
Technische

Universität Wien

Institute of

Telecommunications

DIPLOMA THESIS

Quantisation and source-coding for
graph signal processing

submitted at Technische Universität Wien,

Faculty of Electrical Engineering and Information Technology

for the purpose of obtaining the academic degree of a Dipl.-Ing. under supervision of

Univ.-Prof. Dr. Gerald Matz

at the

Institute of Telecommunications

by Philipp Reingruber

Student ID: 11709531

e-mail: philipp.reingruber@tuwien.ac.at

in June 2024

Contents

Acknowledgments V

Abstract VII

Zusammenfassung IX

1 Introduction 1

2 Source coding 3
2.1 Rate-distortion theory . 3
2.2 Transform coding . 5
2.3 Uniform quantiser . 5

3 Graph signal processing basics 9
3.1 Topology concepts . 9

3.1.1 Foundations of graph topology 9
3.1.2 Graph models . 10

3.2 Graph signal processing . 11
3.2.1 Graph Fourier transform . 12
3.2.2 Basic graph signal processing operations 13
3.2.3 Windowed graph Fourier transform 16
3.2.4 Laplacian polynomial filters 17

3.3 Bandlimited signal reconstruction . 18
3.4 Nonstationary processes . 19

3.4.1 Class I processes: filtering and modulation 20
3.4.2 Class II processes: banded frequency correlation matrix 22

4 Compression techniques 25
4.1 Vertex-domain compression . 26
4.2 Joint quantisation and sampling . 28

III

4.3 GFT-domain compression . 30
4.4 GGT-domain compression . 32

4.4.1 Motivation . 32
4.4.2 Choice of graph Gabor window and lattice 34
4.4.3 Quantisation and reconstruction 36

5 Numerical results 39
5.1 Class I processes . 40

5.1.1 Correlated signals . 40
5.1.1.1 Varying bandwidth 40
5.1.1.2 Varying frequency power decay 44

5.1.2 Weakly correlated signals . 45
5.2 Class II processes . 48

5.2.1 Bandwidth sweep . 49
5.2.2 Rate sweep . 52

6 Conclusion and outlook 57
6.1 Conclusion . 57
6.2 Outlook . 59

A Python scripts 61
A.1 Simulations . 61
A.2 Nonstationary processes . 65
A.3 Compression techniques . 67
A.4 Graph Gabor transform . 72
A.5 Auxiliary functions . 73

Bibliography 77

List of figures 79

Nomenclature 81

Statement of authorship 87

IV

Acknowledgements

I want to thank Gerald Matz for his judicious, inspiring and appreciative feedback
and supervision throughout the process of writing this thesis. In our extensive,
frequent meeting over the past months, I learned a lot.

Furthermore, I am glad of the valuable exchange with my friend and colleague
Dimitrios Kalodikis throughout our studies. From classical signal processing to
control engineering to graph signal processing, I always left our lively discussion
with a clearer view.

I am very grateful for the emotional and moral (but never moralising) support by my
partner Hannah, my family and my friends that gave me lightness even in tougher
periods.

Last but not least, thanks to the countless unsung heroes on online communities and
forums like StackExchange. Be it trivial or detailed aspects, general and highly spe-
cific statements, mathematical or programming-related problems; you make know-
ledge more accessible to all of us.

V

Abstract

Instead of modelling data on regular domains as in classical 1-D or 2-D signal pro-
cessing, the field of graph signal processing allows for data to be described and
processed on irregular domains such as in sensor networks or in social networks.
However, the question of source coding of graph signals on these domains has not
been sufficiently addressed in the literature.

This thesis introduces and discusses transform coding techniques for graph signals.
We focus on nonstationary processes designed by filtering and modulating white
noise or via banded frequency correlation matrices. The compression methods are
tested in simulations on perturbed random regular graphs, random geometric graphs,
and Barabási–Albert graphs. Our simulations show that quantisation quality is
related to correlation and sparsity of the transform coefficients.

A compression technique that was proposed in literature is found to suffer from nu-
merical instability and high computational complexity. Perfect decorrelation using
the Karhunen-Loève transform also has high computational cost. Thus, we propose
three compression techniques in three different domains. With the first method, we
sample in the vertex domain and recover the signal using bandlimited reconstruction
with the quantised samples. This method yields acceptable numerical results only
with significant oversampling in scenarios with low vertex-domain correlation.

As an alternative, we propose compression in the graph frequency domain. For
the nonstationary signal models considered, this method shows the most robust
results. Compression quality remains acceptable despite correlation since (especially
bandlimited) signals can be sparsely represented. Both techniques approach the
rate-distortion limit only in low-rate scenarios. In many scenarios, outliers increase
the mean distortion significantly.

Motivated by its counterpart in classical signal processing, we introduce the graph
Gabor transform (GGT), a sampled version of the windowed graph Fourier trans-
form (GFT). The sampling grid should be matched to the correlation in vertex and

VII

frequency domain to obtain less correlated transform coefficients. However, undesir-
able properties of the GFT impair the grid matching. Moreover, the windowed GFT
atoms generally do not form a tight frame and its translation and modulation oper-
ators do not have group structure. This limits the use cases of the GGT to high-rate
compression scenarios with weakly correlated processes on low-coherence graphs.

VIII

Zusammenfassung

Die Graphsignalverarbeitung erlaubt, Daten auf unregelmäßigen Domänen – wie et-
wa auf Sensor- oder sozialen Netzwerken – darzustellen, anders als in der klassischen
1-D- oder 2-D-Signalverarbeitung. Die Frage der Quellkodierung von Graphsignalen
auf diesen Domänen wurde jedoch bisher nicht ausreichend in der Literatur behan-
delt.

In der vorliegenden Arbeit werden Transformationskodierungsverfahren für Graph-
signale vorgestellt und diskutiert. Wir richten unser Augenmerk auf nichtstatio-
näre Prozesse, welche wir durch Filterung und Modulation sowie durch bandförmige
Frequenzkorrelationsmatrizen konstruieren. Die Kompressionsmethoden werden in
Simulationen auf perturbierten zufälligen regulären Graphen, zufälligen geometri-
schen Graphen und Barabási-Albert-Graphen getestet. Unsere Simulationen zeigen,
dass die Quantisierungsqualität von der Korrelation und dem Besetzungsgrad der
Transformationskoeffizienten abhängt.

Ein in der Literatur vorgeschlagenes Kompressionsverfahren stellt sich als numerisch
instabil und rechenaufwändig heraus. Perfekte Dekorrelation mittels der Karhunen-
Loève-Transformation ist ebenso mit großem Rechenaufwand verbunden. Daher stel-
len wir drei Kompressionsverfahren in drei unterschiedlichen Domänen vor. In der
ersten Methode tasten wir im Knotenbereich ab und stellen das Signal mittels band-
beschränkter Rekonstruktion unter Verwendung der quantisierten Abtastwerte wie-
der her. Diese Methode liefert nur mit erheblicher Überabtastung bei schwacher
Korrelation im Knotenbereich brauchbare Ergebnisse.

Alternativ schlagen wir eine Kompression im Graphfrequenzbereich vor, da dies
für die betrachteten nichtstationären Signalmodelle die robustesten Ergebnisse er-
zielt. Trotz Korrelation bleibt die Kompressionsqualität annehmbar, da (insbesonde-
re bandbeschränkte) Signale durch dünnbesetzte Koeffizientenvektoren dargestellt
werden können. Beide Verfahren kommen der Rate-Distortion-Grenze nur in nieder-
ratigen Szenarien nahe. In vielen Fällen erhöhen Ausreißer die mittlere Verzerrung

IX

deutlich.

Inspiriert von ihrem Pendant in der klassischen Signalverarbeitung führen wir die
Graph-Gabor-Transformation (GGT) ein, eine abgetastete Version der gefenster-
ten Graph-Fourier-Transformation (GFT). Das Abtastungsraster sollte an die Kor-
relation im Knoten- und Frequenzbereich angepasst sein, um schwächer korrelier-
te Transformationskoeffizienten zu erhalten. Unerwünschte Eigenschaften der GFT
beeinträchtigen jedoch die Rasteranpassung. Darüber hinaus bilden weder die ge-
fensterten GFT-Atome einen tight Frame, noch haben ihre Translations- und Mo-
dulationsoperatoren Gruppenstruktur. Dies beschränkt den Anwendungsbereich der
GGT auf hochratige Kompressionsszenarien mit schwach korrelierten Prozessen auf
Graphen mit niedriger Kohärenz.

X

1 Introduction

Until the advent of image processing, signal processing had only dealt with one-
dimensional signals. First in the continuous, then in the discrete domain. As
Video Killed the Radio Star, signal processing techniques were generalised for multi-
dimensional signals. In recent decades, the idea of further generalisations for signals
on irregular domains has become popular. Since we can represent these structures
as graphs, we refer to this field as graph signal processing [1].

A graph consists of nodes (also called vertices) to which a signal value is associated.
Two nodes each are connected by an edge. In regular domains, all signal values1

have the same number of incident edges, called degree: Depending on whether
it is periodic or not, a discrete-time signal can be formulated as a ring or path
graph, where one node is connected to its predecessor and successor. An image
would correspond to a graph whose nodes are arranged on a square lattice and
have edges to their left, right, upper and lower neighbour. In irregular domains,
the node degree varies. By generalising signal processing techniques for these cases,
information hidden in structures like sensor networks, social networks or protein
graphs (to name a few) can be uncovered.

Processing and storing digital signals happens at a finite resolution: The data values
are represented by a finite number of so-called reproducer values which themselves
are represented by a limited number of bits. The question arises which way of
representation yields less distortion at a certain bit rate. While this question has
been thoroughly discussed in classical signal processing [2], this is not the case for
graph signal processing. In this thesis, we propose, implement and compare several
strategies for graph signal quantisation:

• Vertex-domain sampling and quantisation;

• The method presented in [3];
1This statement does not consider potential border values.

1

Chapter 1 Introduction

• A modification of the method in [3], where the bit allocation is done more
efficiently;

• A method in the graph Fourier transform (GFT);

• A method in the the graph Gabor transform (GGT) domain.

Apart from a rate-distortion perspective, computational complexity is another per-
formance criterium that needs to be assessed. We will pay specific attention to
several potentially difficult aspects:

• Transform-based quantisation can be computationally expensive since the trans-
forms may not have favourable structure;

• low-rate quantisation may have potentially disastrous distortion effects;

• some of the methods require repeated computation of non-trivial matrices for
optimisation algorithms;

• graph transforms may not have the same desirable properties that are con-
venient and in conventional signal processing.

The goal is to obtain precise and fast compression algorithms that preserve a sub-
stantial amount of the high-dimensional data stored in graph structures for applic-
ations like communication networks, social networks or sensor networks.

The remaining thesis is structured as follows: Chapter 2 discusses fundamental con-
cepts of source coding that are not tailored to but also applicable to graph signals.
In Chapter 3, we present the basics of graph topology and graph signal processing
as well as nonstationary processes on graphs. Chapter 4 covers the above-mentioned
graph signal quantisation techniques that have then been tested in simulations that
we analyse in Chapter 5. Chapter 6 summarises the thesis. The Python implement-
ations of the compression techniques that we analysed can be found in Appendix A.

With this thesis, we contribute various quantisation techniques that are existing
graph signal transforms performed with quantised signals. Furthermore, we gener-
alise the Gabor transform as described in [4] for graphs using the windowed graph
Fourier transforms (WGFT) that was introduced by [5]. As mentioned above, we
propose another quantisation technique based on this Gabor transform. Finally, we
implemented the said methods in Python, as well as the method introduced by [3]
and compared all working techniques with the theoretical performance limit of the
rate-distortion function.

2

2 Source coding

This chapter deals with the fundamentals of source coding relevant for the remaining
chapters of this thesis. These concepts were neither specifically designed nor later
generalised for graphs. Instead, they are applicable to signals regardless of their
domains.

In Section 2.1, we discuss the theoretical performance boundaries of quantising
known as rate-distortion theory. Section 2.2 covers transform coding and thus an-
swers the question why we deal with sampling in different domains in Chapter 4.
Finally, Section 2.3 covers a very practical aspect of compression, namely the (uni-
form) quantiser that is used in all presented compression techniques.

2.1 Rate-distortion theory

Since signals are stored and processed digitally, there is a need to compute a finite-
precision representation of them. Regardless of the number of bits used for the
representation (called rate), a loss of information (called distortion) is generally
inevitable. Rate-distortion theory [2, Ch. 10] answers the question of the minimum
expected distortion given a certain rate. The following presentation of this topic is
based on [2].

The (code-specific) encoder fN : X N →
{
0, . . . , 2NR − 1

}
operating at rate R maps

a vector of the source alphabet X to an index. The decoder gN :
{
0, . . . , 2NR − 1

}
→

X̂ N maps the index to a vector with elements from the reproduction alphabet X̂ .
The squared-error distortion is the most popular distortion function d : X N ×
X̂ N → R between a source vector x = (x1, . . . , xN)T and its reproducer vector
x̂ = (x̂1, . . . , x̂N)T , i.e., its representation. It is given by

d (x, x̂) :=
N∑

n=1
(xn − x̂n)2 .

3

Chapter 2 Source coding

The average distortion D of a source code for a random vector x equals

D := E {d (x, gN (fN (x)))} ,

where E {·} denotes the expectation.

This way, the rate R is coupled to the distortion D for a specific code; we thus refer
to this pair as a rate-distortion pair (R, D). The rate-distortion function R (D) now
describes the operational limit of the smallest possible rate R, given a distortion D.
Shannon’s rate-distortion theorem states that

R (D) = R(I) (D) := min
fx̂|x(x̂|x):E{d(x,x̂)}≤D

I (x, x̂) ,

i.e., that the operational rate-distortion function is equal to the information rate-
distortion function. Here, fx̂|x (x̂ | x) denotes a joint conditional probability density
function that satisfies the stated constraint. The mutual information I (x, x̂) is the
reduction in uncertainty about x due to knowing x̂.

For Gaussian sources, we know an analytic expression for the rate-distortion function
R (D). More specifically, we need to take into account the fact that we will be
observing multiple independent Gaussian random variables x ∼ N (0, Diag (σ2))
at once on our graph (here, σ2 = (σ2

1, . . . , σ2
N)T). We will use this rate-distortion

function from literature as a reference for implemented scenarios [2, Theorem 10.3.3]:

R (D) =
N∑

n=1

1
2 log2

(
σ2

n

Dn

)
, (2.1)

Dn =

��Ξ, Ξ < σ2
n,

0, Ξ ≥ σ2
n,

D =
N∑

n=1
Dn.

Note, however, that this bound is formulated for vector quantisation. As explained
above, this form of quantisation uses reproducer vectors instead of scalars and thus
quantises more than one source sample at once. Complexity of such quantisers,
however, is a limiting factor for either rate or dimension (i.e., the number of source
samples represented by one quantised sample) [6, Sec. 12.1]. We thus focus on scalar
quantisation and transform coding, which we discuss in Sec. 2.2. As a certain signal-

4

2.2 Transform coding

to-noise ratio (SNR) advantage of vector quantisation in general remains, we may
not be able to achieve rate-distortion pairs close to the function in (2.1).

2.2 Transform coding

Exploiting signal correlation for source coding at higher SNR requires vector quant-
isation [6, Ch. 11]. A different approach is transform coding, where the signal is first
transformed into a domain where the samples are (approximately) uncorrelated. In
such a domain, the advantage of vector quantisation is diminished1 and thus, scalar
quantisation can be applied effectively [6, Sec. 8.5].

The Karhunen-Loève transform achieves such a decorrelation, i.e., an analysis rela-
tion y = VHx with a unitary N × N matrix V such that Cy = Diag

(
σ2

y1 , . . . , σ2
yN

)
.

This leads to the following expression for the covariance matrices,

Cx = VCyVH = VDiag
(
σ2

y1 , . . . , σ2
yN

)
VH .

Since V is unitary, this is equivalent to the eigendecomposition of Cx, i.e., V = U =
(u1, . . . , uN), where uk is the kth eigenvector of Cx and σ2

yk
= λk, where λk is the

kth eigenvalue of Cx [6, Sec. 8.6].

As eigendecompositions are computationally expensive [7, Sec. 5.3.1] and Cx may not
be known, in Chapter 4 we are interested in a transform that approximately achieves
such a decorrelation, characterised by very small off-diagonal elements (Cy)kl , k /= l.

2.3 Uniform quantiser

Once the signal is in a domain of our choice, we want to store only the reproducer
values, i.e., we want to quantise our signal. A quantiser that maps signal values
to W reproducer values2 is characterised by its reproducer values and its decision
boundaries qw [6, Sec. 5.1]. If the signal value x is in the interval (qw, qw+1), we
represent it as the reproducer value x̂w. Signal values x > qW +1 are stored as
the largest reproducer value x̂W , signal values x < q1 are stored as the smallest

1Even for uncorrelated sources, vector quantisation yields a gain in SNR due to flexible Voronoi
regions [6, Ch. 11].

2For a binary representation of W reproducer values, we need Q = log2 W bits.

5

Chapter 2 Source coding

q1 q2 q3 q4 q5 q6 q7 q8 q9

x

x1

x2

x3

x4

x5

x6

x7

x8

x

Figure 2.1: Mid-riser uniform quantiser behaviour for W = 8.

reproducer value x̂1. These unbounded quantiser intervals are referred to as the
overload region.

If all x̂w are the central points of their quantisation interval, we refer to the quantiser
as a mid-riser quantiser.

The most trivial yet common choice for a quantiser is the mid-riser uniform quant-
iser, as described in [6, Sec. 5.4]. We solely focus on this quantiser since it is com-
putationally efficient and applied in [3] as well. As depicted in Fig. 2.1, the W

reproducer values x̂w are equally spaced over a finite support [−γ, γ], i.e.,

x̂w = −γ + δ

2 + (w − 1) δ, w = 1, . . . , W,

where δ = 2γ
W

denotes the step size. A quantisation interval is bounded by quantiser
decision boundaries qw that read

qw = −γ + δ (w − 1) , w = 1, . . . , W + 1.

This results in the described mid-riser characteristic

x̂w = qw + qw+1

2 .

6

2.3 Uniform quantiser

The error |x̂w − x| that is introduced by the quantiser cannot exceed δ
2 outside the

overload region. In the high resolution case, the overall distortion for the uniform
quantiser is

DQ = δ2

12 . (2.2)

Note that the uniform quantiser is not tailored to the probability density function
(pdf) of the signal [6, Sec. 5.5]. This leads to a higher distortion at the advantage of
computational simplicity and less necessary statistical knowledge about the signal.
Only the support of the signal is taken into account. We follow [3] by setting
γ = 2

√
E {x2} to limit the overloading probability to 5%.

7

3 Graph signal processing basics

This chapter gives a concise overview of ideas, properties and notation of graph the-
ory that are applied in the remainder of this thesis. Section 3.1 covers fundamental
properties of graph structures and their respective mathematical formulations. In
Section 3.2, an introduction about signals on graphs based on [8, 5] is presented,
including adapted techniques known from classical signal processing. In Section 3.3,
we cover bandlimited reconstruction that allows perfect reconstruction for sampled,
bandlimited and unquantised signals. Finally, in Section 3.4, concepts for the gen-
eration of nonstationary processes on graphs are introduced.

3.1 Topology concepts

Subsection 3.1.1 discusses general structure-related properties of graphs while the
second part briefly describes the graph models used for the simulations in Chapter 5.

3.1.1 Foundations of graph topology

A graph is a pair of sets G = (V , E), where V = {1, . . . , N} is the set of nodes
and E is the set of edges. An edge e ∈ E connects two adjacent nodes m, n ∈ V
in a directed or undirected fashion. In the former case, G is considered a so-called
directed graph; in the latter case, G is referred to as an undirected graph. Thus, an
edge is an unordered pair of nodes, i.e., e = {m, n}.

Different weights can be associated with the edge set using a weight function w :
E → R, in case of unweighted graphs, the edge weight is always 1. If every node
n can be reached from any node m, we refer to this graph as a connected graph
[8, Section 1.1.1]. For simplicity, this thesis solely deals with undirected, connected
graphs.

9

Chapter 3 Graph signal processing basics

We can fully describe the topology of an unweighted graph by indicating in an
adjacency matrix A which nodes share an edge,

(A)mn =

��1, {m, n} ∈ E ,

0, {m, n} /∈ E .

Note that in case of an undirected graph, A is symmetric. For the topology of a
weighted graph, we introduce a weight matrix W by replacing the non-zero entries
of A by the respective edge weights, i.e.,

(W)mn =

��w (m, n) , {m, n} ∈ E ,

0, {m, n} /∈ E .

The (weighted) number of nodes connected to node m is referred to as degree
deg (m), where the connections (i.e., the edges) are weighted according to W, i.e.,

deg (m) :=
N∑

n=1
Wmn =

N∑
n=1

Wnm.

All degrees can be collectively denoted using the diagonal degree matrix [8, Sec-
tion 2.3.1]

D := Diag (deg (1) , . . . , deg (N)) .

By analogy with the Laplace operator, the Laplacian matrix L = D − W [8, Sec-
tion 2.3.2] describes information diffusion through a graph. Like its continuous name-
sake, it can be expressed as the graph divergence of the graph gradient. Furthermore,
its eigenvectors and eigenvalues play an essential role in the graph Fourier transform,
which will be discussed in Section 3.2.

3.1.2 Graph models

As there are numerous models for graph structures to be found in literature such as
[8, Section 1.5, Section B.2], the simulations conducted for this thesis were confined
to the distinct graph models covered below.

10

3.2 Graph signal processing

Figure 3.1: Example realisations of some graph models: (a) perturbed random
regular graph, (b) random geometric graph, (c) Barabási--Albert graph. The
node colour indicates the degree deg (m).

Perturbed random regular graphs. Random regular graphs feature unweighted
edges that are randomly drawn until each node is connected to exactly a fixed
number of other nodes [8, Section B.2.2]. In order to introduce a controllable amount
of irregularity, we perturb a certain percentage of edges by either excluding an
existing edge or adding a non-existing one. An example is depicted in Fig. 3.1a.

Random geometric graphs. For random geometric graphs, nodes are spatially
uniformly distributed. Using the Euclidean distance, each node is then connected to
a fixed number of nearest neighbours [8, Section B.2.3]. In case of a weighted graph,
w can be expressed in terms of a Gaussian kernel of the Euclidean distance. This is
the model typically used for sensor networks. An example is shown in Fig. 3.1b.

Barabási–Albert graphs. Unlike the two previously described graph models, this
preferential attachment graph model [8, Section 1.5] yields graphs with power-law
degree distributions, i.e., most nodes have a small degree while very few so-called
hubs have lots of connected neighbours. This is achieved by connecting new nodes
to existing nodes of a graph. The concept that the probability of a new node
being connected to an existing node depends on the existing node’s degree results in
social-network-like graph with the aforementioned degree distribution as illustrated
in Fig. 3.1c.

3.2 Graph signal processing

In order to extend signal processing to potentially irregular domains, a graph signal
x : V → R is defined that maps each node n of a graph G to a signal value xn. This

11

Chapter 3 Graph signal processing basics

thesis solely deals with scalar signal values, collected into a vector x = (x1, . . . , xN)T .

3.2.1 Graph Fourier transform

The basis for the graph Fourier transformation (GFT) is often defined in literature
as the eigenvectors uk of the Laplacian matrix1 L, with its (sorted) eigenvalues being
the graph frequencies 0 = λ1 ≤ ... ≤ λN [5]. As L is positive semi-definite, the uk

form an orthonormal basis and the λk are non-negative as indicated.

As mentioned in Section 3.1.1, many similarities to the Laplace operator Δ exist.
Most notably in the context of graph signal processing is that the complex sinusoids
e−jωt, which form the basis functions of the time-continuous Fourier transform, are
the eigenfunctions of Δ, while the eigenvalues are a function of the frequency ω [9],
whence

Δe−jωt = −ω2e−jωt.

Another intuition for the GFT uses the graph gradient, defined as

(∇Gx)mn :=
√

Wmn (xm − xn) .

Since a sparse gradient matrix indicates a piecewise constant and thus smooth signal,
we can use its Euclidean norm 1

2 ‖∇Gx‖2
2 as smoothness metric. As shown in [8,

eq. (3.8)], it holds that 1
2 ‖∇Gx‖2

2 = xT Lx; normalised to the signal power, we obtain

T2 (x) := xT Lx
xT x .

This expression is known as the Rayleigh quotient, which is minimised by x = uk if
we seek orthogonality to the other N − 1 basis vectors. As this results in

T2 (uk) = λk, k = 1, . . . , N

with 0 = λ1 ≤ . . . ≤ λN , we observe that the eigenvectors can be considered less
smooth at higher eigenvalues (thus called frequencies) λk. Note that the smallest
eigenvalue is λ1 = 0, since L1 = D1 − W1 = 0. By analogy with classical signal

1Another basis would be induced e.g. by the normalised graph Laplacian L̃ = D− 1
2 LD− 1

2 .

12

3.2 Graph signal processing

processing, u1 = 1 can be interpreted as the DC component at frequency λ1 = 0 [8,
Section 3.2.3].

We can define the GFT of a graph signal x as

r := UT x,

with U = (u1, . . . , uN) and the GFT coefficients r = (r1, . . . , rN)T . The GFT is a
linear transform with complexity O (N2), unless U has a facilitating structure. Since
U is an orthonormal matrix, Parseval’s relation also holds in the GFT domain, i.e.,

xT y = rTn,

where r and n are the GFT of x and y, respectively. In order to highlight struc-
tural differences between graph models, we can compare the maximal absolute value
of their GFT matrices U, i.e., µ = max

i,k
|(U)ik| ∈

[
1√
N

, 1
]
. This metric is called

coherence and indicates the level of localization of the Laplacian eigenvectors [5,
Section 3.2]. The lower bound occurs in the unweighted ring graph (i.e., a periodic
discrete-time signal), where the eigenvectors are globally oscillating vectors. Higher
coherences can be observed when the degree of some nodes strongly deviate from
the graphs average degree. In Table 3.1, we listed the range of µ of the graphs that
we described in Section 3.1.2 and simulated with N = 64 in Chapter 5. On a final

Graph model Regular Random geometric Barabási–Albert
Common µ range [0.45, 0.75] [0.7, 0.85] [0.8, 0.96]

Table 3.1: Range of the coherence µ of the graphs simulated in Chapter 5 with
N = 64.

note, the smoothness metric can be rewritten as T2 (x) = ∑
k λkr

2
k = rT Diag (λ) r

with λ = (λ1, . . . , λN)T [8, eq. (3.12)]. Thus, for T2 (x) to be small (or equivalently
the signal to be smooth), the signal should feature large GFT coefficients rk only at
small frequencies λk.

3.2.2 Basic graph signal processing operations

Using a window function that is shifted in time and frequency, windowed Fourier
transforms (WFT) can extract localised information from a signal. Shuman et al.

13

Chapter 3 Graph signal processing basics

generalised the WFT to graphs by defining both translation (i.e., a time shift) and
modulation (i.e., a frequency shift) in a graph setting. Thus, this section is based
on their work [5], where they also present a plethora of related properties.

Generalised convolution on graphs. In classical signal processing (i.e., one-dimensional
on a regular, continuous domain), convolution is expressed as

(x ∗ y) (t) :=
∫
R

x (τ) y (t − τ) dτ =
∫
R

r (jω) n (jω) ejωtdω,

where r (jω) = (Fx) (jω) and F denotes Fourier transform. The rightmost expres-
sion is suitable for a reformulation of convolution for graph signals using the GFT
definition of Section 3.2.1 that reads

x ∗ y :=
N∑

l=1
rlnlul = U (r ⃝ n) ,

where ⃝ is the Hadamard product (i.e., component-wise multiplication).

Generalised translation on graphs. A fundamental building block of signal pro-
cessing is translation. A time shift u of a function x (t) in classical signal processing
is defined by

(
T̃ux

)
(t) := x (t − u) .

Since there no intuitive direction in which a signal on a potentially multiply con-
nected graph should be shifted, we can make use of an alternative formulation of
translation in classical signal processing, using convolution:

(
T̃ux

)
(t) := x (t − u) = (x ∗ δu) =

∫
R

r (jω) (Fδu) (jω) ejωtdω =
∫
R

r (jω) e−jωuejωtdω

with δ (t − u) being the Dirac delta function shifted by u.

Using the previously introduced generalised convolution, we can generalize transla-
tion for graph signals as follows

14

3.2 Graph signal processing

Tix := (x ∗ δi)=
√

N
N∑

l=1
rl (u∗

l)i ul =
√

NU (Diag (ũi) r) (3.1)

=
√

NU (ũi ⃝ r) ,

where δi is the Kronecker delta

(δi)n =

��1, i = n

0, otherwise
,

and ũi is the ith row of U. Unlike T̃u, however, the generalised translation operator
is not an isometric operator, so it is not energy-preserving,

‖Tix‖2
2 /= ‖x‖2

2 .

Another inconvenience is that Ti does not have group structure [5, Section 4.3], i.e.,

TiTj /= Ti+j.

Generalised modulation on graphs. While the generalisations of convolution and
translation had to be reformulated in the frequency domain, we can directly use the
time-domain description of modulation in classical signal processing, i.e.,

(
M̃ξx

)
(t) := x (t) ejξt.

For graphs, modulation is generalised as

Mkx :=
√

NDiag (uk) x =
√

Nuk ⃝ x (3.2)

Like the generalised translation operator Ti, Mk is neither an isometric operator [5,
Section 5.1], nor does it have group structure, since

MkMlx = Nuk ⃝ ul ⃝ x /=
√

Nuk+l ⃝ x = Mk+lx.

15

Chapter 3 Graph signal processing basics

(a) WFT atom in the vertex domain.
Figure taken from [5, Fig. 11(b)]

λ

f () =Ce−5λ

(b) WFT atom in the frequency domain.
Figure taken from [5, Fig. 11(c)]

Figure 3.2: An exponential WFT atom g27,11, centred at vertex 27 and frequency
λ11 = 2.49 on the Minnesota road graph with N = 64, gl = Ce−τλl .

3.2.3 Windowed graph Fourier transform

The classical windowed Fourier atom

gτξ (t) :=
(
M̃ξT̃τ g

)
(t) = g (t − τ) ejξt (3.3)

allows us to perform the WFT in classical signal processing,

rg (τ, ξ) := <x, gτξ> .

Using the definitions introduced in (3.1) and (3.2), the definition of the windowed
Fourier atom was generalised in [5] as

gik := MkTig = NDiag (uk) (U (ũi ⃝ g)) . (3.4)

A depiction of a windowed graph Fourier transform (WGFT) atom on the Minnesota
road graph [10] is shown in Fig. 3.2. We can arrange the windowed Fourier atoms
in a matrix as follows

G = (g11, . . . , g1N , . . . , gN1, . . . , gNN) ∈ RN×N2 .

16

3.2 Graph signal processing

Figure 3.3: Block diagram of a linear filter.

This allows for a concise reformulation of the WFT to

rg11 := gT
11x.

We can express the GFT coefficients as a vector that reads

rg := GT x ∈ RN2 ,

with rg = (rg11, . . . , rg1N , . . . , rgN1, . . . , rgNN)T ∈ RN2 .

The reconstruction of the graph signal is then given by [5, Theorem 4]

x = Diag
(

1
N ‖T1g‖2

2
, . . . ,

1
N ‖TNg‖2

2

)
Grg. (3.5)

3.2.4 Laplacian polynomial filters

Since we denote graph signals as vectors, a linear filter (i.e., a linear system) acting
on graph signals amounts to a matrix-multiplication,

y = Hx.

Here, x is the input signal and y is the output signal. The system is depicted in
Fig. 3.3. There are numerous classes of graph filters with a certain structure (e.g.,
GFT multipliers). This thesis solely focuses on Laplacian polynomial filters as the
algorithms in [3] that are discussed later avail themselves of this concept. This
introduction is based on [11].

As indicated by its name, a Laplacian polynomial filter is a graph filter that is
described as a polynomial in L, i.e.,

H =
P∑

p=0
ηpLp = U

P∑
p=0

ηpDiag (λ)p UT = UDiag (h) UT , (3.6)

17

Chapter 3 Graph signal processing basics

where we used the eigendecomposition L = UDiag (λ) UT in the second step and
defined a filter transfer function as h = (h1, . . . , hN)T = ∑P

p=0 ηpλp. In the simplest
example of P = 1, η0 = 0, η1 = 1, we have H = L. Since

Lmn =

��������
d (n) , m = n

Wmn, {m, n} ∈ E
0, otherwise

,

the output signal at node n results in

yn =
N∑

m=1
Lmnxm = d (n) xn +

∑
m:{m,n}∈E

Wmnxm.

Hence, only the signal at node n and at its direct neighbours is needed to compute
yn. For a filter order P , only the P -hop neighbourhood of node n is considered
for the calculation of yn, which makes this filter structure efficient both in terms of
storage and computation time.

3.3 Bandlimited signal reconstruction

Perfect reconstruction of a graph signal x ∈ RN from a set of samples xS =
(xn1 , . . . , xnM

)T ∈ RM , S = {n1, . . . , nM} ⊂ V , M < N is impossible without
further knowledge about the signal structure: If x has N degrees of freedom, re-
covering it with M coefficients is not feasible. By making additional assumptions,
however, reconstruction becomes possible under certain conditions.

One way of limiting the degrees of freedom is to require a lowpass signal whose first
K GFT coefficients rK = (r1, . . . , rK)T are non-zero and rk = 0 for k > K. This case
is discussed in [8, Section 4.3.4]. In this case, the inverse graph Fourier transform
(IGFT) can be expressed by x = UKrK , with UK = (u1, . . . , uK)T being the first
K eigenvectors of L. The sampled signal is then given by

xS = UK,SrK = SSUKrK .

where SS is a row-selection matrix used for sampling. Consequently, rK (and thus
x using the IGFT) can be recovered using U#

K,S =
(
UT

K,SUK,S
)−1

UT
K,S , the pseu-

18

3.4 Nonstationary processes

doinverse of UK,S , as follows

rK = U#
K,SxS , (3.7)

x = UKU#
K,SxS ,

assuming that UK,S has full column rank K. This essentially requires a sufficiently
dense sampling set S (for which a necessary condition is M ≥ K).

3.4 Nonstationary processes

So far in this chapter, we have covered fundamentals of graph topology and graph
signal processing. In the final section, we characterise the graph signals that we
later quantise.

We can characterise stationary processes with their power spectral density (PSD)
pr. For general signals, we instead use the covariance matrix Cx = E

{
xxT

}
. In

order to describe the signal in the frequency domain, we perform a GFT on Cx

which (in the graph notation) reads

Cr = UT CxU.

In case of a stationary process, the PSD pr [12, eq. (9-133)] reappears in the fre-
quency covariance in the form of

Cr = Diag (pr) ,
Cx = UCrUT = UDiag (pr) UT .

As explained in Section 2.2, for source coding we are interested in a transform that
yields a covariance matrix with very small off-diagonal elements. We measure the
level of correlation in a domain with the correlation coefficient

ψxmxn = E {xmxn}√
E {x2

m} E {x2
n}

∈ [−1, 1] ,

by computing the percentage of |ψxmxn | , m /= n that are smaller than a certain

19

Chapter 3 Graph signal processing basics

Figure 3.4: Generation of nonstationary process by filtering white noise.

threshold θ > 0. Mathematically, we express this percentage as follows

b (x, θ) = 1
N (N − 1)

∑
m /=n

I {|ψxmxn | < θ} , (3.8)

with I {·} denoting the indicator function. Since Cr is a diagonal matrix for station-
ary processes, they are already best decorrelated in the frequency domain (b (r, θ) =
1, ∀θ > 0).

We now focus on (slowly) nonstationary processes, however, as the preferred trans-
form choice becomes less obvious. Unlike in classical signal processing [4], it is
difficult to measure the correlation width on graphs in the vertex domain, denoted
τ0. A quantity that captures the level of vertex-domain correlation is

krms =

┌||√∑
k crkkk2∑

k crkk

∈
1,

√
(N + 1) (2N + 1)

6

 . (3.9)

Large values for krms show similar power over a large bandwidth and therefore an
uncorrelated signal in the vertex domain. Conversely, small values for krms indicate
a steep decline in power over frequency and thus correlated vertex-domain signal
values. Of note is that a frequency bandwidth K < N already causes vertex-domain
correlation since (crK+1 K+1, . . . , crNN) = 0 prohibits krms to reach its maximum
level.

This section covers two methods that yield nonstationary processes and are thus
applied in the simulations in Chapter 5.

3.4.1 Class I processes: filtering and modulation

Our first approach for creating a nonstationary process is to filter white noise in the
respective domain as depicted in the block diagram in Fig. 3.4. White noise m with

20

3.4 Nonstationary processes

the covariance matrix Cm = IN is linearly transformed with a filter a in the GFT
domain, i.e.,

r̆ = Diag (a)m = a ⃝ m.

a introduces correlation in the vertex domain by weighting the frequencies. In the
extreme case of

(a)k =

��1, k = 1,

0, otherwise.

only the DC component of the signal remains, which we can also interpret as x̆ = Ur̆

being fully correlated signal. The counterpart a = 1, on the other hand, does not
weight the frequencies at all and thus leaves the signal in the vertex domain white,
i.e., uncorrelated2. We can quantify the level of vertex-domain correlation in x̆ using
krms as defined in (3.9) as it shows how sparse a is.

After an IGFT, we modulate the (potentially correlated) vertex-domain signal with
a signal vector m that destroys stationarity and thus induces correlation in the
frequency domain, i.e.,

x = m ⃝ x̆ = Diag (m) x̆ = Diag (m) UDiag (a)m = m ⃝ U (a ⃝ m) .

The covariance matrix of the output x consequently reads

Cx = Diag (m) UDiag (a)2 UT. .. .
Cx̆

Diag (m) .

As a byproduct of a high-frequency m, the nominal bandwidth K that was set using
a might be increased.

In case of m = 1 = (1, 1, . . .)T , the signal remains stationary and thus uncorrelated
in the frequency domain. Conversely, we expected high intensity throughout the
entire spectrum of m to lead to maximum frequency correlation.

This is due to the fact that in classical signal processing, a constant spectrum would

2W.l.o.g., we can choose any constant value a ∈ R+
∗ for both filters.

21

Chapter 3 Graph signal processing basics

yield an impulse in the time domain. More specifically, with

(m)i = (δ1)i =

��1, i = 1,

0, otherwise,

the discrete Fourier transform (DFT) of x reads

r = UHx = UHDiag (m) x̆ = UH

x̆1

0
...

%%% = ũ∗
1x̆1,

where U is the inverse discrete Fourier transform (IDFT) matrix and ũ∗
1 is the

complex conjugate of its first row. Then, the covariance matrix is fully correlated
in the frequency domain, i.e.,

Cr = cx̆11ũ∗
1 (ũ∗

1)T = cx̆111,

since the first row of the IDFT matrix is constant.

However, as shown in [13], the GFT for an ordinary 1D signal is instead equivalent
to the discrete cosine transform (DCT). The first row of the inverse discrete cosine
transform (IDCT) matrix is not constant and a constant spectrum does not yield a
Kronecker delta in the time domain.

Thus, we do not achieve full correlation in the frequency domain, even less so for
general graphs. We can still generate signals using different choices for krms and the
spectrum of m, but we cannot expect a simple relation between the latter and the
frequency-domain correlation as it is the case for the ordinary Fourier transform.

3.4.2 Class II processes: banded frequency correlation matrix

Starting from a diagonal frequency covariance matrix Cr of a stationary process, we
can introduce nonstationarity by symmetrically adding diagonals on either side of

22

3.4 Nonstationary processes

the main diagonal, i.e.,

Cr =

cr11 · · · cr1B 0
...

crB1
.

. cr(N−B)N
.

0 crN(N−B) · · · crNN

%%%%%%%%%%%%%
. (3.10)

If just one diagonal on either side has non-zero entries, the matrix is referred to
as tridiagonal matrix; a tridiagonal matrix indicates correlation between adjacent
frequencies. In case of B super- and subdiagonals, a frequency is correlated with
the neighbouring B frequencies.

In order to generate vertex-domain correlation, i.e., to lower krms, the diagonal
entries of Cr are varied. Since the power of real-life signals is mostly concentrated
at lower frequencies, we consider the entries along a diagonal to be monotonically
decreasing.

According to the correlation in the vertex domain, we need to carefully select the
parameters steering the correlation in the frequency domain. The first of these is B,
i.e., the number of super- and subdiagonals. In order to increasingly lower the level
of correlation to frequencies further away, we introduce another parameter ζ ∈ [0, 1]
that weights the super- and subdiagonals as follows

(
crb1, . . . , crN(N−b)

)
=

(
cr1b, . . . , cr(N−b)N

)
= ζb

(
cr12, . . . , cr(N−1−b)(N−b)

)
, b = 1, . . . , B.

Band matrices are not inherently positive semidefinite (i.e., zT Kz ≥ 0) which is a
prerequisite for Cr to be a valid covariance matrix. We can show, however, that
diagonally dominant matrices with real positive diagonal entries, i.e., K, where
Kii ≥ ∑

j /=i |Kij| , ∀i, are positive semidefinite,

zT Kz =
N∑

i=1
Kiiz

2
i +

∑
j /=i

Kijzjzi ≥
N∑

i=1

∑
j /=i

|Kij| z2
i − ∑

j /=i

|Kij| |zj| |zi|

=
∑
j>i

(
|Kij|

(
z2

i + z2
j − 2 |zj| |zi|

))
=

∑
j>i

(
|Kij| (|zj| − |zi|)2

)
≥ 0.

23

Chapter 3 Graph signal processing basics

Figure 3.5: Generation of nonstationary process with innovations system B.

We therefore create Cr by first generating super- and subdiagonals3 whose entries
we then summed up to get the main diagonal. We also added a number εi > 0 to
not get a critically diagonally dominant matrix, i.e.,

Kii =
∑
j /=i

|Kij| + εi, Cr = K.

Another way to create a process with banded frequency correlation matrix is to
first design an upper band matrix B as illustrated in Fig. 3.5, where only the main
diagonal and B superdiagonals have non-zero values4. If we then filter white noise in
the frequency domain m with the covariance matrix Cm = IN using the innovations
system B, we obtain the following covariance matrix

Cr = BINBT = BBT .

This matrix has the same band matrix structure as the matrix in (3.10) and is
positive semidefinite, since

zTBBT z =
(
BT z

)T (
BT z

)
=

‖‖‖BT z
‖‖‖2

2
≥ 0.

3We gave more weight to diagonals closer to the main diagonal to reduce correlation with more
distant frequencies.

4The respective diagonals entries are still considered to be monotonically decreasing.

24

4 Compression techniques

In this chapter we discuss various compression techniques for signals on graphs.
They vary in bit allocation and the sampling domain, i.e., the linear filter acting
on the vertex-domain signal prior to sampling and compression. While transforma-
tion into the frequency-domain includes the GFT matrix as defined in Section 3.2.1,
optimisation is necessary to find the sampling filter for the techniques described in
Section 4.2 and Section 4.41.

The goal of sampling in a certain domain is to approximately decorrelate the sig-
nal without applying the computationally expensive Karhunen-Loève transform (as
explained in Section 2.2). Another property that can serve as indicator for good
compressibility in the respective domain is the level of sparsity of the monotonically
decreasing diagonal entries cr0kk of the covariance matrix, i.e.,

keff =

┌||√∑
k cr0kkk2∑

k cr0kk

.

High values for keff show that many samples carry similar power and thus need
to be sampled. For signals with low keff values, it is sufficient to sample at fewer
positions (at a higher bit rate per sampled coefficient). Note that the Karhunen-
Loève transform (see Section 2.2) would yield the lowest keff. Similar to what we
outlined for T2 (x) and the GFT matrix in Section 3.2.1, the Rayleigh coefficient of
the covariance matrix is continuously maximised by the eigenvector corresponding
to the next-largest eigenvalue. As the next-largest eigenvalue is also the result of
the maximisation, we observe that using the eigenvalues as cr0kk (as done by the
Karhunen-Loève transform) concentrates the maximum possible amount of power
in the first coefficients.

While the procedures for sampling (and thus interpolation) differ, the quantisation
1The level of complexity of the two optimisation problems differs vastly, however, as explained

presently.

25

Chapter 4 Compression techniques

Decoder:

Encoder:

Figure 4.1: Block diagram of the source coding techniques (i.e., sampling S, quant-
isation Q, interpolation I) applied in this thesis.

for a given bit allocation is always done using a uniform quantiser as described in
Section 2.3. As mentioned, the bit allocation techniques differ, however, the bit
budget, denoted as R, remains the same for comparability. A schematic overview of
the compression system is shown in Fig. 4.1.

The techniques presented in this thesis comprise vertex-domain compression in
Section 4.1, joint quantisation and sampling as introduced by [3] in Section 4.2,
frequency-domain compression in Section 4.3, and compression using the Gabor
transform for graphs in Section 4.4.

4.1 Vertex-domain compression

A straightforward way of compression is to sample a signal (as shown in Fig. 4.2a)
at M positions in the vertex domain (see Fig. 4.2b), such that rank (UK,S) = K.
Since all nodes in perturbed random regular graphs and random geometric graphs
on average have a similar number of neighbours, for these graph models we chose a
uniform probability distribution for a node m to be included in the sampling set S,
i.e.,

P {m ∈ S} = M

N
,

N∑
m=1

P {m ∈ S} = M.

In a Barabási–Albert graph, hubs contain more valuable information due to their
high degree. Thus, we set the probability of m ∈ S proportional to deg (m). Since
an edge e = {m, n} increases both deg (m) and deg (n) by one, the sum of all degrees

26

4.1 Vertex-domain compression

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(a) Original signal (b) Subsampled signal

(c) Quantised subsampled signal (d) Recovered signal

Figure 4.2: Vertex-domain compression of a signal with K = N
5 . The node colour

indicates the signal value. Unsampled signal values are highlighted.

reads ∑
v∈S deg (v) = 2 |E|. We thus have

P {m ∈ S} = deg (m)
2 |E| .

If the assumption that x is bandlimited held true and rank (UK,S) = K, perfect
reconstruction in the absence of quantisation would be possible, as explained in
Section 3.3.

This is, however, no longer the case, when each sample gets distorted due to quant-
isation at a finite rate, as indicated in Fig. 4.2c, or with the process generation as
described in Section 3.4.1. In this naïve reference technique, each of the M samples
of xS is represented by the reproducer values of the uniform quantiser (see Section
2.3) at the sample locations, i.e., x̂S . This uses Q = Q, N

M
= R

M
bits since the no

bits are assigned to the N − M omitted signal values xm, , m, /∈ S. Using (3.7),

27

Chapter 4 Compression techniques

Algorithmus 4.1 Signal compression in the vertex domain.
For each signal x:

• Sampling S: Draw M vertex samples xS according to P {m ∈ S}, such that
rank (UK,S) = K.

• Quantisation Q: Uniform quantisation of xS with Q = R
M

bits per sample
according to Section 2.3.

• Interpolation I: Perform bandlimited reconstruction (cf. Section 3.3) with
quantised signal, i.e.,

x̂ = UKU#
K,S x̂S .

we reconstruct a distorted version of rK and consequently x (cf. Fig. 4.2d). The
compression procedure is summarised in Algorithm 4.1.

Note that this technique does not consider the correlation present in the vertex do-
main and therefore is expected to be suboptimal in case of non-white processes. We
implemented it nonetheless as a fast reference technique as it requires no transform
of the signal to a different domain.

4.2 Joint quantisation and sampling

In their paper [3], Li et al. propose a compression technique for stationary processes
that minimises the mean square error (MSE) of a reconstructed bandlimited signal
by alternately optimising the number of quantiser levels and a sampling filter. The
MSE to be minimised reads

E
{
‖UKrK − x̂‖2

}
In a claim to facilitate a distributed implementation, they also present a similarly
performing specialisation of their approach that uses only Laplacian polynomial
filters [3, Algorithm 4].

Instead of R bits, Z = 2R quantiser levels are incrementally allocated for a given
graph filter. Using a greedy algorithm, the next quantiser level is given to the sig-
nal value whose increased resolution maximally reduces the above-mentioned MSE.
This requires multiple matrix multiplications for every allocated level. Since the

28

4.2 Joint quantisation and sampling

Algorithmus 4.2 Signal compression as described in [3, Section IV].
For each graph G, Cx:

• Initialise h = 1T for H = I, i.e., vertex-domain sampling.

Repeat:

• Perform iterative greedy quantiser level allocation for a given H based on
highest reduction in E

{
‖UKrK − x̂‖2

}
.

• Optimise h for a given level allocation based on highest reduction in
E

{
‖UKrK − x̂‖2

}
.

• Update H = UDiag (h) UT .

Until convergence of H.

For each signal x:

• Sampling S: Filter the signal with computed filter,

rH = Hx.

• Quantisation Q: Uniform quantisation of rH with precomputed level allocation
according to Section 2.3.

• Interpolation I: Perform signal reconstruction using the optimal MSE minim-
izing linear recovery matrix Φ∗ as defined in [3, (13)], i.e.,

x̂ = UKΦ∗r̂H,S .

number of levels grows exponentially with R, individually allocating quantiser levels
is severely limited to a low number of bits and therefore to small graphs. This
motivated us to modify the algorithm by allocating quantiser bits instead of levels.

Given the allocated reproducer values, the Laplacian polynomial filter is then op-
timised, again with the goal of minimising the MSE. This is achieved by individually
optimising every sampled value of the filter transfer function h in (3.6). The com-
pression technique is summarised in Algorithm 4.2.

As explained in [3, Section IV-C], optimising every hnm requires several matrix multi-
plications as well as the computation of eigenvalues, eigenvectors and the square root
of a matrix. Each hnm has to be optimised multiple times until a convergence con-

29

Chapter 4 Compression techniques

dition is met. In addition, the concave-convex fractional nature of the cost function
requires a reformulation, which we discuss presently, that involves multiple itera-
tions of a convex optimisation itself. Consequently, the computational complexity
is expected to make this algorithm infeasible for graphs of reasonable size.

Another key issue with [3, Algorithm 4] was the lack of numerical stability in the
optimisation of the filter transfer function h. The optimisation problem for noiseless
observation reads [3, (29)]

min
h2

nm
≥0

M∑
m,=1

am,

h2
nm

+ (Λ0)m,m,
,

where am, = (A)2
m,nm

(Λ0)m,m, − ∑N
n=1,n /=nm

(A)2
m,n h2

n. The authors define A =
UT

0 B−1/2USDiag(diag (cr11, . . . , crKK , 0, . . .)). Λ0 is the diagonal eigenvalue matrix
of B−1/2CB−1/2, while the columns of UT

0 are the eigenvectors of B−1/2CB−1/2 (see
[3, Section IV-C] for the definitions of B, C).

The authors claim that this problem can be solved with a quadratic transform
technique introduced in [14]. This technique, however, requires the numerator am,

to be nonpositive2 and the denominator h2
nm

+ (Λ0)m,m, to be positive3. In our
preliminary simulations, this condition was not met, not even in the stationary
scenario that is listed in [3, Table I] and the provided source code. Thus, we neither
considered the original nor our modified version of this technique for the simulations
presented in Chapter 5.

4.3 GFT-domain compression

While vertex-domain samples are perfectly decorrelated for white processes, sampled
GFT coefficients r are decorrelated for stationary processes as these processes are
characterised by uncorrelated coefficients in the frequency domain (see Section 3.4).
Despite dealing with nonstationary processes, we implemented a transform coding
technique using GFT coefficients rK up to the nominal bandwidth K. We expect
that due to a sparse coefficient vector, (especially in bandlimited scenarios) this
technique could yield acceptable results, even in case of moderate correlation in the

2Note the sign change due to the reformulation as a maximisation problem in [14].
3Since the signs of numerator and denominator could be swapped, am, > 0 and h2

nm
+(Λ0)m,m, <

0 would be possible too

30

4.3 GFT-domain compression

1.0

0.5

0.0

0.5

1.0

(a) Original signal in vertex domain

0 1 2 3 4 5

k

1.5

1.0

0.5

0.0

0.5

1.0

1.5

k

(b) Original signal in frequency domain

0 1 2 3 4 5

k

1.5

1.0

0.5

0.0

0.5

1.0

1.5

k

(c) Quantised signal in frequency do-
main, reproducer levels in green

(d) Reconstructed signal in vertex do-
main

Figure 4.3: Frequency-domain compression

frequency domain.

In a first step, we perform a GFT of the vertex-domain covariance matrix, i.e.,

Cr = UT CxU,

which is needed to limit the overloading probability of the uniform quantiser, as
mentioned in Section 2.3. Similar to the greedy technique discussed in Section 4.2,
the bits available to the coefficients rK = (r1, . . . , rK)T are allocated incrementally:
Out of the already sampled frequencies and the next-highest unsampled frequency,
the next bit is given to the frequency that leads to the maximum decrease of the
expected quantiser distortion DQ. This procedure is continued until all bits are
allocated.

After uniformly quantising (see Section 2.3) using this bit allocation (see Fig. 4.3c),
an IGFT of the quantised GFT coefficients is performed. Thereby, we obtain the

31

Chapter 4 Compression techniques

Algorithmus 4.3 Signal compression using the GFT.
For each graph G, Cx:

• Compute frequency correlation matrix Cr = UT CxU.

• Perform iterative greedy bit allocation based on highest reduction in DQ.

For each signal x:

• Sampling S: Perform bandlimited GFT, i.e.,

rK = UT
Kx.

• Quantisation Q: Uniform quantisation of rK with precomputed bit allocation
according to Section 2.3.

• Interpolation I: Perform IGFT with quantised signal, i.e.,

x̂ = UT
K r̂K .

reconstructed vertex-domain signal (see Fig. 4.3d) that is then considered for the
distortion calculation. We summarised the procedure in Algorithm 4.3.

Compressing in the GFT domain is expected to offer better performance than vertex-
domain compression in case of many real-life processes since they resemble stationary
processes rather than white processes. This comes at the cost of calculating a
computationally expensive GFT.

4.4 GGT-domain compression

In case of vertex- and Fourier-domain sampling, we rely on the signal structure to
provide decorrelated data in either domain. In [3], the authors suggest an alternating
optimisation algorithm that is computationally expensive.

4.4.1 Motivation

Since decorrelating a signal using the Karhunen-Loève transform is statistically ef-
fective yet computationally inefficient as described in Section 2.2, we investigate a
different approach based on the Gabor transform. As described by [4] for the case

32

4.4 GGT-domain compression

of continuous time signals, the Gabor analysis consists of a sampled WFT where
the time period and frequency period are matched to the temporal and spectral
correlation of the signal.

The Gabor analysis in classical signal processing reads

rg (iT, kF) = <x, γiT,kF > =
∫

t
x (t) γ∗

iT,kF (t) dt,

where i is the time index, k is the frequency index and γiT,kF (t) is a analysis window,
translated by iT and modulated by kF , as described in (3.3).

The Gabor synthesis using a synthesis window g (t) is formulated as follows

x (t) =
∑
i,k

rg (i, k) giT,kF (t) .

[4] assumes an underspread process, which in ordinary signal processing can be
expressed as

τ0ν0 ≤ 1
4 ,

where τ0 and ν0 are the correlation widths in vertex and frequency domain, i.e., the
support of the expected ambiguity function

EA (τ, ν) =
∫

t
rx (t, t − τ) e−ωνtdt

that indicates correlation of different temporal and spectral components. Here,
rx (t, t,) := E {x (t) x∗ (t,)} denotes the autocorrelation function of x (t).

Furthermore, [4] assumes an overcritical Gabor sampling grid to achieve a complete
Gabor basis. This is mathematically expressed by

TF ≤ 1.

Finally, the author proposes a sampling grid ratio that is matched to the correlation
characteristics, that is given by

T

F
= τ0

ν0
.

33

Chapter 4 Compression techniques

Using the WGFT as introduced in Section 3.2.3, we propose to apply the concept
described in [4] to graph signals, referred to as the graph Gabor transform (GGT).
For the Gabor analysis, instead of considering all N2 WGFT coefficients rg, we pick
M < N samples rg,S by leaving out columns in the shifted window matrix Γ, i.e.,

rg,S = ΓT
S x =

(
γi1k1 , . . . , γim̆km̌

, . . . , γiJ kL

)T
x,

where m̌ and m̆ are the frequency and vertex shift indices at sample m. To simplify
notation, we denote the columns of ΓS as

rg,S = ΓT
S x = (γ̄1, . . . , γ̄M)T x (4.1)

instead, where γ̄m = γim̆km̌
and thus the index conversion reads

m = m̆ (L − 1) + m̌.

4.4.2 Choice of graph Gabor window and lattice

[4] assumed an underspread process and an overcritical Gabor sampling grid. The
former is satisfied with moderate choices for the nonstationarity parameters presen-
ted in Section 3.4. The latter is satisfied since M < N .

In order to achieve decorrelated coefficients that we can effectively quantise, we
intend to adhere to the matched sampling grid ratio [4, eq. (11)], i.e., we want to
select the sampling set according to the signal correlation in the vertex and frequency
domain. When the signal is generated according to the filtering and modulation
approach (cf. Section 3.4.1), we chose J ∈ [1, N] , the number of samples, directly
proportional to krms ∈

[
1,

√
(N+1)(2N+1)

6

]
. We then set the bandwidth of m to J , with

the intention of introducing weak frequency-domain correlation for signals strongly
correlated in the vertex domain (i.e., J ≈ 1) and vice versa (i.e., J ≈ N). Finally,
we set the number of regularly-spaced frequency samples to L = M

J
. However, as

explained in Section 3.4.1, it is hard to predict the correlation based on the presented
parameters, especially the bandwidth of m.

In case of the frequency domain band matrix of Section 3.4.2, only the B neigh-
bouring frequencies are correlated and thus approximately every Bth frequency is

34

4.4 GGT-domain compression

vertex translation i

fr
e
q
u
e
n
c
y
 t

ra
n
s
la

ti
o
n

k

m

gm

Unsampled positions m

Sampled positions m

Figure 4.4: Adaption of the decay parameter of an exponential WFT atom accord-
ing to the matched sampling grid ratio

included in the sampling set4. With L = M
B

frequency shifts taken into account, we
sample at J = B nodes to total up to LJ = M coefficients. If M

B
> N , we choose

L = N
B

and J = BM
N

instead.

The analysis window γ must be designed according to the signal statistics and thus
L and J . If the weakly correlated frequencies require a high number of sampled
frequency shifts, the effective support of γ in the vertex domain matters as an atom
needs to stretch over a large number of graph nodes. This is illustrated in Fig. 4.4:
With L > J , the analysis window γ features a large support in the vertex domain
such that vertex-translated versions cover all unsampled graph nodes. Since every
second frequency is sampled, the support in the frequency domain is narrow to limit
correlation of neighbouring GGT coefficients.

The choice of the parameter(s) of γ turned out to be delicate when considering
the goal to achieve a lower condition number κ (ΓS) and thus accuracy with fewer,
less correlated samples. For every graph realisation, L and J are chosen in the
manner of the matched sampling grid ratio. Then, we partition the graph into J

subgraphs using spectral clustering [8, Sec. 7.5.2] and sample at the centre nodes of
each subgraph. We define the centre node as the node that has a path to each other

4The exact choice of L, J is a matter of tuning according to Cx and Cr.

35

Chapter 4 Compression techniques

node in its subgraph with a minimum number of hops. We implemented this by
multiplying the clusters adjacency matrix Aj with itself until all off-diagonal entries
of a row are non-zero.

In order to spread out the L frequency sampling grid more evenly, we sampled at
equidistant graph frequency values λk instead of equidistant graph frequency indices
k, i.e.,

km̌ = arg min
k

│││││λk − (m̌ − 1) λN + λ1

L

│││││ , m̌ ∈ [1, L] .

We minimise κ (ΓS) for this set of sampled vertices and frequencies by varying the
parameters that define γ. Since we used an exponential window γ = UT e−τgλ with
only one parameter τg, we approached the optimisation problem with the golden
section search [15, Sec. 7.1]. Still, we choose L and J from the nonstationarity para-
meters (e.g., krms and the bandwidth of m) and not the actual level of correlation.
In Section 3.4.1, we explained that krms obtained from our vertex-correlation filter
a might be altered by the frequency-domain correlation filter m. Thus, there are
cases where our chosen τg still yields inaccurate results.

4.4.3 Quantisation and reconstruction

The bit allocation happens in a similar fashion as for the frequency-domain sampling
described in Section 4.3. We can, however, no longer expect that the next-highest
unsampled vertex-frequency shift is also the unsampled shift with the most power.
Thus, we must always consider all M graph Gabor coefficients5 when allocating
another bit according to maximal reduction in expected quantisation distortion DQ.
Since the GGT grid is spread over all nodes and graph frequencies, the incremental
bit allocation might spend bits on frequency shifts k > K in case K is just the
nominal but not the effective bandwidth as described in Section 3.4.1.

The WFT reconstruction stated in (3.5) no longer holds for the GGT. Thus, we
formulate an optimisation problem to find an almost dual Gabor synthesis window
g ∈ RN to perform Gabor synthesis with the same shift structure as in Gabor

5This aspect already hints higher values for keff and thus a less sparse sampling domain.

36

4.4 GGT-domain compression

analysis (cf. (4.1)), analogous to the method described in [4], i.e.,

GS = SSUT g

The problem formally reads

min
g

‖‖‖GSΓT
S − IN

‖‖‖2

F
,

where IN ∈ RN×N is the identity matrix and SS ∈ RN×M×N is a third-order tensor
that performs all vertex-frequency shifts. The entry (SS)nml is given by

(SS)nml = N (U)nkm̌
(U)im̆l (U)nl .

Although we are able to solve this convex problem numerically in a computationally
efficient manner, only sampling sets with either all vertices and/or all frequencies in
them (i.e., L = N and/or J = N) yielded results that led to a cost function close to
zero and thus a well-recovered signal. This might be due to the undesirable prop-
erties of the WGFT mentioned in Section 3.2.2. Thus, we stick to the unstructured
and less efficient method of reconstructing the original signal x with

(
ΓT

S
)#

, the
pseudoinverse of ΓT

S . The reconstruction then reads

x̂ =
(
ΓT

S
)#

r̂g,S ,

where
(
ΓT

S
)#

=
(
ΓSΓT

S
)−1

ΓS is the pseudoinverse of ΓT
S and r̂g,S are the quantised

GGT coefficients. This operation thus requires rank (ΓS) = N . We summarised the
GGT compression system in Algorithm 4.4.

37

Chapter 4 Compression techniques

Algorithmus 4.4 Signal compression using the GGT.
For each graph G, Cx:

• Pick M as a tradeoff between reconstruction robustness (M > N) and coeffi-
cient correlation (M < N).

• Pick L, J indirectly proportional to (estimated) correlation in vertex and fre-
quency domain, s.t. LJ = M .

• Set vertex sampling indices im̆ to J cluster centres of spectral clustering.

• Choose L evenly spread graph frequencies λkm̌
.

• Choose window γ and find its parameter(s) that minimise(s) κ (ΓS), e.g. using
the golden section search. Keep ΓS of optimal γ.

• Perform iterative greedy bit allocation based on highest reduction in DQ.

For each signal x:

• Sampling S: Perform Gabor analysis, i.e.,

rg,S = ΓT
S x.

• Quantisation Q: Uniform quantisation of rg,S with precomputed bit allocation
according to Section 2.3.

• Interpolation I: Perform Gabor synthesis with quantised signal, i.e.,

x̂ =
(
ΓT

S
)#

r̂g,S .

38

5 Numerical results

This chapter is dedicated to presenting and discussing simulation results that cover
the techniques presented above. Due to the large number of parameters available to
modify with regard to both process generation and compression techniques, we can
cover only a selected number of sweeps over single parameters. While we implemen-
ted the technique introduced by [3] (cf. Section 4.2), it did not lead to satisfactory
results due to issues with numerical stability and computational complexity. Thus,
it is not included in the simulations analysed in this chapter.

All simulations of graph signal compression techniques shown are for on graphs of
size N = 64. The outcomes for other graph sizes were observed to be qualitatively
similar. We simulated over 10 graph realisations and 5N = 320 signal realisations
per graph realisation. We set the number of samples for vertex-domain sampling to
Mx = min (1.1K, N) to facilitate rank (UK,Sx) = K. With Q bits per sample, this
results in a total bit budget of

R = MxQ = min (1.1KQ, NQ) , (5.1)

equivalent to a rate of Q, = R
N

bits per node. The same rate was used for the other
techniques.

Throughout this chapter, we use the same figure layout; thus we discuss it here in
more detail. The plots compare the simulation results of the compression techniques
of Chapter 4 in terms of rate Q, and distortion D, (see below). For reasons of clarity
and comprehensibility, each plot only shows results of one simulation run, i.e., a
sweep over just one parameter while the others were fixed.

Unlike the distortion D presented in (2.1), the distortion in the following plots was
normalised to the mean signal energy Ex, i.e., D, = D

Ex
. As D, > 1 means distortion

that exceeds the signal energy and thus indicates total destruction of the source
signal, the exact values of these results are not displayed. Instead, these outcomes

39

Chapter 5 Numerical results

are indicated by a marker to the right of the plot.

Quantisation quality depends on the signal correlation in the compression domain as
mentioned in Section 2.2; we therefore colour the markers according to the percent-
age of small correlation coefficients in the vertex and frequency domain, i.e., b

(
x, 1

5

)
(cf. (3.8)).This colour map indicating the correlation levels is shown on the plot as
well, with the simulation runs also marked there (in green). The more transparent
dots correspond to low-rate simulations1.

5.1 Class I processes

In the following examples, we created processes with the method described in Sec-
tion 3.4.1. Note that the effective bandwidth generally exceeds the nominal band-
width K due to the vertex-domain filter m. For each set of parameters, we simulated
the compression behaviour for all graph models described in Section 3.1.2 with their
coherence ranges listed in Table 3.1.

For regular and geometric graphs, we chose moderate a moderate average node
degree of 3. We perturbed 1

6 of the nodes of a regular graph. The GGT requires
Mrg > N samples; preliminary results showed that Mrg − N = 0.85N is a good
tradeoff between coefficient sparsity and precision for the unquantised GGT.

5.1.1 Correlated signals

5.1.1.1 Varying bandwidth

Fig. 5.1 displays the simulation results for the high-rate scenario summarised in
Table 5.12. All parameters were fixed except for the nominal bandwidth, which was
varied as K ∈

[
N
4 , N

]
. We used an exponential decay for a, i.e.,

(a)k =

��e− τa
2 (k−1) k = 1, . . . , K,

0 otherwise.

1This detailed legend intends to facilitate readability when correlation remains similar throughout
the simulation.

2Average degree for regular, geometric graphs.

40

5.1 Class I processes

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(a) Perturbed random regular graphs

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(b) Random geometric graphs

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(c) Barabási–Albert graphs

Figure 5.1: Rate-distortion comparison for varying K using the parameters from
Table 5.1 for the three different graph models. The rate-distortion function yields
D, ∈ [1.3 · 10−9, 3.7 · 10−8]. 41

Chapter 5 Numerical results

Parameter Value
graph size, N 64
nominal bandwidth, K [16, 64]
average node degree 3
perturbed regular edges 16.6 %
vertex-correlation filter rate, τa 0.125
GGT oversampling, Mrg − N 0.85N

bits per vertex sample, Q 11
Table 5.1: Parameters for scenario in Section 5.1.1.1.

Graph model b
(
rg,S , 1

5

)
Perturbed random regular 57 %
Random geometric 66 %
Barabási–Albert 53 %

Table 5.2: Percentage of small cross-correlation Gabor coefficients b
(
rg,S , 1

5

)
, av-

eraged over nominal bandwidth K. Parameters of this scenario are listed in
Table 5.1.

We chose τa such that cr̆NN = 1.28·10−7 for K = N ; we are far off the maximum value
of krms and thus expect noticeable vertex-domain correlation. This holds true as
indicated by the colour map. However, vertex correlation remained almost constant
throughout the bandwidth sweep, even though krms is limited to a greater extent for
smaller nominal bandwidths. This suggests that the contribution to vertex-domain
correlation is mainly caused by the rapid decay in power over the first (dominant)
frequencies.

There is noticeable but not extreme vertex-domain correlation, we set a high band-
width of m and a constant spectrum, with the intention of generating significant
frequency-domain correlation. The correlation plots in our simulations show that
this strategy works more effectively for graph models with lower coherence.

Since we chose J > L, the correlation of the Gabor coefficients is similar to vertex
correlation; as shown in Table 5.2. Our choice for L and J were based on the
frequency correlation we expected. Hence, the GGT sampling grid ratio is not
well-matched to the correlation characteristics as more frequency samples would
have been necessary for uncorrelated frequencies. This yields poor results for the
method introduced in Section 4.4 for random geometric graphs and even more so for
Barabási–Albert graphs.

42

5.1 Class I processes

3 4 5 6 7 8 9 10 11

Rate per node Q ,

4

6

8

10

C
o
e
ff

ic
ie

n
t

s
p
a
rs

it
y
 k

e
ff

Vertex

GFT

GGT

Perturbed random regular graphs

Random geometric graphs

Barabási Albert graphs

Figure 5.2: Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.1.

For perturbed random regular graphs (see Fig. 5.1a), the signals have significant
correlation in both the vertex domain and the frequency domain. The GGT com-
pression that samples incompletely in both domains, skipped correlated samples
in each domain and outperformed the other two compression techniques. Since
frequency correlation exceeded vertex correlation, sampling at more vertices than
frequencies proved correct for this graph model.

The uncorrelated frequencies that occurred for high-coherence graph models led
to acceptable results of GFT-domain compression (see Figure 5.1b and Figure 5.1c)
that was described in Section 4.3. Growing bandwidth (and thus rate R, see (5.1))
leads to a further decrease in frequency correlation, which causes improving GFT
compression results in turn.

Vertex-domain compression (see Section 4.1) appears to be unusable unless K =
N . Due to quantisation, the effective bandwidth of x̂S is higher than the nominal
bandwidth, which causes D, > 1 and thus, total destruction. The use of m can also
cause a higher effective bandwidth. Since vertex-domain compression also fails for
scenarios created with a frequency domain band matrix (see Section 5.2), we suspect
quantisation to mainly cause issues for this technique.

Especially for this high-rate scenario, all simulation results lie far off the rate-
distortion function in the area of D, ≈ 10−8, which marks the theoretical boundary
as explained in Section 2.1.

Figure 5.2 shows keff versus R for all sampling domains and graph models, indicated
by different colours and line styles, respectively. Since the power remains evenly

43

Chapter 5 Numerical results

Parameter Value
graph size, N 64
nominal bandwidth, K

[
1 − 2

τa
ln c

]
average node degree 3
perturbed regular edges 16.6 %
vertex-correlation filter rate, τa [0.136, 0.535]
GGT oversampling, Mrg − N 0.85N

bits per vertex sample, Q 11
Table 5.3: Parameters for scenario in Section 5.1.1.2.

spread over all nodes, keff for vertex-domain sampling does not change over band-
width.

In the GFT domain, new frequencies with non-zero power are taken into consider-
ation for sampling. Thus, keff grows over K. The quantity remains smaller than
for other domains, however, which explains why GFT-domain compression works
despite being the most correlated domain in this scenario. Conversely, the Gabor
samples show the lowest correlation, however, they lack the sparsity of the GFT
domain.

5.1.1.2 Varying frequency power decay

Another approach to simulate scenarios with different levels of correlation is a sweep
over τa. Once (a)K = c < 1, in our case c = 1

44 , we set the remaining values of a to
zero for a bandlimited setting3 with

K =
[
1 − 2

τa
ln c

]
.

High values for τa correspond to high correlation (also in the frequency domain, see
colour map of Fig. 5.3) but low bit budget due to a low bandwidth (cf. (5.1)). Low
values for τa indicate more moderate levels of correlation and a higher bit budget.
Of note is that correlation in both domains grow at a similar pace, despite only
varying the vertex-domain correlation parameter.

While vertex-domain compression remains unusable due to insufficient oversampling,
GFT compression benefits both from the increasing rate and the decreasing frequency-

3Note, however, that m can still increase the effective bandwidth.

44

5.1 Class I processes

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

Figure 5.3: Rate-distortion comparison for varying τa using the parameters from
Table 5.3 on random geometric graphs. The rate-distortion function yields D, ∈
[1.45 · 10−9, 1.87 · 10−9].

domain correlation. However, even in low-rate scenarios, the direct comparison with
Fig. 5.1b shows that a τa that is four times higher yields better GFT compression
results. A reason for this finding could lie in faster decreasing frequency powers.
Thus, it is sufficient to represent the signal with less GFT coefficients at a higher
rate.

The GGT features the most uncorrelated coefficients throughout the sweep. It has
2 % fewer large correlation coefficients than the vertex domain on average, but suffers
from less sparse coefficients. Due to a larger τa, we set L > J , i.e., we sampled at
more frequency than vertex shifts. As the correlation in the frequency domain is
unexpectedly high too, dense sampling in this domain leads to insufficient results.

However, as we chose a low bandwidth for m due to a large τa, we obtain a more
predictable behaviour of the vertex-domain correlation (cf. Section 3.4.1). This
leads to suboptimal but not destructive results in the GGT, compared to the results
depicted in Fig. 5.1b.

5.1.2 Weakly correlated signals

Table 5.4 lists the parameters for a less correlated but still high-rate scenario. The
goal was to decrease vertex-domain correlation with a small τa

4, while increasing
4This leads to higher values for krms.

45

Chapter 5 Numerical results

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(a) Perturbed random regular graphs

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(b) Random geometric graphs

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(c) Barabási–Albert graphs

Figure 5.4: Rate-distortion comparison for varying K using the parameters from
Table 5.4 for the three different graph models. The rate-distortion function yields
D, ∈ [1.2 · 10−8, 6.7 · 10−8].46

5.1 Class I processes

Parameter Value
graph size, N 64
nominal bandwidth, K [16, 64]
average node degree 3
perturbed regular edges 16.6 %
vertex-correlation filter rate, τa 0.035
GGT oversampling, Mrg − N 0.85N

bits per vertex sample, Q 11
Table 5.4: Parameters for scenario in Section 5.1.2.

Graph model b
(
rg,S , 1

5

)
Perturbed random regular 82 %
Random geometric 87 %
Barabási–Albert 76 %

Table 5.5: Percentage of small cross-correlation Gabor coefficients b
(
rg,S , 1

5

)
, av-

eraged over nominal bandwidth K. Parameters of this scenario are listed in
Table 5.4.

frequency-domain correlation with a high bandwidth of m. As indicated by the
colour map in Fig. 5.4, correlation in both domains is reduced instead, compared
to the simulation described in Section 5.1.1. The level of correlation in the vertex
domain remains lower than in the frequency domain, however. Thus we chose J >

L again, which yielded samples with correlation similarly low as vertex-domain
samples, as shown in Table 5.5.

Note that with a smaller τa, higher frequencies now contribute noticeably to krms

and thus to a reduction in vertex-domain correlation. The colour map in Fig. 5.4a
shows best that the runs at higher bandwidths, depicted as the less transparent
green dots, are less correlated.

Unlike in Section 5.1.1, GGT compression performs the best in mid- to high-bandwidth
scenarios for all three graph models. In scenarios with low nominal bandwidth, only
perturbed random regular graphs, which have the lowest coherence out of the graph
models used, benefit from GGT compression. This coincides with the region where
the GGT coefficients are decreasingly sparse, as shown in Fig. 5.5. Once a drop in
keff happens (for reasons unclear to the author), the GGT compression shows better
performance than the other two techniques for all graph models.

Since generating frequency-domain correlation with m works better for low-coherence

47

Chapter 5 Numerical results

3 4 5 6 7 8 9 10 11

Rate per node Q ,

4

6

8

10

12

C
o
e
ff

ic
ie

n
t

s
p
a
rs

it
y
 k

e
ff

Vertex

GFT

GGT

Perturbed random regular graphs

Random geometric graphs

Barabási Albert graphs

Figure 5.5: Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.4.

graphs, high-coherence graphs gain less advantage of GGT compression over GFT
compression again (see Fig. 5.4c). As frequency-domain samples become less cor-
related with increasing bandwidth, the performance of GFT compression improves.
For K = N , when both vertex- and GFT-domain compression cover the entire
bandwidth, they slightly outperform the GGT-based approach.

Like in the simulations of Section 5.1.1, vertex-domain correlation only works for
K = N , as the signal is not truly bandlimited. The rate-distortion function shows
that the theoretical limits of vector quantisations is orders of magnitude away from
our results at D, ≈ 10−8.

Despite this weakly correlated, high-rate scenario, the simulation results in Fig. 5.6
show that the GGT compression is susceptible to mismatched L, J . Compared to
the simulations of Fig. 5.4b, L was increased while J was decreased to still obtain
LJ = M ; the remaining parameters remained unchanged. In this setting, GGT
compression only works in selected examples and performs worse than the other
presented techniques.

5.2 Class II processes

We realised the processes for the following simulation with the method described in
Section 3.4.2, where an upper band matrix B is used to create a band GFT covari-
ance matrix Cr. With this technique, the effective bandwidth of the unquantised
signal equals the nominal bandwidth K.

48

5.2 Class II processes

10 2 10 1 100

Normalised distortion D ,

3

4

5

6

7

8

9

10

11

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

Figure 5.6: Rate per node Q, versus normalised distortion D, for mismatched GGT
sampling grid ratio on random geometric graphs. The rate-distortion function
yields D, ∈ [1.2 · 10−8, 5.6 · 10−8].

5.2.1 Bandwidth sweep

In this section, we analyse simulation results for processes with increasing bandwidth
K. We checked the correlation in both frequency and vertex domain as a function
of K and the number of super- and subdiagonals B with the other parameters listed
in Table 5.6. In order to get a broad sweep over correlation, we set B = 3.

In this scenario, frequency-domain correlation is decreasing faster than vertex-correlation
with increasing bandwidth K, as shown by the colour map of Fig. 5.7; perhaps be-

Parameter Value
graph size, N 64
nominal bandwidth, K [6, 64]
average node degree 3
perturbed regular edges 16.6 %
process generation method upper band matrix B

vertex-correlation filter rate, τa 0
Number of subdiagonals B 3
Subdiagonal factor ζ 1
GGT oversampling, Mrg − N 0.85N

bits per vertex sample, Q 11
Table 5.6: Parameters for scenario in Section 5.2.1.

49

Chapter 5 Numerical results

10 2 10 1 100

Normalised distortion D ,

2

4

6

8

10

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(a) Perturbed random regular graphs

10 2 10 1 100

Normalised distortion D ,

2

4

6

8

10

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(b) Random geometric graphs

10 2 10 1 100

Normalised distortion D ,

2

4

6

8

10

R
a
te

 p
e
r

n
o
d
e
 Q

,

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(c) Barabási–Albert graphs

Figure 5.7: Rate-distortion comparison for varying K using the parameters from
Table 5.6 for the three different graph models. The rate-distortion function yields
D, ∈ [1.6 · 10−8, 1.1 · 10−7].50

5.2 Class II processes

cause the super- and subdiagonals are also clipped for a bandlimited process. Sur-
prisingly, even at K = N , we were unable to obtain fully uncorrelated vertex-domain
samples with B /= 0, despite krms = krms,max =

√
(N+1)(2N+1)

6 .

In a first run, we used UK,S for vertex-domain compression as described in Sec-
tion 4.1. Since this led to total destruction (i.e., D, > 1 as described in Section 5.1)
for this technique, we went for extreme instead of moderate oversampling for the re-
mainder of this section: We dismissed the bandlimited approach and used UN,S = U
despite K < N for the remainder of this section5. Thus, every signal value is
sampled, albeit at a lower rate since the bit budget remains identical (cf. (5.1)).

This fixes vertex-domain compression as shown in Fig. 5.7, at the cost of now hav-
ing to sample at every node. For K > N

2 , the performance of the vertex-domain
approach approximately matches the GFT approach, which yields the best results.

The normalised distortion of the GFT compression remains almost constant through-
out the bandwidth sweep and graph model variation at D,

GFT ≈ 10−2. As the ef-
fective bandwidth equals the nominal bandwidth here, GFT compression always
encompasses the full spectrum. Due to τa = 0, the process yields ideal lowpass
signals. With Q extra bits that the GFT compression can allocate per additional
frequency6, this frequency (that carries the same power) is sampled at the same bit
rate. Like in other scenarios, we observed many runs where the distortion for both
vertex and GFT compression was orders of magnitude lower than the mean that is
depicted in Fig. 5.7. However, a significant number of outliers that likely suffer from
an ill-adjusted quantiser support lowered the mean performance.

Similar to Section 5.1.1, the GGT compression only yields meaningful results for
perturbed random regular graphs in Fig. 5.7a, i.e., in a low-coherence setting. The
GGT-based approach, however, never outperforms the other techniques here, not
even in the case of high bandwidths (and thus high bit budgets). Fig. 5.8 shows
that, while the vertex and GFT coefficients become equally sparse in this region,
keff is more than 50 % higher for GGT coefficients.

51

Chapter 5 Numerical results

Graph model b
(
rg,S , 1

5

)
Perturbed random regular 53 %
Random geometric 55 %
Barabási–Albert 42 %

Table 5.7: Percentage of small cross-correlation Gabor coefficients b
(
rg,S , 1

5

)
, av-

eraged over nominal bandwidth K. Parameters of this scenario are listed in
Table 5.6.

2 4 6 8 10

Rate per node Q ,

2

4

6

8

10

C
o
e
ff

ic
ie

n
t

s
p
a
rs

it
y
 k

e
ff

Vertex

GFT

GGT

Perturbed random regular graphs

Random geometric graphs

Barabási Albert graphs

Figure 5.8: Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.6.

5.2.2 Rate sweep

For the simulations depicted in Fig. 5.9, we kept the bandwidth constant at K = N

and chose different sweeping parameter, namely Q, the number of bits per vertex
sample. We limit our discussion to random geometric graphs. Since the process
parameters stay constant, so does the correlation in the vertex and frequency do-
main, which is equal to the correlation at K = N in the simulation of Section 5.2.1.
The GGT correlation can be found in Table 5.9.

We conducted the simulation three times with different strategies for calculating
L, J , i.e., the number of sampled frequencies and nodes for the GGT. In the first
scenario, we set L, = N

B
while J , grows logarithmically with krms. The second

scenario corresponds to linear decay of L, over B and linear growth of J , over krms.
In the third scenario, we chose L, and J , as their means of the first two scenarios.

5Note that substantial, but not extreme oversampling, e.g. Mx = min (2K, N) yielded promising
preliminary results too.

6This disregards the non-linear growth of R for K < N , see 5.1.

52

5.2 Class II processes

10 8 10 6 10 4 10 2 100

Normalised distortion D ,

2

4

6

8

10

12

14
R

a
te

 p
e
r

n
o
d
e
 Q

,

R(D)

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(a) Nonlinear L, J

10 8 10 6 10 4 10 2 100

Normalised distortion D ,

2

4

6

8

10

12

14

R
a
te

 p
e
r

n
o
d
e
 Q

,

R(D)

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(b) Linear L, J

10 8 10 6 10 4 10 2 100

Normalised distortion D ,

2

4

6

8

10

12

14

R
a
te

 p
e
r

n
o
d
e
 Q

,

R(D)

vertex

GFT

Gabor

0.0 0.5 1.0

vertex decorrelation

b(x, 1
5
)

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
c
y
 d

e
c
o
rr

e
la

ti
o
n

b
(

,
1 5
)

(c) Tradeoff

Figure 5.9: Rate-distortion comparison for varying K using the parameters from
Table 5.8.

53

Chapter 5 Numerical results

Parameter Value
graph size, N 64
nominal bandwidth, K 64
graph model Random geometric
average node degree 3
perturbed regular edges 16.6 %
process generation method upper band matrix B

vertex-correlation filter rate, τa 0
Number of subdiagonals B 4
Subdiagonal factor ζ 1
GGT oversampling, Mrg − N 0.85N

bits per vertex sample, Q [1, 16]
Table 5.8: Parameters for scenario in Section 5.2.2.

L, J b
(
rg,S , 1

5

)
Nonlinear 66 %
Linear 71 %
Tradeoff 70 %

Table 5.9: Percentage of small cross-correlation Gabor coefficients b
(
rg,S , 1

5

)
, av-

eraged over nominal bandwidth K. Parameters of this scenario are listed in
Table 5.8.

Since L,J , /= Mrg , we correct the values to

L =

√
N

L,

J ,

 , J =

√
N

J ,

L,

 ,

which results in LJ < N samples. As shown in the boxplot in Fig. 5.10, we observe
the lowest κ (ΓS), i.e., the condition number of the GGT sampling matrix for the
linear choice of L and J . The other simulation parameters remained similar to
previous simulations (see Table 5.8).

The distortion induced by vertex and GFT compression is almost identical, as shown
in Fig. 5.9. This is in accordance with similar levels of correlation and coefficient
sparsity in the two domains. Unlike in the high-rate scenarios described so far, this
scenario shows that coming close to the theoretical boundary of the rate-distortion
function is possible, at least for vertex- and GFT-domain compression in low-rate
settings. Of note is that both techniques converge soon towards D, ≈ 10−2, with no

54

5.2 Class II processes

Nonlinear L, J Linear L, J Tradeoff

102

103

104

105

106

(
)

Figure 5.10: Boxplot of κ (ΓS), the condition number of the GGT sampling matrix,
for the different choices of L and J with parameters in Table 5.8.

2 4 6 8 10 12 14

Rate per node Q ,

5

6

7

8

9

10

C
o
e
ff

ic
ie

n
t

s
p
a
rs

it
y
 k

e
ff

Vertex

GFT

GGT

Nonlinear L, J

Linear L, J

Tradeoff

Figure 5.11: Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.8.

need in spending R > 400 bit in this scenario. Again, outliers mainly contribute to
this limit since the majority of distortion results is substantially lower than D, ≈
10−2. For higher rates, better adjustment of the quantiser to the process would be
needed.

Only at this threshold, the GGT compression (inconsistently) yields results D, < 1.
Again, the sampled GGT coefficients are considerably less sparse then those of the
other two techniques (see Fig. 5.11). At least in this setting with ζ = ζmax, no
diagonal dominance and τa = 0, the choice of L, J cannot improve the GGT results.

55

6 Conclusion and outlook

6.1 Conclusion

In this thesis, we presented, analysed and tested various compression techniques for
signals on graphs. Since quantisation quality depends on the correlation of samples,
we applied various graph transforms to achieve approximately uncorrelated samples
in the respective domain; however without the computationally expensive Karhunen-
Loève transform. In our simulations, we measured the distortion caused by uniform
quantisation, as well as the correlation and sparsity of the transform coefficients in
the respective domain. We tested the compression techniques on perturbed random
regular graphs, random geometric graphs and Barabási–Albert graphs. Since sta-
tionary processes are already perfectly uncorrelated in the frequency domain, we
designed nonstationary processes by filtering and modulating white noise as well as
with banded frequency correlation matrices.

We investigated a graph signal compression technique proposed in literature that
intends to alternately optimise the number of quantiser levels and a sampling filter.
We found that the method suffers from numerical instability and high computational
complexity. Hence, we did not include it in our presented simulations.

As a first, straightforward method, we sampled the graph signal in the vertex domain
and quantised each sample at an identical rate. Recovering the original signal then
builds on the idea of bandlimited signal reconstruction. However, numerical results
show that it is not sufficient to set the number of vertex-domain samples only slightly
higher than the bandwidth; this causes total destruction of the signal when the signal
is reconstructed after quantisation. Instead, significant oversampling is necessary to
yield meaningful and competitive results, given a process with low vertex-domain
correlation.

Our second approach was to perform source coding in the graph frequency domain.
We allocated our bit budget incrementally to the graph Fourier coefficients accord-

57

Chapter 6 Conclusion and outlook

ing to maximal reduction in expected quantisation distortion. Due to sparse GFT
coefficients, naturally more so for bandlimited processes, the GFT-domain compres-
sion compensates potentially high levels of correlation to robustly yield acceptable
quantisation results for the signal models considered.

Of note is that compression in either domain approaches the theoretical boundary
of the rate-distortion function only in scenarios with a low number of bits per graph
node. In many simulated scenarios, however, a significant amount of outliers lead
to a mean distortion that is orders of magnitude higher than the distortion in the
majority of runs. These outliers are caused by imperfect quantisation that require
a more precise adjustment of the quantiser, its support in particular.

For significantly nonstationary processes, we proposed the GGT, motivated by the
Gabor transform in classical signal processing. By sampling a WFT according to the
(moderate) correlation width in time and frequency, the classical Gabor transform
represents the signal with approximately uncorrelated samples while being more
adjustable regarding the level of correlation in either domain.

For a generalisation of the Gabor transform on graphs, we used the WGFT that was
proposed in literature and matched the sampling grid to the expected correlation
in vertex domain and frequency domain. However, the WGFT does not have group
structure and is not energy preserving. Thus, it is impossible to find a shifted window
matrix for both Gabor analysis and Gabor synthesis. Instead, for the latter, we had
to opt for the computationally expensive pseudoinverse of the Gabor analysis shifted
window matrix.

Apart from these undesirable properties of the WGFT with regard to the GGT, the
GFT did not conserve certain properties of the DFT that facilitate the generation
of nonstationary processes. This resulted in poorly predicted correlation levels, in a
delicate choice of the Gabor sampling grid and the window for the WGFT and thus
in a rather fragile GGT transform.

We used an incremental bit allocation for the GGT, similar to the bit allocation for
GFT-domain compression. In ‘mild’ compression scenarios, i.e., weakly correlated
processes on low-coherence graphs and at high bit rates, the GGT yielded the best
results when tuned accordingly. Due to a lack of coefficient sparsity, sensitive tuning
and undesirable WGFT properties, the GGT lacks performance in many scenarios,
especially for low bit budgets.

58

6.2 Outlook

6.2 Outlook

Apart from the above-mentioned quantiser adjustments, future work could include
different generation methods for nonstationary processes that control correlation
in vertex domain and frequency domain in a more reliable fashion by considering
properties of the GFT. These novel processes could then be used for a broad range
of simulations of the introduced compression techniques.

Furthermore, the performance of the GGT could perhaps be improved by a more
accurately matched GGT sampling grid. Selecting the grid based on the actual
correlation (instead of process parameters) and based on a joint optimisation of the
sampling grid and the WGFT window both appear promising.

Based on our findings, a more fundamental approach would be to formulate a new
transform that features more advantageous properties than the above-described. All
compression techniques require the GFT matrix of the entire graph, which is compu-
tationally expensive since the basis vectors do not have finite support. Furthermore,
as the WGFT frames are not tight [5, Section 6.7.2], a novel transform that features
such frames could lead to more precise results at a lower computational complexity.

59

A Python scripts

The following scripts were created by the author. Note that the parts where figures
are created are not included. Instead, this appendix focuses on data processing and
the calculations required for the analyses performed in this thesis. The software
products required to run these Python scripts are listed in Tab. A.1. Note that
many fundamental graph signal processing techniques presented in Section 3, as
well as methods to plot signals on graphs have been implemented in the Python
package PyGSP. Necessary fixes of existing implementations are covered in our fork
of this package that can be found under https://github.com/SP-TUW/pygsp. On
the following pages, we listed Python scripts that we wrote for methods not covered
in PyGSP.

Product Version
Python 3.10
NumPy 1.23.5
SciPy 1.13.0

Scikit-learn 1.1.3
PyGSP own fork
CVXPY 1.4.1

Table A.1: Required modules/packages for the Python scripts of this appendix

A.1 Simulations

Listing A.1: Main script for simulations in Chapter 5
1 import numpy as np
2 from pygsp import graphs
3 from gsp_decorr_package . utils import is_pos_semi_def , is_diag_domin , perturb , uniform_quantizer , \
4 golden_section_search , rate_distortion
5 from gsp_decorr_package . processes import gft_band , innovations
6 from gsp_decorr_package .ggt import wft_atoms , sampling_idx_ggt
7 from gsp_decorr_package . sampling import sampling_ggt , reconstruct_ggt , sampling_vertex , sampling_gft , \
8 rate_gft , rate_ggt , reconstruct_vertex

61

https://github.com/SP-TUW/pygsp

Chapter A Python scripts

9
10 if __name__ == " __main__ ":
11 rng = np. random . default_rng ()
12
13 N = int(np.sqrt (64)) ** 2 # number of nodes
14 degree = 3
15 perturbed_edges_percentage = 1 / 6
16 # gtype = " Sensor " # coherence [0.7 , 0.85] , outlier at 0.9
17 # gtype = " RegularPerturbed " # coherence [0.45 , 0.76]
18 gtype = "Barabasi - Albert " # coherence [0.81 , 0.96]
19
20 process = " gft_band "
21 # process = " filter "
22
23 K = int (1 * N)
24 # for process = 'gft_band '
25 # number of additional diagonals on each side of the main diagonal (tridiagonal matrix : B=1)
26 B = 3 # (2 * K) // 5
27 diag_domin = False
28
29 # additional diagonal i will be multiplied by factor **i
30 zeta = 1
31 # rate of the exponential decay of the power per frequency
32 tau_hat_signal = 0.00 # 0.07 #np.log (10 ** -14) / (-4 * K) # 0.17 #
33 # upper limit at np.log (10** -16) /(-4*K), otherwise cov_x_frak is rank - deficient
34 assert tau_hat_signal <= np.log (10 ** -16) / (-4 * K)
35 # correlation coefficient of the Gabor covariance matrix should be less than 1/ theta
36 theta = 5
37 # high beta corresponds to linear decay of L over B and linear growth of J over k_rms (cf. Sec. 5.2.2)
38 beta = 0.3
39
40 Q = 11 # number of bits/ sampled node
41 # level of oversampling for GGT , i.e., M_x_g /N, must be >1 (e.g., 1.1)
42 alpha = 1.85 # 1.2 seems to low , 1.9 better
43 # sampling_ggt_mode = 'regular '
44 # sampling_ggt_mode = 'idx_fq_rework '
45 # sampling_ggt_mode = 'idx_vertex_rework '
46 sampling_ggt_mode = 'idx_fq_vertex_rework '
47 eps = 0.05
48 iterations = 15
49 reshape_order = 'C'
50
51 eta = 2 # controls support of uniform quantizer and thus overloading probability (for eta =2 5% for ~N)
52 cond_max = np.inf
53
54 graph_realisations = 10
55 signal_realisations = 5 * N
56
57 for K in np. linspace (6, 64, num =20): # for Q in range (1, 16):
58 K = int(K)
59 # size of vertex sampling set: M=|S|, necessary condition for signal recovery : P >=K
60 # maximum size of joint q+s sampling set
61 M = int(np.min ((K * 1.1 , N))) #
62 # oversample in vertex domain ? set K_vertex >K and/or M_vertex >M
63 K_vertex = N
64 M_vertex = N
65 R = M * Q
66 print (f'N={N}, K={K}, Q={R}')
67 Q_prime = R / N # effective number of bits/ graph node , gen. not int
68
69 fail_count = np. zeros (2, dtype =int)
70 signal_energy = np. zeros (shape =(graph_realisations , signal_realisations))
71 condition_number = np. zeros_like (signal_energy)
72 distortion = np. zeros (shape =(3 , graph_realisations , signal_realisations))
73 b = np. zeros (shape =(3 , graph_realisations))
74 coherence = np. zeros (shape = graph_realisations)
75 RD = np. zeros (shape = graph_realisations)
76 D = np. zeros (shape = graph_realisations)
77 kappa_Gamma = np. zeros (shape = graph_realisations)
78 k_eff = np. zeros_like (b)
79 connected_graph_idx = []
80 for i in range (graph_realisations):

62

A.1 Simulations

81 # generate graphs
82 match gtype :
83 case " Sensor ":
84 G = graphs . Sensor (N=N, k=degree , distributed =True) # generate sensor graph
85 p = None
86 case " RegularPerturbed ":
87 G = graphs . RandomRegular (N=N, k= degree) # generate regular graph
88 # generate a perturbation regular graph
89 G = perturb (G, perturbed_edges_percentage = perturbed_edges_percentage , rng=rng)
90 p = None
91 case "Barabasi - Albert ":
92 G = graphs . BarabasiAlbert (N=N)
93 p = G.d / np.sum(G.d)
94 case _:
95 # default case
96 raise ValueError (" Graph model not covered yet!")
97 if not G. is_connected ():
98 signal_energy [i] = np.nan
99 condition_number [i] = np.nan

100 distortion [:, i, :] = np.nan
101 b[:, i] = np.nan
102 coherence [i] = np.nan
103 RD[i] = np.nan
104 D[i] = np.nan
105 kappa_Gamma [i] = np.nan
106 k_eff [:, i] = np.nan
107 continue
108 else:
109 connected_graph_idx . append (i)
110
111 G. compute_fourier_basis () # compute G.U
112 # generate process
113 match process :
114 case " gft_band ":
115 cov_x , L, J = gft_band (G=G, rng=rng , K=K, B=B, tau_hat_signal = tau_hat_signal , zeta=zeta ,
116 diag_domin = diag_domin , beta=beta)
117 case " filter ":
118 cov_x , L, J = innovations (G=G, K=K, beta=beta , tau_a = tau_hat_signal)
119 case _:
120 # default case
121 raise ValueError (" Signal model not covered yet!")
122
123 assert is_pos_semi_def (cov_x)
124
125 sigma2_eq = np. linalg .eig(cov_x)[0]
126 if np.max(np.abs(np.imag(sigma2_eq))) < 1e -9:
127 sigma2_eq = np.real(sigma2_eq)
128 sigma2_eq = sigma2_eq [sigma2_eq > 1e -15]
129 Xi_l0 = 1e -10
130 Xi_r0 = np.max(sigma2_eq)
131
132 # find mu that yields the rate from the RD function that is closest to R
133 Xi_opt , __ = golden_section_search (rate_distortion , Xi_l0 , Xi_r0 , 1e -10 , 80, 2, sigma2_eq , R)
134 # get the rate distortion pair from the RD function
135 D[i], RD[i], __ = rate_distortion (Xi_opt , sigma2_eq , R)
136
137 # generate signal
138 x = rng. multivariate_normal (mean=np.full(G.N, fill_value =0) , cov=cov_x , size= signal_realisations)
139 signal_energy [i] = np.sum(x ** 2, axis = -1)
140
141 cov_x_frak = G.U.T @ cov_x @ G.U
142 assert is_pos_semi_def (cov_x_frak)
143 coherence [i] = G. coherence
144
145 # GFT DOMAIN
146 R_i_gft = rate_gft (cov_x_frak = cov_x_frak [:K, :K], R=R, eta=eta)
147 idx_gft = np. where (R_i_gft)[0]
148
149 # GGT DOMAIN
150 # generate grid
151 i_m_breve , k_m_caron = sampling_idx_ggt (G=G, alpha =alpha , J=J, L=L, mode= sampling_ggt_mode)
152 # Sampling using Gabor analysis

63

Chapter A Python scripts

153 # optimise window parameters to grid
154 tau_g_hat_l0 = 0.05 # 0.02
155 tau_g_hat_r0 = 40
156
157 tau_g_hat_opt , kappa_Gamma [i] = golden_section_search (wft_atoms ,
158 tau_g_hat_l0 ,
159 tau_g_hat_r0 ,
160 eps ,
161 iterations ,
162 1, # we are interested in 2nd argument of

wft_atoms
163 G, i_m_breve , k_m_caron ,
164 reshape_order) # remaining wft_atoms

arguments
165 # calculate optimised , sampled WFT atoms
166 Gamma_S , __ = wft_atoms (tau_g_hat = tau_g_hat_opt , G=G, i_m_breve = i_m_breve , k_m_caron = k_m_caron ,
167 reshape_order = reshape_order)
168 # calculate covariance matrix of Gabor coefficients
169 cov_x_frak_g_S = Gamma_S .T @ cov_x @ Gamma_S
170 R_i_ggt = rate_ggt (cov_x_frak_g_S = cov_x_frak_g_S , R=R, eta=eta)
171 idx_ggt = np. where (R_i_ggt)[0]
172
173 # check for valid all cov: percentage where C_kl **2 < C_kk*C_ll for k!=l
174 __ , b[0, i] = is_diag_domin (cov_x , factor = theta)
175 k_eff [0, i] = np.sqrt(np.sum(np. arange (cov_x . shape [0]) * np.sort(np.diag(cov_x))) / np.sum(np.diag(

cov_x)))
176
177 __ , b[1, i] = is_diag_domin (cov_x_frak [np.ix_(idx_gft , idx_gft)], factor = theta)
178 k_eff [1, i] = np.sqrt(
179 np.sum(np. arange (idx_gft . shape [0]) * np.sort(np.diag(cov_x_frak [np.ix_(idx_gft , idx_gft)]))) /

np.sum(
180 np.diag(cov_x_frak [np.ix_(idx_gft , idx_gft)])))
181 __ , b[2, i] = is_diag_domin (cov_x_frak_g_S [np.ix_(idx_ggt , idx_ggt)], factor = theta)
182 k_eff [2, i] = np.sqrt(
183 np.sum(np. arange (idx_ggt . shape [0]) * np.sort(np.diag(cov_x_frak_g_S [np.ix_(idx_ggt , idx_ggt)]))

) /
184 np.sum(np.diag(cov_x_frak_g_S [np.ix_(idx_ggt , idx_ggt)])))
185
186 for j in range (signal_realisations):
187 # sampling methods
188 # VERTEX DOMAIN
189 x_S , S_vertex , condition_number [i, j] = sampling_vertex (G=G, x=x[j], rng=rng , K=K_vertex , M=

M_vertex ,
190 p=p, condition_number_threshold =

cond_max ,
191 ignore_rank =True)
192 R_i_vertex = np. zeros_like (x_S , dtype =int)
193 R_i_vertex [S_vertex] = int(R / M_vertex)
194
195 # GFT DOMAIN
196 x_frak_S = sampling_gft (G=G, x=x[j], R_i_gft = R_i_gft)
197 # GGT DOMAIN
198 x_frak_g_S = sampling_ggt (x[j], Gamma_S)
199
200 # quantisation : uniform quantisation of y_s
201 # VERTEX DOMAIN
202 x_hat_S , __ , __ = uniform_quantizer (x_S ,
203 R_i_vertex ,
204 cov_x ,
205 eta ,
206 np. array ([True , True , False]))
207
208 # GFT DOMAIN
209 x_frak = G.gft(x[j])
210 x_frak_hat = np. zeros_like (x_frak_S)
211 x_frak_hat [:K], __ , __ = uniform_quantizer (x_frak [:K], R_i_gft , cov_x_frak [:K, :K], eta ,
212 np. array ([True , False , False]))
213
214 # GGT DOMAIN
215 x_frak_g_S_hat , __ , __ = uniform_quantizer (x_frak_g_S , R_i_ggt , cov_x_frak_g_S , eta ,
216 np. array ([True , False , False]))
217

64

A.2 Nonstationary processes

218 # Reconstruction
219 x_hat_vertex = reconstruct_vertex (G=G, K=K_vertex , S_vertex =S_vertex , x_s= x_hat_S)
220 x_hat_gft = G.igft(x_frak_hat)
221 x_ggt_synth = reconstruct_ggt (Gamma_S =Gamma_S , x_frak_g = x_frak_g_S)
222 x_hat_ggt = reconstruct_ggt (Gamma_S =Gamma_S , x_frak_g = x_frak_g_S_hat)
223
224 # distortion calc
225 distortion [0, i, j] = np.sum ((x[j] - x_hat_vertex) ** 2)
226 distortion [1, i, j] = np.sum ((x[j] - x_hat_gft) ** 2)
227 distortion [2, i, j] = np.sum ((x[j] - x_hat_ggt) ** 2)
228
229 # distortion mean and variance for every technique
230 mean_distortion = np. nanmean (distortion , axis =(1 , 2)) / np. nanmean (signal_energy)
231 var_distortion = np. nanvar (distortion , axis =(1 , 2)) / (np. nanmean (signal_energy) ** 2)
232
233 mean_uncorr = np. nanmean (b, axis = -1)
234 mean_k_eff = np. nanmean (k_eff , axis = -1)

A.2 Nonstationary processes

Listing A.2: Generation of nonstationary processes (cf. Section 3.4)
1 import numpy as np
2 from gsp_decorr_package . utils import band_matrix
3 from pygsp import graphs
4
5
6 def gft_band (G: graphs .Graph ,
7 rng: np. random . Generator ,
8 K: int ,
9 B: int ,

10 tau_hat_signal : float ,
11 zeta: float ,
12 diag_domin : bool ,
13 beta: float):
14 # (non) stationary graph process - 3.4.2 Class II Processes : cov_x_frak = band matrix
15 # stationary for B = 0 (cov_x_frak = diag), nonstationary otherwise
16 if diag_domin :
17 # create first sub/ superdiagonal
18 diag_1 = np.pad(np.exp(- tau_hat_signal * np. arange (K - 1)), (0, G.N - K), 'constant ', constant_values

=0)
19 v_up = []
20 # epsilon
21 diag_0 = np.pad(np.abs(rng. normal (0, 1 / 4 * diag_1 , G.N - 1)), (0, 1) , 'constant ', constant_values =0)
22 diag_0 [K - 1] = np.abs(rng. normal (0, 1 / 4 * diag_1 [K - 2]))
23 for j in range (0, B):
24 # compute sub/ superdiagonals (factor * multiplied_diagonal_entries)
25 diag_j = zeta ** j * np.pad(np.exp(- tau_hat_signal * np. arange (K - 1 - j)),
26 (0, G.N - K), 'constant ', constant_values =0)
27 # add sub/ superdiagonal to list of diagonals
28 v_up. append (diag_j)
29 # add sub/ superdiagonal entries to main diagonal
30 diag_0 += np.pad(diag_j , (j + 1, 0) , 'constant ', constant_values =0)
31 diag_0 += np.pad(diag_j , (0, j + 1) , 'constant ', constant_values =0)
32 # make sure DC component is the largest
33 diag_0 [0] = 1.1 * np.max(diag_0)
34 # add main diagonal to list of diagonals
35 v_final = [diag_0] + v_up
36
37 # create band matrix
38 cov_x_frak = band_matrix (v_up=v_final , one_sided = False)
39 else:
40 # set diagonal of frequency covariance matrix
41 diag_0 = np.pad(np.exp(- tau_hat_signal / 2 * np. arange (K)), (0, G.N - K), 'constant ', constant_values

=0)
42 '''

65

Chapter A Python scripts

43 # frequency power in code of Li2022
44 diag_0 = np.sqrt(np.pad(np. array ([35 , 3.00 , 2.94 , 1.62 , 0.88 , 0.83 , 0.72 , 0.63 , 0.52 , 0.47 , 0.45 , 0.4 ,

0.37 ,
45 0.34 , 0.33 , 0.3 , 0.29 , 0.28 , 0.26 , 0.25]) ,
46 (0, G.N - K), 'constant ', constant_values =0))
47 '''
48 # initialize list of diagonals
49 v_up = [diag_0]
50 for j in range (1, B + 1):
51 # add non -main diagonals (factor * multiplied_diagonal_entries)
52 v_up. append (zeta ** j * diag_0 [:-j])
53 # v_up. append (zeta ** j * np.diag(np. einsum ('i,j->ij ', diag_0 , diag_0), k=j))
54 # create upper band matrix
55 B = band_matrix (v_up=v_up , one_sided =True)
56 cov_x_frak = B @ B.T
57
58 # IGFT of frequency covariance matrix
59 cov_x = G.U @ cov_x_frak @ G.U.T
60
61 # calculate L_prime based on number of sub/ superdiagonals , high beta corresponds to linear decay
62 L_prime = int(np. round ((1 - beta) * np.ceil(G.N / (B + 1)) + beta * np.ceil(G.N + (-1 + 1 / G.N) * B)))
63
64 k_rms = np.sqrt(np.sum(np.diag(cov_x_frak) * np. arange (1, G.N + 1) ** 2) / np.sum(np.diag(cov_x_frak)))
65 len_vertex_lin = 1 / (np.sqrt ((G.N + 1) * (2 * G.N + 1) / 6) - 1) * (
66 (G.N - 1) * k_rms + np.sqrt ((G.N + 1) * (2 * G.N + 1) / 6) - G.N)
67 len_vertex_log = (1 - G.N) / np.log ((1 / (np.sqrt ((G.N + 1) * ((2 * G.N + 1) / 6))))) * np.log(
68 np.exp(-np.log(np.sqrt ((G.N + 1) * ((2 * G.N + 1) / 6))) / (1 - G.N)) * k_rms)
69 J_prime = int(np. round (beta * len_vertex_lin + (1 - beta) * len_vertex_log))
70
71 L = int(np.ceil(np.sqrt(G.N * L_prime / J_prime)))
72 J = int(np.ceil(np.sqrt(G.N * J_prime / L_prime)))
73
74 return cov_x , L, J
75
76
77 def innovations (G: graphs .Graph ,
78 K: int ,
79 beta: float ,
80 tau_a : float):
81 # nonstationary graph process - 3.4.1 Class I Processes : filtered white noise
82 a_frak = np. zeros (G.N)
83 a_frak [:K] = np.exp(- tau_a / 2 * np. arange (K))
84
85 k_rms_a = np.sqrt(np.sum(a_frak ** 2 * np. arange (1, G.N + 1) ** 2) / np.sum(a_frak ** 2))
86 len_vertex_lin = 1 / (np.sqrt ((G.N + 1) * (2 * G.N + 1) / 6) - 1) * (
87 (G.N - 1) * k_rms_a + np.sqrt ((G.N + 1) * (2 * G.N + 1) / 6) - G.N)
88 len_vertex_log = (1 - G.N) / np.log ((1 / (np.sqrt ((G.N + 1) * ((2 * G.N + 1) / 6))))) * np.log(
89 np.exp(-np.log(np.sqrt ((G.N + 1) * ((2 * G.N + 1) / 6))) / (1 - G.N)) * k_rms_a)
90 # choose J, high beta corresponds to linear growth with k_rms_a
91 J = int(np. round (beta * len_vertex_lin + (1 - beta) * len_vertex_log))
92
93 L = int(np.ceil(G.N / J))
94 # bandwidth of m
95 m_K = int(np. round (J))
96 # spectrum of m
97 M_nu = np. zeros (G.N)
98 M_nu [: m_K] = np.ones(m_K)
99 m = G.igft(M_nu)

100 m = m * np.sqrt(G.N) / np. linalg .norm(m)
101 # final vertex covariance matrix
102 cov_x = np.diag(m) @ G.U @ np.diag(a_frak ** 2) @ G.U.T @ np.diag(m).T
103
104 return cov_x , L, J

66

A.3 Compression techniques

A.3 Compression techniques

Listing A.3: Scripts for compression techniques described in Chapter 4
1 import numpy as np
2 from scipy . linalg import sqrtm
3 import cvxpy as cp
4 from pygsp import graphs
5 from . utils import uniform_quantizer
6 from scipy . special import binom
7
8
9 def sampling_vertex (G: graphs .Graph ,

10 x: np.ndarray ,
11 rng: np. random . Generator ,
12 K: int ,
13 M: int ,
14 p: np. ndarray | None ,
15 condition_number_threshold : float ,
16 ignore_rank : bool) -> tuple [np.ndarray , np. ndarray [int], float]:
17 for tries in range (int(binom (G.N, M)) + 1):
18 # choose sampling set , i.e, sampling indices [0,N), for BarabasiAlbert : higher probability for higher

degree
19 S_vertex = rng. choice (G.N, size=M, replace =False , p=p)
20 # extract bandlimited , sampled GFT matrix
21 U_K_sampled = G.U[S_vertex , :K]
22 if ignore_rank :
23 break
24 if np. linalg . matrix_rank (U_K_sampled) >= K and np. linalg .cond(U_K_sampled) < condition_number_threshold

:
25 # if U_K_sampled 's rank is sufficient and the condition number is not too high , take this GFT

matrix
26 break
27
28 assert tries != binom (G.N, M) # too may tries
29 # construct unquantized , sampled signal by taking the original signal only at the sampling indices
30 x_s = np. zeros_like (x)
31 x_s[S_vertex] = x[S_vertex] # set samples
32
33 return x_s , S_vertex , np. linalg .cond(U_K_sampled)
34
35
36 def reconstruct_vertex (G: graphs .Graph , K: int , S_vertex : np. ndarray [int], x_s: np. ndarray):
37 # bandlimited reconstruction according to (3.7)
38 return G.U[:, :K] @ np. linalg . lstsq (G.U[S_vertex , :K], x_s[S_vertex], rcond =None)[0]
39
40
41 def bit_allocation_mse (G: graphs .Graph , Z: float , M_max : int , beta: np.ndarray , cov_x_frak : np.ndarray , K: int ,
42 eta: float) -> np. ndarray [int]:
43 # [Li2022 , algorithm 2] - modified to allocate actual bits , not levels
44 # initialize
45 R_i = np. zeros (G.N)
46 R = np.log2(Z)
47 possible_idx = np. arange (G.N)
48
49 # precompute Laplacian polynomial filter F(Lambda) (matrix_power not necessary since Lambda_i is diagonal)
50 Lambda_i = np.diag(G.e[:K])[None , ...] ** np. arange (beta. shape [0]) [:, None , None]
51 Lambda_i [0] = np. identity (K)
52 F_Lambda = np. einsum ('ijk ,i->jk ', Lambda_i , beta)
53
54 # precompute auxiliary matrices
55 H = G.U[:, :K] @ F_Lambda @ np. linalg . matrix_power (cov_x_frak , 2) [:K, :K] @ F_Lambda @ G.U[:, :K].T
56 X = G.U[:, :K] @ F_Lambda @ cov_x_frak [:K, :K] @ F_Lambda @ G.U[:, :K].T
57
58 cov_x = G.U @ cov_x_frak @ G.U.T # compute covariance matrix in vertex domain [Li2022 , eq. (2)]
59 F = G.U[:, :K] @ F_Lambda @ G.U[:, :K].T # compute graph filter matrix from F(Lambda)
60 # support of uniform quantizer according to [Li2022 , Def. 4], 5% overloading probability for ~N
61 gamma = eta * np.sqrt(np. diagonal (F @ cov_x @ F.T)) # row selection follows in while -loop
62 f_tmp = np. zeros_like (R_i , dtype = float) # initialization for approx . gradient vector [Li2022 , eq. (26)]
63 while np.sum(R_i) < R: # step 1

67

Chapter A Python scripts

64 sampling_idx = np. where (R_i)[0] # step 7, equivalent to np. where (R_i > 0) [0]
65 if sampling_idx . shape [0] == M_max : # step 4
66 possible_idx = sampling_idx # step 5
67
68 # step 2
69 for j in possible_idx :
70 # increase each R_i by 1 separately -> adapt sampling_idx , compute temporary cov_q , f
71 R_i_tmp = R_i.copy () # R_i_tmp has the role of f ({2**(R_i ^(k) + 1})
72 R_i_tmp [j] += 1
73 # sampling_idx_tmp = sampling_idx if sampling_idx . shape [0] == P_max
74 sampling_idx_tmp = np. where (R_i_tmp)[0]
75 cov_q_tmp = np.diag ((gamma [sampling_idx_tmp] / np. power (2, R_i_tmp [sampling_idx_tmp],
76 dtype = float)) ** 2) # [Li2022 , eq. (10)]
77 # like adaptive ofdm with constant throughput (incremental BER)
78 f_tmp [j] = np. trace (H[np.ix_(sampling_idx_tmp , sampling_idx_tmp)] @ np. linalg .inv(
79 X[np.ix_(sampling_idx_tmp , sampling_idx_tmp)] + cov_q_tmp))
80
81 # step 3
82 R_i[np. argmax (f_tmp)] += 1 # increase resolution of sample with largest gradient
83 return R_i # step 11
84
85
86 def level_allocation_mse (G: graphs .Graph , Z: float , M_max : int , beta: np.ndarray , cov_x_frak : np.ndarray , K:

int ,
87 eta: float) -> np. ndarray [int]:
88 # [Li2022 , algorithm 2] - vanilla , allocates quantisation levels , not actual bits
89 # initialize
90 Z_i = np.ones(G.N)
91 sampling_idx = np. where (Z_i > 1) [0]
92 possible_idx = np. arange (G.N)
93
94 # precompute Laplacian polynomial filter F(Lambda) (matrix_power not necessary since Lambda_i is diagonal)
95 Lambda_i = np.diag(G.e[:K])[None , ...] ** np. arange (beta. shape [0]) [:, None , None]
96 Lambda_i [0] = np. identity (K)
97 F_Lambda = np. einsum ('ijk ,i->jk ', Lambda_i , beta)
98
99 # precompute auxiliary matrices

100 H = G.U[:, :K] @ F_Lambda @ np. linalg . matrix_power (cov_x_frak , 2) [:K, :K] @ F_Lambda @ G.U[:, :K].T
101 X = G.U[:, :K] @ F_Lambda @ cov_x_frak [:K, :K] @ F_Lambda @ G.U[:, :K].T
102 cov_x = G.U @ cov_x_frak @ G.U.T # [Li2022 , eq. (2)]
103 F = G.U[:, :K] @ F_Lambda @ G.U[:, :K].T
104 # support of uniform quantizer according to [Li2022 , Def. 4], 5% overloading probability for ~N
105 gamma = eta * np.sqrt(np. diagonal (F @ cov_x @ F.T)) # row selection follows in while -loop
106 f = 0 # initialization for objective [Li2022 , eq. (25)], since sampling_idx is empty
107 q = np. zeros_like (Z_i , dtype = float) # initialization for approx . gradient vector [Li2022 , eq. (26)]
108 while np.sum(np.log2(Z_i)) < np.log2(Z): # step 1
109 # step 2
110 for j in possible_idx :
111 # increase each Z_i by 1 separately -> adapt sampling_idx , compute temporary cov_q , f
112 tmp = Z_i.copy () # tmp has the role of f({ M_tilde_i ^(k) + 1_i=j})
113 tmp[j] += 1
114 sampling_idx_tmp = np. where (tmp > 1) [0]
115 cov_q_tmp = np.diag ((gamma [sampling_idx_tmp] / tmp[sampling_idx_tmp]) ** 2) # [Li2022 , eq. (10)]
116 f_tmp = np. trace (H[np.ix_(sampling_idx_tmp , sampling_idx_tmp)] @ np. linalg .inv(
117 X[np.ix_(sampling_idx_tmp , sampling_idx_tmp)] + cov_q_tmp))
118 # calculate approx . gradient vector [Li2022 , eq. (26)]
119 q[j] = f_tmp - f
120 # step 3
121 Z_i[np. argmax (q)] += 1 # increase resolution of sample with largest gradient
122 if sampling_idx . shape [0] == M_max : # step 4
123 possible_idx = sampling_idx # step 5
124 else: # step 6
125 sampling_idx = np. where (Z_i > 1) [0] # step 7
126 # only recalculate matrices if sampling_idx might have been modified
127 cov_q = np.diag ((gamma [sampling_idx] / Z_i[sampling_idx]) ** 2) # [Li2022 , eq. (10)]
128 f = np. trace (
129 H[np.ix_(sampling_idx , sampling_idx)] @ np. linalg .inv(X[np.ix_(sampling_idx , sampling_idx)] +

cov_q))
130 # step 11, do we have to return sampling_idx as well? sampling_idx = np. where (Z_i > 1) [0]
131 return np.log2(Z_i). astype (np. uint64)
132
133

68

A.3 Compression techniques

134 def filter_mse (G: graphs .Graph , R_i: np. ndarray [np. uint64], cov_x_frak : np.ndarray , K: int , eta: float ,
135 solver : str) -> np. ndarray :
136 # [Li2022 , algorithm 3]
137 sampling_idx = np. where (R_i)[0] # uniquely determined by R_i
138 condition_number = np. linalg .cond(G.U[sampling_idx , :K])
139 lambda_tilde = np.ones(G.N) # initialize
140 lambda_hat = lambda_tilde ** 2 # [Shen2018 , algorithm 1 - step 0]
141 T = 25 # maximum number of iterations
142 threshold = 0.05 # threshold *np. linalg .norm(lambda_tilde)=eps
143 for k in range (T): # step 1
144 # store previous lambda_tilde to compute change
145 lambda_tilde_old = lambda_tilde .copy ()
146 # m_{p,q} for all p and q
147 m = (1 + np. identity (sampling_idx . shape [0]) * (2 * eta ** 2) / (
148 3 * np. power (2, R_i[sampling_idx], dtype = float) ** 2))
149 # 3D array : B in |R**(sampling_idx . shape [0] x sampling_idx . shape [0]) for all i
150 B = np. einsum ('ij ,kj ,j,ik ->jik ', G.U[sampling_idx , :], G.U[sampling_idx , :], np.diag(cov_x_frak), m)
151 # optimize each sampled lambda_tilde separately
152 for j in range (sampling_idx . shape [0]): # step 2
153 # step 3
154 B_sqrt_inv = np. linalg .inv(sqrtm (B[sampling_idx [j]]))
155 # correct numerical inaccuracies of sqrtm
156 if 0 <= np.max(np.abs(np.imag(B_sqrt_inv))) < 1e -7:
157 B_sqrt_inv = np.real(B_sqrt_inv)
158
159 # split up einsum to exclude sampling_idx [j]
160 C = np. einsum ('jik ,j->ik ', B[: sampling_idx [j]], lambda_tilde [: sampling_idx [j]] ** 2) \
161 + np. einsum ('jik ,j->ik ', B[sampling_idx [j] + 1:] , lambda_tilde [sampling_idx [j] + 1:] ** 2)
162 # precompute auxiliary matrices for [Li2022 , eq. (29)]
163 Lambda_x , U_x = np. linalg .eigh(B_sqrt_inv @ C @ B_sqrt_inv)
164 A = U_x.T @ B_sqrt_inv @ G.U[sampling_idx , :] @ cov_x_frak
165 # maximum number of iterations for optimizing [Li2022 , Lemma 3] at sampling_idx [j]
166 T_in = 100
167 for k in range (T_in + 1): # while True:
168 if k == T_in:
169 raise RuntimeError (f" Optimization in Lemma 3 reached {T_in} iterations .", condition_number)
170 A_modified = A.copy ()
171 A_modified [:, sampling_idx [j]] = 0
172 # convex optimization lambda_hat according to [Shen2018 , algorithm 1 - step 3]
173 x = cp. Variable (nonneg =True , value = lambda_hat [sampling_idx [j]])
174
175 # eq. (29)
176 a_j = A[:, sampling_idx [j]] ** 2 * Lambda_x - (A_modified ** 2 @ lambda_hat)
177
178 # numerator and denominator of maximisation do not have the same sign
179 sign_wrong_idx = np.sign(-a_j) != np.sign ((lambda_hat [sampling_idx [j]] + Lambda_x))
180 # in indices where they do not have the same sign: is numerator ~0 and denominator positive ?
181 zero_case = np. logical_and (np.abs(a_j[sign_wrong_idx]) < 1e -13 , (lambda_hat [sampling_idx [j]] +

Lambda_x)[sign_wrong_idx] >0)
182
183 if np.any(sign_wrong_idx == True):
184 if not np.all(zero_case == True):
185 raise ValueError (f'Optimization in Algorithm 3 failed : shen2018 not applicable , || sqrt(

B)||={ np. linalg .norm(B[sampling_idx [j]]) }. ',
186 condition_number)
187 # Lemma 3 formulation of eq. (29) is suitable for optimization according to [Shen2018]
188 y_j_opt = np.sqrt(-a_j) / (lambda_hat [sampling_idx [j]] + Lambda_x)
189 objective = cp. Maximize (
190 cp.sum(cp. multiply (2 * y_j_opt , cp.sqrt(-a_j)) - cp. multiply (y_j_opt ** 2, (x + Lambda_x)))

)
191
192 prob = cp. Problem (objective)
193 # The optimal objective value is returned by `prob. solve () `, optimal value for x is stored in `

x.value `
194 try:
195 # try solving the optimization problem
196 __ = prob. solve (solver =solver , verbose =True)
197 except cp. error . SolverError as e:
198 # if function fails , raise an error with the error message and the corresponding kappa (

U_K_sampled)
199 raise ValueError (e, condition_number)
200

69

Chapter A Python scripts

201 lambda_hat_old = lambda_hat [sampling_idx [j]]
202
203 # prob. value ... minimum value of the objective
204 # For maximization problems the optimal value is -inf if infeasible and inf if unbounded .
205 print (f'lambda_hat_opt = {x. value }')
206 if prob. value == np.inf: # equivalent to x. value is None
207 # problem is unbounded
208 raise ValueError (f'Problem is unbounded : lambda_hat [{ sampling_idx [j]}] optimized to nan ',
209 condition_number)
210 elif x. value is None:
211 raise ValueError (f'Other error : lambda_hat [{ sampling_idx [j]}] optimized to nan ',

condition_number)
212
213 lambda_hat [sampling_idx [j]] = x. value
214
215 # correct numerical inaccuracies of the cvxpy
216 if -1e -10 < lambda_hat [sampling_idx [j]] < 0:
217 lambda_hat [sampling_idx [j]] = 0
218 if np. linalg .norm(lambda_hat [sampling_idx [j]] - lambda_hat_old) <= threshold * np. linalg .norm(
219 lambda_hat_old):
220 # if optimized lambda_hat [sampling_idx [j]] changes only little from one iteration to

another , stop
221 break
222 lambda_tilde = np.sqrt(lambda_hat)
223 if np. linalg .norm(lambda_tilde - lambda_tilde_old) <= threshold * np. linalg .norm(lambda_tilde_old): #

step 5
224 # if lambda_tilde changes only little from one iteration to another , stop
225 break # step 6
226 return lambda_tilde # step 9
227
228
229 def sampling_idx_mse (G: graphs .Graph , Z: float , M_max : int , P: int , cov_x_frak : np.ndarray , eta: float , K: int ,
230 solver : str , bit_allocation : bool) -> \
231 tuple [np.ndarray , np. ndarray [int]]:
232 # [Li2022 , algorithm 4]
233 beta = np. zeros (P) # initializing coefficients the Laplacian polynomial filter F(lambda)
234 beta [0] = 1 # equivalent to F_Lambda = np. identity (G.K) -> F=I
235 F = np. identity (G.N) # equivalent to G.U @ F_Lambda @ G.U[:, :K].T
236 threshold = 0.05 # threshold *np. linalg .norm(F)=eps
237 T = 25 # maximum number of iterations
238 for k in range (T + 1): # while True:
239 if k == T:
240 sampling_idx = np. where (R_i)[0] # uniquely determined by R_i
241 condition_number = np. linalg .cond(G.U[sampling_idx , :K])
242 raise RuntimeError (f" Algorithm 4 reached {T} iterations ", condition_number)
243 F_old = F
244 if bit_allocation :
245 R_i = bit_allocation_mse (G, Z, M_max , beta , cov_x_frak , K, eta) # step 2 modified
246 else:
247 R_i = level_allocation_mse (G, Z, M_max , beta , cov_x_frak , K, eta) # step 2 vanilla
248 lambda_tilde = filter_mse (G, R_i , cov_x_frak , K, eta , solver) # step 3
249 F = G.U @ np.diag(lambda_tilde) @ G.U.T # algorithm 3, step 10
250
251 if np. linalg .norm(F_old - F) <= threshold * np. linalg .norm(F_old): # step 5
252 break
253 else:
254 # if another iteration is needed , approximate Laplacian polynomial filter coefficients for F(lambda

) from
255 # algorithm 3
256 # since F(lambda) and Lambda **i are diagonal matrices , we can express them as vectors and apply LS
257 Lambda_i_diagonal = (G.e[None , ...] ** np. arange (beta. shape [0]) [:, None]).T
258 beta = np. linalg . lstsq (Lambda_i_diagonal , lambda_tilde , rcond =None)[0]
259 return F, R_i # step 6
260
261
262 def sampling_mse (F: np.ndarray , x: np.ndarray , R_i_mse : np. ndarray [int]):
263 # sampling according to [Li2022]
264 # deduce sampling set from the bit allocation
265 sampling_idx = np. where (R_i_mse)[0]
266 # initialize filtered signal
267 y_s = np. zeros_like (x)
268 # filter vertex - domain signal with calculated Laplacian polynomial filter

70

A.3 Compression techniques

269 y_s[sampling_idx] = F[sampling_idx , :] @ x
270 return y_s
271
272
273 def reconstruct_mse (G: graphs .Graph , F: np.ndarray , cov_x : np.ndarray , cov_x_frak : np.ndarray , cov_q : np.

ndarray ,
274 K: int , sampling_idx : np. ndarray [int], y_s: np. ndarray):
275 # reconstruction according to [Li2022]
276 Gamma_opt = cov_x_frak [:K, :K] @ np. linalg .inv(np.diag(np.diag(cov_x_frak)[:K])) @ G.U[:, :K].T # for

cov_obs =0
277 Phi_opt = Gamma_opt @ cov_x @ F[sampling_idx , :].T \
278 @ np. linalg .inv(
279 F[sampling_idx , :] @ cov_x @ F[sampling_idx , :].T + cov_q [np.ix_(sampling_idx , sampling_idx)])
280 return G.U[:, :K] @ Phi_opt @ y_s[sampling_idx]
281
282
283 def rate_gft (cov_x_frak : np. ndarray [float], R: int , eta: float) -> np. ndarray [int]:
284 # find bandwidth using the length of the signal in the GFT domain
285 K = cov_x_frak . shape [0]
286 # initialize the bit allocation to zero
287 R_i = np. zeros (K, dtype =int)
288
289 # start bit allocation process again if the bit limit has not been reached
290 while np.sum(R_i) < R:
291 # current sampling indices
292 sampling_idx = np. where (R_i)[0]
293 # number of samples
294 num_samples = sampling_idx . shape [0]
295 # Less power is assigned to higher frequencies , i.e. cov_x_frak is monotonically decreasing . Thus , the

next bit can
296 # belong to either an already sampled or the next unsampled frequency , so there are num_samples + 1

options .
297 num_possible_samples = np.min ((num_samples + 1, K))
298 # initialize array with expected quantization error
299 dist_q_exp = np. zeros (num_possible_samples)
300 for i in range (num_possible_samples):
301 # repeat these steps for all possible frequencies
302 # copy the status quo of bit allocation
303 R_i_tmp = R_i.copy ()
304 # assign a temporary bit to the current frequency
305 R_i_tmp [i] += 1
306 # calculate only the expected quantization distortion if this extra bit was assigned to this

frequency
307 __ , dist_q_exp [i], __ = uniform_quantizer (None , R_i_tmp , cov_x_frak , eta , np. array ([False , True ,

False]))
308 # permanently assign bit to frequency with the lowest quantization error
309 R_i[np. argmin (dist_q_exp)] += 1
310
311 # return complete bit allocation
312 return R_i
313
314
315 def sampling_gft (G: graphs .Graph , x: np.ndarray , R_i_gft : np. ndarray [int]):
316 # sampling in the gft domain
317 sampling_idx = np. where (R_i_gft)[0]
318 x_frak = G.gft(x)
319 y_s = np. zeros_like (x_frak)
320 y_s[sampling_idx] = x_frak [sampling_idx] # set samples
321
322 return y_s
323
324
325 def sampling_ggt (x: np.ndarray , Gamma_S : np. ndarray):
326 # Gabor analysis
327 return Gamma_S .T @ x
328
329
330 def rate_ggt (cov_x_frak_g_S : np. ndarray [float], R: int , eta: float) -> np. ndarray [int]:
331 # find M (number of samples) using the shape of the cov matrix in the GGT domain
332 M = cov_x_frak_g_S . shape [0]
333 # initialize the bit allocation to zero
334 R_i = np. zeros (M, dtype =int)

71

Chapter A Python scripts

335
336 # start bit allocation process again if the bit limit has not been reached
337 while np.sum(R_i) < R:
338 # current sampling indices
339 sampling_idx = np. where (R_i)[0]
340 # initialize array with expected quantization error
341 D_Q_exp = np. zeros (M)
342 for i in range (M):
343 # repeat these steps for all possible frequencies
344 # copy the status quo of bit allocation
345 R_i_tmp = R_i.copy ()
346 # assign a temporary bit to the current frequency
347 R_i_tmp [i] += 1
348 # calculate only the expected quantization distortion if this extra bit was assigned to this

frequency
349 __ , D_Q_exp [i], __ = uniform_quantizer (None , R_i_tmp , cov_x_frak_g_S , eta , np. array ([False , True ,

False]))
350 # permanently assign bit to frequency with the lowest quantization error
351 R_i[np. argmin (D_Q_exp)] += 1
352
353 # return complete bit allocation
354 return R_i
355
356
357 def reconstruct_ggt (Gamma_S : np.ndarray , x_frak_g : np. ndarray):
358 # Gabor synthesis
359 return np. linalg .pinv(Gamma_S).T @ x_frak_g . ravel ()

A.4 Graph Gabor transform

Listing A.4: GGT-related functions (cf. Section 4.4)
1 import numpy as np
2 from pygsp import graphs
3 from . utils import center_vertex_sampling
4
5
6 def wft_atoms (tau_g_hat : float , G: graphs .Graph , i_m_breve : np.ndarray , k_m_caron : np.ndarray , reshape_order :

str):
7 gamma_hat = np.exp(- tau_g_hat * G.e)
8 # normalize in frequency domain
9 gamma_hat /= np. linalg .norm(gamma_hat)

10
11 # 4d operator for all translations & modulations , [Shuman16 , eq .52]
12 mt = G.N * np. einsum ('nk ,il ,nl ->iknl ', G.U, np. conjugate (G.U), G.U)
13 gamma_ik = mt @ gamma_hat
14 Gamma_S = np. reshape (gamma_ik [np.ix_(i_m_breve , k_m_caron , np.ones(G.N, dtype =bool))], (-1, G.N),
15 order = reshape_order).T
16 cond = np. linalg .cond(Gamma_S .T)
17
18 # all coefficients : sf_ik = np. einsum ('n,ikn ->ik ', x, gamma_ik) # equivalent to np. inner (x, gamma_ik)
19 # sf_ik [np.ix_(i_m_breve , k_m_caron)]. ravel () = Gamma_S .T @ x
20
21 # sample and reshape 4d translation + modulation operator to 3d
22 '''
23 S_sampled = np. reshape (
24 mt[np.ix_(idx_vertex , k_m_caron , np.ones(N, dtype =bool), np.ones(N, dtype =bool))],
25 (-1, N, N), order = reshape_order) # suitable name would be mt_sampled_flat
26 '''
27 # swap axes of operator
28 # S_sampled = np. einsum ('jnl ->njl ', S_sampled)
29 # at this point : Gamma_S = S_sampled @ gamma_hat
30
31 return Gamma_S , cond
32
33

72

A.5 Auxiliary functions

34 def sampling_idx_ggt (G: graphs .Graph ,
35 alpha : float ,
36 J: int ,
37 L: int ,
38 mode: str):
39 if alpha > 1:
40 # In case of oversampling , increase the more densely sampled domain to hit the desired number of

samples more
41 # precisely . If in that case there would be more than N samples in that domain , oversample in the other

domain .
42 if L >= J:
43 if int(np. round (alpha * L)) <= G.N:
44 L += int(np.ceil ((alpha * G.N - (L * J)) / J))
45 elif int(np. round (alpha * J)) <= G.N:
46 J += int(np.ceil ((alpha * G.N - (L * J)) / L))
47 else:
48 if int(np. round (alpha * J)) <= G.N:
49 J += int(np.ceil ((alpha * G.N - (L * J)) / L))
50 elif int(np. round (alpha * L)) <= G.N:
51 L += int(np.ceil ((alpha * G.N - (L * J)) / J))
52
53 match mode:
54 case 'regular ':
55 # sample at equidistant indices
56 i_m_breve = np. linspace (0, G.N, J, dtype =int , endpoint = False)
57 k_m_caron = np. linspace (0, G.N, L, dtype =int , endpoint = False)
58 case 'idx_fq_rework ':
59 # in frequency domain , sample at equidistant frequencies
60 i_m_breve = np. linspace (0, G.N, J, dtype =int , endpoint = False)
61 k_m_caron = np. argmin (np.abs(G.e[None , ...]
62 - (G.e[0] + G.e[G.N -1]) / L * np. arange (L)[... , None]) , axis =1)
63 for i in range (L - 1):
64 if k_m_caron [i] == k_m_caron [i + 1]:
65 # if identical fq indices have been selected , increase one index by one
66 k_m_caron [i + 1] += 1
67 case 'idx_vertex_rework ':
68 # in vertex domain , sample at the cluster centers of spectral clustering
69 i_m_breve = center_vertex_sampling (G.A, J)
70 k_m_caron = np. linspace (0, G.N, L, dtype =int , endpoint = False)
71 case 'idx_fq_vertex_rework ':
72 # apply 'idx_fq_rework ' and 'idx_vertex_rework '
73 i_m_breve = center_vertex_sampling (G.A, J)
74 k_m_caron = np. argmin (np.abs(G.e[None , ...]
75 - (G.e[0] + G.e[G.N -1]) / L * np. arange (L)[... , None]) , axis =1)
76 for i in range (L - 1):
77 if k_m_caron [i] == k_m_caron [i + 1]:
78 # if identical fq indices have been selected , increase one index by one
79 k_m_caron [i + 1] += 1
80 case _:
81 # default case
82 raise ValueError (" Sampling mode is not covered yet.")
83
84 # remove sampling indices > N
85 i_m_breve = i_m_breve [i_m_breve < G.N]
86 k_m_caron = k_m_caron [k_m_caron < G.N]
87 return i_m_breve , k_m_caron

A.5 Auxiliary functions

Listing A.5: More generally applicable auxiliary functions
1 import numpy as np
2 from scipy . linalg import eigvalsh
3 from typing import Callable
4 from sklearn . cluster import SpectralClustering
5 from scipy import sparse as sps

73

Chapter A Python scripts

6 from pygsp import graphs
7
8
9 def band_matrix (v_up: list[np. ndarray], one_sided : bool = False) -> np. ndarray :

10 # create a band matrix with diagonals v_up
11 # v_up: [v_diag , v_diag +1= v_diag -1 ,...]
12
13 # create diagonal matrix
14 matrix = np.diag(v_up [0])
15 for i in range (1, len(v_up)):
16 # check length of non -main diagonal
17 assert v_up[i]. shape [0] == v_up [0]. shape [0] - i
18 # set non -main diagonal in upper and lower triangle
19 matrix += np.diag(v_up[i], +i)
20 if not one_sided :
21 matrix += np.diag(v_up[i], -i)
22
23 return matrix
24
25
26 def is_pos_semi_def (x: np. ndarray) -> bool:
27 # check positive definiteness of matrix x (complex Hermitian or real symmetric matrix)
28
29 # calculate all eigenvalues for a complex Hermitian or real symmetric matrix
30 eigval_x = eigvalsh (x)
31 # sort out potential numerical inaccuracies and check if all eigenvalues are >= 0
32 if 0 < np.max(np.abs(np.imag(eigval_x))) < 1e -12:
33 eigval_x = np.real(eigval_x)
34 return np.all(eigval_x >= -1e -12)
35
36
37 def is_diag_domin (x, factor : float = 10.) -> tuple [bool , float]:
38 ''''''
39 # check if matrix x is diagonally dominant in one sense or another
40
41 '''
42 abs_x = np.abs(x)
43 # strictest : factor *sum of absolute off - diagonal elements < diagonal element
44 bool_array = factor * np.sum(abs_x -np.diag(np.diag(abs_x)), axis =1) < np.diag(abs_x)
45 return np.all(bool_array), np.sum(bool_array) / x. shape [0]
46
47 # less strict : factor * absolute off - diagonal element < minimum of respective diagonal elements
48 dx = np.diag(abs_x)
49 d0 = np. repeat (dx[:, None], dx. shape [0] , axis =1)
50 d1 = np. repeat (dx[None , :], dx. shape [0] , axis =0)
51 bool_array = factor * (abs_x - np.diag(np.diag(abs_x))) < np. minimum (d0 , d1)
52 '''
53 # least strict : correlation coefficient < 1/ factor
54 bool_array = np.abs(np.diag(np.diag(x) ** (-1 / 2)) @ x @ np.diag(np.diag(x) ** (-1 / 2))
55 - np. identity (x. shape [0])) < 1 / factor
56 return np.all(bool_array), (np.sum(bool_array) - x. shape [0]) / (x. shape [0] * x. shape [1] - x. shape [0])
57
58
59 def golden_section_search (g: Callable , x_l0: float , x_r0: float , eps: float , iterations : int = 20, arg: int =

0, *args):
60 # nested intervals to find x* with g(x*) <=g(x) for all x
61 a = (np.sqrt (5) - 1) / 2
62 x_l = x_l0
63 x_r = x_r0
64 x_lh = a * x_l + (1 - a) * x_r
65 x_rh = a * x_r + (1 - a) * x_l
66 for p in range (iterations):
67 g_xlh = g(x_lh , *args)[arg]
68 g_xrh = g(x_rh , *args)[arg]
69 if g_xlh > g_xrh :
70 x_l = x_lh
71 x_lh = x_rh
72 x_rh = a * x_r + (1 - a) * x_l
73 else:
74 x_r = x_rh
75 x_rh = x_lh
76 x_lh = a * x_l + (1 - a) * x_r

74

A.5 Auxiliary functions

77 if np.abs(x_l - x_r) < eps:
78 print (f'Golden section search optimum : g(x*) ={ g_xlh :.2f} at x*={ x_lh :.2f} after {p} iterations ')
79 break
80 if p == iterations - 1:
81 print (f'Aborted golden section search after { iterations } iterations !')
82
83 return (x_rh + x_lh) / 2, g_xlh
84
85
86 def center_vertex_sampling (A: sps. csr_matrix , J: int):
87 if J == A. shape [0]:
88 return np. arange (J)
89
90 # Cluster
91 sc = SpectralClustering (J, affinity ='precomputed ', n_init =100)
92 sc.fit(A)
93 center_idx = np. zeros (J, dtype =int)
94 for r in range (J):
95 groupr = sc. labels_ == r
96 # create adjacency matrix of current cluster
97 A_0 = A[np.ix_(groupr , groupr)]
98 # initialise boolean matrix
99 A_tmp = sps. lil_matrix ((np.sum(groupr), np.sum(groupr)), dtype =bool)

100
101 for w in range (1, np.sum(groupr) + 1):
102 # which node can be reached from which node in w hops?
103 A_tmp [sps. linalg . matrix_power (A_0 , w) != 0] = True
104 # ignore hopes back to the same node
105 A_tmp [np.eye(A_tmp . shape [0] , dtype =bool)] = False
106 reached_nodes = np.sum(A_tmp , axis =1)
107 if np.any(reached_nodes == np.sum(groupr) - 1):
108 # if every node is reachable from a certain node , we call it the center node of this cluster
109 center_idx [r] = np. where (groupr)[0][np. where (reached_nodes == np.sum(groupr) - 1) [0][0]]
110 break
111 # sample at the cluster centers
112 i_m_breve = center_idx
113 return i_m_breve
114
115
116 def perturb (G: graphs .Graph , perturbed_edges_percentage : float , rng: np. random . Generator | None = None):
117 # perturb a graph
118 assert 0 <= perturbed_edges_percentage <= 1 # check if perturbed_edges_percentage is in valid range
119 Wtmp = G.W. toarray () # save the graph 's weight matrix for modification
120 perturbations = int(np. round (G.Ne * perturbed_edges_percentage)) # number of created / deleted edges
121 if rng is None:
122 rng = np. random . default_rng ()
123 idx1 = rng. integers (G.N, size= perturbations) # indices of nodes on one side of the perturbed edges
124 idx2 = rng. integers (G.N, size= perturbations) # indices of nodes on the other side of the perturbed edges
125 if np.any(idx1 == idx2): # avoid self - loops by new choice for idx2
126 for i in np. where (idx1 == idx2):
127 idx2[i] = rng. choice (np. delete (np. arange (G.N), idx1[i]))
128
129 Wtmp[idx1 , idx2] = 1 - Wtmp[idx1 , idx2]
130 Wtmp[idx2 , idx1] = Wtmp[idx1 , idx2]
131
132 # return graph with modified weight matrix but same coordinates
133 return graphs . Graph (sps. csr_matrix (Wtmp))
134
135
136 def uniform_quantizer (s_unquantized : np. ndarray [float] | None ,
137 R_i_S : np. ndarray [int],
138 cov_y_S : np. ndarray [float],
139 eta: float ,
140 output_on : np. ndarray [bool] = np. array ([True , True , True])) -> tuple [
141 np. ndarray [float] | None , float | None , np. ndarray [float] | None]:
142 # support of uniform quantizer according to [Li2022 , Def. 4], 5% overloading probability for ~N
143 gamma = eta * np.sqrt(np. diagonal (cov_y_S))
144 # step size of uniform quantizer
145 delta = 2 * gamma / np. power (2, R_i_S , dtype = float)
146
147 # if the respective output is not needed , it is set to None
148 s_quantized = None

75

Chapter A Python scripts

149 D_Q = None
150 cov_q = None
151
152 # only compute variables if output is needed
153 if output_on [0]:
154 # quantised graph signal (Uniform Quantisation / Mid - Riser Characteristic) according to [Li2022 , Def.

4]
155 s_quantized = np. minimum (
156 np. maximum (delta * (np. floor (s_unquantized / delta) + 1 / 2) , -(gamma - delta / 2)), (gamma - delta

/ 2))
157 if output_on [1]:
158 # expected quantizer error
159 D_Q = np.mean(delta ** 2 / 12)
160 if output_on [2]:
161 # matrix G according to [Li2022 , eq. (10)]
162 cov_q = np.diag ((gamma / np. power (2, R_i_S , dtype = float)) ** 2)
163 return s_quantized , D_Q , cov_q
164
165
166 def rate_distortion (Xi: float , sigma2_eq : np.ndarray , Q: int):
167 # calculate rate distortion function for given Xi and power of equivalent , uncorrelated source according to

(2.1)
168 D_i = np. minimum (Xi , sigma2_eq)
169 D = np.sum(D_i)
170 RD = np.sum (1 / 2 * np.log2(sigma2_eq / D_i))
171 # calculate deviation from a given bit budget
172 dist = np. linalg .norm(RD - Q) ** 2
173 return D, RD , dist

76

Bibliography

[1] G. Leus, A. G. Marques, J. M. Moura, A. Ortega, and D. I. Shuman, “Graph
signal processing: History, development, impact, and outlook,” IEEE Signal
Processing Magazine, vol. 40, no. 4, pp. 49–60, 2023.

[2] T. M. Cover, Elements of information theory. Hoboken, NJ: Wiley-Interscience,
2nd ed., 2006.

[3] P. Li, N. Shlezinger, H. Zhang, B. Wang, and Y. C. Eldar, “Graph Signal Com-
pression by Joint Quantization and Sampling,” IEEE Trans. Signal Process.,
vol. 70, pp. 4512–4527, 2022.

[4] W. Kozek, “Matched generalized Gabor expansion of nonstationary processes,”
in Proc. 27th Asilomar Conf. Signals, Systems and Computers, (Pacific Grove,
CA), 1993.

[5] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis on
graphs,” Applied and Computational Harmonic Analysis, vol. 40, no. 2, pp. 260–
291, 2016.

[6] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Springer, 1992.

[7] J. W. Demmel, Applied Numerical Linear Algebra. SIAM, 1997.

[8] A. Ortega, Introduction to Graph Signal Processing. Cambridge University
Press, 2022.

[9] T. Tao, “The Fourier Transform,” in The Princeton Companion to Mathematics
(T. Gowers, J. Barrow-Green, and I. Leader, eds.), ch. III.27, pp. 204–208,
Princeton University Press, 2010.

[10] D. Gleich, “The MatlabBGL Matlab library.” https://www.cs.purdue.edu/
homes/dgleich/packages/matlab_bgl/.

77

https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/
https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/

Bibliography

[11] R. Ramakrishna, H.-T. Wai, and A. Scaglione, “A User Guide to Low-Pass
Graph Signal Processing and Its Applications: Tools and Applications,” IEEE
Signal Processing Magazine, vol. 37, pp. 74–85, Nov. 2020.

[12] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic
Processes. New York: McGraw Hill, 4th ed., 2002.

[13] L. Yu, J. Xie, and X. Zheng, “The relationship between graph Fourier transform
(GFT) and discrete cosine transform (DCT) for 1D signal and 2D image,”
Signal, Image and Video Processing, vol. 17, pp. 445–451, May 2022.

[14] K. Shen and W. Yu, “Fractional programming for communication systems–
part i: Power control and beamforming,” IEEE Trans. Signal Process., vol. 66,
no. 10, pp. 2616–2630, 2018.

[15] E. K. P. Chong, An introduction to optimization. New York: John Wiley &
Sons, Inc., 2nd ed., 2001.

78

List of figures

2.1 Mid-riser uniform quantiser behaviour for W = 8. 6

3.1 Example realisations of some graph models: (a) perturbed random
regular graph, (b) random geometric graph, (c) Barabási--Albert graph.
The node colour indicates the degree deg (m). 11

3.2 An exponential WFT atom g27,11, centred at vertex 27 and frequency
λ11 = 2.49 on the Minnesota road graph with N = 64, gl = Ce−τλl . . 16

3.3 Block diagram of a linear filter. 17
3.4 Generation of nonstationary process by filtering white noise. 20
3.5 Generation of nonstationary process with innovations system B. . . . 24

4.1 Block diagram of the source coding techniques (i.e., sampling S, quant-
isation Q, interpolation I) applied in this thesis. 26

4.2 Vertex-domain compression of a signal with K = N
5 . The node colour

indicates the signal value. Unsampled signal values are highlighted. . 27
4.3 Frequency-domain compression . 31
4.4 Adaption of the decay parameter of an exponential WFT atom ac-

cording to the matched sampling grid ratio 35

5.1 Rate-distortion comparison for varying K using the parameters from
Table 5.1 for the three different graph models. The rate-distortion
function yields D, ∈ [1.3 · 10−9, 3.7 · 10−8]. 41

5.2 Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.1. 43

5.3 Rate-distortion comparison for varying τa using the parameters from
Table 5.3 on random geometric graphs. The rate-distortion function
yields D, ∈ [1.45 · 10−9, 1.87 · 10−9]. 45

79

List of figures

5.4 Rate-distortion comparison for varying K using the parameters from
Table 5.4 for the three different graph models. The rate-distortion
function yields D, ∈ [1.2 · 10−8, 6.7 · 10−8]. 46

5.5 Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.4. 48

5.6 Rate per node Q, versus normalised distortion D, for mismatched
GGT sampling grid ratio on random geometric graphs. The rate-
distortion function yields D, ∈ [1.2 · 10−8, 5.6 · 10−8]. 49

5.7 Rate-distortion comparison for varying K using the parameters from
Table 5.6 for the three different graph models. The rate-distortion
function yields D, ∈ [1.6 · 10−8, 1.1 · 10−7]. 50

5.8 Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.6. 52

5.9 Rate-distortion comparison for varying K using the parameters from
Table 5.8. 53

5.10 Boxplot of κ (ΓS), the condition number of the GGT sampling matrix,
for the different choices of L and J with parameters in Table 5.8. . . . 55

5.11 Coefficient sparsity keff versus rate for various transforms using para-
meters in Table 5.8. 55

80

Nomenclature

Abbreviations

DCT discrete cosine transform

DFT discrete Fourier transform

GFT graph Fourier transform

GGT graph Gabor transform

IDCT inverse discrete cosine transform

IDFT inverse discrete Fourier transform

IGFT inverse graph Fourier transform

MSE mean square error

pdf probability density function

PSD power spectral density

rms root mean square

SNR signal-to-noise ratio

WFT windowed Fourier transform

WGFT windowed graph Fourier transform

Symbols

A adjacency matrix

a filter for vertex-domain correlation

81

Nomenclature

B number of super- and subdiagonals

b (x, θ) percentage of off-diagonal correlation coefficients smaller than θ

B upper band matrix

Cx covariance matrix

D degree matrix

Diag (· · ·) degree matrix

D (average) distortion

D, (average) normalised distortion

d (x, y) distortion function

DQ expected quantisation distortion

deg (m) degree

Δ Laplace operator

δ quantiser step size

δi Kronecker delta

δu (t) Dirac delta function shifted by u

E set of edges

E {·} expectation

Ex mean signal energy

EA (τ, ν) expected ambiguity function

F Fourier transform

F frequency period for continuous time Gabor transform

fN (x) encoder

82

Nomenclature

G graph

gik WGFT atom

γiT,kF (t) continuous time Gabor analysis window, translated by iT and mod-
ulated by kF

giT,kF (t) continuous time Gabor synthesis window, translated by iT , modu-
lated by kF

gN (·) decoder

gτξ (t) WFT atom

γ (one-sided) quantiser support

γim̆km̌
graph Gabor analysis window, translated by im̆, modulated by km̌

ΓS graph Gabor analysis matrix

H matrix of a linear graph filter

h filter transfer function

⃝ Hadamard product (i.e., component-wise multiplication)

IN identity matrix

I {·} indicator function

I interpolation procedure

I (x, y) mutual information

J number of sampled nodes for GGT

j =
√−1 imaginary unit

keff coefficient sparsity quantity

krms vertex-domain correlation quantity

κ (·) condition number

83

Nomenclature

L number of sampled frequencies for GGT

λ eigenvalue, graph frequencies

L Laplacian matrix

L̃ normalized graph Laplacian

Mkx generalised modulation of x by k

m filter for frequency-domain correlation

M number of samples(
M̃ξx

)
(t) modulation of x (t) by ξ

µ coherence

N (·, ·) Gaussian (normal) distribution

N number of nodes

∇G graph gradient

ν0 frequency-domain correlation width

ω (angular) frequency

P {·} probability of an event

P filter order of a Laplacian polymial filter

pr power spectral density

P# pseudoinverse of P

ψxmxn correlation coefficient

Q quantisation procedure

Q rate per vertex sample

Q, rate per graph node

84

Nomenclature

qw quantiser decision boundary

R real numbers

R rate, bit budget

R(I) information rate

S sampling set

S sampling procedure

SS GGT shift tensor

SS row-selection matrix

σ2 variance

Tix generalised translation of x by i

T time period for continuous time Gabor transform

T2 (x) normalised smoothness metric(
T̃ux

)
(t) time shift of x (t) by u

τ0 vertex-domain correlation width

θ threshold for absolute correlation coefficient

U matrix with eigenvectors as columns, GFT matrix, DFT matrix

u eigenvector

UK first K columns of GFT matrix

ũi ith row of U

V set of nodes

W weight matrix

m, w white noise in frequency and vertex domain

85

Nomenclature

W number of reproducer values

w weight function

x random vector

x source vector, source signal

X source alphabet

r GFT coefficients

r (jω) spectrum of continuous time signal x (t)

xK first K GFT coefficients

rg WGFT coefficient for all vertex and frequency shift

rg (τ, ξ) WFT coefficient for time shift τ frequency shift ξ

x̂ reproducer vector

X̂ reproduction alphabet

xS sampled signal vector

Ξ Lagrange multiplier for rate-distortion function

ζ subdiagonal factor

86

Statement of authorship

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die
aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In– noch im
Ausland in gleicher oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, 2. Juni 2024

Philipp Reingruber

87

	Acknowledgments
	Abstract
	Zusammenfassung
	1 Introduction
	2 Source coding
	2.1 Rate-distortion theory
	2.2 Transform coding
	2.3 Uniform quantiser

	3 Graph signal processing basics
	3.1 Topology concepts
	3.1.1 Foundations of graph topology
	3.1.2 Graph models

	3.2 Graph signal processing
	3.2.1 Graph Fourier transform
	3.2.2 Basic graph signal processing operations
	3.2.3 Windowed graph Fourier transform
	3.2.4 Laplacian polynomial filters

	3.3 Bandlimited signal reconstruction
	3.4 Nonstationary processes
	3.4.1 Class I processes: filtering and modulation
	3.4.2 Class II processes: banded frequency correlation matrix

	4 Compression techniques
	4.1 Vertex-domain compression
	4.2 Joint quantisation and sampling
	4.3 GFT-domain compression
	4.4 GGT-domain compression
	4.4.1 Motivation
	4.4.2 Choice of graph Gabor window and lattice
	4.4.3 Quantisation and reconstruction

	5 Numerical results
	5.1 Class I processes
	5.1.1 Correlated signals
	5.1.1.1 Varying bandwidth
	5.1.1.2 Varying frequency power decay

	5.1.2 Weakly correlated signals

	5.2 Class II processes
	5.2.1 Bandwidth sweep
	5.2.2 Rate sweep

	6 Conclusion and outlook
	6.1 Conclusion
	6.2 Outlook

	A Python scripts
	A.1 Simulations
	A.2 Nonstationary processes
	A.3 Compression techniques
	A.4 Graph Gabor transform
	A.5 Auxiliary functions

	Bibliography
	List of figures
	Nomenclature
	Statement of authorship

