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Abstract
We consider a nonlinear SPDE approximation of the Dean–Kawasaki equation for
independent particles. Our approximation satisfies the physical constraints of the par-
ticle system, i.e. its solution is a probability measure for all times (preservation of
positivity and mass conservation). Using a duality argument, we prove that the weak
error between particle systemand nonlinear SPDE is of the order N−1−1/(d/2+1) log N .
Along the way we show well-posedness, a comparison principle, and an entropy esti-
mate for a class of nonlinear regularized Dean–Kawasaki equations with Itô noise.

Keywords Dean–Kawasaki equation · Weak error analysis · Laplace duality ·
Nonlinear SPDE
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1 Introduction

The Dean–Kawasaki (DK) equation, named after [1] and [2], is a stochastic partial
differential equation (SPDE) for the evolution of the empirical measure of particles
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following Langevin dynamics with pairwise interaction. It is formally given by

∂t u = 1

2
�u + ∇ · (u(∇W ∗ u)) + 1√

α
∇ · (

√
uξ), (1)

where ξ is a vector-valued space-time white noise, α > 0 andW a suitable interaction
potential. In [1], (1) is formally derived as a closed equation for the dynamics of the
empiricalmeasure ofmean-field interacting diffusions: Let (Xi )Ni=1 solve theLangevin
dynamics with interaction potential W , that is

dXi
t = − 1

N

N∑

j=1

∇W (Xi
t − X j

t )dt + dBi
t (2)

for N independent Brownian motions (Bi )Ni=1. Dean [1] argues that the empirical

measure μN
t = 1

N

∑N
i=1 δXi

t
solves (1) with α = N . This is based on an ad-hoc

replacement of the (stochastic integral against the) Brownian noise by a (stochastic
integral against a) space-time white noise which formally has the same law.

Due to the singular gradient noise and because of the square root nonlinearity, the
mathematical meaning of (1) is dubious, although there has been a lot of progress
in recent years, see the literature review below. Nonetheless, the Dean–Kawasaki
equation is very useful for applications and SPDEmodels of DK-type are very popular
in physics (e.g. [3–7]), where they are also known as (stochastic) dynamical density
functional theory, see the recent survey [8].

The motivation for this work is the successful use of the Dean–Kawasaki equation
as a computational tool for simulations of fluid dynamics [9] or social dynamics [10,
11]. If N is large and if the particles live in a low-dimensional space, a discretization
of (1) can be computationally much cheaper than simulating N particles with their
interactions. This is particularly interesting for moderate sizes of N , where the hydro-
dynamic limit (N → ∞) would miss important stochastic fluctuations; for example,
in social dynamics it is interesting to consider N = O(104 − 105). However, because
of the singular nature of the DK equation and because of its fragile solution theory
(see the literature section below), it is far from obvious why a discretization of (1)
should give meaningful results for (2).

To understand this on a conceptual level, we focus on the case without interaction
(W = 0) andwe introduce a regularized version of theDK-equation,wherewe truncate
the noise, we mollify the square root nonlinearity and we consider on R+ × T

d the
equation

dμ̃N
t = 1

2
�μ̃N

t dt + 1√
N

∑

|k|≤MN

∇( fδN (μ̃N
t )ek) · dBk

t (3)

for the Fourier-basis (ek)k∈Zd , for a Lipschitz function fδN which approximates the
square root, and for d-dimensional complex Brownian motions (Bk)k∈Zd . Under
appropriate conditions we prove the well-posedness of this approximate DK-equation.
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The equation is not locally monotone in the sense of [12] and the nonlinear Itô gradi-
ent noise is quite tricky (much more so than Stratonovich noise), therefore we prove
well-posedness through a suitable transformation of the equation in combination with
a priori energy bounds. Furthermore, we prove a comparison principle which yields
non-negativity of the solution for non-negative initial data and the conservation of the
L1-norm. This is important because μ̃N should represent the empirical distributionμN

of particles, which is a probability measure by the mass conservation of the particle
system. Our main result concerns the quality of approximation of μN by μ̃N . We do
not expect that μ̃N and μN are pathwise close and we do not even couple the noises
in their dynamics to each other. Instead, we focus on the weak approximation quality,
and we show that for suitable test functions F

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ � N−1− 1

d/2+1 (t + log(N )). (4)

Since the equation for μ̃N should be amenable to discretization, this gives a partial
justification for the use of DK-type equations in numerical simulations. Although our
methods crucially rely on the absence of interactions because then we can compute
E[F(μN

t )] explicitly by duality arguments (cf. [13]), we expect similar results to hold
in the interacting case, and we expect that our general approach is quite powerful and
can possibly be generalized to the interaction case.

The paper is structured as follows. Below we review some mathematical literature
on the Dean–Kawasaki equation and we discuss why its solution theory is subtle and
some recent breakthroughs. Section2 introduces the notation and assumptions for our
approximate Dean–Kawasaki equation, and we state the main results. In Sects. 3.1
and 3.2 we prove the well-posedness and a comparison principle for regularized
Dean–Kawasaki-type equations, which in particular applies to our approximation (3).
Section4 provides the weak error estimates.

1.1 Somemathematical literature on Dean–Kawasaki type equations

Giving a pathwise meaning to the DK equation (1) is an open problem even in the case
without interaction potential,W = 0. The equation is highly singular because the noise
is effectively a derivative of the space-time white noise and thus extremely irregular,
and therefore the solution can only be a distribution and not a function and thus the

square root
√

μN
t and the product

√
μN
t ξ have no meaning. Even in dimension d = 1,

the equation is scaling supercritical in the language of regularity structures ([14]) and
paracontrolled distributions ([15]), which are techniques to tackle subcritical singular
SPDEs.

Entropy solutions of approximate DK-type equations with Stratonovich noise∑
k ∇·σ k(x, u)◦dBk

t were studied in [16]. Using a pathwise approach via rough paths
techniques, [17] establishedwell-posedness for porousmedia equations (replacing�u
by �(|u|m−1 u) with exponent m ∈ (0,∞)), again for Stratonovich noise. Both of
these results require very regular diffusion coefficients σ . However, this is partially
due to the fact that they consider Stratonovich equations and the Stratonovich cor-
rector involves the term σ ′σ . It may be possible to adapt the arguments of [16] to
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deal with the Itô equation under the same conditions that we will impose below. The
well-posedness of the Dean–Kawasaki equation with truncated Stratonovich space-
time white noise and with square-root diffusion coefficient was recently shown in
[18], where the authors establish existence and uniqueness of stochastic kinetic solu-
tions. The Stratonovich noise enables them to obtain a priori entropy-type estimates
on the kinetic solutions (cf. [18, Section 5.1]), which yield the relative compactness
of solutions with regularized square root nonlinearity. We refer to [18] and the refer-
ences therein for more details on the well-posedness of related equations. For the Itô
noise case under an additional stochastic parabolicity assumption, wellposedness of
stochastic kinetic solutions was established in [19].

Furthermore, the Dean–Kawasaki equation is related to scaling limits of interact-
ing particle systems, see e.g. [20]. In [21], the authors show that the Stratonovich
DK equation correctly predicts the large deviation rate function for non-equilibrium
fluctuations of the zero range process.

Dean–Kasawaki type equations with regularized square root and truncated Itô noise
have been considered also in [22], where the existence of weak solutions is shown.

Regularized Dean–Kawasaki equations for underdamped kinetic particles were
investigated in [23, 24]. The authors impose a cutoff on the noise, which is formally
justified by an approximation of the Dirac deltas in μN

t = ∑N
i=1 δXi

t
with mollifying

kernels. They establish the existence of mild solutions with high probability.
The mathematically correct interpretation of the “full” (not truncated) Dean–

Kawasaki equation was found only recently [13, 25]. The authors show that (1) should
be interpreted as a martingale problem, and that by similar duality arguments as for
superprocesses [26] uniqueness holds for this martingale problem. In fact, the authors
prove much more. Namely, at least for bounded interaction potentials, the Dean–
Kawasaki equation has a unique martingale solution if and only if the parameter N is
a natural number and the initial condition is an atomic probability measure (given by
the sum of N Dirac measures). If we replace μN

0 by an initial condition μ0 ∈ M that
is not of the form 1

N

∑N
i=1 δyi , or if we replace N by a constant α ∈ R

>0 \ N, then
there exists no martingale solution. In particular, the well-posedness is very fragile
with respect to changes of the parameters, and as such, the equation is not suitable for
a stable numerical approximation.

From a numerical perspective, this instability in the parameter N is worrisome. That
is, slight changes in N yield an ill-posedproblemandpossibly to largenumerical errors.
Nonetheless, numerical schemes for Dean–Kawasaki-type equations were considered
in [27, 28]. In [27], the authors introduce a discontinuous Galerkin scheme for the
regularized DK equation from [23, 24]. The work most related to ours is Cornalba-
Fischer [28], who consider finite element and finite difference approximations of
(1) without interaction (W = 0) and who also prove weak error estimates. Their
weak distance is parametrized by the Sobolev regularity of the test functions and the
rate measured in their distance can be arbitrarily high, only limited by the numerical
error and the error coming from the negative part of the approximation. However, the
authors do not prove positivity for the approximations (hence the consideration of
the negative part). Additionally they impose a strong assumption ([28, Assumption
FD4]) on the existence of lower and upper bounds for the solution of a discrete heat
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equation, which means that initially the particles must be fairly spread out. This work
was recently extended to certain interactions [29]. Our results are orthogonal in the
sense that we consider an SPDE approximation and not a discrete model, and we do
not have any restrictions on the initial distribution of particles. Our convergence rate
is upper bounded by N−5/3 in d = 1 and it gets worse in higher dimensions, which
is due to constraints on the choice of parameters coming from the solution theory of
the SPDE. Our methods are very different (Laplace duality/Kolmogorov backward
equation compared to a clever recursive scheme and choice of distance in [28]).

2 Preliminaries and statement of themain results

Consider the particle system of N ∈ N independent standard d−dimensional Brow-
nian motions (Xi )Ni=1 projected onto the torus Td = R

d/Zd (with generator being
the Laplacian with periodic boundary conditions) started at Xi

0 = xi ∈ T
d . We are

interested in the empirical measure

μN
t := 1

N

N∑

i=1

δXi
t
. (5)

Applying Itô’s formula to 〈μN
t , ϕ〉 = 1

N

∑N
i=1 ϕ(Xi

t ), ϕ ∈ C∞(Td), we see that
μN formally solves the Dean–Kawasaki equation without interaction and with atomic
initial condition,

∂tμ
N = 1

2
�μN + 1√

N
∇ · (

√
μN ξ)

μN
0 = 1

N

N∑

i=1

δxi , (6)

where ξ := (ξ j ) j=1,...,d with independent space-time white noise processes ξ j , see
[1]. As in [13, Definition 2.1] we will interpret (6) as a martingale problem. The
state space of the solution process is the space M of probability measures on T

d ,
equipped with the topology of weak convergence. For μ ∈ M and ϕ ∈ C(Td), we
write μ(ϕ) = 〈μ, ϕ〉 = ∫

Td ϕdμ.

Definition 1 We call a stochastic process (μN
t )t≥0 on a complete filtered probability

space (	,F , (Ft )t≥0,P) with values in C(R+,M ) a solution to (6) if for any test
function ϕ ∈ C∞(Td), the process

t �→ 〈μN
t , ϕ〉 − 〈μN

0 , ϕ〉 −
∫ t

0
〈μN

s ,
1

2
�ϕ〉ds
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is an (Ft )–martingale with quadratic variation

1

N

∫ ·

0
〈μN

s , |∇ϕ|2〉ds. (7)

By [13, Theorem 2.2] this martingale problem has a unique (in law) solution given
by (5). If in (6) we replace μN

0 by an initial condition μ0 ∈ M that is not of the
form 1

N

∑N
i=1 δyi , or if we replace N by a constant α ∈ R

>0 \N, then there exists no
martingale solution to the equation. In particular, the well-posedness is very fragile
with respect to changes of the parameters. Our goal is to approximate the equation
(6) in a controlled manner with an equation that has good stability properties and that
preserves the physical constraints of μN , i.e. positivity and mass conservation.

We aim for a bound of the form

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ �F,t N

−αd ,

for t > 0 and for suitable nonlinear test functions F : M → R. As usual, a � b
means that there exists a constant C > 0 (not depending on the relevant parameters),
such that a ≤ Cb. If we want to indicate the dependence of the constant C(κ) on a
parameter κ , wewrite a �κ b.Wewill see that for F(μ) := exp(〈μ, ϕ〉),ϕ ∈ C∞(Td)

the expectationE[F(μN
t )] can be computed in closed form and therefore we consider

such F .
Due to the factor 1/N in front on the quadratic variation, a direct computation shows

that the hydrodynamic/mean-field limit, that is, the solution ρ of the heat equation

∂tρ = 1

2
�ρ, ρ0 = μN

0 ,

achieves a rate of convergence αd = 1. However, ρ is deterministic and it does not
capture randomfluctuations in the particle systemμN . For theGaussian approximation
ρ̂ of the fluctuations of the particle system around the hydrodynamic limit, that is,

∂t ρ̂ = 1

2
�ρ̂ + ∇ · (

√
ρξ), ρ̂0 = 0,

with the same vector-valued space-time white noise ξ as above, we can prove that
ρ + 1√

N
ρ̂ achieves a weak error of αd = 3/2. But ρ + 1√

N
ρ̂ is a distribution of

regularity H− d
2 −ε, it is not a measure, let alone positive, and it does not conserve the

mass of the initial condition (in fact
∥∥∥ρt + 1√

N
ρ̂t

∥∥∥
L1

= ∞ for all t > 0).

Therefore, we consider a nonlinear approximation of (6): We replace the non-
Lipschitz square root function with a Lipschitz approximation that will depend on a
parameter δ and we replace the noise by its ultra-violet cutoff at frequencies of order
M . The parameters δ, M will influence the order of the approximation and they will be
chosen subsequently in the error estimate, depending on N . Let for now δ = δN > 0
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and M = MN ∈ N. We then define the Lipschitz function f = fδ as follows

f (x) =

⎧
⎪⎨

⎪⎩

1√
δ
x |x | ≤ δ/2,

smooth δ/2 ≤ |x | ≤ δ,

sign(x)
√|x | |x | ≥ δ.

(8)

The smooth interpolation should be such that f ∈ C1(R) satisfies

∥∥ f ′∥∥
L∞ ≤ C f√

δ
,

∣∣ f ′(x)
∣∣ ≤ C f√

x
, for all x > 0 (9)

for a constant C f > 0 and

| f (x)| �
√|x |,

∣∣∣ f (x)2 − x
∣∣∣ � δ, for all x ≥ 0. (10)

Any C1 approximation of the square root satisfying those bounds works for our anal-
ysis and a particular example of such a function is given in the following example.

Example 1 Consider

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
δ
x |x | ≤ δ/2,

− 2
√

δ
δ3

x3 + sign(x) 4
δ
√

δ
x2 − 3

2
√

δ
x + sign(x)

√
δ
2 δ/2 ≤ |x | ≤ δ,

sign(x)
√|x | |x | ≥ δ.

(11)

It is not hard to see that f ∈ C1 and that f satisfies the bounds (9) and (10).

We consider the approximated equation

dμ̃N
t = 1

2
�μ̃N

t dt + 1√
N

∇ · ( f (μ̃N
t )dW N

t ),

μ̃N
0 = ρN ∗ μN

0 ∈ L2(Td), (12)

where (ρN )N is an appropriate approximation of the identity, that we will choose later.
Moreover, the truncated noise (WN

t )t is given by

WN
t (x) :=

∑

|k|≤MN

ek(x)B
k
t :=

∑

|k|≤MN

exp(2π ik · x)Bk
t (13)

for x ∈ T
d and independent d-dimensional complex-valued Brownian motions

(Bk)k∈Zd (that is, Bk = Bk,1 + i Bk,2 for independent Rd -valued Brownian motions

Bk,1, Bk,2) with constraint Bk = B−k , and a truncation parameter MN ∈ N, that will
be chosen depending on N for the error estimate.
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In the next section we prove the strong well-posedness of slightly more general equa-
tions than (12), as well as the non-negativity of the strong solution and the mass
conservation property. For the precise definition of a solution we refer to Definition 2
below. But first let us formulate a summary of our main result:

Theorem 1 (Summary of the main result) Let μ̃N
0 ∈ L2 be non-negative and let MN

and δN be such that
C f (2MN+1)d

NδN
< 1, where C f > 0 is such that ‖ f ′‖2∞ ≤ C f

δN
. Then

there exists a unique probabilistically strong and analytically weak solution μ̃N to
(12). Moreover μ̃N is non-negative and satisfies

∥∥μ̃N
t

∥∥
L1(Td )

= ∥∥μ̃N
0

∥∥
L1(Td )

for all

t ≥ 0, as well as the entropy bound for λ := 1
4 (1 − C f (2MN+1)d

NδN
):

sup
t∈[0,T ]

E

[ ∫
μ̃N
t log(μ̃N

t )

]
+λ

∫ T

0
E

[ ∫ ∣∣∇μ̃N
t

∣∣2

μ̃N
t

]
dt �

∫
μ̃N
0 log(μ̃N

0 )+ T Md+2
N

N
.

(14)

If MN = δ
−1/2
N and δN � N− 1

d/2+1 with supN
C f (2MN+1)d

NδN
< 1, and if μN is the

martingale solution of (6) and if μ̃N
0 is an approximation of μN

0 as in Lemma 3, then
for any t > 0, ϕ ∈ C∞(Td) and F(μ) := exp(〈μ, ϕ〉) for μ ∈ M , the following
weak error bound holds:

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ �ϕ N−1− 1

d/2+1 (t + log(N )). (15)

Proof All this is shown in Sect. 4. See Proposition 3 for the well-posedness, see Propo-
sition 4 for the entropy estimate, and see Theorem 3 for the weak error estimate. ��

In summary, the nonlinear approximation μ̃N achieves a weak rate αd > 1, which
is always better than the error of the deterministic approximation ρ. In d = 1 the
nonlinear SPDE has a smaller weak error than the Gaussian approximation ρ + 1√

N
ρ̂

(rate N−5/3 log N compared to N−3/2), and in d = 2 the rates are nearly the same
(N−3/2 log N respectively N−3/2). In higher dimensions we get a worse error bound
for μ̃N than for the Gaussian approximation, which achieves N−3/2 independently of
the dimension. But on the positive side μ̃N is a probability density, while ρ + 1√

N
ρ̂ is

not positive and only a Schwartz distribution and not even a signed measure. The main
obstruction towards reaching a better rate for μ̃N is that the solvability conditions of
Sect. 3.1 impose constraints on δN and MN .

3 Well-posedness and comparison for regularized DK-type SPDEs

3.1 Well-posedness

In this section, we prove strong well-posedness for SPDEs of the type

dut = 1

2
�utdt + ∇ · (b(ut )dWt ),
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u0 ∈ L2. (16)

Similar stochastic conservation lawswith Stratonovich noise have been intensely stud-
ied in the past years, see for example [16–19], among many others. However, due to
the gradient noise the solution theory for Itô noise is more subtle and we need to
make an additional smallness assumption to even get the existence of solutions; see
the discussion before Assumption 3 below.

There is the related work [22] by Bechtold on equations resembling (16), and we
are in the case of “critical unboundedness” from [22, Section 4]. However, [22] only
proves the existenceof a probabilisticallyweak solutionwith paths inC([0, T ], H−ε)∩
L2([0, T ], H1) for any ε > 0. By a pathwise uniqueness argument using the a priori
energy bound that we derive below, it should be possible to show the strong existence
and uniqueness of a solution with paths in C([0, T ], H−ε) ∩ L2([0, T ], H1) for any
ε > 0. Instead, we directly show the stronger statement of strong existence and
uniqueness of a solution with paths in C([0, T ], L2) ∩ L2([0, T ], H1). As discussed
in the introduction, a similar result might also be extracted from the entropy solution
approach of [16]. We make the following assumptions.

Assumption 1 (Assumption on the noise) Let (φk)k ⊂ C1(Td ,C) with φk = φ−k

and consider independent d-dimensional complex-valuedBrownianmotions (Bk)k∈Zd

with Bk = B−k . We assume that the noise (Wt )t is given by

Wt (x) :=
∑

k∈Zd

φk(x)B
k
t

such that

CW
1 :=

∑

k∈Zd

‖φk‖2∞ < ∞ and CW
2 :=

∑

k∈Zd

‖∇φk‖2∞ < ∞, (17)

with ‖φk‖2∞ := supx∈Td |φk(x)|2 and ‖∇φk‖2∞ := supx∈Td
∑d

i=1 |∂iφk(x)|2. For
some results we only require CW

1 < ∞, and we call this the relaxed Assumption 1.

Remark 1 An example for a noise expansion satisfying the assumption is the Fourier
expansion with cut-off MN ∈ N from (13). The summability assumptions are trivially
satisfied due to the finite cut-off. Similar to [18, Remark 2.3], we can also consider a
noise

Wt (x) =
∑

k∈Zd

ak exp(2π ik · x)Bk
t ,

for a real sequence (ak)with
∑

k∈Zd |k|2 a2k < ∞, which also satisfies our assumption.

Assumption 2 (Assumptions on the diffusion coefficient)We assume that the diffusion
coefficient b ∈ C1(R,R) has a bounded derivative with bound L > 0,

∥∥b′∥∥∞ ≤ L. (18)
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In particular, b is of linear growth: There exist Cb
1 ,C

b
2 such that

|b(x)|2 ≤ Cb
1 |x |2 + Cb

2 , x ∈ R. (19)

From the Assumption 2, it follows that b is Lipschitz continuous with bound L ,
that is |b(x) − b(y)| ≤ L |x − y| for all x, y ∈ R.

Ifwewould consider Stratonovich noise, these two assumptionswould be sufficient.
For Itô noise we need an additional smallness condition for the gradient noise, because
otherwise it could break the parabolic nature of the equation; see [30, Section 2.4.2].

Assumption 3 (Stochastic parabolicity) We assume that the parameters from the pre-
vious assumptions satisfy CW

1 max(L2,Cb
1 ) < 1.

The well-posedness theory of this section will apply to the approximating Dean–
Kawasaki equation (12), where b = 1√

N
f with f from (8) and L2 = Cb

1 = C f /(Nδ).

Furthermore, the noise expansion is given with respect to the Fourier basis (φk)k
with cut-off MN ∈ N. In that case, we have that CW

1 ≤ (2MN + 1)d and CW
2 ≤

(2MN + 1)d(2πMN )2. Hence, (17) is fulfilled.
Note that due to the gradient noise term the local monotonicity condition is violated

for SPDEs of the form (16) and the variational approach of [12] cannot be applied
directly if one consideres the classical Gelfand triple H1 ↪→ L2 ↪→ H−1. Instead, we
apply the variational theory to the porous media Gelfand triple to obtain a “very weak”
solution (cf. Lemma 1 below) and deduce well-posedness of the original equation by
using a priori energy bounds.

We choose the setting for the variational theory as follows. We consider V =
L2(Td) and H = H−1(Td), with V ∗ = (L2)∗ which we identify with H−2(Td),
such that we have the Gelfand triple V ↪→ H ↪→ V ∗ which is for example also
used for the porous medium equation in [31]. We consider the Laplacian with periodic
boundary conditions, that is, � : V → V ∗ with �u(v) := 〈�u, v〉V ∗,V , u, v ∈ V .
For the duality pairing, we have that 〈�u, v〉V ∗,V = −〈Au, Av〉L2 = − ∫

Au · Av for
u, v ∈ V = L2 and A := ∇(1 − �)−1/2. Then, we define a solution to the equation
(16) as follows.

Definition 2 Anadapted stochastic process (ut )t≥0 with paths in L2([0, T ], H1(Td))∩
C([0, T ], L2(Td)) is a (probabilistically strong and analytically weak) solution to the
equation (16) for the initial condition u0 ∈ L2(Td), if for all ϕ ∈ H1(Td),

〈ut , ϕ〉 = 〈u0, ϕ〉 −
∫ t

0

1

2
〈∇us,∇ϕ〉ds +

∑

k∈Zd

∫ t

0
〈∇(b(ut )φk), ϕ〉 · dBk

s

= 〈u0, ϕ〉 −
d∑

i=1

∫ t

0

1

2
〈∂i us, ∂iϕ〉ds +

d∑

i=1

∑

k∈Zd

∫ t

0
〈∂i (b(ut )φk), ϕ〉dBk,i

s .

(20)

First, we study well-posedness of the equation with the variational approach using
the porous media Gelfand triple, which yields a “very weak” solution with paths in
L2([0, T ], L2(Td)) ∩ C([0, T ], H−1(Td)).
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Lemma 1 Let Assumptions 2 and 3 hold, as well as the relaxed Assumption 1, and con-
sider an initial condition u0 ∈ H−1(Td). Then, there exists a unique probabilistically
strong solution u ∈ L2([0, T ], L2(Td)) ∩ C([0, T ], H−1(Td)) to

d〈ut , ϕ〉 = 1

2
〈ut ,�ϕ〉dt −

∑

k∈Zd

〈b(ut )φk,∇ϕ〉 · dBk
t (21)

for all ϕ ∈ C∞(Td).

Proof We will check the conditions of [12, Section 4] to apply the variational theory
for the Gelfand triple we defined above. Let us defineG(u)w := ∑

k∈Zd ∇(b(u)φk)wk

for w ∈ l2(Zd) and u ∈ L2. Using (19), we obtain the following coercivity bound
(that is, (H3) from [12, Section 4]):

〈�u, u〉V ∗,V + ‖G(u)‖2L2(l2(Zd ),H)

= −‖Au‖2L2 +
∑

k

‖A(b(u)φk)‖2L2

≤ −‖Au‖2L2 +
∑

k

‖b(u)φk‖2L2

≤ −‖Au‖2L2 +
∑

k

‖φk‖2∞ ‖b(u)‖2L2

≤ −‖Au‖2L2 + CW
1 (Cb

1 ‖u‖2L2 + Cb
2 )

= (CW
1 Cb

1 − 1)‖Au‖2L2 + CW
1 Cb

1‖(1 − �)−1/2u‖2L2 + CW
1 Cb

2

≤ (CW
1 Cb

1 − 1)‖Au‖2L2 + CW
1 Cb

1‖u‖2H−1 + CW
1 Cb

2 ,

where we used (17). Here, the first inequality follows from the Plancherel theorem for
the Fourier transformFTd on the torus (FTd f (k) := ∫

Td e−2π ik·x f (x)dx), such that
for f ∈ L2(Td),

‖A f ‖2L2 =
∥∥∥(1 − �)−1/2∇ f

∥∥∥
2

L2(Td )
=

∑

k∈Zd

(1 + |2πk|2)−1 |2πk|2 ∣∣FTd ( f )(k)
∣∣2

≤
∑

k∈Zd

∣∣FTd ( f )(k)
∣∣2 = ‖ f ‖2L2(Td )

,

and similarly we get ‖u‖2
L2 = ‖Au‖2

L2 + ∥∥(1 − �)−1/2u
∥∥2
L2 . The coercivity then

follows by the Assumption 3 on the parameters, since CW
1 Cb

1 < 1. The weak mono-
tonicity condition (that is, condition (H2) from [12, Section 4]) follows from the
analogue estimate, using the global Lipschitz bound L due to (18):

〈
�(u1 − u2), u1 − u2

〉

V ∗,V
+ ‖G(u1) − G(u2)‖2L2(l2(Zd ),H)

= −‖A(u1 − u2)‖2L2 +
∑

k

‖A(
(b(u1t ) − b(u2t ))φk

)‖2L2
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≤ −‖A(u1 − u2)‖2L2 +
∑

k

‖(b(u1t ) − b(u2t ))φk‖2L2

≤ −‖A(u1 − u2)‖2L2 +
∑

k

‖φk‖2∞L2‖u1t − u2t ‖2L2

= −‖A(u1 − u2)‖2L2 + CW
1 L2(‖A(u1t − u2t )‖2L2 + ‖(1 − �)−1/2(u1t − u2t )‖2L2)

≤ CW
1 L2‖u1t − u2t ‖2H−1 ,

using CW
1 L2 < 1 in the last step. Thus, we obtain the weak monotonicity. The

hemicontinuity from [12, Section 4, H1] follows by linearity of the Laplacian. The
boundedness condition from [12, Section 4, H4] is trivially satisfied due to continuity,
that is, ‖�u‖V ∗ ≤ ‖v‖V . ��
Remark 2 Notice that the relaxed Assumption 1 is sufficient to prove the lemma. The
full Assumption 1 will only be needed to obtain better regularity for the solution u.
Remarkably, the relaxed Assumption 1 corresponds to a subcriticality type condition
in the sense of regularity structures [14]: Indeed, this is precisely what we need from
the noise so that the solution to the linearized equation dZt = 1

2�Ztdt + ∇ · dWt

is a function in the space variable and not a distribution. However, under such weak
assumptions Zt will not be in H1 and therefore also ut should not be in H1. So, to
obtain better regularity for ut , we make stronger assumptions on the noise. Besides
the subcriticality condition we also need the smallness condition Assumption 3 which
is due to the Itô noise. We expect that for Stratonovich noise the relaxed Assumption 1
together with Assumption 2 is sufficient and that with a small variation of Lemma 1
we can solve the Stratonovich version of (20) “in the entire subcritical regime” (i.e.
under the relaxed Assumption 1).

To prove existence of a solution to (20) in the sense of Definition 2, we proceed as
follows: Consider the Galerkin projected solution uR for R ∈ N. That is, for u0 ∈ L2,
let uR be the strong solution of

duR
t = 1

2
�uRdt +

∑

k

�R∇(b(uR
t )φk)dB

k
t , uR

0 = �Ru0, (22)

for the Galerkin projection �R : V → VR with VR := span(er | r ∈ Z
d , |r | ≤ R)

and the Fourier basis (er )r∈Zd . The lemma below proves an energy estimate which
yields tightness of the sequence (uR)R in a space of better regularity. By the proof of
[12, Theorem 5.1.3] and Lemma 1, it follows that uR → u in L2(	 × [0, T ], L2).

Lemma 2 Let Assumptions 1, 2 and 3 hold. Let u0 ∈ L2(Td) and let uR be defined as
in (22). Then, the following energy bound holds true:

E[
∥∥∥uR

t

∥∥∥
2

L2
] + λ

∫ t

0
E[

∥∥∥uR
s

∥∥∥
2

Ḣ1
]ds ≤ (CW

2 Cb
2 t + ‖u0‖2L2) exp(t λ̃), (23)

where λ := 1 − CW
1 L2 > 0 and λ̃ := CW

2 Cb
1 .
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Proof Since uR ∈ C([0, T ],C∞) a.s., we can apply Itô’s formula to (uR
t (x))2 and we

obtain

d
∥∥∥uR

t

∥∥∥
2

L2
=

∫
d(uR

t (x))2dx

= 2
∫

uR
t (x)

(
1

2
�uR

t (x)dt +
∑

k

�R∇(b(uR
t (x))φk(x)) · dBk

t

)
dx

+
∑

k

∫ ∣∣∣�R∇(b(uR
t (x))φk(x))

∣∣∣
2
dxdt .

Taking the expectation, the martingale vanishes and using ‖�Rv‖L2 ≤ ‖v‖L2 and
(18), we obtain

E[
∥∥∥uR

t

∥∥∥
2

L2
] ≤

∥∥∥uR
0

∥∥∥
2

L2
−

∫ t

0
E

[ ∫

Td
∇uR

s (x) · ∇uR
s (x)dx

]
ds

+
∫ t

0

∑

k

E[
∥∥∥b′(uR

s )φk∇uR
s

∥∥∥
2

L2
]ds +

∫ t

0

∑

k

E[
∥∥∥b(uR

s )∇φk

∥∥∥
2

L2
]ds

≤
∥∥∥uR

0

∥∥∥
2

L2
−

∫ t

0
E[

∥∥∥∇uR
s

∥∥∥
2

L2
]ds + CW

1 L2
∫ t

0
E[

∥∥∥∇uR
s

∥∥∥
2

L2
]ds

+ CW
2

∫ t

0
E[

∥∥∥b(uR
s )

∥∥∥
2

L2
]ds. (24)

Letting λ := 1 − CW
1 L2 > 0 and using the linear growth assumption on b given by

(19), we obtain

E[
∥∥∥uR

t

∥∥∥
2

L2
] ≤

∥∥∥uR
0

∥∥∥
2

L2
− λ

∫ t

0
E[

∥∥∥uR
s

∥∥∥
2

Ḣ1
]ds + CW

2 Cb
1

∫ t

0
E[

∥∥∥uR
s

∥∥∥
2

L2
]ds + CW

2 Cb
2 t .

(25)

Using Gronwall’s inequality, we thus obtain

E[
∥∥∥uR

t

∥∥∥
2

L2
] ≤ (CW

2 Cb
2 t +

∥∥∥uR
0

∥∥∥
2

L2
) exp(t λ̃) (26)

for λ̃ = CW
2 Cb

1 and hence, plugging (26) in (25), yields

E

[∥∥∥uR
t

∥∥∥
2

L2

]
+ λ

∫ t

0
E

[∥∥∥uR
s

∥∥∥
2

H1

]
ds ≤

(
CW
2 Cb

2 t +
∥∥∥uR

0

∥∥∥
2

L2

)
exp(t λ̃),

which implies (23), as
∥∥uR

0

∥∥2
L2 = ‖�Ru0‖2L2 ≤ ‖u0‖2L2 . ��

Remark 3 (Energy estimate) If we take b = 1√
N
f , where f is given by (8), we can

improve the energy estimate by using that | f (x)| ≤ √|x | in order to estimate the
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L2-norm of b(uR
s ) in (24). Utilizing also the mass conservation of the solution u, that

we later prove in Proposition 2, we then obtain the following a priori energy bound

E[‖ut‖2L2 ] + λ

∫ t

0
E[‖∇us‖2L2 ]ds ≤ ‖u0‖2L2 + CW

2

N

∫ t

0
E[‖us‖L1 ]ds

≤ ‖u0‖2L2 + CW
2

N
t ‖u0‖L1 . (27)

Proposition 1 Let Assumptions 1, 2 and 3 hold and let u0 ∈ L2(Td). Then there
exists a unique solution u with paths in L2([0, T ], H1(Td)) ∩ C([0, T ], L2(Td)) of
the equation (16) in the sense of Definition 2.

Proof From Lemma 1 it follows that u solves the “very weak” equation (21) and
almost surely

u ∈ L2([0, T ], L2) ∩ C([0, T ], H−1).

By Lemma 2, the Galerkin projected solutions (uR)R satisfy the energy bound (23).
Since L2(	 × [0, T ], H1) is reflexive, we thus obtain that, along a subsequence,

(uR)R converges weakly in L2(	 × [0, T ], H1). We know that for R → ∞,

uR → u in L2(	 × [0, T ], L2).

Thus, the limit of each such subsequence is given by u and we can conclude that the
whole sequence (uR)R converges to u, weakly in L2(	 × [0, T ], H1). In particular,
the limit u satisfies

u ∈ L2([0, T ], H1)

almost surely. Due to u ∈ L2([0, T ], H1) ∩ C([0, T ], H−1) a.s., the mapping t �→
ut ∈ L2 is almost surely weakly continuous. Since u ∈ L2([0, T ], H1) a.s. and
u0 ∈ L2, and because (21) is equivalent to u solving

dut = −1

2
�utdt +

∑

k

∇[b(ut )φk] · dBk
t ∈ (H1)∗ = H−1,

we can apply [12, Theorem 4.2.5] to obtain an Itô formula for d ‖ut‖2L2 . Almost sure
continuity of the integrals in time then implies almost sure continuity of the mapping

t �→ ‖ut‖2L2 . (28)

From continuity of (28) and continuity of t �→ ut ∈ L2 in the weak topology we
get that u ∈ C([0, T ], L2) almost surely. Hence, overall, we indeed have that u ∈
L2([0, T ], H1) ∩ C([0, T ], L2) almost surely. By the regularity of u and as u solves
(21), it follows that u solves (20) (for all ϕ ∈ C∞(Td) and thus, by density for all
ϕ ∈ H1(Td)). Uniqueness of the solution follows from Lemma 1. ��
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Remark 4 Using the Itô formula for
∥∥uR

t − ut
∥∥2
L2 (cf. [12, Theorem 4.2.5]) and as

uR
0 = �Ru0 → u0 in L2, we see that uR → u strongly in L2(	 × [0, T ], H1) and

that the energy estimate holds true for the limit u.

Remark 5 The regularity, u ∈ C([0, T ], L2) will be used to prove the comparison
principle, Theorem 2, below.

3.2 A comparison principle for regularized DK-type SPDEs

In this section we prove a comparison principle for the class of SPDEs (16), which
will in particular imply positivity and mass conservation of the solution.

Comparing for example with the positivity result for stochastic porous media equa-
tions from [31, Theorem 2.6.2], our result is slightly stronger as we use that our
solution u ∈ C([0, T ], L2) almost surely. But the proof follows a similar strategy
(applying Itô’s formula to a suitable test function) as in [31, Theorem 2.6.2] or [32,
Theorem 2.1].

Theorem 2 Let Assumptions 1, 2 and 3 hold. Furthermore, let u+ and u− be two
solutions of (20) with initial conditions u+

0 , u−
0 ∈ L2, respectively, such that u+

0 (x) ≥
u−
0 (x) for Lebesgue-almost all x ∈ T

d . Then

P
(
u+
t ≥ u−

t Leb -a.e. ∀t ∈ [0, T ]) = 1,

where Leb is the Lebesgue measure on T
d .

Proof We follow the proof of [32, Theorem 2.1]. The main idea is an application of
Itô’s formula to a suitable C2 approximation of the map x �→ max(x, 0)2, applied
to the difference of the solutions. More precisely, let for p > 0, ϕp ∈ C2(R,R) be
defined by

ϕp(x) := 1[0,∞)(x)
∫ x

0

∫ y

0

[
2pz1[

0, 1p

](z) + 2 1( 1
p ,∞)(z)

]
dzdy.

Note that ϕp satisfies

0 ≤ ϕ′
p(x) ≤ 2max(x, 0) and 0 ≤ ϕ′′

p(x) ≤ 2 1x≥0.

Next, we define

�p(h) :=
∫

Td
ϕp(h(x))dx .

Let wt := u−
t − u+

t for t > 0. Since ϕp(x) ↑ max(x, 0)2 for p → ∞, by monotone
convergence we conclude that�p(wt ) ↑ ‖max(wt , 0)‖2L2 for p → ∞. Moreover,�p

is twice Fréchet differentiable and we obtain by the Itô formula from [33, Theorem
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1.2] that

d�p(wt ) = −1

2
〈ϕ′′

p(wt ), |∇wt |2〉dt +
∑

k

〈
ϕ′
p(wt ),∇

(
(b(u−

t ) − b(u+
t ))φk

)〉 · dBk
t

(29)

+ 1

2

∑

k

∫ ∣∣∇(
(b(u−

t ) − b(u+
t ))φk

)∣∣2ϕ′′
p(wt )dxdt . (30)

Notice that �p(w0) = 0, since by assumption w0 ≤ 0 a.e., and that the martingale
term in (29) is a indeed a martingale. From Young’s weighted inequality for products
we obtain (x + y)2 = x2 + 2xy + y2 ≤ (1 + κ)x2 + (1 + 1/(2κ))y2 for any κ > 0,
and using Assumption 2 on b we can thus estimate the quadratic variation term (30)
by

1

2

∑

k

(∇(
(b(u−

t ) − b(u+
t ))φk

))2
ϕ′′
p(wt )

≤ 1

2

∑

k

[
(1 + κ)

(∇(b(u−
t ) − b(u+

t ))φk
)2 +

(
1 + 1

2κ

) (
(b(u−

t ) − b(u+
t ))∇φk

)2
]

ϕ′′
p(wt )

≤ 1

2

[
(1 + κ)CW

1 L2 |∇wt |2 + (1 + 1

2κ
)CW

2 L22 · |wt |2
]

ϕ′′
p(wt ).

Note that |wt |2 ϕ′′
p(wt ) ≤ 2max (wt , 0)2, and thatCW

1 L2 < 1 by Assumption 3 which

means that there exists κ > 0 with (1 + κ)CW
1 L2 < 1. For such κ we obtain

E[�p(wt )] ≤ 1

2

(
(1 + κ)CW

1 L2 − 1
) ∫ t

0
E

[
〈ϕ′′

p(ws), |∇ws |2〉
]
ds

+ 2(1 + 1

2κ
)CW

2 L2
∫ t

0
E

[
‖max(ws, 0)‖2L2

]
ds

�
∫ t

0
E

[
‖max(ws, 0)‖2L2

]
ds.

Taking p → ∞ and applying Gronwall’s inequality yields

E
[
‖max(ws, 0)‖2L2

]
= 0.

Hence, (P ⊗ Leb)(wt ≤ 0) = 1 for all t ≥ 0. By continuity, w ∈ C([0, T ], L2), the
claim follows. ��
Corollary 1 (Non-negativity of the solution) Let Assumptions 1, 2 and 3 hold, and
assume additionally that b(0) = 0. Let u be a solution of (16) with initial condition
u0 ≥ 0 almost everywhere. Then P(ut ≥ 0 Leb -a.e. ∀t ∈ [0, T ]) = 1.

Proof Since b(0) = 0, it follows that the zero function is a solution of (16). Then the
claim directly follows from Theorem 2. ��
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Proposition 2 (Conservation of mass) Under the assumptions of the previous corol-
lary, let u solve (16) with non-negative initial condition u0. Then almost surely∫ |ut | (x)dx = ∫ |u0| (x)dx for all t ∈ [0, T ].
Proof Using non-negativity of the solution u obtained by Corollary 1 and testing the
equation against ϕ = 1 ∈ C∞(Td), we have that, for almost all ω ∈ 	,

∫
|ut | (x)dx =

∫
ut (x)dx = 〈ut , 1〉 = 〈u0, 1〉 =

∫
|u0| (x)dx .

The claim follows from the continuity of t �→ ∫
ut (x)dx . ��

4 Weak error estimate

In this section we estimate the weak error between the martingale solution μN of
the Dean–Kawasaki equation and the strong solution μ̃N of the approximate Dean–
Kawasaki equation. For that purpose we first have to discuss the solution theory of the
approximate Dean–Kawasaki equation:

Proposition 3 Consider the equation

dμ̃N
t = 1

2
�μ̃N

t dt + 1√
N

∇ · ( f (μ̃N
t )dW N

t ),

μ̃N
0 ∈ L2(Td), (31)

where f ∈ C1(R) satisfies

∥∥ f ′∥∥
L∞ � 1√

δ
,

∣∣ f ′(x)
∣∣ � 1√

x
, for all x > 0 (32)

and

| f (x)| �
√|x |,

∣∣∣ f (x)2 − x
∣∣∣ � δ, for all x ≥ 0, (33)

and where
W N

t (x) :=
∑

|k|≤MN

ek(x)B
k
t :=

∑

|k|≤MN

exp(2π ik · x)Bk
t (34)

for d-dimensional complex-valued Brownian motions (Bk)k∈Zd . If
C f (2MN+1)d

NδN
< 1

holds (“coercivity condition”),whereC f > 0 is such that‖ f ′‖2∞ ≤ C f
δN

, thenEquation

(31) has a unique strong solution in the sense of Sect. 3.1. If μ̃N
0 ≥ 0, then μ̃N

t ≥ 0
and

∥∥μ̃N
t

∥∥
L1 = ∥∥μ̃N

0

∥∥
L1 for all t ∈ [0, T ].

123



Stochastics and Partial Differential Equations: Analysis and Computations

Proof This follows from the results in Sect. 3.1 once we verify that our equation
satisfies the assumptions of that section. For that purpose, note that

CW
1 =

∑

|k|≤MN

‖ek‖2∞ = (2MN + 1)d , CW
2 =

∑

|k|≤MN

|2πk|2 ‖ek‖2∞ < ∞, (35)

and, since f (0) = 0, we also have L2 = Cb
1 ≤ C f

NδN
by assumption, and Cb

2 = 0.

Therefore, Assumptions 1 and 2 hold. Moreover, the condition
C f (2MN+1)d

NδN
< 1 is

nothing else than C1
W max{L2,Cb

1 } < 1, i.e. also Assumption 3 holds. ��
This well-posedness result together with the energy estimate of Sect. 3.1 would

be sufficient to derive a weak error estimate for the approximation of μN with μ̃N .

However, through the energy estimate the weak error would depend on
∥∥μ̃N

0

∥∥2
L2 .

Therefore, inspired by [18], we derive an entropy estimate below.
The main advantage is that this estimate only depends on

∫
μ̃N
0 log(μ̃N

0 ), which
typically is much smaller than ‖μ̃N

0 ‖2
L2 and this leads to better error estimates. To be

precise, we will show that
∫

μ̃N
0 log(μ̃N

0 ) � log(N ), while typically
∥∥μ̃N

0

∥∥2
L2 � Nd ,

cf. Lemma 3 below.

Proposition 4 (Entropy estimate) Let μ̃N be a solution of the approximate Dean–
Kawasaki equation (20) with the initial condition μ̃N

0 := ρN ∗ μN
0 for μN

0 :=
1
N

∑N
i=1 δxi and let (ρN )N≥1 be a mollifying sequence such that μ̃N

0 ≥ 0 and
∥∥ρN ∗ μN

0

∥∥
L1 = 1. Furthermore, assume the coercivity condition

C f (2MN+1)d

NδN
< 1,

where C f > 0 is such that ‖ f ′‖2∞ ≤ C f
δN

. Then the following entropy estimate holds

sup
t∈[0,T ]

E

[ ∫
μ̃N
t log(μ̃N

t )

]
+ λ

∫ T

0
E

[ ∫ ∣∣∇μ̃N
t

∣∣2

μ̃N
t

]
dt

�
∫

μ̃N
0 log(μ̃N

0 ) + T Md+2
N

N
, (36)

for λ := 1
4

(
1 − C f (2MN+1)d

NδN

)
.

Proof Let γ > 0 and gγ (y) := (γ + y) log(γ + y), y ∈ [0,∞). Then gγ ∈
C∞([0,∞),R), with (gγ )′(y) = log(γ + y) + 1 and (gγ )′′(y) = 1

γ+y , and we

extend gγ to R so that the extension is in C2. But recall that μ̃N is non-negative by
the comparison principle, and therefore we only evaluate gγ on [0,∞) below. By the
Itô formula from [33, Theorem 1.2] we have

d

(∫
gγ (μ̃N

t )

)
= −1

2
〈g′′

γ (μ̃N
t ),

∣∣∣∇μ̃N
t

∣∣∣
2〉dt +

∑

|k|≤MN

〈
g′
γ (μ̃N

t ),∇
(
f (μ̃N

t )ek
) 〉 · dBk

t

+ 1

2N

∑

|k|≤MN

〈g′′
γ (μ̃N

t ),

∣∣∣∇
(
f (μ̃N

t )ek
)∣∣∣

2〉dt
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=
(

−1

2

∫ ∣∣∇μ̃N
t

∣∣2

γ + μ̃N
t

+ 1

2N

∑

|k|≤MN

∫ ∣∣∇ (
f (μ̃N

t )ek
)∣∣2

γ + μ̃N
t

)
dt + dMt ,

where M denotes the local martingale term. We estimate the Itô correction term for
κ > 0 (applying Young’s inequality in the same way as in the proof of the comparison
principle) by

∫ ∣∣∇( f (μ̃N
t )ek)

∣∣2

γ + μ̃N
t

≤ (1 + κ)

∫ ∣∣∇( f (μ̃N
t ))ek

∣∣2

γ + μ̃N
t

+ (1 + 1

2κ
)

∣∣ f (μ̃N
t )∇ek

∣∣2

γ + μ̃N
t

≤ (1 + κ)
∥∥ f ′∥∥2∞

∫ ∣∣∇μ̃N
t

∣∣2

γ + μ̃N
t

+ (1 + 1

2κ
)

∥∥∥∥
f√·

∥∥∥∥∞
|2πk|2 .

Summing over k and estimating ‖ f ′‖2∞ ≤ C/δN , we obtain for some K > 0

d

(∫
gγ (μ̃N

t )

)
≤

(
1

2

(
(1 + κ)

C f (2MN + 1)d

NδN
− 1

) ∫
∣∣∣∇μ̃N

t

∣∣∣
2

γ + μ̃N
t

+ (1 + 1

2κ
)K

Md+2
N
N

)
dt

+ dMt ,

and by choosing κ > 0 appropriately we can achieve that 1
2

(
(1 + κ)

C(2MN+1)d

NδN
− 1

)

= −λ. Next, we show that the local martingale is a true martingale: Since | f (μ)|2 �
|μ|, its quadratic variation satisfies

∑

|k|≤MN

∫ t

0
E

[∣∣〈 log(γ + μ̃N
s ) + 1,∇( f (μ̃N

s )ek)
〉∣∣2]ds

=
∑

|k|≤MN

∫ t

0
E

[∣∣∣∣
∫

( f (μ̃N
s )ek)∇us

γ + μ̃N
s

∣∣∣∣
2]
ds �

∑

|k|≤MN

∫ t

0
E[

∣∣∣∇μ̃N
s

∣∣∣
2]ds < ∞.

Together, the above yields the bound

E

[ ∫
(γ + μ̃N

t ) log(γ + μ̃N
t )

]
+ λ

∫ t

0
E

[ ∫ ∣∣∇μ̃N
s

∣∣2

γ + μ̃N
s

]
ds

�
∫

(γ + μ̃N
0 ) log(γ + μ̃N

0 ) + tMd+2
N

N

As [0,∞) � x → x log(x) is bounded from below, we can apply Fatou’s lemma to

the left-hand side, and since |x log(x)| ≤ x2 + 1 for x ≥ 0 and
∥∥μ̃N

0

∥∥2
L2 < ∞, we can

apply the dominated convergence theorem to the right-hand side, such that we obtain
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for γ → 0,

E

[ ∫
μ̃N
t log(μ̃N

t )

]
+ λ

∫ t

0
E

[ ∫ ∣∣∇μ̃N
s

∣∣2

μ̃N
s

]
ds �

∫
μ̃N
0 log(μ̃N

0 ) + tMd+2
N

N
.

The claim now follows by taking the supremum in t ∈ [0, T ]. ��
Asdiscussed above, there are good approximations ofDiracmasseswithmoderately

large entropy:

Lemma 3 Let ρ ∈ C∞
c (Rd)with

∫
Rd ρ(y)dy = 1, such that ρ ≥ 0 and ρ is symmetric

in the sense that ρ(x) = ρ(−x) for all x ∈ R
d . Define ρN (y) := ∑

k∈Zd Ndρ(N (y+
k)), y ∈ T

d . Then ρN ∈ C∞(Td) is non-negative,
∫
Td ρN (y)dy = 1, and with

μN
0 = ∑N

i=1 δxi and μ̃N
0 := μN

0 ∗ ρN we have

μ̃N
0 ≥ 0, ‖μ̃N

0 ‖L1(Td ) = 1,
∫

μ̃N
0 log(μ̃N

0 ) � log N .

Moreover, we have for all ϕ ∈ C2
b (R

d):

∣∣∣〈μN
0 , ϕ〉 − 〈μ̃N

0 , ϕ〉
∣∣∣ � N−2 ‖ϕ‖C2

b
,

where ‖ϕ‖C2
b

:= ∑2
j=0

∥∥D jϕ
∥∥∞.

Proof Non-negativity is obvious because μ̃N
0 is a convolution of non-negative mea-

sures. The statement about the L1 norm follows by Fubini’s theorem. For the entropy,
we first trivially bound

∥∥∥μ̃N
0

∥∥∥
L∞(Td )

=
∥∥∥ρN ∗ μN

0

∥∥∥
L∞(Td )

≤ Nd ‖ρ‖L∞ � Nd .

Since x log x is negative on [0, 1), we get together with the trivial L∞ bound:

∫
(μ̃N

0 ) log(μ̃N
0 ) ≤

∫
(μ̃N

0 ) log(μ̃N
0 )1μ̃N

0 ≥1

≤
∥∥∥μ̃N

0

∥∥∥
L1

∥∥∥log(μ̃N
0 )1μ̃N

0 ≥1

∥∥∥
L∞

≤ log(
∥∥∥μ̃N

0

∥∥∥
L∞)

� log(Nd) = d log(N ).

To compare 〈μN
0 , ϕ〉 and 〈μ̃N

0 , ϕ〉, note that
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∣∣∣〈μN
0 , ϕ〉 − 〈μ̃N

0 , ϕ〉
∣∣∣ =

∣∣∣∣
1

N

N∑

i=1

ϕ(xi ) − 1

N

N∑

i=1

∑

k∈Zd

∫

Td
Ndρ(N (xi + k − y))ϕ(y)dy

∣∣∣∣

=
∣∣∣∣
1

N

N∑

i=1

(ϕ(xi ) − ψn ∗ ϕ(xi ))

∣∣∣∣ ≤
∥∥∥ϕ − ψN ∗ ϕ

∥∥∥∞ ,

where ψN (x) = Ndρ(Nx) for x ∈ R
d , and where the convolutions in the second line

are on R
d and not on Td . Using the symmetry of ρ, we get for all x ∈ R

d

∣∣∣(ϕ − ψN ∗ ϕ)(x)
∣∣∣ =

∣∣∣∣
∫

Rd
ρ(Ny)Nd

(
ϕ(x) − ∇ϕ(x) · y − ϕ(y)

)
dy

∣∣∣∣

≤ ‖ϕ‖C2
b

∣∣∣∣
∫

Rd
ρ(Ny)Nd |y|2dy

∣∣∣∣ = N−2‖ϕ‖C2
b

∫

Rd
ρ(y)|y|2dy,

which concludes the proof. ��
Note that the entropy of μ̃N

0 is much smaller than its L2 norm, which in general we
can only bound by Nd .

Theorem 3 Let μN be the martingale solution of the Dean–Kawasaki equation in
the sense of Definition 1 with initial condition μN

0 := 1
N

∑N
i=1 δxi . Let μ̃N

0 be as in
Lemma 3 and let f and W N be as in Proposition 3. Assume that with the notation

of Proposition 3, supN
C f (2MN+1)d

NδN
< 1. Let μ̃N be the solution of the approximate

Dean–Kawasaki equation (31) with initial condition μ̃N
0 .

Then for any t > 0, ϕ ∈ C∞(Td) and F(μ) := exp(〈μ, ϕ〉) forμ ∈ M , the following
weak error bound holds:

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ �ϕ N−2 + δN

N
t + t

M2
N N

+ Md
N

N 2 t + log N

M2
N N

. (37)

For MN = δ
−1/2
N and δN � N− 1

d/2+1 (which is the optimal choice under the coercivity
condition) we have

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ �ϕ N−1− 1

d/2+1 (t + log(N )). (38)

Remark 6 With the functions Fk(μ) = exp(〈μ, ϕk〉) for a suitable dense set (ϕk)k∈N ⊂
C∞(Td), we could use [34, Theorem 3.4.5] to construct a metric for the topology of
weak convergence of probability measures on M and then replace the left-hand side
of (38) by the distance of μ̃N

t and μN
t in this metric.

Proof of Theorem 3 To prove the weak error bound (38), we apply the duality argu-
ment of [13]. For that purpose, let v solve the Hamilton–Jacobi equation with initial
condition ϕ ∈ C∞(Td),

∂tv = 1

2
�v + 1

2N
|∇v|2 , v0 = ϕ. (39)
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The Cole–Hopf transformation w = e
1
N v solves ∂tw = 1

2�w, and therefore with the
heat kernel p of 1

2� (on Td with periodic boundary conditions):

vt = N log(pt ∗ e
1
N ϕ).

By the maximum principle we have vt ∈ [minx∈Td ϕ(x),maxx∈Td ϕ(x)] for all t ≥ 0,
and by the explicit representation of the solution we get

|∂ivt | =
∣∣∣∣N

pt ∗ ( 1
N ∂iϕe

1
N ϕ

)

pt ∗ e
1
N ϕ

∣∣∣∣ �ϕ 1 (40)

uniformly in N and t , and by a similar application of the chain rule also
∣∣∂i jvt

∣∣ �ϕ 1
uniformly in N and t , so overall supt≥0,N∈N ‖v‖C2

b
�ϕ 1.

By definition, we have F(μN
t ) = exp(〈μN

t , vt−t 〉) and with the Laplace duality of
[13, Theorem 2.3] we obtain

E[F(μN
t )] = exp(〈μN

0 , vt 〉).

For μ̃N we have on [0, t]

d〈μ̃N
s , vt−s〉 = 〈μ̃N

s ,
(−∂s + 1

2
�

)
vt−s〉ds − 1√

N

∑

|k|≤MN

〈 f (μ̃N
s )ek,∇vt−s〉dBk

s ,

(41)

and using equation (39) for v, we arrive at

d
(
exp(〈μ̃N

s , vt−s〉)
)
s

= − 1√
N

∑

|k|≤MN

exp(〈μ̃N
s , vt−s〉)〈 f (μ̃N

s )ek,∇vt−s〉dBk
s

+ 1

2N
exp(〈μ̃N

s , vt−s〉)
( ∑

|k|≤MN

∣∣∣〈 f (μ̃N
s )ek,∇vt−s〉

∣∣∣
2 − 〈μ̃N

s , |∇vt−s |2〉
)
ds.

(42)

Note that the stochastic integral on the right hand side is indeed a martingale (not only
a local martingale). This can be concluded from the bounds exp

(〈μ̃N
s , vt−s〉

)
� 1 (by

mass conservation of μ̃N and the uniform bounds for v), |∇vt−s | � 1 and f (u)2 � u,
which yield

∑

|k|≤MN

∫ t

0
E[exp(〈μ̃N

s , vt−s〉)
∣∣∣〈 f (μ̃N

s )ek , ∇vt−s〉
∣∣∣
2]ds ≤

∫ t

0
E[

∥∥∥ f (μ̃N
s )∇vt−s

∥∥∥
2

L2
]ds

�
∫ t

0
E[

∥∥∥μ̃N
s

∥∥∥
L1

]ds = t .
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Writing (42) in integral form and taking the expectation, we thus obtain the bound

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣

≤
∣∣∣exp(〈μ̃N

0 , vt 〉) − exp(〈μN
0 , vt 〉)

∣∣∣

+ 1

2N
E

[ ∫ t

0
exp(〈μ̃N

s , vt−s〉)
∣∣∣∣

∑

|k|≤MN

∣∣∣〈 f (μ̃N
s )ek,∇vt−s〉

∣∣∣
2 − 〈μ̃N

s , |∇vt−s |2〉
∣∣∣∣ds

]
.

(43)

Since exp(〈μ̃N
s , vt−s〉) � 1, we are left with estimating the term in the brackets in

(43). To that aim, we write

1

2N

( ∑

|k|≤MN

∣∣∣〈 f (μ̃N
s )ek,∇vt−s〉

∣∣∣
2 − 〈μ̃N

s , |∇vt−s |2〉
)

= As + Cs

2N
,

where
As := 〈 f (μ̃N

s )2, |∇vt−s |2〉 − 〈μ̃N
s , |∇vt−s |2〉

and

Cs :=
∑

|k|≤MN

∣∣∣〈 f (μ̃N
s )ek,∇vt−s〉

∣∣∣
2 − 〈 f (μ̃N

s )2, |∇vt−s |2〉

=
∑

|k|≤MN

∣∣∣〈 f (μ̃N
s )∇vt−s, ek〉

∣∣∣
2 −

∥∥∥ f (μ̃N
s )∇vt−s

∥∥∥
2

L2
.

To estimate A, we use positivity of μ̃N from Corollary 1, as well as (33), such that∣∣x − f (x)2
∣∣ � δN for x ≥ 0:

|As | =
∣∣∣〈μ̃N

s , |∇vt−s |2〉 − 〈 f (μ̃N
s )2, |∇vt−s |2〉

∣∣∣ � δN

∫
|∇vt−s |2 (x)dx � δN .

(44)

In order to estimate the term Cs , we apply Parseval’s identity and obtain with gs :=
f (μ̃N

s )∇vt−s

|Cs | =
∑

|k|>MN

|〈gs, ek〉|2 ≤ M−2
N

∑

|m|>MN

|m|2 ∣∣ĝs(m)
∣∣2 ≤ M−2

N ‖∇gs‖2L2 .

Now we get from the chain rule

‖∇gs‖2L2 �
∥∥∥ f (μ̃N

s )

∥∥∥
2

L2
‖vt−s‖2C2

b
+

∥∥∥ f ′(μ̃N
s )∇μN

s

∥∥∥
2

L2
‖vt−s‖2C1

b

� ‖vt−s‖C2
b

(∥∥∥μ̃N
s

∥∥∥
L1

+
∫ ∣∣∇μ̃N

s

∣∣2

μ̃N
s

)
,
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where we used that f (x)2 � |x | and f ′(x)2 � 1
x for x > 0 by (32). Integrating over

time, using the entropy estimates from Proposition 4 to bound the second term and
conservation of mass,

∥∥μ̃N
s

∥∥
L1 = 1, for the first term (here we need the uniform-in-N

coercivity bound to not pick up some λ−1
N in the estimates), we obtain

∫ t

0
E[|Cs |]ds �ϕ

1

M2
N

(
t + tMd+2

N
N

+
∫

μ̃N
0 log(μ̃N

0 )

)
� 1

M2
N

(
t + tMd+2

N
N

+ log N

)
,

(45)

where the last bound holds byLemma3.Weestimate the error from the initial condition
with the mean value theorem as follows:

∣∣∣exp(〈μ̃N
0 , vt 〉) − exp(〈μN

0 , vt 〉)
∣∣∣ ≤

∣∣∣〈μ̃N
0 − μN

0 , vt 〉
∣∣∣ exp(‖vt‖∞) �ϕ N−2, (46)

where the last bound holds again by Lemma 3. Plugging (44)–(46) into (43), we obtain
for the weak error:

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ �ϕ N−2 + δN

N
t + t

M2
N N

+ Md
N

N 2 t + log N

M2
N N

.

The coercivity assumption dictates Md
N � δN N . Hence, if we estimate Md

N by δN N
in the fourth term, we get

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ �ϕ N−2 + δN

N
t + t

M2
N N

+ log N

M2
N N

. (47)

Choosing MN = δ
−1/2
N and respecting the coercivity assumption, we arrive at the

optimal choice δN � N− 1
d/2+1 . Altogether, we obtain the estimate

∣∣∣E[F(μ̃N
t )] − E[F(μN

t )]
∣∣∣ �ϕ N−2 + N−1− 1

d/2+1 (t + log N ) � N−1− 1
d/2+1 (t + log N ).
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