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Abstract
Motion planning is an essential part of robotics research, requiring algorithms that are
computationally efficient and adaptable to varying environments. Using machine learning
methods for motion planning can provide solutions to these challenges. In this thesis,
imitation learning methods for motion planning are investigated, utilizing artificial neural
networks to implement these techniques. The networks generate trajectories by imitating
two algorithms: Via-point-based Stochastic Trajectory Optimization and the solution to
an optimal control problem. These learning-based motion planning methods are applied
to a timber crane across different environmental settings. The results demonstrate that
the networks are generally able to learn the underlying task through behavioral cloning
and adapt to varying obstacle heights. They also show a significant advantage regarding
computational speed over the original algorithms. However, in the more complex scenario
with two movable obstacles, further improvements are required.
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Kurzzusammenfassung
Die Bewegungsplanung ist ein wichtiger Teil der Robotikforschung und erfordert Algo-
rithmen, die recheneffizient sind und sich an unterschiedliche Umgebungen anpassen
können. Die Verwendung von Machine Learning Ansätzen für die Bewegungsplanung kann
Lösungen für diese Herausforderungen bieten. In dieser Arbeit werden Imitation Learning
Methoden für die Bewegungsplanung untersucht, die mit künstlichen neuronalen Netzen
implementiert werden. Die Netze generieren Trajektorien, indem sie zwei Algorithmen
imitieren: Via-point-based Stochastic Trajectory Optimization und die Lösung eines
Optimalsteuerungsproblems. Diese lernbasierten Bewegungsplanungsmethoden werden
auf einen Holzkran in verschiedenen Umgebungsbedingungen angewandt. Die Ergebnisse
zeigen, dass die Netzwerke im Allgemeinen in der Lage sind, die zugrundeliegende Aufgabe
durch Imitieren des Verhaltens zu erlernen und sich an unterschiedliche Hindernishöhen
anzupassen. Sie zeigen auch einen deutlichen Vorteil hinsichtlich der Rechengeschwindig-
keit gegenüber den ursprünglichen Algorithmen. In dem komplexeren Szenario mit zwei
beweglichen Hindernissen sind jedoch weitere Verbesserungen erforderlich.
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1 Introduction

1.1 Motivation
Motion planning is a crucial part of research in the field of robotics [1, 2]. Its main objective
is to find a trajectory from a starting configuration to a desired goal configuration without
colliding with obstacles in the workspace or the robot itself while complying with system
limitations. A popular approach to solve motion planning problems are gradient-based
algorithms that solve an optimization problem for generating trajectories [3–5]. However,
these approaches show their limitations when obstacles are present, as in most real-world
settings. Including obstacles in the optimization problem makes it non-convex, causing
gradient-based approaches to get stuck in local minima, often resulting in infeasible
trajectories. Sampling-based approaches, on the other hand, are able to find a global
optimum but can be computationally expensive and don’t scale well with dimensions [6].
This calls for computationally efficient approaches that yield feasible trajectories, even in
the presence of obstacles.

A promising domain to speed up motion planning and make it adaptable to obstacles
and changes in the environment is to use machine learning methods for motion planning
[7, 8]. The intersection of these two fields of research holds the potential to significantly
increase computational efficiency and adaptability to different scenarios. Using machine
learning provides robotic systems with the capability to learn from data and use experience
from successfully solved motion tasks, thus offering a solution to the challenges posed by
real-time online motion planning in varying environments [9].

Research in learning-based motion planning often centers on imitation learning methods,
aiming to develop policies that replicate the behavior of motion planning algorithms while
decreasing their computational complexity [10, 11]. Many of these approaches employ
artificial neural networks to encode information from successfully solved planning problems.
The expectation is that neural networks can learn a generalized understanding of feasible
trajectories, enabling them to make meaningful predictions even in unseen scenarios [12].
Therefore, the intersection of imitation learning and neural networks presents a compelling
field of research worthy of further exploration.

This thesis deals with the theoretical background of imitation learning methods for
robot motion planning using artificial neural networks and their application on a timber
crane.

1.2 Related Work
Imitation learning in the field of robotics emerged in the 1980s as a promising alternative
to conventional manual programming of robots [13]. Among the pioneering works in
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1 Introduction 1.3 Contribution and Structure of this Thesis 2

imitation learning is the renowned ALVINN project, which dates back to 1988 [14]. In
this project, imitation learning was applied to train an artificial neural network, enabling
it to translate input images into corresponding actions for the task of road following in
autonomous driving scenarios. In the late 1990s, the task of trajectory planning and
learning robot motion became a key domain of imitation learning [15]. Nevertheless, a lot
of research projects predominantly concentrate on learning trajectories demonstrated by a
human expert [16, 17]. This thesis, however, focuses on learning trajectories from motion
planning algorithms, an area that has been researched in some recent works.

Qureshi et al. introduced the concept of Motion Planning Networks (MPNet), which
integrates classical motion planning with learning-based methods [18, 19]. Their approach
involves the utilization of two artificial neural networks to learn the heuristics employed
by an RRT∗ planner for generating feasible trajectories. The encoder network (Enet)
captures environment information and embeds it into a latent space. The planning network
(Pnet) uses the environment encoding from Enet, along with the current and goal states
of the robot, to predict the next state, leading the robot towards the goal region. MPNet
recursively calls itself to generate the complete state trajectory. Both Enet and Pnet are
designed as feedforward neural networks and are trained using a mean-squared-error loss
function that compares predicted and target states.

Tenhumberg et al. use a neural network to encode successfully solved motion planning
problems across diverse tasks and environments [12]. The neural network’s role is to provide
an educated initial guess for an optimization-based motion planner, thereby accelerating
computation time while ensuring both feasibility and smoothness. The authors introduce
the concept of Basis Point Set (BPS) to neural motion planning, offering a way to encode
environment information such that it can be directly used as an input for the network.
Through supervised training, the network learns to predict a feasible path based on the
environment encoding, as well as the specified start and goal configurations. The study
demonstrates that this learning-based planning approach also works for previously unseen
environments.

Carius et al. present another imitation learning approach, MPC-Net, in their work
[20]. This method emulates Model Predictive Control (MPC) algorithms by introducing a
distinctive training strategy. Rather than minimizing a distance metric between predictions
and labeled expert data, MPC-Net employs the control Hamiltonian as its loss function.
This has the effect that the network is trained to directly solve the optimal control problem.
Notably, the control Hamiltonian contains constraints, allowing for the consideration of
obstacles in the environment during training. In [21], MPC-Net is extended for controlling
multiple gaits of a walking robot with only a single trained policy by employing a mixture-
of-experts network.

1.3 Contribution and Structure of this Thesis
This thesis deals with learning-based motion planning, employing behavioral cloning
methods using artificial neural networks. These methods are applied to a timber crane
to evaluate whether they allow for generalizing from diverse scenarios to apply motion
planning to arbitrary start and goal configurations as well as arbitrary environment
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geometries.
In Chapter 2, the two motion planning algorithms that are used as demonstrators

for the neural networks are described. These are Via-point-based Stochastic Trajectory
Optimization (VP-STO) and an optimal control formulation.

Chapter 3 covers the theory behind imitation learning concepts and artificial neural
networks.

The application on the timber crane is discussed in Chapter 4. The system and training
setup are described and subsequently, the results of the learning-based motion planning
approaches are presented and evaluated.



2 Motion Planning
Motion planning is a fundamental part of robot control, dedicated to generating a trajectory
that guides the robot from its starting configuration to a desired goal configuration.
Additionally, collisions with obstacles or the robot itself have to be avoided while complying
with system constraints. Gradient-based approaches are widely adopted techniques to
address this challenge [3–5]. Another alternative for generating optimal trajectories are
path integral methods, introducing stochastic elements to trajectory optimization [22].

In the context of this thesis, two different planners serve as expert demonstrators for
training imitation learning models. The following sections focus on the approaches utilized
in this thesis, providing a detailed description and comparison. In Section 2.1, motion
planning with via-point based stochastic trajectory optimization is presented and an
optimal control formulation of the planning problem, which is solved with gradient-based
methods, is described in Section 2.2.

2.1 Via-point-based Stochastic Trajectory Optimization
Via-point-based Stochastic Trajectory Optimization (VP-STO) aims to generate smooth
and time-optimal robot trajectories in joint space [23]. The core task is to find N via-
points, denoted as qT

via =
[
qT

1 , . . . , qT
N

]
∈ ❘DN , which the trajectory has to pass through.

Here, q ∈ ❘D denotes the robot joint configuration with D being the number of degrees
of freedom. The via-points are obtained by employing Covariance Matrix Adaptation
(CMA-ES), a stochastic black-box optimization algorithm, to minimize a specified cost
function c of the form

min
qvia

∫ 1

0
c(q(s), q̇(s), q̈(s), T ) ds, (2.1)

with the robot configuration, velocity and acceleration q(s) ∈ ❘
D, q̇(s) ∈ ❘

D and
q̈(s) ∈ ❘D, respectively, and the total duration of the trajectory T . The phase variable
s ∈ [0, 1] maps to the time t with s = t

T .
The algorithm’s first step is to sample M sets of via-points from a Gaussian distribution

N (µvia, Σvia). In the first pass, this distribution is initialized with a straight-line guess
between the defined start and goal configuration for the mean µvia ∈ ❘DN with high
uncertainty, i. e. large diagonal values for Σvia ∈ ❘DN×DN . Subsequently, the sampled
sets of via-points are transformed into a population of M trajectories by incorporating
cubic splines. Alongside the via-points and specified boundary conditions on the start and
goal configuration and velocity, the computation of the trajectories only requires the total
movement duration T . T can be obtained by finding the minimum positive movement
duration such that the resulting trajectory velocity and acceleration stay within the
defined limits. This is done by calculating Tk(qvia) for K uniformly distributed evaluation

4



2 Motion Planning 2.2 Optimal Control Formulation 5

points in the phase state [0, 1] and taking the most conservative value, i. e. the maximum
value, to guarantee that the constraints are satisfied at each evaluation point k. This
results in a set of M kinodynamically admissible trajectories with minimal movement
duration. Finally, the mean µvia and the covariance matrix Σvia are updated based on
the performance of the obtained trajectories according to the specified cost function. By
repeating these steps, the location of the via-points is optimized.

In this thesis, the cost function is defined as the total duration of the trajectory.
Additionally, a high value is added to the cost if the trajectory collides with an obstacle
or exceeds joint limits. Collision detection is implemented using the GJK algorithm, see
[24, 25] for a detailed description. The boundary conditions and limitations on the joint
velocity and acceleration are satisfied by design, as described above.

This approach for generating trajectories only considers the kinematic structure of the
system. Dynamic effects caused by non-actuated joints, for example, are not taken into
account.

2.2 Optimal Control Formulation
A discrete-time optimal control problem can be formulated as

min
u0,...,uN−1

J(u0, . . . , uN−1)

s.t. xk+1 = f(xk, uk) , k = 1, . . . , N − 1,

gk(xk, uk) = 0
hk(xk, uk) ≤ 0,

(2.2)

with the system’s state xk ∈ ❘n, the control input uk ∈ ❘m, the continuously differentiable
system dynamics f : ❘n × ❘m .→ ❘

n and the continuously differentiable equality and
inequality contraints gk : ❘n ×❘m .→ ❘

p and hk : ❘n ×❘m .→ ❘
q, respectively. The

equality constraints include path constraints, e. g. to enforce that the system follows a
specific trajectory, while the inequality constraints are used to comply with actuator
limitations and avoid obstacles, for example. The starting value x0 is fixed. The cost
function

J(u0, . . . , uN−1) = ℓN (xN ) +
N−1∑
k=0

ℓk(xk, uk) (2.3)

consists of the intermediate costs ℓk : ❘n×❘m .→ ❘ and the terminal cost ℓN : ❘n×❘m .→
❘. Both the intermediate cost and the terminal cost are twice continuously differentiable
and defined as

ℓk(xk, uk) = 1
2(eT

u,kLuu,keu,k + 2eT
x,kLxu,keu,k + eT

x,kLxx,kex,k) (2.4)

and
ℓN (xN ) = 1

2eT
x,N Lxx,N ex,N , (2.5)

with the state and control errors ex,k = xk − xd,k and eu,k = uk − ud,k, respectively, where
xd,k and ud,k denote the desired state and desired control input. The latter can be set to
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zero to minimize control effort and prevent uncontrolled behavior in the non-actuated
system. Luu,k, Lxu,k and Lxx,k are weighting matrices.

The cost function can be extended to account for the constraints in the optimization
problem (2.2). For this, the augmented Lagrangian is formed as

LA = ℓN (xN ) +
(
λN + 1

2cN (xN )Iµ,N

)T
cN (xN )

+
N−1∑
k=0

[
ℓk(xk, uk) +

(
λk + 1

2ck(xk, uk)Iµ,k

)T
ck(xk, uk)

]
,

(2.6)

with the Lagrange multipliers λk ∈ ❘p+q and the stacked constraints cT
k =

[
gT

k , hT
k

]
∈

❘
p+q. The penalty matrix Iµ,k ∈ ❘(p+q)×(p+q) is a diagonal matrix, each diagonal value

corresponding to a constraint in ck. The Lagrange multipliers and the penalty matrix’s
values are iteratively increased if a constraint is violated or close to being violated, hence
increasing the overall cost. For a detailed description of these term’s calculation, refer to
[26].

This optimal control problem can be solved with gradient-based approaches, aiming
to minimize the cost function (2.6). For this purpose, the iterative Linear Quadratic
Regulator (iLQR) is used in this thesis. In contrast to VP-STO, the system dynamics are
taken into account in this approach.



3 Imitation Learning
Imitation learning is a domain of machine learning, in which an agent learns to mimick
an expert’s behavior. The expert can be a human or, as in this thesis, an optimizing
algorithm, generating optimal actions for the agent to imitate. The machine learning
model that is the subject of the training is referred to as agent, e. g. an artificial neural
network. It observes the expert demonstrations and learns a policy to reproduce the
demonstrated behavior without explicit knowledge of the underlying optimized function
employed by the algorithm [15].

A policy π can be represented in different ways. One option is to define a trajectory-level
policy

π : s .→ τ , (3.1)

mapping a context s to a trajectory τ [27]. The context contains information required for
the task, e. g. desired start and end position or information about the system’s environment.
The trajectory consists of a sequence of K states and/or control inputs

τ = [x0, u0, . . . , xK , uK ]. (3.2)

Alternatively, the policy can be formulated as

π : xk, s .→ uk, (3.3)

mapping the system’s current state xk and contextual information s to an action, which,
in this case, is the control input uk, for every step k. This is referred to as action-state
space representation [28].

Another distinction between policies can be made with regard to the feedback of the
state. Feedback policies take the changes of the environment and the system into account,
which were caused by the previous action, when determining the next action [16]. With
feedback-free policies, on the other hand, the action is based solely on the initial input
[29].

The expert’s policy πE results from the optimization of a cost or reward function,
which represents the quality of a given action or trajectory. This function is generally
unknown to the agent but it is used to generate the expert demonstrations for the training
data D. This dataset comprises pairs of inputs and outputs, denoted as (ξi, yi), each
representing one of the n samples in the training data. The input ξi includes the current
state of the system and the context, the output yi can take the form of a trajectory or an
action, depending on the chosen policy representation. The agent leverages these expert
demonstrations to estimate a policy πA that replicates the expert’s behavior [30, 31].

There are two major approaches to how this policy is obtained, behavioral cloning (BC)
and inverse reinforcement learning (IRL). BC methods involve learning a direct mapping

7
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from the input to the optimal action, while in IRL, the policy is obtained by recovering
and optimizing a reward function from the expert’s demonstrations. In this thesis, only
BC methods are considered. They are described in the following section.

3.1 Behavioral Cloning
The aim of behavioral cloning (BC) methods is to learn a direct mapping from the context
to the optimal trajectory as in (3.1) or from the current state and the context to the
optimal action as in (3.3) without recovering the underlying reward function. These
methods represent an efficient strategy for emulating the expert’s behavior as they can
be formulated as a supervised learning problem and solved by minimizing the difference
between the expert’s demonstrations and the learned policy with respect to a specified
loss function [15].

3.2 Artificial Neural Networks
Artificial neural networks (ANNs) are computational models that are often used to
represent the agent’s policy. They are inspired by the neuronal structure of the animals’
and humans’ nervous system.

3.2.1 The Neuron
Neurons are the fundamental cells of our central nervous system. They process and forward
impulses, which are transferred to other neurons by so called synapses, the connections
between neurons. ANNs consist of artificial neurons connected by artificial synapses,
similar to the organization in biological neural networks [32].

The model for an artificial neuron consists of multiple input signals represented by the
vector ξ = [ξ1, ..., ξn]T ∈ ❘n, the synapses represented by weights w = [w1, ..., wn]T ∈ ❘n,
a bias b ∈ ❘, an activation function g : ❘ .→ ❘ and the output signal y ∈ ❘. The input
signals represent the values coming from the application for which the network is used.
Each signal ξi is multiplied with the respective weight wi according to its relevance for
the neuron. The weighted inputs are summed up and the bias is added as an additional
parameter. The activation function’s role is to limit the neuron output to a reasonable
range and can be used to add non-linear behavior to the model. The output signal is
computed as

y = g(wTξ + b), (3.4)

which in turn can be used as input signal for another neuron.

3.2.2 Multilayer Perceptron
Multiple neurons can be combined to a network according to a specific architecture
describing how the different neurons are arranged in relation to each other. In this thesis,
a multilayer feedforward architecture, commonly known as multilayer perceptron (MLP),
is employed. It consists of an input layer, responsible for receiving the input signals
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ξ1

ξ2

ξn

b

y

w1

w2

wn

Neuron g(·)

Figure 3.1: Structure of an artificial neuron

according to the specific application of the network. This is followed by one or more so
called hidden layers, each comprising multiple neurons, constructed as explained before.
The output signals of the first hidden layer serve as the input signals to the second hidden
layer and so on. The hidden layers are responsible for extracting information and patterns
from the input data, building a representation of the application’s environment. The last
part is the output layer, also composed of neurons, representing the network’s final output
resulting from the processed data within the ANN. The number of hidden layers and
neurons in each layer depend on the complexity of the application as well as the quality
and quantity of the data available [33, 34].

The term "feedforward" describes how information is processed in the network. The
input signals are propagated layer by layer until they reach the output layer, allowing the
flow of information in only one direction during execution. Layer l, with l = 1, . . . , L, is
constructed of nl neurons, represented by each neuron’s weights w1, . . . , wnl

and their
biases b1, . . . , bnl

, which can be combined to the weight matrix W(l) = [w1, . . . , wnl
]T

and the bias vector b(l) = [b1, . . . , bnl
]T. The weight matrix’s elements W

(l)
ji describe

the connection between the jth neuron of layer l and the ith neuron of layer l − 1.
Each layer l is also equipped with an activation function g(l) : ❘nl .→ ❘

nl , where
g(y) = [g(y1), . . . , g(ynl

)]T. Consequently, the output of the first layer z(1) can be
computed as

z(1) = g(1)(W(1)ξ + b(1)) (3.5)

and the outputs of the following layers are obtained one after another by evaluating

z(l) = g(l)(W(l)z(l−1) + b(l)) , l = 2, ..., L, (3.6)

with z(L) = y being the output of the network.
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Figure 3.2: Structure of the Multilayer Perceptron

Training

To ensure that the ANN provides the correct output for each sample of the input data, the
network has to be trained, requiring the adaptation of all its parameters, i. e. the weights
and biases associated with each neuron. This training procedure requires multiple input
samples alongside their corresponding desired output signals, constituting the training
data. The training algorithm for MLPs is known as backpropagation, a two-part process
[35].

In the first stage, a single input data sample is introduced into the network and
propagated through its layers as described before. The network generates an output in
accordance with the current weights and biases, which remain unchanged during this
training phase. Subsequently, in the second stage, the network’s output is compared
against the desired output, and the objective is to adjust the parameters systematically to
minimize the output error. This adjustment is achieved by an optimizer. The optimizer
computes the gradient of the error with respect to the parameters layer by layer, but now
starting from the last layer and propagating backwards, hence the name backpropagation.
With the parameters for layer l being represented by Θ(l) and the scalar output error
value E, the gradients are computed as

∆E(l) = ∂E

∂Θ(l) (3.7)

and the parameters are adjusted according to the delta rule

Θ(l) ← Θ(l) − η ∆E(l) , l = L, ..., 1 (3.8)

with the learning rate η. This is done for each layer until all parameters are updated.
Repeating this procedure for every sample of the training dataset is called stochastic
gradient descent (SGD).

Another popular optimizer used for training artificial neural networks is Adam, which
is short for Adaptive Moment Estimation [36]. Adam adjusts the learning rate for each
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parameter in the model based on estimates of the first and second moments of the gradients,
which are computed as

m(l) ← β1m(l) + (1 − β1)∆E(l) (3.9a)
v(l) ← β2v(l) + (1 − β2)(∆E(l))2, (3.9b)

where m(l) and v(l) are the estimates of the first and second order moments, respectively,
and β1 and β2 are decay rates. (∆E(l))2 indicates the elementwise square. These moments
are bias-corrected, yielding

m̂(l) ← m(l)

1 − βt
1

(3.10a)

v̂(l) ← v(l)

1 − βt
2
, (3.10b)

where t indicates the number of steps already taken, i. e. the training sample’s number.
Finally, the parameters are updated according to

Θ(l) ← Θ(l) − η
m̂(l)

v̂(l) , (3.11)

where the division of the two vectors indicates the elementwise division. In case of
high uncertainty, the second order moment will be high, leading to a smaller step size
in parameter space, which is a form of automatic annealing. Another property of this
optimizer is that the parameter updates are invariant to rescaling of the gradient, allowing
for more efficient convergence.

A complete iteration over all samples in the training dataset is referred to as an epoch.
The algorithm can be applied for more than one epoch, randomly shuffling the samples
during each pass. Instead of considering each individual sample to update the parameters,
the gradient can also be computed based on a mini-batch, consisting of a predetermined
number of randomly selected samples from the training dataset. In this case, the average
gradient for the entire batch is used to update the ANN’s parameters [37].

Training performance strongly depends on the choice of hyperparameters such as the
number and size of hidden layers, batch size and number of epochs.



4 Application on a Timber Crane
In this chapter, learning-based motion planning approaches are applied to a timber crane.
The crane model as described in [38] is presented in Section 4.1. In Section 4.2 the findings
of the simulations are presented and discussed. All experiments are performed on an Intel
Core i7-7600U CPU @ 2.8 GHz.

4.1 Crane Model
The timber crane presented in Figure 4.1 has eight degrees of freedom (DoFs). However,
the jaw angle q8 of the gripper is specified as a constant value to reduce the model’s
complexity for planning. Consequently, the model used for the following simulations only
has seven degrees of freedom, whereby qa = [q1, q2, q3, q4, q7]T are actuated joints and
qna = [q5, q6]T are non-actuated. As shown in Figure 4.1, all DoFs are revolute joints,
except for one prismatic joint q4.

4.1.1 Kinematics
To describe the crane’s kinematics, transformation matrices of the form

Hj
i =

[
Rj

i dj
i

0T 1

]
∈ SE(3) (4.1)

are used, with the rotation matrix Rj
i ∈ SO(3) and the translation vector dj

i ∈ ❘3.
They describe the transformation from a coordinate frame Fj to a coordinate frame Fi,
corresponding to the joints j and i, respectively. The frames are defined using the Denavit-
Hartenberg convention, for a detailed explanation see [39]. Hence, the transformation
matrices from a coordinate frame Fj to its predecessor Fj−1 can be obtained through the
four Denavit-Hartenberg parameters θj , dj , aj and αj according to

Hj
j−1 = HRz(θj)HT z(dj)HT x(aj)HRx(αj), (4.2)

with HRi(ϕ) describing a rotation of ϕ around the i-axis and HT i(s) describing a translation
of s in the direction of the i-axis. The transformation from coordinate frame F11 poses an
exception as it is defined to frame F8 instead of F10, with the parameters θ11, d11, a11 and
α11. Consequently, the transformation matrix Hj

i , 0 ≤ i < j is obtained by computing

Hj
i =

Πj
k=i+1Hk

k−1 for j ≤ 10,(
Π8

k=i+1Hk
k−1

)
H11

8 Hj
11 for 11 ≤ j ≤ 12.

(4.3)

The Denavit-Hartenberg parameters for the timber crane are presented in Table 4.1.

12



4 Application on a Timber Crane 4.1 Crane Model 13

Figure 4.1: Kinematic chain of the timber crane

Table 4.1: Denavit-Hartenberg parameters for the timber crane [38].
j θj in rad dj in m aj in m αj in rad
1 q1 2.425 0.180 π

2
2 q2 0 3.493 0
3 q3 0 -0.393 π

2
4 0 q4 0 0
5 0 q4 0 -π

2
6 q5 0 -0.213 -π

2
7 q6 0 0 -π

2
8 q7 0.578 0 0
9 -π

2 0 0.340 π
2

10 π
2 0 0.857 0

11 π
2 0 0.325 π

2
12 π

2 0 0.857 0
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4.1.2 Dynamics
The equations of motion for the timber crane can be described as

D(q)q̈ + C(q, q̇)q̇ + g(q) + Fq̇ = τ , (4.4)

with the joint coordinates q ∈ ❘D, the positive definite mass matrix D(q) ∈ ❘D×D, the
Coriolis matrix C(q, q̇) ∈ ❘D×D, the gravitational vector g(q) ∈ ❘D, the diagonal matrix
F = diag(µv) ∈ ❘D×D with the viscous friction coefficients µv ∈ ❘D and the generalized
joint forces τ ∈ ❘D [40].

With the joint coordinates comprising the actuated joints qa ∈ ❘Da as well as the
non-actuated joints qna ∈ ❘Dna , i. e.

q =
[

qa

qna

]
, (4.5)

the equations (4.4) can be partitioned into[
Da(q) Dana(q)

Dnaa(q) Dna(q)

]
- -- -

D(q)

[
q̈a

q̈na

]
+

([
Ca(q, q̇)
Cna(q, q̇)

]
- -- -

C(q,q̇)

+
[

Fa

Fna

]
- -- -

F

)
q̇ +

[
ga(q)
gna(q)

]
- -- -

g(q)

=
[
τ a

0

]
- -- -

τ

, (4.6)

as the generalized joint forces of the non-actuated joints are zero.
For the discrete time state-space formulation required for (2.2), the state is defined as

x =
[
q
q̇

]
=


qa

qna

q̇a

q̇na

. (4.7)

The acceleration of the actuated joint coordinates serves as the control input

u = q̈a, (4.8)

which is possible due to the presence of a subordinate velocity controller. The expression
for the non-actuated joints’ acceleration can be derived from the second line in (4.6):

q̈na = −Dna(q)−1
(

Dnaa(q)q̈a +
(
Cna(q, q̇) + Fna

)
q̇ + gna(q)

)
. (4.9)

Assuming u as well as q̈na to be constant during the time step k yields the discrete time
state equations for xk+1 as defined in (4.7)

qa,k+1 = qa,k + q̇a,kTs + 1
2ukT 2

s (4.10a)

qna,k+1 ≈ qna,k + q̇na,kTs + 1
2 q̈na,kT 2

s (4.10b)

q̇a,k+1 = q̇a,k + ukTs (4.10c)
q̇na,k+1 ≈ q̇na,k + q̈na,kTs (4.10d)

with the sampling time Ts > 0 and qa,k = qa(kTs), q̇a,k = q̇a(kTs), uk = u(kTs),
qna,k = qna(kTs), q̇na,k = q̇na(kTs) and q̈na,k = q̈na(kTs).
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Figure 4.2: Collision model for the timber crane

4.1.3 Inequality Constraints
In the following simulations, the timber crane is mounted on a truck. For the purpose
of collision avoidance, this truck is represented by static oriented bounding boxes, as
illustrated in blue in Figure 4.2. The crane’s slewing column and gripper are also modeled
using bounding boxes, while the remainder of the crane is represented by two cylinders.
The crane is highlighted in red. There is one collision constraint for each combination of
crane link and truck object. As the crane’s slewing column is only relevant for collision
checking if the grab holds a log, it is sufficient to consider the three other links of the crane
in the log-free case. For 3 crane links and the 7 truck objects presented in Figure 4.2, this
makes 21 collision constraints. The minimal distances between the crane and the collision
objects, i. e. the truck, are calculated using the GJK algorithm, see [24, 25]. The negative
minimal distances between each crane link and truck object are stacked into the collision
inequality vector  h1(q)

...
h21(q)

 = hcollision(q) ≤ 0, (4.11)

i. e. a positive value for hi indicates a collision.
Self-collision is avoided through limits on the joint angles. Alongside limitations on the

achievable joint velocity, they are implemented in the state inequality vector[
x − x
x − x

]
= hstate(x) ≤ 0, (4.12)

where x and x are the upper and lower state limit, respectively.
Similarly, the control inequality vector is defined, imposing limitations on the control

input as [
u − u
u − u

]
= hcontrol(u) ≤ 0, (4.13)

with the upper control limit u and the lower control limit u.
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Together, this yields the overall inequality vectorhcollision(q)
hstate(x)

hcontrol(u)

 = h(x, u) ≤ 0, (4.14)

a positive value indicating the violation of an inequality constraint.

4.2 Learning-based Motion Planning
In this section, learning-based motion planning approaches are applied to the timber crane
under different environmental conditions. The first task, covered in Section 4.2.1, is to
solve the motion planning problem without any additional obstacles besides the truck
the crane is mounted on. In Section 4.2.2, a wall with known variable height is added
next to the truck. The third variant involves two additional obstacles representing trees,
which can be placed arbitrarily in a specified area beside the truck. It is presented in
Section 4.2.3.

The first considered learning-based approach involves imitating VP-STO, which is
described in Section 2.1, through the application of behavioral cloning techniques on an
artificial neural network. The training data is generated by computing via points with
the VP-STO algorithm, using the parameter values specified in Table 4.2, which were
chosen based on empirical performance. The input to the network consists of potential
environmental information as well as the initial and desired end configuration of the five
actuated joints. To reduce the amount of required data for training, only one starting
configuration is considered while the end configuration varies. The network outputs the
via points, which are compared to those computed by the VP-STO algorithm, utilizing
a mean squared error. This network represents a trajectory-level policy as defined in
(3.1), mapping contextual information to a trajectory consisting of a sequence of states.
In Section 4.2.1, the context comprises of five elements each for the start and goal
configuration of the actuated joints. In Section 4.2.2, the obstacle height is added to the
context for environmental information and in Section 4.2.3, four elements are added to
represent the position of each of the two trees in x and y direction.

Table 4.2: Parameter values for VP-STO
Parameter Value

D 5
N 10
M 50
K 100

The second method is the imitation of the optimal control problem’s solution as described
in Section 2.2, with the system dynamics (4.10), the constraints (4.14) and the parameters
presented in Table 4.3. The parameters where chosen based on the observed performance
of different parameter combinations. The training data for this approach is generated
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by solving the optimal control problem utilizing an iterative Linear Quadratic Regulator
(iLQR). The iLQR is used in an MPC framework, i. e. the iLQR computes the full optimal
control sequence for the specified horizon from the current to the goal state but only the
first control input is applied to the system, yielding the next state. The iLQR algorithm
is run again to compute the full optimal control sequence from the new state. This is
done until the obtained next state is close enough to the goal state, yielding trajectories of
approximately the specified horizon’s length, which are 80 steps in this case. The network
used here takes the current state xk, consisting of joint configuration and joint velocity
for all seven joints, as well as the goal configuration qgoal for all joints alongside potential
environmental information as an input. In contrast to the first approach, the neural
network does not output the whole trajectory, but only the control input uk required to
lead the system one step closer to the goal state. Hence, the final trajectory is obtained
by applying the control input to the system, using the resulting next state as new input
to the net and repeating this process until the goal state is reached, see Figure 4.3 for an
explanatory illustration. For training, the outputted control input is compared to the one
computed by the iLQR for that step in a mean squares sense. In this case, the network
represents an action-state space policy according to (3.3), mapping the current state and
contextual information to the control input. In Section 4.2.1, the context comprises only
of the goal configuration of all seven joints. For the case with one additional obstacle in
Section 4.2.2, the context is extended by one element representing the obstacle height
and in Section 4.2.3, four elements are added to the context to represent the x and y
coordinates of each of the two trees. As before, the initial configuration is the same for all
training and test samples, only the end configuration varies.

Table 4.3: Parameter values for the optimal control problem. I denotes the identity matrix
and 0 the zero matrix.

Parameter Value
Luu,k 0.1 · I5×5
Lξu,k 014×5

Lξξ,k diag(l1, . . . , l14), li =

����
0.1 for i = 1, . . . , 7
10−5 for i = 8, . . . , 11, 14
10−2 for i = 12, 13

Lξξ,N 10 · I14×14

xk

qgoal
uk xk+1 = f(xk, uk)

xk+1

ANN System Dynamics

Figure 4.3: Principle of the optimal control imitation method
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4.2.1 No Additional Obstacles
In the first scenario, there are no additional obstacles in the crane’s workspace. Hence,
there is no need for environmental information for the net’s input as the truck’s presence
is learned implicitly.

18 000 trajectories computed utilizing the VP-STO algorithm and the iLQR algorithm
for the optimal control approach serve as samples for the training process, of which 90%
are used for the actual training of the network and 10% for validation. Another 1500
trajectories are used for testing.

VP-STO

The artificial network for imitating the VP-STO approach without additional obstacles
has 10 inputs, namely the starting and goal configuration of the five actuated joints. The
output layer has D(N −2) = 40 elements, where D is the number of actuated joints N and
the number of via-points, i. e. the output represents the via-points for each joint, excluding
starting and goal configuration. In the following, nets with different numbers of layers and
layer sizes are trained and compared with respect to their performance on test trajectories.
The hyperparameters for training are chosen based on empirical performance. Training for
150 epochs revealed that training and validation loss only slightly decrease after 25 epochs.
A batch size of 100 provides a good balance between training efficiency and convergence
speed. For the activation function, Rectified Linear Unit (ReLU) and hyperbolic tangent
(tanh) activation are tested, but ReLU activation shows better performance regarding
convergence. Consequently, the nets are trained for 25 epochs, using a batch size of 100
and ReLU activation functions after each hidden layer. Adam is selected as optimizer as
it shows a significantly lower loss in the comparison with SGD, as presented in Figure 4.4.

0 5 10 15 20 25

10−2

10−1

100

Epochs

Lo
ss

Training

0 5 10 15 20 25

10−2

10−1

100

Epochs

Validation

Adam SGD

Figure 4.4: VP-STO approach without additional obstacles: Training loss and validation
loss for different optimizers
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In Figure 4.5, the loss progression on the training data and the validation data is
presented. It can be observed that there is only little difference in the loss between
the different net sizes. While larger nets generally yield lower losses, the spikes in the
validation loss for the net with three layers and a layer size of 512 neurons suggest that it
slightly overfits the training data.

0 5 10 15 20 25
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10−1
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Epochs
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ss

Training
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10−2

10−1

Epochs

Validation

1 × 32 2 × 32 3 × 32
1 × 128 2 × 128 3 × 128
1 × 512 2 × 512 3 × 512

Hidden layers × Neurons

Figure 4.5: VP-STO approach without additional obstacles: Training loss and validation
loss for different net sizes

To further evaluate their performance, the networks are used to generate trajectories
from the test data set, which are compared regarding collisions and trajectory duration.
The findings are presented in Table 4.4 and Figure 4.6. In these box plots, the vertical
line in the middle marks the median value. The box comprises 50% of the data, its
width is called interquartile range. The whiskers outside the box represent the expected
variation of the data and extend 1.5 times the interquartile range to both sides or to the
minimum or maximum value if the data points do not extend that far. All values falling
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Table 4.4: VP-STO approach without additional obstacles: Collision rate for different net
sizes

1 layer 2 layers 3 layers
32 neurons 11.9% 10.1% 7.7%

128 neurons 7.5% 10.1% 8.4%
512 neurons 5% 4.7% 6.2%

100 120 140 160 180 200 220 240 260 280 300

3 × 512
3 × 128
3 × 32

2 × 512
2 × 128
2 × 32

1 × 512
1 × 128
1 × 32

Tnet
TVP−STO

in %

Figure 4.6: VP-STO approach without additional obstacles: Trajectory duration for
collision-free trajectories generated by the net in relation to VP-STO

outside that range are called outliers and are marked with an x. Note that the networks
are not specifically trained to avoid collisions or produce short trajectories. They are
merely trained to imitate the VP-STO algorithm by minimizing the mean squared error
between the predicted and the optimal via-points. Ideally, collision avoidance and short
trajectories are learned implicitly through behavioral cloning. However, due to the choice
of a mean squared error as loss function, a predicted via point can deviate above or below
the optimal via point while resulting in the same loss. Consequently, despite achieving a
low loss, deviations of predicted via points in unfavorable directions can lead to collisions
and trajectories with greater curvature, yielding longer trajectory durations. Hence, low
losses do not automatically imply short and collision-free trajectories.

In Table 4.4 a tendency towards less collisions for larger nets can be observed. Note
that the 3 × 512 network showed signs of overfitting in the training loss, which might
be the reason why the collision rate is higher than for the networks with 512 neurons
and less layers. Figure 4.6 presents the generated trajectory duration with respect to
VP-STO for all collision-free trajectories. It can be seen that while the trajectory duration
varies significantly for all net sizes, smaller networks tend to generate shorter trajectories.
Additionally, in the case of similar performance, smaller networks should be favored as
they are more computationally efficient as less mathematical operations are required for
each pass.

For imitating VP-STO without additional obstacles, a net size of one layer with
128 neurons represents a good trade-off between collision rate, trajectory duration and
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(a) (b) (c)

Figure 4.7: VP-STO approach without additional obstacles: Trajectories generated by the
1 × 128 network (black) and the VP-STO algorithm (gray)

computational complexity with a collision rate of 7.5% and median trajectory duration
of 114% compared to VP-STO. Three collision-free test trajectories generated by this
network in comparison with VP-STO are presented in Figure 4.7 and Figure 4.8.

Furthermore, it is examined how many training samples are necessary to obtain good
results. The network consisting of one layer with 128 neurons is trained with different
amounts of training trajectories. From Figure 4.9, it can be observed that in general, the
less training samples are available, the slower the convergence and the higher the loss to
which the loss curve converges. However, the validation loss for 9000 training trajectories
converges to a comparable value as for 18 000 training samples, indicating that similarly
good performance can already be achieved with only half the training data.

To determine the computation time for one trajectory, the average time is calculated on
the basis of 100 trajectories, each generated by the VP-STO algorithm and the network.
The VP-STO algorithm takes 10.3 s on average to compute a trajectory while the network
generates trajectories in 2.8 ms. Note that the VP-STO algorithm can be parallelized
to enhance computation time, which has not been implemented for this runtime test.
However, for c cores, computation time can be reduced to 10.3

c s, i. e. it would require more
than 3600 cores to achieve a speed similar to the network. The training time for this
network is 17 s.

The comparison shows that for imitating the VP-STO algorithm without additional
obstacles, the network with one layer and 128 neurons proves to be the best trade-off
between collision rate, trajectory duration and computational efficiency. Larger networks
generally yield lower losses but may suffer from overfitting and smaller networks tend
to produce shorter trajectories. Furthermore, 9000 training trajectories are sufficient to
obtain comparable results. Finally, the network can generate trajectories significantly
faster than VP-STO, demonstrating its efficiency.
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Figure 4.8: VP-STO approach without additional obstacles: Trajectories generated by
the 1 × 128 network (black) and the VP-STO (gray) algorithm, illustrated for
each joint
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Figure 4.9: VP-STO approach without additional obstacles: Training loss and validation
loss for different amounts of training data
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Optimal Control Formulation

For imitating the optimal control solution without additional obstacles, the artificial
network has 21 inputs: the current configuration and velocity and the goal configuration
of all seven joints. The net outputs the control input, hence the output layer has five
elements. To determine an adequate number of epochs, a network is trained for 150
epochs, showing that neither training nor validation loss significantly decrease after 50
epochs, making this value a reasonable choice for the following comparison. The other
hyperparameters are chosen based on empirical performance as well. The networks for
this scenario are trained for 50 epochs, with a batch size of 100, ReLU activation functions
after each hidden layers and Adam optimizer, using trajectories computed by an iterative
Linear Quadratic Regulator. Since the trajectory is obtained iteratively in this approach,
each step serves as a sample. With 80 steps on average per trajectory, this results in
approximately 1 440 000 samples. As each trajectory can have a different number of
steps required to reach the goal configuration, the actual number of samples depends on
the trajectories. In the following, networks of different sizes are trained and evaluated
considering their performance on the test set, consisting of 1500 trajectories.

Similar to the VP-STO networks, the networks for imitating the solution for the optimal
control formulation are not specifically trained to avoid collisions. In contrast to VP-
STO, where the generated trajectories inherently comply with the crane’s limitations,
the optimal control networks neither receive any feedback about exceeding limitations
as they are merely trained to minimize the mean squared error between the predicted
and the optimal control input. Furthermore, trajectory generation with the networks on
the test trajectories is terminated after the number of steps predetermined by the iLQR
algorithm, potentially resulting in a goal error. The performance on the test trajectories
is evaluated with respect to collision rate, compliance to limitations and goal error, the
results presented in Table 4.5, Figure 4.11, Figure 4.12 and Figure 4.13.

The training and validation loss for different net sizes are shown in Figure 4.10. The
networks with 32 neurons and those with one layer show a higher loss than larger networks.
However, the losses are very low in general and the absolute differences between the loss
curves is minimal. The one-layer networks with 32 and 512 neurons produced three and
two highly infeasible trajectories from the test set, respectively, exceeding limitations
by more than 1038%. The 1 × 128 does not show this problem to this extent, but for
some trajectories, the limits are exceeded by more than 100%. This suggests that one
layer might not be sufficient to adequately imitate the solution for the optimal control
formulation. The one-layer networks are therefore excluded from the following comparison.

The collision rate, presented in Table 4.5, shows no tendency to less collisions for larger
layers. The 2 × 128 network shows the lowest collision rate with 5.5%, the 2 × 512 network
the highest with 9.3%.
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Figure 4.10: Optimal control approach without additional obstacles: Training loss and
validation loss for different net sizes

Table 4.5: Optimal control approach without additional obstacles: Collision rate for
different net sizes

2 layers 3 layers
32 neurons 8.3% 7.3%

128 neurons 5.5% 8.7%
512 neurons 9.3% 7.5%

To visualize the extent to which limitations are exceeded, the difference between the
actual joint value and its corresponding limit is normalized by the permissible range,
while deviations in velocity and control input are normalized by their respective maximum
values. Figure 4.11 presents the maximum violation of limitations. Note that this figure
only visualizes values where the respective limit is actually exceeded. It can be observed
that the variance in velocity limit violation is especially high for 32-neuron networks.
Regarding the joint and control input limitations, the 2 × 512 and the 3 × 128 networks
yield the lowest median values and the velocity limit violation stays below 20% for both



4 Application on a Timber Crane 4.2 Learning-based Motion Planning 26

networks.
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Figure 4.11: Optimal control approach without additional obstacles: Violation of joint,
velocity and control input limitations

To evaluate how well the goal state is reached, the error between the gripper’s end
position and the desired position is examined and presented in Figure 4.12. Additionally,
the remaining energy in the system is calculated as a measure for the deviation and
oscillation of the gripper due to the non-actuated joints, see Figure 4.13. For this, the sum
of the remaining potential and kinetic energy of the system in its end state is normalized
so that a value of 0 corresponds to the equilibrium state and a value of 1 corresponds to
a deflection of 90◦ from the equilibrium state with zero velocity, i. e. a large deviation
from the desired end state. It can be observed that the 3 × 32 network yields the smallest
position errors as well as the lowest energy values while larger network tend to generate
higher deviations in the goal state. The 3 × 512 network shows especially high variance.
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Figure 4.12: Optimal control approach without additional obstacles: End-effector goal
error
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Figure 4.13: Optimal control approach without additional obstacles: Normalized remaining
energy in the non-actuated system in the end state

Although the 3 × 32 network reaches the goal configuration more precisely, it shows
poor performance regarding limitation compliance, yielding up to 46% violation of velocity
limitations. The network with three layers and 128 neurons poses a good trade-off between
collision rate, compliance to limitations and goal error. It shows a collision rate of 7.5%
and median limit violations of 0.4% for joint limits, 2.6% for velocity limits and 1.7%
for control input limits. The median deviation from the goal position is 10.1 cm. To
further evaluate how each joint contributes to the goal state error, the goal errors for each
joint are calculated. The results are presented in Figure 4.14. Note that the errors for
joint q4 are specified in cm or cm/s, whereas for the other joints the errors are specified
in ◦ or ◦/s. It can be observed that the joints q5 and q6 contribute most to the goal
velocity error, suggesting a remaining oscillation at the end of some trajectories due to
the two non-actuated joints. However, the median values are low with 0.3◦/s and 0.1◦/s,
respectively. Regarding the joint error, q2 and q5 show the highest deviations from their
desired position. Three trajectories generated by the network and the iLQR algorithm
are visualized in Figure 4.15 and Figure 4.16.

The iLQR algorithm takes 2.22 s on average to compute a solution for the optimal control
problem without additional obstacles, whereas generating a trajectory with the net takes
0.23 s. Note that generating a trajectory with this approach involves repeatedly calling
the network, hence trajectory generation takes longer than with the VP-STO network.
Computing a single step with the network takes 2.1 ms on average. All values are based
on measurements of 100 trajectories. Training the 3 × 128 network takes approximately
54 min.

Summing up, it is difficult to observe a tendency regarding performance of the different
networks. Although the training and validation losses are lower for larger networks, the
differences are minimal. One-layer networks prove to be inadequate for this scenario,
generating highly unfeasible trajectories. 32-neuron layer networks, on the other hand,
perform best considering goal errors but do not comply well with system limitations.
Hence, for imitating the optimal control solution without additional obstacles, the 3 × 128
network proves to be a good fit regarding collision rate, compliance to joint limits and
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Figure 4.14: Optimal control approach without additional obstacles: Goal state error of
all joints for the 3 × 128 network

precision. The need for larger networks in comparison with VP-STO in Section 4.2.1
indicates that the task of imitating the optimal control solution is more complex. This
and the fact that the trajectory is obtained iteratively in this case, requiring more network
calls than for the VP-STO approach, lead to a higher computation time. However, the
network still proves to be significantly faster than the iLQR algorithm.
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(a) (b) (c)

Figure 4.15: Optimal control approach without additional obstacles: Trajectories generated
by the 3 × 128 network (black) and the iLQR algorithm (gray)
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Figure 4.16: Optimal control approach without additional obstacles: Trajectories generated
by the 3 × 128 network (black) and the iLQR algorithm (gray), illustrated
for each joint
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Figure 4.17: Collision model for the timber crane with one additional obstacle

4.2.2 One Additional Obstacle: Variable Height
In the next scenario, an additional obstacle in the form of a wall beside the truck is
added, as shown in Figure 4.17. In contrast to the static truck, whose presence is learned
implicitly, the wall is variable in height, while its position and other dimensions remain
constant. The obstacle height serves as an additional input to the artificial neural network.
As this makes the motion planning task more complex for the network, more training data
is generated. For both VP-STO and the optimal control approach, 58 000 trajectories
with 6 different wall heights are used for training and validation in a 90/10 split and 1500
are used for testing.

VP-STO

As in Section 4.2.1, the network for imitating VP-STO has 40 output elements, is trained
with a batch size of 100, ReLU activation functions and Adam as optimizer. The input
layer is extended by one element to provide the network with information about the
obstacle height. A training run for 150 epochs demonstrated a noticeable decrease in
loss between 25 and 50 epochs for this scenario, therefore the networks in the following
comparison are trained for 50 epochs instead of 25 as before.

From Figure 4.18 it can be seen that all networks with layer sizes of 32 neurons yield
higher losses than the other networks, suggesting that they are too small to sufficiently
represent the policy for the underlying task.

In comparison with the scenario without obstacles from Section 4.2.1, the collision rate,
presented in Table 4.6, is significantly higher in general. To further evaluate the severity
of the collisions, the collision depth of the gripper into the wall is examined and presented
in Figure 4.19, as this case accounts for a large proportion of collisions.
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Figure 4.18: VP-STO approach with one additional obstacle: Training loss and validation
loss for different net sizes

Table 4.6: VP-STO approach with one additional obstacle: Collision rate for different net
sizes

1 layer 2 layers 3 layers
32 neurons 33.9% 28.5% 26.8%

128 neurons 18.7% 18.1% 38.1%
512 neurons 25.5% 18.4% 23.9%

It can be observed that the collision rate as well as the collision depth in the case of
an collision is highest for the 32-neuron networks, supporting the assumption that they
are not suitable for this scenario. The two-layer networks with 128 and 512 neurons
demonstrate the most favorable collision behavior, with a collision rate of 18.1% and a
median depth of 5.4 cm for the 2 × 128 network and a 18.4% collision rate and 6.9 cm
median depth for the 2 × 512 network.



4 Application on a Timber Crane 4.2 Learning-based Motion Planning 32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

3 × 512
3 × 128
3 × 32

2 × 512
2 × 128
2 × 32

1 × 512
1 × 128
1 × 32

Collision depth in m

Figure 4.19: VP-STO approach with one additional obstacle: Collision depth in the case
of a collision with the wall

In Figure 4.20, the trajectory duration for collision-free trajectories in comparison to
VP-STO are presented. It shows that the different networks perform similarly with respect
to trajectory duration, with both the 2 × 128 and the 2 × 512 network yielding the lowest
median of 111.9% of the trajectory duration of VP-STO. An interesting thing can be
observed in the plot for the 3 × 512 network. It seems to generate shorter collision-free
trajectories than VP-STO, although the latter is supposed to minimize trajectory duration.
On closer examination, it is only one trajectory with a duration of 97.4% compared to
VP-STO. This can happen if the VP-STO algorithm finds a collision-free trajectory when
the standard deviation is already very low, i. e. there is not much room to modify the
trajectory to further minimize duration. A solution to this problem could be to restart
the algorithm in these cases, with the obtained trajectory as initialization and a high
standard deviation. However, this demonstrates that the network learns to generalize well
from the training data.
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Figure 4.20: VP-STO approach with one additional obstacle: Trajectory duration for
collision-free trajectories generated by the net in relation to VP-STO
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With the 2-layer-128-neuron network being more computationally efficient than its
512-neuron counterpart, it presents the most suitable choice for imitating the VP-STO
algorithm with one obstacle of variable height. Three trajectories generated with this
network for different wall heights can be seen in Figure 4.21 and Figure 4.22.

(a) (b) (c)

Figure 4.21: VP-STO approach with one additional obstacle: Trajectories generated by
the 2 × 128 network (black) and the VP-STO algorithm (gray) for different
wall heights

The average computation time for VP-STO with one additional obstacle is 14.49 s,
whereas the network generates trajectories in 4.3 ms on average, based on measurements
of 100 trajectories. It takes about 80 s to train the network.

Summarizing, the comparison shows that adding an obstacle with variable height poses
a significantly more complex motion planning problem for the network, reflected in higher
collision rates and the need for larger networks. However, it can be observed that the
network is indeed able to adapt its trajectories to the wall’s height, as visualized in
Figure 4.21. The best performing network is the 2 × 128 network, combining the lowest
collision rate and collision depth with the shortest median trajectory duration among
the tested networks. Furthermore, it can be observed that the 3 × 128 is even able to
generate shorter collision-free trajectories than the VP-STO algorithm, proving that neural
networks can compensate for possible difficulties of VP-STO.
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Figure 4.22: VP-STO approach with one additional obstacle: Trajectories generated by
the 2 × 128 network (black) and the VP-STO algorithm (gray) for different
wall heights, illustrated for each joint
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Optimal Control Formulation

The network used for imitating the optimal control solution without additional obstacles
from Section 4.2.1 is extended by one input for the variable wall height, yielding 22 inputs.
The output stays the same, representing the control input for the five actuated joints. The
hyperparameters for training are also adopted as they provide a good balance between
convergence speed and training efficiency in this scenario as well, hence the networks are
trained for 50 epochs, with a batch size of 100, ReLU activation functions and Adam
optimizer. With 80 steps per trajectory and 58 000 training trajectories, approximately
4 640 000 samples are used for training. Due to the large number of samples, training the
optimal control networks takes significantly longer than training the VP-STO networks.
In the following, different net sizes are compared regarding their performance on 1500
test trajectories. The training and validation losses are presented in Figure 4.23.
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Figure 4.23: Optimal control approach with one additional obstacle: Training loss and
validation loss for different net sizes
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As motion planning with one variable height obstacle poses a more complex task than
without obstacles, only larger networks are considered for this scenario. It can clearly be
seen that the 32-neuron networks yield higher losses than larger networks. The 2 × 128
generates several highly unfeasible trajectories, exceeding limitations by more than 1038%.
Furthermore, the 2 × 32 and 3 × 32 network show more than 200% limitation violation
for some test trajectories, making them unsuitable for this scenario. Therefore, these
networks are excluded from the evaluation.

In Table 4.7, the collision rate for the remaining networks is presented and in Figure 4.24,
the collision distance in the case of a collision of the gripper with the wall is shown.
Regarding the collision depth, the networks show similar results, while the 4×512 network
yields the lowest collision rate of 22.1%.

Table 4.7: Optimal control approach with one additional obstacle: Collision rate for
different net sizes

2 layers 3 layers 4 layers
32 neurons 29.5%

128 neurons 33.4% 34.8%
512 neurons 32.5% 24.1% 22.1%
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Figure 4.24: Optimal control approach with one additional obstacle: Collision depth in
the case of a collision with the wall

Figure 4.25, Figure 4.26 and Figure 4.27 show the violation of limitations, the distance
between the end position and the actual goal position of the gripper and the normalized
remaining energy in the system in the end state as a measure for the deviation and
oscillation of the gripper due to the non-actuated joints, respectively. It can be seen that
the 32-neuron network neither complies well with limitations nor shows good performance
regarding the goal error. The other networks show similar performance, with the 3 × 512
network having the lowest median values for joint, velocity and control input violation. It
also demonstrates low end-effector goal errors and low energy values for the non-actuated
joints in the end state.
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Figure 4.25: Optimal control approach with one additional obstacle: Violation of joint,
velocity and control input limitations
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Figure 4.26: Optimal control approach with one additional obstacle: End-effector goal
error
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Figure 4.27: Optimal control approach with one additional obstacle: Normalized remaining
energy in the non-actuated system in the end state

Therefore, the 3×512 can be regarded as a good choice for imitating the optimal control
solution with one additional obstacle of variable height. It has a collision rate of 24.1%,
a median collision depth of 11.6 cm, median violation values of 0.5% for joint limits, 4%
for velocity limits and 3.1% for control input limits and a median goal error of 10 cm.
Three trajectories generated by the iLQR algorithm and the network are visualized in
Figure 4.28 and Figure 4.29.

(a) (b) (c)

Figure 4.28: Optimal control approach with one additional obstacle: Trajectories generated
by the 3 × 512 network (black) and the iLQR algorithm (gray) for different
wall heights

For further examination of how each joint contributes to the goal error, Figure 4.30
presents the error broken down by joint. Note that the error for q4 is specified in cm, the
others in degree. It can be observed that the two non-actuated joints yield the largest
velocity errors with a median value of 0.51◦/s for q5 and 0.56◦/s for q6, causing small
oscillations in the end configuration for some trajectories.

Based on measurements of 100 trajectories the iLQR algorithm takes approximately
2.05 s to generate one trajectory, the network 0.69 s. Computing one step with the network
takes 7.7 ms on average. Training time amounts to approximately 17 h 46 min.

To evaluate the performance of the iLQR algorithm and the neural network in the
case of varying parameters, both are applied to a system that differs slightly from the
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Figure 4.29: Optimal control approach with one additional obstacle: Trajectories generated
by the 3 × 512 network (black) and the iLQR algorithm (gray) for different
wall heights, illustrated for each joint

one the iLQR algorithm is familiar with and the network is trained on. In this way, the
robustness and adaptability of each method can be assessed, providing insights into their
generalization capabilities. In the following, the gripper’s mass is adapted to 2.5 times
the original mass and the center of gravity is shifted by 16 cm to simulate parameter
variations. Both approaches are evaluated using the test data set. The iLQR’s performance
is evaluated based on whether a solution is found despite the varying parameters. If the
algorithm has not converged after 90 steps, trajectory generation is considered unsuccessful.
The network is called iteratively to generate a trajectory and is also stopped after 90 steps
if the goal state is not reached before.

The iLQR algorithm successfully finds a solution for 945 out of 1500 trajectories, yielding
a success rate of 63%. None of the network-generated trajectories reach the goal state
within 90 steps, therefore the collision behavior, limitation violations and the goal error
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Figure 4.30: Optimal control approach with one additional obstacle: Goal state error of
all joints for the 3 × 512 network

are examined, which are presented in Figure 4.31, Figure 4.32, Figure 4.33 and Figure 4.34.
Although the network yields a collision rate of only 11.9%, which is significantly lower
than the 24.1% without parameter variations, the median collision depth is considerably
higher with 17.7 cm, in contrast to 11.6 cm before. Furthermore, the median goal error
increases from 10 cm to 18.3 cm and the median violation values are 0.9% for joint limits,
7.4% for velocity limits and 3.9% for control input limitations, which are also higher than
without parameter variations.
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Figure 4.31: Optimal control approach with one additional obstacle: Collision depth in
the case of a collision with the wall for different parameters than used for
training
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Figure 4.32: Optimal control approach with one additional obstacle: Violation of joint,
velocity and control input limitations for different parameters than used for
training
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Figure 4.33: Optimal control approach with one additional obstacle: End-effector goal
error for different parameters than used for training
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Figure 4.34: Optimal control approach with one additional obstacle: Normalized remaining
energy in the non-actuated system in the end state for different parameters
than used for training

The evaluation shows that smaller networks for imitating the optimal control solution with
one variable height obstacle generate unfeasible trajectories, exceeding limits by 200%
and higher. Overall, the network with three layers and 512 neurons demonstrated the
best performance for this scenario, showing that the network is able to adapt to varying
wall heights. Concerning the robustness with respect to varying parameters, the iLQR
algorithm yields a success rate of 63% while the network shows a significantly higher
median collision depth and median goal error.
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Figure 4.35: Collision model for the timber crane with two additional obstacles

4.2.3 Two Additional Obstacles: Variable Position
For the last scenario, two obstacles as illustrated in Figure 4.35 are added beside the
truck, representing trees. Their size is fixed, only their position along the ground varies,
yielding four additional input elements to the networks, two for each tree. Additionally,
the ground is added as an obstacle to prevent the algorithms from generating trajectories
below the trees. The networks are trained with 140 different tree configurations and
1000 trajectories each. As the trajectories are invariant to the order in which the trees’
positions are used as the input for the network, training data can be doubled by utilizing
the same trajectories for both combinations of the trees’ positions. This yields a total
of 280 000 trajectories, which are used for training and validation in a 90/10 split. For
testing, another 10 tree configurations with 150 trajectories each are used, yielding 1500
test trajectories.

As this scenario poses a very complex motion planning scenario, it is difficult to obtain
solutions for the optimal control formulation with the iLQR algorithm as it has problems
converging. For this reason, the following analysis will be carried out only on the network
for imitating the VP-STO algorithm.
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VP-STO

The VP-STO network has 14 input elements, four for the two trees’ positions and ten
for start and goal configuration of the five actuated joints. Training one network for 150
epochs shows that although training loss keeps decreasing after 50 epochs, validation
loss stagnates. To avoid overfitting, training for the following comparison is therefore
stopped after 50 epochs. Furthermore, a batch size of 100 trajectories and ReLU activation
functions after each hidden layer are adopted from the other scenarios as they showed
good performance regarding convergence and training efficiency. As the scenario with
two movable obstacles constitutes a complex motion planning task, larger networks are
considered.

Networks with 128, 512 and 1024 neurons with two, three, four and five layers each
are considered for the following comparison. As some of the loss curves for the different
net sizes are very similar, only six of the twelve curves are shown as representatives in
Figure 4.36 for the sake of clarity.
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Figure 4.36: VP-STO approach with two additional obstacles: Training loss and validation
loss for different net sizes
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Table 4.8 and Figure 4.37 present the collision behavior of the networks on the test set.
Figure 4.37 shows the overlapping volume of the two bodies involved in the collision as a
measure for the severity of the impact. The high collision rates and the high variance in
the collision volume suggest that the networks do not learn the underlying task well. This
might be due to an insufficient amount of training data as only 1000 trajectories are used
for each tree configuration. It can be observed that all networks yield similar maximum
values for the collision volume. This is the case when the gripper and one of the trees
completely overlap, yielding a collision volume of 0.38 m3. The 5 × 128 network yields the
lowest collision rate of 53.9% and a median collision volume of 0.0054 m3.

Table 4.8: VP-STO approach with two additional obstacles: Collision rate for different
net sizes

2 layers 3 layers 4 layers 5 layers
128 neurons 71.1% 66.5% 60.5% 53.9%
512 neurons 66.1% 70.9% 62.5% 65.8%

1024 neurons 62.9% 55.9% 58.8% 55.8%

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4

5 × 1024
5 × 512
5 × 128

4 × 1024
4 × 512
4 × 128

3 × 1024
3 × 512
3 × 128

2 × 1024
2 × 512
2 × 128

Collision volume in m3

Figure 4.37: VP-STO approach with two additional obstacles: Collision volume of the
two collision bodies

The trajectory duration in relation to the VP-STO algorithm is presented in Figure 4.38.
Note that the 3 × 128, the 4 × 128, the 4 × 512, the 4 × 1024, the 5 × 512 and the 5 × 1024
network generate one or two trajectories from the test set that yield a trajectory duration
of more than seven times the duration of VP-STO. These are not visualized in Figure 4.38
to be able to better evaluate the plot. It can be observed that all but the 3 × 512 network
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generate trajectories that are shorter than those computed by VP-STO. As mentioned in
Section 4.2.2, this can happen if the VP-STO algorithm finds a collision-free trajectory
when Σvia is already low, leading to a trajectory that is not as short as possible. However,
the networks seem to compensate for these difficulties also in this scenario by learning to
generalize. One of these trajectories, yielding a duration of 29.4% in relation to VP-STO, is
visualized in Figure 4.39, the corresponding joint trajectories are presented in Figure 4.40.
The 2 × 512 network yields the lowest variance regarding trajectory duration, the 5 × 1024
network yields the lowest median of 113.4%.

0 50 100 150 200 250 300 350 400 450
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3 × 1024
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Figure 4.38: VP-STO approach with two additional obstacles: Trajectory time for collision-
free trajectories generated by the net in relation to VP-STO

Three collision-free trajectories generated by the 5 × 128 network are visualized in
Figure 4.41 and Figure 4.42, along with those computed by the VP-STO algorithm.
Measurements of the computation time based on 100 trajectories yield 16.5 s for VP-STO
and 4.7 ms for the network for one trajectory, showing the clear advantage of the net
regarding computational complexity. Training this network takes approximately 15 min.

For imitating the VP-STO algorithm with two additional obstacles with varying position,
none of the trained networks show satisfactory behavior as the collision rates on the test
trajectories are high. However, it is possible that performance improves with more training
trajectories for each tree configuration as Figure 4.9 shows that training and validation
loss can be improved by using more training data. Figure 4.9 suggests that at least 4000
trajectories for each configuration are required to yield good results. However, it can be
observed that the networks are able to generalize, yielding shorter collision-free trajectories
than the ones found with VP-STO. Furthermore, the network shows a significantly lower
computation time.
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Figure 4.39: VP-STO approach with two additional obstacles: Shorter trajectory generated
by the 5 × 128 network (black) than by VP-STO (gray)
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Figure 4.40: VP-STO approach with two additional obstacles: Shorter trajectory generated
by the 5 × 128 network (black) than by VP-STO (gray), illustrated for each
joint
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(a) (b) (c)

Figure 4.41: VP-STO approach with two additional obstacles: Trajectories generated by
the 5 × 128 network (black) and the VP-STO algorithm (gray) in top view
and side view
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Figure 4.42: VP-STO approach with two additional obstacles: Trajectories generated by
the 5 × 128 network (black) and the VP-STO algorithm (gray), illustrated
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5 Conclusion
In this thesis, two approaches for learning-based motion planning for a timber crane in
three different environmental settings were examined. Both approaches employ behavioral
cloning, an imitation learning method, with an artificial neural network. One approach is
to imitate the Via-point-based Stochastic Trajectory Optimization (VP-STO) algorithm
described in [23] with a neural network that generates a trajectory in one shot by predicting
via-points for each joint. The other method involves imitating the solution for an optimal
control problem, which computes the trajectory iteratively by predicting the control input
for the current system state.

Both approaches demonstrate good performance for the setting without additional
obstacles and the scenario with one additional obstacle of variable height, indicating that
the networks are capable of learning the motion planning task across varying environmental
conditions through behavioral cloning. However, in the case of two additional obstacles
with variable position, the network underperformed, with more than half of the generated
trajectories resulting in collisions. Increasing the amount of training data might improve
the network’s performance, as indicated by an analysis of training trajectories required to
obtain satisfactory results in the obstacle-free scenario.

Regarding network architecture, it can be observed that the more complex the mo-
tion planning task becomes, the larger the networks are required to be to ensure good
performance.

The neural networks show a significant advantage considering computational speed
over the optimization algorithms, making them a promising alternative for real-time
applications. Furthermore, the networks are able to account for challenges of the VP-STO
algorithm, such as producing non-time-optimal trajectories in complex environments. The
networks learn to generalize and are able to find shorter, collision-free trajectories in these
cases.

However, the networks are not robust against parameter variations as they yield high
collision depths and high goal errors in the presence of parameter values they were not
trained on, while the optimizing algorithm still manages to successfully generate about
two-thirds of the trajectories.

For future studies, some enhancements are proposed:

• Improving the training data: The results show that the networks imitating
VP-STO sometimes produce trajectories that are shorter than the ones computed
by the algorithm itself, indicating that the data the networks are trained on is not
optimal. Ensuring that VP-STO consistently outputs the shortest possible trajectory
would make the networks’ training more efficient and potentially yield improved
results. The key challenge here is to develop an automated method to verify whether
a generated trajectory is optimal.

50



5 Conclusion 51

• Adapting the loss function for training: In the case of training the VP-STO
network, the loss function could involve not only minimizing the position error but
also the curvature error between the predicted and optimal via-points, possibly
improving the precision with which the network learns desired trajectories.

• Using reinforcement learning: Performance is assessed on the basis of collision
rate and trajectory duration of the net-generated trajectories in the case of the
VP-STO networks and on the basis of collision rate, limitation violation and goal
error for the optimal control networks. However, the networks are only trained to
minimize the mean squared error between predicted and optimal via-points and
control inputs, respectively. Hence a low loss does not guarantee minimization of the
criteria mentioned before. To account for these aspects specifically, reinforcement
learning could be applied instead of imitation learning, ensuring that lower losses
directly translate to better performance with respect to the specified criteria.

Furthermore, even though the produced trajectories are not as precise as the optimiz-
ing algorithms, they can still serve as initial guesses for optimizers, allowing for faster
convergence in complex environments.
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