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Kurzfassung

Geografische Datenbanken stellen meist lineare Elemente wie Flüsse, Straßen und Eisen-
bahnstrecken als Polylines, Sequenzen von Punkten, die diese Elemente approximieren,
dar. In Datensätzen wie beispielsweise von OpenStreetMap (OSM), werden Eisenbahn-
strecken als ungeordnete Mengen von Polylines gespeichert. Dies kann für Anwendungen,
die eine sequenzielle Verarbeitung dieser Merkmale erfordern, in weiterer Folge zu Her-
ausforderungen führen. Diese Diplomarbeit behandelt das Problem der Transformation
ungeordneter Mengen von Streckensegmenten in eine einzelne Lösungsmenge. Die aus
einem Algorithmus resultierende Lösungsmenge soll alle Eisenbahnstrecken aus der Einga-
bemenge darstellen, wobei jedes Element der Lösungsmenge eine durchgehende Polyline
ist. Der Algorithmus soll ganze Eisenbahnstrecken möglichst genau aus der Eingabe-
menge erkennen, die Eisenbahnstrecken der realen Welt akkurat repräsentieren und
dabei möglichst stabil gegen Bearbeitungsfehler sein. Wir definieren einen Prozess, der
Streckensegmente in einem zweidimensionalen Koordinatensystem ordnet und verbindet,
um dies zu bewerkstelligen.

Angestoßen durch Anforderungen der Track Machines Connected GmbH (tmc), einem Un-
ternehmen für Eisenbahndigitalisierung, für eines ihrer Software-Projekte, präsentiert diese
Arbeit einen rein geometriebasierten Ansatz zur Lösung des Problems. Die vorgestellten
heuristischen Algorithmen nutzen Strategien wie das Verbinden von Streckensegmenten
und eine Approximierung der Wahrscheinlichkeiten von Streckensegmentverbindungen.
Dabei wird das Problem auf ein Graphenproblem, das Maximum Weighted Path Cover
Problem, reduziert und gelöst.

Zu den behandelten Themen und Schlüsselfragen gehören die Charakterisierung pro-
blematischer Eingabe-Instanzen, die Beschreibung und Darstellung der algorithmischen
Verfahren und ein Vergleich der Algorithmen mit unterschiedlichen Parametern, hinsicht-
lich Lösungsqualität und Laufzeiteffizenz. Die Ergebnisse dieser Arbeit zeigen, dass der
hier präsentierte heuristische Algorithmus eine signifikante Verbesserung gegenüber einer
einfachen Proof-of-Concept Lösung darstellt.
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Abstract

Geographic databases commonly represent linear features like rivers, roads, and railway
tracks as polylines, which are sequences of points approximating these features. However,
in datasets like OpenStreetMap (OSM), railway tracks are stored as unordered sets
of polylines, posing challenges for applications requiring sequential processing of these
features. This thesis addresses the problem of transforming unordered sets of track
segments into a single set of polylines, the solution set, to accurately represent real-world
railway tracks while being robust to editing errors.

We define a process to connect and order track segments in a two-dimensional coordinate
system to accurately represent railway systems. Motivated by the needs of Track
Machines Connected GmbH (tmc), a railway digitalization company, this thesis proposes
a geometry-based approach to solve the problem. The introduced heuristic algorithms
utilize strategies such as track segment merging and defining weight functions to determine
the probability of segment connections. A reduction of this problem to a graph problem,
the Maximum Weighted Path Cover Problem, is used in our approach to solve the problem.

Key questions addressed include characterizing problematic input instances, defining
the algorithmic methods, metrics for solution quality, and performing an algorithm
comparison of the algorithms, with different parameters, in terms of solution quality
and runtime performance. The results of this work demonstrate that the heuristic
algorithm presented in this thesis constitutes a significant improvement over a simple
proof-of-concept solution.
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CHAPTER 1
Introduction

In most geographic databases linear features such as rivers, roads or railway tracks are
represented as a set of polylines. A polyline (also called linestring) is a curve defined by
a sequence of points that approximates the feature. In OpenStreetMap (OSM) [20], a
project for collecting and structuring geodata that provides a database with open access,
railway tracks are represented as a set of polylines which are not necessarily ordered.
For cases such as rendering tracks, the order of polylines is not important. However,
simply fetching the data, an unordered set of polylines, from OSM might not always be
sufficient. When, for example, processing in sequence over real-life geometry is required,
it is advantageous to represent geospatial features as a single polyline. Transforming this
kind of geospatial data to a single polyline or a set of polylines that represent a real world
path or track accurately turns out to be a challenging problem. This can, for example,
be problematic if a linear feature is self intersecting, meaning its shape contains a loop.
Figure 1.1 shows an example of a self intersecting track. The red parts show segment
ends where the next segment in the order cannot be deduced easily, and multiple possible
solutions are feasible. In the case of Figure 1.1 the top right shows the solution which
represents the real world geometry more accurately than the suboptimal solution in the
bottom right. For railway tracks in alpine regions, this is a common problem which can
occur on tracks in mountains. For example, if a track winds up a mountain, one section
of the track could lead through a tunnel while a later section lies directly on top of it on
the same geographic coordinates. Additionally, there can be small inaccuracies in the
exact coordinate locations, due to editing errors or measuring inaccuracies. The OSM
database consists of a huge amount of data collected and maintained by a large amount
of contributors around the world. Inevitably, at some point inconsistencies in the data or
data format will appear. Since these polylines are defined in a two-dimensional-space,
there is no easy way to determine whether two points in the coordinate system have the
same altitude.

The goal of this thesis is to find an algorithm that transforms unordered sets of track
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1. Introduction

Figure 1.1: Example of ambiguous track segments (left) and possible solutions (right).

segments into ordered ones. The output should represent real world railway tracks as
close as possible, while being robust to editing errors.

Formally one can define the abstract research problem as:

“Given a set of unordered track segments, where each track segment is defined by a sequence
of points in a two-dimensional coordinate system. Find a process to connect and order
those segments such that the connected segments accurately represent the rails in a railway
system map”

The idea for this thesis originated from the Track Machines Connected (tmc) [1], which
is a railway digitalization company that needed a solution to this problem for one of their
software projects, TrackDB.

In this thesis we propose a geometry-based approach to solve this problem. The algorithms
we introduce use several strategies, like merging segments that are unambiguously
connected to each other in a pre-processing step or using weight functions for a heuristic
approach to determine the probability of two segments to being connected. The findings
and outcome of this thesis have practical implications within the TrackDB software, while
also holding potential applicability across other infrastructure networks like motorways
or pipeline systems.

We address the following key questions in this thesis:

2



1. How can we characterize problematic input instances and locate subsets of seg-
ments with ambiguous order which might lead to accuracy problems?

2. How do the suggested algorithms improve the current approach to the problem?

3. What are suitable measures of the solution quality of the algorithms?

4. How do the presented algorithms compare to each other in terms of solution
quality and runtime performance?

This thesis is structured as follows: In Chapter 2 we present related work to the topic
of this thesis, that has been published by other authors. In Chapter 3 we introduce
several definitions and information that will be needed for the further understanding of
the following chapters. In Chapter 4 we discuss an existing proof of concept solution
to the problem that has already been developed, describe the structure and discuss its
shortcomings. This approach sets the fundamental base of the algorithm we design and
introduce in Chapter 5 and Chapter 6. Chapter 5 shows one way of fetching raw OSM
railway data and converting it into the data structures used by our algorithm. Further
we show in this chapter how the data structure is constructed. Chapter 6 describes the
process of finding long paths, possible solutions, using the data structure from Chapter 5
on given input instances. We performed several experiments to give sample results of our
algorithm on multiple input instances and evaluate the performance and solution quality
of the algorithm in Chapter 7. Chapter 8 concludes this research and gives an outlook
on possible future work.
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CHAPTER 2
Related Work

In this chapter, we explore existing literature relevant to our methodology for extracting
railway track geometry from OpenStreetMap (OSM) data. Our approach involves
heuristic mapping of input data to a graph structure and reducing the problem to a
maximum weighted path cover problem. The vertices of this graph structure represent
track segments and the weights of edges of adjacent vertices the likelihood of them being
geometrically connected. The mentioned concepts will be discussed in more detail in the
following sections. Therefore, research on related work is focused on three main topics:
Representing OSM data in a suitable graph structure, addressing the maximum weighted
path cover problem and finding an appropriate weight function for our heuristic.

2.1 Representing OSM Data in a Graph Structure

The processing of geospatial data from geographic databases like OSM is a relatively
widely researched topic. There are several projects that transform OSM data into other
formats like graph structures. OSMnx [2] is a tool which provides options to collect data
from OSM, create street networks and perform analysis on them. It includes functions like
calculating the shortest path between two points. The tool, however, does not cover the
problem we tackle in this thesis, computing polyline geometries from (maybe inconsistent
or ambiguous) data to depict railway tracks, as OSMnx focuses on transforming street
network data to a graph structure simplifying and enabling faster processing of the data.

Rahmig and Kluge [23] explain the OSM railway data structure and present an extension
to the OSM data structure which tries to fulfill a vast variety of application requirements
and aims to allow for an easier modelling of digital maps. The introduced data structure
is a graph where vertices represent locations at which tracks are diverging, branching, or
crossing each other and edges represent the tracks between those vertices.
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2. Related Work

A protocol to convert spatial polyline data to network formats is presented in the paper
by Karduni et al. [12]. In this protocol road crossings, bridges and tunnels are mapped
to vertices and the road segments in-between to edges.

Although Rahmig and Kluge’s graph structure [23] as well as the one presented by
Karduni et al. [12] are proficient for traversal and pathfinding purposes, they lack the
inclusion of track segment geometries and properties within the graph’s vertices.

Chong et al. introduce a track segment graph for multiple hypothesis tracking in [5].
The track segment graph from [5] finds application in object tracking. Track hypotheses
are assigned a score based on track segment association likelihoods which closely relates
to the situation we want to represent in our graph structure.

One particular problem that inevitably leads to issues converting OSM data to tracks
and generating a correct graph structure are errors in the data fetched from OSM itself.
There are existing tools for detecting invalid OSM data like JOSM/Validator [11] or
OSM Inspector [7]. JOSM/Validator is able to detect duplicated or incomplete ways and
OSM Inspector is able to show basic geometry problems such as overlong ways. The
strategy for extraction from OSM data we propose in this paper should be able to run
automatized, thus we need to make our algorithm robust to such errors. The paper of
Tabes et al. [26] proposes an algorithm fixing the connectivity in unconnected street
networks, an issue that can arise with faulty OSM data. After converting the street
network to a graph structure and detecting two unconnected portions of the graph, the
algorithm tries to find the best way to create a strongly connected component including
both subgraphs by trying to add the least amount of nodes to the component.

2.2 Path Cover Problem

One approach that we briefly mentioned there is a reduction of the original problem
to a maximum path cover problem. Moran et al. [19] and Kobayashi et al. [13] are of
particular interest for solving the maximum weighted path cover problem. In Moran et
al. [19] three different approximation algorithms for the maximum path cover problem
are presented. The paper describes 2/3-approximation algorithms for undirected graphs
and directed graphs.

Chen and Ravichandran [4] present a maximum weight constrained path cover algorithm
for graph-based multitarget tracking based on the track segment graph from Chong [5]
that we briefly discussed in Section 2.1.

As mentioned by Lin and Ren in [15] the maximum weighted path cover problem is
NP-complete. This complexity classification of the problem suggests that a heuristic
approach to this problem is a reasonable choice.

6



2.3. Track Geometry Considerations

2.3 Track Geometry Considerations
In order to define an appropriate weight function for our heuristic, detailed information
about the standardized layout of railway tracks is advantageous. Legal regulations for
the railway track infrastructure in Austria are defined on the official “Rechtsinforma-
tionssystem der Republik Österreich” (RIS) website [25] from the Austrian government.
The thesis “Localization of Trains and Mapping of Railway Tracks” [9] describes the
required properties of railway tracks from a physical and legal perspective in more detail.
Those properties include, for example, the maximum curvature, or the continuity of the
course of the track. They will be used to define the weight function for our heuristic.
Sellerhof and Berkhahn [27] present an abstract method to model the layout of railway
lines in a 3D-space with b-splines. Unfortunately, not that much literature can be found
for the problem of merging and ordering polylines to retrieve a single polyline in itself.
The paper [28] of Wolin et. al. presents an algorithm to detect corners in hand-sketched
strokes. Some methods used in the algorithm from this paper could be used in an altered
way for track segments.

7





CHAPTER 3
Preliminaries

3.1 Mathematical Definitions
In this section we define geometric terms and concepts that are used in the following
chapters.

Basic geometries

A point P in R2 is an object that specifies a location in a two-dimensional space. It is
defined by an x- and y-coordinate.

A curve C is a continuous mapping from an interval of the real numbers to a space. In
plane R2 this mapping is defined as ϕ : [0, 1] → R2. We say a point P lies on a curve
if there exists a t ∈ [0, 1] such that ϕ(t) = P . One can split a curve C into two curve
segments by defining a join point P = ϕ(t) where t ∈ [0, 1]. The two curve segments are
then defined as ϕ1 : [0, t] → R2 and ϕ2 : [t, 1] → R2. Continuity C describes how two
segments of a curve C come together at a point (also referred to as smoothness). At a
given join point P the continuity is defined as:

• C0 continuity: if the two curve segments share the same point where they join:
ϕ1(t) = ϕ2(t).

• C1 continuity: if the two curve segments are C0 continuous and have the same
tangent (share the same parametric derivatives) at the join point: ϕ′

1(t) = ϕ′
2(t).

• C2 continuity: if the two curve segments are C1 continuous and have the same
curvature (share the same second parametric derivatives) at the join point: ϕ′′

1(t) =
ϕ′′

2(t).

9



3. Preliminaries

P point

curve

polyline

C

P1

P2

P3
P4

P5

P6

line segment
l = P1P2

spline
P1

P2

P3

P4

Figure 3.1: Basic geometries in R2

If the curve has Cn continuity (share the same 0’th . . . n’th parametric derivatives) for
any arbitrary join point P , then the curve is said to be Cn continuous.

Let P1 . . . Pi be points in R2. A polyline or line string is defined by an ordered sequence
of such points P1 . . . Pi. Given two points P and Q in R2, a line segment l = PQ from P
to Q is defined as the point set {P + t ∗ (Q − P ) | t ∈ [0, 1]}. In the course of this thesis
we will use the term track segment or short segment as an abstract term describing the
geometry of sections of a railway track. A track segment is a polyline P1 . . . Pi where
i ≥ 2 (a polyline with at least two points).

A spline is a parametric curve defined by control points. The control points of a spline are
a finite set of points that define the shape of the spline. Control points do not necessarily
have to lie on the spline itself. There are different types of splines, such as Bézier splines,
Hermite splines, and B-splines.

Line segments, polylines and splines are all also curves by definition.

Graphs
A graph G = (V, E) is a pair of a set of vertices V and a set of edges E. In an undirected
graph, an edge ei,j is a 2-element subset of V where E ⊆ {{vi, vj} | vi, vj ∈ V }. Whereas in
a directed graph, each edge is an ordered pair of vertices where E ⊆ {(vi, vj) | vi, vj ∈ V }.

Two vertices vi and vj are called adjacent or neighbors if there is an edge ei,j between
them (i.e. {vi, vj} ∈ E for undirected graphs or (vi, vj) ∈ E for directed graphs).

A weighted graph is a graph where each edge has an associated weight ω. The weight for
each edge ei,j in a weighted graph is denoted as ωi,j → R0+.

A path P in a graph is a sequence of vertices (v1, . . . vn) with n > 1 where each vertex
is adjacent to the next vertex in the sequence. Vertices in a path are pairwise distinct
and there exist n − 1 edges e1,2 . . . en−1,n ∈ E in the graph where ei,i+1 = {vi, vi+1}
for undirected graphs and ei,i+1 = (vi, vi+1) for all i with 1 ≤ i < n. The length of a
path P is defined by the number of its vertices minus one. Two paths P1 and P2 are
vertex-disjoint (or short disjoint) if they do not share any vertices. For two disjoint paths
P1 and P2 for each vertex vi ∈ P1 =⇒ vi /∈ P2 must hold.

10



3.2. Representing Track Geometries in OSM
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(b) R-tree

Figure 3.2: Two-Dimensional R-tree Example

A bounding box is a closed region that completely contains a set of geometric objects.
For a single object in R2 we define (if not specified otherwise) the bounding box of said
object as an axis aligned rectangular bounding box of minimal size.

R-tree
An R-tree is a dynamic index structure for spatial searching holding its indexed records
in the leaf nodes. It is height-balanced similar to a B-tree and organizes its objects
as intervals in multiple dimensions. Each node spans an n-dimensional area defined
by n intervals. All child nodes are spatially contained in the area of their parent node
meaning that every interval of the child node is a subset of the parent’s interval for all n
dimensions. Upon searching for records that overlap a queried search area the nodes of
the R-tree are traversed from top to bottom (i.e. from root to leaf nodes). Figure 3.2
shows an example of a two-dimensional R-tree with Figure 3.2a being the search space
containing search intervals depicted in dashed rectangles and the indexed records in red
rectangles. In Figure 3.2b the corresponding R-tree can be seen. Only nodes that overlap
the search area are traversed further, thus allowing for a fast search. A more detailed
description of the R-trees and algorithms for inserting nodes, updating nodes and finding
leaf nodes can be found in “R-trees: dynamic index structure for spatial searching” [8]
by Guttman.

3.2 Representing Track Geometries in OSM
The biggest advantage of using OSM as a data source opposed to other data providers
is the huge amount of data that is available. Usually, railway data providers such as
construction companies or railway operators only manage data of their own or a just
small amount of tracks and sometimes do not provide their data openly. Since OSM is
crowdsourced, there is data almost everywhere in the world. Specifications and feature
descriptions of OSM data can be found in “OpenStreetMap Data in Layered GIS Format”
[24]. One drawback with OSM, however, is that the data is very coarse and might not
always be that accurate. Additionally, the data from OSM does not contain information
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3. Preliminaries

about the altitude of a track position or sometimes lacks other detailed information such
as track kilometers, railway identification number and others. Therefore, we need to
estimate the course of the tracks solely based on the geometry data of the segments.
They contain the start and end point of the segment and the control points in between
as coordinates in a two-dimensional space. As described in [25] and [9], the course of a
railway track has to fulfill certain requirements per law. These requirements include the
maximum curvature of a track, the continuity of the course of the track, maximum speed
and others. For example, the minimum curve radius is 100 meters and the track needs to
have a C2 continuity. We can take advantage of the knowledge of these requirements to
define a proper heuristic for the problem.

The process of constructing single railway lines from OpenStreetMap data can be divided
into multiple subproblems. The subproblems range from well explored topics, like the
extraction of raw data from OpenStreetMap, to more specific problems like the ordering
of segments to construct solutions.

12



CHAPTER 4
Greedy Local Fit Algorithm

Remember the definition of the abstract problem: “Given a set of unordered track
segments, where each track segment is defined by a sequence of points in a two-dimensional-
space coordinate system. Find a process to connect and order those segments such that
the connected segments accurately represent the rails in a railway system map”

Track segments are polylines which contain an ordered finite set of points (and hold
additional metadata). The track creation algorithm creates a set of tracks from segments
where each element in the result set should represent a single railway track. Each track
in the computed solution is an ordered set of polylines.

A proof of concept implementation for this problem has already been built by TMC.
Figure 4.1 shows the processing pipeline of creating tracks from raw OSM data. The
process can be divided into four steps:

1. Data Extraction

2. Track Creation

3. Post Processing

4. Output Result

In this section we will give an overview over the proof-of-concept solution. Chapter 5
focuses on Step 1, the extraction of data from OSM. Step 2, the core part of the track
creation, will be covered in Chapter 6 where we introduce our new approaches. Steps
3 and 4 are not essential parts of this thesis and will only be briefly discussed in this
Chapter and Chapter 7.

OSM data is fetched using the Overpass API, where tracks are selected by a given
railway reference number. The reference number needs to be present in the OSM Tags.

13



4. Greedy Local Fit Algorithm

Data Extraction

Track Creation

Post Processing

• Fetch data from data-providers like OSM

• Extract geometries from a single railway line
(by applying filters)

• Convert to linestrings (translate raw data to
processable entities)

• Segment graph creation: Store the linestrings
in a graph structure and assign every two seg-
ments that are close to each other an edge

• Apply heuristics: Assign a weight to each edge
based on a connectivity heuristic

• Continuous line search: Find an order of dis-
tinctive linestrings that have the highest weight

• Merging of ordered linestrings: Merge to one
object

• Line smoothing: Get rid of artifacts caused
during merging or by inaccurate raw data

• Apply common direction: Reverse the order
of points for linestrings that are flipped

Output Result
• Write the result to a GeoJson File

• Can be used for visualization (e.g. in QGIS)
4

3

2

1

Figure 4.1: Processing pipeline of existing solution

Unfortunately, railway tags are not always present or accurate, especially outside of
Europe. The primary benefit of this approach is that it enables the retrieval of only those
track segments associated with the specified railway reference number. For the track
creation a graph data structure is used to hold the segments. The graph structure for
segments is described in more detail in Section 4.1. In order to add a scoring on different
combinations of orders of segments, a weight function defines a weight for each pair of
segments. Segments which are not in the neighborhood of each other are omitted. In
Section 4.2 the weight function is formally defined. After the creation of the segment
graph and the assignment of all weights, the algorithm tries to find continuous lines
by starting at a random segment and following the path with the highest weight. The
algorithm stops when no more segments can be added to the path. For the expansion of
each part solely the weight of the edge to the next neighboring segment is considered.
After the paths have been found, segments that are part of the same path get merged
together in the same order to get a single linestring for each path. Some smoothing and
other post-processing operations are then applied to the continuous lines to improve the
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result. Subsequently, the results are converted back to GeoJson and written to a file
which can then be used for further processing.

4.1 Segment Graph
To solve the problem, TrackDB currently employs an approach that reduces the general
problem to a graph problem. Segments are mapped to vertices in a corresponding graph
structure that we call the segment graph. The edges of the segment graph and their
weights are associated with the probabilities of the vertices (segments) to be connected
in the real world.

We define Gseg = (V, E) as a segment graph with vertices V and edges E where V is a
set of track segments and E a set of potential connections. The expression ei,j represents
a potential connection between track segments vi and vj . Additionally, we define ω(ei,j)
or short ωi,j as the weight of the edge ei,j . The weight ωi,j on an edge ei,j in a segment
graph is determined by a weight function ω for every potential connection of two track
segments. (v1, v2, . . . , vn) is a sequence of track segments, where v1 is the first element
followed by v2 as its successor and vn as the last element. v1 is the predecessor of v2
accordingly. A successor track segment and its predecessor are called neighboring track
segments or neighbors. That implies v1 is neighbor of v2 and v2 is neighbor of v1. The
delta value δ is a threshold that defines the maximum distance that two segments v1 and
v2 can be apart in order to be neighbors:

v1 ∈ neighbors(v2) ⇐⇒ distance(v1, v2) ≤ δ

and
v2 ∈ neighbors(v1) ⇐⇒ distance(v1, v2) ≤ δ

Figure 4.2 shows a simple representation of the currently used data structure in the
algorithm: where v1, . . . , vi are the vertices in the segment graph which represent the
segments. Segments are stored as bounding boxes in an R-tree, which is used for indexing
and determining the neighborhoods of segments. Note that these bounding boxes are
spanned over just the start and the end point. So points in a segment between start and
end point can lie outside the bounding box but are of no further interest. A segment vj is
in the neighborhood of vi if the spatial distance between vi and vj is lower than a given
threshold δ. The value of δ is variable and set to 1 meter by default. The expression ei,j

denotes an edge from vi to vj in the segment graph where, based on a weight function, a
weight ω can be assigned to each edge. The weight ωi,j represents the probability that
two vertices (segments) vi and vj are connected. Edges between segments which are not
in the same neighborhood, will be discarded from the segment graph. Algorithm 4.1
shows the algorithm for creating the segment graph in pseudocode. For every segment
the algorithm checks for neighboring segments and adds an edge between them if they
are not already connected. First, neighboring segments from the start point of the
current segment are checked and later from the end point. For a candidate vj (line 3, 4)
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4. Greedy Local Fit Algorithm

Algorithm 4.1: Algorithm for creating the segment graph
Input : segments: A set of polylines with their metadata
Result: segmentGraph: Gseg = (V, E)

1 V ← segments;
2 E ← ∅;
3 foreach vi ∈ V do
4 predecessorCandidates ← {vj | vi ∈ V ∧ distance((vi.startPoint), vj) <

δ ∧ vj ̸= vi};
/* All track segments that lie in the radius of δ from

the start point (the neighbors of segment vi) */
5 succesorCandidates ← {vj | vi ∈ V ∧ distance((vi.endPoint), vj) < δ ∧ vj ̸=

vi};
/* All track segments that lie in the radius of δ from

the end point (the neighbors of segment vi) */
6 addEdges(vi, succesorCandidates);
7 addEdges(vi, predecessorCandidates);
8 end
9 Gseg ← (V, E);

10 return Gseg

11 Function addEdges(vi, candidates):
12 foreach vc ∈ candidates do
13 if ei,c /∈ E then
14 E ← E ∪ {ec,i, ei,c}; /* Add edge in both directions and

determine weights */
15 ωc,i ← weight(vc, vi);
16 ωi,c ← weight(vi, vc);

// weight = (distance ∗ angle ∗ intersection) between vi and vj

17 end
18 end

the current algorithm always checks first whether the candidate’s start point is in the
neighborhood of the current segment vi. Only if it is not, then the end position of vj

is checked. This coordinate of vj is saved and used for the weight function’s distance
check. When evaluating the weight for a predecessor candidate the start point of the
current segment vi is taken into consideration and for successor candidates the end point.
The goal is to find a set of disjoint paths that maximizes the sum of the weights of the
edges in the solution. The solution contains the corresponding vertices of these paths
as an ordered set of vertices for each path which can then be merged to one continuous
polyline representing a path.

A more refined variation of a segment graph will be presented in Section 5.2.
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Figure 4.2: Data structure of the current algorithm

4.2 Weight Function
The weights ω of the edges of the segment graph are calculated by the distance weight
ωdist multiplied with the angle weight ωangle multiplied by the intersection weight ωint.
The distance weight ωdist is simply 1 minus the distance between the two segments.
The angle weight ωangle is 1 − |α

π | where αi,j is the deflection angle between vi and vj .
The deflection angle is the angle between two straight lines formed by the first and
second points or by the last and penultimate points of vi and vj respectively. And the
intersection weight ωint is 1 if there is an intersection between the two segments and 0.9
if not. The weight function should be improved.

ωi,j = ωdist
i,j ∗ ωangle

i,j ∗ ωint
i,j

4.3 Possible Problems while Creating the Segment Graph
Usually the current algorithm for generating the segment graph works well. However,
when segments are just slightly larger than δ or self intersecting the current approach
might lead to faulty heuristics. While creating the segment graph with its weighted
edges, the algorithm first checks on a given Vertex v which successor candidates exist
and adds them if all the conditions are met. Example 1 in Figure 4.3a presents a possible
scenario where v1 is given and the algorithm checks for successor vertices to append.
For illustration purposes the start point of the segments are displayed in blue color and
the end points in red color. Vertex v2 will be added as a successor since it is in the
neighborhood of v1 (under the assumption that the weight of this edge will be higher
than the defined threshold). The weight of the edge is determined by the weight function
and since the candidate v2 is first checked as a possible successor it will be added into the
segment graph as such. The distance weight of the weight function will be calculated by
using the end point of v1 and the start point of v2 instead of the start point of v1 and the
start point of v2, which would result in a much higher weight and is the more realistic
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(a) Example 1
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(b) Example 2

Figure 4.3: Segment graph where the “wrong” coordinate from the bounding box is used
for weight calculation
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Figure 4.4: Segment graph where the “wrong” coordinate from the bounding box is used
for the weight calculation

scenario. Currently, the algorithm would add both edges e1,2 and e2,1 once v2 is selected
as a successor candidate meaning that the other possibility is not even considered and
the wrong weights are applied.

As another example, take a segment graph which is depicted in Example 2 in Figure 4.3b.
Here the algorithm takes v2 as the successor of v1 because the start point of v2 is in the
neighborhood of the end point of v1. As a result wrong weights would be stored.

In Figure 4.4 the algorithm selects v2 as a successor candidate of v1. However, in this
specific case the function which determines ω1,2 and ω2,1 takes the start point which is
further away and less realistic in the real world. Generally for a candidate vj of vi the
algorithm always checks first if the start point of the candidate is in the neighborhood
of vi and uses this point for the weight function. Only if the start point is not in the
neighborhood then the end point of vj is checked respectively.

Similar to Figure 4.4, the wrong point of v2 is taken for the calculation of ω1,2 and ω2,1
in Figure 4.5. Here v2 is a predecessor candidate since it is not in the neighborhood of
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Figure 4.5: Segment graph where the “wrong” coordinate from the bounding box is used
for the weight calculation

the end point of v1.

A simple solution to slightly improve cases in which another segment is both a successor
and a predecessor candidate: First just check the weights of the edges which are about
to be inserted. If the adjacent vertex is only a successor candidate or only a predecessor
candidate, insert the edge to the graph. If the adjacent vertex is both successor and
predecessor candidate insert the edge with the higher weight. Currently, the successor
candidate is always taken first if possible.

4.4 Selecting the Best Paths
After filtering out segments that are smaller than δ and creating the segment graph, the
greedy track creation algorithm takes a random vertex of the graph which is not visited
yet, marks it as visited and tries to prepend segments. It then always selects the segment
with the highest probability, i.e. the edge with the largest weight, and marks it as visited.
This is done until no further segments can be prepended. After that, the algorithm
tries to append as many segments as possible while always choosing the one with the
highest probability. Once no segments can be appended the current path, containing all
the segments which were pre- and appended, is added to the solution set. An example
for a path resolution can be seen in Figure 4.6. Unvisited segments are illustrated in
blue, visited segments in red. In this example we assume that the path is expanded
starting with v3, which is marked as visited. We also assume that the start point of each
segment is on the left while the endpoint is on the right side. The algorithm will first add
segment v2 to the path followed by v1 marking them as visited. At this point no further
segment with high enough probability (weight value greater than the threshold ωmin)
can be appended to the path. The algorithm then proceeds to append the next vertex
since no further segments can be prepended to the path. Segment v4 is then appended,
marking it as visited as well. After adding v4 to the path, no further segments can be
pre- or appended. The next unvisited vertex is then selected and the process of pre- and
appending other segments is repeated until no unvisited vertices are left. A threshold
ωmin can be set to only allow segments with a higher probability than ωmin to be pre- or
appended. By default, the value of ωmin is set to 1/2. A pseudocode of this algorithm
can be seen in Algorithm 4.2.
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Figure 4.6: Example of a single path resolution with the track creation algorithm

The complexity of the simple algorithm is O(|E|) or O(|V |2) respectively.

4.5 Possible Problems Selecting the Best Path

The current implementation has no backtracking. It merely searches for the next segment
with the highest probability. In the case of Figure 4.7, assuming that the vertices are
stored in numeric order (with v1 being first and v6 being last and v1 being the first
selected vertex), a path from v1 to v3 will be expanded since v3 is more likely to be
appended to v2 than v4. The expanded path is marked in red in Figure 4.7. After the
expansion, vertices v1, v2 and v3 are already visited, and the algorithm finds no other
vertex which could be appended to v3, since v4 is not in the neighborhood of the end
point of v3. The algorithm then continues with expanding a new path v4-v5-v6. The
solution set would be {{v1, v2, v3}, {v4, v5, v6}}. A possibly better solution would be to
expand the path v1-v2-v4-v5-v6 and returning {{v1, v2, v4, v5, v6}, {v3}} which cannot be
found with the current approach. The situation in Figure 4.7 could for example happen
if v3 was an editing error and mistakenly added.
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Figure 4.7: Expansion of a suboptimal path
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Figure 4.8: Expansion of the wrong path in a self intersecting track

Another situation where the current implementation meets its limits is one in which the
track is self intersecting and contains a loop. Take Figure 4.8 as an example. Here we
assume that all the segments are connected, and we omit the bounding boxes of segments
for illustration purposes. Additionally, we mark the end and start points of segments with
larger circles. Assuming that the vertices are numerically ordered again, the algorithm
first searches for all the possible segments it can append to v1. Segment v2 is chosen
as the first successor, but since the weight of ω2,7 is higher than ω2,3 the algorithm will
prefer v7 as the next successor. Thus, it will expand v1-v2-v7-v8 first and then continues
with expanding v3-v4-v5-v6 as a separate path. The solution the algorithm returns is
{{v1, v2, v7, v8}, {v3, v4, v5, v6}}.

4.6 Post-processing of the Paths
After the track creation, some segments in a path can be facing in the wrong directions.
The reason for that is, that the original order of points within a segment is preserved when
a segment is appended or prepended to a path, rather than the segment being reversed.
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Direction:

v1 v2
v3 v4

Figure 4.9: Example of inconsistent segment directions

A reference to the segment end point of the previously added segment is kept and in
the next iteration the algorithm searches for the neighbors of the opposing end point of
the newly added segment. Figure 4.9 shows inconsistent directions of segments. After
applying the track creation algorithm each resulting path is only one single polyline. The
order or sequence of points is crucial to produce the correct line, hence some adjustments
of directions need to be applied for each segment before merging to a single polyline. To
counteract that, a common direction is applied to all segments after the track creation
algorithm is completed. In the proposed solution the direction of each segment is checked
by comparing each segments start and end point to the first position of the whole track.
Let S be the first point in a path. For each segment in a path, the distance between the
start point of the segment and S is compared to the distance between the end point of
the segment and S. If the end point is closer to S, then the segment will be reversed.

This approach of applying a common direction will lead to problems when a segment is
part of a loop or strong (more than 90°) curve. Figure 4.10 shows how the directions
would be applied to the segments if the track creation algorithm had returned the best
path for the track in Figure 4.8. Segments v4 and v5 have faulty directions since the
start points of those segments are further away from the start point of the path then
their end points are.

We suggest improving this approach by comparing the distance of the start and end
point of the segment to be added to the end point of path that has been discovered so
far. For this, the new end point of the current computed path needs to be calculated and
stored after each step. Since this is just a single additional operation it will barely affect
performance while avoiding the problem shown in Figure 4.10.

After applying a common direction, line smoothing and simplification is applied. Line
smoothing and simplification removes sharp edges and distortions in the paths that
the track creation algorithm produces. It creates a smoother line, which will make the
trajectory of the track more visually appealing and look more realistic when rendered. A
good overview for line generalization including smoothing and simplification is given my
McMaster in [18] and in the line generalization module of University of Alcalá [6].
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Figure 4.10: Applying common direction on self intersecting paths may cause problems
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Algorithm 4.2: Current implementation of the track creation algorithm
Input : segments: A set of polylines with their metadata
Data: segmentGraph: Gseg = (V, E)
Result: All vertices from a spanning forest over the segmentGraph, segmented

by its spanning trees (of components from the segment graph), where
the edges of every spanning tree within the spanning forest strictly form
a path ;

;
1 segments ← {s | s ∈ segments ∧ s ≥ δ};

; /* Filter segments smaller than δ */
2 Gseg ← createsegmentGraph(segments) ;
3 visited ← {} ;
4 result ← {} ;
5 while vroot ← pop({vi | vi ∈ V ∧ vi /∈ visited}) do
6 vf ← vroot;
7 continousSegmentString ← {} ; /* Dequeue */
8 while vf ̸= ∅ do
9 candidates ← {vi | vi /∈ visited ∧ (ωi,f > ωmin)} ;

; /* Find candidates to prepend */
10 next ← {vi | vi /∈ visited ∧ (ωi,f = max({ωj,f | vj /∈ visited})) ∧ vi ∈

candidates} ; /* Select the predecessor candidate with
the highest probability */

11 continousSegmentString.addF irst(next);
12 visited ← visited ∪ next;
13 vf ← next ;
14 end
15 vb ← vroot;
16 while vb ̸= ∅ do
17 candidates ← {vi | vi /∈ visited ∧ (ωb,i > ωmin)} ;

; /* Find candidates to append */
18 next ← {vi | vi /∈ visited ∧ (ωb,i = max({ωb,j | vj /∈ visited})) ∧ vi ∈

candidates} ; /* Select the successor candidate with the
highest probability */

19 continousSegmentString.addLast(next);
20 visited ← visited ∪ next;
21 vb ← next ;
22 end
23 result ← result ∪ continousSegmentString ;
24 end
25 return result ;
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CHAPTER 5
Graph extraction from OSM

In OpenStreetMaps there are three different types of objects: nodes, ways and relations.
Tags are maps (key-value pairs) that store additional information about objects. Nodes
typically represent point locations in 2d-space which are defined by their coordinates.
They represent elements such as points of interest (POIs), amenities, or they can be part
of a way or relation. Ways are ordered lists of nodes which typically represent linear
features such as street segments, rivers, or railway track segments. Relations are ordered
lists of nodes, ways and other relations which typically represent more complex features
such as a public transport route or a boundary. A whole railway track is represented by a
relation which contains all the segments that belong to the track. In theory, if the data is
tagged correctly, it should be pretty easy to convert the data into other commonly used
formats like GeoJSON. However, more often than not, the data is not tagged correctly,
contains errors or is inconsistent. Listing 5.1 shows an example of a way element from
the OSM in XML format. Each OSM element contains an id, an 64-bit integer which is
unique among all elements from the same element type. The changeset describes on
which database operation the element has been added or modified, timestamp defines
the time at which this operation happened and uid the id of the user that created or last
modified this element. Sub elements within ways named nd hold a reference to a node
element. Usually a way element holds multiple nd elements that define the geometry of
the way element. Tags are defined as sub elements within a way. Additional information
they hold are for example the maximum speed maxspeed, the operator name operator
or the railway type railway, as shown in Listing 5.1. Some properties of the way shown
in Listing 5.1 are omitted in this example for brevity. Listing 5.2 shows an example of a
node element which is part of the way from Listing 5.1. Most importantly, node elements
hold position information in lat and long that are also essential for the geometry of
the way element that references the node.
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5. Graph extraction from OSM

<osm version="0.6"
copyright="OpenStreetMap and contributors"
attribution="http://www.openstreetmap.org/copyright"

...
>
<way id="130556301"

version="13"
changeset="140751908"
timestamp="2023-09-03T10:35:43Z"
uid="4453208"

...
>

<nd ref="148975337"/>
<nd ref="11164817209"/>
<nd ref="11164817208"/>
<nd ref="1172206522"/>
<nd ref="1172206153"/>
<tag k="electrified" v="contact_line"/>
<tag k="maxspeed" v="60"/>
<tag k="operator" v="OEBB-Infrastruktur AG"/>
<tag k="railway" v="rail"/>
<tag k="voltage" v="15000"/>

...
</way>
</osm>

Listing 5.1: Example of a OSM way

5.1 Fetching Railway Segments from the Raw Data

Data directly from OSM can either be fetched as XML or as a Protocol Buffers (Protobuf)
format. Both XML and Protobuf are data formats that are commonly used to serialize
and exchange data, but other formats such as GeoJSON might be more suitable for
further processing of the geometric data. Overpass [21] is a database that is built on
top of OSM and provides an API that can be used to fetch OSM data with a query
language like syntax. Additionally, the queried data from Overpass can be converted into
GeoJSON. GeoJSON is a file format to represent geographical features with JSON syntax.
The geometry objects in GeoJSON are called features and consist of a geometry and
additional properties. A multitude of features can be combined into a feature collection.

One of the most popular API’s for querying OSM data is the Overpass API [21]. For
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<osm version="0.6"
copyright="OpenStreetMap and contributors"
attribution="http://www.openstreetmap.org/copyright"

...
>
<node id="11164817209"

visible="true"
version="1"
changeset="140751908"
timestamp="2023-09-03T10:35:43Z"
uid="4453208"
lat="48.2873231"
lon="14.2893915"

...
/>
</osm>

Listing 5.2: Example of a OSM node

the querying from Overpass, one has to create a query that corresponds to the syntax of
the Overpass Query Language (OverpassQL). From the total set of data in OSM, we
can query three different types of objects: nodes (representing points in the map and
can be part of ways), ways (linear features representing street segments, railway track
segments, rivers etc.) and relations (complex features such as public transport routes).
In Overpass syntax these are specified by the keywords of the same name i.e. node,
way and relation in the query. By providing filters in the query, the result set can be
narrowed down to the desired data. A filter in a query is indicated by square brackets
and contains a key-value pair that specifies the tag and which values should be filtered.
As an example [railway=rail] filters all ways that have the tag railway with the
value rail. Overpass also supports querying certain areas, which can be specified with
the area keyword. This queries just data from Austria:

area["ISO3166-1"="AT"];

Alternatively, one can also query regions by providing a bounding box within a filter with
the bbox keyword. The expression [bbox=47.1,11.4,47.2,11.5] queries data
from the bounding box with the coordinates 47.1, 11.4, 47.2, 11.5. The output format
from the query can also be specified with the out keyword. Adding out body, for
example, returns all data with additional information like tags and coordinates, whereas
out skel only returns the id and coordinates of the data. Since we create a purely
geometry-based algorithm, we need the result of out skel most of the time. Another
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statement we use is >; which basically returns the objects that are below the current
object in the hierarchy. So for a way it returns all nodes that are part of the way and for
a relation it returns all ways and nodes that are part of the relation. In our case, if we
want to query all nodes that are ways that have the tag railway with the value rail
in an area, let it be “47.1, 11.4, 47.2, 11.5”, we can use the following query:

way(area:47.1,11.4,47.2,11.5)[railway=rail];
out body;
>;
out skel;

As specified in [24], railway segments should be tagged with the key railway. And the
value rail should be reserved for “regular railway tracks”. These values for querying
railway segments can be modified to fetch tracks and the query can be broadened or
narrowed down according to the needs.

In the beginning of the query we can also define the output format (the format in which
the data will be represented in the result). Defining [out:json]; at the beginning of
the query returns the data in JSON format.

After the querying from Overpass, we want to further process the data in Java. Con-
sequently, we parse the GeoJSON objects from the Overpass query and convert them
to JTS geometries. The JTS Topology Suite [16] is a Java library that provides data
structures and algorithms for processing geometry objects. Furthermore, it supports
representation of objects in other coordinate systems like UTM (Universal Transverse
Mercator). Therefore, using JTS as an object model for the geometries can be of advan-
tage if we want to use data from other providers that do not use the WGS 84 (World
Geodetic System 1984) coordinate system. All GeoJSON objects are defined in the WGS
84 coordinate system [3]. WGS 84 is a geodectic coordinate system that uses latitude and
longitude to determine positions of points on the earth’s surface and has degrees as units.
Projected coordinate systems such as UTM, on the other hand, typically use meters as
distance units and might therefore be a more intuitive system to present data in. The
specific unit has to be taken into account when we use distance parameters such as δ. A
translation between the two coordinate systems is also possible as outlined in [17]. OSM
Ways are represented as JTS LineStrings and Nodes as JTS Points in the algorithm’s
data structures. Once completed with the processing of the data (applying our clustering
algorithm), we convert the JTS geometries back to JSON/GeoJSON objects.

5.2 Converting the Data to a Segment Graph
In order to hold the segments and their possible connections we need to create an
appropriate data structure. A graph containing all the segments seems to be a promising
structure. There is a multitude of other projects that are using graphs to represent OSM
data. A selection of them can be found in 2.1. For this we construct a segment graph
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structure that we briefly introduced in Section 4.1. In order to keep the complexity of the
instances of the segment graph as low as possible, we will reduce the number of vertices
and edges we add to this graph as much as possible without harming the structure’s
integrity too much. Additional preprocessing steps remove all segments that are unlikely
to be part of a feasible solution and merge segments that would unambiguously be
connected to each other in any feasible solution. The merges and removals of segments
should lead to a smaller instance and boost the performance of our algorithm significantly.

5.2.1 STR-Tree
In this subsection we will briefly discuss a data structure we use for spatially indexing the
2d-geometries in our algorithm, the STR-tree. The STR-tree uses the Sort-Tile-Recursive
algorithm for packing an R-tree (see Section 3.1).

Since we already have a predefined set of geometry objects (the segments), the input
instances of our algorithm, which are fairly static and do not change much during the
further steps of our algorithm, it is advantageous to preprocess the index records of the
R-tree by organizing and sorting them in a way to construct an R-tree which is more
efficient in terms of loading, space utilization and query performance. A simple and
effective algorithm for this preprocessing or packing is proposed by Leutenegger et al. [14],
the Sort-Tile-Recursive algorithm. We use the STR-tree implementation provided by the
JTS Topology Suite [16] for indexing our geometries. It is used both for the merging of
unambiguously connected segments and for the actual generation of the segment graph.

5.3 Merging of Unambiguous Segments
One of the biggest contributing factors to the runtime of the path finding algorithm
is the complexity of the input instance. In general, the more segments there are, the
bigger the complexity. The complexity is accelerated by the amount of segments that
are neighboring each other. If we translate the input instance into a segment graph
described in Section 4.1, we can see that the complexity of each node in the corresponding
segment graph is proportional to the number of neighboring segments. We achieve a
significantly smaller input instance by merging unambiguous segments in a preprocessing
step. Two segments are unambiguous if they only have each other as single predecessor
or successor candidate respectively. We define a predecessor candidate as a segment that
is in the neighborhood of the starting point of the segment and a successor candidate as
a segment that is in the neighborhood of the end point of the segment. Pseudocode for
the merging of unambiguous segments is listed in Algorithm 5.1. Firstly, all segments
from the segment graph are marked as mergeable. As shown in line 4 of Algorithm 5.1
onwards, for every segment vs that has only one predecessor candidate vpre

s in δ range of
the start point of vs, we check if the connected endpoint of the predecessor candidate
vpre

s .conn also only has exactly one neighboring endpoint that is vs. If so, we merge vs

and vpre
s , otherwise we mark vs not mergeable to avoid looping over the same segment

again. In the merging step we create a new segment vmer
s and remove the old segments
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Algorithm 5.1: Merge Segments Algorithm
Input : Segment graph Gseg= (V, E)
Result: Updated segment graph Gseg after merging

1 foreach vs ∈ V do
2 mergeable(vs) ← true;
3 end
4 while ∃vs(vs ∈ V ∧ (|predecessors(vs)| = 1) ∧ mergeable(vs)) do
5 if |neighbors(vpre

s .conn)| = 1 ∧ vs ∈ neighbors(vpre
s .conn) then

6 vmer
s ← merge(vs, vpre

s );
7 V ← {V ∪ vmer

s } \ {vs ∪ vpre
s } ;

8 E ← E \ {es,spre ∪ espres,} ;
9 Gseg ← (V, E) ;

10 Gseg ← updateEdges(Gseg)
11 end
12 else
13 mergeable(vs) ← false
14 end
15 end

vs and vpre
s and their edges from the segment graph. On line 10 we recalculate the edges

for vmer
s and neighboring segments. The next iteration of the while loop will already

contain the new segment vmer
s . At the end all segments and edges in the segment graph

will be updated with the merged segments and new edges.

The pre-merging of segments has the big benefit of reducing the complexity of the input
instance for many cases. However, in particular for one case that frequently occurs on
railway tracks, the simple segment pre-merging does not provide a satisfiable result. The
case that two tracks are running parallel for a long distance and the endpoints of the
individual segments of both tracks are at approximately the same position. When this
happens, no merging can be performed, since there is always more than one neighbor for
each segment. And the complexity of the algorithm will rise drastically. To counteract
that we introduce merging of parallel running segments in Algorithm 5.2. We start by
marking all segments as mergeable. For each segment vs that has exactly three predecessor
candidates vn1

s , vn2
s , vn3

s in δ range of the start point of vs, we check if the neighbors vn1
s ,

vn2
s , vn3

s have exactly the other two segments and the original point as neighbors from
their respective connecting point. We select the neighbor with the highest probability
vmax

s (line 12) and merge it with vs in line 18. The other two neighbors are then also
merged with each other in line 19. The new segments are added to the vertices of the
segment graph and the old segments are removed. Then the edges of the new segments
are recalculated in line 22. If one of the neighbors does not exactly have the other three
segments as neighbors from their respective connecting point or the weight between the
two neighbors is below ωmin the segment vs is marked as not mergeable in order to avoid
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5.3. Merging of Unambiguous Segments

Algorithm 5.2: Merge Parallel Segments Algorithm
Input : Segment graph Gseg= (V, E)
Result: Updated segment graph Gseg after merging

1 foreach vs ∈ V do
2 mergeable(vs) ← true;
3 end
4 while ∃vs(vs ∈ V ∧ (|predecessors(vs)| = 3) ∧ mergeable(vs)) do
5 if ∃vi(vi ∈ V ∧ vi ∈ {neighbors(vn1

s .conn) ∪ neighbors(vn2
s .conn) ∪

neighbors(vn3
s .conn)} ∧ vi ̸= vs ∧ vi ̸= vn1

s ∧ vi ̸= vn2
s ∧ vi ̸= vn3

s ) ;
6 then
7 mergeable(vs) ← false ;
8 continue at 4 ;
9 end

10 vmax
s ← max {ωs,sn1 , ωs,sn2 , ωs,sn3};

11 let vo1
s and vo2

s be the other two segments (in arbitrary order);
12 if ωso1 ,so2 ,<ωmin then
13 mergeable(vs) ← false ;
14 continue at 4 ;
15 end
16 vmer1

s ← merge(vs, vmax
s );

17 vmer2
s ← merge(vo1

s , vo2
s );

18 V ← {V ∪ vmer1
s ∪ vmer2

s } \ {vs ∪ vn1
s ∪ vn2

s ∪ vn3
s } ;

19 Gseg ← (V, E) ;
20 Gseg ← updateEdges(Gseg)
21 end

looping over the same segment again and the algorithm continues with the next segment.

After the merging of unambiguous segments we prune all segments that are not connected
to any other segment.

To illustrate a possible merging process, let us have a look back at Figure 4.8. It is pretty
obvious that v1 and v2 have to be connected. We can further observe that v3, v4, v5 and
v6 have to be connected, too, and v7 and v8 respectively, as there is only one feasible
solution to join them. All of these segments only have a maximum of one predecessor
candidate which is in the neighborhood of its starting point and a maximum of one
successor candidate which is in the neighborhood of the end point. We will merge all the
neighboring segments with this property, under the condition that the weight between
each two successive segments is sufficient. This avoids creating redundant vertices and
edges in the segment graph and the algorithm will explicitly tackle the cases in which
more than one possibility of joining two segments exist.

A positive side effect of doing a merging of segments before creating the graph is, that in
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5. Graph extraction from OSM

some cases the set of possible solutions can be reduced. An example where this happens
is if we apply the just mentioned merging on the input of Figure 4.8. The resulting
segments are (v1, v2), (v3, v4, v5) and (v6, v7, v8). Since (v3, v4, v5) is now just one
segment, we can eliminate the possibility of this merged segment to be connected to itself.
This not only reduces the possibilities of how all the segments can be connected, but also
leads to a better result in cases of single loops like the one shown in Figure 4.8.

5.4 Constructing Solutions from the Ordered Segments
After merging and ordering the track segments, we need a way to construct presentable
solutions from them. QGis [22] is a project that provides visualization capabilities for
GIS data. The project supports the importing of GeoJSON files, which can be used to
visualize the solutions if we convert the results of the algorithm’s solution into GeoJSON
format. Additionally, QGis provides different styling options for GeoJSON features that
we want to take advantage of. In case further processing of the data is desired, an option
is to convert the result of the algorithm (a set of sets of ordered track segments) back
to a graph structure. This structure can be arbitrary and is not required to have the
same format as the segment graph used for the algorithm. One could for instance create
a graph where the vertices represent the end points of segments and the edges represent
the control points of the respective segments. Such a graph allows for further powerful
calculations on the data.
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CHAPTER 6
Experimental Algorithm

6.1 Local Continuity Weight Function

In Section 4.2 we briefly described a simple approach on a weight function for defining
the likeliness of two segments to be concatenated. Every edge in the segment graph is
associated with a weight which is determined by the weight function. Additionally, the
exact (end) points that connect the two segments are stored as well. First we will choose
the two connecting end points which have the highest probability. There are a maximum
of four possibilities on how to connect two segments. Section 4.3 shows different examples
with more than one possibility to connect two segments. We will be satisfied with the
possibility which scores the highest weight. All possibilities will be checked. The old
weight function had a distance weight, angle weight and an intersection weight and was
calculated by: ωi,j = ωdist

i,j ∗ ωangle
i,j ∗ ωint

i,j . We remove the intersection weight because
whether an intersection between two segments is present or not, is not a huge indicator
if two segments are connected. Instead of the angle weight we introduce a new metric
which we call continuity. The continuity is calculated using a spline approximation of
the segments and comparing the slopes at the segment ends. In the weight function
defined in Section 4.2 the distance weight is calculated by: ωdist

i,j = 1 − distance(i, j).
This distance weight is adjusted to be more realistic and to avoid negative probabilities.
It is scaled by the min weight and delta value. We also add a third metric ωrel that we
call relative distance weight. In this metric we assign weight 0 if the distance between
the two segments is larger than half the length of segment itself. Otherwise, we set
the value to it to 1. Similarly to the weight function presented in Section 4.2, the new
weight function is: ωdist ∗ ωcont ∗ ωrel. In the following Vs is the segment from which the
connection originates and Vt is the segment to which the connection is made.
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6.1.1 Distance Weight
Previously, the distance was calculated by 1 minus the distance of the two end points in
meters. By this definition the distance weight can even go below 0 which, in that case
and assuming that the angle and intersection weights are positive, will return a negative
value as the total edge weight. To avoid subsequent errors and make it more realistic
(there should not be negative probabilities, just 0 probability instead), we will normalize
the distance weight. We also might want to make the allowed distance variable and not
constrict it to 1 meter. Here we might even use the delta value and normalize the weight
over delta. The distance weight is defined as:

ωdist = max

ß
0,

Å
1 − distance ∗ ωmin

δ

ã™
(6.1)

Most notably, the distance weight is now scaled by the min weight and delta value. This
allows the weight to be distributed more evenly if the actual distance is below delta. And
it makes all distances smaller than delta to have a higher weight than the min weight.

6.1.2 Continuity approximation with splines
Besides the distance, the relative angle of two segments to each other was one major
factor in the weight function from Section 4.2. To calculate the angle at a possible
connection point of two segments, the weight function from Section 4.2 constructed lines
using the last and second to last point of the segments at the connecting endpoints. The
angle weight, which is a value between 0 and 1, was defined as: 1 − |angle

π |. In a lot of
cases just using the angle at the intersection for the weight function is not sufficient.
Figure 4.8 shows such an example. It therefore can be helpful to consider the whole
polyline of a segment and its trajectory in order to approximate the likeliness of it being
connected to another segment. For creating curves over the points in the polyline we
can use splines. Determining the continuity of this generated spline might be a better
measure than the pure angle at the intersection point. We implement this idea in for the
improved weight function.

The track segments are stored as an ordered set of points. Using these points to create a
curve might approximate the real shape of the track segment better than just a polyline.
We can create a spline as a mathematical representation of this curve using the points of
the segment as the control points for the spline. There are many variations of splines
like bézier spline, hermite spline or cardinal spline. (A linear spline would be equivalent
to the current representation of segments, a polyline.) For our problem we want the
spline to pass through all the control points, so we need an interpolating spline. The
cardinal spline seems to fit our purposes well. In particular the catmull-rom spline, which
is type of cardinal spline where the tension value is 0.5. One problem we face is that the
catmull-rom spline uses the previous and the following point as a measure to determine
the slope at a given control point. This is exactly for the first and the last control point
problematic. At the first control point the previous point needs to be estimated and
the following point at the last control point respectively. Figure 6.2 shows an example
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P1

P2

P3

P4

(a) B-spline (Bézier Spline)

P1

P2

P3

P4

(b) Cardinal Spline

Figure 6.1: B-spline and cardinal spline

Figure 6.2: Example of spline with interpolated start- and end point

of a spline where the start and end point are interpolated. The start- and end point
are colored in red and blue respectively, the interpolated points are depicted as a gray
cross. There are different types of parameterization at the control points. The centripetal
parameterization might be suitable since it avoids cusps and self-intersections on curve
segments between control points according to [29].

On these splines we can calculate the derivative and then check if the resulting curve
is continuous (parametric continuity). If the original curve is continuous it is called C0

continuous. If it is C0 continuous and continuous on the first derivative it is C1 continuous,
if it is C1 continuous and continuous on the second derivative it is C2 continuous and so on.
We can also calculate the tangents at given locations of the spline, for example at control
points, to check if the curvature of the spline is continuous (geometric G1 continuity). By
comparing the tangents and derivatives of the two end points of neighboring segments,
we can measure the continuity of the two segments. Checking the continuity of the
constructed splines might provide a good value for the weight function.

In our approach to calculating the continuity between two segments, we leverage the
catmull-rom spline, a type of interpolating spline characterized by its ability to pass
through all control points. This property, combined with the spline’s capacity to effectively
represent a path, makes it an ideal choice for our purposes. In order to calculate the
continuity of a spline at a given point we require at least four control points per definition.
The interpolated value can then be calculated within the inner two control points. Since
we want to calculate the value at the end point of a segment, we need to add a control
point to the end of the segment, which is an estimation of the next point. To calculate
this point we simply calculate the difference of the coordinates from the last point to the
second last point and add it to the last point. For instance given three control points
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6. Experimental Algorithm

P0, P1 and P2, we would calculate the fourth (estimated) control point P3 as follows:
P3 = P2 + (P2 − P1). The continuity is calculated by the angle of the tangents at the
end points of the two interpolated splines from the two segments. The angle or slope is
calculated by the derivative of the spline at the end point. Following equation defines
the position of a catmull-rom spline at a given point t:

q(t) = 0.5 ∗ ((2 ∗ P1)+ (6.2)
(−P0 + P2) ∗ t+ (6.3)
(2 ∗ P0 − 5 ∗ P1 + 4 ∗ P2 − P3) ∗ t2+ (6.4)
(−P0 + 3 ∗ P1 − 3 ∗ P2 + P3) ∗ t3) (6.5)

Where P0 − P3 are the control points of the spline and t is the value at which we calculate
the interpolated point. Parameter t is 0 at the start point of the spline and 1 at the end
point of the spline. We calculate the first derivative of this equation to get the tangent
at a given point t:

q′(t) = 0.5 ∗ ((P2 − P0)+ (6.6)
(2 ∗ P0 − 5 ∗ P1 + 4 ∗ P2 − P3) ∗ 2 ∗ t+ (6.7)
(−P0 + 3 ∗ P1 − 3 ∗ P2 + P3) ∗ 3 ∗ t2) (6.8)

The continuity is then calculated by the angle between the two tangents at the end points
of the two splines. For calculating the continuity between the end of a segment v1 and
start of v2, let q′

1(t) be the tangent at the end point of the spline created from v1 and
q′

2(t) be the tangent at the start point of the spline created from v2, then the continuity
weight is calculated by:

ωcont = 1 − angle(q′
1(1), q′

2(0))
π

(6.9)

6.1.3 Relative Distance

If a segment is connected to another small segment and the distance between those two
segments is greater than half of the length of the small segment, then the small segment
is unlikely to be part of the real track geometry and likely an editing error or does not
add significant information to the geometry of the track. We want to omit the small
segment then. This is done by following function which returns the relative distance
weight:

distancerel =
®

0 if distance(Vf , Vt) > length(Vt)
2

1 otherwise
(6.10)
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Algorithm 6.1: Exhaustive Line Expansion
Input : Segment graph Gseg= (V, E)
Result: A set of paths P (with maximal weight) that cover the segment graph

Gseg.
1 P ← {};
2 U ← V ;
3 while U ̸= ∅ do
4 possibleSolutions ← {};
5 foreach vr ∈ U do
6 possibleSolutions =

possibleSolutions ∪ (exhaustiveLineSearch(Gseg, vr, U, {}));
7 end
8 bestSolution ← max {ω(possibleSolutions)};
9 P ← P ∪ bestSolution;

10 U ← U \ bestSolution;
11 end
12 return P ;

6.2 Segmenting the Graph into Long Paths
In the following approach we iterate over all plausible concatenations of track segments
to find the “best” solution. The solution should be a set of vertex-disjoint paths of
maximum total weights and cover the segment graph.

We will discuss core parts of Algorithm 6.1 in simplified form.

At the beginning we define a set of unvisited vertices U which contains all vertices of the
segment graph Gseg. Further, we introduce a function exhaustive line search described
in Algorithm 6.2, that finds the eligible path with maximum weight starting from a
vertex vi. We call the exhaustive line search for every unvisited vertex vi and store the
path with maximum weight along with the segments (vertices) that are part of the path
and the total weight in a set of possible solutions. With all the possible solutions the
algorithm then selects the solution with the maximum weight, adds it to the result set
and removes all vertices that are part of the solution from the set of unvisited vertices U .
This process is repeated until U is empty.

The exhaustive line search function from Algorithm 6.2 starts with at a given vertex vr

and searches for the path with maximum weight in the segment graph Gseg. Vertices
already marked as visited are omitted from this search. At first, we introduced a recursive
algorithm that performs a depth first search in both directions. The recursion of the
algorithm breaks if there are no more unvisited neighbors for vr. In that case, the
algorithm returns just vr with a weight of 0 on line 17. In any other case for every
neighbor that is a potential candidate vc of vertex vr, the currently selected vertex vc will
be appended or prepended to the current path and the weight between vc and vr (ωc,r or
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Algorithm 6.2: Exhaustive Line Search (Recursive)
Input : Segment graph: Gseg= (V, E)

vr: The vertex from which the search starts.
visited: A set of vertices are already part of a solution.
P : The path that has been expanded so far with ω(P ) being the

accumulated weight of the path so far.
Result: An ordered set of segments and its combined weight.

1 visited ← visited ∪ vr;
2 poss ← {} // Set of possible solutions
3 all_candidates ← predecessor_candidates(vr) ∪ successor_candidates(vr);
4 foreach vc ∈ all_candidates do
5 if vc ∈ predecessor_candidates then
6 P.addF irst(vc);
7 ω(P ) ← ω(P ) + ωc,r;
8 poss ← poss ∪ exhaustiveLineSearch(Gseg, vc, visited, P );
9 end

10 else
11 P.addLast(vc);
12 ω(P ) ← ω(P ) + ωr,c;
13 poss ← poss ∪ exhaustiveLineSearch(Gseg, vc, visited, P );
14 end
15 end
16 if poss = ∅ then
17 return P ;
18 end
19 else
20 return {solution | solution ∈ poss ∧ ω(solution) = max {ω(poss)}};
21 end

ωr,c) is added to the total weight of the solution. Predecessor candidates predecessor(vr)
are unvisited adjacent segments within δ range to the start point of vr with ωc,r >= ωmin

and successor candidates successor(vr) are unvisited adjacent segments within δ range
to the end point of vr with ωr,c >= ωmin. The algorithm then calls itself recursively on
line 8 (or 13) with vc as the new root vertex. The current part of the solution (path with
total weight) is also passed to the recursive call along with the updated set of visited
vertices. Vertex vc from the caller is then also added to the list of visited vertices. After
all the possible solutions (with its recursive calls) are added to a list, the solution with
the maximum weight of this list is returned in line 20.

This recursive approach delivered the correct solution. However, due to the amount of
recursive calls it became quite slow with increasing complexity of the segment graph.

We then tried to improve the algorithm by using an iterative approach in Algorithm 6.3.
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In this approach we use a stack (line 2) for storing the current solutions and its assigned
weights, and loop over this stack until it is empty. We store the best solution which
has weight 0 at the beginning and only vr as a vertex as seen in line 3. We also keep
track of the segment vl that was newly added to the latest solution in the stack and its
connected endpoint. In every iteration we pop the last element (solution) from the stack
and check if it is a better solution than the current best solution. If it is, we update
the best solution in line 7. For each neighbor vc of the latest added vertex that is not
visited or contained in the current solution we add a new current solution containing the
previous solution appended or prepended with vc and the total weight of the previous
solution plus the weight between vc and the previous vertex to the stack of current
solutions. Since we kept track of the endpoint that the latest added vertex in the solution
we popped, we can now determine if we want to append successor candidates or prepend
predecessor candidates to the current solution. If the endpoint of the last added segment
was the start point, we only search for successor candidates, otherwise we only search
for predecessor candidates. A neighbor is a predecessor candidate predecessor(vl) if it
is an unvisited adjacent segment within δ range to the start point of vl with ωc,r >=
ωmin and a successor candidates successor(vl) is an unvisited adjacent segment within
δ range to the end point of vr with ωr,c >= ωmin. If the latest added vertex vl has no
eligible neighbor, no new solution is added to the stack. After the loop terminates the
best solution is returned. This iterative approach results in a slight performance increase.

The path resolution in this approach is only one directional. A new segment will only be
appended or prepended to the last added segment. To ensure that all possible paths are
explored, the exhaustive line search algorithm is called for every vertex in the segment
graph that is not already part of another solution.
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Algorithm 6.3: Exhaustive Line Search (Iterative)
Input : Segment graph: Gseg= (V, E)

vr: The vertex from which the search starts.
visited: A set of vertices are already part of a solution.

Result: Best solution best_solution which contains an ordered set of segments
and the total weight.

1 vl ← vr // last added segment
2 path_stack ← {vr};
3 best_solution ← {vr};
4 while path_stack ̸= ∅ do
5 path ← path_stack.pop();
6 if ω(path) > ω(best_solution) then
7 best_solution ← path;
8 end
9 visited ← visited ∪ {v | v ∈ path};

10 all_candidates ← predecessor_candidates(vl) ∪ succesor(vl);
11 foreach vc ∈ all_candidates do
12 if vc ∈ predecessor_candidates(vl) then
13 path_stack.push(path.addF irst(vc));
14 ω(path) ← ω(path) + ωc,l;
15 end
16 else
17 path_stack.push(path.addLast(vc));
18 ω(path) ← ω(path) + ωl,c;
19 end
20 end
21 end
22 return best_solution;
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CHAPTER 7
Experiments

In this chapter we will present and discuss the results of the experiments we performed
with the algorithms and their evaluation. By setting up an experimental setup with
a variety of data, edge cases and different parameters we try to cover a wide range of
possible scenarios.

7.1 Data
The primary requirement for our experiments is the generation, collection and preparation
of diverse input instances. To achieve this, we will produce input instances from different
regions, and data providers such as OSM. In addition to the instances fetched from real
world data providers, we will also generate smaller input instances that cover edge cases.

We tested the algorithms on these tracks:

• Astana Karaganda: The Astana Karaganda dataset contains all track segments
in an area around Astana and Karaganda in Kazakhstan.

• Haramain Track: This track is part of the Haramain High Speed Railway in
Saudi Arabia. It connects Mekka with Medina. Some track segments do not have
an assigned track id making an import by track id not possible.

• Alishan Track: The Alishan track is a section of the Alishan Forest Railway
Network, a narrow gauge railway network in Taiwan which covers mountainous
areas and forest.

• OEBB tracks: The OEBB dataset [10] contains all the main tracks of the Austrian
railway network. The dataset is obtained directly from the main railway operator
OEBB of Austria. This dataset is used in the case study we present in Section 7.6.

41



7. Experiments

• Areas:

– Bischofshofen: A dataset containing all track segments from an area in Aus-
tria between Bischofshofen and Altenmarkt. The track segments are fetched
from OSM with the bounding box [47.273839, 13.145142, 47.445045,
13.474731].

– Barcelona: Track segments from OSM in the area of Barcelona with the
bounding box [41.347309, 2.067490, 41.433208, 2.287216].

– Texas: Track segments from an area between Austin and Dallas fetched from
OSM with the bounding box [29.522325, -98.617782, 29.648899,
-98.402374].

• Custom generated tracks:

– Self intersecting track scenario: This scenario represents an edge case
where the corresponding track intersects itself. The intersection point is
located at the endpoints of multiple track segments. This scenario is modeled
after the example explained in Figure 4.8.

– Forked track scenario: In this scenario the track splits into multiple tracks.
Endpoints of track segments are at the location where the track splits. For
switches on tracks this is a common scenario. Further this can be caused by
an editing error in OSM (mistakenly adding a small segment/way to a track
in OSM). We base this scenario on the example in Figure 4.7.

– Small overlapping segments scenario: This scenario represents an inac-
curacy in the location of the end and start points of track segments causing
the segments have shifted endpoints and not sharing the same coordinates at
the endpoints. This can be caused by measuring inaccuracies for the positions
(GPS) or editing errors in OSM. We described these problems in the example
in Figure 4.4 and Figure 4.5.

– Small segments scenario (1 & 2): On instances with very small track
segments or big delta values an issue might arise where the wrong endpoints
accumulate a better score in the heuristic. The small segment scenarios
represent these edge cases described in Figure 4.3.

7.1.1 Real word data

In the following table we list the amount of track segments and the average length of
segments for datasets of real world tracks:
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Track No. Track Segments Avg. Length of Segments
Astana Karaganda 40 7,869.59 m
Haramain Track 352 2,783.87 m
Alishan Track 97 780.36 m
Bischofshofen 384 360.55 m
Barcelona 632 384.02 m
Texas 1,078 1,650.61 m
OEBB Lines (Case Study) 1107 5,418.51 m

7.1.2 Generated data
In the following table we list the amount of track segments and the average length of
segments for datasets of generated tracks:

Track No. Track Segments Avg. Length of Segments
Self intersecting track 8 548.38 m
Forked track 6 382.38 m
Small overlapping track 2 19.15 m
Small segments scenario1 2 9.93 m
Small segments scenario2 2 8.67 m

The generated tracks represent edge cases in which the segments lie in ambiguous
geometric positions.

7.2 Experimental Setup
Each run with a specified custom area, defined by a bounding box, will be executed
separately, whereas the runs where the input instance is provided by a GeoJson file
will be executed automatically one after the other. To avoid race conditions or shared
usage of resources the runs will be executed sequentially. To document the results of the
experiments we implemented a benchmarking tool which records measures such as the
runtime, size of the result, result quality etc. The results are written to a file.

By performing multiple experiments with the algorithms we will be able to evaluate and
analyze them in more details. We want to measure:

• Longest path. (We assume that generally a longer solution is better. This however,
might not always be the case. In some instances a longer solution might represent
a more unrealistic track in terms of geometric properties.)

• Accuracy of the solution set on different input instances.

• Size of the solution set on different input instances.
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• Performance on edge cases (like loops, ambiguous segments, . . . ).

• Runtime performance.

• Termination on big input instances.

• If a bigger solution set (longer individual tracks) is always a better solution.

Implementation and System Specifications:

Every experiment was run on Java 21.0.2 using JTS Version 1.18.2 and Spring Boot
3.2.2. The experiments were executed on a machine with an Intel Core i7-1260P CPU
and 32GB of DDR4-3200 RAM. Data-fetching from OSM was done using Overpass API
v0.7.61. The elapsed time for each run was measured in wallclock time.

7.3 Visualization of the Results
To visualize the output of the algorithms we will use the open source software QGIS.
Track segments are imported as vector layers and then stylized with different properties.
Segments are categorized such that each segment has a unique stroke color. For segments
that indicate the input data we additionally mark the start and end point with a read
marker and the control points with smaller yellow markers. For the output segments,
arrows indicate the direction of the segments. An example of the visualization can be
seen in Figure 7.1.

7.4 Comparing the Algorithms
A central aspect of this work is to assess the introduced algorithm and evaluate potential
improvements or weaknesses. We use the greedy local fit algorithm presented in Chapter 4
as a baseline and compare it to the different variations of the algorithm we propose in
Chapters 5 and 6.

The different parameters that we vary in the experiments are:

• min weight: defines the minimum weight of a segment to be considered for the
track creation

• delta (δ): defines the maximum distance between two segments to be considered
for the track creation

• segment pre-merging: defines whether segments should be merged before the
track creation

• merge lookahead: defines the lookahead for the merge operation

• merge radius: defines the radius for the merge operation
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(a) Original track segments from the Alishan track section

(b) Algorithm output for the Alishan track section

Figure 7.1: Visualization (described in Section 7.3) of the original track segments and
the algorithm output for the Alishan track section
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Astana Karaganda Benchmark
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Figure 7.2: Run for Astana-Karaganda Track
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Figure 7.3: Run for Astana-Karaganda Track
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Figure 7.4: Run for Astana-Karaganda Track
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Figure 7.5: Run for Astana-Karaganda Track
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Figure 7.6: Length per Path
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Figure 7.7: Run for Haramain Track
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Figure 7.8: Run for Haramain Track
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Figure 7.9: Run for Haramain Track
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Figure 7.10: Length per Path
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Alishan Benchmark
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Figure 7.11: Run for Alishan Track
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Figure 7.12: Run for Alishan Track
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Figure 7.13: Run for Alishan Track
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Figure 7.14: Run for Alishan Track
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Figure 7.15: Length per Path

7.4.1 Discussion
The plots from Figure 7.2 through Figure 7.27 show the results of the experiments run on
the datasets described in Section 7.1. Runs for each dataset with each variable parameter
are sectioned into three different line plots and two bar plots. Within each line plot, the
x-axis is the variable parameter that is observed in this run. The leftmost line plot depicts
the longest found path (in km) on the y-axis. Concurrently, the center line plot shows
the number of paths found (i.e. the size of the solution set). Lastly, the rightmost line
plot shows the execution time of the run. We assume that the length of the longest path
does not necessarily determine the quality or accuracy of the algorithm instance by itself.
A longer path might easily be computed by merging segments which do not represent
a single track realistically. Generally, however, computing a longer longest path is an
indicator of a better solution. The cardinality of the solution set (number of unique paths
found) that is depicted in the middle line plot of each run is a metric which we consider
quite robust to measure the accuracy of our algorithm. A smaller cardinality typically
depicts a more desirable outcome, as it minimizes the presence of unconnected or isolated
segments. When coupled with the execution time of the algorithm, this metric offers a
comprehensive assessment of algorithmic efficacy and quality. A shorter running time
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and a lower number of paths in the solution set will typically signify a better strategy.
Although minor disparities in execution time may be negligible, exponential increases in
runtime for larger instances significantly reduced algorithmic effectiveness. In the bar
plots we illustrate the length of each path that was found in the solution set. The x-axis
of this plot shows the index of the corresponding path indicating the order in which
the paths got discovered by the algorithm. The y-axis shows the length of each path
in meters. We distinguish between the reference solution (red) and the new algorithm
(blue).

Delta:

The delta value determines the radius for which the algorithm considers two individual
segments as neighbors. For the step of segmenting the graph into long paths this is the
most important parameter. We observe that with increasing delta value the number of
paths in the solution set decreases or stagnates, with the Alishan track in Figure 7.11
being an exception. The longest path found also increases in distance in most cases,
however, we can not safely draw a conclusion based on these values. As for the execution
time, it stayed mostly the same with some deviations with increasing delta value. This
could be due to small instances. We will further observe the execution time on larger
instances in Section 7.5.

Pre-merging:

We observe that whether pre-merging is enabled or not, does not influence the solution
significantly. Runs of the two smaller input instances, Astana Karaganda in Figure 7.4
and Alishan in Figure 7.13 have similar runtime both with and without pre-merging. For
the Haramain track, which is a much larger input instance, we run into an issue where
the algorithm does not terminate in adequate time. The algorithm with pre-merging
enabled finished in a few seconds, while the run without pre-merging had to be terminated
manually after approximately one hour. Following the merging step in the run with
pre-merging enabled, the number of segments decreased from 352 in the original input
instance to 91. Consequently, the segment graph’s complexity, containing only 91 vertices,
significantly shrunk, thus enabling a relatively fast execution.

Merge radius:

The merge radius parameter determines the maximum distance between two segments
to be considered for the merge operation for pre-merging. We can see that a change in
value of this parameter does not affect the solution set much. Only the runtime is also
barely affected by the merge radius parameter on small instances.

Lookahead:

For merging parallel running segments the lookahead parameter determines the minimum
distance for which two disjunct sets of segments have to be running in order to be

51



7. Experiments

considered for the parallel merge operation. This parameter has also no effect of the
solution set. Just the runtime varies slightly with the different lookahead parameter
values.

Interestingly, we can see that for the Astana Karaganda input instance the result of the
new algorithm seems to be completely different to the one from the reference solution as
seen in Figure 7.15. The new algorithm finds a path with almost 300 km length, while
the reference solution only finds a path with approximately 150 km. The Haramain track
consists of two rails that run parallel to each other for a very long distance. This is
reflected in the bar chart in Figure 7.10 that shows the length of each path in the solution
set. The new algorithm and the reference solution both find the same two long paths
that represent the two parallel rails. Both algorithms also perform close to the same on
the Alishan track in Figure 7.15 where only the order of resolved paths slightly differs.

7.5 Running the Algorithms on Query Windows

To see how the algorithms perform when no track information can be derived from the
data, we performed some runs on a set of all track segments in different areas.

The runs on query windows show similar results to the results of runs presented in
Section 7.4. We can see that the runtime on larger instances drastically increases with
growing delta value. In particular, from a delta value of around 80m onwards, the runtime
seems to increase exponentially. The reference algorithm finds longer longest paths in
the Barcelona and Texas area than the new algorithm. The new algorithm, however,
finds a smaller set of solutions to cover all track segments and has on average more
longer paths than the reference algorithm. Both merge radius and merge lookahead
do not influence the performance of the algorithm much. Pre-merging disabled led to
the algorithms not terminating in adequate time for the larger instances. The runs
for Bischofshofen and Barcelona had to be canceled after around one hour each. The
Austin-Dallas run in Figure 7.26 took more than 4 times longer with pre-merging disabled
than with pre-merging enabled.
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7.5.1 Bischofshofen - Altenmarkt
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Figure 7.16: Run for Bischofshofen-Altenmarkt Area
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Figure 7.17: Run for Bischofshofen-Altenmarkt Area
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Figure 7.18: Run for Bischofshofen-Altenmarkt Area
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Figure 7.19: Length per Path

7.5.2 Barcelona
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Figure 7.20: Run for Barcelona Area
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Figure 7.21: Run for Barcelona Area
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Figure 7.22: Run for Barcelona Area
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Figure 7.23: Length per Path

7.5.3 Austin-Dallas
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Figure 7.24: Run for Austin-Dallas (Texas) Area
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Figure 7.25: Run for Austin-Dallas (Texas) Area
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Figure 7.26: Run for Austin-Dallas (Texas) Area
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Figure 7.27: Run for Austin-Dallas (Texas) Area
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Figure 7.28: Length per Path

7.6 Case Study

Typically, one of the strongest metrics in evaluating algorithms is the accuracy of the
result. In this experiment we import data of railway track geometries from OEBB. The
data included in this dataset comprise the main tracks of the Austrian railway network.
The data is openly available on [10] and can be downloaded in GeoJSON, shapefile or
xlsx format. Even though the data can be fetched as GeoJSON with a WGS84 coordinate
system, it has a different format to the data from OpenStreetMaps. Each track segment
has a property with “von_id” and “nach_id” where the from_id is equal to the to_id
of the previous segment. After converting the data to the uniform format we use for
the track creation, we can run the algorithms on the segments provided by the OEBB
dataset. Additionally, we were able to merge the OEBB segments by their id’s which
should in theory result in the ground truth of data. Unfortunately, however, the OEBB
data itself is inconsistent and contains some errors. In particular some intermediate
segments are skipped and in some instances two segments point to the same successor
segment, i.e., they have the same “nach_id”. But even considering these inconsistencies,
the original dataset serves as a good reference point.

57



7. Experiments

OEBB Benchmark
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Figure 7.29: Run Oebb Track
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Figure 7.30: Run Oebb Track
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Figure 7.31: Run Oebb Track
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Figure 7.32: Length per Path

From the experiments of this case study we once again see that the most significant
parameter is the delta value. This run further undermines the importance of the segment
pre-merging, as the run without pre-merging enabled did not terminate in adequate time.
Most interestingly, the longest path resolved with the new algorithm is a lot longer to
that from the reference data. In the original OEBB data there are tracks which would
theoretically extend further but at one point in the track a new line with new id is started.
That is probably why the reference data shows such a different solution.

7.7 Combined Results
The scatterplots from Figure 7.33b through Figure 7.33h summarize all the runs with
variable parameters into a single figure per input instance. The y-axis represents the
length of the longest path found in that run (in kilometers), while the x-axis represents
the size of the solution set. Generally, the further left on the x-axis and the higher up
on the y-axis the better the result of the run. However, when interpreting results, we
weight the x-axis much more since there can be larger deviations in the longest path
as discussed in Section 7.4.1. The different parameters for each run are distinguished
by different markers. Circles depict a distance or radius parameters, with the circle’s
size corresponding to the distance or radius in meters. The bigger the distance or the
radius the bigger the circle in the plot. For the pre-merging parameter, which is a
boolean parameter, the marker is a triangle where the triangle pointing upwards depicts
pre-merging activated and the one pointing downwards pre-merging deactivated. The red
‘x’ denotes the reference solution. Figure 7.33a provides a legend for the scatter plots in
Figure 7.33b to Figure 7.33h.

Upon inspecting the results of runs with different parameters, we can observe that the
delta parameter has the most significant impact on the results. This makes sense because
the larger the delta value is the bigger the amount of segments that are considered for the
track creation in the algorithm. We can see that a greater delta value generally results
in a smaller solution set but not always in a longer longest path. The runs performed
with the new algorithm also mostly outperform the reference algorithm. Changes in
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Figure 7.33: Scatter plots for different tracks with different parameters60



7.8. Edge Cases

the merge radius and merge-lookahead do not impact the solution significantly in terms
of output. This makes sense since we only merge segments that are unambiguously
connected meaning they should eventually be put in the same solution by the track
creation algorithm.

7.8 Edge Cases
To better understand the behavior of the algorithm in edge cases, we have created
some artificial scenarios that represent some of the known issues that we discussed in
Section 4.3 and Section 4.5. In this section we visualize the results of the greedy local fit
algorithm we described in Chapter 4 and the experimental algorithm we introduced in
Chapter 5 and Chapter 6 with the most promising parameter values from Section 7.7 on
these scenarios. We have separated the scenarios from the benchmarking tool since the
values measured in the benchmarking tool (execution time, longest path etc.) are not as
significant on the small instances we present here.

7.8.1 Self intersecting track

In Figure 7.34 we run the algorithms on a track instance that self-intersects. Figure 7.34a
visualizes the input data for this run. It contains eight track segments where endpoints of
four distinct segments lie on the same location. The greedy local fit algorithm divides the
track into two paths creating a solution set of cardinality two. One solution path being
the loop creating a circle with the other one the remaining track as shown in Figure 7.34b.
The experimental algorithm detects this loop and creates a single path being the favored
solution in this example as shown in Figure 7.34c.

(a) Input (b) Greedy Local Fit (c) Experimental

Figure 7.34: Self intersecting track

7.8.2 Forked track

In Figure 7.35 we run the algorithms on a track instance that forks into two distinct
paths. The solution generated by the different algorithms on this instance is identical.
This is likely due to the trajectory of the track segments. The leftmost segments (yellow
and pink) are unlikely to be part of the same track as the green brown and cyan segments
as it would have low continuity.
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(a) Input (b) Greedy Local Fit (c) Experimental

Figure 7.35: Forked track

7.8.3 Overlapping track segments

In Figure 7.36 an input instance with two overlapping track segments is provided. Here
the greedy local fit algorithm fails to merge the two segments. The experimental algorithm
on the other hand returns a single path for that instance.

(a) Input (b) Greedy Local Fit (c) Experimental

Figure 7.36: Overlapping track segments scenario

7.8.4 Small segment scenario 1

This scenario covers a possible issue outlined in Figure 4.3. The heuristic of the greedy
local fit algorithm scores the two segments too low in comparison to the experimental
algorithm.

(a) Input (b) Greedy Local Fit (c) Experimental

Figure 7.37: Small segments scenario 1
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7.9. Summary Discussion

7.8.5 Small segment scenario 2
This scenario also covers an issue presented in Figure 4.3. The experimental algorithm is
able to detect the two segments as connected while the greedy local fit algorithm fails to
do so.

(a) Input (b) Greedy Local Fit (c) Experimental

Figure 7.38: Small segments scenario 2

7.9 Summary Discussion
From the experiments conducted in this chapter we can see that the new algorithm
generally finds solutions with smaller amount of paths compared to the greedy local fit
algorithm. Since the new algorithm performs an exhaustive search for expanding paths,
it consistently delivers superior results. The runtime, however, was also significantly
higher than the greedy local fit algorithm.

In our analysis, we identified the delta parameter as the most influential factor in the
algorithm’s performance. On larger instances we can clearly see a rapid increase in
runtime with larger delta values. A value of 80m seems like a well-balanced trade-off
between runtime efficiency and solution quality. On smaller instances, the difference in
runtime was marginal.

A variation in the merge radius and merge lookahead parameters had minimal impact
on both the solution set and runtime. For larger instances, however, enabling pre-
merging becomes essential for the experimental algorithm to terminate within reasonable
timeframes.

While a longer longest path might indicate a preferable outcome, we believe that examining
the length of all paths in the solution set, provides a better approach to interpreting the
results.

7.10 Limitations
In addition to the input instances described in Section 7.1, we performed some runs on
huge instances (covering hundreds of square kilometers) and observed that the algorithm
struggles to find a solution in feasible time for them. The size of the area that the
algorithm was still able to process in a reasonable time was different depending on the
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density of track segments. Urban areas contain a high number of track segments in a
small space, which greatly increases the number of possibilities for creating tracks. In
rural areas the track segments are distributed more sparsely, with often having just one
or two tracks in the surrounding area, thus enabling algorithm process larger areas in
feasible time. We also observed that for some bigger but still manageable instances the
algorithm with pre-merging enabled was able to find a solution in a reasonable time
while the algorithm without pre-merging enabled failed to do so. These runs had to be
aborted after a few hours of runtime. Therefore, the size of the input instances should
be selected accordingly in order to have satisfactory results. It is suggested to filter
out as many unnecessary track segments as possible while fetching data from the data
providers. If possible one can perform a filtering of only main railway tracks or railway
tracks that are tagged with a name or id that corresponds to the track that needs to be
extracted. Additionally, only the minimal area surrounding the track should be provided
as a bounding box when performing the fetching of OSM data via a bounding box query.
When requesting a very large input instance, it is better to first segment the data into
smaller parts and then run the algorithm on each part of the track separately.
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CHAPTER 8
Conclusion

8.1 Summary
This thesis has presented a purely geometric approach on extracting single railway
tracks from generic geometry data, such as the one available on geometric databases
like OpenStreetMap. By addressing the challenge of correctly assigning track segments
to single tracks, ordering and merging them correctly, the proposed algorithms and
methodologies presented in this thesis have shown promising results in improving an
existing approach (which relied on the greedy local fit algorithm presented in Chapter 4)
to the problem. We discussed how to fetch and convert raw OSM data into a data
structure that can be used as input for the novel experimental track creation algorithm.
By introducing a weight function that takes the distance, relative distance and continuity
between two segments into consideration we create a segment graph and subsequently
find a maximum weighted path cover for it. We developed an exhaustive line expansion
that takes all plausible concatenations of track segments into consideration, creating
paths with maximum total weight.

We characterized some subsets of problematic input instances in Chapter 4 and narrowed
them down into edge cases that we used for our experiments.

By implementing a benchmark framework for the algorithm we were able to run experi-
ments semi-automatically on multiple input instances. Furthermore, the evaluation of
the algorithms through experiments on those instances has provided valuable insights
into the performance and solution quality of the proposed approach. In particular, a
comparison to the greedy local fit algorithm, in terms of different metrics like the longest
path, the size of the solution set and the runtime performance as well the length of the
discovered paths, was conducted and lets us assess the benefits of the new approach in
more detail. The case study on the main railway track lines from the Austrian railway
system with the OEBB data provides an empirical validation of the improvements of
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the newly introduced algorithm. Lastly, we created some visualization of the results
in Chapter 7. The implementation of the algorithm, which was the practical part of
this thesis, has already replaced the greedy local fit algorithm in the software project
TrackDB of tmc.

8.2 Future Work and Outlook
While the problem solved by the algorithm presented in this thesis might be very specific,
we believe that it lays a solid foundation for future research in the field of geometric data
processing of infrastructure networks. The results can be extended to other infrastructure
networks such as motorways and might even be useful for other geometric topics unrelated
to infrastructure.

Our focus in this thesis was dedicated purely to the geometry of the track segments,
and we did not investigate beyond that. It is worth noting that incorporating additional
metadata from the input instances (e.g. OSM tags), to the track extraction process,
could further enhance the quality of the extraction.

To further improve the quality of the heuristic algorithm, it would be a worthwhile
consideration for future work to incorporate machine learning strategies to better detect
two connected segments, consequently improving the local weight function. Additionally,
optimizing algorithmic parameters presents an opportunity for advancement, with the ex-
ploration of genetic algorithms to iteratively determine optimal parameter configurations,
thereby maximizing algorithm efficacy.
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