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KURZFASSUNG

Die erste Demonstration eines Quanten Kaskaden Lasers (QCL) efolgte im Jahr 1994 in
den „Bell Laboratories“. Seitdem wurden seine außergewöhnlichen Eigenschaften erforscht
und zahlreiche Anwendungen entdeckt. Eine der wichtigsten Anwendungsbereiche dieses
Halbleiter-Lasers ist die Spektroskopie. Dabei ist es vorteilhaft, dass der Laser eine große
Emissions-Bandbreite besitzt damit viele verschiedene Stoffe detektiert werden können.
Die Bandbreite eines QCL kann mithilfe zwei verschiedener Methoden vergrößert werden.
In der ersten Methode wird das Kaskaden-Design entlang der Wachstumsrichtung verän-
dert. Dies führt zu einer unterschiedlichen Emissionswellenlänge der einzelnen Schichten,
was die Bandbreite erhöht. Eine Alternative zu diesem heterogenen QCL bieten nicht-
lineare Effekte. Um eine merkbare Verbreiterung des Spektrums zu erzielen, sind hohe
Intensitäten erforderlich. Diese können durch optische Pulse erreicht werden. Da der
QCL im Vergleich zum Interband-Laser eine schnelle „Gain“ Charakteristik besitzt, ist
die Erzeugung von Pulsen nicht ohne Weiteres möglich. Eine vielversprechende Meth-
ode bieten frequenzmodulierte optische Frequenzkämme, welche mit QCL erzeugt werden
können. Der damit einhergehende „Chirp“ kann mit Hilfe eines Kompressors kompensiert
werden, was zu sehr kurzen Pulsen führen kann.

Der QCL und die damit erzeugten Frequenz-Kämme wurden bereits von N. Opačak,
mithilfe eines numerischen Modells basierend auf den Maxwell-Bloch Gleichungen, un-
tersucht. In dieser Arbeit wird dieses Modell für die Modellierung von heterogenen
QCL analysiert und stark erweitert. Um das Verhalten verschiedener Implementierun-
gen bewerten zu können, wurde ein Testmodell bestehend aus einem abstimmbaren Laser
und einem Wellenleiter erstellt. Dieser Wellenleiter wurde schrittweise erweitert, damit
verschiedene physikalische Effekte, welche in einem QCL auftreten, implementiert und
analysiert werden können. Unter anderem wurde die Implementierung der Gruppen-
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geschwindigkeits-Dispersion mithilfe einer neu entwickelten Methode stabilisiert. Diese
Methode basiert auf der Laplace-transformation der zugrundeliegenden Gleichung und
deren Taylor-Annäherung, welche mit Hilfe der Korrespondenzen im Zeitbereich imple-
mentiert wurde. Dieses Verfahren kann darüber hinaus für Dispersionseffekte höherer
Ordnung und für die gemeinsame Verwendung verschiedener Dispersionseffekte ausgenützt
werden. Des Weiteren ist das neu entwickelte Verfahren kompatibel mit der zuvor ver-
wendeten parallelen Berechnungsmethode, welche die Simulationszeit erheblich reduziert.
Ein weiteres physikalisches Phänomen sind Verluste im Wellenleiter, welche analytisch mit
Hilfe des exponentiellen Integrators implementiert wurden.

Die Verstärkung des Mediums wurde durch die Anwendung der bilinearen Transformation
der Polarisationsgleichung in das Programm eingebunden. Diese spiegelt das Verhalten
des Mediums im Frequenzbereich genauer wider, als zum Beispiel ein Verfahren erster
Ordnung. Die Verstärkungs-Implementierung der „Master Gleichung" für schnelle Ver-
stärkermedien, welche unter anderem von N. Opačak entwickelt wurde, kann hierfür nicht
verwendet werden. Diese induziert numerische Verluste in den Bereichen unterhalb und
oberhalb der zentralen Frequenz. Dies war unter anderem vorteilhaft im schmalbendigen
Modell, da dies das instabile Verhalten der Dispersions-Implementierung kompensiert hat.
Die Implementierung der Verstärkung des Mediums kann für die Simulation von hetero-
genen QCL erweitert werden. Hierfür werden mehrere Polarisationsgleichungen gelöst,
welche im Frequenzbereich verschoben sind. Dies spiegelt das unterschiedliche Kaskaden-
Design im heterogenen QCL wider.Die unterschiedlichen Lösungen der Polarisationsgle-
ichungen werden anschließend aufsummiert.

Die zweite Methode, welche das Emissions-Spektrum des Devices erhöht, basiert auf nicht-
linearen optischen Effekten. Um kurze optische Pulse mithilfe eines QCL und eines Kom-
pressors erzeugen zu können, müssen beide Komponenten aufeinander abgestimmt sein.
Um dies zu ermöglichen, wurden verschiedene Parameter analysiert, welche den „Chirp“
des optischen Frequenzkamms beeinflussen. Unter anderem kann der Zustand des Kamms
mit Hilfe des Bias, welcher örtlich durch mehrere Sektionen variiert wird, beeinflusst wer-
den. Ein weiterer Parameter bietet das Design der Kavität. Der Einfluss dieser Effekte
wurde durch Lösen der „Master Gleichung" für schnelle Verstärkermedien analysiert. Mit
diesen beiden Faktoren, zusammen mit der Reflektivität der Facetten, welche das Ausmaß
des Einflusses bestimmt, kann der „Chirp" des Frequenzkamms angepasst werden.
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ABSTRACT

Quantum cascade lasers (QCLs) are attracting a great deal of interest due to their wide
range of applications in science and industry. The QCL represents a compact and inte-
grable source of coherent light in the infrared and the terahertz regime. To expand the
bandwidth of the QCL in order to enlarge the number of detectable analytes, the cascade
design can be slightly changed along the growth direction, leading to a different emission
frequency of the segments. This structure, namely the heterogeneous QCL, has already
been shown in various publications. In order to deepen the understanding of these de-
vices and, among other things, to analyze the generation conditions of optical frequency
combs with heterogeneous QCLs, the conventional numerical model of a QCL developed
by N. Opačak et al. was numerically analyzed and extended in this work.

Starting with the first-order wave-equation, the description was expanded to include losses,
group-velocity dispersion effects, and gain. In case of the losses, the exponential integrator
was utilized. This method implements the losses analytically, which is in deep contrast
to the previously used first-order approximation. The group velocity dispersion (GVD)
implementation was stabilized. This is essential since in case of the simulation of hetero-
geneous QCsL, the polarization elimination, which was utilized in the master equation
model developed by N. Opačak et al., can not be applied. If this simplification is used, the
gain induces losses above and below the center frequency stabilizing the overall simulation.
To overcome the inherent stability problem, a new method was developed which retains
the advantage of parallel computing.
This method is based on the Laplace transformation of the governing wave-equation. The
implementation becomes stable by conducting a Taylor expansion and including higher-
order terms. The presented method can also be used for a stable implementation of
higher-order effects, such as third or fourth-order, and enables their stable joint usage.
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Instead of using the master equation formalism with its simplified gain implementation, a
slightly simplified version of the Maxwell-Bloch equations was implemented. The equation
for the upper state population was carried out by a first-order explicit scheme. This
scheme cannot be applied to the polarization equation since it induces numerical losses
above and below the center frequency. To overcome this numerical problem, the bilinear
Z-transformation was applied to the Laplace transformed polarization equation, which
eliminates the unwanted losses. The implementation of the gain was expanded towards
the simulation of heterogeneous QCL by a multiple usage of the polarization equation. The
gain peaks can be readily shifted in the frequency domain to simulate different cascade
designs.

Apart from the heterogeneous QCL, the emission-spectrum can be enriched by nonlinear
effects. To obtain noticeable broadening effects, pulses with high intensities are required.
In case of QCL, the generation of pulses is challenging due to the fast gain properties
of the medium. A powerful technique to overcome this limitation is presented by using
a QCL emitting a frequency-modulated optical frequency comb and by compensating its
chirp by a compressor. To generate short pulses, the compressor must fully compensate
for the chirp induced by the QCL. Different shaping methods of the QCL were analyzed to
align these two components, and their impact was simulated based on the master equation
for fast gain media. Among the parameters, three important shaping mechanisms were
found: laser bias, cavity design, and the reflectivity of the facets. The spatially varying
laser bias was simulated by using a more section device, and the cavity design was tested
by applying a tapered structure to the device. The reflectivity of the facets influences the
extend of their influence. All three parameters combined reveal a versatile set of tools to
tailor the locking state of the QCL, enabling the generation of ultra-short pulses.

v



ACKNOWLEDGMENTS

With the completion of my thesis, my time as a master’s student comes to an end. During
this time, I deepened my knowledge in the field of microelectronics, microsystem technolo-
gies, and phonics. I even had the opportunity to spend an Erasmus+ exchange semester
in Lund, Sweden, for which I am very grateful. During that time, I discovered some fas-
cinating properties of light which eventually guided me to start my master’s thesis in the
group of "Optoelectronic Devices". The completion of a thesis requires a lot of effort and
commitment. This page is, therefore, devoted to the people who supported me during this
period of my life.

First, I would like to thank my supervisor, and head of the research division "Optoelec-
tronic Devices", Univ.Prof. Dr.techn. Benedikt Schwarz, BSc for his support and
many helpful discussions. I really appreciated his open mind towards students, and his
dedication to the field of integrated optics was really inspiring.

I also want to express my gratitude to the research team of "Optoelectronic Devices".
The pleasant ambiance and the feeling of being included in the group from the first second
have contributed a lot to the value of this period. A special thank is devoted to Andreas
Windischofer, for many fruitful discussions and for his help with GitHub, and to Sandro
Dal Cin for the collaboration which led to a submitted manuscript.

Lastly, I would like to thank my family and friends, who have always supported me and
stood by my side in every situation.

To all the others who have made this time special.
Thank you very much!

vi



CONTENTS

1 Introduction 1

2 Background 5
2.1 Quantum Cascade Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Interband vs. Intersubband lasers . . . . . . . . . . . . . . . . . . . 7
2.2 Analytical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Modified equation approach . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Consistency and order of accuracy . . . . . . . . . . . . . . . . . . . 13
2.3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Explicit and implicit schemes . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Higher-order schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Finite difference model 18
3.1 Wave-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Discretization of the wave-equation . . . . . . . . . . . . . . . . . . . 19
3.2 Testing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Waveguide losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Group velocity dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Integration of the GVD into the wave-equation . . . . . . . . . . . . 27
3.4.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Higher-order dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Third-order dispersion (TOD) . . . . . . . . . . . . . . . . . . . . . . 43

vii



3.5.2 Fourth-order dispersion (FOD) . . . . . . . . . . . . . . . . . . . . . 45
3.5.3 Multi-parameter stability . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.1 Implementation of the gain . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.2 Multiple gain peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Chirp engineering in Optical Frequency Combs 53
4.1 FM-combs in fast gain media resonators . . . . . . . . . . . . . . . . . . . . 54
4.2 Reduced model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Chirp shaping mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Laser bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Cavity design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Facet reflectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Possible applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Conclusion 68

List of Figures 70

List of Abbreviations 76

List of Symbols 77

Bibliography 79

A Simulation parameters 86

viii



CHAPTER 1

INTRODUCTION

Lasers consisting of semiconductor material are compact, inexpensive, reliable and feature
a low power consumption. After the first demonstration of a laser diode on a GaAs
platform by R.N. Hall et al. in the 1960s [1], much research has been carried out in this
field. Today, the semiconductor laser has established itself as a powerful and useful device
that is employed in optical telecommunications [2], material processing applications [3],
and in many other fields such as medical applications [4]. The world as we know it would
appear entirely different without the invention of the laser diode. First demonstrations of
semiconductor lasers were based on conventional p-n diodes, which utilize the radiative
recombination of electrons from the conduction-band and holes from the valance band.
The required inversion is achieved by driving the diode electrically while the cavity is
formed by simply cleaving the device [4]. The diode structure has been revolutionized by
the invention of the double heterostructure design, enabling the confinement of light and
carriers, leading to more efficient devices [5, p. 826]. For their development in this field,
Z. I. Alferov and H. Kroemer were awarded with the Nobel prize in Physics of the year
2000 [6, 7]. The heterostructure device has been further developed by shrinking the size of
the heterostructure to the nano-meter scale leading to quantum-confined semiconductor
lasers [5, Ch. 18].

With the development of more advanced fabrication techniques, such as molecular beam
epitaxy (MBE) [8] or metal-organic vapor phase epitaxy [9], capable of stacking ultra-thin
layers of different materials on top of each other, a new type of laser has emerged. First
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Mid-infrared fingerprint region showing the absorption spectra of carbon dioxide CO2,
water H2O, carbon monoxide CO, nitric oxide NO, nitrogen dioxide NO2, methane CH4, oxygen
O3, and ammonia NH3. Source: [16, Fig. 1]

demonstrated in 1994 at Bell Laboratories by J. Faist et al. [10], the Quantum Cascade
Laser (QCL) was born after its first proposal nearly 20 years back by R.F. Kazarinov and
R.A. Suris [11]. In comparison to conventional laser diodes, the QCL is based on transition
occurring between states within the conduction-band. The QCL utilizes the impact of
the different layer thicknesses on the localization of charges, on their transport, and on
their optical processes. A remarkable aspect of this type of laser lies in the possibility
of changing the emission wavelength by changing the layer thicknesses. That means, the
emission frequency can be tuned over a large bandwidth by engineering the band structure
and without changing the material composition. Hence, the device can be fabricated with
almost any semiconductor material, whereas the most efficient devices were produced by
using a combination of the III-V materials Ga (Gallium), As (Arsenide), In (Indium),
Al (Aluminum), Sb (Antimony), and P (Phosphor) with reference to [12]. This epitome
of band-structure engineering has become one of the dominant source of coherent light
operating in the mid-infrared (2 Æ ⁄0 Æ 20 µm), far-infrared (20 Æ ⁄0 Æ 300 µm), and
terahertz range (100 Æ ⁄0 Æ 1000 µm) [5, p. 851 - 854]. This broad spectrum makes the
QCL an important tool for many scientific, industrial, and medical applications such as
trace gas analysis [13], the sensing of liquids [14], and optical telecommunication [15].

Apart from optical telecommunication, which utilizes spectral transparency windows of
the atmosphere, most of the applications of QCLs rely on the presence of absorption
lines in the infrared and terahertz range [15]. Figure 1.1 shows these specific lines in
the mid-infrared of selected molecules. The detection of these absorption lines resulting
from vibrational-rotational transitions is therefore of main interest [5, p. 851 - 854]. One
approach to detect these molecular fingerprints with high precision by means of QCL is
presented by dual-comb spectroscopy [17]. The basis of this method is the occurrence of
optical frequency combs in QCLs. Since their usage in spectroscopy and meteorology is
of such high importance, as described in [12], T. Hänsch and J. Hall were awarded with
the 2005 Nobel prize in physics [18, 19]. Optical frequency combs generated with QCL
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Figure 1.2: Broadband sources for spectroscopic applications: (a) heterogeneous QCL, (b) short
pulses generated by the combination of a QCL emitting an optical frequency comb with an optical
compressor, potentially triggering non-linear optical effects to broaden the spectrum. Source for
(a): [20]

present an ideal platform for a fully integrated spectrometer [12].

To analyze the concentration of many different molecules, a broadband source would be of
great interest as shown in Figure 1.1. The bandwidth of the QCL can be readily expanded
by changing the design of the cascades along the growth direction, leading to a slightly
different emission frequency of the layers [20–22]. This concept, namely the heterogeneous
QCL, is displayed in Figure 1.2 a. Another technique to broaden the spectrum is presented
by the utilization of non-linear optical effects [23]. In order to trigger these non-linear
effects, high intensities are required, which are best obtained with pulses. In case of QCL,
the generation of pulses is difficult to achieve due to the fast gain dynamics of the medium
as described in [24, Ch. 5]. To overcome this fundamental property, J. Hillbrand et al. [25]
applied a short modulation section to the QCL, which modulates the intracavity losses.
This leads to the formation of pulses. The second method, as shown in Figure 1.2 b,
utilizes a QCL emitting an optical frequency comb [24, Ch. 5]. A pulse can be formed
by compensating its chirp by an external compressor [26]. Both techniques are capable
of forming pulses, however, the theoretical limits of both approaches are different. In the
first case, the fundamental limit of storing the energy in the inversion is circumvented by
the short modulation section, whereas in the second case, the chirp produced by the QCL
can theoretically be fully compensated by the compressor, leading to ultra-short pulses.

Simulation of complex systems has become an indispensable part of research and industry.
To deepen the understanding of different parameters influencing the operation of the QCL,
much effort has been carried out, especially towards the occurrence of optical frequency
combs. An overview of recent modeling and experimental aspects can be found in [24, 27].

The content of this work describes numerical aspects of QCL and optical frequency combs
generated with this type of laser. The first chapter sheds light on the working principle
of a QCL, introduces its analytical model, and describes the basic principle of the finite
difference method utilized for the numerical analysis. Chapter 3 describes the expansion
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of an already existing model, developed by N. Opačak [24], towards the simulation of
heterogeneous QCLs. This extension comes with many numerical challenges, which are
discussed in detail within this part. Finally, chapter 4 is devoted to optical frequency
combs. Therein, multiple methods are being discussed and implemented into the narrow-
band model to tailor the chirp of the optical frequency comb. This is of utmost importance
since the chirp induced by the QCL has to be fully compensated in the second step by the
compressor to generate ultra-short pulses. These ultra-short pulses are consequently used
to broaden the spectrum by nonlinear optical effects as introduced.



CHAPTER 2

BACKGROUND

Quantum cascade lasers (QCLs) are an important source of coherent light in the infrared
and terahertz regime, and they are used in a wide range of applications in science and
industry [5, Ch. 18.4]. This chapter comprises a description of the basic principle of
this emerging type of laser. The discussion also includes a comparison of the QCLs with
conventional semiconductor lasers relying on interband transition. The description of such
a complex system is usually based on partial differential equations (PDEs). In most cases,
these equations can not be solved analytically. To introduce the mathematical model of a
QCL, implemented in chapter 3, the working principle and its analytical description are
being described in section 2.1. Finally, section 2.3 describes the basic principle of a versatile
method for the numerical solution of differential equations, namely the finite difference
method. The basic principle and important properties, including stability, consistency,
and convergence, are being discussed in this section.

2.1 Quantum Cascade Lasers
Optical oscillators consist of a region generating gain, and a cavity providing feedback.
In case of a conventional semiconductor laser diode, the active region consists of a PN-
junction, and the cavity is formed in the simplest case by cleaving the device [28, Ch.7]
[4]. The laser diode represents a bipolar device utilizing the radiative recombination of
electrons in the conduction-band and holes in the valance-band. This is in deep contrast
to the Quantum cascade lasers solely utilizing one carrier type [5, Ch. 18.4].
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Figure 2.1: Schematic drawing of a common QCL design utilizing an active region with a
quantum-well structure. Source: [5, Fig. 18.8-4 a]

In general, a cascade of a QCL is composed of two different parts: the injector and
the active region as outlined in "Quantum Cascade Lasers, Chapter 7" [29, Ch. 7] and
"Fundamentals of Phonics, Chapter 18.4", [5, Ch. 18.4]. The active region consists of
at least three states, which can be either quantized or a continuum of states as shown
in Figure 2.1a. Electrons are being transferred from the miniband of the injector (state
3) into the second state by resonant tunneling. After this injection process, the electron
transfers to state 1 by emitting a photon with the corresponding frequency. After this
optical transition, the electron decays by means of scattering to level 0 and is finally
flushed into the next injector region again by resonant tunneling. To create an inversion
in this system, the first level must be emptied faster than it is filled by the second level.
This corresponds to the following relation of the lifetimes

·21 > ·1. (2.1)

In other words, the lifetime of stage one ·1 has to be smaller than the transition time of
stage two to stage one ·2,1 [29, Ch.7].
While the optical gain is provided by the active region, the injector segment acts as an
electron reservoir and consists of a sequence of barriers and quantum-wells: a superlattice.
A part of this structure is also doped to prevent the formation of space charge regions.
In addition, this section separates the energy of the electrons compared to the band edge
which is eventually lost in the active region (Figure 2.1). With a suitable superlattice,
it is possible to inject carriers by means of resonant tunneling. In certain active region
structures, such as the three quantum-well design, this process is too slow to empty the
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Figure 2.2: Gain of interband transitions occurring between the conduction and valence-band (a)
and intersubband transitions (b) in a quantum-well. Source: adapted from [30, Fig. 3.1].

lowest level of the active region. This could lead to a back-filling process of the lower
lasing level which is unwanted and impacts the performance of the laser. One approach
to solve this issue is presented by the two phonon extraction process [29, Ch. 7].

QCLs normally consist of 10 to up to 100 cascaded stages, each consisting of an injector
and an active region. This cascading process has two main advantages. First, electrons
emit multiple photons depending on the number of periods. Due to this recycling process,
the driving current can be reduced to generate the equal amount of photons. Second,
the gain area is enlarged which lowers the required driving current density. Despite its
advantages, the cascading of stages increases the required bias of operation. Overall, this
process decreases the ohmic losses in QCLs [29, Ch. 7]. Further information about this
type of laser can be found in [29].

2.1.1 Interband vs. Intersubband lasers
Intersubband and interband lasers are based on different photon generation processes.
While interband lasers rely on the radiative recombination of electrons and holes, inter-
subband systems utilize mini-bands or discretized states in one band as introduced above.
This fundamental difference also influences the bandwidth and the emission frequency of
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both types. In case of interband lasers, the emission frequency is fundamentally limited
by the bandgap of the material. Since the transition in QCLs only occurs in one band, the
emission wavelength is not constrained by the bandgap. However, its minimum wavelength
is limited by the conduction-band offset [5, Ch. 18.4].

A second differentiation is presented by the joint density of states. In case of intersubband
transitions, this distribution is optically similar to the one of atomic systems. As depicted
in Figure 2.2, the intersubband transition is transparent below and above the transition
energy, while interband transitions absorb always at higher energies. This transparent be-
havior of intersubband transitions enables the stacking of different active regions utilized
in heterogeneous QCLs [20–22]. This property will turn out to be a key aspect in the
numerical implementation of the gain discussed in section 3.6. In addition to the different
joint density of states, the broadening mechanisms of the gain spectrum further differen-
tiate both types [29, Ch. 1].
Third, the gain is maximized differently in both types of lasers. In interband lasers, this
is achieved by minimizing the transparency current by confining the recombination area.
This can be achieved, for instance, by using a quantum-well design. The maximum current
is restricted either by the heat generated or by the damage to the facets. For intersubband
lasers, gain is maximized by the design of the active region and by minimizing other types
of losses. The maximum current is defined by the alignment of the band structure and
the doping of the device [29, Ch. 7].

Another difference can be found in the dynamics of the gain. A gain medium is considered
to be fast if the gain recovery time is lower than the round trip time of the cavity. Due
to their fast scattering times, normally in the pico- or even in the subpico-second range,
QCLs are considered as fast gain media. Interband semiconductor lasers possess slow
gain dynamics with gain recovery times in the nanosecond scale [24, Ch. 3.3]. The fast
gain property of QCL has significant benefits in its modulation properties. According
to [29, Ch.13], QCLs have a considerable modulation capability reaching up to 100GHz.
However, the fast gain dynamics also trigger the effect of spatial hole burning (SHB) since
the gain is reduced spatially where the intensity is high. This gain grating is not washed
out efficiently by diffusion in fast gain media and triggers multi-mode operation [24, Ch.
5.4]. This effect impacts the spatial intensity distribution computed in chapter 4 and will
be a part of the model described in the next section.

2.2 Analytical description
The full analytical model of a laser system is complex and involves many coupled dif-
ferential equations as shown in [24, Ch. 3]. While first models were based on the rate
equation, which does not include the phase information of light, the analysis shown in
this work is based on the Maxwell-Bloch equations. This set of equations is a model de-
scribing the propagation of light (Maxwell’s equation) and its interaction with an open
two-level system (Bloch-Equations). Maxwell’s and Bloch’s equations are coupled over the
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Figure 2.3: Real and imaginary part of the susceptibility ‰. The equations of the analytical model
and its simplification were taken from [24, eq. 3.83 and 6.17]. The used parameters can be found
in chapter A.

macroscopic polarization. Since this set of coupled equations does not reveal an intuitive
understanding of the underlying physics, the analytical description was simplified.

A key part of this simplification is the elimination of the polarization equation. Its impact
is displayed in Figure 2.3. The imaginary part of the susceptibility ‰i influences the phase
of the electric field while its real part ‰r impacts the gain of the medium. This relation
can be readily derived by assuming that ‰r π 1 as shown in [24, Ch. 3]. By analyzing
the accuracy of the approximation, one can clearly see that the simplified model describes
the susceptibility precisely until the bandwidth overcomes the typical gain bandwidth of
a QCL of about 1 THz. By incorporating further simplification for fast gain media, the
model can be reduced to a single master equation. This equation has revealed much new
information regarding QCLs, especially in the field of optical frequency combs [31–34].

However, for the simulation of broadband QCLs, especially for heterogeneous QCLs, the
elimination of the polarization equation can not be conducted since the approximation
induces losses above and below the center frequency. This is in contradiction to the
expected behavior shown in Figure 2.2 b. The governing equation is coupled with the
polarization equation in order to obtain a transparent medium in these spectral ranges.
Chapter 3 continuously expands this governing equation based on the one-dimensional
wave-equation to include dominant physical effects present in a QCL.

Figure 2.4 displays the main components of the model. All the effects presented result
from the physical behavior of the fast gain medium.
This includes:
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Figure 2.4: Schematic drawing of a Fabry-Pérot laser cavity outlining the main components of
the analytical description: losses, group velocity dispersion (GVD), third and fourth-order group
velocity dispersion (TOD and FOD), gain, spatial hole burning (SHB), and the Kerr-effect.

1. Waveguide losses due to scattering and absorption of the material between the two
facets [5, p. 442].

2. Group velocity dispersion (GVD) and 3. higher-order dispersion (third-order (TOD)
or fourth-order (FOD)) effects due to the frequency dependence of the refractive
index n. This effect leads to chirping which is best explained by means of pulses. If a
transform-limited pulse1 propagates through a dispersive medium, its instantaneous
frequency changes during the length of the pulse, and the overall shape broadens. A
more detailed description can be found in [5, Ch. 23] and [28, Ch. 3.2].

4. The gain of the medium as depicted in Figure 2.3.

5. Spatial hole burning (SHB) being present in fast gain media. In a Fabry-Pérot
laser system, the counter-propagating electric field waves generate a standing wave
pattern where the inversion is depleted. In conventional interband lasers, this effect
can be efficiently washed out by diffusion. In fast gain resonators, such as QCLs,
this is not possible due to its fast intersubband scattering mechanisms [24, Ch. 5.4].

6. The Kerr-effect describes the impact of the intensity on the refractive index n [5,
Ch. 22]. This nonlinear effect can be taken into account by an additional term in
the governing equation as shown in [31] which is not used in this model. The Kerr-
effect will be taken into account by a non-zero linewidth enhancement factor (LEF)
representing its main origin. Based on the Kramers-Kronig relations, coupling real
and imaginary part of the susceptibility ‰, the LEF takes the extent of the impact
of an asymmetric gain profile on the refractive index into account. The LEF has
already been analyzed in detail in [24, Ch. 6] and will not be discussed in more
detail in this work.

2.3 Finite difference method
Finding an analytical solution of a partial differential equation (PDE) is mostly not pos-
sible, especially if the grade of complexity is high. Numerical methods, among them the

1 a pulse with a minimum time-bandwidth product.
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finite difference method and the finite element method, have become viable tools in solving
many different types of PDEs. In this work, the focus is set on the finite difference method,
which solves the problem in an approximative manner. [35, Ch. 11].

To introduce this method, the Taylor approximation of the function U(x0 + Δx) around
x0, written as

U(x0 + Δx) = U(x0) + ˆU(x)
ˆx

Δx + ˆ2U(x)
ˆx2

1
2(Δx)2 + · · · , (2.2)

is considered.
By rearranging this equation, one obtains

ˆU(x)
ˆx

= U(x0 + Δx) ≠ U(x0)
Δx

+ O(Δx). (2.3)

The first derivative can therefore be approximated by the forward difference quotient

ˆU(x)
ˆx

¥ U(x0 + Δx) ≠ U(x0)
Δx

. (2.4)

In a similar way, one can derive the backward difference formula given by

ˆU(x)
ˆx

¥ U(x0) ≠ U(x0 ≠ Δx)
Δx

. (2.5)

Another approximation can be derived by combining the Taylor approximations of U(x +
Δx) and U(x ≠ Δx) leading to

ˆU(x)
ˆx

= U(x0 + Δx) ≠ U(x0 ≠ Δx)
2Δx

+ O((Δx)2), (2.6)

which is the basis of the central difference formula

ˆU(x)
ˆx

¥ U(x + Δx) ≠ U(x ≠ Δx)
2Δx

. (2.7)

In a similar fashion, approximations for second-order derivatives can be calculated as
shown in [35, Ch. 11].

To sum up, the principle behind the finite difference method to obtain a good approxi-
mation of the solution relies on discretizing the variables and their derivatives. However,
not every strategy leads to a stable output or approximates the solution sufficiently. It is
therefore necessary to evaluate these aspects.

The strongest property is convergence, which means that in case of an infinitesimal small
grid (Δt æ 0 and Δz æ 0), the solution obtained by the numerical mean approaches the
real solution [35, Ch.11]. The criteria of convergence may be difficult to prove directly.
An alternative to this direct proof is presented by the Lax Equivalence Theorem, which
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states that a consistent and stable implementation is also convergent [36, Ch. 2]. Both
properties are, therefore, required to obtain a trustworthy solution of the equation.

The one-dimensional wave-equation of first-order, describing the advection problem, should
serve as an introductory example since it represents the starting point of the finite differ-
ence model described in chapter 3. This equation, written for the electric field E, is given
by

ˆE(z, t)
ˆt

+ c
ˆE(z, t)

ˆz
= 0 (2.8)

where c is the propagation velocity. In case the velocity is positive (c > 0), the equation
can be discretized by using a regular grid and the up-wind scheme (forward in time and
backward in space). This leads to

E(z0, t0 + Δt) = c
Δt

Δz
(E(z0 ≠ Δz, t0) ≠ E(z0, t0)) + E(z0, t0) (2.9)

as shown in [37].
It should be emphasized that the type of PDE should influence the used discretization
scheme [35, Ch.11].

2.3.1 Modified equation approach
In order to interpret the result obtained by the numerical implementation, the modified
equation approach can be used for linear PDEs. This method leads to an analytical
equation, which is actually solved by the discretized scheme. The obtained expression can
then be compared to its original form. Additionally, this approach can be used to prove
stability and consistency. The modified equation is derived in two steps. In the first step,
every term in the discrete version of the PDE is replaced by its Taylor-expansion around
E(z0, t0) [38].

In case of the discrete wave-equation (equation 2.9), this results in

ˆE(z, t)
ˆt

+ c · ˆE(z, t)
ˆz

= ≠ Δt

2
ˆ2E(z, t)

ˆt2 ≠ Δt2

6
ˆ3E(z, t)

ˆt3 + O(Δt3)

+ c
Δz

2
ˆ2E(z, t)

ˆz2 ≠ c
Δz2

6
ˆ3E(z, t)

ˆz3 + O(Δz3)
(2.10)

as shown in [37]. As a consequence of the approximation made by the finite difference
approach, terms appear on the right-hand side of the equation. In the second step, the
new terms are being converted to a form that one can interpret physically. The temporal
derivatives are, therefore, being converted into spatial ones. For instance, to convert the
second time derivative of the truncation error, the equation is multiplied by the operator
≠ ˆ

ˆt
Δt
2 and is added to the equation 2.10. This raises, however, another mixed term in

the result that has to be eliminated in the next step. Here, it should be emphasized that
equation 2.10 has to be used for this process and not the original PDE [38].
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By continuing this process, the modified equation

Et(z, t) + c · Ez(z, t) =cΔz

2 (1 ≠ ‹) Ezz(z, t)

≠ c(Δz)2

6
1
2‹2 ≠ 3‹ + 1

2
Ezzz(z, t)

+ O(Δz, Δt)3

(2.11)

is obtained as shown in [39], with ‹ = c · Δt
Δz .

By comparing the modified equation with the original equation, it can be seen that the
scheme imposes numerical dispersion and diffusion with parameters depending on the
spatial and temporal grid spacing (Δz and Δt). Hence, the advection-diffusion-dispersion
equation is actually solved by the scheme [37].

2.3.2 Consistency and order of accuracy
The modified equation contains the original PDE and a truncation error originating from
the used finite difference formulas. The scheme is consistent with the original equation
if the modified equation approaches the original PDE in case the time and space steps
tend to zero. The order of accuracy represents the lowest order of Δt and Δz appearing
in the modified equation [38]. Hence, equation 2.11 is consistent and features first-order
accuracy.
In other words, the higher the order of accuracy the better the approximation made by the
modified equation. It is important to note that a higher-order scheme does not directly lead
to a more accurate result. The connection between the order of consistency, describing the
accuracy of the modified equation, and the order of convergence, outlining the precision of
the obtained solution, is given by the Lax-Theorem [36, Ch. 2]. If this theorem is fulfilled,
a higher-order of consistency always improves the obtained solution.

2.3.3 Stability
Since the grid spacing cannot approach zero, an additional property is required to ensure
that the solution evolves as expected. This additional requirement arises from the stability
property [40, Ch. 1.5]. A common approach to investigate stability is represented by the
von Neumann analysis [40, Ch. 2.2]. Before discussing this feature in detail, the general
idea behind this criterion is introduced. A numerical scheme is called stable if slight
deviations in the input of the system to solve only lead to restricted changes in the result
[35, p. 314]. The general concept of the von Neumann analysis is outlined in this section
for a two-level scheme (two time steps are involved) and is illustrated by the discrete
one-dimensional wave-equation (equation 2.9). In addition, this part sheds light on the
relation between this concept of stability and the modified equation approach.
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The von Neumann analysis is based on the Fourier transformation. By applying this
transformation spatially to the discrete wave-equation, one yields

E(k, t0 + Δt) =
5
1 ≠ c

Δt

Δz
(1 ≠ e≠jkΔz)

6
¸ ˚˙ ˝

g(k)

E(k, t0). (2.12)

Here, g(k) is the amplification factor as defined in [40, Ch. 2.2]. Since Δt and Δz are
constant, the scheme is stable if

|g(k)| Æ 1 (2.13)

as shown in [40, p. 50]. By inserting the amplification factor of the discrete wave-equation
into the stability condition shown above, one obtains----c Δt

Δz

---- Æ 1. (2.14)

Therefore, the implementation shown in equation 2.9 is convergent2 if this stability crite-
rion is fulfilled.

With the von Neumann analysis, a powerful method is provided to prove the stability
of finite difference schemes. However, the modified equation also provides evidence of
stability as shown in [38]. The basis of the relationship between the von Neumann analysis
and the modified equation is laid down by assuming that

E(z, t) = e–tejkz (2.15)

represents a general solution of equation 2.11. Thereby k is the wave number and – =
a + jb. By observing the temporal development of this solution, one can, similar to the
von Neumann approach, define an amplification factor. Therefore, for one time step, this
factor is given by

gm(k) = e(a+jb)Δt. (2.16)

Since both representations describe the solution of the discretized PDE, both amplification
factors are equal. Furthermore, by investigating the relationship between the terms of the
modified equation and the coefficients a and b, the following expressions can be derived

a =
Œÿ

i=1
(≠1)ik2iµ(2i) (2.17)

b =
Œÿ

i=0
(≠1)ik2i+1µ(2i + 1) (2.18)

Here, µ(2i) are the even, and µ(2i + 1) are the odd order coefficients of the spatial deriva-
tives of the modified equation. To clarify the terms required, the first three terms of

2 It was assumed that the Lax Equivalence Theorem is valid for the problem.
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equation 2.11 are given by

Et(z, t) = ≠c¸˚˙˝
µ(1)

·Ez(z, t) +cΔz

2 (1 ≠ ‹)¸ ˚˙ ˝
µ(2)

Ezz(z, t)

≠c(Δz)2

6
1
2‹2 ≠ 3‹ + 1

2
¸ ˚˙ ˝

µ(3)

Ezzz(z, t)

+ O(Δz, Δt)3.

(2.19)

In this context, it becomes more comprehensible why stability demands |gm| Æ 1. a Æ 0
means that the amplitude of the solution decays or remains equal but does not increase
according to equation 2.15. For small wave-numbers (k æ 0), the lowest even order term
cΔz

2 (1 ≠ ‹) (equation 2.19) defines the stability condition3 which leads to

c
Δt

Δz
Æ 1. (2.20)

Since c, Δt, and Δz are assumed to be positive, the condition above corresponds to the
von Neumann stability condition (equation 2.14).

Normally, the small wave number assumption only leads to a necessary condition for
stability. However, in this specific case it is also sufficient [38].

2.3.4 Explicit and implicit schemes
In general, the implementation of a differential equation by means of the finite difference
method can be subdivided into explicit and implicit schemes. The difference between
these two schemes lies in how the solution for the next time step is calculated. In case of
an explicit technique, the solution for the next time step can be written explicitly4. This
is in contrast to implicit schemes, where a system of equations has to be solved. This
significant drawback is often counterbalanced by a, on average, better behaving solution
(for instance higher accuracy) [35, Ch.11]. The difference between these two schemes
will play an important role in the development of the finite difference model described in
chapter 3.

2.3.5 Higher-order schemes
The accuracy of finite difference approaches can be improved by a finer or different grid
and by increasing the order of the scheme. In the first case, terms approaching on the
right-hand side of the modified equation are getting smaller. In the second case, lower-
order terms are being eliminated. Both variants change the truncation error [36, Ch.
1].

3 In comparison to the analysis shown in [38], the investigation was not restricted to damped solutions.
4 For instance equation 2.9
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The derivation of higher-order finite difference formulas is similar to the derivation shown
at the beginning of this section. The principle of this method is outlined by calculating a
higher-order finite difference formula of ˆ2(E(z)

ˆz2 .
First, the used approximation of the derivation is written down by

ˆ2(E(z)
ˆz2 ¥ c1Ei≠2 + c2Ei≠1 + c3Ei + c4Ei+1 + c5Ei+2. (2.21)

Here, Ei = E(z0 + iΔz) and c1, c2, c3, c4, c5 are the coefficients to determine. Second, all
points used in the discretization are being Taylor expanded around E(z0). This leads to

ˆ2E(z)
ˆz2 ¥c1

C
Ei + (Ez)i(≠2Δz) + (≠2Δz)2

2 (Ezz)i . . .

D

+c2

C
Ei + (Ez)i(≠Δz) + (≠Δz)2

2 (Ezz)i . . .

D
+c3 · Ei

+c4

C
Ei + (Ez)i(Δz) + (Δz)2

2 (Ezz)i . . .

D

+c5

C
Ei + (Ez)i(2Δz) + (2Δz)2

2 (Ezz)i . . .

D
.

(2.22)

In order to obtain a solvable system of equations, two preparation steps are required. In
the first step, the approximation is sorted by the derivations of E. Since five undetermined
coefficients are used, the approximation is cut off after the fourth-order of Δz. Finally, the
right-hand side of the equation is determined by taking into account that the second-order
derivation is being approximated by the higher-order scheme. This yields the following
equation SWWWWWU

1 1 1 1 1
≠2 ≠1 0 1 2

(≠2)2/2 (≠1)2/2 0 1/2 22/2
(≠2)3/3! (≠1)3/3! 0 1/3! 23/3!
(≠2)4/4! (≠1)4/4! 0 1/4! 24/4!

TXXXXXV ·

SWWWWWU
c1 · 1

c2 · Δz
c3 · (Δz)2

c4 · (Δz)3

c5 · (Δz)4

TXXXXXV =

SWWWWWU
0
0
1
0
0

TXXXXXV . (2.23)

By solving the system above, one obtains

ˆ2(E(z)
ˆz2 ¥ ≠Ei≠2 + 16Ei≠1 ≠ 30Ei + 16Ei+1 ≠ Ei+2

12(Δz)2 . (2.24)

The Taylor expansion (equation 2.22) was cut off after the fourth-order term, which would
lead to a fifth-order scheme. Since c1 is divided by Δz2, the minimum achievable order
would be three. Fortunately, in this case also the next higher-order term

(≠2)5

5! (≠1) + (≠1)5

5! 16 + 15

5! 16 + 25

5! (≠1) = 0 (2.25)
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which increases the accuracy to the fourth-order. [36, Ch. 1].
An online tool for the calculation of higher-order finite difference can be found in [41]

The previously described method to obtain a higher-order scheme is a powerful tool to
increase the accuracy if needed. However, raising the number of points may pose a difficulty
on the boundary of the simulation area. Here, only a few points are normally known
depending on the problem. Therefore, numerical boundary conditions have to be defined
to overcome this issue [36, Ch. 1].
These boundary conditions are, in general, treated by either using one-sided difference
formulas or by utilizing extrapolating techniques [42]. A similar issue is addressed in [43,
Ch. 10], which proposes a startup procedure as treatment. It is noteworthy to take into
consideration that the kind of procedure used for the numerical boundary condition may
also impact the accuracy and the stability of the scheme [44].



CHAPTER 3

FINITE DIFFERENCE MODEL

The analytical description of quantum cascade lasers is complex and involves many dif-
ferent effects as introduced. This part describes the numerical implementation of a QCL
model based on the first-order wave-equation. The first section explains the derivation
and the implementation of the wave-equation and examines the impact of the relation
between the time and the space discretization step size. Section 3.2 describes the testing
model used to analyze the impact of different schemes. After this introduction, the first-
order wave-equation is extended to include wave-guiding losses, group velocity dispersion
effects, and gain. The spectral accuracy of the different implementations is analyzed in
detail along with the required stability criterion.

The developed model is based on a narrow-band QCL model developed by N. Opačak [24]
as introduced. This narrow-band model described by the master equation for fast gain
media is based on the elimination of the polarization equation. The model cannot be used
for the simulation of heterogeneous QCL for two main reasons. First, the implementation
of the group velocity dispersion is unstable. This unstable behavior is compensated by
the additional losses induced by the polarization elimination (Figure 2.3). As a result, the
model becomes unstable in case the polarization equation is taken into account. Second,
the already existing implementation of the polarization equation induces numerical losses
above and below the center frequency. Therefore, the implementation has to be improved
to obtain a transparent medium at these spectral areas.

18



CHAPTER 3. FINITE DIFFERENCE MODEL 19

This chapter expands and refines the previously used implementation to a large extent to
enable the simulation of a heterogeneous QCL. The analysis is focused on the accuracy
and the stability property. In case of the losses and the group velocity dispersion, the
term "previously used" refers to the implementation used by N. Opačak. The description
in this chapter requires knowledge about Laplace, Fourier, and the time discrete Fourier
transformation. For further information about these transformations, please refer to [45,
46].

3.1 Wave-equation
The propagation of light is described by Maxwell’s equations, which lead in one dimension
to the wave-equation

ˆ2E(z, t)
ˆz2 ≠ n2

c2
0

ˆ2E(z, t)
ˆt2 = 0 (3.1)

for a current and charge-free area [28, Ch. 1]. Here, E is the electric field, n is the
refractive index, and c0 is the speed of light in vacuum. In a Fabry-Pérot resonator, light
propagates back and forth between the two mirrors. This means the electric field consists
of two counter-propagating waves

E = 1
2

1
E+(z, t) · ej(Ê0t≠k0z) + E≠(z, t) · ej(Ê0t+k0z) + c.c.

2
(3.2)

where E+ and E≠ are the envelopes of the to the right and to the left traveling wave of
the electric field, k0 = n(Ê0)Ê0

c0
, and Ê0 = 2fif0 with f0 representing the center frequency

of operation. c.c. denotes the complex conjugate form. By substituting equation 3.2 into
3.1 and applying the slowly varying envelope approximation (SVEA), the wave-equation
for the right (E+) and left (E≠) traveling envelopes yield to

n

c0

ˆE±(z, t)
ˆt

± ˆE±(z, t)
ˆz

= 0 (3.3)

as shown in [24, Ch. 3].

The solution to these equations is given by

E+(z, t) = f(n/c0 · z ≠ t) E≠(z, t) = g(n/c0 · z + t). (3.4)

where g and f are arbitrary functions. Since g and f only require one argument, the
solutions are constant if t ≠ n

c0
z = const. and t + n

c0
z = const. for E+ and E≠ respectively.

These lines in space and time, known as characteristic lines, will be of use in the next
section [47, Ch. 1.2].

3.1.1 Discretization of the wave-equation
The one-dimensional wave-equation can be discretized by using a first-order approach as
shown in section 2.3. In this part, a similar numerical implementation is derived by means
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Figure 3.1: Original (z,t) and new (u,v) coordinate system aligned with the characteristic lines
(dashed curves) of the solutions.

of a coordinate transformation along the characteristic lines as shown in Figure 3.1. This
transformation is carried out since it delivers a more comprehensive model, which will be
used in the following sections. The basis of the new coordinate system is laid out by the
following relations

u = 1
2 ·

3
c0
n

t + z

4
v = 1

2 ·
3

c0
n

t ≠ z

4
(3.5)

or vice versa by

z = u ≠ v t = n

c0
u + n

c0
v. (3.6)

Similar to the approach shown in [47, p. 7], the spatial and temporal derivatives are being
converted into the new coordinate system by

ˆE(u(z, t), v(z, t))
ˆz

= ˆE

ˆu

ˆu

ˆz¸˚˙˝
1
2

+ˆE

ˆv

ˆv

ˆz¸˚˙˝
≠ 1

2

(3.7)

ˆE(u(z, t), v(z, t))
ˆt

= ˆE

ˆu

ˆu

ˆt¸˚˙˝
1
2

c0
n

+ˆE

ˆv

ˆv

ˆt¸˚˙˝
1
2

c0
n

. (3.8)

which leads to
n

c0

ˆE+
ˆt

+ ˆE+
ˆz

= ˆE+
ˆu

= 0 (3.9)

n

c0

ˆE≠
ˆt

≠ ˆE≠
ˆz

= ˆE≠
ˆv

= 0. (3.10)

The coordinate transformation has clearly simplified the equation of E+ and E≠ by re-
ducing the number of derivatives. Their discretization can be carried out, for instance, by
the forward difference formula (equation 2.4), which results in

E+(z0, t0 + Δt) = E+(z0 ≠ Δz, t0) (3.11)
E≠(z0, t0 + Δt) = E≠(z + Δz0, t0). (3.12)
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Figure 3.2: Testing model consisting of a tunable single-mode laser and a wave-guiding structure.

By comparing the above equations to 2.9 or by analyzing the relations given in 3.6, it
becomes clear that the coordinate transformation imposes the following space-time relation

Δt = n

c0
Δz. (3.13)

It is worth noting that this scheme is also stable since the expression above represents the
upper boundary of the stability criterion derived in the previous chapter (equation 2.14).
The same discrete version of the PDE can be derived by inserting the time-space relation
(equation 3.13) into equation 2.9 for E+.
In addition to the convergence property, this approach has a major advantage that becomes
evident by inserting Δt = n

c0
Δz into the modified equation (equation 2.11). The space-

time relation sets ‹ = 1, which implies that the truncation error vanishes. This seems
also reasonable since 3.12 implies that the discrete points in the (z,t) coordinate system
are transferred to the next point on the u or v axis without modification. Hence, the
space-time relation, given in equation 3.13, was used for the implementation of the model.
In order to present the following content in a concise and comprehensive manner, only the
equation for E+ = E was described in detail. E≠ can be implemented in a very similar
way.

3.2 Testing model
In order to evaluate the results obtained by different numerical implementations, a test
structure is required. As shown in Figure 3.2, the used model consists of a tunable single-
mode laser and a waveguide. In addition, the reflectivity of the facets can be changed to
transform the waveguide into a resonator. However, the reflectivity of both facets was set
to zero for the development of the model. In the following, the wave-equation is constantly
extended to implement further physical phenomena like gain, losses, or the group velocity
dispersion.

Similar to the model described in [24, Ch. 3], the reflections (for instance on the facets
of the laser) take place between the discretized points. The tunable laser features an
additional point outside the cavity and transmits, without reflection, into the waveguide.
The output of the system is represented by the last point within the cavity (point 10 in
Figure 3.2).
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As shown previously, the solutions of the wave-equation is given by E(z, t) = f(n/c0 ·z≠t).
However, by adding the laser to the structure the function f gets defined. Similar to [37],
f is determined by the temporal function of the electric field of the laser.

By assuming that the laser produces a monochromatic oscillating field, the following ansatz
can be made

E(z, t) = Ê · e≠j(k0z≠Ê0t) (3.14)

where E0 is the amplitude, k0 is the wave number, and Ê0 = 2fif0. By inserting 3.14 into
the wave-equation, one obtains

k0 = n
Ê0
c0

(3.15)

similar to [28, Ch. 1.2].
To analyze the impact of different extensions of the wave-equation on the wave-guiding
structure, the phase and the amplitude of the electric field are being detected at the
output of the waveguide. The intensity of the tunable laser and the output intensity of
the waveguide lead to the the gain coefficient

“(f) = 1
L

ln

3
I(L)
I(0)

4
(3.16)

as a function of frequency [5, p. 623]. Here I(z) is the intensity of the laser beam depending
on the position z. By means of the phase difference of in- and output, given by

Δ„ = „(0, t) ≠ „(L, t) = k · L, (3.17)

the wave-number k and the refractive index n can be calculated (k = n · k0). Here, the
phase is given by „(z, t) = Êt ≠ kz.
By rearranging the upper equation, one obtains

k = Δ„

L
(3.18)

and the refractive index
n(f) = Δ„

k0L
(3.19)

Both variables, especially k and its spectral derivatives, will be used in the following
sections to evaluate the accuracy of different implementations.
In general, the simulations are being computed for a total time interval of one round trip1.
To obtain the values for ΔΦ(f) and “(f), the results are being averaged over the last
quarter of the simulation time to improve the accuracy. Figure 3.3 depicts an example of
a simulation result including losses and the group velocity dispersion (GVD). Since the
discrete implementation of the GV D(Δf) = ˆ2k

ˆÊ2 by means of finite difference formulas
is very noisy, the phase Φ(f) was approximated by a polynomial of order 7. To assess
the correctness of the implementations, the label of the refractive index subplot n(f) and

1 The time required to propagate twice through the waveguide.
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Figure 3.3: Characteristic simulation showing the polynomial approximation of Δ„ (blue dotted
graph) to improve the noisy plot of the GVD by calculating the derivative by means of finite differ-
ence formulas (red graph). Here, ΔΦ is the phase difference of the laser (input) and the output of
the waveguide, fs is the sampling frequency, n is the refractive index and GVD is the group velocity
dispersion.

the GVD(f) subplot show their value at Δf = 0 THz. In the following, the discrete
implementation will be omitted for the dispersion plots (GVD and higher-order). In the
case of n, the discrete implementation is plotted as a dashed line under the approximated
polynomial to evaluate the correctness of the fitting process.

In order to simplify the discretized equation, the indexing of space and time is not being
used directly. Similar to the coordinate transformation described previously, the prop-
agation axis (u-axis) and the time will be used. Both different indexing techniques are
displayed in Figure 3.4. In addition, to highlight the relation between Δz and Δt, Δu will
be used for the discretization step size of the u-axis (Δu = Δz = c0/n · Δt).

Finally, since the equation for the envelope is being solved, the frequency has been shifted
to the center wavelength (⁄ = 8µm). Unless otherwise specified, the simulation parameters
are listed in chapter A.
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Figure 3.4: Different indexing techniques: a) over space-time, and b) over the propagation direc-
tion (u-axis) and time.

3.3 Waveguide losses
The wave-equation can be simply extended to include wave-guiding losses leading to

n

c0

ˆE(z, t)
ˆt

+ ˆE(z, t)
ˆz

= ≠–

2 E(z, t) … ˆE

ˆu
= –

2 E. (3.20)

Here, – represents the power loss coefficient as shown in [24, Ch. 3.2].
This equation can be, analogous to the previous section, discretized by using forward,
backward, or central differential formula (equation 2.4 - 2.7). This yields

Eu,q ≠ Eu≠1,q

Δu
= ≠–

2

Y__]__[
Eu≠1,q , (a) forward
Eu,q , (b) backward
1
2(Eu,q + Eu≠1,q) , (c) central

(3.21)

with the notation Eu,q = E(u0 + u · Δz, t0 + (q + u) · Δt). The schemes are illustrated in
Figure 3.5. In case of the central difference formula (version c), the point Eu+1/2,j was
constructed by taking the average of the the adjacent points on the u axis.
By rearranging 3.21, one obtains

Eu,q
+ = Eu≠1,q

+ ·

Y____]____[
(1 ≠ –

2 Δu) , Version a (previously used)
1

1+ –
2 Δu , Version b

2≠ –
2 Δu

2+ –
2 Δu , Version c.

(3.22)

Before the results of the different versions are being analyzed, another version based on
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Figure 3.5: Space and time discretization of the wave-equation including losses. The marked
points represent the development points of the different versions.

the predictor corrector method is introduced. For this purpose, version c is rearranged to

Eu,q ≠ Eu≠1,q = ≠–

2 Δu
(Eu,q + Eu≠1,q)

2 . (3.23)

The predictor-corrector method is a two-step technique. In the predictor step, an approx-
imation for Eu,q is calculated whereas in the corrector step, the predicted expression is
used to improve the solution. In this example, version a is used as a predicted value which
is, in the second step, inserted into the right-hand side of equation 3.23. This procedure
leads, after one iteration step, to Version d.

Eu,q = Eu≠1,q
+ ·

Y_______]_______[

(1 ≠ –
2 Δz) , Version a

1
1+ –

2 Δz , Version b
2≠ –

2 Δz

2+ –
2 Δz , Version c

(1 ≠ –
2 Δz + 1

2(–
2 Δz)2) , Version d

(3.24)

One could also iterate a few times by using the result from the corrector step as a predictor
for the next iteration. However, this iteration does not drastically improve the accuracy
of the method and one should be advised to use a smaller grid step size instead [48, Ch.
17.6].

The four versions can be categorized into implicit and explicit implementations: Version
a and d are explicit, and version b and c are implicit implementations. It is possible to
rearrange all versions to Eu,q since the equation features such a simple structure with only
one derivative.

By analyzing the stability and consistency property by means of the methods introduced
in section 2.3, one obtains that all versions are consistent with the original PDE (equation
3.20). The stability criterion and the order of accuracy are listed in Table 3.1.
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Figure 3.6: Simulation results of the different loss implementations for Δz = 6mm. The results
at L = 6mm (dots) were computed by means of the simulation and the solid lines were calculated by
equation 3.24. In addition, the exact solution is displayed to compare the accuracy of the versions.

Version Order of accuracy Stability
a 1 Δz Æ 2

–
b 1 always
c 2 always
d 2 Δz Æ 2

–

Table 3.1: Order of accuracy and stability criterion for the four loss implementations.

By implementing the four versions, one obtains the simulation result shown in Figure 3.6
for a two-point discretization. One can clearly see that version a and d become unstable
if Δz exceeds 5 mm. In particular, Version a becomes negative, and version d rises, which
matches with the calculation results in Table 3.1. Another important point to mention is
the accuracy of the versions. As shown in Figure 3.6, version c (central difference formula)
and d (predictor-corrector method) represent the best approximations of the analytical
exponentially decaying solution. The calculated order of accuracy also matches with the
expectation in case of version c, since the central difference formula features a higher order
than the one-sided ones as introduced (section 2.3).

Apart from stability and convergence, the different implementations can also be used to
evaluate the convergence property. This is accomplished by conducting a Taylor-expansion
around –

2 Δz = 0 of the exact solution and the amplification factor2 of version b and c.
2 The term which is being multiplied by Eu≠1,q
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This yields

Exact solution: e≠x ¥1 ≠ x + x2

2 ≠ x3

3! + O(x4)

Version a: 1 ≠ x

Version b: 1
1 + x

¥ 1 ≠ x + x2 ≠ 6 1
3!x

3 + O(x4)

Version c: 2 ≠ x

2 + x
¥ 1 ≠ x + 1

2x2 ≠ 24
16

1
3!x

3 + O(x4)

Version d: 1 ≠ x + 1
2x2

where x = –
2 Δz. The gray-marked expressions match with the Taylor approximation of

the analytical solution. The number of marked terms can be interpreted as a sort of order
of convergence3 as defined in [36, p.45]. Since the order of convergence matches with the
order of accuracy, the Lax theorem is fulfilled.

This theorem validates this situation for a two-level implementation of a linear initial value
problem [36, p. 79]. The problem to be solved can be reformulated into an initial value
problem, where the initial values propagate along the waveguide and are detected after a
certain propagation time.

Before the final implementation of the losses is being discussed, the group velocity disper-
sion is included in the wave-equation.

3.4 Group velocity dispersion
In the previous section, the refractive index n was regarded as a constant. By including
group velocity dispersion (GVD) effects, the refractive index becomes frequency depen-
dent. In this section, the wave-equation is extended once more. The content is focused
on the expansion of the wave-equation to include GVD effects. After this derivation, the
numerical implementation is described in detail.

3.4.1 Integration of the GVD into the wave-equation
To incorporate this phenomenon into the wave-equation, the Fourier-transformation is
applied to the wave-equation, yielding to

jΔÊ
n

c0
E(z, ΔÊ) + ˆE(z, ΔÊ)

ˆz
= ≠–

2 E(z, ΔÊ). (3.25)

3 In [36, p.45], the order of convergence is defined with a norm. The specification of this norm was
omitted in this case.
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This differential equation can be solved analytically leading to the following expression for
one spatial step

E(z0 + Δz, ΔÊ) = E(z0, ΔÊ) · e≠ –
2 ·Δze

≠j n
c0

ΔÊ·Δz
. (3.26)

Similar to the derivation shown in [28, Ch. 3.2], a Taylor approximation of the dispersion
relation about Ê0 is conducted and truncated after the second-order term. This yields

k(Ê) ≠ k(Ê0) ¥ ˆk

ˆÊ
ΔÊ + 1

2DÊΔÊ2 (3.27)

where
DÊ = ˆ2k

ˆÊ2 , (3.28)

and
ˆk

ˆÊ
= 1

vg
= n(Ê0)

c0
+ ˆn

ˆÊ

Ê0
c0

= N

c0
. (3.29)

Here, vg is the group velocity, N is the group index, and DÊ is the dispersion coefficient4.
The second part of equation 3.29, ( ˆn

ˆÊ
Ê0
c0

), causes the group velocity to deviate from the
phase velocity, which leads to a different speed of propagation of the envelope and the
carrier [28, Ch. 3.2].

Equation 3.26 represents the solution of the envelope in the frequency domain. By chang-
ing the description from the overall electric field to the envelope, the wave number has been
shifted to k(Ê0) by equation 3.2. Therefore, the Taylor approximation of the dispersion
relation (Δk = k(Ê) ≠ k(Ê0)) can be inserted into equation 3.26 and one obtains

E(z0 + Δz, ΔÊ) = E(z0, ΔÊ) · e≠ –
2 ·Δze

≠j N
c0

ΔÊΔz · e≠j[ 1
2 DÊ(ΔÊ)2]Δz. (3.30)

The latter equation reveals an important detail regarding the description of chirp. Apart
from the influence of n(Ê) on the speed of propagation, chirping can be interpreted as a
phase filter in the frequency domain. This important detail becomes clear by analyzing
the last term in equation 3.30, namely e≠j[ 1

2 DÊ(ΔÊ)2]Δz. The process of chirping does not
influence the intensity spectrum [5, Ch. 23].

In the frequency domain, a complex n(Ê) relation changes the speed of propagation and
influences the phase of the envelope of the electric field. In order to derive a differential
equation in the time domain, the previously shown process except the Taylor-expansion
is reverted yielding to following differential equation

N

c0

ˆE

ˆt
+ ˆE

ˆz
= ≠–

2 E + j
1
2DÊ

ˆ2E

ˆt2 (3.31)

with reference to [28, Ch. 3.2].
A similar derivation of the additional GVD-term can be found in [24, Ch. 3.2].

4 The definition of the group index N and the dispersion coefficient DÊ can be found in [5, p. 201],
[28, Ch. 3.2] and [28, Ch. 1].
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Figure 3.7: GVD implementations by using different three point schemes. a) implicit version
(marked in red) using a one-sided difference formula developed about Eu,q (marked in green).
Explicit versions about Eu≠1,q (marked in white) by b) using a one-sided difference formula (marked
in blue), c) by converting the temporal derivative into a spatial derivative (marked in purple), d)
shifting the derivative towards the minus u axis (marked in gray). The uncolored points cannot be
used for the implementation due to parallel computing.

3.4.2 Numerical implementation
The frequency dependence of the refractive index n(f) changes the phase and the speed
of propagation of the envelope as discussed previously. Since the difference in speed
of propagation only imposes a temporal offset at the end of the waveguide, the group
refractive index N is approximated by the refractive index n in the implementation. Fur-
thermore, since the computation is based on GPU programming, which calculates every
spatial point in parallel, only points in the past and the newly calculated point can be
used for the implementation. In any other case, the discrete equations would be coupled,
which would hinder an efficient parallel implementation and cause a drastic reduction in
performance. Therefore, a central differential formula for the GVD-term cannot be used
by taking Eu≠1,q as the development point as indicated in Figure 3.7 (version e). In case
version e is implemented, the calculated point (u, q) depends on the new value of its left
neighbor (u ≠ 1, q + 1). This dependency couples the discrete equations.

In general, three solutions can be found to circumvent this restriction. The different
versions are displayed in Figure 3.7 by using three discrete points for the implementation of
the GVD-term (equation 3.31). First, the most simple alternatives are one-sided difference
formulas (version a and b). Second, temporal derivatives can be converted into spatial ones
(version c). This imposes, however, a slight computation error due to the transformation.
Third, central difference formulas can be shifted backward toward the minus u direction
to implement the derivative centrally (version d). This back shifting process imposes as
well an error into the simulation. As described previously, version e cannot be used since
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the point (u-1,q+1) would couple the discrete equations. The points in space and time
leading to such coupling are not colored in Figure 3.7.

The implementation of version a-d are given by

Eu,q =

Y_________]_________[

C
j2F

1
Eu,q≠1 ≠ 1

2Eu,q≠2
2

≠ Eu≠1,q

D
· 1

jF ≠(1+ –
2 Δz) , Version a

Eu≠1,q · (1 ≠ –
2 Δz) + jF ·

Ë
Eu≠1,q ≠ 2Eu≠1,q≠1 + Eu≠1,q≠2

È
, Version b

Eu≠1,q · (1 ≠ –
2 Δz) + jF ·

Ë
Eu≠2,q+1 ≠ 2Eu≠1,q + Eu,q≠1

È
, Version c

Eu≠1,q · (1 ≠ –
2 Δz) + jF ·

Ë
Eu≠2,q+1 ≠ 2Eu≠2,q + Eu≠2,q≠1

È
, Version d,

(3.32)
where F = DÊ

2
c2

n2Δz
. Version c was used previously by N. Opačak.

Version a and b can be implemented as described above without further modification. In
case of version c and d, the boundary conditions for the calculation of the first spatial
step are required. As introduced, these numerical boundary conditions are also needed
for higher-order schemes. Similarly to that, a startup procedure will be implemented.
This means, for the first spatial step, the GVD-coefficient DÊ is set to zero. One can
also interpret this as the unknown points were extrapolated in a way that the discretized
derivative is zero. To compare the results of version a-d, the first spatial step of all versions
only includes losses.

By implementing the versions with a dispersion coefficient of DÊ = 4000 fs2/mm and a
loss coefficient of – = 4 cm≠1, the simulation results depicted in Figure 3.8 are obtained.
One would expect a spectrally constant GVD and loss profile. As shown in 3.8 a, all
versions implement the given specification precisely at the center frequency. However,
the difference in their order of accuracy can be clearly seen by comparing the one-sided
versions (a and b) with the central implementations (c and d). Consequently, the central
implementations approximate the specifications more accurately. Figure 3.8 b depicts a
similar behavior for version c and d.

To analyze the mismatch between the central implementations in more detail, the time
discrete Fourier-transformation and the Z-transformation are used. By applying both
transformations to the GVD-term of version d, one obtains

GV Dd = jF ·(z≠2+z≠1) … jF ·
Ë
ej2fifΔt≠2+e≠j2fifΔt

È
= jF ·#2 cos(2fiΔt)≠2

$
(3.33)

with reference to [45].
In case of version d, the implementation leads to a cosine function in the frequency domain.
In case of version c, the coefficients of z and z≠1 do not match due to the approximation
made. This causes the gain profile of version c (Figure 3.8 b) to deviate more from
the expected behavior. Apart from the gain profile, both central versions show a similar
behavior. Since version d best meets expectations, this version is used for further analysis.
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Figure 3.8: GVD simulation results of the different three point versions shown in Figure 3.7:
(a) one-sided (version a, b) and central (version c, d) finite difference implementations. Fig. (b)
depicts the different impact of back-shifting the finite difference formula along the minus u-axis
(version d) and its conversion to the spatial domain (version c). The first calculation step only
includes losses due to the numerical boundary conditions. Simulation parameters: L = 1mm,
N = 257, – = 4cm≠1 and DÊ = 4000fs2/mm.

In addition, since the phase profile does not show any significant difference between the
versions, its presentation will be omitted in the following content.

Exponential Integrator

In the previous part, different GVD-implementations were discussed, leading to the fol-
lowing conclusion: temporal derivatives are best implemented centrally by shifting the
finite difference formula along the minus u-axis until parallel computation is possible. In
case of losses, version b-d in equation 3.7 were using the loss-implementation of version a
(equation 3.24). As shown at the end of section 3.3, this loss implementation is the first-
order approximation of the analytical solution. Is it possible to use the analytical solution
instead of the approximation to increase the overall accuracy of the implementation?
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This question can be answered by means of the exponential integrator shown in [49]. The
differential equation to be solved can be condensed down to

ˆE

ˆu
= ≠–

2 + R(u) (3.34)

where R(u) represents the additional terms of the equation (GVD, FOD, TOD, and gain).
By applying the variation of constants formula to the upper equation, one obtains

E(u0 + Δu) = E(u0) · e≠ –
2 ·Δu +

⁄ Δu

0
e[≠(Δu≠s) –

2 ] · R(E(u0 + s))ˆs. (3.35)

Here, u0 = (z0, t0).
The above equation implements the losses in the most accurate way. However, some
approximations are required to implement the other terms appearing within the integral
on the right-hand side. By approximating R(E(u + s)) with R(E(u)), one yields

E(u0 + Δu) = E(u0) · e≠ –
2 ·Δu + Δu

e≠ –
2 Δu ≠ 1

≠–
2 Δu

· R(u0). (3.36)

By a first-order Taylor approximation of the exponential function in the gray-marked term,
the following expression is derived:

E(u0 + Δu) = E(u0) · e≠ –
2 ·Δu + Δu · R(u0) (3.37)

The upper expression shows that it is possible to implement the losses analytically by
retaining a finite difference implementation of the other terms. This becomes apparent by
comparing the above expression to the GVD-versions b-d in equation 3.32.

Impact of higher-order schemes and the back-shifting process

The accuracy of the numerical implementation can be increased by its order and by reduc-
ing the spacing of the grid as introduced. Since central difference formulas approximate
the derivative more precisely, one-sided formulas are not examined further. Higher-order
central difference coefficients can be readily calculated by the method described in section
2.3.5 yielding to following different implementations

Eu,q = e≠ –
2 Δz · Eu≠1,q

+ jF ·

Y_______________]_______________[

Eu≠4,q+1 ≠ 2Eu≠4,q + Eu≠4,q≠1 , 3 points implementationË
≠ Eu≠4,q+2 + 16Eu≠4,q+1

≠30Eu≠4,q + 16Eu≠4,q≠1 ≠ Eu≠4,q≠2
È
/12 , 5 points implementationË

2Eu≠4,q+3 ≠ 27Eu≠4,q+2 + 270Eu≠4,q+1

≠490Eu≠4,q + 270Eu≠4,q≠1 ≠ 27Eu≠4,q≠2

+2Eu≠4,q≠3
È
/180 , 7 points implementation.

(3.38)
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Figure 3.9: Different GVD-simulations using three, five, and seven points for the central finite
difference formula. The implementation is displayed in Figure 3.10. Simulation parameters: L =
1mm, N = 257, – = 4cm≠1 and DÊ = 4000fs2/mm

The different GVD-implementations are displayed in Figure 3.10. As shown in Figure 3.9,
the degree of accuracy is enhanced drastically by increasing the total number of points used
for the central implementation. While the version with three points deviates significantly
from the expected constant spectral profile of the GVD, five and seven points approach the
required profile more accurately. In addition, a higher-order scheme also has a beneficial
impact on numerically generated higher-order dispersion terms such as third and fourth-
order dispersion (TOD and FOD). Their impact decreases by increasing the order of the
scheme. However, increasing the number of points features also a drawback. As depicted
in the broadband simulation shown in Figure 3.9, higher-order implementations have an
elevated impact on the spectral gain profile.

In a similar way, the back-shifting process was analyzed. As shown in Figure 3.11, the
shifting process features a negligible influence on the spectral shape of the GVD as ex-
pected. In addition, the dispersion value at the center frequency changes in a negligible
amount by comparing the three displayed versions. However, similar to the order influ-
ence, their contribution to the gain profile is different. The further backward the difference
formula, the higher the impact. The depicted gain peaks at |Δf | = fs/2, where fs is the
sampling frequency, which could possibly lead to a stability problem. In case the polar-
ization elimination is applied (Figure 2.3), the gain profile induces losses aside from the
area around the center frequency. Hence, the gain peaks would possibly not lead to an
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Figure 3.10: Different GVD-implementations using three, five, and seven points for the central
finite difference formula. The coefficients were shifted towards the minus u-axis until parallel
computing was possible. In addition, for the first three spatial points, the GVD-term was set to
zero. The white marked point indicates the development point.

overall unstable behavior. In case the polarization elimination is not applied, this unstable
behavior would cause lasing operation at Δf = fs/2 since the medium is transparent at
these spectral regions.

Stability analysis

In chapter 1, the stability criterion was introduced by the von Neumann analysis for two-
level implementations. By changing the coordinate system from space and time (z,t) to
the propagation axis and time (u,t), a similar analysis can be conducted. To obtain a
two-level implementation, the losses are shifted towards the minus u-axis to the same
extent as the GVD implementation. This facilitates the stability analysis drastically. By
implementing the losses on a different discretization point than on the central point of the
GVD-term, the stability analysis of multi-level implementations would have to be carried
out. This analysis, as discussed in [36, Ch. 6], would go beyond the scope of this work.
In this section, a two-level stability analysis is applied to extract a general statement for
the experimental study of stability.
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Figure 3.11: Different central GVD-implementations by shifting the coefficients towards the mi-
nus u-axis. a) depicts a broadband simulation, b) a narrow-band simulation, and c) displays the
different implementations. For the first three spatial points, the GVD-term was set to zero. The
white marked point indicates the development point. Simulation parameters: L = 1mm, N = 257,
– = 4cm≠1 and DÊ = 4000fs2/mm.

By considering the implementation utilizing two u-levels5,

Eu,q = e≠–Δz · Eu≠2,q¸ ˚˙ ˝
losses

+ j2F
1
Eu≠2,q+1 ≠ 2Eu≠2,q + Eu≠2,q≠1

2
¸ ˚˙ ˝

GV D

, (3.39)

and by applying the temporal Fourier-transformation, one obtains

E(Δf)u

E(Δf)u≠2 = e≠–Δu · +j2F
1
ej2fiΔfΔt ≠ 2 + e≠j2fiΔfΔt

2
. (3.40)

The stability criterion is given by ----- E(Δf)u

E(Δf)u≠2

----- Æ 1 (3.41)

5 The contributions of the losses and the GVD have to be doubled since (u,q) is calculated by (u-2,q)
instead of (u-1,q).
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Figure 3.12: Stability analysis demonstrated by the implementation of a two level system in
the u-t coordinate system depicted in a). Fig. b) compares the simulation with the analytical
approach (equation 3.43). For the first spatial point, the GVD-term was set to zero, and a one-
level implementation was applied for the implementation of the losses. The white marked point
indicates the development point. Simulation parameters: L = 1mm, N = 257, – = 4cm≠1 and
DÊ = 4000fs2/mm.

which states, that the GVD-term should not induce gain.
In case of the discussed two-level system, the amplification factor is given by

|g(Δf)| =
ı̂ııÙe≠2–Δz¸ ˚˙ ˝

¥1
+

Ë
4F · !

cos(2fiΔfΔt) ≠ 1
"È2

¸ ˚˙ ˝
>0

. (3.42)

Hence, the implementation is unstable if the losses are small.
By taking the quadratic amplification term, the two peaks in the gain profile can be
justified. This yields

I(Δf)u

I(Δf)u≠2 = e≠ 9
4 –Δu¸ ˚˙ ˝

constant
+ 16F 2 · #

cos(2fiΔfΔt)2 ≠ 2cos(2fiΔfΔt) + 1
"$2¸ ˚˙ ˝

frequency dependent

(3.43)

and is depicted in Figure 3.12 together with the corresponding simulation. As shown, the
simulation coincides well with the derived expression.

To summarize the results, the finite difference implementation of the GVD is inherently
unstable leading to gain peaks at |Δf | = fs/2. Higher-order methods increase the ac-
curacy of the solution but elevate the undesired gain peaks. The back-shifting process
required to implement central difference coefficients aggravates the stability problem fur-
ther. The next section discusses possible solutions to overcome this problem to obtain
a stable implementation. This step is essential for the simulation of broadband lasers
where the polarization elimination of the gain profile is not applied. In this case, the gain
implementation does not stabilize the GVD implementation with its artificial losses.
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Stable implementation

As shown previously, the unstable behavior of the finite difference implementation of the
wave-equation, including losses and GVD, is directly connected to equation 3.31 being
implemented. In order to obtain a stable scheme, the equation has to be modified. This
means the mathematical description has to be adapted while retaining the underlying
physics. First, equation 3.31 can be split up into a phase Φ and amplitude A by using the
relation E = A · ejΦ. This leads to

n

c0

ˆA

ˆt
+ ˆA

ˆz
= ≠ –

2 A ≠ DÊ

2
Ë
A

ˆ2Φ
ˆ2t

+ 2ˆA

ˆt

ˆΦ
ˆt

È
(3.44)

n

c0

ˆΦ
ˆt

+ ˆΦ
ˆz

=DÊ

2
Ë 1
A

ˆ2A

ˆ2t
≠

1ˆΦ
ˆt

22È
(3.45)

as shown in [24, p. 53]. As explained previously, the GVD acts as a phase filter in the
frequency domain. Hence, one would expect that the GVD does not impact the Fourier-
transformation of the amplitude equation. The above expression may potentially solve
the stability issue. However, in comparison to equation 3.31, the problem has increased
significantly in complexity. The problem is described by two coupled PDE. In addition, the
phase equation is of nonlinear type, which further complicates the numerical treatment.

An alternative to this complex rewriting process is given by the Fourier-transformation
of equation 3.31. First, the coordinate system is changed from space and time (z,t) to
propagation axis and time (u,t). By conducting a Laplace-transformation, one obtains6

E(u0, s) = E(u0 ≠ Δu, s) · e≠ –
2 ·Δu · ej 1

2 DÊΔu·s2
. (3.47)

In the frequency domain, the inclusion of losses and group velocity dispersion, representing
the linear part of the equation, is straightforward. However, the equation does not only
include linear terms. The split step Fourier method represents an ingenious technique
to implement such equations numerically[50]. This is done by splitting the calculation
into two steps. In the first step, the linear part is implemented by utilizing the Fourier-
Transformation and by setting the nonlinear contribution to zero. In the second step,
the linear part is neglected, and the nonlinear contribution is considered. That means,
in the first step, the equation is brought into the frequency domain and the linear part
is being implemented. In the second step, the inverse Fourier-Transformation is applied,
and the contribution of the nonlinear part is considered. Since group velocity dispersion
is taken into account in the frequency domain, stability should not cause any difficulties.
The split-step method may implement the equation in a very accurate way. However, the

6 The obtained equation is equal to 3.30 by omitting e
≠j N

c0
ΔÊΔz, which is taken into consideration by

the different coordinate system and the approximation of N ¥ n.
By conducting a first-order Taylor-expansion of 3.47 and the inverse Fourier-Transformation, one
obtains

E(u0 + Δu, t0) ≠ E(u0, t0)
Δu

= ≠–

2 · E(u0, t0) + j
1
2DÊ

ˆ2E(u0, t0)
t2 . (3.46)

which is an approximation of 3.31.
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necessary transformations may cause very long calculation times, which is an unwanted
property. For this reason, the split-step method cannot be used to realize the equation
numerically.

The implementation of the losses was improved by including higher-order terms in the
implementation. The GVD-implementation will be enhanced in a similar way. By starting
with equation 3.47 and conducting a Taylor-expansion of the GVD-term, one obtains

E(u0, s) = E(u0 ≠ Δu, s)a¸ ˚˙ ˝
losses

+ a
Ë
s2b + 1

2(s2b)2 + . . .
È
E(u0 ≠ Δu, s)¸ ˚˙ ˝

GVD

(3.48)

by splitting the losses and the GVD-part of the equation. Here, a = e≠ –
2 ·Δu, b = j DÊ

2 Δu,
and s = jΔÊ.
The GVD part can be readily shifted towards the minus u-axis by a substitution of the
upper equation shifted to u0 ≠ Δu into E(u0 ≠ Δu, s) of the GVD-part. This yields

E(u0, s) = E(u0 ≠ Δu, s) · a + a2
Ë
bs2 + 3

2(bs2)2 . . .
È
E(u0 ≠ 2 · Δu, s). (3.49)

Before the procedure is continued, the order of the GVD-implementation should be dis-
cussed. As outlined previously, higher-order finite difference coefficients increase the ac-
curacy of the implementation. However, higher-order central schemes have to be shifted
further towards the minus u-axis which complicates the implementation and the error
made. The advantages and disadvantages of the higher-order schemes are well-balanced
in case of the five-point central version. The discussion will therefore be limited to the
five-point GVD-implementation.

In order to implement the central five-point scheme, introduced in section 3.4.2, the GVD-
part has to be shifted once more and one obtains

E(u0, s) = E(u0 ≠ Δu, s)a¸ ˚˙ ˝
losses

+ a3bs2E(u0 ≠ 3Δu, s)¸ ˚˙ ˝
first-order GVD-term

+ a3
Ë5
2(bs2)2 + . . .

È
E(u0 ≠ 3Δu, s)¸ ˚˙ ˝

higher-order GVD terms

.

(3.50)
By continuing this procedure for the higher-order terms, one obtains

E(u0, s) = E(u0 ≠ Δu, s) · a¸ ˚˙ ˝
losses

+ a3 · bs2 · E(u0 ≠ 3 · Δu, s)¸ ˚˙ ˝
first-order term

+ a5
Ë5
2(bs2)2

È
E(u0 ≠ 5 · Δu, s)¸ ˚˙ ˝

second-order term

+ a7
Ë49

6 (bs2)3
È
E(u0 ≠ 7 · Δu, s)¸ ˚˙ ˝

third-order term

+ . . . .
(3.51)

The upper equation can be numerically implemented by applying the inverse Laplace-
transformation and discretizing the obtained derivatives. However, this procedure does not
stabilize the implementation since the schemes required for the fourth and sixth deriva-
tives are not defined. This step is essential in obtaining a stabilizing effect since the
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Figure 3.13: GVD implementation by truncating the Taylor-expansion of the GVD-term after
the first, second, and third-order. Simulation parameters: L = 1mm, N = 257, – = 4cm≠1 and
DÊ = 4000 fs2

mm .

used discretization schemes impact the gain profile. By applying the inverse Fourier-
transformation (s = jÊ) and by replacing the derivative with the five-point central differ-
ence formula (equation 3.38) and applying the Z-transformation, one obtains

s2E … ˆ2E

ˆt2 … ≠z2 + 16z ≠ 30 + 16z≠1 ≠ z≠2

12Δt2 · E(z). (3.52)

In order to implement the n-th powers of (s2), the gray-marked term is taken to the power
of n.
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Figure 3.14: Broadband gain simulation of the tested GVD versions which compensate the gain
peaks at Δf = fs/2 for positive and negative dispersion. Simulation parameters: L = 1mm,
N = 257, and DÊ = ±4000 fs2

mm .

In case of the implemented version, this yields

E(u0, z) = a · E(u0 ≠ Δu, z)¸ ˚˙ ˝
losses

+ jFa3 · z2 + 16z ≠ 30 + 16z≠1 ≠ z≠1

12 · E(u0 ≠ 3Δu, z)¸ ˚˙ ˝
first-order GVD term

+ a5
C
jF

z2 + 16z ≠ 30 + 16z≠1 ≠ z≠1

12

D2

· E(u0 ≠ 5Δu, z)¸ ˚˙ ˝
second-order GVD term

+ a7
C
jF

z2 + 16z ≠ 30 + 16z≠1 ≠ z≠1

12

D3

E(u0 ≠ 7Δu, z)¸ ˚˙ ˝
third-order GVD term

.

(3.53)

The above equation can be implemented by conducting the inverse Z-transformation. This
leads to the simulation results shown in Figure 3.13. By comparing the three depicted
versions, one can see that the inclusion of the second-order term reduces the gain peaks
at Δf = fs/2 almost completely. In addition, all results show a nearly identical phase
profile which defines n(Δf) and GV D(Δf). Figure 3.14 shows the gain profile of the
simulation obtained by truncating the implementation after the second and third-order
terms. By comparing both Figures with different signs of dispersion, one can see that the
sign has no impact on the compensated gain-peaks. Both second-order implementations
show a small gain peak at Δf = fs/2. However, its size is negligible in comparison to the
losses. The third-order implementation exhibits a loss peak at Δf = fs/2, and the graph
does not exceed the losses set. That means the third-order dispersion is stable even if the
losses are negligible. The implementation is, therefore, truncated after the third-order. In
case a higher spectral precision is needed, the overall accuracy can be further increased
by decreasing the grid step size (Δz and Δt). Figure 3.15 shows a simulation with twice
the number of points. As depicted, the error made at the the boundaries of the shown
spectrum is drastically reduced leading to a good approximation of the expected profiles.
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Figure 3.15: Final GVD-implementation by truncating the development after the third-order. By
increasing the number of grid points to 513, the error made at the boundary of the bandwidth can
be reduced leading to nearly perfect results. Simulation parameters: L = 1mm, – = 4cm≠1 and
DÊ = 4000 fs2

mm .

The value of the GVD is slightly below the input value of 4000fs2/mm since the first six
points do not only include the GVD due to the used startup procedure.

Stabilization: working principle

In the previous section, a method was described stabilizing the GVD-implementation.
It was shown that the gain peaks appearing at a frequency of one-half of the sampling
frequency can be drastically minimized by conducting a Taylor-expansion of the implemen-
tation in the frequency domain and by including higher-order terms in the implementation.
This section should shed light on this compensation mechanism. Similar to the stability
analysis, a two-level implementation will be used to simplify the analytical description.
The three point central GVD-implementation in combination with its second-order term
shifted to Eu≠3,q will be used for that purpose. By solely implementing the first-order
approximation, one obtains

E(Δf)u

E(Δf)u≠3 = e≠ 3
2 –Δu

C
1 + j6F · (cos(2fiΔfΔt) ≠ 1)

D
(3.54)
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similar to equation 3.40 but with the compensation of the losses due to the back-shifting
process. This leads to

I(Δf)u

I(Δf)u≠3 = e≠3–Δu ·
C
1 +

#
6F · (cos(2fiΔfΔt) ≠ 1)

$2
D

(3.55)

with a frequency-dependent term causing the gain peaks at half the sampling frequency.
By truncating the development after the second-order term, one obtains

E(Δf)u

E(Δf)u≠3 = e≠ 3
2 –Δu

C
1+j6F ·(cos(2fiΔfΔt)≠1)+ 1

2
Ë
j6F ·(cos(2fiΔfΔt)≠1)

È2
D

(3.56)

leading to

I(Δf)u

I(Δf)u≠3 = e≠3–Δu ·
C
1 ≠ #

6F (cos(2fiΔfΔt) ≠ 1)
$2 + 1

4
#
6F (cos(2fiΔfΔt) ≠ 1)

$4

+
#
6F · (cos(2fiΔfΔt) ≠ 1)

$2
D

(3.57)

where the terms marked in red cancel each other out. This leads to a far flatter gain
profile as depicted previously. A similar analysis can be carried out for the phase of the
equation leading to the result that the additional term influences the phase slightly.

The explained stabilization method was also applied to higher-order one-sided methods.
One-sided methods would eliminate the back-shifting process and would partially simplify
the overall complexity of the implementation. However, the stabilizing effect did not take
place as tested. Due to their higher-order of accuracy and the stabilizing method found,
one-sided formulas were not further investigated.

3.5 Higher-order dispersion
Similar to the GVD-implementation, the analysis starts in the frequency domain. By
truncating the development of Δk, introduced in section 3.4.1, after the fourth-order, one
obtains

Δk ¥ ˆk

ˆÊ
ΔÊ + 1

2DÊΔÊ2 + 1
3! · TOD · ΔÊ3 + 1

4! · FOD · ΔÊ4 (3.58)

where the third and fourth-order dispersion coefficients are denoted as

TOD = ˆ3k

ˆÊ3 FOD = ˆ4k

ˆÊ4 . (3.59)

In the u-t coordinate system, this yields

E(u0, ΔÊ) = E(u0 ≠ Δu, ΔÊ)e≠ –
2 Δu · e≠j 1

2 DÊ(ΔÊ)2Δu · e≠j 1
3! T OD(ΔÊ)3Δu · e≠j 1

4! F OD(ΔÊ)4Δu

(3.60)
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Figure 3.16: Five and seven point TOD implementation at the central point (u ≠ 4, q). The
first three spatial steps only include losses. Simulation parameters: L = 1mm, N = 257, and
TOD = 400 fs3

µm .

which corresponds to the PDE

n

c0

ˆE

ˆt
+ ˆE

ˆz
= ≠–

2 E + j
1
2DÊ

ˆ2E

ˆt2 + 1
3!TOD

ˆ3E

ˆt3 ≠ j
1
4!FOD

ˆ4E

ˆt4 . (3.61)

Similar to the implementation of the GVD, equation 3.60 will be used to implement the
third (TOD) and the fourth-order dispersion (FOD) in the following subsections. First,
each term will be implemented individually by setting the other two terms to zero. Finally,
section 3.5.3 deals with the stability of a combination of the dispersion coefficients.

3.5.1 Third-order dispersion (TOD)
Similar to the GVD implementation, the central finite difference formula will be shifted
along the minus u-axis. Figure 3.16 shows a comparison between a five and seven point
TOD implementation at the central point (u ≠ 4, q). The used finite difference formulas
are given by

ˆ3E

ˆt3 … E(z) ·
Y][

z2≠2z+2z≠1≠z≠2

2(Δt)3 , 5 points implementation
≠z3+8z2≠13z+13z≠1≠8z≠2+z≠3

8(Δt)3 , 7 points implementation.
(3.62)
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Figure 3.17: Simulation results of truncating the TOD Taylor-expansion after the second and
third-order term. The first 9 spatial steps only include losses. Simulation parameters: L = 1mm,
N = 513, – = 4cm≠1, GV D = 0 fs2

mm , and TOD = 400 fs3

µm .

Since the five-point implementation deviates significantly from the expected constant TOD
profile, the seven-point version will be analyzed further. Similar to the GVD, the gain
profile exhibits peaks aside from the central frequency. However, in comparison to the
GVD, the peaks are not located at Δf = ±fs/2.

To compensate the gain peaks, the Taylor-expansion of the TOD-term of equation 3.60 is
used where s = jΔÊ. This yields

E(u0, s) = E(u0 ≠ Δu, s) · a¸ ˚˙ ˝
losses

+ a4 · cs3 · E(u0 ≠ 4 · Δu, s)¸ ˚˙ ˝
first-order term

+ a7
Ë7
2(cs3)2

È
E(u0 ≠ 7 · Δu, s)¸ ˚˙ ˝

second-order term

+ a10
Ë50

3 (cs3)3
È
E(u0 ≠ 10 · Δu, s)¸ ˚˙ ˝

third-order term

+ . . . .
(3.63)

Here c = 1
3! · TOD · Δu.

To implement the above equation, the relation

s3E … ˆ3E

ˆt3 … ≠z3 + 8z2 ≠ 13z + 13z≠1 ≠ 8z≠2 + z≠3

8(Δt)3 · E(z) (3.64)
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was used, and the higher powers of the term marked in gray, similar to the implementation
of the GVD. Figure 3.17 shows the simulation result of truncating the development after
the second and third-order term for N = 513. Similar to the GVD-implementation, the
second-order approximation is not sufficient for a stable implementation as depicted in
Figure 3.17. The broadband gain profile is not influenced by the sign of TOD. Hence, the
implementation is stable.

3.5.2 Fourth-order dispersion (FOD)
Similar to the TOD, a seven point implementation will be used for the implementation.
Based on the Taylor-expansion of the FOD-term in equation 3.61, one obtains

E(u0, s) = E(u0 ≠ Δu, s) · a¸ ˚˙ ˝
losses

+ a4 · ds4 · E(u0 ≠ 4 · Δu, s)¸ ˚˙ ˝
first-order term

+ a7
Ë7
2(ds4)2

È
E(u0 ≠ 7 · Δu, s)¸ ˚˙ ˝

second-order term

+ a10
Ë50

3 (ds4)3
È
E(u0 ≠ 10 · Δu, s)¸ ˚˙ ˝

third-order term

+ . . . ,
(3.65)

where d = ≠ 1
4! · FOD · Δu.

The above equation was implemented by means of the relation

s4E … ˆ4E

ˆt4 … ≠z3 + 12z2 ≠ 39z + 56 ≠ 39z≠1 + 12z≠2 ≠ z≠3

6(Δt)4 · E(z). (3.66)

Similar to the implementations of GVD and TOD, the second and third-order terms
were calculated by the higher power of the term marked in gray. Figure 3.18 shows the
simulation result with 257 points. While the second-order realization exhibits a gain peak
at |Δf | = fs/2, the third-order implementation shows elevated losses at these frequencies.
Therefore, the third-order version is considered as stable for the set of parameters.

However, by increasing the number of points to 513, the implementation becomes unstable.
A possible reason for this is found in equation 3.57. The magnitude of the remaining
frequency-dependent part of the equation is proportional to 1/Δz. Thus, by decreasing
the grid spacing, the impact of the remaining frequency-dependent term increases. This
can be readily seen by comparing the broadband simulation depicted in Figure 3.15 with
the positive dispersion simulation shown in Figure 3.14. The large number of temporal
points used for the implementation and the decreasing spatial grid increasing the error
term may lead to a numerical problem. Due to rounding errors, for instance, the solution
is not perfectly compensated which could lead to an unstable behavior. This problem can
be potentially avoided for narrow-band calculations by using fewer temporal points for the
FOD-implementation or by increasing the number of decimal points.

3.5.3 Multi-parameter stability
In the implementations of the GVD, TOD, and FOD, only one dispersion coefficient was
considered while the others were set to zero. This development stabilizes the case where
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Figure 3.18: Simulation results of the FOD implementation by truncating the development after
the second and third-order term. Simulation parameters: L = 1mm, N = 257, – = 4cm≠1,
GV D = 0 fs2

mm , TOD = 0 fs3

µm , and FOD = 40 fs4

nm .

only one coefficient is set but not their combined use. This section addresses this prob-
lem and describes a strategy to stabilize the joint use of the GVD and the TOD. The
described principle can be readily extended to allow a combined use of all three dispersion
parameters.

Similar to the previous implementation, 3.60 is approximated. By considering GVD and
TOD, the Taylor-expansion of

E(u0, s) = E(u0 ≠ s, ΔÊ) · e≠ –
2 ·Δu · ej 1

2 DÊΔu·s2 · e
1
3! T ODΔu·s3

. (3.67)

yields

E(u0, ΔÊ) = E(u0 ≠ ΔÊ, ΔÊ) · a

+ E(u0 ≠ ΔÊ, ΔÊ) · a
Ë
(cs3 + (cs3)2

2 . . . ) + (bs2 + (bs2)2

2 . . . )

+ (bs2 + (bs2)2

2 . . . ) · (cs3 + (cs3)2

2 . . . )
È (3.68)

with the additional cross-terms marked in gray.
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Figure 3.19: Simulation results when setting GVD and TOD with and without additional cross
terms. Simulation parameters: L = 1mm, N = 513, DÊ = 4000 fs2

mm , and TOD = 400 fs3

µm .

In the exact same way as before, the equation is used to shift the dispersion terms to-
wards the minus u-axis to enable a central implementation. This yields the following
approximation

E(u0, s) = E(u0, s)losses + E(u0, s)GVD + E(u0, s)TOD+ 6a6 · bs2 · cs3 · E(u0 ≠ 6 · Δu, s)¸ ˚˙ ˝
first cross-term

+ a8
Ë
32(bs2)2cs3

È
E(u0 ≠ 8 · Δu, s)¸ ˚˙ ˝

second cross-term

+ a9
Ë81

2 (cs3)2bs2
È
E(u0 ≠ 9 · Δu, s)¸ ˚˙ ˝

third cross term

.

(3.69)
By including the cross terms into the simulation, the implementation is stable as shown
in Figure 3.19. Without the cross terms, the broadband gain simulation exhibits a large
gain peak. By including the additional terms, the GVD and TOD only generate losses.
The implementation was tested for all sign combinations of TOD and DÊ, whereby no
combination led to additional gain.
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Group velocity dispersion effects are considered as phase filters and should not impact
the intensity spectrum. By including these effects into the model by means of finite dif-
ference, it was shown that the discretized equation becomes inherently unstable. Three
techniques were analyzed to circumvent this problem: (1) splitting the equation into phase
and amplitude, (2) utilizing the split-step technique, and (3) implementing the equation in
the Laplace domain by conducting a Taylor approximation and by utilizing the relations
between the Laplace-transformation and the time domain. While the splitting process
imposes further numerical complications, the split-step technique induces long computa-
tion times, the realization in the Fourier-domain leads to a stabilizing effect by including
higher-order terms. However, the stabilizing effect only takes place by using central finite
difference coefficients as tested. Hence, the implementation had to be shifted towards
the minus u-axis to avoid a coupling of the equations. This is essential, as otherwise the
performance of the implementation would decrease significantly since parallel computing
would not be possible.

3.6 Gain
Similar to the previous section, the wave-equation is expanded once more to include the
gain of the laser medium. However, in comparison to the previous extensions, the ad-
ditional term is coupled with an additional equation: the polarization equation. This is
necessary since the gain of the master-equation for fast gain media induces losses above
and below the center frequency as introduced. The wave-equation including losses, GVD,
TOD, FOD, and the gain (marked in gray) reads

ˆE+
ˆu

= ≠ –

2 E+¸ ˚˙ ˝
losses

+ j
DÊ

2
ˆ2E+
ˆt2 + TOD

3!
ˆ3E+
ˆt3 ≠ j

FOD

4!
ˆ4E+
ˆt4¸ ˚˙ ˝

dispersion effects

≠ j
ΓµÊ0

n‘0cLp
‡+¸ ˚˙ ˝

gain

, (3.70)

where Γ is the confinement factor, µ is the dipole matrix element, Ê0 = 2fif0, Lp is the
period length, ‘0 is the permittivity of vacuum. ‡+ is the right propagating envelope of
the off-diagonal element of the density matrix referred to as polarization. The polarization
equation is given by

ˆ‡+
ˆt

= ≠‡+
T2

+ j
µ

2~ ·
Ë
E+n0 + E≠n

(ú)
2

È
, (3.71)

where T2 is the dephasing time and E≠ is the left propagating envelope of the electric
field. As the equation also contains the counter-propagating parts (e.g. E≠), the simplified
notation E = E+ used up to now is no longer applicable.
The equation for the polarization ‡+ is coupled to the equation for spatially constant n0
and the spatially varying upper level population n2, given by

ˆn0
ˆt

= J ≠ n0
T1

+ µ

~
· ⁄{E+‡ú

+ + E≠‡ú
≠} (3.72)

and
ˆn2
ˆt

= ≠n2
Tg

+ j
µ

2~ · !
E+‡ú

≠ ≠ Eú
≠‡+

"
. (3.73)
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Figure 3.20: Simulation results by implementing the polarization equation by a first-order ap-
proach (red, previously used) and by utilizing the bilinear transformation (blue). The expected
behavior (purple) was calculated by the Fourier-transformation of the polarization equation and by
adjusting its peak size to the simulation results. Simulation parameters: L = 1mm, N = 513,
dispersion coefficients, and losses were set to zero.

with the lifetimes T1 and Tg for n0 and n2 respectively. In other words, Tg represents the
lifetime of the spatially varying population due to SHB and is thus lowered by the carrier
diffusion and T1 can be seen as the gain recovery time. The shown equations for the gain
of the right propagating envelope of the electric field E+ can be readily derived from the
Maxwell-Bloch equations, given in [24, eq. 3.55 - 3.62], by assuming that the lower lasing
level is empty. In a similar way, the equation for E≠ can be derived as shown in [24, Ch.
3].

3.6.1 Implementation of the gain
In the previous work from N. Opačak, a discretized model, which implements the upper
equations has already been implemented. The content of this section analyzes the accuracy
of this implementation and increases its order for the simulation of broadband laser sources.
In the work conducted by N. Opačak, the equations for the polarization ‡+, and the
equations for the population n0 and n2 were implemented by using an explicit scheme
implemented by first-order finite difference formulas.

For the polarization equation, this first-order implementation results in

‡q+1
+ = ‡q

+ ·
5
1 ≠ Δt

T2

6
+ Q · Δt (3.74)

where Q = j µ
2~ ·

Ë
Eq

+nq+1
u0

È
by setting E≠ to zero7.

7 The current waveguide operates as optical amplifier where the reflectivity of the facets was set to zero.
Within the variable Q, N. Opačak used nq+1

u0 . nq
u0 would be correct since the scheme is developed

around the temporal point q.
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By implementing the upper equation into the simulation and adding the additional term
to the discretized version of the wave-equation, one obtains the simulation result shown
in Figure 3.20. One can see clearly that the first-order version, displayed in red, deviates
clearly from the expected profile calculated by a Fourier-transformation of the polarization
equation 3.71 (dashed in purple). The first-order implementation induces losses above
and below the center frequency. Hence, the implementation does not reflect the physical
meaning correctly.

To analyze this mismatch, the Z-transformation is applied to 3.74, yielding to

‡+(z) = Q · Δt

z ≠ 1 + Δt
T2

. (3.75)

The upper equation has a pole at z = 1 ≠ Δt
T2

and a zero at z æ ± inf.
By taking the relation between the Z-transformation and the time discrete Fourier- trans-
formation into account8, z = ej2fiΔfΔt, it becomes apparent that a zero at z = ≠1 (the
point where |Δf | = fs/2) is necessary to reduce the amount of numerical gain or losses
above and below the center frequency.

A possible solution is presented by applying the bilinear Z-transformation connecting the
z-space and the s-space (Laplace-space). This transformation is given by

s = 2
Δt

z ≠ 1
z + 1 (3.76)

as defined in [45, eq. 6.57]. By applying this formula to the Laplace-transformed version
of 3.71, one yields

‡q+1
+ ≠ ‡q

+ = ≠ Δt

2T2

1
‡q+1

+ + ‡q
+

2
+ Δt

2
1
Qq+1 + Qq

2
. (3.77)

We note that this transformation leads to an implicit scheme that is developed around the
point in the center between the new and the old time step.
By applying the Z-transformation to the upper equation, one gets

‡(z) =
Q(z)Δt

2 (z + 1)
z ≠ 1 + Δt

2T2
(z + 1)

(3.78)

which contains a zero at z = ≠1 (maximum frequency). Hence, the implementation should
neither impose gain nor losses at this point.

To implement the scheme derived by the bilinear transformation, one requires Qq+1. As
Qq+1 contains Eq+1, the term couples the discrete wave-equation and the polarization
equation. By rewriting the discrete wave-equation as

Eq+1
+ = ‡q+1

+ + ’ (3.79)
8 This becomes clear by comparing the definitions of both transformations and the time continuous

Fourier-transformation given in [45, Ch. A]
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Figure 3.21: Simulation results by implementing two shifted versions of the polarization equation.
The gain peak was shifted by ±2.5THz about the center frequency. The gain peaks of the different
cascades (blue and purple) were calculated by the Fourier-transformation of the polarization equa-
tion and by adjusting their peak size to the simulation result and by shifting their center frequencies
in accordance with the simulation.

where ’ represents the other contributions like losses, GVD, TOD, or FOD 9. By solving
3.79 in combination with 3.77, one obtains

‡q+1
+ =

‡q
+

Ë
2 ≠ Δt

T2

È
+ jΔt µ

2~’nq+1
u0 + QqΔt

2 + Δt
T2

≠ jΔt µ
2~nq+1

u0
. (3.80)

By implementing the upper equation, one yields the simulation result shown in Figure
3.20, which approximates the expected behavior nearly perfectly. In comparison to the
first-order approach, the version derived by the bilinear-transformation features a zero at
z = ≠1, which induces a transparent behavior of the gain medium at |Δf | = fs/2. The
derived implementation can be readily expanded to include E≠ to simulate the behavior
of a laser.

3.6.2 Multiple gain peaks
To enable the simulation of a heterogeneous QCL, as presented in [20–22], consisting
of different cascades leading to multiple gain peaks, the polarization is implemented a
second time. By conducting a Laplace-transformation of the polarization equation 3.71,
one obtains

s1‡+(s1) = ‡+
‡+(s1)

T2
+ Q(s1). (3.81)

The upper equation can be readily shifted in the frequency domain by setting s1 = s + s0
where s0 = j2fifd. fd is the deviation of the center frequency of the gain peak to the
center frequency of the simulation. By applying the bilinear transformation to the above

9 The additional propagation index u of the wave-equation was omitted to simplify the expressions,
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equation and by solving the equation in combination with the discrete wave-equation, one
yields the implementation for the shifted version

‡q+1
+ =

‡q
+

Ë
2 ≠ Δt

T2
+ Δts0

È
+ jΔt µ

2~’nq+1
u0 + QqΔt

2 + Δt
T2

≠ jΔt µ
2~nq+1

u0 ≠ s0Δt
. (3.82)

By assuming that the different cascade designs do not significantly change the parameters
of the equations of the upper-level population n0 and n2, multiple gain peaks can be
readily implemented by the summation of multiple polarizations shifted spectrally.

Figure 3.21 shows such a simulation for two different cascade structures which are shifted
from the center frequency by ±2.5THz. One can clearly see that both gain peaks overlap
close to the central frequency expanding the overall bandwidth of the gain.

The gain of the laser medium was implemented by means of a simplified version of the
Maxwell-Bloch equations. The equations for the spatially static n0 and spatially varying
population n2 were implemented by using a first-order explicit scheme. The polarization
equation can not be implemented by a first-order formalism, even if the equations have a
similar structure. A first-order implementation would impose losses at frequencies above
and below the center frequency. To overcome this issue, a scheme is required where the Z-
transformed implementation exhibits a zero at z = ≠1. Such an implementation is found
by using the bilinear-transformation connecting the Laplace-transformation with the Z-
transformation of the implementation of the equation. The description can be further
expanded to simulate multiple different cascades amplifying light at different frequencies.
This is achieved by implementing multiple polarization equations shifted in the frequency
domain.



CHAPTER 4

CHIRP ENGINEERING IN OPTICAL
FREQUENCY COMBS

Quantum cascade lasers (QCLs) are semiconductor lasers emitting light in the infrared
and terahertz spectral region. Under certain conditions, these QCLs generate optical
frequency combs (OFCs), which are the topic of this chapter. OFCs are devices emitting
a spectrum with equidistantly spaced modes, similar to a ruler in the frequency domain,
with defined phase relations [31].

Figure 4.1: Schematic drawing of the laser modes and resulting beat note for FM-type and AM-
type OFCs.

53
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In general, most OFCs can be categorized into two different groups: frequency-modulated
(FM-type) and amplitude-modulated (AM-type) OFCs [51]. Both types can be distin-
guished by the magnitude of the laser beat note formed by the superposition of all in-
termodal beating signals. After the formation of the OFC, the laser beat note features a
narrow bandwidth indicating equidistant laser modes. The magnitude of this beat note
is determined by the phase relation of the modes. In the case of equal phases (in-phase
synchronized state, AM-type), the intermodal beatings interfere constructively, resulting
in a strong beat note. This is in sharp contrast to the phases of FM-comb modes, which
are, for instance, uniformly distributed around the unit circle (anti-phase synchronized
state, FM-type) leading to a suppressed beat note. This contrast is illustrated in Figure
4.1.

Both types of combs emit a periodic intensity signal in the temporal domain. However,
the shape of the signal is defined by the phase relation of the modes. While AM-combs
emit pulses, frequency-modulated combs generate a signal with almost constant intensity
[51]. Another distinction can be found in their condition of formation. AM-type mode-
locked lasers require active or passive means to trigger the mode-locking process and the
formation of pulses [5, Ch. 16.4],[51]. FM-combs, formed with QCLs, are self-starting and
require no additional means to trigger the locking process [31].

Since most FM-combs are based on semiconductor materials, the discussion is limited
to this type of OFC [51]. Their self-starting probability and the linearly chirped output
signal were investigated in [31]. Section 4.1 describes important properties of FM-comb.
After discussing their main characteristics and their working principle, the topic of chirp
engineering is introduced by means of the reduced model (section 4.2). This simplified
model reveals much information regarding the tunability of the locked state by changing
the spatial intensity profile of the laser. These shaping mechanisms are discussed in section
4.3 and the possible applications are outlined in section 4.4.
The basis of this chapter is laid out by "Frequency comb spectral engineering in semi-
conductor lasers by intracavity spatial intensity profile shaping" [52]. Unless otherwise
specified, all the simulations shown in this chapter were calculated by using the master
equation for fast gain media given in [31]. The used simulation parameters are listed in
chapter A.

4.1 FM-combs in fast gain media resonators
The laser modes of a Fabry-Pérot resonator are ideally equidistantly spaced in the fre-
quency domain. Depending on the length L and the refractive index n, the cold cavity
resonance frequencies Êi (i œ N), are given by

Êi = ifi
c0
nL

(4.1)

as defined in [24, Ch. 5].
Since the refractive index in dispersive media is a function of frequency, the spacing of
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Figure 4.2: The degenerate FWM process of two cavity modes Êi and Êi+1 generates two addi-
tional frequency components (Êup and Êdown), which are close to the cold-cavity frequencies Êi≠1
and Êi≠2. Since this effect is present at all modes, the combination of degenerate FWM and
frequency pulling forms an equidistant grid in the frequency domain due to energy conservation.
Source: adapted from [24, Fig. 5.3]

the modes, referred to as the free spectral range (FSR)1, is not perfectly equidistant. As
a result, the spectral width of the beat-note is increased, as introduced previously. The
formation of amplitude-modulated OFCs in QCLs is hard to accomplish, as outlined in
[24, Ch. 5]. One of the main reasons is their fast gain medium. In conventional interband
lasers, the medium is capable of storing the energy in the inversion. This inversion can
build up between pulses, where the intensity is zero and is dismantled abruptly when
the next pulse arrives. It should be noted that normally also an interband laser favors a
constant temporal intensity profile. The reason for this lies in the gain saturation of the
medium and the principle of maximum emission. To produce pulses, the effect of gain
saturation has to be reversed in order that the medium favors pulses [31]. In fast gain
media, this is made difficult since the gain recovery time is much shorter than the round
trip time [24, Ch. 5].

FM-combs based on QCLs overcome the limitations of AM-Type OFC for spectroscopy
applications. They do not require any additional parts to trigger the locking process,
feature many perfectly equidistant modes, and do not require that the upper state life-
time is larger than the round trip time. The reason for this perfect spacing is found in
the fast gain properties of QCLs, triggering a giant third-order non-linearity [53]. This

1 as defined in [5, p. 438].
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giant non-linearity leads to an effect called four-wave mixing (FWM). Since this effect is
coherent, not all combinations of frequencies are equally probable. The degenerate FWM
process of two adjacent modes is displayed in Figure 4.2 which generates two additional
frequency components (Êup and Êdown). The cold-cavity frequencies are pulled towards
an equidistant grid due to the cascading FWM effect and the energy conservation. It
should be noted that the effect of cavity pulling works only if the mode remains within its
locking range as described in [24, Ch. 5]. The process of FWM explains the formation of
a frequency comb in fast gain media; however, does not explain the required phase locking
process.

This was brought to light in [31], where the group-velocity dispersion and the Kerr-
nonlinearity are considered as the main reasons. It was shown that both effects have
a similar analytical impact. A minimum GVD or Kerr-nonlinearity is required in order
for the intermodal phases to span the whole unit circle. A further increase of one of the
parameters will narrow the emitted laser spectrum.
To round off this section, the most important mechanisms forming an FM-comb in QCLs
should be highlighted. First of all, the effect of spatial hole burning is essential to trigger
multi-mode operation in fast gain media. This creates an initial grid in the frequency
domain, required for the formation of an OFC. Second, the effect of gain saturation sup-
presses the formation of pulses. Third, a finite GVD or Kerr-nonlinearity splashes the
intermodal phases around the unit circle [31].

4.2 Reduced model
In this section, the master equation, presented in [31], will be simplified to obtain a
comprehensive model explaining the impact of different parameters on the locking state
of the FM-comb. The locking process is dominated by GVD and the Kerr-nonlinearity is
set to zero in this chapter. To simplify the model, the governing equation is split into two
coupled equations for the power P and phase Φ by utilizing the relation E =

Ô
P ·exp(jΦ)

in the first step. The cross-section area A was normalized to one for this step. Since this
approach does not simplify the model, terms with minor contributions are being neglected
in the second step as shown in [31]. This leads to3

n

c0
ˆt ± ˆz

4
P± = g(P )P± ≠ g(P )T2

2 ˆtP±¸ ˚˙ ˝
(1)

≠ g(P )T 2
2 P±(ˆt„±)2¸ ˚˙ ˝

(2)

≠–P± (4.2)

3
n

c0
ˆt ± ˆz

4
„± = ≠g(P )

2 T2ˆt„±¸ ˚˙ ˝
P OD

≠ g(P )
2

T 2
g

T1

P±
Psat

ˆt„û¸ ˚˙ ˝
SHB

≠ DÊ

2 (ˆt„±)2¸ ˚˙ ˝
GV D

. (4.3)

where P± and „± are the power and the phases of the left and right propagating waves
respectively, Psat is the saturation power, and g(P ) represents the saturated gain coeffi-
cient.
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Since the Kerr-nonlinearity contribution was neglected, it is possible to omit the gray-
marked term (2) in the upper equation. This enables to solve the power distribution
independently from the phase equation [54]. Equation 4.2 can be further simplified by
neglecting the gray marked term (1). The phase equation of the reduced model includes
gain saturation, SHB, and GVD; all the prerequisites for the formation of FM-combs. In
addition, it also comprises a term called phase oscillation damping (POD), which would
cause single-mode operation [31].

4.3 Chirp shaping mechanisms
In the previous section, the analytical description of an FM-comb was minimized to sim-
plify the analytical formulas. Since the power equation can be solved separately and one
can potentially use any power distribution for the calculation of the phases, the qualita-
tive description of the FM-comb can be performed by using only the phase equation 4.3.
By analyzing this governing equation, three spatially varying variables can be identified
influencing the locking state of the FM-comb:

1. the power of the counter-propagating waves P±

2. the saturation power Psat

3. the group velocity dispersion DÊ

The first parameter (P±) can be readily influenced by changing the gain spatially. This is
achieved by splitting the cavity into sections, which are biased differently. An example of
a two-section device can be found in [25]. Another important factor impacting P± is the
reflectivity of the facets. By, for instance, applying a high reflectivity (HR) or low reflec-
tivity (LR) coating to one of the facets, the spatial power distribution can be impacted.
An example of such a coating applied to a QCL can be found in [55].

Second, the saturation power of the laser gain medium can be influenced by spatially
changing the width of the device. This can be readily implemented by applying a taper
to the waveguide. Some examples of the application of tapers are the reduction of lateral
divergence of the laser beam [56] or the efficient waveguide to fiber coupling [57]. Re-
cently, tapered structures were also used in OFCs to enhance the effect of gain saturation
dynamics and nonentities which led to a flatter intensity spectrum and a clearer linear
chirp [58].
Finally, the group velocity dispersion can be spatially varied by changing the material
composition along the laser length leading to a different spectral shape of the refractive
index n. This approach is similar to heterogeneous QCLs, where some cascades emit at
a slightly different frequency to increase the total emission bandwidth [5, Ch. 18.4], [20].
Since the first three approaches, namely the laser bias, the reflectivity of the facets, and
the cavity design are far easier to implement and present already three versatile tools to
impact the locking state, the impact of a spatially varying GVD was not considered in
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Figure 4.3: Important information about the simulation of FM-combs: The SHB impacts dras-
tically the spatial intensity profiles as depicted in (a). By averaging the intensity profiles over the
past 15000 roundtrips, this effect can be mitigated leading to smooth exponentially growing intensity
profiles as shown in (b). Figure (c) depicts the locking percentage of the comb over the simulation
time and (d) displays the temporal output intensity of the comb.

this work. The GVD was set to a constant value (GVD = -2500 fs2/mm) where the laser
emits an FM-type OFC. As shown in [31], the absolute value of the GVD has to exceed
|GV D| > 1000 fs2/mm at zero Kerr-nonlinearity to obtain a locked FM-comb state for
the considered parameters.

Before the impact and their implementation of the laser bias, the reflectivity of the facets,
and the cavity design are discussed, it should be mentioned that the intensity profile is
distorted by the SHB. This effect is displayed in Figure 4.3 a. In order to identify the
effects of the three approaches discussed more clearly, the intensity profiles are being
averaged over the last 15000 round trips of the simulation as shown in Figure 4.3 b. This
averaging process was conducted for all shown intensity profiles in the following sections.
The simulation time was set to 20 000 round trips. In addition, Figure 4.3 shows the
locking behavior of the FM-comb. The laser starts to produce a periodic output at about
4000 roundtrips after the simulation was started. Similar to the work of Beiser et al.
[32], the locking percentage was calculated by the autocorrelation of the intensity profile
of two different round trips separated in time. Figure 4.3 d shows the nearly constant
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Figure 4.4: Two-section device showing the influence of a different laser bias of the sections on
the FM-comb: a) constant bias on both sections, b) reduced bias on the smaller section, and c)
increased bias on the smaller section. Each case shows the impact of the laser bias on the spatial
intensity, instantaneous frequency, spectral intensity profile, and intermodal phases ΔΦ. The kinks
caused by the abrupt change of the bias are marked in red.

and periodic intensity profile which is characteristic for this type of OFC as discussed
previously.
The following subsections describe the impact of the laser bias, the reflectivity of the
facets, and the design of the cavity on the intensity distribution and, subsequently, on the
locking state of the comb. In addition, their implementation into the numerical model is
being discussed. The used simulation parameters can be found in chapter A.

4.3.1 Laser bias
The most powerful approach to influence the intensity profile, which is described in this
work, is the laser bias. This effect can be readily implemented into the model by changing
the current J = Jinjected ≠ Jtransparency along the waveguide. To explore its influence, the
waveguide with the length L was divided into a longer (3/4L) and a shorter (1/4L) section
as shown in Figure 4.4. The bias of the sections where changed to spatially influence the
gain. Figure 4.4 b and c show the influence of a smaller and larger current on the small
section. Both variations of the laser gain show a direct influence on the spatial intensity.
If the current density is higher, the intensity profiles grow stronger and vice versa. This
is in accordance with the reduced model given in (4.2). In comparison to Fig. 4.4 a, 4.4 b
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Figure 4.5: Influence of a lower bias at the short section of a two section device, as displayed in
Figure 4.4(b), on the instantaneous frequency for a GVD of (a) 2500 fs2

mm , and b) -2500 fs2

mm .

and 4.4 c exhibit two kinks in the instantaneous frequency (marked in red). These kinks
take place at approximately one-quarter and three-quarters of the round trip time and are
a direct consequence of the changed bias of the smaller section. The change in the shape
of the instantaneous frequency impacts also the intensity spectrum. As marked in gray,
the intensity spectrum gets more pronounced at spectral regions, where the instantaneous
frequency is flatter. This influence can also be observed in the intermodal phases.

Figure 4.5 displays the influence of a lower bias on the smaller section (Fig. 4.2 b) on
the instantaneous frequency with positive and negative sign of the GVD. The normalized
time axis for each graph was shifted such that the jumps in the instantaneous frequency
overlap. One can clearly identify the two kinks and the influence of the bias of the smaller
section on the steepness of the instantaneous frequency on approximately three-quarters
of the round trip time (normalized time). The influence on the opposite side, next to the
other kink, is far less pronounced. Regardless of whether the small section is located at the
right or left end of the resonator, the influence is equal due to the symmetry of the laser.
Figure 4.5 shows also that the sign of the dispersion coefficient changes the slope of the
instantaneous frequency. By further increasing the dispersion coefficient, the bandwidth
gets smaller [31]. Hence, the steepness of the instantaneous frequency would decrease.

4.3.2 Cavity design
The cavity design represents the second approach to tailor the locking state of the FM-
comb. Here, the cross-section area of the waveguide and its spatial shape is taken into
consideration to shape the instantaneous frequency. This section briefly describes three
different implementation versions. The first method was already presented in the intro-
duction of this section by means of the reduced model (equation 4.2 and 4.3). In case of a
lossless waveguide, a tapered structure does not impact the power of the traveling waves.
The taper only increases the cross-section area A. In other words, the power P is conserved
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Figure 4.6: Schematic drawing of a tapered waveguide structure on a discretized grid. The black
points are the discretized spatial grid points and the parameter d represents the width of the tapered
structure.

during the propagation. Changing the cross-section does, however, impact the intensity
I = P/A profiles. By increasing the cross-section area A, the intensity I decreases, which
leads to a less saturated laser gain medium. This means Psat = Isat · A increases leading
to an elevated gain factor g(P ). That means, the taper can be implemented by rewriting
the the master equation for the power and the phase. Its influence can be explored by
altering the parameter Psat spatially.

An alternative to this complex rewriting process can be found by considering the impact
of the cavity design on E+ and E≠. This can be readily implemented into the discrete
version of the PDE. First, the values of E+ and E≠ of the next point ( on the u and v-axis)
are calculated by the numerical implementation. Second, the magnitude of the electric
field is altered by the taper. This process is displayed in Figure 4.6. By considering the
transition from i to i+1 for E+ and vice versa for E≠, following relations can be calculated

Ei+1
+,tapered =

Û
d0
d1

· Ei+1
+ Ei

≠,tapered =
Û

d1
d0

· Ei+1
≠ . (4.4)

As indicated in Figure 4.6, the taper does not alter the calculation of the out-coupled or
the back-reflected part of the light at the facets.

In a similar way, one could rewrite the master equation for its intensity by simply substi-
tuting I± = P±/A. In case of the power equation of the reduced model (4.2), this leads
to

n

c0
ˆtI± ± ˆzI± + I±

A
ˆzA = (g(I) ≠ –) I±. (4.5)

The additional term, marked in gray, implements the influence of the cavity design.
For the numerical simulation, equation 4.4 was used to implement the cavity design into
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Figure 4.7: Impact of a 1/4 ·L long linear tapered structure by a) extending the cross section area
to its fivefold at the right facet. b) shows the effect of different taper sizes on the same structure
by increasing the cross-sectional area to twice, five times, and ten times the original dimensions
on the right facet.

the master equation. In case of the reduced model, Psat was modified for that purpose.
As depicted in Figure 4.7 the applied linear taper causes two kinks (marked in red) in the
instantaneous frequency chirp and pronounces a certain region (marked in gray) in the
intensity spectrum. To investigate the influence of the taper in more detail, the impact of
various taper sizes is displayed in Figure 4.7 b. By comparing the instantaneous frequency
profiles shown, it becomes apparent that the spectral range in which the slope of the
instantaneous frequency changes significantly is enlarged by increasing in the taper size.

A possible reason for this behavior can be found in the gradual spatial impact of the taper.
In general, the taper and the laser bias are different in their influence on E+ and E≠. The
laser gain influences both propagating fields equally by changing the rate of increase in
the propagation direction. The taper increases this rate for one direction and decreases
the rate of the other one. Both effects impact, as shown, the locking state of the comb.
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Figure 4.8: Influence of the reflectivity of the facet on the locking state of the comb: (a) without
modulation section and with reduced bias (b) on the low reflectivity side, and (c) on the high
reflectivity side.

In addition, by comparing the size of the taper used in Figure 4.7 a and the factor of
the current reduction in Figure 4.4 b, one would assume that the laser bias has a bigger
influence on the locking state of the comb. The taper features a lower impact due to its
gradually increasing shape and not due to its general influence. In the reduced model
(equation 4.2 f), the taper impacts Psat which is contained in g(P ) and as a separate term
in the spatial hole burning term, whereas the laser bias solely influences g(P ). It is worth
noting that it was not possible to increase the spatial intensity at the tapered smaller
section over a certain amount without losing the locked state of the comb. A similar
behavior was observed in case of the laser bias, where the bias of the smaller section was
increased.

4.3.3 Facet reflectivity
The reflectivity of the facets influences the intra-cavity intensity profiles and thus the
locking state of the comb as shown in Figure 4.8. The reflectivity can be experimentally
changed by applying a high-reflective (HR) or an anti-reflection (AR) to the facets of the
laser. Fig. 4.8 a shows a laser cavity with an AR-coating on the left facet and an HR-
coating on the right facet. However, the characteristics of the comb shown in the Figure
have not changed significantly compared to the original FM-comb shown in Figure 4.4 a.
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A similar picture, apart from the intensity profile, can be generated by swapping the sides
of the coatings.

The impact of the reflectivity of the facet is particularly interesting in combination with
the modification of the laser bias along the cavity. By reducing the current density on
the smaller section, the above described symmetry is removed as shown in Figure 4.8 b,
c. This results in a different locking state of the comb when the coatings of both facets
are swapped. By comparing Figure 4.4 b with 4.8 b and c, it becomes apparent that the
reflectivity changes the extent of influence of the lower biased section. By applying the
AR-coating on the facet of the lower biased section (Figure 4.8 b), its influence increases.
This process is reverted by swapping the coatings (Figure 4.8 c).

Before discussing the possible application of chirp engineering, the influence of the re-
flectivity on the bandwidth should be discussed. This relation was already brought to
light in [32]. In that work, three possible parameters were discussed to increase the band-
width of the FM-comb: Kerr-nonlinearity, GVD, facet reflectivities, and RF-injection.
By comparing Figure 4.8 a with 4.4 a, one can clearly see that the reflectivity changes
have slightly shifted the spectrum towards lower frequencies. The width of the spectrum
has changed marginally. This negligible influence can be explained by the fact that the
product RL · RR = 0.09 has not been changed.

4.4 Possible applications
The combination of the laser bias, the cavity design, and the reflectivity of the facets
provide a useful set of tools to tune the locking state of the FM-comb in a wide range.
A possible application is the generation of short pulses. As discussed previously, the
generation of pulses with QCLs is a difficult task due to the fast gain properties. As
outlined in [24, Ch. 5], a QCL can be used to generate pulses by either applying a strong
RF-signal on a modulation section or by utilizing an FM-comb in combination with a
chirp compressor. An implementation of such a compressor applied on a QCL can be
found in [26]. By analyzing the simulation result depicted in Figure 4.4 a, it becomes clear
that the shape of the instantaneous frequency is slightly nonlinear. In order to generate
transform-limited pulses by a linear chirp compressor, higher-order chirping terms have
to be eliminated. In case of the reduced model (equation 4.2 f), this slight nonlinearity
can be readily compensated by imposing linear intensity profiles as shown in Figure 4.9 a.
This is only possible for the reduced model since the power equation is decoupled from the
phase equation. In addition, Figure 4.9 a depicts that the linear intensity profile exhibits
a nearly rectangular intensity profile. This is in accordance with the previous simulations,
where spectral regions were highlighted depending on the steepness of the instantaneous
frequency profile.
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Figure 4.9: Impact of linear intensity profiles on the characteristics of an FM-comb. (a) depicts
the solution of the phase equation (equation 4.3) by imposing linear intensity profiles. (b) shows
the solution of the master equation by linearizing the intensity profiles using a cosine hyperbolic
cavity design.

The intensity profile, simulated with the master equation, can be linearized by changing
the cavity design. Both intensities (I+ and I≠) rise nearly exponentially2 as depicted in
4.4 a. This means that the total intensity is given by

I = I0 · #
egz + e≠gz$

= I0 · 2cosh(gz). (4.6)

The coefficient g ¥ 3 cm≠1 was determined by fitting I+ by with an exponential function.
In order to linearize the intensity profiles, a cosine hyperbolic taper, centered at L/2 with
a unity value on the facets, was applied to the structure. As shown in Figure 4.9 b, the
cavity design clearly linearizes the intensity profiles but does not eliminate all higher-order
chirp components. A possible reason for this mismatch is given by the spectral gain shape
of the medium, which is neglected in case of the reduced model. By comparing the results
depicted in Figure 4.9, one can clearly see that the spectral intensity profile is shaped
differently. This leads to the conclusion that the nonlinear shape of the intensity profiles
and the spectral gain shape are accounted as the main contributors to higher-order chirp.

2 The exponential profile can be derived by solving equation 4.2.
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Figure 4.10: Applications of chirp engineering: (a) compensating the nonlinear shape of the
instantaneous frequency for the generation of transform-limited pulses by a linear chirp compensa-
tion, (b) the generation of harmonic combs.

The spectral gain shape is inherently coupled to the underlying physics as presented previ-
ously. In order to linearize the chirp, another approach apart from linearizing the intensity
profiles has to be considered. By neglecting the nonlinear type of the master equation,
the chirp may potentially be compensated with the linear combination of the simulations
shown in Figure 4.4 b and c. By comparing both simulations, one can see that the instan-
taneous frequency is shaped in opposite directions when changing from a higher to a lower
biased section. The higher-order chirp can potentially be eliminated by a higher-biased
section on one side and a lower-biased section on the other side. As shown in Figure 4.10
a, the described principle clearly straightens the instantaneous frequency profile. However,
similar to the kinks in the previous simulations, the overall shape includes some ripples
due to the rapid spatial change in laser bias. In a similar way, one could also adopt the
instantaneous frequency profile to match a non-perfect linear chirp compressor.

Another application that results from a spatial variance of the laser bias is the generation
of harmonic combs. The equidistant lines in the frequency spectrum of OFC are separated
by the free spectral range (FSR) of the Fabry-Pérot resonator. In case of harmonic combs,
the mode spacing is increased by an integer factor of the FSR [59–61]. Every mode of a
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Fabry-Pérot resonator is associated with a standing wave intensity pattern, as discussed
previously. Since every uneven mode features an intensity peak in the center of the res-
onator, the gain of these modes can be decreased by lowering the bias in this area. If this
bias is decreased sufficiently, uneven modes will not start to lase, and a harmonic comb is
formed. This effect is similar to micro-electromechanical systems used to measure point
masses. At the nodal points of the standing wave of the mode, the added mass has a
negligible impact on the vibration, whereas in between the nodal points the mass distorts
the movement of the resonator [62, Ch. 3.1.1]. Figure 4.10 b shows a Fabry-Pérot laser
with reduced bias in the center triggering the formation of a harmonic OFC. Potentially,
also higher-order harmonic combs can be generated with this technique by altering the
position of the reduced biased section or by a device subdivided into more sections.



CONCLUSION

Quantum cascade lasers (QCLs) are semiconductor lasers emitting light in the infrared
and the terahertz range. Since their emission frequency also encompasses the molecular
fingerprint region of many molecules, it is of main interest to utilize these lasers for spec-
troscopic applications. For such applications, it is of great interest to extend the spectral
bandwidth of these lasers. This can be accomplished by two main techniques. First, the
emission bandwidth can be enriched by changing the layers of the QCL leading to different
emission frequencies of the cascades. Second, the bandwidth can be increased by utilizing
nonlinear effects.

Since the analytical description of these lasers is of high complexity, modeling has become
an indispensable part of understanding these devices and their parameters in more detail.
An in-house numerical model for QCLs was analyzed, significantly expanded, and refined
to simulate this broadband type of laser, namely the heterogeneous QCL. To test the
spectral accuracy of different implementation schemes, a tunable laser source, and a wave-
guiding structure were utilized. The governing wave-equation was step by step expanded to
include losses, group velocity dispersion (GVD) effects, and the gain of the laser medium.
First, the losses were implemented analytically by means of the exponential integrator
instead of its first-order approximation.
Second, the GVD implementation was analyzed and an implementation was developed
that overcomes its inherent stability issue by utilizing the Taylor-expansion of its Laplace-
transformed version and the connection to the time domain. This stabilizing technique
goes well along with the parallel computation process, which significantly reduces the
overall simulation time.
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The developed method can be additionally used for a stable implementation of higher-
order GVD terms, such as third and fourth-order, and can be utilized for their stable joint
usage. The reason for the required stabilized implementation of the GVD lies in the gain
implementation. In the previous model, the gain implementation was simplified by utiliz-
ing the polarization elimination. This simplification imposes losses above and below the
center frequency. In case of a conventional QCL, this simplification does not impact the
simulation result and is even beneficial since the induced losses compensate for the gain
induced by the unstable implementation of the GVD. In case of broadband heterogeneous
QCLs, this simplification cannot be applied since the medium has to be transparent at
these spectral regions. This transparency was achieved by changing the implementation of
the polarization equation which is coupled to the governing wave-equation. To reflect the
physical behavior of a QCL in the model, the gain implementation has to include a zero at
its Z-transformed version at minus one. This zero point at the maximum frequency ensures
that the gain implementation is transparent at this spectral point. The gain implementa-
tion can be readily expanded to simulate a heterogeneous QCL. This was achieved by a
multiple implementation of the polarization equation shifted in frequency. The developed
model can be readily expanded from the simulation of a waveguide, including gain, group
velocity dispersion effects, and losses, to the simulation of a laser.

The bandwidth of a QCL can, in addition to the heterogeneous concept, be enlarged by
the utilization of nonlinear effects by means of pulses. However, it is well known that
the fast gain medium of a QCL hardens the generation of pulses. A powerful method to
overcome this limitation is a combined usage of a QCL emitting an FM-type OFC and a
chirp compressor. To enable the generation of transform-limited pulses, both components
need to match. That means the chirp induced by the QCL has to be fully reverted by
the compressor. In order to enable such an alignment of the components, techniques were
developed to tailor the chirp of an OFC generated with a QCL. Based on a reduced model
of the master equation for fast gain media, three parameters were identified, and their
influence was simulated. First, by changing the laser bias spatially at a device that is
subdivided into multiple sections, the instantaneous frequency exhibits kinks, altering its
overall shape. Second, a similar effect can be achieved by changing the cavity design.
Third, by applying an HR or LR coating to the facets, the extent of the influence of
the first two methods can be impacted. With a combined usage of these techniques, the
instantaneous frequency can be tailored nearly freely and enables the generation of short
pulses by means of a chirp compressor. In addition, the developed model can be used to
investigate the occurrence of harmonic combs, which can be triggered by reducing the bias
of certain areas of the laser.
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The numerical model developed in this work lies the foundation of broadband spectrome-
ters based on QCLs. By conducting further research with the heterogeneous model derived
and experiments with QCLs, potentially broadband optical frequency combs may be gen-
erated. If this is achieved, both developed broadening techniques can be combined, leading
to even more broadband sources, which are essential parts for the detection of multiple
hazardous elements. This broadband source, in combination with the integration proper-
ties of QCLs, enables pocket-size sensors. They can be potentially integrated into various
applications relevant to industry and medicine, impacting the world of tomorrow.
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APPENDIX A

SIMULATION PARAMETERS

Symbol Description Value
– loss coefficient 4cm≠1

DÊ group velocity dispersion coefficient -2500 fs2

mm

TOD third order dispersion coefficient 0 fs3

µm

FOD fourth order dispersion coefficient 0 fs4

nm
⁄0 central wavelength 8µm
n refractive index 3.3
D diffusion coefficient 600 cm2

s
µ dipole matrix element 1.8nm x e
ntot sheet density 6 · 1014cm≠2

Tlu upper-lower level transition lifetime 1ps
Tgu upper-ground level transition lifetime 6ps
Tgl lower-ground level transition lifetime 80fs
T2 dephasing time 75fs
Nf number of frequency points 1000
N number of spatial points 1024
Lp period length 58nm
Γ confinement factor 1 (chapter 3)
Γ confinement factor 0.6 (chapter 4)
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