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Abstract

This work investigates frequency crossing phenomena in non-slender MEMS res-
onators. Special focus is put on the influence of anchor losses and the related quality
factors (Q-factors). To evaluate the anchor losses and resonance frequencies of higher-
order-out-of-plane (HO-OOP) modes, a mathematical model of the resonator is devel-
oped and solved with the finite element method (FEM). The results show that non-
slender geometries vibrating in OOP modes exhibit very high Q-factors up to 107, while
in-plane (IP) mode shapes have low Q-factors below 10. These results motivated an
extensive investigation into the OOP and IP vibrational modes, their Q-factors, and
resonance frequencies as the resonator changes from a slender beam to a wider plate.
The resonance frequencies of different mode shapes evolve differently when the width
of non-slender resonators is increased, and at some widths, the resonance frequencies
cross. Three phenomena are identified: simple crossing, avoided crossing, and ”Q-drop”
crossing. Simple crossing does not exhibit an interference between the crossing mode
shapes, and their Q-factors are not changed. The avoided crossing describes the repul-
sion of the natural frequencies while increasing the width due to the strong coupling
of the natural modes. ”Q-drop” crossing does not affect the resonance frequencies but
drastically reduces the quality factor of a single mode. A novel method for mathe-
matically analyzing modal displacement patterns is introduced, employing the Fourier
transformation (FT) to analyze thesemode shape interference patterns that significantly
affect the Q-factor. In avoided crossing, the vibrational modes and Q-factors are ex-
changed while the resonance frequencies are repelled from each other. In ”Q-drop”
crossing, the displacement patterns of the interfering mode shapes are only slightly af-
fected. Avoided crossing occurs between OOP-OOP modes, as well as OOP-IP, while
”Q-drop” crossing occurs only in OOP-IP resonance frequency crossing. The identified
phenomena explain the Q-factor drop in previous experimental studies.



Kurzfassung
In dieser Arbeit werden die auftretenden Phänomene bei Kreuzung der Resonanzfre-

quenzen in nicht schlanken MEMS-Resonatoren untersucht. Besonderes Augenmerk
wird auf den Einfluss der Ankerverluste und die damit verbundenen Qualitätsfaktoren
(Q-Faktoren) gelegt. Zur Bewertung der Ankerverluste und der Resonanzfrequenzen
von out-of-plane Moden höherer Ordnung (HO-OOP) wird ein mathematisches Mod-
ell des Resonators entwickelt und mit der Finite-Elemente-Methode (FEM) gelöst. Die
Ergebnisse zeigen, dass nicht-schlanke Geometrien, die in OOP-Moden schwingen, sehr
hohe Q-Faktoren bis zu 107 aufweisen, während in-plane (IP) Modenformen niedrige
Q-Faktoren unter 10 haben. Diese Ergebnisse motivierten zu einer umfassenden Un-
tersuchung der OOP- und IP-Schwingungsmoden, ihrer Q-Faktoren und Resonanzfre-
quenzen, wenn der Resonator von einem schlanken Balken zu einer breiteren Platte
wechselt. Die Resonanzfrequenzen der verschiedenen Modenformen entwickeln sich
unterschiedlich, wenn die Breite von nicht schlanken Resonatoren erhöht wird, und
bei einigen Breiten kreuzen sich dadurch die Resonanzfrequenzen. Drei Phänomene
werden unterschieden: simple crossing, avoided crossing und ”Q-drop” crossing. Bei
simple crossing kommt es zu keiner Interferenz zwischen den sich kreuzenden Moden-
formen, und ihre Q-Faktoren werden nicht verändert. Avoided crossing beschreibt die
Abstoßung der Eigenfrequenzen bei gleichzeitiger Vergrößerung der Breite aufgrund der
starken Kopplung der Eigenformen. ”Q-drop”-crossing hat keinen Einfluss auf die Reso-
nanzfrequenzen, verringert aber den Qualitätsfaktor einer einzelnen Mode drastisch. Es
wird eine neuartigeMethode zurmathematischenAnalyse vonModenformen vorgestellt,
bei der die Fourier-Transformation (FT) eingesetzt wird, um die Interferenzmuster der
Moden zu analysieren, die den Q-Faktor erheblich beeinflussen. Bei avoided cross-
ing werden die Schwingungsmoden und Q-Faktoren ausgetauscht, während die Res-
onanzfrequenzen voneinander abgestoßen werden. Bei der ”Q-drop”-Kreuzung werden
die Modenformen durch die Überlagerung nur sehr gering verändert. Avoided crossing
tritt sowohl zwischen den OOP-OOP-Moden als auch zwischen den OOP-IP-Moden
auf, während die ”Q-drop”-Kreuzung nur bei der OOP-IP-Resonanzfrequenzkreuzung
auftritt. Die festgestellten Phänomene erklären den Abfall des Q-Faktors in früheren
experimentellen Studien.
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1 Introduction

Since the first commercial device in the late 1980s, Micro-Electro-Mechanical Systems
(MEMS) has been a success story. In the last decade, the development was pushed by
mobile devices and the Internet of Things (IoT) [1]. MEMS devices are used as sensors,
e.g., formass sensing [2], accelerometers [3]; as actuators, e.g., for fluid pumps [4], audio
applications [5], RF switches [6]; for communication, e.g., within 5G mobile transmit-
ters [7], as energy harvesters [8]; and for many other applications.

MEMS resonators or resonant MEMS are a special class of MEMS. MEMS resonators
are mechanical structures that are capable of vibrating mechanically and are typically
operated in resonance. Applying an external oscillating force to the device generates a
vibrational deformation pattern on the resonator. Changing the frequency of the applied
force will result in different displacement patterns appearing on the resonator surface.
At some specific frequencies, the displacement amplitude increases sharply while the
applied force remains the same. This frequencies are called resonance frequencies, or
also natural frequencies or eigenfrequencies. When the resonator is excited with a nat-
ural frequency, the corresponding displacement pattern is called the eigenmode. Each
eigenmode shows a specific mode shape. A higher amplitude of the mode shapes re-
quires more stored energy in the resonator. As the energy supplied by the external force
remains constant, the dissipated energy has to decrease at the resonance frequency.
MEMS resonators with lower energy dissipation tend to oscillate more stable in fre-
quencywith less supplied energy. Therefore, the ratio between the stored and dissipated
energy is a key parameter that characterizes the performance of MEMS resonators. This
parameter is called the quality factor or Q-factor, defined as𝑄 = 2𝜋 Energy stored

Energy dissipated per cycle
, (1.1)

where the stored energy includes the kinetic energy and the potential energy, and the
dissipated energy is the portion of energy the resonator loses to its environment during
each oscillation cycle. Resonant MEMS with high Q-factors can be used to build sensors
with higher sensitivity, an often required design feature. Therefore, many research ac-
tivities were taken to develop high Q-factor devices or even the tuning of this important
parameter [9].

The dissipation of energy onMEMS resonators is also interpreted as damping. Damp-
ing refers to the process of reducing the amplitude of oscillations. Damping is affected
by various mechanisms, depending on material properties, design properties, and en-
vironmental conditions. The major intrinsic dissipation mechanisms are thermo-elastic
damping (TED) and anchor losses, also called clamping losses [10]. Furthermore, volume
losses and surface losses are also not negligible factors [11]. The environment can also
contribute to damping, e.g., if the resonator is immersed in fluid [12] or other external
forces are applied to the resonator, e.g., electrical fields [13]. The sum of all participating
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Figure 1.1: Fabricated MEMS cantilevered plate resonator [14]

factors is the total quality factor given by1𝑄Total
= ∑𝑖 1𝑄𝑖 = 1𝑄Clamping

+ 1𝑄TED
+ 1𝑄Volume

+ 1𝑄Surface
+ 1𝑄Environment

. (1.2)

Cantilevered resonators are ideally suited for investigations on these various dissipa-
tionmechanisms. Figure 1.1 shows an example of a fabricated device. The cantilever res-
onator has a very simple structure that does not impose any restrictions on the findings
for resonators with multiple carriers. The implementation as a slender beam resonator
has been part of research since the late 60s [15]. Still, nowadays, many research activ-
ities are taking place for this structure. It is used in many MEMS devices, e.g., atomic
force microscopy [16], magneto-resistive sensing [17], and gas sensing [18]. Further
possible applications are part of current research, e.g., MEMS timing devices [19] and
energy harvesting MEMS for wireless applications [20].

Previous work [12, 21] has shown a high potential for reducing anchor losses us-
ing higher-order-out-of-plane mode shapes. For the slender beam resonator, analytical
methods were presented for the natural frequency [22] and individual aspects of damp-
ing [23, 24]. However, all the analytic solutions presented so far are limited to one-
dimensional oscillation. Investigations into resonator designs for higher-order-out-of-
plane mode shapes have shown that wider plates could better suit this purpose. How-
ever, Stixenberger [21] showed a significant change in the Q-factor in small width in-

a) b)

Figure 1.2: Measured quality factor of roof-tilde-shaped modes at different widths 𝑤 of fabri-
cated devices reported by Stixenberger [21]
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tervals in the experimental results for some mode shapes. Figure 1.2 shows in a) the
quality factor for the 2nd roof-tilde-shaped mode. The strongest dip is circled in red
and shows a very sharp decrease of around 1.5 orders of magnitude. Between the initial
high Q-factor and the lowest value, the width only increases by 14 µm. The increase
in the Q-factor is also quite strong, with a change in width of only 36 µm. For the sec-
ond dip circled in green, the quality factor decreases and increases by more than 12⋅103
in an interval of less than 20 µm. In b), the 3rd roof-tilde-shaped mode is shown. The
strongest dip is also marked in red and shows a drop in Q-factor of more than one or-
der of magnitude within an interval of 30 µm. Around a width of 450 µm two strong
decreases of more than one order of magnitude are marked in green. Both plots also
show some other outliers, but the described examples affect the quality factor much
more strongly. Further investigations on plate resonators are needed to understand the
reasons for this behavior in the Q-factor.

Goal:
In this work, higher-order-out-of-plane mode shapes on non-slender geometries are

analyzed, with a focus on resonance frequency and Q-factor. The MEMS plate resonator
is modeled numerically and solved with the Finite Element Method (FEM). To improve
the understanding of the relation between the anchor losses and mode shapes, the me-
chanical energy flow in the modeled substrate is discussed. Further, the resulting dis-
placement patterns are analyzed with a mathematical method to identify the appearing
mode shapes. The main objective is to investigate Q-factor-related mode shape inter-
ference phenomena, such as avoided crossing and other superposition effects.
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2 Numerical model for wider MEMS
resonators

In this chapter, the analytic solutions for EB mode shapes will be discussed. Figure 2.1
a) shows the unexcited cantilever resonator and b) the resonator excited by the 2nd EB
mode. To analyze anchor losses of higher-order mode shapes, it will establish a general
physical model, which is solved numerically using the Finite Element Method (FEM).
The numerical solution of the model is validated using the analytical solution. In addi-
tion, the parameters for the accuracy of the solution are defined to achieve the objective
of this work. The analytical solutions are based on simplifications of the geometry and
the material. However, they are relevant for a more realistic model to evaluate mode
shapes. Therefore, the physical model will be adapted to define a model closer to fabri-
cated MEMS cantilever resonators.

a)
b)

Figure 2.1: Cantilever resonator, in a) in the non-excited state, and in b) excited in the 2nd
Euler-Bernoulli mode

2.1 Analytic models for different dissipation mechanisms

Understanding which dissipation mechanism dominates in cantilever resonators is es-
sential. Therefore, the analytic solutions for the individual components of the damping
factor are presented and compared. Before diving into the different loss mechanisms,
the analytic solution for the second important characteristic is presented, the resonance
frequency. In order to quantitatively evaluate the analytical models, their solutions are
presented for silicon resonators with different lengths. The material properties and the
resonator dimensions are defined in Table 2.1.

2.1.1 Resonance frequency

Judge et al. [22] presented an analytic solution for the natural frequency of cantilever
resonators as 𝑓𝑛 = 12𝜋 𝑘2𝑚√ 𝐸𝐼𝑖𝑛𝜌𝑤ℎ, (2.1)
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2.1. Analytic models for different dissipation mechanisms

Material properties of isotropic silicon:
Young’s modulus: 𝐸 = 170GPa
Poisson’s ratio: 𝜈 = 0.28
Mass density: 𝜌 = 2329 kg/m3
Thermal expansion coefficient: 𝛼𝑡ℎ = 2.6⋅10−6 1/K
Thermal conductivity: 𝜅 = 130W/(m⋅K)
Heat capacity: 𝐶𝑝 = 700 J/(kg⋅K)

Cantilever Resonator:
Resonator length: 𝑙 = {100; 200; 300; 400; 500; 1000} µm
Resonator width: 𝑤 = 100 µm
Resonator thickness: ℎ = 15 µm

Table 2.1: Material properties and dimensions for quantitative evaluation

with 𝐸 the Young’s modulus, 𝐼𝑖𝑛 the moment of inertia, 𝜌 the mass density, 𝑤 the width,ℎ the thickness and, 𝑘𝑚 is the root of the eigenvalue 𝜆𝑚, defined from equationcosh(𝜆𝑚) ⋅ cos(𝜆𝑚) = −1, 𝜆𝑚 ∈ {𝜆1, 𝜆2, ..., 𝜆𝑛} (2.2)

with 𝜆𝑚=𝑘𝑚𝑙, where 𝑙 is the length of the cantilever. For each eigenvalue 𝜆𝑚 exists an
eigenmode, the displacement pattern of the cantilever. This equation is derived from
EB assumptions and gives only eigenvalues for EB mode shapes [11]. The moment of
inertia 𝐼𝑖𝑛 of the resonator is defined as𝐼𝑖𝑛 = 𝑤ℎ312 . (2.3)

Inserting 𝐼𝑖𝑛 and 𝜆𝑚 in Equation 2.1 lead to𝑓𝑛 = 12𝜋 𝜆2𝑚 ℎ𝑙2√ 𝐸12𝜌 , (2.4)

which shows that the natural frequency for resonators of the same material decreases
by ℎ/𝑙2. Cantilever resonators are desired to have a very small ratio between thickness
and length (ℎ/𝑙 << 1) because of other properties discussed later in this section. There-
fore, length is the dominant factor, which leads to a quadratic decrease in resonance
frequency. This drawback of EB mode shapes on slender beam resonators is depicted in
Figure 2.2.
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2.1. Analytic models for different dissipation mechanisms

Figure 2.2: Natural frequency 𝑓𝑛 of the EB modes for the first five eigenvalues for different
lengths 𝑙. The resonator material properties and geometry are defined in Table 2.1

2.1.2 Anchor losses

The anchor losses refer to the dissipation of vibrational energy through the support
that connects the resonating structure to the substrate. This region is directly exposed
to the cantilever deformation field and significantly influences the kinetic energy flow
into the substrate. For this dampingmechanism, Wilson-Rae [23] presented the analytic
solution for the quality factor as𝑄anchor = 3.9𝜋4𝛾𝐶𝑚 𝑙5𝑤ℎ4 ( 3𝜋2𝜆𝑚)4 , (2.5)

with the number of supports 𝛾 equals 1 for the clamped-free beam and the additional
damping factor 𝐶𝑚 = (tanh2𝜆𝑚2 )(−1)𝑚 , 𝑚 ∈ ℕ, (2.6)

depending only from eigenvalue 𝜆𝑚 and its order 𝑚.
Equation 2.5 shows that, for resonators of the same material, the anchor losses of

EB mode shapes mainly depend on the ratio between height and length. Therefore, to
achieve high Q-factors, this ratio is desired to be very small. Furthermore, the anchor
loss Q-factor depends inversely on the width. Therefore, lower quality factors for EB
modes are expected on wider plates.

2.1.3 Thermoelastic damping

The oscillating displacement of the mode shapes leads to compression and stretching
inside the cantilever structure. These elastic deformations influence the temperature
field of the resonator and lead to a dissipative flow of thermal energy in the material.
Roszhart et al. [25] presented a solution for the Q-factor of the thermoelastic damping
as 𝑄TED = 12Γ(𝑇 )Ω(𝑓 ) , (2.7)
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2.1. Analytic models for different dissipation mechanisms

where Γ contains the material parameters asΓ(𝑇 ) = 𝛼2𝑡ℎ𝑇𝐸4𝜌𝐶𝑝 , (2.8)

including the thermal expansion coefficient 𝛼𝑡ℎ and the specific heat capacity 𝐶𝑝, and
temperature 𝑇 of the resonator. Furthermore, Equation 2.7 contains ΩΩ(𝑓 ) = 2𝑓 /𝐹01 + (𝑓 /𝐹0)2 , (2.9)

depending only from ratio between the frequency in the resonator 𝑓 and the character-
istic damping frequency of the resonator 𝐹0, defined as𝐹0 = 𝜋𝜅2𝜌𝐶𝑝 1ℎ2 , (2.10)

with in the first term the thermal conductivity 𝜅 and other material properties, and in
the second term only the cantilever thickness.

Assuming the material remains the same, the TED depends only on the thickness
of the resonator and not on length and or width. To improve the Q-factor for TED, the
ratio of 𝑓 /𝐹0 shall be much higher or much lower than one so that Ω becomes small.
Therefore, for the desired frequencies 𝑓 ≈ 𝑓𝑛 from equation 2.1, MEMS resonators’
thickness shall be very small.

2.1.4 Volume and surface losses

The elasticity of the material itself contributes to the quality factor of the resonator.
Volume and surface losses are related significantly to the elasticity of the used material.

Yasumura et al. [24] presented the quality factor for volume loss as𝑄Volume = ℜ(𝐸∗)ℑ(𝐸∗) , (2.11)

depending only on the complex Young’s modulus 𝐸∗. This modulus is a material prop-
erty affected neither by the resonator dimensions nor the eigenmodes. Montalvão et
al. [26] describe the real part as equal to Young’s modulus 𝐸 and the imaginary part as
the losses modulus. The loss modulus is defined as 𝐸𝜂 with the material loss coefficient𝜂. So 𝐸∗ is represented as 𝐸(1 + j𝜂), and the volume quality factor depends only on the
inverse loss coefficient. Ashby [27] estimated the loss coefficient for SiO2 below 2⋅10−5,
resulting in a 𝑄volume above 5⋅104.

Furthermore, Yasumura et al. [24] calculate the quality factor for surface loss as𝑄Surface = 𝑤ℎ2𝛿(3𝑤 + ℎ) ℜ(𝐸)ℑ(𝐸S) , (2.12)

depending on the resonator’s width and height, the surface layer thickness 𝛿, the com-

7



2.1. Analytic models for different dissipation mechanisms

plex Young’s modulus 𝐸∗, and the surface layer complex Young’s modulus 𝐸S
∗. For 𝐸S

∗,
neither analytic expressions nor experimental values are known. A value of above 105
for the surface quality factor is found from experiments.

No strategies were presented to improve these two quality factors. Therefore, they
are defining together the maximum possible Q-factor for fabricated silicon MEMS res-
onators of all possible geometries and mode shapes.

2.1.5 Combined results of damping mechanisms

Figure 2.3 shows the total quality factor, defined in Equation 1.2, including all presented
components. This plot demonstrates that EB mode shapes trend to higher Q-factors on
more slender geometries because of the decreasing height-to-length ratio. However, the
initial increase is much stronger for higher EB orders. This Q-factor increase is related
to the eigenvalue dependency of the anchor losses. Nevertheless, at higher lengths, the
impact of the volume and surface losses delimits the increase.

Figure 2.3: Total quality factor of the EB modes for the first five eigenvalues assuming isotropic
silicon cantilevers with 𝑤 =100 µm, ℎ =15 µm and different lengths 𝑙 from the inter-
val 100 µm to 1000 µm.

In Figure 2.4, the total Q-factor and its single components are plotted over the nat-
ural frequency. For resonance frequencies between 100 kHz and 1MHz, the TED is the
limiting mechanism. Above 3MHz, the anchor losses for the EB mode shapes dominate,
and the Q-factor decreases strongly. From the estimated individual loss mechanisms, it
is concluded that all mode shapes with a quality factor for anchor losses above 103 and
natural frequencies above 3MHz are considered for high Q-factor resonators. Previous
studies have shown that HO-OOP mode shapes have much higher Q-factors for the
anchor losses than EB modes [21]. Therefore, a numerical model is developed in the
next section to determine the plate resonators’ anchor losses.

8



2.2. Numerically modeling of anchor losses for non-slender geometries

Figure 2.4: Total quality factor and as well as individual Q-factor contributions plotted over the
frequency range of the first five EB mode shapes assuming isotropic silicon can-
tilevers with 𝑤 =100 µm, ℎ =15 µm and different lengths 𝑙 starting from 100 µm to
1000 µm.

2.2 Numerically modeling of anchor losses for non-slender
geometries

No analytical solutions for resonance frequency and quality factor were found for non-
slender resonator designs. Using a mathematical model of the material and applying
this to a given geometry makes it possible to solve this complex problem numerically.
The most important property of resonating cantilevers is that all deformations are small,
in the range of a few nanometers. So, it can be assumed a linear behavior of the mate-
rial and only elastic deformations. Therefore, the theory of linear elasticity is used to
model the resonator’s mechanical behavior. The theory of linear elasticity uses a set of
equations to describe the state of stress, strain, and displacement at each point of an
elastically deformable structure [28]. The stress represents the forces during deforma-
tion, and the strain represents the deformation. The spatial displacement, in its vector
representation 𝐮, is given from the solution of the equation of motion for continuum
mechanics. The environmental damping shall not be part of the model. Therefore, the
undamped version of this equation is used, defined as𝜌𝜕2𝐮𝜕𝑡 − ∇ ⋅ 𝝈 = 𝐅, (2.13)

where 𝜌 is the mass density, 𝐅 is an external force density and 𝝈 the stress tensor [30].
To solve this partial differential equation (PDE) is needed to define the stress tensor.
From the generalized Hooke’s law the stress tensor 𝝈𝑖𝑗 for linear materials is given as𝝈𝑖𝑗 = 𝐊𝑖𝑗𝑘𝑙 𝜺𝑘𝑙, (2.14)

9



2.2. Numerically modeling of anchor losses for non-slender geometries

where 𝐄𝑖𝑗𝑘𝑙 is the fourth-order elasticity tensor and 𝜺𝑘𝑙 the linear elastic strain tensor.
For relatively stiff elastic materials, the elastic strain tensor is approximated as𝜺𝑘𝑙(𝐮) = 12 (∇𝐮 + (∇𝐮)𝐓) , (2.15)

which defines the strain only as a function of the displacement vector [30]. Further-
more, the stress tensor and the strain tensor can be written in vector notation using the
symmetry of these tensors. The fourth-order elasticity tensor shows multiple symme-
tries and can be written as a symmetric 6×6 matrix. With this reshaping, it is possible
to reduce Equation 2.14 to 𝝈 = 𝐊𝜺(𝐮), (2.16)

where 𝐊 is the elasticity matrix and 𝜺 the strain vector. This representation of the stress
vector is further used in Equation 2.13 to define𝜌𝜕2𝐮𝜕𝑡 − ∇ ⋅ (𝐊 𝜺(𝐮)) = 𝐅, (2.17)

as the PDE to solve numerically. The same material properties as those used for the
analytical solution are used. The elasticity matrix for isotropic materials is defined as

𝐊 = 𝐸(1 + 𝜈)(1 − 2𝜈)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − 𝜈 𝜈 𝜈 0 0 0𝜈 1 − 𝜈 𝜈 0 0 0𝜈 𝜈 1 − 𝜈 0 0 00 0 0 1−2𝜈2 0 00 0 0 0 1−2𝜈2 00 0 0 0 0 1−2𝜈2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.18)

with the Young’s modulus 𝐸 and the Poisson’s ratio 𝜈 as defined in Table 2.1. To solve
this PDE, the Finite Element Method (FEM) is a suitable tool. The FEM requires, besides
the PDE and material definition, the definition of a geometric structure and a mesh to
divide the geometry into small elements. To solve the PDE, initial values, boundary
conditions, and environmental constraints are required. These can be deformations of
the structure, applied external forces, and artificial layers.

The geometry of the structure is chosen to correspond as closely as possible to the
assumptions of the analytical models. All these models assume that the resonator is
attached to the semi-infinite substrate, which implies that the energy flow is only di-
rected from the resonator to infinity without any reflection. Therefore, an artificial
absorbing layer is used to eliminate the reflections of the faces from the modeled sub-
strate. Frangi et al. [31] demonstrated the effectivity of the concept of the perfectly
matched layer (PML) for the evaluation of anchor losses. This layer simulates a mate-
rial that absorbs waves generated from the deformation of the cantilever, traveling in
the normal direction of the interface surface. The tangential component is not affected
by the PML. This effect has to be considered in the modeled substrate. If the resonator
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2.2. Numerically modeling of anchor losses for non-slender geometries

Figure 2.5: Geometry of the half-sphere model

is assumed to be a point source of the mechanical waves, spherical propagation can be
expected. For this wave propagation, the interface surface has to be a spherical shell.
Therefore, the substrate is modeled as a half sphere. For the assumption of the resonator
as a point source, a sufficient distance to the interface shell must be defined to achieve
wave propagation in the normal direction. This distance depends significantly on the
wavelength 𝜆𝑊𝐴𝑉𝐸, defined as 𝜆𝑊𝐴𝑉𝐸 = 𝑣p𝑓SYSTEM

, (2.19)

where 𝑣p is the phase velocity, and 𝑓SYSTEM is the natural frequency of the resonator. For
the used material single-crystalline silicon, a phase velocity of sound of 5000m/s can be
assumed [32]. A previous work shows the wavelength times two as a suitable value [21].
Furthermore, the thickness of the PML layer also has to be defined for sufficient absorp-
tion. This work also shows that this shell must be at least one wavelength thick. The
PML layer thickness is defined as 𝜆𝑊𝐴𝑉𝐸 times 1.3, to ensure sufficient absorption. Fig-
ure 2.5 shows the defined geometrical structure.

As mentioned, initial values and boundary conditions are also required. The ini-
tial values for the displacement and structural velocity fields are defined as zero. The
boundary conditions are defined so that all external surfaces of the resonator and the
substrate are free to move and can be affected by displacement. Also, no external forces
or deformations are applied to the structure. Therefore, the force 𝐅 in equation 2.17 is
equal to zero. The definition of the mesh size is needed to solve the PDE. The mesh
size is strongly related to the precision of the numerical results. The required preci-
sion is determined according to the results of the analytical solution. Therefore, the
resonant frequency and the Q-factor must first be derived from the numerical solu-
tion. The FEM solves the equation 2.17 for the eigenmode displacement vectors 𝐮 and
its complex eigenvalues 𝜆EIGEN. The eigenmode displacement vectors represent the dis-
placement patterns of the whole geometry. These displacement vectors are normalized
to a predefined value and are not related to a physical unit. From each eigenvalue, the

11



2.3. Convergence and validation of the FEM model

complex eigenfrequency 𝑓EIGEN is derived as𝑓EIGEN = −𝜆EIGEN2𝜋j
, (2.20)

with the imaginary unit j. The resonance frequency of the resonating cantilever is the
absolute value of the complex eigenfrequency. From this value, the quality factor is
derived with 𝑄 = 12 ℜ(𝑓EIGEN)ℑ(𝑓EIGEN) . (2.21)

The model presented is implemented and solved in Comsol Multiphysics. The only
missing parameter is the definition of the mesh. This definition is made iteratively by
continuously refining the size of the mesh elements.

2.3 Convergence and validation of the FEM model

As mentioned, the accuracy of the FEM results depends on the number and size of the
mesh elements. Smaller elements allow finer variations of the physical phenomenon
to be recognized. The finer the variations, the better the numerical solution matches
the PDE solution. However, the finer the mesh, the longer the execution time of the
simulation. Therefore, a trade-off between these two factors is needed. Figure 2.6 shows
a series of simulation series with increasing mesh element numbers. The maximum
tolerable deviation is defined as 5% compared to the finest mesh result. This deviation is
acceptable for analyzing the loss phenomena. The execution time for the corresponding
number of elements is also within a tolerable time range for executing the expected
amount of simulations. Figure 2.7 shows the selected mesh size.

After defining the mesh, it is started a simulation to compare the FEM results of the
defined model with the presented analytical solutions for the natural frequency from
equation 2.1 and the anchor losses from equation 2.5. Figure 2.8 shows both results. For
lower frequencies, the Q-factors and frequencies fit very well. A significant frequency

Figure 2.6: Convergence of mesh for the half-sphere model for the first EB mode. The red line
is assigned to the left axis and shows the ratio of the Q-factor and the Q-factor with
the finest mesh size over the number of mesh elements. The blue line is assigned to
the right axis and shows the execution time. The green section marks the acceptable
deviation of the ratio.

12



2.4. Adaptation of the model to fabricated MEMS resonators

Figure 2.7: Half sphere model with defined mesh from COMSOL Multiphysics

Figure 2.8: Q-factor 𝑄 for anchor losses over resonance frequency 𝑓𝑛, in blue from the analytic
solution and in red the simulation results of the FEM

shift is visible for frequencies over 1MHz. Above 10MHz, the Q-factors deviations are
increasing. However, the results overall show the same behavior and demonstrate that
the defined model is valid.

2.4 Adaptation of themodel to fabricatedMEMS resonators

FEM gives the opportunity to fit the model closer to the physical reality of MEMS de-
vices. The cantilever structures in MEMS are mostly attached to the upper edge of the

Figure 2.9: Geometry of the quarter-sphere model
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substrate. The free upper surface influences the results with this mounting position.
Changing the geometry to a quarter sphere. This influence is integrated into the model
by changing the geometry to a quarter sphere, shown in Figure 2.9.

Furthermore, it is possible to implement more complex materials. MEMS often con-
sist of anisotropic single-crystalline silicon, which has different elasticity properties de-
pending on the orientation of the crystal. For the representation of anisotropy, the
elasticity matrix

𝐊 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
194.5 35.7 64.1 0 0 035.7 194.5 64.1 0 0 064.1 64.1 165.7 0 0 00 0 0 50.9 0 00 0 0 0 79.6 00 0 0 0 0 79.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
GPa, (2.22)

as described by Hopcroft et al. for the [110], [110], [001] orientation is used [33]. All
other relevant properties are taken as defined in Table 2.1.

Figure 2.10 shows the results for the half-sphere model with isotropic silicon in green
and the quarter-spheremodel with anisotropic silicon in blue. The quarter-spheremodel
has a slightly lower Q-factor. For the anisotropic material, the elasticity matrix changes
only slightly in the longitudinal direction of the resonator. Therefore, it is not expected
to impact EBmode shapes significantly. It ismore probable that the free upper surface of
this model influences the Q-factor. For the half-sphere model, the waves are propagated
in the upper and lower part of the substrate. In the quarter sphere model, the upper
surface reflects the wave and causes interference with the directly emitted waves of the
resonator.

For frequencies below 2MHz, the gap between the related Q-factors is relatively
stable, and the resonance frequencies match well. There is no clear pattern for the dif-
ferences between the values at higher frequencies. In this frequency region, the slightly
different elasticity matrix may also influence both values.

Figure 2.10: The Q-factor for anchor losses over the resonance frequency of the half-sphere and
the quarter-sphere model
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2.5 Conclusions

The analytical solutions for the most important loss sources are shown to identify the
dominant damping mechanism. For EB modes, the anchor losses decrease sharply and
dominate above a resonance frequency of 3MHz. For resonators with high Q-factors,
anchor losses above 103 and natural frequencies higher than 3MHz are desired. The
lack of solutions for anchor losses of higher-order-mode shapes makes it necessary to
define a physical model of the plate resonator. The theory of linear elasticity is used
to model the material, and a half-sphere geometry is selected to model the substrate.
Then, the model is implemented in COMSOL Multiphysics, and a proper mesh is de-
fined. Furthermore, the convergence of the model is shown. The completely defined
model is successfully validated, referring to the analytical equations. The last step is to
adapt the model to real MEMS devices. Therefore, the geometry is changed to a quarter
sphere and the material to anisotropic silicon. Subsequently, this new model is validated
successfully with the isotropic half-sphere model.
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3 Vibrational modes and anchor losses on
non-slender resonators

a) Slender beam b) Square plate c) Wider plate

Figure 3.1: Geometries of the evaluated cantilevers

The model presented in section2.4 is now used to evaluate three different geometries
and analyze the resulting mode shapes in relation to anchor losses. Furthermore, the
energy flow in the substrate generated by the anchor losses is evaluated to identify the
major flow directions. Figure 3.1 shows the resonator geometries of the models, which
are solved using COMSOL Multiphysics for the approximately first 30 eigenmodes. To
distinguish the resonator modes from the so-called substrate modes, a quality factor
of 5 is defined as the lower limit. First, the slender beam, shown in a), is analyzed as
a reference geometry. This beam is 200 µm long, 25 µm wide and 15 µm thick. Then, a
square resonator, shown in b), is evaluated. The length and thickness are taken from
the slender beam so that the results can be compared only in terms of width. Finally, a
wide plate, shown in c), is analyzed. This plate is 350 µm wide. The length and thickness
are also kept constant in this case. Table 3.1 are summarized the used parameters for
the FEM simulations.

Substrate model: Quarter sphere
Material: Anisotropic single-crystalline silicon
Orientation: [110], [110], [001]
Resonator length: 𝑙 = 200 µm
Resonator width: 𝑤 = {25, 200, 350} µm
Resonator thickness: ℎ = 15 µm

Table 3.1: Parameters of the FEM simulations

Before starting with the evaluation of these geometries, the relevant mode types for
the free-clamped resonator are presented briefly. Figure 3.2 shows examples of these
mode types. Figure a) shows the 1st Euler-Bernoulli (EB) mode shape. This mode type
has only a displacement in an out-of-plane (OOP) direction, and the cross-sections of
the beam are not deformed. Figure b) shows a further type of OOP mode, the so-called
torsional mode. In contrast to the EB modes, the cross-section is indeed changed and
affected by a rotary movement. The subfigures c) and d) show the higher-order OOP
(HO-OOP) mode shapes. The base type for HO-OOP mode shapes are the roof tile-
shaped (RTS) modes, shown in c). Figure d) shows the example for the more complex
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3.1. The slender beam resonator

HO-OOP mode shapes. This type is formed from the superposition of HO-EB modes
and RTS modes. In addition to the OOP modes, there are also in-plane (IP) modes
divided into lateral (lat.) modes in e), extensional (ext.) modes in f), and the so-called
bulk modes in g) and h).

3.1 The slender beam resonator

First, is executed a simulation of a 200 µm long, 25 µm wide, and 15 µm thick resonator.
Before investigating natural frequencies and Q-factors, the types of eigenmodes for this
geometry are analyzed with a focus on the displacement patterns of the resonator and
the anchor region.

3.1.1 Analysis of the displacement patterns

The appearing mode shapes can be divided into two major classes referring to the main
displacement direction, the out-of-plane mode types, and the in-plane mode types. In
the OOP direction, Euler-Bernoulli mode shapes and torsional mode shapes are found.
For the IP direction, EB mode shapes with lateral bending and extensional mode shapes
occur.

The first example in Figure 3.3 a) shows the 5th OOP EB mode shape. The white
areas do not exhibit any displacement. In the center of these areas are located the so-
called nodal lines. The areas of higher displacement are colored in blue and oscillate
in time between positive and negative deflection. In the image, the displacement is
greatly magnified. The real peak deformation in the darkest areas is in the order of a
few nanometers, as experiments have shown [21]. The beam length itself does not vary
significantly compared to the OOP displacement. For OOP EB mode shapes, all nodal
lines are parallel to the substrate edge along the whole width and half height of the
beam. The count of nodal lines refers to the order of the mode shape. In this example,
four nodal lines are on the cantilever, and a fifth is in the anchor to the substrate. At the
upper surface of the substrate, a slight deformation is visible. This area is the so-called
anchor region. This part of the substrate is affected directly by the surface acoustic
wave (SAW) and the bulk acoustic waves (BAW) radiated from the cantilever. SAWs
propagate the dissipated energy from the resonator at the upper and front surfaces to
the PML surfaces. The energy of the BAWs is diffused in the substrate volume and also
dissipated in the PML.

An example of the second OOP mode type is shown in Figure 3.3 b), the 3rd torsional
mode shape. The nodal lines are visible in white, three parallel to the substrate edge and
one along the beam. This longitudinal nodal line is located in the center of the beam
cross-section and is the rotary axis of the torsional movement. The parallel nodal lines
are extended to the whole beam section. The anchor region is affected by a deformation,
mostly at the lateral beam edges in opposite directions.

For the IP mode types, as an example, is shown in Figure 3.4 a) the 5th lateral EB
mode shape. The properties of this mode type are essentially the same as those of the
OOP EB, with the direction of deflection changed to lateral. However, the direction
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3.1. The slender beam resonator

Δ𝑧𝑧 𝑥𝑦
a) 1st EB mode shape. Up and down
bending only in 𝑧-direction.

𝜑
b) 1st torsional modes shape. Rotary
motion along the 𝑦-axis.

𝜑 𝜑
c) 1st RTS mode. Two contrary rotary
motions in parallel to the 𝑦-axis.

Δ𝑧𝜑 𝜑
d) HO-OOP mode shape. Superposi-
tion of the 3rd EB mode shape and the
1st RTS mode.

Δ𝑥
e) 1st lateral EB mode shape. Left and
right bending only in 𝑥-direction.

Δ𝑦

f) 1st extensional mode shape.
Compression and elongation in𝑦-direction.Δ𝑦

Δ𝑥
g) Bulk mode. Superposition of lateral
and extensional mode shapes.

Δ𝑦
Δ𝑥

h) Bulk mode. Compression and elon-
gation in 𝑥- and 𝑦-directions.

Figure 3.2: Examples for the different mode types on cantilever resonators
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3.1. The slender beam resonator

a) 5th OOP EB mode shape b) 3rd torsional mode shape

Figure 3.3: Types of out-of-plane mode shape on slender beam resonator.

a) 5th lateral EB mode shape b) 3rd extensional mode shape

Figure 3.4: Types of in-plane mode shape on slender beam resonator.

of force applied to the substrate is different. The upper surface shows no significant
displacement. The lateral beam edges are causing an oscillating stretching on the front
substrate plane.

The last example is the 3rd extensional mode shape, depicted in Figure 3.4 b). In this
case, the length of the beam is changed periodically, with stretching and compressing
forces acting alternately. The direction of this force is strictly longitudinal and acts
uniformly on the entire beam cross-section. Therefore, nodal surfaces are present in
this mode type rather than lines. This planar cyclic force acts on the substrate through
the anchor. The surface of the substrate at the anchor is also significantly deformed.

3.1.2 Analysis of the anchor losses

Figure 3.5 shows the simulation results, separated by the deflection planes. On the
y-axis, the Q-factor is plotted on a logarithmic scale, and on the x-axis, the natural
frequency is plotted on a linear scale. The natural frequency range to find the 30 eigen-
modes is relatively large. It starts with the 1st OOP EB mode shape at around 0.5MHz
and reaches more than 80MHz for the 10th lateral mode shape. Figure 3.5 a) shows that
for the OOP mode types EB and torsional mode shapes are found. The first EB mode has
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3.1. The slender beam resonator

a) OOP b) IP

Figure 3.5: Occurring mode shapes for the slender beam resonator, showing the quality factor𝑄 over the natural frequency 𝑓n. The dashed lines delimit the region of promising
mode shapes with resonant frequencies above 3MHz and Q-factor above 103.

a high quality factor of around 2⋅105, but it decreases rapidly afterward. From the 3rd
EB mode on, with the resonance frequency of around 8MHz, all modes have Q-factors
below 200. The behavior for the torsional mode shapes is slightly better. They also start
very high from around 6.5⋅104 and decrease not so sharply as EB modes. They drop
under 103 around an eigenfrequency of 25MHz and are all above 100, besides the last
highest orders. Figure 3.5 b) shows the identified in-plane mode shapes. For lateral EB
mode shapes, the frequencies and the Q-factors are very similar to those of the OOP EB
modes. These similar values are because of the small difference between beam width
and thickness. The extensional mode shapes are further apart in terms of frequency
than the other mode types. However, all of them have low Q-factors below 25.

From these results, only the first three torsional mode shapes and the second lateral
EB mode are in the region with the potential to reduce the anchor losses with higher
orders. However, no HO-OOP mode shape appeared in this large range of frequency.
Therefore, non-slender geometries are mandatory for these modes.

3.1.3 Analysis of the mechanical energy flux

To better understand the behavior of anchor losses, its effect on the substrate is inves-
tigated. As described in Equation 1.1, the Q-factor is related to periodic energy dissi-
pation. The anchor losses induce a mechanical energy flux from the cantilever into the
substrate. This mechanical energy flux vector 𝐈 in the time domain is defined as𝐈𝑚𝑒𝑐ℎ(𝑡) = −𝜎𝑖𝑗 ⋅ 𝐯(𝑡), (3.1)

with 𝑡 the time, 𝜎𝑖𝑗 the stress tensor and 𝐯 the velocity vector. The minus sign is defined
by the direction convention from the energy source, the resonator, to the load, the PML.
For the FEM calculations is used the frequency domain. The energy flux in the complex
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3.1. The slender beam resonator

form is obtained from 𝐈𝑚𝑒𝑐ℎ(j𝜔) = −𝜎𝑖𝑗 ⋅ 𝐯∗(j𝜔), (3.2)

with j the imaginary unit, 𝜔 the angular frequency, and ∗ indicates the complex conju-
gate form. The average mechanical energy flux is derived as𝐈𝑚𝑒𝑐ℎ,𝑎𝑣𝑔 = 12ℜ(−𝜎𝑖𝑗 ⋅ 𝐯∗(j𝜔)). (3.3)

Only the normal component of the energy flux gives information about the effective
flow from the source to the load. Therefore, it is necessary to define the normal direction
of the flux. In this case, it is the direction in which the energy is propagated from the
resonator to the PML layer. For simplification, the resonator is assumed to be a point
source in the sphere’s center. Therefore, the normal direction is defined in this model
as the radial component of the energy flux and is obtained as𝐼𝑛𝑜𝑟𝑚() = 𝐈 ⋅ 𝐱()|𝐱()| , (3.4)

whit 𝐱 the radial vector from origin at the center of the sphere to a specific point and|⋅| means the Euclidean norm of a vector. Because of the simplification, the values only
become valid above a certain distance from the resonator, for which one wavelength is
assumed.

The radial component is shown at the surfaces of a substrate section to visualize the
energy flux. The section depicted in Figure 3.6 is defined as the half of the substrate,
from which an inner sphere with a radius of one wavelength is cut out. From the sym-
metry of the structure, it can be assumed that the same radial behavior of the energy
flux is present in both halves of the substrate.

Figure 3.7 a) shows the energy flux for the 1st OOP EB mode shape. The major flow
directions are illustrated in the figure with the arrows 𝐴 to 𝐶. The energy for this mode
type is mainly propagated on the surfaces. The highest densities are well distributed
on the upper surface in the direction 𝐴 and in the direction 𝐵. A smaller portion is also

Figure 3.6: Quarter sphere model: The section of the substrate evaluated for the mechanical
energy flow is marked in green.
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3.1. The slender beam resonator

𝐴 𝐵𝐶
a) 1st OOP EB mode shape

𝐵𝐴

b) 1st torsional mode shape

Figure 3.7: Radial mechanical energy flux for out-of-plane modes.

𝐴

a) 1st lateral EB mode shape

𝐴 𝐵𝐶𝐷

b) 1st extensional mode shape

Figure 3.8: Radial mechanical energy flux for in-plane modes.

radiated in the direction 𝐶. Inside the substrate, no significant flux is present.
Figure 3.7 b) shows that for the 1st torsional mode shape, the energy flux is highly

concentrated on the upper surface in the direction𝐴. In the same direction, a significant
portion of energy also flows deeper into the substrate, marked with 𝐵. The other parts
of the substrate are not affected by any flux.

The energy flux for the 1st lateral EB mode shape, depicted in Figure 3.8 a), is prop-
agated inside the bulk in the direction 𝐴. On the outer surfaces, no significant flow is
visible.

In Figure 3.8 b) is shown that for the 1st extensional mode shape, the energy flux
is more concentrated on the upper surface in the direction 𝐴, and on the front surface
mainly in the direction 𝐵 and 𝐶. A significant flow is also visible deeper inside the
substrate in the direction 𝐷.
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3.2. A square plate resonator

3.2 A square plate resonator

As the first step to investigate non-slender geometries, a square plate with dimensions
200 µm long, 200 µm wide, and 15 µm thick is simulated. Different higher-order mode
types are found in both displacement planes in this geometry. In the beginning, the
individual aspects of these displacement patterns are described. Further, the resonance
frequency and quality factor results are presented, and the mechanical energy flux is
discussed.

3.2.1 Analysis of higher-order displacement patterns

Figure 3.9 a) shows an example of a HO-OOP mode shape. To uniquely identify HO-
OOPmode shapes, the naming convention presented by Leissa is used subsequently [34].
It is based on the nodal line count. The directions of the nodal lines are illustrated in
the figure. The nodal line parallel to the anchor is shown in red, and in blue, the longi-
tudinal nodal line along the plate length is shown. All nodal lines of the resonator are
numbered according to their direction. The naming format is defined as 𝑛𝑦 ∶ 𝑛𝑥 . The
first number, 𝑛𝑦 , refers to the parallel nodal lines, and the second number, 𝑛𝑥 , refers to
the longitudinal nodal lines. The mode shape shown as an example is identified as the
3:4 mode. This notation works well also for Euler-Bernoulli mode shapes, described as𝑛𝑦 :0, and torsional mode shapes as 𝑛𝑦 :1. For these modes, the mode order is equal to 𝑛𝑦 .
The first order of HO-OOP mode types is called roof tile-shaped modes and is defined
as 1:𝑛𝑥 , with 𝑛𝑥 > 1. All other HO-OOP mode shapes are defined from the superposi-
tion of EB and RTS modes. To use the naming convention also for the IP mode shapes,
there the name abbreviation is added. For lateral mode shapes, it is lat. 𝑛𝑦 :0; and for
extensional mode shapes, ext. 𝑛𝑦 :0.

A new mode type appeared for the in-plane mode shapes, the bulk mode. An exam-
ple is depicted in Figure 3.9 b). This mode type can show stretching, compressing, and
lateral bending waves in both in-plane directions. The concept from Leissa is not ap-
plicable for such mode shapes, as they do not have strict parallel or longitudinal nodal

parallel
nodal line

longitudinal
nodal line

𝑧 𝑥𝑦𝑛𝑦=1𝑛𝑦=2 𝑛𝑦=3 𝑛𝑥=1 𝑛𝑥=2𝑛𝑥=3 𝑛𝑥=4
a) b)

Figure 3.9: New appearing mode shapes for non-slender resonators. In a) the 3:4 HO-OOP
mode shape and in b) an IP bulk mode.
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3.2. A square plate resonator

lines. Moreover, node points, as shown in the example, are also possible. As shown
later in this section, the resulting Q-factors are out of scope to improve anchor losses.
Therefore, bulk modes are not classified in detail and are called simply IP mode shapes.

3.2.2 Analysis of the anchor losses

Figure 3.10 shows the first 30 eigenmodes found with a Q-factor above 5.
For the OOP mode shapes in Figure 3.10 a), it is visible that besides the EB and tor-

sional mode shapes are appearing many HO-OOP mode shapes. With this wider struc-
ture, the natural frequency range for the amount of found eigenmodes decreases and
reaches only 30MHz. The comparison with the result from the slender beam resonator
in Figure 3.5 a) shows that the eigenfrequency for EB modes remains nearly constant.
This behavior matches the prediction from the analytic solution in Equation 2.1. The
resonance frequencies for torsional modes are significantly lower compared to the slen-
der beam, e.g., by a factor of 5 for the 1:1 and a factor of 2 for the 5:1 mode. The quality
factor of EB and torsional mode shapes is significantly lower for the quadratic plate, be-
sides the 1st torsional mode. The HO-OOP mode shapes have mostly Q-factors above103 and are very well distributed in the frequency range above 3MHz. Not less than ten
promising mode shapes are identified within this region.

In Figure 3.10 b) are shown the the IP mode shapes. The natural frequency of the
lateral EB modes is shifted to higher frequencies, and their quality factors dropped dras-
tically, compared to Figure 3.5 b). Only one extensional mode is found, approximately
constant in frequency, but with a very low Q-factor of around 9. Most bulk modes have
poor quality factors below 100. Therefore, IP mode shapes do not show any potential to
improve anchor losses.

a) OOP b) IP

Figure 3.10: Occurring mode shapes for the quadratic plate resonator, showing the quality fac-
tor 𝑄 over the natural frequency 𝑓n. The dashed lines delimit the region of promis-
ing mode shapes with resonant frequencies above 3MHz and Q-factor above 103.
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3.2. A square plate resonator

3.2.3 Analysis of the mechanical energy flux

Analyzing the mechanical energy flux in Figure 3.11 a) for the 1st OOP EB mode shows
the same directions as for the slender geometry. The main direction is still lateral and
also on the upper surface. A significant flow is present on the front surface, only below
the resonator. Figure 3.11 b) shows that only a very small section around the substrate
edge energy is propagated. Compared to Figure 3.7 b) the energy is much more concen-
trated at the surfaces and no more inside the bulk.

Figure 3.12 a) shows for the 1st lateral EB mode shape, that the energy flows mostly
inside the substrate and on the upper surface in direction 𝐴. For the 1st extensional
mode shape is shown in Figure 3.12 b) that the energy flux is propagated mainly on
the front surface in direction 𝐴 and 𝐵. A smaller portion is radiated in the bulk in the
direction 𝐶.

𝐴 𝐵𝐶
a) 1st OOP EB mode shape

𝐴

b) 1st torsional mode shape

Figure 3.11: Radial mechanical energy flux for out-of-plane modes.

𝐴

a) 1st lateral EB mode shape

𝐴𝐵𝐶

b) 1st extensional mode shape

Figure 3.12: Radial mechanical energy flux for in-plane modes
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3.3. The wider rectangular plate resonator

3.3 The wider rectangular plate resonator

In this section, a wider rectangular plate is analyzed. The length and thickness of the
rectangular plate were not changed to compare the results with the previously shown
square plate. The dimensions are selected as 200 µm long, 350 µm wide, and 15 µm thick.
Many more HO-OOP mode shapes are identified with promising Q-factors from this
simulation. No new mode types are identified for this wider geometry.

3.3.1 Analysis of the anchor losses

Figure 3.13 shows the appearing mode shapes. In a) for the OOP mode shapes, the or-
der of founded HO-OOP modes increased compared to the quadratic plate. The highest
appearing resonance frequency decreased and is only slightly above 18MHz, while the
lowest eigenfrequencies are still remaining below 1MHz. The eigenfrequency for EB
mode shapes does not change between the three different widths, as expected from the
shown analytic solution (EQ. 2.4). The resonance frequency does not change much for
torsional mode shapes from square to the wider plate. Compared to the slender beam,
it is decreased a lot. The HO-OOP mode shapes are shifted downwards in frequency,
but not all mode types in the same way. The EB and torsional are once more affected by
decreasing quality factors. However, more than 12 HO-OOP mode shapes have promis-
ing Q-factor above 103. The RTS modes 1:3 and 1:5 show lower Q-factors as their related
second-order mode shapes. The same behavior is observed also on the square plate for
the 1:3 mode. The expectation that the RTS modes always have the highest quality fac-
tor can not be confirmed following these results. Further investigations are needed to
understand the underlying loss mechanisms.

Figure b) shows that only a few modes were found, all with poor Q-factors below
100 for the IP mode shapes.

a) OOP b) IP

Figure 3.13: Occurring mode shapes for the wider plate resonator, showing the quality factor𝑄 over the natural frequency 𝑓n. The dashed lines delimit the region of promising
mode shapes with resonant frequencies above 3MHz and Q-factor above 103.
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3.3. The wider rectangular plate resonator

3.3.2 Analysis of the mechanical energy flux

Figure 3.14 a) shows the same directions and intensities as for the slender and the square
geometry. This similar energy flux leads to the conclusion that the width does not
significantly affect the energy flux for this mode shape. Similar behavior is also visible
for the 1st torsional mode shape in Figure 3.14 b). Also, on the wider plate, the energy
is propagated along the substrate edge, mainly on the upper and front surfaces.

Figure 3.15 a) shows the energy flux for the 1st lateral EB mode shape. The main
flow is in the direction of 𝐴 inside the substrate and also on the upper surface. This
behavior is very similar to the quadratic plate. For the 1st extensional mode shape in
Figure 3.15 b), the energy flux is mainly present on the front surface concentrated below
the resonator in direction𝐴. A relatively small portion is propagated inside the substrate
in direction 𝐵. The mechanical energy flux for this mode is very similar for the slender
beam and the quadratic plate, but the lateral flow is no longer present for the wider
structure.

𝐴 𝐵𝐶
a) 1st OOP EB mode shape

𝐴

b) 1st torsional mode shape

Figure 3.14: Radial mechanical energy flux for out-of-plane modes.

𝐴

a) 1st lateral EB mode shape

𝐴𝐵

b) 1st extensional mode shape

Figure 3.15: Radial mechanical energy flux for in-plane modes.
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3.4. Conclusions

𝐴 𝐵𝐶
a) 1:2 RTS mode

𝐴

b) 1:3 RTS mode

𝐴 𝐵𝐶
c) 1:4 RTS mode

𝐴𝐵

d) 1:5 RTS mode

Figure 3.16: Radial mechanical energy flux for RTS modes.

Figure 3.16 shows the mechanical energy flux for the first four RTS modes. For the
1:2 RTS mode, shown in a), the major energy flow is in direction 𝐶 on the front surface.
Another significant flow is visible in direction 𝐵 inside the substrate On the upper
surface, a minor flow is in direction 𝐴. In Figure b), for the 1:3 RTS mode, only one
energy flux direction is visible. This flux is in direction 𝐴 on the front and upper surface
around the substrate edge. The 1:4 mode shows a main energy flux in the direction 𝐶
below the resonator. Significant energy flows are also visible on the upper surface, in the
direction 𝐴 and along the substrate edge in 𝐵. Lastly, the 1:5 RTS mode shows, besides
a small energy flux in direction 𝐴, a dominant flow on the front face in the direction 𝐵.

3.4 Conclusions

The square and the wider plate results show that these geometries are well suited for
HO-OOP mode shapes. Most of these mode have Q-factors above 103 with resonance
frequencies above 3MHz. The RTS modes tend to have the highest quality factors, but
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3.4. Conclusions

not always. Some of these mode shapes have significantly lower Q-factor. However,
they are very promising for high quality factor applications. The next chapter investi-
gates the underlying mechanisms for the inconsistent Q-factor behavior.
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4 Avoided crossing and ”Q-drop” crossing in
cantilevered plates

In the previous chapter, the mode shapes on different widths are analyzed. Many HO-
OOP mode shapes are found on non-slender resonators. The torsional and x:2 modes
show a descending Q-factor for higher-order mode shapes. This trend is also expected
for the other HO-OOP mode shapes. However, the x:3 modes are evolving differently.
The 1:3 shows a significantly lower Q-factor than the 2:3. No explanation is found for
this different Q-factor behavior compared to the 1:2 mode. Other mode shapes also
do not show a distinct, descending, or ascending order in the Q-factor. In order to
identify the mechanisms behind the relationship between Q-factor and mode order in
different plate resonators, a simulation sweep is performed. For the sweep simulation
are defined different plate resonators with an increasing width from 250 µm to 500 µm,
with an increase of 2 µm. Figure 4.1 shows the limiting geometries for the sweep. All
used parameters for the simulation are defined in Table 4.1.

Substrate model: Quarter sphere
Material: Anisotropic single-crystalline silicon
Orientation: [110], [110], [001]
Resonator length: 𝑙 = 200 µm
Resonator width: 𝑤 = {250; 252; 254; … 500} µm
Resonator thickness: ℎ = 15 µm
Maximum resonance frequency: 𝑓𝑛,𝑚𝑎𝑥 = 10MHz
Minimum Q-factor: 𝑄𝑚𝑖𝑛 = 5

Table 4.1: Parameters of the FEM simulations

From the simulation results, over 2000 eigenmodes with a Q-factor over five on the
different plate widths are identified. The identification of the mode shapes is started
with RTS modes. Figure 4.2 shows the simulation results for the natural frequency over
the width. All identified RTS modes are highlighted in color, and so far, the uniden-

a) b)

Figure 4.1: Examples of the analyzed plate widths. In a) the smallest plate with 250 µm and in
b) the wides plate with 500 µm

30



Figure 4.2: Result of the simulation sweep: The resonance frequencies 𝑓𝑛 over the plate width𝑤. Highlighted are all identified RTS modes. The other modes are in gray in the
background. For some widths, the 1:3, 1:4, and 1:6 mode shapes cannot be identified.
For the 1:3 mode, a zoom is shown in this area. The resonance frequencies in grey
between the identified red dots show a repulsive trend.

tified mode shapes are gray in the background. Some of these RTS modes cannot be
identified at each plate width. For the 1:3 mode, a zoom is shown in this area. In this
zoomed region, it is visible that the resonance frequencies in gray do not build a con-
nection between the red dots. The paths of natural frequency are repelling each other.
This repulsive trend is also identified for other paths. Figure 4.3 shows the simulation
result, sorted to follow the identified progression of the natural frequencies. In all areas
where the mode shapes are not possible to categorize, this repulsive behavior in reso-
nance frequency is found. Between the width where the mode shape disappears on one
path and the width where it reappears on the other, the mode shapes do not show a
displacement pattern, which can be described with the Leissa notation. Therefore, the
following section presents a mathematical method to classify the displacement patterns
in this transition zone.

Figure 4.3: Results of the simulation with increasing width. The natural frequencies are
grouped by paths from A to V ordered by ascending frequency.
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4.1. Fourier transformation based mode shape identification

4.1 Fourier transformation basedmode shape identification

To overcome the not classifiable displacement patterns is presented an analyticalmethod
to detect automatically all mode shapes. The input data is defined as the specific dis-
placement pattern from a resonance frequency of a specific plate width. No additional
information is needed. The method is developed using the script language Python. This
language was selected because of the libraries offered for scientific computing, data
analysis, and visualizations. The Python library NumPy is used for numerical computa-
tions, which offers a broad range of mathematical functions and efficient array opera-
tions.

The displacement data to evaluate is obtained from the FEM solver in Comsol Mul-
tiphysics. The FEM solves the defined problem in the spatial frequency domain. There-
fore, the displacement field is complex-valued. The displacement field is represented
from the displacement vector 𝐮 = (𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧). All vectors 𝐮 of a particular displacement
pattern are normalized to a predefined value in relation to the highest absolute value
that occurs and does not refer to a physical unit. Because the simulated plates are thin,
the displacement filed along the 𝑧-axis does not vary significantly. Therefore, reducing
data from the 3D structure to a 2D surface is possible. The surface is defined in the𝑥-𝑦 plane at half thickness on the cantilever. Figure 4.4 shows the defined surface. The
relevant steps to the export are shown in Appendix A. The exported data is sorted for
the displacement components 𝑢𝑥 , 𝑢𝑦 , and 𝑢𝑧 in the matrices 𝐔𝑥 , 𝐔𝑦 , and 𝐔𝑧 in relation
the position in 𝑥 and 𝑦 on the grid.

Figure 4.5 shows the maximum displacement for the 1:1 mode shape. The develop-
ment of the mode shape identification algorithm is presented based on this mode shape.
This mode shape is selected because it is the first mode showing oscillating in 𝑥- and𝑦- directions.

Initially, the algorithm is only used to analyze OOP mode shapes with the displace-
ment component matrix 𝐔𝑧 with shape 𝑀×𝑁 . The Fourier transformation (FT) is often
used for vibration analysis. The FT allows the analysis of displacement fields in the fre-
quency domain, revealing the amplitudes and phase of the underlying wavenumbers.
The wavenumbers, also called the spatial frequencies of a wave, represent the number
of wave cycles on a defined distance in a given direction. The FT implementation as𝑥𝑦 𝑧 ⋅
Figure 4.4: The plate, drawn as a wire body, with the axis orientation at the origin. The plane

at half thickness marked in magenta is used for the data export.
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4.1. Fourier transformation based mode shape identification

a)

b)

Figure 4.5: Visualizzation of the 1:1 mode shape. In a) from Comsol Multiphysics and in b) the
maximum displacement matrix𝑈𝑧,𝑚𝑎𝑥 . The black tick line at 𝑦 = 0marks the anchor
of the plate. In both images, the plate is 200 µm long and 250 µm wide.

2-dimensional discrete FT (2D DFT) will be used to analyze the extracted displacement
field. Numpy this function is defined as𝛼𝑧, 𝑘𝑙 = 𝑀−1∑𝑚=0

𝑁−1∑𝑛=0 𝑢𝑧, 𝑚𝑛 𝑒−2𝜋j(𝑚𝑘𝑀 + 𝑛𝑙𝑁 ), 𝑘 = 0, ..., 𝑀 − 1; 𝑙 = 0, ..., 𝑁 − 1; (4.1)

where 𝑢𝑧, 𝑚𝑛 are the complex elements of the displacement matrix𝐔𝑧 and j the imaginary
unit [35]. The resulting complex coefficients 𝛼𝑧, 𝑘𝑙 were stored the matrix 𝜶𝑧 with the
same shape as 𝐔𝑧. Because of the symmetry of the 2D DFT, the result contains the
positive and negative count of the wavenumbers for both dimensions. However, only
the positive spatial frequencies have a physical meaning. Therefore, the matrix can be
reduced to the first quadrant. In order to better illustrate the relationship between the
coefficients and the vibrations on the plate, 𝑘 → 𝜉𝑥 and 𝑙 → 𝜉𝑦 are used subsequently.

Figure 4.6 shows the heat map of the displacement matrix 𝐔𝑧 and the amplitudes of
the wavenumbers of the 2D DFT. The result marks the strongest amplitude at 𝜉=(𝜉𝑦 , 𝜉𝑥)

a) b)

Figure 4.6: a) The maximum displacement field 𝐔𝑧 for a 1:1 mode as a heat map. b) Plot of
the amplitudes |𝛼| for the wavenumbers of the displacement field 𝐔𝑧 . Only a slice
from the result matrix of the 2D DFT containing the first ten spacial oscillations in
both directions is shown to ensure the visibility of the highest expected oscillation.
It shows a maximum in (𝜉𝑦 , 𝜉𝑥)=(0, 1). Each amplitude is normalized to the sum of
all amplitudes in the first quadrant.
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4.1. Fourier transformation based mode shape identification

a) b)

Figure 4.7: Steps from original to the extended displacement data for the 1:1 mode in a) along
the free edge and b) along a lateral edge. Displacement is normalized and not in
scale.

=(0, 1). The wavenumber component 𝜉𝑦=0 shows that the section of the spatial oscilla-
tion period in this direction is not long enough to be recognized by the FT. For proper
detection of the mode shapes, extending the dataset to obtain at least one complete
oscillation period is necessary.

A series of mirroring steps are performed on the original data to achieve this ex-
tended dataset. Figure 4.7 a) shows the original displacement in 𝑥-direction along the
free edge plotted in blue. This displacement shows a half period with positive and nega-
tive displacement. One mirroring step, plotted in orange, is enough to obtain a complete
period.

In the 𝑦-direction, the first nodal line is fixed at the anchor, and in the 1:x mode,
this is the only nodal line. Figure 4.7 b) shows the progress of the initial data along
a lateral edge in blue. It is necessary to mirror the dataset at least two times to build
a periodic displacement form from this merely rising line without a sign change. The
secondmirroring step datamust be inverted to create the negative half period. Figure 4.7
b) shows the obtained period with all steps in different colors.

Figure 4.8 a) shows the extended dataset for the 1:1 mode shape as a 2D heat map.
In b), the amplitudes of the wavenumbers from 2D DFT are shown. The significant
maximum is located in (1,1). This result matches the nodal line count for this mode
shape.

Inspecting higher mode shapes with the same algorithm shows that the result for𝜉𝑦 differs from nodal lines count. Because of the second mirroring step, the dataset is
doubled twice in this direction. For the clamped-free plate, the displacement in the 𝑦-
direction is always a nodal line at 𝑥=0 and never a nodal line on the free edge. Therefore,
an even number of displacement periods in the extended dataset for this direction can
never appear, and the wavenumbers with the component 𝜉𝑦={2, 4, 6, ...} always have zero
amplitude. This property of the wavenumbers is used to transform the FT result matrix
to the nodal line countmatrix. The nodal line countmatrix is defined as 𝜉 → 𝑛 = (𝑛𝑦 , 𝑛𝑥)
with 𝑛𝑥=𝜉𝑥 and 𝑛𝑦=𝜉𝑦′ for 𝑦′={0, 1, 3, 5...}. Analogous to the wavenumber 𝜉 , the term 𝑛
is called nodal number. With this transformation, the nodal line count matrix matches
all possible mode shapes on cantilever resonators. Figure 4.9 shows as an example the
2:3 mode. In a), the original 2D DFT result matrix is shown, and in b), the nodal lines
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4.1. Fourier transformation based mode shape identification

a) b)

Figure 4.8: a) The extended dataset from 𝐔𝑧 as a heat map. b) Slice of the result matrix from
2D DFT with the extended dataset

count matrix is shown. The presented method is also validated on higher-order mode
shapes.

So far, only mode shapes that can be classified using the Leissa notation have been
analyzed. Now, the result of a non-classifiable mode shape is shown. Figure 4.10 shows
the analysis of amode shape from the zoom region in Figure 4.2. Figure 4.10 a) shows the
mode shape in 3D from Comsol Multiphysics, b) the 2D representation of the displace-
ment matrix 𝐔𝑧, and c) the nodal lines count matrix for this displacement component.
Significant amplitudes are shown for the nodal numbers (1, 3) and (2, 1). These differ-
ent amplitudes show interference between two mode shapes, the 1:3 and the 2:1 modes.
The amplitude for the nodal number (1, 3) is higher than for the (2, 1). Therefore, this
mode shape is classified as a 1:3 mode. The interpretation of the different strengths of
amplitudes is discussed in the following section.

From the results of the previous chapter, it is known that lateral and extensional
mode shapes also appear in the defined frequency range. Therefore, the FT method is
applied also to the displacement components 𝐔𝑥 and 𝐔𝑦 . Figure 4.11 shows the mode
shape and the nodal lines matrices for the 1:0 mode. A significant amplitude is visible

a) b) c)

Figure 4.9: FT result matrices for the 2:3 mode, in a) the result matrix of the 2D-DFT with the
extended data and in b) the nodal lines count matrix.
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4.1. Fourier transformation based mode shape identification

a)
b) c)

Figure 4.10: Transition mode shape: In a) the displacement pattern from Comsol Multiphysics,
in b) the heat map of the displacement matrix 𝐔𝑧 and in c) the nodal lines count
matrix for the displacement component 𝐔𝑧 .

only in c). This nodal number marks the OOP 1:0 mode. Figure 4.12 shows the mode
shape and the nodal lines matrices for the 1st lateral EB mode. All sub-figures contain
significant values, but the amplitude in b) is much higher. Therefore, the mode shape
is identified from the displacement component 𝐔𝑥 , as the expected 1st lateral EB mode.
As an example of the extensional displacement, Figure 4.13 shows the 1st extensional
mode shape. Besides the expected maxima in b) for the component 𝐔𝑦 , also in the plot,
c) a maxima is visible. The values are very close. The highest amplitude |𝛼| is in c) for𝑢𝑦(1, 0) 0.106 and in d) for 𝑢𝑧(3, 0) 0.103. So, the mode is correctly identified from the

a)
b) 𝐔𝑥 c) 𝐔𝑦 d) 𝐔𝑧

Figure 4.11: The 1:0 mode shape: The displacement pattern in a) and the nodal lines count
matrix from displacement component 𝐔𝑥 in b), from displacement component 𝐔𝑦
in c), and from displacement component 𝐔𝑧 in d).

a)
b) 𝐔𝑥 c) 𝐔𝑦 d) 𝐔𝑧

Figure 4.12: The 1st lateral EB mode: The displacement pattern in a) and the nodal lines count
matrix from displacement component 𝐔𝑥 in b), from displacement component 𝐔𝑦
in c), and from displacement component 𝐔𝑧 in d).
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4.2. Anchor losses of higher-order-out-of-plane mode shapes

a)
b) 𝐔𝑥 c) 𝐔𝑦 d) 𝐔𝑧

Figure 4.13: The 1st extensional mode shape: The displacement pattern in a) and the nodal lines
count matrix from displacement component 𝐔𝑥 in b), from displacement compo-
nent 𝐔𝑦 in c), and from displacement component 𝐔𝑧 in d).

maximum amplitude in c).
By extending the FT method to all three spatial directions, an efficient tool has been

developed to analyze the mode shapes. The resulting nodal line count matrices contain
information about the underlying wavenumbers, represented by the nodal numbers.
With this information, it is possible to characterize all occurring mode shapes.

4.2 Anchor losses of higher-order-out-of-planemode shapes

Figure 4.14 shows the natural frequencies of a width sweep grouped by the identified
mode shapes. The mode shape identification is made using the presented FT-based
method. All the names are derived from the highest amplitude |𝛼| of the three FT re-
sult matrices. The paths of Figure 4.3, which are identical to the mode shape curves,
are annotated to the mode shapes in the legend. More often, these are paths with no
intersections, but not only. The previous chapter showed that RTS modes tend to have

Figure 4.14: The resonance frequencies (𝑓𝑛), identified from the FT based method, of the sweep
simulation sorted by the mode shapes. For paths that only have one mode shape,
it is noted in the legend.
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4.2. Anchor losses of higher-order-out-of-plane mode shapes

Figure 4.15: Plots of the natural frequency (𝑓𝑛) and quality factor (𝑄) for the RTS modes. Dif-
ferent marks are used for different mode shapes. The first occurring point with a
natural frequency below 10MHz of each path is marked with | over the marker. In
the background, all other eigenmodes are shown in gray.

higher Q-factors such as x:2, x:3, etc. However, this is not valid for all identified mode
shapes. The reasons for these different Q-factors are evaluated with the information
from this simulation sweep.

Figure 4.15 shows the natural frequency and the quality factor for all identified RTS
modes. In frequency, all RTS mode shapes have a downward gradient and appear in
ascending order of the mode types. The resonance frequency for the 1:2 mode shape is
the lowest, followed by the 1:3, and so on. However, different paths of natural frequen-
cies often appear on one mode shape curve. The quality factor is shown in the lower
graph. For the first RTS mode, the 1:2 mode shape on path C, the natural frequency is
always below 3MHz. In this frequency region, the TED is contributing strongly to the
total Q-factor, as presented in Section 2.1. However, this RTS mode shows the high-
est quality factor above 290 µm. This path increases and approaches asymptotically a
maximum Q-factor slightly below 107. A similar behavior is also expected for the other
RTS modes, but they are all affected by variations. The underlying mechanisms of these
variations are investigated in the next sections, beginning with the 1:3 RTS mode.

4.2.1 Mode shape interference on 1:3 RTS mode related paths

Figure 4.16 shows the resonance frequency and the quality factor for the 1:3 RTS mode.
Two significant drops in Q-factor are identified. The first drop is around 320 µm and
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4.2. Anchor losses of higher-order-out-of-plane mode shapes

Figure 4.16: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for the 1:3 mode on
the paths E and H. The ∙ marker identifies the 1:6 mode and the ⋄ marker the 3:2
mode.

the second is around 355 µm. The region of the second drop is discussed in Figure 4.2.
For these plate widths, the mode shape cannot be classified manually. The FT-based
method shows that the dominant amplitude is the nodal number (1,3). This region is
investigated first, and the first drop is discussed afterward.

Avoided crossing between path E and path H

The 1:3 RTS mode appears on two different natural frequency paths, on pathH and path
E. The resonance frequencies and the Q-factors for the simulated widths of both paths
are shown in Figure 4.17. The natural frequency is shown in the upper plot. Initially
located on path H, the resonance frequency of this mode shape is above 3MHz. After
the exchange to path E, the natural frequency sinks and reaches approximately 2MHz.
The quality factor is shown in the plot below. On path H for plate widths below 300 µm,
the Q-factor is extremely high, always above 5⋅105. Afterward, a strong drop is visible,
with the minimum below 5⋅103. This is a drop of more than two orders of magnitude for
a change in width of only 17 µm. Afterward, the Q-factor increases to 3⋅104 in a short
interval. Subsequently, the value is newly decreasing until the crossing with path E.

The region where path E and path H are very close in frequency and the quality
factors cross is evaluated more in detail. Figure 4.18 shows the results of this simu-
lation with 0.5 µm. In the frequency plot, it is visible that the path E and Paht H are
always apart from each other. Nevertheless, it seems that the respective slopes are
exchanged. In literature, this phenomenon of noncrossing eigenfrequencies is called
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4.2. Anchor losses of higher-order-out-of-plane mode shapes

Figure 4.17: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths E and H.
The ○ marker identifies the 1:3 mode, and the ♦ marker the 2:1 mode.

avoided-crossing, curve veering, mode-splitting, etc. [36, 37]. This phenomenon is re-
lated to the dispersive coupling of two eigenmodes, which leads to a repulsion of the
natural frequencies. This phenomenon only appears if the coupling between thesemode
shapes is strong enough. Therefore, not all interfering mode shapes can be affected by
avoided crossing [38].

In Figure 4.18, the identified mode shapes are annotated at the resonance frequency
curves’ beginning and end. Different marker styles were also used to identify the mode
shapes along the paths. The circle marks the 1:3 mode, and the diamond marks the 2:1
mode. The width 𝐼 𝐼 𝐼 marks the plate where the natural frequencies are at the minimum
distance. The other width markers are only for reference and are positioned arbitrarily.
At the width 𝐼 𝐼 𝐼 , it is visible that both paths were identified as the 1:3 mode. This will
be further discussed when analyzing the FT result. The displacement patterns at the
different marked widths are shown in the upper and lower part of Figure 4.18 widths.
The upper row shows path H and the lower path E. The mode shapes can be clearly
identified at the lowest and highest widths for both paths. However, in between, the
nodal lines are not positioned only in the parallel or longitudinal direction. Therefore,
assigning them a mode shape with the selected notation is not always possible. How-
ever, viewing the images for each path one after the other, it looks like the nodal lines
are moving and rotating in the 𝑥-𝑦 plane. Only the longitudinal nodal line in the center
of the plate, which appears on both mode shapes, is not moving. This movement in the
displacement pattern creates the transition from the initial mode shape to the ending
mode shape. For path H at width 𝐼 , the 1:3 mode is clearly identifiable. However, in
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4.2. Anchor losses of higher-order-out-of-plane mode shapes𝐻 :
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝐸:
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

Figure 4.18: Avoided-crossing of path E and H: The graph in the middle shows the natural
frequency (𝑓𝑛) over the plate width (𝑤). The pictures above and below show the
displacement patterns at the widths 𝐼 to 𝑉 , as marked in the plot. Above for the
path H, below for path E.

mode shape 𝐼 𝐼 , the lateral nodal lines no longer end in the anchor region. Instead, they
end on the lateral surfaces of the plate. This movement continues in the third and fourth
images. In the mode shape at width 𝑉 , the former lateral nodal lines merge and build
the second parallel nodal line for the 2:1 mode. Comparing the last mode shape from
path H with the first from path E shows the opposite inclination of the parallel nodal
line on the plate. However, both are clearly showing a 2:1 mode. The following image
shows how the parallel nodal line in the center moves to the anchor while the ends move
from the lateral edges to the free edge. In the displacement pattern 𝐼 𝐼 𝐼 , the lines start
from the free corners and end at half-width in the anchor. At this plate, the distance
between the two natural frequencies has its minimum. From the following image, the
mode shape is identifiable as 1:3 mode. At the width 𝑉 , the lateral nodal lines show the
opposite inclination compared to the initial 1:3 mode on path H.

Figure 4.19: Avoided-crossing of path E and H: The graph shows the quality factor (𝑄) over
the plate width (𝑤). The markers 𝐼 to 𝑉 are referring to the displacement patterns
depicted in Figure 4.18.
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Figure 4.19 shows the related quality factor for the two paths in frequency. The Q-
factor is strongly affected on an interval of only 30 µm. For the curve E starts below103 and reaches more than 2⋅104. The opposite inclination is visible on path H. It starts
slightly below 2⋅104 and drops to approx. 103. The quality factors for the same mode
shape at the beginning and the end are very close. This shows that the Q-factors are a
property of the displacement pattern. In the transition zone between 𝐼 and 𝑉 , the higher
Q-factors decrease by about one order of magnitude up to the equality point in 𝐼 𝐼 𝐼 ,
while the lower Q-factors only increase by a factor of around two. The equality point is
found exactly at the same plate width, where the minimum distance in eigenfrequency
is located. Compared to the natural frequency plot, the impact of avoided crossing is
visible much stronger in the Q-factor plot.

Figure 4.20 shows the FT method result for the widths 𝐼 to 𝑉 . The amplitude |𝛼|
for the participating nodal number 𝑢𝑧 (1,3) and (2,2) are annotated in each subfigure.
No other significant amplitude is found. Starting in the upper row from the left, it
shows that path H is initially a 1:3 mode shape. The second maxima appears for the
nodal number 𝑢𝑧 (1,3) and has a much lower value. In the lower row, it is the opposite
situation. The nodal number 𝑢𝑧 (2,2) has a much higher value than the nodal number 𝑢𝑧
(1,3). In the second column, both higher values decrease while the lower ones increase.
In the middle column for width 𝐼 𝐼 𝐼 , the values for each path are very close. At this width
is the intersection point of the Q-factor and the nearest distance in frequency for the
paths. As mentioned before, it is also remarkable that the highest amplitudes appear at
the same point for both result matrices. Therefore, both paths were classified as being
in the 1:3 mode. This shows that for one simulated plate width, it is possible to detect
the same mode shape as FT maximum in two different natural frequencies while they
are in avoided crossing. However, in Figure 4.18, the displacement patterns 𝐼 𝐼 𝐼 of both
paths can be distinguished clearly from each other. The increased amplitudes at the
width 𝐼𝑉 in Figure 4.20 are also visible in the mode shape plots from Figure 4.18. They
are becoming more similar to the initial mode shapes of the opposite path. To focus
more on the two significant nodal numbers, Figure 4.21 shows the amplitudes of these
nodal numbers over the width. In the upper plot for path H in the lower plot for path𝐻 :

𝐸:

Figure 4.20: Nodal lines count matrices from FT-based method for 𝐔𝑧 for the widths 𝐼 to 𝑉 .
Nodal lines count matrices from FT-based method result for the widths 𝐼 to 𝑉 .
The amplitudes for nodal numbers 𝑢𝑧 (3,1) and 𝑢𝑧 (2,1) are annotated.
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𝐻 :

𝐸:

Figure 4.21: The amplitudes of the nodal numbers 𝑢𝑧 (1,3) and 𝑢𝑧 (2,1) for path H and path E.

𝐻 :

𝐸:

Figure 4.22: The phase of the nodal numbers 𝑢𝑧 (1,3) and 𝑢𝑧 (2,1) for path H and path E.

E. It is visible that for each path, the amplitudes of both maxima have the intersection
point around the width 𝐼 𝐼 𝐼 . Figure 4.22 shows the phase of both maxima. For path H,
the nodal numbers 𝑢𝑧 (1,3) and 𝑢𝑧 (2,2) are anti-phase. However, they are both constant
around the avoided crossing and are distant approximately 𝜋. For path E, the nodal
numbers are in-phase. These two plots show that the complex FT result is different for
both paths, also when the amplitudes are equal.

This evaluation shows the advantage of the FT-based analysis on the simulation
data. It makes it possible to analyze the curve veering more effectively and precisely
than manual visual inspection.
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”Q-drop” crossing on path H

Figure 4.16 shows for the path H at the first dip in the Q-factor plot no interacting
curve. In the resonance frequency plot, a crossing with another path is visible. This
path is identified as the 1st lateral EB mode shape on path F. Figure 4.23 shows these
two paths, with the marked width of the minimum Q-factor on path H. The region
among this drop is evaluated in more detail. Therefore, a sweep with smaller steps in
width is executed. The results are shown in Figure 4.24. In the upper part are shown
five displacement patterns, visualized from Comsol Multiphysics, for the path H. All
displacement patterns for path H are showing a clean 1:3 RTS mode. In the lower part
are shown the displacement patterns for path F at the same widths. All displacement
patterns in this row look the same, and the lateral deflection is clearly visible. From
visual comparison, no interaction is found. Between these images are shown the plots of
resonance frequency and quality factor. The widths 𝐼 to 𝑉 of the depicted displacement
patterns are marked in these plots. Also, the width of the intersection is marked in
the frequency plot, and in the Q-factor plot, the width is marked with the minimum
difference in the quality factor.

Figure 4.25 shows the related nodal numbers from the nodal lines count matrix. The
plots at the right show that only the nodal number for the visible mode shape has a
significant amplitude for both paths. The interfering nodal number’s amplitude is very
low in both cases. In the upper plot in the middle of the shown interval, the nodal
number 𝑢𝑥 (1,0) significantly increases. The larger amplitude of the 𝑢𝑧 (1,3) decreases
slightly only around this position. In the lower plot, the curves have similar behavior,
but the changes are weaker, as for the path H. On the left is the plot of the phases. It
shows that the nodal number 𝑢𝑧 (1,3) has a phase change in opposite directions. The

Figure 4.23: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths F andH. The○ marker identifies the 1:3 mode, the ♦ marker the 2:1 mode, and the ▲ the lateral
1:0 mode. The width of the first minimum of path H is marked with a dotted line.
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𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝐹 :
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

Figure 4.24: Crossing of path F and H: The graph in the middle at left shows the natural fre-
quency (𝑓𝑛), and the graph at middle right shows the Q-factor (𝑄). The pictures
above and below show the displacement patterns at the widths 𝐼 to 𝑉 . Above for
the path H, below for path F.

Figure 4.25: The complex amplitudes of the nodal number 𝑢𝑧 (1,3) and 𝑢𝑥 (1,0) from FT result
spitted in modulus at left and argument at right. Above is shown the path H and
below the path F.

phases in both plots cross 0 around the intersection of the natural frequency.
This mode shape interference affects, in contrast to avoided crossing, only the losses

of the path with the higher quality factor. The Q-factor of the other interacting path
is initially more than four orders of magnitude lower and, at the minimum, more than
two orders of magnitude. While these paths cross in frequency, a tiny interference is
detected. This small perturbation in the displacement pattern has a major impact on
the Q-factor of path H.
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Simple crossing between path G and path H

Figure 4.26: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths G and H.
The ○ marker identifies the 1:3 mode, and the ♦ marker the 2:1 mode. The width
of crossing resonance frequencies is marked with a dotted line.

After analyzing two points where the quality factor is affected by mode shapes with
similar or equal resonance frequency, a crossing in frequency is analyzed without effect
on the Q-factor. In Figure 4.26 is shown the crossing between the 1:3 mode on H and
the 2:2 mode on path G.

Figure 4.27 shows the crossing region in more detail. On the left are the natural
frequency curves plotted, and the quality factor is on the right. The paths cross in
frequency at the plate width of 270 µm, marked as width 𝐼 𝐼 𝐼 . For reference, the other
width markers are placed arbitrarily around this position. The Q-factor for the 1:3 mode
is much higher than the 2:2 mode, and the curves are not affected during the crossing.
The amplitudes of the nodal lines count matrices are plotted in Figure 4.28 for the widths𝐼 to 𝑉 . The values of both amplitudes are shown in the annotation. Both paths show
only one peak for the nodal number of the related mode shape, and no other significant
amplitudes appear.

Figure 4.27: Crossing of path G and H: The graph at left shows the natural frequency (𝑓𝑛) over
the width 𝑤 and the graph at right the Q-factor (𝑄) over the width 𝑤.
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𝐺:

Figure 4.28: The nodal line count matrices from FT-based method with the displacement matrix𝐔𝑧 for the widths 𝐼 to 𝑉 .

These results show that no interference occurs during the crossing of these mode
shapes.

Summary of the crossing mechanisms

Table 4.2 summarizes the identified crossing mechanisms and assigns them to a symbol
for identification. The first example of this section shows how avoided crossing affects
the Q-factor and the displacement pattern of both interacting paths. The resonance
frequencies only slightly change in this region, while the quality factor decreases or
increases heavily. The displacement patterns show a superposition of the participating

Phenomena 𝑓𝑛(𝑤) 𝑄(𝑤) Symbol
Avoided crossing:
The resonance frequencies do not cross,
while the quality factors indeed cross.
The displacement patterns show the
superposition of the interfering mode
shapes.

”Q-drop” crossing:
The resonance frequencies cross. The
higher quality factor strongly decreases
in a tiny interval, while the lower one is
not affected. Both displacement patterns
are also not affected.

Simple crossing:
The resonance frequencies cross. The
quality factors and the displacement pat-
terns are not affected.

Table 4.2: Mode shape interference patterns on plate resonators
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mode shapes. However, analyzing these patterns requires much more effort than de-
termining the Q-factor. Therefore, the quality factor is a better criterion for identifying
this phenomenon.

The second example illuminates the behavior of ”Q-drop” crossing. At ”Q-drop”
crossing, only one mode shape is affected by a drastic decrease in the quality factor.
However, the minimum of this Q-factor is always at a much higher level than the Q-
factor of the second path. Therefore, they can always be distinguished clearly. Neither
the resonance frequency nor the displacement patterns are affected by the ”Q-drop”
crossing. Also, for this phenomenon, the quality factor is a suitable criterion. The last ex-
ample shows the crossing in frequency, where no interference between the mode shapes
is detected.

4.2.2 Analysis of mode shape interference on other paths

With the knowledge of the interference phenomena identified in the 2nd RTS mode, all
other paths are evaluated and categorized. The following paragraphs do not describe
new phenomena but the same interference patterns with more complex behavior, as in
the last three examples.

Avoided crossing between path G and path N

Figure 4.29 shows the paths where this mode shape appears. The 1:4 mode shape ap-
pears on path N for the first time on the plate width of 264 µm with a natural frequency
slightly below 10MHz. The resonance frequency for this mode shape continuously de-
creases and, on path G, reaches 3.2MHz at 500 µm. An avoided crossing among the

Figure 4.29: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths G and N.
The ○ marker identifies the 1:4 mode, and the ♦ marker the 2:2 mode. The first
occurring point of path N is marked with | over the marker.
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marked width 450 µm is visible from the frequency paths. The Q-factor plot shows a
crossing for these paths at a higher width. However, the involved mode shapes, iden-
tified from the FT-based method, are swapped right at the marked width. shows that
The Q-factor crossing and the mode shapes swap are shown on the same plate width
for the example of the paths E and H. This different behavior will be analyzed with a
higher width resolution.𝑁 :

𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝐺:
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

Figure 4.30: Avoided-crossing of pathG andN : The graph in themiddle at left shows the natural
frequency (𝑓𝑛), and the graph at middle right shows the Q-factor (𝑄). The pictures
above and below show the displacement patterns at the widths 𝐼 to 𝑉 . Above for
the path N, below for path G.

Figure 4.31: The complex amplitudes of the nodal numbers 𝑢𝑧 (1,4) and 𝑢𝑧 (2,2) resulting from
the FT-based method spitted in modulus at left and argument at right. Above is
shown the path N and below the path G.
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Figure 4.30 shows eigenfrequencies in the right plot and the quality factor at the
left. The frequency plot shows that the curves G and N exhibit avoided crossing. They
become very close to each other without crossing in the interval from width 𝐼 at 434 µm
to width 𝑉 at 465 µm. The width 𝐼 𝐼 𝐼 marks the closest distance in frequency where
both paths are identified as 1:4 modes. For both paths, the mode shapes 𝐼 𝐼 , 𝐼 𝐼 𝐼 , and 𝐼𝑉
cannot be classified using the Leissa notation.

The nodal lines are curved or even circular, and some do not show a direct course in
parallel or longitudinal direction. The Q-factor, shown in Figure 4.30 at right, for path
N starts very high. From 439 µm on, it decreases sharply until the width 𝐼𝑉 afterward
decreases much slower. The Q-factor of path G until the width 𝐼 𝐼 is nearly constant.
Then, the values increase slowly during the curve veering until the width 𝑉 afterward
becomes more stable. The crossing of the quality factors is located at a much higher
width than plate 𝐼 𝐼 𝐼 . This is quite unexpected and will be evaluated, focusing more on
the related mode shapes. The quality factor’s initial and final values of the 2:2 mode
are not significantly changed. It is different for the 1:4 mode. There, the values are
approx. one order of magnitude distant. Because the quality factor for this mode shape
is much lower at the end, the path G has a lower slope than path N. Due to the different
gradients of the paths, the equality point of the Q-factor may have shifted to a wider
plate. Figure 4.31 shows the at the left amplitudes and at the right the phase for the
nodal numbers 𝑢𝑧 (1,4) and 𝑢𝑧 (2,2) of the paths. The amplitude plots look very similar
and intersect around width 𝐼 𝐼 𝐼 at similar widths. The largest amplitude at the width𝐼 𝐼 𝐼 is the nodal number 𝑢𝑧 (1,4) for both paths. However, the values are very close,
and no amplitude dominates on both paths. The argument of the maxima is plotted
on the right of the figure. For the path N, the shown nodal numbers are anti-phase,
and for the path G, they are in phase for the entire plotted width. Both path phases
of path N are shifted around 3/4𝜋 in the interval between width 𝐼 𝐼 and 𝑉 . This phase
change is also visible in the displacements. Comparing the displacement patterns 𝐼𝑉
and 𝑉 shows that the corners of the free edge are bent oppositely. The phases for path
G are constant, although the free corners are bent in opposite directions in the related
displacement patterns, 𝐼 and 𝑉 . Following the mode shape transition shows that the
relevant bending to compare is not in the corner for the 2:2 mode. The 1:4 mode has in
his free corners ending the first bending from the anchor. Considering also the bending
starting from the anchor for the 2:2 mode, both displacements are in the same direction,
which means they are in phase. The phase for the 2:2 mode at width 𝐼 in path G and at
width 𝑉 in path N shows the same sign. The bending of the free corners in the related
mode shape plots of Figure 4.30 shows in the same direction. This bending shows that
the osculations are in phase.

This example shows that the minimum distance in frequency does not determine
the width of the intersection of the quality factor.

”Q-drop” crossing on path N

Figure 4.29 shows for path N around 300 µm an intense decrease in Q-factor for more
than one order of magnitude. To analyze this drop, the FT-based method is applied to
the width of the minimum value.
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Figure 4.32: Plot of the amplitudes |𝛼| identified from FT method, applied to the three displace-
ment components of pathN at the minimum Q-factor on the plate width of 302 µm

Figure 4.32 shows the resulting amplitudes for the individual displacement compo-
nents. Besides the expected 1:4 amplitude, there are also small but significant ampli-
tudes for the OOP 3:0 mode shape and the extensional 1:0 mode shape. At this width,
the OOP 3:0 mode shape appears on path J, and the extensional 1:0 mode shape appears
on path K. Figure 4.33 shows all interfering paths.

For further investigations, this region is simulated with smaller width steps. Fig-
ure 4.34 shows in the first row the displacement patterns for path N, then the graphs for
the natural frequency and the Q-factor, and below the displacement patterns for path
K and J. The graph on the right shows how near in frequency the three paths are in this
interval. The marked widths, 𝐼 𝐼 and 𝐼𝑉 , are positioned at the intersections between the
paths. On the left is the plot of the quality factors, and there at the marked width 𝐼 𝐼 𝐼 is
the closed distance in between the path N and the two other paths. At the closet width,
the distance from the higher to the lower Q-factors is around two orders of magnitude,
while the lower paths have similar values. The displacement patterns for path N look

Figure 4.33: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths J, K and, N.
The width of the first minimum of path N is marked with a dotted line. The first
occurring point of path N is marked with | over the marker.
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quite the same on all widths. No visual impact can be identified. The displacement
patterns below the plots show the influence of the OOP 3:0 and the extensional 1:0.

Figure 4.35 shows the three relevant amplitudes and phases for all paths. The first
row shows the path N results. The amplitude of the nodal number 𝑢𝑧 (1,4) decreases
around the width 𝐼 𝐼 𝐼 , while the other two nodal numbers have a small increase. This
increase shows that the other nodal numbers are influencing the Q-factor of the path
N. The phases for all paths are not constant during the interval. Initially, the nodal
number 𝑢𝑧 (1,4) is in phase with the nodal number 𝑢𝑧 (3,0) and out of phase with the
nodal number 𝑢𝑦 (1,0). At the width 𝑉 , it is out of phase with the other nodal numbers.
Around the width 𝐼 𝐼 𝐼 , the nodal number 𝑢𝑧 (1,4) and the nodal number 𝑢𝑦 (1,0) have
equal phases, while the phase of the nodal number 𝑢𝑧 (3,0) is distant around 𝜋/2. The
plot in the middle shows the nodal numbers for path K. The nodal number 𝑢𝑧 (1,4) has a
very small amplitude along the whole interval. The other amplitudes cross around the
width 𝐼 𝐼 𝐼 . This width is defined by the FT method, where the dominant mode shape is
exchanged for this path. Until the crossing at 303 µm, it is defined as the extensional 1:0
mode, afterward as the OOP 3:0 mode. The phase plot shows that these mode shapes
are rather constant in phase. The nodal number 𝑢𝑧 (3,0) is decreasing slightly and always
distant more than 𝜋/2 to the nodal number 𝑢𝑦 (1,0). The nodal number 𝑢𝑧 (1,4) starts
in phase with the nodal number 𝑢𝑦 (1,0) mode shape. It changes the phase and reaches
a difference of 𝜋/2 to this mode shape at the end of the interval. The graphs for path J𝑁 :

𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝐾 :
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝐽 : 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉
Figure 4.34: Crossing of the paths J, K, and N : The graph in the middle at left shows the natural

frequency (𝑓𝑛), and the graph at middle right shows the Q-factor (𝑄). The pictures
above and below show the displacement patterns at the widths 𝐼 to 𝑉 . Above for
the path N, below in the upper row the path K and in the lower the path J.
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Figure 4.35: The complex amplitudes of the nodal numbers 𝑢𝑧 (1,4), 𝑢𝑧 (3,0) and 𝑢𝑦 (1,0) re-
sulting from the FT-based method spitted in amplitude at left and phase at right.
Above is shown the path N, in the middle the path K, and below the path J.

are shown in the next row. The amplitude plot shows that the nodal number 𝑢𝑧 (1,4) is
very small, like in the plot above. The two other amplitudes cross right before the end of
the interval at 319 µm. Above this width, path J is classified as the extensional 1:0 mode
shape. The phases of the crossing mode shapes are also, in this plot, rather constant,
but the distance is here less than 𝜋/2. The phase for the nodal number 𝑢𝑧 (1,4) shows
the opposite trend related to the nodal number 𝑢𝑦 (1,0) as for path K. It starts with a
difference of 𝜋/2, and at the end, it is in-phase.

With the amplitude and phase information, it is possible to identify the interactions
between these paths. The path N is influenced by both other mode shape components
of both other paths. The phase has a strong relation between the 1:4 component and the

Figure 4.36: The quality factor during avoided crossing for the paths J and K.
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extensional 1:0 component. However, the nodal number’s amplitude 𝑢𝑧 (3,0) is slightly
stronger, affecting the mode shape more significantly. Furthermore, it is visible in the
amplitude plots of the path J and K that they exhibit avoided crossing right in this
interval. Figure 4.36 shows the crossing in Q-factor these paths.

”Q-drop” crossing on path Q

Figure 4.37 show the pathQ. On thewhole path, themode shapes were identified as a 1:5
mode. At the plate width of 340 µm, it appears in the plot for the first time with a natural
frequency below 10MHz. The Q-factor curve shows a strong drop at around 380 µm.
Inspecting the natural frequency paths shows that curve veering can be excluded as the
reason. To identify the interfering mode shapes, the FT method is applied to the three
displacement components at the plate width of 380 µm. Figure 4.38 shows the nodal
line count matrices. Three other significant modal numbers were identified. Only for
the nodal number 𝑢𝑧 (3,1), a mode shape occur in this region. The 3:1 mode is identified
in this region on path M. The amplitudes of the IP mode shape refer to a resonator
bulk mode. However, no corresponding mode shape is identified in the surroundings.
Therefore, only the paths Q and M are analyzed with a higher step resolution.

Figure 4.39 shows the natural frequency plot, the Q-factor plot from this simulation,
and the displacement patterns for both paths. For the 1:5 mode shape is visible in the
Q-factor plot at the left, a strong decrease of around two orders of magnitude, followed
by an increase of more than two orders of magnitude. For the 3:1 mode on the lower
curve, the Q-factor does not change significantly. Only a small increase between the
width markers 𝐼 𝐼 and 𝐼𝑉 is visible. At the width 𝐼 𝐼 𝐼 , where the natural frequencies

Figure 4.37: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths M and Q.
The width of the minimum of path Q is marked with a dotted line. The ○ marker
identifies the 1:5 mode, the ⋄ marker the 2:3 mode, and the ♦ marker the 3:1
mode. The first occurring point of path Q is marked with | over the marker.
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Figure 4.38: Plot of the amplitudes |𝛼| identified from FT method, applied to the three displace-
ment components of path Q at 380 µm

cross, the gap in the Q-factor is very high. The lower quality factor is around 30, while
the upper one has its minimum at 220. In the displacement patterns, it is visible that
both paths are affected significantly only at the widths 𝐼 𝐼 𝐼 and 𝐼𝑉 . In the other widths,
no deviation from the expected mode shape aspects can be identified.

Figure 4.40 shows the amplitudes and phases for both paths for the identified nodal
numbers. At the right in the amplitude plots in the upper, it is visible that both OOP
nodal numbers decrease and increase respectively around width 𝐼 𝐼 𝐼 . The IP nodal num-
bers 𝑢𝑥 (1,0) and 𝑢𝑦 (1,1) appear with smaller amplitudes as the nodal number 𝑢𝑧 (3,1)
between the markers 𝐼 𝐼 and 𝐼𝑉 . The lower plot shows that the amplitude of the nodal
number 𝑢𝑧 (3,1) is not decreasing as much as the nodal number 𝑢𝑧 (1,5) in the upper
figure. The IP nodal numbers in the plot for path M show an amplitude around the
nodal number 𝑢𝑧 (1,5) at width 𝐼 𝐼 𝐼 . The phase plots are shown on the left. In both plots,
the phases of the IP mode shapes are constant slightly above −𝜋/2. The nodal number𝑄:

𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝑀 :
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

Figure 4.39: Crossing of path M and Q: The graph in the middle at left shows the natural fre-
quency (𝑓𝑛), and the graph at middle right shows the Q-factor (𝑄). The pictures
above and below show the displacement patterns at the widths 𝐼 to 𝑉 . Above for
the path Q, below for path M
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4.2. Anchor losses of higher-order-out-of-plane mode shapes

Figure 4.40: The complex amplitudes 1:5 and 3:1 from FT result matrices spitted in modulus at
left and argument at right. Above is shown the path M and below the path Q.𝑢𝑧 (3,1) shows a phase change on both paths. On path Q, the OOP mode shapes are

initially in phase, with a small difference, and both decrease slightly. From the width 𝐼 ,
the phase of the nodal number 𝑢𝑧 (3,1) begins to change sign, while the 1:5 mode shape
continues to decrease slightly. After the width 𝐼 𝐼 𝐼 , the sign of the nodal number 𝑢𝑧 (3,1)
phase is changed, and at the width 𝑉 , it becomes stable again. The OOP mode shapes
are then out of phase of around 𝜋. The plot below shows the opposite phase signs for
the nodal number 𝑢𝑧 (1,5) on path M. The mode shapes are initially out of phase and at
the end in phase. The phase of the nodal number 𝑢𝑧 (1,5) remains stable slightly below−𝜋/4 and close to the value of the IP mode shapes for the plotted interval. The nodal
number 𝑢𝑧 (3,1) changes the sign of the phase slightly before the width 𝐼 𝐼 𝐼 .

As in the second example, a phase of the higher Q-factor path is also changed around
the crossing of the natural frequencies. This phase change seems strongly related to the
drop in the quality factor. Furthermore, the participation of the IP mode shapes seems
also to be fundamental for ”Q-drop” crossing.

Further interfering mode shapes

Four other regions of mode shape interference are identified in the analyzed interval.
These results are shown in Appendix B. Two avoided crossings [B.1, B.3] are showing
an increase in the phase difference for the detected mode shapes in the center of mode
veering. This phase difference leads to moving displacement maxima during the oscil-
lation period. For the shown ”Q-drop” crossing could not be identified the interfering
path [B.2]. This path may have a significantly low Q-factor (<5) and therefore is not
detectable.
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4.2. Anchor losses of higher-order-out-of-plane mode shapes

4.2.3 Comparison of anisotropic silicon and polycrystalline silicon

A smaller region is simulated with polycrystalline silicon to compare the behavior of
different morphologies structures. The detailed results are shown in Appendix C. The
resonance frequencies are significantly changed only for the second-order OOP mode
shapes. It is also notable that the minimum distance in frequency for avoided crossings
is doubled or more. Comparing the Q-factor plots shows that the RTS mode shapes are
affected by a stronger decrease, while the EB mode shapes and other HO-OOP modes
are unaffected.

4.2.4 Summary of interfering mode shapes

Table 4.3 summarizes the interference regions with the interacting paths and appearing
mode shapes. The mode shapes appearing twice in the table are highlighted. Avoided
crossing and ”Q-drop” crossing are not limited to single-mode shapes. Some modes are
capable of interacting, and others do simple crossing. Avoided crossing and ”Q-drop”
crossing are widely present phenomena. Figure 4.41 shows all paths where avoided
crossing or ”Q-drop” crossing is identified, with annotated index from Table 4.3.

Index Interference
Type Paths

OOP
1st

order

OOP
2nd
order

OOP
3rd
order

IP
mode Ref.

a E+H 1:3 2:1 4.2.1

b F+H 1:3 1st lat 4.2.1

c G+N 1:4 2:2 4.2.2

d N+J+K 1:4 3:0 1st ext. 4.2.2

e M+Q 1:5 3:1 4.2.2

f L+M 2:3 3:1 B.1

g S 1:6 B.2

h P+S 1:6 3:2 B.3

i O+P 2:4 3:2 B.4

Table 4.3: Mode shape groups with interference
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4.3. Conclusions

a

b

c

d

ef g hi

Figure 4.41: Plot of all paths with identified mode shape interference.

4.3 Conclusions

In chapter 3, it is identified that some RTS modes have lower quality factors than ex-
pected. In order to analyze the behavior of the Q-factor when the plate width is in-
creased, a smaller increase in width must be investigated over a larger interval. There-
fore, a simulation is performed of 126 plates within the interval from 250 µm to 500 µm.
For the mode shape identification, a method based on the FT was developed to charac-
terize all found resonance frequencies below 10MHz and a quality factor above 5. Many
mode shapes are affected by the decrease and increase of the Q-factor in some regions.
As the major phenomenon for interfering OOP mode shapes is identified avoided cross-
ing. However, not all Q-factor changes can be explained with curve veering. Sharp drops
in Q-factor also appear while OOP mode shapes cross with other modes. These cases
are identified as ”Q-drop” crossings. The mode shape of this crossing OOP mode is not
affected. Only its quality factor shows a significant drop. This interference type always
presents small but significant amplitudes of IP nodal numbers in the nodal line matri-
ces of the OOP mode shape. Not in every case is it possible to find an IP mode shape
for the IP nodal numbers. However, if the related IP mode shapes are found, they are
not affected by the Q-factor or displacement pattern from the interference. This inter-
ference pattern is not limited to two modes. In one case, a ”Q-dropping” OOP mode
shape is identified as interfering with another OOP mode and an IP mode. These two
other mode shapes are in avoided crossing among ”Q-drop” crossing. This example is
the only observed avoided crossing between IP and OOP modes. In another example,
this phenomenon is identified when two OOP mode shapes cross. The ”Q-drop” affects
only one mode, while the other one shows a slight increase. The nodal line matrices
of both mode shapes reveal two significant IP nodal numbers. The OOP nodal num-
bers amplitudes show a comparable behavior to that of avoided crossing. However, the
mode shape transition does not take place. Avoided and ”Q-drop” crossings modify the
quality factor over large width intervals. Therefore, the Q-factor is much lower at many
plate widths, as expected from an analytic perspective.

The comparison between anisotropic single-crystalline and polycrystalline silicon
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4.3. Conclusions

demonstrates that the presented mode shape interference patterns are relevant, de-
pending on morphologic structures.
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5 Conclusions and outlook

This investigation on crossing phenomena in non-slender MEMS resonators demon-
strated the influence of anchor losses and the related quality factors. With the presented
method for mode shape analysis, it is possible to analyze a displacement pattern and
measure how many mode shapes the pattern is composed. This Fourier transformation-
based method showed its potential not only by quantifying the strength of the different
amplitudes but also by the phase of the underlying mode shapes. Three different kinds
of frequency crossing are identified, shown in Table 5.1. The first row corresponds to
simple crossing, where the mode shapes and their quality factors are not affected by the
crossing of resonance frequencies. In the following rows, avoided crossing and simple
crossing are described. Both phenomena have a strong effect on the quality factor.

Phenomena 𝐟𝐧(𝐰) 𝐐(𝐰) Mode shape Symbol

Simple crossing Crossing not changed No interference

Avoided crossing Not crossing
Decreasing /
increasing

Superposition

”Q-drop” crossing Crossing
Dropping /
not changed

Small
interference

Table 5.1: Mode shape interference phenomenon on plate resonators

Within OOP modes, avoided crossing is identified as the prevalent interference pat-
tern. This interference causes the transfer of mode shapes from one resonant frequency
path to another. At the width with minimum distance in frequency, the interacting
mode shapes superpose, generating complex displacement patterns. These patterns can
have blended or circular nodal lines, and moving maximum peaks also occur due to
phase shifts between the underlying mode shapes. The quality factors of the involved
modes differ significantly, ranging from one to several orders of magnitude. During the
avoided crossing, the Q-factors of the mode shapes are exchanged. The second iden-
tified interference pattern is the so-called ”Q-drop” crossing. It is found in the region
where the resonance frequencies of OOP mode shapes intersect with other compati-
ble mode shapes. During the crossing, the displacement patterns of the modes are not
superposed. However, the higher Q-factor of the OOP mode decreases drastically. Al-
though this phenomenon is found at crossing between OOP mode shapes, the FT-based
method always showed significant amplitudes of IP mode shapes. ”Q-drop” crossing
of an OOP mode is also observed with an IP mode shape in avoided crossing with an-
other OOP mode shape. Further research is needed to understand the influence of IP
mode shapes with extremely low Q-factors on OOP modes with high factors. Last but
not least, it is shown that these interference phenomena also occur in polycrystalline
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silicon. Even if the resonance frequencies and Q-factors slightly differ from anisotropic
silicon, the same crossing phenomena are identified.

These phenomena identified from theoretical investigation help explain Q-factor
variations in previous experimental works, where small changes in the resonator width
yield a massive reduction in Q-factor [21]. Furthermore, this investigation opens new
sensing strategies based on the highly responsive phenomena of avoided crossing and
”Q-drop” crossing.
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A Definition of the exportedData fromComsolMultiphysics

For the export, it is necessary to specify a group of points on the resonator. On the
defined surface from Figure 4.4, the displacement is evaluated on a regular grid with
1 µm steps for the 𝑥- and 𝑦-directions.

For the visualization, the displacement vectors 𝐮(𝐱) for all points 𝐱 = (𝑥, 𝑦, 0) on the
grid are transformed from complex values to the time-depended form, with𝐮(𝑥, 𝑦, 𝜃) = ℜ(𝐮(𝑥, 𝑦)) ⋅ 𝑐𝑜𝑠(𝜃) − ℑ(𝐮(𝑥, 𝑦)) ⋅ 𝑠𝑖𝑛(𝜃), (1)

where 𝜃 is the oscillation phase of the resonator, defined as 𝜃=2𝜋𝑓𝑛𝑡 with the natural
frequency 𝑓𝑛 and the time 𝑡. For the plots, the moment where the surface shows the
maximum displacement is used.

Further, for the visualization of the displacement, for each element on the grid are
calculated the displaced filed position 𝐝(𝐱), with𝐝(𝐱) = 𝐱 + 𝑠 ⋅ 𝐮(𝐱), (2)

where 𝐱 is the initial position of the element on the grid, 𝐮 is the complex displacement
vector, and 𝑠 the scaling factor for the visualization of the displacement.

B Interfering mode shapes

In this section, the remaining regions of mode shape interference are analyzed for these
geometries below a resonance frequency of 10MHz.

B.1 Avoided crossing between path L and M

Figure 1 shows at this width interval the curve veering between path M and L. Besides
the strong gradient change, this is very hard to identify in the natural frequencies plot.
Figure 2 shows that the eigenfrequencies bypass each other, although they are only dis-
tant 44.7 kHz at width 𝐼 𝐼 𝐼 . The areas 1 and 2 both have more than twice the distance.
Also, the interval is very short, with approximately 15 µm from width 𝐼 to width 𝑉 com-
pared to these other areas. The behavior of this avoided crossing is similar to the zone 1.
Figure 3 is also comparable with the curve veering in area 1. The only notable differences
are the dips for the phase of the 2:3 mode in both plots. The sign has no change, so it can
not be identified in the displacement patterns of Figure 2. To demonstrate how these
phase changes are affecting the displacement patterns, the plate oscillation in time will
be discussed. The data is calculated from equation 1.

Figure 4 shows the displacement patterns of path M for the widths 𝐼 , 𝐼 𝐼 , and 𝐼 𝐼 𝐼
at different moments in time. In the first row at width 𝐼 , in all images, the 2:3 mode
shape is visible. In column 4, the smallest displacement is visible as a very bright im-
age. The mode shape is also more curved than in the other plots, which is caused by
interfering with the second mode shape. In the following image, the sign of displace-
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Figure 1: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths L and M. The
♦ marker identifies the 2:3 mode and the ⋄ marker the 3:1 mode.

ment is changed. Therefore, between these moments, the 2:3 displacement amplitude
must be zero. In the second row, only in column 5 is the 3:1 mode visible. Therefore,
it can be estimated that the zero displacement for the 2:3 mode shape is located near𝜔𝑡= 𝜋/2. Between 𝜔𝑡= 𝜋/4 and 3𝜋/4, the nodal lines move on the plate, and no simple
up-and-down oscillation is visible. From nodal line movement, it can be estimated that
the amplitude of the 3:1 mode is zero between columns 3 and 4. This is expected when𝑀 :

𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝐿: 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉
Figure 2: Avoided-crossing of path L and M: The graph in the middle at left shows the natural

frequency (𝑓𝑛), and the graph at middle right shows the Q-factor (𝑄). The pictures
above and below show the displacement patterns at the widths 𝐼 to 𝑉 . Above for the
path M, below for path L
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Figure 3: The complex amplitudes of the nodal numbers 𝑢𝑧 (2,3) and 𝑢𝑧 (3,1) from the nodal
line count matrix spitted in modulus at left and argument at right. Above is shown
the path L and below the path M.

the 2:3 mode shape has straight nodal lines between the edges. At the third width, the
amplitudes |𝛼| for both modes have the same strength, as visible in Figure 3 in the upper
right plot. The zero displacement for the 3:1 mode is expected at the same moment as
in the widths 𝐼 and 𝐼 𝐼 because its phase is stable. The phase difference is at this width
at its minimum. However, the zero displacement appears with a distance of 𝜋, so the
distance can be interpreted as -𝜋/4. The zero displacement for the 2:3 mode is estimated
between columns 5 and 6. This shows that the distance in the phase plot matches the
estimation from visual analysis. Figure 5 shows in the first row the displacements in
time at the width 𝐼 .

From Figure 3, it is known that the amplitude for the 3:1 mode dominates and both
phases are around -𝜋/3. The minimum displacement is visible in column 4, at the same
position as in the path above. This is also the only moment where the 3:1 mode does
not appear. This mode shape can not be classified, but it leads to the conclusion that
a second mode shape is involved. Due to the slight deviation in phase, the nodal lines
are moving at tiny displacements. At width 𝐼 𝐼 , the minimum displacement is stronger
than before. At this width, the contribution from the 2:3 mode is more visible due to the
higher amplitude and the larger phase shift. Also, in column 5, this interference can be
seen in the nodal line movement. At width 𝐼 𝐼 𝐼 , where the amplitudes are equal, it no
longer dominates the 1:3 mode. While this mode shape is visible in columns 1, 2, 8, and
9, in columns 4, 5, and 6, the 2:3 mode dominates. At𝜔𝑡= 𝜋/8, the 1:3 mode appears very
clear. This leads to the conclusion that the 2:3 mode has there zero displacement. At𝜔𝑡= 3𝜋/8 is the opposite situation. Therefore, it can be estimated that the 1:3 amplitude
here is zero. Then the distance in phase should be around 𝜋/4, the same value as marked
in Figure 3 in the lower phase plot.
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B.2 ”Q-drop” crossing on path S

Figure 6: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for path S. The ∙marker
identifies the 1:6 mode and the ⋄ marker the 3:2 mode. The first occurring point of
the path is marked with | over the marker.

Figure 13 shows two regions where a significant drop appears. The first drop is
marked in the figure at its minimum Q-factor at 424 µm. Figure 7 shows the result
of the FT-based method at the plate widths around the minimum. Besides the strong
amplitude for the nodal number 𝑢𝑧 (1,6), two IP nodal numbers also appear. No dis-
placement pattern with these mode shapes is found in the surroundings. IP mode types
tend to have low Q-factor. Therefore, this mode shape may not appear in the simulation
results. 𝐼=420 µm 𝐼 𝐼=422 µm 𝐼 𝐼 𝐼=424 µm 𝐼𝑉=426 µm 𝑉=428 µm𝑢𝑥 :

𝑢𝑦 :
𝑢𝑧:

Figure 7: Plot of the amplitudes |𝛼| identified from FT method, applied to the three displace-
ment components of path S at the widths 420 µm, 422 µm, 424 µm, 426 µm, 428 µm
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B.3 Avoided crossing between path P and S

Figure 8: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths P and S. The ∙
marker identifies the 1:6 mode, the ♦ marker the 2:4 mode, and the ⋄ the 3:2 mode.
The first occurring points of the paths are marked with | over the marker.

Figure 8 shows the avoided crossing between path P and S at slightly above 450 µm.
In the frequency plot, the region of non-crossing is not clearly visible. In more detail,
it is shown in Figure 9. At the marked width 𝐼 𝐼 𝐼 is annotated only 25.6 kHz distance𝑆: 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝑃 :
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

Figure 9: Avoided-crossing of path S and P : The graph in the middle at left shows the natural
frequency (𝑓𝑛), and the graph at middle right shows the Q-factor (𝑄). The pictures
above and below show the displacement patterns at the widths 𝐼 to 𝑉 . Above for the
path P, below for path S.
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Figure 10: The complex amplitudes of the nodal numbers 𝑢𝑧 (1,6) and 𝑢𝑦 (3,2) from FT result
matrices spitted in modulus at left and argument at right. Above is shown the path
P and below the path S.

between the resonance frequencies. Although this, it looks in natural frequency and
Q-factor very similar to the curve veering, shown in section 4.2.1. Only the intersection
width of the Q-factor is located slightly before the closest distance in frequency. In the
displacement patterns for path S above the graphs, the 1:6 mode can be identified in the
first two images. In the third image, the appearing mode shape is somewhat complex
and can not be described with nodal line count. At width 𝐼𝑉 , the displacement looks
very similar to a 1:6 mode. The nodal lines starting from the anchor are curved, but all
end at the free edge. However, the FT method assigned the 3:2 mode as the primary
mode shape. At the last shown width, a 3:2 mode shape is clearly visible. In the lower
images is shown path P. The displacement shown for the first three widths looks very
similar, but the amplitude slightly decreases. At width, 𝐼𝑉 , the 3:2 mode can also be
identified, but the deflection is heavily decreased. Like in the other path, the identified
mode is different. It is detected as a 1:6 mode. In the last picture, the 1:6 mode shape
is visible. Figure 10 shows for path S that the amplitudes |𝛼| are quite different at the
beginning. At the end of the plot, the amplitude of the stronger mode shape is not so
high, while the lower maxima remain around the same value. Below in the figure for
path P is the same behavior in the opposite directions. In the plots at right, the argument
for both paths is shown. For path S, both modes are in phase, although having a slightly
different phase. The highest deviation is at the width 𝐼 𝐼 𝐼 . Also, it is visible that both
are changing in absolute values. The lower graph for path P shows that the modes are
out-of-phase. Also, the distance is not constant and different than 𝜋. Around the width𝐼𝑉 , the phase for the 1:6 mode changes sign, and soon after, the phase for the 3:2 mode
also changes. To analyze how the changes in phase affect the displacement patterns,
Figure 11 and 12 show the mode shapes for both paths at different times for the width𝐼 𝐼 𝐼 , 𝐼𝑉 and 𝑉 . It is visible that the nodal lines in the first row and the second row of
each path, the nodal lines are highly moving and show rather complex mode shapes.
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For the width 𝑉 , it is visible that the mode shapes are becoming more the shape of the
stronger base mode. This demonstrates that differences in the phase lead to complex
mode shapes and moving nodal lines during the oscillation.

B.4 Avoided crossing between path O and P

Figure 13: Plots of the natural frequency (𝑓𝑛) and the quality factor (𝑄) for paths O and P. The∙marker identifies the 1:6 mode, the ♦marker the 2:4 mode, and the⋄ the 3:2 mode.
The first occurring points of the paths are marked with | over the marker.

Figure 13 shows the avoided crossing for path O and P In the region where the
transition from one to the other path occurs, a significant increase in the quality factor
is visible. This region will be analyzed in more detail. Figure 14 and 15 show the results
of this simulation. The behavior of the paths is comparable to area 2. The shift of the
Q-factors intersection is not so strong but also visible. The Q-Factor for the 2:4 mode
is decreasing by almost one order of magnitude from the initial to the final value. As
estimated in area 2, this seems to be the cause of the shifted crossing point of the quality
factors. The displacement patterns show a smooth transition fromone to the othermode
shape. Also, the modulus and argument plots are very smooth in transition. The phases
for path P are out-of-phase and changing signs at the same width. The distance is close
to 𝜋 and constant along the avoided crossing. The phases are in phase and very close
for path O.
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𝑃 :
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

𝑂 :
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝑉

Figure 14: Avoided-crossing of path O and P : The graph in the middle at left shows the natural
frequency (𝑓𝑛), and the graph at middle right shows the Q-factor (𝑄). The pictures
above and below show the displacement patterns at the widths 𝐼 to 𝑉 . Above for the
path P, below for path O

Figure 15: The complex amplitudes of the nodal numbers 𝑢𝑦 (2,4) and 𝑢𝑦 (3,2) from FT result
matrices spitted in modulus at left and argument at right. Above is shown the path
P and below the path O.
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C Results ploycrystalline silicon

The model is used as defined in Table 4.1. However, the material is changed to polycrys-
talline silicon from the Comsol Multiphysics MEMS material database.

Figure 16: Plot of the natural frequencies and the quality factors for anistropic silicon.

Figure 17: Plot of the natural frequencies and the quality factors for polycrystalline silicon.
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