
CRDT-based Serverless
Middleware for Stateful Objects in

the Edge-Cloud Continuum

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Valentin Goronjic, BSc
Matrikelnummer 51900253

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dr. Stefan Nastic, BSc

Wien, 6. Mai 2024
Valentin Goronjic Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

CRDT-based Serverless
Middleware for Stateful Objects in

the Edge-Cloud Continuum

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Valentin Goronjic, BSc
Registration Number 51900253

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr. Stefan Nastic, BSc

Vienna, May 6, 2024
Valentin Goronjic Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Valentin Goronjic, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Mai 2024
Valentin Goronjic

v

Danksagung

Zu Beginn möchte ich mich bei meinem Betreuer Assistant Prof. Dr. Stefan Nastic für
die Möglichkeit, diese Arbeit zu verfassen, bedanken. Das kontinuierliche und wertvolle
Feedback und die zahlreichen Meetings haben maßgeblich zum Erfolg der Arbeit beige-
tragen. Außerdem möchte ich mich bei der gesamten Distributed Systems Group für die
freundliche Aufnahme im Büro bedanken.

Außerdem möchte ich mich bei meiner Partnerin, meinen Freunden und meiner Familie
bedanken, die mich allesamt während meines Studiums und dieser Arbeit unglaublich
unterstützt haben. Vielen Dank für eure Motivation, Ermutigung, Ratschläge und die
emotionale Unterstützung!

vii

Acknowledgements

First and foremost, I would like to thank my advisor, Assistant Prof. Dr. Stefan Nastic,
for giving me the opportunity to conduct this thesis and continuously providing valuable
feedback that significantly contributed to its outcome. I’d also like to thank the whole
Distributed Systems Group for the warm welcome in the office.

Furthermore, I’d like to express my deepest gratitude to my girlfriend, friends, and family,
who have all been incredibly supportive during my studies and this thesis. Thank you
for your motivation, encouragement, advice, and emotional support!

ix

Kurzfassung

Die Beibehaltung von Zuständen ist herausfordernd für serverlose Funktionen am Netz-
werkrand, da diese üblicherweise auf entfernten Speicherdiensten liegen und dies somit
eine potenziell hohe Latenz mit sich bringt. Andere Lösungen halten die Daten entweder
nicht lokal, beinhalten Komponenten, die von einer zentralen Komponente abhängig sind,
oder sind für Cloud-basierte serverlose Plattformen konzipiert. All diese Lösungen sind
daher nicht für den Edge-Bereich geeignet. Es benötigt daher einer Lösung für dieses
Problem, die die oben genannten Anforderungen des Edge-Cloud-Kontinuums erfüllt und
gleichzeitig in bestehende serverlose Plattformen integrierbar ist.

In dieser Arbeit präsentieren wir MISO, eine CRDT-basierte serverlose Middleware für
das Edge-Cloud-Kontinuum. Sie stellt sogenannte MISO Stateful Objects für serverlose
Funktionen bereit, die mehrere dezentralisierte, konfliktfreie replizierte Datentypen in
einem einzigen Objekt bündeln. Die Beiträge dieser Arbeit umfassen: i) das konzep-
tionelle Modell der MISO Stateful Objects, ii) die MISO-Middleware, bestehend aus
dem Architekturmodell und einem Open-Source Software-Prototyp, iii) ein SDK für
serverlose Funktionen, welches die Verwendung von MISO Stateful Objects in serverlosen
Funktionen ermöglicht und iv) die asynchrone Replikation von MISO Stateful Objects
mittels einem Overlay Netzwerk, optimiert in Hinblick auf die Datenmenge und den
Ressourcenverbrauch.

In unserer Performanceevaluation verwenden wir eine AllReduce-Operation in einer
serverlosen Funktion, welche in OpenFaaS läuft. Unsere Lösung benötigte 26.7% weniger
Zeit als Redis Enterprise und war fast 2.5-mal schneller als MinIO. Wir evaluieren
unseren Replikationsmechanismus mittels einem Open-Source gRPC Benchmark Tool.
Wir senden 5 Millionen Anfragen an die Middleware, welche gleichzeitig ein MISO
Stateful Object auf mehreren Nodes in unterschiedlich großen Clustern verändern. Unsere
Ergebnisse zeigen, dass der Replikationsmechanismus skalierbar ist und Zehntausende von
gleichzeitigen Anfragen bewältigen kann. Außerdem beschreiben wir die Auswirkung des
Replikationsintervalls auf die RPS, die Latenz, die Experimentdauer und die gesendete
Datenmenge. Wir demonstrieren praktisch, dass sich die Middleware nahtlos in eine
bestehende serverlose Plattform (OpenFaaS) integrieren lässt. Schließlich zeigen wir,
dass unser SDK im oben genannten AllReduce-Experiment weniger Codezeilen benötigt
und eine geringere oder ähnliche kognitive Komplexität aufweist wie die anderen beiden
verwendeten Lösungen.

xi

Abstract

Maintaining the application state is challenging for serverless functions that run at the
edge of the network. This is because the predominant way to maintain the application
state using serverless functions is to access remote storage services, which are not suited
for the edge due to potential high latency. Other proposed solutions for stateful serverless
functions either do not promote data locality, contain components that depend on a
centralized authority, or are built for cloud-based serverless platforms, all of which are
not suited at the edge. There is a need for a solution to this problem that satisfies the
aforementioned requirements of the edge-cloud continuum and is generalizable to multiple
serverless platforms.

This thesis introduces MISO, a CRDT-based serverless middleware for the edge-cloud
continuum. It provides MISO Stateful Objects for serverless functions, which bundle
multiple decentralized and conflict-free replicated data types into a single object. The list
of contributions of this thesis includes: i) the conceptual model of MISO Stateful Objects,
ii) the MISO middleware consisting of the architectural model and an open-source
software prototype, iii) an SDK for serverless functions that enables the usage of MISO
Stateful Objects within serverless functions, and iv) the asynchronous replication of
MISO Stateful Objects using an overlay network optimized towards data transfer and
resource consumption.

For our performance evaluation, we utilize an AllReduce operation in a serverless function
running in OpenFaaS. In this experiment, our solution took 26.7% less time than Redis
Enterprise and was almost 2.5 times faster than MinIO. We evaluate the middleware’s
replication mechanism with an open-source gRPC benchmark tool to perform 5 million
requests concurrently modifying a MISO Stateful Object on clusters of different sizes.
Our results indicate that the middleware’s replication is scalable and can handle tens
of thousands of concurrent requests. Furthermore, we clearly demonstrate the impact
of the replication interval on the RPS, latency, experiment time, and replication traffic.
Additionally, we demonstrate that the middleware can be seamlessly integrated into an
existing serverless platform (OpenFaas). Finally, we show that our SDK requires fewer
lines of code and has less or similar cognitive complexity than the other solutions we
utilized in the aforementioned AllReduce experiment.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contributions . 3
1.4 Research Questions . 4
1.5 Methodology . 5
1.6 Structure . 7

2 Background 9
2.1 Serverless Computing . 9
2.2 Conflict-free Replicated Data Types 12
2.3 gRPC . 14

3 Related Work 17
3.1 Stateful Functions for Existing Serverless Platforms 17
3.2 New Approaches for Stateful Serverless Serverless Functions 19

4 MISO Middleware 23
4.1 Conceptual Model . 23
4.2 Middleware Architecture . 24
4.3 Middleware Core Modules . 26
4.4 SDK for Serverless Functions . 34

5 Prototype Implementation 39
5.1 Middleware Package . 40
5.2 SDK Package . 45
5.3 CRDT Package . 47
5.4 Common Package . 49

xv

6 Evaluation 53
6.1 Performance Overhead . 53
6.2 Replication Algorithm . 60
6.3 Qualitative Evaluation . 66
6.4 Limitations . 72

7 Conclusion 73
7.1 Research Questions . 74
7.2 Future Work . 76

A GitHub Repository 77
A.1 Implementation Packages . 77
A.2 Evaluation . 77

List of Figures 79

List of Tables 81

List of Algorithms 83

List of Listings 85

Glossary 87

Acronyms 89

Bibliography 91

CHAPTER 1
Introduction

1.1 Motivation
Modern software development increasingly relies on serverless computing. Function as a
Service (FaaS) platforms abstract away the complexity of provisioning computational
resources from developers [1], [2] by running custom functions in response to events or
Application Programming Interface (API) calls [2]. Furthermore, the platforms manage
the provisioning and execution of these functions and scale them accordingly on demand
[1], [3]. Serverless functions can be written in a broad range of programming languages
and are uploaded to the platform along with their dependencies [2]. Serverless functions
are stateless, meaning they do not retain any memory about previous executions [2].
This means that applications requiring a globally shared state at fine granularity cannot
be built easily with the serverless paradigm due to the fact that serverless functions are
stateless [3]. Serverless platforms typically do not provide a way to manage state [2].
The predominant way to handle mutable state, hence, is to access remote storage services
in the function code, which may have high access latency [2], [4]–[6] as well as limited or
costly I/O performance [2], [4], [5].

The adoption of the serverless paradigm at the edge of the network is rising [1], [7], [8].
Edge computing aims to build a bridge between clouds and applications by distributing
computing and storage resources over multiple geographically dispersed regions toward
the edge of a network. Edge nodes generally have limited computational resources
[9]. The reason why serverless is becoming increasingly relevant at the Edge is the
increase of real-time and data-intensive applications powered by Internet of Things (IoT)
devices requiring low latency [1], [9]. Network latency from the edge device to the cloud
can be high, which poses significant strains on the concept of centralized data centers.
Transferring and processing exponentially increasing data volumes can also lead to low
throughput [9]. Therefore, the problem of managing the state of serverless functions is
particularly challenging at the edge of the network [1].

1

1. Introduction

1.2 Problem Statement

In the literature, multiple proposals for solutions to implement stateful serverless comput-
ing can be found. However, to the best of our knowledge, no current solution is explicitly
designed for the distributed and heterogeneous characteristics of the edge-cloud continuum
and the architectures of existing serverless platforms. We describe those requirements
below in more detail.

Dependence on Centralized Authority The edge-cloud computing continuum is
dynamic and consists of many different devices [1], [7]. The principle of edge computing is
subject to failure if the applications and networks are improperly designed, implemented,
or deployed [1]. Edge devices may fail unexpectedly, have limited computational resources
and energy, and are particularly vulnerable Aslanpour et al. [1]. Furthermore, complete
sites containing multiple devices can fail at any time [10]. Applications at the edge should
not depend on a central node due to the potential unreliability [1]. Some authors have
proposed solutions for stateful serverless functions that rely on a centralized queue to
sequentially perform writes regarding the same entity [11] and are thus not suited for the
edge. Other ways to achieve stateful serverless functions often depend on a component
that requires the election of primary nodes with consensus protocols such as Raft or
Paxos. Examples of this are MongoDB [12], [13] and Redis [13], [14], where writes are only
possible against primary nodes [14], [15]. This is challenging for the volatile environment
of edge computing, as such protocols typically assume that at most half of the nodes fail
simultaneously [16], which might not be guaranteed in all cases at the edge. Given this
information, it is evident that solutions for stateful serverless functions that rely on any
central authority are not ideal for the edge-cloud continuum.

Data Locality Many existing solutions for stateful serverless functions separate the
data and the serverless platform into two distinct layers running on separate machines.
For example, the Crucial framework proposed by Barcelona-Pons et al. [2], the Object
as a Service paradigm introduced by Lertpongrujikorn et al. [17], and Apache Flink
Stateful Functions [18] manage the state physically separated from the node running
the serverless function. Use cases like IoT that run on the Edge of the network often
require low latency [1], which is a potential challenge for architectures where the data
is physically separated from the serverless functions. Baresi et al. [9] propose to add a
caching layer to serverless platforms to minimize latency when retrieving states from
remote services, which works for retrieving the state concurrently but does not solve
the issue of concurrent data modifications and potential data conflicts when serverless
functions are called by multiple nodes at the same time. Puliafito et al. [8] propose that
all requests accessing a certain stateful object are routed to the same container instance.
While routing requests to the same container preserves data locality, relying on a single
container for the whole session is not ideal, as outlined in the paragraph above. Shahidi
et al. [6] highlight the necessity for an intermediate layer that is positioned between the

2

1.3. Contributions

serverless functions and the storage infrastructure that places the application state in
close proximity to the nodes executing serverless functions to boost performance.

Lack of Generalizability Some related work like Cloudburst [19] promotes data
locality but introduces entirely new serverless platforms that do not seamlessly integrate
with existing ones. Similarly, Lertpongrujikorn et al. [17] have introduced an entirely new
paradigm to manage state for serverless functions. [8] propose a system model of a new
stateful FaaS platform tailored to the edge but do not provide a concrete implementation.
Other solutions, such as Durable Functions [11], are tailored to a specific serverless
platform and not generalizable to multiple serverless platforms.

While entirely new serverless platforms might solve the issue of stateful serverless functions,
the proposals we encountered in our literature review [19] [17] potentially force developers
to adapt the workflows in which they write, deploy, and execute the serverless functions
to make use of the stateful objects. There is a need for more research about generalizable
solutions that can be seamlessly integrated into existing open-source serverless platforms,
such as OpenFaaS 1 or Knative2. Such a solution should work with multiple serverless
platforms, independent of the programming language that they are developed in. In this
thesis, we aim to make a contribution to this gap.

Conflict-free Replicated Data Types (CRDTs) Recent research has introduced
CRDTs, which are replicated abstract data types that are designed to be modified
concurrently. They offer strong eventual consistency, which means replicas eventually
converge to the same state if it is ensured that all replicas receive the exact same updates.
It is very promising to use CRDTs to establish a solution to the aforementioned problems,
as they are decentralized and do not rely on a central authority for synchronization. The
principle of those data types is that state modifications are propagated asynchronously
to other replicas, and updates can be merged without the need to resolve data conflicts
manually [20].

This thesis presents MISO, a CRDT-based serverless middleware that provides stateful
objects to serverless functions in the edge-cloud continuum. The goal of the middleware
is to solve the aforementioned challenges.

1.3 Contributions
We summarize the contributions of this work as follows:

1. Introduction of the conceptual model of MISO Stateful Objects, which
are used to manage state in serverless functions. From the developer’s perspective,
they are the most important building block of the middleware, as they create and

1https://github.com/openfaas/faas
2https://github.com/knative/serving

3

https://github.com/openfaas/faas
https://github.com/knative/serving

1. Introduction

use them in the code of serverless functions. MISO Stateful Objects belong to
a single serverless function and combine multiple CRDT-based data types into a
single object.

2. Definition of the MISO middleware’s architecture and implementation
of a software prototype. The middleware is architecturally designed to be
integrated into existing serverless platforms. Furthermore, it requires different core
mechanisms to operate, which are clearly described in this thesis. We additionally
provide a practical software prototype implementation of the middleware, following
the proposed architecture and core mechanisms.

3. Definition and implementation of a Software Development Kit (SDK)
for serverless functions. This is a key component to use MISO Stateful Objects
in serverless functions. It provides proxy versions of the data types within MISO
Stateful Objects. Those proxy versions delegate operations to the middleware
transparently whenever operations are invoked on them.

4. Replication of the data using an overlay network. The replication algorithm
optimizes the state replication in terms of data transfer and resource consumption
by utilizing information provided by the overlay network. It is designed to replicate
data asynchronously and debounced with a configurable delay to adapt to different
latency requirements.

5. Implementation of various state-based CRDTs. This is required by the
middleware to provide the functionality of the MISO Stateful Objects. The data
types are implemented in TypeScript as a separate package/library and can also
be used by other developers for purposes unrelated to MISO.

1.4 Research Questions
We formulate the following research questions and their expected results:

• RQ1: What is an appropriate architecture for a CRDT-based middleware
that provides Stateful Objects for serverless functions in the edge-cloud
continuum, so that it is scalable and integrable into existing serverless
platforms?
This is a software design/implementation question and is to be determined during
the development of the solution. The expected results of this question include a
concept and architectural description of the middleware components and modules
and a prototype implementation that integrates with an existing serverless platform
(e.g., OpenFaaS).

• RQ2: What is an appropriate way to efficiently replicate Stateful Objects
between different nodes running the middleware to avoid unnecessary
network traffic?

4

1.5. Methodology

Replication of the MISO Stateful Objects is a core mechanism of the middleware.
To make this process efficient, we expect that we need to leverage information
provided by serverless platforms and/or the underlying container orchestrator. It
is expected that simply replicating the state changes between all nodes of the
serverless platform (i.e., via gossip protocols) will not scale.

• RQ3: What is the overhead of using CRDT-based Stateful Objects
in the edge-cloud continuum in terms of performance and resource
consumption, compared to other state-of-the-art solutions for stateful
serverless functions?
This is a question that can only be answered after evaluating the results of this
thesis.

1.5 Methodology

Design Cycle: DevelopmentRelevance & Rigor Cycles Design Cycle: Evaluation

Literature Review

Feature Driven
Development

Technical
Experiments

Qualitative
EvaluationSDK

Concept

Middleware

Methodology Artifact

Figure 1.1: Methodology followed in this Thesis

Figure 1.1 provides an overview of the methodology followed in this thesis. The method-
ology of this thesis aligns with the paradigm of Design Science Research (DSR) [21],
which is a research approach that aims to develop and evaluate artifacts as solutions
to real-world problems. The core of DSR is the Design Cycle, in which an artifact is
developed and evaluated in an iterative process. This cycle has inputs from existing
knowledge (Rigor Cycle) and its environment (Relevance Cycle). The finished research
then contributes back to the knowledge base.

5

1. Introduction

For the Relevance and Rigor Cycles of this thesis, a literature review is conducted to
highlight existing knowledge, software artifacts, and problems in the field of serverless
functions. This literature review focuses on CRDTs, serverless functions, and existing
approaches for stateful serverless functions. By including existing software artifacts in
the literature review, this thesis aims to ensure that the proposed solution is relevant
and builds upon existing knowledge in the field.

In the Design Cycle, a concept and implementation of a CRDT-based serverless
middleware that enables MISO Stateful Objects for serverless functions in the edge-cloud
continuum is derived in an iterative process. This thesis produces two artifacts: (1) the
concept and architectural overview of the middleware, and (2) a practical instantiation of
the concept in the form of a software prototype.

The Feature Driven Development (FDD) approach is used to create the artifacts
in the Design Cycle, which is a popular agile development method [22] that promotes
short incremental iterations [23]. In FDD, the development process is organized around
the features that are to be implemented in the software, aligning with the business
requirements. The method is adaptive and capable of accommodating late changes in
the requirements. The overall objective of FDD is to consistently deliver high-quality
software across every stage in the development cycle [23].

Develop an
Overall Model

Build a
Feature List

Plan by
Feature

Build By
Feature

Design by
Feature

List of
FeaturesModel Development

Plan Design Completed
Feature

ArtifactPhase

iterative

Figure 1.2: Feature Driven Development Process (own work based on [22], [23])

The FDD process is visible in Figure 1.2 consists of five phases [22], [23]. The first phase
is to "Develop an Overall Model", where the overall project scope is defined, and domain
experts create multiple object models. The most optimal model is then selected after a
thorough review. The second phase is to "Build a Feature List", where all features of
the system are identified on the basis of the previously selected object model from the
first phase. A feature is one that provides business value. The third phase is to "Plan
by Feature", where each feature is thoroughly planned to produce a development plan.
This is then followed by an iterative phase called "Design by Feature", where the design

6

1.6. Structure

phase of the implementation is done (e.g., creating UML diagrams). The last step is
implementing and testing the previously created designs in the "Build by Feature" phase.
This phase is also an iterative one. In this thesis, Chapter 4 describes artifacts of the
first three phases, and Chapter 5 describes the outcomes of the last two phases.

In the Evaluation part of the Design Cycle, the concept and implementation of the
middleware is evaluated against the state of the art. The software prototype has two
parts: a middleware and a SDK. Technical experiments are performed to measure the
performance while modifying MISO Stateful Objects. This includes the modification of
CRDTs and the replication process. We further assess the integration complexity of our
middleware to evaluate how well it integrates with existing serverless platforms. The
SDK is evaluated qualitatively to measure its usability by analyzing the understandability.
This is an important characteristic for software systems, as it ensures that developers
can quickly understand if a component or system fits specific tasks and helps them pick
the right components for their needs [24].

1.6 Structure
This thesis is structured as follows. Chapter 2 provides an overview of relevant background
information about serverless functions, gRPC, and CRDTs. Chapter 3 gives an overview
of relevant related work. We present the conceptual model and architecture of the MISO
middleware in Chapter 4. This concept serves as the basis for implementing the software
prototype, and Chapter 5 provides detailed information about the implementation process.
This software prototype is then evaluated using technical experiments and a qualitative
evaluation, and Chapter 6 describes the results of the evaluation. Finally, we conclude the
results of this thesis in Chapter 7, where we reflect on the research questions, summarise
our findings, and identify opportunities for future work. The source code for the software
prototype and evaluation is available on GitHub3 and can be found in Appendix A.

3https://github.com/

7

https://github.com/

CHAPTER 2
Background

2.1 Serverless Computing
Modern software development offers developers a wide range of possibilities for building
software. FaaS providers provide developers with an abstraction of the infrastructure
layer so that they can focus more on developing the application logic itself. This is
achieved through so-called serverless functions, which are called in response to events
or API calls and execute the desired application code. The FaaS platform manages
the provisioning and execution of the function and the necessary infrastructure in the
background. The application developers can choose from a broad range of programming
languages to develop serverless functions. The code is then bundled with the dependencies
and uploaded to the FaaS platform [2].

Serverless functions do not retain any state from previous executions. This means that
certain applications requiring state modifications and synchronization in a fine-grained
matter, such as in machine learning, are not trivial to build with serverless functions [2].
Research shows that the importance of stateful functions is rising [7].

2.1.1 Serverless Edge Computing
The principle of FaaS is well-known in the cloud (e.g., AWS Lambda) but is increasingly
used at the edge of the network as well, abstracting away the infrastructure in the
whole edge-cloud continuum [1], [7]. This potentially saves costs, as tasks such as scaling
applications are accomplished for developers [7]. Existing serverless platforms have started
to adapt themselves for limited resources at the edge (such as IoT devices), such as
OpenFaaS with the faasd provider or AWS Greengrass with Lambda@Edge. Requirements
for the edge include low latency and real-time execution, which highlights that cloud
computing might not be suitable for all use cases due to latency. Edge computing hence
allows a continuum ranging from cloud to edge [1].

9

2. Background

2.1.2 Kubernetes
Kubernetes is the predominant way to orchestrate and manage containers. Containers run
software systems isolated from the host in a lightweight way. Every container is bundled
with all binary files, dependencies, and configurations required to run the software [25].
Serverless functions are also run as containers [26]. One of the benefits of using containers
in combination with Kubernetes is that the number of replicas that run the software can
be changed during runtime, which supports elasticity in modern software. Kubernetes
runs containers on multiple compute nodes. The containers are, for example, executed
by Docker1 [25].

One method to ensure containers are deployed on each node in a Kubernetes cluster is to
use a DaemonSet. This is useful for system-level capabilities and allows Pods deployed
on this node to share the local network interface and the local file system. This results
in reduced latency [27]. We make use of this in our OpenFaaS integration and discuss
this in Chapter 6.

Serverless platforms typically contain an ingress controller or API gateway that clients can
use to invoke serverless functions [9], [28]. This component is the basis for a URL-based
routing to invoke serverless functions [28]. Additionally, serverless platforms contain a
component that manages the containers on which the serverless functions are run [28],
[29]. The name of this component varies depending on the serverless platform, and in this
thesis, we will call it provider in accordance with how the serverless platform OpenFaaS
names it [30].

Helm Charts Manually defining all the necessary configuration files in large software
systems is inconvenient. This is the reason why the Cloud Native Computing Foundation
(CNCF) released Helm, a package manager for applications running in Kubernetes. Helm
works by bundling applications into so-called Helm Charts that are stored in a local or
remote repository. They bundle all resources that are required to run the application in
Kubernetes and can easily be (un-)installed and upgraded [25].

Every chart has the following structure [25]:

• chart/

– Chart.yaml
Contains metadata about the chart

– values.yaml
Contains configuration values for the chart (e.g., image repository and tag)

• templates/
Contains the Kubernetes manifest files to be deployed, which are populated with
values from the values.yaml file

1https://www.docker.com/

10

https://www.docker.com/

2.1. Serverless Computing

• charts/
Folder that contains dependencies of the chart

Helm charts are important for the middleware developed as part of this thesis for the
following reasons:

• Serverless platforms often also provide their software as a Helm chart, as they
often use Kubernetes as a container orchestrator. Our middleware can seamlessly
be integrated into those platforms by modifying the Helm chart of the serverless
platform.

• Helm charts provide a way to bundle the middleware so other developers can easily
run it in a Kubernetes cluster. It can certainly also be run without Kubernetes, so
using Kubernetes is not mandatory.

• We use Helm charts in our evaluation (Chapter 6) to simplify the deployment of
our test scripts.

Prometheus Prometheus2 is an open-source monitoring tool. It collects metrics from
different sources and stores them ordered by time. The list of supported metric types
includes Counters, Gauges, Histograms, and Summaries. The software also offers a
powerful query language and real-time alerting functionalities [31].

Grafana Grafana3 is an open-source tool that can visualize time-series data. Manually
loading the data into the software is not required as it can directly work with various
data sources. Grafana provides flexible dashboards to visualize and manipulate the data
[32].

In this thesis, we combine Prometheus and Grafana to monitor metrics during the
evaluation. More details on this can be found in Section 6.2.

2.1.3 OpenFaaS
OpenFaas is an open-source FaaS platform [33]. It supports different providers using
which serverless functions are deployed and executed. A popular provider is faas-netes
[30], a provider that deploys and executes functions using Kubernetes. when a function
is deployed to OpenFaaS, the Kubernetes provider creates a Kubernetes service and
Deployment with a defined number of replicas. Scaling the function to multiple pods
works via Kubernetes mechanisms. The provider is preceded by the OpenFaas gateway,
via which the function can be called from outside (e.g., via HTTP)[34].

The faas-netes Kubernetes provider can conveniently be deployed via a Helm chart [35].
2https://prometheus.io/
3https://grafana.com/

11

https://prometheus.io/
https://grafana.com/

2. Background

2.2 Conflict-free Replicated Data Types

CRDTs are specific abstract data types built to be replicated optimistically in such a
way that automatic reconciliation is possible despite potentially retrieving intermediate
updates in arbitrary order. CRDTs offer strong eventual consistency, which is a consistency
model that guarantees that two replicas return the same value for a CRDT when both
have received the same updates. Common fields where CRDTs are used include key-value
databases, collaborative editing tools, blockchains, and others [36].

Every CRDT consists of three main parts: the state, interface, and the update propagation
mechanism. The state is an internal data structure that represents the data type. The
interface defines the set of operations that can be executed against the CRDT. The
update propagation mechanism describes how updates (i.e., operations that modify the
state) are sent to other replicas and how they process the updates [36].

CRDTs are divided into state-based (i.e., Convergent Replicated Data Types) and
operation-based (i.e., Commutative Replicated Data Types), depending on the type of
update propagation mechanism used [20], [36].

In state-based CRDTs, also called Convergent Replicated Data Types (CvRDTs), the
complete state of the source replica is propagated for synchronization after every applied
update. All other replicas then merge the received state with their current state,
producing a converged state. There are three requirements for the merge function: it
needs to be associative, commutative, and idempotent (ACI). Furthermore, the states
must monotonically increase with every update so that a join-semilattice can be formed
with the set of all possible states [36].

In operation-based CRDTs, also called Commutative Replicated Data Types (CmRDTs),
an encoded version of the update is propagated to other replicas as soon as the update is
executed on the source replica through a process called prepare-update [36]. This works
by splitting the update into a pair (t, u) where t is the prepare-update method that does
not change the state and u is the effect-update method that changes the state [20]. The
prepare-update is only executed at the replica that triggered the update, and effect-update
is executed on all replicas [20]. The update operation must, therefore, be commutative
so that all replicas end up in the same state, regardless of the order in which the updates
are delivered. This, however, also requires causally reliable delivery of the updates [36].

Figure 2.1 compares state- and operation-based CRDTs. In state-based CRDTs, as
depicted in the left half of Figure 2.1, whenever an update modifies the internal state, it
is sent to other replicas, which then merge the incoming state with its state. Eventually,
every update reaches every other replica directly or indirectly. Alternatively, in operation-
based CRDTs, every update triggers the prepare-update method on the source replica.
After this, the effect-update method is executed on every other replica [20].

Examples of CRDTs include Counters, Sets, and Registers [37].

12

2.2. Conflict-free Replicated Data Types

Figure 2.1: State-based vs. Operation-based CRDTs [20]

Counters A Counter is a data type that supports incrementing and decrementing
an integer-based value and retrieving the current numeric value. A counter could, for
example, store the number of registered or logged-in users [37].

One version of a counter that only supports increments is a Grow-only Counter
(GCounter). To allow concurrent modifications in the counter in a state-based CRDT,
it is required to use a vector clock where every source replica has an entry. Every replica
modifies only the value in its entry in the vector clock, and the value of the counter
equals the sum of all entries in the vector clock [37].

A Positive-Negative Counter (PNCounter) is a counter that allows both increment-
ing and decrementing. A solution to implement such a counter in a state-based way is to
use two separate GCounters for increments and decrements. The value of the counter
then is the difference between those counters [37].

Registers A Register is a data structure that works like a memory cell. Values can be
assigned to it, and the value can also be queried. Concurrent updates do normally not
compute. Potential solutions for this are only to retain the last write (Last-Write-Wins
Register) or to retain all conflicting values (Multi-Value Register). [37].

A Multi-Value Register (MVRegister) retains multiple values in the case of con-
flicting writes. Clients are in charge of manually reducing the values into a single one,
if required, by assigning the reduced value. Using only a scalar timestamp, such as
in a Last-Write Wins Register, is insufficient for a state-based MVRegister. A set of
(X, versionV ector) pairs is required, where X is the data type value to be assigned.
When assigning new values, a new version vector is computed that supersedes previous
writes [37].

Sets Sets offer the operations add and remove. Implementations of CRDT-based
Sets differ in the semantics of concurrent add and remove operations. For example, a
2P-Set prefers removes, and an Observed-Remove Set (ORSet) retains elements in case
of conflicting addition and removal of the same element [37].

An ORSet supports both additions and removals of elements, and the causal history
of the sequence defines the outcome of a combination of additions/removals. When
an element is both added and removed at the same time, the element will stay in the
set [37]. The initial version of an ORSet used tombstones to mark elements that have

13

2. Background

been removed from the set, which accumulate over time, which means that the allocated
memory grows as elements are removed [38]. Bieniusa et al. [38] proposed a new design
of an Optimized ORSet where every replica i stores a vector v of unique identifiers that
have already been part of the set. Each replica has a local counter at the i-th entry of
the vector v[i] with a default value of 0. When an element is added, a unique identifier is
created by the next local counter value of this replica as well as the replica ID. When a
ORSet is merged on a downstream replica, an element is only contained in the final result
if contained in both payloads or if it is present in the local payload and not recently
removed in the upstream replica. Elements count as removed when they are not in the
payload, but their identifier is stored in the vector v [38].

Flags Flags behave like boolean switches. An Enable-Wins Flag (EWFlag) retains
true in case of conflicting true/false values, and the opposite is true for the Disable-Wins
Flag (DWFlag). This works by incrementing the value of a counter in every replica
whenever the flag value is set to true or false for EWFlags and DWFlags, respectively
[39].

Considering the characteristics of Edge Computing, it is evident that we need to use
state-based CRDTs for this thesis. Causally reliable delivery of all updates cannot be
ensured with devices at the edge of the network, as these are potentially unreliable. This
is why we use state-based CRDTs for our solution, as lost updates are no problem as
every update contains the entire state of the data type. The downside of this is that
the whole state needs to be transmitted in every update. However, the middleware only
replicates to nodes that run the same serverless function. Furthermore, using state-based
CRDTs simplifies state restoring in the case of restarted nodes.

2.3 gRPC
gRPC is an open-source and cross-platform Remote Procedure Call (RPC) framework
released by Google [40]. RPC is a form of Inter-Process Communication (IPC), which is
a crucial part of distributed software systems [41]. Initially released in 2015, gRPC is
now part of the CNCF, and gRPC has become very popular [40].

The list of advantages of gRPC includes:

• Efficiency
gRPC transmits data using a protocol buffer-based binary protocol on top of
HTTP/2 [40], offering high performance [41].

• Contract-first approach
Services and their interfaces are defined before implementation [40], which are then
used to generate client/server code [41].

• Strongly typed
Helps to reduce errors caused by wrong data types [40].

14

2.3. gRPC

• Cross-Platform compatible
gRPC service definitions are language-agnostic, hence clients and servers can be
built with different programming languages [40], [41].

• Bidirectional stream support
gRPC offers client- and server-side streaming, allowing developers to use both
request-response and streaming-like communication [40].

• Mature and stable
gRPC is mature and used by various tech companies such as Google, Netflix, Docker,
Cisco, and CoreOS [40], [41].

Some disadvantages of gRPC are [40]:

• Potentially not suitable for external-facing services
The contract-first approach might negatively influence the flexibility of consumers

• Changes in the contract might require regeneration of client/server
gRPC is usually interoperable with different schema versions on the client/server.
However, breaking changes might require the regeneration of the client and server
code.

• No mature support in browsers/mobile applications
Low maturity level, compared to Representational State Transfer (REST).

Figure 2.2 gives an overview of how gRPC works. In this example, a gRPC Service
Definition called ProductInfo is defined in the ProductInfo.proto file. This file
is then used to generate both client and server code. It can be seen that, in this case, the
client and server are implemented in different programming languages (Java and Go).
The communication between the gRPC stub on the client and the gRPC server happens
via HTTP/2 [40].

Figure 2.2: gRPC Overview [40]

15

2. Background

Each gRPC service is defined in protocol buffers in files with a .proto extension. This
file defines all gRPC services with their methods, parameters, and return types [40].

For the prototype developed as part of this thesis, we will leverage gRPC for communi-
cation between instances of the middleware as well as between serverless functions and
the middleware. In the case of this thesis, the SDK acts as the gRPC client and the
middleware as the gRPC server. The efficiency of gRPC contributes to fast response
times. Cross-platform compatibility is a requirement, as serverless functions can be
written in different programming languages. As part of this thesis, an SDK to be used
in serverless functions is developed, so the strongly defined types/schemas are helpful
and do not hinder the flexibility of developers. For the replication logic, the replication
module makes use of bidirectional streams to avoid opening/closing network connections
too often with very frequent replication intervals.

The disadvantages of gRPC mentioned above are not significant in our case, as the
middleware-related gRPC endpoints are usually only used by our SDK, where we take
care of the connection management and the gRPC types. This means there is no negative
impact on the flexibility of developers who write serverless functions. Furthermore, MISO
does not run on browsers or mobile platforms, and as we control the code for both SDK
and middleware, regeneration for clients/servers is feasible.

16

CHAPTER 3
Related Work

This Chapter presents related work. The problem of stateful serverless computing has
already been addressed multiple times in the literature. The existing approaches that
provide stateful objects to serverless functions can be categorized into two distinct
categories. Some authors propose a solution for state management that works in tandem
or enhances existing serverless platforms. Other authors propose entirely new approaches
for stateful serverless functions, such as serverless platforms that treat the state as a
first-class citizen or entirely new paradigms that advance the regular FaaS model. To the
best of our knowledge, we could not find a solution for stateful serverless functions in the
literature that satisfies all of our requirements for the edge-cloud continuum. Those are:
i) data locality, ii) generalizable to work with multiple different serverless platforms, and
iii) no dependency on a central authority.

3.1 Stateful Functions for Existing Serverless Platforms
This section highlights the most relevant existing approaches that either work in tandem or
enhance existing serverless platforms and provide stateful objects for serverless functions.
This thesis also contributes to this category.

Crucial Framework Barcelona-Pons et al. [2] proposed the Crucial framework that
allows developers to implement stateful distributed applications using the serverless
paradigm. Their implementation works by mapping local threads to the invocation
of cloud functions (called cloud threads). To manage the issue around shared state,
they developed a distributed shared objects (DSO) layer using state machine replication
with strong consistency guarantees. The framework offers the possibility to make DSOs
durable by replicating them across multiple nodes and then storing them on stable storage.
The DSO layer is built on top of a disaggregated in-memory data store (Infinispan) and
deployed together with the serverless function. The authors claim to have achieved higher

17

3. Related Work

throughput than comparable in-memory storage solutions such as Redis with their DSO
implementation. Crucial works with FaaS platforms that offer a Java runtime [2].

Similar to Crucial, our work provides an SDK for developers to instantiate MISO Stateful
Objects that behave like a proxy. However, in contrast to the data types of Crucial,
our MISO Stateful Objects are based on CRDTs. Furthermore, Crucial runs next to
the serverless platform (e.g., on EC2 instances connected via a Virtual Private Cloud
to AWS Lambda functions). Furthermore, developers have to supply the code of the
serverless functions to CloudThreads, which then execute the code on the respective
serverless platform. In our work, we want to extend existing serverless platforms and
run our middleware on nodes of the serverless platform that run serverless functions.
This means that we join the infrastructure with the middleware, which could run in the
same container orchestrator as the serverless platform. This means that the data of our
MISO Stateful Objects does not have to travel to different machines, which is especially
relevant for the area of Edge Computing. Furthermore, if our work is integrated into the
serverless platform, developers do not have to provision additional services next to the
serverless platform. Our middleware does not modify the process of deploying serverless
functions to the platform, so there is no abstraction like Crucial’s CloudThreads. Unlike
Crucial, our middleware does not support arbitrary classes as MISO Stateful Objects
because it is a limitation of CRDTs. However, we support a broad set of data types that
developers can add to our MISO Stateful Objects to maintain state.

Azure Durable Functions Durable Functions (DFs) [11] is a component of Microsoft’s
Azure Functions FaaS platform. In DF, there are three types of functions: (1) Activities
(stateless FaaS functions), (2) Entities (actors that encapsulate application state), and
(3) Orchestrations (coordinate activities and entities). The DF model implicitly saves the
progress of orchestrations and entity states to storage, which can then be restored after
failures. For the aim of this thesis, DF entities are most relevant. They allow developers
to store durable objects and the operations that can be executed against them. Entities
are identified by a unique ID. DF orchestrations can either call operations on Entities
and retrieve the result or signal an operation in a ”fire-and-forget”-like way. Entities
can also signal other entities, however, calls between entities are not supported in order
to prevent deadlocks. However, DF do not allow parallel operations on the same entity.
Each operation request is stored in a queue and is thus executed one by one.

Our work is different in various ways. First, we propose a solution that works for
multiple serverless platforms and not only one platform, such as what is proposed with
DF. Furthermore, because we use CRDTs, we allow the concurrent modification of the
same data structure instead of storing those operations in a queue and executing them
sequentially. Unlike DF, our middleware does not support arbitrary classes to work as
MISO Stateful Object because it is a limitation of CRDTs. However, we support a broad
set of data types that developers can use to maintain state.

18

3.2. New Approaches for Stateful Serverless Serverless Functions

3.2 New Approaches for Stateful Serverless Serverless
Functions

Some authors have proposed new approaches for stateful serverless functions, which
we describe in this Section. This includes entirely new serverless platforms that have
the management of the state built in and entirely new paradigms for stateful serverless
functions, different from regular FaaS.

Cloudburst Sreekanti et al. [19] proposed Cloudburst, a serverless platform written in
Python that aims to solve the challenges of shared state while maintaining the advantages
of serverless computing. To achieve this, Cloudburst uses an autoscaling key-value store
for low-latency access to shared state combined with mutable caches located alongside
function executors to keep frequently used data locally available [19]. MISO Stateful
Objects can either be passed as remote references (which are resolved before function
invocation using local caches), local objects, or dynamically via the key-value store’s API.
Updates to the shared state are propagated asynchronously to the storage [19].
Our work is different from Cloudburst in multiple ways. Cloudburst is a whole FaaS
platform, while we present a middleware that extends existing serverless platforms. This
means that developers have to learn the programming model of Cloudburst to develop,
register, and execute serverless functions. Our solution aims to retain the workflows of
existing serverless platforms in terms of the development of serverless functions. The
programming model of Cloudburst includes operations to set and retrieve objects identified
by a key. Our solution does not directly work in the same way that arbitrary classes can
be used to store the state, but we provide CRDT-based data types that behave like a
proxy. Unlike Cloudburst, our middleware does not support arbitrary classes as MISO
Stateful Object because it is a limitation of CRDTs. However, we support a broad set of
data types that developers can use to maintain state.

Object as a Service (OaaS) Lertpongrujikorn et al. [17] propose a new paradigm to
manage application state in serverless functions called Object as a Service (OaaS). In
OaaS, objects are immutable entities that have functions defined. Each function may
perform an operation on the state of the objects. However, a new object is instantiated by
OaaS instead of modifying the existing one, which means no synchronization is required
to modify an object. OaaS stores object metadata in a key-value database and caches
those entries in memory, while the object state is persisted in remote object storage
(e.g., S3). Developers have to use a REST API to declare new classes. For each class,
developers must specify which states exist and where the state is stored (e.g., S3). The
authors [17] mention that scalability is a challenge in their approach, especially with
regard to concurrent access to objects. OaaS follows a similar direction to our thesis in
that it integrates the application state with the serverless platform. Our work differs in
various ways: i) we do not introduce an additional management layer where objects have
to be declared externally to the serverless platform via a REST API, ii) we use data
types built on CRDTs and therefore provide mutable instead of immutable objects, and

19

3. Related Work

iii) contrary to our solution, OaaS requires deployment of various additional services (e.g.,
Apache Kafka, Zookeeper, ArangoDB, and Infinispan) next to the serverless platform
itself.

Serverless Platforms for the Edge Puliafito et al. [8] classify serverless functions as
either remote-state functions which typically run in the cloud (i.e., the state is stored
on an external storage service and function containers are shared between applications)
or local-state functions which typically run at the edge (i.e., the state is stored locally).
However, in their proposal, containers executing local-state function code are dedicated
to specific application instances/sessions. This means that all requests belonging to the
same session are routed to the same local-state container.

Similarly, Baresi et al. [9] propose to enhance Serverless Edge Platforms with Stateful
Compute Services. This works by initializing container instances (where functions are
executed) with unique session tokens that are shared by users within the same session.
Each request contains the token, and the request is thus delegated to a specific container
instance so that the state does not have to be synchronized or replicated between
instances. This also means that such platforms are limited to vertical scaling of the
container instances, which is similar to what has been proposed by Puliafito et al. [8].

Our work is different from what has been proposed by [8] and [9] as in our solution,
it is not required to route all traffic of an instance to the same container. Because we
rely on CRDTs, every replica of a particular serverless function can modify the state
simultaneously. This means that when a particular serverless function is scaled to a
different node, the state can be modified locally at the container running on the node
executing the corresponding replica of the serverless function.

Apache Flink Stateful Functions The Apache Flink Stateful Functions (StateFun)
[42] project combines stream processing and serverless functions. It offers developers a
runtime on top of Apache Flink that is based on the paradigm of serverless computing.
Every function has a local persisted state, so whenever a function runs and performs
some computation, it uses a local state in the form of local variables. There are
different types of functions: embedded functions, co-located functions, and remote
functions. Embedded functions run directly in the JVM. In co-located functions, a
Flink TaskManager communicates with a function that is located close to it. This is
often achieved by using Kubernetes, where a Flink container and the function side-car
container are deployed as pods that are then able to communicate via a local pod network.
Co-located functions cannot scale the state and compute parts independently of each
other. Remote functions are physically separated from the Flink StateFun Cluster,
so they can be deployed and scaled independently. Remote functions can invoke any
remote endpoint via HTTP/gRPC, such as an AWS request gateway for AWS Lambda.
Invocations contain all necessary state variables and messages, so the state is updated in
the cluster after the response of the remote function has been received [18].

20

3.2. New Approaches for Stateful Serverless Serverless Functions

The Stateful Functions runtime enforces serial invocations per entity (e.g., a shopping
cart for a specific person), so only one invocation per function instance can be running
at the same time, so concurrent modifications of the same state are avoided [43]. The
StateFun project, therefore, aims towards a different use case and technology than our
work. Our middleware is aimed towards existing serverless platforms that are not based
on a stream processor.

21

CHAPTER 4
MISO Middleware

4.1 Conceptual Model

Serverless Function: testFn

CRDT Proxy
SDK

contains

Function
Handler

MISO Stateful Object
Proxycreates

0..n1

0..n

1

Serverless Platform

calls

executes MISO Middleware

Node

CRDT

State

MISO Stateful
Object

ID: Object1
Function: testFn

ID: Object1
Function: testFn

provided
by

contains

0..n1

Name: crdt1

Name: crdt1

Figure 4.1: Conceptual Model of MISO Stateful Objects

Figure 4.1 depicts the conceptual model of the MISO middleware. It is based around
MISO Stateful Objects, which are stateful objects that are accessed and modified from
the code of serverless function handlers. One serverless function can create multiple
such MISO Stateful Objects in the code of the serverless function handler. Every MISO
Stateful Object is identified by an ID and contains zero, one, or more data types. The ID
can be set manually or auto-generated from the function name. As MISO Stateful Objects
are linked to a serverless function, there is no chance of conflicting IDs for different
serverless functions, as the ID only needs to be unique for each serverless function. Every
data type within a MISO Stateful Object has a name. A certain name can only exist
once per object. However, the same data type can be present multiple times within a
single MISO Stateful Object with different names. Using a simple name to identify the

23

4. MISO Middleware

data type contributes to the developer experience, as no ID needs to be memorized to
access the individual data types.

Every MISO Stateful Object is bound to one particular serverless function, identified
by its name. Multiple replicas of the same serverless function can share the same MISO
Stateful Object, even if they are executed on different nodes. MISO Stateful Objects
bundle multiple instances of CRDTs into a single object. This means they do not carry
the state directly in the objects, but the state is contained in the individual data types.
Each CRDT within a MISO Stateful Object is identified by a name.

The lifecycle of MISO Stateful Objects is managed by the middleware. This includes
creating, retrieving, modifying, and replicating the data types within the objects and
managing their state. For this reason, the SDK provides proxy objects of the CRDTs.
The proxies can be retrieved from the MISO Stateful Object proxy object with the name
of the data type. The CRDT proxies behave like regular data types but internally call
the middleware whenever an operation is executed against them. The serverless function
does not store the data of the CRDTs. It is only stored in memory on the middleware.
The middleware ensures that the data of the MISO Stateful Objects is available on every
node of the serverless platform that runs this serverless function. In Figure 4.1, it is
visible that in this particular case, a single MISO Stateful Objects was created for the
function testFn containing one CRDT with the name crdt1.

4.2 Middleware Architecture
Figure 4.2 provides an overview of MISO’s architecture. The system is designed to be
modular and flexible enough to be integrated into several different serverless platforms
and is divided into two main components (blue): the middleware and a SDK. A major
characteristic of the middleware is that it is distributed across multiple nodes. More
precisely, the middleware runs on every node of the serverless platform that executes
serverless functions. This is necessary so that the middleware and thus the data of
the MISO Stateful Objects are located in close proximity to the serverless functions.
The middleware is responsible for managing MISO Stateful Objects, which includes the
management of their lifecycle and the states they contain. It also provides an API for
serverless functions using which they can modify the MISO Stateful Objects. Due to
the fact that serverless functions might run on different nodes due to load balancing,
the middleware needs to replicate data between different nodes. For Kubernetes-based
serverless platforms, a DaemonSet as introduced in Section 2.1.2 can be used to run the
middleware on every node of the serverless platform in the form of a container. For other
platforms, the middleware could be added to the deployment script of the serverless
platform or similar to ensure that it runs on every node, either as a container or running
on the host directly.

The middleware is combined with an SDK for serverless functions. It enables serverless
functions to use the middleware and provides proxy versions of MISO Stateful Objects
and the data types they contain. Developers can use the data types as if they are

24

4.2. Middleware Architecture

Serverless Platform MISO Component

MISO Core Module

MISO Middleware

API

Overlay Network

Node
Discovery

Function
Discovery

CRDT

MISO
Objects

Replication

Serverless Function Containers

Node 1

Provider

Node n

MISO Middleware

Serverless
Function
Containers

Node 2

MISO Middleware

Serverless
Function
Containers

MISO Overlay
Network

Serverless Platform

Function Container

Function
Handler

SDK

Proxy
Objects

Function
Container

distributed

Figure 4.2: Architecture of the Middleware

regular local data types. However, in the background, the operations are delegated to
the middleware over the network. This is transparent to the developers of the serverless
functions. The state of the data types themselves are not stored in the proxy versions
but only on the middleware instance that executes this particular serverless function.
The details of this component are described below in Section 4.4. The SDK is dependent
on the programming language used to write the serverless function, so there might be
multiple such SDKs for various programming languages in the future.

All middleware instances are interconnected via an Overlay Network. This is depicted
by the blue arrows in Figure 4.2. This network is mainly used for the replication of
updates whenever a MISO Stateful Object is modified. To make the process of sending
updates more efficient, the overlay network needs to provide certain information, such as
the information on which nodes a particular function is currently being executed. The
details of this core module are described below.

Figure 4.2 also shows how MISO integrates with existing serverless platforms. Certain
components of the serverless platforms, such as the ingress controller, are deliberately

25

4. MISO Middleware

omitted from the figure as they are irrelevant to the middleware. The serverless platform
provider manages the containers that run the serverless function containers. To integrate
the middleware with the serverless platform, it is necessary to extend the provider in such
a way that it provides certain environment variables to the containers of the serverless
function. The list of required information includes the hostname and IP address of the
node that executes the function so that the SDK can communicate and register with the
middleware correctly. In case the serverless platform already provides such information,
the provider does not have to be modified to integrate the middleware. To integrate
the SDK, it has to be added to the dependencies of the serverless function. We show a
practical integration of the middleware with OpenFaaS, an existing serverless platform,
in Section 6.3.1.

4.3 Middleware Core Modules
The middleware contains multiple core modules. They are illustrated in Figure 4.2
inside the middleware (orange). The following paragraphs will explain the details of the
middleware’s core modules.

MISO Stateful Objects Module Covers the functionalities related to the creation,
retrieval, and deletion of MISO Stateful Objects. They are bound to one particular
serverless function, denoted by its name. Every serverless function can also access
multiple such objects. For every mentioned operation (create, retrieve, delete), the
object’s identifier and the serverless function’s name need to be supplied.

CRDT Module Provides an implementation of various CRDTs that can be used in
MISO Stateful Objects. The middleware uses state-based CRDTs, as they offer a more
resilient and straightforward approach for reconciling data in case of missed updates
than operation-based CRDTs. This is because they propagate their whole state in every
update, mitigating potential complexities that could arise due to partial synchronization.
Furthermore, they do not require a causally reliant delivery of updates, which would be
challenging for edge devices. The data types are implemented like a library so that they
can be developed independently of other core modules of the middleware. This library
is then used in the middleware, but other applications could also use the implemented
CRDTs for use cases unrelated to ours.

API Module Exposes several core functionalities of the middleware via an API exposed
over the network. This includes the following functionalities:

• Create, retrieve, and remove MISO Stateful Objects

• Add and remove CRDTs to MISO Stateful Objects

• Retrieve the states of CRDTs (e.g., value of a counter)

26

4.3. Middleware Core Modules

• Modify CRDTs (e.g., increase a counter)

Serverless functions can invoke those functionalities via the SDK.

Overlay Network Module All instances that run MISO create an internal overlay
network. It is required for the replication module and has two main tasks. The first one
is to discover other nodes that run the middleware, and the second is to discover which
replicas of a serverless function are executed on a particular node. This information is
necessary so the Replication Module can efficiently replicate MISO Stateful Objects to
nodes that also run replicas of the same serverless function. This increases the efficiency of
the replication process, saving bandwidth and processing power compared to replicating
updates to all discovered nodes. This effectively allows the middleware to only send
updates to nodes that are relevant to them.

Algorithm 4.1: Node Discovery Service
1 discoveredNodes = new Map()
2 startDiscovery()
3 while discovery is running do
4 for n: discovered node name do
5 if n /∈ discoveredNodes then
6 details = retrieveNodeDetails(n)
7 discoveredNodes.put(n, details)
8 startHeartbeatTimer(n)
9 startTimeoutTimer(n)

10 end
11 for every expired heartbeat timer do
12 response = sendHeartbeat(n)
13 clearHeartbeatTimer(n)
14 if ∃ response then
15 clearTimeoutTimer(n)
16 end
17 end
18 for every expired timeout timer do
19 discoveredNodes.remove(n)
20 clearAllTimers(n)
21 end
22 end

The node discovery service is responsible for discovering other nodes that run the MISO
middleware. It can work with multiple different mechanisms to discover nodes as long as
they adhere to the required interface. Some strategies might only discover nodes that are
directly reachable over the network (e.g., mDNS). Other strategies might solve this task

27

4. MISO Middleware

differently. This is subject to the implementation and discussed in Section 5.1, where we
discuss how we use mDNS for this purpose. The algorithm of the node discovery service
is depicted in Algorithm 4.1. Before the discovery is started, every node instantiates a
Map that stores node names (i.e., hostnames) alongside the Set of IP addresses this node
has. Whenever a new node is discovered, the details about this node are added to the
map. This process is performed regularly so that new middleware instances are identified.
A heartbeat mechanism removes unresponsive nodes from the list of discovered nodes
when no connection can be established over a longer time, which is realized using two
timers. The heartbeat timer is responsible for triggering a heartbeat request to the other
node, which is cleared whenever a response to the heartbeat is received. The timeout
timer fires if no heartbeat response has been received in a long time and triggers the
removal of the node from the list of discovered nodes so that the replication module does
not unnecessarily try to send the updates to this node.

The function discovery service is responsible for providing the information on which
serverless functions are executed by the previously identified nodes. To achieve this,
serverless functions explicitly need to register and unregister with the overlay network.
This can be done via the SDK, which is introduced in Section 4.4, and if our solution
is integrated, this is transparent to developers of serverless functions, as discussed in
Section 6.3.

28

4.3. Middleware Core Modules

user

user

FaaS Provider

FaaS Provider

Serverless Function

Serverless Function

SDK

SDK

MISO Node1

MISO Node1

MISO Node2

MISO Node2

deploy function

invoke function

launch function

registering
register

register

add function to map
(Overlay Network)

execute regular
function code

result

result

exchange map
(Overlay Network)

Figure 4.3: Function Discovery Service Registering

Algorithm 4.2 describes how the function discovery process works. It is visible that every
node stores a Map in the function discovery service that stores the details about every node
that a particular serverless function runs. This is because every serverless function can be
scaled to multiple nodes that execute them. Whenever a function has (un-)registered, the
updated map is sent to other middleware instances via the aforementioned API module.
The sequence diagram in Figure 4.3 depicts a simplified version of the algorithm. It can
be seen that whenever a serverless function is invoked, it first registers with the function
discovery service of the overlay network. It then adds the function to its local data and
informs other nodes about the new function asynchronously. The regular code of the
serverless function is executed after the function has registered.

Replication Module Disseminates modifications to CRDTs to all nodes executing the
relevant serverless functions. It employs a debounced/delayed transmission of updates to
other nodes, subject to a configurable time interval. This assures that multiple updates
in a short time are batched and replicated in a single update only.

The pseudocode for the replication algorithm is visible in Algorithm 4.3. Whenever the

29

4. MISO Middleware

Algorithm 4.2: Function Discovery Service
input : nds // NodeDiscoveryService from Overlay Network

1 functionNodeMap ← new Map()
2 startDiscovery()
3 while discovery is running do
4 for fnInfo: serverless function that registers do
5 nodes = nds.getDiscoveredNodes(fnInfo.name)
6 nodesRunningFn = functionNodeMap.get(fnInfo.name)
7 if fnInfo.node /∈ nodesRunningFn then
8 nodesRunningFn.add(fnInfo.node)
9 functionNodeMap.put(fnInfo.name, nodesRunningFn)

10 for node in nodes do
11 send(functionNodeMap, n)
12 end
13 end
14 for fnInfo: serverless function that unregisters do
15 nodes = nds.getDiscoveredNodes(fnInfo.name)
16 nodesRunningFn = functionNodeMap.get(fnInfo.name)
17 if fnInfo.node ∈ nodesRunningFn then
18 nodesRunningFn = nodesRunningFn \ fnInfo.node
19 functionNodeMap.put(fnInfo.name, nodesRunningFn)
20 for node in nodes do
21 send(functionNodeMap, n)
22 end
23 end
24 end

state of a CRDT within a MISO Stateful Object is modified by calling the corresponding
API endpoints, this data eventually needs to be replicated. To achieve this, an update is
generated for every such request, which is then wrapped in a ReplicationTask. This task is
then queued in the ReplicationService and replicated asynchronously after a configurable
delay. The most important part of the algorithm is the batched/debounced transmission
of replication tasks. This is because the replication might be triggered continuously for
the same CRDT in frequent intervals, depending on how often the API is called. The
replication module must ensure that exactly one replication happens in the configured
replication interval. In our algorithm, we always use the latest of all queued tasks for a
given CRDT within a MISO Stateful Object. The reason why replicating the latest task
of a CRDT is sufficient is that MISO uses state-based CRDTs, where every state update
carries the whole state. Subsequent tasks, therefore, already contain the state of previous
tasks. Therefore, they can be ignored in the replication process. After the latest task
has been retrieved, the aforementioned overlay network is utilized to determine which
nodes need the data. The function discovery service provides the information which

30

4.3. Middleware Core Modules

other discovered nodes run the same serverless function. The replication module does
not replicate the update to nodes that currently do not run any replica of this serverless
function, avoiding unnecessary network requests and processing power. All nodes that
need the update then receive the update via a stream. In case the network transmission
fails, the request is retried on the network level. In case a node does not successfully
receive an update, it will eventually receive one of the next updates, given that the node
is back online. Whenever the target node receives an update, it sets the received state to
the local CRDT by merging it with an empty instance of the CRDT.

Every update that is disseminated contains the following data:

1. Information Regarding the MISO Stateful Object and affected data type (ID and
CRDT name)

2. Information regarding the serverless function that is affected (serverless function
name)

3. The whole state of the source CRDT after it has been modified. This field’s data
depends on the particular CRDT that is transmitted.

The updates are sent over the network in a stream. Streaming mitigates the need
for constant re-openings of network connections and is especially useful for frequent
replication intervals to reduce the replication time. The network connection is specific to
another node and is shared between replication calls of different CRDTs. In case there is
an error on the stream (e.g., node disconnects), the stream is closed. Whenever the next
update arrives, the stream is then re-opened to this node unless it is no longer present in
the overlay network. The merging of the states itself is implemented in the CRDT data
types. Every state-based CRDT has a merge method that has one argument, which is
another instance of the same CRDT. The replication algorithm described in Algorithm
4.3, therefore, has no information about the actual merge logic but only needs to make
sure that the correct method is called with the right data.

CRDT State Restoring

Another important functionality is restoring states from other middleware instances.
This is important when one of the nodes restarts, or the serverless function is scaled to
nodes that did not previously execute this particular serverless function. The restoring
of state works on a CRDT level. This means that whenever the middleware receives a
request to modify a certain CRDT within a MISO Stateful Object, it is checked if the
data is present locally. If the data is present locally, it is returned immediately, otherwise
the restore process is started.

Algorithm 4.4 describes the price of restoring state on a CRDT level. This is also
depicted in the sequence diagram in Figure 4.4. The process starts when the user invokes
a serverless function. When an operation on the CRDT is called the code of the serverless

31

4. MISO Middleware

User

User

Serverless Function

Serverless Function

SDK

SDK

MISO Node 1

MISO Node 1

MISO Node 2

MISO Node 2

invoke function

modify CRDT

request

check if data
is present locally

alt [node does not have CRDT data]

get list of other
nodes running function

alt [another known node runs same function]

loop [for all other nodes running function]

retrieve CRDT value

response

alt [received response]

set CRDT value

break loop

[no response]

continue loop

[no known node run this function]

initialize new CRDT

modify CRDT

response

CRDT value

result

Figure 4.4: CRDT State Restoring Sequence Diagram

32

4.3. Middleware Core Modules

Algorithm 4.3: Replication Algorithm
input : fds // FunctionDiscoveryService from Overlay Network
input : object // MISO Stateful Object
input : crdt // CRDT that is modified
input : fnName // serverless function name

1 crdtTasks = new Observable(object.id, crdt.name)
2 while state of crdt is modified do
3 update = crdt.createUpdateMessage()
4 task = new ReplicationTask(crdt.name, object.id, fnName, update)
5 crdtTasks.next(task)
6 debounce replication tasks in crdtTasks
7 targetNodes = fds.getReplicationTargets(fnName)
8 task = crdtTasks.getLatestTask()

// on source node
9 for node in targetNodes do

10 stream = getStream(node)
11 result = stream.sendUpdate(task)
12 if result.status == FAILED then
13 retry sending
14 end

// on target node
15 object = getStatefulObject(task)
16 crdt = object.getCrdt(task.crdtName)
17 crdt.merge(task.update)
18 end
19 end

function, this operation is delegated to the middleware node that runs this particular
serverless function. The middleware then checks if the corresponding CRDT with the
requested name is present in a MISO Stateful Object with the given identifier is present on
this node. If this is true, the requested operation is executed, and the response is returned
to the serverless function via the proxies of the SDK. The process of how the SDK works
is described in Section 4.4. If the data is not present locally, the aforementioned function
discovery service provides a list of nodes running the same serverless function. If there
are such known nodes, then every one of them is contacted via the network to send the
current state of the CRDT. If there was a response containing a state, it is then to the
local CRDT. Otherwise, the next node in the list is contacted. The overlay network
does not know if the other nodes actually have the state or which versions they might
have. Therefore, the process runs in a loop over all known nodes that run the same
serverless function. The requested CRDT is automatically initialized with a default value
if the state cannot be retrieved from other nodes. The whole initialization process is

33

4. MISO Middleware

transparent to developers of serverless functions when they modify MISO Stateful Object.

Algorithm 4.4: CRDT State Restoring
input : fds // FunctionDiscoveryService from Overlay Network
input : object // MISO Stateful Object
input : crdtType // Type of CRDT that is modified
input : crdtName // Name of CRDT that is modified
input : fnName // serverless function name

1 for r: request modifying CRDT do
2 intercept r
3 if crdtName /∈ object then
4 targetNodes = fds.getReplicationTargets(fnName)
5 for node in targetNodes do
6 stream = getStream(node)
7 payload = getPayload(crdtType, crdtName, object.id, fnName)
8 result = stream.retrieveCrdt(payload)
9 if ∄ result then

10 continue
11 end
12 crdt = new CRDT(object.id, crdtName)
13 crdt.merge(result)
14 object.addCrdt(crdtName, crdt)
15 break
16 end
17 continue regular execution of r

18 end
19 end

4.4 SDK for Serverless Functions

The SDK facilitates the communication between serverless functions and the middleware.
It serves as an intermediary layer that invokes the API endpoints of the middleware over
the network, abstracting away the complexity of connection management from developers
of serverless functions. This architectural separation between middleware and the proxies
contributes to the maintainability of both the middleware and the code of serverless
functions, as the SDK can be developed independently of the serverless function code.
The SDK is created for a particular programming language, so there can be multiple such
SDKs for different programming languages in the future. The SDK is not dependent on
a serverless platform and can be used in multiple such platforms that support a runtime
for serverless functions that the SDK is written in.

34

4.4. SDK for Serverless Functions

Table 4.1: SDK Programming Abstractions

Abstraction Description
StatefulObjectProxy Main abstraction that reflects a proxy-based version

to interact with MISO Stateful Objects from the
code of serverless functions.

CRDT Proxies Proxy objects that behave like regular data types
but delegate the operations to the middleware,
which is transparent for developers. The abstrac-
tion for each proxy contains the same set of methods
as the underlying CRDT.

4.4.1 API and Programming Model
Table 4.1 summarizes the key abstractions that are exposed to developers of serverless
functions, which are StatefulObjectProxy and CRDT Proxies

StatefulObjectProxy is the most important programming abstraction. This is the
central component that is exposed to developers. They can instantiate them in the
code of serverless functions. Instances of the StatefulObjectProxy are directly linked
to a MISO Stateful Objects (introduced in Section 4.1) and are bound to a particular
serverless function. They represent a proxy version of one specific MISO Stateful Object
and the CRDT data types it includes. The proxy objects delegate all operations to the
middleware, where the actual state and lifecycle of MISO Stateful Objects is managed.
The SDK is responsible for configuring the proxy objects correctly to communicate with
the middleware.

The StatefulObjectProxy is responsible for the following tasks:

1. Abstracting away the complexity of communicating with the middleware so devel-
opers of serverless functions do not need to perform such steps.

2. Providing mechanisms to register and unregister serverless functions. This is
necessary so the overlay network can properly provide the information required in
the replication process.

3. Providing instances of proxies of CRDT-based data types. They behave like regular
data types but proxy the operations to the middleware and do not locally save the
state.

The API of the StatefulObjectProxy is summarized in Table 4.2. It can be seen
that the list of methods is rather compact. There are methods to register and unregister
the serverless function instance. This is necessary so that the overlay network of the
middleware can provide the necessary details to the replication module. Furthermore,

35

4. MISO Middleware

Table 4.2: StatefulObjectProxy API

Method Description
registerServerlessFunction() Registers the current serverless function

replica with the middleware.
unregisterServerlessFunction() Removes the current serverless function

replica from the middleware.
get<CRDT>(name) Returns a proxy instance of a given CRDT

identified by its name, where <CRDT> must
be a supported data type. This list of
currently supported data types includes
EWFlag, GCounter, PNCounter,
GSet, MVRegister, ORSet.

deleteCrdt(name) Removes a data type with a given name
from the MISO Stateful Object.

the API exposes methods to get or delete certain data types from the MISO Stateful
Object.

CRDT Proxies provide a proxy instance of a given CRDT. The functionality that is
exposed to developers closely mirrors the underlying CRDT, but internally the operations
are delegated to the middleware. The proxies can purposely not be instantiated without
the StatefulObjectProxy, as otherwise, developers would have to manually configure
the details on how these data types can communicate with the middleware. We discuss
the list of supported operations in the implementation details of the CRDTs in Section
5.3. The SDK does not modify the interface of the data types to make it understandable
for developers familiar with CRDTs. It needs to be noted that due to the nature of
CRDTs, there is no one-to-one mapping of existing familiar data types of programming
languages (List, Array, ...) to a corresponding CRDT. For CRDTs that are closely related
to familiar data types such as Sets, the operations reflect the ones of the regular data
types as closely as possible. For example, a EWFlag is similar to a Boolean data type,
and a ORSet behaves similarly to a regular Set. However, a exact match to familiar
data types is not always possible. For example, a Grow-only Sets (GSets) is a Set that
does not allow the removal of elements, so such an operation can not be provided by the
SDK, and it is not possible to use the interface of the programming language. Similarly,
a MVRegister is a data structure that typically does not have a direct counterpart in
all programming languages. This implies that developers that use the SDK need to
learn new data types, but we are confident that future research will introduce further
CRDT-based data types and that the awareness of CRDTs among developers will rise.

36

4.4. SDK for Serverless Functions

4.4.2 Usage in Serverless Functions
In this Section, we describe an example of how we expect the SDK to be used in the
code of serverless functions.

1 // function handler of the serverless function (OpenFaaS)

2 module.exports = async (event, context) => {

3 const so = context.statefulObject;

4 const counter = so.getGCounter('countExecutions');

5 await counter.add(1);

6 return {

7 data: await counter.getValue() // value is 1

8 };

9 };

Listing 1: Using the SDK in Serverless Functions

The SDK can be used by creating a new instance of the MISO Stateful Object proxy.
This instance can then be used to create one or multiple CRDTs. Listing 1 gives an
example of creating and using a GCounter proxy from a MISO Stateful Object from the
code of a serverless function for OpenFaaS which is written in TypeScript. It can be seen
that, in this case, a MISO Stateful Object is injected into the context argument of the
serverless function, which developers can directly use. This is possible when our work is
integrated into the serverless platform. The code of the function uses the default MISO
Stateful Object to create a GCounter, then increments the counter by 1 and returns the
current value. We describe the necessary steps to integrate the SDK, including the usage
of the MISO Stateful Object to register and unregister from the middleware in Section
6.3.1. We expect that the usage of the SDK is similar in other programming languages
and open-source serverless platforms.

37

CHAPTER 5
Prototype Implementation

The implementation of MISO is open-source and available online. The link can be
found in Appendix A. The source code includes the code for the middleware, SDK, and
evaluation. The repository also contains scripts to easily deploy and run MISO in a
Kubernetes in Docker (KinD) cluster.

The prototype implementation of the middleware runs under Node.js 18 LTS, utilizing
TypeScript for enhanced type safety. It employs npm as a package manager, facilitating
streamlined dependency management for the middleware. Additionally, all middleware
packages are located in the same repository. The advantages of monolithic repositories
include code reuse and simpler dependency management [44]. This organizational
approach also promotes modularity and eases maintenance across the various components
of the middleware. We use npm workspaces [45] to accomplish this, which is a collection
of functionalities within the npm CLI that supports the management of multiple packages
from the root package. It simplifies the development, as the local packages are seamlessly
linked together when installing dependencies. This configuration can be found in the
package.json file in the repository’s root folder.

An illustration of the prototype package hierarchy can be seen in Figure 5.1. There are
four packages in total: the middleware package, the CRDT package, the SDK package,
and a common package. The common package is used by the SDK and middleware,
and the CRDT package is used by the middleware. During development, we self-hosted
an instance of a private package registry called Verdaccio1 where the built files were
published. This is necessary as we build MISO as a Docker container and run it inside
Kubernetes for our evaluation in Chapter 6. Manually linking all packages/dependencies
would be very cumbersome. MISO is currently not available on the public npm registry.

1https://verdaccio.org/

39

https://verdaccio.org/

5. Prototype Implementation

Monorepo

packages/middleware

packages/common packages/crdt

packages/sdk

Figure 5.1: Monolithic Repository Package Structure

Table 5.1: Middleware Folders and Descriptions

Folder Name Description
controllers API endpoints to modify MISO Stateful Objects

and CRDTs
interceptor Request interceptors, e.g., for logging and CRDT

initialization
objects Code regarding MISO Stateful Object creation and

modification
overlay-network Code for the overlay network with node and func-

tion discovery
replication Code to replicate the state of MISO Stateful Ob-

jects to other instances of MISO
utils Helper code

5.1 Middleware Package

The @miso/middleware package contains the code for the middleware. The link can
be found in Appendix Section A.1.1. It is developed using the open-source NestJS [46]
framework due to its robust set of features, including excellent support for a modular
architecture, powerful dependency injection, and built-in support for gRPC. These
attributes make NestJS an ideal choice, ensuring maintainability and efficient development
for our middleware. The middleware package is structured as described in Table 5.1:

5.1.1 API

The prototype application exposes the operations to modify MISO Stateful Objects and
CRDTs via gRPC. The definition of the API can be found in the protobuf files of the
common package, as discussed in Section 5.4. The middleware uses the protobuf files to
start a gRPC server on port 5001. There is one gRPC service for each CRDT.

40

5.1. Middleware Package

Due to the complexity involved in sending arbitrary data types over gRPC and limited
reflection support in TypeScript, as types are erased during runtime, we have limited the
possible value types for all Sets and Registers to string, number, and JavaScript objects
in this prototype.

5.1.2 Overlay Network
Our implementation is designed to allow multiple implementations of function and node
discovery. To enable this, we have defined interfaces for node and function discovery so
that different strategies can implement the interface and provide the functionality. The
overlay network mechanism allows switching between node and function discovery types.
We currently provide a single implementation for node discovery (mDNS) and function
discovery (gRPC).

Node Discovery Strategies

Figure 5.2 shows how the mDNS discovery strategy works. When the middleware starts,
the discovery process starts. It then repeatedly sends mDNS queries to a certain ser-
vice name (default: miso-middleware -instance.local, but this is configurable).
Other middleware instances then respond to this query with their local IP addresses
via the network. For the mDNS responses, a DNS reverse lookup is performed to find
the hostnames of the IP addresses so that every node stores a map of IP addresses for
every hostname. This process is performed regularly to identify new middleware nodes
continuously. The interval in which mDNS queries are sent is configurable and defaults
to a random time between 1 and 2 minutes. This ensures that the mDNS queries do not
all happen simultaneously in a cluster with multiple MISO instances.

Function Discovery Strategies

When using the gRPC function discovery strategy, every serverless function registers itself
via gRPC at the node where the container of the serverless function runs every time the
function handler is executed. The middleware exposes the corresponding API endpoints
to register and unregister serverless function instances via gRPC. Those endpoints must
then be manually called by the serverless functions or by calling the respective method
in our SDK. When the template of the serverless function is adapted to integrate the
MISO SDK, the process of registering and unregistering is completely transparent to the
developers of serverless functions. We demonstrate this in our evaluation of the SDK in
Section 6.3.
Whenever a function registers or unregisters, an update message is sent to other discovered
nodes that run MISO. This is necessary so that the replication module knows which
nodes run which serverless functions, avoiding unnecessary replication traffic. This is
implemented as previously described in Section 4.3.
For Kubernetes-based serverless platforms, it would also be possible to build node- and
function discovery strategies that use the Kubernetes API to identify which serverless

41

5. Prototype Implementation

MISO Node 1

MISO Node 1

MISO Node 2

MISO Node 2

Network

Network

startDiscovery

startDiscovery

discovery: Node1 finds Node2
mDNS Query

mDNS Query

mDNS Response

mDNS Response (discovered node 2)

discovery: Node2 finds Node1

... same as above

Figure 5.2: mDNS Node Discovery

function pods are running on which nodes. While technically possible, this adds a
dependence on a centralized authority which we generally want to avoid in this work.
However, we still designed the implementation to be flexible and, therefore, do not
force developers to stick with our mDNS/gRPC-based solutions; instead, our software
is designed so that multiple different solutions for node- and function discovery can be
implemented in the future.

5.1.3 Replication
Replication is a core mechanism of the middleware and, therefore, makes up a significant
part of the software prototype. Figure 5.3 gives an overview of the replication process.
The client (e.g., the SDK) sends the request to the middleware, which passes through
the controller to the service handling the logic (Steps 1 and 2). The service triggers the
replication task whenever a state is modified (Step 3). The client receives the response
(Steps 4 and 5), and the replication process starts asynchronously (Step 6).

The replication service internally uses the RxJS library [47] to implement the Algorithm
4.3 as specified in Section 4.2. It is the official implementation of the "Reactive Extensions"
(ReactiveX) specification for JavaScript [48]. The core of ReactiveX is an Observable,
which can be used to develop asynchronous event-driven software that composes multiple
sequences of data/events together [49]. ReactiveX is a combination of the Observer and
Iterator patterns as well as functional programming [50].

It is possible to subscribe to observables to get notified whenever an event is emitted on
the source observable by calling a callback function. Observables can be transformed

42

5.1. Middleware Package

MISO Node 1

Replication
Service

Other Nodes

CRDT
Controller queue

task

CRDT
Service

6
replicate

21

5
4

3

Serverless Function

Function
Handler

SDK

Proxy

Figure 5.3: High-Level Overview of Replication Process

and composed together with other observables using a set of operators [48] that follow
a functional programming style [50]. Observables can handle the emission of single or
multiple values as well as infinite streams [49].

The ReactiveX specification is a great fit for MISO’s replication service. A stream of
replication tasks emits tasks as long as the CRDT is modified. The stream of incoming
events must be transformed to ensure that they are debounced and handled at fixed
intervals.

Figure 5.4 shows how the RxJS auditTime operator works. When a source value is
emitted on the source observable (e.g., a), a timer is enabled, and further emissions on
the observable are ignored. The timer becomes disabled at a configurable delay (i.e., the
replication interval). In this example, the delay is set to 50ms. After this time, the most
recent source value (e.g., y) is emitted on the output observable [51]. This process is
then repeated. When no events are emitted on the source observable (i.e., no replication
tasks are required), no events are emitted on the output observable.

auditTime(50)

a x y

y

b x

x

xc

Figure 5.4: RxJS auditTime Operator (own work based on [51])

We utilize the auditTime operator to filter incoming events in the replication service.
This means that only the latest replication task is handled, which makes sense as we

43

5. Prototype Implementation

use state-based CRDTs where every update contains the whole state. This effectively
limits the replication process for each particular CRDT to at most once in the configured
replication interval. There is a unique observable for every combination of MISO Stateful
Object ID and CRDT name.

5.1.4 State Recovery

The middleware supports state recovery when nodes restart, or functions are scaled to
nodes that have not yet run this precise serverless function. This works by intercepting
every request of the API that retrieves or modifies a CRDT state. Every CRDT has its
own interceptor, located in the controller folder of the middleware.

For each request, it is checked if the stateful object and CRDT are found locally. If
the stateful object and/or CRDT were not found locally, it is checked if the function
discovery service from the overlay network knows which other nodes run this function.
For each of those nodes, the state is then requested, and the state of the first reply is
saved locally. This is transparent to developers of serverless functions. The original
request is only answered after the initialization of CRDT and MISO Stateful Object.

This is demonstrated in Figure 5.5. It is visible that each CRDT controller is preceded by
a CRDT initializer. After trying to initialize the current value, the request is forwarded
to the controller. The client, e.g. the SDK, does not notice the initialization process.

MISO Node 1

CRDT
Initializer

Other Nodes

CRDT
Controller

1

5

3

4

2

Serverless Function

Function
Handler

SDK

Proxy

Figure 5.5: CRDT Initializer Interceptor

5.1.5 Configuration

The list of configurable environment variables for the middleware includes:

• MISO_NODE_NAME (required):
The (host-) name of this MISO instance.

44

5.2. SDK Package

• MISO_MIDDLEWARE_REPLICATION_DELAY_MS (optional):
The interval in which CRDT data is replicated. Defaults to 200ms.

• MISO_MIDDLEWARE_DISCOVERY_MDNS_SVC_NAME (optional):
The service name used for mDNS node discovery. Defaults to miso-middleware
-instance.local.

• NODE_ENV (optional):
Enables development logging if set to development.

5.1.6 Integration into Serverless Platforms
We demonstrate the seamless integration of our middleware and propose an innovative
approach to incorporating MISO Stateful Objects into Kubernetes-based serverless
functions through the inclusion of our middleware within the Helm chart deployment of
serverless platforms. This underscores the ease of the integration and successfully bridges
the gap between middleware and serverless functions.

We have developed a dedicated template file in the yaml format that can be included
in the Helm chart of Kubernetes-based serverless platforms. The link can be found in
Appendix Section A.2.2. This enables our middleware to operate in tandem with the
platform as if it were originally part of the core architecture. In our Helm chart, we have
defined that our middleware runs as a Kubernetes DaemonSet, i.e., one middleware
instance runs on every node in the cluster. Additionally, environment variables to
configure the middleware are set, e.g., the name of the node. This innovative approach
simplifies the integration process of MISO Stateful Objects into serverless platforms in
the edge-cloud continuum.

5.2 SDK Package
The @miso/sdk package implements the SDK for serverless functions and is also written
for Node.js in TypeScript, similar to the middleware. The link to the code can be found
in Appendix Section A.1.2. The idea behind the package is that developers can add it as
a dependency to their Node.js project to interact with MISO Stateful Objects.

The most important exported class of the package is StatefulObjectProxy, which
allows developers to create proxy-based MISO Stateful Objects. Developers do not need
to know how the SDK internally handles the communication with the middleware. By
calling the respective method on the proxy objects, developers can create or delete CRDTs.
The StatefulObjectProxy class handles the gRPC connection to the middleware.
To this end, the SDK creates a gRPC channel to the node that runs this serverless
function. This channel is then used to register and unregister the serverless function with
the overlay network and by the proxy versions of the CRDTs. To accomplish this, the
SDK package imports the @miso/common package (described in Section 5.4) so that
the shared protobuf definitions can be used.

45

5. Prototype Implementation

Table 5.2: SDK Environment Variables

Environment Variable Required Description
MISO_HOST_IP Yes IP address of the middleware instance

running this function
MISO_FUNCTION_NAME Yes Name of the serverless function that

calls the SDK.
MISO_NODE_NAME Yes Hostname of the node that runs this

serverless function.
MISO_HOST_PORT No Port of the middleware instance running

this function. Defaults to 5001.
MISO_REPLICA_ID No Replica ID to be used when modifying

CRDTs. Defaults to the hostname of
the container running this function.

NODE_ENV No Changes the amount of data that is
logged. Defaults to ’development’.

The SDK automatically generates an ID of the MISO Stateful Object if no one is provided
by hashing the serverless function name with the SHA256 hash function. This means
there is always a default MISO Stateful Object for every serverless function if no name
is provided. In subsequent invocations of the same serverless function, the same MISO
Stateful Object will be used as the name will be the same. This is convenient for
developers that do not require multiple different MISO Stateful Objects. In case more
such objects are required, developers can create more instances but must provide an
ID for the MISO Stateful Object that needs to be unique for this particular serverless
function. This could, for example, be a customer ID or similar.

Configuration The MISO Stateful Object proxies require a few configuration values
to be able to communicate with the middleware. The SDK tries to load the configuration
values from environment variables. Alternatively, it is also possible to manually pass a
configuration object to the constructor. Table 5.2 shows which environment variables can
be set and which of them are required. We propose that these variables be set as part of
the function deployment. When the serverless platform uses Kubernetes for container
orchestration, the environment variables can be set automatically when utilizing the
Kubernetes Downward API [52].

Due to the fact that the operations against CRDTs run via the middleware using gRPC,
the methods are asynchronous and return a Promise.

46

5.3. CRDT Package

5.3 CRDT Package
The @miso/crdt package provides TypeScript-based implementations of various state-
based CRDTs, including

1. Counters (GCounter, PNCounter),

2. Flags (EnableWinsFlag),

3. Registers (MVRegister), and

4. Sets (GSet, ORSet).

The link can be found in Appendix Section A.1.3.

In the following paragraphs, we will outline the details about each implemented CRDT,
including its operations and implementation details.

5.3.1 Base Classes
All implemented CRDTs extend one of the package’s multiple abstract base classes,
described in the paragraphs below.

VectorClock Our VectorClock internally uses a map with string-based keys and
numeric values. When the clock is incremented, the map value with the given string-
based replica ID is incremented. The clock can also be merged with another clock, where
the maximum version of all replica IDs of the given two vector clocks is taken as the final
value. Furthermore, it is possible to compare two vector clocks to find out whether they
are equal, whether one of them has a newer version, or whether there was a concurrent
modification.

StateBasedCRDT This is an abstract class that defines that the constructor of each
data type requires a stateful object ID and a CRDT name and that there must exist a
merge method that takes another state-based CRDT as input. This class is extended
by the GCounter, PNCounter, and GSet data types.

CausalCRDT This base class combines the StateBasedCRDT class with a vector
clock. This class is extended by the EWFlag, MVRegister, and ORSet CRDTs.

5.3.2 CRDT Implementation Details
GCounter Our GCounter offers the following methods:

• State modifications: add()

47

5. Prototype Implementation

• Queries: getValue()

Our implementation works by maintaining a map with string-based keys and numeric
values. When the counter is incremented, the entry in the map with the corresponding
replica ID is incremented. The map is then reduced to a single numeric number to get
the counter value.

PNCounter Our PNCounter offers the following operations:

• State modifications: add(), subtract()

• Queries: getValue()

We re-use the GCounter CRDT mentioned above to accomplish the behavior of a
PNCounter. More precisely, we use a GCounter for the additions and one for the
subtractions. To get the value of the counter, the sum of the negative counter is
subtracted from the sum of the positive counter.

EWFlag Our EWFlag offers the following operations:

• State modifications: assign(value)

• Queries: getValue()

Our EWFlag makes use of a vector clock. The vector clock is incremented whenever a
boolean value is assigned to the flag. When two such flags are merged, there can be two
cases. If one of the vector clocks is newer than the other, we take the flag value of the
newer vector clock. The flag is set to true when there is a concurrent modification, and
one of the flags sets the value to true. If both flags concurrently set the value to false,
then this is the new value of the flag.

Other developers can easily build a similar flag where disabling has precedence.

MVRegister Our MVRegister offers the following operations:

• State modifications: assign(value)

• Queries: getValue()

The MVRegister works by incrementing the vector clock whenever a value is assigned.
Before a value is assigned, the values are cleared. When two instances are merged, the
following cases must be considered:

48

5.4. Common Package

• If there is a concurrent write with the other instance, the value from the other
CRDT is added to this instance.

• If the other CRDT has newer writes, the value of the other instance is set to this
instance.

GSet Our GSet offers the following operations:

• State modifications: add(value)

• Queries: has(value), getValue(), keys(), values(), entries()

No vector clock is required in our GSet, as there can only be additions. Whenever two
instances are merged, the union of all values is taken as the new value. Internally, we
make use of the Set provided by TypeScript.

ORSet The list of supported operations for our ORSet includes:

• State modifications: add(value), remove(value), clear()

• Queries: has(value), getValue(), keys(), values(), entries()

This is the most complex CRDT in our package. The vector clock is incremented whenever
a value is added to the set. For each value to be added, the value is added to a Map
where the key is the value to be added to the Set, and the value is a pair consisting
of a replica ID and vector clock. When merging two ORSet instances, the map of the
incoming entry is iterated. Every entry that is present in the incoming instance but
missing in the current instance is added to the current instance, except when the vector
clock of the incoming instance is smaller than the one of the current instance. This is
because the current instance might have deleted the entry.

Furthermore, every element present in the current instance but missing in the incoming
instance is removed when the incoming vector clock is greater than the current one. This
would mean that the incoming instance has deleted the entry.

5.4 Common Package
The @miso/common package is responsible for reducing code duplication by storing
artifacts that are required by multiple packages in this package. The link can be found
in Appendix Section A.1.4. The main reason for this package currently is to store all
protobuf files in the common subpackage, as they are required by both the SDK and
middleware packages.

The structure of the common package is the following:

49

5. Prototype Implementation

Table 5.3: Protobuf Files and Services

File Name gRPC services and methods
middleware.proto GCounterService, PNCounterService,

MVRegisterService, SetService, EWFlagSer-
vice.
Methods described in Section 5.3

replication.proto ReplicationService
For each CRDT:
Retrieve<CRDT>, Merge<CRDT>
<CRDT> = Type of CRDT

discovery-function.proto OverlayFunctionDiscoveryService

• (un-)registerServerlessFunction

• exchangeMiddlewareServerless-
FunctionPodInfo

discovery-node.proto OverlayNodeDiscoveryService

• init, heartbeat

• middleware.proto: Protobuf definitions for core middleware operations (i.e.,
modify CRDTs)

• replication.proto: Protobuf definitions for replication logic

• discovery-function.proto: Protobuf definitions for overlay network

• discovery-node.proto: Protobuf definitions for overlay network

• common.proto: Shared protobuf definitions

• server/
Contains generated types for the middleware (i.e., gRPC server)

• client/
Contains generated types for the SDK (i.e., gRPC client)

Table 5.3 shows which gRPC services each protobuf file defines (in bold) and which
methods they offer. The common.proto file does not expose any gRPC services but
only stores messages that are used in the other protobuf files. The client and server
types must be regenerated whenever the protobuf files are modified. This can be done

50

5.4. Common Package

by running the npm run build command from the root of the common package. The
generation process is only tested on Unix-based systems.

Listing 2 shows an example protocol buffer definition of MISO. In this example, a gRPC
Service with the name GCounterService is defined with two methods. The Add
and GetValue methods return a CounterResponse message, which defines that the
response contains two fields, a field of type StatefulObjectBaseInformation and
the value of the counter as a signed 64-bit integer value.

1 syntax = "proto3";

2 package miso.middleware;

3 import "common.proto";

4

5 service GCounterService {

6 rpc Add(CounterAddOrSubtractValueRequest) returns (

7 miso.common.CounterResponse

8) {}

9 rpc GetValue(CounterGetValueRequest) returns (

10 miso.common.CounterResponse

11) {}

12 }

13

14 message CounterResponse {

15 StatefulObjectBaseInformation statefulObjectBase = 1;

16 sint64 value = 2;

17 }

18 // ... rest omitted

Listing 2: gRPC Protobuf Example from MISO

51

CHAPTER 6
Evaluation

In this section, we present a multifaceted evaluation of our middleware that encompasses
both technical experiments and qualitative aspects. This provides a holistic perspective
of the performance, scalability, and usability of our software prototype. The evaluation
starts with an evaluation of the performance overhead of the middleware (Section 6.1).
This is followed by an in-depth analysis of the replication algorithm (Section 6.2). Finally,
we conclude the evaluation with a qualitative evaluation of the middleware’s integrability
with existing serverless platforms and the usability of our SDK (Section 6.3).

6.1 Performance Overhead
In this evaluation, we focus on assessing the performance of the core middleware operations
using technical experiments, specifically the modification of MISO Stateful Objects via
serverless functions. For this experiment, we have chosen to utilize an AllReduce operation.

6.1.1 Experiment Definition

1 2 3 4 5 6 7 8 9 10

6 15 34

55

Figure 6.1: AllReduce Operation

53

6. Evaluation

Table 6.1: AllReduce Experiment Configurations

Type Nodes in
Cluster

Replication Description

MISO 1 No Baseline measure where a single node is used
for writes

MISO 5 Yes Replication to all nodes, delay set to 0ms
Redis
Enter-
prise

5 Yes Writes to primary node, replication to sec-
ondary node

MinIO 5 No One cluster
MinIO 5+5 Yes Two clusters, Site Replication enabled

Figure 6.1 shows how the AllReduce operation works. The objective of this experiment
is to reduce a numeric array to a single number as fast as possible. At the beginning of
the experiment, an array of integer numbers is generated (e.g., numbers from 1-10). This
array is then split into multiple chunks. Then, a serverless function is invoked with the
chunk of numbers, which the function then sums up to an intermediate sum (e.g., 6, 15,
and 34 in Figure 6.1). The function then stores this partial sum. The intermediate sums
are then reduced to a single number (e.g., 55 in Figure 6.1) by invoking the serverless
function again with a different parameter. The serverless function is called n+1 times (n
times for writing partial results, 1 time to retrieve the overall result).

This means the serverless function is invoked 1 000 times per test run with high concur-
rency. For each test run, the following metrics are measured:

• Average total time (i.e., the time it takes from the start of the test run until
the result has been retrieved, including the time it takes to invoke the serverless
functions)

• Average write time (i.e., the time it takes to calculate all intermediate results in the
serverless function, including the time it takes to invoke the serverless functions)

• Average read time (i.e., the time it takes to retrieve the final reduced sum, including
potential retries due to replication delay, including the time it takes to invoke the
serverless functions)

6.1.2 Experiment Setup
The experiment was executed 500 times using three different solutions to store the
partial/total results: MISO, MinIO (S3-compatible Object Store), and Redis (Key-Value
Store). Table 6.1 shows the different configurations in which the configurations were run.

The experiment has been executed on a VM that runs Ubuntu 22.04.3 LTS, powered
by an AMD EPYC 7742 processor with 64 cores and 128 GB of RAM reserved for the

54

6.1. Performance Overhead

VM. On this VM we run a KinD cluster (KinD version 0.20.0) with 5 nodes, where we
have installed our middleware, Redis Enterprise (version 7.2.4-92), and MinIO (version
2024-01-18T22-51-28Z) using Helm charts.

Because MISO uses CRDTs, the result of the AllReduce operation can only be retrieved
after all nodes have replicated their changes. For this reason, our test script repeats the
retrieval of the result in case the replication has not yet been completed.

MISO Setup

We have created a setup shell script that installs MISO in a KinD cluster, optionally with
OpenFaaS. The link can be found in Appendix Section A.2.3. It performs the following
tasks:

1. Start a local image registry container

2. Build middleware docker image

3. Create KinD cluster with 5 nodes, with local registry configured

4. Connect registry with KinD network

5. If -m flag is supplied, our middleware is started on every node (standalone setup).

6. If -m flag is not supplied, OpenFaaS is started with MISO integrated (integrated
setup)

7. Metrics server is added to the Kubernetes cluster

8. Monitoring is started (Prometheus + Grafana + our own test script)

We have tested the setup script under Ubuntu 22.04 LTS. Docker, faas-cli, kind,
and Helm need to be installed beforehand.

The details of the integration of MISO with OpenFaaS are explained in Section 6.3.

1 {

2 "testRun": 1,

3 "type": "miso",

4 "timeStart": 17042883074174,

5 "timeWrite": 872.423559,

6 "timeRead": 10.817261,

7 "timeTotal": 883.24082,

8 "isCorrect": true

9 }

Listing 3: Test Script Output

55

6. Evaluation

Redis Enterprise Setup

For Redis Enterprise, we followed the official guide to deploy it into Kubernetes [53]. Our
deployment file requested 4 CPUs and 4 Gi of memory, with a limit of 10 CPUs and 10
Gi.

Our Redis Enterprise cluster comprises 5 nodes. This cluster runs a Redis Enterprise
database with 10 GB of RAM and replication enabled. All write operations performed by
the serverless functions are routed to the same Redis Enterprise master node automatically
by Redis. This is because we use the Kubernetes Service for the Redis Enterprise database,
which Redis Enterprise creates. These writes are then asynchronously propagated to a
replica node by Redis Enterprise. It is important to emphasize that we are using a regular
Redis Enterprise database in a single cluster and not an Active-Active geo-replicated
Redis Enterprise database.

MinIO Setup

For MinIO, the experiment was conducted in two different configurations. The first
configuration involved a single MinIO cluster comprising 5 nodes with one drive per
server, 10 GB total capacity, and replication and versioning turned off. The second
configuration comprised two clusters with 1 drive per server, 10 GB total capacity, and
site replication/versioning turned on. To set up the clusters, we have first deployed
the MinIO operator [54]. The MinIO tenants were then created using the operator in
accordance with the official documentation [55].

Test script

To perform the AllReduce operation, a test script has been created that can be de-
ployed as a Helm chart. This is because OpenFaaS and the serverless functions run
inside Kubernetes. In order to avoid additional latency caused by port-forwarding
into the cluster, the test script is also run inside the same Kubernetes cluster. It
can then be triggered via HTTP after creating a port forward to the pod that is cre-
ated. However, it is important to state that the actual test runs completely inside
Kubernetes. The test script can be called with a POST request to curl -X POST
http://localhost:3000/allreduce/:type/:repetitions/:arraySize
/:chunkSize, where type can be miso, minio, redis. For the remaining param-
eters, we utilized 500 repetitions, an array size of one million, and a chunk size of 1 000.
The script generates a JSON file in the /data/json directory, which contains data
about each repetition. An excerpt of an example entry of the results can be found in
Listing 3. It is visible that the script stores detailed information about the write and read
times and verifies that the test run returned the correct sum. For the sake of brevity,
certain less important fields have been omitted from this Listing.

56

6.1. Performance Overhead

6.1.3 Experiment Results

Figure 6.2 provides a comprehensive summary of the experiment results. It depicts the
average total, read, and write times, as well as the 99th percentile of the total average
time for different technologies and configurations. In the outlined AllReduce use case, the
mean response times (encompassing total, read, and write times) of MISO consistently
outperform those recorded for Redis Enterprise and MinIO. A more detailed analysis of
the results is presented in the subsequent sections.

MISO (1N) MISO (5N) Redis Enterprise MinIO MinIO Replicated
Type

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

m
s
)

534

798

1088

2739

4691

3 14 11

1759

3429

531

783

1077 979

1262

572

924

1189

4311

6962

Metrics grouped by type

Metric

Total Average

Average Read

Average Write

99th Percentile

Figure 6.2: AllReduce Results - Grouped Bar Chart

Figure 6.3 shows the moving average read times of all types observed in our experiment,
rolling over a window of 10 experiment runs.

Figure 6.4 illustrates the moving average write times of all types observed in our experi-
ment, rolling over a window of 10 experiment runs.

MISO

In Figures 6.3 and 6.4, we observe that CRDT-based counters, like those implemented in
MISO, are well-suited for this AllReduce use case. This is because each intermediate sum
calculated from each chunk of the input array can simply be added to a counter. This
counter is shared between all instances of the serverless function. To retrieve the final
reduced sum, the serverless function needs to retrieve the current value of the counter
after every chunk has been processed. The serverless function does not have to perform
a manual aggregation of the intermediate sums, as this is essentially built into the data
type itself when retrieving the current value of the counter. It is, however, important to
note that the final result, when using MISO, is only available to the serverless function

57

6. Evaluation

0 100 200 300 400 500
Test Run

0

1000

2000

3000

4000

5000

T
im

e
 (

m
s
)

Time Read per Test Run (Moving Average)

MISO (1N) - Average Time Read

MISO (1N) - Average Time Read

Redis Enterprise - Average Time Read

MinIO - Average Time Read

MinIO Replicated - Average Time Read

Figure 6.3: AllReduce Results - Read Times

0 100 200 300 400 500
Test Run

600

800

1000

1200

1400

T
im

e
 (

m
s
)

Time Write per Test Run (Moving Average)

MISO (5N) - Average Time Write

MISO (1N) - Average Time Write

Redis Enterprise - Average Time Write

MinIO - Average Time Write

MinIO Replicated - Average Time Write

Figure 6.4: AllReduce Results - Write Times

58

6.1. Performance Overhead

after all affected nodes have replicated their changes due to the principle of eventual
consistency.

As visible in Figure 6.3, the read times for MISO remain consistently low with an average
of 14ms and a standard deviation of 5ms when using a cluster of 5 nodes. Furthermore, as
visible in Figure 6.4, the write times are also stable, averaging at 783ms with a standard
deviation of 44ms. The write time in this experiment is consistently lower than that of
Redis Enterprise and MinIO. The read time for MISO is minimally higher than that of
Redis Enterprise, which can be attributed to how CRDT-based counters, as employed by
our middleware, are designed. They operate by storing the sum of each replica within a
map. To obtain the current total sum of the counter, the partial sums from all replicas
need to be aggregated, which contributes to the overall computational overhead. The
difference in read times between our solution and Redis Enterprise in this setting is
marginal, with MISO at 14ms and Redis at 11ms. This negligible difference underscores
the efficiency of our middleware in this use case despite the additional computational
steps involved in its operation.

Redis Enterprise

Our implementation of the AllReduce experiment in Redis Enterprise works by utilizing
a unique hash for each test run. This hash is then populated with the intermediate sums
of the chunks of the input array, using a unique key for each interim result. By using
unique keys, we avoid synchronizing or locking the whole object, as the same replica ID
(i.e., the name of the pod that runs the serverless function instance) might be accessing
the object concurrently. To compute the total reduced sum, the serverless function has
to retrieve all values from the hash to aggregate all values into a single value.

As visible in Figure 6.3, the read times for Redis Enterprise in this use case are similar to
the one of our solution, with an average of 11ms. This is marginally lower than what we
have observed for MISO. The write time average, visible in Figure 6.4, is 1077ms, which
is almost 300ms higher than MISO, with a standard deviation of 48ms. However, the
read times for Redis Enterprise have a smaller standard deviation than both MISO (with
5 nodes) and MinIO.

MinIO

To accomplish this AllReduce use case with an object store such as MinIO, every
intermediate sum of each chunk is stored as a file in a certain bucket. We create an
empty bucket for each test run and remove the files afterward. The times to create the
bucket in the beginning and remove the files and bucket are not taken into account when
measuring the times of each test run. After all intermediate results have been stored in
the bucket, the serverless function retrieves all objects in the bucket. It performs the
final reduction to get a single number by aggregating all file numbers.

Figures 6.3 and 6.4 show the read and write results of MinIO in this use case using both
a single cluster and two replicated clusters. The average read and write times for MinIO

59

6. Evaluation

are substantially higher than those of MISO and Redis Enterprise. The read-time average
is 1759ms in a single cluster and 3429ms in a replicated cluster. The write-time average
is 979ms in a single cluster and 1262ms in a replicated cluster. The standard deviations
for a non-replicated cluster are 571ms (read) and 69ms (write). For a replicated cluster,
the deviation is 1078ms (read) and 118ms (write). This behavior, which is that the read
time is higher than the write time, differs from what we have experienced in both MinIO
and Redis Enterprise. This can be explained by the fact that every intermediate result is
stored as a separate file in the bucket, and retrieving all files is an expensive operation.
The standard deviations are significantly higher for MinIO than for MISO and Redis
Enterprise, which implies that the observed values have more variance.

Comparison

Our results show an improvement over Redis Enterprise by 26.7% for the total average
time. Compared to MinIO, our solution was 243.2% faster in a non-replicated cluster
and 487.9% faster in a cluster with site replication turned on. To compare our numbers,
we used the total average time of MISO in a cluster of 5 nodes, so all solutions utilized a
cluster of 5 nodes. This implies that CRDT-based data structures offer great performance
for use cases that can utilize their potential, as our presented AllReduce use case.

6.2 Replication Algorithm
In this section, the replication algorithm of MISO is evaluated by performing load tests.
The following metrics are measured:

1. Replication time (i.e., the time it takes to replicate to all relevant nodes for one
replication run without waiting for acknowledgement),

2. Total Requests per Second (RPS) (i.e., sum of all MISO-related RPS on all partici-
pating nodes),

3. Replication Data Volume,

4. Process Memory Usage.

6.2.1 Experiment Definition
We perform a stress test on the middleware to evaluate the replication algorithm. As
the middleware exposes its operations through gRPC, we use an open-source gRPC
benchmarking tool called ghz [56]. We did not modify it and do not distribute it as part
of this work. The benchmark works by repeatedly calling a gRPC endpoint with multiple
threads. We use ghz to increase a PNCounter concurrently and then study the metrics
of the replication algorithm with varying nodes. Our test script distributes the total
number of requests that should be made over all nodes and thus produces a distributed
load among the nodes, simulating concurrent data modification on multiple nodes.

60

6.2. Replication Algorithm

6.2.2 Experiment Setup
Our test script runs as a Kubernetes pod that wraps an HTTP server. It can then be
started via a POST request. We have used 10 concurrent threads and performed 5 million
increases to a PNCounter. We have deployed MISO to the same Kubernetes cluster,
running on KinD with 5, 10, 20, and 30 nodes. The replication interval was set to 5ms,
and the cluster ran on the same virtual machine as discussed in the evaluation of the
performance overhead (see Section 6.1). The concurrency flag of ghz was set to 10.

To collect the metrics, we deploy the kube-prometheus-stack Helm chart [57] to
the KinD cluster. This means that Prometheus and Grafana are deployed to collect and
visualize metrics, respectively. The test script, Prometheus, and Grafana are bundled in
the same Helm chart as previously described in Section 6.1.2. The link can be found in
Appendix Section A.2.1.

6.2.3 Experiment Results
Average Replication Time

5N (5ms) 10N (5ms) 20N (5ms) 30N (5ms)

Nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
 i
n

 m
s

Average time to replicate after 5 million requests

Figure 6.5: Average Replication Time

Figure 6.5 shows the average time it takes to replicate for each replication run after
performing 5 million requests. This is the time between the start of the replication
run and when the update was sent to all participating nodes without waiting for the
acknowledgements of the receiving nodes. We do not wait for the reply of the receiving
nodes as we simulate the nodes on a single machine, where there is no artificial network
delay between the nodes. It can be seen that there is an increase in time as more nodes
are added to the cluster. With 5 nodes, the average replication time was 0.22ms. This
increased to 0.51ms with 10, 0.97ms with 20 nodes, and 1.83ms with 30 nodes. Between 5
and 20 nodes, the addition of time is approximately linear (approximately 341% increase
in time with a 300% increase in cluster size). The increase in time (approximately
732%) significantly exceeds the increase in cluster size (500%) when we increased the

61

6. Evaluation

cluster size from 5 to 30 and is thus higher than linear. The increase in time between
the different cluster sizes generally is expected, as MISO needs to send more updates
with increasing cluster sizes where every node runs the affected serverless function. In
our experiment, we simulate that replication to every node is required. Therefore, as
all nodes replicate to all others, this leads to a quadratic increase in total connections
between the nodes and replicated data in a fully connected network. Furthermore, in our
experiments, all participating nodes in the cluster modify the same CRDT concurrently
with a high load, putting enormous stress on the system. This means that we demonstrate
a worst-case scenario where the exact same data type is modified on all nodes in a cluster
simultaneously with very high concurrency and a very frequent replication interval of
5ms. Given these circumstances, we figure that the replication time increases accordingly
and within reasonable limits.

1 2 3 4 5

Requests in millions 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
 i
n

 m
s

Duration per replication run over time

5N (5ms)

10N (5ms)

20N (5ms)

30N (5ms)

Figure 6.6: Replication Time over Time

Figure 6.6 depicts how the replication time changed over time during the experiment.
The average value stays consistent during the experiment run for all cluster sizes. It
is visible that the replication takes more time as more nodes are added to the system,
which is expected. In the cluster with 30 nodes, some minimal spikes in time are visible
after around 2 and 2.75 million requests. However, such minimal differences are expected
in a distributed system. Furthermore, our replication interval was set to a low value of
5ms, placing a high stress on the replication part of the middleware. Because of how our
experiment works, we leave out the initial 500 000 requests to show results with equal
load and without initial connection setup.

Requests per Second

Figure 6.7 shows the average total RPS rate after performing 5 million requests accu-
mulated across all nodes. The total RPS rate is composed of the core requests, i.e., the
requests to modify the MISO Stateful Objects and the replication requests. For 5, 10,
and 20 nodes, the average total RPS rate was between 13 800 and 16 300 core requests

62

6.2. Replication Algorithm

per second. When utilizing 30 nodes, the core RPS rate dropped slightly to around
13 800 RPS, compared to 16 300 with 10 nodes. However, it is visible that the replication
requests rise significantly as more nodes are added to the system that concurrently modify
the same MISO Stateful Object. Given the increase in replication requests, the core
RPS rate stays stable. The replication requests rose from approximately 3 100 to 43 300
RPS with 5 and 30 nodes, respectively. This is an increase in requests by approximately
1297% while the cluster size increased by 600%. Similarly to what we have described for
the average replication time, this behavior can be explained by the quadratic increase in
network connections between the nodes in a fully connected network when the same data
structure is concurrently modified on all nodes.
Therefore, it is apparent that with such a high replication interval as we used in this
experiment (5ms), an infinite number of nodes cannot be added where the same data
structure is changed simultaneously on all nodes. In such circumstances, a slower
replication interval should be used. Nevertheless, with a total average of approximately
57 100 RPS (core + replication) in a setting with 30 nodes and a replication delay of 5ms,
our results indicate that MISO can handle a high number of concurrent modifications
without problems.

5N (5ms) 10N (5ms) 20N (5ms) 30N (5ms)

Nodes

0

10000

20000

30000

40000

50000

R
e
q

u
e
s
ts

 p
e
r
 s

e
c
o
n

d

Average Total RPS (Core + Replication)

Core Requests

Replication Requests

Figure 6.7: Average Requests per Second

Figure 6.8 demonstrates how the RPS rate of the core requests changed during the
experiment execution time without taking into account the replication requests. The
reason why the core RPS rate is lower in a cluster with 5 nodes than, for instance, 10
nodes can be explained by the way our test works. The total number of requests is
distributed evenly across all nodes in a cluster. Even though we have set a very frequent
replication interval of 5ms in our experiments, 10 nodes can still process more requests
per second than 5 nodes in this scenario. However, starting with a cluster size of 30
nodes, we have experienced a drop in the overall RPS rate. This result is expected, as
MISO needs to replicate tens of thousands of requests at the same time between all nodes
of the cluster. As more nodes are added to the cluster, more time is spent replicating
data to more nodes, and fewer resources are available for the core middleware operations.

63

6. Evaluation

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Requests in millions 1e6

0

2000

4000

6000

8000

10000

12000

14000

16000

R
P

S
 (

to
ta

l
o
f

a
ll
 n

o
d

e
s
)

RPS over time

5N (5ms)

10N (5ms)

20N (5ms)

30N (5ms)

Figure 6.8: Requests per Second over Time

However, it is visible that the RPS rate stays consistent over time. Because of how our
experiment works, we leave out the initial and last 1 million requests to show results
with equal load and without initial connection setup.

Replication Data Volume

5N (5ms) 10N (5ms) 20N (5ms) 30N (5ms)

Nodes

0

500

1000

1500

2000

2500

3000

S
iz

e
 i
n

 M
B

Total Size of Replicated Data

Figure 6.9: Replication Data Volume

Figure 6.9 depicts the total replication data volume. It is visible that the amount of
data increased from 211 MB with 5 nodes to 3.02GB with a cluster of 30 nodes. This
non-linear increase was expected, as in our experiment all nodes replicate to all others,
leading to a quadratic increase in connections and replicated data in a fully connected
network. We have deliberately chosen a low replication interval where replication happens
almost in real-time to simulate as high a load as possible and demonstrate the limits.
Depending on the use case, the amount of data sent over the network can be drastically

64

6.2. Replication Algorithm

reduced with a lower replication interval.

Process Memory Usage

5N (5ms) 10N (5ms) 20N (5ms) 30N (5ms)
0

50

100

150

200

250

S
iz

e
 i
n

 M
B

Maximum RAM Usage

Figure 6.10: Maximum Process Memory Usage

Figure 6.10 shows the maximum observed process memory usage. This is the maximum
amount of memory a single middleware process took during the experiment run time on
a single node, including all middleware components. The maximum memory usage for 5
nodes was lowest, with 216 MB. With 10 and 20 nodes, we observed a higher value of
around 230 MB. For 30 nodes, we have observed a maximum of 251 MB. This shows that
the amount of process memory required tends to rise as more nodes are added when data
is concurrently written and replicated to every node in the cluster. This does not imply
that the same is true as more nodes are added to the cluster, and concurrent replication
to all participating MISO instances is not required. The observed increase in memory
from 5 to 30 nodes was 16.2%, while the cluster size increased by 500%. This means
that the increase in memory is significantly smaller than the increase in node size. This
suggests that our work can be applied in resource-limited environments.

Impact of Replication Interval

Another aspect that was investigated is the impact of the replication interval on the
middleware performance. We have performed a gRPC throughput test using ghz with
10 concurrent connections over a single connection to increment a PNCounter 500 000
times. Different from the experiment described above, we have now directed all load to a
single MISO node in a cluster of 20 nodes, and this single node replicated the data to the
other 19 nodes using a varying replication interval. This enables us to better measure
the impact on a single MISO node. The results are visible in Table 6.2.

Our results show that the configured replication interval heavily influences the performance
of the middleware and the replication. The higher the replication interval is set (i.e.,
less frequent updates), the higher the RPS scores are, and the request latency for core

65

6. Evaluation

Table 6.2: Impact of Replication Interval on Performance

Replication
Interval

RPS Total
Time

Avg. La-
tency

Repl.
Data

Repl. Re-
quests

0ms 1 502 333s 6.41ms 244 MB 1 726 131
5ms 1 909 262s 4.99ms 124 MB 640 490
10ms 2 742 182s 3.41 ms 52.3 MB 269 762
50ms 3 884 129s 2.36ms 8.91 MB 45 904
200ms 4 168 120s 2.19ms 2.19 MB 11 153
1000ms 4 339 115s 2.10ms 449 KB 2 185
5000ms 4 501 111s 2.01ms 111 KB 437

middleware operations decreases. For example, with a replication interval of 0ms (i.e.,
immediate replication), we have achieved an average of 1 502 RPS over 500 000 requests,
which increased to 4 144 RPS with an interval of 200ms. Similarly, a higher replication
interval decreases the total amount of replicated data and the number of replication
network requests. Starting from a replication interval of around 200ms, further increases
in the replication delay had a negligible impact on the overall performance. When we
decreased the replication interval by 500% from 200ms to 1000ms, the RPS rate increased
from 4 168 to 4 339, which is an improvement of approximately 4%. This suggests that
tuning the replication interval to the requirements of each use case is essential and has a
big impact on the overall system performance.

6.3 Qualitative Evaluation
In this section, we evaluate whether it is possible to integrate MISO with an existing
open-source serverless platform and the usability of the SDK. The goal is to show that
our middleware is easy to integrate into existing serverless platforms and that the SDK
is easy to use and understandable.

6.3.1 Integrability
This section demonstrates the process of integrating both the middleware and SDK with
OpenFaaS, as depicted in Figure 6.11. The process consists of two steps. The first is
to integrate the middleware into the serverless platform provider, and the second is the
integration of the SDK into the serverless function template.

Integrating the Middleware

The necessary steps to integrate the middleware with OpenFaaS can be summarized as
follows:

1. Add MISO middleware to the Helm chart template of the OpenFaaS provider.

66

6.3. Qualitative Evaluation

Integration Process

2. Integrate
SDK

1. Integrate
Middleware

Serverless
Platform
Provider

Serverless
Function
Template

Figure 6.11: Overview of Serverless Platform Integration Process

2. Set environment variables in the function deployment handler of the provider.

3. Build the provider image locally and change the image pull policy.

The following paragraphs will outline the details of each of the three steps.

Step 1: Add MISO to Helm chart As described in Section 5.1.6, we included
our Helm chart in the deployment of OpenFaaS by modifying the Helm chart of the
faas-netes provider. More precisely, we added our template as found in Appendix
Section A.2.2 to the faas-netes/chart/openfaas/templates folder so that it is
included in the deployment. In the future, if our Helm chart is hosted in a publicly
available repository, it could be added to the serverless platform’s Helm chart dependencies
without manually copying the yaml file.

Step 2: Set environment variables To simplify the configuration for the MISO
Stateful Object proxy in the SDK, we have also adapted the function deployment handler
of faas-netes. More precisely, in the faas-netes/pkg/handlers/deploy.go
file, we have modified the buildEnvVars function so that the environment variables
mentioned in Section 5.2 are set by utilizing the Kubernetes Downward API. This step is
optional if the serverless platform already provides similar information out of the box or
if the SDK is manually configured in the code of the serverless function handler.

Listing 4 shows a part of the modified buildEnvVars function code. It is visible that we
have added the environment variable MISO_HOST_IP where Kubernetes automatically
sets the value of the field status.hostIP. Other environment variables are set in the
same way.

Step 3: Build provider image The locally modified faas-netes provider then
needs to be built with the make command from the faas-netes root folder. We
changed the image server in the Makefile of the provider to localhost:4000 so
that we can run the image with a local image registry by specifying this image in

67

6. Evaluation

1 func buildEnvVars(request *types.FunctionDeployment) []corev1.EnvVar {

2 envVars := []corev1.EnvVar{}

3

4 envVars = append(envVars, corev1.EnvVar{

5 Name: "MISO_HOST_IP",

6 ValueFrom: &corev1.EnvVarSource{

7 FieldRef: &corev1.ObjectFieldSelector{

8 FieldPath: "status.hostIP",

9 },

10 },

11 })

12 // rest omitted

13 return envVars

14 }

Listing 4: Modified faas-netes Function Deployment Handler

the faas-netes/chart/openfaas/values.yaml file with an image pull policy of
Always. This ensures that the modified provider is used instead of pulling the official
image from Docker Hub.

Integrating the SDK

This section demonstrates how the SDK can be integrated with OpenFaaS to use it
within the code of serverless functions. It is currently available for Node.js projects and
can, therefore, be added as an npm dependency in every such project. Developers have
two choices for the integration of the SDK:

1. Integrate it in the serverless platform template for Node.js

2. Add it to the dependencies of the serverless function only

The first option has the benefit that it is more convenient for developers. Many serverless
platforms provide templates for serverless functions in different programming languages,
which can be customized. The second option implies that the creating the MISO Stateful
Objects and registering/unregistering the function must take place in the handler of the
serverless function itself.

In our evaluation, we demonstrate Option 1. We have modified the node18 template
of OpenFaaS in such a way that it adds the SDK as an npm dependency. Additionally,
the function template can take over the responsibility of registering and unregistering
the function with MISO at startup or termination, respectively. A simplified excerpt of
the corresponding code fragment is shown in Listing 5. In the adapted template, the
function first registers itself in the main entry point using our SDK and then executes

68

6.3. Qualitative Evaluation

the function handler as usual. Whenever a SIGTERM event is registered, the function is
unregistered from MISO.

1 const sdk = require('@miso/sdk');

2 const so = new sdk.StatefulObjectProxy();

3 so.registerServerlessFunction().then(() => {

4 process.once('SIGTERM', function (code) {

5 so.unregisterServerlessFunction();

6 });

7

8 class FunctionContext {

9 constructor(cb) {

10 // set stateful object in fn context

11 this.statefulObject = so;

12 // ...

13 }

14 // .. details omitted

15 });

Listing 5: Example of Extended Node18 Template

Summary

We observed a straightforward integration of MISO into OpenFaaS and expect that
such an integration will look similar for other Kubernetes-based serverless platforms.
The principle of how we integrated the SDK into serverless functions also applies to
other programming languages and/or serverless platforms. We have demonstrated that
integrating our SDK requires only minimal code changes. More precisely, in the above
example, we needed to modify less than 10 lines of code in the serverless function template
to integrate our SDK and to create a default MISO Stateful Object in the context of
every request. In our example, the required configuration is automatically loaded by the
SDK. This is because we have integrated it into OpenFaaS for our experiments and set
the required environment variables when deploying the function pod. Alternatively, the
configuration could also be set in the constructor of the MISO Stateful Object proxy
class.

6.3.2 Usability
A major part of software development cost is poor code understandability [58]. This
is because inspecting and maintaining poorly understood code is hard, and a lot of
time is spent there. Refactoring code sections that are hard to understand improves
maintainability and saves time and effort.

In this section, we use two metrics to measure the understandability of MISO’s SDK.
The first one is Lines of Code, a widely used traditional code measure. The second one

69

6. Evaluation

is Cognitive Complexity, which is a newer metric introduced in 2018 [58]. According to
Campbell [59], Cognitive Complexity is based on three principles:

• “Ignore structures that allow multiple statements to be readably shorthanded into
one“

• “Increment for each break in the linear flow of the code“

• “Increment when flow-breaking structures are nested“

To measure the cognitive complexity of the code, we use an open-source tool available on
GitHub [60]. We did not modify it and do not distribute it as part of this work.

We recall the experiment previously mentioned in Section 6.1. In this experiment, we
have utilized three different solutions to accomplish an AllReduce use case: MISO, Redis
Enterprise, and MinIO. In this section, we now compare the implementations of the three
different SDKs to measure the understandability of the solutions to see whether our own
SDK is understandable.

MISO

Storing the intermediate sums is straightforward with MISO. All values can simply be
added to the same counter instance. The final reduced value can be retrieved by accessing
the current value of the counter after all intermediate sums have been processed, as the
final reduction is built into the Counter data type itself. Listing 6 shows the code to set
the intermediate values and retrieve the final sum. The interaction with MISO effectively
consists of only two method calls: counter.add() and counter.getValue().

Our minimal code example for MISO, without error management, consists of 44 lines of
code.

Redis Enterprise

Storing the intermediate values of AllReduce is simple in Redis Enterprise. We set all
intermediate values as unique keys in the same Redis Hash. To Retrieve the overall
result, we retrieve all values of this Redis Hash and manually perform the reduction in
the serverless function afterward.

Our minimal code example for Redis Enterprise, without error management, consists of
53 lines of code. This is an increase of 20.5% compared to the minimal sample of MISO.

MinIO

Implementing the AllReduce experiment equally with MinIO was more complex than for
MISO and Redis Enterprise. First, we create a new bucket for each test run. Afterward,
we save each intermediate result as a new file in this bucket. To retrieve the final result,

70

6.3. Qualitative Evaluation

1 async function performAllReduce(

2 body: any,

3 statefulObject: StatefulObjectProxy

4) {

5 const counter = statefulObject.getPNCounter(

6 body.crdtName

7);

8 const sum = body.values.reduce(

9 (a: number, b: number) => a + b, 0

10);

11 counter.add(sum);

12 }

13 async function getResult(

14 body: any,

15 statefulObject: StatefulObjectProxy

16) {

17 const counter = statefulObject.getPNCounter(

18 body.crdtName

19);

20 return await counter.getValue();

21 }

Listing 6: Code for AllReduce with MISO

we retrieve all files of the bucket and then manually compute the sum by reducing the
values in all files to a single number.

Our minimal code example for MinIO, without error management, consists of 110 lines
of code. This is an increase of 150% compared to MISO. Our MinIO code contains more
than twice as many lines of code than Redis Enterprise and MISO. Also, the MinIO SDK
returns the list of objects and the objects themselves of a bucket as a stream, which
requires developers to concatenate the data manually. This is useful for objects that are
very large. For our experiment, however, this is not as relevant and thus not optimal, as
we do not have very large objects but rather a high number of relatively small objects
containing the intermediate sums only.

Comparison

Figure 6.12 shows a comparison of the lines of code and cognitive complexity of our
experiments. It can be seen that MISO required the least amount of code. Redis
Enterprise required approximately 20.5% more and MinIO 150% more lines of code than
our solution. Similarly, our minimal code samples for both MISO and Redis Enterprise
have a cognitive complexity score of 2, while our sample for MinIO has a score of 8. This
means that the cognitive complexity of MinIO was four times as high as what we have

71

6. Evaluation

measured for MISO and Redis Enterprise.

These results of the lines of code and cognitive complexity, in combination with the
simplicity we have shown in Listing 6, underscore that our SDK is easy to understand.
This positively affects the maintainability and positions it as a valuable addition when it
comes to providing MISO Stateful Objects to serverless functions.

MISO Redis Enterprise MinIO
0

20

40

60

80

100

C
o
u

n
t

Lines of Code and Cognitive Complexity per Type

Cognitive Complexity

Lines of Code

Figure 6.12: Comparison of Lines of Code and Cognitive Complexity

6.4 Limitations
One limitation of our evaluation is that due to constraints related to resources and time,
we only had access to a single virtual machine. This is because for a diploma thesis,
creating 30 or more real virtual machines in different cluster combinations is beyond
practical limits. Our single virtual machine has many resources (AMD EPYC 7742
processor, 64 cores, 128GB RAM), and thus, we simulated multiple nodes using KinD.
This simulation of nodes provided us with valuable insights and enabled us to evaluate
MISO in different settings. Still, this setting does not fully replicate the same conditions
as if we used separate virtual machines. Starting with cluster sizes bigger than 30 nodes,
we have experienced various operational challenges such as unresponsive Kubernetes
clusters/APIs, termination of containers, and dropped network connections. We believe
this is an inherent limitation of our evaluation environment, which consists of only a
single virtual machine. Given this fact, there naturally exists an upper bound until which
we can simulate the nodes. This upper bound not only encompasses CPU/RAM limits
but also network delay and I/O capabilities of the host. Lastly, in our evaluation, we do
not take into account the network delay between different nodes, as all network traffic
effectively runs on the same host.

72

CHAPTER 7
Conclusion

In this thesis we introduce MISO, a CRDT-based serverless middleware that provides
MISO Stateful Objects for serverless functions in the edge-cloud continuum. MISO
Stateful Objects are the conceptual foundation of the middleware and combine multiple
CRDT-based data types into a single object. They are accessed from serverless function
handlers using proxies, and the middleware running on the nodes executing the serverless
functions manages their lifecycle. This includes retrieving, modifying, and replicating the
state of the MISO Stateful Objects. Our middleware is designed in such a way that it can
be integrated into multiple different open-source serverless platforms. Furthermore, it
provides data locality and does not depend on a central authority for data synchronization,
which is essential to make our solution fit the edge-cloud continuum.
We introduce the concept of MISO Stateful Objects and the architecture and modules
of the middleware in Chapter 4. Architecturally, the middleware contains two large
components: a middleware that runs on each node of the serverless platform and an
SDK for serverless functions that provides proxy versions of the MISO Stateful Objects.
Those proxies internally call the API of the middleware, and the developers do not
need to know the internal characteristics of the communication with the middleware.
The middleware contains multiple modules, such as an API or replication module. The
middleware instances create an overlay network of all interconnected nodes to leverage
information about which nodes currently execute which serverless functions. This is used
to make the replication process more efficient and avoid sending unnecessary updates. We
have implemented the concept of MISO Stateful Object and the proposed architecture
practically in an open-source software prototype, which we describe in Chapter 5. The
software prototype, consisting of the middleware, SDK and various state-based CRDTs,
are written in TypeScript for Node.js.
We have performed a multifaceted evaluation of our software prototype and describe
the results in Chapter 6. Our analysis of the middleware’s performance in Section
6.1 using technical experiments has shown that in a real-world use case involving an

73

7. Conclusion

AllReduce operation, our middleware has outperformed Redis Enterprise and MinIO. In
this experiment, our solution took 26.7% less time than Redis Enterprise and was almost
2.5 times faster than MinIO. This shows that our CRDT-based data types provide solid
performance for use cases that can utilize their characteristics. In the case of AllReduce,
one of the reasons why our middleware performs so well is because the final reduction
of the total sum is built into the data type itself. We have also performed an in-depth
assessment of the replication algorithm in Section 6.2, where we clearly demonstrate
that the replication process is scalable and that our middleware handles thousands of
concurrent requests with frequent replication intervals without issues. Furthermore, we
clearly demonstrate the impact of the replication interval on the RPS, latency, experiment
time, and replication traffic. Lastly, in Section 6.3, we also evaluate the possibility of
integrating MISO into an existing serverless platform and the usability of our SDK. The
integration with OpenFaaS, a popular serverless platform, was seamless, and we clearly
described the necessary steps. Finally, we show that our SDK requires fewer lines of
code and has less or similar cognitive complexity than the other solutions we utilized
in the aforementioned AllReduce experiment. The cognitive complexity of our code for
the AllReduce experiment was on par with Redis Enterprise and significantly lower than
MinIO.

The list of main contributions of this work includes: i) the conceptual model of MISO
Stateful Objects, ii) the MISO middleware consisting of the architectural model and an
open-source software prototype, iii) an SDK for serverless functions that enables the
usage of MISO Stateful Objects within serverless functions, and iv) the asynchronous
replication of MISO Stateful Objects using an overlay network optimized towards data
transfer and resource consumption.

7.1 Research Questions
In this section, we reflect on the research questions of this thesis and answer them
accordingly.

• RQ1: What is an appropriate architecture for a CRDT-based middleware
that provides Stateful Objects for serverless functions in the edge-cloud
continuum, so that it is scalable and integrable into existing serverless
platforms?
We answer this research question in multiple steps. We describe the concept of
MISO Stateful Objects as well as the architecture and modules of the middleware
in Chapter 4. The architectural model of the middleware contains two large
components: a SDK for serverless functions and a middleware that runs on every
node of the serverless platform.

After defining the middleware, we implemented it practically in a software prototype.
The implementation details are discussed in Chapter 5.

74

7.1. Research Questions

In the evaluation part of this thesis in Chapter 6, we have demonstrated that
our middleware is scalable and that it can seamlessly be integrated with existing
serverless platforms. We clearly describe the steps that are required to integrate
our work with OpenFaaS. Furthermore, we demonstrate the usability of the SDK
using the metrics of lines of code and cognitive complexity. From these practical
demonstrations, we conclude that our concept for the middleware is appropriate.

• RQ2: What is an appropriate way to efficiently replicate Stateful Objects
between different nodes running the middleware to avoid unnecessary
network traffic?
Scalability is an important topic for serverless functions, as the serverless platform
can scale to new nodes anytime. This means that a particular serverless function
is not necessarily running on all nodes simultaneously. This is important for the
middleware’s replication module, as we expect that simply replicating the data to
all nodes would not scale, especially with increasing utilization of the middleware.

This is the reason why our middleware creates an overlay network between all
interconnected nodes in the cluster. This overlay network is then used to discover
all nodes and serverless function instances running on these. This information,
particularly which node runs which function, is used by the replication module so
that only nodes currently running the serverless function receive the corresponding
updates. This drastically reduces the amount of data that is transferred over the
network and avoids unnecessary CRDT state merges. Therefore, the efficiency of
the overall replication process is improved. Our software prototype uses gRPC to
replicate data, which is an efficient binary protocol running on top of HTTP/2.

We have further conducted technical experiments to evaluate the replication al-
gorithm and describe the results in Section 6.2. The outcome of the evaluation
clearly indicates that the replication process scales and that it handles thousands of
concurrent requests without issues. Furthermore, we provide concrete information
about how different replication intervals influence the replication process and per-
formance of the core middleware operations (i.e., modification of CRDTs). While it
is possible to use an almost immediate replication in our prototype, it significantly
affects the performance. Our results indicate that beginning with a replication
interval of 50ms, the performance of the middleware is not significantly affected
anymore if the replication interval is set to a higher number (i.e., less frequent
replication). Ultimately, the decision of which replication interval to use depends
on the particular use case and requirements, and our middleware is flexible enough
to adapt to them.

• RQ3: What is the overhead of using CRDT-based Stateful Objects
in the edge-cloud continuum in terms of performance and resource
consumption, compared to other state-of-the-art solutions for stateful
serverless functions?
It’s important to show that our middleware provides competitive performance

75

7. Conclusion

in real-world scenarios. For this reason, we have developed an experiment in
Section 6.1 that performs an AllReduce operation in a serverless function. We have
implemented the same function three times, using MISO, Redis Enterprise, and
MinIO to store the state, respectively.
Our work has outperformed Redis Enterprise (by 26.7%) and MinIO (by 243.2% in
a regular cluster and 487.9% in a replicated cluster) in this particular experiment.
This shows that our middleware is beneficial for serverless functions, especially for
use cases that can utilize the potential of CRDT-based data structures. Furthermore,
our middleware operated well below the official minimum memory requirements of
the other two solutions, which highlights that our work can be used in resource-
constrained environments.

7.2 Future Work
This thesis provides a solid foundation for a CRDT-based serverless middleware for MISO
Stateful Objects in the edge-cloud continuum. Our implementation is open-source and
can already be used by other developers.

One aspect that remains unexplored in this thesis is the permanent storage of MISO
Stateful Objects on disk. Such storage could be added to the middleware so that restarting
all nodes running a particular serverless function does not result in data loss.

Future work could extend the list of supported CRDT, for example, by adding a Map.
Furthermore, our implementation of set-like data structures currently has a limitation
in that they only support string, number, and JavaScript object values due to the
complexity of sending arbitrary data types over gRPC and the limited reflection support
in TypeScript. Future work could explore the possibility of supporting a wider range of
data types as the values for our CRDTs.

Our SDK is currently only available in TypeScript. Future work could develop similar
SDKs for other programming languages. Furthermore, it would be interesting to integrate
MISO with further open-source serverless platforms.

Finally, our evaluation has limitations in terms of cluster setup, as we simulated multiple
nodes using KinD on a single virtual machine. It would be interesting to see future work
using MISO in a large-scale cluster with dedicated (virtual) machines for each node to
explore its potential further.

76

APPENDIX A
GitHub Repository

The link to the GitHub repository is: https://github.com/valentingc/miso-serverless-
middleware

A.1 Implementation Packages
A.1.1 Package @miso/middleware
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/ middle-
ware

A.1.2 Package @miso/sdk
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/sdk

A.1.3 Package @miso/crdt
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/crdt

A.1.4 Package @miso/common
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/common

A.2 Evaluation
A.2.1 Complete Helm Chart
https://github.com/valentingc/miso-serverless-middleware/tree/main/setup/benchmark/
evaluation/chart

77

https://github.com/valentingc/miso-serverless-middleware
https://github.com/valentingc/miso-serverless-middleware
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/middleware
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/middleware
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/sdk
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/crdt
https://github.com/valentingc/miso-serverless-middleware/tree/main/packages/common
https://github.com/valentingc/miso-serverless-middleware/tree/main/setup/benchmark/evaluation/chart
https://github.com/valentingc/miso-serverless-middleware/tree/main/setup/benchmark/evaluation/chart

A. GitHub Repository

A.2.2 MISO Standalone Helm Chart
https://github.com/valentingc/miso-serverless-middleware/tree/main/setup/miso

A.2.3 MISO Kind Cluster Setup Script
https://github.com/valentingc/miso-serverless-middleware/blob/main/setup/
configure_kind_cluster.sh

78

https://github.com/valentingc/miso-serverless-middleware/tree/main/setup/miso
https://github.com/valentingc/miso-serverless-middleware/blob/main/setup/configure_kind_cluster.sh
https://github.com/valentingc/miso-serverless-middleware/blob/main/setup/configure_kind_cluster.sh

List of Figures

1.1 Methodology followed in this Thesis . 5
1.2 Feature Driven Development Process (own work based on [22], [23]) . . . 6

2.1 State-based vs. Operation-based CRDTs [20] 13
2.2 gRPC Overview [40] . 15

4.1 Conceptual Model of MISO Stateful Objects 23
4.2 Architecture of the Middleware . 25
4.3 Function Discovery Service Registering . 29
4.4 CRDT State Restoring Sequence Diagram 32

5.1 Monolithic Repository Package Structure 40
5.2 mDNS Node Discovery . 42
5.3 High-Level Overview of Replication Process 43
5.4 RxJS auditTime Operator (own work based on [51]) 43
5.5 CRDT Initializer Interceptor . 44

6.1 AllReduce Operation . 53
6.2 AllReduce Results - Grouped Bar Chart 57
6.3 AllReduce Results - Read Times . 58
6.4 AllReduce Results - Write Times . 58
6.5 Average Replication Time . 61
6.6 Replication Time over Time . 62
6.7 Average Requests per Second . 63
6.8 Requests per Second over Time . 64
6.9 Replication Data Volume . 64
6.10 Maximum Process Memory Usage . 65
6.11 Overview of Serverless Platform Integration Process 67
6.12 Comparison of Lines of Code and Cognitive Complexity 72

79

List of Tables

4.1 SDK Programming Abstractions . 35
4.2 StatefulObjectProxy API . 36

5.1 Middleware Folders and Descriptions . 40
5.2 SDK Environment Variables . 46
5.3 Protobuf Files and Services . 50

6.1 AllReduce Experiment Configurations . 54
6.2 Impact of Replication Interval on Performance 66

81

List of Algorithms

4.1 Node Discovery Service . 27

4.2 Function Discovery Service . 30

4.3 Replication Algorithm . 33

4.4 CRDT State Restoring . 34

83

List of Listings

1 Using the SDK in Serverless Functions 37
2 gRPC Protobuf Example from MISO 51
3 Test Script Output . 55
4 Modified faas-netes Function Deployment Handler 68
5 Example of Extended Node18 Template 69
6 Code for AllReduce with MISO . 71

85

Glossary

MISO Middleware for Stateful Objects, a name for the software developed in this thesis.
It comprises both the middleware itself and an SDK for serverless functions.. xi,
xiii, 3, 4, 7, 16, 23–25, 27, 30, 39, 40, 54, 55, 57, 59–63, 65–74, 76, 85

MISO Stateful Object A MISO Stateful Object is a stateful object that can be
accessed from within a serverless function handler. It combines one or more CRDT-
based data types into a single object.. xi, xiii, 3–7, 18, 19, 23–27, 30, 31, 33–37, 40,
44–46, 53, 62, 63, 67–69, 72–74, 76

87

Acronyms

API Application Programming Interface. 1, 9, 19, 26, 29, 30, 34–36, 40, 41, 44, 46, 67,
72, 73

CNCF Cloud Native Computing Foundation. 10, 14

CRDT Conflict-free Replicated Data Type. xi, xiii, 3, 4, 6, 7, 12–14, 18–20, 24, 26, 27,
29–31, 33–37, 39, 40, 43–50, 55, 57, 59, 60, 62, 73–76

DF Durable Function. 18

DSR Design Science Research. 5

DWFlag Disable-Wins Flag. 14

EWFlag Enable-Wins Flag. 14, 36, 48

FaaS Function as a Service. 1, 3, 9, 11, 17–19

FDD Feature Driven Development. 6

GCounter Grow-only Counter. 13, 37, 47, 48

GSet Grow-only Set. 36, 49

IoT Internet of Things. 1, 2, 9

IPC Inter-Process Communication. 14

KinD Kubernetes in Docker. 39, 55, 61, 72, 76

MVRegister Multi-Value Register. 13, 36, 48

ORSet Observed-Remove Set. 13, 14, 36, 49

PNCounter Positive-Negative Counter. 13, 48

89

REST Representational State Transfer. 15, 19

RPC Remote Procedure Call. 14

RPS Requests per Second. xi, xiii, 60, 62–66

SDK Software Development Kit. xi, xiii, 4, 7, 16, 18, 24–28, 33–37, 39, 41, 42, 44–46,
49, 50, 53, 66–76

90

Bibliography

[1] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, et al., “Serverless edge computing:
Vision and challenges”, in Proceedings of the 2021 Australasian Computer Sci-
ence Week Multiconference, ser. ACSW ’21, New York, NY, USA: Association
for Computing Machinery, Feb. 1, 2021, pp. 1–10, isbn: 978-1-4503-8956-3. doi:
10.1145/3437378.3444367.

[2] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. París, and P. García-López,
“Stateful serverless computing with crucial”, ACM Transactions on Software Engi-
neering and Methodology, vol. 31, no. 3, 39:1–39:38, Mar. 7, 2022, issn: 1049-331X.
doi: 10.1145/3490386.

[3] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-López,
“On the FaaS track: Building stateful distributed applications with serverless
architectures”, in Proceedings of the 20th International Middleware Conference,
ser. Middleware ’19, event-place: Davis, CA, USA, New York, NY, USA: Association
for Computing Machinery, 2019, pp. 41–54, isbn: 978-1-4503-7009-7. doi: 10.
1145/3361525.3361535.

[4] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, et al., Serverless computing: One step
forward, two steps back, Dec. 10, 2018. doi: 10.48550/arXiv.1812.03651.
arXiv: 1812.03651[cs].

[5] E. Jonas, J. Schleier-Smith, V. Sreekanti, et al., Cloud programming simplified:
A berkeley view on serverless computing, Feb. 9, 2019. doi: 10.48550/arXiv.
1902.03383. arXiv: 1902.03383[cs].

[6] N. Shahidi, J. R. Gunasekaran, and M. T. Kandemir, “Cross-platform performance
evaluation of stateful serverless workflows”, in 2021 IEEE International Sympo-
sium on Workload Characterization (IISWC), 2021, pp. 63–73. doi: 10.1109/
IISWC53511.2021.00017.

[7] P. Raith, S. Nastic, and S. Dustdar, “Serverless edge computing—where we are
and what lies ahead”, IEEE Internet Computing, vol. 27, no. 3, pp. 50–64, 2023.
doi: 10.1109/MIC.2023.3260939.

[8] C. Puliafito, C. Cicconetti, M. Conti, E. Mingozzi, and A. Passarella, “Stateful
function as a service at the edge”, Computer, vol. 55, no. 9, pp. 54–64, 2022. doi:
10.1109/MC.2021.3138690.

91

https://doi.org/10.1145/3437378.3444367
https://doi.org/10.1145/3490386
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.48550/arXiv.1812.03651
https://arxiv.org/abs/1812.03651 [cs]
https://doi.org/10.48550/arXiv.1902.03383
https://doi.org/10.48550/arXiv.1902.03383
https://arxiv.org/abs/1902.03383 [cs]
https://doi.org/10.1109/IISWC53511.2021.00017
https://doi.org/10.1109/IISWC53511.2021.00017
https://doi.org/10.1109/MIC.2023.3260939
https://doi.org/10.1109/MC.2021.3138690

[9] L. Baresi and D. Filgueira Mendonça, “Towards a serverless platform for edge
computing”, in 2019 IEEE International Conference on Fog Computing (ICFC),
2019, pp. 1–10. doi: 10.1109/ICFC.2019.00008.

[10] Y. Harchol, A. Mushtaq, V. Fang, J. McCauley, A. Panda, and S. Shenker, “Making
edge-computing resilient”, in Proceedings of the 11th ACM Symposium on Cloud
Computing, ser. SoCC ’20, event-place: Virtual Event, USA, New York, NY, USA:
Association for Computing Machinery, 2020, pp. 253–266, isbn: 978-1-4503-8137-6.
doi: 10.1145/3419111.3421278.

[11] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, and C. S. Meiklejohn,
“Durable functions: Semantics for stateful serverless”, Proceedings of the ACM on
Programming Languages, vol. 5, pp. 1–27, OOPSLA Oct. 20, 2021, issn: 2475-1421.
doi: 10.1145/3485510.

[12] W. Schultz, T. Avitabile, and A. Cabral, “Tunable consistency in MongoDB”,
Proc. VLDB Endow., vol. 12, no. 12, pp. 2071–2081, Aug. 2019, Publisher: VLDB
Endowment, issn: 2150-8097. doi: 10.14778/3352063.3352125.

[13] A. Vágner and M. Al-Zaidi, “Sharding and master-slave replication of NoSQL
databases: Comparison of MongoDB and redis”, in Proceedings of the 12th Inter-
national Conference on Data Science, Technology and Applications - Volume 1:
DATA, Backup Publisher: INSTICC, SciTePress, 2023, pp. 576–582, isbn: 978-989-
758-664-4. doi: 10.5220/0012142700003541.

[14] S. Chen, X. Tang, H. Wang, H. Zhao, and M. Guo, “Towards scalable and reli-
able in-memory storage system: A case study with redis”, in 2016 IEEE Trust-
com/BigDataSE/ISPA, 2016, pp. 1660–1667. doi: 10.1109/TrustCom.2016.
0255.

[15] R. Shrestha, “High availability and performance of database in the cloud - traditional
master-slave replication versus modern cluster-based solutions:” in Proceedings of
the 7th International Conference on Cloud Computing and Services Science, Porto,
Portugal: SCITEPRESS - Science and Technology Publications, 2017, pp. 413–
420, isbn: 978-989-758-243-1. doi: 10.5220/0006294604130420. (visited on
05/04/2024).

[16] B. Li, Q. He, F. Chen, et al., “Cooperative assurance of cache data integrity
for mobile edge computing”, IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 4648–4662, 2021, issn: 1556-6021. doi: 10.1109/TIFS.
2021.3111747.

[17] P. Lertpongrujikorn and M. A. Salehi, Object as a service (OaaS): Enabling object
abstraction in serverless clouds, Aug. 5, 2022. doi: 10.48550/arXiv.2206.
05361.

[18] Apache Flink Stateful Functions. “Distributed architecture”, [Online]. Available:
https://nightlies.apache.org/flink/flink- statefun- docs-
release-3.2/docs/concepts/distributed_architecture/ (visited on
04/21/2024).

92

https://doi.org/10.1109/ICFC.2019.00008
https://doi.org/10.1145/3419111.3421278
https://doi.org/10.1145/3485510
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.5220/0012142700003541
https://doi.org/10.1109/TrustCom.2016.0255
https://doi.org/10.1109/TrustCom.2016.0255
https://doi.org/10.5220/0006294604130420
https://doi.org/10.1109/TIFS.2021.3111747
https://doi.org/10.1109/TIFS.2021.3111747
https://doi.org/10.48550/arXiv.2206.05361
https://doi.org/10.48550/arXiv.2206.05361
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/docs/concepts/distributed_architecture/
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/docs/concepts/distributed_architecture/

[19] V. Sreekanti, C. Wu, X. C. Lin, et al., “Cloudburst: Stateful functions-as-a-service”,
Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 2438–2452, Aug. 2020,
issn: 2150-8097. doi: 10.14778/3407790.3407836.

[20] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free replicated
data types”, in Stabilization, Safety, and Security of Distributed Systems, X. Défago,
F. Petit, and V. Villain, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 386–400, isbn: 978-3-642-24550-3.

[21] A. R. Hevner, “A three cycle view of design science research”, Scandinavian journal
of information systems, vol. 19, no. 2, p. 4, 2007.

[22] S. Aftab, Z. Nawaz, F. Anwer, et al., “Using FDD for small project: An empirical
case study”, International Journal of Advanced Computer Science and Applications,
vol. 10, no. 3, 2019, Publisher: The Science and Information Organization. doi:
10.14569/IJACSA.2019.0100319.

[23] S. Alsaqqa, S. Sawalha, and H. Abdel-Nabi, “Agile software development: Method-
ologies and trends”, International Journal of Interactive Mobile Technologies (iJIM),
vol. 14, no. 11, p. 246, Jul. 10, 2020, issn: 1865-7923. doi: 10.3991/ijim.v14i11.
13269. (visited on 04/16/2024).

[24] M. F. Bertoa, J. M. Troya, and A. Vallecillo, “Measuring the usability of software
components”, Journal of Systems and Software, vol. 79, no. 3, pp. 427–439, 2006,
issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2005.06.026.

[25] A. Zerouali, R. Opdebeeck, and C. De Roover, “Helm charts for kubernetes ap-
plications: Evolution, outdatedness and security risks”, in 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR), 2023, pp. 523–
533. doi: 10.1109/MSR59073.2023.00078.

[26] C. Cicconetti, M. Conti, and A. Passarella, “On realizing stateful FaaS in serverless
edge networks: State propagation”, in 2021 IEEE International Conference on
Smart Computing (SMARTCOMP), ISSN: 2693-8340, Aug. 2021, pp. 89–96. doi:
10.1109/SMARTCOMP52413.2021.00033.

[27] E. Garbarino, “DaemonSets”, in Beginning Kubernetes on the Google Cloud Plat-
form, United States: Apress L. P, 2019, pp. 239–257, isbn: 978-1-4842-5490-5.

[28] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Understanding open source
serverless platforms: Design considerations and performance”, in Proceedings of the
5th International Workshop on Serverless Computing, ser. WOSC ’19, event-place:
Davis, CA, USA, New York, NY, USA: Association for Computing Machinery,
2019, pp. 37–42, isbn: 978-1-4503-7038-7. doi: 10.1145/3366623.3368139.

[29] N. Kratzke, “A brief history of cloud application architectures”, Applied Sciences,
vol. 8, no. 8, 2018, issn: 2076-3417. doi: 10.3390/app8081368.

[30] GitHub. “Openfaas/faas-netes”, [Online]. Available: https://github.com/
openfaas/faas-netes (visited on 04/08/2024).

93

https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14569/IJACSA.2019.0100319
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/https://doi.org/10.1016/j.jss.2005.06.026
https://doi.org/10.1109/MSR59073.2023.00078
https://doi.org/10.1109/SMARTCOMP52413.2021.00033
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.3390/app8081368
https://github.com/openfaas/faas-netes
https://github.com/openfaas/faas-netes

[31] N. Sukhija, E. Bautista, O. James, et al., “Event management and monitoring
framework for HPC environments using ServiceNow and prometheus”, in Proceed-
ings of the 12th International Conference on Management of Digital EcoSystems,
ser. MEDES ’20, event-place: Virtual Event, United Arab Emirates, New York,
NY, USA: Association for Computing Machinery, 2020, pp. 149–156, isbn: 978-1-
4503-8115-4. doi: 10.1145/3415958.3433046.

[32] A. Broniewski, M. I. Tirmizi, E. Zimányi, and M. Sakr, “Using MobilityDB and
grafana for aviation trajectory analysis”, in OpenSky 2022, MDPI, Jan. 10, 2023,
p. 17. doi: 10.3390/engproc2022028017. (visited on 04/13/2024).

[33] GitHub. “Openfaas/faas”, [Online]. Available: https://github.com/openfaas/
faas (visited on 04/08/2024).

[34] OpenFaaS. “Invocations”, [Online]. Available: https://docs.openfaas.com/
architecture/invocations/ (visited on 03/27/2024).

[35] GitHub. “Faas-netes/chart/openfaas”, GitHub, [Online]. Available: https://
github.com/openfaas/faas-netes/tree/master/chart/openfaas
(visited on 04/08/2024).

[36] Y. Mao, Z. Liu, and H.-A. Jacobsen, “Reversible conflict-free replicated data
types”, in Proceedings of the 23rd ACM/IFIP International Middleware Conference,
ser. Middleware ’22, New York, NY, USA: Association for Computing Machinery,
Nov. 8, 2022, pp. 295–307, isbn: 978-1-4503-9340-9. doi: 10.1145/3528535.
3565252.

[37] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehensive study of
convergent and commutative replicated data types”, Inria–Centre Paris-Rocquencourt;
INRIA, Research Report RR-7506, Jan. 13, 2011, p. 50. [Online]. Available: https:
//hal.inria.fr/inria-00555588.

[38] A. Bieniusa, M. Zawirski, N. Preguiça, et al., “An optimized conflict-free replicated
set”, 2012. doi: 10.48550/ARXIV.1210.3368. (visited on 03/26/2024).

[39] C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira, “Composition in state-
based replicated data types”, Bull. EATCS, vol. 123, 2017. [Online]. Available:
http://eatcs.org/beatcs/index.php/beatcs/article/view/507.

[40] K. Indrasiri and D. Kuruppu, GRPC: up and running: building cloud native
applications with Go and Java for docker and kubernetes, First edition. Sebastopol,
CA: O’Reilly Media, Inc., 2020, OCLC: 1137594283, isbn: 978-1-4920-5830-4.

[41] A. Fang, R. Zhou, X. Tang, and P. He, “RPCover: Recovering gRPC dependency in
multilingual projects”, in ASE, Issue: ISBN: 9798350329964 Journal Abbreviation:
ASE, IEEE, 2023, p. 1939, isbn: 9798350329964. doi: 10.1109/ASE56229.2023.
00108.

[42] Apache Flink Stateful Functions. “Stateful functions: A platform-independent state-
ful serverless stack”, [Online]. Available: https://nightlies.apache.org/
flink/flink-statefun-docs-release-3.2/ (visited on 04/21/2024).

94

https://doi.org/10.1145/3415958.3433046
https://doi.org/10.3390/engproc2022028017
https://github.com/openfaas/faas
https://github.com/openfaas/faas
https://docs.openfaas.com/architecture/invocations/
https://docs.openfaas.com/architecture/invocations/
https://github.com/openfaas/faas-netes/tree/master/chart/openfaas
https://github.com/openfaas/faas-netes/tree/master/chart/openfaas
https://doi.org/10.1145/3528535.3565252
https://doi.org/10.1145/3528535.3565252
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.48550/ARXIV.1210.3368
http://eatcs.org/beatcs/index.php/beatcs/article/view/507
https://doi.org/10.1109/ASE56229.2023.00108
https://doi.org/10.1109/ASE56229.2023.00108
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/

[43] T. Tzu-Li. “Stateful functions internals: Behind the scenes of stateful serverless”.
Section: posts. (Oct. 13, 2020), [Online]. Available: https://flink.apache.
org/2020/10/13/stateful- functions- internals- behind- the-
scenes-of-stateful-serverless/ (visited on 04/21/2024).

[44] C. Jaspan, M. Jorde, A. Knight, et al., “Advantages and disadvantages of a
monolithic repository: A case study at google”, in ICSE-SEIP, Issue: EISBN:
9781450356596 Journal Abbreviation: ICSE-SEIP, ACM, 2018, p. 234. doi: 10.
1145/3183519.3183550.

[45] npm. “Workspaces”. (Feb. 1, 2024), [Online]. Available: https://docs.npmjs.
com/cli/v10/using-npm/workspaces (visited on 04/10/2024).

[46] GitHub. “Nestjs/nest”, [Online]. Available: https://github.com/nestjs/
nest (visited on 04/08/2024).

[47] GitHub. “ReactiveX/rxjs”, [Online]. Available: https://github.com/ReactiveX/
rxjs.

[48] M. Alabor and M. Stolze, “Debugging of RxJS-based applications”, in Proceedings
of the 7th ACM SIGPLAN International Workshop on Reactive and Event-Based
Languages and Systems, ser. REBLS 2020, New York, NY, USA: Association for
Computing Machinery, 2020, pp. 15–24, isbn: 978-1-4503-8188-8. doi: 10.1145/
3427763.3428313.

[49] ReactiveX. “Introduction”, [Online]. Available: https : / / reactivex . io /
intro.html (visited on 04/11/2024).

[50] RxJS. “Introduction”, [Online]. Available: https://rxjs.dev/guide/overview
(visited on 04/11/2024).

[51] RxJS. “auditTime”, [Online]. Available: https://rxjs.dev/api/operators/
auditTime (visited on 04/11/2024).

[52] Kubernetes. “Downward API”, Kubernetes Documentation. (Jul. 25, 2023), [Online].
Available: https://kubernetes.io/docs/concepts/workloads/pods/
downward-api/ (visited on 04/08/2024).

[53] Redis. “Deploy redis enterprise software for kubernetes”. Section: operate, [Online].
Available: https://redis.io/docs/latest/operate/kubernetes/
deployment/quick-start/ (visited on 02/18/2024).

[54] MinIO. “Deploy the MinIO operator”, [Online]. Available: https://min.io/
docs/minio/kubernetes/upstream/operations/installation.html
(visited on 02/18/2024).

[55] MinIO. “Deploy a MinIO tenant”, [Online]. Available: https://min.io/docs/
minio/kubernetes/upstream/operations/install-deploy-manage/
deploy-minio-tenant.html (visited on 04/21/2024).

[56] GitHub. “Bojand/ghz”, [Online]. Available: https://github.com/bojand/
ghz (visited on 04/08/2024).

95

https://flink.apache.org/2020/10/13/stateful-functions-internals-behind-the-scenes-of-stateful-serverless/
https://flink.apache.org/2020/10/13/stateful-functions-internals-behind-the-scenes-of-stateful-serverless/
https://flink.apache.org/2020/10/13/stateful-functions-internals-behind-the-scenes-of-stateful-serverless/
https://doi.org/10.1145/3183519.3183550
https://doi.org/10.1145/3183519.3183550
https://docs.npmjs.com/cli/v10/using-npm/workspaces
https://docs.npmjs.com/cli/v10/using-npm/workspaces
https://github.com/nestjs/nest
https://github.com/nestjs/nest
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1145/3427763.3428313
https://reactivex.io/intro.html
https://reactivex.io/intro.html
https://rxjs.dev/guide/overview
https://rxjs.dev/api/operators/auditTime
https://rxjs.dev/api/operators/auditTime
https://kubernetes.io/docs/concepts/workloads/pods/downward-api/
https://kubernetes.io/docs/concepts/workloads/pods/downward-api/
https://redis.io/docs/latest/operate/kubernetes/deployment/quick-start/
https://redis.io/docs/latest/operate/kubernetes/deployment/quick-start/
https://min.io/docs/minio/kubernetes/upstream/operations/installation.html
https://min.io/docs/minio/kubernetes/upstream/operations/installation.html
https://min.io/docs/minio/kubernetes/upstream/operations/install-deploy-manage/deploy-minio-tenant.html
https://min.io/docs/minio/kubernetes/upstream/operations/install-deploy-manage/deploy-minio-tenant.html
https://min.io/docs/minio/kubernetes/upstream/operations/install-deploy-manage/deploy-minio-tenant.html
https://github.com/bojand/ghz
https://github.com/bojand/ghz

[57] GitHub. “Helm-charts/charts/kube-prometheus-stack”, [Online]. Available: https:
//github.com/prometheus-community/helm-charts/tree/main/
charts/kube-prometheus-stack (visited on 04/21/2024).

[58] L. Lavazza, S. Morasca, and M. Gatto, “An empirical study on software understand-
ability and its dependence on code characteristics”, Empirical Software Engineering,
vol. 28, no. 6, p. 155, Nov. 15, 2023, issn: 1573-7616. doi: 10.1007/s10664-
023-10396-7.

[59] G. A. Campbell, “Cognitive complexity: An overview and evaluation”, in Proceedings
of the 2018 International Conference on Technical Debt, ser. TechDebt ’18, New
York, NY, USA: Association for Computing Machinery, May 27, 2018, pp. 57–58,
isbn: 978-1-4503-5713-5. doi: 10.1145/3194164.3194186.

[60] GitHub. “Deskbot/cognitive-complexity-TS”, [Online]. Available: https://github.
com/Deskbot/Cognitive-Complexity-TS (visited on 04/06/2024).

96

https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://doi.org/10.1007/s10664-023-10396-7
https://doi.org/10.1007/s10664-023-10396-7
https://doi.org/10.1145/3194164.3194186
https://github.com/Deskbot/Cognitive-Complexity-TS
https://github.com/Deskbot/Cognitive-Complexity-TS

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Research Questions
	Methodology
	Structure

	Background
	Serverless Computing
	Conflict-free Replicated Data Types
	gRPC

	Related Work
	Stateful Functions for Existing Serverless Platforms
	New Approaches for Stateful Serverless Serverless Functions

	MISO Middleware
	Conceptual Model
	Middleware Architecture
	Middleware Core Modules
	SDK for Serverless Functions

	Prototype Implementation
	Middleware Package
	SDK Package
	CRDT Package
	Common Package

	Evaluation
	Performance Overhead
	Replication Algorithm
	Qualitative Evaluation
	Limitations

	Conclusion
	Research Questions
	Future Work

	GitHub Repository
	Implementation Packages
	Evaluation

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Glossary
	Acronyms
	Bibliography

