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We present a fundamental improvement of a high polynomial degree time domain cell method 
recently introduced by the last three authors. The published work introduced a method featuring 
block-diagonal system matrices where the block size and conditioning scaled poorly with respect 
to polynomial degree. The issue is herein bypassed by the construction of new basis functions 
exploiting quadrature rule based mass lumping techniques for arbitrary polynomial degrees in two 
dimensions for the Maxwell equations and the acoustic wave equation in the first order velocity 
pressure formulation. We characterize the degrees of freedom of all new discrete approximation 
spaces we employ for differential forms and show that the resulting block diagonal (inverse) 
mass matrices have block sizes independent of the polynomial degree. We demonstrate on an 
extensive number of examples how the new technique is applicable and efficient for large scale 
computations.

1. Introduction

When solving time dependent initial boundary value problems for hyperbolic partial differential equations such as the Maxwell 
system or the acoustic wave equation, the most used choice for the space discretization is finite differences (usually the second order 
accurate version, on staggered grids). This is due to their massively parallelisable nature and the fact that they are easy to implement. 
Especially the first point is of great importance for the simulation of large scale problems, e.g., in the context of seismic imaging or 
the simulation of electromagnetic waves in photonic crystals [1,2]. Nevertheless, since the work of Hesthaven & Warburton [3] on 
discontinuous Galerkin (DG) Finite Element Methods (FEM) there has been a revitalized enthusiasm in using variational methods to 
discretize the Maxwell system in a way that leads to block diagonal mass matrices even on unstructured grids.

The present manuscript fits in this framework and, while building originally on low order Finite Integration Techniques (FIT, 
[4,5]), is a instead high-order accurate like the DG approach and acts as a follow up on a recent paper [6] by three of the present 
authors. There a new high order discontinuous Galerkin (DG) method on primal-dual unstructured grids was introduced for the 2D 
Maxwell equations. The method can be used to efficiently discretize (electromagnetic and acoustic) wave equations in first order 
form. One of the two unknown fields is discretized in a piecewise conforming way on the original, also called primal, triangulation 
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Fig. 1. From left to right, we first mesh the unit square Ω = (0, 1) × (0, 1) leading to the triangulation ℎ (we show one triangle 𝑇 ∈ ℎ). We then construct the 
barycentric-dual complex: 𝑇̃ ∈ ̃ℎ is dual to a vertex in ℎ . We show in light gray the case of a dual cell corresponding a to a vertex on the boundary of Ω and in 
darker gray a dual cell for an internal vertex. We finally highlight the resulting quadrilateral mesh ℎ where we emphasize a micro-cell 𝐾 . (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

while the other, which we will refer to as the dual unknown, is piecewise conforming on a barycentric dual, generally polygonal, 
mesh. This approach, although unconventional, has several enticing features:

1. There is no need to penalize jumps in the solutions or numerically (i.e., artificially) dissipate energy to achieve spectral correct-

ness of the method (as for some DG approaches, e.g., [3]).

2. Similarly to DG methods, it leads to block diagonal mass matrices which provide the amenability to parallelization for HPC 
implementations.

On the other hand, open problems remain. The main drawbacks of the previously published work were the following:

1. The blocks in the discrete mass matrix for the dual unknown grow in size with polynomial degree considerably due to the 
potentially many elements in the original mesh sharing a vertex and the conformity conditions across edges. This is, for example, 
not the case for the original DG approach which has small fixed size blocks in the mass matrix when increasing the polynomial 
degree, due to the use of orthogonal polynomials as basis functions.

2. the local monomial basis used for approximating both primal and dual unknowns is dramatically ill-conditioned for increasing 
polynomial degree 𝑃 , spoiling 𝑃 –refinement approaches, which is exactly the setting in which DG methods are supposed to 
shine.

Fortunately, neither of the aforementioned drawbacks is inherent to the method. Both depend on the choice made for local 
approximation spaces and their basis functions. By focusing on the quadrilateral mesh generated by the intersection of primal 
and dual meshes, we can recast the method as a DG-FEM method using quadrilaterals as the basic domain of definition of its 
approximation spaces. With respect to [6], we switch from the space 𝑃 (𝐾) of bivariate polynomials of total degree at most 𝑃 to the 
space 𝑃 (𝐾̂) of polynomials of degree at most 𝑃 separately in each variable on the reference square 𝐾̂ . Subsequently we compose 
the polynomial basis functions on 𝐾̂ with appropriate push-forwards to generic quadrilaterals 𝐾 to obtain a basis on the physical 
primal and dual elements.

After a brief recap of the main ingredients in Section 2, we show how the new formulations address both issues in Section 3. 
Numerical examples validate the improved convergence and efficiency of the new approach in Section 4 and conclusions are thereby 
drawn in the final section.

2. Mass lumping on barycentric dual meshes

In the present section we provide the notation and basic ingredients for our formulations. We first introduce dual meshes in 
Section 2.1. Once the quadrilateral nature of the global mesh given by the dual cell method is established, we define polynomial 
approximation spaces on a reference square in Section 2.3. Finally, we provide the recipe to push-forward and glue the local basis 
functions into global DG spaces similar to the ones presented in [6].

2.1. Barycentric-dual meshes

We assume a triangulation ℎ of the spatial domain Ω ⊂ 𝐑2 (in the sense of [7]) to be available such that ∪𝑇∈ℎ𝑇 = Ω, where 
the overline denotes the closure of a set. We make the usual assumptions on conforming meshing of discontinuities in the material 
parameters and call this starting mesh the primal mesh when necessity arises. We construct in fact a dual mesh for ℎ which we 
denote by ̃ℎ. We perform the construction as in all previous related work on the cell method by taking centroids of triangles as 
dual vertices and connecting them through segments to the midpoints (centroids) of (primal mesh) edges. If a primal edge is part 
of 𝜕Ω there is only one such segment originating from the midpoint of the edge. If this is not the case, the union of any two such 
segments meeting in the centroid of an edge is a poly-line. We call both cases a dual edge, noting that this procedure builds a natural 
isomorphism between primal and dual edges. To complete the construction we obtain a family of two-dimensional sets, called dual 
2

cells since they are not necessarily triangles. In fact for each vertex in the interior of Ω the corresponding dual cell 𝑇̃ ∈ ̃ℎ is a 
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(generally non-convex) polygon bounded by dual edges (e.g., the darker gray cell in the second panel of Fig. 1). For each vertex 
in 𝜕Ω there are instead exactly two edges originating from this vertex. The segments connecting the vertex to their midpoints then 
complete the boundary of the dual cell (e.g., the lighter gray cell in the second panel of Fig. 1). The barycentric dual procedure 
outlined above results in a third derived quadrilateral mesh, which is what we are ultimately going to discretize the target partial 
differential equations with and which we denote by ℎ. We will also call the quadrilaterals in these mesh micro-cells, to distinguish 
them from the primal and dual cells.

We introduce local coordinates for the vertices 𝐯1
𝐾

, 𝐯2
𝐾

, 𝐯3
𝐾

, 𝐯4
𝐾

∈ℝ2 for each quadrilateral subdomain 𝐾 ∈ℎ (located e.g., as 
in the rightmost panel of Fig. 1) resulting from a non empty intersection of a primal and dual cell. Without loss of generality we 
always choose 𝐯1

𝐾
to coincide with a vertex of the primal mesh and the remaining vertices arranged following a counter-clockwise 

loop around the quadrilateral. This implies that 𝐯3
𝐾

(which in conjunction with 𝐯1
𝐾

uniquely identifies the quadrilateral 𝐾) is always 
the centroid of a triangle in the primal mesh. A physical quadrilateral is then uniquely determined by the continuous and invertible 
bilinear mapping 𝐅𝐾 ∶ 𝐾̂ ∶= [0, 1]2 → 𝐾 , that sends vertices of the unit square into vertices of 𝐾 , i.e., the unique vector valued 
mapping 𝐅𝐾

𝐅𝐾 (𝜉, 𝜂) ∶= (1 − 𝜉)(1 − 𝜂)𝐯1
𝐾
+ 𝜉(1 − 𝜂)𝐯2

𝐾
+ 𝜉𝜂𝐯3

𝐾
+ (1 − 𝜉)𝜂𝐯4

𝐾
, (1)

which we remark being a standard mapping choice for quadrilateral finite element families (the other being the choice of [−1, 1] ×
[−1, 1] as a reference square domain). We denote by 𝐝𝐅𝐾 the Jacobian matrix associated to 𝐅𝐾 , i.e. the 2 × 2 matrix:

𝐝𝐅𝐾 =
⎛⎜⎜⎝ (𝐯2𝐾 − 𝐯1

𝐾
)(1 − 𝜂) + (𝐯3

𝐾
− 𝐯4

𝐾
)𝜂 (𝐯4

𝐾
− 𝐯1

𝐾
)(1 − 𝜉) + (𝐯2

𝐾
− 𝐯3

𝐾
)𝜉
⎞⎟⎟⎠ ,

and 𝐽𝐾 = 𝐽𝐾 (𝜉, 𝜂) its determinant, which is a bilinear polynomial in 𝜉 and 𝜂.
Since the parametrization 𝐅𝐾 and its inverse are smooth on each quadrilateral, we may define several pushforwards (and pullbacks) 
for scalar and vector valued functions under change of coordinates from (and to) the unit square to (and from) the physical quadri-

lateral. The following standard definitions, well known from the FEM literature on de Rham sequences of Finite Element spaces (such 
as [8]) apply locally:

𝑢(𝑥, 𝑦) ∶= 𝜄grad
𝐾

(𝑢̂) ∶= 𝑢̂◦𝐅−1
𝐾
, 𝑢̂ ∈ 𝑄̂𝑃 ,

𝒗(𝑥, 𝑦) ∶= 𝜄curl
𝐾

(𝒗̂) ∶= (𝐝𝐅𝐾 )−⊤(𝒗̂◦𝐅−1
𝐾
), 𝒗̂ ∈ [̂𝑃 ]2,

𝒘(𝑥, 𝑦) ∶= 𝜄div
𝐾

(𝒘̂) ∶= 𝐽−1
𝐾

(𝐝𝐅𝐾 )(𝒘̂◦𝐅−1
𝐾
), 𝒘̂ ∈ [̂𝑃 ]2,

(2)

where the overhead hat denotes fields defined on the reference square and we denote the space of scalar valued polynomials of 
degree 𝑃 with ̂𝑃 and 𝒗, 𝒘 and 𝑢 are vector (in boldface) and scalar valued square-integrable functions on 𝐾 . The superscripts grad, 
curl, and div, are due to the fact that the three pushforwards are designed to respectively preserve point values, tangential traces and 
normal traces of their argument function under changes of coordinates. Since the mappings in Eq. (2) are invertible, we can then 
easily deduce the expression of the pullbacks through algebraic inversion.

2.2. Mass-lumped inner products

In the following we define the approximate (mass lumped) inner products we use in our numerical method. We start by consid-

ering the closed interval 𝐼 = [0, 1] and the Legendre–Gauss–Radau (LGR) quadrature nodes with fixed endpoint in the local variable 
𝜉 ∈ 𝐼 , which consist of 𝑃 + 1 points {𝜉𝑖}𝑃𝑖=0. They are standard in the literature (e.g. in [9, Chapter 10.6]) and we assume the points 
to be sorted in ascending order with 𝜉𝑃 = 1. These nodes, with appropriate weights {𝑤𝑖}𝑃𝑖=0, are computed such that integrals of 
polynomials of degree 2𝑃 are exactly computable on the unit interval, i.e., if 𝑓 (𝜉) is a polynomial of degree at most 2𝑃 there holds

1

∫
0

𝑓 (𝜉) d𝜉 =
𝑃∑
𝑖=0
𝑤𝑖𝑓 (𝜉𝑖). (3)

We define a second set of LGR nodes on the interval [0, 1], namely the set {𝜉𝑖}𝑃𝑖=0 by 𝜉𝑃−𝑖 = 1 −𝜉𝑖. Through obvious symmetry 
arguments the second, dual set has the same approximation properties as the primal one for numerical integration, when provided 
with the corresponding dual weights {𝑤̃𝑖}𝑃𝑖=0 (in fact 𝑤̃𝑖 =𝑤𝑃−𝑖).

We can use {𝜉𝑖}𝑃𝑖=0 to define an interpolatory polynomial basis in a straightforward way: the 𝑖-th Lagrangian polynomial of degree 
𝑃 based on the primal LGR quadrature nodes, denoted as 𝓁(𝑖)

𝑃
(𝜉), is defined as the unique polynomial of degree 𝑃 such that

𝓁(𝑖)
𝑃
(𝜉𝑗 ) = 𝛿𝑖𝑗 ,

where 𝛿𝑖𝑗 is the Kronecker delta. We can likewise define ̃̂𝓁(𝑖)
𝑃

∈ 𝑃 (𝐼) with the analogous Kronecker delta property: ̃̂𝓁(𝑖)
𝑃
(𝜉𝑗 ) = 𝛿𝑖𝑗 . 

Next, we consider the tensorization of these Lagrangian polynomials to extend them from one to two variables (i.e., from 𝐼 to 𝐾̂). 
To construct the tensorized Lagrangian polynomials, we define the tensor product of two one-dimensional Lagrangian polynomials 
3

𝓁(𝑖)
𝑃
(𝜉) and 𝓁(𝑗)

𝑃
(𝜂)
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𝓁(𝑖,𝑗)
𝑃

(𝜉, 𝜂) = 𝓁(𝑖)
𝑃
(𝜉)𝓁(𝑗)

𝑃
(𝜂),

̃̂𝓁(𝑖,𝑗)
𝑃

(𝜉, 𝜂) = ̃̂𝓁(𝑖)
𝑃
(𝜉) ̃̂𝓁(𝑗)

𝑃
(𝜂).

These bivariate polynomials generate the space

̂𝑃 = span{𝓁(𝑖,𝑗)
𝑃

(𝜉, 𝜂)} = span{ ̃̂𝓁(𝑖,𝑗)
𝑃

(𝜉, 𝜂)},

which is the space of polynomials of degree up to 𝑃 in each variable 𝜉, 𝜂. Similarly one can define vector valued functions:

𝓵̂(𝑖,𝑗,𝑘)
𝑃

(𝜉, 𝜂) = 𝓁(𝑖)
𝑃
(𝜉)𝓁(𝑗)

𝑃
(𝜂)𝐞̂𝑘,

̃̂𝓵(𝑖,𝑗,𝑘)
𝑃

(𝜉, 𝜂) = ̃̂𝓁(𝑖)
𝑃
(𝜉) ̃̂𝓁(𝑗)

𝑃
(𝜂)𝐞̂𝑘,

where 𝐞̂𝑘 with 𝑘 ∈ {1, 2} are the unit Euclidean vectors, i.e., 𝐞̂1 = (1 0)⊤, 𝐞̂2 = (0 1)⊤, and it follows:

[̂𝑃 ]2 = span{𝓵̂(𝑖,𝑗,1)
𝑃

}⊕ span{𝓵̂(𝑖,𝑗,2)
𝑃

} = span{ ̃̂𝓵(𝑖,𝑗,1)
𝑃

}⊕ span{ ̃̂𝓵(𝑖,𝑗,2)
𝑃

}, (4)

where ⊕ denotes the direct sum of vector spaces. We remark that, extending the integration rule of (3) to two dimensions we can 
define the approximate inner product, for both scalar functions 𝑓 , 𝑔̂ ∈ 𝐶(𝐾̂) and vector valued functions 𝒖̂, ̂𝒗 ∈ [𝐶(𝐾̂)]2, given by

⟨
𝑓, 𝑔̂

⟩𝑃
𝐾̂
∶=

𝑃∑
𝑖=0

𝑃∑
𝑗=0
𝑤𝑖𝑤𝑗𝑓 (𝜉𝑖, 𝜉𝑗 )𝑔̂(𝜉𝑖, 𝜉𝑗 ) ≈

1

∫
0

d𝜂

1

∫
0

d𝜉 𝑓 (𝜉, 𝜂)𝑔̂(𝜉, 𝜂), (5)

⟨𝒖̂, 𝒗̂⟩𝑃
𝐾̂
∶=

𝑃∑
𝑖=0

𝑃∑
𝑗=0
𝑤𝑖𝑤𝑗 𝒖̂(𝜉𝑖, 𝜉𝑗 ) ⋅ 𝒗̂(𝜉𝑖, 𝜉𝑗 ) ≈

1

∫
0

d𝜂

1

∫
0

d𝜉 𝒖̂(𝜉, 𝜂) ⋅ 𝒗̂(𝜉, 𝜂), (6)

where the same notation will be used for inner products computed using dual integration rules. This is a slight abuse of notation, but 
the choice of the integration rule based on {𝜉𝑖}𝑃𝑖=0 rather than {𝜉𝑖}𝑃𝑖=0 will be obvious from the context in Section 3. We call these 
inner products mass-lumped inner products. Likewise the following properties which we present for the primal integration nodes can 
be stated nearly verbatim for the dual ones. Therefore in the following paragraphs we only go into detail for the primal integration 
rules.

On the reference square it is easy to see that the following exact orthogonality properties hold:⟨
𝓁(𝑖,𝑗)
𝑃
,𝓁(𝑙,𝑚)
𝑃

⟩𝑃
𝐾̂
=𝑤𝑖𝑤𝑗𝛿𝑖𝑙𝛿𝑗𝑚,⟨

𝓵̂(𝑖,𝑗,𝑘)
𝑃

, 𝓵̂(𝑙,𝑚,𝑛)
𝑃

⟩𝑃
𝐾̂
=𝑤𝑖𝑤𝑗𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛,

where 𝛿 is again the Kronecker symbol. We remark that the inner products above are actually identical to the L2 inner products, 
since the integrands are polynomials of degree 2𝑃 . Both properties will be pivotal in the following.

We can thus define how our approximate inner products then look like on the physical quadrilateral 𝐾 in the mesh for scalar 
continuous functions 𝑓, 𝑔 on 𝐾 , based on LGR integration rules

⟨𝑓, 𝑔⟩𝑃
𝐾
∶= ⟨𝐽𝐾𝑓◦𝐅𝐾, 𝑔◦𝐅𝐾 ⟩𝑃𝐾̂ , (7)

with the obvious same definition for vector-valued ⟨𝒖,𝒗⟩𝑃
𝐾̂

and continuous 𝒖, 𝒗.

In the particular case in which 𝑢, 𝒗, 𝒘 (and 𝑢′, 𝒗′, 𝒘′) are push-forwards as in Eq. (2) we obtain⟨
𝑢, 𝑢′

⟩𝑃
𝐾
=
⟨
𝜄
grad
𝐾

(𝑢̂)◦𝐅𝐾, 𝜄
grad
𝐾

(𝑢̂′)◦𝐅𝐾
⟩𝑃
𝐾̂
=
⟨
𝑢̂, 𝐽𝐾 𝑢̂

′⟩𝑃
𝐾̂
,⟨

𝒗,𝒗′
⟩𝑃
𝐾
=
⟨
𝜄curl
𝐾

(𝒗̂)◦𝐅𝐾, 𝜄curl𝐾
(𝒗̂′)◦𝐅𝐾

⟩𝑃
𝐾̂
=
⟨
𝒗̂,𝔾𝐾 𝒗̂′

⟩𝑃
𝐾̂
,⟨

𝒘,𝒘′⟩𝑃
𝐾
=
⟨
𝜄div
𝐾

(𝒘̂)◦𝐅𝐾, 𝜄div𝐾 (𝒘̂′)◦𝐅𝐾
⟩𝑃
𝐾̂
=
⟨
𝒘̂,ℍ𝐾𝒘̂′⟩𝑃

𝐾̂
,

where we have absorbed the (smooth) Jacobian determinant of the mapping within one inner product argument without loss of 
generality. We furthermore used the symmetric matrices:

𝔾𝐾 = (𝐝𝐅𝐾 )−1𝐽𝐾 (𝐝𝐅𝐾 )−⊤,

ℍ𝐾 = (𝐝𝐅𝐾 )⊤𝐽−1𝐾 (𝐝𝐅𝐾 ),

where we have omitted for readability the dependence of all quantites on 𝜉 and 𝜂 and it is clear that 𝔾𝐾ℍ𝐾 = 𝕀2×2. The following 
(quasi) orthogonality conditions then hold:⟨ ⟩𝑃
4

𝜄
grad
𝐾

(𝓁(𝑖,𝑗)
𝑃

), 𝜄grad
𝐾

(𝓁(𝑙,𝑚)
𝑃

)
𝐾
=𝑤𝑖𝑤𝑗𝛿𝑖𝑙𝛿𝑗𝑚𝐽𝐾 (𝜉𝑖, 𝜉𝑗 ),
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Fig. 2. Points associated to the degrees of freedom (DoFs) of 𝑋grad
1 (̃ℎ) and 𝑋grad

2 (̃ℎ) on one quadrilateral. Red dots correspond to basis functions 𝑢𝐾
𝑖

, blue ones to 𝑢𝐸
𝑖

and teal ones to 𝑢𝑉 .

⟨
𝜄curl
𝐾

(𝓵̂(𝑖,𝑗,𝑘)
𝑃

), 𝜄curl
𝐾

(𝓵̂(𝑙,𝑚,𝑛)
𝑃

)
⟩𝑃
𝐾
=𝑤𝑖𝑤𝑗𝛿𝑖𝑙𝛿𝑗𝑚(𝔾𝐾 )𝑘𝑛(𝜉𝑖, 𝜉𝑗 ),⟨

𝜄div
𝐾

(𝓵̂(𝑖,𝑗,𝑘)
𝑃

), 𝜄div
𝐾

(𝓵̂(𝑙,𝑚,𝑛)
𝑃

)
⟩𝑃
𝐾
=𝑤𝑖𝑤𝑗𝛿𝑖𝑙𝛿𝑗𝑚(ℍ𝐾 )𝑘𝑛(𝜉𝑖, 𝜉𝑗 ),

where (𝔾𝐾 )𝑘𝑛(𝜉𝑖, 𝜉𝑗 ) is the (𝑘, 𝑛)-th entry of the matrix 𝔾𝐾 evaluated at coordinates (𝜉𝑖, 𝜉𝑗 ) and (ℍ𝐾 )𝑘𝑛(𝜉𝑖, 𝜉𝑗 ) is the (𝑘, 𝑛)-th entry 
of the matrix ℍ𝐾 evaluated at coordinates (𝜉𝑖, 𝜉𝑗 ). Since 𝑘, 𝑛 ∈ {1, 2}, assembling the last two above expressions into inner-product 
matrices yields 2-by-2 block diagonal matrices.

2.3. Nodal spaces on dual cells

Now that we have defined the mass-lumped inner products we focus on the construction of the (local) bases of our approximation 
spaces. Again the construction is very similar for the primal and dual bases. Since it is the more exotic case, we focus on the 
construction of the dual spaces.

We choose the degrees of freedom of our spaces to be point values of the respective fields in the integration points defined above 
to exploit the orthogonalites derived in the previous subsection. To this end we take a dual cell 𝑇̃ ∈ ̃ℎ. This is the union of a finite 
number of quadrilaterals 𝐾 on which we construct three types of discrete spaces 𝑋̃grad

𝑃
(𝑇̃ ), 𝑋̃curl

𝑃
(𝑇̃ ), 𝑋̃div

𝑃
(𝑇̃ ) spanned by piecewise 

polynomials.

2.3.1. Basis functions for 𝑋̃grad
𝑃

(𝑇̃ )

We start by remarking that for a given dual cell 𝑇 there exists exactly one vertex 𝑉 of the primal such that 𝑉 ∈ 𝑇̃ . Then the 
function which is interpolatory at 𝑉 , defined by

𝑢𝑉 (𝒙) =

{
𝜄
grad
𝐾

(𝓁(0,0)
𝑃

) if 𝒙 ∈𝐾 ⊂ 𝑇̃ ∀𝐾 s.t. 𝑉 ∈ 𝜕𝐾,
0 otherwise,

is continuous on 𝑇̃ (cf., Fig. 2, DoFs with index (0, 0) and Fig. 3a). Additionally, we have edge functions: for each edge 𝐸 originating 
from 𝑉 in the skeleton of ℎ, there are two quadrilaterals 𝐾𝐿, 𝐾𝑅 for which 𝐸 ⊆ 𝜕𝐾𝐿 and 𝐸 ⊆ 𝜕𝐾𝑅 ( cf., Fig. 3b), where the 
subscripts stand for left and right respectively and are motivated by the right-handed corkscrew rule providing an inner orientation 
for 𝑇̃ . There are then 𝑃 basis functions of the kind:

𝑢𝐸
𝑖
(𝒙) =

⎧⎪⎨⎪⎩
𝜄
grad
𝐾𝐿

(𝓁(0,𝑖)
𝑃

) if 𝒙 ∈𝐾𝐿,
𝜄
grad
𝐾𝑅

(𝓁(𝑖,0)
𝑃

) if 𝒙 ∈𝐾𝑅,
0 otherwise,

with 𝑖 = 1, … , 𝑃 . We remark that the definition trivially extends to the case in which 𝐸 ⊂ 𝜕Ω where we simply have either 𝐾𝐿 = ∅
or 𝐾𝑅 = ∅.

Finally, for each quadrilateral 𝐾 ⊂ 𝑇̃ there are 𝑃 2 functions of the kind:

𝑢𝐾(𝑗−1)𝑃+𝑖(𝒙) =

{
𝜄
grad
𝐾

(𝓁(𝑖,𝑗)
𝑃

) if 𝒙 ∈𝐾 ⊂ 𝑇̃ ,
0 otherwise,

with 𝑖, 𝑗 = 1, … , 𝑃 . We remark that these basis functions are compactly supported on a single quadrilateral 𝐾 (cf., Fig. 3c).

We then define 𝑋̃grad
𝑃

(𝑇̃ ) as the span of the union of the three sets of basis functions above and remark that 𝑋̃grad
𝑃

(𝑇̃ ) ⊂ H1(𝑇̃ )
5

where H1(𝑇̃ ) is the space of square integrable functions on 𝑇̃ with square integrable gradient, i.e.,
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Fig. 3. Points associated to the vertex, edge and face DoFs Figs. 3a to 3c of 𝑋grad
1 (̃ℎ) on one element of the dual mesh (Fig. 3d colored). The colored quadrilaterals 

mark the support of the basis function corresponding to the colored DoF, where the same color coding as in Fig. 2 applies.

H1(𝑇̃ ) =
{
𝑢 ∈ L2(𝑇̃ ) ∶ grad𝑢 ∈ L2(𝑇̃ )

}
.

A pictorial representation of the degrees of freedom on a single quadrilateral for 𝑃 = 1 and 𝑃 = 2 is given in Fig. 2 and for 𝑃 = 1
on a single dual element in Fig. 3.

2.3.2. Basis functions for 𝑋̃curl
𝑃

(𝑇̃ )
For the vector valued space 𝑋̃curl

𝑃
(𝑇̃ ) we have the following classification of basis functions:

• For each edge 𝐸 ⊆ 𝑇̃ ⧵ 𝜕𝑇̃ , again there are two quadrilaterals 𝐾𝐿, 𝐾𝑅 for which 𝐸 ⊆ 𝜕𝐾𝐿 and 𝐸 ⊆ 𝜕𝐾𝑅, as above. There are 
then 𝑃 + 1 basis functions of the kind:

𝒖𝐸
𝑖+1(𝒙) =

⎧⎪⎨⎪⎩
𝜄curl
𝐾𝐿

(𝓵̂(0,𝑖,2)
𝑃

) if 𝒙 ∈𝐾𝐿,

𝜄curl
𝐾𝑅

(𝓵̂(𝑖,0,1)
𝑃

) if 𝒙 ∈𝐾𝑅,
0 otherwise,

with 𝑖 = 0, … , 𝑃 (note we start from 0). Again the definition trivially extends to the case in which 𝐸 ⊂ 𝜕Ω where we have simply 
6

either 𝐾𝐿 = ∅ or 𝐾𝑅 = ∅.
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Fig. 4. Distribution of the DoFs of 𝑋̃curl
1 (̃ℎ) and 𝑋̃curl

2 (̃ℎ) on one dual element (colored).

• For each quadrilateral 𝐾 ⊂ 𝑇̃ there are 𝑃 (𝑃 + 1) functions of the kind:

𝒖𝐾(𝑗−1)(𝑃+1)+𝑖+1(𝒙) =

{
𝜄curl
𝐾

(𝓵̂(𝑖,𝑗,1)
𝑃

) if 𝒙 ∈𝐾 ⊂ 𝑇̃ ,
0 otherwise,

with 𝑖 = 0, … , 𝑃 and 𝑗 = 1, … , 𝑃 and additional 𝑃 (𝑃 + 1) functions of the kind:

𝒖𝐾(𝑗−1+𝑃 )(𝑃+1)+𝑖+1(𝒙) =

{
𝜄curl
𝐾

(𝓵̂(𝑖,𝑗,2)
𝑃

) if 𝒙 ∈𝐾 ⊂ 𝑇̃ ,
0 otherwise,

with 𝑖 = 1, … , 𝑃 and 𝑗 = 0, … , 𝑃 . Both kinds of functions above are compactly supported on a single quadrilateral 𝐾 .

We then define 𝑋̃curl
𝑃

(𝑇̃ ) as the span of the union of the three sets of basis functions above. A pictorial representation of the 
degrees of freedom for 𝑃 = 1 and 𝑃 = 2 is given in Fig. 4. We again remark that 𝑋̃curl

𝑃
(𝑇̃ ) is a subspace of the space 𝐻(curl; 𝑇̃ )

defined as follows:

H(curl; 𝑇̃ ) =
{
𝒗 ∈ L2(𝑇̃ )2 ∶ curl𝒗 ∈ L2(𝑇̃ )2

}
.

The basis functions for 𝑋̃div
𝑃

(𝑇̃ ) are constructed analogously to the ones for 𝑋̃curl
𝑃

(𝑇̃ ) and we omit the details here. It suffices to swap 
Cartesian components in edge based functions and swap 𝑖, 𝑗 iterating indices in basis functions which are instead locally supported 
on one quadrilateral 𝐾 . We remark that 𝑋̃div

𝑃
(𝑇̃ ) is a subspace of the space 𝐻(div; 𝑇̃ ) defined as follows:

𝐻(div; 𝑇̃ ) =
{
𝒖 ∈ L2(𝑇̃ )2 ∶ div𝒖 ∈ L2(𝑇̃ )

}
.

2.3.3. Construction of the global spaces

Finally, to obtain the discrete spaces on the whole mesh, we define the global space 𝑋̃grad
𝑃

(̃ℎ) by combining the local spaces 
𝑋̃

grad
𝑃

(𝑇̃ ) for all 𝑇̃ ∈ ̃ℎ, and similarly for the vector valued fields:

𝑋̃
grad
𝑃

(̃ℎ) ∶= {𝑢 ∈ L2(̃ℎ) ∶ 𝑢|𝑇̃ ∈ 𝑋̃grad
𝑃

(𝑇̃ ), ∀𝑇̃ ∈ ̃ℎ},
𝑋̃curl
𝑃

(̃ℎ) ∶= {𝒖 ∈ [L2(̃ℎ)]2 ∶ 𝒖|𝑇̃ ∈ 𝑋̃curl
𝑃

(𝑇̃ ), ∀𝑇̃ ∈ ̃ℎ},
𝑋̃div
𝑃

(̃ℎ) ∶= {𝒖 ∈ [L2(̃ℎ)]2 ∶ 𝒖|𝑇̃ ∈ 𝑋̃div
𝑃

(𝑇̃ ), ∀𝑇̃ ∈ ̃ℎ},
(8)

where degrees of freedom of the global spaces are obtained by the union of the degrees of freedom of the local spaces. We omit 
the explicit construction of bases for the spaces 𝑋grad

𝑃
(𝑇 ), 𝑋curl

𝑃
(𝑇 ), 𝑋div

𝑃
(𝑇 ) in the case of the primal triangles 𝑇 ∈ ℎ since their 

construction is analogous to what is done above for the case of the dual mesh. We still provide the pictorial representation of the 
7

degrees of freedom of the scalar valued space in Fig. 5 and the vector valued one in Fig. 6 for a single triangle in the mesh.
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Fig. 5. Points associated to the DoFs of 𝑋
grad
𝑃

(ℎ) for 𝑃 = 1,2 on one primal element.

Fig. 6. Points associated to the DoFs of 𝑋curl
𝑃

(ℎ) for 𝑃 = 1,2 on one primal element.

3. Discrete formulations for waves in 2D

We will now use the notation and tools from the Section 2 to show how to efficiently solve the acoustic and electromagnetic wave 
equations via the dual cell method in 2D. We will devote specific attention to the similarities and the differences between the mass 
lumped approach here and the already published approach in [6].

3.1. Maxwell equations

Consider the time-dependent Maxwell equations in their first-order form, solving for an electric field 𝑬(𝑡, 𝒙) ∈ C1 ([0, 𝑇 ];H(curl;Ω))
and a magnetic field 𝐻(𝑡, 𝒙) ∈ C1([0, 𝑇 ]; H(rot; Ω)), where we use the symbol rot for the rotated gradient, such that:

𝜀
𝜕𝑬

𝜕𝑡
= rot𝐻 − 𝑱 , in Ω× (0, 𝑇 ), (9)

𝜇
𝜕𝐻

𝜕𝑡
= −curl𝑬, in Ω× (0, 𝑇 ), (10)

𝐻 = 0, on 𝜕Ω× (0, 𝑇 ), (11)

𝑬(0,𝒙) =𝑬0(𝒙) ∈ H(curl;Ω), 𝐻(0,𝒙) =𝐻0(𝒙) ∈ H(rot;Ω), in Ω, (12)

where 𝑬0(𝒙) ∈ H(curl; Ω), 𝐻0(𝒙) ∈ H(rot; Ω), and where 𝜀, 𝜇 ∈ L∞(Ω) are the dielectric permittivity and magnetic permeability, 
assumed to be scalar valued and time-invariant for simplicity of exposition. The vector field 𝑱 (𝑡, 𝒙) (assumed to be 0 in most of 
our numerical experiments, and for the sake of simplicity we assume 𝑱 ∈ C([0, 𝑇 ]; L2(Ω))) is the electric current density (a suitable 
a priori known source of the sytem) and 𝑇 > 0 is the final simulation time. This is the system on which some of the authors also 
focused in [6] and provides also the most challenging test case for the new approach, since mass lumping for high order versions of 
edge elements is not as straightforward to achieve as for the scalar valued pressure in the acoustic case.

We point out that Eq. (9)–Eq. (12) is obtained using the transverse magnetic ansatz for the actual vector valued magnetic field 
(necessarily defined in a three-dimensional domain) to be of the form 𝑯 =𝐻 𝒛̂, where 𝒛̂ is the unit vector in the 𝑧-direction and 
8

𝐻 ∈𝐻(rot; Ω). By Galerkin testing and integration by parts of (9)–(10) (and neglecting current sources for the sake of brevity) on 
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each quadrilateral 𝐾 ∈ℎ, boundary integrals appear on the segments bounding 𝐾 . We obtain the semi-discrete weak formulation 
to find 𝑬ℎ ∈ 𝑋̃curl

𝑃
(̃ℎ) and 𝐻ℎ ∈𝑋rot

𝑃
(ℎ) ∶=𝑋grad

𝑃
(ℎ)1 such that:

∑
𝑇̃∈̃ℎ

∑
𝐾⊂𝑇̃

⟨
𝜀
𝜕𝑬ℎ

𝜕𝑡
,𝒆

⟩𝑃
𝐾

=
∑
𝑇̃∈̃ℎ

⎛⎜⎜⎝
∑
𝐾⊂𝑇̃

∫
𝐾

𝐻ℎ𝒛̂ ⋅ curl𝒆+
∑
𝐹∈𝜕𝑇̃

∫
𝐹

𝒆 ⋅𝐻ℎ𝒛̂ × 𝒏̂𝐾

⎞⎟⎟⎠ , (13)

∑
𝐾∈ℎ

∑
𝐾⊂𝑇

⟨
𝜇
𝜕𝐻ℎ

𝜕𝑡
, ℎ

⟩𝑃
𝐾

=
∑
𝐾∈ℎ

⎛⎜⎜⎝
∑
𝐾⊂𝑇

−∫
𝐾

𝑬ℎ ⋅ rot ℎ+
∑
𝐹∈𝜕𝑇

∫
𝐹

𝑬ℎ ⋅ ℎ𝒛̂ × 𝒏̂𝐾

⎞⎟⎟⎠ , (14)

holding for all 𝒆 ∈ 𝑋̃curl
𝑃

(̃ℎ), and ℎ ∈𝑋rot
𝑃

(ℎ), where 𝒏̂𝐾 denotes the outer normal on each element boundary. The above system 
implies weak imposition of the 𝑬ℎ × 𝒏̂Ω = 0 boundary conditions. We also require 𝑬ℎ|𝑡=0 and 𝐻ℎ|𝑡=0 to fulfill the initial conditions 
through an L2-projection at the initial time.

We close the subsection with a final important statement regarding the Maxwell system, which clarifies that the most succint way 
of writing its weak formulation, chosen in the manuscript, is not necessarily the most efficient one for the practical implementation.

Remark 3.1. For the implementation of the presented method one may apply integration by parts to Eq. (13). The reader may easily 
verify that in this case all the edge contributions which are not part of 𝜕𝑇̃ for any 𝑇̃ ∈ ̃ cancel out. Thus, one is only left with 
integral contributions on either a triangle 𝑇 , or its boundary 𝜕𝑇 , i.e., on the original triangulation assumed available from a FEM 
perspective. An implementation can therefore exploit existing finite element codes (as we did within Netgen/NGSolve, [10,11]), 
without explicitly having to generate the dual mesh.

3.2. Acoustic wave equations

In this section, we briefly sketch how the same method can be applied to the simulation of acoustic waves, without any 
practical differences in computational efficiency. Analogously to Section 3.1 we start from a strong formulation in the velocity-

pressure first-order system form, i.e., the initial boundary value problem of finding 𝑽 (𝑡, 𝒙) ∈ C1([0, 𝑇 ]; H(div; Ω)) and 𝑄(𝑡, 𝒙) ∈
C1([0, 𝑇 ]; H(grad; Ω)) such that:

𝜕𝑄

𝜕𝑡
= 𝜌0𝑐2 div𝑽 , in Ω× (0, 𝑇 ), (15)

𝜌0
𝜕𝑽

𝜕𝑡
= grad𝑄+ 𝒇 , in Ω× (0, 𝑇 ), (16)

𝑽 ⋅ 𝒏̂Ω = 0, on 𝜕Ω× (0, 𝑇 ), (17)

𝑽 (0,𝒙) = 𝑽 0(𝒙), 𝑄(0,𝒙) =𝑄0(𝒙), in Ω, (18)

with 𝑽 ⋅ 𝒏̂Ω = 0, where 𝑄 is the acoustic pressure, 𝑽 is the particle velocity, 𝜌0 is the reference density, 𝑐 is the speed of sound, 
both assumed to be in L∞(Ω) and 𝒇 (𝑡, 𝒙) ∈ C([0, 𝑇 ]; L2(Ω)) is a suitable given forcing. We again have initial conditions 𝑽 0(𝒙) ∈
H(div; Ω), 𝑄0(𝒙) ∈ H(grad; Ω). The semi-discrete weak formulation of Eq. (15)–Eq. (16) (again neglecting source terms) then seeks 
𝑄ℎ ∈𝑋

grad
𝑃

(ℎ) and 𝑽 ℎ ∈ 𝑋̃div
𝑃

(̃ℎ) such that for all test functions 𝑞 ∈𝑋grad
𝑃

(ℎ) and 𝒗 ∈ 𝑋̃div
𝑃

(̃ℎ):
∑
𝐾∈ℎ

∑
𝐾⊂𝑇

⟨
1
𝜌0𝑐

2
𝜕𝑄ℎ

𝜕𝑡
, 𝑞

⟩𝑃
𝐾

=
∑
𝐾∈ℎ

⎛⎜⎜⎝
∑
𝐾⊂𝑇

−∫
𝐾

𝑽 ℎ ⋅ grad 𝑞 +
∑
𝐹∈𝜕𝑇

∫
𝐹

𝑞 (𝑽 ℎ ⋅ 𝒏̂𝐾 )
⎞⎟⎟⎠ ,

∑
𝑇̃∈̃ℎ

∑
𝐾⊂𝑇̃

⟨
𝜌0
𝜕𝑽 ℎ

𝜕𝑡
,𝒗

⟩𝑃
𝐾

=
∑
𝑇̃∈̃ℎ

⎛⎜⎜⎝
∑
𝐾⊂𝑇̃

−∫
𝐾

𝑄ℎ div𝒗+
∑
𝐹∈𝜕𝑇̃

∫
𝐹

𝑄ℎ (𝒗 ⋅ 𝒏̂𝐾 )
⎞⎟⎟⎠ ,

holding for all 𝒗 ∈ 𝑋̃div
𝑃

(̃ℎ), and 𝑞 ∈𝑋grad
𝑃

(ℎ), where 𝒏̂𝐾 denotes again the outer normal on each boundary of 𝐾 . The above system 
implies weak imposition of the 𝑽 ℎ ⋅ 𝒏̂Ω = 0 boundary conditions. We again also require 𝑽 ℎ|𝑡=0 and 𝑄ℎ|𝑡=0 to fulfill the initial 
conditions through an L2-projection at the initial time. Finally we stress that Remark 3.1 (with appropriate modifications) also hold 
for the acoustic case.

3.3. Related methods

Before putting the new mass lumped approach to the numerical test we dedicate a subsection to address the relationship, simi-

larities and differences between the presented method and related approaches available in the literature. The proposed approach is, 

1 Even if redundant from functional analytic point of view in two dimensions, we still use the 𝑋rot
𝑃

(ℎ) notation to recall that the differential operator involved is 
9

algebraically different.
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as was the case for [6], based on the seminal work on low order barycentric dual grid methods in [5,12–14]. The barycentric dual 
is not the only choice that provides a possible extension to high order. In fact Chung and co-authors have championed staggered 
DG methods in several works on structured [15] and unstructured [16–18] grids, to obtain a penalty free approach which presents 
block-diagonal mass matrices. Nevertheless, in the very relevant unstructured case their underlying micro-cells, on which one ex-

ploits the same integration by parts formula are still triangles, since the Worsey–Farin split mesh is used. This can be a drawback in 
two ways: firstly, since each triangle corner is bisected, the shape-regularity constants degrade with respect to the original triangular 
mesh worsening the system’s conditioning. In our case the shape-regularity constants of the new mesh are the same as the ones given 
by the initial FE mesh and less stringent than the ones of the Worsey–Farin split [19]. Secondly, improving the orthogonality of 
basis functions through mass lumping techniques amounts to finding an integration rule which allows an H(curl, 𝑇 )-conforming (or 
H(div, 𝑇 )-conforming for mixed formulation of the acoustic case) nodal basis on a Worsey–Farin split of a triangle to be constructed, 
which is ultimately just as hard as finding such a construction for a fully H(curl, Ω)-conforming discrete space on the whole triangula-

tion. Even though progress has been made recently in this regard with mass lumping schemes for acoustic and electromagnetic wave 
equations of higher order (see [20–22]), a general recipe for arbitrary polynomial degrees remained an open question. Our mass-

lumping technique is formulated on a quadrilateral mesh and it therefore bypasses the issue completely by relying on tensor-product 
integration rules.

3.4. Time discretization

We turn our focus back to the Maxwell equations as an example for the time discretization, since the wave equation is treated 
in a completely analogous way. We remark that in both cases we achieve semidiscrete energy conservation properties, which can 
be shown trivially by the same integration by parts techniques used in [6]. Focusing then on the time discretization of Eq. (13), 
Eq. (14), the common leap frog scheme is used as a convenient choice to test the new mass lumping approach, since it is a very easy 
to implement symplectic integrator and it is second order accurate in time. If we denote with 𝐡 ∈ℝdim(𝑋rot

𝑃
(ℎ)) and 𝐞 ∈ℝdim(𝑋̃curl

𝑃
(̃ℎ))

the vectors of degrees of freedom for the magnetic and electric field respectively, appropriately ordered to evidence the block 
diagonal structures of the mass matrices, the scheme is given by the following update rules:

𝐡1∕2 = 𝐡0 − Δ𝑡
2

𝐌−1
𝜇
𝐂𝐞0,

𝐞1 = 𝐞0 + Δ𝑡𝐌−1
𝜀
𝐂⊤𝐡1∕2,

for the first update of the magnetic field and

𝐡𝑛+1∕2 = 𝐡𝑛−1∕2 − Δ𝑡𝐌−1
𝜇
𝐂𝐞𝑛,

𝐞𝑛+1 = 𝐞𝑛 +Δ𝑡𝐌−1
𝜀
𝐂⊤𝐡𝑛+1∕2,

for all 𝑛 ≥ 1, in which 𝐞𝑛 is the approximation computed at time instant 𝑛 Δ𝑡 and 𝐡𝑛+1∕2 is computed at time instant (𝑛 + 1∕2) Δ𝑡, 
for 𝑛 = 0, … , 𝑁 . The final time 𝑇 is divided into 𝑁 time steps of size Δ𝑡 = 𝑇 ∕𝑁 . Sparse matrix 𝐂 is the matrix representation of 
the discrete curl operator, which is the r.h.s. of Eq. (14), while 𝐌𝜇 and 𝐌𝜀 are the mass matrices for the magnetic and electric field 
respectively.

What we want to stress about the fully discrete formulation is that the l.h.s. gives rise to block diagonal system matrices 𝐌𝜇 and 
𝐌𝜀. They thus have block diagonalinverses where the block size does not increase with increasing polynomial degree, differently 
from what was achieved in previous work were scaled monomials were used as a basis.

In order to guarantee stability, the time step Δ𝑡 is computed in such a way that

Δ𝑡 < 𝑡0 ∶= 2∕
√
𝜆𝑀, (19)

where 𝜆𝑀 is the maximum of the eigenvalues 𝜆 of the eigenvalue problem

𝐂𝐌−1
𝜀
𝐂⊤𝐡 = 𝜆𝐌𝜇𝐡, (20)

for the eigenvectors 𝐡. The dependence of this so called Courant-Friedrichs-Lewy (CFL) condition on the discretization parameters is 
studied numerically in Section 4.2.

4. Numerical experiments

We perform several numerical experiments to underline the applicability, efficiency and convergence of our method. To this 
end we use an implementation of our method in the high-order finite element library Netgen/NGSolve [10,11] along the lines of 
Remark 3.1.

In particular, in Section 4.1 we show that we obtain spectral convergence of the underlying eigenvalue problem with polynomial 
convergence rates. The experiments in Section 4.2 study the dependence of the CFL condition on the discretization parameters, 
while Section 4.3 highlight the time-domain convergence. In Section 4.4 and Section 4.5 we study the computational efficiency 
and robustness of the mass lumping approach. Finally we present in Section 4.7 a more practical example where we also apply 
10

perfectly matched layers (PML) to simulate an open domain. The necessity of using PML to truncate the unbounded domain obviously 
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Fig. 7. Spectra of the discrete Dirichlet Laplacian on the square [0, 𝜋]2 with polynomial degree 𝑃 and mesh size ℎ.

introduces additional constraint of the CFL condition. We estimate the CFL condition numerically by power iteration in general for 
each simulation and use a smaller step that fulfills it. We do not discuss the influence of the PML on the method at length here since 
we make use of standard complex coordinate stretching techniques [23] and their advantages and drawbacks are not specific to the 
present method but are a shared theme for all methods using PMLs.

4.1. Eigenvalue problem

Since our main concern is the spatial discretization we perform experiments for the scalar discrete eigenvalue problem (EVP) (20)

with 𝜇 = 𝜀 ≡ 1.

This EVP is a discretization of the problem to find 𝜆 ∈ 𝐑 and nontrivial 𝐻 ∈𝐻1(Ω) such that

−Δ𝐻 = 𝜆𝐻, on Ω, (21)

𝐻 = 0, on 𝜕Ω. (22)

For our experiments we choose the square Ω = (0, 𝜋)2 where eigenpairs are given by

𝐻𝑛,𝑘 = sin(𝑛𝑥) sin(𝑘𝑦), 𝜆𝑛,𝑘 = 𝑛2 + 𝑘2, 𝑛, 𝑘 ∈𝐍+. (23)

Equivalenty we could derive the corresponding system for the acoustic case with 𝜌0 = 𝑐 ≡ 1 resulting in the problem to find 𝑄 ∈
𝐻1(Ω) such that

−Δ𝑄 = 𝜆𝑄, on Ω,

𝑄 = 0, on 𝜕Ω,

with the same eigenpair solutions and discrete matrix eigenvalue problem. Thus the numerical experiments for the EVP corresponding 
to the acoustic initial boundary value problem exhibit the same behavior as the ones corresponding to the electromagnetic one studied 
in the following subsections. We will therefore report only one set of results for the sake of brevity.

Fig. 7 shows the discrete spectra of the different discretizations of the eigenvalue problem Eqs. (21) and (22). We observe no 
spurious eigenvalues for large polynomials degrees or finer mesh sizes respectively, i.e., all discrete eigenvalues converge towards 
their continuous counterparts. Fig. 8 shows the convergence of selected discrete eigenvalues to their continuous counterparts. Note 
that while the experiments for degrees 𝑃 > 0 suggest a convergence rate of order ℎ2𝑃 for the lowest order method we observe 
super convergence of the same order as for the method of order 1 (i.e., a rate of ℎ2, which was already observed in [6]). However 
the constant for the first order method improves significantly. Note that due to the high order convergence, in order to generate 
meaningful results (without hitting machine precision after very few refinements) we had to pick higher frequency resonances for 
the fourth order method.

Fig. 9 shows the convergence of one of the eigenvalues from Fig. 8d with respect to the degrees of freedom for different polynomial 
degrees, suggesting that for smooth solutions a high order method is efficient. Also it confirms that, although we have quadratic 
convergence in ℎ for the polynomial degrees 𝑃 = 0, 1, the method with 𝑃 = 1 yields better results for the same number of degrees of 
freedoms.

4.2. CFL condition

Before we turn to time domain experiments we study numerically how the stability condition Eq. (19) on the timestep Δ𝑡
11

depends on the discretization parameters ℎ and 𝑃 . Fig. 10 shows the dependence of the maximal stable timestep 𝑡0 from Eq. (19)
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Fig. 8. Convergence of the absolute errors of discrete eigenvalues for polynomial degrees 𝑃 and mesh sizes ℎ.

Fig. 9. Convergence with respect to the primal number of DoFs, for the eigenvalue 𝜆8,3 = 73.

for Ω = (0, 1)2 with homogeneous boundary conditions for 𝐻 on the discretization parameters 𝑃 and ℎ. We clearly observe that 
𝑡0 =𝑂(ℎ(𝑃 + 1)−2) which is similar to the CFL condition for DG methods (cf., [3, Chapter 4.7]).

4.3. Time domain convergence

Fig. 11 shows the convergence of the time domain solution on Ω = (0, 𝜋)2 for a problem with initial conditions

𝐻0(𝑥, 𝑦) = sin(2𝑥) sin(𝑦), 𝐄0(𝑥, 𝑦) = 0,

at end time 𝑇 = 1 and a leap frog timestepping with time-step 𝜏 = 10−5, which fulfills the CFL condition for all the used discretizations. 
We use relative errors measured in the discrete (mass-lumped) inner products given by Eqs. (5) and (6). We observe ℎ𝑃 convergence 
12

for all the studied quantities, except for the scalar field 𝐻 , which measured in the discrete L2-norm converges with ℎ𝑃+1.
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Fig. 10. The dependence of the maximal stable timestep 𝑡0 on the discretization parameters.

Fig. 11. Convergence of time domain solutions for polynomial orders 𝑃 = 2,3 with respect to different discrete norms.

4.4. Efficiency

To study the efficiency of using the mass lumped matrices we compare the number of non-zero entries of the mass matrices 
and the inverse matrices in the lumped and exact case respectively. To this end we choose a coarse mesh with six elements on 
the unit square and compare the number of non-zero entries in Fig. 12 for varying polynomial degree. We compare the matrices 
obtained by using the lumped inner products (cf., Section 2.2) to the ones obtained by exactly evaluating the integrals of the L2 inner 
products. Since the lumped mass matrices are (block) diagonal with block sizes independent of the polynomial degree, we observe 
that the number of non-zero entries of the lumped mass matrices grows linearly with the number of degrees of freedom, even as the 
polynomial degree increases. The exact mass matrices are also block-diagonal, however, their block sizes grow with the polynomial 
degree (similar to the ones in [6]). For the exact mass matrix of the scalar variable we observe a growth of the non-zero entries per 
row of power 1∕2. For the remaining (inverse) mass matrices we observe a linear growth of non-zero entries per row with respect to 
the number of unknowns.

4.5. Robustness of computational efficiency

Due to the matrix-free nature of our method we expect to be able to do large scale computations without significant memory 
requirements.2 Thus we expect the number of unknowns which can be computed per second to be independent of the number of finite 
elements (i.e., the mesh-size for a given problem). The efficiency of the inverse mass matrices is also independent of the polynomial 
degree while applying the discrete differential operators has a (mild) dependence on the polynomial degree. To test this we run a 
sequence of time dependent problems on the unit square with initial fields
13

2 All computations were carried out on an off-the shelf desktop computer with 4 CPUs with 3.3 GHz and 16 GiB of memory.
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Fig. 12. Number of non-zero entries per row of the (inverse) mass matrices obtained by using exact and lumped integration for a mesh with ℎ = 0.5 (six elements) 
and polynomial degrees 𝑃 from 0 to 17.

Table 1

Computed DoFs/s for the initial value problem for different discretizations.

ℎ 𝑃 Δ𝑡 scal. DoFs vect. DoFs total DoFs DoFs/s

5 ⋅ 10−2 4 7 ⋅ 10−4 5.73 ⋅ 104 1.27 ⋅ 105 1.85 ⋅ 105 1.71 ⋅ 108
5 ⋅ 10−2 5 4 ⋅ 10−4 8.55 ⋅ 104 1.87 ⋅ 105 2.72 ⋅ 105 1.4 ⋅ 108
5 ⋅ 10−2 6 2 ⋅ 10−4 1.19 ⋅ 105 2.57 ⋅ 105 3.77 ⋅ 105 1.14 ⋅ 108
1 ⋅ 10−2 2 4 ⋅ 10−4 4.4 ⋅ 105 1.04 ⋅ 106 1.48 ⋅ 106 1.32 ⋅ 108
1 ⋅ 10−2 3 2 ⋅ 10−4 8.57 ⋅ 105 1.95 ⋅ 106 2.81 ⋅ 106 1.26 ⋅ 108
1 ⋅ 10−2 4 1.2 ⋅ 10−4 1.41 ⋅ 106 3.13 ⋅ 106 4.54 ⋅ 106 1.19 ⋅ 108
1 ⋅ 10−2 5 1 ⋅ 10−4 2.11 ⋅ 106 4.59 ⋅ 106 6.7 ⋅ 106 1.06 ⋅ 108
1 ⋅ 10−2 6 5 ⋅ 10−5 2.94 ⋅ 106 6.33 ⋅ 106 9.27 ⋅ 106 9.38 ⋅ 107
5 ⋅ 10−3 1 5 ⋅ 10−4 6.48 ⋅ 105 1.67 ⋅ 106 2.31 ⋅ 106 1.17 ⋅ 108
5 ⋅ 10−3 2 1.2 ⋅ 10−4 1.76 ⋅ 106 4.17 ⋅ 106 5.92 ⋅ 106 1.14 ⋅ 108
5 ⋅ 10−3 3 1 ⋅ 10−4 3.42 ⋅ 106 7.77 ⋅ 106 1.12 ⋅ 107 1.09 ⋅ 108

𝐻0(𝑥, 𝑦) = exp
(
−502

(
(𝑥− 0.5)2 + (𝑦− 0.5)2

))
, 𝐄0(𝑥, 𝑦) = 0,

for different mesh-sizes and polynomial degrees. Snapshots of the resulting solution for ℎ = 0.01, 𝑃 = 4 is shown in Fig. 13. The 
step-sizes Δ𝑡 are chosen experimentally such that the resulting discretization is stable. Table 1 gives the according numbers of DoFs 
per second, where for each entry the minimal time of computing four times 50 steps is given. While we observe a small decay of the 
number of DoFs/s for larger problems (probably due to the more costly application of the differential operators), the results confirm 
that for the given problem sizes the number of DoFs/s is roughly 108, mostly independent of the mesh-size ℎ and polynomial 𝑃
degree.

On a more qualitative note it can be observed in Fig. 13 that the width of the transported peak is preserved during the computa-

tion, i.e., we do not observe any numerical dispersion.

4.6. Long time experiments

Although a detailed dispersion analysis of the method is out of reach for the work at hand we present long-time experiments to 
– at least qualitatively – study the dispersive properties. Moreover this example provides a simple configuration for comparison of 
competing methods. To this end we use Ω ∶= (0, 1)2 with initial values

𝐻(0;𝑥, 𝑦) = exp(−400(𝑦− 1∕2)2), 𝐄(0;𝑥, 𝑦) = 𝟎

with homogeneous Neumann boundary conditions for the scalar field. Fig. 14 shows the mesh (mesh-size ℎ = 0.1) and solution for 
𝑃 = 2 at 𝑇 = 1, 150 and a time-step 𝜏 = 5 ⋅ 10−5. Note that since we do not aim for computational efficiency here, we chose the 
time-step finer than the CFL condition dictates to obtain a negligible time-discretization error at the end smaller than 10−4. Fig. 15

shows comparisons between different polynomial orders for the same experiment at 𝑥 = 0 and different end times. Apart from the 
14

linear method we observe dispersive effects for the different orders at different numbers of cycles.
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Fig. 13. Snapshots of the time domain solution for an inital Gauss peak for 𝑡 ∈ [0,2].
15

Fig. 14. Propagation of a gaussian beam for polynomial order 𝑃 = 2 after one and 150 cycles.
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Fig. 15. Propagation of a gaussian beam for various polynomial orders and end times evaluated at 𝑥 = 0 and values of 𝑦 spaced 0.01 apart.

4.7. Ring resonator

To test our method in a more challenging setting we choose a model of a ring resonator, which is given by two parallel electrical 
wires with a looped wire in between (cf. Fig. 16a). We use the geometry parameters

𝑎𝑥 = 0.43, 𝑎𝑦 = 0.405, 𝑏 = 0.04, 𝑐 = 0.035, 𝑝 = 0.15, 𝑟0 = 0.36, 𝑟1 = 0.04,

and the material coefficients

𝜀0 = 1, 𝜀1 = 9.

A wave is introduced at the left end of the top wire (cf. Fig. 16b)

𝑓 (𝑡, 𝑦) =
⎧⎪⎨⎪⎩
sin

(
𝜋

0.04 (𝑦− 𝑎𝑦)
)

2𝑒√
𝜋
sin

(
10𝜋
𝜔
𝑡

)
exp

(
− 1

1−(𝑡−1)2

)
, 𝑡 ≤ 2,

0, 𝑡 > 2,

with 𝜔 = 1.542. The wave resonates in the loop and induces an output at the left end of the bottom wire. The unbounded physical 
domain is modeled by the use of a perfectly matched layer (pml) (cf. [24,23]) with damping parameter 𝜎 = 30.

To obtain the results shown in Fig. 17 we use a mesh with ≈ 7.8 ⋅ 103 finite elements which results in spaces of dimension 
≈ 7.1 ⋅ 105 for the scalar and ≈ 1.5 ⋅ 106 for the vectorial space when using a basis of order 𝑃 = 5. Note that due to the auxiliary 
unknowns of the PML formulation the number of total unknowns is even higher. We choose a time-step size Δ𝑡 = 1.15 ⋅ 10−4 which 
is experimentally confirmed to be stable (i.e., the CFL condition is fulfilled). Thus to compute up to 𝑡 = 12, a number of ≈ 1.0 ⋅ 105
timesteps have to be computed. All computations were carried out on a desktop computer in less than a day of computation time, 
with one timestep taking ≈ 0.46𝑠. Due to the efficiency of the mass lumped basis the amount of used memory and time to set up the 
16

problem is negligible since no large (inverse) matrix has to be set up/stored.
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Fig. 16. Configuration of the ring resonator experiment.

5. Conclusion and outlook

In the work at hand we have presented a new approach to construct basis functions for an arbitrary order accurate (in the 
spacial discretization) cell method. In particular, this new basis resolves some stability issues from previous approaches and has the 
additional property that mass lumping is easily available for the respective mass matrices. Therefore our new approach results in 
well-conditioned (inverse) mass matrices with a very favorable sparsity pattern which is uniform in the polynomial degree of the 
basis. We introduced the resulting mass lumped formulation both, for the time domain Maxwell system and for the acoustic wave 
equation. We have applied our method in numerous numerical experiments to underline these claims and shown that the method 
scales very well for larger problems even on off-the-shelf desktop computers. Future work includes the extension of our method to 
higher dimensions for acoustic, as well as electromagnetic problems. We aim at optimizing the simulation of unbounded domains 
by using more sophisticated PML constructions such as the ones based on infinite elements of [25,26] and exploring alternative 
approximation techniques on quadrilateral elements such as spline approximations of curved boundaries, e.g., [27] or [28]. Finally, 
the theoretical numerical analysis of the method is being carried out and will be presented elsewhere.
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Fig. 17. Snapshots of the ring resonator experiments (cf., Fig. 16).
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