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Kurzfassung

Drahtlose Sensornetzwerke spielen in heutigen Anwendungen eine tragende Rolle und
erfordern effiziente und zuverlässige Routing-Protokolle, um die bestmögliche Daten-
übertragung sicherzustellen. Neben anderen Routing-Protokollen hat sich RPL als viel-
versprechende Lösung für drahtlose Sensornetzwerke herausgestellt, in denen Geräte
nur über limitierte Energieversorgung verfügen und schlechte Funkverbindung haben,
herausgestellt. In dieser Arbeit wird darauf eingegangen, RPL in einem performanten
und benutzerfreundlichen Netzwerksimulator durch die Benutzung von ns-3 zu simulieren.
In diesem Netzwerksimulator werden Beispiel-Topologien erstellt, um das Verhalten
von RPL zu testen. Durch die Implementierung von RPL in ns-3 ist es möglich, RPL
auf verschiedene Parameter zu überprüfen. Die Ergebnisse der Simulation zeigen, dass
RPL linear mit der Anzahl an Hops zum Root Knoten skaliert, wenn die Objective
Function Zero verwendet wird. Auch wurde beobachtet, dass der Doublings Wert des
DIO Trickle Timers stark die Reaktionsfähigkeit des RPL Netzwerks beeinflusst. Ebenso
wird verdeutlicht, wie RPL reagiert, wenn sich ein Leaf-Knoten durch ein statisches
Raster aus RPL Knoten bewegt. Insgesamt kann der Schluss gezogen werden, dass RPL
eine gute Reaktionsfähigkeit und Skalierbarkeit in drahtlosen Sensornetzwerken aufweist
und dadurch sein Potenzial für den realen Einsatz in verschiedenen Umgebungen und
Anwendungen unter Beweis stellen kann.
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Abstract

Wireless Sensor Networks take a crucial role in today’s applications, requiring efficient
and reliable routing protocols to ensure the best possible data transmission. Among
other routing protocols, RPL has emerged as a promising solution for WSNs with lossy
links and low-power devices. In this thesis, the need to simulate RPL in a performant
and user-friendly network simulator, by leveraging ns-3, a widely used simulation tool, is
addressed. In this simulator, example topologies are defined to investigate the behavior
of RPL. Implementing RPL in ns-3 then gives the opportunity to conduct extensive
tests on these defined topologies. The results in this thesis demonstrate that RPL scales
linearly with the hop count to the root node when utilizing the objective function zero.
Furthermore, it is observed that the doublings value of the DIO trickle timer heavily
influences the responsiveness of the RPL network. Additionally, it is revealed that
RPL maintains functionality when a leaf node traverses through a grid of static RPL
nodes. Overall, this thesis concludes that RPL demonstrates a good responsiveness
and scalability in WSNs, showcasing its potential for real-world deployment in diverse
environments and applications.
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CHAPTER 1
Introduction

1.1 Motivation
The interest of the Internet of Things (IoT) is still growing and with the increasing
number of devices and applications, scalable and efficient routing protocols are needed.
Routing in a network is used to send messages in the network along the best possible
path. Routing in a Wireless Sensor Network (WSN) faces the restrictions that there
is limited energy supply, limited bandwidth and limited computing power. Thus these
networks are commonly called low-power and lossy networkss (LLNs). An LLN consists
of multiple nodes which are interconnected by a diversity of links, which are characterized
by their limited resources and unreliable links. The importance of standardization in
LLNs shall also be emphasized and different protocols and standards such as IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN), IPv6 Routing Protocol for
low-power and lossy networks (RPL), and Constrained Application Protocol (CoAP)
are often discussed [1]. These enable interoperability and communication between IoT
devices. Also, LLNs are typically constrained by a limited transmission range and a
sparse deployment of devices. One of the most common used standards in LLNs is the
Internet Protocol version 6 (IPv6) routing protocol RPL. Accommodating for these spatial
constraints, RPL is essential for making the best routing decisions possible with the use
of an Objective Function (OF). RPL provides multipoint-to-point, point-to-multipoint
and point-to-point routing for devices in the same LLN in a proactive manner. RPL is
designed for networks with lossy links, which are prone to a high packet error rate and
link outages [2]. As a distance-vector protocol, RPL has a routing topology, which is a
Destination-Oriented Directed Acyclic Graph (DODAG) that is typically rooted at a
network border router. Each node calculates its rank, representing its distance to the
root using some cost function [3].

Furthermore, network simulation is an effective method for evaluating the performance
of routing protocols in different environments and scenarios. One of the predominantly
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1. Introduction

used network simulator is Network Simulator 3 (ns-3), which provides a comprehensive
framework for modeling and simulating various types of networks, including LLNs. The
integration of RPL in ns-3 shall enable the an easier and better way to evaluate the
routing protocol in different controlled and reproduceable scenarios, which is important
for assessing it for effectiveness and highlighting problem areas.

Therefore, the motivation for implementing RPL in ns-3 is to provide a basis to evaluate
the performance of RPL in different scenarios and conditions, which can lead to the
development of more efficient and scalable routing protocols for LLNs. Moreover, the
integration of RPL in ns-3 can help the design and testing of new applications and
services that rely on LLNs, leading to further advancements in the IoT.

1.2 Problem Statement
Since RPL is widely used in WSNs, especially in conjunction with 6LoWPAN, it is
currently lacks comprehensive performance analysis. Therefore, the need for a performance
analysis of RPL is inevitable in terms of onboarding, scalability, flexibility and energy
consumption are crucial for understanding its capabilities and limitations.

Conducting performance analysis on real hardware can be cumbersome due to scalability
limitations and lack of flexibility in modifying network parameters. A viable solution
would be a robust network simulator that can simulate RPL networks. Therefore,
a network simulator that can accurately simulate RPL networks is highly desirable.
However, existing implementations of RPL in other simulators may have limitations such
as being abandoned, requiring maintenance to work with updated frameworks, being
proprietary or not available, missing important components, or being too obscure to use.

To achieve sustainable and rigorous simulation results, a simulator is needed which
is actively maintained, has a decent amount of features already available and has a
rigorous foundation, ensuring accuracy of simulation results and ongoing support by the
community. From the multitude of network simulators, ns-3 is the preferred choice, as
it is an already well established network simulator and is predominantly used in this
research area.

As of writing, there exist other implementations of RPL in various simulators, which
unfortunately all have at least one or more drawbacks, rendering them unusable for
evaluation or further use. These faults include that they are abandoned and require
further maintenance to work with updated frameworks, are proprietary or not available
at all, have missing components and/or are simply too obscure to use.

There is no RPL implementation available in the preferred simulator ns-3 and this thesis
aims at filling this gap. As ns-3 has many modules already built in, RPL can be coupled
with 6LoWPAN and Low-Rate Wireless Personal Area Network (LR-WPAN). This allows
for numerous realistic scenarios to be simulated and evaluated, using the various tools
and modules readily available (e.g. energy estimations).
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1.3. Aim of the Work

1.3 Aim of the Work
The aim of this work is to develop a suitable RPL implementation in ns-3, to provide the
research community with a rigorous, flexible and sustainable RPL implementation for a
network simulator with an active community. Further, RPL shall be tested regarding
onboarding, latency, scalability and energy consumption, offering much needed insights,
in particular in WSN research. This should allow to answer if RPL usable enough in
LLNs.

Hypothesis 1 Simulation of RPL using ns-3 offers significant advantages over
existing simulations/implementations.

The thesis shall answer the following research questions:

1. Which network simulator is suitable to evaluate RPL in LLNs?

2. Which experiment topologies shall be conducted to research the behavior of RPL
in LLNs?

3. How fast does RPL react to changes in the network?

4. How well does RPL perform in WSNs, regarding onboarding, latency, scalability
and energy consumption?

1.4 Approach
First, different routing protocols shall be researched and compared to each other, with
special attention on RPL. Then, existing network simulators shall be research, and the
best suitable simulator for RPL shall be chosen. Next, information from already published
scientific publications about RPL shall be gathered, to gain knowledge about the state
of the art of existing RPL implementations. This shall give deeper insight on how to
implement the RPL protocol, as well as highlight improvement potential in comparison
to the existing implementations.

Then, RPL shall be implemented as an IPv6 routing module in ns-3, in conformance
with the RFC standard [4]. For this implementation, part of RPL shall be abstracted
where possible and necessary, ommiting details that are not relevant for the simulation,
while functionality for generic use-cases shall be prioritized.

Examples shall then be designed to to evaluate the created RPL implementation in terms
of different metrics.

Next, the ns-3 RPL implementation shall be checked for conformity with the RFC
standard regarding its behavior. This shall be done by simulating smaller use cases
that encompass common functionality, aka performing smoke tests. Using this created
examples, an evaluation of the implementation of RPL shall be conducted, focusing on

3



1. Introduction

how performant RPL is, regarding onboarding, latency, scalability, energy consumption
and flexibility. Finally, the evaluations shall be analyzed and interpreted.

1.5 Structure of the Work
The rest of this thesis is structured as follows: Chapter 2 describes what routing protocols
are, gives an overview of different routing protocols and compares them. Chapter 3
describes what network simulators are, gives an overview of different network simulators
and present the best suited simulator for RPL. Chapter 4 showcases the different examples,
which are used for the evaluation of RPL in this thesis. Chapter 5 outlines how RPL
is implemented in ns-3. Chapter 6 includes the evaluation and interpretation of RPL
regarding onboarding, flexibility, scalability, energy consumption and simulation time.
Chapter 7 concludes the thesis and states future work.
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CHAPTER 2
Routing Protocols

2.1 Concepts of Routing Protocols
A routing protocol specifies how nodes1 know where to find other nodes in a network.
Additionally the routing protocol selects which routes shall be taken to communicate
with another node. Usually all information a node currently has over a network it is in,
is stored in a routing table. The information in these tables can vary from protocol to
protocol but usually contains the other nodes address and interface as well as the next
hop address. The next hop address is the address of a node that is directly reachable from
the sender node and is in the senders routing table for the specified receiver. Therefore,
if a node wants to send a message to a node it can not reach directly, it can send the
message to a next hop node. The next hop node will then forward the message to the
destination or, if it also cannot reach the destination directly, to it’s own next hop node
for the receiver of the message.

To select the best route (if there are multiple) to another node, metrics are often
introduced in routing protocols. These metrics can vary, such as in a wireless setting the
signal strength can be used.

Routing protocols can be either proactive or reactive. The difference is that in proactive
protocols nodes know the route before sending messages and in reactive protocols the
route is calculated when the message is sent. Both approaches have their advantages and
drawbacks and it depends on the situation which to use. A proactive protocol has the
benefit that it has a fast route discovery and reliability, but can have a large routing
overhead due to periodic updates. A reactive protocol has a low routing overhead and
consumes less resources, but can have a high latency in route finding, which can also clog
the network.

1The terms node, host and router are interchangeable used in this document.
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2. Routing Protocols

Furthermore routing protocols can be classified into three major categories. There are
Interior Gateway Protocols type 1, Interior Gateway Protocols type 2 and Exterior
Gateway Protocols. Interior Gateway Protocol type 1 are link state routing protocols.
In link state routing, each node has its own understanding of the network in form of
a graph, which shows which nodes are connected to which. Interior Gateway Protocol
type 2 are distance vector protocols. Nodes that use distance vector routing protocol
determine the best route to another node by exchanging routing information and use
the best possible path to the node. This is normally based on the number of hops to
the destination, but can also be any other metric. Finally, Exterior Gateway Protocols
are routing protocols that exchange routing information between autonomous systems,
which normally themselves run Interior Gateway Protocols of either type.

2.2 RPL
RPL is a proactive distance-vector routing protocol. RPL is a routing protocol designed
for LLNs, which are characterized for having devices with limited processing power,
memory and energy resources. RPL is based on the concept of a DODAG, which is a
directed acyclic graph that models the network topology and defines the routes between
nodes. The goal of RPL is to provide efficient and reliable routing in LLNs, while also
minimizing network resources and energy consumption on nodes. RPL also tries to to
optimize routing performance, by adding features, such as an OF to select the best path,
a trickle timer to reduce control traffic and the support for source routing and traffic
engineering.

Other research was already done on the development of new OFs, the integration of RPL
with other routing protocols, the implementation of RPL on different platforms, and the
evaluation of RPL in various application scenarios [5][2][6][7][8][9][10][3][11]. As RPL can
be confusing to understand due to the DODAG structure of the protocol and having a
very extensive RFC with many optional configurations.

The basic working principle of RPL is as follows: RPL nodes have first to be configured
to be either root nodes or not. This can be done by configuring the device directly or
through other means. Root nodes send periodically (with a trickle timer) generalized
DODAG Information Object (DIO) messages to all nodes in the area. Normal nodes
either wait for a DIO message or request one with a DODAG Information Solicitation
(DIS) message from anyone, that can hear the message. When a node sees a DIO message
it sends a DIS message to the node, to request more information. The node should
then respond with a DIO message directed to the sender of the DIS message, containing
information about the current RPL instance it is in. The node then adds itself to the
RPL instance and also advertises periodically the RPL network with DIO messages. Also
the node gives routing information to its parent by sending Destination Advertisement
Object (DAO) messages whenever changes occur or when itself receives a DAO message
(from its children). When a node now wants to send a message, it is passed upwards
through the parents, until a parent (or the root) know whose child the destination is and
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2.3. OSPF

then passed downwards to this node.

In summary, RPL is a routing protocol for low-power and lossy networks, which provides
efficient and reliable routing while minimizing the use of network resources and preserves
energy on nodes [4].

2.3 OSPF

Open Shortest Path First (OSPF) is a proactive link-state routing protocol, which means
that routing information is distributed in a single autonomous system before any message
data is sent [12] [13]. Due to being a link-state protocol, routing information is always sent
to one-hop neighbors. In a wireless setting, this means all nodes that are in transmission
range. As each node also propagates the information it received further, eventually all
nodes in the network know the whole structure of the network. Then all nodes can
calculate the best/shortest path between any two nodes. This is normally done by using
the Dijkstra algorithm [14].

The basic working principle of OSPF is as follows: Nodes broadcast OSPF HELLO
messages to all one-hop nodes in range at regular intervals to discover neighbor nodes.
These HELLO messages are not propagated further. Furthermore, these messages contain
the senders identification number as well as all neighbors the sender has already discovered.
With these messages, each node knows eventually who his neighbors are. Furthermore
these messages are also used to determine if a neighbor has become inactive or lost
connectivity, when no HELLO messages are received anymore. To exchange routing
information Link State Advertisements (LSA) messages are used, which distributes the
state of the nodes connections. The messages are broadcasted whenever the network
updates for a node. Upon reception of an LSA message, a node updates its Link State
Database (LSDB), in which the node stores its current view of the network topology.
Eventually, every node in the network will have the same view of the network topology.

The problem with OSPF is that it scales poorly. With an increasing number of nodes
the size and frequency of the topology updates, as well as the length of time it takes to
calculate end-to-end routes increases drastically. This is the reason OSPF is only used
within an autonomous system.

With the OSPF version 3, OSPF is updated to support IPv6 by adding compatibility
with the 128-bit address space. This version makes some slight changes to the protocol
behavior. These changes are that the protocol processing is now per-link and not per
subnet, the Flooding scope for LSAs has been generalized and authentication has been
removed from the OSPF protocol, which now shall handle the IPv6’s Authentication
Header and Encapsulating Security Payload.

7



2. Routing Protocols

2.4 AODV
Ad hoc On-Demand Distance Vector Routing (AODV) is a reactive routing protocol,
which means routes are only created when they are needed [15]. Each node of the network
keeps track of the network with a routing table and uses sequence counters in its messages
to prevent routing loops.
The basic working principle of AODV is as follows: Whenever a node wants to send a
message to a new node, that is not already in it’s routing table, it needs to discover a route
to said node. The source node sends a Route Request (RREQ) message as broadcast.
When a RREQ message is received by a node: Either the node is or has a valid route
to the requested target (a route with a sequence number greater or equal to the one
in the RREQ message), then it responds with a unicast Route Reply (RREP) message
back to the source. Otherwise the RREQ message is forwarded (by broadcast) with an
incremented hop count. As RREQ messages can be uniquely identified by the source
address and request ID pair, receiving multiple of the same RREQ message, additional
messages are dropped by the receiver. RREQ messages are sent periodically if no RREP
message is received. When a node the receives a RREP message, it can update its routing
table and can begin to send messages to the target [16] [15].
AODV can be further optimized by using an expanded ring technique, by adding a
Time To Live (TTL) to the RREQ message to keep track on how often the message is
re-broadcasted. This reduces the number of hops a RREQ message traverses through the
network. When the number of hops is greater than the TTL, the requesting node has to
send another RREQ message with a higher TTL. Although the cost can sometimes be
higher than full flooding, the expected overall cost is less with a set of optimal chosen
TTL values [17] [15].
Also to keep track of Neighbors AODV can be configured to use HELLO messages, as
already mentioned in Section 2.3. These HELLO messages are periodically broadcasted
locally and are not forwarded further. When a node receives a HELLO message from
another node, it updates the neighbor in its routing table to be reachable and (still) alive.
As this behavior is more expected from a proactive protocol, rather than an reactive
protocol, this feature is optional and separate to the general topology management [15].

2.5 OLSR
Optimized Link State Routing (OLSR) is a proactive routing protocol for mobile ad
hoc networks with focus to satisfy the needs of mobile Wireless Local Area Network
(WLAN) [18]. As the protocol is proactive, the routes are always available when needed.
The main gimmick of OLSR is that it chooses a subset nodes in the network to be
Multipoint Relays, which are the only nodes that can forward data through the network.
This is done to reduce the flooding in a network.
The basic working principle of OLSR is as follows: As in Section 2.3, nodes send periodic
HELLO messages to inform potential one hop neighbors of their existence. Furthermore

8



2.6. IS-IS

the HELLO messages contains also a list of all already found neighbors of the sender.
This means, that eventually all nodes then know their one and two hop neighbors and
know if the connection to another host is symmetrical or asymmetrical, which will be
stored in each nodes routing table. Each node then chooses a small set of MPR nodes,
which is the Multipoint Relay Selector Set (MPR Selector Set). To reduce the amount of
flooding, the minimum number of one hop neighbors which cover all two hop neighbors
are chosen with the MPR selection algorithm. Each node then broadcasts periodically
Topology Control (TC) messages, which contains the MPR Selector Set and a set of its
own advertised links. Only MPR nodes are allowed to forward TC messages. Furthermore
TC messages contain a sequence number to drop older messages and prevent loops. Upon
receiving a TC message, a node updates it routing table [16] [18].

2.6 IS-IS
Intermediate System to Intermediate System (IS-IS) is a link state routing protocol like
OSPF. IS-IS is based on Connectionless Network Service (CLNS), which means that it not
necessarily needs IP Addresses to work, but can use them. IS-IS designates areas (level 1
and 2) where routers can only exchange information in the level they are. Additionally
routers (level 1/2 routers) that are on the border to both areas can exchange information
with all level routers. To which level a node belongs is set on each node by the network
administrator.

The basic working principle in each area works as OSPF described in Section 2.3, such
that HELLO messages are periodically sent to know all adjacent neighbors. Furthermore,
it uses Link State Protocol Data Unit (LSP) messages, which are periodically flooded in
the same area, to share network information. Level 1/2 nodes flood them to all adjacent
nodes. As in OSPF, the best/shortest path between any two nodes is normally calculated
by using the Dijkstra algorithm [14] [19].

2.7 RIP and RIPng
Routing Information Protocol (RIP) is an Interior Gateway Protocol (IGP) that uses
a distance-vector algorithm to determine the best route to a destination. RIP uses the
number of hops (hop count) as the metric [20].

RIP broadcasts routing information to all directly connected RIP nodes every 30 seconds,
which will update their routing table. A routing update contains the entire routing table
of the sending node. When a node receives such an update it will update its own routing
table. If a RIP node has not received a routing update from another router for 180
seconds, it assumes the RIP node is down, sets the metrics of all routes involving this
router to infinity and stops routing over this node. Infinity in RIP equals 16 or more
hops to the destination. Therefore only routes with maximum 15 hops to a destination
are possible. If no update was received for further 120 seconds the router will completely
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2. Routing Protocols

remove all routes involving the outer router. To calculate the best route to another node,
the Bellman-Ford algorithm is used [21] [22].

Routing Information Protocol Next Generation (RIPng) is different to RIP as it uses
link-local addresses to keep track of the next-hop addresses of the neighboring routers
and uses the FF02::9 address to exchange routing information [23].

RIPng routers only share network information with each other and utilize the IPv6
link-local addresses to keep track of the next-hop. This is problematic in a wireless
environment as only networks are forwarded and hosts are only reachable if they are
link-local so the sender itself. If a message shall be delivered to a node in the same
network, but not in its direct sending range, the message will not be forwarded to the
node, as no node has the information to forward the message [23].

2.8 EIGRP
The Enhanced Interior Gateway Routing Protocol (EIGRP) is a distance-vector routing
protocol.

Unlike RIP, EIGRP does not send periodic routing updates to other nodes, except for
HELLO messages. This prevents loops from happening and reduces the network load.

The basic working principle of EIGRP is as follows: Each EIGRP node sends periodic
HELLO messages as broadcast/multicast, as in Section 2.3, to all one hop neighbors.
Each node then eventually knows all adjacent neighbors, as well as if they are still alive.
When ever the cost or the status of a link changes for a node, it sends an UPDATE
messages to all one hop neighbors, which contains the distance vector of the changed
link. Upon receiving such message, a node updates its routing tables, as well as it’s
topology table, in which it keeps track of all the distances to each known destination [24].
To calculate the best route to another node, the Diffusing Update Algorithm (DUAL)
is used [25]. EIGRP nodes have the option to send EIGRP packets reliably (e.g. for
UPDATE messages), by indicating in HELLO message, that the next multicast message
requires an acknowledgment from every one hop neighbor [26].

2.9 Routing Protocol Comparison
To give a quick overview of the Routing Protocols and for an easier comparison, the
properties for each routing protocol is given in table 2.1. This table showcases how the
routing protocols work and one can select the best fitting protocol for a specific use case.
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Properties RPL OSPF AODV OLSR
Type Distance Vector Link State Distance Vector Link State
Activity Proactive Proactive Reactive Proactive
Topology DODAG SPF Tree Mesh MPR (Multi-

Point Relays)
Topology Discov-
ery

Utilizes DAG Hello Messages
and LSAs

Route Request Hello Messages
and Topology
Control

Use Case IoT, Sensor Net-
works

Enterprise, Inter-
net

MANETs MANETs

Algorithm DODAG Dijkstra Distributed
Bellman-Ford

Dijkstra

Routing Metric OF Cost (Band-
width, Delay)

Hop Count Link Quality
(ETX)

Routing Up-
dates

Periodic, Event-
Driven

Periodic, Event-
Driven

On-Demand Periodic, Event-
Driven

Loop Prevention DAG Rank, Par-
ent Set

Split Horizon,
Poison Reverse

Sequence Num-
bers

MPR selectors

Concurrency Multipath Multipath Single Path Multipath

Properties IS-IS RIP EIGRP
Type Link State Distance Vector Hybrid
Activity Proactive Proactive Proactive and Reac-

tive
Topology SPF Tree Distributed DUAL
Topology Discovery Hello Messages and

PDUs
Periodic exchanges Hello Messages

Use Case Enterprise small networks Enterprise, Internet
Algorithm Dijkstra Bellmann-Ford DUAL
Routing Metric Cost (Bandwidth, De-

lay)
Hop Count Cost (Bandwidth, De-

lay,. . . )
Routing Updates Periodic, Event-

Driven
Periodic, Event-
Driven

Incremental

Loop Prevention Split Horizon Split Horizon DUAL
Concurrency Multipath Multipath Multipath

Table 2.1: Comparison of Network Protocols
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CHAPTER 3
Network Simulators

3.1 What is a Network Simulator
As networks grow larger and more complex in the last few years, the effort to test and
experiment on such networks is not feasible anymore. Therefore, network simulation
has become increasingly important to analyse networks and predict their behaviour [27].
Network simulation is often used to predict the performance of networks and their used
protocols, to test certain behaviour of protocols for correctness and to explore protocol
designs by rapid evaluation and iteration. In operation, network simulators let the
users design, modify and test networking protocols in a simulated environment, which is
modeled with devices, links, application, etc. to test on [28].

In contrast, developed protocols can be implemented and deployed on real hardware,
which is called testbed implementation. While such an implementation may yield more
accurate results than a network simulator, the drawbacks are that hardware can become
quite costly, monitoring options can be limited, the test environment can be difficult
to set up and the system can be prone to measurement errors [29].Therefore, testbed
implementation is more likely used with a smaller number of nodes.

Network simulators can be classified into two types: software-based and hardware-
based. Software-based network simulators are the more commonly used type of network
simulators. These simulators are software programs in which networks can be modelled
and simulated and show the behaviour and traffic. Hardware-based network simulators
are designed to simulate specific hardware and are designed to test specific hardware
such as routers and switches under different network conditions. Unfortunately it can
be difficult to use network simulators, as most users struggle with installing most used
network simulators, as well with configuring the simulation model properly. This may
deter users from using network simulators and suggests that there is an importance to
improve documentation [28].
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As most simulation models make use of abstractions and approximations from reality, a
simulation of these model is often trimmed to answer a specific set of questions. Therefore,
simulation models are inherently not designed to accurately depict reality, but rather
are geared towards a specific use/test case. In contrast, laboratory experiments can also
prove to be invalid, e.g. when measurement artefacts appear or the inevitable errors when
measured results are extrapolated from small networks to large ones [27].

Additionally prior works, conducted on network simulators, show that it is hard to select
the correct network simulator for the desired use case, because of wide variations in
operating systems, hardware requirements, programming software requirements, output
features and scalability [30] [31] [32]. To ease the choice which simulator to use, the
properties of the later described network simulator is given in Table 3.1, which is slight
altered from [30]

As wireless networks have other demands it can be even more challenging to pick a
suitable network simulator, as nodes can be resource constrained and link can heavily
fluctuate [29].

The general work flow to use a network simulator is the following:

1. Define the network topology: Use the network simulators interface to create nodes,
specify their connections, and configure their network interfaces to form the desired
network topology.

2. Define application behaviour: Implement the application logic, specifying the
behaviour of each node, including its applications. Also set the amount of data
sent, the timing of transmissions, and the protocol used.

3. Configure simulation parameters: Set simulation parameters such as the start and
end times, the random start seed, and any specific simulatior options.

4. Build the simulation model: Use the tools from the simulator to compile the
simulation model into an executable file or script.

5. Run the simulation: Use the simulators interface or command line interface to run
the simulation and generate trace files.

6. Analyze the results: Use the simulators tools or external tools to analyse the trace
files and generate statistics, such as throughput, delay, and packet loss.

7. Visualize the results: Use the simulators tools or external tools, such as wireshark
or RapidMiner, to create visualizations, such as packet flow diagrams or timeline
charts, to help understand the simulation results.

In conclusion, network simulators are an essential tool for anyone researching or de-
veloping networks. Network simulators provide an effective way to test and evaluate
network behaviour under various conditions, helping to improve network performance
and reliability.
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Simulator License Language GUI Ease of Use Documentation Parallelism
Quality

ns-3 GNU
GPLv2

C++ Yes Moderate Good Yes

OMNeT++ Academic
Public
License

C++ Yes Moderate Good Yes

J-Sim Proprietary Java Yes Easy Fair No
COOJA GNU

GPLv2
Java Yes Easy Fair No

Table 3.1: Comparison of Network Simulators

3.2 ns-3

ns-3 is an open-source discrete-event network simulator that is widely used in the field of
network research and development. It is a simulation framework that allows to simulate
the behaviour of complex network systems, including wired and wireless networks, cellular
networks, and satellite networks. ns-3 is mainly used for research and educational use [30].

It is written in its entirety in C++ in which it’s modules and use cases are also made.
Additionally optional Python bindings are also available. Therefore it is a prerequisite to
know how to write Python or C++ code to use this network simulator. Other than the
language barrier, it provides a user-friendly simulation environment, making it easy to
create and modify simulation scenarios. ns-3 provides a wide range of features, including
an advanced event scheduler, a powerful and extensible modular architecture, and a
comprehensive set of network models and protocols.

One of the advantages of ns-3 is its support for a wide range of network protocols and
technologies, including IPv4 and IPv6, TCP and UDP, Wi-Fi, LTE, and 5G. It also
provides support for packet tracing and visualization, allowing developers to visualize the
flow of packets through the network and analyse network behaviour. ns-3 also supports
a real-time scheduler, to be able to run a simulation-in-the-loop to interact with real
hardware systems. This can be done by emitting and receiving ns-3-generated packets
on real network devices, where ns-3 serves as an interconnection framework [33].

Overall ns-3 is a powerful and versatile network simulator that provides an effective means
of evaluating and optimizing network performance in a virtual environment. Its advanced
features and support for a wide range of network protocols and technologies make it an
essential tool for anyone working in the field of network research and development [34] [33].
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3.3 OMNeT++
OMNeT++ is an open-source discrete-event simulator that is widely used in the field of
network research and development. OMNeT++ itself is not directly a network simulator.
It just includes basic machinery and tools to to create simulations, but it does not
include components specifically for computer networks. These applications are added
by frameworks, such as the extensible InterNETworking framework (INET) framework
or Castalia. Through this framework approach, this simulator provides users with a
more generic component architecture, as these models can be freely designed and used in
different environments as building blocks [33].

OMNeT++ is written in the C++ programming language and provides a wide range
of features, such as an event scheduler, a graphical user interface, and a flexible and
customizable simulation kernel. It also provides a comprehensive library of network models
and protocols, making it an ideal tool for simulating a wide range of network scenarios.
The components itself are connected and configured with the NEtwork Description (NED)
language, the OMNeT++ own topology description language. One of the advantages of
OMNeT++ is its ability to simulate both network protocols and application behaviour
simultaneously, allowing to evaluate the performance of network applications under
various conditions. OMNeT++ also provides support for parallel simulation, which
enables simulations to be run more efficiently on multi-core processors or distributed
computing clusters. Overall OMNeT++ is a powerful and versatile simulator that
provides an effective means of evaluating and optimizing network performance in a virtual
environment. Its advanced features and extensibility make it an essential tool for anyone
working in the field of network research and development [35] [33].

3.4 J-Sim
J-Sim is an open-source network simulator designed for simulating communication net-
works. It is a tool that allows to test and evaluate the performance of network protocols
and algorithms in a virtual environment, before deploying them in the real world.

J-Sim is written in the Java programming language and provides a wide range of features,
such as network visualization, packet tracing, and link and node failures modelling. J-Sim
is built upon Autonomous Component Architecture (ACA) and INET. By having an
ACA, components can be individually designed, implemented and tested in J-Sim. When
data arrives at an input of a component an individual routine of the component takes
care of it in an independent execution context. This makes it that components, i.e. nodes,
behave like real Integrated Circuits. INET lets J-Sim have access to create and used
packet-switched networks. Also J-Sim provides a scripting framework and a graphical
user interface.

One of the advantages of J-Sim is its flexibility, as it allows to customize and extend the
simulation environment to meet their specific needs. J-Sim can simulate different types
of networks, such as Local Area Networks and Wide Area Networks. Furthermore, it
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can be used to evaluate the performance of different network protocols and algorithms.
Overall J-Sim is a tool for anyone working in the field of network protocol development,
as it provides an effective means of evaluating and optimizing network performance in a
virtual environment [36] [33].

3.5 Contiki COOJA
COOJA is a network simulator designed specifically for simulating WSN and IoT systems.
Furthermore, it is a hardware-based open-source simulator that allows to test and evaluate
the performance of WSN applications and protocols in a virtual environment before
deploying them in the real world. The Contiki project also developed the Contiki OS,
which is an embedded OS entirety written in C.

COOJA is a Java-based simulator, and provides a wide range of features such as network
visualization, energy profiling, and radio interference modelling. It also supports a variety
of network protocols and can simulate different types of sensor devices with different
hardware capabilities. When using the Contiki OS in COOJA, the simulator can give
additional information on energy consumption and running applications.

One of the advantages of COOJA is that it provides a user-friendly graphical interface
that allows to set up and configure their simulation, such that the node can be freely
placed, sensor input can be modified and communication noise can be set up. Additionally,
COOJA can be extended and customized with plugins, making it a versatile and flexible
tool for network simulation.

COOJA can simulate on different abstraction level: the network level, the code level and
the instruction-set level. Simulation on the instruction-set level uses a compiled firmware
binary by invoking an external microcontroller simulator.

Overall, COOJA is an essential tool for anyone working in the field of WSN and IoT
development and it provides an effective means of evaluating and optimizing network
performance in a virtual environment [37].

3.6 RPL in the Network Simulators
The performance of RPL was studied in the papers [7] [6] [5] [38] [39]. In [7] it was shown
that RPL is a powerful technique, which gives networks a quick set-up with bounded
communication delays. It is also shown that node distance to the sink node plays a large
role. Also they concluded that the protocol overhead was quite high compared to the
data traffic. In [5] it was shown that the performance of RPL is heavily dependent on
the OF. This makes RPL harder to use, as of currently there is no clear guideline on
how to specify this OF to optimize the protocol. Also [38] shows the how the general
OF, which is based on the hop count, to a OF that tries to preserve more energy on
nodes. In [39] it is stated that RPL performs better in most cases than Software Defined
Networking (SDN) on a mesh topology.
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As previously stated, there are already several existing network simulators available, in
which RPL implementations can be used. These are OMNeT++,J-Sim, COOJA and
NetSim. Each of these simulators has its strengths and weaknesses, and the choice of
simulator may depend on the specific research goals and requirements. One important
aspect of RPL simulation in network simulators is the modeling of the underlying network
topology.

Implementations of RPL in OMNeT++ are presented in [10] and [6]. The implementation
in both papers is evaluated through simulation experiments that measure the performance
of the RPL protocol in terms of network lifetime, packet delivery ratio, and end-to-end
delay. The paper [10] highlights the importance of testing and evaluating the importance
of RPL before deploying it on hardware in the real world. The paper [6] suggest that the
code that implements RPL in OMNeT++ cannot keep up with the updates the network
simulator receives. OMNeT++ is probably the most used simulator to simulate RPL, as
a lack of better options. While OMNeT++ can simulate RPL, it is very tedious to use,
as seen in [6], as OMNeT++ does not provide built-in support for RPL. Furthermore,
in [6] it is mentioned, that there are shortcomings related with the physical layer. With
these deficiencies this simulator does not seem like an attractive option.

Then there is a RPL implementation in the hardware simulator COOJA, as these paper
show [7][9][40][11]. These paper presents a thorough analysis of the performance of the
RPL routing protocol in various scenarios, using the COOJA network simulator. These
studies investigate the impact of multiple parameters, such as network size, traffic load
and different topologies, on the performance of RPL. As it suggests in [6], nodes have
memory limitations, which means that nodes cannot run implementations, that need a
lot of space. Furthermore, since COOJA is a hardware simulator, the devices used, can
become outdated and it takes significant effort, in order to add newer hardware to the
simulator. While being able to more realistically simulate a RPL network, a hardware
simulator has the drawback that it is much more computation intensive and is far less
flexible [6]. Furthermore, COOJA has dramatically fewer features in comparison to other
established simulators.

The paper [8] proposes a simulation model for the RPL protocol in the J-Sim network
simulator. The simulation results show that the model could successfully simulate the
RPL protocol and its behavior in a wireless sensor network. It also briefly describes
open issues on the RPL protocol, such as the support on multiple instances and routing
strategies based on different metrics. Unfortunatly the J-Sim RPL implementation code
from [8] was not sourceable.

Lastly there is a RPL implemtation in NetSim. As this is a commercial product, which
can simulate Cisco systems, it can not be freely used.

As shown, the drawbacks of these RPL implementations in the different simulators
will necessarily lead to evaluations that will ultimately be flawed. Additionally most
communicated RPL evaluations, and more importantly their implementations, are difficult
if not impossible to come by. Therefore, this work shall give a proper RPL implementation
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in ns-3 that can be correctly evaluated.
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CHAPTER 4
Design of Experiments

To evaluate RPL in ns-3, different scenarios are created to test its behavior. Those
examples are described in the following sections. Here is some configuration listed, which
is used in every example, unless the specific example says otherwise.

Nodes in every example are placed in a 2 dimensional space, i.e. every node is positioned on
the same height on the z-axis to reduce complexity. Every example uses LR-WPAN devices,
which are all associated to the same Personal Area Network (PAN)-ID. Furthermore
every node uses 6LoWPAN with the same context configured. Every node is associated to
the IPv6 Network ”2001:2::”, which is also set as context for 6LoWPAN, such that node
0 has ”2001:2::ff:fe00:1”, node 1 has ”2001:2::ff:fe00:2” and so on. Furthermore, every
node is set to be able to forward messages to another node. As described in Section 5.2.3,
the classical Neighbor Discovery Protocol (NDP) is used normally for every example. On
top of this, when not stated otherwise, RPL is used as routing protocol.

In all examples one or more nodes (clients) send User Datagram Protocol (UDP) packets
to another node (server), which echos the packets back to the sender (clients). To ensure
that the network is well established and stable, the clients start sending UDP packets
every second, 100 seconds after the simulation is started. In the case of the line example
and the many nodes example, the application starts after 200 seconds, as so many nodes
need a longer setup time. As the size of the packets does not really matter, they are
always set to 10 bytes per packet. Since UDP traffic requires a port, the port 6000
is chosen, to not be in the range of the well-known ports [41]. Each example that is
evaluated with RPL, the default configuration of RPL, as stated in [4], is used. This
also means that only Objective Function Zero (OF0) is used. Lifetime values are all set
to 0xFFFFFFFF, as they need to be long enough to not interfere with the evaluations.
Furthermore, the DAO delay is set to 1 s, as specified as default value in [4]. Also how
often a DAO message is sent before a node gives up on it is set to 5 and a node will wait
10 s for a Destination Advertisement Object Acknowledgement (DAO-ACK) before it
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resends a DAO message. In case of RPL, node 0 is always taken as the root node of the
network. The RPL configuration values are given in Table 4.1.

Root node 0
RPL Instance ID 0
RPL Objective Code Point 0
RPL mode of operation 2 (equals Storing Mode without

Multicast)
K-Flag (decides if DAO-ACK messages are
sent)

true

DIO Interval Doublings 20 (equals 2.3 hours)
DIO Interval Min 3 (equals 8 ms)
DIO Redundancy Constant 10
Minimum Hop Rank Increase 256
DAO Delay 1 s
DAO Retries 25
DAO-ACK Wait Time 2 s

Table 4.1: RPL Configuration

4.1 Line Example
The line example features nodes positioned in a straight line, as shown in Figure 4.1. The
nodes in this example are set up in a way, that each node only sees at most 2 neighbor
nodes, by setting the distance between nodes accordingly. In this case, each node is
70 meters apart from each other. The in- and outgoing traffic of each node can then be
easily analyzed, as there is only one in- and outgoing path. To generate some traffic, node
0 is configured as a client and node n, the node furthest away from node 0, is configured
to be the server. Therefore after the initial 100 seconds, node 0 will send a UDP packet
every second to node n, which node n will echo back to node 0. When using RPL in this
example, the root node (node 0) is positioned on one end.

For testing basic functionality of message passing this example well suited. Furthermore,
in this example we can observe how long it takes for nodes to be added to the network
with a varying number of nodes in the network. In most routing protocols, this can be
observed by looking at the routing table and see when the last node has been added. For
RPL, the time is expected to linearly increase with the number of nodes, as with each
new hop, the configured DAO delay adds up. The easiest case to see packet forwarding
is with 3 nodes, such that the middle node can be seen to forward the packets.

Therefore, the line example is tested for:

• Network Setup Time: The median time when node 0 has a route to the nth node.
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• Success Rate: The number of unique UDP messages that are successfully echoed
back to node 0 divided by the number of unique UDP messages sent by node 0.

• Latency: The median round trip time for the UDP messages sent from node 0 until
the echo is received again on the node.

0 1 n

Figure 4.1: Line Example

4.2 Tree Example
The example shall showcase the path generation of the routing protocols and how quickly
paths are found. In this example, the node are positioned in a tree like topology. The
nodes are placed in such a way, that each node can only see the next hop node to the
root. This is done to force the network to ensure the paths are created as shown in
Figure 4.2. The positions of the nodes used in this example can be seen in Table 4.2.

In this example to simulate two real world applications, traffic is either going from a
gateway to its sensors or inter-sensor-communication shall be shown by having two leaf
node send packets to each other. Explicitly one setup is that each leaf node in the network
sends the UDP packets to node 0, which will echo the packets back to the respective leaf
node. The second setup is that node 5 sends UDP packets to node 7, which will echo
them back to node 5. Finally, as a control test, node 7 is configured as client and node 0
is configured as server, which will echo the packets back to node 7. The setups can be
seen in Table 4.3. In all setups, packets are sent every 1 second.

Furthermore, to better understand the scalability of the routing protocol the quantitative
metrics latency and success rate are measured [42]. These quantitative metrics are latency
and success rate [42]. The latency shall be the average amount of time a message takes
from the sender to the receiver. The success rate shall be the total number of unique
packets delivered divided by the total number of packets sent.

Therefore, the tree example is evaluated for:

• Network Setup Time: The median time when node 0 has a route to every other
node in the network.

• Success Rate: The number of unique UDP messages that are successfully echoed
back to the sender node(s) divided by the number of unique UDP messages sent by
the sender node(s) for all setups.

• Latency: The median round trip time for the UDP messages sent from the clients
until the echo is received again on the clients in all setups.
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Figure 4.2: Tree Example

Node X Position / m Y Position / m
0 1000 1000
1 940 1000
2 1060 1000
3 880 1050
4 880 950
5 1120 1050
6 1120 950
7 820 1100

Table 4.2: Tree Example Node Positions

Setup Client Server
1 4, 5, 6, 7 0
2 5 7
3 7 0

Table 4.3: Tree Example Setups

4.3 Alternate Path Example
This example shall showcase how responsive a routing protocol is when a link fails, e.g. by
a battery failure or a node moving out of the network. After some time, e.g. by replacing
the battery of the node or the node moving back into the network, the broken link then
reconnects with the network.

The network is built as shown in Figure 4.3, such that node 4 has potentially two paths
to reach node 0. To be able to show the broken link and the re-connection to the network,
node 1, shown in Figure 4.3, fails after 130 seconds and reactivates after 300 seconds.
For RPL, by using OF0, the preferred path for node 4 is over node 1, as this path has
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fewer hops than the path over node 3. The exact node positions are shown in Table 4.4.
Node 4 is configured to be the client that sends a UDP packet every second to the server
node 0, which will echo back the packet to the client. In RPL, node 0 is chosen as the
root node.

The delay between the initial path becoming unavailable and the network being ready to
send messages over the alternative path shall be measured. Furthermore, if the routing
protocol is able to, the time it takes restore the initial path again shall also be measured.
This shall show how flexible the routing protocol is and how well it handles changes in
the network. For RPL, it shall show that the alternative path is found and later, the
better path over node 1 shall be found again. It shall be kept in mind, that in this
RPL implementation only OF0 is used, which can give highly different results than with
another OF. How long RPL takes to find the new paths is depending on when specific
DIOs are received. This may introduce wildly varying delays over different simulation
runs. To further investigate this, the trickle timer parameter will be changed to see how
much impact they actually have.

Therefore, the alternate path example is evaluated for:

• Alternate Path Time: The median time it takes node 4 to have a route to node 0
over node 3 and 2 after node 1 fails with different Trickle Timer configurations as
shown in Table 4.5.

• Better Path Time: The median time it takes node 4 to have a route to node 0 over
node 1 after it reactivates with different Trickle Timer configurations as shown in
Table 4.5.

• Success Rate: The number of unique UDP messages that are successfully echoed
back to the sender nodes divided by the number of unique UDP messages sent by
the sender nodes.

Node X Position / m Y Position / m
0 100 0
1 50 70
2 160 60
3 160 140
4 80 150

Table 4.4: Alternate Path Example Node Positions
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Figure 4.3: Alternate Path Example

DIO Interval Doublings DIO Interval Min resulting DIO Interval Max
20 3 2.33 h
13 3 1 min
11 3 16.38 s
10 3 8.192 s

Table 4.5: Alternate Path Example Trickle Timer Configurations

4.4 Many Nodes Example
To test how scale-able and flexible routing protocols are, an example with a significantly
higher number of nodes compared to the previous examples is used. This is sketched in
Figure 4.4. The number of nodes will be varied over multiple runs. The nodes in this
example are either uniformly or normal distributed.

The area the nodes are dispersed when uniformly distributing is dependent on the number
of nodes. This is done by using the next perfect square of the number of nodes as grid
width and then scaling it with a factor α. The grid width G in both x and y direction is
calculated by the following formula by using the number of nodes n as argument.

G = (⌊√
n⌋ + 1) · (⌊√

n⌋ + 1)

Then the Box for the uniform distribution is set to be αG × αG, where α = 50. For the
normal distribution the same grid width G is used, such that the mean is µ = G

2 · α and
the variance is σ2 = 5

3 · α, where α = 50.

Those distributions are chosen to represent real world applications. Uniformly distributed
nodes could represent an outdoors sensor network, whereas normal distributed nodes
around a root in the middle could be found in an office building, where nodes may be
clustered together with only a few outliers.
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As in the tree example, described in Section 4.2, one time, traffic is setup to go from
one or more node(s) to another node, where the nodes are placed by the distribution
function.

Explicitly this means that one node is used as server node and other distributed node(s)
are used as clients, which send the UDP packets every second to the server, which will
echo them back. The number of clients used in each distribution setting are 1, 2 and 4. It
shall be noted, that client and server cannot be on the same node in this example, as well
as the root node in RPL is never chosen as client or server. Also as in Section 4.2, the
data packets are sent every 1 second. When using RPL, node 0, which is also randomly
distributed, is configured as the root node. The used setups in conjunction with the
distributions are also shown in Table 4.6.

It shall be measured how fast the complete network can be reached from the server node.
In RPL, this provides a good metric, as when the root can reach a node, every other
node in the network can also reach it. It is expected that the time to reach every node in
the network would increase logarithmically with increasing number of nodes regardless
of the distribution, as the hop count is also expected to increase nearly logarithmically.
This should also hold true for the uniformly distributed case, as the area the nodes are
placed in is limited, as shown by the formula above.

As this example is the deterministic large-scale example to the tree example in Section 4.2,
the same scalability metrics shall also be measured.

Therefore, the many nodes example is evaluated for:

• Network Setup Time: The median time when node 0 has a route to every other
node in the network in both distributions over varying node count.

• Success Rate: The number of unique UDP messages that are successfully echoed
back to the sender nodes divided by the number of unique UDP messages sent by
the sender nodes in both distributions.

• Latency: The median round trip time for the UDP messages sent from the clients
until the echo is received again on the client nodes in both distributions.
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Figure 4.4: Many Nodes Example

Setup Distribution Client Server
1 uniform random node random node
2 uniform 2 random nodes random node
3 uniform 4 random nodes random node
4 normal random node random node
5 normal 2 random nodes random node
6 normal 4 random nodes random node

Table 4.6: Many Nodes Example Setups

4.5 Moving Node Example

This example shall represent a mobile device which moves through a (sensor) network
which are fixed at their location. Arguably a normal or uniform distribution would reflect
the real world better, but would also introduce more uncertainties to the simulation due
to the randomness of the positioning. Furthermore, placing the nodes in a grid should
not differ much from a closely normal distributed network of nodes.

In this example, the nodes are arranged statically in a 5 × 5 grid, where each node is
100 m apart to the next one in x and y direction. Furthermore, one node (node 25)
moves through this grid. The moving node starts on the same position as the center
node 12. Then node 25 moves to node 14, then node 4, then 200 m to the right and
finally to node 0. The node moves with a speed of 2 m/s and pauses at each destination
for 50 s. The topology and the movement of the node is shown in Figure 4.5. After the
pause of 50 s at the last destination, the simulation shall be terminated. The moving
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node 25 takes the role of the client and node 12 of the server. This means that node 25
sends packets to node 12 every 1 second which are echoed back. Using RPL node 12 is
chosen as the root node and node 25 is declared as a leaf node, to prevent it from having
a sub-DODAG itself.

To track how good the connection from the network to the moving node is the latency
of the messages from and to the moving node shall be measured, as well as the overall
success rate of packages. To test the limits of the routing protocol, the success rate is
evaluated over varying speed of the moving node. It is expected, that the success rate
will drop quite fast, as the moving node will move out of range before it even has the
chance to connect to a new node.

In case of RPL, the parent list of the moving node shall be evaluated, to see when and
with whom the node connects. This of course does not necessarily correspond with the
real world, as in this simulation each node can only have one parent and only OF0 is
used.

Therefore, the moving node example is evaluated for:

• Success Rate: The number of unique UDP messages that are successfully echoed
back to the sender nodes divided by the number of unique UDP messages sent by
the sender nodes. The success rate is also evaluated over varying speeds and trickle
timer parameters as shown in Table 4.7.

• Latency: The median round trip time for the UDP messages sent from node 25
until the echo is received again on the node.

• Parent List: The parent list of the moving node until the final stop at node 0.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

2423222120

25

Figure 4.5: Moving Node Example

29



4. Design of Experiments

Speed[m/s] DIO Interval Doublings DIO Interval Min resulting DIO Interval Max
2 20 3 2.33 h
2 10 3 8.192 s
3 20 3 2.33 h
3 10 3 8.192 s

Table 4.7: Moving Node Example Configurations

4.6 Tree with Strict Subtrees
This example is modeled after the example shown in [10], Chapter 7.3. Here the network
is separated into three “sub-networks“, as seen in Figure 4.6. The left and the right
“sub-networks“ can only be reached over nodes 4 and 5, respectively. The middle “sub-
network“ can be reached over all nodes 4 to 8. The exact positions of the nodes are
not given in [10]. Therefore, positions for the nodes, as shown in Table 4.8, are chosen,
which shall emulate the structure shown in Figure 4.6. Node 0 is configured to be the
server node, while the leaf nodes (nodes 34 to 42) are configured to be client nodes. As
described in Chapter 4, the leaf nodes will send a packet every second to the server node,
which will echo back the packet to the leaf nodes. Furthermore, node 0 shall be the root
node in RPL.

The energy consumption on all nodes with a hop count distance to the root node of 2
(nodes 4 to 8) shall be measured. The energy consumption of LR-WPAN packets in ns-3
cannot be measured, since there is no built in energy model for LR-WPAN as of writing
this, as the model discussed in [43] never made it to ns-3. It is expected that the nodes
4 and 5 will be drained faster, i.e. received more packets, than the ones in the middle,
as they have to pass the messages to their respective “sub-network“. This can then be
compared to the evaluation done in [10]. This comparison can only be done with the hop
count metric used in [10], as this is basically OF0.

Furthermore, the amount of DIO messages sent by each node can be reduced, by increasing
the DIOIntervalMax1. By having less DIO messages sent, the nodes should preserve
more energy over time. This can then also be compared to the results in [10] by setting
DIOIntervalMax to an equivalent of 10 seconds and 20 seconds.

Therefore, the special network example is evaluated for:

• Energy Consumption: The number of sent and received LR-WPAN packets (i.e.
the approximated energy consumption) as well as all outgoing UDP packets on all
nodes with a hop count distance to the root node of 2 over the time with different
Trickle Timer configurations as shown in Table 4.9. This can then be compared to
the energy consumption in [10].

1The terms DIOIntervalMax and doublings value are interchangeable used in this document.
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• Network Setup Time: The median time when node 0 has a route to every other
node in the network in both distributions over varying node count.

• Success Rate: The number of unique UDP messages that are successfully echoed
back to the sender nodes divided by the number of unique UDP messages sent by
the sender nodes.

• Latency: The median round trip time for the UDP messages sent from the leaf
nodes (clients) until the echo is received again on the client nodes.
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Figure 4.6: Special Network with Sub-Networks Example
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Node X Position / m Y Position / m
0 500 0
1 450 70
2 500 70
3 550 70
4 380 140
5 620 140
6 450 140
7 500 140
8 550 140
9 310 210

10 430 210
11 450 210
12 500 210
13 550 210
14 570 210
15 690 210
16 240 280
17 310 280
18 430 280
19 450 280
20 500 280

Node X Position / m Y Position / m
21 550 280
22 570 280
23 690 280
24 760 280
25 240 350
26 310 350
27 430 350
28 450 350
29 500 350
30 550 350
31 570 350
32 690 350
33 760 350
34 240 420
35 310 420
36 430 420
37 450 420
38 500 420
39 550 420
40 570 420
41 690 420
42 760 420

Table 4.8: Energy Example Node Positions

DIO Interval Doublings DIO Interval Min resulting DIO Interval Max
20 3 2.33 h
11 3 16.38 s
10 3 8.192 s

Table 4.9: Energy Example Trickle Timer Configurations
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CHAPTER 5
Design and Implementation of

RPL in ns-3

5.1 ns-3 Design

ns-3 consists of several modules that collectively provide a comprehensive simulation
environment for network research and development. Some of the key modules are shown
in Figure 5.1. Modules that are highlighted in Figure 5.1 are specifically used in this
RPL implementation. These modules, along with others not mentioned here, collectively
form the foundation of ns-3.

NS3 Modules

Sockets

Network

Traces Packets

Applications

Internet

NDP

Route Input and Output

Routing Protocols

IPv4 IPv6

Mobility

Core

Figure 5.1: ns-3 Key Modules
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5.1.1 Core
The core module serves as the foundation of ns-3, providing essential functionalities for
ns-3. The module provides time management, the simulator, a scheduler, attributes,
traces and other basic functionalities of ns-3. The ns-3 time class can hold and convert
between different time units. With the scheduler, simulation events can be created. The
simulator is the heart of the network simulator, as it is used to create, schedule and
cancel events. Attributes are an easy way to modify modules, without changing the
internal structure of a module. [44]

Tracing

The whole point of running simulations in ns-3 is to gather data to analyze for a study.
The obtain results, there are two main ways to access it. First is by using pre-defined
bulk output mechanisms and parsing their content. This does not require any changes to
ns-3. Output messages come in the form of PCAP or NS_LOG log messages and have to
be parsed/filtered afterwards to be manageable. Furthermore, NS_LOG output is only
accessable in debug build and is not part of the ns-3 API, which means it can change
from one release to the next.

The other mechanism to get output originates from traces. In ns-3, traces are mechanisms
used to record and analyze various events or behaviors occurring within simulated network
scenarios. It allows selective tracing of events, reducing data management burden, and
enables direct output formatting, eliminating the need for postprocessing. By adding
hooks in the core, users can access information as needed without excess output. [44]

5.1.2 Network
The network module incooperates how data is exchanged between devices. This is
foremost done with sockets and packets.

Sockets

Sockets provide an interface for sending and receiving data between processes, abstracting
away the underlying networking details. In ns-3, they facilitate the exchange of data
between simulated entities in a network model. In this RPL implementation, the ns-3
Ipv6RawSocket is used to send the RPL Internet Control Message Protocol (ICMP)
messages.

Packets

The Packets framework in ns-3 was designed with several key objectives in mind, which
are:

• Avoid altering the simulator’s core for introducing new packet headers or trailers.
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• Simplify integration with real-world systems.

• Support fragmentation, defragmentation, and concatenation efficiently, crucial for
wireless systems.

• Ensure efficient memory management.

• Allow storage of application data or dummy bytes for emulated applications.

Each packet includes a byte buffer, byte tags, packet tags, and metadata.

The byte buffer of a packet stores the serialized content of the headers and trailers added.
This serialized representation is expected to match that of a real packet. Fragmentation
and defragmentation are facilitated by the byte buffer, enabling easy integration with
real-world code. A challenge of this design is pretty-printing packet headers without
context, which metadata addresses. The packet metadata illustrates the type of the
headers and trailers, which are written in the byte buffer. By default the metadata is
disabled to save resources, but can be easily enabled.

The Packets class allows to add additional data not found in real packets through tags
to the packet. Tags can be used for example to give a timestamp to packets or add a
hop-by-hop header, such as discussed in Section 5.3.5.

Packet memory management is automatic and efficient, with virtual buffers for application-
level payload, minimizing memory allocation. [44]

5.1.3 Internet
The network module adopts the functionalities of the networking protocols of the OSI
model. In particular, the module features functionalities for Internet Protocol version
4 (IPv4) and IPv6. Furthermore, the module allows access to protocols like UDP,
Transmission Control Protocol (TCP) and ICMP.

Neighbor Discovery Protocol

NDP is a core component of IPv6 networks and facilitates essential functions, such as
neighbor discovery, address autoconfiguration, router discovery, and address resolution. It
enables IPv6 nodes to manage neighbor relationships, discover routers, configure addresses
automatically, and resolve IPv6 addresses to link-layer addresses. NDP replaces Address
Resolution Protocol (ARP) of IPv4 and incorporates mechanisms like Duplicate Address
Detection (DAD) to ensure the smooth operation and reliability of IPv6 networks. [45]

5.1.4 Applications
While applications in ns-3 can be easily written by oneself, this module offers some basic
apps that can be installed on nodes. Furthermore, the module also functions as a base
class, to use for own applications. The main purpose of the module is to provide a
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uniform way to start and stop applications. In this thesis for evaluation, data packages
are sent with the UdpEcho client and server.

5.1.5 Mobility
The mobility module is used to take care of the placement and movement of nodes in a
simulated space. With this module, a node can be placed using cartesian coordinates
(x, y, z). If the third axis is not needed, the z parameter can be omitted, and the z
position will be set to 0 as default. Additionally, nodes can be placed through different
distributions. Furthermore, nodes can be moved in different ways over simulation time,
such as moving them to waypoints or doing a random walk. [44]

5.1.6 Routing Protocols
There is no single module in ns-3, in fact there multiple. As each implemented routing
protocol in ns-3 would be too much to cover, but there are similarities between them.
Therefore, rather than to describe how each routing protocol was implemented in ns-3, it
has first to be explained how routing protocols work in ns-3.

Basically routing protocols have two main functions: RouteOutput and RouteInput.
The RouteOutput function determines whether and how to send packets generated
by a node. The RouteInput function determines the appropriate action for incoming
packets at the node, including forwarding, dropping, local delivery, and so forth.

In addition to those functions, since both can fail, there is also the option to implement
ListRouting on a node. ListRouting enables a node to be able to use multiple
routing protocols at once. So if one routing protocol fails to deliver a package, a second
routing protocol can try to deliver it. It can be seen as sort of backup routing. In detail,
ListRouting checks all routing protocols, it has registered, in order until it finds one
with a valid route, in both route input and output functions. In all examples of this
thesis, only RPL is used as a routing protocol. In real examples, static routing could be
configured as a backup routing protocol to have pre-configured neighbors and to take
care of deliveries not considered in the RPL implementation.

5.2 ns-3 Adaptions
As discussed above, for a routing protocol to work in ns-3 it has to fulfill the minimum
requirements, such as providing a route in- and output function. Also, it is described
below how ns-3 was used to create the routing protocol and which changes were necessary.

5.2.1 Route In- and Output
Like all routing protocols in ns-3, this RPL implementation can be added to an example
by creating a RplHelper instance and applying it to the InternetStackHelper,
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which itself is installed on the nodes. The RPL protocol can also be configured through
the helper, like setting a node to be a root node.

The RPL model itself sets all parameters to the default RPL parameters, unless set
differently through the helper. Also the routing protocol sets up a trickle timer, which is
started when the node is attached to a Directed Acyclic Graph (DAG) or is a root node.
The RouteOutput function looks up if it has a route in the routing table. If found it
returns the route and if not it will be forwarded to the preferred parent. In case of the
root node if an address is not found, it should normally give the packet to a gateway into
another network. Since no other networks are tested in conjunction with RPL in this
thesis, this case terminates the program with an error. If for any other reason a route is
not found, the routing protocol signals to the lower layers that no route is found.

The routing table itself consists of a local DAG for each node, which is updated through
the DIOs and DAOs. This means that each node only knows its sub-tree of the network.

In the RouteInput function, all link-local packets are dropped, as they shall not be
forwarded. Furthermore, it checks if an interface is disabled to forward packets, in which
case the packet is also dropped. Since multicast addresses are yet to be implemented,
the RouteInput function returns false to let another routing protocol take care of
this packet. This is done via the aforementioned ListRouting. A unicast destination
address will be looked up in the node routing table, like in the route output function.

Furthermore, the RouteOutput function adds a RPL hop-by-hop header tag to the
packets and the RouteInput function checks and updates the tag. This is further
described in Section 5.3.5.

5.2.2 Sockets

As is usual in ns-3, packets are sent via sockets. For each interface on the node a socket
is created, as well as a multicast socket to receive all messages, that are sent to the RPL
all nodes address (ff02::1a). Interfaces that are excluded by parameterizing the node
through the RPL helper, will not create a socket. When a RPL unicast control message
is sent, it is sent on all interfaces that are not excluded.

5.2.3 Neighbor Discovery Protocol

RPL and 6LoWPAN are independent of Layer 2 technologies and make no assumptions
on them. They were created with IEEE 802.15.4 in mind but were not bound to it.
Therefore, any Layer 2 technologies can be used with RPL and 6LoWPAN, but also at
least one form of a Link-Layer technology is needed for the routing to work properly.

In ns-3, this leaves the options of a classical NDP [45], an experimental version of
6LoWPAN-ND, developing a new NDP, simply sending all packets as IEEE 802.15.4
broadcasts or having a know-all object for the NDP lookup [46].
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Sending every packet as an IEEE 802.15.4 broadcast leads to unwanted packet duplication
as every node that receives a packet, tries to forward it, which causes broadcast storms.

Developing a new NDP would not find any use case, as would not be found in any real
deployment. Furthermore, this is out of scope for this thesis.

The 6LoWPAN-ND is as of writing this in a very early development stage, such that is
currently nor really usable in ns-3.

Classical NDP gives unwanted and unnecessary overhead to finding the IEEE 802.15.4
short addresses, which are used by the Link-Layer. Furthermore, the NDP adds noise to
the simulation, e.g. packet drops, unwanted delays, etc. On the other hand with NDP
activated, it gives RPL the functionality to drop routes, due to destination unreachable
messages which are issued.

Lastly it is possible to adapt the NDP lookup in ns-3 to return the corresponding
MAC address for each IPv6 address by doing the stateless address autoconfiguration
the other way around, as described in [47] chapter 6. To do this, the lookup function
in the ndisc-cache.cc has to be changed to return an 48-bit pseudo address to
prevent packet duplication as described by sending only IEEE 802.15.4 broadcasts. Also
the icmpv6-l4-protocol.cc should be prevented to send messages to disable the
periodic Neighbor Solicitations and Advertisements. This also disables the functionality
to send Internet Control Message Protocol for the Internet Protocol Version 6 (ICMPv6)
ping messages.

For this thesis, the classical NDP is preferred over the adapted version due to its broader
applicability, ease of use, and better comparability with other examples.

5.2.4 Packet Traces
In ns-3, packets can be tracked via traces. This helps to analyse a great sum of
packets. In this thesis, this feature is used to help with the evaluation. In particular,
the rpl-example-helper.cc file includes all functions that interact with the traces.
These functions write the traces in text-files, which can than be later statistically analyzed.

Furthermore, the UDP echo client and server were adapted to include a timestamp tag
on each packet, to see when the packet was sent. This make calculating the round trip
time of a packet easier.

5.2.5 Applications
The UdpEcho client and server, used to send the data in the network, were also adapted,
by adding tags to the packets sent from these applications. Firstly, a timestamp tag was
added to packets, with the timestamp added to the packet being the time of generation
of the packet, to make tracing and latency calculation easier. Also a counter tag, which
increments its number by one for each packet sent was added to the packets. This is done
as workaround, as LR-WPAN can resend packets until an acknowledgment is received.
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The LR-WPAN layer knows that these are the same packet, due to the sequence counter,
and will only forward it once. The UdpEcho client and server does not and receives
each resent packet as an individual packet. By using the counter tag, multiple received
packets with the same counter number are just discarded and in case of the server is only
echoed back once.

5.2.6 Ipv6RawSocket
A determential flaw in ns-3 at the time of creating the routing protocol was that
Ipv6RawSockets did not add the multicast address they’re bound to to the Ipv6Interface.
This lead to packets with multicast addresses not being received by other nodes. [48]

5.2.7 Wrong ckecksums were not discarded
Due to creating RPL ICMPv6 packets, an own version of an ICMPv6-Header was created.
By creating such packets it became imminent, that checksums in packets were randomly
generated. Later it was revealed that, since the checksum generation was wrong, checksum
generation had to be turned off. Furthermore, it became clear, that packets with wrong
checksums were not discarded. [49]

5.3 RPL Modules
Since RPL can be a convoluted routing protocol, the most basic features of RPL are
extracted in Figure 5.2. Furthermore, it is described what these modules do and how
they are implemented in ns-3.

5.3.1 Topology
LLNs like radio networks, typically lack predefined topologies. Consequently, RPL must
first discover links and scarcely select peers. RPL optimizes routes for traffic to or from
one or more roots acting as sinks within the topology. This results in RPL structuring
the topology as a DAG, partitioned into one or more DODAGs, each corresponding to
a sink. In cases where the DAG has multiple roots, it’s expected that these roots are
interconnected via a common backbone, such as a transit link. [4]

A RPL node has a set of values, which uniquely classifies it. These are:

• A RPLInstanceID, which identifies a set of one or more DODAGs, allowing for
multiple independent sets optimized for different OFs and applications within a
network.

• A DODAGID, which in conjunction with the RPLInstanceID uniquely identifies a
DODAG
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Figure 5.2: RPL Design in ns-3

• A DODAGVersionNumber, which indicates the DODAG version, is used when the
DODAG is reconstructed from the root, leading to an increment in the version
number.

• The rank, which is used to establish a partial order in the DODAG in respect to
the root node.

Inside a DODAG, routes are formed, as described in Section 2.2, via DIO and DAO
messages according to the given OF. The OF is how RPL nodes select their parent and
child nodes.

The standard RPL [4] differentiates between local and global RPLInstanceIDs, where
local DODAGs with a local RPLInstanceID can only have one root. In this implemen-
tation, local and global RPLInstanceIDs are treated equally and are left to the user to
differentiate correctly when creating an ns-3 example, by creating more RPL instances
and adding them to a node via list routing. Since the RPL is currently only tested in
storing mode, no DODAG version increment is implemented. This means that there is
also no global repair.
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5.3.2 Mode of Operation
The mode of operation gives the basic working principle on how a DODAG operates. The
mode of operation is propagated through a DODAG by the DODAG root through the
MOP field in the DIO messages. The mode can be set to only maintain upward routes,
be in non-storing mode, in storing mode with no multicast support or with multicast
support. In non-storing mode, no node holds a routing table, except for the root node.
Therefore, all nodes only know their parent set and send all traffic upward until it reaches
the root node. For downward traffic RPL uses IP source routing. In storing mode,
each node has its own sub-DAG stored, which it constructs by DIO and DAO messages.
Therefore, when sending a packet, each node either knows where to send it or giving
the packet upward to its preferred parent as default route. This implementation mostly
only supports storing mode, but with a few changes to the routing table, it can easily be
changed to also support non-storing mode.

Routing Table

Since each node has its own DAG in storing mode, it has to save it somewhere. This is
where a routing table comes into play. When a node is added to a DODAG or it gets a
new parent, the route to the parent is saved in the table. Also whenever a upward or
downward route is discovered it is stored.

The routing table therefore consists of many entries, where each entry extends from
the ns-3 Ipv6RoutingTableEntry class. In addition to the parameters given from
Ipv6RoutingTableEntry, such as destiantion adddress and next hop, the
parameters dodagid, instanceid, metric, path sequence, lifetime and downward
are added. The IDs are given to clearly specify the DODAG. The metric parameter is
currently unused as it would matter when a different OF then OF0 would be used and
can be set to whatever metric the OF should use. Also the path sequence is currently
unused, as the DAO parent set is equal to the preferred parent. The lifetime is used
to set how long the route shall be used and is refreshed a life signal is received. Finally,
the downward parameter, which is set as a boolean, is used to quickly check if a route is
added as downward or upward route. This is used for the data path validation, described
in Section 5.3.5, to check if a DAO loop has been formed.

5.3.3 Upward Routes
In RPL, upward routes refer to routes from leaf nodes (nodes at the bottom of the network
hierarchy) towards the root of the DODAG, which typically is a sink or a border router.
DIO messages are a type of RPL control messages which propagate routing information
and establish upward routes within the network. DIOs are periodically transmitted
by nodes in the network to announce their presence and advertise the network. DIO
messages include information of the advertised DODAG, propagated from the root, and
the sender rank. With this information, a node can join the DODAG and calculate its
own rank from the parent rank.
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Trickle Timer

In RPL, DIO messages are periodically sent with a trickle timer when a node joins a
DODAG or is a root node. A trickle timer is a periodic timer that does not have a fixed
delay after which it fires. Rather the interval between each timer trigger gets increased.
In RPL, this has the advantage that when a node first joins a DODAG, it will send out
DIO rather fast to onboard many nodes quickly and later on more spaced out DIOs to
preserve energy and prevent excessive network overhead. This adaptive behavior helps
strike a balance between responsiveness and efficiency. [50]

Leaf Nodes

A node can be configured to be a leaf node. A leaf node itself does not participate in the
RPL routing itself. Therefore, a leaf node generally never sends DIO messages and only
maintains its upward routes and should not have downward routes. This can be useful
when a node is moving to prevent it from creating unnecessary child nodes which will be
dead routes anyway when moving out of reach after onboarding.

Objective Function

An OF is how a RPL node selects its routes. The OF a node uses is defined in the
Objective Code Point (OCP), given in the DIO configuration, which itself is received
from the parent. Therefore, the root of a network has to be configured with a valid
OCP. The OF defines how the rank inside a RPL DODAG is calculated, where the rank
approximates the node’s distance from a DODAG root. Therefore, the OF is also used
to calculate the list parents of the node. The rank of a node is always a positive number
and is calculated with the OF from the rank of the parent. The OCP selection of each
node is implemented very rudimentary, as it will just use the first OCP in its set.

The OF0 is the default OF. OF0 is designed to facilitate interoperability across implemen-
tations in various use cases, as it does not specify link properties into a rank increase. [51]
In this implementation, only OF0 is used which utilizes the hop count from each node to
the root. Also to only select feasible parents for the OF, the Link Quality Indicator (LQI)
of LR-WPAN is used to omit all DIO messages with a poor quality. This prevents to
select a node as preferred parent which will not be reachable and only reached a random
DIO message.

DIS Mode of Operation

In RPL, nodes, that are not configured to be root nodes, normally stay silent until they
receive a DIO message of interest. Optionally, a node can be configured to proactively
send periodically a number of DIS messages to probe for nearby DODAGs. A node
that receives a DIS should responde with a DIO message to the DIS sender. If no DIO
message is received after a configured number of DIS messages, the node itself can decide
to become a root node and can start sending DIO messages.
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Parent Design

In RPL, a node can have, when onboarded in a DODAG, a DODAG parent set. In this
set a preferred parent is chosen to which the upward traffic is sent. This allows a node
when its preferred parent becomes unreachable, to send DAO messages to another parent
in its parent set. This has the benefit, that the node does not need to completely detach
from the DODAG when the preferred parent is lost.

Furthermore, in RPL there is an option to have a set of DAO parents, which is a subset
of the DODAG parent set. These parents can be seen as backup parents with an already
established route. Also a node can set the bits in the path control field of DAO
parents in order to show a preference among these parents. That preference can influence
the decision of the DODAG root when selecting among the alternate parents/paths for
constructing Downward routes [4]. This multipath feature (multiple DAO parents) is not
supported in this implementation, but can be easily added as the logic is already handling
the execution as if multiple parents would be possible. Only the path control should
be added. This is because it adds too much unnecessary complexity and is mosty also
missing in other implementations as well.

Candidate Neighbor Implementation

As stated in [4], the candidate neighbor set is a subset of the nodes that can be reached
via link-local multicast. Furthermore, the selection of this set is implementation and OF
dependent. In this implementation the candidate neighbor set is equal to the DODAG
parent set, which itself are nodes reached via link-local multicast where it’s rank is smaller
than the rank of the node. This is done such that RPL does not have to store each
neighbor and reduce the memory load of the protocol. The drawback to this is that
whenever a node does not have nodes in the DODAG parent set, it has to detach from
the DODAG and wait again for DIO messages.

5.3.4 Downward Routes

In RPL, downward routes refer to routes from the root of the DODAG towards leaf nodes
or other nodes within the network hierarchy. DAO messages are a type of RPL control
messages which are used by RPL to create and maintain downward routes within the
network. DAOs are generated and sent upwards whenever a nodes adds or updates its
children. This also means that DAO messages are sooner or later propagated upwards
until they reach the root node. Also, DAOs have the option to be hold back for short
period of time, to be bundled together if more DAOs shall be sent in the same timeframe,
to reduce the message load on the network. Furthermore, a DODAG can be configured,
through the root node, to expect an acknowledgment for each sent DAO, to ensure
that the DAOs have been well-received from their DAO parents. In RPL, as stated in
Section 5.3.2, there is a difference between non-storing and storing mode. In both cases,
packets travel up and then down the DODAG. In non-storing mode, the packets will go
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all the ways up to the root node, whereas in storing mode the packets are only given
upwards to a common ancestor of both the source and destination node.

In addition to the preferred parent, a RPL node can have multiple DAO parents. With
the RPL path control feature, a node can manage multiple downward routes, which
allows the node to distribute traffic across multiple paths, enhancing network reliability.
In this implementation, the DAO parent set is restricted to the preferred parent, which
leads to the path control being unused.

DAO Resend

Whenever a DAO is sent and an acknowledgment for the DAO is expected, a resend is
immediately scheduled with a specified DAG-DAO-ACK-timeout. If in the meantime
until the resend triggers, a DAO-ACK is received with the sent DAO sequence number,
the resend is canceled. If no DAO-ACK is received until the resend is triggered, the DAO
is resent and like before rescheduled again. The DAO is resent up to the number of DAO
retries. If by then still no DAO-ACK is received, the node sends a no-path to the parent
that did not send the DAO-ACK back and removes it as a parent.

Neighbor Unreachable Detection (NUD)

As stated in [4], no specified route adjacency maintenance for neither upward and
downward paths are specified. As in other routing protocols, as in OSPF or IS-IS,
keep-alive messages are sent to ensure the routes are up to date. In LLNs, such a
proactive approach is often not desirable and could lead to excessive control traffic in
light of the data traffic with a negative impact on both link loads and nodes resources.
Therefore, RPL needs an external mechanism, that a neighbor is no longer reachable.
The RFC 6550 suggests that reactive methods shall be used such as the Neighbor
Unreachability Detection of RFC 4861 or Layer 2 acknowledgments. In ns-3, since the
Neighbor Unreachability Detection is already implemented, it shall be used to determine
which routes are not available anymore.

5.3.5 Data-Path-Validation
RPL uses on-demand loop detection with data packets in LLNs to conserve energy. LLNs
often experience changes in physical connectivity that aren’t critical for routing until data
needs to be sent, saving energy by avoiding constant updates to the routing topology.
Routing loops, also called DAO loops, may be formed when a parent has a route to a
child by receiving and processing a DAO from it. When the parent now drops out of
the network and its former child is not a leaf node, it might happen when the former
parent now rejoins the network to receive a DIO from its former child. The node then
may join the network by setting its former child as a parent. Then, a loop has formed.
This would normally be prevented by a no-path message that would be sent from the
parent node to the child upon leaving the network, but it is in the nature of LLNs that
messages might disappear. This is where the data-path-validation comes in. Each data
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packet in RPL includes the transmitter’s rank into an IPv6 hop-by-hop header, enabling
nodes to detect potential loops. If a packet’s routing direction conflicts with the rank
relationship between sender and receiver, indicating a possible loop, the receiving node
initiates a local repair operation.

In ns-3, it is not possible for a routing protocol to add such a header to an IPv6 packet.
While it is possible to add an header to an IPv6 packet, the problem here is that it is
not doable to change the header on each hop due to how ipv6-l3-protocol works in
ns-3. The rank and the direction the packet is going need to be updated on each hop.

The workaround in ns-3 is the usage of tags. By creating a custom tag with all the
information needed, it can be easily added to a packet, as well as updated on each hop1.

1This workaround has been made possible by the contribution from Tommaso Pecorella (University
of Florence)
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CHAPTER 6
Evaluation and Discussion

All evaluations are done over 10 runs, to achieve a higher confidence in the results. If not
stated otherwise, the default configuration, shown in Table 4.1, is used.

The basic procedure for a node to be onboarded to a RPL instance is the following. A
node in the RPL network (at the beginning only the root node(s)) sends DIO messages
periodically. Upon receiving a DIO, a node, not already joined a RPL instance, will
immediately issue a unicast DIS to the sender. The DIO sender will then send a unicast
DIO with a DODAG configuration option. The node will then join the RPL network as a
child of the DIO sender. After a specified delay the node will then send a DAO message
to its new parent with routing information to it. The node has then successfully joined
the network.

The examples are set up, that the node at one or multiple nodes are configured to be a
client, which send UDP packets to a node configured to be a server, which will echo the
packet back to the client(s). The clients will send the UDP packets after 100 seconds, to
give the RPL network time to be set up.

In ns-3, wireless devices have a good connection range up to about 100 meters. After
that the connectivity falls off drastically to about 120 meters. Beyond that, nodes cannot
really reach other nodes, due to signal strength.

As stated in [44], for random variables to change in a statistically uncompromising way,
the seed in all examples is set to 1 and the run number is advanced in each run. This
makes sure that the Random Number Generator (RNG) is different for each run, but is
the same when other parameters are changed. In addition to RPL, to mirror the real
world more accurately, 6LoWPAN and LR-WPAN is used in all examples. Since in ns-3
only the ad-hoc mode for LR-WPAN is implemented, this mode is used. Also each node
gets assigned the IPv6 stack with ”2001:2::” as base address.
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6.1 Conformity check with the RFC
To check conformity with the RFC [4], smoke tests are deployed.

6.1.1 Onboarding and Message Passing
As mentioned in Section 4.1, a small basic line example is the easiest to test RPL in ns-3.
In this example, one can see how each node is added to the RPL instance. The root node
is chosen to be at one end of the line. As each node has at most 2 neighbors, each node
(except for the root and the leaf node) has exactly one parent and one child node.

By stepping through the line example with 3 nodes, the onboarding process can be
observed by checking the PCAP file. This is shown in Figure 6.1. It can be seen that in
the beginning node 0 broadcasts DIO to the all-RPL-nodes multicast address periodically
with the trickle timer, as node 0 is configured to be the root. As soon as node 1 receives
the DIO it sends node 0 a unicast DIS message. Upon reception, node 0 sends a unicast
DIO to node 1 with the DODAG configuration. Node 1 then immediately also begins to
send periodic DIO messages to the all-RPL-nodes multicast address. It does not matter
that node 0 has not yet received a DAO message from node 1, as node 1 has already all
necessary information. The same then happens between node 1 and node 2. After the
specified DAO delay, node 1 sends a DAO to node 0 with routing information to itself.
Node 2 then also sends after the specified DAO delay a DAO to node 1 with its routing
information. Node 1 then waits again the DAO delay and forwards the route it got from
node 2 to node 1 with a DAO. Hypothetically speaking, if node 1 would have received the
DAO from node 2 before sending its DAO to node 0, node 1 would have bundled both
DAO messages together and only one DAO message to node 0 would have been sent.

After this exchange, node 0 now knows the whole DAG of the network. After 100 seconds,
when the client (node 0) then decides to send UDP packets to node 2, it knows the
IP address of node 2, as well as the next hop node 1 from the received DAO messages.
Node 1 also knows to forwards the packet to node 2 from the DAO that node 2 sent.
Upon echoing the packet back, node 2 and node 1 will not know where to send the packet
and just hand it upward to its parent, which they know from the DIO message, when
the packet then finally is received back at node 0.

6.1.2 Root Node Failure
In a typical RPL network, multiple root nodes are often deployed to enhance network
reliability and resilience. However, if the network has only one root node and it fails, the
behavior can vary. In some cases, the failure of the only root node can lead to network
partitioning. The network may split into smaller segments or become disconnected,
causing communication disruptions between nodes. The partitioned segments may
operate independently until a new root node is manually introduced or an automated
recovery mechanism is triggered. In other cases, RPL may not include built-in mechanisms
for automatic recovery from the failure of the only root node. In this implementation,
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Figure 6.1: Basic Line Example with 3 Nodes

the DIS Mode of Operation is slightly changed, such that a node configured with it, also
sends DIS messages (and becomes root when it does not find another one), when it is
detached from a RPL network and not only on boot-up.

In the line example, in Section 4.1, node 0 can be set up to fail after 10 seconds and
node 1 to be configured with the DIS Mode of Operation. When node 0 fails the RPL
network will normally resume until either node 1 deems node 0 as unreachable or after
the maximum tries of DAO retries still no DAO-ACK is received (in this case after 60 s).
After this, node 1 will delete node 0 as its parent and now broadcasts DIS messages
again. Since no other root is configured in this network, node 1 will itself become root
and add all other nodes in its network. After this, the network is once again operational
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with node 1 as root.

6.2 Onboarding
In RPL, the path generation of the routing protocol can be measured by looking in the
routing table of the root node. When all other nodes are added to the routing table of
the root, every node can be reached in the network. How the paths are chosen, i.e. which
parents are selected, in this network is objective function dependent, in this case OF0.

In the examples, a network setup time of 100 seconds is given, where no data packets are
sent, as a margin, to ensure that the DODAG is already formed. Also this ensures that
the trickle timers are at a high rate, and the advertisement rate is about the same for
each node.

To get a grasp on how well RPL does onboarding, it is shown in Figure 6.2 how the
root nodes learns new nodes over time. The number of newly added nodes to the roots
routing table is plotted over the time in seconds. The data for all plots was resampled to
1 second precision and shown with errorbars over 10 different runs.

In all examples it can be seen that the DAO delay has a dominant role. This is especially
noticeable in Figure 6.2b. On average, every hop a node is farther away from the root
node, it adds the DAO delay, which in this case is 1 second. Also due to the circumstance
that DAO messages can be bundled together, the root node can register multiple routes
at once, which leads to the vertical lines in Figure 6.2a.

By varying the number of nodes in the line example, i.e. increasing the hops to the root
node and the leaf node, it can be seen that it takes increasingly longer for the root node
to know the whole DODAG, due to the DAO delay. This effect over multiple number of
nodes can be seen in Figure 6.2a. As expected, the time it takes for the last node to be
added to the routing table in the root is pretty much linear.

In case of the many nodes example, we have to differentiate between the two distributions
and the number of nodes, as shown in Figure 6.2c. It can be seen that having fewer
nodes, the nodes are quicker found, as expected, but the shape of the line keeps the same.
The main differences here come from the different distributions. The uniform distribution
resembles an logarithmic function. This can be explained that the root node has already
many nodes in its immediate vicinity, but has to select few nodes that are much farther
away. In case of the normal distribution, the root node is not fixed in the center, but is
also placed randomly. Therefore, having the root node a bit farther away from the center
of the normal distribution makes an noticeable difference. The root node slowly discovers
more nodes until nodes in the center of the normal distribution are reached which they
in turn find then the most nodes. Also having many nodes in the center causes collisions
of packets, which delays the onboarding. This explains the low nodes found percentage
at the beginning and the rather steep increase at a certain point. If the root node would
be placed dead in the center of the normal distribution, the line would be more similar
to Figure 6.2a. Furthermore, as seen in Figure 6.2c by the errorbars, not in every run
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(a) Line Example (b) Tree Example

(c) Many Nodes Example (d) Tree with Strict Subtrees Example

Figure 6.2: Network Setup Time

the root node can find all other nodes in the network, as through the random placement,
it is not ensured that nodes are even reachable from anywhere.

Also it can be seen in Figure 6.2d, that in all different doublings configurations the lines
pretty much overlap. This means that the trickle parameters do not matter shortly after
booting the device, which is expected as the frequency of sent DIOs will only slow down
over time.

In conclusion, the more hops nodes are away from the root node, the longer it takes RPL
to build the whole DODAG. This corresponds to the conclusion that was drawn in [40].
Obviously the hop count is heavily influenced by the OF. Furthermore the trickle timer
parameters effects only nodes that are already a longer time in a DODAG.

51



6. Evaluation and Discussion

6.3 Protocol Flexibility
6.3.1 Broken Link
To test how efficiently RPL recovers from a lost link, the example described in Section 4.3
can be used.

In this example, node 4 tries to send UDP packages to the root node 0 every second
after the 100 seconds network setup time. The root node then will echo the packets back.
As OF0 is used, the preferred parent is the one with the least hops to the root node.
Therefore, node 4 will send the packets over node 1 to node 0. Node 1 will operate as
normal for 130 seconds and then turn off its interface, to simulate a battery outage on
the device. Therefore, node 4 will eventually receive a neighbor unreachable destination
message, since NDP is used. As recommended in [4], RPL will now remove node 1 as
parent and tries to discover a new parent by listening for a DIO message. Node 4 will
then discover node 3 as a parent and build a path to node 0 over node 3 and 2 and send
DAO messages. The root will update the new path in the routing table due to a newer
path sequence number.

After 300 seconds, node 4 will turn on its interface again, with the same IP address as
before. The node will listen again for DIO messages and eventually taking node 0 as
parent. Node 4 will then recognize the shorter path over node 1 and use node 1 again as
preferred parent.

It shall be kept in mind, that the current limitation that each node can have only one
DODAG parent, as stated in Section 5.3.3, makes it that the alternative path has to be
found upon removing the routes over node 1. If more than one DODAG parent would be
possible, the the alternative path would instantly be used, when the routes over node 1
would be removed. This is because node 3 would already be a secondary DODAG parent.

Using node 0 as sender does not work when node 1 is disabled, since RPL responds
reactive to traffic. This is because node 0 will receive a neighbor unreachable destination
message and remove node 1 from its routing table, but node 4 will never set node 2 as
a parent as long as it not sends packets upward and will therefore never send a DAO
to the root. In case mulitpath is enabled, this would also work, due to having multiple
DAO parents, which makes the RPL routing protocol much more robust. Also if a global
repair would be set to trigger periodically, this issue would also resolve itself eventually.

In Figure 6.3 the received UDP packets of the alternate path example are shown over
time. The first 100 seconds nothing happens, as described in Section 6.2, as the client
waits for the network to be established. Afterwards, the network operates normally for
another 30 seconds. Then node 1 is configured to fail and no more packets are received
back on node 4. The time it takes node 4 from node 1 failing to finding node 3 as new
parent is given in Table 6.1. On second 300, node 1 starts up again. In Table 6.1, it is
also shown the time node 4 takes, after node 1 is running again until it selects it as a
parent. When node 1 joins the DODAG it has a fresh trickle timer and sends its DIO
messages in very short intervals. The reason it takes so long for node 4 to select node 1
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Figure 6.3: UDP Packets Received Alternate Path Example

Figure 6.4: Success Rate Alternate Path Example

as parent, is that node 1 takes long to reconnect to the RPL network due to the slow
interval of DIO messages from node 0. It can be seen, that with an increased doublings
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Doublings Time[s] until path over Time[s] until path over
node 3 is found node 1 is found

10 47.468 8.243
11 46.93 5.746
13 56.46 21.732
20 111.252 142.977

Table 6.1: Times when alternative and better paths are found

parameter of the trickle timer, it takes longer to find a new parent, as expected. An
inconsistency arises in Table 6.1, since the times of doublings 11 are shorter than those
with doublings 10. This happens because trickle timer do not increase their intervals at
random, but deterministic. Since node 1 is always turned off and on at the same time in
each run, it just happens that the DIOs are also received earlier in each run.

Furthermore, Figure 6.3 shows that no more packets are received back on the sender
after 130 seconds, which is expected, as node 1 turns off at that time. Then the reception
of packet continues when the alternate path over node 3 is found for each configured
doublings parameter. It shall also be noted, that there is no change in packet reception
when the better path over node 1 is found again after 300 seconds, as the packets are
just sent over another path, which does not hamper the success rate.

This is further showcased inFigure 6.4, by displaying the median success rate of the runs
for each doublings value. The success rate can never reach 100% as after 130 seconds the
link is lost. Due to the quicker recovery with lower doublings values, the success rate is
also higher.

6.3.2 Moving Node

To see how well RPL performs when moving a test is conducted where a single moving
node traverses through a grid of nodes, as described in Section 4.5.

Speed Doublings RTT Latency[s]
2 10 0.062
2 20 0.045
3 10 0.06
3 20 0.032

Table 6.2: Latency of the Moving Node Example

The behavior which parents of the moving node are chosen with OF0. To give a rough
overview on which nodes are considered and chosen as parent by the moving node, the
chosen preferred parent over time is shown over multiple runs and in different speed and
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Figure 6.5: Moving Nodes Parent Choice

doublings configurations in Figure 6.5. The color of the plot indicates the confidence this
node was picked as a parent, i.e. multiple runs with the same parent chosen.

It shall be noted, that the simulations of runs with 2 m/s are 950 seconds and with 3 m/s
are 750 seconds long, since the simulation is stopped 50 seconds after the moving node 25
has reached its final destination.

In Figure 6.5, it can be seen that node 12 is always chosen as a parent node in the
beginning, as it is the root node and the moving node starts right beside it. Also a
gap with no preferred parent can be seen in all configurations, as the moving node runs
200 meters off from the grid, before returning to it again. Furthermore, nodes can become
the parent of the moving node multiple times per run, as when is loses connection to it
and later reconnects to it.

In this RPL implementation, as stated in Section 5.3.3, a node only adds other nodes
with a lower rank than itself to its DODAG parent set. This means in this case, that
normally, with OF0, node 25, which has the root node as preferred parent, node 25 would
not add any other nodes to its DODAG parent set. The reason it still adds other nodes
to its DODAG parent set is because it is configured to be a leaf node, which always
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Figure 6.6: UDP Packets Received Moving Node Example

Figure 6.7: Success Rate Moving Node Example

has infinite rank. This enables the node to instantly change the preferred parent when
its preferred parent is not reachable anymore. This has the advantage, that the node
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does not have to detach from the DODAG completely. A node knows if another node is
unreachable via the neighbor unreachable detection, as stated in Section 5.3.4.

Also in Figure 6.5, it can be seen that whenever a node switches its preferred parent, it can
happen that the node switches through multiple parents in quick succession. Whenever
a node removes its preferred parent, it looks in its DODAG parent set for the next best
candidate to be the new preferred parent via its OF. Since the node is moving, it can
happen, that this one is also not reachable anymore and will also remove it and switch
again. Furthermore, by moving into a new area, the node can then receive new DIO
messages it has not seen before and can also select them to be the new preferred parent.
This quick fluctuation of parents is different for each run and looks in the Figure 6.5 like
noise.

While comparing the different speed and doubling configurations in Figure 6.5, some
conclusions can be drawn. The most obvious is that having a lower speed and a lower
doublings value, i.e. a faster DIO interval, leads to a more robust and up-to-date network.
Also, in this grid structure RPL handles both, 2 and 3 m/s relatively well, which is above
average walking speed [52]. Furthermore, the doublings parameter has a major impact,
best seen with 3 m/s, as after detaching from the DODAG, the moving node does not
reconnect to the RPL network in all 10 runs anymore, as the simulation ends before that.

Figure 6.6 depicts when exactly packets are echoes back to the moving node. After
the initial 100 seconds, where time is given for the network to construct the DODAG,
packets are received back on the moving node until the connection to the root node is
lost. The moving node will then try to find the next preferred parent which is reachable.
Here it also becomes obvious that a lower doublings value makes the RPL network much
quicker to respond to changes. Also, the variance over multiple runs can be seen with
the errorbars, as time goes on, as different preferred parents are selected.

The summary of the received packets can be clearer seen in Figure 6.7. This showcases
how well a moving RPL node performs, since the success rate of the UDP packets should
give a good estimate. This also shows, that in this example the doublings value has a
much greater impact than the speed, for the success of received back packets.

Finally, the previous findings can be cross checked with the latency, given in Table 6.2.
The configurations with the lowest latency are those with a doublings value of 20, since
only packets which actually made it back to the client are used for latency calculation.
Therefore, since the moving node starts near the server node the latency is in the
beginning lower and gets greater over time when the moving node moves away from the
server node.

In the moving node example, the case mentioned in [4] Section 3.7.2 can happen. At
some point the moving node detaches from the DODAG due to moving out of the parents
range. Upon detaching from the DODAG, the moving node sends a poison to all nodes in
range, to notify them, that the node has detached. This poison can get lost in the LLN,
such that not all children of the moving node may receive it. Then the moving node may
later take a former child, as a new parent. Upon sending a DAO message to the former
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child, while not having received before mentioned poison message, the former child not
detects a loop. In the RFC the solution to this problem is, by relying on an mechanism
described in [53], that adds RPL information in the IPv6 Hop-by-Hop option header.

6.4 Scalability

In IoT networks, scalability refers to the ability of the network to efficiently handle
increasing numbers of devices and data traffic while maintaining performance. Therefore,
the RPL implementation is check for success rate and latency in networks with varying
node counts and different application setups.

6.4.1 Success Rate

Figure 6.8: Success Rate Line Example

The success rate is expected to be relatively constant over multiple runs, as the topology
in this example is constant. This is best seen in the line example as showcased in
Figure 6.8. The success rate is for the most part 100% and gets worse the more nodes are
in the network, as messages can get lost in LLNs, which is more likely the further packets
travel. The reason the cases of 40 and 50, as well as 75 and 100, are so close in success
rate is because simulation RNG does only change between different runs and not other
between parameters. For example, run 1 and 2 with with 40 nodes use different RNG,
but run 1 with 40 and 50 nodes use the same RNG, but have a different node count.
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Figure 6.9: Success Rate Tree Example

In the tree example, as described in Section 4.2, the success rate is at 100%, except for
setup 1, where the success rate can be seen to be around 90% as seen in Figure 6.9.
This is because setup 1 does have multiple clients that send at the same time. This
seems to be an issue of LR-WPAN collisions, due to the nature of Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA). In CSMA/CA the Hidden-Station-Problem
can happen [54]. The Hidden-Station-Problem is when two nodes A and B want to send
to a third node C, shown in Figure 6.10. Assuming A and B are not in the range of each
other but both are in range to C. Further assuming A begins sending to C. If now B will
also want to send to C, it will check the medium, to see if it is free. B will not see the
traffic of A, as it is out of range. Therefore B proceeds to also send to C, causing a data
collision at the destination C. As this is a simulator, which runs of a global clock, the
data packets are nearly sent at the exact same time. Furthermore in the tree example,
the nodes 1 and 2, 3 and 4, as well as 5 and 6 each send packets to the same parent and
they all have the same distance to the their respective parent node. This all makes a
data collision much more likely.

To see how well RPL handles a large network, an example, as described in Section 4.4,
with up to 200 nodes is chosen. As stated in Section 4.4, the nodes are uniformly
distributed in setup 1 to 3 and normal distributed in setup 4 to 6. Also in setup 1
and 4 there is one client, in setup 2 and 5 there are two clients and in setup 3 and 6
there are 4 clients. As in the tree example in Figure 6.9, Figure 6.11 shows a similar
behavior, since having more clients that send at the same time, drops the success rate
significantly. Having only a single client that sends, leads to a near 100% success rate in
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A C B

Figure 6.10: Hidden Station Problem

Figure 6.11: Success Rate Many Nodes Example

all distributions. Furthermore, the uniform distribution has a higher variance in success
are the normal distributed nodes, as in the normal distribution most nodes are positioned
close together.

6.4.2 Latency
The latency is expected to be relatively constant over multiple runs, as the topology in
this example is constant.

In Table 6.3, the latency of the UDP packets of the line example, as described in
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Number of Nodes RTT Latency[s]
2 0.006
3 0.034

50 0.09
10 0.23
20 0.509
30 0.79
40 1.137
50 1.417
75 2.179

100 2.876

Table 6.3: Latency of the Line Example

Section 4.1, over the number of nodes is shown. With increasing node count, the latency
also increases linear.

Setup RTT Latency[s]
1 0.095
2 0.118
3 0.062

Table 6.4: Latency of the Tree Example

In Table 6.4, the latency of the UDP packets of the tree example, as described in
Section 4.1, over the different setups is shown. The latency of the setup 2 is the longest,
as the packets traverse from one leaf of the tree to another one. Also the latency of the
setup 1 is longer than in setup 3. This is because with more than 1 sender, collisions
happen more often, which leads to LR-WPAN to resend packets. This in turn makes the
round-trip-time longer.

In Table 6.5, the latency of the many nodes example with different number of nodes and
over the different client setups is stated. As stated in Section 4.4, the nodes are uniformly
distributed in setup 1 to 3 and normal distributed in setup 4 to 6. Also in setup 1 and 4
there is one client, in setup 2 and 5 there are two clients and in setup 3 and 6 there are 4
clients. In setups with more clients, the latency is larger than with less clients, as more
nodes send at the same time and due to collisions and LR-WPAN resends packets arrive
at a later time. By comparing the different distributions, it can be seen that the latency
in the normal distribution is ís always very close to each other for each independent setup
as the variance of the distribution chosen is very low. Therefore, the most nodes are
very close to each other, which in turn means the latency is also comparable low and is
not really effected by the number of nodes. In contrast, the latency where the nodes are
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Number of Nodes Setup RTT Latency[s]
10 1 0.034
10 2 0.053
10 3 0.104
10 4 0.034
10 5 0.063
10 6 0.11
50 1 0.084
50 2 0.131
50 3 0.197
50 4 0.034
50 5 0.063
50 6 0.109

100 1 0.15
100 2 0.168
100 3 0.232
100 4 0.034
100 5 0.063
100 6 0.109
200 1 0.193
200 2 0.236
200 3 0.314
200 4 0.034
200 5 0.063
200 6 0.11

Table 6.5: Latency of the Many Nodes Example

uniformly distributed increases over the number of nodes.

In summary having multiple nodes sending at the same time causes collisions and resends,
which then increase the end-to-end latency. Other than that a higher number of nodes in
most cases means an increased hop count, which also increases the latency, as packets
have to be forwarded more often. In the end latency of the round trip time is below
1 second in most cases and only takes longer after 30 hops round trip.

6.5 Energy Consumption
Normally to test a network for energy consumption an energy model can be used. For
LR-WPAN, there is no directly built in energy model in ns-3, but even if there was,
using an energy model the energy estimate would still be questionably at least. Also the
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6.5. Energy Consumption

(a) UDP Packets (b) LRWPAN Packets

Figure 6.12: Sent Packets of Nodes with a Hop Count Distance to the Root Node of 2
Tree with Subtrees Example

current ns-3 MAC implementation does not use low power features. This means, that
the radio is always on in the ns-3 LR-WPAN implementation. Therefore, the problem
is that LR-WPAN always uses energy [43]. Accordingly, it was chosen to abstract the
energy consumption to simply count the packets that are sent and received on a node.

The energy test are then conducted on the tree with subtrees example, described in
Section 4.6. This example was chosen to mirror the example in [10] Section 7.3, to
compare them. In [10] it is stated that node 4 and 5 are drained the fastest when using
a hop count metric, which should be similar to OF0.

The first issue that arose when evaluating this example is, as there are so many clients
that send at the same time, the success rate of this example is slightly above 40%, due
to so many collisions happening.

As stated above, the energy consumption is approximated over the number of packets.
When looking at the number of sent UDP packets, as shown in Figure 6.12a and the
number of all sent LR-WPAN packets in Figure 6.12b, on all nodes with a hop count
distance to the root node of 2 it can be seen that node 4 and 5 increase the fastest, as
both have their own subtree which they need to forwards the packets to the server node
0 and their respective leaves.

This changes when adding the LR-WPAN packets that are received on these nodes to
the sent packets, as seen in Figure 6.13. As these nodes are more in the middle of the
network they receive more packets, even though they not necessarily are targeted to
them, they still have to receive and check them. By using this as a metric, node 6 to 8
drain the fastest when using OF0.

In Table 6.6, the median number of packets sent of all nodes with a hop count distance
to the root node of 2 of the energy example over the different doublings values. It can be
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6. Evaluation and Discussion

Figure 6.13: Sent and Received Packets of Nodes with a Hop Count Distance to the Root
Node of 2 Tree with Subtrees Example

Doublings Packets
10 1594
11 1593
20 1577

Table 6.6: Median Number of LRWPAN Packets Sent of a Node with a Hop Count
Distance to the Root Node of 2 in the Energy Example

seen that there is only 1% difference in sent packets of a node between a doublings value
10 and 20. Therefore, if a network is not too constrained in resources a lower doublings
value is the preferred choice.

Finally, for the sake of completeness, the median latency of this example is 0.375 seconds.

6.6 Simulation Time
To be useful simulations have to be done in a timely manner, as the most accurate
simulation does nothing if it can never be evaluated. The many nodes example should
display this well, since the number of nodes goes up to 200 and the nodes are dispersed
with 2 distributions.

The machine used to simulate all the examples, runs ubuntu with 8 GB memory and an

64



6.6. Simulation Time

Number of Nodes Setup Distribution Simulation Time[s]
10 1 to 3 Uniform 3.174
10 4 to 6 Normal 3.672
50 1 to 3 Uniform 30.297
50 4 to 6 Normal 43.615

100 1 to 3 Uniform 99.254
100 4 to 6 Normal 165.098
200 1 to 3 Uniform 324.376
200 4 to 6 Normal 819.835

Table 6.7: Simulation Time of the Many Nodes Example

intel core i7-6700HQ CPU at 2.6 GHz. The simulation times, on this machine, of the
many nodes example is shown in Table 6.7. Having a low number of nodes in the network
the simulation barley takes any time, regardless on how the nodes are positioned, due to
the good performance of ns-3. At higher node counts it takes the simulation increasingly
longer, as each node has to be calculated. In this case over 10 minutes. The reason the
normal distribution takes longer than the uniform distribution is simply because more
nodes are closer to each other. Therefore, more nodes received more messages. Even
if the message is not directed at them, the node still hat to decide what to do, which
increases the simulation time. Sadly, there is not much that can be done about this,
except for upgrading the simulation hardware.
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CHAPTER 7
Conclusion

In this thesis, an introduction on routing protocols was given and different routing
protocols were discussed and compared. Further, it was explained what network simulators
are and what they are good for. Also, different networks simulators were discussed, in
addition how RPL was implemented in them. Different examples were highlighted, on
which performance checks were done. It was demonstrated how RPL was implemented
in ns-3, while satisfying conformity with the RFC [4], mentioned in Section 6.1. Distinct
metrics, which are onboarding, flexibility, scalability, energy consumption and simulation
time, were calculated from the previously explained examples.

7.1 Summary
With the evaluations, some key conclusions can be drawn. Firstly, the doublings value of
the DIO trickle timer upon booting up a device has very little impact on the network,
but it has a major impact on the responsiveness of the network in the long run, in terms
of creating new paths and onboarding nodes. For very quick reaction times, a low DAO
delay has to be set. While this make the propagation of routes through the network
quicker, it also pollutes the network more. Also, when using OF0, it is a good idea to
have the most nodes near the root node, as the mean hop count between any two nodes
is smaller, which lowers the latency and enables the network to finish onboarding quicker.

Also, RPL does work when a node is moving within a static RPL network. By having
a relative low speed of 2 m/s or 3 m/s and a doublings value of 10, the results in
Section 6.3.2, show that most of the time the moving node has a valid parent and data
is received. The parent selection of the moving node operates smoothly only under the
condition that the moving node is designated as a leaf node. By setting the moving node
as a leaf node, it adds all other non-leaf nodes it receives a DIO from to its parent set, as
it itself is set to have an infinite rank. This leads to the assumption, that RPL could
potentially used in applications where mobility of nodes is needed.
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7. Conclusion

Finally, RPL appears to scale quite well, as it can handle nodes in a straight line up to
100 nodes and potentially more, which was not explored, due to high simulation times.
Also placing node through a uniform and a normal distribution yielded good results,
although it has to be stated that there were runs where, not 100% of nodes were found by
the root node. The latency was also way below 1 second, except for higher node counts
in the line example, as packets have to be forwarded through all nodes. The latency
in general could also potentially be improved with a better OF. The biggest limiting
factor in the examples of the success rate of received packets were collisions of LR-WPAN
packets, due to the use of ad-hoc mode.

7.2 Future Work
In this section, further implementation and evaluation ideas for RPL are discussed.

7.2.1 Other LRWPAN modes
Since only the ad-hoc mode for LR-WPAN is implemented in ns-3, it would be interesting
to see if other LR-WPAN modes would yield a better success rate of packages sent. Also,
it would be compelling to see if other modes, especially the time-slotted mode, would
increase or decrease the median latency of packets.

7.2.2 Objective Function
Since RPL is still explored and is currently not much used, even less is known about
different OF for it. It could be interesting to see how RPL behaves, when the network
adopts an OF instead of OF0, as it is not always to best to take the lowest hop count
to the root node every time, as it is the case in OF0. While evaluating the examples
for this thesis, it was seen that a node sometimes connect to a parent node, to which
it has a bad connection. Such a connection has two detriments. Firstly, this makes the
success rate of packets sent worse. Secondly, when the node does not get any packets
from the parent and would detach from the DODAG, it could happen that the parent
now connects to its former child node. This phenomenon is then only stopped after some
time, due to the data path validation.

7.2.3 Energy Model
Instead of measuring packet count, an energy model could have been used in order to
simulate energy consumption on nodes. There was already an attempt made in creating
an energy model for LR-WPAN in [43], but it has not made it to the ns-3 release, yet.

7.2.4 Multipath
As stated in Section 5.3.3, this RPL implementation in ns-3 still lacks the multipath
feature with multiple DAO parents. This can be added to add additional functionality as
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7.2. Future Work

suggested by the RFC [4].

7.2.5 Multicast
As of [4], RPL can support the IPv6 multicast. Whether a RPL network supports
multicast, is defined in the MOP field in the DIO base object. The multicast is not
implemented in this RPL implementation. A starting point to implement the multicast
support, would be to look at the static IPv6 routing of ns-3, and model it after that.
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