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Kurzfassung

Adaptive Finite-Element-Methoden (AFEMn) sind ein unverzichtbares Werkzeug für die effiziente
numerische Simulation von partiellen Differentialgleichungen (PDG) mit einer Vielzahl von An-
wendungen, insbesondere im Ingenieurwesen. Das Ziel besteht darin, eine zuverlässige numerische
Approximation der unbekannten Lösung mit minimalen Rechenkosten zu berechnen. Diese Dis-
sertation entwickelt adaptive Algorithmen zur effizienten Lösung von unsymmetrischen linearen
elliptischen PDG zweiter Ordnung. Dazu verfeinern wir die adaptive Prozedur von Standard-AFEM:
Berechne die Lösung der diskreten Formulierung und schätze den Approximationsfehler, markiere
Dreiecke mit größerem Fehlerbeitrag und führe eine Verfeinerung des Gitters damit durch. Hierzu
verwenden wir einen geschalteten iterativen Löser im SOLVE-Modul des adaptiven Algorithmus, der
sich aus einer kontraktiven Symmetrisierung und der anschließenden Lösung dieses symmetrischen
Problems mittels algebraischem Löser zusammensetzt. Hierbei ist es entscheidend, dass das Verfahren
den Fehler in der zugehörigen Sobolev-Norm kontrahiert und der Löser lineare Komplexität aufweist.
Die Abbruchkriterien werden so formuliert, dass sie die verschiedenen Fehlerkomponenten von
Diskretisierung, Symmetrisierung und Algebra ausbalancieren. Diese Strategie garantiert volle
R-lineare Konvergenz des Fehlers, d.h. im Wesentlichen Kontraktion eines geeigneten Quasi-Fehlers
in jedem Schritt des Algorithmus. Eine hinreichend kleine Wahl der Parameter garantiert auch
optimale Konvergenzraten bezüglich der Freiheitsgrade und Rechenkosten. Darüber hinaus wird
die Methode auf zielorientierte adaptive Algorithmen erweitert, die die effiziente Berechnung eines
Funktionalwertes der Lösung der PDG ermöglichen. Die Arbeit umfasst folgende Hauptbeiträge:

Zur iterativen Lösung der linearen Gleichungssysteme von symmetrischen PDG präsentieren wir
ein neuartiges geometrisches Mehrgitterverfahren, welches robust in Bezug auf den Polynomgrad
𝑝 ≥ 1 und die (lokale) Netzweite ℎ kontrahiert. Darüber hinaus wird bewiesen, dass der eingebaute
algebraische Fehlerschätzer ℎ𝑝-robust äquivalent zum algebraischen Fehler ist und die Anwendung
des Mehrgitterverfahrens auf symmetrische PDG optimale Komplexität garantiert.

Zweitens wird gezeigt, dass das kontraktive inexakte Lösungsverfahren für eine unsymmetrische
PDG zu optimaler Komplexität des Algorithmus führt. Eine neue Beweisstrategie ermöglicht es,
die bisherigen Einschränkungen an die Parameter in vorherigen Arbeiten abzuschwächen. Zudem
wird der übliche Beweisschritt über eine (Quasi-)Pythagoras-Identität durch eine verallgemeinerte
Quasi-Orthogonalität ersetzt. Insgesamt ebnet die neue Beweisstrategie den Weg für Erweiterungen
der Analyse auf allgemeine inf-sup-stabile Probleme jenseits von Energieminimierungs-Problemen.

Schließlich wird ein zielorientierter adaptiver Algorithmus analysiert, der die effiziente Berechnung
einer Zielgröße ermöglicht, die von der Lösung 𝑢★ einer unsymmetrischen PDG abhängt. Es wird eine
zielorientierte adaptive iterativ symmetrisierte Finite-Element-Methode präsentiert und analysiert.
Es wird gezeigt, dass der vorgeschlagene Algorithmus volle R-lineare Konvergenz und optimale
Konvergenzraten hinsichtlich sowohl der Freiheitsgrade als auch der Rechenkosten garantiert.





Abstract

Adaptive finite element methods (AFEMs) have become an indispensable tool for efficient numerical
simulations of partial differential equations (PDEs). Such methods successfully cover a wide
range of applications, in particular, in engineering. However, what one strives to achieve in
practice is computing a reliable numerical approximation of the unavailable solution at the lowest
possible computational cost and therewith time. In this thesis, adaptive mesh-refining algorithms
are developed for the efficient solution of nonsymmetric linear elliptic PDEs of second order.
Standard AFEM employs the feedback loop: given a computational mesh, solve the discrete problem
yielding an approximation, estimate its error, and mark certain elements for mesh-refinement. A
centerpiece of this thesis consists of embedding a nested procedure in the SOLVE module including a
contractive symmetrization and a contractive algebraic linear solver such that the error contracts in
the PDE-related norm. Furthermore, it is crucial that the iterative linear solver is of linear complexity.
Suitable stopping criteria are then formulated to equilibrate the error components (coming from
discretization, symmetrization, and algebraic solver). We show that such an adaptive strategy leads
to full R-linear convergence of the error, i.e., essentially a contraction of an appropriate quasi-error in
every step of the adaptive algorithm. Moreover, a sufficiently small choice of adaptivity parameters
guarantees optimal convergence rates with respect to the computational cost, i.e., optimal complexity.
Furthermore, we show that this approach can be extended to goal-oriented adaptive algorithms,
where the quantity of interest is a functional value of the PDE solution. Overall, the thesis comprises
the following main contributions.

First, we design an optimal local multigrid method for the iterative solution of the discrete systems
arising from the finite element discretization of symmetric second-order linear elliptic diffusion
problems. We show that the iterative solver contracts the algebraic error robustly with respect to the
polynomial degree 𝑝 ≥ 1 and the (local) mesh size ℎ. This is achieved by an overlapping additive
Schwarz smoother. Moreover, embedding the solver into the AFEM framework for symmetric PDEs,
we prove that this leads to the optimal convergence rate with respect to the overall cost.

Second, we show that the proposed combined symmetrization-algebra procedure leads to a
contractive inexact solver for nonsymmetric problems. The resulting AFEM algorithm is shown to
be of optimal complexity. Initially, the analysis requires several fine-tuned parameters. However, a
redesign of the proofs via a summability criterion for R-linear convergence allows us to relax such
restrictions. Moreover, the usual proof via a (quasi-)Pythagorean identity is replaced by a generalized
notion of quasi-orthogonality. Importantly, this paves the way towards extending the analysis to
general inf-sup stable problems beyond the energy minimization setting.

Finally, we consider the problem of efficiently computing a quantity of interest depending on the
solution of a general second-order linear elliptic, yet nonsymmetric PDE. To this end, we propose a
goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM) by combining
the previous approaches for nonsymmetric problems. We show that this algorithm guarantees full
R-linear convergence and, thus, allows for the proof of optimal convergence rates with respect to
both degrees of freedom and total computational cost.
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1 Introduction
The result of the mathematician’s creative work is demonstrative reasoning, a proof; but the proof
is discovered by plausible reasoning, by guessing.

— George Polya, 1954

1.1 Motivation

Partial differential equations (PDEs) are a fundamental tool in science and engineering. They are
used to model the behavior of continuous systems in physics including heat transfer, fluid flow, wave
propagation, electromagnetism, and extend to other areas, such as biology, chemistry, and materials
science. This thesis focuses on developing efficient numerical algorithms for linear elliptic PDEs.

Writing the PDE in the so-called variational formulation in a function space X allows us to
employ the finite element method (FEM) as a discretization method. The core idea of FEM is to
replace the inherent infinite-dimensional space X by a finite-dimensional subspace Xℓ of dimension
𝑁 := dimXℓ . For instance, consider a computational domain Ω ⊆ R𝑑 for 𝑑 ≥ 1 and a given a mesh
Tℓ consisting of intervals/triangles/tetrahedra 𝑇 ∈ Tℓ of size ℎ𝑇 that cover Ω. Then, the globally
continuous and piecewise polynomial functions on Tℓ of degree at most 𝑝 ∈ N are typical examples
for a finite-dimensional subspace Xℓ . Then, a system of algebraic equations of size 𝑁 ×𝑁 to compute
the coefficients of the simple functions arises, which allows to compute an approximation 𝑢★ℓ to the
exact solution 𝑢★. Since the exact solution 𝑢★ and hence the error ⦀𝑢★ − 𝑢★ℓ ⦀ in the PDE-related
norm is not available in general, the quality of this numerical approximation can only be assessed
by a posteriori error estimation. This means a computable quantity relying only on the given data,
the generated mesh Tℓ , and the computed approximation 𝑢★ℓ is used to measure the approximation
quality of the discretization scheme. In practice, the a posteriori error estimator should be an upper
bound to the error, i.e., reliable, such that if an adaptive algorithm drives the error estimator to
zero, the error also converges to zero. Furthermore, the construction of the error estimator should
be local, i.e., computed on each triangle 𝑇 of the mesh Tℓ , and, thus, can (at least heuristically)
detect singularities. Then, this technique can drive an adaptive mesh-refinement process by selecting
only a subset of elements that dominate a particular portion of the full error. For a sufficiently
smooth solution 𝑢★, the approximation error is uniformly distributed, hence choosing all elements
for refinement leads to optimal convergence rates −𝑝/𝑑 of the error with respect to the so-called
number of degrees of freedom dimXℓ which is equivalent (up to a multiplicative constant depending
on the polynomial degree 𝑝) to the number of triangles #Tℓ in the mesh Tℓ . However, if the exact
solution 𝑢★ suffers from reduced regularity due to singularities stemming from the geometry of
the domain or from low regularity of the data and the coefficients of the PDE, then uniform mesh
refinement leads to a reduced order of convergence. For instance, consider a boundary value problem
with exact solution given in Figure 1.1. Here, 𝑢★ has a singularity at the reentrant corner of the
domain and, thus, we cannot expect optimal convergence rate for a sequence (Tℓ)ℓ∈N0 obtained by
uniform mesh-refinement as depicted in Figure 1.2. Indeed, in Figure 1.3, we see that a uniform
mesh-refinement strategy leads to the suboptimal convergence rate −1/3 with respect to the number
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Figure 1.1: Solution 𝑢★ with reentrant-corner singularity at the origin.

Figure 1.2: Sequence of meshes obtained by uniform mesh-refinement up to #T5 = 3072.

of degrees of freedom compared to the optimal convergence rate −𝑝/2 for any polynomial degree 𝑝
in the adaptive algorithm. Due to the singularity, the error is thus not uniformly distributed, but
rather concentrated in the vicinity of the singularity. A better choice is thus to refine only certain
elements in order to get a better resolution and better capturing of the behavior of the solution 𝑢★

while also being more frugal with the computational resources. This allows to restore the optimal
convergence rate of the error and, thus, emphasizes the importance of adaptive mesh-refinement
strategies as in Figure 1.4.

In practice, users are not primarily interested in optimal error decay with respect to the degrees
of freedom but rather in optimal decay with respect to the overall computation time to obtain an
approximation with error below a user-given tolerance (thanks to the a posteriori error estimator).
However, the solution of large linear systems becomes computationally expensive and prevents
quasi-optimal computational run-time, i.e., optimal run-time up to a fixed multiplicative constant, of
the adaptive algorithm. Therefore, one requires iterative algebraic solvers with linear complexity
per step (i.e., the run-time grows linearly proportional to the size of the linear system) embedded
into the AFEM loop. Additionally, we require that the algebraic solver contracts the error in the
PDE-given norm, i.e., the error is reduced by a fixed uniform portion in each step of the solver.
Moreover, apt stopping criteria are needed to prevent a surplus in the solution of the linear system.
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Figure 1.3: Convergence history plot of an a posteriori error estimator with respect to dimXℓ and
the cumulative computation time.

Figure 1.4: Sequence of meshes obtained by adaptive mesh-refinement up to #T5 = 219.

While optimal contractive solvers for lowest-order FEM discretizations of symmetric linear elliptic
PDEs are well-established, the treatment within AFEM of nonsymmetric discrete problems remained
open due to a missing link between the generalized contraction in a discrete vector norm and the
PDE-given norm.

In many applications, the cost-effective approximation of a certain goal value 𝐺 (𝑢★) of the solution
𝑢★ is the main focus. This leads to the so-called goal-oriented adaptive FEM which employs a certain
duality approach.

The development and analysis of standard and goal-oriented adaptive FEM for general linear
elliptic PDEs by means of nested iterative solvers is the main focus of this thesis. To this end, first, we
present an optimal local multigrid (MG) method for a symmetric linear elliptic PDE which is robust
both in the local mesh-size ℎ and the polynomial degree 𝑝 and is embedded into an adaptive algorithm.
Subsequently, we employ a nested iterative solver consisting of a symmetrization and an algebraic
solver, e.g., the proposed optimal multigrid method. This results in the presentation of AFEM and
GOAFEM algorithms with quasi-optimal computation time for general second-order linear elliptic
PDEs with nested components as illustrated in Figure 1.5: The discretization of a nonsymmetric
PDE in weak formulation leads to a nonsymmetric linear system with unavailable exact solution 𝑢★ℓ
on the mesh level ℓ. Hence, we employ a symmetrization loop to obtain a symmetric linear system
with unavailable exact solution 𝑢𝑘,★ℓ in the 𝑘-th iteration of the symmetrization loop. Since the exact
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algebraic solver (j)

solve inexactly

employ local
hp-robust MG

computable

approximation uk,j
ℓ

symmetrization (k)

symmetrize

employ Zarantonello

SPD problem is
expensive

unavailable exact

solution uk,⋆
ℓ

adaptivity(ℓ)

discretize

employ AFEM

discrete problem is
nonsymmetric

unavailable exact
solution u⋆

ℓ

Figure 1.5: Modules of the adaptive algorithm with nested iterative solver for nonsymmetric PDEs.

solution of symmetric and positive definite linear systems is computationally expensive with growing
size of the linear system, we employ an algebraic solver to obtain an approximation 𝑢

𝑘, 𝑗
ℓ to the exact

solution 𝑢𝑘,★ℓ of the symmetrized system. Altogether, we obtain a computable approximation 𝑢
𝑘, 𝑗
ℓ to

the exact solution 𝑢★ℓ .
Although the presentation in this thesis is restricted to linear nonsymmetric PDEs, the new theory

also improves existing results for nonlinear PDEs with strongly monotone and Lipschitz continuous
nonlinearity.

Outline of the introduction. In this first chapter, we provide a brief overview of standard FEM,
adaptive FEM and goal-oriented adaptive FEM. More precisely, starting from a symmetric model
problem and a detailed look at the idea of FEM in Section 1.2, we present the state-of-the-art theory
of AFEM in Section 1.4 with a comprehensive study of a quasi-optimal AFEM algorithm with
exact solve. Section 1.5 extends the previously presented ideas with the embedding of an algebraic
solver opening the door to optimal convergence rates with respect to the overall computational cost.
In Section 1.6, we extend the result to a goal-oriented framework and discuss the cost-optimal
approximation for the given quantity of interest. Finally, we conclude this chapter with a detailed
statement highlighting the main contributions of this thesis in Section 1.7.

1.2 Model problem and classic FEM approach

Throughout the thesis, we employ standard notation of Lebesgue and Sobolev spaces and their norms.
Additionally, we abbreviate 𝐴 ≲ 𝐵 if there exists a generic constant 𝐶 > 0 such that 𝐴 ≤ 𝐶 𝐵 with
𝐶 independent of the mesh size ℎ. We write 𝐴 ≃ 𝐵 if 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴. This thesis considers a
general second-order linear elliptic PDE on a bounded polyhedral Lipschitz domain Ω ⊂ R𝑑 with
𝑑 ≥ 1. In this first chapter, we explain the concept and the historic development for a prototypical
symmetric linear elliptic PDE and postpone the treatment of nonsymmetric linear elliptic PDEs
to the main chapters of the thesis. Let 𝑨 ∈ 𝐿∞(Ω) 𝑑×𝑑

sym
be a symmetric and uniformly positive

definite diffusion matrix, i.e., there exist constants 𝛼−, 𝛼+ > 0 such that

𝛼− |𝜉 |2 ≤ 𝑨(𝑥) 𝜉 · 𝜉 ≤ 𝛼+ |𝜉 |2 for all 𝜉 ∈ R𝑑 and almost every 𝑥 ∈ Ω. (1.1)
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1.3 State-of-the-art and outlook

Let 𝑓 ∈ 𝐿2(Ω) and 𝒇 ∈ 𝐿2(Ω) 𝑑 be given right-hand sides. The model problem seeks the solution
𝑢★ : Ω → R to

− div(𝑨∇𝑢★) = 𝑓 − div( 𝒇 ) in Ω subject to 𝑢★ = 0 on 𝜕Ω. (1.2)

Introducing the Sobolev space X := 𝐻1
0 (Ω) equipped with the usual 𝐻1(Ω)-seminorm ∥·∥X =

∥∇(·)∥𝐿2 (Ω) , a multiplication of (1.2) with a test function 𝑣 ∈ X, integration over the domain, and
integration by parts together with the use of the Dirichlet boundary condition leads to the weak
formulation: Find 𝑢★ ∈ X such that

𝑎(𝑢★, 𝑣) :=
∫
Ω
𝑨∇𝑢★ · ∇𝑣 d𝑥 =

∫
Ω

𝑓 𝑣 + 𝒇 · ∇𝑣 d𝑥 =: 𝐹 (𝑣) for all 𝑣 ∈ X. (1.3)

Owing to (1.1), the bilinear form 𝑎( · , · ) is continuous and elliptic to ensure existence of a solution
to (1.3), i.e., there exist constants 𝐶cnt = 𝛼+, 𝐶ell = 𝛼− > 0 such that

𝑎(𝑣, 𝑤) ≤ 𝐶cnt ∥𝑣∥X ∥𝑤∥X and 𝑎(𝑣, 𝑣) ≥ 𝐶ell ∥𝑣∥2X for all 𝑣, 𝑤 ∈ X. (1.4)

Therefore, 𝑎(·, ·) defines a scalar product on X with norm ⦀·⦀ := 𝑎(·, ·)1/2 and the Lax–Milgram
lemma [LM54] guarantees existence and uniqueness of a weak solution 𝑢★ to (1.3), see, e.g., [Eva10,
Section 6.2].

A triangulation T𝐻 of Ω into compact simplices is called conforming if the intersection of any
two simplices is either empty or a common vertex or a common edge or a common face etc. Given
such a conforming triangulation T𝐻 of Ω, we define the finite element space and a fixed polynomial
degree 𝑝 ∈ N, we define the finite element subspace

X𝐻 := {𝑣𝐻 ∈ X : ∀𝑇 ∈ T𝐻 , 𝑣𝐻 |𝑇 is a polynomial of total degree at most 𝑝}. (1.5)

Then, the Lax–Milgram lemma also guarantees existence and uniqueness of the solution 𝑢★𝐻 ∈ X𝐻

to the discrete formulation

𝑎(𝑢★𝐻 , 𝑣𝐻) = 𝐹 (𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 . (1.6)

Moreover, 𝑢★𝐻 is the quasi-best approximation of 𝑢★ in the sense of the Céa-type estimate

∥𝑢★ − 𝑢★𝐻 ∥X ≤ 𝐶Céa min
𝑣𝐻 ∈X𝐻

∥𝑢★ − 𝑣𝐻 ∥X with 𝐶Céa := 𝐶cnt/𝐶ell > 0. (Céa)

Given a basis {𝜑1, . . . , 𝜑𝑁 } of X𝐻 with 𝑁 := dimX𝐻 , the finite element solution 𝑢★𝐻 to (1.6) is a
linear combination of the basis functions, i.e., 𝑢★𝐻 = 𝑁

𝑗=1 𝑥 𝑗 𝜑 𝑗 . The coefficients 𝑥 𝑗 are determined by
the solution of the linear system 𝐴𝑥 = 𝐿 where 𝐴 𝑗𝑘 = 𝑎(𝜑𝑘 , 𝜑 𝑗) and 𝐿𝑘 = 𝐹 (𝜑𝑘) for 1 ≤ 𝑗 , 𝑘 ≤ 𝑁 .

1.3 State-of-the-art and outlook

We start with a review of the state-of-the-art literature and discuss the inherent open questions treated
in this thesis. Adaptive algorithms have been investigated since the late 1970s with pioneering works
proposing adaptive mesh-refinement in [BR78; ZR79; GKZB83]. Since adaptive mesh-refinement
strategies do not drive the maximal mesh-size to zero, their convergence is not covered by the
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classical a priori error analysis. While convergence in 1D was already proved in [BV84], it took
almost two decades until the works [Dör96; MNS00; Vee02; DK08] paved the way for the further
development by the first rigorous plain convergence proofs of AFEMs for 𝑑 ≥ 2. The notion of
nonlinear approximation classes [BDD04] provided a formal statement of optimal convergence rates
and enabled the first proof of optimal convergence rates for standard adaptive FEMs in [Ste07;
CKNS08]. This laid the groundwork for various generalizations of quasi-optimal convergence
rates to nonresidual error estimators in [CN12], the 𝑝-Laplacian [BDK12], quasi-linear problems
with strongly monotone nonlinearity [GMZ12], nonsymmetric problems [FFP14; BHP17], and
discontinuous Galerkin methods in [BN10] and [KG18] for plain convergence of these methods with
fewer restrictions on the penalty parameter. The work [CFPP14] presents an axiomatic framework
for optimal convergence rates with respect to the degrees of freedom and summarizes the mentioned
and a variety of unmentioned earlier references.

Early works in the direction of optimal complexity originate from adaptive wavelet meth-
ods [CDD01; CDD03] and the idea was later adopted for AFEM in [Ste07; CG12]. Driven by the
interest in AFEMs for nonlinear problems [CW17; GHPS18; HW20b; HW20a; DFTW20], recent
papers [GHPS21; HPW21; HPSV21] aimed to combine linearization and algebraic iterations into a
nested adaptive algorithm. Following this idea, the algorithmic decision for either mesh refinement
or linearization or algebraic solver step is steered by a posteriori-based stopping criteria with suitable
stopping parameters in the spirit of [AGL13; EV13]. The literature [GHPS21; HPW21] covers full
linear convergence for energy contractive solvers with no restrictions on the solver parameter and
[GHPS21] requires sufficiently small solver parameter for a norm-contractive solver even for full
R-linear convergence, i.e., contraction in each step of the algorithm up to a multiplicative constant.
Moreover, [GHPS21; HPW21] prove optimal computational cost of the adaptive algorithm under
the assumption that the arising linear systems can be solved directly in linear complexity. The
work [HPSV21] considers a coupling of the linearization and algebraic solver to prove optimal
complexity with restrictions on the involved solver parameters. More precisely, full R-linear conver-
gence therein requires the algebraic solver parameter to be small with respect to the linearization
parameter and the linearization parameter to be small with respect to the marking parameter. The
proofs essentially rely on two building blocks: First, a contractive solver in the PDE-related norm
and, second, a Pythagorean identity for the exact solutions. Both cornerstones remained open
for nonsymmetric problems and are now treated in the course of this thesis. In essence, optimal
complexity follows as soon as full R-linear convergence of AFEM with inexact solver and optimal
rates of AFEM with exact solver (for sufficiently small marking parameter) have been established;
see, e.g., [BIM+24a].

1.4 Adaptive FEM with exact solver

This section introduces the modules SOLVE–ESTIMATE–MARK–REFINE constituting the adaptive
algorithm depicted in Figure 1.6.

For a first illustration of the concepts of adaptivity, we suppose that the SOLVE module employs
a direct solver to the linear system associated with (1.6). Nevertheless, we emphasize that the
application of a direct solver prevents the adaptive algorithm from attaining optimal complexity.
Figure 1.7 displays an overview over the connections between the necessary requirements (called
toolbox) and the results in Section 1.4–1.5.
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1.4 Adaptive FEM with exact solver

SOLVE ESTIMATE MARK REFINE
solution accurate enough?

Figure 1.6: Modules of the standard AFEM algorithm with exact solver.

1.4.1 The module ESTIMATE

Since the exact solution 𝑢★ and, thus, the discrete error ∥𝑢★ − 𝑢★𝐻 ∥X is not available, we resort to
an a posteriori error estimator 𝜂𝐻 (𝑢★𝐻), which is reliable and efficient, i.e., there exist constants
𝐶rel, 𝐶eff > 0 such that

∥𝑢★ − 𝑢★𝐻 ∥X ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻) and 𝜂𝐻 (𝑢★𝐻) ≤ 𝐶eff ∥𝑢★ − 𝑢★𝐻 ∥2X + osc2𝐻
1/2 (1.7)

Here, osc𝐻 denotes the so-called data oscillations and, for a constant diffusion 𝑨, it is a measure
how good the data 𝑓 can be approximated by piecewise polynomials. In the case of a nonconstant
diffusion coefficient, the data oscillations include a volume term measuring how well 𝑓 +div(𝑨∇𝑣𝐻)
can be approximated by piecewise polynomials and a boundary term measuring how well the normal
jump ⟦𝑨∇𝑣𝐻 · 𝒏⟧ can be approximated by edgewise polynomials. Therefore, if the oscillations
vanish, the error estimator is equivalent to the error. For an early reference on a posteriori techniques,
we refer to [Ver89]. A possible approach to obtain an error estimator is by means of a residual-based
ansatz, where the residual measures to which extent the discrete solution 𝑢★𝐻 satisfies the PDE. Given
𝑣𝐻 ∈ X𝐻 and U𝐻 ⊆ T𝐻 , the associated local contributions to the residual-based error estimator
𝜂𝐻 (U𝐻 ; 𝑣𝐻) := 𝑇∈U𝐻

𝜂𝐻 (𝑇 ; 𝑣𝐻)2 1/2 read

𝜂ℓ (𝑇 ; 𝑣𝐻)2 := |𝑇 |2/𝑑 ∥ 𝑓 +div(𝑨∇𝑣𝐻− 𝒇 )∥2
𝐿2 (𝑇 )+|𝑇 |1/𝑑 ∥⟦𝑨∇𝑣𝐻− 𝒇⟧·𝒏∥2

𝐿2 (𝜕𝑇∩Ω) for all 𝑇 ∈ T𝐻 .
(1.8)

In the case of U𝐻 = T𝐻 above, we abbreviate 𝜂𝐻 (𝑣𝐻) := 𝜂𝐻 (T𝐻 ; 𝑣𝐻). We stress that the definition
of the estimator in (1.8) additionally requires that 𝑨|𝑇 ∈ 𝑊1,∞(𝑇) 𝑑×𝑑

sym and 𝒇 |𝑇 ∈ 𝐻1(𝑇) 𝑑 for
all 𝑇 ∈ T0, where T0 is an initial supertriangulation of Ω. From the definition (1.8), we see that,
first, this quantity is computed locally on each triangle 𝑇 ∈ T𝐻 and, second, acts as an indicator
of which elements cause a larger contribution to the global error. Thus, the estimator provides a
means to steer a local mesh-refinement strategy. Then, it is well-known that the residual a posteriori
estimator from (1.8) satisfies the following axioms of adaptivity from [CFPP14]. These properties
ensure optimal convergence rates of the adaptive algorithm with respect to the number of degrees of
freedom.

Proposition 1.1 (axioms of adaptivity [CFPP14, Section 6.1]). There exist constants 𝐶stab, 𝐶rel,
𝐶drel, 𝐶mon > 0, and 0 < 𝑞red < 1 such that the following properties are satisfied for any
conforming triangulation T𝐻 and any conforming refinement Tℎ of T𝐻 , any subset U𝐻 ⊆ T𝐻 ∩Tℎ,
corresponding Galerkin solutions 𝑢★𝐻 ∈ X𝐻 , 𝑢★ℎ ∈ Xℎ to (1.6) and arbitrary 𝑣𝐻 ∈ X𝐻 , 𝑣ℎ ∈ Xℎ.

(A1) stability. |𝜂ℎ (U𝐻 , 𝑣ℎ) − 𝜂𝐻 (U𝐻 , 𝑣𝐻) | ≤ 𝐶stab ∥𝑣ℎ − 𝑣𝐻 ∥X .

(A2) reduction. 𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻) ≤ 𝑞red 𝜂𝐻 (T𝐻\Tℎ, 𝑣𝐻).
(A3) reliability. ∥𝑢★ − 𝑢★𝐻 ∥X ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻).

7



1 Introduction

Estimator reduction
Lemma 1.3

(A1) + (A2) + (D)

Quasi-monotonicity (QM)

(A1) + (A2) + (Céa) + (A3)
or (A1) + (A2) + (A3+)

Comparison lemma
Lemma 1.8

additionally (R2)

R-linear convergence of estimator
Theorem 1.6

additionally (A3) + (A4)

Optimality of marking
Lemma 1.7

(A1) + (A3+) + 𝜃 sufficiently small

Optimal rates with respect to #Tℓ
Theorem 1.9

additionally (R1) + (R3)

Optimal rates with re-
spect to computational cost

Theorem 1.14

Estimator equivalence
Lemma 1.11

(A1) + (C2) + 𝜆 sufficiently small

Full R-linear convergence
Theorem 1.12

additionally (A3) + (A4)

Perturbed estimator reduction
Lemma 1.10

(A1) + (A2) + (D) + (C1)

AFEM with exact solution (Section 1.4)

AFEM with iterative solution (Section 1.5)

Properties of the estimator 𝜂𝐻 : X𝐻 → R≥0:
(A1) stability: |𝜂ℎ (Tℎ ∩ T𝐻 , 𝑣ℎ) − 𝜂𝐻 (Tℎ ∩ T𝐻 , 𝑣𝐻 ) | ≤ 𝐶stab ⦀𝑣ℎ − 𝑣𝐻⦀
(A2) reduction: 𝜂ℎ (Tℎ \ T𝐻 , 𝑣𝐻 ) ≤ 𝑞red 𝜂𝐻 (T𝐻 , 𝑣𝐻 )
(A3) reliability: ⦀𝑢★ − 𝑢★𝐻⦀ ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻 )
(A3+) discrete reliability: ⦀𝑢★

ℎ
− 𝑢★𝐻⦀ ≤ 𝐶drel 𝜂𝐻 (T𝐻\Tℎ, 𝑢★𝐻 )

Properties of the space X𝐻 :
nestedness: X𝐻 ⊆ Xℎ for Tℎ ∈ T(T𝐻 )
(A4) quasi-orthogonality:

ℓ+𝑁∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1− 𝑢★ℓ′⦀2 ≤𝐶orth (𝑁 + 1)1−𝛿⦀𝑢★− 𝑢★ℓ ⦀2 for ℓ, 𝑁 ∈ N0.

Properties of Dörfler marking (D):
Almost-minimal-cardinality set M𝐻 ⊆ T𝐻 with 𝜃 𝜂(𝑢★𝐻 )2 ≤ 𝜂𝐻 (M𝐻 ; 𝑢★𝐻 )2

Properties of mesh refinement:
(R1) splitting estimate: #Tℎ ≤ 𝐶child #T𝐻
(R2) overlay estimate: #(T𝐻 ⊕ Tℎ) ≤ #T𝐻 +#Tℎ −#T0
(R3) closure estimate: #Tℓ −#T0 ≤ 𝐶closure

ℓ−1
𝑗=0 #M 𝑗

Properties of the algebraic solver Ψ𝐻 : X𝐻 → X𝐻 :
(C1) contraction: ⦀𝑢★𝐻 − Ψ(𝑢𝐻 )⦀ ≤ 𝑞ctr ⦀𝑢★𝐻 − 𝑢𝐻⦀
(C2) a posteriori error control: 1−𝑞ctr

𝑞ctr
⦀𝑢★𝐻 − Ψ(𝑢𝐻 )⦀ ≤ ⦀Ψ(𝑢𝐻 ) − 𝑢𝐻⦀ ≤ (1 + 𝑞ctr)⦀𝑢★𝐻 − 𝑢𝐻⦀

Toolbox:

Figure 1.7: Overview of the connections between the assumptions and the results in Section 1.4–1.5.
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1.4 Adaptive FEM with exact solver

(A3+) discrete reliability. ∥𝑢★ℎ − 𝑢★𝐻 ∥X ≤ 𝐶drel 𝜂𝐻 (T𝐻\Tℎ, 𝑢★𝐻).
(QM) quasi-monotonicity. 𝜂ℎ (𝑢★ℎ) ≤ 𝐶mon 𝜂𝐻 (𝑢★𝐻).

The constant 𝐶rel depends only on uniform shape-regularity (defined in (1.9) below) of T𝐻 and the
dimension 𝑑, while 𝐶stab and 𝐶drel additionally depend on the polynomial degree 𝑝. The constant
𝑞red := 2−1/(2𝑑) holds for bisection-based refinement rules in R𝑑 and the constant 𝐶mon can be
bounded by 𝐶mon ≤ min{1 + 𝐶stab(1 + 𝐶Céa)𝐶rel , 1 + 𝐶stab 𝐶drel}. □

1.4.2 The module MARK

In practical applications (see the experiment in Figure 1.3), it is desirable to mark a small set of
elements M𝐻 ⊆ T𝐻 whose corresponding error contributions are estimated to be a given 0 < 𝜃 ≤ 1
portion of the full error, see [Dör96]. In particular, the error estimator on the marked elements
controls the error estimator contribution of the nonmarked elements. The marking strategy consists in
using the following Dörfler criterion: Determine a setM𝐻 of almost minimal (up to the multiplicative
constant 𝐶mark ≥ 1) cardinality with

#M𝐻 ≤ 𝐶mark min
U★

ℓ
∈Mℓ [ 𝜃,𝑢★ℓ ]

#U★
ℓ , where

M𝐻 [𝜃, 𝑢★𝐻] := {U𝐻 ⊆ T𝐻 : 𝜃 𝜂(𝑢★𝐻)2 ≤ 𝜂𝐻 (U𝐻 ; 𝑢
★
𝐻)2}.

(D)

An optimal implementation determining a set of minimal cardinality with 𝐶mark = 1 in linear
complexityO(𝑁) (in average time) employs a partitioning strategy as proposed in [PP20]. Importantly,
the choice of the Dörfler criterion in the marking step allows for contraction of the error estimator
from (1.8) through mesh refinement.

1.4.3 The module REFINE

Let T be a countably infinite set of regular triangulations T𝐻 ∈ T called admissible triangulations. We
suppose that refine(·, ·) is a fixed mesh-refinement strategy such that Tℎ := refine(T𝐻 ,M𝐻) ∈ T
is obtained from T𝐻 ∈ T by refinement of at least the marked elements M𝐻 ⊆ T𝐻 , i.e., there holds
M𝐻 ⊆ T𝐻 \ Tℎ. For any two admissible meshes T𝐻 ,Tℎ ∈ T, we write Tℎ ∈ T(T𝐻) if Tℎ can be
obtained from T𝐻 by a finite number of mesh-refinement steps. Throughout the thesis, we assume
that all admissible meshes stem from a common initial mesh T0 ∈ T, i.e., it holds that T = T(T0).
This thesis employs newest-vertex bisection (NVB) as a refinement strategy and illustrates this
procedure for 𝑑 = 2. For a nondegenerate triangle, newest-vertex bisection introduces the edge
between the midpoint of the refinement edge and the opposite vertex. This leads to subtriangles of
equal area and, thus, is a binary refinement rule. To refine a conforming triangulation T𝐻 ∈ T, the
NVB algorithm employs successive steps of newest-vertex bisection of 𝑇 ∈ T𝐻 until all hanging
nodes have been removed. Depending on the selection of the refinement edges, it takes at most
three bisections to refine the triangle 𝑇 and ensure that the midpoints of the marked edges have
become new vertices; see Figure 1.8. Then, newest-vertex bisection (even for any 𝑑 ≥ 2) satisfies the
following properties [Dör96; Ste07; CKNS08; Ste08; KPP13; GSS14].

Proposition 1.2 (properties of mesh refinement). There exist constants 𝐶child, 𝐶closure > 0 such
that the following properties hold:
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Figure 1.8: Newest-vertex bisection (NVB) of a triangle 𝑇 ⊂ R2 introduces the edge between
the midpoint (indicated by the red dots) of the refinement edge (indicated by the red
lines) and the opposite vertex. NVB refines 𝑇 into two children 𝑇 ′, 𝑇 ′′ with equal area
|𝑇 ′ | = |𝑇 ′′ | = |𝑇 |/2 and, therefore, is a binary refinement rule.

(R1) splitting estimate. For all T𝐻 ∈ T and marked elements M𝐻 ⊆ T𝐻 , the refinement
Tℎ := refine(T𝐻 ,M𝐻) satisfies

#Tℎ ≤ 𝐶child #T𝐻 .

(R2) overlay estimate. For all T𝐻 ,Tℎ ∈ T, there exists a common refinement T𝐻 ⊕ Tℎ ∈
T(T𝐻) ∩ T(Tℎ) with

#(T𝐻 ⊕ Tℎ) ≤ #T𝐻 +#Tℎ −#T0.

(R3) closure estimate. Let (Tℓ)ℓ∈N0 be an arbitrary sequence of successively refined meshes,
i.e., for all ℓ ∈ N0, there holds that Tℓ+1 = refine(Tℓ ,Mℓ) for some set Mℓ ⊆ Tℓ . Then,
we have that

#Tℓ −#T0 ≤ 𝐶closure

ℓ−1∑︁
𝑗=0

#M 𝑗 for all ℓ ∈ N.

In FEM analysis, the constants often depend on the fact that the shape of the simplices does not
deteriorate under mesh refinement to ensure that neighboring elements are not too different in size.
We say that T𝐻 ∈ T is uniformly 𝛾-shape regular if

0 < 𝛾 := inf
𝑇∈T𝐻

sup{𝑟 > 0: ∃𝑥 ∈ 𝑇, 𝐵𝑟 (𝑥) ⊂ 𝑇}
diam(𝑇) < ∞. (1.9)

An important property of NVB refinement is that it ensures that all meshes T𝐻 ∈ T are uniformly
𝛾-shape regular. Henceforth, we will only work with conforming 𝛾-shape regular meshes.

1.4.4 Adaptive algorithm with exact solve

With the modules from Section 1.4.1–1.4.3, we are able to present a first adaptive algorithm employing
an exact solution of the discrete problem.

Algorithm 1A: AFEM
Input: Initial triangulation T0 ∈ T, adaptivity parameters 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1.

For all ℓ = 0, 1, 2, . . . , repeat the following steps (i)–(iv):

(i) SOLVE: Compute the exact discrete solution 𝑢★ℓ ∈ Xℓ to (1.6).

(ii) ESTIMATE: Compute the refinement indicators 𝜂ℓ (𝑇 ; 𝑢★ℓ ) from (1.8) for all 𝑇 ∈ Tℓ .

10



1.4 Adaptive FEM with exact solver

(iii) MARK: Determine a set of marked elements Mℓ ⊆ Tℓ satisfying the Dörfler marking
criterion (D).

(iv) REFINE: Generate the refined triangulation Tℓ+1 := refine(Tℓ ,Mℓ) by employing NVB.

Output: Sequence of successively refined triangulations Tℓ , corresponding exact solutions
𝑢★ℓ ∈ Xℓ , and residual error estimators 𝜂ℓ (𝑢★ℓ ) for all ℓ ∈ N0.

1.4.5 Quasi-optimality of Algorithm 1A

In the following subsection, we investigate the properties of the Algorithm 1A and show that the
adaptive algorithm guarantees optimal convergence rates with respect to the number of simplices.
We start with the estimator reduction due to the Dörfler marking criterion (D).

Lemma 1.3 (estimator reduction [CFPP14, Lemma 4.7]). Suppose that the estimator satisfies
stability (A1) and reduction (A2). Let 0 < 𝜃 ≤ 1 and suppose the use of Dörfler marking (D).
Then, we have estimator reduction, i.e., there exist 0 < 𝑞est < 1 and 𝐶est > 0 such that

𝜂ℎ (𝑢★ℎ) ≤ 𝑞est 𝜂𝐻 (𝑢★𝐻) + 𝐶stab ∥𝑢★ℎ − 𝑢★𝐻 ∥X for all T𝐻 ∈ T and all Tℎ ∈ T(T𝐻). (1.10)

The contraction constant reads 𝑞est = 1 − (1 − 𝑞red) 𝜃 1/2 with 𝑞red from (A2). □

We see that the contraction constant 𝑞est by definition satisfies 𝑞est → 1 as 𝜃 → 0, so that the
contraction deteriorates for tiny marking parameter 𝜃. A first important consequence of estimator
reduction (1.10) is (plain) convergence of the error estimator 𝜂ℓ (𝑢★ℓ ) → 0 as ℓ → ∞. Moreover,
reliability (A3) asserts error convergence ∥𝑢★ − 𝑢★ℓ ∥X → 0 as ℓ → ∞, i.e., the computed solution
𝑢★ℓ converges to the exact solution 𝑢★.

Corollary 1.4 (plain convergence [CFPP14, Corollary 4.8]). Let (Tℓ)ℓ∈N0 be a sequence of
meshes Tℓ ∈ T for all ℓ ≥ 0 satisfying estimator reduction (1.10) from Lemma 1.3 and
limℓ→∞ ∥𝑢★ℓ+1 − 𝑢★ℓ ∥X = 0. Then, there holds estimator convergence

lim
ℓ→∞

𝜂ℓ (𝑢★ℓ ) = 0 (1.11)

and reliability (A3) assures error convergence

lim
ℓ→∞

∥𝑢★ − 𝑢★ℓ ∥X = 0. □ (1.12)

Additional to the axioms above, there holds a generalized quasi-orthogonality from [Fei22, Equation 8],
which generalizes the Pythagorean identity for symmetric PDEs. This property links the error
between two consecutive Galerkin solutions 𝑢★ℓ+1, 𝑢

★
ℓ to the error between the exact solution and the

Galerkin solution.
Proposition 1.5 (validity of quasi-orthogonality [Fei22, Equation 8]). There exist 𝐶orth > 0 and
0 < 𝛿 ≤ 1 such that the following holds: For any sequence (Xℓ)ℓ∈N0 of nested finite-dimensional
subspaces Xℓ ⊆ Xℓ+1 ⊂ 𝐻1

0 (Ω), the corresponding Galerkin solutions 𝑢★ℓ ∈ Xℓ to (1.6) satisfy

11
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(A4) quasi-orthogonality.
ℓ+𝑁∑︁
ℓ′=ℓ

∥𝑢★ℓ′+1− 𝑢★ℓ′ ∥2X ≤𝐶orth(𝑁 + 1)1−𝛿 ∥𝑢★− 𝑢★ℓ ∥2X for all ℓ, 𝑁 ∈ N0.

Here, 𝐶orth and 𝛿 depend only on the dimension 𝑑, the elliptic bilinear form 𝑎(·, ·), and the chosen
norm ∥ · ∥X , but are independent of the spaces Xℓ . □

Indeed, symmetric PDEs (like in (1.2)) allow for the Pythagorean identity

⦀𝑢★ − 𝑢★ℓ+1⦀2 + ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀2 = ⦀𝑢★ − 𝑢★ℓ ⦀2 for all ℓ ∈ N0 (1.13)

resulting in (A4) with 𝐶orth = 𝐶2
cont/𝐶2

ell and 𝛿 = 1. However, for the later consideration of
nonsymmetric PDEs, (1.13) fails, while (A4) remains valid. The generalized quasi-orthogonality (A4)
allows us to improve the estimator reduction property in (1.10) to R-linear convergence of the estimator,
i.e., quasi-contraction.

Theorem 1.6: R-linear convergence of the estimator [BFM+23, Theorem 4]
Let (Tℓ)ℓ∈N0 be a sequence of meshes with Tℓ ∈ T. Suppose estimator reduction (1.10) from
Lemma 1.3, reliability (A3), and generalized quasi-orthogonality (A4). Then, there holds
R-linear convergence of the estimator, i.e., there exist constants 𝐶lin ≥ 1 and 0 < 𝑞lin < 1 such
that

𝜂ℓ+𝑁 (𝑢★ℓ+𝑁 ) ≤ 𝐶lin 𝑞
𝑁
lin 𝜂ℓ (𝑢★ℓ ) for all ℓ, 𝑁 ∈ N0. (1.14)

The constants 𝐶lin and 𝑞lin depend only on 𝐶rel, 𝐶orth from (A3) and (A4) and on 𝑞est, 𝐶est from
Lemma 1.3. □

So far, we have investigated linear convergence of the error estimator only. However, this convergence
can be arbitrarily slow in theory. To formalize the idea of convergence rates, we abbreviate the set
of all admissible meshes with at most 𝑁 ∈ N0 more elements compared to the initial mesh T0 by
T𝑁 := {T𝐻 ∈ T : #T𝐻 −#T0 ≤ 𝑁}. For arbitrary 𝑠 > 0, we introduce the nonlinear approximation
class by

∥𝑢★∥A𝑠
:= sup

𝑁 ∈N0

min
T𝐻 ∈T𝑁

(𝑁 + 1)𝑠 𝜂𝐻 (𝑢★𝐻) ∈ [0,∞] . (1.15)

If ∥𝑢★∥A𝑠 < ∞, then one can show that there exists a sequence of (not necessarily nested) optimal
meshes (Tℓ)ℓ∈N0 such that the corresponding error estimators 𝜂ℓ (𝑢★ℓ ) decay with rate 𝑠, i.e., they
satisfy 𝜂ℓ = O( #Tℓ −𝑠). In the following, we want to illustrate that the sequence of computed
meshes (Tℓ)ℓ∈N0 from Algorithm 1A leads to decay of the output error estimator with rate 𝑠 as
well. One key observation is that not only the Dörfler marking (D) does imply R-linear convergence
but that also the converse implication is true; the result essentially goes back to the seminal
work [Ste07].

Lemma 1.7 (optimality of Dörfler marking (D) [CFPP14, Proposition 4.12]). Suppose that the
estimator satisfies stability (A1) and discrete reliability (A3+). Then, for all 0 < 𝜃 < 𝜃opt :=
(1 + 𝐶2

stab 𝐶
2
drel)−1, there exists some 0 < 𝑞𝜃 < 1 such that

𝜂ℎ (𝑢★ℎ) ≤ 𝑞𝜃𝜂𝐻 (𝑢★𝐻) =⇒ 𝜃 𝜂2𝐻 ≤ 𝜂(T𝐻 \ Tℎ)2 for all T𝐻 ∈ T and Tℎ ∈ T(T𝐻). (1.16)

12



1.5 Adaptive FEM with inexact solver

The constant 𝑞𝜃 depends only on 𝐶stab, 𝐶drel from (A1) and (A3+), and 𝜃. □

A key ingredient in the proof of optimal convergence of the error estimator is the following
comparison lemma, which bounds the number of nonrefined elements in terms of the approximation
class.

Lemma 1.8 (comparison lemma [CFPP14, Lemma 4.14]). Suppose that the mesh refinement
satisfies the overlay property (R2) and that the estimator satisfies quasi-monotonicity (QM)
with constant 𝐶mon. Let T𝐻 ∈ T such that the associated estimator fulfills 𝜂𝐻 (𝑢★𝐻) > 0 and let
0 < 𝑞 < 1. Then, for all 𝑠 > 0 with ∥𝑢★∥A𝑠 < ∞ there exists a refinement Tℎ ∈ T(T𝐻) with

𝜂ℎ (𝑢★ℎ) ≤ 𝑞 𝜂𝐻 (𝑢★𝐻) and #Tℎ −#T𝐻 ≤ 𝐶1/𝑠
mon 𝑞

−1/𝑠 ∥𝑢★∥1/𝑠A𝑠
𝜂𝐻 (𝑢★𝐻)1/𝑠 . □ (1.17)

Theorem 1.9: Optimal convergence rates of Algorithm 1A [CFPP14, Proposition 4.15]
Let (Tℓ)ℓ∈N0 be the meshes generated by Algorithm 1A. Suppose the mesh refinement prop-
erties (R1)–(R3) and that the estimator satisfies (A1)–(A3+) and the generalized quasi-
orthogonality (A4). Recall 𝜃opt from Lemma 1.7. Then, for all 0 < 𝜃 < 𝜃opt < 1, there holds
convergence of the estimator at optimal rate with respect to the number of elements, i.e., for all
𝑠 > 0, there exist constants 𝑐opt, 𝐶opt > 0 such that

𝑐opt ∥𝑢★∥A𝑠 ≤ sup
ℓ∈N0

(#Tℓ −#T0 + 1)𝑠 𝜂ℓ ≤ 𝐶opt ∥𝑢★∥A𝑠 . (1.18)

The constant 𝑐opt > 0 depends only on #T0, 𝐶stab from (A1), 𝐶child from (R1), and s; the
constant 𝐶opt > 0 depends only on 𝐶mon from (QM), 𝐶child and 𝐶closure from (R1) and (R3),
𝐶mark ≥ 1 from (D), 𝐶lin and 𝑞lin from (1.14), 𝑞𝜃 from (1.16), and on 𝑠.

The upper bound in (1.18) guarantees that the estimator sequence generated by Algorithm 1A
converges with rate 𝑠 > 0 if a decay with rate 𝑠 is possible along a sequence of optimal meshes. The
lower bound in (1.18) means that the theoretically attainable optimal rate can be estimated by the
convergence rate of the computed estimator sequence. In summary, the adaptive algorithm converges
at any possible algebraic rate 𝑠 > 0 and, thus, Algorithm 1A is indeed rate-optimal.

1.5 Adaptive FEM with inexact solver

The proof of optimal convergence rates with respect to the computational time relies on the fact that
each module in Figure 1.6 can be realized in linear complexity, i.e., the invested work for each step of
the algorithm is of order O(#Tℓ). Since a direct solver, in general, does not satisfy this assumption,
we will embed an iterative algebraic solver into Algorithm 1A.

1.5.1 The module SOLVE

Suppose that we are given an iterative algebraic solver to treat the problem (1.3). Denote its iteration
step by the function Ψ𝐻 : X𝐻 → X𝐻 , i.e., given an approximation 𝑢𝐻 ∈ X𝐻 of the exact solution 𝑢★𝐻
to (1.6), the solver returns an improved approximation Ψ𝐻 (𝑢𝐻). Furthermore, we assume that the
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algebraic solver is contractive in the PDE-related norm ⦀·⦀ towards 𝑢★𝐻 , i.e., there exists a constant
0 < 𝑞ctr < 1 independent of X𝐻 such that⦀𝑢★𝐻 − Ψ(𝑢𝐻)⦀ ≤ 𝑞ctr ⦀𝑢★𝐻 − 𝑢𝐻⦀ for all 𝑢𝐻 ∈ X𝐻 . (C1)

The triangle inequality then assures a computable a posteriori control of the algebraic solver error
1 − 𝑞ctr
𝑞ctr

⦀𝑢★𝐻 − Ψ(𝑢𝐻)⦀ ≤ ⦀Ψ(𝑢𝐻) − 𝑢𝐻⦀ ≤ (1 + 𝑞ctr) ⦀𝑢★𝐻 − 𝑢𝐻⦀ for all 𝑢𝐻 ∈ X𝐻 . (C2)

Therefore, the algebraic solver error ⦀𝑢★𝐻 −Ψ(𝑢𝐻)⦀ is controlled by the computable error ⦀Ψ(𝑢𝐻) −
𝑢𝐻⦀ of two consecutive iterates. For a stopping parameter 𝜆 > 0, it is reasonable to stop the algebraic
solver for the minimal index such that error by the inexact solution is controlled by a fixed 𝜆-portion
of the discretization error (similar to the Dörfler marking criterion (D)). Given a stopping parameter
𝜆 > 0, this means that we stop once there holds⦀Ψ(𝑢𝐻) − 𝑢𝐻⦀ ≤ 𝜆 𝜂𝐻 (Ψ(𝑢𝐻)). (1.19)

In fact, our analysis only needs a weaker form of contraction (C1) with 𝐶 𝑞𝑘ctr replacing 𝑞𝑘ctr after 𝑘
iterations of the algebraic solver with a uniform constant 𝐶 ≥ 1 independent of X𝐻 , together with
the additional assumption of a posteriori control similar to (C2).

For symmetric positive definite systems, many solver options are available, e.g., methods that
only need information on the given matrix. Examples of such methods include the Jacobi, Gauss–
Seidel, and symmetric successive over-relaxation (SSOR) methods, as mentioned in [Kel95; Var00;
Saa03]. More advanced algebraic methods include algebraic multigrid methods, which can be found
in [BMR85; RS87; NN12; KA21], or domain decomposition methods with a divide-and-conquer
ansatz in, e.g., [DW90; QV99; TW05; DJN15; GZ22]. Finally, we emphasize the importance of
having 𝑞ctr robust in the discretization parameters ℎ and 𝑝 to fully exploit the convergence rates of
AFEM. Therefore, we resort to optimal geometric multigrid solvers or optimally preconditioned
conjugate gradient methods and refer to Section 1.7.1 for a detailed presentation. Finally, it is
worth mentioning that the described solvers can be adapted to serve as preconditioners for conjugate
gradient methods [HS52], effectively accelerating the convergence speed of the solver.

1.5.2 Adaptive algorithm with iterative solve

Recall the MARK and REFINE modules from Section 1.4. We propose an adaptive algorithm with an
iterative solver, where, due to the stopping criterion of the algebraic solver in (1.19), the SOLVE and
ESTIMATE module are merged.

Algorithm 1B: AFEM with contractive solver
Input: Initial mesh T0, adaptivity parameters 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1, solver-stopping
parameter 𝜆 > 0, and an initial guess 𝑢00 ∈ X0.

For all ℓ = 0, 1, 2, . . . , repeat the following steps (i)–(iv):

(i) SOLVE & ESTIMATE: For all 𝑘 = 1, 2, 3, . . . , repeat (a)–(b) until

⦀𝑢𝑘ℓ − 𝑢𝑘−1ℓ ⦀ ≤ 𝜆 𝜂ℓ (𝑢𝑘ℓ ). (1.20)
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(a) Compute 𝑢𝑘ℓ := Ψℓ (𝑢𝑘−1ℓ ) by one step of the contractive algebraic solver.
(b) Compute the refinement indicators 𝜂ℓ (𝑇, 𝑢𝑘ℓ ) for all 𝑇 ∈ Tℓ .

(ii) Upon termination of the iterative solver, define the index 𝑘 [ℓ] := 𝑘 ∈ N.

(iii) MARK: Determine a set Mℓ ∈ Mℓ [𝜃, 𝑢𝑘ℓ ] satisfying (D) for 𝑢★ℓ replaced by 𝑢
𝑘

ℓ with up to
the factor 𝐶mark minimal cardinality.

(iv) REFINE: Generate Tℓ+1 := refine(Tℓ ,Mℓ) and employ nested iteration 𝑢0ℓ+1 := 𝑢
𝑘

ℓ .

Compared to Algorithm 1A (with mesh level ℓ only), the indices associated with Algorithm 1B
are pairs (ℓ, 𝑘) and R-linear convergence (1.14) from Lemma 1.6 needs to be adapted to the new
lexicographic ordering. To this end, we define the index set

Q := {(ℓ, 𝑘) : 𝑢𝑘ℓ appears in Algorithm 1B}

and the lexicographic ordering

(ℓ′, 𝑘 ′) ≤ (ℓ, 𝑘) ⇐⇒ 𝑢𝑘
′

ℓ′ appears not later than 𝑢𝑘ℓ for all (ℓ, 𝑘), (ℓ′, 𝑘 ′) ∈ Q.

The total step counter |·, ·| reads

|ℓ, 𝑘 | := #{(ℓ′, 𝑘 ′) ∈ Q : (ℓ′, 𝑘 ′) ≤ (ℓ, 𝑘)} = 𝑘 +
ℓ−1∑︁
ℓ′=0

𝑘 [ℓ′] for all (ℓ, 𝑘) ∈ Q.

The subsequent presentation employs certain stopping indices for the mesh level ℓ and the algebraic
solver counter 𝑘 defined by

ℓ := sup{ℓ ∈ N0 : (ℓ, 0) ∈ Q} ∈ N0 ∪ {∞},
𝑘 [ℓ] := sup{𝑘 ∈ N : (ℓ, 𝑘) ∈ Q} ∈ N ∪ {∞} whenever (ℓ, 0) ∈ Q,

These definitions are consistent with Algorithm 1B and in 𝑘 [ℓ], we often omit the ℓ dependence
whenever it is clear from the context, i.e., 𝑘 abbreviates 𝑘 [ℓ] and 𝑢

𝑘

ℓ abbreviates 𝑢𝑘 [ℓ ]ℓ for a given
ℓ ∈ N with (ℓ, 𝑘) = (ℓ, 𝑘 [ℓ]) ∈ Q.

1.5.3 Quasi-optimality of Algorithm 1B

We start with a perturbed version of the estimator reduction property from Lemma 1.3 for the inexact
final iterates 𝑢𝑘ℓ .

Lemma 1.10 (perturbed estimator reduction for inexact solver [BFM+23, Equation (36)]). Recall
the constant 0 < 𝑞est < 1 from Lemma 1.3. Suppose that the estimator satisfies stability (A1) and
reduction (A2). Let 0 < 𝜃 ≤ 1 and suppose the use of Dörfler marking (D) with 𝑢★ℓ replaced by
𝑢
𝑘

ℓ . Then, we have estimator reduction

𝜂ℓ+1(𝑢𝑘ℓ+1) ≤ 𝑞est 𝜂ℓ (𝑢𝑘ℓ ) + 2𝐶stab ∥𝑢★ℓ+1 − 𝑢
𝑘

ℓ ∥X for all (ℓ + 1, 𝑘) ∈ Q. □ (1.21)
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The proof of optimal convergence rates for the inexact Algorithm 1B follows by the optimality result
for AFEM with exact solver in Theorem 1.9 and the following perturbation argument with sufficiently
small solver parameter 𝜆. The latter ensures that the inexact final iterates 𝑢𝑘ℓ are sufficiently close
to the exact discrete solution 𝑢★ℓ leading to an equivalence of the inexact error estimator 𝜂ℓ (𝑢𝑘ℓ ) to
the exact error estimator 𝜂ℓ (𝑢★ℓ ). Hence, Dörfler marking for some appropriate 𝜃mark and 𝜂ℓ (𝑢★ℓ )
implies Dörfler marking for 𝜃 and 𝜂ℓ (𝑢𝑘ℓ ).

Lemma 1.11 (estimator equivalence [CFPP14, Lemma 7.4]). Suppose that the estimator satisfies
stability (A1). Then, for all 0 < 𝜃 ≤ 1, 0 < 𝜆 < 𝜆★ := min{1, 𝐶cont 𝐶

−1
ell 𝐶

−1
stab (1− 𝑞ctr)/𝑞ctr}, and

all (ℓ, 𝑘) ∈ Q, there holds equivalence

1 − 𝜆/𝜆★ 𝜂ℓ (𝑢𝑘ℓ ) ≤ 𝜂ℓ (𝑢★ℓ ) ≤ 1 + 𝜆/𝜆★ 𝜂ℓ (𝑢𝑘ℓ ). (1.22)

Moreover, with 𝜃 sufficiently small to guarantee 0 < 𝜃mark := (𝜃1/2 + 𝜆/𝜆★)2 (1 − 𝜆/𝜆★)−2 < 1,
there holds the following implication for any Rℓ ⊆ Tℓ

𝜃mark 𝜂ℓ (𝑢★ℓ )2 ≤ 𝜂ℓ (Rℓ ; 𝑢
★
ℓ )2 =⇒ 𝜃 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2 ≤ 𝜂ℓ (Rℓ ; 𝑢

𝑘, 𝑗

ℓ )2. (1.23)

This estimator equivalence ensures linear convergence of the estimator similarly to Theorem 1.6 with
the final iterates 𝑢𝑘ℓ replacing 𝑢★ℓ provided that the solver-stopping parameter 𝜆 is sufficiently small.
However, we can even prove full R-linear convergence (i.e., quasi-contraction in each step of the
algorithm) of some quasi-error consisting of discretization and algebraic solver error for any 𝜆 > 0.
This will turn out to be the key ingredient in the proof of optimal complexity of Algorithm 1B.

Theorem 1.12: Full R-linear convergence of the quasi-error [BFM+23, Theorem 7]
Suppose that the estimator satisfies the axioms (A1)–(A3) and suppose quasi-orthogonality (A4).
Let the adaptivity parameters 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, solver-stopping parameter 𝜆 > 0, and
𝑢00 ∈ X0 be arbitrary. Then, Algorithm 1B guarantees R-linear convergence of the quasi-error

H𝑘
ℓ := ∥𝑢★ℓ − 𝑢𝑘ℓ ∥X + 𝜂ℓ (𝑢𝑘ℓ ), (1.24)

i.e., there exist constants 0 < 𝑞lin < 1 and 𝐶lin > 0 such that

H𝑘
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘 |− |ℓ′ ,𝑘′ |
lin H𝑘′

ℓ′ for all (ℓ′, 𝑘 ′), (ℓ, 𝑘) ∈ Q with |ℓ′, 𝑘 ′ | ≤ |ℓ, 𝑘 |. (1.25)

The constants 𝐶lin and 𝑞lin depend only on 𝐶stab, 𝑞red, 𝐶rel, 𝐶orth, from (A1)–(A3) and (A4),
𝐶Céa from (Céa), 𝐶cont and 𝐶ell from (1.4), 𝑞ctr from (C1), 𝜃, and on 𝜆. □

Full R-linear convergence asserts quasi-contraction independent of the algorithmic decision for an
algebraic solver step (i.e., an increase of 𝑘) or local mesh-refinement (i.e., an increase of the mesh
level ℓ). A first important corollary of full linear convergence (1.25) in Theorem 1.12 assures that the
rates with respect to the degrees of freedom dimXℓ ≃ #Tℓ and the convergence rates with respect
to the computational cost indeed coincide provided that each module of the adaptive algorithm is
realized in linear complexity. We shortly comment on the cost of the modules in the following.

(a) Each solver step of an optimal multigrid method in Algorithm 1B(i) can be performed in
O(#Tℓ) operations, if smoothing is done according to the grading of the mesh [WZ17; IMPS24].
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The same remark is valid for the preconditioned CG method with optimal additive Schwarz or BPX
preconditioner [CNX12], where each solver step can be realized via successive updates in O(#Tℓ)
operations.

(b) The Dörfler marking strategy (D) in Algorithm 1B(ii) can be realized in linear complexity
O(#Tℓ); see [Ste07] for 𝐶mark = 2 and [PP20] for 𝐶mark = 1.

(c) Local mesh refinement (including mesh closure) in Algorithm 1B(iv) of Tℓ by bisection can be
realized in O(#Tℓ) operations; see, e.g., [BDD04; Ste07].

The adaptive algorithm depends on the full history of algorithmic decisions, i.e., the computation
of 𝑢𝑘ℓ and Tℓ depends on all previously computed 𝑢𝑘

′
ℓ′ and Tℓ′ . Since each step can be realized in

linear complexity, the overall computational cost until step (ℓ, 𝑘) ∈ Q, i.e., until (and including) the
computation of 𝑢𝑘ℓ , is thus proportional to

work(ℓ, 𝑘) :=
∑︁

(ℓ′ ,𝑘′ ) ∈Q
|ℓ′ ,𝑘′ | ≤ |ℓ,𝑘 |

#Tℓ′ . (1.26)

Corollary 1.13 (rates = complexity [BIM+24a, Corollary 4.2]). For 𝑠 > 0, full convergence (1.25)
yields

𝑀 (𝑠) := sup
(ℓ,𝑘 ) ∈Q

(#Tℓ)𝑠 H𝑘
ℓ ≤ sup

(ℓ,𝑘 ) ∈Q
work(ℓ, 𝑘)𝑠 H𝑘

ℓ ≤ 𝐶cost(𝑠) 𝑀 (𝑠), (1.27)

where the constant 𝐶cost(𝑠) > 0 depends only on 𝐶lin and 𝑞lin from (1.25), and 𝑠. Moreover, there
exists 𝑠0 > 0 such that 𝑀 (𝑠) < ∞ for all 0 < 𝑠 ≤ 𝑠0. □

The second main result of this section combines the rate-optimality (1.18) from Theorem 1.9, full
linear convergence (1.25) from Theorem 1.12, and a geometric series argument. The theorem
shows optimal complexity of Algorithm 1B, i.e., optimal convergence rates with respect to the
computational cost from (1.26), hence, the cumulative computation time.

Theorem 1.14: Optimal rates of Algorithm 1B with respect to computational cost
Recall 𝜆★ and 𝜃mark from Lemma 1.11. Suppose that the estimator satisfies the axioms (A1)–
(A3+) and suppose quasi-orthogonality (A4). Let 𝜃 and 𝜆 be sufficiently small in the sense
that

0 < 𝜆 < 𝜆★ and 0 < 𝜃mark =
(𝜃1/2 + 𝜆/𝜆★)2
(1 − 𝜆/𝜆★)2 < 𝜃opt := (1 + 𝐶2

stab 𝐶
2
drel)−1 < 1. (1.28)

Then, Algorithm 1B guarantees, for all 𝑠 > 0, that

𝑐opt ∥𝑢★∥A𝑠 ≤ sup
(ℓ,𝑘 ) ∈Q

work(ℓ, 𝑘)𝑠 H𝑘
ℓ ≤ 𝐶opt max{∥𝑢★∥A𝑠 , H

0
0}. (1.29)

The constant 𝑐opt > 0 depends only on 𝐶stab from (A1), 𝐶child from (R1), and 𝑠; while the
constant 𝐶opt depends only on 𝐶opt from (1.18), 𝑞ctr from (C1), 𝐶lin and 𝑞lin from (1.25), and
on 𝑠.
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1.6 Goal-oriented adaptive FEM

Rather than the exact solution 𝑢★ itself to (1.3), many practical applications aim to approximate a
functional value 𝐺 (𝑢★) of a linear continuous functional 𝐺 : X → R at quasi-optimal computational
cost. Clearly, any approximation 𝑢𝐻 ∈ X𝐻 of 𝑢★ leads to the following error estimate

|𝐺 (𝑢★) − 𝐺 (𝑢𝐻) | ≤ ∥𝐺∥X′ ∥𝑢★ − 𝑢𝐻 ∥X where ∥𝐺∥X′ := sup
𝑣∈X\{0}

|𝐺 (𝑣) |
∥𝑣∥X .

Thus, the approximation quality is limited by the quality of the approximation 𝑢𝐻 of 𝑢★. While this
estimate is linear in the approximation error, a duality technique from [GS02] allows to essentially
obtain a quadratic estimate instead. To this end, let 𝑧★ be the unique solution to the so-called dual
problem with given data 𝑔 ∈ 𝐿2(Ω) and 𝒈 ∈ 𝐿2(Ω) 𝑑 ,

𝑎(𝑣, 𝑧★) = 𝐺 (𝑣) :=
∫
Ω
𝑔 𝑣 + 𝒈 · ∇𝑣 d𝑥 for all 𝑣 ∈ X. (1.30)

Then, the Lax–Milgram lemma applies and guarantees existence and uniqueness of 𝑧★. Any
approximation 𝑧𝐻 ∈ X𝐻 to 𝑧★ then leads to

𝐺 (𝑢★) − 𝐺 (𝑢𝐻) = 𝐺 (𝑢★ − 𝑢𝐻)(1.30)
= 𝑎(𝑢★ − 𝑢𝐻 , 𝑧

★)
(1.6)
= 𝑎(𝑢★ − 𝑢𝐻 , 𝑧

★ − 𝑧𝐻) + 𝐹 (𝑧𝐻) − 𝑎(𝑢𝐻 , 𝑧𝐻) .

Hence, the definition of the discrete goal 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) := 𝐺 (𝑢𝐻) + 𝐹 (𝑧𝐻) − 𝑎(𝑢𝐻 , 𝑧𝐻) permits
the goal-error estimate

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) | = |𝑎(𝑢★ − 𝑢𝐻 , 𝑧
★ − 𝑧𝐻) |

(1.4)≤ 𝐶cont ∥𝑢★ − 𝑢𝐻 ∥X ∥𝑧★ − 𝑧𝐻 ∥X (1.31)

Thus, the goal-error can be estimated by the product of the two approximation errors and, in this
sense, the estimate is quadratic.

1.6.1 State-of-the-art and outlook

The first rigorous quasi-optimality results for goal-oriented AFEM with linear goals were established
in the seminal work [MS09] for the Poisson model problem. The work by [MS09] employs two
possible sets of marked elements, one for reducing the error in the primal variable 𝑢 and another for
the dual variable 𝑧. The set of minimal cardinality is then chosen as the set of marked elements.
However, since error reduction is only guaranteed for one term of the product, [BET11] proposes a
weighted marking strategy and verifies an improved contraction compared to the marking criterion
in [MS09], whereas optimal convergence rates remained open. The work [FGH+16] proved linear
convergence and optimal convergence rates for symmetric problems and for both, the marking
strategy of [MS09] and that of [BET11]. Notably, the analysis of [FGH+16] required new ideas
beyond those of [MS09; BET11] for the proof of linear convergence, since the earlier works exploited
monotonicity of the energy error and oscillations, which might fail if the diffusion coefficient is
not constant. Finally, [FPZ16] extended this analysis to general second-order linear elliptic PDEs,
while [HP16] only proved contraction but did not address optimal rates. In particular, [FPZ16]
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Goal-oriented adaptivity (ℓ)

Solve & estimate

Primal problem Dual problem(in parallel)

Solve (𝒎)

computable approximation 𝑢𝑚
ℓ

and estimator 𝜂ℓ (𝑢𝑚ℓ )

Solve (𝝁)

computable approximation 𝑧
𝜇
ℓ

and estimator 𝜁ℓ (𝑧𝜇ℓ )

Mark

apply Dörfler marking variant from [FPZ16]

Refine

employ NVB [Ste08]

Figure 1.9: Nested loops of the goal-oriented adaptive algorithm with inexact solver.

proposes a novel marking strategy based on [MS09] that guarantees optimal convergence of the
estimator product and is computationally favorable compared to earlier approaches. In addition,
[BIP21] shows optimal convergence of a goal-oriented AFEM with a nonlinear quadratic goal, while
[BBI+22] shows optimal convergence for semilinear problems with a linear goal functional. Another
strategy includes a dual-weighted residual approach in the works [ELW19; ELW20; DBR21].

In the framework of GOAFEM, optimal complexity was first established in [MS09] for the
Poisson model problem and sufficiently small adaptivity parameters. [BGIP23] proves optimal
complexity for symmetric linear elliptic PDEs with a linear goal functional. Again, we note that
the proof of full R-linear convergence in [BGIP23] is structurally different to those of [MS09;
BET11; FGH+16; FPZ16] and explicitly based on tail-summability to avoid any constraint on 𝜆. For
nonsymmetric linear elliptic PDEs [FPZ16] proved optimal convergence of the estimator product.
However, the analysis strongly relies on an exact solution of the arising discrete systems (through
quasi-monotonicity of the exact error estimator) and thus optimal complexity is out of reach with
this approach if arbitrary 𝜆 is targeted. Overall, optimal complexity for nonsymmetric problems with
a linear goal functional, remained an open question, which we address in this thesis.

1.6.2 Product estimator structure in module ESTIMATE

In the following, we revisit the modules of the adaptive algorithm from Figure 1.6 and explain
similarities and difference due to the nonlinear product structure of the upper bound in (1.31). The
nested components of the proposed algorithm are illustrated in Figure 1.9. The SOLVE module
is essentially the same as in Section 1.5.1 but consists of the simultaneous computation of the
approximations 𝑢𝑚ℓ and 𝑧

𝜇
ℓ for iteration counters 𝑚 and 𝜇 instead of the single solver loop with

iteration counter 𝑘 . While the primal error estimator 𝜂𝐻 (·) is given in (1.8), we define the local
contributions to the dual error estimator 𝜁𝐻 (·), for all 𝑇 ∈ T𝐻 and all 𝑣𝐻 ∈ X𝐻 , by

𝜁ℓ (𝑇 ; 𝑣𝐻)2 := |𝑇 |2/𝑑 ∥𝑔 + div(𝑨∇𝑣𝐻 − 𝒈)∥2
𝐿2 (𝑇 ) + |𝑇 |1/𝑑 ∥⟦ 𝑨∇𝑣𝐻 − 𝒈 · 𝒏⟧∥2

𝐿2 (𝜕𝑇∩Ω) . (1.32)
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We again emphasize that the well-definiteness of the estimator in (1.32) requires that 𝒈 |𝑇 ∈ 𝐻1(𝑇) 𝑑

for all 𝑇 ∈ T0. Then, it is well-known that the estimators 𝜂𝐻 and 𝜁𝐻 satisfy the following extended
set of axioms.

Proposition 1.15 (goal-oriented axioms of adaptivity [CFPP14, Section 6.1]). The error es-
timators 𝜂𝐻 from (1.8) and 𝜁𝐻 from (1.32) satisfy the following properties with constants
𝐶stab, 𝐶rel, 𝐶drel, 𝐶mon > 0 and 0 < 𝑞red < 1 for any triangulation T𝐻 ∈ T and any conforming
refinement Tℎ ∈ T(T𝐻) with the corresponding Galerkin solutions 𝑢★𝐻 ∈ X𝐻 , 𝑢

★
ℎ ∈ Xℎ to (1.6),

𝑧𝐻 ∈ X𝐻 , 𝑧
★
ℎ ∈ Xℎ to (1.30) and arbitrary 𝑣𝐻 ∈ X𝐻 , 𝑣ℎ ∈ Xℎ.

(GOA1) stability: |𝜂ℎ (U𝐻 ; 𝑣ℎ) − 𝜂𝐻 (U𝐻 ; 𝑣𝐻) | + |𝜁ℎ (U𝐻 ; 𝑣ℎ) − 𝜁𝐻 (U𝐻 ; 𝑣𝐻) | ≤ 𝐶stab ∥𝑣ℎ −
𝑣𝐻 ∥X .

(GOA2) reduction: 𝜂ℎ (Tℎ\T𝐻 ; 𝑣𝐻) ≤ 𝑞red 𝜂𝐻 (T𝐻\Tℎ; 𝑣𝐻) and 𝜁ℎ (Tℎ\T𝐻 ; 𝑣𝐻) ≤ 𝑞red𝜁𝐻 (T𝐻\
Tℎ; 𝑣𝐻).

(GOA3) reliability: ∥𝑢★ − 𝑢★𝐻 ∥X ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻) and ∥𝑧★ − 𝑧★𝐻 ∥X ≤ 𝐶rel 𝜁𝐻 (𝑧★𝐻).
(GOA3+) discrete reliability: ∥𝑢★ℎ − 𝑢★𝐻 ∥X ≤ 𝐶drel 𝜂𝐻 (T𝐻\Tℎ, 𝑢★𝐻) and

∥𝑧★ℎ − 𝑧★𝐻 ∥X ≤ 𝐶drel 𝜁𝐻 (T𝐻\Tℎ, 𝑧★𝐻).
(GOQM) quasi-monotonicity: 𝜂ℎ (𝑢★ℎ) ≤ 𝐶mon 𝜂𝐻 (𝑢★𝐻) and 𝜁ℎ (𝑧★ℎ) ≤ 𝐶mon 𝜁𝐻 (𝑧★𝐻). □

Reliability (GOA3) and stability (GOA1) verify

∥𝑢★ − 𝑢𝐻 ∥X ≤ max{𝐶rel, 1 + 𝐶stab 𝐶rel} 𝜂𝐻 (𝑢𝐻) + ∥𝑢★𝐻 − 𝑢𝐻 ∥X ,

∥𝑧★ − 𝑧𝐻 ∥X ≤ max{𝐶rel, 1 + 𝐶stab 𝐶rel} 𝜁𝐻 (𝑧𝐻) + ∥𝑧★𝐻 − 𝑧𝐻 ∥X .

In combination with the estimate (1.31), we finally conclude for 𝐶goal := 𝐶cont max{𝐶2
rel, 1 +

𝐶stab 𝐶rel
2} the reliable goal-error estimate

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) | ≤ 𝐶goal 𝜂𝐻 (𝑢𝐻) + ∥𝑢★𝐻 − 𝑢𝐻 ∥X 𝜁𝐻 (𝑧𝐻) + ∥𝑧★𝐻 − 𝑧𝐻 ∥X . (1.33)

Therefore, the goal-oriented adaptive algorithm needs to drive down the product of the primal and
dual quasi-error rather than the primal error alone. Moreover, we note that the quasi-orthogonality
from (A4) extends to the GOAFEM setting due to ellipticity of 𝑎( · , · ) and, thus, inf-sup stabil-
ity.

Proposition 1.16 (validity of quasi-orthogonality [Fei22, Equation (8)]). For any sequence
(Xℓ)ℓ∈N0 of nested discrete subspaces Xℓ ⊆ Xℓ+1 ⊂ X, there holds

(GOA4) quasi-orthogonality: There exist constants 𝐶orth > 0 and 0 < 𝛿 < 1 such that the
corresponding Galerkin solutions 𝑢★ℓ , 𝑧

★
ℓ ∈ Xℓ to (1.6) and (1.30) satisfy, for all ℓ, 𝑁 ∈ N0,

ℓ+𝑁∑︁
ℓ′=ℓ

∥𝑢★ℓ′+1 − 𝑢★ℓ′ ∥2X ≤ 𝐶orth (𝑁 + 1)1−𝛿 ∥𝑢★ − 𝑢★ℓ ∥2X , (1.34a)

ℓ+𝑁∑︁
ℓ′=ℓ

∥𝑧★ℓ′+1 − 𝑧★ℓ′ ∥2X ≤ 𝐶orth (𝑁 + 1)1−𝛿 ∥𝑧★ − 𝑧★ℓ ∥2X . (1.34b)
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The constants 𝐶orth and 𝛿 depend only on the dimension 𝑑, the elliptic bilinear form 𝑎( · , · ), and
the chosen norm ∥ · ∥X , but are independent of the spaces Xℓ . □

1.6.3 Combined marking in module MARK

A first marking strategy for goal-oriented AFEM was proposed in [MS09] that reads as follows: First,
determine sets M𝜂

ℓ ,M𝜁
ℓ ⊆ Tℓ that satisfy the Dörfler marking criterion (D) with common parameter

𝜃 for the respective estimator in the upper index. Then, choose Mℓ = M𝜂
ℓ if M𝜂

ℓ is the set with
smaller cardinality and Mℓ = M𝜁

ℓ otherwise. The work [FPZ16] extended this strategy and proposed
to choose Mℓ ⊆ M𝜂

ℓ ∪M𝜁
ℓ such that #Mℓ ≤ 𝐶mark #Mmin

ℓ and Mmin
ℓ ⊆ Mℓ with 𝐶mark ≥ 1 and

Mmin
ℓ ∈ {M𝜂

ℓ ,M𝜁
ℓ } being the set of smaller cardinality. Then, 𝐶mark = 1 corresponds to the case,

where the marking strategies from [MS09] and [FPZ16] coincide. However, 𝐶mark = 2 leads to the
empirical observation that the resulting extended marking strategy from [FPZ16] is computationally
superior to the criterion in [MS09].

1.6.4 Goal-oriented AFEM algorithm

We can now present an extension of Algorithm 1B with inexact solver to goal-oriented AFEM.

Algorithm 1C: Goal-oriented AFEM with contractive solver
Input: Initial mesh T0, adaptivity parameters 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1, solver-stopping
parameter 𝜆 > 0, and an initial guess 𝑢00, 𝑧

0
0 ∈ X0.

For all ℓ = 0, 1, 2, . . . , repeat the following steps (i)–(v):

(i) SOLVE & ESTIMATE (PRIMAL): For all 𝑚 = 1, 2, 3, . . . , repeat (a)–(b) until

⦀𝑢𝑚ℓ − 𝑢𝑚−1
ℓ ⦀ ≤ 𝜆 𝜂ℓ (𝑢𝑚ℓ ). (1.35)

(a) Compute 𝑢𝑚ℓ := Ψℓ (𝑢𝑚−1
ℓ ) with one step of the contractive solver.

(b) Compute the refinement indicators 𝜂ℓ (𝑇, 𝑢𝑚ℓ ) for all 𝑇 ∈ Tℓ .
(ii) SOLVE & ESTIMATE (DUAL): For all 𝜇 = 1, 2, 3, . . . , repeat (a)–(b) until

⦀𝑧𝜇ℓ − 𝑧
𝜇−1
ℓ ⦀ ≤ 𝜆 𝜁ℓ (𝑧𝜇ℓ ). (1.36)

(a) Compute 𝑧
𝜇
ℓ
:= Ψℓ (𝑧𝜇−1ℓ ) with one step of the contractive solver.

(b) Compute the refinement indicators 𝜁ℓ (𝑇, 𝑧𝜇ℓ ) for all 𝑇 ∈ Tℓ .
(iii) Upon termination of the iterative solvers, define the indices 𝑚 [ℓ] := 𝑚 ∈ N, 𝜇[ℓ] := 𝜇,

and 𝑘 [ℓ] := max{𝑚 [ℓ], 𝜇[ℓ]} ∈ N.

(iv) MARK: Determine sets M𝑢

ℓ ∈ M𝑢
ℓ [𝜃, 𝑢

𝑚

ℓ ] and M𝑧

ℓ ∈ M𝑧
ℓ [𝜃, 𝑧

𝜇

ℓ ] satisfying the Dörfler
criterion (D) for 𝑢𝑚ℓ resp. 𝑧

𝜇

ℓ with up to the factor 𝐶mark minimal cardinality. Then,
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define the set of marked elements Mℓ := M𝑢
ℓ ∪M𝑧

ℓ , where M𝑢
ℓ ⊆ M𝑢

ℓ and M𝑧
ℓ ⊆ M𝑧

ℓ

satisfy #M𝑢
ℓ = #M𝑧

ℓ = min{#M𝑢

ℓ ,#M𝑧

ℓ }.

(v) REFINE: Generate Tℓ+1 := refine(Tℓ ,Mℓ) and define 𝑢0ℓ+1 := 𝑢
𝑚

ℓ and 𝑧0ℓ+1 := 𝑧
𝜇

ℓ .

The analysis of Algorithm 1C is more involved compared to Algorithm 1B since the computation of
the algebraic solver loops are decoupled and, therefore, one solver might stop earlier than the other.
To this end, we define the full index set Q := Q𝑢 ∪ Q𝑧 consisting of

Q𝑢 := {(ℓ, 𝑚) ∈ N2
0 : 𝑢

𝑚
ℓ is used in Algorithm 1C},

Q𝑧 := {(ℓ, 𝜇) ∈ N2
0 : 𝑧

𝜇
ℓ is used in Algorithm 1C}.

For the goal-oriented algorithm, additionally to the primal quasi-error H𝑚
ℓ from (1.24), we define the

dual quasi error by
Z
𝜇
ℓ
:= ∥𝑧★ℓ − 𝑧

𝜇
ℓ ∥X + 𝜁ℓ (𝑢𝜇ℓ ) for all (ℓ, 𝜇) ∈ Q𝑧 , (1.37)

These definitions extend to the full index set Q by H𝑘
ℓ
:= H

𝑚

ℓ for all (ℓ, 𝑘) ∈ Q with 1 ≤ 𝑚 [ℓ] ≤ 𝑘 ≤
𝑘 [ℓ] and analogously for the dual quasi-error Z𝑘

ℓ . With this extension, we are able to formulate full
linear convergence for the quasi-error product.

Theorem 1.17: Full R-linear convergence of the quasi-error product [BGIP23, Theorem 6]
Suppose that the estimators 𝜂 from (1.8) and 𝜁 from (1.32) satisfy the axioms (GOA1)–(GOA3)
and suppose quasi-orthogonality (GOA4). Let 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, 𝜆 > 0, and 𝑢00, 𝑧

0
0 ∈ X0

be arbitrary. Then, Algorithm 1C guarantees R-linear convergence of the quasi-error product
i.e., there exist constants 0 < 𝑞lin < 1 and 𝐶lin > 0 such that

H𝑘
ℓ Z

𝑘
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘 |− |ℓ′ ,𝑘′ |
lin H𝑘′

ℓ′ Z
𝑘′
ℓ′ for all (ℓ′, 𝑘 ′), (ℓ, 𝑘) ∈ Q with |ℓ′, 𝑘 ′ | ≤ |ℓ, 𝑘 |. □ (1.38)

The constants 𝐶lin and 𝑞lin depend only on 𝐶stab, 𝑞red, 𝐶rel from (GOA1)–(GOA3), 𝐶orth
from (GOA4), 𝐶cont and 𝐶ell from (1.4), 𝑞ctr, 𝜃, and on 𝜆.

Hence, optimal complexity can be established for Algorithm 1C with the quasi-error product H𝑘
ℓ Z

𝑘
ℓ

replacing the primal quasi-error H𝑘
ℓ in (1.29) from Theorem 1.14 but with an upper bound only.

Theorem 1.18: Optimal complexity of Algorithm 1C [BGIP23, Theorem 8]
Recall 𝜆★ and 𝜃mark from Lemma 1.11. Suppose that the estimators 𝜂 from (1.8) and 𝜁
from (1.32) satisfy the axioms (GOA1)–(GOA3) and suppose quasi-orthogonality (GOA4).
Let 𝜃 and 𝜆 be sufficiently small in the sense that

0 < 𝜆 < 𝜆★ and 0 < 𝜃mark =
(𝜃1/2 + 𝜆/𝜆★)2
(1 − 𝜆/𝜆★)2 < 𝜃opt := (1 + 𝐶2

stab 𝐶
2
drel)−1 < 1. (1.39)

Then, Algorithm 1B guarantees, for all 𝑠 + 𝑡 > 0, that

sup
(ℓ,𝑘 ) ∈Q

work(ℓ, 𝑘)𝑠+𝑡 H𝑘
ℓ Z

𝑘
ℓ ≤ 𝐶opt max{∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡 , H

0
0 Z

0
0}. (1.40)
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The constant 𝐶opt depends only on 𝐶opt from (1.18), 𝑞ctr from (C1), 𝐶lin and 𝑞lin from (1.25),
and on 𝑠.

1.7 Main contributions of the thesis and outline

The remainder of the thesis consists of four chapters. In the following, we give an overview over
the scientific contributions of each of the chapters. We emphasize that all numerical experiments
are openly available with reproducible Matlab scripts under https://www.tuwien.at/mg/asc/
praetorius/software/mooafem.

1.7.1 hp-robust multigrid solver for linear elliptic PDEs

M. Innerberger, A. Miraçi, D. Praetorius, and J. Streitberger. ℎ𝑝-robust multigrid solver on locally
refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM Math. Model. Numer.
Anal., 58(1):247–272, 2024. doi: 10.1051/m2an/2023104

In the framework of adaptive FEM, multilevel methods stand out as excellent and natural candidates
for algebraic solvers due to the available hierarchy of meshes. Among the most notable techniques in
this category, these are (geometric) multigrid methods [BL11; Hac85; BHM00; Osw94] and together
with domain decomposition methods [DW90; QV99; TW05; DJN15; GZ22]. In the subsequent
discussion, we provide a concise explanation of the first method tailored to symmetric second-order
linear elliptic PDEs.

Geometric multilevel solvers represent some of the most efficient and versatile linear solvers.
The fundamental concept of multigrid solvers involves capturing complementary components of
the algebraic error through a hierarchy of meshes. To transfer information from mesh to mesh,
interpolation and restriction operators transfer geometric data between the meshes in the hierarchy.
At each level of the hierarchy, a set of simple iterations, termed smoothing, is employed to suppress
high-oscillatory contributions to the error. On the coarsest mesh in the hierarchy, the matrix is small
enough to permit a direct solve with constant computational effort

An iteration of the considered algebraic solver comprises a cycle, e.g., a V-cycle iterating from the
finest mesh all meshes are visited in descending order until the coarsest mesh (with pre-smoothing
steps), solves directly at the coarsest level, and then successively revisits the meshes to the finest one
(with post-smoothing steps). An important feature of geometric multigrid methods is their intrinsic
independence of mesh size (referred to as ℎ-robustness), i.e., the contraction factor 𝑞ctr from (C1)
does not deteriorate with smaller local mesh size ℎ. Additionally, the geometric multigrid solver
discussed below is also 𝑝-robust, indicating that 𝑞ctr is also independent of the polynomial degree 𝑝.

Previous work [MPV21] presents a 𝑝-robust geometric multigrid solver with a built-in algebraic
error estimator for a posteriori steering of the algebraic solver. However, the patchwise smoothing in
every vertex relative to every level used in this method causes a linear dependence of the contraction
factor on the number of levels. In this chapter, we present a geometric multigrid method that
overcomes this dependence and is, therefore, robust in both the mesh-size ℎ and the polynomial
degree 𝑝. To achieve this, we only use local lowest-order smoothing on patches that have changed in
the mesh-refinement step in the intermediate levels, and we use patchwise higher-order smoothing
only on the finest level. Furthermore, the solver involves only one post-smoothing step, requires
no pre-smoothing, no symmetrization of the procedure, and employs optimal step sizes on the
error-correction stage. More explicitly, Chapter 2 contains following main results:
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(I) The solver iterates and the built-in algebraic error estimator 𝜂alg are connected by

|||𝑢★𝐿 − Ψ(𝑣𝐿) |||2 ≤ |||𝑢★𝐿 − 𝑣𝐿 |||2 − 𝜂alg(𝑣𝐿)2 for all 𝑣𝐿 ∈ X𝐿 ,

where ⦀·⦀ denotes the PDE-induced energy norm. For the details, we refer to equation (2.12)
in Theorem 2.4.

(II) The solver contracts the error, i.e., there exists a uniform constant 0 < 𝑞ctr < 1 such that

|||𝑢★𝐿 − Ψ(𝑣𝐿) ||| ≤ 𝑞ctr |||𝑢★𝐿 − 𝑣𝐿 ||| for all 𝑣𝐿 ∈ X𝐿 .

The precise statement is given in (2.13) in Theorem 2.4. In particular, 𝑞ctr is independent of
the polynomial degree 𝑝, the number of mesh levels 𝐿, and the sequence of computed meshes
T1, . . . ,T𝐿 .

(III) Finally, equation (2.14) in Theorem 2.4 states that the built-in estimator is a two-sided bound
of the algebraic error, i.e., there exists 𝐶rel > 1 such that

𝜂alg(𝑣𝐿) ≤ |||𝑢★𝐿 − 𝑣𝐿 ||| ≤ 𝐶rel 𝜂alg(𝑣𝐿) for all 𝑣𝐿 ∈ X𝐿 .

(IV) The application of the ℎ𝑝-robust solver in the context of adaptive FEM leads to optimal
complexity of the adaptive algorithm; see Theorem 2.7.

We highlight some key features of the algebraic solver in the following and refer to Section 2.4 for
the details and more numerical experiments involving jumps in the diffusion coefficient 𝑨.

Optimal complexity of the solver. Figure 1.10 illustrates that the proposed solver is indeed of linear
complexity and after 106 degrees of freedom is even faster than the Matlab built-in optimized solver
mldivide. Figure 1.10 (right) verifies that the relative computation time per degree of freedom is
constant for the proposed solver and, hence, the solver cost is of order O(#T𝐿).

Optimality of AFEM with the hp-robust multigrid method. Figure 1.11 displays that an embedding
of the multigrid solver into Algorithm 1B from Section 1.5 leads to optimal convergence rates with
respect to both the number of degrees of freedom and the cumulative computation time.

1.7.2 Optimal complexity of AFEM for nonsymmetric linear elliptic PDEs

M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid. Adaptive
FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J. Numer. Anal.,
44(3):1560–1596, 2024. doi: 10.1093/imanum/drad039

M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid. Corrigendum
to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J.
Numer. Anal., 44(3):1903–1909, 2024. doi: 10.1093/imanum/drad103

Recent works [GHPS21; HPW21; HPSV21] have proven optimal complexity for energy mini-
mization problems, especially for symmetric linear elliptic PDEs. However, for nonsymmetric linear
elliptic PDEs, the question of optimal complexity remained open due to the lack of an algebraic
solver that contracts in the equivalent energy norm of the principal part of the PDE. A possible
approach in line with developments in AFEM for nonlinear problems employs a coupling of a
symmetrization (e.g., the Zarantonello iteration, which is a Richardson-type iteration stemming
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Figure 1.10: Left: History plot of the cumulative computation time of the ℎ𝑝-robust multigrid solver
compared to the Matlab built-in solver mldivide. Right: History plot of the relative
computation time per degree of freedom.
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Figure 1.11: Left: Convergence history plot of the error estimator on the final iterates 𝑢𝐿 of the
multigrid solver with respect to the number of degrees of freedom. Right: Convergence
history plot of the error estimator over the cumulative computation time.
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from the state-of-the-art proof of the Lax–Milgram lemma) and an optimal algebraic solver. This
combination leads to a contractive solver itself except for the final iterate of this inexact Zarantonello
iteration. This presents a challenge as it seemingly does not fit into the framework for symmetric
PDEs from Section 1.5. However, perturbation arguments in Chapter 3 allow to show the following
main results:

(I) Theorem 3.7 guarantees full linear convergence provided that the algebraic solver parameter
𝜆alg is sufficiently small (to ensure contraction of the coupling) and the symmetrization
parameter 𝜆sym is arbitrary but satisfies the natural assumption 0 < 𝜆sym ≤ 1. Moreover, the
full linear convergence in this chapter is restricted to a sufficiently large mesh level ℓ ≥ ℓ0 (with
a priori unknown ℓ0 ∈ N0) since the proof involves a quasi-Pythagorean estimate replacing the
Pythagorean identity for symmetric PDEs. The proof is based on contraction of an equivalent
quasi-error quantity and thus leads to restriction on the solver parameters.

(II) Full linear convergence implies that the convergence rates with respect to the number of degrees
of freedom and with respect to the overall computational cost are equivalent in Corollary 3.8.

(III) Theorem 3.9 states optimal complexity for sufficiently small adaptivity parameters using
optimal convergence rates with respect to the number of degrees of freedom, the estimator
equivalence in the spirit of (1.22), and full linear convergence.

Again, we want to briefly illustrate the results with numerical experiments and refer to Section 3.6
for an in-depth analysis of the involved contraction constants, the upper bound for the restriction on
the algebraic solver parameter, and further optimality experiments.

Optimality of AFEM with the inexact Zarantonello iteration. In Figure 1.12, we see that the
proposed nested iteration leads to optimal convergence rates with respect to both the number of
degrees of freedom and the cumulative computation time for several polynomial degrees 𝑝.

Linear complexity of the inexact Zarantonello iteration. In Figure 1.13, we see that the proposed
inexact Zarantonello iteration is indeed of linear complexity and outperforms the Matlab built-in
direct solver.

1.7.3 On full linear convergence and optimal complexity of AFEM

P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, and J. Streitberger. On full linear convergence
and optimal complexity of adaptive FEM with inexact solver, 2023. arXiv: 2311.15738, submitted
to Comput. Math. Appl.

In this chapter, we review the progress of the state-of-the-art analysis concerning optimal
convergence rates with respect to the cumulative computational cost. Improving the analysis from
Chapter 3, we present a novel proof of full linear convergence for AFEM with nested iterative solvers
under weaker assumption compared to the previous results in [BIM+24a]. Chapter 4 contains the
following main results:

(I) Section 4.3 reviews the recent progress in the field of AFEM with exact solver, with contractive
algebraic solver in Section 4.4, and nested iterative solver in Section 4.5 as well as an outlook
on nonlinear PDEs in Section 4.6.
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Figure 1.12: Left: Convergence history plot of the error estimator over the overall computational cost.
Right: Convergence history plot of the error estimator with respect to the cumulative
computation time.
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(II) Unlike earlier works [GHPS21; HPW21], the proof of full R-linear convergence with iterative
solver in Theorem 4.7 does not require any additional constraints on the solver parameter.
Moreover, the proof relies on the novel quasi-orthogonality from [Fei22] and is therefore not
restricted to energy minimization problems but is applied to nonsymmetric linear elliptic
PDEs and paves the way for further extension to more general inf-sup stable problems.

(III) Contrary to [BIM+24a], the proof of full R-linear convergence for nested iterative solvers in
Theorem 4.15 is not based on a contraction argument but on a summability argument. This
novel proof strategy eliminates the need for a sufficiently large mesh level (i.e., ℓ0 = 0) and
relaxes the constraint on the parameters from [HPSV21; BIM+24a]. More precisely, the full
R-linear convergence in [HPSV21] requires 𝜆alg to be small with respect to the linearization
parameter 𝜆lin and the latter to be small with respect to 𝜃. Moreover, the paper [BIM+24a] still
needs 𝜆alg to be small with respect to 𝑞ctr, 𝑞sym, and 𝜆sym ≤ 1. With the new proof, we show
that this requirement can be replaced by 𝜆alg being small with respect to 𝑞ctr and 𝑞sym and the
product 𝜆alg 𝜆sym being sufficiently small.

(IV) We show that the equivalence of the rates with respect to the degrees of freedom and with
respect to the overall computational cost from Corollary 1.13 is still valid for a suboptimal
algebraic solver in Corollary 4.11.

In the numerical experiments in Section 4.7, we investigate optimality for several adaptivity
parameters and analyze favorable choices of the solver stopping parameters. Thereby, we show that
also larger parameters are feasible and, in practice, favorable. We want to illustrate the contributions
with the following experiment:

Optimality of AFEM with nested iterative solver and several stopping parameters. In Figure 1.14,
we see optimal convergence rates for polynomial degrees 𝑝 = 2 and several stopping parameters 𝜆alg
and 𝜆sym.

1.7.4 Optimal complexity of GOAFEM for nonsymmetric linear elliptic PDEs

P. Bringmann, M. Brunner, D. Praetorius, and J. Streitberger. Optimal complexity of goal-oriented
adaptive FEM for nonsymmetric linear elliptic PDEs, 2023. arXiv: 2312.00489, submitted to J.
Numer. Math.

This chapter is devoted to the cost-effective approximation of the linear quantity of interest 𝐺 (𝑢★).
For symmetric linear elliptic PDEs, a goal-oriented adaptive algorithm with optimal complexity has
been presented in [BGIP23]. However, for nonsymmetric PDEs, due to the additional symmetrization
loop and lack of a Pythagorean identity, the analysis does not directly transfer to nonsymmetric
PDEs. Instead, the proof strategy from [BFM+23] based on summability is required due to the
nonlinear product structure achieved by the combined quasi-error product and the resulting nonlinear
remainder term in the proof of full linear convergence. The main contributions of Chapter 5 read as
follows:

(I) Algorithm 5A presents a novel GOAFEM approach with nested iterative solvers for the
numerical solution of nonsymmetric linear elliptic PDEs and a linear quantity of interest.

(II) Theorem 5.10 asserts full linear convergence for the combined quasi-error product by proving
contraction up to a summable remainder term. Therefore, we again only require that the
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Figure 1.14: Left: Convergence history plot of the error estimator with respect to the cumulative
computation time for fixed 𝜃 = 0.3 in both experiments and 𝜆alg = 0.7 with several
symmetrization stopping parameter. Right: Convergence history plot of the error
estimator with respect to the cumulative computation time for fixed 𝜆sym = 0.7 with
several algebraic solver stopping parameter.

algebraic solver parameter 𝜆alg is sufficiently small and that the product 𝜆alg 𝜆sym is sufficiently
small.

(III) Theorem 5.15 ensures optimal complexity of the proposed GOAFEM algorithm provided that
all involved adaptivity parameters are sufficiently small.

In the numerical experiments in Section 5.7, we investigate optimality of the proposed GOAFEM
algorithm and analyze favorable choices of the solver stopping parameters with respect to the
cumulative computational cost.

Optimality of GOAFEM with nested iterative solver and large solver-stopping parameters. In
Figure 1.15, that the algorithm leads to optimal decay rates −𝑝 for the estimator product and the goal
error with respect to the number of degrees of freedom and the overall computation time for several
polynomial degrees 𝑝.

1.8 Additional scientific contributions

This section highlights additional scientific contributions beyond the scope of this thesis.

1.8.1 Parameter-robust full linear convergence and optimal complexity of AFEM
for nonlinear PDEs

A. Miraçi, D. Praetorius, and J. Streitberger. Parameter-robust full linear convergence and optimal
complexity of adaptive iteratively linearized FEM for strongly monotone nonlinear PDEs, 2024.
arXiv: 2401.17778, submitted to Math. Comp.
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Figure 1.15: Left: Convergence history plot of the error estimator and the goal error with respect
to the number of degrees of freedom for fixed 𝜃 = 0.5 and 𝜆sym = 𝜆alg = 0.7. Right:
Convergence history plot of the error estimator and the goal error with respect to the
cumulative computation time.

In this work, we consider a nonlinear elliptic partial differential equation with a scalar nonlinearity
𝜇 ∈ 𝐶1(R≥0). Given a bounded Lipschitz domain Ω ⊂ R𝑑 where 𝑑 ≥ 1 and right-hand sides
𝑓 ∈ 𝐿2(Ω) and 𝒇 ∈ 𝐿2(Ω) 𝑑 , we seek the solution 𝑢★ to

− div 𝜇( |∇𝑢★|2)∇𝑢★ = 𝑓 − div 𝒇 in Ω subject to 𝑢★ = 0 on 𝜕Ω. (1.41)

We exploit the inherent energy structure of this equation to develop and analyze an adaptive algorithm
with a novel parameter-free stopping criterion that steers the algebraic solver. We show that the
new stopping criterion leads to an equivalence of norm error and energy difference and a uniformly
bounded number of algebraic solver steps, which simplifies the proof of full R-linear convergence.
Therefore, full R-linear convergence of the quasi-error is guaranteed for arbitrary adaptivity parameters
and, thus, the analysis overcomes even the weaker parameter restriction of [BFM+23]. Finally, we
show that sufficiently small adaptivity parameters assert optimal complexity of the adaptive algorithm.
The numerical experiments highlight the new stopping criterion together with the application of the
parameter-free Kačanov iteration as linearization method.

1.8.2 Cost-optimal AFEM for semilinear elliptic PDEs

M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEM with linearization and
algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401. 06486, submitted to Numer.
Math.

In this work, we consider the semilinear elliptic PDE

− div 𝑨∇𝑢★ + 𝑏(𝑢★) = 𝑓 − div 𝒇 in Ω subject to 𝑢★ = 0 on 𝜕Ω (1.42)

with a uniformly elliptic diffusion matrix 𝑨 ∈ 𝐿∞(Ω) 𝑑×𝑑
sym and monotone nonlinearity 𝑏 : Ω → R.

We assume that the problem (1.42) fits into the framework of the Browder–Minty theorem, i.e.,
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the associated operator A is strongly monotone and locally Lipschitz continuous. Therefore, the
Lipschitz constant of A depends on the considered functions and the adaptive algorithm consisting of
a coupling of iterative linearization and algebraic solver needs to ensure that the norm of all computed
iterates remains bounded. This is achieved by enforcing that sufficiently many algebraic solver steps
have been carried out and it is shown that the additional cost of this procedure is negligible. Finally,
the uniform boundedness of all iterates allows the proof of full R-linear convergence for arbitrary
adaptivity parameters (at the expense of ensuring sufficiently many solver steps). Finally, optimal
complexity is shown for sufficiently small adaptivity parameters.
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2 hp-robust multigrid solver on locally refined
meshes for FEM discretizations of symmetric
elliptic PDEs

The Sections 2.1–2.5 of this chapter correspond to the publication:
M. Innerberger, A. Miraçi, D. Praetorius, and J. Streitberger. ℎ𝑝-robust multigrid solver
on locally refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM
Math. Model. Numer. Anal., 58(1):247–272, 2024. doi: 10.1051/m2an/2023104

2.1 Introduction

Numerical schemes for PDEs aim at approximating the solution 𝑢★ of the weak formulation with
an error below a certain tolerance at minimal computational cost. Since the accuracy is spoiled
by singularities, e.g., in given data or domain geometry, adaptive finite element methods (AFEMs)
employ the loop

SOLVE ESTIMATE MARK REFINE
adaptive stopping solution accurate enough?

to obtain a sequence of meshes T𝐿 that resolve such singularities. For a large class of problems, it
is known that AFEM is rate-optimal, i.e., one can construct an estimator 𝜂𝐿 (𝑢★𝐿) from the exact
Galerkin solution 𝑢★𝐿 for the discretization error ⦀𝑢★ − 𝑢★𝐿⦀ that decreases with the largest possible
rate with respect to the number elements in T𝐿; see, e.g., the seminal works [Dör96; MNS00; BDD04;
Ste07; CKNS08] or the abstract overview [CFPP14] for ℎ-adaptive FEM with fixed polynomial
degree 𝑝.

In practice, the SOLVE module may become computationally expensive (in contrast to all other
modules) when employing a direct solver; see, e.g., [PP20; GHPS21; IP23] for a discussion of
implementational aspects. Thus, usually, an iterative solver is employed to compute an approximation
𝑢𝐿 of 𝑢★𝐿 on each level, and the exact Galerkin solution 𝑢★𝐿 is not available. The question of whether
the approximations 𝑢𝐿 converge with optimal rate with respect to the overall computational cost
was already treated in the seminal work [Ste07] under some realistic assumptions about an abstract
iterative solver. The recent work [GHPS21] employs nested iterations and an adaptive stopping
criterion to steer a uniformly contractive iterative solver, linking the SOLVE and ESTIMATE module
in the above scheme by an inner loop. Then, it is shown that even the full sequence of iterates
converges with optimal rates with respect to the overall computational cost. For this reason, the
design of algebraic solvers that are uniformly contractive and robust with respect to the discretization
parameters is of utmost importance.
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

The hierarchical structure of AFEM and the very nature of the arising linear systems suggest
to use a multilevel solver; see, e.g., [Hac85; BMR85; BPS86; BDY88; BPX90; Zha92; Rüd93a;
Osw94]. Different adaptive methods integrating a multilevel solver are possible; see, e.g., [BB87]
for generating local meshes, and [Rüd93b] for a fully adaptive multigrid method that steers the local
refinement process. In the context of AFEM, the adaptively constructed hierarchy of locally refined
meshes calls for suitable local solvers. We refer to [CNX12] for a multilevel preconditioner on a
mesh hierarchy consisting of one bisection in each step and [HWZ12; WZ17] for multiplicative
multigrid methods, all of which are robust with respect to the mesh size ℎ. Though these works allow
for higher-order FEM, an analytic and numerical study on the behavior with increasing polynomial
degree was not presented. This aspect is treated, e.g., in [Pav94; SMPZ08; AMV18; BF22], which
design iterative solvers that are robust with respect to the polynomial degree 𝑝 on various types of
polyhedral meshes. The recent own work [MPV21] proposes a 𝑝-robust geometric multigrid which
comes with a built-in algebraic error estimator 𝜂alg(𝑢𝐿), which is suited perfectly for a posteriori
steering (i.e., adaptive termination) of the algebraic solver. However, the employed patchwise
smoothing associated to every vertex and every level causes a linear dependence on the number of
adaptive mesh levels 𝐿.

In the present work, we modify the solver from [MPV21] and overcome this dependence for
locally refined meshes: we only apply local lowest-order smoothing on patches which change in the
refinement step on intermediate levels, whereas a patchwise (and hence parallelizable) higher-order
smoothing on all patches of the finest level is applied. This solver only needs one post-smoothing
step, requires no symmetrization of the procedure (see also [DHM+21]), and, in particular, has no
tunable parameters since it utilizes optimal step-sizes on the error-correction stage. As the main
result of the present work, we show that the proposed solver uniformly contracts the algebraic error⦀𝑢★𝐿 − 𝑢𝐿⦀. Moreover, it comes with a built-in estimator 𝜂alg(𝑢𝐿), which is shown to be equivalent
to the algebraic error ⦀𝑢★𝐿 − 𝑢𝐿⦀. Throughout, all involved estimates are robust in the discretization
parameters ℎ and 𝑝.

As one potential application, we formulate an AFEM algorithm in the spirit of [GHPS21] that
naturally embeds the multigrid solver and leverages the solver’s built-in algebraic error estimator
𝜂alg(𝑢𝐿) to stop the solver as soon as the discretization and algebraic error are comparable. Adapting
the arguments of [GHPS21], we prove that, for fixed polynomial degree 𝑝, the AFEM algorithm
guarantees optimal convergence rates with respect to overall computational cost.

Using the open-source object-oriented 2D Matlab code MooAFEM [IP23], we present a detailed
numerical study of both the algebraic solver and the adaptive algorithm, including higher-order
experiments and jumping coefficients.

The outline of this chapter reads as follows: Section 2.2 first poses the model problem and introduces
some notation. Then, we state the proposed multigrid solver (Algorithm 2A) and formulate our
main results on ℎ𝑝-robust contraction (Theorem 2.4) and algebraic error control (Corollary 2.5).
As a potential application, Section 2.3 formulates an AFEM algorithm (Algorithm 2B) which
employs nested iteration and an adaptive stopping criterion for the iterative solver using the built-in
a posteriori estimator for the algebraic error. Theorem 2.7 proves optimal computational complexity
of the proposed AFEM algorithm. After we confirm the theoretical results by numerical examples
in Section 2.4, we present proofs of the main results in Section 2.5. For better readability, we
precede these proofs with three subsections presenting their core arguments: geometric properties
of the meshes T𝐿 , an ℎ𝑝-robust stable decomposition combining a local lowest-order multilevel
stable decomposition from [WZ17] with a one-level 𝑝-robust decomposition from [SMPZ08], and a
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2.2 hp-robust multigrid solver

strengthened Cauchy–Schwarz inequality in the spirit of [CNX12; HWZ12].

2.2 hp-robust multigrid solver

In this section, we formulate the model problem, the proposed geometric multigrid method, and the
main results, while the proofs are postponed to Section 2.5.

2.2.1 Model problem

For 𝑑 ∈ {1, 2, 3}, let Ω⊂R𝑑 be a bounded Lipschitz domain with polygonal boundary 𝜕Ω. Given
𝑓 ∈ 𝐿2(Ω) and 𝒇 ∈ [𝐿2(Ω)]𝑑 , we consider the second-order linear elliptic diffusion problem

− div(𝑨∇𝑢★) = 𝑓 − div 𝒇 in Ω,

𝑢★ = 0 on 𝜕Ω,
(2.1)

where 𝑨 ∈ [𝐿∞(Ω)]𝑑×𝑑sym is the symmetric and uniformly positive definite diffusion coefficient.
More precisely, given a conforming simplicial triangulation T𝐻 of Ω into compact simplices, we
have 𝑨|𝑇 ∈ [𝑊1,∞(𝑇)]𝑑×𝑑 for all 𝑇 ∈ T𝐻 . For 𝑥 ∈ Ω we denote the maximal and minimal
eigenvalue of 𝑨(𝑥) ∈ R𝑑×𝑑

sym by 𝜆max(𝑨(𝑥)) and 𝜆min(𝑨(𝑥)), respectively, and define Λmax :=
ess sup𝑥∈Ω 𝜆max(𝑨(𝑥)) as well as Λmin := ess inf 𝑥∈Ω 𝜆min(𝑨(𝑥)). With ⟨· , ·⟩𝜔 denoting the
usual 𝐿2(𝜔)-scalar product for a measurable subset 𝜔 ⊆ Ω, the weak formulation of (2.1) seeks
𝑢★ ∈ X := 𝐻1

0 (Ω) solving

⟪𝑢★ , 𝑣⟫Ω := ⟨𝑨∇𝑢★ , ∇𝑣⟩Ω = ⟨ 𝑓 , 𝑣⟩Ω + ⟨ 𝒇 , ∇𝑣⟩Ω =: 𝐹 (𝑣) for all 𝑣 ∈ X. (2.2)

We note that ⟪· , ·⟫Ω is a scalar product and the induced semi-norm |||𝑢 |||2Ω := ⟪𝑢 , 𝑢⟫Ω is an
equivalent norm on X. Therefore, the Lax–Milgram lemma yields existence and uniqueness of the
weak solution 𝑢★ ∈ X. For 𝜔 = Ω, we omit the index 𝜔 throughout.

To discretize (2.2), denote for a polynomial degree 𝑝 ≥ 1 and a triangle 𝑇 ∈ T𝐻 the space of all
polynomials on 𝑇 of degree at most 𝑝 with P𝑝 (𝑇) and define

S𝑞 (T𝐻) := {𝑣𝐻 ∈ 𝐶 (Ω) : 𝑣𝐻 |𝑇 ∈ P𝑞 (𝑇) for all 𝑇 ∈T𝐻 } with 𝑞 ∈ {1, 𝑝}. (2.3)

With the definition X𝑝
𝐻

:= S𝑝
0 (T𝐻) := S𝑝 (T𝐻) ∩ 𝐻1

0 (Ω), the discrete problem consists of finding
𝑢★𝐻 ∈ X𝑝

𝐻 such that ⟪𝑢★𝐻 , 𝑣𝐻⟫ = 𝐹 (𝑣𝐻) for all 𝑣𝐻 ∈ X𝑝
𝐻 . (2.4)

Clearly, the formulation of the discrete problem (2.4) hinges on the choice of the mesh T𝐻 , which
directly influences the quality of 𝑢★𝐻 as an approximation of 𝑢★. Note that (2.4) can be rewritten as a
symmetric and positive definite linear system by introducing a basis of X𝑝

𝐻 . However, we opt to
work instead with the functional basis-independent description.

2.2.2 Mesh and space hierarchy

We suppose that the refinement strategy in the module REFINE is newest vertex bisection (NVB); see,
e.g., [Tra97; Ste08] and Figure 2.1 for an illustration in 2D. Let T0 be the conforming initial mesh.
We refer to [Ste08] for NVB with admissible T0 and 𝑑 ≥ 2, to [KPP13] for NVB with general T0 for
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

Figure 2.1: Schematic of 2D NVB refinement pattern: For each triangle 𝑇 ∈ T , there is one fixed
refinement edge 𝐸𝑇 indicated by the extra pink line. The pink dots indicate edges that
are marked for refinement. If an element is marked for refinement, at least its refinement
edge is marked for refinement (top). Iterated bisection refines a marked element into 2,
3, or 4 children (bottom).

𝑑 = 2, and to the recent work [DGS23] for NVB with general T0 in any dimension. Throughout, we
suppose that T0 is admissible. In the 1D case, [AFF+15] splits each element into two children of
half-length and additionally ensures that any two neighboring elements have uniformly comparable
diameter. Let T := T(T0) be the set of all refinements of T0 that can be obtained by arbitrarily many
steps of NVB.

From now on, suppose that we are given a sequence {Tℓ}𝐿ℓ=0 ⊂ T of successively refined
triangulations, i.e., for all ℓ = 1, . . . , 𝐿, it holds that Tℓ = REFINE(Tℓ−1,Mℓ−1) is the coarsest
conforming triangulation obtained by NVB, where all marked elements Mℓ−1 ⊆ Tℓ−1 have been
refined by (at least) one bisection. We note that NVB-refinement generates meshes that are uniformly
𝛾-shape regular, i.e.,

max
ℓ=0,...,𝐿

max
𝑇∈Tℓ

diam(𝑇)
|𝑇 |1/𝑑 ≤ 𝛾 < ∞, (2.5a)

and
max

ℓ=0,...,𝐿
max
𝑇∈Tℓ

max
𝑇 ′∈Tℓ
𝑇∩𝑇 ′≠∅

diam(𝑇)
diam(𝑇 ′) ≤ 𝛾 < ∞, (2.5b)

where 𝛾 depends only on T0 and is, in particular, independent of 𝐿 and the meshes T1, . . . ,T𝐿; see,
e.g., [Ste08, Theorem 2.1] for 𝑑 ≥ 2 or [AFF+15] for 𝑑 = 1. We note that (2.5a) implies (2.5b) for
𝑑 ≥ 2, while (2.5a) is trivial with 𝛾 = 1 and independent of (2.5b) for 𝑑 = 1. In addition, we define
the quasi-uniformity constant

𝐶qu := min{diam(𝑇)/diam(𝑇 ′) : 𝑇,𝑇 ′ ∈ T0} ∈ (0, 1] . (2.6)

For each mesh Tℓ , let Vℓ denote the set of vertices. Given a vertex 𝑧 ∈ Vℓ , we denote by
Tℓ,𝑧 := {𝑇 ∈ Tℓ : 𝑧 ∈ 𝑇} the patch of elements of Tℓ that share the vertex 𝑧. The corresponding (open)
patch subdomain is denoted by 𝜔ℓ,𝑧 := interior( 𝑇∈Tℓ,𝑧 𝑇) and its size by ℎℓ,𝑧 := max𝑇∈Tℓ,𝑧 ℎ𝑇 :=

max𝑇∈Tℓ,𝑧 |𝑇 |1/𝑑 . Finally, we denote by V+
ℓ the set of new vertices in Tℓ and the pre-existing vertices

of Tℓ−1 whose associated patches have shrunk in size in the refinement step ℓ, i.e.,

V+
0 := V0 and V+

ℓ := Vℓ \ Vℓ−1 ∪ {𝑧 ∈ Vℓ ∩Vℓ−1 : 𝜔ℓ,𝑧 ≠ 𝜔ℓ−1,𝑧} for ℓ ≥ 1.

While this notation is used in the analysis of the solver below, the presentation of Algorithm 2A is
more compact with the abbreviation Nℓ = V+

ℓ for ℓ = 1, . . . , 𝐿 − 1 and N𝐿 := V+
𝐿 for 𝑝 = 1 and
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2.2 hp-robust multigrid solver

N𝐿 := V𝐿 otherwise, where we recall that 𝑝 ∈ N is the fixed polynomial degree of the FEM ansatz
functions.

From the definition of the discrete FEM spaces (2.3) and NVB-refinement, we see that there holds
nestedness

X1
0 ⊆ X1

1 ⊆ · · · ⊆ X1
𝐿−1 ⊆ X𝑝

𝐿 . (2.7)

Furthermore, we require the local spaces

X𝑞
ℓ,𝑧

:= S𝑞0 (Tℓ,𝑧) for all vertices 𝑧 ∈ Vℓ and 𝑞 ∈ {1, 𝑝}, (2.8)

where we use 𝑞 = 1 for ℓ = 0, . . . , 𝐿 − 1 and 𝑞 = 𝑝 for ℓ = 𝐿; see Figure 2.2 for the illustration of
the degrees of freedom for 𝑝 = 2.

z

ωL,z

degrees of freedom

z patch vertex in VL

· · · patch TL,z

— patch subdomain ωL,z

Figure 2.2: Illustration of degrees of freedom (𝑝 = 2) for the space X𝑝
𝐿,𝑧 associated to the patch

T𝐿,𝑧 .

2.2.3 Multigrid solver

In the following, we introduce a local geometric multigrid method, which will serve as iterative
solver within the SOLVE module of an adaptive FEM algorithm. Each full step of the proposed
multigrid method can be mathematically described by an iteration operator Ψ : X𝑝

𝐿 → X𝑝
𝐿 , i.e., given

the current approximation 𝑢𝐿 ∈ X𝑝
𝐿 , the solver generates the new iterate Ψ(𝑢𝐿) ∈ X𝑝

𝐿 .
The main ingredients in the solver construction are an inexpensive global residual solve on T0 and

local residual solves on all patches Tℓ,𝑧 for 𝑧 ∈ V+
ℓ on the intermediate levels ℓ = 1, . . . , 𝐿 − 1 and

all patches on the finest level T𝐿 when 𝑝 > 1. For ease of notation, we define the algebraic residual
functional 𝑅𝐿 : X𝑝

𝐿 → R by

𝑣𝐿 ∈ X𝑝
𝐿 ↦→ 𝑅𝐿 (𝑣𝐿) := 𝐹 (𝑣𝐿) − ⟪𝑢𝐿 , 𝑣𝐿⟫ = ⟪𝑢★𝐿 − 𝑢𝐿 , 𝑣𝐿⟫ ∈ R. (2.9)

To construct the new iterate Ψ(𝑢𝐿), levelwise residual liftings of the algebraic error are added to the
current approximation 𝑢𝐿 . The same levelwise residual liftings are used to define an a posteriori
error estimator 𝜂alg(𝑢𝐿) for the algebraic error, i.e., the solver comes with a built-in estimator.

Algorithm 2A: One step of the optimal local multigrid solver
Input: Current approximation 𝑢𝐿 ∈ X𝑝

𝐿 , meshes {Tℓ}𝐿ℓ=0, polynomial degree 𝑝 ∈ N.
Solver step: Perform the following steps (i)–(ii):

(i) Global lowest-order residual problem on the coarsest level:
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

• Compute 𝜌0 ∈ X1
0 by solving

⟪𝜌0 , 𝑣0⟫ = 𝑅𝐿 (𝑣0) for all 𝑣0 ∈ X1
0 . (2.10)

• Define step-size 𝜆0 := 1.
• Initialize algebraic lifting 𝜎0 := 𝜆0𝜌0 and a posteriori estimator 𝜁20 := |||𝜆0𝜌02 |||.

(ii) Local residual-update: For all ℓ = 1, . . . , 𝐿, do the following steps, where 𝑞 = 1 for
ℓ = 1, . . . , 𝐿 − 1 and 𝑞 = 𝑝 for ℓ = 𝐿:

• For all 𝑧 ∈ Nℓ , compute 𝜌ℓ,𝑧 ∈ X𝑞
ℓ,𝑧 by solving

⟪𝜌ℓ,𝑧 , 𝑣ℓ,𝑧⟫ = 𝑅𝐿 (𝑣ℓ,𝑧) − ⟪𝜎ℓ−1 , 𝑣ℓ,𝑧⟫ for all 𝑣ℓ,𝑧 ∈ X𝑞
ℓ,𝑧 . (2.11)

• Define the line-search step-size 𝑠ℓ := (𝑅𝐿 (𝜌ℓ) − ⟪𝜎ℓ−1 , 𝜌ℓ⟫)/|||𝜌ℓ |||2, with
𝜌ℓ := 𝑧∈Nℓ

𝜌ℓ,𝑧 and the understanding that 0/0 := 0 if 𝜌ℓ = 0, and

𝜆ℓ :=
𝑠ℓ if 𝑠ℓ ≤ 𝑑 + 1 or ℓ = 𝐿 and 𝑝 > 1 ,

(𝑑 + 1)−1 otherwise.

• Update 𝜎ℓ := 𝜎ℓ−1 + 𝜆ℓ𝜌ℓ and 𝜁2ℓ := 𝜁2ℓ−1 + 𝜆ℓ 𝑧∈Nℓ
|||𝜌ℓ,𝑧 |||2.

Output: Improved approximation Ψ(𝑢𝐿) := 𝑢𝐿 + 𝜎𝐿 ∈ X𝑝
𝐿 and associated a posteriori

estimator 𝜂alg(𝑢𝐿) := 𝜂alg of the algebraic error.

Remark 2.1 (Construction of the new iterate). The construction of Ψ(𝑢𝐿) from 𝑢𝐿 by Algorithm 2A
can be seen as one iteration of a V-cycle multigrid with no pre- and one post-smoothing step, and a
step-size at the error correction stage. The smoother on each level is additive Schwarz associated to
patch subdomains where the local problems (2.11) are defined. This is equivalent to diagonal Jacobi
smoothing for 𝑝 = 1 (e.g., on intermediate levels) and block-Jacobi smoothing for 𝑝 > 1 (e.g., on the
finest level). The choice and use of the step-sizes 𝜆ℓ in Algorithm 2A(ii) comes from a line-search
approach; see, e.g., [MPV21, Lemma 4.3] and one of the earlier works [Hei88]. However, if the
step-size from the line-search is too large, we use instead a fixed damping parameter offsetting the
𝑑 + 1 patch overlaps. We note that this case never occurred in practice in any of our numerical
experiments.

Remark 2.2 (Computational effort and speed of convergence). We note that we apply a patchwise
Cholesky factorization on the finest level. Hence, the computational effort for the local residual
solve on the finest mesh T𝐿 in dependence on the polynomial degree 𝑝 is of order O(𝑝3𝑑#T𝐿).
The presented algorithm is a linear method. One could symmetrize the procedure by adding one
pre-smoothing step to define a preconditioner in the hope of accelerating convergence with the help
of conjugate gradients. However, in our experience, the patchwise pre-smoothing typically did not
yield considerable algebraic error decrease; see, e.g. [DHM+21], while still doubling the number of
smoothing operations of a V-cycle. The remaining steps needed to compute the new approximation
stem from classical multigrid solvers (such as intergrid operators). We stress that the overall effort
does not depend on the number of levels 𝐿.
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Remark 2.3 (Nested iterations). In the context of adaptive FEM, the solver does not start from an
arbitrary initial guess on each newly-refined mesh but from the final approximation of the previous
level (see Algorithm 2B below). This will ensure a posteriori error control in each step after
initialization as well as optimal computational cost. From the algebraic solver perspective, such
an approach can be seen as a full multigrid method over the evolving hierarchy of meshes whose
number of cycles is determined by the adaptive stopping criterion.

2.2.4 Main result

This subsection formulates the main results regarding the iterative solver stating the contraction of
the multigrid solver and reliability of the built-in a posteriori estimator of the algebraic error. Both
results hold robustly in the number of levels 𝐿 and the polynomial degree 𝑝.

Theorem 2.4
Let 𝑢★𝐿 ∈ X𝑝

𝐿 be the (unknown) finite element solution of (2.4) and let 𝑣𝐿 ∈ X𝑝
𝐿 be arbitrary.

Let Ψ(𝑣𝐿) ∈ X𝑝
𝐿 and 𝜂alg(𝑣𝐿) be generated by Algorithm 2A. Then, the solver iterates and the

estimator are connected by

|||𝑢★𝐿 − Ψ(𝑣𝐿) |||2 ≤ |||𝑢★𝐿 − 𝑣𝐿 |||2 − 𝜂alg(𝑣𝐿)2. (2.12)

Moreover, the solver contracts the error, i.e., there exists 0 < 𝑞ctr < 1 such that

|||𝑢★𝐿 − Ψ(𝑣𝐿) ||| ≤ 𝑞ctr |||𝑢★𝐿 − 𝑣𝐿 |||. (2.13)

Finally, the estimator is a two-sided bound of the algebraic error, i.e., there exists 𝐶rel > 1 such
that

𝜂alg(𝑣𝐿) ≤ |||𝑢★𝐿 − 𝑣𝐿 ||| ≤ 𝐶rel 𝜂alg(𝑣𝐿). (2.14)

The contraction and reliability constants 𝑞ctr and 𝐶rel depend only on the space dimension 𝑑,
the 𝛾-shape regularity (2.5), the quasi-uniformity constant 𝐶qu from (2.6), Λmax/Λmin, and
max𝑇∈T𝐿 ∥ div(𝑨)∥𝐿∞ (𝑇 )/Λmin. In particular, 𝑞ctr is independent of the polynomial degree 𝑝,
the number of mesh levels 𝐿, and the meshes T1, . . . ,T𝐿 .

Corollary 2.5. The reliability of the estimator in (2.14) is equivalent to the solver contraction (2.13).
In particular, this also yields that

|||𝑢★𝐿 − Ψ(𝑣𝐿) ||| ≤ 𝑞ctr 𝐶rel 𝜂alg(𝑣𝐿). (2.15)

Remark 2.6. We note that (2.12) holds with equality whenever the step-size criterion 𝑠ℓ ≤ 𝑑 + 1 in
Algorithm 2A(ii) is fulfilled and the construction is thus done by optimal-line search. In such a case,
which was always satisfied in all our numerical tests, a Pythagoras identity in the spirit of [MPV21,
Theorem 4.7] yielding exact algebraic error decrease is obtained.

2.3 Application to adaptive FEM with inexact solver

Given a coarse mesh T0, we use an adaptive finite element method (AFEM) to generate locally
refined meshes {T𝐿}𝐿∈N tailored to the behavior of the sought solution. In the spirit of [GHPS21],
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

Algorithm 2B presents such an approach with an adaptively stopped iterative solver, where Step (Ii)
exploits the built-in a posteriori estimator of the geometric multigrid solver from Section 2.2.

While we note that the present Algorithm 2B and the corresponding Theorem 2.7 are restricted
to fixed polynomial degree 𝑝, the inclusion of the proposed ℎ𝑝-robust iterative solver into the
ℎ𝑝-adaptive FEM algorithm of [CNSV17] remains for future research, since the mathematical
understanding of ℎ𝑝-adaptive FEM is still widely open.

Algorithm 2B: AFEM with iterative solver

Input: Initial mesh T0, polynomial degree 𝑝 ∈ N, adaptivity parameters 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1,
and 𝜆alg > 0, initial guess 𝑢00 := 0.
Adaptive loop: repeat the following steps (I)–(III) for all 𝐿 = 0, 1, 2, . . . :

(I) SOLVE & ESTIMATE: repeat the following steps (i)–(iii) for all 𝑘 = 1, 2, 3, . . . :
(i) Do one step of the algebraic solver to obtain 𝑢𝑘𝐿 ∈ X𝑝

𝐿 and an associated a posteriori
estimator 𝜂alg(𝑢𝑘−1𝐿 ) for the algebraic error

[𝑢𝑘𝐿 , 𝜂alg(𝑢𝑘−1𝐿 )] := SOLVE(𝑢𝑘−1𝐿 , {Tℓ}𝐿ℓ=0, 𝑝).

(ii) Compute a posteriori indicators for the elementwise discretization error

{𝜂𝐿 (𝑇, 𝑢𝑘𝐿)}𝑇∈T𝐿 := ESTIMATE(𝑢𝑘𝐿 ,T𝐿).

(iii) If 𝜂alg(𝑢𝑘−1𝐿 ) ≤ 𝜆alg𝜂𝐿 (𝑢𝑘𝐿), terminate the 𝑘-loop, set the index 𝑘 [𝐿] := 𝑘 and
define 𝑢𝐿 := 𝑢

𝑘 [𝐿 ]
𝐿 .

(II) MARK: Determine a set of marked elements M𝐿 ⊆ T𝐿 of (up to the multiplicative
constant 𝐶mark) minimal cardinality that satisfies

𝜃 𝜂𝐿 (𝑢𝐿)2 ≤
∑︁

𝑇∈M𝐿

𝜂𝐿 (𝑇, 𝑢𝐿)2.

(III) REFINE: Generate the new mesh T𝐿+1 := REFINE(M𝐿 ,T𝐿) and define 𝑢0𝐿+1 := 𝑢𝐿 .

Output: Sequences of successively refined triangulations T𝐿 , discrete approximations 𝑢𝐿 and
corresponding error estimators (𝜂𝐿 (𝑢𝐿), 𝜂alg(𝑢𝐿)).

Mesh-refinement is steered by the discretization error estimator. For all 𝑇 ∈ T𝐻 , let 𝜂𝐻 (𝑇 ; ·) : X𝑝
𝐻 →

R≥0 be the local contributions of the standard residual error estimator defined by

𝜂2𝐻 (𝑇 ; 𝑣𝐻) := ℎ2𝑇 ∥ 𝑓 + div(𝑨∇𝑣𝐻 − 𝒇 )∥2𝑇 + ℎ𝑇 ∥⟦𝑨∇𝑣𝐻 − 𝒇⟧ · 𝒏∥2𝜕𝑇∩Ω, (2.16)

where ∥ · ∥𝜔 denote the appropriate 𝐿2(𝜔)-norms. We define

𝜂𝐻 (U𝐻 ; 𝑣𝐻) :=
∑︁

𝑇∈ U𝐻

𝜂𝐻 (𝑇 ; 𝑣𝐻)2
1/2

for all U𝐻 ⊆ T𝐻 and 𝑣𝐻 ∈ X𝑝
𝐻 .
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To abbreviate notation, let 𝜂𝐻 (𝑣𝐻) := 𝜂𝐻 (T𝐻 ; 𝑣𝐻).
One important consequence of Theorem 2.4 is optimal convergence of Algorithm 2B with respect

to computational complexity. To formulate this mathematically, we define the ordered set

Q := {(𝐿, 𝑘) ∈ N2
0 : index tuple (𝐿, 𝑘) is used in Algorithm 2B and 1 ≤ 𝑘 ≤ 𝑘 [𝐿]}.

On Q, we define the ordering ≤ by

(𝐿′, 𝑘 ′) ≤ (𝐿, 𝑘) ⇐⇒ 𝑢𝑘
′

𝐿′ is computed earlier than or equal to 𝑢𝑘𝐿 in Algorithm 2B.

Furthermore, we introduce the total step counter |·, ·|, defined for all (𝐿, 𝑘) ∈ Q, by

|𝐿, 𝑘 | := #{(𝐿′, 𝑘 ′) ∈ Q : (𝐿′, 𝑘 ′) ≤ (𝐿, 𝑘)}.
Before we state the theorem, we introduce the notion of approximation classes. For 𝑠 > 0, define

∥𝑢∥A𝑠
:= sup

𝑁 ∈N0

𝑁 + 1
𝑠

min
Topt∈T𝑁 (T0 )

|||𝑢★ − 𝑢★opt ||| + 𝜂opt(𝑢★opt) , (2.17)

with Galerkin solution 𝑢★opt and estimator 𝜂opt on the optimal triangulation Topt ∈ T𝑁 (T0), where
T𝑁 (T0) := {T𝐻 ∈ T(T0) : #T𝐻 −#T0 ≤ 𝑁}. By reliability (A3) of the estimator, see, e.g., [CFPP14],
the sum on the right-hand side of (2.17) is equivalent to 𝜂opt(𝑢★opt). If ∥𝑢∥A𝑠 < ∞, then we say that
rate 𝑠 is possible.

In [GHPS21], it is shown that in the case of a contractive solver, convergence rates with respect to
degrees of freedom are equivalent to convergence rates with respect to computational complexity.
We abbreviate with cost(𝐿, 𝑘) the total costs of Algorithm 2B defined by

cost(𝐿, 𝑘) :=
∑︁

(𝐿′ ,𝑘′ ) ∈Q
(𝐿′ ,𝑘′ )≤ (𝐿,𝑘 )

#T𝐿′ .

Theorem 2.7
Let {T𝐿}𝐿∈N0 be the sequence generated by Algorithm 2B and define the quasi-error by

Δ𝑘
𝐿 := |||𝑢★ − 𝑢𝑘𝐿 ||| + 𝜂𝐿 (𝑢𝑘𝐿) for all (𝐿, 𝑘) ∈ Q.

Then, for all parameters 0 < 𝜃 ≤ 1 and 𝜆alg > 0, it holds that

sup
(𝐿,𝑘 ) ∈Q

(#T𝐿)𝑠Δ𝑘
𝐿 ≃ sup

(𝐿,𝑘 ) ∈Q
cost(𝐿, 𝑘)𝑠 Δ𝑘

𝐿 and Δ𝑘
𝐿 → 0 as |𝐿, 𝑘 | → ∞. (2.18)

Furthermore, there exist 0 < 𝜃★ ≤ 1, and 𝜆★alg > 0 such that, for sufficiently small parameters
0 < 𝜃 < 𝜃★ and 0 < 𝜆alg/𝜃 < 𝜆★alg, and for all 𝑠 > 0, it holds that

𝑐opt ∥𝑢∥A𝑠 ≤ sup
(𝐿,𝑘 ) ∈Q

cost(𝐿, 𝑘)𝑠 Δ𝑘
𝐿 ≤ 𝐶opt max{∥𝑢∥A𝑠 ,Δ

0
0}. (2.19)

The constants 𝑐opt, 𝐶opt > 0 depend only on the polynomial degree 𝑝, the initial triangulation
T0, Λmax/Λmin, max𝑇∈T𝐿 ∥ div(𝑨)∥𝐿∞ (𝑇 )/Λmin, the rate 𝑠, the ratios 𝜃/𝜃★ and 𝜆alg/(𝜃𝜆★alg),

41



2 ℎ𝑝-robust multigrid solver on locally refined meshes

and the properties of newest vertex bisection. In particular, this proves the equivalence

∥𝑢∥A𝑠 < ∞ ⇐⇒ sup
(𝐿,𝑘 ) ∈Q

cost(𝐿, 𝑘)𝑠 Δ𝑘
𝐿 < ∞, (2.20)

which proves optimal complexity of Algorithm 2B.

Remark 2.8. We note that in [GHPS21, Theorem 8], the constant 𝑐opt > 0 additionally depends on
the stopping index 𝐿 in the case the algorithm terminates after a finite number of mesh levels 𝐿 < ∞
or the estimator satisfies 𝜂𝐿 (𝑢𝐿) = 0. The refined analysis in the recent work [BIM+24a] removes
this dependence.

Remark 2.9. We note that it is also possible to use the same stopping criterion for the algebraic
solver as in [GHPS21, Algorithm 2]. However, since the multigrid solver from Algorithm 2A has a
built-in estimator for the algebraic error, we opt for its choice within Algorithm 2B instead.

Proof of Theorem 2.7. We show that Algorithm 2B satisfies the requirements of [GHPS21, Theorem 4
and Theorem 8]. First note that the standard residual error estimator from (2.16) satisfies the axioms of
adaptivity from [CFPP14] and thus satisfies the assumptions (A1)–(A4) from [GHPS21, Theorem 8].
Furthermore, newest vertex bisection satisfies the assumptions (R1)–(R3) from [GHPS21, Section 2.2].
For the present setting, the conditions (C1) and (C2) from [GHPS21, Section 2.5] coincide and are
satisfied.

Tracing the role of the stopping criterion for the case (C1) in the proof of [GHPS21, Theorem 4],
one sees that the stopping criterion needs to guarantee that, for all (𝐿, 𝑘) ∈ Q,

|||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 ||| ≤ 𝜆1 𝜂𝐿 (𝑢𝑘𝐿) if 𝑢𝑘𝐿 = 𝑢𝐿 ,

𝜂𝐿 (𝑢𝑘𝐿) ≤ 𝜆−1
2 |||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 ||| else,

(2.21)

for some 𝜆1, 𝜆2 > 0. The upper bound in (2.14) in Theorem 2.4 as well as contraction (2.13) show
that, for all (𝐿, 𝑘) ∈ Q, our stopping criterion in Algorithm 2B Step (Iiii) leads for 𝑢𝑘𝐿 = 𝑢𝐿 to

|||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 |||(2.13)≤ (1 + 𝑞ctr) |||𝑢★𝐿 − 𝑢𝑘−1𝐿 |||(2.14)≤ 𝐶rel(1 + 𝑞ctr) 𝜂alg(𝑢𝑘−1𝐿 ) ≤ 𝜆alg𝐶rel (1 + 𝑞ctr) 𝜂𝐿 (𝑢𝑘𝐿).
For the remaining case, the contraction (2.13) leads to

|||𝑢★𝐿 − 𝑢𝑘𝐿 |||
(2.13)≤ 𝑞ctr |||𝑢★𝐿 − 𝑢𝑘−1𝐿 ||| ≤ 𝑞ctr |||𝑢★𝐿 − 𝑢𝑘𝐿 ||| + 𝑞ctr |||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 |||.

This implies
|||𝑢★𝐿 − 𝑢𝑘𝐿 ||| ≤

𝑞ctr
1 − 𝑞ctr

|||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 |||. (2.22)

The not met stopping criterion in Algorithm 2B(Iiii), the lower bound in (2.14), and (2.22) show

𝜂𝐿 (𝑢𝑘𝐿) < 𝜆−1
alg 𝜂alg(𝑢𝑘−1𝐿 ) (2.14)≤ 𝜆−1

alg |||𝑢★𝐿 − 𝑢𝑘−1𝐿 ||| ≤ 𝜆−1
alg |||𝑢★𝐿 − 𝑢𝑘𝐿 ||| + |||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 |||

(2.22)≤ 𝜆−1
alg 1 + 𝑞ctr

1 − 𝑞ctr
|||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 |||

= 𝜆−1
alg

1

1 − 𝑞ctr
|||𝑢𝑘𝐿 − 𝑢𝑘−1𝐿 |||.
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2.4 Numerical experiments

Overall, (2.21) is satisfied with

𝜆1 = 𝐶rel (1 + 𝑞ctr) 𝜆alg and 𝜆2 = (1 − 𝑞ctr) 𝜆alg,

and [GHPS21, Theorem 4] proves full linear convergence, so that, in particular, (2.18) is fulfilled
(see the proof of [GHPS21, Theorem 8] or [BIM+24a, Corollary 4.2]).

The lower bound in (2.19) follows as in [GHPS21, Theorem 8] or [BIM+24a, Theorem 4.3]. For
the upper bound in (2.19), [GHPS21, Theorem 8] requires that

0 < 𝜆1/𝜃 < 𝜆opt := (1 − 𝑞ctr)/(𝑞ctr 𝐶stab)

and
0 < 𝜃′ :=

𝜃 + 𝜆1/𝜆opt
1 − 𝜆1/𝜆opt < 𝜃opt := (1 + 𝐶2

stab 𝐶
2
drel)−1,

where 𝐶stab is the stability constant from (A1) and 𝐶drel is the constant from discrete reliability (A4);
see, e.g., [GHPS21]. We define

𝜆★alg :=
𝜆opt

𝐶rel (1 + 𝑞ctr) ,

and 𝜆alg/𝜃 < 𝜆★alg thus implies 𝜆1/𝜃 = 𝐶rel (1 + 𝑞ctr) 𝜆alg/𝜃 < 𝜆opt. Finally, we choose 𝜃★ such that

any 0 < 𝜃 ≤ 𝜃★ satisfies 2 𝜃
1−𝜃

< 𝜃opt. Then, 0 < 𝜃 < 𝜃★ yields 𝜃′ = 𝜃+𝜆1/𝜆opt
1−𝜆1/𝜆opt < 2 𝜃

1−𝜃 < 𝜃opt and
optimal cost in Theorem 2.7 follows directly from [GHPS21, Theorem 8]. □

2.4 Numerical experiments

This section investigates the numerical performance of the proposed multigrid solver of Algorithm 2A
and the adaptive Algorithm 2B. The Matlab implementation of the multigrid solver is embedded
into the MooAFEM framework from [IP23]. Throughout, we choose the marking parameter 𝜃 = 0.5
in the adaptive Algorithm 2B and 𝒇 = (0, 0)⊤. We introduce the following test case:

• L-shaped domain. Let Ω = (−1, 1)2 \ [0, 1] × [−1, 0] with right-hand side 𝑓 = 1 and 𝑨 = 𝑰.

2.4.1 Contraction and performance of local multigrid solver

We confirm numerically our main results from Theorem 2.4. In order to study the algebraic solver
and its built-in estimator with respect to different polynomial degrees, we take 𝜆alg = 10−5 in
Algorithm 2B, thus oversolving the algebraic problem. Moreover, we stop the adaptive algorithm
once the final mesh consists of 106 degrees of freedom. Note that thanks to Corollary 2.5 proving
the equivalence of the reliability of the algebraic error estimator with the contraction of the algebraic
solver, we indeed only need to investigate numerically the existence of the 𝑝-robust bound on the
contraction of the solver. In Figure 2.3 (left), we present the maximal contraction factors on each level
𝐿 of the adaptive algorithm from Algorithm 2B. We see that the contraction factors are robust in the
polynomial degree 𝑝 with an upper bound of about 0.7 in all our experiments. In Figure 2.3 (right),
we see that on a fixed number of levels (𝐿=10) even for higher-order polynomials their behavior is
clustered around similar values. Moreover, from a purely solver-centric perspective, we see that the
solver variant which employs higher-order smoothing also on the intermediate levels (and not only on

43



2 ℎ𝑝-robust multigrid solver on locally refined meshes

the finest one) as studied in [MPV21] only leads to slight improvements of the contraction constants.
Adapting the arguments of [MPV21], this modified construction can be guaranteed to be contractive
with 𝑝-robust, but linearly 𝐿-dependent contraction bound on the algebraic error. However, this
degradation with increasing 𝐿 is not seen in practice, provided that the patchwise smoothing is done
everywhere for level 𝐿 = 1 (as new degrees of freedom are added on all patches when the polynomial
degree is 𝑝 > 1) and local patchwise smoothing is employed in the remaining levels. We present a
comparison of the resulting contraction factors of this approach to Algorithm 2A for a fixed number
of level (𝐿 = 10) in Figure 2.3(right).
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Figure 2.3: Contraction of the algebraic solver. History plot of the contraction factors 𝑞ctr from (2.13)
for various polynomial degrees 𝑝with parameter𝜆alg = 10−5 for the presented polynomial
hierarchy from (2.7) in the adaptive algorithm from Algorithm 2B stopping once the
final mesh consists of 106 degrees of freedom (left) and the comparison with polynomial
hierarchy motivated by [MPV21] with localized smoothing for a fixed number of levels
𝐿 = 10 (right).

2.4.2 Optimality of the adaptive algorithm

We take 𝜆alg = 0.1 in Algorithm 2B and study the decrease of the discretization error estimator
𝜂𝐿 (𝑢𝐿), both in terms of number of degrees of freedom and timing. We remark that the error
estimator 𝜂𝐿 (𝑢𝐿) on the final iterates is equivalent to the quasi-error Δ𝐿 . After a pre-asymptotic
phase, we see in Figure 2.4 for different polynomial degrees 𝑝 that the optimal convergence rate
−𝑝/2 is recovered both with respect to number of degrees of freedom and computational time, and
the singularity at the reentrant corner (0, 0) is resolved through local mesh refinement. Furthermore,
Figure 2.5 shows that the proposed multigrid solver behaves faster than the built-in direct solver
(Matlab backslash operator) concerning the time per dof. The displayed timings include the setup
of the linear system, the time for the solver module, computation of estimator, and mesh refinement.
Overall, the numerical experiments in Figure 2.5 validate the linear complexity of the suggested
local multigrid solver from Algorithm 2A.
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2.4 Numerical experiments
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Figure 2.4: Optimality of AFEM on L-shape. The convergence history plot of the discretization error
estimator 𝜂𝐿 (𝑢𝐿) with respect to the total computational cost (left) and the cumulative
computational time (right).
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

Figure 2.6: Adaptively refined meshes. Left: checkerboard diffusion with 𝑘 = 1, polynomial degree
𝑝 = 1 and #T8 = 603. Right: stripe diffusion with 𝑘 = 2, 𝑝 = 1 and #T8 = 753 (right).

2.4.3 Numerical performance and insights for jumping coefficients

We consider two additional test cases with jumps in the diffusion coefficient:

• Checkerboard. Let Ω = (0, 1)2 be the unit square and 𝑨 the 2 × 2 checkerboard diffusion with
values 1 (white) and 10𝑘 (grey) for fixed 𝑘 = 1, 2, 3, see Figure 2.6 (left).

• Striped diffusion. Let Ω = (0, 1)2 be the unit square split into 2𝑘 stripes for 𝑘 = 1, 2, 3. The
value of 𝑨 on the 𝑗-th stripe is 10 𝑗−1 with 𝑗 ∈ {1, . . . , 2𝑘}, see Figure 2.6(right).

In Table 2.1, we see the optimal convergence of the discretization estimator with the optimal rate
−1/2 for 𝑝 = 1 as well as −1 for 𝑝 = 2 for both diffusion coefficients regardless of the jump size. We
stress that the discontinuity in the diffusion coefficient does not affect the optimality of the proposed
adaptive algorithm and the iteration numbers remain uniformly bounded as displayed in Table 2.2.

Both test cases exhibit singularities due to jumps in the diffusion coefficient; however, the jump
can be much higher for two neighboring elements in the checkerboard case. In this case, near the
cross point (1/2, 1/2), the jump is of order 10𝑘 from one element to the next, which coincides with
the jump from the highest to the lowest value of 𝑨 on the whole domain. For the striped test case,
the jump between two neighboring elements belonging to different “stripes” is of order 10, even if
the global jump in the diffusion (for non-neighboring elements) is of order 102𝑘−1.

This gives us the tools to observe numerically if the performance of our method only depends on
local jumps in the diffusion coefficient.

2.5 Proofs

Below we present proofs of intermediate results leading to our main Theorem 2.4 of 𝐿- and 𝑝-robust
contraction of the multigrid solver and the 𝐿- and 𝑝-robust two-sided bound of the algebraic error by
the built-in a posteriori estimator. We emphasize that this result improves the recent work [MPV21]
by removing the 𝐿-dependence. From an algorithmic point of view, this is done by applying local
smoothing only on patches which change in the refinement step on lowest-order levels instead
of on every patch as was the case in [MPV21]. From an analysis point of view, 𝐿-robustness is
achieved thanks to the strengthened Cauchy–Schwarz inequality on bisection-generated meshes
(Proposition 2.16) building on the property that the levelwise overlap of the smoothed patches
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102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

100

101

𝛼 = −1

dim S𝑝 (T𝐿)

er
ro

re
sti

m
at

or
𝜂
𝐿
𝑢
𝐿

𝑘 = 1

𝑘 = 2

𝑘 = 3

102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

100

101

𝛼 = −1

dim S𝑝 (T𝐿)
er

ro
re

sti
m

at
or

𝜂
𝐿
𝑢
𝐿

𝑘 = 1

𝑘 = 2

𝑘 = 3

Figure 2.7: Optimality of AFEM for jumping diffusion. The convergence history plot of the
discretization error estimator 𝜂𝐿 (𝑢𝐿) for polynomial degree 𝑝 = 2 with respect to the
total computational cost for the checkerboard diffusion (left) and the stripe diffusion
(right).

Checkerboard Stripe

𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2

𝑘 = 1 -0.4961 -0.9877 -0.4956 -1.0116

𝑘 = 2 -0.4960 -0.9946 -0.4969 -0.9670

𝑘 = 3 -0.4960 -0.9826 -0.5095 -0.9766

Table 2.1: Mean value of experimental convergence rates of the discretization error estimator
𝜂𝐿 (𝑢𝐿) over the cumulative cost in a log log-plot for polynomial degrees 𝑝 = 1, 2 and
diffusion coefficient numbers 𝑘 = 1, 2, 3.

Checkerboard Stripe

𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2

𝑘 = 1 1 1.0455 (mean), 2 (max) 1 1.0455 (mean), 2 (max)

𝑘 = 2 1 2.3261 (mean), 5 (max) 1 1.0417 (mean), 2 (max)

𝑘 = 3 1 1.1818 (mean), 3 (max) 1 1.0833 (mean), 2 (max)

Table 2.2: Mean and maximal iteration numbers for polynomial degrees 𝑝 = 1, 2 and diffusion
coefficient numbers 𝑘 = 1, 2, 3.
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

stays uniformly bounded. The next essential ingredient to prove the main result is an ℎ𝑝-stable
decomposition on bisection generated meshes (Proposition 2.14), then one combines the results
carefully together with the simple but crucial observation of uniform boundedness in the number of
overlapping patches for a fixed level (Lemma 2.10) and bounds on the step-sizes and the levelwise
solver update (Lemma 2.11).

2.5.1 Auxiliary results

We start with the simple observation that the number of overlapping patches is uniformly
bounded.

Lemma 2.10 (Finite patch overlap). For all 𝑇 ∈ Tℓ , there holds

#(Vℓ ∩ 𝑇) = 𝑑 + 1. (2.23)

Therefore, for all 𝑞 ∈ N, it holds that

||
∑︁
𝑧∈Vℓ

𝑣ℓ,𝑧 |||2 ≤ (𝑑 + 1)
∑︁
𝑧∈Vℓ

|||𝑣ℓ,𝑧 |||2 for all 𝑣ℓ,𝑧 ∈ X𝑞
ℓ,𝑧 . (2.24)

Similar arguments show that

∇
∑︁
𝑧∈Vℓ

𝑣ℓ,𝑧
2 ≤ (𝑑 + 1)

∑︁
𝑧∈Vℓ

∥∇𝑣ℓ,𝑧 ∥2 for all 𝑣ℓ,𝑧 ∈ X𝑞
ℓ,𝑧 . (2.25)

Proof. The overlap (2.23) is clear from the geometry of the elements in the mesh. For all ℓ = 0, . . . , 𝐿,
the discrete Cauchy–Schwarz inequality and (2.23) lead to

|||
∑︁
𝑧∈Vℓ

𝑣ℓ,𝑧 |||2 =
∑︁
𝑇∈Tℓ

|||
∑︁

𝑧∈Vℓ∩𝑇
𝑣ℓ,𝑧 |||2𝑇 ≤ (𝑑 + 1)

∑︁
𝑧∈Vℓ

|||𝑣ℓ,𝑧 |||2.

This concludes the proof. □

Next, we present bounds on the step-size and the levelwise solver update.

Lemma 2.11. For all ℓ ∈ {1, . . . , 𝐿}, we have

|||𝜆ℓ𝜌ℓ |||2 ≤ 𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2. (2.26)

Moreover, we have upper and lower bounds for the step-sizes,

1

𝑑 + 1
≤ 𝜆ℓ ≤ 𝑑 + 1 for all ℓ = 1, . . . , 𝐿 − 1 and 1

𝑑 + 1
≤ 𝜆𝐿 . (2.27)

Proof. Step 1: Proof of (2.26) if ℓ = 𝐿 or (𝑅𝐿 (𝜌ℓ) − ⟪𝜎ℓ−1 , 𝜌ℓ⟫)/|||𝜌ℓ |||2 ≤ 𝑑 + 1 for ℓ ∈
{1, . . . , 𝐿 − 1}. From Step (ii) of Algorithm 2A, we have that 𝜆ℓ = (𝑅𝐿 (𝜌ℓ) −⟪𝜎ℓ−1 , 𝜌ℓ⟫)/|||𝜌ℓ |||2
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and thus

|||𝜆ℓ𝜌ℓ |||2 = 𝜆ℓ
𝑅𝐿 (𝜌ℓ) − ⟪𝜎ℓ−1 , 𝜌ℓ⟫

|||𝜌ℓ |||2 |||𝜌ℓ |||2 = 𝜆ℓ
∑︁
𝑧∈V+

ℓ

𝑅𝐿 (𝜌ℓ,𝑧) − ⟪𝜎ℓ−1 , 𝜌ℓ,𝑧⟫
(2.11)
= 𝜆ℓ

∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2.

Step 2: Proof of (2.26) in the remaining cases. We use the finite overlap of the patches in Lemma 2.10
to obtain

|||𝜆ℓ𝜌ℓ |||2 = 𝜆ℓ
𝑑 + 1

|||𝜌ℓ |||2
(2.24)≤ 𝜆ℓ

𝑑 + 1
(𝑑 + 1)

∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 = 𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2.

Step 3: Proof of (2.27). For ℓ ∈ {1, . . . , 𝐿 − 1}, the upper bound is guaranteed by definition of 𝜆ℓ .
The lower bound for ℓ ∈ {1, . . . , 𝐿} is trivial if 𝜆ℓ = 1/(𝑑 + 1). Otherwise, it is a consequence of
the finite patch overlap:

𝜆ℓ =
𝑅𝐿 (𝜌ℓ) − ⟪𝜎ℓ−1 , 𝜌ℓ⟫

|||𝜌ℓ |||2
(2.11)
=

𝑧∈V+
ℓ
|||𝜌ℓ,𝑧 |||2

|||𝜌ℓ |||2
(2.24)≥ 1

𝑑 + 1
.

This concludes the proof. □

In the next two subsections, we combine existing results from the literature to obtain a multilevel
ℎ𝑝-robust stable decomposition and a strengthened Cauchy–Schwarz inequality for our setting of
bisection-generated meshes. These will be crucial for the proofs of Theorem 2.4 and Corollary 2.5
in Subsection 2.5.4 below.

2.5.2 Multilevel hp-robust stable decomposition on NVB-generated meshes

We start by recalling the one-level 𝑝-robust stable decomposition from Section 3.4 and Section 4.3
in [SMPZ08] for 𝑑 = 2 and 𝑑 = 3, respectively.

Lemma 2.12 (𝑝-robust one level decomposition). Let 𝑣𝐿 ∈ X𝑝
𝐿 . Then, there exists a decomposition

𝑣𝐿 = 𝑣1𝐿 +
∑︁
𝑧∈V𝐿

𝑣𝑝𝐿,𝑧 with 𝑣1𝐿 ∈ X1
𝐿 and 𝑣𝑝𝐿,𝑧 ∈ X𝑝

𝐿,𝑧 , (2.28)

which is stable in the sense of

∥∇𝑣1𝐿 ∥2 +
∑︁
𝑧∈V𝐿

∥∇𝑣𝑝𝐿,𝑧 ∥2 ≤ 𝐶2
OL∥∇𝑣𝐿 ∥2. (2.29)

The constant 𝐶OL depends only on the space dimension 𝑑, the 𝛾-shape regularity (2.5), and the
quasi-uniformity constant 𝐶qu from (2.6).

Similarly, we recall the local multilevel decomposition for piecewise affine functions proven in [WZ17,
Lemma 3.1]. In order to present this stable decomposition in a form that is more suitable for our
forthcoming analysis, we add a short proof for completeness.
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Lemma 2.13 (ℎ-robust local multilevel decomposition for lowest-order functions). Let 𝑣1𝐿 ∈ X1
𝐿 .

Then, there exists a decomposition

𝑣1𝐿 =
𝐿∑︁

ℓ=0

∑︁
𝑧∈V+

ℓ

𝑣1ℓ,𝑧 with 𝑣1ℓ,𝑧 ∈ X1
ℓ,𝑧 , (2.30)

which is stable in the sense of

𝐿∑︁
ℓ=0

∑︁
𝑧∈V+

ℓ

∥∇𝑣1ℓ,𝑧 ∥2 ≤ 𝐶2
ML∥∇𝑣1𝐿 ∥2. (2.31)

The constant 𝐶ML depends only on the space dimension 𝑑, the 𝛾-shape regularity (2.5), and the
quasi-uniformity constant 𝐶qu from (2.6).

Proof. Let 𝑣1𝐿 ∈ X1
𝐿 . Define 𝑤1

ℓ
:= (Πℓ − Πℓ−1)𝑣1𝐿 for ℓ ∈ {0, . . . , 𝐿}, where Π−1 := 0 and

Πℓ is the projection to X1
ℓ from [WZ17, Section 3]. From [WZ17, Lemma 3.1], it holds that

𝑤1
ℓ ∈ span{𝜑ℓ,𝑧 : 𝑧 ∈ V+

ℓ } with 𝜑ℓ,𝑧 being the S1(Tℓ) hat-function at vertex 𝑧 ∈ Vℓ . We decompose
𝑤1
ℓ = 𝑧∈V+

ℓ
𝑣1ℓ,𝑧 with 𝑣1ℓ,𝑧 := 𝑤1

ℓ (𝑧)𝜑ℓ,𝑧 ∈ X1
ℓ,𝑧 and thus obtain

𝑣1𝐿 =
𝐿∑︁

ℓ=0

(Πℓ − Πℓ−1)𝑣1𝐿 =
𝐿∑︁

ℓ=0

𝑤1
ℓ =

𝐿∑︁
ℓ=0

∑︁
𝑧∈V+

ℓ

𝑣1ℓ,𝑧 . (2.32)

For fixed ℓ and 𝑧 ∈ V+
ℓ , the equivalence of norms on finite-dimensional spaces proves

∥𝑣1ℓ,𝑧 ∥𝜔ℓ,𝑧 ≤
∑︁

𝑇∈Tℓ,𝑧
∥𝑤1

ℓ (𝑧)𝜑ℓ,𝑧 ∥𝑇

≤
∑︁

𝑇∈Tℓ,𝑧
∥𝑤1

ℓ ∥𝐿∞ (𝑇 ) |𝑇 |1/2 ≲
∑︁

𝑇∈Tℓ,𝑧
∥𝑤1

ℓ ∥𝑇 ≃ ∥𝑤1
ℓ ∥𝜔ℓ,𝑧 ,

(2.33)

where the hidden constants depend only on 𝛾-shape regularity (2.5). To obtain stability of the
decomposition (2.32), we use an inverse inequality on the patches and the stability proved in [WZ17,
Lemma 3.7]:

𝐿∑︁
ℓ=0

∑︁
𝑧∈V+

ℓ

∥∇𝑣1ℓ,𝑧 ∥2 ≲
𝐿∑︁

ℓ=0

∑︁
𝑧∈V+

ℓ

ℎ−2ℓ,𝑧 ∥𝑣1ℓ,𝑧 ∥2𝜔ℓ,𝑧

(2.33)
≲

𝐿∑︁
ℓ=0

∑︁
𝑧∈V+

ℓ

ℎ−2ℓ,𝑧 ∥𝑤1
ℓ ∥2𝜔ℓ,𝑧

=
𝐿∑︁

ℓ=0

∑︁
𝑧∈V+

ℓ

ℎ−2ℓ,𝑧 ∥(Πℓ − Πℓ−1)𝑣1𝐿 ∥2𝜔ℓ,𝑧

[WZ17]
≲ ∥∇𝑣1𝐿 ∥2.

This concludes the proof. □

The combination of the two previous lemmas, done similarly in [MPV20, Proposition 7.6] for a
non-local and hence not ℎ-robust solver, leads to the following ℎ𝑝-robust decomposition.
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Proposition 2.14 (ℎ𝑝-robust local multilevel decomposition). Let 𝑣𝐿 ∈ X𝑝
𝐿 . Then, there exist

𝑣0 ∈ X1
0 , 𝑣ℓ,𝑧 ∈ X1

ℓ,𝑧 , and 𝑣𝐿,𝑧 ∈ X𝑝
𝐿,𝑧 such that

𝑣𝐿 = 𝑣0 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

𝑣ℓ,𝑧 +
∑︁
𝑧∈V𝐿

𝑣𝐿,𝑧 . (2.34)

and this decomposition is stable in the sense of

|||𝑣0 |||2 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2 +
∑︁
𝑧∈V𝐿

|||𝑣𝐿,𝑧 |||2 ≤ 𝐶2
SD |||𝑣𝐿 |||2. (2.35)

The constant 𝐶SD ≥ 1 depends only on the space dimension 𝑑, 𝛾-shape regularity (2.5), the
quasi-uniformity constant 𝐶qu from (2.6), and the ratio of Λmax and Λmin.

Proof. Let 𝑣𝐿 ∈ X𝑝
𝐿 . We begin with the decomposition of 𝑣𝐿 by (2.28), then continue with the

further decomposition of the lowest-order contribution 𝑣1𝐿 in a multilevel way (2.30):

𝑣𝐿
(2.28)
= 𝑣1𝐿 +

∑︁
𝑧∈V𝐿

𝑣𝑝𝐿,𝑧
(2.30)
=

𝐿∑︁
ℓ=0

∑︁
𝑧∈V+

ℓ

𝑣1ℓ,𝑧 +
∑︁
𝑧∈V𝐿

𝑣𝑝𝐿,𝑧

=
∑︁
𝑧∈V0

𝑣10,𝑧 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

𝑣1ℓ,𝑧 +
∑︁
𝑧∈V+

𝐿

𝑣1𝐿,𝑧 +
∑︁
𝑧∈V𝐿

𝑣𝑝𝐿,𝑧 .

By defining 𝑣0 := 𝑧∈V0
𝑣10,𝑧 ∈ X1

0 , 𝑣ℓ,𝑧 := 𝑣1ℓ,𝑧 ∈ X1
ℓ,𝑧 for 𝑧 ∈ V+

ℓ and 1 ≤ ℓ ≤ 𝐿 − 1, and
𝑣𝐿,𝑧 := 𝑣1𝐿,𝑧 + 𝑣𝑝𝐿,𝑧 ∈ X𝑝

𝐿,𝑧 for 𝑧 ∈ V+
𝐿 and 𝑣𝐿,𝑧 := 𝑣𝑝𝐿,𝑧 ∈ X𝑝

𝐿,𝑧 for 𝑧 ∈ V𝐿 \ V+
𝐿 , we obtain the

decomposition (2.34). It remains to show that this decomposition is stable (2.35). First, we have for
the coarsest level that

∥∇𝑣0∥2
(2.25)≤ (𝑑 + 1)

∑︁
𝑧∈V0

∥∇𝑣10,𝑧 ∥2.

For the finest level, it holds that

∑︁
𝑧∈V𝐿

∥∇𝑣𝐿,𝑧 ∥2 ≤
∑︁

𝑧∈V𝐿\V+
𝐿

∥∇𝑣𝑝𝐿,𝑧 ∥2 + 2
∑︁
𝑧∈V+

𝐿

∥∇𝑣1𝐿,𝑧 ∥2 + ∥∇𝑣𝑝𝐿,𝑧 ∥2

≤ (𝑑 + 1)
∑︁
𝑧∈V+

𝐿

∥∇𝑣1𝐿,𝑧 ∥2 + (𝑑 + 1)
∑︁
𝑧∈V𝐿

∥∇𝑣𝑝𝐿,𝑧 ∥2.
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A combination of the two estimates shows that

∥∇𝑣0∥2 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

∥∇𝑣ℓ,𝑧 ∥2 +
∑︁
𝑧∈V𝐿

∥∇𝑣𝐿,𝑧 ∥2

≤ (𝑑 + 1)
∑︁
𝑧∈V0

∥∇𝑣10,𝑧 ∥2 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

∥∇𝑣1ℓ,𝑧 ∥2 +
∑︁
𝑧∈V+

𝐿

∥∇𝑣1𝐿,𝑧 ∥2 +
∑︁
𝑧∈V𝐿

∥∇𝑣𝑝𝐿,𝑧 ∥2

≤ (𝑑 + 1)
𝐿∑︁

ℓ=0

∑︁
𝑧∈V+

ℓ

∥∇𝑣1ℓ,𝑧 ∥2 + (𝑑 + 1)
∑︁
𝑧∈V𝐿

∥∇𝑣𝑝𝐿,𝑧 ∥2

(2.31)≤ 𝐶2
ML (𝑑 + 1) ∥∇𝑣1𝐿 ∥2 + (𝑑 + 1)

∑︁
𝑧∈V𝐿

∥∇𝑣𝑝𝐿,𝑧 ∥2

(2.29)≤ max{1, 𝐶2
ML}𝐶2

OL (𝑑 + 1)∥∇𝑣𝐿 ∥2.
Hence, the decomposition (2.34) is stable with (𝐶′

SD)2 := max{1, 𝐶2
ML}𝐶2

OL(𝑑 + 1) with respect
to the 𝐻1(Ω)-seminorm. Taking into account the variations of the diffusion coefficient 𝑨, we
obtain (2.35) with the stability constant 𝐶SD := 𝐶′

SDΛmax/Λmin. □

2.5.3 Strengthened Cauchy–Schwarz inequality on NVB-generated meshes

The following results are proved in the spirit of [HWZ12; CNX12]. Note that the setting of this work
is similar to [HWZ12], and unlike [CNX12], the underlying adaptive meshes of the space hierarchy
are not restricted to one bisection per level.

For analysis purposes, we introduce a sequence of uniformly refined triangulations indicated
by {T𝑗}𝑀𝑗=0 such that T𝑗+1 := refine(T𝑗 ,T𝑗) and T0 = T0, where refine enforces one bisection
per element. According to [Ste08], admissibility of T0 ensures that indeed each element 𝑇 ∈ T𝑗 is
bisected only once into two children 𝑇 ′, 𝑇 ′′ ∈ T𝑗+1. In the following, we will indicate the equivalent
notation to Section 2.2 on uniform triangulations T𝑗 with a hat, e.g., X1

𝑗 is the equivalent of X1
ℓ on

the uniformly refined mesh T𝑗 . The connection of the uniformly refined meshes and their adaptively
generated counterpart requires further notation. For a given level 0 ≤ ℓ ≤ 𝐿 and a given node
𝑧 ∈ Vℓ , we define the generation 𝑔ℓ,𝑧 of the patch by the maximum number of times an element of
the patch has been bisected

𝑔ℓ,𝑧 := max
𝑇∈Tℓ,𝑧

log2( |𝑇0 |/|𝑇 |) ∈ N0, (2.36)

where 𝑇0 ∈ T0 denotes the unique ancestor element of 𝑇 ∈ Tℓ . Define the maximal generation
𝑀 = max𝑧∈V𝐿 𝑔𝐿,𝑧 .

First, we present the following result for uniformly refined meshes and then exploit this for our
setting of adaptively refined meshes.

Lemma 2.15 (Strengthened Cauchy–Schwarz on nested uniform meshes). Let 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑀,
and 𝑢𝑖 ∈ X1

𝑖 as well as 𝑣 𝑗 ∈ X1
𝑗 . Then, it holds that

⟪𝑢𝑖 , 𝑣 𝑗⟫ ≤ 𝐶SCS 𝛿
𝑗−𝑖 ℎ−1𝑗 ∇𝑢𝑖 𝑣 𝑗 , (2.37)
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where 𝛿 = 2−1/2 and 𝐶SCS > 0 depends only on the domain Ω, the initial triangulation T0, Λmax,
max𝑇∈T𝑀 ∥ div(𝑨)∥𝐿∞ (𝑇 ) , and 𝛾-shape regularity from (2.5).

Proof. We begin by splitting the domain Ω into elementwise components, applying integration by
parts, and using the Cauchy–Schwarz inequality. Note that the restriction of 𝑢𝑖 to any element 𝑇 ∈ T𝑖
is an affine function, and hence the second derivatives vanish. Thus, it holds with the outer normal 𝒏
to 𝜕𝑇 that

⟪𝑢𝑖 , 𝑣 𝑗⟫ =
∑︁
𝑇∈T𝑖

∫
𝑇
𝑨∇𝑢𝑖 · ∇𝑣 𝑗 d𝑥

=
∑︁
𝑇∈T𝑖

−
∫
𝑇
div(𝑨∇𝑢𝑖)𝑣 𝑗 d𝑥 +

∫
𝜕𝑇

𝑨∇𝑢𝑖 · 𝒏 𝑣 𝑗 d𝑥

≤
∑︁
𝑇∈T𝑖

(div 𝑨) · ∇𝑢𝑖 𝐿2 (𝑇 ) 𝑣 𝑗 𝐿2 (𝑇 ) + 𝑨∇𝑢𝑖 𝐿2 (𝜕𝑇 ) 𝑣 𝑗 𝐿2 (𝜕𝑇 ) .

Due to 𝑨 ∈ 𝑊1,∞(𝑇), the fact that 𝑢𝑖 , 𝑣 𝑗 are piecewise affine, a discrete trace inequality, and ℎ−1𝑖 ≳ 1,
we get

⟪𝑢𝑖 , 𝑣 𝑗⟫ ≲
∑︁
𝑇∈T𝑖

∇𝑢𝑖 𝐿2 (𝑇 ) 𝑣 𝑗 𝐿2 (𝑇 ) + ∇𝑢𝑖 𝐿2 (𝜕𝑇 ) 𝑣 𝑗 𝐿2 (𝜕𝑇 )

≲
∑︁
𝑇∈T𝑖

∇𝑢𝑖 𝐿2 (𝑇 ) 𝑣 𝑗 𝐿2 (𝑇 ) + ℎ−1/2𝑖 ∇𝑢𝑖 𝐿2 (𝑇 ) ℎ−1/2𝑖 𝑣 𝑗 𝐿2 (𝑇 )

=
∑︁
𝑇∈T𝑖

1 + ℎ−1𝑖 ∇𝑢𝑖 𝐿2 (𝑇 ) 𝑣 𝑗 𝐿2 (𝑇 )

≲
∑︁
𝑇∈T𝑖

ℎ−1𝑖 ∇𝑢𝑖 𝐿2 (𝑇 ) 𝑣 𝑗 𝐿2 (𝑇 ) .

Moreover, note that due to uniform refinement, we have the equivalence 𝛿 𝑗−𝑖 = (2−1/2) 𝑗−𝑖 ≃
ℎ 𝑗/ℎ𝑖 1/2 and ℎ 𝑗 ≤ ℎ𝑖 . Using the last equation multiplied by 1 = ℎ1/2𝑗 ℎ−1/2𝑗 , we derive that

⟪𝑢𝑖 , 𝑣 𝑗⟫ ≲
∑︁
𝑇∈T𝑖

ℎ 𝑗

ℎ𝑖

1/2
ℎ−1/2𝑖 ℎ−1/2𝑗 ∇𝑢𝑖 𝐿2 (𝑇 ) 𝑣 𝑗 𝐿2 (𝑇 )

≲
∑︁
𝑇∈T𝑖

𝛿 𝑗−𝑖 ℎ−1𝑗 ∇𝑢𝑖 𝐿2 (𝑇 ) 𝑣 𝑗 𝐿2 (𝑇 ) ≤ ℎ−1𝑗 𝛿 𝑗−𝑖 ∇𝑢𝑖 𝐿2 (Ω) 𝑣 𝑗 𝐿2 (Ω) .

This concludes the proof. □

The last result enables us to tackle the setting of adaptively refined meshes.
Proposition 2.16 (Strengthened Cauchy–Schwarz on nested adaptive meshes). Consider levelwise
functions 𝑣ℓ = 𝑧∈V+

ℓ
𝑣1ℓ,𝑧 ∈ X1

ℓ with 𝑣1ℓ,𝑧 ∈ X1
ℓ,𝑧 for all 1 ≤ ℓ ≤ 𝐿 − 1. Then, it holds that

𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟪𝑣𝑘 , 𝑣ℓ⟫ ≤ 𝐶SCS

𝐿−2∑︁
𝑘=1

∑︁
𝑤∈V+

𝑘

|||𝑣1𝑘,𝑤 |||2
1/2 𝐿−1∑︁

ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣1ℓ,𝑧 |||2
1/2

, (2.38)
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where 𝐶SCS > 0 depends only on Ω, the initial triangulation T0, the ratio Λmax/Λmin,
max𝑇∈T𝐿 ∥ div(𝑨)∥𝐿∞ (𝑇 )/Λmin, and 𝛾-shape regularity (2.5).

Proof. Let 𝑀 ∈ N. The proof consists of five steps.

Step 1. First note that, for any 0 < 𝛿 < 1 and 𝑥𝑖 , 𝑦𝑖 > 0 with 0 ≤ 𝑖 ≤ 𝑀 , there holds

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝛿 𝑗−𝑖𝑥𝑖𝑦 𝑗 ≤ 1

1 − 𝛿

𝑀∑︁
𝑖=0

𝑥2𝑖
1/2 𝑀∑︁

𝑗=0

𝑦2𝑗
1/2

. (2.39)

To see this, we change the summation order accordingly and use the Cauchy–Schwarz inequality to
obtain

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝛿 𝑗−𝑖𝑥𝑖𝑦 𝑗 =
𝑀∑︁
𝑖=0

𝑀−𝑖∑︁
𝑚=0

𝛿𝑚𝑥𝑖𝑦𝑚+𝑖 =
𝑀∑︁
𝑚=0

𝑀−𝑚∑︁
𝑖=0

𝛿𝑚𝑥𝑖𝑦𝑚+𝑖

≤
𝑀∑︁
𝑚=0

𝛿𝑚
𝑀−𝑚∑︁
𝑖=0

𝑥2𝑖
1/2

𝑀−𝑚∑︁
𝑖=0

𝑦2𝑚+𝑖
1/2 ≤

𝑀∑︁
𝑚=0

𝛿𝑚
𝑀∑︁
𝑖=0

𝑥2𝑖
1/2 𝑀∑︁

𝑗=0

𝑦2𝑗
1/2

.

The geometric series then proves the claim (2.39).

Step 2. Let 𝑧 ∈ V𝐿 and 0 ≤ 𝑗 ≤ 𝑀 and recall the patch generation 𝑔ℓ,𝑧 from (2.36). We introduce
the set

ℒℓ,ℓ (𝑧, 𝑗) := {ℓ ∈ {ℓ, . . . , ℓ} : 𝑧 ∈ V+
ℓ and 𝑔ℓ,𝑧 = 𝑗} with 0 ≤ ℓ ≤ ℓ ≤ 𝐿. (2.40)

This set allows to track how large the levelwise overlap of patches with the same generation is.
Crucially, the cardinality of these sets is uniformly bounded by

max
𝑧∈V𝐿

0≤ 𝑗≤𝑀

#(ℒ0,𝐿 (𝑧, 𝑗)) ≤ 𝐶lev < ∞; (2.41)

see, e.g., [WC06, Lemma 3.1] in the two-dimensional setting with arguments that transfer to three
dimensions. The constant 𝐶lev solely depends on 𝛾-shape regularity (2.5).

Step 3. We introduce a way to reorder the patch contributions by generations (2.36). Note that, for
any 0 ≤ 𝑗 ≤ 𝑀, 1 ≤ ℓ ≤ 𝐿 − 1, and 𝑧 ∈ V+

ℓ such that 𝑔ℓ,𝑧 = 𝑗 , the patch contribution 𝑣1ℓ,𝑧 ∈ X1
ℓ,𝑧

also belongs to X1
𝑗 . Once the generation constraint is introduced, one can shift the perspective from

summing over “adaptive” levels and associated vertices to summing over “uniform” vertices and
only the (finitely many, cf. (2.41)) levels where each vertex satisfies the generation constraint, i.e.,
for 0 ≤ ℓ ≤ ℓ ≤ 𝐿 and 0 ≤ 𝑗 ≤ 𝑀 , the two following sets coincide

{(ℓ, 𝑧) ∈ N0 ×V𝐿 : ℓ ∈ {ℓ, . . . , ℓ}, 𝑧 ∈ V+
ℓ with 𝑔ℓ,𝑧 = 𝑗}

= {(ℓ, 𝑧) ∈ N0 ×V𝐿 : 𝑧 ∈ V𝑗 , ℓ ∈ℒℓ,ℓ (𝑧, 𝑗)}.
(2.42)

Step 4. According to 𝛾-shape regularity (2.5), all elements in the patch have comparable size
depending on 𝐶qu from (2.6). If 𝑔ℓ,𝑧 = 𝑗 , (at least) one element 𝑇★ ∈ Tℓ,𝑧 satisfies 𝑇★ ∈ T𝑗 and it
follows that ℎ 𝑗 ≃ |𝑇★|1/𝑑 ≃ |𝜔ℓ,𝑧 |1/𝑑 ≃ ℎℓ,𝑧 . In particular, there exists 𝐶eq > 0 such that

ℎ−1𝑗 ≤ 𝐶eqℎ
−1
ℓ,𝑧 . (2.43)

54



2.5 Proofs

Step 5. We proceed to prove the main estimate (2.38). The central feature of the following approach
is to introduce additional sums over the generations with generation constraints, i.e., there holds for
every admissible ℓ, 𝑘 , that

⟪𝑣𝑘 , 𝑣ℓ⟫ =
∑︁
𝑧∈V+

ℓ

∑︁
𝑤∈V+

𝑘

⟪𝑣1𝑘,𝑤 , 𝑣1ℓ,𝑧⟫ =
𝑀∑︁
𝑗=0

𝑀∑︁
𝑖=0

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

⟪𝑣1𝑘,𝑤 , 𝑣1ℓ,𝑧⟫
=

𝑀∑︁
𝑗=0

𝑗∑︁
𝑖=0

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

⟪𝑣1𝑘,𝑤 , 𝑣1ℓ,𝑧⟫ +
𝑀∑︁
𝑗=0

𝑀∑︁
𝑖= 𝑗+1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

⟪𝑣1𝑘,𝑤 , 𝑣1ℓ,𝑧⟫.
We abbreviate the terms as 𝑆1(ℓ, 𝑘) and 𝑆2(ℓ, 𝑘), respectively. A change of the summation of order 𝑖
and 𝑗 yields for 𝑆1(ℓ, 𝑘) that

𝑆1(ℓ, 𝑘) =
𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

⟪𝑣1𝑘,𝑤 , 𝑣1ℓ,𝑧⟫.
Summing 𝑆2(ℓ, 𝑘) over all ℓ and 𝑘 and changing the order of summation, we obtain

𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

𝑆2(ℓ, 𝑘) =
𝑀∑︁
𝑗=0

𝑀∑︁
𝑖= 𝑗+1

𝐿−2∑︁
𝑘=1

𝐿−1∑︁
ℓ=𝑘+1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

⟪𝑣1𝑘,𝑤 , 𝑣1ℓ,𝑧⟫.
Combining these two identities with (2.42), we see that

𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

𝑆1(ℓ, 𝑘) + 𝑆2(ℓ, 𝑘) =
𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝐿−1∑︁
ℓ=1

⟪ ∑︁
𝑤∈V𝑖

∑︁
𝑘∈ℒ1,ℓ−1 (𝑤,𝑖)

𝑣1𝑘,𝑤 ,
∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

𝑣1ℓ,𝑧

⟫

+
𝑀∑︁
𝑗=0

𝑀∑︁
𝑖= 𝑗+1

𝐿−2∑︁
𝑘=1

⟪ ∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

𝑣1𝑘,𝑤 ,
∑︁
𝑧∈V𝑗

∑︁
ℓ∈ℒ𝑘+1,𝐿−1 (𝑧, 𝑗 )

𝑣1ℓ,𝑧

⟫
.

We define the last two terms as 𝑆1 and 𝑆2, respectively. Since the second term 𝑆2 is treated in the same
way, we only present detailed estimations of the first term 𝑆1. The strengthened Cauchy–Schwarz
inequality (2.37) for functions defined on uniform meshes followed by the patch overlap (2.24) leads
to

𝑆1 ≤ 𝐶SCS

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝛿 𝑗−𝑖
𝐿−1∑︁
ℓ=1

(𝑑 + 1)
∑︁
𝑤∈V𝑖

∑︁
𝑘∈ℒ1,ℓ−1 (𝑤,𝑖)

∇𝑣1𝑘,𝑤 2 1/2 ∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

ℎ−1𝑗 𝑣1ℓ,𝑧 .

The identity (2.42) and the finite levelwise overlap (2.41) show∑︁
𝑤∈V𝑖

∑︁
𝑘∈ℒ1,ℓ−1 (𝑤,𝑖)

∇𝑣1𝑘,𝑤 2 ≤
ℓ−1∑︁
𝑘=1

∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

#(ℒ1,ℓ−1(𝑤, 𝑖)) ∇𝑣1𝑘,𝑤 2≤ 𝐶lev

𝐿−2∑︁
𝑘=1

∑︁
𝑤∈V+

𝑘
𝑔𝑘,𝑤=𝑖

∇𝑣1𝑘,𝑤 2
.
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

The equivalence of mesh sizes from (2.43) and a Poincaré-inequality prove

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

ℎ−1𝑗 𝑣1ℓ,𝑧 ≤ 𝐶eq𝐶P

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∇𝑣1ℓ,𝑧 .

A combination of (2.42) with (2.25) and (2.41), followed again by (2.42), yields

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∇𝑣1ℓ,𝑧
2
=

∑︁
𝑧∈V𝑗

∑︁
ℓ∈ℒ1,𝐿−1 (𝑧, 𝑗 )

∇𝑣1ℓ,𝑧
2 ≤ (𝑑 + 1) 𝐶lev

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∇𝑣1ℓ,𝑧 2
.

Thus, we obtain the bound

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∇𝑣1ℓ,𝑧 ≤ (𝑑 + 1)1/2𝐶1/2
lev

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ
𝑔ℓ,𝑧= 𝑗

∇𝑣1ℓ,𝑧 2 1/2

Combining all estimates, together with the geometric series bound (2.39), confirms

𝑆1 ≤ 𝐶SCS (𝑑 + 1) 𝐶lev 𝐶eq 𝐶P
1

1 − 𝛿

𝐿−2∑︁
𝑘=1

∑︁
𝑤∈V+

𝑘

∇𝑣1𝑘,𝑤 2 1/2 𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

∇𝑣1ℓ,𝑧 2 1/2
.

Finally, the result (2.38) is obtained after summing together with the analogous estimations coming
from the remaining term 𝑆2 and taking into consideration the variations of the diffusion coefficient
𝑨 so that the result holds for the energy norm. This concludes the proof. □

2.5.4 Proof of the main results

For the sake of a concise presentation, we only consider the case 𝑝 > 1. The case 𝑝 = 1 is already
covered in the literature [CNX12; WZ17] and follows from our proof with only minor modifications.

Proof of Theorem 2.4, connection of solver and estimator (2.12). The proof consists of two steps.

Step 1. We show that there holds the identity

|||
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ |||2 − 2⟪𝑢★𝐿 − 𝑣𝐿 ,
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ⟫
= −|||𝜌0 |||2 +

𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ |||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2.
(2.44)

Indeed, note that 𝜎ℓ = ℓ
𝑘=0 𝜆𝑘𝜌𝑘 . By definition of the local lowest-order problems in (2.10) and
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2.5 Proofs

(2.11) as well as the definition of 𝜌ℓ = 𝑧∈V+
ℓ
𝜌ℓ,𝑧 , we have

⟪
𝑢★𝐿 − 𝑣𝐿 ,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟫
(2.9)
= 𝑅𝐿 (𝜌0) +

𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

𝑅𝐿 (𝜌ℓ,𝑧)(2.10)
= |||𝜌0 |||2 +

𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

𝑅𝐿 (𝜌ℓ,𝑧)

(2.11)
= |||𝜌0 |||2 +

𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 + ⟪𝜎ℓ−1 , 𝜌ℓ,𝑧⟫
= |||𝜌0 |||2 +

𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 +
ℓ−1∑︁
𝑘=0

⟪𝜆𝑘𝜌𝑘 , 𝜌ℓ,𝑧⟫
= |||𝜌0 |||2 +

𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 +
𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=0

⟪𝜆𝑘𝜌𝑘 , 𝜆ℓ𝜌ℓ⟫.
Thus, by expanding the square, we have

|||
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ |||2 − 2
⟪
𝑢★𝐿 − 𝑣𝐿 ,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟫
=

𝐿−1∑︁
ℓ=0

|||𝜆ℓ𝜌ℓ |||2 − 2|||𝜌0 |||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2

= −|||𝜌0 |||2 +
𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ |||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2.

This proves the identity (2.44).

Step 2. Recall that Ψ(𝑣𝐿) = 𝑣𝐿 + 𝜎𝐿 = 𝑣𝐿 + 𝜎𝐿−1 + 𝜆𝐿𝜌𝐿 . By definition of 𝑅𝐿 in (2.9) and the
choice of 𝜆𝐿 in Algorithm 2A, we have

|||𝑢★𝐿 − Ψ(𝑣𝐿) |||2 = |||𝑢★𝐿 − (𝑣𝐿 + 𝜎𝐿−1) |||2 − 2𝜆𝐿 ⟪𝑢★𝐿 − (𝑣𝐿 + 𝜎𝐿−1) , 𝜌𝐿⟫ + |||𝜆𝐿𝜌𝐿 |||2

= |||𝑢★𝐿 − (𝑣𝐿 + 𝜎𝐿−1) |||2 − 2𝜆𝐿 𝑅𝐿 (𝜌𝐿) − ⟪𝜎𝐿−1 , 𝜌𝐿⟫ + 𝜆𝐿

∑︁
𝑧∈V𝐿

|||𝜌𝐿,𝑧 |||2

(2.11)
= |||𝑢★𝐿 − 𝑣𝐿 +

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ |||2 − 𝜆𝐿

∑︁
𝑧∈V𝐿

|||𝜌𝐿,𝑧 |||2.

For the first term it holds that

|||𝑢★𝐿 − 𝑣𝐿 +
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ |||2 = |||𝑢★𝐿 − 𝑣𝐿 |||2 + |||
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ |||2 − 2
⟪
𝑢★𝐿 − 𝑣𝐿 ,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟫
(2.44)
= |||𝑢★𝐿 − 𝑣𝐿 |||2 − |||𝜌0 |||2 +

𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ |||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2

(2.26)≤ |||𝑢★𝐿 − 𝑣𝐿 |||2 − |||𝜌0 |||2 −
𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2.
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2 ℎ𝑝-robust multigrid solver on locally refined meshes

Combining the last two estimates with the definition of 𝜂alg(𝑣𝐿) in Algorithm 2A, we obtain

|||𝑢★𝐿 − Ψ(𝑣𝐿) |||2 ≤ |||𝑢★𝐿 − 𝑣𝐿 |||2 − |||𝜌0 |||2 −
𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 − 𝜆𝐿

∑︁
𝑧∈V𝐿

|||𝜌𝐿,𝑧 |||2

= |||𝑢★𝐿 − 𝑣𝐿 |||2 − 𝜂alg(𝑣𝐿)2.

This concludes the proof of (2.12). □

Proof of Theorem 2.4, lower bound in (2.14). The relation between the solver and the estimator
given in (2.12) shows that 𝜂alg(𝑣𝐿) ≤ |||𝑢★𝐿 − 𝑣𝐿 |||. □

Proof of Corollary 2.5, equivalence of (2.13) and (2.14). We prove that the solver contraction (2.13)
is equivalent to the upper bound of (2.14).

First, suppose that (2.13) holds. Then, we proceed similarly as in the proof of (2.12) to obtain

|||𝑢★𝐿 − 𝑣𝐿 |||2 = |||𝑢★𝐿 − Ψ(𝑣𝐿) |||2 − |||
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ |||2+ 2
⟪
𝑢★𝐿 − 𝑣𝐿 ,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟫
+ 𝜆𝐿

∑︁
𝑧∈V𝐿

|||𝜌𝐿,𝑧 |||2

(2.44)
= |||𝑢★𝐿 − Ψ(𝑣𝐿) |||2 + |||𝜌0 |||2 −

𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ |||2 + 2
𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 + 𝜆𝐿

∑︁
𝑧∈V𝐿

|||𝜌𝐿,𝑧 |||2

(2.13)≤ 𝑞2ctr |||𝑢★𝐿 − 𝑣𝐿 |||2 + 2 𝜂alg(𝑣𝐿)2.

Rearranging this estimate proves the upper bound in (2.14) with 𝐶2
rel = 2/(1 − 𝑞2ctr) > 1.

Second, suppose the upper bound in (2.14). Then, it follows that

|||𝑢★𝐿 − Ψ(𝑣𝐿) |||2
(2.12)≤ |||𝑢★𝐿 − 𝑣𝐿 |||2 − 𝜂alg(𝑣𝐿)2

(2.14)≤ |||𝑢★𝐿 − 𝑣𝐿 |||2 − 𝐶−2
rel |||𝑢★𝐿 − 𝑣𝐿 |||2.

This verifies the solver contraction (2.13) for 𝑞2ctr = 1 − 𝐶−2
rel ∈ (0, 1) and concludes the equivalence

proof. □

Proof of Theorem 2.4, upper bound in (2.14). We use the stable decomposition of Proposition 2.14
on the algebraic error 𝑢★𝐿 − 𝑣𝐿 ∈ X𝑝

𝐿 to obtain 𝑣0 ∈ X1
0 , 𝑣ℓ,𝑧 ∈ X1

ℓ,𝑧 and 𝑣𝐿,𝑧 ∈ X𝑝
𝐿,𝑧 such that

𝑢★𝐿 − 𝑣𝐿 = 𝑣0 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

𝑣ℓ,𝑧 +
∑︁
𝑧∈V𝐿

𝑣𝐿,𝑧

and |||𝑣0 |||2 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2 +
∑︁
𝑧∈V𝐿

|||𝑣𝐿,𝑧 |||2 ≤ 𝐶2
SD |||𝑢★𝐿 − 𝑣𝐿 |||2. (2.45)
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2.5 Proofs

Note that 𝜎ℓ =
ℓ
𝑘=0 𝜆𝑘𝜌𝑘 for all ℓ = 0, . . . , 𝐿; see Algorithm 2A. We use (2.45) to develop

|||𝑢★𝐿 − 𝑣𝐿 |||2 =
⟪
𝑢★𝐿 − 𝑣𝐿 , 𝑣0 +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

𝑣ℓ,𝑧 +
∑︁
𝑧∈V𝐿

𝑣𝐿,𝑧

⟫
(2.9)
(2.10)
= ⟪𝜌0 , 𝑣0⟫ +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

𝑅𝐿 (𝑣ℓ,𝑧) +
∑︁
𝑧∈V𝐿

𝑅𝐿 (𝑣𝐿,𝑧)

(2.11)
= ⟪𝜌0 , 𝑣0⟫+𝐿−1∑︁

ℓ=1

∑︁
𝑧∈V+

ℓ

⟪𝜌ℓ,𝑧 , 𝑣ℓ,𝑧⟫ + ⟪𝜎ℓ−1 , 𝑣ℓ,𝑧⟫
+
∑︁
𝑧∈V𝐿

⟪𝜌𝐿,𝑧 , 𝑣𝐿,𝑧⟫ + ⟪𝜎𝐿−1 , 𝑣𝐿,𝑧⟫ .

Expanding 𝜎ℓ = 𝜌0 + ℓ
𝑘=1 𝜆𝑘𝜌𝑘 and rearranging the terms finally leads to

|||𝑢★𝐿 − 𝑣𝐿 |||2 =
⟪
𝜌0 , 𝑣0 +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

𝑣ℓ,𝑧 +
∑︁
𝑧∈V𝐿

𝑣𝐿,𝑧
⟫ +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

⟪𝜌ℓ,𝑧 , 𝑣ℓ,𝑧⟫
+
∑︁
𝑧∈V𝐿

⟪𝜌𝐿,𝑧 , 𝑣𝐿,𝑧⟫ +
𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟪
𝜆𝑘𝜌𝑘 ,

∑︁
𝑧∈V+

ℓ

𝑣ℓ,𝑧

⟫
+
𝐿−1∑︁
𝑘=1

⟪
𝜆𝑘𝜌𝑘 ,

∑︁
𝑧∈V𝐿

𝑣𝐿,𝑧

⟫
.

Note that, until this point, only equalities are used. In the following, we will estimate each of the
constituting terms of the algebraic error using Young’s inequality in the form 𝑎𝑏 ≤ (𝛼/2) 𝑎2 +
(2𝛼)−1 𝑏2 with 𝛼 = 4𝐶2

SD, the strengthened Cauchy–Schwarz inequality, and patch overlap arguments
as done in the proof of Lemma 2.10. Using the fact that 𝜆0 = 1 and the decomposition of the error
𝑢★𝐿 − 𝑣𝐿 = 𝑣0 + 𝐿−1

ℓ=1 𝑧∈V+
ℓ
𝑣ℓ,𝑧 + 𝑧∈V𝐿

𝑣𝐿,𝑧 , we see that the first term yields

⟪
𝜌0 , 𝑣0 +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

𝑣ℓ,𝑧 +
∑︁
𝑧∈V𝐿

𝑣𝐿,𝑧
⟫(2.45)

= ⟪𝜌0 , 𝑢★𝐿 − 𝑣𝐿⟫ ≤ 1

2
|||𝜆0𝜌0 |||2 + 1

2
|||𝑢★𝐿 − 𝑣𝐿 |||2.

For the second term, we obtain that

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

⟪𝜌ℓ,𝑧 , 𝑣ℓ,𝑧⟫ ≤ 2𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 + 1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2

(2.27)≤ 2𝐶2
SD (𝑑 + 1)

𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 + 1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2,

and similarly for the third term∑︁
𝑧∈V𝐿

⟪𝜌𝐿,𝑧 , 𝑣𝐿,𝑧⟫(2.27)≤ 2𝐶2
SD (𝑑 + 1) 𝜆𝐿

∑︁
𝑧∈V𝐿

|||𝜌𝐿,𝑧 |||2 + 1

8𝐶2
SD

∑︁
𝑧∈V𝐿

|||𝑣𝐿,𝑧 |||2.
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For the fourth term, we have
𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟪
𝜆𝑘𝜌𝑘 ,

∑︁
𝑧∈V+

ℓ

𝑣ℓ,𝑧
⟫(2.38)≤ 𝐶SCS

𝐿−2∑︁
𝑘=1

∑︁
𝑤∈V+

𝑘

|||𝜆𝑘𝜌𝑘,𝑤 |||2
1/2 𝐿−1∑︁

ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2
1/2

≤ 2𝐶2
SCS 𝐶

2
SD

𝐿−2∑︁
𝑘=0

∑︁
𝑤∈V+

𝑘

|||𝜆𝑘𝜌𝑘,𝑤 |||2 + 1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2

(2.27)≤ 2𝐶2
SCS 𝐶

2
SD (𝑑 + 1)

𝐿−2∑︁
𝑘=0

𝜆𝑘

∑︁
𝑤∈V+

𝑘

|||𝜌𝑘,𝑤 |||2 + 1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2.

Finally, to treat the last term where higher-order terms appear together with a sum over levels, we
proceed similarly as in [CNX12, Proof of Theorem 4.8] and obtain

𝐿−1∑︁
𝑘=1

⟪
𝜆𝑘𝜌𝑘 ,

∑︁
𝑧∈V𝐿

𝑣𝐿,𝑧

⟫
=

∑︁
𝑧∈V𝐿

⟪𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘 , 𝑣𝐿,𝑧

⟫
≤ 2𝐶2

SD

∑︁
𝑧∈V𝐿

|||
𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘 |||2𝜔𝐿,𝑧
+ 1

8𝐶2
SD

∑︁
𝑧∈V𝐿

|||𝑣𝐿,𝑧 |||2.

For the first term of the last bound, we have that∑︁
𝑧∈V𝐿

|||
𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘 |||2𝜔𝐿,𝑧
≲ |||

𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘 |||2 =
𝐿−1∑︁
𝑘=1

|||𝜆𝑘𝜌𝑘 |||2 + 2
𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟪𝜆𝑘𝜌𝑘 , 𝜆ℓ𝜌ℓ⟫
(2.38)≤

𝐿−1∑︁
𝑘=1

|||𝜆𝑘𝜌𝑘 |||2 + 2𝐶SCS

𝐿−2∑︁
𝑘=1

∑︁
𝑤∈V+

𝑘

|||𝜆𝑘𝜌𝑘,𝑤 |||2
1/2 𝐿−1∑︁

ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝜆ℓ𝜌ℓ,𝑧 |||2
1/2

(2.27)
(2.26)≤ 1 + 2𝐶SCS (𝑑 + 1)

𝐿−1∑︁
ℓ=1

𝜆ℓ +
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 .

Summing all the estimates of the algebraic error components and defining the constant 𝐶2
rel :=

max{1/2, 𝐶2
SD (𝑑 + 1) 2 + 𝐶2

SCS + 2𝐶SCS (𝑑 + 1)1/2 }, we see that

|||𝑢★𝐿 − 𝑣𝐿 |||2 ≤ 1

2
|||𝜆0𝜌0 |||2 + 1

2
|||𝑢★𝐿 − 𝑣𝐿 |||2 + 4𝐶2

rel

𝐿−1∑︁
ℓ=1

𝜆ℓ
∑︁
𝑧∈V+

ℓ

|||𝜌ℓ,𝑧 |||2 + 𝜆𝐿

∑︁
𝑧∈V𝐿

|||𝜌𝐿,𝑧 |||2

+ 1

4𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈V+

ℓ

|||𝑣ℓ,𝑧 |||2 +
∑︁
𝑧∈V𝐿

|||𝑣𝐿,𝑧 |||2

(2.45)≤ 4𝐶2
rel 𝜂alg(𝑣𝐿)2 + 3

4
|||𝑢★𝐿 − 𝑣𝐿 |||2.

After rearranging the terms, we finally obtain that

|||𝑢★𝐿 − 𝑣𝐿 |||2 ≤ 𝐶2
rel 𝜂alg(𝑣𝐿)2. (2.46)

This proves the upper bound of (2.14) and thus concludes the proof of Theorem 2.4. □
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3 Adaptive FEM with quasi-optimal overall cost
for nonsymmetric linear elliptic PDEs

The sections 3.1–3.7 of this chapter correspond to the publication:
M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid. Adaptive
FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J. Numer.
Anal., 44(3):1560–1596, 2024. doi: 10.1093/imanum/drad039
Unfortunately, there is a minor flaw in the original manuscript [BIM+24a] that, however,
required major adjustments of the analysis. Thus, we present the modified version with the
corrections proposed in:
M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid.
Corrigendum to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear
elliptic PDEs. IMA J. Numer. Anal., 44(3):1903–1909, 2024. doi: 10.1093/imanum/
drad103

3.1 Introduction

The mathematical understanding of optimal adaptivity for finite element methods (AFEMs) has
reached a high level of maturity; see, e.g., [BDD04; Ste07; CKNS08; KS11; CN12; FFP14; CFPP14]
for some contributions to linear PDEs. While the focus is usually on optimal convergence rates
with respect to the degrees of freedom [BDD04; CKNS08; KS11; CN12; FFP14; CFPP14], the
cumulative nature of adaptivity should rather ask for optimal convergence rates with respect to the
overall computational cost, i.e., the overall elapsed computational time. This, usually called optimal
complexity, has been thoroughly analyzed for adaptive wavelet methods [CDD01; CDD03] and it
has also been addressed in the seminal work [Ste07] on AFEM for the Poisson model problem.
Recent works [GHPS21; HPW21; HPSV21] considered optimal complexity for energy minimization
problems and, in particular, for symmetric linear elliptic PDEs. In contrast to this, optimal complexity
for nonsymmetric linear elliptic PDEs remained an open question due to the lack of a contractive
algebraic solver that is compatible with the variational structure of the PDE. Closing this gap is the
topic of the present work. While the canonical candidate for solving the nonsymmetric discrete
systems would be GMRES, we take a different path that is motivated by up-to-date proofs of the
Lax–Milgram lemma and closely related to the Richardson iteration used in the context of optimal
adaptive wavelet methods. Some comments on the challenges presented by GMRES and related
future work are given below.

As a model problem, we consider the nonsymmetric second-order linear elliptic PDE

− div(𝑨∇𝑢★) + 𝒃 · ∇𝑢★ + 𝑐𝑢★ = 𝑓 − div 𝒇 in Ω subject to 𝑢★ = 0 on 𝜕Ω (3.1)

on a polyhedral Lipschitz domain Ω ⊂ R𝑑 with 𝑑 ≥ 1, where 𝑨 ∈ [𝐿∞(Ω)]𝑑×𝑑sym is a symmetric and
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3 Adaptive FEM with quasi-optimal computational cost

uniformly positive definite diffusion matrix, 𝒃 ∈ [𝐿∞(Ω)]𝑑 is a convection coefficient, 𝑐 ∈ 𝐿∞(Ω)
is a reaction coefficient, and 𝑓 ∈ 𝐿2(Ω) and 𝒇 ∈ [𝐿2(Ω)]𝑑 are the given data.
With 𝑏(𝑢, 𝑣) := ⟨𝑨∇𝑢 , ∇𝑣⟩Ω + ⟨𝒃 · ∇𝑢 + 𝑐𝑢 , 𝑣⟩Ω and 𝐹 (𝑣) := ⟨ 𝑓 , 𝑣⟩Ω + ⟨ 𝒇 , ∇𝑣⟩Ω, where ⟨· , ·⟩Ω
denotes the usual 𝐿2(Ω)-scalar product, the weak formulation of (3.1) reads:

Find 𝑢★ ∈ X := 𝐻1
0 (Ω) such that 𝑏(𝑢★, 𝑣) = 𝐹 (𝑣) for all 𝑣 ∈ X. (3.2)

To ensure the existence and uniqueness of 𝑢★ ∈ 𝐻1
0 (Ω), we assume that the bilinear form 𝑏(·, ·) is

continuous and elliptic on 𝐻1
0 (Ω) so that the Lax–Milgram lemma applies.

To discretize (3.2), we employ a conforming finite element method based on a conforming
simplicial triangulation Tℓ of Ω and a fixed polynomial degree 𝑚 ∈ N. With

Xℓ := {𝑣ℓ ∈ 𝐻1
0 (Ω) | 𝑣ℓ |𝑇 is a polynomial of degree ≤ 𝑚, for all 𝑇 ∈ Tℓ}, (3.3)

the finite element formulation reads:

Find 𝑢★ℓ ∈ Xℓ such that 𝑏(𝑢★ℓ , 𝑣ℓ) = 𝐹 (𝑣ℓ) for all 𝑣ℓ ∈ Xℓ . (3.4)

Existence and uniqueness of 𝑢★ℓ follow again from the Lax–Milgram lemma. Note that (3.4) leads to
a nonsymmetric, yet positive definite linear system of equations. To derive an optimal nonsymmetric
algebraic solver, we follow the constructive proof of the Lax–Milgram lemma and reduce the discrete
formulations (3.4) to symmetric problems by employing the so-called Zarantonello symmetrization
(sometimes referred to as Banach–Picard fixed-point iteration). To this end, we define the bilinear
form associated with the principal part of the PDE by

𝑎(𝑢, 𝑣) := ⟨𝑨∇𝑢 , ∇𝑣⟩Ω for all 𝑢, 𝑣 ∈ X. (3.5)

Note that 𝑎(·, ·) is continuous and elliptic on X and consult Section 3.2 for details. For a given
damping parameter 𝛿 > 0, define the Zarantonello mapping Φℓ (𝛿; ·) : Xℓ → Xℓ by

𝑎(Φℓ (𝛿; 𝑢ℓ), 𝑣ℓ) = 𝑎(𝑢ℓ , 𝑣ℓ) + 𝛿 𝐹 (𝑣ℓ) − 𝑏(𝑢ℓ , 𝑣ℓ) for all 𝑣ℓ ∈ Xℓ ; (3.6)

see [Zar60] or [Zei90a, Section 25.4]. The Riesz–Fischer theorem (and also the Lax–Milgram lemma)
proves existence and uniqueness of Φℓ (𝛿; 𝑢ℓ) ∈ Xℓ , i.e., the Zarantonello operator is well-defined.
In particular, 𝑢★ℓ = Φ(𝛿; 𝑢★ℓ ) is the only fixed point of Φ(𝛿; ·) for any 𝛿 > 0. Moreover, choosing 𝛿
suitably small will lead to a contractive method to approximate 𝑢★ℓ in the spirit of the Banach fixed
point theorem with respect to the 𝑎(·, ·)-induced energy norm ⦀𝑣⦀ := 𝑎(𝑣, 𝑣)1/2. At this point, it
thus remains to treat a symmetric, positive definite (SPD) linear system of equations corresponding
to (3.6), that can be solved iteratively in practice for instance by the use of either a conjugate gradient
(CG) method with an optimal preconditioner, see e.g., [CNX12], or an optimal geometric multigrid
(MG) solver, see e.g., [WZ17; IMPS24].

The proposed adaptive strategy of this work, hereafter referred to as AISFEM, begins with
the initial guess 𝑢0,00

:= 𝑢
0, 𝑗

0
:= 𝑢0,★0

:= 0 ∈ X0 associated to a coarse mesh T0. Finite element
approximations 𝑢𝑘, 𝑗ℓ ∈ Xℓ are successively computed, where ℓ ∈ N0 is the mesh-refinement index of
the ℓ-th adaptively refined mesh. More precisely, 𝑢𝑘, 𝑗ℓ is obtained after 𝑗 algebraic solver steps in the
𝑘-th step of the Zarantonello symmetrization approximating the unique 𝑢𝑘,★ℓ

:= Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ) ∈ Xℓ ,
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discretize (ℓ)
(FEM)

discrete problem
with solution u⋆

ℓ

is nonsymmetric

⇒

symmetrize (k)
(Zarantonello)

SPD system
with solution

uk,⋆
ℓ is expensive

⇒

solve algebra
inexactly (j)
(MG/PCG)

computable
approximation

uk,j
ℓ

⇒

adaptive stopping

adaptive stopping

Figure 3.1: Schematic view of the AISFEM algorithm components.

where 𝑢
𝑘−1, 𝑗
ℓ ∈ Xℓ denotes the final approximation of 𝑢𝑘−1,★ℓ when the algebraic solver is adaptively

terminated. In particular, our analysis provides stopping criteria for the algebraic solver as well as the
(perturbed) Zarantonello symmetrization. We give a schematic view of our approach in Figure 3.1;
see Algorithm 3A in Section 3.3 below for the formal statement.

Overall, the adaptive strategy thus leads to a triple index set

Q := {(ℓ, 𝑘, 𝑗) ∈ N3
0 | 𝑢𝑘, 𝑗ℓ is used by the AISFEM Algorithm 3A}, (3.7)

equipped with the natural lexicographic order |·, ·, ·|. This enables us to present the main contributions
of this work: First, in the spirit of [GHPS21; HPSV21], we prove that the quasi-error

Δ𝑘, 𝑗
ℓ

:= ⦀𝑢★ − 𝑢
𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) for all (ℓ, 𝑘, 𝑗) ∈ Q, (3.8)

which is the sum of the overall error plus the algebraic solver error plus the residual error estimator,
is linearly convergent with respect to the order of Q, i.e., |ℓ′, 𝑘 ′, 𝑗 ′ | < |ℓ, 𝑘, 𝑗 | means that 𝑢𝑘

′ , 𝑗′
ℓ′ is

computed earlier than 𝑢
𝑘, 𝑗
ℓ within the (sequential) adaptive loop and |ℓ, 𝑘, 𝑗 | − |ℓ′, 𝑘 ′, 𝑗 ′ | ∈ N0 is the

overall number of discretization, symmetrization, and algebraic solver steps in between. In explicit
terms, Theorem 3.7 proves the existence of constants 𝐶lin > 0 and 0 < 𝑞lin < 1 as well as an index
ℓ0 ∈ N0 such that, for all (ℓ, 𝑘, 𝑗), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q with |ℓ, 𝑘, 𝑗 | > |ℓ′, 𝑘 ′, 𝑗 ′ | and ℓ′ ≥ ℓ0, there holds
that

Δ𝑘, 𝑗
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ |
lin Δ𝑘′ , 𝑗′

ℓ′ . (3.9)

The threshold level ℓ0 ∈ N0 arises from the lack of Galerkin orthogonality with respect to the
𝑎(·, ·)-induced energy norm leading to a more involved analysis. Second, as shown in Corollary 3.8,
this implies that, for any 𝑠 > 0, there holds the equivalence

sup
(ℓ,𝑘, 𝑗 ) ∈Q

(#Tℓ)𝑠 Δ𝑘, 𝑗
ℓ < ∞ ⇐⇒ sup

(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑠
Δ𝑘, 𝑗
ℓ < ∞. (3.10)

The interpretation of (3.10) is that the AISFEM algorithm leads to algebraic convergence rate 𝑠 > 0
with respect to the degrees of freedom (finite left-hand side) if and only if it leads to algebraic
convergence rate 𝑠 with respect to the overall computational cost (finite right-hand side), i.e., with
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3 Adaptive FEM with quasi-optimal computational cost

respect to the computational time. Third, extending available results from the literature [CN12;
FFP14; BHP17], Theorem 3.9 proves that, for sufficiently small adaptivity parameters, the proposed
algorithm has optimal complexity (which follows from optimal rates with respect to the degrees of
freedom and (3.10)). Finally, we admit that the proposed strategy hinges crucially on the appropriate
(sufficiently small) choice of the Zarantonello parameter 𝛿 > 0 in (3.6) as well as on the parameter
𝜆alg > 0 in the stopping criterion for the algebraic solver in Algorithm 3A(i.b.II) below. If these
parameters are chosen too large, the proposed method may fail to converge. Besides this restriction,
linear convergence (3.9) is guaranteed for any choice of the other adaptivity parameters 𝜆sym, 𝜃, 𝐶mark
(see Algorithm 3A below).

Outline

The remainder of the chapter is organized as follows. Section 3.2 focuses on the setting and underlying
assumptions. In Section 3.3, we present the AISFEM algorithm in full detail and highlight some of
its properties. The main results of this work are presented in Section 3.4, the proofs of which are
given in Section 3.5. Numerical experiments in Section 3.6 underline the theoretical results, before
the short Section 3.7 concludes our results and outlines future work. Throughout, 𝐴 ≲ 𝐵 denotes
𝐴 ≤ 𝑐 𝐵 with a generic constant 𝑐 > 0 that is independent of the discretization, but may depend on
all problem parameters. Moreover, 𝐴 ≃ 𝐵 abbreviates 𝐴 ≲ 𝐵 ≲ 𝐴.

3.2 Preliminaries

In this section, we state all prerequisites to formulate the AISFEM algorithm (Algorithm 3A
in Section 3.3 below). In particular, we collect the contraction properties of the Zarantonello
symmetrization, the algebraic solver, the mesh-refinement strategy, and the required properties of the
a posteriori error estimator.

3.2.1 Abstract formulation of the model problem

According to the Rellich compactness theorem [KJF77, Theorem 5.8.2], ⟨K𝑢 , 𝑣⟩ := ⟨𝒃 · ∇𝑢 + 𝑐𝑢 ,
𝑣⟩Ω defines a compact linear operator K : X → X′, where we recall that X′ = 𝐻−1(Ω) is the dual
space of X = 𝐻1

0 (Ω). With this notation, the weak formulation (3.2) takes the more abstract form

𝑏(𝑢★, 𝑣) = 𝑎(𝑢★, 𝑣) + ⟨K𝑢★ , 𝑣⟩ = 𝐹 (𝑣) for all 𝑣 ∈ X. (3.11)

Since 𝑏(·, ·) is continuous and elliptic on X, i.e., there exists 𝛼0 > 0 such that

𝛼0 ∥𝑢∥2X ≤ 𝑏(𝑢, 𝑢) for all 𝑢 ∈ X, (3.12)

a simple compactness argument proves that also the principal part 𝑎(·, ·) is elliptic, i.e., there exists
𝛼′
0 > 0 such that

𝛼′
0 ∥𝑢∥2X ≤ 𝑎(𝑢, 𝑢) for all 𝑢 ∈ X; (3.13)

see, e.g. [BHP17, Remark 3]. In particular, 𝑎(·, ·) is a scalar product on X and the 𝑎(·, ·)-induced
energy norm ⦀𝑣⦀2 = 𝑎(𝑣, 𝑣) is an equivalent norm on X, i.e., ⦀𝑣⦀ ≃ ∥𝑣∥X for all 𝑣 ∈ X.
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Consequently, 𝑏(·, ·) is also elliptic and continuous with respect to ⦀ ·⦀, i.e., there exist (in practice
unknown) constants 0 < 𝛼 ≤ 𝐿 < ∞ such that

𝛼 ⦀𝑢⦀2 ≤ 𝑏(𝑢, 𝑢) and |𝑏(𝑢, 𝑣) | ≤ 𝐿 ⦀𝑢⦀⦀𝑣⦀ for all 𝑢, 𝑣 ∈ X. (3.14)

While this setting already guarantees the Céa-type quasi-optimality of Galerkin solutions𝑢★ℓ ∈ Xℓ ⊂ X
to (3.4), i.e.,

⦀𝑢★ − 𝑢★ℓ ⦀ ≤ 𝐶Céa min
𝑣ℓ ∈Xℓ

⦀𝑢★ − 𝑣ℓ⦀ with 𝐶Céa := 𝐿/𝛼, (3.15)

we recall from [BHP17, Theorem 20] that adaptivity improves the constant 𝐶Céa in the Céa-type
estimate (3.15): If Xℓ ⊆ Xℓ+1 and ⦀𝑢★ − 𝑢★ℓ ⦀ → 0 as ℓ → ∞, then (3.15) holds with a constant
1 ≤ 𝐶ℓ ≤ 𝐿/𝛼 and 𝐶ℓ → 1 as ℓ → ∞.

Remark 3.1. The contractive Zarantonello symmetrization and hence the results of this work
hold in an abstract framework beyond that of the introduction in Section 3.1. More precisely, the
analysis allows for an abstract separable Hilbert space X over K ∈ {R,C} with norm ∥·∥X and a
weak formulation (3.11), where 𝑎(·, ·) is a Hermitian and continuous sesquilinear form on X and
K : X → X′ is a compact linear operator such that 𝑏(·, ·) is elliptic and continuous on X. Provided
that a contractive algebraic solver is used (see Section 3.2.5), the analysis thus also applies to
other boundary conditions (e.g., mixed Dirichlet–Neumann–Robin instead of homogeneous Dirichlet
boundary conditions used in the introduction).

3.2.2 Mesh refinement

From now on, let T0 be a given conforming triangulation of Ω ⊂ R𝑑 with 𝑑 ≥ 1 which is admissible
in the sense of [Ste08] for 𝑑 ≥ 3. For mesh refinement, we employ newest vertex bisection (NVB);
see [AFF+15] for 𝑑 = 1, [Ste08] for 𝑑 ≥ 2 and [KPP13] for 𝑑 = 2 with non-admissible T0. For
each triangulation T𝐻 and marked elements M𝐻 ⊆ T𝐻 , let Tℎ := refine(T𝐻 ,M𝐻) be the coarsest
conforming triangulation where all 𝑇 ∈ M𝐻 have been refined, i.e., M𝐻 ⊆ T𝐻\Tℎ. We write
Tℎ ∈ T(T𝐻) if Tℎ results from T𝐻 by finitely many steps of refinement and, for 𝑁 ∈ N0, we
write Tℎ ∈ T𝑁 (T𝐻) if Tℎ ∈ T(T𝐻) and #Tℎ −#T𝐻 ≤ 𝑁 . To abbreviate notation, let T := T(T0).
Throughout, each triangulation T𝐻 ∈ T is associated with a finite-dimensional finite element space
X𝐻 ⊂ X, see (3.3), and refinement Tℎ ∈ T(T𝐻) implies nestedness X𝐻 ⊆ Xℎ ⊂ X.

Within the setting of AFEM, we will work with a hierarchy {Tℓ}ℓ∈N0 generated by NVB refinements
from the initial mesh T0.

3.2.3 A posteriori error estimator and axioms of adaptivity

For T𝐻 ∈ T, let

𝜂𝐻 (𝑇 ; ·) : X𝐻 → R≥0 for all 𝑇 ∈ T𝐻 (3.16)

be the local contributions of some computable error estimator. We define

𝜂𝐻 (U𝐻 ; 𝑣𝐻) :=
∑︁

𝑇∈ U𝐻

𝜂𝐻 (𝑇 ; 𝑣𝐻)2
1/2

for all U𝐻 ⊆ T𝐻 and 𝑣𝐻 ∈ X𝐻 .
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To abbreviate notation, let 𝜂𝐻 (𝑣𝐻) := 𝜂𝐻 (T𝐻 ; 𝑣𝐻). Furthermore, we suppose that 𝜂𝐻 satisfies the
following axioms of adaptivity from [CFPP14] with constants 𝐶stab, 𝐶rel, 𝐶drel > 0 and 0 < 𝑞red < 1
only depending on the dimension 𝑑, the polynomial degree 𝑚, and shape regularity of T0:
(A1) stability: For all T𝐻 ∈ T and Tℎ ∈ T(T𝐻), all 𝑣ℎ ∈ Xℎ and all 𝑣𝐻 ∈ X𝐻 , and every

U𝐻 ⊆ T𝐻 ∩ Tℎ, it holds that

|𝜂ℎ (U𝐻 , 𝑣ℎ) − 𝜂𝐻 (U𝐻 , 𝑣𝐻) | ≤ 𝐶stab ⦀𝑣ℎ − 𝑣𝐻⦀.
(A2) reduction: For all T𝐻 ∈ T and Tℎ ∈ T(T𝐻), and all 𝑣𝐻 ∈ X𝐻 , it holds that

𝜂ℎ (Tℎ \ T𝐻 , 𝑣𝐻) ≤ 𝑞red 𝜂𝐻 (T𝐻 \ Tℎ, 𝑣𝐻).

(A3) reliability: For all T𝐻 ∈ T, the exact solutions 𝑢★ ∈ X of (3.2) and 𝑢★𝐻 ∈ X𝐻 of (3.4) satisfy
that

⦀𝑢★ − 𝑢★𝐻⦀ ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻).

(A4) discrete reliability: For all T𝐻 ∈ T and Tℎ ∈ T(T𝐻), the corresponding exact discrete
solutions satisfy that

⦀𝑢★ℎ − 𝑢★𝐻⦀ ≤ 𝐶drel 𝜂𝐻 (T𝐻\Tℎ, 𝑢★𝐻).

We note that these axioms (A1)–(A4) are satisfied for the standard residual error estimators; see
Section 3.6 below for the model problem (3.1) from the introduction.

3.2.4 Contractive Zarantonello symmetrization

Recall 0 < 𝛼 ≤ 𝐿 from (3.14). It is well known [Zei90b, Section 25.4] that the Zarantonello mapping
Φ𝐻 (𝛿; ·) introduced in (3.6) is a contraction for sufficiently small 𝛿 > 0, i.e., for 0 < 𝛿 < 2𝛼/𝐿2.
Indeed, for all 𝑢𝐻 , 𝑤𝐻 ∈ X𝐻 , there holds

⦀Φ𝐻 (𝛿; 𝑢𝐻) −Φ𝐻 (𝛿;𝑤𝐻)⦀ ≤ 𝑞 [𝛿] ⦀𝑢𝐻 − 𝑤𝐻⦀ with 𝑞 [𝛿] := 1 − 𝛿(2𝛼 − 𝛿𝐿2) < 1. (3.17)

Theoretically, 𝛿★ := 𝛼/𝐿2 minimizes the expression in (3.17) resulting in 𝑞 [𝛿★] = 1 − 𝛼2/𝐿2; see,
e.g., [HW20b].

3.2.5 Contractive algebraic solver

We assume that we have at hand an iterative algebraic solver with iteration step Ψ𝐻 : X′ ×X𝐻 → X𝐻 .
This means, given a linear and continuous functional 𝐺 ∈ X′ and an approximation 𝑤𝐻 ∈ X𝐻 of the
unique solution 𝑤★

𝐻 ∈ X𝐻 to

𝑎(𝑤★
𝐻 , 𝑣𝐻) = 𝐺 (𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 , (3.18)

the algebraic solver returns an improved Ψ𝐻 (𝐺;𝑤𝐻) ∈ X𝐻 in the sense that there exists a constant
0 < 𝑞ctr < 1, which is independent of 𝐺 and X𝐻 , such that

⦀𝑤★
𝐻 − Ψ𝐻 (𝐺;𝑤𝐻)⦀ ≤ 𝑞ctr ⦀𝑤★

𝐻 − 𝑤𝐻⦀. (3.19)
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To simplify notation when the right-hand side 𝐺 is complicated or lengthy (as for the Zarantonello
iteration (3.6)), we shall write Ψ𝐻 (𝑤★

𝐻 ; ·) instead of Ψ𝐻 (𝐺; ·), even though 𝑤★
𝐻 is unknown and will

never be computed.
In the framework of AFEM, possible examples for such contractive solvers include optimally pre-

conditioned conjugate gradient methods or optimal geometric multigrid methods, see, e.g., [CNX12]
or [WZ17], respectively, for approaches focused on lowest-order discretizations and [IMPS24] for an
optimal multigrid method which is also robust with respect to the polynomial degree.

3.3 Completely adaptive algorithm

In the following, we formulate an inexact adaptive iteratively symmetrized finite element method
(AISFEM) in the spirit of [HPSV21]. For ease of presentation, we make the following conventions:
Algorithm 3A defines certain terminal indices ℓ, 𝑘 [ℓ], 𝑗 [ℓ, 𝑘], indicated by underlining. We shall
omit the arguments of 𝑘 and 𝑗 if these are clear from the context, e.g., we simply write

𝑢
𝑘, 𝑗

ℓ
:= 𝑢

𝑘, 𝑗 [ℓ,𝑘 ]
ℓ and 𝑢

𝑘, 𝑗

ℓ
:= 𝑢

𝑘 [ℓ ], 𝑗 [ℓ,𝑘 [ℓ ] ]
ℓ , etc.

A similar convention will be used for triple indices, e.g., (ℓ, 𝑘, 𝑗) = (ℓ, 𝑘, 𝑗 [ℓ, 𝑘]), etc.

Algorithm 3A: adaptive iteratively symmetrized finite element method (AISFEM)

Input: Initial triangulation T0, initial guess 𝑢0,00
:= 𝑢

0, 𝑗

0
:= 0, marking parameters 0 < 𝜃 ≤ 1

and 𝐶mark ≥ 1, solver parameters 𝜆sym, 𝜆alg > 0, and damping parameter 𝛿 > 0.
Loop: For ℓ = 0, 1, 2, . . . , repeat the following steps (i)–(iv):

(i) For all 𝑘 = 1, 2, 3, . . . , repeat the following steps (a)–(d):

(a) Define 𝑢𝑘,0ℓ
:= 𝑢

𝑘−1, 𝑗
ℓ and, for purely theoretical reasons, 𝑢𝑘,★ℓ

:= Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ).
(b) For all 𝑗 = 1, 2, 3, . . . repeat the following steps (I)–(II):

(I) Compute 𝑢𝑘, 𝑗ℓ
:= Ψℓ (𝑢𝑘,★ℓ ; 𝑢

𝑘, 𝑗−1
ℓ ) and 𝜂ℓ (𝑇 ; 𝑢𝑘, 𝑗ℓ ) for all 𝑇 ∈ Tℓ .

(II) Terminate 𝑗-loop if ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ ≤ 𝜆alg 𝜆sym𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ .

(c) Upon termination of the 𝑗-loop, define 𝑗 [ℓ, 𝑘] := 𝑗 .

(d) Terminate 𝑘-loop if ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ ≤ 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).

(ii) Upon termination of the 𝑘-loop, define 𝑘 [ℓ] := 𝑘 .

(iii) Determine Mℓ ⊆ Tℓ of up to the constant 𝐶mark minimal cardinality satisfying
𝜃 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2 ≤ 𝜂ℓ (Mℓ ; 𝑢

𝑘, 𝑗

ℓ )2.

(iv) Generate Tℓ+1 := refine(Tℓ ,Mℓ) and define 𝑢0,0ℓ+1 := 𝑢
0, 𝑗

ℓ+1 := 𝑢0,★ℓ+1 := 𝑢
𝑘, 𝑗

ℓ .

Output: Discrete approximations 𝑢𝑘, 𝑗ℓ and corresponding error estimators 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).
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Remark 3.2. To give an interpretation of the stopping criteria in Step (i.b.II) and Step (i.d) of
Algorithm 3A, we note the following: Since the algebraic solver is contractive (3.19), the term⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ provides a posteriori error control of the algebraic error ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀, i.e.,

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ ≤ 𝑞ctr

1 − 𝑞ctr
⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀.

Moreover, for sufficiently small 𝜆alg > 0 and ongoing Zarantonello iterations, also the perturbed
Zarantonello symmetrization is a contraction; see Lemma 3.10 below. With the same reasoning as
for the algebraic solver, the term ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ = ⦀𝑢𝑘, 𝑗ℓ − 𝑢𝑘,0ℓ ⦀ thus provides a posteriori error

control of the symmetrization error ⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ ≈ ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ (at least if 1 ≤ 𝑘 < 𝑘 [ℓ]). With this
understanding and the interpretation that the error estimator 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) controls the discretization
error ⦀𝑢★ − 𝑢★ℓ ⦀ (which is indeed true for 𝑢𝑘, 𝑗ℓ = 𝑢

𝑘, 𝑗

ℓ ), the heuristics behind the stopping criteria is
as follows: We stop the algebraic solver in Algorithm 3A(i.b.II) provided that the algebraic error⦀𝑢𝑘,★ℓ −𝑢𝑘, 𝑗ℓ ⦀ is of the level of the discretization error plus the symmetrization error. Moreover, we stop
the (perturbed) Zarantonello symmetrization in Algorithm 3A(i.d) provided that the symmetrization
error ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ is of the level of the discretization error. Up to the factors 𝜆alg and 𝜆sym, this
ensures that all three error sources of ⦀𝑢★ − 𝑢

𝑘, 𝑗

ℓ ⦀ are equibalanced.

For the analysis of Algorithm 3A, we recall that the set Q from (3.7) is given by

Q := {(ℓ, 𝑘, 𝑗) ∈ N3
0 : 𝑢

𝑘, 𝑗
ℓ is used in Algorithm 3A}.

Together with this set, we define

ℓ := sup{ℓ ∈ N0 : (ℓ, 0, 0) ∈ Q} ∈ N0 ∪ {∞}, (3.20a)
𝑘 [ℓ] := sup{𝑘 ∈ N0 : (ℓ, 𝑘, 0) ∈ Q} ∈ N0 ∪ {∞}, whenever (ℓ, 0, 0) ∈ Q, (3.20b)

𝑗 [ℓ, 𝑘] := sup{ 𝑗 ∈ N0 : (ℓ, 𝑘, 𝑗) ∈ Q} ∈ N0 ∪ {∞}, whenever (ℓ, 𝑘, 0) ∈ Q. (3.20c)

Note that these definitions are consistent with that of Algorithm 3A, but also cover the cases that
the ℓ-loop, the 𝑘-loop, or the 𝑗-loop in the algorithm do not terminate, respectively. We note that
formally #Q = ∞ and hence either ℓ = ∞ or 𝑘 [ℓ] = ∞ or 𝑗 [ℓ, 𝑘 [ℓ]] = ∞, where the latter case is
excluded by Lemma 3.3.

On Q, we define a total order by

(ℓ′, 𝑘 ′, 𝑗 ′) ≤ (ℓ, 𝑘, 𝑗) ⇐⇒ 𝑢
𝑘′ , 𝑗′
ℓ′ is computed in Algorithm 3A not later than 𝑢

𝑘, 𝑗
ℓ .

Furthermore, we introduce the total step counter |·, ·, ·|, defined for all (ℓ, 𝑘, 𝑗) ∈ Q, by

|ℓ, 𝑘, 𝑗 | := #{(ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q : (ℓ′, 𝑘 ′, 𝑗 ′) ≤ (ℓ, 𝑘, 𝑗)} ∈ N0. (3.21)

Our first observation is that the algebraic solver in the innermost loop of Algorithm 3A always
terminates.

68



3.3 Completely adaptive algorithm

Lemma 3.3. Independently of the adaptivity parameters 𝜃, 𝜆sym, and 𝜆alg, the 𝑗-loop of Algo-
rithm 3A always terminates, i.e., 𝑗 [ℓ, 𝑘] < ∞ for all (ℓ, 𝑘, 0) ∈ Q.

Proof. Let (ℓ, 𝑘, 0) ∈ Q. We argue by contradiction and assume that the stopping criterion in
Algorithm 3A(i.b.II) always fails and hence 𝑗 [ℓ, 𝑘] = ∞. By assumption (3.19), the algebraic solver

is contractive and hence convergent with limit 𝑢𝑘,★ℓ
:= Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ). Moreover, by failure of the

stopping criterion in Algorithm 3A(i.b.II), we thus obtain that

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ ≲ ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ 𝑗→∞−−−−→ 0.

This yields ⦀𝑢𝑘,★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ = 0. Consequently, 𝑢

𝑘−1, 𝑗
ℓ is a fixed point of Φℓ (𝛿; ·), cf. Algo-

rithm 3A(i.a), and hence 𝑢
𝑘−1, 𝑗
ℓ = 𝑢★ℓ by uniqueness of the fixed point. In particular, the initial guess

𝑢𝑘,0ℓ = 𝑢
𝑘−1, 𝑗
ℓ = 𝑢𝑘,★ℓ is already the exact solution of the linear Zarantonello system and hence the

algebraic solver guarantees that 𝑢𝑘, 𝑗ℓ = 𝑢𝑘,★ℓ for all 𝑗 ∈ N0. Consequently, the stopping criterion in
Algorithm 3A(i.b.II) will be satisfied for 𝑗 = 1. This contradicts our assumption, and hence we
conclude that 𝑗 [ℓ, 𝑘] < ∞. □

Remark 3.4. For the mathematical tractability, we formulated Algorithm 3A in a way that #Q = ∞.
Any practical implementation will aim to provide a sufficiently accurate approximation 𝑢

𝑘, 𝑗
ℓ in finite

time. More precisely, Algorithm 3A will then be terminated after Algorithm 3A(i.b.II) if

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ ≤ 𝜏 (3.22)

where 𝜏 > 0 is a user-specified tolerance. For 𝜏 = 0, finite termination yields that 𝑢
𝑘, 𝑗

ℓ = 𝑢★ with

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) = 0. To see this, note that (3.22) implies 𝑢𝑘,★ℓ = 𝑢
𝑘, 𝑗

ℓ = 𝑢
𝑘, 𝑗−1
ℓ and 𝑢★ℓ = 𝑢

𝑘, 𝑗

ℓ = 𝑢
𝑘−1, 𝑗
ℓ by

uniqueness of the fixed point of the contractive solver and the contractive Zarantonello symmetrization,
respectively. Finally, the first summand in (3.22) states 𝜂ℓ (𝑢★ℓ ) = 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) = 0 and hence

𝑢
𝑘, 𝑗

ℓ = 𝑢★ℓ = 𝑢★ by reliability (A3) of the estimator.

Remark 3.5. Up to the algebraic stopping criterion in Algorithm 3A(i.b.II), the AISFEM algorithm
coincides with the adaptive algorithm from [HPSV21], where the (perturbed) Zarantonello iteration
is employed for an adaptive iteratively linearized finite element method for the solution of an energy
minimization problem with strongly monotone nonlinearity in the corresponding Euler–Lagrange
equations. However, the present analysis is much more refined than that of [HPSV21]:

(i) To guarantee full linear convergence, [HPSV21, Theorem 4] requires 𝜃 sufficiently small, 𝜆sym
sufficiently small with respect to 𝜃, and 𝜆alg sufficiently small with respect to 𝜆sym. In contrast, the
present analysis proves full linear convergence for arbitrary 0 < 𝜃 ≤ 1 and 0 < 𝜆sym ≤ 1, and
only requires 𝜆alg to be sufficiently small to preserve the contraction of the perturbed Zarantonello
iteration (see Lemma 3.10 below in comparison to [HPSV21, Lemma 6]).

(ii) Despite the linear model problem, our analytical setting is more involved: the compact
perturbation in (3.11) prevents the use of energy arguments that guarantee a Pythagorean-type
identity in terms of the energy error (see, e.g., [HPSV21; HPW21]). Instead, we first need to
exploit a priori convergence of Algorithm 3A (see Lemma 3.12) to deduce a quasi-Pythagorean
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estimate in Lemma 3.13, which then allows proving linear convergence (Theorem 3.7). As a
consequence (and beyond the results of [HPSV21]), this finally yields that, for arbitrary 𝜃 and 𝜆sym,
the convergence rates with respect to the number of the degrees of freedom and with respect to the
overall computational work coincide (Corollary 3.8).

The following proposition provides a computable upper bound for the energy error ⦀𝑢★ − 𝑢
𝑘, 𝑗
ℓ ⦀.

Since Algorithm 3A follows the structure of [HPSV21, Algorithm 1], the proof can be obtained
analogously to [HPSV21, Proposition 2] and is thus omitted here.

Proposition 3.6 (reliable error control). Suppose that the estimator satisfies (A1) and (A3). Then,
for all (ℓ, 𝑘, 𝑗) ∈ Q, it holds that

⦀𝑢★ − 𝑢
𝑘, 𝑗
ℓ ⦀ ≤ 𝐶′

rel





𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀

+ ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ if 1 ≤ 𝑘 ≤ 𝑘 [ℓ] and 1 ≤ 𝑗 < 𝑗 [ℓ, 𝑘],

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ if 1 ≤ 𝑘 ≤ 𝑘 [ℓ] and 𝑗 = 𝑗 [ℓ, 𝑘],

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) if 𝑘 = 𝑘 [ℓ] and 𝑗 = 𝑗 [ℓ, 𝑘],
𝜂ℓ−1(𝑢𝑘, 𝑗ℓ−1) if ℓ > 0 and 𝑘 = 0.

(3.23)

The constant 𝐶′
rel > 0 depends only on 𝐶rel, 𝐶stab, 𝑞ctr, 𝜆alg, 𝑞sym, and 𝜆sym.

3.4 Main results

In the following, we formulate the main results of the present work. We refer to Section 3.5 for the
proofs and Section 3.6 for numerical experiments, which underline these theoretical results. First,
recall from (3.17) that a sufficiently small parameter 𝛿 > 0 ensures contraction of the Zarantonello
mapping and hence

⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ for all (ℓ, 𝑘, 0) ∈ Q (3.24)

with 0 < 𝑞sym < 1. The following theorem states full linear convergence of the quasi-error.

Theorem 3.7: full linear convergence of AISFEM
Suppose that 𝛿 > 0 is sufficiently small and that the estimator satisfies (A1)–(A3). Choose
𝜆★alg > 0 depending only on 𝑞ctr from (3.19) and 𝑞sym from (3.24) such that

0 < 𝑞sym :=
𝑞sym + 2 𝑞ctr

1−𝑞ctr
𝜆★alg

1 − 2 𝑞ctr
1−𝑞ctr

𝜆★alg
< 1. (3.25)

Then, for arbitrary 0 < 𝜃 ≤ 1 and 0 < 𝜆sym ≤ 1, there exists 0 < 𝜆′alg ≤ 𝜆★alg such that
Algorithm 3A, for all 0 < 𝜆alg ≤ 𝜆′alg, guarantees full linear convergence: There exist constants
𝐶lin > 0 and 0 < 𝑞lin < 1 as well as an index ℓ0 ∈ N0 with ℓ0 ≤ ℓ such that the quasi-error

Δ𝑘, 𝑗
ℓ

:= ⦀𝑢★ − 𝑢
𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) for all (ℓ, 𝑘, 𝑗) ∈ Q (3.26)
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satisfies that, for all (ℓ, 𝑘, 𝑗), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q with |ℓ, 𝑘, 𝑗 | > |ℓ′, 𝑘 ′, 𝑗 ′ | and ℓ′ ≥ ℓ0,

Δ𝑘, 𝑗
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ |
lin Δ𝑘′ , 𝑗′

ℓ′ . (3.27)

The constants 𝐶lin and 𝑞lin depend only on 𝐶stab, 𝐶rel, 𝑞red, 𝑞sym, 𝑞ctr, 𝜃, 𝜆sym, 𝜆alg, and
𝐶Céa = 𝐿/𝛼, while the index ℓ0 depends on 𝑢★ and the sequence (𝑢★ℓ )ℓ∈N0 .

While the proof of Theorem 3.7 is postponed to Section 3.5.5, we shall immediately prove the
following important consequence of Theorem 3.7: Algorithm 3A guarantees that rates with respect
to the number of degrees of freedom coincide with rates with respect to the overall computational
cost.

Corollary 3.8. Let 𝑠 > 0. Under the assumptions of Theorem 3.7, the output of Algorithm 3A
guarantees that

𝑀 (𝑠) := sup
(ℓ,𝑘, 𝑗 ) ∈Q

ℓ≥ℓ0

(#Tℓ)𝑠 Δ𝑘, 𝑗
ℓ ≤ sup

(ℓ,𝑘, 𝑗 ) ∈Q
ℓ≥ℓ0

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |
ℓ′≥ℓ0

#Tℓ′
𝑠
Δ𝑘, 𝑗
ℓ ≤ 𝐶lin

1 − 𝑞1/𝑠lin
𝑠
𝑀 (𝑠).

(3.28)

This yields the equivalence

sup
(ℓ,𝑘, 𝑗 ) ∈Q

(#Tℓ)𝑠 Δ𝑘, 𝑗
ℓ < ∞ ⇐⇒ sup

(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑠
Δ𝑘, 𝑗
ℓ < ∞. (3.29)

Proof. The lower bound in (3.28) is obvious. To prove the upper bound, without loss of generality,
we may assume that 𝑀 (𝑠) < ∞. By definition of 𝑀 (𝑠), it follows that

#Tℓ′ ≤ 𝑀 (𝑠)1/𝑠 [Δ𝑘′ , 𝑗′
ℓ′ ]−1/𝑠 for (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q with ℓ′ ≥ ℓ0. (3.30)

For |ℓ, 𝑘, 𝑗 | ≥ |ℓ′, 𝑘 ′, 𝑗 ′ | and ℓ′ ≥ ℓ0, full linear convergence (3.27) can be rewritten as

[Δ𝑘′ , 𝑗′
ℓ′ ]−1/𝑠 ≤ 𝐶1/𝑠

lin [𝑞1/𝑠lin ] |ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ | [Δ𝑘, 𝑗
ℓ ]−1/𝑠 . (3.31)

The geometric series yields that∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |
ℓ′≥ℓ0

#Tℓ′
(3.30)≤ 𝑀 (𝑠)1/𝑠

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |
ℓ′≥ℓ0

[Δ𝑘′ , 𝑗′
ℓ′ ]−1/𝑠(3.31)≤ 𝑀 (𝑠)1/𝑠 𝐶1/𝑠

lin
1

1 − 𝑞1/𝑠lin

[Δ𝑘, 𝑗
ℓ ]−1/𝑠 .

Rearranging this estimate, we see that∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |
ℓ′≥ℓ0

#Tℓ′
𝑠
Δ𝑘, 𝑗
ℓ ≤ 𝑀 (𝑠) 𝐶lin

1

1 − 𝑞1/𝑠lin
𝑠
.
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Taking the supremum over all (ℓ, 𝑘, 𝑗) ∈ Q with ℓ ≥ ℓ0, we prove the second estimate in (3.28).
Moreover,

Q\{(ℓ, 𝑘, 𝑗) ∈ Q : ℓ ≥ ℓ0} = {(ℓ, 𝑘, 𝑗) ∈ Q : ℓ < ℓ0} is finite,

i.e., the sets over which we compute the suprema in (3.28)–(3.29) differ only by finitely many index
triples. This and (3.28) thus prove the equivalence in (3.29). □

To present our second main result on quasi-optimal computational cost, we first introduce the
notion of approximation classes. For T ∈ T and 𝑠 > 0, define

∥𝑢★∥A𝑠 (T) := sup
𝑁 ∈N0

𝑁 + 1
𝑠

min
Topt∈T𝑁 (T)

⦀𝑢★ − 𝑢★opt⦀ + 𝜂opt(𝑢★opt) , (3.32)

with 𝑢★opt and 𝜂opt denoting the exact discrete solution and the estimator on the optimal triangulation
Topt ∈ T𝑁 (T ), respectively. When (3.32) is finite, this means that a decrease of the error plus
estimator with rate 𝑠 is possible along optimal meshes obtained by refining T .

Theorem 3.9: optimal computational complexity
Suppose that 𝛿 > 0 is sufficiently small and that the estimator satisfies (A1)–(A4). Let
0 < 𝜃 < 𝜃★ := (1 + 𝐶2

stab 𝐶
2
drel)−1 < 1. Define 𝜆★sym := min{1, 𝐶−1

alg 𝐶
−1
stab}, where

𝐶alg :=
1

1 − 𝑞sym

2 𝑞ctr
1 − 𝑞ctr

𝜆★alg + 𝑞sym . (Calg)

Choose 0 < 𝜆sym < 𝜆★sym sufficiently small such that

0 < 𝜃mark :=
𝜃1/2 + 𝜆sym/𝜆★sym

1 − 𝜆sym/𝜆★sym

2
< 𝜃★. (3.33)

Then, for any 0 < 𝜆alg ≤ 𝜆′alg with 𝜆′alg > 0 from Theorem 3.7, Algorithm 3A guarantees, for all
𝑠 > 0, that

𝑐opt ∥𝑢★∥A𝑠 (T0 ) ≤ sup
(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑠
Δ𝑘, 𝑗
ℓ , (3.34a)

sup
(ℓ,𝑘, 𝑗 ) ∈Q

ℓ≥ℓ0

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |
ℓ′≥ℓ0

#Tℓ′
𝑠
Δ𝑘, 𝑗
ℓ ≤ 𝐶opt max{∥𝑢★∥A𝑠 (Tℓ0 ) ,Δ

0,0
ℓ0

}. (3.34b)

where ℓ0 ∈ N is the index from Theorem 3.7. The constant 𝑐opt > 0 depends only on𝐶Céa = 𝐿/𝛼,
𝐶stab, 𝐶rel, 𝑠, and the use of NVB refinement; the constant 𝐶opt > 0 depends only on 𝐶stab, 𝐶drel,
𝐶mark, 𝐶Céa = 𝐿/𝛼, 𝐶′

rel, 𝐶lin, 𝑞lin, #Tℓ0 , 𝑞red, 𝜆sym, 𝑞sym, 𝜃, 𝑠, and the use of NVB refinement.
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In particular, this proves the equivalence

∥𝑢★∥A𝑠 (T0 ) < ∞ ⇐⇒ sup
(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑠
Δ𝑘, 𝑗
ℓ < ∞, (3.35)

which yields optimal complexity of Algorithm 3A.

The proof is postponed to Section 3.5.6.

3.5 Proofs

3.5.1 Contraction of perturbed Zarantonello symmetrization

Recall that for 𝛿 < 2 𝛿★ = 2𝛼/𝐿2, the Zarantonello mapping is a contraction (3.17). However,
Algorithm 3A does not compute 𝑢𝑘,★ℓ

:= Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ) exactly, but relies on an approximation
𝑢
𝑘, 𝑗

ℓ ≈ 𝑢𝑘,★ℓ . The next lemma states that, for a sufficiently small stopping parameter 𝜆alg > 0 in
Algorithm 3A, the Zarantonello symmetrization remains a contraction under this perturbation (up to
the final iteration). Its proof essentially follows along the lines of [HPSV21, Lemma 6]. However,
the present work considers a stopping criterion of the algebraic solver in Algorithm 3A(i.b.II) which
allows to choose 𝜆alg independently of 𝜆sym.

Lemma 3.10. Let 𝜆★alg > 0 and 0 < 𝑞sym < 1 as in Theorem 3.7. Then, for all stopping parameters
0 < 𝜆alg ≤ 𝜆★alg and 𝜆sym > 0, it holds that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ for all (ℓ, 𝑘, 𝑗) ∈ Q with 1 ≤ 𝑘 < 𝑘 [ℓ] . (3.36)

Moreover, for 𝑘 = 𝑘 [ℓ], it holds that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) for all (ℓ, 𝑘, 𝑗) ∈ Q. (5.1+)

Proof. Let (ℓ, 𝑘, 𝑗) ∈ Q and suppose first that 1 ≤ 𝑘 < 𝑘 [ℓ]. By using the triangle inequality and
the contraction (3.24) of the unperturbed Zarantonello iteration, we obtain that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀(3.24)≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀. (3.37)

It remains to treat the algebraic error term and to show that it is sufficiently contractive. We use the
contraction (3.19) of the algebraic solver, i.e.,⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ ≤ 𝑞ctr ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ for all (ℓ, 𝑘, 𝑗) ∈ Q with 𝑗 ≥ 1, (3.38)

the met algebraic stopping criterion in Algorithm 3A(i.b.II), and the not met stopping criterion in
Algorithm 3A(i.d) to obtain that

⦀𝑢𝑘,★ℓ −𝑢𝑘, 𝑗ℓ ⦀(3.38)≤ 𝑞ctr
1 − 𝑞ctr

⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ (i.b.II)≤ 𝜆alg

𝑞ctr
1 − 𝑞ctr

𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀

(i.d)
< 2𝜆alg

𝑞ctr
1 − 𝑞ctr

⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ ≤ 2𝜆alg

𝑞ctr
1 − 𝑞ctr

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ + ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ .
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Combining the last estimate with (3.37) and rearranging the terms lead us to

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤
𝑞sym + 2𝜆alg

𝑞ctr
1−𝑞ctr

1 − 2𝜆alg
𝑞ctr

1−𝑞ctr

⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ (3.25)≤ 𝑞sym ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀.

This concludes the proof of (3.36).
Now suppose that 𝑘 = 𝑘 [ℓ]. By the met algebraic stopping criterion in Algorithm 3A(i.b.II)

followed by the met stopping criterion of the Zarantonello iteration in Algorithm 3A(i.d), we obtain
that

⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ (i.b.II)≤ 𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ (i.d)≤ 2𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).

Together with the contraction (3.38) of the algebraic solver, this yields that

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ (3.38)≤ 𝑞ctr
1 − 𝑞ctr

⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ ≤ 2 𝑞ctr

1 − 𝑞ctr
𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ). (3.39)

By contraction (3.24) of the unperturbed Zarantonello iteration, we obtain that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢
𝑘,★

ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀
(3.24)≤ 𝑞sym ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).

This concludes also the proof of (5.1+). □

An important consequence of the contraction (3.36) of the perturbed Zarantonello iteration is that
𝑘 [ℓ] = ∞ implies that the exact solution is already discrete 𝑢★ = 𝑢★ℓ ∈ Xℓ .

Lemma 3.11. Suppose that the estimator satisfies stability (A1) and reliability (A3), and that the
perturbed Zarantonello iteration is contractive (3.36). Then, ℓ < ∞ implies that 𝑘 [ℓ] = ∞ as
well as 𝑢★ = 𝑢★ℓ with 𝜂ℓ (𝑢★ℓ ) = 0.

Proof. Since 𝑗 [ℓ, 𝑘] < ∞ by virtue of Lemma 3.3, it follows for ℓ < ∞ that 𝑘 [ℓ] = ∞ and hence by
the not met stopping criterion in Algorithm 3A(i.d) that

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) < 𝜆−1
sym ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ for all 𝑘 ∈ N.

Since the perturbed Zarantonello iteration is convergent (see Lemma 3.10) with limit 𝑢★ℓ (and thus

(𝑢𝑘, 𝑗ℓ )𝑘∈N0 is a Cauchy sequence), we infer that

𝜂ℓ (𝑢★ℓ )
(A1)≤ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + 𝐶stab ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ 𝑘→∞−−−−→ 0.

This proves 𝜂ℓ (𝑢★ℓ ) = 0, whence with reliability (A3), we conclude 𝑢★ℓ = 𝑢★. □

3.5.2 A priori convergence

For general second-order linear elliptic PDEs, an a priori convergence result is required to ensure
that there holds a quasi-Pythagorean estimate; see Lemma 3.13 below.
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3.5 Proofs

Lemma 3.12 (a priori convergence). With ℓ ∈ N0 ∪ {∞} from (3.20), define the discrete limit
space X∞ := 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑛𝑎𝑚𝑒𝑐𝑙𝑜𝑠𝑢𝑟𝑒

ℓ

ℓ=0Xℓ . Then, there exists 𝑢★∞ ∈ X∞ such that

𝑏(𝑢★∞, 𝑣∞) = 𝐹 (𝑣∞) for all 𝑣∞ ∈ X∞, (3.40)

and it holds that

∥𝑢★∞ − 𝑢★ℓ ∥ → 0 as ℓ → ℓ. (3.41)

In particular, this implies 𝑢★ℓ = 𝑢★∞ if ℓ < ∞. Moreover, with 𝐶Céa = 𝐿/𝛼 from (3.15), there holds
the Céa-type estimate

⦀𝑢★∞ − 𝑢★ℓ ⦀ ≤ 𝐶Céa min
𝑣ℓ ∈Xℓ

⦀𝑢★∞ − 𝑣ℓ⦀ for all ℓ ∈ N0 with ℓ ≤ ℓ. (3.42)

Moreover, reliability (A3) implies that

⦀𝑢★∞ − 𝑢★ℓ ⦀ ≤ (𝐶Céa + 1) 𝐶rel 𝜂ℓ (𝑢★ℓ ) for all ℓ ∈ N0 with ℓ ≤ ℓ. (3.43)

Proof. Existence and uniqueness of 𝑢★∞ follow from the Lax–Milgram lemma. Since 𝑢★ℓ ∈ Xℓ ⊆ X∞
is a Galerkin approximation of 𝑢★∞, the Céa lemma (3.15) holds with 𝑢★ being replaced by 𝑢★∞, and
the definition of X∞ proves that

⦀𝑢★∞ − 𝑢★ℓ ⦀ ≤ 𝐶Céa min
𝑣ℓ ∈Xℓ

⦀𝑢★∞ − 𝑣ℓ⦀ ℓ→ℓ−−−→ 0.

Reliability (3.43) follows from the triangle inequality, nestedness of spaces Xℓ ⊆ X∞, and the Céa
lemma (3.15), since

⦀𝑢★∞ − 𝑢★ℓ ⦀ ≤ ⦀𝑢★ − 𝑢★∞⦀ + ⦀𝑢★ − 𝑢★ℓ ⦀ (3.15)≤ (𝐶Céa+1) ⦀𝑢★ − 𝑢★ℓ ⦀ (A3)≤ (𝐶Céa+1) 𝐶rel 𝜂ℓ (𝑢★ℓ ).

This concludes the proof. □

3.5.3 Quasi-Pythagorean estimate

While symmetric PDEs satisfy a Pythagorean identity in the energy norm (with 𝜀 = 0 and ℓ0 = 0
in (3.44) below), the situation is more involved for nonsymmetric PDEs. The following result
generalizes [BHP17, Lemma 18] by considering general 𝑣ℓ ∈ Xℓ and by additionally proving the
lower bound in (3.44). Moreover, it is given here in terms of the a priori limit 𝑢★∞. Although the
proof follows essentially that of [BHP17], we include it for the sake of completeness.

Lemma 3.13 (quasi-Pythagorean estimate). Recall the a priori limit 𝑢★∞ ∈ X∞ from Lemma 3.12
and the compact linear operator K from Section 3.2.1. Then, for all 0 < 𝜀 < 1, there exists an
index ℓ0 ∈ N0 with ℓ0 ≤ ℓ such that, for all ℓ0 ≤ ℓ ≤ ℓ,

1

1 + 𝜀
⦀𝑢★∞ − 𝑣ℓ⦀2 ≤ ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + ⦀𝑢★ℓ − 𝑣ℓ⦀2 ≤ 1

1 − 𝜀
⦀𝑢★∞ − 𝑣ℓ⦀2 for all 𝑣ℓ ∈ Xℓ . (3.44)

Proof. The proof is split into four steps.
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3 Adaptive FEM with quasi-optimal computational cost

Step 1. If ℓ < ∞, Lemma 3.12 proves that 𝑢★∞ = 𝑢★ℓ . We choose ℓ0 = ℓ and obtain that (3.44)
holds with equality and 𝜀 = 0, since ℓ = ℓ and hence 𝑢★∞ = 𝑢★ℓ . Consequently, (3.44) holds also for
all 0 < 𝜀 < 1. Therefore, it only remains to prove (3.44) for ℓ = ∞.

Step 2. Suppose ℓ = ∞. Let ℓ ∈ N0 and 𝑣ℓ ∈ Xℓ . The limit formulation (3.40) yields

⦀𝑢★∞ − 𝑣ℓ⦀2 = ⦀𝑢★∞⦀2 + ⦀𝑣ℓ⦀2 − 2ℜ𝑎(𝑢★∞, 𝑣ℓ) (3.40)
= ⦀𝑢★∞⦀2 + ⦀𝑣ℓ⦀2 − 2ℜ 𝐹 (𝑣ℓ) − ⟨K𝑢★∞ , 𝑣ℓ⟩ .

(3.45)
Analogously, from the discrete formulation (3.4) and the linearity of K, we obtain that

⦀𝑢★ℓ − 𝑣ℓ⦀2 = ⦀𝑢★ℓ ⦀2 + ⦀𝑣ℓ⦀2 − 2ℜ𝑎(𝑢★ℓ , 𝑣ℓ)
(3.4)
= ⦀𝑢★ℓ ⦀2 + ⦀𝑣ℓ⦀2 − 2ℜ 𝐹 (𝑣ℓ) − ⟨K𝑢★ℓ , 𝑣ℓ⟩
= ⦀𝑢★ℓ ⦀2 + ⦀𝑣ℓ⦀2 − 2ℜ 𝐹 (𝑣ℓ) − ⟨K𝑢★∞ , 𝑣ℓ⟩ + ⟨K(𝑢★∞ − 𝑢★ℓ ) , 𝑣ℓ⟩

(3.46)

as well as

𝐹 (𝑢★ℓ )
(3.4)
= 𝑎(𝑢★ℓ , 𝑢★ℓ ) + ⟨K𝑢★ℓ , 𝑢★ℓ ⟩ = ⦀𝑢★ℓ ⦀2 + ⟨K𝑢★ℓ , 𝑢★ℓ ⟩. (3.47)

For 𝑣ℓ = 𝑢★ℓ , we see that

⦀𝑢★∞ − 𝑢★ℓ ⦀2 (3.45)
= ⦀𝑢★∞⦀2 + ⦀𝑢★ℓ ⦀2 − 2ℜ 𝐹 (𝑢★ℓ ) − ⟨K𝑢★∞ , 𝑢★ℓ ⟩

(3.47)
= ⦀𝑢★∞⦀2 − ⦀𝑢★ℓ ⦀2 + 2ℜ⟨K(𝑢★∞ − 𝑢★ℓ ) , 𝑢★ℓ ⟩.

(3.48)

Summing (3.46) and (3.48), we obtain that

⦀𝑢★∞ − 𝑢★ℓ ⦀2 + ⦀𝑢★ℓ − 𝑣ℓ⦀2

= ⦀𝑢★∞⦀2 + ⦀𝑣ℓ⦀2 − 2ℜ 𝐹 (𝑣ℓ) − ⟨K𝑢★∞ , 𝑣ℓ⟩ − ⟨K(𝑢★∞ − 𝑢★ℓ ) , 𝑢★ℓ − 𝑣ℓ⟩
(3.45)
= ⦀𝑢★∞ − 𝑣ℓ⦀2 + 2ℜ⟨K(𝑢★∞ − 𝑢★ℓ ) , 𝑢★ℓ − 𝑣ℓ⟩.

(3.49)

Step 3. We recall from [BHP17, Lemma 17] that the convergence (3.41) of Lemma 3.12 yields
that

𝑒ℓ :=




𝑢★∞ − 𝑢★ℓ⦀𝑢★∞ − 𝑢★ℓ ⦀ if 𝑢★∞ ≠ 𝑢★ℓ ,

0 otherwise

defines a weakly convergent sequence inX∞ with 𝑒ℓ ⇀ 0 as ℓ → ∞. We recall that compact operators
turn weak convergence into norm convergence. With the operator norm ⦀𝜙⦀′ := sup

𝑣∈X∞\{0}
|𝜙(𝑣) |/⦀𝑣⦀

of 𝜙 ∈ X′∞, it thus follows that

|⟨K(𝑢★∞ − 𝑢★ℓ ) , 𝑢★ℓ − 𝑣ℓ⟩| ≤ ⦀K𝑒ℓ⦀′ ⦀𝑢★∞ − 𝑢★ℓ ⦀⦀𝑢★ℓ − 𝑣ℓ⦀ and ⦀K𝑒ℓ⦀′ ℓ→∞−−−−→ 0.

Given 𝜀 > 0, this provides an index ℓ0 ∈ N such that ⦀K𝑒ℓ⦀′ ≤ 𝜀 for all ℓ ≥ ℓ0 and hence

2 |ℜ⟨K(𝑢★∞ − 𝑢★ℓ ) , 𝑢★ℓ − 𝑣ℓ⟩| ≤ 2𝜀 ⦀𝑢★∞ − 𝑢★ℓ ⦀⦀𝑢★ℓ − 𝑣ℓ⦀
≤ 𝜀 ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + ⦀𝑢★ℓ − 𝑣ℓ⦀2 .

(3.50)
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Step 4. Rearranging the identity (3.49) and estimating the compact perturbation via (3.50), we
obtain that ⦀𝑢★∞ − 𝑣ℓ⦀2(3.49)

= ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + ⦀𝑢★ℓ − 𝑣ℓ⦀2 − 2ℜ⟨K(𝑢★∞ − 𝑢★ℓ ) , 𝑢★ℓ − 𝑣ℓ⟩
(3.50)≤ (1 + 𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + ⦀𝑢★ℓ − 𝑣ℓ⦀2 .

This proves the lower estimate in (3.44), and the upper estimate is proved analogously. □

3.5.4 Auxiliary contraction estimates

The following lemma extends [GHPS21, Lemma 10] to the present setting with a quasi-Pythagorean
estimate.

Lemma 3.14 (combined discretization-symmetrization error). Recall the a priori limit 𝑢★∞ ∈ X∞
from Lemma 3.12. Suppose that the estimator satisfies (A1)–(A3). Let 𝜆★alg > 0 and 0 < 𝑞sym < 1

be as in Theorem 3.7. Let 0 < 𝜃 ≤ 1 and 0 < 𝜆sym ≤ 1. Then, there exists 0 < 𝜆′alg ≤ 𝜆★alg such
that for all 0 < 𝜆alg ≤ 𝜆′alg the following holds: There exists an index ℓ0 ∈ N0 with ℓ0 ≤ ℓ and
scalars 𝜈 > 0 and 0 < 𝑞lin < 1 such that

Λ𝑘
ℓ := ⦀𝑢★∞ − 𝑢

𝑘, 𝑗

ℓ ⦀2 + 𝜈 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2 1/2 for all (ℓ, 𝑘, 𝑗) ∈ Q (3.51)

satisfies

Λ𝑘+1
ℓ ≤ 𝑞lin Λ

𝑘
ℓ for all (ℓ, 𝑘 + 1, 𝑗) ∈ Q with ℓ ≥ ℓ0 and 𝑘 + 1 < 𝑘 [ℓ], (3.52a)

Λ0
ℓ+1 ≤ 𝑞lin Λ

𝑘−1
ℓ for all (ℓ + 1, 0, 0) ∈ Q with ℓ ≥ ℓ0. (3.52b)

Proof. Let 0 < 𝜀 < 1 as well as 𝜈, 𝜔 > 0 be free parameters to be fixed below. The proof consists of
seven steps, where most of the work is necessary to prove (3.52b).

Step 1. Lemma 3.13 provides an index ℓ0 = ℓ0(𝜀) such that for all ℓ0 ≤ ℓ ≤ ℓ the quasi-Pythagorean
estimate (3.44) holds true. For (ℓ, 𝑘 + 1, 𝑗) ∈ Q with ℓ0 ≤ ℓ, we get that

(Λ𝑘+1
ℓ )2 = ⦀𝑢★∞ − 𝑢

𝑘+1, 𝑗
ℓ ⦀2 + 𝜈 𝜂ℓ (𝑢𝑘+1, 𝑗ℓ )2

(3.44)≤ (1 + 𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (1 + 𝜀) ⦀𝑢★ℓ − 𝑢
𝑘+1, 𝑗
ℓ ⦀2 + 𝜈 𝜂ℓ (𝑢𝑘+1, 𝑗ℓ )2.

(3.53)

Analogously, for (ℓ + 1, 0, 0) ∈ Q with ℓ ≥ ℓ0, nested iteration 𝑢0,0ℓ+1 = 𝑢
0, 𝑗

ℓ+1 = 𝑢
𝑘, 𝑗

ℓ shows that

(Λ0
ℓ+1)2 = ⦀𝑢★∞ − 𝑢

𝑘, 𝑗

ℓ ⦀2 + 𝜈 𝜂ℓ+1(𝑢𝑘, 𝑗ℓ )2
(3.44)≤ (1 + 𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (1 + 𝜀) ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀2 + 𝜈 𝜂ℓ+1(𝑢𝑘, 𝑗ℓ )2.
(3.54)

Step 2. Define 𝐶1 := 6 (1 +𝐶Céa)2𝐶2
rel and 𝐶2 := 6 (1 +𝐶Céa)2𝐶2

rel 𝐶
2
stab. Then, stability (A1) and

reliability (3.43) prove that, for all 𝑣ℓ ∈ Xℓ ,

3⦀𝑢★∞ − 𝑢★ℓ ⦀2
(3.43)≤ 3 (1 + 𝐶Céa)2𝐶2

rel 𝜂ℓ (𝑢★ℓ )2
(A1)≤ 6 (1 + 𝐶Céa)2𝐶2

rel 𝜂ℓ (𝑣ℓ)2 + 6 (1 + 𝐶Céa)2𝐶2
rel 𝐶

2
stab ⦀𝑢★ℓ − 𝑣ℓ⦀2

= 𝐶1 𝜂ℓ (𝑣ℓ)2 + 𝐶2 ⦀𝑢★ℓ − 𝑣ℓ⦀2.

(3.55)
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Step 3. For (ℓ, 𝑘 + 1, 𝑗) ∈ Q with ℓ ≥ ℓ0 and 𝑘 + 1 < 𝑘 [ℓ], contraction (3.36) of the perturbed
Zarantonello iteration proves that

⦀𝑢𝑘+1, 𝑗ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢
𝑘+1, 𝑗
ℓ ⦀ + ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ (3.36)≤ (1 + 𝑞sym) ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀.
Define 𝐶3 := (1 + 𝑞sym)2. Using this with the not met stopping criterion in Algorithm 3A(i.d) for
(ℓ, 𝑘 + 1, 𝑗) ∈ Q with 𝑘 + 1 < 𝑘 [ℓ] shows that

𝜂ℓ (𝑢𝑘+1, 𝑗ℓ )2 (i.d)
< 𝜆−2

sym⦀𝑢𝑘+1, 𝑗ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀2 ≤ 𝐶3𝜆
−2
sym ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀2. (3.56)

In this case, we are thus led to

(Λ𝑘+1
ℓ )2(3.53)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + 3𝜀 ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (1 + 𝜀) ⦀𝑢★ℓ − 𝑢

𝑘+1, 𝑗
ℓ ⦀2 + 𝜈 𝜂ℓ (𝑢𝑘+1, 𝑗ℓ )2

(3.55)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (𝜈 + 𝜀 𝐶1) 𝜂ℓ (𝑢𝑘+1, 𝑗ℓ )2 + (1 + 𝜀(1 + 𝐶2)) ⦀𝑢★ℓ − 𝑢
𝑘+1, 𝑗
ℓ ⦀2

(3.36)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (𝜈 + 𝜀 𝐶1) 𝜂ℓ (𝑢𝑘+1, 𝑗ℓ )2 + (1 + 𝜀(1 + 𝐶2)) 𝑞2sym ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀2

(3.56)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (𝜈 + 𝜀 𝐶1)𝐶3𝜆
−2
sym + (1 + 𝜀(1 + 𝐶2)) 𝑞2sym ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀2.

Provided that

[𝐼] 𝑞2sym + 𝜈𝐶3𝜆
−2
sym + 𝜀 [𝐶1𝐶3𝜆

−2
sym + (1 + 𝐶2) 𝑞2sym] ≤ 1 − 2𝜀,

the quasi-Pythagorean estimate (3.44) proves that

(Λ𝑘+1
ℓ )2 ≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀2
(3.44)≤ 1 − 2𝜀

1 − 𝜀
⦀𝑢★∞ − 𝑢

𝑘, 𝑗

ℓ ⦀2 ≤ 1 − 2𝜀

1 − 𝜀
(Λ𝑘

ℓ )2.

Up to the choice of the parameters 𝜀 and 𝜈, this proves (3.52a) for any 0 < 𝜆alg ≤ 𝜆★alg.

Step 4. For (ℓ + 1, 0, 0) ∈ Q, stability (A1), reduction (A2), and the Dörfler marking in
Algorithm 3A(iii) yield that

𝜂ℓ+1(𝑢𝑘, 𝑗ℓ )2 = 𝜂ℓ+1(Tℓ+1 ∩ Tℓ ; 𝑢𝑘, 𝑗ℓ )2 + 𝜂ℓ+1(Tℓ+1\Tℓ ; 𝑢𝑘, 𝑗ℓ )2
(A1)
= 𝜂ℓ (Tℓ+1 ∩ Tℓ ; 𝑢𝑘, 𝑗ℓ )2 + 𝜂ℓ+1(Tℓ+1\Tℓ ; 𝑢𝑘, 𝑗ℓ )2

(A2)≤ 𝜂ℓ (Tℓ+1 ∩ Tℓ ; 𝑢𝑘, 𝑗ℓ )2 + 𝑞2red 𝜂ℓ (Tℓ\Tℓ+1; 𝑢
𝑘, 𝑗

ℓ )2

= 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2 − (1 − 𝑞2red) 𝜂ℓ (Tℓ\Tℓ+1; 𝑢
𝑘, 𝑗

ℓ )2

≤ 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2 − (1 − 𝑞2red) 𝜂ℓ (Mℓ ; 𝑢
𝑘, 𝑗

ℓ )2 ≤ [1 − (1 − 𝑞2red) 𝜃] 𝜂ℓ (𝑢
𝑘, 𝑗

ℓ )2 =: 𝑞𝜃 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2,

(3.57)

where 0 < 𝑞𝜃 < 1 by definition.

Step 5. Let (ℓ + 1, 0, 0) ∈ Q. With stability (A1), we infer from (5.1+) that

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) (A1)≤ 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ ) + 𝐶stab ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀

(5.1+)≤ 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ ) + 𝐶stab(1 + 𝑞sym) ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝐶stab 𝜆alg𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).
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3.5 Proofs

For sufficiently small 0 < 𝜆alg ≤ 𝜆★alg with, e.g., 2 𝑞ctr
1−𝑞ctr

𝐶stab 𝜆alg𝜆sym ≤ 1/2, we thus derive

𝜂ℓ (𝑢𝑘, 𝑗ℓ ) ≤ 1

1 − 2 𝑞ctr
1−𝑞ctr

𝐶stab 𝜆alg𝜆sym
𝜂ℓ (𝑢𝑘−1, 𝑗ℓ ) + 𝐶stab(1 + 𝑞sym)

1 − 2 𝑞ctr
1−𝑞ctr

𝐶stab 𝜆alg𝜆sym
⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀.

Define 𝐶4 := 𝐶2
stab(1 + 𝑞sym)2 and 𝐶 (𝜆) := 1− 2 𝑞ctr

1−𝑞ctr
𝐶stab 𝜆alg𝜆sym

−2 with 𝜆 = 𝜆alg𝜆sym, where we
already note that 𝐶 (𝜆) → 1 is (strictly) monotonically decreasing as 𝜆 → 0. Stability (A1) and the
Young inequality in the form (𝑎 + 𝑏)2 ≤ (1 + 𝜔)𝑎2 + (1 + 𝜔−1)𝑏2 for 𝑎, 𝑏 ∈ R and 𝜔 > 0 show that

𝜂ℓ (𝑢𝑘, 𝑗ℓ )2 ≤ 𝐶 (𝜆) (1 + 𝜔) 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2 + (1 + 𝜔−1) 𝐶4 ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀2 . (3.58)

Step 6. For (ℓ + 1, 0, 0) ∈ Q with ℓ ≥ ℓ0, we have that

(Λ0
ℓ+1)2

(3.54)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (1 + 𝜀) ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀2 + 3𝜀 ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + 𝜈 𝜂ℓ+1(𝑢𝑘, 𝑗ℓ )2
(3.57)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (1 + 𝜀) ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀2 + 3𝜀 ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + 𝜈𝑞 𝜃 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2
(3.55)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + (1 + 𝜀) ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀2 + 𝜀 𝐶2 ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀2

+ 𝜀 𝐶1 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2 + 𝜈𝑞𝜃 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2
(5.1+)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + 𝜀 𝐶2 + (1 + 𝜀)2𝑞2sym ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀2

+ 𝜀 𝐶1 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2 + 𝑞𝜃 + 𝜈−1 (1 + 𝜀) (1 + 𝜀−1) 2 𝑞ctr
1 − 𝑞ctr

2
𝜆2alg𝜆

2
sym 𝜈 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2.

With 𝐶𝜀 := (1 + 𝜀) (1 + 𝜀−1) 2 𝑞ctr
1−𝑞ctr

2, we get

(Λ0
ℓ+1)2 ≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + 𝜀 𝐶2 + (1 + 𝜀)2𝑞2sym ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀2

+ 𝜀 𝐶1 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2 + 𝑞𝜃 + 𝐶𝜀𝜈
−1 𝜆2alg𝜆

2
sym 𝜈 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2.

(3.58)≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + 𝜀 𝐶2 + (1 + 𝜀)2𝑞2sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀2

+ 𝜀 𝐶1 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2

+ 𝑞𝜃 + 𝐶𝜀𝜈
−1 𝜆2alg𝜆

2
sym 𝜈 𝐶 (𝜆) (1 + 𝜔) 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2 + (1 + 𝜔−1) 𝐶4 ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀2

= (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2

+ 𝜀 𝐶2 + (1 + 𝜀)2𝑞2sym + (1 + 𝜔−1) 𝐶4𝐶 (𝜆) 𝑞𝜃 + 𝐶𝜀𝜈
−1 𝜆2alg𝜆

2
sym 𝜈 ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀2

+ (1 + 𝜔)𝐶 (𝜆) 𝑞𝜃 + 𝐶𝜀𝜈
−1 𝜆2alg𝜆

2
sym + 𝜀 𝐶1𝜈

−1 𝜈 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2.

Provided that

[𝐼𝐼] (1 + 𝜀)2𝑞2sym + 𝐶 (𝜆) (1 + 𝜔−1) 𝐶4 𝑞𝜃 + 𝐶𝜀𝜈
−1 𝜆2alg𝜆

2
sym 𝜈 + 𝜀 𝐶2 ≤ 1 − 2𝜀,

[𝐼𝐼𝐼] 𝐶 (𝜆) (1 + 𝜔)𝑞𝜃 + (1 + 𝜔)𝐶𝜀𝜈
−1 𝜆2alg𝜆

2
sym + 𝜀𝐶1𝜈

−1 ≤ 1 − 2𝜀,
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the quasi-Pythagorean estimate (3.44) shows that

(Λ0
ℓ+1)2 ≤ (1 − 2𝜀) ⦀𝑢★∞ − 𝑢★ℓ ⦀2 + ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀2 + 𝜈 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2

(3.44)≤ 1 − 2𝜀

1 − 𝜀
⦀𝑢★∞ − 𝑢

𝑘−1, 𝑗
ℓ ⦀2 + (1 − 2𝜀)𝜈 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )2 ≤ 1 − 2𝜀

1 − 𝜀
(Λ𝑘−1

ℓ )2.
This proves (3.52b) up to the choice of the parameters 𝜔, 𝜈, and 𝜀 in the following step.

Step 7. A suitable choice of the parameters 𝜔, 𝜈, and 𝜀 can be obtained as follows:

• first, we choose 𝜔 such that (1 + 𝜔)𝑞𝜃 < 1;

• second, we choose 𝜈 such that 𝑞2sym + 𝜈𝐶3𝜆
−2
sym < 1 and 𝑞2sym + (1 + 𝜔−1)𝐶4𝜈 ≤ 1;

• third, we choose 𝜀 > 0 sufficiently small such that
• 𝑞2sym + 𝜈𝐶3𝜆

−2
sym + 𝜀 [𝐶1𝐶3𝜆

−2
sym + (1 + 𝐶2) 𝑞2sym] ≤ 1 − 2𝜀,

• (1 + 𝜀)2𝑞2sym + (1 + 𝜔−1)𝐶4𝑞𝜃𝜈 + 𝜀 𝐶2 < 1 − 2𝜀,
• (1 + 𝜔)𝑞𝜃 + 𝜀𝐶1𝜈

−1 < 1 − 2𝜀;
in particular, constraint [𝐼] from Step 3 is satisfied;

• finally, we note that 𝐶 (𝜆) → 1 monotonically as 𝜆 = 𝜆alg𝜆sym → 0. Hence, we can choose
0 < 𝜆′alg ≤ min 𝜆★alg,

1−𝑞ctr
4𝑞ctr𝐶stab

𝜆−1
sym sufficiently small such that also the constraints [𝐼𝐼] and

[𝐼𝐼𝐼] from Step 6 are satisfied for all 0 < 𝜆alg ≤ 𝜆′alg.

This concludes the proof with 𝑞2lin :=
1 − 2𝜀

1 − 𝜀
< 1 for any 0 < 𝜆alg ≤ 𝜆′alg. □

3.5.5 Proof of Theorem 3.7

The proof is split into five steps. For (ℓ, 𝑘, 𝑗) ∈ Q, we consider

Δ𝑘, 𝑗
ℓ = ⦀𝑢★∞ − 𝑢

𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ ),

Λ𝑘
ℓ

(3.51)
= ⦀𝑢★∞ − 𝑢

𝑘, 𝑗

ℓ ⦀2 + 𝜈 𝜂ℓ (𝑢𝑘, 𝑗ℓ )2 1/2
,

(3.59)

where, compared with (3.26), the quasi-error Δ𝑘, 𝑗
ℓ has been redefined. Later, we shall conclude that

indeed 𝑢★∞ = 𝑢★ so that both definitions coincide.

Step 1. In the first step, we prove that

Δ𝑘, 𝑗
ℓ ≲ ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ for all (ℓ, 𝑘, 𝑗) ∈ Q with 1 ≤ 𝑘 ≤ 𝑘 [ℓ] and 1 ≤ 𝑗 < 𝑗 [ℓ, 𝑘] . (3.60)

Together with reliability (3.43) and stability (A1), the definition of Δ𝑘, 𝑗
ℓ shows that

Δ𝑘, 𝑗
ℓ

(3.59)
= ⦀𝑢★∞ − 𝑢

𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ )

≤ ⦀𝑢★∞ − 𝑢★ℓ ⦀ + ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ )

(3.43)≤ (𝐶Céa + 1)𝐶rel 𝜂ℓ (𝑢★ℓ ) + ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ )

(A1)
≲ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀.
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The contraction of the (unperturbed) Zarantonello iteration (3.24) proves that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀(3.24)≤ 𝑞sym

1 − 𝑞sym
⦀𝑢𝑘,★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀

≲ ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀.

Furthermore, the contraction of the algebraic solver (3.38) proves that

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀(3.38)≤ 𝑞ctr

1 − 𝑞ctr
⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀.

Combining the last three estimates with the not met stopping criterion of the algebraic solver in
Algorithm 3A(i.b.II) for 1 ≤ 𝑗 < 𝑗 [ℓ, 𝑘], we conclude that

Δ𝑘, 𝑗
ℓ ≲ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ (i.b.II)

≲ ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀.

Finally, the triangle inequality and the contraction (3.38) imply (3.60).
Step 2. Next, we show that

Δ
𝑘, 𝑗

ℓ ≲ Δ𝑘, 𝑗
ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q, (3.61)

which is trivial for 𝑗 = 𝑗 [ℓ, 𝑘]. To deal with 𝑗 = 𝑗 [ℓ, 𝑘] − 1, note that the definition of Δ𝑘, 𝑗
ℓ shows

that

Δ
𝑘, 𝑗

ℓ

(3.59)
= ⦀𝑢★∞ − 𝑢

𝑘, 𝑗

ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ )
≤ ⦀𝑢★∞ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ + 2⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).

Stability (A1) and the algebraic solver contraction (3.38) lead us to

2⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ )(A1)≤ (2 + 𝐶stab) ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗−1ℓ )

(3.38)≤ (2 + 𝐶stab) (1 + 𝑞ctr) ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗−1ℓ ).

Combining the last two estimates verifies (3.61) for 𝑗 = 𝑗 [ℓ, 𝑘] − 1, i.e.,

Δ
𝑘, 𝑗

ℓ ≲ ⦀𝑢★∞ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗−1ℓ ) (3.59)

= Δ
𝑘, 𝑗−1
ℓ . (3.62)

We prove the remaining case 𝑗 < 𝑗 [ℓ, 𝑘] − 1 by (3.60) from Step 1 and the algebraic solver
contraction (3.38), i.e.,

Δ
𝑘, 𝑗

ℓ

(3.62)
≲ Δ

𝑘, 𝑗−1
ℓ

(3.60)
≲ ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗−2
ℓ ⦀ (3.38)≤ 𝑞

( 𝑗 [ℓ,𝑘 ]−2)− 𝑗

ctr ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ ≤ Δ𝑘, 𝑗

ℓ .

This concludes the proof of (3.61).
Step 3. In this step, we prove that

Λ0
ℓ ≃ Δ0,0

ℓ = Δ
0, 𝑗

ℓ and Λ𝑘
ℓ ≲ Δ

𝑘, 𝑗

ℓ

(3.61)
≲ Δ𝑘,0

ℓ ≲ Λ𝑘−1
ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q with 𝑘 ≥ 1. (3.63)
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Together with 𝑢0,★ℓ = 𝑢
0, 𝑗

ℓ = 𝑢0,0ℓ , the definition of Λ0
ℓ and Δ0,0

ℓ proves that Λ0
ℓ ≃ Δ0,0

ℓ = Δ
0, 𝑗

ℓ as
well as Λ𝑘

ℓ ≲ Δ
𝑘, 𝑗

ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q, where the hidden constants depend only on 𝜈. Together
with (3.61) from Step 2, it thus only remains to prove Δ𝑘,0

ℓ ≲ Λ𝑘−1
ℓ for 𝑘 ≥ 1.

To this end, let (ℓ, 𝑘, 𝑗) ∈ Q with 𝑘 ≥ 1. From contraction (3.24) of the unperturbed Zarantonello

symmetrization and nested iteration 𝑢𝑘,0ℓ = 𝑢
𝑘−1, 𝑗
ℓ , we get that

Δ𝑘,0
ℓ = ⦀𝑢★∞ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ )

(3.24)≤ ⦀𝑢★∞ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + (1 + 𝑞sym) ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ ).

The Céa lemma (3.42) proves that

⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ ≤ ⦀𝑢★∞ − 𝑢★ℓ ⦀ + ⦀𝑢★∞ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ (3.42)

≲ ⦀𝑢★∞ − 𝑢
𝑘−1, 𝑗
ℓ ⦀.

Combining the last two estimates, we arrive at

Δ𝑘,0
ℓ ≲ ⦀𝑢★∞ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ ) ≃ Λ𝑘−1

ℓ .

This concludes the proof of (3.63).
Step 4. In this step, we prove that

𝑗 [ℓ,𝑘 ]∑︁
𝑗′= 𝑗

Δ𝑘, 𝑗′
ℓ ≲ Δ

𝑘, 𝑗

ℓ + Δ𝑘, 𝑗
ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q. (3.64)

According to the right-hand side of (3.64), it remains to consider the sum for 𝑗 ′ = 𝑗+1, . . . , 𝑗 [ℓ, 𝑘]−1.
With (3.60) and contraction (3.38) of the algebraic solver, we get that

𝑗 [ℓ,𝑘 ]−1∑︁
𝑗′= 𝑗+1

Δ𝑘, 𝑗′
ℓ

(3.60)
≲

𝑗 [ℓ,𝑘 ]−1∑︁
𝑗′= 𝑗+1

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗′−1
ℓ ⦀ (3.38)≤ ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ 𝑗 [ℓ,𝑘 ]−2∑︁

𝑗′= 𝑗
𝑞
𝑗′− 𝑗
ctr .

With the geometric series and ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ ≤ Δ𝑘, 𝑗

ℓ , this concludes the proof of (3.64).
Step 5. For (ℓ, 𝑘, 𝑗) ∈ Q with ℓ ≥ ℓ0, the preceding steps show that∑︁

(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q
(ℓ′ ,𝑘′ , 𝑗′ )> (ℓ,𝑘, 𝑗 )

Δ𝑘′ , 𝑗′
ℓ′ =

𝑗 [ℓ,𝑘 ]∑︁
𝑗′= 𝑗+1

Δ𝑘, 𝑗′
ℓ +

∑︁
(ℓ′ ,𝑘′ ,0) ∈Q

(ℓ′ ,𝑘′ ,0)> (ℓ,𝑘,0)

𝑗 [ℓ′ ,𝑘′ ]∑︁
𝑗′=0

Δ𝑘′ , 𝑗′
ℓ′

(3.64)
≲ Δ

𝑘, 𝑗

ℓ + Δ𝑘, 𝑗
ℓ +

∑︁
(ℓ′ ,𝑘′ ,0) ∈Q

(ℓ′ ,𝑘′ ,0)> (ℓ,𝑘,0)

Δ
𝑘′ , 𝑗
ℓ′ + Δ𝑘′ ,0

ℓ′
(3.61)
≲ Δ𝑘, 𝑗

ℓ +
∑︁

(ℓ′ ,𝑘′ ,0) ∈Q
(ℓ′ ,𝑘′ ,0)> (ℓ,𝑘,0)

Δ𝑘′ ,0
ℓ′ .

With linear convergence (3.52) of Λ𝑘
ℓ from Lemma 3.14 and the geometric series, we thus see that∑︁

(ℓ′ ,𝑘′ ,0) ∈Q
(ℓ′ ,𝑘′ ,0)> (ℓ,𝑘,0)

Δ𝑘′ ,0
ℓ′ =

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

Δ𝑘′ ,0
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ′ ]∑︁
𝑘′=0

Δ𝑘′ ,0
ℓ′

(3.63)
≲

𝑘 [ℓ ]−1∑︁
𝑘′=𝑘

Λ𝑘′
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ′ ]−1∑︁
𝑘′=0

Λ𝑘′
ℓ′

(3.52)
≲ Λ𝑘

ℓ + Λ0
ℓ+1 ≤ 2Λ𝑘

ℓ

(3.63)
≲ Δ

𝑘, 𝑗

ℓ

(3.61)
≲ Δ𝑘, 𝑗

ℓ .
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Altogether, this proves that∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

(ℓ′ ,𝑘′ , 𝑗′ )> (ℓ,𝑘, 𝑗 )

Δ𝑘′ , 𝑗′
ℓ′ ≤ 𝐶sum Δ𝑘, 𝑗

ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q.

According to basic calculus (see, e.g., [CFPP14, Lemma 4.9]), this is equivalent to linear convergence
with respect to the lexicographic order on Q, i.e., for all (ℓ, 𝑘, 𝑗), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q with |ℓ′, 𝑘 ′, 𝑗 ′ | ≤
|ℓ, 𝑘, 𝑗 | and ℓ′ ≥ ℓ0, it holds that

Δ𝑘, 𝑗
ℓ ≤ 𝐶lin 𝑞

|ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ |
lin Δ𝑘′ , 𝑗′

ℓ′ ,

where the constants 𝐶lin > 0 and 0 < 𝑞lin < 1 depend only on 𝐶sum. This also yields that

⦀𝑢★ − 𝑢★ℓ ⦀ (A3)
≲ 𝜂ℓ (𝑢★ℓ )

(A1)
≲ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ ≤ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢★∞ − 𝑢

𝑘, 𝑗
ℓ ⦀ + ⦀𝑢★∞ − 𝑢★ℓ ⦀

(3.42)
≲ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢★∞ − 𝑢

𝑘, 𝑗
ℓ ⦀ → 0 as |ℓ, 𝑘, 𝑗 | → ∞

and hence 𝑢★∞ = 𝑢★. In particular, the definitions of Δ𝑘, 𝑗
ℓ from (3.26) and (3.59) coincide. Overall,

we thus conclude the proof of linear convergence (3.27). □

3.5.6 Proof of Theorem 3.9

The proof of Theorem 3.9 requires the following auxiliary lemma stating that the error estimator
𝜂ℓ (𝑢𝑘, 𝑗ℓ ) of the inexact but available final iterate of Algorithm 3A is equivalent to the error estimator
𝜂ℓ (𝑢★ℓ ) of the (unknown) exact solution 𝑢★ℓ . While the statement is similar to [HPSV21, Lemma 7],
the present proof provides a minor clarification of the involved constant.

Lemma 3.15. Recall 𝐶alg > 0 from (Calg) and 𝜆★alg > 0 from Theorem 3.7. Then, for all
0 < 𝜃 ≤ 1, 0 < 𝜆alg ≤ 𝜆★alg, 0 < 𝜆sym < 𝜆★sym = min{1, 𝐶−1

stab𝐶
−1
alg }, and all (ℓ, 𝑘, 𝑗) ∈ Q, it holds

that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 𝐶alg 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ). (3.65)

Moreover, there holds equivalence

1 − 𝜆sym/𝜆★sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) ≤ 𝜂ℓ (𝑢★ℓ ) ≤ 1 + 𝜆sym/𝜆★sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ). (3.66)

Proof. The proof consists of two steps.

Step 1. Recall from (5.1+) that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ (5.1+)≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).

The stopping criterion in Algorithm 3A(i.d) proves that

⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ (i.d)≤ ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ + 𝜆sym𝜂ℓ (𝑢𝑘, 𝑗ℓ ).
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Combining these estimates with 0 < 𝜆alg ≤ 𝜆★alg, we prove (3.65), since

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 1

1 − 𝑞sym

2 𝑞ctr
1 − 𝑞ctr

𝜆alg + 𝑞sym 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) ≤ 𝐶alg𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).

Step 2. With the definition 𝜆★sym = min{1, 𝐶−1
stab𝐶

−1
alg }, stability (A1) and (3.65) show

𝜂ℓ (𝑢★ℓ )
(A1)≤ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + 𝐶stab ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀(3.65)≤ 1 + 𝐶stab 𝐶alg𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ )
≤ 1 + 𝜆sym/𝜆★sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ).

If 0 < 𝜆sym < 𝜆★sym, the analogous argument also proves the converse inequality

1 − 𝜆sym/𝜆★sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) ≤ 𝜂ℓ (𝑢★ℓ ). (3.67)

This concludes the proof. □

Proof of Theorem 3.9. It is sufficient to show that

∥𝑢★∥A𝑠 (T0 ) ≲ sup
(ℓ,𝑘, 𝑗 ) ∈Q

(#Tℓ)𝑠 Δ𝑘, 𝑗
ℓ , (3.68a)

sup
(ℓ,𝑘, 𝑗 ) ∈Q

ℓ≥ℓ0

(#Tℓ)𝑠 Δ𝑘, 𝑗
ℓ ≲ max{∥𝑢★∥A𝑠 (Tℓ0 ) ,Δ

0,0
ℓ0

}. (3.68b)

Then, (3.34b) follows from (3.68b) and Corollary 3.8. We split the proof into six steps.

Step 1. We first show (3.68a) for the case ℓ = ∞. Algorithm 3A ensures that #Tℓ → ∞ as
ℓ → ∞. We recall that in NVB refinement an element is split into at least two but at most 𝐶child
child elements. In particular, for all ℓ ≥ 0, we have that

#Tℓ+1 ≤ 𝐶child #Tℓ . (3.69)

For any given 𝑁 ∈ N, we can argue similarly as in the proof of [CFPP14, Proposition 4.15]. Choose
the maximal index ℓ′ ∈ N0 such that #Tℓ′ −#T0 ≤ 𝑁 . The maximality of ℓ′ leads us to

𝑁 + 1 < #Tℓ′+1 −#T0 + 1 ≤ #Tℓ′+1
(3.69)≤ 𝐶child #Tℓ′ . (3.70)

Since Tℓ′ ∈ T𝑁 (T0), we have that

min
Topt∈T𝑁 (T0 )

⦀𝑢★ − 𝑢★opt⦀ + 𝜂opt(𝑢★opt) ≤ ⦀𝑢★ − 𝑢★ℓ′⦀ + 𝜂ℓ′ (𝑢★ℓ′), (3.71)

and stability (A1) and the Céa lemma (3.15) show, for (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q, that

⦀𝑢★ − 𝑢★ℓ′⦀ + 𝜂ℓ′ (𝑢★ℓ′)
(A1)≤ ⦀𝑢★ − 𝑢★ℓ′⦀ + 𝜂ℓ′ (𝑢𝑘

′ , 𝑗′
ℓ′ ) + 𝐶stab ⦀𝑢★ℓ′ − 𝑢

𝑘′ , 𝑗′
ℓ′ ⦀

≤ (1 + 𝐶stab)⦀𝑢★ − 𝑢★ℓ′⦀ + 𝜂ℓ′ (𝑢𝑘
′ , 𝑗′

ℓ′ ) + 𝐶stab ⦀𝑢★ − 𝑢
𝑘′ , 𝑗′
ℓ′ ⦀

(3.15)≤ 𝐶Céa (1 + 𝐶stab) + 𝐶stab ⦀𝑢★ − 𝑢
𝑘′ , 𝑗′
ℓ′ ⦀ + 𝜂ℓ′ (𝑢𝑘

′ , 𝑗′
ℓ′ )

≤ 𝐶Céa (1 + 𝐶stab) + 𝐶stab Δ𝑘′ , 𝑗′
ℓ′ . (3.72)
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A combination of the previous estimates leads us to

𝑁 + 1
𝑠

min
Topt∈T𝑁 (T0 )

⦀𝑢★ − 𝑢★opt⦀ + 𝜂opt(𝑢★opt)
(3.71)≤ 𝑁 + 1

𝑠 ⦀𝑢★ − 𝑢★ℓ′⦀ + 𝜂ℓ′ (𝑢★ℓ′)
(3.70)≤ 𝐶𝑠

child #Tℓ′ 𝑠 ⦀𝑢★ − 𝑢★ℓ′⦀ + 𝜂ℓ′ (𝑢★ℓ′)
(3.72)
≲ #Tℓ′ 𝑠Δ𝑘′ , 𝑗′

ℓ′ ≤ sup
(ℓ,𝑘, 𝑗 ) ∈Q

#Tℓ 𝑠 Δ𝑘, 𝑗
ℓ .

Finally, taking the supremum over all 𝑁 yields the sought result

∥𝑢★∥A𝑠 (T0 ) ≲ sup
(ℓ,𝑘, 𝑗 ) ∈Q

#Tℓ 𝑠 Δ𝑘, 𝑗
ℓ .

Step 2. We proceed to show (3.68a) for the case ℓ < ∞. Recall from Lemma 3.11 that 𝜂ℓ (𝑢★ℓ ) = 0

and 𝑢★ℓ = 𝑢★. Without loss of generality, we may assume ℓ > 0, since otherwise ∥𝑢★∥A𝑠 (T0 ) = 0.
Combined with reliability (A3), this yields that

∥𝑢★∥A𝑠 (T0 )
(3.32)
= sup

𝑁 ∈N0

𝑁 + 1
𝑠

min
Topt∈T𝑁 (T0 )

⦀𝑢★ − 𝑢★opt⦀ + 𝜂opt(𝑢★opt)
(A3)≤ (1 + 𝐶rel) sup

0≤𝑁<#Tℓ−#T0
(𝑁 + 1)𝑠 min

Topt∈T𝑁 (T0 )
𝜂opt(𝑢★opt) .

(3.73)

We argue as in Step 1 above: Let 0 ≤ 𝑁 < #Tℓ −#T0. Choose the maximal index 0 ≤ ℓ′ < ℓ with
#Tℓ′ −#T0 ≤ 𝑁 . Arguing along the lines of (3.70)–(3.72), we see that

sup
0≤𝑁<#Tℓ−#T0

𝑁 + 1
𝑠

min
Topt∈T𝑁 (T0 )

𝜂opt(𝑢★opt) ≲ sup
(ℓ,𝑘, 𝑗 ) ∈Q

#Tℓ 𝑠 Δ𝑘, 𝑗
ℓ .

Combining this with (3.73), we conclude the lower bound (3.68a) also in this case.

Step 3. We prove (3.68b) for ∥𝑢★∥A𝑠 (Tℓ0 ) < ∞, since the result becomes trivial if ∥𝑢★∥A𝑠 (Tℓ0 ) = ∞.
First, we show that for all ℓ′ ≥ ℓ0 with (ℓ′ + 1, 0, 0) ∈ Q, there exists Rℓ′ ⊆ Tℓ′ such that

#Rℓ′ ≲ ∥𝑢★∥1/𝑠A𝑠 (Tℓ0 )
(Δ0, 𝑗

ℓ′+1)−1/𝑠 and 𝜃mark𝜂ℓ′ (𝑢★ℓ′)2 ≤ 𝜂ℓ′ (Rℓ′ , 𝑢
★
ℓ′)2. (3.74)

Since 0 < 𝜃mark = (𝜃1/2 + 𝜆sym/𝜆★sym)2 (1 − 𝜆sym/𝜆★sym)−2 < 𝜃★, and because there holds (A4),
[CFPP14, Lemma 4.14] ensures, for all ℓ′ ≥ ℓ0, the existence of a set Rℓ′ ⊆ Tℓ′ satisfying

#Rℓ′ ≲ ∥𝑢★∥1/𝑠A𝑠 (Tℓ0 )
𝜂ℓ′ (𝑢★ℓ′)−1/𝑠 and 𝜃mark𝜂ℓ′ (𝑢★ℓ′)2 ≤ 𝜂ℓ′ (Rℓ′ , 𝑢

★
ℓ′)2. (3.75)

Since 𝜆sym/𝜆★sym < 1 by assumption, the estimator equivalence (3.66) shows that

1 − 𝜆sym/𝜆★sym 𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ ) ≤ 𝜂ℓ′ (𝑢★ℓ′), (3.76)

which leads us to

#Rℓ′
(3.75)
≲ ∥𝑢★∥1/𝑠A𝑠 (Tℓ0 )

𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ )−1/𝑠 .
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Moreover, thanks to nested iteration, Step 3 of the proof of Theorem 3.7, Step 3 of the proof of
Lemma 3.14, and reliability (3.23) of Proposition 3.6, there holds that

Δ
0, 𝑗

ℓ′+1
(3.63)≃ Λ0

ℓ′+1 = ⦀𝑢★ − 𝑢
𝑘, 𝑗

ℓ′ ⦀2 + 𝜈 𝜂ℓ′+1(𝑢𝑘, 𝑗ℓ′ )2 1/2

(3.57)
≲ ⦀𝑢★ − 𝑢

𝑘, 𝑗

ℓ′ ⦀2 + 𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ )2 1/2 (3.23)
≲ 𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ ).

(3.77)

By summarizing the last two estimates, we obtain (3.74).

Step 4. For (ℓ′ + 1, 0, 0) ∈ Q with ℓ′ ≥ ℓ0, we show that

#Mℓ′ ≤ 𝐶mark #Rℓ′ (3.78)

with the constant 𝐶mark ≥ 1 from Algorithm 3A. Recall the definition

𝜃mark
(3.33)
=

𝜃1/2 + 𝜆sym/𝜆★sym

1 − 𝜆sym/𝜆★sym

2
with 𝜆★sym = min{1, 𝐶−1

alg𝐶
−1
stab}.

This shows that

⦀𝑢★ℓ′ − 𝑢
𝑘, 𝑗

ℓ′ ⦀(3.65)≤ 𝐶alg 𝜆sym 𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ )
≤ 𝐶−1

stab
𝜆sym

𝜆★sym
𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ ) = 𝐶−1

stab 𝜃1/2mark 1 − 𝜆sym/𝜆★sym − 𝜃1/2 𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ ).
(3.79)

Now, we can estimate

𝜃1/2mark 1 − 𝜆sym/𝜆★sym 𝜂ℓ′ (𝑢𝑘
′ , 𝑗′

ℓ′ )(3.66)≤ 𝜃1/2mark𝜂ℓ′ (𝑢★ℓ′)
(3.75)≤ 𝜂ℓ′ (Rℓ′ , 𝑢

★
ℓ′)

(A1)≤ 𝜂ℓ′ (Rℓ′ , 𝑢
𝑘′ , 𝑗′

ℓ′ ) + 𝐶stab ⦀𝑢★ℓ′ − 𝑢
𝑘′ , 𝑗′

ℓ′ ⦀
(3.79)≤ 𝜂ℓ′ (Rℓ′ , 𝑢

𝑘′ , 𝑗′

ℓ′ ) + 𝜃1/2mark 1 − 𝜆sym/𝜆★sym − 𝜃1/2 𝜂ℓ′ (𝑢𝑘
′ , 𝑗′

ℓ′ ).

Rearranging the terms, we obtain that Rℓ′ from Step 3 satisfies the Dörfler marking criterion of
Algorithm 3A(iii) with the same parameter 𝜃, i.e., there holds

𝜃 𝜂ℓ′ (𝑢𝑘
′ , 𝑗′

ℓ′ )2 ≤ 𝜂ℓ′ (Rℓ′ , 𝑢
𝑘′ , 𝑗′

ℓ′ )2. (3.80)

Hence, quasi-minimality of the set of marked elements Mℓ′ implies (3.78).

Step 5. Consider the case (ℓ, 𝑘, 𝑗) ∈ Q with ℓ ≥ ℓ0. Full linear convergence from Theorem 3.7
yields that∑︁

(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q
|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

ℓ′≥ℓ0

(Δ𝑘′ , 𝑗′
ℓ′ )−1/𝑠 (3.27)

≲ (Δ𝑘, 𝑗
ℓ )−1/𝑠

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |
ℓ′≥ℓ0

(𝑞1/𝑠lin ) |ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ | ≲ (Δ𝑘, 𝑗
ℓ )−1/𝑠 .

(3.81)
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3.6 Numerical experiments

Recall that NVB refinement satisfies the mesh-closure estimate, i.e., there holds that

#Tℓ −#T0 ≤ 𝐶mesh

ℓ−1∑︁
ℓ′=0

#Mℓ′ for all ℓ ≥ 0, (3.82)

where 𝐶mesh > 1 depends only on T0. Thus, for (ℓ, 𝑘, 𝑗) ∈ Q with ℓ > ℓ0, we have by the
mesh-closure estimate (3.82), optimality of Dörfler marking (3.78), and full linear convergence
(3.81) that

#Tℓ −#Tℓ0
(3.82)
≲

ℓ−1∑︁
ℓ′=ℓ0

#Mℓ′
(3.78)
≲

ℓ−1∑︁
ℓ′=ℓ0

#Rℓ′
(3.74)
≲ ∥𝑢★∥1/𝑠A𝑠 (Tℓ0 )

ℓ−1∑︁
ℓ′=ℓ0

(Δ0, 𝑗

ℓ′+1)−1/𝑠

≤ ∥𝑢★∥1/𝑠A𝑠 (Tℓ0 )
∑︁

(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q
|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

ℓ′≥ℓ0

(Δ𝑘′ , 𝑗′
ℓ′ )−1/𝑠 (3.81)

≲ ∥𝑢★∥1/𝑠A𝑠 (Tℓ0 )
(Δ𝑘, 𝑗

ℓ )−1/𝑠 .

Rearranging the terms and noting that #Tℓ −#Tℓ0 + 1 ≤ 2 (#Tℓ −#Tℓ0), we obtain that

(#Tℓ −#Tℓ0 + 1)𝑠Δ𝑘, 𝑗
ℓ ≲ ∥𝑢★∥A𝑠 (Tℓ0 ) for ℓ > ℓ0.

Trivially, full linear convergence (3.27) proves that

(#Tℓ −#Tℓ0 + 1)𝑠Δ𝑘, 𝑗
ℓ0

= Δ𝑘, 𝑗
ℓ0

(3.27)
≲ Δ0,0

ℓ0
for ℓ = ℓ0.

We recall from [BHP17, Lemma 22] that for all T𝐻 ∈ T and all Tℎ ∈ T(T𝐻), it holds that

#Tℎ −#T𝐻 + 1 ≤ #Tℎ ≤ #T𝐻 (#Tℎ −#T𝐻 + 1). (3.83)

Overall, we have thus shown that

(#Tℓ)𝑠Δ𝑘, 𝑗
ℓ

(3.83)
≲ (#Tℓ −#Tℓ0 + 1)𝑠Δ𝑘, 𝑗

ℓ ≲ max{∥𝑢★∥A𝑠 (Tℓ0 ) ,Δ
0,0
ℓ0

}
for all (ℓ, 𝑘, 𝑗) ∈ Q with ℓ ≥ ℓ0. This concludes the proof of the upper bound in (3.68b) and hence
that of (3.34).

Step 6. We prove the equivalence in (3.35) by combining the steps above. Recall that

Q\{(ℓ, 𝑘, 𝑗) ∈ Q : ℓ ≥ ℓ0} = {(ℓ, 𝑘, 𝑗) ∈ Q : ℓ < ℓ0} is finite

and that ∥𝑢★∥A𝑠 (T0 ) < ∞ is equivalent to ∥𝑢★∥A𝑠 (Tℓ0 ) < ∞. Thus, the claim follows immediately by
the equivalence in (3.34). This concludes the proof. □

3.6 Numerical experiments

We consider the model problem (3.1) from the introduction. The Matlab implementation of
the following experiments is embedded into the open source software package MooAFEM from
[IP23]. In the following, Algorithm 3A employs the optimal local ℎ𝑝-robust multigrid method from
[IMPS24] as algebraic solver and the standard residual error estimator 𝜂ℓ . Given 𝑇 ∈ Tℓ and 𝑣ℓ ∈ Xℓ ,
the local contribution of 𝜂ℓ reads

𝜂ℓ (𝑇 ; 𝑣ℓ)2 := ℎ2𝑇 ∥− div(𝑨∇𝑣ℓ − 𝒇 ) + 𝒃 · ∇𝑣ℓ + 𝑐 𝑣ℓ − 𝑓 ∥2
𝐿2 (𝑇 ) + ℎ𝑇 ∥⟦(𝑨∇𝑣ℓ − 𝒇 ) · 𝒏⟧∥2

𝐿2 (𝜕𝑇∩Ω) .

It is well-known (see, e.g., [CFPP14, Section 6.1]) that 𝜂ℓ satisfies the axioms (A1)–(A4) from
Section 3.2.3.
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3 Adaptive FEM with quasi-optimal computational cost

3.6.1 Diffusion-convection-reaction on L-shaped domain

In this subsection, we consider the problem (3.1) on the L-shaped domain Ω = (−1, 1)2 \ [0, 1] ×
[−1, 0] ⊂ R2 with coefficients 𝑨(𝑥) = Id, 𝒃(𝑥) = 𝑥, and 𝑐(𝑥) = 1, and right-hand side 𝑓 (𝑥) = 1,
i.e.,

−Δ𝑢★(𝑥) + 𝑥 · ∇𝑢★(𝑥) + 𝑢★(𝑥) = 1 for 𝑥 ∈ Ω subject to 𝑢★(𝑥) = 0 for 𝑥 ∈ 𝜕Ω.

Optimality of AISFEM

We first display the optimality of Algorithm 3A with respect to the computational cost stated in
Theorem 3.9 using the equivalence #Tℓ ≃ dim Xℓ . Numerically, we test with the parameters
𝜆sym = 𝜆alg = 0.1, 𝛿 = 0.5, and 𝜃 = 0.5 and, unless stated explicitly, the stopping criterion
dim Xℓ > 107. Note that both the total error and the algebraic error are unknown in all practical
purposes. Therefore, we cannot study the decay of the quasi-error, but rather consider the equivalent
error estimator 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) ≃ Δ

𝑘, 𝑗

ℓ . Figure 3.2 shows that the proposed algorithm achieves optimal
rates −𝑚/2 for several polynomial degrees 𝑚 both with respect to the computational costs and the
elapsed computational time after a short preasymptotic phase.
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Figure 3.2: Optimality of AISFEM for the diffusion-convection-reaction problem on the L-shaped
domain from Section 3.6.1. Convergence history plot of the error estimator 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) over
the computational costs (left) and the elapsed computational time (right) for different
polynomial degrees 𝑚.

Optimality of the iteratively symmetrized solver

Optimality of AISFEM is possible when the inherent symmetrization and algebraic procedures
are treated efficiently. In Figure 3.3, we present the time required for our iteratively symmetrized
solver compared to the Matlab built-in direct solver (backslash) of the linear system related to (3.4).
We note that the displayed timings are comparing the direct solve time itself with the remaining
time (including the setup of the Zarantonello system, computation of the error estimator, and
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3.6 Numerical experiments

mesh refinement). Hence, the presented numbers favor the built-in direct solver over the Matlab-
implemented multigrid code. Nevertheless, the combination of the Zarantonello symmetrization
with the optimal local multigrid solver from [IMPS24] appears to be of comparable speed to the
built-in direct solver with the observation that as the dimension of the linear system increases, the
backslash performance begins to degrade. Moreover, Figure 3.4 shows that the iteration numbers of
the solver remain uniformly bounded in the levels for various choices of the parameters 𝜆sym and 𝜃.
Note that when 𝜆sym decreases, a higher accuracy of the Zarantonello symmetrization is required.
Therefore, the iteration numbers are expected to increase with smaller 𝜆sym as seen in Figure 3.4
(left). Moreover, the iteration numbers are also expected to increase as 𝜃 becomes larger. This is due
to the aggressive refinement leading to hierarchies of low numbers of levels but with considerable
increase in the dimension of the linear systems. This may lead to the conclusion that 𝜃 should be
chosen very small in order to have fewer iterations per level, but studying the cumulative solver steps
in Figure 3.4 (right) shows that this is not the best strategy.
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Figure 3.3: Optimality of the combined iterative solver for the diffusion-convection-reaction problem
on the L-shaped domain from Section 3.6.1. Cumulative time for the direct solve and
AISFEM over the computational costs.

Parameter study of AISFEM

We now investigate which parameters yield the best contraction in the iteratively symmetrized
steps 3A(ii)–(iii). Since the parameters depend on the contraction factors 𝑞ctr from (3.19) and 𝑞sym
from (3.24), we study a setting where the exact discrete solution 𝑢★ℓ to (3.4) and the exact Zarantonello
solution 𝑢𝑘,★ℓ to (3.6) are computed. Then, we compute 𝑞ctr(ℓ, 𝑘, 𝑗) for (ℓ, 𝑘, 𝑗) ∈ Q and define
the level-wise contraction factors 𝑞ctr(ℓ) as the maximum over all 𝑞ctr(ℓ, 𝑘, 𝑗) for fixed ℓ ∈ N0

and analogously for 𝑞sym. From now on, we fix the polynomial degree 𝑚 = 2 and the parameters
𝜆alg = 10−2 for the numerical experiments. We investigate the behavior of the combined solver
for various choices of 𝜆sym ∈ {10−1, 10−2, 10−3, 10−4} and 𝜃 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 3.6
shows upper bounds 𝜆alg < 𝜆

★
alg = (1 − 𝑞sym) (1 − 𝑞alg)/(4 𝑞alg) (see the implicit definition of 𝜆★alg in

(3.25)) and Figure 3.5 displays contraction factors 𝑞sym ≈ 1/2 and 𝑞sym ≈ 1/2, independently of the
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3 Adaptive FEM with quasi-optimal computational cost

𝜆sym

𝜃
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10−1 533 470 402 424 497 608 801 971 1513

10−2 3084 1878 1566 1482 1524 1624 1869 2485 4266

10−3 6543 4490 3478 2831 2894 3371 3826 4729 6956

10−4 10791 6621 5211 4381 4475 4777 5979 7398 10901

Table 3.1: Optimal selection of parameters with respect to the computational costs for the ex-
periment from Section 3.6.1. For the comparison, we consider the weighted costs
𝜂ℓ (𝑢𝑘, 𝑗ℓ ) |ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 | dim Xℓ′ with stopping criterion 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) < 10−5 for various

choices of 𝜆sym and 𝜃 with the optimal choice highlighted in color.
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Figure 3.4: Uniform bound on the iteration numbers for the diffusion-convection-reaction problem
on the L-shaped domain from Section 3.6.1 and the strong convection problem on the
Z-shaped domain from Section 3.6.2. Number of total solver steps |ℓ, 𝑘, 𝑗 | − |ℓ, 0, 0| on
the level ℓ for various selections of the symmetrization stopping parameter 𝜆sym with
fixed 𝜃 = 0.5 (left) and the cumulative solver steps for different marking parameter 𝜃
with fixed 𝜆sym = 0.1 (right).
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choice of 𝜃 and 𝜆sym. Note that 𝑞sym being close to 𝑞sym means that the perturbed, i.e., iteratively
symmetrized, Zarantonello step is of comparable performance to the unperturbed Zarantonello
iteration. Moreover, Table 3.1 shows that the optimal combination of the parameters with respect to
the computational costs is 𝜃 = 0.3 and 𝜆sym = 10−1. Furthermore, it appears that the choice of 𝜃 has
a stronger impact on the costs than the selection of 𝜆sym.
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Figure 3.5: Uniform contraction of the iterative solver for the diffusion-convection-reaction problem
on the L-shaped domain from Section 3.6.1. Experimental contraction factors 𝑞alg, 𝑞sym
and 𝑞sym for various choices of the symmetrization stopping parameter 𝜆sym with fixed
𝜃 = 0.5 (left) and different marking parameter 𝜃 with fixed 𝜆sym = 0.1 (right).

3.6.2 Strong convection on Z-shaped domain

In this subsection, we consider the problem (3.1) on the Z-shaped domain Ω = (−1, 1)2 \
conv{(0, 0), (−1, 0), (−1,−1)} ⊂ R2 with coefficients 𝑨(𝑥) = Id and 𝒃(𝑥) = (5, 5)⊤, and right-hand
side 𝑓 (𝑥) = 1, i.e.,

−Δ𝑢★(𝑥) + (5, 5)⊤ · ∇𝑢★(𝑥) = 1 for 𝑥 ∈ Ω and 𝑢★(𝑥) = 0 for 𝑥 ∈ 𝜕Ω.

Figure 3.7 shows that even for a strong convection combined with a strong singularity at the origin,
the adaptive algorithm recovers the optimal convergence rates −𝑚/2 for several polynomial degrees
𝑚 both with respect to the cumulative costs and computational time. In Figure 3.4 we see that the
number of solver steps per level ℓ behaves similarly to the diffusion-convection-reaction problem
on the L-shape from Section 3.6.1 with an increase due to the stronger singularity. Furthermore,
Figure 3.8 displays upper bounds on 𝜆alg ≤ 𝜆★alg < 𝜆

★
alg and the contraction factor 𝑞sym ≈ 1/2 (after

an initial phase of reduced contraction) for the perturbed Zarantonello system in (3.25).

3.7 Conclusion and future work

In this work, we have developed and analyzed an adaptive finite element method for nonsymmetric
second-order linear elliptic PDEs (3.1). From a conceptual point of view, the crucial assumption is
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Figure 3.6: Computed upper bounds for 𝜆★alg < 𝜆
★
alg for various choices of the symmetrization

stopping parameter 𝜆sym with fixed 𝜃 = 0.5 (left) and different marking parameter 𝜃
with fixed 𝜆sym = 0.1 (right), where we emphasize the double scaling of the 𝑦-axis for
𝜆★alg resp. 𝑞sym in both figures.
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Figure 3.7: Optimality of AISFEM for the strong convection problem on the Z-shaped domain
from Section 3.6.2. Convergence history plot of the error estimator 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) over the
computational cost (left) and the elapsed computational time (right).
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Figure 3.8: Uniform contraction of the combined solver for the strong convection problem on the
Z-shaped domain from Section 3.6.2. Contraction factor 𝑞sym and computed upper
bound for 𝜆★alg < 𝜆

★
alg for various symmetrization stopping parameter 𝜆sym with fixed

𝜃 = 0.5 (left) and different marking parameter 𝜃 with fixed 𝜆sym = 0.1 (right), where we
emphasize the double scaling of the 𝑦-axis for 𝜆★alg resp. 𝑞sym in both figures.

that the weak formulation takes the form

𝑏(𝑢★, 𝑣) := 𝑎(𝑢★, 𝑣) + ⟨K𝑢★ , 𝑣⟩ = 𝐹 (𝑣) for all 𝑣 ∈ X, (3.84)

where 𝐹 ∈ X′ is a linear and continuous functional, 𝑎(·, ·) is a symmetric, continuous, and elliptic
bilinear form on X, and K : X → X′ is a compact operator such that the bilinear form 𝑏(·, ·) is still
elliptic on X. Let ⦀ ·⦀ denote the 𝑎(·, ·)-induced energy norm. For the discrete formulation

𝑏(𝑢★ℓ , 𝑣ℓ) = 𝐹 (𝑣ℓ) for all 𝑣ℓ ∈ Xℓ , (3.85)

we require an (abstract) inexact iterative solver with iteration map given by
Φℓ (𝐹; ·) : Xℓ → Xℓ that contracts the error in the energy norm, i.e.,

⦀𝑢★ℓ − 𝑢𝑘+1ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢𝑘ℓ⦀ with 𝑢𝑘+1ℓ := Φℓ (𝐹; 𝑢𝑘ℓ ) for all 𝑘 ∈ N, (3.86)

where the contraction constant 0 < 𝑞sym < 1 is independent of 𝑢0ℓ ∈ Xℓ . Under such assumptions and
with the usual residual a posteriori error estimator 𝜂ℓ (·) (satisfying the abstract assumptions (A1)–
(A4)) on nested conforming discrete spaces Xℓ ⊆ Xℓ+1 ⊂ X, the present work proves that the
analysis from [GHPS21] can be generalized from symmetric PDEs (with K = 0) to the general
formulation (3.84): Restricting Algorithm 3A to the outer ℓ-loop (for mesh refinement) and the inner
𝑘-loop (for the solver associated to Φℓ), we obtain a simplified index set

Q := {(ℓ, 𝑘) ∈ N2
0 | 𝑢𝑘ℓ is computed by the simplified algorithm} (3.87)

together with the canonical step counter |ℓ, 𝑘 | ∈ N0 on Q defined analogously to (3.21). Then,
Lemma 3.11 (lucky non-termination of the solver), Lemma 3.12 (a priori convergence), Lemma 3.13
(quasi-Pythagorean estimate), and Lemma 3.14 (contraction of weighted discretization and solver
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error) hold verbatim (and the proof of Lemma 3.13 indeed relies on the compactness of K) if
we replace 𝑢

𝑘, 𝑗

ℓ in the given proofs by 𝑢𝑘ℓ in the current solver setting. Therefore, we obtain full
linear convergence in the spirit of Theorem 3.7: For arbitrary adaptivity parameters 0 < 𝜃 ≤ 1 and
𝜆sym > 0, there exist constants 𝐶lin > 0 and 0 < 𝑞lin < 1 as well as an index ℓ0 ∈ N0 such that

Δ
𝑘

ℓ ≤ 𝐶lin 𝑞
|ℓ,𝑘 |− |ℓ′ ,𝑘′ |
lin Δ

𝑘′
ℓ′ for all (ℓ′, 𝑘 ′), (ℓ, 𝑘) ∈ Q with |ℓ′, 𝑘 ′ | ≤ |ℓ, 𝑘 | and ℓ′ ≥ ℓ0, (3.88)

where Δ
𝑘

ℓ := ⦀𝑢★ − 𝑢𝑘ℓ⦀ + 𝜂ℓ (𝑢𝑘ℓ ) denotes the corresponding quasi-error. In particular, also
Corollary 3.8 holds verbatim with Q replaced by Q and Δ𝑘, 𝑗

ℓ replaced by Δ
𝑘

ℓ , i.e., convergence rates
with respect to the number of degrees of freedom coincide with rates with respect to the overall
computational cost. Finally, it is easy to check that also Theorem 3.9 holds verbatim and proves that,
for sufficiently small adaptivity parameters 0 < 𝜃 ≪ 1 and 0 < 𝜆sym ≪ 1 in the sense of (3.33), it
holds that

∥𝑢★∥A𝑠 (T0 ) < ∞ ⇐⇒ sup
(ℓ,𝑘 ) ∈Q

∑︁
(ℓ′ ,𝑘′ ) ∈Q

|ℓ′ ,𝑘′ | ≤ |ℓ,𝑘 |

#Tℓ′
𝑠
Δ
𝑘

ℓ < ∞, (3.89)

which yields optimal complexity of the simplified algorithm.
In the current analysis, the combined Zarantonello symmetrization with a contractive SPD

algebraic solver is used as one solver module to guarantee (3.86) for 𝑢𝑘ℓ := 𝑢
𝑘, 𝑗

ℓ (see Lemma 3.10,
where contraction, however, only holds for 1 ≤ 𝑘 < 𝑘 [ℓ]), leading to all results being formulated
over the triple index set Q ⊂ N3

0 (see Section 3.3–3.4).
We note that another choice for solving the arising nonsymmetric FEM systems would be

preconditioned GMRES (see, e.g., [SS86; Saa03]), where an optimal preconditioner for the
symmetric part would be employed. Then, it is well-known from the field-of-value analysis (see,
e.g., [Sta97]) that the algebraic solver would satisfy a generalized contraction for the algebraic
residual (in a discrete vector norm). However, the link between the algebraic residual and the
functional setting appears to be open. Moreover, the a posteriori error control of the algebraic error
for such a GMRES solver is still to be developed.

While these questions are left for future work, we already note some results that can be achieved
along the arguments of [GHPS21]: If the solver Φℓ (𝐹; ·) provides iterates (𝑢𝑘ℓ )𝑘∈N0 satisfying only
the generalized contraction

⦀𝑢★ℓ − 𝑢𝑘ℓ⦀ ≤ 𝐶ctr 𝑞
𝑘
sym ⦀𝑢★ℓ − 𝑢0ℓ⦀ for all 𝑘 ∈ N (3.90)

together with the a posteriori error control

⦀𝑢★ℓ − 𝑢𝑘ℓ⦀ ≤ 𝐶′
ctr ⦀𝑢𝑘ℓ − 𝑢𝑘−1ℓ ⦀ for all 𝑘 ∈ N, (3.91)

where 𝐶ctr, 𝐶
′
ctr > 0 and 0 < 𝑞sym < 1 are given constants independently of 𝑢0ℓ ∈ Xℓ , then full linear

convergence (3.88) can be proved for all 0 < 𝜃 ≤ 1 under the additional assumption that 𝜆sym has to
be sufficiently small. However, the proof of full linear convergence (3.88) for arbitrary 0 < 𝜃 ≤ 1
and arbitrary 𝜆sym > 0 is open, while optimal complexity (3.89) for sufficiently small 0 < 𝜃 < 1 and
𝜆sym in the sense of (3.33) remains valid (even with the same proof).
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4 On full linear convergence and optimal
complexity of adaptive FEM with inexact
solver

The Sections 4.1–4.7 of this chapter correspond to the publication:
P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, and J. Streitberger. On full linear
convergence and optimal complexity of adaptive FEM with inexact solver, 2023. arXiv:
2311.15738

4.1 Introduction

Over the past three decades, the mathematical understanding of adaptive finite element methods
(AFEMs) has matured; see, e.g., [Dör96; MNS00; BDD04; Ste07; CKNS08; CN12; FFP14] for
linear elliptic PDEs, [Vee02; DK08; BDK12; GMZ12] for certain nonlinear PDEs, and [CFPP14]
for an axiomatic framework summarizing the earlier references. In most of the cited works, the focus
is on (plain) convergence [Dör96; MNS00; Vee02; DK08; GMZ12] and optimal convergence rates
with respect to the number of degrees of freedom, i.e., optimal rates, [BDD04; CKNS08; CN12;
BDK12; GMZ12; FFP14].

The adaptive feedback loop strives to approximate the unknown and possibly singular exact PDE
solution 𝑢★ on the basis of a posteriori error estimators and adaptive mesh refinement strategies.
Employing AFEM with exact solver, detailed in Algorithm 4A below, generates a sequence (Tℓ)ℓ∈N0

of successively refined meshes together with the corresponding finite element solutions 𝑢★ℓ ≈ 𝑢★ and
error estimators 𝜂ℓ (𝑢★ℓ ) by iterating

solve −→ estimate −→ mark −→ refine (4.1)

A key argument in the analysis of (4.1) in [CKNS08] and succeeding works for symmetric PDEs
consists in showing linear convergence of the quasi-error

Δ★
ℓ ≤ 𝑞lin Δ

★
ℓ−1 with Δ★

ℓ := ⦀𝑢★ − 𝑢★ℓ ⦀2 + 𝛾 𝜂ℓ (𝑢★ℓ )2
1/2 for all ℓ ∈ N, (4.2)

where 0 < 𝑞lin, 𝛾 < 1 depend only on the problem setting and the marking parameter 𝜃. Here, ⦀ ·⦀
is the PDE-induced energy norm providing a Pythagorean identity of the form

⦀𝑢★ − 𝑢★ℓ+1⦀2 + ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀2 = ⦀𝑢★ − 𝑢★ℓ ⦀2 for all ℓ ∈ N0. (4.3)

An extension of the analysis to nonsymmetric linear PDEs can be done by relaxing the Pythagorean
identity to a quasi-Pythagorean estimate in [CN12; FFP14; BHP17]. However, this comes at
the expense that either the initial mesh has to be sufficiently fine [CN12], or (4.2) only holds for
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ℓ ≥ ℓ0 ∈ N0 [BHP17], or (4.2) holds in the general form (4.5) below, where the constants depend on
the adaptively generated meshes [FFP14]. The later work [CFPP14] showed that a tail-summability
of the estimator sequence

∞∑︁
ℓ′=ℓ+1

𝜂ℓ′ (𝑢★ℓ′) ≤ 𝐶′
lin𝜂ℓ (𝑢★ℓ ) for all ℓ ∈ N0 (4.4)

or, equivalently, R-linear convergence

𝜂ℓ (𝑢★ℓ ) ≤ 𝐶lin𝑞
ℓ−ℓ′
lin 𝜂ℓ′ (𝑢★ℓ′) for all ℓ ≥ ℓ′ ≥ 0, (4.5)

with 0 < 𝑞lin < 1 and 𝐶lin, 𝐶
′
lin > 0, suffices to prove convergence. Additionally, a sufficiently small

marking parameter 𝜃 leads to optimal rates in the sense of [Ste07; CKNS08]. This can be stated
in terms of approximation classes [BDD04; Ste08; CKNS08] by mathematically guaranteeing the
largest possible convergence rate 𝑠 > 0 with

sup
ℓ∈N

(#Tℓ)𝑠𝜂ℓ (𝑢★ℓ ) < ∞. (4.6)

However, due to the incremental nature of adaptivity, the mathematical question on optimal con-
vergence rates should rather refer to the overall computational cost (resp. the cumulative computation
time). This, coined as optimal complexity in the context of adaptive wavelet methods [CDD01;
CDD03], was later adopted for AFEM in [Ste07; CG12]. Therein, optimal complexity is guaranteed
for AFEM with inexact solver, provided that the computed iterates 𝑢𝑘ℓ are sufficiently close to the
(unavailable) exact discrete solutions 𝑢★ℓ . This theoretical result requires that the algebraic error is
controlled by the discretization error multiplied by a sufficiently small solver-stopping parameter 𝜆.
However, numerical experiments in [CG12] indicate that also moderate choices of the stopping
parameter suffice for optimal complexity. Hence, the interrelated stopping criterion led to a combined
solve-estimate module in the adaptive algorithm

solve & estimate −→ mark −→ refine (4.7)

Driven by the interest in AFEMs for nonlinear problems [EV13; CW17; GHPS18; HW20b; HW20a],
recent papers [GHPS21; HPW21; HPSV21] aimed to combine linearization and algebraic iterates
into a nested adaptive algorithm. Following the latter, the algorithmic decision for either mesh
refinement or linearization or algebraic solver step is steered by a-posteriori-based stopping criteria
with suitable stopping parameters. This allows to balance the error components and compute the
inexact approximations 𝑢𝑘ℓ ≈ 𝑢★ℓ given by a contractive solver with iteration counter 𝑘 = 1, . . . , 𝑘 [ℓ]
on the mesh Tℓ , and |ℓ, 𝑘 | ∈ N0 denotes the lexicographic order of the sequential loop (4.7); see
Algorithm 4B below.

Due to an energy identity (coinciding with (4.3) for symmetric linear PDEs), the works [GHPS21;
HPW21] prove full R-linear convergence for the quasi-error Δ𝑘

ℓ
:= ⦀𝑢★ − 𝑢𝑘ℓ⦀2 + 𝛾 𝜂ℓ (𝑢𝑘ℓ )2

1/2

with respect to the lexicographic ordering |·, ·|, i.e.,

Δ𝑘
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘 |− |ℓ′ ,𝑘′ |
lin Δ𝑘′

ℓ′ for all (ℓ′, 𝑘 ′), (ℓ, 𝑘) ∈ Q with |ℓ′, 𝑘 ′ | ≤ |ℓ, 𝑘 |, (4.8)

which is guaranteed for arbitrary marking parameter 𝜃 and stopping parameter 𝜆 (with constants
𝐶lin > 0 and 0 < 𝑞lin < 1 depending on 𝜃 and 𝜆). Moreover, [GHPS21] proves that full R-linear
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convergence is also the key argument for optimal complexity in the sense that it ensures, for all 𝑠 > 0,

𝑀 (𝑠) := sup
(ℓ,𝑘 ) ∈Q

(#Tℓ)𝑠Δ𝑘
ℓ ≤ sup

(ℓ,𝑘 ) ∈Q

∑︁
(ℓ′ ,𝑘′ ) ∈Q

|ℓ′ ,𝑘′ | ≤ |ℓ,𝑘 |

#Tℓ′
𝑠
Δ𝑘
ℓ ≤ 𝐶cost(𝑠) 𝑀 (𝑠), (4.9)

where 𝐶cost(𝑠) > 1 depends only on 𝑠, 𝐶lin, and 𝑞lin. Since all modules of AFEM with inexact solver
as displayed in (4.7) can be implemented at linear cost O(#Tℓ), the equivalence (4.9) means that the
quasi-error Δ𝑘

ℓ decays with rate 𝑠 over the number of elements #Tℓ if and only if it decays with rate
𝑠 over the related overall computational work (and hence total computation time).

In essence, optimal complexity of AFEM with inexact solver thus follows from a perturbation
argument (by taking the stopping parameter𝜆 sufficiently small) as soon as full linear convergence (4.8)
of AFEM with inexact solver and optimal rates of AFEM with exact solver (for sufficiently small 𝜃)
have been established; see, e.g., [CFPP14; GHPS21].

In this paper, we present a novel proof of full linear convergence (4.8) with contractive solver
that, unlike [GHPS21; HPW21], avoids the Pythagorean identity (4.3), but relies only on the
quasi-orthogonality from [CFPP14] (even in its generalized form from [Fei22]). The latter is known
to be sufficient and necessary for linear convergence (4.5) in the presence of exact solvers [CFPP14].
In particular, this opens the door to proving optimal complexity for AFEM beyond symmetric energy
minimization problems. Moreover, problems exhibiting additional difficulties such as nonsymmetric
linear elliptic PDEs, see [BHI+23], or nonlinear PDEs, see [HPSV21], ask for more intricate (nested)
solvers that treat iterative symmetrization/linearization together with solving the arising linear SPD
systems. This leads to computed approximations 𝑢

𝑘, 𝑗
ℓ ≈ 𝑢★ℓ with symmetrization/linearization

iteration counter 𝑘 = 𝑘 [ℓ] and algebraic solver index 𝑗 = 𝑗 [ℓ, 𝑘]. The new proof of full linear
convergence allows to improve the analysis of [BHI+23; HPSV21] by relaxing the choice of the
solver-stopping parameters. Additionally, in the setting of [BHI+23], we are able to show that the full
linear convergence holds from the arbitrary initial mesh onwards instead of the a priori unknown
and possibly large mesh threshold level ℓ0 > 0. In particular, unlike the previous works [CN12;
FFP14; BHP17; BHI+23] that employ a quasi-Pythagorean identity, the new analysis shows that the
constants in the full R-linear convergence are independent of T0 and/or the sequence of adaptively
generated meshes and therefore a priori fixed. Furthermore, the new analysis does not only improve
the state-of-the-art theory of full linear convergence leading to optimal complexity, but also allows
the choice of larger solver-stopping parameters which also leads to a better numerical performance
in experiments.

The remainder of this work is structured as follows: As a model problem, Section 4.2 formulates
a general second-order linear elliptic PDE together with the validity of the so-called axioms of
adaptivity from [CFPP14] and the quasi-orthogonality from [Fei22]. In Section 4.3, AFEM with
exact solver (4.1) is presented in Algorithm 4A and, for completeness and easier readability of the
later sections, Theorem 4.4 summarizes the proof of R-linear convergence (4.5) from [CFPP14;
Fei22]. Section 4.4 focuses on AFEM with inexact contractive solver (4.7) detailed in Algorithm 4B.
The main contribution is the new and more general proof of full R-linear convergence of Theorem 4.7.
Corollary 4.11 proves the important equivalence (4.9). The case of AFEM with nested contractive
solvers, which are useful for nonlinear or nonsymmetric problems, is treated in Section 4.5 by
presenting Algorithm 4C from [BHI+23] and improving its main result in Theorem 4.15. In
Section 4.6, we discuss the impact of the new analysis on AFEM for nonlinear PDEs. We show that
Theorem 4.15 applies also to the setting from [HPSV21], namely strongly monotone PDEs with
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scalar nonlinearity. Numerical experiments and remarks are discussed in-depth in Section 4.7, where
the impact of the adaptivity parameters on the overall cost is investigated empirically.

Throughout the proofs, the notation 𝐴 ≲ 𝐵 abbreviates 𝐴 ≤ 𝐶𝐵 for some positive constant
𝐶 > 0 whose dependencies are clearly presented in the respective theorem and 𝐴 ≃ 𝐵 abbreviates
𝐴 ≲ 𝐵 ≲ 𝐴.

4.2 General second-order linear elliptic PDEs

On a bounded polyhedral Lipschitz domain Ω ⊂ R𝑑 , 𝑑 ≥ 1, we consider the PDE

− div(𝑨∇𝑢★) + 𝒃 · ∇𝑢★ + 𝑐𝑢★ = 𝑓 − div 𝒇 in Ω subject to 𝑢★ = 0 on 𝜕Ω, (4.10)

where 𝑨, 𝒃, 𝑐 ∈ 𝐿∞(Ω) and 𝒇 , 𝑓 ∈ 𝐿2(Ω) with, for almost every 𝑥 ∈ Ω, positive definite
𝑨(𝑥) ∈ R𝑑×𝑑

sym , 𝒃(𝑥), 𝒇 (𝑥) ∈ R𝑑 , and 𝑐(𝑥), 𝑓 (𝑥) ∈ R. With ⟨· , ·⟩𝐿2 (Ω) denoting the usual 𝐿2(Ω)-
scalar product, we suppose that the PDE fits into the setting of the Lax–Milgram lemma, i.e., the
bilinear forms

𝑎(𝑢, 𝑣) := ⟨𝑨∇𝑢 , ∇𝑣⟩𝐿2 (Ω) and 𝑏(𝑢, 𝑣) := 𝑎(𝑢, 𝑣) + ⟨𝒃 · ∇𝑢 + 𝑐𝑢 , 𝑣⟩𝐿2 (Ω) (4.11)

are continuous and elliptic on 𝐻1
0 (Ω). Then, indeed, 𝑎(·, ·) is a scalar product and ⦀𝑢⦀ := 𝑎(𝑢, 𝑢)1/2

defines an equivalent norm on 𝐻1
0 (Ω). Moreover, the weak formulation

𝑏(𝑢★, 𝑣) = 𝐹 (𝑣) := ⟨ 𝑓 , 𝑣⟩𝐿2 (Ω) + ⟨ 𝒇 , ∇𝑣⟩𝐿2 (Ω) for all 𝑣 ∈ 𝐻1
0 (Ω) (4.12)

admits a unique solution 𝑢★ ∈ 𝐻1
0 (Ω). Let 0 < 𝐶ell ≤ 𝐶bnd denote the boundedness and ellipticity

constant of 𝑏(·, ·) with respect to ⦀ ·⦀, i.e., there holds

𝐶ell ⦀𝑣⦀2 ≤ 𝑏(𝑣, 𝑣) and |𝑏(𝑣, 𝑤) | ≤ 𝐶bnd ⦀𝑣⦀⦀𝑤⦀ for all 𝑣, 𝑤 ∈ X.

Let T0 be an initial conforming triangulation of Ω ⊂ R𝑑 into compact simplices. The mesh
refinement employs newest-vertex bisection (NVB). We refer to [Ste08] for NVB with admissible T0
and 𝑑 ≥ 2, to [KPP13] for NVB with general T0 for 𝑑 = 2, and to the recent work [DGS23] for NVB
with general T0 in any dimension 𝑑 ≥ 2. For 𝑑 = 1, we refer to [AFF+15]. For each triangulation T𝐻
and M𝐻 ⊆ T𝐻 , let Tℎ := refine(T𝐻 ,M𝐻) be the coarsest conforming refinement of T𝐻 such that
at least all elements 𝑇 ∈ M𝐻 have been refined, i.e., M𝐻 ⊆ T𝐻 \ Tℎ. To abbreviate notation, we
write Tℎ ∈ T(T𝐻) if Tℎ can be obtained from T𝐻 by finitely many steps of NVB and, in particular,
T := T(T0).

For each T𝐻 ∈ T, we consider conforming finite element spaces

X𝐻 := {𝑣𝐻 ∈ 𝐻1
0 (Ω) : 𝑣𝐻 |𝑇 is a polynomial of total degree ≤ 𝑝 for all 𝑇 ∈ T𝐻}, (4.13)

where 𝑝 ∈ N is a fixed polynomial degree. We note that Tℎ ∈ T(T𝐻) yields nestedness X𝐻 ⊆ Xℎ of
the corresponding discrete spaces.

Given T𝐻 ∈ T, there exists a unique Galerkin solution 𝑢★𝐻 ∈ X𝐻 solving

𝑏(𝑢★𝐻 , 𝑣𝐻) = 𝐹 (𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 . (4.14)
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Moreover, there holds the following Céa lemma⦀𝑢★ − 𝑢★𝐻⦀ ≤ 𝐶Céa min
𝑣𝐻 ∈X𝐻

⦀𝑢★ − 𝑣𝐻⦀ with a constant 1 ≤ 𝐶Céa ≤ 𝐶bnd/𝐶ell, (4.15)

where 𝐶Céa → 1 as adaptive mesh-refinement progresses [BHP17, Theorem 20].
We consider the residual error estimator 𝜂𝐻 (·) defined, for 𝑇 ∈ T𝐻 and 𝑣𝐻 ∈ X𝐻 , by

𝜂𝐻 (𝑇, 𝑣𝐻)2 := |𝑇 |2/𝑑 ∥ − div(𝑨∇𝑣𝐻 − 𝒇 ) + 𝒃 · ∇𝑣𝐻 + 𝑐 𝑣𝐻 − 𝑓 ∥2
𝐿2 (𝑇 )

+ |𝑇 |1/𝑑 ∥⟦(𝑨∇𝑣𝐻 − 𝒇 ) · 𝑛⟧∥2
𝐿2 (𝜕𝑇∩Ω) ,

(4.16a)

where ⟦·⟧ denotes the jump over (𝑑 − 1)-dimensional faces. Clearly, the well-posedness of (4.16a)
requires more regularity of 𝑨 and 𝒇 than stated above, e.g., 𝑨|𝑇 , 𝒇 |𝑇 ∈ 𝑊1,∞(𝑇) for all 𝑇 ∈ T0. To
abbreviate notation, we define, for all U𝐻 ⊆ T𝐻 and all 𝑣𝐻 ∈ X𝐻 ,

𝜂𝐻 (𝑣𝐻) := 𝜂𝐻 (T𝐻 , 𝑣𝐻) with 𝜂𝐻 (U𝐻 , 𝑣𝐻) :=
∑︁

𝑇∈U𝐻

𝜂𝐻 (𝑇, 𝑣𝐻)2
1/2

. (4.16b)

From [CFPP14], we recall that the error estimator satisfies the following properties.
Proposition 4.1 (axioms of adaptivity). There exist constants 𝐶stab, 𝐶rel, 𝐶drel, 𝐶mon > 0, and
0 < 𝑞red < 1 such that the following properties are satisfied for any triangulation T𝐻 ∈ T and any
conforming refinement Tℎ ∈ T(T𝐻) with the corresponding Galerkin solutions 𝑢★𝐻 ∈ X𝐻 , 𝑢★ℎ ∈ Xℎ

to (4.14) and arbitrary 𝑣𝐻 ∈ X𝐻 , 𝑣ℎ ∈ Xℎ.

(A1) stability. |𝜂ℎ (Tℎ ∩ T𝐻 , 𝑣ℎ) − 𝜂𝐻 (Tℎ ∩ T𝐻 , 𝑣𝐻) | ≤ 𝐶stab ⦀𝑣ℎ − 𝑣𝐻⦀.

(A2) reduction. 𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻) ≤ 𝑞red 𝜂𝐻 (T𝐻\Tℎ, 𝑣𝐻).
(A3) reliability. ⦀𝑢★ − 𝑢★𝐻⦀ ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻).

(A3+) discrete reliability. ⦀𝑢★ℎ − 𝑢★𝐻⦀ ≤ 𝐶drel 𝜂𝐻 (T𝐻\Tℎ, 𝑢★𝐻).
(QM) quasi-monotonicity. 𝜂ℎ (𝑢★ℎ) ≤ 𝐶mon 𝜂𝐻 (𝑢★𝐻).
The constant 𝐶rel depends only on uniform shape regularity of all meshes T𝐻 ∈ T and the
dimension 𝑑, while 𝐶stab and 𝐶drel additionally depend on the polynomial degree 𝑝. The constant
𝑞red reads 𝑞red := 2−1/(2𝑑) for bisection-based refinement rules in R𝑑 and the constant 𝐶mon can
be bounded by 𝐶mon ≤ min{1 + 𝐶stab(1 + 𝐶Céa)𝐶rel , 1 + 𝐶stab 𝐶drel}. □

In addition to the estimator properties in Proposition 4.1, we recall the following quasi-orthogonality
result from [Fei22] as one cornerstone of the improved analysis in this chapter.

Proposition 4.2 (validity of quasi-orthogonality). There exist 𝐶orth > 0 and 0 < 𝛿 ≤ 1 such
that the following holds: For any sequence Xℓ ⊆ Xℓ+1 ⊂ 𝐻1

0 (Ω) of nested finite-dimensional
subspaces, the corresponding Galerkin solutions 𝑢★ℓ ∈ Xℓ to (4.14) satisfy

(A4) quasi-orthogonality.
ℓ+𝑁∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1− 𝑢★ℓ′⦀2≤𝐶orth(𝑁 + 1)1−𝛿⦀𝑢★− 𝑢★ℓ ⦀2 for all ℓ, 𝑁 ∈ N0.

Here, 𝐶orth and 𝛿 depend only on the dimension 𝑑, the elliptic bilinear form 𝑏(·, ·), and the chosen
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norm ⦀·⦀, but are independent of the spaces Xℓ . □

Remark 4.3. Quasi-orthogonality (A4) is a generalization of the Pythagorean identity (4.3) for
symmetric problems. Indeed, if 𝒃 = 0 in (4.10) and 𝑎(·, ·) := 𝑏(·, ·) is a scalar product, the Galerkin
method for nested subspaces Xℓ ⊆ Xℓ+1 ⊂ 𝐻1

0 (Ω) guarantees (4.3). Thus, the telescopic series
proves (A4) with 𝐶orth = 1 and 𝛿 = 1. We highlight that [Fei22] proves (A4) even for more general
linear problems and Petrov–Galerkin discretizations.

A closer look at the proofs of R-linear convergence in Section 4.3–4.5 below reveals that they rely
only on the properties (A1), (A2), (A3), (A4), and (QM), but not on (A3+), the Céa lemma (4.15),
or linearity of the PDE. Hence, Algorithms 4A, 4B, and 4C and the corresponding Theorems 4.4,
4.7, and 4.15 apply beyond the linear problem (4.10); see Section 4.6 for a nonlinear PDE.

4.3 AFEM with exact solution

To outline the new proof strategy, we first consider the standard adaptive algorithm, where the arising
Galerkin systems (4.14) are solved exactly (see, e.g., [CKNS08]).

Algorithm 4A: AFEM with exact solver
Given an initial mesh T0 and adaptivity parameters 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1, iterate the
following steps for all ℓ = 0, 1, 2, 3, . . . :

(i) Solve: Compute the exact solution 𝑢★ℓ ∈ Xℓ to (4.14).

(ii) Estimate: Compute the refinement indicators 𝜂ℓ (𝑇, 𝑢★ℓ ) for all 𝑇 ∈ Tℓ .
(iii) Mark: Determine a set Mℓ ∈ Mℓ [𝜃, 𝑢★ℓ ] := Uℓ ⊆ Tℓ : 𝜃𝜂ℓ (𝑢★ℓ )2 ≤ 𝜂ℓ (Uℓ , 𝑢

★
ℓ )2

satisfying the Dörfler marking criterion with almost minimal cardinality

#Mℓ ≤ 𝐶mark min
U★

ℓ
∈Mℓ [ 𝜃,𝑢★ℓ ]

#U★
ℓ . (4.17)

(iv) Refine: Generate Tℓ+1 := refine(Tℓ ,Mℓ).

The following theorem asserts convergence of Algorithm 4A in the spirit of [CFPP14] and the
proof given below essentially summarizes the arguments from [Fei22]. It will, however, be the
starting point for the later generalizations, i.e., for the adaptive algorithms below with inexact solvers.

Theorem 4.4: R-linear convergence of Algorithm 4A
Let 0 < 𝜃 ≤ 1 and𝐶mark ≥ 1 be arbitrary. Then, Algorithm 4A guarantees R-linear convergence
of the estimators 𝜂ℓ (𝑢★ℓ ), i.e., there exist constants 0 < 𝑞lin < 1 and 𝐶lin > 0 such that

𝜂ℓ+𝑛 (𝑢★ℓ+𝑛) ≤ 𝐶lin 𝑞
𝑛
lin 𝜂ℓ (𝑢★ℓ ) for all ℓ, 𝑛 ∈ N0. (4.18)

Remark 4.5. For vanishing convection 𝒃 = 0 in (4.10) and 𝑎(·, ·) := 𝑏(·, ·), [CKNS08] proves linear
convergence of the quasi-error (4.2). Together with reliability (A3), this yields R-linear convergence
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of the estimator sequence

𝜂ℓ+𝑛 (𝑢★ℓ+𝑛) ≤
(𝐶2

rel + 𝛾)1/2
𝛾1/2

𝑞𝑛ctr 𝜂ℓ (𝑢★ℓ ) for all ℓ, 𝑛 ∈ N0. (4.19)

In this sense, Theorem 4.4 is weaker than linear convergence (4.2) from [CKNS08], but provides
a direct proof of R-linear convergence even if 𝑏(·, ·) ≠ 𝑎(·, ·). Moreover, while the proof of (4.2)
crucially relies on the Pythagorean identity (4.3), the works [FFP14; BHP17] extend the analysis to
the general second-order linear elliptic PDE (4.10) using

∀0 < 𝜀 < 1∃ℓ0 ∈ N0 ∀ℓ ≥ ℓ0 : ⦀𝑢★ − 𝑢★ℓ+1⦀2 ≤ ⦀𝑢★ − 𝑢★ℓ ⦀2 − 𝜀 ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀2. (4.20)

However, the index ℓ0 depends on the exact solution 𝑢★ and on the sequence of exact discrete
solutions (𝑢★ℓ )ℓ∈N0 . Moreover, ℓ0 = 0 requires sufficiently fine T0 in [CN12; BHP17] while the
constants in (4.18) depend on 𝑢★ and the sequence (𝑢★ℓ )ℓ∈N0 in [FFP14]. In contrast to that, R-linear
convergence (4.18) from Theorem 4.4 holds with ℓ0 = 0 and any initial mesh T0, and the constants
are independent of 𝑢★ and (𝑢★ℓ )ℓ∈N0 .

The proof of Theorem 4.4 relies on the following elementary lemma that extends arguments
implicitly found for the estimator sequence in [Fei22] but that will be employed for certain quasi-errors
in the present chapter. Its proof is found in Appendix 4.A.

Lemma 4.6 (tail summability criterion). Let (𝑎ℓ)ℓ∈N0 , (𝑏ℓ)ℓ∈N0 be scalar sequences in R≥0.
With given constants 0 < 𝑞 < 1, 0 < 𝛿 < 1, and 𝐶1, 𝐶2 > 0, suppose that

𝑎ℓ+1 ≤ 𝑞𝑎ℓ + 𝑏ℓ , 𝑏ℓ+𝑁 ≤ 𝐶1 𝑎ℓ , and
ℓ+𝑁∑︁
ℓ′=ℓ

𝑏2ℓ ≤ 𝐶2 (𝑁 + 1)1−𝛿 𝑎2ℓ for all ℓ, 𝑁 ∈ N0. (4.21)

Then, (𝑎ℓ)ℓ∈N0 is R-linearly convergent, i.e., there exist 𝐶lin > 0 and 0 < 𝑞lin < 1 with

𝑎ℓ+𝑛 ≤ 𝐶lin 𝑞
𝑛
lin 𝑎ℓ for all ℓ, 𝑛 ∈ N0. (4.22)

Proof of Theorem 4.4. We employ Lemma 4.6 for the sequences defined by 𝑎ℓ = 𝜂ℓ (𝑢★ℓ ) and
𝑏ℓ := 𝐶stab ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀. First, we note that

⦀𝑢★ℓ′′ − 𝑢★ℓ′⦀ (A3)
≲ 𝜂ℓ′′ (𝑢★ℓ′′) + 𝜂ℓ′ (𝑢★ℓ′)

(QM)
≲ 𝜂ℓ (𝑢★ℓ ) for all ℓ, ℓ′, ℓ′′ ∈ N0 with ℓ ≤ ℓ′ ≤ ℓ′′. (4.23)

In particular, this proves 𝑏ℓ+𝑁 ≲ 𝑎ℓ for all ℓ, 𝑁 ∈ N0. Moreover, quasi-orthogonality (A4) and
reliability (A3) show

ℓ+𝑁∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1 − 𝑢★ℓ′⦀2 ≤ 𝐶orth𝐶
2
rel (𝑁 + 1)1−𝛿 𝜂ℓ (𝑢★ℓ )2 for all ℓ, 𝑁 ∈ N0. (4.24)

In order to verify (4.21), it thus only remains to prove the perturbed contraction of 𝑎ℓ . To this end,
let ℓ ∈ N0. Then, stability (A1) and reduction (A2) show

𝜂ℓ+1(𝑢★ℓ )2 ≤ 𝜂ℓ (Tℓ+1 ∩ Tℓ , 𝑢★ℓ )2 + 𝑞2red𝜂ℓ (Tℓ\Tℓ+1, 𝑢★ℓ )2 = 𝜂ℓ (𝑢★ℓ )2−(1−𝑞2red) 𝜂ℓ (Tℓ\Tℓ+1, 𝑢★ℓ )2.
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Moreover, Dörfler marking (4.17) and refinement of (at least) all marked elements lead to

𝜃𝜂ℓ (𝑢★ℓ )2
(4.17)≤ 𝜂ℓ (Mℓ , 𝑢

★
ℓ )2 ≤ 𝜂ℓ (Tℓ\Tℓ+1, 𝑢★ℓ )2.

The combination of the two previously displayed formulas results in

𝜂ℓ+1(𝑢★ℓ ) ≤ 𝑞𝜃 𝜂ℓ (𝑢★ℓ ) with 0 < 𝑞𝜃 := 1 − (1 − 𝑞2red)𝜃
1/2

< 1.

Finally, stability (A1) thus leads to the desired estimator reduction estimate

𝜂ℓ+1(𝑢★ℓ+1) ≤ 𝑞𝜃 𝜂ℓ (𝑢★ℓ ) + 𝐶stab ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀ for all ℓ ∈ N0. (4.25)

Altogether, all the assumptions (4.21) are satisfied and Lemma 4.6 concludes the proof. □

4.4 AFEM with contractive solver

Let Ψ𝐻 : X𝐻 → X𝐻 be the iteration mapping of a uniformly contractive solver, i.e.,

⦀𝑢★𝐻 − Ψ𝐻 (𝑣𝐻)⦀ ≤ 𝑞ctr ⦀𝑢★𝐻 − 𝑣𝐻⦀ for all T𝐻 ∈ T and all 𝑣𝐻 ∈ X𝐻 . (4.26)

The following algorithm is thoroughly analyzed in [GHPS21] under the assumption that the problem
is symmetric (and hence the Pythagorean identity (4.3) holds).

Algorithm 4B: AFEM with contractive solver
Given an initial mesh T0, adaptivity parameters 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1, a solver-stopping
parameter 𝜆 > 0, and an initial guess 𝑢00 ∈ X0, iterate the following steps for all ℓ = 0, 1, 2, 3, . . . :

(i) Solve & Estimate: For all 𝑘 = 1, 2, 3, . . . , repeat (a)–(b) until

⦀𝑢𝑘ℓ − 𝑢𝑘−1ℓ ⦀ ≤ 𝜆 𝜂ℓ (𝑢𝑘ℓ ). (4.27)

(a) Compute 𝑢𝑘ℓ := Ψℓ (𝑢𝑘−1ℓ ) with one step of the contractive solver.
(b) Compute the refinement indicators 𝜂ℓ (𝑇, 𝑢𝑘ℓ ) for all 𝑇 ∈ Tℓ .

(ii) Upon termination of the iterative solver, define the index 𝑘 [ℓ] := 𝑘 ∈ N.

(iii) Mark: Determine a set Mℓ ∈ Mℓ [𝜃, 𝑢𝑘ℓ ] satisfying (4.17) with 𝑢★ℓ replaced by 𝑢
𝑘

ℓ .

(iv) Refine: Generate Tℓ+1 := refine(Tℓ ,Mℓ) and employ nested iteration 𝑢0ℓ+1 := 𝑢
𝑘

ℓ .

The sequential nature of Algorithm 4B gives rise to the countably infinite index set

Q := (ℓ, 𝑘) ∈ N2
0 : 𝑢𝑘ℓ ∈ Xℓ is defined in Algorithm 4B (4.28)

together with the lexicographic ordering

(ℓ′, 𝑘 ′) ≤ (ℓ, 𝑘) :⇐⇒ 𝑢𝑘
′

ℓ′ is defined not later than 𝑢𝑘ℓ in Algorithm 4B (4.29)
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and the total step counter

|ℓ, 𝑘 | := #{(ℓ′, 𝑘 ′) ∈ Q : (ℓ′, 𝑘 ′) ≤ (ℓ, 𝑘)} ∈ N0 for all (ℓ, 𝑘) ∈ Q.

Defining the stopping indices

ℓ := sup{ℓ ∈ N0 : (ℓ, 0) ∈ Q} ∈ N0 ∪ {∞}, (4.30a)
𝑘 [ℓ] := sup{𝑘 ∈ N0 : (ℓ, 𝑘) ∈ Q} ∈ N ∪ {∞}, whenever (ℓ, 0) ∈ Q, (4.30b)

we note that these definitions are consistent with that of Algorithm 4B(ii). We abbreviate 𝑘 = 𝑘 [ℓ],
whenever the index ℓ is clear from the context, e.g., 𝑢𝑘ℓ := 𝑢

𝑘 [ℓ ]
ℓ or (ℓ, 𝑘) = (ℓ, 𝑘 [ℓ]).

As Q is an infinite set, the typical case is ℓ = ∞ and 𝑘 [ℓ] < ∞ for all ℓ ∈ N0, whereas ℓ < ∞
implies that 𝑘 [ℓ] = ∞, i.e., non-termination of the iterative solver on the mesh Tℓ . The following
theorem states convergence of Algorithm 4B. In particular, it shows that ℓ < ∞ implies 𝜂ℓ (𝑢★ℓ ) = 0

and consequently 𝑢★ = 𝑢★ℓ by reliability (A3).

Theorem 4.7: full R-linear convergence of Algorithm 4B
Let 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, 𝜆 > 0, and 𝑢00 ∈ X0 be arbitrary. Then, Algorithm 4B guarantees
R-linear convergence of the modified quasi-error

H𝑘
ℓ := ⦀𝑢★ℓ − 𝑢𝑘ℓ⦀ + 𝜂ℓ (𝑢𝑘ℓ ), (4.31)

i.e., there exist constants 0 < 𝑞lin < 1 and 𝐶lin > 0 such that

H𝑘
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘 |− |ℓ′ ,𝑘′ |
lin H𝑘′

ℓ′ for all (ℓ′, 𝑘 ′), (ℓ, 𝑘) ∈ Q with |ℓ′, 𝑘 ′ | ≤ |ℓ, 𝑘 |. (4.32)

Remark 4.8. Unlike [GHPS21] (and [CKNS08]), Theorem 4.7 and its proof employ the quasi-error
H𝑘
ℓ from (4.31) instead of Δ𝑘

ℓ
:= ⦀𝑢★ − 𝑢𝑘ℓ⦀2 + 𝛾 𝜂ℓ (𝑢𝑘ℓ )2

1/2 analogous to (4.2). We note that
stability (A1) and reliability (A3) yield Δ𝑘

ℓ ≲ H𝑘
ℓ , while the converse estimate follows from the Céa

lemma (4.15).

Remark 4.9. The work [GHPS21] extends the ideas of [CKNS08] (that proves (4.2) for AFEM with
exact solver) and of [FP18] (that extends (4.2) to the final iterates for AFEM with contractive solver).
For the scalar product 𝑏(·, ·) = 𝑎(·, ·) and arbitrary stopping parameters 𝜆 > 0, it shows that the
quasi-error Δ𝑘

ℓ from Remark 4.8 satisfies contraction

Δ𝑘
ℓ ≤ 𝑞ctr Δ

𝑘−1
ℓ for all (ℓ, 𝑘) ∈ Q with 0 < 𝑘 < 𝑘 [ℓ], (4.33a)

Δ0
ℓ+1 ≤ 𝑞ctr Δ

𝑘−1
ℓ for all (ℓ, 𝑘) ∈ Q (4.33b)

with contraction constant 0 < 𝑞ctr < 1, along the approximations 𝑢𝑘ℓ ∈ Xℓ generated by Algorithm 4B.
The proof of (4.33) can be generalized similarly to Remark 4.5, see [BHI+23]: With the quasi-
Pythagorean estimate (4.20), the contraction (4.33) transfers to general second-order linear elliptic
PDEs (4.10) under the restriction that (4.33b) holds only for all ℓ ≥ ℓ0, where ℓ0 ∈ N0 exists, but
is unknown in practice. While, as noted in Remark 4.5, contraction (4.33) implies full R-linear
convergence (4.32), the proof of Theorem 4.7 works under much weaker assumptions than that
of [GHPS21] and covers the PDE (4.10) with ℓ0 = 0.
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The proof of Theorem 4.7 relies on Lemma 4.6 and the following elementary result essentially
taken from [CFPP14, Lemma 4.9]. Its proof is found in Appendix 4.A.

Lemma 4.10 (tail summability vs. R-linear convergence). Let (𝑎ℓ)ℓ∈N0 be a scalar sequence in
R≥0 and 𝑚 > 0. Then, the following statements are equivalent:

(i) tail summability: There exists a constant 𝐶𝑚 > 0 such that

∞∑︁
ℓ′=ℓ+1

𝑎𝑚ℓ′ ≤ 𝐶𝑚 𝑎𝑚ℓ for all ℓ ∈ N0. (4.34)

(ii) R-linear convergence: There holds (4.22) with certain 0 < 𝑞lin < 1 and 𝐶lin > 0.

Before proving Theorem 4.7, we want to briefly summarize its proof strategy. First, we show
that the estimator reduction together with the contraction (4.33) of the algebraic solver leads to
tail-summability of a weighted quasi-error on the mesh level ℓ. Second, we show that the quasi-error
from (4.31) is contractive in the algebraic solver index 𝑘 and is stable in the nested iteration. Finally,
we combine these two steps to prove R-linear convergence of the quasi-error (4.32).

Proof of Theorem 4.7. The proof is split into two steps.
Step 1 (tail summability with respect to ℓ). Let ℓ ∈ N with (ℓ + 1, 𝑘) ∈ Q. Algorithm 4B

guarantees nested iteration 𝑢0ℓ+1 = 𝑢
𝑘

ℓ and 𝑘 [ℓ] ≥ 1. This and contraction of the algebraic solver (4.26)
show ⦀𝑢★ℓ+1 − 𝑢

𝑘

ℓ+1⦀ (4.26)≤ 𝑞
𝑘 [ℓ+1]
ctr ⦀𝑢★ℓ+1 − 𝑢

𝑘

ℓ⦀ ≤ 𝑞ctr ⦀𝑢★ℓ+1 − 𝑢
𝑘

ℓ⦀ (4.35)

As in the proof of Theorem 4.4, one obtains the estimator reduction

𝜂ℓ+1(𝑢𝑘ℓ+1)
(4.25)≤ 𝑞𝜃 𝜂ℓ (𝑢𝑘ℓ ) + 𝐶stab ⦀𝑢𝑘ℓ+1−𝑢𝑘ℓ⦀(4.35)≤ 𝑞𝜃 𝜂ℓ (𝑢𝑘ℓ ) + (𝑞ctr + 1)𝐶stab ⦀𝑢★ℓ+1−𝑢𝑘ℓ⦀. (4.36)

Choosing 0 < 𝛾 ≤ 1 with 0 < 𝑞ctr := max{𝑞ctr + (𝑞ctr + 1)𝐶stab𝛾 , 𝑞𝜃 } < 1, the combination
of (4.35)–(4.36) reads

𝑎ℓ+1 := ⦀𝑢★ℓ+1 − 𝑢
𝑘

ℓ+1⦀ + 𝛾 𝜂ℓ+1(𝑢𝑘ℓ+1) ≤ 𝑞ctr ⦀𝑢★ℓ+1 − 𝑢
𝑘

ℓ⦀ + 𝛾 𝜂ℓ (𝑢𝑘ℓ )
≤ 𝑞ctr ⦀𝑢★ℓ − 𝑢

𝑘

ℓ⦀ + 𝛾 𝜂ℓ (𝑢𝑘ℓ ) + 𝑞ctr ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀ =: 𝑞ctr𝑎ℓ + 𝑏ℓ .
(4.37)

Moreover, estimate (4.23) from the proof of Theorem 4.4 and stability (A1) prove that

⦀𝑢★ℓ′′ − 𝑢★ℓ′⦀(4.23)
≲ 𝜂ℓ (𝑢★ℓ )

(A1)
≲ ∥𝑢★ℓ − 𝑢

𝑘

ℓ ∥ + 𝜂ℓ (𝑢𝑘ℓ ) ≃ 𝑎ℓ for ℓ ≤ ℓ′ ≤ ℓ′′ ≤ ℓ with (ℓ, 𝑘) ∈ Q, (4.38)

which yields 𝑏ℓ+𝑁 ≲ 𝑎ℓ for all 0 ≤ ℓ ≤ ℓ + 𝑁 ≤ ℓ with (ℓ, 𝑘) ∈ Q. As in (4.24), we see

ℓ+𝑁∑︁
ℓ′=ℓ

𝑏2ℓ′ ≃
ℓ+𝑁∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1 − 𝑢★ℓ′⦀2
(A4)
≲ (𝑁 + 1)1−𝛿 ⦀𝑢★ − 𝑢★ℓ ⦀2

(A3)
≲ (𝑁 + 1)1−𝛿 𝜂ℓ (𝑢★ℓ )2

(A1)
≲ (𝑁 + 1)1−𝛿 𝜂ℓ (𝑢𝑘ℓ ) + ⦀𝑢★ℓ − 𝑢

𝑘

ℓ⦀ 2 ≃ (𝑁 + 1)1−𝛿 𝑎2ℓ for all 0 ≤ ℓ ≤ ℓ + 𝑁 < ℓ.

(4.39)
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Hence, the assumptions (4.21) are satisfied and Lemma 4.6 concludes tail summability (or equivalently
R-linear convergence by Lemma 4.10) of H𝑘

ℓ ≃ 𝑎ℓ , i.e.,

ℓ−1∑︁
ℓ′=ℓ+1

H
𝑘

ℓ′ ≲ H
𝑘

ℓ for all 0 ≤ ℓ < ℓ. (4.40)

Step 2 (tail summability with respect to ℓ and 𝒌). First, for 0 ≤ 𝑘 < 𝑘 ′ < 𝑘 [ℓ], the failure of
the termination criterion (4.27) and contraction of the solver (4.26) prove that

H𝑘′
ℓ

(4.27)
≲ ⦀𝑢★ℓ − 𝑢𝑘

′
ℓ ⦀ + ⦀𝑢𝑘′ℓ − 𝑢𝑘

′−1
ℓ ⦀ (4.26)

≲ ⦀𝑢★ℓ − 𝑢𝑘
′−1

ℓ ⦀ (4.26)
≲ 𝑞𝑘

′−𝑘
ctr ⦀𝑢★ℓ − 𝑢𝑘ℓ⦀ (4.31)≤ 𝑞𝑘

′−𝑘
ctr H𝑘

ℓ .

Second, for (ℓ, 𝑘) ∈ Q, it holds that

H
𝑘

ℓ

(A1)
≲ ⦀𝑢★ℓ − 𝑢

𝑘

ℓ⦀ + 𝜂ℓ (𝑢𝑘−1ℓ ) + ⦀𝑢𝑘ℓ − 𝑢
𝑘−1
ℓ ⦀

≤ H
𝑘−1
ℓ + 2⦀𝑢★ℓ − 𝑢

𝑘

ℓ⦀ (4.26)≤ (1 + 2 𝑞ctr) H𝑘−1
ℓ for all (ℓ, 𝑘) ∈ Q.

Hence, we may conclude

H𝑘′
ℓ ≲ 𝑞𝑘

′−𝑘
ctr H𝑘

ℓ for all 0 ≤ 𝑘 ≤ 𝑘 ′ ≤ 𝑘 [ℓ] . (4.41)

With ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀ ≲ 𝑎ℓ ≃ H
𝑘

ℓ from (4.23), stability (A1) and reduction (A2) show

H0
ℓ+1 = ⦀𝑢★ℓ+1 − 𝑢

𝑘

ℓ⦀ + 𝜂ℓ+1(𝑢𝑘ℓ ) ≤ H
𝑘

ℓ + ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀ ≲ H
𝑘

ℓ for all (ℓ, 𝑘) ∈ Q. (4.42)

Overall, the geometric series proves tail summability (4.34) via

∑︁
(ℓ′ ,𝑘′ ) ∈Q

|ℓ′ ,𝑘′ |> |ℓ,𝑘 |

H𝑘′
ℓ′ =

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

H𝑘′
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ′ ]∑︁
𝑘′=0

H𝑘′
ℓ′

(4.41)
≲ H𝑘

ℓ +
ℓ∑︁

ℓ′=ℓ+1
H0
ℓ′

(4.42)
≲ H𝑘

ℓ +
ℓ−1∑︁
ℓ′=ℓ

H
𝑘

ℓ′
(4.40)
≲ H𝑘

ℓ + H
𝑘

ℓ

(4.41)
≲ H𝑘

ℓ for all (ℓ, 𝑘) ∈ Q.

Since Q is countable and linearly ordered, Lemma 4.10 concludes the proof of (4.32) □

The following comments on the computational cost of implementations of standard finite element
methods underline the importance of full linear convergence (4.32).

• Solve & Estimate. One solver step of an optimal multigrid method can be performed in
O(#Tℓ) operations, if smoothing is done according to the grading of the mesh [WZ17;
IMPS24]. Instead, one step of a multigrid method on Tℓ , where smoothing is done on all
levels and all vertex patches needs O( ℓ

ℓ′=0#Tℓ′) operations. The same remark is valid
for the preconditioned CG method with optimal additive Schwarz or BPX preconditioner
[CNX12]. One solver step can be realized via successive updates in O(#Tℓ) operations,
while O ℓ

ℓ′=0#Tℓ′ is faced if the preconditioner does not respect the grading of the mesh
hierarchy.
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• Mark. The Dörfler marking strategy (4.17) can be realized in linear complexity O(#Tℓ);
see [Ste07] for 𝐶mark = 2 and [PP20] for 𝐶mark = 1.

• Refine. Local mesh refinement (including mesh closure) of Tℓ by bisection can be realized in
O(#Tℓ) operations; see, e.g., [BDD04; Ste07].

Since the adaptive algorithm depends on the full history of algorithmic decisions, the overall
computational cost until step (ℓ, 𝑘) ∈ Q, i.e., until (and including) the computation of 𝑢𝑘ℓ , is thus
proportionally bounded by∑︁

(ℓ′ ,𝑘′ ) ∈Q
|ℓ′ ,𝑘′ | ≤ |ℓ,𝑘 |

#Tℓ′ ≤ cost(ℓ, 𝑘) ≤
∑︁

(ℓ′ ,𝑘′ ) ∈Q
|ℓ′ ,𝑘′ | ≤ |ℓ,𝑘 |

ℓ′∑︁
ℓ′′=0

#Tℓ′′ .

Here, the lower bound corresponds to the case that all steps of Algorithm 4B are done at linear
cost O(#Tℓ). The upper bound corresponds to the case that solve & estimate, mark, and refine are
performed at linear cost O(#Tℓ), while a suboptimal solver leads to cost O( ℓ

ℓ′′=0#Tℓ′′) for each
mesh Tℓ . In any case, the following corollary shows that full R-linear convergence guarantees that
convergence rates with respect to the number of degrees of freedom dimXℓ ≃ #Tℓ and with respect
to the overall computational cost cost(ℓ, 𝑘) coincide even for a suboptimal solver. Moreover, the
corollary shows that there exists a bound 𝑠0 > 0 such that all rates 0 < 𝑠 ≤ 𝑠0 are possible.

Corollary 4.11 (rates = complexity). For 𝑠 > 0, full R-linear convergence (4.32) yields

𝑀 (𝑠) := sup
(ℓ,𝑘 ) ∈Q

(#Tℓ)𝑠 H𝑘
ℓ ≤ sup

(ℓ,𝑘 ) ∈Q

∑︁
(ℓ′ ,𝑘′ ) ∈Q

|ℓ′ ,𝑘′ | ≤ |ℓ,𝑘 |

ℓ′∑︁
ℓ′′=0

#Tℓ′′
𝑠
H𝑘
ℓ ≤ 𝐶cost(𝑠) 𝑀 (𝑠), (4.43)

where the constant 𝐶cost(𝑠) > 0 depends only on 𝐶lin, 𝑞lin, and 𝑠. Moreover, there exists 𝑠0 > 0
such that 𝑀 (𝑠) < ∞ for all 0 < 𝑠 ≤ 𝑠0 with 𝑠0 = ∞ if ℓ < ∞.

The last corollary is an immediate consequence of the following elementary lemma for 𝑎 |ℓ,𝑘 | := H𝑘
ℓ

and 𝑡 |ℓ,𝑘 | := #Tℓ .
Lemma 4.12 (rates = complexity criterion). Let (𝑎ℓ)ℓ∈N0 and (𝑡ℓ)ℓ∈N0 be sequences in R≥0 such
that

𝑎ℓ+𝑛 ≤ 𝐶1𝑞
𝑛 𝑎ℓ and 𝑡ℓ+1 ≤ 𝐶2 𝑡ℓ for all ℓ, 𝑛 ∈ N0. (4.44)

Then, for all 𝑠 > 0, there holds

𝑀 (𝑠) := sup
ℓ∈N0

𝑡𝑠ℓ 𝑎ℓ ≤ sup
ℓ∈N0

ℓ∑︁
ℓ′=0

ℓ′∑︁
ℓ′′=0

𝑡ℓ′′
𝑠
𝑎ℓ ≤ 𝐶cost(𝑠) 𝑀 (𝑠), (4.45)

where the constant 𝐶cost(𝑠) > 0 depends only on 𝐶1, 𝑞, and 𝑠. Moreover, there exists 𝑠0 > 0
depending only on 𝐶2 and 𝑞 such that 𝑀 (𝑠) < ∞ for all 0 < 𝑠 ≤ 𝑠0.

Proof. By definition, it holds that

𝑡ℓ ≤ 𝑀 (𝑠)1/𝑠 𝑎−1/𝑠ℓ for all ℓ ∈ N0.
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4.4 AFEM with contractive solver

This, assumption (4.44), and the geometric series prove that

ℓ′∑︁
ℓ′′=0

𝑡ℓ′′ ≤ 𝑀 (𝑠)1/𝑠
ℓ′∑︁

ℓ′′=0
𝑎−1/𝑠ℓ′′

(4.44)≤ 𝑀 (𝑠)1/𝑠 𝐶1/𝑠
1 𝑎−1/𝑠ℓ′

ℓ′∑︁
ℓ′′=0

(𝑞1/𝑠)ℓ′−ℓ′′

≤ 𝑀 (𝑠)1/𝑠 𝐶1/𝑠
1

1 − 𝑞1/𝑠
𝑎−1/𝑠ℓ′ for all ℓ′ ∈ N0.

A further application of (4.44) and the geometric series prove that

ℓ∑︁
ℓ′=0

𝑎−1/𝑠ℓ′
(4.44)≤ 𝐶1/𝑠

1 𝑎−1/𝑠ℓ

ℓ∑︁
ℓ′=0

(𝑞1/𝑠)ℓ−ℓ′ ≤ 𝐶1/𝑠
1

1 − 𝑞1/𝑠
𝑎−1/𝑠ℓ for all ℓ ∈ N0.

The combination of the two previously displayed formulas results in

ℓ∑︁
ℓ′=0

ℓ′∑︁
ℓ′′=0

𝑡ℓ′′ ≤
𝐶1/𝑠
1

1 − 𝑞1/𝑠
2
𝑀 (𝑠)1/𝑠 𝑎−1/𝑠ℓ for all ℓ ∈ N0.

Rearranging this estimate, we conclude the proof of (4.43). It remains to verify 𝑀 (𝑠) < ∞ for some
𝑠 > 0. Note that (4.44) guarantees that

0 ≤ 𝑡ℓ ≤ 𝐶2 𝑡ℓ−1 ≤ 𝐶ℓ
2 𝑡0 for all ℓ ∈ N.

Moreover, R-linear convergence (4.44) yields that

0 ≤ 𝑎ℓ
(4.44)≤ 𝐶1𝑞

ℓ 𝑎0 for all ℓ ∈ N0.

Multiplying the two previously displayed formulas, we see that

𝑡𝑠ℓ 𝑎ℓ ≤ (𝐶𝑠
2𝑞)ℓ𝐶1 𝑡

𝑠
0 𝑎0 for all ℓ ∈ N0.

Note that the right-hand side is uniformly bounded, provided that 𝑠 > 0 guarantees 𝐶𝑠
2𝑞 ≤ 1. This

concludes the proof with 𝑠0 := log(1/𝑞)/log(𝐶2). □

With full linear convergence (4.32), the following theorem from [GHPS21, Theorem 8] can
be applied and thus Algorithm 4B guarantees optimal convergence rates with respect to the
overall computational cost in the case of sufficiently small adaptivity parameters 𝜃 and 𝜆. To
formalize achievable convergence rate 𝑠 > 0, we introduce the notion of nonlinear approximation
classes [BDD04; Ste07; CKNS08; CFPP14]

∥𝑢★∥A𝑠
:= sup

𝑁 ∈N0

𝑁 + 1
𝑠

min
Topt∈T𝑁

𝜂opt(𝑢★opt) ,

where 𝜂opt(𝑢★opt) is the estimator for the (unavailable) exact Galerkin solution 𝑢★opt on an optimal
Topt ∈ T𝑁 := {T𝐻 ∈ T : #T𝐻 −#T0 ≤ 𝑁}.
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4 Adaptive FEM with quasi-optimal computational cost

Theorem 4.13: optimal complexity of Algorithm 4B, [GHPS21, Theorem 8]
Suppose that the estimator satisfies the axioms of adaptivity (A1), (A2), (A3+), and suppose
that quasi-orthogonality (A4) holds. Suppose that the parameters 𝜃 and 𝜆 are chosen such

0 < 𝜆 < 𝜆★ = min 1,
1 − 𝑞ctr
𝑞ctr

𝐶−1
stab and 0 <

(𝜃1/2 + 𝜆/𝜆★)2
1 − 𝜆/𝜆★ 2

< 𝜃★ := 1 + 𝐶2
stab 𝐶

2
drel

−1
.

Then, Algorithm 4B guarantees for all 𝑠 > 0 that

𝑐opt∥𝑢★∥A𝑠 ≤ sup
(ℓ,𝑘 ) ∈Q

∑︁
(ℓ′ ,𝑘′ ) ∈Q

|ℓ′ ,𝑘′ | ≤ |ℓ,𝑘 |

#Tℓ′
𝑠
H𝑘
ℓ ≤ 𝐶opt max{∥𝑢★∥A𝑠 ,H

0
0}.

The constant 𝑐opt > 0 depends only on 𝐶stab, the use of NVB refinement, and 𝑠, while 𝐶opt > 0
depends only on𝐶stab, 𝑞red,𝐶drel,𝐶lin, 𝑞lin, #T0, 𝜆, 𝑞ctr, 𝜃, 𝑠, and the use of NVB refinement. □

Remark 4.14. Considering the nonsymmetric model problem (4.10), a natural candidate for the
solver is the generalized minimal residual method (GMRES) with optimal preconditioner for the
symmetric part. Another alternative would be to consider an optimal preconditioner for the symmetric
part and apply a conjugate gradient method to the normal equations (CGNR). However, for both
approaches, a posteriori error estimation and contraction in the PDE-related energy norm are
still open. Instead, [BHI+23] follows the constructive proof of the Lax–Milgram lemma to derive
a contractive solver. Its convergence analysis, as given in [BHI+23], is improved in the following
Section 4.5.

4.5 AFEM with nested contractive solvers

While contractive solvers for SPD systems are well-understood in the literature, the recent
work [BHI+23] presents contractive solvers for the nonsymmetric variational formulation (4.14)
that essentially fit into the framework of Section 4.4 and allow for the numerical analysis of
AFEM with optimal complexity. To this end, the proof of the Lax–Milgram lemma as proposed by
Zarantonello [Zar60] is exploited algorithmically (while the original proof [LM54] relies on the Hahn–
Banach separation theorem): For 𝛿 > 0, we consider the Zarantonello mapping Φ𝐻 (𝛿; ·) : X𝐻 → X𝐻

defined by

𝑎(Φ𝐻 (𝛿; 𝑢𝐻), 𝑣𝐻) = 𝑎(𝑢𝐻 , 𝑣𝐻) + 𝛿 𝐹 (𝑣𝐻) − 𝑏(𝑢𝐻 , 𝑣𝐻) for all 𝑢𝐻 , 𝑣𝐻 ∈ X𝐻 . (4.46)

Since 𝑎(·, ·) is a scalar product, Φ𝐻 (𝛿; 𝑢𝐻) ∈ X𝐻 is well-defined. Moreover, for any 0 < 𝛿 < 2𝛼/𝐿2

and 0 < 𝑞sym := [1 − 𝛿(2𝛼 − 𝛿𝐿2)]1/2 < 1, this mapping is contractive, i.e.,⦀𝑢★𝐻 −Φ𝐻 (𝛿; 𝑢𝐻)⦀ ≤ 𝑞sym ⦀𝑢★𝐻 − 𝑢𝐻⦀ for all 𝑢𝐻 ∈ X𝐻 ; (4.47)

see also [HW20b; HW20a]. Note that (4.46) corresponds to a linear SPD system. For this, we
employ a uniformly contractive algebraic solver with iteration function Ψ𝐻 (𝑢♯𝐻 ; ·) : X𝐻 → X𝐻 to
approximate the solution 𝑢♯𝐻 := Φ𝐻 (𝛿; 𝑢𝐻) to the SPD system (4.46), i.e.,

⦀𝑢♯𝐻 − Ψ𝐻 (𝑢♯𝐻 ;𝑤𝐻)⦀ ≤ 𝑞ctr ⦀𝑢♯𝐻 − 𝑤𝐻⦀ for all 𝑤𝐻 ∈ X𝐻 and all T𝐻 ∈ T, (4.48)
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4.5 AFEM with nested contractive solvers

where 0 < 𝑞ctr < 1 depends only on 𝑎(·, ·), but is independent of X𝐻 . Clearly, no knowledge
of 𝑢♯𝐻 is needed to compute Ψ𝐻 (𝑢♯𝐻 ;𝑤𝐻) but only that of the corresponding right-hand side
𝑎(𝑢♯𝐻 , ·) : X𝐻 → R; see, e.g., [CNX12; WZ17; IMPS24].

Algorithm 4C: AFEM with nested contractive solvers
Given an initial mesh T0, the Zarantonello parameter 𝛿 > 0, adaptivity parameters 0 < 𝜃 ≤ 1

and𝐶mark ≥ 1, solver-stopping parameters 𝜆sym, 𝜆alg > 0, and an initial guess 𝑢0,00 := 𝑢
0, 𝑗

0 ∈ X0,
iterate the following steps (i)–(iv) for all ℓ = 0, 1, 2, 3, . . . :

(i) Solve & estimate: For all 𝑘 = 1, 2, 3, . . . , repeat the following steps (a)–(c) until

⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ ≤ 𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ). (4.49)

(a) Define 𝑢𝑘,0ℓ
:= 𝑢

𝑘−1, 𝑗
ℓ and, only as a theoretical quantity, 𝑢𝑘,★ℓ

:= Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ).
(b) Inner solver loop: For all 𝑗 = 1, 2, 3, . . . , repeat the steps (I)–(II) until

⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ ≤ 𝜆alg 𝜆sym𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ . (4.50)

(I) Compute one step of the contractive SPD solver 𝑢𝑘, 𝑗ℓ
:= Ψℓ (𝑢𝑘,★ℓ ; 𝑢

𝑘, 𝑗−1
ℓ ),

where 𝑢𝑘,★ℓ
:= Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ) ∈ Xℓ is only a theoretical quantity.

(II) Compute the refinement indicators 𝜂ℓ (𝑇, 𝑢𝑘, 𝑗ℓ ) for all 𝑇 ∈ Tℓ .
(c) Upon termination of the inner solver loop, define the index 𝑗 [ℓ, 𝑘] := 𝑗 ∈ N.

(ii) Upon termination of the outer solver loop, define the index 𝑘 [ℓ] := 𝑘 ∈ N.

(iii) Mark: Determine a set Mℓ ∈ Mℓ [𝜃, 𝑢𝑘, 𝑗ℓ ] satisfying (4.17) with 𝑢★ℓ replaced by 𝑢
𝑘, 𝑗

ℓ .

(iv) Refine: Generate Tℓ+1 := refine(Tℓ ,Mℓ) and define 𝑢0,0ℓ+1 := 𝑢
0, 𝑗

ℓ+1 := 𝑢
𝑘, 𝑗

ℓ .

Extending the index notation from Section 4.4, we define the triple index set

Q := {(ℓ, 𝑘, 𝑗) ∈ N3
0 : 𝑢

𝑘, 𝑗
ℓ is used in Algorithm 4C}

together with the lexicographic ordering

(ℓ′, 𝑘 ′, 𝑗 ′) ≤ (ℓ, 𝑘, 𝑗) :⇐⇒ 𝑢
𝑘′ , 𝑗′
ℓ′ is defined not later than 𝑢

𝑘, 𝑗
ℓ in Algorithm 4C

and the total step counter

|ℓ, 𝑘, 𝑗 | := #{(ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q : (ℓ′, 𝑘 ′, 𝑗 ′) ≤ (ℓ, 𝑘, 𝑗)} ∈ N0 for (ℓ, 𝑘, 𝑗) ∈ Q. (4.51)

Moreover, we define the stopping indices

ℓ := sup{ℓ ∈ N0 : (ℓ, 0, 0) ∈ Q} ∈ N0 ∪ {∞}, (4.52a)
𝑘 [ℓ] := sup{𝑘 ∈ N0 : (ℓ, 𝑘, 0) ∈ Q} ∈ N ∪ {∞}, whenever (ℓ, 0, 0) ∈ Q, (4.52b)

𝑗 [ℓ, 𝑘] := sup{ 𝑗 ∈ N0 : (ℓ, 𝑘, 𝑗) ∈ Q} ∈ N ∪ {∞}, whenever (ℓ, 𝑘, 0) ∈ Q. (4.52c)
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4 Adaptive FEM with quasi-optimal computational cost

First, these definitions are consistent with those of Algorithm 4C(i.a.II) and Algorithm 4C(ii).
Second, there holds indeed 𝑗 [ℓ, 𝑘] < ∞ for all (ℓ, 𝑘, 0) ∈ Q; see [BHI+23, Lemma 3.2]. Third,
ℓ < ∞ yields 𝑘 [ℓ] = ∞ and 𝜂ℓ (𝑢★ℓ ) = 0 with 𝑢★ℓ = 𝑢★; see [BHI+23, Lemma 5.2].

The following theorem improves [BHI+23, Theorem 4.1] in the sense that, first, we prove R-linear
convergence for all ℓ ≥ ℓ0 = 0, while ℓ0 ∈ N is unknown in practice and depends on 𝑢★ and the
non-accessible sequence (𝑢★ℓ )ℓ∈N0 in [BHI+23], and, second, [BHI+23] requires severe restrictions
on 𝜆alg beyond (4.53) below. We note that (4.53) is indeed satisfied, if the algebraic system is solved
exactly, i.e., 𝜆alg = 0, so that Theorem 4.15 is a consistent generalization of Theorem 4.7.

Theorem 4.15: full R-linear convergence of Algorithm 4C

Let 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, 𝜆sym, 𝜆alg > 0, and 𝑢0,00 ∈ X0. With 𝑞𝜃 := [1 − (1 − 𝑞2red)𝜃]1/2,
suppose that

0 <
𝑞sym + 2 𝑞ctr

1−𝑞ctr
𝜆alg

1 − 2 𝑞ctr
1−𝑞ctr

𝜆alg
=: 𝑞sym < 1 and 𝜆alg𝜆sym <

(1 − 𝑞ctr) (1 − 𝑞sym) (1 − 𝑞𝜃 )
8 𝑞ctr𝐶stab

. (4.53)

Then, Algorithm 4C guarantees R-linear convergence of the quasi-error

H
𝑘, 𝑗
ℓ

:= ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ ), (4.54)

i.e., there exist constants 0 < 𝑞lin < 1 and 𝐶lin > 0 such that

H
𝑘, 𝑗
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘, 𝑗 |− |ℓ′,𝑘′, 𝑗′ |
lin H

𝑘′ , 𝑗′
ℓ′ for all (ℓ′, 𝑘 ′, 𝑗 ′), (ℓ, 𝑘, 𝑗) ∈ Q with |ℓ′, 𝑘 ′, 𝑗 ′ | ≤ |ℓ, 𝑘, 𝑗 |.

(4.55)

As proven for Corollary 4.11 in Section 4.4, an immediate consequence of full linear convergence
(and the geometric series) is that convergence rates with respect to the number of degrees of freedom
and with respect to the overall computational cost coincide.

Corollary 4.16 (rates = complexity). For 𝑠 > 0, full R-linear convergence (4.55) yields

𝑀 (𝑠):= sup
(ℓ,𝑘, 𝑗 ) ∈Q

(#Tℓ)𝑠 H𝑘, 𝑗
ℓ ≤ sup

(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

∑︁
(ℓ′′ ,𝑘′′ , 𝑗′′ ) ∈Q

|ℓ′′ ,𝑘′′ , 𝑗′′ | ≤ |ℓ′ ,𝑘′ , 𝑗′ |

#Tℓ′′
𝑠
H

𝑘, 𝑗
ℓ

≤ 𝐶cost(𝑠) 𝑀 (𝑠),
(4.56)

where the constant 𝐶cost(𝑠) > 0 depends only on 𝐶lin, 𝑞lin, and 𝑠. Moreover, there exists 𝑠0 > 0
such that 𝑀 (𝑠) < ∞ for all 0 < 𝑠 ≤ 𝑠0. □

The proof of Theorem 4.15 requires the following lemma (essentially taken from [BHI+23]). It
deduces the contraction of the inexact Zarantonello iteration with computed iterates 𝑢

𝑘, 𝑗

ℓ ≈ 𝑢𝑘,★ℓ from
the exact Zarantonello iteration. For the inexact iteration, the linear SPD system (4.46) is solved
with the contractive algebraic solver (4.48), i.e., 𝑢𝑘,★ℓ

:= Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ) and 𝑢
𝑘, 𝑗
ℓ

:= Ψℓ (𝑢𝑘,★ℓ , 𝑢
𝑘, 𝑗−1
ℓ )

guarantee

⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ for all (ℓ, 𝑘, 𝑗) ∈ Q with 𝑘 ≥ 1. (4.57)
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4.5 AFEM with nested contractive solvers

We emphasize that contraction is only guaranteed for 0 < 𝑘 < 𝑘 [ℓ] in (4.58) below, while the final
iteration 𝑘 = 𝑘 [ℓ] leads to a perturbed contraction (4.59) thus requiring additional treatment in the
later analysis. The proof of Lemma 4.17 is given in Appendix 4.A.

Lemma 4.17 (contraction of inexact Zarantonello iteration). Under the assumptions of Theo-
rem 4.15, the inexact Zarantonello iteration used in Algorithm 4C satisfies

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ for all (ℓ, 𝑘, 𝑗) ∈ Q with 1 ≤ 𝑘 < 𝑘 [ℓ] (4.58)

as well as

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝜆alg𝜆sym 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) for all (ℓ, 𝑘, 𝑗) ∈ Q. (4.59)

The building blocks of the proof of Theorem 4.15 are the following: First, we show that a suitably
weighted quasi-error involving the final iterates of the inexact Zarantonello iteration is tail-summable
in the mesh level index ℓ. Second, we show that the quasi-errors are tail-summable in the Zarantonello
index 𝑘 and, third, in the algebraic solver index 𝑗 and are stable in the nested iteration. Finally,
combining these ideas leads to tail-summability with respect to the total step counter.

Proof of Theorem 4.15. The proof is split into six steps. The first four steps follow the proof of
Theorem 4.7 using

H𝑘
ℓ := ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) for all (ℓ, 𝑘, 𝑗) ∈ Q. (4.60)

By contraction of the algebraic solver (4.48) as well as the stopping criteria for the algebraic
solver (4.50) and for the symmetrization (4.49), it holds that

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ (4.48)
≲ ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀ (4.50)

≲ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ (4.49)

≲ 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) ≤ H
𝑘

ℓ .

In particular, this proves equivalence

H
𝑘

ℓ ≤ H
𝑘

ℓ + ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ = H
𝑘, 𝑗

ℓ ≲ H
𝑘

ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q. (4.61)

Step 1 (auxiliary estimates & estimator reduction). For (ℓ, 𝑘, 𝑗) ∈ Q, nested iteration

𝑢
𝑘,0

ℓ = 𝑢
𝑘−1, 𝑗
ℓ and 𝑗 [ℓ, 𝑘] ≥ 1 yield

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ (4.48)≤ 𝑞
𝑗 [ℓ,𝑘 ]
ctr ⦀𝑢𝑘,★ℓ − 𝑢

𝑘,0

ℓ ⦀ ≤ 𝑞ctr ⦀𝑢𝑘,★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀. (4.62)

From this, we obtain that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢
𝑘,★

ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀
(4.62)≤ (1 + 𝑞ctr) ⦀𝑢★ℓ − 𝑢

𝑘,★

ℓ ⦀ + 𝑞ctr ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀

(4.57)≤ (1 + 𝑞ctr)𝑞sym + 𝑞ctr ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ ≤ 3⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀.

(4.63)
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4 Adaptive FEM with quasi-optimal computational cost

For (ℓ + 1, 𝑘, 𝑗) ∈ Q, contraction of the inexact Zarantonello iteration (4.58), nested iteration

𝑢
0, 𝑗

ℓ+1 = 𝑢
𝑘, 𝑗

ℓ , and 𝑘 [ℓ + 1] ≥ 1, show that

⦀𝑢★ℓ+1 − 𝑢
𝑘−1, 𝑗
ℓ+1 ⦀(4.58)≤ 𝑞

𝑘 [ℓ+1]−1
sym ⦀𝑢★ℓ+1 − 𝑢

0, 𝑗

ℓ+1⦀ ≤ ⦀𝑢★ℓ+1 − 𝑢
𝑘, 𝑗

ℓ ⦀. (4.64)

The combination of the previous two displayed formulas shows

⦀𝑢★ℓ+1 − 𝑢
𝑘, 𝑗

ℓ+1⦀(4.63)≤ 3⦀𝑢★ℓ+1 − 𝑢
𝑘−1, 𝑗
ℓ+1 ⦀(4.64)≤ 3⦀𝑢★ℓ+1 − 𝑢

𝑘, 𝑗

ℓ ⦀. (4.65)

Analogous arguments to (4.36) in the proof of Theorem 4.4 establish

𝜂ℓ+1(𝑢𝑘, 𝑗ℓ+1)
(4.36)≤ 𝑞𝜃 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) +𝐶stab ⦀𝑢𝑘, 𝑗ℓ+1 − 𝑢

𝑘, 𝑗

ℓ ⦀ (4.65)≤ 𝑞𝜃 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + 4𝐶stab ⦀𝑢★ℓ+1 − 𝑢
𝑘, 𝑗

ℓ ⦀. (4.66)

Step 2 (tail summability with respect to ℓ). With 𝜆 := 𝜆alg𝜆sym, we define

𝛾 :=
𝑞𝜃 (1 − 𝑞sym)

4𝐶stab
, 𝐶 (𝛾, 𝜆) := 1 + 2 𝑞ctr

1 − 𝑞ctr

𝜆

𝛾
, and 𝛼 :=

𝜆

𝛾

(4.53)
<

(1 − 𝑞ctr) (1 − 𝑞𝜃 )
2 𝑞ctr𝑞𝜃

.

By definition, it follows that

𝐶 (𝛾, 𝜆) = 1 + 2 𝑞ctr
1 − 𝑞ctr

𝛼 < 1 + 1 − 𝑞𝜃

𝑞𝜃
= 1/𝑞𝜃 .

This ensures that

𝑞𝜃𝐶 (𝛾, 𝜆) < 1 as well as 𝑞sym + 4𝐶stab𝐶 (𝛾, 𝜆) 𝛾 < 𝑞sym + 4𝐶stab
𝑞𝜃

𝛾 = 1. (4.67)

With contraction of the inexact Zarantonello iteration (4.59), Step 1 proves

⦀𝑢★ℓ+1 − 𝑢
𝑘, 𝑗

ℓ+1⦀ + 𝛾 𝜂ℓ+1(𝑢𝑘, 𝑗ℓ+1)
(4.59)≤ 𝑞sym ⦀𝑢★ℓ+1 − 𝑢

𝑘−1, 𝑗
ℓ+1 ⦀ + 𝐶 (𝛾, 𝜆) 𝛾 𝜂ℓ+1(𝑢𝑘, 𝑗ℓ+1)

(4.64)≤ 𝑞sym ⦀𝑢★ℓ+1 − 𝑢
𝑘, 𝑗

ℓ ⦀ + 𝐶 (𝛾, 𝜆) 𝛾 𝜂ℓ+1(𝑢𝑘, 𝑗ℓ+1)
(4.66)≤ 𝑞sym + 4𝐶stab 𝐶 (𝛾, 𝜆) 𝛾 ⦀𝑢★ℓ+1 − 𝑢

𝑘, 𝑗

ℓ ⦀ + 𝑞𝜃 𝐶 (𝛾, 𝜆) 𝛾 𝜂ℓ (𝑢𝑘, 𝑗ℓ )
≤ 𝑞ctr ⦀𝑢★ℓ+1 − 𝑢

𝑘, 𝑗

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) for all (ℓ + 1, 𝑘, 𝑗) ∈ Q,

(4.68)

where (4.67) ensures the bound

0 < 𝑞ctr := max 𝑞sym + 4𝐶stab 𝐶 (𝛾, 𝜆) 𝛾 , 𝑞𝜃 𝐶 (𝛾, 𝜆) < 1. (4.69)

Altogether, we obtain

𝑎ℓ+1 := ⦀𝑢★ℓ+1 − 𝑢
𝑘, 𝑗

ℓ+1⦀ + 𝛾 𝜂ℓ+1(𝑢𝑘, 𝑗ℓ+1)
(4.68)≤ 𝑞ctr ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + 𝑞ctr ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀
=: 𝑞ctr 𝑎ℓ + 𝑏ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q,
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4.5 AFEM with nested contractive solvers

which corresponds to (4.37) in the case of a single contractive solver (with 𝑢
𝑘, 𝑗

ℓ replacing 𝑢𝑘ℓ in (4.37)).
Together with (4.38)–(4.39) (with 𝑢

𝑘, 𝑗

ℓ replacing 𝑢
𝑘

ℓ ), the assumptions (4.21) of Lemma 4.6 are
satisfied. Therefore, Lemma 4.6 proves tail summability

ℓ−1∑︁
ℓ′=ℓ+1

H
𝑘

ℓ′
(4.60)≃

ℓ−1∑︁
ℓ′=ℓ+1

⦀𝑢★ℓ′ − 𝑢
𝑘, 𝑗

ℓ′ ⦀ + 𝛾 𝜂ℓ′ (𝑢𝑘, 𝑗ℓ′ )

≲ ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) (4.60)≃ H
𝑘

ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q.

Step 3 (auxiliary estimates). First, we employ (4.63) to deduce

H
𝑘

ℓ

(A1)
≲ ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ + ⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + 𝜂ℓ (𝑢𝑘−1, 𝑗ℓ ) (4.60)≤ H

𝑘−1
ℓ + 2⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀

(4.63)≤ H
𝑘−1
ℓ + 8⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ ≤ 9H

𝑘−1
ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q.

(4.70)

Second, for 0 ≤ 𝑘 < 𝑘 ′ < 𝑘 [ℓ], the failure of the stopping criterion for the inexact Zarantonello
symmetrization (4.49) and contraction (4.58) prove that

H𝑘′
ℓ

(4.49)
≲ ⦀𝑢★ℓ − 𝑢

𝑘′ , 𝑗
ℓ ⦀ + ⦀𝑢𝑘′ , 𝑗ℓ − 𝑢

𝑘′−1, 𝑗
ℓ ⦀ (4.58)

≲ ⦀𝑢★ℓ − 𝑢
𝑘′−1, 𝑗
ℓ ⦀ (4.58)

≲ 𝑞𝑘
′−𝑘

sym ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀. (4.71)

Moreover, for 𝑘 < 𝑘 ′ = 𝑘 [ℓ], we combine (4.70) with (4.71) to get

H
𝑘

ℓ

(4.70)
≲ H

𝑘 [ℓ ]−1
ℓ

(4.71)
≲ 𝑞

(𝑘 [ℓ ]−1)−𝑘
sym ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ ≃ 𝑞
𝑘 [ℓ ]−𝑘
sym ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀. (4.72)

The combination of (4.71)–(4.72) proves that

H𝑘′
ℓ ≲ 𝑞 𝑘′−𝑘

sym ⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≲ 𝑞 𝑘′−𝑘
sym H𝑘

ℓ for all (ℓ, 0, 0) ∈ Q with 0 ≤ 𝑘 ≤ 𝑘 ′ ≤ 𝑘 [ℓ], (4.73)

where the hidden constant depends only on 𝐶stab, 𝜆sym, and 𝑞sym. Third, we recall

⦀𝑢★ℓ − 𝑢★ℓ−1⦀ (4.23)
≲ 𝜂ℓ−1(𝑢★ℓ−1)

(A1)
≲ 𝜂ℓ−1(𝑢𝑘, 𝑗ℓ−1) + ⦀𝑢★ℓ−1 − 𝑢

𝑘, 𝑗

ℓ−1⦀ = H
𝑘

ℓ−1.

Together with nested iteration 𝑢
𝑘, 𝑗

ℓ−1 = 𝑢
0, 𝑗

ℓ , this yields that

H0
ℓ = ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ−1⦀ + 𝜂ℓ (𝑢𝑘, 𝑗ℓ−1) ≤ ⦀𝑢★ℓ − 𝑢★ℓ−1⦀ + H
𝑘

ℓ−1 ≲ H
𝑘

ℓ−1 for all (ℓ, 0, 0) ∈ Q. (4.74)

Step 4 (tail summability with respect to ℓ and 𝒌). The auxiliary estimates from Step 3 and the
geometric series prove that∑︁

(ℓ′ ,𝑘′ , 𝑗 ) ∈Q
|ℓ′ ,𝑘′ , 𝑗 |> |ℓ,𝑘, 𝑗 |

H𝑘′
ℓ′ =

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

H𝑘′
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ ]∑︁
𝑘′=0

H𝑘′
ℓ′

(4.73)
≲ H𝑘

ℓ +
ℓ∑︁

ℓ′=ℓ+1
H0
ℓ′

(4.74)
≲ H𝑘

ℓ +
ℓ−1∑︁
ℓ′=ℓ

H
𝑘

ℓ′ ≲ H𝑘
ℓ + H

𝑘

ℓ

(4.73)
≲ H𝑘

ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q.

(4.75)
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4 Adaptive FEM with quasi-optimal computational cost

Step 5 (auxiliary estimates). Recall H𝑘

ℓ ≤ H
𝑘, 𝑗

ℓ from (4.61). For 𝑗 = 0 and 𝑘 = 0, the definition
𝑢0,0ℓ

:= 𝑢
0, 𝑗

ℓ
:= 𝑢0,★ℓ leads to H0,0

ℓ = H0
ℓ . For 𝑘 ≥ 1, nested iteration 𝑢𝑘,0ℓ = 𝑢

𝑘−1, 𝑗
ℓ and contraction of

the Zarantonello iteration (4.57) imply

⦀𝑢𝑘,★ℓ − 𝑢𝑘,0ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ + ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ (4.57)≤ (𝑞sym + 1) ⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ ≤ 2H𝑘−1

ℓ .

Therefore, we derive that

H𝑘,0
ℓ ≤ 3H(𝑘−1)+

ℓ for all (ℓ, 𝑘, 0) ∈ Q, where (𝑘 − 1)+ := max{0, 𝑘 − 1}. (4.76)

For any 0 ≤ 𝑗 < 𝑗 ′ < 𝑗 [ℓ, 𝑘], the contraction of the Zarantonello iteration (4.57), the contraction of
the algebraic solver (4.48), and the failure of the stopping criterion for the algebraic solver (4.50)
prove

H
𝑘, 𝑗′
ℓ ≤ ⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ + 2⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗′
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗

′
ℓ )

(4.57)
≲ ⦀𝑢𝑘, 𝑗′ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗′
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗

′
ℓ )

(4.48)
≲ ⦀𝑢𝑘, 𝑗′ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘, 𝑗′ℓ − 𝑢

𝑘, 𝑗′−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑘, 𝑗

′
ℓ )

(4.50)
≲ ⦀𝑢𝑘, 𝑗′ℓ − 𝑢

𝑘, 𝑗′−1
ℓ ⦀(4.48)

≲ ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗′−1
ℓ ⦀(4.48)

≲ 𝑞
𝑗′− 𝑗
ctr ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗
ℓ ⦀ ≲ 𝑞

𝑗′− 𝑗
ctr H

𝑘, 𝑗
ℓ .

For 𝑗 ′ = 𝑗 [ℓ, 𝑘], it follows that

H
𝑘, 𝑗

ℓ

(A1)
≲ H

𝑘, 𝑗−1
ℓ + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀(4.48)

≲ H
𝑘, 𝑗−1
ℓ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗−1
ℓ ⦀(4.54)≤ 2H

𝑘, 𝑗−1
ℓ ≲ 𝑞

𝑗 [ℓ,𝑘 ]− 𝑗

ctr H
𝑘, 𝑗
ℓ .

The combination of the previous two displayed formulas results in

H
𝑘, 𝑗′
ℓ ≲ 𝑞

𝑗′− 𝑗
ctr H

𝑘, 𝑗
ℓ for all (ℓ, 𝑘, 0) ∈ Q with 0 ≤ 𝑗 ≤ 𝑗 ′ ≤ 𝑗 [ℓ, 𝑘], (4.77)

where the hidden constant depends only on 𝑞sym, 𝜆sym, 𝑞ctr, 𝜆alg, and 𝐶stab.

Step 6 (tail summability with respect to ℓ, 𝒌, and 𝒋). Finally, we observe that

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ |> |ℓ,𝑘, 𝑗 |

H
𝑘′ , 𝑗′
ℓ′ =

𝑗 [ℓ,𝑘 ]∑︁
𝑗′= 𝑗+1

H
𝑘, 𝑗′
ℓ +

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

𝑗 [ℓ,𝑘′ ]∑︁
𝑗′=0

H
𝑘′ , 𝑗′
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ′ ]∑︁
𝑘′=0

𝑗 [ℓ′ ,𝑘′ ]∑︁
𝑗′=0

H
𝑘′ , 𝑗′
ℓ′

(4.77)
≲ H

𝑘, 𝑗
ℓ +

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

H𝑘′ ,0
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ ]∑︁
𝑘′=0

H𝑘′ ,0
ℓ′

(4.76)
≲ H

𝑘, 𝑗
ℓ +

∑︁
(ℓ′ ,𝑘′ , 𝑗 ) ∈Q

|ℓ′ ,𝑘′ , 𝑗 |> |ℓ,𝑘, 𝑗 |

H𝑘′
ℓ′

(4.75)
≲ H

𝑘, 𝑗
ℓ + H𝑘

ℓ

(4.61)
≲ H

𝑘, 𝑗
ℓ + H

𝑘, 𝑗

ℓ

(4.77)
≲ H

𝑘, 𝑗
ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q.

Since Q is countable and linearly ordered, Lemma 4.10 concludes the proof of (4.55). □

The final theorem, following from [BIM+24b, Theorem 4.3], states that for sufficiently small
adaptivity parameters 𝜃, 𝜆sym, and 𝜆alg, Algorithm 4C achieves optimal complexity.
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4.6 Application to strongly monotone nonlinear PDEs

Theorem 4.18: Optimal complexity of Algorithm 4C, [BIM+24b, Theorem 4.3]
Suppose that the estimator satisfies the axioms of adaptivity (A1)–(A3+) and suppose quasi-
orthogonality (A4) holds. Suppose full R-linear convergence from Theorem 4.15. Define the
constants 𝜃★, 𝜆★sym by

𝜃★ := 1 + 𝐶2
stab 𝐶

2
drel

−1
,

𝜆★sym := min{1, 𝐶−1
stab 𝐶

−1
alg } with 𝐶alg :=

1

1 − 𝑞sym

2 𝑞ctr
1 − 𝑞ctr

𝜆★alg + 𝑞sym .

Suppose that the constants 𝜃, 𝜆sym, and 𝜆alg are sufficiently small in the sense that, additionally
to (4.53), there holds

0 < 𝜆sym < 𝜆★sym and 0 <
𝜃1/2 + 𝜆sym/𝜆★sym

2

1 − 𝜆sym/𝜆★sym
2

< 𝜃★ < 1.

Then, Algorithm 4C guarantees for all 𝑠 > 0

𝑐opt∥𝑢★∥A𝑠 ≤ sup
(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑠
H

𝑘, 𝑗
ℓ ≤ 𝐶opt max{∥𝑢★∥A𝑠 ,H

0,0
0 }.

The constant 𝑐opt > 0 depends only on 𝐶stab, the use of NVB refinement, and 𝑠, while 𝐶opt > 0
depends only on 𝐶stab, 𝑞red, 𝐶drel, 𝐶lin, 𝑞lin, #T0, 𝜆sym, 𝑞sym, 𝜆alg, 𝑞ctr, 𝜃, 𝑠, and the use of NVB
refinement. □

4.6 Application to strongly monotone nonlinear PDEs

In the previous sections, the particular focus was on general second-order linear elliptic PDEs (4.10).
However, the results also apply to nonlinear PDEs with strongly monotone and Lipschitz-continuous
nonlinearity as considered, e.g., in [GMZ11; GMZ12; CW17; GHPS18; HW20b; HW20a; GHPS21;
HPSV21; HPW21; HW22; HMRV23; MV23] to mention only some recent works.

Given a nonlinearity 𝑨 : R𝑑 → R𝑑 , we consider the nonlinear elliptic PDE

− div 𝑨(∇𝑢★) = 𝑓 − div 𝒇 in Ω subject to 𝑢★ = 0 on 𝜕Ω. (4.78)

We define the nonlinear operator A : 𝐻1
0 (Ω) → 𝐻−1(Ω) := 𝐻1

0 (Ω)∗ via A𝑢 := ⟨𝑨(∇𝑢) , ∇(·)⟩𝐿2 (Ω) ,
where we suppose that the 𝐿2(Ω) scalar product on the right-hand side is well-defined. Then, the
weak formulation of (4.78) reads

⟨A𝑢★ , 𝑣⟩ = 𝐹 (𝑣) := ⟨ 𝑓 , 𝑣⟩𝐿2 (Ω) + ⟨ 𝒇 , ∇𝑣⟩𝐿2 (Ω) for all 𝑣 ∈ 𝐻1
0 (Ω), (4.79)

where ⟨· , ·⟩ on the left-hand side denotes the duality brackets on 𝐻−1(Ω) × 𝐻1
0 (Ω).

Let 𝑎(·, ·) be an equivalent scalar product on 𝐻1
0 (Ω) with induced norm ⦀ ·⦀. Suppose that

A is strongly monotone and Lipschitz continuous, i.e., there exist 0 < 𝛼 ≤ 𝐿 such that, for all
𝑢, 𝑣, 𝑤 ∈ 𝐻1

0 (Ω),
𝛼 ⦀𝑢 − 𝑣⦀2 ≤ ⟨A𝑢 − A𝑣 , 𝑢 − 𝑣⟩ and ⟨A𝑢 − A𝑣 , 𝑤⟩ ≤ 𝐿 ⦀𝑢 − 𝑣⦀⦀𝑤⦀. (4.80)
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4 Adaptive FEM with quasi-optimal computational cost

Under these assumptions, the Zarantonello theorem [Zar60] (or main theorem on strongly monotone
operators [Zei90b, Section 25.4]) yields existence and uniqueness of the solution 𝑢★ ∈ 𝐻1

0 (Ω)
to (4.79). For T𝐻 ∈ T and X𝐻 ⊆ 𝐻1

0 (Ω) from (4.13), it also applies to the discrete setting and yields
existence and uniqueness of the discrete solution 𝑢★𝐻 ∈ X𝐻 to

⟨A𝑢★𝐻 , 𝑣𝐻⟩ = 𝐹 (𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 , (4.81)

which is quasi-optimal in the sense of the Céa lemma (4.15).
As already discussed in Section 4.5, the proof of the Zarantonello theorem relies on the Banach

fixed-point theorem: For 0 < 𝛿 < 2𝛼/𝐿2, define Φ𝐻 (𝛿; ·) : X𝐻 → X𝐻 via

𝑎(Φ𝐻 (𝛿; 𝑢𝐻), 𝑣𝐻) = 𝑎(𝑢𝐻 , 𝑣𝐻) + 𝛿 𝐹 (𝑣𝐻) − ⟨A(𝑢𝐻) , 𝑣𝐻⟩ for all 𝑢𝐻 , 𝑣𝐻 ∈ X𝐻 . (4.82)

Since 𝑎(·, ·) is a scalar product, Φ𝐻 (𝛿; 𝑢𝐻) ∈ X𝐻 is well-defined. Moreover, for 0 < 𝛿 < 2𝛼/𝐿2

and 0 < 𝑞sym := [1 − 𝛿(2𝛼 − 𝛿𝐿2)]1/2 < 1, this mapping is a contraction, i.e.,

⦀𝑢★𝐻 −Φ𝐻 (𝛿; 𝑢𝐻)⦀ ≤ 𝑞sym ⦀𝑢★𝐻 − 𝑢𝐻⦀ for all 𝑢𝐻 ∈ X𝐻 ; (4.83)

see also [HW20b; HW20a]. Analogously to Section 4.5, the variational formulation (4.82) leads to a
linear SPD system for which we employ a uniformly contractive solver (4.48). Overall, we note that
for the nonlinear PDE (4.78), the natural AFEM loop consists of

• discretization via a conforming triangulation Tℓ (leading to the non-computable solution 𝑢★ℓ to
the discrete nonlinear system (4.81)),

• iterative linearization (giving rise to the solution 𝑢𝑘,★ℓ = Φℓ (𝛿; 𝑢𝑘−1, 𝑗ℓ ) of the large-scale
discrete SPD system (4.82) obtained by linearizing (4.81) in 𝑢

𝑘−1, 𝑗
ℓ ),

• and an algebraic solver (leading to computable approximations 𝑢𝑘, 𝑗ℓ ≈ 𝑢𝑘,★ℓ ).

Thus, the natural AFEM algorithm takes the form of Algorithm 4C in Section 4.5.
So far, the only work analyzing convergence of such a full adaptive loop for the numerical

solution of (4.78) is [HPSV21], which uses the Zarantonello approach (4.82) for linearization and a
preconditioned CG method with optimal additive Schwarz preconditioner for solving the arising SPD
systems. Importantly and contrary to the present work, the adaptivity parameters 𝜃, 𝜆sym, and 𝜆alg
in [HPSV21] must be sufficiently small to guarantee full linear convergence and optimal complexity,
while even plain convergence for arbitrary 𝜃, 𝜆sym, and 𝜆alg is left open. Instead, the present work
proves full R-linear convergence at least for arbitrary 𝜃 and 𝜆sym and the milder constraint (4.53) on
𝜆alg.

To apply the analysis from Section 4.5, it only remains to check the validity of Proposition 4.1
and Proposition 4.2. The following result provides the analogue of Proposition 4.1 for scalar
nonlinearities. Note that, first, the same assumptions are made in [HPSV21] and, second, only the
proof of stability (A1) (going back to [GMZ12]) is restricted to scalar nonlinearities and lowest-order
discretizations, i.e., 𝑝 = 1 in (4.13).
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4.6 Application to strongly monotone nonlinear PDEs

Proposition 4.19 (see, e.g., [GMZ12, Section 3.2] or [CFPP14, Section 10.1]). Suppose that
𝑨(∇𝑢) = 𝑎( |∇𝑢 |2)∇𝑢, where 𝑎 ∈ 𝐶1(R≥0) satisfies

𝛼(𝑡 − 𝑠) ≤ 𝑎(𝑡2)𝑡 − 𝑎(𝑠2)𝑠 ≤ 𝐿

3
(𝑡 − 𝑠) for all 𝑡 ≥ 𝑠 ≥ 0. (4.84)

Then, there holds (4.80) for ⦀𝑣⦀ := ∥∇𝑣∥𝐿2 (Ω) and the standard residual error estimator (4.16) for
lowest-order elements 𝑝 = 1 (with 𝑨∇𝑣𝐻 understood as 𝑨(∇𝑣𝐻) and 𝒃 = 0 = 𝑐) satisfies stabil-
ity (A1), reduction (A2), reliability (A3), discrete reliability (A3+), and quasi-monotonicity (QM)
from Proposition 4.1. □

Under the same assumptions as in Proposition 4.19, quasi-orthogonality (A4) is satisfied. For the
convenience of the reader, we include a sketch of the proof.

Proposition 4.20. Under the assumptions of Proposition 4.19 and for any sequence of nested
finite-dimensional subspaces Xℓ ⊆ Xℓ+1 ⊂ 𝐻1

0 (Ω), the corresponding Galerkin solutions 𝑢★ℓ ∈ Xℓ

to (4.81) satisfy quasi-orthogonality (A4) with 𝛿 = 1 and 𝐶orth = 𝐿/𝛼, i.e.,

∞∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1 − 𝑢★ℓ′⦀2 ≤ 𝐿

𝛼
⦀𝑢★ − 𝑢ℓ⦀2 for all ℓ ∈ N0. (4.85)

Sketch of proof. One can prove that the energy

𝐸 (𝑣) := 1

2

∫
Ω

∫ |∇𝑣 (𝑥 ) |2

0
𝑎(𝑡) d𝑡 d𝑥 − 𝐹 (𝑣) for all 𝑣 ∈ 𝐻1

0 (Ω)

is Gâteaux-differentiable with d𝐸 (𝑣) = A𝑣 − 𝐹. Then, elementary calculus (see, e.g., [GHPS18,
Lemma 5.1] or [HW20a, Lemma 2]) yields the equivalence

𝛼

2
⦀𝑢★𝐻−𝑣𝐻⦀2 ≤ 𝐸 (𝑣𝐻)−𝐸 (𝑢★𝐻) ≤

𝐿

2
⦀𝑢★𝐻−𝑣𝐻⦀2 for all T𝐻 ∈ T and all 𝑣𝐻 ∈ X𝐻 . (4.86)

In particular, we see that 𝑢★𝐻 is the unique minimizer to

𝐸 (𝑢★𝐻) = min
𝑣𝐻 ∈X𝐻

𝐸 (𝑣𝐻), (4.87)

and (4.86)–(4.87) also hold for 𝑢★ and 𝐻1
0 (Ω) replacing 𝑢★𝐻 and X𝐻 , respectively.

From this and the telescopic sum, we infer that

𝛼

2

ℓ+𝑁∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1 − 𝑢★ℓ′⦀2
(4.86)≤

ℓ+𝑁∑︁
ℓ′=ℓ

𝐸 (𝑢★ℓ′) − 𝐸 (𝑢★ℓ′+1) = 𝐸 (𝑢★ℓ ) − 𝐸 (𝑢★ℓ+𝑁+1)

(4.87)≤ 𝐸 (𝑢★ℓ ) − 𝐸 (𝑢★) (4.86)≤ 𝐿

2
⦀𝑢★ − 𝑢★ℓ ⦀2 for all ℓ, 𝑁 ∈ N0.

Since the right-hand side is independent of 𝑁 , we conclude the proof for 𝑁 → ∞. □

Thus, full R-linear convergence from Theorem 4.15 and optimal complexity from Theorem 4.18
apply also to the nonlinear PDE (4.78) under the assumptions on the nonlinearity from Proposition 4.19.
Unlike [HPSV21], we can guarantee full R-linear convergence (4.55) for arbitrary 𝜃, arbitrary 𝜆sym,
and a weaker constraint (4.53) on 𝜆alg. As in [HPSV21, Theorem 5], optimal complexity follows if
the adaptivity parameters are sufficiently small.
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4 Adaptive FEM with quasi-optimal computational cost

Remark 4.21. The cost-optimal numerical solution of nonlinear PDEs is widely open beyond the
case of strongly monotone and Lipschitz continuous nonlinearities considered here. We stress that
this problem class even excludes the 𝑝-Laplacian, for which linear convergence [DK08] and optimal
convergence rates [BDK12] are known under the constraint of the exact solution of the arising
nonlinear discrete systems. Convergent linearization strategies for the 𝑝-Laplacian are the topic of
recent research [DFTW20; BDS23; Hei23]. However, optimal complexity appears to be still out of
reach. Nevertheless, the present work could outline potential strategies also in this respect.

4.7 Numerical experiment

The following numerical experiment employs the Matlab software package MooAFEM from [IP23].1
On the L-shaped domain Ω = (−1, 1)2 \ [0, 1) × [−1, 0), we consider

−Δ𝑢★ + 𝒃 · ∇𝑢★ + 𝑢★ = 1 in Ω and 𝑢★ = 0 on 𝜕Ω with 𝒃(𝑥) = 𝑥; (4.88)

see Figure 4.1 for the geometry and some adaptively generated meshes.

Figure 4.1: Illustration of the initial triangulation T0 and the sequence of adaptively generated
meshes T0, . . . ,T4 for the experiment (4.88).

Optimality of Algorithm 4C with respect to large solver-stopping parameters 𝜆sym and 𝜆alg. We
choose 𝛿 = 0.5, 𝜃 = 0.3, and the polynomial degree 𝑝 = 2. Figure 4.2 presents the convergence
rates for fixed 𝜆alg = 0.7 and several symmetrization parameters 𝜆sym ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
We observe that Algorithm 4C obtains the optimal convergence rate −1 with respect to the
number of degrees of freedom and the cumulative computational time for any selection of 𝜆sym.
Moreover, the same holds true for fixed 𝜆sym = 0.7 and any choice of the algebraic solver
parameter 𝜆alg ∈ {0.1, 0.3, 0.5, 0.7, 0.9} as depicted in Figure 4.3. Table 4.1 illustrates the weighted
cumulative computational time of Algorithm 4C and shows that a smaller marking parameter 𝜃 = 0.3
in combination with larger solver-stopping parameters 𝜆sym and 𝜆alg is favorable. Furthermore,
Figure 4.5 shows that Algorithm 4C guarantees optimal convergence rates−𝑝/2 for several polynomial
degrees 𝑝 with fixed 𝛿 = 0.5, marking parameter 𝜃 = 0.3, and moderate 𝜆sym = 𝜆alg = 0.7.

Optimality of Algorithm 4C with respect to large marking parameter 𝜃. We choose the polynomial
degree 𝑝 = 2, 𝛿 = 0.5, and solver-stopping parameters 𝜆alg = 𝜆sym = 0.7. Figure 4.4 shows that
also for moderate marking parameters 𝜃, Algorithm 4C guarantees optimal convergence rates with
respect to the number of degrees of freedom and the cumulative computational time. Moreover, we
observe that a very small as well as a large choice of 𝜃 lead to a worse performance.

1The experiments accompanying this paper will be provided under https://www.tuwien.at/mg/asc/praetorius/
software/mooafem.
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4.A Proofs of Lemma 4.6, Lemma 4.10, and Lemma 4.17

·10−4 𝜃 = 0.1 𝜃 = 0.3 𝜃 = 0.5

𝜆alg

𝜆sym 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.1 64.5 64.6 54.7 55.6 54.8 27.1 20.7 20.3 20.3 20.3 25.5 20.5 20.5 20.9 20.6

0.3 63.8 56.2 55.0 54.7 55.1 24.0 20.2 19.3 19.2 19.1 21.8 20.9 21.2 21.5 21.8

0.5 56.4 56.5 55.7 55.1 55.2 21.6 19.1 19.1 18.3 17.7 19.2 18.3 17.7 17.8 17.7

0.7 56.6 55.9 55.6 55.7 54.4 21.0 19.2 18.7 17.7 17.9 17.5 18.1 18.6 18.0 17.6

0.9 57.4 55.3 55.3 55.2 55.2 21.1 19.3 18.5 17.8 17.8 17.5 17.8 18.5 18.1 17.9

𝜃 = 0.7 𝜃 = 0.8 𝜃 = 0.9

0.1 36.2 33.4 25.8 25.7 25.8 45.8 43.1 36.1 31.3 31.3 63.5 68.6 60.8 44.6 44.2

0.3 27.4 28.0 29.5 30.2 30.9 34.3 37.1 36.7 40.4 43.2 48.4 54.7 53.5 56.1 69.7

0.5 23.8 21.5 21.0 21.5 23.1 34.2 27.4 25.9 25.8 29.6 47.1 35.9 41.9 44.6 46.4

0.7 23.0 21.0 21.7 22.1 23.3 28.9 25.9 27.0 31.0 30.0 40.0 36.3 40.7 45.6 49.8

0.9 22.9 21.0 21.8 22.1 23.0 28.8 26.3 27.0 31.0 29.8 40.7 36.4 40.6 45.5 49.8

Table 4.1: Optimal selection of parameters with respect to the computational costs for experi-
ment (4.88) with 𝑝 = 2 and 𝛿 = 0.5. For the comparison, we consider the weighted
cumulative time 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) |ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 | time(ℓ′) (values in 10−4) with stopping

criterion 𝜂ℓ (𝑢𝑘, 𝑗ℓ ) < 5 · 10−5 for various choices of 𝜆sym, 𝜆alg, and 𝜃. In each 𝜃-block, we
mark in yellow the best choice per column, in blue the best choice per row, and in green
when both choices coincide. The best choices for 𝜆alg and 𝜆sym are observed for 𝜃 = 0.3
and 𝜃 = 0.5.

4.A Proofs of Lemma 4.6, Lemma 4.10, and Lemma 4.17

Proof of Lemma 4.6. The proof is split into four steps.
Step 1. We consider the perturbed contraction of (𝑎ℓ)ℓ∈N0 from (4.21). By induction on 𝑛, we

see with the empty sum understood (as usual) as zero that

𝑎ℓ+𝑛 ≤ 𝑞𝑛𝑎ℓ +
𝑛∑︁
𝑗=1

𝑞𝑛− 𝑗𝑏ℓ+ 𝑗−1 for all ℓ, 𝑛 ∈ N0.

From this and the geometric series, we infer that

𝑎ℓ+𝑛 ≤ 𝑞𝑛𝑎ℓ + 𝐶1

𝑛∑︁
𝑗=1

𝑞𝑛− 𝑗 𝑎ℓ ≤ 𝑞𝑛 + 𝐶1

1 − 𝑞
𝑎ℓ =: 𝐶3 𝑎ℓ for all ℓ, 𝑛 ∈ N0. (4.89)

Step 2. Next, we note that the perturbed contraction of (𝑎ℓ)ℓ∈N0 from (4.21) and the Young
inequality with sufficiently small 𝜀 > 0 ensure

0 < 𝜅 := (1 + 𝜀) 𝑞2 < 1 and 𝑎2ℓ+1
(4.21)≤ 𝜅 𝑎2ℓ + (1 + 𝜀−1) 𝑏2ℓ for all ℓ ∈ N0.
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Figure 4.2: Convergence history plot of the error estimator with respect to the number of degrees
of freedom (left) and the computational time (right) for experiment (4.88) with 𝑝 = 2
and 𝛿 = 0.5 for several symmetrization parameters 𝜆sym ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
fixed algebraic solver parameter 𝜆alg = 0.7 and marking parameter 𝜃 = 0.3.

This and the summability of (𝑏ℓ)ℓ∈N0 from (4.21) guarantee

ℓ+𝑁∑︁
ℓ′=ℓ+1

𝑎2ℓ′ =
ℓ+𝑁−1∑︁
ℓ′=ℓ

𝑎2ℓ′+1
(4.21)≤ 𝜅

ℓ+𝑁−1∑︁
ℓ′=ℓ

𝑎2ℓ′ + (1 + 𝜀−1)𝐶2 𝑁
1−𝛿 𝑎2ℓ .

Rearranging the estimate, we arrive at

ℓ+𝑁∑︁
ℓ′=ℓ

𝑎2ℓ′ ≤ 1 + 𝜅 + (1 + 𝜀−1)𝐶2 𝑁
1−𝛿

1 − 𝜅
𝑎2ℓ =: 𝐷𝑁 𝑎2ℓ for all ℓ, 𝑁 ∈ N0, (4.90)

where we note that 1 ≤ 𝐷𝑁 ≃ 𝑁1−𝛿 as 𝑁 → ∞. In the following, we prove that this already
guarantees that (4.90) holds with an 𝑁-independent constant (instead of the constant 𝐷𝑁 growing
with 𝑁); see also Lemma 4.10.

Step 3. We show by mathematical induction on 𝑛 that (4.90) implies

𝑎2ℓ+𝑛 ≤
𝑛

𝑗=1

(1 − 𝐷−1
𝑗 )

ℓ+𝑛∑︁
ℓ′=ℓ

𝑎2ℓ′ for all ℓ, 𝑛 ∈ N0. (4.91)

Note that (4.91) holds for all ℓ ∈ N0 and 𝑛 = 0 (with the empty product interpreted as 1). Hence, we
may suppose that (4.91) holds for all ℓ ∈ N0 and up to 𝑛 ∈ N0. Then,

𝑎2ℓ+(𝑛+1) = 𝑎2(ℓ+1)+𝑛
(4.91)≤

𝑛

𝑗=1

(1 − 𝐷−1
𝑗 )

(ℓ+1)+𝑛∑︁
ℓ′=ℓ+1

𝑎2ℓ′ =
𝑛

𝑗=1

(1 − 𝐷−1
𝑗 )

ℓ+(𝑛+1)∑︁
ℓ′=ℓ

𝑎2ℓ′ − 𝑎2ℓ

(4.90)≤
𝑛

𝑗=1

(1 − 𝐷−1
𝑗 )

ℓ+(𝑛+1)∑︁
ℓ′=ℓ

𝑎2ℓ′ − 𝐷−1
𝑛+1

ℓ+(𝑛+1)∑︁
ℓ′=ℓ

𝑎2ℓ′ =
𝑛+1

𝑗=1

(1 − 𝐷−1
𝑗 )

ℓ+(𝑛+1)∑︁
ℓ′=ℓ

𝑎2ℓ′ .
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Figure 4.3: Convergence history plot of the error estimator with respect to the number of degrees
of freedom (left) and the computational time (right) for experiment (4.88) with 𝑝 = 2
and 𝛿 = 0.5 for several algebraic solver parameters 𝜆alg ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
fixed symmetrization parameter 𝜆sym = 0.7 and marking parameter 𝜃 = 0.3.

This concludes the proof of (4.91).
Step 4. From (4.90)–(4.91), we infer that

𝑎2ℓ+𝑛 ≤
𝑛

𝑗=1

(1 − 𝐷−1
𝑗 ) 𝐷𝑛 𝑎

2
ℓ for all ℓ, 𝑛 ∈ N. (4.92)

Note that

𝑀𝑛 := log
𝑛

𝑗=1

(1 − 𝐷−1
𝑗 ) 𝐷𝑛 =

𝑛∑︁
𝑗=1

log(1 − 𝐷−1
𝑗 ) + log 𝐷𝑛.

With 1 − 𝑥 ≤ exp(−𝑥) for all 0 < 𝑥 < 1, it follows for 𝑥 = 𝐷−1
𝑗 that

𝑀𝑛 ≤ log 𝐷𝑛 −
𝑛∑︁
𝑗=1

𝐷−1
𝑗 ≃ (1 − 𝛿) log 𝑛 −

𝑛∑︁
𝑗=1

1

𝑗1−𝛿

𝑛→∞−−−−→ −∞,

since log 𝑛 ≤ 𝑛
𝑗=1(1/ 𝑗). Fix 𝑛0 ∈ N such that 𝑀𝑛0 < 0. It follows from (4.92) that

𝑎2ℓ+𝑖𝑛0 ≤ 𝑞𝑖0 𝑎
2
ℓ for all ℓ, 𝑖 ∈ N0, where 0 < 𝑞0 := exp(𝑀𝑛0) < 1. (4.93)

Let ℓ ∈ N0. For general 𝑛 ∈ N0, choose 𝑖, 𝑗 ∈ N with 𝑗 < 𝑛0 such that 𝑛 = 𝑖𝑛0 + 𝑗 . With (4.93) and
quasi-monotonicity (4.89) of 𝑎ℓ , we derive

𝑎2ℓ+𝑛 = 𝑎2(ℓ+ 𝑗 )+𝑖𝑛0
(4.93)≤ 𝑞𝑖0 𝑎

2
ℓ+ 𝑗

(4.89)≤ 𝐶2
3 𝑞

𝑖
0 𝑎

2
ℓ = 𝐶2

3 𝑞
− 𝑗/𝑛0
0 𝑞𝑛/𝑛00 𝑎2ℓ ≤ (𝐶2

3/𝑞0) (𝑞1/𝑛00 )𝑛𝑎2ℓ .

This completes the proof of (4.22) with 𝐶lin := 𝐶2
3/𝑞0 > 0 and 0 < 𝑞lin := 𝑞1/𝑛00 < 1. □
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Figure 4.4: Convergence history plot of the error estimator with respect to the number of degrees of
freedom (left) and the computational time (right) for experiment (4.88) with 𝑝 = 2 and
𝛿 = 0.5 for several Dörfler marking parameters 𝜃 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and fixed
solver-stopping parameters 𝜆sym = 𝜆alg = 0.7.
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Figure 4.5: Convergence history plot of the error estimator with respect to the number of degrees
of freedom (left) and with respect to the overall computational time (right) for experi-
ment (4.88) with 𝛿 = 0.5 for several polynomial degrees 𝑝 = 1, 2, 3, 4, and fixed marking
parameter 𝜃 = 0.3 and solver-stopping parameters 𝜆sym = 𝜆alg = 0.7.
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4.A Proofs of Lemma 4.6, Lemma 4.10, and Lemma 4.17

Proof of Lemma 4.10. First, observe that (𝑎ℓ)ℓ∈N0 is R-linearly convergent in the sense of (ii) if
and only if (𝑎𝑚ℓ )ℓ∈N0 is R-linearly convergent in the sense of (ii) with 𝐶lin replaced by 𝐶𝑚

lin and 𝑞lin
replaced by 𝑞𝑚lin. Therefore, we may restrict to 𝑚 = 1.

The implication (ii) =⇒ (i) follows from the geometric series, i.e.,

∞∑︁
ℓ′=ℓ+1

𝑎ℓ′
(ii)≤ 𝐶𝑎ℓ

∞∑︁
ℓ′=ℓ+1

𝑞ℓ
′−ℓ =

𝐶𝑞

1 − 𝑞
𝑎ℓ for all ℓ ∈ N0.

Conversely, (i) yields that

(𝐶−1
1 + 1)

∞∑︁
ℓ′=ℓ+1

𝑎ℓ′
(i)≤ 𝑎ℓ +

∞∑︁
ℓ′=ℓ+1

𝑎ℓ′ =
∞∑︁

ℓ′=ℓ
𝑎ℓ′ for all ℓ ∈ N0.

Inductively, this leads to

𝑎ℓ+𝑛 ≤
∞∑︁

ℓ′=ℓ+𝑛
𝑎ℓ′

(i)≤ 1

(𝐶−1
1 + 1)𝑛

∞∑︁
ℓ′=ℓ

𝑎ℓ′
(i)≤ 1 + 𝐶1

(𝐶−1
1 + 1)𝑛 𝑎ℓ for all ℓ, 𝑛 ∈ N0.

This proves (ii) with 𝐶lin := 1 + 𝐶1 and 𝑞lin := (𝐶−1
1 + 1)−1. □

Proof of Lemma 4.17. Let (ℓ, 𝑘, 𝑗) ∈ Q with 𝑘 ≥ 1. Contraction of the Zarantonello iteration (4.46)
proves

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢𝑘,★ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ (4.46)≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀.
From the termination criterion of the algebraic solver (4.50), we see that

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 𝑞ctr
1 − 𝑞ctr

⦀𝑢𝑘, 𝑗ℓ − 𝑢
𝑘, 𝑗−1
ℓ ⦀ (4.50)≤ 𝑞ctr

1 − 𝑞ctr
𝜆alg 𝜆sym𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + ⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ .

With the termination criterion of the inexact Zarantonello iteration (4.49), it follows that

⦀𝑢𝑘,★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ (4.49)≤ 2 𝑞ctr
1 − 𝑞ctr

𝜆alg
𝜆sym𝜂ℓ (𝑢𝑘, 𝑗ℓ ) for 𝑘 = 𝑘 [ℓ],⦀𝑢𝑘, 𝑗ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ for 1 ≤ 𝑘 < 𝑘 [ℓ] .

For 𝑘 = 𝑘 [ℓ], the preceding estimates prove (4.59). For 𝑘 < 𝑘 [ℓ], it follows that

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝜆alg ⦀𝑢★ℓ − 𝑢

𝑘, 𝑗

ℓ ⦀ + ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀ .

Provided that 2 𝑞ctr
1−𝑞ctr

𝜆alg < 1, this proves

⦀𝑢★ℓ − 𝑢
𝑘, 𝑗

ℓ ⦀ ≤
𝑞sym + 2 𝑞ctr

1−𝑞ctr
𝜆alg

1 − 2 𝑞ctr
1−𝑞ctr

𝜆alg
⦀𝑢★ℓ − 𝑢

𝑘−1, 𝑗
ℓ ⦀ (4.53)

= 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑘−1, 𝑗
ℓ ⦀,

which is (4.58). This concludes the proof. □
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5 Optimal complexity of goal-oriented adaptive
FEM for nonsymmetric linear elliptic PDEs

The Sections 5.1–5.8 of this chapter correspond to the publication:
P. Bringmann, M. Brunner, D. Praetorius, and J. Streitberger. Optimal complexity
of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, 2023. arXiv:
2312.00489

5.1 Introduction

Adaptive finite element methods (AFEMs) are a cornerstone in the numerical solution of partial
differential equations (PDEs). The abundant literature emphasizes significant progress and manifests
a matured understanding of the topic; see, e.g., [Dör96; MNS00; BDD04; Ste07; CKNS08; KS11;
CN12; FFP14; CFPP14] for linear elliptic PDEs.

The variational formulation of a nonsymmetric second-order linear elliptic PDE with bilinear form
𝑏(·, ·) and right-hand side functional 𝐹 on the Sobolev space X := 𝐻1

0 (Ω) seeks a weak solution 𝑢★

to
𝑏(𝑢★, 𝑣) = 𝐹 (𝑣) for all 𝑣 ∈ X. (5.1)

While standard AFEM aims at an efficient approximation of the solution 𝑢★ ∈ X, goal-oriented
AFEM (GOAFEM) strives only to approximate a quantity of interest 𝐺 (𝑢★); see [BR01; BR03;
EEHJ95; GS02] for early prominent contributions. However, to accurately approximate 𝐺 (𝑢★) for
a continuous linear goal functional 𝐺 : X → R, following the generic approach 𝐺 (𝑢𝐻) ≈ 𝐺 (𝑢★)
leads to convergence rates determined by the error of the approximation 𝑢𝐻 ≈ 𝑢★ to the primal
problem (5.1). Instead, GOAFEM adopts a duality technique by additionally approximating
𝑧𝐻 ≈ 𝑧★ ∈ X solving the dual problem

𝑏(𝑣, 𝑧★) = 𝐺 (𝑣) for all 𝑣 ∈ X. (5.2)

Following [GS02], a discrete approximation 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) ≈ 𝐺 (𝑢★) enables the control of the error
for any 𝑢𝐻 , 𝑧𝐻 ∈ X by

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) | ≤ |𝑏(𝑢★ − 𝑢𝐻 , 𝑧
★ − 𝑧𝐻) | ≤ 𝐿 |||𝑢★ − 𝑢𝐻 ||| |||𝑧★ − 𝑧𝐻 |||, (5.3)

where 𝐿 > 0 is the continuity constant of 𝑏(·, ·) with respect to the energy norm ⦀ ·⦀; see Section 5.2
for details. As seen in (5.3), this approach allows to add the convergence rates of the primal and
dual problem. Moreover, it is not necessary – and may even lead to unnecessary computational
expense – to compute approximations 𝑢𝐻 ≈ 𝑢★ and 𝑧𝐻 ≈ 𝑧★ across the entire domain with the same
accuracy. Instead, a careful marking of elements for refinement enables a considerable reduction
of the computational costs and makes GOAFEM highly relevant in both practical applications and
mathematical research.
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5 Optimal complexity of GOAFEM

Goal-oriented adaptivity (ℓ)

Solve & estimate

primal problem dual problem(in parallel)

symmetrize (𝒎)

solve (𝒏)

computable approximation 𝑢𝑚,𝑛
ℓ

and estimator 𝜂ℓ (𝑢𝑚,𝑛
ℓ

)

symmetrize (𝝁)

solve (𝝂)

computable approximation 𝑧
𝜇,𝜈
ℓ

and estimator 𝜁ℓ (𝑧𝜇,𝜈ℓ
)

Mark

apply Dörfler marking variant from [FPZ16]

Refine

employ NVB [Ste08]

Figure 5.1: Schematic overview of the GOAISFEM algorithm with nested symmetrization and
inexact solver.

First rigorous convergence results of GOAFEM are found in [MS09; BET11; FGH+16; FPZ16;
HP16], recent contributions in this context include [BIP21; BBI+22] and for a dual weighted-residual
approach see, e.g., [ELW19; ELW20; DBR21]. The works [MS09; FGH+16; FPZ16; BIP21;
BBI+22] focus on optimal convergence rates with respect to the degrees of freedom. However,
the cumulative nature of adaptivity calls for optimal convergence rates with respect to the total
computational effort, i.e., the overall computational time. Coined as optimal complexity initially
for wavelet-based discretizations [CDD01; CDD03], this notion was later adopted for AFEM with
contributions including, e.g., [Ste07; CG12; GHPS21; BIM+24a]. In the setting of GOAFEM,
optimal complexity was established first in [MS09] for the Poisson problem and sufficiently small
adaptivity parameters, and extended to a general second-order symmetric linear elliptic PDE with
uniformly contractive algebraic solver in [BGIP23]. Since uniform contraction with respect to the
PDE-related energy norm for nonsymmetric algebraic solvers such as GMRES is still open, as a
remedy, the proof of the Lax–Milgram lemma motivates the application of an iterative symmetrization
[BIM+24a]. This results in a sequence of symmetric algebraic systems that allow the application of
optimal algebraic solvers, e.g., [WZ17; CNX12; IMPS24]. Figure 5.1 illustrates the nested structure
of the resulting goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM).
The detailed Algorithm 5A is presented in Section 5.3 below. Table 5.1 displays the notation of the
associated indices and quasi-error quantities, which are equivalent to the total error.

The first challenge in the analysis of the GOAISFEM algorithm consists of the nonlinear product
structure attained by the combined quasi-error product as displayed in Table 5.1. The resulting
nonlinear remainder term significantly complicates the proof compared to treating only the primal
problem as in [BIM+24a] and requires the application of a novel proof strategy from [BFM+23] that
only utilizes summability of the remainder, denoted as tail-summability throughout. The second
challenge arises from the combination of the primal and dual marking leading to a merged marked
set. Thereby, either only the primal or only the dual estimator is guaranteed to satisfy the estimator
reduction property. Since the estimator belongs to the quasi-error, this also leads to a failure of
contraction for one of the two involved quasi-errors. While [BGIP23] solves this issue in the
symmetric case, the additional symmetrization loop results in a more involved situation at hand.

126



5.1 Introduction

iteration mesh refinement symmetrization algebraic solver

running final running final running final index set quasi-error

primal ℓ ℓ 𝑚 𝑚 𝑛 𝑛 Q𝑢 H𝑚,𝑛
ℓ

dual ℓ ℓ 𝜇 𝜇 𝜈 𝜈 Q𝑧 Z
𝜇,𝜈
ℓ

combined ℓ ℓ 𝑘 𝑘 = max{𝑚, 𝜇} 𝑗 𝑗 = max{𝑛, 𝜈} Q = Q𝑢 ∪ Q𝑧 H
𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ

Table 5.1: Iteration counters and quasi-errors for the GOAISFEM algorithm. We note that for the
combination of the index sets, the quasi-errors are extended to the full index set by the
last available quasi-error. We refer to Section 5.3 for details on the iteration counters and
index sets and to the beginning of Section 5.5 for a detailed description of the quasi-errors
and their extension to the full index set Q.

Adapting the novel approach of the tail-summability criterion from [BFM+23] enables the proof of
full linear convergence and optimal complexity for the nonlinear quasi-error product in this paper.
The analysis employs the generalized quasi-orthogonality from [Fei22] to remedy the lack of a
Pythagorean identity for nonsymmetric problems.

Our main result asserts full linear convergence of the quasi-error product H𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ with respect to

the total step counter |·, ·, ·| (measuring the total solver steps in the index set). Therein, we allow
for an arbitrary symmetrization stopping parameter 𝜆sym and only require a small algebraic solver
parameter 𝜆alg such that the product 𝜆sym 𝜆alg is sufficiently small. More precisely, Theorem 5.10
states that there exist constants 𝐶lin > 0 and 0 < 𝑞lin < 1 such that, for all (ℓ, 𝑘, 𝑗), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q
with |ℓ′, 𝑘 ′, 𝑗 ′ | ≤ |ℓ, 𝑘, 𝑗 |,

H
𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤ 𝐶lin 𝑞

|ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ |
lin H

𝑘′ , 𝑗′
ℓ′ Z

𝑘′ , 𝑗′
ℓ′ .

Note that, unlike [BIM+24a], where full linear convergence is guaranteed only for sufficiently large
ℓ ≥ ℓ0, the current result is stronger in the sense that the result holds for ℓ0 = 0 owing to a generalized
quasi-orthogonality from [Fei22]. An immediate consequence of full linear convergence and the
geometric series in Corollary 5.14 states that the rates with respect to the degrees of freedom coincide
with the rates with respect to the cumulative computational work (i.e., computational time), i.e., for
all 𝑟 > 0, there holds

sup
(ℓ,𝑘, 𝑗 ) ∈Q

#Tℓ 𝑟
H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤ sup

(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑟
H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤ 𝐶cost sup

(ℓ,𝑘, 𝑗 ) ∈Q
#Tℓ 𝑟

H
𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ

along the sequence of meshes Tℓ generated by the GOAISFEM algorithm. The second main result
of Theorem 5.15 proves that, for sufficiently small adaptivity parameters and any achievable rates
𝑠, 𝑡 > 0 of the primal resp. dual problem (stated in terms of nonlinear approximation classes), the
algorithm guarantees optimal complexity, i.e.,

sup
(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑠+𝑡

H
𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤ 𝐶opt max{∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡 , H

0,0
0 Z0,0

0 }.
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5 Optimal complexity of GOAFEM

This means the convergence of the algorithm attains the optimal rate 𝑠 + 𝑡 with respect to the overall
computational work, where ∥𝑢★∥A𝑠 < ∞ means that 𝑢★ can be approximated at rate 𝑠 (along a
sequence of unavailable optimal meshes) and likewise for 𝑧★.

The remaining parts of the paper are organized as follows. The preliminary Section 5.2 introduces
the model problem, the assumptions on the solvers, and the axioms of adaptivity from [CFPP14],
including the general quasi-orthogonality from [Fei22]. Following the algorithm in Section 5.3 and
its contraction properties in Section 5.4, Section 5.5 presents full linear convergence as the first main
result of this paper. This allows to prove optimal complexity in Section 5.6 as the second main result,
which is underlined by the numerical experiments in Section 5.7 including a thorough investigation
of the adaptivity parameters. The paper concludes with a summary in Section 5.8.

5.2 Setting

In this section, we introduce the problem and explain the key components needed to design the
adaptive algorithm in Section 5.3.

5.2.1 Continuous model problem

Let Ω ⊂ R𝑑 with 𝑑 ≥ 1 be a polygonal Lipschitz domain. Given right-hand sides 𝑓 ∈ 𝐿2(Ω) and
𝒇 ∈ [𝐿2(Ω)]𝑑 , we consider a general second-order linear elliptic PDE

− div(𝑨∇𝑢★) + 𝒃 · ∇𝑢★ + 𝑐 𝑢★ = 𝑓 − div( 𝒇 ) in Ω subject to 𝑢★ = 0 on 𝜕Ω, (5.4)

with a pointwise symmetric and positive definite diffusion matrix 𝑨 ∈ 𝐿∞(Ω) 𝑑×𝑑
sym , a convection

coefficient 𝒃 ∈ 𝐿∞(Ω) 𝑑 , and a reaction coefficient 𝑐 ∈ 𝐿∞(Ω). For well-definedness of the a
posteriori error estimator in Section 5.2.6 below, we additionally require that 𝑨|𝑇 ∈ 𝑊1,∞(𝑇) 𝑑×𝑑

sym

and 𝒇 |𝑇 ∈ 𝐻1(𝑇) 𝑑 for all𝑇 ∈ T0, where T0 is an initial triangulation that subdividesΩ into compact
simplices. Let ⟨ · , · ⟩ denote the 𝐿2(Ω)-scalar product. With the principal part 𝑎(𝑢, 𝑣) := ⟨𝑨∇𝑢 ,
∇𝑣⟩, the variational formulation of (5.4) seeks a solution 𝑢★ ∈ X := 𝐻1

0 (Ω) to the so-called primal
problem

𝑏(𝑢★, 𝑣) := 𝑎(𝑢★, 𝑣) + ⟨𝒃 · ∇𝑢★ + 𝑐 𝑢★ , 𝑣⟩ = ⟨ 𝑓 , 𝑣⟩ + ⟨ 𝒇 , ∇𝑣⟩ =: 𝐹 (𝑣) for all 𝑣 ∈ X. (5.5)

We suppose that the bilinear form 𝑏(·, ·) from (5.5) is continuous and elliptic with respect to the
norm ∥ · ∥X on X, i.e., there exist constants 𝐿′, 𝛼′ > 0 such that

𝑏(𝑢, 𝑣) ≤ 𝐿′ ∥𝑢∥X ∥𝑣∥X and 𝑏(𝑣, 𝑣) ≥ 𝛼′ ∥𝑣∥2X for all 𝑢, 𝑣 ∈ X. (5.6)

Then, the Lax–Milgram lemma proves existence and uniqueness of the solution 𝑢★ to (5.5). An
elementary compactness argument shows that (5.6) implies ellipticity of the principal part 𝑎( · , · )
and thus 𝑎( · , · ) is a scalar product on X with induced energy norm 𝑎( · , · )1/2 =: ⦀ ·⦀ ≃ ∥ · ∥X ,
cf. [BHP17, Remark 3]. Therefore, 𝑏( · , · ) is also continuous and elliptic with respect to ⦀ ·⦀, i.e.,
there exist constants 𝐿, 𝛼 > 0 such that

𝑏(𝑢, 𝑣) ≤ 𝐿 ⦀𝑢⦀⦀𝑣⦀ and 𝑏(𝑣, 𝑣) ≥ 𝛼 ⦀𝑣⦀2 for all 𝑢, 𝑣 ∈ X. (5.7)
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5.2 Setting

In the present paper, we suppose that the quantity of interest 𝐺 is linear and reads for given data
𝑔 ∈ 𝐿2(Ω) and 𝒈 ∈ 𝐿2(Ω) 𝑑 ,

𝐺 (𝑣) :=
∫
Ω

𝑔 𝑣 + 𝒈 · ∇𝑣 d𝑥.

In order to guarantee well-definedness of the error estimator in Section 5.2.6 below, we suppose
𝒈 |𝑇 ∈ 𝐻1(𝑇) 𝑑 for all initial simplices 𝑇 ∈ T0. In view of the continuity and coercivity of 𝑏( · , · ),
the Lax–Milgram lemma yields existence and uniqueness of the solution 𝑧★ ∈ X of the so-called
dual problem: Find 𝑧★ ∈ X such that

𝑏(𝑣, 𝑧★) = 𝐺 (𝑣) for all 𝑣 ∈ X. (5.8)

5.2.2 Finite element discretization and discrete goal

For a polynomial degree 𝑝 ∈ N and a conforming simplicial triangulation T𝐻 of Ω, the discrete
ansatz space reads

X𝐻 := {𝑣𝐻 ∈ X : ∀𝑇 ∈ T𝐻 , 𝑣𝐻 |𝑇 is a polynomial of total degree ≤ 𝑝}. (5.9)

Since X𝐻 ⊂ X is conforming, the Lax–Milgram lemma ensures the existence and uniqueness of
primal and dual discrete solutions 𝑢★𝐻 , 𝑧★𝐻 ∈ X𝐻 satisfying

𝑏(𝑢★𝐻 , 𝑣𝐻) = 𝐹 (𝑣𝐻) and 𝑏(𝑣𝐻 , 𝑧★𝐻) = 𝐺 (𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 . (5.10)

It is well-known that conforming FEMs are quasi-optimal, i.e., there hold Céa-type estimates with
constant 𝐶Céa = 𝐿/𝛼

⦀𝑢★ − 𝑢★𝐻⦀ ≤ 𝐶Céa min
𝑣𝐻 ∈X𝐻

⦀𝑢★ − 𝑣𝐻⦀ and ⦀𝑧★ − 𝑧★𝐻⦀ ≤ 𝐶Céa min
𝑣𝐻 ∈X𝐻

⦀𝑧★ − 𝑣𝐻⦀. (5.11)

For arbitrary approximations 𝑢𝐻 , 𝑧𝐻 , ∈ X𝐻 the linearity of the quantity of interest 𝐺 as well as the
primal and the dual problem (5.1) and (5.2) show that

𝐺 (𝑢★) − 𝐺 (𝑢𝐻) = 𝐺 (𝑢★ − 𝑢𝐻)(5.2)
= 𝑏(𝑢★ − 𝑢𝐻 , 𝑧

★)
(5.1)
= 𝑏(𝑢★ − 𝑢𝐻 , 𝑧

★ − 𝑧𝐻) + 𝐹 (𝑧𝐻) − 𝑏(𝑢𝐻 , 𝑧𝐻) .

The definition of the discrete goal quantity by 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) := 𝐺 (𝑢𝐻) + 𝐹 (𝑧𝐻) − 𝑏(𝑢𝐻 , 𝑧𝐻) allows
to control the goal error by continuity of 𝑏(·, ·)

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) | ≤ |𝑏(𝑢★ − 𝑢𝐻 , 𝑧
★ − 𝑧𝐻) | ≤ 𝐿 ⦀𝑢★ − 𝑢𝐻 ||| |||𝑧★ − 𝑧𝐻⦀. (5.12)

We emphasize that (5.12) holds for any 𝑢𝐻 , 𝑧𝐻 and, in particular, for those stemming from an
iterative solution step. Moreover, if 𝑢𝐻 = 𝑢★𝐻 , then 𝐺 (𝑢𝐻 , 𝑧𝐻) = 𝐺 (𝑢★𝐻) as expected.
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5.2.3 Zarantonello iteration

The discrete formulations (5.10) lead to positive definite, but nonsymmetric linear systems of
equations. To reduce the formulation to symmetric and positive definite (SPD) problems, we follow
previous own work [BIM+24a] for the primal problem and employ the Zarantonello iteration [Zar60].
Typically, the latter is used in the up-to-date proof of the Lax–Milgram lemma and also defines
a linearization scheme for the treatment of a certain class of nonlinear elliptic PDEs (see, e.g.,
[CW17; GHPS18; HPSV21; BFM+23]). In its core, it is a fixed-point method, thus also applicable
in the nonsymmetric setting at hand. For a damping parameter 𝛿 > 0 and given 𝑢𝐻 , 𝑧𝐻 ∈ X𝐻 , the
Zarantonello iterations Φ𝑢

𝐻 ,Φ
𝑧
𝐻 : (0,∞) × X𝐻 → X𝐻 compute the unique solutions Φ𝑢

𝐻 (𝛿; 𝑢𝐻),
Φ𝑧

𝐻 (𝛿; 𝑧𝐻) ∈ X𝐻 to the symmetric variational formulations

𝑎(Φ𝑢
𝐻 (𝛿; 𝑢𝐻), 𝑣𝐻) = 𝑎(𝑢𝐻 , 𝑣𝐻) + 𝛿 𝐹 (𝑣𝐻) − 𝑏(𝑢𝐻 , 𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 , (5.13a)

𝑎(𝑣𝐻 ,Φ𝑧
𝐻 (𝛿; 𝑧𝐻)) = 𝑎(𝑣𝐻 , 𝑧𝐻) + 𝛿 𝐺 (𝑣𝐻) − 𝑏(𝑣𝐻 , 𝑧𝐻) for all 𝑣𝐻 ∈ X𝐻 . (5.13b)

The Riesz–Fischer theorem (and also the Lax–Milgram lemma) guarantees existence and uniqueness
of Φ𝑢

𝐻 (𝛿; 𝑢𝐻), Φ𝑧
𝐻 (𝛿; 𝑧𝐻) ∈ X𝐻 , i.e., the Zarantonello operators Φ𝑢

𝐻 (𝛿; ·) and Φ𝑧
𝐻 (𝛿; ·) are well-

defined. In particular, the exact discrete solutions 𝑢★𝐻 = Φ𝑢
𝐻 (𝛿; 𝑢★𝐻) and 𝑧★𝐻 = Φ𝑧

𝐻 (𝛿; 𝑧★𝐻) are the
unique fixed points for all 𝛿 > 0. Moreover, for a sufficiently small damping parameter 𝛿, i.e.,
0 < 𝛿 < 𝛿★ := 2𝛼/𝐿2, the Banach fixed-point theorem [Zei90a, Section 25.4] guarantees that
Φ𝑢

𝐻 (𝛿, ·) and Φ𝑧
𝐻 (𝛿, ·) are contractive with constant 0 < 𝑞sym := 1 − 𝛿 (2𝛼 − 𝛿𝐿2) 1/2

< 1, i.e., for
all functions 𝑣𝐻 , 𝑤𝐻 ∈ X𝐻 , it holds that

max ⦀Φ𝑢
𝐻 (𝛿; 𝑣𝐻) −Φ𝑢

𝐻 (𝛿;𝑤𝐻)⦀,⦀Φ𝑧
𝐻 (𝛿; 𝑣𝐻) −Φ𝑧

𝐻 (𝛿;𝑤𝐻)⦀ ≤ 𝑞sym ⦀𝑣𝐻 − 𝑤𝐻⦀. (5.14)

The optimal value 𝛿opt = 𝛼/𝐿2 yields the minimal contraction value 𝑞sym = 1 − 𝛼2/𝐿2.

5.2.4 Algebraic solver

A canonical candidate for solving (5.10) directly is a generalized minimal residual method [Saa03;
SS86] with optimal preconditioner for the symmetric part. While this guarantees uniform contraction
of the algebraic residuals in a discrete vector norm, the link between the algebraic residuals
and the functional setting is still open [BIM+24a]. Instead, after a symmetrization with the
Zarantonello iteration, it remains to solve the SPD systems (5.13). Since large SPD problems are
still computationally expensive and the exact solution cannot be computed in linear computational
complexity, we employ an iterative algebraic solver whose iteration is expressed by the operator
Ψ𝐻 : X′×X𝐻 → X𝐻 .More precisely, given a bounded linear functional𝜓 ∈ X′ and an approximation
𝑤𝐻 ∈ X𝐻 of the exact solution 𝑤★

𝐻 ∈ X𝐻 to 𝑎(𝑤★
𝐻 , 𝑣𝐻) = 𝜓(𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 , the algebraic

solver returns an improved approximation Ψ𝐻 (𝜓;𝑤𝐻) ∈ X𝐻 in the sense that there exists 0 < 𝑞ctr < 1
independent of 𝜓 and X𝐻 such that⦀𝑤★

𝐻 − Ψ𝐻 (𝜓;𝑤𝐻)⦀ ≤ 𝑞ctr ⦀𝑤★
𝐻 − 𝑤𝐻⦀ for all 𝑤𝐻 ∈ X𝐻 . (5.15)

To simplify notation, we shall identify 𝜓 with its Riesz representative 𝑤★
𝐻 ∈ X𝐻 and write Ψ𝐻 (𝑤★

𝐻 ; ·)
instead of Ψ𝐻 (𝜓; ·), even though 𝑤★

𝐻 is unknown in practice and will only be approximated by an
optimal algebraic solver, e.g., [CNX12; WZ17; IMPS24]. In the following, we use the ℎ𝑝-robust
multigrid method from [IMPS24] with localized lowest-order smoothing on intermediate levels and
patchwise higher-order smoothing on the finest mesh as an innermost algebraic solver loop.
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5.2 Setting

5.2.5 Mesh refinement

The mesh refinement employs newest-vertex bisection (NVB). We refer to [Ste08] for NVB with
admissible initial triangulation T0 and 𝑑 ≥ 2, to [AFF+15; KPP13] for NVB with general T0 for
𝑑 ∈ {1, 2}, and to the recent work [DGS23] for NVB with general T0 in any dimension 𝑑 ≥ 2. For
each triangulation T𝐻 and marked elements M𝐻 ⊆ T𝐻 , let Tℎ := refine(T𝐻 ,M𝐻) be the coarsest
conforming refinement of T𝐻 such that at least all 𝑇 ∈ M𝐻 have been refined, i.e., M𝐻 ⊆ T𝐻 \ Tℎ.
We write Tℎ ∈ T(T𝐻) if Tℎ can be obtained from T𝐻 by finitely many steps of NVB, and Tℎ ∈ T𝑁 (T𝐻)
if Tℎ ∈ T(T𝐻) with #Tℎ −#T𝐻 ≤ 𝑁 with the number of additional elements 𝑁 ∈ N0. To simplify
notation, we write T := T(T0) and T𝑁 := T𝑁 (T0). We note that the nestedness of meshes Tℎ ∈ T(T𝐻)
implies nestedness of the corresponding finite element spaces X𝐻 ⊆ Xℎ ⊂ X from (5.9).

5.2.6 A posteriori error estimation

For a triangle 𝑇 ∈ T𝐻 ∈ T and 𝑣𝐻 ∈ X𝐻 , let 𝒏 denote the outer unit normal vector and ⟦ · ⟧ the jump
along inner edges of T𝐻 . We define the refinement indicators 𝜂𝐻 (𝑇 ; 𝑣𝐻) ≥ 0 and 𝜁𝐻 (𝑇 ; 𝑣𝐻) ≥ 0 for
the primal and dual problem from (5.10), respectively, by

𝜂𝐻 (𝑇 ; 𝑣𝐻)2 := |𝑇 |2/𝑑 ∥ − div(𝑨∇𝑣𝐻 − 𝒇 ) + 𝒃 · ∇𝑣𝐻 + 𝑐 𝑣𝐻 − 𝑓 ∥2
𝐿2 (𝑇 )

+ |𝑇 |1/𝑑 ∥⟦ 𝑨∇𝑣𝐻 − 𝒇 · 𝒏⟧∥2
𝐿2 (𝜕𝑇∩Ω) ,

𝜁𝐻 (𝑇 ; 𝑣𝐻)2 := |𝑇 |2/𝑑 ∥ − div(𝑨∇𝑣𝐻 − 𝒈) − 𝒃 · ∇𝑣𝐻 + 𝑐 − div(𝒃) 𝑣𝐻 − 𝑔∥2
𝐿2 (𝑇 )

+ |𝑇 |1/𝑑 ∥⟦ 𝑨∇𝑣𝐻 − 𝒈 · 𝒏⟧∥2
𝐿2 (𝜕𝑇∩Ω) .

(5.16a)

For any subset U𝐻 ⊆ T𝐻 , we abbreviate

𝜂𝐻 (U𝐻 ; 𝑣𝐻)2 :=
∑︁

𝑇∈U𝐻

𝜂𝐻 (𝑇 ; 𝑣𝐻)2 and 𝜁𝐻 (U𝐻 ; 𝑣𝐻)2 :=
∑︁

𝑇∈U𝐻

𝜁𝐻 (𝑇 ; 𝑣𝐻)2 (5.16b)

as well as 𝜂𝐻 (𝑣𝐻) := 𝜂𝐻 (T𝐻 ; 𝑣𝐻) and 𝜁𝐻 (𝑣𝐻) := 𝜁𝐻 (T𝐻 ; 𝑣𝐻) for all 𝑣𝐻 ∈ X𝐻 . For details on
residual-based error estimators, we refer to [AO00; Ver94]. Throughout the paper, the index of the
estimators refer to the underlying mesh, e.g., 𝜂ℎ and 𝜁ℎ on the refinement Tℎ ∈ T(T𝐻) or 𝜂ℓ and 𝜁ℓ
on a sequence of meshes Tℓ with ℓ ∈ N0. It is well-known that 𝜂𝐻 , 𝜁𝐻 satisfy the following axioms
of adaptivity.

Lemma 5.1 ([CFPP14, Section 6.1]). The error estimators 𝜂𝐻 , 𝜁𝐻 from (5.16) satisfy the following
properties with constants 𝐶stab, 𝐶rel, 𝐶drel, 𝐶mon > 0 and 0 < 𝑞red < 1 for any triangulation
T𝐻 ∈ T and any conforming refinement Tℎ ∈ T(T𝐻) with the corresponding Galerkin solutions
𝑢★𝐻 , 𝑧

★
𝐻 ∈ X𝐻 , 𝑢★ℎ , 𝑧

★
ℎ ∈ Xℎ to (5.10), any subset U𝐻 ⊆ T𝐻 ∩Tℎ, and arbitrary 𝑣𝐻 ∈ X𝐻 , 𝑣ℎ ∈ Xℎ.

(A1) stability: |𝜂ℎ (U𝐻 ; 𝑣ℎ) − 𝜂𝐻 (U𝐻 ; 𝑣𝐻) | + |𝜁ℎ (U𝐻 ; 𝑣ℎ) − 𝜁𝐻 (U𝐻 ; 𝑣𝐻) | ≤ 𝐶stab ⦀𝑣ℎ − 𝑣𝐻⦀.
(A2) reduction: 𝜂ℎ (Tℎ \ T𝐻 ; 𝑣𝐻) ≤ 𝑞red 𝜂𝐻 (T𝐻 \ Tℎ; 𝑣𝐻) and 𝜁ℎ (Tℎ \ T𝐻 ; 𝑣𝐻) ≤ 𝑞red𝜁𝐻 (T𝐻 \

Tℎ; 𝑣𝐻).
(A3) reliability: ⦀𝑢★ − 𝑢★𝐻⦀ ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻) and ⦀𝑧★ − 𝑧★𝐻⦀ ≤ 𝐶rel 𝜁𝐻 (𝑧★𝐻).

(A3+) discrete reliability: ⦀𝑢★ℎ−𝑢★𝐻⦀ ≤ 𝐶drel 𝜂𝐻 (T𝐻\Tℎ, 𝑢★𝐻) and⦀𝑧★ℎ−𝑧★𝐻⦀ ≤ 𝐶drel 𝜁𝐻 (T𝐻\Tℎ, 𝑧★𝐻)
.
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(QM) quasi-monotonicity: 𝜂ℎ (𝑢★ℎ) ≤ 𝐶mon 𝜂𝐻 (𝑢★𝐻) and 𝜁ℎ (𝑧★ℎ) ≤ 𝐶mon 𝜁𝐻 (𝑧★𝐻).
The constant 𝐶rel depends only on the uniform 𝛾-shape regularity of all T𝐻 ∈ T and on the space
dimension 𝑑, while 𝐶stab and 𝐶drel additionally depend on the polynomial degree 𝑝. For NVB,
reduction (A2) holds with 𝑞red := 2−1/(2𝑑) . Moreover, the constant in quasi-monotonicity (QM)
satisfies 𝐶mon ≤ min{1 + 𝐶stab(1 + 𝐶Céa)𝐶rel , 1 + 𝐶stab 𝐶drel}. □

Reliability (A3) and stability (A1) verify⦀𝑢★ − 𝑢𝐻⦀ ≤ max{𝐶rel, 1 + 𝐶stab 𝐶rel} 𝜂𝐻 (𝑢𝐻) + ⦀𝑢★𝐻 − 𝑢𝐻⦀ ,⦀𝑧★ − 𝑧𝐻⦀ ≤ max{𝐶rel, 1 + 𝐶stab 𝐶rel} 𝜁𝐻 (𝑧𝐻) + ⦀𝑧★𝐻 − 𝑧𝐻⦀ .

In combination with the estimate (5.12), we finally conclude for 𝐶goal := 𝐿max{𝐶rel, 1 +𝐶stab 𝐶rel}2
the reliable goal-error estimate

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻) | ≤ 𝐶goal 𝜂𝐻 (𝑢𝐻) + ⦀𝑢★𝐻 − 𝑢𝐻⦀ 𝜁𝐻 (𝑧𝐻) + ⦀𝑧★𝐻 − 𝑧𝐻⦀ , (5.17)

which provides the core estimate of the proposed adaptive algorithm in Section 5.3 below.
The ellipticity of 𝑏(·, ·) from (5.7) ensures inf-sup stability of the elliptic problem at hand. Recall

from [Fei22] that inf-sup stability implies the generalized quasi-orthogonality, which will be an
important tool in the subsequent analysis.

Proposition 5.2 (validity of quasi-orthogonality [Fei22, Equation (8)]). For any sequence
Xℓ ⊆ Xℓ+1 ⊂ X of nested discrete subspaces with ℓ ≥ 0, there holds

(A4) quasi-orthogonality: There exist constants 𝐶orth > 0 and 0 < 𝛿 < 1 such that the
corresponding Galerkin solutions 𝑢★ℓ , 𝑧

★
ℓ ∈ Xℓ to (5.10) satisfy, for all ℓ, 𝑀 ∈ N0,

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1 − 𝑢★ℓ′⦀2 ≤ 𝐶orth (𝑀 + 1)1−𝛿 ⦀𝑢★ − 𝑢★ℓ ⦀2, (5.18a)

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑧★ℓ′+1 − 𝑧★ℓ′⦀2 ≤ 𝐶orth (𝑀 + 1)1−𝛿 ⦀𝑧★ − 𝑧★ℓ ⦀2. (5.18b)

The constants 𝐶orth and 𝛿 depend only on the dimension 𝑑, the elliptic bilinear form 𝑏( · , · ), and
the chosen norm ⦀ ·⦀, but are independent of the spaces Xℓ . □

5.3 Adaptive algorithm

In this section, we introduce our goal-oriented adaptive iteratively symmetrized algorithm. It utilizes
specific stopping indices denoted by an underline, e.g., ℓ, 𝑚 [ℓ], 𝑛[ℓ, 𝑘] ∈ N0. For an overview, see
Table 5.1 above. However, we may omit the dependence whenever it is apparent from the context,
such as in the abbreviation 𝑛 := 𝑛[ℓ, 𝑚] for 𝑢𝑚,𝑛

ℓ .

Algorithm 5A: GOAISFEM
Input: Initial mesh T0, polynomial degree 𝑝 ∈ N, marking parameters 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1,
solver parameters 𝜆sym > 0, 𝜆alg > 0, Zarantonello damping parameter 𝛿 > 0, and initial
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5.3 Adaptive algorithm

guesses 𝑢0,00 = 𝑢
0,𝑛
0 , 𝑧0,00 = 𝑧

0,𝜈
0 ∈ X0.

Adaptive loop: For all ℓ = 0, 1, 2, . . . , repeat the following steps (I)–(IV):

(I) SOLVE & ESTIMATE (PRIMAL). For all 𝑚 = 1, 2, 3, . . . , repeat (a)–(c):

(a) Set 𝑢𝑚,0
ℓ

:= 𝑢
𝑚−1,𝑛
ℓ and define for theoretical reasons 𝑢𝑚,★

ℓ
:= Φ𝑢

ℓ (𝛿; 𝑢
𝑚−1,𝑛
ℓ ).

(b) For all 𝑛 = 1, 2, 3, . . . , repeat the following steps (i)–(ii):
(i) Compute 𝑢𝑚,𝑛

ℓ
:= Ψℓ (𝑢𝑚,★

ℓ ; 𝑢𝑚,𝑛−1
ℓ ) and corresponding refinement indicators

𝜂ℓ (𝑇 ; 𝑢𝑚,𝑛
ℓ ) for all 𝑇 ∈ Tℓ .

(ii) Terminate 𝑛-loop and define 𝑛[ℓ, 𝑚] := 𝑛 if

⦀𝑢𝑚,𝑛
ℓ − 𝑢𝑚,𝑛−1

ℓ ⦀ ≤ 𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑚,𝑛
ℓ ) + ⦀𝑢𝑚,𝑛

ℓ − 𝑢𝑚,0
ℓ ⦀ . (5.19)

(c) Terminate 𝑚-loop and define 𝑚 [ℓ] := 𝑚 if

⦀𝑢𝑚,𝑛

ℓ − 𝑢𝑚,0
ℓ ⦀ ≤ 𝜆sym 𝜂ℓ (𝑢𝑚,𝑛

ℓ ). (5.20)

(II) SOLVE & ESTIMATE (DUAL). For all 𝜇 = 1, 2, 3, . . . , repeat (a)–(c):

(a) Set 𝑧𝜇,0ℓ
:= 𝑧

𝜇−1,𝜈
ℓ and define for theoretical reasons 𝑧𝜇,★ℓ

:= Φ𝑧
ℓ (𝛿; 𝑧

𝜇−1,𝜈
ℓ ).

(b) For all 𝜈 = 1, 2, 3, . . . , repeat the following steps (i)–(ii):
(i) Compute 𝑧

𝜇,𝜈
ℓ

:= Ψℓ (𝑧𝜇,★ℓ ; 𝑧
𝜇,𝜈−1
ℓ ) and corresponding refinement indicators

𝜁ℓ (𝑇 ; 𝑧𝜇,𝜈ℓ ) for all 𝑇 ∈ Tℓ .
(ii) Terminate 𝜈-loop and define 𝜈[ℓ, 𝜇] := 𝜈 if

⦀𝑧𝜇,𝜈ℓ − 𝑧
𝜇,𝜈−1
ℓ ⦀ ≤ 𝜆alg 𝜆sym 𝜁ℓ (𝑧𝜇,𝜈ℓ ) + ⦀𝑧𝜇,𝜈ℓ − 𝑧

𝜇,0
ℓ ⦀ . (5.21)

(c) Terminate 𝜇-loop and define 𝜇[ℓ] := 𝜇 if

⦀𝑧𝜇,𝜈ℓ − 𝑧
𝜇,0
ℓ ⦀ ≤ 𝜆sym 𝜁ℓ (𝑧𝜇,𝜈ℓ ). (5.22)

(III) MARK. Determine sets

M𝑢

ℓ ∈ M𝑢
ℓ [𝜃, 𝑢𝑚,𝑛

ℓ ] := {Uℓ ⊆ Tℓ : 𝜃 𝜂ℓ (𝑢𝑚,𝑛

ℓ )2 ≤ 𝜂ℓ (Uℓ , 𝑢
𝑚,𝑛

ℓ )2},
M𝑧

ℓ ∈ M𝑧
ℓ [𝜃, 𝑧

𝜇,𝜈

ℓ ] := {Uℓ ⊆ Tℓ : 𝜃 𝜁ℓ (𝑧𝜇,𝜈ℓ )2 ≤ 𝜁ℓ (Uℓ , 𝑧
𝜇,𝜈

ℓ )2}

satisfying the following Dörfler criterion [Dör96] with quasi-minimal cardinality

#M𝑢

ℓ ≤ 𝐶mark min
U★

ℓ
∈M𝑢

ℓ
[ 𝜃,𝑢𝑚,𝑛

ℓ
]
U★

ℓ and #M𝑧

ℓ ≤ 𝐶mark min
U★

ℓ
∈M𝑧

ℓ
[ 𝜃,𝑧𝜇,𝜈

ℓ
]
U★

ℓ . (5.23)

As in [FPZ16], define the set of marked elements Mℓ := M𝑢
ℓ ∪M𝑧

ℓ , where M𝑢
ℓ ⊆ M𝑢

ℓ

and M𝑧
ℓ ⊆ M𝑧

ℓ satisfy #M𝑢
ℓ = #M𝑧

ℓ = min{#M𝑢

ℓ ,#M𝑧

ℓ }.
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(IV) REFINE. Generate the new mesh Tℓ+1 := refine(Mℓ ,Tℓ) by NVB and define 𝑢0,0ℓ+1 :=
𝑢
0,𝑛

ℓ+1 := 𝑢0,★ℓ+1 := 𝑢
𝑚,𝑛

ℓ and 𝑧0,0ℓ+1 := 𝑧
0,𝜈

ℓ+1 := 𝑧0,★ℓ+1 := 𝑧
𝜇,𝜈

ℓ (nested iteration).

Output: Sequences of successively refined triangulations Tℓ , successive discrete approxima-
tions 𝑢𝑚,𝑛

ℓ , 𝑧𝜇,𝜈ℓ , and corresponding error estimators 𝜂ℓ (𝑢𝑚,𝑛
ℓ ), 𝜁 (𝑧𝜇,𝜈ℓ ).

Remark 5.3. (i) Although the primal loop (I) and dual loop (II) in Algorithm 5A are displayed
sequentially, they are independent of each other. Therefore, a practical implementation will realize
these iterations simultaneously since the system matrix is the same (thanks to the symmetrization
step).

(ii) In order to investigate the asymptotic behavior, it is reasonable to analyze Algorithm 5A in
the present formulation with infinitely many steps. We note that a practical implementation will
terminate with ℓ := ℓ provided that the estimator product is smaller than a user-specified tolerance.

For the analysis of Algorithm 5A, we define the index set Q := Q𝑢 ∪ Q𝑧 with

Q𝑢 := {(ℓ, 𝑚, 𝑛) ∈ N3
0 : 𝑢

𝑚,𝑛
ℓ is used in Algorithm 5A}, (5.24a)

Q𝑧 := {(ℓ, 𝜇, 𝜈) ∈ N3
0 : 𝑧

𝜇,𝜈
ℓ is used in Algorithm 5A}. (5.24b)

Furthermore, we require the following final indices and notice that these are consistent with those
defined in Algorithm 5A:

ℓ := sup{ℓ ∈ N0 : (ℓ, 0, 0) ∈ Q𝑢 or (ℓ, 0, 0) ∈ Q𝑧} ∈ N0 ∪ {∞}, (5.25a)
𝑚 [ℓ] := sup{𝑚 ∈ N : (ℓ, 𝑚, 0) ∈ Q𝑢}, 𝜇[ℓ] := sup{𝜇 ∈ N : (ℓ, 𝜇, 0) ∈ Q𝑧}, (5.25b)

𝑛[ℓ, 𝑚] := sup{𝑛 ∈ N : (ℓ, 𝑚, 𝑛) ∈ Q𝑢}, 𝜈[ℓ, 𝜇] := sup{𝜈 ∈ N : (ℓ, 𝜇, 𝜈) ∈ Q𝑧}. (5.25c)

In addition, we set 𝑘 [ℓ] := max{𝑚 [ℓ], 𝜇[ℓ]} as well as 𝑗 [ℓ, 𝑘] := max{𝑛[ℓ, 𝑘], 𝜈[ℓ, 𝑘]}.
Finally, we introduce the total step counter |·, ·, ·| defined for all (ℓ, 𝑘, 𝑗) ∈ Q by

|ℓ, 𝑘, 𝑗 | =
ℓ−1∑︁
ℓ′=0

𝑘 [ℓ′ ]∑︁
𝑘′=0

𝑗 [ℓ′ ,𝑘′ ]∑︁
𝑗′=0

1 +
𝑘−1∑︁
𝑘′=0

𝑗 [ℓ,𝑘′ ]∑︁
𝑗′=0

1 +
𝑗−1∑︁
𝑗′=0

1.

This definition indeed provides a lexicographic ordering on Q, if the solver steps 5A(I) for 𝑢𝑚,𝑛
ℓ and

5A(II) for 𝑧𝜇,𝜈ℓ are done in parallel. We note that one solver step of an optimal geometric multigrid
method on graded meshes can be performed in O(#Tℓ) operations; see, e.g., [WZ17; IMPS24].
For given 𝑢𝑚,𝑛

ℓ , 𝑧
𝜇,𝜈
ℓ ∈ Xℓ , the simultaneous computation of the refinement indicators 𝜂ℓ (𝑇, 𝑢𝑚,𝑛

ℓ )
and 𝜁ℓ (𝑇, 𝑧𝜇,𝜈ℓ ) requires O(#Tℓ) operations, hence the steps 5A(I)–(II) require O(#Tℓ) operations
as well. Furthermore, Dörfler marking can be performed in O(#Tℓ) operations; see, e.g., [Ste07;
PP20]. Therefore, the total work to compute 𝑢𝑚,𝑛

ℓ and 𝑧
𝜇,𝜈
ℓ is (up to a constant) given by

cost(ℓ, 𝑘, 𝑗) :=
∑︁

(ℓ′ ,𝑚′ ,𝑛′ ) ∈Q𝑢

|ℓ′ ,𝑚′ ,𝑛′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′ +
∑︁

(ℓ′ ,𝜇′ ,𝜈′ ) ∈Q𝑧

|ℓ′ ,𝜇′ ,𝜈′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′ ≃
∑︁

(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q
|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′ . (5.26)

Since #Q = ∞, we have either ℓ = ∞, or 𝑘 [ℓ] = ∞, or 𝑗 [ℓ, 𝑘] = ∞. A further observation about
Algorithm 5A is that the nested algebraic solver loop within the Zarantonello loop is guaranteed to
terminate, and the latter case 𝑗 [ℓ, 𝑘] = ∞ is therefore excluded.
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Lemma 5.4 (finite termination of algebraic solver [BIM+24a, Lemma 3.2]). Independently of the
algorithmic parameters 𝛿, 𝜃, 𝜆sym, and 𝜆alg, the innermost 𝑛- and 𝜈-loops of Algorithm 5A always
terminate. In particular, 𝑗 [ℓ, 𝑘] < ∞ for all (ℓ, 𝑘, 0) ∈ Q. □

5.4 A posteriori error analysis

Algorithm 5A does not provide the exact algebraic solutions 𝑢𝑚,★
ℓ and 𝑧

𝜇,★
ℓ to (5.13) but instead uses

an inexact algebraic solver. However, the following result from [BIM+24a] applies to the primal
and the dual problem alike and shows that these inexact Zarantonello iterations remain contractions
except for the final iterate on each mesh (see also [BIM+24b] for an extended version).

Lemma 5.5 (contraction of inexact Zarantonello iteration [BIM+24a, Lemma 5.1]). Choose any
damping parameter 0 < 𝛿 < 𝛿★ = 2𝛼/𝐿2 to ensure the contraction (5.14) of the Zarantonello
iteration and

0 < 𝜆★alg <
(1 − 𝑞sym) (1 − 𝑞ctr)

4𝑞ctr
such that 0 < 𝑞sym :=

𝑞sym + 2 𝑞ctr
1−𝑞ctr

𝜆★alg

1 − 2 𝑞ctr
1−𝑞ctr

𝜆★alg
< 1. (5.27)

Then, for arbitrary 𝜆sym > 0 and any 0 < 𝜆alg ≤ 𝜆★alg, we have for all (ℓ, 𝑚, 𝑛) ∈ Q𝑢 with
1 ≤ 𝑚 < 𝑚 [ℓ] and all (ℓ, 𝜇, 𝜈) ∈ Q𝑧 with 1 ≤ 𝜇 < 𝜇[ℓ] that

⦀𝑢★ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ and ⦀𝑧★ℓ − 𝑧

𝜇,𝜈

ℓ ⦀ ≤ 𝑞sym ⦀𝑧★ℓ − 𝑧
𝜇−1,𝜈
ℓ ⦀. (5.28)

Moreover, for 𝑚 = 𝑚 [ℓ] resp. 𝜇 = 𝜇[ℓ], it holds that

⦀𝑢★ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ ≤ 𝑞sym ⦀𝑢★ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝜆alg 𝜆sym 𝜂ℓ (𝑢𝑚,𝑛

ℓ ),

⦀𝑧★ℓ − 𝑧
𝜇,𝜈

ℓ ⦀ ≤ 𝑞sym ⦀𝑧★ℓ − 𝑧
𝜇−1,𝜈
ℓ ⦀ + 2 𝑞ctr

1 − 𝑞ctr
𝜆alg 𝜆sym 𝜁ℓ (𝑧𝜇,𝜈ℓ ). □

(5.29)

The subsequent lemma gathers a posteriori error estimates following directly from the corresponding
contraction of the symmetrization, algebraic solver, and the inexact Zarantonello iteration. Further
details of the elementary proof are omitted.

Lemma 5.6 (stability and a posteriori error control). For all (ℓ, 𝑚, 0) ∈ Q𝑢, contraction (5.14)
shows

1 − 𝑞sym

𝑞sym
⦀𝑢★ℓ − 𝑢𝑚,★

ℓ ⦀ ≤ ⦀𝑢𝑚,★
ℓ − 𝑢

𝑚−1,𝑛
ℓ ⦀ ≤ (1 + 𝑞sym) ⦀𝑢★ℓ − 𝑢

𝑚−1,𝑛
ℓ ⦀. (5.30)

Analogously, for all (ℓ, 𝑚, 𝑛) ∈ Q𝑢 the contraction (5.15) ensures

1 − 𝑞ctr
𝑞ctr

⦀𝑢𝑚,★
ℓ − 𝑢𝑚,𝑛

ℓ ⦀ ≤ ⦀𝑢𝑚,𝑛
ℓ − 𝑢𝑚,𝑛−1

ℓ ⦀ ≤ (1 + 𝑞ctr) ⦀𝑢𝑚,★
ℓ − 𝑢𝑚,𝑛−1

ℓ ⦀. (5.31)
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For all (ℓ, 𝑚, 𝑛) ∈ Q𝑢 with 𝑚 < 𝑚 [ℓ], the contraction (5.28) leads to

1 − 𝑞sym

𝑞sym
⦀𝑢★ℓ − 𝑢

𝑚,𝑛

ℓ ⦀ ≤ ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ ≤ (1 + 𝑞sym) ⦀𝑢★ℓ − 𝑢

𝑚−1,𝑛
ℓ ⦀. (5.32)

The analogous estimates are also valid for the dual variable. □

Finally, the following lemma shows that in the case of finitely many mesh-refinement steps, the
Zarantonello iteration does not terminate and one of the two exact continuous solutions is already
the discrete solution to (5.10).

Lemma 5.7 (case of finite mesh-refinement steps). Suppose that the inexact Zarantonello iteration
satisfies contraction (5.28) and that 𝜂 and 𝜁 satisfy (A1)–(A3). If ℓ < ∞, then 𝑘 [ℓ] = ∞ and
𝜂ℓ (𝑢★ℓ ) = 0 (so that 𝑢★ = 𝑢★ℓ ) or 𝜁ℓ (𝑧★ℓ ) = 0 (so that 𝑧★ = 𝑧★ℓ ).

Proof. By Lemma 5.4, we have 𝑗 [ℓ, 𝑘] < ∞. If ℓ < ∞, then 𝑘 [ℓ] = ∞ and, hence,

𝜂ℓ (𝑢𝑚,𝑛

ℓ ) (5.20)
< 𝜆−1

sym ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ for all 𝑚 ∈ N (5.33)

or
𝜁ℓ (𝑧𝜇,𝜈ℓ ) (5.22)

< 𝜆−1
sym ⦀𝑧𝜇,𝜈ℓ − 𝑧

𝜇−1,𝜈
ℓ ⦀ for all 𝜇 ∈ N. (5.34)

If (5.33) holds, then the inexact Zarantonello iterates 𝑢
𝑚,𝑛

ℓ are convergent with limit 𝑢★ℓ and we
obtain by stability (A1) that

𝜂ℓ (𝑢★ℓ )
(A1)≤ 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) + 𝐶stab ⦀𝑢★ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ (5.33)
≲ ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ 𝑚→∞−−−−−→ 0.

This proves that 𝜂ℓ (𝑢★ℓ ) = 0, and we infer from reliability (A3) that 𝑢★ℓ = 𝑢★. The same arguments
apply to 𝑧★ℓ in the case of (5.34). □

Due to the contraction of the inexact Zarantonello iteration (5.28), we have the following a posteriori
error estimates for the final iterates.

Lemma 5.8 (stability of final iterates). Suppose that the inexact Zarantonello iteration satisfies
(5.28). Then, for all (ℓ + 1, 𝑚, 𝑛) ∈ Q𝑢 and (ℓ + 1, 𝜇, 𝜈) ∈ Q𝑧 , there holds

⦀𝑢★ℓ+1 − 𝑢
𝑚−1,𝑛
ℓ+1 ⦀ ≤ ⦀𝑢★ℓ+1 − 𝑢

𝑚,𝑛

ℓ ⦀, ⦀𝑧★ℓ+1 − 𝑧
𝜇−1,𝜈
ℓ+1 ⦀ ≤ ⦀𝑧★ℓ+1 − 𝑧

𝜇,𝜈

ℓ ⦀, (5.35)⦀𝑢𝑚,𝑛

ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀ ≤ 4⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀, ⦀𝑧𝜇,𝜈ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀ ≤ 4⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀, (5.36)⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ ≤ 4⦀𝑢★ℓ − 𝑢

𝑚−1,𝑛
ℓ ⦀, ⦀𝑧𝜇,𝜈ℓ − 𝑧

𝜇−1,𝜈
ℓ ⦀ ≤ 4⦀𝑧★ℓ − 𝑧

𝜇−1,𝜈
ℓ ⦀. (5.37)

Proof. For (ℓ + 1, 𝑚, 𝑛) ∈ Q𝑢, nested iteration 𝑢
0,𝑛

ℓ+1 = 𝑢
𝑚,𝑛

ℓ together with the contraction of the
inexact Zarantonello iteration (5.28) and 𝑚 [ℓ + 1] ≥ 1 prove (5.35) by

⦀𝑢★ℓ+1 − 𝑢
𝑚−1,𝑛
ℓ+1 ⦀(5.28)≤ 𝑞

𝑚[ℓ+1]−1
sym ⦀𝑢★ℓ+1 − 𝑢

0,𝑛

ℓ+1⦀ ≤ ⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀.
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Let (ℓ, 𝑚, 𝑛) ∈ Q𝑢. Contraction of the algebraic solver (5.15), the fact 𝑛[ℓ, 𝑚] ≥ 1, and nested
iteration 𝑢

𝑚,0

ℓ = 𝑢
𝑚−1,𝑛
ℓ show that

⦀𝑢𝑚,★

ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ (5.15)≤ 𝑞
𝑛[ℓ,𝑚]
ctr ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚,0

ℓ ⦀ ≤ 𝑞ctr ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀. (5.38)

This and with the contraction of the exact Zarantonello iteration (5.14) result in

⦀𝑢★ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢
𝑚,★

ℓ ⦀ + ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚,𝑛

ℓ ⦀
(5.38)≤ (1 + 𝑞ctr) ⦀𝑢★ℓ − 𝑢

𝑚,★

ℓ ⦀ + 𝑞ctr ⦀𝑢★ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀

(5.14)≤ (1 + 𝑞ctr)𝑞sym + 𝑞ctr ⦀𝑢★ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ ≤ 3⦀𝑢★ℓ − 𝑢

𝑚−1,𝑛
ℓ ⦀.

(5.39)

Consequently, the combination of (5.39) and (5.35) validates (5.36) via

⦀𝑢𝑚,𝑛

ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀ ≤ ⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ+1⦀ + ⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀
(5.39)≤ 3⦀𝑢★ℓ+1 − 𝑢

𝑚−1,𝑛
ℓ+1 ⦀ + ⦀𝑢★ℓ+1 − 𝑢

𝑚,𝑛

ℓ ⦀ (5.35)≤ 4⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀.
The estimate (5.39) also implies (5.37), because

⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ ≤ ⦀𝑢★ℓ − 𝑢

𝑚,𝑛

ℓ ⦀ + ⦀𝑢★ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ (5.39)≤ 4⦀𝑢★ℓ − 𝑢

𝑚−1,𝑛
ℓ ⦀.

The same arguments prove the estimates for the dual variable and conclude the proof. □

The subsequent lemma states the estimator reduction for only one of the two error estimators. This
poses a significant challenge in the proof of full linear convergence due to the required contraction of
the nonlinear quasi-error product in Lemma 5.11 below.

Lemma 5.9 (estimator reduction and stability). Define the constant 0 < 𝑞(𝜃) := 1 − (1 −
𝑞2red) 𝜃

1/2
< 1 and suppose that the estimators 𝜂 and 𝜁 satisfy (A1)–(A2). If the primal error

estimator satisfies the Dörfler criterion, i.e., M𝑢
ℓ = M𝑢

ℓ ⊆ Mℓ in Algorithm 5A(III), then

𝜂ℓ+1(𝑢𝑚,𝑛

ℓ+1 ) ≤ 𝑞(𝜃) 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) + 4𝐶stab ⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀ for all (ℓ + 1, 𝑚, 𝑛) ∈ Q𝑢,

𝜁ℓ+1(𝑧𝜇,𝜈ℓ+1) ≤ 𝜁ℓ (𝑧𝜇,𝜈ℓ ) + 4𝐶stab ⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀ for all (ℓ + 1, 𝜇, 𝜈) ∈ Q𝑧 .
(5.40)

If the dual error estimator satisfies the Dörfler criterion, i.e.,M𝑧
ℓ = M𝑧

ℓ ⊆ Mℓ in Algorithm 5A(III),
then

𝜂ℓ+1(𝑢𝑚,𝑛

ℓ+1 ) ≤ 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) + 4𝐶stab ⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀ for all (ℓ + 1, 𝑚, 𝑛) ∈ Q𝑢,

𝜁ℓ+1(𝑧𝜇,𝜈ℓ+1) ≤ 𝑞(𝜃) 𝜁ℓ (𝑧𝜇,𝜈ℓ ) + 4𝐶stab ⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀ for all (ℓ + 1, 𝜇, 𝜈) ∈ Q𝑧 .
(5.41)

Proof. For (ℓ + 1, 0, 0) ∈ Q𝑢, stability (A1) and reduction (A2) yield that

𝜂ℓ+1(𝑢𝑚,𝑛

ℓ )2 = 𝜂ℓ+1(Tℓ+1 ∩ Tℓ ; 𝑢𝑚,𝑛

ℓ )2 + 𝜂ℓ+1(Tℓ+1\Tℓ ; 𝑢𝑚,𝑛

ℓ )2
≤ 𝜂ℓ (Tℓ+1 ∩ Tℓ ; 𝑢𝑚,𝑛

ℓ )2 + 𝑞2red 𝜂ℓ (Tℓ\Tℓ+1; 𝑢𝑚,𝑛

ℓ )2
= 𝜂ℓ (𝑢𝑚,𝑛

ℓ )2 − (1 − 𝑞2red) 𝜂ℓ (Tℓ\Tℓ+1; 𝑢𝑚,𝑛

ℓ )2.
(5.42)
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The Dörfler marking in Algorithm 5A(III) for the primal error estimator 𝜂 and Mℓ ⊆ Tℓ \ Tℓ+1 prove
the contraction in (5.40)

𝜂ℓ+1(𝑢𝑚,𝑛

ℓ )2 ≤ 𝜂ℓ (𝑢𝑚,𝑛

ℓ )2 − (1 − 𝑞2red) 𝜂ℓ (Mℓ ; 𝑢
𝑚,𝑛

ℓ )2 ≤ 𝑞(𝜃)2 𝜂ℓ (𝑢𝑚,𝑛

ℓ )2. (5.43)

For (ℓ + 1, 𝑚, 𝑛) ∈ Q𝑢, this and (5.36) lead to

𝜂ℓ+1(𝑢𝑚,𝑛

ℓ+1 )
(A1)≤ 𝜂ℓ+1(𝑢𝑚,𝑛

ℓ ) + 𝐶stab ⦀𝑢𝑚,𝑛

ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀
(5.43)≤ 𝑞(𝜃) 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) + 𝐶stab ⦀𝑢𝑚,𝑛

ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀
(5.36)≤ 𝑞(𝜃) 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) + 4𝐶stab ⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀.
For (ℓ + 1, 𝜇, 𝜈) ∈ Q𝑧 , we argue analogously to (5.42) in order to obtain that 𝜁ℓ+1(𝑧𝜇,𝜈ℓ ) ≤ 𝜁ℓ (𝑧𝜇,𝜈ℓ ).
Together with (5.36), it follows that

𝜁ℓ+1(𝑧𝜇,𝜈ℓ+1)
(A1)≤ 𝜁ℓ+1(𝑧𝜇,𝜈ℓ ) + 𝐶stab ⦀𝑧𝜇,𝜈ℓ+1 − 𝑧

𝜇,𝜈

ℓ ⦀ (5.36)≤ 𝜁ℓ (𝑧𝜇,𝜈ℓ ) + 4𝐶stab ⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀.
The proof holds verbatim in the case of Dörfler marking for the dual error estimator, albeit with
reversed roles. This concludes the proof. □

5.5 Full linear convergence

This section presents full linear convergence of Algorithm 5A as the first main result of this work.
Recall the goal-error estimate from (5.17) motivating the product structure of the respective primal
and dual error components. Thus, we define the quasi-errors

H𝑚,𝑛
ℓ

:= ⦀𝑢★ℓ − 𝑢𝑚,𝑛
ℓ ⦀ + ⦀𝑢𝑚,★

ℓ − 𝑢𝑚,𝑛
ℓ ⦀ + 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) for all (ℓ, 𝑚, 𝑛) ∈ Q𝑢, (5.44a)
Z
𝜇,𝜈
ℓ

:= ⦀𝑧★ℓ − 𝑧
𝜇,𝜈
ℓ ⦀ + ⦀𝑧𝜇,★ℓ − 𝑧

𝜇,𝜈
ℓ ⦀ + 𝜁ℓ (𝑧𝜇,𝜈ℓ ) for all (ℓ, 𝜇, 𝜈) ∈ Q𝑧 . (5.44b)

The quasi-errors naturally extend to the full index set (ℓ, 𝑘, 𝑗) ∈ Q by

H
𝑘, 𝑗
ℓ

:=
H

𝑘,𝑛

ℓ if (ℓ, 𝑘, 0) ∈ Q𝑢 but (ℓ, 𝑘, 𝑗) ∉ Q𝑢,

H
𝑚,𝑛

ℓ if (ℓ, 𝑘, 0) ∉ Q𝑢,

Z
𝑘, 𝑗
ℓ

:=
Z
𝑘,𝜈

ℓ if (ℓ, 𝑘, 0) ∈ Q𝑧 but (ℓ, 𝑘, 𝑗) ∉ Q𝑧 ,

Z
𝜇,𝜈

ℓ if (ℓ, 𝑘, 0) ∉ Q𝑧 .

(5.45)

The following theorem asserts full linear convergence of the quasi-error product.

Theorem 5.10: full linear convergence
Suppose that the estimators 𝜂 and 𝜁 satisfy (A1)–(A3) and (QM) and suppose (A4). Recall 𝜆★alg
and 𝑞sym from Lemma 5.5. With the constant 𝑞(𝜃) from Lemma 5.9 and 𝑞 := max{𝑞(𝜃)1/2, (1+
𝑞sym)/2} < 1, let

0 < 𝜆★ :=
(1 − 𝑞ctr) (𝑞 − 𝑞sym) (1 − 𝑞)

8 𝑞ctr 𝐶stab
. (5.46)

Then, for arbitrary marking parameter 0 < 𝜃 ≤ 1 and any solver parameters 𝜆sym > 0 and
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5.5 Full linear convergence

0 < 𝜆alg ≤ 𝜆★alg with 𝜆sym𝜆alg ≤ 𝜆★, Algorithm 5A guarantees full linear convergence: There
exist constants 𝐶lin ≥ 1 and 0 < 𝑞lin < 1 such that the quasi-error product satisfies, for all
(ℓ, 𝑘, 𝑗), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q with |ℓ′, 𝑘 ′, 𝑗 ′ | ≤ |ℓ, 𝑘, 𝑗 |

H
𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤ 𝐶lin 𝑞

|ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ |
lin H

𝑘′ , 𝑗′
ℓ′ Z

𝑘′ , 𝑗′
ℓ′ . (5.47)

The constants 𝐶lin and 𝑞lin depend only on 𝐶stab, 𝐶rel, 𝐶mon, 𝐶orth, 𝐶Céa, 𝜃, 𝑞red, 𝑞sym, 𝑞sym, 𝑞ctr,
𝜆sym, and 𝜆alg.

Three lemmas are required to prove Theorem 5.10. The characterization of 𝑅-linear convergence
from [BFM+23, Lemma 5 and 10] is the primary tool for the proof of Theorem 5.10; see (5.67)
below. The proof of Theorem 5.10 departs with the contraction of the quasi-error for the final iterates
of the inexact Zarantonello loop up to a remainder on the mesh level ℓ. To this end, we define the
simplified weighted quasi-error

Hℓ := ⦀𝑢★ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) , Zℓ := ⦀𝑧★ℓ − 𝑧
𝜇,𝜈

ℓ ⦀ + 𝛾 𝜁ℓ (𝑧𝜇,𝜈ℓ ) for all (ℓ, 𝑘, 𝑗) ∈ Q, (5.48)

where 𝛾 > 0 is a free parameter chosen in (5.51) below. This quasi-error quantity satisfies contraction
up to a tail-summable remainder due to estimator reduction (5.40)–(5.41).

Lemma 5.11 (contraction in mesh level up to tail-summable remainder). Under the assumptions
of Theorem 5.10, there exists 0 < 𝑞 < 1 such that the quasi-error product Hℓ Zℓ from (5.48)
satisfies contraction up to a remainder 𝑅ℓ ≥ 0,

Hℓ+1 Zℓ+1 ≤ 𝑞Hℓ Zℓ + 𝑞 𝑅ℓ for all (ℓ + 1, 𝑘, 𝑗) ∈ Q. (5.49)

The remainder 𝑅ℓ satisfies

𝑅ℓ+𝑀 ≲ Hℓ Zℓ and
ℓ+𝑀∑︁
ℓ′=ℓ

𝑅2
ℓ′ ≲ (𝑀 + 1)1−𝛿 H2

ℓ Z
2
ℓ for all ℓ, 𝑀 ∈ N0 with ℓ + 𝑀 < ℓ. (5.50)

Proof. The proof consists of four steps.
Step 1 (choice of constants). Recall the constants 0 < 𝑞(𝜃) < 1 from Lemma 5.9 and 𝜆★ > 0 and

0 < 𝑞 < 1 defined in the statement of Theorem 5.10 and define the constants

𝐶 (𝛾, 𝜆) := 1 + 2 𝑞ctr
1 − 𝑞ctr

𝜆

𝛾
> 1 and 0 <𝑞ctr :=max 𝑞sym + 4𝐶stab 𝐶 (𝛾, 𝜆) 𝛾, 𝑞(𝜃)𝐶 (𝛾, 𝜆) .

Elementary calculations show that the choice of

𝛾 :=
𝑞 (𝑞 − 𝑞sym)

4𝐶stab
< 1 (5.51)

ensures 𝑞sym 𝐶 (𝛾, 𝜆) + 4𝐶stab 𝛾 𝐶 (𝛾, 𝜆)2 < 1 as well as, for all 0 < 𝜆 < 𝜆★,

𝐶 (𝛾, 𝜆) = 1 + 2 𝑞ctr
1 − 𝑞ctr

𝜆

𝛾
< 1 + 1 − 𝑞

𝑞
=

1

𝑞
≤ 1

𝑞(𝜃)1/2 . (5.52)

Consequently, we have 𝑞(𝜃) 𝐶 (𝛾, 𝜆)2 < 1 and thus 0 < 𝑞′ctr := 𝐶 (𝛾, 𝜆) 𝑞ctr < 1 and 𝑞ctr < 1.
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Step 2 (contraction of Hℓ and Zℓ). Abbreviate 𝜆 := 𝜆alg 𝜆sym. Recall that marking in Algo-
rithm 5A(III) ensures that the estimate (5.40) or (5.41) hold. If (5.40) is satisfied, the quasi-contraction
of the inexact Zarantonello iteration (5.29) for the final iterate, the stability estimate (5.35), and the
estimator reduction (5.40) lead, for all (ℓ + 1, 𝑘, 𝑗) ∈ Q𝑢, to

Hℓ+1
(5.29)≤ 𝑞sym ⦀𝑢★ℓ+1 − 𝑢

𝑚−1,𝑛
ℓ+1 ⦀ + 𝐶 (𝛾, 𝜆) 𝛾 𝜂ℓ+1(𝑢𝑚,𝑛

ℓ+1 )
(5.35)≤ 𝑞sym ⦀𝑢★ℓ+1 − 𝑢

𝑚,𝑛

ℓ ⦀ + 𝐶 (𝛾, 𝜆) 𝛾 𝜂ℓ+1(𝑢𝑚,𝑛

ℓ+1 )
(5.40)≤ 𝑞sym + 4𝐶stab 𝐶 (𝛾, 𝜆) 𝛾 ⦀𝑢★ℓ+1 − 𝑢

𝑚,𝑛

ℓ ⦀ + 𝑞(𝜃) 𝐶 (𝛾, 𝜆) 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ )
≤ 𝑞ctr ⦀𝑢★ℓ+1 − 𝑢

𝑚,𝑛

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) .

(5.53)

The same arguments yield, for all (ℓ + 1, 𝜇, 𝜈) ∈ Q𝑧 ,

Zℓ+1
(5.29)≤ 𝑞sym ⦀𝑧★ℓ+1 − 𝑧

𝜇−1,𝜈
ℓ+1 ⦀ + 𝐶 (𝛾, 𝜆) 𝛾 𝜁ℓ+1(𝑧𝜇,𝜈ℓ+1)

(5.35)≤ 𝑞sym⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀ + 𝐶 (𝛾, 𝜆)𝛾 𝜁ℓ+1(𝑧𝜇,𝜈ℓ+1)
(5.40)≤ 𝐶 (𝛾, 𝜆) 𝑞ctr ⦀𝑧★ℓ+1 − 𝑧

𝜇,𝜈

ℓ ⦀ + 𝛾 𝜁ℓ (𝑧𝜇,𝜈ℓ ) .

(5.54)

For 0 < 𝑞ctr < 𝑞′ctr = 𝐶 (𝛾, 𝜆) 𝑞ctr < 1, the product of (5.53) and (5.54) reads

Hℓ+1 Zℓ+1 ≤ 𝐶 (𝛾, 𝜆) 𝑞ctr ⦀𝑢★ℓ+1 − 𝑢
𝑚,𝑛

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) ⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀ + 𝛾 𝜁ℓ (𝑧𝜇,𝜈ℓ )
= 𝑞′ctr ⦀𝑢★ℓ+1 − 𝑢

𝑚,𝑛

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) ⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀ + 𝛾 𝜁ℓ (𝑧𝜇,𝜈ℓ ) .
(5.55)

If (5.41) is satisfied, we obtain the same estimate with reversed roles in the derivation.
Step 3 (quasi-monotonicity of Hℓ and Zℓ). The Céa estimate (5.11), nestedness of the discrete

spaces, reliability (A3), quasi-monotonicity (QM), stability (A1), and the definition (5.48) prove, for
all ℓ ≤ ℓ′ ≤ ℓ

′′ ≤ ℓ with (ℓ, 𝑚, 𝑛) ∈ Q𝑢 and (ℓ, 𝜇, 𝜈) ∈ Q𝑧 , that

⦀𝑢★ℓ′′−𝑢★ℓ′⦀(5.11)
≲ ⦀𝑢★−𝑢★ℓ′⦀ (A3)

≲ 𝜂ℓ′ (𝑢★ℓ′)
(QM)
≲ 𝜂ℓ (𝑢★ℓ )

(A1)
≲ 𝜂ℓ (𝑢𝑚,𝑛

ℓ )+⦀𝑢★ℓ −𝑢𝑚,𝑛

ℓ ⦀ (5.48)≃ Hℓ , (5.56a)

⦀𝑧★ℓ′′−𝑧★ℓ′⦀(5.11)
≲ ⦀𝑧★−𝑧★ℓ′⦀ (A3)

≲ 𝜁ℓ′ (𝑧★ℓ′)
(QM)
≲ 𝜁ℓ (𝑧★ℓ )

(A1)
≲ 𝜁ℓ (𝑧𝜇,𝜈ℓ )+⦀𝑧★ℓ −𝑧𝜇,𝜈ℓ ⦀ (5.48)≃ Zℓ , (5.56b)

where the hidden constants depend only on 𝛾−1, 𝐶Céa, 𝐶stab, 𝐶rel, and 𝐶mon. A successive application
of (5.53), the quasi-monotonicity (QM), the geometric series, and (5.56a) show

Hℓ+𝑀
(5.53)≤ 𝑞ctr Hℓ+𝑀−1+𝑞ctr ⦀𝑢★ℓ+𝑀−𝑢★ℓ+𝑀−1⦀ ≤ 𝑞𝑀

ctrHℓ +
𝑀−1∑︁
𝑗=0

𝑞𝑀− 𝑗⦀𝑢★ℓ+ 𝑗+1−𝑢★ℓ+ 𝑗⦀
(5.56a)≃ Hℓ for all ℓ, 𝑀 ∈ N0 with ℓ+𝑀 < ℓ.

(5.57a)

Thus, we obtain from (5.54) that

Zℓ+𝑀
(5.54)≤ 𝐶 (𝛾, 𝜆) 𝑞ctr ⦀𝑧★ℓ+𝑀 − 𝑧

𝜇,𝜈

ℓ+𝑀−1⦀ + 𝛾 𝜁ℓ+𝑀−1(𝑧𝜇,𝜈ℓ+𝑀−1)
(5.52)≤ max 𝑞′ctr,

𝛾

𝑞(𝜃) Zℓ+𝑀−1 + ⦀𝑧★ℓ+𝑀 − 𝑧★ℓ+𝑀−1⦀
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and the analogous induction argument to (5.57a) shows quasi-monotonicity

Zℓ+𝑀 ≲ Zℓ for all 𝑀 ∈ N0 with ℓ + 𝑀 < ℓ. (5.57b)

Step 4 (contraction of Hℓ Zℓ up to tail-summable remainder). Define

𝑅ℓ := ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀ ⦀𝑧★ℓ − 𝑧
𝜇,𝜈

ℓ ⦀ + ⦀𝑧★ℓ+1 − 𝑧★ℓ ⦀ + 𝛾 𝜁ℓ (𝑧𝜇,𝜈ℓ )
+ ⦀𝑧★ℓ+1 − 𝑧★ℓ ⦀ ⦀𝑢★ℓ − 𝑢

𝑚,𝑛

ℓ ⦀ + ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) .

The contraction (5.55) proves the quasi-contraction (5.49) via

Hℓ+1 Zℓ+1
(5.55)≤ 𝑞′ctr ⦀𝑢★ℓ+1 − 𝑢

𝑚,𝑛

ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) ⦀𝑧★ℓ+1 − 𝑧
𝜇,𝜈

ℓ ⦀ + 𝛾 𝜁ℓ (𝑧𝜇,𝜈ℓ )
≤ 𝑞′ctr ⦀𝑢★ℓ − 𝑢

𝑚,𝑛

ℓ ⦀ + ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀ + 𝛾 𝜂ℓ (𝑢𝑚,𝑛

ℓ )
× ⦀𝑧★ℓ − 𝑧

𝜇,𝜈

ℓ ⦀ + ⦀𝑧★ℓ+1 − 𝑧★ℓ ⦀ + 𝛾 𝜁ℓ (𝑧𝜇,𝜈ℓ )
≤ 𝑞′ctrHℓ Zℓ + 𝑞′ctr 𝑅ℓ .

The remainder term 𝑅ℓ can be estimated by (5.56) and the Young inequality to show

𝑅2
ℓ

(5.56)
≲ ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀Zℓ + ⦀𝑧★ℓ+1 − 𝑧★ℓ ⦀Hℓ

2 ≲ ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀2 Z2
ℓ + ⦀𝑧★ℓ+1 − 𝑧★ℓ ⦀2 H2

ℓ . (5.58)

Thus, the quasi-monotonicity (5.57) verifies

𝑅ℓ+𝑀 ≲ Hℓ+𝑀 Zℓ+𝑀
(5.57)
≲ Hℓ Zℓ for all ℓ, 𝑀 ∈ N with ℓ + 𝑀 < ℓ.

Quasi-orthogonality (A4), reliability (A3), and the estimates (5.56) imply, for all ℓ, 𝑀 ∈ N0 with
ℓ + 𝑀 < ℓ,

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1−𝑢★ℓ′⦀2
(A4)
≲ (𝑀+1)1−𝛿 ⦀𝑢★−𝑢★ℓ ⦀2

(A3)
≲ (𝑀+1)1−𝛿 𝜂ℓ (𝑢★ℓ )2

(5.56a)
≲ (𝑀+1)1−𝛿 H2

ℓ ,

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑧★ℓ′+1−𝑧★ℓ′⦀2
(A4)
≲ (𝑀+1)1−𝛿 ⦀𝑧★−𝑧★ℓ ⦀2

(A3)
≲ (𝑀+1)1−𝛿 𝜁ℓ (𝑧★ℓ )2

(5.56b)
≲ (𝑀+1)1−𝛿 Z2

ℓ .

(5.59)

Using (5.58), the quasi-monotonicity (5.57), and (5.59), we conclude the proof of (5.50), for all
ℓ, 𝑀 ∈ N0 with ℓ + 𝑀 < ℓ,

ℓ+𝑀∑︁
ℓ′=ℓ

𝑅2
ℓ′

(5.58)
≲

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1 − 𝑢★ℓ′⦀2 Z2
ℓ′ +

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑧★ℓ′+1 − 𝑧★ℓ′⦀2 H2
ℓ′

(5.57)
≲ Z2

ℓ

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑢★ℓ′+1 − 𝑢★ℓ′⦀2 + H2
ℓ

ℓ+𝑀∑︁
ℓ′=ℓ

⦀𝑧★ℓ′+1 − 𝑧★ℓ′⦀2
(5.59)
≲ (𝑀 + 1)1−𝛿 H2

ℓ Z
2
ℓ . □

The tail-summability in ℓ provides the basis for the proof of tail-summability on the mesh level ℓ
together with the Zarantonello symmetrization index 𝑘 for the final iterates of the algebraic solver.
The main ingredients in the proof of tail-summability in (ℓ, 𝑘) are Lemma 5.11 and the following
quasi-contraction in the symmetrization index 𝑘 .
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Lemma 5.12 (quasi-contraction of inexact Zarantonello symmetrization). There holds

H
𝑘′ , 𝑗
ℓ Z

𝑘′ , 𝑗
ℓ ≲ 𝑞𝑘

′−𝑘
sym H

𝑘, 𝑗

ℓ Z
𝑘, 𝑗

ℓ for all (ℓ, 𝑘 ′, 𝑗) ∈ Q with 0 ≤ 𝑘 ≤ 𝑘 ′ ≤ 𝑘 [ℓ], (5.60)

H
0, 𝑗

ℓ Z
0, 𝑗

ℓ ≲ Hℓ−1 Zℓ−1 for all (ℓ, 0, 0) ∈ Q with ℓ ≥ 1. (5.61)

Proof. First, we note that the a posteriori error control (5.31) and the stopping criteria of the
algebraic solver (5.19) and of the symmetrization (5.20) lead, for (ℓ, 𝑚, 𝑛) ∈ Q𝑢, to

⦀𝑢𝑚,★

ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ (5.31)
≲ ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚,𝑛−1
ℓ ⦀ (5.19)

≲ 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) + ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚,0

ℓ ⦀ (5.20)
≲ 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) ≲ Hℓ .

Since the two notions of quasi-errors Hℓ and H
𝑘, 𝑗

ℓ only differ by the middle term ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ and
the fixed constant factor 0 < 𝛾 < 1, this and the analogous estimate for the dual variable show

Hℓ ≤ H
𝑘, 𝑗

ℓ ≲ Hℓ and Zℓ ≤ Z
𝑘, 𝑗

ℓ ≲ Zℓ for all (ℓ, 𝑘, 𝑗) ∈ Q. (5.62)

For 0 ≤ 𝑘 < 𝑘 ′ < 𝑚 [ℓ] < 𝑘 [ℓ] (i.e., the primal iteration stops earlier than the dual iteration), the
validity of the stopping criterion (5.19) for the algebraic solver and the failure of criterion (5.20) for
the inexact Zarantonello symmetrization prove that

H
𝑘′ ,𝑛
ℓ

(5.31)
≲ ⦀𝑢★ℓ − 𝑢

𝑘′ ,𝑛
ℓ ⦀ + ⦀𝑢𝑘′ ,𝑛ℓ − 𝑢

𝑘′ ,𝑛−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑘

′ ,𝑛
ℓ )

(5.19)
≲ ⦀𝑢★ℓ − 𝑢

𝑘′−1,𝑛
ℓ ⦀ + ⦀𝑢𝑘′ ,𝑛ℓ − 𝑢

𝑘′−1,𝑛
ℓ ⦀ + 𝜂ℓ (𝑢𝑘

′ ,𝑛
ℓ )

(5.20)
≲ ⦀𝑢★ℓ − 𝑢

𝑘′ ,𝑛
ℓ ⦀ + ⦀𝑢𝑘′ ,𝑛ℓ − 𝑢

𝑘′−1,𝑛
ℓ ⦀

(5.32)≤ ⦀𝑢★ℓ − 𝑢
𝑘′−1,𝑛
ℓ ⦀(5.28)

≲ 𝑞𝑘
′−𝑘

sym ⦀𝑢★ℓ − 𝑢
𝑘,𝑛

ℓ ⦀ ≲ 𝑞𝑘
′−𝑘

sym H
𝑘,𝑛

ℓ .

(5.63)

Moreover, for 0 ≤ 𝑘 < 𝑘 ′ = 𝑚 [ℓ], stability (A1) and the estimate (5.37) verify

H
𝑚,𝑛

ℓ

(5.62)≃ ⦀𝑢★ℓ − 𝑢
𝑚,𝑛

ℓ ⦀ + 𝜂ℓ (𝑢𝑚,𝑛

ℓ )(A1)
≲ ⦀𝑢★ℓ − 𝑢

𝑚,𝑛

ℓ ⦀ + ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ + 𝜂ℓ (𝑢𝑚−1,𝑛

ℓ )
≲ H

𝑚−1,𝑛
ℓ + ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ (5.37)

≲ H
𝑚−1,𝑛
ℓ

(5.63)
≲ 𝑞

𝑚[ℓ ]−1−𝑘
sym H

𝑘,𝑛

ℓ ≃ 𝑞
𝑚[ℓ ]−𝑘
sym H

𝑘,𝑛

ℓ .

For 0 ≤ 𝑘 ≤ 𝑚 [ℓ] < 𝑘 ′ ≤ 𝑘 [ℓ], it follows H𝑘′ ,𝑛
ℓ = H

𝑚,𝑛

ℓ ≲ 𝑞
𝑚[ℓ ]−𝑘
sym H

𝑘,𝑛

ℓ . Finally, for 𝑚 [ℓ] ≤ 𝑘 <

𝑘 ′ ≤ 𝑘 [ℓ], we have H𝑘′ ,𝑛
ℓ = H

𝑚[ℓ ],𝑛
ℓ = H

𝑘,𝑛

ℓ . Notice that the same argumentation holds for the dual
quasi-error Z𝑘,𝜈

ℓ in the remaining cases with 𝜇[ℓ] < 𝑘 [ℓ] (i.e., the dual iteration stops earlier than
the primal iteration).

Since 𝑘 [ℓ] = 𝑚 [ℓ] or 𝑘 [ℓ] = 𝜇[ℓ] by definition, we obtain, for all (ℓ, 𝑘 ′, 𝑗) ∈ Q with 0 ≤ 𝑘 ≤
𝑘 ′ ≤ 𝑘 [ℓ],

H
𝑘′ , 𝑗
ℓ ≲ 𝑞𝑘

′−𝑘
sym H

𝑘, 𝑗

ℓ if 𝑘 [ℓ] = 𝑚 [ℓ] or Z
𝑘′ , 𝑗
ℓ ≲ 𝑞𝑘

′−𝑘
sym Z

𝑘, 𝑗

ℓ if 𝑘 [ℓ] = 𝜇[ℓ].

Furthermore, there holds H
𝑘′ , 𝑗
ℓ ≲ H

𝑘, 𝑗

ℓ and Z
𝑘′ , 𝑗
ℓ ≲ Z

𝑘, 𝑗

ℓ in any case. This yields (5.60) via

H
𝑘′ , 𝑗
ℓ Z

𝑘′ , 𝑗
ℓ ≲ 𝑞𝑘

′−𝑘
sym H

𝑘, 𝑗

ℓ Z
𝑘, 𝑗

ℓ for all (ℓ, 𝑘 ′, 𝑗) ∈ Q with 0 ≤ 𝑘 ≤ 𝑘 ′ ≤ 𝑘 [ℓ],
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where the hidden constant depends only on 𝐶stab, 𝜆sym, and 𝑞sym.
Nested iteration 𝑢

𝑚,𝑛

ℓ−1 = 𝑢
0,𝑛

ℓ and 𝑧
𝜇,𝜈

ℓ−1 = 𝑧
0,𝜈

ℓ and the estimates (5.56) yield, for all (ℓ, 0, 0) ∈ Q
with ℓ > 0,

H
0, 𝑗

ℓ

(5.62)≃ ⦀𝑢★ℓ − 𝑢
𝑚,𝑛

ℓ−1⦀ + 𝜂ℓ (𝑢𝑚,𝑛

ℓ−1) ≤ ⦀𝑢★ℓ − 𝑢★ℓ−1⦀ + H
𝑘, 𝑗

ℓ−1
(5.56)
≲ Hℓ−1 + H

𝑘, 𝑗

ℓ−1
(5.62)≃ Hℓ−1,

Z
0, 𝑗

ℓ

(5.62)≃ ⦀𝑧★ℓ − 𝑧
𝜇,𝜈

ℓ−1⦀ + 𝜁ℓ (𝑧𝜇,𝜈ℓ−1) ≤ ⦀𝑧★ℓ − 𝑧★ℓ−1⦀ + Z
𝑘, 𝑗

ℓ−1
(5.56)
≲ Zℓ−1 + Z

𝑘, 𝑗

ℓ−1
(5.62)≃ Zℓ−1.

A multiplication of the two previous estimates proves (5.61). □

Finally, the quasi-contraction in (ℓ, 𝑘) from Lemma 5.12 together with a quasi-contraction in the
algebraic solver index 𝑗 leads to tail-summability in (ℓ, 𝑘, 𝑗).

Lemma 5.13 (quasi-contraction and stability by algebraic solver). There holds

H
𝑘, 𝑗′
ℓ Z

𝑘, 𝑗′
ℓ ≲ 𝑞

𝑗′− 𝑗
ctr H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ for all (ℓ, 𝑘, 𝑗 ′) ∈ Q with 0 ≤ 𝑗 ≤ 𝑗 ′ ≤ 𝑗 [ℓ, 𝑘] (5.64)

and, with the abbreviation (𝑚 − 1)+ := max{𝑚 − 1, 0},

H𝑚,0
ℓ ≤ 3H

(𝑚−1)+,𝑛
ℓ and Z

𝜇,0
ℓ ≤ 3Z

(𝜇−1)+,𝜈
ℓ for all (ℓ, 𝑚, 0) ∈ Q𝑢, (ℓ, 𝜇, 0) ∈ Q𝑧 . (5.65)

Proof. We recall that 𝑢0,0ℓ = 𝑢
0,𝑛

ℓ = 𝑢0,★ℓ by definition and, hence, H0,0
ℓ = H

0,𝑛

ℓ = H
0, 𝑗

ℓ . Nested
iteration 𝑢𝑚,0

ℓ = 𝑢
𝑚−1,𝑛
ℓ implies that

⦀𝑢𝑚,★
ℓ − 𝑢𝑚,0

ℓ ⦀ (5.30)≤ (𝑞sym + 1) ⦀𝑢★ℓ − 𝑢
𝑚−1,𝑛
ℓ ⦀ ≤ 2H

𝑚−1, 𝑗
ℓ for all (ℓ, 𝑚, 0) ∈ Q𝑢.

Therewith, we derive (5.65).
The combination of a posteriori error control (5.30) for the exact Zarantonello iteration, for the

algebraic solver (5.31), and the failure of the stopping criterion (5.19) in Algorithm 5A(I.b.ii) for the
algebraic solver proves, for 0 ≤ 𝑗 < 𝑗 ′ < 𝑛[ℓ, 𝑚] < 𝑗 [ℓ, 𝑚],

H
𝑚, 𝑗′
ℓ ≤ ⦀𝑢★ℓ − 𝑢𝑚,★

ℓ ⦀ + 2⦀𝑢𝑚,★
ℓ − 𝑢

𝑚, 𝑗′
ℓ ⦀ + 𝜂ℓ (𝑢𝑚, 𝑗′

ℓ )
(5.30)≤ 𝑞sym

1 − 𝑞sym
⦀𝑢𝑚, 𝑗′

ℓ − 𝑢
𝑚−1, 𝑗
ℓ ⦀ + 2 + 𝑞sym

1 − 𝑞sym
⦀𝑢𝑚,★

ℓ − 𝑢
𝑚, 𝑗′
ℓ ⦀ + 𝜂ℓ (𝑢𝑚, 𝑗′

ℓ )
(5.31)
≲ ⦀𝑢𝑚, 𝑗′

ℓ − 𝑢
𝑚−1, 𝑗
ℓ ⦀ + ⦀𝑢𝑚, 𝑗′

ℓ − 𝑢
𝑚, 𝑗′−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑚, 𝑗′

ℓ ) (5.19)
≲ ⦀𝑢𝑚, 𝑗′

ℓ − 𝑢
𝑚, 𝑗′−1
ℓ ⦀

(5.31)
≲ ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚, 𝑗′−1
ℓ ⦀ (5.15)≤ 𝑞

( 𝑗′−1)− 𝑗
ctr ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚, 𝑗
ℓ ⦀ ≲ 𝑞

𝑗′− 𝑗
ctr H

𝑚, 𝑗
ℓ .

(5.66)

For 0 ≤ 𝑗 < 𝑛[ℓ, 𝑚] ≤ 𝑗 ′ ≤ 𝑗 [ℓ, 𝑚], stability (A1) and contraction of the algebraic solver (5.15)
verify that

H
𝑚, 𝑗′
ℓ = H

𝑚,𝑛

ℓ

(5.15)≤ ⦀𝑢★ℓ − 𝑢
𝑚,𝑛−1
ℓ ⦀ + ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚,𝑛−1
ℓ ⦀ + 𝑞ctr ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚,𝑛−1
ℓ ⦀ + 𝜂ℓ (𝑢𝑚,𝑛

ℓ )
(A1)≤ H

𝑚,𝑛−1
ℓ + (2 + 𝐶stab) ⦀𝑢𝑚,𝑛

ℓ − 𝑢
𝑚,𝑛−1
ℓ ⦀

(5.31)
≲ H

𝑚,𝑛−1
ℓ + ⦀𝑢𝑚,★

ℓ − 𝑢
𝑚,𝑛−1
ℓ ⦀ ≲ H

𝑚,𝑛−1
ℓ

(5.66)
≲ 𝑞

𝑛[ℓ ]− 𝑗
ctr H

𝑚, 𝑗
ℓ .

143

alg:primal_ii


5 Optimal complexity of GOAFEM

For 𝑛[ℓ, 𝑚] ≤ 𝑗 < 𝑗 ′ ≤ 𝑗 [ℓ, 𝑚], it holds that H𝑚, 𝑗
ℓ = H

𝑚,𝑛

ℓ = H
𝑚, 𝑗′
ℓ . Since 𝑗 [ℓ, 𝑘] = 𝑛[ℓ, 𝑘] or

𝑗 [ℓ, 𝑘] = 𝜈[ℓ, 𝑘], we have, for all (ℓ, 𝑘, 𝑗 ′) ∈ Q with 0 ≤ 𝑗 ≤ 𝑗 ′ ≤ 𝑗 [ℓ, 𝑘],

H
𝑘, 𝑗
ℓ ≲ 𝑞

𝑗− 𝑗′
ctr H

𝑘, 𝑗′
ℓ if 𝑗 [ℓ, 𝑘] = 𝑛[ℓ, 𝑘] or Z

𝑘, 𝑗
ℓ ≲ 𝑞

𝑗− 𝑗′
ctr Z

𝑘, 𝑗′
ℓ if 𝑗 [ℓ, 𝑘] = 𝜈[ℓ, 𝑘] .

Furthermore, we have H𝑘, 𝑗
ℓ ≲ H

𝑘, 𝑗′
ℓ and Z

𝑘, 𝑗
ℓ ≲ Z

𝑘, 𝑗′
ℓ in any case. Hence, we obtain

H
𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≲ 𝑞

𝑗− 𝑗′
ctr H

𝑘, 𝑗′
ℓ Z

𝑘, 𝑗′
ℓ for all (ℓ, 𝑘, 𝑗) ∈ Q with 0 ≤ 𝑗 ′ ≤ 𝑗 ≤ 𝑗 [ℓ, 𝑘],

where the hidden constant depends only on 𝑞sym, 𝜆sym, 𝑞ctr, 𝜆alg, and 𝐶stab. □

Ultimately, synthesizing the preceding lemmas yields tail-summability of the quasi-error product
and thus leads to the following proof of Theorem 5.10.

Proof of Theorem 5.10. The proof consists of four steps.
Step 1 (tail-summability in mesh level ℓ). We apply the tail-summability criterion from [BFM+23,

Lemma 5] to the sequences 𝑎ℓ := Hℓ Zℓ and 𝑏ℓ := 𝑞′ctr 𝑅ℓ . Therein, it is shown that 𝑅-linear
convergence is equivalent to tail-summability and that, for tail-summability, it is sufficient to
guarantee

𝑎ℓ+1 ≤ 𝑞𝑎ℓ + 𝑏ℓ , 𝑏ℓ+𝑀 ≤ 𝐶1 𝑎ℓ , and
ℓ+𝑀∑︁
ℓ′=ℓ

𝑏2ℓ ≤ 𝐶2 (𝑀 + 1)1−𝛿 𝑎2ℓ for all ℓ, 𝑀 ∈ N0. (5.67)

Indeed, contraction up to a remainder from (5.49), the estimate of the remainder from (5.50), and
the quasi-monotonicity of Hℓ and Zℓ from (5.57) validate the assumptions of the tail-summability
criterion (5.67) and lead to tail-summability

ℓ−1∑︁
ℓ′=ℓ+1

Hℓ′ Zℓ′ ≲ Hℓ Zℓ for all (ℓ, 𝑘, 𝑗) ∈ Q. (5.68)

Step 2 (tail-summability in (ℓ, 𝒌)). For (ℓ, 𝑘, 𝑗) ∈ Q, the estimates (5.60)–(5.61) and the
geometric series prove tail-summability

∑︁
(ℓ′ ,𝑘′ , 𝑗 ) ∈Q

|ℓ′ ,𝑘′ , 𝑗 |> |ℓ,𝑘, 𝑗 |

H
𝑘′ , 𝑗
ℓ Z

𝑘′ , 𝑗
ℓ =

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

H
𝑘′ , 𝑗
ℓ Z

𝑘′ , 𝑗
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ′ ]∑︁
𝑘′=0

H
𝑘′ , 𝑗
ℓ′ Z

𝑘′ , 𝑗
ℓ′

(5.60)
≲ H

𝑘, 𝑗

ℓ Z
𝑘, 𝑗

ℓ +
ℓ∑︁

ℓ′=ℓ+1
H
0, 𝑗

ℓ′ Z
0, 𝑗

ℓ′
(5.61)
≲ H

𝑘, 𝑗

ℓ Z
𝑘, 𝑗

ℓ +
ℓ−1∑︁
ℓ′=ℓ

Hℓ′ Zℓ′

(5.68)
≲ H

𝑘, 𝑗

ℓ Z
𝑘, 𝑗

ℓ + Hℓ Zℓ

(5.62)
≲ H

𝑘, 𝑗

ℓ Z
𝑘, 𝑗

ℓ .

(5.69)
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Step 3 (tail-summability in (ℓ, 𝒌, 𝒋)). Finally, for all (ℓ, 𝑘, 𝑗) ∈ Q, we observe that∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ |> |ℓ,𝑘, 𝑗 |

H
𝑘′ , 𝑗′
ℓ′ Z

𝑘′ , 𝑗′
ℓ′ =

𝑗 [ℓ,𝑘 ]∑︁
𝑗′= 𝑗+1

H
𝑘, 𝑗′
ℓ Z

𝑘, 𝑗′
ℓ +

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

𝑗 [ℓ,𝑘′ ]∑︁
𝑗′=0

H
𝑘′ , 𝑗′
ℓ Z

𝑘′ , 𝑗′
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ′ ]∑︁
𝑘′=0

𝑗 [ℓ′ ,𝑘′ ]∑︁
𝑗′=0

H
𝑘′ , 𝑗′
ℓ′ Z

𝑘′ , 𝑗′
ℓ′

(5.64)
≲ H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ +

𝑘 [ℓ ]∑︁
𝑘′=𝑘+1

H𝑘′ ,0
ℓ Z𝑘′ ,0

ℓ +
ℓ∑︁

ℓ′=ℓ+1

𝑘 [ℓ′ ]∑︁
𝑘′=0

H𝑘′ ,0
ℓ′ Z𝑘′ ,0

ℓ′

(5.65)
≲ H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ +

∑︁
(ℓ′ ,𝑘′ , 𝑗 ) ∈Q

|ℓ′ ,𝑘′ , 𝑗 |> |ℓ,𝑘, 𝑗 |

H
𝑘′ , 𝑗
ℓ′ Z

𝑘′ , 𝑗
ℓ′

(5.69)
≲ H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ + H

𝑘, 𝑗

ℓ Z
𝑘, 𝑗

ℓ

(5.64)
≲ H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ .

Step 4. Since the index set Q is linearly ordered with respect to the total step counter |·, ·, ·|,
tail-summability in Step 3 and the equivalence of tail-summability and 𝑅-linear convergence
from [BFM+23, Lemma 10] conclude the proof of (5.47) in Theorem 5.10. □

5.6 Optimal complexity of Algorithm 5A

Full linear convergence (5.47) has a simple but crucial consequence. Using a geometric series
argument, one can prove that the cumulative computational cost up to a given level is bounded by
the cost of the said level; see [BFM+23, Corollary 14], where only the primal quasi-error H𝑘, 𝑗

ℓ has
to be replaced by the quasi-error product H𝑘, 𝑗

ℓ Z
𝑘, 𝑗
ℓ . As a consequence, the convergence rates with

respect to the number of degrees of freedom (defined as 𝑀 (𝑟) in (5.70) below) and the rates with
respect to the overall computational cost (cf. (5.26) and the discussion following the statement of
Algorithm 5A) coincide.

Corollary 5.14 (rates = complexity [BFM+23, Corollary 14]). Suppose the assumptions of
Theorem 5.10. For all 𝑟 > 0, the output (Tℓ)ℓ∈N0 of Algorithm 5A satisfies

𝑀 (𝑟) := sup
(ℓ,𝑘, 𝑗 ) ∈Q

#Tℓ 𝑟
H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤ sup

(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑟
H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤𝐶cost(𝑟)𝑀 (𝑟),

(5.70)
with the constant 𝐶cost(𝑟) := 𝐶lin/(1 − 𝑞1/𝑟lin )𝑟 > 0. □

While Theorem 5.10 only concerns 𝑅-linear convergence, a sufficiently small choice of the adaptivity
parameters 𝜃, 𝜆sym, and 𝜆alg even guarantees the optimal convergence rate 𝑟 = 𝑠 + 𝑡 with respect to
computational cost, i.e., the overall computational time. Here, we suppose that the primal solution
𝑢★ to (5.5) can be approximated at rate 𝑠 and the dual solution 𝑧★ to (5.8) can be approximated at
rate 𝑡. To formalize this idea, we introduce the notion of approximation classes [BDD04; Ste07;
CKNS08; CFPP14]. For 𝑠, 𝑡 > 0, define

∥𝑢★∥A𝑠
:= sup

𝑁 ∈N0

𝑁 + 1
𝑠

min
Topt∈T𝑁

𝜂opt(𝑢★opt) , ∥𝑧★∥A𝑡
:= sup

𝑁 ∈N0

𝑁 + 1
𝑡

min
Topt∈T𝑁

𝜁opt(𝑧★opt) ,

where 𝜂opt(·) and 𝜁opt(·) denote the estimator values for the exact discrete solutions 𝑢★opt and 𝑧★opt
on the unavailable optimal triangulations Topt ∈ T𝑁 (T ). We stress that ∥𝑢★∥A𝑠 and ∥𝑧★∥A𝑡 can
equivalently be defined by energy error plus data oscillations [FFP14; CFPP14].
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Theorem 5.15: optimal complexity
Suppose that the estimators 𝜂 and 𝜁 satisfy (A1)–(A3+) and (QM) and suppose quasi-
orthogonality (A4). Recall 𝜆★alg from Lemma 5.5 and 𝜆★ from (5.46) in Theorem 5.10. Define
the constants

𝜆★sym := min{1, 𝐶−1
stab 𝐶

−1
alg } ≤ 1 with 𝐶alg :=

1

1 − 𝑞sym

2 𝑞ctr
1 − 𝑞ctr

𝜆★alg + 𝑞sym ,

𝜃★ := (1 + 𝐶2
stab 𝐶

2
rel)−1 < 1.

(5.71)

Suppose that 𝜃, 𝜆sym, and 𝜆alg are sufficiently small in the sense of

0 < 𝜆alg ≤ 𝜆★alg, 0 < 𝜆sym < 𝜆★sym, and 𝜆alg 𝜆sym < 𝜆★,

0 < 𝜃mark :=
(𝜃1/2 + 𝜆sym/𝜆★sym)2
(1 − 𝜆sym/𝜆★sym)2

< 𝜃★ < 1.
(5.72)

Then, Algorithm 5A guarantees, for all 𝑠, 𝑡 > 0, that

sup
(ℓ,𝑘, 𝑗 ) ∈Q

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
𝑠+𝑡

H
𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≤ 𝐶opt max{∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡 , H

0,0
0 Z0,0

0 }. (5.73)

The constant 𝐶opt depends only on 𝐶stab, 𝐶rel, 𝐶drel, 𝐶mark, 𝐶mesh, 𝐶lin, 𝑞lin, #T0, and 𝑠 + 𝑡. In
particular, there holds optimal complexity of Algorithm 5A.

The proof of Theorem 5.15 employs the following result from [BIM+24b] providing estimator
equivalence between the (unavailable) estimators for the exact discrete solutions 𝑢★ℓ , 𝑧

★
ℓ and the

estimators at the computed approximations 𝑢𝑚,𝑛

ℓ , 𝑧
𝜇,𝜈

ℓ .

Lemma 5.16 (estimator equivalence [BIM+24b, Lemma 15]). Recall the constants 𝜆★sym, 𝐶alg > 0
from (5.71) and 𝜆★alg > 0 from Lemma 5.5. Then, for all 0 < 𝜃 ≤ 1, 0 < 𝜆alg ≤ 𝜆★alg,
0 < 𝜆sym < 𝜆★sym, it holds that

1−𝜆sym/𝜆★sym 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) ≤ 𝜂ℓ (𝑢★ℓ ) ≤ 1+𝜆sym/𝜆★sym 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) for all (ℓ, 𝑚, 𝑛) ∈ Q𝑢,

1−𝜆sym/𝜆★sym 𝜁ℓ (𝑧𝜇,𝜈ℓ ) ≤ 𝜁ℓ (𝑧★ℓ ) ≤ 1+𝜆sym/𝜆★sym 𝜁ℓ (𝑧𝜇,𝜈ℓ ) for all (ℓ, 𝜇, 𝜈) ∈ Q𝑧 . □
(5.74)

Proof of Theorem 5.15. By Corollary 5.14, it suffices to prove that, for any 𝑠, 𝑡 > 0,

sup
(ℓ,𝑘, 𝑗 ) ∈Q

#Tℓ 𝑠+𝑡
H

𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≲ max{∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡 ,H

0,0
0 Z0,0

0 }. (5.75)

Since the inequality becomes trivial if either ∥𝑢★∥A𝑠 = ∞ or ∥𝑧★∥A𝑡 = ∞, we may assume
∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡 < ∞. The proof consists of three steps.

Step 1. With 0 < 𝜃mark := (𝜃1/2 + 𝜆sym/𝜆★sym)2 (1 − 𝜆sym/𝜆★sym)−2 < 𝜃★, the validity of (A3+) for
both estimators and [FGH+16, Lemma 14] guarantee the existence of sets Rℓ′ ⊆ Tℓ′ with 0 ≤ ℓ′ < ℓ
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such that

#Rℓ′ ≲ ∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡

1/(𝑠+𝑡 )
𝜂ℓ′ (𝑢★ℓ′) 𝜁ℓ′ (𝑧★ℓ′)

−1/(𝑠+𝑡 )
, (5.76a)

𝜃mark 𝜂ℓ′ (𝑢★ℓ′) ≤ 𝜂ℓ′ (Rℓ′ , 𝑢
★
ℓ′) or 𝜃mark 𝜁ℓ′ (𝑧★ℓ′) ≤ 𝜁ℓ′ (Rℓ′ , 𝑧

★
ℓ′). (5.76b)

For 0 ≤ ℓ′ < ℓ, the estimator equivalence (5.74) in Lemma 5.16 leads to

1 − 𝜆sym/𝜆★sym 𝜂ℓ′ (𝑢𝑚,𝑛

ℓ′ ) ≤ 𝜂ℓ′ (𝑢★ℓ′) and 1 − 𝜆sym/𝜆★sym 𝜁ℓ′ (𝑧𝜇,𝜈ℓ′ ) ≤ 𝜁ℓ′ (𝑧★ℓ′)
and consequently with (5.76a) to

#Rℓ′ ≲ ∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡

1/(𝑠+𝑡 )
𝜂ℓ′ (𝑢𝑚,𝑛

ℓ′ ) 𝜁ℓ′ (𝑧𝜇,𝜈ℓ′ ) −1/(𝑠+𝑡 )
. (5.77)

Note that the stopping criteria (5.20) and (5.22) lead to

Hℓ′ ≃ ⦀𝑢★ℓ′−𝑢𝑚,𝑛

ℓ′ ⦀+𝜂ℓ′ (𝑢𝑚,𝑛

ℓ′ ) (5.20)
≲ 𝜂ℓ′ (𝑢𝑚,𝑛

ℓ′ ) and Zℓ′ ≃ ⦀𝑧★ℓ′−𝑧𝜇,𝜈ℓ′ ⦀+𝜁ℓ′ (𝑧𝜇,𝜈ℓ′ ) (5.22)
≲ 𝜁ℓ′ (𝑧𝜇,𝜈ℓ′ )

and with (5.61) to
H
0, 𝑗

ℓ′+1 Z
0, 𝑗

ℓ′+1
(5.61)
≲ Hℓ′ Zℓ′ ≲ 𝜂ℓ′ (𝑢𝑚,𝑛

ℓ′ ) 𝜁ℓ′ (𝑧𝜇,𝜈ℓ′ ). (5.78)
Hence, the combination of (5.77) and (5.78) reads

#Rℓ′ ≲ ∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡

1/(𝑠+𝑡 )
H
0, 𝑗

ℓ′+1 Z
0, 𝑗

ℓ′+1
−1/(𝑠+𝑡 )

. (5.79)

Step 2. Recall from [BGIP23, Theorem 8] that the set Rℓ′ satisfies the Dörfler criterion from
Algorithm 5A(III) with the same parameter 𝜃. The quasi-minimality of Mℓ′ implies

#Mℓ′ ≤ 𝐶mark #Rℓ′ for all 0 ≤ ℓ′ < ℓ (5.80)

with the constant 𝐶mark ≥ 1 from Algorithm 5A.
Step 3. Let (ℓ, 𝑘, 𝑗) ∈ Q. Full linear convergence (5.47) from Theorem 5.10 yields that∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

(H𝑘′ , 𝑗′
ℓ′ Z

𝑘′ , 𝑗′
ℓ′ )−1/𝑠(5.47)

≲ (H𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ )−1/𝑠

∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

(𝑞1/𝑠lin ) |ℓ,𝑘, 𝑗 |− |ℓ′ ,𝑘′ , 𝑗′ | ≲ (H𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ )−1/𝑠 .

(5.81)

NVB refinement satisfies the mesh-closure estimate [CFPP14, Eqn. (2.9)] reading,

#Tℓ −#T0 ≤ 𝐶mesh

ℓ−1∑︁
ℓ′=0

#Mℓ′ for all ℓ ≥ 0, (5.82)

where 𝐶mesh > 1 depends only on T0. Thus, for (ℓ, 𝑘, 𝑗) ∈ Q, we have by the mesh-closure
estimate (5.82), quasi-optimality of Dörfler marking (5.80), and the result (5.81) that

#Tℓ −#T0
(5.82)
≲

ℓ−1∑︁
ℓ′=0

#Mℓ′
(5.80)
≲

ℓ−1∑︁
ℓ′=0

#Rℓ′
(5.79)
≲ ∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡

1/(𝑠+𝑡 )
ℓ−1∑︁
ℓ′=0

H
0, 𝑗

ℓ′+1 Z
0, 𝑗

ℓ′+1
−1/(𝑠+𝑡 )

≤ ∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡

1/(𝑠+𝑡 ) ∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

(H𝑘′ , 𝑗′
ℓ′ Z

𝑘′ , 𝑗′
ℓ′ )−1/(𝑠+𝑡 )

(5.81)
≲ ∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡

1/(𝑠+𝑡 ) (H𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ )−1/(𝑠+𝑡 ) .
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Rearranging the terms and noting that 1 ≤ #Tℓ −#T0 implies #Tℓ −#T0 + 1 ≤ 2 (#Tℓ −#T0),
we obtain, for ℓ > 0, that

(#Tℓ −#T0 + 1)𝑠+𝑡 H𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ ≲ ∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡 . (5.83a)

Moreover, full linear convergence (5.47) proves that

(#T0 −#T0 + 1)𝑠+𝑡 H𝑘, 𝑗
0 Z

𝑘, 𝑗
0 = H

𝑘, 𝑗
0 Z

𝑘, 𝑗
0 ≲ H0,0

0 Z0,0
0 . (5.83b)

We recall from [BHP17, Lemma 22] that, for all Tℓ ∈ T, it holds

#Tℓ −#T0 + 1 ≤ #Tℓ ≤ #T0 (#Tℓ −#T0 + 1). (5.84)

This shows, for all (ℓ, 𝑘, 𝑗) ∈ Q,

(#Tℓ)𝑠+𝑡 H𝑘, 𝑗
ℓ Z

𝑘, 𝑗
ℓ

(5.84)
≲ (#Tℓ −#T0 + 1)𝑠+𝑡 H𝑘, 𝑗

ℓ Z
𝑘, 𝑗
ℓ

(5.83)
≲ max{∥𝑢★∥A𝑠 ∥𝑧★∥A𝑡 ,H

0,0
0 Z0,0

0 }

and concludes the proof of (5.75). □

5.7 Numerical examples

In this section, we present numerical experiments using the open source software package
MooAFEM [IP23]1. In the following, Step (I) and (II) of Algorithm 5A employ the optimal
ℎ𝑝-robust local multigrid method from [IMPS24] as an algebraic solver. If not explicitly stated
otherwise, we choose the parameters 𝜃 = 0.5, 𝛿 = 0.5, 𝜆sym = 𝜆alg = 0.7 in Algorithm 5A throughout
the numerical experiments.

5.7.1 Singularity in the goal functional

The first model problem is a nonsymmetric variant of the benchmark problem from [BGIP23,
Section 4.1] with a singularity only in the goal functional. On the unit square Ω = (0, 1)2 ⊂ R2, we
consider

−Δ𝑢★ + 𝑥 · ∇𝑢★ + 𝑢★ = 𝑓 in Ω subject to 𝑢★ = 0 on 𝜕Ω, (5.85)

where the right-hand side is chosen such that the exact solution 𝑢★ reads

𝑢★(𝑥) = 𝑥1 𝑥2 (1 − 𝑥1) (1 − 𝑥2).

Consider 𝑔 = 0 and 𝒈 = 𝜒𝐾 (1, 0)⊤ in the quantity of interest

𝐺 (𝑢★) :=
∫
𝐾
𝜕𝑥1𝑢

★ d𝑥 = 11/960 with 𝐾 := conv{(1/2, 1), (1, 1/2), (1, 1)}.

Figure 5.2 (left) displays a mesh generated by Algorithm 5A and the support 𝐾 of 𝒈. The error
estimator captures and resolves the two point singularities induced by 𝐺.

1All experiments presented in this paper are reproducible with the openly available software package under https:
//www.tuwien.at/mg/asc/praetorius/software/mooafem.
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5.7 Numerical examples

5.7.2 Geometric singularity and strong convection

The second benchmark problem investigates Ω = (−1, 1)2 \ conv{(0, 0), (−1, 0), (−1,−1)} ⊂ R2

with the Dirichlet boundary Γ𝐷 = conv{(−1, 0), (0, 0)} ∪ conv{(0, 0), (−1,−1)} and Neumann
boundary Γ𝑁 = 𝜕Ω \ Γ𝐷; see Figure 5.2 (right) for a visualization of the geometry. We consider

−Δ𝑢★ + (5, 5)⊤ · ∇𝑢★ = 1 in Ω subject to 𝑢★ = 0 on Γ𝐷 and ∇𝑢★ · 𝒏 = 0 on Γ𝑁 . (5.86)

Consider 𝑔 = 0 and 𝒈 = 𝜒𝑆 (1, 1)⊤ in the quantity of interest

𝐺 (𝑢★) =
∫
𝑆
𝜕𝑥1𝑢

★ + 𝜕𝑥2𝑢
★ d𝑥 with 𝑆 := (−1/2, 1/2)2 ∩Ω.

The exact solution 𝑢★ is not known analytically in this case so that we do not have access to the exact
goal error |𝐺 (𝑢★) −𝐺ℓ (𝑢𝑚,𝑛

ℓ , 𝑧
𝜇,𝜈

ℓ ) |. Figure 5.2 (right) shows a mesh generated by Algorithm 5A as
well as the configuration, i.e., the support 𝑆 of 𝒈 in blue, the Dirichlet boundary in red solid lines,
and the Neumann boundary in green dashed lines.

0 0.5 1

0

0.5

1

𝐾

−1 0 1

−1

0

1

𝑆

Figure 5.2: Left: Mesh T15 for the problem (5.85) generated by Algorithm 5A with #T15 = 2315.
Right: Mesh T18 for the problem (5.86) with #T18 = 2130, where the Dirichlet boundary
part Γ𝐷 is marked by red solid lines and the Neumann boundary part Γ𝑁 by green
dashed lines.

Optimality of Algorithm 5A. Figure 5.3 displays the estimator product 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) 𝜁ℓ (𝑧𝜇,𝜈) and
the goal error |𝐺 (𝑢★) − 𝐺ℓ (𝑢𝑚,𝑛

ℓ , 𝑧
𝜇,𝜈

ℓ ) | from (5.17) for the problem (5.85), due to higher-order
approximations, we only show results prior to machine precision. For all investigated polynomial
degrees 𝑝, the goal error and the estimator product are indeed equivalent. Algorithm 5A achieves the
optimal rate −𝑝 with respect to the cumulative computational work and with respect to the cumulative
computational time in Figure 5.3 for problem (5.85) and Figure 5.4 for problem (5.86). Figure 5.5
shows that the proposed algorithm indeed achieves linear complexity and is substantially faster
than the Matlab built-in direct solver as the slightly larger slope of the latter indicates super-linear
complexity. Table 5.2 displays the weighted costs

𝜂ℓ (𝑢𝑚,𝑛

ℓ ) 𝜁ℓ (𝑧𝜇,𝜈ℓ )
∑︁

(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q
|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

time(ℓ′, 𝑘 ′, 𝑗 ′) 𝑝
(5.87)
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Figure 5.3: Convergence history plot of estimator product 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) 𝜁ℓ (𝑧𝜇,𝜈) indicated by bullets
and goal error from (5.17) indicated by diamonds with respect to the cumulative
computational work (left) and with respect to the cumulative computational time (right)
for the benchmark problem (5.85).

of Algorithm 5A for polynomial degree 𝑝 = 2 with time(ℓ′, 𝑘 ′, 𝑗 ′) in seconds and highlights the
corresponding optimal choices of the parameters. This justifies the selection of 𝜃 = 0.5 together
with larger symmetrization parameter 𝜆sym = 0.7, and algebraic solver parameter 𝜆alg = 0.7. The
table for the second benchmark problem from (5.86) leads to similar results and is therefore omitted.
While the choice of the damping parameter 0 < 𝛿 < 2𝛼/𝐿2 in (5.13) is crucial in the case of large
convection to guarantee the contraction property (5.14), the adaptivity parameters appear more
robust with respect to other coefficients in (5.4).

Finally, in Figure 5.6, we display the number of total solver steps |ℓ, 𝑚, 𝑛| − |ℓ, 0, 0| resp.
|ℓ, 𝜇, 𝜈 | − |ℓ, 0, 0| on each mesh level for both benchmark problems (5.85) and (5.86). The plots
show that the two iterations often stop after the same number of steps.

5.8 Summary

In this work, we developed a cost-optimal goal-oriented adaptive finite element method for the
efficient computation of the quantity of interest 𝐺 (𝑢★) with solution 𝑢★ to the general second-order
linear elliptic partial differential equation (5.4). Since the current analysis of iterative algebraic
solvers for nonsymmetric systems with optimal preconditioner only leads to contraction of the
residual in a vector norm, we proposed a nested iterative solver for the primal and dual problem in
parallel. The strategy consists of the Zarantonello iteration (5.13) as an outer solver loop and an
optimal multigrid solver for the arising SPD system as an innermost solver loop. In recent own
work [BFM+23], we have shown that the link between convergence rates with respect to the degrees
of freedom and the total computational cost is full linear convergence of the quasi-error H𝑘, 𝑗

ℓ Z
𝑘, 𝑗
ℓ . To

this end, Theorem 5.10 shows that the proposed adaptive algorithm contracts (up to a multiplicative
constant) the quasi-error product H𝑘, 𝑗

ℓ Z
𝑘, 𝑗
ℓ in every step, independently of the algorithmic decision to

employ mesh refinement, symmetrization, or the algebraic solver. A particular problem in the analysis
is that the nested iterative solver procedure only guarantees contraction as long as 1 ≤ 𝑘 < 𝑘 [ℓ],
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Figure 5.4: Convergence history plot of estimator product 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) 𝜁ℓ (𝑧𝜇,𝜈) with respect to the
cumulative computational cost (left) and the cumulative computational time (right) for
the benchmark problem (5.86).
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Figure 5.5: Comparison of cumulative time of the local multigrid solver with the Matlab built-
in direct solver mldivide with respect to the cumulative computational cost for the
benchmark problem (5.86).
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Figure 5.6: Number of total solver steps |ℓ, 𝑚, 𝑛| − |ℓ, 0, 0| resp. |ℓ, 𝜇, 𝜈 | − |ℓ, 0, 0| on each mesh
level for the benchmark problems (5.85) (left) and (5.86) (right).

·10−7 𝜃 = 0.1 𝜃 = 0.3 𝜃 = 0.5

𝜆alg

𝜆sym 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.1 38.7 33.4 29.6 22.1 24.4 10.2 5.12 4.90 4.83 4.74 6.18 4.48 4.66 4.89 5.25

0.3 36.2 24.7 24.5 21.8 23.1 7.28 4.98 3.53 3.27 3.26 4.18 4.54 4.79 5.01 5.13

0.5 24.3 24.7 24.7 23.4 23.6 5.84 3.64 3.39 3.27 3.37 3.41 2.71 2.52 2.49 2.68

0.7 24.1 24.8 23.8 22.2 24.0 4.95 3.59 3.30 3.25 3.42 2.74 2.35 2.41 2.24 2.46

0.9 23.5 24.6 22.3 24.4 23.8 4.90 3.58 3.29 3.26 3.41 2.81 2.30 2.43 2.27 2.41

𝜃 = 0.7 𝜃 = 0.8 𝜃 = 0.9

0.1 5.82 5.18 5.43 5.40 5.93 8.53 6.10 7.31 6.67 7.77 11.6 8.86 9.12 9.87 9.97

0.3 4.65 4.86 5.35 5.98 6.67 6.27 5.92 7.20 7.46 7.57 8.62 8.40 9.27 10.6 11.5

0.5 3.69 2.89 2.88 2.95 3.13 5.09 3.61 3.66 3.63 3.66 7.27 5.32 4.84 4.93 5.12

0.7 2.99 2.56 2.64 2.62 2.89 3.75 3.12 3.23 3.03 3.11 4.58 3.95 4.04 4.43 4.79

0.9 2.89 2.49 2.65 2.66 2.89 3.79 3.11 3.19 3.13 3.27 4.67 4.06 4.16 4.35 4.61

Table 5.2: Optimal selection of parameters with respect to the cumulative computational costs
(overall computation time in seconds) for the experiment (5.85) with fixed polynomial
degree 𝑝 = 2 and 𝛿 = 0.5. For comparison, the table displays the value of the weighted
costs from (5.87) (in 10−7) with overall stopping criterion 𝜂ℓ (𝑢𝑚,𝑛

ℓ ) 𝜁ℓ (𝑢𝜇,𝜈ℓ ) < 5 · 10−10
for various choices of 𝜆sym, 𝜆alg, and 𝜃. For each 𝜃-block, we mark the row-wise optimal
values in blue, the column-wise optimal values in yellow, and in green if both optimal
values coincide.
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5.8 Summary

whereas contraction for the final iterate is only guaranteed up to an estimator term (cf. (5.29)).
Another difficulty arises from the nonsymmetric setting with a quasi-Pythagorean estimate (5.18)
replacing the usual Pythagorean estimate. Therefore, the proof of Theorem 5.10 employs the
equivalence of R-linear convergence and tail-summability of the quasi-error product H𝑘, 𝑗

ℓ Z
𝑘, 𝑗
ℓ and

leads to mild restriction on the product 𝜆sym 𝜆alg of the involved solver stopping parameters. The key
ingredients to cost-optimality are an adaptive mesh-refinement algorithm with optimal convergence
rate with respect to the number of degrees of freedom (under the assumption of exact solution) and
an algebraic solver for the linear system of equations that is contractive with respect to the underlying
Sobolev norm. In this regard, the analysis in this paper may guide the generalization to conforming
discretizations of vector-valued elliptic problems. Finally, the numerical experiments in Section 5.7
suggest that the proposed strategy allows for large stopping parameter in practice and that a larger
choice is beneficial in terms of total runtime. Admittedly, the development of an optimal solver for
the nonsymmetric problem (5.10) would allow to prove full linear convergence with an arbitrary
selection of the stopping parameter.

153





Bibliography

[AFF+15] M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Energy norm based
error estimators for adaptive BEM for hypersingular integral equations. Appl. Numer.
Math., 95:15–35, 2015. doi: 10.1016/j.apnum.2013.12.004.

[AGL13] M. Arioli, E. H. Georgoulis, and D. Loghin. Stopping criteria for adaptive finite element
solvers. SIAM J. Sci. Comput., 35(3):A1537–A1559, 2013. doi: 10.1137/120867421.

[AMV18] P. F. Antonietti, L. Mascotto, and M. Verani. A multigrid algorithm for the 𝑝-version of
the virtual element method. ESAIM Math. Model. Numer. Anal., 52(1):337–364, 2018.
doi: 10.1051/m2an/2018007.

[AO00] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis.
Wiley-Interscience, New York, 2000. doi: 10.1002/9781118032824.

[BB87] D. Bai and A. Brandt. Local mesh refinement multilevel techniques. SIAM J. Sci. Statist.
Comput., 8(2):109–134, 1987. doi: 10.1137/0908025.

[BBI+22] R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Rate-optimal
goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl., 118:18–
35, 2022. doi: 10.1016/j.camwa.2022.05.008.

[BBPS23] P. Bringmann, M. Brunner, D. Praetorius, and J. Streitberger. Optimal complexity
of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, 2023. arXiv:
2312.00489.

[BCS23] P. Bringmann, C. Carstensen, and J. Streitberger. Local parameter selection in the
C0 interior penalty method for the biharmonic equation. J. Numer. Math., 2023. doi:
10.1515/jnma-2023-0028.

[BDD04] P. Binev, W. Dahmen, and R. DeVore. Adaptive finite element methods with convergence
rates. Numer. Math., 97(2):219–268, 2004. doi: 10.1007/s00211-003-0492-7.

[BDK12] L. Belenki, L. Diening, and C. Kreuzer. Optimality of an adaptive finite element
method for the 𝑝-Laplacian equation. IMA J. Numer. Anal., 32(2):484–510, 2012. doi:
10.1093/imanum/drr016.

[BDS23] A. K. Balci, L. Diening, and J. Storn. Relaxed Kačanov scheme for the 𝑝-Laplacian
with large exponent. SIAM J. Numer. Anal., 61(6):2775–2794, 2023. doi: 10.1137/
22M1528550.

[BDY88] R. E. Bank, T. F. Dupont, and H. Yserentant. The hierarchical basis multigrid method.
Numer. Math., 52(4):427–458, 1988. doi: 10.1007/BF01462238.

[BET11] R. Becker, E. Estecahandy, and D. Trujillo. Weighted marking for goal-oriented
adaptive finite element methods. SIAM J. Numer. Anal., 49(6):2451–2469, 2011. doi:
10.1137/100794298.

155

https://doi.org/10.1016/j.apnum.2013.12.004
https://doi.org/10.1137/120867421
https://doi.org/10.1051/m2an/2018007
https://doi.org/10.1002/9781118032824
https://doi.org/10.1137/0908025
https://doi.org/10.1016/j.camwa.2022.05.008
https://arxiv.org/abs/2312.00489
https://doi.org/10.1515/jnma-2023-0028
https://doi.org/10.1007/s00211-003-0492-7
https://doi.org/10.1093/imanum/drr016
https://doi.org/10.1137/22M1528550
https://doi.org/10.1137/22M1528550
https://doi.org/10.1007/BF01462238
https://doi.org/10.1137/100794298


Bibliography

[BF22] P. D. Brubeck and P. E. Farrell. A scalable and robust vertex-star relaxation for high-order
FEM. SIAM J. Sci. Comput., 44(5):A2991–A3017, 2022. doi: 10.1137/21M1444187.

[BFM+23] P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, and J. Streitberger. On full linear
convergence and optimal complexity of adaptive FEM with inexact solver, 2023. arXiv:
2311.15738.

[BGIP23] R. Becker, G. Gantner, M. Innerberger, and D. Praetorius. Goal-oriented adaptive finite
element methods with optimal computational complexity. Numer. Math., 153(1):111–
140, 2023. doi: 10.1007/s00211-022-01334-8.

[BHI+23] M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, and J. Streitberger.
Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs.
IMA J. Numer. Anal., in print, 2023.

[BHM00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000.
doi: 10.1137/1.9780898719505.

[BHP17] A. Bespalov, A. Haberl, and D. Praetorius. Adaptive FEM with coarse initial mesh
guarantees optimal convergence rates for compactly perturbed elliptic problems. Comput.
Methods Appl. Mech. Engrg., 317:318–340, 2017. doi: 10.1016/j.cma.2016.12.
014.

[BIM+24a] M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid.
Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs.
IMA J. Numer. Anal., 44(3):1560–1596, 2024. doi: 10.1093/imanum/drad039.

[BIM+24b] M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid.
Corrigendum to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear
elliptic PDEs. IMA J. Numer. Anal., 44(3):1903–1909, 2024. doi: 10.1093/imanum/
drad103.

[BIP21] R. Becker, M. Innerberger, and D. Praetorius. Optimal convergence rates for goal-
oriented FEM with quadratic goal functional. Comput. Methods Appl. Math., 21(2):267–
288, 2021. doi: 10.1515/cmam-2020-0044.

[BL11] A. Brandt and O. E. Livne. Multigrid techniques—1984 guide with applications to fluid
dynamics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
revised edition, 2011. doi: 10.1137/1.9781611970753.

[BMR85] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse matrix
equations. In Sparsity and its applications (Loughborough, 1983), pages 257–284.
Cambridge Univ. Press, Cambridge, 1985. isbn: 0-521-26272-0.

[BN10] A. Bonito and R. H. Nochetto. Quasi-optimal convergence rate of an adaptive discontin-
uous Galerkin method. SIAM J. Numer. Anal., 48(2):734–771, 2010. doi: 10.1137/
08072838X.

[BPS24] M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEM with
linearization and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401.
06486.

156

https://doi.org/10.1137/21M1444187
https://arxiv.org/abs/2311.15738
https://doi.org/10.1007/s00211-022-01334-8
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1016/j.cma.2016.12.014
https://doi.org/10.1016/j.cma.2016.12.014
https://doi.org/10.1093/imanum/drad039
https://doi.org/10.1093/imanum/drad103
https://doi.org/10.1093/imanum/drad103
https://doi.org/10.1515/cmam-2020-0044
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1137/08072838X
https://doi.org/10.1137/08072838X
https://arxiv.org/abs/2401.06486
https://arxiv.org/abs/2401.06486


[BPS86] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners
for elliptic problems by substructuring. I. Math. Comp., 47(175):103–134, 1986. doi:
10.2307/2008084.

[BPX90] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. In Numerical
analysis 1989 (Dundee, 1989). Volume 228, Pitman Res. Notes Math. Ser. Pages 23–39.
Longman Sci. Tech., Harlow, 1990. isbn: 0-582-05923-2.

[BR01] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numer., 10:1–102, 2001. doi: 10.1017/
S0962492901000010.

[BR03] W. Bangerth and R. Rannacher. Adaptive finite element methods for differential equations.
Springer Science & Business Media, 2003. doi: 10.1007/978-3-0348-7605-6.

[BR78] I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computa-
tions. SIAM J. Numer. Anal., 15(4):736–754, 1978. doi: 10.1137/0715049.

[BV84] I. Babuška and M. Vogelius. Feedback and adaptive finite element solution of one-
dimensional boundary value problems. Numer. Math., 44(1):75–102, 1984. doi: 10.
1007/BF01389757.

[CDD01] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic operator
equations: convergence rates. Math. Comp., 70(233):27–75, 2001. doi: 10.1090/
S0025-5718-00-01252-7.

[CDD03] A. Cohen, W. Dahmen, and R. Devore. Adaptive wavelet schemes for nonlinear
variational problems. SIAM J. Numer. Anal., 41(5):1785–1823, 2003. doi: 10.1137/
S0036142902412269.

[CFPP14] C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity. Comput.
Math. Appl., 67(6):1195–1253, 2014. doi: 10.1016/j.camwa.2013.12.003.

[CG12] C. Carstensen and J. Gedicke. An adaptive finite element eigenvalue solver of asymptotic
quasi-optimal computational complexity. SIAM J. Numer. Anal., 50(3):1029–1057,
2012. doi: 10.1137/090769430.

[CKNS08] J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert. Quasi-optimal convergence
rate for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524–2550,
2008. doi: 10.1137/07069047X.

[CN12] J. M. Cascón and R. H. Nochetto. Quasioptimal cardinality of AFEM driven by
nonresidual estimators. IMA J. Numer. Anal., 32(1):1–29, 2012. doi: 10 . 1093 /
imanum/drr014.

[CNSV17] C. Canuto, R. H. Nochetto, R. Stevenson, and M. Verani. Convergence and optimality
of ℎ𝑝-AFEM. Numer. Math., 135(4):1073–1119, 2017. doi: 10.1007/s00211-016-
0826-x.

[CNX12] L. Chen, R. H. Nochetto, and J. Xu. Optimal multilevel methods for graded bisection
grids. Numer. Math., 120(1):1–34, 2012. doi: 10.1007/s00211-011-0401-4.

[CW17] S. Congreve and T. P. Wihler. Iterative Galerkin discretizations for strongly monotone
problems. J. Comput. Appl. Math., 311:457–472, 2017. doi: 10.1016/j.cam.2016.
08.014.

157

https://doi.org/10.2307/2008084
https://doi.org/10.1017/S0962492901000010
https://doi.org/10.1017/S0962492901000010
https://doi.org/10.1007/978-3-0348-7605-6
https://doi.org/10.1137/0715049
https://doi.org/10.1007/BF01389757
https://doi.org/10.1007/BF01389757
https://doi.org/10.1090/S0025-5718-00-01252-7
https://doi.org/10.1090/S0025-5718-00-01252-7
https://doi.org/10.1137/S0036142902412269
https://doi.org/10.1137/S0036142902412269
https://doi.org/10.1016/j.camwa.2013.12.003
https://doi.org/10.1137/090769430
https://doi.org/10.1137/07069047X
https://doi.org/10.1093/imanum/drr014
https://doi.org/10.1093/imanum/drr014
https://doi.org/10.1007/s00211-016-0826-x
https://doi.org/10.1007/s00211-016-0826-x
https://doi.org/10.1007/s00211-011-0401-4
https://doi.org/10.1016/j.cam.2016.08.014
https://doi.org/10.1016/j.cam.2016.08.014


Bibliography

[DBR21] V. Dolejší, O. Bartoš, and F. Roskovec. Goal-oriented mesh adaptation method for
nonlinear problems including algebraic errors. Comput. Math. Appl., 93:178–198, 2021.
doi: 10.1016/j.camwa.2021.04.004.

[DFTW20] L. Diening, M. Fornasier, R. Tomasi, and M. Wank. A relaxed Kačanov iteration for the
𝑝-Poisson problem. Numer. Math., 145(1):1–34, 2020. doi: 10.1007/s00211-020-
01107-1.

[DGS23] L. Diening, L. Gehring, and J. Storn. Adaptive mesh refinement for arbitrary initial
triangulations, 2023. arXiv: 2306.02674.

[DHM+21] D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, and D. Ruiz. An
ℎ-multigrid method for hybrid high-order discretizations. SIAM J. Sci. Comput.,
43(5):S839–S861, 2021. doi: 10.1137/20M1342471.

[DJN15] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015. doi:
10.1137/1.9781611974065.ch1.

[DK08] L. Diening and C. Kreuzer. Linear convergence of an adaptive finite element method for
the 𝑝-Laplacian equation. SIAM J. Numer. Anal., 46(2):614–638, 2008. doi: 10.1137/
070681508.

[Dör96] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer.
Anal., 33(3):1106–1124, 1996. doi: 10.1137/0733054.

[DW90] M. Dryja and O. B. Widlund. Towards a unified theory of domain decomposition
algorithms for elliptic problems. In Third International Symposium on Domain Decom-
position Methods for Partial Differential Equations (Houston, TX, 1989), pages 3–21.
SIAM, Philadelphia, PA, 1990. isbn: 0-89871-253-X.

[EEHJ95] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods for
differential equations. Acta Numer.:105–158, 1995. doi: 10.1017/S0962492900002531.

[ELW19] B. Endtmayer, U. Langer, and T. Wick. Multigoal-oriented error estimates for non-linear
problems. J. Numer. Math., 27(4):215–236, 2019. doi: 10.1515/jnma-2018-0038.

[ELW20] B. Endtmayer, U. Langer, and T. Wick. Two-side a posteriori error estimates for the
dual-weighted residual method. SIAM J. Sci. Comput., 42(1):A371–A394, 2020. doi:
10.1137/18M1227275.

[EV13] A. Ern and M. Vohralík. Adaptive inexact Newton methods with a posteriori stopping
criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput., 35(4):A1761–A1791, 2013.
doi: 10.1137/120896918.

[Eva10] L. C. Evans. Partial differential equations. American Mathematical Society, Providence,
RI, second edition, 2010. doi: 10.1090/gsm/019.

[Fei22] M. Feischl. Inf-sup stability implies quasi-orthogonality. Math. Comp., 91(337):2059–
2094, 2022. doi: 10.1090/mcom/3748.

[FFP14] M. Feischl, T. Führer, and D. Praetorius. Adaptive FEM with optimal convergence rates
for a certain class of nonsymmetric and possibly nonlinear problems. SIAM J. Numer.
Anal., 52(2):601–625, 2014. doi: 10.1137/120897225.

158

https://doi.org/10.1016/j.camwa.2021.04.004
https://doi.org/10.1007/s00211-020-01107-1
https://doi.org/10.1007/s00211-020-01107-1
https://arxiv.org/abs/2306.02674
https://doi.org/10.1137/20M1342471
https://doi.org/10.1137/1.9781611974065.ch1
https://doi.org/10.1137/070681508
https://doi.org/10.1137/070681508
https://doi.org/10.1137/0733054
https://doi.org/10.1017/S0962492900002531
https://doi.org/10.1515/jnma-2018-0038
https://doi.org/10.1137/18M1227275
https://doi.org/10.1137/120896918
https://doi.org/10.1090/gsm/019
https://doi.org/10.1090/mcom/3748
https://doi.org/10.1137/120897225


[FGH+16] M. Feischl, G. Gantner, A. Haberl, D. Praetorius, and T. Führer. Adaptive boundary
element methods for optimal convergence of point errors. Numer. Math., 132(3):541–
567, 2016. doi: 10.1007/s11831-014-9114-z.

[FP18] T. Führer and D. Praetorius. A linear Uzawa-type FEM-BEM solver for nonlinear
transmission problems. Comput. Math. Appl., 75(8):2678–2697, 2018. doi: 10.1016/
j.camwa.2017.12.035.

[FPZ16] M. Feischl, D. Praetorius, and K. G. van der Zee. An abstract analysis of optimal
goal-oriented adaptivity. SIAM J. Numer. Anal., 54(3):1423–1448, 2016. doi: 10.1137/
15M1021982.

[GHPS18] G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner. Rate optimal adaptive FEM with
inexact solver for nonlinear operators. IMA J. Numer. Anal., 38(4):1797–1831, 2018.
doi: 10.1093/imanum/drx050.

[GHPS21] G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko. Rate optimality of adaptive
finite element methods with respect to overall computational costs. Math. Comp.,
90(331):2011–2040, 2021. doi: 10.1090/mcom/3654.

[GKZB83] J. P. d. S. R. Gago, D. W. Kelly, O. C. Zienkiewicz, and I. Babuška. A posteriori
error analysis and adaptive processes in the finite element method. II. Adaptive
mesh refinement. Internat. J. Numer. Methods Engrg., 19(11):1621–1656, 1983. doi:
10.1002/nme.1620191104.

[GMZ11] E. Garau, P. Morin, and C. Zuppa. Convergence of an adaptive Kačanov FEM for
quasi-linear problems. Appl. Numer. Math., 61(4):512–529, 2011. doi: 10.1016/j.
apnum.2010.12.001.

[GMZ12] E. M. Garau, P. Morin, and C. Zuppa. Quasi-optimal convergence rate of an AFEM
for quasi-linear problems of monotone type. Numer. Math. Theory Methods Appl.,
5(2):131–156, 2012. doi: 10.4208/nmtma.2012.m1023.

[GS02] M. B. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis
and postprocessing by duality. Acta Numer., 11:145–236, 2002. doi: 10 . 1017 /
S096249290200003X.

[GSS14] D. Gallistl, M. Schedensack, and R. P. Stevenson. A remark on newest vertex bisection
in any space dimension. Comput. Methods Appl. Math., 14(3):317–320, 2014. doi:
10.1515/cmam-2014-0013.

[GZ22] M. J. Gander and H. Zhang. Schwarz methods by domain truncation. Acta Numer.,
31:1–134, 2022. doi: 10.1017/S0962492922000034.

[Hac85] W. Hackbusch. Multigrid methods and applications. Springer-Verlag, Berlin, 1985. doi:
10.1007/978-3-662-02427-0.

[Hei23] P. Heid. A damped Kačanov scheme for the numerical solution of a relaxed 𝑝(𝑥)-Poisson
equation. Partial Differ. Equ. Appl., 4(5):Paper No. 40, 20, 2023. doi: 10.1007/s42985-
023-00259-7.

[Hei88] W. Heinrichs. Line relaxation for spectral multigrid methods. J. Comput. Phys.,
77(1):166–182, 1988.

159

https://doi.org/10.1007/s11831-014-9114-z
https://doi.org/10.1016/j.camwa.2017.12.035
https://doi.org/10.1016/j.camwa.2017.12.035
https://doi.org/10.1137/15M1021982
https://doi.org/10.1137/15M1021982
https://doi.org/10.1093/imanum/drx050
https://doi.org/10.1090/mcom/3654
https://doi.org/10.1002/nme.1620191104
https://doi.org/10.1016/j.apnum.2010.12.001
https://doi.org/10.1016/j.apnum.2010.12.001
https://doi.org/10.4208/nmtma.2012.m1023
https://doi.org/10.1017/S096249290200003X
https://doi.org/10.1017/S096249290200003X
https://doi.org/10.1515/cmam-2014-0013
https://doi.org/10.1017/S0962492922000034
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1007/s42985-023-00259-7
https://doi.org/10.1007/s42985-023-00259-7


Bibliography

[HMRV23] A. Harnist, K. Mitra, A. Rappaport, and M. Vohralík. Robust energy a posteriori
estimates for nonlinear elliptic problems, May 2023. HAL preprint: hal-04033438.

[HP16] M. Holst and S. Pollock. Convergence of goal-oriented adaptive finite element methods
for nonsymmetric problems. Numer. Methods Partial Differential Equations, 32(2):479–
509, 2016. doi: 10.1002/num.22002.

[HPSV21] A. Haberl, D. Praetorius, S. Schimanko, and M. Vohralík. Convergence and quasi-optimal
cost of adaptive algorithms for nonlinear operators including iterative linearization and
algebraic solver. Numer. Math., 147(3):679–725, 2021. doi: 10.1007/s00211-021-
01176-w.

[HPW21] P. Heid, D. Praetorius, and T. Wihler. Energy contraction and optimal convergence of
adaptive iterative linearized finite element methods. Comput. Methods Appl. Math.,
21(2):407–422, 2021. doi: 10.1515/cmam-2021-0025.

[HS52] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Research Nat. Bur. Standards, 49:409–436, 1952.

[HW20a] P. Heid and T. Wihler. Adaptive iterative linearization Galerkin methods for nonlinear
problems. Math. Comp., 89(326):2707–2734, 2020. doi: 10.1090/mcom/3545.

[HW20b] P. Heid and T. Wihler. On the convergence of adaptive iterative linearized Galerkin
methods. Calcolo, 57(3), 2020. doi: 10.1007/s10092-020-00368-4.

[HW22] P. Heid and T. Wihler. A modified Kacanov iteration scheme with application to
quasilinear diffusion models. ESAIM: Math. Model. Numer. Anal, 56(2):433–450, 2022.
doi: 10.1051/m2an/2022008.

[HWZ12] R. Hiptmair, H. Wu, and W. Zheng. Uniform convergence of adaptive multigrid methods
for elliptic problems and Maxwell’s equations. Numer. Math. Theory Methods Appl.,
5(3):297–332, 2012. doi: 10.4208/nmtma.2012.m1128.

[IMPS24] M. Innerberger, A. Miraçi, D. Praetorius, and J. Streitberger. ℎ𝑝-robust multigrid solver
on locally refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM
Math. Model. Numer. Anal., 58(1):247–272, 2024. doi: 10.1051/m2an/2023104.

[IP23] M. Innerberger and D. Praetorius. MooAFEM: an object oriented Matlab code for higher-
order adaptive FEM for (nonlinear) elliptic PDEs. Appl. Math. Comput., 442:Paper No.
127731, 17, 2023. doi: 10.1016/j.amc.2022.127731.

[KA21] P. Knabner and L. Angermann. Numerical methods for elliptic and parabolic partial
differential equations. Springer, Cham, extended edition, 2021. doi: 10.1007/978-3-
030-79385-2.

[Kel95] C. T. Kelley. Iterative methods for linear and nonlinear equations. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. doi: 10.1137/1.
9781611970944.

[KG18] C. Kreuzer and E. H. Georgoulis. Convergence of adaptive discontinuous Galerkin
methods. Math. Comp., 87(314):2611–2640, 2018. doi: 10.1090/mcom/3318.

[KJF77] A. Kufner, O. John, and S. Fučík. Function spaces. Noordhoff International Publishing,
Leiden; Academia, Prague, 1977.

160

hal-04033438
https://doi.org/10.1002/num.22002
https://doi.org/10.1007/s00211-021-01176-w
https://doi.org/10.1007/s00211-021-01176-w
https://doi.org/10.1515/cmam-2021-0025
https://doi.org/10.1090/mcom/3545
https://doi.org/10.1007/s10092-020-00368-4
https://doi.org/10.1051/m2an/2022008
https://doi.org/10.4208/nmtma.2012.m1128
https://doi.org/10.1051/m2an/2023104
https://doi.org/10.1016/j.amc.2022.127731
https://doi.org/10.1007/978-3-030-79385-2
https://doi.org/10.1007/978-3-030-79385-2
https://doi.org/10.1137/1.9781611970944
https://doi.org/10.1137/1.9781611970944
https://doi.org/10.1090/mcom/3318


[KPP13] M. Karkulik, D. Pavlicek, and D. Praetorius. On 2D newest vertex bisection: optimality
of mesh-closure and 𝐻1-stability of 𝐿2-projection. Constr. Approx., 38(2):213–234,
2013. doi: 10.1007/s00365-013-9192-4.

[KS11] C. Kreuzer and K. G. Siebert. Decay rates of adaptive finite elements with Dörfler
marking. Numer. Math., 117(4):679–716, 2011. doi: 10.1007/s00211-010-0324-5.

[LM54] P. D. Lax and A. N. Milgram. Parabolic equations. In Contributions to the theory of
partial differential equations. Volume no. 33, Ann. of Math. Stud. Pages 167–190.
Princeton Univ. Press, Princeton, NJ, 1954.

[MNS00] P. Morin, R. H. Nochetto, and K. G. Siebert. Data oscillation and convergence
of adaptive FEM. SIAM J. Numer. Anal., 38(2):466–488, 2000. doi: 10 . 1137 /
S0036142999360044.

[MPS24] A. Miraçi, D. Praetorius, and J. Streitberger. Parameter-robust full linear convergence
and optimal complexity of adaptive iteratively linearized FEM for strongly monotone
nonlinear PDEs, 2024. arXiv: 2401.17778.

[MPV20] A. Miraçi, J. Papež, and M. Vohralík. A multilevel algebraic error estimator and
the corresponding iterative solver with 𝑝-robust behavior. SIAM J. Numer. Anal.,
58(5):2856–2884, 2020. doi: 10.1137/19M1275929.

[MPV21] A. Miraçi, J. Papež, and M. Vohralík. A-posteriori-steered 𝑝-robust multigrid with
optimal step-sizes and adaptive number of smoothing steps. SIAM J. Sci. Comput.,
43(5):S117–S145, 2021. doi: 10.1137/20M1349503.

[MS09] M. S. Mommer and R. Stevenson. A goal-oriented adaptive finite element method
with convergence rates. SIAM J. Numer. Anal., 47(2):861–886, 2009. doi: 10.1137/
060675666.

[MV23] K. Mitra and M. Vohralík. Guaranteed, locally efficient, and robust a posteriori
estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal
decomposition result based on iterative linearization, July 2023. HAL preprint: hal-
04156711.

[NN12] A. Napov and Y. Notay. An algebraic multigrid method with guaranteed convergence
rate. SIAM J. Sci. Comput., 34(2):A1079–A1109, 2012. doi: 10.1137/100818509.

[Osw94] P. Oswald. Multilevel finite element approximation. B. G. Teubner, Stuttgart, 1994. doi:
10.1007/978-3-322-91215-2.

[Pav94] L. F. Pavarino. Additive Schwarz methods for the 𝑝-version finite element method.
Numer. Math., 66(4):493–515, 1994. doi: 10.1007/BF01385709.

[PP20] C.-M. Pfeiler and D. Praetorius. Dörfler marking with minimal cardinality is a linear
complexity problem. Math. Comp., 89(326):2735–2752, 2020. doi: 10.1090/mcom/
3553.

[QV99] A. Quarteroni and A. Valli. Domain decomposition methods for partial differential
equations. The Clarendon Press, Oxford University Press, New York, 1999.

[RS87] J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods. Volume 3,
Frontiers Appl. Math. Pages 73–130. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1987. isbn: 0-89871-214-9.

161

https://doi.org/10.1007/s00365-013-9192-4
https://doi.org/10.1007/s00211-010-0324-5
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.1137/S0036142999360044
https://arxiv.org/abs/2401.17778
https://doi.org/10.1137/19M1275929
https://doi.org/10.1137/20M1349503
https://doi.org/10.1137/060675666
https://doi.org/10.1137/060675666
hal-04156711
hal-04156711
https://doi.org/10.1137/100818509
https://doi.org/10.1007/978-3-322-91215-2
https://doi.org/10.1007/BF01385709
https://doi.org/10.1090/mcom/3553
https://doi.org/10.1090/mcom/3553


Bibliography

[Rüd93a] U. Rüde. Fully adaptive multigrid methods. SIAM J. Numer. Anal., 30(1):230–248, 1993.
doi: 10.1137/0730011.

[Rüd93b] U. Rüde. Mathematical and computational techniques for multilevel adaptive methods.
Society for Industrial and Applied Mathematics, Philadelphia, PA, Philadelphia, PA,
1993. doi: 10.1137/1.9781611970968.

[Saa03] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, second edition, 2003. doi: 10.1137/1.
9780898718003.

[SMPZ08] J. Schöberl, J. M. Melenk, C. Pechstein, and S. Zaglmayr. Additive Schwarz precondi-
tioning for 𝑝-version triangular and tetrahedral finite elements. IMA J. Numer. Anal.,
28(1):1–24, 2008. doi: 10.1093/imanum/drl046.

[SS86] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869,
1986. doi: 10.1137/0907058.

[Sta97] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric
elliptic problems. Numer. Math., 78(1):103–117, 1997. doi: 10.1007/s002110050306.

[Ste07] R. Stevenson. Optimality of a standard adaptive finite element method. Found. Comput.
Math., 7(2):245–269, 2007. doi: 10.1007/s10208-005-0183-0.

[Ste08] R. Stevenson. The completion of locally refined simplicial partitions created by bisection.
Math. Comp., 77(261):227–241, 2008. doi: 10.1090/S0025-5718-07-01959-X.

[Tra97] C. T. Traxler. An algorithm for adaptive mesh refinement in 𝑛 dimensions. Computing,
59(2):115–137, 1997. doi: 10.1007/BF02684475.

[TW05] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory.
Springer, Berlin, 2005. doi: 10.1007/b137868.

[Var00] R. S. Varga. Matrix iterative analysis. Springer, Berlin, expanded edition, 2000. doi:
10.1007/978-3-642-05156-2.

[Vee02] A. Veeser. Convergent adaptive finite elements for the nonlinear Laplacian. Numer.
Math., 92(4):743–770, 2002. doi: 10.1007/s002110100377.

[Ver89] R. Verfürth. A posteriori error estimators for the Stokes equations. Numer. Math.,
55(3):309–325, 1989. doi: 10.1007/BF01390056.

[Ver94] R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques.
In Proceedings of the Fifth International Congress on Computational and Applied
Mathematics (Leuven, 1992), volume 50 of number 1-3, 1994. doi: 10.1016/0377-
0427(94)90290-9.

[WC06] H. Wu and Z. Chen. Uniform convergence of multigrid V-cycle on adaptively refined
finite element meshes for second order elliptic problems. Sci. China Ser. A, 49(10):1405–
1429, 2006. doi: 10.1007/s11425-006-2005-5.

[WZ17] J. Wu and H. Zheng. Uniform convergence of multigrid methods for adaptive meshes.
Appl. Numer. Math., 113:109–123, 2017. doi: 10.1016/j.apnum.2016.11.005.

162

https://doi.org/10.1137/0730011
https://doi.org/10.1137/1.9781611970968
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1093/imanum/drl046
https://doi.org/10.1137/0907058
https://doi.org/10.1007/s002110050306
https://doi.org/10.1007/s10208-005-0183-0
https://doi.org/10.1090/S0025-5718-07-01959-X
https://doi.org/10.1007/BF02684475
https://doi.org/10.1007/b137868
https://doi.org/10.1007/978-3-642-05156-2
https://doi.org/10.1007/s002110100377
https://doi.org/10.1007/BF01390056
https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/10.1007/s11425-006-2005-5
https://doi.org/10.1016/j.apnum.2016.11.005


[Zar60] E. H. Zarantonello. Solving functional equations by contractive averaging. Mathematical
Research Center Report, 160, 1960.

[Zei90a] E. Zeidler. Nonlinear functional analysis and its applications. II/A. Springer, New York,
1990. doi: 10.1007/978-1-4612-0985-0.

[Zei90b] E. Zeidler. Nonlinear functional analysis and its applications. II/B. Springer, New York,
1990. doi: 10.1007/978-1-4612-0985-0.

[Zha92] X. Zhang. Multilevel Schwarz methods. Numer. Math., 63(4):521–539, 1992. doi:
10.1007/BF01385873.

[ZR79] P. Zave and W. C. Rheinboldt. Design of an adaptive, parallel finite-element system.
ACM Trans. Math. Software, 5(1):1–17, 1979. doi: 10.1145/355815.355816.

163

https://doi.org/10.1007/978-1-4612-0985-0
https://doi.org/10.1007/978-1-4612-0985-0
https://doi.org/10.1007/BF01385873
https://doi.org/10.1145/355815.355816




Curriculum Vitae

Name: Julian Streitberger

Date of birth: November 3, 1995 in Salzburg, Austria

Citizenship: Austria

E-mail: julian.streitberger@asc.tuwien.ac.at

Homepage: https://www.tuwien.at/mg/asc/numpdes/streitberger

Education
02/2022–06/2024

(expected)
PhD studies in Technical Mathematics, TU Wien, Austria.
Supervisor: Prof. Dirk Praetorius.

10/2019–12/2021 Master’s degree in Mathematics, HU Berlin, Germany.
Passed with distinction, Master thesis: Discrete stability of dGFEM for
biharmonic plates, supervisor: Carsten Carstensen.

10/2016–09/2019 Bachelor’s degree in Mathematics, PLUS Salzburg, Austria.
Passed with distinction, Bachelor thesis: Lowest-order mixed FEM for the
Poisson problem, supervisor: Andreas Schröder.

10/2015–11/2018 Bachelor’s degree in the teaching programme Mathematics / History and
political education, PLUS Salzburg, Austria.
Bachelor theses: A diophantine equation for sums of consecutive like powers,
supervisor: Clemens Fuchs & Schuschnigg und die Dollfuß-Straße, Eine
Analyse des Personenkults im Austrofaschismus in den Jahren 1934–1938,
supervisor: Matthias Marschik.

Research experience
since 02/2022 University assistent, TU Wien, Austria.

Institute of Analysis and Scientific Computing, work group on Numerics of
PDEs.

2018–2019 Student assistent, PLUS Salzburg, Austria.
Departement of Mathematics, work group on Technical Mathematics and
work group on Statistics.

https://www.tuwien.at/mg/asc/numpdes/streitberger


Bibliography

Teaching experience
2022–2024 Teaching assistant, TU Wien, Austria.

Scientific Programming for Interdisciplinary Mathematics, VU

2023 Teaching assistant, TU Wien, Austria.
Numerics of partial differential equations: stationary problems, exercise
class.

2022 Teaching assistant, TU Wien, Austria.
Numerische Mathematik, exercise class.

2022 Teaching assistant, TU Wien, Austria.
Seminar with seminar thesis in numerics: fixed-point theorems, seminar.

Scholarships and Awards
2020 Leistungsstipendium für hervorragende Studienleistungen der Universität

Salzburg.

2018 Early Student Award of the Austrian Mathematical Society.

Scientific talks
2023 European Conference on Numerical Mathematics and Advanced Applica-

tions (ENUMATH), Lisbon, Portugal. Cost-optimal goal-oriented adaptive
FEM for linear elliptic PDEs.

2023 Austrian Numerical Analysis Day (ANADay), Wien, Austria. Adaptive
FEM for linear elliptic PDEs: optimal complexity.

2023 2nd SFB International Workshop 2023 "Taming Complexity in Partial
Differential Systems", Wien, Austria. Adaptive FEM for linear elliptic
PDEs: optimal complexity.

166



Own scientific publications
2024 M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEM with linearization

and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401.06486

2024 A. Miraçi, D. Praetorius, and J. Streitberger. Parameter-robust full linear convergence and
optimal complexity of adaptive iteratively linearized FEM for strongly monotone nonlinear
PDEs, 2024. arXiv: 2401.17778

2024 M. Innerberger, A. Miraçi, D. Praetorius, and J. Streitberger. ℎ𝑝-robust multigrid solver on
locally refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM Math.
Model. Numer. Anal., 58(1):247–272, 2024. doi: 10.1051/m2an/2023104

2024 M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid. Corri-
gendum to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic
PDEs. IMA J. Numer. Anal., 44(3):1903–1909, 2024. doi: 10.1093/imanum/drad103

2023 P. Bringmann, M. Brunner, D. Praetorius, and J. Streitberger. Optimal complexity of goal-
oriented adaptive FEM for nonsymmetric linear elliptic PDEs, 2023. arXiv: 2312.00489

2023 P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, and J. Streitberger. On full linear
convergence and optimal complexity of adaptive FEM with inexact solver, 2023. arXiv:
2311.15738

2023 P. Bringmann, C. Carstensen, and J. Streitberger. Local parameter selection in the C0
interior penalty method for the biharmonic equation. J. Numer. Math., 2023. doi:
10.1515/jnma-2023-0028

2024 M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P. Heid. Adaptive
FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J. Numer.
Anal., 44(3):1560–1596, 2024. doi: 10.1093/imanum/drad039

167

https://arxiv.org/abs/2401.06486
https://arxiv.org/abs/2401.17778
https://doi.org/10.1051/m2an/2023104
https://doi.org/10.1093/imanum/drad103
https://arxiv.org/abs/2312.00489
https://arxiv.org/abs/2311.15738
https://doi.org/10.1515/jnma-2023-0028
https://doi.org/10.1093/imanum/drad039

	Introduction
	Motivation
	Model problem and classic FEM approach
	State-of-the-art and outlook
	Adaptive FEM with exact solver
	The module ESTIMATE
	The module MARK
	The module REFINE
	Adaptive algorithm with exact solve
	Quasi-optimality of Algorithm ??

	Adaptive FEM with inexact solver
	The module SOLVE
	Adaptive algorithm with iterative solve
	Quasi-optimality of Algorithm ??

	Goal-oriented adaptive FEM
	State-of-the-art and outlook
	Product estimator structure in module ESTIMATE
	Combined marking in module MARK
	Goal-oriented AFEM algorithm

	Main contributions of the thesis and outline
	hp-robust multigrid solver for linear elliptic PDEs
	Optimal complexity of AFEM for nonsymmetric linear elliptic PDEs
	On full linear convergence and optimal complexity of AFEM
	Optimal complexity of GOAFEM for nonsymmetric linear elliptic PDEs

	Additional scientific contributions
	Parameter-robust full linear convergence and optimal complexity of AFEM for nonlinear PDEs
	Cost-optimal AFEM for semilinear elliptic PDEs


	hp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs
	Introduction
	hp-robust multigrid solver
	Model problem
	Mesh and space hierarchy
	Multigrid solver
	Main result

	Application to adaptive FEM with inexact solver
	Numerical experiments
	Contraction and performance of local multigrid solver
	Optimality of the adaptive algorithm
	Numerical performance and insights for jumping coefficients

	Proofs
	Auxiliary results
	Multilevel hp-robust stable decomposition on NVB-generated meshes
	Strengthened Cauchy–Schwarz inequality on NVB-generated meshes
	Proof of the main results


	Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs
	Introduction
	Preliminaries
	Abstract formulation of the model problem
	Mesh refinement
	A posteriori error estimator and axioms of adaptivity
	Contractive Zarantonello symmetrization
	Contractive algebraic solver

	Completely adaptive algorithm
	Main results
	Proofs
	Contraction of perturbed Zarantonello symmetrization
	A priori convergence
	Quasi-Pythagorean estimate
	Auxiliary contraction estimates
	Proof of Theorem ??
	Proof of Theorem ??

	Numerical experiments
	Diffusion-convection-reaction on L-shaped domain
	Strong convection on Z-shaped domain

	Conclusion and future work

	On full linear convergence and optimal complexity of adaptive FEM with inexact solver
	Introduction
	General second-order linear elliptic PDEs
	AFEM with exact solution
	AFEM with contractive solver
	AFEM with nested contractive solvers
	Application to strongly monotone nonlinear PDEs
	Numerical experiment
	Proofs of Lemma ??, Lemma ??, and Lemma ??

	Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs
	Introduction
	Setting
	Continuous model problem
	Finite element discretization and discrete goal
	Zarantonello iteration
	Algebraic solver
	Mesh refinement
	A posteriori error estimation

	Adaptive algorithm
	A posteriori error analysis
	Full linear convergence
	Optimal complexity of Algorithm ??
	Numerical examples
	Singularity in the goal functional
	Geometric singularity and strong convection

	Summary

	Bibliography
	Curriculum vitae

		2024-06-11T17:21:18+0200
	Signature Box
	Julian Christoph Streitberger
	Signature




