly generated,
while the last 3 are snapshots from the real-world scheduling system of the industrial
partner. The randomly generated instances range from fairly small to very large and
are further divided into LabStructure instances, whose statistical properties are designed
to mirror real-world use cases, and General instances, which are designed to have more
variation. For each instance, a few data points are given: the number of projects |P |, the
number of tasks |A∗|, the number of time slots in the scheduling horizon, |T |. Finally,
there are the number of employees, |E|, workbenches, |B| and equipment groups, |G∗|.

46

5.2. TLSP with Generalized Resources

5.2 TLSP with Generalized Resources

This Section presents benchmark results to measure the ability of the new TLSP-GR
solution approaches to solve TLSP instances. To solve a TLSP instance with a TLSP-GR
solver, the procedure from Section 3.3 is used to convert it. Benchmarks are performed
both for the novel CP model presented in Section 3.4, as well as the augmented VLNS
algorithm from Section 2.5, which is based on the aforementioned CP model. The results
are compared to the existing state-of-the-art CP model from [DGMM20] and a variant
of the VLNS algorithm from Section 2.5 that is identical except for the CP model used.
The VLNS algorithm is a state-of-the-art solution approach for TLSP [Mis22], especially
for longer runtimes like the ones used here.

Because I have access to the TLSP solvers, I decided to perform a like-for-like comparison
by running both solvers on the same hardware, as opposed to comparing the literature
and trying to normalize the runtimes for hardware differences. Each configuration was
evaluated 3 times.

The experiments were performed on a machine with a 12 core AMD Ryzen 9 5900X
desktop processor running at stock configuration and 64GB of DDR4-3200 RAM. Since
Chuffed is single-threaded, 8 instances of the solver were executed in parallel to save
time. Each solver was allotted a runtime of 30 minutes, which is roughly based on the 2
hours from the literature [DGMM20] and adjusted for hardware differences.

The aim here is not to show performance improvements but to demonstrate that TLSP
instances can still be solved efficiently using the TLSP-GR solvers. The focus of TLSP-GR
was not to increase performance, but to increase modeling power and make the problem
more flexible to encompass a higher number of real-world problems. My expected result
was a loss in performance, albeit hopefully manageable. This is based on the intuition
that the new model might be more indirect for some constraints and uses more integer
and fewer boolean variables. This could affect propagation in the CP solver.

To prevent performance regressions with the existing model, I used the same CP solver,
Chuffed [Chu11], as in [DGMM20]. I had to use a slightly newer version, 0.10.4 (as
opposed to 0.10.3 in [DGMM20]), because using the new TLSP-GR CP model with
Chuffed 0.10.3 led to some internal crashes of the solver. This was due to a bug fixed in
version 0.10.4. To ensure a fair comparison, both the existing TLSP model and the new
TLSP-GR model were benchmarked using the 0.10.4 version.

The VLNS solver is based on the existing TLSP VLNS algorithm explained in Section
2.5, except it works with TLSP-GR instances and uses the new TLSP-GR CP model
internally. The parameters for the VLNS algorithm have been taken from [DGMM20],
except that fixedMzTimeout and variableMzTimeout have been reduced by a factor of 4
along with the total algorithm runtime to account for hardware differences. The new
timeouts are now 5000ms and 10000ms, respectively. No extra parameter tuning was
performed for the new TLSP-GR model.

47

5. Experimental Results

#
TLSP TLSP-GR

CP VLNS CP VLNS
Avg Best Avg Best Avg Best Avg Best

1 57 57 57 57 57 57 57 57
2 71 71 71 71 71 71 71 71
3 142 142 141 141 142 142 141 141
4 120 120 103 103 119 119 102 102
5 244 244 248 240 287 287 240 240
6 180 180 140 140 188 188 140 140
7 359 359 284 284 415 411 283 283
8 311 311 284 284 311 311 283 282
9 689 689 423 415 729 729 428 428

10 956 956 507 502 1029 1029 507 503
11 1053 1053 817 812 1055 1055 820 815
12 737 737 646 644 804 804 648 643
13 336 336 316 316 364 364 315 313
14 453 453 411 410 492 492 413 413
15 1723 1723 926 901 1753 1753 903 887
16 1574 1574 1115 1111 1588 1588 1114 1113
17 1424 1424 1052 1045 1516 1516 1045 1040
18 1847 1847 1381 1369 1803 1803 1354 1353
19 2715 2715 1863 1821 2805 2805 2010 1964
20 3076 3076 2154 2142 2857 2857 2150 2118
21 949 949 570 569 1137 1137 571 571
22 980 980 731 713 1053 1053 729 721
23 T/O T/O 1656 1602 T/O T/O 1676 1644
24 T/O T/O 1762 1747 T/O T/O 1741 1737
25 4340 4340 1906 1884 3694 3694 1970 1940
26 3823 3823 2599 2537 3812 3812 2601 2579
27 3743 3743 1779 1762 3378 3378 1792 1781
28 3147 3147 2242 2236 2647 2647 2244 2239
29 T/O T/O 2964 2897 T/O T/O 3082 3062
30 6543 6543 4571 4465 6295 6295 4632 4585

Lab1 4990 4990 3470 3449 4709 4709 3774 3742
Lab2 3407 3407 2695 2653 3285 3285 2700 2642
Lab3 2972 2971 2608 2598 3013 3013 2587 2580

Table 5.2: Penalties for the solutions found after 30 minutes by the TLSP-GR solvers,
compared to existing TLSP solvers. CP refers to using the respective CP model with
Chuffed. VLNS uses the VLNS algorithm to first find a feasible solution, starting from
a greedy (infeasible) schedule, and then iteratively improve upon it. Cells with T/O
indicate that none of the runs were successful. Cells with numbers indicate that all 3
runs were successful, presenting the average and best penalties. No solver solved any
instance only some of the time. For every instance, the best solution found by any solver
is highlighted in bold.48

5.3. Priority Search in CP-SAT

Table 5.2 presents the results. Overall, the new TLSP-GR model is quite competitive
with the existing one for TLSP. In both cases, the CP model solved 27 out of 30 instances.
Overall, pure CP performance varies from instance to instance. Depending on the
instance, either the TLSP-GR or TLSP model may have a significant lead. While the
run-to-run variance is typically 0 for the pure CP model, likely due to the fixed search
order, the differences in the models could cause the solver to enter different parts of the
search space for TLSP and TLSP-GR. Depending on the instance, either solver could
gain the advantage. The TLSP model seems to hold the advantage on many of the
medium-sized instances (#5-#19), while the TLSP-GR model appears to pull ahead the
largest instances (#25-#30 and the real-world instances).

When considering the VLNS algorithm, the TLSP-GR variant often lags behind a bit.

TLSP - CP TLSP-GR - CP TLSP - VLNS TLSP-GR - VLNS

0

1000

2000

3000

4000

5000

6000

Figure 5.1: Boxplot representation of the results from Table 5.2. For the CP results,
instances 23, 24 and 29 were excluded due to infeasibility.

Figure 5.2 shows a condensed version of the results.

In summary, the new TLSP-GR CP model can achieve better or worse results than the
existing TLSP model, depending on the instance. Both models could solve the same
training instances. Further performance may be gained for VLNS with the TLSP-GR
model by performing additional parameter tuning. Overall, the performance of both
models appears to be quite similar.

5.3 Priority Search in CP-SAT

The evaluations in this Section investigate the impact of priority search on the performance
of CP-SAT when solving TLSP-GR instances. I used the new TLSP-GR CP model

49

5. Experimental Results

proposed in Chapter 3 together with the TLSP test instances from Section 5.1, converted
to TLSP-GR.

As a CP solver, I used my modified version of CP-SAT 9.0 presented in Chapter 4
that introduces support for priority search. Each configuration was evaluated 3 times.
Although CP-SAT supports multi-threading, the experiments in this Chapter only used
the single-threaded mode to keep the results comparable to other solvers. The free search
MiniZinc parameter was always enabled since it empirically seemed to noticeably improve
performance in all situations. Free search, in principle, allows the solver to deviate from
a specified search strategy. For CP-SAT in single-threaded mode, it also seems to enable
an interleaved execution of part of the solver portfolio.

All evaluations were performed on a machine with a 12 core AMD Ryzen 9 5900X desktop
processor running at stock configuration and 64GB of DDR4-3200 RAM. Since only
single-threaded configurations were evaluated, 8 instances of the solver were executed
in parallel to save time. Each solver was allotted a runtime of 30 minutes, which is
roughly based on the 2 hours from the literature [DGMM20] and adjusted for hardware
differences.

5.3.1 CP Model
For CP, I compare the results of different search strategies with CP-SAT when using the
CP model alone. There are three configurations I consider: the default search strategy of
the solver (with no MiniZinc annotations), a fixed search strategy that is similar to the
priority search one except for scheduling tasks in a pre-determined order, and a priority
search strategy that schedules tasks in a flexible order based on the lower bound for
their starting time at runtime. The first two search strategies can run on an unmodified
version of CP-SAT, while the latter variant only works with my modifications to the
solver.

Table 5.3 shows the results for different search strategies. First, using only the solver’s
default search strategy, it solves 22 of 33 instances, 5 of which to optimality. This stands
in contrast to the experience on TLSP [Dan19] with Chuffed, which could only solve
the smallest instances with its default search strategy. Both custom search strategies
significantly outperformed the default search, with fixed search and priority search solving
30 and 29 out of 33 instances, respectively. To my surprise, the difference between the
fixed search and priority search is quite small, with these configurations trading blows
depending on the instance. However, the fixed search strategy appears to have an edge
on the largest instances.

5.3.2 VLNS
In addition to the pure CP solver, I also compared the different search strategies when
incorporated into the VLNS algorithm described in Section 2.5. The VLNS algorithm
repeatedly uses the CP model to solve small partial instances to reschedule a small

50

5.3. Priority Search in CP-SAT

#
CP (CP-SAT)

Solver Search Fixed Search Priority Search
avg best avg best avg best

1 57 57* 57 57* 57 57*
2 71 71* 71 71* 71 71*
3 141 141* 141 141* 141 141*
4 101 101* 101 101* 101 101*
5 242 242 240 240* 240 240*
6 140 140* 140 140* 140 140*
7 295 295 285 285 292 292
8 289 289 287 287 288 288
9 461 428 438 438 470 470

10 754 754 772 772 701 699
11 841 841 855 855 855 853
12 776 774 694 693 675 665
13 314 310 313 313 311 311
14 422 422 422 422 431 424
15 1529 1524 1739 1739 1662 1580
16 1687 1674 1445 1408 1478 1454
17 1308 1304 1356 1355 1422 1406
18 2094 2042 1745 1701 1608 1601
19 2923 2815 3318 3257 3212 3187
20 t/o t/o 3861 3829 4036 4008
21 745 742 716 692 678 669
22 865 805 943 925 873 873
23 t/o t/o 4290 4280 4576 4562
24 4080 3960 3351 3345 3292 3281
25 t/o t/o t/o t/o t/o t/o
26 t/o t/o 4829 4805 4933 4908
27 t/o t/o 4996 4864 4628 4352
28 t/o t/o 4236 4096 4298 4298
29 t/o t/o t/o t/o t/o t/o
30 t/o t/o t/o t/o t/o t/o

Lab1 t/o t/o 7030 7008 t/o t/o
Lab2 t/o t/o 3983 3951 4441 4439
Lab3 t/o t/o 2835 2819 2927 2917

Table 5.3: CP penalties after 30 minutes. Solver Search uses the default search strategy
of the solver, Fixed Search a search strategy that schedules tasks in a fixed order, and
Priority Search the search strategy that takes advantage of my new implementation to
dynamically decide in which order to schedule tasks. Out of 3 runs, average and best
scores are reported. t/o indicates that all runs timed out. When only some of the runs
were feasible, the number of feasible runs is shown instead of the average. Bold values
indicate the best score for the instance in this table. * indicates that the solver proved
optimality. 51

5. Experimental Results

number of projects. I applied the respective search strategy to all invocations of the CP
solver within the algorithm.

Like in the CP experiments, I compare three search strategies: the solver’s default
strategy, a fixed search strategy that is similar to the priority search one except for
scheduling tasks in a pre-determined order, and a priority search strategy that schedules
tasks in a flexible order based on the lower bound for their starting time at runtime. In
addition, to test the benefit of implementing hot start and random variable selection, I
include the unmodified CP-SAT 9.0 solver as well.

The parameters for the VLNS algorithm are based on [DGMM20], except that fixedMz-
Timeout and variableMzTimeout have been reduced to 5000ms and 10000ms, respectively.
This is the same reduction as with the overall solver timeout, to account for hardware
differences. I performed some additional parameter tuning with SMAC v3 [LEF+17], but
after over 1000 runs, no better parameter configuration was returned and I had to stop
due to time reasons.

Table 5.4 contains the benchmark results for the VLNS algorithm, where the inner CP
model uses different search strategies. The addition of hot start, and random resource
selection makes a big difference: the unmodified solver could only solve 17 out of 33
instances at least sometimes, while the modified solver with the same default search
strategy could solve 26. As with CP, the fixed search strategy is roughly on par with
priority search, both being able to solve 32 instances at least once.

5.3.3 Summary
Using the priority search search strateghy significantly increases performance compared
to the solver’s default search strategy, but very similar performance can be achieved via
a fixed search strategy that does not use the priority search feature. This holds for CP
and VLNS. However, the other extensions to CP-SAT, hot start and randomized variable
selection, make a big difference for VLNS, making 6 additional instances solvable and
improving penalties almost everywhere.

Figure 5.2 shows aggregate penalties for the two custom search strategies, fixed search,
and priority search. The penalties are very similar overall.

5.4 Comparison to State of the Art
This Section aggregates data from the previous evaluation Sections to compare my results
to the state of the art on TLSP.

The state-of-the-art results are taken from [DGJ+23], as that was the most up-to-date
and comprehensive source I could find. The results are equivalent to [Mis22]. The
state-of-the-art results are based on a dual AMD Opteron 6272 system with a timeout of
2 hours. In my experiments, I used a timeout of 30 minutes that roughly adjusts for the
increased performance of my AMD Ryzen 9 5900X system.

52

5.4. Comparison to State of the Art

#
VLNS

CP-SAT Custom CP-SAT
Solver Search Solver Search Fixed Search Priority Search
Avg Best Avg Best Avg Best Avg Best

1 79 79 57 57 57 57 57 57
2 73 73 71 71 71 71 71 71
3 145 145 141 141 141 141 141 141
4 105 105 101 101 101 101 101 101
5 263 246 240 240 240 240 240 240
6 161 161 140 140 140 140 140 140
7 287 286 283 283 283 283 283 283
8 304 303 284 284 283 283 284 283
9 493 492 416 415 413 413 419 413

10 t/o t/o 504 494 500 494 494 493
11 t/o t/o 815 810 816 815 810 810
12 (2/3) 649 (1/3) 642 640 640 641 640
13 340 340 312 310 308 308 309 309
14 417 416 411 411 411 411 410 410
15 t/o t/o t/o t/o 915 862 884 864
16 1163 1138 1108 1102 1100 1095 1100 1099
17 1167 1159 1041 1035 1037 1032 1035 1033
18 t/o t/o 1349 1340 1332 1332 1335 1329
19 t/o t/o (1/3) 2222 (2/3) 2131 (1/3) 2470
20 t/o t/o 2450 2301 2282 2158 2333 2192
21 679 676 543 539 542 537 548 547
22 760 756 712 704 712 709 712 707
23 t/o t/o (1/3) 1833 1555 1495 1548 1536
24 t/o t/o t/o t/o 1718 1715 1716 1713
25 t/o t/o 1966 1901 1928 1904 1931 1893
26 t/o t/o t/o t/o 2633 2530 2690 2652
27 t/o t/o 1815 1798 1746 1693 1712 1698
28 2307 2306 2237 2224 2227 2216 2228 2225
29 t/o t/o t/o t/o (1/3) 4027 (2/3) 3585
30 t/o t/o t/o t/o 4599 4495 4572 4467

Lab1 t/o t/o t/o t/o t/o t/o t/o t/o
Lab2 t/o t/o (1/3) 2800 2637 2625 (2/3) 2591
Lab3 t/o t/o t/o t/o 2575 2568 2570 2559

Table 5.4: VLNS penalties after 30 minutes. CP-SAT refers to the unmodified version of
CP-SAT, while Custom CP-SAT includes my modifications to support priority search,
hot start, and random variable selection strategies. Solver Search uses the default
search strategy of the solver, Fixed Search a search strategy that schedules tasks in
a fixed order, and Priority Search the search strategy that takes advantage of my
new implementation to dynamically decide in which order to schedule tasks. Out of 3
runs, average and best scores are reported. t/o indicates that all runs timed out. When
only some of the runs were feasible, the number of feasible runs is shown instead of the
average. Bold values indicate the best score for the instance in this table.

53

5. Experimental Results

CP - Fixed Search CP - Priority Search VLNS - Fixed Search VLNS - Priority Search

0

1000

2000

3000

4000

5000

Figure 5.2: Boxplot representation of the results from Table 5.2, using the best scores for
each configuration. For the CP results, instances 25, 29, 30 and Lab1 were excluded
due to infeasibility. For the VLNS results, only instance Lab1 was excluded.

To confirm that the runtimes are roughly equivalent, I performed a short comparison
between the state-of-the-art CP values achieved with Chuffed and my results with the
existing TLSP model with Chuffed from Section 5.2 (picking the best run of 3 for my
results), trying to replicate the results on my local hardware with the adjusted time out.
Both models could solve the same instances. My replication achieved a better result for
14 out of 33 instances, a worse result for 11 instances, and performed identically on the
remaining 8 instances.

Included in this comparison are the state-of-the-art results for CP (achieved with the
Chuffed solver), VLNS (again using Chuffed internally), and Simulated Annealing (with
a custom implementation in Java), all developed directly for TLSP. These are compared
to the results from this Thesis, which are all based on TLSP-GR solvers that work on
converted TLSP instances. From this Thesis, I included the results with Chuffed from
Section 5.2 and the results achieved with my modified CP-SAT version and priority
search from Section 5.3.

Table 5.5 shows the results from this Thesis compared to the state of the art.

Firstly, comparing CP results, the new TLSP-GR results in the Chuffed column are
quite similar to the state of the art, except they are noticeably better for a few large
instances. This reflects the results from Section 5.2. The results with CP-SAT are overall
very different between solvers. CP-SAT manages to solve 6 instances to optimality,
compared to only 2 for the other configurations. To my knowledge, this is the first time
instances 3 through 6 were solved to optimality. For bigger instances, the are sometimes
stark differences in both directions, with CP-SAT falling behind on the largest instances.

54

5.4. Comparison to State of the Art

#

CP VLNS SA
SOTA This Thesis SOTA This Thesis SOTA

Chuffed Chuffed CP-SAT Chuffed Chuffed CP-SAT
best avg best avg best avg best avg best avg best avg best

1 57* 57 57* 57 57* 57.0 57 57 57 57 57 58.0 58
2 71* 71 71* 71 71* 71.0 71 71 71 71 71 72.0 72
3 142 142 142 141 141* 141.0 141 141 141 141 141 149.4 147
4 119 119 119 101 101* 101.0 101 102 102 101 101 106.2 105
5 244 287 287 240 240* 240.0 240 240 240 240 240 284.8 263
6 180 188 188 140 140* 140.0 140 140 140 140 140 157.6 157
7 355 415 411 292 292 283.0 283 283 283 283 283 296.8 291
8 310 311 311 288 288 283.6 283 283 282 284 283 298.2 293
9 713 729 729 470 470 419.0 415 428 428 419 413 461.2 444

10 1010 1029 1029 701 699 512.2 499 507 503 494 493 557.8 535
11 1011 1055 1055 855 853 822.8 816 820 815 810 810 915.2 905
12 764 804 804 675 665 646.8 643 648 643 641 640 667.6 663
13 337 364 364 311 311 308.4 307 315 313 309 309 334.4 331
14 447 492 492 431 424 410.4 410 413 413 410 410 419.8 417
15 1819 1753 1753 1662 1580 883.0 867 903 887 884 864 992.0 961
16 1599 1588 1588 1478 1454 1111.4 1109 1114 1113 1100 1099 (1/5) 1218
17 1416 1516 1516 1422 1406 1075.8 1038 1045 1040 1035 1033 1159.2 1137
18 1841 1803 1803 1608 1601 1341.0 1328 1354 1353 1335 1329 1475.2 1450
19 2751 2805 2805 3212 3187 1860.0 1824 2010 1964 (1/3) 2470 1956.8 1869
20 3146 2857 2857 4036 4008 2266.8 2193 2150 2118 2333 2192 (3/5) 2304
21 922 1137 1137 678 669 547.0 542 571 571 548 547 629.2 602
22 1062 1053 1053 873 873 744.8 742 729 721 712 707 769.0 761
23 t/o t/o t/o 4576 4562 t/o t/o 1676 1644 1548 1536 1747.6 1613
24 t/o t/o t/o 3292 3281 t/o t/o 1741 1737 1716 1713 1801.4 1780
25 4174 3694 3694 t/o t/o 2217.6 2135 1970 1940 1931 1893 2280.0 2213
26 3861 3812 3812 4933 4908 2589.6 2558 2601 2579 2690 2652 2713.0 2667
27 3874 3378 3378 4628 4352 1769.6 1723 1792 1781 1712 1698 1999.2 1965
28 3180 2647 2647 4298 4298 2258.4 2235 2244 2239 2228 2225 2470.4 2439
29 t/o t/o t/o t/o t/o t/o t/o 3082 3062 (2/3) 3585 3645.2 3562
30 6508 6295 6295 t/o t/o 4822.6 4714 4632 4585 4572 4467 (4/5) 4532

Lab1 4991 4709 4709 t/o t/o 3377.0 3296 (2/3) 3742 t/o t/o (4/5) 3389
Lab2 3339 3285 3285 4441 4439 2669.2 2595 2700 2642 (2/3) 2591 2643.0 2539
Lab3 2979 3013 3013 2927 2917 2599.0 2590 2587 2580 2570 2559 2609.6 2592

Table 5.5: Penalties from this Thesis compared to the state of the art. SOTA columns
refer to existing state-of-the-art results for TLSP, while This Thesis columns refer to
the results with the TLSP-GR solution approaches developed in this Thesis. CP-SAT
refers to the modified version of CP-SAT which adds support for priority search, hot
start, and random variable selection strategies. Chuffed refers to the Chuffed solver.
SOTA evaluations were usually performed with 5 runs each, except for CP, which only
included one run. This Thesis results included 3 runs. t/o indicates that all runs
timed out. When only some of the runs were feasible, the number of feasible runs is
shown instead of the average. Bold values indicate the best score for the instance in this
table, and * indicates that the instance was solved to optimality. SOTA values taken
from [DGJ+23].

55

5. Experimental Results

Compared to the state of the art, CP-SAT solves one fewer instance overall, but it fails
on different instances, being able to solve 2 that the states of the art could not.

Regarding VLNS, the Chuffed TLSP-GR model again fares quite similarly to the state
of the art. In addition to the difference in the CP model, the VLNS algorithm used in
this Thesis is based on the variant also using the neighborhood to achieve feasibility,
whereas the implementation in the state-of-the-art result generates a feasible solution
with the CP solver first. This is the main reason why the VLNS results from this Thesis
have more feasible instances. The VLNS solver based on CP-SAT struggles more with
feasibility than the Chuffed version, leaving 1 instance unsolved. However, on most
instances, VLNS with CP-SAT achieves the best results overall. Overall, VLNS with
CP-SAT is comparable to the state of the art, achieving better penalties than the state
of the art on 17 out of 33 instances.

In summary: the new TLSP-GR model introduced in this Thesis offers competitive
performance with the existing TLSP state-of-the-art model. CP-SAT with priority search
tends to fall behind on larger instances but is able to solve 4 new instances to optimality,
bringing the total to 6. When TLSP-GR model is coupled with the new modified CP-SAT
version that includes priority search, it is competitive with the state of the art, improving
upon the state-of-the-art solution for 17 out of 33 instances.

56

CHAPTER 6
Conclusion

This Thesis addressed two main topics: generalizing resources in the Test Laboratory
Scheduling Problem (TLSP) to cover additional real-world scheduling requirements, as
well as implementing priority search (and other smaller features) in Google’s CP-SAT
solver to improve its performance on scheduling problems like TLSP.

To generalize resources, I proposed a new problem variant of TLSP, TLSP with Generalized
Resources (TLSP-GR). TLSP-GR unifies employees, workbenches, and equipment into a
single concept called resources. This allows users to use constraints with all resource types
that were previously restricted to specific resource types. It also serves as a basis for a
straightforward implementation of new constraints like implications between assignments
of resources. I further developed a Constraint Programming model for TLSP-GR. By
including some targeted optimizations for TLSP-GR and carefully generalizing existing
optimizations from TLSP where possible, the model is competitive with the state of
the art on existing TLSP instances, both on its own and when included in the VLNS
algorithm.

Concerning the CP-SAT solver, I analyzed the source code and existing implementation
of user-defined search strategies as passed through the MiniZinc interface. It turned out
that implementing priority search was realistic, albeit with some structural changes to
the underlying data structures and search algorithm. I successfully implemented priority
search as well as some smaller features helpful for the VLNS algorithm, randomized
variable selection, and hot start. The modified CP-SAT solver significantly outperformed
the existing version on VLNS, but to my surprise, this was mostly a result of the smaller
feature additions, randomized variable selection, and hot start. While the performance
with priority search far exceeded that of the solver’s default search strategy, I found a
search strategy without priority search that achieves similar results – something that did
not seem to be possible in earlier research with the Chuffed solver.

57

6. Conclusion

Summarizing the computational results, the new TLSP-GR CP model achieves similar
performance to the state-of-the-art model for TLSP. Utilizing this model together with
the modified CP-SAT variant yielded 4 new optimality results in addition to the 2
already present in the literature, bringing the total up to 6 out of 33 publicly available
instances. For larger instances, the best results could be obtained by using a variant
of the existing TLSP VLNS algorithm that is augmented with the new TLSP-GR CP
model and also uses its neighborhood to find the first feasible solution, internally using
the modified CP-SAT solver (which includes priority search, hot start, and randomized
variable selection). Together, these methods found penalties better than the state of the
art for 17 of 33 test instances, indicating that with the modifications, CP-SAT becomes
a competitive solver for TLSP.

The contributions of this Thesis are relevant both to academic research and industrial
applications. Regarding research, the work with TLSP-GR shows how a scheduling
problem and its corresponding CP model can be made more general, enabling new
applications, without a notable performance sacrifice. The work on CP-SAT shows how
priority search can be implemented in CP-SAT, which results in good performance on
TLSP. However, I found a search strategy without priority search that achieved similar
performance. Overall, the results highlighted a diminished importance of user-defined
search strategies with CP-SAT compared to the academic Chuffed solver, at least relating
to TLSP. The results also demonstrate the significant impact that other solver features
– hot start and search strategies with randomized variable selection – can have on the
overall performance of a VLNS algorithm. Concerning industrial applications, TLSP-GR
is applicable to more real-world use cases than TLSP was, and the modified version
of CP-SAT offers a promising state-of-the-art solution approach when combined with
VLNS.

Future work could further extend TLSP-GR to additional requirements by adding new
constraints. For instance, assignment restrictions concerning different types of resources
can now be modeled in a simple and general way with TLSP-GR. The modifications to
CP-SAT could be investigated with newer versions of the solver. Newer versions include
additional scheduling search heuristics, which could make the solver’s default search
strategy more competitive. Scaling analysis could be performed when running CP-SAT
in its multi-threaded mode. A multi-threaded version of the VLNS algorithm could also
be considered, analyzing the trade-off between trying out different moves in parallel and
increasing the thread count of the CP solvers.

58

List of Figures

5.1 Boxplot representation of the results from Table 5.2. For the CP results,
instances 23, 24 and 29 were excluded due to infeasibility. 49

5.2 Boxplot representation of the results from Table 5.2, using the best scores
for each configuration. For the CP results, instances 25, 29, 30 and Lab1
were excluded due to infeasibility. For the VLNS results, only instance Lab1
was excluded. 54

59

List of Tables

5.1 A table of benchmark instances used for the evaluations in this chapter. The
data for the table is taken from [Mis22]. The first 30 instances are randomly
generated, while the last 3 are snapshots from the real-world scheduling system
of the industrial partner. The randomly generated instances range from fairly
small to very large and are further divided into LabStructure instances, whose
statistical properties are designed to mirror real-world use cases, and General
instances, which are designed to have more variation. For each instance, a few
data points are given: the number of projects |P |, the number of tasks |A∗|,
the number of time slots in the scheduling horizon, |T |. Finally, there are the
number of employees, |E|, workbenches, |B| and equipment groups, |G∗|. 46

5.2 Penalties for the solutions found after 30 minutes by the TLSP-GR solvers,
compared to existing TLSP solvers. CP refers to using the respective CP
model with Chuffed. VLNS uses the VLNS algorithm to first find a feasible
solution, starting from a greedy (infeasible) schedule, and then iteratively
improve upon it. Cells with T/O indicate that none of the runs were successful.
Cells with numbers indicate that all 3 runs were successful, presenting the
average and best penalties. No solver solved any instance only some of the
time. For every instance, the best solution found by any solver is highlighted
in bold. 48

5.3 CP penalties after 30 minutes. Solver Search uses the default search strategy
of the solver, Fixed Search a search strategy that schedules tasks in a fixed
order, and Priority Search the search strategy that takes advantage of
my new implementation to dynamically decide in which order to schedule
tasks. Out of 3 runs, average and best scores are reported. t/o indicates that
all runs timed out. When only some of the runs were feasible, the number
of feasible runs is shown instead of the average. Bold values indicate the
best score for the instance in this table. * indicates that the solver proved
optimality. 51

61

5.4 VLNS penalties after 30 minutes. CP-SAT refers to the unmodified version
of CP-SAT, while Custom CP-SAT includes my modifications to support
priority search, hot start, and random variable selection strategies. Solver
Search uses the default search strategy of the solver, Fixed Search a search
strategy that schedules tasks in a fixed order, and Priority Search the search
strategy that takes advantage of my new implementation to dynamically decide
in which order to schedule tasks. Out of 3 runs, average and best scores are
reported. t/o indicates that all runs timed out. When only some of the runs
were feasible, the number of feasible runs is shown instead of the average.
Bold values indicate the best score for the instance in this table. 53

5.5 Penalties from this Thesis compared to the state of the art. SOTA columns
refer to existing state-of-the-art results for TLSP, while This Thesis columns
refer to the results with the TLSP-GR solution approaches developed in
this Thesis. CP-SAT refers to the modified version of CP-SAT which
adds support for priority search, hot start, and random variable selection
strategies. Chuffed refers to the Chuffed solver. SOTA evaluations were
usually performed with 5 runs each, except for CP, which only included
one run. This Thesis results included 3 runs. t/o indicates that all runs
timed out. When only some of the runs were feasible, the number of feasible
runs is shown instead of the average. Bold values indicate the best score for
the instance in this table, and * indicates that the instance was solved to
optimality. SOTA values taken from [DGJ+23]. 55

62

List of Algorithms

1 Pseudocode for a simplified version of the CP-SAT implementation of
search heuristics. The original C++ code is from [PF21b], while the
pseudocode was created by me. 40

2 My new implementation of search heuristics for CP-SAT, now supporting
priority_search annotations. 43

63

Bibliography

[AOEOP02] Ravindra K. Ahuja, Özlem Ergun, James B. Orlin, and Abraham P. Punnen.
A survey of very large-scale neighborhood search techniques. Discrete
Applied Mathematics, 123(1):75–102, 2002.

[Bar99] Roman Barták. Constraint programming: In pursuit of the holy grail.
Proceedings of WDS99 (invited lecture), 01 1999.

[BDM+99] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and Erwin
Pesch. Resource-constrained project scheduling: Notation, classification,
models, and methods. European Journal of Operational Research, 112(1):3–
41, 1999.

[Chu11] Geoffrey Chu. Improving combinatorial optimization. PhD thesis, University
of Melbourne, Australia, 2011.

[Dan19] Philipp Danzinger. Real world industrial test laboratory scheduling: Inves-
tigating constraint programming for task grouping in tlsp. Bachelor’s thesis,
TU Wien, Vienna, Austria, 2019.

[DGJ+23] Philipp Danzinger, Tobias Geibinger, David Janneau, Florian Mischek,
Nysret Musliu, and Christian Poschalko. A system for automated industrial
test laboratory scheduling. ACM Trans. Intell. Syst. Technol., 14(1), mar
2023.

[DGMM20] Philipp Danzinger, Tobias Geibinger, Florian Mischek, and Nysret Musliu.
Solving the test laboratory scheduling problem with variable task grouping.
Proceedings of the International Conference on Automated Planning and
Scheduling, 30(1):357–365, Jun. 2020.

[DPRL98] S. Dauzère-Pérès, W. Roux, and J.B. Lasserre. Multi-resource shop schedul-
ing with resource flexibility. European Journal of Operational Research,
107(2):289–305, 1998.

[FGS+17] Thibaut Feydy, Adrian Goldwaser, Andreas Schutt, Peter J. Stuckey, and
Kenneth D. Young. Priority search with minizinc. In ModRef 2017: The Six-
teenth International Workshop on Constraint Modelling and Reformulation
at CP2017, 2017.

65

[GMM21] Tobias Geibinger, Florian Mischek, and Nysret Musliu. Constraint logic
programming for real-world test laboratory scheduling. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(7):6358–6366, May 2021.

[GMM22] Tobias Geibinger, Florian Mischek, and Nysret Musliu. Investigating con-
straint programming and hybrid methods for real world industrial test
laboratory scheduling, 2022. Original version on 12 Nov 2019.

[Goo23] Google. Protocol buffers - google’s data interchange format. https:
//github.com/protocolbuffers/protobuf, 2023. Available online:
https://github.com/protocolbuffers/protobuf.

[LEF+17] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, Stefan Falkner,
André Biedenkapp, and Frank Hutter. Smac v3: Algorithm configuration
in python. https://github.com/automl/SMAC3, 2017.

[min23] Minizinc challenge 2023. https://www.minizinc.org/challenge/
2023/results/, 2023. Accessed: 2024-05-04.

[Mis22] Florian Mischek. Automated project scheduling in real-world test laboratories.
Dissertation, Technische Universität Wien, Vienna, Austria, 2022.

[MM18a] Florian Mischek and Nysret Musliu. A local search framework for industrial
test laboratory scheduling. In Proceedings of the 12th International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT-2018),
Vienna, Austria, August 28–31, 2018, pages 465–467, 2018.

[MM18b] Florian Mischek and Nysret Musliu. The test laboratory scheduling problem.
Technical report, Christian Doppler Laboratory for Artificial Intelligence
and Optimization for Planning and Scheduling, TU Wien, CD-TR 2018/1,
2018.

[MM21] Florian Mischek and Nysret Musliu. A local search framework for industrial
test laboratory scheduling. Annals of Operations Research, 302(2):533–562,
Jul 2021.

[MM23] Florian Mischek and Nysret Musliu. Leveraging problem-independent hyper-
heuristics for real-world test laboratory scheduling. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’23, page
321–329, New York, NY, USA, 2023. Association for Computing Machinery.

[MMS23] Florian Mischek, Nysret Musliu, and Andrea Schaerf. Local search ap-
proaches for the test laboratory scheduling problem with variable task
grouping. Journal of Scheduling, 26(5):457–477, October 2023. First online:
2021.

66

https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://github.com/automl/SMAC3
https://www.minizinc.org/challenge/2023/results/
https://www.minizinc.org/challenge/2023/results/

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient sat solver. Proceedings of the
38th Design Automation Conference (IEEE Cat. No.01CH37232), pages
530–535, 2001.

[Mon74] Ugo Montanari. Networks of constraints: Fundamental properties and
applications to picture processing. Information Sciences, 7:95–132, 1974.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Principles and Practice of Constraint Programming
- CP 2007, 13th International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007, Proceedings, pages 529–543, 2007.

[OrT] Or-tools - google optimization tools. https://github.com/google/
or-tools.

[PD21] Laurent Perron and Frédéric Didier. CP-SAT Solver. https:
//developers.google.com/optimization/cp/cp_solver/, 2021.
Accessed: 2024-05-04.

[PF21a] Laurent Perron and Vincent Furnon. Or-tools.
https://github.com/google/or-tools/blob/
058618a9c44ebab22f634998e64aedba6da1b8e2/ortools/sat/
cp_model.proto, 2021. Accessed: 2023-04-15.

[PF21b] Laurent Perron and Vincent Furnon. Or-tools.
https://github.com/google/or-tools/blob/
1ea133254a7b70c9d59da25ee7c12fb2f8085710/ortools/sat/
cp_model_search.cc, 2021. Accessed: 2023-04-15.

[SFS+14] Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien
Fischer. The minizinc challenge 2008–2013. AI Magazine, 35(2):55–60, Jun.
2014.

[SMT24] Peter J. Stuckey, Kim Marriott, and Guido Tack. The minizinc hand-
book - 2.6 search. https://www.minizinc.org/doc-2.8.3/en/
mzn_search.html, 2024. Accessed: 2024-04-15.

[Sut63] Ivan E. Sutherland. Sketchpad: a man-machine graphical communication
system. In Proceedings of the May 21-23, 1963, Spring Joint Computer
Conference, AFIPS ’63 (Spring), page 329–346, New York, NY, USA, 1963.
Association for Computing Machinery.

[TPM09] Vikram Tiwari, James H. Patterson, and Vincent A. Mabert. Scheduling
projects with heterogeneous resources to meet time and quality objectives.
European Journal of Operational Research, 193(3):780–790, 2009.

67

https://github.com/google/or-tools
https://github.com/google/or-tools
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://github.com/google/or-tools/blob/058618a9c44ebab22f634998e64aedba6da1b8e2/ortools/sat/cp_model.proto
https://github.com/google/or-tools/blob/058618a9c44ebab22f634998e64aedba6da1b8e2/ortools/sat/cp_model.proto
https://github.com/google/or-tools/blob/058618a9c44ebab22f634998e64aedba6da1b8e2/ortools/sat/cp_model.proto
https://github.com/google/or-tools/blob/1ea133254a7b70c9d59da25ee7c12fb2f8085710/ortools/sat/cp_model_search.cc
https://github.com/google/or-tools/blob/1ea133254a7b70c9d59da25ee7c12fb2f8085710/ortools/sat/cp_model_search.cc
https://github.com/google/or-tools/blob/1ea133254a7b70c9d59da25ee7c12fb2f8085710/ortools/sat/cp_model_search.cc
https://www.minizinc.org/doc-2.8.3/en/mzn_search.html
https://www.minizinc.org/doc-2.8.3/en/mzn_search.html

[Wal75] David L. Waltz. Understanding line drawings of scenes with shadows. In
P. H. Winston, editor, The Psychology of Computer Vision. McGraw-Hill,
1975.

[WKS+14] Tony Wauters, Joris Kinable, Pieter Smet, Wim Vancroonenburg, Greet
Vanden Berghe, and Jannes Verstichel. The multi-mode resource-constrained
multi-project scheduling problem. Journal of Scheduling, 19:1–13, 11 2014.

68

