
Enabling Program Analysis
Through Provenance-Preserving
Translation into A-Normal Form

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Master program Software Engineering & Internet Computing

by

Marc Goritschnig, BSc
Registration Number 11808600

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc. Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc
Assistance: Dipl.-Ing. Michael Schröder, BSc

Vienna, 3rd May, 2024
Marc Goritschnig Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Marc Goritschnig, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Mai 2024
Marc Goritschnig

iii

Acknowledgements

I am thankful that I was able to realize this work at the Faculty of Informatics at the
TU Wien, guided by Assoc. Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc, who headed the
project, and mentored by Dipl.-Ing. Michael Schröder, BSc, who advised me with his
expertise.

I have already had the privilege of working with this team during my bachelor’s degree
and it was even more delightful to be allowed to contribute during my master’s degree
in the field of Program Analysis. Through the intensive work on this project, I was not
only able to gain immense knowledge, but also grew personally and acquired valuable
insights that I will use in my future academic and professional career.

Furthermore, I would like to express my gratitude to all the people who supported me
during this time. Your help and support have been instrumental to my success, and I am
deeply thankful.

v

Kurzfassung

Diese Arbeit untersucht die Transformation von imperativen Hochsprachen in eine inter-
mediäre Repräsentation, die A-Normalform, und zurück. Dies umfasst die Entwicklung
einer kompletten Pipeline, die die Daten transformiert, wodurch die Optimierung und
Analyse des Codes in A-Normalform erleichtert werden. Die Erkenntnisse aus dieser
Analyse werden dann wieder in die imperative Sprache zurücktransformiert.

Normalerweise gehen bei jeder Transformation semantische Informationen verloren. Im
Gegensatz dazu präsentiert diese Arbeit eine neuartige Methodik, die eine vertrau-
enswürdige Rücktransformation in den Originalquellcode ermöglicht, indem wichtige
Herkunftsinformationen, die normalerweise verloren gehen würden, beibehalten werden.
Basierend auf einer umfangreichen Literaturrecherche wird deutlich, dass diese spezielle
Form der Transformation bisher nicht dokumentiert oder veröffentlicht wurde.

Im Verlauf dieser Arbeit werden die untersuchten Forschungsfragen behandelt und gelöst,
darunter wie Herkunftsinformationen während des Transformationsprozesses erhalten
bleiben können und ob eine bijektive Beziehung zwischen dem imperativen Quellcode und
der A-Normalform mit Herkunftsinformationen hergestellt werden kann. Um diese Ziele zu
erreichen, haben wir eine Transformationspipeline mit Zwischenrepräsentationen definiert
und entwickelt, die vom imperativen Quellcode in Python über abstrakte Syntaxbäume,
Kontrollflussgraphen und statische Einzelzuweisungen in A-Normalform führt, die für
den Transformationsprozess wesentlich sind.

Die Syntaxdefinitionen und Transformationsregeln für jede Repräsentation werden streng
festgelegt, um die Genauigkeit und Konsistenz des Transformationsprozesses zu gewähr-
leisten. Die Implementierung der vorgeschlagenen Methodik erfolgt durch die Entwicklung
einer Python-Bibliothek, die die Transformationen erleichtert, und eines Webprojekts zur
Visualisierung.

Die Nutzung bestehender Bibliotheken wie „AST-comments“ und „Scalpel“, die erweitert
und öffentlich zugänglich gemacht werden, unterstützen die nahtlose Integration des
Transformationsprozesses in bestehende Workflows. Die Implementierung wird einer
kritischen Evaluation unterzogen, wobei externe Code-Dateien auf Abweichungen zwischen
dem Original- und dem rücktransformierten-Code überprüft werden. Die ausführliche
Dokumentation des Evaluierungsergebnisses unterstreicht die Effizienz und Zuverlässigkeit
der vorgeschlagenen Methodik.

vii

Während die entwickelte Bibliothek eine hervorragende Leistung bei der Erhaltung von
Herkunftsinformationen und der präzisen Transformation des Codes in A-Normalform und
zurück zeigt, werden bestimmte Einschränkungen anerkannt. Dazu gehört die Transforma-
tion von komplexen Strukturen wie Klassen, Exceptions und asynchronem Verhalten, die
weiterhin herausfordernd sind und eine weitere Erkundung zur Verbesserung erfordern.

Zusammenfassend trägt diese Arbeit zu einer umfassenden Dokumentation des Trans-
formationsprozesses bei, erläutert Transformationsregeln und Syntaxdefinitionen für
die verschiedenen Zwischenrepräsentationen und ist Wegbereiter für die Erhaltung von
Herkunftsinformationen zur Ermöglichung der neuartigen Rücktransformation in den
Originalquellcode. Durch sorgfältige Implementierung und Evaluation liefert die Arbeit
Belege für die Wirksamkeit und Praktikabilität der vorgeschlagenen Methodik und legt ei-
ne solide Grundlage für zukünftige Fortschritte in der Programmanalyse und -optimierung
dar.

Abstract

This thesis explores the transformation of imperative high-level languages into an inter-
mediate representation, the A-normal form, and back. It involves developing an entire
pipeline that transforms the data, which thereby facilitates the optimization and analysis
of the code in A-normal form. The optimized code is then transformed back into the
imperative language.

Usually, semantic information is lost between each transformation. In contrast, this thesis
presents a novel methodology that enables the trustworthy backwards transformation into
the original source code by retaining crucial provenance information, that would normally
be lost. Based on an extensive literature research, it is evident that this particular form
of transformation has not been documented or published yet.

In the course of this thesis, the research questions addressed and resolved, include how
provenance information can be retained during the transformation process and whether a
bijective relation between imperative source code and A-normal form with provenance can
be established. To achieve these objectives, we defined and developed a transformation
pipeline with intermediate representations, starting from the imperative source code in
Python, via abstract syntax trees, control flow graphs and static single assignments into
A-normal form, essential for the transformation process.

The syntax definitions and transformation rules for each representation are rigorously
established to ensure the accuracy and consistency of the transformation process. The
implementation of the proposed methodology is realized through the development of a
Python library that facilitates the transformations and a web-project for its visualization.

Leveraging existing libraries such as „AST-comments“ and „Scalpel“, which are extended
and made publicly available, assist the seamless integration of the transformation process
into existing workflows. The implementation is subjected to critical evaluation with
external code files tested for deviations between the original- and the back-propagated-
code. The detailed documentation of the evaluation result underscores the efficiency and
reliability of the proposed methodology.

While the developed library demonstrates great performance in preserving provenance
information and accurately transforming code into A-normal form and back, certain
limitations are acknowledged. This includes the transformation of complex structures

ix

such as classes, exceptions and asynchronous behavior, which remain challenging and
warrant further exploration for enhancement.

In summary, this thesis contributes a comprehensive documentation of the transformation
process, elucidates transformation rules and syntax definitions for the various intermediate
representations, and pioneers the preservation of provenance information for enabling
the novel backwards transformation into the original source code. Through careful
implementation and evaluation, the work provides evidence of the effectiveness and
practicality of the proposed methodology and establishes a solid foundation for future
advances in program analysis and optimization.

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Background 5
2.1 Python Abstract Syntax Tree . 5
2.2 Control Flow Graph . 7
2.3 Static Single Assignment Form . 8
2.4 A-Normal Form . 9

3 Approach 11
3.1 Transformation Pipeline . 12
3.2 Syntax Definition . 14

3.2.1 SSA . 14
3.2.2 ANF . 15

3.3 Transformation Rules and Guidelines 16
3.3.1 Preprocessing . 16
3.3.2 AST æ SSA (via CFG) . 20
3.3.3 SSA æ ANF . 25
3.3.4 ANF æ Python (with Postprocessing) 29

3.4 Implementation . 31
3.4.1 Command-Line Interface and Web Application 31
3.4.2 Preprocessing . 32
3.4.3 Simplified Python to SSA . 34
3.4.4 SSA to ANF . 35
3.4.5 Backward Transformation from ANF to Python 36

4 Evaluation 41
4.1 Unit Tests . 41
4.2 Real-World Examples . 42

xi

4.3 Threats to Validity . 47
4.3.1 External Validity . 47
4.3.2 Internal Validity . 48

5 Related Work 49

6 Conclusion and Outlook 51

A Appendix 53

Bibliography 57

CHAPTER 1
Introduction

Programming language translations from high-level imperative languages into intermediate
representations are an important part of code analysis in various fields such as software
engineering, security, performance optimization and many others. Many analysis steps as
well as optimizations can be done more easily and effectively using specialized intermediate
representations. Alternative representations that offer simplicity include static single
assignment and A-normal form.

The static single assignment form describes a representation in which variables are assigned
only once throughout the program [Alpern et al., 1988]. This property is desirable as
it simplifies various optimizations, including register allocation and efficient data-flow
analysis [Hack et al., 2006]. A-normal form represents a transformation into a lambda
calculus with let-bindings together with the property that all function parameters must
be atomic (constants or variables) [Chakravarty et al., 2004]. It facilitates program
analysis tasks by simplifying control flow and making data dependencies explicit, which
aids optimizations such as constant propagation, dead code elimination performance
optimizations and more [Appel, 1998a].

In order to project the results of such analyses back to the original source code, precise
and complete provenance information is mandatory. This includes information that is
lost throughout the transformation without which an exact backwards transformation
is impossible. Using Python as the source language, this information includes different
types of variables, syntactic complexity which comes from syntax unique to Python (list
comprehension etc.) and more. It serves to establish connections between terms in the
intermediate representation and their counterparts in the original surface syntax. It is
essential to maintain this linkage not only during transformations of the intermediate
representation itself but also during conversions between different representation forms.

Currently, there is no formally defined translation process that describes the transfor-
mation of code from Python to A-normal form and, crucially, back to its original form.

1

1. Introduction

Thus, the following research questions will guide the investigation throughout this thesis:

RQ1 How can provenance information be preserved while transforming high-level imper-
ative source code into A-normal form?

RQ2 Can a bijective relation between imperative source code and A-normal form with
provenance be established?

We answer these questions throughout the thesis, introducing a new translation approach
from Python source code to A-normal form and vice versa. The translation procedure is
implemented with our developed library and involves several stages. First, a control flow
graph is created based on the original Python source code. Subsequently, it is converted
into static single assignment format from where the conversion proceeds into A-normal
form.

In all these phases, information is usually lost. Even during the initial transition from
the representative Python source code to its abstract syntax tree, details such as syntax,
layout, whitespace and comments might not be retained.

Similarly, transitioning from the control flow graph to static single assignment further
obscures syntax details: variable names and expressions change, and new variables are
introduced. The renaming of variables during compilation can result in breaking the link
to original identifiers, complicating code traceability. Eventually, during the transition
from static single assignment to A-normal form, the structural information required to
access the control flow, introduced by the control flow graph, is discarded. In this phase,
the expressions are decomposed into a ⁄-calculus including let-bindings that prescribes
a strict order of execution.

Our paper aims to demonstrate a method for converting an imperative language into
A-normal form, but also facilitates future exploration of analysis and optimizations in
this context. This is because considerable progress has already been made in these areas
within A-normal form, and such processes are inherently more straightforward in this
intermediate representation compared to imperative programming languages [Hatcliff and
Danvy, 1997] [Blume and Appel, 1997] [Chakravarty et al., 2004] [Buszka and Biernacki,
2021].

To showcase how the lost information within the transformation affects the result, Figure
1.1 shows an example of Python code, its corresponding A-normal form code and then
the back-transformed code in Python. It is clearly visible that without information about
buf_0 just being a temporary variable introduced as an artifact of the translation, the
resulting code is different to the original code. However, we do not want to change
the code and therefore need certain information that has to be tracked throughout the
transformation.

Figure 1.2 illustrates the solution to this issue. During the translation of the code into
A-normal form, we maintain supplementary information about the type of the new

2

variable (bv - buffer variable). This information is then utilized when converting the
code back to Python, ensuring that the code remains unchanged.

Figure 1.1: Transformation without provenance information

Figure 1.2: Transformation with provenance information

This method prevents the loss of information and syntactic complexity of the original
source code, allowing modifications to be incorporated into the backwards transformation
and resulting in an updated source code in the original programming language.
In addition to the library implementation, we have developed a web project to illustrate the
code conversion process. This project involves tracking linking information between the A-
normal from and Python code so that we can highlight the corresponding elements in both.
Users are able to hover over different code fragments in the A-normal form representation
and the corresponding sections in the original Python code are highlighted, as displayed in
Figure 1.3. This visualization tool serves several purposes, from teaching students about
transformation processes to helping experts understand the transformations applied to
the code.

Figure 1.3: Transformation web-project showcase

In summary, this thesis aims to provide a comprehensive overview of the topic by
providing detailed background information, developing and extensively testing a robust
transformation pipeline through library implementation and supplementing it with
graphical visualization via a web-project. Furthermore, it aims to explore the relevant
research questions in detail and ensures the integrity of data and provenance information
during transformations.

3

CHAPTER 2
Background

This chapter provides a comprehensive overview of different forms of intermediate rep-
resentations (IRs). In particular, the representations abstract syntax tree, control flow
graph, static single assignment and A-normal form are examined in more detail, since
they are essential for the implementation of this thesis. An example code is used within
each section to demonstrate and explain the appropriate IRs in more detail.

2.1 Python Abstract Syntax Tree
The source language selected for the transformation in our thesis is Python. However, it
is a high-level language which first has to become readable for the machine. It undergoes
the lexical analysis to generate tokens, followed by parsing to construct an abstract syntax
tree (AST)1. The AST is compiled into bytecode, which is then interpreted at runtime,
allowing for dynamic execution of Python programs. In accordance with the Python
language reference2, [Mai et al., 2021] and [Tinman, 2015], the IR is created during the
compilation process and comprises the following stages: Source Code, Lexemes, Tokens,
Parse Trees and ASTs. These stages are delineated by two primary processing steps, as
depicted in Figure 2.1.

Lexical Analysis The first step of the lexical analysis includes the scan of the provided
source code file and breaks down the code into a stream of lexemes, which are then
assigned with tokens. For instance, the token NEWLINE indicates the end of a code line.
Tokens are also divided into different categories such as identifiers, keywords, literals,
operators and delimiters.

1https://docs.python.org/3/library/ast.html
2https://docs.python.org/3/reference/index.html

5

2. Background

Figure 2.1: Compilation Process to AST

Syntax Analysis The parser, respectively syntax analysis, creates a parse tree and
ensures the exact use of the input code elements, whereby the rules of the Python
language are strictly adhered to.

Abstract Syntax Tree The output of the syntax analysis, the AST, represents the
structure of the code as a hierarchical, tree-like data format. It is abstract, since it only
provides the structural information of the code, using the tokens as its nodes rather
than including code elements of the original source file. The main program is thus
defined as the root node, with the various code elements as child nodes that represent
the relationship between the code elements.

Figure 2.2 shows a reduced illustration of the AST tree from the source code in Figure
2.3, simplifying the tasks of analysis, manipulation and optimization. Here, the root
node(Body) node contains three sub-nodes, Assign, If and Expr. Each node again
consists of other nodes, building the structure of the code within the tree. A complete
list of all Python AST nodes is provided in Table A.2, indicating the supported nodes in
our transformation (Section 3.3).

Figure 2.2: AST for the function presented in Figure 2.3

6

2.2. Control Flow Graph

2.2 Control Flow Graph
In order to gain a more in-depth understanding of the functionality of the code, to
facilitate the analysis of complex programs as well as identifying potential problems or
causes of errors, the use of a control flow graph (CFG) provides valuable information.
The concept of the CFG, as mentioned in [Lowry and Medlock, 1969], provides details
about the control flow of the code by presenting the code in a directed graph (including
loops). Thereby, the code blocks are defined as nodes, describing a linear sequence of
statements and edges that constitute the transfer between the nodes. Per definition, only
the last statement in each block might branch to other blocks, which always leads to the
first statement in the target node.

The CFG enhances code accessibility by facilitating traversal through the code, in addition
to providing a visual representation of the code’s control flow, as demonstrated in the
example depicted in Figure 2.3. It depicts instances where two possible paths emerge,
leading to a branching process. These paths diverge, creating separate branches with
unique nodes, only to merge later. Alternatively, a branch might stop if the program
concludes at that point. Considering the if statement in the given example, the code
could follow either the if or else block, leading to a branch. Afterwards, both branches
lead to the same result (the print call) and therefore merge again into one single branch.

(a) Python code of an if statement
(b) CFG of if statement, including dominator (green) and
immediate dominator (orange) with resp. to (red)

Figure 2.3: Python code and its corresponding CFG

Another aspect to be considered in CFG are dominance relations, which define the rules
of the execution sequence and specify the dominator definition. According to [Tarjan,

7

2. Background

1974], a dominator is defined by the fact that every flow of code execution must pass
this node before continuing. This is visualized in Figure 2.3, where the green and orange
nodes are dominators of the red node, since every code execution must pass through
them before it reaches the red node. The orange node is the immediate dominator of
the red node, since it is closest to it. This understanding of statements that must be
executed before others serves as a foundation for various optimizations such as common
expression elimination, loop identification, and, more broadly, for utilizing CFG in dead
code elimination, as demonstrated by [Knoop et al., 1994].

2.3 Static Single Assignment Form
The IR called static single assignment (SSA) utilizes the concept of exclusivity. As Alpern
et al. [1988] mentions, each variable must only be assigned once before it is used. To
ensure this property, a renaming step must be carried out. It should be mentioned, that
the renaming process is not uniquely defined and the procedure could therefore simply
give every variable an entirely new name. In order to better clarify the readability and
association, the renaming process within this thesis is defined by preserving the original
name and adding a post-fix counter.

Continuing our example from before, Figure 2.4 shows the renaming of the variable a.
The Ï-function, declared for a_3, is of importance, because whenever there are multiple
options available (as in this example, owing to the if else statement), variables may
receive assignments in various branches. Consequently, it is necessary to determine the
source of the correct value for a_3. For this purpose, the Ï-function is used, taking
multiple inputs that represent the values of the target variables from all branches,
converging at a given point. Although the function itself does not contain any executable
code, it serves as a specification of the SSA behavior.

The SSA form allows for more efficient sparse static analysis, as demonstrated in [Choi
et al., 1991]. These analyses include relational domains [Mirliaz and Pichardie, 2022] and
partitioned per-variable analyses [Tavares et al., 2014].

(a) Original Source Code (b) SSA Output

Figure 2.4: Transformation from original Source Code to SSA

8

2.4. A-Normal Form

2.4 A-Normal Form
The so-called A-normal norm (ANF) is a representation of code based on the ⁄-calculus
and let-bindings, where function parameters must be atomic. In ANF, all computations
are made explicit through let-bindings according to [Flanagan et al., 1993], ensuring
that every function parameter is either a constant or a variable that is promptly evaluated.
This restriction defines the execution order of functions, ensuring clarity in program
behavior. Parameters that are not trivial introduce ambiguity regarding their execution
order, emphasizing the significance of this property in maintaining predictable program
semantics.

Figure 2.5 illustrates the conversion of the ongoing example into ANF. The representation
leads to a simplification of the code due to the requirement of ANF to have atomic
arguments, resulting in a clear control flow of the program. However, this transformation
demonstrates the necessity of retaining block information from the original CFG in Figure
2.3b to accurately represent the behavior of jumps, such as the conditions or function
calls of this example.

(a) SSA representation (b) ANF representation

Figure 2.5: Transformation from SSA to ANF

The clarity and block information of the control flow improve various program analysis
tasks, including data dependency tracking, optimization, constant propagation, and dead
code elimination, as described in [Chakravarty et al., 2004]. These benefits provide a solid
foundation for subsequent transformations, as stated in [Buszka and Biernacki, 2021].

9

CHAPTER 3
Approach

This chapter is intended to describe our approach and development in defining the syntax
of all IR languages used and explains how the transformation process between them is
distinguished, implemented and utilized by our library for code translation.

Here, we address RQ1 concerning the preservation of provenance information throughout
the transformation process. Each section outlines the unavoidable loss incurred at the
particular transformation step. We explore and identify what information we aim to
retain and what can be considered as an acceptable loss, using strategic methods to
preserve critical information that might otherwise be lost.

The transformation describes the combination of the various IRs to enable a progressive
conversion of Python code via AST, CFG and SSA to ANF, and vice versa. Thereby,
we also address RQ2, which asks whether a bijective transformation from imperative
Python source code to ANF is possible. This chapter therefore contains all the necessary
definitions and extensions that we include throughout the course of development, how
the library uses these definitions and the implementation itself.

Section 3.1 describes the transformation pipeline, which combines the stages mentioned
above. The employed IRs are already explained and described in Chapter 2. In order to
connect these forms of representation with each other, we have to incorporate extensions
such as pre- and post- processing steps, which are reflected in our pipeline. Furthermore,
we define the syntax of SSA and ANF to guarantee the language’s validity and usage,
elaborated in Section 3.2.

Section 3.3 explores the question of which structures should be transformed and which
ones should remain unchanged. The basis for making this decision relies on the complexity
of the respective code blocks. Section 3.4 describes the fundamental implementation
of the pipeline and the utilization of the IRs, along with the extensions devised by us,
employing a Python library. Furthermore, it encompasses a web-project for visualizing
the transformation steps.

11

3. Approach

3.1 Transformation Pipeline
Our developed transformation pipeline can be seen in Figure 3.1. It involves a number
of IRs to enable the transformation of Python code into an ANF representation. The
preprocessing step serves to prepare the code to simplify the transformations into the
other representation forms. The backwards transformation from ANF to Python occurs in
reverse order, requiring an additional postprocessing step to undo the simplifications made
during the preprocessing step. This is done to restore the syntactic complexity within
the transformed code resulting from Python-specific syntax, e.g., list comprehensions.

Figure 3.1: Transformation Pipeline

We will now apply the entire transformation pipeline to an example. To do this, we use
the same example given in Chapter 2. The individual transformation steps are shown in
Figure 3.2. The original source code is depicted under the Python node, along with its
simplification in the subsequent step. Although only a snippet of the AST representation
is shown, the tree structure of the data format is clearly visible. The next step involves
transforming it into a CFG, which is a directed graph with dominators and immediate
dominators, as described in Section 3.2. The subsequent transformation will then be
performed into SSA, showcasing how the block information of the CFG is kept. The last
transition to ANF not only simplifies the representation of the code even more, it also
enhances the efficiency of subsequent analysis and understanding processes [Bowman,
2024]. This streamlined representation underscores the efficiency and clarity of ANF,
highlighting its utility in facilitating program analysis and optimization efforts.

12

3.1. Transformation Pipeline

Figure 3.2: Transformation Pipeline on an example
13

3. Approach

3.2 Syntax Definition
This chapter includes all syntax definitions that are required to describe the transformation
pipeline in a formal manner. x should be understood as a designation for a variable list
of type x. Comments within the SSA syntax are not displayed separately but remain
valid and are denoted by a ‘#’ at the beginning, while in ANF, they are indicated by ‘--’.

3.2.1 SSA
Figure 3.3 defines the syntax for SSA. Within this definition, tracked provenance informa-
tion is denoted by blue superscript. Here, the additional provenance data only includes
positional information; later IRs will include more information as part of the provenance
data.

Procedures p ::= proc l(v){ b} p | b one procedure per function

Blocks b ::= epos terms
| b; l:epos block
| b1; l:{ b2} dominating block

Terms e ::= v Ω Ï(v); epos phi assignment
| v Ω f ; epos assignment
| goto l; jump to block
| ret f ; return variable
| if f then epos

1 else epos
2 branching

Function Parameter f ::= vpos | vpos(f) variable or function call
Values v ::= xpos | constantpos

Label lpos

Variables x, y, z . . .

Figure 3.3: SSA Syntax Definition

To further simplify the transformation from SSA to ANF, we integrate the concept of
CFG into SSA. This includes the principle of Blocks and Procedures, as outlined in
Figure 3.3, gathering information from CFG.

Our definition closely aligns with that of [Chakravarty et al., 2004], except for one
significant deviation. In the cited paper, the SSA is restricted to contain only atomic
function parameters (constants or variables), a property corresponding to ANF. In our
approach, however, we do not subject SSA to this restriction. Instead, we apply this
property one step later in our pipeline (SSA æ ANF) to preserve the generality of the
library. It allows for a more flexible implementation in terms of the enhancement to other

14

3.2. Syntax Definition

languages, due to more degrees of freedom within the transformation from the original
language to SSA. The difference becomes evident through our definition in Figure 3.3,
using the variable f within assignments, function calls, return values and if blocks.

The syntax itself, along with the ANF definition, is recursive. Thereby, the outermost
level consists of a list of procedures terminated by a list of blocks. Each procedure and
dominating block begins with a list of terms describing the initial block to be executed
within its CFG, followed by a list of subsequent blocks. This is evident through the
declaration of block label b, which generates blocks from bottom to top (b::=b;x:e
and b::=b;x:{b2}) and only terminates in a term (which recursively generates a term
list). Finally, within each block (excluding the ones building a new scope), there is a list
of terms.

The critical aspect here relates to the fact that we already integrate the structure and
order of the blocks from the CFG into the SSA representation, as briefly mentioned
by [Chakravarty et al., 2004], to pass on this information for the subsequent step of
transforming SSA to ANF. This integration is achieved by constructing a dominator tree
based on the given CFG, following the methodology outlined by [Cytron et al., 1991].
Given the declaration of the dominator tree, each node appears only once in the tree and
forms a vertical structure of dependencies between the blocks, which we represent in our
SSA code.

3.2.2 ANF

The syntax definition we developed for ANF is specified in Figure 3.4. This type of syntax
allows for the structuring and simplification of declarations according to the principles
described in Chapter 2.4. Consequently, a reduction in complexity is achieved by using
the A-reduction property of ANF, which assumes that function parameters may only
be atomic (constants and variables). As a result, a clear and definite sequence for the
execution of functions is established.

The SSA and ANF syntax allow for an easy replacement of the original source language,
which is currently Python, without having to change the back-end of our pipeline. This
is ensured by separating the language-specific details from the transformation from SSA
to ANF, thus guaranteeing independence from the source language.

Within the syntax declaration in Figure 3.3, the provenance information transferred from
SSA to ANF is highlighted in blue superscript. The necessity of this information and its
significance will be described in Section 3.3.3.

Additional insights into the importance of integrating these syntax definitions to facilitate
the transformation process and their practical application will be provided in Section 3.4.

15

3. Approach

Variables x, y, z . . .

Values v ::= cc|ret | xv|fv|ret constants | variable

Terms e ::= vc|v|fv|ret value
| vfv vv|c|ret application
| let xv|bv = vv|c|ret in e let binding
| let xv|bv = vfv vv|c|ret in e let binding
| letrec f

v|lc in e letrec binding scope
| if vv|c then e1 else e2 branching within lambda

f ::= xv|bv = e | xv|bv = f2 binding within scope
f2 ::= ⁄ xv|bv . f2 | ⁄ xv|bv . e abstraction

Figure 3.4: ANF Syntax Definition

3.3 Transformation Rules and Guidelines

In this section, we will present the formal and readable declarations of all our transforma-
tions, along with the pre- and postprocessing steps. These definitions will illustrate the
input tabularly on the left-hand side, followed by the corresponding output on the right.

Our transformation does not encompass every AST node from Python. For clarity, we
provide a breakdown of all supported constructs in Table A.2 (see in Appendix). Some
nodes are unsupported due to concerns regarding complexity. For instance, import nodes
may reference local files, inaccessible when analyzing a single code file, or libraries whose
versions may vary between code composition and analysis. Additionally, asynchronous
nodes are excluded due to challenges in representing asynchronous behavior in ANF.

3.3.1 Preprocessing

Having established the syntax, we now proceed to the transformation process itself. The
transformation is starting from Python code and its corresponding representation in
AST, displaying the entire code with nodes in a tree structure.

The code not only includes simple assignments, function calls and declarations, but
also more sophisticated structures such as list comprehensions. However, since these
complex code pieces cannot be directly represented in SSA and ANF, a preprocessing
step is necessary to get a more straightforward and less complex code structure (e.g.,
assignments, conditions, loops and so on).

The equations below define how various AST nodes from Python are preprocessed and
converted. It is evident that not all nodes are modified during the process of preprocessing.

16

3.3. Transformation Rules and Guidelines

This is due to the fact that they do not need any special treatment before the next
translation part is continued.

The translation of code is applied according to (Preprocessing), as can be seen in Figure
3.5. Each time, a statement or expression is found that matches one of the specified forms
of AST nodes as input, we replace its code with the first entry inside the brackets ÈÍ
and place the second part preceding the current statement in order to execute this code
before the changed statement. This process continues until there are no more changes to
be made, which means that the preprocessing step is completed.

(a) Original Source Code (Python) (b) Preprocessing step, applying IfExp

Figure 3.5: Transformation from Python to simplified Python

After this preliminary processing step, the AST tree is passed on to the subsequent
translation phase.

JS, SK =

Y][
JR, Ŝ, SK if JSK = ÈŜ; RÍJR, S[e :=ê], SK if there is an expr e in S such thatJeK = Èê; RÍ
S; JSK otherwise

(Preprocessing)

J[f(i, i2, . . .) for i in x for i2 in x2 . . .]K =

K # SSA-ListComp
_SSA_0 = []

_SSA_0, for i in x :
for i2 in x2 :

. . .
_SSA_0.append(f(i, i2, . . .))

L
(ListComp)

J{f(i, i2, . . .) for i in x for i2 in x2 . . . }K =

K # SSA-SetComp
_SSA_0 = {}

_SSA_0, for i in x :
for i2 in x2 :

. . .
_SSA_0.add(f(i, i2, . . .))

L
(SetComp)

17

3. Approach

J[f(i, i2, . . .): f2(i, i2, . . .) for i in x for i2 in x2 . . .]K =

K # SSA-DictComp
_SSA_0 = {}

_SSA_0, for i in x :
for i2 in x2 :

. . .
_SSA_0[f(i, i2, . . .)] = f2(i, i2, . . .)

L
(DictComp)

J x1, . . . , xn = y1, . . . ynK =

K # SSA-Tuple
_SSA_0 = _new_tuple_n(y1, . . . ,yn)

?, x1 = _Tuple_Get(_SSA_0, 0)
. . .
xn = _Tuple_Get(_SSA_0, n ≠ 1)

L
(Assign(Tuple))

Jlambda x: f(x)K =

K def _SSA_0(x):
_SSA_0, # SSA-Lambda

return f(x)

L
(Lambda)

Jx := yK =

K
SSA-NamedExpr

x, x = y

L
(NamedExpr)

Jx • = yK =

K
x = x • y, # SSA-AugAssign

L
where • œ

Ó
+, ≠, ú, /

Ô
(AugAssign)

Jx if t else yK =

K # SSA-IfExp
if t:

_SSA_0, _SSA_0 = x
else:
_SSA_0 = y

L
(IfExp)

18

3.3. Transformation Rules and Guidelines

Jx: type = yK = K
x = y, # SSA-AnnAssign|[type]|0

L
(AnnAssign)

Jx[s] = yK = K
x = dict_set(x, s, y), # SSA-SubscriptSet

L
(Assign)

Jx.y(args)K = K
SSA-Attribute

_SSA_0, _SSA_0 = _obj_y(x, args)

L
(Attribute)

Jx[y](args)K = K
SSA-FuncSub

_SSA_0(args), _SSA_0 = x[y]

L
(Call)

Jimport xK = K
import x, # SSA-Import

L
(Import)

Jclass C: bodyK = K
class C: body, # SSA-ClassStart

SSA-ClassEnd

L
(ClassDef)

Jfor i in a: bodyK = K for i in a:
body ,?

SSA-Placeholder

L
(For)

Jfor i1, i2, ... in a: bodyK =

K# SSA-ForTuple
for x in a:

i1 = x[0]
i2 = x[1] ,?
...
body

L
(ForTuple)

Figure 3.6: Definition of the preprocessing

19

3. Approach

Provenance Information

The preprocessing step simplifies the given source input in order to enable the IR of
complex code structures, such as assignments, conditions and so on. However, it is
associated with the drawback of losing syntactic complexity of the Python-specific syntax
(e.g. list comprehensions). To avoid this loss, we add a comment marker to each processed
code fragment (beginning with ’#’ and colored in blue), as depicted in the equations
above (Figure 3.6). By doing so, these markers will retain sufficient information about
the original code, enabling us to reconstruct it during the backwards transformation.

3.3.2 AST æ SSA (via CFG)

Following the preprocessing step, the code is simplified, which results in a streamlined
version. Our next task involves translating this simplified code into the form of SSA
via CFG, as can be seen in Figure 3.8. But to do so, we first have to transform the
preprocessed segments into CFG.

Within the generated AST nodes, besides encapsulating the code, we also capture
important provenance information. This includes details such as the original appearance
of the code and the naming of function parameters. Such details play an important role
in the subsequent phases of our analysis and transformations and ensure the accuracy
and completeness of the entire process. This means that within this transformation,
provenance information is not exclusively used, but extracted for the next transformation
steps in our pipeline, discussed in Sections 3.3.3 and 3.3.4.

Using the AST tree, we systematically iterate through all nodes to generate the CFG, see
Figure 3.7a to 3.7b. During this process, we maintain a list of Ï-nodes per block, using
the Scalpel library from Li et al. [2022], which is crucial for handling variable assignments
when merging blocks. In addition, we perform the renaming, a fundamental feature of
SSA, simultaneously. This procedure adheres closely to the definition in [Cytron et al.,
1991]. The details of the implementation are explained in Section 3.4.4.

The resulting CFG is comprehensive and not only encompasses the main code flow, but
also separate CFGs for each identified function. These function-CFGs may contain inner
function definitions that lead to further CFGs nested within them. Thereby, each CFG
consists of a list of connected blocks, where each block contains a potentially empty list
of Ï-assignments, a set of terms and a list of function-CFGs which are assembled in the
same way.

Figure 3.8 contains the resultant specifications for our transformation from CFG into
SSA, containing the details of the AST. The definitions are structured to interpret code of
a specific input type, shown in bold on the left, along with additional arguments. These
inputs are then translated into the corresponding SSA code, which is displayed on the
right-hand side. The transformation adheres to the syntax and scoping rules described in

20

3.3. Transformation Rules and Guidelines

(a) Simple Python (b) CFG (c) SSA

Figure 3.7: Transformation from simplified Python to SSA (via CFG)

Section 3.2 and ensures that the blocks are translated in accordance with the dominator
tree information of the given CFG and scoped accordingly.

Utilizing this structure, we determine the execution order of blocks, see Figure 3.7b to
3.7c. Those that always precede others are declared in an outer scope. Blocks dominated
by a particular block are then declared within it. If such a block dominates multiple
others, they are declared at the same level within it. This organization is essential because
earlier code blocks may reference later ones, necessitating their definition first. Following
the definition of the dominator tree, if any subsequently created block would reference
the earlier block (resulting in an undefined reference call), the block has to dominate the
earlier block and must therefore be located in an outer area, which eliminates the issue
itself. Additionally, inner blocks may have their own dominated blocks, creating a nested
structure of block definitions. Such a scope of a block, along with its code and dominated
blocks, is captured with braces in our syntax definition, prefixed by the block label b.

The first segment of our transformation definition outlines the source language as an
extension of the existing AST nodes. In this transformation we work with a CFG, which
is enriched by AST data on the left side (referring to Figure 3.8) and associate each
node with a specific fragment of SSA code. The extension of the AST nodes (AST*) by
customized nodes is formulated as follows:

CFG Node that encapsulates all F_CFGs parsed from functions and a block list
comprising all blocks within the main CFG.

F_CFG Representation of a CFG specific to a function. It includes a function name, a

21

3. Approach

parameter list, a collection of F_CFGs for functions declared within the current
one and a list of blocks defined within this function.

Block Block from the CFG, containing a list of Ï assignments and a list of statements.

DomBlock Block which dominates other blocks, possesses a list of blocks rather than
a statement list.

In all transformation definitions, colored text corresponds to the syntax of a specific
language (AST*, SSA, ANF, Python).

PS (Python AST to SSA)JCFG f1, .., fn bK = Jf0K ... JfnKJbK (3.1)JF_CFG v e f1, .., fn bK = Jf0K ... JfnKproc v(JeK){ JbK} (3.2)

BlocksJBlock Ï (For e1 e2 e3), b2, ..., bnK = JÏKb1 (3.3)
#SSA-FOR;
_SSA_0 Ω Je2K;
#(e1)_0 Ω next(_SSA_0);
goto #(b)_2;

#(b)_2:
#(e1)_1 Ω Ï(#(e1)_0 , #(e1)_1_2);
_SSA_1 Ω _IsNot(#(e1)_1, None);
if _SSA_1 then goto #(b ¿ 0);;
else goto #(b ¿ 1); #(b ¿ 1) exists
else ret; otherwiseJb2 + Call(#(e1)_1_2), b3, ..., bnKJb1, ..., bnK = Jb1Kb1 ;...;JbnKbn (3.4)JBlock Ï sKb = #(b): JÏKb;JsKb (3.5)JDomBlock Ï b1Kb = #(b):{ JÏKb;Jb1K} (3.6)

StatementsJs1, ..., snKb = Js1Kb;...;JsnKb (3.7)JAssign e1 e2Kb = Je1Kb Ω Je2Kb (3.8)JAnnAssign e1 e2Kb = Je1Kb Ω Je2Kb (3.9)JIf eKb = if JeKb then goto #(b ¿ 0); (3.10);
else goto #(b ¿ 1); #(b ¿ 1) exists
else ret; otherwise

22

3.3. Transformation Rules and Guidelines

JWhile eKb = if JeKb then goto #(b ¿ 0); (3.11);
else goto #(b ¿ 1); #(b ¿ 1) exists
else ret; otherwiseJExpr eKb = JeKb (3.12)JReturn eKb = ret JeKb (3.13)JDelete eKb = delete_n(JeKb) where n = len(e) (3.14)JRaise exKb = _Raise(ex(Jex.argsKb)) (3.15)JRaise ex eKb = _Raise_2(ex(Jex.argsKb), JeKb) (3.16)JAssert e1Kb = _Assert(Je1Kb) (3.17)JAssert e1 e2Kb = _Assert_2(Je1Kb,Je2Kb) (3.18)JPassKb = _Pass() (3.19)JBreakKb = _Break() (3.20)JContinueKb = _Continue() (3.21)JComment vKb = #v (3.22)

ExpressionJe1, ..., enKb = Je1Kb,...,JenKb (3.23)JNamedExpr e1 e2Kb = Je1Kb = Je2Kb (3.24)JBinOp e1 op e2Kb = _op(Je1Kb,Je1Kb) (3.25)JBoolOp op e1, ..., enKb = _op(JBoolOp op [e1, ..., en≠1]Kb,JenKb) (3.26)JUnaryOp op eKb = _op(JeKb) (3.27)JCall e fKb = f(JeKb) (3.28)JCall e1 e2.fKb = f(Je2Kb, Je1Kb) (3.29)JCompare e [], []Kb = e (3.30)JCompare e op1..n e1..nKb = Compare _op[0](JeKb, Je1Kb) [op2..n] [e2..n] (3.31)

JConstant vKb =
;

‘v’ v is string
v otherwise

(3.32)

JSlice vKb = v (3.33)JTuple eKb = _new_tuple_n(JeKb) where n=len(e) (3.34)JDict e1 e2Kb = _new_dict_n(Jzip(e1, e2)Kb) where n=len(e) (3.35)JSet eKb = _new_set_n(JeKb) where n=len(e) (3.36)JList eKb = _new_list_n(JeKb) where n=len(e) (3.37)JSubscript e1 loKb = _List_SliceL(Je1Kb, JloKb) (3.38)JSubscript e1 lo upKb = _List_SliceLU(Je1Kb, JloKb, JupKb) (3.39)JSubscript e1 lo stepKb = _List_SliceLS(Je1Kb, JloKb, JstepKb) (3.40)JSubscript e1 lo up stepKb = _List_SliceLUS(Je1Kb,JloKb,JupKb,JstepKb) (3.41)

23

3. Approach

JSubscript e1 upKb = _List_SliceU(Je1Kb, JloKb) (3.42)JSubscript e1 up stepKb = _List_SliceUS(Je1Kb, JupKb, JstepKb) (3.43)JSubscript e1 stepKb = _List_SliceS(Je1Kb, JstepKb) (3.44)JSubscript e1 e2Kb = _LSD_Get(Je1Kb, Je2Kb) (3.45)JAttribute v eKb = v(JeKb) (3.46)JName vKb = v (3.47)JJoinedStr e1, ..., enKb = _Add(JenKb, JJoinedStr [e1, ..., en≠1]Kb) (3.48)JFormattedValue e1 vKb = _str_format2(Je1Kb, v) (3.49)JFormattedValue e1 v e2Kb = _str_format3(Je1Kb, v, Je2Kb) (3.50)

Figure 3.8: Transformation from AST to SSA (via CFG)

Provenance Information

Transforming the simplified Python code into AST leads to the loss of provided comments.
The translation of code from AST to SSA through CFG results in a deviation of variable
names in this IR form from those in the original source code. This is due to the SSA
property, which mandates variables to be declared only once. In addition, the code
formatting is lost, encompassing deviations from standard Python formatting, such
as, e.g., additional parenthesis, newline placements and distinctions between single '
and double " quotes. Also, during transformation from CFG to SSA, the positional
information (start-column and -row, end-column and -row) associated with a node is lost.

To ensure that this information is not lost, we record and track the position data from
the AST for each node. Although these details are not explicitly emphasized in the
syntax and transformation for readability reasons, it is nevertheless propagated into
all generated SSA nodes. Retaining comments is of crucial importance as they contain
valuable provenance information from the preprocessing step. To achieve this, we use an
extension to the AST standard library known as ast-comments1. However, certain details
such as spacing, parenthesis and quotes are not preserved in the definition of our library.
This is due to the fact that Python’s AST library makes minor formatting adjustments
to the code, resulting in the loss of such information.

1https://pypi.org/project/ast-comments/

24

3.3. Transformation Rules and Guidelines

3.3.3 SSA æ ANF
Using the generated SSA code as a basis, we continue the process of transforming it
into ANF, as can be seen within the ongoing example from Figure 3.9a to 3.9b. The
transformation steps presented in Figure 3.10, show the structure of the code on the left
side according to the syntax definition of SSA from Section 3.2. We now proceed to select
the first code structure from the generated SSA code and identify the first matching
entry within the definitions on the left side. Thereafter, we map the variables and code
to the corresponding ANF structure and continue the translation process for the further
code sections.

(a) SSA (b) ANF

Figure 3.9: Transformation from SSA to ANF

The translation culminates in a fully translated ANF code, which can be seen on the right
hand side of Figure 3.10, where procs and scoped blocks merge into letrecs, while
the remaining code matches the corresponding ANF structures. It is worth mentioning
that blocks within scoped areas are translated in reverse order, as shown in lines (3.55)
and (3.56). This arrangement is necessary because earlier blocks refer into later blocks,
but not vice versa; otherwise they would dominate the other blocks and would be placed
in an outer scope.

The property of exclusively having atomic function parameters is demonstrated within
the lines (3.64) to (3.67). Whenever a function call might occur, as in (3.57), (3.58), and
(3.60), we initially bind all subexpressions to buffer variables. This process is performed
recursively using the separate definition EP. The new variables utilize the positional
information of the given provenance information from the original code as a reference,
to be used after the extraction (3.66). We then can substitute subexpressions with the

25

3. Approach

corresponding buffer variable when transforming the function call itself, as illustrated in
definition (3.63). This substitution occurs only if a replacement was previously executed;
otherwise, we can directly retain the function as its parameters were already trivial.

SA (SSA to ANF)Jp bK = letrec JpK in JbK (3.51)Jproc v0(v1, ..., vn){ b}, pK = v0 = ⁄vn ⁄v1 . JbK; JpK (3.52)J[]K = (3.53)Jb , v: eKl = vflc = JeKv; JlKv (3.54)Jb1 , v: { b : bs}Kl = letrec JbsKv in JbKv; Jb1Kv (3.55)Jv Ω Ï(...), eKl = ⁄v . JeKl (3.56)Jv Ω f, eKl = EP JfKl (3.57)
let v = JfKl in JeKlJif f then e1 else e2Kl = EP JfKl (3.58)
if JfKl then Je1Kl else Je2KbJgoto vKl = v F1(l, v) (3.59)J# c, eKl = -- c (3.60)JeKl

Jret fKl =

Y][
unit f is None
EP JfKl otherwiseJfKret

l

(3.61)

JvKl = vc|v (3.62)

Jv(f1, ..., fn)Kpos
l =

;
“position “pos not null
vf.. Jf1Kl ... JfnKl otherwise

(3.63)

EP(Extracts the non trivial parameters)
EP Jv(f)Kl = JfKl (3.64)
EP Jv, fKl = JfKl (3.65)
EP Jf, fKpos

l = JfKl

let “b..
pos= SA(JfKl) in JfKl (3.66)

EP J[]Kl = ? (3.67)

Figure 3.10: Transformation from SSA to ANF

Additionally, we provide the ANF code with provenance information, which is indicated by
blue superscript placed above certain variables or code structures, see e.g. transformation
line (3.54). In this way, it is possible to translate the ANF code back into its original
language. When printing the code, this provenance information will accompany each
line, alongside other details such as variable types (constants, buffer variables, block
identifiers, etc.).

26

3.3. Transformation Rules and Guidelines

In line (3.59), we apply F1 as a function that takes two inputs: the label of the target block
to which we aim to jump and the current block in which we are situated. As outlined in
Algorithm 1, the function initially utilizes the target block label to obtain a reference to
the block itself from a global map storing all blocks. Afterwards, it extracts all assigned
variables within the current block. Thereby, it iterates through all Ï-assignments of the
target block, searching for a match in the current block with the same name. If no match
is found, the process is recursively repeated in the predecessors of the current block until
a matching variable assignment for all target Ï-assignments is found, or until the first
block from the original code is reached. If no assignment is found, it indicates that the
variable was not set in this particular branch, and thus it is set to None. Finally, the
function returns a resulting list of variable names to be utilized for the jump to another
block.

Provenance Information

Representing the ANF of the pre-transformed SSA code leads to the indistinguishability
of block information, since blocks and functions are translated in a similar manner.
Furthermore, variable types become generalized into broader categories within this
context. Consequently, the syntax of a variable closely resembles that of a function call
without parameters, making them undifferentiable from each other. This similarity also
extends to return- and buffer variables when compared to general parameters.

The conservation of such information is facilitated by the introduction of so-called keys.
These keys, along with other provenance details, are depicted in the transformation with
a blue superscript. By utilizing them, we effectively address all issues related to data loss
mentioned earlier. Valid keys are listed in Table 3.1:

Key Description
c constant
v variable
f function call
b buffer variable generated while unwrapping function

parameters from SSA to ANF
l block label
fv, fc, flc, etc. combinations of the keys above
names=[name1],
..., [namen]

information about function calls where parameters are
set with specific names

r1 : c1, r2 : c2 positional information (begin, end) of rows and
columns, tracked within the preprocessed Python code
extracted from the AST

Table 3.1: Key Descriptions

27

3. Approach

Algorithm 1 F1
1: procedure extract_jump_variables(targetB, fromB)
2: toB Ω global_blocks[targetB]
3: blockVariables Ω []
4: resultList Ω []
5: for e in fromB.phiAssignments do
6: blockVariables Ω blockVariables + e.var
7: end for
8: for e in toB.phiAssignments do
9: found Ω False

10: for phiVar in e.args do
11: if phiVar in blockVariables then
12: found Ω True
13: resultList Ω resultList + phiVar
14: end if
15: end for
16: if not found then
17: for b in fromB.predecessors do
18: res Ω EXTRACT_JUMP_VARIABLES(toB, b.label)
19: if res.length > 0 then
20: for var in res do
21: if var == e.var then
22: resultList Ω resultList + var
23: found Ω True
24: end if
25: end for
26: end if
27: end for
28: if not found then
29: resultList Ω resultList + Null
30: end if
31: end if
32: end for
33: return resultList
34: end procedure

28

3.3. Transformation Rules and Guidelines

3.3.4 ANF æ Python (with Postprocessing)

The inverse process, i.e., the backwards transformation from ANF to Python, differs
from the previous transformations as it is carried out in one step. The ANF code is
directly transformed into simplified Python, with consideration of provenance information
propagated from prior transformations. The definitions in Figure 3.11 are applied using
the same method as in the previous steps by assigning ANF-code sections on the left-
hand side and translating them accordingly into the corresponding counterparts on the
right-hand side, which represents the simplified version of Python before postprocessing
(see Section 3.3.4). Here we also implement the renaming process of the variables, which
is described in more detail in Section 3.4.

AP(ANF to Python)Jletrec f in eK = JfK JFB(JeK)K (3.68)Jvl.. = eK = | ass[v] = FB(JeK) (3.69)Jv = eK = def v(FP(JeK)): (3.70)
FB(JeK) (3.71)Jlet _ = e1 in e2K = Je1K (3.72)Je2K (3.73)Jlet v = e1 in e2K = v = Je1K (3.74)Je2K (3.75)Jif e1 then e2 else e3K = if Je1K: (3.76)Jass[e2]K (3.77)

else: (3.78)Jass[e3]K (3.79)J-- v eK = # v (3.80)JeK (3.81)

Jvflc vK =
;Jass[v]K | pb.add(v) where v not in pb

v(JvK) otherwise
(3.82)

Jv vK =

Y][
F M [v] % JvK where v in F M

F M2[v] % JvK where v in F M2

v(JvK) otherwise
(3.83)

Jvf..K = v() (3.84)Jvret..K = return v (3.85)

JvK =
;

ass[v] v in ass
v otherwise

(3.86)

Jv1..nK = Jv1K, . . . ,JvnK (3.87)JunitK = ? (3.88)
(3.89)

29

3. Approach

FB (Get the function body)J⁄ v . eK = JeK (3.90)JeK = e (3.91)

FP (Get the parameter list of a function)J⁄ v . eK = v, JeK (3.92)JeK = ? (3.93)

Figure 3.11: Backwards transformation from ANF to Python

Notable elements of the specifications in Figure 3.11 include the use of the | symbol to
indicate side effects of globally stored variables, such as storing references to previously
parsed blocks. Variables of the type pb (parsed blocks) and ass (assignments) serve as a
repository for this global information. During this step, we can observe the reappearance
of the provenance information that has been referred to throughout the transformation
and is now highlighted in blue superscript. It emphasizes its importance for the backwards
transformation process. Without this significant information, accurate parsing of the
code into its original representation would not be possible.

The functions FM and FM2 in (3.83), which stand for Function Mapping, serve to link
the given input v back to a Python function. See Section 3.4.5 for further information.

Postprocessing

After applying the above mentioned transformation, the resulting output provides the
simplified Python code. However, this transition necessitates an additional step to undo
the preprocessing adjustments made during the initial transformation process, as defined
in Section 3.3.1.

During this phase, we systematically identify the markers introduced in the preprocessing
phase (in Figure 3.6, see Preprocessing) and reverse the alterations applied. By retracing
our steps in this manner, we effectively restore the original structure and complexity of
the code. A detailed explanation of this process is provided in Section 3.4.

Provenance Information

In the backward transformation phase of our pipeline, we use the collected provenance
information from the previous steps. By utilizing the different keys, we distinguish
between parsing an ANF code fragment into a function call, a variable or a buffer variable.
We also use respective keys to distinguish between blocks and functions, which makes it
possible to convert them into simplified Python code. This provenance information is
now indicated by blue superscript on the left-hand side of the transformation. Finally,
when transitioning from simplified Python back to regular Python, we use the provenance
information obtained from the comments added in the preprocessing phase.

30

3.4. Implementation

3.4 Implementation
In this section, we will provide an overview of the tools and methods utilized
for the implementation, as well as a detailed explanation of the implementation
process itself. The library and the web-project are publicly available on GitHub
(Scalpel_SSA_ANF_Extension).

Fundamentals

The development of our library is based on Scalpel Li et al. [2022] with the chosen
programming language Python, as it is compatible with its own AST library, facilitating
the conversion of Python code. It describes a given program with nested objects in a
tree structure. This allows for traversing the AST and thus enables the access for each
variable, its value and other relevant information from the original code. Interpreting the
Python code using AST guarantees that all essential components for executing the code
are included in its representation, with the exception of comments.

To overcome this limitation, we use the „ast-comments“ package, which extends the
AST to include custom nodes for comments. We have enlarged this library to cover all
possible comment placements and ensure that no comments are omitted throughout the
transformation process. Our developed extension is publicly available on PyPi2 since
version 1.1.1. Although Python is mainly interpreted, tools such as PyInstaller3 and
cx_Freeze4 provide the ability to extract Python programs into standalone executables
that contain both the interpreter and the bytecode. This allows Python programs to
appear similar to compiled applications, although they still run in a Python environment.
In our case, PyInstaller is used to build executable files for all systems.

3.4.1 Command-Line Interface and Web Application
To facilitate use in heterogeneous program analysis pipelines, we provide a stand-alone
command-line interface for our library of transformations. The CLI tool adhered to offers
a variety of customizable options. These options allow users to modify the behavior of
the library according to their preferences. Possible operations are listed in Table 3.2:

We have developed a web application5 (Figure 3.12) that enables interactive exploration of
the mapping between the Python code and ANF, which allows for a better understanding
of the code transformation process.

When using the ANF transformation library, a file is automatically generated containing
both the simplified Python code and the ANF code with provenance information. Users

2https://pypi.org/project/ast-comments/
3https://pyinstaller.org/en/stable/
4https://cx-freeze.readthedocs.io/en/stable/
5https://github.com/Marc-Goritschnig/Scalpel_SSA_ANF_Extension/tree/main/CodeComparator

31

https://github.com/Marc-Goritschnig/Scalpel_SSA_ANF_Extension/tree/main

3. Approach

Operation Description
--input_path Allows for the input path of the Python file to be trans-

formed
--out_path Requires the path to the output folder, where all files

are generated, as an input
--debug_mode Prints the debug logs and the IR of the code onto the

console, for tracking the code changes between the IRs
--parse_back Enables the step of parsing the code immediately back

to compare it with the original code
--only_parse_back If True, the input file will be interpreted as ANF code

with annotations and parsed back into Python code
--output_syntax Adjusts the format in which the output is printed (ASCII

or Unicode)
--no_output_files Does not print the code in the different IRs to the output

folder
--print_prov_info Prints ANF code, including provenance information
--no_pos Prints ANF provenance information without positional

data

Table 3.2: Options for the transformation process

can then upload this file. The project has an interactive interface that allows users to
select elements in the ANF code to visualize its appearance within the original code,
providing a direct link between both representation forms.

An application is shown in Figure 3.12, which illustrates this highlighting, using the
previous example from Chapter 2. By selecting b_0 in the ANF section, the mapping to
the corresponding variable b in the original source becomes visible. It demonstrates the
properties of the SSA, which serves as an intermediate step within the transformation
pipeline, showing the requirement of unique and atomic definitions.

3.4.2 Preprocessing
Referring to the transformation pipeline depicted in Figure 3.1, the preprocessing serves
as the initial step, aimed at simplifying the complex structures within the imperative
Python source code, such as ListComprehension or IfExp. The procedure, described
in Section 3.3.1, is required for the transformation, whereby we begin by generating AST
of the provided input code.

We proceed by systematically iterating over all nodes within the tree until we come across
for one of the specified nodes of interest, as defined in Figure 3.6. After identifying the
node, we determine the line of code in which it is located and replace it with a simplified
equivalent. This iterative process is continued with the regenerated AST until no further

32

3.4. Implementation

Figure 3.12: Visualization of the transformation process with the web-project

modifications are necessary.

For clarity, the following example illustrates the simplification process within the code
using the provided exemplary node with the designation ast.ListComp:

Algorithm 2 ListComp:
x = [1,2,3,4,5]
y = [i + y for i in x for y in x]
print(y)

x = [1,2,3,4,5]
_ssa_buffer_0 = []
for i in x:

for y in x:
_ssa_buffer_0.append(i + y)

y = _ssa_buffer_0
print(y)

As a result, the original Python code is simplified to a streamlined version and passed on
to the next step in our pipeline.

33

3. Approach

3.4.3 Simplified Python to SSA
Before we can start converting our code into the SSA representation, we first need to
convert into the CFG of the code. Therefore, we visit every node in the AST and
depending on the type of node detected, we either add new blocks to the CFG or append
statements as well as exit information to the currently active block.

For the subsequent steps, we utilize the Scalpel6 library, which includes a basic imple-
mentation of the SSA transformation algorithm as defined by [Cytron et al., 1991]. This
library provides meta-information regarding the way the variables used in each statement
should be named, typically involving appending a sub-scripted number that increments
with each new assignment. Additionally, it informs us which Ï-statements need to be
inserted into which blocks.

While this process can be executed with a single CFG, our library extends this capability
by managing global mappings of the used variables and their latest indices. Consequently,
SSA information is gathered not only for the main CFG, but also for its function CFGs,
nested function CFGs, and so on.

Adaptions

It is essential to highlight that the Scalpel library has been extensively adapted in order
to fulfill our specific requirements. Although it remains operational, for our purpose
there are some minor inconsistencies regarding the SSA parser that must be addressed
before it can be used. Before integrating it into our workflow, additional functionalities
are required to effectively deal with various code examples.

Primarily, modifications were made to ensure compatibility along with our tracked global
variable mapping and to prevent variables within different CFGs from being renamed to
the identical name as before. In addition, some bugs in the library were fixed as a part
of this project:

• If an assignment occurs to a variable while the same variable is present on the
right side of this assignment, Scalpel currently renames the loaded variable on the
right side using the same index name that was used to allocate the new variable on
the left side, due to the order in which this process is implemented. Instead, the
assignment process should begin by renaming the right-hand side of the assignment.
Subsequently, the newly assigned variable must be relabeled.

• Ï-assignments are only added if a variable is assigned in both parent blocks. Instead,
parents should be searched recursively to find the corresponding assignation to the
same variable.

• Scalpel incorrectly utilizes the library networkx to build the immediate dominators.
The resulting dominator list includes the starting node as its own immediate domi-

6https://github.com/SMAT-Lab/Scalpel

34

3.4. Implementation

nator, which is incorrect. To address this issue, when constructing the dominator
tree, a ghost node connected to the first node in the graph should be added to
prevent this behavior.

• Scalpel fails to introduce any Ï-assignments for recursive behavior found in loops
such as for or while. However, this is an essential aspect for our transformation.
To handle loop behavior in a CFG where a predecessor block might not be parsed
concerning its SSA information when handling the root node of a loop, we start to
initialize only the left-hand side of all Ï-assignments. Subsequently, after parsing
all blocks and extracting their SSA information, we iterate over each block again in
a second phase to update the right-hand side of all Ï-assignments by recursively
examining predecessor blocks that are already initialized.

The mentioned wrong/missing implementations were fixed/implemented in the process
of this work and submitted for review to the authors of the library Scalpel.

After we have collected the parsed SSA data, we use this information along with the
CFG of the code in order to generate an internal representation of the SSA code which
corresponds to a class structure resembling the AST tree, except that this time it
represents a SSA tree. Mainly, we apply the definition from Section 3.3.2 to create the
new SSA blocks and their terms. Throughout this transformation, we establish the SSA
nodes of the tree according to the terms specified in the syntax definition in Figure 3.3.
Each node corresponds to a procedure, a block, a scoped block, an assignment, a variable,
and so on.

One aspect that has not been clarified so far is the renaming and placement of Ï-
assignments. Whenever we encounter a variable, regardless of whether it is used inside
a load or store node within the AST, we rename it according to the information we
have extracted from its SSA information. In addition, at the beginning of each block, as
defined in Figure 3.8, line (3.6), we introduce the Ï-assignments that we have tracked
for the respective block. We also integrate the position information of the AST nodes
into the internal SSA objects. In the end, we have produced a code that adheres to our
SSA syntax, featuring renamed variables and Ï-assignments placed at all the necessary
locations.

The next step involves transforming the code into ANF.

3.4.4 SSA to ANF
The procedure for transforming SSA to ANF is basically similar to the previous method.
This time, we utilize the definition outlined in Figure 3.10 and apply it onto the existing
SSA tree representation. An important step in this process is the handling of function
calls: We first extract the parameters to potentially generate temporary variables, if
these parameters are sub-expressions themselves. Secondly, we need to translate blocks
on the same level within a scope in reverse order to ensure the correct mapping and order

35

3. Approach

of definitions.

Throughout the transformation, nodes from the SSA tree are now mapped to new nodes
of the ANF tree and nested inside each other in order to build the tree structure. Once
the transformation is completed, depending on our needs, we have the option to either
print this code with or without positional information.

An example of such an ANF code, without position details, is displayed in Figure 3.13.

Figure 3.13: ANF code without position information

If the position information is included, a possible scenario is obtained in Figure 3.14.

Figure 3.14: ANF code with position information

Since preprocessing is a mandatory step, on which the AST tree is built up, we only get
the position information for the simplified code. This segment could be expanded, as
mentioned later in Section 6. Both examples indicate that variables are denoted with ‘v’,
constants with ‘c’ and function calls with ‘fv’, as can be seen on the right hand side of the
figures and allocated according to Section 3.3.3. Each piece of information is separated
by a separator character |.

Any other standard words (such as ‘let’, ‘in’, etc.) and characters (such as ‘=’) do not
provide any additional information, resulting in a blank space within the provenance
information between |, except for their positional data in the second example Figure 3.14.
At this stage, it is possible to modify the code using optimization algorithms and other
relevant concepts. The backwards transformation represents the next and final part of
the process.

3.4.5 Backward Transformation from ANF to Python
Upon completing the translation of the code in both directions, our primary objective
is to maintain the original form as accurately as possible. As elaborated in the previ-
ously mentioned sections, the cumulative loss of information across all transformation
steps includes code complexity, comments, code formatting, variable names, positional
information, block information and variable types.

36

3.4. Implementation

With the exception of code formatting, which is changed to a standard format using
the AST tree, all other data is considered relevant and should therefore be retained.
To prevent this loss and ensure that the imperative source code remains consistent, we
utilize the provenance information printed in Section 3.4.4 (the appended keys as a suffix
to each ANF line). This gives us the capability to parse a given ANF code back into our
internal representation of an ANF tree. If modifications have been made to the code, it
must adhere to the same provenance information as applied by the library in previous
steps. However, in cases where changes are applied to the ANF printed code, there might
not be a reference to an original code, thus positional information might be omitted.
Therefore, when modifications are made, the library is employed without printing the
positional information. With the parsed ANF tree, we possess the capability to directly
convert it back into Python code. This conversion process is executed individually for
each ANF object, which delineates one term, such as a let-binding, application, variable,
etc., depending on its type. We adhere to the transformation guidelines specified in
Figure 3.11.

As already mentioned within the definition of the transformation (Section 3.3.4), we
use functions as FM in (3.83), which serves to link the given input v back to a Python
function. The transformation is executed using the given (and thus known) parameters
in v. Thereby, the outcome consists of a formatted string, where %s placeholders are
substituted with the provided parameters, effectively restoring the original appearance
of the function. The mapping of the functions is facilitated through Table 3.3, which
contains the associated function names and their respective formats. Here we can see
that based on the AST definitions7, the transformation table contains an entry for each
boolop, operator, unaryop, cmpop and custom created functions, generated within
the preprocessing step.

In situations where the number of parameters is variable, the function FM2 in (3.83) is
employed as an alternative. Within this context, the function mapping is denoted in
Table 3.4. Here, we create a string containing all parameters, each separated by a colon.
This string is then substituted into the discovered format string within the given table.
Notably, the left side (the key of the map) is expressed as a regex, as the number of
elements required by the function is unknown. Consequently, it is added as a suffix to its
name, resulting in a dynamic function name that necessitates mapping.

In case of a dictionary, which is a special case, it must be handled differently. Here, an
additional function (3.94) is used, which builds the string that requires the structure of a
key and value list for the dictionary.

7https://docs.python.org/3/library/ast.html

37

3. Approach

Function Name Format String
_And (%s and %s)
_Or (%s or %s)
_Add (%s + %s)
_Sub (%s - %s)
_Mult (%s * %s)
_MatMult unknown
_Div (%s / %s)
_Mod (%s \% %s)
_Pow (%s ** %s)
_LShift (%s << %s)
_RShift (%s >> %s)
_BitOr (%s | %s)
_BitXor (%s \^ %s)
_BitAnd (%s \& %s)
_FloorDiv (%s // %s)
_Invert (~%s)
_Not (not %s)
_UAdd (+%s)
_USub (-%s)
_Eq (%s == %s)
_NotEq (%s != %s)
_Lt (%s < %s)
_LtE (%s <= %s)

Function Name Format String
_Gt (%s > %s)
_GtE (%s >= %s)
_Is (%s is %s)
_IsNot (%s is not %s)
_In (%s in %s)
_NotIn (%s not in %s)
_LSD_Get %s[%s]
_Raise raise %s
_Raise_2 raise %s from %s
_Assert assert (%s)
_Assert_2 assert (%s, %s)
_Pass pass
_Break break
_Continue continue
_List_Slice_L %s[%s:]
_List_Slice_U %s[:%s]
_List_Slice_US %s [:%s:%s]
_List_Slice_LS %s[%s::%s]
_List_Slice_LU %s[%s:%s]
_List_Slice_LUS %s[%s:%s:%s]
_List_Slice_S %s[::%s]
_Tuple_Get %s[%s]

Table 3.3: Function names and format strings

Regular Expression Format String
^_new_list_([0-9])+$ [%s]
^_Delete_([0-9])+$ del %s
^_new_tuple_([0-9])+$ (%s)
^_new_set_([0-9])+$ {%s}
^_new_dict_([0-9])+$ f_dict

Table 3.4: Regular expressions and format strings

38

3.4. Implementation

f_dict:
lambda params : ’{’ + ’,’.join(

[str(p) if i % 2 == 0 else (’: ’ + str(p)) for i, p in enumerate(params)]

).replace(’,:’, ’:’) + ’}’ (3.94)

Through the utilization of a custom method implemented across all types of nodes within
the ANF tree, we can seamlessly invoke the transformation on the topmost node, resulting
in a fully parsed string of simplified Python code.

Upon examining the result, we encounter the issue that we now possess only the sim-
plified version of the original code, due to the preprocessing done at the beginning.
Consequently, we must execute a postprocessing step, which essentially involves reversing
the preprocessing procedure. It entails analyzing the code line by line, as described
in Section 3.3.4. The step can be accomplished because in all preprocessing cases, we
add a comment marker in the line before (e.g.#-SSA-ListComp). This allows us to
identify where transformations are needed, such as converting a for-loop into a list
comprehension. The process is repeated for all markers found, iteratively making the
code more similar to the original one.

After we have completed this step until no more markers are visible, we parse and unparse
the resulting code again using the AST library to achieve a standard formatting of the
resulting code. Finally, the result is written to a file and displayed on the console. This
already answers RQ1 and RQ2, since we now have the relevant data and have established
a method for retrieving it back.

39

CHAPTER 4
Evaluation

In this chapter, we evaluate our approach, based on the definitions and developments in
the previous chapters. The implemented library undergoes a comprehensive validation,
consisting of two evaluations. The first involves verifying the implemented AST nodes
from Table A.2 using unit tests, while the second encompasses a total of 20 tests, by
applying the library to real-world examples from GitHub1 open source projects. The
Python files have been selected based on the implemented nodes, listed in Table A.2.

The second evaluation is performed and analyzed according to the criteria, whether the
transformation functionality is working and whether the source code is still the same
after backwards transformation, or to what extent it is different.

In addition, threats to validity of the approach are conceptualized. This analysis provides
important insights for the further development and optimization of the library in order
to continue to enhance its performance and potential uses.

4.1 Unit Tests
Each tested AST node is listed in Table 4.1, using a separate test file for every node.
Multiple tests are arranged for each node per file, with the total amount of tests specified
in the „Total“ column. The „Result“ column indicates whether all tests have passed,
otherwise the number of successfully parsed tests is displayed. With the exception of
four cases, all nodes operate successfully. The reasons for these failures, which occurred
for FunctionDef and Subscript, are explained below, while the Class and Import nodes
are not being considered (translated as comments). Failed test cases occurred due to the
following problems:

1https://github.com/

41

4. Evaluation

• Subscript - Arises when it is invoked on the left side of an assignment, as it has
not been implemented yet. (e.g. data[1:2]=data2)

• FunctionDef - The correct order of code and function is not preserved after the
backwards transformation. This discrepancy arises at the SSA transformation
step, where functions are globally defined as procs, leading to global elements
being prioritized. Additionally according to the node implementation of Starred, a
parameter úarg is replaced by _Starred(arg). The problem arises if this argument
is defined after a named argument (name = value), as a named argument may
only be followed by either another named argument or a starred argument, but
not an unnamed argument within a function call. Also within function definitions
kwarg(**args) and vararg(*args) are not implemented and those test also fail.
Hence, there is a discrepancy in the order during the backwards transformation.
Also, default parameters are not processed within functions and therefore get lost
throughout the transformation process, leading to a wrong behaviour of the code
when being executed.

All of these limitations are regarded as constraints of the library, suggesting areas for
potential future enhancement.

AST NODE TOTAL SUCCESS FAILURE
Starred 6 6 0 �
FunctionDef 12 7 5 �
Function_NamedParams 3 3 0 �
Return 3 3 0 �
Delete 4 4 0 �
AugAssign 12 12 0 �
AnnAssign 2 2 0 �
For 5 5 0 �
While 3 3 0 �
If 4 4 0 �
Raise 2 2 0 �
Assert 2 2 0 �
Pass 2 2 0 �
Break 3 3 0 �
Continue 3 3 0 �
BinOp 12 12 0 �
UnaryOp 2 2 0 �

4.2 Real-World Examples
The second evaluation is comprised of a collection of Python files obtained from public
repositories on GitHub. The selection process involved identifying files with the extension
“.py” that do not contain any of the unsupported AST nodes listed in Appendix A. This

42

4.2. Real-World Examples

AST NODE TOTAL SUCCESS FAILURE
Lambda 2 2 0 �
IfExp 3 3 0 �
Dict 5 5 0 �
Set 4 4 0 �
ListComp 2 2 0 �
Compare 10 10 0 �
Constant 3 3 0 �
Attribute 4 4 0 �
Subscript 4 3 1 �
Name 5 5 0 �
List 4 4 0 �
Tuple 5 5 0 �
Slice 8 8 0 �
JoinedStr 3 3 0 �
FormattedValue 3 3 0 �
NamedExpr 2 2 0 �
SetComp 2 6 0 �
DictComp 2 2 0 �
Comment 9 9 0 �
Class 2 2 0 �
Import 2 2 0 �
BoopOp 2 2 0 �

Table 4.1: Results of AST Nodes (unity tests)

process utilized GitHub’s search function, whereby the top files that met these criteria
were added to the set. The distribution of AST nodes used in these files is displayed in
Figure 4.1, showing 72 different AST nodes in total. This number exceeds the amount
of supported nodes in Table 4.1, as certain nodes, such as BinOp, encompass subtypes
including Add, Sub, Mult, MatMult and more as described in the Python definition of
AST2.

The results of each test run are summarized in Table 4.2, highlighting whether the parsing
process was successful and whether the transformation was exact. Any discrepancies
between the original source code and the code generated by the backwards transformation
are analyzed in detail.

This examination covers the minor deviations, so-called syntactic sugars, which do not
change the behavior of the code. Various syntactic sugar elements are taken into account,
such as new lines or additional spaces, as these are accepted and mainly arise due to the

2https://docs.python.org/3/library/ast.html

43

4. Evaluation

autoformatting feature of Python AST. Reference is made to the corresponding legend to
facilitate better understanding of the found syntactic sugar. In addition, the link of each
source code file is listed in Table A.1 together with the corresponding test ID assignment.

Legend:

• Comment indent - Comment indentation: adjustment of comment alignment
• Exp. notation - Exponential function notation E instead of e after transformation
• Function pos. - Change of function position
• Inline Comments - Inline comments shifted to next line, if initially on the same

line
• Multiline text - Multiline text format changed from using ””” to ‘
• New line - New line structure altered
• Number repr. - Number representation adjustment: integer instead of hexadeci-

mal
• Parenthesis - Adjustment of parenthesis: additional or reduced
• Quoting - Use of single quote instead of double quotes
• Spaces - Adjustment of spaces: additional or reduced
• Typehints - Removal of type hints
• Trailing zeros - Removal of trailing zeros

Additional problems, apart from syntactic sugar, can cause changes in the code’s behavior,
as arising in test cases 4, 9, and 16:

• Test case 4: The star in front of the function’s args variable (variable length list of
variable) is lost, see example: (def a(*args):...).

• Test cases 9, 16: The default values in the function definitions are lost, see example:
(def a(x=1):...).

As indicated in the evaluation table, certain test cases failed during parsing:

• Test cases 1, 17, 18: The inability to parse a Starred AST node after named
parameters leads to failure, see example: (turn(x=1, *pos)).

• Test case 5: A subscript AST node is defined on the left hand side of an assignment,
see example: (a[1:3]=b).

The most frequent change caused through backwards transformation is the position of
the function, as can be seen in Figure 4.2. This issue has already been discussed within
the node FunctionDef in Section 4.1, but requires further investigation to determine if
the behavior may change in other source codes.

These differences highlight what the library is incapable of preserving in terms of syntactic
sugar and will be further discussed in the Section 4.3.

44

4.2. Real-World Examples

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400

Load
Name

Constant
Call

Attribute
Store

Assign
Expr

BinOp
Compare

Add
Mult

If
Subscript

Return
FunctionDef

Tuple
Eq

UnaryOp
Sub

Import
ImportFrom

Dict
USub

List
Module

Raise
Slice

BoolOp
For
Div

AugAssign
Lt
Gt

Not
Assert

And
Mod

Or
Is

BitAnd
FloorDiv

NotEq
Pow
GtE
LtE

In
ListComp
ClassDef

Pass
Lambda

LShift
RShift
BitOr
IfExp

JoinedStr
FormattedValue

While
Break

Starred
Continue

IsNot

2,181
2,010

1,096
726

485
473

392
269

252
117

94
84
81
77
67
63
57
56

37
37
34
27
26
26
24
21
18
18
18
17
17
16
16
15
11
9
9
9
9
8
7
7
6
5
5
5
5
4
4
4
4
3
3
2
1
1
1
1
1
1
1
1

Frequency

Figure 4.1: Frequency of AST nodes in Test-set 2

45

4. Evaluation

Results Differences

Project Name Pa
rs

ed

Ex
ac

t

C
om

m
en

t
in

de
nt

Ex
p.

no
ta

tio
n

Fu
nc

tio
n

po
s.

In
lin

e
C

om
m

en
ts

M
ul

til
in

e
te

xt

N
ew

lin
e

N
um

be
r

re
pr

.

Pa
re

nt
he

sis

Q
uo

tin
g

Sp
ac

es

Ty
pe

hi
nt

s

Tr
ai

lin
g

ze
ro

s

1 - python-nvd3 � � - - - - - - - - - - - -
2 - vector-datasource � � � � � � � � � � � � � �
3 - AstroBuild � � � � � � � � � � � � � �
4 - django-autofixture � � � � � � � � � � � � � �
5 - kaggle_pbr � � - - - - - - - - - - - -
6 - unirest-python � � � � � � � � � � � � � �
7 - 30-Days-Of-Python � � � � � � � � � � � � � �
8 - FPN_Tensorflow � � � � � � � � � � � � � �
9 - kaggletils � � � � � � � � � � � � � �
10 - Python � � � � � � � � � � � � � �
11 - HyperFace-with-... � � � � � � � � � � � � � �
12 - john � � � � � � � � � � � � � �
13 - 30-Days-Of-Python � � � � � � � � � � � � � �
14 - Tautulli � � � � � � � � � � � � � �
15 - asuswrt-merlin.ng � � � � � � � � � � � � � �
16 - Download-and-... � � � � � � � � � � � � � �
17 - samba � � - - - - - - - - - - - -
18 - asuswrt-merlin.ng � � - - - - - - - - - - - -
19 - asuswrt-merlin.ng � � � � � � � � � � � � � �
20 - asuswrt-merlin.ng � � � � � � � � � � � � � �

Table 4.2: Test Results of Test-set 2

46

4.3. Threats to Validity

0 2 4 6 8 10 12 14

Function pos.
New line

Multiline text
Parenthesis

Quoting
Spaces

Number repr.
Inline Comments

Trailing zeros
Typehints

Exp. notation
Comment indent

Star

13
11

8
7

6
4

3
3

2
2
2

1
1

Frequency

Figure 4.2: Frequency of types of differences from Table 4.2

4.3 Threats to Validity

4.3.1 External Validity
Scope of Test Set: The external validity of our study is affected by the scope of our
test set, which is limited to supported nodes (see Table A.2). However, it is important to
consider potential implementations of these nodes within unsupported constructs, such
as classes, which are not covered in our test set.

Programming Language Extension: Our implementation is specifically designed for
Python. However, the use of Python AST libraries facilitate the possible extension to
other programming languages. The underlying principles of the transformation remain
consistent across languages due to the use of ASTs. This adaptability strengthens the
internal validity of our study, as the consistent principles remain general beyond Python.

Subexpression Extraction: The extraction of sub-expressions, which is essential
for ANF, could already be performed during the initial transition from imperative
languages to SSA. However, in order to increase external validity, we have integrated
this procedure into a later point of our pipeline, namely the transformation from SSA to
ANF. This extension is designed to improve the adaptability of our approach for different
programming languages.

47

4. Evaluation

4.3.2 Internal Validity
Impact of Function Position: Possible impacts of the transformation process regarding
the positioning of functions must be considered, as our approach changes the position
of the functions. Such changes could result in variations in behavior and outcomes.
Specifically, if a function shares its name with a variable and their definitions are
incorrectly ordered, there’s a risk of the entire program breaking. Although this is not
certain in all cases, this risk exists in particular scenarios depending on the places the
variable is used.

Unforeseen errors: Acknowledging the limitations of the developed library, it is possible
that unforeseen errors may occur due to oversight or inherent difficulties in detection.

Known Limitations and Missing Functionality: Taking into account the presence
of unimplemented nodes within Python files, the frequency of these occurrences prompts
inquiries into the broader applicability and effectiveness of our transformation tool.
Additionally, recognizing limitations and missing functionalities within our implementa-
tion invoke constraints, that play an important role in shaping the interpretation and
generalization of our findings.

• Function placement after backwards transformation
• When using (*args) as a function argument, it fails if a named argument is infront

of it
• When using (*args) as function parameters, the * is lost throughout the transfor-

mation
• Default parameters fail to function when they are non-trivial, such as attributes,

as in the example def a(x=a.b)

• Double backslashes in strings, such as a = ”C : \\test.py”, and a = ”C : \\”, cause
issues

48

CHAPTER 5
Related Work

Intermediate Representations: IRs are used in a wide range of applications, such
as predicting future trajectories in urban driving scenarios [Srikanth et al., 2019], the
semantic segmentation in video understanding [Kangaspunta et al., 2021], neural semantic
parsers that aim to close the semantic gap between natural and formal languages [Nie
et al., 2022], and many more. But they are also used in terms of data transformation
for abstract visualizations [Hamaza et al., 2020] or the conversion into a grammatically
consistent form of IR in order to establish a basis in the variety of program languages for
static analyses [Spanier and Mahoney, 2023].

Referring to our work, the public available Scalpel framework Li et al. [2022] provides
fundamental static analysis functions (e.g., call graph constructions, control-flow graph
constructions, alias analysis, etc.), which builds the basis for our thesis. Although, the
framework lacks in the available amount of functionalities, which we enlarged for our
purposes, such as the introduction of Ï-assignments, the utilization of the networkx library
and the renaming of newly assigned variables. The approach in [Click and Paleczny, 1995]
demonstrates the use of CFG and SSA for program execution and optimization. Here,
control dependencies are defined as edges, and control information as nodes. Similar to
us, the CFG is used to simplify the data structure, although the implementation is done
with C++. In their work [Cytron et al., 1991], the authors propose an efficient method
for constructing data structures using CFG and SSA form, aiming for enhanced efficiency
and program optimization. However, a drawback is the potential increase in program
size. The transformation from SSA to ANF, as proposed in [Chakravarty et al., 2004],
aims to enhance reasoning about SSA-based optimization algorithms. But it leads to
the constraint of restricting SSA to include only atomic function parameters, thereby
limiting flexibility in implementation and ease of enhancement to other languages. The
approach also introduces the possibility of increased program size.

49

5. Related Work

Transformations: The transformation from continuation passing style to SSA, detailed
in [Kelsey, 1995], underscores its helpfulness in compiling functional programs. This
approach allows for direct transformation, eliminating the need for flow analysis and
enabling the analysis of recursively expressed loops. Complementary, [Sreedhar et al.,
1999] delves into SSA programs featuring Ï instructions, which often require nontrivial
translations for native instructions such as copy propagation. The framework developed
in this study facilitates the translation out of SSA through copy placement, streamlining
the process while removing redundant copy operands. In [Appel, 1998b], the focus
shifts to representation forms in SSA and lambda calculus. The direct transformation
presented here demonstrates its efficacy in optimizing imperative and functional language
compilers, highlighting that both representations yield identical results despite differences
in notation. The same process of generating the SSA is used within the Scalpel library
and is thus important for our work. Expanding on these transformations, [Jaramillo et al.]
investigates the effects of code transformation. A technique for automatically identifying
statement instance correspondences between untransformed and transformed code is
introduced, enabling seamless mapping when code-improving transformations are applied.
This approach supports loop optimizations, symbolic debugging, and adjustments in
statement positioning and ordering. Transitioning to functional programming, [Buszka
and Biernacki, 2021] discusses the transformation into ANF, emphasizing automated
functional correspondence. This entails describing the evaluator in a functional meta-
language to facilitate program analysis before selectively translating to continuation-
passing style and defunctionalization. This process is significant for our methods, despite
our source language is imperative.

In [Dig et al., 2009], a distinct category of code transformation is discussed, focusing
on object-oriented languages and code refactoring to modify code and improve software
quality, while also enabling backwards transformations. These tools encompass various
applications, plugins, and libraries tailored for refactoring across multiple programming
languages. For instance, ReLooper automates the execution of running loops in parallel,
although necessitating safe loop iterations. Similarly, the syntax-preserving algorithm for
program slicing, detailed in [Marinov, 2020], offers comparable functionality by refactoring
code while maintaining high design quality, particularly in the context of SSA. More
broadly, refactoring tools integrated into IDEs such as Eclipse1 or IntelliJ IDEA2 are
available. These tools enable actions such as method inlining or function and variable
renaming. However, they primarily operate at higher code levels like the CFG and only
apply predefined changes during the backwards transformation, limiting user intervention.

Provenance Information: To the best of my knowledge, there hasn’t been any
prior work in the field of program analysis that explicitly formulates translations with
provenance.

1https://www.eclipse.org/
2https://www.jetbrains.com/idea/

50

CHAPTER 6
Conclusion and Outlook

The entire work builds upon the research questions initially posed, which have been
addressed throughout this study. All implementations, definitions, and developments are
grounded in them.

To briefly recap these questions: They inquire into how provenance information can
be retained during the transformation into ANF and whether a bijective relation is
feasible. These questions have been answered through an examination of the aspects of
transforming high-level imperative languages into ANF code and vice versa.

The feasibility of a bijective relation can clearly be affirmed, as the novel method developed
maintains the capability to preserve provenance information, enabling the backwards
transformation.

The defined pipeline, encompassing multiple IRs, including the AST, the CFG and the
SSA to transform to the targeting ANF, alongside with the novel method, retains the
provenance information.

All necessary syntax definitions, transformation rules and guidelines have been outlined
within this work. Each development has been encapsulated and merged within the
Python library we have constructed. This library serves for code conversion and can be
utilized for various analyses and optimizations.

Additionally, a web application has been implemented as part of this thesis, which, with
the assistance of accompanying positional information from the library, visually illustrates
which code fragments on the ANF side correspond to which parts of the simplified Python
code.

51

6. Conclusion and Outlook

Despite the numerous advantages and innovations that have been discovered, there are
still limitations and constraints that could be of interest for future projects.

• All limitations, that are referred to in Section 4.3, could be rectified.
• In order to make the library applicable to a wider range of applications, it might

be of interest to implement additional AST nodes that were not considered in this
thesis. Once all nodes are supported, the library is ready to be tested in bulk.

• The preprocessing step was implemented in order to be able to use a more general
code in the transformation phase to SSA and to facilitate the extension of this
library to other languages. However, if more emphasis is placed on a complete
visualization, this step could be shifted to the SSA phase so that the position
information comes from the original code and not from the simplified Python code.

In summary, the developed Python library effectively addresses the specified research
questions and can offer favorable solutions through its implementation.

52

APPENDIX A
Appendix

TEST ID LINK
1 https://github.com/areski/python-nvd3/blob/develop/examples/lineChart.py
2 https://github.com/tilezen/vector-datasource/blob/master/scripts/all_the_kinds.py
3 https://github.com/lhartikk/AstroBuild/blob/master/astro_build.py
4 https://github.com/gregmuellegger/django-autofixture/blob/master/runtests.py
5 https://github.com/emanuele/kaggle_pbr/blob/master/blend.py
6 https://github.com/Kong/unirest-python/blob/master/unirest/utils.py
7 https://github.com/Asabeneh/30-Days-Of-Python/blob/master/03_Day_Operators/day-

3.py
8 https://github.com/yangxue0827/FPN_Tensorflow/blob/master/help_utils/help_utils.py
9 https://github.com/Far0n/kaggletils/blob/master/kaggletils/math.py
10 https://github.com/TheAlgorithms/Python/blob/c6ca1942e14a6e88c7ea1b96ef3a6d17ca8

43f52/maths/abs.py#L5
11 https://github.com/sourabhvora/HyperFace-with-SqueezeNet/blob/master/hyperface.py
12 https://github.com/openwall/john/blob/f55f42067431c0e8f67e600768cd8a3ad8439818/run

/dns/tsigkeyring.py#L25
13 https://github.com/Asabeneh/30-Days-Of-Python/blob/master/04_Day_Strings/day_4.py
14 https://github.com/Tautulli/Tautulli/blob/d019efcf911b4806618761c2da48bab7d04031ec

/lib/dns/grange.py#L24
15 https://github.com/RMerl/asuswrt-merlin.ng/blob/bc3c8c32858492818c2be50e2ea95522b

d342f5e/release/src/router/samba-3.6.x_opwrt/source/lib/dnspython/dns/opcode.py#L45
16 https://github.com/hemathulsidhos/Download-and-Extract-Structural-Metadata-from-

Islandora/blob/main/download_rels_ext_2.0.py
17 https://github.com/amitay/samba/blob/68ef3c48fc6df2396381af622140fbc2023bd81c/lib

/dnspython/dns/rdtypes/IN/IPSECKEY.py#L76
18 https://github.com/RMerl/asuswrt-merlin.ng/blob/bc3c8c32858492818c2be50e2ea95522b

d342f5e/release/src/router/samba-3.6.x_opwrt/source/lib/dnspython/dns/rdtypes
/ANY/SSHFP.py#L49

19 https://github.com/RMerl/asuswrt-merlin.ng/blob/bc3c8c32858492818c2be50e2ea95522b
d342f5e/release/src/router/samba-3.6.x_opwrt/source/lib/dnspython/dns/rcode.py#L61

20 https://github.com/RMerl/asuswrt-merlin.ng/blob/bc3c8c32858492818c2be50e2ea95522b
d342f5e/release/src/router/samba-3.6.x_opwrt/source/lib/dnspython/dns/flags.py#L82

Table A.1: Link to the source code files of test-set 2

53

A. Appendix

AST Node Example Supported
Statements
FunctionDef def a(): �
Return return 1 �
Delete del a[0] �
Assign a = 1 �
AugAssign a += 1 �
AnnAssign a:int �
For for i in []: �
While while (true): �
If if a: ... �
Raise raise ” �
Assert assert a == 2, ” �
Expr Expression �
Pass pass �
Break break �
Continue continue �

Expressions
BoolOp a or b �
BinOp a + b �
UnaryOp not a �
Lambda lambda a: a + a �
IfExp a if x else b �
Dict ’a’: 1 �
Set (1, 2) �
ListComp [i for i in x] �
SetComp (i for i in x) �
DictComp {i:i for i in x} �
Compare a < b �
Call a() �
FormattedValue f’text{a}’ �
JoinedStr f’text{a}{b}’ �
Constant 10 �
Attribute a.b() �
Subscript a[1,2] �
Name a �
List [1,2,3] �
Tuple (1,2,3) �
Slice a[1:2] �
NamedExpr (b := 10) �

54

AST Node Example Supported
Asynchronous nodes
AsyncFunctionDef async def a(): �
AsyncFor For �
Await await a() �
Yield yield a �
YieldFrom yield from a �
With with a:... �
AsyncWith With �

Exception handling
Try try:... except e:... �
TryStar try:... except* e:... �

Others
Starred *a �
Global global a,b �
Nonlocal nonlocal a,b �
Match match x:case 1:... �
GeneratorExp i for i in x �
TypeAlias type Alias=int �

Kept as Comments
ClassDef class Name:... �
Import import re �
ImportFrom from a import b �

Table A.2: Supported AST nodes with representative examples

55

Bibliography

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs.
In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’88, POPL ’88. ACM Press, 1988. doi: 10.1145/73560.
73561. URL http://dx.doi.org/10.1145/73560.73561.

A. W. Appel. Modern Compiler Implementation: In ML. Cambridge University Press,
USA, 1st edition, 1998a. ISBN 0521582741.

A. W. Appel. Ssa is functional programming. Acm Sigplan Notices, 33(4):17–20, 1998b.

M. Blume and A. W. Appel. Lambda-splitting: A higher-order approach to cross-module
optimizations. In Proceedings of the second ACM SIGPLAN international conference
on Functional programming, pages 112–124, 1997.

W. J. Bowman. A low-level look at a-normal form. 2024.

M. Buszka and D. Biernacki. Automating the functional correspondence between higher-
order evaluators and abstract machines. In International Symposium on Logic-Based
Program Synthesis and Transformation, pages 38–59. Springer, 2021.

M. M. Chakravarty, G. Keller, and P. Zadarnowski. A functional perspective on ssa
optimisation algorithms. Electronic Notes in Theoretical Computer Science, 82(2):
347–361, Apr. 2004. ISSN 1571-0661. doi: 10.1016/s1571-0661(05)82596-4. URL
http://dx.doi.org/10.1016/S1571-0661(05)82596-4.

J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction of sparse data flow
evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’91, POPL ’91. ACM Press, 1991. doi:
10.1145/99583.99594. URL http://dx.doi.org/10.1145/99583.99594.

C. Click and M. Paleczny. A simple graph-based intermediate representation. ACM
SIGPLAN Notices, 30(3):35–49, Mar. 1995. ISSN 1558-1160. doi: 10.1145/202530.
202534. URL http://dx.doi.org/10.1145/202530.202534.

57

http://dx.doi.org/10.1145/73560.73561
http://dx.doi.org/10.1016/S1571-0661(05)82596-4
http://dx.doi.org/10.1145/99583.99594
http://dx.doi.org/10.1145/202530.202534

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, Oct. 1991. ISSN
1558-4593. doi: 10.1145/115372.115320. URL http://dx.doi.org/10.1145/
115372.115320.

D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson. Relooper: refactoring for loop
parallelism in java. In Proceedings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, OOPSLA09. ACM,
Oct. 2009. doi: 10.1145/1639950.1640018. URL http://dx.doi.org/10.1145/
1639950.1640018.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. volume 28, page 237–247. Association for Computing Machinery (ACM),
June 1993. doi: 10.1145/173262.155113. URL http://dx.doi.org/10.1145/
173262.155113.

S. Hack, D. Grund, and G. Goos. Register allocation for programs in ssa-form. In
Compiler Construction: 15th International Conference, CC 2006, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna,
Austria, March 30-31, 2006. Proceedings 15, pages 247–262. Springer, 2006.

S. Hamaza, I. Georgilas, G. Heredia, A. Ollero, and T. Richardson. Design, modeling,
and control of an aerial manipulator for placement and retrieval of sensors in the
environment. Journal of Field Robotics, 37(7):1224–1245, June 2020. ISSN 1556-4967.
doi: 10.1002/rob.21963. URL http://dx.doi.org/10.1002/rob.21963.

J. Hatcliff and O. Danvy. A computational formalization for partial evaluation. Mathe-
matical structures in computer science, 7(5):507–541, 1997.

C. Jaramillo, R. Gupta, and M. Soffa. Capturing the effects of code improving transforma-
tions. In Proceedings. 1998 International Conference on Parallel Architectures and Com-
pilation Techniques (Cat. No.98EX192), PACT-98. IEEE Comput. Soc. doi: 10.1109/
pact.1998.727181. URL http://dx.doi.org/10.1109/PACT.1998.727181.

J. Kangaspunta, A. Piergiovanni, R. Jonschkowski, M. Ryoo, and A. Angelova. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1602–1612, 2021.

R. A. Kelsey. A correspondence between continuation passing style and static single
assignment form. In Papers from the 1995 ACM SIGPLAN workshop on Intermediate
representations, POPL95. ACM, Mar. 1995. doi: 10.1145/202529.202532. URL http:
//dx.doi.org/10.1145/202529.202532.

J. Knoop, O. Rüthing, and B. Steffen. Partial dead code elimination. volume 29, page
147–158. Association for Computing Machinery (ACM), June 1994. doi: 10.1145/
773473.178256. URL http://dx.doi.org/10.1145/773473.178256.

58

http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/1639950.1640018
http://dx.doi.org/10.1145/1639950.1640018
http://dx.doi.org/10.1145/173262.155113
http://dx.doi.org/10.1145/173262.155113
http://dx.doi.org/10.1002/rob.21963
http://dx.doi.org/10.1109/PACT.1998.727181
http://dx.doi.org/10.1145/202529.202532
http://dx.doi.org/10.1145/202529.202532
http://dx.doi.org/10.1145/773473.178256

L. Li, J. Wang, and H. Quan. Scalpel: The python static analysis framework. arXiv
preprint arXiv:2202.11840, 2022.

E. S. Lowry and C. W. Medlock. Object code optimization. Communications of the
ACM, 12(1):13–22, Jan. 1969. ISSN 1557-7317. doi: 10.1145/362835.362838. URL
http://dx.doi.org/10.1145/362835.362838.

C. K. Mai, B. V. Kiranmayee, M. N. Favorskaya, S. C. Satapathy, and K. S. Raju.
Proceedings of International Conference on Advances in Computer Engineering and
Communication Systems - ICACECS 2020. Springer Nature, Singapore, 2021. ISBN
978-9-811-59293-5.

A. Marinov. An efficient syntax-preserving slide-based algorithm for program slicing. PhD
thesis, Academic College OF Tel Aviv-Yaffo, 2020.

S. Mirliaz and D. Pichardie. A flow-insensitive-complete program representation. In
B. Finkbeiner and T. Wies, editors, Verification, Model Checking, and Abstract In-
terpretation, pages 197–218, Cham, 2022. Springer International Publishing. ISBN
978-3-030-94583-1.

L. Nie, S. Cao, J. Shi, J. Sun, Q. Tian, L. Hou, J. Li, and J. Zhai. Graphq ir: Unifying
the semantic parsing of graph query languages with one intermediate representation.
arXiv preprint arXiv:2205.12078, 2022.

A. Spanier and W. Mahoney. Static vulnerability analysis using intermediate representa-
tions: A literature review. In European Conference on Cyber Warfare and Security,
volume 22, pages 458–465, 2023.

V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam. Translating out of static
single assignment form. In Static Analysis: 6th International Symposium, SAS’99
Venice, Italy, September 22–24, 1999 Proceedings 6, pages 194–210. Springer, 1999.

S. Srikanth, J. A. Ansari, R. K. Ram, S. Sharma, J. K. Murthy, and K. M. Krishna. Infer:
Intermediate representations for future prediction. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 942–949. IEEE, 2019.

R. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing, 3(1):
62–89, 1974.

A. Tavares, B. Boissinot, F. Pereira, and F. Rastello. Parameterized construction of
program representations for sparse dataflow analyses. In A. Cohen, editor, Compiler
Construction, pages 18–39, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN
978-3-642-54807-9.

Tinman. Lexical and syntax analysis. https://tinman.cs.gsu.edu/~raj/4330/
slides/c04.pdf, 2015. [Accessed 06-03-2024].

59

http://dx.doi.org/10.1145/362835.362838
https://tinman.cs.gsu.edu/~raj/4330/slides/c04.pdf
https://tinman.cs.gsu.edu/~raj/4330/slides/c04.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Python Abstract Syntax Tree
	Control Flow Graph
	Static Single Assignment Form
	A-Normal Form

	Approach
	Transformation Pipeline
	Syntax Definition
	SSA
	ANF

	Transformation Rules and Guidelines
	Preprocessing
	AST SSA (via CFG)
	SSA ANF
	ANF Python (with Postprocessing)

	Implementation
	Command-Line Interface and Web Application
	Preprocessing
	Simplified Python to SSA
	SSA to ANF
	Backward Transformation from ANF to Python

	Evaluation
	Unit Tests
	Real-World Examples
	Threats to Validity
	External Validity
	Internal Validity

	Related Work
	Conclusion and Outlook
	Appendix
	Bibliography

