Converting nonlocality into contextuality (and back)

http://tph.tuwien.ac.at/~svozil/publ/2024-QIP24-pres.pdf

Karl Svozil

Institute for Theoretical Physics, TU Wien svozil@tuwien.ac.at

Wednesday, 12 June 2024, Quantum Information and Probability: from Foundations to Engineering (QIP24), Växjö, Sweden

What would you say?

What would you say?

(1) Kochen-Specker all-out contextuality (1967, DOI 10.1512/iumj.1968.17.17004) — complete absence of two-valued states interpretable as classical, binary true-false valu(e)[ation];

What would you say?

- (1) Kochen-Specker all-out contextuality (1967, DOI 10.1512/iumj.1968.17.17004) complete absence of two-valued states interpretable as classical, binary true-false valu(e)[ation];
- (2) Nonseparability (wrt two-valued states) of vertices cf KS "demarcation criterion" Theorem 0, Γ_3 ? "does anybody care"? I think not!

What would you say?

- (1) Kochen-Specker all-out contextuality (1967, DOI 10.1512/iumj.1968.17.17004) complete absence of two-valued states interpretable as classical, binary true-false valu(e)[ation];
- (2) Nonseparability (wrt two-valued states) of vertices cf KS "demarcation criterion" Theorem 0, Γ_3 ? "does anybody care"? I think not!
- (3) "Hardy-Cabello-Type" ones, such as TIFS and TITS, as exposed already by the KS "bug" (1965, DOI $10.1007/978-3-0348-9259-9_19$) two years before their "major paper", which is a TIFS; their Γ_1 is a TITS by an extension of their previous "bug" TIFS;

(5) Boole-Bell type violations of classical inequalities stemming from non-independent, non-separable quantum properties – those violate classical predictions relative to the assumption of classical independent existence — cf Froissart (1981, DOI 10.1007/BF02903286) and Pitowsky (1986, DOI 10.1063/1.527066); eg, CHSH (4 disconnected contexts) or intertwining contexts (aka orthonormal bases) Svozil (2001, DOI 10.48550/arXiv.quant-ph/0012066) Specker bug, Klyashko (2008, DOI 10.1103/PhysRevLett.101.020403) pentagon/gram/house;

- (5) Boole-Bell type violations of classical inequalities stemming from non-independent, non-separable quantum properties – those violate classical predictions relative to the assumption of classical independent existence — cf Froissart (1981, DOI 10.1007/BF02903286) and Pitowsky (1986, DOI 10.1063/1.527066); eg, CHSH (4 disconnected contexts) or intertwining contexts (aka orthonormal bases) Svozil (2001, DOI 10.48550/arXiv.quant-ph/0012066) Specker bug, Klyashko (2008, DOI 10.1103/PhysRevLett.101.020403) pentagon/gram/house;
- (5) GHZ Mermin type parity type proofs within a single context (more on this later).

Are there more?

Are there more? Please let us know!

(1) versus (5)

From a structural (algebraic) point of view Kochen-Specker type (1) and GHZ Mermin type (5) are VERY different!

Operator valued arguments 'mask' the respective contexts through spectral composition

Contexts ≡ orthonormal basis.

Operator valued arguments 'mask' the respective contexts through spectral composition

- Contexts ≡ orthonormal basis.
- Normal (eg, hermitian, unitary) operators have a spectral (de)composition in terms of the sum of their their eigenvalues times orthogonal projection operators.

Operator valued arguments 'mask' the respective contexts through spectral composition

- Contexts ≡ orthonormal basis.
- Normal (eg, hermitian, unitary) operators have a spectral (de)composition in terms of the sum of their their eigenvalues times orthogonal projection operators.
- Those (mutually orthogonal) orthogonal projection operators can be expressed in terms of the dyadic products of elements of an orthonormal basis aka context.

Challenges to find joint eigensystem for mutually commuting degenerate observables

A technical problem arises if the mutually commuting operators of the observables are all degenerate. For the sake of an example take, for instance, the two hermitian matrices

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

commute, and yet, none of their respective eigenvalues coincide: indeed, the eigensystem of the first matrix consist of separable vectors $(1,\pm 1,0,0)$ and $(0,0,1,\pm 1)$ while the eigenvectors of the second matrix $(1,0,0,\pm 1)$ and $(0,1,\pm 1,0)$ are all nonseparable. In such cases, finding their respective unique context can be rather tedious, although constructively feasible, as it involves finding simultaneous eigenvectors for all these commuting operators.

Solution: Matrix pencils that are linear combinations (coherent superpositions) of respective matrices

Mutually commuting normal operators (such as Hermitian or unitary operators that commute with their respective adjoints) A_1, \ldots, A_l share common projection operators.

Solution: diagonalize the matrix pencil that is a linear combination of the operator matrices:

$$P = \sum_{i=1}^{l} a_i A_i,$$

where a_i are scalars (for our purposes, real numbers). As P commutes with A_1, \ldots, A_l , they share a common set of projection operators. Moreover, since the scalar parameters a_i can be adjusted, and in particular, can be identified with Kronecker delta functions δ_{ij} , and as P commutes with each operator A_j for $1 \leq j \leq l$, P and A_j share a common set of projection operators.

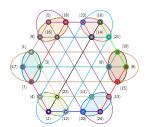
Case study I: Matrix pencil of the Peres-Mermin square

$$\begin{pmatrix} \sigma_z \mathbb{1}_2 & \mathbb{1}_2 \sigma_z & \sigma_z \sigma_z \\ \mathbb{1}_2 \sigma_x & \sigma_x \mathbb{1}_2 & \sigma_x \sigma_x \\ \sigma_z \sigma_x & \sigma_x \sigma_z & \sigma_y \sigma_y \end{pmatrix}$$

matrix pencils eigenvalue a-b-c -a+b-c

	a-b-c	-a+b-c	-a-b+c	a+b+c
$a\sigma_z \mathbb{1}_2 + b\mathbb{1}_2 \sigma_z + c\sigma_z \sigma_z$	$ 7\rangle = (0, 1, 0, 0)^T$	$ 3\rangle = (0, 0, 1, 0)^T$	$ 1\rangle = (0, 0, 0, 1)^T$	$ 17\rangle = (1, 0, 0, 0)^T$
$a\mathbb{1}_2\sigma_x + b\sigma_x\mathbb{1}_2 + c\sigma_x\sigma_x$	$ 20\rangle = (-1, -1, 1, 1)^T$	$ 13\rangle = (-1, 1, -1, 1)^{T}$	$ 11\rangle = (1, -1, -1, 1)^T$	$ 24\rangle = (1, 1, 1, 1)^T$
$a\sigma_z\sigma_x + b\sigma_x\sigma_z + c\sigma_y\sigma_y$	$ 21\rangle = (1, 1, -1, 1)^T$	$ 14\rangle = (1, -1, 1, 1)^T$	$ 23\rangle = (-1, 1, 1, 1)^T$	$ 10\rangle = (-1, -1, -1, 1)^T$
$a\sigma_z\mathbb{1}_2 + b\mathbb{1}_2\sigma_x + c\sigma_z\sigma_x$	$ 12\rangle = (-1, 1, 0, 0)^T$	$ 4\rangle = (0, 0, 1, 1)^{T}$	$ 2\rangle = (0, 0, -1, 1)^T$	$ 22\rangle = (1, 1, 0, 0)^T$
$a\mathbb{1}_2\sigma_z + b\sigma_x\mathbb{1}_2 + c\sigma_x\sigma_z$	$ 15\rangle = (-1, 0, 1, 0)^T$	$ 8\rangle = (0, 1, 0, 1)^{T}$	$ 6\rangle = (0, -1, 0, 1)^T$	$ 19\rangle = (1, 0, 1, 0)^T$
	a-b-c	-a+b-c	-a-b+c	a+b+c

 $a\sigma_z\sigma_z + b\sigma_x\sigma_x + c\sigma_y\sigma_y \quad |5\rangle = |\Psi_-\rangle = \begin{pmatrix} 0,1,-1,0 \end{pmatrix}^\intercal \quad |18\rangle = |\Phi_+\rangle = \begin{pmatrix} 1,0,0,1 \end{pmatrix}^\intercal \quad |16\rangle = |\Phi_-\rangle = \begin{pmatrix} 1,0,0,-1 \end{pmatrix}^\intercal \quad |9\rangle = |\Psi_+\rangle = \begin{pmatrix} 0,1,1,0 \end{pmatrix}^\intercal \quad |16\rangle = |\Phi_-\rangle = \begin{pmatrix} 1,0,0,-1 \end{pmatrix}^\intercal \quad |9\rangle = |\Psi_+\rangle = \begin{pmatrix} 1,0,0,-1 \end{pmatrix}^\intercal \quad |0\rangle = |\Psi_+\rangle = \begin{pmatrix} 1,0,0,-1 \end{pmatrix}^\intercal$



 $24 - 24 \supset 18 - 9$ (Kochen-Specker)

Case study II: Matrix pencil of the Greenberger-Horne-Zeilinger-Mermin argument

 $|z_+z_+z_-\rangle$

 $|\mathsf{GHZ}_1\rangle = |z_+z_+z_+\rangle$

$$a\sigma_x\sigma_x\sigma_x + b\sigma_y\sigma_y\sigma_x + c\sigma_y\sigma_x\sigma_y + d\sigma_x\sigma_y\sigma_y$$

$$\begin{split} &\pm (a-b-c-d): |\mathsf{GHZ}_{1,2}\rangle = \frac{1}{\sqrt{2}} \left(|z_{+}z_{+}z_{+}\rangle \pm |z_{-}z_{-}z_{-}\rangle \right) = \frac{1}{\sqrt{2}} \left(1,0,0,0,0,0,0,0,\pm 1 \right)^{\intercal}, \\ &\pm (a-b+c+d): |\mathsf{GHZ}_{3,4}\rangle = \frac{1}{\sqrt{2}} \left(|z_{+}z_{+}z_{-}\rangle \pm |z_{-}z_{-}z_{+}\rangle \right) = \frac{1}{\sqrt{2}} \left(0,1,0,0,0,0,\pm 1,0 \right)^{\intercal}, \\ &\pm (a+b-c+d): |\mathsf{GHZ}_{5,6}\rangle = \frac{1}{\sqrt{2}} \left(|z_{+}z_{-}z_{+}\rangle \pm |z_{-}z_{+}z_{-}\rangle \right) = \frac{1}{\sqrt{2}} \left(0,0,1,0,0,\pm 1,0,0 \right)^{\intercal}, \\ &\pm (a+b+c-d): |\mathsf{GHZ}_{7,8}\rangle = \frac{1}{\sqrt{2}} \left(|z_{+}z_{-}z_{-}\rangle \pm |z_{-}z_{+}z_{+}\rangle \right) = \frac{1}{\sqrt{2}} \left(0,0,0,1,\pm 1,0,0,0 \right)^{\intercal}, \end{split}$$

 $|z_+z_-z_+\rangle$

 $|z_+z_-z_-\rangle$

Case study III: Matrix pencil of two-partite Greenberger-Horne-Zeilinger argument

$$a(\sigma_z\sigma_x)\cdot(\sigma_x\sigma_z)+b\sigma_x\sigma_x+c\sigma_z\sigma_z$$

$$\begin{aligned}
-a - b - c : |\Psi_{-}\rangle &= \frac{1}{\sqrt{2}} (|z_{+}z_{-}\rangle - |z_{-}z_{+}\rangle) = \frac{1}{\sqrt{2}} (0, 1, -1, 0)^{\mathsf{T}}, \\
a + b - c : |\Psi_{+}\rangle &= \frac{1}{\sqrt{2}} (|z_{+}z_{-}\rangle + |z_{-}z_{+}\rangle) = \frac{1}{\sqrt{2}} (0, 1, 1, 0)^{\mathsf{T}}, \\
a - b + c : |\Phi_{-}\rangle &= \frac{1}{\sqrt{2}} (|z_{+}z_{+}\rangle - |z_{-}z_{-}\rangle) = \frac{1}{\sqrt{2}} (1, 0, 0, -1)^{\mathsf{T}}, \\
-a + b + c : |\Phi_{+}\rangle &= \frac{1}{\sqrt{2}} (|z_{+}z_{+}\rangle + |z_{-}z_{-}\rangle) = \frac{1}{\sqrt{2}} (1, 0, 0, 1)^{\mathsf{T}},
\end{aligned}$$

$$\begin{array}{c|ccccc} |\Phi_{+}\rangle = |z_{+}z_{+}\rangle & |z_{+}z_{-}\rangle \\ +|z_{-}z_{-}\rangle & +|z_{-}z_{+}\rangle & & 0 \\ \hline 0 & 0 & 0 & 0 \\ |z_{+}z_{+}\rangle & |z_{+}z_{-}\rangle & -|z_{-}z_{+}\rangle \end{array}$$

Thank you for your attention!