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Kurzfassung

Adaptive Finite-Element-Methoden (AFEMn) sind ein unverzichtbares Werkzeug fiir die effiziente
numerische Simulation von partiellen Differentialgleichungen (PDG) mit einer Vielzahl von An-
wendungen, insbesondere im Ingenieurwesen. Das Ziel besteht darin, eine zuverldssige numerische
Approximation der unbekannten Losung mit minimalen Rechenkosten zu berechnen. Diese Dis-
sertation entwickelt adaptive Algorithmen zur effizienten Losung von unsymmetrischen linearen
elliptischen PDG zweiter Ordnung. Dazu verfeinern wir die adaptive Prozedur von Standard-AFEM:
Berechne die Losung der diskreten Formulierung und schétze den Approximationsfehler, markiere
Dreiecke mit groBerem Fehlerbeitrag und fiihre eine Verfeinerung des Gitters damit durch. Hierzu
verwenden wir einen geschalteten iterativen Loser im SOLVE-Modul des adaptiven Algorithmus, der
sich aus einer kontraktiven Symmetrisierung und der anschlieenden Losung dieses symmetrischen
Problems mittels algebraischem Loser zusammensetzt. Hierbei ist es entscheidend, dass das Verfahren
den Fehler in der zugehorigen Sobolev-Norm kontrahiert und der Loser lineare Komplexitit aufweist.
Die Abbruchkriterien werden so formuliert, dass sie die verschiedenen Fehlerkomponenten von
Diskretisierung, Symmetrisierung und Algebra ausbalancieren. Diese Strategie garantiert volle
R-lineare Konvergenz des Fehlers, d.h. im Wesentlichen Kontraktion eines geeigneten Quasi-Fehlers
in jedem Schritt des Algorithmus. Eine hinreichend kleine Wahl der Parameter garantiert auch
optimale Konvergenzraten beziiglich der Freiheitsgrade und Rechenkosten. Dariiber hinaus wird
die Methode auf zielorientierte adaptive Algorithmen erweitert, die die effiziente Berechnung eines
Funktionalwertes der Losung der PDG ermoglichen. Die Arbeit umfasst folgende Hauptbeitréage:

Zur iterativen Losung der linearen Gleichungssysteme von symmetrischen PDG présentieren wir
ein neuartiges geometrisches Mehrgitterverfahren, welches robust in Bezug auf den Polynomgrad
p > 1 und die (lokale) Netzweite & kontrahiert. Dariiber hinaus wird bewiesen, dass der eingebaute
algebraische Fehlerschitzer hp-robust dquivalent zum algebraischen Fehler ist und die Anwendung
des Mehrgitterverfahrens auf symmetrische PDG optimale Komplexitit garantiert.

Zweitens wird gezeigt, dass das kontraktive inexakte Losungsverfahren fiir eine unsymmetrische
PDG zu optimaler Komplexitit des Algorithmus fiihrt. Eine neue Beweisstrategie ermoglicht es,
die bisherigen Einschrinkungen an die Parameter in vorherigen Arbeiten abzuschwichen. Zudem
wird der iibliche Beweisschritt iiber eine (Quasi-)Pythagoras-Identitét durch eine verallgemeinerte
Quasi-Orthogonalitit ersetzt. Insgesamt ebnet die neue Beweisstrategie den Weg fiir Erweiterungen
der Analyse auf allgemeine inf-sup-stabile Probleme jenseits von Energieminimierungs-Problemen.

SchlieBlich wird ein zielorientierter adaptiver Algorithmus analysiert, der die effiziente Berechnung
einer ZielgroBe ermoglicht, die von der Losung u* einer unsymmetrischen PDG abhéngt. Es wird eine
zielorientierte adaptive iterativ symmetrisierte Finite-Element-Methode prisentiert und analysiert.
Es wird gezeigt, dass der vorgeschlagene Algorithmus volle R-lineare Konvergenz und optimale
Konvergenzraten hinsichtlich sowohl der Freiheitsgrade als auch der Rechenkosten garantiert.



“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Abstract

Adaptive finite element methods (AFEMs) have become an indispensable tool for efficient numerical
simulations of partial differential equations (PDEs). Such methods successfully cover a wide
range of applications, in particular, in engineering. However, what one strives to achieve in
practice is computing a reliable numerical approximation of the unavailable solution at the lowest
possible computational cost and therewith time. In this thesis, adaptive mesh-refining algorithms
are developed for the efficient solution of nonsymmetric linear elliptic PDEs of second order.
Standard AFEM employs the feedback loop: given a computational mesh, solve the discrete problem
yielding an approximation, estimate its error, and mark certain elements for mesh-refinement. A
centerpiece of this thesis consists of embedding a nested procedure in the SOLVE module including a
contractive symmetrization and a contractive algebraic linear solver such that the error contracts in
the PDE-related norm. Furthermore, it is crucial that the iterative linear solver is of linear complexity.
Suitable stopping criteria are then formulated to equilibrate the error components (coming from
discretization, symmetrization, and algebraic solver). We show that such an adaptive strategy leads
to full R-linear convergence of the error, i.e., essentially a contraction of an appropriate quasi-error in
every step of the adaptive algorithm. Moreover, a sufficiently small choice of adaptivity parameters
guarantees optimal convergence rates with respect to the computational cost, i.e., optimal complexity.
Furthermore, we show that this approach can be extended to goal-oriented adaptive algorithms,
where the quantity of interest is a functional value of the PDE solution. Overall, the thesis comprises
the following main contributions.

First, we design an optimal local multigrid method for the iterative solution of the discrete systems
arising from the finite element discretization of symmetric second-order linear elliptic diffusion
problems. We show that the iterative solver contracts the algebraic error robustly with respect to the
polynomial degree p > 1 and the (local) mesh size k. This is achieved by an overlapping additive
Schwarz smoother. Moreover, embedding the solver into the AFEM framework for symmetric PDE:s,
we prove that this leads to the optimal convergence rate with respect to the overall cost.

Second, we show that the proposed combined symmetrization-algebra procedure leads to a
contractive inexact solver for nonsymmetric problems. The resulting AFEM algorithm is shown to
be of optimal complexity. Initially, the analysis requires several fine-tuned parameters. However, a
redesign of the proofs via a summability criterion for R-linear convergence allows us to relax such
restrictions. Moreover, the usual proof via a (quasi-)Pythagorean identity is replaced by a generalized
notion of quasi-orthogonality. Importantly, this paves the way towards extending the analysis to
general inf-sup stable problems beyond the energy minimization setting.

Finally, we consider the problem of efficiently computing a quantity of interest depending on the
solution of a general second-order linear elliptic, yet nonsymmetric PDE. To this end, we propose a
goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM) by combining
the previous approaches for nonsymmetric problems. We show that this algorithm guarantees full
R-linear convergence and, thus, allows for the proof of optimal convergence rates with respect to
both degrees of freedom and total computational cost.
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1 Introduction

The result of the mathematician’s creative work is demonstrative reasoning, a proof; but the proof

is discovered by plausible reasoning, by guessing.
— George Polya, 1954

1.1 Motivation

Partial differential equations (PDEs) are a fundamental tool in science and engineering. They are
used to model the behavior of continuous systems in physics including heat transfer, fluid flow, wave
propagation, electromagnetism, and extend to other areas, such as biology, chemistry, and materials
science. This thesis focuses on developing efficient numerical algorithms for linear elliptic PDEs.
Writing the PDE in the so-called variational formulation in a function space X allows us to
employ the finite element method (FEM) as a discretization method. The core idea of FEM is to
replace the inherent infinite-dimensional space X by a finite-dimensional subspace X, of dimension
N := dim X,. For instance, consider a computational domain Q C R< for 4 > 1 and a given a mesh
T¢ consisting of intervals/triangles/tetrahedra T € 7¢ of size hr that cover Q. Then, the globally
continuous and piecewise polynomial functions on 7, of degree at most p € N are typical examples
for a finite-dimensional subspace X,. Then, a system of algebraic equations of size N X N to compute
the coefficients of the simple functions arises, which allows to compute an approximation u} to the
exact solution u*. Since the exact solution «* and hence the error |[|u* — u}||| in the PDE-related
norm is not available in general, the quality of this numerical approximation can only be assessed
by a posteriori error estimation. This means a computable quantity relying only on the given data,
the generated mesh 77, and the computed approximation u is used to measure the approximation
quality of the discretization scheme. In practice, the a posteriori error estimator should be an upper
bound to the error, i.e., reliable, such that if an adaptive algorithm drives the error estimator to
zero, the error also converges to zero. Furthermore, the construction of the error estimator should
be local, i.e., computed on each triangle T of the mesh 7, and, thus, can (at least heuristically)
detect singularities. Then, this technique can drive an adaptive mesh-refinement process by selecting
only a subset of elements that dominate a particular portion of the full error. For a sufficiently
smooth solution «*, the approximation error is uniformly distributed, hence choosing all elements
for refinement leads to optimal convergence rates —p/d of the error with respect to the so-called
number of degrees of freedom dim X, which is equivalent (up to a multiplicative constant depending
on the polynomial degree p) to the number of triangles #7, in the mesh 7,. However, if the exact
solution u* suffers from reduced regularity due to singularities stemming from the geometry of
the domain or from low regularity of the data and the coefficients of the PDE, then uniform mesh
refinement leads to a reduced order of convergence. For instance, consider a boundary value problem
with exact solution given in Figure 1.1. Here, u* has a singularity at the reentrant corner of the
domain and, thus, we cannot expect optimal convergence rate for a sequence (7¢)¢cn, obtained by
uniform mesh-refinement as depicted in Figure 1.2. Indeed, in Figure 1.3, we see that a uniform
mesh-refinement strategy leads to the suboptimal convergence rate —1/3 with respect to the number
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1.2

XXX

Figure 1.2: Sequence of meshes obtained by uniform mesh-refinement up to #75 = 3072.

of degrees of freedom compared to the optimal convergence rate —p /2 for any polynomial degree p
in the adaptive algorithm. Due to the singularity, the error is thus not uniformly distributed, but
rather concentrated in the vicinity of the singularity. A better choice is thus to refine only certain
elements in order to get a better resolution and better capturing of the behavior of the solution u*
while also being more frugal with the computational resources. This allows to restore the optimal
convergence rate of the error and, thus, emphasizes the importance of adaptive mesh-refinement
strategies as in Figure 1.4.

In practice, users are not primarily interested in optimal error decay with respect to the degrees
of freedom but rather in optimal decay with respect to the overall computation time to obtain an
approximation with error below a user-given tolerance (thanks to the a posteriori error estimator).
However, the solution of large linear systems becomes computationally expensive and prevents
quasi-optimal computational run-time, i.e., optimal run-time up to a fixed multiplicative constant, of
the adaptive algorithm. Therefore, one requires iterative algebraic solvers with linear complexity
per step (i.e., the run-time grows linearly proportional to the size of the linear system) embedded
into the AFEM loop. Additionally, we require that the algebraic solver contracts the error in the
PDE-given norm, i.e., the error is reduced by a fixed uniform portion in each step of the solver.
Moreover, apt stopping criteria are needed to prevent a surplus in the solution of the linear system.



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.1 Motivation

(L LA LLLL 11 1 1 111 B AL B AL T T T T T T T T T T T T T T T T
100 1 w00 @ 8
= -2 | - -2 |- .
§ 10 o0 10
= 107t 1 107t 8
2
o}
1076 | adaptive uniform B 1076 | adaptive uniform 0 N
—0— -0- p=1 —0— -0- p=1 o2
—— -0- p=3 —— -0- p=3 \\\\3‘/5\
10_8 T A AT AR I EaTY IR H\\\Hm\ vl 10_8 L Lol Lol Ll \\ A
10° 10t 102 10® 10* 105 10° 107 108 1071 10° 10! 102 103
number of degrees of freedom cumulative computation time [s]

Figure 1.3: Convergence history plot of an a posteriori error estimator with respect to dim X, and
the cumulative computation time.

Figure 1.4: Sequence of meshes obtained by adaptive mesh-refinement up to #75 = 219.

While optimal contractive solvers for lowest-order FEM discretizations of symmetric linear elliptic
PDE:s are well-established, the treatment within AFEM of nonsymmetric discrete problems remained
open due to a missing link between the generalized contraction in a discrete vector norm and the
PDE-given norm.

In many applications, the cost-effective approximation of a certain goal value G (u*) of the solution
u* is the main focus. This leads to the so-called goal-oriented adaptive FEM which employs a certain
duality approach.

The development and analysis of standard and goal-oriented adaptive FEM for general linear
elliptic PDEs by means of nested iterative solvers is the main focus of this thesis. To this end, first, we
present an optimal local multigrid (MG) method for a symmetric linear elliptic PDE which is robust
both in the local mesh-size % and the polynomial degree p and is embedded into an adaptive algorithm.
Subsequently, we employ a nested iterative solver consisting of a symmetrization and an algebraic
solver, e.g., the proposed optimal multigrid method. This results in the presentation of AFEM and
GOAFEM algorithms with quasi-optimal computation time for general second-order linear elliptic
PDEs with nested components as illustrated in Figure 1.5: The discretization of a nonsymmetric
PDE in weak formulation leads to a nonsymmetric linear system with unavailable exact solution u}
on the mesh level £. Hence, we employ a symmetrization loop to obtain a symmetric linear system
with unavailable exact solution u'tf’* in the k-th iteration of the symmetrization loop. Since the exact
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Figure 1.5: Modules of the adaptive algorithm with nested iterative solver for nonsymmetric PDEs.

solution of symmetric and positive definite linear systems is computationally expensive with growing
size of the linear system, we employ an algebraic solver to obtain an approximation u f"’ to the exact

solution u’g "* of the symmetrized system. Altogether, we obtain a computable approximation u’g’j to
the exact solution u7.

Although the presentation in this thesis is restricted to linear nonsymmetric PDEs, the new theory
also improves existing results for nonlinear PDEs with strongly monotone and Lipschitz continuous

nonlinearity.

Outline of the introduction. In this first chapter, we provide a brief overview of standard FEM,
adaptive FEM and goal-oriented adaptive FEM. More precisely, starting from a symmetric model
problem and a detailed look at the idea of FEM in Section 1.2, we present the state-of-the-art theory
of AFEM in Section 1.4 with a comprehensive study of a quasi-optimal AFEM algorithm with
exact solve. Section 1.5 extends the previously presented ideas with the embedding of an algebraic
solver opening the door to optimal convergence rates with respect to the overall computational cost.
In Section 1.6, we extend the result to a goal-oriented framework and discuss the cost-optimal
approximation for the given quantity of interest. Finally, we conclude this chapter with a detailed
statement highlighting the main contributions of this thesis in Section 1.7.

1.2 Model problem and classic FEM approach

Throughout the thesis, we employ standard notation of Lebesgue and Sobolev spaces and their norms.
Additionally, we abbreviate A < B if there exists a generic constant C > 0 such that A < C B with
C independent of the mesh size . We write A ~ Bif A < B and B < A. This thesis considers a
general second-order linear elliptic PDE on a bounded polyhedral Lipschitz domain Q ¢ R¥ with
d > 1. In this first chapter, we explain the concept and the historic development for a prototypical
symmetric linear elliptic PDE and postpone the treatment of nonsymmetric linear elliptic PDEs

. . dxd . . -
to the main chapters of the thesis. Let A € [L”(Q)]Syxm be a symmetric and uniformly positive
definite diffusion matrix, i.e., there exist constants a_, @, > 0 such that

a_ [EP < A(xX)E-E <y |é)? forall ¢ € RY and almost every x € Q. (1.1)
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1.3 State-of-the-art and outlook

Let f € L2(Q) and f € [L2 (Q)] ? be given right-hand sides. The model problem seeks the solution
u*: Q— Rto

—div(AVu*) = f —div(f) inQ subjectto u* =0 ondQ. (1.2)

Introducing the Sobolev space X = H{(Q) equipped with the usual H'(Q)-seminorm ||-||x =
IV()|l2(q), @ multiplication of (1.2) with a test function v € X, integration over the domain, and
integration by parts together with the use of the Dirichlet boundary condition leads to the weak
formulation: Find u* € X such that

a(u*,v) ::/AVu*-Vvdxzf(fv+f-Vv)dx=:F(v) forallv € X. (1.3)
Q Q

Owing to (1.1), the bilinear form a( -, -) is continuous and elliptic to ensure existence of a solution
to (1.3), i.e., there exist constants C.p = @y, Cenp = @— > 0 such that

a(v,w) < Cen IVllx Wl and a(v,v) = Can|Iv] forall v,w € X. (1.4)

Therefore, a(-,-) defines a scalar product on X with norm ||-||| = a(-, -)*/? and the Lax—Milgram
lemma [LLM54] guarantees existence and uniqueness of a weak solution u* to (1.3), see, e.g., [Eval0,
Section 6.2].

A triangulation 7y of Q into compact simplices is called conforming if the intersection of any
two simplices is either empty or a common vertex or a common edge or a common face etc. Given
such a conforming triangulation 7z of Q, we define the finite element space and a fixed polynomial
degree p € N, we define the finite element subspace

Xy ={vyg € X: VT € Ty, vy|r is a polynomial of total degree at most p}. (1.5)

Then, the Lax-Milgram lemma also guarantees existence and uniqueness of the solution u}, € Xg
to the discrete formulation

a(uy,ve) =F(vy) forallvy € Xpy. (1.6)
Moreover, u}, is the quasi-best approximation of #* in the sense of the Céa-type estimate

||Lt* - u;{-lllz\’ < CCéa vng)r(l ”u* - VH”X with CCéa = Ccnt/cell > 0. (Céa)
HEXH

Given a basis {¢1, ..., ¢n} of Xy with N := dim Xy, the finite element solution ”;1 to(l.6)isa
linear combination of the basis functions, i.e., u;; = Z;-v:l x;j ¢j. The coeflicients x ; are determined by
the solution of the linear system Ax = L where A = a(¢x, ;) and Ly = F(gy) for1 < j, k < N.

1.3 State-of-the-art and outlook

We start with a review of the state-of-the-art literature and discuss the inherent open questions treated
in this thesis. Adaptive algorithms have been investigated since the late 1970s with pioneering works
proposing adaptive mesh-refinement in [BR78; ZR79; GKZB83]. Since adaptive mesh-refinement
strategies do not drive the maximal mesh-size to zero, their convergence is not covered by the
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classical a priori error analysis. While convergence in 1D was already proved in [BV84], it took
almost two decades until the works [D6r96; MINS00; Vee02; DKO8] paved the way for the further
development by the first rigorous plain convergence proofs of AFEMs for d > 2. The notion of
nonlinear approximation classes [BDDO04] provided a formal statement of optimal convergence rates
and enabled the first proof of optimal convergence rates for standard adaptive FEMs in [Ste(07;
CKNSO08]. This laid the groundwork for various generalizations of quasi-optimal convergence
rates to nonresidual error estimators in [CN12], the p-Laplacian [BDK12], quasi-linear problems
with strongly monotone nonlinearity [GMZ12], nonsymmetric problems [FFP14; BHP17], and
discontinuous Galerkin methods in [BN10] and [KG18] for plain convergence of these methods with
fewer restrictions on the penalty parameter. The work [CFPP14] presents an axiomatic framework
for optimal convergence rates with respect to the degrees of freedom and summarizes the mentioned
and a variety of unmentioned earlier references.

Early works in the direction of optimal complexity originate from adaptive wavelet meth-
ods [CDDO1; CDDO03] and the idea was later adopted for AFEM in [Ste07; CG12]. Driven by the
interest in AFEMs for nonlinear problems [CW17; GHPS18; HW20b; HW20a; DFTW20], recent
papers [GHPS21; HPW21; HPSV21] aimed to combine linearization and algebraic iterations into a
nested adaptive algorithm. Following this idea, the algorithmic decision for either mesh refinement
or linearization or algebraic solver step is steered by a posteriori-based stopping criteria with suitable
stopping parameters in the spirit of [AGL13; EV13]. The literature [GHPS21; HPW21] covers full
linear convergence for energy contractive solvers with no restrictions on the solver parameter and
[GHPS21] requires sufficiently small solver parameter for a norm-contractive solver even for full
R-linear convergence, i.e., contraction in each step of the algorithm up to a multiplicative constant.
Moreover, [GHPS21; HPW21] prove optimal computational cost of the adaptive algorithm under
the assumption that the arising linear systems can be solved directly in linear complexity. The
work [HPSV21] considers a coupling of the linearization and algebraic solver to prove optimal
complexity with restrictions on the involved solver parameters. More precisely, full R-linear conver-
gence therein requires the algebraic solver parameter to be small with respect to the linearization
parameter and the linearization parameter to be small with respect to the marking parameter. The
proofs essentially rely on two building blocks: First, a contractive solver in the PDE-related norm
and, second, a Pythagorean identity for the exact solutions. Both cornerstones remained open
for nonsymmetric problems and are now treated in the course of this thesis. In essence, optimal
complexity follows as soon as full R-linear convergence of AFEM with inexact solver and optimal
rates of AFEM with exact solver (for sufficiently small marking parameter) have been established;
see, e.g., [BIM™24a].

1.4 Adaptive FEM with exact solver

This section introduces the modules SOLVE-ESTIMATE-MARK-REFINE constituting the adaptive
algorithm depicted in Figure 1.6.

For a first illustration of the concepts of adaptivity, we suppose that the SOLVE module employs
a direct solver to the linear system associated with (1.6). Nevertheless, we emphasize that the
application of a direct solver prevents the adaptive algorithm from attaining optimal complexity.
Figure 1.7 displays an overview over the connections between the necessary requirements (called
toolbox) and the results in Section 1.4—1.5.
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1.4 Adaptive FEM with exact solver

SOLVE ESTIMATE MARK REFINE

solution accurate enough?

Figure 1.6: Modules of the standard AFEM algorithm with exact solver.

1.4.1 The module ESTIMATE

Since the exact solution «* and, thus, the discrete error ||u* — u},|| x is not available, we resort to
an a posteriori error estimator n H(u;I), which is reliable and efficient, i.e., there exist constants
Crel, Cesr > 0 such that

1/2
lu* = ufllx < Cranu(ufy) and  ny(ufy) < Ceg [llu* — ufy |5 + oscy; | / (1.7)

Here, oscy denotes the so-called data oscillations and, for a constant diffusion A, it is a measure
how good the data f can be approximated by piecewise polynomials. In the case of a nonconstant
diffusion coefficient, the data oscillations include a volume term measuring how well f+div(AVvy)
can be approximated by piecewise polynomials and a boundary term measuring how well the normal
jump [[A Vvy - r] can be approximated by edgewise polynomials. Therefore, if the oscillations
vanish, the error estimator is equivalent to the error. For an early reference on a posteriori techniques,
we refer to [Ver89]. A possible approach to obtain an error estimator is by means of a residual-based
ansatz, where the residual measures to which extent the discrete solution u7, satisfies the PDE. Given
vy € Xy and Uy C TH, the associated local contributions to the residual-based error estimator

10 (U vi) = (Sreqy, 10(T; vi)?) " read

ne(T;ve)? = [T/ f+div(AVvE= )22 0TI [AVVE=F] 012 forall T € 7.
(1.8)
In the case of Uy = T above, we abbreviate ng (vy) = ng(Tg; vy). We stress that the definition

of the estimator in (1.8) additionally requires that A|y € [Wl’w(T)]:br(: and f|r € [H 1(T)]  for
all T € 95, where 7 is an initial supertriangulation of . From the definition (1.8), we see that,
first, this quantity is computed locally on each triangle T € 7y and, second, acts as an indicator
of which elements cause a larger contribution to the global error. Thus, the estimator provides a
means to steer a local mesh-refinement strategy. Then, it is well-known that the residual a posteriori
estimator from (1.8) satisfies the following axioms of adaptivity from [CFPP14]. These properties
ensure optimal convergence rates of the adaptive algorithm with respect to the number of degrees of

freedom.

(T) (0TNQ)

Proposition 1.1 (axioms of adaptivity [CFPP14, Section 6.1]). There exist constants Cgap, Crel,
Cadrel, Cmon > 0, and 0 < greq < 1 such that the following properties are satisfied for any
conforming triangulation Ty and any conforming refinement Ty, of Ty, any subset Uy C Ty N T,
corresponding Galerkin solutions u;; € Xy, u’;l‘ € Xy, to (1.6) and arbitrary vy € Xy, vi, € Xp.

(A1) stability.  |np(Ung,vi) —na(Ug,ve)| < Csa Vi — vEll X
(A2) reduction. (T \Ti,ve) < Gred TH(TH\Ths VH).

(A3) reliability.  |lu* — u}llx < Crenu (ufy).
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Toolbox:

( Properties of the algebraic solver WYy : X — Xg:
(C1) contraction: [luf, —¥(up)ll < getr llufy — upll

(C2) a posteriori error control: 1—;3:—"|||u}‘{ —W(ug)ll < ¥(ug) —ugll < (1+ qm)lllu;‘i —uglll

( Properties of mesh refinement:

(R1) splitting estimate: #7}, < Cehild #TH

(R2) overlay estimate: #(7g @ Tp,) < #7u + #7Tn — #%0
(R3) closure estimate: #77 — #70 < Cclosure Zﬁ;& #M;

Properties of Dorfler marking (D):
Almost-minimal-cardinality set My C 7y with t9n(u;‘_])2 < ngMy; u}_‘l)2

S

Properties of the space Xp:
nestedness: Xy € Xj, for 7, € T(TH)
{+N

(A4) quasi-orthogonality: Z ey = w1 < Coxgn (N + 1)1 Jllu* = u} || for ¢, N € No.
=

S

Properties of the estimator ny : Xy — Rxo:

(A1) stability: |17, (Tp O Ta,vi) = 1H (T O T, vE)] < Cotab v = valll
(A2) reduction: 7, (7p \ T, vH) < Grea 1 (TH, VH)

(A3) reliability: [lu* = uf,lll < Cret na (ufy)

(A37) discrete reliability: [l — uf,lll < Carel na (TE \Ths u}y)

Optimal rates with respect to #7;
Theorem 1.9

1 additionally (R1) + (R3)
i

Estimator reduction Quasi-monotonicity (QM)
Lemma 1.3
LA + (A2) + (D) : LAD + (A2) + (Céa) +(AY :
C ' tor (A1) + (A2) + (A3%) ]
R-linear convergence of estimator Comparison lemma Optimality of marking
Theorem 1.6 Lemma 1.8 Lemma 1.7
’ ) ’ 1 4 1
| additionally (A3) + (A4) ] | additionally (R2) i H (A1) + (A3%) + 6 sufficiently small ]
1 1 1 ) ! 1

— T >

AFEM with exact solution (Section 1.4)

Perturbed estimator reduction
Lemma 1.10
’ \
1(AD) + (A2) + (D) + (C1) ]
1 U
Full R-linear convergence Optimal rates v‘vnh e
spect to computational cost
Theorem 1.12
Theorem 1.14

’
| additionally (A3) + (A4)
1

]
TR 66666 S

Estimator equivalence
Lemma 1.11

AFEM with iterative solution (Section 1.5)

Figure 1.7: Overview of the connections between the assumptions and the results in Section 1.4—1.5.
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1.4 Adaptive FEM with exact solver

(A3%) discrete reliability.  |luy — uf|lx < Carel 1E (TE\Ths 7).
(OM) quasi-monotonicity. — nu(uy) < Cmon nH (u}))-

The constant Cye| depends only on uniform shape-regularity (defined in (1.9) below) of Ty and the
dimension d, while Cgp and Cqre) additionally depend on the polynomial degree p. The constant
Gred = 2-1/2d) polds for bisection-based refinement rules in R and the constant Cyon can be
bounded by Cmon < min{l + Cstab(1 + CCéa) Crel , 1+ Cstab Cdrel}~ O

1.4.2 The module MARK

In practical applications (see the experiment in Figure 1.3), it is desirable to mark a small set of
elements My C 75 whose corresponding error contributions are estimated to be a given 0 < 6 < 1
portion of the full error, see [D6r96]. In particular, the error estimator on the marked elements
controls the error estimator contribution of the nonmarked elements. The marking strategy consists in
using the following Dorfler criterion: Determine a set My of almost minimal (up to the multiplicative
constant Cpp,r > 1) cardinality with

#Mpy < Coak min  #UJ, where
Ur M [0,u%] D)

My [0,u}y] = {Uny S Ta: On(ul)? < nu(Un;ulp)?}.

An optimal implementation determining a set of minimal cardinality with Cpx = 1 in linear
complexity O(N) (in average time) employs a partitioning strategy as proposed in [PP20]. Importantly,
the choice of the Dorfler criterion in the marking step allows for contraction of the error estimator
from (1.8) through mesh refinement.

1.4.3 The module REFINE

Let T be a countably infinite set of regular triangulations 7z € T called admissible triangulations. We
suppose that refine(-, -) is a fixed mesh-refinement strategy such that 7, := refine(7y, My) € T
is obtained from 77 € T by refinement of at least the marked elements My C 7g, i.e., there holds
My € Tu \ T, For any two admissible meshes 7g, 7, € T, we write 7, € T(7g) if 75, can be
obtained from 7y by a finite number of mesh-refinement steps. Throughout the thesis, we assume
that all admissible meshes stem from a common initial mesh 7y € T, i.e., it holds that T = T(7).
This thesis employs newest-vertex bisection (NVB) as a refinement strategy and illustrates this
procedure for d = 2. For a nondegenerate triangle, newest-vertex bisection introduces the edge
between the midpoint of the refinement edge and the opposite vertex. This leads to subtriangles of
equal area and, thus, is a binary refinement rule. To refine a conforming triangulation 7z € T, the
NVB algorithm employs successive steps of newest-vertex bisection of 7 € 7y until all hanging
nodes have been removed. Depending on the selection of the refinement edges, it takes at most
three bisections to refine the triangle 7 and ensure that the midpoints of the marked edges have
become new vertices; see Figure 1.8. Then, newest-vertex bisection (even for any d > 2) satisfies the
following properties [Dor96; Ste07; CKNSO08; Ste08; KPP13; GSS14].

Proposition 1.2 (properties of mesh refinement). There exist constants Cepild, Celosure > 0 such
that the following properties hold:



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1 Introduction

AN AN AN AN

Figure 1.8: Newest-vertex bisection (NVB) of a triangle 7 c R? introduces the edge between
the midpoint (indicated by the red dots) of the refinement edge (indicated by the red
lines) and the opposite vertex. NVB refines T into two children 77, 7”" with equal area
|T’| = |T”"| = |T|/2 and, therefore, is a binary refinement rule.

(R1) splitting estimate.  For all Ty € T and marked elements My C Ty, the refinement
Th = refine(Ty, Mp) satisfies

#Tn < Cenitd #7H.

(R2) overlay estimate. For all Ty, T, € T, there exists a common refinement Tg & Ty, €
T(7g) NT(Ty,) with
#(Tu ® Tn) < #Tu + #Tn — #7%.

(R3) closure estimate.  Let (7¢)¢en, be an arbitrary sequence of successively refined meshes,
i.e., for all £ € Ny, there holds that T+, = refine(T¢, M¢) for some set M¢ C Ty, Then,

we have that
-1

#72 - #76 < Cclosure Z #M] fOl’ all ¢ € N,
j=0
In FEM analysis, the constants often depend on the fact that the shape of the simplices does not
deteriorate under mesh refinement to ensure that neighboring elements are not too different in size.
We say that 7 € T is uniformly y-shape regular if

0<yi= inf sup{r >0: Ix e T,B,(x) C T} < oo,

TeTh diam(T) (1.9)

An important property of NVB refinement is that it ensures that all meshes 7y € T are uniformly
y-shape regular. Henceforth, we will only work with conforming y-shape regular meshes.
1.4.4 Adaptive algorithm with exact solve

With the modules from Section 1.4.1-1.4.3, we are able to present a first adaptive algorithm employing
an exact solution of the discrete problem.

Algorithm 1A: AFEM

Input: Initial triangulation 7y € T, adaptivity parameters 0 < 6 < 1 and Cpar > 1.

Forall £=0,1,2,..., repeat the following steps (i)—(iv):
(i) SOLVE: Compute the exact discrete solution uz,‘ € Xy to (1.6).

(i) ESTIMATE: Compute the refinement indicators . (T; u;) from (1.8) for all T € 7.

10
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1.4 Adaptive FEM with exact solver

(iii) MARK: Determine a set of marked elements M, C 7¢ satisfying the Dorfler marking
criterion (D).

(iv) REFINE: Generate the refined triangulation 774 = refine(7z, M,) by employing NVB.

Output: Sequence of successively refined triangulations 7z, corresponding exact solutions
uy € X, and residual error estimators ng(u;') for all £ € Nj.

1.4.5 Quasi-optimality of Algorithm 1A

In the following subsection, we investigate the properties of the Algorithm 1A and show that the
adaptive algorithm guarantees optimal convergence rates with respect to the number of simplices.
We start with the estimator reduction due to the Dorfler marking criterion (D).

Lemma 1.3 (estimator reduction [CFPP14, Lemma 4.7]). Suppose that the estimator satisfies
stability (A1) and reduction (A2). Let 0 < 0 < 1 and suppose the use of Dorfler marking (D).
Then, we have estimator reduction, i.e., there exist 0 < gest < 1 and Ceg > 0 such that

() < qesinrr (ufy) + Coan |y = wfyllx  forall Ty € T and all Ty € T(Tgp).  (1.10)
The contraction constant reads qest = [1 — (1 = ¢req) 0] 1/2 With qreq from (A2). O

We see that the contraction constant g.s by definition satisfies gesy — 1 as & — 0, so that the
contraction deteriorates for tiny marking parameter 6. A first important consequence of estimator
reduction (1.10) is (plain) convergence of the error estimator ng(uz,‘) — (0 as { — co. Moreover,
reliability (A3) asserts error convergence ||u* — uz,'|| x — 0as{ — oo, i.e., the computed solution
uy converges to the exact solution u*.

Corollary 1.4 (plain convergence [CFPP14, Corollary 4.8]). Let (7¢)cen, be a sequence of
meshes T¢ € T for all £ > 0 satisfying estimator reduction (1.10) from Lemma 1.3 and
lime e |}, — uj|lx = 0. Then, there holds estimator convergence

flim ne(uy) =0 (1.11)
and reliability (A3) assures error convergence

flim lu* —ujllx =0. O (1.12)

Additional to the axioms above, there holds a generalized quasi-orthogonality from [Fei22, Equation 8],
which generalizes the Pythagorean identity for symmetric PDEs. This property links the error
between two consecutive Galerkin solutions u’g RE uz,‘ to the error between the exact solution and the
Galerkin solution.

Proposition 1.5 (validity of quasi-orthogonality [Fei22, Equation 8]). There exist Cory > 0 and
0 < 6 < 1 such that the following holds: For any sequence (X¢)cen, of nested finite-dimensional
subspaces Xy C Xp41 C Hé (Q), the corresponding Galerkin solutions u’g € Xy to (1.6) satisfy

11
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(+N
(A4) quasi-orthogonality. Z ek = w5 < Cortn (N + 1)~ ||uw* = u}||3 forallt,N € Ny.
o=t

Here, Copn, and 6 depend only on the dimension d, the elliptic bilinear form a(-, -), and the chosen
norm || - || x, but are independent of the spaces Xy. O

Indeed, symmetric PDEs (like in (1.2)) allow for the Pythagorean identity
Mo = ug WP+ Mg,y = upll? = ™ = u7lI> forall € € Ny (1.13)

resulting in (A4) with Cory = CC2Orlt / Cgu and 6 = 1. However, for the later consideration of
nonsymmetric PDEs, (1.13) fails, while (A4) remains valid. The generalized quasi-orthogonality (A4)
allows us to improve the estimator reduction property in (1.10) to R-linear convergence of the estimator,
i.e., quasi-contraction.

Theorem 1.6: R-linear convergence of the estimator [BFM*23, Theorem 4]

Let (T¢)¢en, be a sequence of meshes with T € T. Suppose estimator reduction (1.10) from
Lemma 1.3, reliability (A3), and generalized quasi-orthogonality (A4). Then, there holds
R-linear convergence of the estimator, i.e., there exist constants Cj, > 1 and 0 < qpin < 1 such
that

Neen U7, n) < Ciin dyy e (uf)  forall £, N € N, (1.14)

The constants Cyin and qiiy, depend only on Cyel, Corp from (A3) and (A4) and on qest, Cest from
Lemma 1.3. o

So far, we have investigated linear convergence of the error estimator only. However, this convergence
can be arbitrarily slow in theory. To formalize the idea of convergence rates, we abbreviate the set
of all admissible meshes with at most N € Ny more elements compared to the initial mesh 7y by
Ty ={Tg € T: #Tg — #79 < N}. For arbitrary s > 0, we introduce the nonlinear approximation
class by

¥ ||y = sup min [(N+1)*ny(u})] € [0, ]. (1.15)

NeNg THETN

If ||u*]|a, < oo, then one can show that there exists a sequence of (not necessarily nested) optimal
meshes (ﬁ)geNO such that the corresponding error estimators 77, (i) decay with rate s, i.e., they
satisfy 77, = O((#’?})_S). In the following, we want to illustrate that the sequence of computed
meshes (7¢)¢en, from Algorithm 1A leads to decay of the output error estimator with rate s as
well. One key observation is that not only the Dorfler marking (D) does imply R-linear convergence
but that also the converse implication is true; the result essentially goes back to the seminal
work [Ste07].

Lemma 1.7 (optimality of Dorfler marking (D) [CFPP14, Proposition 4.12]). Suppose that the
estimator satisfies stability (A1) and discrete reliability (A3*). Then, for all 0 < 6 < Oy =

2 2 -1 :
(1+C, Cirel) ™ there exists some 0 < qg < 1 such that

(nh(u;) < qonm (uy) = 017 < n(Ti \ 7;'1)2) forall Ty € T and Ty, € T(T5).  (1.16)

12
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1.5 Adaptive FEM with inexact solver

The constant qg depends only on Cyap, Carel from (A1) and (A3"), and 6. O

A key ingredient in the proof of optimal convergence of the error estimator is the following
comparison lemma, which bounds the number of nonrefined elements in terms of the approximation
class.

Lemma 1.8 (comparison lemma [CFPP14, Lemma 4.14]). Suppose that the mesh refinement
satisfies the overlay property (R2) and that the estimator satisfies quasi-monotonicity (QM)
with constant Cyon. Let Ty € T such that the associated estimator fulfills n H(u;I) > 0 and let
0 < g < 1. Then, for all s > 0 with ||[u*||s, < oo there exists a refinement T, € T(Tg) with

mn(uy) < gnu(uly) and  #Th - #75 < Coong 11, nu @it o 117

Theorem 1.9: Optimal convergence rates of Algorithm 1A [CFPP14, Proposition 4.15]

Let (7¢)een, be the meshes generated by Algorithm 1A. Suppose the mesh refinement prop-
erties (R1)—(R3) and that the estimator satisfies (A1)—(A3") and the generalized quasi-
orthogonality (A4). Recall 0oy from Lemma 1.7. Then, for all 0 < 0 < Oy < 1, there holds
convergence of the estimator at optimal rate with respect to the number of elements, i.e., for all
s > 0, there exist constants Copt, Cope > 0 such that

Copt lu*]la, < sup [(#72 — #70 + 1)* ne| < Copt llu* |4, - (1.18)
€Ny

The constant copy > 0 depends only on #75, Cgup from (Al), Cepilg from (R1), and s; the
constant Cope > 0 depends only on Cpon from (QM), Cenilg and Celosure from (R1) and (R3),
Chark = 1 from (D), Ciiy and qiin from (1.14), gg from (1.16), and on s.

The upper bound in (1.18) guarantees that the estimator sequence generated by Algorithm 1A
converges with rate s > 0 if a decay with rate s is possible along a sequence of optimal meshes. The
lower bound in (1.18) means that the theoretically attainable optimal rate can be estimated by the
convergence rate of the computed estimator sequence. In summary, the adaptive algorithm converges
at any possible algebraic rate s > 0 and, thus, Algorithm 1A is indeed rate-optimal.

1.5 Adaptive FEM with inexact solver

The proof of optimal convergence rates with respect to the computational time relies on the fact that
each module in Figure 1.6 can be realized in linear complexity, i.e., the invested work for each step of
the algorithm is of order O(#7¢). Since a direct solver, in general, does not satisfy this assumption,
we will embed an iterative algebraic solver into Algorithm 1A.

1.5.1 The module SOLVE

Suppose that we are given an iterative algebraic solver to treat the problem (1.3). Denote its iteration
step by the function W : Xy — Xp, i.e., given an approximation uy; € Xp of the exact solution u%,

to (1.6), the solver returns an improved approximation Wy (up). Furthermore, we assume that the

13
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1 Introduction

algebraic solver is contractive in the PDE-related norm |||-[|| towards u7},, i.e., there exists a constant
0 < ger < 1 independent of Xg such that

Mgy =¥ (ue)ll < gew llugy —umll forallup € Xp. (C1)
The triangle inequality then assures a computable a posteriori control of the algebraic solver error

1- qctr

gctr

Mugy =¥ ur)ll < W¥(up) —unll < (1 +ge) lugy —unll foralluy € Xy.  (C2)

Therefore, the algebraic solver error [[lu}; — ¥ (ug)||| is controlled by the computable error |||V (uz) —
ug||| of two consecutive iterates. For a stopping parameter A > (), it is reasonable to stop the algebraic
solver for the minimal index such that error by the inexact solution is controlled by a fixed A-portion
of the discretization error (similar to the Dorfler marking criterion (D)). Given a stopping parameter
A > 0, this means that we stop once there holds

¥ (ur) —upll < Anu(¥(un)). (1.19)

In fact, our analysis only needs a weaker form of contraction (C1) with C qftr replacing qftr after k
iterations of the algebraic solver with a uniform constant C > 1 independent of Xp, together with
the additional assumption of a posteriori control similar to (C2).

For symmetric positive definite systems, many solver options are available, e.g., methods that
only need information on the given matrix. Examples of such methods include the Jacobi, Gauss—
Seidel, and symmetric successive over-relaxation (SSOR) methods, as mentioned in [Kel95; Var(00;
Saa03]. More advanced algebraic methods include algebraic multigrid methods, which can be found
in [BMR85; RS87; NN12; KA21], or domain decomposition methods with a divide-and-conquer
ansatz in, e.g., [DW90; QV99; TWO05; DIN15; GZ22]. Finally, we emphasize the importance of
having g robust in the discretization parameters 4 and p to fully exploit the convergence rates of
AFEM. Therefore, we resort to optimal geometric multigrid solvers or optimally preconditioned
conjugate gradient methods and refer to Section 1.7.1 for a detailed presentation. Finally, it is
worth mentioning that the described solvers can be adapted to serve as preconditioners for conjugate
gradient methods [HS52], effectively accelerating the convergence speed of the solver.

1.5.2 Adaptive algorithm with iterative solve

Recall the MARK and REFINE modules from Section 1.4. We propose an adaptive algorithm with an
iterative solver, where, due to the stopping criterion of the algebraic solver in (1.19), the SOLVE and
ESTIMATE module are merged.

Algorithm 1B: AFEM with contractive solver

Input: Initial mesh 7y, adaptivity parameters 0 < 6 < 1 and Cyax > 1, solver-stopping
parameter A > 0, and an initial guess u € Xj.

Forall £=0,1,2,..., repeat the following steps (i)—(iv):
(i) SOLVE & ESTIMATE: Forall k =1,2,3,..., repeat (a)—(b) until

etk — uf Il < Ane(uf). (1.20)

14
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1.5 Adaptive FEM with inexact solver

(a) Compute u’g = Tg(u’;‘l) by one step of the contractive algebraic solver.

(b) Compute the refinement indicators (7, u’g Yforall T € ;.

(ii) Upon termination of the iterative solver, define the index k[{] == k € N.

(iii) MARK: Determine a set M, € M,[#, uf] satisfying (D) for u} replaced by u% with up to
the factor Cy,x minimal cardinality.

(iv) REFINE: Generate 7741 = refine(7z, M¢) and employ nested iteration ug = u%

Compared to Algorithm 1A (with mesh level ¢ only), the indices associated with Algorithm 1B
are pairs (¢, k) and R-linear convergence (1.14) from Lemma 1.6 needs to be adapted to the new
lexicographic ordering. To this end, we define the index set

Q ={(k): u’; appears in Algorithm 1B}
and the lexicographic ordering

(0 k") < (L k) = ulg' appears not later than ulg for all (¢,k), (¢, k") € Q.

The total step counter |-, -| reads
-1
|6, k| =#{(', k') eQ: ({',k') < (L,k)} =k+ Z k[¢'] forall (¢,k) € Q.
£'=0

The subsequent presentation employs certain stopping indices for the mesh level € and the algebraic
solver counter k defined by

¢ =sup{€ e Ny: (£,0) € Q} € NgU {oo},
k[€] =sup{k e N: (£,k) € Q} € NU {0} whenever (¢{,0) € Q,

These definitions are consistent with Algorithm 1B and in k[{], we often omit the £ dependence

whenever it is clear from the context, i.e., k abbreviates k[{] and u% abbreviates uf[f] for a given
¢ € Nwith (€, k) = (¢, k[{]) € Q.

1.5.3 Quasi-optimality of Algorithm 1B

We start with a perturbed version of the estimator reduction property from Lemma 1.3 for the inexact

. k
final iterates u,.

Lemma 1.10 (perturbed estimator reduction for inexact solver [BFM*23, Equation (36)]). Recall
the constant 0 < qest < 1 from Lemma 1.3. Suppose that the estimator satisfies stability (A1) and
reduction (A2). Let 0 < 8 < 1 and suppose the use of Dorfler marking (D) with u’g replaced by

k . .
uy,. Then, we have estimator reduction

k k k
77[+1(”E+1) < Gest 77((”;) +2 Cstab ””zﬂ - uE“X forall (C+1,k) €Q. O (1.21)
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1 Introduction

The proof of optimal convergence rates for the inexact Algorithm 1B follows by the optimality result
for AFEM with exact solver in Theorem 1.9 and the following perturbation argument with sufficiently
small solver parameter A. The latter ensures that the inexact final iterates uf are sufficiently close

. . . . . . k
to the exact discrete solution u} leading to an equivalence of the inexact error estimator 7, (u,) to
the exact error estimator 7, (u}). Hence, Dorfler marking for some appropriate 6mark and ¢ (u})

implies Dorfler marking for 6 and 7, (uf).

Lemma 1.11 (estimator equivalence [CFPP14, Lemma 7.4]). Suppose that the estimator satisfies
stability (A1). Then, forall0 < 0 < 1,0 < A < A* := min{1, Ceon Ce_ul Cs_talb (1 —=gew)/qewe}, and
all (¢, k) € Q, there holds equivalence

[1 = /2 neuy) < neu) < [1+ /2% ne(uy). (1.22)

Moreover, with 6 sufficiently small to guarantee 0 < Omanc = (612 + 1/A1*)2 (1 —2/1*)72 < 1,
there holds the following implication for any Ry C T¢

k.j k,j
Omark e (U))? < ne(Resuy)® = One(u,2)* < ne(Resu, )2, (1.23)

This estimator equivalence ensures linear convergence of the estimator similarly to Theorem 1.6 with
the final iterates u? replacing u} provided that the solver-stopping parameter A is sufficiently small.
However, we can even prove full R-linear convergence (i.e., quasi-contraction in each step of the
algorithm) of some quasi-error consisting of discretization and algebraic solver error for any 4 > 0.
This will turn out to be the key ingredient in the proof of optimal complexity of Algorithm 1B.

Theorem 1.12: Full R-linear convergence of the quasi-error [BFM*23, Theorem 7]

Suppose that the estimator satisfies the axioms (A1)—(A3) and suppose quasi-orthogonality (A4).
Let the adaptivity parameters 0 < 8 < 1, Cak > 1, solver-stopping parameter A > 0, and
u8 € Xo be arbitrary. Then, Algorithm 1B guarantees R-linear convergence of the quasi-error

HY = lluy = ufllx + ne(ug), (1.24)
i.e., there exist constants 0 < qiin < 1 and Cyn > 0 such that
HE < CinglCHVORTRE foranl (0,17, (€,k) € Q with €/, k'] < 1€, k]. (1.25)

The constants Cyiy and qiin depend only on Cyyp, Gred, Crel, Corth, from (A1)—(A3) and (A4),
Ccéa from (Céa), Ceont and Ceyp from (1.4), qei from (C1), 8, and on A. O

Full R-linear convergence asserts quasi-contraction independent of the algorithmic decision for an
algebraic solver step (i.e., an increase of k) or local mesh-refinement (i.e., an increase of the mesh
level £). A first important corollary of full linear convergence (1.25) in Theorem 1.12 assures that the
rates with respect to the degrees of freedom dim X, ~ #7, and the convergence rates with respect
to the computational cost indeed coincide provided that each module of the adaptive algorithm is
realized in linear complexity. We shortly comment on the cost of the modules in the following.

(a) Each solver step of an optimal multigrid method in Algorithm 1B(i) can be performed in
O(#7;) operations, if smoothing is done according to the grading of the mesh [WZ17; IMPS24].
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1.5 Adaptive FEM with inexact solver

The same remark is valid for the preconditioned CG method with optimal additive Schwarz or BPX
preconditioner [CNX12], where each solver step can be realized via successive updates in O (#7¢)
operations.

(b) The Dorfler marking strategy (D) in Algorithm 1B(ii) can be realized in linear complexity
O(#T7); see [Ste07] for Cpark = 2 and [PP20] for Cparc = 1.

(c) Local mesh refinement (including mesh closure) in Algorithm 1B(iv) of 7 by bisection can be
realized in O (#7;) operations; see, e.g., [BDD04; Ste07].

The adaptive algorithm depends on the full history of algorithmic decisions, i.e., the computation
of u’g and 7, depends on all previously computed u’;,/ and 7. Since each step can be realized in
linear complexity, the overall computational cost until step (¢, k) € Q, i.e., until (and including) the
computation of u’g, is thus proportional to

work(¢, k) = Z ST (1.26)

',k e
[€,k"|<|€,k|

Corollary 1.13 (rates = complexity [BIM*24a, Corollary 4.2]). Fors > 0, full convergence (1.25)
vields
M(s) = sup (#77) HE < sup work(€, k)" HE < Coont(s) M(s), (1.27)
(L,k)eQ (L,k)e@Q
where the constant Ceos(s) > 0 depends only on Cyy, and qyin from (1.25), and s. Moreover, there
exists so > 0 such that M(s) < oo forall 0 < s < sq. O

The second main result of this section combines the rate-optimality (1.18) from Theorem 1.9, full
linear convergence (1.25) from Theorem 1.12, and a geometric series argument. The theorem
shows optimal complexity of Algorithm 1B, i.e., optimal convergence rates with respect to the
computational cost from (1.26), hence, the cumulative computation time.

Theorem 1.14: Optimal rates of Algorithm 1B with respect to computational cost

Recall 2* and Oyax from Lemma 1.11. Suppose that the estimator satisfies the axioms (A1)—
(A3%) and suppose quasi-orthogonality (A4). Let 0 and A be sufficiently small in the sense
that

(012 +2/1*)?

(1—2/21%)2 <O =(1+C2,C3 )7 <1. (1.28)

0<A< A*  and 0< Omark = stab

Then, Algorithm 1B guarantees, for all s > 0, that

Copt lu*]la, < sup work((, k)* ng < 5opt max{||u*]|a,, Hg}. (1.29)
(t,k)eQ

The constant cop. > 0 depends only on Cgyp from (Al), Cepjig from (R1), and s; while the
constant Copt depends only on Cop from (1.18), qey from (C1), Ciin and qiin from (1.25), and
on s.
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1 Introduction

1.6 Goal-oriented adaptive FEM

Rather than the exact solution u* itself to (1.3), many practical applications aim to approximate a
functional value G («*) of a linear continuous functional G : X — R at quasi-optimal computational
cost. Clearly, any approximation uy € Xy of u* leads to the following error estimate

G(v
GW*) - Glum)| < Gl lln* —unllx where [|Gllx = sup 120
vex\(oy IIvllx

Thus, the approximation quality is limited by the quality of the approximation ug of u*. While this
estimate is linear in the approximation error, a duality technique from [GS02] allows to essentially
obtain a quadratic estimate instead. To this end, let z* be the unique solution to the so-called dual

problem with given data g € L*(Q) and g € [L*(@)]“,
a(v,z¥) = G(v) ::/gv+g-Vvdx forall v € X. (1.30)
Q

Then, the Lax—Milgram lemma applies and guarantees existence and uniqueness of z*. Any
approximation zy € Xy to z* then leads to
* _ * (1.30) * *
Gw*)-Gug)=GWw" —ug) = alu™ —uy,7")

1.6
O o —up, -z + [F(zn) - a(un,zn)].

Hence, the definition of the discrete goal Gy (upy, zg) = G(ug) + [F(ZH) —a(uy, zH)] permits
the goal-error estimate

(1.4)
|IG(w*) = Gu(up,z)| = law* —up,z* — zu)| < Coont lu* —um|lx 12" = zullx  (1.31)

Thus, the goal-error can be estimated by the product of the two approximation errors and, in this
sense, the estimate is quadratic.

1.6.1 State-of-the-art and outlook

The first rigorous quasi-optimality results for goal-oriented AFEM with linear goals were established
in the seminal work [MS09] for the Poisson model problem. The work by [MS09] employs two
possible sets of marked elements, one for reducing the error in the primal variable # and another for
the dual variable z. The set of minimal cardinality is then chosen as the set of marked elements.
However, since error reduction is only guaranteed for one term of the product, [BET11] proposes a
weighted marking strategy and verifies an improved contraction compared to the marking criterion
in [MS09], whereas optimal convergence rates remained open. The work [FGH" 16] proved linear
convergence and optimal convergence rates for symmetric problems and for both, the marking
strategy of [MS09] and that of [BET11]. Notably, the analysis of [FGH" 16] required new ideas
beyond those of [MS09; BET11] for the proof of linear convergence, since the earlier works exploited
monotonicity of the energy error and oscillations, which might fail if the diffusion coefficient is
not constant. Finally, [FPZ16] extended this analysis to general second-order linear elliptic PDE:s,
while [HP16] only proved contraction but did not address optimal rates. In particular, [FPZ16]
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1.6 Goal-oriented adaptive FEM

GOAL-ORIENTED ADAPTIVITY (£)

SOLVE & ESTIMATE

Primal problem (in parallel) Dual problem
( Solve (m) ) ( Solve (1) )
computable approximation uz," computable approximation z’;
and estimator 774 (u}") and estimator £z (z’; )
| J
( MARrk ]
apply Dorfler marking variant from [FPZ16]
(7 \)
REFINE

employ NVB [Ste08]

Figure 1.9: Nested loops of the goal-oriented adaptive algorithm with inexact solver.

proposes a novel marking strategy based on [MS09] that guarantees optimal convergence of the
estimator product and is computationally favorable compared to earlier approaches. In addition,
[BIP21] shows optimal convergence of a goal-oriented AFEM with a nonlinear quadratic goal, while
[BBI*22] shows optimal convergence for semilinear problems with a linear goal functional. Another
strategy includes a dual-weighted residual approach in the works [ELW19; ELW20; DBR21].

In the framework of GOAFEM, optimal complexity was first established in [MS09] for the
Poisson model problem and sufficiently small adaptivity parameters. [BGIP23] proves optimal
complexity for symmetric linear elliptic PDEs with a linear goal functional. Again, we note that
the proof of full R-linear convergence in [BGIP23] is structurally different to those of [MS09;
BETI11; FGH*16; FPZ16] and explicitly based on tail-summability to avoid any constraint on A. For
nonsymmetric linear elliptic PDEs [FPZ16] proved optimal convergence of the estimator product.
However, the analysis strongly relies on an exact solution of the arising discrete systems (through
quasi-monotonicity of the exact error estimator) and thus optimal complexity is out of reach with
this approach if arbitrary A is targeted. Overall, optimal complexity for nonsymmetric problems with
a linear goal functional, remained an open question, which we address in this thesis.

1.6.2 Product estimator structure in module ESTIMATE

In the following, we revisit the modules of the adaptive algorithm from Figure 1.6 and explain
similarities and difference due to the nonlinear product structure of the upper bound in (1.31). The
nested components of the proposed algorithm are illustrated in Figure 1.9. The SOLVE module
is essentially the same as in Section 1.5.1 but consists of the simultaneous computation of the
approximations u/' and z’; for iteration counters m and yu instead of the single solver loop with
iteration counter k. While the primal error estimator rg () is given in (1.8), we define the local
contributions to the dual error estimator (g (-), for all T € 75 and all vy € Xy, by

Le(Tive)® = 1T NIg + div(AVvE = )17y + ITIV IL(AVVE = &) - n]1172 570q) (1:32)
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We again emphasize that the well-definiteness of the estimator in (1.32) requires that g|7 € [H 1 (T)] 4
for all T € 7p. Then, it is well-known that the estimators g and g satisfy the following extended
set of axioms.
Proposition 1.15 (goal-oriented axioms of adaptivity [CFPP14, Section 6.1]). The error es-
timators ng from (1.8) and (g from (1.32) satisfy the following properties with constants
Cstabs> Crels Carel, Cmon > 0 and 0 < greq < 1 for any triangulation Ty € T and any conforming
refinement Ty, € T(Tw) with the corresponding Galerkin solutions uy, € X, ”Z € Xy, to (1.6),
zu € Xg, 7} € Xp to (1.30) and arbitrary vy € Xg, vy € Xp.

(GOAD) stability: |nn,(Up;ve) —nua(Uu;ve)l + (U vi) = (a(Un;va)| < Csa v —
vl X

(GOA2) reduction: n,(T,\Tu; Vi) < Gred N (Tu\Tn; va) and {n(Ti\Ta3ve) < Grealu (Ta\
ThiVH)-

(GOAD3) reliability: ||u* — u}||lx < Crinu(uly) and ||2* = 25 llx < Cret L (2hy)-
(GOA3*) discrete reliability: ||uy — uy;||x < Caret N (TH\Th, u};) and
2y = 25 llx < Carel S (TE\Ths> 25y)-
(GOQM) quasi-monotonicity: nh(u;;) < Cmon nH(u’I';) and {h(zZ) < Chon §H(ZZ)- O
Reliability (GOA3) and stability (GOA1) verify

”I/t* - MH”X < maX{Crela 1+ Cyap Crel} [UH(MH) + ”u;:j - uH”X],
”Z* = zullx < max{Crel, 1 + Cytab Crer} [éH(ZH) + ”Z;—I - ZH”X] .

In combination with the estimate (1.31), we finally conclude for Cgpa1 = Ceont max{Cer, (1 +

Cstab Crel)Q} the reliable goal-error estimate

|G (u*) = Gy (un, z0)| < Coont [na(un) + ufy —unllx] [Ca(za) + N2 — zullx].  (1.33)

Therefore, the goal-oriented adaptive algorithm needs to drive down the product of the primal and
dual quasi-error rather than the primal error alone. Moreover, we note that the quasi-orthogonality
from (A4) extends to the GOAFEM setting due to ellipticity of a( -, -) and, thus, inf-sup stabil-
ity.
Proposition 1.16 (validity of quasi-orthogonality [Fei22, Equation (8)]). For any sequence
(Xe)een, of nested discrete subspaces Xp € Xps1 C X, there holds

(GOAA4) quasi-orthogonality: There exist constants Coryy, > 0 and 0 < 6 < 1 such that the

corresponding Galerkin solutions u;, zz,‘ € Xy to (1.6) and (1.30) satisfy, for all £, N € Ny,

(+N
> My =% < Corn (N + D)0 [lu* = uf |13, (1.34a)
=t
+N
D lgh = 2ok < Corn (N + 1) 12 = 2713 (1.34b)
=t
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1.6 Goal-oriented adaptive FEM

The constants Coptn and 6 depend only on the dimension d, the elliptic bilinear form a( -, -), and
the chosen norm || - || x, but are independent of the spaces X. O
1.6.3 Combined marking in module MARK

A first marking strategy for goal-oriented AFEM was proposed in [MS09] that reads as follows: First,
determine sets M?, Mg C 7y that satisfy the Dorfler marking criterion (D) with common parameter
6 for the respective estimator in the upper index. Then, choose M, = Mg if MZ] is the set with

smaller cardinality and M, = Mf: otherwise. The work [FPZ16] extended this strategy and proposed
to choose M, C M? U Mg such that #M; < Cpark #M?““ and M}“i“ C My with Cryark > 1 and
M?‘i“ e {M], Mf} being the set of smaller cardinality. Then, Cyy,x = 1 corresponds to the case,

where the marking strategies from [MS09] and [FPZ16] coincide. However, Cpk = 2 leads to the
empirical observation that the resulting extended marking strategy from [FPZ16] is computationally
superior to the criterion in [MS09].

1.6.4 Goal-oriented AFEM algorithm

We can now present an extension of Algorithm 1B with inexact solver to goal-oriented AFEM.

Algorithm 1C: Goal-oriented AFEM with contractive solver

Input: Initial mesh 7y, adaptivity parameters 0 < 6 < 1 and Cyax > 1, solver-stopping
parameter A > 0, and an initial guess u{), z) € Xo.

Forall £ =0,1,2,..., repeat the following steps (i)—(v):
(i) SOLVE & ESTIMATE (PRIMAL): Forallm =1,2,3,..., repeat (a)—(b) until
ey = =l < Ame (). (1.35)

(a) Compute u)' = LI’g(u;,"‘l) with one step of the contractive solver.

(b) Compute the refinement indicators 1, (T, u}') for all T € 7.

(i) SOLVE & ESTIMATE (DUAL): Forall u=1,2,3,..., repeat (a)—(b) until
iz = 257 M < AZe (). (1.36)

(a) Compute z’; =Y, (z'g _1) with one step of the contractive solver.

(b) Compute the refinement indicators £, (7, z’; )forall T € 7.

(iii) Upon termination of the iterative solvers, define the indices m[€] :=m e N, u[{] =y,
and k[{] = max{m[{], u[{]} € N.

(iv) MARK: Determine sets M? € My[6, ul,m] and M; € M;[e, z%] satisfying the Dorfler
criterion (D) for u% resp. z? with up to the factor Cpak minimal cardinality. Then,
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1 Introduction

define the set of marked elements M, = M} U M, where M7 C MZ and M; C Mz
satisfy #MY = # M = min{#M,, #M,}.

(v) REFINE: Generate 77,1 = refine(7z7, M) and define ug = u% and zg = z%.

The analysis of Algorithm 1C is more involved compared to Algorithm 1B since the computation of
the algebraic solver loops are decoupled and, therefore, one solver might stop earlier than the other.
To this end, we define the full index set Q = Q" U Q% consisting of

Q" = {(¢,m) € N3 u}" is used in Algorithm 1C},
Q* = {(t, ) € NZ: 2/ is used in Algorithm 1C}.

For the goal-oriented algorithm, additionally to the primal quasi-error H7' from (1.24), we define the

dual quasi error by
Zh = lzj = llx + Le(uf)  forall (€, p) € QF, (1.37)

These definitions extend to the full index set Q by H’g = H% forall (¢,k) e Qwith 1 <m[f] <k <
k[¢] and analogously for the dual quasi-error Z’g. With this extension, we are able to formulate full
linear convergence for the quasi-error product.

Theorem 1.17: Full R-linear convergence of the quasi-error product [BGIP23, Theorem 6]

Suppose that the estimators n from (1.8) and { from (1.32) satisfy the axioms (GOA1)—-(GOA3)
and suppose quasi-orthogonality (GOA4). Let 0 < 0 < 1, Cpark = 1, 4 > 0, and ug, 28 e Xo
be arbitrary. Then, Algorithm 1C guarantees R-linear convergence of the quasi-error product
i.e., there exist constants 0 < qiin < 1 and Cyi, > 0 such that

HEZK < Ciing KPR THE ZK forall (€, K'), (¢,k) € Qwith |€/,K'| < |6, k]. T (1.38)

The constants Ciin and qiin depend only on Cgyyup, Greds, Crel from (GOA1)—(GOA3), Cor
from (GOA4), Ceont and Ceyy from (1.4), gy, 6, and on A.

Hence, optimal complexity can be established for Algorithm 1C with the quasi-error product H ’g Z’{f
replacing the primal quasi-error H§ in (1.29) from Theorem 1.14 but with an upper bound only.

Theorem 1.18: Optimal complexity of Algorithm 1C [BGIP23, Theorem 8]

Recall 7* and Ok from Lemma 1.11. Suppose that the estimators n from (1.8) and
from (1.32) satisfy the axioms (GOA1)—(GOA3) and suppose quasi-orthogonality (GOA4).
Let 6 and A be sufficiently small in the sense that

(0% + 2/2%)? 2

Tz < fom =1+ G Cioh <1 (1.39)

0<A<A* and 0<Omux =

Then, Algorithm 1B guarantees, for all s +t > 0, that

(fs]?)pawork({’, kst HE ZE < Cope maxc{[|u*||a, N12* |4, » HO Z0}. (1.40)
Jk)e
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The constant Cop, depends only on Cop from (1.18), geye from (C1), Ciy and qyin from (1.25),
and on s.

1.7 Main contributions of the thesis and outline

The remainder of the thesis consists of four chapters. In the following, we give an overview over
the scientific contributions of each of the chapters. We emphasize that all numerical experiments
are openly available with reproducible MATLAB scripts under https://www.tuwien.at/mg/asc/
praetorius/software/mooafem.

1.7.1 hp-robust multigrid solver for linear elliptic PDEs

M. Innerberger, A. Miragi, D. Praetorius, and J. Streitberger. hp-robust multigrid solver on locally
refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM Math. Model. Numer.
Anal., 58(1):247-272, 2024. por: 10. 1051/m2an/ 2023104

In the framework of adaptive FEM, multilevel methods stand out as excellent and natural candidates
for algebraic solvers due to the available hierarchy of meshes. Among the most notable techniques in
this category, these are (geometric) multigrid methods [BL11; Hac85; BHMOO; Osw94] and together
with domain decomposition methods [DW90; QV99; TWO05; DIN15; GZ22]. In the subsequent
discussion, we provide a concise explanation of the first method tailored to symmetric second-order
linear elliptic PDEs.

Geometric multilevel solvers represent some of the most efficient and versatile linear solvers.
The fundamental concept of multigrid solvers involves capturing complementary components of
the algebraic error through a hierarchy of meshes. To transfer information from mesh to mesh,
interpolation and restriction operators transfer geometric data between the meshes in the hierarchy.
At each level of the hierarchy, a set of simple iterations, termed smoothing, is employed to suppress
high-oscillatory contributions to the error. On the coarsest mesh in the hierarchy, the matrix is small
enough to permit a direct solve with constant computational effort

An iteration of the considered algebraic solver comprises a cycle, e.g., a V-cycle iterating from the
finest mesh all meshes are visited in descending order until the coarsest mesh (with pre-smoothing
steps), solves directly at the coarsest level, and then successively revisits the meshes to the finest one
(with post-smoothing steps). An important feature of geometric multigrid methods is their intrinsic
independence of mesh size (referred to as h-robustness), i.e., the contraction factor g from (C1)
does not deteriorate with smaller local mesh size 4. Additionally, the geometric multigrid solver
discussed below is also p-robust, indicating that g is also independent of the polynomial degree p.

Previous work [MPV21] presents a p-robust geometric multigrid solver with a built-in algebraic
error estimator for a posteriori steering of the algebraic solver. However, the patchwise smoothing in
every vertex relative to every level used in this method causes a linear dependence of the contraction
factor on the number of levels. In this chapter, we present a geometric multigrid method that
overcomes this dependence and is, therefore, robust in both the mesh-size 4 and the polynomial
degree p. To achieve this, we only use local lowest-order smoothing on patches that have changed in
the mesh-refinement step in the intermediate levels, and we use patchwise higher-order smoothing
only on the finest level. Furthermore, the solver involves only one post-smoothing step, requires
no pre-smoothing, no symmetrization of the procedure, and employs optimal step sizes on the
error-correction stage. More explicitly, Chapter 2 contains following main results:
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(I) The solver iterates and the built-in algebraic error estimator 17,1, are connected by
lluy =W < luf = vell® = nag(ve)® forall vy € X,

where |||-||| denotes the PDE-induced energy norm. For the details, we refer to equation (2.12)
in Theorem 2.4.

(IT) The solver contracts the error, i.e., there exists a uniform constant 0 < g < 1 such that
lluf =¥l < gew llluy —velll forallvy € Xp.

The precise statement is given in (2.13) in Theorem 2.4. In particular, g is independent of
the polynomial degree p, the number of mesh levels L, and the sequence of computed meshes
T TL.

(IIT) Finally, equation (2.14) in Theorem 2.4 states that the built-in estimator is a two-sided bound
of the algebraic error, i.e., there exists Cye] > 1 such that

Nag(ve) < luf =villl € Creinaig(ve) forallvy € Xp.

(IV) The application of the hp-robust solver in the context of adaptive FEM leads to optimal
complexity of the adaptive algorithm; see Theorem 2.7.

We highlight some key features of the algebraic solver in the following and refer to Section 2.4 for
the details and more numerical experiments involving jumps in the diffusion coefficient A.

Optimal complexity of the solver. Figure 1.10 illustrates that the proposed solver is indeed of linear
complexity and after 10° degrees of freedom is even faster than the MaTLAB built-in optimized solver
mldivide. Figure 1.10 (right) verifies that the relative computation time per degree of freedom is
constant for the proposed solver and, hence, the solver cost is of order O (#7L).

Optimality of AFEM with the hp-robust multigrid method. Figure 1.11 displays that an embedding
of the multigrid solver into Algorithm 1B from Section 1.5 leads to optimal convergence rates with
respect to both the number of degrees of freedom and the cumulative computation time.

1.7.2 Optimal complexity of AFEM for nonsymmetric linear elliptic PDEs

M. Brunner, M. Innerberger, A. Miraci, D. Praetorius, J. Streitberger, and P. Heid. Adaptive
FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J. Numer. Anal.,
44(3):1560-1596, 2024. por: 10. 1093/ imanum/drad039

M. Brunner, M. Innerberger, A. Miraci, D. Praetorius, J. Streitberger, and P. Heid. Corrigendum
to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J.
Numer. Anal., 44(3):1903-1909, 2024. por: 10. 1093/ imanum/drad103

Recent works [GHPS21; HPW21; HPSV21] have proven optimal complexity for energy mini-
mization problems, especially for symmetric linear elliptic PDEs. However, for nonsymmetric linear
elliptic PDEs, the question of optimal complexity remained open due to the lack of an algebraic
solver that contracts in the equivalent energy norm of the principal part of the PDE. A possible
approach in line with developments in AFEM for nonlinear problems employs a coupling of a
symmetrization (e.g., the Zarantonello iteration, which is a Richardson-type iteration stemming
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from the state-of-the-art proof of the Lax—Milgram lemma) and an optimal algebraic solver. This
combination leads to a contractive solver itself except for the final iterate of this inexact Zarantonello
iteration. This presents a challenge as it seemingly does not fit into the framework for symmetric
PDEs from Section 1.5. However, perturbation arguments in Chapter 3 allow to show the following
main results:

(I) Theorem 3.7 guarantees full linear convergence provided that the algebraic solver parameter
Aqg is sufficiently small (to ensure contraction of the coupling) and the symmetrization
parameter Agyy, is arbitrary but satisfies the natural assumption 0 < Ay, < 1. Moreover, the
full linear convergence in this chapter is restricted to a sufficiently large mesh level £ > £y (with
a priori unknown £ € Ny) since the proof involves a quasi-Pythagorean estimate replacing the
Pythagorean identity for symmetric PDEs. The proof is based on contraction of an equivalent

quasi-error quantity and thus leads to restriction on the solver parameters.

(II) Full linear convergence implies that the convergence rates with respect to the number of degrees
of freedom and with respect to the overall computational cost are equivalent in Corollary 3.8.

(III) Theorem 3.9 states optimal complexity for sufficiently small adaptivity parameters using
optimal convergence rates with respect to the number of degrees of freedom, the estimator
equivalence in the spirit of (1.22), and full linear convergence.

Again, we want to briefly illustrate the results with numerical experiments and refer to Section 3.6
for an in-depth analysis of the involved contraction constants, the upper bound for the restriction on
the algebraic solver parameter, and further optimality experiments.

Optimality of AFEM with the inexact Zarantonello iteration. In Figure 1.12, we see that the
proposed nested iteration leads to optimal convergence rates with respect to both the number of
degrees of freedom and the cumulative computation time for several polynomial degrees p.

Linear complexity of the inexact Zarantonello iteration. In Figure 1.13, we see that the proposed
inexact Zarantonello iteration is indeed of linear complexity and outperforms the MATLAB built-in
direct solver.

1.7.3 On full linear convergence and optimal complexity of AFEM

P. Bringmann, M. Feischl, A. Miraci, D. Praetorius, and J. Streitberger. On full linear convergence
and optimal complexity of adaptive FEM with inexact solver, 2023. arXiv: 2311. 15738, submitted
to Comput. Math. Appl.

In this chapter, we review the progress of the state-of-the-art analysis concerning optimal
convergence rates with respect to the cumulative computational cost. Improving the analysis from
Chapter 3, we present a novel proof of full linear convergence for AFEM with nested iterative solvers
under weaker assumption compared to the previous results in [BIM*24a]. Chapter 4 contains the
following main results:

(I) Section 4.3 reviews the recent progress in the field of AFEM with exact solver, with contractive
algebraic solver in Section 4.4, and nested iterative solver in Section 4.5 as well as an outlook
on nonlinear PDEs in Section 4.6.
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(I) Unlike earlier works [GHPS21; HPW21], the proof of full R-linear convergence with iterative
solver in Theorem 4.7 does not require any additional constraints on the solver parameter.
Moreover, the proof relies on the novel quasi-orthogonality from [Fei22] and is therefore not
restricted to energy minimization problems but is applied to nonsymmetric linear elliptic
PDEs and paves the way for further extension to more general inf-sup stable problems.

(IIT) Contrary to [BIM*24a], the proof of full R-linear convergence for nested iterative solvers in
Theorem 4.15 is not based on a contraction argument but on a summability argument. This
novel proof strategy eliminates the need for a sufficiently large mesh level (i.e., {p = 0) and
relaxes the constraint on the parameters from [HPSV21; BIM*24a]. More precisely, the full
R-linear convergence in [HPSV21] requires Ay, to be small with respect to the linearization
parameter Aj;, and the latter to be small with respect to §. Moreover, the paper [BIM™24a] still
needs A, to be small with respect to e, gsym, and Agyy, < 1. With the new proof, we show
that this requirement can be replaced by A, being small with respect to g and gsym and the
product Ag Asym being sufficiently small.

(IV) We show that the equivalence of the rates with respect to the degrees of freedom and with
respect to the overall computational cost from Corollary 1.13 is still valid for a suboptimal
algebraic solver in Corollary 4.11.

In the numerical experiments in Section 4.7, we investigate optimality for several adaptivity
parameters and analyze favorable choices of the solver stopping parameters. Thereby, we show that
also larger parameters are feasible and, in practice, favorable. We want to illustrate the contributions
with the following experiment:

Optimality of AFEM with nested iterative solver and several stopping parameters. In Figure 1.14,
we see optimal convergence rates for polynomial degrees p = 2 and several stopping parameters A,jg
and Agym.

1.7.4 Optimal complexity of GOAFEM for nonsymmetric linear elliptic PDEs

P. Bringmann, M. Brunner, D. Praetorius, and J. Streitberger. Optimal complexity of goal-oriented
adaptive FEM for nonsymmetric linear elliptic PDEs, 2023. arXiv: 2312. 00489, submitted to J.
Numer. Math.

This chapter is devoted to the cost-effective approximation of the linear quantity of interest G (u*).
For symmetric linear elliptic PDEs, a goal-oriented adaptive algorithm with optimal complexity has
been presented in [BGIP23]. However, for nonsymmetric PDEs, due to the additional symmetrization
loop and lack of a Pythagorean identity, the analysis does not directly transfer to nonsymmetric
PDEs. Instead, the proof strategy from [BFM*23] based on summability is required due to the
nonlinear product structure achieved by the combined quasi-error product and the resulting nonlinear
remainder term in the proof of full linear convergence. The main contributions of Chapter 5 read as
follows:

(I Algorithm 5A presents a novel GOAFEM approach with nested iterative solvers for the
numerical solution of nonsymmetric linear elliptic PDEs and a linear quantity of interest.

(I) Theorem 5.10 asserts full linear convergence for the combined quasi-error product by proving
contraction up to a summable remainder term. Therefore, we again only require that the
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Figure 1.14: Left: Convergence history plot of the error estimator with respect to the cumulative
computation time for fixed # = 0.3 in both experiments and A,y = 0.7 with several
symmetrization stopping parameter. Right: Convergence history plot of the error
estimator with respect to the cumulative computation time for fixed Agyy = 0.7 with
several algebraic solver stopping parameter.

algebraic solver parameter Ay, is sufficiently small and that the product A, Asym is sufficiently
small.

(IIT) Theorem 5.15 ensures optimal complexity of the proposed GOAFEM algorithm provided that
all involved adaptivity parameters are sufficiently small.

In the numerical experiments in Section 5.7, we investigate optimality of the proposed GOAFEM
algorithm and analyze favorable choices of the solver stopping parameters with respect to the
cumulative computational cost.

Optimality of GOAFEM with nested iterative solver and large solver-stopping parameters. In
Figure 1.15, that the algorithm leads to optimal decay rates —p for the estimator product and the goal
error with respect to the number of degrees of freedom and the overall computation time for several
polynomial degrees p.

1.8 Additional scientific contributions

This section highlights additional scientific contributions beyond the scope of this thesis.

1.8.1 Parameter-robust full linear convergence and optimal complexity of AFEM
for nonlinear PDEs

A. Miraci, D. Praetorius, and J. Streitberger. Parameter-robust full linear convergence and optimal
complexity of adaptive iteratively linearized FEM for strongly monotone nonlinear PDEs, 2024.
arXiv: 2401. 17778, submitted to Math. Comp.
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Figure 1.15: Left: Convergence history plot of the error estimator and the goal error with respect
to the number of degrees of freedom for fixed § = 0.5 and Agym = Aag = 0.7. Right:
Convergence history plot of the error estimator and the goal error with respect to the
cumulative computation time.

In this work, we consider a nonlinear elliptic partial differential equation with a scalar nonlinearity
u € C*(Rsp). Given a bounded Lipschitz domain Q ¢ R? where d > 1 and right-hand sides

fel?*(Q) and f € [L2(Q)]d, we seek the solution u* to

—div (u(|Vu*|*)Vu*) = f —div finQ subjectto u* =0 on 9Q. (1.41)
We exploit the inherent energy structure of this equation to develop and analyze an adaptive algorithm
with a novel parameter-free stopping criterion that steers the algebraic solver. We show that the
new stopping criterion leads to an equivalence of norm error and energy difference and a uniformly
bounded number of algebraic solver steps, which simplifies the proof of full R-linear convergence.
Therefore, full R-linear convergence of the quasi-error is guaranteed for arbitrary adaptivity parameters
and, thus, the analysis overcomes even the weaker parameter restriction of [BFM*23]. Finally, we
show that sufficiently small adaptivity parameters assert optimal complexity of the adaptive algorithm.
The numerical experiments highlight the new stopping criterion together with the application of the
parameter-free Kacanov iteration as linearization method.

1.8.2 Cost-optimal AFEM for semilinear elliptic PDEs

M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEM with linearization and
algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401 . 06486, submitted to Numer.
Math.
In this work, we consider the semilinear elliptic PDE
—div(AVu*) +b(u*) = f—divf inQ subjectto u*=0 ondQ (1.42)
with a uniformly elliptic diffusion matrix A € [L°° (Q)] jyfnd and monotone nonlinearity b: Q — R.
We assume that the problem (1.42) fits into the framework of the Browder—Minty theorem, i.e.,
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1.8 Additional scientific contributions

the associated operator (A is strongly monotone and locally Lipschitz continuous. Therefore, the
Lipschitz constant of ‘A depends on the considered functions and the adaptive algorithm consisting of
a coupling of iterative linearization and algebraic solver needs to ensure that the norm of all computed
iterates remains bounded. This is achieved by enforcing that sufficiently many algebraic solver steps
have been carried out and it is shown that the additional cost of this procedure is negligible. Finally,
the uniform boundedness of all iterates allows the proof of full R-linear convergence for arbitrary
adaptivity parameters (at the expense of ensuring sufficiently many solver steps). Finally, optimal
complexity is shown for sufficiently small adaptivity parameters.
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2 hp-robust multigrid solver on locally refined
meshes for FEM discretizations of symmetric
elliptic PDEs

The Sections 2.1-2.5 of this chapter correspond to the publication:

M. Innerberger, A. Miraci, D. Praetorius, and J. Streitberger. /4 p-robust multigrid solver
on locally refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM
Math. Model. Numer. Anal., 58(1):247-272, 2024. por: 10.1051/m2an/2023104

2.1 Introduction

Numerical schemes for PDEs aim at approximating the solution u* of the weak formulation with
an error below a certain tolerance at minimal computational cost. Since the accuracy is spoiled
by singularities, e.g., in given data or domain geometry, adaptive finite element methods (AFEMs)
employ the loop

. ; solution accurate enough?
adaptive stopping

SOLVE ESTIMATE MARK REFINE

to obtain a sequence of meshes 7r, that resolve such singularities. For a large class of problems, it
is known that AFEM is rate-optimal, i.e., one can construct an estimator 17z (u7) from the exact
Galerkin solution u for the discretization error [[[u* — u7 ||| that decreases with the largest possible
rate with respect to the number elements in 77 ; see, e.g., the seminal works [D6r96; MNS00; BDD04;
Ste07; CKINSO8] or the abstract overview [CFPP14] for h-adaptive FEM with fixed polynomial
degree p.

In practice, the SOLVE module may become computationally expensive (in contrast to all other
modules) when employing a direct solver; see, e.g., [PP20; GHPS21; 1P23] for a discussion of
implementational aspects. Thus, usually, an iterative solver is employed to compute an approximation
uy of uz on each level, and the exact Galerkin solution uz is not available. The question of whether
the approximations u#y converge with optimal rate with respect to the overall computational cost
was already treated in the seminal work [Ste07] under some realistic assumptions about an abstract
iterative solver. The recent work [GHPS21] employs nested iterations and an adaptive stopping
criterion to steer a uniformly contractive iterative solver, linking the SOLVE and ESTIMATE module
in the above scheme by an inner loop. Then, it is shown that even the full sequence of iterates
converges with optimal rates with respect to the overall computational cost. For this reason, the
design of algebraic solvers that are uniformly contractive and robust with respect to the discretization
parameters is of utmost importance.
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2 hp-robust multigrid solver on locally refined meshes

The hierarchical structure of AFEM and the very nature of the arising linear systems suggest
to use a multilevel solver; see, e.g., [Hac85; BMR85; BPS86; BDY88; BPX90; Zha92; Riid93a;
Osw94]. Different adaptive methods integrating a multilevel solver are possible; see, e.g., [BB87]
for generating local meshes, and [Riid93b] for a fully adaptive multigrid method that steers the local
refinement process. In the context of AFEM, the adaptively constructed hierarchy of locally refined
meshes calls for suitable local solvers. We refer to [CNX12] for a multilevel preconditioner on a
mesh hierarchy consisting of one bisection in each step and [HWZ12; WZ17] for multiplicative
multigrid methods, all of which are robust with respect to the mesh size 4. Though these works allow
for higher-order FEM, an analytic and numerical study on the behavior with increasing polynomial
degree was not presented. This aspect is treated, e.g., in [Pav94; SMPZ08; AMV 18; BF22], which
design iterative solvers that are robust with respect to the polynomial degree p on various types of
polyhedral meshes. The recent own work [MPV21] proposes a p-robust geometric multigrid which
comes with a built-in algebraic error estimator ng(uy,), which is suited perfectly for a posteriori
steering (i.e., adaptive termination) of the algebraic solver. However, the employed patchwise
smoothing associated to every vertex and every level causes a linear dependence on the number of
adaptive mesh levels L.

In the present work, we modify the solver from [MPV21] and overcome this dependence for
locally refined meshes: we only apply local lowest-order smoothing on patches which change in the
refinement step on intermediate levels, whereas a patchwise (and hence parallelizable) higher-order
smoothing on all patches of the finest level is applied. This solver only needs one post-smoothing
step, requires no symmetrization of the procedure (see also [DHM™*21]), and, in particular, has no
tunable parameters since it utilizes optimal step-sizes on the error-correction stage. As the main
result of the present work, we show that the proposed solver uniformly contracts the algebraic error
llu7 — uplll. Moreover, it comes with a built-in estimator 77, (17 ), which is shown to be equivalent
to the algebraic error ||lu} — u |||. Throughout, all involved estimates are robust in the discretization
parameters 4 and p.

As one potential application, we formulate an AFEM algorithm in the spirit of [GHPS21] that
naturally embeds the multigrid solver and leverages the solver’s built-in algebraic error estimator
Nalg (ur,) to stop the solver as soon as the discretization and algebraic error are comparable. Adapting
the arguments of [GHPS21], we prove that, for fixed polynomial degree p, the AFEM algorithm
guarantees optimal convergence rates with respect to overall computational cost.

Using the open-source object-oriented 2D MatLAB code MooAFEM [1P23], we present a detailed
numerical study of both the algebraic solver and the adaptive algorithm, including higher-order
experiments and jumping coefficients.

The outline of this chapter reads as follows: Section 2.2 first poses the model problem and introduces
some notation. Then, we state the proposed multigrid solver (Algorithm 2A) and formulate our
main results on Ap-robust contraction (Theorem 2.4) and algebraic error control (Corollary 2.5).
As a potential application, Section 2.3 formulates an AFEM algorithm (Algorithm 2B) which
employs nested iteration and an adaptive stopping criterion for the iterative solver using the built-in
a posteriori estimator for the algebraic error. Theorem 2.7 proves optimal computational complexity
of the proposed AFEM algorithm. After we confirm the theoretical results by numerical examples
in Section 2.4, we present proofs of the main results in Section 2.5. For better readability, we
precede these proofs with three subsections presenting their core arguments: geometric properties
of the meshes 77, an hp-robust stable decomposition combining a local lowest-order multilevel
stable decomposition from [WZ17] with a one-level p-robust decomposition from [SMPZ08], and a
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2.2 hp-robust multigrid solver

strengthened Cauchy—Schwarz inequality in the spirit of [CNX12; HWZ12].

2.2 hp-robust multigrid solver

In this section, we formulate the model problem, the proposed geometric multigrid method, and the
main results, while the proofs are postponed to Section 2.5.

2.2.1 Model problem

For d € {1,2,3}, let QR be a bounded Lipschitz domain with polygonal boundary dQ. Given
feL?(Q)and f € [L?(Q)]?, we consider the second-order linear elliptic diffusion problem

—div(AVu*) = f —div f in Q,

2.1
u* =0 on 09, @D

where A € [L®(Q)]4%¢ is the symmetric and uniformly positive definite diffusion coefficient.
More precisely, given a conforming simplicial triangulation 75 of Q into compact simplices, we
have Alr € [Who(T)]9%4 for all T € . For x € Q we denote the maximal and minimal
eigenvalue of A(x) € Rg’yﬁ? by Amax(A(x)) and Anin (A (x)), respectively, and define Apax =
€8S SUP, e Amax (A (x)) as well as Apin = essinfyeq Amin(A(x)). With (-, -),, denoting the
usual L?(w)-scalar product for a measurable subset w C Q, the weak formulation of (2.1) seeks

u* € X = H}(Q) solving
u*, v)a = (AVu*, Vo = (f, v)a+{(f, VWW)g = F(v) forallv € X. (2.2)

We note that -, - is a scalar product and the induced semi-norm |||u|||?2 = (u, u)g is an
equivalent norm on X. Therefore, the Lax—Milgram lemma yields existence and uniqueness of the
weak solution u* € X. For w = Q, we omit the index w throughout.

To discretize (2.2), denote for a polynomial degree p > 1 and a triangle T € 7y the space of all
polynomials on 7" of degree at most p with PP (T) and define

SU(Ty) ={vg € C(Q): vy|r e PA(T) forall Te Ty} withgq € {1, p}. (2.3)

With the definition X}, = S (7g) = SP(Tg) N H} (L), the discrete problem consists of finding
uy, € X7, such that
Qup ., va) =F(vg) forallvy € X}, (2.4)

Clearly, the formulation of the discrete problem (2.4) hinges on the choice of the mesh 7, which
directly influences the quality of u}, as an approximation of «*. Note that (2.4) can be rewritten as a
symmetric and positive definite linear system by introducing a basis of X g However, we opt to
work instead with the functional basis-independent description.

2.2.2 Mesh and space hierarchy

We suppose that the refinement strategy in the module REFINE is newest vertex bisection (NVB); see,
e.g., [Tra97; Ste08] and Figure 2.1 for an illustration in 2D. Let 7y be the conforming initial mesh.
We refer to [Ste08] for NVB with admissible 7y and d > 2, to [KPP13] for NVB with general 7; for
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2 hp-robust multigrid solver on locally refined meshes

ARAnN

AN
N A S A

Figure 2.1: Schematic of 2D NVB refinement pattern: For each triangle 7' € 7, there is one fixed
refinement edge Er indicated by the extra pink line. The pink dots indicate edges that
are marked for refinement. If an element is marked for refinement, at least its refinement
edge is marked for refinement (top). Iterated bisection refines a marked element into 2,
3, or 4 children (bottom).

d = 2, and to the recent work [DGS23] for NVB with general 7j in any dimension. Throughout, we
suppose that 7; is admissible. In the 1D case, [AFF*15] splits each element into two children of
half-length and additionally ensures that any two neighboring elements have uniformly comparable
diameter. Let T := T(7p) be the set of all refinements of 7 that can be obtained by arbitrarily many
steps of NVB.

From now on, suppose that we are given a sequence {72}{1::0 C T of successively refined
triangulations, i.e., for all £ = 1,..., L, it holds that 7; = REFINE(7z_1, M_1) is the coarsest
conforming triangulation obtained by NVB, where all marked elements M,_; C 7,_1 have been
refined by (at least) one bisection. We note that NVB-refinement generates meshes that are uniformly
v-shape regular, i.e.,

diam(T)
- <
[:161’2‘%).&1%16@])_; G Y < 00, (2.5a)
and diam(T)
max max max _IaL <y < oo, (2.5b)
£=0,...,LTeT;, T'e7; diam(T”)
TNT'#0
where v depends only on 7y and is, in particular, independent of L and the meshes 77, . . ., 7L; see,

e.g., [Ste08, Theorem 2.1] for d > 2 or [AFF*15] for d = 1. We note that (2.5a) implies (2.5b) for
d > 2, while (2.5a) is trivial with y = 1 and independent of (2.5b) for d = 1. In addition, we define
the quasi-uniformity constant

Cqu = min{diam(7)/diam(7"): T,T" € 9o} € (0,1]. (2.6)

For each mesh 7¢, let V; denote the set of vertices. Given a vertex z € Vp, we denote by
Te.. =A{T € T¢: z € T} the patch of elements of 7, that share the vertex z. The corresponding (open)
patch subdomain is denoted by wy , = interior(UTe(]z,’z T) and its size by h¢ ; = maxreg;  hr =
maxreg; . |T| 1/d Finally, we denote by YV, the set of new vertices in 77 and the pre-existing vertices
of 771 whose associated patches have shrunk in size in the refinement step ¢, i.e.,

(VJ =V, and (V;' =Ve\Ve1U{zeV, N Vp_q: we,, #F a)g_l’z} for £ > 1.

While this notation is used in the analysis of the solver below, the presentation of Algorithm 2A is
more compact with the abbreviation Np =V, for £ =1,...,L -~ 1 and N =V} for p = 1 and
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2.2 hp-robust multigrid solver

N1, =V, otherwise, where we recall that p € N is the fixed polynomial degree of the FEM ansatz
functions.

From the definition of the discrete FEM spaces (2.3) and NVB-refinement, we see that there holds
nestedness

Xy CXic--cXj_ cxl. 2.7)
Furthermore, we require the local spaces
XZZ = Sg (7¢.;) forall vertices z € Vy and ¢ € {1, p}, (2.8)

where weuse g = 1for{ =0,...,L —1and g = p for £ = L; see Figure 2.2 for the illustration of
the degrees of freedom for p = 2.

® degrees of freedom
z patch vertex in Vg,
- patch Tg .

— patch subdomain wr, .

Figure 2.2: Illustration of degrees of freedom (p = 2) for the space X Ilj . associated to the patch
TL,z-

2.2.3 Multigrid solver

In the following, we introduce a local geometric multigrid method, which will serve as iterative
solver within the SOLVE module of an adaptive FEM algorithm. Each full step of the proposed
multigrid method can be mathematically described by an iteration operator ¥: X f - X f ,1.e., given
the current approximation u; € X7, the solver generates the new iterate W (uy) € X 5 .

The main ingredients in the solver construction are an inexpensive global residual solve on 7 and
local residual solves on all patches 7, for z € (V; on the intermediate levels ¢ = 1,...,L — 1 and
all patches on the finest level 77, when p > 1. For ease of notation, we define the algebraic residual
functional Ry : X I’j — Rby

v € X = Rp(ve) = F(ve) = Qur, vi) = uj —ur, vi) €R. (2.9)

To construct the new iterate W (uy ), levelwise residual liftings of the algebraic error are added to the
current approximation #. The same levelwise residual liftings are used to define an a posteriori
error estimator 77,1, (7 ) for the algebraic error, i.e., the solver comes with a built-in estimator.

Algorithm 2A: One step of the optimal local multigrid solver

Input: Current approximation #; € X”, meshes {75}5:0’ polynomial degree p € N.
Solver step: Perform the following steps (i)—(ii):

(i) Global lowest-order residual problem on the coarsest level:
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2 hp-robust multigrid solver on locally refined meshes

+ Compute pg € X; by solving

{po, vo) = Rp(vo) forallvg e X;. (2.10)

* Define step-size Ag = 1.

¢ Initialize algebraic lifting oy := Agpo and a posteriori estimator {g = |||/lop02|||.

(i) Local residual-update: For all £ =1, ..., L, do the following steps, where g = 1 for
{=1,...,L-1landg=pforf=1L:

 For all z € Ng, compute p, , € X;]Z by solving
Kotz s ver) =RL(vez) —Coe-1, ve) forallve ;€ Xt?,z' (2.11)

* Define the line-search step-size s¢ = (Rp(p¢) — {oe—1 ., pe))/llpelll?, with
Pe = Xzen, Pe.z and the understanding that 0/0 := 0 if p¢ = 0, and

_se ifsp <d+1 0r[€=Landp>1],
£ (d+1)~'  otherwise.

* Update o = 07_1 + Aepeand 7 = 07 + ¢ Yo, lloe 2l

Output: Improved approximation W(uy) = up +op € X f and associated a posteriori
estimator 77,1g(#z) = 174 Of the algebraic error.

Remark 2.1 (Construction of the new iterate). The construction of ¥ (ur) from uy by Algorithm 2A
can be seen as one iteration of a V-cycle multigrid with no pre- and one post-smoothing step, and a
step-size at the error correction stage. The smoother on each level is additive Schwarz associated to
patch subdomains where the local problems (2.11) are defined. This is equivalent to diagonal Jacobi
smoothing for p = 1 (e.g., on intermediate levels) and block-Jacobi smoothing for p > 1 (e.g., on the
finest level). The choice and use of the step-sizes A¢ in Algorithm 2A(ii) comes from a line-search
approach; see, e.g., [MPV21, Lemma 4.3] and one of the earlier works [Hei8S]. However, if the
step-size from the line-search is too large, we use instead a fixed damping parameter offsetting the
d + 1 patch overlaps. We note that this case never occurred in practice in any of our numerical
experiments.

Remark 2.2 (Computational effort and speed of convergence). We note that we apply a patchwise
Cholesky factorization on the finest level. Hence, the computational effort for the local residual
solve on the finest mesh Ty, in dependence on the polynomial degree p is of order O(p>*#7TL).
The presented algorithm is a linear method. One could symmetrize the procedure by adding one
pre-smoothing step to define a preconditioner in the hope of accelerating convergence with the help
of conjugate gradients. However, in our experience, the patchwise pre-smoothing typically did not
yield considerable algebraic error decrease; see, e.g. [DHM™"21], while still doubling the number of
smoothing operations of a V-cycle. The remaining steps needed to compute the new approximation
stem from classical multigrid solvers (such as intergrid operators). We stress that the overall effort
does not depend on the number of levels L.

38



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.3 Application to adaptive FEM with inexact solver

Remark 2.3 (Nested iterations). In the context of adaptive FEM, the solver does not start from an
arbitrary initial guess on each newly-refined mesh but from the final approximation of the previous
level (see Algorithm 2B below). This will ensure a posteriori error control in each step after
initialization as well as optimal computational cost. From the algebraic solver perspective, such
an approach can be seen as a full multigrid method over the evolving hierarchy of meshes whose
number of cycles is determined by the adaptive stopping criterion.

2.2.4 Main result

This subsection formulates the main results regarding the iterative solver stating the contraction of
the multigrid solver and reliability of the built-in a posteriori estimator of the algebraic error. Both
results hold robustly in the number of levels L and the polynomial degree p.

Theorem 2.4

Let uz € Xf be the (unknown) finite element solution of (2.4) and let vi € Xf be arbitrary.
LetW(vp) e X ]Ij and nag(vy) be generated by Algorithm 2A. Then, the solver iterates and the
estimator are connected by

My =PI < Nluf = vill® = nag(ve)?. (2.12)
Moreover, the solver contracts the error, i.e., there exists 0 < gy < 1 such that
llup =Pl < gew llluy = vell. (2.13)

Finally, the estimator is a two-sided bound of the algebraic error, i.e., there exists Cre) > 1 such
that
Nag(ve) < Mluf = villl € Cret Baig(ve)- (2.14)

The contraction and reliability constants q and Cye| depend only on the space dimension d,
the y-shape regularity (2.5), the quasi-uniformity constant Cqy from (2.6), Amax/Amin, and
maxreq; || div(A)||Le(r)/Amin- In particular, q. is independent of the polynomial degree p,
the number of mesh levels L, and the meshes 71, ..., 7.

Corollary 2.5. The reliability of the estimator in (2.14) is equivalent to the solver contraction (2.13).
In particular, this also yields that

|||Lt2 —YOl < gewr Crel Ualg(VL)- (2.15)

Remark 2.6. We note that (2.12) holds with equality whenever the step-size criterion sp < d + 1 in
Algorithm 2A(ii) is fulfilled and the construction is thus done by optimal-line search. In such a case,
which was always satisfied in all our numerical tests, a Pythagoras identity in the spirit of [MPV21,
Theorem 4.7] yielding exact algebraic error decrease is obtained.

2.3 Application to adaptive FEM with inexact solver

Given a coarse mesh 7, we use an adaptive finite element method (AFEM) to generate locally
refined meshes {77 } 1 <y tailored to the behavior of the sought solution. In the spirit of [GHPS21],

39



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 hp-robust multigrid solver on locally refined meshes

Algorithm 2B presents such an approach with an adaptively stopped iterative solver, where Step (Ii)
exploits the built-in a posteriori estimator of the geometric multigrid solver from Section 2.2.

While we note that the present Algorithm 2B and the corresponding Theorem 2.7 are restricted
to fixed polynomial degree p, the inclusion of the proposed hp-robust iterative solver into the
hp-adaptive FEM algorithm of [CNSV17] remains for future research, since the mathematical
understanding of 4p-adaptive FEM is still widely open.

Algorithm 2B: AFEM with iterative solver

Input: Initial mesh 7, polynomial degree p € N, adaptivity parameters 0 < 6 < 1, Ciark = 1,
and Ay > 0, initial guess ug =0.
Adaptive loop: repeat the following steps (I)—(III) forall L =0, 1,2, ...:

(I) SOLVE & ESTIMATE: repeat the following steps (i)—(iii) forall k = 1,2,3,...:

(i) Do one step of the algebraic solver to obtain u’i eX I’j and an associated a posteriori
estimator nalg(u’fl) for the algebraic error

[ Matg(up )] = SOLVE(uy ™ {7} o P)-
(i) Compute a posteriori indicators for the elementwise discretization error

{0 (T, u})}res; = ESTIMATE(u}, 7).

(iii) If pag(uk™") < Awgnr (u¥), terminate the k-loop, set the index k[L] = k and

define u;, = u%[L]

(IT) MARK: Determine a set of marked elements My C 97 of (up to the multiplicative
constant Cy,) minimal cardinality that satisfies

Onr(up)? < Z ne(T,up)?.
TeMy,

(III) REFINE: Generate the new mesh 77,1 := REFINE(M_, 77.) and define u% L= UL

Output: Sequences of successively refined triangulations 77, discrete approximations uy, and
corresponding error estimators (177 (1), g (11.)).

Mesh-refinement is steered by the discretization error estimator. Forall T € 75, let ng (T;-): X fl -
Rsq be the local contributions of the standard residual error estimator defined by

ny(T;ve) = hil|f +div(AVvy — ONF + hrl[AVve = £ - nll3r00 (2.16)

where || - ||, denote the appropriate L?(w)-norms. We define

5\ 1/2
e (Usps vig) = ( > nu(Tiv) ) for all Uy C T and vy € X7,
Te Uy
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2.3 Application to adaptive FEM with inexact solver

To abbreviate notation, let ng(vy) = ng (Ta;vH).
One important consequence of Theorem 2.4 is optimal convergence of Algorithm 2B with respect
to computational complexity. To formulate this mathematically, we define the ordered set

Q={(L, k) e N(Q): index tuple (L, k) is used in Algorithm 2B and 1 < k < k[L]}.
On Q, we define the ordering < by
(L', k') < (L, k) u’Zl, is computed earlier than or equal to u,’i in Algorithm 2B.
Furthermore, we introduce the total step counter |-, -|, defined for all (L, k) € Q, by
|L, k| =#{(L", k") e Q: (L', k") < (L,k)}.

Before we state the theorem, we introduce the notion of approximation classes. For s > 0, define

= sup ((N+1)°  mi = = el + ope (i3 ). 2.17
lulle, = sup ((N+1)"in (1 = il + o) @.17)

with Galerkin solution ugpt and estimator 7, on the optimal triangulation 7oy € Tn (70), where
Tn (T0) ={Tu € T(T) : #Ta —#To < N}. By reliability (A3) of the estimator, see, e.g., [CFPP14],
the sum on the right-hand side of (2.17) is equivalent to nopt(ugpt). If ||u||a, < oo, then we say that
rate s is possible.

In [GHPS21], it is shown that in the case of a contractive solver, convergence rates with respect to
degrees of freedom are equivalent to convergence rates with respect to computational complexity.
We abbreviate with cost(L, k) the total costs of Algorithm 2B defined by

cost(L, k) = Z #TL.

(L",k)eQ
(L",k")<(L,k)

Theorem 2.7

Let {71} e, be the sequence generated by Algorithm 2B and define the quasi-error by
AR = llu* = u¥ |+ k) forall (L k) € Q.

Then, for all parameters 0 < 6 < 1 and Ay > 0, it holds that

(LSE)I)Q(#(]Z)SA]Z ~ (Lskl)pacost(L, k)® A’i and A’,i — 0as|L, k| — oo. (2.18)
ke ke

Furthermore, there exist 0 < * < 1, and /l;‘lg > 0 such that, for sufficiently small parameters
0<60<60*and0 < Ag,e/0 < A:g, and for all s > 0, it holds that

Copt llulla, < sup cost(L,k)* AF < Copt max{lluHAs,Ag}. (2.19)
(L.k)eQ

The constants copt, Copt > 0 depend only on the polynomial degree p, the initial triangulation

70, Amax/Amin, maxreq; || div(A)|[L=(r)/Amin, the rate s, the ratios 6/6* and /lalg/(H/l:lg),
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2 hp-robust multigrid solver on locally refined meshes

and the properties of newest vertex bisection. In particular, this proves the equivalence

lulla, <0 sup cost(L, k)’ A’Z < oo, (2.20)
(L,k)e@Q

which proves optimal complexity of Algorithm 2B.

Remark 2.8. We note that in [GHPS21, Theorem 8], the constant cqp > 0 additionally depends on
the stopping index L in the case the algorithm terminates after a finite number of mesh levels L < oo
or the estimator satisfies ny (ur) = 0. The refined analysis in the recent work [BIM™*24a] removes
this dependence.

Remark 2.9. We note that it is also possible to use the same stopping criterion for the algebraic
solver as in [GHPS21, Algorithm 2]. However, since the multigrid solver from Algorithm 2A has a
built-in estimator for the algebraic error, we opt for its choice within Algorithm 2B instead.

Proof of Theorem 2.7. We show that Algorithm 2B satisfies the requirements of [GHPS21, Theorem 4
and Theorem 8]. First note that the standard residual error estimator from (2.16) satisfies the axioms of
adaptivity from [CFPP14] and thus satisfies the assumptions (A1)—(A4) from [GHPS21, Theorem 8§].
Furthermore, newest vertex bisection satisfies the assumptions (R1)—(R3) from [GHPS21, Section 2.2].
For the present setting, the conditions (C1) and (C2) from [GHPS21, Section 2.5] coincide and are
satisfied.

Tracing the role of the stopping criterion for the case (C1) in the proof of [GHPS21, Theorem 4],
one sees that the stopping criterion needs to guarantee that, for all (L, k) € Q,

luy = uy ™ Il < A3 e (uf) if uy =up,

" 2.21)

TIL(M]Z) <Ayt |||u’£ - u]z_ else,

for some A1, A3 > 0. The upper bound in (2.14) in Theorem 2.4 as well as contraction (2.13) show
that, for all (L, k) € Q, our stopping criterion in Algorithm 2B Step (liii) leads for u’,i =uy to

L (2.13) .24 _
”l”]]i - ”Ii 1||| < (1 + thl‘) ”l“z - M][i 1||| < Cn:l(1 + thl‘) Ua]g(ulz 1) < /lalgcrel (1 + QCtr) UL(”E)-

For the remaining case, the contraction (2.13) leads to

(2.13)
k k-1 3 k k-1
lluy —ufll < qewlluy —uy Il < gew Muy = up il + gew My —ug =l

This implies

q -
ez = < ==l =~ (222)
clr

The not met stopping criterion in Algorithm 2B(liii), the lower bound in (2.14), and (2.22) show

(2.14)
k -1 k-1 -1 k-1 -1 k k k-1
UL(”L) < /la1g Ualg(”L < Aalg |||Mz —uy Il < /lalg (”l’/tz - ML||| + ”l”L —Uur ”l)
(2.22)

-1 qctr k k-1
< /lalg (1 + ﬁ) Moy — w7 |l
ctr

1
-1 k k-1
= /lalg (1 — thl‘) |||ML —uy ”l
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2.4 Numerical experiments

Overall, (2.21) is satisfied with
A1 = Crel (1 + genr) /1a1g and A2 = (1 - gcu) Aalga

and [GHPS21, Theorem 4] proves full linear convergence, so that, in particular, (2.18) is fulfilled
(see the proof of [GHPS21, Theorem 8] or [BIM*24a, Corollary 4.2]).

The lower bound in (2.19) follows as in [GHPS21, Theorem 8] or [BIM*24a, Theorem 4.3]. For
the upper bound in (2.19), [GHPS21, Theorem 8] requires that

0<A1/6 < /lopt =(1- CICtr)/(thr Cstab)

and 6+ 11/1
+
0<@ = — 120

- 1- /11/ /lopt
where Cyp is the stability constant from (A1) and Cg is the constant from discrete reliability (A4);
see, e.g., [GHPS21]. We define

< Oopt = (L+C2 C2 )7L,

stab

/l* — /lopt
ale Crel (1 + QCtr) ’

and Aqe /60 < /l;‘lg thus implies 11/6 = Cre (1 + gcir) daig/60 < Aopt. Finally, we choose 6* such that

any 0 < 6 < 6* satisfies 2—55 < Bopt- Then, 0 < 6 < 6* yields ' = % < % < Bopt and

optimal cost in Theorem 2.7 follows directly from [GHPS21, Theorem 8]. ]

2.4 Numerical experiments

This section investigates the numerical performance of the proposed multigrid solver of Algorithm 2A
and the adaptive Algorithm 2B. The MaTLAB implementation of the multigrid solver is embedded
into the MooAFEM framework from [IP23]. Throughout, we choose the marking parameter 8 = 0.5
in the adaptive Algorithm 2B and f = (0,0)". We introduce the following test case:

e L-shaped domain. Let Q = (-1,1)?\ ([0, 1] x [-1,0]) with right-hand side f = 1 and A = I.

2.4.1 Contraction and performance of local multigrid solver

We confirm numerically our main results from Theorem 2.4. In order to study the algebraic solver
and its built-in estimator with respect to different polynomial degrees, we take Ay, = 1075 in
Algorithm 2B, thus oversolving the algebraic problem. Moreover, we stop the adaptive algorithm
once the final mesh consists of 10% degrees of freedom. Note that thanks to Corollary 2.5 proving
the equivalence of the reliability of the algebraic error estimator with the contraction of the algebraic
solver, we indeed only need to investigate numerically the existence of the p-robust bound on the
contraction of the solver. In Figure 2.3 (left), we present the maximal contraction factors on each level
L of the adaptive algorithm from Algorithm 2B. We see that the contraction factors are robust in the
polynomial degree p with an upper bound of about 0.7 in all our experiments. In Figure 2.3 (right),
we see that on a fixed number of levels (L=10) even for higher-order polynomials their behavior is
clustered around similar values. Moreover, from a purely solver-centric perspective, we see that the
solver variant which employs higher-order smoothing also on the intermediate levels (and not only on
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2 hp-robust multigrid solver on locally refined meshes

the finest one) as studied in [MPV21] only leads to slight improvements of the contraction constants.
Adapting the arguments of [MPV21], this modified construction can be guaranteed to be contractive
with p-robust, but linearly L-dependent contraction bound on the algebraic error. However, this
degradation with increasing L is not seen in practice, provided that the patchwise smoothing is done
everywhere for level L = 1 (as new degrees of freedom are added on all patches when the polynomial
degree is p > 1) and local patchwise smoothing is employed in the remaining levels. We present a
comparison of the resulting contraction factors of this approach to Algorithm 2A for a fixed number
of level (L = 10) in Figure 2.3(right).

LALLM A1) T
0.7 . 0.7 n
0.65 - *
0.6 |- .
z 0.6} 4z
= S
Algorithm A ~[MPV21]
0.55 | 0.5+ —— = p=3
—a— —— p=6
05} i . , o
X A —a— —0— p=12
(R RN 1] O S V11 NI O I 111 N T 11 NS S WA T 111 B S W AR 1] B 04 1 1 | | ]
10*  10*  10°  10° 107 108 0 10 20 30
2 <)Lk Am SP(71/) number of iterations

Figure 2.3: Contraction of the algebraic solver. History plot of the contraction factors g from (2.13)
for various polynomial degrees p with parameter Ay = 1 075 for the presented polynomial
hierarchy from (2.7) in the adaptive algorithm from Algorithm 2B stopping once the
final mesh consists of 106 degrees of freedom (left) and the comparison with polynomial
hierarchy motivated by [MPV21] with localized smoothing for a fixed number of levels
L =10 (right).

2.4.2 Optimality of the adaptive algorithm

We take Ay, = 0.1 in Algorithm 2B and study the decrease of the discretization error estimator
nr(ur), both in terms of number of degrees of freedom and timing. We remark that the error
estimator 777, (uy,) on the final iterates is equivalent to the quasi-error Ay. After a pre-asymptotic
phase, we see in Figure 2.4 for different polynomial degrees p that the optimal convergence rate
—p/2 is recovered both with respect to number of degrees of freedom and computational time, and
the singularity at the reentrant corner (0, 0) is resolved through local mesh refinement. Furthermore,
Figure 2.5 shows that the proposed multigrid solver behaves faster than the built-in direct solver
(MaTtLAB backslash operator) concerning the time per dof. The displayed timings include the setup
of the linear system, the time for the solver module, computation of estimator, and mesh refinement.
Overall, the numerical experiments in Figure 2.5 validate the linear complexity of the suggested
local multigrid solver from Algorithm 2A.
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2.4 Numerical experiments
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Figure 2.4: Optimality of AFEM on L-shape. The convergence history plot of the discretization error
estimator 77, (17, ) with respect to the total computational cost (left) and the cumulative
computational time (right).
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Figure 2.5: Optimality of the local multigrid solver. History plot of the cumulative computational

time and the relative computational time per degree of freedom for the polynomial
degrees p = 1 and p = 4. We compare the overall time with the direct solve (square)
to the overall time of the AFEM algorithm with the multigrid solver (diamond). In
particular, the displayed times include setup, marking, and mesh refinement.
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2 hp-robust multigrid solver on locally refined meshes
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Figure 2.6: Adaptively refined meshes. Left: checkerboard diffusion with k = 1, polynomial degree
p = 1 and #7g = 603. Right: stripe diffusion with k = 2, p = 1 and #7g = 753 (right).

2.4.3 Numerical performance and insights for jumping coefficients
We consider two additional test cases with jumps in the diffusion coefficient:

o Checkerboard. Let Q = (0, 1)? be the unit square and A the 2 x 2 checkerboard diffusion with
values 1 (white) and 10¥ (grey) for fixed k = 1, 2, 3, see Figure 2.6 (left).

o Striped diffusion. Let Q = (0, 1)? be the unit square split into 2¥ stripes for k = 1,2, 3. The
value of A on the j-th stripe is 10/~! with j € {1,...,2*}, see Figure 2.6(right).

In Table 2.1, we see the optimal convergence of the discretization estimator with the optimal rate
—1/2 for p = 1 as well as —1 for p = 2 for both diffusion coefficients regardless of the jump size. We
stress that the discontinuity in the diffusion coefficient does not affect the optimality of the proposed
adaptive algorithm and the iteration numbers remain uniformly bounded as displayed in Table 2.2.

Both test cases exhibit singularities due to jumps in the diffusion coefficient; however, the jump
can be much higher for two neighboring elements in the checkerboard case. In this case, near the
cross point (1/2,1/2), the jump is of order 10¥ from one element to the next, which coincides with
the jump from the highest to the lowest value of A on the whole domain. For the striped test case,
the jump between two neighboring elements belonging to different “stripes” is of order 10, even if
the global jump in the diffusion (for non-neighboring elements) is of order 1021,

This gives us the tools to observe numerically if the performance of our method only depends on
local jumps in the diffusion coefficient.

2.5 Proofs

Below we present proofs of intermediate results leading to our main Theorem 2.4 of L- and p-robust
contraction of the multigrid solver and the L- and p-robust two-sided bound of the algebraic error by
the built-in a posteriori estimator. We emphasize that this result improves the recent work [MPV21]
by removing the L-dependence. From an algorithmic point of view, this is done by applying local
smoothing only on patches which change in the refinement step on lowest-order levels instead
of on every patch as was the case in [MPV21]. From an analysis point of view, L-robustness is
achieved thanks to the strengthened Cauchy—Schwarz inequality on bisection-generated meshes
(Proposition 2.16) building on the property that the levelwise overlap of the smoothed patches
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2.5 Proofs
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Figure 2.7: Optimality of AFEM for jumping diffusion. The convergence history plot of the
discretization error estimator 777, (1) for polynomial degree p = 2 with respect to the
total computational cost for the checkerboard diffusion (left) and the stripe diffusion
(right).

Checkerboard Stripe

p=1 p=2 p=1 p=2

k=1 -0.4961 -0.9877 -0.4956 -1.0116
k=2 -0.4960 -0.9946 -0.4969 -0.9670
k=3 -0.4960 -0.9826 -0.5095 -0.9766

Table 2.1: Mean value of experimental convergence rates of the discretization error estimator
nr(ur) over the cumulative cost in a log log-plot for polynomial degrees p = 1,2 and
diffusion coefficient numbers k =1, 2, 3.

Checkerboard Stripe

p=1 p=2 p=1 p=2

=1 1 1.0455 (mean), 2 (max) 1 1.0455 (mean), 2 (max)
2 1 2.3261 (mean), 5 (max) 1 1.0417 (mean), 2 (max)
=3 1 1.1818 (mean), 3 (max) 1 1.0833 (mean), 2 (max)

Table 2.2: Mean and maximal iteration numbers for polynomial degrees p = 1,2 and diffusion
coefficient numbers k =1, 2, 3.
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2 hp-robust multigrid solver on locally refined meshes

stays uniformly bounded. The next essential ingredient to prove the main result is an /hp-stable
decomposition on bisection generated meshes (Proposition 2.14), then one combines the results
carefully together with the simple but crucial observation of uniform boundedness in the number of
overlapping patches for a fixed level (Lemma 2.10) and bounds on the step-sizes and the levelwise
solver update (Lemma 2.11).

2.5.1 Auxiliary results

We start with the simple observation that the number of overlapping patches is uniformly
bounded.

Lemma 2.10 (Finite patch overlap). For all T € T¢, there holds
#(V,NT)=d+1. (2.23)
Therefore, for all g € N, it holds that

I veell® < (@+1) D lvecll® forallve - e X . (2.24)
ze€Vp ze€Vp

Similar arguments show that

2
Hv Svea| <@+ Y IVvel? forallvez e XY (2.25)
ZE(V{ ZE(V[ '

Proof. The overlap (2.23) is clear from the geometry of the elements in the mesh. Forall£ =0, ..., L,
the discrete Cauchy—Schwarz inequality and (2.23) lead to

DT vecll®= D000 D) vecllF < @+1) > fiveli*.

z€Vp TeTe zeVeNT z€Vp

This concludes the proof. O

Next, we present bounds on the step-size and the levelwise solver update.

Lemma 2.11. Forall ¢ € {1,...,L}, we have

lacoel® < 20 " loe.zlI*. (2.26)

.
zeV,

Moreover, we have upper and lower bounds for the step-sizes,

<. 2.27
d+1 ="k (2.27)

< < 1 =1,...,.L-1
T <Ap<d+1 forall s, L and

Proof. Step 1: Proof of (2.26) if £ = L or (Rp(pe) — {or—1 . pe))/llpelll?> < d +1 for £ €
{1,...,L—1}. From Step (ii) of Algorithm 2A, we have that 1, = (Rz.(p¢) — or—1, pe))/llpelll?
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and thus

Mepll? = 2, 220 M,fi(ﬂle L o2 = 2, D (Rulpez) = §oets pe))
zeV;

t

2.11) 9

= ) Mol
4

zeV;

Step 2: Proof of (2.26) in the remaining cases. We use the finite overlap of the patches in Lemma 2.10
to obtain

Ae 224 A,
llepell® = m”boelll2 < g7+ Z lloe.l? = Ac Z lloe. .
zeV} zeV}

Step 3: Proof of (2.27). For £ € {1,..., L — 1}, the upper bound is guaranteed by definition of A,.
The lower bound for € € {1,..., L} is trivial if 1, = 1/(d + 1). Otherwise, it is a consequence of
the finite patch overlap:

_ Ri(pe) = {oe-1, pe)) can zev; llpe,2III” 24 1
lloell? loelll? T od+1

This concludes the proof. O

Ae

In the next two subsections, we combine existing results from the literature to obtain a multilevel
hp-robust stable decomposition and a strengthened Cauchy—Schwarz inequality for our setting of
bisection-generated meshes. These will be crucial for the proofs of Theorem 2.4 and Corollary 2.5
in Subsection 2.5.4 below.

2.5.2 Multilevel hp-robust stable decomposition on NVB-generated meshes

We start by recalling the one-level p-robust stable decomposition from Section 3.4 and Section 4.3
in [SMPZ08] for d = 2 and d = 3, respectively.

Lemma 2.12 (p-robust one level decomposition). Letvy € X f . Then, there exists a decomposition
v = v+ Z viz withvi € X} andvizeXfZ, (2.28)
ze€VL

which is stable in the sense of

IVVEIP+ > N9y 1% < CElvvel®. (2.29)

zeVL

The constant Cor, depends only on the space dimension d, the y-shape regularity (2.5), and the
quasi-uniformity constant Cqy from (2.6).

Similarly, we recall the local multilevel decomposition for piecewise affine functions proven in [WZ17,
Lemma 3.1]. In order to present this stable decomposition in a form that is more suitable for our
forthcoming analysis, we add a short proof for completeness.
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2 hp-robust multigrid solver on locally refined meshes

Lemma 2.13 (A#-robust local multilevel decomposition for lowest-order functions). Let vi eX i
Then, there exists a decomposition

L
vy = Z Dvi. withv e X}, (2.30)
eﬂ/"

which is stable in the sense of

L

D0 VIR < CRlIVVLIP. (2.31)

=0 ze(Vgr

The constant Cyy1, depends only on the space dimension d, the y-shape regularity (2.5), and the
quasi-uniformity constant Cgy from (2.6).

Proof. Let vi € X1 Define w{, = (I1p — - 1)vL for ¢ € {0,...,L}, where I1_; = 0 and

I, is the projection to X, I from [WZ17, Section 3]. From [WZI7, Lemma 3.1], it holds that
w} € span{y¢ ;: z € V/} with @¢ ., being the S'(77) hat-function at vertex z € V;. We decompose
wy = Yoews vy withv, =w;(2)¢c; € X} _and thus obtain

L

L= (M =TI, 1)VL‘ZW4"Z vk (2.32)

=0 = OZE(V+

For fixed ¢ and z € V;, the equivalence of norms on finite-dimensional spaces proves

1 1
VMo < D Iwi(@eecllr

Tt (2.33)
< 1 TI/2 < 1) (1ol :
< wellpe )TV < Iwellr = llwell .

TeT; . TeT;

where the hidden constants depend only on y-shape regularity (2.5). To obtain stability of the
decomposition (2.32), we use an inverse inequality on the patches and the stability proved in [WZ17,
Lemma 3.7]:

Z DvvELIP < Z S 2V, s Z D h 2wl

{= Ozeq/+ = Ozeﬂﬁ = Oze(V"'
2 '7] 12
Z DN A [0 PR PR 5 A A BN
(=0 zeV}
This concludes the proof. O

The combination of the two previous lemmas, done similarly in [MPV20, Proposition 7.6] for a
non-local and hence not s-robust solver, leads to the following /p-robust decomposition.
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Proposition 2.14 (hp-robust local multilevel decomposition). Let vy € X f . Then, there exist
vo € X1, Vez € X}Z, and vy ; € sz such that

L-1
VLEvoE Y Y vezt ) iz (2.34)
=1 zE(V; ze€VL
and this decomposition is stable in the sense of
2 2 2 2 2
livolll® + Z Dozl + D) e ll® < CEy v li®. (2.35)
=1 zE(V"' zeVr,

The constant Csp > 1 depends only on the space dimension d, y-shape regularity (2.5), the
quasi-uniformity constant Cqy from (2.6), and the ratio of Amax and Apin.

Proof. Letvy € X Ilj . We begin with the decomposition of vy, by (2.28), then continue with the

further decomposition of the lowest-order contribution vi in a multilevel way (2.30):

. (2.28) V}"" Z P (230)2 Z v€z Z Vi,z

ze€VL =0 zE(V+ ze€VL
= Vi o+ vio+ vl VP
0,z 0,z L, T L.z’
z€Vp =1 zE(V+ zE(V"' z€VL

By defining v = Y cqy vy, € Xy, ver = vy, € X} forze Viand1l < ¢ < L-1,and
V. = vlLZ+v z\’p forze(V andeZ.—v Xp forze’VL\(V we obtain the
decomposition (2. 34) It remalns to show that this decomposmon is stable (2.35). First, we have for
the coarsest level that

19vel2 < @+ 1) S 9l P
zeVo

For the finest level, it holds that

Dol < 3 WP +2 Y (I9v P+ IV LIP)
zeVL z2eVL\V} zeVy
<(@+1) YW+ d+1) D9V I

zeVy ze€VL
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2 hp-robust multigrid solver on locally refined meshes

A combination of the two estimates shows that

|VV0||2+Z DUIVvelP+ D Vvl

(=1 zeV} ze€VL
L-1
<@+ 1) (2P 3 DAL IR Y IL P+ Y I9vE IR
z€Vy {f:lze(v; ze’V+ zeVy
L
<S@d+1) )0 D UIVIP+(d+1) DIV
K:OZE(V; zeVr
C2 @) IV 2+ (d+1 WP |2
—CML( + )” VL” +( + ) H vL,z”
Z€VL
(2.29)

< max{1,CZ } C3 (d+ )|V |12

Hence, the decomposition (2.34) is stable with (C{p)* = max{1, Cg; }C3, (d + 1) with respect
to the H'(Q)-seminorm. Taking into account the variations of the diffusion coefficient A, we
obtain (2.35) with the stability constant Csp = CéDAmaX/ Amin- O

2.5.3 Strengthened Cauchy-Schwarz inequality on NVB-generated meshes

The following results are proved in the spirit of [HWZ12; CNX12]. Note that the setting of this work
is similar to [HWZ12], and unlike [CNX12], the underlying adaptive meshes of the space hierarchy
are not restricted to one bisection per level.

For analysis purposes, we introduce a sequence_ of uniformly refined triangulations indicated
by {7'} —o such that 7'+1 = reflne(‘ij, ‘7;) and 7' 7o, where refine enforces one bisection

per element. According to [Ste08], admissibility of 7y ensures that indeed each element 7" € ‘7} is
bisected only once into two children 77, 7" € ?+1 In the following, we will indicate the equivalent
notation to Section 2.2 on uniform triangulations T with a hat, e.g., X X1 is the equivalent of X; ! on
the uniformly refined mesh ‘T The connection of the uniformly reﬁned meshes and their adaptively
generated counterpart requires further notation. For a given level 0 < £ < L and a given node
z € Vg, we define the generation g, , of the patch by the maximum number of times an element of

the patch has been bisected
8¢,z = max logy(|To|/|T) € No, (2.36)
Te; .

where Ty € 7 denotes the unique ancestor element of 7 € 7,. Define the maximal generation
M = maxzcy, gLz

First, we present the following result for uniformly refined meshes and then exploit this for our
setting of adaptively refined meshes.

Lemma 2.15 (Strengthened Cauchy—Schwarz on nested uniform meshes). Let 0 <i < j < M,
and u; € Xl aswell asvj € X1 Then, it holds that

(@i . ;) < Cscs & 3 Y|V || |7 2.37)
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2.5 Proofs

where § = 2742 and gscs > 0 depends only on the domain Q, the initial triangulation 7y, Amax,
aXp 7, | div(A)|| = (T), and y-shape regularity from (2.5).
Proof. We begin by splitting the domain € into elementwise components, applying integration by
parts, and using the Cauchy—Schwarz inequality. Note that the restriction of u; to any element 7' € 7;
is an affine function, and hence the second derivatives vanish. Thus, it holds with the outer normal n
to 0T that

@i 5y =Y, [ ava v, ax

Te‘?\T
- Z ( /div(Avm)vjdH/ AV, - nv; dx)
T oT
Tel
= Z (”(diVA) 'Vﬁi”L?(T)”VJ’HL?(T) + ||AVI’Ti||L2(6T)ijHLQ(aT))'
Te7;

Dueto A € W5 (T), the fact that i}, v are piecewise affine, a discrete trace inequality, and }z\l_ I>1,
we get

(O Vj)) S Z ("Vﬁi||L2(T)||Vj||L2(T) + ”VﬁiHL?(aT)||VJ'||L2(6T))

TeT;

S Z (HVLTI'||L2(T)||";J'HL2(T) + (ﬁi_l/2”Vﬁi”L2(T)) (;l\i_l/zHi}\j“LQ(T)))
Te%

= Z (1 + hi_l) ||Vﬁi||L2(T)||Vf||L2(T)
Tef

S Z hi_1||Vl’7i“L2(T)HVJ'HLQ(T)'
Teﬁ

Moreover, note that due to uniform refinement, we have the equivalence 6/~/ = (271/2)/~% ~

(h /h; )1/ % and h < h;. Using the last equation multiplied by 1 = 1/ 7 h; 172 we derive that

o BNY2 ~ 1 1~ 1 o R
Qui , vi) < Z (};—]) h; 12 hj 1/2”V”i”L2(T)||vj||L2(T)

Te7;, 't
N Z 5j_i%]_'1 ||Vﬁi||L2(T)H"’\j“L2(T) = Z;I‘Sj_i”VLA‘iHL?(Q)”VJHH(Q)'
Tef
This concludes the proof. O

The last result enables us to tackle the setting of adaptively refined meshes.

Proposition 2.16 (Strengthened Cauchy—Schwarz on nested adaptive meshes). Consider levelwise
functions vy = ZZE(V; v}, . € Xt} with vtl; . € Xflzfor all1 <€ < L —1. Then, it holds that

(v W»SCSCS(Z S wke)” (Z Swkar)t @3

1 k=1 weV} t=1 zeV}

L-1¢-

—

t=1

>~
I
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2 hp-robust multigrid solver on locally refined meshes

where Cscs > 0 depends only on Q, the initial triangulation Ty, the ratio Amax/Amin,
maxreq; || div(A)||ze(1)/Amin, and y-shape regularity (2.5).

Proof. Let M € N. The proof consists of five steps.
Step 1. First note that, for any 0 < 6 < 1 and x;, y; > 0 with 0 < i < M, there holds

i=0 j=i i=0 j=0

To see this, we change the summation order accordingly and use the Cauchy—Schwarz inequality to
obtain

M M M M-i M M-m
Z Z 6j_lxlyj = Z 5sz)’m+z = Z 6mxlym+l
i=0 j=i i=0 m=0 m=0 i=0
M M-m s M-m 1o M M 1/2 M 1/2
< o[ Y ) = () () (20
m=0 i=0 i=0 m=0 i=0 j=0

The geometric series then proves the claim (2.39).

Step2. Letz € Vp and 0 < j < M and recall the patch generation g, , from (2.36). We introduce
the set B B
Z7(z.)) ={ted{l,....0} czeV andge,=j} with0<{<{¢<L. (2.40)

This set allows to track how large the levelwise overlap of patches with the same generation is.
Crucially, the cardinality of these sets is uniformly bounded by

max #(Z0,0(z,j)) < Cley < o0; (2.41)
zeVy
0<j<M

see, e.g., [WC06, Lemma 3.1] in the two-dimensional setting with arguments that transfer to three
dimensions. The constant Cye, solely depends on y-shape regularity (2.5).

Step 3. We introduce a way to reorder the patch contributions by generations (2.36). Note that, for
any0 < j<M,1<{<L-1,andz €V, such that g¢ , = j, the patch contribution v}, . € X}Z

also belongs to X Jl Once the generation constraint is introduced, one can shift the perspective from
summing over “adaptive” levels and associated vertices to summing over “uniform” vertices and
only the (finitely many, cf. (2.41)) levels where each vertex satisfies the generation constraint, i.e.,
for0 < £ <¢<Land0 < j < M, the two following sets coincide

{(t,2) eNgxVy: € e{l,... b}, z€ V) withg,, = j}

_ ' (2.42)
={(6,2) eNoxVp: z€ V), L €2, 7(z )}

Step 4. According to y-shape regularity (2.5), all elements in the patch have comparable size
depending on Cgy from (2.6). If g¢ . = j, (at least) one element T* € 77, satisfies 7* € 7; and it
follows that i ~ |T*|Y9 ~ |we . |Y? ~ he .. In particular, there exists Ceq > 0 such that

ht < Ceghy: (2.43)
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2.5 Proofs

Step 5. We proceed to prove the main estimate (2.38). The central feature of the following approach
is to introduce additional sums over the generations with generation constraints, i.e., there holds for
every admissible ¢, k, that

M M
D ke vE =Y DT Y kv

(vic, ve) =
zeV weVf J=0i=0 zeVS weV}
8¢,z=] 8k,w=1
M
DI IDIPIN T vfz>>+2 Z D0 D ke i)
J=0i=0 zeV} weV} J=0i=j+1 zeV} weVf
8¢,2=J 8k,w=l 80,2=J 8k,w=L

We abbreviate the terms as Sy (¢, k) and Sa2(¢, k), respectively. A change of the summation of order
and j yields for Sy (¢, k) that

M M
SIEK) =D D D (Vs Vi)
i=0 j=i zeV} weV}
8¢.z=J 8k.w=l

Summing S2(¢, k) over all £ and k and changing the order of summation, we obtain

L-1¢-1 M M L-2 L-1
SCEEDIDIDID I INP I TR
=1 k=1 J=0i=j+1 k=1 (= k+1zer*'werV+

8¢,z Jgkw—l

Combining these two identities with (2.42), we see that

L-1¢-1
S (S8 +5a60) = ZZZ(( DD Vhee v
=1 k=1 0 j=i (= we"V keZ1.p-1(w,i) ze(l?.
o 8¢,z=J
IDI Z<< kaw’ > X k)
j=0i=j+1 k=1 we(V+ 2eV; {€Lih1.L-1(2,))

We define the last two terms as S1 and Sa, respectively. Since the second term S5 is treated in the same
way, we only present detailed estimations of the first term S;. The strengthened Cauchy—Schwarz
inequality (2.37) for functions defined on uniform meshes followed by the patch overlap (2.24) leads
to

1 < Gacs zzwz(wmzn Sl S R

i=0 j=i WE(V kEfflp 1(w,i) ZE(V;
8¢,z=J

The identity (2.42) and the finite levelwise overlap (2.41) show

L-2
Z [ Z il Z Z#(glt’ Lo D[Vt LI < Clevz Z vl L2
weW; k€1 -1(w,i) k=1 weV} =1 wevy
gk,w=i 8k,w=i
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2 hp-robust multigrid solver on locally refined meshes

The equivalence of mesh sizes from (2.43) and a Poincaré-inequality prove

ZEZWMV%QZZWMH

=1 zeV; t=lzeV}
gf,z=j 8t.z=J

A combination of (2.42) with (2.25) and (2.41), followed again by (2.42), yields

(SIS =3 3 Iwd) c@nan S SmLE

lezG(V; ZE(’V;fegl,L—l(Zaj) =1 zE(V+
8¢,z=J 8¢,z=J

Thus, we obtain the bound
S Skl s @l (Y3 )

{= 1z€’V+ =1 zE(V+
8e,z=J 8¢,z=J

Combining all estimates, together with the geometric series bound (2.39), confirms

$1 < Gucs (@41 Cn G o (3 3 9l ) (S0 S It )

k=1 WE’V+ =1 ze(VJr

Finally, the result (2.38) is obtained after summing together with the analogous estimations coming
from the remaining term Sy and taking into consideration the variations of the diffusion coefficient
A so that the result holds for the energy norm. This concludes the proof. O

2.5.4 Proof of the main results

For the sake of a concise presentation, we only consider the case p > 1. The case p = 1 is already
covered in the literature [CNX12; WZ17] and follows from our proof with only minor modifications.

Proof of Theorem 2.4, connection of solver and estimator (2.12). The proof consists of two steps.

Step 1. We show that there holds the identity
L-1 L-1
I Aepelll® = 2wt = ve Z Aepe)
£=0

=—|||,00|||2+Z llaepell® - 22@ D Mloe Il

=1 zE(V+

(2.44)

Indeed, note that oy = Zi:o Ak pr. By definition of the local lowest-order problems in (2.10) and
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2.5 Proofs

(2.11) as well as the definition of p, = Zzefv; pe.z, we have

(ot —vL,ZAm» =’ Re.(po) +Z MZRL(pm(“O)|||po|||2+Z e > Repe.)

=1 zE(V"' =1 ze(V+
@.11) =
llooll?+ Y 4 " (eelIP+ (e prd)
=1 zeV;
L-1 (-1
=leoll®+ Y Ae 3" (Moell + Y §Akpr s pe.2))
(=1 ze(l/+ k=0
L-1¢-1
= |||.00|||2+Z/1t > Mlloecll? + Z«ﬂkpk, Aepe).
=1 zf:“’V+ =1 k=0

Thus, by expanding the square, we have

L-1 L-1
Y Aepell® =2((uf =vi. Y Aepe)) = Znumnﬁ 2llpolll® - 2ZMZ|HPM|H
€=0 £=0

=1 zE(V+
—|||Po|||2+Z|||MM|||2 2245 > eI

=1 zE(V+

This proves the identity (2.44).
Step 2. Recall that ¥(v,) = vy + 0L = vy + 01 + Appr. By definition of Ry in (2.9) and the
choice of Ay, in Algorithm 2A, we have

ey = PO = llu} = (vp +or-DI* =22 uf = (v +or-1), pr) + e ll?

= luyp = (vp +or-)lI* =24, (RL(PL) - {or-1, PL») +AL Z llor.2 Il

zeVL
L-1
(211) 2 2
up — - ,z1 .
My = (ve+ > acpe )l =2 D" Mozl
=0 ze€VL

For the first term it holds that

L-1 L-1 L-1
g = (v2.+ ", Aepe )P = ek = velI>+ I Z Aepel? = 2((u - ve. Z Aepe )
=0

(244)
e} vL|||2—|||po|||2+Z|||Am|||2 22@ D lloe:II?

=1 ze(V*

(2:26) * 2 2 N 2
<l =vill® = eoll* = > ac > Hioe Il

=1 ze‘V{T
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2 hp-robust multigrid solver on locally refined meshes

Combining the last two estimates with the definition of 74, (vz,) in Algorithm 2A, we obtain

L-1
g = SOOI < ef = vell® = looll? = > A > Mpecll =z > MorII

=1 ze(\/gr zeVL

2 2
= llluz = viell® = mag(ve)®.

This concludes the proof of (2.12). O

Proof of Theorem 2.4, lower bound in (2.14). The relation between the solver and the estimator
given in (2.12) shows that 7,4 (vz) < [lu} —vill. o

Proof of Corollary 2.5, equivalence of (2.13) and (2.14). We prove that the solver contraction (2.13)
is equivalent to the upper bound of (2.14).
First, suppose that (2.13) holds. Then, we proceed similarly as in the proof of (2.12) to obtain

L-1 L-
e = vl =l = ¥ =11 D Aepells2 (- v ,Z Aepe )+ Ar Y llpr.:I?

zeVL
(244)
g = P + ol - anpAu%zZu S el + 2, S orcII?
=1 ze(VJr zeVL

213) 5 2 2
< g luy —villl® +2nag(ve)”.

Rearranging this estimate proves the upper bound in (2.14) with C rel =2/(1-42) > 1.
Second, suppose the upper bound in (2.14). Then, it follows that

lu? —¥pl? < 2 : 2
wr =W L Mt = v lI? = g2 L ek = vill? = C2 k= vi I

This verifies the solver contraction (2.13) for g2, = 1 — Crel € (0, 1) and concludes the equivalence

proof. m]

Proof of Theorem 2.4, upper bound in (2.14). We use the stable decomposition of Proposition 2.14
on the algebraic error uy — vy € Xf to obtain vg € Xol, Vez € X{}Z and vy ; € Xf . such that

L-1
*

=1 zE(VJr ze€VL
2 2 2 2 2
and |voll +Z Dollvel®+ > Mvell® < €2y llluf - vell®. (2.45)
=1 zE"VJr ze€VL
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2.5 Proofs

Note that o = Zi:o Agpr forall € =0, ..., L; see Algorithm 2A. We use (2.45) to develop

2
g vl = {ut =ve o vo 9 3 veer Y vic)

t=1 zeV; zeVL

(2.9)
2,10

(po. vO>>+Z DT RL(ve)+ D) Ri(vez)

=1 ze(V+ zeVL

e oy eSS (ot o) + (ot ve )

t=1zeV}

# WpLe vie)+ (o1, viz)).

z€VL

Expanding o = pg + Zi:l Ak pi and rearranging the terms finally leads to

L-1 L-1
ey =vill® = €pos vo+ D D vee+ D vie)+ >0 > (e ve)

=1 ze"Vgr zeVy =1 ZE(V+
L-1¢-1 L-1
+ Z orL.z» ve2) +Z Z<</1kpk , Z Vt’,z>> + <</1kpk , Z VL z>>
zeVL k=1 zeV,

t’

Note that, until this point, only equalities are used. In the following, we will estimate each of the
constituting terms of the algebraic error using Young’s inequality in the form ab < («/2) a® +
(2a) 7! b? with @ = 4C3,,, the strengthened Cauchy—Schwarz inequality, and patch overlap arguments
as done in the proof of Lemma 2.10. Using the fact that 1g = 1 and the decomposition of the error

* _ L-1 .
uy —vp =vo+ 2 Zze(vg Ve,z + Xzey, VL,z» We see that the first term yields

1 1
{po V0+Z D veet 3 v 2 eo s ut = ve) < 5 MAopoll? + 5t - vl

=1 zeV} zeVL

For the second term, we obtain that

L-1 L-1 L-1

2
DT> hprzs ves) <2C, Z llpe,II* + 8C2 DT ezl
=1 ze(\/gr =1 ZE(V; SD ¢=1 zE(V+

"z, @+ Zaf D Mloe Il + 8C2 Z D eI,

=1 zE(VJr SD ¢=1 zE(\/Jr

and similarly for the third term

(2.27)
> (pre vec) <265 @+ DA Y Hlprall+ 5= D Iveall

zeVp zeVL SD zeV.,
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2 hp-robust multigrid solver on locally refined meshes

For the fourth term, we have
L-1¢-1

TS Cepes X vy 2 (303 o) (S0 S Wveai)”

=1 k=1 zeV} k=1 weV} (=1 zeV}

L-2
<2CsCh 3, ) Mokl + — Z D live I

k=0 weV} SD (=1 zeV/

ety <d+1>Zak D Mokl + 862 Z D eI

weVE SD (=1 zeV/

Finally, to treat the last term where higher-order terms appear together with a sum over levels, we

proceed similarly as in [CNX12, Proof of Theorem 4.8] and obtain

NI ED ) pre e

k=1 zeVr, zeVy

IA

zeVr k=1 SD zeVp

For the first term of the last bound, we have that
L-1¢-1

L-1 L-1
D Z Apills,, . <l Z Aepill® = Z kol "2 Z«Akpk, Aepe)
= = 1 k=1

ZE(VL k=1

-1
e Znukmn +2CSCS(Z 7 kol )”2( S epecli?)”

k=1 we(V+ =1 ZE(V+
G20 Ll
<" (1+2Cses @+ 1) (Y Ac+ Y lloecllP).
=1 zeV}

263 ), |||Zakpk|||‘,,“ 802 D vl

Summing all the estimates of the algebraic error components and defining the constant Cfel =

max{1/2, CZ, (d +1) (2+ C2 +2Cscs (d +1)'/?)}, we see that

1 1
ek = vl < 5 lldopoll® + 5 ek = vl +4C2 ( Z e Y MpellP+an Y llpr.:II?)

=1 ze(V+ zeVy,

F (55 et + 3, vscll?)

SD  ¢=1 e(V+ zeVr,

(245) )
<ACE Nag(v)? + = |||ML —velll”.

After rearranging the terms, we ﬁnally obtain that

2 _ 2
My = vill* < C2 nug(ve)?.

This proves the upper bound of (2.14) and thus concludes the proof of Theorem 2.4.
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3 Adaptive FEM with quasi-optimal overall cost
for nonsymmetric linear elliptic PDEs

The sections 3.1-3.7 of this chapter correspond to the publication:

M. Brunner, M. Innerberger, A. Miraci, D. Praetorius, J. Streitberger, and P. Heid. Adaptive
FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J. Numer.
Anal., 44(3):1560-1596, 2024. por: 10.1093/imanum/drad039

Unfortunately, there is a minor flaw in the original manuscript [BIM*24a] that, however,
required major adjustments of the analysis. Thus, we present the modified version with the
corrections proposed in:

M. Brunner, M. Innerberger, A. Miragi, D. Praetorius, J. Streitberger, and P. Heid.
Corrigendum to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear
elliptic PDEs. IMA J. Numer. Anal., 44(3):1903-1909, 2024. por: 10.1093/imanum/
drad103

3.1 Introduction

The mathematical understanding of optimal adaptivity for finite element methods (AFEMs) has
reached a high level of maturity; see, e.g., [BDD04; Ste07; CKNS08; KS11; CN12; FFP14; CFPP14]
for some contributions to linear PDEs. While the focus is usually on optimal convergence rates
with respect to the degrees of freedom [BDDO04; CKNS08; KS11; CN12; FFP14; CFPP14], the
cumulative nature of adaptivity should rather ask for optimal convergence rates with respect to the
overall computational cost, i.e., the overall elapsed computational time. This, usually called optimal
complexity, has been thoroughly analyzed for adaptive wavelet methods [CDDO1; CDDO03] and it
has also been addressed in the seminal work [Ste07] on AFEM for the Poisson model problem.
Recent works [GHPS21; HPW?21; HPSV21] considered optimal complexity for energy minimization
problems and, in particular, for symmetric linear elliptic PDEs. In contrast to this, optimal complexity
for nonsymmetric linear elliptic PDEs remained an open question due to the lack of a contractive
algebraic solver that is compatible with the variational structure of the PDE. Closing this gap is the
topic of the present work. While the canonical candidate for solving the nonsymmetric discrete
systems would be GMRES, we take a different path that is motivated by up-to-date proofs of the
Lax—Milgram lemma and closely related to the Richardson iteration used in the context of optimal
adaptive wavelet methods. Some comments on the challenges presented by GMRES and related
future work are given below.
As a model problem, we consider the nonsymmetric second-order linear elliptic PDE

—div(AVu*) +b - Vu* +cu* = f —divf inQ subjectto u*=0 ondQ  (3.1)

on a polyhedral Lipschitz domain Q ¢ R? with d > 1, where A € [L®(Q)]&x is a symmetric and
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3 Adaptive FEM with quasi-optimal computational cost

uniformly positive definite diffusion matrix, b € [L®(Q)]¢ is a convection coefficient, ¢ € L*(Q)
is a reaction coefficient, and f € L?(Q) and f € [L%(Q)]¢ are the given data.

With b(u,v) = (AVu, Vvl + (b -Vu+cu, vigand F(v) = (f, v)a+ {(f, Vv)q, where (-, )q
denotes the usual LZ(Q)—scalar product, the weak formulation of (3.1) reads:

Find u* € X := Hy(Q) suchthat b(u*,v)=F(v) forallveX. (3.2)

To ensure the existence and uniqueness of u* € Hé (Q), we assume that the bilinear form b (-, -) is
continuous and elliptic on Hé (Q) so that the Lax—Milgram lemma applies.

To discretize (3.2), we employ a conforming finite element method based on a conforming
simplicial triangulation 7, of € and a fixed polynomial degree m € N. With

Xy ={ve € H(l)(Q) | velr is a polynomial of degree < m, forall T € 7z}, (3.3)
the finite element formulation reads:
Finduy € X; suchthat b(uj,ve) =F(ve) forallve € Xp. (3.4)

Existence and uniqueness of u} follow again from the Lax-Milgram lemma. Note that (3.4) leads to
a nonsymmetric, yet positive definite linear system of equations. To derive an optimal nonsymmetric
algebraic solver, we follow the constructive proof of the Lax—Milgram lemma and reduce the discrete
formulations (3.4) to symmetric problems by employing the so-called Zarantonello symmetrization
(sometimes referred to as Banach—Picard fixed-point iteration). To this end, we define the bilinear
form associated with the principal part of the PDE by

a(u,v) =(AVu, Vv)g forallu,v € X. (3.9

Note that a(-, -) is continuous and elliptic on X and consult Section 3.2 for details. For a given
damping parameter 6 > 0, define the Zarantonello mapping ®,(5;-): Xy — X, by

a(@e(O;up),ve) = alue,ve) + 6[F(v,g) — b(ue, Vg)] forall vy € Xy; (3.6)

see [Zar60] or [Zei90a, Section 25.4]. The Riesz—Fischer theorem (and also the Lax—Milgram lemma)
proves existence and uniqueness of ®,(d;ur) € Xy, i.e., the Zarantonello operator is well-defined.
In particular, uy = ®(5;u}) is the only fixed point of ®(d; -) for any 6 > 0. Moreover, choosing &
suitably small will lead to a contractive method to approximate u7 in the spirit of the Banach fixed
point theorem with respect to the a(-, -)-induced energy norm [|[v||| == a(v, v)'/2. At this point, it
thus remains to treat a symmetric, positive definite (SPD) linear system of equations corresponding
to (3.6), that can be solved iteratively in practice for instance by the use of either a conjugate gradient
(CG) method with an optimal preconditioner, see e.g., [CNX12], or an optimal geometric multigrid
(MG) solver, see e.g., [WZ17; IMPS24].

The proposed adaptive strategy of this work, hereafter referred to as AISFEM, begins with

c o 0.j . ..
the initial guess u8’0 =uy o= ug’* =0 € Xj associated to a coarse mesh 7;. Finite element
approximations u];” € Xy are successively computed, where ¢ € Ny is the mesh-refinement index of

the ¢-th adaptively refined mesh. More precisely, ulg’j is obtained after j algebraic solver steps in the

k=1,j
k-th step of the Zarantonello symmetrization approximating the unique u’g’* = ®r(0;u, i) e Xy,
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3.1 Introduction

[ discrete problem

discretize (¢) = with solution wuj

(FEM)

l is nonsymmetric
‘7777777777&7 7777777777777777777777
; . SPD syst
N ' symmetrize (k) [ o syse
Ty~ = with solution
Pl ! (Zarantonello) . . L
Stopping -t [ U 1S expensive
g
\j\\ " solve algebra [ computable
Q‘?'ép*g,\\ ' inexactly (j) = approximation
M Siopping 1 (MG/PCG) | uf
Figure 3.1: Schematic view of the AISFEM algorithm components.
k—l,j . . k—1.% . . .
where u, = € X/ denotes the final approximation of u, ™ when the algebraic solver is adaptively

terminated. In particular, our analysis provides stopping criteria for the algebraic solver as well as the
(perturbed) Zarantonello symmetrization. We give a schematic view of our approach in Figure 3.1;
see Algorithm 3A in Section 3.3 below for the formal statement.

Overall, the adaptive strategy thus leads to a triple index set

Q = {(¢, k, j) € N3 | us/ is used by the AISFEM Algorithm 3A}, (3.7)

equipped with the natural lexicographic order |-, -, -|. This enables us to present the main contributions
of this work: First, in the spirit of [GHPS21; HPSV21], we prove that the quasi-error
k,j k,j , k,j k.j ;
Ay = M = g+ D™ = il + e () forall (&, j) € Q, (3.8)

which is the sum of the overall error plus the algebraic solver error plus the residual error estimator,

is linearly convergent with respect to the order of Q, i.e., |¢’, k', j'| < |¢, k, j| means that u’;,’j is

computed earlier than u’;’j within the (sequential) adaptive loop and |, k, j| — |¢/, k', j'| € Ny is the

overall number of discretization, symmetrization, and algebraic solver steps in between. In explicit
terms, Theorem 3.7 proves the existence of constants Cj;, > 0 and 0 < gjip < 1 as well as an index
{o € Ny such that, for all (¢, k, j), (£’, k', j') € Q with |€, k, j| > |€’, k", j’| and £’ > £, there holds
that
k,j IR IN NN L

ApT < Ciing KT T AR (3.9)
The threshold level £y € Ny arises from the lack of Galerkin orthogonality with respect to the
a(-, -)-induced energy norm leading to a more involved analysis. Second, as shown in Corollary 3.8,
this implies that, for any s > 0, there holds the equivalence

sup (#77)° A'g’j <o = sup Z #ﬁ,)SAif’j < 00, (3.10)

(6,k,j)eQ (k. j)e@ .k, j")eQ
[k j <16k, ]|

The interpretation of (3.10) is that the AISFEM algorithm leads to algebraic convergence rate s > 0
with respect to the degrees of freedom (finite left-hand side) if and only if it leads to algebraic
convergence rate s with respect to the overall computational cost (finite right-hand side), i.e., with

63



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Adaptive FEM with quasi-optimal computational cost

respect to the computational time. Third, extending available results from the literature [CN12;
FFP14; BHP17], Theorem 3.9 proves that, for sufficiently small adaptivity parameters, the proposed
algorithm has optimal complexity (which follows from optimal rates with respect to the degrees of
freedom and (3.10)). Finally, we admit that the proposed strategy hinges crucially on the appropriate
(sufficiently small) choice of the Zarantonello parameter ¢ > 0 in (3.6) as well as on the parameter
Aaig > 0 in the stopping criterion for the algebraic solver in Algorithm 3A(i.b.II) below. If these
parameters are chosen too large, the proposed method may fail to converge. Besides this restriction,
linear convergence (3.9) is guaranteed for any choice of the other adaptivity parameters Asym, 6, Crark
(see Algorithm 3A below).

Outline

The remainder of the chapter is organized as follows. Section 3.2 focuses on the setting and underlying
assumptions. In Section 3.3, we present the AISFEM algorithm in full detail and highlight some of
its properties. The main results of this work are presented in Section 3.4, the proofs of which are
given in Section 3.5. Numerical experiments in Section 3.6 underline the theoretical results, before
the short Section 3.7 concludes our results and outlines future work. Throughout, A < B denotes
A < ¢ B with a generic constant ¢ > 0 that is independent of the discretization, but may depend on
all problem parameters. Moreover, A ~ B abbreviates A < B < A.

3.2 Preliminaries

In this section, we state all prerequisites to formulate the AISFEM algorithm (Algorithm 3A
in Section 3.3 below). In particular, we collect the contraction properties of the Zarantonello
symmetrization, the algebraic solver, the mesh-refinement strategy, and the required properties of the
a posteriori error estimator.

3.2.1 Abstract formulation of the model problem

According to the Rellich compactness theorem [KJF77, Theorem 5.8.2], (Ku , v) =(b - Vu +cu,
v)q defines a compact linear operator K : X — X', where we recall that X’ = H~1(Q) is the dual
space of X = Hé (€2). With this notation, the weak formulation (3.2) takes the more abstract form

b(u*,v) =a(u*,v) +(Ku*,v)y=F(v) forallve X. (3.11)
Since b(-, -) is continuous and elliptic on X, i.e., there exists ag > 0 such that
ao llull} < b(u,u) forallu € X, (3.12)

a simple compactness argument proves that also the principal part a(-, -) is elliptic, i.e., there exists
@, > 0 such that

ap llully < a(u,u) forallu € X; (3.13)

see, e.g. [BHP17, Remark 3]. In particular, a(-, -) is a scalar product on X and the a(-, -)-induced
energy norm ||v||> = a(v,v) is an equivalent norm on X, ie., |[v|| = ||[v|]x for all v € X.
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3.2 Preliminaries

Consequently, b(-, -) is also elliptic and continuous with respect to ||| - |||, i.e., there exist (in practice
unknown) constants 0 < @ < L < oo such that

allull®> < b(u,u) and |b(u,v)| < L|ull vl forallu,v € X. (3.14)

While this setting already guarantees the Céa-type quasi-optimality of Galerkin solutions u} € Xy € X
to (3.4), i.e.,

llu* = u7ll < Ceea Inin llu* =vell - with  Ceea = La, (3.15)
(4 4

we recall from [BHP17, Theorem 20] that adaptivity improves the constant Ccg, in the Céa-type
estimate (3.15): If Xy € X¢41 and [lu* — u7|| — 0 as £ — oo, then (3.15) holds with a constant
1<Cy<L/oand Cp — 1las{ — .

Remark 3.1. The contractive Zarantonello symmetrization and hence the results of this work
hold in an abstract framework beyond that of the introduction in Section 3.1. More precisely, the
analysis allows for an abstract separable Hilbert space X over K € {R, C} with norm ||-|| x and a
weak formulation (3.11), where a(-, ) is a Hermitian and continuous sesquilinear form on X and
K: X — X' is a compact linear operator such that b(-, ) is elliptic and continuous on X. Provided
that a contractive algebraic solver is used (see Section 3.2.5), the analysis thus also applies to
other boundary conditions (e.g., mixed Dirichlet—-Neumann—Robin instead of homogeneous Dirichlet
boundary conditions used in the introduction).

3.2.2 Mesh refinement

From now on, let 75 be a given conforming triangulation of Q ¢ R¢ with d > 1 which is admissible
in the sense of [Ste08] for d > 3. For mesh refinement, we employ newest vertex bisection (NVB);
see [AFF*15] for d = 1, [Ste08] for d > 2 and [KPP13] for d = 2 with non-admissible 7;. For
each triangulation 7 and marked elements My C Tg, let 7, = refine(7y, Mpy) be the coarsest
conforming triangulation where all T € My have been refined, i.e., My C Tg\7,. We write
Tn € T(Tg) if T, results from Ty by finitely many steps of refinement and, for N € Ny, we
write 7, € Ty (Tg) it T, € T(TH) and #7, — #75 < N. To abbreviate notation, let T = T(7p).
Throughout, each triangulation 7y € T is associated with a finite-dimensional finite element space
Xpg C X, see (3.3), and refinement 7, € T(7g) implies nestedness X C X, C X.

Within the setting of AFEM, we will work with a hierarchy {77} ¢cw, generated by NVB refinements
from the initial mesh 7j.

3.2.3 A posteriori error estimator and axioms of adaptivity
For 7y € T, let

ng(T;-): Xg > Ryo forallT € Ty (3.16)

be the local contributions of some computable error estimator. We define

5\ 1/2
e (Usps vig) = ( > nu(Tivi) ) for all Uy C Try and vy € Xy
Te Uy
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3 Adaptive FEM with quasi-optimal computational cost

To abbreviate notation, let ny (vy) = ng(7g; ve). Furthermore, we suppose that 7y satisfies the
following axioms of adaptivity from [CFPP14] with constants Cgp, Crel, Cdrel > 0 and 0 < greg < 1
only depending on the dimension d, the polynomial degree m, and shape regularity of 75:

(A1) stability: For all 7 € T and 7, € T(7g), all v, € X, and all vy € Xy, and every
Uy < T N Ty, it holds that

70 (Ur, vi) = (U, vi)| < Caab Ive — valll-
(A2) reduction: For all 7 € T and 75, € T(7g), and all vy € Xpg, it holds that
Mn(Tn \ T, ve) < qrea N (T \ Tn, veH)-

(A3) reliability: For all 7 € T, the exact solutions u™ € X of (3.2) and u}, € Xg of (3.4) satisfy
that

e = uilll < Crermprs (ugy).

(A4) discrete reliability: For all 77 € T and 7, € T(7x), the corresponding exact discrete
solutions satisfy that

ey — uflll < Caret ner (Tt \ T ufy)-

We note that these axioms (A1)—(A4) are satisfied for the standard residual error estimators; see
Section 3.6 below for the model problem (3.1) from the introduction.
3.2.4 Contractive Zarantonello symmetrization

Recall 0 < @ < L from (3.14). Itis well known [Zei90b, Section 25.4] that the Zarantonello mapping
®(6; ) introduced in (3.6) is a contraction for sufficiently small § > 0, i.e., for 0 < § < 2a//L?.
Indeed, for all uy, wy € Xy, there holds

@ (6 um) = P (5wl < q[6] llugr — wall with g[6] =1-6(2a¢ -6L*) <1. (3.17)
Theoretically, 6* := v/ L? minimizes the expression in (3.17) resulting in g[6*] = 1 — a?/L?; see,
e.g., [HW20b].

3.2.5 Contractive algebraic solver

We assume that we have at hand an iterative algebraic solver with iteration step Wy : X’ X Xy — Xg.
This means, given a linear and continuous functional G € X’ and an approximation wgy € Xg of the
unique solution w}, € Xg to

a(wi,ve) =G(vy) forallvy € Xy, (3.18)

the algebraic solver returns an improved Wy (G; wg) € Xy in the sense that there exists a constant
0 < ger < 1, which is independent of G and X, such that

Wi = Pu(G;willl < gew Iwhy = walll. (3.19)
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3.3 Completely adaptive algorithm

To simplify notation when the right-hand side G is complicated or lengthy (as for the Zarantonello
iteration (3.6)), we shall write Wy (w7;; ) instead of Wy (G; -), even though w7, is unknown and will
never be computed.

In the framework of AFEM, possible examples for such contractive solvers include optimally pre-
conditioned conjugate gradient methods or optimal geometric multigrid methods, see, e.g., [CNX12]
or [WZ17], respectively, for approaches focused on lowest-order discretizations and [IMPS24] for an
optimal multigrid method which is also robust with respect to the polynomial degree.

3.3 Completely adaptive algorithm

In the following, we formulate an inexact adaptive iteratively symmetrized finite element method
(AISFEM) in the spirit of [HPSV21]. For ease of presentation, we make the following conventions:
Algorithm 3A defines certain terminal indices ¢, k[£], j[¢, k], indicated by underlining. We shall
omit the arguments of k and j if these are clear from the context, e.g., we simply write

kj  kjlek] kj  k[e]jle.kLC]]
£

u, u, and =u, , etc.

A similar convention will be used for triple indices, e.g., (¢, k, l) = (¢, k, i’[f, k]), etc.

Algorithm 3A: adaptive iteratively symmetrized finite element method (AISFEM)

" . . C 0.j .
Input: Initial triangulation 7, initial guess u8 0. =u, =0, marking parameters 0 < 6 < 1

and Cpark > 1, solver parameters Agym, Aag > 0, and damping parameter 6 > 0.
Loop: For £ =0,1,2, ..., repeat the following steps (i)—(iv):

(1) Forallk=1,2,3,..., repeat the following steps (a)—(d):

—1,j k-1,j

k
(a) Define ulg’o =u, — and, for purely theoretical reasons, u = ®u(0;u ¢ ).

¢
(b) Forall j =1,2, 3 . repeat the following steps (I)—(1I):
(I) Compute ul, ‘I’g(u ; k’jfl) and n(T; u’;’j) forall T € 7.

k 1 k,j kj  k-1.J
e Il < Aalg [/lsymnf(ug ]) + ”lug - u, ”l]

(c) Upon termination of the j-loop, deﬁne J [€, k] =)

. . . ’]
(II) Terminate j-loop if [||u,

. . kj k-1 k.j
(d) Terminate k-loop if [[lu, = —u, ~|| < Asymmne(u, ~).
(i1) Upon termination of the k-loop, define k[£] = k.
(ii1) Determme Mg C Ty of up to the constant Cpak minimal cardinality satisfying

977[(14 N2 < ne(Mesu, u, o2,

(iv) Generate 77,1 = refine(7z, M) and define u T =u

0.0 _ O _ 0k _ ki
+1 7 t’+1 -

3 . . k,j . . k,j
Olltpllt: Discrete approximations u ¢ / and correspondmg error estimators T]g(u ¢ J).
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3 Adaptive FEM with quasi-optimal computational cost

Remark 3.2. To give an interpretation of the stopping criteria in Step (i.b.Il) and Step (i.d) of

Algorithm 3A, we note the following: Since the algebraic solver is contractive (3 19), the term
k,j _ k J—1 k,j

lllu,” = Il provides a posteriori error control of the algebraic error |||u —u, |l ie,

k,% k,j CIctr k 1
ey ™ =, |l < ——— ||| .

Moreover, for sufficiently small 1,5 > 0 and ongoing Zarantonello iterations, also the perturbed
Zarantonello symmetrization is a contraction; see Lemma 3.10 below. With the same reasoning as

. k,j k-1,j
Jor the algebraic solver, the term ||u, = — u, =l = ||| € - ué, ||| thus provides a posteriori error
control of the symmetrization error |||u} — ulg’*||| ~ |lluy - *||| (atleastif 1 < k < k[£]). With this

understanding and the interpretation that the error estimator I][(Lt ¢ J ) controls the discretization

i k.j .. . . Lo
error |[[u* — u7||| (which is indeed true for u, A ; ), the heuristics behind the stopping criteria is

as follows: We stop the algebraic solver in Algorithm 3A(1.b.I) provided that the algebraic error
|||ulg”'r —ulg’J Il is of the level of the discretization error plus the symmetrization error. Moreover, we stop
the (perturbed) Zarantonello symmetrization in Algorithm 3A(i.d) provided that the symmetrization

kg . . .. .
error ||uy —u ¢ Wl is of the level of the discretization error. Up to the factors Adug and Asym, this

k.j .
ensures that all three error sources of ||u* — u ¢ |l are equibalanced.

For the analysis of Algorithm 3A, we recall that the set Q from (3.7) is given by
Q = {((, k, j) e N}: ulg’j is used in Algorithm 3A}.

Together with this set, we define

=sup{l € Ny: (£0,0) € Q} € Ny U {co}, (3.20a)
k[f] =sup{k € Ng: (£,k,0) € Q} € Ny U {oo}, whenever (£,0,0) € Q, (3.20b)
i’[f, k] =sup{j € Ng: (£, k,j) € Q} € NgU {co}, whenever (£, k,0) € Q. (3.20c)

Note that these definitions are consistent with that of Algorithm 3A, but also cover the cases that
the ¢-loop, the k-loop, or the j-loop in the algorithm do not terminate, respectively. We note that
formally #Q = co and hence either £ = co or k[{] = oo or j[{, k[{]] = oo, where the latter case is
excluded by Lemma 3.3. Bl

On Q, we define a total order by

0,k j) <k, j) u’;,,’jl is computed in Algorithm 3A not later than u';’j.
Furthermore, we introduce the total step counter |-, -, -|, defined for all (¢, k, j) € Q, by
10,k j| = #{(C, K, ) e Q: (€K, j) < (6,k, )} € Np. (3.21)

Our first observation is that the algebraic solver in the innermost loop of Algorithm 3A always
terminates.
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3.3 Completely adaptive algorithm

Lemma 3.3. Independently of the adaptivity parameters 6, Asym, and Ay, the j-loop of Algo-
rithm 3A always terminates, i.e., i‘[f, k] < oo forall (¢,k,0) € Q.

Proof. Let (¢,k,0) € Q. We argue by contradiction and assume that the stopping criterion in

Algorithm 3A(i.b.II) always fails and hence j[{, k] = co. By assumption (3.19), the algebraic solver

. . iy e k=1,j .
is contractive and hence convergent with limit ulg’* = ®;(5;u, ~). Moreover, by failure of the

stopping criterion in Algorithm 3A(i.b.II), we thus obtain that

k.j kj o k=Lj kj k-l S
776(14[ ]) + ”lu[ ’ - Ly Il < ”lug ! - u, ! I — 0.

k-1,j k=1,j . .
This yields |||u’tf’* - u, i||| = 0. Consequently, u, s a fixed point of ®,(4;-), cf. Algo-

rithm 3A(i.a), and hence u,

k-1,j . . .

];’0 =u, L= u’{f’* is already the exact solution of the linear Zarantonello system and hence the
algebraic solver guarantees that ulg’J = ulg’* for all j € Ny. Consequently, the stopping criterion in
Algorithm 3A(1.b.II) will be satisfied for j = 1. This contradicts our assumption, and hence we

conclude that j[¢, k] < co. m|

= = u} by uniqueness of the fixed point. In particular, the initial guess

u

Remark 3.4. For the mathematical tractability, we formulated Algorithm 3A in a way that #Q = oo.
Any practical implementation will aim to provide a sufficiently accurate approximation u,™ in finite
time. More precisely, Algorithm 3A will then be terminated after Algorithm 3A(1.b.1I) if

-1

k.j k.j k-1,j k.j k
Uﬁ(“g 7) + |||M£7 - ué 7”' + ”|M£7 - uﬁ ”l <T (322)

k.j
L

where T > 0 is a user-specified tolerance. For T = 0, finite termination yields that u, = = u™* with

k.j . ok, kj _ kj-l kj k-l
ne(u, =) = 0. To see this, note that (3.22) implies ug* =u, =u,  and u’g =u, =u, ~by
uniqueness of the fixed point of the contractive solver and the contractive Zarantonello symmetrization,

. . . k.j
respectively.  Finally, the first summand in (3.22) states n¢(uy) = ne(u, =) = 0 and hence
k.j B B

Ue

= u}y = u* by reliability (A3) of the estimator.

Remark 3.5. Up to the algebraic stopping criterion in Algorithm 3A(1.b.IL), the AISFEM algorithm
coincides with the adaptive algorithm from [HPSV21], where the (perturbed) Zarantonello iteration
is employed for an adaptive iteratively linearized finite element method for the solution of an energy
minimization problem with strongly monotone nonlinearity in the corresponding Euler—Lagrange
equations. However, the present analysis is much more refined than that of [HPSV21]:

(i) To guarantee full linear convergence, [HPSV21, Theorem 4] requires 0 sufficiently small, Asym
sufficiently small with respect to 0, and Ay sufficiently small with respect to Asym. In contrast, the
present analysis proves full linear convergence for arbitrary 0 < 6 < 1 and 0 < Agym < 1, and
only requires Ay to be sufficiently small to preserve the contraction of the perturbed Zarantonello
iteration (see Lemma 3.10 below in comparison to [HPSV21, Lemma 6]).

(ii) Despite the linear model problem, our analytical setting is more involved: the compact
perturbation in (3.11) prevents the use of energy arguments that guarantee a Pythagorean-type
identity in terms of the energy error (see, e.g., [HPSV21; HPW21]). Instead, we first need to
exploit a priori convergence of Algorithm 3A (see Lemma 3.12) to deduce a quasi-Pythagorean
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3 Adaptive FEM with quasi-optimal computational cost

estimate in Lemma 3.13, which then allows proving linear convergence (Theorem 3.7). As a
consequence (and beyond the results of [HPSV21]), this finally yields that, for arbitrary 6 and Asym,
the convergence rates with respect to the number of the degrees of freedom and with respect to the
overall computational work coincide (Corollary 3.8).

The following proposition provides a computable upper bound for the energy error |||u* — u’;’j III
Since Algorithm 3A follows the structure of [HPSV21, Algorithm 1], the proof can be obtained
analogously to [HPSV21, Proposition 2] and is thus omitted here.

Proposition 3.6 (reliable error control). Suppose that the estimator satisfies (A1) and (A3). Then,

Sforall (¢, k,j) € Q, it holds that

ne () + =y )
ey =g i1 <k < k[€)and 1< j < j[C K],
it = a0 < € dme Dy + ey ™ =y i1 < k < kle) and j = K],
ne iy ) if k= k[¢] and j = j[¢,k].
N1 (%) ife>0andk =0.

(3.23)

The constant Cr’el > 0 depends only on Cel, Cstabs Getrs Aalgs Gsym, and Asym.

3.4 Main results

In the following, we formulate the main results of the present work. We refer to Section 3.5 for the
proofs and Section 3.6 for numerical experiments, which underline these theoretical results. First,
recall from (3.17) that a sufficiently small parameter 6 > 0 ensures contraction of the Zarantonello
mapping and hence

k-1,j
e} — g I < Goyem e} =, =l forall (€, k,0) € Q (3.24)
with 0 < gsym < 1. The following theorem states full linear convergence of the quasi-error.

Theorem 3.7: full linear convergence of AISFEM

Suppose that 6 > 0 is sufficiently small and that the estimator satisfies (A1)—(A3). Choose
/l;‘lg > 0 depending only on qc from (3.19) and qsym from (3.24) such that

_ gdsym t 2 1i13;[r :lg
0 < Goym = T TET: < 1. (3.25)
1-qey “alg
Then, for arbitrary 0 < 6 < 1 and 0 < Agym < 1, there exists 0 < /I;Ig < /lj:lg such that
Algorithm 3A, for all 0 < Ay < /l;lg, guarantees full linear convergence: There exist constants

Ciin > 0and 0 < gjin < 1 as well as an index €y € No with £y < € such that the quasi-error

ApT = ll* = ul -+ W™ = ul N+ e () forall (Ck,j)e@  (3.26)
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3.4 Main results

satisfies that, for all (¢, k, j), (€', k', j') € Q with |, k, j| > |, k', j'| and €’ = €y,

k,j Ck,jl—| K ,j' | Ak,
AP < gl VKT AR (3.27)
The constants Cyin and qiin depend only on Cgap, Crel, Greds Gsym» e 65 Asym, Aalg, and
Ccéa = L/, while the index €y depends on u* and the sequence (u;)geNO.

While the proof of Theorem 3.7 is postponed to Section 3.5.5, we shall immediately prove the
following important consequence of Theorem 3.7: Algorithm 3A guarantees that rates with respect
to the number of degrees of freedom coincide with rates with respect to the overall computational
cost.

Corollary 3.8. Let s > 0. Under the assumptions of Theorem 3.7, the output of Algorithm 3A
guarantees that

k.j N k.j Cl.
M(s)= sup (#7)° A < sup > #7;,) Ak < M (s).
(€.k.j)eQ (CkDEQY (177 e@ (1- 9jin )
>0y >y I[/’k/’jllslf’k’jl
>4
(3.28)
This yields the equivalence
. S .

sup (H7)° A <00 = sup D #72,) A <ol (3.29)

(C,k,j)eQ (k. j)e@ @k, j)eQ
[,k j' <16,k ]

Proof. The lower bound in (3.28) is obvious. To prove the upper bound, without loss of generality,
we may assume that M (s) < co. By definition of M (s), it follows that

#Tp < M(s)YS[AS 175 for (€K', ') € Q with £ > 6. (3.30)
For |€, k, j| = |€’,k’, j'| and £’ > ¢y, full linear convergence (3.27) can be rewritten as
k',.'— < 1/s 1/s S pr o i k"_ R
[Agr J ] 1/s < Cliﬁs[q]ir/ls:lw,k,ﬂ €'k, j’| [A[ J] 1/?. (331)

The geometric series yields that

(3.30) ’or A§3.31) . 1 .
1 K,j'y-1 1 1/s k,jy-1
D, #Te =M@Y AT M) Ol (a1
(U',K,j)eQ (t',k,j")eqQ ~ 4in
[0,k j 1<1€,k, [0,k j <16,k ]
>0 '>{

Rearranging this estimate, we see that

Sk 1
#‘72/) Afj < M(S) Clin ﬁ
(¢ 7)eQ (1 -y )
|£’,k’,j’|§|€,k,j|
>
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3 Adaptive FEM with quasi-optimal computational cost

Taking the supremum over all (¢, k, j) € Q with £ > £y, we prove the second estimate in (3.28).
Moreover,

Q\{(,k,j) eQ: €=t} ={(l,k,j) €eQ: £ <y} is finite,

i.e., the sets over which we compute the suprema in (3.28)—(3.29) differ only by finitely many index
triples. This and (3.28) thus prove the equivalence in (3.29). O

To present our second main result on quasi-optimal computational cost, we first introduce the
notion of approximation classes. For 7 € T and s > 0, define

el = sup (V+1)° i [l = il + o (0] ) (3.32)

NeNy opt €N

with ugpt and nop; denoting the exact discrete solution and the estimator on the optimal triangulation
Topt € Tn(T), respectively. When (3.32) is finite, this means that a decrease of the error plus

estimator with rate s is possible along optimal meshes obtained by refining 7.

Theorem 3.9: optimal computational complexity

Suppose that 6 > 0 is sufficiently small and that the estimator satisfies (A1)—(A4). Let
0<6<6*:=(1+C? Cgrel)_l < 1. Define A%, = min{l, C! Cs_talb}’ where

stab sym alg
1 2qcw
Cute = ( e * sym). Cal
alg = 77— Gsym ‘1 — Gy alg ™ Isym (Calg)

Choose 0 < Asym < Ay, sufficiently small such that

<0~ (3.33)

61/2 + /lsym//l:ym)Q

0<8 = (
mark 1— /lsym / /l:ym

Then, for any 0 < Ayg < /lgug with A;lg > 0 from Theorem 3.7, Algorithm 3A guarantees, for all
s > 0, that

N k,.
conllllamy € s (31 #T) A G
KsJ (0K ,j)eQ
|€”k’sj,|S|€sk’j|
S k,‘ ,
sup > #7;,) AR < Cop max{[|u* |14, (7, AT} (3.34b)
(f,k,j)EQ (f',k’,j')EQ

[Zfo |€/’k/’jllslt)’k’j|
>y

where £y € N is the index from Theorem 3.7. The constant cop > 0 depends only on Ccgy = L/ a,
Cstabs Crel, s, and the use of NVB refinement; the constant Cop > 0 depends only on Cgp, Carel,
Cimarks Ccea = L/, Cl, Ciin, qiins #729> Greds Asym> Gsym, 0, 5, and the use of NVB refinement.
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3.5 Proofs

In particular, this proves the equivalence

S k,‘
|y <00 &=  sup ( D #7;,) AN c oo, (339)
(f,k,‘[’)EQ (t”,k’,j,)EQ
e i k)

which yields optimal complexity of Algorithm 3A.

The proof is postponed to Section 3.5.6.

3.5 Proofs

3.5.1 Contraction of perturbed Zarantonello symmetrization

Recall that for § < 26* = 2a/L?, the Zarantonello mapping is a contraction (3.17). However,

~1,j
Algorlthm 3A does not compute uk € = D, (6; u ¢ ) exactly, but relies on an approximation

k.j
u,” = uk f . The next lemma states that, for a sufficiently small stopping parameter A, > 0 in

Algorithm 3A, the Zarantonello symmetrization remains a contraction under this perturbation (up to
the final iteration). Its proof essentially follows along the lines of [HPSV21, Lemma 6]. However,
the present work considers a stopping criterion of the algebraic solver in Algorithm 3A(i.b.II) which
allows to choose A,g independently of Agy.
Lemma 3.10. Let /1:1g > 0and 0 < gy, < 1asinTheorem 3.7. Then, for all stopping parameters
0 < Agg < /l;‘lg and Asym > 0, it holds that

k,j _ k-1,j
ey = u, M < Gy Mt — 1, S forall (6K, J) € Qwith1 < k < k[{]. (3.36)

Moreover, for k = k[{], it holds that

k-1,j + 2qcn

k.j .
”lu[ - ” ”l < Gsym ”lug u, l Aalg /lsym 775(“} i) forall (¢, k, i) €eQ. (5.1

1- qctr

Proof. Let ((, k, j) € Q and suppose first that 1 < k < k[(]. By using the triangle inequality and
the contraction (3.24) of the unperturbed Zarantonello iteration, we obtain that

k,j k. k. k,j 13.24) k-1,j k. k,j
Moz =, =< Moy = W+ Moy ™ =, =M< Goym My =, =M+ Ml ™ = u, S (3.37)

It remains to treat the algebraic error term and to show that it is sufficiently contractive. We use the
contraction (3.19) of the algebraic solver, i.e.,

Mg = g/ < G Mg ™ =g~ for all (£, k, j) € Q with j > 1, (3.38)

the met algebraic stopping criterion in Algorithm 3A(i.b.II), and the not met stopping criterion in
Algorithm 3A(i.d) to obtain that

8) k,j—1 (bl k,j k,j k-1,j
ko CIctr 5J gctr o) o) o]
llee, ™~ ||i ||| u, —M Il < Aag 1 [Asymme(u, ™) + M, ™™ =, =]
— Yctr
(id CIctr k— qctr k’]' k-1,j
< 2 duig ||| g —u, *||| < 2 Adug T [||| wy —u, 7+ My =, 7

73



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Adaptive FEM with quasi-optimal computational cost

Combining the last estimate with (3.37) and rearranging the terms lead us to

q
qsym + 2 /1alg 1_0,;0"

_ Yetr
1 2 /lalg 1"10“

This concludes the proof of (3.36).

Now suppose that k = k[£]. By the met algebraic stopping criterion in Algorithm 3A(i.b.II)
followed by the met stopping criterion of the Zarantonello iteration in Algorithm 3A(i.d), we obtain
that

k-1,j (325 _ -1,j
”lu; - u( 7”' < QSym ”lu; - u[ 7”'

k’j
M7 —u, =l <

B ¢ Il < Aag [/lsym 7]5(”( o)+ ”l”g T U, 7”'] < 2 Aaig Asym 7]5(”( ).

Together with the contraction (3.38) of the algebraic solver, this yields that

ko G389 gew

k% k Jj-1
Nuy,” —u, =l < -

k,.] ks 2 thr ks}
e, = —u Il < Aatg Asym ne (U, ~). (3.39)
1-¢qen ¢ ¢ 1-qeu alg oym 8Ly

By contraction (3.24) of the unperturbed Zarantonello iteration, we obtain that

k.j k,x k,x k.j
Moy =, 7N < My =, M+ Mee,™ = u,

(3.24) k-1,j 2 gt k.j
< dsym |||I/t; — U, 7”' + 1 = /1alg Asym 776’(“[ 7)'
— {ctr
This concludes also the proof of (5.17). O

An important consequence of the contraction (3.36) of the perturbed Zarantonello iteration is that
k[£] = oo implies that the exact solution is already discrete u* = u} € Xg.

Lemma 3.11. Suppose that the estimator satisfies stability (A1) and reliability (A3), and that the
perturbed Zarantonello iteration is contractive (3.36). Then, { < oo implies that k[{] = co as
well as u* = uy with n¢(uy) = 0.

Proof. Since j[{, k] < oo by virtue of Lemma 3.3, it follows for £ < oo that k[£] = co and hence by
the not met stopping criterion in Algorithm 3A(i.d) that

k,j _ kj  k-1,j
ng(uﬁ ) < /lsylm |||u£* —u, =l forall k € N.

Since the perturbed Zarantonello iteration is convergent (see Lemma 3.10) with limit u} (and thus

k,j . .
(u ¢ “)keny, is a Cauchy sequence), we infer that

(A1) k,j k,j = k—oo
ne ) < ne ) + Cua g — 11 2225 0,

This proves 17¢ (1) = 0, whence with reliability (A3), we conclude u} = u*. o

3.5.2 A priori convergence

For general second-order linear elliptic PDEs, an a priori convergence result is required to ensure
that there holds a quasi-Pythagorean estimate; see Lemma 3.13 below.
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3.5 Proofs

Lemma 3.12 (a priori convergence). With £ € Ng U {oo} from (3.20), define the discrete limit

space Xy = operatornameclosure(ugzo Xg). Then, there exists u¥, € X such that
b(ul,ve) = F(ve) forallve, € X, (3.40)
and it holds that
lul, —ufll >0 ast— L. (3.41)

In particular, this implies u’g =ulk if € < co. Moreover, with Ccey = L/ from (3.15), there holds
the Céa-type estimate B

Mk — uzlll < Ccéa vrnei{{,l lux, = velll  forall € € Ng with € < €. (3.42)
(4 4

Moreover, reliability (A3) implies that

Nk, — ufll < (Ceea+1) Crane(ul)  forall € € No with £ < €. (3.43)

Proof. Existence and uniqueness of u, follow from the Lax-Milgram lemma. Since u} € X; € X
is a Galerkin approximation of u},, the Céa lemma (3.15) holds with u* being replaced by u},, and
the definition of X, proves that

—C
llu = uzll < Ccea min fluf, = velll — 0.
VpEX[

Reliability (3.43) follows from the triangle inequality, nestedness of spaces Xy C X, and the Céa
lemma (3.15), since

(3.15) (A3)
Mus = uzlll < M = wll+ lle* = upll < (Coaat D) llu* = uzll < (Cceat1) Cret e (u}).

This concludes the proof. O

3.5.3 Quasi-Pythagorean estimate

While symmetric PDEs satisfy a Pythagorean identity in the energy norm (withe =0 and {5 = 0
in (3.44) below), the situation is more involved for nonsymmetric PDEs. The following result
generalizes [BHP17, Lemma 18] by considering general v, € X, and by additionally proving the
lower bound in (3.44). Moreover, it is given here in terms of the a priori limit u%. Although the
proof follows essentially that of [BHP17], we include it for the sake of completeness.

Lemma 3.13 (quasi-Pythagorean estimate). Recall the a priori limit u¥, € X from Lemma 3.12
and the compact linear operator K from Section 3.2.1. Then, for all 0 < & < 1, there exists an
index €y € No with £y < € such that, for all {y < € < ¢,

llu —velll? forallve € X;. (3.44)

1 * 2 * * 1112 * 2 1
u, —v < |lui —u +|lu, —v <
o e = vell® < s = P+l = el < —

Proof. The proof is split into four steps.
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3 Adaptive FEM with quasi-optimal computational cost

Step 1. If £ < co, Lemma 3.12 proves that uy, = u}. We choose £y = £ and obtain that (3.44)

holds with equality and & = 0, since £ = £ and hence u¥, = uy. Consequently, (3.44) holds also for
all 0 < & < 1. Therefore, it only remains to prove (3.44) for £ = oco.

Step 2. Suppose £ = co. Let £ € Ny and vy € Xp. The limit formulation (3.40) yields

(3.40)
ey = vell® = Ml + Mvell® = 2 Ra(uk, ve) "= Nulll® +lvell® = 2 R[F(ve) = (Kuk,, ve)].
(3.45)
Analogously, from the discrete formulation (3.4) and the linearity of K, we obtain that
My = vell® = MeZl* + Mvell® = 2 Ra(u}, ve)
(3.4)
= MeZ P+ Mvell* = 2 R[F(ve) = (Kup , ve)] (3.46)
= uf P+ lvell® = 2R [F(ve) = (Kuk, . ve) + (K(uly —u}) , ve)]
as well as
F(u}) (3i4)a(u’g, uy) +(Kuy , uy) = |||u}f|||2 +(Kuy , uy). (3.47)
For v¢ = uj, we see that
k2 CAD e 2 *1N12 _ 9R *\ *x o *
ey = wZ > ="M P+ Muf P = 2R [ F (uf) = (Kuk, , uf)] (3.48)

(3.47)
=Ml = M P + 2R(K (uly — u}) o uf).

Summing (3.46) and (3.48), we obtain that
M, = wp P + MMy = vell?
= I + Mvell® = 2R [F(ve) = (Kuk, . ve) = (K(ul —uy) . uf —ve)| (3.49)

3.45
Ot = vell? + 2R(K (k- uk) . uf = ve).

Step 3. We recall from [BHP17, Lemma 17] that the convergence (3.41) of Lemma 3.12 yields
that

* *
Uy —uy
—° _ ifuX £ u¥,
er =1 lud —uZll e
0 otherwise

defines a weakly convergent sequence in X, with e, — 0 as £ — co. We recall that compact operators

turn weak convergence into norm convergence. With the operator norm |||¢]||" = S(UI\D{ }|¢(v) [/l
veXo\{0

of ¢ € X/, it thus follows that

{—o0
UK (us —up), up =ve)| < 1Keell lu — upllllu; —vell and [[Kecll” — 0.
Given ¢ > 0, this provides an index £y € N such that ||| e,||' < & for all £ > £, and hence

2|1R(K(ul, —up) s uyp —ve)l < 2elluf, — ullllluz - vell

(3.50)
< &[llluk, = u P + ey = vell]-
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3.5 Proofs

Step 4. Rearranging the identity (3.49) and estimating the compact perturbation via (3.50), we
obtain that

(3.49) 9 9
ez, = vell™ = M = ufll* + My = vell® = 2R(K(ud, = up)  uy = ve)
(3.50) 9 9
< (L+e) [llud = upll® +llug = vell?].
This proves the lower estimate in (3.44), and the upper estimate is proved analogously. O

3.5.4 Auxiliary contraction estimates

The following lemma extends [GHPS21, Lemma 10] to the present setting with a quasi-Pythagorean
estimate.
Lemma 3.14 (combined discretization-symmetrization error). Recall the a priori limit u¥, € X
from Lemma 3.12. Suppose that the estimator satisfies (A1)—-(A3). Let A;‘lg >0and 0 < ggypm <1
be as in Theorem 3.7. Let 0 < 0 < 1 and 0 < Agym < 1. Then, there exists 0 < /l;Ig < A;g such
that for all 0 < Ay < /l;llg the following holds: There exists an index €y € Ng with {y < € and
scalars v > 0 and 0 < qin < 1 such that

AL = [y =y 02 + v ey D2 Y forall 6k, j) € @ 3.51)

satisfies
AE < gin A% Jorall (¢,k+1,j) € Qwith € >ty and k +1 < k[¢], (3.52a)
Ay < qin AST1 forall (£+1,0,0) € Qwith £ > €. (3.52b)

Proof. Let(0 < & < 1aswell as v,w > 0 be free parameters to be fixed below. The proof consists of
seven steps, where most of the work is necessary to prove (3.52b).

Step 1. Lemma 3.13 provides an index £y = £ (&) such thatforall {5 < ¢ < { the quasi-Pythagorean
estimate (3.44) holds true. For (¢, k + 1,1) € Q with £y < £, we get that

k+1,j k+1,j
(AP =l —u, =P +vne(u, &)
(3.53)

(3.44) 9 k+1,j o k+1,j o
< (T+8) lul —ufll*+ (L+ &) luy —u, N +vne(u, =)°.

. . . 0,j k.j
Analogously, for (£ +1,0,0) € Q with £ > {y, nested iteration u?;rol =u, +11 =u, L shows that

k.j k.j
0 2 J 2 J\2
(Ags)” = lud =, "I + v e (u, ™)

A3 (3.54)

44) 2 k.2 LN
< (L&) llug = ugll” + (L + &) Mug —u, =17 +vnea(u,5)"

Step 2. Define C; := 6 (1 + Ccga)? C2, and Cy = 6 (1 + Ccea)? C2, C?

rel rel ~“stab*

reliability (3.43) prove that, for all v, € Xp,

Then, stability (A1) and

3.43)
3, — utlIE < B (1 + Coa)? €2y me(u)?

(AD 3.55
<6 (1+ Ceea)? C2 e (ve)? +6 (1+Coa)2 €2, C2 o it —vell? G

rel s

= C1ne(ve)® + Callu} = vell.

77



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Adaptive FEM with quasi-optimal computational cost

Step 3. For (£, k + 1, J ) € Q with £ > £y and k + 1 < k[{], contraction (3.36) of the perturbed
Zarantonello iteration proves that

k+1,j J k+1,j k,j
Mee, = —u, =< Muy =, =l + Ny~ ’||| (1 + Goym) g =, I

Define C3 = (1 + ﬁsym)Q. Using this with the not met stopping criterion in Algorithm 3A(i.d) for
({, k+ 1,1‘) € Q with k +1 < k[£] shows that

k+1,j. o (i.d) k+1,j 2 kjoo
nf(ug ) syml””g - ug 7”' < C3/1sym ”luz —U, =°. (3.56)

In this case, we are thus led to
k1, 3323 2 2 k+1’£ 2 k+1,j 9
(A7) < (1 =28) luk, = upllI* + 3& |lluk, - uglll +(L+&) luy —u, ~I*+ vne(u )

G35 2 2 x  ktLj oo
< (1-2¢) lluk, —usll*+ (v+&Cr) Tlf(u ) +(1+e(1+Co)) llug —u, *|||

(3.36) . 2 _ k]
< (1=2¢) [lugy —ugll” + (v+eC) 775(”(; ) +(1+&(1+C2)) Gaym llluy -

I
(356) 1 _ 2 * ok 2 1 1 —2 * ’, 2
< ( 8) ”luoo Up ”l [(V te Cl)c?)/lsym + ( + 8( + CQ)) qsym] ”luf u, ”l .

Provided that
(1] Qo + vC3A325 + & [C1C3A32 + (14 C2) o] < 1 - 28,
the quasi-Pythagorean estimate (3.44) proves that

) 1-2¢

E
A2,
T )

'%
(AFH? < (1= 28) [l = uf P + lluy ~ u{ gl ’l < |IIu - ug 117 <

Up to the choice of the parameters & and v, this proves (3.52a) for any 0 < Ay < /l:lg

Step 4. For (£ + 1,0,0) € Q, stability (Al), reduction (A2), and the Dorfler marking in
Algorithm 3A(iii) yield that

Dot ()2 = = 1t (Toat O 75 w2 4 et (T2 \ T uyty?
@ W%m%u[ D2 e (T \ Tzt )
e (e 0 Ty + gy me T\ T ™) (3.57)
= w(uz D2 _(1-g2) ne(fr\f/:l,uf ok
<10y = (1= @) neMei ) < 1= (1= g2 61 ne () = qome (™),
where 0 < gg < 1 by definition.
Step 5. Let (£ +1,0,0) € Q. With stability (A1), we infer from (5.17) that

(A1) ] k.j k-1,j
Uf(u 5 < 77[(% ) + Cuap e, = =,
(.19 -Lj k-1.j 24 k.j
< 775(” 7) + Cyap (1 + QSym) ”luz —Uu, =+ = Cstab /lalg/lsym Uf(”g ).

1- qctr
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3.5 Proofs

ctr

71q

For sufficiently small 0 < A4, < /1: with, e.g. stab Aalgdsym < 1/2, we thus derive

1 k-1,j Coan (1 + CIsym) k-1,j
ne(u, “)+ ey -y =

k.j
)<
776(1/!5 ) - 1= 2ger

T 1-— 2 gotr
—Yctr

1-gew

Cstab Aal g/lsym Cstab /lalg/lsym

" -2 .
Define Cy = C2, (1 + gsym)? and C(A) = [1 - f_‘gm Cuab datgAsym |~ With A = g dsym, Where we

already note that C(1) — 1 is (strictly) monotonically decreasing as 4 — 0. Stability (A1) and the
Young inequality in the form (a + b)? < (1 + w)a? + (1 + w™')b? for a, b € R and w > 0 show that

k.j k-1,j _ k-1,j
1 <€) [+ @) netuy P4 (Lvw ) Calluf —uy P (358)
Step 6. For (£ +1,0,0) € Q with £ > £;, we have that

(3.5
(/\M)2 (1 28) llud, — ufll* + (1 + &) llup —u, L2 + 36 ek, — uflII* + Vﬂf+l(u5 5y
3.5
< (1 = 28) lluf, — upl* + (1 +&) ) — u, L2 + 36 e, - wyll® +vge W(ug Ly
(3.55) k-1,
< (1-2¢) [luk, —ufll* + (1 +¢) ”l”g —u, R+ ec, ety — 22

k-1, k
+eCrne(u, *) +vqene(uf)
(5.1%)
< (1= 2¢8) luk, — ulll® + [8C2+(1+8)2qsym] lluey — ug |||2

k-1, 2 k.j
+eCine(u, *)2 + [qg +v i(Q+e)(l+e™h) (1 _qw ) Aﬁlgafym] vng(u;l)2.

With C, = (1+8)(1+271) (£25)7, we get

k_l’j
(A2+1>2s(1—2a>|||u*—uzm2 #[eCov (1822 luf —uy Y12

k.j
+8C177[(ut, *) + [qg+C Vo /lalg/l?ym vne(u, )2
(3.58) k-1,j
2701 = 26) [lu —u€|||2 [6Co+ (1+8)2q2 ] luf —u, I
+eC nf(u’ ok

k-1,j
g0+ Cov 2,00, v W) [+ @) ety D2+ (L4 0™ Calluf —u 2]

= (1-2¢)[llul, - ujlll?
_ _ k-1,j
+(3C2+(1+£) P+ (L+0™) C1C) [go + Cov™ 22,22, ] )|||u’g—u€ ok

_ k=1,j
+ ((1 +w)C(A) [qa +Cyuvt /lglg/lgym] +eCrv 1) vie(u, )2,

Provided that

(] (1+ 8)2q§ym +CA) (1+w™)Cy [qg +Cgv™ /lalg/lzym] v+eCy <1-2¢,
(1] C(A) [(1 +w)gg+ (1+w)Cor! aglgﬂgym] +eCiyvl <12,
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3 Adaptive FEM with quasi-optimal computational cost

the quasi-Pythagorean estimate (3.44) shows that

(A2+1>2<(1—28>[|||u S i e O f>2]
G4l - k-1.j k-1, -1
2 kg~ (= 26y < >

This proves (3.52b) up to the choice of the parameters w, v, and € in the following step.

Step 7. A suitable choice of the parameters w, v, and & can be obtained as follows:
« first, we choose w such that (1 + w)qgg < 1;

« second, we choose v such that 75, + vC3A3% < Land g2, + (1 + ™) Cyv < 1;

sym
e third, we choose £ > 0 sufficiently small such that
o Gom + V0332 + & [C1C3A% + (1+ Co) Goy] < 1 - 26,
o (1+ 8)2qsym

o (l+w)gg+eCiv !t <1-2¢;

+(1+w )Ciqev+eCy < 1-2¢,

in particular, constraint [/] from Step 3 is satisfied;

* finally, we note that C(1) — 1 monotonically as 4 = Ayedsym — 0. Hence, we can choose
0 <4}, <min {/lalg, 4(;”% /lbym} sufficiently small such that also the constraints [IT] and
[II] from Step 6 are satisfied for all 0 < Ayg < A7 . "

1—

1 -

2
This concludes the proof with qﬁn = € <1for any 0 < Ayg < /l;lg. m]
E

3.5.5 Proof of Theorem 3.7
The proof is split into five steps. For (£, k, j) € Q, we consider

k,j k.j k,x k,j k,j
Ayt = el —u ’|||+|||u —u,;]|||+f7f(u,;J),

¢ e (3.59)

3.51)

AZ = a0 e a2

where, compared with (3.26), the quasi-error A f’j has been redefined. Later, we shall conclude that
indeed uX = u* so that both definitions coincide.

Step 1. In the first step, we prove that

Ap? < flluf* —ug T forall (6,k,j) e Qwith1 < k <k[f]and 1 < j < j[6,k].  (3.60)

Together with reliability (3.43) and stability (A1), the definition of A]g’j shows that

k (35)) k,j k% k,j k,j
T =y M o™ = W+ e ()

k,j k, % k,j k,j
< Ml = gl + ez = wg W+ ety = 0, M+ e ()
(3.43) . k. j k.j
< (CCéa + 1)Crel né’(uf) + ”luf —Uu, |” + ”lu — U, ”l + nt’(ug )

(Al) k. k.j
< o)+l = g I+ ™ = gL
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3.5 Proofs

The contraction of the (unperturbed) Zarantonello iteration (3.24) proves that

24 QSym

k-1, ox
ek = a1 < e = eI+ g™ = I ||| —uy g =)

k, k,j k,j k=1,j
< |||uf = M ey =, L

Furthermore, the contraction of the algebraic solver (3.38) proves that
k, k,j 3.38) CICtr k 1
M = T2 = a0

Combining the last three estimates with the not met stopping criterion of the algebraic solver in
Algorithm 3A(.b.II) for 1 < j < j[¢, k], we conclude that

k.j k.j kj o k=1j kj o k-1, GOID e i
Ayl < ey Y + My =, A+ ey =TS ey = g T
Finally, the triangle inequality and the contraction (3.38) imply (3.60).
Step 2. Next, we show that
k.j k,j .
A, TS A, for all (£,k,j) € Q, (3.61)

which is trivial for j = j[{, k]. To deal with j = j[¢£, k] — 1, note that the definition of Alg’j shows
that Bl Bl

k1(3 59) Lo ko kJ k.j
(7 *|||+|I| —up "l +meCu, ™)

k’j_]- k?l ksj_l k9l
< llug ||| ey =+ 2, =, e ().
Stability (A1) and the algebraic solver contraction (3.38) lead us to
k,j-1

kj o kj-1 k.j (AD) kj o kj-1
2, = —up, = M+me(u, ™) < (24 Coan) e, = —u, = I+ ne(ug =)

(3.38) k_] 1
< (2+ Cya) (1 + o) s ™ = u i+ ne(u,™ ).

Combining the last two estimates verifies (3.61) for j = j [6,k] —1,1ie.,

* k}l

k,j-1 & (3:59) k,j-1
S Moy =, = I+ e, ™ = |||+77£( -
t t

) A,
We prove the remaining case j < j [€,k] — 1 by (3.60) from Step 1 and the algebraic solver

contraction (3.38), i.e.,

(3.62)

k,j—2 (338) (j[£,k]-2)—)

kj GG kj-1 G0 g . L
B g™ =u,= 7N < Geg g™ = u Il < A7

¢ S 4
This concludes the proof of (3.61).
Step 3. In this step, we prove that

k,jG.61) Ak

P < Ay~ forall (6,k,j) € Qwithk > 1. (3.63)

1

o
AY =A,” and Ak <A
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3 Adaptive FEM with quasi-optimal computational cost

0,j 0,
Together with u)"™* = u,"~ L= 29, the definition of A) and A0 proves that AY ~ A)" = A, L
£
well as A’g <A, % for all (¢, k,j) € Q, where the hidden constants depend only on v. Together

with (3.61) from Step 2, it thus only remains to prove Aif’o < A’g_l fork > 1.
To this end, let (¢, k, j) € Q with k > 1. From contraction (3.24) of the unperturbed Zarantonello
- k’o _ k—l, J

symmetrization and nested iteration u ; =u, T, weget that
k.0 k=1.j k, k= k=1,j
Ag = |||L£:o —u, Il + ”lug - u, ”l + nf(ug )
24) k-1,j -1,j k=1,j
< ”Il’t:o —U, 7”' + (1 + QSym) ”Iu? - Mg 7”' + 775(”5 7)-
The Céa lemma (3.42) proves that
k-1,j k— k-1,j
My —w, =l < Mol —upll+lul —u, =0 s Mul—u, I
Combining the last two estimates, we arrive at
k.0 k=1.j k=1.j k-1
A[ < ”lM:o —U, Il + 775(145 ) = A[ .
This concludes the proof of (3.63).
Step 4. In this step, we prove that
jlt.k]
Z AR <A +A"f for all (¢, k, j) € Q. (3.64)
J'=j

According to the right-hand side of (3.64), it remains to consider the sum for j* = j+1,..., j[{, k] -
With (3.60) and contraction (3.38) of the algebraic solver, we get that

jle.kl-1 60) Jjlek]-1 jle.k1-2
k,j © k, k -1

D S S e R e I S

J'=j+1 J'=j+1 J'=Jj

With the geometric series and |||ulg’* - u’g’j Il < A]g’j , this concludes the proof of (3.64).
Step 5. For (¢, k, j) € Q with £ > £, the preceding steps show that

jlek LK
RN D W
(,k,j)eQ j'=j+1 (¢',k",0)eQ Jj’=0
&'k, j")>(l.k,j) (¢’ ,k",0)>(£,k,0)
CED kf ke NI RN K0
< [T+ AN Z [A, 7+ A5 < A Z A
(¢,k",0)eQ (¢,k",0)eQ
(¢’ ,k",0)>(£,k,0) (¢',k",0)>(£,k,0)

With linear convergence (3.52) of A’g from Lemma 3.14 and the geometric series, we thus see that

k[£] £ k[l] (363)&6’ ]-1 £ k[C']-1
k,0 _ k.0 k,002"
I I I I AP IEPIR
(¢',k,00eQ k'=k+1 0'=0+1 k'=0 k'=k '=t+1 k'=
(¢’ ,k,0)>(£,k,0)

(3.52) (3.63) k,j (3.61) .
k 0 k 2 k.j

S A€+A€+1<2A 5 4 S Ag .
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3.5 Proofs

Altogether, this proves that

A’g, J < CsurnA /' for all (L, k,j) € Q.

(k. j")eQ
(7. j")> (L k.j)

According to basic calculus (see, e.g., [CFPP14, Lemma 4.9]), this is equivalent to linear convergence
with respect to the lexicographic order on @, i.e., for all (¢, k, j), (¢, k’, ') € Q with |{', k’, j'| <
|€, k, j| and £ > £y, it holds that

k,j |6,k j1= 187K | A K
Ay < Gin gy, Ay

where the constants Cji, > 0 and 0 < g, < 1 depend only on Cyyy,. This also yields that

(A3) (A1) ki ki K. k.
e —uzll < neCuy) < neQuy?) +Muy —ug < me(ug”) + lluds = ug =+ e, = wZll

~

(3.42) ki '
< ne(uy ) + lluk, —ug’|||—>0 as |, k, j| — oo

and hence u}, = u*. In particular, the definitions of Alg’j from (3.26) and (3.59) coincide. Overall,
we thus conclude the proof of linear convergence (3.27). O

3.5.6 Proof of Theorem 3.9

The proof of Theorem 3.9 requires the following auxiliary lemma stating that the error estimator

T]g(l/t ) of the inexact but available final iterate of Algorithm 3A is equivalent to the error estimator
ne(u [) of the (unknown) exact solution u . While the statement is similar to [HPSV21, Lemma 7],
the present proof provides a minor clarlﬁcatlon of the involved constant.

Lemma 3.15. Recall Calg > 0 from (Calg) and /l* > 0 from Theorem 3.7. Then, for all

0<60<10< < 0 < Agym < Ay = mln{l c:lcohy, and all (¢, k, J) € Q it holds
that

stab alg

k’j k’j
”lu; —Uu, I < Cag Asym nf(ug ). (3.65)

Moreover, there holds equivalence

k,j k,j
[1 - /lsym/A:ym] 775(14} i) < 77((”{) < [1 + /lsym//lsym]nf(ug i)- (366)

Proof. The proof consists of two steps.

Step 1. Recall from (5.1%) that

(5.1%) x k-1 2qcu

k.j k.j
“l’/‘; — U, o< gsym “lug — U, =+ /lalg /lsym 776’(”5 7).

ctr
The stopping criterion in Algorithm 3A(i.d) proves that

k k,j k-1,j
ey — u[ ||| < lluy — ug |I| +llu, ™ —u, *III ”l”[ - u,; ||I +/1§ym77€(u5 )
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3 Adaptive FEM with quasi-optimal computational cost

Combining these estimates with 0 < A,g < /l:l o> We prove (3.65), since

k. 1 ( 2qcyr
1

J k.j k.j
”lu; —Uu, Al < 1 /lalg + QSym) /lsym W(Mg 7)< Calg/lsym 775(”( 7).
~ {sym ~ {ctr

Step 2. With the definition A3, = min{1, Cs‘tale }, stability (A1) and (3.65) show

-1
sym alg
(Al) k,j k,j (3.65 k,j
nt’(u;) < nf(ug 7) + Cyap ”luz( —U, Al < )[1 + Cstab CalgAsym] nf(”g )
k?j
< [1 + /lsym//l:ym] ne(u, ™).

If 0 < Agym < /l;‘ym, the analogous argument also proves the converse inequality

ki
[1 = Agym/Adymn] 1 () < e (uf). (3.67)
This concludes the proof. O

Proof of Theorem 3.9. It is sufficient to show that

lu*llay(7) S sup  (#T0)° Ay, (3.682)
(.k.j)e@
s Ak,j * 0,0
sup  (#7¢2)" A, < max{{lu”]la, (7). Ay }- (3.68b)
(C.k.j)eQ
>0y

Then, (3.34b) follows from (3.68b) and Corollary 3.8. We split the proof into six steps.

Step 1. We first show (3.68a) for the case £ = co. Algorithm 3A ensures that #7; — oo as
{ — oo. We recall that in NVB refinement an element is split into at least two but at most Cchjig
child elements. In particular, for all £ > 0, we have that

#Tr+1 < Cenild #7¢- (3.69)

For any given N € N, we can argue similarly as in the proof of [CFPP14, Proposition 4.15]. Choose
the maximal index ¢’ € Ny such that #7, — #7y < N. The maximality of ¢’ leads us to

(3.69)
N+1<#Tpa —#To+1 < #Tpv1 < Cenia #7¢- (3.70)
Since 77 € Ty (7p), we have that

: * * * * * *
75,31511“}\?(75) [l”” - uoptlll + Uopt(”opt)] < llu™ - ”gf”l + 77(”(”5/)’ (3.71)

and stability (A1) and the Céa lemma (3.15) show, for (¢’,k’, j’) € Q, that

(A K K
Wee™ = wp ll +mer () < W™ = wflll +mer (uy ) + Coap My, —uy |l

k/’ .’ k/’ .’
< (1 + Coan) ™ = uZlll + e (g, ) + Coap ™ — u, |l
(3.15) Ko Ko
< (CCéa (1 + Cstab) + Cstab) |”u“r - M{/’J ”l + 775'(145,’] )
k/’ =
< (CCéa (1 + Cstab) + Cstab) Ag/ ! . (3~72)
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3.5 Proofs

A combination of the previous estimates leads us to

(V+1)"_ min _[u* - iyl + Mo (2g)] < (N 4 1)° [la* = sl + e ()]

%ptETN
(3.70)

< Cna (BT) [ =il +m0 )] 2 (HT6) A7 < sup (#77)° AL
(L,k,j)eQ

Finally, taking the supremum over all N yields the sought result

k
lu*lla, () S sup  (#72)° A,
(¢,k,j)e@

Step 2. We proceed to show (3.68a) for the case £ < co. Recall from Lemma 3.11 that n¢ (u}) = 0
and uy = u*. Without loss of generality, we may assume £ > 0, since otherwise ||u*| Ax(‘]g) =0.
Combined with reliability (A3), this yields that

(3.32)

u* ="su (N+1S min u* —ur || + ux )
” ”A‘(%) Ne£0 ( ) 7(—)p[ETN(7(-))["| uoptl” nopt( opt)]

(A3)
< (14 Cp su (N+1S min u* )
( rel) 0SN<#’72—#‘76 ( ) Tone T (75) Mopt ( opt)

(3.73)

We argue as in Step 1 above: Let 0 < N < #7; — #75. Choose the maximal index 0 < ¢’ < £ with
#T¢ — #T9 < N. Arguing along the lines of (3.70)—(3.72), we see that

. k,j
sup ( N+1)"  min  non(uX )) < sup (#7)° A
N 2 (N+1)7 min - stop (5 (f,k,j)eQ( )

Combining this with (3.73), we conclude the lower bound (3.68a) also in this case.

Step 3. We prove (3.68b) for ||u* |4, (77,) < ©0, since the result becomes trivial if ™| o, (77,) = ©-
First, we show that for all £ > £, with (¢’ +1,0,0) € Q, there exists Ry» C 77 such that

0.4 -
#Re < a1l ) ()™ and O (7)< me(Rersuf)?. (3.74)

Since 0 < Omark = (/2 + Agym [ A%m)? (1 = Agym/A%ym) ™ < 6*, and because there holds (A4),
[CFPP14, Lemma 4.14] ensures, for all £ > £, the existence of a set Ry» C T+ satisfying

#Re < a1, e E) T and Ganne (u)? < ne(Reuf)?. (3.75)
Since Agym/ /lgym < 1 by assumption, the estimator equivalence (3.66) shows that
k.j
[1 - /lsym//l:ym] T’f'(ugli) S T]f' (M;,), (376)
which leads us to
(3.75) 1
#Re 5 Il e G H .
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3 Adaptive FEM with quasi-optimal computational cost

Moreover, thanks to nested iteration, Step 3 of the proof of Theorem 3.7, Step 3 of the proof of
Lemma 3.14, and reliability (3.23) of Proposition 3.6, there holds that

0.j (63 911/2
A€/+1 A2/+1 = [l”u M€,7”|2 +v 77€’+1(Mg/ ) ] (3 77)
& )[ *_ Kkjio kjigy1/2 G2 k.j '
< ”ll/l —th,, |" + 776’(”[, ) ] < 776’(“5/ )
By summarizing the last two estimates, we obtain (3.74).
Step 4. For (¢/ +1,0,0) € Q with ¢’ > £y, we show that
#Mp < Crark #Rer (3.78)
with the constant Cy > 1 from Algorithm 3A. Recall the definition
02 + Agym /A%, \2
(3.33) sym
Omack = ( sym) with /lsym = min{1, CalgCSmb}
1- sym//lsym
This shows that
ka.] o K?l
”luz - u(ﬁ”l < Calg /lsym 77(’(”[/7)
1 Asym o2 o k.j (3.79)
Cstab A:ym nf'(uf’ )_ stab( mark[1 /lsym//lsym] 6 / )77[’(1/![, )
Now, we can estimate
1/2 K'.j (3.66) 1/ (3.75)
62 1= Agym/ Uy e i, ) < 02 e (u) < e (Rersuy)
(A]) kr i’ k/vj,
<ne(Res ug, %) + Caab ez, = wp, = I
(3.79) Iy o (9112 1/2 LV
<o (Reuie, ) + ( 2 11— Ay ] = 0 )ng,(uf, ).

Rearranging the terms, we obtain that R, from Step 3 satisfies the Dorfler marking criterion of
Algorithm 3A(iii) with the same parameter 6, i.e., there holds

Y

k', k',
01 iy )2 < ne (R, )2 (3.80)

Hence, quasi-minimality of the set of marked elements M, implies (3.78).

Step 5. Consider the case (¢, k, j) € Q with £ > {y. Full linear convergence from Theorem 3.7
yields that

Ko 1ys G2 i U o ki
Z (Afl .l) 1/s < (A[j) 1/s Z qlile)M,k,jl |,k ’]|$ (Af j) 1/s.

(¢',K',j")eq (¢'.k,j")eq
[k, j <16k, j] [,k j <16k, ]|
>0 >4

(3.81)
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3.6 Numerical experiments

Recall that NVB refinement satisfies the mesh-closure estimate, i.e., there holds that
-1
H#Te = #T5 < Cnesn ), #Mer forall € >0, (3.82)
=0
where Cpesn > 1 depends only on 75. Thus, for (£,k,j) € Q with £ > £y, we have by the
mesh-closure estimate (3.82), optimality of Dorfler marking (3.78), and full linear convergence
(3.81) that

-1 (-1 -1
(3.82) (3.78) (3.74) 1/s 0,j —1/s
#Te-#T0 s ) #Me s ) #Re s g ) D0 (8™
— =ty

0=ty 0=ty
< ”u*lll/s Z (Ak',j')—l/s (3§l) ”u*lll/s (Ak,j)—l/s
- As(Tzy) [ ~ As(Tgg) Nt ’
(k' ,j ) e
[k j <16k, ]|
>4

Rearranging the terms and noting that #7; — #7¢, + 1 < 2 (#7; — #7¢,), we obtain that
(#Te = #T6 + DAy < ¥ llay(z,) for €> 6.

Trivially, full linear convergence (3.27) proves that

kg ok G2D
(#Te — #T¢, + 1)°A€0] = At’o] S Ag(;o for ¢ =1¢.

We recall from [BHP17, Lemma 22] that for all 7 € T and all 75, € T(7F), it holds that
#Tn — #Tu + 1 < #Tn < #Tu (#Tn — #Tu +1). (3.83)

Overall, we have thus shown that

k. 3:83) k,j
HT)' A s (#Te = #T+D° A7 < max{|u*lla, 7). A7}

for all (¢, k, j) € Q with £ > {y. This concludes the proof of the upper bound in (3.68b) and hence
that of (3.34).
Step 6. We prove the equivalence in (3.35) by combining the steps above. Recall that
QL k,j)e@Q: =4y} ={(t,k,]) eQ: € <Ly} isfinite

and that ||u* ||, (7) < oo is equivalent to ||u*]| Ay(7,) < 0. Thus, the claim follows immediately by
the equivalence in (3.34). This concludes the proof. m|

3.6 Numerical experiments

We consider the model problem (3.1) from the introduction. The MATLAB implementation of
the following experiments is embedded into the open source software package MooAFEM from
[[P23]. In the following, Algorithm 3A employs the optimal local 4 p-robust multigrid method from
[IMPS24] as algebraic solver and the standard residual error estimator ;. Given T € 77 and vy € Xy,
the local contribution of 7, reads

Ne(T;ve)? = h 1= div(A Vve = ) +b - Vve + cve = fll7a )+ hr LA Vve = £) - n]117: o700y

It is well-known (see, e.g., [CFPP14, Section 6.1]) that n, satisfies the axioms (A1)—(A4) from
Section 3.2.3.
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3 Adaptive FEM with quasi-optimal computational cost

3.6.1 Diffusion-convection-reaction on L-shaped domain

In this subsection, we consider the problem (3.1) on the L-shaped domain Q = (-1,1)?\ ([0,1] x
[-1,0]) R? with coefficients A (x) = Id, b(x) = x, and ¢(x) = 1, and right-hand side f(x) = 1,
ie.,

—Au*(x) +x-Vu*(x) +u*(x) =1 forx € Q subjectto u*(x)=0 forx € Q.

Optimality of AISFEM

We first display the optimality of Algorithm 3A with respect to the computational cost stated in
Theorem 3.9 using the equivalence #7;, ~ dim X,. Numerically, we test with the parameters
Asym = Adgg = 0.1, 6 = 0.5, and 6 = 0.5 and, unless stated explicitly, the stopping criterion
dim X, > 107. Note that both the total error and the algebraic error are unknown in all practical
purposes. Therefore, we cannot study the decay of the quasi-error, but rather consider the equivalent

k.j kj . . . .
error estimator n¢(u, l) ~ A, L Figure 3.2 shows that the proposed algorithm achieves optimal
rates —m /2 for several polynomial degrees m both with respect to the computational costs and the
elapsed computational time after a short preasymptotic phase.

T T T T T T T T T T T T T T T Ty T T T T 7T LULILILL e L e 1 e 1 B e AR}
100 : 100 :
:E‘\‘N 1072 | | :3\‘\. 10—2 [ |
s =
S SISl i
5 1074 |- - 5 10
< <
g £ ool |
g 107 13
S —0— m=1 8 —o— m=1
8 10-8| —— m=2 . 5 1078 | —o— m=2 y
—— m=3 AN —— m=3
10| m=4 \\‘ B 10710 |- m=4 So -
10 10 TR T I W H T I H T N B T NI W AT WU A 11| M M W R U TTT| BT} il Ll Ll Ll Ll
10t 10* 10* 10* 10° 10% 107 10® 107 10° 10! 10? 10
2o ki<l k, ) Aim Xer cumulative time [s]

Figure 3.2: Optimality of AISFEM for the diffusion-convection-reaction problem on the L-shaped

k,
domain from Section 3.6.1. Convergence history plot of the error estimator n¢ (u, i) over
the computational costs (left) and the elapsed computational time (right) for different
polynomial degrees m.

Optimality of the iteratively symmetrized solver

Optimality of AISFEM is possible when the inherent symmetrization and algebraic procedures
are treated efficiently. In Figure 3.3, we present the time required for our iteratively symmetrized
solver compared to the MATLAB built-in direct solver (backslash) of the linear system related to (3.4).
We note that the displayed timings are comparing the direct solve time itself with the remaining
time (including the setup of the Zarantonello system, computation of the error estimator, and
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3.6 Numerical experiments

mesh refinement). Hence, the presented numbers favor the built-in direct solver over the MATLAB-
implemented multigrid code. Nevertheless, the combination of the Zarantonello symmetrization
with the optimal local multigrid solver from [IMPS24] appears to be of comparable speed to the
built-in direct solver with the observation that as the dimension of the linear system increases, the
backslash performance begins to degrade. Moreover, Figure 3.4 shows that the iteration numbers of
the solver remain uniformly bounded in the levels for various choices of the parameters Agyp, and 6.
Note that when Ay, decreases, a higher accuracy of the Zarantonello symmetrization is required.
Therefore, the iteration numbers are expected to increase with smaller Ay, as seen in Figure 3.4
(left). Moreover, the iteration numbers are also expected to increase as 6 becomes larger. This is due
to the aggressive refinement leading to hierarchies of low numbers of levels but with considerable
increase in the dimension of the linear systems. This may lead to the conclusion that € should be
chosen very small in order to have fewer iterations per level, but studying the cumulative solver steps
in Figure 3.4 (right) shows that this is not the best strategy.

1 11 111 111 1/ 1 O A1 B A
10° E
= L -
i) 2 L i
o 10°F |
E g 1
- L -
(5]
> 1L -
= 10°E El
= F B
= = ]
E Lol ]
hd 10 § direct iterative E
8 —— —o— p=1
10—1 E —a— p=4 =
Ervnnd vl vl vl vl vl vl el 1l

10t 102 10% 10* 10° 10%® 107 108
2jer e <1t k. dim Xer

Figure 3.3: Optimality of the combined iterative solver for the diffusion-convection-reaction problem
on the L-shaped domain from Section 3.6.1. Cumulative time for the direct solve and
AISFEM over the computational costs.

Parameter study of AISFEM

We now investigate which parameters yield the best contraction in the iteratively symmetrized
steps 3A(i1)—(iii). Since the parameters depend on the contraction factors g from (3.19) and ggym
from (3.24), we study a setting where the exact discrete solution 7 to (3.4) and the exact Zarantonello
solution u'g’* to (3.6) are computed. Then, we compute g (¢, k, j) for (£, k, j) € Q and define
the level-wise contraction factors gy (€) as the maximum over all g (¢, k, j) for fixed £ € Ny
and analogously for gsm. From now on, we fix the polynomial degree m = 2 and the parameters
Aalg = 1072 for the numerical experiments. We investigate the behavior of the combined solver
for various choices of Agym € {1071,1072,1073,107*} and 6 € {0.1,0.3,0.5,0.7,0.9}. Figure 3.6
shows upper bounds Ay < Z:lg = (1 = gsym)(1 = qaig) /(4 qaig) (see the implicit definition of Z;g in
(3.25)) and Figure 3.5 displays contraction factors gsym ~ 1/2 and Gsym ¥ 1 /2, independently of the
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3 Adaptive FEM with quasi-optimal computational cost

0.1 02 03 04 05 06 07 08 0.9

107t 533 470 [402 424 497 608 801 971 1513
1072 3084 1878 1566 1482 1524 1624 1869 2485 4266
1073 6543 4490 3478 2831 2894 3371 3826 4729 6956
1074 10791 6621 5211 4381 4475 4777 5979 7398 10901

Table 3.1: Optimal selection of parameters with respect to the computational costs for the ex-
periment from Section 3.6.1. For the comparison, we consider the weighted costs
k.j . . . o k.j .
[ng (u, i) 2ok <16k, j| dim Xg»] with stopping criterion 77, (u, i) < 107 for various
choices of Agyy, and 6 with the optimal choice highlighted in color.
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Figure 3.4: Uniform bound on the iteration numbers for the diffusion-convection-reaction problem
on the L-shaped domain from Section 3.6.1 and the strong convection problem on the
Z-shaped domain from Section 3.6.2. Number of total solver steps |¢, k, j| —|£,0,0] on
the level ¢ for various selections of the symmetrization stopping parameter Asyy, With
fixed 8 = 0.5 (left) and the cumulative solver steps for different marking parameter 6
with fixed Asym = 0.1 (right).
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3.7 Conclusion and future work

choice of 6 and Agym. Note that gsym being close to g, ,, means that the perturbed, i.e., iteratively
symmetrized, Zarantonello step is of comparable performance to the unperturbed Zarantonello
iteration. Moreover, Table 3.1 shows that the optimal combination of the parameters with respect to
the computational costs is 6 = 0.3 and Agym = 101, Furthermore, it appears that the choice of 6 has
a stronger impact on the costs than the selection of Agyp,.

0-7 LLLLL B B LB L1 R EELE B B EE1 AL B BRI R Ty LR LB T T TTTm LR LB T T TTTm T T
0-0-o 0.7 e B
0”;:’1:’ 1) {l?;.'f '?-:‘v'\-‘ - S-a-a
T - WA
g g 0.6 % ": ° 4 AOIN |
§ qalg  Gsym g “ II'I l“,"\~.~ o
E 06 -0 —0— Auym=10" . “é Ve g
B! B - B—0~0rAd30EnIBRIRIbGE o |
5 -9- —0— Aym=10"2 51 0.5 ¢
5 g
=1 -8 O Aym= 1073 E // qalg  Ysym
=} - — =} —-0- —
g 0.55 Aoy = 1074 38 ® o- —o— 6=0.1
0.4 —9- —0— 0=03
-@- —O— 6=05
0.5 O~E——COOOORTOOOONTINFTIRTVIOD | 0=0.7
FETTT R TTIT B AR TTIT BN W RTTIT B AW TET B SR AT M SRR TTIT M SRR M A RRTI| 03 (AT R ETTT] AR R RIS R RTIT| B SR TTTT] AR TTT B R RTTT AR
102 10® 10* 10° 10% 107 10% 10° 10% 102 10* 10* 10° 105 107 10%® 107

e k1<), ) dim X 2jer 1<)k, ) i X

Figure 3.5: Uniform contraction of the iterative solver for the diffusion-convection-reaction problem
on the L-shaped domain from Section 3.6.1. Experimental contraction factors gaig, gsym
and q,,, for various choices of the symmetrization stopping parameter Asym with fixed
6 = 0.5 (left) and different marking parameter 6 with fixed Agyy, = 0.1 (right).

3.6.2 Strong convection on Z-shaped domain

In this subsection, we consider the problem (3.1) on the Z-shaped domain Q = (=1,1)2\
conv{(0,0), (=1,0), (=1,-1)} c R? with coefficients A (x) = Idand b(x) = (5,5), and right-hand
side f(x) =1, 1i.e.,

~Au*(x)+(5,5)7 -Vu*(x) =1 forxeQ and u*(x)=0 forx € dQ.

Figure 3.7 shows that even for a strong convection combined with a strong singularity at the origin,
the adaptive algorithm recovers the optimal convergence rates —m /2 for several polynomial degrees
m both with respect to the cumulative costs and computational time. In Figure 3.4 we see that the
number of solver steps per level £ behaves similarly to the diffusion-convection-reaction problem
on the L-shape from Section 3.6.1 with an increase due to the stronger singularity. Furthermore,
Figure 3.8 displays upper bounds on A,g < /lz'lg < Z:lg and the contraction factor gy, ~ 1/2 (after
an initial phase of reduced contraction) for the perturbed Zarantonello system in (3.25).

3.7 Conclusion and future work

In this work, we have developed and analyzed an adaptive finite element method for nonsymmetric
second-order linear elliptic PDEs (3.1). From a conceptual point of view, the crucial assumption is
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Figure 3.6: Computed upper bounds for A;‘lg < /_l;g for various choices of the symmetrization
stopping parameter Agyy, with fixed 6 = 0.5 (left) and different marking parameter 6
with fixed Agym = 0.1 (right), where we emphasize the double scaling of the y-axis for

/l;*lg 1esp. gy in both figures.
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Figure 3.7: Optimality of AISFEM for the strong convection problem on the Z—shaped domain

Jfrom Section 3.6.2. Convergence history plot of the error estimator ng(u p ) over the
computational cost (left) and the elapsed computational time (right).
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Figure 3.8: Uniform contraction of the combined solver for the strong convection problem on the
Z-shaped domain from Section 3.6.2. Contraction factor gy,,, and computed upper

bound for /l;‘lg < z:lg for various symmetrization stopping parameter Agyy, with fixed
6 = 0.5 (left) and different marking parameter 6 with fixed Agyy, = 0.1 (right), where we

emphasize the double scaling of the y-axis for /l;*lg resp. gy, in both figures.

that the weak formulation takes the form
b(u*,v) =au*,v)+(Ku*,v)=F(v) forall v e X, (3.84)

where F € X’ is a linear and continuous functional, a(-, -) is a symmetric, continuous, and elliptic
bilinear form on X, and K: X — X’ is a compact operator such that the bilinear form b(-, -) is still
elliptic on X. Let ||| - ||| denote the a(-, -)-induced energy norm. For the discrete formulation

b(u},ve) = F(ve) forall v € Xp, (3.85)

we require an (abstract) inexact iterative solver with iteration map given by
@O, (F;-): Xy — X, that contracts the error in the energy norm, i.e.,

N =0 Ml < Gy Ml =5l with @y = @ (F;iy) for all k € N, (3.86)
where the contraction constant 0 < g, < 1is independent of ﬁg € X¢. Under such assumptions and
with the usual residual a posteriori error estimator 1, (-) (satisfying the abstract assumptions (A1)—
(A4)) on nested conforming discrete spaces Xy C Xypi1 C X, the present work proves that the
analysis from [GHPS21] can be generalized from symmetric PDEs (with K = 0) to the general
formulation (3.84): Restricting Algorithm 3A to the outer £-loop (for mesh refinement) and the inner
k-loop (for the solver associated to ®;), we obtain a simplified index set

Q={(tk) e Ng | ﬁlg is computed by the simplified algorithm} (3.87)

together with the canonical step counter |£, k| € Ny on Q defined analogously to (3.21). Then,
Lemma 3.11 (lucky non-termination of the solver), Lemma 3.12 (a priori convergence), Lemma 3.13
(quasi-Pythagorean estimate), and Lemma 3.14 (contraction of weighted discretization and solver
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error) hold Verbatim (and the proof of Lemma 3.13 indeed relies on the compactness of K) if

k.j . . —k - . .
we replace u, L in the given proofs by ulg in the current solver setting. Therefore, we obtain full
linear convergence in the spirit of Theorem 3.7: For arbitrary adaptivity parameters 0 < 6 < 1 and

Asym > 0, there exist constants Cj;, > 0 and 0 < g, < 1 as well as an index £y € Ny such that
-k . |f,k|—|€',k’|_k, ’ o1 A ’ 1 /
A < Ciin qy, Ay forall (£,k7), (¢, k) e Qwith [0/, k"| < |€,k| and ¢’ > £y, (3.88)

—k — — . . .
where A, = |lu* - u’; Il + ng(ulg) denotes the corresponding quasi-error. In particular, also

Corollary 3.8 holds verbatim with Q replaced by Q and Alg’j replaced by Z?, i.e., convergence rates
with respect to the number of degrees of freedom coincide with rates with respect to the overall
computational cost. Finally, it is easy to check that also Theorem 3.9 holds verbatim and proves that,
for sufficiently small adaptivity parameters 0 < § < 1 and 0 < Agyy < 1 in the sense of (3.33), it
holds that

S —k
¥l () < 00 = sup( D #7;,) Ay < o, (3.89)
ket v iea
|7, k" <|€,k|

which yields optimal complexity of the simplified algorithm.
In the current analysis, the combined Zarantonello symmetrization with a contractive SPD

algebraic solver is used as one solver module to guarantee (3.86) for ﬁ’g = ulg’i (see Lemma 3.10,
where contraction, however, only holds for 1 < k < k[{]), leading to all results being formulated
over the triple index set Q C Ng (see Section 3.3-3.4).

We note that another choice for solving the arising nonsymmetric FEM systems would be
preconditioned GMRES (see, e.g., [SS86; Saa03]), where an optimal preconditioner for the
symmetric part would be employed. Then, it is well-known from the field-of-value analysis (see,
e.g., [Sta97]) that the algebraic solver would satisfy a generalized contraction for the algebraic
residual (in a discrete vector norm). However, the link between the algebraic residual and the
functional setting appears to be open. Moreover, the a posteriori error control of the algebraic error
for such a GMRES solver is still to be developed.

While these questions are left for future work, we already note some results that can be achieved
along the arguments of [GHPS21]: If the solver @, (F; -) provides iterates (ﬁ’g) keN, satisfying only
the generalized contraction

llluey — ﬁ'glll < Cetr Ggym llluey — ﬁ2||| forall k e N (3.90)
together with the a posteriori error control
My —afll < Cly lluk — ;|| forall k € N, (3.91)

where Cer, C, > 0and 0 < Esym < 1 are given constants independently of ﬁg € Xy, then full linear
convergence (3.88) can be proved for all 0 < 6 < 1 under the additional assumption that Asyy, has to
be sufficiently small. However, the proof of full linear convergence (3.88) for arbitrary 0 < 6§ < 1
and arbitrary Agym > 0 is open, while optimal complexity (3.89) for sufficiently small 0 < 6 < 1 and

Asym 1n the sense of (3.33) remains valid (even with the same proof).
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4 On full linear convergence and optimal
complexity of adaptive FEM with inexact
solver

The Sections 4.1-4.7 of this chapter correspond to the publication:

P. Bringmann, M. Feischl, A. Miragi, D. Praetorius, and J. Streitberger. On full linear
convergence and optimal complexity of adaptive FEM with inexact solver, 2023. arXiv:
2311.15738

4.1 Introduction

Over the past three decades, the mathematical understanding of adaptive finite element methods
(AFEMs) has matured; see, e.g., [D6r96; MNS00; BDDO04; Ste07; CKNS08; CN12; FFP14] for
linear elliptic PDEs, [Vee02; DK08; BDK12; GMZ12] for certain nonlinear PDEs, and [CFPP14]
for an axiomatic framework summarizing the earlier references. In most of the cited works, the focus
is on (plain) convergence [D6r96; MNSO00; Vee02; DKO08; GMZ12] and optimal convergence rates
with respect to the number of degrees of freedom, i.e., optimal rates, [BDD04; CKNS08; CN12;
BDK12; GMZ12; FFP14].

The adaptive feedback loop strives to approximate the unknown and possibly singular exact PDE
solution u* on the basis of a posteriori error estimators and adaptive mesh refinement strategies.
Employing AFEM with exact solver, detailed in Algorithm 4A below, generates a sequence (77)¢en,
of successively refined meshes together with the corresponding finite element solutions u} ~ u* and
error estimators 7, (u) by iterating

[solve] — [stimate] — [mark] — [zefine] @)

A key argument in the analysis of (4.1) in [CKNSO08] and succeeding works for symmetric PDEs
consists in showing linear convergence of the quasi-error

AY < qin Ay with  AY = [lllu* =l + yng(u}‘)Q]l/Q for all £ € N, 4.2)

where 0 < gjin, Y < 1 depend only on the problem setting and the marking parameter 6. Here, ||| - |||
is the PDE-induced energy norm providing a Pythagorean identity of the form

2 2 2
e = up ) I + Mg,y —ugll® = lllu* - upll®  forall £ € No. (4.3)

An extension of the analysis to nonsymmetric linear PDEs can be done by relaxing the Pythagorean
identity to a quasi-Pythagorean estimate in [CN12; FFP14; BHP17]. However, this comes at
the expense that either the initial mesh has to be sufficiently fine [CN12], or (4.2) only holds for
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4 Adaptive FEM with quasi-optimal computational cost

€ > €y € Ng [BHP17], or (4.2) holds in the general form (4.5) below, where the constants depend on
the adaptively generated meshes [FEP14]. The later work [CFPP14] showed that a tail-summability
of the estimator sequence

(o)

> neuh) < Chne(uy) forall £ € N (4.4)
0'=Ct+1

or, equivalently, R-linear convergence
ne(uf) < Cinglyy ne(u}) forall £> ¢ >0, (4.5)

with 0 < ¢jip < 1 and Cyjy, Cl’i . > 0, suffices to prove convergence. Additionally, a sufficiently small
marking parameter 6 leads to optimal rates in the sense of [Ste07; CKNSO08]. This can be stated
in terms of approximation classes [BDD04; Ste08; CKNSO08] by mathematically guaranteeing the

largest possible convergence rate s > 0 with
sup(#£7¢) " ne (uy) < oo, (4.6)
feN

However, due to the incremental nature of adaptivity, the mathematical question on optimal con-
vergence rates should rather refer to the overall computational cost (resp. the cumulative computation
time). This, coined as optimal complexity in the context of adaptive wavelet methods [CDDO1;
CDDO03], was later adopted for AFEM in [Ste07; CG12]. Therein, optimal complexity is guaranteed
for AFEM with inexact solver, provided that the computed iterates uf are sufficiently close to the
(unavailable) exact discrete solutions u. This theoretical result requires that the algebraic error is
controlled by the discretization error multiplied by a sufficiently small solver-stopping parameter A.
However, numerical experiments in [CG12] indicate that also moderate choices of the stopping
parameter suffice for optimal complexity. Hence, the interrelated stopping criterion led to a combined
solve-estimate module in the adaptive algorithm

‘solve&estimate‘ — — 4.7)

Driven by the interest in AFEMs for nonlinear problems [EV13; CW17; GHPS18; HW20b; HW20a],
recent papers [GHPS21; HPW21; HPSV21] aimed to combine linearization and algebraic iterates
into a nested adaptive algorithm. Following the latter, the algorithmic decision for either mesh
refinement or linearization or algebraic solver step is steered by a-posteriori-based stopping criteria
with suitable stopping parameters. This allows to balance the error components and compute the

inexact approximations u’g ~ uy given by a contractive solver with iteration counter k = 1,..., k[{]
on the mesh 7, and |¢, k| € Ny denotes the lexicographic order of the sequential loop (4.7); see
Algorithm 4B below.

Due to an energy identity (coinciding with (4.3) for symmetric linear PDEs), the works [GHPS21;
HPW21] prove full R-linear convergence for the quasi-error A’g = [lllu* - u’(flll2 +y ng(u§ )2] 1/2
with respect to the lexicographic ordering |-, -|, i.e.,

AE < CinglEHTIKTAR forall (¢, k"), (6,k) € Q with |£/, k'] < |6, kI, (4.8)

which is guaranteed for arbitrary marking parameter 6 and stopping parameter A (with constants
Ciin > 0 and 0 < gjin < 1 depending on 6 and 1). Moreover, [GHPS21] proves that full R-linear
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4.1 Introduction

convergence is also the key argument for optimal complexity in the sense that it ensures, for all s > 0,

N
M(s)= sup (#T°AE< swp (D) #T0) A < Cx(9) M(s),  (49)
(f,k)GQ (t’,k)eQ ([/’k/)ea
[, K" |<|€,k|

where Ceost(s) > 1 depends only on s, Cyin, and gjin. Since all modules of AFEM with inexact solver
as displayed in (4.7) can be implemented at linear cost O (#7), the equivalence (4.9) means that the
quasi-error A’g decays with rate s over the number of elements #7; if and only if it decays with rate
s over the related overall computational work (and hence total computation time).

In essence, optimal complexity of AFEM with inexact solver thus follows from a perturbation
argument (by taking the stopping parameter A sufficiently small) as soon as full linear convergence (4.8)
of AFEM with inexact solver and optimal rates of AFEM with exact solver (for sufficiently small 8)
have been established; see, e.g., [CFPP14; GHPS21].

In this paper, we present a novel proof of full linear convergence (4.8) with contractive solver
that, unlike [GHPS21; HPW21], avoids the Pythagorean identity (4.3), but relies only on the
quasi-orthogonality from [CFPP14] (even in its generalized form from [Fei22]). The latter is known
to be sufficient and necessary for linear convergence (4.5) in the presence of exact solvers [CFPP14].
In particular, this opens the door to proving optimal complexity for AFEM beyond symmetric energy
minimization problems. Moreover, problems exhibiting additional difficulties such as nonsymmetric
linear elliptic PDEs, see [BHI*23], or nonlinear PDEs, see [HPSV21], ask for more intricate (nested)
solvers that treat iterative symmetrization/linearization together with solving the arising linear SPD
systems. This leads to computed approximations u’;’] ~ uy with symmetrization/linearization
iteration counter k = k[{] and algebraic solver index j = j[{, k]. The new proof of full linear
convergence allows to improve the analysis of [BHI"23; HPSV21] by relaxing the choice of the
solver-stopping parameters. Additionally, in the setting of [BHI*23], we are able to show that the full
linear convergence holds from the arbitrary initial mesh onwards instead of the a priori unknown
and possibly large mesh threshold level £, > 0. In particular, unlike the previous works [CN12;
FFP14; BHP17; BHI*23] that employ a quasi-Pythagorean identity, the new analysis shows that the
constants in the full R-linear convergence are independent of 75 and/or the sequence of adaptively
generated meshes and therefore a priori fixed. Furthermore, the new analysis does not only improve
the state-of-the-art theory of full linear convergence leading to optimal complexity, but also allows
the choice of larger solver-stopping parameters which also leads to a better numerical performance
in experiments.

The remainder of this work is structured as follows: As a model problem, Section 4.2 formulates
a general second-order linear elliptic PDE together with the validity of the so-called axioms of
adaptivity from [CFPP14] and the quasi-orthogonality from [Fei22]. In Section 4.3, AFEM with
exact solver (4.1) is presented in Algorithm 4A and, for completeness and easier readability of the
later sections, Theorem 4.4 summarizes the proof of R-linear convergence (4.5) from [CFPP14;
Fei22]. Section 4.4 focuses on AFEM with inexact contractive solver (4.7) detailed in Algorithm 4B.
The main contribution is the new and more general proof of full R-linear convergence of Theorem 4.7.
Corollary 4.11 proves the important equivalence (4.9). The case of AFEM with nested contractive
solvers, which are useful for nonlinear or nonsymmetric problems, is treated in Section 4.5 by
presenting Algorithm 4C from [BHI*23] and improving its main result in Theorem 4.15. In
Section 4.6, we discuss the impact of the new analysis on AFEM for nonlinear PDEs. We show that
Theorem 4.15 applies also to the setting from [HPSV21], namely strongly monotone PDEs with
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scalar nonlinearity. Numerical experiments and remarks are discussed in-depth in Section 4.7, where
the impact of the adaptivity parameters on the overall cost is investigated empirically.

Throughout the proofs, the notation A < B abbreviates A < CB for some positive constant
C > 0 whose dependencies are clearly presented in the respective theorem and A ~ B abbreviates
A< B A

4.2 General second-order linear elliptic PDEs
On a bounded polyhedral Lipschitz domain Q ¢ R?, d > 1, we consider the PDE
—div(AVu*) +b - Vu* +cu* = f —div f in Q subjectto u* =0 on dQ, (4.10)

where A,b,c € L¥(Q) and f, f € L?*(Q) with, for almost every x € Q, positive definite
A(x) € Rfyfnd, b(x), f(x) € R, and c(x), f(x) € R. With (-, Y12(q) denoting the usual L*(Q)-

scalar product, we suppose that the PDE fits into the setting of the Lax—Milgram lemma, i.e., the
bilinear forms

a(u,v) =(AVu, V)2qy and b(u,v) =a(u,v)+<b -Vu+cu, v)i2q 4.11)

are continuous and elliptic on Hé (Q). Then, indeed, a(-, -) is a scalar product and [|lul]| = a(u, u)/?
defines an equivalent norm on Hé (). Moreover, the weak formulation

b(u*,v) =F(v) =(f, V)2 +{f, VW2 forallve Hj(Q) (4.12)

admits a unique solution u* € Hé (). Let 0 < Cepp < Cpng denote the boundedness and ellipticity
constant of b(-, -) with respect to ||| - |||, i.e., there holds

CenlIVII* < b(v,v) and [b(v,w)| < Cona VIl lIwll forall v,w € X.

Let 75 be an initial conforming triangulation of Q@ c R¢ into compact simplices. The mesh
refinement employs newest-vertex bisection (NVB). We refer to [Ste08] for NVB with admissible 7
and d > 2, to [KPP13] for NVB with general 7 for d = 2, and to the recent work [DGS23] for NVB
with general 75 in any dimension d > 2. For d = 1, we refer to [AFF*15]. For each triangulation 75
and My C Tg, let 7, = refine (75, Mpy) be the coarsest conforming refinement of 7z such that
at least all elements T € My have been refined, i.e., My C 75 \ 7. To abbreviate notation, we
write 7, € T(7g) if 75, can be obtained from 7 by finitely many steps of NVB and, in particular,
T = T(7).

For each 7y € T, we consider conforming finite element spaces

Xy ={vyg € Hé(Q) : vy|r is a polynomial of total degree < p for all T € Tg}, (4.13)

where p € N is a fixed polynomial degree. We note that 7, € T(7f) yields nestedness Xy C Xj, of
the corresponding discrete spaces.
Given 7y € T, there exists a unique Galerkin solution ”;1 € Xp solving

b(uy,ve) = F(vyg) forallvy € Xp. (4.14)
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4.2 General second-order linear elliptic PDEs

Moreover, there holds the following Céa lemma

|||u* - M;_I||| < Ccéa VHE)I(l |||u* —vyglll withaconstant 1 < Ccga < Cpna/Cell, (4.15)
HEXH

where Cc¢y, — 1 as adaptive mesh-refinement progresses [BHP17, Theorem 20].
We consider the residual error estimator g () defined, for T € 9 and vy € Xy, by

nu (T, ve)? = TP = div(AVve = f) +b - Vvg +cvi = fll2 )
+|T1V | [(AVvy = f) - ”]]||i2(aTmQ)’

where [[-]] denotes the jump over (d — 1)-dimensional faces. Clearly, the well-posedness of (4.16a)
requires more regularity of A and f than stated above, e.g., A|7, flr € WH(T) forall T € 5. To
abbreviate notation, we define, for all Uy C 7y and all vy € Xy,

(4.16a)

. S\ 12
na(ve) =na(Ta,ve) with ng(Ug,vy) = ( Z nua(T,ve) ) . (4.16b)
TeUy

From [CFPP14], we recall that the error estimator satisfies the following properties.

Proposition 4.1 (axioms of adaptivity). There exist constants Cgap, Crel, Cdrel, Cmon > 0, and
0 < gred < 1 such that the following properties are satisfied for any triangulation Ty € T and any
conforming refinement Ty, € T(Tp) with the corresponding Galerkin solutions uy, € Xy, uy € Xp,
to (4.14) and arbitrary vy € Xy, vi, € Xp,.

(A1) stability.  |na(Tn O Te,va) = na(Th O Tas va)| < Coap v = valll:
(A2) reduction.  np(Tn\Th,VH) < Grea NH(TH\Ths VH).
(A3) reliability.  |[lu* — u}lll < Creinu (uly).

(A3") discrete reliability.  |||luj; — up |l < Caret N (T \Tn» uFy)-

(QM) quasi-monotonicity. Uh(“Z) < Cion 11 (uF;).

The constant Cy| depends only on uniform shape regularity of all meshes Ty € T and the
dimension d, while Cypp and Cqre) additionally depend on the polynomial degree p. The constant
Gred Teads Gred = 2-1/(2d) for bisection-based refinement rules in R? and the constant Cyop can
be bounded by Cpon < min{1 + Cgap (1 + Ccga) Crel > 1 + Csab Crel }- O

In addition to the estimator properties in Proposition 4.1, we recall the following quasi-orthogonality
result from [Fei22] as one cornerstone of the improved analysis in this chapter.

Proposition 4.2 (validity of quasi-orthogonality). There exist Coyn > 0 and 0 < 6 < 1 such
that the following holds: For any sequence Xy C Xpp1 C Hé (Q) of nested finite-dimensional
subspaces, the corresponding Galerkin solutions uz,‘ € Xy to (4.14) satisfy

+N
(A4) quasi-orthogonality. Z lee}.,y — wflI* < Corn (N + 1) =|lu* = u}||I? for all ¢, N € No.
=t

Here, Coyn and 6 depend only on the dimension d, the elliptic bilinear form b(-, -), and the chosen
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4 Adaptive FEM with quasi-optimal computational cost

norm ||-|||, but are independent of the spaces Xp. o

Remark 4.3. Quasi-orthogonality (A4) is a generalization of the Pythagorean identity (4.3) for
symmetric problems. Indeed, if b = 0 in (4.10) and a(-,-) = b(-,-) is a scalar product, the Galerkin
method for nested subspaces Xy C Xpp1 C Hcl] (Q) guarantees (4.3). Thus, the telescopic series
proves (Ad) with Con = 1 and 6 = 1. We highlight that [Fei22 ] proves (A4) even for more general
linear problems and Petrov—Galerkin discretizations.

A closer look at the proofs of R-linear convergence in Section 4.3—4.5 below reveals that they rely
only on the properties (A1), (A2), (A3), (A4), and (QM), but not on (A3"), the Céa lemma (4.15),
or linearity of the PDE. Hence, Algorithms 4A, 4B, and 4C and the corresponding Theorems 4.4,
4.7, and 4.15 apply beyond the linear problem (4.10); see Section 4.6 for a nonlinear PDE.

4.3 AFEM with exact solution

To outline the new proof strategy, we first consider the standard adaptive algorithm, where the arising
Galerkin systems (4.14) are solved exactly (see, e.g., [CKINS08]).

Algorithm 4A: AFEM with exact solver

Given an initial mesh 75 and adaptivity parameters 0 < 6 < 1 and Cyx > 1, iterate the
following steps forall £ =0,1,2,3,...:

(i) Solve: Compute the exact solution u; € Xp to (4.14).
(i) Estimate: Compute the refinement indicators 77, (7, u;) forall T € 7.

(iii) Mark: Determine a set M, € M[6,u}] = {(L[[ C Te: Hng(u;)Q < ng((ng,uz,‘)Q}
satisfying the Dorfler marking criterion with almost minimal cardinality

#Mp < Coare . min #U. (4.17)

UreM,[0.u)]
(iv) Refine: Generate 77,1 = refine(7z, M¢).
The following theorem asserts convergence of Algorithm 4A in the spirit of [CFPP14] and the
proof given below essentially summarizes the arguments from [Fei22]. It will, however, be the

starting point for the later generalizations, i.e., for the adaptive algorithms below with inexact solvers.

Theorem 4.4: R-linear convergence of Algorithm 4A

Let0 < 0 < 1and Cak > 1be arbitrary. Then, Algorithm 4A guarantees R-linear convergence
of the estimators ng(u;‘), i.e., there exist constants 0 < qiin < 1 and Cyip > 0 such that

Nesn(},,) < Cinqpi,ne(uy)  forall €,n € Ny. (4.18)

Remark 4.5. For vanishing convection b = 0 in (4.10) and a(-, ) = b(-,-), [CKNSO8] proves linear
convergence of the quasi-error (4.2). Together with reliability (A3), this yields R-linear convergence
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4.3 AFEM with exact solution

of the estimator sequence

2 1/2
Crel + Y) /

Newn(U},,) < — qeene(uy)  forall €,n € Ny. (4.19)

In this sense, Theorem 4.4 is weaker than linear convergence (4.2) from [CKNSOS], but provides
a direct proof of R-linear convergence even if b(-,-) # a(-,). Moreover, while the proof of (4.2)
crucially relies on the Pythagorean identity (4.3), the works [FFP14; BHP17] extend the analysis to
the general second-order linear elliptic PDE (4.10) using

VO<e<13eNoVe>ty:  lu* —uf P < llu* —ufll® - e lllul,, —ulll. (4.20)

However, the index €y depends on the exact solution u* and on the sequence of exact discrete
solutions (u})¢en,. Moreover, o = 0 requires sufficiently fine To in [CN12; BHP17] while the
constants in (4.18) depend on u* and the sequence (M;)geNO in [FFPI4]. In contrast to that, R-linear
convergence (4.18) from Theorem 4.4 holds with £y = 0 and any initial mesh Ty, and the constants
are independent of w* and (u})en,-

The proof of Theorem 4.4 relies on the following elementary lemma that extends arguments
implicitly found for the estimator sequence in [Fei22] but that will be employed for certain quasi-errors
in the present chapter. Its proof is found in Appendix 4.A.

Lemma 4.6 (tail summability criterion). Let (a¢)cen,, (be)een, be scalar sequences in Rx.
With given constants 0 < g < 1,0 < 6 < 1, and Cy, C2 > 0, suppose that

{+N
arv < qac+be, ey < Crag, and Y bi < Co(N+1)'"°a} forall ¢, N € No. (4.21)
=t

Then, (a¢)¢en, is R-linearly convergent, i.e., there exist Cjin > 0 and 0 < qiin < 1 with

aren < Cringy,ae  forall £,n € Ny. (4.22)

Proof of Theorem 4.4. We employ Lemma 4.6 for the sequences defined by a, = 5¢(u}) and
be := Cyap llu},, — uy]ll. First, we note that

(A3) QM)
Ny, —upll < ner(uy,) +ne(uy) < ne(uy) forall €,¢,¢" € Ngwith € < ¢ < 7. (4.23)
In particular, this proves by.ny < ag for all £, N € Ny. Moreover, quasi-orthogonality (A4) and
reliability (A3) show

+N
Z Nk, = ubll? < CornC2, (N +1)' 0 po(u)?  forall £, N € N, (4.24)
=

In order to verify (4.21), it thus only remains to prove the perturbed contraction of a,. To this end,
let £ € Ng. Then, stability (A1) and reduction (A2) show

Nes1 (U))? < ne(Ten O Te, ul)? + @2ne(Te\Tes1, up)? = ne(u))? = (1=q2 ) ne(Te\Tes1, uf)?.
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4 Adaptive FEM with quasi-optimal computational cost

Moreover, Dorfler marking (4.17) and refinement of (at least) all marked elements lead to

one ()< e (Mo ut)? < ne(T\Trn, ).
The combination of the two previously displayed formulas results in
nen(uf) < qome(uf) with 0<qq=[1-(1-g290]"" <1.
Finally, stability (A1) thus leads to the desired estimator reduction estimate
nes1(uf,y) < qone(uy) + Coap g, —uzll forall £ € No. (4.25)

Altogether, all the assumptions (4.21) are satisfied and Lemma 4.6 concludes the proof. O

4.4 AFEM with contractive solver
Let Wy : Xy — Xpg be the iteration mapping of a uniformly contractive solver, i.e.,
lluy; = Pa(VE)ll < gew lluy; — vall forall 7 € T and all vy € Xp. (4.26)

The following algorithm is thoroughly analyzed in [GHPS21] under the assumption that the problem
is symmetric (and hence the Pythagorean identity (4.3) holds).

Algorithm 4B: AFEM with contractive solver

Given an initial mesh 75, adaptivity parameters 0 < § < 1 and Cpux > 1, a solver-stopping
parameter A > 0, and an initial guess u8 € Xp, iterate the following steps forall € = 0,1,2,3,...:

(i) Solve & Estimate: Forall k =1,2,3,..., repeat (a)—(b) until
e = g™ Il < Ane (u). 4.27)

(a) Compute uf = W, (uk~1) with one step of the contractive solver.

(b) Compute the refinement indicators n, (7, u’g )forall T € 7.
(i1) Upon termination of the iterative solver, define the index k[{] := k € N.
(iii) Mark: Determine a set M, € M,[6, u%] satisfying (4.17) with u} replaced by u?

(iv) Refine: Generate 77,1 = refine(7z, M) and employ nested iteration ug = u?

The sequential nature of Algorithm 4B gives rise to the countably infinite index set
Q :={(¢,k) € N} : u} € Xy is defined in Algorithm 4B} (4.28)
together with the lexicographic ordering

k)< (k) = u'g,, is defined not later than u’g in Algorithm 4B (4.29)
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4.4 AFEM with contractive solver

and the total step counter
|6, k| =#{(', k') eQ : ({',k') < (£, k)} e Ny forall (¢,k) € Q.
Defining the stopping indices

¢ =sup{€ €Ny : (£,0) € Q} € Ny U {oo}, (4.30a)

k[€] =sup{k e Ng : ({,k) € Q} e NU {co}, whenever (£,0) € Q, (4.30b)

we note that these definitions are consistent with that of Algorithm 4B(ii). We abbreviate k = k[{],
whenever the index ¢ is clear from the context, e.g., u? = ufm or ({,k)=((,k[(]).

As Q is an infinite set, the typical case is £ = co and k[{] < oo for all £ € Ny, whereas £ < oo

implies that k[£] = oo, i.e., non-termination of the iterative solver on the mesh 7;. The following

theorem states convergence of Algorithm 4B. In particular, it shows that £ < co implies 7 (u}) = 0

and consequently u* = u} by reliability (A3).

Theorem 4.7: full R-linear convergence of Algorithm 4B

Let0 <60 <1, Chak =1, 4> 0, and u8 € Xy be arbitrary. Then, Algorithm 4B guarantees
R-linear convergence of the modified quasi-error

HE = g = ugll+ne (), (4.31)
i.e., there exist constants 0 < gy, < 1 and Cyi, > 0 such that

HE < CngltMT1KVRE forall (€, K'), (€,k) € Qwith |€/, K| < £, k]. (4.32)

Remark 4.8. Unlike [GHPS21] (and [CKNSO8]), Theorem 4.7 and its proof employ the quasi-error
H]{f from (4.31) instead of A’g = [lllu* - u’[flll2 + yng(uzg)Q]l/Q analogous to (4.2). We note that
stability (A1) and reliability (A3) yield A’g < H’g, while the converse estimate follows from the Céa
lemma (4.15).

Remark 4.9. The work [GHPS21] extends the ideas of [ CKNSOS] (that proves (4.2) for AFEM with
exact solver) and of [FP18] (that extends (4.2) to the final iterates for AFEM with contractive solver).
For the scalar product b(-,-) = a(-, ) and arbitrary stopping parameters A > 0, it shows that the
quasi-error A’tf from Remark 4.8 satisfies contraction

AY < g AFTY forall (6,k) € Qwith0 < k < k[£], (4.33a)
N < gyt forall (6K) €Q (4.33b)

with contraction constant 0 < g < 1, along the approximations u’g € Xy generated by Algorithm 4B.
The proof of (4.33) can be generalized similarly to Remark 4.5, see [BHIT23]: With the quasi-
Pythagorean estimate (4.20), the contraction (4.33) transfers to general second-order linear elliptic
PDEs (4.10) under the restriction that (4.33b) holds only for all € > €y, where €y € Ny exists, but
is unknown in practice. While, as noted in Remark 4.5, contraction (4.33) implies full R-linear
convergence (4.32), the proof of Theorem 4.7 works under much weaker assumptions than that
of [GHPS21] and covers the PDE (4.10) with £y = 0.
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4 Adaptive FEM with quasi-optimal computational cost

The proof of Theorem 4.7 relies on Lemma 4.6 and the following elementary result essentially
taken from [CFPP14, Lemma 4.9]. Its proof is found in Appendix 4.A.

Lemma 4.10 (tail summability vs. R-linear convergence). Let (a¢)cen, be a scalar sequence in
Rsg and m > 0. Then, the following statements are equivalent:

(i) tail summability: There exists a constant Cy,, > 0 such that

(o)

ay < Cpay'  forall € € Ny. (4.34)
'=C+1

(ii) R-linear convergence: There holds (4.22) with certain 0 < qiin < 1 and Cyip > 0.

Before proving Theorem 4.7, we want to briefly summarize its proof strategy. First, we show
that the estimator reduction together with the contraction (4.33) of the algebraic solver leads to
tail-summability of a weighted quasi-error on the mesh level £. Second, we show that the quasi-error
from (4.31) is contractive in the algebraic solver index k and is stable in the nested iteration. Finally,
we combine these two steps to prove R-linear convergence of the quasi-error (4.32).

Proof of Theorem 4.7. The proof is split into two steps.

Step 1 (tail summability with respect to £). Let £ € N with (£ + 1,k) € Q. Algorithm 4B
guarantees nested iteration ug = u? and k[£] > 1. This and contraction of the algebraic solver (4.26)
show

26)

ko @ k[£+1] k k
My =yl < aqge MGy =l < gew llug,q —ugll (4.35)

r
As in the proof of Theorem 4.4, one obtains the estimator reduction

ko (425) k k k 14.35) k N k
ne+1(Uyy) < qone(uy) + Coab iy —u ll < gone(uy) + (qew + 1) Csuap g, —u ll. - (4.36)

Choosing 0 < y < 1 with 0 < g¢r = max{qcy + (ger + 1)Cstavy » g9} < 1, the combination
of (4.35)—(4.36) reads

k k k k
agsr = upyy =g I+ y ness (ug,y) < ger [y, = w ll+y neuy)] 437)

k k
S e [l”u; - ”El” +y nf(”})] + qctr ”l”;.'.l - ”;l” = qenar +be.

Moreover, estimate (4.23) from the proof of Theorem 4.4 and stability (A1) prove that
4.23) (A1)
e, — u;,ni < ne(ud) < lluf — usll + neuy) = ag for £ < € <€ < € with (6,k) €@Q, (4.38)

which yields bpyy S apforall0 < € <0+ N < £ with (€, k) € Q. Asin (4.24), we see

& 2 & * x 2 AP 1oy x a2 AV 1-6 *\2
Dbg = Y ludy —uplP S N+ D =l S (N + 1) e ()
[’:f f/:f (4-39)

(A1)
< N+ [neus) + e = ubfl]? ~ (N+ 1)1 79 a2 forall 0< £ < €+ N < L.
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4.4 AFEM with contractive solver

Hence, the assumptions (4.2 1) are satisfied and Lemma 4.6 concludes tail summability (or equivalently
R-linear convergence by Lemma 4.10) of H% ~ayg,ie.,

forall 0 < ¢ < ¢. (4.40)
'=C+1

Step 2 (tail summability with respect to £ and k). First, for 0 < k < k” < k[{], the failure of
the termination criterion (4.27) and contraction of the solver (4.26) prove that

, ( , (4.26) , (4.26)
k k-1 k-1 —k —k 1k
H, ”l’/‘g —uf I+ Mok = bM< M = S gb R ) - ug”l < thr Hy.
Second, for (¢, k) € Q, it holds that

K (Al k k-1 k k-1
HE S Mg = i+ me >+||Iu*—uz I

< H* +2||| u; —ul,||| (1+2qctr)H for all (¢,k) € Q.
Hence, we may conclude
HE < g5 7% HE forall 0 < k < k" < k[£]. (4.41)
With [[lu7,, —uflll  ar = H? from (4.23), stability (A1) and reduction (A2) show
k k k k
HYo1 = gy — gl +mee (uy) < Hy +lluf,, —ufll s H forall (6,k) € Q. (4.42)

Overall, the geometric series proves tail summability (4.34) via

kl€] ¢ kle]
> HE = Z HE + Z Z HE,
',k e =k+1 =(+1 k’'=
[e' K| >,k ,
(4. 41) = (4 42) (4 40)
Z HY, Z HY, H§ < Hk forall (£,k) € Q.
'=t+
Since Q is countable and linearly ordered, Lemma 4.10 concludes the proof of (4.32) O

The following comments on the computational cost of implementations of standard finite element
methods underline the importance of full linear convergence (4.32).

* Solve & Estimate. One solver step of an optimal multigrid method can be performed in
O(#97¢) operations, if smoothing is done according to the grading of the mesh [WZ17;
IMPS24]. Instead, one step of a multigrid method on 7, where smoothing is done on all
levels and all vertex patches needs O(Zg,zo #7¢) operations. The same remark is valid
for the preconditioned CG method with optimal additive Schwarz or BPX preconditioner
[CNX12]. One solver step can be realized via successive updates in O(#%7;) operations,
while O(Zg,zo #T¢) is faced if the preconditioner does not respect the grading of the mesh
hierarchy.
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4 Adaptive FEM with quasi-optimal computational cost

e Mark. The Dorfler marking strategy (4.17) can be realized in linear complexity O(#7;);
see [Ste07] for Ciark = 2 and [PP20] for Cipark = 1.

* Refine. Local mesh refinement (including mesh closure) of 7, by bisection can be realized in
O(#7;) operations; see, e.g., [BDD04; Ste07].

Since the adaptive algorithm depends on the full history of algorithmic decisions, the overall
computational cost until step (¢, k) € Q, i.e., until (and including) the computation of u’; , is thus
proportionally bounded by

Z #Tp < cost(l, k) < Z i HTn.

(' ,K)eQ (£',k)e@ 7=0
|0, k'| <€, k| [0, k' <1€,k]|
Here, the lower bound corresponds to the case that all steps of Algorithm 4B are done at linear
cost O(#7¢). The upper bound corresponds to the case that solve & estimate, mark, and refine are
performed at linear cost O (#7¢), while a suboptimal solver leads to cost O(Zg,,zo #T¢) for each
mesh 7,. In any case, the following corollary shows that full R-linear convergence guarantees that
convergence rates with respect to the number of degrees of freedom dim X, =~ #7,; and with respect
to the overall computational cost cost (¢, k) coincide even for a suboptimal solver. Moreover, the
corollary shows that there exists a bound sg > 0 such that all rates 0 < s < sq are possible.

Corollary 4.11 (rates = complexity). For s > 0, full R-linear convergence (4.32) yields

t?/
N
M) = sup (#T)HE< sup (D D #T0) HE < Cooul9) M(), (443)
([,k)EQ (f,k)EQ (f’,k’)EQ =0
[€7, k" |<]€,k|

where the constant Ceoy(s) > 0 depends only on Ciin, qiin, and s. Moreover, there exists so > 0

such that M (s) < oo forall 0 < s < sg with sg = o0 if { < oo.

The last corollary is an immediate consequence of the following elementary lemma for aj¢ x| == H ’g
and t)¢ x| = #7¢.

Lemma 4.12 (rates = complexity criterion). Let (a¢)cen, and (te)een, be sequences in R such
that
aren < C1q"ar and tey < Coty  forall €,n € Ny. (4.44)

Then, for all s > 0, there holds
I s
M(s) = suptiar < sup (0 " 00 ar < Coouls) M(s), (4.45)
€€N0 KGNO =0 ¢"=0

where the constant Ceost(s) > 0 depends only on C1, q, and s. Moreover, there exists sqg > 0
depending only on Cy and q such that M (s) < oo forall 0 < s < sq.

Proof. By definition, it holds that

te < M(s)Y*a;' forall € € No.
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4.4 AFEM with contractive solver

This, assumption (4.44), and the geometric series prove that

v

, 4 ’ 1’
Zw <mes Y ap L ms cliagt 3 (gl
£ = =0 £7=0
Cl/s
< M)V —— a7 " forall ¢ € Ny,
1- q1/€

A further application of (4.44) and the geometric series prove that

l/s
Z ~1/s (49 1/s —1/s Z( Usye=t' < G s forall £ € N
g/ — q 1/5‘ a ora 0
{/_

The combination of the two previously displayed formulas results in

t U 1/s

S|
=0 ¢"=0

2
3 1 1/9) M(s)"s ;' forall £ € N,
—_ q S

Rearranging this estimate, we conclude the proof of (4.43). It remains to verify M (s) < oo for some
s > 0. Note that (4.44) guarantees that

0<ty <Cotp-y chl‘g forall £ € N.

Moreover, R-linear convergence (4.44) yields that

(4.44)
0<ar < C1q ag forall ¢ € Ng.

Multiplying the two previously displayed formulas, we see that
tyar < (C‘Q"q)fCl tyag forall £ € Ny.

Note that the right-hand side is uniformly bounded, provided that s > 0 guarantees C3g < 1. This
concludes the proof with sg := log(1/g)/log(Cs). O

With full linear convergence (4.32), the following theorem from [GHPS21, Theorem 8] can
be applied and thus Algorithm 4B guarantees optimal convergence rates with respect to the
overall computational cost in the case of sufficiently small adaptivity parameters 6§ and 4. To
formalize achievable convergence rate s > 0, we introduce the notion of nonlinear approximation
classes [BDDO04; Ste07; CKNS08; CFPP14]

e, = sup (N +1)° min mop(ied) ),

NeNy opt €

where nop(u5,,) is the estimator for the (unavailable) exact Galerkin solution u7, on an optimal
Topt € Tn = {Tu € T: #Tu = #% < N}.
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4 Adaptive FEM with quasi-optimal computational cost

Theorem 4.13: optimal complexity of Algorithm 4B, [GHPS21, Theorem §]

Suppose that the estimator satisfies the axioms of adaptivity (A1), (A2), (A3"), and suppose
that quasi-orthogonality (A4) holds. Suppose that the parameters 0 and A are chosen such

(012 + 2/2%)?
(1-a/2%)

< =(1+C2,C2) "

stab

1-
0<Ad<A*= min{l, Gotr Cs_talb
qctr

} and 0<

Then, Algorithm 4B guarantees for all s > 0 that

S
coplla*llay < sup (" #T) HE < Cop max{lla* o, HY).
({,k)EQ ([,,k/)EQ

[, K" |<|€,k|

The constant cop > 0 depends only on Cgy, the use of NVB refinement, and s, while Cope > 0
depends only on Cp, qred> Carels Clins @tins #70, A, Gews 0, 5, and the use of NVB refinement. O

Remark 4.14. Considering the nonsymmetric model problem (4.10), a natural candidate for the
solver is the generalized minimal residual method (GMRES) with optimal preconditioner for the
symmetric part. Another alternative would be to consider an optimal preconditioner for the symmetric
part and apply a conjugate gradient method to the normal equations (CGNR). However, for both
approaches, a posteriori error estimation and contraction in the PDE-related energy norm are
still open. Instead, [BHI* 23] follows the constructive proof of the Lax—Milgram lemma to derive
a contractive solver. Its convergence analysis, as given in [BHI23], is improved in the following
Section 4.5.

4.5 AFEM with nested contractive solvers

While contractive solvers for SPD systems are well-understood in the literature, the recent
work [BHI"23] presents contractive solvers for the nonsymmetric variational formulation (4.14)
that essentially fit into the framework of Section 4.4 and allow for the numerical analysis of
AFEM with optimal complexity. To this end, the proof of the Lax—Milgram lemma as proposed by
Zarantonello [Zar60] is exploited algorithmically (while the original proof [LM54] relies on the Hahn—
Banach separation theorem): For § > 0, we consider the Zarantonello mapping @ (6;-): Xy — X
defined by

a((DH(é;uH),vH) :a(uH,vH)+(5[F(vH)—b(uH,vH)] for all Ug,VH EXH. (446)

Since a(-, -) is a scalar product, ® (5; up) € Xp is well-defined. Moreover, for any 0 < ¢ < 2a//L?
and 0 < ggym = [1 — 6(2a — 6L?)]*/? < 1, this mapping is contractive, i.e.,

gy = @r (55 ur)ll < Gsym llugy — upll forallup € X (4.47)

see also [HW20b; HW20a]. Note that (4.46) corresponds to a linear SPD system. For this, we
employ a uniformly contractive algebraic solver with iteration function LI’lrj[(ui,; ): Xg — Xg to

approximate the solution ”i] = Dy (5;uy) to the SPD system (4.46), i.e.,

lufy = Prr (el win) | < gee iy = warll - for all wyy € Xpg and all 75 € T, (4.48)
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4.5 AFEM with nested contractive solvers

where 0 < ¢¢r < 1 depends only on a(-,-), but is independent of Xp. Clearly, no knowledge
of ”?q is needed to compute ‘I’H(uﬁH; wpr) but only that of the corresponding right-hand side

a(ui[, ) Xg — R;see, e.g., [CNX12; WZ17; IMPS24].

Algorithm 4C: AFEM with nested contractive solvers

Given an initial mesh 75, the Zarantonello parameter 6 > 0, adaptivity parameters 0 < 6 <1

. ... 0,j
and Cyark > 1, solver-stopping parameters Agym, daig > 0, and an initial guess ug 0= =u, - € Xo,

iterate the following steps (i)—(iv) forall £ =0,1,2,3,...:

(i) Solve & estimate: Forall k = 1,2, 3, ..., repeat the following steps (a)—(c) until

kj o k-1,j k.j
Mee, = =, =l < Asymme(u, ™). (4.49)

ko . Kk-Lj - Kk k=1.j
(a) Defineu,” =u, and, only as a theoretical quantity, u,”™ = ®¢(5;u, ~).

(b) Inner solver loop: Forall j =1,2,3,..., repeat the steps (I)—(1I) until

kj k-1 k,j kj  k-Lj
”lug I - u, ! ”l < /lalg [/lsymnf(”[ j) + ”ll/t[ T - U, ”l] . (4.50)
@ Compute one step of the contractive SPD solver u =Y (uk *u ];J 1),
where u = Oy (0; u ’ *) € X is only a theoretical quantity.

(II) Compute the refinement indicators (T, ulg’j )forall T € 7.

(¢) Upon termination of the inner solver loop, define the index j [£,k] =) e N.

(ii) Upon termination of the outer solver loop, define the index k[¢] := k € N.
(iii) Mark: Determine a set M, € M,[6, u ] satisfying (4.17) with u7 replaced by u

(iv) Refine: Generate 77,1 = refine(7z, M) and define u® p +1 =u 51:1 =u

Extending the index notation from Section 4.4, we define the triple index set
Q = {(¢,k, j) € N3 : ub/ is used in Algorithm 4C}
together with the lexicographic ordering

(0. k.,j) < (L,k,j) = u"7 isdefined not later than u /in Algorithm 4C

f!
and the total step counter

[k, jl =#{(' k', j)eQ : (£'k',j) < (L k,j)} eNy for (¢, k,j) € Q. 4.51)

Moreover, we define the stopping indices
{=sup{€ eNy : (£0,0) € Q} € NgU {oo}, (4.52a)
k[€] =sup{k e Ng : ({,k,0) € Q} € NU {0}, whenever (£,0,0) € Q, (4.52b)
JIt k] =sup{j € Ng : ((,k,j) € Q} € NU{oo}, whenever (£,k,0) € Q. (4.52¢)
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4 Adaptive FEM with quasi-optimal computational cost

First, these definitions are consistent with those of Algorithm 4C(i.a.Il) and Algorithm 4C(ii).
Second, there holds indeed j[¢, k] < oo for all (£, k,0) € Q; see [BHI*23, Lemma 3.2]. Third,
{ < oo yields k[£] = oo and 772(142,‘) = 0 with u} = u*; see [BHI"23, Lemma 5.2].

The following theorem improves [BHI*23, Theorem 4.1] in the sense that, first, we prove R-linear
convergence for all £ > ¢y = 0, while £y € N is unknown in practice and depends on «* and the
non-accessible sequence (u?)geNo in [BHI"23], and, second, [BHI*23] requires severe restrictions
on Ay beyond (4.53) below. We note that (4.53) is indeed satisfied, if the algebraic system is solved
exactly, i.e., A5¢ = 0, so that Theorem 4.15 is a consistent generalization of Theorem 4.7.

Theorem 4.15: full R-linear convergence of Algorithm 4C

Let0 < 6 < 1, Ciark > 1, Agym, g > 0, and uy® € Xo. With g = [1 - (1 - ¢2,)8]"/%,
suppose that

2 getr
qsym + 1= o /lalg _ 1- 1- 1-
0< Gy <1 and dugdygm < (1~ o)1 = Gym) (1 = G0) * , 3,
1- 1_6{:: alg 8 getrCstab
Then, Algorithm 4C guarantees R-linear convergence of the quasi-error
k.j k.j k, k.j k. j
Hol = g — g I+ g™ = I+ e (ug ), (4.54)

i.e., there exist constants 0 < qin < 1 and Cyi > 0 such that

HYT < Claq &I VRTTHET forall (2,1, ), (€&, j) € Q with |€,K', '] < 1€, k, j.
(4.55)

As proven for Corollary 4.11 in Section 4.4, an immediate consequence of full linear convergence
(and the geometric series) is that convergence rates with respect to the number of degrees of freedom
and with respect to the overall computational cost coincide.

Corollary 4.16 (rates = complexity). For s > 0, full R-linear convergence (4.55) yields

M(s)= sup (#7T¢)° H,];’j < sup Z Z #72//) H];’j

(L.k,j)eQ (LkDEQT (k77 eQ (" k", j")eQ (4.56)
|f',k',j'|§|f,k,j| |€”,k”,j”|§‘€’,k’,j’| .

< Ceost(5) M (s),

where the constant Ceos(s) > 0 depends only on Cin, qiin, and s. Moreover, there exists so > 0
such that M(s) < oo forall 0 < s < sq. m|

The proof of Theorem 4.15 requires the following lemma (essentially taken from [BHI*23]). It

. . . . . . k.j
deduces the contraction of the inexact Zarantonello iteration with computed iterates u, = ~ uif * from
the exact Zarantonello iteration. For the inexact iteration, the linear SPD system (4.46) is solved

. . . . k-1,j . o
with the contractive algebraic solver (4.48), i.e., u’g’* = ®r(6;u, ~)and ulg’J = LI‘g(ultf’*, ulg’J 1)

guarantee

k-1,j .
Mk = SN < goym s =, Il forall (£, &, j) € Q with k > 1. (4.57)
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4.5 AFEM with nested contractive solvers

We emphasize that contraction is only guaranteed for 0 < k£ < k[£] in (4.58) below, while the final
iteration k = k[¢] leads to a perturbed contraction (4.59) thus requiring additional treatment in the
later analysis. The proof of Lemma 4.17 is given in Appendix 4.A.

Lemma 4.17 (contraction of inexact Zarantonello iteration). Under the assumptions of Theo-
rem 4.15, the inexact Zarantonello iteration used in Algorithm 4C satisfies

k,j _ k-1,j .
leey = 1, 2 < Gogen Mt =26, M for all (£,k, j) € Q with 1 < k < k[(] (4.58)

as well as

kaj E_Lj 2 q k’] .
My =1, M < Goym lluf =y, + —— Aagdaym ne(u, %) forall (€,k, j) € Q. (4.59)

1- qctr ‘

The building blocks of the proof of Theorem 4.15 are the following: First, we show that a suitably
weighted quasi-error involving the final iterates of the inexact Zarantonello iteration is tail-summable
in the mesh level index £. Second, we show that the quasi-errors are tail-summable in the Zarantonello
index k and, third, in the algebraic solver index j and are stable in the nested iteration. Finally,
combining these ideas leads to tail-summability with respect to the total step counter.

Proof of Theorem 4.15. The proof is split into six steps. The first four steps follow the proof of
Theorem 4.7 using

k,j k,j
HE = lluf —u, "l +me(u, ) forall (£, k, j) € Q. (4.60)

By contraction of the algebraic solver (4.48) as well as the stopping criteria for the algebraic
solver (4.50) and for the symmetrization (4.49), it holds that

k% koo (448 k,j k,j-1 . (430) k,j k,j k=1,j (449 k.j k
Moy —u, 7l < Muy = —u,™ W S neu, ™) +lllu, = —u, Nl < neu,~) < Hg.
In particular, this proves equivalence
HE < HE 4 b = L < HE forall (64, )) €@ (4.61)
¢ S Myl —u, i =H, =5 My Ly . :

Step 1 (auxiliary estimates & estimator reduction). For (£, k,j) € Q, nested iteration

k-1,j ,
uf’o =u, L and 1[5, k] > 1 yield

kx kjo @48 Gkl kx k0 kx  k-1,j
Nu,” —w, "N < qoe — Mu, —u M < Gewlllu, —u, =l (4.62)
From this, we obtain that
k.j k% k% k,j
Moy =, 7N < My —w, "M+ Mu,™ =,
(4.62) ko k—1,j
< (1 + qew) Mlup = uy”" Ml + gew My — 1w, I (4.63)
(4.57 k-1,j k-1,j
<11+ Ger)gaym + o] Mt — s 201 < 3t — 2,
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4 Adaptive FEM with quasi-optimal computational cost

For (¢ + 1,k,j) € Q, contraction of the inexact Zarantonello iteration (4.58), nested iteration
0,j B

.
w, =, " and k[£ +1] > 1, show that

-1,j (4 58) ) k[0+1]-1 0,j k.j
Mety,q =ty 7l < Gogm ety yq =, M < Meay,y =, (4.64)

The combination of the previous two displayed formulas shows

k,j k—l,j 4.64) k.j
ek, — w0 S Bl a0 S Bl — a0 (465)
Analogous arguments to (4.36) in the proof of Theorem 4.4 establish

(4.36) k,j k,j  (4.65) k,j * k,j
77€+1(Mg+1) < 4o né’(u[ ) + Cstab |||M€+1 u, o= q0 77[(”5 7) +4Cyab |||I/t€+1 —U, - (4.66)

Step 2 (tail summability with respect to £). With A := A, g Asym, we define

1- 2 A A @33 (1- 1-
_ qo( QS}’m)’ Cly, ) =14 —dew qctr 2 and =2 (< ( Geir) ( qg)‘
4 Cyap I—=qew y Y 2qcuqo
By definition, it follows that
C(y,)=1+—"F 2der_ 1y = 1/qq.
1 — {cur

This ensures that

Cstab

4
qoC(y,2) <1 aswellas ggym +4 CsanC (¥, 1) ¥ < Gsym + =1. (4.67)

With contraction of the inexact Zarantonello iteration (4.59), Step 1 proves

k,j k,j 459 k-1,j k,j
I”u;+1 - ug.ﬁl” +y 77€+1(”g+71) < Gsym |||”Z+1 —Upq M+ Cys D)y new (ug_fl)
(4.64) k’j k,j
< Gsym ”l”{q.l u, M+Cly, D)y U£+1(”g+3)

(4. 66) k,j k,j
(‘Isym +4 Cyap C(y, 1) 7) ”lu[+1 7”' +q9C(y, )y 775(”[ )

< qeur M7,y - u}’*lll + 7’7((”}”)] forall (¢+1,k, /) € Q,

(4.68)

where (4.67) ensures the bound
0 < gerr = max{gsym + 4 Csar C(y, ) ¥y, g0 C(y, 1)} < 1. (4.69)

Altogether, we obtain
k,j (4.68)

k,j k,j
ae+1 = ”luz.l ug_,_ll” + 777€+1(ug+1) qctr [l”uz — U, Il + 7775(”5 7)] tqce ”luz,l - u;l”
gewae+be forall (€,k,j) € Q,

I/\
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4.5 AFEM with nested contractive solvers

k.j . .
which corresponds to (4.37) in the case of a single contractive solver (with u, . replacing u? in (4.37)).

ki
Together with (4.38)—(4.39) (with ugi replacing u?), the assumptions (4.21) of Lemma 4.6 are
satisfied. Therefore, Lemma 4.6 proves tail summability

N k (4.60) N k,j k,j
SUHE TN [l -+ v e ()
'=0+1 '=0+1

(4.60)

< lluy - u ) +7W(ug > H* for all (£,k, j) € Q.
Step 3 (auxiliary estimates). First, we employ (4.63) to deduce

k( -1,j

s k_lxi A J : -1 kv]
H; ”lu[ —M |||+|||u —up MHneCu, 7)< Hp o+ 20w, —u, “470)

63 _ k-1,j -
HT sl - < oM forall (ke @

Second, for 0 < k < k’ < k[¢], the failure of the stopping criterion for the inexact Zarantonello
symmetrization (4.49) and contraction (4.58) prove that

@ K Ko K-l (458 K-1,j  (4.58) k.j
H v v v v Kk i
||I uy —u, M+, ==, < Muy —u, NS Gogm My —u, 7l (4.71)

Moreover, for k < k” = k[{], we combine (4.70) with (4.71) to get

kK @470 kre1-1 4T _(k[£]-1)-k ' _k[€]-k k,j
n hS Hz < 9sym ”l Up — U, ”l qsym |||u;—”g 7”' 4.72)

The combination of (4.71)—(4.72) proves that
HE < qdm” ey - ut, i< Gom HE forall (£,0,0) € Qwith0 <k <k <k[l], (4.73)

where the hidden constant depends only on Cytap, Asym, and Esym. Third, we recall

23) (AD) k,j k,
Mt = w5 meot (i) s mema () + kg —u, = HE

. . . E’j O’j . .
Together with nested iteration u, ; = u, ~, this yields that

k.j k.j k k
HY = flluf - u, M +me(u, ) < lup —uf_l+H, , < H, , forall (£,0,0)€Q. (4.74)

Step 4 (tail summability with respect to £ and k). The auxiliary estimates from Step 3 and the
geometric series prove that

B T4 Y A 14 o ¢
HE = >0 HE+ 37 YTHE < ZHS,
(k. j)eQ k'=k+1 £'=t+1 k'=0 =t+
| 1> 16K (4.75)
@14 St k x (473)
S HE+ ) Hp s HE+Hp < HE forall (6, ) € Q.
=t
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4 Adaptive FEM with quasi-optimal computational cost

k.j ..
Step 5 (auxiliary estimates). Recall HK <H, ! from (4.61). For j = 0 and k = 0, the definition

0,j k-1
ugo =u, —u[*leadsto H00 H0 Fork > 1, nestedlteratlonu;fozu[

the Zarantonello iteration (4. 57) 1mply

.J
= and contraction of

k=1,j  (4.57) k-1,j _
Moey* = Ol < Meek = s ™M+ Mk =, 2N < (Goym + D M} —u, 7l < 2HE
Therefore, we derive that
HEC < 3HIDr forall (6,k,0) € Q,  where (k — 1), = max{0, k — 1}. (4.76)

Forany 0 < j < j* < j[{, k], the contraction of the Zarantonello iteration (4.57), the contraction of
the algebraic solver (4.48), and the failure of the stopping criterion for the algebraic solver (4.50)
prove

k,_./ k, k,* k,_./ k, -/
He?to < g —ug ™M+ 20y ™ =g+ e ()

1
(457) k, k—l,j k k, ) k, )
< lu, —ug T+ Moty ™ = w W+ e (g )
(4.48) k-1,j k.’ k - k
B e | R [ 0+ ne(u, 7
(. 50) Ko 1,448 g ki —1,(448) ko k. k
Sl -l s inu TS T W~ s gl
For j* = j[¢, k], it follows that
k,j (AD -k, j-1 k,j k,j—-1 (448) k,j-1 i k,j-1 (454) K, j-1 JIEKI=J | ki
H£z7 < Hfi +|”Mfi_u[7 ||isi—|57 +|||u{,’*—u[* ”1S2H57 Sqar ng'
The combination of the previous two displayed formulas results in
Hy' < gl 7 Hp forall (6,k,0) €@ with 0<j <) < j[6kl 4.77)
where the hidden constant depends only on gsym, Asyms Gctr» Aalg> and Cggap.
Step 6 (tail summability with respect to ¢, k, and j). Finally, we observe that
k[e] Jl6.K'] ¢ k[ I K]
He. ZH’”+Z ZH’”+ZZ 2 M
'K,j)eq J'=j+1 k'=k+1 j’'= =(+1 k’= j'=0
|€,’k,’j,|>|€’k7.l|
(4 77) ki £ . 76)
K0 K0 J K
T HEY Y Z He/+ > HE
k'=k+1 '=(+1 (f’,k’,l)ea
NSRS
(4.75) X I N RC I _
< H, Hy < H[J+H{,* < Hfj for all (¢,k,j) € Q.
Since Q is countable and linearly ordered, Lemma 4.10 concludes the proof of (4.55). O

The final theorem, following from [BIM*24b, Theorem 4.3], states that for sufficiently small
adaptivity parameters 6, Asym, and A,g, Algorithm 4C achieves optimal complexity.
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4.6 Application to strongly monotone nonlinear PDEs

Theorem 4.18: Optimal complexity of Algorithm 4C, [BIM*24b, Theorem 4.3]

Suppose that the estimator satisfies the axioms of adaptivity (A1)—(A3%) and suppose quasi-
orthogonality (A4) holds. Suppose full R-linear convergence from Theorem 4.15. Define the
constants 6%, A3, by

— 2 2 -1
0" = (1 + Cstab Cdrel) ’
/l* . . -1 -1 . o 1 2 qctr *
sym " mln{l’ Cstab Calg} with Calg '_ /lalg + qsym -
1- gsym 1= geu

Suppose that the constants 0, dsym, and Ay are sufficiently small in the sense that, additionally
to (4.53), there holds

(02 + Ay /A%0)

0 < dsym < ALy and 0 < Symz <6* <1
(1 - Asym//l:ym)
Then, Algorithm 4C guarantees for all s > 0
S k, . ,
Coptllt™|la, < sup Z #72/) H, I < Copt max{||u*||a,, Hg 0}.

(f,k,j}GQ (f’,k’,j,)EQ
1€k, <16,k j]

The constant copy > 0 depends only on Cyay, the use of NVB refinement, and s, while Cop > 0
depends only on Cgap, Greds Carel, Clins qtin, #70, Asym’ qsym, Aalg’ qew 0, s, and the use of NVB
refinement. O

4.6 Application to strongly monotone nonlinear PDEs

In the previous sections, the particular focus was on general second-order linear elliptic PDEs (4.10).
However, the results also apply to nonlinear PDEs with strongly monotone and Lipschitz-continuous
nonlinearity as considered, e.g., in [GMZ11; GMZ12; CW17; GHPS18; HW20b; HW20a; GHPS21;
HPSV21; HPW21; HW22; HMRV23; MV23] to mention only some recent works.

Given a nonlinearity A : R? — R9, we consider the nonlinear elliptic PDE

—div (A(Vu*)) = f —divfinQ subjectto u* =0 ondQ. 4.78)

We define the nonlinear operator A : Hé (Q) - H Q) = Hé ()" via Au = (A(Vu), V() r2(0)
where we suppose that the L%(Q) scalar product on the right-hand side is well-defined. Then, the
weak formulation of (4.78) reads

(Au* , v) =F(v) =(f, V)2 + (f, VW)2(q forallve HJ(Q), (4.79)
where (-, -) on the left-hand side denotes the duality brackets on H™*(Q) X Hj ().
Let a(-,-) be an equivalent scalar product on Hé () with induced norm ||| - |||. Suppose that

A is strongly monotone and Lipschitz continuous, i.e., there exist 0 < @ < L such that, for all
u,v,w € H(l)(Q),

alllu—v|I> < (Au—-Av, u—-v) and (Au—Av, w) < L|lu—-v||lIwll (4.80)
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4 Adaptive FEM with quasi-optimal computational cost

Under these assumptions, the Zarantonello theorem [Zar60] (or main theorem on strongly monotone
operators [Zei90b, Section 25.4]) yields existence and uniqueness of the solution u* € Hé(Q)
to (4.79). For Ty € T and Xy C Hé (Q) from (4.13), it also applies to the discrete setting and yields
existence and uniqueness of the discrete solution u}, € Xy to

(Auly, vi) = F(vy) forallvy € Xg, (4.81)

which is quasi-optimal in the sense of the Céa lemma (4.15).
As already discussed in Section 4.5, the proof of the Zarantonello theorem relies on the Banach
fixed-point theorem: For 0 < § < 2a//L?, define ®y(5;-): Xy — Xy via

a(®y(6;up),vy) =a(ug,vy) +6[F(VH) —{(A(ug) , vH)] forallug, vy € Xg. (4.82)

Since a(-, ) is a scalar product, @y (5; up) € Xy is well-defined. Moreover, for 0 < § < 2a//L?
and 0 < ggym = [1 — 6(2a — 6L2)]*/? < 1, this mapping is a contraction, i.e.,

gy = @r (85 ur)ll < Gsym llugy — unll forallup € X (4.83)

see also [HW20b; HW20a]. Analogously to Section 4.5, the variational formulation (4.82) leads to a
linear SPD system for which we employ a uniformly contractive solver (4.48). Overall, we note that
for the nonlinear PDE (4.78), the natural AFEM loop consists of

* discretization via a conforming triangulation 77 (leading to the non-computable solution u} to
the discrete nonlinear system (4.81)),

k-1,j
e iterative linearization (giving rise to the solution ulg’* = ®y(0;u, i) of the large-scale
k-1,j
discrete SPD system (4.82) obtained by linearizing (4.81) in u ¢ i),

R . . . . k.j o kox
and an algebraic solver (leading to computable approximations u,™ ~ u,™).

Thus, the natural AFEM algorithm takes the form of Algorithm 4C in Section 4.5.

So far, the only work analyzing convergence of such a full adaptive loop for the numerical
solution of (4.78) is [HPSV21], which uses the Zarantonello approach (4.82) for linearization and a
preconditioned CG method with optimal additive Schwarz preconditioner for solving the arising SPD
systems. Importantly and contrary to the present work, the adaptivity parameters 6, Asym, and Ay
in [HPSV21] must be sufficiently small to guarantee full linear convergence and optimal complexity,
while even plain convergence for arbitrary 6, Asym, and Ay, is left open. Instead, the present work
proves full R-linear convergence at least for arbitrary 6 and Ay, and the milder constraint (4.53) on
Aalg-

To apply the analysis from Section 4.5, it only remains to check the validity of Proposition 4.1
and Proposition 4.2. The following result provides the analogue of Proposition 4.1 for scalar
nonlinearities. Note that, first, the same assumptions are made in [HPSV21] and, second, only the
proof of stability (A1) (going back to [GMZ12]) is restricted to scalar nonlinearities and lowest-order
discretizations, i.e., p = 1 in (4.13).
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4.6 Application to strongly monotone nonlinear PDEs

Proposition 4.19 (see, e.g., [GMZ12, Section 3.2] or [CFPP14, Section 10.1]). Suppose that
A(Vu) = a(|Vu|?)Vu, where a € C'(Rsg) satisfies

a(t—s) < a(t®t—a(s®)s < g (t—s) forallt > s > 0. (4.84)

Then, there holds (4.80) for ||[V|l| := V|| 12 (q) and the standard residual error estimator (4.16) for
lowest-order elements p = 1 (with AVvy understood as A(Vvy) and b = 0 = ¢) satisfies stabil-
ity (A1), reduction (A2), reliability (A3), discrete reliability (A3"), and quasi-monotonicity (QM)
from Proposition 4. 1. m|

Under the same assumptions as in Proposition 4.19, quasi-orthogonality (A4) is satisfied. For the
convenience of the reader, we include a sketch of the proof.

Proposition 4.20. Under the assumptions of Proposition 4.19 and for any sequence of nested
finite-dimensional subspaces X¢ C Xpy1 C Hé (Q), the corresponding Galerkin solutions u; e Xy
to (4.81) satisfy quasi-orthogonality (A4) with § = 1 and Coin, = L/, i.e.,

= L
Dty —up i < —lla* ~ uell® for all € € N, (4.85)
=t

Sketch of proof. One can prove that the energy

1 Vv (x)
E(v) = 3 // a(t)dtdx — F(v) forallv e Hé(Q)
QJo

is Gateaux-differentiable with dE(v) = Av — F. Then, elementary calculus (see, e.g., [GHPSI8,
Lemma 5.1] or [HW20a, Lemma 2]) yields the equivalence

L
% ek, —vall* < E(va)—E(u}) < 5 s, —vell?* forall 75 € Tand all vy € Xy, (4.86)
In particular, we see that u7, is the unique minimizer to

E(uy) = Hg{r\,l E(vg), (4.87)
VH H

and (4.86)—(4.87) also hold for u* and H}(Q) replacing u}, and Xy, respectively.
From this and the telescopic sum, we infer that

(+N (+N

a (4.86)
3 2 M —ufP < ) [Ep) ~ EGpg)] = Ef) = E@ )
=t =t
4.8 6) L

87) “s8
< E(u;)-Ew") < 5 l* — uf||*  forall £, N € Ny.

Since the right-hand side is independent of N, we conclude the proof for N — oo. m|

Thus, full R-linear convergence from Theorem 4.15 and optimal complexity from Theorem 4.18
apply also to the nonlinear PDE (4.78) under the assumptions on the nonlinearity from Proposition4.19.
Unlike [HPSV21], we can guarantee full R-linear convergence (4.55) for arbitrary 6, arbitrary Agym,
and a weaker constraint (4.53) on Ay. As in [HPSV21, Theorem 5], optimal complexity follows if
the adaptivity parameters are sufficiently small.
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4 Adaptive FEM with quasi-optimal computational cost

Remark 4.21. The cost-optimal numerical solution of nonlinear PDEs is widely open beyond the
case of strongly monotone and Lipschitz continuous nonlinearities considered here. We stress that
this problem class even excludes the p-Laplacian, for which linear convergence [ DK0OS8] and optimal
convergence rates [BDKI2] are known under the constraint of the exact solution of the arising
nonlinear discrete systems. Convergent linearization strategies for the p-Laplacian are the topic of
recent research [DFTW20; BDS23; Hei23]. However, optimal complexity appears to be still out of
reach. Nevertheless, the present work could outline potential strategies also in this respect.

4.7 Numerical experiment

The following numerical experiment employs the MATLAB software package MooAFEM from [IP23].!
On the L-shaped domain Q = (-1,1)2\ [0,1) x [=1, 0), we consider

~Au*+b-Vu*+u*=1inQ and u*=00ndQ with b(x)=x; (4.88)

see Figure 4.1 for the geometry and some adaptively generated meshes.

Figure 4.1: Illustration of the initial triangulation 7y and the sequence of adaptively generated
meshes 7, . . ., 74 for the experiment (4.88).

Optimality of Algorithm 4C with respect to large solver-stopping parameters Asym and Ay5. We
choose 6 = 0.5, 8 = 0.3, and the polynomial degree p = 2. Figure 4.2 presents the convergence
rates for fixed Ay, = 0.7 and several symmetrization parameters Ag, € {0.1,0.3,0.5,0.7,0.9}.
We observe that Algorithm 4C obtains the optimal convergence rate —1 with respect to the
number of degrees of freedom and the cumulative computational time for any selection of Agyp,.
Moreover, the same holds true for fixed Agy,m = 0.7 and any choice of the algebraic solver
parameter Ay, € {0.1,0.3,0.5,0.7,0.9} as depicted in Figure 4.3. Table 4.1 illustrates the weighted
cumulative computational time of Algorithm 4C and shows that a smaller marking parameter 6 = 0.3
in combination with larger solver-stopping parameters Asym and Ay is favorable. Furthermore,
Figure 4.5 shows that Algorithm 4C guarantees optimal convergence rates —p /2 for several polynomial
degrees p with fixed 6 = 0.5, marking parameter 6 = 0.3, and moderate Asym = Adag = 0.7.

Optimality of Algorithm 4C with respect to large marking parameter 6. We choose the polynomial
degree p = 2, 6 = 0.5, and solver-stopping parameters Adag = Asym = 0.7. Figure 4.4 shows that
also for moderate marking parameters 6, Algorithm 4C guarantees optimal convergence rates with
respect to the number of degrees of freedom and the cumulative computational time. Moreover, we
observe that a very small as well as a large choice of 8 lead to a worse performance.

IThe experiments accompanying this paper will be provided under https: //www.tuwien.at/mg/asc/praetorius/
software/mooafem.
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4.A Proofs of Lemma 4.6, Lemma 4.10, and Lemma 4.17

1074 6=0.1 6=0.3 6=05

Aom 01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Aalg

0.1 645 646 (547 556 548 271 207 203 (203 (203 255 (205 (205 209 206
0.3 638 562 550 547 551 240 202 193 192 (191 218 (209 212 215 218
0.5 564 565 557 551 552 216 191 191 183 (177 192 183 [17.7 178 [11.7
0.7 56.6 559 556 557 (544 210 192 187 (177 179 175 181 186 180 17.6
0.9 574 553 553 (552 (552 211 193 185 [17.8 (178 (175 17.8 185 181 179

6=0.7 0=0.8 6=0.9
0.1 362 334 258 (257 258 458 431 361 [313 313 635 68.6 608 44.6 442
0.3 274 280 295 302 309 (343 37.1 367 404 432 (484 547 535 561 697
0.5 238 215 (210 215 231 342 274 259 (258 296 47.1 (359 419 446 464
0.7 230 21,0 217 221 233 289 [259 270 31.0 300 400 363 407 456 498
0.9 229 [21.0 218 221 230 288 (263 270 31.0 298 407 (364 40.6 455 49.8

Table 4.1: Optimal selection of parameters with respect to the computational costs for experi-
ment (4.88) with p = 2 and 6 = 0.5. For the comparison, we consider the weighted

k, . . . .
cumulative time [ng(uz l) 2K < 16K | t1me(€’)] (values in 10~%) with stopping
k.j . I
criterion ng(ug i) < 5-107° for various choices of Asyms Aalg, and 6. In each #-block, we
mark in yellow the best choice per column, in blue the best choice per row, and in green

when both choices coincide. The best choices for A, and Agyy are observed for 6 = 0.3
and 6 = 0.5.

4.A Proofs of Lemma 4.6, Lemma 4.10, and Lemma 4.17

Proof of Lemma 4.6. The proof is split into four steps.
Step 1. We consider the perturbed contraction of (a¢)sen, from (4.21). By induction on n, we
see with the empty sum understood (as usual) as zero that

n
aren < q"ag+ ) 4" bpsj1 forall £,n € Ny,
j=1

From this and the geometric series, we infer that

n
. c
Aean < q"ac + Cl(an_J)ag < (q" + )af = Cya; forall ,neNy.  (4.89)

j=1 B

Step 2. Next, we note that the perturbed contraction of (as)sen, from (4.21) and the Young
inequality with sufficiently small & > 0 ensure

2 g 2D, “1y 2
O<k=(1+e)g"<1 and a,, < ka,+(1+& )b, foralll e Ny.
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4 Adaptive FEM with quasi-optimal computational cost
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Figure 4.2: Convergence history plot of the error estimator with respect to the number of degrees
of freedom (left) and the computational time (right) for experiment (4.88) with p = 2
and ¢ = 0.5 for several symmetrization parameters Agyr, € {0.1,0.3,0.5,0.7,0.9} and
fixed algebraic solver parameter A, = 0.7 and marking parameter 6 = 0.3.

This and the summability of (b¢)sen, from (4.21) guarantee

(+N (+N -1 {+N -1

“.21)

2 _ 2 2 -1 1-6 2

E ay = E ap, < K E ap+(1+& " )CoN "% ay.
0=t+1 =t o=t

Rearranging the estimate, we arrive at

{+N
2
ap < 1+

k+(1+e )CyNI—2
1-«

a? = Dya? forall{,N € Ny, (4.90)
=t

where we note that 1 < Dy ~ N'7¢ as N — co. In the following, we prove that this already
guarantees that (4.90) holds with an N-independent constant (instead of the constant D ; growing
with N); see also Lemma 4.10.

Step 3. We show by mathematical induction on 7 that (4.90) implies

n +n
a2, < (]_[(1 - D;l)) >a}, forall £,n €Ny (4.91)
J=1 '=¢

Note that (4.91) holds for all £ € Ny and n = 0 (with the empty product interpreted as 1). Hence, we
may suppose that (4.91) holds for all £ € Ny and up to n € Ng. Then,

@91y (¢+1)+n n C+(n+1)
2 j -1 2 -1 2 2
Apy(ne1) :a(“l)ms)( (1—DJ. )) Z a[,:(l_[(l—Dj ))( Z a[,—a[)
j=1 £'=0+1 j=1 =C
(4.90) n £+(n+l) {+(n+1) n+l £+(n+l)
< (ﬂu - D]_-l)) ( > od-ply ) ag,) = (]—[(1 - D]_-l)) >}
jzl =t '=C j:l 0'=¢
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4.A Proofs of Lemma 4.6, Lemma 4.10, and Lemma 4.17
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Figure 4.3: Convergence history plot of the error estimator with respect to the number of degrees
of freedom (left) and the computational time (right) for experiment (4.88) with p = 2
and ¢ = 0.5 for several algebraic solver parameters A,j, € {0.1,0.3,0.5,0.7,0.9} and
fixed symmetrization parameter Ay, = 0.7 and marking parameter 6 = 0.3.

This concludes the proof of (4.91).
Step 4. From (4.90)—(4.91), we infer that

n
a2, < (]—[(1 - D;l))D,, a? forall £,n €N. (4.92)
j=1
Note that
n n
M, = log [(]—[(1 -~ D;l))Dn] = Z log(1-D7") +log D,.
j=1 j=1
With 1 —x < exp(—x) forall 0 < x < 1, it follows for x = D]‘.1 that
SR
M, <logD, ZD1~(1—6)logn— 1—_5L —00,
j=1 =
since logn < ;‘:1 (1/j). Fix ng € N such that M,,, < 0. It follows from (4.92) that

agﬂ.no < qf) a? forall ¢,i € Ny, where 0 < go :=exp(My,) < 1. (4.93)

Let ¢ € Ny. For general n € Ny, choose i, j € N with j < ng such that n = ing + j. With (4.93) and
quasi-monotonicity (4.89) of as, we derive

(4.93) (4.89)
2 _ 2 2 —j/no _n/n 2 1/n
Qon = Al jyaing < 4047 < Ciapa=C3ay’"™qp " ai < (C3/qo) (q,/™)"a;

1/no

This completes the proof of (4.22) with Cy, := C3/qo > 0and 0 < gy = g™ < 1. o
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4 Adaptive FEM with quasi-optimal computational cost

H
S
L

)
—
o

b

k.j
14
= =
s S
IS Y

estimator 7, (u

._.
9
ot

1076

TTTT

T T

treee

T

S|

T T T

LI 1 S R B MR

6=0.1
0=0.3
0=0.5
6=0.7
0=0.9

Lol

Ll

T T A A W V1T I W

Ll

vl el el

Ll

il

10?

10* 10t 10°  10°
number of degrees of freedom

107

)

._.
S
V)

k,j
4

estimator ng(u

107t

T T TTTTT

LU L 1111 B 31 N B R 1L R R

T T TTTm

Bl vl

T T TTTTT

T T T T T T TTTTT

0
0
6

vl

vl v

T T TTTTTT

=0.1

=0.3
=0.5

Ll

L

Ll

il

1071

100 10t 107
computational time [s]

103

Figure 4.4: Convergence history plot of the error estimator with respect to the number of degrees of
freedom (left) and the computational time (right) for experiment (4.88) with p = 2 and
6 = 0.5 for several Dorfler marking parameters 6 € {0.1,0.3,0.5,0.7,0.9} and fixed
solver-stopping parameters Ay = Adag = 0.7.
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Figure 4.5: Convergence history plot of the error estimator with respect to the number of degrees
of freedom (left) and with respect to the overall computational time (right) for experi-
ment (4.88) with 6 = 0.5 for several polynomial degrees p = 1, 2, 3, 4, and fixed marking
parameter 6 = 0.3 and solver-stopping parameters Asym = Aag = 0.7.
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4.A Proofs of Lemma 4.6, Lemma 4.10, and Lemma 4.17

Proof of Lemma 4.10. First, observe that (as)cen, is R-linearly convergent in the sense of (ii) if

and only if (a;”)geNO is R-linearly convergent in the sense of (ii) with Cy;, replaced by Cj' and giin
replaced by gi' . Therefore, we may restrict to m = 1.
The implication (ii) = (i) follows from the geometric series, i.e.,
= (ii) T C
ap s Car Y q"C=—Lq, forall £eN.
l-¢q

r'=t+1 '=t+1

Conversely, (i) yields that
(Cl—l +1) Z ap < ap+ Z ap = Z ap forall £ € Ny.
£'=t+1 '=t+1 =t

Inductively, this leads to

i (i) (i) 1+C4

Aesn < ap < ap < ————ay forall {,n € Ny.
" {,,:ZM (c;l+1n 1)n Z (C7t+1)n

This proves (i) with Cjip == 1+ C; and gjin = (C; 1+ 1)1 o

Proof of Lemma 4.17. Let (¢, k, j) € Q with k > 1. Contraction of the Zarantonello iteration (4.46)
proves
k,j k,j (446 k=1,j X k,j
Moek =, =< Moy = W+ ™ =<0 < Gogm ey =, =+ ™ =, )
From the termination criterion of the algebraic solver (4.50), we see that

qctr k j—l 430 Gew k,j k,j k-1,j
”l g - B ”l < 1 q /lalg [/lsymnt’(ug 7) + ”lug T U, 7”'] .
“ Yetr

k, k.j
g™ =M < 125
With the termination criterion of the inexact Zarantonello iteration (4.49), it follows that

) fork = k[£],
-1

I for1 < k < k[e].

(449) 2 1 (u

k, J q ne

Mo, ™ —u, =l < = /lalg{ Y
1- qctr

4

For k = k[£], the preceding estimates prove (4.59). For k < k[{], it follows that

k,j k— 2qcu k,j k=1,j
My —u, M < Goym Nuj —u, *III ” Aatg [} —u, W+ ey —u, =]
Provided that qc; Aag < 1, this proves
+ 2gcr 1
x_ kJ Gsym ¥ T=g,, Malg k- (4.53) k-1,j
Muy —u, =l < . uy —u, III =" Goym My —u, s
- 1_11<:tr alg
which is (4.58). This concludes the proof. O
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5 Optimal complexity of goal-oriented adaptive
FEM for nonsymmetric linear elliptic PDEs

The Sections 5.1-5.8 of this chapter correspond to the publication:

P. Bringmann, M. Brunner, D. Praetorius, and J. Streitberger. Optimal complexity
of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, 2023. arXiv:
2312.00489

5.1 Introduction

Adaptive finite element methods (AFEMs) are a cornerstone in the numerical solution of partial
differential equations (PDEs). The abundant literature emphasizes significant progress and manifests
a matured understanding of the topic; see, e.g., [D6r96; MNS00; BDDO04; Ste07; CKINS08; KS11;
CNI12; FFP14; CFPP14] for linear elliptic PDEs.

The variational formulation of a nonsymmetric second-order linear elliptic PDE with bilinear form
b(-,-) and right-hand side functional F on the Sobolev space X = Hé (L) seeks a weak solution u*
to

b(u*,v)=F(v) forall veKX. (5.1

While standard AFEM aims at an efficient approximation of the solution u* € X, goal-oriented
AFEM (GOAFEM) strives only to approximate a quantity of interest G (u*); see [BRO1; BRO3;
EEHJ95; GS02] for early prominent contributions. However, to accurately approximate G (u*) for
a continuous linear goal functional G: X — R, following the generic approach G (ugy) ~ G(u*)
leads to convergence rates determined by the error of the approximation uy ~ u* to the primal
problem (5.1). Instead, GOAFEM adopts a duality technique by additionally approximating
zy ~ ¥ € X solving the dual problem

b(v,z¥) =G(v) forallv e X. (5.2)

Following [GS02], a discrete approximation G g (ug, z) ~ G(u*) enables the control of the error
forany ug,zg € X by

|G(*) = Gu(un,ze)| < [b(W* —up, ¥ = zu)| < Lllw* —upllllz* —zull,  (5.3)

where L > 0 is the continuity constant of (-, -) with respect to the energy norm ||| - |||; see Section 5.2
for details. As seen in (5.3), this approach allows to add the convergence rates of the primal and
dual problem. Moreover, it is not necessary — and may even lead to unnecessary computational
expense — to compute approximations uy ~ u* and zy ~ z* across the entire domain with the same
accuracy. Instead, a careful marking of elements for refinement enables a considerable reduction
of the computational costs and makes GOAFEM highly relevant in both practical applications and
mathematical research.
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5 Optimal complexity of GOAFEM

GOAL-ORIENTED ADAPTIVITY (£)

SOLVE & ESTIMATE

primal problem (in parallel) dual problem
[ symmetrize (m) ] [ symmetrize (1) ]
[ solve (n) ] [ solve (v) ]
computable approximation uj"" computable approximation zj"”
and estimator 7 (u}"") and estimator [((Z};'V)
( MARK ]

apply Dorfler marking variant from [FPZ16]

REFINE

employ NVB [Stc08]

Figure 5.1: Schematic overview of the GOAISFEM algorithm with nested symmetrization and
inexact solver.

First rigorous convergence results of GOAFEM are found in [MS09; BET11; FGH"16; FPZ16;
HP16], recent contributions in this context include [BIP21; BBI*22] and for a dual weighted-residual
approach see, e.g., [ELW19; ELW20; DBR21]. The works [MS09; FGH*16; FPZ16; BIP21;
BBI*22] focus on optimal convergence rates with respect to the degrees of freedom. However,
the cumulative nature of adaptivity calls for optimal convergence rates with respect to the total
computational effort, i.e., the overall computational time. Coined as optimal complexity initially
for wavelet-based discretizations [CDDO1; CDDO03], this notion was later adopted for AFEM with
contributions including, e.g., [Ste07; CG12; GHPS21; BIM*24a]. In the setting of GOAFEM,
optimal complexity was established first in [MS09] for the Poisson problem and sufficiently small
adaptivity parameters, and extended to a general second-order symmetric linear elliptic PDE with
uniformly contractive algebraic solver in [BGIP23]. Since uniform contraction with respect to the
PDE-related energy norm for nonsymmetric algebraic solvers such as GMRES is still open, as a
remedy, the proof of the Lax—Milgram lemma motivates the application of an iterative symmetrization
[BIM*24a]. This results in a sequence of symmetric algebraic systems that allow the application of
optimal algebraic solvers, e.g., [WZ17; CNX12; IMPS24]. Figure 5.1 illustrates the nested structure
of the resulting goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM).
The detailed Algorithm 5A is presented in Section 5.3 below. Table 5.1 displays the notation of the
associated indices and quasi-error quantities, which are equivalent to the total error.

The first challenge in the analysis of the GOAISFEM algorithm consists of the nonlinear product
structure attained by the combined quasi-error product as displayed in Table 5.1. The resulting
nonlinear remainder term significantly complicates the proof compared to treating only the primal
problem as in [BIM*24a] and requires the application of a novel proof strategy from [BFM*23] that
only utilizes summability of the remainder, denoted as tail-summability throughout. The second
challenge arises from the combination of the primal and dual marking leading to a merged marked
set. Thereby, either only the primal or only the dual estimator is guaranteed to satisfy the estimator
reduction property. Since the estimator belongs to the quasi-error, this also leads to a failure of
contraction for one of the two involved quasi-errors. While [BGIP23] solves this issue in the
symmetric case, the additional symmetrization loop results in a more involved situation at hand.
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5.1 Introduction

iteration mesh refinement symmetrization algebraic solver
running  final  running final running final index set quasi-error
primal l 4 m m n n Q" H"
dual t ¢ 4 v v Q* 7y
combined l 4 k k = max{m, pu} J Jj=max{n,y} Q=Q"UQ* ng’j Z/;’j

Table 5.1: Iteration counters and quasi-errors for the GOAISFEM algorithm. We note that for the
combination of the index sets, the quasi-errors are extended to the full index set by the
last available quasi-error. We refer to Section 5.3 for details on the iteration counters and
index sets and to the beginning of Section 5.5 for a detailed description of the quasi-errors
and their extension to the full index set Q.

Adapting the novel approach of the tail-summability criterion from [BFM*23] enables the proof of
full linear convergence and optimal complexity for the nonlinear quasi-error product in this paper.
The analysis employs the generalized quasi-orthogonality from [Fei22] to remedy the lack of a
Pythagorean identity for nonsymmetric problems.

Our main result asserts full linear convergence of the quasi-error product ng’j Zlg’j with respect to
the total step counter |-, -, -| (measuring the total solver steps in the index set). Therein, we allow
for an arbitrary symmetrization stopping parameter Agyy, and only require a small algebraic solver
parameter Ay, such that the product Agym A4 is sufficiently small. More precisely, Theorem 5.10
states that there exist constants Cyj, > 0 and 0 < ¢y, < 1 such that, for all (¢, k, j), (¢, k’,j') € Q
with [/, k", j'| < |€, k, jl,

ng’j Zig,j < Cin qllié’rl,k,jl—lt”,k”j’l ng,”j’ Z’;/’J’_
Note that, unlike [BIM*24a], where full linear convergence is guaranteed only for sufficiently large
€ > {y, the current result is stronger in the sense that the result holds for £y, = 0 owing to a generalized
quasi-orthogonality from [Fei22]. An immediate consequence of full linear convergence and the
geometric series in Corollary 5.14 states that the rates with respect to the degrees of freedom coincide
with the rates with respect to the cumulative computational work (i.e., computational time), i.e., for
all r > 0, there holds

ok T okijok.j k,j7k,j
sup (#ﬁ)ng JZ( I< sup Z #72/) H[ jzf I < Ceost SUp (#%)rHt’ JZf !
chDea (kDR (T ea (t.k.j)e@Q
[,k j'1<1€,k, ]|

along the sequence of meshes 7, generated by the GOAISFEM algorithm. The second main result
of Theorem 5.15 proves that, for sufficiently small adaptivity parameters and any achievable rates
s,t > 0 of the primal resp. dual problem (stated in terms of nonlinear approximation classes), the
algorithm guarantees optimal complexity, i.e.,

SH kj ok, * * 0,0 50,0

sup #T¢ ) H7 2,7 < Cope max{||u™|a, 1274, Hy™ Zg
(t’,k,j)eQ ([/’k/’j/)ea
[,k j <€k, ]
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5 Optimal complexity of GOAFEM

This means the convergence of the algorithm attains the optimal rate s + ¢ with respect to the overall
computational work, where ||u*||4, < co means that u* can be approximated at rate s (along a
sequence of unavailable optimal meshes) and likewise for z*.

The remaining parts of the paper are organized as follows. The preliminary Section 5.2 introduces
the model problem, the assumptions on the solvers, and the axioms of adaptivity from [CFPP14],
including the general quasi-orthogonality from [Fei22]. Following the algorithm in Section 5.3 and
its contraction properties in Section 5.4, Section 5.5 presents full linear convergence as the first main
result of this paper. This allows to prove optimal complexity in Section 5.6 as the second main result,
which is underlined by the numerical experiments in Section 5.7 including a thorough investigation
of the adaptivity parameters. The paper concludes with a summary in Section 5.8.

5.2 Setting

In this section, we introduce the problem and explain the key components needed to design the
adaptive algorithm in Section 5.3.

5.2.1 Continuous model problem

Let Q c RY with d > 1 be a polygonal Lipschitz domain. Given right-hand sides f € L?(Q) and
f € [L?>(Q)]¢, we consider a general second-order linear elliptic PDE

—div(AVu*) +b - Vu* +cu* = f —div(f) inQ subjectto u* =0 ondQ, (5.4)

. o . .\ o e . dxd .
with a pointwise symmetric and positive definite diffusion matrix A € [L"" (Q)] S;:n , a convection

coefficient b € [L°° (Q)]d, and a reaction coefficient ¢ € L*(Q). For well-definedness of the a
dxd
sym
and f|r € [HY(T)] “forall T € Ty, where 75 is an initial triangulation that subdivides € into compact
simplices. Let (- , -) denote the L?(Q)-scalar product. With the principal part a(u,v) = (AVu ,
Vv), the variational formulation of (5.4) seeks a solution u* € X := Hé (Q) to the so-called primal
problem

posteriori error estimator in Section 5.2.6 below, we additionally require that A|r € [Wl"x’ (T)]

b(u*,v) =a(w*,v)+{b -Vu*+cu*,v)={(f,v)+{(f,Vv)y=F(v) forallveX. (5.5)

We suppose that the bilinear form b (-, -) from (5.5) is continuous and elliptic with respect to the
norm || - ||x on X, i.e., there exist constants L’, @’ > 0 such that

b(u,v) < L |lullx|lvllx and b(v,v) > a’ ||v||?\, forall u,v € X. (5.6)

Then, the Lax—Milgram lemma proves existence and uniqueness of the solution u* to (5.5). An
elementary compactness argument shows that (5.6) implies ellipticity of the principal part a( -, -)
and thus a( -, -) is a scalar product on X with induced energy norm a( -, - )"/ = |-l = || - llx.
cf. [BHP17, Remark 3]. Therefore, b( -, -) is also continuous and elliptic with respect to ||| - |||, i.e.,
there exist constants L, @ > 0 such that

b(u,v) < LVl and b(v,v) > a|v||*> forallu,v e X. 5.7
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5.2 Setting

In the present paper, we suppose that the quantity of interest G is linear and reads for given data
g € L2(Q) and g € [L2(Q)]",

G®v) :=/(gv+g-Vv)dx.
Q

In order to guarantee well-definedness of the error estimator in Section 5.2.6 below, we suppose

glr € [H 1(T)]d for all initial simplices T € 75. In view of the continuity and coercivity of b( -, -),
the Lax—Milgram lemma yields existence and uniqueness of the solution z* € X of the so-called
dual problem: Find z* € X such that

b(v,z*)=G(v) forallv e X. (5.8)

5.2.2 Finite element discretization and discrete goal

For a polynomial degree p € N and a conforming simplicial triangulation 7x of Q, the discrete
ansatz space reads

Xy ={vg € X: VT € Ty, vy|r is a polynomial of total degree < p}. (5.9

Since Xy C X is conforming, the Lax—Milgram lemma ensures the existence and uniqueness of

T 2 € X satisfying

primal and dual discrete solutions u7,

b(uy,ve) =F(vg) and b(vy,zf) =G(vy) forallvy € Xp. (5.10)

It is well-known that conforming FEMs are quasi-optimal, i.e., there hold Céa-type estimates with
constant Ccgy = L/«

ll* —upll < Ccea min [lu* —vpll  and  lz* = 25l < Ccea min [I2* = vall.  (5.11)
v eXy vH €EXH

For arbitrary approximations ug, 2, € Xy the linearity of the quantity of interest G as well as the
primal and the dual problem (5.1) and (5.2) show that

Gu*) - Glup) = Gu* —up) =b(u* - upy, 2¥)

Chu* —up, 2 —zu) + [F(zr) = bl zm) |-

The definition of the discrete goal quantity by Gy (up, zg) = G(ug) + [F(ZH) —b(ug, zH)] allows
to control the goal error by continuity of b(-, -)

|G(u*) = Gu(un, zm)| < |b(u* —up, 2% = za)| < Lllu* = unlllllz* = zall. (5.12)

We emphasize that (5.12) holds for any ug, zg and, in particular, for those stemming from an
iterative solution step. Moreover, if uy = u;‘l, then G(ugy,zy) = G(u;I) as expected.
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5 Optimal complexity of GOAFEM

5.2.3 Zarantonello iteration

The discrete formulations (5.10) lead to positive definite, but nonsymmetric linear systems of
equations. To reduce the formulation to symmetric and positive definite (SPD) problems, we follow
previous own work [BIM*24a] for the primal problem and employ the Zarantonello iteration [Zar60].
Typically, the latter is used in the up-to-date proof of the Lax—Milgram lemma and also defines
a linearization scheme for the treatment of a certain class of nonlinear elliptic PDEs (see, e.g.,
[CWI17; GHPS18; HPSV21; BEM*23]). In its core, it is a fixed-point method, thus also applicable
in the nonsymmetric setting at hand. For a damping parameter 6 > 0 and given uy, zg € Xgy, the
Zarantonello iterations ®Y,, CDIZL,: (0,00) X Xy — Xy compute the unique solutions ®Y,(5;ug),
@5, (0;z) € Xy to the symmetric variational formulations

a(®y(6;up),ve) = a(ug,ve) + 6 [F(VH) - b(uH,vH)] forall vy € Xy, (5.13a)
a(vi, ®%,(8;zr)) = a(vi,zm) +6 [G(vy) — b(vy,zp)| forall vy € Xp. (5.13b)

The Riesz—Fischer theorem (and also the Lax—Milgram lemma) guarantees existence and uniqueness
of @Y (6;upn), ®5,(0;z21) € Xu, i.e., the Zarantonello operators ®%,(; ) and @7, (6; -) are well-
defined. In particular, the exact discrete solutions u}, = ®%(8;u};) and 23, = ®,(5; z};) are the
unique fixed points for all 6 > 0. Moreover, for a sufficiently small damping parameter 9, i.e.,
0 < § < 6* = 2a/L?, the Banach fixed-point theorem [Zei90a, Section 25.4] guarantees that
@Y%, (6,) and (qu(é, +) are contractive with constant 0 < gsym = [1 -6 (2a - 6L2)] 172 < 1,i.e., for
all functions vy, wy € Xg, it holds that

max {|[|®%; (5; ver) — @Y (5; wi)lll, 9%, (55 ve) = D% (5w} < gsym v —walll.  (5.14)

The optimal value dop¢ = @/L? yields the minimal contraction value gsym = 1 — a? /L.

5.2.4 Algebraic solver

A canonical candidate for solving (5.10) directly is a generalized minimal residual method [Saa03;
SS86] with optimal preconditioner for the symmetric part. While this guarantees uniform contraction
of the algebraic residuals in a discrete vector norm, the link between the algebraic residuals
and the functional setting is still open [BIM*24a]. Instead, after a symmetrization with the
Zarantonello iteration, it remains to solve the SPD systems (5.13). Since large SPD problems are
still computationally expensive and the exact solution cannot be computed in linear computational
complexity, we employ an iterative algebraic solver whose iteration is expressed by the operator
Yy X'xXg — Xpg. More precisely, given abounded linear functional ¢ € X’ and an approximation
wg € Xpg of the exact solution W;; € Xy to a(w}}, vy) =¥ (vy) for all vy € X, the algebraic
solver returns an improved approximation Wy (; wg) € Xp in the sense that there exists 0 < g¢yr < 1
independent of ¢ and X such that

Wy =YW@ will < geu llwgy —wall forall wy € Xp. (5.15)

To simplify notation, we shall identify y with its Riesz representative wy, € Xy and write Wg (w7;; )
instead of W (¢/; -), even though w7, is unknown in practice and will only be approximated by an
optimal algebraic solver, e.g., [CNX12; WZ17; IMPS24]. In the following, we use the hp-robust
multigrid method from [IMPS24] with localized lowest-order smoothing on intermediate levels and
patchwise higher-order smoothing on the finest mesh as an innermost algebraic solver loop.
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5.2 Setting

5.2.5 Mesh refinement

The mesh refinement employs newest-vertex bisection (NVB). We refer to [Ste08] for NVB with
admissible initial triangulation 75 and d > 2, to [AFF"15; KPP13] for NVB with general 7 for
d € {1, 2}, and to the recent work [DGS23] for NVB with general 7 in any dimension d > 2. For
each triangulation 7 and marked elements My C 7y, let 7, := refine(7x, Mpy) be the coarsest
conforming refinement of 7 such that at least all T € My have been refined, i.e., My C T \ 7h.
We write 7, € T(7g) if 7, can be obtained from 7 by finitely many steps of NVB, and 7;, € Tn (7g)
if 7, € T(Tg) with #7;, — #75 < N with the number of additional elements N € Ny. To simplify
notation, we write T := T(7g) and T := Tn (75). We note that the nestedness of meshes 75, € T(7g)
implies nestedness of the corresponding finite element spaces Xy € Xj, € X from (5.9).

5.2.6 A posteriori error estimation

For a triangle T € 75 € T and vy € Xy, let n denote the outer unit normal vector and [ - ]| the jump
along inner edges of 7f. We define the refinement indicators g (T;vy) = 0 and (g (T;vy) = 0 for
the primal and dual problem from (5.10), respectively, by

na(T;v)? = [T - div(AVvy — f) + b - Vv +cvi — fII2,
+|T1MN[(AVve - f) '”]]||i2(amg)’

{u(T;ve)? =TI = div(AVvy — ) —b - Vg + (c = div(d)) vi — g7,
+ TV (AVve - g) - ”]]||i2(armg)‘

For any subset Uy C 75, we abbreviate

r]H((Ll,vj,;vH)2 = Z r)H(T;vH)2 and g’H((LIH;vH)2 = Z g,’H(T;vH)2 (5.16b)
TG(MH TE(L(H

(T)

(5.16a)
(1)

as well as ng(vy) = ng(Tg;ve) and {g(vy) = (g (Ta;vy) for all vy € Xy. For details on
residual-based error estimators, we refer to [AO0O; Ver94]. Throughout the paper, the index of the
estimators refer to the underlying mesh, e.g., n;, and ¢}, on the refinement 73, € T(7g) or , and £
on a sequence of meshes 7, with ¢ € Ny. It is well-known that ny, (g satisfy the following axioms
of adaptivity.
Lemma 5.1 ((CFPP14, Section 6.1]). The error estimators ng, (g from (5.16) satisfy the following
properties with constants Cggp, Crel, Cdrel, Cmon > 0 and 0 < greq < 1 for any triangulation
Ta € T and any conforming refinement Ty, € T(Tg) with the corresponding Galerkin solutions
uyy, 25y € Xu, uy, 7 € Xp to (5.10), any subset Uy C Tr N Ty, and arbitrary vy € Xg, vi, € Xp.

(A1) stability: [ny(Uwg;vi) —na(Un; ve) |+ 40 (Un;ve) = Ca (U ve)| < Csab Ve —valll-

(A2) reduction: 1y,(7y \ Taive) < qreaMH(Ta \ Tnsve) and §(Th \ Tayve) < Gredlu(Ta \
Tn; VH)-

(A3) reliability: ||u* — uplll < Creinn (uyy) and 12% = 25l < Crel {H ()

(A3Y) discretereliability: ||lu;—up |l < Caret N (T \Tn> uyy) and |z =25 | < Carel $u (Te\ s 257)

131



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Optimal complexity of GOAFEM

(QM) quasi-monotonicity: nh(”;) < Cmon UH(M;}) and {h(ZZ) < Cmon gH(Z}_})

The constant C| depends only on the uniform y-shape regularity of all Tg € T and on the space
dimension d, while Cy,, and Cqrel additionally depend on the polynomial degree p. For NVB,
reduction (A2) holds with Greq = 2= Moreover, the constant in quasi-monotonicity (QM)
satisﬁes Cion < min{l + Cstab(l + Ccéa)crel , 1+ Cgtap Cdrel}~ O

Reliability (A3) and stability (A1) verify

lle* = uglll < max{Cel, 1 + Cotab Cret} [nar (umr) + lluzy — urlll]

llz* = zalll < max{Cret, 1 + Cyap Crer} [Lar (zrr) + Nz = zlll] -

In combination with the estimate (5.12), we finally conclude for Cgoa == L max{Crel, 1 + Cgtap Crel}2
the reliable goal-error estimate

|G (u*) = G (up, zu)| < Coont [nu(up) + gy — unll] [Z0(zu) + 25 — zull], (5.17)

which provides the core estimate of the proposed adaptive algorithm in Section 5.3 below.

The ellipticity of b(-, -) from (5.7) ensures inf-sup stability of the elliptic problem at hand. Recall
from [Fei22] that inf-sup stability implies the generalized quasi-orthogonality, which will be an
important tool in the subsequent analysis.

Proposition 5.2 (validity of quasi-orthogonality [Fei22, Equation (8)]). For any sequence

Xr C Xpy1 C X of nested discrete subspaces with £ > 0, there holds

(A4) quasi-orthogonality: There exist constants Cony, > 0 and 0 < 6 < 1 such that the

corresponding Galerkin solutions uz,‘, zz,‘ € Xy to (5.10) satisfy, for all £, M € Ny,

+M
Z M}y = uplI? < Coren (M + 1)1 fllu* = uf 1%, (5.18a)
'=¢
+M
DUy = 28I < Coren (M + 1)1 70 % = 271, (5.18b)
=t

The constants Coyin and 6 depend only on the dimension d, the elliptic bilinear form b( -, -), and
the chosen norm ||| - |||, but are independent of the spaces Xj. O

5.3 Adaptive algorithm

In this section, we introduce our goal-oriented adaptive iteratively symmetrized algorithm. It utilizes
specific stopping indices denoted by an underline, e.g., £, m[£],n[¢, k] € Ngy. For an overview, see
Table 5.1 above. However, we may omit the dependence whenever it is apparent from the context,
such as in the abbreviation n := n[¢{, m] for u?’ﬂ.

Algorithm 5A: GOAISFEM

Input: Initial mesh 7y, polynomial degree p € N, marking parameters 0 < 6 < 1, Cparx > 1,
solver parameters Agyym > 0, Ay > 0, Zarantonello damping parameter 6 > 0, and initial
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5.3 Adaptive algorithm

0,0 0,n 0,0 0,y
guesses uy =uy", 7,0 =z, € Xo.

Adaptive loop: Forall £ =0,1,2,..., repeat the following steps (I)-(IV):

(I) SOLVE & ESTIMATE (PRIMAL). Forallm =1,2,3,..., repeat (a)—(c):

m-1,n . m-1,n
;  and define for theoretical reasons uz,"’* =0 (5u, 7).

(b) Foralln =1,2,3,..., repeat the following steps (i)—(ii):

(a) Set uZl’O =u

m,n—1

¢ ) and corresponding refinement indicators

(i) Compute uy"" = We(u}"™;u
ne(T;ul"") forall T € 7.

(ii) Terminate n-loop and define n[¢, m] = n if

My = w7l < Aatg [Asym e ") + ™™ = a0 (5.19)

(c) Terminate m-loop and define m[{] = m if
ey = ™l < Asym me (™). (5.20)
(I) SOLVE & ESTIMATE (DUAL). Forall u=1,2,3,..., repeat (a)—(c):

-1, . , -1,
(a) Setz} 0= 24 and define for theoretical reasons z * = D552, ).

(b) Forallv =1,2,3,..., repeat the following steps (i)—(ii):

. -1 . . .
(i) Compute z’g Vo= ‘Pg(z’; s z’g 77 and corresponding refinement indicators

Le(T, Z?’V) forall T € 7.

(ii) Terminate v-loop and define v[¢, u] = v if
M = 2577 M < Aug [Aym Ce () + M1 =200 (521)
(¢c) Terminate u-loop and define H [€] = pif
iz = 250 < Agym Ee (%) (5.22)

(IIT) MARK. Determine sets

M € ME[6,u™] = {Ue € To: 00e W™ < ne(Up,uf™™)?),
My € ME[0, 257 = {Uy € T2 00(Z5™)? < Le(Up, 2577

satisfying the following Dérfler criterion [D6r96] with quasi-minimal cardinality

H#Mp < Cuak  min  UF and #M; < Cuax min  UF. (5.23)
UF My [0,uy™] UreME[0,257]

As in [FPZ16], define the set of marked elements M, == My U M/, where M} C MZ
and M; C /V; satisfy # M7 = #M; = min{#mg, #/7?}.
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5 Optimal complexity of GOAFEM

(IV) REFINE. Generate the new mesh 7741 = ref 1ne(Mg, 7¢) by NVB and define u? p +1 =

On 0,v
n 0*,_ui,andZ00, 0,% .

Upq = Uiy P rel = 2o T 200 —z[ (nested iteration).

Output: Sequences of successively refined triangulations 7¢, successive discrete approxima-
tions u"", z4"¥, and corresponding error estimators n,(u}""), {(z}"”).

Remark 5.3. (i) Although the primal loop (1) and dual loop (11) in Algorithm 5A are displayed
sequentially, they are independent of each other. Therefore, a practical implementation will realize
these iterations simultaneously since the system matrix is the same (thanks to the symmetrization

step).
(i1) In order to investigate the asymptotic behavior, it is reasonable to analyze Algorithm 5A in

the present formulation with infinitely many steps. We note that a practical implementation will
terminate with € = € provided that the estimator product is smaller than a user-specified tolerance.

For the analysis of Algorithm 5A, we define the index set Q == Q" U Q% with

={(l,m,n) € N " is used in Algorithm 5A}, (5.24a)
={(,u,v) € NO Z{, ¥ is used in Algorithm 5A}. (5.24b)

Furthermore, we require the following final indices and notice that these are consistent with those
defined in Algorithm 5A:

¢ =sup{l € Ny: (£,0,0) € Q" or (£,0,0) € Q“} € Ny U {0}, (5.25a)
m[€] = sup{m € N: (¢,m,0) € Q"}, ul€] =sup{u € N: (£, p,0) € @},  (5.25b)

n[€,m] =sup{n e N: ({,m,n) € Q"}, v[€, u] =sup{v e N: ({,u,v) € Q°}.  (5.25¢)
In addition, we set k[£] = max{m[{], u[£]} as well as j[¢, k] = max{n[{, k], v[(, k]}.

Finally, we introduce the total step counter |-, -, -| defined for all (¢, k, Jj) € Qby
-1 k[’ i€ K] k-1 JIE.K'] j-
6.k, j| = ZZ Z 1+Z Z 1+Zr
=0 k'= i’

This definition indeed provides a lexicographic ordering on @, if the solver steps SA(I) for u';l’” and
SAII) for z'Z " are done in parallel. We note that one solver step of an optimal geometric multigrid
method on graded meshes can be performed in O(#7;) operations; see, e.g., [WZ17; IMPS24].
For given u'; ", Z? " € X, the simultaneous computation of the refinement indicators 7, (T, um ™
and ¢ (T, z ") requires O(#77) operations, hence the steps SA(I)—(II) require O(#77) operatlons
as well. Furthermore Dorfler marking can be performed in O(#7;) operations; see, e.g., [Ste07;
PP20]. Therefore, the total work to compute uz,"’" and z’; " is (up to a constant) given by

cost(C,k,j) = > #Tp+ > #Tp= > #Te. (526)
' ,m' ,n")e@" ' v)eQ (¢',k',j)eQ
1€ .m" .||,k | VRGN 1€k, 1< 1Lk, |
Since #Q = oo, we have either £ = oo, or k[£] = o0, or j[{, k] = co. A further observation about
Algorithm 5A is that the nested algebraic solver loop within the Zarantonello loop is guaranteed to
terminate, and the latter case j[{, k] = oo is therefore excluded.
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5.4 A posteriori error analysis

Lemma 5.4 (finite termination of algebraic solver [BIM*24a, Lemma 3.2]). Independently of the
algorithmic parameters 6, 6, Asym, and Ay\g, the innermost n- and v-loops of Algorithm 5A always
terminate. In particular, Z[f, k] < oo forall (¢,k,0) € Q. O

5.4 A posteriori error analysis

Algorithm 5A does not provide the exact algebraic solutions u?’* and z’; " to (5.13) but instead uses
an inexact algebraic solver. However, the following result from [BIM*24a] applies to the primal
and the dual problem alike and shows that these inexact Zarantonello iterations remain contractions
except for the final iterate on each mesh (see also [BIM*24b] for an extended version).

Lemma 5.5 (contraction of inexact Zarantonello iteration [BIM*24a, Lemma 5.1]). Choose any
damping parameter 0 < § < 6* = 2a/L? to ensure the contraction (5.14) of the Zarantonello
iteration and

1-— 1-— qum +92 L"l *
0 <ty < L2 gomUden) i 0 <y = S NN CEY)
A 1= 2 e Aie

Then, for arbitrary Agym > 0 and any 0 < Ay < /1;‘1 , we have for all (€,m,n) € Q" with

1<m<m[t]andall (¢, p,y) € Q% with 1 < p < p[¢] that
-1, , — 1,
ik = ™1 < Gogun ek — a0 and 2k = 240 < Gy llef — 22720 (5.28)
Moreover, for m = m[{] resp. u = ul{], it holds that

2 qctr

/lalg /lsym ne (M%’E),
~ {cur (5.29)

qar D4
/lalg /lsym e (ZZ ) o
ctr

m,n m=L,n

ek = a2 < Gy Mack — s 200 +
M,V =

llzf = 250 < gom e — 2 0+

The subsequent lemma gathers a posteriori error estimates following directly from the corresponding
contraction of the symmetrization, algebraic solver, and the inexact Zarantonello iteration. Further
details of the elementary proof are omitted.

Lemma 5.6 (stability and a posteriori error control). For all (€, m,0) € Q", contraction (5.14)
shows

1- QSym * m-1,n m-1,n
ey =y M < Moy = w1 < (1 + gsym) My =, - (5.30)

sym
Analogously, for all (£,m,n) € Q" the contraction (5.15) ensures

1-qger
qctr

e = gl < " = w7 < (L + o) Ml = ™" (5.31)
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5 Optimal complexity of GOAFEM

For all (€,m,n) € Q" withm < m[{], the contraction (5.28) leads to

1- asym

m,n m,n m-1,n — m—-1,n
= ey —u, =l < ety ™ =up 7l < (L + Gy Mg =, - (5.32)
sym
The analogous estimates are also valid for the dual variable. O

Finally, the following lemma shows that in the case of finitely many mesh-refinement steps, the
Zarantonello iteration does not terminate and one of the two exact continuous solutions is already
the discrete solution to (5.10).

Lemma 5.7 (case of finite mesh-refinement steps). Suppose that the inexact Zarantonello iteration
satisfies contraction (5.28) and that n and { satisfy (A1)—(A3). If { < oo, then k[{] = oo and
ne(uy) =0 (so that u* = uy) or {¢(z}) = 0 (so that 7* = zJ).

Proof. By Lemma 5.4, we have j[{, k] < co. If £ < co, then k[{] = oo and, hence,

5.20 _
ne(u™) O Agh M =M forall m e N (5.33)
or
(5.22) _
(™) < Al =27l forall e . (5.34)

If (5.33) holds, then the inexact Zarantonello iterates u’;’ﬂ are convergent with limit u7 and we
obtain by stability (A1) that B B

(Al) , e 533 oy, mesco

ned) < neGu™) + Cuan it =15 Ml =) 22 0
This proves that 17¢(u}) = 0, and we infer from reliability (A3) that u} = u*. The same arguments
apply to z7 in the case of (5.34). i

Due to the contraction of the inexact Zarantonello iteration (5.28), we have the following a posteriori
error estimates for the final iterates.

Lemma 5.8 (stability of final iterates). Suppose that the inexact Zarantonello iteration satisfies
(5.28). Then, forall (€ +1,m,n) € Q" and (€ + Ly, v) € QF, there holds

m-1,n m,n 1 N% M,V
Mgy =y I < Mufy =, "M M2 =25 M < 27y =27 I, (5.35)
m,n m,n m,n Y A4 M,V
Moy y =, < Ay —u, M My =2, I < 4llzz, =2l (5.36)
m,n m-1,n m-1,n MY p-1y u-1v
Moy = =y 7 < Allluy —uy 7l Mz, =2, Tl <4llzp =z, I (5.37)

. . 0, , . .
Proof. For (¢ +1,m,n) € Q", nested iteration u, ﬁ = u%ﬂ together with the contraction of the

inexact Zarantonello iteration (5.28) and m[¢ + 1] > 1 prove (5.35) by

m-1,n (5‘28)_m[€+1]—1 0,n m,n
ety yy =y "l < Goym ety yq =, gl < NeeZyy =g -
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5.4 A posteriori error analysis

Let (¢,m,n) € Q". Contraction of the algebraic solver (5.15), the fact n[¢, m] > 1, and nested

iteration u%’o = u%_l’ﬂ show that
m,x man, O n[t,m] m,0 mx  m-ln
My —u, =l S dew 0 My = up < gew ™ = uy . (5.38)

This and with the contraction of the exact Zarantonello iteration (5.14) result in

m,n nm,x m,k m,n
My —uy =Nl < |||M§ =yl e =

5.3
< (1 + qetr) ”l”g - u ”l + e ”l”g - u 7”' (5.39)

(5.14 , Y
<1+ e dsym + qeae] ik — a2 < 3 fluk — 2.

Consequently, the combination of (5.39) and (5.35) validates (5.36) via

m,n m,n m,n
loagyy = e < Mo,y = oy I+ Mg,y = g

(5.39) ml.n o
<3 ”lu;ﬂ — U,y ~lll + |”u;+1 2 7”' 4 |||u[+1 ?7|”

The estimate (5.39) also implies (5.37), because

m,n m-1,n m,n m—-1,n (5:39) m-1,n
Mey™™ —uy 7N < Mg = ug M+ Mg =y 70 < Allug —ug 7L
The same arguments prove the estimates for the dual variable and conclude the proof. O

The subsequent lemma states the estimator reduction for only one of the two error estimators. This
poses a significant challenge in the proof of full linear convergence due to the required contraction of
the nonlinear quasi-error product in Lemma 5.11 below.

Lemma 5.9 (estimator reduction and stability). Define the constant 0 < q(6) = [1 -(1-
fe &) 9] Y2 <1 and suppose that the estimators n and { satisfy (A1)—(A2). If the primal error
estimator satisfies the Dorfler criterion, i.e., My =M, ¢ S Mg in Algorithm 5A(111), then

New (gyy) < q(0) e (™) + 4 Cyp g,y —u ™l forall (€+1,m,n) € Q",

. . ) (5.40)
e (zgy) < Le(2 ) + 4 Caa Mgy, — 25 forall (£+1,p,v) € Q.

Ifthe dual error estimator satisfies the Dérfler criterion, i.e., M = M; C My inAlgorithm 5A(111),
then

Nest (gy) < ey ™) +4 Coap llluy,y — gl forall (£+1,m,n) € Q",

wy wy . o py . 64D
Cen(zp) £ q(0) Le(zp ) +4Cauab gy — 2 Il forall (€+1,p,v) € Q.

Proof. For (£+1,0,0) € Q", stability (A1) and reduction (A2) yield that

77l’+1(”%,2)2 = e (Tee1 N T M ) + 01 (Te1\Te; u )
Ne(Teer N o3t + Qg 10 (Te\Tewa; 1y ™) (5.42)
ne(us™™)? = (1= g2) ne(Te\Teun; ' 7)2.

IA
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5 Optimal complexity of GOAFEM

The Dorfler marking in Algorithm 5A(III) for the primal error estimator 77 and M, C 77 \ Tz.1 prove
the contraction in (5.40)

Neer (™) < ne(uy™)? = (1= qig) ne(Mesup™™)? < q(0) ne(uy;"™)>. (5.43)
For (¢ +1,m,n) € Q", this and (5.36) lead to

(AD)
m,n m,n m,n m,n
77€+1(MZ_1) < Nest (ug ) + Cstab |||u€+1 — U, Il

(5.43) m,n m,n m,n
< q(O) ne(uy™) + Cap g,y — uy |l

(5.36)
< q(0) ne(up™) +4 Cyap g, — 1y "l

For (£ +1, u,¥) € Q%, we argue analogously to (5.42) in order to obtain that ¢+ (z%’z) </ (zg’z).
Together with (5.36), it follows that

uy (AD uy wy  py (536 uy uy
Cevi(z;7) S Leni(z, )+ Caan iz — 2, Ml < Ze(z,) +4 Caan 27, — 2 I

The proof holds verbatim in the case of Dorfler marking for the dual error estimator, albeit with
reversed roles. This concludes the proof. O

5.5 Full linear convergence

This section presents full linear convergence of Algorithm 5A as the first main result of this work.
Recall the goal-error estimate from (5.17) motivating the product structure of the respective primal
and dual error components. Thus, we define the quasi-errors

HOW =l = "+ oy = ™"l + e (u™) forall (¢,m,n) € Q*,  (5.44a)
2 =y = 2+ s = 2+ Lo (28 forall (¢, u,v) € Q7. (5.44b)

The quasi-errors naturally extend to the full index set (¢, k, j) € Q by

4
Ho if (6,k,0) ¢ Q¥

2 {Z’;’” i (0. k,0) € @ but (€.k. ) ¢ @,

Hk’] =

{Hk’" if (€.k,0) € Q“ but (£, k. j) ¢ Q*,
¢

(5.45)

n .
¢ Z;~ if (6,k,0) ¢ Q7.
The following theorem asserts full linear convergence of the quasi-error product.

Theorem 5.10: full linear convergence

Suppose that the estimators n and { satisfy (A1)—(A3) and (QM) and suppose (A4). Recall /l;’lg

and q gy, from Lemma 5.5. With the constant q(0) from Lemma 5.9 and q = max{ g2, (1+

qsym)/2} < 1, let

(1 - CICtr) (5 - LISym) (1 - 5)
8 getr Cstab '

Then, for arbitrary marking parameter 0 < 6 < 1 and any solver parameters Asym > 0 and

0<A* = (5.46)
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5.5 Full linear convergence

0 <Aag < /l:lg with AgymAalg < A*, Algorithm 5A guarantees full linear convergence: There
exist constants Ciy, = 1 and 0 < qiin < 1 such that the quasi-error product satisfies, for all
(L, k,j), (' k', j) e Qwith |’ k', j'| < |, k,J]|
kvj kv.] . |£vk’j|_|€,’k”j’| k,’j/ k,aj,
H, " 2,7 < Cin gy, Hy " 2, . (5.47)
The constants Cyy and qlin depend Only on Csiap, Crel, Cmons Corth, Ccéar 0, Greds asme dsym, qctr
Asym, and Ayig.

Three lemmas are required to prove Theorem 5.10. The characterization of R-linear convergence
from [BFM*23, Lemma 5 and 10] is the primary tool for the proof of Theorem 5.10; see (5.67)
below. The proof of Theorem 5.10 departs with the contraction of the quasi-error for the final iterates
of the inexact Zarantonello loop up to a remainder on the mesh level £. To this end, we define the
simplified weighted quasi-error

, . .y HY .
He = [l = a1+ y ne ™). Ze = [l — 25 M +y Le(25™)] forall (€&, j) € Q, (5.48)
where y > 0 is a free parameter chosen in (5.51) below. This quasi-error quantity satisfies contraction

up to a tail-summable remainder due to estimator reduction (5.40)—(5.41).

Lemma 5.11 (contraction in mesh level up to tail-summable remainder). Under the assumptions
of Theorem 5.10, there exists 0 < q < 1 such that the quasi-error product Hy Z from (5.48)
satisfies contraction up to a remainder Ry > 0,

He1 Zewi < gHeZe+q Ry forall (€+ 1,&,[) € Q. (5.49)

The remainder Ry satisfies

+M
Reew S HeZp and Y RY < (M+ 1) HZ 22 for all €, M € Ny with (+ M < €. (5.50)
=t

Proof. The proof consists of four steps.
Step 1 (choice of constants). Recall the constants 0 < g(6) < 1 from Lemma 5.9 and 2* > 0 and
0 < g < 1 defined in the statement of Theorem 5.10 and define the constants

2qer A
et Z 5 1and 0 < gepr =max{qeym + 4Csar C(7, 1) v, q(O)C(y, )}

C(y,) =1+
1_qctr Y

Elementary calculations show that the choice of

_ q(q — qsym)

<1 (5.51)
4 Cstab

ensures gsym C(y, ) +4 Csap ¥y C(y, )2 < laswellas, forall 0 < A < A*,

2 A 1-q 1 1
Clydy=t420 2 g9« (5.52)
1- getr Y q q CI(H) /
Consequently, we have ¢(6) C(y,1)? < 1 and thus 0 < Gl = C(¥,4) getr < 1 and gegr < 1.
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5 Optimal complexity of GOAFEM

Step 2 (contraction of Hy and Z;). Abbreviate A = Ao Asym. Recall that marking in Algo-
rithm SA(III) ensures that the estimate (5.40) or (5.41) hold. If (5.40) is satisfied, the quasi-contraction
of the inexact Zarantonello iteration (5.29) for the final iterate, the stability estimate (5.35), and the
estimator reduction (5.40) lead, for all (£ + 1,k, j) € Q“, to

(5.29) Y ’
Ht’+1 < gsym ”lu;.;.l - uﬁl E”l + C(’)/, /l) Y 775.,.1(142_1&)
(5.35)
< Gsym |||u;+1 - M%EIII +C(y, ) ynes (U%ﬂﬂ) (5.53)
(5.40)

< (goym +4 Cuar C(7, 1) ¥) M,y — up "M + q(0) C(y, ) y e (up™
< Gotr [}y — w2l +y ne(up" ™).

The same arguments yield, for all (€ + 1, u, v) € Q%,

(5.29) u-1l,y oy
Zeat < qemllzfy — 25, N+ COLD)y Lenlzs,)
(5.35) Wy oy
< qoymllzz, g = 27 M+ COn )y den(zg) (5.54)
.4

3-40) uy Hy
< COnA) [qenllzfey — 27 M +v ez )]

For 0 < gctr < gLy, = C(¥,A) getr < 1, the product of (5.53) and (5.54) reads

, , uy Hy
Heer Zest < C(ra ) qer [y, — g M+ vy me ) | [fy — 2 M +v Ze(z )]

(5.55)
’ > s M,V M,V
= o | )y =g M +y me D) 27y — 27 I+ Ze(zg )]

If (5.41) is satisfied, we obtain the same estimate with reversed roles in the derivation.

Step 3 (quasi-monotonicity of Hy; and Z,). The Céa estimate (5.11), nestedness of the discrete
spaces, reliability (A3), quasi-monotonicity (QM), stability (A1), and the definition (5.48) prove, for
all £ < < ¢ < with (£, m,n) € Q" and (£, u,v) € Q%, that

511 (A3) QW) AD o (548)
it~ s M =l S nerun) S mee) S ne ™)+l -2 O20 Wy, (5.56a)
5.11 (A3) QM) (A1) JTR% v, (5.48)
et —zall s M =zall 'S 2o (i) % e 'S 2@+l =221 %20 2, (5.56b)

where the hidden constants depend only on y‘l, Ccéas Cstabs Crel, and Cpon. A successive application
of (5.53), the quasi-monotonicity (QM), the geometric series, and (5.56a) show

M-1

(5.53) .
Heen < Geir Heant-1+ et Wefp =ty I < a2 How Y (a7 lluf, o =t 1)
= (5.57a)
5.56a
CLM, forall £, M € No with £+M < ¢.
Thus, we obtain from (5.54) that
(5.54) oy oy
Zeest < COa ) qen Nzfsns = Zipg M+ ¥ Leem-1(25 0 1) ]
(5.52)

Y
< maxglp, oo [Zeow + oy = o]
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5.5 Full linear convergence

and the analogous induction argument to (5.57a) shows quasi-monotonicity
Zeyy S Zp forall M € Ng with €+ M < L. (5.57b)

Step 4 (contraction of H; Z, up to tail-summable remainder). Define

MY HY
Re = Mgy = (W = 25 W+ Mz, = 260+ &)

m,n m,n
+llzpyy = Ze MMl = g ™ I+ M,y — whlll+y me (g™ ).
The contraction (5.55) proves the quasi-contraction (5.49) via

(5.55) m,n m,n .Y Ji4
Heet Zewr < @l [Mlufyy = uy M+ y me D) [z — 2 M+ v Ze(zp )]

< G (Mg = w4+ ey = wzll+y me(u™)]
x [z = 2 M+ Mgy = 220+ G2 )]
<q..HeZe+qL, Re.
The remainder term R, can be estimated by (5.56) and the Young inequality to show

(5.56)
2 2 272 2142
R < (W7 —ufl Ze + Wzzyy = 27N He)™ < Muzyy — upll® Z7 +lllz7,y — 27 P HZ. (5.58)

Thus, the quasi-monotonicity (5.57) verifies

(5.57)
Resms SHeame Zeay < HeZp forall ¢, M € Nwith € + M <£.

Quasi-orthogonality (A4), reliability (A3), and the estimates (5.56) imply, for all £, M € Ny with
C+M< ¢,

+M
a) _
lelu(nﬂ ”[/”lQ (M+1)1 ® lju* uglll2 (M+1)1 677((14[)2 (M+1)' 2 H,

=t
o+M (5.59)

(5.5
St -2 S (a1 2 =221 S ) 0 @2 % (1) 0 22,
=t

Using (5.58), the quasi-monotonicity (5.57), and (5.59), we conclude the proof of (5.50), for all
{,M e Ngwithé+ M < £,

£+M €+M {+M

(5.2
2 272 2142
ZR[, < Zmum1 |l Zf,+Z|||z[,+1 5 lI? H2,
=t
S 2€+M 2 2€+M 2( 1-6 142 72
<27 ) Mudyy = b P+ HE > llh g — 20l T MO o
o=t o=t

The tail-summability in £ provides the basis for the proof of tail-summability on the mesh level £
together with the Zarantonello symmetrization index k for the final iterates of the algebraic solver.
The main ingredients in the proof of tail-summability in (¢, k) are Lemma 5.11 and the following
quasi-contraction in the symmetrization index k.
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5 Optimal complexity of GOAFEM

Lemma 5.12 (quasi-contraction of inexact Zarantonello symmetrization). There holds

k,j_k'.j g k,j _k,j
H, "2, < g5 1,72, forall (€K', j) € Qwith0 < k <k <k[f],  (5.60)
0,j _0,j
H,*Z," < He1 Zeoa forall (€,0,0) € Q with € > 1. (5.61)

Proof. First, we note that the a posteriori error control (5.31) and the stopping criteria of the
algebraic solver (5.19) and of the symmetrization (5.20) lead, for (¢,m,n) € Q“, to

m,x m,n (S’;l m,n m,n—1 (5.19) m,n m,n m,0 (5.20)
[l | Muy = —uy= Ml S meCuy ™) +llluy ™ —ug

ne(u; ™) s He.
Since the two notions of quasi-errors Hy and H only differ by the middle term |||u - u%’ﬁlll and
the fixed constant factor 0 < y < 1, this and the analogous estimate for the dual varlable show

He<Hl<He and 2, <770 <70 forall (6k)) € Q. (5.62)

~

For0 < k < k" < m[{] < k[£] (i.e., the primal iteration stops earlier than the dual iteration), the
validity of the stopping criterion (5.19) for the algebraic solver and the failure of criterion (5.20) for
the inexact Zarantonello symmetrization prove that

K453 i k K,n-1 K.n

H, ™ < llluy —u, *I|I+|Ilu e, "+ e ()
(5-19i K- 'n K-1n K'.n
< uj —u, *|I|+|I|u T-u, M+ me(u, 7)) (5.63)
(5-20i N K'-1.n '
S Muy —u, *II|+|I|u Eou, R
(5.32) - 15 28) o —kikn

< —u, "l < QSym ey — *III S qsym H,

Moreover, for 0 < k < k' = m[{], stability (A1) and the estimate (5.37) verify

m,n(5.62) m,n m,n -1,n
H % 2 My — ug  + e (g ’) ||| wy —ug ™ — g B+ ne(uy %)
m-1,n m,n m-1,n (5.37) m-1,n (5.63) —_m[€]-1-k | k.n —_m[l]-k | ,k.n
S H? -t ”luff — U, < H? T3 Ysym Hg " = 4sym H[

—m[l]-k

For 0 < k < m[f] < k' < k[{], it follows H{, = H** < Gsym H “Finally, for m[£] < k <

k’ < k[£], we have ng,’ﬂ = H%m’ﬂ = H];’ . Notice that the same argumentation holds for the dual

quasi-error Zlg’Z in the remaining cases with u [£] < k[£] (i.e., the dual iteration stops earlier than
the primal iteration).

Since k[€] = m[£] or k[£] = u[£] by definition, we obtain, for all (£, %’,j) € Q with 0 < k <
K < k[, -

SIS ke = mle] o z’; <Akt itk = ple).

¢ S 9sym

H
K k.j
Furthermore, there holds H L < H and Z = < Z Lin any case. This yields (5.60) via

k', j
H[’

k', g k,j .
°Z, ! qum H zl,i forall (£,k’,j) € Qwith 0 < k < k' < k],
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5.5 Full linear convergence

where the hidden constant depends only on Cgtab, Asym, and Gy p,.

Nested iteration u%_’ 1= ug " and z, v Vl = z " ¥ and the estimates (5.56) yield, for all (£,0,0) € Q

with £ > 0,

0 ] . 62) @J (5.56) k ] . 62)
Moy = w= M+ e (s < My —wp_ll+H, 5 s Hee +H,” He-1,
0] (5.62) v v 5] (5.56) k.j (5 £2)
llzg =z, M+ Loz ) < Mep =z M+ 2,7 s Ze+ 2,7 Zo_1.
A multiplication of the two previous estimates proves (5.61). O

Finally, the quasi-contraction in (¢, k) from Lemma 5.12 together with a quasi-contraction in the
algebraic solver index j leads to tail-summability in (¢, &, j).

Lemma 5.13 (quasi-contraction and stability by algebraic solver). There holds
Hy ' 207 < gl THE 290 forall (6.k,j') € Qwith 0 < j < j' < j[€.k] (5.64)
and, with the abbreviation (m — 1), = max{m — 1, 0},

HO < 3RV and 780 < 323 forall (6,m,0) € @, (£,1,0) € Q% (5.65)

0,n 0,n 0./
Proof. We recall that u?’o =u,” =u, 0.% by definition and, hence, H0 0= H> ;= H,~. Nested
“ln. .
iteration u? 0= u'; * implies that

(5.30) -1,j
lloey™* = Ol < (qoym + 1) M) — )™ M <2 H  forall (¢,m,0) € Q.
Therewith, we derive (5.65).
The combination of a posteriori error control (5.30) for the exact Zarantonello iteration, for the
algebraic solver (5.31), and the failure of the stopping criterion (5.19) in Algorithm 5A(I.b.ii) for the
algebraic solver proves, for 0 < j < j" < n[f,m] < j[¢,m],

Hy < et - u;f“*m 2l = g W+ e )

(5.30) QSym m 1,j qsym
< a7 = g™ (2 ) —ug’|||+nz(u€ )
1- qdsym 1- qsym (5.66)
(5 | m—l,j , ’ _ r_q
™ = = T el O = )
(531 o1y GBS vy J
Sl — T = O G s~ s gl

For0 < j <n[f{,m] < j" < j[{,m], stability (A1) and contraction of the algebraic solver (5.15)
verify that

g’ m, ;{ m,n—1 m,n m,n—1 Kk m,n—1 m,n
H = H,” illug wp M+ e, =™+ e My —uy = W+ e (™)
(AD m,n—1 m,n m,n—1
= Hg -t (2 + Cstab) ”lug T U, |"

3D a1 x _ mnl o 1 G00) nel-j
SHT g = s TS g
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5 Optimal complexity of GOAFEM

For n[¢,m] < j < j < j[£.m], it holds that H}"/ = H}"™*
JLE k] =v[t k], we have, for all (¢, k, j’) € Qw1th0 <j<j

Since ][{’ k] = n[¢, k] or

HJ
"< I k],

m
14
z

Hy' < gle/ Wit jIe k] = nlt k] o Zy) < gl Zp7 it jle k] = v[e.k].

4 ctr ctr

k,j k,j’ k,j k,j" . ;
Furthermore, we have H p T <H ¢ 7 and Z ¢ 1 <7 ‘ 7 in any case. Hence, we obtain

ctr

HES 250 < gl HET 2577 forall (6,k, j) € Qwith 0 < 7 < | < jle. k],

where the hidden constant depends only on gsym, Asyms Gctrs Aalg> and Cggap. O

Ultimately, synthesizing the preceding lemmas yields tail-summability of the quasi-error product
and thus leads to the following proof of Theorem 5.10.

Proof of Theorem 5.10. The proof consists of four steps.

Step 1 (tail-summability in mesh level £). We apply the tail-summability criterion from [BFM*23,
Lemma 5] to the sequences a; = H; Z; and b, = q, R,. Therein, it is shown that R-linear
convergence is equivalent to tail-summability and that, for tail-summability, it is sufficient to
guarantee

+M
arr1 < qag+be, bey < Ciag, and Z b7 < Co (M +1)'7%a7 forall ¢, M € Ny. (5.67)
=t

Indeed, contraction up to a remainder from (5.49), the estimate of the remainder from (5.50), and
the quasi-monotonicity of Hy and Z, from (5.57) validate the assumptions of the tail-summability
criterion (5.67) and lead to tail-summability

-1
Z He Ze < HeZe forall (k. j) € Q. (5.68)
'=t+1

Step 2 (tail-summability in (¢,k)). For (¢, k, Z) € @, the estimates (5.60)—(5.61) and the
geometric series prove tail-summability

Kl¢] CoKCl L
J kg
= 2 Mzt 3 DMz,
('K, j)eQ =k+1 '=C+1 k’'=0
€7,k 1> 1€k j]
(5.60 £ 561) (5.69)
60)  kjo_kj NV 0. 0]( ,j
< HIZ e Y otz ZHf,zf,
'=(+1
(5.68) K, (5.62) k,j
SHLZ in, 7, T WL
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5.6 Optimal complexity of Algorithm 5A

Step 3 (tail-summability in (¢, k, j)). Finally, for all (¢, k, j) € Q, we observe that

JlLe.k] k[e] JlE.K'] k[ 7K
HET Zg T = 3 Wz ) Z H’”Z“+Z Z 2 e
('K ,j)eQ J'=j+l K'=k+1 j'= =(+1 k'=0  j'=0
|67,k j 1>k, ]
(5.64 kil £ H]
k.j 5k, ’ / ’ ’
i_|1 j+ZHkOZk ZZHkOZk
k'=k+1 =(+1 k’=
(565 1 i ki K,j k'J(5-6) ki ok k1(56) k.j —k.j
5] ] L A sJ o >J sJ
SHEI 79 Hy, 22y, L U Wi 28T Wtz TS i 7k
(.1 j)eQ
167,k 1> 1€,k ]

Step 4. Since the index set Q is linearly ordered with respect to the total step counter |-, -, |,
tail-summability in Step 3 and the equivalence of tail-summability and R-linear convergence
from [BFM*23, Lemma 10] conclude the proof of (5.47) in Theorem 5.10. m]

5.6 Optimal complexity of Algorithm 5A

Full linear convergence (5.47) has a simple but crucial consequence. Using a geometric series
argument, one can prove that the cumulative computational cost up to a given level is bounded by
the cost of the said level; see [BFM*23, Corollary 14], where only the primal quasi-error ng’] has

to be replaced by the quasi-error product H';’j Z’;’j . As a consequence, the convergence rates with
respect to the number of degrees of freedom (defined as M (r) in (5.70) below) and the rates with
respect to the overall computational cost (cf. (5.26) and the discussion following the statement of
Algorithm 5A) coincide.
Corollary 5.14 (rates = complexity [BFM*23, Corollary 14]). Suppose the assumptions of
Theorem 5.10. For all r > 0, the output (7¢)¢en, of Algorithm 5A satisfies

rogk,j k. j Tk jok,j
M(r) = sup (#7) HYZ8 < sup > #7;,) HYIZET < Cooq (M (r),
(f,k,j)EQ (f,k,J)EQ ({’,k,,j/)eQ
|£,’k,’j,lslf’k’j|
(5.70)
with the constant Ceost (1) = Ciin/ (1 — qllu/lr)’ > 0. O

While Theorem 5.10 only concerns R-linear convergence, a sufficiently small choice of the adaptivity
parameters 0, Asym, and A, even guarantees the optimal convergence rate r = s + ¢ with respect to
computational cost, i.e., the overall computational time. Here, we suppose that the primal solution
u* to (5.5) can be approximated at rate s and the dual solution z* to (5.8) can be approximated at
rate ¢. To formalize this idea, we introduce the notion of approximation classes [BDDO04; Ste07;
CKNSO08; CFPP14]. For s,t > 0, define
|u*||s, = sup ((N + 1) mln nopt(uopt)) lz*||a, = sup ((N +1)" min {Opt(zgpt)),
NeNg €Ty NeNg Topt €T

where 17opt(+) and {op(-) denote the estimator values for the exact discrete solutions M;pt and z’o"pt
on the unavailable optimal triangulations 7oy € Ty (7). We stress that [|u*]|, and [|z*||4, can
equivalently be defined by energy error plus data oscillations [FFP14; CFPP14].
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5 Optimal complexity of GOAFEM

Theorem 5.15: optimal complexity

Suppose that the estimators n and { satisfy (A1)—-(A3") and (QM) and suppose quasi-
orthogonality (A4). Recall /l;"]g from Lemma 5.5 and 1* from (5.46) in Theorem 5.10. Define
the constants

Aym = min{L, Cofy Ca} <1 with  Cupg = - _Zsym (12_(]2; St dom), s
0* =(1+C2,C2) <1
Suppose that 6, Asynm, and Ay are sufficiently small in the sense of
0<dag <Ay 0<Aym <A, and  Aug dgym < A%,
0 <o (012 + Agym/Am)? . (5.72)

(1 - /lsym//l;(ym)2

Then, Algorithm 5A guarantees, for all s,t > 0, that

St kg ok, * * 0,0 50,0
sup #T¢)  H7 2,7 < Cope max{||u™|la, 1275 |a,» Hy™ Zy} (5.73)
([,k,])EQ ([",k',j’)eQ
[,k j' | <]C,k, ]|

The constant Copt depends only on Cygp, Crel, Carel: Cmarks Cmeshs Clins @lin, #70, and s +1t. In
particular, there holds optimal complexity of Algorithm 5A.

The proof of Theorem 5.15 employs the following result from [BIM*24b] providing estimator

equivalence between the (unavailable) estimators for the exact discrete solutions u;, z’t’f and the

. . . mn MY
estimators at the computed approximations l/t? -, ZE .

Lemma 5.16 (estimator equivalence [BIM*24b, Lemma 15]). Recall the constants /ls*ym, Cag >0
from (5.71) and /l;*lg > 0 from Lemma 5.5. Then, for all 0 < 6 < 1, 0 < Ayg < /l;*lg,
0 < Agym < Ay, it holds that

sym’

(1_/lsym//l:ym) 776’(”%,2) < 775(”?) < (1+/lsym//l:ym) 775(”%’2) for all (¢, m, ﬂ) e Q"

* MY * * H,Y. z (574)
(1_/lsym//lsym) {[(Zz ) S gf(Z[) S (1+/lsym//lsym) gf(zz ) for all (f’ /_l, Z) € Q .0
Proof of Theorem 5.15. By Corollary 5.14, it suffices to prove that, for any s, > 0,
sup  (#77)"" ng’j Zlg’j < max{|lu*||a, 12" |l4,, Hg’o Zg’o}. (5.75)

(C,k,j)eQ

Since the inequality becomes trivial if either ||u*||a, = oo or ||z*]|s, = oo, we may assume
lu*|la, Iz*¥]la, < co. The proof consists of three steps.

Step 1. With 0 < Omark = (012 + Agym/A%m)% (1 = Adgym/A%,m) ~2 < 6%, the validity of (A3*) for

sym sym
both estimators and [FGH" 16, Lemma 14] guarantee the existence of sets Ry € Tpr with 0 < ¢/ < ¢

146



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.6 Optimal complexity of Algorithm 5A

such that
s -1/(s
#Re < (¥ lla, 112%1e,) ) e ) 2o (23)] 7O, (5.76a)
Omark ne (u;') <ne (Rt”» MZ,) or  Omark {f’ (Z;;) < gf’ (Rt", Zz,). (576b)

For 0 < ¢’ < ¢, the estimator equivalence (5.74) in Lemma 5.16 leads to

, Hy
(1 - Asym//l:ym) 775'(14% E) < 77[’(”;/) and (1 /lsym//lqym) {f’(ZZ/ ) < gff(Z;/)

and consequently with (5.76a) to

, 1
#Rer < (L, 1z a,) S [ ™) o2 0. (5.77)
Note that the stopping criteria (5.20) and (5.22) lead to

> ny 020 , Ky wy, G wy
He = lllup, —uy  l+ne (uy™) < ne(uy™)  and  Zp = |l2h -2, W+4e () < Co(2p)
and with (5.61) to
0,j _0,j (56)
Hp Zosy s HeZe s ne(uy ){f’(zgr ). (5.78)

Hence, the combination of (5.77) and (5.78) reads

1 -1/( +t)
#Re s (s, W, ) O [Hpt, 2o )7

(5.79)

Step 2. Recall from [BGIP23, Theorem 8] that the set Ry satisfies the Dorfler criterion from
Algorithm 5A(III) with the same parameter 6. The quasi-minimality of M, implies

H M < Crark #Rpr forall 0 < € < € (5.80)

with the constant Cpx > 1 from Algorithm 5A.
Step 3. Let (£, k, j) € Q. Full linear convergence (5.47) from Theorem 5.10 yields that

(Hk g Zk' J') l/s(sg7)(ng’j Zlg»j)—l/s Z (ql/s)|€k]| 1€k, j’| < (Hk] Zk ]) l/s

(¢ K ,j)eQ (K ,j)eQ
|€I’kl’j,|S|€’k’j| |[,’k,’<i,|S|€’k’.i|
(5.81)
NVB refinement satisfies the mesh-closure estimate [CFPP14, Eqn. (2.9)] reading,
-1
#T7 — #T5 < Cresh Z #M,p  forall £ >0, (5.82)
/=0

where Cpesn > 1 depends only on 75. Thus, for (£, k,j) € Q, we have by the mesh-closure
estimate (5.82), quasi-optimality of Dorfler marking (5.80), and the result (5.81) that

1 0,j S0, \-1
#T¢ — #T Z#M[/ Z#Rf, ||”*||As 12*114,) [(s+1) Z 0L 701 /(s+1)
[l_
1 KL ki —
SWWMMWMMW) D mJZJ)mm>

(L',K,j)eQ
|£,’k,’j,|S|€’k’j|

(5.81) . e
< (HM*HAS ”Z*”A,) /(S+t)(H€ J Z[ ]) 1/(s+t)‘
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5 Optimal complexity of GOAFEM

Rearranging the terms and noting that 1 < #9; — #9, implies #7; — #7 + 1 < 2 (#T¢ — #7),
we obtain, for £ > 0, that

(#T2 = #T5+ 1) Hp ! Zp7 < e, 122 La, - (5.83a)
Moreover, full linear convergence (5.47) proves that
(H#T5 — #To + 1) HEY Z57 = HE 287 < )0 200 (5.83b)
We recall from [BHP17, Lemma 22] that, for all 7, € T, it holds
#Te —#T0+1 < #T¢ < #To (#Te - #To + 1). (5.84)

This shows, for all (¢, k, j) € Q,

k.j —k.j (5.84) k.j —k.j (5.83) 0.0 0.0
TP HET 20T (T = 4T+ P HET 207 7S masc{ [, 1L, MO Z6°)

and concludes the proof of (5.75). O

5.7 Numerical examples

In this section, we present numerical experiments using the open source software package
MooAFEM [IP23]'. In the following, Step (I) and (II) of Algorithm 5A employ the optimal
hp-robust local multigrid method from [IMPS24] as an algebraic solver. If not explicitly stated
otherwise, we choose the parameters 6 = 0.5, 6 = 0.5, Adsym = Aag = 0.7 in Algorithm 5A throughout
the numerical experiments.

5.7.1 Singularity in the goal functional

The first model problem is a nonsymmetric variant of the benchmark problem from [BGIP23,
Section 4.1] with a singularity only in the goal functional. On the unit square Q = (0,1)? c R?, we

consider
-Au* +x-Vu*+u*=f inQ subjectto u*=0 ondQ, (5.85)

where the right-hand side is chosen such that the exact solution u* reads
u*(x) = x1x2 (1= x1) (1 - x2).
Consider g =0 and g = yx (1,0)" in the quantity of interest

Gu*) = ‘/K Oy u* dx =11/960 with K = conv{(1/2,1), (1,1/2), (1,1)}.

Figure 5.2 (left) displays a mesh generated by Algorithm 5A and the support K of g. The error
estimator captures and resolves the two point singularities induced by G.

TAll experiments presented in this paper are reproducible with the openly available software package under https:
//www.tuwien.at/mg/asc/praetorius/software/mooafem.

148


https://www.tuwien.at/mg/asc/praetorius/software/mooafem
https://www.tuwien.at/mg/asc/praetorius/software/mooafem

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.7 Numerical examples

5.7.2 Geometric singularity and strong convection

The second benchmark problem investigates Q = (=1,1)? \ conv{(0,0), (=1,0), (=1,-1)} c R?
with the Dirichlet boundary I'p, = conv{(-1,0),(0,0)} U conv{(0,0), (-1,—1)} and Neumann
boundary I'y = 9Q \ I'p; see Figure 5.2 (right) for a visualization of the geometry. We consider

—Au* +(5,5)T -Vu*=1inQ subjectto u*=0onTpandVu*-n=0onTy. (5.86)

Consider g =0 and g = ys (1,1) T in the quantity of interest
Gu™) = /(9xlu* +0p,u*dx  with S = (=1/2,1/2)> N Q.
S

The exact solution u* is not known analytically in this case so that we do not have access to the exact
goal error |G (u*) — G[(Lt%’ﬂ, Z%Z)L Figure 5.2 (right) shows a mesh generated by Algorithm 5A as
well as the configuration, i.e., the support S of g in blue, the Dirichlet boundary in red solid lines,
and the Neumann boundary in green dashed lines.

1] . 1 a
0.5 - 0 -
0 - -1 o
| | | | | |
0 0.5 1 -1 0 1

Figure 5.2: Left: Mesh 775 for the problem (5.85) generated by Algorithm 5A with #7715 = 2315.
Right: Mesh 775 for the problem (5.86) with #71g = 2130, where the Dirichlet boundary
part I'p is marked by red solid lines and the Neumann boundary part I'yy by green
dashed lines.

Optimality of Algorithm 5A. Figure 5.3 displays the estimator product 7, (u?’ﬂ) Ze(22%) and

the goal error |G (u*) — Gg(ut,m’ﬂ, zg’z)l from (5.17) for the problem (5.85), due to higher-order
approximations, we only show results prior to machine precision. For all investigated polynomial
degrees p, the goal error and the estimator product are indeed equivalent. Algorithm 5A achieves the
optimal rate —p with respect to the cumulative computational work and with respect to the cumulative
computational time in Figure 5.3 for problem (5.85) and Figure 5.4 for problem (5.86). Figure 5.5
shows that the proposed algorithm indeed achieves linear complexity and is substantially faster
than the MATLAB built-in direct solver as the slightly larger slope of the latter indicates super-linear
complexity. Table 5.2 displays the weighted costs

s .y . v\
@I G Y, wine k) (5.87)
(¢',K',j")eq
0K <16k
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Figure 5.3: Convergence history plot of estimator product ng(u%’ﬂ) Le(z2%) indicated by bullets
and goal error from (5.17) indicated by diamonds with respect to the cumulative
computational work (left) and with respect to the cumulative computational time (right)
for the benchmark problem (5.85).

of Algorithm 5A for polynomial degree p = 2 with time(¢’, k’, j’) in seconds and highlights the
corresponding optimal choices of the parameters. This justifies the selection of 8 = 0.5 together
with larger symmetrization parameter Asyy, = 0.7, and algebraic solver parameter Ay, = 0.7. The
table for the second benchmark problem from (5.86) leads to similar results and is therefore omitted.
While the choice of the damping parameter 0 < § < 2a//L? in (5.13) is crucial in the case of large
convection to guarantee the contraction property (5.14), the adaptivity parameters appear more
robust with respect to other coefficients in (5.4).

Finally, in Figure 5.6, we display the number of total solver steps |£,m,n| — |£,0,0| resp.
|€, i, v| — |£,0,0] on each mesh level for both benchmark problems (5.85) and (5.86). The plots
show that the two iterations often stop after the same number of steps.

5.8 Summary

In this work, we developed a cost-optimal goal-oriented adaptive finite element method for the
efficient computation of the quantity of interest G («*) with solution u* to the general second-order
linear elliptic partial differential equation (5.4). Since the current analysis of iterative algebraic
solvers for nonsymmetric systems with optimal preconditioner only leads to contraction of the
residual in a vector norm, we proposed a nested iterative solver for the primal and dual problem in
parallel. The strategy consists of the Zarantonello iteration (5.13) as an outer solver loop and an
optimal multigrid solver for the arising SPD system as an innermost solver loop. In recent own
work [BEM*23], we have shown that the link between convergence rates with respect to the degrees
of freedom and the total computational cost is full linear convergence of the quasi-error H’;’] ZI;” . To
this end, Theorem 5.10 shows that the proposed adaptive algorithm contracts (up to a multiplicative
constant) the quasi-error product H,I;’] Z’;’J in every step, independently of the algorithmic decision to
employ mesh refinement, symmetrization, or the algebraic solver. A particular problem in the analysis
is that the nested iterative solver procedure only guarantees contraction as long as 1 < k < k[{],
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Figure 5.4: Convergence history plot of estimator product ng(u;ﬁ’ﬂ) Ze (%) with respect to the

cumulative computational cost (left) and the cumulative computational time (right) for
the benchmark problem (5.86).
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Figure 5.5: Comparison of cumulative time of the local multigrid solver with the MATLAB built-
in direct solver m1divide with respect to the cumulative computational cost for the
benchmark problem (5.86).
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primal
[¢] p=1
20 0000 3 — ® o o
@ @ [:] p=3
o o
2 g 6} 6 8 @ 8660000 o | dual
o) b5y 4 p=1
> >
= 5 ® o ® ® o p=3
w2 w2
Gy Gy
o o 4+ ¢ ® 800 o 0 -
- -
2 2
=) =) (<] 000
= =]
= =
= = 2| °e 0 ®0 0 o 0 0 -
E E
o o
- -
1+ O O O 0803COIDAO OO0 D OO0 | ¢ O 0 0 000 ¢ ©
AT RN RETIT| B AR ETTT AR T B AW R ETIT] B SR T1T MW WUTT RN TTT| R E R ETTT AT 1T BN R I N SR ET1T W
102 10® 10* 10° 108 107 108 102 10® 10* 10° 108 107 108

Zier ke jrl<1e.k,j) Aim X Zjer ke jrl<1e.k, ) Aim X

Figure 5.6: Number of total solver steps |£,m,n| — |£,0,0] resp. |€, u, v| — |¢, 0, 0] on each mesh

level for the benchmark problems (5.85) (left) and (5.86)?right).

1077 0=0.1 0=03 0=05
/lsym
01 03 05 07 09 01 03 05 07 09 0l 03 05 07 09
/lalg
0.1 387 334 296 (220 244 102 512 490 483 (474 618 (448 466 489 525
03 362 247 245 (218 231 728 498 353 327 (326 (418 454 479 501 513
0.5 243 247 247 (234 236 584 364 339 (327 337 341 271 252 [249 2.68
0.7 241 248 238 (222 240 495 359 330 (325 342 274 235 241 224 246
0.9 235 246 (223 244 238 490 358 329 (326 341 281 230 243 (227 241
6=0.7 6=08 6=0.9
0.1 582 [518 543 540 593 853 (610 731 667 777 116 886 9.12 987 997
03 465 486 535 598 667 627 [592 720 746 757 862 (840 927 106 115
05 360 289 [288 295 313 509 (361 3.66 3.63 366 727 532 (484 493 512
07 299 [256] 264 262 289 375 312 323 (303 3.1 458 395 404 443 479
0.9 289 (249 265 266 289 379 311 319 313 327 467 (406 416 435 4.6l
Table 5.2: Optimal selection of parameters with respect to the cumulative computational costs
(overall computation time in seconds) for the experiment (5.85) with fixed polynomial
degree p = 2 and ¢ = 0.5. For comparison, the table displays the value of the weighted
. _ . . . m,n HY —
costs from (5.87) (in 10~7) with overall stopping criterion ne(u, =) Le(u, ") <5-10 10
for various choices of Agym, dalg, and 6. For each 6-block, we mark the row-wise optimal
values in blue, the column-wise optimal values in yellow, and in green if both optimal
values coincide.
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5.8 Summary

whereas contraction for the final iterate is only guaranteed up to an estimator term (cf. (5.29)).
Another difficulty arises from the nonsymmetric setting with a quasi-Pythagorean estimate (5.18)
replacing the usual Pythagorean estimate. Therefore, the proof of Theorem 5.10 employs the
equivalence of R-linear convergence and tail-summability of the quasi-error product H J Z / and
leads to mild restriction on the product Agym A4 Of the involved solver stopping parameters. The key
ingredients to cost-optimality are an adaptive mesh-refinement algorithm with optimal convergence
rate with respect to the number of degrees of freedom (under the assumption of exact solution) and
an algebraic solver for the linear system of equations that is contractive with respect to the underlying
Sobolev norm. In this regard, the analysis in this paper may guide the generalization to conforming
discretizations of vector-valued elliptic problems. Finally, the numerical experiments in Section 5.7
suggest that the proposed strategy allows for large stopping parameter in practice and that a larger
choice is beneficial in terms of total runtime. Admittedly, the development of an optimal solver for
the nonsymmetric problem (5.10) would allow to prove full linear convergence with an arbitrary
selection of the stopping parameter.
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