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Abstract

In recent years, machine learning has advanced rapidly. Nowadays, neural networks are not only

used in large data centers but also on tiny embedded devices, which often have power and perfor-

mance constraints. Machine learning tasks are highly computationally- and power intensive. Accord-

ingly, concepts for efficient training are in high demand. This work presents the Back Propagation

Layer Scheduling (BPLS) approach. BPLS can reduce power consumption and shorten training time

by skipping less critical training operations or, depending on the chosen configuration, reduce mem-

ory requirements. We investigated BPLS in numerous fine-tuning experiments, featuring the Cifar10,

Cifar100 and a custom created key-word dataset. By comparing the weights of various training ap-

proaches using Euclidean Distance and Cosine Similarity, we discovered that BPLS and its Per-Layer

Learning Rate counterpart approach similar optima. Furthermore, UMAP indicates that they follow

nearly identical training paths, towards those optima. We required up to 51.3% less operations for

training with improved accuracy. In another test, a reduction in peak memory of up to 49.6%, with only

a slight decrease in accuracy (1.9%) was achieved. On MCUs, this reduction in number of operations

directly correlates with training time and energy consumption. This allows to train larger networks on

smaller and weaker devices. The expected optimizations were validated on an actual MCU.
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Kurzfassung

Machine Learning nimmt zunehmend Platz in unsere Gesellschaft ein. Während neuronale Netze nicht

mehr nur in großen Rechenzentren anzutreffen sind, findet man sie immer öfters auch auf kleinen

Embedded Devices. Machine Learning ist generell sehr energie- und ressourcenintensiv. Gerade Em-

bedded Devices unterliegen oft Ressourcenbeschränkungen, was das Ausführen, aber vor allem auch

das Training auf ihnen erschwert. Dementsprechend werden neue Konzepte für effizientes Training

benötigt. Diese Arbeit stellt das sogenannte Back Propagation Layer Scheduling (BPLS) vor. BPLS

überspringt weniger kritische Trainingsschritte und reduziert dadurch den Stromverbrauch und die

Trainingszeit. Abhängig von der Konfiguration kann BPLS auch den Spitzenspeicherbedarf (peak-

memory) senken. Im Rahmen dieser Arbeit wurde BPLS in zahlreichen Fine-Tuning-Experimenten,

basierend auf Cifar10, Cifar100 und einem speziell dafür erstellten Keyord-Datensatz untersucht. In

den Experimenten wurden die Netzwerkkonfigurationen verschiedener Trainingsansätze mittels Eu-

klidischer Distanz und Kosinus-Ähnlichkeit verglichen. Dabei zeigte sich, dass BPLS sich ähnlichen

Optima annähert wie das Training mit entsprechenden Layer-spezifischen Learning Rates. Weiters

wurde mittles UMAP gezeigt, dass beide Ansätze nahezu identische Pfade zu dem jeweiligen Opti-

mum aufweisen. Des Weiteren haben wir eine Reduktion von 51.3% der Operationen bei verbesserter

Genauigkeit erreicht. Bei einem anderen Test wurde der Spitzenspeicherbedarf um 49.6% reduziert, bei

leicht verringerter Genauigkeit (1.9%). Auf MCUs korreliert die Reduktion der Operationen mit der

Trainingszeit und dem Energiebedarf. Dadurch können größere neuronale Netze auf kleineren und

weniger performanten Geräten trainiert werden. Die erwarteten Optimierungen wurden mittels MCU

validiert.
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Chapter 1

Introduction

The field of machine learning has experienced substantial advancements in recent years. Interesting

papers in this area are published almost monthly. Beyond academia, machine learning has led to sig-

nificant improvements in solving real-world problems, particularly in the fields of natural language

processing [11], automotive industries [12], healthcare [13], and many others.

On-device machine learning is a subcategory of machine learning. It involves performing inference

and training of neural networks on standalone devices such as laptops and smartphones. Additionally,

machine learning on embedded devices such as Microcontroller Units (MCUs) and Field Programmable

Gate Arrays (FPGAs) has become increasingly popular recently. While on-device inference simply

involves executing previously trained neural networks, on-device training refers to training networks

locally using data samples available on the device.

On-device inference has been common for a while now. However, training has typically been per-

formed on powerful servers rather than directly on local devices, primarily due to computational limita-

tions of embedded platforms. In recent years, embedded platforms have become increasingly powerful

and energy-efficient, making them more suitable for on-device training. Training on these devices is

also referred to as embedded training, tiny training, or training on high-constraint devices.

On-device training offers certain benefits. It not only enables the optimization of neural networks

based on the local environment but also ensures independence from internet connectivity. Conse-

quently, this leads to a significant improvement in security by allowing users to keep their data com-

pletely private. Moreover, on-device training conserves network bandwidth, reduces latency, and saves

energy because no data needs to be uploaded to the cloud and no updated model needs to be sent back

to the device.

1



2 Chapter 1. Introduction

This enables the implementation of smart and secure embedded solutions. For example, smart sen-

sors can be installed near technical equipment inside factories. These sensors enable the detection of

anomalies, such as data drifts, help to reduce communication traffic by abstracting data, and ensure

timely execution of maintenance tasks. These sensors often contain neural networks running on an in-

tegrated MCU. The MCU is not only responsible for analyzing data by performing on-device inference

but can also retrain the deployed neural network to adapt to the local environment over time. Another

example could be a medical device that learns to provide personalized predictions for a specific patient.

This allows medical situations to be classified with very high accuracy while maintaining the privacy

of sensitive data.

Despite the advancements in embedded platforms mentioned earlier, they still encounter limita-

tions when dealing with large neural networks or require additional optimizations to enhance energy

efficiency and reduce latency. Consequently, various methods have been introduced to accelerate train-

ing, improve energy efficiency, and minimize memory usage on embedded device. The simplest way to

optimize the training of neural networks on embedded platforms involves selecting appropriate train-

ing optimizers and hyperparameters, such as batch size. Additionally, there are several fundamental

model-side optimization techniques:
• Quantization: Utilizing reduced-precision representations, such as 16-bit, 8-bit, or even lower

integer values instead of the commonly used 32-bit full-precision floating-point format, can re-

duce memory requirements for both inference and training. However, this approach may also

result in a reduction in model accuracy.

• Pruning: Removing less important nodes or connections from a neural network or ignoring less

important activations.

• Sparse Updates: Instead of updating the entire neural network, only a subset of parameters is

updated while the rest are frozen. For example, updates can be restricted to biases while weights

remain unchanged.

There are further advanced techniques published recently, such as MiniLearn [14], TinyOL [15], and

POET [16]. A more detailed introduction to efficient training on resource-limited devices can be found

in the Background and Related Work chapters of this thesis.

Independent of the mentioned techniques, this thesis introduces a different approach for efficient

fine-tuning of neural networks on resource-constraint devices. This approach is called Back Propaga-

tion Layer Scheduling, abbreviated as BPLS.
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Different from the previously mentioned approaches, BPLS focuses on reducing power consumption

and memory requirements, as well as speeding up training by applying a predefined and well-suited

training schedule that skips certain layer updates and corresponding computations, while minimizing

the impact on network accuracy. Furthermore, BPLS is designed to be compatiblewith other approaches

for efficiently fine-tuning neural networks on resource-constrained devices.

The following chapters, Background and Related Work, contain an overview of the theory behind

this thesis and corresponding state-of-the-art concepts. They provide all the required information to

understand the upcoming explanations. This is followed by a detailed description of BPLS, which in-

cludes its benefits, restrictions, and important aspects to note. Subsequently, the Methodology chapter

describes how the experiments were executed and which datasets and networks were used. Finally, the

experimental results and a final conclusion are presented.





Chapter 2

Background

This chapter presents the theoretical background necessary to understand this thesis. It begins with

fundamental concepts of machine learning, with a specific focus on the types of neural network el-

ements used in the experiments featured in this work. Additionally, it covers the basic concepts of

on-device training and training under high constraints. The chapter concludes with models and met-

rics for analyzing neural networks.

2.1 Basics of Machine Learning

Even when machine learning started booming in the early 2020s, with impressive Large Language

Models (LLM) [17] such as GPT [18] or AI for image synthesis [19] such as DALL-E [20], the actual ba-

sics of machine learning date back to the 1990s. Basically, machine learning algorithms autonomously

improvemathematical models using sample (training) data to make decisions without explicit program-

ming. This allows to solve problems that are challenging to address using conventional methods, such

as speech recognition. However, despite its seemingly high complexity, the underlying mathematical

principles of machine learning are relatively simple. The subsequent pages provide an overview of the

basics of training neural networks.

2.1.1 Categories of Machine Learning

Machine learning is about using known data to make predictions about unknown data. The training

of neural networks can be performed in various ways, categorized into Supervised, Unsupervised, and

Reinforcement Learning.

5



6 Chapter 2. Background

In Supervised Learning, labels attached to the training data allow the neural network to correlate

features. Supervised Learning is used to solve tasks like regression and classification. Regression is

used to predict values based on the learned patterns and classification to recognize data such as images

and audio.

The other categories are Unsupervised Learning and Reinforcement Learning. In Unsupervised

Learning, the network is trained using unlabeled data. It is commonly employed to solve clustering

problems or perform anomaly detection. On the other hand, in Reinforcement Learning, the network

interacts directly with a task and receives rewards based on its actions. This enables networks to max-

imize performance by autonomously determining optimal behavior within a specific context and im-

proving decision-making over time. Reinforcement Learning is often utilized in robotics and game AI to

enhance specific abilities. A notable example of reinforcement learning is AlphaStar, the first artificial

intelligence (AI) system to beat a professional player at the game of StarCraft II [21]. In addition, Rein-

forcement Learning also shows potential in other industries. For example, NVIDIA’s AutoDMP [22]

uses Reinforcement Learning to optimize macro placement in chip design.

Additionally, training neural networks can be categorized as Online [23] and Offline Learning. Of-

fline Learning is far more common and refers to cases where a training dataset is prepared in advance

before training the model. On the other hand, Online Learning involves training during inference,

meaning that the actual real-world application data used for inference is simultaneously used to up-

date the network.

2.1.2 Concept of Supervised Machine Learning

Deep neural networks consist of several layers. The term ’deep’ refers to the depth of the network,

measured by the number of layers. [24]These layers contain weights and biases. The goal of the training

process is to adjust these parameters in a specific way. Unfortunately, these adjustments cannot be

computed using analytical methods. Instead, they must be discovered empirically.

In Supervised Learning, input data is labeled, meaning that the actual output can be compared to its

ground truth. For example, the input data could be a collection of handwritten digits, where the labels

represent the numbers from 0 to 9, just as in the well-known MNIST dataset [25].

To compare the network output with its ground truth, an error function, also known as cost or

loss function is used. There are several types. For example, the cross-entropy error function is often

used for image classification. However, one of the simplest is the Mean Squared Error (MSE), where �y
represents the ground truth, y represents the output of the network for the corresponding input data,
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and i is the index of the output class.

LMSE =
1

2

�
i

(�yi − yi)
2 (2.1)

Usually, the gradient of the error function with respect to the network parameters is used to adjust the

weights and biases in the opposite direction of the gradient, employing the widely known Gradient

Descent Algorithm. Ideally, this process reduces the error step by step until a minimum is reached.

Deep neural networks consist of several layers. To adjust the weights and biases of layers further away

from the output, the error information must be propagated through the network, a process known as

Back Propagation. Back Propagation essentially involves applying derivation’ s chain rule. While there

are alternative algorithms, Gradient Descent is by far the most common method used to train neural

networks. More detailed explanations about the algorithm can be found here [26].

The data used to train and validate neural networks is organized into datasets. Typically, datasets

are split into Training (60-80%), Test (10-20%), and Validation (10-20%) subsets. The Training Set is

usually the largest and is used to update the model parameters (weights and biases) during the training

process. The Validation Set, on the other hand, is used to evaluate the model’s performance during

training. It is also employed for tuning Hyperparameters and observing overfitting, which are terms

explained later on. The network state that yields the best results on the Validation Set is typically

chosen as the final network configuration, making this final configuration biased by the Validation Set.

To evaluate the network under real-life conditions, the Test Set is used. The Test Set is not utilized

during training or Hyperparameter tuning. Instead, it is employed after training is complete to assess

the final performance and generalization ability of the trained network on unseen data. [24]

The specific division into subsets depends on the dataset size, task complexity, and the availability

of data. In many cases, the data is simply split into two parts instead of three: Training Set (80%) and

Validation Set (20%), while the Validation Set is often referred to as Test Set in this case [27], just as in

this thesis.

The training process can be monitored using four primary metrics: train and test - error/accuracy.

The error metric quantifies the difference between ground truth and predicted outputs averaged over

all output classes. Accuracy measures the proportion of data samples correctly classified.
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2.1.3 Hyper Parameters

To achieve satisfactory training behavior, the so-called hyperparameters must be configured correctly.

Hyperparameters differ from network parameters like weights and biases in that they do not define

the network but rather the training process. They impact how quickly the network learns, the quality

of the resulting network, and the resources required for training. Some important hyperparameters

include Learning Rate, Batch Size, and the Number of Training Epochs.

Starting with the most basic one, the Number of Training Epochs defines how many times the

complete training data is applied to the network. One epoch corresponds to one iteration through the

training data. While several epochs are usually required to achieve satisfactory results, training for

too many epochs can have negative effects. Overfitting can occur when the network becomes overly

specialized on the training data, losing its ability to deal with general, yet unknown data. Decreasing

test-accuracy by high train-accuracy indicates Overfitting.

The Training Batch Size determines how many training data samples are processed before the net-

work is updated. The computed weight and bias changes, also called gradients are computed for a

batch of input data, averaged, and finally applied, resulting in an updated network. In general, larger

batches lead to improved training speed but also increasememory requirements because gradients must

be cached. The size of a batch can be as small as one data sample but can also contain the complete

training data. Batches containing less than the complete training data are referred to as Mini-Batches.

Besides Training Batch Size, the Inference Batch Size defines how many samples are simultaneously

applied for validating the network, affecting memory requirements and validation speed.

Another significant hyperparameter that affects training performance is the learning rate. The learn-

ing rate simply represents a multiplication factor determining how intensely the weights and biases are

modified when updating. It can be difficult to determine the right learning rate for a specific network,

data set, and batch size. Low learning rates often lead to good network quality but require many epochs

for training. Also, low learning rates pose the risk that training converges at a local optimal network

configuration which likely does not perform as well as a global optimum. Contrary, high learning

rates can reduce the number of epochs required to find good network configurations but may result in

overshooting optimal configurations. Learning rates are often adjusted over time using learning rate

schedules. Those will be explained later.
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2.1.4 Data sets

Training neural networks requires a lot of data. Fortunately, relatively extensive datasets are avail-

able online for free use. Some of the most famous datasets for image recognition include the already

mentioned MNIST [25], CIFAR-10/100 [28], and ImageNet [29]. Others, for example, consist of audio

keyword samples like Google’s Speech Commands dataset [30].

Even though common datasets consist of several thousand samples, the earlier mentioned over-

fitting phenomenon can still occur. There are several ways to prevent the network from overfitting.

For example, using smaller networks or even larger datasets. A simple way to increase the amount of

available training data is through data augmentation. Simple augmentation methods for image data

include flips around the vertical axis, rotations, cropping, scaling, or color modifications. These mod-

ifications can be applied to the images with a certain probability, leading to slightly different training

data for each epoch. Most machine learning frameworks provide predefined functions to simplify data

augmentation [31].

Besides augmentation, normalization is another important data preprocessing step. Non-normalized

data samples with wide ranges can cause instability during training. For example, one feature of a

dataset ranges from 1 to 10 and another from 1 to 999. This could lead to large updates applied to one

weight due to its large gradient, preventing the Gradient Decent algorithm from converging. On the

other side, smaller updates could be applied to another weight due to its smaller gradient, resulting

in smaller steps and accordingly longer training time. Therefore, datasets are often normalized before

training. There are different normalization approaches, such as scaling the dataset to a range from 0

to 1 or modifying the dataset to have a mean of 0 and a standard deviation of 1. In other words, nor-

malization brings the different data samples into a consistent range, which can improve learning speed

and network quality.

2.2 Structure of Neural Networks

As previously mentioned, deep neural networks are composed of a sequence of layers. These are among

others Convolutional Layers, Linear Layers, and Max Pooling Layers. Layers closer to the input of the

network are responsible for recognizing basic structures, while layers closer to the output are respon-

sible for recognizing details. [32]

Diagram 2.1 shows the VGG16 network as an example. Convolutional Layers extract features from

the input data while Pooling Layers summarize these features. Extracted features are stored in so-

called feature maps. In this example, the input image has dimensions of 224 x 224 x 3 (width, height,



10 Chapter 2. Background

channels), whereas subsequent feature maps are of dimensions such as 56 x 56 x 256 or 7 x 7 x 512.

Accordingly, when propagating through the network, the size of the feature maps typically decreases

while the number of channels increases.

The network’s output is usually a Linear Layer which allows to classify the extracted features. To

confine the output values within a range of 0 to 1, a Softmax Layer can be attached. Typically, after each

Convolutional and Linear Layer an activation function is applied. In addition to the depicted layers, it

is common to incorporate Dropout and Batch Normalization Layers to enhance the training process.

Figure 2.1: VGG16 Architecture [1]

2.2.1 Convolutional Layers

Convolutional Layers form the backbone of Convolutional Neural Networks (CNN), which are special-

ized for computer vision tasks. As the name suggests, these layers are based on mathematical convolu-

tion operations. In general, a filter is systematically applied to the input to produce a feature map. The

filter consists of trainable weights.

The convolution operation involves computing a dot product between the filter and a patch of the

input, resulting in a single value. Common filter sizes include 3x3, 5x5, and 7x7. Computing this dot

product for every filter-sized patch of the input by shifting the filter from left to right and top to bottom

results in a feature map.

In practice, Convolutional Layers often receive not just a single 2D image or featuremap butmultiple

ones. For instance, a color image in RGB format consists of three channels: red, green, and blue. The
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number of input channels is often referred to as input depth. An input of depth 3 requires a filter of

depth 3. Consequently, a 3x3x3 (width, height, depth) filter comprises 27 trainable weights. The number

of different filters applied to the input determines the number of output channels, which represents the

input depth of the subsequent layer. In other words, every filter produces its own feature map.

Convolutional Layers positioned at various depths within a network extract different types of in-

formation. Layers near the input tend to learn to extract low-level features like lines, whereas those

closer to the output focuses on features such as cars, faces, or animals. Those in between learn to ex-

tract simple shapes. Thus, stacking multiple Convolutional Layers sequentially leads to a hierarchical

decomposition of the input.

Figure 2.2 illustrates the principle of 2D convolution. In practice, various configuration options

exist, such as how to handle edges (padding) and how to move the filter across the input data (stride).

Apart from 2D convolutions used for image data, 1D convolutions are common for processing one-

dimensional data like sensor signals.

Figure 2.2: 2D - Convolution Example [2]

2.2.2 Linear Layers

Linear Layers, often referred to as Dense Layers or Fully Connected Layers, are relatively simple in

structure. The output value is computed by multiplying each input to a specific output by the cor-

responding weight, summing up the results, and then adding a bias. In other words, Linear Layers

represent a vector-matrix multiplication that can be described using the following formula:

yj = bj +
�
i

xi · wi,j (2.2)

Here, yj defines the value of output node j, bj represents the corresponding bias, xi is the value of the

input feature i, and wi,j is the corresponding weight.
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Linear Layers are frequently used to reshape or transform the dimensions of the data within neural

networks. When placed at the output of networks, Linear Layers are often referred to as Classifier

Layers, particularly in classification tasks.

2.2.3 Activation Functions

As mentioned earlier, activation functions are typically applied after each Convolutional and Linear

Layer. They play a crucial role in solving complex problems and enable the propagation of data through

deep networks.

There are several types of activation functions, broadly categorized into two commonly used groups.

The first group includes the Rectified Linear Unit (ReLU), defined as f(x) = max(0, x). ReLU is espe-

cially popular in CNNs, computationally efficient, and typically performs well during training. How-

ever, due to mapping negative values to zero, it causes the ”Dying ReLU” problem [33], a subcategory of

the Vanishing Gradient Problem [34]. This causes some nodes to die and stop learning. ReLU does not

saturate for positive input values. This has positive effects in many cases, however, does not prevent

problems caused by extremely high positive outputs of the upstream layer at all.

ReLU is an old but still very commonly used activation function. However, there are extended

versions that solve some of the mentioned problems. For instance, Leaky ReLU is defined as f(x) =

max(αx, x) with α being a Hyper Parameter usually set around 0.01. This solves the lDying ReLUz
problem to some extent. Another variant, ReLU6, is defined as f(x) = min(max(0, x), 6), limiting the

output to a maximum value of 6 and preventing excessively high activations that could cause gradient

instability.

The second important category of activation functions includes Softmax and Sigmoid functions,

both of which produce output values between 0 and 1. In classification networks, these functions are

commonly used at the output layer, where they normalize the output into probabilities corresponding

to different classes. At other network types, such as RNN and Transformers, these functions play more

significant roles.

2.2.4 Pool Layer

One of the most common types of Pooling Layers is Max-Pooling. Max-Pooling layers are often used

after Convolutional Layers. They facilitate the extraction of prominent features, such as the eye of a cat,

while discarding less relevant information, such as the background of an image. Max-Pooling achieves

this by dividing the input feature map into smaller regions and only propagating the highest value from

each region.
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Figure 2.3: Sigmoid and ReLU activation functions

In Figure 2.4, a Max-Pooling Layer with a 2x2 kernel and a stride of 2 is illustrated. As shown,

Max-Pooling selects the maximum value from each 2x2 block and outputs it. Consequently, the size of

the output feature map is half the size of the input feature map. This down-sampling not only has a

positive impact on the network quality but also reduces the computational load on subsequent layers.

Figure 2.4: Max-Pool with 2x2 kernel and stride of 2 [3]

It is common to incorporate multiple Max-Pooling Layers within a network. However, it is generally

advised against applying Max-Pooling in the initial stages of CNNs as the Kernels would be extract-

ing edges and gradients instead of useful features. Furthermore, the final feature maps should ideally

maintain a certain size and not be excessively reduced.

In addition to Max-Pooling and Average-Pooling, which computes the average value in each region,

there are more sophisticated pooling techniques such as Global Average Pooling [35], Region of Interest

Pooling [36], and Spatial Pyramid Pooling [37].

2.2.5 Batch-Normalization Layer

Batch Normalization Layers [38] are commonly placed after Convolutional and Linear Layers to stabi-

lize training. The outputs of one layer serve as the inputs to the next, much like how the dataset serves

as input to the first layer. In the previous section, the normalization of datasets was described. Similar
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principles can be applied to the data between layers.

A Batch Normalization Layer consists of two trainable parameters, beta (β) and gamma (γ), along

with two non-trainable parameters, Mean Moving Average (µ) and Variance Moving Average (σ2),

referred to as the state of the layer. The inputs to a Batch Normalization Layer are referred to as

activations. The activations over a batch applied to one single input of the Layer are combined into

an activation vector. Batch Normalization computes the mean and variance for each activation vector

separately. These mean and variance values are then used to normalize, shift, and scale the output of

the layer based on the trained γ and β parameters, optimizing the training behavior.

In the inference phase, it is beneficial to have access to the mean and variance computed during

training. However, computing and saving the mean and variance for the entire dataset would be com-

putationally expensive. Instead, Batch Normalization Layers compute an EMA (Exponential Moving

Average) of the mean and variance during training, which is used in the inference phase. This method is

more efficient as it only requires storing themost recent value of themoving average. The normalization

process represents a linear function. Consequently, computational efficiency can be further improved

by fusing Convolutional or Linear Layers with their subsequent Batch Normalization Layers. [39]

The following formulas describe Batch Normalization Layers mathematically. Here, xi represents

the activations, x̂i represents the normalized output, m represents the batch size and � is a small con-

stant added for numerical stability:

Compute Mean and Variance:

µ =
1

m

m�
i=1

xi (2.3)

σ2 =
1

m

m�
i=1

(xi − µ)2 (2.4)

Normalize:

x̂i =
xi − µ√
σ2 + �

(2.5)

Scale and Shift:

yi = γx̂i + β (2.6)
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2.2.6 Dropout Layer

The fundamental idea behind Dropout Layers [40] [41] is to randomly drop features during training.

This helps prevent overfitting, enabling the construction of larger and more robust networks. Without

applying Dropout Layers, neural networks may become overly reliant on specific features, leading to

the dominance of certain weights while others become negligible. Over time, this can cause some

weights to stop learning effectively.

To address this, in each training step, Dropout Layers randomly adjust the network architecture by

dropping features with the probability 1 - p. Dropout probabilities for large networks are commonly

between 0.2 and 0.5. When Dropout Layers are placed directly at the input of the network, 1 - p should

be kept lower than 0.2 to avoid excessive feature dropout.

During inference, Dropout Layers are deactivated. Since the input values are not randomly dropped,

the output values would be higher than during training. To compensate for this, the weights are scaled

by the retaining factor p.

More advanced variations of Dropout, such as Gaussian Dropout [42], provide comparable or im-

proved performance. Dropout is considered a regularization technique. Other regularization tech-

niques include L1 and L2 regularization [43], which are not applied in this thesis.

2.3 On-device Machine Learning

This thesis focuses on fine-tuning neural networks on resource-constrained devices. Therefore, a gen-

eral overview of on-device machine learning is provided in this section. On-device machine learning

refers to performing machine learning tasks, including both inference and training, directly on lo-

cal devices. These devices can range from laptops and smartphones to Microcontroller Units (MCUs)

and Field Programmable Gate Arrays (FPGAs). The machine learning tasks executed on these devices

include local data classification, such as processing images, text, sensor signals, or audio recordings

directly on the device instead of transmitting the data to a server. On-device machine learning offers

various advantages but also comes with limitations, which will be discussed later [44].

Typically, neural networks are not trained from scratch on-device. Instead, networks pre-trained

on powerful workstations or servers are employed and locally adapted to improve or customize their

behavior. This reduces the number of training epochs, thus saving energy and time compared to training

from scratch. Local network adjustments are broadly categorized into fine-tuning and transfer learning.

Transfer learning involves repurposing a pre-trained network for different tasks, such as classifying
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additional or different categories, while fine-tuning refers to adjusting the pre-trained parameters to

optimize network behavior.

2.3.1 Transfer Learning and Fine-Tuning

Transfer Learning allows the application of pre-trained networks for new tasks by transferring model

knowledge between data domains. This is typically achieved by adding a new Linear Layer after or

instead of the output of the pre-trained network. In classification networks, this new output layer may

differ in the number or type of classes. For example, a network trained to classify audio keywords such

as ”up,” ”down,” ”left,” ”right,” and numbers from ”0” to ”9” might have 14 output classes. However, the

same network can be adapted to classify only a subset of these keywords or entirely new words using

transfer learning.

While a transferred network benefits from pre-training, its performance may not be optimal for the

new task. To enhance performance, the network is typically fine-tuned. As mentioned earlier, layers

closer to the input extract general features, while those closer to the output detect details. Therefore, as

long as the new data domain shares similarities with the pre-training data, layers closer to the output

require more significant adjustments than those closer to the input.

Typically, during fine-tuning, some layers closer to the input are frozen, meaning they are not

updated during training. This not only saves computational resources but especially preserves well-

trained and generalized parts of the network, leading to better and especially more general performing

networks. However, determining which layers to freeze can be challenging if the new data is not well

known.

Even with frozen layers, Catastrophic Forgetting [45] is a common issue in transfer learning, par-

ticularly in continuous learning scenarios where the network continually learns from new data rather

than performing explicit retraining. Catastrophic Forgetting can cause the network to forget previ-

ously learned knowledge, impacting its ability to recognize previously identified objects or patterns.

Lower learning rates and periodic retraining on previous data can mitigate this problem. [46] However,

retraining on previous data requires storing data samples, potentially leading to memory shortages.

Fine-tuning neural networks is not restricted to transfer learning. It is common to locally fine-tune

pre-trained networks to improve or personalize network behavior. Going back to the previous key-word

example. Deploying a pre-trained network on a smartphone owned by an individual and fine-tuning it

using data recorded by that person can optimize the network’s performance for that specific user.
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An interesting concept related to fine-tuning is Per-Layer Learning Rate. As mentioned, layers

closer to the output typically require stronger adjustments during fine-tuning compared to those closer

to the input. Using excessively high learning rates can negatively affect training behavior. These ad-

justment requirements lead to different learning rate limits per layer. In other words, assigning layer-

specific learning rates allows the application of higher learning rates at later layers while keeping the

learning rate at earlier layers low. While this approach may not necessarily improve network quality,

it often reduces the number of epochs required for training.

2.3.2 Benefits of On-device Training

The best way to introduce the benefits of on-device training is by examining real-life examples. Con-

sidering improving home assistants like Amazon’s Alexa [47], users with strong accents or speech

impairments, such as stuttering, cluttering, or lisping, may face challenges in being understood cor-

rectly. On-device training allows for improvement in such cases. When the home assistant encounters

a word it classifies with low confidence, it could prompt the user to confirm if the classification was

correct. This feedback can then be used to enhance the network. On-device training in this example

facilitates personalizing the network while ensuring privacy.

Another example is personalized face recognition on smartphones. Typically smartphones can be

unlocked by simply showing the owner’s face to the camera. To achieve this, users capture multiple

images of their faces, which can then be used for fine-tuning a neural network directly on the device.

Just as in the previous scenario, on-device training ensures that private data remains on the device and

does not need to be transmitted to any server.

In addition to supervised classification tasks, anomaly detection is a common use case for on-device

training across various domains. For instance, a medical device attached to a specific person can con-

tinuously train a neural network using the person’s medical data. If the network detects unexpected

behavior, it can issue a warning, aiding in predicting medical events and enabling timely interventions.

Anomaly detection is also prevalent in self-observing systems, such as those used in industrial environ-

ments. AnMCU embedded in a smart sensor can continuously adapt a neural network based on current

environmental conditions and alert changes in the behavior of machines or systems. This allows for

timely detection of anomalies, such as data drifts, facilitating proactive maintenance.

In addition to privacy considerations, poor or unavailable network connections pose challenges.

Considering a space probe traveling to distant planets. A one-way radio signal from Pluto to Earth

takes at least 4 hours and 27 minutes, highlighting the latency issues associated with network connec-

tivity. [48] Researchers at the University of Oxford conducted experiments involving on-device anomaly
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detection trained on a satellite. Typically, satellite data is transmitted to Earth for processing, which can

take hours and limit response times to rapidly evolving events like natural disasters. The researchers

developed a model to detect changes in cloud cover from aerial images. The network consists of two

parts. The first part compresses the newly-seen images and was trained on the ground. The second part

decides whether the image contains clouds or not was trained directly on the satellite. In the future,

the researchers intend to develop more advanced models that can automatically differentiate between

flooding, fires, deforestation, and much more. [49]

In summary, on-device training offers advantages over conventional cloud-based approaches [50],

resulting in smarter, more secure, and more efficient devices. Besides improved performance the ben-

efits can be broadly categorized into privacy and network aspects:
• Privacy: By keeping data on the device and avoiding transmission to servers, the risk of privacy

leaks is reduced. This is crucial for applications handling sensitive data like business secrets or

personal information such as private photos.

• Network Conditions: On-device training eliminates the need to send data to servers and wait

for responses, making the machine learning application independent of unstable network con-

nectivity. This not only saves bandwidth and network resources but also helps applications to

react in time. Some devices do not even have network access or operate on quantity-dependent

network plans instead of flat rates. Here, sending data to a server is either not possible or directly

results in increased costs.

2.4 Overview of Machine Learning Platforms

The machine learning approach introduced in this thesis, Back Propagation Layer Scheduling (BPLS),

focuses on time and energy-efficient fine-tuning of neural networks. BPLS could have positive effects

on fine-tuning in general. However, this thesis targets resource-constrained devices. Such devices

are usually tiny computers embedded in larger systems including software, hardware, and mechanical

parts. These computers, in general, have strict memory, power, energy, and size constraints and of-

ten have to fulfill real-time requirements [51]. Examples are computers embedded in cars, planes, or

factories, but also digital watches and computers controlling washing machines can be considered as

embedded devices. Executing or training neural networks on embedded devices is often referred to as

embedded machine learning [52], a sub-category of on-device machine learning. This section provides

a general overview of common machine learning platforms with a focus on embedded devices, such as

MCUs and FPGAs.
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Machine learning tasks, both inference and training, mostly consist of many vector and matrix

multiplications and accumulations. Accordingly, computational platforms executing machine learning

tasks should be able to perform those computations as fast and efficiently as possible. There are several

platforms commonly used for machine learning. The most common are CPUs, GPUs, TPUs, FPGAs,

ASICs, and MCUs. All of them bring advantages and disadvantages with them and can be found in

different fields of application.

2.4.1 CPU (Central Processing Unit)

CPUs can be found inside every desktop computer, laptop, smartphone, MCU, and so on. As the name

suggests, CPUs are responsible for the central control of the computational system. They commonly

provide multiple cores, allowing parallel computing.

Modern CPUs often have additional instruction-set extensions that can speed up execution. Exten-

sions accelerating vector computations, for example, are especially interesting for machine learning.

In recent years, CPU extensions specialized in machine learning tasks have been introduced, further

improving performance and efficiency. [53] However, the opportunity for large parallelism in CPUs is

limited, which makes them only attractive for neural networks with small or medium-scale parallelism,

for sparse neural networks, and in low-batch-size scenarios.

One further disadvantage of applying CPUs for machine learning tasks is the relatively low compute

density compared to other options. CPUs simply require significantly more space for the same comput-

ing power, making them less attractive for use in data centers. However, especially when considering

mid-spec on-device machine learning, for example, on smartphones or laptops, the actual computing

capacity required is lower. Since CPUs are needed anyway for central control, it is convenient to use

them for machine learning tasks as well.

A current consumer CPU is the Ryzen 7 7700. This 65W processor consists of 8 cores, each capable

of running 2 threads. The base clock is 3.8GHz and can be boosted to 5.3GHz.

2.4.2 GPU (Graphics Processing Unit)

GPUs were originally designed as CPU accelerators for rendering videos and games. These applications

primarily involve vector and matrix computations, similar to machine learning tasks. GPUs consist of

a large number of simple processors operating in parallel, known as shaders. This parallel architecture

gives GPUs an advantage over CPUs in terms of parallelism, leading to potentially higher computation

speed, throughput, and lower energy consumption, depending on the task. [54]
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A current mid-range example is the Nvidia A10 Tensor Core GPU consisting of 9216 Cuda cores

(shaders) clocked with 0.9GHz to 1.7GHz.

2.4.3 MCU (Microcontroller Unit)

Besides FPGAs, MCUs are the most common type of embedded computational systems. They usually

combine one or several CPU cores, RAM, Flash Memory, I/O ports, and other peripherals on one chip.

MCUs are usually embedded in larger systems, where they are responsible for controlling. Besides lim-

ited memory and computing resources, MCUs are often battery-powered and therefore rely on power

constraints.

To discuss the resource limitations of MCUs in terms of available power and on-chip memory, a low-

spec andmid-specMCU is compared here. TheArduino Uno consists of an ATmega328P processor [55],

operating at 16 MHz. It has 32 KB of flash memory and 2 KB of SRAM. The current consumption is

12 mA. On the other side, the STM32F2 [56] consists of an ARM Cortex-M3 processor operating at 120

MHz. It has 1MB of flashmemory, 128 KB of SRAM, and consumes 21mA.When comparing theseMCU

specifications with typical CNN models like AlexNet (240 MB) [57] or VGG 16 (528 MB) [58], it can be

seen that these networks exceed the amount of available memory by almost a factor of one-thousand.

The model size describes the number of bytes required to store all the parameters of the network.

Considering training, even more memory is required due to storing of temporal data. Therefore, to run

neural networks on MCUs, they usually have to be optimized. Some optimization techniques will be

introduced later.

2.4.4 FPGA (Field Programmable Gate Array)

FPGAs are programmable circuits consisting of an array of logic blocks. Configurable interconnects

allow blocks to be wired together. Different from ASICs, FPGAs can be adapted and updated at a

later stage. This adaptability allows for versatile application and efficient power usage, as well as high

computational density [59]. While FPGAs have gained popularity in data centers [60], they are also

widely used in embedded applications [61]. However, compared to other platforms, implementing

applications on FPGAs requires more effort.

Despite numerous machine learning frameworks available for CPUs, GPUs [62], and others for

MCUs [63], there are relatively few targeting FPGAs. Additionally, most FPGAmachine learning frame-

works are restricted to generating hardware for inference [64], [65]. Only a small number supports

on-device training as well [66].
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2.4.5 ASIC (Application Specific Integrated Circuit)

ASICs offer further optimization opportunities compared to FPGAs [67]. Unlike FPGAs, ASICs do not

consist of programmable blocks and interconnects but of fixed circuits that cannot be altered after

production. This puts even more importance on testing and evaluation during the design phase.

Major tech companies such asQualcomm, Facebook, and Samsung are investing in the development

of their own AI-specific ASICs [68] [69] [70]. However, one of the most prominent examples is Google’s

specialized AI hardware, known as the Tensor Processing Unit (TPU). TPUs are tailored for Google’s

machine learning framework TensorFlow [71] and can be compared to GPUs that only consist of matrix

computation units.

2.5 Training on Embedded Devices

This thesis focuses on fine-tuning neural networks on resource-constrained devices. During training,

peak memory usage is significantly higher than during inference. To prevent the systems from running

out of memory and enable training on these platforms, optimizations are typically required.

The primary optimization techniques to adapt networks for resource-limited devices are Pruning

(removing redundant parameters) [72] andQuantization [73] (reducing the number of bits used to rep-

resent model parameters). These techniques can significantly reduce the amount of required memory.

Furthermore, certain training techniques commonly used on powerful computer systems are unsuitable

for resource-limited devices.

This section outlines advanced training methods typically employed on servers, explains why they

may not suffice for resource-constrained devices, and provides an overview of techniques to enhance

machine learning on embedded devices. More details can be found at [74].

2.5.1 Training Optimizers

Training optimizers play a crucial role in modern machine learning, aiding in achieving higher test ac-

curacy in fewer epochs by adjusting learning rates and gradients. However, optimizers typically require

storing additional values for each weight of the network, making them less suitable for environments

with memory limitations, such as embedded devices. PyTorch [62], for example, offers more than 10

different optimizers. Here, the most important concepts are explained briefly.
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Momentum: The core concept involves employing an Exponential Moving Average (EMA) of gra-

dients to update weights instead of directly applying the most recently computed gradient. In other

words, it adds a percentage of the prior update vector to the current one. This approach helps to pre-

vent stagnation in local minima or saddle points, accelerate convergence, and dampen oscillations.

Accordingly, Momentum is widely used in machine learning and serves as the base for more advanced

optimizers.

wt+1 = wt − α∇f(wt) + β(vt −∇f(wt)) (2.7)

In the equation, wt+1 represents the updated weights at time step t+1, wt the current weights at time

step t, and ∇f(wt) the gradient of the loss function with respect to the weights at time step t. Besides

that, α denotes the learning rate, β signifies the momentum parameter, and vt represents a moving

average of past gradients. The parameter β dictates the weight attributed to the lastN data points. For

instance, β = 0.9 averages the last 10 data points, while β = 0.98 considers the last 50 data points.

According to the formula, newly computed gradients have a greater influence on the moving average

than older ones. Averaging over a broad window leads to a slowly adapting average and consequently

smoother loss curves, as depicted in Figure 2.5.

Figure 2.5: EMA with different β-values [4]

It would be insufficient to store the last n gradients. Fortunately, the Exponential Moving Average

allows past gradients to be tracked by storing a single value. This makes this optimization relatively

computationally inexpensive while enhancing training performance. However, storing an additional

value for each trainable weight approximately doubles the size of the neural network. Consequently,

this, along with most other optimization techniques, is inadequate for resource-constrained devices.
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Adaptive Learning Rate: Determining suitable learning rates for training neural networks can be

challenging. High learning rates may cause overshooting, while low ones slow down training. This

issue can be mitigated by adapting the learning rate based on past gradients.

Optimizers like AdaGrad or Adadelta automatically adjust the learning rate. They decrease it for

high gradients and increase it for low ones. These optimizers compute distinct learning rates for each

trainable weight. This differentiation is necessary because sparse feature weights require higher learn-

ing rates than dense feature weights due to the lower frequency of sparse feature occurrences.

ηt =
η√
αt

(2.8)

αt =
t�

i=1

(
δL

δwt−1
)2 (2.9)

The equations illustrate the behavior of AdaGrad. ηt denotes the current learning rate for a specific

weight w. As the sum of previous gradient squares grows over time, the learning rate automatically

decreases. Consequently, learning rates approach zero eventually, stopping the network from learning.

Adadelta addresses this issue by averaging only the last n gradients instead of accumulating the entire

gradient history. This can be efficiently implemented using the Exponential Moving Average.

Implementing Adaptive Learning Rates as described here demands significant memory, similar to

Momentum. Alternative approaches with lower resource requirements, such as Cyclical learning rate

schedules, are discussed later on.

ADAM: ADAM essentially combines the principles of Momentum and Adadelta, making it highly

effective and well-suited for a wide range of problems. Consequently, ADAM stands out as one of the

most favored optimizers nowadays.

However, ADAM requires storing both the Exponential Moving Average for past gradients (used

in Momentum) and the past squared gradients (utilized in Adadelta). Accordingly, ADAM leads to

relatively high memory requirements, making it unsuitable for resource-constrained devices.

2.5.2 Learning Rate Scheduler

As mentioned, dynamic learning rate adjustments generally lead to good training behavior but are

relatively memory and computationally expensive. As an alternative, static learning rates or learning

rate schedules can be applied.
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In general, changing the learning rate over time by following a learning rate schedule can be ben-

eficial. One approach is to decrease the learning rate when the loss stops improving, known as the

Plateau Learning Rate Schedule. Alternatively, the Exponential Learning Rate Decay gradually reduces

the learning rate over time. Figure 2.6 compares the training performance of different learning rate

schedules. As can be seen, using a static learning rate does not perform significantly worse. However,

the decreased learning rates in the later stages lead to a more stable curve.

Figure 2.6: Comparison of different learning rate schedules [5]

Especially considering pre-training, relatively high learning rates in early training stages can be

beneficial because randomweights are far from optimal. During training, the learning rate can decrease

to allow more fine-grained weight updates. Good training behavior can be achieved by selecting the

learning rate with the highest decrease in loss. [75] Increasing the learning rate until a certain point

decreases the achieved error and improves the training process accordingly. However, increasing the

learning rate further beyond a certain point will cause the training to start diverging.

Resetting the learning rate periodically, as illustrated in Figure 2.7, can improve training perfor-

mance even more. According to [6], this approach can perform as well as Adaptive Learning Rate

methods, but with practically no computational expenses.

Figure 2.7: Cyclical Learning Rate Adjustment [6]



2.5. Training on Embedded Devices 25

2.5.3 Pruning

One highly effective technique for optimizing neural networks on resource-restricted devices is Prun-

ing, also referred to as Sparsification. It relates not just to one single method, but rather to a category

of optimization algorithms. The fundamental idea behind pruning is to eliminate parameters that do

not significantly contribute to the network’s performance. This not only speeds up inference during

network execution but also accelerates training by skipping unnecessary gradient computations and

weight updates.

Pruning typically is an iterative process. Initially, the entire network is trained and evaluated for

accuracy on test data. Subsequently, weights or even entire neurons are removed following various

approaches [76]. While the accuracy may decrease during pruning, fine-tuning can often recover the

network’s performance, if the pruning was not too aggressive. This process of training, evaluation, and

pruning can continue until a sufficient performing reduced version of the network is achieved.

Pruning typically leads to a trade-off between model performance and efficiency. Drastically re-

ducing the network’s size decreases memory requirements and computation time but may also impact

accuracy. Moreover, pruned networks can sometimes generalize as effectively as, or even better than,

the original dense networks. [77]

Figure 2.8: Network before and after pruning [7]

There are various methods for pruning neural networks. One approach is to individually set weights

to zero, effectively removing them from further computations while maintaining the network’s archi-

tecture. Alternatively, entire nodes can be removed, altering the network’s structure. Determining

which nodes to prune without significantly impacting performance involves various strategies. For

instance, neurons can be ranked based on their influence on the network’s output. Neurons that fre-

quently output values around zero or are rarely activated play no significant role in the model’s task

and may therefore be candidates for pruning. Another approach involves removing weights that are

close to zero. This can be achieved by removing all weights below a certain threshold. Further, if sev-
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eral neurons behave very similarly by having very similar weights and activations, only one of these

neurons is required, while the rest represents redundancies that can be pruned.

In addition to pruning, there are other techniques for reducing network size. First of all, choosing

smaller networks that match the task requirements is advisable. For instance, there are several versions

of the VGG network [78] differing in depth, such as VGG13, VGG16, and VGG19. Furthermore, reducing

the size of input images results in smaller feature maps and reduced memory requirements, although it

can affect the performance of certain tasks like object detection. [79] While pruning involves removing

parameters, Sparse Updates involve updating only specific parameters of the network during training

while freezing others. This technique, which can include freezing individual parameters or entire layers

during fine-tuning, helps reduce peak memory usage and speed up training, making it common in

resource-constrained environments. Sparse Updates is also the main technique utilized in the approach

introduced in this thesis, BPLS.

2.5.4 Quantization

Quantization is another technique for enabling efficient machine learning on small devices. Typically,

neural networks are trained using full-precision floating-point values. However, approximating these

values with low bit-width numbers, such as 8-bit or 16-bit fixed-point, can substantially reduce memory

requirements and computational costs for executing and training neural networks, albeit with some loss

in accuracy. [80]

Figure 2.9 illustrates the relationship between network accuracy and the power consumed by Mul-

tiplication and Accumulation (MAC) operations. Higher bit-widths generally lead to increased power

consumption. Worth mentioning, the reduction from 32-bit floating-point to 32-bit fixed-point or 16-bit

floating-point does not negatively affect network accuracy in the illustrated example.

Neural networks can initially be trained with full precision and then quantized afterward. In most

cases, quantization results in inferior-performing networks, necessitating fine-tuning to improve the

accuracy of the quantized network. [81] An alternative approach involves quantizing during training,

known as Quantization-Aware Training (QAT) [82]. This method typically yields better-performing

networks. QAT involves using two separate networks for training: one operating on floating-point

(continuous range) and the other on low-bit fixed-point precision (discrete range). The fixed-precision

network is updated in the forward pass using the float-precision, while the float-precision network is

updated in the backward pass using the fixed-precision. Ultimately, only the fixed-precision network,

with reduced size is applied for on-device operation. This training process is more complex and costly

than traditional training methods. [83]
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Figure 2.9: Energy consumption and prediction accuracy of a DNN as a function of the Arithmetic Precision
adopted for a single MAC unit in a 45 nm CMOS. [8]

An extreme case of quantization is Binary Neural Networks, where values are restricted to binary

states (+1 or -1). BinaryConnect [84], for example, maps float-values to binary values by simply taking

the sign of the float-value. This approach can yield significant advantages, particularly with specialized

hardware, by replacing many MAC operations with simple, less time, and power-intensive accumula-

tions. BinaryConnect focuses not only on quantized inference but also on training networks with

binary weights.

Apart from quantizing weights, input values of layers can also be quantized. This involves replacing

the activation function with a quantization function, converting the layer output to low bit-width. [85]

Per-layer scaling factors can then be applied to align quantized values with float values. The special

case of binary activations can degrade network accuracy, typically more than the binary quantization

of weights. [86]

The input and output layers of neural networks typically perform fewer operations and may suffer

more from quantization than other layers. Hence, it is common to compute these layers in full-precision

floating-point tomaintain higher accuracywithout significant speed loss, often termedMixed Precision.

[87]

In addition toQuantization, there is Dequantization as well. [14] Dequantization converts quantized

parameters and activations back to high-precision continuous values typically by dividing the quan-

tized values by their scale factor. Applying dequantization helps mitigate the accuracy loss caused by
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quantization while still achieving memory savings.

2.5.5 Small Batch Sizes

As mentioned, the training data can be passed to the network in several batches. The gradients for

each data sample inside the batch are averaged. These averaged gradients are then used to update the

weights and biases.

One reason high batch sizes are favored for training is that they allow the computation of several

data samples (elements of the batch) simultaneously. This accelerates training significantly when using

devices such as GPUs or TPUs, at the cost of increased memory requirements.

On devices with limited memory and computational capabilities, batch elements cannot usually be

computed in parallel. However, by sequentially processing one element of the batch after another and

performing the network update after the batch is finished, arbitrary batch sizes can be achieved without

the need to keep every data sample and corresponding gradients in memory. Although this sequential

processing of data samples does not improve training speed with larger batch sizes, it can result in

smoother convergence.

Conversely, smaller batch sizes typically introduce more variation between updates, which can have

a regularizing effect, potentially leading to better-performing networks. Moreover, smaller batch sizes

result in more frequent network updates, which can be advantageous when considering real-time con-

ditions. Accordingly, smaller batch sizes are more common when training on resource-limited devices.

2.5.6 Hardware optimization

The previously mentioned optimization techniques all focused on training or model storage. However,

there are additional techniques that focus on classical hardware utilization, such as recomputing and

paging.

Recomputation reduces memory requirements by deleting intermediate layer outputs. The corre-

sponding values do not need to be held in memory and are simply computed when needed. While this

technique reduces peak memory usage during training, it increases the number of required computa-

tions.

Paging, on the other hand, is a common practice in Operating System. The OS shifts currently

unneeded data to secondary storage. This technique can be utilized during training to reduce peak

memory by paging out the unneeded intermediate activations.
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2.6 Analyzing and Comparing Neural Networks

The simplest way to analyze the training behavior of neural networks is by investigating accuracy and

loss. This allows to see how a model improves during training, but it does not reveal the underlying

decision-making processes.

When evaluating new training approaches, it is important to compare them with meaningful base-

lines. Common baselines include the ideal baseline, also known as the cloud baseline, which describes

training with sufficient hardware resources and typically yields the best training accuracy. The ideal

baseline can be used to illustrate the potential accuracy gap and reduction in resource consumption of

new training approaches. Besides that, it is common to use unoptimized training models or pre-trained

models without further fine-tuning as baselines.

2.6.1 Vector Analysis

Neural networks consist of millions of weights, each trainable layer having its own. The weights of

a layer can be considered as vector. Analyzing the magnitude and orientation of these vectors can be

useful for understanding networks and their training behavior.

Themagnitude can be computed using metrics such as the Euclidean or Middle Distance, but also by

less common concepts like the Frobenius Inner Product. In fine-tuning, this analysis can reveal the dif-

ference between the pre-trained base model and the final fine-tuned one. The magnitude indicates how

strongly the weights were adjusted during training, allowing for the evaluation of which layers were

modified more and which less during fine-tuning. For instance, the classifier layer in most scenarios

will show a relatively high magnitude, while layers closer to the input will exhibit lower magnitudes.

Additionally, the distance between layers of models trained with different hyperparameters can be

analyzed to assess the similarity of different training approaches. The following formulas demonstrate

how to compute the Euclidean and Middle Distance. Here, $wi and $wj represent the weights of different

configurations of the same layer, and n represents the number of weights.

Deuclidic i,j :=
��

($wj − $wi) (2.10)

Dmiddle i,j :=

�
1

n

�
($wj − $wi) (2.11)

Another useful metric is Cosine Similarity, which measures the similarity of two vectors by considering

their orientation or direction while ignoring their magnitude. The output of Cosine Similarity is a single
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value in the range of [-1, 1], where 1 indicates very similar vectors, 0 indicates very different ones, and

-1 indicates opposite vectors with an angle of 180 degrees between them. Cosine Similarity can only

be computed if the scalar product of the two vectors is defined, meaning that both vectors are part

of the same inner product space. Cosine Similarity is computed using the following formulas, where

investigated network configurations are denoted by i and j. Here, $wu represents the weights of these

configurations, and $wstart represents the configuration from which fine-tuning began.

$w�
u = $wu − $wstart (2.12)

Scos i,j :=
�$w�

i, $w
�
j�

�$w�
i��$w�

j�
(2.13)

2.6.2 Visualization of Networks and Training Processes

Neural networks typically consist of a large number of neurons making it impractical to plot all neuron

activities individually. Instead, Dimensionality Reduction tools are commonly used to create human-

readable plots spanning 2 to 3 dimensions. Common tools for this purpose include UMAP (Uniform

Manifold Approximation and Projection) [88] and t-SNE [89]. Both tools allow to approximate the

behavior of neural networks, while UMAP is the one utilized in this work.

For example, a 2D map can be generated where all weights of one layer are represented as a single

point. Plotting different epochs in a row allows to observe how the network changes during training.

This is particularly useful when comparing different training runs. The absolute position of the points

in the Dimensionality Reduction plot does not carry any information. It is the relative position that

matters. Accordingly, points plotted close to each other indicate relatively similar weights.

Dimensionality Reduction tools can also be used to analyze the output of the network or individual

layers. For example, in image recognition tasks, it can be helpful to visualize which input images the

network considers similar, thus providing insights into the network’s decisions. Figure 2.10 illustrates

this using UMAP, where the background color represents the category chosen by the network for spe-

cific input images, with wrongly categorized images outlined in red. UMAP automatically clusters the

images based on the activation behavior of the network. As shown in the example, apples are well

isolated, while the network exhibits similar behavior when processing images of ants and plains.

In addition to UMAP, Euclidean Distance, and Cosine Similarity, there are other more complex ways

of analyzing training behavior, such as DeepTracker [9] or TensorView [90]. However, these methods

are not utilized in this thesis.
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Figure 2.10: UMAP - clustering of image classification [9]

2.6.3 Execution Time and Power Consumption

Especially in the field of on-device machine learning, execution time and power consumption play im-

portant roles. Even though bothmetrics can bemeasured independently, they are directly influenced by

the number of operations executed. Therefore, by computing the number of operations, the execution

time and power consumption can be estimated. Fortunately, at its core, training, and inference of neural

networks, at least for basic CNNs, is relatively simple. The required multiplications and accumulations

(MACs) can easily be derived.

Table 2.1 shows the number of MAC operations required for processing the forward propagation of

a single data sample (batch size 1) for certain layers of a CNN. Here, cin and cout represent the number

of input and output channels, ksize represents the dimensions of filter kernels used in Convolutional

Layers, pad the number of padding elements, isize the size of the input feature map, and osize the size

of the output feature map. Depending on the input dimension (1D signals or 2D images), ksize, isize
and osize consist of one or two values each.

Backward propagation is more complex than forward propagation. To perform backward propaga-

tion, three types of computations have to be executed:

• Weight Gradient: Computing the gradients of the weights.

• Weight Update: Applying the Weight Gradient to modify the network parameters.
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Layer Type Number of MACs
Convolutional cin · cout · (ksize · (isize−2 ·pad)+2 · (pad ·ksize ·pad2+ pad2−pad

2 ))+
cout · osize

Linear cin · cout + cout
ReLU cin · isize
Max Pool cin · isize
Gl-Avrg-Pool. cin · isize

Table 2.1: Number of MAC operations - Forward Path

Layer Type Number of MACs
Conv-Input-Grad. cin · cout · (ksize · (isize − 2 · pad) + 2 · (pad · ksize · pad2 + pad2−pad

2 ))

Conv-Weight-
Grad.

cin · cout · (1 + 2 · (pad · osize · pad2 + pad2−pad
2 ))

Conv-Update cin · ksize · cout + cout
Lin-Input-Grad. cin · cout
Lin-Weight-Grad. cin · cout
Lin-Update cin · cout + cout
ReLU 0

Max-Pool. cin · isize
Gl-Avrg-Pool. cin · isize

Table 2.2: Number of MAC operations - Backward Path

• Input Gradient: Propagating the loss to the next layer.

Depending on the position of the layer and whether the layer is trained or frozen, some of these com-

putations can be skipped:

• If the layer is trained and the last in the Back Propagation chain, only Weight Gradients and

Weight Updates need to be determined. The Input Gradient can be left out.

• If the layer is not trained but not the last in the Back Propagation chain, the Input Gradient has

to be computed, while Weight Gradients and Weight Updates can be left out.

Table 2.2 lists the number of MAC operations required for processing the backward propagation of

a single data sample.

While the mathematical model introduced here allows for estimating the execution time and power

consumption, in reality, there are additional aspects that should be considered:

• Memory Management: The mathematical model completely ignores memory management.

Memory operations typically consumemore time and energy than actual computations. They are

complex and hard to predict, particularly on computers running multiple tasks simultaneously.

Factors such as process scheduling and caching contribute to increased variability in execution

time. Typically, these factors do not apply when executing code on MCUs. MCUs rarely run
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Layer Type Memory Requirements
Input-Feature-Map cin · isize
Input-Gradient cin · isize
Conv-Weight-Grad. cin · ksize · cout + cout
Lin-Weight-Grad. cin · cout + cout

Table 2.3: Memory requirements of different layers

multiple tasks simultaneously and often have no Operating System. Accordingly, measuring

timing behavior on MCUs can lead to clear results with little or no variance.

• Machine Learning Frameworks: Advanced frameworks like PyTorch [62] or TensorFlow [71]

are typically used for training neural networks. Even though these frameworks may not bypass

the basic operations of inference and training, they apply several optimizations. One reason why

Pytorch is that efficient, despite providing a user friendly Python interface is that underneath fast

CPP code is executed. This CPP code has to be called and initialized, affecting execution time.

Therefore, accurately estimating the execution time for machine learning tasks performed with

these frameworks would require an adaptation of the mathematical model.

2.6.4 Memory requirements

Besides training performance, execution time, and energy consumption, memory requirements are very

important metrics when investigating neural networks and training behavior, especially when execut-

ing or training on resource-constrained devices. While the evaluation of BPLS in regard to memory

requirements is not that deeply explored in this thesis, basic concepts are introduced here.

Similar to the earlier introduced timing estimations, at its core, the peak memory requirements of

training neural networks can be easily determined. Basically, the data to store consists of Input Feature

Maps, Weight Gradients, and Input Gradients, where the size of an Input Gradient matches the size of

the corresponding Input FeatureMap. Combining the number of values to store with the corresponding

data type leads to the peak memory requirements for training. Table 2.3 introduces a simple model for

estimating the memory requirements for various layer types.

Depending on whether a layer is trained or not, the amount of data required to store differs. Storing

the Weight Gradients for a layer is only required if the layer gets updated. Storing the Input Gradient

of a layer is only required if the loss has to be propagated to the subsequent layer.

Considering the execution or training of neural networks under real conditions, things become

increasingly complex, especially when considering memory optimizations such as dynamic memory

reuse.





Chapter 3

Related Work

The most common techniques for improving training efficiency on devices relying on resource con-

straints are the previously introduced pruning and quantization methods. Even when BPLS and those

techniques might be used together in future, BPLS follows a completely different approach. It is closer

related to work focusing on fine-tuning neural networks, regardless the target device.

This section is split into three parts. First, current ideas for efficient training on devices relying

on resource constraints are introduced. Afterwards, ideas for analyzing fine-tuning behavior and static

fine-tuning optimization algorithms are touched. Finally, algorithms for selecting layers for fine-tuning

dynamically depending on the training state and training data are introduced.

3.1 Embedded Training

As mentioned earlier, techniques for improving training efficiency on devices relying on resource con-

straints are mostly based around pruning and quantization or add further layers to the network. Some

methods relying on those techniques are MiniLearn [14], TinyOL [15] and TinyTL [91]. More complex

methods, such as TTE [92] and POET [16] have an additional preparation stage, where a computing

graph and training plan is generated before training starts. The plan schedules when and how to use

specific techniques during training. However, applying predefined schedules often leads to insufficient

training behavior. Therefore, it can be beneficial to adapt the schedules during run-time. Here, just a

short summary is provided. For further information feel free to take a look at [93].

MiniLearn [14] improves re-training of Convolutional Neural Networkss (CNNs) on resource-

constrained devices by storing the weights and intermediate outputs in integer-precision and dequan-

tize them to floating-point during training. The process can be split into three steps:

35
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• Dequantizing and pruning filters: While the first layer of the network is kept in integer-

precision to retain the input shape, the others are dequantized to floating-point format. Next,

during training filters with small L1 norms are considered less important and pruned. Finally,

depending on the specific task, the number of neurons in the output layer are adjusted to fit the

number of output classes.

• Training filters: The quantized output of the first layer is converted to floating-point during

training and further used for training.

• Fine-tuning Linear Layers: The pruned filters get converted back to integer precision and

frozen. Further, the Linear Layers are fine-tuned to compensate potential loss of information

caused by pruning and quantization.

It’s also quite common to add new specialized layers to the network and restrict training on this

new layers, just as TinyOL [15] does by adding a TinyOL layer on top or by replacing an old one.

TinyTL [91] on the other hand only tunes the biases of the network while freezing the rest. Com-

pared to classical pruning approaches, this allows to reduce the memory footprint even further. How-

ever, only tuning the biases can lead to limited generalization ability. To address this issue, TinyTL

adds the so called lite residual module to the network, consisting of group convolution [94] and a 2×2

average pooling. This helps TinyTL to save memory without losing accuracy.

TTE [92] proposes the so called Quantization-Aware Scaling (QAS). The key idea of QAS is to mul-

tiply the square of scaling factors corresponding to precision with intermittent output to relieve the

disorder caused by quantization and leading to low convergence accuracy. Further, TTE combines

QAS and sparse update techniques to reduce memory usage. The preperation of TTE can be split into

three parts. Firstly, TTE generates a static backward computing graph. Secondly, TTE prunes away

the gradient nodes with the sparse layer update method. Thirdly, TTE reorders the operators to imme-

diately apply the gradient update to a specific tensor before back propagating to earlier layers, so that

the memory occupied by the gradient tensors can be released as soon as possible. Afterwards, training

is executed according to the computation graph.

POET [16] consists of two stages. In the first stage, POET analyzes the memory and computation

costs for training a given neural network and selects a suitable technology to optimize them during

training. Besides that POET takes hardware constraints into account by searching for the optimal

schedule of paging [95] and re-materialization [96]. Afterwards, the actual training is performed ac-

cording to the previously defined schedule.



3.2. Static Layer Freezing 37

3.2 Static Layer Freezing

When fine-tuning neural networks it is common to freeze certain layers closer to the input. However,

the amount of layers to freeze and the learning rate relation of the remaining layers is hard to define.

They depend on multiple aspects just as the specific neural network, the applied pre-training and the

data used for fine-tuning.

AutoLR [97] for example defines an algorithm that automatically finds good fitting learning rates

for each layer after freezing layers that do not contribute to the fine-tuning process.

Besides that Barakat and Huang [98] present a way for finding out the block of layers most relevant

to the target data. This information is then used to freeze all other layers, except the classifier layer.

The method starts with adapting the weights of each layer to search for the layer leading to salient

improvement when fine-tuned. For that a small part of the training data (e.g. 10%) is used. Instead

of analyzing separate layers, layers can be combined to blocks at the beginning. Those blocks can be

defined by dividing the network into several parts. The divisions can be done by non-trainable layers,

such as Max-Pooling Layers for example.

DEFT [99] as well deals with finding and selecting layers of a given CNN best to fine-tune. The

method consists of two components. Firstly, layers are selected. Secondly, the selected layers are fine-

tuned and the performance of the network analyzed. For evaluation the output loss is used to compute

the so called performance evaluation score (fitness value). This fitness value is then passed back to

the layer selection mechanism. The process reiterates, trying to minimize the fitness value, until the

maximum number of model evaluations, a manually set parameter is reached. The best performing

selection of layers is then used for the actual fine-tuning of the network.

LISA [100] was published during the final stages of this thesis and follows a relatively similar idea

as BPLS. It focuses on fine-tuning Large Language Models by randomly freezing layers according to

their probability. While the first and last layer of the network stays permanently unfrozen, the middle

layers are frozen with probability γ
NL

, where NL represents the number of layers and γ controls the

amount of unfrozen layers. This allows to speed up training and reduce GPU memory consumption. In

addition, it was shown that LISA has a regularization effect.

Besides their similar base idea, BPLS can be clearly distinguished from LISA. By freezing layers

(skipping training steps) according to a pre-defined schedule, BPLS can not just reduce execution time

and peak memory, but the maximum of operations per training step can be limited as well. This makes

BPLS especially for real time applications more suitable.
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3.3 Dynamic Layer Freezing

While static fine-tuning methods have proven that they can achieve better performance then conven-

tional training, they are not able to adapt to changes automatically. Some approaches were developed

to overcome this issue.

During fine-tuning, AutoFreeze [101] adaptively determines layers that can be frozen. Once lay-

ers are frozen, the backward computation for those layers can be avoided. The approach promises to

improve performance without affecting accuracy, different to the conventional approach, where the

number of layers to freeze is determined before training starts.

Therefore AutoFreeze proposed an online algorithm based on the SVCCA metric [102] that can

decide which layers should be frozen and when. The algorithm ranks layers by their rate of change and

selects the slowest changing layers, where all the previous layers are frozen, for freezing. While some

layers converge fast, others take significantly longer. The idea behind AutoFreeze is to freeze layers as

they converge.

SLIMFIT [103] follows a similar approach as AutoFreeze but focuses on reducing memory require-

ments. It dynamically freezes less-contributory layers during fine-tuning and adopts quantization and

pruning to minimize the memory footprint of static activations. Static activations refer to those that

cannot be discarded regardless of freezing.

To decide which layers to freeze, layers are first ranked based on their distance values (change over

two subsequent iterations) at each training iteration. Those with small distance values are kept frozen

according to the freezing rate. The freezing rate represents an Hyper Parameter and can be chosen

based on the on-device GPU memory budget. High freezing rates lead to high memory savings while

affecting the accuracy. Low freezing rates usually provide high accuracy by saving less memory.

The intuition of SLIMFIT is that layers with small distance values are less contributory to the fine-

tuning process as their parameters are not being updated much. On the other hand, the layers with

large distance values are learning task-specific patterns bymakingmore significant adjustments to their

parameters.

Wanjiku, Nderu and Kimwele [104] proposed the use of Kullback – Leibler Divergence (DKL) on

the weights cosine similarity distributions to select layers for fine-tuning dynamically. The DKL shows

how far a specific distribution of one layer is from a distribution of another layer. This evaluation

ensures that the selected layers contain weights that lead to the slightest generalization error in the

learning process of the model. The layers with the lowest DKL terms are finally selected as candidates
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for fine-tuning. As mentioned in the Background chapter, there are several ways for computing the

similarity between two weights, such as the Euclidean Distance for example. However, [104] applies

the Cosine Similarity due to it’s relatively low time complexity.





Chapter 4

BPLS

According to [97], during fine-tuning, layers closer to the output require more adaptation compared

to those closer to the input. Therefore, layers closer to the output are typically updated with higher

learning rates. The idea behind BPLS is as follows: instead of applying different learning rates to

different layers, updates for layers that require less adaptation are simply skipped. This is based on

the hypothesis that skipping updates from certain layers behave similar as applying the corresponding

fraction of the base learning rate to the specific layer. If this holds true, BPLS has the potential to

accelerate training, conserve energy, and even reduce memory requirements.

4.1 Base Idea

The base idea of BPLS derives from the concept that assigning different learning rates to different layers

during fine-tuning can enhance training performance. While this typically does not result in higher

test accuracy, it allows the network to be trained in fewer epochs compared to using the same learning

rate for all layers.

During fine-tuning, layers near the input are typically frozen, while those closer to the output are

trained. This is because, in CNNs, layers near the input primarily extract general information, such as

basic shapes. These layers generally do not need to learn new information during fine-tuning.

When using the same learning rate for all unfrozen layers, the learning rate is constrained by the

layers that require less adaptation. As a result, layers closer to the output, which require stronger

adaptation, are limited to lower learning rates. While training can still be effective in this scenario, it

often requires many epochs due to the low learning rate.
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In contrast, when learning rates are assigned to layers individually, layers requiring stronger adap-

tation can be assigned higher learning rates, while layers requiring less adaptation can receive lower

learning rates. This approach allows each layer to train optimally and typically results in effective

training outcomes in fewer epochs.

The core concept of BPLS builds upon the Per-Layer Learning Rate approach but focuses on adjusting

the update frequency instead of the learning rate. By skipping updates of certain layers that require less

adaptation, BPLS aims to save operations, energy, and time. Depending on the update order, memory

savings can be achieved as well.

Layers where training steps are skipped only have access to a fraction of the training dataset. For

instance, a layer that is updated every second training step has access to half of the training data, while

a layer updated every fourth training step only has access to 25% of it. To address this issue, dataset

shuffling or shifting can be applied.

Formula 4.1 illustrates a computationally inexpensive shifting approach utilized in this thesis. In

this formula, s represents the number of indexes shifted each training step, b denotes the applied batch

size, and e represents the number of epochs after the entire dataset has been shifted completely. After

e epochs, the shifting process restarts from the beginning.

s =

�
b

e

�
(4.1)

4.2 Definition

Tables 4.1 and 4.2 show the so-called schedules. A BPLS-schedule basically describes at which training

step which layer is updated at which learning rate. Each training step represents the processing of one

batch of training data. After executing the last step of the schedule (in the provided example step 4),

the schedule restarts at step 1.

In the tables, the layers of the network are listed from top (output) to bottom (input). n denotes

the relative learning rate, where n = 1 represents the base learning rate. n = 0.5 represents half, and

n = 0.25 quarter of it. The rightmost column shows the average learning rate, calculated by summing

up the learning rates of each training step and dividing it by the number of training steps within the

schedule.

Cells containing a ”-” are not updated during the specific training step. If all steps are marked as ”-”,

the layer is frozen. The bottommost row shows the estimated number of operations for each training
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Per-Layer Learning Rate
Step 1 Step 2 Step 3 Step 4 mean

Classifier n = 1 n = 1 n = 1 n = 1 n = 1
Conv5 n = 1 n = 1 n = 1 n = 1 n = 1
Conv4 n = 0.5 n = 0.5 n = 0.5 n = 0.5 n = 0.5
Conv3 n = 0.25 n = 0.25 n = 0.25 n = 0.25 n = 0.25
Conv2 - - - - -
Conv1 - - - - -
kMACs per step 8229 8229 8229 8229 8229

Table 4.1: Example of Per-Layer Learning Rate training configuration

BPLS
Step 1 Step 2 Step 3 Step 4 mean

Classifier n = 1 n = 1 n = 1 n = 1 n = 1
Conv5 n = 1 n = 1 n = 1 n = 1 n = 1
Conv4 n = 1 - n = 1 - n = 0.5
Conv3 n = 1 - - - n = 0.25
Conv2 - - - - -
Conv1 - - - - -
kMACs per step 8229 2055 5052 2055 4348

Table 4.2: Example of BPLS-schedule

step and their average. More information about the number of operations will be provided later.

The upper schedule represents the classical Per-Layer Learning Rate approach, where all unfrozen

layers are trained in each training step with specific assigned learning rates for each layer. The second

schedule shows an example of BPLS. Assumed the hypothesis holds true, on average, both the Per-Layer

Learning Rate approach and the BPLS-schedule have the same learning rates applied. In addition, the

estimated number of training operations required by the BPLS-schedule is significantly lower. While

the Per-Layer Learning Rate approach executes 8229 kMACs per training step, the BPLS-schedule only

executes 4348 kMACs on average. This represents a theoretical reduction in backpropagation time of

47%. Considering forward propagation as well, this leads to a theoretical speedup of 23%. This reduction

in the number of executed operations not only affects the execution time but also reduces the energy

requirements.

The reason updates of layers closer to the input of the neural network can be skipped is that these

layers typically require less adaptation compared to layers closer to the output. However, this assump-

tion relies on the network having been previously trained to solve related tasks. Accordingly, BPLS is

specifically designed as a fine-tuning optimizer rather than for training randomly initialized networks.

Subsequently, additional essential aspects of BPLS, including potential use cases and the notation for-

mat applied, are discussed.
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4.3 Schedules

Besides being a variant of Per-Layer Learning Rate with improved energy and time performance, BPLS

can also optimize training for specific cases depending on the applied schedule. When defining a sched-

ule, an optimization metric can be chosen, such as Accuracy, Number of Operations, Training Time,

Power Consumption, or Peak Memory.

Finding the best performing schedule for unknown training data can be challenging, a common issue

in fine-tuning neural networks. Similar to the approach typically used with Per-Layer Learning Rate

assignments, heuristics can be applied to define schedules that are more or less suitable. For example,

just as the learning rate decreases from the output layer to the input layer in Per-Layer Learning Rate

approaches, the number of skipped updates can increase accordingly. Frozen layers represent a learning

rate of 0 or the skipping of all updates for that specific layer.

In addition to focusing on high accuracy and training speed, schedules can also be defined with

a focus on resource limitations. Therefore, the simple mathematical timing model introduced in the

Background chapter can be utilized. For example, a maximum number of operations for single training

steps, epochs, or complete training can be specified. Based on this limit, layer updates can be scheduled.

This can further be used to define an energy budget for training. Since the energy consumption

during training correlates with the number of operations executed, this energy optimization problem

can be translated into limiting operations. For example, consider a device powered by a solar cell with

a limited amount of energy available per day. This device performs several tasks, including the classi-

fication of images captured by the device using a neural network. To improve the network accuracy,

fine-tuning is applied. Given that all tasks executed by the device require energy, only a small amount

should be allocated for the training process.

Besides energy consumption, timing behavior can also be a focus. Execution time can be considered

as a combination of the number of operations to execute and the amount of time each operation requires

on average. This can be used to temporally align the training with other processes running on the

device, such as communication tasks or to meet deadlines in Real-Time Systems. For example, if the

device receives new training data every few seconds, the schedule can be designed to process all of the

current training data in time before the new batch arrives.

In addition to reducing the number of operations required for training, peak memory usage can be

reduced by applying specific schedules. Those schedules avoid training all unfrozen layers within the

same training step. This also reduces the peak number of operations. Table 4.3 illustrates a correspond-

ing schedule.
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Memory Optimization
Step 1 Step 2 Step 3 Step 4 mean

Classifier n = 1 n = 1 n = 1 n = 1 n = 1
Conv5 n = 1 n = 1 n = 1 n = 1 n = 1
Conv4 n = 1 - n = 1 - n = 0.5
Conv3 - n = 1 - n = 1 n = 0.5
Conv2 - - - - -
Conv1 - - - - -
kMACs per step 5052 7215 5052 7215 7215 (max)
peak memory [kB] 1061 1072 1061 1072 1072 (max)

Table 4.3: Example of memory optimizing BPLS-schedule (peak memory reduction = 6.38%, peak op-
erations reduction = 12.32%)

4.4 Notation

To better understand the upcoming chapters, it is important to closely examine the notation used in

BPLS-schedules.

Schedule names, such as 4421 represent the layers from output to input. The leftmost digit corre-

sponds to the output layer and determines the schedule length. In the example of 4421, the schedule

cycle consists of 4 training steps. The subsequent digits show how many times the corresponding layer

is updated within one schedule cycle.

Based on the BPLS notation scheme, other training approaches can be described by adding suffixes.

Those other training approaches will later be used to evaluate BPLS.
• 4444 (Conventional): All unfrozen layers are trained with the same learning rate in each training

step. This represents the most basic training approach.

• 4444_lrf4421 (Per-Layer Learning Rate): Each layer is assigned a specific learning rate inde-

pendently, such that the average learning rate of each layer matches that of the corresponding

BPLS-schedule (4421 in this example).

• 4421_lrf4444 (Upscaled): BPLS, but the learning rate of each layer is independently scaled by

factor n, where n = T
s . T is the total number of training steps inside the schedule and s the

number of executed training steps of a specific layer. After scaling, the average learning rate of

each layer is equal.

• 4421_rdo (Random-Dropout): In this approach, Dropout Layers integrated within the backward

path randomly prevent weight updates from being executed based on the corresponding BPLS-

schedule. The layer-wise dropout rates corresponding to 4421 are 0%, 0%, 50%, 75%. The dropout

rates align with the layers from output (left) to input (right), following the schedule notation.
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4421
Step 1 Step 2 Step 3 Step 4 mean

Classifier n = 1 n = 1 n = 1 n = 1 n = 1
Conv5 n = 1 n = 1 n = 1 n = 1 n = 1
Conv4 n = 1 - n = 1 - n = 0.5
Conv3 n = 1 - - - n = 0.25
Conv2 - - - - -

4444
Step 1 Step 2 Step 3 Step 4 mean

Classifier n = 1 n = 1 n = 1 n = 1 n = 1
Conv5 n = 1 n = 1 n = 1 n = 1 n = 1
Conv4 n = 1 n = 1 n = 1 n = 1 n = 1
Conv3 n = 1 n = 1 n = 1 n = 1 n = 1
Conv2 - - - - -

4444_lr4421
Step 1 Step 2 Step 3 Step 4 mean

Classifier n = 1 n = 1 n = 1 n = 1 n = 1
Conv5 n = 1 n = 1 n = 1 n = 1 n = 1
Conv4 n = 0.5 n = 0.5 n = 0.5 n = 0.5 n = 0.5
Conv3 n = 0.25 n = 0.25 n = 0.25 n = 0.25 n = 0.25
Conv2 - - - - -

4421_lr4444
Step 1 Step 2 Step 3 Step 4 mean

Classifier n = 1 n = 1 n = 1 n = 1 n = 1
Conv5 n = 1 n = 1 n = 1 n = 1 n = 1
Conv4 n = 2 - n = 2 - n = 1
Conv3 n = 4 - - - n = 1
Conv2 - - - - -

4421_rdo
Step 1 Step 2 Step 3 Step 4 mean

Classifier d = 0% d = 0% d = 0% d = 0% n = 0%
Conv5 d = 0% d = 0% d = 0% d = 0% n = 0%
Conv4 d = 50% d = 50% d = 50% d = 50% n = 50%
Conv3 d = 75% d = 75% d = 75% d = 75% n = 75%
Conv2 - - - - -

Table 4.4: Example of BPLS-schedules
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Methodology

The evaluation of BPLS addresses two main research questions:

1. How does BPLS behave regarding the Per-Layer Learning Rate approach?

2. Can BPLS improve the efficiency of fine-tuning without affecting training behavior negatively?

To answer these questions, the accuracy and execution time of BPLS were measured and compared

with the following training approaches:

• Conventional Training (uniform learning rate applied to each layer)

• Per-Layer Learning Rate (each layer assigned a specific learning rate)

• Random-Dropout (randomly dropping individual gradients)

This chapter describes the evaluation methodology, detailing the methods used to ensure unbiased

comparisons and explaining how accuracy and execution time were investigated. The actual evaluation

results are presented in the Results chapter.

5.1 Training Conditions

BPLS was initially implemented in PyTorch [62]. The implementation primarily utilizes PyTorchs pa-

rameter freezing mechanism, which sets a requires_grad flag for layer parameters. These parameters

can be weights or biases. When the flag is set, PyTorch computes gradients for these parameters and

updates them during training. If the flag is not set, parameter updates are skipped. Modifying these

flags after each training step enables the implementation of BPLS.

BPLS is designed to enhance the efficiency of fine-tuning neural networks on resource-constrained

devices, especially MCUs. Therefore, all Hyper Parameters were selected as if the training were to occur

on such a device. That rules out advanced, memory-intensive training techniques such as Momentum,
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Adaptive Learning Rate, and particularly the ADAM optimizer. Instead, basic SGD (Stochastic Gradient

Descent) with a simple plateau learning rate schedule was used. Additionally, the training batch size

for each experiment was set to 1, which is often the only feasible batch size for training on MCUs.

To assess execution speed, the estimation of the number of training operations described in the

Background chapter was employed. These estimates were validated through timing measurements

conducted on various platforms. Details on this will be provided later.

5.2 Selecting BPLS-schedules of Interest

Before starting the actual evaluations, a baseline and specific BPLS-schedules of interest need to be

defined. The baseline represents conventional fine-tuning applied to a partially frozen network. In this

context, conventional means that every trained layer has the same learning rate assigned.

The number of frozen layers heavily depends on the applied pre-training, fine-tuning scenario, and

network architecture. To determine the optimal number of frozen layers, various configurations were

investigated. The number of frozen layers that resulted in the highest test accuracy was selected as the

baseline. If multiple freezing configurations performed equally well, the configuration with the highest

number of frozen layers was chosen.

The baseline was then used to derive several BPLS-schedules for further investigation. Most BPLS-

schedules were defined by skipping certain operations of unfrozen layers furthest from the output layer.

However, to better understand the behavior of BPLS, schedules that skipped training steps of layers

closer to the output were also examined. The Per-Layer Learning Rate counterparts were derived by

simply taking the average learning rate from each layer of the corresponding BPLS-schedule.

5.3 Performance Evaluation

One research question addressed in this thesis is whether BPLS can enhance fine-tuning efficiency

without negatively affecting training behavior. To investigate this, we compared different training

runs for the same network and dataset, employing various training techniques.

As previously mentioned, all Hyper Parameters were chosen as if the training were conducted on

resource-constrained devices. Cyclical Learning Rate Schedules [6] are highly favored for training

on such devices as they can achieve comparable training behavior to memory-intensive optimizers like

ADAMwith a minimum of resources. However, they introduce multiple Hyper Parameters that require

tuning, such as the base learning rate, maximum learning rate, and step size. Instead, depending on the
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scenario, we used either no scheduler or a simple Plato Learning Rate Scheduler with default settings

for each run. The Plato Scheduler halves the learning rate if the loss does not decrease for specified

number of epochs. The number of epochs until halving the learning rate depends on the fine-tuning

scenario but remains consistent across all training runs in a specific scenario. More information about

learning rate schedules can be found in the Background chapter.

The only Hyper Parameter that varies between runs is the base learning rate, which is the learning

rate assigned to the classifier layer. In the Per-Layer Learning Rate approach, fractions of this base

learning rate are assigned to different layers. To determine the best-performing base learning rate for a

given run, we conducted a grid search [105]. This search technique involves training the network with

different learning rates iteratively:

1. Rough Search: Provides a rough estimation of learning rates best suited for training a network

with a specific approach. Several training runs are performed successively. The initial run uses

the upper bound base learning rate lra. The base learning rate is then logarithmically reduced

by dividing it by the rough step size steprough until it reaches the lower bound lrb.

2. Fine Search: If the rough searchwas successful, the range around the optimal base learning rates

can be estimated. The search is then repeated, focusing on the area around the best-performing

learning rate from the previous measurements. If multiple learning rates achieved equivalent test

accuracy, the highest of them is chosen as the center of the new search. Like before, the learning

rate is logarithmically decreased starting from an upper bound. The step size (stepfine) in this

phase is smaller than the step size used in the rough search, further refining the range around

the optimal base learning rates.

3. Very Fine Search: At this stage, depending on the specific search configurations, the outcome

is likely close to an optimal base learning rate. The search can be repeated with progressively

reduced range and step size to search for an even better-performing learning rate.

In our experiments, we set the step sizes to steprough = 1.4, stepfine = 1.2, and stepvery_fine = 1.1.

Figure 1.1 displays the achieved test accuracy for different base learning rates during conventional fine-

tuning. Each training run performed 30 epochs. The areawith awhite background represents the Rough

Search, the yellow background represents the Fine Search, and the orange background represents the

Very Fine Search. The red circle indicates the learning rate selected for further evaluation.

Once the grid search process is completed, the estimated optimal base learning rate is used to per-

form additional training epochs. Finally, these training runs are compared in terms of test accuracy

and training time.
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Figure 5.1: Learning Rate Grid Search

5.4 Time and Memory Estimation

One goal of BPLS is to reduce power consumption and training time by minimizing the number of

executed operations. As mentioned earlier, there is a direct relationship between the number of op-

erations, execution time, and power consumption. Instead of measuring execution time for a specific

implementation and platform, we estimated the number of executed MAC-operations using the for-

mulas introduced in the Background chapter. This estimation only includes computations involved in

forward and backward propagation and excludes the evaluation phase and dataset preparation.

To validate the mathematical estimations, we conducted measurements on three different platforms:

PyTorch code executed on a server CPU, and CPP code executed on a desktop CPU and MCU. Although

the same CPP code was used for the desktop CPU and MCU, we employed different compilers and

optimizations. Due to the limited resources of the MCU, we defined a specific fine-tuning scenario

involving a relatively small network and dataset. This same scenario was used for the measurements on

the desktop platform. The results on these platformswere validated against the Pytorch implementation

to ensure correct training behavior. Details of all fine-tuning scenarios will be provided later. The

platform specifications are as follows:

1. MCU: Nucleo-f303k8 development board, featuring an ARM Cortex-M4 based STM32f303k8t6

MCU. It is a 32-bit MCU clocked at 72MHz, equippedwith 64KB flash, 16KB SRAM, and a floating-

point unit (FPU).

2. Desktop: Intel Core i7 12700. The network is small enough to fit entirely into the cache.

3. Server: Intel Xeon 5118 Gold @ 2.3GHz
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On all platforms, training was executed on a single CPU core using a single thread. Network pa-

rameters, inputs, and outputs were represented using full-precision floating-point values, not only on

the server and desktop platforms but also on the MCU, utilizing the integrated FPU. To reduce variance,

we performed 100 warm-up training steps before the actual measurements began.

While training on the server and desktop platforms is straightforward, there are some important

details about the MCU configuration to note. The training code executed on the MCU was compiled

twice using different optimization settings. The Omin setting prioritizes minimal flash size, while Ofast

prioritizes fast execution. It can be assumed that the Ofast compiler utilizes optimizations like loop

unrolling and multiload/store, although it is difficult to predict the exact optimizations applied. The

Omin setting also applies optimizations, but the primary optimization goal is to minimize code size,

making it unlikely that optimizations like loop unrolling are used.

Even when unusual, the CPP code is implemented to store all data produced during training on the

stack. Compiling the CPP code provides information about the static memory stack. This information

can be used to validate memory estimations, which in turn can be used to estimate the peak memory

requirements of BPLS-schedules.

5.5 Similarity Evaluation

The second research question this thesis aims to answer is how similar BPLS behaves compared to other

training approaches, especially Per-Layer Learning Rate. To address this question, training runs were

performed where every run of a scenario uses the same Hyper Parameters.

To delve deeper, we not only compare BPLS with its corresponding Per-Layer Learning Rate coun-

terpart but also with training that utilizes Dropout Layers in the backward path. These Dropout Layers

randomly discard gradients, preventing certain weights from being updated. Additionally, we per-

formed training in the most conventional way, where the same learning rate is applied to each layer.

For comparison, we also investigated BPLS with up-scaled learning rates. A detailed explanation of the

different training approaches can be found in the BPLS chapter.

For each layer separately, the weights of the network state leading to the highest test accuracy,

denoted as $wbest_a and $wbest_b, with a and b representing different training runs, are directly compared.

It should be noted that in this case, the comparisons are not commutative. The comparison between

training run a and b compares the weights of the training epoch where a performed best. However, the

comparison between b and a compares the weights of the training epoch where b performed best. The

metrics used for evaluating the similarity are mainly Euclidean Distance and Cosine Similarity. More



52 Chapter 5. Methodology

details about these metrics, including a mathematical description, can be found in the Background

chapter.

Additionally, the UMAP tool (Uniform Manifold Approximation and Projection for Dimension Re-

duction) [88] was used to investigate the similarity of training runs over several epochs. UMAP gener-

ates a 2D representation for each combination of layer, training run, and epoch and clusters these 2D

mappings based on their similarity. As a baseline, the Conventional and Per-Layer Learning Rate train-

ing runs are defined. UMAP automatically maps the BPLS, Random-Dropout, and Upscaled training

runs in relation to these baselines.
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Network Architectures and Scenarios

To evaluate the behavior of BPLS in terms of performance and similarity to other training approaches,

three experiments were conducted. These experiments involved taking pre-trained neural networks

and fine-tuning them to classify new or modified data. The investigated networks are simple VGG-

style [78] CNNs composed of convolutional, linear, max-pooling, dropout, batch normalization layers,

and ReLU activation functions.

The experiments utilized well-known datasets commonly used for evaluating CNNs, such as CI-

FAR10 and CIFAR100 [28]. Additionally, a custom-generated keyword dataset was used to fine-tune a

network pre-trained on a subset of Googles Speech Commands dataset [30]. To evaluate the number

of operations and peak memory usage, a separate, relatively small network and dataset were defined.

This dataset is part of the UCR Time Series Classification Archive [10].

6.1 CIFAR10 - Scenario

While MNIST [25] is perhaps the most well-known dataset for image recognition, CIFAR10 is com-

monly used for professional evaluation of CNNs. It consists of 60,000 color images sized 32x32, equally

distributed across 10 classes: airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The

dataset is divided into 50,000 training images and 10,000 test images. More information can be found

on the official website [28].

In this experiment, the network was pre-trained on CIFAR10 with several augmentations, including

random horizontal flip, rotation, perspective transformation, and color jitter. To generate the data

used for fine-tuning, the original CIFAR10 images were rotated by 180° and converted to grayscale by

averaging the color channels. When defining these modifications, it was important to induce changes
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to several layers of the network during fine-tuning, not just the output layer, while still benefiting from

the pre-training. This allows to effectively apply and evaluate BPLS. Example images of the datasets

used for pre-training and fine-tuning are shown in Figure 6.1.

Figure 6.1: CIFAR10 - original for pre-training (top) and modified for fine-tuning (bottom)

A corresponding real-life scenario could involve a toy factory with three production lines. Each

line produces various toy categories and is equipped with four smart cameras to count the number of

toys produced per category and ensure the correct toy is produced according to a production schedule.

The toy categories correspond to the CIFAR10 classes (e.g., cars, airplanes, horses). The smart cameras

capture grayscale images. To conserve bandwidth and energy, the cameras classify the images locally

and only transmit the results. However, due to fixed camera orientations, adjustments to the neural

network are necessary to maintain performance.

After installing the cameras, a test run of the production line is conducted under worker supervision

to verify that the captured images match the expected labels. This results in a labeled dataset which is

then used to fine-tune the neural network. Modifications to products or production lines prompt a new

test run, during which the smart cameras automatically fine-tune their neural network to accommodate

the new conditions.

This scenario, tailored to the CIFAR10 dataset, is unlikely to occur in real life. In practice, neu-

ral networks are more commonly used for detecting production issues, such as damaged or defective

products. Additionally, this experiment does not involve capturing images on a production line but

instead uses modified CIFAR10 images. CIFAR10 images typically depict outdoor scenes, like boats

on water or frogs in natural habitats, while images captured at a production line usually feature more

uniform structures and backgrounds. Ideally, a custom dataset would be created for this specific task.

However, the primary focus of this thesis remains the introduction and evaluation of BPLS, an efficient

fine-tuning approach.
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6.2 CIFAR100 - Scenario

CIFAR100 is very similar to CIFAR10 but consists of 100 classes instead of 10. Each class comprises

500 training images and 100 test images. These 100 classes are referred to as fine classes and are orga-

nized into 20 superclasses. Examples of classes include Fish (Aquarium Fish, Flatfish, Shark), Flowers

(Orchids, Poppies, Roses), and Insects (Bees, Beetles, Butterflies).

Due to the higher complexity of CIFAR100 compared to CIFAR10, we applied similar but less in-

tensive modifications to generate the fine-tuning dataset. Instead of converting images to grayscale as

we did for CIFAR10, we simply inverted the colors. This allows us to reconstruct the original images

by color-inverting the modified dataset again, ensuring no information is lost due to the modification.

Additionally, similar to CIFAR10, we rotated the dataset by 180°. Given the similarities to CIFAR10, a

comparable real-life scenario can be envisioned. Example images are shown in Figure 6.2.

Figure 6.2: CIFAR100 - original for pre-training (top) and modified for fine-tuning (bottom)

6.3 Key-Word - Scenario

While CIFAR10 and CIFAR100 are popular for evaluating image classification neural networks, the

scenarios introduced earlier are somewhat removed from reality. The third and final scenario used for

performance evaluation aims to be more realistic, focusing on audio keyword classification. In this

scenario, a simple CNN is pre-trained to accurately classify 8 English keywords, including Go, Stop,

Left, and Right.

The dataset used for pre-training contains 6400 training samples and 1600 test samples stored as

16 kHz uncompressed mono-channel audio files. Pre-processing involves converting these audio files

from WAV format to spectrograms. Spectrograms visually represent frequencies over time as images

with a single color channel.
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English Deutsch (German) ຊޠ (Japanese)
go los ͚ߦ (ike)
left links ࠨ (hidari)
right rechts ӈ (migi)
up rauf ্ (ue)
down runter Լ (shita)
stop halt Ε·ࢭ (tomare)
yes ja ͍ (hai)
no nein ͍͍͑ (iie)

Table 6.1: Key-words used in the experiment

This dataset is a subset of a larger dataset developed by Google [30], which originally contains 32

keywords. In addition to the mentioned keywords, the original dataset includes others such as Cat,

Five, House, or Learn. The pre-training process for this scenario is featured as a TensorFlow tutorial

using the exact same dataset and network [106].

When discussing the fine-tuning of this network, a real-life use case immediately comes to mind.

The neural network could be personalized to increase classification accuracy for a specific individual.

For this purpose, the individual would record the same 8 keywords multiple times and use this data for

fine-tuning. To emphasize differences between various training approaches more clearly, we decided

to go a bit further. Instead of simply recording the 8 English keywords, we recorded counterparts in

different languages, specifically German (the authors mother tongue) and Japanese (due to parts of this

thesis being executed at the University of Tokyo, Japan).

To induce adaptation of not only the linear layers close to the output but also the convolutional

layers, we made a slight modification to the data format. We downsampled the newly recorded audio

files to 8 kHz, half the sampling rate used during pre-training. The fine-tuning dataset consists of 480

training samples and 160 test samples, equally distributed across the 8 classes.

Table 6.1 lists the keywords in all three languages, followed by two waveforms with corresponding

spectrograms (Figure 6.3). The left waveform represents a 16 kHz pre-training data sample for the

command ”Go!” The right waveform represents an 8 kHz data sample for the Japanese counterpart

” ”͚ߦ (ike!), used during fine-tuning. When comparing the spectrograms, it can be seen that the

rectangles in the right spectrogram are taller and wider, due to the lower sampling rate.

A real-life example could be as follows: Imagine a small robot dog initially trained to understand

the 8 commands in English. However, not everyone is able or willing to speak English, particularly

older individuals or young children who are just learning their native language. Therefore, the robot

dog could have a configuration mode. This mode could be used to record the pre-trained English words
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Figure 6.3: Key-words - Go! for pre-training (left),͚ߦ (ike!) for fine-tuning (right)

to enhance the dogs comprehension. But, it could be used to teach the dog completely new words,

such as those listed in Table 6.1. When the dog hears these commands, it could attempt various actions

randomly. If the dog performs the correct action, the user could reward it with a treat, which allows

the dog to label the command.

This robot dog could, for example, be utilized in retirement homes or kindergartens. In both settings,

supervisors could assist children or older individuals in training the robot dog in an enjoyable manner.

Studies have shown that these types of robot pets can have the same entertaining and therapeutic

effects on people as real animals. [107]

6.4 MCU - Scenario

Differing from the previously introduced scenarios, this one is specifically designed to validate the

number of operations and memory estimations, rather than for performance evaluation. For this pur-

pose, we utilized the smallest dataset from the UCR Time Series Classification Archive [10] to train a

relatively small neural network from scratch.

The specific dataset used is called SmoothSubspace, which consists of 150 training and 150 evalua-

tion samples. These samples are time series of length 15 representing 3 different classes. Examples of
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the dataset are shown in Figure 6.4.

(a) Class 1 (b) Class 2 (c) Class 3

Figure 6.4: SmoothSubspace - UCR Time Series Classification Archive [10]

6.5 Network Architectures

Following, for each scenario the originally pre-trained network and their corresponding fine-tuning

version are illustrated and briefly explained. The fine-tuning networks are derived from the pre-trained

networks but exclude certain layers in most cases.

This thesis focuses on fine-tuning on resource-constrained devices. To reduce requirements, the

Batch-Norm parameters defined during pre-training were merged with the corresponding Convolu-

tional or Linear Layer located just before the Batch-Norm Layer. Additionally, in the networks of the

CIFAR10 and CIFAR100 scenarios, Dropout Layers were removed. However, in the Key-Word Scenario,

keeping theDropout Layers led to significantly better performance, so theywere retained. Furthermore,

all 2D Convolutions use 3x3 filter kernels with a stride of 1. Padding was applied to maintain constant

data size during convolution in all networks except for the one related to the Key-Word Scenario.

The network related to CIFAR10 is based on a reduced version of VGG8 known as VGG-Small [108].

To optimize the network further for resource-constrained devices, the feature depth (number of feature

maps) was reduced. While VGG-Smalls Classifier Layer has 8192 input values, the version used in this

thesis has only 1024. The network for CIFAR100 is a slightly reduced variant of VGG11 [109]. In [110] it

can be found under the name baseline network Base B. However, this network is quite large for execution

and training on resource-constrained devices, even after applying pruning and quantization techniques

discussed in the Background section. The network related to the Key-Word Scenario was sourced from

the TensorFlow tutorial [106] and retained in its original form.

The network used to evaluate the number of operations and peak memory requirements is a reduced

version of the Fully-Convolutional network described in [111]. The goal of [111] was to achieve high

accuracy on the UCR Time Series Classification Archive [10]. Because the original network exceeds

the capacities of the MCU device used for the evaluation, we reduced the number of feature maps.



6.5. Network Architectures 59

Cifar10-Net Cifar100-Net Key-Word-Net MCU-Net
Total params 82,330 7,935,652 1,625,608 1,155
Trainable params 82,330 7,935,652 1,625,608 1,155
Total mult-adds 9.95 MOps 212.88 MOps 16,40 MOps 0.02 MOps
Input size 0.01 MB 0.01 MB 0.00 MB 0.00 MB
For-/backward pass size 0.46 MB 1.98 MB 0.63 MB 0.00 MB
Params size 0.33 MB 31.74 MB 6.50 MB 0.00 MB
Estimated Total Size 0.80 MB 33.74 MB 7.14 MB 0.01 MB

Table 6.2: Statistics of utilized networks

Table 6.2 compares the number of parameters for each network. It is important to note that the train-

ing was performed in full precision. Quantizing the parameters would reduce the memory footprint.

These values were provided by Torchsummary which does not allow for easy format changes.

Figures 6.5 to 6.9 display the applied networks. Layers filled with blue color are frozen, meaning

they are not updated during fine-tuning. Each layer is annotated with the number of parameters on the

right side. For Conv2D layers, details such as the number of output channels, image width, and image

height are provided below the layer type. The kernel size for each Conv2D layer is fixed at 3x3. For

Conv1D layers, the number of output channels and signal width are listed below the layer type. Unlike

Conv2D layers, each Conv1D layer has a specific kernel size, listed on the right side of the layer type.
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Figure 6.5: Network of the Cifar10 - Scenario (Pre-Training: left, Fine-Tuning: right)
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Figure 6.6: Network of the Cifar100 - Scenario (Pre-Training)
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Figure 6.7: Network of the Cifar100 - Scenario (Fine-Tuning)
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Figure 6.8: Network of the Key Word - Scenario (Pre-Training and Fine-Tuning)
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Figure 6.9: Network used for time and memory measurements on MCU and Desktop
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Results

This chapter addresses the research questions of this thesis one by one. Firstly, the results concerning

the similarity of different training approaches are presented. This is followed by performance tests

under real-life conditions. Instead of measuring specific training runs executed on particular hardware,

the comparisons are based on estimations of number of operations and peak-memory. The final part of

this chapter involves the evaluation of these estimations.

To fully understand this chapter, it is essential to know the naming conventions introduced earlier,

which can be found in the BPLS chapter under Notation. Several BPLS schedules were investigated.

Their concrete configuration may not always be clearly deducible from their notation. Accordingly, all

applied schedules can be found in the Appendix section.

7.1 Terms

In this chapter, several terms frequently appear. They are briefly explained here to prevent confusion:

• Training category: Refers to the technique applied for training, such as BPLS, Per-Layer Learn-

ing Rate, Random-Dropout, Up-Scaled, or Conventional Training.

• Training approach: Refers to a specific configuration of BPLS-schedule, Per-Layer Learning

Rate, Random-Dropout, Up-Scaled, or Conventional Training.

• Training run: The execution of a training approach with specific hyperparameters.

• Accuracy: Refers to the test accuracy. After each training epoch, the network is tested using the

test dataset. The proportion of correctly classified samples to the total number of test samples

defines the test accuracy.

• Best accuracy: The highest test accuracy achieved within a training run.

65
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• Learning rate: Refers to the base learning rate assigned to the classifier layer.

• Operations: Refers to Multiplication and Accumulation (MAC) operations.

• Training time: Number of epochs or MAC operations until sufficient test accuracy is achieved.

”Sufficient test accuracy” refers to accuracy close to the best accuracy of the specific training run.

• Conv(n): Refers to the nth Convolutional Layer of a network.

• Lin(n): Refers to the nth Linear Layer of a network.

• Peak memory: Maximum amount of memory required for training, defined by the training step

requiring the most memory.

• Peak operations: Highest number of executed operations, defined by the training step executing

the most operations.
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7.2 Similarity of different Training Approaches

One research question addressed in this thesis is how BPLS behaves in regard of the Per-Layer Learning

Rate approach. Therefore, this chapter analyzes the similarity between different training approaches

for the CIFAR10 and CIFAR100 scenarios in detail. The Key-Word scenario does not differ significantly

and is therefore left out.

The similarity metrics used are Euclidean Distance and Cosine-Similarity. To enhance readability,

the Cosine-Similarity values were converted to angles. As explained in the Methodology chapter, the

similarity between training approaches within one fine-tuning scenario was measured by applying the

same hyperparameters to each training run.

Both metrics, Distance and Cosine-Similarity, are visualized using Polar Plots and Color Maps. Fur-

thermore, UMAPs (Uniform Manifold Approximation and Projection) are used to provide a different

perspective on the similarity of training approaches. More information on these metrics and tools can

be found in the Background chapter. All measured data are listed in the appendix section.

7.2.1 Interpretation

To help understanding the subsequent plots, a brief explanation is provided here.

Polar Plots

ThePolar Plots are structured as follows: along the borders, the base training approaches (baselines) are

arranged. Next to each baseline, the corresponding top 3 most similar training approaches are listed.

Training approaches closer to the center of the plot are less similar to the baseline, while those closer

to the borders show higher similarity. It should be noted that training approaches that are part of the

baselines are excluded from the comparisons. For each plot, similarity is defined by the correspond-

ing metric, either Distance or Cosine-Similarity. Accordingly, the center of the plot represents high

distances and wide angles, while the borders represent low distances and narrow angles.

Color Maps

The Polar Plots provide a good overview. However, some information is difficult to extract. To deepen

understanding, Color Maps are drawn. These Color Maps consist of training approaches sorted from

most similar (left) to least similar (right), while ignoring their relative values. Similar to the Polar Plots,

the similarity was measured using Distance and Cosine-Similarity. The entries of the Color Maps are

encoded by a combination of colors and symbols, interpreted as follows:
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• Background color: Represents the target learning rate (e.g., BPLS-schedule 4421 has the same

background color as its Per-Layer Learning Rate counterpart 4444_lr4421).

• Symbol: Indicates the technique applied to achieve the target learning rate (BPLS, Random

Dropout, Per-Layer Learning Rate).

• Fill color: Denotes the start learning rate (e.g., the background color of BPLS-schedule 4421 cor-

responds to the fill color of its Up-Scaled counterpart 4421_lr4444. Conversely, the background

color of 4421_lr4444 corresponds to the background color of 4444).

UMAP

To provide an alternative view of the similarity of different training approaches, the Dimensionality

Reduction tool UMAP is used. UMAP maps all weights of one layer to a single point. Plotting different

epochs in a row allows us to see how specific training approaches modify the network during training.

Unlike the previously introduced Polar Plots and Color Maps, this allows for similarity analysis not

only at a specific epoch but over the entire training process.

The absolute position of the points in the plot generated by UMAP does not carry any information.

It is the relative position that matters. Points close to each other indicate high similarity, while those

far apart indicate low similarity. More information about Dimensionality Reduction tools in general

and UMAP in particular can be found in the Background chapter.

Instead of allowing UMAP to map the points completely freely, baselines are defined, similar to the

Polar Plots. For each mapping, UMAP chooses the location of the baseline point that is most similar.

Accordingly, it can happen that the mapping for a training approach starts at baseline A, jumps to

baseline B after a few epochs, and ends at baseline C. To improve clarity, the point corresponding to

the epoch where a training approach first reaches its peak test accuracy is displayed as a large dot.

7.2.2 Cifar10 - Scenario

For the Cifar10 scenario the learning rate was set to 140E-6. Following, Polar Plots, Color Maps and

UMAPs describe the similarity behavior observed at the Cifar10 scenario.

Polar Plots - Distance

Figure 7.1 displays the Euclidean Distance between training approaches as Polar Plots. The following

observations can be made:

• Range: Each Polar Plot shows a different distance range, where a wide distance range indicates

high variation. At the first two layers, Conv4 and Conv5, the training approaches are differently
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Figure 7.1: Cifar10 Network - Distance Polar Plots

configured, while the subsequent ones, Conv6 and Lin1 are treated equally by each training ap-

proach. Therefore, one would expect a wide distance range at the first two layers and a narrow

range at the last two layers. Upon closer examination of the actual values, the range at both,

Conv4 and Conv5 is 2.2. In contrast, the range at Conv6 is 2.0, and at Lin1 1.5.

• Conv4: Especially for the first unfrozen layer (Conv4), the BPLS-schedules show very high sim-

ilarity to their corresponding baselines. More specifically, the BPLS-schedules 4442, 4422, and

4422_m exhibit relatively high similarity to the 4442 and 4422 baselines, but not to the 4421 base-

line. On the other side, the BPLS-schedule 4421 shows relatively low similarity to the 4442 and

4422 baselines. That could be related to the underlying schedule configurations. While 4421
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trains layer Conv4 each 4th step, at 4442 and 4422 Conv4 is trained every 2nd step. Additionally,

the plots reveal a relatively low similarity between Random Dropout and the Per-Layer Learning

Rate baselines.

• Conv5: When examining Conv5, it can be observed that the BPLS-schedules 4421, 4422, and

4422_m are all very similar to the baselines of 4421 and 4422. For all these BPLS-schedules,

Conv5 is trained every 2nd step. In contrast, 4442, where Conv5 is trained every single step, is

not similar to either 4422, 4422_m, or 4421. But, 4442 shows very high similarity to Conventional

Training (4444), where Conv5 is trained every single step as well. This indicates a correlation

between the training frequency of certain layers and their learning rate.

• Conv6 and Lin1: Conv6 and Lin1 are trained by each BPLS-schedule at every step. Based on

the previously discussed observations, it might be expected that at Conv6 and Lin1, each BPLS-

schedule shows approximately the same similarity to each baseline. However, as can be seen in

the corresponding plots, this is not the case. Conv6 and Lin1 reveal a similar structure as Conv5.

• Random Dropout: Across all layers, a consistent pattern can be observed. At layers where

baselines apply a fraction of their base learning rate, the similarity to BPLS is significantly higher

than to RandomDropout. In these layers, BPLS skips training steps while RandomDropout drops

gradients. Conversely, at layers where baselines apply their base learning rate, the similarity to

BPLS is lower than to Random Dropout. In these layers, BPLS does not skip any training step and

Random Dropout does not drop any gradients. Consequently, the configuration of all training

approaches at these layers is essentially equivalent. This indicates that they are influenced by

their prior layers to some extent.

• Up-Scaled: In addition to BPLS and RandomDropout, the Polar Plots also display up-scaled vari-

ants of the BPLS-schedules. These are expected to show high similarity to Conventional Train-

ing. However, this appears to be true only for the up-scaled variant of 4442, especially evident

at Conv4. The other up-scaled BPLS-schedules do not show increased similarity to Conventional

Training. In fact, besides Conv4, it seems that the up-scaled variants of 4422, 4422_m, and 4421

are more similar to the 4442 baseline than to Conventional Training.

Polar Plots - Cosine-Similarity

Figure 7.2 displays the Cosine-Similarity values corresponding to the previously shown Distance Polar

Plots. While the overall structure remains similar, these plots offer the following insights:

• Range: The range of Cosine-Similarity consistently decreases from Conv4 to Lin1. Conv4 has

the widest range at 33.87°, followed by Conv5 with 30.42°. Conv6 exhibits a Cosine Similarity

range of 22.8°, and Lin1 of 20.27°. As mentioned earlier, wide ranges were expected at Conv4 and
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Figure 7.2: Cifar10 Network - Angle Polar Plots

Conv5, while narrower ranges were expected at Conv6 and Lin1. The Cosine-Similarity plots

align with these expectations even more clearly than the Distance Polar Plots.

• Conv4: The structure visible at Conv4 also differs from its Distance counterpart. The correspond-

ing Distance Polar Plot showed a relatively high similarity between BPLS-schedules 4442, 4422

and 4422_m and their baselines, but a low similarity to the 4421 baseline. Here, the similarity

between BPLS-schedules 4442, 4422 and 4422_m to the 4421 baseline, but also to Conventional

Training is significantly higher. Additionally, 4421 shows higher similarity to the baseline of 4422

in this case.

• Conv5: At Conv5, the similarity between BPLS-schedules 4421, 4422, and 4422_m to the base-
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line of 4442 is lower compared to Conv4. Nevertheless, the similarity between BPLS-schedule

4442 and the 4421 and 4422 baselines remains relatively high. These observations contradict the

assumption of a direct correlation between the training frequency of certain layers and their

corresponding learning rate.

• Conv6 and Lin1: Conv6 and Lin1 show very similar structures compared to their Distance

counterparts.

• Random Dropout: Further, throughout the layers the Cosine-Similarity and Distance Polar

Plots show similar patterns. At layers where baselines apply a fraction of their base learning rate,

BPLS is more similar to the baselines, while at layers where baselines apply their base learning

rate, Random Dropout is more similar.

• Up-Scaled: Aside from that, the up-scaled variant of 4442 is the only showing high similarity

to Conventional Training, while the other up-scaled training approaches show relatively low

similarity to Conventional Training.

Color Maps - Distance

The Polar Plots provided deep insights by comparing specific Distance and Cosine-Similarity values.

However, they are limited to illustrating the similarity between training approaches and their baselines.

Similarities between different BPLS-schedules or between BPLS-schedules and their Random Dropout

counterparts cannot be directly derived from the Polar Plots.

The Color Maps provided in Figures 7.3 and 7.4 display the similarity between all training ap-

proaches. It is important to note that the Color Maps completely ignore specific values and only de-

scribe the relative order. Therefore, when the subsequent text refers to similarity, it is always referring

to relative similarity. Following, each category of training approaches is analyzed one after the other:

• Per-Layer Learning Rate: The Per-Layer Learning Rate variants were used as baselines in the

Polar Plots. Some previously observed aspects are also evident in the Color Maps. For each Per-

Layer Learning Rate approach, their BPLS-counterparts show very high similarity at Conv4 and

Conv5, while their Random Dropout counterparts show very high similarity at Conv6 and Lin1.

Additionally, it can be seen that the Per-Layer Learning Rate approach 4444_lr4421 shows high

similarity to 4444_lr4422 not only at Conv5, where both configurations are identical, but across

all layers. 4444_lr4422 on the other side shows high similarity to 4444_lr4442 at Conv4 and

to 4444_lr4421 at all other layers, indicating a high degree of similarity within the Per-Layer

Learning Rate category.

• BPLS: When examining the BPLS-schedules, it becomes apparent that especially at layers where
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training steps are skipped the similarity to training approaches with equivalent configurations

is highest. Only Random Dropout does not follow this pattern. Particularly at layer Conv4, the

similarity between BPLS and Random Dropout counterpart is relatively low. At Conv6 and Lin1,

BPLS exhibits increased similarity to Random Dropout, consistent with observations made for

the Per-Layer Learning Rate approach.

Taking a closer look at BPLS-schedule 4422, we can observe the following: at Conv4, 4422 skips

every 2nd training step. The four most similar training approaches at this layer are 4444_lr4422,

4442, 4444_lr4442, and 4422_m. All of these approaches either skip every second training step or

apply half their base learning rate at this layer, which aligns with expectations. Similar can be

observed at Conv5.

• Random Dropout: The Polar Plots indicated a relatively low similarity between Per-Layer

Learning Rate and their Random Dropout counterparts. However, the Color Maps reveal that

Random Dropout is actually most similar to its Per-Layer Learning Rate and BPLS counterparts,

with some minor exceptions.

Looking at 4422_rdo, we observe the following: at Conv4, the most similar approaches are

4444_lr4422, 4422, and 4444_lr4442, followed by 4421_rdo, 4442, and 4422_m. This generally

meets expectations, except for the unexpectedly high similarity of 4421_rdo. One reason for this

could be a relatively high level of similarity within the Random Dropout category. On the other

hand, when examining the plot for 4442_rdo, we notice that at Conv4 even 4444_lr4421 is more

similar than 4422_rdo, contradicting our previous assumption.

• Up-Scaled: Almost all investigated training approaches show very low similarity to the upscaled

category. The 4442 training approaches are the only ones that exhibit similarity to their upscaled

counterpart. While this is expected, the actual question is how similar the upscaled training

approaches are to each other and to Conventional Training.

With some exceptions, the similarity within the up-scaled category is relatively high. While

especially Conv4 behaves as expected in most cases, 4422_4444 shows unexpectedly low similar-

ity to 4422_m_4444 at this layer. Looking at subsequent layers, it can be seen that none of the

upscaled training approaches are similar to 4422_m_lr4444 at those layers. On the other hand,

4422_m_lr4444 exhibits especially low similarity to 4421_lr4444 and 4422_lr4444.
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Figure 7.3: Cifar10 Network - Distance Color Maps
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• Conventional Training: The plot featuring Conventional Training shows relatively clear clus-

ters. The 4442 variants exhibit the highest similarity, as expected, while the 4422 variants show

medium similarity and the 4421 variants low similarity. Surprisingly, the similarity to upscaled

training approaches is unexpectedly low.

• Summary: Overall, especially at layers where BPLS skips training steps, the similarity between

Per-Layer Learning Rate and BPLS meets expectations. In the case of Random Dropout, Up-

Scaled, and Conventional Training, the expectations are only partially met.

Furthermore, while all 4422 and 4421 training approaches show similar patterns throughout the

layers, the 4442 training approaches differ. In return, this suggests that regardless of the applied

training technique, 4422 and 4421 are relatively similar to each other.

On the other hand, at Conv4, 4422 and 4442 (Per-Layer Learning Rate and BPLS) show very

high similarity to each other. This is likely due to sharing the same configuration at this layer.

Nevertheless, both training approaches are more similar to their own counterparts than to each

other. Conv5 is the only layer that distinguishes between the configurations of 4422 and 4442. The

Color Maps accordingly show how the configuration of single layers can affect training behavior.

Color Maps - Cosine-Similarity

Following, Figure 7.4 displays Color Maps for the Cosine-Similarity metric. While the overall structure

resembles the previously shownDistance ColorMaps, there are some differences that need to be pointed

out:

• Per-Layer Learning Rate: Just as at the Distance Color Maps, the Per-Layer Learning Rate

shows high similarity to its BPLS counterpart. However, here at Conv4, 4444_lr4421 shows the

highest similarity to 4444_lr4422 and vice versa. Besides that, to 4444_lr4442, 4422 is less similar

than 4444_lr4421. In other words, the similarity within the Per-Layer Learning Rate category

seems to be even higher compared to the Distance metric.

• BPLS: At the BPLS-schedules, similar can be observed. While the patterns aremostly as expected,

especially at Conv4, 4421 shows the highest similarity to 4422 instead of one of its counterparts.

At 4422, a relatively high similarity to 4421 can be observed as well. Additionally, 4422 and

4442 show very low similarity to 4422_m, and 4442 seems to be very similar to its up-scaled

counterpart.
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Figure 7.4: Cifar10 Network - Angle Color Maps
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• Random Dropout: Here, the similarity between Per-Layer Learning Rate and their Random

Dropout counterparts is even lower compared to the Distance Color Maps. However, Random

Dropout is still most similar to their Per-Layer Learning Rate and BPLS counterparts, with some

exceptions. For example, at Conv4 4421_rdo is most similar to 4422_rdo and more similar to

4444_lr4422 then to 4421. On the other side, 4422_rdo shows high similarity to 4444_lr4421

and 4421_rdo. This indicates a high similarity within the Random Dropout category. However,

4421_rdo and 4422_rdo are least similar to 4442_rdo and the other way around, contradicting this

assumption.

• Up-Scaled: The up-scaled variants show similar patterns compared to the Distance Color Maps

too. The largest difference is, that 4422_m_lr4444 shows especially high similarity to 4422_m

while the similarity to other up-scaled BPLS-schedules is even lower as at its distance counterpart.

• Summary: When comparing the Cosine-Similarity and the Distance Color Maps more generally,

several aspects stand out. In the Cosine-Similarity Color Maps, the sequence of the most similar

training approaches varies less throughout the layers compared to the Distance Color Maps.

Additionally, a slightly higher similarity within the Per-Layer Learning Rate and BPLS categories

can be observed. However, this is not the case for Random Dropout, where the similarity within

its category appears to be lower compared to the Distance Color Maps.

UMAPs

Figure 7.5 displays weights of different training approaches and epochs mapped to 2D points by UMAP.

The baselines used here are the same as those used for the polar plots: 4444, 4444_lr4421, 4444_lr4422,

and 4444_lr4442. UMAP generates four clusters. These clusters not only contain the baselines but

also their counterparts, as expected. For example, BPLS-schedule 4421 and its Random Dropout coun-

terpart (4421_rdo) are mapped to the corresponding Per-Layer Learning Rate baseline (4444_lr4421).

The same applies to BPLS-schedules 4422, 4422_m, and 4442 and their Random Dropout counterparts.

Additionally, all up-scaled variants are mapped to 4444. This clustering remains consistent across all

layers.

Moreover, at Conv4, while the 4421-cluster points in one direction individually, all other clusters

initially show similarity for the first few epochs before diverging. Comparing the schedules, it is evident

that 4421 trains Conv4 every 4th training step, while 4422 and 4442 train the layer every 2nd step, and

4444 trains it every single step. While a certain similarity between 4422 and 4442 is expected, it is

interesting that the 4444-cluster also shows some similarity to them.
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Similar behavior is observed at Conv5. While 4421 and 4422 train Conv5 every 2nd step, 4442 and

4444 train it every single step. Consequently, it is not surprising that initially, 4421 and 4422 point in

one direction while 4442 and 4444 point in another direction for the first few epochs. Layers Conv6 and

Lin1 are trained by all training approaches in the same way. Nonetheless, the mapping still follows the

structure observed at Conv5. This indicates once more that the training configuration of layers Conv4

and Conv5 affects the weights of subsequent layers.
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Figure 7.5: Cifar10 Network - UMAPs

7.2.3 Cifar100 - Scenario

To deepen the understanding of the similarity between training approaches, the previously discussed

investigations were conducted for the Cifar100 scenario as well. Here, the base learning rate was set to

200E-6.
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Following, UMAPs and Distance Polar Plots are drawn. The UMAPs follow the same structure as the

Cifar10 UMAPs. Due to their clarity, they are drawn first. Subsequently, two variations of Polar Plots

are shown: first, with Per-Layer Learning Rate training approaches defined as the baseline, followed

by Polar Plots using BPLS-schedules as the baseline. To maintain manageability, Color Maps are not

provided for the Cifar100 scenario.

In the Cifar100 scenario, training involved 6 layers. However, most training configurations primarily

differ in the first two layers. As observed in the Cifar10 scenario, these initial layers are particularly

significant, while subsequent layers tend to follow similar patterns.

UMAPs

Figure 7.6 presents the UMAPs corresponding to the Cifar100 scenario. Upon closer examination of the

first unfrozen layer, Conv7, it is evident that almost all training approaches aremapped to their expected

baselines, with the exception of BPLS-schedule A98765. Instead of being mapped to the A98765 cluster,

UMAP assigns it to the 444442 cluster. Upon comparing the configurations of A98765 and 444442,

it becomes noticeable that both train Conv7 every 2nd step, making the decision by the UMAP tool

comprehensible.
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Figure 7.6: Cifar100 Network - UMAPs

For Conv8, the training approaches were mapped as expected. However, upon closer inspection of

BPLS-schedule 444442 and its Random Dropout counterpart, an increased similarity to A98765 can be

detected. For the first few epochs, these training approaches are mapped to the A98765 baseline before

transitioning to the 444442 baseline in later epochs.

The clustering for all subsequent layers (Conv9 - Lin3) align with expectations. Accordingly, the

corresponding UMAPs are not displayed here.
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Both displayed plots exhibit an increased gap within the clusters compared to the Cifar10 scenario.

This suggests a higher difference between the training approaches, indicating a wider distance range

in the subsequent Polar Plots.

Polar Plots - Distance
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Figure 7.7: Cifar100 Network - Distance Polar Plots (Baseline: Per-Layer Learning Rate)

Figure 7.7 displays the corresponding Distance Polar Plots using the same baselines as the UMAPs.

As expected, there is a relatively high distance (low similarity) between the baselines and the Up-Scaled

variants. To enhance readability, the Polar Plots are presented twice. The upper row includes the Up-
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Scaled variants, while they are omitted in the lower row. The plots reveal the following insights:

• Range: The distance range at Conv7 is 10.7 and at Conv8 6.2. Just as expected due to the UMAPs,

those values are significantly larger compared to the Cifar10 scenario. At the Cifar10 scenario,

the first two layers had distance ranges of 2.2 and 3.2. Accordingly, the training approaches vary

significantly more at the Cifar100 scenario. When ignoring the Up-Scaled variants, the distance

ranges shrink to 2.7 at Conv7 and 2.3 at Conv8.

• Conv7: The baselines corresponding to the schedules 444421 and 444442 show relatively high

similarity to their BPLS counterparts. However, especially at Conv7, the baseline corresponding

to A98765 shows higher similarity to 444442 than to its corresponding BPLS-schedule. On the

other hand, the baseline of 444442 shows relatively low similarity to A98765. In fact, the similarity

between the 444442 baseline and 444421 is even higher, despite that the configuration of 444421

at layer Conv7 differs more from 444442 than A98765 does.

• Random Dropout: Conv7 and Conv8 represent the layers where training approaches differ the

most. In contrast to the Cifar10 scenario, where corresponding layers showed very low similarity

to RandomDropout, the situation here is different. At Conv7, the similarity between the baselines

and Random Dropout is only slightly lower compared to BPLS, while at Conv8, the similarity to

Random Dropout is even higher.

• Up-Scaled: Each baseline exhibits low similarity to the Up-Scaled training approaches, similar

to observations in the Cifar10 scenario. However, especially at Conv7, the Up-Scaled training

approaches appear to be most similar to Conventional Training compared to other baselines.

Figure 7.8 switches the baselines from Per-Layer Learning Rate to BPLS. The layers investigated are

again Conv7 and Conv8. Following can be seen:

• Range: The distance ranges are almost identical to those observed in the previous Polar Plots,

where Per-Layer Learning Rate was used as baseline. On one hand, this is not surprising. The

highest similarity (lowest distance) at Conv7 is observed between 4421 and its Per-Layer Learning

Rate counterpart. Accordingly, switching the baselines does not affect this value. On the other

hand, the Up-Scaled training approaches show just as little similarity to BPLS as they do to the

Per-Layer Learning Rate. Particularly, the similarity to 444421_lr444444 is very low.

• 444442: While 444421 shows expected patterns, 444442 and A98765 differ. At Conv7, 444442 is

most similar to its Per-Layer Learning Rate counterpart. At Conv8, the similarity is highest to

the A98765 Per-Layer Learning Rate variant closely followed by 444442 Random Dropout and

Per-Layer Learning Rate.

• A98765: The A98765 baseline on the other side is most similar to the Per-Layer Learning Rate

approaches 444442 and A98765 at Conv7. At Conv8 it is most similar to the Per-Layer Learning
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Figure 7.8: Cifar100 Network - Distance Polar Plots (Baseline: BPLS)

Rate approaches 444421 and A98765. In both cases, the A98765 baseline shows highest similarity

to (almost) identically configured training approaches.

• RandomDropout: When looking carefully, it can be seen that at Conv8 the pattern of Per-Layer

Learning Rate approach 444442 is almost identical to its Random Dropout counterpart. None of

the previous investigations showed comparable behavior. Overall, in comparison to Per-Layer

Learning Rate, BPLS seems to be less similar to Random Dropout.
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• Up-Scaled: While the similarity between 444421 and Up-Scaled is relatively low, A98765 shows

the highest similarity to the Up-Scaled variants. In case of Conventional Training, A98765 and

444442 show approximately the same similarity. The similarity to 444421 is lower.

7.2.4 Summary

Especially, the mapping performed by the UMAP tool shows the similarity between Per-Layer Learning

Rate and its counterparts clearly. The clustering was as expected with one small exception. At Layer

Conv7 of the Cifar100 scenario, the BPLS-schedule A98765 was mapped to the 444442 Per-Layer Learn-

ing Rate baseline. Taking a closer look at the underlying configurations reveals that Conv7 is trained

every 2nd step in both cases. In other words, both BPLS-schedules, A98765 and 444442, are equally

configured at layer Conv7.

In general, it seems that two training approaches sharing the same configuration at a specific layer

tend to show similar patterns at this layer. For example, BPLS-schedules 4442 and 4422 at layer Conv4

of the Cifar10 scenario. This can especially be seen in the corresponding Distance Polar Plot.

Still, during the investigations, it became clear that layers influence each other. This can especially

be seen in the Color Maps of the Cifar10 scenario. While Conv6 and Lin1 share the same configuration

in each training approach, they continue the pattern visible at layers where configurations between

training approaches differ. For example, in the Cifar10 scenario, even when the configurations of Per-

Layer Learning Rate 4422 and 4421 apply the same learning rate at Conv6 and Lin1, they show increased

similarity to their own BPLS and Random Dropout counterparts at those layers.

In general, it was observed that especially at Cifar10, the similarity between Per-Layer Learning

Rate and Random Dropout is significantly lower at layers differing from Conventional Training than at

later layers. This indicates that even when both training approaches behave differently at those specific

layers, both influence later layers similarly. One example of this can be seen in the Cosine-Similarity

Color Map of the Cifar10 scenario, where 4421 Per-Layer Learning Rate shows very low similarity to

its Random Dropout counterpart at Conv4 and Conv5 but very high similarity at Conv6 and Lin1.

Besides that, it has to be pointed out that Random Dropout, with some exceptions, is most similar to

the corresponding Per-Layer Learning Rate and BPLS counterparts throughout the layers. This could

be the reason why UMAP maps them as expected.

While the Up-Scaled training approaches show very low similarity to each investigated baseline,

they are most similar to Conventional Training, as expected. This can especially be seen in the UMAPs

of the Cifar10 and Cifar100 scenarios and in the Color Maps of the Cifar10 scenario.
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7.3 Performance Evaluation

After analyzing the similarity between BPLS, Per-Layer Learning Rate, and Random-Dropout, it is time

to answer the second research question: Can BPLS improve the efficiency of fine-tuning without affecting

training behavior negatively?

Therefore, for each fine-tuning scenario, this section lists the highest achieved test accuracy, the

base learning rate applied to achieve the highest test accuracy, and the estimated number of executed

MAC-operations. Additionally, the estimated reduction in peak memory and the maximum number of

operations executed per training step are listed for memory-optimized BPLS-schedules.

Some of the BPLS-schedules and their Per-Layer Learning Rate counterparts are visualized. The

visualization allows for comparing test accuracy and training time directly in terms of number of epochs

and MAC-operations.

The scenarios are not presented in any specific order but are simply listed based on their execution.

While the Cifar10 scenario was the first investigated, the Cifar100 scenario was the second, and the

Key-Word scenario the third.

The accuracy was measured following the Grid Search approach introduced in the Methodology

chapter. It is worth mentioning that even when searching with very fine steps, the best performing

learning rate and highest test accuracy should be viewed in relation to the limitations of the grid search

conducted. Additionally, performing the same training with slightly modified parameters (variation of

pre-trained network, learning rate, etc.) could lead to slightly different results. Accordingly, a small

tolerance around the test accuracy should be considered. Test accuracies that differ only slightly can

be considered equivalent.

7.3.1 Interpretation

To understand the following tables and diagrams, some explanations are provided here.

Tables

Table 7.1, 7.2, 7.3 and 7.4 summarize the performance evaluation of the Cifar10, Cifar100, and Key-Word

scenarios. For each investigated training approach, these tables contain the highest achieved accuracy

and the corresponding learning rate. Each training was performed for a defined number of epochs.

As mentioned, accuracies that only slightly differ should be considered as equal. Accordingly, a

learning rate range is provided. This range contains learning rates that result in accuracies differing



7.3. Performance Evaluation 85

only slightly from the highest achieved accuracy. The range starts at the lowest and ends at the highest

learning rate that leads to sufficient training. Learning rates inside the range that result in an accuracy

too low do not affect the range borders.

Additionally, the tables contain the average number of MAC-operations per training step (training

of one single data sample) and its relation to Conventional Training, which of course executes the

highest number of MAC-operations per training step.

Diagrams

Diagrams 7.9, 7.10, 7.12 and 7.14 visualize some of the training approaches. The diagrams are structured

as follows: the left side shows accuracy in relation to the number of training epochs, while the right

side shows accuracy in relation to the number of MAC-operations executed. Most plots compare a

BPLS-schedule with its corresponding Per-Layer Learning Rate counterpart. Each plot includes the

best-performing conventional fine-tuning run in two variants: one with n frozen layers and one with

n+1 frozen layers, where n represents the optimal number of layers to freeze. This demonstrates how

freezing layers affects training.

In addition, diagrams 7.11, 7.13 and 7.15 plot the number of epochs required for reaching a specific

accuracy in relation to the reduction in operations. The diagrams do not necessarily include the training

runs achieving the highest accuracy but rather those performing well in terms of accuracy and training

time. These training runs fall within the previously introduced learning rate range. The complete grid

search outcomes are listed in the Appendix section.

7.3.2 Cifar10 Performance

Training Conditions

In the case of the Cifar10 scenario, training was performed for 30 epochs. Approximately 20 training

runs were executed for each training approach. In this experiment no Plato Learning Rate Schedule or

Dropout Layer was utilized.

Overview

Table 7.1 provides an overview of the training performance corresponding to this experiment. Several

important aspects should be highlighted:

• There is a noticeable gap in test accuracy between 4444 and 4440, indicating that training layer

Conv4 significantly impacts performance.
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schedule learning
rate [E-6]

best test
accuracy

learning rate range
(0.1%-points) [E-6]

ops per
step

rel. ops

4444 133 78.17% 83 – 146 17.24M 100.00%
4440 140 77.72% 100 – 140 14.06M 81.56%
4444lr4442 154 78.13% 100 – 205 17.24M 100.00%
4444lr4422 169 78.09% 169 – 251 17.24M 100.00%
4444lr4421 274 77.81% 100 – 332 17.24M 100.00%
4444lr4432 225 78.10% 140 – 225 17.24M 100.00%
4442 96 78.25% 87 – 196 15.65M 90.78%
4422 207 78.15% 186 – 225 14.15M 82.09%
4422m 225 78.17% 225 – 225 15.14M 87.84%
4421 196 78.10% 116 – 274 13.35M 77.48%
4432 154 78.20% 116 – 154 14.90M 86.44%
4211m 179 78.15% 179 – 179 12.09M 70.14%

Table 7.1: Cifar10 - Training Performance Summary

• 4421 performs fewer operations than 4440 but achieves higher test accuracy. 4422 requires

slightly more operations than 4440 but achieves a test accuracy practically as good as 4444 while

executing significantly fewer operations.

• BPLS-schedules 4422_m and 4211_m are optimized for peak-memory and peak-operations re-

duction. According to mathematical estimations, 4422_m can reduce peak-memory by 6.31% and

4211_m by 14.01%. The peak-operations are 94.12% at 4422_m and 82.38% at 4211_m. Both sched-

ules reduce the number of overall executed operations significantly while achieving good accu-

racy. In comparison, the Conventional Training approach 4440 reduces peak-memory by 7.35%

but achieves significantly worse accuracy. 4440 executes 81.56% operations at each training step.

• The Per-Layer Learning Rate approach achieves slightly lower test accuracy than BPLS at the

investigated configurations but performs as many operations as 4444.

• As expected, the Per-Layer Learning Rate approach allows for higher base learning rates. In case

of 4421, the base learning rate of the Per-Layer Learning Rate variant can be up to 21% higher

than the learning rate of its BPLS counterpart. In case of 4422 and 4422_m, it can be up to 12%,

and in case of 4432, up to 46% higher. However, for 4442, the base learning rate of its Per-Layer

Learning Rate counterpart can only be up to 5% higher, possibly limited by layer Conv5, allowing

no higher base learning rate without negatively affecting test accuracy. This comparison is based

on the upper bound of the learning rate range.
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Diagrams
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Figure 7.9: Cifar10 Network - Training Performance
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Figure 7.9 visualizes the training of BPLS-schedules 4421, 4442, 4422 and 4422_m and their Per-Layer

Learning Rate counterparts.

In the upper-left plot (featuring 4421), it can be observed that the Per-Layer Learning Rate vari-

ant achieves a relatively high test accuracy, requiring the fewest epochs, as expected. However, the

achieved test accuracy is slightly lower compared to the conventional approach. In contrast, BPLS re-

quires more epochs to reach its peak compared to the conventional approach, possibly due to frequent

layer skipping. Nonetheless, the test accuracy of 4421 is very close to that achieved by Conventional

Training. Additionally, there are noticeable fluctuations in accuracy with the BPLS-schedule, likely also

due to frequent layer skipping.

The upper-right plot presents the same data but switches the x-axis to the number of executedMAC-

operations. Here, it can be observed that the reduction in operations allows the BPLS-schedule to train

nearly as fast and energy efficiently as its Per-Layer Learning Rate counterpart while achieving test

accuracy comparable to Conventional Training.

In the second row (featuring 4442), it can be observed that all displayed training runs, except for

4440, require approximately the same number of epochs to reach high test accuracy. This could be

attributed to the configuration constraints that prevent assigning higher base learning rates to the Per-

Layer Learning Rate compared to other training approaches. Additionally, BPLS-schedule 4442 trains

layers Conv4 and Conv5 more frequently than schedule 4421, avoiding the situation where BPLS re-

quires more epochs than Conventional Training. Looking at the right plot, despite BPLS-schedule 4442

performing more operations than schedule 4421, its overall performance is superior, outperforming

both its Per-Layer Learning Rate counterpart and Conventional Training.

The last row features BPLS-schedules 4422 and 4422_m. As mentioned earlier, 4422_m has the

potential to reduce peak memory by 6.31% and peak operations by 5.88%. Despite being optimized for

memory reduction, 4422_m performs comparably in terms of training time and accuracy to its Per-

Layer Learning Rate counterpart. When considering the number of operations required to achieve

accuracy similar to the best achieved by Conventional Training, 4422 requires 17.91% fewer operations.

This reduction directly translates to savings in training time and energy consumption, at least on the

targeted MCUs.

For this experiment, no Plato Learning Rate Schedule was utilized. Accordingly, after reaching the

accuracy peak, the learning rate was not reduced, leading to a decline in accuracy after the peak. While

Figure 7.9 plots the actual accuracy of the network after each epoch, Figure 7.10 shows the best accuracy

achieved up to a specific epoch. Additionally, instead of displaying all 30 executed training epochs, the
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left plots display only 20 epochs, while the right plots display 26.71 TMAC-operations, corresponding

to the number of MAC-operations executed by Conventional Training to perform 20 epochs.
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Figure 7.10: Cifar10 Network - Training Performance (best accuracy)

Figure 7.11 displays the number of epochs required to reach 77.8% accuracy in relation to the re-

duction in operations. Here, all BPLS-schedules listed in Table 7.1, including their highest achieved

accuracy are displayed. The plot can be split into three parts. Until a 9.2% reduction in operations, no

increase in epochs can be noted. Between 9.2% and 17.9%, a slight increase, and from 17.9% onwards,

a high increase in epochs can be seen. The reduction in number of operations does only lead to minor
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Figure 7.11: Cifar10 Network - Epochs per Operations

decline in accuracy.

7.3.3 Cifar100 Performance

Training Conditions

In the case of the Cifar100 scenario, the network was trained for 40 epochs. Approximately 18 different

learning rates were investigated for each training approach. During this experiment, a Plato Learning

Rate Schedule was employed, where if the test loss did not decrease for 5 consecutive epochs, the

learning rate was halved.

Overview

The following tables summarize the training performance of the Cifar100 scenario. When working

with datasets containing numerous classes, such as Cifar100, it is common to evaluate not only the top-

1 accuracy but also the top-5 accuracy. In top-5 accuracy, a classification is considered correct if the

ground truth class is among the top 5 predicted classes with the highest probabilities. Table 7.2 lists the

top-1 training performance, while Table 7.3 contains the top-5 test accuracy and corresponding base

learning rates. The tables reveal the following insights:
• BPLS achieves similarly high accuracies as their Per-Layer Learning Rate counterparts while

performing fewer operations. However, Conventional Training performs surprisingly well in

this experiment, especially considering the top-1 accuracy, outperforming all investigated BPLS

schedules and their Per-Layer Learning Rate counterparts.

• As observed in the Cifar10 experiment, the Per-Layer Learning Rate approach allows for higher

base learning rates than their BPLS counterparts, potentially leading to training that requires
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schedule learning
rate [E-6]

best test
accuracy

learning rate range
(0.25%-points)
[E-6]

ops per
step

rel. ops

444444 1048 60.83% 1048 – 1048 301.44M 100%
444440 945 58.61% 945 – 1258 256.00M 84.93%
444444lr444442 1134 60.37% 1031 – 1247 301.44M 100.00%
444444lrA98765 1522 60.26% 1143 – 1522 301.44M 100.00%
444444lr444421 1485 59.86% 1485 – 2009 301.44M 100.00%
444442 807 59.95% 596 – 960 278.72M 92.46%
A98765 969 60.06% 673 – 969 252.05M 83.61%
444421 807 59.81% 807 – 1162 247.11M 81.98%
444222m 720 59.70% 538 – 720 244.18M 81.00%
663333m 541 58.88% 541 – 595 224.14M 73.51%
633111m 720 59.08% 720 – 720 231.72M 76.87%

Table 7.2: Cifar100 - Training Performance Summary - top-1

fewer epochs. Considering top-1 accuracy, the Per-Layer Learning Rate variant of 444421 allows

base learning rates up to 73% higher than its BPLS counterpart, while for 444442 it is 30%, and

for A98765 57%.

• The base learning rates resulting in good top-5 accuracy are lower for most training approaches

compared to those achieving good top-1 accuracy. However, the relationship between BPLS and

their Per-Layer Learning Rate counterparts regarding base learning rates is very similar for both,

top-1 and top-5 accuracy. For top-5 accuracy, the Per-Layer Learning Rate variant of 444421

allows base learning rates up to 70% higher than its BPLS counterpart, while for 444442 it is 30%,

and for A98765 73%.

• The network investigated here has high potential for peak-memory optimization due to the rela-

tively high number of trained layers. While 444440 achieves a 7.78% reduction in peak-memory,

444222_m and 633111_m achieve 22.86% and 663333_m even 49.61%. The peak-operations are

90.52% at 444222_m, 82.38% at 633111_m, and 89.13% at 663333_m. In terms of accuracy, 663333_m,

like 444440, performs relatively poorly. However, 444222_m achieves accuracy as high as other

well-performing training approaches, and 633111_m performs somewhere in between.

Diagrams

Figure 7.12 visualizes the top-1 accuracy of several BPLS-schedules and their Per-Layer Learning Rate

counterparts. Conventional Training with n and n+1 frozen layers is provided as a baseline, similar

to the Cifar10 experiment. The training runs displayed represent a compromise between accuracy and

training speed.



92 Chapter 7. Results

schedule learning
rate [E-6]

best test
accuracy

learning rate range
(0.25%-points)
[E-6]

444444 716 85.17% 467 – 716
444440 807 83.8% 673 – 1258
444444lr444442 1031 85.12% 467 – 1031
444444lrA98765 1162 84.68% 673 – 1395
444444lr444421 1162 84.58% 1162 – 1485
444442 794 84.94% 596 – 794
A98765 673 84.91% 673 – 807
444421 873 84.39% 561 – 873
444222m 447 84.99% 447 – 720
663333m 541 84.46% 406 – 541
633111m 720 84.81% 720 – 720

Table 7.3: Cifar100 - Training Performance Summary - top-5

First of all, in each case, Conventional Training performed the best, while BPLS and the Per-Layer

Learning Rate approach performed approximately equally well.

For 444421, BPLS achieves practically the same accuracy as its Per-Layer Learning Rate counterpart,

albeit requiring slightly more epochs to reach its peak. However, because BPLS performs fewer MAC-

operations per training step, it actually reaches the peak with fewer MAC-operations than its Per-Layer

Learning Rate counterpart.

In the case of A98765, both the BPLS-schedule and its Per-Layer Learning Rate counterpart achieve

slightly higher accuracy than in the case of 444421. Here, the Per-Layer Learning Rate approach re-

quires a relatively low number of epochs for training. Consequently, the epoch-gap between the BPLS-

schedule and its Per-Layer Learning Rate counterpart is too wide to be compensated by the savings in

MAC-operations offered by BPLS.

The last row features the peak-memory optimizing BPLS-schedules 444222_m and 663333_m. As

mentioned earlier, 444222_m allows a reduction in peak-memory by 22.86%, while 663333_m achieves

an impressive reduction of 49.61%. In comparison, 444440 reduces peak-memory by only 7.78%. Despite

this, in terms of accuracy and training speed, especially 444222_m performs relatively well, whereas

663333_m achieves performance similar to 444440.

This experiment demonstrates how the performance of BPLS depends heavily on the specific train-

ing scenario. The BPLS-schedules investigated here did not achieve advantages in terms of accuracy and

training speed compared to the Per-Layer Learning Rate approach or Conventional Training. However,

the peak-memory optimizing BPLS-schedules yielded very good results.
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Figure 7.12: Cifar100 Network - Training Performance

Figure 7.13 displays the number of epochs required to reach 58.0% accuracy in relation to the re-

duction in operations. Up to a 7.5% reduction, no increase in epochs can be noted. From there on, the

number of epochs steadily increases. Here, a minor but continues decline in accuracy can be seen.
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Figure 7.13: Cifar10 Network - Epochs per Operations

7.3.4 Key-Word Performance

Training Conditions

While the Cifar10 and Cifar100 datasets are commonly used in image classification experiments, they

are more or less distant from real-life use cases. In contrast, the experiment around the Key-Word

scenario uses audio samples for training and evaluation that were recorded by us.

Similar to the Cifar100 experiment, a Plato Learning Rate Schedule was applied here. The learning

rate was halved if no improvement in test loss was detected for 50 epochs in a row. The training was

executed for 350 epochs.

The Key-Word experiment is the only one applying Dropout Layers. These Dropout Layers signif-

icantly improve training performance in this example but lead to non-deterministic training behavior.

Therefore, around 150 training runs per investigated training approach were initiated. These training

runs were stopped after 20 epochs if no accuracy higher than 30% was achieved by then.

It is important to note that the test dataset for the Key-Word scenario consists of only 160 samples,

unlike the 10,000 test samples featured in Cifar10 and Cifar100. Classifying one additional test keyword

correctly therefore improves test accuracy by 0.625 percentage points. For clarity, table 7.4 does not

provide the test accuracy as a percentage but rather the number of correctly classified test samples.
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schedule learning
rate [E-6]

best acc.
[samples]

learning rate range
(5 samples) [E-6]

ops per
step

rel. ops

4444 766 146 576 – 1899 67.89M 100.00%
4440 2404 130 2186 – 2404 53.15M 78.29%
4444lr4442 1806 142 633 – 1806 67.89M 100.00%
4444lr4421 2734 143 2734 – 2734 67.89M 100.00%
4444lr4432 3200 148 2645 – 3200 67.89M 100.00%
4444lr4422 1122 145 122 – 1806 67.89M 100.00%
4444lr4222 1195 149 1009 – 2985 67.89M 100.00%
4442 1516 145 1516 – 2734 60.52M 89.14%
4421 1520 145 1246 – 2186 48.77M 71.83%
4432 1642 152 1642 – 1642 56.49M 83.20%
4422 1505 149 1031 – 2734 52.45M 77.26%
4422m 906 144 906 – 2049 53.26M 78.45%
4222 1418 145 1139 – 2680 50.84M 74.89%
4222m 1322 144 1322 – 1800 50.85M 74.89%
4211m 908 146 908 – 1449 43.53M 64.12%

Table 7.4: Key Words - Training Performance Summary

Overview

In table 7.4 following can be seen:

• The BPLS-schedule 4432 and its Per-Layer Learning Rate counterpart achieve the highest test

accuracy, while 4440 achieves the lowest.

• The network investigated in this experiment does not provide much room for peak-memory op-

timization but shows the highest potential for reducing peak-operations. While 4422_m, similar

to 4440, allows for a negligible reduction in peak-memory (0.7%), 4222_m and 4211_m achieve a

reduction of 4.11%. The peak-operations are 78.61% for 4422_m, 95.27% for 4222_m, and 73.88%

for 4211_m. The accuracy achieved by these schedules is similar to other training approaches.

• Previous experiments have shown that, typically, the Per-Layer Learning Rate approach allows

for the application of higher learning rates than its BPLS counterpart. However, the experiment

around the Key-Word scenario does not completely confirm this observation. Here, the Per-

Layer Learning Rate approach allows learning rates 25% higher for 4421, 95% higher for 4432,

11% higher for 4222 and 66% higher for 4222_m. Nevertheless, some measurements contradict

this observation. For instance, in the case of 4442, the upper bound of the learning rate range

of the Per-Layer Learning Rate approach is 34% lower than its BPLS counterpart. In the case of

4422, it is 34% lower, and in the case of 4422_m it is 12% lower. As mentioned, the Key-Word

experiment is the only one utilizing Dropout Layers. The resulting nondeterminism could be one

possible root cause.
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Diagrams
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Figure 7.14: KW Network - Training Performance

Figure 7.15 visualizes the training behavior over epochs and number of operations. Tomake it easier

to interpret the plots, a running average filter was applied, slightly flattening the graphs.

As seen in the first row, both 4222 and 4222_m achieve accuracy as high as Conventional Train-

ing. However, the BPLS-schedules require significantly more epochs, resulting in slower training, even

when considering that both BPLS-schedules perform only 74.89% of the MAC-operations compared to
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Figure 7.15: KW Network - Epochs per Operations

Conventional Training. In contrast, the Per-Layer Learning Rate counterpart trains as fast as Conven-

tional Training but achieves higher accuracy.

Training just one layer slightly more frequently already reduces the epoch gap between BPLS and

the other training approaches, as can be seen in the plots featuring 4422 and 4422_m. In this case,

both BPLS-schedules train as fast as Conventional Training considering the number of executed MAC-

operations. The accuracy achieved by 4422 is even higher than that achieved by Conventional Training,

while the one achieved by 4422_m is slightly lower. The Per-Layer Learning Rate counterpart achieves

accuracy as high as Conventional Training but requires more epochs.

Modifying the BPLS-schedule further leads to 4432, featured in the last row. The reduction in the

number of MAC-operations per step in the case of 4432 is not as high as in the previously investigated

schedules. Nevertheless, 4432 achieves very good results by training faster and achieving higher ac-

curacy compared to other training approaches. In fact, 4432 requires 51.34% fewer operations to reach

the best accuracy achieved by Conventional Training. The Per-Layer Learning Rate counterpart of 4432

also exhibits relatively good training behavior. This experiment once more highlights the importance

of BPLS configurations being well-fitting. Even slight alterations to the BPLS-schedule can lead to very

different training behaviors.

Figure 7.15 displays the number of epochs required to reach 68.0% accuracy in relation to the re-

duction in operations. Despite the relatively high fluctuation, an increased number of epochs from a

specific point on can be detected, similar to Cifar10 and Cifar100. Here, this point is at a reduction of

around 22.7%. No decline in accuracy is notable.
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7.3.5 Summary

The Performance section showed that BPLS-schedules can perform as well as conventional and Per-

Layer Learning Rate approaches in terms of test accuracy, and possibly even better. In the Key-Word

experiment, the BPLS-schedule 4432 achieved an accuracy of 152/160 correctly classified test samples,

while the best performing Per-Layer Learning Rate approach achieved only 149/160 and Conventional

Training 146/160.

One key idea of BPLS is to reduce the number of executed operations, thereby reducing training

time and energy consumption. The number of operations must be considered in combination with the

number of epochs required for training. Specifically, in the Key-Word experiment, BPLS-schedule 4222

demonstrated that despite executing only 74.89% of the operations of Conventional Training, BPLS

required more operations to complete training because it needed significantly more epochs than the

other investigated approaches.

However, as seen with the 4432 BPLS-schedule in the Key-Word experiment, when a well-fitting

schedule is applied, no additional epochs need to be carried out. In this case, 4432 required 51.34% fewer

operations, and therefore less time and energy to reach the best accuracy achieved by Conventional

Training. Overall, the measurements revealed, that an increased number of skipped operations does

not affect achieved accuracy significantly but rather increases the number of training epochs.

In addition to reducing execution time and energy consumption, a fundamental idea behind BPLS

is to limit the number of operations per training step. This can be useful for meeting real-time criteria

or synchronizing with processes. Even though 4211_m in the Key-Word experiment required more

time and energy to complete training, it reduced the average number of operations per training step to

64.12% and peak-operations to 73.88%, while achieving accuracy as high as Conventional Training.

Furthermore, it was shown that peak-memory-optimizing BPLS-schedules can significantly reduce

peak-memory while still maintaining sufficient training speed and accuracy. This is especially evi-

dent in the Cifar100 experiment, where BPLS-schedule 444222_m reduced peak-memory by 22.86%

while achieving an accuracy of 59.7%. 663333_m even reduced peak-memory by 49.61% while achiev-

ing 58.88% test accuracy. In comparison, 444440 reduced peak-memory by only 7.78% while achieving

58.61% accuracy.

In both scenarios, Cifar10 and Key-Word, BPLS achieved the highest accuracy. This could indicate

that BPLS has a positive impact on accuracy, possibly due to a generalizing effect. However, these

accuracies vary only slightly from other training approaches and could therefore be purely coincidental.

Further work is required to validate this aspect.
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Through the experiments, the importance of well-fitting BPLS-schedules for achieving sufficient

training performance became evident. While the amount of operations per training step and peak-

memory depend only on the network structure, the ideal schedule configuration, achieved accuracy

and required number of epochs also depend on the fine-tuning data.
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7.4 Evaluation of Estimations

Theprevious section (Performance) compared training approaches in terms of test accuracy, the number

of executed operations, and peak memory requirements. However, instead of measuring the actual

execution time for each specific training approach on a specific platform, we estimated the number

of operations using an optimal mathematical model. Accordingly, it is crucial that the mathematical

model accurately represents real-world behavior.

This section provides actual execution time measurements and compares them with the estimated

number of operations. Themeasurements were conducted on three devices: Server, Desktop, andMCU.

For evaluating peak memory estimations, stack information automatically generated during compila-

tion was used.

Execution time and the number of operations executed cannot be compared directly. Instead, we

compare the ratio between the training approaches of interest and Conventional Training. Conven-

tional Training executes the most operations during training and therefore requires the highest amount

of time. Additionally, we compare the estimated and measured ratio between backward and forward

propagation for Conventional Training.

7.4.1 Server Measurements

Initially, it was planned to measure execution time only on the featured Server CPU using PyTorch.

However, modern CPUs are very complex. Advanced processor functionalities such as out-of-order

execution, instruction-level parallelism, and multiple layers of cache make predictions quite difficult.

Additionally, modern operating systems and machine learning frameworks like PyTorch add an addi-

tional layer of complexity.

Due to this increased complexity, the mathematical estimations and measured data differ quite dras-

tically, as can be seen in Figure 7.16 based on the Cifar10 scenario. The estimations are represented by

simple bar diagrams, while for the Server measurements, the first quartile (q1), median, and third quar-

tile (q3) are plotted. These are defined as follows:

• Median: median(training-approach) / median(conventional-training)

• q1: q1(training-approach) / q3(conventional-training)

• q3: q3(training-approach) / q1(conventional-training)

It should be noted that these values represent training time, respectively the number of operations

executed during training, which means that backward and forward propagation are accumulated. As

seen in Figure 7.16, especially for the ratio between 1100 and 1111, the difference between estimation



7.4. Evaluation of Estimations 101

1110
1111

1100
1111

1101
1111

0

25

50

75

100

%

Estimation
Server (Pytorch)

Figure 7.16: Comparison between Server measurement and estimated number of operations (bw + fw)

and measurement is quite high, while the difference for the ratio featuring 1101 is surprisingly low.

Furthermore, as shown in Table 7.5, the estimated backward-to-forward ratio fits the measured

one almost perfectly. According to the measurements, the backward path requires 91% of the forward

time, while according to the estimations, during backward propagation, 93% of forward path operations

are executed. How can it be that the backward path requires less time, respectively executes fewer

operations? Simply because forward propagation goes through all layers, while backward propagation

only treats unfrozen ones.

estimation measure-
ment

bw / fw 0.93 0.91

Table 7.5: Server measurement: bw / fw

To learn more about the Server measurements, Figure 7.17 shows a histogram featuring all mea-

surement samples. In this plot, the backward and forward propagation time is not accumulated, but

instead, the raw backward time is shown. While the samples spread over a wide area, especially in the

case of 1100, two peaks can clearly be seen. It can be assumed that the left peak represents the ideal

case, where data can be fetched from cache.

7.4.2 MCU Measurements

MCUs are much simpler in structure than modern Server CPUs, which makes their behavior much

easier to predict. Additionally, we did not use an operating system on the MCU but let it focus com-

pletely on executing our training code. Instead of using nontransparent frameworks, we wrote the code

from the ground up. This allowed us to modify the mathematical model according to the actual imple-

mentation. After minor adjustments, the estimated number of operations aligned very well with the
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Figure 7.17: Server measurements - Histogram

measurement results. This section describes the applied adjustments and compares the measurements

to the estimations.

Due to the limited capacities of theMCU, the experiment is based on theMCU scenario introduced in

the Networks and Datasets chapter instead of the Cifar10 scenario used for the Server measurements.

The adjusted mathematical model can be found in Table 7.6. The formulas are equivalent to those

listed in Tables 2.1 and 2.2 of the Background chapter. However, Table 7.6 includes scaling and the

introduction of an offset.

The following figure and table compare the estimated and measured values, similar to previously

donewith themeasurements executed on the Server CPU.The following estimations andmeasurements

are featured:

• raw-estimation: represents estimations derived from the pure mathematical model that was

used for performance evaluation.

• adj. estimation: basically the same model as used for the raw-estimations with adjustments

featured in Table 7.6.

• mcu-Ofast: measurements performed on MCU. The code was optimized for speed.

• mcu-Omin: measurements performed on MCU. The code was optimized to occupy minimal

space on flash.

• Desktop: MCU code was compiled and executed on a desktop computer.

As seen in Table 7.7, regarding the backward-to-forward ratio, the raw estimations match the mea-

surements performed on the Desktop approximately as well as the Server measurements. The mea-

surements of MCU-Ofast differ significantly. The adjusted estimations match MCU-Omin perfectly.

However, it should be kept in mind that the mathematical model was actively adjusted to match the
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Layer Type Number of Ops
bw-Conv-Input-Grad. cin · cout · (ksize · (isize − 2 · pad) + 2 · (pad · ksize · pad2 +

pad2−pad
2 )) · 1.3

bw-Conv-Weight-Grad. cin · cout · (1 + 2 · (pad · osize · pad2 + pad2−pad
2 )) · 1.3

bw-Lin-Input-Grad. cin · cout · 1.3
bw-Lin-Weight-Grad. cin · cout · 1.3
fw-ReLU cin · iwidth · iheight · 1.5
Offset 375
bw-Conv-Update cin · ksize · cout + cout
bw-Lin-Update cin · cout + cout
bw-ReLU 0

bw-Max-Pool. cin · isize
bw-Gl-Avrg-Pool. cin · isize
fw-Conv cin · cout · (ksize · (isize − 2 · pad) + 2 · (pad · ksize · pad2 +

pad2−pad
2 )) + cout · osize

fw-Lin cin · cout + cout
fw-Max Pool cin · isize
fw-Gl-Avrg-Pool. cin · isize

Table 7.6: Number of Operations required for different layers

corresponding implementation.

raw-
estimation

adj. estima-
tion

mcu-Omin mcu-Ofast desktop
(cpp)

bw / fw 2.98 3.44 3.44 2.24 3.03

Table 7.7: MCU measurement: bw / fw

Figure 7.18 shows that especially the adjusted estimations, but also the raw estimations, align quite

well with MCU-Omin. However, the measurements performed on the Desktop, and especially the

MCU-Ofast measurements, differ more drastically. The reason why MCU-Omin fits so well is likely

due to optimizing the code to require the least amount of space, with almost no timing optimization,

such as aggressive loop unrolling, just as assumed by the estimations.

Additionally, as can be seen, not only the estimations but also the MCU measurements show only

one value per bar, due to zero variance in execution time. On the other hand, for training performed

on the Desktop, q1, median, and q3 are provided, just as for the Server CPU measurements earlier.

7.4.3 Evaluation of theoretical Memory Model

The estimation of memory requirements is a complex topic that is just briefly touched upon in this

thesis. While compiling the CPP code for MCU and Desktop, a static memory allocation output was

automatically generated. According to the simple mathematical memory estimations provided in the
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Figure 7.18: Comparison between MCU measurements and estimated number of operations

Background chapter, it is expected that skipping certain layers in the backward path reduces the amount

of data required to store. Figure 7.19 compares the estimations with the static memory allocation output

for Desktop and MCU. The MCU memory allocation is provided in two variants: with and without

Memory Optimization.
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Figure 7.19: Estimated peak memory requirements and static stack information

It should be noted that the estimations ignore the potential for memory optimization, just as the

allocation outputs. Only the Memory Optimized allocation output releases memory that is not required

anymore to reuse it for new Gradients or Feature Maps.

As shown in Figure 7.19, the mathematical estimations are not perfect but align well with the allo-

cation outputs without Memory Optimization. Training the layers 1110 and 1101 alternately, as BPLS-

schedule 4422_m does, reduces peakmemory by 8.87% compared to training each unfrozen layer (1111).
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Applying a schedule that trains the layers 1010 and 1101 alternately even leads to a peak memory re-

duction of 26.26% in this specific example. A corresponding BPLS-schedule would be 4222_m.

The Memory Optimized allocation output differs significantly from the one without Memory Opti-

mization. While BPLS can reduce peakmemory in both cases, its benefit is slightly lower whenMemory

Optimization is applied, as shown in Table 7.8.

1110 / 1111 1101 / 1111 1100 / 1111 fw / 1111
Memory Opt. 95.93% 86.43% 49.32% 19.46%
not Memory Opt. 91.30% 71.45% 48.04% 60.92%

Table 7.8: Peak Memory Reduction - with and without Memory Optimization

7.4.4 Summary

This section has demonstrated that the estimations for both executed operations and peak memory

requirements match the measurements quite well. Consequently, these estimations can be used for

performance evaluation with confidence.

In more detail, while the timing measured on the Server and Desktop differs, especially the Omin-

optimizedMCU code alignswell with the estimations. Furthermore, withoutMemoryOptimization, the

stack allocation outputs closely match the estimated peakmemory. ConsideringMemory Optimization,

a slightly reduced, but still notable optimization potential can be seen.
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Conclusion and Future Work

8.1 Summary

This thesis introduces the so-called Back Propagation Layer Scheduling (BPLS) approach. The key idea

behind BPLS is to train neural networks following training schedules. These schedules specify at which

training step which layer is trained.

By skipping less critical training steps, the number of executed operations can be reduced. In fine-

tuning neural networks, the classifier layer often requires more adaptation than earlier layers. The

well-known Per-Layer Learning Rate approach leverages this by applying higher learning rates to later

layers while keeping the learning rates low for earlier layers. Consequently, skipping training steps of

earlier layers might reduce training time and energy consumption without quality loss. Additionally,

defining scheduleswith a limited number of operations could be used to synchronize trainingwith other

processes, meet real-time constraints, or adhere to energy budgets. By configuring training schedules

in specific ways, peak-memory requirements can also be minimized.

This thesis primarily focuses on addressing two questions:

1. How does BPLS behave in regard of the Per-Layer Learning Rate approach.

2. Can BPLS improve the efficiency of fine-tuning without affecting training behavior negatively.

To assess the similarity of BPLS with other training approaches and to investigate its performance,

three fine-tuning scenarios were defined based on the Cifar10, Cifar100, and a custom-created keyword

dataset. More details about these scenarios can be found in the Networks and Datasets chapter.

107
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8.2 Conclusion

8.2.1 Similarity Evaluation

The similarity evaluation revealed a clear correlation between Per-Layer Learning Rate, BPLS, and Ran-

dom Dropout counterparts. Additionally, a second correlation was noticed between Up-Scaled training

and Conventional Training. The investigated training approaches are detailed in the BPLS chapter and

briefly summarized here:
• Per-Layer Learning Rate: Assigns a specific learning rate to each layer.

• BPLS: Skips training steps of certain layers following a schedule.

• Random Dropout: Randomly drops gradients with each layer having a specific dropout rate

assigned.

• Up-Scaled: BPLS, but layer-specific learning rates compensate skipping.

In general, it appears that two training approaches sharing the same configuration at a specific layer

tend to exhibit similar patterns of similarity at that layer. However, during the investigations, it became

clear that layers influence each other. Even when most BPLS-schedules do not modify the training of

the last few layers of a network, these layers continue the similarity patterns observed in the preceding

layers.

This influence is especially evident in the plots generated by UMAP, a highly complex Dimension-

ality Reduction Tool used to represent n-dimensional weights of a layer as 2D point. Throughout the

layers, UMAP generates clusters that include BPLS-schedules and their counterparts on one hand, and

Up-Scaled variants and Conventional Training on the other. The clustering was mostly as expected.

While Random Dropout is always most similar to its Per-Layer Learning Rate and BPLS counter-

parts, the similarity is actually relatively low at layers where gradients are dropped, contradicting ex-

pectations. One reason could be that due to random dropout, someweights never access certain training

samples. In contrast, with Conventional Training and Per-Layer Learning Rate, every layer (and thus

every weight) accesses every training sample in each epoch. BPLS uses Dataset Shifting to achieve

similar behavior.

At layers where no gradients are dropped, Per-Layer Learning Rate is even more similar to Random

Dropout than to BPLS. At these layers, the configurations do not differ from Conventional Training.

This suggests that dropping gradients from earlier layers must have a similar effect as adjusting their

learning rates accordingly.
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The Up-Scaled training approaches showed the highest similarity to Conventional Training, as ex-

pected. However, the actual similarity to Conventional Training is relatively low. This could be caused

by excessively high learning rates. Especially at layers where only every 4th step is trained, the learning

rate is four times the base learning rate. Excessive learning rates can have negative effects on training,

which is reflected in reduced accuracy.

8.2.2 Performance Evaluation

The Performance Evaluation compared BPLS to the best-performing Conventional Training and the

corresponding Per-Layer Learning Rate approach. The optimal learning rates were determined using

Grid Search. The number of operations and peak-memory requirements were obtained using an analyt-

ical model. To ensure correctness, one network was validated against hardware using Server, Desktop,

and MCU platforms. Several metrics were investigated:
• Test-Accuracy: The highest achieved test accuracy.

• Training Time and Energy: Reduction in training time and energy consumption.

• Number of MAC-Operations: MAC-operations executed by training step.

• Peak-Memory: Peak-memory requirements during training.

It was found that BPLS can perform as well as the Conventional and Per-Layer Learning Rate ap-

proaches in terms of test accuracy by reducing the number of executed MAC-operations and peak-

memory requirements. It has been shown that applying a well-fitting schedule is crucial. Skipping too

many training steps can result in an increased number of training epochs required to achieve sufficient

accuracy, negating some of the benefits of BPLS. The trade-off can be best explained by investigating

the individual metrics.

Test-Accuracy: In the Key-Word experiment, training with BPLS led to 152/160 correctly classi-

fied test samples, while reducing the number of operations by 16.8%. The best-performing Per-Layer

Learning Rate approach achieved 149/160, and Conventional Training 146/160 correctly classified test-

samples. This could indicate that BPLS has an unintended regularizing effect. However, further work

is needed to validate this aspect.

At the Cifar10 scenario, BPLS achieved 78.25% accuracy with a 9.22% reduction in operations. Here,

Per-Layer Learning Rate achieved 78.13%, and Conventional Training 78.17%. At the Cifar100 scenario,

BPLS achieved 60.06% accuracy with a 16.39% reduction in operations, while Per-Layer Learning Rate

achieved 60.37% and Conventional Training 60.83%.
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Training Time and Energy: Considering the number of training epochs, at the Key-Word exper-

iment BPLS completed training requiring 51.34% less time and energy. At Cifar10, the reduction was

17.91%, and at Cifar100, 7.53%. The accuracies for these runs were 152/160 at the Key-Word experiment,

78.15% at Cifar10, and 59.95% at Cifar100.

When skipping more training steps than a scenario-specific threshold, significantly more epochs

and, consequently, more time and energy are required to complete training, with little to no impact on

accuracy. These additional epochs may be necessary to achieve the required number of training steps.

For CIFAR10, this threshold is at a reduction in operations of 23%, for CIFAR100 at a reduction of 16%,

and for the Key-Word experiment at 25%.

Number of MAC-Operations: Particularly in Real-Time-Systems, meeting deadlines is crucial.

For example, a deadline could represent the time when new training data arrives. Until then, the previ-

ous training data must be processed. Moreover, the time available for individual training steps could be

limited to synchronize processes, making the average and maximum number of operations per training

step relevant.

At the Key-Word experiment, the lowest maximum operations per training step were 26.12% lower

than conventional training, with 35.88% fewer operations on average, while maintaining the same test

accuracy as Conventional Training. For Cifar10, a reduction of 17.62% in maximum operations and

18.03% on average was achieved with no loss in accuracy. For Cifar100, reductions of 16.31% in maxi-

mum operations and 23.13% on average were achieved with 59.08% accuracy. In all these cases, BPLS

resulted in an increased number of training epochs.

Peak-Memory: Peak-memory optimizing BPLS-schedules at the Cifar100 experiment reduced peak-

memory by 22.86% while achieving 59.7% accuracy. Schedules that allowed more compromises in terms

of training speed and accuracy were capable of achieving a 49.61% reduction in peak-memory with

58.88% accuracy. The potential for peak-memory reduction depends highly on the specific network

structure. In the Key-Word scenario, reductions of 4.11%, and at Cifar10, reductions of 14.01% were

achieved with practically no loss in accuracy.

8.3 Future Work

In this thesis BPLS was introduced and evaluated in its pure form. Subsequent some of the next promis-

ing aspects around BPLS are listed and briefly discussed.
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8.3.1 Automatic Schedule Definition

During the experiments, it became clear how important well-defined BPLS-schedules are for achiev-

ing effective training. Skipping training steps too frequently results in an increased number of epochs

required to complete training, negating some of the benefits of BPLS. Conversely, performing unnec-

essary training steps wastes optimization potential. Therefore, techniques for finding well-performing

schedules for individual training scenarios would be very useful.

One of the achievements of this thesis was to show that training with BPLS behaves similarly to

training with the corresponding Per-Layer Learning Rate configuration. As described in the Related

Work chapter, methods such as AutoLR [97] allow for the automatic definition of well-performing Per-

Layer Learning Rate configurations. An investigation could begin by converting such configurations

into BPLS schedules, as described in the BPLS chapter.

Furthermore, the RelatedWork chapter introduced approaches for dynamically adapting the number

of frozen layers during fine-tuning. AutoFreeze [101] is one of these approaches. Similar techniques

could be applied to dynamically adapt BPLS schedules during training.

8.3.2 BPLS combined with on-device optimization techniques

BPLS was designed to improve the efficiency of training neural networks on resource-constrained de-

vices. In theory, similar to the Per-Layer Learning Rate approach, BPLS is compatible with most com-

mon optimization techniques for training on such devices.

The experiments in this thesis utilized full-precision floating-point values. However, on resource-

constrained devices, it is more common to use lower precision or even integer values, a process referred

to as quantization. Additionally, networks are usually pruned before being applied to such devices,

which involves removing network parameters that contribute little to the network output. More about

these techniques can be found in the Background chapter.

It would be interesting to see how BPLS performs when training quantized and pruned networks.

While quantization can decrease the achieved network quality, no additional negative effects on BPLS

are assumed. On the other hand, skipping training steps could have different effects on pruned net-

works compared to unpruned ones. While un-pruned networks can have neglectable weights, pruned

networks are reduced to the essential ones. When fine-tuning pruned networks, the Per-Layer Learn-

ing Rate approach is commonly applied, raising expectations that BPLS can achieve good results in this

case as well due to the similarity between these training approaches.
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Quantizing floating-point parameters to integer precision leads to operations requiring less execu-

tion time and energy. Pruning, on the other hand, reduces the number of parameters in certain layers

and therefore the number of operations. Additionally, both techniques can reduce the amount of mem-

ory required.

In addition to quantization and pruning, more advanced optimization approaches for efficient train-

ing on resource-constrained devices have been recently introduced. Examples include MiniLearn [14]

and POET [16]. MiniLearn stores weights and intermediate outputs in integer precision and dequan-

tizes them to floating-point during training. POET considers hardware constraints by searching for the

optimal schedule of paging and rematerialization. More about these approaches and other concepts can

be found in the Related Work chapter. Investigating the interaction between BPLS and some of these

approaches could be a further step.

8.3.3 BPLS in real life experiments

Besides investigating howBPLS behaves in combinationwith thementioned optimization techniques, it

would be interesting to see how BPLS performs in real-life situations. This would involve its execution

on actual MCUs.

This thesis introduced three scenarios. One of them, the Key-Word scenario, is based on real-life

data. It features a Robot-Dog pre-trained to understand English keywords. During the fine-tuning

experiment, the Robot-Dog learned to understand those keywords in German and Japanese. The cor-

responding dataset and network can be found in the Networks and Datasets chapter.

It would be interesting to actually build this Robot-Dog and equip it with an MCU running a quan-

tized and pruned variant of the investigated network. This Robot-Dog could then be used for field

experiments comparing BPLS to other training approaches.

8.3.4 BPLS on large Neural Networks

At its core, BPLS represents an approach for fine-tuning neural networks fast and efficiently. Conse-

quently, BPLS is platform-independent. This thesis focused on devices relying on resource constraints,

especiallyMCUs. However, energy, timing, andmemory optimizations are important for training larger

networks, for example at data centers, as well. Such optimizations can help speed up training or allow

even larger networks to be trained by reducing memory requirements.

During the final stages of this thesis, the LISA [100] approach was published (as white paper), which

follows a relatively similar idea to BPLS but focuses on fine-tuning Large Language Models. LISA
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randomly freezes layers according to their probability, while the first and last layers of the network

remain permanently unfrozen. This allows to speed up training and reduce GPUmemory consumption.

More about LISA can be found in the Related Work chapter.

In some ways, BPLS can be seen as a more advanced form of LISA. Consequently, it would be

interesting to investigate the performance of BPLS on such large networks and directly compare it

with LISA. Use cases could include Large Language Models or intensive image classification tasks. For

example, the GSM8K dataset (8.5 thousand math word problems) [112] could be applied to the BERT-

LARGE network (340 million network parameters) [113], or ImageNet (14 million color images, 469x387

average resolution) [114] could be trained on the VGG19 network (144 million network parameters)

[78].

We assume that BPLS will achieve similar performance as LISA, in regard of accuracy and training

time. However, because LISA freezes layers randomly, it leads to probabilistic behavior. BPLS utilizes

pre-defined schedules. The resulting deterministic execution time and peak-memory requirements can

represent a significant advantage.
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Appendix

While the Result chapter concentrates on the essential insights gained during the experiments carried

out as part of the thesis, the Appendix section provides raw measurements and further information.

Starting with the definition of each -schedule used in the featured experiments. Further, all archived

best test-accuracies with their corresponding base learning rate are listed for each training run in the

Grid Search Results section. This is followed by tables showing the similarity measurements.

.1 BPLS-schedules
4442

Step 1 Step 2 Step 3 Step 4
n = 1 n = 1 n = 1 n = 1
n = 1 n = 1 n = 1 n = 1
n = 1 n = 1 n = 1 n = 1
n = 1 - n = 1 -
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Step 1 Step 2 Step 3 Step 4
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Figure 1: -schedules used in Cifar10 and Key-Word scenarios
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Figure 2: -schedules used in Cifar100 scenario
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