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Five types of contextuality: 1–3

What would you say?

(1) Kochen-Specker all-out contextuality (1967, DOI
10.1512/iumj.1968.17.17004) — complete absence of
two-valued states interpretable as classical, binary true-false
valu(e)[ation];

(2) Nonseparability (wrt two-valued states) of vertices — cf KS
“demarcation criterion” Theorem 0, Γ3? — “does anybody
care”? I think not!

(3) ”Hardy-Cabello-Type” ones, such as TIFS and TITS, as
exposed already by the KS “bug” (1965, DOI
10.1007/978-3-0348-9259-9_19) two years before their “major
paper”, which is a TIFS; their Γ1 is a TITS by an extension of
their previous “bug” TIFS;
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Five types of contextuality: 4,5

(5) Boole-Bell type violations of classical inequalities stemming
from non-independent, non-separable quantum properties –
those violate classical predictions relative to the assumption of
classical independent existence — cf Froissart (1981, DOI
10.1007/BF02903286) and Pitowsky (1986, DOI
10.1063/1.527066); eg, CHSH (4 disconnected contexts) or
intertwining contexts (aka orthonormal bases) Svozil (2001,
DOI 10.48550/arXiv.quant-ph/0012066) Specker bug,
Klyashko (2008, DOI 10.1103/PhysRevLett.101.020403)
pentagon/gram/house;

(5) GHZ Mermin type parity type proofs within a single context
(more on this later).
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Are there more?

˜ ˜ ˜
Are there more? Please let us know!

˜ ˜ ˜



(1) versus (5)

˜ ˜ ˜

From a structural (algebraic) point of view
Kochen-Specker type (1)
and GHZ Mermin type (5)

are VERY different!

˜ ˜ ˜



Operator valued arguments ‘mask’ the respective contexts
through spectral composition

• Contexts ≡ orthonormal basis.

• Normal (eg, hermitian, unitary) operators have a spectral
(de)composition in terms of the sum of their their eigenvalues
times orthogonal projection operators .
• Those (mutually orthogonal) orthogonal projection operators

can be expressed in terms of the dyadic products of elements
of an orthonormal basis aka context.
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Challenges to find joint eigensystem for mutually commuting
degenerate observables

A technical problem arises if the mutually commuting operators of
the observables are all degenerate. For the sake of an example take,
for instance, the two hermitian matrices

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 and


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


commute, and yet, none of their respective eigenvalues coincide:
indeed, the eigensystem of the first matrix consist of separable
vectors

(
1,±1, 0, 0

)
and

(
0, 0, 1,±1

)
while the eigenvectors of the

second matrix
(
1, 0, 0,±1

)
and

(
0, 1,±1, 0

)
are all nonseparable.

In such cases, finding their respective unique context can be rather
tedious, although constructively feasible, as it involves finding
simultaneous eigenvectors for all these commuting operators.



Solution: Matrix pencils that are linear combinations
(coherent superpositions) of respective matrices

Mutually commuting normal operators (such as Hermitian or
unitary operators that commute with their respective adjoints)
A1, . . . ,Al share common projection operators.

Solution: diagonalize the matrix pencil that is a linear combination
of the operator matrices:

P =
l∑

i=1

aiAi ,

where ai are scalars (for our purposes, real numbers). As P
commutes with A1, . . . ,Al , they share a common set of projection
operators. Moreover, since the scalar parameters ai can be
adjusted, and in particular, can be identified with Kronecker delta
functions δij , and as P commutes with each operator Aj for
1 ≤ j ≤ l , P and Aj share a common set of projection operators.



Case study I: Matrix pencil of the Peres-Mermin squareσz12 12σz σzσz
12σx σx12 σxσx
σzσx σxσz σyσy


matrix pencils eigenvalues

a− b − c −a + b − c −a− b + c a + b + c

aσz12 + b12σz + cσzσz |7〉 =
(
0, 1, 0, 0

)ᵀ |3〉 =
(
0, 0, 1, 0

)ᵀ |1〉 =
(
0, 0, 0, 1

)ᵀ |17〉 =
(
1, 0, 0, 0

)ᵀ
a12σx + bσx12 + cσxσx |20〉 =

(
−1,−1, 1, 1

)ᵀ |13〉 =
(
−1, 1,−1, 1

)ᵀ |11〉 =
(
1,−1,−1, 1

)ᵀ |24〉 =
(
1, 1, 1, 1

)ᵀ
aσzσx + bσxσz + cσyσy |21〉 =

(
1, 1,−1, 1

)ᵀ |14〉 =
(
1,−1, 1, 1

)ᵀ |23〉 =
(
−1, 1, 1, 1

)ᵀ |10〉 =
(
−1,−1,−1, 1

)ᵀ
aσz12 + b12σx + cσzσx |12〉 =

(
−1, 1, 0, 0

)ᵀ |4〉 =
(
0, 0, 1, 1

)ᵀ |2〉 =
(
0, 0,−1, 1

)ᵀ |22〉 =
(
1, 1, 0, 0

)ᵀ
a12σz + bσx12 + cσxσz |15〉 =

(
−1, 0, 1, 0

)ᵀ |8〉 =
(
0, 1, 0, 1

)ᵀ |6〉 =
(
0,−1, 0, 1

)ᵀ |19〉 =
(
1, 0, 1, 0

)ᵀ
a− b − c −a + b − c −a− b + c a + b + c

aσzσz + bσxσx + cσyσy |5〉 = |Ψ−〉 =
(
0, 1,−1, 0

)ᵀ |18〉 = |Φ+〉 =
(
1, 0, 0, 1

)ᵀ |16〉 = |Φ−〉 =
(
1, 0, 0,−1

)ᵀ |9〉 = |Ψ+〉 =
(
0, 1, 1, 0

)ᵀ

|2〉 |12〉 |20〉 |24〉

|13〉

|15〉

|6〉

|19〉

|21〉

|10〉|23〉|18〉|5〉

|9〉

|1〉

|17〉

|7〉

|4〉
|22〉 |11〉

|8〉

|14〉|16〉

|3〉
24− 24 ⊃ 18− 9 (Kochen-Specker)



Case study II: Matrix pencil of the
Greenberger-Horne-Zeilinger-Mermin argument

aσxσxσx + bσyσyσx + cσyσxσy + dσxσyσy

±(a− b − c − d) : |GHZ1,2〉 =
1
√

2
(|z+z+z+〉 ± |z−z−z−〉) =

1
√

2

(
1, 0, 0, 0, 0, 0, 0,±1

)ᵀ
,

±(a− b + c + d) : |GHZ3,4〉 =
1
√

2
(|z+z+z−〉 ± |z−z−z+〉) =

1
√

2

(
0, 1, 0, 0, 0, 0,±1, 0

)ᵀ
,

±(a + b − c + d) : |GHZ5,6〉 =
1
√

2
(|z+z−z+〉 ± |z−z+z−〉) =

1
√

2

(
0, 0, 1, 0, 0,±1, 0, 0

)ᵀ
,

±(a + b + c − d) : |GHZ7,8〉 =
1
√

2
(|z+z−z−〉 ± |z−z+z+〉) =

1
√

2

(
0, 0, 0, 1,±1, 0, 0, 0

)ᵀ
,

|GHZ1〉 = |z+z+z+〉
+|z−z−z−〉

|z+z+z+〉
−|z−z−z−〉

|z+z+z−〉
+|z−z−z+〉

|z+z+z−〉
−|z−z−z+〉

|z+z−z+〉
+|z−z+z−〉

|z+z−z+〉
−|z−z+z−〉

|z+z−z−〉
+|z−z+z+〉

|z+z−z−〉
−|z−z+z+〉



Case study III: Matrix pencil of two-partite
Greenberger-Horne-Zeilinger argument

a(σzσx) · (σxσz) + bσxσx + cσzσz

−a− b − c : |Ψ−〉 =
1
√

2
(|z+z−〉 − |z−z+〉) =

1
√

2

(
0, 1,−1, 0

)ᵀ
,

a + b − c : |Ψ+〉 =
1
√

2
(|z+z−〉+ |z−z+〉) =

1
√

2

(
0, 1, 1, 0

)ᵀ
,

a− b + c : |Φ−〉 =
1
√

2
(|z+z+〉 − |z−z−〉) =

1
√

2

(
1, 0, 0,−1

)ᵀ
,

−a + b + c : |Φ+〉 =
1
√

2
(|z+z+〉+ |z−z−〉) =

1
√

2

(
1, 0, 0, 1

)ᵀ
,

|Φ+〉 = |z+z+〉
+|z−z−〉

|z+z+〉
−|z−z−〉

|z+z−〉
+|z−z+〉

|z+z−〉
−|z−z+〉



Thank you for your attention!

˜ ˜ ˜
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