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Kurzfassung

Diese Arbeit prüft die Universalität leichter Leptonen mit Hilfe des Belle II Experiments. Die
verwendeten Daten stammen aus Elektron-Positron-Kollisionen des SuperKEKB-Beschleunigers
in Tsukuba, Japan. Sie wurden bei einer Schwerpunktenergie von 10.58 GeV erfasst und entspre-
chen einer integrierten Luminosität von 362 fb−1. Leptonen-Universalität ist ein grundlegendes
Prinzip des Standardmodells der Teilchenphysik, welches besagt, dass die Kopplungsstärke der
an der schwachen Wechselwirkung beteiligten Eichbosonen für alle Leptonen identisch ist. Dies
ist nicht selbstverständlich, da zum Beispiel die Yukawa-Wechselwirkung mit dem Higgs-Feld
unterschiedlich stark für die einzelnen Leptonen ist. Präzisionsmessungen im Flavour-Sektor
könnten Unterschiede mit theoretischen Berechnungen aufzeigen, was wiederum Hinweise auf
die Antwort fundamentaler Fragen geben kann, wie etwa, warum drei Generationen von Quarks
und Leptonen existieren. Mit der Entdeckung von Neutrino-Oszillationen ist es bereits erwiesen,
dass einige Eigenschaften des Standardmodells, die als wahr angenommen wurden, in der Natur
nicht realisiert sind und mehr Erkenntnisse darüber notwendig sind. Diese Dissertation zielt
darauf ab, die Universalität von Elektronen und Muonen in geladenen Strömen der schwachen
Wechselwirkung zu überprüfen, indem das Verhältnis der Kopplungskonstanten gµ/ge gemessen
wird. Dieser Quotient kann mit den Verzweigungsverhältnissen τ± → µ±νν̄ und τ± → e±νν̄
berechnet werden. Diese Arbeit verwendet τ -Leptonen, die im Prozess e+e− → τ+τ− pro-
duziert wurden, wobei beide nur in ein geladenes Teilchen zerfallen. Jegliche signifikante
Abweichung des Quotienten gµ/ge von 1 würde nahelegen, dass Leptonen-Universalität verletzt
ist, zum Beispiel durch Wechselwirkungen mit bisher unbekannten Eichbosonen. Dies würde die
bereits bestehenden Widersprüche im Flavour-Sektor erweitern, wie zum Beispiel die Hinweise
auf Verletzung der Leptonen-Universalität in semileptonischen Zerfällen von B-Mesonen, die
Unstimmigkeiten bezüglich des Cabibbowinkels oder des anomalen magnetischen Dipolmo-
ments des Muons. Der in dieser Arbeit gemessene Wert von gµ/ge = 0.9974 ± 0.0019 ist in
Übereinstimmung mit dem Standardmodell. Die Präzision ist limitiert durch systematische
Unsicherheiten einhergehend mit der Identifikation von Leptonen. Diese Messung ist der
genaueste Test der Leptonen-Universalität in Zerfällen von τ -Leptonen von einem einzelnen
Experiment.
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Abstract

This thesis investigates light-lepton universality with electron-positron collision data from the
Belle II experiment at the SuperKEKB accelerator in Tsukuba, Japan. The data were recorded
at a centre-of-mass energy of 10.58 GeV and are equivalent to an integrated luminosity of
362 fb−1. Lepton universality is a property of the Standard Model of particle physics that
implies that all leptons have equal couplings to the electroweak gauge bosons. Such an identity
is not obvious; for example, the Yukawa couplings with the Higgs field differ between the
leptons. Precision measurements in the flavour sector can potentially uncover discrepancies
with theoretical predictions, which could help answer profound questions, such as why there
are three generations of quarks and leptons. With the observation of large neutrino mixing, it
has already become evident that some properties of the Standard Model that were thought
to be true are violated in nature, and further insights are needed. This thesis aims to test
the universality of electrons and muons in charged current interactions by measuring the
gauge coupling ratio gµ/ge. This ratio can be obtained from the branching fractions of the
decays τ± → µ±νν̄ and τ± → e±νν̄. The approach for this work will be to measure these
branching fractions using τ leptons produced in the process e+e− → τ+τ−, with both decaying
to only one charged particle. Any deviation of gµ/ge from unity would indicate that lepton
universality is violated, for example, through interactions with new gauge bosons. This would
complement existing anomalies in the flavour sector, such as indications of lepton universality
violation in semileptonic B decays, the Cabibbo angle anomaly, or the inconsistencies related
to the anomalous magnetic dipole moment of the muon. The result of this measurement
is gµ/ge = 0.9974 ± 0.0019, which is consistent with the Standard Model expectation. Its
precision is limited by systematic uncertainties related to lepton identification. At the moment,
this measurement is the most precise test of lepton universality using tau decays obtained
from a single experiment.
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The best that most of us can hope to achieve in physics
is simply to misunderstand at a deeper level.

WOLFGANG PAULI
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CHAPTER 1
Introduction

1.1 Overview
The discovery of the tau lepton in electron position collisions in 1975 [1–3] sparked the question
of whether this newly found lepton was part of a new generation of leptons or whether it
belonged to the electron or muon family [4]. It was soon concluded that the observations were
incompatible with the tau lepton carrying a lepton number of the other generations, which
meant that a new third generation of particles was discovered. One question which remains
until today is whether the different lepton generations are entirely equal in terms of their
fundamental interactions and whether the only differences we observe between them arise from
their different masses. In the Standard Model (SM) of particle physics, this equivalence is a
fundamental property known as lepton universality, or lepton flavour universality (LFU). Any
deviation from this universality could indicate new physics beyond the SM. It has been tested
experimentally through various processes, including charged current and flavour-changing
neutral current transitions. While some anomalies in LFU measurements in the B sector [5–
7] sparked some interest in recent years, otherwise no significant deviations from the SM
expectation have been observed at the current level of precision, and high precision tests are
needed to reach clarification.

Measurements with the leptonic decays of tau leptons allow for such high precision tests of
LFU [8]. Testing the e-µ universality involves computing the ratio of the leptonic τ branching
fractions,

Rµ = B(τ− → µ−ν̄µντ )
B(τ− → e−ν̄eντ ) . (1.1)

The ratio Rµ translates to the ratio of the couplings ge and gµ of the electron and muon to
the charged gauge bosons W ± of the electroweak interaction through the relation)))))gµ

ge

)))))
τ

=
$

Rµ
f(m2

e/m2
τ )

f(m2
µ/m2

τ ) . (1.2)

In this expression, me, mµ, and mτ represent the masses of the respective leptons and the
function

f(x) = 1 − 8x + 8x3 − x4 − 12x2 ln x (1.3)
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1.1. Overview

stems from the phase space integral [9]. Therefore, as a consequence of the mass difference of
the final state leptons, the ratio of branching fractions in the SM,

RSM
µ =

f(m2
µ/m2

τ )
f(m2

e/m2
τ ) ≈ 0.9726, (1.4)

deviates from unity, with values for the masses taken from the Particle Data Group (PDG) [10].
This prediction is theoretically very precise and is not limited by additional measurements
of other quantities. Thus, the main challenge to test e-µ universality in tau decays is the
experimental measurement of the leptonic branching fractions. Fortunately, one can measure
B(τ− → e−ν̄eντ ) and B(τ− → µ−ν̄µντ ) using the same experimental conditions, which results
in a large cancellation of many systematic effects in their ratio. Direct measurements of Rµ

have been performed by the CLEO [11] and BABAR [12] collaborations.

The CLEO collaboration measured Rµ with e+e− → τ+τ− (taupair) events in which both tau
leptons decay to only one charged particle [11], which is referred to as the 1x1 topology. The
measurement used data corresponding to an integrated luminosity (L) of 3.555 fb−1, taken at
a centre-of-mass (CM) energy near 10.6 GeV. The result obtained by CLEO is

Rµ = 0.9777 ± 0.0063 (stat.) ± 0.0087 (sys.), (CLEO) (1.5)

where stat. indicates the statistical precision and sys. the uncertainty associated with the
experimental systematics of the measurement. The CLEO collaboration did not only test
e-µ universality but also e-τ and µ-τ universality and measured several absolute branching
fractions of tau decays, as well as the mass of the tau lepton. The experimental measurement of
the leptonic tau branching fractions and the tau mass, together with its lifetime, are essential
inputs for the e-τ and µ-τ LFU tests, which currently limit their precision (see also Section 2.4).

A more precise measurement of Rµ was achieved by the BABAR collaboration using the 3x1
topology, which refers to taupair events where one tau decays to three charged particles and
the other to one charged particle [12]. BABAR used a data sample of L = 467 fb−1 at an e+e−

CM energy near 10.58 GeV and obtained

Rµ = 0.9796 ± 0.0016 (stat.) ± 0.0036 (sys.). (BABAR) (1.6)

The total precision achieved by BABAR is 0.4 %, which propagates to 0.2 % precision on |gµ/ge|τ .
The systematic uncertainty associated with lepton identification at 0.32 % limits the precision
of the measurement. This will also be the leading systematic uncertainty of this measurement
with the Belle II experiment, which is similar to BABAR in many ways.

A global determination of Rµ, obtained from a fit from the Heavy Flavor Averaging Group
(HFLAV) [13] yields

Rµ = 0.9762 ± 0.0028, (HFLAV) (1.7)

which translates to the e-µ coupling ratio of))))gµ

ge

))))
τ

= 1.0019 ± 0.0014. (HFLAV) (1.8)

The global fit uses 171 measurements to determine 125 quantities and is subject to 88 constraints.
The result for |gµ/ge|τ is in accordance with the SM prediction of unity.
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The only test of e-µ universality in charged currents that is more precise is from the PIENU
collaboration using pion decays [14], which measures))))) ge

gµ

)))))
π

= 0.9996 ± 0.0012. (PIENU) (1.9)

More recently, measurements using W ± decays have also become very precise. The latest
result by the ATLAS collaboration [15] of R

µ/e
W = B(W ± → µ±νµ)/B(W ± → e±νe) is

R
µ/e
W = 0.9995 ± 0.0022 (stat.) ± 0.0036 (sys.) ± 0.0014 (ext.), (1.10)

where the last uncertainty indicates the uncertainty of an external measurement, which was
used as a normalisation mode to reduce systematic effects. The total uncertainty of this
measurement is 0.0045, corresponding to a precision on the ratio of the coupling constants of
0.225 %.

1.2 This work
This thesis will focus on measuring Rµ using the 1x1 topology of taupair events, where one τ
decays to an electron or a muon, while the other τ decays hadronically and to at least one
π0. This decay was chosen after estimating the sensitivity for different decay channels (see
Section 4.3). Data for the measurement were obtained from the Belle II experiment, with
e+e− collisions delivered by the SuperKEKB accelerator. The data were collected from 2019
to 2022 at a CM energy of 10.58 GeV, achieving an integrated luminosity of 362 fb−1. This
resulted in approximately 333 × 106 taupair events being produced.

The thesis starts with a general introduction to the underlying theoretical concepts and the
motivation for the measurement, presented in Chapter 2. Then, in Chapter 3, the experimental
setup is introduced, in particular the SuperKEKB accelerator and the Belle II experiment.
Chapter 4 describes the general analysis procedure for this measurement, while in Chapter 5
several validation studies are discussed. Finally, the results are presented and interpreted in
Chapter 6, and an outlook for future prospects is given.

Contributions by others It is important to keep in mind that this work uses Belle II
data and was done as a member of the Belle II collaboration. In particular, it relies on
the SuperKEKB collaboration for running the accelerator and the Belle II collaboration for
the operation of the Belle II detector, as well as all the different aspects of data collection.
In addition, many other tasks, such as performing Monte Carlo simulations, conducting
performance studies, or maintaining the essential software and computing infrastructure,
involve the hard work of many individuals who have dedicated their time and expertise to
these duties. Although I have been involved in some of these areas, this analysis would not be
possible without the collaborative effort of many people, which sometimes cannot be adequately
cited. If some of the presented work is based on contributions made by others, this will be
explicitly highlighted in the text.

Blind analysis This analysis is performed blind, meaning that the result is not obtained
until the analysis procedure is carefully reviewed and fixed in place. Initially, the analysis
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is set up only based on simulations, while later, data control samples are used to check the
validity of the simulated samples or derive systematic uncertainties. Only after verifying all
procedures is the result of the measurement unblinded, which is also done in several stages.
This minimises the observer-expectancy effect, which involves subconsciously influencing the
outcome based on observations and subjective expectations.

Natural unit convention In this work, the natural unit convention is used. Fundamental
physical constants, such as the speed of light c and the reduced Planck constant ℏ, are set
to unity. This convention simplifies calculations and allows to focus more on the underlying
concepts. It implies that time and distance have the same units, which is the inverse of mass
and energy, typically expressed in electronvolt.

Charge conjugates In some cases, the charge of the particles will be omitted from the
respective symbols, or only one charge will be indicated. Unless explicitly stated otherwise,
the charge conjugates are implied throughout this work.
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CHAPTER 2
Theoretical overview

2.1 Introduction
In this chapter, an overview of the theoretical foundations important for this work is given.
First, in Section 2.2, the Standard Model of particle physics is introduced, and Section 2.3
gives a general introduction to lepton universality. In Section 2.4, the tau lepton is discussed,
in particular focusing on its leptonic decay rates and how they can be used to constrain lepton
universality. Section 2.5 establishes some essential statistical methods that are commonly
used in particle physics analyses. Finally, Section 2.6 gives a brief introduction to the basic
principles of some computational methods used in this work, namely simulated annealing and
artificial neural networks.

2.2 The Standard Model of particle physics
This section will give a brief overview of the Standard Model of particle physics. The SM is a
very successful theory that gives some insight into how nature works at its most fundamental
level. Underlying ideas, such as Lorentz and gauge symmetry principles, will be introduced,
and particular emphasis will be given to concepts related to lepton universality. This is followed
by a brief discussion on open questions in the SM, highlighting its shortcomings and some
interesting features. This is not intended to be a comprehensive summary of the mathematical
formulations which can be found elsewhere [16–20].

2.2.1 Lorentz invariance
Lorentz invariance is one of the most fundamental concepts that a theory of nature should
fulfil. It states that the laws of nature do not change for different frames of reference, even
at relativistic speeds. Any theory should yield the same results, independent of the frame
in which it is calculated. The Schrödinger equation, for example, is not Lorentz invariant
since it is first order in its time derivative and second order in the spatial derivatives. The
corresponding relativistic wave equations of quantum mechanics are the Klein-Gordon and
Dirac equations.
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2.2. The Standard Model of particle physics

The Klein-Gordon equation reads �
∂µ∂µ + m2

�
ψ = 0, (2.1)

where ψ(x, t) is the wavefunction and m is the mass of the particle it describes. The Dirac
equation can be written as

(iγµ∂µ − m) ψ = 0, (2.2)

where γ are the Dirac matrices which fulfil the anticommutation relations

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν , (2.3)

with ηµν being the components of the Minkowski metric. The Dirac matrices generate a
Clifford algebra, and every irreducible matrix representation of this algebra consists of 4 × 4
matrices. The elements of the vector space they act on are called spinors. A defining property
of a spinor is that it changes sign after 2π rotations in space and only returns to its original
state after a 4π rotation. The solutions of the Dirac equation already come with the concept
of spin and antiparticles. It is often useful to use the adjoint spinor

ψ̄ ≡ ψ†γ0. (2.4)

With this definition, a four-vector (or four-current) can be defined as

jµ = ψ̄γµψ, (2.5)

which satisfies the continuity equation ∂µjµ = 0.

In the SM, these equations do not describe the dynamics of single-particle states, as the
Schrödinger equation does, but rather quantum fields. This is necessary because the number
of particles is not conserved anymore when relativistic particles are involved, since particle
production and annihilation become meaningful. Particles are merely quantised excitations
of the quantum fields, and interactions with other fields occur at quantised energies. The
particles that make up our universe can be classified into fermions with half-odd integer spin
and bosons with integer spin. Scalar fields with spin 0 are described by the Klein-Gordon
equation. Spin-half fermions are the particles that constitute matter and are described by the
Dirac equation. Spin-one particles are called vector bosons. They are the force carriers of
fundamental interactions and are included in the Standard Model by requiring gauge invariance,
which will be discussed in the next section.

To create Lorentz invariant quantities with fermion fields, they must appear in even numbers.
This is because they carry an angular momentum of one-half, and Lorentz invariant quantities
should have a total angular momentum of zero. Similarly to jµ, which transforms as a
four-vector, several other bilinear combinations of fermion fields with Lorentz transformation
properties can be defined. All possible combinations can be built from linear combinations of
the bilinear covariant currents listed in Table 2.1. The matrix γ5 is a combination of the four
Dirac matrices γ5 = iγ0γ1γ2γ3. The bilinear fermion currents can be used to form Lorentz
invariant quantities, together with scalar (spin-zero boson) or vector (spin-one boson) fields and
derivatives, which also have Lorentz transformation properties [18]. For example, a spin-one
boson field can only be combined with vector and axial vector currents.
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Table 2.1: The most basic covariant currents formed from bilinear combinations of the fermion
fields. They can be categorised by their Lorentz transformation properties.

Type Form
Scalar ψ̄ϕ

Pseudoscalar ψ̄γ5ϕ

Vector ψ̄γµϕ

Axial vector ψ̄γµγ5ϕ

Tensor ψ̄ (γµγν − γνγµ) ϕ

Chirality An important property of spinors is called chirality. In the relativistic limit, it is
equal to the helicity of particles, which is the normalised projection of its spin on its flight
direction. Although helicity is not a Lorentz invariant concept, chirality is [21]. It is defined as
the eigenstates of the γ5 matrix, which are called right-handed and left-handed and denoted
with subscripts R and L. In general, spinors have right-handed and left-handed components.
With the projection operators

PR = 1
2

�
1 + γ5

�
and PL = 1

2
�
1 − γ5

�
, (2.6)

one of the components can be projected out. Thus, the combination of vector minus axial
vector (V−A)

ψ̄γµ(1 − γ5)ϕ = ψ̄γµ2PLϕ

is only affecting the left-handed component of the spinors. This is the form of the current
involved in weak interactions, resulting in maximal parity violation, first observed by Wu et al.
in beta decays [22].

2.2.2 Gauge invariance
Gauge symmetries are another important concept in the theoretical development of the Standard
Model. It mandates that the Lagrangian remains invariant under local transformations from
specific Lie groups. To guarantee this invariance, the derivatives appearing in the Lagrangian
must be replaced by covariant derivatives

Dµ ≡ ∂µ − igAC
µ T C,

where T are the generators of the Lie groups, each associated with a vector field Aµ, and g
is a constant. The vector fields are called gauge fields, which generate the bosons that are
the exchange particles for the fundamental forces. Thus, requiring gauge invariance results in
all interactions between particles whose strength is given by g. In the SM, the fundamental
interactions are the electromagnetic force transmitted through the photon, the strong force
transmitted through gluons, and the weak force transmitted through the Z0 and W ± bosons.

The gluons arise from the requirement for local SU(3) gauge invariance of the so-called quark
fields, which come in six distinct flavours. Every quark flavour consists of three fields with
different colour charges, constituting a triplet that the SU(3) group acts on. Consequently,
there are eight gluon fields, corresponding to the generators of the SU(3) group. Quarks only
exist within composite states, such as mesons or baryons, that do not have a colour charge.
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2.2. The Standard Model of particle physics

The electroweak sector of the SM arises from the requirement of invariance under SU(2)L ⊗
U(1)Y gauge transformations, first proposed by Glashow [23]. The SU(2) transformation acts
on doublets of fields, which come in three generations for the quarks and three generations for
the so-called leptons, which do not have a colour charge and thus do not participate in the
strong interaction. For quarks, the three doublets are

Ω1 =
�

uL

dL

�
, Ω2 =

�
cL

sL

�
, Ω3 =

�
tL

bL

�
,

where the quark symbols use the first letter of the quark flavours (up, down, charm, strange,
top, bottom). For leptons, the three generations consist of a charged lepton (the electron e,
muon µ, and tau τ) and an associated neutral particle, the neutrino (ν) of the same flavour:

Λ1 =
�

(νe)L

e−
L

�
, Λ2 =

�
(νµ)L
µ−

L

�
, Λ3 =

�
(ντ )L

τ−
L

�
.

Without mass, the three generations are entirely equivalent, and no fundamental principle
explains why there are exactly three generations. The subscript L in the doublets indicates
the chirality of the fermions. Only left-handed fermions participate in the weak interaction,
which arises from the SU(2)L transformations that mix the two components in each doublet.
The charge related to the SU(2)L gauge symmetry is the weak isospin T3, with a value +1

2
for the upper entry in the doublets and −1

2 for the lower entry. Right-handed fermions form
singlets under SU(2) and have a weak isospin 0. Requiring the SU(2)L symmetry generates
three new vector fields: W 1

µ , W 2
µ , W 3

µ .

The U(1)Y gauge transformation changes the phase of the fields according to a representation
of the U(1) group. This representation is associated with a quantum number called the weak
hypercharge Y . The vector field associated with the U(1)Y symmetry is called Bµ.

The physical fields observed in nature are mixtures of the four fields associated with SU(2)L ⊗
U(1)Y . The fields associated with the charged W bosons have the form of ladder operators
(they transform the field in the upper part of the doublet to the lower part and vice versa):

W ±
µ =

�
W 1

µ ± iW 2
µ

�
/
√

2.

The W 3
µ and the Bµ field instead mix together with the weak mixing angle θW to form the

field of the Z0 boson and the photon field Aµ:�
Z0

µ

Aµ

�
≡

�
cos θW − sin θW

sin θW cos θW

� �
W 3

µ

Bµ

�
.

This mixing of fields can be explained by the Higgs mechanism [24–27]. It works by introducing
another doublet of fields to the Standard Model, charged under weak isospin and hypercharge,
only this time consisting of two complex scalar fields. The form of the potential of these fields
can be chosen in such a way that, even though the theory as a whole is symmetric under
SU(2)L ⊗ U(1)Y , the ground state of the system breaks the symmetry. In this process, called
spontaneous symmetry breaking, one massive scalar field and three so-called Goldstone boson
fields appear. The massive scalar field is the Higgs field, while the fields of the Goldstone
bosons are unphysical and can be removed using the freedom of local gauge invariance, called
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2.2. The Standard Model of particle physics

the unitary gauge. During this transformation, the gauge bosons responsible for the weak
interaction become massive, whereas the photon remains massless even after the spontaneous
symmetry breaking. From the four degrees of freedom of the two complex scalar fields initially
added to the theory, three end up in longitudinal polarisation of the massive gauge bosons,
while the fourth becomes the scalar Higgs field with a non-zero vacuum expectation value of
246 GeV everywhere in spacetime. The particle associated with this field is the Higgs boson H .

The photon can be seen as the gauge boson of a new symmetry U(1)EM, which describes
electromagnetism and acts on fields with a new quantum number Q. This is the electric charge,
which can be derived from weak isospin and hypercharge as Q = T3 + Y/2. The electric charge
is conserved by all interactions, which also means that only overall electrically neutral terms
are allowed in the Lagrangian. However, the weak isospin and hypercharge are not conserved
by the interactions with the Higgs field. In other words, the Higgs mechanism breaks the
electroweak SU(2)L ⊗ U(1)Y symmetry into U(1)EM. The quantum numbers for charge, weak
isospin, and weak hypercharge for all particles in the SM are shown in Table 2.2. The W ±

bosons only interact with particles charged under weak isospin (the left-handed particles in
the isospin doublets), while the Z0 boson interacts with all electrically charged particles and
particles with non-zero weak isospin.

Table 2.2: The electric charge Q, weak isospin T3 and weak hypercharge Y of all the particles
in the SM. The right-handed neutrinos do not have any charge and it is unclear whether they
exist.

Particle symbols Q T3 Y

left-handed leptons νe, νµ, ντ 0 +1/2 −1
e−, µ−, τ− −1 −1/2 −1

left-handed quarks u, c, t +2/3 +1/2 +1/3
d, s, b −1/3 −1/2 +1/3

right-handed leptons νR 0 0 0
e−

R, µ−
R, τ−

R −1 0 −2

right-handed quarks uR, cR, tR +2/3 0 +4/3
dR, sR, bR −1/3 0 −2/3

Weak bosons W ± ±1 ±1 0
Z0 0 0 0

Photon γ 0 0 0
Gluon g 0 0 0
Higgs boson H 0 −1/2 +1

It is also interactions with the Higgs field that allows fermions to have mass in the SM. The
strength of this interaction, quantified by the so-called Yukawa couplings, determines the
masses. In fact, without the Higgs mechanism, none of the particles in the SM could have mass
without breaking gauge invariance. As a result, the Higgs boson interacts with all massive
particles.

In addition to Yukawa interactions, interactions with the Higgs field also allow for the mixing
of the generations of quarks and leptons, which is described by the CKM and PMNS matrix.
The mixing and Yukawa coupling parameters, as with all other couplings, are only determined
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Table 2.3: Measured and estimated values for the fine structure constants of electromagnetic
and strong forces, along with the weak mixing angle across various energy scales.

q2 ≈ 0 mτ mZ mW

α [29, 30] 1
137

1
134

1
128

αS [28] O(1) 0.35 0.12
sin2 θW [10, p. 179] 0.23 0.22

by experiments. Measuring the CKM parameters and studying the resulting phenomena is an
important task in flavour physics.

2.2.3 Coupling constants
The strength of particle interactions is determined by the coupling constants of the electro-
magnetic force (e), the strong force (gS), and the weak force (gW , gZ). These constants are
fundamental to our understanding of these interactions and play a crucial role in many areas of
modern physics. Experimental results have demonstrated that the weak coupling is equal for
all lepton flavours, a principle known as lepton flavour universality, which will be elaborated
on further in the next section.

The couplings are commonly written as the fine-structure constants

αEM = e2

4π
, αS = g2

S
4π

, and αW = g2
W

4π
.

Virtual processes can affect the value of the coupling, which we effectively observe in experiments
(which differs from the underlying ‘bare’ coupling). This results in a dependency on the energy
scale of the interactions, referred to as the ‘running of the coupling’. Table 2.3 gives the values
of the effective couplings for different energy scales [10, 28–30]. The couplings of the weak
force are related to the electromagnetic coupling through the weak mixing angle by

gW = e

sin θW
= gZ cos θW , (2.7)

which results in αW ≈ 1
30 .

For couplings that are significantly smaller than one, perturbation theory can be used to
perform practical calculations. This works by expanding the interactions in powers of g with
so-called Feynman diagrams. The diagrams can be categorised according to the order in
which the coupling appears, corresponding to the number of vertices in the diagrams. Usually,
considering only the lowest-order diagrams already results in reasonable estimates of the
calculated quantities. The fundamental building blocks of Feynman diagrams are shown in
Figure 2.1. This also highlights all the possible interactions between fermions and bosons
in the SM. For large couplings, as is the case for the strong interaction and low energies,
non-perturbative methods, such as calculations on a discrete lattice, must be used.

Because weak and strong gauge bosons are self-interacting, the corresponding couplings
decrease with higher energy. On the other hand, in abelian gauge theories such as quantum
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Figure 2.1: All possible vertices in the SM, indicating the allowed interactions. Here, q denotes
quarks, g denotes gluons, f denotes fermions, X denotes charged particles, m denotes massive
particles, and mB denotes massive bosons. When particles are listed with /, they can be used
interchangeably, whereas when separated with |, they can only be used with the corresponding
partner. Taken from Wikimedia Commons: Standard Model - All Feynman diagram vertices
from Ponor, licensed under CC BY-SA 4.0 [31], based on work by Lindon [32].

electrodynamics (QED), self-interactions are absent, leading to an increase in the effective
coupling at higher energies. This suggests a convergence of all couplings at some higher energy
scale, as indicated in Figure 2.2. In the SM, this unification does not emerge, but in several
extensions, such as supersymmetry, the couplings would converge in a single point at high
energies.

2.2.4 Open questions
The SM of particle physics is a highly successful theory, and many of its properties can be
derived from a few fundamental concepts. However, there are still many parameters and
properties that cannot be derived from first principles. Without neutrino masses, it has 19
free parameters (26 with neutrino masses), which must be obtained experimentally. Moreover,
it contains 37 quantum fields, which exhibit seemingly arbitrary features, such as the three
generations of fermions or the form of the potential for the Higgs field.

Each particle type in the SM and their masses are shown in Figure 2.3. Fermions can be
categorised into quarks and leptons. Additionally, each particle is paired with an antiparticle
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αW
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Figure 2.2: An illustration depicting the energy dependence of coupling constants for strong,
weak, and electromagnetic interactions. Although not the case in the SM, in some theoretical
models the interactions unify at a certain energy. A hypothetical increase in gravitational
interaction is shown, suggesting that it could also be included in a theory of everything.
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Figure 2.3: The Standard Model of particle physics: SM particles from Izaak Neutelings,
licensed under CC BY-SA 4.0 [33]

that has identical mass but opposite charge. One interesting feature that the parameters
exhibit, which is not explained by the SM, is that the masses of fermions increase with each
generation. This can be clearly seen from Figure 2.4. This suggests that there may be an
underlying reason for this pattern that explains why the generations seem to behave the same
in every aspect not related to their mass.

There are also multiple other reasons why the SM cannot be the complete picture. The SM
does not provide a promising dark matter candidate and falls short in describing gravity.
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Figure 2.4: The masses of the charged fermions in the three generations of matter.

Moreover, despite the inclusion of CP violation in the SM, it fails to adequately account for the
observed matter-antimatter asymmetry in the universe [34]. Furthermore, SM neutrinos have
no mass, while observing neutrino oscillations implies a finite mass for at least two neutrinos.
The mechanism of how these neutrinos acquire mass and why their mass differs significantly
from that of other leptons remains unsolved. Several approaches have been proposed to expand
the SM to address these questions, but none have succeeded so far.

2.3 Lepton universality
The concept of lepton universality is a basic principle in particle physics that plays a crucial role
in our understanding of fundamental interactions between particles. It states that the strength
of the weak coupling is the same for all lepton flavours. In other words, the interactions of
the different leptons are identical, and in the SM, there is no fundamental difference between
the lepton flavours. The parameter that describes the strength of the interactions of leptons
through the weak force is the weak coupling gW , which is related to the Fermi constant

GF = g2
W

4
√

2M2
W

. (2.8)

The value of this coupling can be measured experimentally using different approaches, all
of which should yield the same result if LFU holds. In practice, this is done by measuring
the ratio of couplings of the different leptons to the W ± boson, of which there are three
possibilities.

Lepton universality has been experimentally tested and confirmed with a high degree of
precision in many experiments during the last decades. These tests have been conducted using
ratios of various processes, utilising pions [14], kaons [35, 36], B mesons [37–40], on-shell W
bosons [15, 41, 42], and τ leptons [11, 12]. A summary of the most accurate experimental
measurements of the coupling ratios with different decays can be found in [8, p. 45].

Interestingly, recent measurements of LFU using B meson decays show some tensions with
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respect to the theoretical predictions. In particular, the ratio

R
�
D(∗)

�
= B

�
B̄ → D(∗)τ−ν̄τ

�
/B

�
B̄ → D(∗)ℓ−ν̄ℓ

�
(2.9)

with ℓ = e or µ, was measured by several experiments to be incompatible with the SM
expectation [5, 6]. Other anomalies in the B sector were observed in b → sℓℓ transitions,
in particular when comparing B+ → K+µ+µ− and B+ → K+e+e− [7]. A more recent
measurement by LHCb [40], which supersedes the previous measurements, agrees with the SM,
indicating that the source of the discrepancies is of a different nature. Another long-standing
discrepancy between theory prediction and experiment concerns the anomalous magnetic
moment of the muon. The most recent data from the Fermilab Muon g − 2 experiment [43]
indicate a 5 σ tension with a theory prediction that uses data-driven calculations of hadronic
vacuum polarization (HVP) [44]. However, more recent predictions of the anomalous magnetic
moment based on lattice QCD calculations [45, 46] of HVP are in agreement with the
measurements, and the reason for the discrepancies still has to be understood.

These results have generated significant interest [47–52], and ongoing research is being done to
verify their validity and understand the implications of any possible deviations from lepton
universality. A broad class of SM extensions explains the mechanism that leads to the violation
of the universality of leptons. These extensions often assume the existence of new interactions
or particles that couple to the leptons differently. Examples are two-Higgs-doublet models [53,
54] or a singly charged-scalar singlet [55]. More precise measurements of LFU are needed
to test and exclude these models. Tests of lepton universality via W ± boson decays in LHC
experiments are limited to detecting charged currents, whereas decays of the τ lepton also are
sensitive to flavour-changing neutral currents [56, 57].

2.4 The tau lepton
Tau leptons are fundamental particles and belong to the third generation of leptons. Being
leptons, they do not interact via the strong interaction and only decay via the weak interaction,
which makes them useful to probe many properties of the SM [58] and to search for new physics
beyond it. They are the heaviest of the three charged leptons, with a mass of 1776.86±0.12 MeV
[10], which allows them to decay into not only electrons and muons, but also hadrons. The
tau has a relatively short lifetime (ττ = 290 fs) compared to other leptons (τµ = 2.2 µs), which
makes them almost decay immediately, and usually only their decay products can be detected.
In Figure 2.5, the most common tau decays and their relative fraction are shown on a pie chart,
where h denotes a hadron, which is either a pion or a kaon. The decays to pions dominate
over kaons since the latter is Cabibbo-suppressed, by a factor of about sin2 θc/ cos2 θc ≈ 0.053
with θc = 13.02◦ being the Cabbibo angle. The hadronic decays of tau leptons are of great
interest since they also provide a unique way to study the strong interaction responsible for
binding quarks together to form hadrons [4, 8]. The leptonic decays of the tau can instead be
used to test the Lorentz structure of the charged current in the theory of weak interaction.
The observable parameters are called Michel parameters, which are bilinear combinations of
coupling constants that arise in the most general expression for the decay matrix element [4].
In the SM, the only non-zero coupling due to the V−A nature of the weak interaction is the
left-handed vector coupling gV

LL. The leptonic decays of the tau make up about 35.2 % of all
decays. In Figure 2.6, Feynman diagrams are shown for a generic hadronic decay (2.6a) and a
leptonic decay (2.6b), where ℓ denotes either an electron or a muon.
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Figure 2.5: A pie chart of tau branching fractions: Piechart of SM decays from Izaak Neutelings,
licensed under CC BY-SA 4.0 [59]

(a) (b)

Figure 2.6: Feynman diagrams for a hadronic decay (a) and a leptonic decay (b) of the tau
lepton.

2.4.1 Leptonic decay rates
The decay rates of the tau lepton to an electron or muon can be computed from the Feynman
diagram shown in Figure 2.6b. This process can be treated as an effective theory in which
the interactions include four fermions. This is known as the four-fermion interaction or Fermi
theory, and the corresponding process is shown in Figure 2.7. Neglecting the W ± propagator
is justified when the involved masses are much below the W ± mass. In this case, the impact
on the decay width is about 0.03 %, for which a correction term will be added later.

The Lagrangian for this decay, assuming a pure V−A interaction, is

L = GF√
2

�
ν̄τ γα

�
1 − γ5

�
τ

� �
ℓ̄γα

�
1 − γ5

�
νℓ

�
= GF√

2

�
ℓ̄γα

�
1 − γ5

�
τ

� �
ν̄τ γα

�
1 − γ5

�
νℓ

�
,

(2.10)

where GF is the Fermi constant defined in Equation 2.8, γα and γ5 are the Dirac gamma
matrices introduces in Section 2.2, and ντ , τ , ℓ and νℓ indicate the spinors of the corresponding
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1

2

3

Figure 2.7: A diagram showing a leptonic decay of the tau within the Fermi theory.

particles with the adjoint spinors indicated by a bar as defined in Equation 2.4. To compute
the decay rates, the phasespace integral [4.11 18, p. 95]

Γ = 1
2E

�!
a

�
d3p′

a

(2π)32E′
a

�
(2π)4δ4

�
p −

'
a

p′
a

�
|M|2 (2.11)

has to be evaluated, with the momenta pa and energies Ea corresponding to the particles as
shown in Figure 2.7, and the matrix element M. The spin-averaged matrix element is

'
spins

|M|2 = G2
F

2 Tr
	�

/p + mτ

�
γα

�
1 − γ5

�
/p

′
3γβ

�
1 − γ5

�
×

Tr
	
/p

′
2γα

�
1 − γ5

� �
/p

′
1 + mℓ

�
γβ

�
1 − γ5

�
,

(2.12)

with, mℓ and mτ being the masses of the corresponding leptons.

This results in the partial decay width

B(τ → ℓνℓντ )
ττ

= Γ(τ → ℓνℓντ ) = G2
F m5

τ

192π3 f(m2
ℓ/m2

τ ), (2.13)

where ττ is the lifetimes of τ lepton,

f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x, (2.14)

is due to the phase space integral, which was first derived by Tsai [9] assuming massless
neutrinos. The effect of non-zero neutrino masses on this prediction is negligible at the current
level of precision [60]. This decay width still has to be corrected to account for radiative effects,
with a correction factor

Rτ
γ = 1 + α (mτ )

2π

�
25
4 − π2 + O

�
m2

ℓ

m2
τ

��
+ · · · , (2.15)

which does not depend on the final state lepton up to order m2
ℓ/m2

τ [3.2.2 61].

The correction due to the nonlocal structure of the W boson propagator [62–64] is

Rτℓ
W = 1 + 3

5
m2

τ

M2
W

+ 9
5

m2
ℓ

M2
W

+ O
�

m4
ℓ

M2
W m2

τ

�
, (2.16)
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which can be reabsorbed in the effective coupling together with higher-order electroweak
corrections (∆r) [8, p. 43]:

G2
ℓτ =

�
g2

4
√

2M2
W

(1 + ∆r)
�2 �

1 + 3
5

m2
τ

M2
W

+ 9
5

m2
ℓ

M2
W

+ O
�

m4
ℓ

M2
W m2

τ

��
. (2.17)

With this definition, Geµ is the Fermi coupling defined in the V−A theory, which is measured
to a very high degree of precision using the lifetime of the muon and the masses of the electron
and the muon [8]:

Geµ = 1.166 378 7 ± 0.000 000 6 × 10−5 GeV−2. (2.18)

The size of the radiative correction from Equation 2.15 and due to the nonlocal structure of
the W boson propagator from Equation 2.16 is shown in Table 2.4 for the decay width of
τ → eνeντ and τ → µνµντ , when computed with Equation 2.13. The value quoted in the table
for radiative corrections was computed by Marciano and Sirlin [65]. The radiative correction
is sizeable but only depends on the lepton in the final state at higher orders. The correction
associated with the W boson propagator [62] is much smaller and differs only slightly for
τ → eνeντ and τ → µνµντ .

Table 2.4: The size of the correction factors to the decay width of τ → eνeντ and τ → µνµντ for
the QED radiative corrections and the correction due to neglecting the W boson propagator.

τ → eνeντ τ → µνµντ

QED radiative corrections [65] −0.432 % −0.432 %
W ± boson propagator [62] +0.0293 % +0.0296 %

2.4.2 Lepton universality tests with tau decays
The leptonic decays of tau leptons allow for high precision tests of lepton universality, which
states that the three charged leptons couple to the W bosons in the same way (see Section 2.3).
Until now, LFU was implicitly assumed by having the couplings ge, gµ, and gτ equal. When
this assumption is not used, the theoretical prediction for the partial decay widths is

B(τ → ℓνℓντ )
ττ

= g2
τ g2

ℓ m5
τ

6144π3M4
W

f(m2
ℓ/m2

τ )Rτ
γRτℓ

W . (2.19)

Using these partial decay widths for the leptonic tau decays and the analogous expressions for
the decay µ → eνeνµ, three ratios of the couplings can be obtained:�

gµ

ge

�2
= B(τ → µνµντ )

B(τ → eνeντ )
f(m2

e/m2
τ )

f(m2
µ/m2

τ )
Rµe

W

Rτµ
W

, (2.20)

�
gτ

gµ

�2

= B(τ → eνeντ )
B(µ → eνeνµ)

f(m2
e/m2

µ)
f(m2

e/m2
τ )

τµm5
µ

ττ m5
τ

Rµ
γRµe

W

Rτ
γRτe

W

, (2.21)

and �
gτ

ge

�2
= B(τ → µνµντ )

B(µ → eνeνµ)
f(m2

e/m2
µ)

f(m2
µ/m2

τ )
τµm5

µ

ττ m5
τ

Rµ
γRµe

W

Rτ
γRτµ

W

. (2.22)
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Table 2.5: The world averaged values for some basic parameters needed for tests of LFU, taken
from the PDG (2022) [10].

mτ 1776.86 ± 0.12 MeV
ττ 290.3 ± 0.5 fs
B(τ → eνeντ ) 17.82 ± 0.04 %
B(τ → µνµντ ) 17.39 ± 0.04 %
mµ 105.658 375 5 ± 0.000 002 3 MeV
τµ 2.196 981 1 ± 0.000 002 2 µs
B(µ → eνeνµ) 100 %
me 0.510 998 950 00 ± 0.000 000 000 15 MeV
mW 80.377 ± 0.012 GeV

For Equation 2.20, the last term that originates from the difference in corrections associated
with the W ± boson propagator can be neglected. Using the numbers given in Table 2.4, the
ratio Rµe

W

Rτµ
W

deviates from unity less than 3 × 10−6. This results in the SM prediction for the
ratio of the leptonic tau branching fractions of 0.972 564 ± 0.000 004, using the current best
world averaged values for the particle masses from the PDG (2022), which are also shown in
Table 2.5 [10]. This ratio gµ/ge, which tests e-µ universality, has the advantage that it can
be obtained experimentally using only B(τ → µνµντ ) and B(τ → eνeντ ) without additional
input. Moreover, both branching fractions can be measured using similar conditions in the
same experiment, which results in a significant cancellation of experimental systematics. This
ratio will be measured in this work with Belle II data.

Equations 2.21 and Equation 2.22 can instead be used to test µ-τ and e-τ universality. Essential
inputs for these tests are the absolute branching fractions of the τ decaying to lighter leptons,
the measurements of the τ mass, and its lifetime. They also rely on the same quantities for
the muon and the mass of the W ± boson, but they are known much more precisely. These
quantities as listed in the PDG (2022) are shown in Table 2.5 [10]. The parameters associated
with the tau lepton are expected to be improved by Belle II. For the tau mass, there is already
a new result from Belle II, published in 2023 [66]. Using Equation 2.21 or Equation 2.22,
a linear relation between the τ lifetime and the leptonic branching ratios of the tau lepton
can be obtained [8, p. 44]. With the SM prediction of gτ = gµ = ge and inserting values
from Table 2.5, this results in

B(τ → eνeντ ) = B(τ → µνµντ )
0.972564 ± 0.000004 = ττ

1632.76 ± 0.55 fs . (2.23)

This relation is also shown in Figure 2.8 as the blue band, with the red markers indicating the
measured values of the τ lifetime and B(τ → eνeντ ) as well as B(τ → µνµντ ) from Table 2.5.
The value of B(τ → µνµντ ) was translated into B(τ → eνeντ ) using the SM prediction from
Equation 2.23. This figure combines all LFU tests that use the leptonic tau branching fractions
in one image. The two markers agreeing with each other corresponds to the test of e-µ
universality; however, one has to keep in mind that the shown uncertainties of B(τ → eνeντ )
and B(τ → µνµντ ) are correlated with each other. For the shown values from the fit quoted by
the PDG, the correlation coefficient is 18 % [10]. The agreement of the individual markers with
the blue line indicates e-τ (light red) and µ-τ (dark red) universality. Currently, all measured
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values agree with each other under the SM assumptions, but more precise determinations of
the individual inputs are needed for a more powerful test of LFU.

288 289 290 291 292 293
ττ [fs]

17.75

17.80
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17.90
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18.00


(τ

−
→
e−

̄ν e
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SM prediction using mτ = 1776.86 ± 0.12 MeV
Measured using (τ−→μ− ̄νμντ)
Measured using (τ−→e− ̄νeντ)

Figure 2.8: The relation between tau lifetime and leptonic branching fractions, as predicted by
the SM, shown as a blue band. The width of the band originates mainly from the uncertainty
of the measurement of the tau mass. The global combinations of the measured values from
experiments are shown as red crosses [10], where the darker uses the measured value of
B(τ → eνeντ ) and the lighter uses the measured value of B(τ → µνµντ ), which is then
translated to B(τ → eνeντ ).

2.5 Statistical methods
This section introduces some fundamental statistical concepts frequently employed in high
energy physics (HEP) and also relevant to this analysis. It starts with a brief discussion of
the maximum likelihood method, followed by a description of hypothesis testing, particularly
the profile likelihood ratio method. Although many of the concepts introduced here are also
important in Bayesian statistics and can be interpreted from that perspective, this work focuses
more on the frequentist approach.

2.5.1 Maximum likelihood method
Most physics analyses aim to determine certain characteristics of the underlying distribution
of a particular dataset. This underlying distribution can be described with a statistical model,
denoted Pmodel(x|θ). Here, x are the observations that can depend on the model parameters,
denoted as θ = (θ1, . . . , θN ). The model Pmodel gives the probability of observing x, given any
instance of the parameters, so it can be thought of as the data-generating process. The model
will never perfectly describe the true underlying distribution, but it can describe it sufficiently
closely [67].
When the model is evaluated with observed data x0, the likelihood function

L(θ) = Pmodel(x0|θ), (2.24)
is obtained, which now only depends on θ. By maximising the likelihood function with respect
to θ, the parameter values that best describe the observations can be estimated. In general,
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such a function is called an estimator θ̂(x) and its value at the observed data is the estimate θ̂.
An estimator can be constructed in many ways, but some of its properties, such as consistency,
bias, efficiency, and robustness, are important criteria to consider [10, p. 660]. This particular
estimator is the maximum likelihood (ML) estimator. It is frequently used in HEP because of
certain characteristics it exhibits when dealing with large data sets, also referred to as the
asymptotic limit. That is, the ML estimator is

• consistent: With enough data, the estimate θ̂ converges to the true value [68],

• normal: The estimate θ̂ adheres to a normal distribution [68],

• and efficient: The estimator has the smallest possible variance, given by the Rao-Cramér-
Fréchet bound [69, 70].

With these properties, the inverse of the covariance matrix for the parameters θ̂ corresponds to
the curvature of the negative logarithm of the likelihood function, evaluated at its minimum [10]:

� �V −1
�

ij
= − ∂2 ln L

∂θi∂θj

)))))
θ̂

. (2.25)

This feature is extensively used to assess the uncertainty of estimates, for instance, via
the HESSE technique of the MINUIT minimisation software [71]. When these asymptotic
properties become valid depends, in general, on the model [72]. Before using these properties,
it is important to understand the probability distribution of the estimator, which can be
obtained by calculating the estimator for each possible realisation of the observed data.

2.5.2 Hypothesis testing
Likelihood ratio tests

The significance of the difference between two models can be tested using the likelihood ratio
as a test statistic:

λ = L(θ1)
L(θ2) , (2.26)

where θ0 ∈ Θ0 and θ1 ∈ Θ are two realisations of the possible parameters. Θ is the total
parameter space available and Θ0 is a subset of the parameter space associated with the null
hypothesis H0. Using the likelihood ratio results in the most powerful statistical test, which
was first shown by Neyman and Pearson [73].

In addition, Wilks’ theorem [74] states that the quantity

−2 ln λ

follows a χ2 distribution with degrees of freedom corresponding to the difference in the amount
of free parameters between the numerator and the denominator. This property is only true
when in the asymptotic regime and assuming that the null hypothesis is valid. Knowing this
distribution makes the likelihood ratio a convenient choice for a test statistic.
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The profile likelihood ratio

Often, the so-called profile likelihood ratio [75]

λp(µ) = L(µ,
ˆ̂
θ)

L(µ̂, θ̂)
, (2.27)

is used as a test statistic. The numerator is the maximal value of the likelihood when one of
the parameters µ is fixed to a specific value. This parameter is called the parameter of interest,
and the maximum likelihood estimate (MLE) for the remaining parameters is denoted as ˆ̂

θ.
The quantity in the numerator depends on the chosen value of µ and is also called the profile
likelihood since, when plotted as a function of µ, it gives a profile of the likelihood function.
The quantity in the denominator is instead the maximum of the likelihood when the parameter
of interest is also at its MLE. In this work, the test statistic tµ, defined as

tµ = −2 ln λp(µ), (2.28)

will be used. The value of tµ depends on the value of the parameter µ. Its properties and
asymptotic distribution are described by Cowan et al. [75] and are based on the results of
Wilks [74] and Wald [76]. When µ coincides with the actual parameter value and the model is
correct, tµ will asymptotically be distributed according to a χ2 distribution with one degree
of freedom. Using this knowledge about the asymptotic distribution, a confidence interval
(CI) with a certain confidence level (CL) can be constructed for the parameter of interest
by selecting the range of µ where the p-value of the observed value of tµ is greater than
1 − CL. This is called the test-inversion method, which is similar to the interval construction
by Neyman [77]. Depending on the test statistic, various intervals with the same coverage can
be obtained [78], similar to the ordering rule in Neyman’s method.

2.6 Computational methods
2.6.1 Simulated Annealing
Simulated annealing is a stochastic optimisation algorithm that can be used to find the
global minimum of a function [79]. The algorithm is especially useful when the function
is multidimensional and has many local minima, which can make it challenging to find the
true global minimum using other methods. The algorithm resembles the physical process of
annealing, which refers to heating and then cooling a material to reduce its defects and thus
increase its stability.

The algorithm is based on the Metropolis-Hastings [80, 81] algorithm. It starts with an initial
solution and then iteratively generates new candidate solutions by making small random
changes to the current solution. These candidate solutions are evaluated using the objective
function that one wants to optimise, which in this case is also called the energy E, since it
resembles a potential energy function in materials. The new solution is accepted or rejected
based on a probability that depends on the energy difference ∆E between the current solution
and the candidate solution and a parameter called temperature T . This function is called the
acceptance probability function and has the form

paccept = min
�
1, e

∆E
T

�
. (2.29)

21



2.6. Computational methods

It is based on the Boltzmann distribution from statistical mechanics, which relates the energy
of a system to the probability of being in a particular state.

At high temperatures, the algorithm is more likely to accept candidate solutions that worsen
the objective function, while at low temperatures, it becomes more selective and only accepts
solutions that are better than the current solution. The temperature parameter is gradually
reduced over time, following a cooling schedule that starts with a high temperature and slowly
decreases to a low temperature. This allows the algorithm to explore the search space, since
the possibility of accepting worse solutions prevents it from getting stuck in local minima.
Then, the algorithm can gradually converge towards the global minimum as the temperature
decreases.

2.6.2 Artificial neural networks
Artificial neural networks (ANNs) are functions inspired by the structure of biological neural
networks in the human nervous system. They can solve complex problems by learning from
data, like the learning process of the human brain [82].

An ANN consists of layers of interconnected neurons [83]. In the simplest architecture, these
layers comprise an input layer, one or more hidden layers, and an output layer. The input
layer receives input data, which is then passed through the hidden layers, and the output layer
produces the final output of the network. Each neuron in the network receives input from
other neurons, processes that input, and then transmits its output to other neurons in the
network. One of the most basic types of ANNs is also called a multilayer perceptron (MLP),
where every neuron in one layer connects to every neuron in the neighbouring layers. This is
the type that will be used in this work, and in the following, it will simply be referred to as
ANN.

The connections between neurons in an ANN are characterised by weights, which can be any
real number and determine the strength of the connection between two neurons. Furthermore,
each neuron is assigned a specific number known as the bias [84]. With these parameters, the
output al

j from the jth neuron in the lth layer is determined as

al
j = σ

�'
k

wl
jkal−1

k + bl
j

�
, (2.30)

with bl
j denoting the bias for neuron j in layer l, and wl

jk representing the weight corresponding
to the connection from neuron k in layer l − 1 to neuron j in layer l. The bias term is added to
the weighted sum of the inputs to the neuron, and the result is then passed to the activation
function σ, another key component of ANNs. It determines what value is passed to the
subsequent neurons. It often has the form of a continuous step function, defining a threshold
for which the neuron produces an output, similar to neuronal firing in the brain [85]. One
commonly used activation function is the sigmoid function (or Fermi function),

σ(z) = 1
1 + e−z

, (2.31)

which maps the input to a value between zero and one, or the hyperbolic tangent,

tanh(z) = ez − e−z

ez + e−z
, (2.32)
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Figure 2.9: A schematic of a part of a neural network, with three neurons shown for layer l − 1
and two neurons for layer l. The weights for the connections between neurons and the biases
associated with each neuron are indicated.

which maps the input to a value between minus one and one. Figure 2.9 illustrates the
parameters of the network and how they can be attributed to the nodes and edges of a graph.
With Equation 2.30, it is possible to map any given input to a specific output of the network.

The parameters of the network are adjusted during the learning process to improve its
performance. The training of ANNs may occur supervised or unsupervised [86]. In the
supervised approach, the network learns from labelled data consisting of the input-output
pairs x⃗ and y. The input is fed to the network and the obtained output a⃗(w, b, x⃗) is compared
with the desired output. To quantify how well the network performs, a loss function, such as
the quadratic loss for regression tasks, is used.

One commonly used loss function for classification tasks, where the outputs of the ANN
correspond to different classes, is cross-entropy, which has a close relationship with the
maximum likelihood method [86, Chapter 6]. It measures the difference between two probability
distributions: the predicted probabilities yielded by the model and the actual distribution
of the labels in the training data. When the cross-entropy is minimised, the neural network
learns to maximise the likelihood of observing the training data. When the output of the
neural network is normalised by a softmax function, it can be interpreted as probabilities [87].
The actual probability is 1 for the class to which the data point corresponds and 0 for all other
classes. For the general case of multiclass classification, the loss is then defined as

LCE = − 1
N

N'
n=1

wn log exp (an,yn)(C
c=1 exp (an,c)

(2.33)

where an, c is the value of the cth output neuron for the nth training sample, yn is the index
of the class to which the training sample belongs, C is the total number of classes, which
the denominator is summed over, N is the number of training samples, and wn is a weight
associated with the nth training sample. This weight can be used to change the importance
of the individual training samples given during the training, which is especially important
when training with data that consists of different classes, but are in the wrong proportions.
When only two classes are provided, the cross-entropy reduces to the binary cross-entropy

23



2.6. Computational methods

(BCE) function. In unsupervised learning, the network is trained using unlabelled data and
the weights are adjusted to identify patterns and structures in the data.

The parameters are adjusted using an algorithm called gradient descent. It works by iteratively
changing the parameters in the negative direction of the loss function gradient. In each
iteration, a step is taken in the direction of the steepest downward slope of the loss function,
resulting in the name gradient descent. The size of the step is determined by an additional
parameter called the learning rate (LR) η, which can also vary throughout the training process
of the network. Thus, the rules for updating the parameters w and b in each iteration are

wl
jk → w̃l

jk = wl
jk − η

∂C

∂wl
jk

and (2.34)

bl
j → b̃l

j = bl
j − η

∂C

∂bl
j

. (2.35)

To efficiently calculate the derivatives required for gradient descent, the backpropagation
algorithm [88] is used. Using the chain rule, this algorithm computes derivatives starting at
the last layer and moving backwards through the network. This approach avoids redundant
calculations and allows all derivatives to be obtained in a single backward pass. Automatic
differentiation is a generalisation of the backpropagation algorithm and is widely used in
various applications [89].

For training ANNs with large amounts of data [90], stochastic gradient descent is used, which
is a modification of gradient descent. It uses random subsets of data called mini-batches to
calculate the gradient of the loss function. This will result in stochastic fluctuations of the
gradient vector with respect to the one obtained using the entire sample, which in some cases
can also help to escape local minima. When all mini-batches that comprise the training sample
have been used, one training epoch is considered complete. This process is repeated until
the loss stagnates or a certain number of training epochs are reached. The size of individual
batches must be optimised to balance performance and execution speed.

Overtraining of the ANN can occur when the network picks up specific features of the training
data and performs poorly on new data. This is more likely to occur when the amount of
training data is too small for the complexity of the model, such as when the ANN has many
free parameters. To check for overtraining, it is helpful to split the data into a train sample
to train the network and a test sample, which is only used to evaluate its performance. The
network’s performance on the test sample can be used to infer the actual performance on
unseen data. During training, this can be done by monitoring the loss value as a function of
the epochs. Regularisation techniques and early stopping of the training process can also be
used to prevent overtraining [91].
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CHAPTER 3
Experimental setup

3.1 Introduction
In this chapter, the experimental setup is outlined. This includes some fundamental concepts
presented in Section 3.2, an introduction to SuperKEKB in Section 3.3, and the most important
aspects of the Belle II experiment in Section 3.3. Section 3.5 summarises the used dataset and
simulated samples, and Section 3.6 discusses the identification of charged particles at Belle II,
which is particularly important for this measurement.

3.2 Fundamental concepts
3.2.1 Luminosity
Luminosity is an essential concept in HEP that quantifies the rate of interactions per unit
cross-section in particle collisions. Thus, multiplying the luminosity by the cross-section σ of a
certain physics process yields the total number of expected events N of that process.

N =
�

L(t)σdt (3.1)

Here, L(t) denotes the instantaneous luminosity per unit of time, resulting in the total
luminosity when integrated over a time period.

The instantaneous luminosity is given by the expression

L = fn
n1n2

4πσ∗
xσ∗

y

F , (3.2)

with f being the revolution frequency, n the total bunches per beam in the storage ring, and
n1 and n2 denoting the particle count in each bunch. In the denominator, the terms σ∗

x and
σ∗

y denote the beam sizes at the interaction point (IP) in the horizontal and vertical directions,
while F includes additional factors [10, 92]. In practice, the computation of luminosity based
on the beam parameters is quite complicated because of the limited knowledge and the time
dependence of some quantities. Thus, the luminosity is usually obtained using a reference
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process with a known cross-section. The number of produced events can be computed from
the observed events by reconstructing this process with a known efficiency, for example,
obtained from simulations. Using this information, the luminosity can be calculated with
Equation 3.1. Typically, units of cm−2s−1 are used to report the instantaneous luminosity,
while the integrated luminosity is usually expressed in inverse barns with 1 barn being equal
to 1 × 10−24 cm2.

3.2.2 Energy loss of charged particles
When charged particles travel through matter, they can lose energy by interacting with the
particles, atoms, and molecules of the material (which can be a solid, liquid, or gas). This can
lead to ionisation, atomic, or collective excitations. The involved process and the amount of
lost energy depend heavily on the momentum and mass of the traversing particle, based on
which different effects have to be accounted for.

Ionisation

The Bethe-Bloch equation [93, 94] quantifies the mean rate of energy loss
�
−dE

dx

�
due to

ionisation for moderately relativistic particles. Here, moderately relativistic refers to particles
with approximately 0.1 ≤ βγ ≤ 10000, where β is the velocity of the particle normalised to
the speed of light and γ is the Lorentz factor. The range in which the equation is valid and
when other effects become important also depends on the atomic number Z of the material.
Additional atomic effects need to be considered at low energies, while radiative effects start
to play a role at high energies. The energy loss in the regime described by the Bethe-Bloch
formula depends only on β and is qualitatively the same for all particles and target materials
(with some scale dependence on Z) [10].

The Bethe-Bloch equation is�
−dE

dx

�
= Kz2 Z

A

1
β2

�
1
2 ln 2mec2β2γ2Wmax

I2 − β2 − δ(βγ)
2

�
(3.3)

with the meaning of the appearing symbols summarised in Table 3.1. At low velocities, the

Table 3.1: Definition of the symbols appearing in the Bethe-Bloch equation, together with the
usually used units. The table was adapted from „Review of Particle Physics“ [10, p. 549].

Symbol Definition
E energy of the traversing particle [MeV]
x mass per unit area [g/cm2]
Wmax maximum possible energy transfer to e− in a single collision [MeV]
z charge number of the traversing particle
Z atomic number of the target
A mass number of the target [g/mol]
K coefficient = 0.307 075 MeVmol−1cm−2

I mean excitation potential of the target [eV]
δ(βγ) correction due to the density effect

energy loss decreases approximately as 1/β2 with increasing energy and reaches a minimum
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at around βγ = p/m ≈ 3, where m is the mass of the particle and p its momentum. When
the velocity of the particle becomes more relativistic, the first term in the bracket becomes
important, and the energy loss increases logarithmically. This logarithmic increase is partially
cancelled by the correction term due to the density effect (δ(βγ)), which is due to the
polarisation of the medium due to the extended electric field of the particle [10]. The functional
form of the Bethe-Bloch equation can be seen in Figure 3.1 for a positively charged muon
traversing through copper. The dashed and dotted lines indicate the individual contributions,
while the solid curve gives the total effect. The Bethe-Bloch equation only describes the range
between βγ ∼ 0.1 and βγ ∼ 1000, indicated by the vertical lines. Very relativistic particles
also experience energy loss due to the emission of Bremsstrahlung, which eventually becomes
dominant and is referred to as the radiative regime. The energy after which the energy loss due
to ionisation becomes equal to the radiation losses is called the critical energy, denoted Eµc in
the figure. For electrons, this critical energy is at the order of 10 MeV for most materials.
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Figure 3.1: The mean energy loss
�
−dE

dx

�
of a positively charged muon in copper as a function

of βγ = p/m, taken from „Review of Particle Physics“ by the PDG [10, p. 551]. The vertical
lines indicate the boundaries between different approximations with the Bethe-Bloch equation
only describing the range between βγ ∼ 0.1 and βγ ∼ 1000. This is also the range most critical
for particles produced in collisions at the Belle II experiment. Although the Bethe-Bloch
equation depends only on the velocity β of the particle, this is no longer the case for the
radiative regime, where the primary cause of energy loss is Bremsstrahlung.

Electromagnetic showers

When an electron traverses a material above the critical energy, it can create a cascade of
secondary electrons and photons. This cascade of particles is known as a particle shower. In
this process, first, a photon is generated via Bremsstrahlung, which then creates an e+e− pair
via pair production. The produced electron and positron can, in turn, create a photon, and
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the process repeats. The length scale of this process is called one radiation length, defined
as the mean distance over which the energy of the electron is reduced by a factor of 1/e. It
depends on the density and composition of the material, with materials with a higher atomic
number and a higher density having a shorter radiation length. For elements with Z > 4 it is
approximately

X0 = 716.406A

Z2
�
ln

�
184/Z

1
3
�

− f
�

+ Z ln
�
1194/Z

2
3
� g cm−2. (3.4)

with Z being the atomic number, A the atomic mass in units of g mol−1 and f a Coulomb
correction factor. More details and radiation lengths for many materials can be found in [95].

Pair production is the predominant cause of energy loss for photons with high enough energies
(above 10 MeV to 100 MeV, depending on the material). It happens through the interaction of
the photon with the electric field of an atomic nucleus or the field of the electrons, whereas
the latter has a much smaller cross-section. At lower photon energies, other processes take
over, such as Compton scattering or the photoelectric effect [10].

Although electromagnetic showers are primarily relevant for electrons and photons, all charged
particles undergo radiative processes at sufficiently high energies. However, the critical energy
above which this occurs for pions and muons (when traversing iron) is only several hundred
GeV [10].

Hadronic showers

Hadronic showers are created when highly energetic hadrons interact with matter through
inelastic strong interactions. This interaction generates a cascade of secondary particles that
continue to interact with the material. As the shower progresses, the number of particles and
their energy decreases until the remaining particles are fully absorbed.

The development of hadronic showers depends on various factors, such as the energy and type
of the initial hadron and the density of the material. Since many different physical processes are
involved, it is more complex to describe and detect than electromagnetic showers. Additionally,
some of the initial hadrons energy is transferred to nuclear recoil, excitation, or break-up,
which often does not produce a detectable signal [21]. The amount of undetected energy can
vary between showers and is a limiting factor in the resolution of hadronic calorimeters [10,
p. 600].

Hadronic showers are always accompanied by electromagnetic showers caused by some of
the secondary particles, such as neutral pions that decay into two photons. Compared to
electromagnetic showers, hadronic showers take longer to develop and have a larger size [96].

3.3 The SuperKEKB accelerator
SuperKEKB [97] is a particle collider located in Tsukuba, Japan. In nominal operation, it
accelerates electron and positron beams to energies of 7 GeV and 4 GeV, which then collide
at the Belle II detector at a CM energy, often denoted as

√
s, of 10.58 GeV. The asymmetric

beams lead to a boost with a Lorentz factor of βγ = 0.28 of the CM frame relative to the
laboratory frame. This boost is important for studying time-dependent CP violation with B
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mesons due to their larger decay length away from the collision point. The beams of KEKB,
the predecessor of SuperKEKB, were more asymmetric, which resulted in a Lorentz boost of
0.425.

The SuperKEKB accelerator is shown in Figure 3.2, with the electron ring coloured red and
the positron ring blue. The main storage rings, which have a circumference of 3.016 km, can
accommodate 14 776 bunches of particles that collide every 6.5 ns at the interaction point.
Each bunch is approximately 0.6 cm in length and contains roughly 3 × 1010 particles [10,
p. 545].

Figure 3.2: An overview of the SuperKEKB accelerator, taken from „SuperKEKB collider“ [97].

The electrons are generated using a photocathode high-current radio-frequency gun, which can
achieve low emittance by irradiating a small cold cathode with short laser pulses. Emittance
is the area of phase space that describes the transverse particle motion of particles and is
populated by noninteracting and nonradiating particles. Low emittance of the particle beams
is required to achieve high luminosities. The produced electron beams have a bunch charge of
5 nC and are accelerated to 7 GeV using a 600 m long linear accelerator and injected into the
high energy storage ring (HER) [98].

Another electron beam with 10 nC is created using a thermionic gun previously used in KEKB.
This beam is used to generate positrons through electromagnetic showers by firing it at a
14 mm thick tungsten target. The positrons are then circulated in a damping ring with an
energy of 1.1 GeV to achieve a low emittance. After being accelerated to 4 GeV, they are
injected into the low energy storage ring (LER) with a bunch charge of 4 nC [97, 98].

The design luminosity of SuperKEKB is a factor of 40 larger than what was achieved by its
predecessor, KEKB. Reaching this goal requires reducing the beam size at the interaction
region from 1 µm to approximately 50 nm. SuperKEKB uses the ‘crab waist’ scheme, also
known as the nano-beam scheme, invented by Pantaleo Raimondi for the super B-factory [99].
The idea is to reduce the longitudinal size of the overlap region of the two beams at the IP
to be much smaller than the bunch length. This allows the bunches to intersect only in a
very focused region at the IP, where the vertical beam size is minimal, as it gets squeezed by
superconducting magnets at the interaction region. The size of the overlap region depends on
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the crossing angle and the horizontal beam size. The crossing angle at the interaction point of
SuperKEKB is 4.76◦ [98].

Another critical factor is the increase of the beam currents by a factor of 2 to 3. Additional key
parameters of SuperKEKB can be found in Table 3.2, and a comparison of selected parameters
between what was achieved by KEKB and the design of SuperKEKB is provided in Table 3.3.
The beta functions are a measure of the transverse beam size and its divergence and represent
how well the beam is focused. The beam energy asymmetry was reduced to minimise losses

Table 3.2: Important parameters of SuperKEKB [92, 100], with updated numbers from [10,
p. 545], reflecting conditions in March 2022.

Parameter LER
�
e+�

HER (e−) Unit
Energy 4.000 7.007 GeV
Half crossing angle 41.5 mrad
Horizontal emittance 4.0 4.6 nm
Vertical emittance 0.058 0.058 nm
Beta functions at IP (β∗

x/β∗
y) 80/1 60/1 mm

Beam currents 0.819 0.64 A
Luminosity 4.7 × 1034 cm−2 s−1

due to Touschek scattering in the lower energy beam, resulting in a smaller boost but a higher
solid angle acceptance. This is particularly important for physics analyses that rely on the
precise knowledge of missing energy [100]. At the time of writing this, SuperKEKB achieved a

Table 3.3: A comparison between some important parameters for KEKB (achieved) and
SuperKEKB (design).

KEKB SuperKEKB
E [GeV] 3.5 / 8.0 4.0 / 7.0 LER/HER
β∗

y [mm] 5.9 / 5.9 0.27 / 0.30 LER/HER
β∗

x [cm] 120 / 120 3.2 / 2.5 LER/HER
I [A] 1.6 / 1.2 3.6 / 2.6 LER/HER
φ [mrad] 11 41.5
L [cm−2s−2] 2.1 × 1034 8 × 1035

maximum instantaneous luminosity of 4.7 × 1034 cm−2s−2, which is the highest ever recorded
at a particle collider. However, SuperKEKB has not reached its designed goal, and higher
instantaneous luminosities are expected in the future.

3.3.1 Beam-induced backgrounds
The Belle II detector has to deal with many beam-induced backgrounds that can potentially
affect its performance. These backgrounds arise from a variety of processes. The most
significant are Touschek scattering, beam-gas scattering, synchrotron radiation, radiative
Bhabha scattering, and e+e− pair production via the two-photon process. The last two
mentioned backgrounds scale directly with luminosity, since they result from the colliding
beams. This is why they are sometimes referred to as luminosity backgrounds, whereas the

30



3.3. The SuperKEKB accelerator

others are single-beam backgrounds. Single-beam backgrounds can be avoided or reduced to
some degree with beam-steering, collimators, vacuum-scrubbing, shielding, or a well-designed
interaction region (IR). Luminosity backgrounds, on the other hand, cannot be reduced.

Touschek scattering Touschek scattering occurs when particles within a bunch collide and
subsequently strike the beam pipe. This results in a particle shower that may hit the Belle II
detector. The rate of Touschek scattering depends on the beam current, the total number
of bunches, and is inversely proportional to the beam size [92]. Because of the small beam
sizes in SuperKEKB, Touschek scattering is a major background source. However, it is only
relevant for the LER since the scattering rate is also proportional to 1/E3 with E being the
beam energy, and the HER also has a lower beam current [98].

Beam-gas scattering Beam-gas scattering occurs when the beams interact with resid-
ual gas in the vacuum tubes and then hit the wall of the vacuum chamber, producing a
shower of particles. The beams can interact with the gas molecules via Coulomb scattering
and Bremsstrahlung. The beam-gas rate depends on the beam current, the number of gas
molecules (determined by the vacuum pressure), and the magnetic field strength of the focusing
magnets [98].

Synchrotron radiation Synchrotron radiation results from the radial acceleration of charged
particles in the magnetic field of bending and focusing magnets. The synchrotron photons
can have energies on the order of keV and potentially impact the inner detectors. This can be
substantially mitigated by specially designing the IR to counteract such effects. The intensity
of synchrotron radiation increases with the square of the beam energy, which means that it
occurs predominantly in the HER [100].

Injection background The injection background is due to the continuous injection of
charge into the storage rings, which modifies the beam bunch. During injection, a veto signal
is sent that prevents Belle II from recording data, but studies have shown that the background
conditions increase shortly after an injection.

Radiative Bhabha scattering Photons from radiative Bhabha scattering e+e− → e+e−γ
are emitted primarily along the beam direction, where they can interact with the iron of the
magnets. This can create a large number of neutrons, which are the primary background
for the KL - Muon detector. Additionally, the electrons and positrons participating in the
scattering may undergo energy losses, which results in them being overbent by the magnets.
Consequently, they may collide with the magnet walls, generating electromagnetic showers [98].

Two photon process Via the two-photon process (e+e− → e+e−ℓ+ℓ−), a very low momen-
tum lepton pair can be produced, primarily affecting the detectors very close to the collisions.
In the first layer of the Pixel detector, which is located only 1.3 cm away from the IP, a track
rate of 700 kHz/cm2 up to 10 MHz/cm2 is estimated due to this process alone. This would
correspond to about 900 to 14 000 lepton pairs in each event [98]. The rate drops with the
inverse distance to the IP, but the inner detectors need to be designed in a way to be able to
deal with this constant background. Moreover, the produced leptons can spiral in the magnetic
field due to their low momentum, resulting in many detector hits [100].
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3.4 The Belle II experiment
The Belle II detector [98] is an upgrade of the Belle detector and introduces a new generation
of B factories [101]. It is specially designed to handle up to 40 times higher event rates and
10 to 20 times higher background rates. Higher backgrounds result in increased occupancy,
radiation damage, fake signals, and noise in several sub-detectors. The increased event
rates require an improved trigger system, an efficient data acquisition (DAQ), and a high-
performance distributed computing system. At the same time, Belle II still has to meet the
requirements of a B-factory, such as an excellent vertex resolution (around 50 µm), a good
reconstruction efficiency and momentum resolution of both charged and neutral particles across
the full kinematic range of the experiment, effective particle identification, and a hermetic
detector [100]. Although the primary objective of Belle II is to study B mesons, it is also a
multipurpose detector. With a very large cross-section for D meson and τ lepton production,
Belle II is also a charm and tau factory, enabling world-leading measurements in these areas.
Furthermore, due to the ability to trigger low-multiplicity events and reconstruct missing
momentum (due to precise knowledge of the initial and final states), Belle II is well suited for
searches with missing energy, as it is the case in dark sector searches.

Figure 3.3 shows a slice of the Belle II detector, as seen from above. In the centre, the e+ and
e− beams cross in the interaction region, around which the sub-detector systems are located.
The following will give a brief description of each sub-detector. Most of the sub-detectors have
a cylindrical design around the beam directions, and due to the higher energy of the e− beam,
the detector exhibits a forward-backward asymmetry. The laboratory coordinate system has
its origin at the interaction point, with the z axis pointing in the direction of the electron
beam (the forward direction), the x axis being horizontal, and the y axis pointing vertically
upward [98]. A superconducting solenoid outside the electromagnetic calorimeter generates a
homogeneous 1.5 T magnetic field parallel to the z-axis.

3.4.1 Vertex detectors
The Belle II vertex detectors are the Pixel detector (PXD) and the Silicon Vertex detector
(SVD). The PXD was a new introduction in Belle II to achieve better vertex resolution, which
is necessary due to the smaller boost of the collision products compared to Belle. These
detectors are placed around the beryllium beam pipe, which has a diameter of approximately
10 mm. The PXD is composed of two layers situated at a radius of 14 and 22 mm. It is made
up of nearly 8 million pixels and employs depleted p-channel field effect transistor (DEPFET)
sensors, with the advantage that they can be manufactured extremely thin (around 50 µm) to
minimise multiple scattering.

The SVD comprises four layers, each located at a radius of 38, 80, 115, and 140 mm [102].
Every layer is outfitted with double-sided silicon strip sensors, reducing the number of readout
channels compared to those needed by the PXD. A cross section of the vertex detectors is
shown in Figure 3.4, with the PXD modules close to the collision point and the four SVD
layers positioned around it. There are a total of 20 diamond sensors placed surrounding the
beam pipe, 4 of which are located at each end of the PXD, as well as 6 sensors at the forward
and backward region of the SVD support structure. They are used to monitor the beam
background. High backgrounds could damage the SVD, which is why the beam is automatically
aborted if the diamond sensors measure background levels above some threshold [103].

32



3.4. The Belle II experiment

Figure 3.3: An overhead view of a slice of the Belle II detector, illustrating the interaction
region and the different sub-detector systems. The drawing is taken from „The Belle II Physics
Book“ [100, p. 37].

Figure 3.4: A technical drawing of the cross section of the vertex detectors, showing the PXD
in blue and the SVD in orange. The PXD consists of two layers and the SVD comprises four
layers. The image is adapted from [103].

The vertex detectors are used primarily to accurately measure the decay vertices of particles.
Initially, particle tracks are reconstructed using only information from the Central Drift
Chamber (CDC). Subsequently, these tracks are extrapolated to the PXD with the help of
data from the SVD. In addition, the SVD is also capable of reconstructing particles that
decay beyond the PXD, like K0

S → π+π−, as well as low momentum particles (as low as
pT ∼ 10 MeV) that fail to reach the CDC.
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Figure 3.5: The CDC viewed in the r-φ plane (left) with alternating axial and stereo layers,
which are depicted on the right. The axial layers are aligned with the magnetic field direction
(z direction), while the stereo layers are twisted. The image is taken from [105].

3.4.2 Central Drift Chamber
The CDC in Belle II is essential for reconstructing charged particles and their momenta by
detecting their traces. This is called tracking, and such reconstructed particles are called
tracks. The momentum of the reconstructed particles can be obtained by their curvature
in the magnetic field, with the radius of the circle in the transverse plane being r = pt/B,
where pt is the transverse component of the momentum vector and B is the strength of the
homogeneous magnetic field parallel to the z-axis [104]. The CDC is composed of 56 layers
arranged from r = 160 mm up to r = 1130 mm, each containing a specific number of wires
with 30 µm diameter. These layers are grouped into super-layers, consisting of either axial or
stereo layers. Axial layers align with the direction of the magnetic field, whereas stereo layers
are twisted to enable the determination of the z position, which allows for a three-dimensional
track reconstruction. The structure of the layers can be seen on the left in Figure 3.5, where
the CDC is shown in the r-φ plane. The upper right of the figure shows an axial layer, and
the lower right shows a stereo layer. The gas in the CDC is a mixture consisting of equal parts
of helium (He) and ethane (C2H6), with an average drift velocity of 3.3 cm/µs. Figure 3.6
displays the wire arrangement in the r-φ plane, with simulated hits on the wires shown as
circles. The diameter of each circle reflects the intensity of the detected current. Figure 3.6a
shows a simulation of the anticipated beam background with the design luminosity. In contrast,
Figure 3.6b shows a simulated physics event in which the CDC signals are classified according
to the track they originate from. This illustrates the difficulties of accurately and reliably
identifying and reconstructing tracks among significant background noise.

3.4.3 Cherenkov detectors
The two Cherenkov detectors, the Time-of-propagation counter (TOP) and the Aerogel Ring
Imaging Cherenkov counter (ARICH), enhance the accuracy of particle identification between
kaons and pions in a momentum range from 0.4 GeV to 4 GeV. They also help to differentiate
pions, muons, and electrons with momenta under 1 GeV [100]. The operational principle of
both detectors is based on the emission of Cherenkov radiation by a charged particle travelling
at a velocity β, which exceeds the speed of light in a medium, given by the equation

cos θc = 1
n(λ)β , (3.5)
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(a) A simulation of the hits expected from back-
grounds at the design luminosity of SuperKEKB.
The image is taken from [105].

(b) A simulated physics event where the CDC
signals are classified according to their origin. The
image is taken from [106, p. 57].

Figure 3.6: CDC wires viewed in the r-φ plane, and the resulting signal from simulated events
indicated as circles.
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Figure 3.7: A sketch of a quartz bar as it is used in the TOP detector. When a charged
particle transverses the detector, Cherenkov photons get emitted at a specific angle depending
on its velocity. Reflection occurs within the bar until the photons arrive at the photodetector.
The image is taken from [98, p. 220].

where n is the refractive index of the medium and θc is the angle at which the Cherenkov
radiation is emitted. The Cherenkov angles can be used to distinguish particles with the same
momentum but different masses.

The TOP detector covers the entire barrel region at r = 120 cm and consists of 16 quartz
bars that are 2.6 m long, 45 cm wide and 2 cm thick [98]. As particles traverse the bar, they
emit Cherenkov photons, which undergo total internal reflection within the material until they
arrive at the side of the bar. Here, a position-sensitive microchannel plate photomultiplier tube
(PMT) captures them, featuring a time resolution of approximately 100 ps [107, 108]. The
angle θc can be reconstructed by measuring the time of propagation and the impact position
of the Cherenkov photons. In addition, the production time of the particles has to be known
within about 50 ps, which was already utilised by the Belle experiment [109]. Figure 3.7 shows
a sketch of a quartz bar, indicating how it is used for particle identification.

The ARICH consists of an aerogel plane and a detector plane with tiles that form 4 and 7 rings,
respectively, organised in a disk at the forward direction (positive z) of Belle II [110]. Particles
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Figure 3.8: An illustration depicting two aerogel layers with varying refractive indices, which
increases the number of Cherenkov photons at the detector plane without significantly degrading
the resolution. The image is taken from [110].

Table 3.4: The polar angle coverage of the ECL detector and its division into segments, with
the resulting number of CsI(Tl) crystals [112].

θ coverage θ segments φ segments # of crystals
Forward endcap 12.01◦ − 31.36◦ 13 48 − 144 1152
Barrel 32.2◦ − 128.7◦ 46 144 6624
Backward endcap 131.5◦ − 155.03◦ 10 64 − 144 960

that traverse the aerogel tiles generate Cherenkov photons, which subsequently travel through a
20 cm expansion volume before reaching detectors that are sensitive to individual photons [98].
The radius of the photon ring at the detector plane allows for direct reconstruction of the
Cherenkov angle. Increasing the thickness of the aerogel layer enhances the photon detection
rate but also increases the uncertainty of the photon emission point, affecting the precision
with which the Cherenkov angle can be determined. By stacking two aerogel layers with
varying refractive indices the photon emission can be enhanced without significantly degrading
the resolution [111]. This method is illustrated in Figure 3.8.

3.4.4 Electromagnetic Calorimeter
The Electromagnetic Calorimeter (ECL) is composed of a barrel and endcaps containing
8736 thallium-doped caesium iodide (CsI(Tl)) crystals, which cover about 90 % of the solid
angle in the CM system. The crystals are positioned at distances between r = 125 cm and
r = 162 cm within the barrel and at z = −102 cm and z = 196 cm for the endcaps. Table 3.4
summarises the polar angle coverage of the ECL for the different detector regions and the
number of crystal segments in θ and φ. Each crystal has a truncated pyramid shape and is
approximately 6 cm × 6 cm wide, and 30 cm in length, . They are oriented towards the IP but
slightly tilted in φ, so the gaps do not align with the IP. CsI(Tl) was chosen because it is
a bright scintillator with a short radiation length and good mechanical properties [98]. The
energy depositions in the crystals excite metastable states that emit scintillation light. The
thallium doping shifts the light from UV to visible and increases the characteristic time to
about 1 µs. Two photodiodes at the back of each crystal detect the scintillation light. While
the crystals have been reused from Belle, the readout electronics have been upgraded to allow
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waveform sampling. This enables the measurement of the signal waveform and separation of
signals based on their scintillation response to particles with different ionisation properties,
called pulse shape discrimination (PSD). The primary function of the ECL is to identify
photons and electrons. This is possible since they release most of their energy into the crystals.
Precise measurement of the location and energy of photons, which usually ranges from 20 MeV
to 4 GeV, is a requirement for many analyses at Belle II. With an increase in event rate and
background levels the performance of the ECL is expected to deteriorate, primarily due to the
long decay time of scintillations in CsI(Tl) crystals. The resulting pileup and overlapping of
pulses can only be partially mitigated with PSD.

3.4.5 KL - Muon detector
The KL - Muon detector (KLM) features a structure composed of iron plates and active detector
materials that surround the barrel and the endcaps. It spans approximately from 200 cm to
250 cm within the barrel. The thickness of the iron plates is 4.6 cm, corresponding to 3.9
interaction lengths, enabling hadronic showers of K0

L mesons. Additionally, these plates act as
a magnetic field flux return, as they are positioned outside of the solenoid [100]. The detectors
are Resistive Plate Chambers (RPCs) [104] or scintillator strips. RPCs were already used in
Belle and are a type of proportional counter based on the principle of the ionisation chamber.
In Belle II, RPCs are restricted to the outer layers of the barrel because of their significant
dead time, which is insufficient for managing the high neutron counts from electromagnetic
showers caused by the higher backgrounds. Consequently, scintillator strips equipped with
silicon photomultipliers were mounted in the two innermost layers of the barrel and in the
endcaps, where these backgrounds are expected to be the largest [98]. The KLM is used
primarily to detect and identify K0

L and muons. A K0
L typically undergo hadronic showers

within the ECL or KLM. In contrast, the penetration of muons through the KLM layers varies
based on their momentum and the amount of electromagnetic energy they deposit. Muons
with less than 0.7 GeV generally fail to reach the KLM, whereas those exceeding 1.5 GeV often
pass through all layers and exit the Belle II detector.

3.4.6 Reconstruction software
The Belle II analysis software framework (basf2) [113, 114] is designed to handle both online
and offline data processing efficiently. It uses modules to perform small tasks in sequential
order, each communicating information to and from a common object-store. Steering files
written in Python define the sequence and configuration of the modules, while the modules are
mainly written in C++. One sequence is called a path, of which more than one can be specified
simultaneously. The framework is used to process the low-level data from the detectors to define
intermediate objects such as track hits from the vertex detectors and the CDC or calorimeter
clusters from the ECL. This information is then used to construct higher-level objects, such as
charged tracks or decay vertices, often involving elaborate algorithms that must cope with
many background signals. By storing only the higher-level objects (the lower-level data is still
kept but stored elsewhere), event size can be reduced by a factor of approximately 40. The
reduced information can then be used to determine quantities associated with the reconstructed
particles, such as their four-momentum or particle identification information. Even higher-level
quantities about the event as a whole, or the outputs of specially trained multivariate classifiers,
can be conveniently computed within basf2 [see 100, Section 5]. The end products are saved
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to so-called mini Data Summary Tables (mDST) files, where a set of features is stored for
each physics event. These features, also called variables, are mainly associated with the
reconstructed energy and momenta of the observed particles, but higher-level quantities such
as event variables, particle identification variables, or outputs from multivariate classifiers
can also be obtained. The exact variables that are computed and stored are selected by the
analysts and depend on the needs of the respective physics analysis. Since Belle II has such a
large data output, having all the information available as an analyst is impossible. Therefore,
one must carefully consider how information is compressed into higher-level objects at each
step, since, as with all compression algorithms, this results in some loss of information.

Another relatively straightforward way to reduce the volume of data each analyst needs to
process and store is by using so-called skims [115, p. 51]. Skims select a subset of the available
data, already excluding events that are irrelevant for specific physics analyses. For example, the
skims should select e+e− → τ+τ− events for tau physics and mostly remove other processes.
For the skim selection, the focus is more on high signal efficiency rather than retaining a very
pure sample, meaning that only parts of the data with almost no signal events should be cut
out. Multiple people can then use the skims as a starting point for a more refined analysis
without processing the entire dataset. Skims can also be defined and processed within basf2.

The development of basf2 is ongoing and it is steadily improved with enhanced algorithms and
new features. For this thesis, the used basf2 version is light-2305-korat [116].

3.4.7 Trigger System
The Belle II trigger system ensures that most desired events are recorded while not triggering
on beam backgrounds or processes with a high cross-section, such as Bhabha events. All this is
done under the constraints of limited storage capabilities and bandwidth of the DAQ system.
The trigger is essential for low-multiplicity processes such as e+e− → τ+τ− or dark sector
searches that can have as little as a single high energy photon in the final state. The trigger
system comprises two main stages: the hardware-based trigger system, or level 1 (L1), and the
software-based high level trigger (HLT).

The L1 trigger system is required to make a retention decision for an event in under 5 µs and
still must also be capable of distinguishing between two consecutive events spaced as closely as
200 ns. The maximum output rate of the L1 trigger system is 30 kHz. At the design luminosity
of SuperKEKB, the frequency of events for a process with a cross-section of 1 nb will be around
800 Hz [100]. For comparison, radiative Bhabha scattering, which is one of the most prominent
physics backgrounds for many low-multiplicity processes, has a cross-section of 74 nb in the
acceptance region of ECL. Therefore, the L1 trigger system must be incredibly efficient and
still provide good discrimination of background sources.

Several sub-detectors provide information to the L1, most notably the CDC and the ECL. The
detector signals are processed using Field Programmable Gate Arrays (FPGAs), which allows
for fast low-level particle and event reconstruction. The CDC is used to reconstruct tracks
from charged particles, which are either 2D or 3D tracks. A 2D track is a reconstructed track
that uses only information from its projection to the r-φ plane, allowing a faster reconstruction.
Novel 3D tracking algorithms using neural networks have been developed for the L1 trigger [117,
118], to also provide information about the z coordinate of tracks. This helps to distinguish
background tracks not starting from the IP. The associated tracks on the trigger level are
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called Neuro 3D. These 3D tracks can also match with ECL or KLM clusters, resulting in
a better classification of the events. The ECL provides information on the position of the
cluster and the energy deposited to the L1. This is especially important for vetoing Bhabha
events, for which a special logic based on back-to-back ECL clusters was developed (this is a
separate trigger called 3D Bhabha). Unfortunately, this Bhabha veto also removes some of the
interesting low-multiplicity processes, so there is always a trade-off which can be controlled by
the tightness of the veto.

Following the L1 trigger, events undergo a assessment through the software-driven HLT. In
this phase, full event reconstruction is accessible using all sub-detectors, with the exception of
the PXD, due to its extremely high data rates. The HLT is also responsible for identifying
regions of interest for the PXD readout based on reconstructed tracks. Data storage limitations
require the HLT to lower the event rates to approximately 10 kHz. To process the rate of
30 kHz acquired by the L1, 6000 CPU cores have to be used [100].

For this work, only a few selected L1 trigger lines will be used. These triggers have specific
requirements and names, which are listed in Table 3.5 for triggers using CDC information and
in Table 3.6 for ECL-based trigger lines. In addition to the listed criteria, all trigger lines
require the absence of an injection veto from SuperKEKB to avoid data recording during
periods of increased noise following beam injections. For CDC triggers, a full track is defined
as one that passes through all the CDC layers, whereas a reduced (or ’short’) track may end or
exit the CDC before the last layer. This is especially important for particles with momentum
in the forward or backward direction. In general, low-multiplicity events with tracks in the
barrel region will have a higher trigger efficiency since the fraction of undesired background
events with tracks in the endcap regions is significantly larger.

Some trigger lines may have been inactive or prescaled during some data-taking periods. A
prescale of n means that only every nth event triggered by the associated trigger line is kept,
often used for triggers with a high rate when the overall rate is at its limit. More about the
used trigger lines and their efficiency for this analysis will be provided in Section 4.4.3.
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Table 3.5: Trigger names and activation conditions for different CDC-based trigger lines.

Trigger Criteria Comments

ffo
number of full 2D tracks ≥ 2
r-φ opening angle > 90 ◦

Not an ECL 3D Bhabha
prescale 100 since experiment 17

fyo

number of full 2D tracks ≥ 1
number of Neuro 3D tracks ≥ 1
r-φ opening angle > 90 ◦

Not an ECL 3D Bhabha

only active since experiment 12

fso

number of full 2D tracks ≥ 1
number of reduced 2D tracks ≥ 1
r-φ opening angle > 90 ◦

Not an ECL 3D Bhabha

only active since experiment 12
prescale 100 since experiment 17

syo

number of reduced 2D tracks ≥ 1
number of Neuro 3D tracks ≥ 1
r-φ opening angle > 90 ◦

Not an ECL 3D Bhabha

only active since experiment 16

stt

number of Neuro 3D tracks ≥ 1
|z| < 15 cm
p > 0.7 GeV
Not an ECL 3D Bhabha

single-track trigger for minimum bias
only active since experiment 17

Table 3.6: Trigger names and activation conditions for different ECL-based trigger lines.

Trigger Criteria Comments

hie
Total ECL energy > 1 GeV
Not an ECL 3D Bhabha

lml0
Ncluster ≥ 3, one with Elab ≥ 300 MeV
1 ≤ θid ≤ 17 ≡ 12.4◦ < θlab < 154.7◦ prescale 10 since experiment 20

lml6
Only one cluster with ECM ≥ 1 GeV, 4 ≤ θid ≤ 15
No other cluster with Elab ≥ 300 MeV anywhere

lml8
Two clusters with 170◦ < ∆ϕCM < 190◦ and Elab > 250 MeV
No other cluster with ECM ≥ 2 GeV anywhere

lml9
Two clusters with 170◦ < ∆ϕCM < 190◦

One cluster with Elab > 250 MeV, the other with Elab < 250 MeV
No other cluster with ECM ≥ 2 GeV anywhere

lml10
Two clusters with 160◦ < ∆ϕCM < 200◦ and 160◦ <

(
θCM < 200◦

No other cluster with ECM ≥ 2 GeV anywhere

lml12
Ncluster ≥ 3, one with Elab ≥ 500 MeV
2 ≤ θid ≤ 16 ≡ 18.5◦ < θlab < 139.3◦ Tighter selection of lml0
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3.5 Data and simulation
This section introduces the current Belle II dataset and the simulated samples used for the
analysis.

3.5.1 Data
Collisions with the entire Belle II detector (except for a part of the PXD) began on March
25th 2019 and ended in fall 2022 for long shutdown one (LS1). The dataset collected in this
period is also called pre-LS1 data. Data collection is organised into sequentially numbered
experiments. Table 3.7 shows the relevant experiments (7 to 26) and the year it was taken,
together with the CM energy used in the respective periods and the corresponding integrated
luminosities. Figure 3.9 shows the weekly integrated recorded luminosity usable for physics

Table 3.7: The data-taking periods of Belle II and the corresponding experiment number up
to 2022, together with the CM energy at which the data was taken and the corresponding
integrated luminosity, where the first uncertainty is statistical while the second is systematic.

Period Exp. CM energy Integrated luminosity [fb−1 ]
early 2019 7 Υ (4S) 0.506 ± 0.002 ± 0.004

8 Υ (4S) 1.663 ± 0.003 ± 0.011
off-resonance 0.808 ± 0.001 ± 0.006
Υ (4S) scan 0.038 ± 0.001 ± 0.001

late 2019 10 Υ (4S) 3.655 ± 0.002 ± 0.024
early 2020 12 Υ (4S) 54.573 ± 0.005 ± 0.350

off-resonance 8.691 ± 0.002 ± 0.056
late 2020 14 Υ (4S) 16.500 ± 0.006 ± 0.106

early 2021 16 Υ (4S) 10.294 ± 0.004 ± 0.066
17 Υ (4S) 10.715 ± 0.004 ± 0.069
18 Υ (4S) 89.900 ± 0.011 ± 0.576

off-resonance 8.482 ± 0.004 ± 0.055
late 2021 20 Υ (4S) 3.788 ± 0.003 ± 0.025

21 Υ (5S) scan 19.750 ± 0.004 ± 0.147
22 Υ (4S) 32.060 ± 0.007 ± 0.206

Υ (5S) scan 0.041 ± 0.001 ± 0.001
early 2022 24 Υ (4S) 85.642 ± 0.011 ± 0.549

25 off-resonance 24.574 ± 0.006 ± 0.158
26 Υ (4S) 54.795 ± 0.009 ± 0.351

analyses and the overall recorded luminosity.

Data collected with the Belle II detector between 2019 and 2022 at a CM energy corresponding
to the Υ (4S) resonance amounts to a total integrated luminosity of

Lint = 361.654 ± 0.021 ± 2.170fb−1, (3.6)

where the first uncertainty is statistical and the second is systematic. This luminosity
measurement, which was obtained using Bhabha events, is provided by Belle II colleagues for
the whole collaboration [120].
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Figure 3.9: The integrated luminosity recorded by the Belle II detector between 2019 and
2024. The histogram shows the weekly luminosity, while the red line shows the total integrated
luminosity. After July 2022, Belle II and SuperKEKB entered LS1, only continuing data-taking
in February 2024. The image is taken from [119].

3.5.2 Cross-sections
The cross-sections for the dominant physics processes in electron-positron collisions at Belle II
energies are given in Table 3.8. In some cases, restrictions to the kinematics of the final state
particles are applied, such as for their momentum to lie inside the detector acceptance. These
selections are often imposed at the generator level when simulating samples to limit their
size [100]. The quoted cross-sections are obtained with Monte Carlo simulations using different
generators (mentioned in the next section), with the quoted uncertainties only due to the
limited size of the produced samples. The cross-section for qq̄ finals states or e+e− → Υ (4S) [10,
p. 908] is not very well known and is sometimes obtained using data [115, 121].

3.5.3 Monte Carlo simulation
Monte Carlo (MC) simulations are critical in order to understand the kinematics and response
of the detector for different physics events. It typically involves three steps: event generation,
detector interaction simulation, and detector response digitisation.

During the event generation step, the production vertices of particles, their four-momenta,
and decays are produced for particular physics processes, either following the SM or a new
physics model. Several SM physics processes are used in this work to study both signal and
background, using different generators that specialise in specific processes.

The e+e− → τ+τ− events are generated by the KKMC generator [122, 123]. Following this, the
decay of tau leptons is modelled using the TAUOLA software package [124–127], and radiative
corrections are applied via PHOTOS [128]. In TAUOLA, 92 decay modes are active and
initialised with branching fractions following the particle listing from the PDG [10]. They are
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Table 3.8: The primary physics processes occurring in e+e− collisions at a CM energy of
10.58 GeV, taken from „The Belle II Physics Book“ [100, p. 48].

Process Restrictions Cross-section [nb]

e+e− →

Υ (4S) 1.110 ± 0.008
uū(γ) 1.61
dd̄(γ) 0.40
ss̄(γ) 0.38
cc̄(γ) 1.30

e+e− →
τ+τ−(γ) 0.919
e+e−e+e− Wℓℓ > 0.5 GeV 39.7 ± 0.1
e+e−µ+µ− Wℓℓ > 0.5 GeV 18.9 ± 0.1

e+e− → e+e−(γ) 10◦ < θ∗
e < 170◦, E∗

e > 0.15 GeV 300 ± 3
pe > 0.5 GeV and e in ECL 74.4

e+e− → γγ(γ) 10◦ < θ∗
γ < 170◦, E∗

γ > 0.15 GeV 4.99 ± 0.05
Eγ > 0.5 GeV in ECL 3.30

e+e− → µ+µ−(γ) None 1.148
pµ > 0.5 GeV in CDC 0.831

e+e− → µ+µ−γ(γ) pµ > 0.5 GeV in CDC, 0.242≥ 1γ (Eγ > 0.5 GeV) in ECL
e+e− → νν̄(γ) 0.25 × 10−3

determined from a global fit to all available branching fraction measurements while considering
the unitarity constraint. Depending on the decay channels, these τ decays compose both the
signal and the background for this analysis.

KKMC is also used for the production of µ+µ−(γ) and qq̄, while the fragmentation of
the qq̄ pairs is handled by the PYTHIA computer program [129]. The event generator
BabaYaga.NLO [130–134] is employed for e+e− → e+e−(γ) events, also known as Bhabha
scattering, and EvtGen is utilised for the decay of B and D mesons. For the creation of
e+e− → ℓ+ℓ−ℓ+ℓ− and e+e− → e+e−h′+h′−, AAFH [135–137] and TREPS [138] are employed.
During the generation of these events, referred to as two-photon processes, no radiative effects
are included due to limitations of the generators. A comprehensive list of all generated samples
and details about their size and cross-sections used in generation are provided in Table 4.1 in
Section 4.2.

The generated particles undergo a complete simulation of their interactions with the detector
via the GEANT4 [139] software. This process includes the creation of authentic trajectories,
secondary particles, and energy depositions within the detector, also taking into account
electronic effects and stochastic noise. The precise geometry and material composition of the
Belle II detector are employed for these simulations.

As a last step, the consequent detector signals are used to reconstruct the events using
basf2 [113]. The detector signals are acquired from the GEANT4 hits by individual modules
for each detector. The L1 trigger system is also simulated, which is referred to as trigger
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simulation (TSIM). Contrary to data, simulated events are not rejected, neither from the L1
nor from the HLT trigger, and only the trigger decision on whether it would keep the event is
stored. This is also referred to as trigger ‘flags’.

The resulting simulated samples will be referred to as MC samples. They are used to
approximate the distributions of the underlying model, since an analytical description of the
whole process is not feasible. However, the simulation will never be perfect and the discrepancies
between reality and simulation must be carefully evaluated and, if needed, corrected.

At Belle II there are two types of MC samples: run-dependent and run-independent. Run-
dependent MC uses randomly triggered data events to include beam backgrounds and evolving
detector conditions that match those present during the different data-taking periods. On
the other hand, run-independent MC uses simulated beam backgrounds and fixed detector
conditions.

3.6 Charged particle identification
Particle identification (PID), particularly lepton identification (lepton ID), is a crucial compo-
nent in this measurement. It is essential to maintain high identification efficiency while keeping
the misidentification (mis-id) rate low. Although the particle identification system is also
simulated in the MC samples, imperfections in the simulations must be corrected. To address
this issue, data-driven corrections from calibration channels are used. However, there is an
associated uncertainty with these corrections, which is expected to be the leading systematic
in this measurement. This uncertainty will be independent between muons and electrons and
thus not cancel in the ratio of branching fractions.

In this section, the charged particle identification of Belle II and the calibration procedure are
introduced. A summary of the correction factors and associated uncertainties will be given
in Sections 3.6.5 and 3.6.6. Other, more analysis-specific aspects of particle identification
will only be discussed in Chapter 4. The overall performance of particle identification for the
analysis will be summarised in Section 4.4.6, particularly in Table 4.14. Implementing the
systematic uncertainties in the analysis will be described in Section 4.6.2.

3.6.1 Sub-detector likelihoods
The nominal particle identification at Belle II uses likelihoods to discriminate long-lived charged
particles that are commonly produced: electrons, muons, pions, kaons, protons, and deuterons.
Every sub-detector contributes data useful for particle identification, regardless of whether the
particle leaves a detectable trace. The likelihood

Ldet(i) := Ldet(x|i) with i ∈ {e, µ, π, K, p, d} (3.7)

is defined for each sub-detector, det ∈ {CDC, TOP, ARICH, ECL, KLM}1, utilising a proba-
bility density function (PDF) for the observations x, derived from simulations, data calibration
channels, or analytical methods. The global likelihood for the hypothesis i combines the
particle identification information from all sub-detectors and is calculated as the product"

det Ldet(i), assuming the independence of each of the individual likelihoods.
1While in principle possible, currently no information from the SVD is used.
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Using this product, the likelihood ratios

L(i) :=
"

det Ldet(i)(
j

"
det Ldet(j) (3.8)

can be established, where the summation includes all possible particle hypotheses, and i
represents the hypothesis under examination. According to Bayes’ theorem [140],

P (i|x) = P (x|i)π(i)(
j P (x|j)π(j) , (3.9)

the ratio L(i) can be interpreted as the probability P of observing a particle of type i, when the
prior probabilities π(i) are equal. This would correspond to the case where all particle types
appear with the same probability in the detector, which is usually not the case. In practice,
this assumption is still used since otherwise the likelihood ratio L(i) would become analysis
dependent, and correction factors would have to be obtained for each analysis individually.

Some examples of inputs from sub-detectors that are used to define the likelihoods relevant to
this work are:

• The CDC allows for the measurement of the characteristic energy loss dE/dx at specific
momenta. This measurement is crucial for tracks with low momentum (under 1 GeV),
which do not extend to external detectors intended for identifying particles.

• The relation between the deposited energy in the ECL (EECL) and the momentum of
the associated track. In particular, electrons can be easily identified because their ratio
EECL/p is close to one, which is not true for all other charged particles. This is because
nearly all of the energy of the electron is absorbed in the ECL.

• The distinctions in longitudinal penetration depth and transverse scattering in the KLM
due to differences between hadronic and electromagnetic showers. By comparing the
expected patterns in the KLM with those observed from tracks extrapolated from the
CDC under a muon hypothesis, it is possible to compute the probability that a track
is indeed a muon. This is especially important for separating muons and pions at high
momentum.

A more detailed description of all the sub-detector inputs can be found elsewhere [100].

3.6.2 Particle identification variables
Equation 3.8 establishes the global particle identification variables at Belle II, restricted to
values between 0 and 1. In the following measurement, this is used to identify muons and will
be referred to as Pµ. Electron identification is performed using a boosted decision tree (BDT)
classifier, specifically trained to distinguish electrons from other charged particles [141]. This
method has proven to be more effective than the purely likelihood-based approach, especially
in differentiating electrons from pions, achieving lower mis-id rates at equivalent efficiency
levels. The BDT utilises the likelihoods from each sub-detector and additional observables
from the ECL, including variables that characterise electromagnetic showers. In the following
measurement, the BDT output serves as the criterion for the identification of electrons and is
denoted as Pe.
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3.6.3 Calibration channels
Imperfections in the simulation are corrected on the basis of the observed differences between
data and MC, measured in several calibration channels. Efficiency measurements utilise
decays such as J/ψ → ℓ+ℓ− or the processes e+e− → ℓ+ℓ−γ and e+e− → e+e−ℓ+ℓ−, where ℓ
represents either an electron or a muon. For assessing mis-id rates, decays such as K0

S → π+π−

and e+e− → τ+τ− events, with the decay τ± → π±π∓π±ντ , are used. These correction factors
are obtained globally by the Belle II lepton ID performance group and then provided to all
analysts.

The efficiencies and mis-id rates can be obtained by fitting a resonance peak over a flat
background in an invariant mass spectrum, such as for the J/ψ or K0

S , which could be
produced from different processes. However, this technique is not possible for calibration
channels using low-multiplicity events because there is no discriminating mass peak. Instead,
a method called tag and probe is used. For this, a pure sample of one particle species is
obtained (the tag selection), and the efficiency is calculated using a PID requirement on this
particle candidate (the probe selection). For this method to work, the probe selection must
be applied to a particle (the probe track) with no particle identification bias due to the tag
selection. If the probe selection is independent of the tag selection, any influence from the tag
selection should be cancelled in the efficiency calculation. Often, the tag selection involves
another particle identification requirement on a different track (the tag track) since the same
particle types are frequently produced in pairs. The following gives two examples of calibration
channels where this technique is used. This should not go into great detail and only selected
results will be shown. I was involved in both performance studies, particularly the taupair
study was set up and maintained by me [142].

Tau calibration channel

The idea of the tau calibration channel is to select taupair events in which one of the taus
decays into three pions (and possibly additional π0s) and the other with a decay that only
includes one charged particle. These events can be easily identified because of the distinct
topology. Because the decay products of the tau are boosted with respect to the CM frame,
these events have three tracks with small opening angles and one track in the opposite direction.
The relevant tau decays to three charged particles and their branching fractions are listed in
Table 3.9. The decay is dominated by pions with a small fraction of charged kaons. Since
the decay τ− → π−K+π−ντ is heavily suppressed, one can further suppress a lot of kaon
contamination by tagging the two same charged tracks as pions and probing the differently
charged track. With this strategy and an optimised selection, a sample consisting of about
98 % pions, with the largest contamination from kaons (0.9 %) was obtained. The total number
of pions in this sample corresponds to around 4 300 000 per 100 fb−1.

The momentum and polar angle distributions of the probe track are shown in Figure 3.10. Since
the PID performance is highly dependent on the momenta and polar angle of the particles,
the correction factors are binned in these two dimensions and separated according to charge.
As apparent from the distributions, this study has only a sufficient number of events from
200 MeV up to ∼ 4 GeV, and more toward the barrel region of the detector.
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Table 3.9: Tau decays into three charged particles and their branching fractions [10]. Charge-
conjugated modes are implied.

Tau decay Branching fraction
τ− → π−π+π−ντ 9.31 ± 0.05 %
τ− → π−π+π−π0ντ 4.62 ± 0.05 %
τ− → K−π+π−ντ 0.345 ± 0.007 %
τ− → K−π+π−π0ντ 0.131 ± 0.012 %
τ− → K−K+π−ντ 0.1435 ± 0.0027 %
τ− → K−K+π−π0ντ 0.0061 ± 0.0018 %
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Figure 3.10: The momentum (left) and polar angle (right) of the pion candidate selected from
the differently charged track when reconstructing τ− → π−π+π−ντ . The stacked histograms
show taupair events that match the desired topology, e+e− → uū events, and all other events.

For every correction bin, the mis-id rates are computed in the data using

ϵdata =
Npid − (

j nj
pid · rj

N − (
j nj

with j ∈ {e, µ, K, p, d}, (3.10)

where N represents the total number of events in data (after analysis and tag selections),
and Npid indicates the number of data events passing the cut on the PID variable associated
with the probe track. This number of events has to be corrected for their contamination with
different particle types. These corrections are derived from MC, where nj represents the count
of background events for each particle type j, and nj

pid indicates the events passing the probe
selection. Since the cut on the PID variable will also introduce some data/MC discrepancies
for nj

pid, it has to be corrected with the factor ri This correction factor is the data/MC ratio
of mis-id rates for the particle of type j to be misidentified as a pion, which can be obtained
from other performance studies. If this correction factor is not available, a value of one with
conservative uncertainties can be used instead. Although background contamination is small,
the uncertainty on the correction factor ri is one of the dominant systematic uncertainties for
ϵdata, together with the systematic arising from the trigger. The mis-id rates in MC can be
calculated by restricting the sample to true pions. The statistical uncertainties, which become
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dominant at high momentum, are propagated for both the mis-id rate in data and in MC.

An example of such obtained mis-id rates and their ratio is shown in Figure 3.11, for π± → e±

on the left and π± → µ± on the right. The mis-id rates are displayed across different momentum
bins and integrated over the whole barrel region of the ECL (θ ∈ [0.56, 2.23]) and the KLM
(θ ∈ [0.82, 2.22]), respectively. The horizontal lines on the error bar indicate the statistical
uncertainty from data, while the total error bar is the quadratic sum of the statistical and
systematic components. At the selected working points, the π± → e± mis-id rate rate for high
momentum is below 1 %, while for π± → µ± it ranges from 3 % to 5 %. Especially for the
π± → µ± case, a significant increase in mis-id rates can be observed for momenta below 1 GeV.
This is due to tracks not reaching the KLM and the pion muon separation predominantly
relying on the TOP and ARICH detectors, as well as the ECL. For the π± → e± case instead,
the separation power relies mainly on ECL information and only at low momentum the CDC
becomes important, where also a rise in mis-id rates can be observed. The correction factors
for π± → e± are quite large (a factor of 3 for high momentum), which is due to the imperfect
simulation of the ECL and CDC. However, it is also important to consider the size of the
mis-id rates, which in this case is relatively small. Thus, the large correction factors and
associated uncertainties will have a reduced impact when selecting electrons.
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Figure 3.11: The mis-id rates and their ratio in different momentum bins, as obtained from the
taupair calibration channel. On the left, a PID selection of Pe > 0.5 is applied, while on the
right, Pµ > 0.9 is required. The mis-id rates are shown integrated over the barrel region of the
ECL and the KLM, respectively. The error bar shows the total uncertainty, with horizontal
lines indicating the statistical uncertainty from the data.

Bhabha calibration channel

The Bhabha calibration channel uses the abundant amount of Bhabha events produced at
Belle II, which can be selected to obtain a very clean sample of electrons. The main challenge
of this study is to account for the L1 and HLT triggers, which are designed to veto Bhabha
events. With only e+e− → e+e− events, the momentum of the electrons is very restricted and,
because of the boost of the CM frame, correlated with their polar angle. Therefore, for lower
momentum electrons, this study relies mainly on radiative Bhabha events (e+e− → e+e−γ),

48



3.6. Charged particle identification

where the γ takes away momentum from the electrons, which allows them to cover a larger
phase space.

The calculation is very similar to the taupair study, with the advantage that the purity of the
Bhabha sample is around 99.99 %. With no neutrinos in the final state, one can also require
closed kinematics by constraining the invariant mass or total CM energy of the e+e−(γ) system
to the CM energy of 10.58 GeV. Due to the high purity, there is almost no systematics due
to background contamination, and the main systematic uncertainty originates from observed
differences between correction factors when requiring different L1 or HLT selections. This does
not necessarily imply that the trigger lines cause these differences, but it could also be due to
different effects arising from the selection conditions.

Nevertheless, the usage of triggers for this study imposes some complications, such as accounting
for the prescale factors of the triggers or the definitions themselves, which can change during
the data-taking. The varying prescales can impact the computed efficiencies since, when they
are not accounted for, different weights are given to the various periods, resulting in biased
corrections since the PID performance is not constant over time. This is especially important
since the prescales for Bhabha-related triggers can be very large and vary between 1 and 1000.
Accounting for prescales becomes even more involved since some of the already prescaled HLT
lines require a specific L1 line, which can also be prescaled. Since trigger conditions constantly
evolve, this study must be re-examined frequently to ensure that everything is accounted for.
Several checks were performed on the dataset used in this analysis, indicating that all prescales
are taken into account.

The different conditions for which the electron efficiency correction factors are calculated
are summarised in Table 3.10. The trigger conditions for the L1 and HLT lines mentioned
in the table are described in the following, where ΣθCM is the sum of the polar angles of
2 ECL clusters in the CM frame, ∆ϕCM is the difference of the azimuthal angles of 2 ECL
clusters in the CM frame and E(CLX) is energy of the Xth ECL cluster in the CM frame,
with X ∈ {1, 2}.

L1 trigger: 3D Bhabha
This trigger requires two back-to-back tracks based on polar and azimuthal angles and
thresholds on the energy of the associated clusters in the ECL. Starting from experiment 10,
this is equivalent to the 3D Bhabha veto.

• 165◦ < ΣθCM < 190◦

• 160◦ < ∆ϕCM < 200◦

• E(CL1) > 3 GeV and E(CL2) > 3 GeV
• E(CL1) > 4.5 GeV or E(CL2) > 4.5 GeV

L1 trigger: Bhapur
The requirement for kinematics is looser than that of the 3D Bhabha bit, resulting in lower
purity and higher efficiency.

• 160◦ < ΣθCM < 200◦

• 140◦ < ∆ϕCM < 220◦
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Table 3.10: The different configurations to select e+e− → e+e−(γ) events. They are used
to derive a systematic uncertainty for the electron efficiency corrections obtained with the
Bhabha calibration channel.

Name Requirements

eegamma+hie

L1: hie
HLT: n2GeVPhotonBarrel ≥ 1 or radBhabha
(E/p)tag > 0.8 - radBhabha condition (when active)
b2b veto (not passing conditions of L1 3D Bhabha)

eegamma+hie
(no bkg correction)

L1: hie
HLT: n2GeVPhotonBarrel ≥ 1 or radBhabha
(E/p)tag > 0.8 - radBhabha condition (when active)
b2b veto (not passing conditions of L1 3D Bhabha)
ignore backgrounds in efficiency computation

eegamma+lml1

L1: lml1
HLT: n2GeVPhotonBarrel ≥ 1 or radBhabha
EECL

tag > 2 GeV, 0.61 < θtag < 2.15 - lml1 condition
(E/p)tag > 0.8 - radBhabha condition (when active)
b2b veto (not passing conditions of L1 3D Bhabha)

eegamma+lml1
(allow b2b)

L1: lml1
HLT: n2GeVPhotonBarrel ≥ 1 or radBhabha
EECL

tag > 2 GeV, 0.61 < θtag < 2.15 - lml1 condition
(E/p)tag > 0.8 - radBhabha condition (when active)

selectee+bhapur L1: bhapur
HLT: selectee

selectee+bhapur+lml1
L1: bhapur and lml1
HLT: selectee
EECL

tag > 2 GeV, 0.61 < θtag < 2.15 - lml1 condition

ee_flat+lml1
L1: lml1 and un-prescaled bhapur (via HLT)
HLT: exactly one of the eeFlat lines above 30◦

EECL
tag > 2 GeV, 0.61 < θtag < 2.15 - lml1 condition
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• E(CL1) > 2.5 GeV and E(CL2) > 2.5 GeV
• E(CL1) > 4 GeV or E(CL2) > 4 GeV

L1 trigger: lml1

• one ECL cluster with E(CL1) > 2 GeV and 4 ≤ θid ≤ 14 (ECL barrel)

HLT line: radBhabha
This trigger selects radiative Bhabha events without explicitly reconstructing the photon but
using requirements for the missing momentum.

• two tracks with pCM > 1 GeV
• pCM

missing > 1 GeV and 10◦ < θCM
missing < 170◦

• ∆ϕCM < 170◦

• EECL/p (CM) > 0.8 (one of the tracks)

HLT line: n2GeVPhotonBarrel > N

• more than N ECL clusters with energy > 2 GeV and 32 ◦ < θ < 130 ◦

HLT lines: selectee and eeFlat
The main difference between selectee and eeFlat is that eeFlat is divided into slices of polar
angle, with prescales depending on the expected rate of Bhabha tracks in these regions, while
selectee is for the entire polar angle region and only has one prescale factor. In addition,
they have different requirements on the L1, which also come with different prescales. All of
this results in significantly fewer events kept by the selectee trigger in the barrel region. The
selection requirements, however, are identical:

• M(track+, track−) > 5.29 GeV
• E(CL1) > 1.5 GeV or E(CL2) > 1.5 GeV

The conditions in Table 3.10 can roughly be categorised into requirements for back-to-back
tracks (when using ‘selectee’ or ‘eeFlat’) and the orthogonal selection that vetoes back-to-back
tracks since it is intended to select radiative Bhahba events (‘eegamma’). It is important to
note that events with back-to-back tracks where the 4-momenta of the electrons do not sum
up to the 4-momentum of the e+e− collisions will likely be radiative Bhabha events. This
will be predominantly the case when computing electron efficiency corrections with electron
momentum below 5 GeV, which are most relevant for many analyses.

The correction factors obtained for each of the different requirements are shown in Figure 3.12.
The correction factors are shown between 1 GeV and 5 GeV, in bins of 0.5 GeV (the requirements
are shown next to each other in each bin only for presentation purposes) and only for a small
polar angle range θ ∈ [0.92, 1.04]. This example was only chosen to illustrate the behaviour.
In other polar angle regions, the observations are very similar. For loose cuts on the electron
identification variable, such as Pe > 0.5 (3.12a), the differently selected samples are in relatively
good agreement with each other, and the correction factor is very close to one. Still, there are
some slight differences at the level of ∼ 0.2 %. When tightening the selection requirements to
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Figure 3.12: The electron efficiency correction factors obtained with different selection require-
ments imposed by the choice of the L1 and HLT lines. The correction factors are shown in
bins of 0.5 GeV, ranging from 1 GeV to 5 GeV and for electrons with θ ∈ [0.92, 1.04]. Three
selections on the electron identification variable Pe are compared, with increasing tightness
from top to bottom.
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Table 3.11: The polar angle binning used for lepton ID corrections. The correspondence
between the bins and the detector regions is illustrated in Figure 3.13.

θ [rad] θ [deg] cos θ Correspondence
(0.22, 0.40) (12.61◦, 22.92◦) (0.98, 0.92) 1
(0.40, 0.56) (22.92◦, 32.09◦) (0.92, 0.85) 2
(0.56, 0.64) (32.09◦, 36.67◦) (0.85, 0.80) 3
(0.64, 0.73) (36.67◦, 41.83◦) (0.80, 0.75) 4
(0.73, 0.82) (41.83◦, 46.98◦) (0.75, 0.68) 5
(0.82, 0.92) (46.98◦, 52.71◦) (0.68, 0.61) 6
(0.92, 1.04) (52.71◦, 59.59◦) (0.61, 0.51) 7
(1.04, 1.16) (59.59◦, 66.46◦) (0.51, 0.40) 8
(1.16, 1.31) (66.46◦, 75.06◦) (0.40, 0.26) 9
(1.31, 1.46) (75.06◦, 83.65◦) (0.26, 0.11) 10
(1.46, 1.54) (83.65◦, 88.24◦) (0.11, 0.03) 11
(1.54, 1.60) (88.24◦, 91.67◦) (0.03, −0.03) 12
(1.60, 1.78) (91.67◦, 101.99◦) (−0.03, −0.21) 13
(1.78, 1.94) (101.99◦, 111.15◦) (−0.21, −0.36) 14
(1.94, 2.04) (111.15◦, 116.88◦) (−0.36, −0.45) 15
(2.04, 2.13) (116.88◦, 122.04◦) (−0.45, −0.53) 16
(2.13, 2.22) (122.04◦, 127.20◦) (−0.53, −0.60) 17
(2.22, 2.40) (127.20◦, 137.51◦) (−0.60, −0.74) 18
(2.40, 2.60) (137.51◦, 148.97◦) (−0.74, −0.86) 19
(2.60, 2.71) (148.97◦, 155.27◦) (−0.86, −0.91) 20

Pe > 0.9 (3.12b) or Pe > 0.99 (3.12c), the discrepancies become more significant and are at
the percent level. In particular, there seems to be a difference between the back-to-back events
and the complementary selection. One hypothesis is that the back-to-back requirement selects
events where the radiative photon is collinear with one of the tracks, or there could be two
(or more) radiated photos whose momentum sum coincides with the direction of one of the
electrons. When these photons are close to the ECL cluster of the electron, this could alter
the PID performance [see 142, Chapter 4]. More studies are needed to fully understand these
discrepancies. The nominal correction factor is derived from eegamma+hie, and a systematic
uncertainty based on these observed differences is assigned.

3.6.4 Binning of the correction factors
As mentioned, the lepton ID correction factors are binned in momentum, polar angle, and
charge. The polar angle binning is presented in Table 3.11. The selection of bin edges is
influenced by key areas (like gaps or instrumentation) and the segmentation of the sub-detectors.
A vertical cross section of the Belle II detector, which highlights the areas belonging to the
various bins, is depicted in Figure 3.13.

The momentum binning differs slightly between electron and muon-related corrections at low
momentum. While for electron-related corrections the bin edges are {0.2, 0.4, 0.5, 1.0}GeV, for
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Figure 3.13: A cross section of the Belle II detector viewed from the side, showing the lepton ID
segments in polar angle. The highlighted edges of the correction bins match those listed in
Table 3.11. The illustration of the Belle II detector is adapted from [98, p. 14].

muon-related corrections they are {0.2, 0.4, 0.5, 0.7, 1.0}GeV. The additional bin is substantial,
given that muons with momentum less than 0.7 GeV typically fail to reach the KLM. This
significantly impacts the identification efficiencies and correction factors, shown in the next
section. Above 1 GeV, the binning is regular with a bin width of 0.5 GeV. While efficiency
corrections are available up to 7 GeV, the h± → ℓ± mis-id rate corrections are only available
up to 5 GeV, and also only for the polar angle bins in the forward direction. This is due to the
limited number of high momentum tracks in the corresponding calibration channels, such as
the taupair channel presented in Section 3.6.3.

3.6.5 Correction factors
The data/MC efficiency corrections for electrons and muons are shown in Figure 3.14, with the
binning defined in Section 3.6.4. The regions where different calibration channels were used
to compute the corrections are highlighted in the figure. The kinematic reach is limited for
some calibration channels, especially for momentum above 3 GeV, where only the µµγ and eeγ
channels provide corrections. The correction factor is close to 1.0 for the electron efficiency,
with the exception of the endcap regions. For muon efficiency, the correction factor is close
to 1.0 in the barrel region above 1 GeV. The drop in the data/MC ratio below 1 GeV can be
attributed to the fact that muon identification and its simulation become more challenging at
low momentum because particles no longer traverse all KLM layers. The discrimination also
relies on other sub-detectors likelihoods, which are not so well modelled in MC.

In Figure 3.15, the mis-id rate data/MC correction factors are shown for pions that are
misidentified as electrons or muons.

3.6.6 Uncertainties of the corrections
The correction factors come with an associated uncertainty, divided into statistical and
systematic components. The systematic component contains the differences between the
correction factors obtained from the individual calibration channels when they are incompatible.
This can be attributed to effects of the event topology, such as track isolation. The correlation
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of systematic uncertainties between the correction bins is currently not known, and some
conservative assumptions will have to be made, described in more detail in Section 4.6.2. The
size of the total uncertainty (the two components added in quadrature) of electron efficiency
and muon efficiency corrections is shown in Figure 3.16. In general, the uncertainties can be
asymmetric, with different values for the up and down components. Only the larger components
are shown, which will be used later to obtain symmetric uncertainties. The uncertainties are
expressed as a percentage of the correction factor.

The uncertainty is relatively small in most bins, at the order of 0.1 %. For electron efficiency
corrections, there is a significant increase in uncertainties in the endcap regions (θ ∈ [0.22, 0.56]
and θ ∈ [2.23, 2.71]). For muon efficiency corrections, the uncertainty increases in regions with
limited KLM coverage and below 1 GeV. This coincides with regions with a correction factor
away from 1 or regions where inefficiencies are observed in MC. The larger uncertainties just
above 3 GeV are due to increased statistical uncertainties from the e+e− → µµγ calibration
channel, which requires that at least one of the muon candidates has momentum below 3 GeV.
This means that just above that threshold, both muons need to lose some of their energy to
pass the selection. For higher momentum muons (with pCM

µ around half of the CM energy),
the number of available events increases again, and the uncertainty is similar to right below
3 GeV.

In Figure 3.15, the uncertainties associated with the mis-id rate correction factors are shown
for pions that are misidentified as electrons or muons.
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Figure 3.14: data/MC correction factors for identification of electrons (top) and muons
(bottom). The highlighted regions indicate where different calibration channels were used to
obtain the correction. In the barrel region above 1 GeV the correction factors are very close to
1.
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Figure 3.15: data/MC correction factors for the mis-id rate of identifying pions as electrons
(top) or muons (bottom). Correction factors are shown for negatively charged (left) and
positively charged (right) pions. The highlighted regions indicate where different calibration
channels were used to obtain the correction.
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Figure 3.16: The relative uncertainties associated with electron (top) and muon (bottom)
efficiency corrections in percent. The statistical and systematic uncertainties are added in
quadrature, and only the larger of the up or down components is shown. The highlighted
regions indicate where different calibration channels were used to obtain the correction.

58



3.6. Charged particle identification

0.
2

0.
4

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

p [GeV]

0.22

0.56

1.13

1.57

1.88

2.23

2.71

θ 
[ra

d]

68.0

11.4

9.18

8.99

1.88

4.1

1.99

66.7

1.44

9.16

2.24

2.5

2.04

4.95

3.78

7.92

95.1

93.2

5.83

95.2

11.6

6.36

162

6.11

9.99

10.3

5.35

5.93

80.0

K s + ττ ττ

10

20

30

40

50

60

(a) The π− → e− mis-id rate correction
uncertainties when using Pe > 0.5.

0.
2

0.
4

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

p [GeV]

0.22

0.56

1.13

1.57

1.88

2.23

2.71

θ 
[ra

d]

7.0

8.94

65.2

1.1

7.33

8.95

8.21

1.13

4.06

1.27

1.57

2.59

2.08

2.17

3.89

8.11

6.66

3.54

85.5

69.0

7.17

8.94

5.51

5.92

8.35

8.04

68.9

62.5

104

57.6

K s + ττ ττ

10

20

30

40

50

(b) The π+ → e+ mis-id rate correction
uncertainties when using Pe > 0.5.

0.
2

0.
4

0.
5

0.
7

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

p [GeV]

0.4

0.64

0.82

1.16

1.46

1.78

2.13

2.22

2.6

θ 
[ra

d]

1.96

74.3

0.8

0.85

0.92

1.67

57.9

2.53

3.1

1.11

3.82

2.57

4.32

3.04

1.6

1.0

5.81

5.0

2.88

1.4

2.15

1.49

1.75

1.78

2.69

3.83

4.56

4.52

3.45

5.1

5.35

5.17

6.59

6.38

4.99

48.6

40.6

55.4

44.4

66.9

37.6

35.1

34.8

K s + ττ K s ττ

5

10

15

20

25

30

(c) The π− → µ− mis-id rate correction
uncertainties when using Pµ > 0.9.

0.
2

0.
4

0.
5

0.
7

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

p [GeV]

0.4

0.64

0.82

1.16

1.46

1.78

2.13

2.22

2.6

θ 
[ra

d]

2.1

81.9

1.5

0.93

1.16

147

36.7

1.18

3.31

3.2

59.4

1.11

0.95

2.41

4.63

3.26

1.75

2.08

1.08

0.88

2.86

1.55

1.58

1.53

1.51

2.25

2.64

3.85

5.22

3.96

4.12

4.32

4.72

5.2

4.48

4.5

3.11

5.4

36.2

45.4

57.6

45.8

76.9

34.3

K s + ττ K s ττ

5

10

15

20

25

30

(d) The π+ → µ+ mis-id rate correction
uncertainties when using Pµ > 0.9.

Figure 3.17: The relative uncertainties associated with the mis-id rate of identifying pions
as electrons (top) or muons (bottom) in percent. The uncertainties are shown for negatively
charged (left) and positively charged (right) pions. The statistical and systematic uncertainties
are added in quadrature, and only the larger of the up or down components is shown. The
highlighted regions indicate where different calibration channels were used to obtain the
correction.
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CHAPTER 4
Analysis procedure

4.1 Introduction
In this chapter, the analysis procedure is presented. First, Section 4.2 describes the datasets
used for this analysis. In Section 4.3, the different decay channels that could be used to
measure Rµ with the 1x1 topology and their advantages and drawbacks are discussed. Then,
Section 4.4 elaborates on event selection and background suppression. Section 4.5 introduces
the statistical model that will be used to extract Rµ from the data, and in Section 4.6, the
systematic uncertainties and how they are included in the fit model are discussed. Finally, in
Section 4.7, the impact of these systematic effects on the measurement is evaluated.

4.2 Datasets
Data This analysis uses all available data taken at the Υ (4S) resonance before fall 2022 when
Belle II entered LS1. More details on the data-taking periods and the integrated luminosities
were provided in Section 3.5.1. The data were reprocessed with the 13th processing campaign
of Belle II, with prompt calibration after experiment 20. It corresponds to a total integrated
luminosity of about 362 fb−1 (see also 3.6). Only Υ (4S) data, also referred to as on-resonance
data, are used for this work, since the main limitations on the precision of the results come from
systematic effects, and the addition of off-resonance data would only introduce complications
due to the change in CM energy. Most importantly, the correction factors to account for
differences in particle identification performance between data and simulation are only available
for the on-resonance dataset.

Simulation The MC samples used for this work originate from the 15th MC production
campaign of Belle II, using run-independent settings. More details on the MC simulation at
Belle II were provided in Section 3.5.3. An overview of the simulated processes and the size
of the generated samples is given in Table 4.1. After the initial event selection described in
Section 4.4, which was optimised with all the listed samples, it was found that most of the
processes can be completely suppressed. In the end, the only simulated samples that contribute
to the analysis are qq̄, ττ , ee, µµ, eeee, eeµµ and eeττ .
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Table 4.1: The simulated processes along with their respective cross-sections, number of
generated events and luminosity equivalent. The charge of the particles is omitted. Only the
processes up to ee → eeττ contribute to the background after an initial analysis selection.

Process Cross-section [nb ] Number of events MC luminosity [fb−1 ]
ee → ττ 0.919 919 × 106 1000
ee → dd̄ 0.401 401 × 106 1000
ee → cc̄ 1.329 1329 × 106 1000
ee → ss̄ 0.383 383 × 106 1000
ee → uū 1.605 1605 × 106 1000
ee → ee(γ) 295.8 29 580 × 106 100
ee → eeee 39.55 7910 × 106 200
ee → eeµµ 18.83 3766 × 106 200
ee → µµ(γ) 1.148 1148 × 106 1000
ee → eeττ 0.01836 37 × 106 2000
ee → B+B− 0.54 108 × 106 200
ee → B0B0 0.51 102 × 106 200
ee → γγ 5.1 2550 × 106 500
ee → eeππ 1.895 1895 × 106 1000
ee → ππγ 1.667 × 10−1 333 × 106 2000
ee → eeKK 7.98 × 10−2 160 × 106 2000
ee → πππ0γ 2.378 × 10−2 47.6 × 106 2000
ee → KKγ 1.63 × 10−2 32.6 × 106 2000
ee → eepp 1.17 × 10−2 23 × 106 2000
ee → K0K̄0γ 8.864 × 10−3 17.7 × 106 2000
ee → µµµµ 3.512 × 10−4 0.7 × 106 2000
ee → µµττ 1.441 × 10−4 0.29 × 106 2000
ee → ττττ 0.2114 × 10−6 0.002 × 106 10000

Currently, e+e− → e+e−Nh processes with h ∈ {π, K} and N > 2 are not simulated, even
though they can contribute to the background of this measurement. This background will be
removed using data-driven selections, described in Section 4.4.4.

4.3 Sensitivity of different decay channels
This section compares the different possible τ decay channels with the 1x1 topology concerning
their sensitivity to measure Rµ. Although an inclusive measurement could be attempted that
requires a leptonic decay for one of the τ leptons and a generic decay for the other, this has
multiple drawbacks. For one, it can result in higher backgrounds as it is more difficult to
optimise the selection compared to explicitly requiring a specific decay channel. Moreover, it
results in less control over the systematic effects, which have to be considered for each of the
contributing channels, as they might differ between them. While it would result in a larger
dataset, there is no merit in these complications for a systematically limited measurement. It is
better to split the dataset into specific channels which can be optimised and treated individually
and always be combined later on. Here and in the following, the different requirements for tau
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decays in the 1x1 topology will be simply referred to as channels.

The studies presented here were carried out early in the analysis before a clear measurement
strategy was developed. The main goal was to decide which channels are the most promising
for performing the measurement or whether all channels should be used simultaneously. It
is important to note that the lepton ID corrections and uncertainties initially used for the
comparisons underwent significant changes in the following years until they reached the
precision they had at the time of writing. To have a consistent picture, all studies were
updated with the most recent lepton ID corrections. This reduced the estimated systematic
uncertainties associated with lepton ID compared to the original study, but the conclusions
remain the same. The selection initially used to acquire the samples used for this study was
left unchanged as it does not significantly impact the validity of the findings. However, as
it was understood at a later stage, for an accurate measurement of Rµ, more care must be
taken about what features are used for the selection of events. What is shown here should be
considered an optimal selection based only on MC simulations without considering the accurate
modelling of the chosen features or the systematic uncertainties associated with imposing a
selection on them. In total, seven different taupair channels were selected:

1. (τ → µνµντ ) × (τ → µνµντ )

2. (τ → eνeντ ) × (τ → µνµντ )

3. (τ → eνeντ ) × (τ → eνeντ )

4. (τ → µνµντ ) × (τ → hντ ), h ∈ {π, K}
5. (τ → eνeντ ) × (τ → hντ ), h ∈ {π, K}
6. (τ → µνµντ ) × (τ → hnπ0ντ ), h ∈ {π, K} and n > 0

7. (τ → eνeντ ) × (τ → hnπ0ντ ), h ∈ {π, K} and n > 0

With these seven channels, in the following abbreviated only by using the charged particles
and by hnπ0 for the decay τ → hnπ0ντ , four different ratios of products of branching fractions
can be formed to compute Rµ:

1. B(µ) × B(µ) / B(e) × B(µ)

2. B(e) × B(µ) / B(e) × B(e)

3. B(µ) × B(h) / B(e) × B(h)

4. B(µ) × B(hnπ0) / B(e) × B(hnπ0)

In each of these ratios, which are not independent of each other, one of the branching fractions
cancels. The corresponding tau decay will be termed the tag decay. The sensitivity of each
of these ratios to measure Rµ will depend on the size of the samples, their purity, and their
sensitivity to systematic effects, particularly lepton ID correction uncertainties. Many common
systematic effects, such as luminosity uncertainty or systematics associated with the tag decay,
will cancel when computing Rµ.
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Table 4.2: Preselection criteria for different taupair channels used to study their sensitivity.
The selection for ℓ × hnπ0 is the same as for ℓ × h. The meaning of the variables and the units
used are detailed separately in Table 4.3.

µ × µ e × µ e × e µ × h e × h Variable µ × µ e × µ e × e µ × h e × h

1.33 0.49 0.31 0.22 0.21 ≤ pCM
t,max < 5.06 5.05 5.17 5.04 5.16

1.65 0.75 7.04 -13.29 -12.89 ≤ m2
missing < 59.27 97.39 71.50 99.49 83.08

0.41 0.01 1.28 0.11 0.03 ≤ pCM
t,missing < 4.46 4.35 3.88 4.79 4.76

0.51 0.23 0.46 0.20 0.38 ≤ θCM
missing < 2.64 2.90 2.61 2.88 2.77

2.51 1.08 1.98 2.65 2.47 ≤ ECM
visible < 8.75 9.39 10.00 9.10 8.62

1.66 1.37 1.50 1.09 1.24 ≤ α∗
(sig,tag) < 3.13 3.14 2.91 3.14 3.00

0.10 0.00 0.02 0.02 0.00 ≤ θCM
min,missing < 1.32 1.53 1.51 1.47 1.52

4.3.1 Background suppression
Preselected samples for each of the seven channels were obtained using the selection require-
ments listed in Table 4.2. The meaning of the symbols used, the reference frame in which
they are computed, and the units used are all detailed separately in Table 4.3. Here and in
the following, they will be referred to as features or variables, which are used interchangeably.
The smallest possible polar angle of any of two missing particles, θCM

min,missing, is useful for
suppressing the final states of e+e−ℓ+ℓ− or ℓ+ℓ−γγ with ℓ being a muon or an electron [11].
It is obtained using

θCM
min,missing = sin−1

�
pCM

t,missing√
s − ECM

visible

�
. (4.1)

Table 4.3: The description of the variables used for preselecting different taupair channels, as
well as the reference frame in which they are computed, and the units in which the selection
requirements of Table 4.2 are provided.

Variable Description Frame Unit

pCM
t,max higher transverse momentum of both tracks CM GeV/c

m2
missing missing mass squared - GeV2/c4

pCM
t,missing missing transverse momentum CM GeV/c

θCM
missing polar angel of missing momentum CM GeV/c

ECM
visible total visible energy CM GeV

α∗
(sig,tag) opening angle between the tracks CM rad

θCM
min,missing minimum polar angle of any of two missing particles CM rad

Using these preselections as a starting point, for each channel, an ANN was trained to suppress
the backgrounds. For the training of the neural networks, 28 features associated with event
kinematics, the kinematics of the tracks in the individual hemispheres, and the reconstruction
of neutral particles were used. In addition, the ratio of their deposited energy in the ECL
to their reconstructed momentum (EECL/p) was used as an input for the charged particles.
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This is generally not recommended, as it is a discriminating feature for particle identification,
whose mismodelling the measurement of Rµ is particularly sensitive to. Using it in an ANN
makes the estimation of the associated systematics very difficult. Since the goal of this study
is only to provide an estimate of the sensitivity, not an actual measurement, these systematics
can be ignored. The achieved selection is used as an ‘optimal’ selection, which is also why a
relatively large number of features were used. Later, the systematics associated with lepton ID
are calculated only based on the selections on the variables Pe and Pµ, which were defined
in Section 3.6.2. The receiver operating characteristic (ROC) curves of the ANNs are shown
in Figure 4.1 in terms of their signal efficiency and purity. The starting points of the curves
indicate the efficiency and purity of the preselection. The signal efficiency is computed as

εsig =
N sel

sig
Ngen

sig
=

N sel
sig

Ngen
ττ · Bgen

i · Bgen
j · (2 − δi

j) , (4.2)

where N sel
sig is the number of remaining signal events in MC after applying all selections, but

already corrected for the differences between data and simulation introduced by the lepton ID
selection. Ngen

sig indicates the number of generated signal events, which can be calculated
from the product of the total number of generated taupair events, Ngen

ττ , with the branching
fractions of the tau decays selected in the corresponding channel: Bgen

i and Bgen
j . The factor

(2 − δi
j) is equal to 1 when the signal is defined as both tau leptons decaying to the same final

state, while it is 0 when they are different final states. This accounts for the fact that each
final state can be associated with the positively charged or negatively charged tau. For the
branching fractions, it is important to note that they should correspond to what was used
in the generation of the MC samples. The purity is defined as the fraction of signal events
present in the sample

psig =
N sel

sig
N sel

sig + N sel
bkg

, (4.3)

where N sel
bkg denotes the total number of background events. When estimating these numbers

from MC, it is important to take into account the different luminosity equivalents of the
samples by scaling the events accordingly.

To obtain the final samples, a cut is placed on the output of each ANN, which yields an
efficiency similar to that achieved by CLEO in their combined measurement of branching
fractions using the same channels [11]. The purity, signal efficiency, and the corresponding
number of expected events for 100 fb−1 are shown in Table 4.4. A more detailed breakdown of
the composition of the samples in terms of different tau decays and non-taupair backgrounds,
also compared to the composition of the samples obtained by CLEO, is shown in Table 4.5
and Table 4.6. In the tables, the green dots (•) indicate which tau decays are defined as signal
for the respective samples, while the orange dots (•) indicate signal tau decays from other
samples that are background for the particular sample.

4.3.2 Calculation of Rµ

Using a simple counting approach, Rµ could be obtained from the relation between the observed
number of signal events, Nobs

sig , and the number of signal events produced in the data, Nprod
sig ,

multiplied with the efficiencies associated with the selection of these events, estimated from
the simulation:

Nobs
sig = εsig · εtrig

sig · Nprod
sig . (4.4)
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Figure 4.1: ROC curves of the ANNs trained to suppress background for each of the investigated
taupair channels, showing the trade-off between signal efficiency and purity. The starting
points of the curves indicate the efficiency and purity of the preselection.

Table 4.4: A summary of the selection results obtained for the different channels. The purity
of the samples, the signal efficiency, and the corresponding number of expected events for
100 fb−1 are shown. The selection on the output of the neural networks was chosen so that the
efficiency of the signal is comparable to what was achieved by the CLEO analysis [11].

Mode Purity Efficiency Events per 100 fb−1

µ × µ 95.4 % 5.3 % 148 220
e × µ 97.8 % 10.6 % 603 890
e × e 97.2 % 11.0 % 320 371
µ × h 94.3 % 5.2 % 190 522
e × h 92.9 % 5.3 % 198 989
µ × hnπ0 98.0 % 5.0 % 580 796
e × hnπ0 99.3 % 5.1 % 612 057

Here, the two efficiencies are the signal efficiency εsig, which incorporates effects from acceptance
and event selection, and the trigger efficiency εtrig

sig , which could, for example, be estimated
from data. In general, this product of efficiencies should contain all efficiencies or data-based
correction factors that can alter the estimated signal efficiency. The exact form of this product
depends on what is already contained in the calculation of εsig. In the following, the signal
efficiency is obtained as defined in Equation 4.2. The number of signal events produced in
data can instead be computed as

Nprod
sig = σττ · L · Bi · Bj · (2 − δi

j), (4.5)

where σττ is the cross-section of the process e+e− → τ+τ−, L is the total integrated luminosity
as measured in data and Bi and Bj are the true branching fractions of the tau decays in the
selected channel.

Inserting these quantities into Equation 4.4 and we obtain

Nobs − N sel
bkg · εtrig

bkg ≡ N sel
sig · εtrig

sig
Ngen

ττ · Bgen
i · Bgen

j · (2 − δi
j) · σττ · L · Bi · Bj · (2 − δi

j). (4.6)
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Table 4.5: A detailed breakdown of the composition of the samples µ × µ, e × e, e × µ and
µ × h in terms of different tau decays and non-taupair backgrounds. The tau decay for the
signal and tag side is shown if applicable. Additionally, the corresponding number of expected
events for 100 fb−1, the fraction of these events in the total sample, and a comparison to the
sample composition obtained by CLEO [11] are shown.

Signal side Tag side Events/100 fb−1 Fraction [%] CLEO [%]

µ
×

µ

• τ → µνµντ τ → µνµντ 148 220.0 95.4 95.9
• τ → µνµντ τ → πντ 5215.0 3.4 3.37
• τ → µνµντ τ → ππ0ντ 655.0 0.4 0.18

eeµµ 414.5 0.3 -
eeττ 225.2 0.1 0.11
µµ(γ) 189.5 0.1 0.22
cosmic - - 0.15

e
×

e

• τ → eνeντ τ → eνeντ 320 371.0 97.2 98.38
• τ → eνeντ τ → hντ - - 0.78

ee(γ) 5683.0 1.7 0.32
eeee 1433.5 0.4 0.23
eeττ 485.7 0.1 0.24

e
×

µ

• τ → eνeντ τ → µνµντ 603 890.0 97.8 97.62
• τ → eνeντ τ → πντ 8170.0 1.3 1.96
• τ → eνeντ τ → ππ0ντ 1316.0 0.2 0.11

eeµµ 1450.5 0.2 0.13
eeττ 989.0 0.2 0.12

µ
×

h

• τ → µνµντ τ → πντ 178 938.0 88.6 79.99• τ → µνµντ τ → Kντ 11 584.0 5.7
• τ → µνµντ τ → ππ0ντ 4339.0 2.1 3.71

τ → ππ0ντ τ → πντ 262.0 0.1
τ → πντ τ → πντ 2558.0 1.3 1.83

• τ → µνµντ τ → µνµντ 1979.0 1.0 9.14
• τ → µνµντ τ → eνeντ 518.0 0.3 2.62

τ → µνµντ τ → hK0
Lντ - - 1.02

eeττ 385.4 0.2 0.12
cosmic - - 0.13
eeµµ - - 0.9
µµ(γ) - - 0.34

66



4.3. Sensitivity of different decay channels

Table 4.6: A detailed breakdown of the composition of the samples e × h, µ × hnπ0 and
e × hnπ0 in terms of different tau decays and non-taupair backgrounds. The tau decay for the
signal and tag side is shown if applicable. Additionally, the corresponding number of expected
events for 100 fb−1, the fraction of these events in the total sample, and a comparison to the
sample composition obtained by CLEO [11] are shown.

Signal side Tag side Events/100 fb−1 Fraction [%] CLEO [%]

e
×

h

• τ → eνeντ τ → πντ 186 991.0 87.3 82.57• τ → eνeντ τ → Kντ 11 998.0 5.6
• τ → eνeντ τ → ππ0ντ 9273.0 4.3 3.61
• τ → eνeντ τ → µνµντ 1760.0 0.8 9.02
• τ → eνeντ τ → eνeντ 1128.0 0.5 2.58

τ → eνeντ τ → πK0
Lντ 334.0 0.2 1.03

τ → hντ τ → hντ - - 0.36
ee(γ) 874.0 0.4 -
eeττ 416.0 0.2 0.32
eeee 339.5 0.2 0.33

µ
×

h
n

π
0

• τ → µνµντ τ → ππ0ντ 543 966.0 91.8
96.91• τ → µνµντ τ → ππ0π0ντ 33 605.0 5.7

• τ → µνµντ τ → Kπ0ντ 3225.0 0.5
τ → πντ τ → ππ0ντ 4849.0 0.8 1.76• τ → µνµντ τ → hντ - -
τ → µνµντ τ → ππ0γντ 1871.0 0.3 -
τ → ππ0ντ τ → ππ0ντ 1205.0 0.2 0.08
τ → µνµντ τ → hπ0K0

Lντ - - 0.75
eeττ 1156.1 0.2 -

e
×

h
n

π
0

• τ → eνeντ τ → ππ0ντ 596 663.0 96.8
98.32• τ → eνeντ τ → ππ0π0ντ 13 499.0 2.2

• τ → eνeντ τ → Kπ0ντ 1895.0 0.3
τ → eνeντ τ → ππ0γντ 1904.0 0.3 < 0.34

• τ → eνeντ τ → hντ - - 0.32
τ → eνeντ τ → hπ0K0

Lντ - - 0.78
τ → eνeντ τ → hK0

Lντ - - 0.1
eeττ 924.9 0.2 0.1
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4.3. Sensitivity of different decay channels

Here, the observed number of signal events was estimated as the difference between the total
number of observed events, Nobs, and the product of the background events estimated from
MC, N sel

bkg, with the relevant efficiencies, εtrig
bkg. Rearranging Equation 4.6 to get an expression

for the product of the branching fractions, we obtain

Bi · Bj =
Nobs − N sel

bkg · εtrig
bkg

N sel
sig · εtrig

sig
· Ngen

ττ

σττ · L · Bgen
i · Bgen

j . (4.7)

This can now be used to compute Rµ as the ratio of two products of branching fractions,

Rµ = Bτ→µνν

Bτ→eνν
=

Nobs−Nsel
bkg·εtrig

bkg
Nsel

sig ·εtrig
sig

(τ → µνµντ , τ → X)

Nobs−Nsel
bkg·εtrig

bkg
Nsel

sig ·εtrig
sig

(τ → eνeντ , τ → X)
× Bgen

τ→µνν

Bgen
τ→eνν

, (4.8)

where one of the tau decays in the numerator should be τ → µνµντ , one of the tau decays in
the denominator should be τ → eνeντ , and the respective other tau decay should be to the
same final state, here denoted as τ → X.

4.3.3 Uncertainty estimation
In the following, Equation 4.8 is used only to estimate the precision of Rµ obtained with
different channels. For this, the number of observed events is set equal to the total number of
events expected from MC, scaled to the target luminosity. The expected statistical precision is
then obtained from the standard deviation of a Poisson distribution with a mean equal to this
number of events, propagated to Rµ.

Similarly, to see the impact of the uncertainties associated with the lepton ID corrections, the
corresponding uncertainties on N sel

sig and N sel
bkg are propagated to Rµ. Different values can be

obtained depending on the assumptions on the correlations of the systematics uncertainties
between the individual correction bins, denoted ρbins

sys . This correlation is currently unknown.
An optimistic assumption of a correlation of ρbins

sys = 0.5 and the most conservative assumption
of ρbins

sys = 1 will be tested for the sensitivity estimation. This matter of bin-by-bin correlations
of the lepton ID correction uncertainties will be further discussed in Section 4.6.2. To estimate
the impact on Rµ, it is essential to take into account the correlations between the numerator
and the denominator in Equation 4.8, when the decay τ → X also includes a final state lepton.
The correlations between all seven product branching fractions, indicated by the name of the
corresponding channel, are shown in Figure 4.2 for both cases of ρbins

sys = 0.5 and ρbins
sys = 1.0.

These correlations were obtained with toy samples, analogous to the procedure described in
Section 4.6.2. The most relevant correlations in Figure 4.2 are between µ × µ and e × µ, as
well as e × µ and e × e since the channels with hadrons are completely independent when
the accompanying leptons are of a different type. The correlation between µ × µ and e × µ
is less than between e × µ and e × e, since the lepton ID uncertainties associated to electron
efficiency dominates over the muon efficiency uncertainties. An interesting feature of taking the
ratios between channels with two leptons is that while assuming a larger bin-by-bin correlation
will result in larger uncertainties for each branching fraction product, this also results in a
larger correlation between the numerator and the denominator, and thus more cancellation for
Rµ. However, in the present cases the assumption of ρbins

sys = 1.0, still results in the largest
uncertainty on Rµ, but the difference between ρbins

sys = 0.5 and ρbins
sys = 1.0 is not as significant as
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Figure 4.2: Correlations of lepton ID uncertainties between the seven different products of
branching fractions, using the optimistic assumption of the bin-by-bin correlations of ρbins

sys = 0.5
(left) and the most conservative assumption of ρbins

sys = 1.0 (right). The correlation is important
to consider when computing Rµ as the ratio of two of the branching fraction products.

for the channels with hadrons. This can be seen in Figure 4.3, where the estimated lepton ID
systematic is shown as a hatched bar for each ratio. The right end of the bar shows the
uncertainty of Rµ obtained with ρbins

sys = 1.0, while the left end shows the uncertainty of Rµ

obtained with ρbins
sys = 0.5. In addition, the figure shows the estimated statistical precision using

the selections obtained with the cut on the ANN output, with the event yields summarised
in Table 4.4. For this, three different integrated luminosities are compared: 362 fb−1, which
corresponds to the luminosity used for the present measurement, 1 fb−1 and 5 fb−1. The
latter are reasonable estimates for the datasets of Belle II in the near future. The figure also
indicates the uncertainty due to lepton ID systematics and the statistical precision of the
BABAR measurement [12] as well as the uncertainty due to lepton ID systematics of the CLEO
measurement [11]. It is important to note that these uncertainties for the different channels
should only give an indication of their differences. The actual values of the uncertainties are
only very rough estimates and are based on many assumptions. The selections also do not
take into account other systematics, such as background normalisation or the mismodelling
of some of the features used. The selection cannot only have a significant impact on the
estimated statistical precision, but also on the systematics associated with lepton ID since the
lepton ID uncertainties depend on the kinematics of the leptons. Another critical factor is
the number of pions that fake leptons in the individual channels, since in general the mis-id
rate uncertainties are larger than those associated with lepton efficiencies. Nevertheless, the
present study indicates that computing Rµ from the ratio µ × hnπ0/e × hnπ0 results in the
best precision, both for lepton ID systematics as well as the statistical uncertainty. This can
be explained by the fact that with the τ → hnπ0ντ decay, a very pure signal sample can be
selected and that the corresponding tau decays have a substantial branching fraction (35.4 %,
see Figure 2.5 in Section 2.4). In addition, the presence of only a single lepton in the event
simplifies the analysis in terms of taking into account lepton ID effects.

With respect to the actual measurement with the ℓ × hnπ0 channels, described in the rest
of this work, the uncertainties shown in Figure 4.3 are different for two main reasons. The
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Figure 4.3: The estimated statistical precision and systematic uncertainty associated with
lepton ID corrections while calculating Rµ with different ratios of branching fraction products
using Equation 4.8. The hatched bars depict the range of systematic uncertainties on Rµ

due to the uncertainties associated with lepton ID corrections, obtained with a bin-by-bin
correlation of their systematic uncertainties of ρbins

sys = 0.5 for the lower end and ρbins
sys = 1.0 for

the higher end of the bars. The markers indicate the estimated statistical uncertainty using
datasets with different integrated luminosities. The horizontal lines indicate the statistical
uncertainty of the BABAR measurement (represented by a dotted line) and the uncertainties
due to lepton ID systematics from both the BABAR measurement (represented by a dash-dotted
line) and the CLEO measurement (represented by a dashed line).

statistical uncertainty of the final results will be lower than that estimated here for 362 fb−1,
since the signal efficiency will be twice as high in the actual selection used for the measurement.
This is because the cut on the output of the ANNs used here was based on the efficiency
achieved by CLEO, which is unreasonably tight for this analysis. The second reason is that
the selection presented here vetoes the π0s on the signal side, since information about the
reconstructed neutral particles is passed to the ANN. This results in significantly less fake
pion background and reduced lepton ID systematics than for the actual measurement, where
such a veto is not used. This will be elaborated on more later on.

4.3.4 Trigger efficiencies
The trigger is another aspect to consider when selecting the channels. Here, the efficiency
of triggering the channels and its possible systematic effects should be considered. The
uncertainty associated with the trigger was with 0.1 % the second largest systematic error in
the BABAR measurement [12]. The efficiencies of several trigger lines, based on the inputs of
ECL, CDC, or KLM, are compared in Table 4.7. A description of the trigger lines can be
found in Section 3.4.7.

The channels µ × hnπ0 and e × hnπ0 have a very high efficiency for the ECL-based trigger
lines. The µ × µ and µ × h channels have very low efficiency for ECL-based triggers due to the
small amount of energy deposited in the calorimeter and CDC-based trigger lines should be
included. However, using CDC-based triggers can come with some additional problems since
their modelling in the simulation is much worse compared to the ECL triggers. The e × µ and
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Table 4.7: A comparison of the trigger efficiencies for different channels and trigger lines
commonly used in the experiment.

Trigger lines µ × µ e × µ e × e µ × h e × h µ × hnπ0 e × hnπ0

low multi (ECL) 31.1 % 86.7 % 20.5 % 62.4 % 30.5 % 95.4 % 80.4 %
high E (ECL) 0.1 % 88.5 % 99.6 % 48.6 % 95.8 % 93.7 % 99.7 %
high E + low multi 31.1 % 91.6 % 100.0 % 66.3 % 96.8 % 97.9 % 99.9 %
two-track (CDC) 84.2 % 83.4 % 83.1 % 82.4 % 81.5 % 74.5 % 75.3 %
CDC + KLM 95.2 % 82.7 % 34.1 % 92.8 % 79.8 % 87.0 % 57.9 %

e × e channels have a higher efficiency with the ECL-based trigger lines due to the presence
of electrons, but e × µ still has a lower efficiency than µ × hnπ0. One advantage of having
the trigger efficiency driven by the decay µ × hnπ0 is that more systematic effects associated
with it will cancel. So, also from the perspective of the trigger, computing Rµ from the ratio
µ × hnπ0/e × hnπ0 is the best option.

4.4 Event selection
4.4.1 Topology selection
In this section, the basic selection requirements to obtain the desired event topology are
specified. This analysis uses the 1x1 topology, and as presented in the previous section, the
chosen channels involve the decay τ → hnπ0ντ with n > 0 for one of the tau leptons. This
decay will be referred to as the tag side decay since it is only used to tag the event, with the
decay of interest being the decay of the other tau lepton (either τ → eνeντ or τ → µνµντ ).
The dominant tag side decays with this channel selection are depicted in Figure 4.4, whereas
the leptonic tau decays were already shown in Figure 2.6b in Section 2.4.

(a) τ± → ρ±ντ → π±π0ντ (b) τ± → a±
1 ντ → π±π0π0ντ

Figure 4.4: The dominant tau decays on the tag side used for this analysis. The decay on the
left into a charged pion and one π0 has a branching fraction of 25.5 %, wile the decay on the
right with two π0s has a branching fraction of 9.3 % [10].

The event selection is based on tracks where the closest approach to the interaction point in
the r-ϕ plane (dr) is below 1 cm, and the difference in z-direction (dz) ranges from −3 cm to
3 cm. Neutral particles reconstructed for this analysis are π0s and photons.
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Photon candidates are selected from ECL clusters with 17◦ < θ < 150◦, which corresponds
to the acceptance of CDC. This is done to make sure that the clusters do not originate from
charged particles. These photons are used to reconstruct π0 → γγ candidates, for which
multiple selection requirements were tested. The one resulting in a π0 reconstruction efficiencies
of 30 % was found to give the best results. This selection identifies neutral pion candidates
from photons whose invariant mass lies in the range of 120 MeV to 145 MeV, equivalent to a
range of ±2 times the mass resolution. Additional criteria are applied to photon candidates,
such as an energy requirement. It changes according to the detector region to minimise the
combinatorial background from low energy photons originating from beam backgrounds. This
is especially crucial in the endcap regions, where these backgrounds are more significant. For
the forward region with 17◦ < θ < 31.4◦ a threshold of 80 MeV is required, while for the
barrel region with 32.2◦ < θ < 128.7◦ a threshold of 30 MeV, and for the backward region
with 130.7◦ < θ < 150◦ a threshold of 60 MeV is used. In addition, the angle between the
momentum directions of the photons that form a π0 candidate is required to be below 1.4 rad
and the difference of their azimuthal angles should be less than 1.5 rad.
All remaining photon candidates which do not form a π0 candidate need to have an energy
larger than 150 MeV before being used in this analysis. While it is still required that they
are reconstructed from clusters within the CDC acceptance, there are additional timing
requirements for the photon concerning the time of the collision. After correct calibration
and considering the flight time, the photons originating from the IP should have a timing
difference consistent with 0. Due to limited resolution, photons are kept within a window of
±200 ns around the time of the collision. Moreover, the ratio between the timing difference
and the uncertainty of the cluster timing (defined from the timing window that contains 99 %
of all actual photons) is required to be less than 2.
Such identified photon candidates are used to compute variables associated with the event
shape and event kinematics. It is worth noting that, except for the definition of those variables,
the photon candidates are not used elsewhere. In particular, there is no selection on the photon
multiplicity to avoid being sensitive to additional systematics associated with that selection.
This is because the decay τ → eνeντ is more likely to be accompanied by photons than the
decay τ → µνµντ due to final-state radiation (FSR) and Bremsstrahlung. This would make
Rµ sensitive to systematics associated with the simulation or reconstruction of such photons.
In addition, the misreconstruction of the decay τ → ππ0ντ instead of the signal decays is one
of the main backgrounds. Since this involves a misidentification of a pion as a lepton, which is
more likely when selecting muons, this background is more prominent in the muon sample.
This could again introduce a bias if only one of the photons originating from the π0 is correctly
reconstructed.
Tau leptons produced in e+e− → τ+τ− are back-to-back in the e+e− CM frame and have
a considerable boost, which results in the τ decay products being isolated in two distinct
hemispheres. The hemispheres are defined using the plane orthogonal to the thrust vector t̂,
which is obtained by maximising the thrust value

Vthrust
max=

'
i

|p⃗ CM
i · t̂|(
j |p⃗ CM

j | , (4.9)

where p⃗ CM represents the three-momentum in the CM frame, and the summation includes
all detected particles [143, 144]. The thrust vector approximates the τ flight direction, which
cannot be uniquely obtained experimentally due to the presence of neutrinos.
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Table 4.8: The fraction of events where a fake π0 was reconstructed from a photon inside a
cone of 0.1 rad around the momentum direction of the tracks originating from a J/ψ .

decay εfake
J/ψ ,data εfake

J/ψ ,MC εfake
J/ψ ,data/εfake

J/ψ ,MC

J/ψ → ee 20.5 ± 0.1% 17.5 ± 0.1% 1.170 ± 0.006
J/ψ → µµ 11.1 ± 0.1% 9.86 ± 0.03% 1.126 ± 0.007

To select the desired topology, one charged track must be in one hemisphere and another
oppositely charged track must be in the other. The hemisphere known as the signal side
contains a lepton candidate which is assumed to originate from τ− → e−ν̄eντ or τ− → µ−ν̄µντ

decays. Any number of π0 and photon candidates is allowed in the signal hemisphere. Initially,
a π0 veto was used, which helps to reduce the background from τ → ππ0(π0)ν, but after
estimating the impact of correcting for differences between data and MC associated with
fake π0s (see Section 4.4.2), this veto was removed. In the opposite hemisphere, the tag side,
only one charged particle is allowed with the addition of at least one π0 candidate. The
reconstructed τ on the tag side includes only the two most energetic π0 candidates, even if
there are more than two π0 candidates in the event. This affects only some specific tag side
variables, like the invariant mass of the reconstructed tau. Both charged tracks are assigned
the pion mass hypothesis, and the track on the tag side additionally has the requirement of
EECL < 0.8 to reject Bhabha events. Instead, no initial lepton ID requirement is imposed
for the signal track. In a later stage of the analysis, the signal track will be required to
pass a requirement on Pe or Pµ to only select leptonic tau decays. The reason for using the
pion mass hypothesis for all tracks is to avoid dependence on PID for the computation of
event-based quantities such as the visible energy, since it would not be trivial to correct for
the mismodelling due to PID.

4.4.2 π0 veto and fake π0 correction
To obtain a rough estimate of the size of the correction associated with fake π0s, a J/ψ sample
is used, where π0 candidates are reconstructed using the same requirements as for the analysis.
The main difference between the e-channel and the µ-channel for the fake π0s is the increased
presence of FSR photons with the electron, which results in a higher rate of fake π0s. In the
signal MC, the fraction of events removed by the π0 veto is 3 % and 1.5 % for the electron and
the muon signal, respectively.

For the following estimation, it will be assumed that in 1.5 % of events for both channels, the
fake π0s are of the same origin, and thus Rµ will not be sensitive to it. We then want to
estimate the size of a correction to the remaining 1.5 % in the electron channel. In the J/ψ
sample, thus, only π0 candidates reconstructed from at least one photon identified as a FSR
candidate are considered. FSR candidates are defined as all photons inside a cone of 0.1 rad
around the direction of the momentum of the tracks. In addition, both tracks must be within
the polar angle region of the analysis 0.82 < θ < 2.13. Then, the efficiency of reconstructing at
least one π0 in data (εfake

data ) and MC (εfake
MC ) is calculated. The results are listed in Table 4.8,

together with their statistical uncertainties.

These efficiencies are still made up of different types of fake π0s: First, some use actual
FSR photons, which are of interest for this estimation (εfake,F SR

J/ψ ), but there will also be a
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Table 4.9: The fraction of fake π0s reconstructed from FSR photons in data, MC, and their
ratio. The uncertainties are statistical only.

εfake,F SR
data εfake,F SR

MC εfake,F SR
data /εfake,F SR

MC

4.81 ± 0.06 3.91 ± 0.03 1.232 ± 0.017

contribution of fake π0s not from FSR (e.g. only from beam background), where one photon
happens to be within the cone used to define FSR (εfake,bkg

J/ψ ). In addition to that, there will
be some real π0s where one of the photons is inside the cone (εreal

J/ψ ). Thus, the fake efficiencies
computed above can be written as

εfake
J/ψ = εreal

J/ψ + εfake,bkg
J/ψ + εfake,F SR

J/ψ . (4.10)

Since for the decay J/ψ → µµ FSR photons are suppressed, it can be used to estimate
εreal + εfake,bkg. Thus, we can directly compute

εfake,F SR
J/ψ = εfake

J/ψ →ee − εfake
J/ψ →µµ. (4.11)

It still needs to be taken into account that the calculated εfake,F SR
J/ψ is for two tracks from the

J/ψ , but we are interested in the efficiency for a single track (εfake,F SR). Assuming that the
cones are not overlapping, εfake,F SR

J/ψ is almost twice as large as εfake,F SR, but the fact that
there are events where both tracks have a FSR photon and a π0 candidate reconstructed from
it still has to be taken into account, which is εfake,F SR × εfake,F SR. Finally, the relation

εfake,F SR
J/ψ = 1 − (1 − εfake,F SR)2, (4.12)

and consequently
εfake,F SR = 1 −

&
1 − εfake,F SR

J/ψ (4.13)

is obtained.

Using these considerations, εfake,F SR can be computed in data and MC, which together with
their ratio is shown in Table 4.9. The estimated correction would be around 23 %. This would
result in a change of signal MC in the electron channel of around 0.35 %, which would directly
propagate to a change of Rµ of the same order. A detailed study is needed to estimate this
correction factor and associated uncertainty carefully. This was not possible at the timescale
of this analysis. Thus, it was chosen to drop the π0 veto at the cost of increased backgrounds
from τ → ππ0(π0)ν on the signal side.

4.4.3 Trigger
For this analysis, several ECL trigger bits are considered to trigger the desired events. They
use only information from the ECL sub-detector, with conditions defined in Table 3.6 in
Section 3.4.7. All the listed ECL trigger bits in Table 3.6, except for lml0 and lml12, were
active during the entire data-taking period of interest for this measurement. The lml0 trigger
has a prescale factor of 10 for a significant fraction of the dataset, starting from experiment
20, which is why it is not used. Instead, lml12 was inactive for the first data-taking periods
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before experiment 10. The corresponding runs only amount to an integrated luminosity of
2.2 fb−1, which is why it is still used for this analysis.

At least one of the mentioned trigger bits must be active in data and TSIM. Any differences
between the trigger efficiency in data and TSIM will be corrected, as described in Section 4.6.4.
This difference amounts to about 1.2 % higher efficiency in data. In data, the trigger efficiency
is computed with the help of an orthogonal reference trigger as

εtrg = Ntrg ∧ ref
Nref

. (4.14)

Here, Ntrg ∧ ref is the number of events triggered by both the selected trigger bits and the
reference bits, while Nref is the number of events only triggered by the reference bits. In this
way, the trigger efficiency can be measured in the subset of events triggered by the reference
trigger, which should give a good estimate of the actual trigger efficiency. The current analysis
uses the CDC-based triggers ffo and fyo to define the reference sample. Their trigger
conditions were introduced in Table 3.5 in Section 3.4.7.

In Figure 4.5, the efficiency of the aforementioned ECL trigger bits in data is shown, split
according to experiments. The efficiency is computed after applying all selections, on the left
for the e-channel and on the right for the µ-channel. The efficiency for the relevant bits is very
stable for all run periods. The horizontal dashed lines show the trigger efficiencies in TSIM,
which are in good agreement for all shown trigger lines. Figure 4.6 shows the same trigger

7 8 10 12 14 16 17 18 20 22 24 26
Experiment

0.0

0.2

0.4

0.6

0.8

1.0

ε t
rig

ge
r

e-channel

hie
lml0

lml6
lml12

lml8 lml9 lml10

0

1

2

3

4

5

Ev
en

t y
ie

ld
s

×106

7 8 10 12 14 16 17 18 20 22 24 26
Experiment

0.0

0.2

0.4

0.6

0.8

1.0

ε t
rig

ge
r

μ-channel

hie
lml0

lml6
lml12

lml8 lml9 lml10

0

1

2

3

4

5

Ev
en

t y
ie

ld
s

×106

Figure 4.5: The trigger efficiency for some ECL trigger bits in data, split according to
experiment number, both for the e-channel (left) and the µ channel (right). The prescale
of lml0 during experiment 20 can be observed, as well as the active period of lml12. The
overlayed histogram shows the event yields in the respective bins, and the horizontal lines
show the trigger efficiencies in TSIM.

efficiencies as a function of signal momentum. Here, a characteristic momentum dependence
for some of the lml bits is observed, which comes from the activation requirements. The by
far most important trigger bit is hie. It relies mainly on the π0s from the tag side, which is
also why the efficiency is relatively flat over the whole momentum region.

It is also desirable to examine the CDC trigger bits used to define the reference sample. The
experiment dependence of the efficiency is shown in Figure 4.7 for the combined e and µ
sample. None of the trigger bits were active during the entire data-taking. The ffo bit was
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Figure 4.6: The trigger efficiency for some ECL trigger bits in data, as a function of signal
momentum, for the e-channel (left) and the µ-channel (right). The overlayed histogram shows
the event yields in the respective bins.

replaced by fyo, and the fso bit was replaced by syo. This was only a transition to include
ANN-based trigger information, and they should trigger very similar event types. The stt bit
was only activated during experiment 16 and showed a significantly higher efficiency, especially
in TSIM. The stt trigger is not used to define the reference sample since this could bias the
calculated trigger efficiency, giving more weight to later run periods.

The CDC bits are generally much worse modelled in TSIM than the ECL bits, as seen in
Figure 4.7. In some experiments, the efficiency in data deviates up to 20 % from the MC
efficiency, and a strong experiment dependence is observed. In addition, the reference bits will
not trigger certain event types, which could cause an intrinsic bias of the reference method due
to correlations between the ECL and CDC triggers. A systematic uncertainty that accounts
for these effects will be derived in Section 4.6.4.
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Figure 4.7: The experiment dependence of the CDC trigger bits used to define the reference
sample. The trigger efficiency is calculated for the combined e and µ channel. The overlayed
histogram shows the event yields in the respective bins, and the horizontal lines show the
trigger efficiencies in TSIM.
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4.4.4 Data driven cuts
A first set of cuts is determined to remove a data excess, attributed to a hadronic two-photon
process (e+e− → e+e−n′h′ with n′ > 2), which are not simulated in MC. As expected for this
process, the excess concentrates at low visible CM energy of the event, shown in Figure 4.8.
There is also a data excess observed for high values of ECM

visible, originating from a wrong
normalisation of the Bhabha background.

In this figure and in all the following which also show data, the MC histograms are stacked
on top of each other. When no data are shown, the histograms are generally not stacked.
The legend in these figures shows the individual contributions from the underlying physics
processes:

• e+e− → τ+τ− (shown as ττ)
• e+e− → e+e−µ+µ− (shown as eeµµ)
• e+e− → e+e−e+e− (shown as eeee)
• e+e− → e+e−(γ) (shown as eeγ).

All MC samples not belonging to any of the shown categories are contained in others. In some
cases, the ττ sample is further split according to the decay products of the tau on the signal
and tag side (labelled ττ → signal decay × tag decay). For brevity, neutrinos are neglected,
h denotes a pion or a kaon, and hnπ0 indicates a hadron with at least one π0 (the tag side
definition). Table 4.10 defines the symbols for the different variables used for event selection.

Table 4.10: The symbols for different variables, together with a brief description.

Variable Description

pℓ, pe, pµ magnitude
�� of the momentum vector of the track on the signal side,

where the subset indicates the selected particle typeθℓ, θe, θµ polar angle
ϕℓ, ϕe, ϕµ azimuthal angle
ECM

visible total visible energy in the CM frame
θmissing polar angle of the missing momentum direction
θCM

missing polar angle of the missing momentum direction in the CM frame
pCM

t,missing transverse component of the missing momentum direction in the CM frame
m2

missing square of the missing mass of the event
Vthrust the thrust value
cos(θthrust) cosine of the polar angle of the thrust vector t̂

pCM
tag magnitude of the momentum of the tag side track in the CM frame

mτ(tag) invariant mass of the reconstructed tag side tau
pCM

τ(tag) momentum magnitude of the reconstructed tag side tau in the CM frame
cos(θCM

τ(tag)) cosine of the polar angle of the tag side tau momentum in the CM frame
pCM

t,max the larger of the transverse momenta of the tracks in the CM frame

pthrust frame
t,min

The smaller of the transverse momenta of the tracks in the rotated CM
frame such that the z direction coincides with the thrust axis
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Figure 4.8: The visible energy in the CM frame before any preselection. The MC histograms
are stacked.

The excessive events also have low thrust values, as shown in Figure 4.9a, which is characteristic
of the hadronic two-photon process. Another indication that the origin is a two-photon process
is that the missing momentum vector of the events in question points towards the beam pipe,
as seen in Figure 4.9b. It also manifests itself in large values for the squared missing mass
and low missing transverse CM momentum; see Figures 4.9c and 4.9d. Since the signature of
the excess is very distinct in multiple variables, it is possible to completely remove it with a
data-driven selection.

There are many possibilities for this, but a 2-dimensional cut in the plane of missing mass
squared and transverse missing momentum, together with a lower cut on the thrust value,
was found to entirely remove the excess while having the least impact on the signal region.
Nevertheless, these cuts still remove some events from the tails of the signal distributions,
which results in a reduction of 11 % of the reconstructed signal events. This is a change in
the signal efficiency of about 4.8 %, going from 43 % to 38.2 %. However, since no background
suppression has been applied yet, those events were likely to be removed because the other
two-photon processes peak in the same region.

The 2-dimensional cut is shown in Figure 4.10 as a black dashed line. The histogram on the
left shows the data/MC ratio, where only bins up to 1.35 are displayed on the colour bar, and
the histogram on the right shows the data-MC difference. The cuts are as follows:

• m2
missing < (20 + 40 · pCM

t,missing)

• Vthrust > 0.85

The data and MC distributions of ECM
visible and θmissing after the data-driven cuts are shown in

Figure 4.11. The previously observed excess has almost completely disappeared. The analysis
selections will eventually remove the remaining data excess at large values of visible energy
due to the wrong normalisation of the Bhabha background.

4.4.5 Preselection cuts
After applying data-driven cuts, the simulated samples are used to identify discriminating
features to suppress the background. First, a cut-based preselection is applied to remove
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Figure 4.9: The thrust value (a), the polar angle of the missing momentum vector (b), the
missing mass squared of the event (c) and the transverse component of the missing momentum
in the CM (d) before any preselection. These features prominently show the data events not
present in the simulation, attributed to a hadronic two-photon process.

a significant fraction of the dominant background events. Later, an ANN is used for a
more refined selection. The preselection was found to have a positive impact on the ANN’s
performance. This is because the classifier can focus more on the less trivial backgrounds
and the duration of training is significantly reduced. In addition, this preselection serves as
a private skim selection to reduce the data sample size, save disk space, and avoid memory
problems.

The selection was optimised simultaneously using the following six features:

1. ECM
visible

2. θCM
missing

3. Vthrust

4. pCM
τ(tag)

5. cos(θCM
τ(tag))

6. mτ(tag)

The signal and background distributions for these variables are shown in Figure 4.12. For the
optimisation of this preselection, only 1 % of the events in all the available MC samples are
used, which was found to be sufficient.
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Figure 4.10: The data excess shown in the 2-dimensional plane of missing mass squared and
missing transverse momentum in the CM. The figure on the left shows the data/MC ratio,
where only bins with a ratio below 1.35 are displayed, and the figure on the right shows
the difference between data and MC. The black dashed line indicates the cut applied in the
analysis.
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Figure 4.11: The visible energy in the CM frame (left) and the polar angle of the missing
momentum (right) after the data-driven selection.

The optimal set of all possible rectangular cuts is found with simulated annealing, for which
the basic principles were introduced in Section 2.6.1. More details on the implementation of
the algorithm and its workings can be found in the publicly available repository [145]. The
quantity that is minimised is

−psig · H(εsig − εref) (4.15)

for different fixed values of εref. Here, psig is the purity of the signal defined in Equation 4.3,
H is the Heaviside step function, and εsig is the signal efficiency, as defined in Equation 4.2.

It is important to note that for this simultaneous optimisation, the signal sample is defined
as the combined electron and muon channels. This is to ensure that both channels have a
common selection and to avoid accidental unblinding of the ratio. The common selection is
desired because it results in the cancellation of most of the systematics associated with the
selection because of the similar kinematics of the electron and muon channels.

For the optimisation, a particle identification requirement is imposed. Since electron and muon
channels are kept combined, events are selected that either pass Pµ > 0.9 or Pe > 0.5. The
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Figure 4.12: The signal and background distributions for the variables used to optimise the
preselection. The data-driven cuts have already been applied. The histograms are not stacked.

variable Pµ is the global likelihood-based muon identification variable and Pe is the BDT-based
electron identification variable, as described in Section 3.6.2.

The tau decays defined as the signal and tag side, together with the decay mode and branching
fraction assigned to it in the TAUOLA generator, are listed in Table 4.11. These branching
fractions are used to compute the signal efficiency. The values of the branching fractions
originate from a global fit by HFLAV [13] that uses 170 measurements of τ branching fractions
or branching fraction ratios and is also subject to the unitarity constraint. The values are
taken from the 2020 version of the PDG [146].

From the optimisation procedure, a set of selections is obtained for each value of εref, for which
250 values are chosen uniformly distributed between 1 and 0. These selections are shown on
an ROC curve with purity on the x-axis and efficiency on the y-axis in Figure 4.13. From all
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Table 4.11: The decay mode and branching fraction assigned to signal and tag side tau decays
in TAUOLA. The branching fractions are obtained from a global fit to 170 measurements of
129 different τ branching fractions, which are listed in the 2020 version of the PDG [146].

Decay mode Decay BF Classification
1 τ → eνeντ 0.178175 signal
2 τ → µνµντ 0.173937 signal
163 τ → ππ0ντ 0.254941 tag
165 τ → Kπ0ντ 0.004328 tag
4 τ → π3π0ντ 0.010429 tag
106 τ → Kπ0π0ντ 0.000647 tag
110 τ → ππ0γντ 0.001789 tag
111 τ → ππ0π0ντ 0.092595 tag

these selections, the one that maximises the following figure of merit (FOM) is chosen:

FOM = Nsig%
Nsig + Nbkg

, (4.16)

with Nsig being the number of remaining signal events and Nbkg the number of background
events. This FOM minimises the standard deviation on the estimated signal strength when
performing a Poisson counting experiment, which only takes into account the statistical
uncertainty [10, p. 674]. Since the measurement will be systematically limited, optimising
for the statistical uncertainty is not optimal. However, the such obtained selection is very
loose and can be used as a starting point for a more refined selection, which will be shown in
the following. The final selection will also take into account the systematic uncertainties and
would in any case supersede this preselection. In Figure 4.13, the chosen preselection is marked
with a black cross. It corresponds to a purity of 84.4 % and a combined signal efficiency of
29.9 % (with a figure or merit of 4643).

Alternatively, the FOM (4.16) could have been optimised directly with the simulated annealing
algorithm, but to compare the cut-based approach to a multivariate classifier, having the
ROC curve available can be helpful. It was also verified that the selection obtained with this
procedure gives the same results as when optimising the FOM directly.

The fraction of signal events and the most dominant background processes after this selection
are listed in Table 4.12. The most dominant background is e+e− → τ+τ−, where the signal
and tag side do not match the definition in Table 4.11. This includes several tau decays, but
the largest fraction comes from decays in which a pion on the signal side is misidentified as a
muon. A more detailed breakdown of the background will be given later in the note (Table 4.16
in Section 4.4.9).
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Table 4.12: The most prominent processes after applying the preselection. The combined
signal events sum up to a purity of 84.4 %.

Process Fraction
ee → (τ → eνeντ )(τ → hnπ0ντ ) 45.3%
ee → (τ → µνµντ )(τ → hnπ0ντ ) 39.1%
ee → ττ (other) 5.5%
ee → (τ → hnπ0ντ )(τ → hnπ0ντ ) 3.9%
ee → ee(γ) 2.4%
ee → (τ → hντ )(τ → hnπ0ντ ) 1.6%
ee → cc̄ 0.7%
ee → uū 0.6%
ee → eeττ 0.3%
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Figure 4.13: A ROC curve obtained by optimising cuts for maximum purity with a fixed
efficiency. The set of cuts chosen for the preselection is marked with a black cross.

The exact cuts of the preselection are:

2.1 ≤ ECM
visible < 9.2

0.23 ≤ θCM
missing < 2.97

0.85 ≤ Vthrust < 0.996
0.62 ≤ pCM

τ(tag)

−0.91 ≤ cos(θCM
τ(tag)) < 0.91

0.32 ≤ mτ(tag)

In Figure 4.14, the 1D histograms of these variables are shown with the corresponding cuts
indicated by red arrows. All the cuts on the other variables are applied to show how much
background is removed by the individual variables (‘n-1 plots’).
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Figure 4.14: The variables used for the preselection, with the rectangular cuts indicated as red
arrows. For each variable, all the cuts on the other variables are applied (‘n-1 plots’).

4.4.6 Lepton efficiencies
Using the cuts on the lepton ID variables Pµ > 0.9 and Pe > 0.5, the associated efficiencies and
mis-id rates in MC can be computed using truth information. In Figure 4.15, the efficiencies
are shown as a function of signal momentum (left) and polar angle (right). In Figure 4.16,
the electron identification efficiencies (left) and the muon identification efficiencies (right) are
shown as two-dimensional distributions over momentum and polar angle. The horizontal and
vertical dashed lines correspond to the binning defined above. A significant efficiency drop is
observed for momentum less than 1 GeV and in some distinct regions of polar angle, coming
from gaps and inefficient regions in the detectors. The integrated efficiencies and mis-id rates
are shown in Table 4.13 for MC and corrected MC, using the data/MC correction factors from
the Belle II lepton ID performance group.
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Figure 4.15: 1D distributions of lepton efficiencies and mis-id rates binned in momentum (left)
and polar angle (right). The efficiencies are computed in MC using truth information. The
vertical dashed lines indicate the binning used for the lepton ID corrections.
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Figure 4.16: 2D distributions of electron (left) and muon (right) efficiencies in bins of momentum
and polar angle, computed in MC using truth information. The vertical and horizontal dashed
lines indicate the binning used for the lepton ID corrections.

Restricted signal kinematics

Based on the information in this section, the analysis will be limited to some regions of signal
kinematics where lepton ID is best understood. In general, lepton ID in the endcap regions has
larger associated uncertainties and suffers from steep decreases in efficiency (see Figure 4.15).
Thus, the signal momentum is restricted to the KLM barrel,

0.82 < θ lepton < 2.13,

so as not to pollute the sample with these events.

Similarly, the lepton efficiency drops for momenta below 1.5 GeV and especially for muon
identification, large corrections must be applied at low momentum. In principle, since a
template fit binned in signal momentum is performed, the low momentum region would not
affect the precision of the measurement, even if there are large uncertainties associated with it.
However, this region would also not contribute to the measurement, so it is better to restrict
the signal kinematics instead. Furthermore, the correction factor itself changes significantly as
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type MC corrected MC
e efficiency 98.79 % 99.06 %
µ efficiency 94.17 % 90.30 %
π → e mis-id 0.63 % 1.21 %
π → µ mis-id 4.62 % 3.87 %

Table 4.13: The integrated lepton identification efficiencies and mis-id rates in truth matched
MC. The corrected MC corresponds to efficiencies computed with the data/MC correction
factors applied, so it should be equivalent to the efficiencies expected in data.

type MC corrected MC
e efficiency 99.71 % 99.73 %
µ efficiency 96.81 % 93.91 %
π → e mis-id 0.35 % 0.91 %
π → µ mis-id 3.81 % 3.11 %
K → e mis-id 0.17 % 0.55 %
K → µ mis-id 2.37 % 3.18 %

Table 4.14: The integrated lepton identification efficiencies and mis-id rates in truth matched
MC after restricting the kinematics of the lepton candidate. The corrected MC corresponds to
efficiencies computed with the data/MC correction factors applied.

a function of the momentum below 1.5 GeV. If this change of the correction factor is also large
within the bin and the kinematics of the leptons used in this analysis do not correspond to
the kinematics of the lepton in the calibration sample that was used to derive the correction
factors, this could lead to a bias in the measurement. Some effects that indicate this difference
in muon efficiencies between data and MC as a function of momentum can be seen from the
control channel, presented in Section 5.2.5. The data/MC comparison for the muon candidate
shown there also includes the bin from 1.0 GeV to 1.5 GeV. Therefore, in order to be insensitive
to unexpected systematic effects, the requirement

1.5 GeV < pℓ < 5 GeV

is imposed on the signal lepton.

Even though restricting the lepton kinematics means cutting away a large chunk of signal
events, the measurement is still systematically limited and in terms of statistical precision,
this restriction has little impact. In addition, events that are not covered by the π → ℓ mis-id
rate corrections are removed.

In Table 4.14, the integrated lepton identification efficiencies and mis-id rates are shown
after applying all selections and restricting the kinematics of the lepton candidate. Since
this kinematic range also corresponds to the region with the highest efficiency, the integrated
values increased with respect to Table 4.13. Although these efficiencies and mis-id rates are
computed after the multivariate selection presented in the next section, they are unaffected
because it hardly influences the kinematics of the signal track.
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4.4.7 Multivariate selection
For a more refined background suppression, an ANN is trained with all the events remaining
after the preselection and the restriction of the signal kinematics. The architecture is a simple,
fully connected ANN with two hidden layers containing 20 neurons respectively, each with
a tanh activation function. The network is trained using the stochastic gradient descent
algorithm with cross-entropy as a loss function. Other hyperparameters used to train the
network are:

• batch size: 2048
• epochs: 200
• learning rate: 0.1
• momentum: 0.15.

Seven input features related to the kinematics of the event are passed to the network and
mapped to four output neurons. One output neuron represents the combined signal sample of
the electron plus muon channel, while the other three represent different background events
that are still dominant after preselection. The backgrounds are separated into taupair events
that do not pass the signal requirement, Bhabha events, and everything else. Before the
input features are passed to the ANN, they are standardised using a scaling method robust to
outliers. This is a common preprocessing step applied when using machine learning, which
helps to improve its performance. In particular, ANNs are very sensitive to the scale of the
input data. The features are transformed by subtracting their median value and dividing by
their interquartile range, which is the range between the 25 % and 75 % percentiles. Both
quantities are obtained from the training data.

The seven features used in training are:

1. mτ(tag)

2. cos(θCM
τ(tag))

3. Vthrust

4. cos(θthrust)
5. ECM

visible

6. pCM
tag

7. pCM
t,missing

One important criterion for selecting these features was that there is no strong dependence on
the signal side kinematics. Even though the kinematics of the signal leptons are very similar,
using associated variables could introduce a bias that does not cancel when estimating Rµ.
Any mismodelling of the input features and thus of the ANN output that only originates from
the tag side will almost completely cancel for the measurement of Rµ. Any residual effect
induced by the slightly different signal kinematics will be estimated in Section 4.6.13 with an
embedded sample. In addition, systematic effects associated with mismodelling that depend
on the background composition will not completely cancel, but they will be treated separately
in Section 4.6.9.

In Figure 4.17, the feature importance of the selected variables is shown, calculated with two
different methods based on a forest of trees [147]. On the left, the ranking is based on the
mean decrease in impurity, while on the right it is based on permutation importance, for which
the values of a feature are randomly shuffled and the resulting loss in accuracy is used as a
metric [147, 148]. Both scores were computed using scikit-learn [149], and more information
about the advantages of the respective methods can be found at [150].
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Figure 4.17: The feature importance of the variables passed to the ANN, estimated with a
forest of trees. Different methods are used to compute a score that reflects the importance
of the different features, namely the mean decrease in impurity (left) and the mean accuracy
decrease with feature permutation (right).

Since an ANN is used, correlated input features are not a concern, but it is still desirable
to keep the amount of redundant information passed to the network to a minimum. This is
mainly to keep the model simple and reduce unnecessary dependency on features that could
introduce some mismodelling. The features have been chosen to avoid large correlations and it
has been found that the addition of more input features does not result in a performance gain
of the ANN. The correlations between the ANN input variables are shown in Figure 4.18.
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Figure 4.18: The correlation of the variables used as input for the ANN.

In Figures 4.19 and 4.20 the distributions of the input variables for the ANN are shown, both
in data and in MC. To show the distributions, no PID cut was imposed on the signal track.
There are some differences in the shape of the distributions between data and MC for the
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ANN inputs. As long as this mismodelling is common for the e-channel and the µ-channel,
this is not concerning as it will cancel when measuring Rµ. This is expected to be the case,
since it can be attributed to the tag side variables. Some of the observed discrepancies also
originate from mismodelled backgrounds, which will be almost completely removed with the
selection of the ANN.

0

2

4

6

8
Co

un
ts

×105 ∫Ldt = 362 fb−1

ττ→ μ× hnπ0

ττ→ e× hnπ0

ττ→ h× hnπ0

ττ→ hnπ0 × hnπ0

ττ→ other
eeμμ
eeee
ee(γ)
others
data

3 4 5 6 7 8 9
ECM

visible [GeV]
0.8

1.0

1.2

Da
ta

/M
C

Figure 4.19: Data and MC distribution for the visible energy in the CM frame, used as a ANN
input, without any PID selection applied on the signal track. The hatched area in the subplot
indicates the uncertainty coming from π0 and photon efficiency corrections.

The evolution of the loss during the training of the network is shown in Figure 4.21, for both
the training data (12% of the available MC) and a test dataset (8% of the available MC). The
loss computed in the test data closely follows the training loss, indicating that there is no
overtraining. Since a large dataset is used for training and the network does not have a large
number of parameters, no overtraining issues are expected.

Figure 4.22 shows the ROC curve of the ANN with signal efficiency on the y-axis and purity
on the x-axis. Both efficiency and purity are computed for the combined signal sample. The
two lines correspond to different cut values on the ANN output for the combined signal, once
computed without applying corrections for lepton identification and once with corrections.
The network was trained with the correction weights applied. For this analysis, a cut at 0.9 is
applied to the output associated with the combined signal, which is indicated by the black
cross in the figure. The choice of this value will be justified in Section 5.3.3, where it is shown
that the overall uncertainty on Rµ reaches a minimum around that threshold value. This will
be confirmed again in Section 5.5.6 using actual data.

Figure 4.23 shows the distribution of the four output neurons of the ANN. The neuron
responsible for classifying the signal (4.23a) is shown, with a vertical line indicating the applied
cut. The other neurons are associated with the other taupair background (4.23b), the Bhabha
background (4.23c) and all other backgrounds (4.23d).

The agreement between data and simulation for high outputs of the ANN can be seen in
Figure 4.24, where the ANN output for values greater than 0.8 is shown.
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Figure 4.20: Data and MC distribution for the ANN inputs, without any PID selection applied
on the signal track. The hatched area in the subplot indicates the uncertainty coming from π0

and photon efficiency corrections.
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Figure 4.21: The evolution of the cross-entropy loss over 200 training epochs, shown for both
the training and the test datasets.
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combined signal sample.
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Figure 4.23: The distributions of the four output neurons of the ANN, trained to distinguish
between the combined signal and different types of background. The output neuron responsible
for classifying the combined signal is shown in 4.23a. The vertical dashed line indicates a cut
value of 0.9, which is used for the analysis.
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Figure 4.24: A comparison between data and simulation for the ANN output responsible for
classifying the combined signal between 0.8 and 1.0. A threshold of 0.9 is used in the analysis
to select signal events.
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4.4.8 Sample before lepton selection
In this section, some data and MC distributions are shown after having the ANN cut applied
but without any lepton ID requirement for the signal track. The uncertainty band in the
data/MC subplot indicates the size of the π0 and photon efficiency correction uncertainties.
Figure 4.25 shows the distribution of the visible energy in the CM frame and Figure 4.26 shows
the momentum and polar angle distributions of the signal track. In general, a good data/MC
agreement is observed.
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Figure 4.25: Data and MC distributions of the visible energy in the CM frame after applying
the ANN cut but without any lepton ID selection on the signal track.
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Figure 4.26: Data and MC distributions of the signal momentum in the laboratory frame (left)
and the polar angle of the signal track (right) after applying the ANN cut but without any
lepton ID selection on the signal track.

4.4.9 Sample after lepton selection
This section shows the distributions after applying the lepton ID requirements while keeping
the channels combined. With this combined sample, all variables that cannot discriminate
significantly between the e-channel and the µ-channel do not provide information about Rµ

when compared to data, so there is little risk of being influenced by the observer-expectancy
effect. Since some kinematic variables still have slightly different shapes for the two channels,
originally only 20 % of the available dataset were used for these comparisons. For presentational
purposes and completeness, in this thesis the full dataset is shown, obtained only after the
final results were already unblinded. In Figure 4.27, the distributions of the input variables for
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the ANN are shown, both in data and MC, after having applied the cut on the ANN output.
The hatched area in the ratio indicates the uncertainty originating from lepton ID, π0 and
photon efficiency corrections. Figure 4.28 shows the distribution of the visible energy in the
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Figure 4.27: Data and MC distributions for the ANN inputs, after the cut on the ANN
output, and with the combined lepton ID cut applied on the signal track. The hatched area
in the subplot indicates the uncertainty originating from lepton ID, π0 and photon efficiency
corrections.

CM frame, the polar angle of the signal track and the momentum of the signal track. The left
figures show only simulated distributions to better compare the shapes of the MC samples,
while the right figures compare data and simulation.
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Figure 4.28: Distributions of the visible energy in the CM frame, the polar angle of the signal
track and the signal momentum in the laboratory frame, after applying the ANN cut and with
the combined lepton ID selection applied on the signal track. The left figures show only the
MC distributions (not stacked), while the right figures show data and simulation, where the
simulated samples are stacked on each other.
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4.4.10 Selection summary
After applying all selection requirements, the signal reconstruction efficiency is found to be
9.48 % for τ− → e−ν̄eντ and 9.44 % for τ− → µ−ν̄µντ . The e sample has a purity of 96 %,
while the µ sample has a purity of 92 %. A summary of the signal efficiency, the number of
surviving signal and background events scaled to the target luminosity, and the composition
of the sample after all selections can be found in Table 4.15.

Table 4.15: A summary of the samples after all selection requirements for the e-channel, the
µ-channel, and the combined e + µ-channel. It includes the number of surviving signal and
background events scaled to the target luminosity of 362 fb−1, the resulting FOM, the signal
efficiency, and the sample composition in terms of taupair and non-taupair events for each
channel.

e-channel µ-channel e+µ-channel
Nsig 4 096 340 3 978 925 8 075 306
Nbkg 170 197 340 719 510 875
FOM 1983.2 1914.4 2755.9
signal efficiency 9.48 % 9.44 % 9.46 %
(τsig → eνeντ )(τtag → hnπ0ντ ) 96.01 % < 0.01 % 47.71 %
(τsig → µνµντ )(τtag → hnπ0ντ ) < 0.01 % 92.11 % 46.34 %
(τsig → hnπ0ντ )(τtag → hnπ0ντ ) 0.93 % 2.99 % 1.97 %
(τsig → hντ )(τtag → hnπ0ντ ) 0.36 % 2.16 % 1.27 %
other taupair events 2.29 % 2.30 % 2.29 %
eeττ 0.17 % 0.18 % 0.18 %
cc 0.10 % 0.10 % 0.10 %
uu 0.06 % 0.10 % 0.08 %

The exact composition of the sample after all selections and the combined lepton ID cut is
broken down in Table 4.16. For taupair events, the true tau decay on the signal and tag
sides is specified, and the identifier assigned to the respective tau decays in TAUOLA is listed
(MCModes). The shown composition is obtained after applying all corrections to the simulated
samples, and the shown number of events is scaled to the target luminosity of 362 fb−1. The
most significant background within the taupair sample comes from pions misidentified as
muons, with τ− → h−ντ or τ− → h−nπ0ντ decays on the signal side. These backgrounds with
a charged pion as the decay product of the signal tau account for about 3.3 % of the total
sample (1.3 % of the e sample and 5.2 % of the µ sample). Most of the remaining 2.7 % of the
sample that is classified as background comes from events in which the decay of the tau on
the tag side does not match the tag definition (see Table 4.11), such as τ → πK0

Sντ . Most of
these events still have the correct leptonic tau decay on the signal side. This corresponds to
about 2.3 % of the sample in both the e-channel and the µ-channel. The largest non-taupair
contribution is 0.2 % and comes from the two-photon process e+e− → e+e−τ+τ−, which has
the same contribution in both samples.

In addition, the composition of the sample in terms of the true particle type on the signal
side in MC after applying all the selections and for different tightnesses of the lepton ID
requirements is shown in Table 4.17.
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Table 4.16: Signal and background for the τ(→ ℓνν) × τ(→ hπ0(π0)νν) channel, after all
selections and including the combined lepton ID cut. The number of events is scaled to the
target luminosity of 362 fb−1.

Signal track Tag track Events Fraction [%] MCModes
τ → eνeντ τ → ππ0ντ 2 796 564.78 32.09 (1, 163)
τ → µνµντ τ → ππ0ντ 2 767 863.19 31.76 (2, 163)
τ → µνµντ τ → ππ0π0ντ 1 161 607.69 13.33 (2, 111)
τ → eνeντ τ → ππ0π0ντ 1 130 932.56 12.98 (1, 111)
τ → µνµντ τ → π3π0ντ 106 283.96 1.22 (2, 4)
τ → eνeντ τ → π3π0ντ 102 140.49 1.17 (1, 4)
τ → ππ0ντ τ → ππ0ντ 84 322.16 0.97 (163, 163)
τ → πντ τ → ππ0ντ 76 371.20 0.88 (303, 163)
τ → ππ0ντ τ → ππ0π0ντ 36 471.36 0.42 (163, 111)
τ → eνeντ τ → Kπ0ντ 33 218.64 0.38 (1, 165)
τ → µνµντ τ → Kπ0ντ 32 021.93 0.37 (2, 165)
τ → πντ τ → ππ0π0ντ 29 565.58 0.34 (303, 111)
τ → µνµντ τ → ππ0γντ 25 495.52 0.29 (2, 110)
τ → eνeντ τ → ππ0γντ 24 825.38 0.28 (1, 110)
τ → ππ0π0ντ τ → ππ0ντ 23 510.04 0.27 (111, 163)
τ → eνeντ τ → πντ 14 096.19 0.16 (1, 303)
τ → µνµντ τ → πντ 12 224.63 0.14 (2, 303)
τ → µνµντ τ → πK0

Sντ 11 880.33 0.14 (2, 226)
τ → eνeντ τ → πK0

Sντ 11 427.18 0.13 (1, 226)
τ → µνµντ τ → ππ0K0

Lντ 11 124.84 0.13 (2, 127)
τ → eνeντ τ → ππ0K0

Lντ 10 838.05 0.12 (1, 127)
τ → ππ0π0ντ τ → ππ0π0ντ 10 707.13 0.12 (111, 111)
τ → µνµντ τ → π4π0ντ 8910.07 0.10 (2, 67)
τ → eνeντ τ → π4π0ντ 8622.92 0.10 (1, 67)
τ → µνµντ τ → Kπ0π0ντ 8264.88 0.09 (2, 106)
τ → eνeντ τ → Kπ0π0ντ 7980.26 0.09 (1, 106)
τ → µνµντ τ → ππ0K0

Sντ 7817.87 0.09 (2, 126)
τ → eνeντ τ → ππ0K0

Sντ 7476.11 0.09 (1, 126)
τ → µνµντ τ → Kπ0K0

Lντ 5392.26 0.06 (2, 125)
τ → eνeντ τ → µνµντ 5302.57 0.06 (1, 2)
τ → eνeντ τ → Kπ0K0

Lντ 5269.30 0.06 (1, 125)
τ → µνµντ τ → K3π0ντ 4938.02 0.06 (2, 9)
τ → eνeντ τ → K3π0ντ 4811.81 0.06 (1, 9)
eeττ 15 621.83 0.18
cc̄ 8856.54 0.10
uū 6529.66 0.07
ee(γ) 2046.96 0.02
ss̄ 1033.25 0.01
dd̄ 902.69 0.01
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4.5. Statistical model

Table 4.17: The sample composition in terms of the type of charged particle in the signal
hemisphere. All analysis selections and corrections to the simulation have been applied. The
composition is shown for varying levels of tightness of the lepton ID requirements. The nominal
requirements used in the analysis are Pe > 0.5 for the e-channel channel and Pµ > 0.9 for the
µ-channel. Also shown is the fraction of events where the particle type in MC could not be
retrieved due to a failed truth matching.

e± [%] µ± [%] π± [%] K± [%] Failed matching [%]
Pe > 0.5 98.57 < 0.01 1.36 0.05 0.01
Pe > 0.9 99.40 < 0.01 0.57 0.01 < 0.01
Pe > 0.95 99.56 < 0.01 0.43 < 0.01 < 0.01
Pe > 0.99 99.78 < 0.01 0.21 < 0.01 < 0.01
Pµ > 0.5 < 0.01 93.09 6.19 0.28 0.43
Pµ > 0.9 < 0.01 94.74 4.56 0.26 0.44
Pµ > 0.95 < 0.01 95.04 4.26 0.25 0.44
Pµ > 0.99 < 0.01 95.47 3.85 0.24 0.44

4.5 Statistical model
4.5.1 Fit strategy
The binned maximum likelihood method will be used to extract Rµ and its associated uncer-
tainty from the data. It is a particular case of the ML method (see Section 2.5.1) where the
observed events are organised into a total number of N bins. In this case, the data vector
indicates the count of entries per bin. When the overall count of events is also random, the
observed events adhere to a Poisson distribution1 (Pois) with a mean equivalent to the intrinsic
expected number of events in that bin. Given that the data are independent, the likelihood
function can be obtained by multiplying the individual Poisson distributions [151].

The binned ML method has several advantages, although there is always a loss of information
when using bins. Numerical optimisation is generally cheaper using the binned ML method, as
the CPU usage tends to rise linearly with the event count in the unbinned case. Additionally,
the binned approach allows the direct use of simulation templates for the distributions when
an analytical expression is not present. For this analysis, the templates are defined from MC
simulations, and in the following the fit will also be referred to as template fit.

The pyhf library [152], a Python adaptation of HistFactory [153], is used for the binned
maximum likelihood fit. This library allows for the construction of complex statistical models
that incorporate systematic effects through nuisance parameters. It uses the JSON data
format to declare the full statistical model in a single document. This document can then be
easily preserved, shared, and utilised to replicate the outcome of the analysis with various
statistical techniques. Furthermore, the availability of published likelihoods will simplify the
global combination of different measurements.

1If the total number of events is predefined by the design of the experiment, then the distribution of the
events in each bin would be multinomial.
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Table 4.18: Symbol notation for the fit function defined by a pyhf model, adapted from [154].

Symbol Description
n observed event counts in data
a auxiliary data
η free parameters
χ constrained parameters
ν(η, χ) calculated event rates
ν0 nominal event rates
κ(η, χ) multiplicative rate modifier
∆(η, χ) additive rate modifier
cχ (aχ | χ) constraint term for constrained parameter χ
aχ auxiliary data associated with constrained parameter χ
Pois the Poisson distribution

4.5.2 Likelihood specification
The general form of the fit function used by the pyhf library is [154]

f(n, a | η, χ) =
!

c ∈ channels, b ∈ binsc

Pois (ncb | νcb(η, χ))
!
χ∈χ

cχ (aχ | χ) , (4.17)

with

νcb(η, χ) =
'

s ∈ samples
νscb(η, χ) =

'
s ∈ samples

� !
κ∈κ

κscb(η, χ)
� ν0

scb +
'

∆∈∆
∆scb(η, χ)

 .

(4.18)
The meaning of the symbols is given in Table 4.18. Here, a bold symbol denotes a parameter
set, which can be further specified by indices s, c and b. The index s denotes a sample, c
indicates a channel, and b defines the individual bins. The samples correspond to different
templates that are summed over to obtain the total calculated event rates in each bin. The
event rates from each sample can be modified by multiplicative or additive rate modifiers,
which are functions that are parameterised by nuisance parameters. In this measurement, all
parameters η and χ are nuisance parameters, except for Rµ, one of the free parameters and
our parameter of interest. The fit function comprises a product of Poisson distributions, one
for each bin in each channel. The channels are a collection of bins, defined over statistically
independent datasets that are fit simultaneously. For the present measurement, two channels
are needed to fit Rµ directly: one will be referred to as the electron channel (e-channel) and
the other as the muon channel (µ-channel). The cut on the lepton ID variable for the lepton
candidate in the signal hemisphere defines these channels in data and MC: Pe > 0.5 for the
e-channel and Pµ > 0.9 for the µ-channel.

4.5.3 Binning
The templates are defined over the momentum of the signal lepton candidate in the laboratory
frame. The main reason for this is that lepton ID corrections and associated uncertainties
are binned in momentum, and the impact of momentum bins where lepton ID is not well
understood and the uncertainties are large can be reduced. One can think of the fit as
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doing a combined measurement of Rµ in all momentum bins simultaneously. The additional
information on the kinematic dependence would be lost in an integrated measurement over the
full momentum range. This method can only be more precise than the integrated measurement,
with the only disadvantage being that the systematic effects must be evaluated depending
on the momentum, and their correlation across the momentum bins has to be accurately
modelled.

As mentioned in Section 3.6.4, the lepton ID corrections from 1.5 GeV to 5.0 GeV are binned
in steps of 0.5 GeV. To define the templates, these bins are further split into three bins of
equal size, resulting in a total of 21 bins. This allows us to incorporate additional information
from the shape of the templates in the fit. In general, having more bins will capture more
information and result in a better sensitivity. On the other hand, having more bins increases
the number of nuisance parameters and, consequently, the optimisation time. Also, having
too many bins would make the fit more sensitive to a potential mismodelling of the templates
and systematic effects. The split into three bins was chosen since it seemed to be a good
trade-off between the disadvantages and benefits. It showed a significant improvement in
sensitivity to Rµ with respect to only one or two bins while keeping the bin width (167 MeV)
well above the momentum resolution, which depends on the momenta of the particles but
is below 30 MeV [155]. Further increasing the bin count showed some improvement, but the
increase in precision was less significant and started to plateau. Further discussion on the
impact of the binning on the results can be found in Section 5.5.

4.5.4 Template definition
To measure Rµ, one template needs to define the signal component, and one or more templates
describe the background component for each channel. Since most of the background (about
95 %) originates from e+e− → τ+τ− events, splitting the background templates according to
the physics process makes little sense. Due to the importance of lepton ID uncertainty, it is
beneficial to separate the templates according to the particle type of the signal lepton. A part
of the background events will have the signal lepton correctly identified (as either electron
or muon), while the other part will have misidentified particles (‘fakes’). For the background
with correctly identified leptons, the lepton ID uncertainty (from efficiency corrections) will be
fully correlated with the signal template. In contrast, independent mis-id rate corrections and
uncertainties, estimated from control samples with the corresponding particle type, will be
used for the template with fakes. This distinction gives us three templates for each channel,
for which the expected yields are shown in Figure 4.29. While the signal template and the
background template with the correct lepton type are similar for both channels, the background
template with misidentified particles is larger for the µ-channel. This is because almost all
of these fake particles are pions, which are more likely to be misidentified as muons than
electrons.

This results in the following event rates for each channel, which are used in the fit function:

νe
b (η, χ) = κe · νe, sig

b (η, χ) + ν
e, bkg(true)
b (η, χ) + ν

e, bkg(fake)
b (η, χ) and

νµ
b (η, χ) = Rµ · κgen

e/µ · κe · νµ, sig
b (η, χ) + ν

µ, bkg(true)
b (η, χ) + ν

µ, bkg(fake)
b (η, χ).

In these expressions, νe, sig
b and νµ, sig

b represent the signal yields that involve τ− → e−ν̄eντ or
τ− → µ−ν̄µντ decays on the signal side and τ+ → h+nπ0ν̄τ on the tag side. The background
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Figure 4.29: The six templates that are used for the fit, scaled to the target luminosity. The
templates for the muon channel are in the first row, and the ones for the electron channel
are in the second row. One template describes the signal components (first column), one the
background with correctly identified leptons (second column) and one the background with all
other particles that are misidentified as leptons (third column). The three templates for each
channel are summed up and simultaneously fit the data.

components are described by ν
e, bkg(true)
b and ν

µ, bkg(true)
b , which correspond to background

events with a correctly identified lepton on the signal side, and ν
e, bkg(fake)
b and ν

µ, bkg(fake)
b ,

which represent all other background events. The factor κe is a multiplicative rate modifier
that affects the signal yields of the e and µ templates simultaneously. This enables a direct
estimation of Rµ from the fit by only including it as a modifier of the signal template in the
muon channel. The factor κgen

e/µ ≡ Bgen
e /Bgen

µ is a constant that ensures the correct normalisation
of Rµ, with the branching fractions

Bgen
µ ≡ Bgen[τ− → µ−ν̄µντ ] = 0.173937

and
Bgen

e ≡ Bgen[τ− → e−ν̄eντ ] = 0.178175

used in the generator. The parameter of interest (Rµ) is then estimated along with the nuisance
parameters by optimising the fit function 4.17 using the observed data.

4.6 Systematic uncertainties
Systematic uncertainties are included as modifications to the event counts of the templates
through nuisance parameters. The resulting variations of the templates should reflect the effects
of each systematic source on the lepton momentum distribution. In pyhf, such variations
can be defined with so-called modifiers. These modifiers add either a multiplicative or an
additive term to the nominal event rates of the associated samples. An overview of the
available modifiers, the type of modification, and the corresponding constraint term and input
is shown in Table 4.19. For the histosys and normsys modifiers, the nuisance parameter
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Table 4.19: The relevant modifiers and corresponding constraint terms that can be used to
build a pyhf model, adapted from [154]. Modifying the event rates is accomplished either with
multiplicative (κ) or additive (∆) terms, which are parametrised by the nuisance parameters. If
applicable, the constraint size of these nuisance parameters can be specified with an additional
input, shown in the last column.

Name Modification Constraint Term cχ Input

shapesys κscb (γb) = γb
"

b Pois
�
rb = σ−2

b | ρb = σ−2
b γb

�
σb

histosys ∆scb(α) =
fp (α | ∆scb,α=−1, ∆scb,α=1)

Gaus (a = 0 | α, σ = 1) ∆scb,α=±1

normsys κscb(α) =
gp (α | κscb,α=−1, κscb,α=1)

Gaus (a = 0 | α, σ = 1) κscb,α=±1

staterror κscb (γb) = γb
"

b Gaus (aγb
= 1 | γb, δb) δ2

b = (
s δ2

sb

lumi κscb(λ) = λ Gaus (l = λ0 | λ, σλ) λ0, σλ

normfactor κscb (µb) = µb

interpolates between a given up and down variation of the histograms (∆scb,α=±1) or the
normalisation (κscb,α=±1). The interpolating functions are fp and gp, respectively. Different
types of interpolation are possible, but the method chosen for the present work is piecewise
linear interpolation [153]. This means that the values of the function are linearly interpolated
between the nominal and the up or down variation. An example of this for the histosys modifier
is shown in Figure 4.30, where a nominal histogram is shown together with the up and down
variation. The piecewise linear interpolation with a value of α = 0.7 is overlayed, which is for
each bin at 70 % of the distance between the nominal and the up variation. The type of modifier
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Figure 4.30: An example of the interpolating function fp for the histosys modifier. The green
dashed line is the output of the function with α = 0.7 when, together with the nominal
histogram, the shown down and up-variations are provided.

that will be used for the different systematic effects mainly depends on the correlation between
the template bins. For example, the shapesys modifier adds one independent multiplicative
nuisance parameter for each sample bin. This allows for changes in the shape of the distribution
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described by this sample, which is why it is often referred to as an uncorrelated shape modifier.
In contrast, the histosys modifier only allocates a single nuisance parameter that interpolates
between the nominal event rates of the sample and the provided up and down variations. This
is fully correlated between the bins, so it is often referred to as a correlated shape modifier.
In pyhf, the same nuisance parameter can also be assigned to different templates, which is
essential to correlate a systematic variation across multiple samples or channels. Since nuisance
parameters are always fully independent by construction, the available modifiers can only be
used to model either fully correlated or completely independent effects. However, arbitrary
correlation across template bins can be modelled using multiple correlated shape modifiers.
This method will be used for the most dominant systematic uncertainty, lepton identification,
which is described in further detail in Section 4.6.2.

4.6.1 Treatment of template variations
Split of variations into normalisation and shape components

For better fit stability, it is recommended to split the variations of the templates into normalisa-
tion (normsys) and shape (histosys) components, which are fully correlated. The normalisation
component is calculated with

κup/dn
norm =

'
b ∈ bins

n
up/dn
b

nnom
b

, (4.19)

where n
up/dn
b are the up or down variations and nnom

b are the nominal values of the templates
in bin b. The shape component is calculated with

n
up/dn
b, shape = n

up/dn
b

κnorm
. (4.20)

This split into two components will always be realised whenever a correlated shape modifier
is used. In pyhf, the nuisance parameter associated with the two components is shared
between modifiers if given the same name (α in Table 4.19). Doing this split is mathematically
equivalent to just using a single histosys component but can lead to improved fit behaviour.
The number of nuisance parameters allocated by the normsys and shapesys components is still
one.

Modifier veto

In cases where the modifications to the templates are minimal and the variation of the nuisance
parameters has a negligible effect on the likelihood, it is better not to include the parameters
since they might cause instabilities in the fit. To handle such cases, certain conditions for not
including systematics in the model are defined. For the correlated shape variations, both of
the following conditions must be met:

• The p-value of a χ2 test that compares the shape variation to the nominal histogram is
larger than 0.99 or the largest difference between the shape variation and the nominal
histogram is smaller than 10 % of the smallest expected statistical uncertainty in data.

• The difference between the normalisation component from unity is smaller than 10 % of
the smallest relative expected statistical uncertainty in data.
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The expected statistical uncertainty in data is calculated as

σstat
exp, cb =

$ '
s ∈ samples

ν0
scb, (4.21)

with ν0
scb being the nominal event rates in MC. The smallest expected statistical uncertainty

in data is always taken from all bins of the corresponding channel, which are affected by the
shape variation. If the modifier is shared for multiple samples, it has to be vetoed in all the
templates to be omitted.

For the uncorrelated shape variations, the veto is applied bin-wise if the following condition is
met:

• The uncertainty is smaller than 10 % of the expected statistical uncertainty in data for
the corresponding bin.

In the following, the expected relative statistical uncertainty in data will be indicated as hatched
areas in the figures that show the variations of the templates, for example, in Figure 4.33.
The legend will show the smallest relative expected statistical uncertainty in data for the
corresponding template. Furthermore, if the variation is a correlated shape, the p-values of the
χ2 test and the difference of the normalisation component from one will be shown separately
for up and down variations. The plot also indicates whether the individual variations meet the
veto conditions (when shown in red) or not (when shown in green). Only if a systematic effect
is vetoed for all the samples is the template modification not included in the model, which is
also shown on the plots with a checkbox.

For uncorrelated shape modifiers, the legend shows the largest relative variation of the corre-
sponding template. Since the veto, in this case, is applied bin-wise, whether the modification
is included is shown by the colour of the individual variations: red when the veto applies and
green when it fails.

Symmetrisation

All template variations with individual up and down components are symmetrised before
including them in the model. The symmetrisation is done by keeping the difference between
the up and down variations constant and only introducing a shift to equal their difference from
the nominal template. This has only a small impact on most of the covered cases. In cases
where only the up variation is shown in the following figures, the down variation is always
included as the symmetric version of the up variation.

Smoothing

For some specific cases, the 353QH algorithm [156] is used twice to smooth the histogram vari-
ations before including them in the model. Smoothing helps to remove statistical fluctuations
in cases where the up and down variations of the histogram are obtained by an independent
reprocessing of MC or data samples, only with some parameter changes, or when the variation
is based on random sampling. The smoothing is applied only to the relative variations with
respect to the nominal histogram, so it only affects the fluctuations in the variation itself. The
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Table 4.20: The treatment of the template variations for the different systematic sources. The
checkmark indicates when either smoothing or symmetrisation is applied.

Smoothed Symmetrised
Photon energy ✓ ✓

Momentum correction ✓ ✓

π0 efficiency ✓ ✓

Photon efficiency ✓ ✓

Particle decay-in-flight ✓ ✓

Modelling of ISR ✓ ✓

Modelling of FSR ✓ ✗

Neural network selection ✓ ✗

Lepton identification ✗ ✗

Sample normalisation ✗ ✗

statistical fluctuations of the templates, which originate from a limited sample size, are not
affected by this and are treated separately.

The template variation before symmetrisation or smoothing is shown as a dashed grey line in
the following figures. In contrast, the resulting symmetric and smoothed variation is shown as
a dashed red line.

Table 4.20 shows whether the systematic variations described in the following were smoothed
or symmetrised with the procedures mentioned above.

4.6.2 Lepton identification
To correctly model the correlation of lepton ID uncertainties, the following relation between
the covariance matrix Csys

ik and the correlated shape variations Γij can be used:

Csys
ik =

Ns'
j=1

ΓijΓkj , (4.22)

where Γij is a variation of bin i associated to some systematic source j and the sum is over Ns

independent systematic sources. If instead any arbitrary covariance matrix Csys is given, it
can be decomposed into Ns = dim(Csys) shape variations via eigendecomposition:

Csys = V UV T = (V
√

U)(V
√

U)T = ΓΓT =⇒ Γ = V
√

U. (4.23)

Here, V is a matrix with columns corresponding to eigenvectors, and U is a diagonal matrix with
the related eigenvalues. Each eigenvector, multiplied by the square root of the corresponding
eigenvalue, gives a correlated shape variation that can be implemented with histosys modifiers
in pyhf. Together, these independent shape variations model the original covariance matrix.
This process can be thought of as a coordinate rotation in the hyperdimensional space of a
multivariate normal distribution, defined by the original covariance matrix, such that the new
covariance matrix is diagonal. In some cases, the eigenvalues might be zero or very close to
zero. This will be, for example, the case for strongly correlated uncertainties, which would
result in only one dominant shape variation. To avoid unnecessary parameters in the fit, one
can define a threshold for the eigenvalues below which the corresponding variation is ignored.
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To implement lepton ID uncertainties in the model with this procedure, we first need to
obtain the covariance matrix, which describes the correlation between the template bins. The
statistical component of the lepton ID corrections is naturally fully independent across all
correction bins. However, the correlation of the systematic component is currently unknown,
and some conservative assumptions must be made while maintaining a realistic model. The
lepton ID corrections are binned in three dimensions, for which the correlation has to be
considered:

1. Charge: Positive and negative charged tracks are combined in the measurement. Having
fully correlated uncertainties will result in the largest uncertainty on Rµ.

2. Polar angle: Because the polar angle bins are summed over, the uncertainties are also
considered fully correlated for this dimension to be most conservative.

3. Momentum: The fit is performed with templates binned in momentum, making it very
sensitive to the correlation of lepton ID uncertainties in this dimension. A priori, it is
unclear which correlation assumption is most suitable. To find the most conservative
option, different cases have to be studied. As shown later in Section 5.3.2, assuming that
the uncertainties are fully correlated is the best choice with the current model.

Using these assumptions, the covariance matrix is obtained using a toy approach. For this, 5000
variations of the correction factors are generated with k-dimensional multivariate Gaussian
distributions that follow the correlation assumed for the different dimensions. The statistical
component of the corrections is described with a random vector,

X ∼ N (µ, Σstat), (4.24)

where Σstat is a diagonal matrix containing the corresponding variances and µ is the central
value of the individual weights. For the systematic component, the random vector

Y ∼ N (0, Σsys), (4.25)

is used, where Σsys contains all the information about the assumed correlations. In the most
general case, it can be expressed as

Σsys =


σx1 0

σx2
. . .

0 σxk




1 ρx1,x2 · · · ρx1,xk

ρx2,x1 1 · · · ρx2,xk

...
... . . . ...

ρxk,x1 ρxk,x2 · · · 1




σx1 0
σx2

. . .
0 σxk

 ,

(4.26)
where σxi are the systematic uncertainties corresponding to each bin. If the uncertainty is
asymmetric, the larger of the up or down components is used as σxi . The correlations are
ρxi,xj . With the abovementioned assumptions, this would result in ρxi,xj = 1. The covariance
matrices will span all momentum/theta/charge bins of a single type of lepton ID corrections.
The types of corrections used for this analysis are

• e efficiency: affecting 2 samples in the e-channel: signal and background (true e)
• µ efficiency: affecting 2 samples in the µ-channel: signal and background (true µ)
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• π → e mis-id rate: affecting 1 sample in the e-channel: background (fake e)
• π → µ mis-id rate: affecting 1 sample in the µ-channel: background (fake µ)
• K → e mis-id rate: affecting 1 sample in the e-channel: background (fake e)
• K → µ mis-id rate: affecting 1 sample in the µ-channel: background (fake µ)

and they are considered to be completely independent from each other. A summary of the σxi

in the region relevant for this analysis is given in Table 4.21. The table shows the overall range
of the correction factors, the average correction factors, the overall range of the uncertainties
on the correction factors, and the average uncertainty. The numbers given for mis-id rate are
for pions, which are misidentified as leptons.

Table 4.21: A summary of the correction factors and associated uncertainties for lepton
identification efficiencies and the π → ℓ mis-id rates. The range gives the largest and smallest
values, while the average is the weighted average over all events, specific for this analysis. The
uncertainties are expressed as a percentage of the corresponding correction factors.

Correction Uncertainty
Range Average Range Average

Electron efficiency 0.99 − 1.01 1.00 0.05% − 1.35% 0.22%
Muon efficiency 0.87 − 0.99 0.97 0.10% − 6.00% 0.38%
π → e mis-id 1.00 − 13.0 2.61 3.54% − 162% 41.4%
π → µ mis-id 0.25 − 1.10 0.82 3.11% − 76.9% 11.7%

In the end, we obtain a k-dimensional random weight vector,

w = X + Y, (4.27)

from which the 5000 toy weights are generated. This is repeated for each type of correction,
with the matching toy weights applied to the MC sample to obtain 5000 sets of templates,
binned in signal momentum with the binning mentioned in 4.5.3. To illustrate this, the
distributions of the total number of events in the signal template for the electron channel and
the muon channel are shown in Figure 4.31. Also shown as vertical dashed lines are the values
obtained when the weights are varied up or down by their uncertainty, adding statistical and
systematic components in quadrature. This would correspond to a fully correlated variation
(also for the statistical component). The uncertainties of the electron efficiency corrections are
dominated by the systematic component, so for the e-channel, the fully correlated variations
are well within the distribution obtained from the toys. In contrast, the muon efficiency
corrections are dominated by the statistical component, resulting in a much smaller spread
of the toys with respect to the up and down variations in the µ-channel. This point will be
discussed in more detail later.

Using the set of toy templates, the sample covariance between bin j and bin k can be computed
as

Cjk = 1
N − 1

N'
i=1

(xij − x̄j) (xik − x̄k) , (4.28)
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Figure 4.31: The total number of events in the signal template for the electron channel (left)
and the muon channel (right), obtained with different generated toy weights of the efficiency
correction factors. The dashed lines represent the values obtained when varying the weights
up or down by their total uncertainty.

where xij is the ith toy value of the jth bin, x̄j denotes the sample mean of the corresponding
bin, and the sum is over all N toys. Thus, for the six templates with 21 bins each, we obtain a
covariance matrix of dimension 6 · 21 = 126. However, since there is only one lepton candidate
in each event and the correction factors for different particle types are independent, there
is a lot of redundant information in the full covariance matrix and most of the correlations
are either 0 or 1. When computed with Equation 4.28, they will never be precisely 0 or
1 due to statistical fluctuations and limited numerical precision. Still, the dimensionality
can be reduced based on the knowledge of these correlations. In addition, there is no need
to explicitly consider all 21 bins for each template since the correction factors themselves
are binned in steps of 0.5 GeV, resulting in only 7 bins over the relevant momentum range.
Alternatively, as mentioned above, one could remove the redundant variations by setting a
threshold on the eigenvalues. Nonetheless, in the present case, it is worthwhile to incorporate
these features in advance. This also allows to more easily separate the uncertainties for the
different types of correction factors. In the end, only 4 · 7 = 28 independent shape variations
are needed, which can be divided into four types, corresponding to e efficiency (e± → e±),
µ efficiency (µ± → µ±), e mis-id rate (h± → e±) and µ mis-id rate (h± → µ±) systematics.
The e and µ efficiency uncertainties are fully correlated for the two templates in each channel
with the same lepton type, since they are based on the same toy weights. The correlations
obtained from the toys are shown in Figure 4.32. Each 7 × 7 block shows the correlation in the
seven momentum bins for the different correction types. For the e efficiency, the correlations
over momentum are close to one, while for the µ efficiency, the correlation matrix is almost
entirely diagonal. This difference comes from the underlying uncertainties, which for the µ
efficiency are almost entirely dominated by the (uncorrelated) statistical component, while
for the e efficiency, the (correlated) systematic component is dominant. The µ efficiency
corrections are obtained primarily from the µµγ calibration channel, which has very small
systematic uncertainties due to the purity of the channel. The uncertainties of the µ efficiency
corrections shown in Figure 3.16 in Section 3.6.6 are almost exclusively statistical, especially
for high momentum. The e efficiency corrections are obtained mainly from the Bhabha
calibration channel, which has more considerable associated systematic uncertainties due to
an unexplained discrepancy between the correction factors obtained with different selections,
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which was discussed in Section 3.6.3. The resulting relative variations of the individual

μ±→μ± h±→μ± e±→e± h±→e±
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±
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Figure 4.32: The correlation matrix of the uncertainties related to lepton efficiencies (µ± → µ±

and e± → e±) and mis-id rates (h± → µ± and h± → e±), which is implemented with multiple
variations of the templates in the fit model. Each submatrix illustrates the correlation across
the momentum bins. The correlations are obtained from the underlying correlations between
the correction bins using 5000 toy samples.

templates are shown in Figure 4.33. Each colour denotes an independent histosys variation,
which, taken together, models the desired correlation. Only the individual shape variations
for the signal and background with the same lepton type are fully correlated for each channel
(note that the relative shape variations are precisely the same for the two templates). Since
the uncertainties are almost completely independent in the muon channel, each variation
only dominates a single bin. On the contrary, one variation dominates everything in the
electron channel, while the others are close to zero because of the high correlation. The size
of the dominant variation is around 0.2 %, which also corresponds to the uncertainty in the
relevant bins of Figure 3.16. The uncertainties associated with fake corrections are generally
much larger and have non-trivial correlations due to contributions from both statistical and
systematic components of the uncertainties, such as from the tau calibration channel described
in Section 3.6.3. The differences in the correlations of the uncertainties of the efficiency
corrections are also why the overall impact of electron identification on the uncertainty of Rµ

is larger than for muon identification, even though the numbers in Table 4.21 would suggest
the opposite. The impact of all different systematic sources on Rµ will be given in Section 4.7.

4.6.3 π0 efficiency
The π0 reconstruction efficiency correction compensates for the difference between the efficiency
of π0 reconstruction in data and simulation. The correction factors are measured using decays
of D mesons, namely D0 → K−π+π0, D0 → K−π+ and B+ → π+D∗0 �→ π0D0 �→ K−π+��

.
In addition, they are cross-checked using τ+ → π+π−π+nπ0ντ decays, with n > 0. All these
studies were conducted by the Belle II performance group and the resulting correction factors
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Figure 4.33: The relative shape variations of the templates due to lepton ID uncertainties.
Each template is affected by seven independent histosys modifiers, shown in different colours.
Together, these shape variations model the desired correlation between the template bins.

are provided to all analysts. The correction factors are measured as a function of the π0

momentum with three components to the total error for each bin:

• the statistical error,
• the systematic error associated with the corrections from the D meson channel and
• a systematic error obtained from the differences in correction factor between the D

meson and tau channels.

The central values of the correction factors, together with statistical and systematic uncer-
tainties, are shown in Table 4.22. The recommendations of the performance group are to
take the statistical component as uncorrelated and the systematic components as completely
correlated across momentum bins but independent from each other. For simplicity, since
this measurement is not very sensitive to the π0 corrections and the systematic uncertainties
are dominant for all the momentum bins, the statistical component will also be considered
fully correlated, which will only slightly inflate the size of the overall uncertainties. The π0
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Table 4.22: Correction factors and uncertainties for the π0 selection used in this analysis.

π0 momentum [GeV] Correction Stat. Syst. (D meson) Syst. (channel dep.)
0.2-3.0 1.000 ±0.003 ±0.037 -
0.2-0.4 0.917 ±0.004 ±0.049 -
0.4-0.6 0.965 ±0.004 ±0.036 -
0.6-0.8 0.988 ±0.004 ±0.079 -
0.8-1.0 1.013 ±0.005 ±0.058 -
1.0-1.5 1.042 ±0.004 ±0.045 ±0.039
1.5-2.0 1.044 ±0.005 ±0.041 ±0.051
2.0-3.0 1.011 ±0.005 ±0.040 ±0.030
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Figure 4.34: The relative variation of the templates due to the π0 efficiency correction
uncertainty. It affects the muon and electron channels similarly, thus cancelling mostly for the
determination of Rµ.

corrections are applied by correcting the distributions of the π0 multiplicity, accounting for all
bin migrations. This correction is repeated for the down variation of the correction factors.
After applying the tag side π0 requirement, two samples are obtained, where the sample with
the down variation is a subset of the nominal sample. The down variation of the templates is
the ratio of these samples, which is taken to be fully correlated, and thus implemented with
a histosys modifier. The up variation is implemented as the symmetric version of the down
variation. The relative variations of the templates are shown in Figure 4.34.

4.6.4 Trigger
A correction must be applied to the MC templates to account for differences in trigger
simulation and data. This correction is applied to each bin and has an associated error, a
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systematic uncertainty for the measurement. The triggers used in this analysis are defined
in Section 3.4.7, and the nominal trigger selection and the method for estimating trigger
efficiencies were described in Section 4.4.3.

In Figure 4.35, the trigger efficiency for the electron and muon channels is shown for data and
MC. In data, the trigger efficiency can only be assessed with the reference method (‘ref’), as
defined in Equation 4.14. In contrast, in MC, also the absolute efficiency without restriction
to a reference sample can be computed (‘abs’). The difference between the efficiency in
MC, calculated with the reference and absolute methods, can then be taken as a systematic
uncertainty due to the reference trigger method. Any difference between the two methods can
be attributed to not fully independent ECL and CDC triggers. In addition, an uncertainty
derived from the change in the data/MC ratio when using an alternative reference sample (‘alt
ref’) is included. For this alternative definition, the fso and syo bits are used as reference
triggers in addition to ffo and fyo (see Section 3.4.7 for the trigger bit definitions).

The efficiencies computed with the alternative reference events are also shown in the figure
and deviate very little from the nominal efficiencies in data. However, there is a significant
shift in the MC efficiencies, which is included as an uncertainty on the correction factors. This
should reflect the systematic uncertainty of the mismodelling of the reference triggers.

The ratio of the trigger efficiency in data and MC (computed with the reference method)
is used as a correction factor for the MC templates. This correction factor is shown in the
subplot of Figure 4.35, where the error bars include all the effects mentioned above, which are
added in quadrature:

• the statistical uncertainty from data and MC sample size,
• the difference between the trigger efficiency computed in the reference sample and the

absolute efficiency in MC,
• the difference between the correction factor when computed in the reference sample and

an alternative reference sample (with the addition of fso and syo trigger lines).

The uncertainty associated with the trigger correction is then assigned as a variation of the
templates using 42 histosys modifier. This variation is implemented to be independent across
momentum bins and channels, but fully correlated for the individual momentum bins across
the three samples in each channel. The relative uncertainty assigned to each bin is shown in
Figure 4.36. The most significant contribution to uncertainty is the difference between the
correction factor computed with the nominal and alternative reference triggers. An additional
fully correlated (normsys) variation is added to the muon channel only, which is based on the
difference of the correction factors for the integrated e and µ channels. This should account
for the unlikely case that the observed difference in correction factors originates from an
unaccounted systematic effect only present in one channel. This difference is very small and
amounts to 0.037 %, which is also reassuring in the sense that the trigger correction itself
does not have a significant impact on Rµ. Another correlated normsys variation is added
as the difference of the integrated trigger correction factor computed using the nominal and
the alternative reference triggers, which is implemented fully correlated between the e and
the µ-channel. This should account for the fact that the observed differences due to the
choice of the reference trigger likely originate from a common source, which would make them
correlated across momentum and the channels. Since the origin of this discrepancy is not fully
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Figure 4.35: The trigger efficiency in data and MC for the e-channel (left) and the µ-channel
(right). For MC, the efficiency within the reference sample and the absolute trigger efficiency
are shown. The subplots show the data/MC ratio of the trigger efficiency, which is used to
correct the MC templates. The error bars on the ratio include the statistical and systematic
uncertainties.

0.9975

1.0000

1.0025

    μ-channel, signal

max. variation = 0.35%
stat error, min=0.18%

0.9975

1.0000

1.0025

    μ-channel, background (true μ)

max. variation = 0.35%
stat error, min=5.08%

0.9975

1.0000

1.0025

    μ-channel, background (fake μ)

max. variation = 0.35%
stat error, min=3.57%

1.5 2.5 3.5 4.5

0.9975

1.0000

1.0025

    e-channel, signal

max. variation = 0.23%
stat error, min=0.17%

1.5 2.5 3.5 4.5

0.9975

1.0000

1.0025

    e-channel, other (true e)

max. variation = 0.23%
stat error, min=5.42%

1.5 2.5 3.5 4.5

0.9975

1.0000

1.0025

    e-channel, other (fake e)

max. variation = 0.23%
stat error, min=8.07%

0.0 0.2 0.4 0.6 0.8 1.0

pℓ [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

va
ria

tio
n 

(tr
ig

ge
r)

Figure 4.36: The relative uncertainty associated with the trigger correction, assigned indepen-
dently to each template bin.
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understood, the exact correlations are not known, which is why it was included in the model as
a fully independent effect, which is the more conservative choice for the resulting uncertainty
on Rµ. However, it allows the overall normalisation of the templates not to vary as much as
if they were correlated, which is why this variation is included in addition. The integrated
difference is 0.158 % in the µ-channel and 0.132 % in the e-channel. This overall normalisation
does not have a significant impact on Rµ, since the size of the variation in both channels is
very similar. The trigger efficiencies in data and MC, the resulting correction factors, and the
quantities used to compute the uncertainties on the correction factor are shown in Table 4.23
for the momentum integrated samples of the µ-channel and the e-channel. The similarity of
the differences with the usage of alternative reference triggers indicates that this effect is highly
correlated across the channels, and cancels when propagated to Rµ.

Implementing the trigger uncertainty as independent across momentum bins and channels
means that the uncertainty associated with the trigger will likely be overestimated. The impact
of reducing this uncertainty on the total uncertainty of Rµ is minimal, for which some studies
will be shown in Section 5.3.7.

Table 4.23: A summary of quantities related to the trigger correction and associated uncer-
tainties computed for the integrated muon and electron samples, as well as a combination of
the two. The trigger efficiencies ε in data and MC are shown together with their statistical
uncertainties. The resulting data/MC correction factor κnom differs only slightly between
the µ-channel and the e-channel. Also shown is the resulting statistical uncertainty on the
correction factor (both from data and MC) σstat, the change of the correction factor when
using the absolute efficiency in MC (κabs), and the change of the correction factor when using
an alternative reference sample (κalt).

µ-channel e-channel µ+e-channel
ε (data) 0.966 02 ± 0.000 10 0.998 45 ± 0.000 02 0.982 31 ± 0.000 05
ε (MC) 0.954 41 ± 0.000 07 0.986 08 ± 0.000 04 0.969 52 ± 0.000 04
κnom 1.012 17 1.012 54 1.013 20
σstat/κnom 0.013 % 0.004 % 0.007 %
(κnom − κabs)/κnom 0.072 % −0.009 % 0.033 %
(κnom − κalt)/κnom 0.158 % 0.132 % 0.149 %

4.6.5 Modelling of final-state radiation
To account for the mismodelling of FSR in MC, a variation of the templates should be included
in the model, which reflects such effects. This could be a non-negligible source of systematic
uncertainty since it will affect the electron channel much more than the muon channel. In
addition, because FSR changes the momentum of the lepton, an impact on the shape of the
distributions is expected. To correctly vary the amount of FSR present in MC, the momenta
of all generated FSR photons on the signal hemisphere are saved. For this, FSR photons are
defined as primary photons with a τ lepton as an ancestor and no π0 as a mother. To simulate
the effect of a reduced FSR rate, the (generator) momenta of a random fraction of the FSR
photons are added to the signal lepton momentum. This is done for 5 % of all photons, which
is considered conservative.
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Figure 4.37: The variations of the templates as a result of a change in FSR rate.

The magnitude of this variation is based on studies with a J/ψ sample, using J/ψ → e+e−

to analyse the modelling of final-state radiation, as well as J/ψ → µ+µ− as a control mode
without radiative effects. In the region sensitive to FSR mismodelling, an agreement well
within 5 % between data and MC was observed. These studies with the J/ψ sample were
carried out by a Belle II colleague.

The simulation program responsible for generating FSR, PHOTOS [128], is also expected to be
much more accurate than 5 %. In leptonic tau decays, the agreement with the exact analytical
formula of radiative corrections to the decay rate was found to be around 1 % [157].

Unfortunately, adding FSR photons to MC is not so straightforward. However, it is reasonable
to assume that the effect of a higher FSR rate would be exactly opposite to that of a lower
rate. Based on this assumption, the symmetric variation of the templates will be enough to
capture both effects. The resulting variation of the templates is implemented with a correlated
shape modifier (histosys) and is shown in Figure 4.37.

4.6.6 Modelling of initial-state radiation
To estimate the effect of mismodelled initial-state radiation (initial-state radiation (ISR)) in
MC, events are scaled by

wISR = (1 ± 0.05)NISR , (4.29)

where NISR is the number of generated photons without a τ lepton as ancestor and with an
electron or positron as mother particle in the event. Such varied templates are shown in
Figure 4.38 and included in the model with a correlated shape modifier (histosys). The 5 %
variation used in Equation 4.29 is a conservative estimate of the size of this effect. Additional
checks were performed by varying ISR photons from 5 % to 20 %, and for all cases the impact
on Rµ was comparably small (see Section 5.5.2). This is because the effect of ISR essentially
cancels due to the similar influence on the templates in the electron and muon channels.
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Figure 4.38: The template variations associated with a change in ISR rate.

4.6.7 Particle decay-in-flight
To estimate the effect of mismodelled decay-in-flight rate of particles in MC, events are scaled
by

wdecay = (1 ± 0.05)Ndecay , (4.30)

where Ndecay is the number of truth-matched tracks that are reconstructed from the decay
product of another (long-lived) particle. Such varied templates are shown in Figure 4.39 and
included in the model with a correlated shape modifier (histosys). Similar to the ISR variation,
the 5 % variation is thought to be conservative and the impact on Rµ will be small due to
the similar variation of the signal templates in the electron and muon channels. The main
difference between the two channels comes from τ → πντ and τ → ππ0ντ decays on the signal
side. This is because the pion has a much shorter lifetime (2.6 × 10−8 s) compared to the muon
(2.2 × 10−6 s), and due to helicity suppression, it decays about 99.97 % of the time into a muon
and a muon neutrino [10]. In the MC simulation, these events are still considered to have a
true muon, which is why this difference appears in the background template with the true
lepton.

4.6.8 Modelling of the momentum distribution
Since the objective is to measure the normalisation ratio of two templates, a systematic effect
that affects both channels equally would largely cancel. To account for any such effect that
would change the shape of the distribution in a way not covered by one of the included shape
variations, additional parameters are added to the fit model. For this, uncertainties are added
for each of the 21 bins of the templates. These uncertainties are implemented to be fully
correlated across all six templates, but independent between the momentum bins. With pyhf,
this is done by adding correlated shape modifiers, which are shared for all templates, but
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Figure 4.39: The template variations associated with a change in decay-in-flight rate.

the shape is only different from the nominal templates in a single bin. This amounts to one
additional nuisance parameter per template bin.

The size of this variation is obtained from the spread of the data/MC ratio in a sample with
all selection cuts applied except for the lepton ID requirement on the signal track, previously
shown in Section 4.4.8. This greatly increases the background with pions on the signal side,
while not being sensitive to any effects of particle identification. The standard deviation of
the data/MC ratios computed with the same binning over the lepton momentum, which is
used for the fit, amounts to 0.0081. This ratio and the corresponding distributions in data and
simulation are shown in Figure 4.40. Using the standard deviation of these data/MC ratios as
an estimate to reflect the variation in the shape of the momentum distribution, an uncertainty
of 0.81 % is assigned to each momentum bin in the model. This will be referred to as a ‘global
shape’ systematic, which can be thought of as an uncertainty to account for the mismodelling
of the momentum distribution.

4.6.9 Sample normalisation
In addition to a correlated shape difference, there could also be some systematic effect that
affects the overall normalisation in all bins. This is addressed by assigning an uncertainty
on the normalisation of the different samples. This includes effects such as cross-section and
branching fraction uncertainties as well as normalisation uncertainties due to background
mismodelling.

Taupair normalisation

To obtain a normalisation uncertainty for the taupair process, the same sample that was used
for the global shape systematic (Section 4.6.8) is used as a control sample. It has all the
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Figure 4.40: The distribution of the signal momentum in data and MC, with the same binning
used for the template fit. No lepton ID selection was applied to estimate the systematics
associated with the modelling of the momentum distribution. The standard deviation of the
data/MC ratios, shown in the lower plot, is used to determine the size of the corresponding
uncertainty in the momentum bins.

selection cuts applied except for particle identification on the signal track, which significantly
increases the amount of taupair events while keeping background from other processes at a
minimum. This sample is used to estimate a normalisation uncertainty without being sensitive
to lepton ID uncertainties. The distribution of visible energy in the CM frame was shown
in Figure 4.25 in Section 4.4.8, indicating good data/MC agreement. The distribution of
signal momentum with the same binning used for the fit was shown in the previous Section, in
Figure 4.40. To account for potential normalisation differences originating from non-taupair
processes, a simple two-component fit with templates corresponding to taupair and non-taupair
events is performed. A 25 % normalisation uncertainty (normsys) is assigned to the non-taupair
template and an uncorrelated shape uncertainty (shapesys) of 0.81 % (taken from Section 4.6.8)
to the taupair template. This allows for changes in the shape of the distribution, which is
already covered by the global shape systematic. The pre-fit distribution is shown in Figure 4.41
on the left. An estimate of the normalisation of the taupair template, which is left entirely
unconstrained, is obtained from the fit. The difference of the estimated scaling from unity
with the addition of the fit error is used as the uncertainty for the taupair process. If this
uncertainty is smaller than the dominant uncertainties known to affect the normalisation
of taupair events, they are used instead. In this analysis, this is the uncertainty on the
taupair cross-section, 0.33 % [158], and the branching fraction uncertainty of the tag side
tau decays, 0.62 % [10]. Their quadrature sum amounts to 0.7 %. For the present case the
fit result is 1.0072 ± 0.0021, with the post-fit distribution shown in Figure 4.41 on the right.
This amounts to a normalisation uncertainty for the taupair process of 0.92 %, which exceeds
the 0.7 % mentioned before. The estimated uncertainty from data is still sensitive to effects
originating from the π0 requirement on the tag side, which is already taken into account in a
separate systematic. However, the chosen approach is conservative and at worst the overall
normalisation uncertainty is slightly overestimated, which does not significantly impact the
uncertainty on Rµ. The data-driven method was chosen to be able to account for larger
normalisation differences since otherwise the fit model would not be flexible enough to adapt
the scale of the templates to the data level. In particular, this could be the case for some of
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Figure 4.41: The pre-fit (left) and post-fit (right) distributions of the control sample, which is
used to verify the normalisation uncertainty of the taupair process.

the sample splits used in Section 5.5 to test the stability of the result, since some of these
splits use subsets of data for which no separate corrections are available. However, for this
nominal case the observed data/MC difference of the taupair enriched sample is consistent
with what was expected.

Taupair with wrong signal side

For taupair events with a misidentified signal side but the correct tag side, the uncertainty
of the corresponding tau branching fraction is used as a normalisation uncertainty. This is
dominated by τ → πν with 1.03 % and τ → ππ0(π0) with 0.62 %.

Taupair with wrong tag side

As seen in Table 4.16, many events are classified as background because they have the wrong
tag side decay, even if there is a leptonic tau decay on the signal side. Many of these ‘fake tag’
events have a mis-reconstructed K0

S or K0
L in the decay, for which an additional uncertainty

should be assigned. A conservative uncertainty of 25 % is chosen for the normalisation of these
events, as the impact on Rµ is minimal.

Non-taupair events

Similarly, an overall normalisation uncertainty for non-taupair backgrounds is assigned. For
this, the different backgrounds are grouped as they only contribute very little to the composition
of the total background (see Table 4.16):

• the eeττ sample
• the qq̄ samples: uū, dd̄, cc̄, ss̄

• the ℓℓ samples: ee(γ), µµ(γ)
• the eeℓℓ samples: eeee, eeµµ
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Figure 4.42: The relative variation of the templates due to overall normalisation uncertainties.
Each colour shows an independent variation that is fully correlated across all templates.

For each of these groups, independently, a 25 % normalisation uncertainty is assigned, which
is based on the initial data/MC discrepancy observed in the very high thrust region before
any selections (Figure 4.9a). In particular, the last bin is dominated by ee(γ) background and
shows a 20 % excess of data/MC. This normalisation uncertainty is conservative and has little
impact on the uncertainty on Rµ due to the small fraction of the background that survives the
selections.

These normalisation uncertainties are implemented with correlated shape modifiers (histosys).
The effect of the normalisation of each of the components mentioned above on the templates is
shown in Figure 4.42. Here, ‘taupair’ refers to the normalisation of all taupair events; ‘pi-sig’
and ‘pipi0-sig’ refer to taupair events with the wrong signal side but the correct tag side;
‘taupair-tag’ refers to taupair events with the wrong tag side; and the other names refer to the
non-taupair events.

4.6.10 Luminosity
The luminosity uncertainty is implemented using the lumi modifier from Table 4.19, a nor-
malisation that affects all templates equally. As detailed in Section 3.5.1, the official Belle II
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measurement of the offline luminosity with Υ (4S) beam energy is

Lint = 361.654 ± 0.021 (stat) ± 2.170 (sys) fb−1.

This corresponds to a relative uncertainty of 0.6 %. Like any other global scaling of the
templates, the uncertainty on the luminosity has a negligible impact on Rµ. However, contrary
to the full cancellation one might expect from writing down the ratio when counting the
background subtracted yields, there can still be a small effect on Rµ when performing a fit.
This is because a global scaling of the data will not necessarily be absorbed by the nuisance
parameter associated with the luminosity. Correlated changes in the normalisation of the
templates can also be achieved with a combination of various other systematic effects, which may
subsequently have an impact on Rµ. Examples are the taupair normalisation or π0 efficiency,
which are correlated, but not completely equal for all the templates. Which parameters
collectively result in similar effects on the templates can be seen from the correlations of the
fitted parameters, which are shown in Figure 5.31 in Section 6.2.2 for some selected parameters,
including the luminosity nuisance parameter. Adding additional freedom to the fit due to
luminosity uncertainty thus slightly increases the overall uncertainty on Rµ, which is, however,
a very small effect, and the impact on Rµ is of the order of 0.01 %.

4.6.11 Tracking efficiency
Following the latest recommendation of the tracking performance group in Belle II, a systematic
uncertainty for each track of 0.24 % is assigned to MC to account for differences in track
reconstruction between simulation and data. This uncertainty is fully correlated across all
samples and is included in the model through a normsys modifier. Since the event has two
charged tracks, the normalisation uncertainty is 0.48 %. This is based on the assumption that
the data/MC ratio of the tracking efficiency does not depend on the type of the particle. The
measurement of Rµ would be mainly sensitive to data/MC differences between e and µ. At the
current level of precision, no significant difference between electrons and muons is expected,
and the used assumption is valid. For future measurements, when other uncertainties are
reduced, this might have some impact and should be studied in more detail.

4.6.12 Momentum correction
To correct for the scale of the momentum of charged particle tracks, global correction factors
provided centrally by the Belle II tracking performance group are used. The momentum
obtained by the tracking algorithm is biased since it is derived from an imperfect magnetic
field map in the reconstruction process. This can be checked by studying the peak position of
particles with a well-known invariant mass. The present correction to the track momentum is
obtained from the study of the D0 mass peak. The scale factor is computed independently for
each run and applied to data. To estimate the systematic uncertainty, the data is reprocessed
using the up and down variation of the scale factor, corresponding to ±1σ, where σ is the
total uncertainty on the correction factor. Then, the relative variation of the corresponding
templates (obtained with the varied scale factor) with respect to the data (with the nominal
scale factor) is added as a correlated shape variation on the MC templates. These shape
variations are shown in Figure 4.43. The effect is small (∼ 0.01 %) and does not meet the
criteria to be included in the fit.
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Figure 4.43: The shape variations originating from the varied momentum scale factor in data.
The size of the variations is small and does not meet the criteria for having them included in
the fit.

4.6.13 Tag side modelling (signal embedding)
A signal embedding technique is used to evaluate the impact of the MC modelling on the tag side.
The combined e+µ sample is used for this, and truth-matched signal events (either τ− → e−ν̄eντ

or τ− → µ−ν̄µντ ) are embedded in data and MC. For all these samples, the preselection is
applied, except for a looser cut in the signal momentum, namely 0.5 GeV < pℓ < 5.5 GeV.
The embedding is done by randomly choosing an event from the true signal events and then
replacing the track on the signal side in the sample that is to be embedded. To account for a
possible impact of FSR photons, which will be more prominent in events with an electron, the
4-momentum of the closest photon is added to the signal track when its momentum direction
is within a cone of 0.1 rad around the momentum of the signal track. The tracks are replaced
in quintiles of the signal momentum magnitude (in the CM frame) to choose signal tracks for
which the magnitude of the momentum is not too dissimilar from the original track, to preserve
the correct kinematic relations. These quinitles are chosen independently for the signal samples
and the combined e + µ sample, and the corresponding bin edges are listed in Table 4.24.
Tracks with momentum below 0.8 GeV are also replaced; however, their contribution to the
final embedded sample is minimal.

After choosing a signal track for the replacement, it is then rotated so that the momentum
direction matches the original momentum direction in the CM frame. As a next step, the
signal momentum is boosted from the CM frame to the laboratory frame, and all variables
that use information from the signal momentum (in particular event kinematics) are updated
to reflect the properties of the replaced signal. Then, all analysis selections are applied again,
and four embedded samples are obtained, namely:
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Table 4.24: The bin edges for the quintiles in which the embedding is performed, defined over
the momentum of the signal track in the CM frame.

1st 2nd 3rd 4th 5th 6th

e + µ sample 0.8 1.289 1.839 2.443 3.182 6.0
τ− → e−ν̄eντ sample 0.8 1.271 1.8 2.388 3.113 6.0
τ− → µ−ν̄µντ sample 0.8 1.326 1.886 2.488 3.215 6.0
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Figure 4.44: A comparison of the embedded samples in MC to the original distributions of
τ− → µ−ν̄µντ and τ− → e−ν̄eντ which were used for the embedding. The figure shows the
momentum of the signal track, with a looser selection than what is used in the analysis. It
extends up to 1 GeV at its lower end and does not include the veto of the lepton ID correction
bins in which no mis-id rate corrections are available.

• τ− → µ−ν̄µντ embedded in MC,
• τ− → µ−ν̄µντ embedded in data,
• τ− → e−ν̄eντ embedded in MC,
• τ− → e−ν̄eντ embedded in data.

Before comparing data and MC with these embedded samples, it is important to check how
well the embedding worked by comparing the distributions of the embedded MC samples to the
distributions of the original signal events used for the embedding. This comparison is shown in
Figure 4.44 and Figure 4.45 with the embedded e-channel in blue and the embedded µ-channel
in red. In Figure 4.44 all analysis selection except for the cut on the ANN output and a looser
cut on the signal momentum was applied. In case of the embedded samples, the selection was
imposed on the updated variables. The figure shows that even from 1.0 GeV to 1.5 GeV, where
there are the largest differences between the e and the µ samples, the momentum distribution
of the signal track is well reproduced. The comparisons shown in Figure 4.45 are with the
same momentum cut as for the analysis but still without the cut on the ANN output. Overall,
the kinematics of the signal events, as well as the ANN output, are well reproduced in the
embedded samples. The dips in the polar angle distribution of the signal (4.45b) stem from
artefacts introduced by the lepton ID selections. The dip at 90 ◦ can also be seen in the
e-efficiencies shown in Figure 4.15 and originates from the gap in the ECL detector. Also,
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the drop of the µ-efficiencies towards the endcaps can be seen. Both effects appear in the
embedded samples because it consists of both the electron and the muon channel, with a
relative size of approximately 50 %. The true signal also has the lepton ID cut applied, but
since it is truth-matched MC, only one lepton type is present.

Using the embedded samples, the data/MC agreement within the electron and muon samples
can now be compared without being influenced by any effects of lepton universality. Because
the same signal sample is used to embed in data and MC, any observed discrepancies come
from the tag side and will largely cancel when measuring Rµ. Some distributions are shown in
Figure 4.46, where the embedded e sample is on the left and the embedded µ sample is on the
right. It should be noted that for all these plots, the hatched uncertainty band in the ratio
only includes lepton ID uncertainties.

While the data/MC agreement is primarily flat and within the given uncertainties, there are
regions with significant discrepancies. As long as these discrepancies appear equally in the
e and µ samples, they are not concerning for the present measurement. Most interesting is
the difference between the discrepancies in the two samples. The momentum distribution of
the signal lepton is shown in Figure 4.47 The data/MC ratio follows a very similar shape in
both samples and deviates not more than ∼ 2.5 % from 1. The shape of the data/MC ratio
resembles what was previously observed when estimating the shape uncertainty to account for
the mismodelling of the momentum distribution, shown in Figure 4.40.

The mismatch of the differences is obtained by computing the ratio of the data/MC ratios.
This double ratio is shown in Figure 4.48, where the blue markers are the result of not adding
the momentum of the FSR candidate to the signal track and the red markers are obtained when
these photons are taken into account in the replacement. The difference between both double
ratios is small and does not impact the size of the estimated uncertainty. The double ratio is
again shown in Figure 4.49, using the coarser lepton ID binning in steps of 0.5 GeV. The reason
for using a coarser binning here is that the ratio is affected by statistical uncertainties, shown as
error bars in the plot. The coarse bins reduce these uncertainties and help to detect systematic
deviations from 1. The observed differences are consistent with unity within the statistical
uncertainties. Since it is not possible to reliably separate any statistical fluctuations from real
systematic effects, a conservative approach is chosen to extract uncertainties: First, the ratios
are fit with polynomials of degree 0 to 2. Then, uncertainty bands for each polynomial are
computed, and the largest difference from 1 of any uncertainty band is taken as the size of
the uncertainty. The fitted polynomials with uncertainty bands are shown in different colours
in Figure 4.49, and the resulting symmetric envelope is shown in grey. This procedure is
conservative, accepting the possibility of inflated uncertainties so as not to risk underestimating
them. The reason why this is done only up to second order is that even though higher order
polynomials might as well give a good description of the ratio in terms of a χ2 test, the LOOCV
[159] score increases with higher-order polynomials. This indicates an overfitting of statistical
fluctuations, especially since the χ2 value no longer decreases for the third-order polynomial.
Figure 4.50 shows the fits, including a third-order polynomial.
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Figure 4.45: A comparison of the embedded samples in MC to the original distributions of
τ− → µ−ν̄µντ and τ− → e−ν̄eντ which were used for the embedding. The figure shows the
distributions of signal track variables (a, b), event variables (c, d, e) and the ANN output (f).
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Figure 4.46: Data/MC comparison of the embedded samples for different variables. The e
sample is shown on the left and the µ sample on the right. An ANN cut of 0.9 is applied, and
the hatched uncertainty bands only include lepton ID uncertainties.
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Figure 4.47: Data/MC comparison of the signal lepton momentum in the embedded e sample
(left) and the embedded µ sample (right) with an ANN cut of 0.9 applied. The hatched
uncertainty bands only include lepton ID uncertainties.
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bins of the lepton candidate momentum. For the blue makers, the FSR candidates on the
signal side are not taken into account, while for the red markers, the closest photons are added
to the respective signal momenta when their direction is within a cone of 0.1 rad around the
signal momentum direction.
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Figure 4.49: Polynomials up to degree 2, fitted to the ratio of data/MC ratios from the
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Cross-Validation (LOOCV) score for the individual polynomials.
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Using the symmetric envelope in Figure 4.49, a per-bin uncertainty is defined for the templates,
where the size of the uncertainty corresponds to the value of the envelope in the centre of
the bin. This uncertainty is implemented with an uncorrelated shape (shapesys) modifier.
Figure 4.51 shows the relative size for each bin. The uncertainty is only assigned to the e and
µ signal templates and is vetoed for the background templates due to the small size. This is
consistent with the intended application since the embedded samples only reflect the signal
decays and are used to estimate the bias due to the tag side mismodelling, which arises from
the selection process.

0.99

1.00

1.01     μ-channel, signal

max. variation = 0.51%
stat error, min=0.18%

0.99

1.00

1.01     μ-channel, background (true μ)

max. variation = 0.51%
stat error, min=5.08%

0.99

1.00

1.01     μ-channel, background (fake μ)

max. variation = 0.51%
stat error, min=3.57%

1.5 2.5 3.5 4.50.99

1.00

1.01     e-channel, signal

max. variation = 0.51%
stat error, min=0.17%

1.5 2.5 3.5 4.50.99

1.00

1.01     e-channel, other (true e)

max. variation = 0.51%
stat error, min=5.42%

1.5 2.5 3.5 4.50.99

1.00

1.01     e-channel, other (fake e)

max. variation = 0.51%
stat error, min=8.07%

0.0 0.2 0.4 0.6 0.8 1.0

pℓ [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

va
ria

tio
n 

(ta
g 

sid
e 

m
od

el
lin

g)

Figure 4.51: The relative uncertainty on each template bin, obtained from the symmetric
envelopes of the polynomials fitted to the blue markers. The blue markers show the ratio of
the data/MC ratios of the embedded e and µ samples.
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Neural network selection

In addition to using the embedded samples to derive an uncorrelated uncertainty for the
different template bins, they can also be used to derive a fully correlated variation across all
templates, reflecting the observed data/MC discrepancies. Since most of these discrepancies
will already be covered by other systematics or are just statistical fluctuations, the data/MC
ratio of, for example, Figure 4.47 is not taken as a shape variation. However, most of these
effects can be cancelled by computing the ANN efficiency,

εNN = Npass
Npass + Nfail

, (4.31)

where Npass are the number of events passing the ANN selection and Nfail are the number
of events removed by the cut on the ANN output. This efficiency can be computed in every
momentum bin and individually for the e sample and the µ sample. Then, the ratio of the
ANN efficiency in data over the ANN efficiency in MC can be used to reflect the change in
the data/MC ratio before and after applying the ANN cut. Since the data/MC difference in
the low ANN output region comes from mismodelled backgrounds, adding this as a shape
variation of the templates is not desirable, since almost all of these backgrounds are removed
after the cut on the ANN output is applied. Instead, the efficiency ratio with respect to a cut
of 0.8 is computed, where the signal becomes dominant. The data/MC ratios of the efficiency
ratios are shown in Figure 4.52. This is taken to be a fully correlated shape variation across all
templates and is implemented with the histosys modifier. This complements shape variations
equal for the e and µ channels but independent between the momentum bins, already covered
by the global shape systematic described in Section 4.6.8.
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Figure 4.52: The correlated shape variations of the templates, resulting from the data/MC
ratio of the ANN efficiency.

4.6.14 Detector misalignment
The alignment of the Belle II tracking system is described by about 60 000 parameters, covering
the local alignment of sensors and wires up to the relative alignment of sub-detectors. The
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alignment parameters are determined from cosmic ray tracks and various data samples in the
calibration procedure of Belle II. More details on the alignment procedure are reported in [160,
161]. To obtain an estimate of the effect due to residual misalignment on the determination of
Rµ, additional MC samples of e+e− → τ+τ− have been produced, using nominal alignment
parameters as well as the following different alignment configurations:

• Charm misalignment (v0): Difference from data in the day-to-day alignment of the
vertex detectors and the CDC.

• Charm misalignment (v1): Residual misalignment after vertex detector and CDC align-
ment.

• Misalignment prompt processing: Difference between prompt alignment and reprocessing
alignment.

• Misalignment VXD CDC wires: Residual misalignment in the iteration of complete
global alignment (from zeros), including CDC wires.

Each sample corresponds to an integrated luminosity of 100 fb−1 and for each alignment
configuration, the beam spot position was recalibrated. In all samples, the same events
from generation and simulation have been used as input, and the different misalignment
configurations have only been applied in the reconstruction step. This is to suppress statistical
fluctuations that would originate from independently generated samples. The misalignment
samples were generated by a Belle II colleague.

Figure 4.53 shows the distribution of signal momentum in bins of 1 GeV width with the different
alignment configurations. The ratio plot shows the ratio of the special alignment configurations
to the nominal alignment configuration. Following the recommendations regarding alignment
systematics, the variation from ‘charm misalignment (v0)’ is used to estimate the statistical
uncertainty associated with misalignment and the most extensive bin-wise variation of ‘mis-
alignment prompt processing’, ‘misalignment VXD CDC wires’ and ‘charm misalignment (v1)’
to estimate the systematic uncertainty. Then, the statistical and systematic components are
summed in quadrature, as shown on the right side of Figure 4.53. To be conservative, the most
extensive variation of the four bins is used and applied as an uncorrelated shape variation to
each bin of the templates. The resulting uncertainty is 0.038 %, which is still very small. To
not unnecessarily increase the number of nuisance parameters, this uncertainty is added in
quadrature to the per-bin uncertainty attributed to the tag side modelling, obtained from the
embedding studies shown in Section 4.6.13.

4.6.15 Dependence on the generator model
The modelling of the decay τ− → π−π0ντ in the TAUOLA generator [124] has been imple-
mented from the measurement of the hadronic spectrum carried out by the Belle collabora-
tion [162]. In total, 11 parameters describe the unfolded spectrum d(ππ0)/ds, with intermediate
resonances ρ(770), ρ′(1450) and ρ′′(1750) parametrised using the Gounaris-Sakurai model [163].
The generator provides two parameter configurations, from which two independent taupair data
sets have been produced to estimate the impact on Rµ that comes from the parametrisations.
The first parametrisation uses values determined from a fit to the Mππ0 distribution when the
normalisation factor |Fπ(0)|2 is set equal to unity as expected for a Breit-Wigner shape of the
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Figure 4.53: Estimation of the misalignment systematic with different alignment configurations.
The upper left plot shows the distribution of signal momentum in bins of 1 GeV width with
the different configurations. The ratio plot on the lower left shows the ratio of the special
alignment configurations to the nominal alignment configuration. The lower right plot shows
the resulting statistical and systematic uncertainty that is attributed to the misalignment,
computed based on the deviation of the ratio from unity.

resonances and the obtained sample will be referred to as ‘MC1’. For the second parametrisa-
tion, all parameters were left floating to account for a possible deviation from the form of the
fitting function, and the corresponding sample will be referred to as ‘MC2’. Figure 4.54 shows
the squared invariant mass on the tag side for the two-parameter configurations, separated
according to the charge of the decay τ− → π−π0ντ . Here, only events passing all the selections
are shown. The different parametrisations are expected to cause only minor differences in
the tails of the squared invariant mass distribution of π−π0. In the ratio in Figure 4.54, no
significant differences are observed, except for M2

tag < 0.5 GeV2, where the ‘MC1’ sample has
slightly more events than the ‘MC2’ sample. These differences affect only a few events.

In Figure 4.55, the different models are compared in bins of signal momentum. In the upper
left figure, the total number of entries is shown. In the lower left, the ratio of the two samples
is shown, with the positive and negative samples combined. In the lower right, the difference
between this ratio and unity is shown, which is around 0.1 %. The deviations from one of the
ratios are consistent with statistical fluctuations, and no significant shift is observed. This
also aligns with the expectation that the τ− → π−π0ντ decay is well modelled, especially the
peak of the π−π0 invariant mass. Thus, based on this study, it was decided not to add an
additional systematic uncertainty. The tag side modelling is expected to affect the e and µ
channels equally and will have little impact on Rµ. If some mismodelling still affects the two
channels differently, it would already be taken into account by the signal embedding procedure
described in Section 4.6.13.
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Figure 4.56: The relative template variations due to systematics associated with the photon
energy correction. The variations are at the order of 0.01 % and can be neglected.

4.6.16 Photon energy
The reconstructed photon energy can differ from the actual energy of the photon, so it needs
to be calibrated. This is also called the photon energy bias. A correction factor is obtained
to account for differences between data and simulation, which is then applied to data. The
correction factors are provided by the Belle II neutrals performance group, by studying the
invariant mass of two photons in the decays π0 → γγ and η → γγ. They are binned in photon
energy and azimuthal and polar angle of its momentum direction. Similarly to the momentum
scale correction (see 4.6.12), a systematic up and down variation of the energy bias is used to
obtain the impact on the selected events. Two additional data samples with varied energy bias
corrections are produced and the relative difference of the resulting templates is computed
with respect to the nominal one. This relative difference can be included as a shape variation
on the MC templates. It is shown in Figure 4.56. The variation of the templates would only
be at the order of 0.01 % and does not satisfy the requirement to be included in the model.

4.6.17 Photon efficiency
To correct for photon efficiency in MC, correction weights provided centrally by the Belle II
neutrals performance group are used. These weights are given in bins of momentum, polar
angle, and photon energy, and they have an associated statistical and systematic uncertainty.

There are multiple options for how to use these weights to correct the photon efficiency in MC:

1. Randomly removing photon candidates according to the weights: This means throwing
away photon candidates at the reconstruction level for which the associated weight is
smaller than a random number sampled between 0 and 1. This will correctly account
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for bin migration in variables that use the photon energies (e.g. the visible energy)
and produce the correct photon multiplicity. One disadvantage of this method is that
it cannot deal with correction weights larger than 1 (photons cannot be added to the
photon list). Another downside is that when estimating systematic uncertainties due to
these corrections, the whole MC sample needs to be reproduced multiple times, removing
photons with weights that vary up and down.

2. Weighting the events: A much more convenient method would be to weight the events
with a weight factor obtained as the product of the photon efficiency weights of all
photons in the event. This can be done after the reconstruction step and would only
require storing the weights of all photons or directly their product. However, this method
will reduce the total number of events in MC (if most photon efficiency weights are
less than 1). This does not make sense, as the whole event is not necessarily discarded
because some photons are undetected. The number of events can only change when
there is a bin migration due to the photon efficiency correction that would result in the
event being cut away by some analysis selection.

3. Weighting the events and dividing by their mean: One solution to the issue of losing
events would be to force the number of events to remain the same by reweighing the
weights so that their mean is 1. This method seems a little arbitrary and will give
different results depending on the cuts applied before this reweighing. If it is done after
some analysis selection, the bin migration of events ‘out of the selection’ is ignored since
the total number of events stays constant. It should be applied before any selections,
and even then it is unclear if it correctly reproduces the bin migrations in event-based
variables.

Methods 1 (removing method) and 3 (weighting method) were compared with a small MC
sample to check if they would give similar results. The result can be seen in Figure 4.57, where
the distributions of visible energy in the CM for the uncorrected MC and the different methods
are shown. In addition, results for the weighting method where larger efficiency weights
are clipped to unity are shown to see the impact of neglecting them. In Figure 4.57b, the
ratio of the distributions obtained with the different methods with respect to the uncorrected
distribution is shown. One can see that applying the photon efficiency corrections (with the
majority of weights smaller than one) results in a shift of the visible energy towards smaller
values, which is expected. The shift is much less pronounced for the weighting method than
for the removing method. This led to the conclusion that the removing method should be used
to get correct distributions of event kinematic variables if photon efficiency corrections larger
than one can be ignored. This seems feasible in the present case, since the difference between
the weighting method using all weights and the weighting method where weights are clipped
to unity is negligible.

Having settled on a method to correct photon efficiency, the associated systematic is imple-
mented in the model with a correlated shape variation. The variations are obtained from the
ratio of the varied MC samples (with photons removed using the up and down variations of
the efficiency weights) to the nominal MC sample. This ratio is shown in Figure 4.58 for each
of the six templates. A sizeable shift in the momentum distribution is observed due to the
uncertainty of the photon efficiency corrections, which cannot be neglected.
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Figure 4.57: A comparison of different methods to correct photon efficiency in MC, overlayed
distributions (a) and ratio (b). Compared to the removal method, the shift towards lower
visible energy is much less pronounced for the weighing method.
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Figure 4.58: The template variations associated with the uncertainty of the photon efficiency
correction.
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4.7 Impact of systematic effects
The contribution of each systematic effect to the overall uncertainty on Rµ is obtained using a
toy approach, where 2000 instances of simulated data (toys) are sampled from the fit model
for each systematic. In every toy sample, only auxiliary data belonging to the nuisance
parameters which model the systematic are altered based on the related constraint terms.
The standard deviation from the resulting distribution of the estimated Rµ values is taken
as the impact of the individual systematic effects. Table 4.25 lists the systematic sources
described in the previous section together with their contribution to the relative uncertainty
on Rµ. The table also shows how many parameters are needed to model each systematic,
as well as which modifiers were used. The stars next to the parameter numbers indicate
that these systematics have shared parameters. The small detector misalignment uncertainty
was added in quadrature to tag side modelling for each of the 42 bins individually, which is
possible since both effects are independent and fully uncorrelated across the momentum bins.
The number of nuisance parameters generally depends on the correlation of the respective
systematic uncertainties. In total, 194 nuisance parameters are included in the fit model. The
dominant source of uncertainty for Rµ stems from lepton identification, which contributes
0.32 %, with the next largest uncertainty amounting to 0.10 %, which is associated with the
trigger. The total relative systematic uncertainty is 0.37 %, which corresponds to an absolute
systematic of 0.0036 when multiplied by the SM prediction of Rµ of 0.9726. Together with the
quoted statistical uncertainty of 0.07 %, this results in an overall relative uncertainty of 0.38 %,
corresponding to a total absolute uncertainty of 0.0037. This aligns with the uncertainty
derived from a single fit with Asimov data, an artificial dataset that matches the expected
yields from simulation. The statistical component of the uncertainty, as well as the Asimov fit,
is described in more detail in Section 5.3.

Ranking plot

Another way to estimate the impact of the systematic sources on Rµ is with a so-called ranking
plot. This is a ranking of all the individual nuisance parameters according to their effect on
the parameter of interest. The influence on Rµ is obtained by varying the nuisance parameter
θ up and down by one standard deviation from the best-fit value θ̂. Here, one can distinguish
between the pre-fit impact and the post-fit impact, depending on whether the variation is
done with the uncertainty provided in the constraint term of the nuisance parameter, ∆θ, or
whether the post-fit uncertainty ∆θ̂ of the nuisance parameter is used. The fit is then repeated
with the nuisance parameter in question fixed to the varied value, and the change of the fitted
value of Rµ relative to the nominal fit result, ∆Rµ, is quoted as the impact. This is shown in
Figure 4.59 for each nuisance parameter and independently for the up and down variations.
In addition, this plot also shows the pull values, which will be discussed in more detail in
Section 5.3.5. The names of the nuisance parameters shown in Figure 4.59 and the systematic
with which they are associated are described in more detail in Table 4.26.
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Table 4.25: The relative expected uncertainty on Rµ, categorised according to various systematic
sources. The uncertainties were obtained with toy samples, where for each systematic type
2000 samples were used. Also shown are the number of parameters needed to model each
systematic and what modifiers were used. The stars next to the parameter numbers associated
with tag side modelling and detector misalignment denote that the parameters are shared.
The total relative uncertainty, including both statistical and systematic errors, is 0.38 %, which
corresponds to an absolute uncertainty of 0.0037.

Uncertainty [%] Parameters Modifier
Charged-particle identification 0.32 28 histosys

- Electron identification - 0.22 7 histosys
- Muon misidentification - 0.19 7 histosys
- Electron misidentification - 0.12 7 histosys
- Muon identification - 0.05 7 histosys

Trigger 0.10 42 histosys
2 normsys

Modelling of FSR 0.08 1 histosys
Normalisation of individual samples 0.07 8 normsys
Size of the simulated samples 0.06 42 staterror
Modelling of the momentum distribution 0.06 21 histosys
Tag side modelling (signal embedding) 0.05 42* shapesys
π0 efficiency 0.02 1 histosys
Particle decay-in-flight 0.02 1 histosys
Modelling of ISR 0.01 1 histosys
Luminosity 0.01 1 lumi
Tracking efficiency 0.01 1 normsys
Detector misalignment < 0.01 42* shapesys
Photon efficiency < 0.01 1 histosys
ANN efficiency < 0.01 1 histosys
Photon energy < 0.01 0 histosys
Momentum correction < 0.01 0 histosys
Total systematic uncertainty 0.37
Statistical uncertainty 0.07
Total 0.38 193
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Table 4.26: The names and descriptions of the nuisance parameters defined in the pyhf model.
If a range is given, multiple nuisance parameters are assigned, and the number is added to the
end of the name. The reference points to the section where the associated systematic effect
was introduced.

Name Range Description Section
R_mu N/A the parameter of interest 4.5.4
BF_e N/A norm for τ → eνeντ (κe) 4.5.4
gen_BF_scaling N/A scaling for Rµ (κgen

e/µ) 4.5.4
lumi N/A luminosity 4.6.10
pi0 N/A π0 efficiency 4.6.3
tracking_efficiency N/A tracking efficiency 4.6.11
FSR N/A FSR modelling 4.6.5
ISR N/A ISR modelling 4.6.6
decay N/A decay-in-flight 4.6.7
gammaEfficiency N/A photon efficiency 4.6.17
nn_efficiency N/A ANN selection 4.6.13
normalisation_mu_sig_x_bkg N/A wrong tag τ → µνµντ

normalisation_e_sig_x_bkg N/A wrong tag τ → eνeντ

normalisation 00-07 sample normalisation 4.6.9
trigger_alt_ref N/A trigger normsys 4.6.4
trigger_diff N/A trigger normsys 4.6.4
trigger_correction_e_channel 00-20 trigger shapesys 4.6.4
trigger_correction_mu_channel 00-20 trigger shapesys 4.6.4
lid_p_part_10_e_channel_e 00-06 e efficiency 4.6.2
lid_p_part_10_e_channel_fake 00-06 h → e mis-id rate 4.6.2
lid_p_part_10_mu_channel_mu 00-06 µ efficiency 4.6.2
lid_p_part_10_mu_channel_fake 00-06 h → µ mis-id rate 4.6.2
global_shape 00-20 modelling of momentum 4.6.8
selection_e_channel_e_sig_e 00-20 tag side modelling (e) 4.6.13
selection_mu_channel_mu_sig_mu 00-20 tag side modelling (µ) 4.6.13
mc_stat_error_e_channel [00-20] MC sample size 4.19
mc_stat_error_mu_channel [00-20] MC sample size 4.19
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Figure 4.59: Ranking plot showing the impact of varying the different nuisance parameters
within their associate uncertainties on Rµ. For the pre-fit impact ∆θ denotes the uncertainty
provided in the constraint term of the nuisance parameter, while for the post-fit impact,
∆θ̂ is the uncertainty as obtained from the fit. In addition, the pull values and associated
uncertainties of the nuisance parameters are overlayed with black markers.
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CHAPTER 5
Validation studies

5.1 Introduction
This chapter will show several studies that test the validity of the estimated systematic effects
and the fit result. First, in Section 5.2, a control sample using e+e− → (τ+ → e+νeν̄τ )(τ− →
µ−ντ ν̄µ) events will be studied. Then, in Section 5.3, the template fit and the properties
of the estimator will be studied in more detail. In Section 5.4, the shape of the simulated
distributions will be compared with what is observed in the data. Finally, in Section 5.5,
the consistency of the obtained estimate of Rµ from the fit will be studied for different data
subsets and other analysis conditions.

All these studies will be realised without exposure to the actual fit result or any information
that could indicate it. This is achieved by adding a random (but reproducible) unknown shift
∆ to Rµ in the likelihood function by doing the replacement

Rµ → R shifted
µ + ∆. (5.1)

This leaves the uncertainties and the fit behaviour invariant, but introduces a random offset to
the fitted parameter of interest. For ∆, a random number with a fixed seed was generated,
sampled uniformly between −0.02 ·RSM

µ and 0.02 ·RSM
µ . The random shift will only be removed

for the final unblinding of the measurement. In some cases, data and MC will be compared
in the individual channels, where any discrepancy in the overall normalisation could provide
hints on the value to be measured for Rµ. This is avoided by artificially scaling the MC so
that the total number of events matches the observed events in the data.

5.2 Control channel
To validate the modelling of the distributions associated with the signal side without being
sensitive to hints of lepton universality violation, taupair events with both leptonic tau decays
in a single event, that is τ → eνeντ in one hemisphere and τ → µνµντ in the other, are used.
In the following, this will be called the e × µ channel, which is used as a control sample. Any
potential issue with the signal side would also show up in this channel. In particular, the
validity of lepton ID corrections and associated uncertainties can be tested.
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The advantage of using this sample is that most non-taupair backgrounds can be rejected
without explicitly reconstructing any neutral particles. Thus, no associated systematics have
to be considered. Moreover, no information about Rµ can be inferred from this sample, since
it is only sensitive to the product of the leptonic branching fractions rather than their ratio.
Even if an overall normalisation difference is observed between data and MC, this would
not indicate an increase or decrease of one of the two branching fractions since the current
uncertainty on these branching fractions is 0.28 % (τ → eνeντ ) and 0.29 % (τ → µνµντ ) [10].
In contrast, other effects that change the overall normalisation are much less precisely known.
It is easiest to see this when looking at the expected number of observed events:

Nobs = 2 · σee→ττ · L · B(τ → eνeντ ) · B(τ → µνµντ ) · εsig. (5.2)

The systematic uncertainty associated with the luminosity L is around 0.6 %, more than a
factor of two larger than the uncertainty on the branching fractions. This ensures a minimal
observer-expectancy effect when looking at this control sample.

5.2.1 Preselection
To select a clean sample of τ → eνeντ and τ → µνµντ , a similar selection strategy is implemented
as for the primary measurement. Initially, to select the electron and muon candidate, the same
cut on the lepton ID variables as used in the primary sample is applied (Pe > 0.5 BDT-based
and Pµ > 0.9 likelihood (LH)-based). First, a cut-based preselection is optimised with the
annealing technique described in Section 4.4.5. Before optimising the preselection, the following
loose cuts on the track kinematics and thrust value are applied:

0.85 ≤ Vthrust

0.4 rad ≤ θℓ < 2.6 rad
1.0 GeV ≤ pℓ < 5.0 GeV

Here, θℓ and pℓ denote the polar angle and momentum of the lepton candidates in the laboratory
frame, which in this case refers to the electron and the muon candidate in both hemispheres.
The obtained ROC curve is shown in Figure 5.1, with a black cross indicating the chosen
selection. The exact cuts of this preselection are:

3.53 GeV2 ≤ m2
missing < 74.87 GeV2

0.25 rad ≤ θCM
missing < 2.87 rad

0.15 GeV ≤ pCM
t,missing < 4.00 GeV

0.16 GeV2 ≤ µ2
max (e) < 2.67 GeV2

0.29 GeV2 ≤ µ2
max (µ) < 2.58 GeV2

1.02 GeV ≤ pCM
t,max < 4.83 GeV

0.01 GeV ≤ pthrust frame
t,min < 1.21 GeV

The variables m2
missing, θCM

missing, pCM
t,missing, pCM

t,max and pthrust frame
t,min have the same meaning as

defined in Table 4.10. The features µ2
max (e) and µ2

max (µ) are the largest possible missing mass
squared in the tau decay in the respective hemisphere. They are derived from the expression
for the missing mass

m2
missing(τ) = (pτ −pτ, rec)2 = m2

τ +m2
τ, rec −2EbeamEτ, rec +2 cos θτ |p⃗τ, rec|

#
E2

beam − m2
τ , (5.3)
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Figure 5.1: A ROC curve obtained by optimising cuts for maximum purity with fixed efficiencies.
A black cross marks the set of cuts chosen for the preselection of the e × µ sample.

Table 5.1: The most prominent processes after applying the preselection to the e × µ sample.
The signal efficiency is 25.05 %.

Process Fraction
ee → (τ → eνeντ )(τ → µνµντ ) 88.04 %
ee → (τ → eνeντ )(τ → hnπ0ντ ) 5.39 %
ee → eeµµ 2.5 %
ee → (τ → eνeντ )(τ → hντ ) 2.29 %
ee → ττ (other) 1.15 %
ee → eeττ 0.31 %
ee → cc̄ 0.12 %
ee → ee(γ) 0.1 %

where pτ is the true (unknown) tau 4-momentum, pτ, rec is the reconstructed 4-momentum
from the visible decay products and θτ is the angle between the corresponding 3-momenta. In
this equation, Eτ is set to the beam energy Ebeam =

√
s

2 , and only quantities in the CM frame
are used. Now everything on the right-hand side of Equation 5.3 is known, except for θτ . To
obtain µ2

max (e) and µ2
max (µ), θτ = 0 is used and thus the largest possible value for m2

missing(τ)
is obtained.

This preselection only removes a small fraction of background events, since the sample was
already relatively clean due to the unlikely combination of an electron and a muon in low-
multiplicity backgrounds. In Figure 5.2, all the variables used in the preselection are shown,
and the applied selection is indicated with red arrows. All the selections, except for the one
on the shown variable, have been applied to show the distributions. The remaining processes
after this selection and the most dominant taupair backgrounds are shown in Table 5.1.

5.2.2 Multivariate selection
As a next step, an ANN was trained in the same way as described in Section 4.4.7. As input
features, the same variables as for the preselection are used, with the addition of θCM

min,missing,
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Table 5.2: The most prominent processes after applying all the selections for the e × µ sample.
The signal efficiency is 8.9 %.

process fraction
ee → (τ → eνeντ )(τ → µνµντ ) 90.9%
ee → (τ → eνeντ )(τ → hντ + nπ0) 4.5%
ee → (τ → eνeντ )(τ → hντ )) 2.5%
ee → eeµµ 1%
ee → ττ (other) 0.8%
ee → eeττ 0.17%
ee → cc̄ 0.05%

for which the definition was given in Equation 4.1. For training, all the cuts mentioned in the
previous section are applied, except pℓ > 1 GeV, which is loosened to pℓ > 0.5 GeV.

In Figure 5.3, the ROC curve for the ANN is shown, both with lepton ID corrections applied
and without. The training itself was carried out with the lepton ID corrections in place to
reflect the conditions in data more accurately. Figure 5.4 shows the distribution of the output
neuron for classifying the signal. The ANN is beneficial to remove the remaining Bhabha
events and a significant fraction of the eeµµ background. A loose cut at 0.75 on the output of
the ANN is sufficient to remove a large portion of the backgrounds while maintaining most of
the signal events. In Figure 5.4, the signal efficiency and purity corresponding to this cut are
indicated with a black cross.

In addition to the selection on the ANN output, the kinematics of the lepton candidates are
restricted to the same region used in the primary analysis:

1.0 GeV ≤ pℓ < 5.0 GeV
0.82 rad ≤ θℓ < 2.13 rad

After all these selections, the composition of the remaining events is shown in Table 5.2.
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Figure 5.2: The distributions for the variables used to optimise the preselection of the e × µ
sample. All other selections, except for the one on the shown variable, have been applied.
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Figure 5.3: The ROC curve of the neural network for the e × µ control sample.
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Figure 5.4: The neural network output for the e × µ control sample.
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5.2.3 Trigger
For the e × µ sample, the same trigger lines as for the main channels (Section 4.4.3) are
used with the same method to estimate systematics associated with the trigger correction
(Section 4.6.4). Figure 5.5 shows the trigger efficiencies and resultant correction factors in
bins of the lepton candidate’s momentum. The overall efficiency for this sample in the data is
greater than 99.5 %. As for the main channels, a ∼1 % higher efficiency in data than in TSIM
is observed. There is a slight momentum dependence of the trigger efficiency, especially at
lower momentum for the electron candidate. This is expected since the dominant trigger line
is hie, which relies on the energy deposited in ECL by the electron.
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Figure 5.5: Trigger efficiencies and data/MC correction factors with associated systematics for
the e × µ control sample. The efficiency is shown in momentum bins for the electron candidate
(left) and muon candidate (right).

5.2.4 Comparison with data
Good agreement is observed when comparing data and MC of some selected variables, as
shown in Figure 5.6. In this figure and in the following, the pull value shown in the lower plot
is defined as

Ndata − NMC√
σstat + σsys

, (5.4)

where σsys comprises the systematic uncertainties for lepton ID, trigger and luminosity only.
All other systematic effects should have a negligible impact on this sample. Although no
information on Rµ measurement can be acquired from looking at the data in this sample, the
overall normalisation is still blinded in these figures by normalising the yield in MC to the
observed yield in data. This is because a future measurement can be conducted using the
e × µ channel to obtain a measurement of the absolute branching fractions.
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Figure 5.6: Selected distributions of the e × µ control sample, comparing data and MC. The
pull values are computed considering statistical and systematic uncertainties from lepton ID,
trigger and luminosity.
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5.2.5 Lepton ID effects
Since a crucial aspect of this measurement are uncertainties associated with lepton ID correc-
tions, it is important to validate them by comparing data to MC in bins of momentum (shown
in Figure 5.7) and polar angle (shown in Figure 5.8) of the lepton candidates. The respective
other dimension is projected onto the indicated variable when showing the distributions for
the electron and muon candidates.
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Figure 5.7: A comparison of data and MC in the e × µ control sample. On the left-hand side,
the momentum of the electron candidate is shown, and on the right-hand side, the momentum
of the muon candidate is shown.
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Figure 5.8: A comparison of data and MC in the e × µ control sample. On the left-hand side,
the polar angle of the electron candidate is shown, and on the right-hand side, the polar angle
of the muon candidate is shown.

The momentum distribution shows good agreement for the e± candidate. Also for the µ±

candidate the agreement is good, except for a slight drop in data events at the momentum
bins closest to 1 GeV. Similarly, for the polar angle distributions of the e± candidate there is
good agreement, whereas for the µ± candidate an even more significant drop in data at a large
polar angle is observed. Both of these drops are independent and most likely come from lepton
identification inefficiencies, which are different in data compared to simulation. These efficiency
drops also exist in MC, as shown in Section 4.4.6 (Figure 4.15). The lepton ID corrections
correct for such inefficiencies but are only provided integrated over larger bins in momentum
and theta. Thus, some discrepancies are still observed if they affect only a part of the bin.
However, as long as the kinematics of the lepton in the calibration channel used to derive the
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corrections is similar to that of the lepton in this analysis, these discrepancies will cancel when
integrated over the whole bin. In Figure 5.9 and Figure 5.10, the data/MC agreement is shown
in all the individual momentum and polar angle bins used for the lepton efficiency corrections,
for the electron candidate and the muon candidate, respectively. The first eight bins represent
the lowest theta bin (0.82 rad to 0.92 rad), while the last eight bins show the highest theta
bin (2.04 rad to 2.13 rad). Good agreement between data and the corrected MC is observed
in the individual bins, with a slight data deficit for the highest polar angle bin ranging from
2.04 rad to 2.13 rad for the muon candidate (bin number greater than 80 in Figure 5.10). Since
this deficit is within 2σ of the quoted uncertainties, it is still acceptable. This check indicates
that at the level of precision of the control sample, the lepton ID corrections appropriately
amend the mismodelling in simulation. While the measurement will be performed over the
integrated polar angle bins and the variation of the correction factors within these bins is
acceptable, the momentum bins are split into sub-bins, as this dimension is used for defining
the templates. This is the main reason why the analysis is restricted to leptons with momentum
larger than 1.5 GeV, since for the lepton ID momentum bin ranging from 1 GeV to 1.5 GeV,
this division could be problematic because of the variations of the muon efficiency and mis-id
rate corrections within the bin.
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Figure 5.9: A comparison of data and MC in the e × µ control sample. The binning is defined
over the momentum and polar angle of the electron candidate. The first eight bins correspond
to the low theta region, and the last eight correspond to the high theta region. The bins reflect
the binning of the lepton ID corrections.

5.2.6 Fit to data
Previously, when the distributions of the lepton candidates were shown, the corrections and
uncertainties of the respective other track were integrated. This should have a similar impact
for each bin, but especially the polar angles of the two tracks will not be independent. It is
not feasible to completely disentangle the lepton ID corrections for the electron candidate
from the muon candidate. Neither is it possible to disentangle efficiency from mis-id rate
uncertainties. However, it is possible to perform a fit that correctly models these uncertainties
and accounts for all correlations. The fit results will show whether the model can describe the
data or whether the systematic uncertainties cannot account for some significant discrepancies.
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Figure 5.10: A comparison of data and MC in the e × µ control sample. The binning is defined
over the momentum and polar angle of the muon candidate. The first eight bins correspond to
the low theta region, and the last eight correspond to the high theta region. The bins reflect
the binning of the lepton ID corrections.

The degree to which this validates the corrections is limited by the statistical precision of the
e × µ sample.

For the fit, the same method as for the main channels is used: A binned maximum likelihood
fit with pyhf, where the template is now defined over two dimensions of the momenta of the
two tracks. Following the binning of the lepton ID corrections, each momentum dimension
consists of eight bins, ranging from 1 GeV to 5 GeV in steps of 0.5 GeV. This amounts to a
total of 64 bins. The fit uses four templates based on the truth-matched particle type in MC:

• e × µ

• e × ¬µ

• ¬e × µ

• ¬e × ¬µ,

where ¬e and ¬µ denote all particle types except electron and muon respectively. The pre-fit
templates are shown in Figure 5.11, where the first eight bins correspond to the lowest and
the last eight bins to the highest electron momentum bin.

To incorporate the lepton ID uncertainties, the same method as described in Section 4.6.2 is
used. The resulting correlation matrix is shown in Figure 5.12. The four blocks indicated by
the labels are the fit templates, and each block is a 64 × 64 matrix, showing the correlation
between the individual bins. Since there are now two lepton candidates in the event that have
to be considered simultaneously, the lepton ID uncertainties of each template are correlated
with at least two other templates. A much larger number of nuisance parameters are needed
to account for these correlations than for the primary measurement. From this matrix’s
eigendecomposition (see Equation 4.23), 64 ·4 = 256 independent shape variations are obtained.
As mentioned in Section 4.6.2, not all of them are needed to correctly model the correlations
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Figure 5.11: The pre-fit templates for the control sample fit. The templates are defined over
the two dimensions of the lepton candidate momenta.

since many will hardly affect the templates. Setting a threshold on the eigenvalues of 250, the
total number of variations can be reduced to 54. The original correlation matrix is shown
in Figure 5.12a, and the correlation obtained when only using 54 eigenvalues is shown in
Figure 5.12b. The original matrix is correctly reproduced by the 54 shape variations. Thus,
only 54 nuisance parameters are used in the model to describe the lepton ID uncertainties and
their correlation.
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Figure 5.12: The correlation matrix of the lepton ID uncertainties. The four blocks indicated
by the labels are the fit templates, and each block is a 64 × 64 matrix, showing the correlation
between the individual bins and templates.

The post-fit templates are shown in Figure 5.13. The model agrees reasonably well with the
data. A goodness-of-fit test gives a p-value of 0.41, indicating good compatibility between the
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post-fit model and the observations.
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Figure 5.13: The post-fit templates for the control sample fit. The templates are defined over
the two dimensions of the lepton candidate momenta. The p-value of a goodness-of-fit test is
0.23.

Figure 5.14 shows the pull plot for all the nuisance parameters used in the fit. The pull
values are calculated as (θ̂ − θ0)/∆θ, where θ̂ is the MLE of the nuisance parameter, θ0 is
the expected value, and ∆θ is the width of the constraint term cχ in Table 4.19. The error
bars shown together with the pull values reflect the post-fit uncertainties of the nuisance
parameters. It is reassuring to see that none of the nuisance parameters pulls away much more
than 1σ of the constraints from the nominal values. If extreme pull values were observed, it
would indicate that some of the systematics are underestimated. Unfortunately, it cannot be
concluded from this check alone that the uncertainties are not underestimated - they can only
be checked up to a certain precision. Below that, the sensitivity is lost since other effects, such
as the statistical uncertainty, will compensate for discrepancies.
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Figure 5.14: A pull plot showing all nuisance parameters used to fit the e × µ sample with a
two-dimensional template defined over the electron and muon candidate momentum.
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5.2.7 3-channel fit
An additional check that can be realised with the e × µ sample is to perform a combined
fit with the two main channels. From this 3-channel fit, the absolute branching fractions of
τ → eνeντ (Be) and τ → µνµντ (Bµ) can be extracted and Rµ can be obtained as their ratio.
To obtain the correct uncertainty on Rµ, it is important to take into account the correlation
of the uncertainties of the fitted branching fractions. Given that there are no incompatibilities
with the implemented systematic effects and everything was done correctly, the obtained value
of Rµ should be similar to the one extracted directly from the 2-channel fit.

While this will primarily serve as a cross-check for the present analysis, the expected precision
on the measured branching fractions is similar to the best measurements from older experiments,
making it also attractive as a standalone measurement in the future. In principle, the absolute
branching fractions can also be measured only from the 2-channel fit. The advantage of adding
the e × µ control sample is that it constrains the product Be × Bµ, which, together with
Rµ = Bµ/Be, will significantly reduce the uncertainty on the branching fractions. Because
of the branching fraction product, normalisation uncertainties that affect the e × µ channel
will be reduced by 50 % for the individual branching fractions. In the e and µ channels, the
precision of the absolute branching fractions is limited by the uncertainty coming from the tag
side, which cancels for Rµ but not for the individual branching fractions.

A relatively coarse binning of the e × µ control sample is chosen since the primary interest
is normalisation, which will be dominated by the uncertainty of luminosity and tracking
efficiency, independently of the number of bins. Similarly to what was done in Section 5.2.6, a
two-dimensional template of the momenta of the electron and muon candidate is used. The
leptons are separated into higher 1.5 GeV to 3 GeV and lower 3 GeV to 5 GeV momentum,
which results in a total number of 4 bins. Then, three templates based on the generated tau
decays in MC are defined:

1. τ → eνeντ × τ → µνµντ

2. τ → eνeντ × τ → hντ (≥ 0 π0)

3. other: all other tau decays and non-taupair backgrounds

The normalisation of the first template is affected by both fit parameters (Be and Bµ), which
are included in the model as normfactor modifiers. The second template is only modified by
the parameter Be, and a normalisation uncertainty of 2.5 % is assigned based on the studies
with the τ → hnπ0ντ tag in the main channels. The third template only contains about
2 % of the events, and a conservative uncertainty of 25 % is assigned to its normalisation
since the backgrounds were not studied in detail. This third template is dominated by the
ee → eeµµ process (see Table 5.2). All templates are affected by the luminosity uncertainty
(0.63 %) and the tracking uncertainty (0.48 %). The first two templates have an additional
normalisation uncertainty of 0.33 %, which originates from the uncertainty of the taupair
cross-section (0.919 ± 0.003 nb) [158].

To simultaneously fit the three channels, it is essential to include the correct correlation of
the systematic variations in the model. For most relevant uncertainties (such as tracking,
luminosity, or taupair cross-section), the correlation is 100 %. The systematic with the
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most complicated correlation between the channels is lepton ID. Here, the templates in the
e × µ channel are simultaneously correlated with electron and muon efficiency or mis-id rate
uncertainties. Fortunately, the same toy approach as before (described in Section 4.6.2) can be
used to obtain the correlation between the individual bins and templates. To have the correct
correlation, the generated toy weights must be the same as what was used for the e and µ
channels, which can be achieved by setting the same seed. The resulting correlation matrix
obtained from the toy sample is shown in Figure 5.15. Each entry in this matrix shows the
correlation between two bins, and the labels correspond to the different templates:

• µ± → µ±: µ± templates in the µ-channel

• h± → µ±: h± template in the µ-channel

• e± → e±: e± templates in the e-channel

• h± → e±: h± template in the e-channel

• e± × µ±: first template in the (e × µ)-channel

• e± × h±: second template in the (e × µ)-channel

• other: third template in the (e × µ)-channel

This correlation is then modelled with 40 independent modifications of the templates, using
the same method as previously in Section 4.6.2.
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Figure 5.15: The correlation between the bins and templates of the e-channel, the µ-channel
and the (e × µ)-channel, obtained with 5000 toy weights.

For all other systematics, the same procedure as for the e and µ channels is used. The resulting
contributions of the individual systematics to the overall uncertainty are shown in Table 5.3.
These uncertainties are estimated with 2000 toys for each systematic, where the sampled
data reflect the variations from this systematic effect in the same way as it was described in
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Table 5.3: The expected uncertainties from the 3-channel fit, attributed to different systematic
sources. The uncertainties were obtained with toy samples, where for each systematic type
2000 samples were used. Also shown is the correlation obtained from the toy samples and
the resulting uncertainty on Rµ when taking the ratio of the fitted branching fractions. The
uncertainties are given as a percentage of the expected nominal values of Be, Bµ and Rµ.

Bτ±→e±νν̄ [%] Bτ±→µ±νν̄ [%] correlation Rµ [%]
Charged-particle identification 0.22 0.22 0.06 0.30
Trigger 0.07 0.09 0.31 0.10
Modelling of FSR 0.05 0.04 < 0.01 0.08
Normalisation of individual samples 0.21 0.22 0.94 0.08
Size of the simulated samples 0.06 0.07 0.57 0.06
Modelling of the momentum distribution 0.03 0.04 < 0.01 0.06
Tag side modelling (signal embedding) 0.03 0.04 < 0.01 0.05
Particle decay-in-flight < 0.01 < 0.01 < 0.01 0.02
Luminosity 0.29 0.31 1.00 0.01
Modelling of ISR < 0.01 0.01 1.00 0.01
Tracking efficiency 0.24 0.25 1.00 0.01
Neural network selection 0.01 < 0.01 0.99 < 0.01
Detector misalignment 0.03 0.03 0.97 < 0.01
Photon efficiency 0.01 < 0.01 1.00 < 0.01
e × µ sample selection < 0.01 < 0.01 1.00 < 0.01
π0 efficiency 0.05 0.05 1.00 < 0.01
Photon energy < 0.01 < 0.01 1.00 < 0.01
Momentum correction < 0.01 < 0.01 1.00 < 0.01
Total systematic uncertainty 0.52 0.55 0.77 0.36
Statistical uncertainty 0.04 0.05 -0.32 0.07
Total 0.52 0.55 0.76 0.37

Section 4.7. Using these toy samples, the correlation between the fitted branching fractions
and the contribution of the systematic to the uncertainty on their ratio Rµ can be obtained
directly, as shown in the table. The uncertainty on Be is 0.000 92 and on Bµ 0.000 95, with a
correlation of 0.76. The resultant total uncertainties (from summing the individual components
in quadrature) and correlation are consistent with what is obtained from a single fit.

The three channels and their templates are shown in Figure 5.16, both pre-fit (left) and post-fit
(right). The shown data is Asimov data, to not unblind the absolute branching fraction
measurement by revealing the data/MC agreement in all three channels.
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Figure 5.16: The three channels and their templates used to extract the absolute branching
fractions, pre-fit (left) and post-fit (right), using Asimov data.
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When performing the fit with actual data, an unknown random shift (from −2 % to 2 %) was
included in the likelihood function for both parameters Be and Bµ, keeping the measurement
blinded (this means that the normalisation of the signal templates is shifted by this amount).
This random shift corresponds to the same shift used in the 2-channel fit, which allows for a
comparison of the fitted values of Rµ directly with the actual data. This difference can be
calculated without risking unblinding the measurements. Taking the ratio of the branching
fractions, the difference between the central value of Rµ from the 3-channel fit and the value
of Rµ directly obtained from the 2-channel fit is less than 0.02 %, which indicates excellent
consistency. The slight difference can be attributed to the information gained on some nuisance
parameters with the addition of the third channel. This can also be seen from the uncertainties,
where the total uncertainty on Rµ with the 3-channel fit with 0.0036 is slightly less than
with the 2-channel fit with 0.0037. This is mainly due to a slight reduction in the systematic
uncertainty associated with lepton ID, from 0.32 % to 0.3 %. One could even consider including
more control channels sensitive to lepton ID effects to decrease the associated uncertainty on
Rµ.

5.2.8 Conclusion of control channel studies
No significant discrepancies were found when comparing the e × µ sample with data. The
uncertainties incorporated in the analysis can account for the observed differences.

An important observation from the e × µ sample is the drop in efficiency at the lower end of
the muon momentum spectrum and the high polar angle region. However, since the leptons
in the main channels have restricted kinematics from 1.5 GeV to 5.0 GeV, the drop at low
momentum is not a concern. The high polar angle region requires further investigation, and
additional checks will be carried out in Section 5.4 and Section 5.5.5.

There was no clear bias or underestimation of the lepton ID uncertainties. However, due
to the limited statistical precision of the control sample, it may not be sensitive enough to
validate the lepton efficiency uncertainties to the required level for the measurement. Despite
this, the agreement within the accessible precision is crucial for moving on to the next steps
since it already indicates that the signal side is well-modelled. Still, it is necessary to perform
additional validations and checks on the main channels, while remaining blind to the results.
These checks include, among other things, stability checks to ensure that lepton ID does not
bias the measurement, which can be found in Section 5.5.3.

Finally, the fit using all three channels simultaneously showed good consistency with the results
of the 2-channel fit, indicating that the included systematic effects are compatible. It also
shows that there is no problem with the fitting method itself.
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5.3 Fit validation
In this section, several studies to validate the fit procedure and study the properties of the
estimator are shown. Most of these checks use simulated sets of observables sampled from the
fit model, which will be referred to as toy samples.

5.3.1 Linearity checks
2-channel fit

As a first check, a toy study is performed with the nominal model for different assumed values
of Rµ. Seven values ranging from 0.965 to 0.985 are tested, which is approximately ±1 %
around the SM value of 0.972 56. For each of these assumed values, 10 000 toys are sampled
and the pull value

pull =
R fit

µ − R gen
µ

σ fit
Rµ

(5.5)

is computed for each of them. Here, R fit
µ refers to the estimated value of Rµ, R gen

µ to the
generated value, and σ fit

Rµ
to the estimate of the uncertainty of Rµ. One of the resulting

distributions of pull values is shown in Figure 5.17 (with R gen
µ = 0.98). Then the mean (µ)

and standard deviation (σ) are extracted by fitting a Gaussian distribution to the obtained
values.
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Figure 5.17: The pull distribution obtained with 10 000 toys, assuming R gen
µ = 0.98.

For all the tested cases, it was found that the mean is consistent with 0 and the standard
deviation with 1. The estimator is unbiased and the uncertainties of Rµ are correctly estimated.
The fitted σ of the pull distributions is shown in Figure 5.18.

The fit bias, obtained by fitting the distribution of

bias = R fit
µ − R gen

µ (5.6)

and extracting its mean, is shown in Figure 5.19 for each of the assumed values.
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Figure 5.19: The fit bias obtained from the distributions of toys for different values of R gen
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given as a percentage of the generated value. The result of a fit with a polynomial of degree 0
is overlayed. All values are consistent with 0.

3-channel fit

In this section, some of the studies described in Section 5.3.1 are repeated for the 3-channel
fit used to estimate the absolute branching fractions. For this, 4000 toy samples and five
combinations of assumed τ → eνeντ and τ → µνµντ branching fractions around the current
PDG values are used. The results are shown in Figures 5.20 and 5.21.
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Figure 5.20: The results of toy studies with the 3-channel fit, with different assumed values for
B(τ → eνeντ ) and B(τ → µνµντ ).
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Figure 5.21: The results of toy studies with the 3-channel fit, with different assumed values for
B(τ → eνeντ ) and B(τ → µνµντ ).

5.3.2 Lepton ID correlation
As mentioned in Section 4.6.2, the exact correlation of the systematic component of the
lepton ID uncertainties between the individual correction bins is unknown. Therefore, some
assumptions about the correlation in the charge, polar angle, and momentum dimensions must
be made. While fully correlated uncertainties for charge and polar angle can be justified as
being the most conservative, this cannot be taken for granted for the momentum dimension.
To test the impact of the correlation between momentum bins, 5000 toys that follow correlation
A are sampled and then fitted with a model that assumes correlation B. Correlations from 0
to 1.0 are tested in steps of 0.25, so A ∈ {0, 0.25, 0.5, 0.75, 1.0} and B ∈ {0, 0.25, 0.5, 0.75, 1.0}.
This results in a total number of 25 possible combinations. The relative uncertainty on Rµ
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obtained from the toys for each combination is shown in Figure 5.22. It ranges from 0.27 to
0.39 and is most prominent in the fully correlated case.
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Figure 5.22: The relative uncertainty on Rµ for different combinations of lepton ID systematic
correlation in the toys and assumed in the fit.

Since the fit model will not necessarily assume the actual correlation, the uncertainty esti-
mate on Rµ may be wrong. To be conservative, the correlation where uncertainties are not
underestimated for any case should be used. This information is obtained from the σ of the
fitted pull distribution of toys. Two such pull distributions are shown in Figure 5.23, where
on the left-hand side the correlation in the toys is 0 and the correlation in the fit model is
1.0, and on the right-hand side it is vice versa. For the first case, the pull σ is 0.794 ± 0.028,
meaning that the uncertainty on Rµ is overestimated, while for the second case, the pull σ is
1.337 ± 0.047, meaning that it is underestimated. The results from this toy study for all the
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Figure 5.23: Pull distributions to study the estimator when the correlation in the model is
different from the underlying correlation.

possible combinations are shown in Figure 5.24. Assuming a correlation of 1.0, the uncertainty
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is not underestimated in any tested case. Thus, this correlation is used in the model.

0 0.25 0.5 0.75 1.0
Correlation (toys)

0

0.25

0.5

0.75

1.0

Co
rre

la
tio

n 
(fi

t)

0.979
± 0.010

1.120
± 0.011

1.198
± 0.012

1.276
± 0.013

1.356
± 0.014

0.901
± 0.009

1.003
± 0.010

1.069
± 0.011

1.154
± 0.012

1.208
± 0.012

0.848
± 0.008

0.914
± 0.009

0.997
± 0.010

1.066
± 0.011

1.108
± 0.011

0.809
± 0.008

0.880
± 0.009

0.940
± 0.009

0.998
± 0.010

1.034
± 0.010

0.792
± 0.008

0.859
± 0.009

0.909
± 0.009

0.969
± 0.010

1.006
± 0.010

Pull distribution σ

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Figure 5.24: The fitted σ of the pull distributions for different combinations of lepton ID
systematic correlation in the toys and assumed in the fit.

5.3.3 ANN cut dependence
Figure 5.25 shows the expected uncertainty of Rµ as a function of the cut on the ANN output.
With a loose cut, the uncertainty increases due to the larger background. Instead, when cutting
too tight, the signal efficiency becomes very small, and the statistical uncertainty becomes
dominant. A cut between 0.85 and 0.95 results in the best precision. Figure 5.26 shows the fit
bias for different ANN output selections. No bias is seen in any of the cases.
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Figure 5.25: The relative uncertainty on Rµ for different cuts on the ANN output. A cut
between 0.85 and 0.9 gives the best sensitivity.
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Figure 5.26: The fit bias relative to Rµ for different cuts on the ANN output. No significant
bias is observed.

5.3.4 Likelihood profiles
This section shows profile likelihood scans of the parameters of interest. The scans are
performed with the random shifts included in the likelihood functions, to not unblind the
measurements. In the following figures, the axis labels only show the difference relative to the
best-fit value. Figure 5.27 shows the scan for Rµ when using real data, while Figure 5.28a
and Figure 5.28b show the scans for B(τ → eνeντ ) and B(τ → µνµντ ), respectively, when
using Asimov data. The likelihood profile corresponds to what is obtained with the Gaussian
approximation, which is assumed by the HESSE method of MINUIT [71] to calculate the
uncertainties of the fitted parameters. This Gaussian approximation and its width σ, which is
the uncertainty obtained from the fit, are also shown in the figures. Also shown are likelihood
scans with all nuisance parameters fixed to their MLEs and only the parameters of interest left
free. This is used to estimate the statistical component of the total uncertainty. The likelihood
is Gaussian in this case as well.
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Figure 5.27: The likelihood profile of Rµ obtained from the fit with two channels. The crosses
mark the scanned values, while the solid line indicates the values of a Gaussian likelihood with
a width σ corresponding to the uncertainty obtained from the fit. The red curve is obtained
from a fit with all nuisance parameters fixed to their best-fit values, indicating the statistical
component of the total uncertainty. The blue curve corresponds to the nominal fit, with an
uncertainty that includes both statistical and systematic effects.
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Figure 5.28: The crosses mark the scanned values, while the solid line indicates the values of a
Gaussian likelihood with a width σ corresponding to the uncertainty obtained from the fit.
The red curve is obtained from a fit with all nuisance parameters fixed to their best-fit values,
indicating the statistical component of the total uncertainty. The blue curve corresponds to
the nominal fit, with an uncertainty that includes both statistical and systematic effects.

In Figure 5.29, two-dimensional contours of the likelihood profile are shown, scanning both
B(τ → eνeντ ) and B(τ → µνµντ ) using Asimov data and the fit with the three channels. These
contours represent a confidence region corresponding to a CL of 0.68, 0.95, and 0.99. The
contours show the correlation between the two parameters, which is equivalent to 0.76. This
correlation results in a substantial reduction in systematic uncertainties when calculating
Rµ = B(τ−→µ−ν̄µντ )

B(τ−→e−ν̄eντ ) .
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Figure 5.29: Contour plot of the two-dimensional likelihood profile when scanning both B(τ →
µνµντ ) and B(τ → eνeντ ). The shown contours represent a confidence region corresponding to
a CL of 0.68, 0.95, and 0.99 and the correlation between the parameters is 0.76.
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5.3.5 Pull plot
The pulls of the nuisance parameters for the fit with the two channels are shown in Figure 5.30.
These were obtained using the model with the random shift in the likelihood function for
Rµ, but this does not affect the fit results for the nuisance parameters. The pull values are
calculated as

pull value = θ̂ − θ0
∆θ

, (5.7)

where θ̂ is the MLE of the nuisance parameter, θ0 is the expected value and ∆θ is the
width of the constraint term cχ in Table 4.19. In Figure 5.30, the error bars associated with
the pull values reflect the post-fit uncertainties of the nuisance parameters. The names of
the nuisance parameters were already broken down in Table 4.26. No strong pulls of any
nuisance parameters away from their expected values are observed. Only one parameter
has a pull value slightly more than ∆θ away from the expected. This is the parameter
lid_p_part_10_mu_channel_mu_06, which models the muon efficiency uncertainty in
the momentum bin ranging from 3 GeV to 3.5 GeV, which is the last entry in the legend of
Figure 4.33 (the pink component). This means that for the templates with true muons in the
µ-channel, the nominal event rates are reduced by about 0.5 %. This is not concerning since
a 1σ effect can be anticipated, and the uncertainties related to muon efficiency corrections
are solely driven by their statistical components, which is especially high in this specific bin.
This can also be seen from Figure 3.16 in Section 3.6.6. One might expect more nuisance
parameters to show an effect larger than 1σ (32 % of 194, so around 62) if they are normally
distributed. The reason for this is that, in some cases, the provided uncertainties are chosen
very conservatively, which allows the fit model to follow the data very well (see also Section 5.3.7,
where a goodness-of-fit test is discussed). This impacts the pulls of all nuisance parameters
since it will often be preferable (in terms of the change in the likelihood value) to vary the
shape of the templates using these underconstrained nuisance parameters. The extreme case
would be unconstrained nuisance parameters that could freely change the shape of all templates.
Then, all the pull values would be 0, and no information about the nuisance parameters could
be gained from the fit (the post-fit uncertainty would be ∆θ). Another indication of having
conservative constraints is the size of the error bars in Figure 5.30. They are close to 1 when
the fit cannot further constrain the corresponding nuisance parameter compared to what
was initially provided. In contrast, when they are smaller than 1, the fit provides enough
information to obtain a more precise parameter estimate. This could be either because the fit
is very sensitive to the effect modelled by the nuisance parameter or, especially when the pull
values are close to 0, the uncertainties were overestimated. In Figure 5.30, this is particularly
striking for the global shape parameters, indicating that the value obtained in Section 4.6.8
for the corresponding uncertainty was very conservative. This is expected to have little impact
on the fitted value of Rµ and its uncertainties. This will be shown explicitly and discussed
further in Section 5.3.7.
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Figure 5.30: The pull plot for the 2-channel fit, showing all nuisance parameters with names
as described in Table 4.26. The black marker indicates the pull value, and the error bar shows
the post-fit uncertainties of the nuisance parameters. None of the parameters has a pull value
that deviates significantly from zero.
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5.3.6 Correlations
In Figures 5.31, 5.32 and 5.33, the correlations between some selected fit parameters are shown.
It is not feasible to show all correlations between the 195 parameters, but the most important
ones are included.

Figure 5.31 shows the parameters that have at least a correlation above 0.25 or below −0.25
with any other parameter. As already mentioned in Section 4.6.10, the nuisance parameter
associated with scaling the luminosity is anti-correlated to the parameter that models the π0

efficiency correction uncertainty and some of the normalisation effects, which also results in a
correlation of −0.03 with Rµ.
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Figure 5.31: The correlation of some selected fit parameters with correlations above 0.25 or
below −0.25 with any other parameter.

Figure 5.32 shows the correlation between the global shape nuisance parameters, where one
parameter scales the yields in one momentum bin, correlated for all templates. Here, a peculiar
correlation structure arises, with more significant correlations in blocks of three momentum
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bins and larger blocks in multiples of three. This arises from the fact that lepton ID corrections
and associated uncertainties are provided in steps of 0.5 GeV. This makes the variations
of the templates due to lepton ID effects correlated in steps of three templates bins, as it
was shown in Figure 4.33, which in turn results in a higher correlation between the global
shape parameters. Some additional structure originating from the lepton ID correlations,
previously shown in Figure 4.32, can also be seen. For example, the correlation of the mis-id
rate correction uncertainties (h± → µ±) over the first 15 momentum bins is clearly visible.
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Figure 5.32: The correlation between the global shape nuisance parameters.

Figure 5.33 shows the parameters most correlated with Rµ, which generally indicates a more
significant impact on the corresponding systematic effects on the result. Unsurprisingly, these
are primarily parameters associated with lepton ID correction uncertainties but also FSR,
global shape, and the normalisation applied to the µ-channel due to the difference between
the integrated trigger efficiency correction factors in the e and µ-channels (trigger_diff).
It is important to note that the correlation of, for example, the global shape parameters
with Rµ originates from their correlation with the lepton ID parameters. Similarly to the
luminosity uncertainty that does not completely cancel for Rµ, the global shape uncertainty
also contributes to the overall uncertainty on Rµ, simply because it makes the model more
flexible. However, one has to keep in mind that the size of this effect strongly depends on the
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other systematic effects included in the model and the correlation between them.
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Figure 5.33: The correlation of some selected fit parameters highly correlated with Rµ.

5.3.7 Goodness-of-fit
A goodness-of-fit test is performed based on the difference between the maximum of the
likelihood function and the likelihood value using a ‘saturated model’, referring to the model
which follows data perfectly [151], which can be achieved by setting all parameters equal to
the data in the likelihood function. The goodness-of-fit test is then based on the assumption
that the saturated model Lsat reflects the true underlying model, in which case −2 log (L/Lsat)
follows a χ2 distribution with as many degrees of freedom as there are free parameters in the fit,
which is just one in the present case (see Section 2.5.2). Using the maximum of the likelihood
function L, a p-value of 0.9987 is obtained, indicating an overestimation of uncertainties that
allow for the variations of the template yields. Since, for many systematic effects, a rather
conservative estimate was used, this was to be expected. However, this does not necessarily
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imply that the uncertainty on Rµ is inflated since the systematic variations that give the most
freedom to the template shapes are subdominant for Rµ because they are correlated across
the channels and largely cancel for the ratio of branching fractions.
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Figure 5.34: The p-value from a goodness-of-fit test for different sizes of the uncertainties
associated with the independent shape variations. ‘Local shape’ refers to independent uncer-
tainties across the templates, while ‘Global shape’ refers to uncertainties correlated across
templates. The p-value ranges from about 0.32 % to 99.87 %.

The reason that the model can fit the data very well is mainly attributed to the systematics
that impact the shape of the templates independently across momentum, meaning that for
each momentum bin, there is a nuisance parameter associated with it. Two types of parameters
can be distinguished: one that is entirely independent between the templates (trigger and
tag side modelling) and another that is correlated between templates, which are mainly the
parameters associated with modelling the momentum distribution. To test the impact of
reducing the uncertainties associated with these effects, the fit was repeated with the size
of the constraints of both types varying between 0 % and 100 % of the original size. It was
found that the p-value indeed decreases when tighter constraints are used. This is shown in
Figure 5.34, with ‘Local shape’ referring to the fully independent uncertainties and ‘Global
shape’ referring to the ones correlated across templates. The p-value decreases to about 0.32 %
when both effects are reduced to 0 %. At the same time, the central value of Rµ is very stable
and its uncertainty is reduced only slightly. This can be seen in Figure 5.35: On the left,
the shift of the estimated value of Rµ relative to the nominal measurement is shown, while
the corresponding uncertainty is shown on the right. The most significant shifts of Rµ are
approximately 4 × 10−4 when only one of the two effects is reduced while the other is kept
at the nominal level. When both effects are reduced to 0 %, the uncertainty is reduced by
approximately 10 %. Interestingly, in that case, the central value is hardly affected.

The impact on Rµ is more clearly visible in Figure 5.36. It shows the measured values for
all cases together with their respective uncertainties. The horizontal dashed line indicates
the value obtained from the nominal fit, while the dotted lines represent the corresponding
±1σ uncertainty range. The estimates of Rµ differ only slightly from the nominal value,
sometimes being larger and sometimes smaller. However, their error bars are almost always
within the ±1σ range of the nominal fit. Given that for some of these cases the uncertainty of
Rµ will be underestimated, the nominal measurement is favoured given the lack of knowledge
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Figure 5.35: The difference between the fitted values of Rµ and the nominal result (left) and
the associated uncertainties (right) for different sizes of the implemented independent shape
variations.

about the actual uncertainties and their correlation. However, the uncertainty of the nominal
measurement could potentially exceed 68.3 % coverage, which is still preferred considering the
alternative. In the end, there is no indication that the conservative choices of the uncertainties
significantly impact the result, and it remains valid.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Local shape

-0.006
-0.005
-0.004
-0.003
-0.002
-0.001

0.0
0.001
0.002
0.003
0.004
0.005

  Δ
R μ

global shape
 =0%

global shape
 =10%

global shape
 =20%

global shape
 =30%

global shape
 =40%

global shape
 =50%

global shape
 =60%

global shape
 =70%

global shape
 =80%

global shape
 =90%

global shape
 =100%

Figure 5.36: The measurements of Rµ for different sizes of the uncertainties associated with
the independent shape variations. The y-axis shows the difference with respect to the nominal
result, indicated by the horizontal dashed line. The horizontal dotted lines indicate the ±1σ
uncertainty range from the nominal result.

5.4 Data validation
In Figure 5.37, the data/MC agreement in the electron channel (left) and the muon channel
(right) is shown for the missing momentum, the thrust, the visible energy in the CM, and
the output of the ANN. The entire dataset is used, but to not be sensitive to differences in
normalisation that would unblind Rµ, the MC distributions are scaled to match the total
number of data events. There are no concerning discrepancies observed between data and
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MC. In particular, the observed discrepancies are equally present in the e-channel and the
µ-channel.
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Figure 5.37: The data/MC agreement in the electron channel (left) and the muon channel
(right) for the missing momentum, the thrust, the visible energy in the CM and the output of
the ANN.

In Figure 5.38, the data/MC agreement in the electron channel (left) and the muon channel
(right) is shown for the lepton candidate momentum and polar angle. The data/MC ratio in
the momentum distribution is flat for the muon channel, but a slight trend can be observed
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in the electron channel, with more data for lower electron momenta and less data for higher
electron momenta. This is presumably related to photon efficiency corrections associated with
FSR photons, which the included systematic effects cover. Looking at the data/MC ratio in
the polar angle, some effect is observed in the muon channel for high theta. As discussed in
Section 5.2.5, this originates from changes in muon efficiency and mis-id rates towards the
end of the KLM barrel, which is not well reproduced in MC. Provided that the polar angle
distribution in the calibration channels used to derive the muon efficiency corrections is similar
to the polar angle distribution in the measurement, those discrepancies are corrected when
integrated over the whole correction bin. This can be seen when comparing data and MC
with the binning in which the corrections are provided, shown in Figure 5.39. It is observed
that the overall size of the data/MC differences in the last bin is reduced. Additionally, an
overall trend is observed in the data/MC ratio of the polar angle distributions, with less data
toward the low and high theta regions. Although it is unclear what is causing this effect, it
probably has a common origin for the e-channel and the µ-channel (such as the tag side) since
it is present in both channels. This makes the measurement of Rµ insensitive to it.
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Figure 5.38: The data/MC agreement in the electron channel (left) and the muon channel
(right) for the momentum and polar angle of the lepton candidate.

5.5 Stability checks
In this section, several checks are performed to test the stability of the fit result for different
conditions. Only the difference between the nominal estimate and the estimate obtained
with the various checks will be compared. This was done to avoid being influenced by the
observer-expectancy effect by exposure to the actual value. In addition, to avoid doing this
accidentally, the estimates of the parameter of interest will be obtained with the random shift
included in the likelihood, which is the same for all checks and thus cancels for the difference.
Furthermore, all the checks presented in this section were first performed using only a random
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Figure 5.39: The data/MC agreement in the electron channel (left) and the muon channel
(right) for the polar angle of the lepton candidate, following the binning used for the electron
and muon efficiency corrections.

10 % of the data, to ensure that there are no major issues before proceeding with the entire
dataset.

In the following figures, ∆Rµ ≡ R shifted
µ (check) − R shifted

µ (nominal) will be shown, where
R shifted

µ (check) is the estimated value for the indicated check and R shifted
µ (nominal) is the

estimate with the nominal conditions. The error bar will indicate the total uncertainty of
R shifted

µ , as obtained from the fit (combined statistical and systematic uncertainty). In addition,
horizontal error caps indicate the part of the total uncertainty that originates from lepton ID
uncertainties, while transparent solid error bars indicate statistical uncertainties.

5.5.1 Split samples (independent)
The stability of Rµ for different sample splits is shown in Figure 5.40. The nominal result is
compared to results obtained with samples of restricted lepton momentum (larger and smaller
than 3 GeV, as well as split at 2.5 GeV and 3.5 GeV), polar angle (larger and smaller than
1.31), negative and positive charge, and with the polar angle of the missing momentum vector
larger and smaller than 0.8. Some of these splits do not have any events in common and are
therefore statistically independent, as indicated by the vertical dashed lines in Figure 5.40.
Although for those the statistical uncertainties are independent, the systematic components
could still be correlated.

The only split that is incompatible when only statistical uncertainties are considered is the
split into low and high momentum, separated at 3 GeV. However, since momentum is used as
the fit dimension, the correlations of the most dominant systematic uncertainties in the fit
model are already known. In particular, the mis-id rate uncertainties are independent for high
and low momentum, since for high momentum, their statistical component dominates due to
a low number of events in the relevant calibration samples, such as it is the case for the tau
channel using τ± → 3π±ν decays, which was briefly discussed in Section 3.6.3. In addition, as
discussed in Section 3.6.6, the µµγ calibration channel requires that at least one of the muon
candidates has momentum below 3 GeV, which results in increased statistical uncertainties
just above 3 GeV. Furthermore, the BDT which is used for electron identification was trained
independently for momenta below and above 3 GeV which can give rise to independent
systematic effects. No trend is observed when performing a different split in momentum, such
as those separated at 2.5 GeV and 3.5 GeV.
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Figure 5.40: Stability of Rµ for statistically independent split samples, indicated by the
vertical dashed lines. The horizontal error caps indicate the part of the total uncertainty
originating from lepton ID uncertainties, while transparent solid error bars indicate the
statistical uncertainty.

5.5.2 Split samples (overlapping)
The stability of Rµ for different samples that partially contain the same events is shown in
Figure 5.41. Because the samples overlap, the statistical uncertainties are not independent
and similar values are expected to be measured for Rµ. The nominal value is compared to the
values obtained with different cuts on Pe and Pµ, to a fit with different assumptions on the
correlation of the systematic components of the lepton ID uncertainties (0.5 and 0.0, contrary
to the nominal value of 1.0), to a fit with increased luminosity uncertainty from 0.6 % to
10 %, to fits with different bin sizes, where the number of splits of the 0.5 GeV lepton ID bins
were varied from 1 to 4, and to fits with varying the amount of ISR photons by 10 % to 20 %
(contrary to the nominal value of 5 %). Very good consistency is observed with the nominal
value for all checks, and the checks with increased luminosity and ISR uncertainties do not
show larger uncertainties on Rµ, which is an important check of the expectation that they
cancel. The results with different lepton ID correlations show smaller uncertainties, which
is expected from the studies shown in Section 5.3.2. The checks with different lepton ID
requirements are further discussed in the following sections.

5.5.3 Lepton identification requirements
The stability of Rµ for different tightness of selections on Pe is shown in Figure 5.42, additionally
also split into the different subsets already shown in the previous sections. The compared
cuts on Pe are 0.5, 0.9, 0.95, and 0.99, since the lepton ID corrections were only available for
these values. While slight variations are observed for some subsets, this is well within the
uncertainties, which are dominated by the electron efficiency uncertainty for the tighter cuts.
The uncertainty increases significantly with tighter cuts on Pe, indicative of the larger deviations
from the nominal value when applying tighter cuts. This originates from a discrepancy in
the Bhabha efficiency correction factors between different events selected by the HLT, which
are more significant for tighter cuts and for which a systematic uncertainty is assigned (see
Section 3.6.3). The cut at 0.5 results in the smallest uncertainties and is most robust to
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Figure 5.42: Stability checks with different selections on Pe. The horizontal error caps indicate
the part of the total uncertainty originating from lepton ID uncertainties, while transparent
solid error bars indicate the statistical uncertainty.

systematic effects, which is why it was chosen in the first place. Figure 5.43 shows the
compatibility for each of the obtained Rµ values with the one obtained with the nominal cut
on Pe (0.5). It gives the consistency for different assumptions on the correlation of the electron
efficiency uncertainties between the different working points, shown as coloured markers. The
assumed correlation ranges from 0.0 to 1.0, since the true correlation is unknown and cannot
be easily obtained. For this check, all values are consistent with any assumed correlation of
the uncertainties.

In Figure 5.44, the same checks with different cuts on Pµ are shown, which show very stable
behaviour except for slightly larger values with a cut at 0.5. Figure 5.45 shows the compatibility
of each of the obtained Rµ values with the one obtained with the nominal cut on Pµ (0.9). The
compatibility depends on the correlation of the muon efficiency and mis-id rate uncertainties
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Figure 5.43: The compatibility between the observed values when changing the cut on Pe. The
statistical uncertainty on Rµ is taken to be fully correlated, while different correlations are
tested for the lepton ID uncertainty.
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Figure 5.44: Stability checks with different selections on Pµ. The horizontal error caps indicate
the part of the total uncertainty that comes from lepton ID uncertainties.

between the different cut values. If the uncertainties are highly correlated, there is some
tension between the obtained values, but a correlation below 0.9 would already make them
compatible. In the following, the correlation of the statistical uncertainty of the corrections
will be estimated.

5.5.4 Correlations of muon identification uncertainties
Using the e+e− → µ+µ−γ sample which was used to calibrate the muon efficiency corrections,
the correlations of the statistical component of the muon identification uncertainties between
different cuts on Pµ can be estimated. This is done with an integrated sample that restricts
the probe muon to the same momentum and polar angle region used in the analysis. First, the
integrated muon identification efficiency is computed in data and MC for different cuts on Pµ,
shown in Figure 5.46a. Then, the ratio of the obtained efficiencies is taken while propagating
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Figure 5.45: The compatibility between the observed values when changing the cut on Pµ.
The statistical uncertainty on Rµ is taken to be fully correlated, while different correlations
are tested for the lepton ID uncertainty.

the statistical uncertainty and keeping information about the correlations. The resulting ratio
is shown in Figure 5.46b. In Figure 5.47, the correlation of the uncertainties between any two
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Figure 5.46: The muon identification efficiencies in data and MC (a), as well as their ratio (b)
for different selections on Pµ, in order to estimate the correlations of the associated statistical
uncertainties.

cuts on Pµ is shown. As expected, for two close cut values, the correlation is almost one, while
very different cuts give a lower correlation. Ultimately, the only correlations of interest are
between the cut values 0.5, 0.9, 0.95, and 0.99, which are shown in Table 5.4.

The same study is carried out with the pion sample that is used to derive π → µ mis-id rate
correction factors (τ± → 3π±ν). The efficiencies in data and MC and their ratio are shown in
Figure 5.48. In Figure 5.49, the correlation is shown for different cuts on Pµ, and in Table 5.5,
the correlation is shown for the relevant working points. The correlation is similar to the one
obtained for the muon efficiency corrections.
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Figure 5.47: The correlation of the statistical uncertainty of the muon efficiency correction
factor between different cuts on Pµ.

Table 5.4: Correlations of the statistical component of the muon efficiency uncertainty between
different cuts on Pµ, computed using the µµγ calibration channel.

0.5 0.9 0.95 0.99
0.5 1 0.869 0.839 0.781
0.9 0.869 1 0.965 0.899
0.95 0.839 0.965 1 0.931
0.99 0.781 0.899 0.931 1

Table 5.5: Correlations of the statistical component of the π → µ mis-id rate uncertainty
between different cuts on Pµ, computed using the τ± → 3π±ν calibration channel.

0.5 0.9 0.95 0.99
0.5 1 0.86 0.834 0.788
0.9 0.86 1 0.969 0.916
0.95 0.834 0.969 1 0.945
0.99 0.788 0.916 0.945 1

Now, the compatibility between the checks shown in Figure 5.44 can be computed using
the obtained correlations. This is indicated in Figure 5.50 with a black marker. With this
correlation, all checks are consistent with each other within 2σ, suggesting that the small
observed differences arise only due to statistical fluctuations.

5.5.5 Polar angle splits
In this section, the impact on Rµ is checked when measured with the lepton in different θ
regions. Figure 5.51 shows the stability in four coarse bins, with edges coinciding with edges of
the lepton ID correction bins. In Figure 5.52, a denser theta binning is used, corresponding to
the lepton ID correction bins defined in Section 3.6.4. For both cases, the observed variation
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Figure 5.48: The π → µ mis-id rate in data and MC (a), as well as their ratio (b) for different
selections on Pµ, in order to estimate the correlations of the associated statistical uncertainties.

0.0 0.2 0.4 0.6 0.8 1.0
μ threshold

0.0

0.2

0.4

0.6

0.8

1.0


μ t

hr
es

ho
ld

0.6

0.7

0.8

0.9

1.0

Figure 5.49: The correlation of the statistical uncertainty of the π → µ correction factor
between different cuts on Pµ.

is consistent with statistical fluctuations. A χ2/ndf of 13.4/10 (p-value: 0.2) is obtained
for the dense theta split when only considering the statistical uncertainties. One reason for
the observed shift in the last bin could be that it is the region in which the muon efficiency
and mis-id rate correction factor changes within the bin, as previously observed. This is
also reflected by the larger systematic uncertainty of Rµ when measured in that bin, which
originates from lepton ID uncertainties, but also from the normalisation uncertainty (introduced
in Section 4.6.9) due to larger data/MC discrepancies in that bin which can also be seen from
Figure 5.39 in Section 5.4. However, as is apparent from the same figure, the number of events
with the lepton candidate in the range 2.04 < θ < 2.13 is small.

5.5.6 ANN cut stability
The stability of Rµ between different cuts on the neural network output is shown in Figure 5.53.
The nominal cut on the ANN output is 0.9. The measured value is very stable, with a slight
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Figure 5.50: The compatibility between the observed values when changing the cut on Pµ.
The statistical uncertainty on Rµ is taken to be fully correlated, while different correlations
are tested for the lepton ID uncertainty. The black marker indicates the correlation obtained
for the muon efficiency uncertainty.

no
m

in
al

0.
82

 <
 θ

 <
 1

.1
6

1.
16

 <
 θ

 <
 1

.4
6

1.
46

 <
 θ

 <
 1

.7
8

1.
78

 <
 θ

 <
 2

.1
3−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

ΔR
μ

stat. + sys. LID sys. stat.

Figure 5.51: The stability of Rµ in four different θ regions, with edges coinciding with edges of
the lepton ID correction bins.

increase for tighter cuts on the output. This can be explained by the fact that a significant
fraction of signal events are removed, resulting in a substantial statistical uncertainty. For
cuts larger than 0.96, there are too many empty template bins, which causes the fit to fail.
In Figure 5.53b, the change in total uncertainty is shown as a function of the cut. It shows
that the cut at 0.9 is indeed close to optimal. For looser cuts, the uncertainty increases due to
larger backgrounds, whereas for tighter cuts, a steep increase in the statistical uncertainty is
observed.

The hypothesis that the observed shift for tighter cuts is due to a statistical fluctuation can be
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Figure 5.52: The stability of Rµ in eleven different θ regions, corresponding to the lepton ID
correction bins.
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Figure 5.53: Stability checks with different cuts on the neural network output (a) and the
change in the overall uncertainty (b).

tested by computing the correlation of the statistical component of the Rµ values between
different cuts on the ANN output. This is similar to what was done for the efficiency corrections
in Section 5.5.4. In Figure 5.54a, the electron and muon channel yields in data are shown
for different cuts on the ANN output. Taking the ratio of the yields and propagating the
statistical uncertainties results in a reasonable estimate of the statistical uncertainty on Rµ.
Considering that tighter cuts always select a subset of the looser cuts, the correlation of the
uncertainties can be obtained, shown in Figure 5.54b. This matches the expectation that close
cuts for lower ANN outputs result in highly correlated statistical uncertainties, whereas a tight
cut and a loose cut have largely independent uncertainties.

Using this correlation for the statistical components, the compatibility with different as-
sumptions on the correlation of the systematic component can be checked. This is shown in
Figure 5.55 when comparing neighbouring cuts and in Figure 5.56 when comparing always
to the nominal cut of 0.9. In all the cases, the measured values are compatible, even when
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Figure 5.54: The yields for the e-channel and the µ-channel as a function of the ANN cut, and
the such computed correlation between different cuts of the ANN output.

making the most conservative assumption on the correlation of the systematic uncertainties.
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Figure 5.55: The compatibility between the obtained values of Rµ for neighbouring cuts on
the ANN output, where the correct correlation was used for the statistical uncertainties. For
the correlation of the systematic uncertainties, different values are compared.

5.5.7 Time dependence
Figure 5.57 shows the stability of Rµ for different experiments (see Section 3.5.1 for the
corresponding time periods and luminosities). Here, one has to keep in mind that some trend
can be expected due to a time dependence of lepton ID efficiencies, and thus also associated
correction factors (the conditions in MC do not change). This time dependence mainly occurs
because of an increase in beam backgrounds in the later data-taking periods, which were
recorded with higher instantaneous luminosity. The data/MC correction factors that were also
applied here are only available integrated for the entire dataset. Thus, the purpose of this
check is only to ensure that there are no sudden changes in the measured value, which could
indicate an issue with some part of the data. In Figure 5.57 only a slight trend towards higher
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Figure 5.56: The compatibility between the nominal measurement of Rµ and the results
obtained with different cuts on the ANN output, where the correct correlation was used for the
statistical uncertainties. For the correlation of the systematic uncertainties, different values
are compared.

values is observed for later data. This is insignificant and even consistent with statistical
fluctuations. When only statistical uncertainties are taken into account, the reduced χ2/ndf is
7.975/4, corresponding to a p-value of 0.092.
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CHAPTER 6
Discussion of the results

6.1 Introduction
This chapter presents the measurement results, their interpretations, limitations, and prospects.
All studies presented in the previous sections were carried out while being blind to Rµ and
related quantities that could be used to infer the value that will be measured in the data.
The fit could be validated and studied without unblinding Rµ by adding a random shift of
Rµ to the likelihood function, as mentioned in Section 5.1. The results obtained for the
pulls of the nuisance parameters or the correlation of the fitted parameters are equivalent
to the fit without the random shift. After ensuring that all checks and fit properties are
satisfactory, the next step towards fully unblinding the analysis was to measure Rµ with 10 %
of the available data, randomly sampled from the entire dataset. This partial unblinding is
presented in Section 6.2.1, followed by the full unblinding in Section 6.2.2 after observing no
issues. In Section 6.3, the results are compared with previous experiments; in Section 6.4,
the observations are interpreted, and in Section 6.5, some of the limitations with the current
measurement are addressed. Finally, Section 6.6 gives a conclusion and outlook.

All numerical results presented in this chapter are rounded to four decimal places, while
intermediate calculations were realised using all digits.

6.2 Fit results
6.2.1 Partial unblinding
As a first step of unblinding, only 10 % of the data are used, randomly sampled from the whole
data-taking period. The impact of using only 10 % of the available data increases the statistical
uncertainty. While for 100 % a statistical (total) relative uncertainty of 0.07 % (0.38 %) can be
expected, for 10 % this uncertainty on Rµ becomes 0.22 % (0.44 %). Other options for this
partial unblinding that were considered were to use only 1 %, 2 %, or 5 % of the data, resulting
in a total precision on Rµ of 0.8 %, 0.62 % or 0.5 %, respectively. While only a part of the
data was used to perform the fit, the evaluated systematic uncertainties and variations of the
templates were the same as for the measurement with all of the data. The pre-fit distributions
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6.2. Fit results

of the electron and muon channels are shown in Figure 6.1, together with the distribution of
the random 10 % of the data. The data/MC ratio in the electron channel is consistently higher
than in the muon channel, indicating a measured value of Rµ lower than the SM expectation.
The post-fit distributions of the electron and muon channels are shown in Figure 6.2.
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Figure 6.1: The pre-fit momentum distributions for lepton candidates in the e-channel (left)
and µ-channel (right), compared to the observed data, using only 10 % of the total available
data. The bottom part of the figures displays the ratio of the observed data to the predicted
event counts from the fit model. The shaded region represents changes in the event counts
based on the systematic variations incorporated in the fit model.
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Figure 6.2: The fitted distributions for lepton candidates in the e-channel (left) and µ-channel
(right), compared to the observed data, using only 10 % of the total available data. The bottom
part of the figures displays the ratio of the observed data to the fitted number of events. The
shaded region represents changes in the fitted event counts based on the systematic variations
incorporated in the fit model after being constrained by the observed data.

A value of Rµ of 0.9652 ± 0.0043 is obtained from the fit, with a statistical component of the
uncertainty of 0.0021 and a systematic component of 0.0038. The measured value is below
the SM expectation but still consistent at the level of 1.72 σ. In Figure 6.3, the likelihood
profile of Rµ for the partially unblinded result is shown, both for the fit with all nuisance
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parameters floating (blue curve) and for a fit with all nuisance parameters fixed to their best-fit
values (red curve), indicating the statistical uncertainty associated with the estimated value of
Rµ. The partially unblinded distributions and results indicate no unexpected issues with the
measurement.
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Figure 6.3: The likelihood profile for Rµ using 10 % of the data. The blue curve is obtained
with the nominal fit, where all nuisance parameters are kept floating. In contrast, the red
curve is obtained with all nuisance parameters fixed to their best-fit values, indicating the
statistical uncertainty associated with the estimated value of Rµ.

6.2.2 Full unblinding
Using the full available dataset corresponding to 362 fb−1, 4 358 376 events are observed in the
electron channel, and 4 371 737 events are observed in the muon channel. A value of Rµ of
0.9675 ± 0.0037 is measured, which is consistent with the SM expectation of 0.9726 within
1.38 σ. Separated in terms of statistical and systematic uncertainties, the measured value for
the ratio of branching fractions is

Rµ = B(τ− → µ−ν̄µντ )
B(τ− → e−ν̄eντ ) = 0.9675 ± 0.0007 ± 0.0036. (6.1)

When this value is compared with the result obtained using 10 % of the data, the partially
unblinded result indicates a downward fluctuation in the sampled data consistent with the
estimated statistical uncertainty. The pre-fit distributions of the electron and muon channels
using the entire data sample are shown in Figure 6.4. As for the partially unblinded results,
there is slightly less data in the muon channel than in the electron channel, compared to their
respective expectations from the MC templates. While the data/MC ratio in the muon channel
is relatively flat, an almost linear trend is observed in the electron channel, with more data
than expected for lower electron momentum. As mentioned in Section 5.4 when comparing
the shapes of the distributions, this is likely related to differences in photon reconstruction
efficiency between data and MC and the presence of more FSR photons in the e-channel. This
effect is covered by the systematic uncertainties included in the fit model. Figure 6.5 displays
the momentum distributions for electron and muon candidates after fitting the model to the
observed data. The shaded regions in the bottom part of the figures represent changes in the
fitted event counts based on the systematic variations incorporated in the fit model after being
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constrained by the observed data. To obtain this, the nuisance parameters are varied according
to their post-fit uncertainties while also considering their correlations. As expected from the
goodness-of-fit test with a p-value close to 1, already discussed in Section 5.3.7, the fitted model
matches the observed yields very closely. The measured values of the nuisance parameters and
their uncertainties can be inferred from the pull plot already shown in Section 5.3.5. There
are no significant pulls of any nuisance parameter with respect to its expected value. The
correlations of some of the fitted nuisance parameters were shown in Section 5.3.6.
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Figure 6.4: The pre-fit momentum distributions for lepton candidates in the e-channel (left)
and µ-channel (right), compared to the observed data. The bottom part of the figures displays
the ratio of the observed data to the predicted event counts from the fit model. The shaded
region represents changes in the event counts based on the systematic variations incorporated
in the fit model.

0

1

2

3

4

5

6

   
 E

ve
nt

s/
(0

.1
67

Ge
V/

c)

×105

e-channel (post-fit)
∫Ldt = 362 fb−1

(τ→eνeντ)(τ→hnπ0ντ)
other (true e)
other (fake e)
Uncertainty
Data

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
pe [GeV/c]

0.99

1.0

1.01

Da
ta

/m
od

el
 0

1

2

3

4

5

6

   
 E

ve
nt

s/
(0

.1
67

Ge
V/

c)

×105

μ-channel (post-fit)
∫Ldt = 362 fb−1

(τ→μνμντ)(τ→hnπ0ντ)
other (true μ)
other (fake μ)
Uncertainty
Data

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
pμ [GeV/c]

0.99

1.0

1.01

Da
ta

/m
od

el
 

Figure 6.5: The fitted distributions for lepton candidates in the e-channel (left) and µ-channel
(right), compared to the observed data. The bottom part of the figures displays the ratio of
the observed data to the fitted number of events. The shaded region represents changes in
the fitted event counts based on the systematic variations incorporated in the fit model after
being constrained by the observed data.

Figure 6.6 shows the likelihood profile of Rµ, demonstrating that it closely follows a Gaussian
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distribution. The blue curve shows the profile obtained with all nuisance parameters floating,
with the curvature at the best-fit value resulting in the total uncertainty of 0.0037. The red
curve shows the profile obtained with all nuisance parameters fixed to their best-fit values,
indicating the statistical uncertainty associated with the estimated value of Rµ, which is 0.0007.
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Figure 6.6: The likelihood profile for Rµ after full unblinding. The blue curve is obtained with
the nominal fit, where all nuisance parameters are kept floating. In contrast, the red curve is
obtained with all nuisance parameters fixed to their best-fit values, indicating the statistical
uncertainty associated with the estimated value of Rµ.

6.3 Comparisons with previous studies
In Figure 6.7, the comparison of the unblinded value to previous B-factory measurements and
the global fit result by HFLAV [13] is shown. On the left, the values are compared for Rµ and
on the right for the corresponding values of |gµ/ge|τ . The measured value of Rµ is translated
to |gµ/ge|τ using Equation 1.2, resulting in))))gµ

ge

))))
τ

= 0.9974 ± 0.0019. (6.2)

All values are consistent with the expectations of the SM. The HFLAV fit contains the
measurements by CLEO, BABAR, and many more results of individual measurements of tau
branching fractions, but not yet this Belle II result. While previous measurements were slightly
above the SM value, the present result is slightly below. This is expected to bring the global
average closer to the SM value.

6.3.1 Absolute branching fractions
Although the absolute branching fractions were not measured in the present work, one can
compare the expected precision from the three-channel fit described in Section 5.2.7 with
previous measurements of the τ− → e−ν̄eντ and τ− → µ−ν̄µντ branching fractions. This
comparison is shown in Figure 6.8, where the Belle II value is obtained from a fit with Asimov
data. The central value corresponds to what was used as the branching fraction in the generator,
as listed in Table 4.11. The separation of the total uncertainty into statistical and systematic
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Figure 6.7: A comparison of the present result to earlier measurements of Rµ (left) and |gµ/ge|τ
(right) conducted by B-factories [11, 12] along with the global fit result from HFLAV [13].
The error bars show the total uncertainties of the respective quantities. In addition, in the
figure on the left, the shaded regions indicate the statistical uncertainties. The vertical lines
mark the values as predicted by the SM.

components is based on the likelihood profile scans presented in Figure 5.28 in Section 5.3.4.
Comparing the uncertainties, the current analysis would already be competitive with the
older measurements from LEP experiments. Only the ALEPH result [164] is significantly
more precise. The Belle II result could contribute to the global average and would be an
essential measurement to further reduce the precision of the branching fractions, which are
also a necessary input for e-τ and µ-τ LFU tests, as described in Section 2.4.2.
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Figure 6.8: Previous individual measurements of B(τ− → e−ν̄eντ ) (left) and B(τ− → µ−ν̄µντ )
(right) by CLEO [11] and the LEP experiments [164–168] along with the global fit result
from HFLAV [13]. The Belle II entry shows the preliminary sensitivity achieved with the
three-channel fit described in this work. The fit is performed using Asimov data, resulting in a
central value equivalent to the branching fractions set in TAUOLA. The error bars show the
total uncertainties, while the shaded regions indicate the statistical uncertainties.
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6.4 Interpretation of findings
From the results of the present work, a CI at 68.27 % CL can be constructed using the profile
likelihood ratio outlined in Section 2.5.2. The resulting interval spans a range from 0.9955 to
0.9993 over |gµ/ge|τ . In the frequentist interpretation, this means that when the measurement
is repeated many times, in 68.27 % of the cases, the constructed CI will cover the actual value
of |gµ/ge|τ .

Testing the SM hypothesis of |gµ/ge|τ = 1 using the profile likelihood ratio as a test statistic (see
Section 2.5.2), a p-value of 0.166 is obtained. This indicates that, under the assumption that
the SM hypothesis is true, in about 16.6 % of the outcomes from repeated measurements, the
measured value is less consistent with the SM than the observed value from this measurement.
Based on this result, the SM hypothesis cannot be ruled out. At the same time, it is important
to acknowledge that no hypothesis can be confirmed based on statistical inference.

These interpretations are well summarised in Figure 6.9, where the p-value associated with
the profile likelihood scan from Figure 6.6 is shown, assuming that negative two times the
logarithm of the profile likelihood ratio follows a χ2 distribution with one degree of freedom.
The scan values were translated from Rµ to |gµ/ge|τ using Equation 1.2. The CI corresponding
to some CL can be constructed by finding the values of |gµ/ge|τ where the p-value corresponds
to 1 − CL. At the same time, the p-value of testing the SM hypothesis can be directly read
from the value at |gµ/ge|τ = 1.
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Figure 6.9: The p-values associated with the profile likelihood scan of Rµ, translated to |gµ/ge|τ .
The point estimate from the fit gives a p-value of one and is highlighted with a vertical dotted
line. The CI corresponding to some CL can be constructed by finding the values of |gµ/ge|τ
where the p-value corresponds to 1 − CL. This is indicated for a CL of 68.27 % and 95.45 %
with horizontal dotted lines. The p-value of testing the SM hypothesis can be directly read
from the value at |gµ/ge|τ = 1 and is indicated with a dashed line.

The tests in Section 5.3.7 suggest that the constructed confidence intervals may be slightly
overcovering. This can be attributed to the conservative choice of some uncertainties due to
the limited knowledge of the actual values. Furthermore, the assumed correlations between
the systematic variations of the templates are conservative, as the true correlation is often
unknown and difficult to determine. Making a conclusive statement about overcoverage without
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knowing the actual uncertainties and correlations is difficult. It is possible that reducing the
uncertainties without considering the correct correlations would introduce a bias and cause
undercoverage. Given these considerations, it is preferable to risk overcoverage. The studies
with reduced uncertainties indicate that the effect is, in any case, not greater than 10 %, and
the interpretation of the results remains unaffected.

To see the impact of this result on the global average, one can compare the average of previous
measurements quoted in the PDG to a combination of prior measurements with the result of
this work. The PDG averaged the results of ARGUS [169], CLEO [11] and BABAR [12] and
obtained a value of 0.979 ± 0.004 [10]. Combining these three results with the present result, a
value for Rµ of 0.9735±0.0026 is obtained. Here, completely independent uncertainties between
all the measurements were assumed, which might not be the case but is good enough for this
naive comparison. This average perfectly agrees with the SM prediction of 0.9726. Moreover,
translated to |gµ/ge|τ , this corresponds to 1.0005 ± 0.0013, which is of similar precision as the
currently most precise LFU test using pion decays, which is ge/gµ = 0.9996 ± 0.0012 [14].

6.5 Addressing limitations
The dominant sources of uncertainties in this measurement arise from the identification
of leptons (0.32 %), followed by uncertainties associated with the trigger (0.10 %); see also
the summary of all systematic effects shown in Table 4.25. These sources are particularly
challenging because they can affect the signal of τ− → e−ν̄eντ and τ− → µ−ν̄µντ differently,
leading to non-cancellation when measuring Rµ.

Extensive work has been done to study lepton identification uncertainties, which is reassuring
in terms of their validity. However, there is still room for improvement, particularly concerning
electron identification uncertainties. These uncertainties are dominated by their systematic
components, which will not scale with acquiring a larger dataset. To address this, dedicated
studies must be performed to explain the observed discrepancies with the Bhabha calibration
channel, shown in Section 3.6.3, which are currently added as systematic uncertainties. Once
the source of these differences is understood, it is reasonable to assume that the systematics
will be reduced, possibly by introducing an additional dimension in which the corrections are
binned.

Another realistic way to improve the measurement is to introduce a π0 veto on the signal
side. As discussed in Section 4.4.2, this is currently not included because data/MC differences
in the reconstruction of false π0 candidates can significantly impact the measurement of
Rµ. A correction factor and associated uncertainties must be obtained through a detailed
study using control channels to address this. While this could add to the overall uncertainty
on Rµ, it could potentially outweigh the increased uncertainties associated with mis-id rate
uncertainties originating from the larger contamination of pions on the signal side. With the
π0 veto, the fraction of τ → ππ0ν decays on the signal side would be approximately one-third
compared to the present case, in both the e and µ channels, as shown in Table 6.1. For this,
a simple requirement of having no π0 candidates on the signal side using the π0 selection
from Section 4.4.1 was imposed, but one could also think of having a more refined veto. For
reference, the contribution of τ → πν decays on the signal side is also listed, which is unaffected
by the π0 veto. The impact of these reduced pion backgrounds on the systematic uncertainty
due to muon mis-id rate corrections would be a reduction from currently 0.19 % to 0.11 %.
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Similarly, the systematic uncertainty due to electron mis-id rate corrections would be reduced
from 0.12 % to 0.05 %.

Table 6.1: The fraction of tau decays involving pions on the signal side for the electron and the
muon channel. The current case (‘without veto’) is compared to introducing the requirement
that no π0 candidates are on the signal side (‘with veto’). The number of τ → πν decays in
the sample is unaffected by the veto.

Decay e-channel µ-channel
τ → ππ0ν (without veto) 0.9 % 3 %
τ → ππ0ν (with veto) 0.3 % 1 %
τ → πν 0.36 % 2.2 %

The uncertainty associated with the trigger correction can be reduced with detailed studies
on why the correction factor varies for different choices of the reference trigger. Although
the currently included uncertainties are very conservative, the overall impact on the total
uncertainty of Rµ remains subdominant compared to lepton identification. When the uncer-
tainty associated with lepton ID corrections can be reduced, it will be more critical to better
understand the systematics associated with the trigger. In particular, the correlation between
the uncertainties in the e-channel and the µ-channel is important to understand. One way to
improve the analysis is to use additional trigger lines, such as newer CDC-based triggers using
Neuro 3D tracks. A promising candidate for this is the single-track trigger, which can trigger
on individual tracks. By doing this, the trigger efficiency can increase and reach close to 100 %
for both channels, making the measurement less sensitive to trigger systematics altogether.

Other sources of systematics that, at some point, could become a limiting factor are the
modelling of FSR and the modelling of the background. Currently, both effects are included
using rather conservative estimates. Understanding these effects in more detail would involve
extensive studies, possibly only beneficial after reaching a sub-permille precision on Rµ.

The measurement of the absolute branching fractions is sensitive to various systematic effects,
particularly those that impact the overall normalisation of the templates. Not as much attention
has been paid to these effects in the present work since they cancel for the Rµ measurement.
Although the e × µ channel was intended only as a control channel, the prospects of using
it to precisely measure the absolute branching fractions are promising. While it is relatively
clean compared to other channels, particularly regarding uncertainties related to neutral
reconstruction, it still needs to be studied in more detail as additional effects may play a role.
Currently, the most significant systematics are associated with luminosity, tracking efficiency,
lepton identification, and sample normalisation, as listed in Table 5.3. In addition, the effect
of the trigger should be carefully studied since systematic shifts from estimating the trigger
efficiency with a reference sample would not cancel, as it is the case for the Rµ measurement.
When writing this, the official luminosity measurement of Belle II was not yet finalised for
the present dataset and is still subject to some change in the central value and associated
uncertainty. While this has little impact on the measurement of Rµ, a change in the luminosity
would directly impact the measurement of the absolute branching fractions, which is another
reason why it was not pursued for publication together with the test of LFU.
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6.6 Conclusion and outlook
This work presented a test of lepton universality by measuring the ratio of the leptonic
branching fractions of the tau lepton. Using 362 fb−1 of Belle II data, the measured value

Rµ = B(τ− → µ−ν̄µντ )
B(τ− → e−ν̄eντ ) = 0.9675 ± 0.0007 ± 0.0036

is in agreement with the SM expectation of 0.9726. The uncertainty is split into a statistical and
a systematic component, with the latter being dominant. The limiting systematic source for
this measurement is associated with the identification of the charged leptons, which comprises
about 86 % of the total systematic uncertainty. Extensive studies were conducted to estimate
and reduce the systematic effects of this measurement and to confirm its validity. When
translated to the ratio of the weak couplings, the result is))))gµ

ge

))))
τ

= 0.9974 ± 0.0019,

which at the moment is the most accurate test of lepton universality using tau decays obtained
from a single experiment. A journal paper describing this analysis has been submitted to the
Journal of High Energy Physics (JHEP), and the full statistical model will be published on
HEPData to simplify combinations with past and future measurements.

The future for this measurement looks promising, and even more precise tests of lepton
universality can be expected. At the time of writing this, another measurement by the Belle II
collaboration is being prepared using the 3x1 topology of taupair events, following a similar
approach as outlined in this work. This measurement could exceed the precision achieved
with the current measurement for several reasons: The main improvement with respect to this
analysis would be the addition of a π0 veto, which significantly reduces uncertainties due to
mis-id rate uncertainties, as discussed in Section 6.5. The challenge will be reliably estimating
the correction due to the difference between data and simulation in reconstructing fake π0

candidates and the systematic uncertainties associated with applying this veto. Another
advantage is that the trigger is less of a concern for the 3x1 topology since additional track-
based triggers that require the presence of three tracks in the event can be used. Studies by
colleagues have shown that using a selection of ECL and CDC-based triggers already results
in an efficiency close to 100 % for this topology, which significantly reduces the impact of the
trigger correction and associated uncertainties. Furthermore, selecting taupair events with
the 3x1 topology generally results in lower backgrounds, which can reduce the uncertainties
associated with it.

The combination of the 3x1 measurement with this 1x1 measurement can be achieved using
the pyhf library. A combined fit using four channels rather than two can be performed, in
which the correlations of the systematic effects common to both measurements must be taken
into account. Since both measurements are expected to be dominated by lepton identification
systematics, the gain from this combination will be limited. However, it will be an important
confirmation of the present measurement.

One step further would be to measure the absolute branching fractions by adding a fifth
channel, as outlined in this thesis (Section 5.2.7). The measurement of the absolute branching
fractions (and the measurement of Rµ) could be further improved by adding even more channels
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to the fit, such as those discussed in Section 4.3. The most promising candidate for this would
be events with purely leptonic decays for both tau leptons.

In the more distant future, the best way to reduce the uncertainties of this measurement is to
perform more detailed studies on lepton identification and the associated systematic effects,
with the calibration channels used to derive the corrections discussed in Section 3.6. It will
be especially important to obtain the correlation of the systematic uncertainties between the
correction bins, which is currently unknown. Knowing these correlations could already have a
significant impact when using the current set of corrections, as it was shown in Section 5.3.2 or
as indicated by Figure 4.3 in Section 4.3. One could even consider including these calibration
channels in the fit model and directly obtaining the correction factors, associated uncertainties,
and their correlation with the fit. Furthermore, new calibration channels can be studied to
obtain a more robust estimation of the lepton identification corrections and better understand
the various systematic effects.

With these improvements, Belle II could test lepton universality with an accuracy below one
per mille, resulting in the most precise test of lepton universality altogether, surpassing even
other methods, such as using pion decays. Moreover, Belle II can perform precise measurements
of the τ mass and lifetime, which, together with the leptonic tau branching fractions, provides
a powerful test of e-τ and µ-τ universality. Other experiments are also expected to improve
their precision in the coming years, and exciting results can be anticipated. New colliders,
such as FCC-ee [170, 171], will also be able to perform this measurement and help to further
enhance our understanding of fundamental physics. Precision measurements with tau leptons
are and will be an essential aspect of this, as they provide a unique way to test the Standard
Model and search for new physics beyond it.
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