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Kurzzusammenfassung

Systemzuverlässigkeit und Ausfallsicherheit sind zentrale Themen für elektrische
Antriebe in sicherheitskritischen Anwendungen der Industrie- und Automobilbran-
che. Stromkreisunterbrechungsfehler, engl. open-circuit (OC) faults, sind häufige
Fehler in elektrischen Maschinen, die deren elektrische Freiheitsgrade reduzieren.
Dies führt zu einem Leistungsabfall und zu unerwünschten Radialkräften, die wie-
derum Vibrationen und Lärm verursachen, bis hin zu einem Totalausfall des An-
triebes. Mehrphasige Maschinen bieten zusätzliche Freiheitsgrade für den Betrieb,
womit die Fehlerauswirkungen abgeschwächt werden können.
In dieser Arbeit wird eine optimale, fehlertolerante und echtzeitfähige Regelungs-
strategie für mehrphasige Permanentmagnet-Synchronmaschinen (PMSM) unter
Berücksichtigung mehrfacher Stromkreisunterbrechungsfehler präsentiert. Rastmo-
mente, magnetische Sättigung und höhere harmonische Schwingungen sind die
wichtigsten nichtlinearen Effekte der untersuchten PMSM. Die 12 individuell an-
steuerbaren Einzelzahn-Statorwicklungen bieten die Flexibilität, verschiedene elek-
trische Spulenverschaltungen bei gleichem magnetischen Verhalten zu untersuchen
und zu vergleichen. Für diese PMSM wird ein modellbasierter Ansatz für die Rege-
lungsstrategie verwendet. Die dafür erforderliche Modellstruktur besteht aus einem
nichtlinearen, magnetischen Reluktanznetzwerk, engl. magnetic equivalent circuit
(MEC), welches systematisch alle relevanten magnetischen Eigenschaften abbil-
det. Die benötigte flexible Struktur zur Berücksichtigung verschiedener elektrischer
Spulenverschaltungen und mehrfachen Stromunterbrechungsfehlern ist durch ein
elektrisches Modell gegeben, das mit dem Reluktanznetzwerk kombiniert wird.
Auf der Grundlage dieses flexiblen Modells werden Optimalströme mit Hilfe eines
Optimierungsproblems berechnet, das die beiden klassischen Regelungsziele Dreh-
momentabweichung und Verlustleistung minimiert. Darüber hinaus werden dank
der zusätzlichen Freiheitsgrade auch die auftretenden Radialkräfte im Falle von
Stromkreisunterbrechungsfehlern minimiert. Diese optimierten Ströme werden ap-
proximiert und effizient in Lookup Tabellen gespeichert, um die Echtzeitfähigkeit
zu gewährleisten. Die Herausforderungen für die Fehlerdiagnose und die fehlerto-
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lerante Regelung, engl. fault-tolerant control (FTC), ergeben sich aus den höheren
harmonischen Komponenten, die in den Referenzstrommustern enthalten sind.
Ein schnelles und zuverlässiges Fehlerdiagnoseverfahren wird entwickelt, das auf
den Eigenschaften der Phasenstrommessungen im Zeitbereich beruht. Dabei sind
keine zusätzlichen Sensoren oder Vorkenntnisse über die Verschaltungen der elek-
trischen Spulen oder Phasensysteme erforderlich. Bei einer Fehlerdiagnose wird die
fehlertolerante Regelungsstrategie angepasst, um die Auswirkungen des Fehlers zu
reduzieren. Die fehlertolerante Regelungsstrategie besteht aus einem nichtlinearen
Vorsteuerungsterm, einem PI-Feedbackregler und einem iterativ lernenden Rege-
lungskonzept, engl. iterativ learning control (ILC) strategy, um eine hohe Regelgü-
te auch bei unbekannten, nichtlinearen Verhalten des Wechselrichters, engl. voltage
source inverter (VSI), zu gewährleisten.
Anhand von Experimenten auf dem Prüfstand wird die Leistungsfähigkeit des Feh-
lerdiagnoseverfahrens und der fehlertoleranten Regelungsstrategie demonstriert.
Insbesondere werden einfache, doppelte und dreifache Stromunterbrechungsfehler
für ein viermal dreiphasiges System (4 × 3-Konfiguration) und ein zwölfphasiges
System (1 × 12-Konfiguration) untersucht. Mit dem Fehlerdiagnoseverfahren wer-
den alle untersuchten Stromunterbrechungsfehler erfolgreich innerhalb von 41 %
einer Stromgrundwellenperiode erkannt und die Robustheit ist auch unter Last-
wechseln gegeben. Durch die fehlertolerante Regelungsstrategie können die Strom-
fehler im eingeschwungenen Zustand auf das Zweifache der Stromsensorrauscham-
plitude reduziert werden. Mit dieser hohen Regelgüte können die in den Referenz-
strömen inkludierten Regelungsziele genau umgesetzt werden. In den untersuchten
Szenarien für einfache, doppelte und dreifache Stromunterbrechungsfehler können
bei gleichbleibender Drehmomentgenauigkeit die Radialkräfte um über 90 % re-
duziert werden. Ein umfassender Vergleich zwischen der 4 × 3-Konfiguration und
der 1 × 12-Konfiguration unterstreicht die Vorteile der höheren Freiheitsgrade im
Falle der 1 × 12-Konfiguration, resultierend in höherer Radialkraftkompensation
bei geringeren Verlustleistungen.
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Abstract

System reliability and fault tolerance are vital issues for electric drives in safety-
critical applications of the industrial and automotive sectors. Open-circuit (OC)
faults in electric machines are common faults that decrease the machines’ electrical
degrees of freedom (DOFs), leading to a deterioration in performance and undesired
radial forces that cause vibrations and noise, up to a total failure of the drive.
Multiphase machines provide additional DOFs for the control of the machine,
which allows to mitigate the impact of OC faults.
This work presents a real-time optimal fault-tolerant control (FTC) strategy for
multiphase permanent magnet synchronous machines (PMSMs) considering mul-
tiple OC faults. Cogging torque, magnetic saturation, and non-fundamental wave
behavior are the main nonlinear effects of the investigated PMSM. The 12 indi-
vidually controllable single tooth stator windings offer the flexibility to study and
compare different electrical coil interconnections while maintaining equal magnetic
behavior. For this PMSM, a model-based approach is used for the FTC strategy.
The required model structure consists of a nonlinear magnetic equivalent circuit
(MEC), which systematically considers all relevant magnetic properties. The flex-
ible structure required to consider different electrical coil connections and multiple
OC fault cases is provided by an electrical model that is combined with the MEC.
Based on this flexible model, the optimal currents are calculated by an optimiza-
tion problem that minimizes the classical two control goals of torque tracking error
and power loss. Furthermore, and thanks to the additional DOFs, the radial forces
in the event of OC fault are also minimized. These optimized currents are then
approximated and stored efficiently in lookup tables to ensure real-time capability.
The challenges for fault diagnosis and fault-tolerant control arise from the higher
harmonic components included within the reference current patterns.
A fast and reliable fault diagnosis method is developed based on the time-domain
properties of the phase current measurements. Thereby, no additional sensors or
prior knowledge about the electrical coil interconnections or phase systems are
required. A successful fault diagnosis adapts the FTC strategy to mitigate the
fault impact. The FTC strategy consists of a nonlinear feedforward term, a PI-
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based feedback controller, and an iterative learning control (ILC) concept to ensure
a high control performance even for unknown nonlinear voltage source inverter
(VSI) behavior.
With experiments on a test stand, the performances of the fault diagnosis method
and the FTC strategy are demonstrated. In particular, single, double, and triple
OC faults are investigated for the quadruple three-phase system (4 × 3 configura-
tion) and a twelve-phase system (1 × 12 configuration). With the fault diagnosis
method, all investigated OC faults are successfully diagnosed within 41 % of a
fundamental current period, and the robustness is also given under load changes.
Thanks to the FTC strategy, the current tracking errors in the steady state are
two times the current sensor noise amplitude. With this high control accuracy, the
control goals included in the reference currents can be precisely implemented. In
the scenarios investigated for single, double, and triple OC fault cases, the radial
forces can be reduced by over 90 % while maintaining the same torque accuracy.
A comprehensive comparison between the 4 × 3 configuration and the 1 × 12 con-
figuration pronounces the advantages of the higher available DOFs in the case of
the 1 × 12 configuration, resulting in higher radial force compensation with lower
power losses.
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1
Introduction

Parts of this chapter were published in similar form in the author’s previous
publications [1–3].

Permanent magnet synchronous machines (PMSM) are known for their high power
density, efficiency, and dynamic performance. Thus, they are utilized in various
applications ranging from industrial automation over robotics and wind power
generation to transport applications, especially the growing sector of more electric
airplanes, trains, ships, and vehicles [4–6]. This includes safety-critical applica-
tions, such as e.g., steer-by-wire systems in the automotive field [7, 8].
In these safety-critical applications the loss of the entire system due to a fault
is intolerable. The possible occurring faults for such systems are classified into
mechanical faults, i.e., bearing faults, eccentricity faults, broken rotor bars, and
rotor magnet faults [4, 5, 9, 10], and electrical faults, i.e., short-circuit or open-
circuit (OC) cases within the involved components [5, 9, 10].
Based on the fault severity and the applications’ safety requirements, one of the
three main fault-tolerance concepts fail-operational, fault-tolerant, or fail-save has
to be applied [11, 12]. Fail-operational concepts ensure a proper system operation
with the same objectives as before a single fault occurrence. Typically, a second
redundant system is integrated as backup, which requires space, resources and
integration effort. The concept of fault-tolerant systems allows for a degradation
of the systems’ performance but the system is still available for operation. In
fail-save concepts, the system is transferred into a save state after the fault oc-
currence, which can include a (controlled) shutdown of the entire system. As this
is unacceptable for safety-critical applications and to avoid the extra demands for
fail-operational concepts, fault-tolerant strategies are favored as the recent survey
literature shows [4–6, 10, 13–15].

1



1 Introduction

Classical three-phase PMSMs have two electrical degrees of freedom (DOFs), com-
monly used for torque tracking, loss reduction, or field weakening. In fault cases,
these DOFs are reduced, which leads to performance deterioration up to a total
failure of the system. The ability for fault-tolerance requires redundancy within
the hardware components, which is not given for three-phase PMSMs. Therefore,
multiphase PMSMs with n-phases (n > 3) are introduced, which can provide the
required redundancy due to additional accessible, and therefore controllable, sta-
tor windings, increasing the electrical DOFs and preserve the system’s integrity [4,
10].
OC faults are common electrical faults in electrical machines causing the disconnec-
tion from the supply of one or more phases, thus decreasing the system’s available
DOFs for post-fault control tasks [10, 16]. OC faults occur in stator windings, line
wires, and voltage source inverter (VSI) switches [4, 14, 16]. Additionally, as short-
circuit faults within the VSI switches are critical faults, short-circuit protection
strategies involve fast fuses, which decouple the short-circuited switch and hence
result in an OC fault [4, 16, 17]. An overview of fault-tolerant strategies, especially
for power electronic converters, can be found in, e.g., [18]. The fault severity and
impact depend on the stator geometry and winding distribution of the multiphase
PMSM. In particular, the effects of an OC fault case are performance degradation,
significant torque ripple, and vibrations due to unbalanced radial forces occurring
in the PMSM [14, 19–21]. These unbalanced radial forces create undesired noise
and stress the bearings [22–27]. Since up to 50 % - 75 % of the mechanical faults
are attributed to the bearings [4, 17, 28], the compensation of radial forces in the
event of OC faults is crucial to prevent the system from further damage.

1.1 Review on fault-tolerant control in multiphase PMSMs

Fault-tolerant control (FTC) strategies are introduced to mitigate the fault impact
in a post-fault situation. Thereby, the detection of a fault is provided by a fault
diagnosis method, see Section 1.2. The number of survey papers in the field of
multiphase machines [5, 6, 10, 13–15] and, in particular, for multiphase PMSMs
[4] has increased over the last decade, demonstrating the importance of suitable
solutions for FTC strategies. In post-fault situations, the available DOFs for FTC
depend on the winding interconnection of the multiphase machines, where star
interconnections are favored [29]. Concentrated, non-overlapping windings (sin-
gle tooth windings), see, e.g., Fig. 2.1, are suitable for safety-critical applications
because the windings do not have physical contact, which impedes fault propaga-
tion [30]. The power losses are also lower because of shorter end-windings [31].
The drawbacks are pronounced non-fundamental wave back-electromotive force
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1.1 Review on fault-tolerant control in multiphase PMSMs

(BEMF) and cogging torque, which have to be suppressed by the control strategy
[8, 32–39]. Higher current harmonics are required to mitigate these drawbacks and
must be set by the control strategy.
The goals of the FTC are described by [14] as maximum torque and minimum
loss while tracking the desired torque, which are the common goals for three-phase
machines but do not exploit the advantages of the higher number of DOFs. FTC
strategies are typically divided into deriving suitable reference control values con-
sidering the particular OC fault case and adapting the control outputs to the
available DOFs. Vector space decomposition (VSD) methods are frequently uti-
lized for both tasks. General VSD methods are proposed in [40] for multiphase
machines, including higher harmonic components, and in [41] for concentrated
winding machines and star interconnections. However, these methods are devoted
to the healthy-circuit (HC) case and are difficult to adapt systematically in mul-
tiple OC fault cases.
The literature of FTC strategies for OC faults is reviewed in the following, con-
sidering multiple three-phase and multiphase single star systems individually.

1.1.1 Multiple three-phase systems
The first of the two common winding configurations consists of m > 1 sets of
three-phase systems (m × 3), which are preferred in industrial practice because of
the extensive three-phase system control knowledge that can be easily applied to
any three-phase system. In the event of a single OC fault, there are two scenarios
for FTC:

a) The most straightforward strategy disconnects the entire faulty three-phase
set without control strategy adaptation within the remaining healthy three-
phase sets, resulting in maximum torque reduction and large torque ripples,
see, e.g., [42, 43] for six phases and [44] for nine phases. Additionally, large
radial forces are reported in [45] for a six-phase and in [46] for an eigh-
teen-phase PMSM. In particular, the impact of rotor magnets placement
(interior or surface mounted) and winding distribution on the performance
is investigated in [45]. The FTC strategies with control strategy adaptation
of the remaining healthy three-phase sets range from re-tuning the controller
gains for a six-phase PMSM in [47] to minimum loss strategies for nine-phase
PMSMs in [48, 49], achieving a lower torque ripple. However, vibration re-
duction is not reported or achieved in experiments.

b) The second scenario for FTC control also utilizes the remaining two healthy
phases of the faulty three-phase set to exploit the remaining DOFs better.
One strategy consists of reconfigured dq-references proposed in [21, 42] for
six-phase PMSMs, leading to lower power losses, and in [44, 50] for nine-phase
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1 Introduction

PMSMs. In [50], a comparison of an SPMSM (surface-mounted PMSM) and
a PMa-SRM (permanent magnet-assisted synchronous reluctance machine)
is presented, where the resulting torque vibrations can be acceptably sup-
pressed for the SPMSM but are still high for the PMa-SRM. In [44], higher
current harmonics are introduced for a bearingless PMSM to lower the oc-
curring radial forces. A maximum torque per ampere (MTPA) strategy is
given in [20] for a six-phase PMSM, which additionally utilizes the second
harmonic of dq-currents to achieve a higher maximum torque for constant
current magnitudes. A model predictive control strategy is proposed in [51]
for a simplified PMSM model, which can reduce the torque ripple in post-
fault situations but has no radial force suppression.

The occurring radial vibrations are analyzed in [23] for a twelve-phase PMSM,
where a compensation strategy for the magnetomotive force (mmf) is proposed.
This analysis is extended for two single OC faults in different three-phase sets [52].
The direct comparison of FTC strategies with and without using the additional
two healthy phases within the faulty three-phase set is investigated in [42, 44],
resulting in lower power consumption but higher torque vibrations for the first
case.

1.1.2 Multiphase single star systems
The second winding configuration employs one n-phase (n > 3) system with a
single neutral point (1 × n). This configuration always has more available DOFs
for the same number of phases than multiple three-phase sets because each neu-
tral point reduces the DOFs and is, therefore, preferred [29]. The FTC control
strategies proposed in [21, 53] consider reconfigured dq-currents for five- and six-
phase PMSMs, respectively. A method with hysteresis control combined with a
minimum copper current reference generator is proposed in [54] for a five-phase
PMSM. In [35], an approach based on instantaneous power balance is presented
for a six-phase PMSM, which shows a torque ripple as in the HC case, but radial
forces are increased under a single OC fault case. As fundamental harmonic strate-
gies are limited for OC faults, the consideration of higher harmonics to suppress
the torque ripple is proposed in [55] for a five-phase PMSM.
A different approach is based on proportional resonant control in [39, 56, 57]
for five-phase PMSMs. This approach can be used as an equivalence for the dq
representation for three-phase systems. A more promising approach consists of
repetitive or iterative learning control (ILC) strategies based on torque errors
investigated in [58, 59], or current errors in [60] for five-phase PMSMs. In [24, 61],
mmf compensation methods are employed via finite element analysis to analyze
and reduce the occurring radial forces, but torque vibrations remain.
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1.2 Review on open-circuit fault diagnosis

A comparison between both winding configurations for a single OC fault case is
given in [21], in which the higher number of DOFs of the 1×6 configuration results
in lower torque ripples but higher copper losses compared to the 2×3 configuration
with five active phases.

1.2 Review on open-circuit fault diagnosis
Fault diagnosis methods monitor the actual system state and report the system’s
malfunctions, which are given as abnormal system behaviors. The main objectives
of fault diagnosis are classified into fault detection, fault localization or isolation,
and fault identification or discrimination [17, 62, 63]. The first step of fault di-
agnosis is fault detection, in which system malfunctions are detected. With fault
localization, the occurred fault is attributed to a faulty component, which can be
within the sensors (voltage, current, encoder, torque transducer), the actuators
(VSI), or the plant (PMSM) [4, 5, 9, 10]. The fault type is determined by the fault
identification.
A reliable and fast fault diagnosis procedure is crucial to monitor abnormal system
behavior and, in the event of a successful fault diagnosis, to trigger the FTC
strategy for that particular fault [14]. Recent surveys of the wide variety of fault
diagnosis methods can be found in [5, 63, 64], focusing on PMSMs in [4, 9, 16]
and drawing particular attention to OC faults in [10].
Fault diagnosis methods are classified into data-based, model-based and signal-
based methods, which are reviewed in detail in [4, 62–64]. For data-based methods,
extensive historical system data at different operating points is required beforehand
and compared against the monitored signals for fault diagnosis [62, 64]. Model-
based methods compare the measured output of the system and the model output
to determine abnormalities and hence diagnose faults [63]. In [65], an extended
Kalman filter is used to estimate the stator resistance values based on the measured
current values in a three-phase PMSM. Unphysically high resistance values are
utilized for single-switch OC fault detection. A Luenberger observer for a three-
phase PMSM is utilized in [66] to estimate the dq-currents. Single-switch OC
faults are detected by residual comparison of the absolute normalized estimated
and measured currents.
The basic requirements for a real-time capable OC fault diagnosis method of mul-
tiphase machines are given in [67]. By additionally considering the nonlinear be-
havior of the investigated PMSM, they include

a) robust fault diagnosis independent of the machine’s operational point,
b) fast fault detection within one current fundamental period (cfp),
c) independence of the control strategy or the machine parameters,
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d) utilization of the sensors for the control task, i.e., phase current sensors,
e) low tuning and computational effort, and
f) independence of the electrical coil interconnection.

These criteria imply that suitable OC fault diagnosis methods are directed towards
time-domain signal-based methods, which are characterized by utilizing only mea-
sured signals, their properties, and a priori machine knowledge [10, 63]. Suitable
methods of this field are discussed in the following.
In the literature, two indicators for OC fault cases are typically utilized, i.e., the
measured phase currents and the phase current control errors motivated by the
following facts. First, the measured current signal equals the sensor noise level
after a phase OC fault case for the rest of the time. Second, depending on the
operational point, the desired current is different from zero, and hence, a larger
current error than in the HC case follows.
VSI switch OC faults are detected by averaging the absolute normalized phase cur-
rents of a three-phase PMSM in [68] and a three-phase IM in [69]. In the second
step, fault identification uses fundamental wave assumptions and multiple thresh-
olds. The authors of [68] proposed a similar approach in [70] utilizing the current
phase errors. Again, averaging, normalization, fundamental wave assumptions,
and multiple thresholds are employed. A phase OC fault, given by a sequence of
two switch OC faults within the same VSI leg, is experimentally diagnosed.
As the OC post-fault operation in three-phase machines is difficult, research has
recently been oriented toward suitable fault diagnosis methods for multiphase ma-
chines. A five-phase PMSM is investigated in [71], where OC faults are detected
based on the absolute, normalized values of auxiliary variables, given by the cur-
rents processed by a quadrature-signal generator. Although this method avoids
averaging, a robust fault identification threshold selection seems complicated. A
fault diagnosis method suitable for multiple three-phase systems is presented in
[72] for a six-phase induction machine (IM), where the OC fault detection variables
are given by the averaged current values and the average of the absolute current
values assuming sinusoidal currents. By comparing these detection variables with
predefined theoretical values derived by a VSD, phase OC faults are experimen-
tally diagnosed by a sequential double switch OC fault in the same VSI leg within
35 % and 60 % of the cfp. VSD methods are investigated in [73] for a five-phase
and in [67] for a six-phase IM, where both authors propose a faster fault detection
time by considering the averaging period as a tuning parameter with 40 % and
66 % of the cfp, respectively. The fault detection is based on averaging the nor-
malized currents within the stator frame [73] or the rotor frame [67], assuming a
sinusoidal current waveform. Both VSD approaches include a hysteresis band for
noise rejection, a comparison with a threshold value for fault identification, and
experiments for single and simultaneous double OC faults. The single OC faults
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are identified within 15 % of the cfp in [73] and 18 % of the cfp in [67]. Additionally,
the VSD method in [67] is compared with a similar method as in [68] but expanded
for multiphase machines. Single and double OC faults are identified within 66 %
of the cfp in the experiment.
In [74], OC faults are diagnosed within a bi-harmonic five-phase PMSM. Although
the PMSM exhibits higher harmonics, the fault diagnosis method is based on VSD
in the stationary frame, considering only the fundamental wave. The averaged
and normalized current error values constitute the detection variables. The fault
identification includes several diagnosis variables that require carefully selected
thresholds to account for the nonlinear PMSM behavior. These are derived based
on simulation results, which depend on the operational point considered. A single-
phase OC fault is diagnosed experimentally within 32 % of the cfp.
Higher current harmonics are considered in [75] for a five-phase PMSM. After a
VSD transformation of the currents into a stationary frame with the fundamental
and third harmonic components, the OC fault detection variables are calculated by
the absolute averaged first harmonic components and the averaged third harmonic
components. The fault identification is based on several thresholds and coun-
ters. Single- and double-phase OC faults are diagnosed within 70 % and 83.3 %
of the cfp. The OC fault diagnosis method proposed in [76] can consider several
harmonic current components within symmetrical multiphase star interconnected
drives. The fault detection is derived from two groups of phase currents that
are further filtered and averaged. The higher current harmonics are considered
in advance by an optimization problem to determine the worst case, simplifying
the threshold selection for fault identification. A sequential phase OC fault up to
triple faults is investigated within a nine-phase IM, where the fault identification
requires 85.9 % of the cfp.
In [44], both fault indicators (currents and current errors) are combined for an OC
fault diagnosis in a nine-phase bearingless PMSM. An OC fault is detected and
identified based on thresholds for the current sensor noise and errors. A fault is
diagnosed when both fault indicators exceed their thresholds over a time that is not
closely specified. Because of its simple structure, this method seems suitable for
fault diagnosis under higher current harmonics. Within 120 % of the cfp, a double-
phase OC fault is experimentally diagnosed. The diagnosis time for a triple-phase
OC fault is not reported.
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1.3 Contributions of this work
This work aims to provide a fault-tolerant solution for multiphase PMSMs in case
of multiple OC faults, which mitigates the fault impacts not only for the primary
control tasks of torque tracking error reduction and power loss minimization but
systematically exploits the available DOFs for additional control goals, such as
radial force reduction. For this task, a fault diagnosis method and FTC strat-
egy are developed that consider the nonlinear behavior of the investigated single
tooth winding PMSM. The 12 individually controllable stator coils enable the in-
vestigation of different electric coil interconnections. Two star configurations are
investigated: a quadruple three-phase PMSM with four separate neutral points
(4 × 3 configuration) to provide a multiphase configuration from the well-studied
three-phase systems and a twelve-phase PMSM with a single neutral point (1 × 12
configuration), as this configuration provides the highest DOFs for 12 coils. The
direct comparison of the two configurations while maintaining the identical stator
and rotor setup is one contribution of this work to evaluate the performance of
additional DOFs in multiple OC fault cases. Therefore, the overall concept for
fault diagnosis and the FTC strategy is tailored so that both configurations can
be considered without significant adjustments.

1.3.1 Open-circuit fault mitigation
The literature review in Section 1.1 shows different approaches for OC fault mit-
igation, mainly focusing on maintaining the pre-fault control goals in post-fault
situations. However, the reviewed literature does not state systematic exploitation
of the additional DOFs in multiphase drives for additional control goals in post-
fault situations. The contribution of this work fills this gap by proposing a radial
force compensation strategy in OC post-fault situations to mitigate the undesired
vibration and noise effects of occurring radial forces. For this purpose, the ref-
erence currents for control are first derived from the solution of the model-based
optimization problem, minimizing the classical control goals such as torque track-
ing error and power losses. In addition, the radial force compensation is introduced
as a third optimization goal for the OC fault mitigation thanks to the additional
DOFs of the multiphase PMSM. Thereby, the nonlinear effects of the PMSM have
to be compensated, which requires an accurate model featuring nonlinear effects
for the HC case and additional radial force calculation for arbitrary multiple OC
fault cases. A nonlinear magnetic equivalent circuit (MEC) model is suitable for
this task, and the framework proposed in [36] and [77] is extended in this work to
describe the radial forces acting on the rotor in unbalanced OC fault cases. An
electric network model is developed, considering different stator coil interconnec-
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tions in a star configuration and arbitrary multiple OC fault cases. The included
model reduction step ensures a model of minimum state, where the reduced cur-
rents correspond to the available DOFs and are still physically meaningful. The
real-time capability is ensured by approximating the optimized currents, which
include higher harmonic components in the current patterns. With the introduced
radial force compensation, a significant radial force reduction is achievable to re-
duce noise and vibrations, which prevents the system from further damage.

1.3.2 Fault-tolerant control

The FTC strategies reviewed in Section 1.1 are tailored to a constant coil topology
and are adapted for each OC fault case individually. Compared to the existing lit-
erature, this work fills the gap for a systematic approach for a flexible FTC strategy
considering only the available DOFs for control. The developed high-performance
FTC strategy includes a model-based feedforward term and a proportional integral
(PI) feedback controller. The limited PI controller bandwidth requires an addi-
tional solution suitable for higher rotational speeds, where the current tracking
errors are large. Therefore, an ILC concept is introduced to further reduce the
current errors, which are mainly introduced due to the unknown nonlinear VSI
behavior. Advantageously, the FTC strategy controls only the available DOFs,
which differ for the two investigated electrical coil interconnections and are fur-
ther reduced in OC fault cases. With this developed FTC strategy, a systematic
comparison and experimental evaluation of n-phase and multiple three-phase sys-
tems under multiple OC faults at various operation scenarios, including high speed
is presented.

1.3.3 Fault diagnosis

Based on the discussed literature in Section 1.2, a gap exists for a fault diagnosis
method meeting all criteria a) - f). Thus, in this work, a real-time fault diagno-
sis method is developed for multiple OC fault cases in multiphase PMSMs with
higher current harmonics. It combines both fault identifiers (phase currents and
phase current errors) separately for each phase. The method is independent of
prior system knowledge, e.g., VSD and electrical interconnection. In addition,
the fault detection and identification processes are combined, and only one tuning
parameter is required to achieve immunity to false diagnosis under load varia-
tions. Furthermore, the proposed method can diagnose multiple OC faults and
sequentially arising OC faults below 41 % of a cfp for the 4 × 3 and the 1 × 12
configuration.
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1.4 Outline

This work is structured as follows:
In Chapter 2, the derivation of the nonlinear mathematical model is presented.
The magnetic part of the model is covered by a nonlinear MEC model that in-
cludes the nonlinear effects of the investigated PMSM and provides the radial force
description based on an enhanced air gap permeance modeling. The different elec-
tric coil configurations and multiple OC fault cases are described in the derived
electric part. Finally, the overall mathematical model is applied to a quadruple
three-phase (4 × 3 configuration), a twelve-phase (1 × 12 configuration), and a
three-phase PMSM (1 × 3 configuration), each with isolated neutral points.
Chapter 3 is devoted to the model calibration and validation of the derived model.
First, the utilized test stand for all measurements is explained. This includes the
compensation of the used multiphase VSI with its nonlinear behavior. Then, the
model calibration procedure is given to calibrate the air gap permeances and the
stator leakage permeances. Finally, the calibrated model is validated in static and
dynamic conditions, demonstrating high model accuracy.
This calibrated and validated model is the basis for the current optimization with
radial force compensation, presented in Chapter 4. The presented approach allows
for the individual minimization of the commonly utilized control goals, such as
torque tracking error and power losses, and the radial forces occurring in unbal-
anced OC fault cases by the introduced weighting factors. Their influence on the
optimization results are discussed. To ensure real-time capability, these optimized
currents are approximated by Fourier series, and the coefficients are stored effi-
ciently in lookup tables. The reference current patterns include higher harmonic
components to achieve a high performance of the PMSM.
The FTC strategy is derived in Chapter 5. The control challenges arise from the
higher harmonic current components within the reference currents and the nonlin-
ear VSI behavior. The FTC strategy consists of a nonlinear feedforward part, a
PI feedback part, and an ILC part. Advantageously, only the available DOFs are
controlled, adding flexibility to compare different electrical coil interconnections
under multiple OC faults using the same FTC strategy. A PI resonant (PIR)
controller as a state-of-the-art control strategy is presented for comparison. Ex-
periments performed on the test stand compare the proposed FTC strategy and
the PIR control strategy in the HC case for the 4 × 3 and the 1 × 12 configuration.
Multiple OC fault cases are evaluated in detail by measurements with the FTC
strategy. The performances with and without radial force reduction are analyzed
in detail for single, double, and triple OC fault cases. Finally, a comparison of the
performances for both configurations is given.
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A fault diagnosis method is presented in Chapter 6. Only the measured phase cur-
rent signals are utilized to reduce the methods’ complexity and ensure real-time
capability. The derived fault diagnosis method consists of a combined fault detec-
tion and isolation procedure, and requires only one tuning parameter to achieve
immunity to false diagnosis. The effectiveness of this method is verified under
different operation scenarios by measurements on the test stand. Sequential and
simultaneous triple OC faults are investigated at different speeds for both the 4×3
and the 1 × 12 configuration.
Finally, this work is summarized in Chapter 7, and an outlook on future research
topics is given.
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2
Mathematical model of PMSMs

Parts of this chapter were published in similar form in the author’s previous
publications [1, 2].

This chapter presents a systematic derivation of the dynamic mathematical model
of the considered permanent magnet synchronous machine (PMSM). It aims to
derive an accurate and fast mathematical model that is the basis for the cur-
rent optimization method with radial force compensation developed in Chapter
4 and the fault-tolerant control (FTC) strategy for multiple open-circuit (OC)
faults presented in Chapter 5. Thereby, the model must take into account nonlin-
ear effects, i.e., cogging torque, magnetic saturation, and non-fundamental wave
behavior, provide a description for radial forces and support of a flexible struc-
ture to systematically incorporate different electric coil interconnections for the
healthy-circuit (HC) case and multiple OC fault cases.
In the literature, there are three main modeling approaches for PMSMs. For highly
accurate mathematical models of PMSMs, finite-element method (FEM) models
are suitable. However, they require high computational power and are therefore
not real-time capable. Magnetic equivalent circuit (MEC) models utilize flux tube
approximations, which only allow for a magnetic flux direction perpendicular to
the cross-section area, to reduce the computational effort while covering nonlinear
magnetic effects [78]. Depending on the accuracy level, MEC models are utilized
in real-time applications, cf. [79]. Popular fundamental wave models such as dq0-
models provided by the Blondel-Park transformation are widely utilized for field-
oriented control (FOC) because of their constant reference currents in the rotating
reference frame and low computational effort, cf. [80]. However, a systematic
consideration of nonlinear effects is difficult.
The dynamic mathematical model in this work is based on an MEC network, as
this approach meets the requirements of describing the magnetic nonlinear effects,

13



2 Mathematical model of PMSMs

including radial forces, separately from the considered electrical network. The
fundamentals of MEC modeling are given in, e.g., [78, 81–83]. The detailed mag-
netic description of the MEC model includes the nonlinear effects, while different
electrical interconnections are considered only within the electric network. This
concept is advantageous for this work because the magnetic part of the motor is
identical, while different coil interconnections and multiple OC fault cases affect
only the electrical network.
The dynamic mathematical model presented in this work follows the fundamental
steps of the framework proposed in [77] and utilizes an enhanced magnetic network
description of [36], as the PMSM in [36] is magnetically identical to the considered
PMSM in this work. It is shown in [36] that the PMSM reveals a highly non-
linear behavior due to cogging torque and magnetic saturation effects, which are
accurately described by the nonlinear MEC model. An enhanced air gap shape
model extends this magnetic setup to describe the radial forces acting on the rotor,
which becomes relevant in OC fault cases. An electric network approach is devel-
oped that systematically incorporate different electrical interconnections and their
changes due to multiple OC fault cases. This approach systematically reduces
the redundancy within the obtained dynamical model to a minimum number of
states without losing the physical meaning of the states due to the electric network
consideration.
This chapter is organized as follows: The setup of the considered multiphase
PMSM is described in Section 2.1. The MEC network modeling in Section 2.2 is
composed of the description of the magnetic equations systematically derived us-
ing graph theory in Section 2.2.1. In Section 2.3, the electric network is presented,
including the systematic approach for different electric coil interconnections and
multiple OC faults. The application of this electric network for the investigated
electrical coil interconnections is given in Section 2.4.

2.1 Multiphase PMSM description

The investigated PMSM has 12 single tooth windings (concentrated, non-overlap-
ping stator coil windings) and 8 interior NdFeB-permanent magnets, which gives a
number of pole pairs np = 4, see Fig. 2.1. The stator and rotor are constructed of
iron sheets. The considered PMSM was designed for an automotive power steering
application, where self-blocking the steering shaft at standstill per construction is
required [36]. This was achieved by the design of rotor iron combined with the
permanent magnet placement, see Fig. 2.1, which leads to high cogging torques.
While operating the PMSM with fundamental wave control strategies, these cog-
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Figure 2.1: Sketch of the considered PMSM with the mechanical stator-fixed frame
(xy), the rotor-fixed frame (dq), and the magnetic network for stator and rotor
parts.

ging torques cannot be compensated and result in undesired torque vibrations, cf.,
[8, 32–39].
The initial electrical interconnection of this PMSM consisted of four stator coils
connected in parallel to form a three-phase delta configuration, see [36], resulting
in two degrees of freedom (DOFs) without offering FTC capabilities. To exploit the
potential of this PMSM as a multiphase PMSM, in this work all stator coils are lead
out individually. This transforms the PMSM into a multiphase PMSM with 12
individually controllable stator coils. In particular, two electrical interconnections
are considered

• 4 × 3: Four separate three-phase systems in star (wye) configuration with
four separated and isolated neutral points, see Section 2.4.1.

• 1×12: One twelve-phase system in star configuration with all 12 coils sharing
a common isolated neutral point, see Section 2.4.2.

This choice considers the two main multiphase PMSMs’ electrical interconnections
concerning an m three-phase system as well as an n-phase system, each with the
highest DOFs for the investigated PMSM, cf. Section 1.1.
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Additionally, the classical three-phase system (1 × 3) configuration is described in
Section 2.4.3, which is the used electrical configuration for the model calibration
procedure, see Section 3.2.
The investigated PMSM’s magnetic behavior is described in the following sections.

2.2 Magnetic equivalent circuit (MEC)

The magnetic behavior of the PMSM is approximated by a nonlinear magnetic
equivalent circuit (MEC) model. The derivation of the magnetic network follows
the proposed framework in [77]. For completeness, the basic relationships and
derivations are given in this section.
The magnetic network is represented by a MEC given in Fig. 2.2. The elements
of the MEC consist of magnetomotive force (mmf) sources and permeances, which
are used to describe the magnetic properties. The magnetic circuit relation is given

ucs,1 ucs,2 ucs,12

ums,1 ums,2 ums,8

Gst,1 Gst,2 Gst,12

Gm,1 Gm,2 Gm,8

Gsl,12 Gsl,1112

Gsl,112

Ga,11 Ga,22 Ga,128

Grb,12 Grb,78

Grb,18

Gr,12 Gr,78

Gr,18

Figure 2.2: Schematic of the MEC network with the tree and co-tree indicated in
blue and red, respectively.
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by Hopkinson’s law [81]

ϕ = Gu = 1
Ru , (2.1)

with the magnetic flux ϕ, the mmf u and the reluctance R as reciprocal of the
permeance G. Arrows indicate the magnetic flux direction in Fig. 2.2 and are
given by the notation of the double number subscripts for elements between coils
or permanent magnets. In particular, the mmf sources are given by the mmf
sources of the stator coils ucs = [ucs,1, . . . , ucs,12] and the mmf sources of the rotor
permanent magnets ums = [ums,1, . . . , ums,8]. The magnetic properties are covered
within the description of the permeance

G = µ0µr (|H|) A
ℓ

. (2.2)

A constant geometry of cuboid-shaped flux tubes is assumed, expressed by the
cross-section area A and the effective length ℓ of the flux tube. The isotropic mag-
netic material behavior is given by the permeability of vacuum µ0 = 4πV s A−1 m−1

and the nonlinear relative permeability µr (|H|) in dependency of the magnetic field
strength H = u/ℓ. Within (2.2), the constitutive relation B = µ0µr (|H|) H be-
tween the magnetic flux density B and the magnetic field strength is applied. The
permeances within the magnetic network consist of the magnetically nonlinear iron
permeances of the stator teeth Gst (µr (|ust| /ℓst)), the rotor yokes Gr (µr (|ur| /ℓr)),
the rotor bars Grb (µr (|urb| /ℓrb)), the constant permanent magnets permeances
Gm (µr = const.), and the magnetically linear leakage permeances Gsl (µr = 1) be-
tween two adjacent stator tooth in the air. Thereby, ust = [ust,1, . . . , ust,12]T, ur =
[ur,12, . . . , ur,78, ur,18]T, and urb = [urb,12, . . . , urb,78, urb,18]T indicate the mmfs of the
stator teeth, the rotor yokes and the rotor bars, respectively. The last permeances
are magnetically linear but position-dependent air gap permeances Ga (ϕ, δx, δy)
linking the fluxes between stator and rotor in the air gap, with the rotor posi-
tion ϕ and the (virtual) displacements δx and δy in x- and y-direction respectively,
cf. Fig. 2.1. Due to their strong relation to torque and forces, see Section 2.2.2,
the derivation of the air gap permeances is covered in Section 2.2.3. Note that
the stator yoke permeances are large in comparison to the stator teeth permeances
and hence are neglected, which is an advantage in reduced variables in contrast to
the previous modeling approach on this PMSM presented in [36]. The parameter
values of the permeances Gst, Gsl, Gm, Gr, and Grb are directly obtained by flux
tube approximations of the considered PMSM’s geometry and material properties
[78]. Thereby, a rotational symmetric geometry is utilized to reduce the number
of different parameters.
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2.2.1 Magnetic network equations
The network equations can be systematically derived by applying graph theory, see
[84]. Therefore, the network is divided into tree (blue) and co-tree (red) elements
of the directed graph in Fig. 2.2.
The tree, given by a graph without a circuit, comprises the elements of all mmf
sources, i.e. the stator coil mmf sources ucs and the rotor permanent magnet mmf
sources ums. The allocation of the remaining components, i.e. the permeances, is
arbitrary. In this work, the tree mmfs are given by

utg =
�
uT

st uT
m uT

r ua,128
�T

(2.3)

with the mmfs of the stator teeth ust, the rotor permanent magnets um = [um,1, . . . ,
um,8]T, the rotor yoke parts ur, and the air gap permeance ua,128 between the 12th
coil and the 8th permanent magnet. The co-tree mmfs

uc =
�
ua,11 . . . ua,127 uT

sl uT
rb ur,18

�T
(2.4)

are then composed of the mmfs of the air gap permeances, the stator leakages
usl = [usl,12, usl,23, . . . , usl,1112, usl,112]T, the rotor bars urb, and the last rotor yoke
part ur,18. This network allocation is similar to [36, 77]. The tree and co-tree
elements are linked by the incidence matrix D in the form

ϕt = Dϕc , (2.5)

for the tree fluxes ϕt and co-tree fluxes ϕc. The entries within the incidence matrix
are either −1, 0, or 1 and correspond to the flux direction. With Tellegen’s theorem
[81]

ϕT
t ut + ϕT

c uc = 0 , (2.6)
the relation between the mmf of the tree ut and co-tree uc is given by inserting
(2.5) into (2.6) resulting in

uc = −DTut (2.7)

By applying Hopkinson’s law (2.1) to the co-tree fluxes combined with (2.7) and
inserting the result into (2.5) yields ϕcs

ϕms

ϕtg

 = −
 Dc

Dm

Dg

 Gc

�
DT

c DT
m DT

g

�  ucs

ums

utg

 . (2.8)

Therein, the tree elements are separated into the tree parts for stator coils ϕcs,
Dc, ucs, permanent magnets ϕms, Dm, ums, and tree permeances ϕtg, Dg, utg.
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The set of nonlinear algebraic equations DcGcDT
c Nc 0 DcGcDT

g

DmGcDT
c Nc I DmGcDT

g

DgGcDT
c Nc 0 Gt + DgGcDT

g


 ic

ϕms

utg

 =


1

Nc
ψc

0
0

 −
 Dc

Dm

Dg

 GcDT
mums (2.9)

is derived by the rearranged equation (2.8) after several calculation steps, including
the expression of the tree permeance fluxes ϕtg = Gtutg utilizing Hopkinson’s law
(2.1), the introduction of the stator coil flux linkages ψc = −Ncϕcs, and the stator
coils mmf sources ucs = Ncic expressed by the stator coil currents ic. Thereby, I
is the identity matrix of suitable size and the number of coil winding turns Nc is
equal for all stator coils. With the constant mmf sources of the permanent magnets,
the flux linkages are chosen as state variables to calculate the coil currents, the
permanent magnet fluxes, and the mmf of the tree permeances. As the permanent
magnet fluxes are irrelevant to the subsequent modeling of the PMSM and are
decoupled in the equation (2.9), they can be neglected to reduce the system’s
dimensions. The relevant part of the nonlinear magnetic equivalent circuit can
now be described by the set of nonlinear algebraic equations�

D̄cGcD̄T
c D̄cGcDT

g

DgGcD̄T
c Gt + DgGcDT

g

	 �
ic

utg

	
=

�
ψc

0

	
−

�
D̄c

Dg

	
GcDT

mums , (2.10)

with the diagonal matrices of the tree and co-tree permeances Gt and Gc, cf. [36,
77]. The incidence matrix D̄c = NcDc is scaled by the number of coil windings.
The set of nonlinear equations (2.10) consists of dim (ic)+dim (utg) = 12+28 = 40
algebraic variables. However, (2.10) has a redundant equation since the sum of flux
linkages equals zero due to Gauss’s law for magnetism. Following the framework of
[77], this redundancy is eliminated as part of the electrical network consideration
in Section 2.3.

2.2.2 Torque and radial forces
The electromagnetic torque τ is an essential quantity for electric drives. The
torque can be directly obtained by applying the co-energy principle, which states
that a (generalized) force is calculated by the partial derivative of the co-energy
concerning the (generalized) displacement, see, e.g., [28, 78]. This yields

τ = 1
2

�
uT

tg

∂Gt

∂ϕ
utg + uT

c

∂Gc

∂ϕ
uc

�
. (2.11)

It is worth mentioning that only the air gap permeances are nonlinear functions
of the rotor position ϕ but magnetically linear, which simplifies the torque calcu-
lation.
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To describe the radial force acting on the rotor, this approach is transferred anal-
ogously to derive the expressions for the forces. The forces Fx and Fy acting in x-
and y-direction are determined analogously to (2.11)

Fx = 1
2

�
uT

tg

∂Gt

∂δx

utg + uT
c

∂Gc

∂δx

uc

�
, (2.12a)

Fy = 1
2

�
uT

tg

∂Gt

∂δy

utg + uT
c

∂Gc

∂δy

uc

�
. (2.12b)

Again, only the air gap permeances are nonlinear functions of the (virtual) dis-
placements δx and δy of the rotor in x- and y-direction, cf. Fig. 2.1. The radial
force is then given by

Fr =
�

F 2
x + F 2

y . (2.13)

It is evident from (2.11) and (2.12), that the torque and force descriptions heavily
depend on the air gap permeance modeling and more precisely on their derivative
with respect to the (rotor) positions, which is described in the next section.

2.2.3 Air gap permeances
An accurate model for the air gap permeances is essential for the model accuracy
since the torque and forces are directly related to the partial derivative of Ga with
respect to ϕ, δx and δy, see (2.11) and (2.12) and cf. [36, 77, 78]. Due to the
changing geometry of the rotor circumference over the rotor position, cf. Fig. 2.1,
an accurate calculation of the air gap permeances Ga (ϕ, δx, δy) as a function of ϕ
solely based on the geometry is not possible. However, symmetry in the rotational
direction is given due to the equally distributed stator tooth and rotor magnets.
In the literature, several approaches exist to describe the shape of the air gap per-
meances by functions. Due to the importance of the air gap permeance derivatives
with respect to the positions, the air gap shape function has to be at least a twice
continuously differentiable function. E.g. cosine functions are utilized in [36, 78],
a Fourier series approximation is applied in [77] or two Gaussian functions are
proposed in [28]. The parameters of these shape functions are then used to cali-
brate the model by measurements, see Chapter 3 and, e.g., [77]. While these shape
functions are meaningful for three-phase motors, because of their periodicity, they
are not well suited for multiphase motors. In particular for multiphase motors,
it is required to truncate the cosine and Fourier series in order to represent the
local coupling of the air gap permeances of the permanent magnet m with the coil
tooth j, i.e. the air gap permeance Ga,jm is zero if the permanent magnet m is not
placed near the coil tooth j. This is inherently covered by Gaussian functions.
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2.2 Magnetic equivalent circuit (MEC)

The approach, including the sum of several Gaussian functions, enables the addi-
tional placement of symmetrically Gaussian functions to cover local shape effects,
which are required for accurate torque and force descriptions. Furthermore, this
symmetry feature reduces the calibration parameters. For this reason, a sum of
Gaussian functions is utilized to cover the dependence of Ga,jm on the rotor angle
ϕ

Gϕ
a,jm = A0e

− φ̃2

2σ2
0 +

ng 
k=1

Ak

�e
−(∆φ̃−

k )2

2σ2
k + e

−(∆φ̃+
k )2

2σ2
k

� , (2.14)

with the abbreviations ∆ϕ̃−
k = ϕ̃−∆ϕk and ∆ϕ̃+

k = ϕ̃+∆ϕk. Therein, the relative
rotation of the coil j to the permanent magnet m is modeled by ϕ̃ = ϕ−ϕs,j +ϕr,m,
with stator coil angular shift ϕs,j = 2π(j − 1)/nc, j = 1, . . . , nc and the rotor
magnet angular shift ϕr,m = 2π(m − 1)/nm, m = 1, . . . , nm (nc = 12 and nm = 8
for the considered PMSM). The amplitudes Ak, the widths (variances) σk and the
shifts ∆ϕk of Gϕ

a,jm are used as DOFs in the model calibration. Please note that the
symmetry of Gϕ

a,jm with respect to ϕ̃ is guaranteed by the symmetrical placement
of the ng Gaussian functions.
To represent the dependency of the air gap permeance on the virtual displacements
δx and δy (see Fig. 2.1), the overall air gap permeance Ga,jm is formulated as

Ga,jm (ϕ, δx, δy) = Gϕ
a,jm (ϕ) hF,j (δx, δy) (2.15)

with
hF,j (δx, δy) = 1

1 − δx

lg
cos (ϕs,j) − δy

lg
sin (ϕs,j)

, (2.16)

where lg is the nominal length of the air gap. The term (2.16) is introduced for the
radial force calculation, see, e.g., [78, 85]. The required derivatives of the air gap
permeances (2.15) with respect to the (rotor) positions for the torque and force
expression, see (2.11) and (2.12), are given by

∂Ga,jm

∂ϕ
=

∂Gϕ
a,jm

∂ϕ
hF,j (2.17a)

∂Ga,jm

∂δx

= Gϕ
a,jm

h2
F,j

lg
cos (ϕs,j) (2.17b)

∂Ga,jm

∂δy

= Gϕ
a,jm

h2
F,j

lg
sin (ϕs,j) (2.17c)

with

∂Gϕ
a,jm

∂ϕ
= − ϕ̃

σ2
0
A0e

− φ̃2

2σ2
0 −

ng 
k=1

Ak

σ2
k

�∆ϕ̃−
k e

−(∆φ̃−
k )2

2σ2
k + ∆ϕ̃+

k e
−(∆φ̃+

k )2

2σ2
k

� . (2.18)
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This work focuses on torque and radial force description for concentric rotor place-
ment, i.e., δx = δy = 0 is assumed.

Eccentricity faults

Eccentricity faults are caused by a misalignment of the rotor and stator axis to
each other. Then, the air gap length is asymmetrical in the circumferential di-
rection, causing asymmetric radial forces, cf. [17, 78, 86]. This effect is called an
unbalanced magnetic pull (UMP), cf. [16, 17]. The consequences are unwanted vi-
bration causing noise and bearing wear [27]. The main eccentricity faults are static,
dynamic, and mixed eccentricity faults [17, 86]. Although no eccentricity faults
are considered for the investigated PMSM in this work, the air gap permeance
description can also describe these faults. The following explains the modeling for
equal eccentricity fault cases on both motor sides.
Static eccentricity faults describe constant displacements of the rotor center point
(RCP) related to the stator center point (SCP), see Fig. 2.3a. They are repre-
sented by the constant values δx = ∆x and δy = ∆y in the model approach. For
dynamic eccentricity faults, where the RCP is dynamically rotating around the
stator center point, the radial displacements are functions of the rotor position
δx (ϕ) and δy (ϕ), see Fig. 2.3b. Both eccentricity faults combined are referred to
as mixed eccentricity faults. They can be expressed by δx (ϕ) = ∆x + ∆r cos (ϕ̄)
and δy (ϕ̄) = ∆y + ∆r sin (ϕ̄), see Fig. 2.3c, with a suitable expression for ϕ̄ (ϕ) as
a function of the rotor position. In this case, the term hF,j in (2.16) is additionally
rotor position dependent, and hence the derivative of the air gap permeance with
respect to the rotor position reads as

∂Ga,jm

∂ϕ
=

∂Gϕ
a,jm

∂ϕ
hF,j (ϕ) + Gϕ

a,jm

∂hF,j (ϕ)
∂ϕ

(2.19)

with

∂hF,j (ϕ)
∂ϕ

= ∆r

lg

�
∂ϕ̄

∂ϕ

�
(cos (ϕ̄) sin (ϕs,j) − sin (ϕ̄) cos (ϕs,j)) h2

F,j (ϕ) . (2.20)

2.3 Electric network
A general modeling method for the electric network with star interconnections is
introduced in the following sections, which is also suitable to describe multiple OC
fault cases. Commonly, within the MEC model, one constant electrical network
for the HC case is considered, which simplifies the combination with the magnetic
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(a) Static eccentricity.

x

y

δx (ϕ)

δy (ϕ)∆r

RCP

SCP
ϕ̄

(b) Dynamic eccentricity.
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(c) Mixed eccentricity.

Figure 2.3: Eccentricity faults causing a displacement of the rotor center point
(RCP) to the stator center point (SCP): a) Static eccentricity b) Dynamic eccen-
tricity. c) Mixed eccentricity [16].

part [36, 37, 78]. However, fault cases introduce changes in the electrical network,
which can be accounted for by switching the model structure or changing the model
parameters to adapt the model to the fault case. A systematic framework for the
electric circuit derivation is given in [77], where it is also applied to a multiphase
PMSM with winding short-circuits. The fault case is considered in a separate
model and this framework includes the model reduction, using auxiliary variables
without direct physical interpretation.
The goals for the electrical network description of the investigated PMSM in this
work are a general approach with flexibility for different electric coil interconnec-
tions and a systematical consideration of multiple OC fault cases. The derived
electric network approach, including the system dynamics, generally applies to nc

stator coils. The utilized MEC model remains unchanged, but the set of algebraic
equations is not uniquely solvable because it contains dependent variables. This
model dependency is reduced within the electric network while the physical inter-
pretation of the reduced set of variables is preserved. This is advantageous, as it
simplifies considering multiple OC faults.

2.3.1 Dynamic model
In general, Faraday’s law of induction describes the dynamic behavior of the PMSM

d
dt

ψc = −Rcic + vc , (2.21)
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with the coil flux linkages ψc, the coil currents ic, the electric coil voltages vc, and
the diagonal stator coil resistance matrix

Rc = diag
�
R1 . . . Rnc

�
(2.22)

for nc stator coils. For the HC case, Rj = Rc, j = 1, . . . , nc, with the constant
stator coil resistance Rc, holds. This is also assumed in the OC fault case for all
healthy coils.
Combining the Faraday’s induction law (2.21) together with the set of nonlinear
algebraic equations (2.10) of the magnetic network yields

d
dt

ψc = −Rcic + vc (2.23a)�
D̄cGcD̄T

c D̄cGcDT
g

DgGcD̄T
c Gt + DgGcDT

g

	 �
ic

utg

	
=

�
ψc

0

	
−

�
D̄c

Dg

	
GcDT

mums , (2.23b)

which represents a differential algebraic system of equations (DAE) of index 1. The
model inputs are given by the coil voltages vc, which are considered as (virtual)
control inputs described in Section 5.1.5.

2.3.2 Electric coil interconnections and model reduction

In this section, the electric network equations are derived for the HC case. The
extension of this method for multiple OC fault cases will be given in Section 2.3.3.
According to Kirchhoff’s current law, it is apparent that the star interconnection
implies that the sum of the coil currents at each neutral point NP is zero

ic,NP =



!nNP1
j=1 ic,j!nNP2
j=1 ic,j

...!nNPx
j=1 ic,j

 = 0 , (2.24)

with nNPx representing the number of stator coils sharing the x-th common neutral
point NPx. This result introduces a dependent coil current for each neutral point,
which decreases the DOFs for control tasks.
Furthermore, series connections of stator coils introduce dependent coil currents
since the current is equal within series connection of stator coils. This also de-
creases the DOFs for control tasks, which can be considered as follows: For the
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k-th phase with l series connected coils, let ik,l denote the l-th coil current. Then

ik =


ik,1 − ik,2
ik,1 − ik,3

...
ik,1 − ik,l

 = 0 (2.25)

holds and all nk series connections are considered by

ic,S =
�
i1 i2 . . . ink

�T
= 0 . (2.26)

This concept is also suitable to describe distributed winding configurations in
PMSMs.
The whole coil current dependencies are then combined by

ic,d =
�

ic,S

ic,NP

	
= 0 . (2.27)

Note that the allocation of the vector entries in ic,d is arbitrary. For consistency,
lower coil numbers are stated first within each subgroup of ic,d. The elimination
of these (dependent) coil currents from the set of variables is meaningful for nu-
merical robustness and it assures faster computation times for the optimization
and simulation tasks. Furthermore, the dependencies due to the star interconnec-
tion automatically removes the magnetic dependency within the algebraic set of
equations as noted in Section 2.2.1.
The reduction step is introduced by the transformation�

ic,r

ic,d

	
=

�
Hl

r

Hl
d

	
ic = Hlic . (2.28)

Thereby, the nc coil currents ic are decomposed through the left-sided nc × nc

matrix Hl, with the entries −1, 0, or 1, into a reduced set of nr coil currents ic,r

and a dependent set of nd = nc − nr coil currents ic,d, with the total number of
coils nc and the number of reduced currents nr, which corresponds to the available
DOFs for control tasks. The specific choice of the reduced and dependent currents
through the nr ×nc matrix Hl

r and the nd ×nc matrix Hl
d is arbitrary. Within this

work, the following convention is used. First, the reduced currents comprise all coil
currents sharing a common neutral point except the nc,x coil (coil with the highest
number). Second, the row sum of Hl

r equals one. The advantage of these specific
choices of Hl

r is that the currents ic,r are identical to the respective coil currents.
Analogously to the currents, the transformation of (2.28) is applied to split the
flux linkages and voltages into a reduced set and a dependent set of variables. The
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2 Mathematical model of PMSMs

application of this transformation (2.28) to all variables for currents, flux linkages
and voltages to (2.23) yields the transformed system

d
dt

�
ψc,r

ψc,d

	
= −

�
Hl

rRcHr
r Hl

rRcHr
d

Hl
dRcHr

r Hl
dRcHr

d

	 �
ic,r

ic,d

	
+

�
vc,r

vc,d

	
(2.29a)Hl

rD̄cGcD̄T
c Hr

r Hl
rD̄cGcD̄T

c Hr
d Hl

rD̄cGcDT
g
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dD̄cGcD̄T

c Hr
r Hl

dD̄cGcD̄T
c Hr

d Hl
dD̄cGcDT

g

DgGcD̄T
c Hr

r DgGcD̄T
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d Gt + DgGcDT
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ic,r

ic,d

utg
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ψc,r

ψc,d

0

 −
Hl

rD̄c

Hl
dD̄c

Dg

 GcDT
mums ,

(2.29b)

with right-sided matrix

Hr =
�
Hl

�−1
=

�
Hr

r Hr
d

�
, (2.30)

as the inverse of Hl and the allocation of the nc × nr matrix Hr
r and the nc × nd

matrix Hr
d.

The transformed system representation (2.29) allows the elimination of the depen-
dent variables ic,d, ψc,d, and vc,d based on the following considerations:

1. The electric interconnection yields ic,d = 0.
2. Since equal coil resistances are assumed for all healthy coils, cf. Section 2.3.1,

Hl
dRcHr

r = 0 holds for the studied motor. This yields d
dt

ψc,d = vc,d. Since it
is impossible to control vc,d by means of the terminal voltages vt, ψc,d and
vc,d are irrelevant for the control task and hence not further considered. Note
that the sum of vector entries in ψc,d for ic,d = ic,NP , e.g., no series connection,
is always zero, which directly results from Gauss’s law for magnetism.

3. Finally, this also allows eliminating the second row of (2.29b) from the set
of equations.

By applying these considerations, the resulting reduced DAE system then reads
as

d
dt

ψc,r = −Hl
rRcHr

ric,r + vc,r (2.31a)�
Hl

rD̄cGcD̄T
c Hr

r Hl
rD̄cGcDT

g

DgGcD̄T
c Hr

r Gt + DgGcDT
g

	 �
ic,r

utg

	
=

�
ψc,r

0

	
−

�
Hl

rD̄c

Dg

	
GcDT

mums . (2.31b)

The reduced system (2.31) is of minimum state, and the algebraic equations no
longer contain any redundant equations, cf. [77] for a more detailed analysis.
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2.3.3 Multiple open-circuit fault cases

An open connection in the electrical path between the power source and the com-
mon neutral point specifies an OC fault case of a particular stator coil. Thus, the
faulty stator coil current equals zero. The fault can have different causes, i.e., bro-
ken cables or wire disconnections within the electrical path, malfunction or loose
bond-wire contacts of the half-bridge, and wire disconnection within the stator
coil, cf. [4, 10, 16]. However, the OC fault’s particular cause is irrelevant to the
subsequent modeling. Two different modeling approaches dealing with multiple
OC faults are presented in the following. The first approach reduces the model
structure to the available DOFs, while the second approach preserves the model
structure.

Model structure reduction

Let ic,f denote the vector of faulty coil currents. For OC faults, ic,f = 0 holds,
which renders the coil currents uncontrollable by the control inputs. Thus, it
makes sense to eliminate these coil currents and the corresponding flux linkages
from the set of equations (2.31). To do so, the currents of the faulty coils extend
the vector of dependent currents, cf. (2.27),

ic,d =

 ic,f

ic,S

ic,NP

 = 0 . (2.32)

Again, note that the allocation of the vector entries in ic,d is arbitrary. All faulty
coil currents have to be removed from the reduced current vector ic,r. Suppose
a faulty coil does not belong to the reduced currents, a substitute coil current is
eliminated to take the reduced DOFs into account. The new allocation is then
considered by the matrices Hl and Hr, which are adjusted accordingly.
This general procedure is applicable to all possible OC fault cases. Using this
modeling approach for multiple OC cases results in changes in the model order
depending on the position and number of OC faults. While this is irrelevant to
calculating optimal current patterns (as will be described in Section 4.3), it makes
dynamic simulations challenging, particularly if the occurrence of an OC during
operation is studied. Furthermore, it can be interesting to study the transition
from a healthy to a total OC fault, where a slow increase of the effective coil
resistance characterizes the fault. Therefore, an approach preserving the model
structure is presented next.
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Preserving model structure

A modeling approach preserving the model structure is beneficial for studying the
transition from healthy to a total OC fault in simulation. Starting from the DAE
model of (2.31), all investigated OC fault coils must be known in advance. As
the consideration of reduced (independent) coil currents can be ambiguous, all
affected OC fault coil currents must be considered as reduced currents. Then, OC
fault cases are emulated by adding a fictive resistance ∆R in the electrical path of
the corresponding faulty stator coils, which significantly increases the faulty coils’
resistance values Rc,f = Rc + ∆R. Choosing ∆R large enough yields very small
coil currents, thus allowing to approximate even a total OC fault with sufficient
accuracy. The ideal fictive resistance value would be infinity according to (2.31a)
This leads to a numerically stiff system and is difficult to solve in an acceptable
amount of time. Therefore, the fictive resistance value is selected to keep the
affected OC fault coil current in the range of the current sensor’s noise amplitude.
Due to the impact of the rotational speed on the left side of (2.31a), the fictive
resistance value is given by ∆R = Rcω/ωref , with the rotational speed ω and a
suitable reference speed ωref . Utilizing a suitable solver, e.g., the solver ode23tb
of Matlab/Simulink gives fast and accurate results for the multiple OC cases
studied in this work. However, the model stiffness is pronounced for a higher
number of considered faulty coils, leading to increased simulation times. For single,
double, and triple adjacent OC fault cases, the simulation time increases about
the factors 2, 2.5, and 3, respectively, compared to the HC case.

2.4 Application of the electric network

The electrical network is applied to the following three electrical coil interconnec-
tions for the investigated PMSM: a quadruple three-phase system, a single star
system, and a single three-phase system with four coils connected in series in each
case.

2.4.1 Quadruple three-phase system (4 × 3)

The quadruple three-phase system (4 × 3) is given by four sets of three-phase
systems, with an isolated neutral point for each set. The electrical network for
this coil interconnection is given in Fig. 2.4. The electric coil interconnection is
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Figure 2.4: Electrical network for the healthy-circuit (HC) case in quadruple three-
phase systems in star (wye) configuration with separate isolated neutral points
(4 × 3).

considered by the dependent coil currents consisting of

ic,d = ic,NP =


ic,1 + ic,2 + ic,3
ic,4 + ic,5 + ic,6
ic,7 + ic,8 + ic,9

ic,10 + ic,11 + ic,12

 = 0 (2.33)

according to (2.27) and (2.24), resulting in nd = dim (ic,d) = 4. The independent
currents are chosen as the first two coils of each three-phase system. Thus, the
vector of reduced currents is given by

ic,r =
�
ic,1 ic,2 ic,4 ic,5 ic,7 ic,8 ic,10 ic,11

�T
. (2.34)

With nr = dim (ic,r) = 8, this coil allocation reflects the eight DOFs and the
matrices Hl

r and Hl
d are defined as

Hl
r =


H1 0 0 0
0 H1 0 0
0 0 H1 0
0 0 0 H1

 (2.35a)
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and

Hl
d =


H2 0 0 0
0 H2 0 0
0 0 H2 0
0 0 0 H2

 , (2.35b)

with

H1 =
�
1 0 0
0 1 0

	
, (2.35c)

H2 = [1, 1, 1] . (2.35d)

The matrix Hr is calculated analogously to (2.30) and is composed of the following
matrices

Hr
r =


H3 0 0 0
0 H3 0 0
0 0 H3 0
0 0 0 H3

 , (2.36a)

Hr
d =


H4 0 0 0
0 H4 0 0
0 0 H4 0
0 0 0 H4

 (2.36b)

with

H3 =

 1 0
0 1

−1 −1

 , (2.36c)

H4 =
�
0 0 1

�T
. (2.36d)

Following the steps for the transformation of the system, a reduced set of equations
of the form (2.31) is directly given for the HC case by applying the derived auxiliary
matrices of (2.35a) and (2.36a). Each three-phase set contains two DOFs. The
overall dimension of (2.31b) consist of nr + dim (utg) = 8 + 28 = 36 unknown
variables for the set of nonlinear algebraic equations.

Multiple OC fault cases (4 × 3)

A single OC fault within a three-phase set reduces the available DOFs by one, and
both remaining coil currents are have the identical amplitude but opposite signs.
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Double OC faults within a three-phase set are uncontrollable and automatically
become a total failure of the whole three-phase set. This case is considered as a
triple adjacent OC fault. Double OC faults in different three-phase sets reduce the
available DOFs to six.
For example, the double OC fault case with the faulty coils f1 = 3 and f2 = 4 in
the 4 × 3 configuration is explained. According to (2.32), the vector of dependent
currents is extended to

ic,d =



ic,3
ic,1 + ic,2 + ic,3

ic,4
ic,4 + ic,5 + ic,6
ic,7 + ic,8 + ic,9

ic,10 + ic,11 + ic,12


. (2.37)

The loss of the two DOFs is accounted for in the vector of reduced currents

ic,r =
�
ic,1 ic,5 ic,7 ic,8 ic,10 ic,11

�T
(2.38)

by removing each faulty coil ic,f or a substitute coil to consider the loss of DOFs.
Here, instead of the faulty coil if,1 = ic,3, the coil ic,2 is removed. Then, the
auxiliary matrices Hl

r and Hl
d are redefined as

Hl
r =


H1,f1 0 0 0

0 H1,f2 0 0
0 0 H1 0
0 0 0 H1

 (2.39a)

and

Hl
d =


H2,f1 0 0 0

0 H2,f2 0 0
0 0 H2 0
0 0 0 H2

 , (2.39b)

with

H1,f1 =
�
1 0 0

�
(2.39c)

H1,f2 =
�
0 1 0

�
(2.39d)

H2,f1 =
�
0 0 1
1 1 1

	
(2.39e)

H2,f2 =
�
1 0 0
1 1 1

	
. (2.39f)
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and H1 and H2 from (2.35c) and (2.35d). Following the identical steps for the
transformation of the system, a reduced set of equations of the form (2.31) is also
obtained for the multiple OC fault case.

2.4.2 Single star twelve-phase system (1 × 12)

The electric network for a single star system with 12 stator coils is given in Fig. 2.5.
The dependent coil current is given by the sum of all coil currents

ic,d = ic,NP =
12 

j=1
ic,j = 0 (2.40)

according to (2.24) and (2.27) with nd = dim (ic,d) = 1. The independent coil
currents are chosen as the first eleven ones

ic,r =
�
ic,1 . . . ic,11

�T
, (2.41)
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Figure 2.5: Electrical network for the healthy-circuit (HC) case in a single star
configuration with common isolated neutral point (1 × 12).
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which results in nr = dim (ic,r) = 11 DOFs. The auxiliary matrices then read as

Hl
r =

�
I11×11 011×1

�
(2.42a)

and

Hl
d = 11×12 , (2.42b)

with the vector 1 containing only ones of the suitable size. Analogously to (2.30),
Hr

r is given by

Hr
r =

�
I11×11

−11×11

	
(2.43a)

and

Hr
d =

�
0 . . . 0 1

�T
. (2.43b)

Again, following the identical transformation steps, with the matrices of (2.42a)
and (2.43a), the reduced set of equations for the HC case is given by (2.31). The
dimension of the differential equation (2.31a) is specified by nr = 11. The algebraic
system (2.31b) contains of nr + dim (utg) = 11 + 28 = 39 unknown variables. For
the single star system, the dependent flux linkages directly equal Gauss’s law for
magnetism, e.g., ψc,d = !12

j=1 ψc,j = 0.
Remark 1. The main difference between the 4 × 3 and the 1 × 12 configuration is
the additional constraint due to Kirchoff’s current law at the four neutral points
in the 4 × 3 configuration, cf. Fig. 2.4 and Fig. 2.5. Although two neighboring
three-phase systems are decoupled regarding the currents, they are still coupled
due to the magnetic flux distribution.

Multiple OC fault cases (1 × 12)

Multiple OC fault cases in the 1 × 12 configuration are considered by augmenting
the dependent currents. For example, the double OC fault case with the faulty
coils f1 = 3 and f2 = 4 in the 1 × 12 configuration is explained. According to
(2.32), the vector of dependent currents is extended to

ic,d =

 ic,3
ic,4!12

j=1 ic,j

 , (2.44)
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and Hl
r and Hl

d are defined as

Hl
r =

�
I2×2 02×2 02×7 02×1
07×2 07×2 I7×7 07×1

	
(2.45a)

and

Hl
d =

�
02×2 I2×2 02×8
I1×2 I1×2 I1×8

	
. (2.45b)

Following the identical steps for the transformation of the system, a reduced set of
equations of the form (2.31) is also obtained for the multiple OC fault case. The
reduced vector of coil currents reads as

ic,r =
�
ic,1 ic,2 ic,5 . . . ic,11

�T
(2.46)

for the example of faulty coils f1 = 3 and f2 = 4 in the 1 × 12 configuration.

2.4.3 Single three-phase system (1 × 3)
The electric network of a single three-phase system for 12 stator coils is introduced
for the utilization in the model calibration process, cf. Section 3.2. The stator coil
interconnection is given in Fig. 2.6. Thereby, each of the three phases contains the
series interconnection of four stator coils. This means that the coils 1, 4, 7, 10, the
coils 2, 5, 8, 11, and the coils 3, 6, 9, 12 are each connected in series. The terminal
connections are labeled with a, b, and c for the three phases. According to the
general framework for series coil interconnections, this yields k = 3 and l = 4 with

ic,S =

i1
i2
i3

 = 0 (2.47a)

it,a
vt,a

it,b
vt,b

it,c
vt,c

R1 L1ic,1

vc,1

R2 L2ic,2

vc,2

R3 L3ic,3
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R4 L4ic,4
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R5 L5ic,5

vc,5

R6 L6ic,6

vc,6

R7 L7ic,7
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R8 L8ic,8
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R10 L10ic,10

vc,10

R11 L11ic,11

vc,11

R12 L12ic,12

vc,12

NP1

Figure 2.6: Electrical network for the healthy-circuit (HC) case in a single star
three-phase series configuration with common isolated neutral point (1 × 3).
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and

i1 =

 ic,1 − ic,4
ic,1 − ic,7
ic,1 − ic,10

 , i2 =

 ic,2 − ic,5
ic,2 − ic,8
ic,2 − ic,11

 , i3 =

 ic,3 − ic,6
ic,3 − ic,9
ic,3 − ic,12

 . (2.47b)

The currents at the isolated neutral star point are considered by

ic,NP = ic,1 + ic,2 + ic,3 = 0 . (2.48)

The dependent currents ic,d are composed of (2.47) and (2.48) according to (2.27).
The resulting two DOFs are chosen as the first two coil currents which yields

ic,r =
�
ic,1 ic,2

�T
. (2.49)

The transformation matrices are then defined as

Hl
r =

�
I2×2 02×10

�
(2.50a)

and

Hl
d =



1 0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 −1
1 1 1 0 0 0 0 0 0 0 0 0



(2.50b)

and Hr
r and Hr

d are given according to (2.30) by

Hr
r =


H3
H3
H3
H3

 (2.51a)
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and

Hr
d =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 1
0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 1
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 1



, (2.51b)

with H3 given by (2.36c). With these definitions and following the identical trans-
formation steps of the system, the reduced set of equations based on (2.31) is
given for the HC case by with the auxiliary matrices of (2.50a) and (2.51a). Here,
the dimension of the differential equation (2.31a) is given by nr = 2. Therefore,
the algebraic system (2.31b) contains of nr + dim (utg) = 2 + 28 = 30 unknown
variables.
The derived mathematical model in this chapter describes the nonlinear magnetic
effects, torques, and radial forces of the considered PMSM. It is flexible for different
electrical coil interconnections and multiple OC faults. This model is applied to
the 1×12 and 4×3 configuration for further investigation and serves as basis for the
model-based control strategy, cf. Chapter 4 and Chapter 5. However, this model
needs to be calibrated with the measurements described in the next chapter.
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3
Model calibration and validation

Parts of this chapter were published in similar form in the author’s previous
publications [1, 2].

While many parameters of the magnetic equivalent circuit (MEC) motor model are
directly obtained from the construction and material data of the motor, specific
parameters, such as the exact shape of the air gap or leakage permeances, are
difficult to estimate from construction parameters [78]. Furthermore, the real-
world behavior of the voltage source inverter (VSI) used to drive the permanent
magnet synchronous machine (PMSM) is not easily obtained from its construction.
Therefore, the calibration and validation of the dynamical model are presented in
this chapter.
First, the utilized test stand and the multiphase VSI with its nonlinear behavior
and static compensation are presented. Then, the MEC model calibration proce-
dure is given based on an optimization problem. Finally, the high model accuracy
is proven by measurements on the test stand.

3.1 Test stand
The mechanical setup of the test stand is depicted in Fig. 3.1. It comprises the
considered PMSM, an incremental encoder (ENC), a torque sensor (TS), a fly-
wheel (FW), and a load motor, which can be changed between a harmonic drive
(HD) or an induction machine (IM). All elements are mechanically connected with
couplings. The harmonic drive load motor has a high gear ratio of 160:1, which al-
lows for precise position and low-speed operation, whereas the IM is used at higher
speeds. The PMSM is controlled by 12 individual half-bridges distributed on four
three-phase boards forming the VSI, cf. Section 3.1.1. The utilized hardware to
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HD IM FW TS ENC PMSM

Figure 3.1: Setup of the test stand: harmonic drive (HD), induction machine (IM),
flywheel (FW), torque sensor (TS), rotary encoder (ENC), multiphase PMSM
(PMSM).

drive the system consists of a dSpace DS5203 FPGA board, a dSpace DS1007
processing unit, and a dSpace DS2004 ADC board [87]. The VSI is operated at a
10 kHz pulse width modulation (PWM), whose switching patterns are generated
on the FPGA board. The coil currents are measured via oversampling for 801
measuring points by 12 ADCs on the FPGA board. The rotary encoder signals
with 5000 increments per revolution are recorded via digital input channels. The
ADC board is used to measure the dc-link voltages of each board and the torque
sensor signal.

3.1.1 Voltage source inverter
The voltage source inverter (VSI) consists of four identical boards (B1, . . . , B4),
each equipped with three half-bridges and supplied by common dc-link voltages
vB1

dc , . . ., vB4
dc , forming together the diagonal dc-link voltages matrix

Vdc = diag
�
vB1

dc I3×3 vB2
dc I3×3 vB3

dc I3×3 vB4
dc I3×3

�
. (3.1)

Each half-bridge has a current measurement shunt located in the load path. Fig-
ure 3.2 shows the VSI boards with the investigated motor in the 4×3 configuration.
Assuming an ideal VSI, the average terminal voltage vt results in the form

vt = Vdcδ , (3.2)

with the vector of duty cycles δ = [δ1, . . . , δ12]T ranging from 0 to 1 of the sym-
metric pulse-width modulation (PWM). The VSI has a current-dependent internal
voltage drop vVSI(ic), which should be compensated for high-performance opera-
tion. vVSI(ic) is identified based on measurements at constant rotor positions of
the PMSM in the 4 × 3 configuration. To do so, the desired duty cycles

δd = V−1
dc Rcid

c + 0.51 (3.3)

38



3.1 Test stand

PMSM

B1

B2

B3

B4

NP1

NP3

NP2

NP4

Figure 3.2: VSI setup with four three-phase boards (B1-B4). The figure shows the
4 × 3 configuration with four isolated neutral points (NP1-NP4).

are applied to the VSI, where Rc is the resistance value of the healthy PMSM,
cf. Section 2.3.1, and a slow triangular-shaped desired current trajectory id

c with
amplitude up to twice the nominal current in is used. The stator coil resistance
Rc is determined by averaging static measurements for constant currents without
considering temperature effects. The measured signals show a pronounced linear
error of the VSI, which can be modeled well by

vVSI = diag
�
RVSI

1 . . . RVSI
12

�
ic , (3.4)

with the effective resistances RVSI
j , j = 1, . . . , 12 of the VSI. With multiple mea-

surements for the desired currents for the three dominant magnetic directions 0◦,
120◦, 240◦ of the motor, RVSI

j are identified by least-squares estimation. As the
differences between the identified resistances are low, the mean value

RVSI = 1
12

12 
j=1

RVSI
j (3.5)

is considered. The VSI nonlinearities are shown in Fig. 3.3 for the dominant mag-
netic direction 0◦ of coil 1. The left plot shows the desired current’s slow trajectory
and the measured current over time. The right plot shows the voltage error with-
out compensation and the remaining voltage error after the compensation. The
resulting error cannot be further reduced due to the opposite voltage errors of the
remaining two coils within the three-phase system. A further reduction of the VSI
error with a static compensation is difficult due to the nonlinear behavior of the
utilized half-bridges [88]. While the main VSI errors are compensated with this
approach, the remaining nonlinear error must be suppressed by a feedback current
controller, see Chapter 5.
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Figure 3.3: Measured and compensated VSI nonlinearities for coil 1 in the 4 × 3
configuration.

3.1.2 Open-circuit fault emulation

The open-circuit (OC) fault cases are emulated on the test stand in two different
ways. In general, to evaluate the OC post-fault performance, the affected coils are
physically disconnected from the VSI legs before the experiments are performed.
This case is similar to real OC fault cases and is applied in most experiments.
However, evaluating the fault diagnosis method in Section 6.2 requires a different
approach, as transitions of OC fault cases are investigated. The commonly utilized
strategy of deactivating the half-bridges, see, e.g., [70], does not result in fully
opening the phase, as the bypass diodes are still present and allow for an, in this
case, undesired current flow. Therefore, relays are integrated into the phases c1,
c2, and c3 between the stator coils and the corresponding VSI legs, which are
controlled by the digital outputs of the dSpace system. This setup, extended by
the relays, is depicted in Fig. 3.4 for the 1 × 12 configuration. The integration of
the relays increases the resistance values within the first three VSI legs due to the
contact resistances and the short extension wires. This has only a minor influence
on the control performance and can be neglected since the focus is on the fault
diagnosis behavior and switching of the control strategies.

3.2 Model calibration

With the model calibration, the unknown model parameters of the magnetic circuit
(2.10) are determined by the solution of an optimization problem. As mentioned in
Section 2.2, the permeances of the rotor yoke, the rotor bar, the permanent mag-
nets, and the stator coils are determined from the known geometry and material
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NP1

relays

c1
c2
c3

Figure 3.4: VSI setup with four three-phase boards (B1-B4) in the 1 × 12 configu-
ration with three relays connected between B1 and the coils c1-c3.

parameters of the investigated PMSM [78]. Since the shape of the air gap perme-
ances is modeled by a sum of Gaussian functions, cf. Section 2.2.3, the parameters
of those Gaussian functions need to be calibrated through measurements.
A static model calibration aiming at high torque accuracy was performed for the
investigated PMSM in a previous work [36], by calibrating the air gap perme-
ances Ga. This calibration approach was extended for a different PMSM in [77] by
calibrating the stator leakage permeance Gsl, which increases the coil inductance
accuracy. This is beneficial since the accuracy of dynamic electric model can be
enhanced. To do so, the stator leakage permeances are approximated by

Gsl = ηGsl,nom , (3.6)

where Gsl,nom is the nominal value obtained by flux tube approximation of the
leakage path and η is a scalar tuning factor.
All model calibration parameters are combined in the vector

xc =
�
A0 . . . Ang σ0 . . . σng ∆ϕ1 . . . ∆ϕng η

�T
, (3.7)

with the amplitudes A0 and Ak, the width σ0 and σk and the shifts ∆ϕk of the
Gaussian functions according to (2.14) and the tuning factor η for the leakage
permeances. The optimal model parameters are obtained by solving a constrained
optimization problem based on measurements. This approach follows the main
ideas of [77]. As the electric coil interconnection is irrelevant for calibrating the
magnetic parameters, the PMSM is connected in the 1 × 3 star configuration for
the healthy-circuit (HC) case, cf. Section 2.4.3, to limit the signals to a minimum
number due to the reduced electric degrees of freedom (DOFs) of two. Conse-
quently, the assumption of equal stator coils is applied. Following the approach in
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[77], the model calibration is based on the following measurements on a test stand,
cf. Section 3.1:

a) very slow (3 rpm) rotating torque measurements for constant currents (ia =
1.5in, ib = ic = −0.75in), which are evaluated for nτ = 90 rotor positions
ϕτ = 1, 2, . . . , 90◦.

b) back-electromotive force (BEMF) measurements for open terminals of the
PMSM at rotor speeds of n = 100, 200, . . . , 1000 rpm, whose values are eval-
uated for nψ,ϕ = 72 rotor positions ϕψ = 1.25, 2.5, . . . , 90◦.

c) current measurements at nψ,ϕ = 72 different standstill rotor positions ϕψ =
1.25, 2.5, . . . , 90◦ for a sinusoidal desired current trajectory with an amplitude
of in and a constant period of T = 25 ms applied separately in the direct d
and quadrature q axis direction, cf. Fig. 2.1.

Utilizing these measurements, the calibration is obtained by solving the con-
strained optimization problem

min
xc,utg,h,utg,jk

1
2 (Jτ + Jψ + JR) (3.8a)

s.t. eq. (3.13a) l = 1, . . . , nτ (3.8b)
eq. (3.13b) j = 1, . . . , nψ,ϕ, k = 1, . . . , nψ,i . (3.8c)

With the first term of the cost function

Jτ = qτ

nτ 
l=1

�
τm

l − τl

�
ϕm

l , im
c,r,l, utg,l

��2
(3.9)

the torque error is minimized, where measured variables are indicated by the su-
perscript m. The second term

Jψ =
nψ,φ 
j=1

nψ,i 
k=1

eψ,jk

�
ϕm

jk, im
c,r,k, utg,jk

�
I2×2eT

ψ,jk

�
ϕm

jk, im
c,r,k, utg,jk

�
(3.10)

weights the flux linkage errors eψ,jk = ψm
c,r,jk − ψc,r,jk. Note that the flux linkages

can not be measured directly. Instead, the first row of (2.31b) is rearranged to

ψm
c,r,jk = Hl

rD̄cGc

�
ϕm

jk, im
c,r,jk, utg,jk

� �
D̄T

c Hr
rim

c,r,jk + DT
g utg,jk + DT

mums

�
(3.11)

with Hl
r and Hr

r derived in Section 2.4.3 and evaluated with the measured signals
of the rotor position and currents. The last term of (3.8a)

JR = qψ max {0, −η}2 +
ng 

p=0

�
qσ max {0, eσ,p}2 + q∆ max {0, e∆ϕ,p}2

�
(3.12)
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is introduced as a regularization term. Here, the first part penalizes negative
values of the scaling factor η, to ensure a positive value of the stator leakage
permeance. The second part ensures a reasonable shape of the air gap permeances
through barrier functions, which penalize the widths eσ,p = σmin − σp and position
distances e∆ϕ,p = ∆ϕmin − ∆ϕp of the Gaussian functions smaller than σmin and
∆ϕmin, respectively. The scalar positive weighting factors qτ , qψ, qσ, and q∆ are
used to weight the importance of the different cost functions parts of (3.8a).
The optimization variables consist of the desired calibration variables xc, cf. (3.7),
as independent part and the mmfs of the permeances utg,l, utg,jk as dependent op-
timization variables. The latter variables are calculated by the model constraints,
cf. (2.31b)

DgGc (ϕm
l , xc)

�
D̄T

c Hr
rim

c,r,l + DT
mum

�
+

�
Gt (ϕm

l , xc) + DgGc (ϕm
l , xc) DT

g

�
utg,l = 0

(3.13a)

DgGc

�
ϕm

jk, xc

� �
D̄T

c Hr
rim

c,r,k + DT
mum

�
+

�
Gt

�
ϕm

jk, xc

�
+ DgGc

�
ϕm

jk, xc

�
DT

g

�
utg,jk = 0 .

(3.13b)

The solution of the optimization problem by using the quasi-newton solver of
Matlab requires approximately 15 min on a computer with 3.7 GHz Intel Core
i7.

3.3 Model validation
The calibrated model is validated using measurements on a test stand, cf. Sec-
tion 3.1, utilizing the multiphase VSI, cf. Section 3.1.1. Several experiments are
performed showing the model validation for static and dynamic behavior in the
HC case and for a single OC fault case. Since the radial forces cannot be mea-
sured at the test stand and the torque sensor signal is disturbed at higher rotor
speeds due to mechanical vibrations of the test stand, these values are obtained
by (2.11) and (2.13), which require the currents, the rotor position and the mmf
of the tree permeances as variable inputs. Since the currents im

c and the rotor
position ϕm are measured, the mmf of the tree permeances are calculated based
on the quasi-static magnetic model, which is given by the rearranged second row
of the algebraic system of equations (2.23b) by

DgGc (ϕm)
�
D̄T

c im
c + DT

mums

�
+

�
Gt (ϕm) + DgGc (ϕm) DT

g

�
utg = 0 . (3.14)

This equation is solved at each sample time step by a quasi-newton solver.
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The essential quantity is the torque accuracy, which is validated in the first experi-
ment by slow rotations (n = 4 rpm) of the PMSM in the 4×3 configuration, cf. Sec-
tion 2.4.1 , at different constant currents ic,1,4,7,10 = id and ic,2,3,5,6,8,9,11,12 = −0.5id.
A simple current controller is used to track the constant desired currents. Figure
3.5a shows the rated torque comparison of the measurements (colored lines) and
evaluated model results (black dashed lines). The results show a very high torque
accuracy even for up to twice the nominal current range. In addition, the cogging
torque for zero currents is visible. The second experiment is performed regarding
the BEMF of the PMSM. In Fig. 3.5b, the measured and evaluated BEMF is drawn
for the first three coils of the motor. This measurement is performed for open ter-
minals at a rotational speed of n = 720 rpm. The major non-fundamental BEMF
harmonic components are the fifth and seventh harmonics. Again, an excellent
model accuracy is achieved.
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Figure 3.5: MEC model validation for the HC case in the 4 × 3 configuration: a)
normalized torque with constant currents ic,1,4,7,10 = id and ic,2,3,5,6,8,9,11,12 = −0.5id

for n = 4 rpm, b) BEMF at n = 720 rpm for open terminals.

The third experiment is performed to analyze the inductance behavior, which is
mainly influenced by the stator leakage permeances. A sinusoidal desired current
with an amplitude of twice the nominal current and a frequency of 100 Hz is
specified in the direct d and quadrature q axis for the dynamic model validation.
Thereby, the rotor is fixed at a constant rotor position. For this model evaluation,
the dynamic model of (2.23a) is fed by the coil voltages vc = Vm

dc (δm − 0.51), with
the measured duty cycles and the measured dc-link voltages rearranged by (3.1).
Figure 3.6 shows the rated current comparison between the currents obtained by
the model and the measured ones at a constant rotor position ϕ = 0◦ for the first
three coil currents since the other coil currents are similar. The calibrated model
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Figure 3.6: MEC model validation for the HC case in the 4 × 3 configuration:
dynamic current response at fixed rotor position ϕ = 0◦ for the first three coils.

exhibits good accuracy in terms of the phase and amplitude. The minor amplitude
deviations of the model mainly result from the non-ideal VSI behavior, which is
not included in the dynamic model.
The last experiments investigate the model accuracy for constant torques in the
HC case and for a single OC fault of coil 1 in the 1 × 12 configuration to show
the model accuracy additionally in the event of an OC fault case without fault
mitigation strategies. The results of the approximation of the optimized currents
for the HC case id,HC

c , that will be derived in Chapter 4, are used for this purpose.
In the OC fault case, the current in the faulty coil 1 is zero ic,1 = 0. Therefore, it
is not possible to enforce the same currents for the remaining coils as in the HC
case since Kirchhoff’s current law must hold for the remaining 11 coil currents, i.e.!12

k=2 ic,k = 0. To get physically meaningful desired currents, also for the OC fault
case, the sum of the desired coil currents of coil j is subtracted from the desired
currents,

id,OC1
c,j = id,HC

c,j − 1
11

12 
k=2

id,HC
c,k , (3.15)

with j = 2, . . . , 12 and id,OC1
c,1 = 0.

Fig. 3.7a shows the comparison of torque measurements with the MEC model for
the HC case and the case of an OC fault of coil 1 at a constant rotational speed
of n = 20 rpm. It can be seen that the measured and modeled torque accurately
match, and thus, a high model accuracy can be achieved for both the HC and the
OC fault case. Furthermore, utilizing nominal currents for the OC fault yields
large torque deviations with an error up to 25 %.
The measured currents for the HC case of coil 1 to 3 for the nominal torque are
depicted in the upper plot of Fig. 3.7b (the currents of the other coils have a similar
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Figure 3.7: MEC model validation for constant torques in the HC case and under
a single OC fault of coil 1 without fault mitigation for the 1 × 12 configuration
at n = 20 rpm. a) torques, b) corresponding currents and radial forces for the
nominal torque τ = τn case.

pattern). It can be seen that rather strong deviations from sinusoidal currents are
required for the studied PMSM in order to achieve an approximately constant
torque. This is due to the specific design of the PMSM, which also features rather
large cogging torques, see the detailed analysis in [36]. Finally, the radial force is
depicted in the lower plot of Fig. 3.7b. As expected, the radial force is zero for the
HC case. However, utilizing the unsuitable coil currents of the HC case for the OC
fault yields rather large radial forces. This explains the motivation of this work to
mitigate the influence of OC faults on both the torque and the radial force.
In conclusion, this model validation confirms a good agreement between the mea-
surements and the calibrated MEC model. The calibrated MEC model accurately
covers the main nonlinear effects of cogging torque, non-fundamental BEMF, and
magnetic saturation. Furthermore, the PMSM behavior is accurately predicted
both for the HC and the OC fault case. Thus, this model serves as a solid basis
for the model-based calculation of optimal currents in the next section.
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4
Current optimization with radial force

compensation

Parts of this chapter were published in similar form in the author’s previous
publications [1, 2].

In this chapter, a current optimization method with radial force compensation
for multiple open-circuit (OC) fault cases is proposed and derived based on the
calibrated nonlinear magnetic equivalent circuit (MEC) model of the previous
chapters. Its generalized formulation is suitable for several electrical coil intercon-
nections and OC fault cases and applied to multiple OC fault cases in the 1 × 12
and the 4 × 3 configuration. The resulting optimized currents will be utilized as
desired currents for the current controller in Chapter 5. With the proposed current
optimization strategy, the increased number of degrees of freedom (DOFs) of the
multiphase permanent magnet synchronous machine (PMSM) is systematically
used to minimize the radial forces in the event of OC fault cases in addition to
the usual control goals such as torque tracking error and power losses. Real-time
capability is achieved by approximating the optimized currents using Fourier se-
ries approximation, which significantly reduces the computing effort and memory
requirements.

4.1 Current optimization problem formulation

The current optimization is developed to achieve the following three goals:
1. The torque tracking error eτ = τ d − τ is minimized to follow the desired

torque τ d accurately, both for the healthy-circuit (HC) and the multiple OC
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4 Current optimization with radial force compensation

fault case. This, of course, includes the compensation of the torque ripples
due to cogging.

2. The PMSM’s efficiency is maximized by minimizing the ohmic power losses,
i.e., by reducing the sum of the squared coil currents.

3. The compensation of radial forces within the PMSM that occur in OC fault
cases.

Radial force compensation can also be helpful in HC cases if the motor design
entails known but undesired radial forces, e.g., due to rotor eccentricity effects,
cf. Section 2.2.3.
For linear PMSMs, an analytical solution of the well-known maximum torque per
ampere (MTPA) approach in the dq0-reference frame exists [80]. However, this
optimization task is more complex with the given nonlinear and non-sinusoidal
behavior of the investigated PMSM. The optimization problem is formulated as

min
xo

1
2

�
wτ

�
τ d − τ

�2
+ wciT

c,ric,r + wF F 2
r

�
(4.1a)

s.t. DgGc(D̄T
c Hr

ric,r + DT
mutm) + (Gt + DgGcDT

g )utg = 0 , (4.1b)

where (4.1b) describes the quasi-static model of the PMSM, and the radial force
is calculated according to (2.13). By expressing the coil currents by the reduced
coil currents ic = Hr

ric,r and by adapting Hr
r according to the considered electrical

coil interconnection and case, arbitrary multiple OC faults can be considered, cf..
Section 2.3 and Section 2.4. The optimization variables

xo =
�
ic,r

utg

	
(4.2)

consist of the reduced coil currents ic,r and the magnetomotive force (mmf) of the
tree permeances utg. The positive weighting factors wτ , wc, and wF for torque
tracking error, power losses, and radial force compensation are adjusted to scale
the three goals. Obviously, wF = 0 switches off the radial force compensation,
which is meaningful to simplify the optimization in the HC case, where Fr =
0 is automatically fulfilled. It is important to mention that in [37], a similar
optimization problem was formulated, however, without taking into account the
radial forces. Furthermore, the goal τ d − τ = 0 was formulated as an equality
constraint in the optimization problem. Using the optimization problem (4.1)
is beneficial since it allows to specifically weight the different goals and provides
smoother current trajectories. This comes at the expense of torque tracking errors,
which, however, can be kept small by a suitable choice of the weights.
The optimization problem (4.1) is solved for each rotor position and a desired
torque individually. The solution speed is enhanced by using the previous opti-
mization results as initial guess. The dimension of the optimization problem is
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given by the constant size of 28 mmf of the tree permeances and a variable size of
up to nc − 1 coil currents, which depend on the considered electrical interconnec-
tion and the number of OC faults, cf. Section 2.4. The optimization problem (4.1)
is formulated within the CasADi framework [89] and solved with the interior point
optimizer IPOPT [90]. The computation time required for one single optimization
point is about 10 ms (achieved with Matlab 2022b on a computer with 3.7 GHz
Intel Core i7 and 24 GB RAM), far from the real-time capability for a typical sam-
pling (pulse width modulation) frequency of 10 kHz. Therefore, the optimization
problem is solved offline, and an approach to approximate the optimized current
patterns will be presented after the optimization results in the following sections.

4.2 Current optimization results
This section presents the results of the current optimization and discusses the
selection of the three weighting factors for the optimization problem in (4.1).

4.2.1 Cases without radial force compensation
The optimization results of the HC case for constant and dynamic desired torques
are discussed in this section. Here, the radial force compensation is disabled by
wF = 0. In Fig. 4.1, the results for the nominal desired torque in the 4×3 configu-
ration with the rated torque on the left and the corresponding optimized currents
on the right plot are presented. Thereby, only the currents of the first three coils
are shown as all other coil currents are similar due to the geometry. The weights
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Figure 4.1: Results of the optimal torque and currents over the rotor position for
the HC case in the 4 × 3 configuration at the nominal constant desired torque.
Comparison of torque tracking error and power loss weighting.
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4 Current optimization with radial force compensation

for torque tracking and power losses are chosen as wτ = 280 and wc = 0.1 (solid
lines), which is a good compromise between torque tracking accuracy and power
losses, particularly if OC faults are considered. It is further important to men-
tion that the optimal current shape exhibits a significant non-fundamental wave
behavior, which has already been observed and discussed in Chapter 3. A smaller
weighting of the power losses wc (dashed lines in Fig. 4.1) leads to a higher torque
tracking accuracy, which comes close to considering the torque tracking error as an
optimization constraint. As the visible difference in the current waveforms in the
HC case for both weighting factor choices is very small, a smaller weighting of the
power losses would be better at first glance. However, this results in larger losses,
particularly for the OC fault cases, and renders the current patterns less smooth.
This will cause problems for the approximation of the current patterns and the
tracking within the current control loop. Thus, the smaller weighting of the power
losses does not lead to an advantage for all considered cases. The specific values
of the weighting factors wτ = 280 and wc = 0.1 are selected to keep the torque
error below 1 % of the nominal torque τn. Besides, this torque tracking error lies
below the achievable model accuracy for typical variations of the motors in series
production.
In a second optimization scenario, the dynamic torque tracking in the HC case
and a single OC fault case of coil 1 is studied for the 1 × 12 configuration. To
do so, a linear chirp function of the desired torque τ d with respect to the rotor
angle ϕ and an amplitude of twice the nominal torque is selected. The desired
torque trajectory is discretized in Nϕ = 1000 equally spaced rotor position steps
for one mechanical revolution. Figure 4.2 shows the results of the torque, the
torque error, and the currents in the HC and in the OC fault case of coil 1. In the
upper left plot, the desired torque trajectory and the resulting torques for both
cases are depicted. The torque error shown in the lower left plot is small and in
the identical range for both cases. Note that this desired torque pattern changes
rapidly in amplitude and is used to demonstrate the effectiveness of the current
optimization method. In the upper right plot of Fig. 4.2, the shape of the optimal
currents for the HC and the OC fault case are compared for coils 12, 1, and 2.
These currents are of specific interest since the OC fault occurs in coil 1 and coils
12 and 2 are the neighboring coils. The currents of the coils opposed to the fault
6, 7, and 8 are depicted in the lower right plot. Taking first a look at the HC case
(dashed lines), it is evident that identical current patterns are given for the coils
that are rotated by 90◦ at the stator (e.g., coils 1, 4, 7, and 10). This result is
expected and directly related to the symmetry of the motor design. In the OC
fault case of the first coil, the correspondent current ic,1 equals zero. Interestingly,
there are only minor changes in the optimal currents for the adjacent coils 12 and
2. The same holds true also for the currents of coils 6 and 8. In contrast, the
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Figure 4.2: Optimization results without radial force compensation for the HC
case and the OC fault case of coil 1 in the 1 × 12 configuration.

current of the opposite coil ic,7 is significantly changed (increased), which is also
the case for coil 4 and 10 as they have the same current pattern as coil 7. These
coils have to compensate for the OC fault of coil 1 since they are placed in the
same orientation with respect to the permanent magnet field.

4.2.2 Open-circuit fault cases with radial force compensation

Neglecting the radial force in the optimization yields a high torque accuracy but
also high radial forces in the PMSM. Thus, in the next scenario, the influence of
wF , see (4.1), on the radial force compensation is studied in the OC fault case
of coil 1 in Fig. 4.3 in the 1 × 12 configuration. Here, a constant desired torque
τ d = 2τn is chosen. Figure 4.3 shows the results for three weighting factors wF ,
which correspond to no radial force compensation wF = 0, strong radial force com-
pensation wF = 0.1 and a medium radial force compensation wF = 0.001. The
upper right plot shows the radial forces over one electrical revolution of 90◦. As
expected, the pattern of the radial force is repeated twice due to the missing con-
tribution of coil 1. It is also seen that the proposed optimal currents are able
to significantly reduce the amplitude of the radial force by a factor of more than
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Figure 4.3: Comparison of radial forces, torque errors, and current patterns for
different radial force weighting factors wF in the OC fault case of coil 1 in the
1 × 12 configuration.

500 for wF = 0.1. This, of course, has adverse effects on the torque error, de-
picted on the lower right plot, which is slightly increasing. However, this increase
of the torque error remains considerably low and thus will be acceptable for real
operation. A significantly larger impact of radial force compensation occurs in
the required currents, as shown in the plots on the right. Here, the currents for
wF = 0 (no radial force compensation) and wF = 0.1 are depicted in the upper
and lower plot, respectively. It is evident that in order to compensate for radial
forces, significantly higher currents (the maximum current values increase by a
factor of approximately 1.6) are required. Additionally, and in contrast to the case
without radial force compensation, no symmetry is recognizable in the current
patterns.
Based on these results, the question of the correlation between the degree of radial
force compensation and the power losses

Pl = iT
c

�
Rc + RVSI

�
ic (4.3)

arises. This relation is depicted in Fig. 4.4 for different radial force weighting
factors wF , where the power losses Pl are averaged over one full rotation of the rotor
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and related to the power losses of the motor without radial force compensation
Pl,0 = Pl (wF = 0). It is interesting to see that the significant increase of the current
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Figure 4.4: Rated average power losses Pl for different weighting factors wF as a
function of the maximum values of radial forces in the OC fault case of coil 1 for
the 1 × 12 configuration.

amplitude of specific coils only brings about a very minor increase of the overall
power losses. Thus, strong radial force compensation is possible if the maximum
currents of the inverter and the coils are not exceeded. Figure 4.3 shows that it
is easily possible to control the degree of radial force compensation by means of
wF . Therefore, it is possible to choose the degree of radial force compensation
according to the motor’s operating point.

4.3 Approximation for real-time application
A real-time solution for the optimized current patterns is given in this section.
Since the required optimization time is far from real-time capability, cf. Section 4.1,
the solution of the current optimization is approximated. Simply saving the offline
solutions of the current optimization obtained by (4.1) would result in a large num-
ber of current patterns, which require significant memory on a real-time system.
Therefore, in this section, a Fourier series approximation of the optimal current
patterns is proposed to reduce the memory requirements. The approximated cur-
rents are given by

id
c

�
ϕ, τ d

�
=

nh 
k=1

�
ck

�
τ d

�
cos (hknpϕ) + sk

�
τ d

�
sin (hknpϕ)

�
, (4.4)

with the desired torque-dependent cosine and sine coefficients vectors ck

�
τ d

�
and

sk

�
τ d

�
, respectively. The relevant harmonics are defined in the harmonic order
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vector h, and nh indicates its length. The main advantage of this approximation
is that only the coefficient vectors ck and sk are needed to define the optimal
current reference signals. They can be efficiently stored in lookup tables (LUT),
minimizing computation time and memory space. As briefly discussed, the optimal
current patterns differ for different scenarios, ranging from HC to single OC, double
OC, and triple OC fault cases for the 1 × 12 and 4 × 3 configuration.
The number of physically different OC fault cases is given by the binomial coef-
ficients with the number of coils nc over the number of OC faults nOC, resulting
in 12, 66, and 220 different cases for the single, double, and triple OC fault case,
respectively. However, due to the rotor symmetry, only the relative position of
the faulty coils to each other is relevant for the different fault scenarios, which
reduces the number of relevant fault cases. In particular, double OC fault cases in
one three-phase system of the 4 × 3 configuration lead to an uncontrollable three-
phase system due to Kirchhoff’s current law. Therefore, this type of fault case is
similar to a triple OC fault case. Additionally, for one three-phase system in the
4×3 configuration, only the distinction between the central coil and edge coils has
to be considered due to the rotor symmetry, which further reduces the different
fault cases. The disconnection of one three-phase system in the 4×3 configuration
is considered by the triple OC fault case of adjacent coils. Further triple OC fault
cases are not covered in this work, although all presented methods are generalized
and suitable for the description of more than triple OC fault cases. The resulting
number of unique fault cases is listed in Tab. 4.1.
To generate the required LUT, the current optimization problem of (4.1) is solved
for all unique fault scenarios. For each scenario, torque demands of τ d/τn =
−3, −2.75, . . . , 3 for the rotor position values ϕ = 1◦k/np, k = 0, 1, . . . , 360 are ap-
plied. The weighting factors are selected so that the torque tracking error is kept
below 1 % of the nominal torque and that a good suppression of radial forces is ob-
tained, see the discussion in Section 4.2. The weighting factors wτ = 280, wc = 0.1,
and wF = 0.002 are suitable to achieve these goals. A fast fourier transform (FFT)
analysis is performed on the optimal current patterns to identify the relevant har-
monics for the approximation. As expected, the relevant harmonic orders mainly
depend on the considered fault cases, and considering higher harmonics reduces
the current approximation error. However, the current approximation error is not
directly transferable to the resulting torque errors and radial forces, which are es-
sential for the performance of the PMSM. Therefore, further analysis is performed
by evaluating the influence of the chosen harmonic orders on the following errors
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Table 4.1: Unique fault cases for HC, single OC fault, double OC fault, and triple
adjacent OC fault cases in the 1 × 12 and the 4 × 3 configuration. The table
also contains the resulting DOFs (independent currents) and the occurrence of
unbalanced radial forces.

HC - 11 - 8 no

1 10 1 7 yes

2 7 yes

1,2 9 yes

1,3 9 yes

1,4 9 1,4 6 yes

1,5 9 1,5 6 yes

1,6 9 1,6 6 yes

1,7 9 1,7 6 no

2,4 6 yes

2,5 6 yes

2,7 6 yes

2,8 6 no

3,4 6 yes

3,7 6 yes

Triple adjacent OC 1,2,3 8 1,2,3 6 yes

Case
1 × 12 4 × 3 Stator

coils

Unbalanced
radial
forces

Faulty
coils DOFs Faulty

coils DOFs

Single OC

Double OC
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for the torque and radial forces
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These errors are calculated for different current approximations id
c , defined by the

chosen vector of harmonics h. The results for the current approximation utilizing
different harmonic orders for HC, single, double, and triple adjacent OC fault cases
with radial force compensation are visualized in Fig. 4.5 for the 4×3 and in Fig. 4.6
for the 1 × 12 configuration.
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Figure 4.5: Simulated approximation error for the torque and radial forces of the
4 × 3 configuration as a function of the harmonic orders.

Within these plots, the digits in the label OC relate to the faulty coils. E.g., OC17
describes an open circuit fault of coils 1 and 7. Furthermore, the numbers in the
legend give the harmonics considered in h for the optimal current approximation.
The results show that considering only the fundamental wave leads to significant
errors in all cases, even for the HC case. The additional consideration of the
fifth and seventh harmonic significantly reduces the torque error for the HC case.
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Figure 4.6: Simulated approximation error for the torque and radial forces of the
1 × 12 configuration as a function of the harmonic orders.

However, it improves neither the torque nor the radial force compensation in OC
fault cases. Here, taking into account the third harmonics is essential to improve
accuracy. Adding higher harmonics yields a slight increase in torque and radial
force accuracy, and for harmonics up to the 19th, no further improvement of torque
or radial force accuracy can be achieved. Similar conclusions are also valid for
the 1 × 12 configuration. Considering these results, the harmonic orders hHC =
[1, 5, 7] for the HC case and hOC = [1, 3, 5, 7, 9] for all OC cases constitute a
good compromise between approximation accuracy and the number of required
harmonics.

4.3.1 Approximation results
Given the specified required current harmonics, the current approximation results
are analyzed in the following. In OC fault cases, the performance deterioration
decreases the torque and leads to torque oscillations when the HC current patterns
are maintained, cf. Fig. 3.7. Now, when applying the current patterns optimized
for the OC fault cases, either the torque can be maintained if higher current
amplitudes are available or if the current amplitudes are the limiting factor, the
available torque is reduced [29]. The latter scenario is used in the following to
give an overview of the challenges occurring in different OC fault cases when the
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current amplitudes are limited to the nominal current. The achieved torque values
under this condition are compared in Fig. 4.7 for cases with (wF ̸= 0) and without
(wF = 0) radial force compensation in both the 4×3 and the 1×12 configuration.
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Figure 4.7: Comparison of simulation results for torque reduction at equal current
amplitudes with and without radial force compensation in the 4×3 and the 1×12
configuration.

In OC fault cases, the resulting torque is decreased by a minimum of over 25 %
compared to the HC case for both configurations. In single OC fault cases (OC1
and OC2), the reduced torques are similar without radial force compensation but
favor the 1 × 12 configuration when considering radial force compensation. The
largest torque reductions are visible in double OC fault cases when the affected
coils are shifted by multiples of 90◦ (coils 1 and 4, coils 1 and 7, coils 2 and 8).
Similar or higher torques are achievable for all double and the triple OC fault cases
in the 1 × 12 configuration. The lowest achievable torques result in the double OC
fault cases of coils 1 and 4, and coils 3 and 4 in the 4 × 3 configuration. Therefore,
these cases are analyzed in more detail.
In Fig. 4.8a, the approximation results for the 4 × 3 configuration in the OC fault
case of coils 1 and 4 are studied since this case shows the largest approximation
error, see Fig. 4.5. In addition to the case with radial force compensation, the
case without radial force compensation (i.e., for wF = 0) is shown. The plot of
the resulting torques gives similar errors in the range of approximately 2 % of the
nominal torque. This slightly increased error compared to the optimal solution in
Fig. 4.1 can be attributed to the current pattern approximation. Thus, a significant
reduction of the radial forces can be achieved without a relevant influence on the
torque tracking accuracy. The corresponding current patterns for the case without
and with radial force compensation are depicted on the top and lower right side of
Fig. 4.8a. It is visible that the uncompensated radial force case’s current patterns
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are almost similar for coils shifted by 90◦. The current amplitudes of coils 7 and
10 are higher due to the failure of their opposite coils.
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Figure 4.8: Simulation results for the double OC fault case of coils 1 and 4 in a)
the 4 × 3 and b) the 1 × 12 configuration. The cases without (wF = 0) and with
(wF ̸= 0) radial force compensation are compared.
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In contrast, no symmetry is recognizable in the case with radial force compen-
sation. Additionally, the currents’ amplitude is higher for the 12th coil, which
belongs to a healthy three-phase system but is adjacent to faulty coil 1. Finally,
the current patterns for the case with radial force compensation show slightly
faster changes than those without. Tracking these optimal current patterns by a
current controller can be challenging.
The same is studied for the 1 × 12 configuration in Fig. 4.8b. While the torque
error is similar to the 4 × 3 configuration, the radial force compensation is much
more effective. Here, the resulting radial force is reduced to about 25 % of the
radial force achieved in the 4 × 3 configuration. This is an interesting result since
the maximum current amplitude is smaller than for the 4 × 3 configuration.
A similar scenario is analyzed, now for the double OC fault case of coils 3 and 4 in
the 4 × 3 configuration in Fig. 4.9a and in Fig. 4.9b for the 1 × 12 configuration.
Again, low torque errors are given for all cases in the range of approximately 2 %
of the nominal torque. The radial forces are decreased in both cases without radial
force compensation compared to the double OC fault case of coils 1 and 4. The
radial force compensation yields similar amplitudes for both configurations which
are slightly increased compared to the previous case. The symmetries within the
current patterns are only visible in the case without radial force compensation,
where the additional constraints due to Kirchoff’s current law are given by in the
4 × 3 configuration within coils 1 and 2, and 4 and 5. Again, when considering the
radial force compensation, no symmetry but fast changes are observable within the
current patterns. In addition, the current amplitudes in the 1 × 12 configuration
are lower in this case.
In conclusion, with the current optimization, the defined goals can be accurately
achieved for all scenarios, and only minor deviations in the acceptable range oc-
cur due to the current approximation procedure. Furthermore, both presented
approximation scenarios lead to the conclusion that the additional DOFs of the
1 × 12 configuration are beneficially utilized in the OC fault cases.
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Figure 4.9: Simulation results for the double OC fault case of coils 3 and 4 a) in
the 4 × 3 and b) the 1 × 12 configuration. The cases without (wF = 0) and with
(wF ̸= 0) radial force compensation are compared.
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5
Fault-tolerant control

Parts of this chapter were published in similar form in the author’s previous
publication [2].

This chapter is devoted to the fault-tolerant control (FTC) strategy of the mul-
tiphase permanent magnet synchronous machine (PMSM). Given the (approx-
imated) optimal current patterns, derived in the previous chapter, the task of
the FTC strategy is to track the desired currents as accurately as possible. The
basic setup of the proposed FTC strategy is independent of the specific electric
circuit configuration, which allows the application of a similar FTC strategy for
the healthy-circuit (HC) and open-circuit (OC) fault cases. The current tracking
challenges arise from the higher harmonics within the desired current patterns,
resulting in fast-changing current amplitudes and unknown disturbances, mainly
due to the nonlinear voltage source inverter (VSI) behavior. To overcome these
challenges, the FTC strategy consists of a model-based feedforward part (FF), pre-
sented in Section 5.1.2, a feedback controller (PI), given in Section 5.1.3, and an
iterative learning control (ILC) part, described in Section 5.1.4. For the derivation
of the FTC strategy, it is assumed that the voltages vc of the 12 stator coils are
the (virtual) control input. Thereby, only the available degrees of freedom (DOFs)
of the coil currents can be controlled, which are reduced in OC fault cases. An
adaptive structure considers this aspect for the feedback controller. The mapping
of the coil voltages to the real control input, i.e., the duty cycles δ of the 12
half-bridges of the VSI, is presented in Section 5.1.5. The block diagram of the
proposed control strategy is depicted in Fig. 5.1. Finally, the proposed FTC strat-
egy is compared with a state-of-the-art control strategy including a proportional
integral resonant (PIR) controller.
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Figure 5.1: Block diagram of the proposed FTC strategy.

5.1 Fault-tolerant control strategy

5.1.1 Current reference signals
The approximated optimized currents derived in Section 4.3 are represented by
the Fourier coefficients stored in lookup tables (LUTs) for a number nτ of desired
torque values and all relevant electrical configurations and fault cases. The calcu-
lation steps on the real-time system result in the known time delay ∆Td = 2Ts,
with the sampling time Ts = 100 µs, from the measurement of the rotor position ϕ
to the output of the corresponding control input. This time delay is approximately
compensated by predicting the rotor position in the form

ϕFF = ϕ + ω∆Td , (5.1)
where the assumption that the rotor speed ω remains constant within the time
delay is used. This prediction is essential to accurately map the control voltages
(particularly of the feedforward control part) to the actual rotor position of the
PMSM.
With this delay compensation, the desired currents and the desired current deriva-
tives with respect to the rotor position are given according to (4.4) by

id
c

�
ϕFF, τ d

�
=

nh 
k=1

�
ck

�
τ d

�
cos

�
ϕFF

h

�
+ sk

�
τ d

�
sin

�
ϕFF

h

� �
(5.2a)

∂id
c

�
ϕFF, τ d

�
∂ϕ

=
nh 

k=1
hk

�
− ck

�
τ d

�
sin

�
ϕFF

h

�
+ sk

�
τ d

�
cos

�
ϕFF

h

� �
(5.2b)

with ϕFF
h = hknpϕFF. Advantageously, the derivative does not require additional

computing time, as the sine and cosine terms must also be evaluated for the desired
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currents. The Fourier coefficients are linearly interpolated to obtain the desired
currents for the actual desired torque τ d.

5.1.2 Feedforward part
Using the model knowledge, the feedforward voltages are derived from Faraday’s
law of induction (2.21)

vc =
�
Rc + RVSI

�
ic + d

dt
ψc . (5.3)

The first part on the right side of (5.3) is attributed to the resistance of the stator
coils and the VSI and is taken into account by

vR
c =

�
Rc + RVSI

�
id
c (5.4)

using the desired optimal currents id
c = id

c(ϕFF, τ d). The second part can be further
evaluated to

d
dt

ψc = ∂ψc

∂ϕ
ω + ∂ψc

∂id
c

d
dt

id
c , (5.5)

which are attributed to the BEMF and stator coil inductances.
Taking a closer look at the back-electromotive force (BEMF) (i.e., the first term
of (5.5)), the derivative of the flux linkages with respect to the rotor position must
be evaluated at the desired current and rotor position, which is computationally
demanding. To simplify calculation in this step, the BEMF is approximated by
the BEMF at id

c = 0. To do so, the flux linkages are calculated for ic = 0 by
rearranging the first set of equations in (2.23b) to

ψc

"""
ic=0

= D̄cGc

�
DT

mutm + DT
g utg

�
. (5.6)

The values of ψc at rotor positions ϕ = [0◦, ∆ϕ, . . . , 360◦/np], with a rotor position
increment of ∆ϕ = 0.16◦, are approximated by a Fourier series

ψ̆c (ϕ) =
3 

k=1

�
cψ,k cos (hψ,knpϕ) + sψ,k sin (hψ,knpϕ)

�
. (5.7)

The choice of hψ = [hψ,1, hψ,2, hψ,3]T = [1, 5, 7]T yields an root-mean-square ap-
proximation error below 0.14 % of the maximum flux linkage value for all coils.
The feedforward BEMF voltages are then calculated by

vBEMF
c = ω

∂ψ̆c

�
ϕFF

�
∂ϕ

. (5.8)
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Taking into account the definition of the desired currents, the second part of (5.5)
can be expanded as

∂ψc

∂id
c

d
dt

id
c = ∂ψc

∂id
c

�
∂id

c

∂ϕ
ω + ∂id

c

∂τ d

d
dt

τ d

�
. (5.9)

The following approximations are meaningful:
1. The user or a superordinate control loop defines the desired torque τ d. Thus,

typically, no information on the time derivative of the desired torque is avail-
able, and it makes sense to use dτ d/ dt = 0 within the feedforward part.

2. Although ∂ψc/∂id
c (i.e., the inductance matrix) can be calculated similarly

to the BEMF by using the desired currents in the model (2.23b), this calcu-
lation is time-consuming and thus not feasible for real-time implementation.
To analyze the inductance matrix of the PMSM, ∂ψc/∂id

c is evaluated offline
for various coil currents and rotor positions. The results show a dominant
self-inductance Lc,s = ∂ψc,k/∂ic,k and a small symmetric coupling inductance
to the adjacent coils Lc,c = ∂ψc,k±1/∂ic,k. Both self- and coupling inductances
show almost no current amplitude dependency but a rotor position depen-
dency. Only the mean value of the self-inductance Ls = L̄c,s is used to keep
the real-time implementation simple.

With these approximations, the overall simplified second part of (5.5) reads as

vL
c = Lsω

∂id
c

�
ϕFF, τ d

�
∂ϕ

, (5.10)

where the desired current derivative with respect to the rotor position is given by
(5.2a). In total, the feedforward voltages vFF

c are composed of the three terms
given by

vFF
c = vR

c + vBEMF
c + vL

c . (5.11)
derived from the approximated terms for (5.3) and (5.5).
It has to be noted that this approach covers the dominant parts of the feedfor-
ward control and renders low computational costs. Feedback control is required
to reduce the influence of the errors introduced by these simplifications and to
compensate for model-plant mismatch, as described in the subsequent sections.

5.1.3 PI controller

The PI controller is derived by applying vc = vFF
c + vPI

c , with the feedforward
voltages vFF

c according to (5.11) to (2.21), which gives∂ψc

∂ϕ
− ∂ψ̆c

∂ϕ

 ω + ∂ψc

∂ic

d
dt

ic − Ls
∂id

c

∂ϕ
ω =

�
Rc + RVSI

�
e + vPI

c , (5.12)
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with e = id
c − ic. Assuming that the error in the BEMF is small and using a

similar approximation of the inductance matrix ∂ψc/∂ic ≈ diag[Ls, . . . , Ls] as in
the feedforward part results in the simplified error dynamics

Ls
d
dt

e = −
�
Rc + RVSI

�
e − vPI

c , (5.13)

which is the basis for the design of the PI controller.
It was discussed in detail in Section 2.4 that due to the electric interconnection and
possible OC faults, not all coil currents can be chosen independently. Therefore,
the PI controller is only applied to the independent (controllable) currents. The
currents and voltages are transformed by left multiplication of (5.13) with Hl

r (see
Section 2.4), yielding the reduced current error er = id

c,r − ic,r, the transformed
voltage vPI

c,r, and transformed simplified error dynamics

Ls
d
dt

er = −
�
Rc + RVSI

�
er − vPI

c,r . (5.14)

The PI controller

vPI
c,r = −

�
Rc + RVSI + Lsλp

�
er − Lsλi

�
er dt , (5.15)

with the controller parameters λp > 0 and λi > 0, guarantees exponential stability
of the simplified error dynamics. The tuning of the controller parameters is based
on pole assignment.

5.1.4 Iterative learning control (ILC)
Accurate current tracking is required for the optimal operation of the PMSM.
The primary challenge is the high relevance of harmonics up to order 9 of the
optimal current patterns for the OC fault cases. Due to the PI controller’s limited
bandwidth, it is impossible to completely suppress current errors resulting from
model simplifications and nonlinear VSI effects, particularly at high rotor speeds.
Therefore, an ILC part is added as a third part of the control strategy to reduce
the current tracking error further.
ILC strategies have been recently investigated in the literature for the control
of PMSMs to reduce unknown or unmodeled periodic effects. This strategy is
commonly used for compensating nonlinear effects such as cogging torque and
non-fundamental wave behavior. Thereby, different error signals are considered
to learn the required adaptations which will further decrease the error, i.e., the
speed error is investigated in [91–93], the torque error is considered in [58, 94–98]
and current errors are regarded in [32, 60, 92]. Advantageously, the rotor position
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can be utilized as a repetitive learning grid for drive applications, see [60, 94–96,
99], in which the proposed ILC strategies consist of proportional learning gains
including forgetting factors to vanish the influence of older measurement signals.
However, the available system knowledge is not used to design the ILC strategies.
In contrast, the presented ILC in this work utilizes a stochastic optimal, model-
based learning law, representing a regularized system inversion, see e.g., [100],
according to the expected signal-to-noise ratio. The stochastic approach proposed
in [101] is considered to suppress the current errors down to almost the current
sensor noise level. The main idea is to utilize the periodicity of the current patterns
with respect to the rotor position to learn the required additional coil voltages vILC

c ,
i.e., vc = vFF

c +vPI
c +vILC

c , such that the current error e = id
c − ic is minimized. An

equally spaced grid of the rotor positions over a full rotation is applied. Decoupled
error dynamics similar to (5.13) are assumed to ensure real-time capability, allow-
ing to derive the ILC law for each coil individually. The first step is to derive the
ILC learning law based on a simplified representation of the closed-loop system
consisting of the electric circuit model

GP (s) = 1
(sLs + Rc + RVSI) (5.16)

and the PI controller

RPI (s) =
�
Rc + RVSI + Lsλp

�
+ Lsλi

s
, (5.17)

with the complex Laplace variable s. The ILC learning filter for each coil then
reads [101]

LILC (s) = S (s) G (−s)
G (s) S (s) G (−s) + σ̄ i

, (5.18)

with the ILC plant model

G (s) = GP (s)
1 + RPI (s) GP (s) , (5.19)

the mean variances of the current sensor’s noise σ̄i, and the input error power
spectral density (PSD) function S (s), chosen as

S (s) = V

(1 + Ts) (1 − Ts) , (5.20)

with low-pass characteristics tunable by the gain V and the time constant T .
The non-causal impulse response of (5.18) is obtained using the inverse Fourier
transform in the form LILC (t) = F−1

�
LILC (Iω)

�
. The required filter coefficients
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of a finite-impulse response (FIR) filter approximation with a fixed filter length of
2m + 1 = 81 steps (m = 40) are given by

wILC = Ts


LILC (−mTs)

...
LILC (mTs)

 , (5.21)

where LILC (t) is evaluated at the time steps t = (−m, −m+1, . . . , m) Ts. Applying
this filter to the current error ej of coil j = 1, . . . , 12 yields the filtered error

eILC
j,k−m =

�
ej,k−2m . . . ej,k−1 ej,k

�
wILC . (5.22)

It is important to note that this non-causal filtering is possible since the ILC
operates from one rotation of the PMSM to the next, executing repetitively the
update process of the corresponding filtered current errors stored in a ring buffer
at the time k − m.
In the second step, a learning grid of rotor positions with a grid size of ∆ϕ =
0.025◦ within one mechanical revolution is defined. The filtered error eILC

j,k−m is then
mapped to the closest grid position ∆k by rounding the corresponding measured
rotor position value ϕk−m to the nearest grid index value. The update process of
the ILC coil voltage vector V at the k-th index value reads as

V ILC
κ+1,j (∆k) = V ILC

κ,j (∆k) + eILC
j (∆k) , (5.23)

where eILC
j (∆k) = eILC

j,k−m (ϕk−m) is the filtered current error at the corresponding
grid index ∆k for the rotor position ϕk−m. The ILC iteration index is indicated
by κ.
Remark 2. The update process of (5.23) is only executed if a new value for the rotor
position index ∆k is provided for two consecutive update steps in the time domain
∆k ≠ ∆k−1. This prevents the ILC from learning at a standstill. Due to the grid
size choice, at rotational speeds above n > ∆ϕnp/ (6Ts) = 166.66 rpm, the index
values can skip one or several neighboring values. In this case, a linear interpolation
between the actual and the last measured index positions provides the update steps
of the skipped index values. Additionally, the learning of the ILC is stopped for
one iteration if the desired torque change is higher than dτ d/ dt > 2000τn s−1.
This is done to avoid learning the fast transient response, which is irrelevant to
the regular ILC operation.

Finally, the additional coil voltage vILC
j,k of the ILC is given by

vILC
j,k = V ILC

j

��
ϕILC

k

∆ϕ

�
, (5.24)

69



5 Fault-tolerant control

using the learning grid index value obtained at the predicted rotor position

ϕILC
k = ϕk + ωk∆TI , (5.25)

which is given by the ILC’s time delay ∆TI analogously to (5.1). This proce-
dure is executed for each stator coil j, resulting in the overall vector vILC

c =�
vILC

1 , . . . , vILC
12

�T
. The overall ILC concept is visualized in Fig. 5.2.
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Figure 5.2: Rotor position-based ILC concept for one coil.

5.1.5 Terminal voltage mapping
In the final part of the control strategy, the coil voltages vc are mapped to the
terminal voltages vt. The feedforward parts vFF

c and vILC
c are defined for all 12

coils, while the PI controller part is defined for the reduced set of coil voltages
vPI

c,r. Thus, it is required to consider OC faults for the feedforward parts, and the
reduced voltages must be mapped to the terminal voltages. For this, it is necessary
to define the average isolated neutral point voltages vNP against ground, cf. Fig. 2.5
and Fig. 2.4. In the literature, the isolated neutral point potential is commonly
set to half the dc-link voltage to enable the largest coil voltage operational area
[102]. This means that the voltages vNP = 0.5Vdc are used. The mapping from
coil voltages to terminal voltages is then given by

vt = Hf

�
vFF

c + vILC
c

�
+ Hr

rvPI
c,r + vNP . (5.26)

Thereby, Hf = I corresponds to the identity matrix in the HC case. In the OC
fault case, the diagonal entry corresponding to a faulty coil f is replaced by zero.
This means only the healthy coil voltages’ feedforward and ILC parts are added to
the terminal voltages. The reduced voltages of the PI controller vPI

c,r are mapped

70



5.1 Fault-tolerant control strategy

through the reduced matrices described in Section 2.4 to the terminal voltages. As
the real control inputs are the terminal duty cycles δ, they are then expressed by

δ = (Vdc)−1 vt , (5.27)

with the dc-link voltages of (3.1).

5.1.6 Proportional integral resonant (PIR) controller
To compare the proposed control strategy with scientific state-of-the-art con-
trollers, a proportional integral resonant (PIR) control strategy is designed as
described in [34, 103–105]. The PIR controller comprises a PI controller identical
to Section 5.1.3 and the resonant (R) controller. This allows to systematically
consider the higher harmonics of the electrical rotor angular frequency in the cur-
rent error e = id

c − ic. Similar to the PI controller, the R controller is designed for
reduced coil currents, which yields the PIR control voltages vPIR

c given by

vPIR
c = Hr

r

�
vPI

c,r + vR
c,r

�
(5.28)

with the resonant part vR
c,r.

The design of the R controller is inspired by the method proposed in [103], which
uses a state-space representation for the harmonic order h of the resonant part for
the reduced current j

d
dt

xh =
�

0 −hnpω
hnpω 0

	
xh +

�
1
0

	
er,j (5.29a)

yh =
�
KR

h 0
�

xh , (5.29b)

where KR
h is the controller gain. In this work, an equivalent cosine-sine represen-

tation is proposed in the following form

d
dt

cR
h = KR

h cos (hnpϕ) er (5.30a)
d
dt

sR
h = KR

h sin (hnpϕ) er (5.30b)

vR
c,r,h = cR

h cos (hnpϕ) + sR
h sin (hnpϕ) , (5.30c)

with the coefficient vectors cR
h and sR

h for cosine and sine for the h-th harmonic
order. The equivalence of (5.29) and (5.30) is derived in Appendix A.1. The
advantage of this representation is that the rotor position measurement is directly
used instead of the rotor angular frequency. Furthermore, each trigonometric
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Figure 5.3: Block diagram of the PIR control strategy.

function has to be evaluated only once within each step for all current errors. Thus,
the computational costs are low. In contrast to [103], the cosine-sine representation
does not involve divisions.
The overall R controller voltages are given as the sum of several R controller
voltages in the form

vR
c,r =

nR
h 

k=1

�
cR

k cos
�
hR

k npϕ
�

+ sR
k sin

�
hR

k npϕ
��

, (5.31)

with the specific harmonic orders hR = [1, 2, 5, 7] and hR = [1, 2, 3, 5, 7, 9] for the
HC and OC case, respectively. The corresponding length of hR is given by nR

h .
It has to be noted that the second harmonic component (which is not present
in the approximation of the optimal current patterns) is added to correct the
errors resulting from the approximated inductances, cf. Section 5.1.2. Although
the specific form of implementation is new, the method of the R controller is state
of the art in the literature. The PIR controller’s resulting overall structure is
shown in Fig. 5.3.

5.2 Control strategy results
In the following sections, the results of the proposed FTC strategy in post-fault
situations are achieved by measurements on the test stand, cf. Section 3.1. With
several scenarios, the proposed FTC strategy is extensively evaluated, and its
performance compared to the PIR reference control strategy in the HC case, see
Section 5.2.1. The OC post-fault performance of the proposed FTC strategy is
evaluated in Section 5.2.2 for selected single, double, and triple OC fault cases.
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The overall performance comparison of both the 4×3 and the 1×12 configuration
are given in Section 5.2.3.

5.2.1 Healthy-circuit case
In the first scenario, the control strategy is validated for the HC case in the 4 × 3
configuration. First, the ILC part is omitted to show the effectiveness and limits
of the feedforward control part and the PI feedback controller. Figure 5.4 presents
the measurement results for various constant desired torque values up to twice
the nominal torque τn. The PMSM is rotated by the IM at a constant speed of
n = 60 rpm on the left and n = 720 rpm on the right side of Fig. 5.4. For the slow
speed, good torque tracking accuracy can be achieved, which is assessed by the
measurements of the torque sensor (meas.) and the model-based calculated torque
(model). A high current tracking accuracy can be seen for the currents depicted
in the third row and the current errors in the fourth row. The resulting terminal
voltages are depicted in the last row of Fig. 5.4.
In contrast, the torque tracking errors are up to ten times higher at higher speeds,
as depicted on the right side. Note that the torque sensor measurements are
disturbed by the mechanical vibrations on the test stand at higher speeds and,
thus, are not depicted. The higher torque tracking error is attributed to the
significant current tracking errors. The PI feedback controller cannot suppress
the fast-changing errors, which also explains the motivation for incorporating the
ILC into the proposed control strategy. Finally, the amplitude of the terminal
voltages is already close to its maximum value at n = 720 rpm. Thus, operation at
significantly higher speeds is impossible for the given setup without field weakening
control, which is not part of the proposed FTC strategy.
As described in Section 5.1.4, the ILC is introduced to reduce the current tracking
error at high rotational speeds of the motor. The PIR control is also motivated
in the literature by the need to reduce the current tracking error. Therefore, the
following scenario compares the proposed ILC strategy with the PIR reference
control strategy in the HC case for the 4 × 3 and the 1 × 12 configuration at
n = 720 rpm. Thereby, three dynamic torque trajectories are studied: a step up
to the nominal torque value and back to zero, a ramp up and down to twice the
nominal torque value with a torque slope of dτ d/ dt = 2τn s−1 and a chirp signal
with an amplitude of half the nominal torque and an exponential increase of the
frequency from 0.1 Hz to 50 Hz. The results depicted in Fig. 5.5 for the 4 × 3 and
in Fig. 5.6 for the 1 × 12 configuration show that a torque tracking error, similar
to the low-speed in Fig. 5.4, is achieved in steady state and for the ramp case.
Note that the proposed FTC strategy results in approximately half of the PIR
control strategy’s current tracking error in steady state, which is also reflected in

73



5 Fault-tolerant control

−2
−1

0
1
2

τ
/τ

n

FF+PI at n = 60rpm FF+PI at n = 720rpm

model
meas.
des
c1
c2
c3

−0.2
−0.1

0
0.1
0.2

� τ
d

−
τ

� /τ
n

−1
−0.5

0
0.5

1

i c
/i

n

−0.2

−0.1

0

0.1

0.2

� id c
−

i c
� /i

n

0 90 180 270 360
0.2

0.4

0.6

0.8

ϕ in ◦

v t
/v

n

0 90 180 270 360
ϕ in ◦

Figure 5.4: Measurement results of the feedforward and PI controller for the HC
case in the 4 × 3 configuration: n = 60 rpm on the left side and n = 720 rpm on
the right side.
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Figure 5.5: Measurement results of the FTC strategy and the reference PIR control
strategy for the HC case in 4 × 3 configuration at high speeds n = 720 rpm.

a smaller torque tracking error. In the third plot rows, id
c − ic indicates all twelve

current tracking error waveforms displayed one above the other. In the dynamic
changes of the desired torque, both control strategies give approximately similar
results, with slightly more consistent torque tracking for the PIR controller. This
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Figure 5.6: Measurement results of the FTC strategy and the reference PIR control
strategy for the HC case in 1 × 12 configuration at high speeds n = 720 rpm.

is because the learning of the ILC lags behind the fast desired torque changes.
Only minor deviations in the results are noticable comparing both configurations
in Fig. 5.5 and Fig. 5.6.
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A detailed view of the transient response of the current errors after a step in the
desired torque in Fig. 5.5 is provided in Fig. 5.7 for the 4×3 configuration. As the
transient of the desired torque is higher than the threshold value for learning in
the ILC, the period after the step is excluded from learning. Therefore, the current
tracking error is slightly larger than for the PIR right after the step. However, it
can be observed that after the first iteration of the ILC, the same magnitude of
current error as for the reference control strategy is achieved and further reduced
for each iteration. After 10 iterations of the ILC, the variance of the remaining
current errors stays below six times the noise level, decreasing down to two times
the noise level at steady state, see the time interval 0.9 s to 1 s in Fig. 5.7. For
comparison, the achieved variance with the PIR control strategy stays below 50
and 30 times the noise level in the same periods.
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Figure 5.7: Detailed current error plot for the torque step case depicted in Fig. 5.5.

5.2.2 Multiple open-circuit post-fault cases
In this section, measurement results for OC fault cases are presented. Therein,
the proposed FTC strategy is utilized for all OC fault cases. The PIR reference
control strategy cannot be employed since it tends to instability at high speeds in
the case of OC faults, which can only be avoided by decreasing the control gains.
This, however, entails a huge loss of accuracy.
The influence of the order of the current harmonic order approximation is vali-
dated in Fig. 5.8. Constant desired torque values τ d = [−1, −0.75, . . . , 1]τn are
tested, considering the specified harmonic orders in the 4 × 3 and the 1 × 12 con-
figuration for double OC fault cases of coils 1 and 4, and coils 3 and 4. The bars
indicate the errors described in (4.5). The results presented in Fig. 5.8 show that
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the errors of the measurements are larger than in the simulation, which can be
attributed to the inherent model errors, neglecting the VSI in simulation, and the
measurement noise. However, a perfect match between the simulation results and
the measurements on the test stand is achieved concerning predicting the influ-
ence of the harmonic orders on the achievable reduction in the torque error and
the radial force.
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Figure 5.8: Simulated and measured current approximation errors for the torque
(upper plots) and the radial forces (lower plots) in double OC fault cases of coils
1 and 4, and coils 3 and 4 of the 4 × 3 configuration on the left and the 1 × 12
configuration on the right plot column.

The single OC fault case of coil 1 is investigated for a torque step up to the nominal
torque value and down to zero at high speed n = 720 rpm in Fig. 5.9 for the 4×3 and
the 1 × 12 configuration. Thereby, the comparison of the cases with (wF ̸= 0) and
without (wF = 0) radial force compensation is included. The torque errors are in a
similar range for both configurations with and without radial force compensation,
and in comparison to the HC case, cf. Fig. 5.5 and Fig. 5.6, which proves the
feasibility of the optimal current patterns and the proposed control strategy. This
is due to the low current errors, especially at steady state. The differences occur in
the resulting radial forces and power losses. In the 4 × 3 configuration, the radial
force amplitudes are approximately 28 % higher than in the 1 × 12 configuration
without radial force compensation. However, the radial forces can be significantly
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Figure 5.9: Measurement results for the single OC fault case of coil 1 in the 4 × 3
and the 1×12 configuration for uncompensated radial forces (blue) and with radial
force compensation (red) at speed n = 720 rpm.

79



5 Fault-tolerant control

decreased with the FTC, including radial force compensation by over 90 % for both
cases. The power losses are slightly higher for both configurations in the cases with
radial force compensation. By comparing both configurations, it turns out that
the power losses in the 1 × 12 configuration with radial force compensation are
below the 4 × 3 configuration without radial force compensation.
Next, the double OC fault case of coils 1 and 4 is investigated for dynamic changes
in the desired torque in Fig. 5.10. Results with (wF ̸= 0) and without (wF = 0)
radial force compensation are studied for both the 4 × 3 and the 1 × 12 configu-
ration at high-speed operation n = 720 rpm. The torque errors and the current
tracking accuracy are almost identical for the case with and without radial force
compensation. Again, the torque error magnitude is in the same range as for the
HC case, cf. Fig. 5.5 and Fig. 5.6. As expected, the radial forces are significantly
higher than in the single OC case. This is attributed to the fact the electrical coil
symmetry is given for coils 1, 4, 7, and 10, and by the failure of coils 1 and 4, only
coils 7 and 10 are available for control. Moreover, a significant reduction of the
radial forces by more than 60 % is achieved for the 4 × 3 configuration. The 1 × 12
configuration exhibits an even better result with a reduction of the radial forces by
over 90 %. It is interesting to notice that the power losses of the motor Pl, see (4.3)
are smaller for the 1×12 configuration than for the 4×3 configuration, although a
similar high torque accuracy can be achieved. Also, the radial force compensation
only requires a power loss increase of 14 % for the 1 × 12 configuration compared
to 16 % for the 4 × 3 configuration.
Now, in Fig. 5.11, the double OC fault case of coil 3 and 4 is considered for the
identical dynamic torque scenario at high speed of n = 720 rpm as in the previous
scenarios. Again, the torque and current performance are similar to those of the
HC case, cf. Fig. 5.5 and Fig. 5.6. The radial force amplitudes are between the
single OC fault case and the double OC fault case of coils 1 and 4. The radial
forces are reduced by a factor of over 85 % and 80 % for the 4 × 3 and the 1 × 12
configuration. In contrast to the OC fault case of coils 1 and 4, the radial forces
amplitudes are equal for both configurations. Thereby, the power losses in the case
with radial force compensation of the 1 × 12 configuration are lower than in the
uncompensated case of the 4 × 3 configuration.
Finally, the triple OC fault case of the coil 1, 2, and 3 is investigated in Fig. 5.11
for the dynamic torque step at high speed of n = 720 rpm. Again, the torque
and current error performances are similar to the previous scenarios. The results
show similar performance for the radial forces and the power losses between the
4 × 3 and the 1 × 12 configuration. In contrast to the previous cases, the radial
force oscillation amplitude is lower but includes a constant offset. The radial force
compensation is with a reduction of about 90 % as effective as in the previous
cases.
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Figure 5.10: Measurement results for the double OC fault case of coils 1 and 4 in
the 4 × 3 and the 1 × 12 configuration for uncompensated radial forces (blue) and
with radial force compensation (red) at speed n = 720 rpm.
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Figure 5.11: Measurement results for the double OC fault case of coils 3 and 4 in
the 4 × 3 and the 1 × 12 configuration for uncompensated radial forces (blue) and
with radial force compensation (red) at speed n = 720 rpm.
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Figure 5.12: Measurement results for the triple OC fault case of coils 1, 2, and 3
in the 4 × 3 and the 1 × 12 configuration for uncompensated radial forces (blue)
and with radial force compensation (red) at speed n = 720 rpm.
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Overall, these results demonstrate the effectiveness of the proposed FTC strategy
for radial force compensation under multiple OC faults. A significant performance
gain can be achieved for the single and double OC faults by utilizing the 1 × 12
configuration due to the higher number of available DOFs compared to the 4 × 3
configuration while maintaining the low torque error. The performance in triple
OC fault cases is almost identical for both configurations.

5.2.3 Performance comparison of 1 × 12 and 4 × 3 configuration
Finally, the performance of the 1×12 and 4×3 configurations is further compared
for all considered fault cases. Measurements at n = 720 rpm are performed, and
steady-state results for constant desired torques τ d = [−1, −0.75, . . . , 1]τn are con-
sidered. Four cases are studied: the uncompensated radial force case for the 4 × 3
and the 1 × 12 configuration and the case with radial force compensation for both
configurations. The first important result of Fig. 5.13 is that the torque errors are
of similar magnitude for the HC case and all OC fault cases. The single slightly
higher torque errors in the 4 × 3 configuration with radial force compensation
for the double OC fault of coils 1 and 4 result from the challenging optimization
problem with high radial forces due to the magnetic field distribution. The sec-
ond important result is that the radial forces for uncompensated and compensated
cases are significantly lower in the 1 × 12 configuration than for the 4 × 3 case
in almost all OC fault cases. The power losses are slightly higher for cases with
radial force compensation than uncompensated cases in both configurations. Note
that, except for the double OC fault case of coils 1 and 4 and the triple adjacent
OC fault case of coils 1, 2, and 3, the power losses for the 1 × 12 configuration
with radial force compensation are always below the losses of the uncompensated
radial force cases in the 4 × 3 configuration. This can be attributed to the higher
number of DOFs as the overall required current demand is distributed over more
coils. As seen in the last plot, the loss of active coils in OC fault cases results
in higher currents within the remaining coils. Similar to the power losses, the
compensation of radial forces requires higher current amplitudes. The comparison
between both configurations shows equal or lower maximum required currents in
the 1 × 12 configuration.
In summary, the measurement results on the test bench lead to several conclusions.
The proposed FTC strategy achieves results similar to the state-of-the-art PIR
strategy in dynamic HC case scenarios. The advantages of the FTC strategy are
given by its robustness in all OC fault cases and demonstrated by the low steady-
state current errors of two times the current sensor noise amplitude. Measurements
verify the achieved optimization results in Chapter 4 regarding the torque accuracy
and radial force compensation in OC fault cases. The comprehensive comparison
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of all scenarios in the HC case and single up to triple adjacent OC fault cases
between the 4 × 3 and the 1 × 12 configuration highlight the advantages of the
higher DOFs for the latter configuration.

85



5 Fault-tolerant control

0
2
4
6
8

×10−3

� τ
d

−
τ

� /τ
n

4 × 3 (wF = 0) 1 × 12 (wF = 0)
4 × 3 (wF �= 0) 1 × 12 (wF �= 0)

0

5

10

15

F
r

in
N

0

0.5

1

1.5

P
l/

P
H

C
l

HC OC1
OC12

OC123
OC13

OC14
OC15

OC16
OC17

OC2
OC24

OC27
OC28

OC34
OC37

0

1

2

m
ax

(i c
)/

i n
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6
Open-circuit fault diagnosis

Parts of this chapter were published in similar form in the author’s previous
publication [3].

In this chapter, the real-time fault diagnosis method is presented. The goal is
to correctly diagnose multiple-phase open-circuit (OC) faults by only utilizing the
phase current measurements, which include higher harmonic components. The de-
rived time-domain signal-based fault diagnosis method combines the two common
fault identifiers, the measurements of the phase currents and the phase control
errors to meet the requirements a) - f) specified in Section 1.2. The proposed fault
diagnosis method is derived in Section 6.1. In Section 6.2, the method is evaluated
using the test stand, cf. Section 3.1, showing the immunity to false diagnosis and
the diagnosis speed for up to triple simultaneous and sequential OC faults for both,
the 4 × 3 and the 1 × 12 configuration.

6.1 Fault diagnosis method

In the case of an OC fault, the affected measured phase current if is zero, so only
the sensor noise is measured from then on. Additionally, the desired current of
this phase is unchanged, resulting in an unexpectedly large current error, which
depends on the operating point. Separate diagnosis variables cover both phenom-
ena. In the following, only the j-th coil is considered since the proposed method is
independent of the number of phases nc and the electrical coil configuration. The
diagnosis variables at the time step k are given by

dC
j,k = ⟨|ij,k|⟩

îk̄

(6.1)
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for the current and

dE
j,k =

�"""id
j,k − ij,k

"""�
îk̄

(6.2)

for the current error, which is composed of the reference current id
j,k and the phase

current ij,k. The robustness against different operating points is gained by aver-
aging the absolute values

⟨|xj,k|⟩ = 1
navg

k 
l=k−navg+1

|xj,l| , (6.3)

over navg points. In addition, the normalization over the maximum value of all nc

coil currents
îk̄ = max

1≤j≤nc, k−navg+1≤l≤k
|ij,l| (6.4)

within the averaging interval is applied to achieve robustness against different
current amplitudes.
The number of averaging points

navg (ωk) = 1
2

2π

ωknpTs

(6.5)

is rounded towards the nearest integer value and chosen depending on the number
of pole pairs np, the sampling time Ts, and the rotor speed ωk. The rotor speed is
assumed to be approximately constant over the last navg averaging points. Typi-
cally, the averaging is performed over a full current fundamental period (cfp) see,
e.g., [68, 70, 74, 106]. As proposed in [67, 73, 76], shorter averaging intervals than a
full cfp can be considered, which results in shorter detection times while decreasing
robustness. However, the difference between positive and negative current peri-
ods, as required for switch OC faults, can be neglected for phase OC faults. This
is considered in the proposed method by the absolute values in (6.1) and (6.2),
together with averaging over half the cfp by the factor 1/2 in (6.5). This results
in shorter detection times while maintaining the robustness due to averaging.
Both diagnosis variables (6.1) and (6.2) are strictly positive due to the averaging
of the absolute values and the nonzero current sensor noise. The fault diagnosis
variable dF

j,k is derived by combining both detection variables in the form

dF
j,k = dE

j,k − αdC
j,k (6.6)

with α > 0. An OC fault in the j-th phase is detected by a value dF
j,k > 0.

The fault identification is already included since the diagnosis variables are given
individually for each phase.
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In the case of perfect current tracking, i.e., dE
j,k = 0, dF

j,k < 0 is ensured by the
negative sign of the current detection variable in (6.6). This is true for the healthy-
circuit (HC) and all OC fault cases. In OC fault cases, the corresponding fault
diagnosis variable is close to zero but does not exceed zero, which means that the
fault detection cannot be triggered solely by the current diagnosis variable. In
the event of an OC fault case, the current error is large. Therefore, the current
error diagnosis variable dE

j,k ≫ 0 has a significant positive value. The robustness
is guaranteed if αdC

j,k ≥ dE
j,k holds for nominal operation. This can be set by a

proper choice of α to avoid false diagnosis. In contrast to existing methods, where
multiple variables or thresholds have to be set, e.g., [44, 68, 70, 76], the proposed
method utilizes only α as a tunable parameter. For the investigated setup, α = 2
is selected, which ensures immunity to false diagnosis in worst-case scenarios.

6.2 Fault diagnosis results
In this section, the transient fault occurrence is evaluated together with the effec-
tiveness of the proposed fault diagnosis method by experiments on the test stand,
cf. Section 3.1. The immunity to false alarms under load changes is presented,
followed by diagnosis speed evaluation of different α values for a single OC fault
case without mitigation. Finally, sequentially and simultaneously triple OC faults
with fault mitigation for the 1 × 12 and the 4 × 3 configurations are studied.

6.2.1 Immunity to false diagnosis
The immunity to false diagnosis decisions is crucial for the reliability of the fault
detection method. By analyzing the fault diagnosis variable (6.6), the worst-case
scenario for the robustness of the fault diagnosis method is an instantaneous load
change towards a low current amplitude. The sudden load change increases the
current error and, consequently, the current error diagnosis variable. Additionally,
low current amplitudes result in lower current diagnosis variables. Hence, the
results of a torque step up to the nominal torque and back down to zero, performed
for the HC case in the 1 × 12 configuration, are shown in Fig. 6.1. The left and
right plot columns show the torque and the fault diagnosis variables for α = 2
at a low speed of n = 60 rpm and a high speed of n = 720 rpm, respectively.
Both experiments verify the immunity to false OC diagnosis under load steps. At
low speed, the diagnosis variables are closer to zero after the second torque step
because the iterative learning control (ILC) structure utilized within the fault-
tolerant control (FTC) strategy requires one full mechanical rotation of the motor
to significantly reduce the current error, cf. Section 5.1.4.
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Figure 6.1: Fault diagnosis variables immunity to torque step changes in the 1×12
configuration at speeds n = 60 rpm on the left and n = 720 rpm at the right side.

6.2.2 Diagnosis speed of single open-circuit fault without mitigation

In the following the fault diagnosis performance is studied without fault mitigation
at low speed in the 1 × 12 configuration, shown in Fig. 6.2. Thereby, the torque,
the currents of the first three coils, the current errors, and the diagnosis variables
are given in the plot rows. On top, the actual OC fault cases are indicated for the
system and FTC strategy. The top rows show the actual OC fault case emulated
on the PMSM and the applied FTC strategy. The numbers indicate an OC fault
in the corresponding phase and the HC case is indicated with the − symbol.
The first scenario investigates the sudden single OC fault of coil 1 at nominal
torque causes a significant torque drop, which oscillates with twice the cfp, as
depicted in the left plot column. As no fault mitigation is applied, the control
strategy remains the same as for the HC case, and a large current error is visible
for coil 1. The current errors for all remaining coil currents oscillate, attributed to
the single neutral point and Kirchoff’s current law for the 1×12 configuration. The
diagnosis variables for α = 1, 2, 5, 10 are depicted in the last plot. Larger values
of α lead to longer diagnosis times and increase robustness since the steady-state
diagnosis values are lower. However, with all values, the OC fault of coil 1 is
correctly diagnosed within half of the cfp. With the chosen value α = 2, the single
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Figure 6.2: Fault diagnosis in the 1 × 12 configuration at speed n = 60 rpm for
nominal desired torque on the left and zero desired torque on the right.
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OC fault is diagnosed after 63.8 ms, corresponding to 25.52 % of the cfp. However,
in this experiment, the FTC is not applied after the OC fault diagnosis.
The second scenario, depicted on the right plot column, investigates a simultaneous
triple OC fault of coils 1, 2, and 3 at zero torque. This scenario is less severe in
terms of the resulting torque error in post-fault situations but is supposed to be
more challenging in terms of correct fault diagnosis. However, all three OC faults
are identified correctly. As the moment in time for this sudden triple OC fault case
is arbitrarily chosen, the diagnosis variables for the correspondent coils trigger at
different times due to the different current amplitudes. For the chosen value α = 2,
the OC fault of coil 1 is fastest diagnosed within 24.28 %, followed by the OC fault
of coil 3, which requires 38.44 %, and the OC fault case of coil 2, requiring 39.48 %
of the cfp, respectively.
Both scenarios demonstrate the effectiveness of the fault diagnosis method and the
required diagnosis times stay below half of the cfp.

6.2.3 Multiple open-circuit fault diagnosis and mitigation
In this section, the effectiveness of the fault diagnosis method is studied in combi-
nation with the fault mitigation achieved by the proposed FTC strategy without
radial force compensation in Chapter 5. In Fig. 6.3, the evolution from the HC
case to a triple OC fault case of coils 1, 2, and 3 is analyzed for the nominal torque
at a high speed of n = 720 rpm in the 1 × 12 configuration. Thereby, the three
columns in Fig. 6.3 correspond to the transition from the HC to the OC fault case
of coil 1, followed by the double OC fault provoked by the additional sudden fault
of coil 2, and the triple OC fault due to the fault of coil 3, respectively. The system
and FTC states are given at the top. The OC fault times are chosen arbitrarily
concerning the current amplitudes. The first OC fault in coil 1 is indicated by
the first diagnosis variable, which triggers the FTC strategy to mitigate this OC
fault and reduce the torque error. All other diagnosis variables are only slightly
increased. Once an OC fault is diagnosed, this diagnosis variable is no longer con-
sidered. The steady state for this case is shown in the second plot column until
the second OC fault is emulated. In addition, the proposed diagnosis method can
reliably handle the second OC fault case without any adaptation. The second
OC fault is diagnosed within coil 2, and only minor fluctuations in the remaining
diagnosis variables are visible. The steady state for the double OC fault is given
in the third plot column until the triple OC fault is emulated, where the successful
OC fault diagnosis of coil 3 is depicted.
In Fig. 6.4, a simultaneous triple OC fault of coils 1, 2, and 3 is studied for zero
torque at a high speed of n = 720 rpm in the 4 × 3 configuration. Due to the
different relay delay times, the current in coil 3 is zero slightly before coils 1 and
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Figure 6.3: Fault diagnosis in the 1 × 12 configuration at speed n = 720 rpm for
nominal desired torque. The three rows show the transition from the HC case to
a triple OC fault case of coils 1-3 with fault mitigation through the FTC strategy
according to the diagnosed fault cases.
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2. As fewer DOFs are given for this configuration, cf. Tab. 4.1, only two DOFs
are available for each three-phase system. Thus, a double OC fault results in an
uncontrollable three-phase system. Hence, it is equal to a triple OC fault. All
affected diagnosis variables are rising, and the OC fault of coil 1 is diagnosed first.
This triggers the FTC strategy transition, and a single OC fault case for coil 1 is
considered. However, the current errors for coils 2 and 3 are still rising until the
second OC fault in coil 3 is diagnosed, which again triggers the FTC strategy. As
a three-phase system with one coil is uncontrollable, detecting the second fault
within the three-phase system equals a triple OC fault. Therefore, diagnosing the
third OC fault in coil 2 has no consequences for the FTC strategy.
The diagnosis times and percentages of cfp are listed in Tab. 6.1 for different
operating points at high speed n = 720 rpm, at low speed n = 60 rpm, and near
standstill n = 4 rpm, each at nominal torque and zero torque for the 1 × 12 and
the 4×3 configuration. The experiments near standstill highlight the effectiveness
and robustness of the proposed diagnosis method even beyond the methods’ design
limits. Note again that the OC fault times are arbitrarily chosen concerning the
current amplitudes. In all performed experiments, the emulated OC fault cases
were correctly diagnosed below 41 % cfp, and no false diagnosis occurred. The
gray background in Tab. 6.1 indicates the diagnosis times for the presented cases
in Fig. 6.3 and Fig. 6.4.
The presented control strategy in Chapter 5 and the fault diagnosis method de-
scribed in this chapter are implemented at a sampling time of Ts = 100 µs on the
dSpace DS1007 processing unit, cf. Section 3.1 and require approximately 2.3 MB
of memory and about 80 µs for calculation. The focus is on real-time execution,
which only partially includes hardware resource optimization.
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7
Conclusion and outlook

A concept for fault-tolerant multiphase permanent magnet synchronous machines
(PMSM) under multiple open-circuit faults was presented in this work. In particu-
lar, a fault diagnosis method and an optimal fault-tolerant control (FTC) strategy
were developed and studied on a multiphase PMSM with twelve individually con-
trollable single tooth coils. This flexibility allowed the performance comparison of
different aspects of n-phase (twelve-phase 1 × 12 configuration with a single iso-
lated neutral point) and multiple three-phase systems (quadruple three-phase 4×3
configuration with four isolated neutral points) in star interconnection regarding
the available degrees of freedom (DOFs) under multiple OC fault cases. These
higher DOFs, compared to classical three-phase drives, were beneficially exploited
to reduce the occurring torque oscillations and the unbalanced radial forces, whose
vibrations also stress the bearings.
A dynamic mathematical model was derived based on a nonlinear magnetic equiv-
alent circuit (MEC) model, including the nonlinear effects such as cogging torque,
magnetic saturation, and non-fundamental wave behavior of the PMSM, and pro-
vided equations for the radial forces. An approach for the electric circuit was
developed that systematically considers different electric coil interconnections and
multiple OC faults. The minimum state model was designed so that the reduced
coil currents are physical meaningful and correspond to the available DOFs. This
overall model was calibrated and validated through measurements on a test stand,
and a high model accuracy was achieved in static and dynamic conditions. This
model was utilized to calculate optimized currents by an optimization problem
formulation that minimized the classic control goals of torque tracking error and
power losses. In addition, the radial forces were minimized thanks to the higher
number of available DOFs of the multiphase PMSM. The results demonstrated
that the cogging torque was compensated entirely, and an accurate torque per-
formance was given for static and dynamic scenarios in the healthy-circuit (HC)
case and for a single OC fault case. Additionally, the included radial force com-
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7 Conclusion and outlook

pensation achieved a radial force reduction by a factor of over 500. Fourier series
approximation of the optimized currents ensured the real-time capability, and the
Fourier coefficients were stored in lookup tables. Higher current harmonics of the
fifth and seventh order and odd orders up to the ninth order were considered for
the HC and all OC fault cases. The control task challenges arose from these higher
harmonic components at higher speeds.
The FTC strategy, including a nonlinear feedforward part, a proportional-integral
(PI) feedback control part, and an iterative learning control (ILC) concept, was
developed. The ILC concept was introduced to mitigate the nonlinear behavior
of the utilized voltage source inverter (VSI) and track the fast-changing reference
currents due to the higher harmonics that were included as the bandwidth of the PI
controller was limited. Advantageously, only the reduced currents of the available
DOFs are controlled, which limits the changes within the FTC strategy for different
OC fault cases. A proportional integral resonant (PIR) controller was implemented
as a state-of-the-art controller for comparison with the proposed FTC strategy.
Both control strategies were evaluated by measurements on the test stand. The
HC case comparison of both control strategies showed their effectiveness under
different dynamic conditions. At steady state, the achievable current errors for
the PIR strategy are 30 times the current sensor noise amplitude. In contrast,
the achievable current errors with the proposed FTC strategy are further reduced
to twice the current sensor noise amplitude, demonstrating the high performance
achievable with the proposed FTC strategy. In OC fault cases, the PIR strategy
turned unstable at higher speeds and thus was excluded from further comparison.
Single, double, and triple adjacent OC fault cases were analyzed in detail in post-
fault situations by comparing the 4×3 configuration with the 1×12 configuration,
each with and without radial force compensation. The results show similar torque
tracking errors in all cases and for both configurations. By including the radial
force compensation, occurring radial forces were reduced between more than 60 %
to over 90 %, depending on the considered OC fault case. This highlights the
effectiveness of the introduced radial force compensation. The resulting power
losses are increased due to higher current amplitudes. The higher number of
available DOFs in the 1× 12 configuration compared to the 4× 3 configuration led
to decreased power losses for all considered OC fault cases. Thus, this comparison
reveals the benefits in OC fault cases of the 1 × 12 configuration over the 4 × 3
configuration while utilizing equal components.
Finally, a reliable and real-time fault diagnosis procedure was developed based
solely on the current measurement signals already used for the control. This
method was tailored to yield fast diagnosis results with higher harmonic com-
ponents within the measurement signals. No additional sensor or prior knowledge
about the electrical interconnection were required. Measurements on the test stand
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proved the immunity to false diagnosis under load changes; only one tuning pa-
rameter was required. The diagnosis speed was investigated in detail for sequential
and simultaneous triple OC faults in different operating points for both the 4 × 3
and the 1×12 configuration. All emulated OC fault cases were correctly diagnosed
without false detection under 41 % of the current fundamental period.
Thus, the presented closed-loop fault-tolerant concept for diagnosing and mit-
igating the disadvantageous effects of multiple OC fault cases was successfully
investigated in this work.
The proposed framework for multiphase PMSM enables several possibilities for
further research and application topics. In future work, the investigated setup can
be utilized to investigate different electric coil configurations, e.g., the frequently
used double three-phase configuration. Furthermore, the field weakening opera-
tion can be investigated to achieve higher rotational speeds. Research towards a
real-time current optimization solution would enable changing the weighting be-
tween the control goals online. Regarding possible fault cases, an extension of the
fault diagnosis method would be beneficial to monitor different fault sources. As a
first step, if redundant current sensors are integrated, the derived fault diagnosis
method can be applied to detect current sensor faults. Furthermore, a fault diag-
nosis method could be integrated for detecting further sensor faults, i.e., sensors for
dc-link voltages and rotational encoder. Sensorless control in a rotational encoder
fault might be an interesting research topic, especially concerning the available
DOFs of multiphase machines.
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A
Appendix

A.1 Resonant controller

In this appendix, the resonant (R) controller is derived, and the equivalence of
(5.29) and (5.30) is shown. The transfer function of an R controller for the h-
harmonic component is given by

GR
h (s) = KR

h s

s2 + ω2
h

, (A.1)

with the controller gain KR
h and the frequency expressed by ωh = hnpω [103]. A

state-space representation is given analogously to [103] by

d
dt

xh =
�

0 −ωh

ωh 0

	
xh +

�
1
0

	
er,j (A.2a)

yh =
�
KR

h 0
�

xh , (A.2b)

for the j-th reduced current error er,j as input, which is equation (5.29). The states
xh = [x1,j, x2,j]T are chosen to

x1,j = 1
KR

h

�
cR

h,j cos (ϕh) + sR
h,j sin (ϕh)

�
(A.3a)

x2,j = 1
KR

h

�
−sR

h,j cos (ϕh) + cR
h,j sin (ϕh)

�
, (A.3b)

with the time dependent cosine and sine coefficients cR
h,j and sR

h,j, respectively, and
ϕh = hnpϕ including the time dependent rotor position ϕ. By inserting (A.3) into
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(A.2) with d
dt

ϕh = ωh yields�
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(A.4b)

Thereby, the non-derivative terms of cosine and sine coefficients are canceling each
other out, giving

cos (ϕh) d
dt

cR
h,j + sin (ϕh) d

dt
sR

h,j = KR
h er,j (A.5a)

sin (ϕh) d
dt

cR
h,j − cos (ϕh) d

dt
sR

h,j = 0 . (A.5b)

Rearranging these equations together with (A.3) applied to the output yh = vR
c,r,h,j

in (A.2b) lead to the proposed R controller for the j-th reduced coil given by

d
dt

cR
h,j = KR

h cos (ϕh) er,j (A.6a)
d
dt

sR
h,j = KR

h sin (ϕh) er,j (A.6b)

vR
c,r,h,j = cR

h,j cos (ϕh) + sR
h,j sin (ϕh) . (A.6c)

This directly proves the equivalence of (5.30) and (5.29) as the R controller is
designed for each reduced coil individually.
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