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Kurzfassung

Nakamoto Consensus (NC) stellt die Grundlage für die meisten Permissionless Crypto-
currencies dar. Die genauen Regeln können von System zu System unterschiedlich sein,
aber alle Varianten erfordern einen Beweis dafür, dass eine gewisser Resourcenaufwand
erbracht wurde um einen neuen Systemzustand vorzuschlagen. Diese Resource kann
Rechenleistung und Energie sein, wie beispielsweise in Proof-of-Work (PoW), oder ein
gewisser Betrag an Cryptocurrency-Einheiten wie in Proof-of-Stake (PoS). Um zur Teilnah-
me anzuregen, belohnen Permissionless-Cryptocurrency die Teilnehmer mit systemeigenen
Werteinheiten.

Eine Kernfrage dabei ist es, wie das korrekte Verhalten der Teilnehmern incentiviert
werden kann. Obwohl Cryptocurrencies in den letzten Jahren intesiv erforscht wurden, gibt
es immer noch blinde Flecken und unbeantwortete Fragen in Bezug auf das Verständnis der
darunterliegenden Sicherheitsgarantien und Konstruktionen. Eine dieser Fragen betrifft
die Sicherheit unter Berücksichtigung von Attacken welche automatisiert abrufbahre
Belohnungen algorithmisch zusichern für den Nachweis von Aktionen welche vom Angreifer
gewünscht wurden.

In dieser Arbeit werden Angriffe, welche auf die Anreize der Teilnehmer abzielen, unter
einer neuen Kategorie von Angriffen namens Algorithmic Incentive Manipulation (AIM)
zusammengefasst. AIM stellt programmatisch Belohnungen oder Drohungen in Aussicht,
welche die Anreize von ökonomisch rationalen Teilnehmern verändern. Auf diese Weise
kann ein Angreifer die Wahrscheinlichkeit erhöhen, dass das angegriffene System einen
gewünschten Zustand erreicht. Je nach Motiv des Angreifers ist es nicht notwendiger-
weise erforderlich, dass er direkt von seinem gewünschten Zustand profitiert. Wenn der
gewünschte Systemzustand jedoch zu Gewinnen für den Angreifer führt, können Anteile
des Gewinns verwendet werden, um algorithmisch erzwingbare Zusatzzahlungen für die
konspirierenden Teilnehmer des AIM-Angriffs durchzuführen. In anderen Worten, der
Angreifer zahlt um zu gewinnen, daher “Pay To Win”.

Es ist in der Spieltheorie bekannt, dass konspirierende Teilnehmer und Kompensations-
zahlungen große Herausforderungen für das Mechanism-Design von Spielen darstellen.
Im Bezug auf Permissionless Cryptocurrencies sind diese Probleme jedoch noch nicht ein-
deutig verstanden. Diese Arbeit beschreibt die notwendigen Grundlagen für ein besseres
Verständniss. Es wird das Problem beschrieben, verwandte Attacken systematisiert, neue
Attacken vorgestellt (inklusive Proof-of-Concept), die Erfolgswahrscheinlichkeit sowie die
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Wirtschaftlichkeit von Angriffen evaluiert, sowie ein Beweis erbracht, dass es unmöglich
ist in Permissionless-Cryptocurrencies solche Angriffe durch rein technische Maßnahmen
zu verhindern. In einer Welt, in der mehrere Cryptocurrencies nebeneinander existieren
welche kryptographisch miteinander verflochten werden können, kann die Verfügbarkeit
von (externen) Cryptocurrency Resourcen, welche für aktuelle und potenzielle Teilnehmer
relevant sind, nicht ausgeschlossen werden. Daher sollten die erreichbaren Sicherheitsga-
rantieen von Permissionless-Cryptocurrencies, sowie Design-Entscheidungen welche das
Problem verstärken, überdacht werden.



Abstract

Nakamoto consensus (NC) lies at the foundation of the prevalent permissionless cryp-
tocurrency design. The exact rules differ from system to system, but each variant requires
proof that a certain amount of resources was invested in proposing a new system state.
These resources, for example, could be computation and energy, as in Proof-of-Work
(PoW), or a certain amount of cryptocurrency units, as in Proof-of-Stake (PoS). To
incentivize participation, prevalent permissionless cryptocurrencies issue rewards in the
form of native currency units.

A key question in this regard is how to incentivize the honest behavior of participants.
Although cryptocurrencies have been a prominent research object in recent years, the
security guarantees of the underlying constructions still contain blind spots and unan-
swered questions. One of these questions is the security of such systems against attacks
which promise automatically claimable rewards, that are algorithmically assured, for
provable attacker-desired actions of participants.

In this thesis, we summarize related attacks targeting the incentives of participants under
a new attack category termed algorithmic incentive manipulation (AIM). AIM program-
matically offers rewards, or issues threats, which change the incentives of economically
rational players. Thereby, an attacker can increase the chance that the targeted system
reaches a favored state. Depending on the motives, this state must not necessarily be
profitable for the attacker. However, if the desired state leads to profits for the attacker,
shares of this profit can be used in algorithmically enforceable side payments for the
colluding players of the attack. In other words, the attacker pays to win.

It is well known in game theory that collusion and side payments pose severe challenges
to mechanism design. However, the extent of the problem with regard to permissionless
cryptocurrencies is not conclusively understood yet. This thesis lays the necessary ground-
work for a better understanding: It describes the problem, systematizes related attacks,
provides new attacks (including a proof-of-concept), evaluates the success probability
and profitability, and proves that it is not possible for permissionless cryptocurrencies
based on NC to prevent AIM by technical means alone. In a world where multiple
cryptocurrencies co-exist and can be cryptographically interlinked, the availability of
other (external) cryptocurrency resources participants care about is a plausible assump-
tion. This requires us to reconsider the achievable economic security guarantees of
permissionless cryptocurrencies and certain design decisions which amplify the problem.
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1
Introduction

“Bitcoin works in practice, but not in theory.”

– Saying from the early days of Bitcoin also cited in [BMC+15]

1.1 Motivation
Since the introduction of Bitcoin [Nak08] as a model for most of today’s cryptocurrencies,
this topic area has gained broad attention and some of its representatives have experienced
considerable growth in terms of their exchange rate.

The technical concept that most of these systems have in common is that everybody
who can contribute some physical and/or virtual resource can become part of the set of
participants executing a consensus protocol. Therefore these systems are also referred to
as permissionless [Vuk15, SJS+21]. In contrast, so-called permissioned systems require
that the set of consensus participants is well defined.

A crucial part of the so-called permissionless Nakamoto consensus concept is the utilization
of incentives in the protocol design to motivate participants (often referred to as miners
or stakers) to participate in the protocol. A long-standing question in this regard is
whether or not this construction is, or can be made incentive compatible, i.e., that the
intended properties of a stable consensus system emerge from the appropriate (mechanism)
design [BMC+15]. In recent years, several attacks that propose deviating strategies and
potential attacks, mostly for proof-of-work systems, have been proposed (see Chapter 3
for a summary). Nevertheless, so far relatively few attacks have been observed in practice
(e.g., [YSZ22, coi20, coi19b, coi19a, btg20, fom18]). On the one hand, deviating mining
strategies that are theoretically more profitable than behaving honestly challenge the
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1. Introduction

incentive compatibility of Nakamoto consensus, and thus the overall stability of the
consensus system. On the other hand, the lack of empirical evidence of such techniques
being observed in mainstream cryptocurrencies raises the question of why they are not
executed regularly in practice. Possible explanations reach from the proposed attacks not
being practically feasible or stealthy enough, over missing software support and tooling,
to not being profitable enough to justify potentially criminal behavior with its associated
risks [Bon16, YSZ22]. This leads to the question of accurately assessing the guarantees
of prevalent cryptocurrencies when considering incentive-related attacks.

This thesis aims to expose some of the problems originating from incentive manipulation
attacks and their potential consequences for prevalent cryptocurrencies. We map and
classify the existing attack space aimed at manipulating the incentives of actors in
cryptocurrencies (see Chapter 3), improve upon known attacks (see Chapters 2 and 4)
and prove the general technical feasibility of this attack category (see Chapters 4, 5
and 7). Thereby, this thesis takes a technical viewpoint and is targeted at readers with a
computer science background. In spite of that, addressing the technical challenges when
facilitating side payments and collusion in permissionless cryptocurrencies also relates to
economic- and game theory aspects of such systems.

The problem of collusion and side payments (also referred to as bribes) between par-
ticipants has long been described in game theory and is known to be the Achilles heel
of mechanism design [GBI18] with results in this direction dating back to 1979 [GL79].
Especially in the early works on this subject, the problems introduced by a large number
of colluding participants and side payments, was treated more like a theoretical one, since
discovering and establishing the required coalitions was considered improbable [GL79].
This reasoning is based on the assessment that it is unlikely for a large number of partici-
pants to collude and conspire while at the same time being able to perform enforceable
side payments among this group of apparently untrustworthy entities. It was also assumed
that such a group would face societal repercussions for their (traceable) actions.

Today, this assessment is questioned by the existence of public permissionless cryp-
tocurrencies. Essentially, such cryptocurrencies are distributed systems with a built-in
payment layer operated by pseudonymous participants. Thus, automatically agreeing on
coalitions among pseudonymous entities and technically enforceable payments are now in
the realm of possibilities. In this thesis, we map and extend this new attack landscape and
summarize it under the term algorithmic incentive manipulation (AIM). Understanding
the threats arising from AIM attacks is crucial to accurately assess the security guarantees
of prevalent cryptocurrency systems. As the security of most higher-level constructs, for
example, payment channels and complex smart contracts also depends on the security of
the underlying consensus system (often referred to as layer 1), a good understanding of
the achievable security promises and guarantees in this layer is of utmost importance for
all constructions that use, or are based on such permissionless cryptocurrencies.
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1.2. Basic Background

1.2 Basic Background
The term blockchain is often used as an umbrella term for systems and technologies
that are “kind of related to Bitcoin and cryptocurrencies”. Interestingly, this now well-
known buzzword itself was not directly introduced by Satoshi Nakamoto in the original
paper [Nak08], in which he was just referring to blocks and chains1. The origins of the
term can be dated back to the early Bitcoin community, where it was used to refer to
specific concepts of the cryptocurrency, especially the underlying data structure [NBF+16].
Yet, there does not exist an agreed-upon definition of the term blockchain. To avoid
confusion, we will use the term distributed ledger technology (DLT) whenever we want to
refer to the broad area of technologies used in this space and the term blockchain for the
underlying data structure.

Besides sharing similarities regarding their underlying data structure, Bitcoin and most
of its cryptocurrency descendants, are based on what is termed Nakamoto consen-
sus [BMC+15, SJS+18, DKT+20]. In a nutshell, proof-of-work based Nakamoto con-
sensus (NC) enables anyone to initiate (valid) state transitions to a replicated state
machine if they solve a cryptographic puzzle of sufficient hardness that depends on the
prior state. As long as the majority of computational power continues to advance some
state that is considered valid (based on predefined protocol rules), the history of past
state transitions leading to the current state stabilizes over time, one step (block) at a
time. This stabilization property, as well as the stabilized part of the resulting chain, is
commonly referred to as common prefix [GKL15]. The state with the highest step count
and cumulative puzzle difficulty is generally considered the currently active state of the
system upon which participants build up and extend the chain to progress the system.
On a technical level, this is done by appending a block of ordered transactions and an
appropriate proof-of-work [DN92] to this directed, rooted, and cryptographically linked
tree of other blocks. The path to the leaf with the highest depth (resp. difficulty) is
called the longest (heaviest) chain and thus, the current state of the system.

1.3 Problem Statement
“The incentive may help encourage nodes to stay honest. If a greedy attacker is
able to assemble more CPU power than all the honest nodes, he would have to
choose between using it to defraud people by stealing back his payments, or using
it to generate new coins. He ought to find it more profitable to play by
the rules, such rules that favour him with more new coins than everyone
else combined, than to undermine the system and the validity of his own wealth.”

– Satoshi Nakamoto [Nak08]
(emphasis added)

1Satoshi Nakamoto himself used the spelling block chain in a comment within the original source
code to refer to the resulting data structure of chained hashes of blocks https://github.com/trott
ier/original-bitcoin/blob/master/src/main.h#L795-L803.
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1. Introduction

This original argument by Nakamoto conjectures that Bitcoin will remain stable as
long as the majority of miners follow their own economic interests. Generally speaking,
permissionless cryptocurrencies based on Nakamoto consensus [Nak08, SJS+18] (NC)
require a set of miners, which makes up the majority of the voting power (e.g., hashrate),
to comply and play by the rules in order to work as expected. Since Nakamoto never
provided a formal description of the protocol or the incentive model behind it, this
informal argument was debated within the scientific as well as the cryptocurrency
research community already early on:

“In game-theoretic terms, if universal compliance were shown to be a Nash equilibrium,
this would imply incentive compatibility for Bitcoin as no miner would have any incentive
to unilaterally change strategy. This would imply a notion of weak stability if other
equilibria exist and strong stability if universal compliance were the sole equilibrium. If
on the other hand, non-compliant strategies dominate compliance, we must ask whether
the resulting strategy equilibrium leads to stability for the consensus protocol.” [BMC+15]

Thus, a long-standing question in this context is whether such constructions are, or can
be made, incentive compatible under practical conditions [BMC+15], i.e., the intended
properties of the system emerge from the appropriate mechanism design of the protocol,
which incentivizes all rational participants to act desirably. Mechanism design, as a
subfield of game theory and economics, is the process of designing economic mechanisms,
or incentives, to achieve a set of desired objectives in a strategic setting where players
are assumed to act rationally (mainly from an economic perspective) [NR99, NR01].

To approach this question, as well as the actual security guarantees of NC, a more
formal description of the underlying protocol was needed. As Nakamoto did not provide
a formal description of the protocol in [Nak08], several elaborate attempts towards
formalization 2 have been made to prove specific security properties of the protocol.
Thereby, most approaches, such as [GKL15, PSS17, BMTZ17, GKR20], do assume a
sufficient honest (complacent) majority of miners without considering incentives, or
like [BGM+18] explicitly do not consider bribing attacks to manipulate the incentives of
participants. Thus, in formal models of NC the question regarding incentive compatibility
of NC under malicious conditions, such as bribing, was merely perceived as a niche topic.

The issue of bribing and incentive-related attacks in this context was brought forward
within the academic research community by Bonneau [Bon16, Bon18]. Initially, such
attacks have been deemed purely theoretical in the cryptocurrency community or highly
unlikely due to their associated costs. This might be one reason why such attacks have
not received broader attention right from the start. Bribing attacks target incentive
compatibility and assume that at least some miners accept bribes to maximize their profit.
Hereby, bribing does not necessarily refer to illegal activity but merely that a payment is
made in exchange for a specific action. If the attacker, together with all bribable miners,
can gain a sizable portion of the voting power (in the case of PoW computational power),
even for a short period of time, attacks are likely to succeed. To the best of our knowledge,

2For a summary see [SJS+18].
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1.3. Problem Statement

the first discussions of bribery attacks on Bitcoin within the cryptocurrency community
date back to a bitcointalk forum post from 2012 by a user called cunicula [Cun]. Since
then, attacks on incentives in cryptocurrencies have been sporadically discussed in the
cryptocurrency community [Ler, sAM], with the first peer-reviewed paper on the subject
presented in 2016 by Bonneau [Bon16]. Over the years, several different techniques and
approaches to bribing attacks have been proposed [Cun, BBH+13, Ler, sAM, Bon16,
TJS16, LK17, LVTS17, VTL17, MHM18, JSSW18, JSZ+19, WHF19, KNW20, TYE21].
These proposals vary regarding their system models, technical methods, and evaluation
criteria, which makes comparing them a challenging task. What all these approaches
have in common is that they are targeted to manipulate the incentives of actors in the
cryptocurrency ecosystem.

Also, so-called Goldfinger attacks [KDF13] target the incentives of participants, but here
the goal of the attacker is to destroy a competing cryptocurrency to gain some undefined
external utility. In [Bon18] such constructions have been revisited and deemed more
relevant today than when they were initially proposed in 2013 [KDF13, BBH+13]. As
the number of cryptocurrencies, as well as the market for trading, has evolved, shorting3

a crypto asset has become a viable strategy. The first practical example of such an attack
was suggested in [Bon18] and implemented in [MHM18] as an Ethereum smart contract
that rewards the mining of empty Bitcoin blocks. Other instantiations are described
in [JSSW18, JSZ+19]. Goldfinger attacks inherently require some external utility, e.g.,
that the payments have to be performed in another currency unit (out-of-band) since, if
successful, the value of the targeted cryptocurrency is intended to drop. In comparison,
most classical bribing attacks have aimed at gaining in-band profit, i.e., in terms of
cryptocurrency units of the targeted system. Therefore, they have initially been depicted
as a separate form of attack compared to Goldfinger-style attacks.

Lately, also other attempts to manipulate incentives targeted to influence the order of
transactions within a not yet mined block [EMC19, DGK+20, JSZ+19] (front-running)
or to exclude transactions [JSZ+19, WHF19] have received increased attention. Hereby,
the ability of a miner to select and order the transactions in his blocks has been identified
as a fundamental issue of leader-based consensus protocols [KZGJ20]. It is also heavily
discussed in the context of miner extractable value (MEV), which was initially mentioned
by Daian et al. [DGK+20]. Although MEV was initially not well defined, it is considered
to encompass additional revenue opportunities (besides block rewards and transaction fees)
of miners, which originate from their ability to select and order their transactions. Front-
running attacks are constantly observed in the wild already, and their exploitation, as well
as prevention, is a topic of active research [DGK+20, fom18, ZQC+21, ZQT+20, QZG22].
The different types of ordering attacks observed in practice show that the security
properties of NC under real-world incentives are still not fully understood, not only by
cryptocurrency users and smart contract developers but also in the research community.
In addition to this, large-scale temporary majority attacks, in which an attacker overtakes

3Short selling (shorting) refers to an investment technique in which the investor will profit if the
value of the asset falls.
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a cryptocurrency for a short period of time, have gained further practical importance as
they have been observed more frequently in recent history [coi20, coi19b, coi19a, btg20].
This further questions the role of incentives and their targeted manipulation in the
context of these systems.
All these mentioned attacks where the incentives of participants play a key role (brib-
ing, Goldfinger, ordering), their increasing relevance in practice, as well as meta argu-
ments [FB19, Bud18, KF19, Bon18, Bon16], have fueled the debate around incentives in
Nakamoto consensus. This thesis contributes to the research in the area by addressing a
couple of key questions.

1.4 Research Questions
In summary, the main research questions for this thesis are:

1.4.1 RQ1: How can bribing-, ordering-, and Goldfinger attacks on
NC be systematized and better compared against each other?

Known attacks that involve the incentives of participants use different models and
assumptions or have vastly different goals. Therefore, comparing them is a challenging
task.
In Chapter 3 the first systematization of already proposed attacks (including the attacks
developed for this thesis) is presented. The systematization allows for a better comparison
of related attacks and also identifies their core characteristics. This illustrates that all
these attacks are instances of the same overall category termed algorithmic incentive
manipulation attacks.

1.4.2 RQ2: Is the landscape of incentive-related attacks on NC
already exhaustively explored?

Given the increasing number of attacks involving incentives, a natural question is if more
efficient attacks or generally other attack approaches are possible in this area. Hereby,
efficiency can be defined in terms of costs or an increase in the abilities that these attacks
offer.
In Chapter 2 and 4 new attacks are proposed which have new capabilities (utilize merged
mining, or incentivize double-spend collusion with out-of-band payments) and are cheaper
than comparable attacks described so far.

1.4.3 RQ3: How to better estimate the success probability and
profitability of finite forking attacks/chain races that take the
incentives of economically rational victims into account?

Prevalent attack models for chain races/forking in NC are mainly concerned with the
probability calculation of infinite attacks under the assumption that the majority of
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participants honestly follow the longest chain. Therefore, these models take shortcuts
and ignore more complex incentives of actors, for example, their already contributed
blocks or the persistence of victims to push a specific chain which is beneficial for them,
instead of blindly following an attack chain as soon as it takes the lead.

In Chapter 5, techniques for probability and profitability calculation of attacks are
described, which take the incentives of economically rational victims into account and, at
the same time, are designed to be computationally faster than comparable approaches.

1.4.4 RQ4: How does the concept of miner extractable value (MEV)
relate to incentives in NC?

The concept of MEV is considered essential in the context of ordering attacks such
as front-running. As also incentives play a key role in this area, the question of how
MEV relates to algorithmic incentive manipulation in NC is important for a better
understanding of the associated risks.

In Chapter 6 the problem of estimating the MEV of other participants in NC-style
permissionless cryptocurrencies is described, and the entire subject of ordering attacks is
depicted as another instance of algorithmic incentive manipulation.

1.4.5 RQ5: Are cryptocurrencies based on NC incentive compatible
such that they can be considered strongly stable?

There have been several indicators that incentive compatibility is too much to ask for in the
context of cryptocurrencies based on NC (cf., [ES14, Bon16, Bon18, JSSW18, JSZ+19,
FB19, KF19, JSZ+21b]). Although, to the best of our knowledge, this precise question
has not been explicitly answered since it was proposed by Bonneau et al. [BMC+15].

In Chapter 8, we relate the results of this thesis to the original questions proposed
by Bonneau et al. [BMC+15] and argue that in the light of bribing and algorithmic
incentive manipulation attacks, which facilitate and finance the collusion of participants,
NC cannot be considered strongly stable under incentives other than mining income.
Especially when other resources besides the respective cryptocurrency are considered
(i.e., external-denominated utility).

1.5 Genesis and Structure
This section chronologically reflects the genesis of this thesis. For more details regarding
the methodology of the individual parts, we refer to the respective chapters of this
document. At the end of this section, the overall structure of the document is presented.

1.5.1 Genesis
Originally, the scope of this thesis was more on the analysis, improvement, and application
of “Bitcoin-like” blockchains in network protocols for resilient future internet applications.
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Therefore, the analysis of “Bitcoin-like” protocols was one of the first expected results.
As Bitcoin and thus Nakamoto consensus was presented very informally and put into
operation in 2009 as a grassroots movement, not much information, as well as no detailed
description of the protocol (despite the reference implementation), was available till
around 2015.
As a result, the author started with a literature review and background research to
correctly describe Nakamoto consensus as a distributed system and relate it to the
respective literature. This led to the book Blocks and Chains: Introduction to Bitcoin,
Cryptocurrencies, and Their Consensus Mechanisms [JSKW17]. This laid the foundation
for future research in this area.
Since it was soon apparent that the resource consumption of Nakamoto consensus based
on PoW, as well as the underlying performance of its prevalent implementations, is
not satisfying, early research of the author focused on directions for improvement in
this regard. One possible direction for improvement was merged mining, which had the
potential to reduce the energy footprint of multiple cryptocurrencies while increasing the
performance in terms of throughput. This is achieved by putting a hash pointer to another
block header of a so-called child chain into the header of a PoW cryptocurrency referred
to as parent chain. Initially, an empirical analysis of the adoption of this technique was
performed. This led to the paper Merged Mining: Curse or Cure? [JZS+17], where the
author analyzed various different merge mined cryptocurrencies and discovered that most
of them are dominated by a subset of miners of the respective parent cryptocurrency.
This paper is not directly part of this thesis, but while writing this paper the author of
this thesis noticed that it is theoretically possible for mining pools to misrepresent blocks
and flag them as belonging to other mining pools. This could be used in combination
with merged mining to falsely blame miners in a parent cryptocurrency for “malicious”
blocks while still mining regular blocks in a child cryptocurrency at the same time. The
insight that such an attack, and especially merged mining, cannot easily be prevented
by technical means led to the first attack described in this thesis. An extended version
of this attack paper (Pitchforks in Cryptocurrencies: Enforcing rule changes through
offensive forking- and consensus techniques [JSSW18]) is described in Chapter 2.
The theoretical possibility of this attack provided a motivating example to further
investigate incentive-related attacks and thus shifted in the scope of this thesis. Therefore
the author collected different incentive-related attacks on cryptocurrencies and started
to systematize the scattered research on so-called bribing, Goldfinger, and front-running
attacks. This later led to the systematization-of-knowledge paper SoK: Algorithmic
Incentive Manipulation Attacks on Permissionless PoW Cryptocurrencies [JSZ+21b].
Initial versions of the SoK already identified a research gap and indicated that the attack
space is not fully explored.
After the first presentation on the problem of these economic attacks, the author received
good feedback and engaged in interesting discussions in the Dagstuhl Seminar 18152
Blockchains, Smart Contracts, and Future Applications, as well as Dagstuhl Seminar
18461 Blockchain Security at Scale. This led to a collaboration in identifying and
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describing new algorithmic incentive manipulation attacks, which have been published
in the paper Pay To Win: Cheap, Crowdfundable, Cross-chain Algorithmic Incentive
Manipulation Attacks on PoW Cryptocurrencies [JSZ+21a] described in Chapter 4. As a
result, the technical feasibility of new AIM attacks has been practically demonstrated,
including a proof-of-concept implementation.

From the SoK [JSZ+21b] and the new attacks proposed in [JSZ+21a], it was clear to
the author that this attack category could potentially cause problems for prevalent
permissionless cryptocurrency designs based on Nakamoto consensus. The next logical
step was to improve the analysis of attacks to more accurately assess their chance of
success and, thus, their likelihood under practical conditions. The result was an improved
model for analyzing finite chain races in Nakamoto consensus, which was presented in
the paper How Much is the Fork? Fast Probability and Profitability Calculation during
Temporary Forks [JSSW22b] is described in Chapter 5 of this thesis.

The question of how attacks of miners could be discovered in practice was addressed in
preliminary empirical research to better identify forks [SSJ+19] as well as the internal
structure of mining pools [RJZH19]. Both works are not directly part of this thesis.

In parallel, the term miner extractable value (MEV) was coined by Daian et al. [DGK+20]
and led to a series of research papers regarding front-running, arbitrage, and the exploita-
tion of transaction ordering in the context of single leader protocols such as Nakamoto
consensus. As there is a strong relation between bribing and MEV, the paper Estimat-
ing (Miner) Extractable Value is Hard, Let’s Go Shopping! [JSSW22a] was written to
highlight that a bribe can be viewed as another source of MEV. This relates the topic
of extractable value to the problem of algorithmic incentive manipulation in Nakamoto
consensus protocols.

Through the proof-of-concept, in [JSZ+21a] (and Chapter 4), we have shown that certain
AIM attacks are technically feasible. The remaining question is, do these attacks only
work in this particular instance (for precisely these cryptocurrencies), or can such attacks
be generalized to any Nakamoto consensus-based cryptocurrency system? To investigate
under which assumptions and exact conditions such attacks are feasible, Chapter 7
formalizes AIM attacks on Nakamoto consensus by constructing them as adversarial
games exposing their core design properties. Therefore, a practically oriented model
of Nakamoto consensus, using elements of state machine replication (SMR), has been
created as a prerequisite. Under this model, the technical possibility of constructing
adversarial games to perform algorithmic incentive manipulation is shown.

1.5.2 High-level Structure

Chapter 2 provides a motivating example to further investigate incentive-related attacks
by describing such an attack on Nakamoto consensus-style permissionless cryptocurrencies
based on proof-of-work. The described attack utilizes merged mining and proves that in
this setting, the problem is not easily mitigated, e.g., through counter-attacks.
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Chapter 3 systematizes known attacks that are designed to programmatically manipulate
the incentives of actors within a cryptocurrency system and summarizes them under the
term algorithmic incentive manipulation (AIM). Thereby, they are classified according to
their capabilities and intended consequences. This highlights that the attack space has
not been exhaustively explored.

As a consequence, a new attack method called pay to win (P2W) has been proposed in
Chapter 4, including a proof-of-concept implementation of the attack targeting Bitcoin
with the help of Ethereum smart contracts.

To better estimate the success probability and profitability of attacks resulting in chain
races in Nakamoto consensus, Chapter 5 describes a model which takes the incentives
of rational victims of such attacks into account. The model also accounts for other
real-world conditions, such as time constraints and already contributed blocks.

Chapter 6 discusses the relation of algorithmic incentive manipulation (AIM) to the
concept of miner extractable value (MEV). Thereby, bribes are depicted as just another
source of extractable value - illustrating the problem of meaningfully bounding MEV if
bribes are issued in other cryptocurrency systems.

To generalize the PoC presented in Chapter 4, Chapter 7 aims to provide a unified
view of algorithmic incentive manipulation (AIM) attacks. To explicitly highlight and
describe the requirements, necessary assumptions, and core design properties, Chapter 7
formalizes AIM attacks on Nakamoto consensus by constructing them as adversarial
games. Therefore, a state machine replication (SMR) based model of Nakamoto consensus
is described.

Chapter 8 discusses the results of the thesis and relates them to the area of game theory.
At the end, interesting areas of future research are outlined.

1.6 Main Results
In summary, the main results from this thesis are:

• A new attack called Pitchfork (see Chapter 2) demonstrates that public permis-
sionless PoW-based cryptocurrencies are vulnerable to the (malicious) interlinking
of their protocol rules using merged mining. Moreover, we provide proof that such
an attack can only be counter-attacked if the attacker hashrate is below 1/3, or
below 1/4 depending on the side-effects of the direct counter-attack [JSSW18] (see
Section 2.4.2).

• The first systematization of bribing, Goldfinger, Pitchfork, front-running, and
other related attacks are described as different instances of algorithmic incentive
manipulation (AIM) attacks [JSZ+21b] (see Chapter 3). At the same time, we also
provide a comprehensive classification of different attacks according to properties,
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such as their impact on the consensus layer of cryptocurrencies (i.e., no-fork,
near-fork, deep-fork).

• A description of new AIM attacks called Pay-to-win (P2W) that is capable to
revert, reorder or exclude any transaction from a targeted public permissionless
cryptocurrency based on NC, provided that the attacker has sufficient budget on a
different funding cryptocurrency [JSZ+21a] (see Chapter 4). Our Analysis includes
simulations as well as a proof-of-concept implementation of the attack.

– To the best of our knowledge, the analysis of our P2W attacks also includes
the first analysis of finite chain races, where the overall duration of the attack
is the main limiting factor (see Section 4.4.3), as well as the first analysis
regarding the synchrony between two chains (see Section 4.4.4).

– All calculations, source code, and artefacts are publicly available on Github4.

• An improved model to calculate the success probability as well as the profitability
of finite AIM attacks [JSSW22b] (see Chapter 5).

– To the best of our knowledge, this is the first model which takes already
contributed blocks, as well as the incentives of economically rational victims,
into account.

– In the case of forks, where the attacker is one block behind and tries to catch-
up infinitely long, his profitability on the fork increases beyond his expected
profit for staying on the original chain when the miner has a hahsrate greater
than ≈ 38.2% of the total hashrate. This value already occurred in previous
publications in the context of cryptocurrencies [TJS16, MHM18] but was not
discussed in great detail there. We show how this value is derived and where
it comes from and prove that it is precisely 1/φ2 in Section 5.3.1.

– All calculations, source code, and artefacts are publicly available on Github5.

• A relation between miner extractable value (MEV) and AIM, showing that the MEV
of other participants cannot readily be estimated, especially if they are interested
in more than one resource/cryptocurrency [JSSW22a] (see Chapter 6).

– All calculations and artefacts are publicly available on Github6.

• A model of Nakamoto consensus-based state machine replication (SMR) was
designed (see Chapter 7). Using this model, it was possible to show that adversarial
games attacking the mechanism design of permissionless cryptocurrencies based on
NC can technically always be constructed, provided that the targeted system is
efficiently verifiable and eventually makes progress. Using the described techniques,
an attacker can incentivize desired orderings, the exclusion of transactions, or

4https://github.com/kernoelpanic/pay2win_artefacts
5https://github.com/kernoelpanic/howmuchisthefork_artefacts
6https://github.com/kernoelpanic/estimatingMEVishard_artefacts
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deep-forks (see Section 7.5, 7.6 and 7.7). Moreover, it was possible to better
describe and compare different types of temporary and permanent forking events
utilizing the newly designed model. To the best of our knowledge, this is the first
formal description of these previously not well-defined forking events, commonly
referred to as soft-forks and hard-forks, as well as their associated rule changes (see
Section 7.2).

1.7 List of Publications
This thesis is based on a series of publications co-authored by the author of the thesis.
Hereby, all except two publications are reused almost verbatim in this thesis in the
individual chapters, which represent partially revised versions of those publications with
small changes mainly to improve spelling and clarity. All papers used in their entirety
are exclusively used in this thesis and have not been used in any other thesis. From the
paper A Wild Velvet Fork Appears! [ZSJ+18] only a small text snipped relating the terms
hard-fork and soft-fork to the cryptocurrency literature has been used verbatim. Beyond
that, only the initial concept for the table was reused, but in a corrected, formalized, and
extended version. In all used papers, except the latter, the author of this thesis has been
the main author and lead.

Chapter 2 is an extended version of the paper Pitchforks in Cryptocurrencies [JSSW18].

The following is the list of publications (in chronological order) on which this thesis is
based on. For each publication, the chapter is given in which content from this publication
is used.

• Estimating (Miner) Extractable Value is Hard, Let’s Go Shopping!

– Bibentry: Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and
Edgar Weippl. Estimating (Miner) Extractable Value is Hard, Let’s Go Shop-
ping! In Financial Cryptography and Data Security. International Workshops
- CoDecFin, 2022

– Artefacts: All source code for simulations, calculations and figures available
on github7.

– Eprint: https://eprint.iacr.org/2022/359.pdf

– Chapter: Chapter 6 is based on this publication.

• How much is the fork? Fast Probability and Profitability Calculation during
Temporary Forks

– Bibentry: Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and
Edgar Weippl. How much is the fork? Fast Probability and Profitability

7https://github.com/kernoelpanic/estimatingMEVishard_artefacts
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Calculation during Temporary Forks. In 1st International Cryptoasset Ana-
lytics Workshop (CAAW) co-located with the International World Wide Web
Conference (WWW) 2022, 2022

– Artefacts: Implementation of the model, all source code used for simulations,
calculations, figures available on github8.

– Eprint: https://eprint.iacr.org/2021/1231.pdf

– Chapter: Chapter 5 is based on this publication.

• Pay To Win: Cheap, Crowdfundable, Cross-chain Algorithmic Incentive Manipula-
tion Attacks on PoW Cryptocurrencies

– Bibentry: Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay
Tsabary, Ittay Eyal, Peter Gazi, Sarah Meiklejohn, and Edgar R. Weippl.
Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies.
In Matthew Bernhard, Andrea Bracciali, Lewis Gudgeon, Thomas Haines,
Ariah Klages-Mundt, Shin’ichiro Matsuo, Daniel Perez, Massimiliano Sala,
and Sam Werner, editors, Financial Cryptography and Data Security. FC 2021
International Workshops - CoDecFin, DeFi, VOTING, and WTSC, Virtual
Event, March 5, 2021, Revised Selected Papers, volume 12676 of Lecture Notes
in Computer Science, pages 533–549. Springer, 2021

– Artefacts: Prototype implementation, all source code used for simulations,
calculations, figures and data evaluation available on github9. There also
exists a video of the conference talk.

– Eprint: https://eprint.iacr.org/2019/775.pdf

– Chapter: Chapter 4 is based on this publication.

• SoK: Algorithmic Incentive Manipulation Attacks on Permissionless PoW Cryp-
tocurrencies

– Bibentry: Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay
Tsabary, Ittay Eyal, Peter Gazi, Sarah Meiklejohn, and Edgar R. Weippl.
SoK: Algorithmic Incentive Manipulation Attacks on Permissionless PoW
Cryptocurrencies. In Matthew Bernhard, Andrea Bracciali, Lewis Gudgeon,
Thomas Haines, Ariah Klages-Mundt, Shin’ichiro Matsuo, Daniel Perez, Mas-
similiano Sala, and Sam Werner, editors, Financial Cryptography and Data
Security. FC 2021 International Workshops - CoDecFin, DeFi, VOTING, and
WTSC, Virtual Event, March 5, 2021, Revised Selected Papers, volume 12676
of Lecture Notes in Computer Science, pages 507–532. Springer, 2021

– Artefacts: Comparision table of different algorithmic incentive manipulation
attacks as included in this thesis. There also exists a video of the conference
talk.

8https://github.com/kernoelpanic/howmuchisthefork_artefacts
9https://github.com/kernoelpanic/pay2win_artefacts
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– Eprint: https://eprint.iacr.org/2020/1614.pdf

– Chapter: Chapter 3 is based on this publication.

• Pitchforks in Cryptocurrencies: Enforcing rule changes through offensive forking-
and consensus techniques (Short Paper)

– Bibentry: Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and
Edgar R. Weippl. Pitchforks in Cryptocurrencies: Enforcing Rule Changes
Through Offensive Forking- and Consensus Techniques (Short Paper). In
Joaquín García-Alfaro, Jordi Herrera-Joancomartí, Giovanni Livraga, and
Ruben Rios, editors, Data Privacy Management, Cryptocurrencies and Blockchain
Technology - ESORICS 2018 International Workshops, DPM 2018 and CBT
2018, Barcelona, Spain, September 6-7, 2018, Proceedings, volume 11025 of
Lecture Notes in Computer Science, pages 197–206. Springer, 2018

– Artefacts: Calculation of attack bounds for hashrate and visualization.
– Eprint: https://eprint.iacr.org/2018/836.pdf

– Chapter: Chapter 2 is based on this publication.

• A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice
(Short Paper)

– Bibentry: Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp
Schindler, Edgar Weippl, and William J. Knottebelt. A Wild Velvet Fork
Appears! Inclusive Blockchain Protocol Changes in Practice (Short). In 5th
Workshop on Bitcoin and Blockchain Research, Financial Cryptography and
Data Security 18 (FC). Springer, 2018. (Short Paper)

– Artefacts: Table for classifying different fork types as included in this thesis.
– Eprint: https://eprint.iacr.org/2018/087.pdf

– Chaptere: Some text snippets relating the terms hard-fork and soft-fork to
the cryptocurrency literature have been reused in Chapter 7, .

1.7.1 List of Publications not covered in this Thesis
The following is a list of publications (in chronological order) that are not covered in this
thesis directly, but to which the author of this thesis contributed while pursuing his PhD.

• Opportunistic Algorithmic Double-Spending: How I learned to stop worrying and
love the Fork

Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, and Edgar Weippl. Opportunistic
Algorithmic Double-Spending: How I learned to stop worrying and hedge the Fork. In
ESORICS, 2022

• RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Unique-
ness
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Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar R.
Weippl. RandRunner: Distributed Randomness fromTrapdoor VDFs with Strong Unique-
ness. In Network and Distributed System Security Symposium 2021, February 2021

• Unnecessary Input Heuristics and PayJoin Transactions
Simin Ghesmati, Andreas Kern, Aljosha Judmayer, Nicholas Stifter, and Edgar R.
Weippl. Unnecessary Input Heuristics and PayJoin Transactions. In HCI International
2021 - Posters, July 2021

• HydRand: Practical Continuous Distributed Randomness
Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. HydRand:
Practical Continuous Distributed Randomness. In Proceedings of IEEE Symposium on
Security and Privacy (IEEE S&P). IEEE, 2020

• Blockchain-Technologie – Anwendungsformen
Nicholas Stifter, Philipp Schindler, and Aljosha Judmayer. Blockchain-Technologie –
Anwendungsformen. Technical report, April 2021. Published: LexisNexis

• Blockchain-Technologie – technische Erklärung
Aljosha Judmayer, Philipp Schindler, and Nicholas Stifter. Blockchain-Technologie –
Technische Erklärung. Technical report, January 2020. Published: LexisNexis

• A Deep Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining Shares
Matteo Romiti, Aljosha Judmayer, Alexei Zamyatin, and Bernhard Haslhofer. A Deep
Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining Shares. In The 2019
Workshop on the Economics of Information Security, 2019

• Echoes of the Past: Recovering Blockchain Metrics From Merged Mining
Nicholas Stifter, Philipp Schindler, Aljosha Judmayer, Alexei Zamyatin, Andreas Kern,
and Edgar Weippl. Echoes of the Past: Recovering Blockchain Metrics From Merged
Mining. In Proceedings of the 23nd International Conference on Financial Cryptography
and Data Security (FC). Springer, 2019

• Revisiting Practical Byzantine Fault Tolerance Through Blockchain Technologies
Nicholas Stifter, Aljosha Aljosha, and Edgar R. Weippl. Revisiting Practical Byzantine
Fault Tolerance Through Blockchain Technologies. In Stefan Biffl, Matthias Eckhart, Arndt
Lüder, and Edgar R. Weippl, editors, Security and Quality in Cyber-Physical Systems
Engineering, With Forewords by Robert M. Lee and Tom Gilb, pages 471–495. Springer,
2019

• Proof-of-Blackouts? How Proof-of-Work Cryptocurrencies Could Affect Power
Grids

Johanna Ullrich, Nicholas Stifter, Aljosha Judmayer, Adrian Dabrowski, and Edgar
Weippl. Proof-of-Blackouts? How Proof-of-Work Cryptocurrencies Could Affect Power
Grids. In International Symposium on Research in Attacks, Intrusions, and Defenses,
pages 184–203. Springer, 2018

• Merged Mining: Curse or Cure?
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Aljosha Judmayer, Alexei Zamyatin, Nicholas Stifter, Artemios G. Voyiatzis, and
Edgar R. Weippl. Merged Mining: Curse or Cure? In Joaquín García-Alfaro, Guillermo
Navarro-Arribas, Hannes Hartenstein, and Jordi Herrera-Joancomartí, editors, Data Pri-
vacy Management, Cryptocurrencies and Blockchain Technology - ESORICS 2017 Inter-
national Workshops, DPM 2017 and CBT 2017, Oslo, Norway, September 14-15, 2017,
Proceedings, volume 10436 of Lecture Notes in Computer Science, pages 316–333. Springer,
2017

• A Holistic Approach to Smart Contract Security
Nicholas Stifter, Aljosha Judmayer, and Edgar R. Weippl. A Holistic Approach to
Smart Contract Security. ERCIM News, 2017(110), 2017

• Bitcoin - Cryptocurrencies and Alternative Applications
Aljosha Judmayer, Alexei Zamyatin, Nicholas Stifter, and Edgar R. Weippl. Bitcoin -
Cryptocurrencies and Alternative Applications. ERCIM News, 2017(110), 2017

• A performance assessment of network address shuffling in IoT systems (Extended
Abstract)

Georg Merzdovnik, Aljosha Judmayer, Artemios G. Voyiatzis, and Edgar Weippl. A
performance assessment of network address shuffling in IoT systems (Extended Abstract).
2017

• Lightweight Address Hopping for Defending the IPv6 IoT
Aljosha Judmayer, Johanna Ullrich, Georg Merzdovnik, Artemios G. Voyiatzis, and
Edgar R. Weippl. Lightweight Address Hopping for Defending the IPv6 IoT. In 12th
International Conference on Availability, Reliability and Security (ARES), 2017

• Blocks and Chains: Introduction to Bitcoin, Cryptocurrencies, and Their Consensus
Mechanisms

Aljosha Judmayer, Nicholas Stifter, Katharina Krombholz, and Edgar Weippl. Blocks
and Chains: Introduction to Bitcoin, Cryptocurrencies, and Their Consensus Mechanisms.
Synthesis Lectures on Information Security, Privacy, and Trust, 9(1):1–123, 2017

• The Other Side of the Coin: User Experiences with Bitcoin Security and Privacy
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2
Pitchforks as Offensive Protocol
Updates in Nakamoto Consenus

“There is nothing permanent except change.”

– Attributed to Heraclitus

In this chapter1, a new incentive manipulation attack is proposed which utilizes out-
of-band payments and merged mining to subsidize the attack. Our attack illustrate
that certain attacks on cryptocurrencies cannot trivially be counter-attacked even if the
“honest” nodes controll more than 50% of the total hashrate. This should provide a
motivating example to analyse the concept of incentive related attacks on cryptocurrencies
in greater detail.

Forking in gerneral is a core design property of Nakamoto consensus (NC). Even without
the interference of malicious actors, the proposal of a block by two different miners at
approximately the same point in time can trigger a fork. Such a fork eventually resolves
when new blocks are appended on top of either branch. Apart from these temporary
forks that are resolved when one branch takes the lead, there also exists the concept of a
permanent fork, also referred to as a chain split. In such a case, the end result are two
different systems. This can happen intentionally or unintentionally, for example, when
the underlying protocol has to be updated as in case of the Bitcoin LevelDB upgrade 2.

In this context, the loosely defined terms hard-fork and soft-fork have been in use as
descriptors of different classes of upgrade mechanisms for the underlying rules. For
a formal defintion of different forking methods we refer to Section 7.2. For now we
stick to the informal definitions used within the cryptocurrency community. Within the

1This chapter represents an extended version of publication [JSSW18].
2Cf. https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
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cryptocurrency community, the term hard-fork has established itself [BMC+15, GCR16] as
a descriptor for protocol changes that can incur a permanent split of the blockchain, as they
permit or even enforce the creation of blocks that are considered invalid under previous
protocol rules. In contrast to this, soft-forks in principe allow to retain compatibility
with older protocol versions, specifically towards clients adhering to previous protocol
rules. Apart from these two more frequently used types of forks, also an approach termed
velvet fork, which expands upon the concept of a soft-fork, was outlined by Kiayias et
al. [KMZ17]. Specifically, velvet forks intend to avoid the possibility of disagreement by
a change of rules through rendering modifications to the protocol backward compatible
and inclusive to legacy blocks. So, in contrast to temporary forks, which can happen
during normal operation, hard-, soft- and velvet forks refer to a protocol upgrade that
might or might not lead to a permanent fork, i.e., a chain split.

We expand upon the concept of different protocol changes by discussing the potential
security implications arising from permanent hard-forks (protocol changes) that are
interleaved with the original protocol/system in a malicious way. We describe the
pitchfork as an example to enforce rule changes in a targeted cryptocurrency, denoted as
Π. In a pitchfork, the attacker creates a different protocol version Π and uses techniques
from merged mining to interleave his new hard-forked cryptocurrency with the targeted
parent chain Π s.t., mining “bad blocks” in the parent chain is a prerequisite for being
accepted as a valid PoW in the new cryptocurrency which consists of the pitchfork child
chain Π .

Our construction highlights some interesting questions. In particular, with regards to
the underlying (game-theoretic) incentive model, such attacks can lead to negative side
effects in permissionless cryptocurrencies based on NC.

2.1 Technical Background on Merged Mining

Merged mining was originally conceived as a bootstrap technique [JZS+17], aiming to
increase the PoW difficulty and, as a consequence, the security of other cryptocurrencies in
their early stage, when they are more vulnerable to dishonest miners. Merged mining aims
to improve blockchain security by rapidly increasing the number of nodes participating in
the distributed consensus. The key idea of merged mining is to allow a child blockchain
(e.g., Namecoin) to accept valid PoW produced for another parent blockchain (e.g.,
Bitcoin), provided that they meet the hardness criteria of the receiving (child) blockchain
even if they do not meet the criteria of the sending (parent) blockchain.

Merged mining was first implemented in Namecoin. By accepting Bitcoin blocks through
merged mining, Namecoin quickly achieved a high difficulty level. Other popular altcoins,
including Litecoin and Dogecoin, have also adopted merged mining, helping to establish
it as a de facto hardening mechanism for PoW altcoins.

The implementation of merged mining has not been without controversy. There are
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already discussions on realistic threats on network centralization3 and scam attacks4.
Unfortunately, the technique of merged mining has never been formally described or well
documented. Thus we provide an informal description of the process on the example of
Bitcoin. Our description is based one of the few “official” sources on the subject, namely
the Bitcoin wiki [Namb].

In brief, merged mining can be described as a technique to solve and disseminate PoW
puzzles for more than one PoW blockchain simultaneously, while the computational effort
for solving the PoW puzzle is performed only once. In this sense, the parent blockchain
miners are solving the puzzles and the child or auxiliary blockchains adapt their operation
so as to accept these solved PoW puzzles.

To participate in merged mining, a miner must connect (using a full node) to each child
blockchain network in which she wants to participate in. This is required to collect and
construct valid blocks for the respective child blockchain. Of course, all the child chains
have to accept merge mined blocks from a selected parent cryptocurrency as valid, given
that the difficulty or other requirements are met. The respective parent blockchain must
support a method to link to, or include, some arbitrary data in its block headers. For a
merged mined block to be valid, this selected data field must contain a cryptographic
link (e.g., a hash) to a valid block of the respective child blockchain. For the case of
Bitcoin as a parent blockchain, this requirement is fulfilled by using the structure of the
coinbase transaction, depicted in Figure 2.1.
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Figure 2.1: Data structures and location of the hash placed in a Bitcoin block when
Bitcoin is used as a parent chain in the context of merged mining. The BlockHash /
MerkleRoot is pointing to the respective block(s) in the merge mined child chain(s).

3Cf. https://www.cryptocompare.com/mining/guides/what-is-merged-mining-bitc
oin-namecoin-litecoin-dogecoin/

4Cf. commentary on the Eligius CoiledCoin scam, available on https://bitcointalk.org/inde
x.php?topic=56675.msg678006#msg678006
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The coinbase transaction is a special type of transaction for rewarding the block miner. It
comprises n transaction outputs (denoted as vout[0]), which transfers the mined coins
to the account(s) of the miners, and one special transaction input (denoted as vin[0]).
This special input includes the “block reward” (denoted as nValue) and the “coinbase”
fields. The block reward comprises new cryptocurrency units that are created up until
the maximum supply is reached. The coinbase encodes the current block height and can
contain up to 96 bytes of arbitrary data, as summarized in Table 2.1.

Field name Type
(Size)

Description

coinbaseLen VarInt
(1-9 bytes)

Length of the coinbase field in bytes as a variable
length integer. Maximum size is 100 bytes.

coinb.

blockHeightLen
(1 bytes)

Length in bytes required to represent the current
blockHeight.

blockHeight
(3 bytes)

Current block height.

[data] char[]
(0-52 bytes)

Optional: Arbitrary data that can be filled by the
miner (e.g., identifying the block miner)

[magic] char[]
(4 bytes)

Optional: If len(coinbase) ≥ 20, magic bytes indi-
cate the start of the merged mining information,
e.g., “\xfa\xbe”

BlockHash or
MerkleRoot

char[]
(32 bytes)

Hash of the merge-mined block header. If more
than one cryptocurrency is merge-mined, this is the
Merkle tree root hash of those cryptocurrencies.

MerkleSize uint32_t
(4 bytes)

Size of the Merkle tree, i.e., the maximum number
of contained cryptocurrencies.

MerkleNonce uint32_t
(4 bytes)

Used to calculate the indices of the mined cryp-
tocurrencies in the Merkle tree. If no Merkle tree
is used, it is set to 0.

Table 2.1: Structure of the coinbase of a merge-mined block. Uses Namecoin as an
example [Namb]

In the context of merged mining, the last 40 bytes of the coinbase field can be used
to store information for the child blockchain. If merged mining involves only one child
blockchain, then 32 bytes define a BlockHash, i.e., the hash of the block header of the
child blockchain directly. If more than one child blockchains are involved, the 32 bytes
form the MerkleRoot, i.e., the root hash or a Merkle tree of size MerkleSize. The
leaves of the tree represent the hashes of the block header of each child blockchain.

It is vital to ensure that merged mining does not occur for multiple forks of the same
child blockchain; this would compromise the security of the latter. This is addressed as
follows: Each child blockchain has a fixed chainID that is defined by its developers and
hard-coded in its client implementation. For example, the chainID for Namecoin is
set5 to the value 0x0001. Every miner can choose freely for how many and for which

5Cf. Namecoin source code on https://github.com/namecoin/namecoin-core/blob/fdf
b20fc263a72acc2a3c460b56b64245c1bedcb/src/chainparams.cpp#L123
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PoW child blockchains they want to perform merged mining and, hence, maintain a
different Merkle tree. The combination of MerkleSize, MerkleNonce, and chainID
are fed to a linear congruential generator so as to produce the unique position of a child
blockchain chainID on a Merkle tree of a given size6.

For more merged mining related security considerations, see Appendix A.1.

2.2 System Model and Goals of a Pitchfork

The increasing number of cryptocurrencies, as well as the rising number of actors
within every single cryptocurrency, inevitably leads to tensions between the respective
communities. As with open-source projects, (protocol) forks could be the result of broad
disagreement. After a permanent fork (chain split), both communities “mine” their own
business and the conflict can be considered resolved from an technological perspective.
This has been observed for example with Bitcoin and its various derivatives such as
Bitcoin Cash or Bitcoin Gold. But what if this is not the case? In this chapter, we outline
the possibility of malicious forking and consensus techniques that aim at destroying the
other branch of a protocol hard-fork (protocol update). Thereby, we illustrate how merged
mining can be used as an attack method against a permissionless PoW cryptocurrency,
which itself involuntarily serves as the parent chain for an attacking merge mined branch
of a hard-fork.

Merged mining is already known for posing a potential issue to the child cryptocurrencies,
for example demonstrated in the case of CoiledCoin7. However, so far, no concrete
example has been given that merged mining can also pose a risk to the parent chain.
Since (parent) cryptocurrencies cannot easily prevent being merge mined8, an attack
strategy using this approach would be applicable against a variety of permissionless PoW
cryptocurrencies. In this chapter, we describe a scenario where merged mining is used as
a form of attack against a parent chain in the context of a hostile protocol fork.

2.2.1 Actors

For our attack scenario, we assume a permissionless PoW-based cryptocurrency Π, whose
miners cannot agree on whether or not to change the consensus rules. Some of the miners
want to adapt the consensus rules in a way such that newly mined blocks may not be
valid under the old rules, i.e., perform a hard-fork, or protocol update. Thereby, we
differentiate between the following actors:

6Cf. Namecoin source code on https://github.com/namecoin/namecoin-core/blob/fdf
b20fc263a72acc2a3c460b56b64245c1bedcb/src/auxpow.cpp#L177-L200

7Cf. https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006
8The inclusion of a hash value within a block to provably attributed it to the creator of the proof-of-

work (PoW) is enough to support merged mining [JZS+17]
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• Antiquated or backward-compatible miners (A): The fraction of miners (with
hashrate pA) in a currently active cryptocurrency Π that does not want to change
the consensus rules of Π.

• Byzantine, or change enforcing miners (B): The fraction of miners (with hashrate
pB) in a currently active cryptocurrency Π, that wants to change the consensus
rules, i.e., perform a hard-fork/protocol update. Moreover, they want that only
their branch of the fork survives.

• Indifferent, independent, or neutral miners (I): The set of miners (with hashrate
pI) that has no strong opinion on whether or not to change the consensus rules.
They want to maximize their profits and act economically rational to achieve this
goal, with the limitation that they want to avoid changes as far as possible. If
there is no imminent need that justifies the implementation costs for adapting to
changes, they will not react9.

For our example, we assume that B wants to increase the block size, while A does not
want to implement any rule change. The goal of the attackers in B is twofold: 1) Enforce
a change of the consensus rules in the target cryptocurrency. 2) Disrupt the operation of
the old branch of the hard-forked target cryptocurrency (Π), which does not follow the
new consensus rules Π .

2.2.2 Characteristics of a Pitchfork
For this chapter, we are only interested in forking scenarios that are not bilateral. In a
bilateral fork, conflicting changes are intentionally introduced to ensure that two separate
cryptocurrencies emerge [ZSJ+18]. An example of such a scenario would be the changed
chain ID between Ethereum and Ethereum Classic. It is commonly believed that in a
non-bilateral forking event, the only reliable possibility to enforce a change requires that
the majority of the mining power supports the change. Thereby, two main cases can be
distinguished according to [ZSJ+18], namely a reducing change as well as and expanding
change. For more detail we refer to Section 7.2 of this thesis.

If the introduced change reduces the number of blocks that are considered valid under the
new consensus rules, all new blocks mined according to the new rules are still considered
valid under the old rules, but some blocks which previously would have been considered
valid are no longer considered valid under the new rules. An example of such a scenario
would be a block size decrease. In this case, the first goal (enforce) of our attack is easy
to achieve if pB > pA + pI holds since any fork introduced by pB will eventually become
the longest chain and be adopted by pA and pI because of the longest heaviest chain
rule. Therefore, in this case, the rules have been successfully changed from Π to a subset
Π since pA is the minority in this case. If A decides to continue a cryptocurrency under

9This should capture the observation that not all miners immediately perform merged mining if it is
possible, even though it would be rational to do so [JZS+17].
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the original rules Π, such that larger blocks are again possible, they have to declare
themselves as a new currency since the original one has been overtaken and the rules
changed to a subset. Therefore, the goal to enforce is clearly reached in such a case.
However, the disruption goal cannot be reached directly if all miners in A create a new
cryptocurrency that follows the original rules Π.

If the introduced change expands the set of blocks that are considered valid under the
new consensus rules, then some blocks following the new rules will not be considered
valid under the old rules. Therefore, any mined block that is only valid under the new
rules will cause a fork. An example of such a scenario would be a block size increase10.In
this case, a permanent hard-fork will only occur if the chain containing blocks following
the new rules grows faster, i.e., pB > pA + pI holds. The result would be that the forking
event creates two different currencies: cryptocurrency Π , which includes big blocks, and
cryptocurrency Π, which forked from the main chain after the first big block. Therefore,
again the disruption goal cannot be reached directly. To reach this goal, some miners in
B could be required to switch to the original cryptocurrency Π and disrupt its regular
operation, e.g., by mining empty blocks. This, of course, has the drawback that the
respective attacking miners that switched from Π to Π do not gain any profits in Π ,
and their rewards in Π will be worthless if they succeed in rendering Π unusable.

The pitchfork attack method proposed in this chapter aims to achieve both attack goals
simultaneously, even in cases where pB < pA + pI holds.

2.3 Pitchfork Attack Description
The basic idea of a pitchfork attack is to use merged mining as a form of attack against
the other branch of a fork in a permissionless PoW cryptocurrency resulting from a
disputed consensus rule change. The pitchfork should disrupt the normal operation of
the attacked branch to such an extent that the miners abandon the attacked branch and
switch to the branch of the hard-fork, which performs merged mining and follows the
new consensus rules. We call the cryptocurrency up to the point of the fork ancestor
cryptocurrency Π̄. After the forking event, the cryptocurrency which still follows the
same rules is denoted as Π, whereas the change enforcing cryptocurrency branch that
uses merged mining and the new consensus rules is denoted as Π .

To execute the attack, the new merge mined branch Π accepts valid empty blocks of Π
as a PoW for Π . In the nomenclature of merged mining, the chain Π, which should be
attacked, is called the parent chain, and chain Π is called the child chain. For a valid
parent block b of Π, the following additional requirements need to be satisfied: i) The
block b has to be empty. Therefore, the contained Merkle tree root in the header of the
respective block must only include the hash of the (mandatory) coinbase transaction.
Given the corresponding coinbase transaction, it can then be verified that b is indeed

10Our example, in which B wants to increase the block size and A does not want to implement any
rule change, would resemble such an expanding protocol change.
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Figure 2.2: Example of blocks mined after the hard-fork into two cryptocurrencies Π and
Π u.

empty. ii) The coinbase transaction of b must include the hash of a valid block b for Π .
The header of block b contains a Merkle tree root with the actual transactions performed
in Π .

Figure 2.2 shows the two cryptocurrencies after the fork. The last block in the ancestor
cryptocurrency Π̄ before the forking event is b0. The first empty block that is merge
mined is b1 in this example. This block (b1) is valid under the old rules and fulfills the
difficulty target in Π, except that it is empty. Moreover, the block b1 was mined by a
miner in B, which happens with probability pB, and contains the hash of block b1 in its
coinbase. Therefore b1 serves as a valid PoW for Π as well. Block b2 was not mined
by a miner in B, which happens with probability 1 − (pB + pI), and therefore it is not
empty and does not contain a hash for a valid block for Π in its coinbase. This shows
that the two chains are not necessarily synchronized regarding their number of blocks.
The block interval in Π depends on the difficulty target of Π . Since we assume that
the attacker does not control the majority of the hashrate (pB < pA + pI), the difficulty
D in Π should be lower than in Π at the beginning of the attack, i.e., DΠ < DΠ holds.
If the difficulty has been adjusted in Π , then the overall number of blocks should be
approximately the same for both chains. In such a case, there might be empty blocks
such as b4, which do fulfill the difficulty target for Π but not for Π. Still, if DΠ < DΠ
holds, then over time, a fraction of all blocks in Π corresponding to pB will be mined by
a miner in B. If we assume that pB ≈ 0.33, then approximately every third block in Π
should be empty.

PoW Difficulty: Theoretically, it would be possible that Π requires the same or even
a higher difficulty than Π. If DΠ ≥ DΠ, then chain Π would contain fewer blocks
than chain Π. This, of course, would have a negative effect on the latency in chain Π ,
i.e., the time it takes till a transaction is confirmed. However, any merge mined blocks
that meet the difficulty requirement of DΠ will be considered valid in Π. For example,
when DΠ = DΠ, the number of blocks in Π relative to Π would only correspond to the
fraction of the hashrate (pB) that performs merged mining. Nevertheless, since chain
Π increased the block size, the throughput could theoretically remain the same or even
be higher than in chain Π (depending on the actual implementation). Some examples
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regarding an increased block size are discussed in [GKW+16, CDE+16]. Alternatively,
Bitcoin-NG [EGSvR16] could also be applicable. The latter approach would have the
added benefit that the negative impact on latency and confirmation times is mitigated.
To illustrate our attack, it is not of particular relevance which adaptation is used to
increase the throughput in Π .

2.3.1 Effects of the Attack
In the simplest case, if no countermeasures are taken by the chain under attack, a
pitchfork reduces the throughput of the target chain Π by the number of empty blocks
corresponding to the hashrate of the attackers (pB). Considering the limited block size
in Π and events in Bitcoin, or other cryptocurrencies, where the number of unconfirmed
transactions in the mempool peaked, a hashrate of pB ≈ 0.33 mining solely empty blocks,
would likely have an impact on the duration of such periods of congestion, and hence
also transaction fees and confirmation times. This could sway both users and miners in
I to switch to the attacking chain Π , which further reinforces the attack. Two other
advantages of the attack are that it is pseudonymous and that the risk in terms of
currency units in Π, as well as its severeness, is parameterizable.

Pseudonymous: Since the pitchfork attack is executed by miners through producing
new blocks that are, in addition, merged mined with the attacking chain, it is in theory
possible to hide the identities of the attackers because no unspent transaction outputs
need to be involved in the attack that could have a traceable history. However, additional
care needs to be taken by these miners to ensure that their identity is not inadvertently
revealed through their behavior [JZS+17].

Parameterizable: The attack is not an all-in-move, and its costs, in terms of currency
units in Π, can be parameterized. The goal of the attack is to disrupt the original chain
Π, but if this fails, the attackers may not lose much. Due to merged mining, the main
costs of a failed attack result from the foregone profits from transaction fees that are
not collected in chain Π. Additional costs created by merged mining, i.e., running an
additional full node for chain Π can be negligible compared to the overall costs related
to mining [NBF+16]. Moreover, even a failed attack on Π can still be profitable for the
attacking miners since the attackers in B are early adopters of Π . If the value of the
newly created cryptocurrency Π increases enough, the additional income may not only
compensate for the reduced income from mining empty blocks in Π but could even create
a surplus for the miners in Π . In addition, the attack can be made compatible with
other available cryptocurrencies that can be merged mined with Π. Therefore, additional
revenue channels from existing merge mined cryptocurrencies are not affected by the
pitchfork and can even help to subsidize the attack.

As a further parameterization for the attack, it is also possible to execute it in stages.
To test whether there is enough support for chain Π , it is possible to first start with a
relatively low risk to the attackers by not requiring them to mine empty blocks and instead
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only demand the creation of smaller blocks that can still include high fee transactions.
From there, the attackers can reduce the number of permissible transactions step by
step. At a final stage, all coins earned through mining empty blocks in Π can also be
used to fund additional attacks, such as triggering additional spam transactions in Π
as soon as the cooldown period of 100 blocks has passed. For instance, splitting the
coinbase rewards into many individual outputs of a high enough value with different
lock times and rendering the output scripts as anyone can spend can lead to a large
influx of additional transactions as users (and miners) compete to scoop up these free
currency units. This is easy to verify as an additional rule in Π . However, more complex
attack scenarios such as those outlined in [Bon16, TJS16, LK17] may also be included as
additional consensus rules.

2.4 Countermeasures
In this section, we outline some countermeasures that can be taken by players in A, as
well as their effectiveness.

2.4.1 Exclude Empty Blocks in Π

The miners in A can decide to fork off empty blocks and just build on top of blocks
containing transactions. This requires the coordinated action of all miners in A. If
pA > pB + pI , this approach will work in general. A possible counter-reaction by the
attackers in Π would be to introduce dummy transactions to themselves in their blocks
in Π. Therefore, it has to be ensured that those transactions are indeed dummies. For
example: All used output addresses of every transaction belong to the same entity,
but this must not be possible to correlate given just the block bn in Π. One way to
achieve this is to require that all output addresses in a block have been derived from the
miner’s public-key of the respective block, like in a Hierarchically Deterministic (HD)
Wallet11 construction. The master public-key property of such a construction allows that
future ECDSA public-keys can be derived from current ones. This is done by adding
a multiplication of the base point with a scalar value to the current public-key. The
corresponding secret-key is derived in the same manner but can only be computed by
its owner. If it is not possible to perform a transaction to an address for which the
miner does not have the corresponding private key, the utility of a block only containing
transactions of the respective miner is very limited for users of Π. To check this condition
on an arbitrary block bn, the public-key of the miner, as well as the scalar value for the
multiplication, is required. These values can be added to the coinbase transaction of the
corresponding block bn in Π .

If such dummy transactions are used, the miners of A would be required to monitor the
chain of Π to deduce which block in Π has been merged mined with Π and includes
only dummy transactions. If the miners of A find such a block, they can still cause a

11Cf. BIP32 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
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fork in Π to ignore it. Besides being more complex, this also poses a potential risk for all
transactions in Π. Since the block bn could be released before bn, there is no way to tell
whether or not bn was indeed merged mined. And hence includes a hash to bn before
bn has been published in Π . With this knowledge, miners in B can intentionally create
forks in Π by holding back new blocks in Π for a while. By slightly relaxing the rules
for dummy transactions and allowing, for example, one transaction output address that
is not required to be derivable by the HD construction, double-spends can be executed
more easily in Π. In this particular case, miners of merged mined blocks can include a
regular transaction that they want to double-spend in their block, being assured that
this block will get excluded in retrospect by all miners pA in Π if bn is released in Π .
Therefore, more fine-grained exclusion rules on the transaction level would be necessary.

These examples illustrate that it is non-trivial to change the consensus rules in Π such
that the effects of a pitchfork attack are mitigated. Every change of the defenders in
A leads to an arms race with the attackers in B. Moreover, excluding all merge mined
blocks in Π requires active monitoring of Π to detect them. Therefore, at least the
miners in A have to change their individual consensus rules for Π – which they wanted
to avoid in the first place.

2.4.2 Launch a Counter-attack on Π

Miners in A can use their mining power to counter-attack the attacking chain Π . However,
this has several limitations: Since every block in Π requires an empty parent block in Π
as part of its PoW, miners cannot create empty merge mined blocks in Π while at the
same time creating full blocks in Π. To stall the pitchfork Π , at least a fraction of pA
(pA ≤ pA) has to mine empty blocks in Π to also create empty merge mined blocks for
Π . Though, thereby the counter-attackers could actually help the pitchfork attack.

To clearly overtake the pitchfork chain Π , the counter-attacking miners need to have
more than 50% of the hashrate in Π . If not, the lost throughput caused by empty
blocks in Π might be compensated by the increased block size. This introduces the
first constraint for the counter-attackers, i.e., that the hashrate pA they dedicate to the
counter-attack must be larger than the attack hashrate pA > pB.

However, the counter-attackers must also take care not to push the total hashrate pA +pB,
which is dedicated towards attacking Π over 50%. Otherwise, more destructive attack
rules than mining empty blocks may be rendered effective. For example, requiring non-
empty blocks to be ignored or anyone-can-spend transactions. If the defenders retain the
majority in Π, and if they are able to reliably identify all merge-mined attack blocks, they
can exclude them in Π. Thus, the second constraint requires that for a counter-attack,
the bound pB + pA < 0.5 for the share of blocks in the heaviest chain of Π holds.

Depending on the exact implementation of merged mining in Π , the counter-attackers
have some options to avoid that their empty blocks for Π, which they are required to
provide as PoW for Π , cause further harm to Π. Therefore, we differentiate between

29



2. Pitchforks as Offensive Protocol Updates in Nakamoto Consenus

counter-attacks without direct negative consequences on Π and counter-attacks with direct
negative consequences on Π.

An example for a counter-attack without direct negative consequences on Π would be to
only submit PoW solutions to Π that fulfill the difficulty target for Π but not for Π.
This counter-attack approach has the marked disadvantage that any block meeting the
difficulty target of Π also cannot be submitted as solutions in Π , effectively reducing the
counter-attackers’ hashrate pA in Π by a factor dependent on the particular difference in
difficulty between Π and Π. A better counter-attack without direct negative consequences
on Π can be achieved if the defenders intentionally construct blocks for the parent chain Π
that are unlikely to end up in the main chain yet are still accepted as a valid proof-of-work
in Π . For instance, stale branches in Π could be created and extended. However, this
is only effective if the freshness requirements for parent blocks in Π are not too tight.
In both cases, since pA is no longer contributing toward the effective hashrate of Π, its
remaining honest miners, pI + pA − pA must still retain a hashrate that exceeds that of
the adversary to ensure that honest blocks constitute a majority of the heaviest chain.
Therefore, the original attacker gains an advantage from merged mining since he can use
his full hashrate in both chains at the same time. Moreover, the counter-attacking fraction
of the miners would forgo their rewards in Π for the duration of the counter-attack.

We now compare the two cases of counter-attacks with and without direct negative
consequences on the parent chain Π and calculate the maximum tolerable hashrate of
pB, such that the counter-attack succeeds in dominating at least one of the two systems,
i.e., A has more than half of the hashrate on at least one system. For this analysis, we
make the simplifying assumption that the total hashrate of indifferent miners pI is zero.
Hence the total hashrate of A is pA = 1 − pB. This hashrate can be split between the
two chains Π and Π arbitrarily to launch the counter-attack.

Counter-attack without Direct Negative Consequences on Π

In this case, we assume that direct negative consequences from the pitchfork attack on
the parent chain Π can be avoided while creating merge mined child chain blocks for Π.
For example, merged mined empty blocks of the parent chain are accepted as a valid
PoW for the child chain, even if they do not have a valid predecessor in the parent
chain. Indirect negative consequences of the counter-attack, like, for example, an overall
hashrate reduction that works on the longest heaviest chain in Π, is ignored for this
analysis.

Figure 2.3 shows the hashrates achievable by A on the respective chains Π and Π for
defending and counter-attacking. The figure is parameterized by different values for the
hashrate of the pitchfork attacker (pB). It can be observed that in this case, an attacker
with pB > 1

3 total hashrate cannot be countered on both chains simultaneously without
losing the majority pA < 0.5 on one of the two chains.

Theorem 1. Assuming the invested counter-attack hashrate does not directly strengthen
the attack on the merge mined parent chain Π. Then, to successfully perform a counter-
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Figure 2.3: Hashrates of the defender/counter-attacker in the respective chains Π and Π for
different values of pitchfork attacker hashrate pB. The colored orange square marks the area in
which the counter-attackers A loses in both chains, whereas the colored blue square marks the
area in which the counter-attackers A can retain the majority in both systems.

attack in which A dominates a merge minded pitchfork child chain Π , the attacker
hashrate pB must be less than 1

3 , such that A can dominate both chains (i.e., have more
than half of the hashrate in both chains).

Proof. Since the pitchfork attack utilizes merged mining, the hashrate of the attacker
pB is available in both systems, Π and Π . To overtake and dominate the merge mined
child chain Π , the most a defender with hashrate pA can invest in terms of hashrate is
1
2 , as otherwise, we would lose in protocol Π. To keep control of the parent, the following
inequality has to hold: pA

2 > pB. Since we are in a two-player model, the hashrates are
defined as: pA = 1 − pB. Replacing pA in our inequality then gives us the maximum
hashrate of the attacker 1−pB

2 > pB, which simplifies to pB < 1
3 , and provides the upper

bound for the hashrate of the attacker s.t., the defender A can win in both chains.

Figure 2.4 shows a visualization of this scenario in which merged mining the parent is
possible without causing the negative side effects intended by the pitchfork attack on the
parent chain. In this example, pB = 1

3 and thus no party can clearly win either chain.

This result for permissionless PoW cryptocurrencies has an interesting relation to a
paper by Lindell et al. [LLR04], in which the authors prove that authenticated Byzantine
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Before counter attack:

Π pB + pA = pΠ = 1
pB pA
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After counter attack:

pB + pA
2 = pΠΠ
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Figure 2.4: Visual comparison of hashrates in the two systems Π and Π , before and after counter
attacking the merge minded pitchfork protocol Π , when merged mining of the parent is possible
without negative effects on the parent chain. In this example, the hashrate of the attacker is
pB = 1

3 , which results in a situation where no player can clearly win on any of the two chains in
case of a counter-attack.

Agreement protocols only remain secure under parallel or concurrent composition (even
for just two executions), when more than 2/3 of the participating parties are honest.

Counter-attack with Direct Negative Consequences on Π

In this case, we assume that direct negative consequences of the attack on the parent
chain Π cannot be avoided while creating merge mined child chain blocks for Π.

Theorem 2. Assuming the invested counter-attack hashrate directly strengthens the
attack on the merge mined parent chain Π. Then, to successfully perform a counter-attack
in which A dominates a merge mined pitchfork child chain Π , with no ability to avoid
damage on the target chain, the attacker hashrate pB must be less than 1

4 , s.t. A can
dominate both chains (i.e., have more than half of the hashrate on both chains).

Proof. Since the pitchfork attack utilizes merged mining, the hashrate of the attacker is
available in both systems. The difference now is that the defenders can not switch parts
of their hashrate to the pitchfork chain running Π without harming the target chain
running Π. We denote the hashrate that switches and gets “malicious” in Π with pA. To
determine the maximum pB, the following conditions have to hold:

pB + pA < pA (Ensures dominance of A on targeted parent chain) (2.1)
pB < pA (Ensures dominance of A on child chain) (2.2)

pB + pA + pA = 1 (Overall hashrate is bound by 1) (2.3)
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Before counter attack:

Π pB + pA = pΠ = 1
pB pA

pB = pΠΠ
pB

After counter attack:

pB + pA · 2
3 = pΠΠ

pB pA · 1
3 pA · 2

3

pB + pA · 1
3 = pΠΠ

pB pA

Figure 2.5: Visual comparison of hashrates in the two systems Π and Π , before and after counter
attacking the merge minded pitchfork protocol Π , when merged mining of the parent is not
possibe without negative side effects on the parent chain. In this example, the hashrate of the
attacker is pB = 1

4 , which results in a situation where no player can clearly win on any of the two
chains in case of a counter-attack.

This gives us pA > 1
2 and pB < 1−pA

2 . Solving this for the point where the hashrate/power
on both chains is equal (i.e., pB = pA and pB + pA = pA) gives us the upper bound
pB < 1

4 for the attacker hashrate s.t., the defender A can win on both chains.

pB + pA − pA = 0 (2.4)
pB + pA + pA = 1 (2.5)

pB = pA (2.6)

2pB + 2pB = 1 (2.7)

pB = 1
4 (2.8)

Figure 2.5 shows a visualization of this scenario in which merged mining the parent is
not possible without negative side effects on the parent chain. In this example, pB = 1

4
and thus no party can clearly win either chain in case of a counter-attack.

2.4.3 Do nothing
Given the undesired side effects of the other countermeasures discussed so far, one
option for the defenders A would be to do nothing. Then, the users of Π have to live
with a reduced throughput in the size of pB. This would work and dry out the funds
of the attackers B, if the reduced gains from missed transaction fees in Π cannot be
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compensated by the new gains of mining an additional cryptocurrency, Π . If the gains in
Π overcompensate the losses in Π, then the surplus in funds can be reinvested into new
mining hardware to increase the overall share in the mining ecosystem until pB accounts
for the majority of mining power. Then, they would be able to overtake Π directly.

In other words, the success of ignoring the pitchfork attack depends on the balance
between lost income and newly gained income. If the loss in income from pitchfork
mining Π can be avoided, for example, if the consensus rules of Π are designed in a way
such that the transaction fees in Π do not count towards the income of the miner but
instead are burned, then mining empty blocks would not have any disadvantage. Another
option would be to require more complex attacks on Π as a PoW for Π . Such attacks
might even be profitable in the target cryptocurrency Π.

2.5 Related Attacks, Potential Enhancement, and
Further Analysis of Incentive Manipulation

In [JZS+17], it is argued that merged mining could also be used as an attack vector
against the parent chain. However, no concrete examples are given. In this chapter,
we outline that merged mining can be used as an attack method against a PoW cryp-
tocurrency in the context of a hostile protocol hard-fork. The pitchfork attack is an
example of such a technique, which poses interesting questions regarding the interplay of
different cryptocurrencies, as well as their incentive structures. The difficulties regarding
counter-attacking a Pitchfork attack on a permissionless PoW cryptocurrency have an
interesting relation to a paper by Lindell et al. [LLR04], in which the authors prove
that authenticated Byzantine Agreement protocols only remain secure under parallel
or concurrent composition (even for just two executions) when more than 2/3 of the
participating parties are honest. In the case of classical Byzantine fault tolerant systems,
this boils down to the requirement that there has to exist at least one honest node which
must be aware of a concurrent alternative partition of nodes before making his decision to
support only one partition. In other words, this honest node is the tie-breaker and cannot
be tricked to also support an alternative conflicting agreement in which dishonest nodes
have equivocated i.e., participate in a violation of the safety property. This leads to the
well known 2f + 1 bound i.e., of more than 2/3 honest nodes. Compared to the Pitchfork
attack, merged mining can be viewed as the “equivocation” and the requirement that
the defenders need to “win” (> 51%) at least one of the two systems leads to the bound
for the adversarial hashrate that supports each concurrent system of less than 1/3 i.e.,
more than 2/3 honest hashrate.

A natural question now is if there are other attack possibilities on permissionless PoW
cryptocurrencies leveraging such incentive and concurrency issues. Different bribing
methods that can be used in hostile blockchain takeovers are described in [Bon18],
placing the focus on attacks where the attacker has an extrinsic motivation to disrupt the
consensus process, i.e., Goldfinger attacks [KDF13]. The example given in this chapter
is a concrete instance of such a situation. The pitchfork attack can also be viewed as a
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subsidized Goldfinger attack. Therefore, some of the described methods for Goldfinger
attacks might also be used in conjunction with our proposed attack. This also holds
true for the large body of work on bribing [Bon16, MHM18] and incentive attacks that
distract the hashrate of participants [TJS16, VTL17].

The general idea of such an offensive consensus attack, like the pitchfork, is that the
participants of the offensive system are required to provably attack a different system as
part of the consensus rules. We show that such attacks are theoretically possible and can
lead to an arms race in which defenders are forced to adapt their consensus rules. Still,
the consequences, as well as the economic and game-theoretic incentives of such attacks,
have yet to be analyzed in greater detail to better understand if they are practicable and,
if so, how to protect against them. Therefore, we first systematize the related work on
other incentive attacks in the next chapter of this thesis.
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3
Systematization of Algorithmic
Incentive Manipulation Attacks

This chapter1 aims to systematize the landscape of research on attacks that target
the incentives of actors within – and through the use of – cryptocurrencies. Bribing
and other related attacks aim to directly influence the incentives of actors within (or
outside) the targeted cryptocurrency system. The theoretical feasibility of bribing
attacks on cryptocurrencies was highlighted in the academic community in 2016 by
Bonneau [Bon16], with various different techniques and approaches having since been
proposed. Some of these attacks are designed to gain in-band profits in terms of
currency units, while others intend to break the mechanism design and render the
targeted cryptocurrency worthless. Recent reports of real-world 51% attacks on smaller
cryptocurrencies [coi20, coi19b, coi19a, btg20] underline the realistic threat of large-scale
attacks on permissionless cryptocurrencies. Moreover, they show that incentives play
a vital role in this regard. In this chapter, we systematically expose the extensive but
scattered body of research in this area that has accumulated over the years. We summarize
these bribing attacks and similar techniques that leverage programmatic execution and
verification under the term algorithmic incentive manipulation (AIM) attacks, as they all
intend to influence the incentives of actors. Thereby, we show that the problem space is
not yet fully explored. We present several research gaps and opportunities that warrant
further investigation based on our analysis. In particular, we highlight no- and near-fork
attacks as a powerful, yet underestimated, AIM category that raises security concerns
not only for smart contract platforms. To succeed, such attacks require forks of short
length independent of a security parameter k defined by the victim, or even no-forks at
all. The consequences, such as transaction exclusion and ordering manipulation, raise
security concerns for certain established use cases of smart contract platforms.

1This chapter represents an extended version of publication [JSZ+21b].

37



3. Systematization of Algorithmic Incentive Manipulation Attacks

To systematically expose the large body of research on bribing-, front-running- Goldfinger-
and other related attacks, we jointly consider them under the general term algorithmic
incentive manipulation attacks (AIM). Thereby, we want to distinguish programmatic
ways to set up and execute incentive attacks on cryptocurrencies by using cryptocurrencies
from “classical” bribing attacks, for example, using a suitcase full of cash to bribe miners.
The difference is that the latter does not require technical means but, at the same time,
lacks technical enforcement [Bon16].

The classification of AIM attacks in this chapter forms a prerequisite and basis for
comparing and discussing different attacks in this area, as well as meta arguments [FB19].
In summary, the contributions of this chapter are:

1. A definition and discussion of algorithmic incentive manipulation (AIM) provid-
ing a unified view of different approaches targeting the incentives of actors in
cryptocurrencies.

2. A generic attack model for AIM suitable to compare most of the available attacks.
This attack model will be further extended throughout the thesis.

3. A classification framework for AIM that is applicable to describe a broad class of
attacks.

4. A classification of existing AIM approaches and discussion of main observations
and gaps regarding their capabilities.

3.1 Algorithmic Incentive Manipulation
To meaningfully partake in a Nakamoto consensus protocol, a certain capacity [Bon18] of a
scarce resource is required. In the case of Proof-of-Work (PoW), these resources are mining
hardware and electricity to solve cryptographic puzzles. In [Bon18], the different ways to
gain capacity in Nakamoto consensus are grouped into four different strategies: rent, bribe,
build and buy out. It is well known that an actor who builds a new datacenter running
specialized mining hardware, rents GPU clusters, or buys existing mining hardware from
current miners can increase his influence on the targeted cryptocurrency and thereby
(depending on his resources) potentially launch attacks [Bon18, Bud18]. The desired
property of Nakamoto consensus (based on PoW2) of being permissionless [Vuk15] allows
such attacks.

In this thesis, we want to focus on algorithmic incentive manipulation (AIM) methods to
gain capacity in permissionless PoW-based cryptocurrencies, as all existing attacks which
fall into this category – and are classified in this chapter – explicitly target PoW systems.
Nevertheless, the basic principles of AIM should also apply to most PoS cryptocurrencies.
Algorithmic (i.e., purely “virtual”) methods of gaining capacity rely on the usage of game

2In comparison, in proof-of-stake (PoS) cryptocurrencies it would not be possible to rent or build
new capacity, as all stake eligible for voting has to exist in the system already [Bon18].
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theory and cryptocurrencies to perform cryptographically guaranteed payments that are
dependent on certain conditions. This ability of cryptocurrencies to tie payments to
the fulfillment of certain conditions, for example, the existence of prior transactions, or
the successful execution of smart contract invocations, is a way to promise conditioned
payments.

AIM methods do not involve the physical transfer of resources, like buying or building,
and maintaining hardware. Instead, these methods assume that at least some fraction of
actors, within or outside of the system, behaves rationally in the sense that they want to
maximize their profits. Some approaches for AIM have been referred to as bribing, but
AIM goes beyond what is currently viewed as a bribing attack in the literature, as they
should incorporate Goldfinger [KDF13] and front-running [EMC19, DGK+20] attacks as
well. Therefore our broader definition is as follows:

Definition 1. Algorithmic Incentive Manipulation (AIM) works by posing credible
threats, or promising conditioned rewards (denominated in cryptocurrency units), in
an algorithmically enforceable way. Thereby, AIM incentivizes certain actions within a
targeted cryptocurrency system.

3.2 Generic Attack Model for AIM
For all analyzed AIM attacks in this chapter, we describe the following generic attack
model, which can readily be applied in most cases.3 If an analyzed attack deviates from
this model, it is highlighted in detail when the attack is described. This encompasses
additional assumptions and augmentations relevant to specific attacks.

As most bribing and related attacks in this area are designed to target Bitcoin, Ethereum,
or other derived cryptocurrencies, we also focus in our model on AIM in permis-
sionless [Vuk15] proof-of-work (PoW) cryptocurrencies. That is, we assume proto-
cols adhering to the design principles of Bitcoin, more formally described in subse-
quent works [Nak08, GKL16, PSS17] and sometimes referred to as Nakamoto consen-
sus [BMC+15, SJS+18, DKT+20]. Within the attacked cryptocurrency, we differentiate
between miners, who participate in the consensus protocol and attempt to solve PoW-
puzzles, and clients, who do not engage in such activities. As in previous work on bribing
attacks [LK17, TJS16, MHM18, Bon16], the set of miners is assumed to be fixed, as
well as their respective computational power within the network is assumed to remain
constant.

To abstract from currency details, we use the term value as a universal denomination for
the purchasing power of a certain amount of cryptocurrency units or any other out-of-band
funds such as fiat currency. Miners and clients may own cryptocurrency units and are able

3Only the Proof-of-Stale blocks [LVTS17, VTL17] attack, as well as Fomo 3D [fom18], are fundamen-
tally different: The former is targeted to attack mining pools, while the latter is designed as an exit scam,
but can also lead to scenarios resembling a censorship attack.
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to transfer them (i.e., their value) by creating and broadcasting valid transactions within
the network. Moreover, like in most prior work [TE18, LK17, MHM18], the simplifying
assumption is made that exchange rates remain constant throughout the attack if we are
not dealing with Goldfinger-style attacks that specifically aim to harm the exchange rate.

3.2.1 Actors
Our generalized attack model splits participating miners into three groups whose roles
remain static for the attack duration. Categories follow the BAR (Byzantine, Altruistic,
Rational) [AAC+05, LCW+06] behavior model. Additionally, we define the victim(s) as
another group or individual without hashrate.

• Byzantine miners: The set of byzantine miners, also referred to as attacker(s),
B wants to execute an AIM attack on a target cryptocurrency. Therefore, B is in
control of some bribing funds funds(B) > 0 that can either be in-band (i.e., in
currency units of the target cryptocurrency) or out-of-band (e.g., in some other
cryptocurrency), depending on the attack scenario. Furthermore, B has some or
no hashrate pB ≥ 0 in the target cryptocurrency. The attacker(s) may deviate
arbitrarily from the protocol rules.

• Altruistic or honest miners: Altruistic miners A, are honest and always follow
the protocol rules, hence they will not accept bribes to mine on a different chain-
state or deviate from the rules, even if it would offer a larger profit. Altruistic
miners A control some hashrate pA. If there are none in the target cryptocurrency,
they are modeled by having 0 hashrate, thus pA ≥ 0.

• Rational or bribable miners: Rational miners R control hashrate pR > 0 in
the target cryptocurrency. They aim to maximize their profits in terms of value and
act economically rational to achieve this goal. We consider such miners “bribable”,
i.e., they follow strategies that deviate from the protocol rules as long as they are
expected to yield higher profits than being honest. For our analyses, we assume
that rational miners do not have the opportunity to concurrently engage in other
rational strategies such as selfish mining [ES14].

• Victim(s): The set of victims V or a single victim, which loses value if the bribing
attack is to be successful. The victims control zero hashrate and can thus be
viewed as a client. They, might control additional funds which they can use for
counter-attacks.

It holds that pB + pA + pR = 1. The assumption that the victim of an AIM attack has
no hashrate is plausible, as the majority of transactions in Bitcoin or Ethereum are made
by clients who do not have any hashrate in the system they are using. Nonetheless, this
assumption is often left implicit (e.g., [LK17]).
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Some bribing attacks (e.g., [TJS16]) implicitly model victims (in this case, the betrayed
collaborators of the double-spending attack) as honest, i.e., as strictly following the
protocol. We emphasize that this is not necessarily the case, especially if economically
rational counter-attacks by the victim should be considered. This distinction between
rational and honest victims is more important if V directly controls some hashrate,
but even in a setting where V has no hashrate, he can use his funds (funds(V)) for
counter-attacks4. Although, we would also follow the argument in [Bon16] that requiring
clients to perform counter-bribing is undesirable.

Whenever we refer to an attack as trustless, we imply that no centralized trusted third
party is needed between the briber and the bribee to ensure correct payments are
performed for the desired actions. It is desirable from the attacker’s perspective to design
AIM attacks so that the attacker(s), as well as the collaborating miners, have no incentive
to betray each other if they are economically rational.

3.2.2 Communication and Timing
As previous AIM attacks, we assume that all miners in the target cryptocurrency have
perfect knowledge about the attack once it has started, if not stated differently. Miners
with imperfect information about an ongoing AIM attack can be modeled by adding
their respective hashrate to the hashrate of altruistic miners (pA) as they would continue
their regular mining activity. All participants communicate through message passing
over a peer-to-peer gossip network, which we assume implements a reliable broadcast
functionality. This does not mean that every transmitted transaction will make it into the
next block, as the block size is bounded by the underlying blockchain protocol. Analogous
to [GKL16], we model the adversary as “rushing”, meaning that he gets to see all other
players’ messages before deciding his strategy.

If more than one cryptocurrency is involved in the considered scenario, for example, when
out-of-band payments should be performed in another cryptocurrency, an additional
funding cryptocurrency is assumed. While the attack is performed on a target cryptocur-
rency, the funding cryptocurrency is used to orchestrate and fund it. In such a case, we
also assume that the difficulty and thus the mean block interval of the funding chain
is fixed for the duration of the attack. Further, no additional attacks are concurrently
being launched against either of the cryptocurrencies.

3.3 Classification Framework for AIM
We first introduce a general classification along four main dimensions: the state of the
targeted transaction(s); the intended impact on these transactions; the required interference

4Therefore in Section 3.7 we distinguish between rational and honest/altruistic victims to allow for a
more fine-grained discussion of the presented attacks.
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with consensus, i.e., the depth of blockchain reorganizations caused by forks for the attack
to be successful; and finally the used payment methods. Besides these main distinguishing
properties, there are also other characteristics that are introduced when they become
relevant during the classification of existing AIM attacks in Section 3.5. To get a feel for
our classification framework and the herein introduced dimensions, see Section 3.4 for an
example.

3.3.1 State of Targeted Transactions
A core goal for permissionless PoW cryptocurrencies is to achieve an (eventually) consis-
tent and totally ordered log of transactions that defines the global state of the shared
ledger. Therefore, our classification uses a transaction-centric viewpoint to systematize
different attacks and their relation to the underlying consensus. We differentiate between
three states a transaction can be in from the perspective of a participant (miner or client):

• unconfirmed5, the transaction has been broadcasted in the respective P2P net-
work;

• confirmed, the transaction has been confirmed by at least one block, i.e., has been
included in a block;

• settled, the transaction has been confirmed by at least k blocks, where k is
defined by the recipient of the transaction. We denote kparticipant to refer to the
confirmation policy of a participant if it is not clear from the context, e.g., kV

denotes the confirmation policy of the victim.

3.3.2 Intended Impact/Influence on Transactions
We further separate between the following four main types of how AIM can have an
influence on transactions and their ordering:

• transaction revision, change a previously proposed, possibly confirmed, or settled
transaction;

• transaction exclusion/censorship, exclude a specific transaction, or set of
transactions, from the log of transactions for a bounded amount of time, i.e., the
transaction remains unconfirmed.

• transaction ordering, change either the proposed, confirmed, or already settled
upon order of transactions;

• transaction triggering, incentivize the creation of one or multiple transactions
by a specific actor or group of actors, e.g., trigger spending transactions for anyone-
can-spend outputs.

5Sometimes also referred to as proposed, or published in related literature.

42



3.3. Classification Framework for AIM

The design paradigms of the underlying cryptocurrency have to be considered to assess
the impact and effects of the mentioned manipulation methods. For example, the impact
of transaction (re)ordering in a smart contract-capable cryptocurrency is greater than
for a cryptocurrency platform that does not support smart contracts. Conversely, the
censorship of undesired effect is easier to define programmatically in a UTXO-based
model, as there can only be one transaction spending a certain unspent output, compared
to a smart contract capable cryptocurrency where a transaction to a smart contract can be
routed through several layers of contract invocations. Therefore, influence methods such
as transaction ordering and exclusion have a variable impact depending on the targeted
platform. Similarly, the ability to invalidate a transaction can result from successfully
performing one or more of the above transaction manipulation types. Thereby, the
definition of “invalid” depends on the underlying cryptocurrency and is different for
UTXO and account-based models. For example, to invalidate a transaction to a smart
contract in Ethereum, two approaches exist: Either a transaction is not accepted because
a transaction with the same nonce was already included in Ethereum, or the transaction
throws an exception during execution because it operates on an (unexpectedly) changed
state. The first would be a result of transaction revision, while the latter can happen
because of a change in the order of invoked transactions or the exclusion of a previous
transaction.

Some AIM attacks may allow multiple types of transaction manipulation at the same
time, while others are specifically constructed to support only one method (see Table 3.1).
Depending on the state of the targeted transaction(s) (proposed, confirmed, settled), the
attack might vary in cost and the required level of interference with consensus.

3.3.3 Required Interference with Consensus
While the previous classification of transaction manipulation attacks describes the in-
tended impact, here we consider the required interference with consensus by which they
can be achieved. Specifically, we introduce three different fork requirements:

• Deep-fork required, where a fork with a depth of at least exceeding a security
parameter kV is necessary (i.e., > kV ). The victim defines kV [GKL15, SZ16],
referring to its required number of confirmation blocks for accepting transactions6.
In other words, the victim indirectly defines the required minimum fork length by
his choice of kV .

• Near-fork required, where the required fork depth is not dependent on kV , but
forks might be required. In other words, the attacker defines the gap kgap (which
can be smaller than kV ) he wants to overcome.7

6We emphasize that each transaction has a recipient (and thus a potential victim with an individual
kV ), in practice, there is no global security parameter k that holds for all transactions.

7The length of kgap also depends on the attacker’s resources and willingness to succeed (e.g., to
exclude a certain block).
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• No-fork required, where no blockchain reorganization is necessary at all (i.e., =
0).

The required interference with consensus specifies the chain reorganization needed. A
classical double-spending attack scenario [Ros14, SZ16] can be considered as a transaction
revision attempt in which a single attacker aims at producing a longer chain (possibly
in secret [ES14, SSZ16]) than the main chain to revert one (or possibly many) of his
own transactions. Therefore, this attack requires deep-forks ( > k) to reorganize the
chain. In most models, the attacker is assumed to have full control over the required
hashrate to perform the attack, he can also arbitrarily order and exclude transactions
from the longest chain. Clearly, an attacker with more than 50% of the hashrate is able
to eventually produce a longer chain with probability one and thus can revert/undo any
transaction and permanently perform all four kinds of transaction manipulation attacks
by providing a longer chain 8.

No-fork attacks distinguish themselves from the other two categories by aiming to
manipulate miner’s block proposals rather than (preliminary) consensus decisions, i.e.,
already mined blocks. In the context of PoW cryptocurrencies, manipulating a miner’s
block proposal means influencing the input block used for finding and adding a valid
PoW. Deep- and near-fork attacks seek to undo state updates to the ledger that are
already confirmed by subsequent PoW.

3.3.4 Payment Method Used
AIM attacks either pay for compliant behavior or penalize for non-compliant actions.
How this mechanism is set up depends on the attack in question. There are three general
methods that differ in which currency is used for the payment.

• In-band payment: The payment is performed in the target cryptocurrency. Most
early bribing attacks were designed to gain in-band profits, for example, checklock-
time bribes [Bon16], whale transactions [LK17], or history revision contracts in
Ethereum [MHM18].

• Out-of-band payment: The payment is performed in another currency, the so-
called funding cryptocurrency. Some AIM attacks which utilize out-of-band funding
were designed as Goldfinger attacks, for example, GoldfingerCon [MHM18] and
Pitchforks [JSSW18]. Others can be executed as Goldfinger attack or with the goal
of gaining in-band profits, for example, creating alternative mining puzzles [TJS16],
or the out-of-band variants of P2W attacks [JSZ+19]. This highlights that AIM
attacks which are intended to destroy a cryptocurrency, i.e., perform a Goldfinger
attack, inherently require methods of out-of-band funding.

• Threat: No direct payment is performed, but a credible threat is constructed that
non-compliant behavior could lead to losses [sAM, MJP+20].

8Actually, the heaviest chain by PoW, e.g., in Bitcoin measured in difficulty periods.
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3.4 Example Use of Our Classification Framework
Whether an attack is executable with or without a fork depends on the intended impact on
transactions as well as on the state of the targeted transaction. For example, transaction
revision where the victim accepts kV =0 (zero confirmations) may be executable as no-fork
attacks. Other attacks, such as performing a double-spend where the victim has been
carefully chosen kV [SZ16], may require deep-forks because they need to substantially
affect consensus and violate the security assumption that the common prefix of the
blockchain remains stable. Transaction exclusion (censorship) may require near-forks to
exclude the latest blocks which include the respective transaction.

With our classification framework, we can map front-running [EMC19, DGK+20, JSZ+19]
as an attack that aims to influence transaction ordering, while targeting unconfirmed
transactions (state of targeted transactions). Compared to that, the so-called time-bandit
attack [DGK+20] also aims to influence transaction ordering, but targets confirmed or
even settled transactions. Note that strictly speaking a time-bandit attack is not AIM, as
it does not incentivize other participants to aid the attack, but instead relies on “classic”
methods like performing a rental attack to temporarily hold the majority of the hashrate

3.5 Classification of Existing AIM Approaches
Equipped with our generalized attack model and the classification by state of and intended
impact on transactions as well as the resulting required interference with consensus, we
now inspect and compare existing AIM attacks within this section. Table 3.1 presents an
overview of our systematization of existing proposals. Each row represents a different
attack (in chronological order of their release) and columns outline respective properties.
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Distracts
hashrate
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attacker
Trustless for
collaborator Subsidy Compensates

if attack fails
Bribery [Cun] ✓ ✗ ✗ (✓) Deep fork ≈ (0, 1

2) ≈ [1
2 , 1) ✗ ✗ in-band ✓ ∼ ✗ ✗

Dark side attack [Ler] ✓ (✓) (✓) ✗ Deep fork ≈ (0, 1
2) ≈ [0, 1) ✗ ✗ in-band ✗ ✓ ✗ ✗

Feather-forks [sAM] ✗ ✗ ✓ ✗ Near-/No forks ≈ (0, 1
2) ≈ [1

2 − 1) ✗ ✗ threat - - - -

Checklocktime bribes [Bon16] ✓ ✗ ✗ (✓) Deep fork ✗ ≈ [1
2 , 1] ✗ ✗ in-band ✓ ∼ ✗ ✗

Negative fee miningpool [Bon16] ✓ (✓) ✓ ✗ Near-/No- /Deep forks ✗ ≈ [1
2 , 1] ✗ ✗ out-of-band ✗ ✗ ✗ ✓

Script Puzzle double-spend [TJS16] ✓ (✓) ✓ (✓) Deep fork (0, 1
2) 1 − pB ✓ ✗ in-band ∼ ✗ ✗ ∼

Script Puzzle 38.2% attack [TJS16] ✗ (✓) ✓ ?† Near-/No forks [0.382, 1
2) 1 − pB ✓ ?† out-of-band ?† ?† ✗ ✓

Whale Transactions [LK17] ✓ ✗ ✗ ✗ Deep fork (0, 1
2) 1 − pB ✗ ✗ in-band ✓ ∼ ✗ ✗

Proof-of-Stale blocks [LVTS17, VTL17] - - - (✓) - ✗ - ✓ ✓ out-of-band ∼ ✓ ✗ ✓

Fomo3D game [fom18] - - - ✓ No fork ✗ [0,1] ✗ ✓ in-band ✓ ✓ ✗ ∼
CensorshipCon [MHM18] ✗ (✓) ✓ (✓) Near-/No forks [1

3 , 1
2) [1

3 , 2
3) ✓ ✓ in-band ∼ ✗ ✓ ✗

HistoryRevisionCon [MHM18] ✓ ✗ ✗ (✓) Deep fork ✗ ≈ [1
2 , 1] ✗ ✓ in-band ✓ ∼ ✓ ✗

GoldfingerCon [MHM18] - - ✓all (✓) No fork ✗ ≈ [1
2 , 1] ✗ ✓ out-of-band ✓ ✓ ✗ ✓

Race to the door [Bon18] - - - ✓ No fork ✗ [0,1] ✗ ✓ o.o.-band/threat ✓ ✓ ✗ ∼
Pitchforks [JSSW18] - - ✓all ✗ No fork ✗ (1

3 , 1] ∼ ✗ out-of-band ✓ ✓ ✓ ✗

Front-running [EMC19, DGK+20] ✗ ✓ ✗ (✓) No fork ✗ (0, 1] ✗ ✗ in-band ✗ ✓ ✗ ✓

Pay per Miner Censorship [WHF19] ✗ ✗ ✓ - No fork ✗ 1 ✗ ✓ in-band ∼ ∼ ✗ ✗

Pay per Block Censorship [WHF19] ✗ ✗ ✓ - No fork ✗ 1 ✗ ✓ in-band ∼ ∼ ✗ ✓

Pay per Commit Censorship [WHF19] ✗ ✗ ✓ - Near-/No fork ✗ 1 ✗ ✓ in-band ∼ ∼ ✗ ✗

P2W Tx Excl. & Ord [JSZ+19] ✗ ✓ ✓ (✓) Near-/No fork ✗ [1
2 , 1] ✗ ✓ out-of-band ✓ ✓ ✗ ✓

P2W Tx Rev. & Excl. & Ord. [JSZ+19] ✓ ✓ ✓ (✓) Deep fork ✗ [1
2 , 1] ✗ ✓ out-of-band ✓ ✓ ✗ ✓

P2W Tx Ord. (in-band) [JSZ+19] ✗ ✓ ✗ (✓) No fork ✗ (0, 1] ✗ ✓ in-band ✓ ✓ ✗ ✗

P2W Tx Excl. (in-band) [JSZ+19] ✗ ✗ ✓ (✓) Near-/No fork ✗ [1
2 , 1] ✗ ✓ in-band ✓ ✓ ✗ ✗

BDos [MJP+20] - - ✓all ✗ Near-/No fork ≈ [0.21, 1
2) (for BTC) 1 ✗/✓ ✗ threat - - - -

HTLC bribing [KNW20, TYE21] ✗ ✗ ✓ ✗ Near-/No fork ✗ 1 ✗ ✗ in-band ✓ ∼ ✗ ✗

Table 3.1: Comparison of existing AIM approaches on cryptocurrencies in chronological order according to their appearance.
A property is marked with ✓ if it is achieved and with ✗ otherwise, - is used if a property does not apply. If the symbol is within brackets, e.g., (✓), this means
that this propery is achieved (or can be augmented), but this was initially not discussed or considered by the authors.
∼ means that the property cannot be clearly mapped to any of the previously defined categories without further details or discussion which is given in the
textual description.

means that this attack aims against mining pools and hence is not intended to manipulate the content of the blockchain.
† means that the paper does not explicitly specify the out-of-band payment method but assumes its correctness.
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3.5.1 Impact on Transactions

The different ways in which AIM attacks can have an impact on transactions are outlined
in Section 3.3.2.

Tx revision: In the first bribing attack, proposed by Bonneau [Bon16], the use of lock
time transactions is suggested, which are only valid on the attacker’s chain, but there
they can be claimed by anyone (anyone-can-spend outputs). Miners are hence expected
to be incentivized to mine blocks on the attacker’s chain to collect these bribes as inputs
in new transactions included in their new blocks. As a by-product, one transaction per
new block is triggered to claim the anyone-can-spend output. Therefore, transaction
triggering is technically achieved but set into parenthesis as it is not the main intent of
the attack. A variation of the checklocktime bribes which does not trigger additional
transactions was proposed by Liao and Katz [LK17] and uses high fee transactions
(whale transactions) to provide incentives for miners to join the attack. In [MHM18]
they proposed a smart contract (HistoryRevisionCon) which pays additional in-band
rewards to miners of the attacker’s desired Ethereum chain branch, iff the effects of the
double-spending transaction have occurred on this branch. Strictly speaking, this attack
also triggers transactions as the promised rewards have to be claimed by the bribees from
the smart contract. The mentioned attacks ( [Bon16, LK17, MHM18]) rely on in-band
payments and are designed to replace or revise a specific transaction, i.e., perform a single
double-spend. As a consequence, they do not consider defining the order or exclusion
of arbitrary transactions. Except for the double-spending transaction itself, the block
content of subsequent blocks can freely be defined by the bribed miners. Thus – if not
explicitly considered – also the blocks produced by the bribed miners will not be fully
under the control of the adversary. Therefore, it would be possible for such miners to
also perform a double-spend of one of their transactions for free, by piggybacking on the
attack financed by the original attacker.

Tx exclusion: There is one notable exception that was specifically designed to exclude
transactions: CensorshipCon [MHM18] rewards mining uncle blocks to distract the
hashrate of bribable miners, which in turn enables the attacker to overtake the Ethereum
blockchain s.t., blocks exclusively come from the attacker. Since this attack is in-band,
it only works in Ethereum and relies on the uncle block reward scheme of Ethereum to
subsidise the attack, i.e., reduce the value of the required bribes. To succeed, it requires
that the attacker’s hashrate is larger than 1

3 and the hashrate of the bribable miners to
be between [1

3 , 2
3). If the attack is successful it allows for arbitrary transaction ordering

as well and thus also for arbitrary transaction exclusion, as all blocks appended to the
main chain during the attack come from the attacker.

GoldfingerCon [MHM18] can be seen as a special case of the transaction exclusion at-
tack which rewards Bitcoin miners for mining empty blocks with the help of an Ethereum
smart contract. In this case, all transactions are excluded to reduce the utility of the
respective cryptocurrency for all its users. Attacks aimed at disrupting entire cryptocur-
rencies have been described as early as 2012 [BBH+12], where the authors highlighted
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that collective action of could “Occupy Bitcoin”. Later such attacks to disrupt cryptocur-
rencies have been termed Goldfinger attacks by Kroll et al. [KDF13]. GoldfingerCon was
just the first practical instantiation of such an attack. The name is derived from the
James Bond movie villain Goldfinger, who seeks to destroy the gold reserves stored in
Fort Knox to increase the value of his own holdings. An important aspect of Goldfinger
attacks is that the payments have to be performed out-of-band since, if successful, the
value of the targeted cryptocurrency is intended to drop. Similarly, Pitchforks [JSSW18]
leverage merged mining [JZS+17] to subsidize the creation of empty (or specially crafted)
blocks in the attacked parent chain [JSSW18]. As with all Goldfinger-style attacks,
the attacker is required to achieve utility outside of the cryptocurrency economy he
wants to attack [KDF13]. In the case of the Pitchfork attack, the external utility comes
from a hard-fork, which creates a new cryptocurrency. In this new cryptocurrency, the
merge-mined PoW consists of blocks that attack the forked parent cryptocurrency, e.g.,
are empty. As the hashrate in this case serves an additional use case/application, it is
technically not directed anywhere else i.e., not distracted.

Distracted hashrate is redirected from the valid tip(s) of the attacked blockchain to
some other form of puzzle or alternative branch, that does not contribute to state
transitions of the targeted cryptocurrency. The Script puzzle 38.2% [TJS16] and
CensorshipCon attack [MHM18] are designed to distract the hashrate of bribable
miners to gain an advantage over the remaining honest miners. The former redirects the
hashrate from the main chain towards puzzles that promise more rewards than honest
mining, the latter rewards uncle block mining in Ethereum. The goal of both attacks is
that the attacker gains the majority of the hashrate in the respective main chain, and
he can hence arbitrarily exclude, or order transactions. Although the attack does not
explicitly aim to allow the specific ordering of certain transactions, this capability is
achieved as a by-product. Neither attack is reverting blocks to change history, which is a
different scenario and requires further analysis in this context, as reverting blocks would
change the incentives of miners who have produced them.

Also in Script Puzzle double-spend [TJS16] PoW-like puzzles, offering in-band rewards,
are published within the respective cryptocurrency with the intent to distract the hashrate
of rational miners. Using the gained advantage to overtake the main chain requires
an attacker that has direct control over some hashrate. Again, transaction ordering
comes as a by-product and was not an explicit design goal, but theoretically, this is the
only existing attack utilizing in-band payments, which can achieve the three properties:
revision, ordering, and exclusion. Although, upon successful execution, rational miners are
deprived of their bribes as the previously hidden attack chain becomes the longest chain
and does not pay the promised puzzle rewards. This renders the attack non-repeatable
against rational miners.

Tx revision (rev.)/ orderomg (ord.) / exclusion (excl.): There are only two
proposed attack methods that achieve these three properties in an out-of-band payment
scenario: negative-fee mining pools [Bon16] and P2W Tx Rev. & Excl. & Ord. [JSZ+19].
A negative-fee mining pool is like a classic mining pool, except that it pays out an
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above-market return. “Because such a pool would lose money on expectation, no honest
pool should be able to match this reward” [Bon16]. As with most classic mining pools,9the
pool operator can define the content of a block proposal and hence forge arbitrary attack
blocks. Even if miners are rational and hence willing to actively participate in such
operations, this approach has at least two major limitations: First, miners would still have
to trust the pool owner to pay out the promised rewards. Second, miners could report
only solutions which are below the current difficulty target (shares) to prove that they are
working for the pool but withhold blocks that match the difficulty target. Thereby, they
would potentially gain profits by pretending to participate in the attack/pool without
actually doing so. This miner’s dilemma is a general problem for mining pools [Eya15].

The smart contract design presented in [JSZ+19] resolves the limitations of negative-
fee mining pools by automating the payment of bribes to complacent miners without
requiring any further interaction from the attacker. Thereby, the attacker publishes block
templates to the smart contract and offers a bribe for the first miner who can provide a
valid PoW solution for such a template. As only payments for valid PoW solutions are
provided by the smart contract, it is ensured that the actions of bribees are specifically
targeted to aid the attacker. If the attacker deems that the ongoing attack is not likely
to succeed, he can stop the investment of further funds by not publishing any further
block templates.

Tx triggering: The are only two existing AIM techniques, which are intended to trigger
transactions: The Fomo3D game [fom18] and the race to the door Goldfinger attack
sketched by Bonneau [Bon18]. In a race to the door, the attacker “credibly commits”
to buy out half of all funds present in the targeted cryptocurrency, to utilize them for
destroying the system. Therefore, the price the attacker has to pay for those funds is likely
to drop the more users decide to sell, increasing the likelihood of the attack to succeed.
This creates a vicious cycle, resulting in a race to the door. The idea was not presented in
great detail and mainly discussed in the context of overtaking PoS/PoW cryptocurrencies,
but of course, such an attack would also trigger sell transactions. Moreover, there are
plenty of ways to attack the value of a cryptocurrency while holding substantial amounts
of it that are left unexplored.

There are multiple variants of Fomo3D, but roughly the rules are as follows. In this
game, which is open for everybody, the last account which has purchased a ticket wins
when a timer goes to zero and every purchase again increases the timer by 30 seconds.
This leads to the situation that transactions are triggered by rational players as soon as
the timer gets close to zero. It was conjectured that the game would never end, but in
August 2018 the first round of the game ended and the winner collected 10, 469 Ether
(≈ $2.1 M USD at that time)10. It can be argued that a single instance of this game does
not qualify as an “attack”, but the same concept of presumably “free money” available
to grab from a smart contract can also be used as an attack method (see our discussion

9In P2Pool for example, there is no single operator which can define the content of a block proposal.
10The winner flooded the network with unrelated high gas transactions to custom smart contracts

which congested the network blocking other “last” payments to the game.
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in Section 4.6). The interesting aspect about these tx triggering attacks is that they have
effects for any hashrate of rational miners as long as there are rational clients. Even if
pR = 0, rational clients in the network will issue transactions with the potential to clog
new blocks for low fee transactions.

Tx ordering: Dedicated ordering attacks, like front-running [EMC19, DGK+20], P2W
Tx Excl. & Ord., or P2W Tx Ord. (in-band) [JSZ+19], target unconfirmed or confirmed
transactions and therefore are cheaper as their interference with consensus is less severe.

3.5.2 Required Interference with Consensus
The concept of required interference with consensus is outlined in Section 3.3.3 and
classifies if an attack can be realized with a near-, a deep- or no-fork at all. Depending on
the scenario and the desired attack outcome, e.g., if only ordering is relevant, deep-forks
are not necessarily required. For example, if the victim accepts unconfirmed transactions,
transaction revision can happen without any fork by simply updating the transaction.
Bitcoin [Wik] as well as Ethereum allows something like replace-by-fee i.e., if there is a
transaction signed by the same sender with the same nonce but a significantly higher gas
value [Ope], the transaction with the higher gas value replaces the original one in certain
clients. This circumstance is also used in the context of front-running [EMC19, DGK+20].
But front-running is only a subset of possible (re-)ordering attacks, as it might be desirable
to place a transaction more accurately in between two other transactions, e.g., as required
for exploiting the BlockKing contract [SKH18].

Prior to 2018, ordering attacks on smart contract cryptocurrencies have not been inten-
sively studied [SKH18, KGDS18]. This has recently changed as order fairness has been
exposed as a fundamental issue in leader-based consensus protocols [DGK+20, KZGJ20,
Kur20]. In the context of Nakamoto consensus, every miner that is capable of producing
blocks can define the order of the transactions in his blocks. This circumstance alone can
be used to gain an advantage in certain scenarios e.g., where transactions race against
each other to collect something that is claimable by everybody like an anyone-can-spend
transaction, the reward of a puzzle, or arbitrage11. But when rational actors are as-
sumed, there are also scenarios where the ordering of transactions can be manipulated
by attackers who are not necessarily miners themself, but have funds at their disposal
to launch AIM attacks. In classical front-running, miners are incentivized to prioritize
transactions because they carry a larger fee. This however is not a consensus rule and
thus lacks enforcement, as even the transaction with the highest fee can still be included
at the end of a block, resulting in an all-pay auction if all transactions are eventually
included [DGK+20]. Although, the overall amount of fee (gas) paid by non-winning
transactions can be reduced if the transactions in question can select a cheaper code path
if a checkable necessary pre-condition, ensuring the transaction has been included at the
desired place, is not met.

11Interestingly the problem of racing transactions was known very early on in the cryptocurrency
community, which lead to the first fork of Bitcoin, i.e., Namecoin [Nama, JZS+17], which introduced a
commit reveal scheme to prevent races while registering domain names on the blockchain.
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Nevertheless, the attacks observed in practice provide no guarantees for the attacker that
the desired ordering is achieved even if the highest transaction fee has been paid [DGK+20].
In [JSZ+19] an in-band, as well as an out-of-band AIM attack, is proposed, which allows
arbitrary transaction ordering while only paying if the desired ordering is observed. Both
attacks can be executed without any hashrate assuming rational miners.

3.5.3 Required Hashrate

Required attacker hashrate pB specifies how much hashrate is required to be under
the direct control of the attack (without considering the effects of AIM) for the attack
to be successful. As observable in Table 3.1 there are three attacks that require pB > 0.
The Script Puzzle 38.2% attack is designed to overtake the blockchain entirely by offering
alternative script puzzles with higher rewards to distract the hashrate of rational miners.
This allows an adversary with an appropriate hashrate to establish a computational
majority and gain a net profit without considering double-spending attacks. In Script
Puzzle double-spend the adversary has no explicit minimum hashrate requirement,
however low hashrate has to be compensated with more puzzle funds. Moreover, it is
designed as a single-shot double-spending attack that, if successful, deprives rational
miners of their bribes. Therefore, this particular attack design could only work once with
rational miners that fall for it. CensorshipCon uses a smart contract to offer in-band
bribes for mining uncle blocks to distract hashrate. Thus, it requires some attacker
hashrate to include uncle blocks from rational miners in the main chain. Since it has to
include all mined uncle blocks, it requires the hashrate of the attacker to be larger than
1
3 and the hashrate of the bribable miners to be between [1

3 , 2
3).

It makes sense to bound the attacker hashrate below 1
2 since otherwise, the attacker has

no need to perform bribing attacks as he could overtake the chain single-handedly.

Required rational hashrate pR specifies how much hashrate is required to be under
the control of rational miners for the attack to have a chance to succeed as described
and evaluated in the respective paper. Generally, all bribing attacks have to assume that
at least some of the miners are rational and hence bribable. Generally, it makes sense to
assume that more than half of the miners are rational s.t. attacks have a realistic chance
to win longer block races. Both Script Puzzle attacks require all miners to be rational,
i.e., pB + pR = 1, as well as the Pay per ... attacks (pR = 1) described by Winzer et
al. [WHF19].

3.5.4 Payment Method

This specifies where the payments to the bribees are performed (see 3.3.4). It can be
argued that miners will try not to harm the value of their own cryptocurrency holdings
by accepting in-band bribes, hence out-of-band AIM methods are of particular interest.
Subsidy means that the attack leverages some characteristic of the cryptocurrency, or
the environment to become cheaper. In the case of CensorshipCon, the rewards from
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uncle blocks are used to subsidize the attack, whereas in Pitchforks the additional income
from merged mining is used as an incentive.

Compensates if the attack fails refers to the property that at least a portion of the
bribe is paid irrespective of the outcome. To successfully engage rational miners, attacks
such as Checklocktime bribes [Bon16], Whale Transactions [LK17], and HistoryRevision-
Con [MHM18], must pay high rewards in case of success to compensate for the financial
risk faced by bribees if the attack fails despite their participation. So far the only attack
which facilitates transaction revision that achieves this property is [JSZ+19]. Script
Puzzle double-spend defrauds the bribed miners if successful and hence actually only
pays out rewards if it fails. In front-running attacks, high transaction fees are usually
incurred even if the desired ordering effect is not achieved. Thus, in this case, it is also
an undesirable property for the attacker. The same holds true for negative-fee mining
pools as rewards have to be paid for performed work even if no attack block fulfilling the
difficulty target has been submitted by a miner.

3.5.5 Trustlessness
Trustless for the attacker specifies if the attack itself can be exploited by allowing
collaborating/bribed miners to profit without adhering to the attack. For example,
Script Puzzle attacks require some form of freshness guarantee to prevent bribees from
intentionally waiting until the attack fails before computing puzzle solutions to obtain
rewards. It is also possible to claim rewards for stale honest blocks that are later on
submitted as uncles to the CensorshipCon. Also in naïve front-running attacks the
attacker has no guarantee that the desired ordering will be achieved by paying a high
fee. The Pay per . . . attacks are only modeled theoretically without providing concrete
instantiation, therefore they cannot be evaluated in this regard.

Trustless for collaborator specifies if bribees have to trust the attacker that they will
receive their payments if they adhere to the attack. In Checklocktime bribes a lock
time on individual transaction outputs intends to ensure that they cannot be spent
before a particular block height, even by the creator. This ensures that at each height
a locked output is released and split into an anyone-can-spend and another locked
output. However, the holder of the associated private key can cheat, by creating a
conflicting/racing transaction, which also becomes valid after the intended lock time
has passed. This conflicting transaction transfers the whole output back to the owner
without an additional anyone-can-spend output. However, this attempt is only possible
if the attacker is under the control of some hashrate pB > 0, as a miner would never
prefer this transaction before the other. The same holds true for Whale Transactions,
or HTLC bribes since the attacker has to provide new high-fee transactions for each
block on the attack chain at each step of the attack. While HistoryRevisionCon does not
explicitly consider trustlessness for collaborating miners, an augmentation is possible12,

12The issue stems from the fact that the bribing contract checks the balance of the Ethereum account
which should receive the bribing funds before issuing any bribes, but without any additional locking
constraints, these funds can be moved by the attacker once received.
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CensorshipCon requires that the attacker includes blocks produced by collaborating
miners as uncle blocks and thus is not trustless. The Script Puzzle double-spend attack
is designed as a one-shot attack that defrauds collaborators. The Script Puzzle 38.2%
attack does not specify how payments are performed and assumes a working trusteless
out-of-band payment method.

3.6 Costs, Profits, and Extractable Value

In this section, we want to highlight the challenges of comparing existing AIM attacks
with respect to their costs and potential profits.

First of all, the presented attacks differ significantly with respect to their system- and
attack models, which have diverse goals regarding their intended influence on transactions
(revision, ordering, exclusion, triggering), as well as varying assumptions regarding the
capabilities of the attacker, e.g., hashrate and funds.

Second, not all existing proposals have analyzed the involved costs and gains in a
comparable way. Attacks such as the Script Puzzle double-spend or CensorshipCon
express the required funds in terms of the hashrate which is also required to successfully
execute it [TJS16, MHM18]. For transaction revision using Whale Transaction or P2W
attacks [LK17, JSZ+19], concrete values are provided while at the same time no hashrate
is required. In GoldfingerCon [MHM18] only the costs of invoking the smart contract are
provided.

Costs: What stands out in the comparison of costs is that: i) Attacks that compensate
collaborating rational miners even if the attack fails are cheaper. The reason for this is
that such attacks do not have to provide high bribes to account for the risks faced by
bribees if the attack is unsuccessful [WHF19, JSZ+19]. ii) Attacks that exclusively focus
on transaction exclusion or (re)ordering of unconfirmed transactions are substantially
cheaper as they only compete with the fee, i.e., extractable value, of the transaction(s)
in conflict [WHF19, JSZ+19, DGK+20, KNW20, TYE21].

Profit: To calculate the profit of the attack it is important to estimate the costs as well
as the extractable value. In this context, the term miner extractable value [DGK+20]
has been coined to describe the value which can be extracted by a miner by including a
certain transaction in terms of fees, or guaranteed profits through atomic token arbitrage
within the context of one transaction. In relation to other AIM attacks surveyed in this
chapter, this leads to an interesting observation: We argue that the extractable value of a
transaction for a certain party cannot readily be determined by exclusively looking at the
cryptocurrency system in which this transaction is to be performed. The reason is that
there might be additional protocols like colored coins [Ros12] or out-of-band payments
from AIM attacks at play, which can influence the (miner) extractable value of a given
transaction. This is an instantiation of a more general observation that game-theoretic
analysis is not composable.
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The question of whether AIM is profitable can be summarized by comparing the ex-
tractable value as well as the costs of the attack and the behavior intended by the protocol
designer. The following simplified equation was adapted from Böhme [Böh19].

EV(attack) − costs attack > EV(follow protocol) − costs follow protocol

Let’s assume two unconfirmed, but conflicting Bitcoin transactions (tx1, tx2) are com-
peting for a place in the next block. If the extractable fee of one transaction is greater
than for the other Fee(tx1) > Fee(tx2), it would be rational for the miner to include
tx1, since EV(tx1) = Fee(tx1). But if there is a side payment, due to an AIM attack on
a different funding cryptocurrency (e.g., Ethereum) for including tx2, which leads to the
situation that EV(tx2) > EV(tx1), then the situation for the rational miner changes. In
this case, the reason for the change is not directly visible in Bitcoin.

Using value of a transaction as an indicator for NC PoW blockchain security is not
particularly new and was common practise already in various early analysis approaches,
such as the MDP in [GKW+16]. In this rigorous analysis, the authors state their rational
behind choosing this parameter as follows:

“We argue that vd emerges as a robust metric to quantify security under double-spending
attacks. Namely, if the reward of honest mining is larger than that of dishonest behaviour,
merchants can safely accept a payment transaction of value vd (since such a value is
considered secure, e.g., based on a given confirmation number).” [GKW+16]

This statement highlights two implicit assumptions, which have been common in various
early analysis approaches of NC security:

• There is only one attacker trying to double-spend a single transaction.

• The value of the transaction in question is solely determined by the value it carries
in native currency units.

These assumptions have been challenged by subsequent works. The question of whether
it is possible to upper-bound the extractable value was also touched by Budish [Bud18]
in a different setting and from the perspective of double-spending attacks only. Under
a simplified model, the extractable value of a double-spend is the transferred value of
coins 13. To calculate the required rewards and fees for making double-spending attacks
economically unattractive, the author assumed that in the worst case every transaction
in a block is potentially up for double-spending and highlights that the relationship
between reward and fees, compared to the value transferred in Bitcoin makes such attacks
economically feasible in theory. An instantiation of an attack in which every transaction
of a block can theoretically become a target for double-spending, has been proposed
in [JSZ+19], where a crowdfunded attack is described, utilizing smart contracts. The

13The dependency between transaction value and confirmation time kV , is also discussed in [SZ16].
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duration of control
temporary permanent

Source
PoW new rent build

AIM AIM

PoW & PoS existing bribe buy out
AIM AIM

Table 3.2: Strategies to gain capacity in Nakamoto consensus according to [Bon18],
augmented with AIM strategies (colored background).

goal is to distribute the costs of multiple double-spend attempts in the same block to the
set of transacting entities.

From these examples, we see that it is hard or even impossible to accurately bound the
extractable value of transactions (and thus blocks) in a multi-cryptocurrency ecosystem by
solely looking at data from one cryptocurrency. A related meta argument was presented
in [FB19].

3.7 Relation of AIM to other Attack Methods and Areas
We finally discuss the relation of AIM to other methods of gaining capacity in Nakamoto
consensus, as well as highlight open questions and directions for future work in this area.
By gaining capacity, we refer to the accumulation of voting rights in the permissionless
protocol.

Relationship of AIM to other ways of gaining capacity: In the paper [Bon18]
an excellent classification of different methods on how to gain capacity in Nakamoto
consensus is provided. These methods are separated into: rent, build, bribe, and buy out.
Hereby, rent, buy out as well as build refers to classical methods of renting hardware,
buying cryptocurrency units at exchanges, or building new data centers for mining. We
augment this classification and argue that AIM can be used to construct algorithmic
ways for all these methods. Table 3.2 depicts an augmented version from [Bon18] showing
the different methods of how to obtain capacity in Nakamoto consensus.

According to the original classification in [Bon18], bribing is a temporary attack, which
utilizes the existing resources of miners. If the terms new and existing, in the context of
PoW capacity, are to be interpreted from the perspective of the targeted system, then
some existing attacks which rely on out-of-band payments would also classify as rent. The
reason for this is: They are also able to attract new capacity currently bound in other
cryptocurrencies which utilize the same PoW algorithm, like [TJS16, JSSW18, JSZ+19].
Capacity which is present in a different cryptocurrency is also new to the targeted
cryptocurrency if miners decide to switch to supporting an attack.

We further argue that buy out attacks can theoretically be done algorithmically using
cross-chain atomic swaps [Her18] (or any other blockchain interlinking protocol). A
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race-to-the-door style attack [Bon18] in combination with cross-chain atomic swaps
can be imagined to perform Goldfinger-style attacks on smart contract capable PoW
cryptocurrencies. Hereby, out-of-band payments are used to buy out cryptocurrency units,
through a smart contract, which is going to use these previously bought cryptocurrency
assets to perform a denial of service attack by dumping the previously bought crypto
assets on the market as freely available for anyone to claim after a certain timeout. If
there is a limit for what is claimable per transaction, as well as the requirement of a high
fee, this on-chain faucet construction will trigger a flood of transactions as soon as the
timeout is reached. In this case, existing funds are bought and permanently redistributed
with the intent to perform a denial-of-service attack and at the same time collapse the
market due to increased supply.

It remains to be shown that it is theoretically possible to build permanent AIM attacks.
Arguably, any Goldfinger attack, such as GoldfingerCon [MHM18], which creates enough
external utility to refuel the attack, can in theory be constructed in a way to run
permanently. Although, it is unlikely that a Goldfinger attack has to be continued
infinitely long if the intended effects have already occurred. An attack that also discusses
its perpetuity is the Script puzzle 38.2% attack. In this case, the attack can also
theoretically be used to permanently overtake the chain by supplying puzzles that provide
out-of-band rewards and thereby overtake the original blockchain with 38.2% of the
total hashrate. Also, the pitchfork [JSSW18], in which the additional revenue stream
to sustain the attack comes from a fork of the targeted cryptocurrency and not from a
previously determined bribing fund, can in theory be sustained infinitely long. Whether
the attack can be sustained depends on the value of the newly generated cryptocurrency.
An interesting analogy exists between any permanent AIM attack and a cryptocurrency
itself. From the perspective of a miner who exclusively mines on puzzles for any of
these three permanent attacks, there is no difference to mining on any other PoW-based
cryptocurrency other than the format of the associated PoW.

Mitigation and counter-attacks: The presented systematization has a very attack-
centric view on the issue at hand. This is due to the selection of papers, which almost all
have a very attack-focused viewpoint. Therefore, countermeasures and counter-attacks
are often omitted in these papers, or not discussed to a great extent.

Nevertheless, for the victim(s) counter-bribing might be a viable strategy against AIM.
The difficulty of successfully executing counter-bribing highly depends on the respective
scenario. In the end, counter-bribing can also be countered by counter-counter-bribing
and so forth. Therefore, as soon as this route is taken, the result becomes a bidding game.
Against transaction exclusion attacks, counter-bribing can be performed by increasing
the fee of the transaction to be excluded such that it surpasses the value promised for
not including the transaction. If defenders have imperfect information, they may not
be able to immediately respond with counter-bribes. In this case, some of the attack
chain blocks may have already been mined, or even taken the lead, before they are
recognized by defenders. Counter-bribing then necessitates a fork, and thus a more
expensive transaction revision attack, leading to asymmetric costs in the bidding game.

56



3.7. Relation of AIM to other Attack Methods and Areas

This illustrates an important aspect of AIM, namely its visibility. On the one hand,
sufficiently many rational miners of the targeted cryptocurrency have to recognize that
an attack is occurring, otherwise they won’t join in and the attack is likely to fail. On
the other hand, if the victims of the attack recognize its existence, they can initiate
and coordinate a counter-bribing attack. So the optimal conditions for AIM arise if all
rational miners have been informed directly about the attack, while all victims/merchants
do not monitor the chain to check if an attack is going on and are not miners themselves.
If the payments are made out-of-band, they are rendered more stealthy to victims who
only monitor the targeted cryptocurrency. It can hence be argued that counter-attacks
by victims are harder to execute as they are not immediately aware of the bribing value
that is being bet against them on a different funding cryptocurrency. We also follow the
argument in [Bon16] that requiring clients to monitor the chain and actively engage in
counter-bribing is undesirable, and out-of-band attacks further amplify this problem as
clients would have to concurrently monitor a variety of cryptocurrencies.

To prevent repercussions, participating miners can make use of the fact that the PoW
mining process itself does not require any strong identity by using different payout
addresses. Of course, their received rewards can be traced, but available privacy techniques
could be used to camouflage the real recipient of the funds, e.g., [RMSK14, MM17,
HBG16].

In particular with regard to AIM attacks the question remains if more powerful attacks,
in terms of their capabilities as well as their incentive structures, are possible. We answer
this question in the affirmative in Chapter 4, where we propose new versatile AIM attacks.
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4
Pay To Win Attacks

“The system is secure as long as honest nodes collectively control more CPU
power than any cooperating group of attacker nodes.”

– Satoshi Nakamoto [Nak08]
(emphasis added)

In this chapter1, we extend the attack landscape of bribing attacks on cryptocurrencies
by presenting a new method, which we call Pay-To-Win (P2W). To the best of our
knowledge, it is the first approach capable of facilitating double-spend collusion across
different blockchains. Moreover, our technique can also be used to specifically incentivize
transaction exclusion or (re)ordering. For our construction, we rely on smart contracts to
render the payment and receipt of bribes trustless for the briber as well as the bribee. The
attacks described in this chapter are operated and financed out-of-band i.e., on a funding
cryptocurrency, while the consequences are induced in a different target cryptocurrency2.
Hereby, the main requirement is that smart contracts on the funding cryptocurrency
are able to verify the consensus rules of the target. For a concrete instantiation of our
P2W method, we choose Bitcoin as a target and Ethereum as a funding cryptocurrency.
Our P2W method is designed in a way that reimburses collaborators even in the case of
an unsuccessful attack. Interestingly, this actually renders our approach approximately
one order of magnitude cheaper than comparable bribing techniques (e.g., the whale
attack). We demonstrate the technical feasibility of P2W attacks by publishing all
relevant artefacts, ranging from calculations of success probabilities to a fully functional
proof-of-concept implementation, consisting of an Ethereum smart contract and a Python
client 3.

1This chapter represents an extended version of publication [JSZ+19].
2We also provide two incentive manipulation attacks which utilize in-band payments in the Ap-

pendix A.6 and A.5.
3https://github.com/kernoelpanic/pay2win_artefacts
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4.1 Relation of Pay To Win to Other AIM Attacks
Despite an ever-growing body of research in the field of cryptocurrencies, it is an open
question if Bitcoin, and thus Nakamoto consensus, is incentive compatible under practical
conditions, i.e., that the intended properties of the system emerge from the appropriate
utility model [Bon16, Bon18]. Bribing attacks, in particular, target incentive compatibility
and assume that at least some of the miners act rationally, i.e., they accept bribes
to maximize their profit. If the attacker, together with all bribable miners, can gain a
sizable portion of the computational power, even for a short period of time, attacks are
likely to succeed.

Since the first descriptions of bribing attacks [Cun, Bon16], various attack approaches,
which tamper with the incentives of protocol participants, have been presented for
different scenarios and models. As bribing [TJS16, LK17, MHM18, WHF19, KNW20],
, front-running [KNS+18, EMC19, DGK+20] Goldfinger [KDF13, JSSW18, Bon18] and
other related attacks, all intend to manipulate the incentives of rational actors in
the system, we jointly consider them under the general term algorithmic incentive
manipulation (AIM). So far, most proposed AIM attack strategies focus on optimizing a
player’s (miner’s) utility by accepting in-band bribes, i.e., payments in the respective
cryptocurrency [Bon16, LK17, MHM18, WHF19, KNW20]. Thus, a common argument
against the practicality of such attacks is that miners have little incentive to participate,
as they would put the economic value of their respective cryptocurrency at risk, harming
their own income stream. Another common counterargument against in-band bribing
attacks is that they are considered expensive for an adversary (e.g., costs of several
hundred bitcoins for one successful attack [LK17]), or require substantial amounts of
computing power by the attacker.

In this chapter, we present an AIM attack method called Pay-To-Win (P2W), which
generalizes the construction of different AIM attacks on PoW Cryptocurrencies by
leveraging smart contract platforms. Our attack requires no attacker hashrate, and an
order of magnitude fewer funds than comparable attacks (i.e., the whale attack). To
highlight the technical and economical feasibility of our approach, we provide a concrete
instantiation of our P2W design, representing a new bribing attack. It uses a smart
contract capable funding cryptocurrency (Ethereum) to finance and operate an attack
on a (different) target cryptocurrency (Bitcoin). All bribes are paid in the funding
cryptocurrency, i.e., out-of-band. Prior to our attacks, out-of-band payments have only
been used in the context of Goldfinger attacks, where the goal of an attacker is to
destroy a competing cryptocurrency to gain some undefined external utility [KDF13].
The attacks we present in this chapter can be performed based on either strategy, using
in-band profit, or as out-of-band Goldfinger-style attacks to destroy the value of the
targeted cryptocurrency. In a multi-cryptocurrency world, P2W attacks demonstrate
that utilizing out-of-band payments can pose an even greater threat to cryptocurrencies,
as the argument that miners won’t harm their own income stream must be critically
examined in this context. Consider as an example two PoW cryptocurrencies that share
the same PoW algorithm and have competing interests, for example, Bitcoin and Bitcoin
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Cash. If rational Bitcoin miners face the opportunity of earning Ether for performing
attacks on Bitcoin Cash, they may be willing to redirect their hashrate for this purpose,
especially if they are guaranteed to receive the promised out-of-band rewards/bribes.

We show that such sophisticated trustless out-of-band attacks on Bitcoin-like protocols
can readily be constructed, given any state-of-the-art smart contract platform capable
of verifying the consensus rules of the target for the duration of the attack. Moreover,
we show that the cost for an attacker can be considerably reduced by guaranteeing that
participating bribees are reimbursed, as well as by aligning the interests of multiple attacks
(crowdfunding) in a trustless manner, e.g., through smart contract code. Furthermore,
cross-chain transaction ordering attacks can also be executed as targeted bribing attacks
using our method. This possibility for rational miners to (trustlessly) auction the contents
of their block proposals (i.e., votes) to the highest bidder raises fundamental questions
on the security and purported guarantees of most permissionless blockchains.

4.1.1 Contribution

We propose a new design pattern, called Pay-To-Win (P2W), for out-of-band algorithmic
incentive manipulation (AIM) attacks. To highlight the concepts behind our design
approach, we provide instantiations for two new AIM attacks (Section 4.4 and 4.5).4
Both are trustless for the attacker and the collaborating miners, rely on out-of-band
payments in a different cryptocurrency and do not require the adversary to control any
hashrate. The first instantiation incentivizes deep-forks and double-spend collusion. The
second instantiation has fewer capabilities but is cheaper as it does not require deep-forks,
or in the best case even no-forks at all. On the technical level, We introduce three
crucial enhancements to AIM attacks: (i) ephemeral mining relays, as an underlying
construction which is required to execute our trustless, time-bounded, cross-chain attacks,
(ii) guaranteed payment of bribed miners even if the attack fails, which actually reduces
the costs of such attacks, and (iii) crowdfunded attacks, to further reduce the individual
cost of executing such attacks. Our contributions are as follows:

• P2W attack method to guarantee payments to participating bribees

• An instantiation for a trustless out-of-band AIM attack to incentivize double-spend
collusion.

• An instantiation for a trustless out-of-band AIM attack to incentivize transaction
exclusion and/or ordering

• An approach to crowdfund out-of-band double-spending attacks

4We also describe and evaluate two new in-band attacks targeting transaction ordering and transaction
exclusion in the Appendix A.6 and A.5. The latter (in-band transaction exclusion) was also described
and analyzed in concurrent work by Winzer et al. [WHF19], but no concrete instantiation was given.
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• Concrete cost estimates for all our attacks, as well as a PoC of our attack smart
contract to demonstrate the feasibility and estimate operational costs. All artefacts
reaching from calculations and simulations to the PoC are available online 5.

4.2 Model
We focus on permissionless [Vuk15] proof-of-work (PoW) cryptocurrencies, as the ma-
jority of related bribing attacks target Bitcoin, Ethereum, and systems with a similar
design. That is, we assume protocols adhering to the design principles of Bitcoin, or its
backbone protocol [Nak08, GKL16, PSS17], which is sometimes referred to as Nakamoto
consensus [DKT+20, SJS+18]. Within the attacked cryptocurrency we differentiate
between miners, who participate in the consensus protocol and attempt to solve PoW-
puzzles, and clients, who do not engage in such activities. Following the models of related
work [LK17, TJS16, MHM18, Bon16], we assume the set of miners to be fixed, and their
respective computational power within the network to remain constant.

To abstract from currency details, we use the term value as a universal denomination for
the purchasing power of cryptocurrency units, or any other out-of-band funds such as fiat
currency. Miners and clients may own cryptocurrency units and are able to transfer them
(i.e., their value) by creating and broadcasting valid transactions within the network.
Moreover, as in prior work [TE18, LK17, MHM18], we likewise make the simplifying
assumption that exchange rates are constant over the duration of the attack.

We split participating miners into three groups and their roles remain static for the
attack duration. Categories follow the BAR (Byzantine, Altruistic, Rational) [AAC+05,
LCW+06] [LCW+06] behavior model. Additionally, we define the victim(s) as another
group or individual without computational power, i.e, hashrate.

• Byzantine miners or attacker(s) (Blofeld): The attacker B wants to execute an
incentive attack on a target cryptocurrency. B is in control of bribing funds fB > 0
that can be in-band or out-of-band, depending on the attack scenario. He has some
or no hashrate pB ≥ 0 in the target cryptocurrency. B may deviate arbitrarily from
the protocol rules.

• Altruistic or honest miner(s) (Alice): Altruistic miners A are honest and
always follow the protocol rules, hence they will not accept bribes to mine on a
different chain-state or deviate from the rules, even if it would offer a larger profit.
Such control some or no hashrate pA ≥ 0 in the target cryptocurrency.

• Rational or bribable miner(s) (Rachel): Rational miners R controlling hashrate
pR > 0 in the target cryptocurrency They aim to maximize their short-term profits
in terms of value. We consider such miners “bribable", i.e., they follow strategies
that deviate from the protocol rules as long as they are expected to yield higher

5https://github.com/kernoelpanic/pay2win_artefacts
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profits than being honest. For our analyzes, we assume rational miners do not
concurrently engage in other rational strategies such as selfish mining [ES14].

• Victim(s) (Vincent): The set of victims or a single victim, that loses value if the
bribing attack is to be successful. The victims control zero hashrate and therefore
can be viewed as a client.

It holds that pB + pA + pR = 1. The assumption that the victim of an AIM attack has
no hashrate is plausible, as the majority of transactions in Bitcoin or Ethereum are made
by clients which do not have any hashrate in the system they are using.

Whenever we refer to an attack as trustless, we imply that no trusted third party is
needed between the briber and bribee to ensure correct payments are performed for the
desired actions. Thus the goal is to design AIM in a way that the attacker(s), as well as
the collaborating miners, have no incentive to betray each other if they are economically
rational.

4.2.1 Communication and Timing
Participants communicate through message passing over a peer-to-peer gossip network,
which we assume implements a reliable broadcast functionality. As in previous bribing
attacks, we further assume that all miners in the target cryptocurrency have perfect
knowledge about the attack once it has started. Analogous to [GKL16], we model the
adversary Blofeld as rushing, meaning that he gets to see all other players” messages
before he decides his strategy, e.g., executes his attack. While the attack is performed
on a target cryptocurrency, the distinct funding cryptocurrency is used to orchestrate
and fund it. We also assume that the difficulty and the mean block interval of the
funding chain are fixed for the duration of the attack and that no additional attacks are
concurrently being launched against either cryptocurrency.

4.3 P2W Attack Method
In this section, we introduce a new approach for algorithmic incentive manipulation
attacks, which we call Pay-To-Win (P2W). The basic idea of P2W is it to design a
profitable attack in a way that the (economically) most rational action of a potential
bribee is exactly the one desired by the attacker. To achieve this, our approach relies on
smart contracts and the specification of block templates by the attacker. These templates
define the desired block structure for which Blofeld is willing to provide rewards in form
of bribes. We consider out-of-band attacks to be technically more challenging, as well as
more powerful regarding their capabilities (see below), therefore we focus on out-of-band
attacks in this chapter. Moreover, the description and evaluation of two new in-band
attacks can be found in Section A.5 and Section A.6. The latter attack, describing the
incentivisation of transaction exclusion using in-band payments, was also described and
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analyzed in concurrent work by Winzer et al. [WHF19], but no concrete instantiation
was given.

In cases where the payment is performed out-of-band, we differentiate between a target
cryptocurrency, where the attack is to be executed, and a funding cryptocurrency, where
the attack is coordinated and funded. While the funding cryptocurrency must support
sufficiently expressive smart contracts, there are no such requirements for the target
cryptocurrency. For presentation purposes, we choose Bitcoin as the target and Ethereum
as the funding cryptocurrency to instantiate and describe our attacks. Theoretically, the
attack can be funded on any smart contract-capable funding cryptocurrency, which fulfils
the requirements listed in Section 4.6.2. This advantage of being fund- and operable
on any appropriate smart contract-capable cryptocurrency renders these P2W attacks
arguably more difficult to detect and protect against, as the victim(s) would have to
monitor multiple, if not all, possible funding blockchains. Moreover, our attacks can also
use additional privacy-preserving techniques available on the funding cryptocurrency
(e.g.,[MM17, Hom]) to hinder the traceability of funds and transactions of involved parties,
providing another reason why our attacks can be considered more stealthy compared to
attacks utilizing in-band payments. Another advantage of out-of-band payments is, that
they are not bound to the exchange value of the targeted cryptocurrency and thus can
also be used for Goldfinger-style attacks [JSZ+21b, KDF13, Bon18], as the assumption
that miners of the target cryptocurrency would not harm their own revenue channel does
not necessarily hold true anymore. This is an even more compelling argument in a world
where multiple cryptocurrencies either share the same PoW algorithm, or hardware can
be effectively used for mining other forms of PoW.

We present two instantiations of attacks utilizing our P2W approach: P2W Tx revi-
sion/exclusion/ordering and P2W Tx exclusion/ordering. Both attacks differ regarding
their capabilities as well as their costs. The first also allows to revise already confirmed
transactions and thereby facilitates double-spend collusion, while the second is only
capably of incentivizing the exclusion as well as the ordering of transactions, but therefore
is substantially cheaper. What both instantiations have in common, is that their construc-
tion requires a combination of a smart contract-based mining pool [VTL17, LVTS17] and
a chain relay [But16, ZHL+19, Rel]. We call this underlying construction an ephemeral
mining relay (EMR). The EMR is introduced and evaluated when explaining our first
attack. It takes care that the promised rewards are only paid to complacent bribees who
have actively contributed to the attack. Therefore, the two introduced attacks can be
considered trustless, both for the attacker as well as the collaborating bribed miners.
Moreover, our attacks do not require the adversary to control any hashrate, i.e., we
assume pB = 0.

To demonstrate the feasibility of our approach and the described attack, we implemented
a fully functional prototype of our most powerful attack and evaluated its costs in
Ethereum. The source code and all other artefacts related to the evaluation can be found
on Github 6.

6. 7
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4.4 P2W Transaction Revision, Exclusion and Ordering
Attack

To illustrate all underlying concepts, we start with a description of our most powerful
attack, which allows for transaction revision and thus directly facilitates double-spend
collusion. While we focus on transaction revision in our description, the presented attack
also bears the possibility of transaction exclusion or ordering.

On a high level, miners are offered bribes in a funding cryptocurrency (in our case
Ethereum) to mine blocks on the favoured branch of a target cryptocurrency (in our
case Bitcoin) in which the adversary is executing a double-spend. Moreover, we show
how the attack can be constructed to always reward collaborating miners, regardless
of the outcome of the attack. Interestingly, this renders our approach significantly
cheaper than comparable attacks [LK17]. As a modification to reduce the costs, we
also describe how smart contracts can be used to crowdfund and/or combine multiple
double-spending attempts into a single coordinated attack, which further reduces the
costs for participants. This implies that theoretically all of the transactions in a target’s
block could be double-spending attempts by the different entities which performed them.

To execute our attacks, Blofeld must construct a smart contract which temporarily
rewards the creation of attacker-defined blocks on the target cryptocurrency. We call this
technique an ephemeral mining relay (EMR) and evaluate its construction at the end of
this section. An EMR requires some main attacker for initialization, after which it can
be used by him as well as by other collaborating miners/attackers/bribees to coordinate
the attack and manage the investment and payout of funds.

4.4.1 Description
Figure 4.1 shows the different stages of the attack on the funding cryptocurrency, as well
as two different outcomes (Failed and Successful attack) on the target cryptocurrency.
The paid-out compensations (block rewards normalized to 1) and bribes ( ) are listed
above the respective blocks. The different stages are as follows:

Initialization Phase (deploy, init)

First, the attacker (Blofeld) creates the uninitialized attack contract and publishes it
on the Ethereum blockchain. This is done with a deploy transaction included in some
Ethereum block e0 from an Ethereum account controlled by the attacker8 . Then,
Blofeld creates a conflicting pair of Bitcoin transactions. The spending transaction txB is
published on the main chain in Bitcoin immediately, and the double-spending transaction

8It is also possible to deploy and initialize the attack contract at the same time (e1), but publishing
an uninitialized attack contract upfront ensures that potential collaborators can audit it and familiarize
themselves with the procedure. In any case, it is important that the double-spend transaction txB is
disclosed after block bkV on the main chain, as otherwise Vincent may recognize the double-spending
attack and refuse to release the goods.
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txB is kept secret. After the confirmation period of kV blocks (defined by the victim) has
passed on the Bitcoin main chain, Blofeld releases an initialization transaction, which
defines the conditions of the attack in the smart contract on the Ethereum chain. The
block e1 represents the first block on the Ethereum chain after the Bitcoin block bkV

has
been published.

In e1 the contract is initialized with kV +1 new Bitcoin block templates, each carrying the
transactions from the original chain to collect their fees, but instead of txB , the conflicting
transaction txB is included. Collaborating miners are now free to mine on these block
templates. For the first template, they are only allowed to change the nonce and the
coinbase field to find a valid PoW and include their payout Ethereum address in the
coinbase. This prevents front-running of solutions (see Section 4.4.1). Once a solution has
been found, it has to be submitted by the respective miner to the attack contract, which
verifies the correctness of the PoW and that only allowed fields (nonce and coinbase)
have been changed. After the first block (b1) in the sequence, also the previous block
hashes of subsequent blocks ({b2, . . . }) have to be adjusted by collaborating miners. If a
submitted solution is valid, the contract knows which previous block hash it must use to
verify the next solution and so forth.

As soon as the attacker becomes aware that a valid solution was broadcasted in the
Ethereum P2P network, he uses the PoW solution to complete the whole block and
submits it to the Bitcoin P2P network. Blofeld and the collaborating miners have an
incentive to submit solutions timely, as collaborating miners want to collect an additional
bribe in case the attack succeeds, and the attacker wants to get his blocks included in
the Bitcoin main chain to receive the Bitcoin block rewards to his Bitcoin address, and
in the best case, perform a successful double-spend.
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Figure 4.1: Example timeline showing blockchain structure and resulting payouts of a failed,
and a successful tx revision attack with out-of-band payments. After kV blocks on the target
chain have passed, the attack contract is initialized with (at least) kV + 1 block templates. The
double-spend transaction(s) are included in block b1. The payouts are performed in block eT .
The colored blocks are rewarded by the attack contract, either with their original value (reward
+ fee normalized to 1) or with an additional if the attack was successful. The numbers above
colored blocks indicated those normalized rewards. If the attack succeeds, the first kV blocks on
the Bitcoin main chain also have to be compensated to provide an incentive for the respective
miners (of those blocks) to also mine on the attack chain.

Attack Phase (update)

Bribed miners now proceed to mine kV + 1 blocks on the attack chain. If additional
blocks are found on the main chain, the attacker can update the attack contract with
new block templates for blocks kV + 2 to N , where N is the maximum number of attack
blocks that can be funded by the adversary. Note that N is not necessarily known by
Vincent, Rachel or any other observer.

Payout Phase (pay)

The payout phase starts as soon as the attack phase has ended. This happens when kB

blocks have been mined on top of the last block for which a block template has been
provided to the smart contract. In the best case, this happens at block T = kV + 1 + kB ,
but in our example one update with an additional block template was required, leading
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to T = kV + 2 + kB. The delta of kB is a security parameter defined by the attacker,
which should ensure that every participant had enough time to submit information about
the longest Bitcoin chain to the contract and that the sequence of blocks relevant for the
attack has received sufficient confirmation blocks9.

The attack terminates as soon as the first block of height T is committed to the contract.
This can be a block of building on top of the original chain, or the attack chain. After
the attack has terminated, the contract unlocks the payment of compensations and
rewards for the miners of the associated blocks. Now all miners who joined the attack
and contributed blocks can collect their compensations and/or bribes from the contract.
To accurately pay out funds, the contract on Ethereum has to determine which chain
in Bitcoin has won the race and is now the longest chain. Thereby, the contract has to
distinguish between two possible outcomes:

• Attack failed (original chain wins). In this case, the contract must compensate
the bribed miners for their contributed blocks to the attack chain, which are now
stale. These are at most {b1, . . . , bN }, Every collaborating miner who mined and
successfully submitted a block to the attack contract receives the reward for that
block without an additional .

• Attack succeeded (attack chain wins). If the attack chain wins, then the contract
executes the following actions: 1) Fully compensate the miners of kV main chain
blocks starting from b1, which are now stale. This is necessary to provide an
incentive also for those miners to switch and contribute to the attack chain, as they
otherwise would lose their rewards from blocks they contributed to the original
chain if the attack is successful. 2) Pay the miner of every attack chain block, (b1
to bkV +2 in our example max. till bN ), the full block reward plus an additional as
a bribe in Ether.

Upon being invoked with a miner’s cash-out transaction, the contract checks if the attack
has already finished, i.e., a valid chain up to block height T is known, and which chain
has won the race. Then the contract pays out accordingly.

Incentives to Submit Information

Since collaborating miners are competing for mined attack chain blocks and want the
attack to be successful to receive the additional bribes, they have an incentive to submit
their attack chain blocks to the attack timely. Additionally, Blofeld who initialized the
contract and provided the funds has an incentive to submit the relevant part of the
competing original chain, if such a conflicting longer chain ({b1, . . . , bT }) exists, since
he would pay an additional for every block otherwise. Therefore there is always some
actor who has an incentive to submit the correct longest chain to the attack contract.

9Ideally kB is specified as an acceptance policy logarithmic in the chain’s length as described in
[SZ16].
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Ethereum Payout Address Derivation

To determine the correct Ethereum payout addresses of collaborating miners, the following
approaches are feasible. In the simplest case, all bribed miners directly provide their
Ethereum address in the coinbase field of every submitted Bitcoin block on the attack
chain. Alternatively, they can disclose their public-keys directly via pay-to-pubkey outputs
in the coinbase transaction in Bitcoin. The Bitcoin address public-key can then be used
to derive the corresponding Ethereum address, as described and implemented in the
Goldfinger attack example in [MHM18].

For the first kV main chain blocks, where miners were not yet aware of the attack, they
must prove to the contract that they indeed mined the respective block(s). This can be
achieved, e.g., by providing the ECDSA public-keys corresponding to the payouts in the
respective coinbase outputs to the smart contract, such that it can check if they match
and then recompute the corresponding Ethereum address.

4.4.2 Evaluation with Solely Rational Miners
(pR = 1)
As rational miners will participate in the attack as long as it is expected to yield more
profit than honest mining, the remaining question is, what budget (rbudget) in Ether is
required by Blofeld for the attack to succeed. As the Bitcoin block rewards and bribes
have to be paid out in Ether, we assume a fixed exchange rate between cryptocurrencies
to derive our lower bound in terms of BTC required.

Blofeld has to lock funds in the attack contract for each submitted block template, to
ensure complacent miners can be certain to receive their rewards if they submit blocks
and thus are incentivized to join the attack. Therefore, the duration of the attack is
the main driver of the required budget. As the duration is dependent on the security
parameter kV chosen by Vincent, N > kV has to hold for an attack to be feasible.

Necessary Attack Budget

For Bitcoin, a common choice is kV = 6 requiring N to be at least 7. The budget of
the attack contract must cover all rewards which could potentially be paid out by the
contract. For the most expensive case, which is a successful attack, this encompasses: The
bribes ( ) as well as Bitcoin block rewards including fees10 (rreward), which we previously
normalized to 1 in Figure 4.1. Assuming the current block reward (6.25 BTC), average
fees (≈ 2 BTC), operational costs (costoperational = 0.5 BTC ), as well as a bribe of = 1
BTC, this leads to a budget of 114.75 BTC which has to be provided to the attack
contract in Ether upfront:

rbudget = kV · rreward + N · (rreward + ) + costoperational (4.1)

10In a concrete attack of course rreward is not constant, but given by the coinbase output values of
every submitted block.
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As Blofeld receives the Bitcoin block rewards in case of a successful attack, the actual
costs of the attack are much smaller than the required budget Blofeld has to lock in the
contract.

Costs and Profitability of a Successful Attack

If the attack is successful, then Blofeld earns the block rewards on the attack chain in
BTC which compensates his payouts to bribed miners in Ether. The costs for a successful
attack are thus reduced by N · rreward attack chain blocks, whereas rewards must be paid
for N · (rreward + ) block templates. The remaining costs of a successful attack stem
from the kV · rreward original chain blocks that have to be compensated on the attack
chain.

costsuccess = kV · rreward + N · + costoperational (4.2)

The initial kV compensations are necessary to provide the same incentive for all miners
that have already produced blocks on the main chain to switch to the attack chain. Since
we assume rational miners, the attack in this scenario is always successful if N > kV

and > 0 hold. For Bitcoin, this means that the costs of a successful double-spend with
kV = 6 and rreward = 8.25 and = 1 are costsuccess = 57 BTC. For a successful attack to
be profitable, the value of the double-spend has to be greater than this value. In Bitcoin,
transactions carrying more than 57 BTC are observed regularly11. For comparison, in
its cheapest configuration, the whale attack costs approximately 770 BTC [LK17], but
it was simulated for a previous Bitcoin reward epoch, where block rewards have been
higher. Even if we assume rV = 12.5 BTC, our attack would cost 94.5 BTC, which is
considerably lower than the whale attack. The remaining difference in our approach is
that the whale attack does not assume all miners to be rational. In Section 4.4.3 we also
extend our evaluation to this model by introducing altruistic miners.

Costs of a Failed Attack

Although the attack cannot fail in a model where all miners are rational and the attacker
has enough budget, it is relevant for a scenario where pR < 1 to determine the worst-case
cost for an unsuccessful attack. In the worst case, the attack duration is N and not a
single block produced by complacent miners (according to a published block template)
made it into the main chain. Then the costs are determined by the duration N and the
block rewards including fees (rreward):

costfail = N · rreward + costoperational (4.3)

Setting the same values for rreward and N amounts to approximately costfail = 58.25
BTC in our example.

11cf. https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=tim
e(2020-10),value(6000000000..)#
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4.4.3 Evaluation with Altruistic Miners
(pA > 0 ∧ pR + pA = 1)
We now discuss a more realistic scenario where not all miners switch to the attack chain
immediately, i.e., some of them act altruistically. Altruistic miners follow the protocol
rules and only switch to the attack chain if it becomes the longest chain in the network
– but do not attempt to optimize their revenue, contrary to economically rational, i.e.,
bribable, miners12.

We derive the probability of the attack chain winning a race against altruistic miners,
based on the budget of the attacker and the initial gap between those chains which has to
be overcome kgap where kgap is initially set to kgap = kV . The difference between kV and
kgap is that kgap can increase when altruistic miners find a new block, while kV is static.
In other words, the attack chain must find kgap + 1 more blocks than the altruistic main
chain – but must achieve this within the upper bound of N blocks (maximum funded
attack duration). Each new block is appended to the main chain with probability pA, and
to the attack chain with probability pR respectively (pA + pR = 1). We, therefore, seek
all possible series of blocks being appended to either chain and calculate the sum of the
probabilities of the series which lead to a successful attack. In a successful series i ∈ N
blocks are added to the main chain and kgap + i + 1 blocks are added to the attack chain.
The probability for such a series is p

kgap+i+1
R · pi

A.

For any prefix strictly shorter than the whole series, the number of appended blocks to the
attack chain is smaller than kgap + 1, as otherwise, the attack would have ended sooner.
It follows that the last block in a successful series is always appended to the attack chain.
The number of combinations for such a series is derived similarly to Bertrand’s ballot
theorem, with a difference of kgap for the starting point:

combinations(i) := kgap + 2i

i
− kgap + 2i

i − 1 (4.4)

Assuming the attacker can only fund up to N blocks on the attack chain, the probability
of a successful attack is hence given by:

i≤N−kgap−1

i=0
combinations(i) · p

kgap+i+1
R · pi

A (4.5)

Using the formula 4.5 we can calculate the success probability of the attack. Figure 4.2
shows the probabilities for different values of rational hashrate pR, as well as different
amounts of blocks N these bribed miners can be rewarded/compensated for. The number
of confirmation blocks required by victim Vincent is kV = 6. Clearly, the attack requires
N > kV to have a chance of being successful. As with the classical 51% attacks, the

12Another explanation can be that some miners have imperfect information, which might be the case
in practice.
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Rational
hashrate

pR

Average whale attack costs
epoch reward 12.5
costwhale in BTC

P2W
epoch reward 12.5
costexp. in BTC

P2W cost
compared to whale

P2W
N

average

P2W
epoch reward 6.25
costexp. in BTC

0.532 293e+23 196.50 ≈0.00% 109 159.00
0.670 999.79 108.50 10.85% 21 71.00
0.764 768.09 101.50 13.21% 14 64.00
0.828 1265.14 98.50 7.79% 11 61.00
0.887 1205.00 96.50 8.01% 9 59.00
0.931 1806.67 96.50 5.34% 9 59.00
0.968 2178.58 95.50 4.38% 8 58.00
0.999 2598.64 95.50 3.67% 8 58.00

Table 4.1: Comparison of attack costs for kV = 6, all costs given in BTC. The costs for the
whale attack are the average from 106 simulation results provided in [LK17]. For comparision
different Bitcoin block reward epochs (12.5 and 6.25 BTC) are provided for our P2W attack, all
with costoperational = 0.5 BTC, and average fee per block of 2 BTC and a bribe = 1 BTC.

attack eventually succeeds once the bribable hashrate is above the 50% threshold and
the number of payable blocks N grows.

Figure 4.2: Attack success probability of a double-spending attack depending on the amount of
blocks N that can be compensated/rewarded and different values for the rational hashrate pR.
The number of required confirmation blocks by Vincent is set to kV = 6.

In other words, assuming more than pR > 0.5 rational hashrate, bribing attacks are
eventually successful if they can be funded long enough. The relevant question is how
expensive it is to sustain the attack for a long enough period s.t., the attack is expected
to be successful.

Table 4.1 shows a comparison between the expected costs of a successful P2W attack,
against the average costs of 106 simulations of the whale attack as presented in [LK17].
At a first glance, given that the attacker must pay collaborating miners regardless of the
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outcome of the attack, one may assume that the costs faced by the attacker are high
compared to other bribing schemes. However, this is not the case. In our attack, miners
face no risk from participation – requiring only a low bribe value to incentivize sufficient
participation for a successful attack, contrary to existing bribing attacks like the whale
attack.

It can be observed that, in contrast to the whale attack, our attack becomes cheaper
when pR grows large since the race is won faster and therefore fewer bribes have to be
paid. Moreover, the whale attack has to pay substantially more funds to account for the
risk rational miners face if the attack fails. Our approach is hence approximately ≈ 87%
to ≈ 96% cheaper than the whale attack. For pR = 0.532 the difference is so large, that
the costs of our P2W attack are insignificant compared to the whale attack. The switch
to a new Bitcoin block reward epoch has further reduced the costs of the attack s.t., the
costs of a successful double-spending attack (kV = 6) using our technique are around 60
BTC. In October 2020 alone, there were around 60 thousand Bitcoin transactions with
outputs greater than 60 BTC13.

4.4.4 Evaluation of Desynchronization
Publishing new block templates timely is a key requirement of this attack. So the question
is, can we rely on the assumption that the difference between block intervals on the
two chains, namely Bitcoin and Ethereum, is big enough such that before every new
Bitcoin block there will be a new Ethereum block announcing the new block template?
In other words: What is the probability that the two chains (funding and attack chain)
desynchronize during an attack, i.e., that two Bitcoin blocks are mined in close succession
without an Ethereum block in between. To identify the need to account for such events
within the duration of an attack, we analyze the probability that the block intervals
fluctuate in a way such that Bitcoin blocks are mined in close succession.

The time between Bitcoin and Ethereum blocks follows an exponential distribution.
Assuming constant difficulty and overall hashrate, Ethereum has a mean block interval,
i.e., an expected value of 15 seconds (EET H(x) = 15), whereas Bitcoin has a mean block
interval of 10 · 60 seconds (EBT C(x) = 600). To approximate the probability that the
two chains desynchronize, we first calculate the probability that the time between two
Bitcoin blocks is less than the Ethereum mean block interval (x = 15):

λ = 1
EBT C(x) (4.6)

P (X < x) = 1 − e−λ·x (4.7)
P (X < 15) ≈ 2.47% (4.8)

The probability that this happens within N Bitcoin blocks i.e. the probability that the
time between two Bitcoin blocks is smaller than 15 seconds during N total Bitcoin blocks

13c.f. https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=tim
e(2020-10),value(6000000000..)#

73

https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time(2020-10),value(6000000000..)#
https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time(2020-10),value(6000000000..)#


4. Pay To Win Attacks

is given by:

P (N) = 1 − 1 − P (X < 15) N−1 (4.9)
P (32) ≈ 53.93% (4.10)

This result already shows that it is necessary to provide templates for more than one
Bitcoin block in one Ethereum block when executing long-running attacks.

We are now interested in the number of block templates the attacker has to provide per
Ethereum block. Therefore, we analyze how probable it is that at least n Bitcoin blocks
are mined before one Ethereum block. We approximate this value by calculating the
probability that at least n Bitcoin blocks are found within the Ethereum mean block
interval of 15 seconds. The Bitcoin block discovery is a Poisson point process, where the
Poisson distribution parameter Λ = E(X = n) = t

EBT C(x) refers to the expected value of
the number of events happening within t = 15 time. Then the complementary probability
of finding at most n − 1 blocks is given by:

P (X > n) = 1 − P (X ≤ n − 1) (4.11)

P (X ≤ n) = F (x) = e−λ
n−1

i=0

λi

i! (4.12)

P (X > 1) ≈ 2.47% (4.13)
P (X > 2) ≈ 0.03% (4.14)
P (X > 3) ≈ 2.556 · 10−4% (4.15)
P (X > 4) ≈ 1.595 · 10−6% (4.16)

Since both chains start at the same point in time, n = 1 already refers to a sequence
of two Bitcoin blocks without an Ethereum block in between. We now calculate the
probability that at least n Bitcoin blocks are found within the mean Ethereum block
interval t during a period of N Bitcoin blocks in total:

P (n, N) = 1 − 1 − P (N > n) (N−1)/n (4.17)
P (n = 1, N = 32) ≈ 53.930% (4.18)
P (n = 2, N = 32) ≈ 0.490% (4.19)
P (n = 3, N = 32) ≈ 0.003% (4.20)

So when providing three Bitcoin block templates, there remains approximately a 0.490%
chance that all of them are consumed before the next Ethereum block is published.

To further justify these numbers and account for the fact that Ethereum blocks are
exponentially distributed as well, we implemented a tool to simulate such parallel
blockchain chain executions. Measuring the probability of desynchronization yields
comparable results to our calculations with a mean Ethereum block interval of 15 seconds.
After 10, 000 runs of our simulation limited to N = 32 total Bitcoin blocks each, a chain
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of at least two consecutive Bitcoin blocks before a corresponding Ethereum block was
found in 53.0% of all cases. A chain of at least three consecutive Bitcoin blocks was found
in 1.57% of all cases, a chain of at least four consecutive Bitcoin blocks in 0.08% of all
cases. Consecutive chains of length 5 or longer have never occurred during 10, 000 runs.

Desynchronization Prevention

As Section 4.4.4 shows, the attacker should not rely on the assumption that the difference
between block intervals on the two chains, e.g., Bitcoin and Ethereum, is big enough
such that before every new Bitcoin block there will be a new Ethereum block announcing
the new block template. Therefore, the attacker is advised to publish block templates
for multiple blocks in advance (leaving references to previous blocks to be filled in by
miners) 14. In this case, only the first block includes a previous block hash field, whereas
in subsequent block templates this value is left empty and has to be filled by collaborating
miners based on the current attack chain state. Later, the contract can use previously
submitted valid attack blocks to check the validity of the submitted solutions, i.e., if they
form a valid chain and have sufficient difficulty. This solution is implemented in our PoC.

Other approaches to ensure that new block templates are available to rational miners
independently of block intervals in the funding cryptocurrency are also conceivable.
Strictly speaking, it is not even necessary that the Ethereum block with the new block
template has been mined before the next Bitcoin block for which the template has to
be used. This is possible if the attack contract is implemented such that it enables
collaborators to provide a valid Ethereum transaction signed by the attacker as proof that
the therein announced new block template for a specific attack was approved, alongside
their solution. Then any such transaction can be seen as a guarantee for the collaborating
miners that they will receive a reward if they mine a block according to the template. At
some later point, the transaction defining the target chain block template is included in
the funding cryptocurrency and presents proof to the attack contract that the respective
block on the target chain was based on a valid template. The drawback of this method
is, that it requires some way to prevent equivocation of the attack operator to prevent
that more signed block templates are available than actual funds in the contract, or
alternatively more funds in the attack contract as a safety margin.

4.4.5 Evaluation of the attack contract

To verify the outcome of the attack and correctly pay rewards in trustless out-of-band
scenarios, our attack contract includes a construction which we call an ephemeral mining
relay (EMR)15, as it combines the functionality of a chain relay [But16, ZHL+19, Rel]
and mining pool [VTL17, LVTS17].

14Furthermore, in practice collaborating miners would want to have at least a couple of block templates
available to ensure that their hardware does not stall.

15We use the term “ephemeral" as the mining relay is instantiated only temporarily and does not
require verification of the entire blockchain, but only the few blocks relevant for the attack.
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Chain relays are smart contracts which allow to verify the state of other blockchains,
i.e., verify the proof-of-work and difficulty adjustment mechanism, differentiate between
the main chain and forks, and verify that a transaction was included within a specific
block (via SPV Proofs [BCD+14]). However, a naïve chain relay implementation only
allows to verify that a certain block (or transaction) was included in a chain with the
most accumulated proof-of-work (i.e., heaviest chain). It does not allow to verify whether
the blocks and transactions included in this heaviest chain are indeed valid, i.e., adhere
to the consensus rules of the corresponding blockchain.

In contrast to previous proposals, our EMR needs to be capable of validating if blocks
adhere to the consensus rules of the target cryptocurrency. This is achieved by restricting
the allowed block structure. In our case, the set of transactions within blocks generated
by collaborating miners is specified by the block template provided by the adversary. As
Blofeld wants to submit collected PoW solutions to Bitcoin, it is in his best interest to
provide only templates including valid transactions. Conversely, collaborating rational
miners do not care if the block template they mine on is actually valid in Bitcoin, since
the rewards they receive for solutions are guaranteed to be paid out by the smart contract
in Ethereum.

Liveness

The liveness of chain relays in general depends upon the submission of new blocks to
advance their state. Therefore, if the relay starves through a lack of submitted blocks,
long-range attacks have a higher chance to succeed, as attackers gain additional time to
compute long fake chains. In our concrete EMR instantiation liveness is less of an issue,
as the duration of the attack is finite and well defined. Moreover, involved actors have
an incentive to submit the correct information to the relay in a timely fashion. Consider,
for example, a rational miner R who mined a block for the attack chain according to a
template. Then R has an incentive to submit the solution to the PoW for this template
timely since he is competing with other rational miners for the offered rewards and bribes.
As the additional bribe is only paid if the attack is successful, this further incentivizes
rational miners to publish solutions timely. Our scenario also enables the attacker, at
any stage, to cease publishing additional block templates in order to reduce his losses in
case the attack appears to fail.

Operational Costs

We implement a fully functional attack contract including the EMR on Ethereum, which
is capable of verifying the state of the Bitcoin blockchain 16. We use Solidity v0.6.2 and
a local Ganache instance for cost analysis, with a gas price of 45 Gwei and an exchange
rate 500 USD/ETH. The cost estimates for the identified operations are summarized in
Table 4.2. Submitting a block template for a Bitcoin block amounts to 302,228 Gas ($
6.80 USD). The costs for submitting and verifying a new Bitcoin block are 468,273 Gas

16https://github.com/kernoelpanic/pay2win_artefacts
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Operation Approx. costs
Gas USD

Deployment 6 156 688 138.53
Initialization phase 1 364 277 30.70
Attack phase 8 203 136 184.57
Payout phase 64 511 1.45
Total operational costs 15 788 612 355.24
submit one block template 302 228 6.80
submit one block 468 273 10.54
Gas price 45 Gwei, exchange rate 500 USD/ETH [Coi]

Table 4.2: Overview of operational costs coperational for each of the main Ethereuem smart
contract operations of the attack contract (including the EMR) executing a successful
attack on Bitcoin with kV = 6 and kB = 6.

($ 10.54 USD) in the worst case. In total, the costs of an example attack on Bitcoin with
kV = 6 and kB = 6 are about $ 355.24 USD. This confirms that the costs for maintaining
an attack contract including an EMR are marginal when compared to the potential scale
of incentive attacks described in this chapter. For comparison: the reward for a single
Bitcoin block (excluding transaction fees) at the time of writing is approximately $ 120
000 USD.

4.4.6 Ideas for Cost Optimizations
The biggest cost in the proposed out-of-band transaction revision attack derives from
the compensation of kV main chain blocks to provide an incentive for all rational miners
(which already have contributed blocks to the main chain between block b1 and bkV

) to
switch to the attack chain. In a blockchain where every block is uniquely attributable to
a set of known miners, and where the overall hashrate of those miners can be adequately
approximated, the payout of compensations can be further optimized in various ways.
As an example, consider the scenario where a small miner, compared to the other miners,
is lucky and mines several blocks within kV . Then it may be cheaper for the attacker to
exclude this miner from being eligible for compensation since it is unlikely that he will
substantially contribute to the attack chain.

Crowdfunding and Multiple Attackers

Our attack from Section 4.4.1 also opens up the possibility to be crowdfunded. The
simplest crowdfunding approach would be to allow donations as soon as the attack
contract has been deployed. This method allows to collect funds but does not offer any
guarantees for the backers.

Ideally, any solution which incentivizes multiple attackers to perform double-spending
attacks concurrently would allow splitting the funds for the attack among collaborators.
Thereby, multiple double-spends of low-value transactions by different parties could
be made feasible if they together accumulate enough attack funds (rbudget). The main
challenges that have to be solved in such a scenario are as follows:
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• It has to be ensured that every collaborating attacker, who invests funds to achieve a
double-spend attack, has some chance that his individual double-spend is successful,
i.e., if the invested value is used by the contract, then the according double-spend
attack for the respective transaction has to be performed.

• It has to be ensured that the attack cannot be poisoned by collaborating attackers
such that they are able to sabotage the whole attack for all participants, i.e., it
should not be possible for any participant to cause the attack to fail because of
their inputs.

• The attack should not rely on any trusted third party.

We now outline an approach to achieve these goals within the framework of our previous
attack s.t. its general structure is preserved. On a high level, the stages of the modified
attack are as follows. First, the initialization transaction only announces that an attack
might happen and that the block interval from b1 to bkV

will be affected. Then, all
Bitcoin users who have performed transactions in block b1 can decide whether or not
to invest in the attack to potentially double-spend their transaction. The collaborating
attackers, i.e., the backers, submit their double-spending transaction to the contract,
together with some bribing funds in Ether that increase the overall funds rbudget of the
attack17. This crowdfunding attack approach can be viewed as a practical instantiation
of an analysis performed in [Bud18], where all payouts of a single block are viewed as the
theoretical gain of a double-spending attack. In [Bud18] such a situation is analyzed from
a financial perspective regarding the overall achievable economic security of Nakamoto
consensus.

If the funding goal for reverting at least kV + 1 blocks has been reached, the attack starts
as previously described. Since the attacker who initialized the contract has to take care
of producing new block templates for the chain containing the double-spend transactions,
some method has to be implemented so that the transactions of other backers are assured
to be included in b1. We describe a method which requires a collateral from the original
attacker (Blofeld) as high as the funds he wants to collect (rbudget). In doing so, it can
be ensured that the other backers only pay if their transaction was actually included in
the new chain in block b1, which can be proven to the smart contract. Otherwise, they
are refunded from the collateral submitted by the initial attacker.

The phases of the attack are as follows:

1) Blofeld who initiates the attack, deploys an attack contract in Ethereum and locks
his collateral of value rbudget with this contract. Additionally, he publishes his spending
transaction txB1 on the main network.

17Theoretically, an attacker can also specify a fixed rate of funds he wants to collect, depending on
the overall value of the submitted Bitcoin transaction which should be double-spent.
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2) Once kV blocks on the main chain have been mined, Blofeld initializes the attack
contract with his double-spend txB1 , his part of the attack funds rB1 , a reference to the
block b1 which is to be forked, as well as a reference to the common ancestor block b0.

3) Everybody who has included a transaction in block b1 is then allowed to submit
double-spending transactions txB{2,...,x} including some amount of Ether rB{2,...,x} that
he or she is willing to invest in the attack. If these backers reach the funding goal of
compensating at least kV + 1 blocks before kV + 1 main chain blocks have been submitted
to the attack contract, the attack starts automatically. All invested funds (excluding the
collateral rbudget) are then free to be used by the EMR as described in the original attack.

3) Once the attack has been started by the attack contract, Blofeld publishes a block
template to the attack contract. The Merkle branch of this template includes all submitted
double-spending transactions txB{2,...,x} , which are i) valid according to information from
his full node ii) backed by some ether. Additionally, the attack contract has to require
some freshness information such that Blofeld is unable to produce blocks before officially
starting the attack to rip compensations increasing his invested value rB1 from his fellow
backers. An example of such a freshness guarantee would be the inclusion of the latest
funding chain block hash e1 in the block template.

4) Then the attack proceeds as originally described.

5) When N blocks are mined and published to the attack contract, the backers who have
not witnessed that their double-spending transaction was included in the attack chain
can now claim their invested Ether back from the attack contract. Therefore, the attack
contract automatically allows any backer to reclaim their money if Blofeld cannot submit
a valid Merkle inclusion proof for the respective double-spending transaction.

In this approach, Blofeld has to provide a collateral as large as the total funds required for
a successful attack rbudget. If he behaves honestly, the collateral will be returned to him
by the attack contract once the attack has ended – regardless if it was successful or failed.
The collateral ensures that the initiator is able to compensate additional backers, in case
their funds were used for the attack, but Blofeld did not include their double-spending
transaction(s).

Like all other backers, Blofeld is required to invest funds rB1 into the double-spending
attack (in addition to the required collateral rbudget). This investment by Blofeld should
ensure that he is indeed willing to execute an attack. At the same time, he also loses
funds if he is not able to provide correct block templates. For example, if he as an
initiator purposely stalls the attack e.g., by not producing any block templates, or not
forwarding them in time to the Bitcoin main network, the attack will fail. But then he
will also lose his invested funds rB1 . Thereby, asymmetric losses in cases where Blofeld
intentionally lets the attack fail can be avoided by backers. Thus, backers are advised
not to invest more Ether than rB1 provided by Blofeld.
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Available Crowdfunding Funds

With the possibility to crowdfund attacks, theoretically, multiple double-spends of low-
value transactions by different parties could also be made feasible if they together
accumulate enough attack funds (rbudget). The discrepancy between the value transferred
in one Bitcoin block and the rewards (including fees) distributed for mining one Bitcoin
block show that the funds for long-range double-spending attacks using this technique are
theoretically available. Over the last year (2019) the median value of bitcoins transacted
per day (excluding change addresses) is approximately 780 million USD, whereas the
median mining reward per day including transactions fees is approximately 11 million
USD18.

4.5 P2W Transaction Exclusion and Ordering Attack

In this section, we describe a modification of our attack from Section 4.4.1, which
exclusively targets transaction exclusion and ordering. Thereby, the attack becomes less
powerful but also substantially cheaper, as we show in our evaluation. Nevertheless, the
resulting attack could be used to perform multiple front-running attacks at once and
censor certain transactions. Such attacks can be profitable for an attacker attempting to
falsely close an off-chain payment channel (i.e., publish an old/invalid state) but prevent
the victim from executing the usual penalizing measures [PD16, MBKM19, DW15]. The
attack presented in this section can also be viewed as a form of the feather forking attack
proposed by Miller [BMC+15]. In a feather fork, the attacker publicly promises that he
will ignore any block containing a blacklisted transaction. The main attack proposed in
this chapter uses smart contracts on a funding cryptocurrency to provide a more credible
threat.

Initialization Phase (init)

The attacker’s goal is to prevent an unconfirmed transaction txV from being included
within N newly mined Bitcoin blocks . As in our previous attack, the smart contract
is initialized and updated with block templates, which specify the content of the block
according to the needs of the attacker. These templates have to be used by the col-
laborating Bitcoin miners to be eligible for rewards. This allows the attacker to fully
control the content of the mined blocks, including ordering and inclusion of only desir-
able transactions. For each block template, the corresponding compensation and bribe
is conditionally locked within the smart contract, ensuring miners will be reimbursed
independently of the final attack outcome as long as they provide a valid solution. In
contrast to our first attack, the attack can start immediately after it is initialized and
does not have to wait for kV blocks to pass, nor must it be initialized with kV + 1 blocks.

18Numbers retrieved from https://www.blockchain.com/charts
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Attack Phase (update)

As in our previous attack, rational miners submit valid Bitcoin blocks, based on the
attacker’s block templates, to the attack smart contract on Ethereum via the attack
contract, which implements an EMR and verifies that they form a valid chain. At each
step, the attacker can add new Bitcoin block templates after each submission to the
attack contract and, if necessary, can even increase the bribes. If no new templates are
submitted, the attack contract switches to the payout phase after kB blocks. Note that
it is possible to include more than one block template in a single block, as shown in
Figure 4.3 for block e3 (for details see Section 4.4.4).

Payout Phase (pay)

Miners can claim payouts in the attack contract once kB Bitcoin blocks have been mined
after the attack has ended (kB being a security parameter defined by the attacker). The
attack smart contract is responsible for verifying the validity of submitted blocks, i.e.,
their PoW in compliance with the specified block template, and that all blocks form a
valid attack chain. If a submitted PoW is valid, the attack contract rewards miners even
if the attack chain did not succeed to become the main chain, i.e., collaborating miners
face no risk. The first miner to submit a valid PoW for the respective block template will,
in any case, receive value equivalent to the full Bitcoin block reward in Ether, regardless
if the attack has failed, plus an extra if the attack is successful. Thereby, it is important
to define the success condition upfront (i.e., the number of subsequent compliant blocks)
so that it is clear for bribees when the additional is payed.
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Figure 4.3: Example timeline showing blockchain structure and resulting payouts of a failed, and
a successful transaction exclusion and ordering attack with out-of-band payments. The attack
is initialized when the attack contract is published in block e0. Block templates are published
as transactions in the funding cryptocurrency and refer to blocks in the target cryptocurrency.
The payouts can be performed after kB blocks. The colored blocks are rewarded by the attack
contract, either only with their original value (reward + fee normalized to 1) or with an additional

if the attack was successful. The numbers above colored blocks indicated those normalized
rewards for the respective block.

4.5.1 Evaluation with Solely Rational Miners
(pR = 1)

We now derive a lower bound for the financial resources (budget) required from Blofeld in
Ether (fB) for this attack. Let us assume Blofeld wants to run the attack for N blocks.

Necessary Attack Budget

The budget of the attack contract must cover and compensate all lost rewards19, for
every Bitcoin attack chain block in Ether in case the attack fails, plus an extra bribe
per block in case the attack was successful. These values together with the funds of the
attacker rbudget, define the maximum duration of the attack N in terms of attack chain

19This encompasses, block rewards including fees. In a concrete attack rreward is not constant, but
given by the coinbase output values of every submitted block.
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blocks that can be financed:

rbudget = N · (rreward + ) + costoperational (4.21)

There, costoperational specifies the operational costs for smart contract deployment and
execution (e.g., gas costs in Ethereum). Compared to the current block rewards, the
operational costs for managing the smart contract are insignificant given the measurements
in [MHM18] and Section 4.4.5. Although, costs currently being around 166 USD (see
4.4.5), we decided to set costoperationl = 0.02 BTC to provide a future-proof and permissive
margin. Assume an attacker wants to specify the transaction ordering and/or exclusion
in Bitcoin for the duration of one hour i.e., N = 6. A lower bound for the budget of the
attacker rbudget can thus be derived by the current block reward (6.25 BTC) including
approximated20 fees (1 BTC) amounting to rbudget = 7.25 BTC. Providing an additional

= 1 BTC, yielding approximately 49.52 BTC as a lower bound for the budget in this
example.

Costs of a Failed Attack

Although the attack cannot fail in a model where all miners are rational and the attacker
has enough budget, it is relevant for a scenario where pR < 1 to determine the worst
case cost for an unsuccessful attack. Note that the actual costs for a failed attack can
be much lower, since Blofeld is able to halt the attack by not publishing any further
block templates. In the worst case the attack duration is N and not one block produced
by complacent miners (according to a published block template) made it into the main
chain. Then the costs would be close to the maximum budget, reduced by N · , which
amounts to approximately costfail = 43.52 BTC with our chosen values for N, rbudget and
costoperational.

Costs and Profitability of a Successful Attack

If the attack is successful, the attacker earns the block rewards on the main chain in
BTC which compensate his payouts to bribed miners in Ether. The costs for a successful
attack are thus reduced by N · rbudget main chain blocks, whereas rewards must be paid
for N · (rbudget + ) block templates.

costsuccess = N · + costoperational (4.22)

Therefore, the costs of a successful attack only depend on the bribe paid per block as
well as the operational costs. Since we assume only rational miners, the attack in this
scenario is always successful and no-fork will be required if > 0. For a successful attack
to be profitable, the amount gained from ordering, or transaction withholding, must
exceed costsuccess.

20According to https://blockchain.com/charts the average transaction fees per Bitcoin block
over the last year are 0.73 BTC. Accounting for standard deviation of fees and produced blocks per day
the value varies between 0.79 BTC and 0.67 BTC. To provide a permissive margin we round to 1 BTC.
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While the attacker must have the funds to compensate collaborating miners regardless of
the outcome of the attack – the attack becomes cheaper than comparable attacks since the
additional bribe does not have to account for the risk of getting nothing, faced by rational
miners in other bribing scenarios. Other previously proposed AIM approaches require the
attacker to have a sizeable portion of the overall hashrate (in the target cryptocurrency)
under their direct control to stand a chance. For example CensorshipCon [MHM18]
which is also aiming at transaction exclusion but specifically for Ethereum, requires
pB > 1/3, or Script Puzzle 38.2% as described in [TJS16], which would also allow
to change the order of subsequent blocks requires pB > 38.2%. Acquiring or sustaining
the required amount of hashrate already bears large costs, not to mention the additionally
required bribes. The costs for renting 38.2% of Bitcoin’s total hashrate with NiceHash21

for the duration of one hour alone, amount to approximately 500 000 USD.

The Pay per ... attacks proposed in concurrent work [WHF19] operate in a compa-
rable setting as our described attack and also highlight the economic feasibility without
going into detail how such attacks can actually be constructed. The main differences to
our attack are, that they focus on an in-band setting and only consider a model where
all miners are rational.

4.5.2 Evaluation with Altruistic Miners
(pA > 0 ∧ pR + pA = 1)

In a scenario where not all miners switch to the attack chain immediately, i.e., some of
them act altruistically, some miners follow the protocol rules, but do not attempt to
optimize their revenue, contrary to economically rational or bribable miners Therefore,
blocks of altruistic miners are likely to also include transactions and transaction orderings
that are undesirable to the attacker. Therefore, blocks of such miners may have to be
excluded by the attacker, i.e., by providing templates which intentionally fork away these
blocks. If altruistic miners find a block, the attacker and colluding miners must mine at
least two blocks for the attack chain to become the longest chain again – which altruistic
miners will then follow. Hence, the security parameter kgap is equal to 1 in this case, as
we start our attack immediately after one undesired block has been mined. Therefore,
no deep-forks of some length kV (defined by the victim) are required in this scenario.

For a details analysis regarding costs and success probabilities of this case we refer
to [JSSW22b], or Chapter 5 of this thesis. The resulting success probability of the attack
has an influence on the choice of N and thus on the required budget rbudget, but the
calculations for the respective bounds in terms of costs are the same as in the previous
model with only rational miners (Section 4.5.1).

21cf. https://www.crypto51.app/
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4.6 Discussion and Mitigations

Our AIM attacks serve to highlight the security dependency between transaction value
and confirmation time kV , as also stated in [SZ16]. As with the negative-fee mining pools
presented by Bonneau in [Bon16], there exists an interesting analogy between such an
incentive manipulation attack and a mining pool. At an abstract level, the presented
attacks rely on a construction comparable to a mining pool, where the pool owner/attack
operator defines specific rules for block creation for the targeted cryptocurrency within
a smart contract. Moreover, every participant must be able to claim their promised
rewards in a trustless fashion, based on the submitted blocks and state of the targeted
cryptocurrency. The construction of an ephemeral mining relay, presented within this
chapter, provides exactly this functionality. Luu et al. [LVTS17] also proposes a mining
pool (Smart pool) which itself is governed by a smart contract. However, its design and
intended application scenarios did not consider use cases with malicious intent. Smart
pool does not enforce any properties regarding the content and validity of submitted
blocks beyond a valid PoW, as the intrinsic incentive among participants is assumed to
earn mining rewards in the target cryptocurrency, which is only possible if valid blocks
have been created.

The natural questions which arise from the presented attacks are: How likely are such
AIM attacks to occur in practice? Can they be efficiently mitigated? We now discuss
these questions and provide some directions to explore possible counter measures and
limitations of the described attacks.

4.6.1 Practical possibility

The focus of this chapter is to improve upon existing attacks and demonstrate the
technical feasibility of advanced bribing attack, as well as to evaluate the associated costs.
Hereby, the long term interests of miners of course also play an important role. There
may be scenarios where miners are capable of providing PoW for a target blockchain,
but at the same time do not have any long-term interest in the well-being of the target.
Consider the real-world example of Bitcoin and Bitcoin Cash which utilize the same
form of PoW and can be considered competitors. Thus, the question if the proposed
attacks are possible in practice is difficult to answer scientifically. There is already
empirical evidence from previous large-scale attacks by miners, e.g., 51% attacks on
Ethereum Classic [coi20, coi19b] Bitcoin Gold [btg20] Bitcoin Cash [coi19a] , as well as
incentive manipulation attacks, e.g., Fomo3D [fom18] and front-running [DGK+20]. To
the best of our knowledge, none of the observed attacks has been as sophisticated as
the new technique proposed in this chapter, but of course, attacks get better over time.
Nevertheless, these cases demonstrate that large-scale attacks happen, and that the topic
of incentives in cryptocurrencies is an area which deserves further study. We see our
attack descriptions as another important contribution in this direction.
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4.6.2 Counter-attacks
Counter-bribing refers to the technique of countering bribing attacks with other bribing
attacks [Bon16, Bon18]. For the victim(s), counter-bribing is a viable strategy against
AIM. The difficulty of successfully executing counter-bribing highly depends on the
respective scenario. In the end, counter-bribing can also be countered by counter-counter-
bribing and so forth. Therefore, as soon as this route is taken, the result becomes a
bidding game. Against transaction exclusion attacks, counter-bribing can be performed
by increasing the fee of txV such that it surpasses the value promised for not including
the transaction22. If defenders have imperfect information, they may not be able to
immediately respond with counter-bribes. In this case, some of the attack chain blocks
may have already been mined, or even take the lead, before they are recognized by
defenders. Counter-bribing then necessitates the incentivization of a fork, and thus a
more expensive transaction revision attack, leading to asymmetric costs in the bidding
game. This illustrates an important aspect of AIM, namely their visibility. On the one
hand, sufficiently many rational miners of the target cryptocurrency have to recognize
that an attack is occurring, otherwise they won’t join in and the attack is likely to fail.
On the other hand, if the victims of the attack recognize its existence, they can initiate
and coordinate a counter-bribing attack. So the optimal conditions for AIM arise if all
rational miners have been informed directly about the attack, while all victims/merchants
do not monitor the chain to check if an attack is going on and are not miners themselves.

Although our proposed attacks are clearly visible on the funding cryptocurrency, they are
not necessarily observable in the target cryptocurrency. In the best case, the proposed
transaction exclusion and ordering attack does not even produce a fork in the target
cryptocurrency when all miners act rationally. Even if forks are induced, participating
miners can make use of the fact that the PoW mining process does not require any strong
identity by using different payout addresses. Of course their received rewards can be
traced in the funding cryptocurrency, but available privacy techniques may be used to
camouflage the real recipient of the funds e.g., [MM17, HBG16].

The great benefit of the herein described attacks is that bribes are paid out-of-band.
Hereby, our attacks are rendered more stealthy to victims, who only monitor the target
cryptocurrency. It can hence be argued that counter-attacks by victims are harder to
execute as they are not immediately aware of the bribing value that is being bet against
them on a different funding cryptocurrency. We also follow the argument in [Bon16]
that requiring clients to monitor the chain and actively engage in counter-bribing is
undesirable, and our out-of-band attacks further amplifies this problem as clients would
have to concurrently monitor a variety of cryptocurrencies.

Another interesting aspect of counter-bribing is revealed if crowdfunded attacks are
assumed. In this case, the funds required to counter-bribe can be higher than the
invested funds of each individual attacker. In a scenario with multiple victims, organizing

22Another possible counter-attack would be to launch a DoS attack against the censor, see Section 4.6.2
for details
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coordinated counter-bribing is difficult. All victims would be better off if the attack fails,
but for an individual victim it is cheaper to not take action and hope that others will
fund the counter-bribe, leading to a collective action problem.

DoS Against Transaction Censorship

We consider Bitcoin as a target, however in principle our transaction censorship attack
is also applicable to other types of cryptocurrencies. Although, we argue that (quasi)
Turing complete smart contract capable cryptocurrencies are more resistant to censorship
than Bitcoin:

Let’s assume, for the remainder of this discussion, that transaction censorship should
take place within Ethereum as a target cryptocurrency. Moreover, the respective transac-
tions, or their side effects, can be accurately identified and all miners agree that these
transactions exhibit unwanted behavior. This opens up the possibility of denial-of-service
attacks launched by the victim(s) in such a case. The reason for this stems from the
fact that the effects of an unwanted transaction can be proxied through multiple layers
of smart contract invocations and interactions. Hereby, the problem arises that miners
may only learn of the unwanted behavior of a transaction by first evaluating its state
changes. If the resulting behavior is to be censored, miners have to roll back all changes
and cannot collect transaction fees for their efforts. Therefore, the attacker can waste
the resources of every censoring miner without a loss of funds.

It is impossible to directly overcome this issue without changing the consensus rules,
however by basing the attack on block templates, the problem is shifted away from the
collaborating rational miners toward the attacker. Hereby, the attacker may choose
to only include simple transactions for which he is certain that they cannot hide any
unwanted activity e.g., all value transfer transactions, or calls to known contracts such
as ERC20 Tokens.

Cross-chain Verifiability

One crucial aspect of our attacks is that a smart contract within the funding cryptocur-
rency must be able to validate core protocol and consensus rules of the target chain, in
particular it must be able to determine the validity of blocks. If this is not possible, the
attack cannot be executed trustlessly. For example, it is currently not possible to execute
an AIM against Litecoin using Ethereum as a funding cryptocurrency in a fully trustless
manner, as it is economically unfeasible to verify the Scrypt hash function within a smart
contract. However, it is generally beyond the reach of an individual cryptocurrency to
dictate or enforce what other cryptocurrencies support in future versions of their smart
contract languages. Thus, any such defensive decision of the target cryptocurrency may
be mitigated by future changes in another cryptocurrency. Hence, such measures can not
guarantee lasting protection.

On a high level the technical requirements which would allow to trustlessly execute our
AIM attack using smart contracts can be generalized by the following points:
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1. Given a block in a block interval (on the target chain) defined by the attacker, the
smart contract must be able to verify either that a certain state transition was
performed (e.g., a transaction was included in the blockchain), or that a certain
state transition was not performed (e.g., a transaction was not included). In either
way, the current state of the target cryptocurrency has to be determined afterT
blocks have been mined on top of a block pre-defined by the attacker, i.e., the
longest chain. This implies that it is possible to verify the PoW of the target
cryptocurrency on the funding cryptocurrency in a smart contract. To also be able
to compensate block contributed to the attack, even if the overall attack is not
successful, the state and length of the longest attack chain has to be determined as
well.

2. A programmatic way to uniquely attribute blocks on the target cryptocurrency to
miner addresses, as well as a way to map the latter to corresponding addresses in
the funding cryptocurrency.

3. A programmatic way to transfer value in the funding cryptocurrency to a uniquely
attributed address of a collaborating miner (see point 1).

4.7 Implications of P2W and AIM
In this chapter we introduced a new AIM attack method called Pay-To-Win (P2W)
and showed that attacks utilizing the described techniques can readily be constructed
given current smart contract platforms and are economically feasible in practice. The
implications of our proposed method (and related AIM attacks) regarding the security
guarantees of PoW cryptocurrencies are not yet conclusive and topic of future work. On
the theoretical side, embedding and modeling incentive attacks in formalisms of Nakamoto
style cryptocurrencies is non-trivial, as prevalent approaches do not consider rational
participants [GKL15, PSS17, BMTZ17, GKR20], or explicitly exclude bribing [BGM+18].
Furthermore, no agreed upon game-theoretic analysis technique for (PoW) cryptocurren-
cies currently exits, and it remains an open question if such an analysis could be rendered
universally composable. The generalization and inclusion of AIM attacks and rational
behavior in formal analysis frameworks for Nakamoto consensus based cryptocurrency
designs, including approaches such as Proof-of-Stake, hence poses an interesting and
important open research challenge. On the practical side, our new attacks, as well as
the existing body of research on AIM, demonstrates that it is not only the hashrate
distribution among permissionless PoW-based cryptocurrencies that plays a central role
in defining their underlying security guarantees. The ratio of rational miners and avail-
able funds for performing AIM also form a key component, as rational miners can be
incentivized to act as accomplices to an attacker. The possibility of trustless out-of-band
attacks highlights that being able to cryptographically interlink cryptocurrencies increases
this attack surface. Further, smart contract based AIM introduces the possibility to align
the interests of multiple attackers who want to perform double-spends during the same
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time period, making low value double-spends theoretically feasible (as economically ana-
lyzed in [Bud18]). Together with the topic of counter-bribing, new research directions are
opened up that raise fundamental questions on the incentive compatibility of Nakamoto
consensus. Real-world attacks targeting incentives, such as front-running [DGK+20],
demonstrate that the existence of incentives cannot be ignored in PoW cryptocurrencies,
i.e., by only considering honest and malicious (Byzantine) miners. To accurately reflect
the security properties of permissionless PoW cryptocurrencies, some form of rationality
has to be taken into account. The problem is, that as soon as rational players are
considered, all previously proposed AIM methods, as well as the attacks described in this
chapter, lead to interesting questions whether or not the incentive structures of prevalent
cryptocurrencies actually encourage desirable outcomes. Even more so, in a world where
multiple cryptocurrencies coexist it is likely not sufficient to model them individually as
closed and independent systems.
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5
How much is the fork?

In this chapter1, new techniques for estimating the success probability as well as the
profitability of forks are proposed. Estimating the probability, as well as the profitability,
of different attacks is of utmost importance when assessing the security and stability of
prevalent cryptocurrencies. Previous modeling attempts of classic chain-racing attacks
have different drawbacks: they either focus on theoretical scenarios such as infinite
attack durations, do not account for already contributed blocks, assume honest victims
which immediately stop extending their chain as soon as it falls behind, or rely on
computationally heavy approaches which render them ill-suited when fast decisions are
required. In this chapter, we present a simple yet practical model to calculate the success
probability of finite attacks, while considering already contributed blocks and victims
that do not give up easily. Hereby, we introduce a more fine grained distinction between
different actor types and the sides they take during an attack. The presented model
simplifies assessing the profitability of forks in practical settings, while also enabling fast
and more accurate estimations of the economic security grantees in certain scenarios. By
applying and testing our model in the context of bribing attacks, we further emphasize
that approaches where the attacker compensates already contributed attack-chain blocks
are particularly cheap. Better and more realistic attack models also help to spot and
explain certain events observed in the empirical analysis of cryptocurrencies, or provide
valuable directions for future studies. For better reproducibility and to foster further
research in this area, all source code, artefacts and calculations are made available on
GitHub.

5.1 Calculating the Success Probability of Forks
Whenever a miner in a permissionless Proof-of-Work (PoW) cryptocurrency detects a
fork, this miner has to make a decision which chain to extend, i.e, where to best utilize

1This chapter represents an extended version of publication [JSSW22b].
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her hashrate. As a profit-oriented and economically rational miner, she would want to
select the chain which offers the higher expected profit for the next block as fast as
possible. Optimizing for maximum profit, other revenue opportunities besides the block
reward of the next block, such as a bribe [Bon16], or some other way to increase the miner
extractable value (MEV) [DGK+20, EMC19, QZG22], also have to be taken into account.
We present and apply a simple model, that is precisely tailored towards the question of
selecting the most profitable branch of a fork, as well as assessing the probability of this
branch becoming canonical.

Modeling the security of PoW cryptocurrencies has been addressed from several different
angles. One of the first approaches by Rosenfeld [Ros14] highlights that successful
double-spending is possible with any attacker hashrate (no majority is needed), assuming
that all non-attacking nodes are honest and accept the attack chain as soon as it becomes
the longest/heaviest chain. Thereby, an infinite attack duration is implicitly assumed
from the perspective of the attacker. Moreover, potential incentives of participants
are ignored. Liao and Katz [LK17] extend the analysis from Rosenfeld [Ros14] in the
context of chain forks incentivized by whale transactions, i.e., transactions which carry
an exceptionally high fee which can be viewed as a bribe. Their model is simple and
specifically tailored for bribing, but does not account for already contributed blocks,
finite attacks, and victims that do not accept longer chains immediately. In this chapter,
we build upon the model of Liao and Katz [LK17] and extend it through finite Markov
chains. In context of cryptocurrencies, Markov chains have mainly been used to model
selfish-mining [ES14, NKMS16], however, to the best of our knowledge, not directly to
model double-spending or bribing attacks.

Markov decision processes (MDP) were successfully used in the past to model certain
security aspects of PoW cryptocurrencies such as selfish-mining [SSZ16, GKW+16], or
double-spending [GKW+16, ZQC+21]. The double-spending MDP in [GKW+16] is quite
versatile and incorporates a lot of parameters (for example stale block rate and network
connectivity). On the down side, it assumes that the exit state is reached as soon as
the adversarial chain is ahead of the main chain. This assumption though may not hold
in practice, in particular when economically rational victims are considered. Moreover,
adapting existing MDP based approaches to account for already contributed blocks to
the fork/main chain regarding the profitability is not straight forward, as it would require
a substantial change in the design of currently available MDPs. We avoid this issue, by
using a Markov chain solely to calculate the required probabilities and embed these in a
formula that accounts for already contributed blocks to each chain. Last but not least,
evaluating finite complex MDPs and applying binary search to find the maximum reward
is more time consuming than evaluating a finite Markov chain. As the run time heavily
depends on the chosen model and concrete parameterization, an accurate comparison
is of course impossible if the underlying model is not exactly the same, but to give the
reader some intuition we provide an approximation assuming a current desktop computer
as underlying hardware: in this case, a broadly used MDP [GKW+16, ZQC+21] for
finding optimal strategies has a runtime in the range of multiple minutes, whereas our
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approach provides results within milliseconds, parameterized for practical fork ranges
of around 6 blocks. Even when parameterized for forks that are multiple thousand
blocks long, our approach still provides results within seconds. This is possible since the
required calculations consist mainly of matrix multiplications and closed form formulas.
In summary, our approach complements established MDPs used to find optimal strategies,
as it does not incorporate network latency or stale block rate, but it provides a practically
oriented and quickly computable model that also takes economically rational victims
and already contributed blocks into account. Therefore, our approach poses a viable
alternative, especially for scenarios where the overhead imposed by MDPs is undesired or
unacceptable. All source code as well as all generated artefacts can be found on GitHub2.

Also from an empirical analysis point of view, better models for attacks on prevalent
cryptocurrencies are helpful, as they might offer explanations for observed fork patterns,
or provide valuable directions for future studies and measurements which aim to detect
forking patterns related to malicious activities of miners.

5.1.1 Related Work
As we discussed previously in the beginning of this introduction, in the context of
cryptocurrencies, Markov chains have mainly been used to model selfish-mining [ES14,
NKMS16]. More complex, Markov decision processes have been used to model selfish-
mining [SSZ16, GKW+16] as well as double-spending [GKW+16, ZQC+21]. Closest to
our approach is the line of research regarding the analysis of double-spending starting
with Rosenfeld [Ros14], which was extended by Liao and Katz [LK17] to incorporate a
basic notion of bribing/incentives. This is also the model which we extend upon in this
chapter.

Lately, a series of works has empirically analyzed and automated the discovery and
possible exploitation of MEV opportunities [DGK+20, ZQT+20, TIGS21, ZQG21]. Our
work is orthogonal to this line of research and may best be compared by elaborating
on the question whether or not to join/or initiate a blockchain fork to hunt a missed
MEV opportunity. At the end of Zhou et al. [ZQC+21] this question has also been
raised and was briefly addressed using the MDP from Gervais et al. [GKW+16], to derive
thresholds for the required minimum MEV value and hashrate required to justify a fork.
Our work can be seen as an extension to this question from a different angle, without
the previously mentioned drawbacks of an MDP based approach, while accounting for
already contributed blocks to a fork and economically rational victims.

5.1.2 Structure of this Chapter
In this chapter, we aim to model and analyze a range of different attacks from the per-
spective of an individual miner. These include classical longest chain races [Ros14], but
also bribing [Bon16] and other attacks involving additional income, such as MEV oppor-
tunities [DGK+20, ZQC+21] and algorithmic incentive manipulation attacks [JSZ+21b].

2https://github.com/kernoelpanic/howmuchisthefork_artefacts
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In Section 5.2 we first extend the system model provided by Judmayer et al. [JSZ+21b,
JSZ+19], for example by allowing the victims to have hashrate. In Section 5.3 we build up
and extend the calculation approach presented by Liao and Katz [LK17]. In Section 5.3.1
we first describe their original approach using our newly introduced notation from Sec-
tion 5.2. We consider already contributed blocks in Section 5.3.2, economically rational
victims as well as finite attacks with different pain thresholds for actors in Section 5.3.3
and economically incentivized attacks with effort-related compensation approaches in
Section 5.3.4.

5.2 Roles, Types and Sides of Players
In this work, the focus of our analysis is soly on miners, nevertheless to increase the
extensibility of our model and to offer a defintion for further discussions, we differentiate
between two player roles (miner and user) and three player types (altruistic, Byzantine
and rational). Each player must have one role and at the same time fall into one of three
types of actors3. In general, roles define the capabilities of a player, whereas player types
define their overall strategic behavior. Additionally, during an attack the actors of the
type rational player can be on one of three sides (extractors, victim and indifferent). On
which side a rational player will be during an attack depends on various factors which
influence the value at stake for the respective player, for example already contributed
blocks to a chain. The set of all players is denoted P and the number of players is
|P|. The sets of players are denoted in calligraphic letters, e.g., A, B, R, M, U , where
P = M ∪ U = A ∪ B ∪ R.

5.2.1 Player Roles
The roles define the capabilities of a player. If player i controls some hashrate pi, where

|P|
i=1 pi = 1, he is part of the set of miners M and thus termed a miner. The number of

miners in P is denoted with |M|. If a player does not control any hashrate, he is part of
the set of users U and thus termed a user. The number of users in P is denoted with |U|.
It holds that |M|

i=1 pi = 1, whereas |U|
i=1 pi = 0.

5.2.2 Player Types
The different types define the general strategic behavior of a player. For our analysis,
we uniquely assign a player i ∈ P to one of three mutually disjoint actor types, s.t.
P = A ∪ B ∪ R.

Altruistic players ( A): The set of players which act altruisticly. They always follow
the rules of the protocol and hence do not deviate even if this would offer higher profits.
The accumulated hashrate of these players is denoted by pA.

3In this work, the word actor and player are used interchangeably.
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Byzantine players ( B): The set of players or a single player, which acts Byzantine
and thereby in the most destructive way possible e.g., by executing an attack. The
accumulated hashrate of these players is denoted by pB. For most of our attack analysis
in this chapter we set pB = 0.

Rational players ( R): The set of players which act rational under economic consid-
erations. They follow the rules of the initial protocol as long as there is no other strategy
which yields higher profits. The accumulated hashrate of these players is denoted by
pR = 1−(pA +pB). The number of players that are rational is denoted by |R|, where each
player controls some fraction of the total hashrate s.t. pR = |R|

i=1 pRi holds. An example
for a rational actor is Rachel (R). Rational players are the only type of player which can
be further divided into different sides during an attack (see 5.2.3). Rationality always
depends on a certain optimization criteria in question, i.e., the parameter which should
be optimized by acting rational. In this chapter the rationally criteria is short-termm
maximization of funds, under the assumption that the exchange rate remains constant,
analogous to most analysis approaches [LK17]. So the question rational players face is:
“What is the next best block?”, i.e., the most profitable chain to extend.

5.2.3 Player Sides
During an attack a rational player can also be categorized depending on the side she is
taking in the respective attack. This is only relevant for rational players, as they might
change their strategy if this promises higher profits, while altruistic players for example
never change their strategy. At any point, it holds that R = E ∪ V ∪ I.

Extractor(s)/ Exploiter(s) ( E): The set of players which does not follow the pre-
scribed rules of the protocol to gain a financial advantage. They seek to exploit an
additional value extraction opportunity, such as a front-running, arbitrage, a censorship,
double-spend, or any other attack vector to increase their MEV beyond what they would
get by block rewards and fees. Therefore, they might be willing to share some of their
reward in order to bribe other miners, to aid in their attack. This set of players has
hashrate pE . They join (or are assumed to join) an attack to gain a profit.

Victim(s) ( V): The set of players which would lose funds if a described attack is
successful, e.g., a merchant who is the victim of a double-spend. This set of players has
hashrate pV . Vicitims certainly work against an ongoing attack and even might launch a
counter-attack if this is economically rational.

Indifferent ( I): The set of players which follows the prescribed rules of the protocol,
although an attack is ongoing. This party does neither profit nor lose when the attack
is successful. The difference between these actors and altruistic miners is that these
indifferent rational miners would change their strategy as soon as they are positively,
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or negatively, affected by an attack. Therefore, as long as the situation for them does
not change, they can also be modeled as being part of pA, which was implicitly done in
previous modeling approaches. In this work, we explicitly define the hashrate of these
actors by pI , s.t., pR = pE + pV + pI .

To illustrate that the separation of economically rational actors into the mentioned sides
is dependent on the viewpoint, we now provide an example.

5.2.4 Example: (Unindented) Fork

When a miner Alice (A) does not receive the latest block bnB from miner Bob (B) timely,
she keeps on trying to extend an old block bn−1. If now Alice finds a block bnA

and
publishes it, this results in a unindented fork where Bob would build up on his block
bnB and Alice would continue to mine on her block bnA

, even after receiving Bob’s
block for the same height. Although, such situations can be expected to happen during
normal protocol operation, at that point Bob and Alice have no way to tell if this was
a coincidence or happened because of malicious activity. Only if this pattern persists
for a prolonged period of time, it would be possible to detect a skew in the distribution
of blocks and the occurrence of forks, which would indicate malicious mining activity
in retrospect. However, for a singular event this distinction between attack and normal
operation is difficult.

Therefore, at that point Alice as well as Bob could also be viewed as adversarial from
the perspective of the other party. From the perspective of Bob, Alice would be the
aggressor, i.e., A ∈ E , and he is the victim B ∈ V, as he would lose his rewards from
block bnB if bnA

becomes part of the longest chain. From the perspective of Alice, Bob
would be the aggressor, i.e., B ∈ E , and she is the victim A ∈ V, as she would lose her
funds from block bnA

if bnB becomes part of the longest chain. Under the assumption
that the transactions in both blocks are equal, all other rational miners are indifferent
from both viewpoints as they do not have any preference regarding one of the two blocks,
i.e., R ∩ (A ∪ B) ∈ I.

If now a new block b(n+1)C
is found and published by Carol, which builds up on the block

of Alice (bnA
) the situation changes again, depending on which type of Actor Bob is. If

Bob is altruistic (B ∈ A) he switches to the longer chain and the fork is over. If Bob is
Byzantine then his actions can be modeled as the worst response without considering
his individual losses or gains, i.e., in this case continue mining on top of bnB . If Bob is
economically rational his choice which chain to adopt will depend on his expected profits
and thus also on his hashrate and the resulting chance of winning the race. Also the set
of indifferent miners changes: Carol now clearly has an interest in keeping the longest
chain containing her block. Moreover, all other miners have a higher chance to gain
rewards on the longest chain than on a shorter chain, therefor their expected reward will
be higher on the longest chain as well.
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5.3 Probability and Profitability Calculation

In this section we focus on the question which chain to extend in case of a fork, i.e.,
which next block provides the most expected profit. We address this question from the
perspective of an individual rational miner m with hahsrate pm. Therefore, we build up
on the model from Liao and Katz [LK17], which we first translate into the notations
used in this work and then extend it. Thereby, we consider already contributed blocks,
finite attack durations and individual pain thresholds of players, as well as economically
rational victims.

5.3.1 Basic Model for Calculating Expected Profit

An inherent requirement for calculating the expected profit of the next block in any
scenario where there is more than one chain that can be extended, is that the total
hashrate which will work towards each individual chain has to be guessed, as also done
in [LK17]. Considering the setting, where all players are economically rational (pR = 1),
the miner m has to estimate pE , pV and pI , in order to calculate the expected payoffs for
the next blocks(s). Hereby, E is assumed to work on the attack chain, and V is assumed
to work on the main chain, as these chains provide more individual profit for them. The
players in I are indifferent because they will neither lose nor profit from the attack
and thus always work on the currently longest chain. A possible explanation for such
a situation (considering imperfect information available to the parties) might be, that
indifferent miners have not yet recognized that a profitable attack is going on. Another
explanation would be, that their potential gains from the attack exactly cancel out their
expected losses on the main chain.

The probability of an attack chain, or fork, to ever catch-up given an unlimited number
of tries/blocks (N = ∞), if it is z blocks behind, was defined in [Nak08, Ros14] and is
given by Equation 5.1.

P(succ. attack) := hashrate on fork chain
hashrate on main chain

z+1
= p

1-p
z+1

if z ≥ 0 and p ≤ 0.5
1 if z < 0 or p > 0.5

(5.1)

In case of a fork/attack the miner m has two options: Either m joins the attack and
extends the fork, or m abstains from the attack and thus extends the main chain.
Depending on this decision, the resulting success probability of the attack changes as pm

is added to the hashrate working on the respective chain and thus against the other. The
resulting success probabilities of the fork in both scenarios are as follows in our verbose
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notation.

P(success join) := pB+pE +pm

pA+pV +pI

z+1
if z ≥ 0 and pB + pE + pm ≤ 0.5

1 if z < 0 or pB + pE + pm > 0.5
(5.2)

P(success abstain) := pB+pE
pA+pV +pI+pm

z+1
if z ≥ 0 and pB + pE ≤ 0.5

1 if z < 0 or pB + pE > 0.5
(5.3)

Since we aim to compare the profitability of mining on different chains of the same
cryptocurrency, the costs for mining are the same regardless on which chain the hashrate
is pm is mining on. Therefore, as in [LK17] we can ignore the operational costs of mining
in our calculation as it is the same on all chains. Moreover, we do not include the costs
of acquiring the mining hardware in our calculation, as we assume that this has already
been done and was based on an economically rational decision that mining in general
can be executed profitably.

To now compare the expected profits of extending two different chains, we normalize the
reward to 1 (rblock = rblockreward + rfee = 1) and assume that the exchange rate and thus
the value gain from a block remains constant. Then the expected reward of m for one
new block on the main chain if a fork/attack fails is given by Equation 5.4.

ρmain :=
1 − P(success abstain) · pm

pA + pV + pI + pm
(5.4)

Conversely, the expected reward of m for one new block on the attack chain if a fork/attack
succeeds is given by Equation 5.5.

ρfork := P(success join) · pm

pB + pE + pm
· ( + 1) (5.5)

Equation 5.5 already contains a potential bribe , which is paid out on per block basis in
the competing attack chain. Thereby, also the expected profit for miners participating in
bribing [Bon16] or algorithmic incentive manipulation [JSZ+21b] attacks can be modeled.
If an unintentional fork without any bribes should be modeled, can be set to zero.

To derive the required bribe , as done in [LK17], the expected reward on the fork/attack
chain has to be larger than the expected reward on the main chain. This means
Equation 5.5 has to be larger than 5.4, i.e., ρfork > ρmain. Rearranging this inequality
yields.

>
1 − pB+pE

pA+pV +pI+pm

z+1

pA + pV + pI + pm
· pB + pE + pm

pB+pE +pm

pA+pV +pI
z+1 − 1 (5.6)
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A briber can use this formula to estimate the required amount of the bribe to convince
other economically rational miners to join the attack.
When analyzing the case of an infinite attack duration (i.e., Equation 5.1) an interesting
observation regarding an artefact of this approach can be made. If the hashrate of
the attacker exceeds 0.381966 . . . , then in forks of length one (z = 1) the expected
profitability of the next block while staying on the fork is higher than it would be on the
main chain i.e., in the case where the equivalent hashrate participates in honest mining.
This particular hashrate value already occurred in some publications [TJS16, MHM18]
in the context of cryptocurrencies, but was never discussed in detail. We now outline in
Section 5.3.1 why this bound in hashrate of exactly 1/φ2 exists and where it comes from.

The 1/φ2 Bound

If no-fork, or attack, occurs the hashrate pm of a miner and thus the probability to find
a new block, is directly correlated with the expected profit for a new block (if normalized
to one). Let’s assume that pE = pV = pI = 0, and there is only one rational miner pm. In
case of an unintentional, or malicious fork, where pm is one block behind (z = 1) and tries
to catch-up infinitely long as defined in equation 5.1 from [Nak08, Ros14], his profitability
on the fork increases beyond his expected profit for staying on the main chain, when the
miner has a hahsrate greater than ≈ 38.2% of the total hashrate. This value already
occurred in the following publications in the context of cryptocurrencies [TJS16, MHM18],
but was not discussed in great detail there, nor related to 1/φ2. We now show how this
value is derived and where it comes from.

Proposition 1. When pE = pV = pI = 0, then in case of a fork of the only rational
miner m with hashrate pm, the expected normalized reward for the next block of m,
who is one block behind (z = 1), is higher when trying to catch-up, as defined in
equation 5.1 from [Nak08, Ros14], compared to switching to the main chain when
pm > 1

φ2 , where φ is the golden ratio defined as φ = 1+
√

5
2 = 1.618033988749895 . . . s.t.

1
φ2 = 0.38196601125010515 . . . .

Proof. The reason for this lies in the calculation of the success probability for infinitely
running attacks as defined in equation 5.1. The parameters for this attack are pB = pE =
pV = pI = 0 and pm, which leads to pA = 1 − pm. If we insert these parameters into our
equations for ρmain and ρfork we get:

ρmain =
1 − 0

(1−pm)+pm

2 · pm

(1 − pm) + pm
= pm (5.7)

This basically describes a linear relationship between hashrate and profit if no attack
occurs. In case pm decides to attack and is one block behind, the profitability translates
to equation 5.1 from [Nak08, Ros14]:

ρfork =
pm

1−pm

2 · pm

pm
· (0 + 1) = pm

1 − pm

2
(5.8)
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Figure 5.1: The expected reward for the next block ρ is given on the y-axis, while the
hashrate pm of the miner under consideration is given on the x-axis. The figures shows a
comparison of the profitability of mining on the main chain without any forks/attack
and mining on a fork/attack with pB = pE = pV = 0 and z = 1.

Finding the intersection (see Figure 5.1) yields.

pm = pm

1 − pm

2
= 3

2 −
√

5
2 = 3 − √

5
2 =

√
5 − 3
2 = 1 − 1

φ
= 1

φ2 (5.9)

Therefore, as soon as the hashrate of the attacking miner pm surpasses 1
φ2 , his chance of

winning the infinite race increases beyond his fraction of the total hashrate.

Although, theoretically correct, corollary 1 assumes that the attack runs infinitely long,
an assumption which is unlikely to hold in practice. Therefore, the 1/φ2 bound can be
considered an interesting artefact of the way how these infinite races are modeled

We now will build upon this model form Liao and Katz [LK17] and enhance it by
considering the effects of already contributed blocks and then consider finite attack
durations and economically rational victims.

5.3.2 Considering Already Contributed Blocks
To the best of our knowledge all previous attempts of calculating the attack success
probability implicitly assume that all non-attacking miners immediately switch to the
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attack chain as soon as it gets ahead of the honest chain. An assumption which is unlikely
to hold in practice, as it ignores blocks which have already been appended by those miners
to a competing chain. Therefore, if miners should be modeled as economically rational,
already mined blocks have to be taken into account. We therefore, enhance the proposed
model from [LK17] to account for rational miners and already contributed blocks. As a
first step, we extend the model from [LK17] and also consider blocks already contributed
by m to the respective chain. For example, if m has already contributed two blocks to
the main chain, which would not be rewarded if the attack succeeds, this is denoted by
ηmain = 2. The number of blocks m has already contributed to the attack chain (if any)
is denoted by ηattack. It is possible that there are cases where both values (ηmain, ηattack)
are greater than 0, so we have to account for that in our calculation. This might happen
when m has first worked on the main chain and then switched to an attack. Then, while
the attack is still ongoing, m evaluates if it makes sense from her perspective to pursue
the progressed attack. The expected reward in number of block rewards (normalized) for
one new block in the main chain if the fork/attack fails, is thus given by Equation 5.10.
For space reasons we abbreviate P(success abstain) by P(abstain).

ρmain bl. :=
1 − P(abstain) · pm

pA + pV + pI + pm
+ ηmain · (1 − P(abstain))

+ P(abstain) · ηfork

(5.10)

Conversely, the reward in number of block rewards (normlized to 1) for one new block on
the attack chain if the attack succeeds is given by Equation 5.11. This assumes that the
bribe is paid for every contributed block on the attack chain, but other variants are
also possible. To evaluate an unintentional fork without bribes, can be set to zero. For
space reasons we again abbreviate P(success join) by P(join).

ρfork bl. :=
P(join) · pm

pB + pE + pm
· ( + 1)

+ ηfork · ( + 1) · P(join) + ηmain · (1 − P(join))

(5.11)

Given these Equations, a rational miner now can compare the achievable rewards on
both chains and pick the most profitable one. In this way, also the case in which a miner
has contributed blocks to two or more chains can be captured and compared. Figure 5.2
shows a comparison for different hashrates and already contributed blocks. It can be
observed that, as soon as a miner has already contributed a block to a chain, his expected
profit increases significantly on that chain. This makes it unlikely, that rational players
in such a situation will readily switch to the attack chain as soon as it takes the lead.
Moreover, it can be observed that, if there is another attacker (pB > 0), joining an attack
becomes more profitable than staying on the main chain sooner, i.e., with lower hashrate
pm. Although, staying on the main chain is slightly more profitable if somebody else
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Figure 5.2: The expected reward (ρ) for the next block is given on the y-axis, while the
hashrate pm of the miner under consideration is given on the x-axis. The figures shows a
comparison of the profitability of different scenarios for mining on the main chain, versus
mining on the attack chain.

with low chances of success is working on an attack chain, as in this case less hashrate is
concentrated on the main chain. The same holds true, in the other direction, but since
the overall hashrate on the attack chain is lower, the potential gains are higher as they
have to be divided amongst fewer players.

As the probability calculation in this case implicitly still assumes that victims will switch
immediately as soon as their chain falls behind and that attackers will stick to their chain
infinitely long, we now augment the model to account for rational victims and finite
attacks.
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5.3.3 Considering Economically Rational Victims and Finite Attacks
We now want to model rational miners, who do not immediately switch to the attack
chain once it has taken the lead, e.g., because they have already contributed blocks to
the main chain which they would lose in this case. The miners who keep on mining
on the main chain can be viewed as victims (V) with hashrate pV , whereas miners who
switch to the attack chain as soon as it takes the lead can either be viewed as altruistic
(A) with hashrate pA, or as indifferent (I) with hashrate pI . Miners who start working
on a fork/attack chain can be viewed as Byzantine (B) with hashrate pB, or if they are
economically rational as extractor (E) with hashrate pE . Those last two sets of miners
would profit if the attack chain wins.

We model an attack, which is not immediately over as soon as the attack chain takes
the lead, using a finite Markov chain. Since we are only interested in modeling practical
and thus finite attacks, it is sufficient to use a finite Markov chain for the practically
plausible range in which both chains will grow relative to each other.

Thereby, the set of victims (V) will work against the attack, even if their (previous main)
chain is behind already. They will only give up if a configurable lead (−→k ), in terms
of blocks, is reached. In opposition to that, the attacker and bribable rational miners
work on the attack chain (B ∪ E) of the fork. The third fraction of miners consisting of
altruistic, as well as indifferent rational miners, work either for, or against the attack,
depending on which chain is currently the longest (A∪I). The difference between the last
two groups is, that altruistic miners will never support a shorter chain, while the decision
of indifferent miners can be subject to change depending on their expected profit4.

As we are only interested in practical attacks, they have a certain finite maximum
duration. This is the number of blocks (N) the fork is assumed to last, i.e., the period it
can be financed by the involved parties. In our model this is the number of steps that
are taken in the Markov chain (see Figure 5.3). Moreover, each of the two opposing
parties (V against B ∪ E) has a certain pain threshold in terms of blocks that their chain
can fall behind until they deem it unlikely that they will ever catch up again. For V
this number in terms of blocks is defined by −→

k , whereas for B ∪ E this value is ←−
k . The

winning condition, from the perspective of the attackers, for this kind of race can be
defined in two ways:

• Win: The sum of all probabilities of the states on the right hand side, where the
attack chain is the longest chain after a total of N blocks i.e., steps taken in the
Markov chain.

• Clear win: The success probability of the clear win state at which the attack
chain has an advantage of −→

k s.t., the victims will give up.
4For the analysis presented here, these two groups (A and I) are treated similarly. If this should not

be the case, the Markov chain can be augmented. For example the hashrate pI can be modeled to work
for, or against the attack, if a chain is in the lead for a sufficiently large number of blocks.
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S−1

start

...S
−←−k S0 S1
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Figure 5.3: Markov chain for modeling finite attacks and persistent victims (pV).

Every other state is a lose state for the attackers. The start state is defined by the initial
disadvantage for the attackers z. Usually for block exclusion (also known as censorship)
attacks, and missed MEV opportunities, z = 1, thus S−1 is the start state.

To validate our approach, we now want to use our Markov chain model to approximate
the success probability of a classical infinite attack5, in which the defenders are not
rational and give up as soon as they are behind. Therefore, we have to configure our
Markov chain model as follows: Set −→

k = 1 and increase N as well as ←−
k to approach the

success probability of the infinitely running attack. Figure 5.4 shows that our Markov
model approaches the maximum success probability of an infinitely running attack as N
grows.

We now use the probability of all success states after N iterations of our Markov chain, to
replace the probability calculation in Equation 5.10 and 5.11 with the success probability
of the attack computed via the Markov chain, instead of using the infinite success
probability calculation. Thereby, we can also compute the profitability using the same
formula, but now with a different probability calculation. Before we compare some
example scenarios using this new model, we extend it to also account for attacks in which
a briber compensates participating bribees for contributed blocks, even if the attack as a
whole is not successful.

5.3.4 Effort-Related Compensation for Contributed Blocks
Previous works indicate that paying bribes even if the attack as a whole is not successful is
a viable strategy. In paper [WHF19] the authors describe effective transaction censorship
attacks which operate by paying for complacent blocks. In paper [JSZ+19] a double-spend
attack is described in which an attacker compensates already contributed blocks to the
attack branch, even if the attack as a whole is not successful. To evaluate the costs of the

5Where q is the attacker hashrate s.t. q
1−q

z+1, as defined in [Nak08, Ros14]
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Figure 5.4: Comparison of the infinite attack success probability to our finite Markov
chain model for increasing attack duration N = −→

k (x-axis).

overall attack the authors in paper [JSZ+19] simulated different scenarios and thereby
focused on the perspective of the briber.

In this chapter we want to illustrate the economic feasibility in such a scenario from the
perspective of an individual bribee, i.e., an economically rational miner m. Therefore, we
augment the expected profitability calculation for the next bock on either chain in a way
that ensures that already contributed blocks are compensated even if the attack is not
successful.

To calculate the expected profit for the next block on the main chain in this case,
Equation 5.10 is extended to also include compensations for blocks contributed to the
fork. At first this might seem counter intuitive, but this captures the case where a
miner m has already contributed blocks to a fork and considers switching back to the
main chain. In this case m would unconditionally receive the compensation for already
contributed attack blocks even if the main chain wins, plus a bribe for the attack chain
blocks if the fork happens to be successful and the main chain loses.

ρmain comp. :=
1 − P(abstain) · pm

pA + pV + pI + pm
+ ηmain · (1 − P(abstain))

(5.12)

+ ηfork + (ηfork · · P(abstain)) (5.13)
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(a) Model: Min. for ρfork > ρmain, with
classic infinite probability calculation (Equa-
tion 5.6). Conf.: z = 1, N = ∞

(b) Model: Min. for ρfork > ρmain, with
probabilities from Markov chain Conf.: pV =
0, z = 1,

−→
k = 1,

←−
k = 6, N = 6

(c) Model: Min. for ρfork > ρmain, with
probabilities from Markov chain Conf.: pV =
0.25, z = 1,

−→
k = 3,

←−
k = 6, N = 6

(d) Model: Min. for ρfork bl. > ρmain bl., with
probabilities from Markov chain Conf.: pV =
0.25, z = 1,

−→
k = 3,

←−
k = 6, N = 6, ηmain = 1

(e) Model: Min. for ρfork comp. > ρmain comp.,
with probabilities from Markov chain Conf.:
pV = 0.25, z = 1,

−→
k = 3,

←−
k = 6, N =

6, ηmain = 1

(f) Model: Min. for ρfork comp. > ρmain comp.,
with probabilities from Markov chain Conf.:
pV = 0.25, z = 1,

−→
k = 3,

←−
k = 6, N = 6

(g) Model: Min. for ρfork bl. > ρmain bl., with
probabilities from Markov chain Conf.: pV =
0.25, z = 6,

−→
k = 3,

←−
k = 9, N = 10, ηattack = 3

(h) Model: Min. for ρfork comp. > ρmain comp.,
with probabilities from Markov chain Conf.:
pV = 0.25, z = 6,

−→
k = 3,

←−
k = 9, N =

10, ηmain = 3

Figure 5.5: Minimum bribe value per block , given in normalized block rewards, for
different models and configurations. Thereby, reaches from 0 (blue) to 10 or higher (red).
The y-axis shows pE , while the x-axis shows pm. The dashed line marks pE + pm = 0.5.
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To calculate the expected profit for the next block on the attack chain in this case,
Equation 5.11 is extended to also include compensations for blocks contributed to the
fork. In this case, there additionally exists the probability to also get a normalized block
reward (excluding bribe ) for the next block if the attack is not successful. Additionally,
all already contributed blocks are compensated even if the attack fails (without additional

per block). In case the attack is successful, an additional bribe is paid per block.

ρfork comp. :=
P(join) · pm

pB + pE + pm
· (1 + ) + (1 − P(join)) · pm

pB + pE + pm

+ ηfork + ηfork · · P(join) + ηmain · (1 − P(join))

(5.14)

5.3.5 Comparison
We now want to compare different attack scenarios regarding the required minimum
bribe for an attack. To calculate the min. bribe s.t. switching to the attack chain
becomes more profitable for m compared to mining on the main chain, we again set
ρfork∗ > ρmain∗ and solve for .

Figure 5.5 shows color map plots of the minimum bribe required such that contributing
the next block to the attack chain is more profitable for a miner with hashrate pm

(x-axis) than extending the main chain. The y-axis shows the hashrate (pE) of other
economically rational attackers. The dashed black line marks pm + pE > 0.5, at which
point the attackers would be able to overtake the system when attacking infinitely long.
The required minimum bribe is denominated in normalized block rewards in a range
from 0 to 10, where 0 is blue, and a bribe of 10 (or more) times the normalized block
reward is red.

Figure 5.5a to Figure 5.5f show various models and configurations for the case z = 1.
This resembles the case of a one-block fork as it might happen when certain transactions
ought to be censored, or a missed MEV opportunity should be exploited although a block
has already been mined. Figure 5.5a depicts the case where no compensations for already
contributed blocks to the attack chain are paid (Equations 5.10 and 5.11 are used in the
inequality). Furthermore, in Figure 5.5a the probability is calculated using the classic
infinite model from Equation 5.1. In comparison, Figure 5.5b uses our Markov chain
with an attack duration of N = 6 and −→

k = 1, which resembles the case that the attack
is over as soon as the attack chain takes the lead. In both figures no compensations for
already contributed blocks are paid. It can be observed that in this comparable scenario,
the required bribes are slightly higher in the Markov chain model, as in this case the
attack does not run infinitely long (although the infinite case can be approximated by
increasing N).

Figure 5.5c shows the same situation in our Markov chain model, but now the victim
has hashrate pV = 0.25. It can be seen that in this case the required bribes are of course
higher as now the victim is working against the attack even after the attack chain has
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become the longest chain. The bribe further increases in Figure 5.5d as now m has
contributed already one block to the main chain.

Figure 5.5e suddenly does require hardly any bribes as now the Equations 5.12 and 5.14 for
effort-related compensation are used. In this case, even though m has already contributed
one block to the main chain (ηmain = 1), no extra direct bribe per block (except for
the compensations) is required. This effect is further amplified in Figure 5.5f, where
effort-related compensation is used as well, but no blocks have been contributed by m
to any chain in this case. Here we see that no extra bribes per block are require such
that extending the attack chain is more profitable for m than extending the main chain.
Therefore, it would make sense to combine the exploitation of a missed MEV opportunity,
with a bribing attack that compensates already mined blocks, as hardly any additional
bribe per block is needed to incentivize economically rational miners to participate.

Figure 5.5g shows a classical double-spend scenario where the attack chain is z = 6 blocks
behind. In this case the required bribe is very high although m has already contributed
ηattack = 3 blocks to the fork. This is because in this case no effort-related compensation
is paid for already contributed blocks. As soon as effort-related compensation is paid for
contributed blocks the required bribe again becomes 0 even for longer range forks like
that. Figure 5.5h shows such a case even in a scenario where m has already contributed
blocks to the main chain (ηmain = 3). Even in this case no extra bribe is required to
incentivize m to mine on the attack chain if effort-related compensation is used. Observe
that in Figure 5.5h, bribes are required as soon as the hashrate of pm + pE is high enough.
The reason for this is that the probability to find a block on the main chain gets better
compared to the attack chain. Moreover, the stakes are higher on the main chain as 3
blocks have already been contributed which would be lost in case the main chain loses.

5.4 Implications of our Simulations
In this chapter, we have presented an improved model for calculating the probability
and profitability of chain forks, i.e., attacks, form the perspective an individual miner
m. Our model considers, configurable finite attack durations, already contributed blocks
to the respective chains, as well as victims which do not immediately switch to the
attack chain as soon as it takes the lead. We have applied the model to more accurately
investigate forks of length 1, which are the relevant case for exploiting missed MEV
opportunities. Furthermore we have described approaches which allow modeling bribing
attacks which compensate miners for already contributed blocks, even if the overall attack
is unsuccessful. We have shown that bribing attacks, which can plausibly ensure that
blocks contributed by bribees are compensated, require hardly any additional bribe per
block to incentivize economically rational miners to participate in the attack. This further
emphasizes the risk such bribing attacks pose to the overall stability of the underlying
system, especially for short range forks.

In Chapter 6 we investigate the long term consequences of successful attacks. For
example, a drop in the exchange rate which reduces the profitability of the attack. Such
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considerations have to to be taken into account by economically rational miners as well.
If the exchange rate is not static, then also the amount of funds players are currently
holding becomes relevant.
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6
Estimating (M)EV and its

Consequences

In this chapter1, the problem of estimating the miner extractable value of other par-
ticipants in an NC based cryptocurrency is illustrated and described in relation to
algorithmic incentive manipulation. The term miner extractable value (MEV) has been
coined to describe the value which can be extracted by a miner, e.g., from manipulating
the order of transactions within a given timeframe. MEV has been deemed an important
factor to assess the overall economic stability of a cryptocurrency. This stability also
influences the economically rational choice of the security parameter k, by which a
merchant defines the number of required confirmation blocks in cryptocurrencies based
on Nakamoto consensus. Unfortunately, although being actively discussed within the
cryptocurrency community, no exact definition of MEV was given when the term was
originally introduced. In this chapter, we outline the difficulties in defining different forms
of extractable value, informally used throughout the community. We show that there
is no globally unique MEV/EV which can readily be determined, and that a narrow
definition of MEV fails to capture the extractable value of other actors like users, or
the probabilistic nature of permissionless cryptocurrencies. We describe an approach to
estimate the minimum extractable value that would incentivize actors to act maliciously
and thus can potentially lead to consensus instability. We further highlight why it is hard,
or even impossible, to precisely determine the extractable value of other participants,
considering the uncertainties in real-world systems. Finally, we outline a peculiar yet
straightforward technique for choosing the individual security parameter k, which can act
as a workaround to transfer the risk of an insufficiently chosen k to another merchant.

1This chapter represents an extended version of publication [JSSW22a].
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6.1 The History of (Miner) Extractable Value
The term miner extractable value was first introduced by Daian et al. [DGK+20] to
refer to the value which can be extracted by a miner from manipulating the order
of transactions within the blocks the respective miner creates. This ability can be
used for front-running attacks [EMC19], which can lead to guaranteed profits through
token arbitrage, or other related types of attacks like back-running and combinations
thereof [QZG22]. Such attacks, which exploit the ability of miners to arbitrarily order
transactions within their blocks, are feasible and currently observed in practice [ZQC+21,
ZQT+20, TIGS21, ZQG21]. Thus, order fairness evidently poses an issue for prevalent
permissionless PoW cryptocurrencies [KZGJ20]. When the stakes are sufficiently high,
MEV can even incentivize blockchain forks and thereby also have consequences not only
on transactions in future blocks, but also for the underlying consensus-layer security, as
also noted by Daian et al. [DGK+20] and Zhou et al. [ZQC+21]. Related attacks aimed
in this direction are undercutting attacks [CKWN16], time-bandit attacks [DGK+20], or
more broadly: Attacks involving economic incentives in general, such as any form of
bribing attack [Bon16, MHM18, Bon18, LK17], which have been summarized under the
term algorithmic incentive manipulation [JSZ+21b].

Given all these attacks and their far-reaching consequences, MEV undoubtedly is an
essential concept when reasoning about economic stability aspects and cryptocurrency
security under economical considerations. Recently, a related term called blockchain
extractable value [QZG22] (BEV) was introduced. BEV refers to the value extractable
by different forms of front-running attacks which are not necessarily performed by miners,
but users. Unfortunately, in the case of MEV as well as in the case of BEV, no exact
definition was given by the authors when the term was originally introduced 2.

As the concept of MEV/BEV is tied to the economic incentives of whether or not to fork
a certain block/chain [ZQC+21], this question also relates to economic considerations
regarding the choice of the personal security parameter k of merchants. An accurate esti-
mation of the overall MEV/BEV value, would allow to adapt and increase k accordingly
in periods of high overall MEV/BEV. The choice of the security parameter k, which
determines the number of required confirmation blocks until a payment can safely be
considered confirmed, has been studied in a variety of works. Rosenfeld [Ros14] showed
that, although waiting for more confirmations exponentially decreases the probability of
successful attacks, no amount of confirmations will reduce the success rate of attacks to
0 in the probabilistic security model of PoW, and that there is nothing special about
the often-cited figure of k = 6 confirmations. Sompolinsky and Zohar [SZ16] defined
different acceptance policies with different error probabilities and use cases. According
to [SZ16] an acceptance policy that is resilient to a double-spend anywhere in the chain
cannot rely on a static parameter k, but has to be logarithmic in the chain’s current
length. Garay, Kiayias and Leonardos [GKL20] defined the security parameter k, after

2Concurrent work [BDKJ21, OSS+21], also attempts to initially define different forms of extractable
value and is compared to this chapter in Appendix A.8.1 and A.8.2.
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which a transaction can be considered part of the common prefix, as a function of the
security parameter of the hash function (κ), the typical number of consecutive rounds for
which a statement would hold, and the probability of at least one honest party finding a
valid PoW in a round. In spite of these well-founded theoretical results under honest
majority assumptions, in practice there is no global and agreed-upon security parameter
k for prevalent PoW cryptocurrencies. Instead merchants choose their individual k on
a best-practice basis, taking their individual economical risk into account. Since the
likelihood of potential forks increases when sufficiently large extraction opportunities for
miners arise, the question on how to define and estimate the extractable value of a block
(or a chain) also relates to the choice of the personal security parameter k. This has also
been studied in the context of bribing, especially in the whale attack [LK17], where large
fees are offered on competing chains, as well as in context of incentives for miners to fork
high value blocks when the majority for the block reward comes in form of transaction
fees [CKWN16, TE18].

Contribution: In this chapter we describe different forms of extractable value and how
they relate to each other. Furthermore, we outline a series of observations which highlight
the difficulties in defining these different forms of extractable value and why a generic and
thorough definition of it (and thus its precise calculation) is impossible for permissionless
cryptocurrencies without assuming bounds regarding all available resources (e.g., other
cryptocurrencies) that are, or could be of relevance for economically rational players. We
also describe a way to estimate the minimum extractable value, measured in multiples of
normalized block rewards of a reference resource, to incentivize adversarial behavior of
participants which can lead to consensus instability3. In the end, we propose a peculiar
yet straightforward technique for choosing the personal security parameters k regardless
of extractable value opportunities.

6.2 Economic Rationality and Extractable Value
Rationality depends on the criteria which should be optimized. This could be reward in
terms of cryptocurrency units in some PoW cryptocurrency, or a more abstract criteria
such as the overall robustness of the cryptocurrency ecosystem. We start out with a
simplified definition of economic rationality to model the preferences of actors, or parties4

within the system. Hereby, actors are divided into two disjoint sets: miners (M) and
users (U), where M ∪ U = P. Compared to miners, users do not having any direct
voting power in the system (e.g., hashrate). Whenever, we refer to rational within this
work, we refer to the definition of economically rational in R:

Definition 2 (Economically rational in R ). An actor (i) is economically rational,
with respect to a finite non-empty set of resources Ri := {R0, R1, . . . }, when it is his

3All source code and artefacts can be found on GitHub https://github.com/kernoelpanic/
estimatingMEVishard_artefacts

4Also the term players is commonly used to refer to the involved parties.
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single aim to maximize his profits measured in these resources. To also map the individual
preferences of an actor regarding this set of resources, the quantities of all resources from
that actor are converted into value units. Therefore, from the perspective of an actor i
each resource R is a tuple r, e consisting of: The quantity r the actor i holds in the
respective resource; and the individual exchange rate e for the conversion in value units
which reflect the individual preference of that actor.

A quantity of a certain resource r, e , which is optimized by a rational actor (indexed by
i), is denoted as fi(r, e). This function returns the value units, also referred to as funds,
actor i has in r, calculated using his individual exchange rate e for r. If the exchange
rates are the same for every party, or clear from the context, they can also be omitted.
For practical purposes and to aid comparability, we will use normalized block rewards
of a reference resource (e.g., Bitcoin block rewards including average fees) as value unit
in which all funds are denoted. Therefore, all exchange rates of other resources convert
their respective quantities into normalized block rewards of the reference resource.

In other words, value units can also be thought of as fiat currency, which in turn can be
received in exchange for cryptocurrency units. In this chapter, value units are measured
in multiples of the block reward of a reference cryptocurrency, which is the first resource
in Ri (i.e., R0). A resource can be anything of value to an actor e.g., a cryptocurrency,
a token within a cryptocurrency, or a fiat currency. If not stated differently, all parties
care about the same set of resources and the exchange rate for each resource is globally
defined (e.g., by an exchange service) and thus the same for every actor. This means,
for the simplest case where all parties only care about one resource and have the same
global exchange rate (eglobal), we have: ∀i ∈ P (|Ri| = 1 ∧ e ∈ R0 ∧ e = eglobal), where
the valuation of an actor i is given by fi(r, eglobal), or abbreviated just fi(r). We start
our evaluation with such a scenario.

Summing up: By our definition of economic rationality actors want to maximize their
overall funds (valuation) from all their resources, which are measured in value units, i.e.,
fi(Ri) = rj ,ej ∈R fi(rj , ej).

6.2.1 Miner Extractable Value
To calculate the gain or profit an actor has made within a chain of blocks c, with their
sequence of transactions τ , it is essential to estimate the costs as well as the extractable
value for the respective actor. This has been done in previous works [DGK+20, QZG22]
mostly by analyzing past Ethereum blocks with their associated transactions, while
looking for profitable trades on the blockchain in retrospect. The gathered data was
then also used when analyzing how to automatically detect and exploit such trading
situations [ZQC+21, ZQT+20]. In this context, the term miner extractable value (first
introduced by Daian et al. [DGK+20]) was informally used to describe the value which
can be extracted by a miner by including a certain transaction in terms of fees, or
guaranteed profits through token arbitrage. We now provide a definition within the
context of our model and in accordance to the literature. Therefore, we first focus on a
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scenario where we assume that there is only one resource, as well as one exchange rate,
which is the same for every actor.

Definition 3 (Miner Extractable Value MEVi(c)). The miner-extractable value MEVi(c),
describes the total value (denominated in value units), transferred to a miner i from a
sequence of transactions τ , included and thus mined in the respective chain of blocks c,
which is part of the main chain.

This definition focuses on identifying the extractable value in retrospect and is thus
suited for empirically analyzing the MEV of historic blocks. We extend this to a more
forward looking definition later in Section 6.2.3, where we also take the probabilistic
nature of most cryptocurrencies into account.

Regardless of the time when the MEV is determined, there are couple of characteristics
all types of MEV have in common. First, the total extractable value depends on the type
of optimization the miner i is performing. If transactions are only ordered by fee, the
miner extractable value can be expressed as the “usual” mining reward from fees and
block rewards i.e., MEVi(c) := Fee(c)+BlockReward(c). If there is a value gain from
received transactions, or rewards from performed token arbitrage and order optimizations,
then the respective income opportunities, e.g., income from received transactions and
attacks, have to be taken into account as well. In other words, a general definition of
MEV describes the value (i.e., the reward) which can be extracted by a miner, extended
by additional revenue opportunities originating from the capabilities to interact with the
system the miner is tasked to validate. This leads to the question: What possibilities to
extract value are available to miners?

This question already outlines why the concrete amount of MEV is difficult to generalize
for all miners, as it can be different for every individual miner. The MEV of a given miner
i depends on the type of value extraction optimization the respective miner is capable and
willing to perform. Hereby, the possibilities reach from simple fee optimization techniques,
like selecting the transactions which provide the highest fees, over order optimization (for
example, attempting to maximize gas consumption in smart contracts5), to participating
in sophisticated front-running attacks. Moreover the MEV is affected by the information
available to the miner (e.g., her view of the transaction pool). Therefore, we can make
the following observation:

Observeration 1. The miner extractable value (MEV) is different for every miner
depending on the optimization techniques the miner is capable and willing to perform,
as well as other transactions which directly affect her individual revenue during the
respective period (e.g., received funds).

5Note that, a naive algorithm for finding the optimal ordering of all transactions is factorial in the
number of transactions, which is computationally infeasible even for most current Ethereum blocks which
have more than 200 transactions.
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In other words, there may exist a miner m1 that has a higher MEV than a miner m2
because he has received a large incoming payment transaction in the same sequence of
transactions τ ∈ c, i.e., MEVm1(c) > MEVm2(c) . Therefore, miner m2 may be more
willing to participate in an attack which changes the past blocks c than the miner m1.

6.2.2 Extractable Value
Since not all attacks (or more generally, ways to maximize profit) necessarily require the
capabilities of a miner, the given definition of MEV does not capture these. front-running
attacks for example, can be performed by actors which do not necessarily have to be
miners themselves, but can be users instead. From their perspective the definition of
MEV does not apply, as they are not capable of mining a block on their own (as they
have zero hashrate).

Observeration 2. The definition of MEV is focused on miners and does not capture
opportunities for users to gain (more) value units from a certain sequence of transactions
τ than from another sequence of transactions τ .

In contrast to MEV, blockchain extractable value (BEV) [QZG22], was previously
described in a broader context and thus also refers to the value extractable by different
forms of front-running attacks which are not necessarily performed by miners. As
recent analysis [DGK+20, QZG22, ZQC+21, ZQT+20, TIGS21] show, front-running is
performed by bots, which bid for an early slot in a block by raising the miner extractable
transaction fee6. However, these earlier discussions regarding BEV [QZG22] omit a
precise definition, which we provide in the general form of extractable value (EVi), for
the amount that is transferred to any actor i from a given blockchain c, or sequence of
transactions τ .

Definition 4 (Extractable Value EVi(·)). The extractable value EVi(·), describes the
total incoming value, subtracted by the outgoing value, which is transferred to actor i
from a transaction, or sequence of transactions τ , if it is included and thus mined in the
respective chain of blocks c, which is part of the main chain.

Using this definition of extractable value, the miner extractable value can also be defined
as EVi(c) of any miner i ∈ M. As with miner extractable value, the extractable value
of different actors i and j for the same chain of blocks c can also be different. Again
EVi(c) and EVj(c) depend on whether they have received, or sent, transactions within
this chain or not.

In other words, observation 2 shows that MEV is just a way to extract value which can
be executed by a subset of actors i.e., miners. Since we also know from observation 1 that
there is no globally unique MEV, which is the same for all miners, the same argument

6In Ethereuem the extractable fee is a combination of gasPrice multiplied by gasUsed.
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can also be extended to EV. So there also cannot be a globally unique EV, that is the
same for all actors. The question is if the EV can be meaningfully estimated, or bounded?
Assume we have two parties i and j, where j wants to estimate the extractable value of i
for a certain chain c. If j wants to estimate EVi(c), then this means j has to attribute all
transactions generating value for i in c correctly. If the respective actor i pseudonymously
performs and receives transactions under various different addresses (or in other privacy
preserving ways like shielded transactions in Zcash [Zca]), this hampers the correct
estimation of EVi(c) for any third party j which does not know which transactions
belong to a certain actor.

Observeration 3. If there are transactions in c that are not uniquely attributable to
other parties from the perspective of actor j, then the upper bound of the EVi(c) for a
certain actor i is the total value transferred by those non-attributable transactions.

This means, for known finite chains of blocks in certain cryptocurrencies where the overall
value that has been transferred is observable, the extractable value can be upper-bounded
in retrospect as soon as the respective chain is known.

Note that, even if all transactions can be correctly attributed to an actor, the exact
effect of an outgoing transaction on the EV in a smart contract capable cryptocurrency
is still difficult to measure. Generally, all outgoing transactions reduce the EV, as
the miner loses funds. Although, if the outgoing transaction is a guaranteed profit
token arbitrage, or other profitable type of front-running, the EV might very well
increase. We omit the details of analyzing the EV of a particular transaction in a
smart contract capable cryptocurrency and refer to a strain of research dealing with this
topic [DGK+20, ZQC+21, ZQT+20, TIGS21, ZQG21].

6.2.3 Expected Extractable Value
So far we have only considered the extractable value of past blocks in retrospect
(MEVi(c)), or blocks and transactions under the assumption that they eventually will
make it into the main chain (EVi(c), or EVi(τ)). Hereby, we did not account for
the probability with which the estimated value can be realized. As mining in preva-
lent cryptocurrencies is a stochastic process, getting a certain chain accepted into the
common-prefix depends on several factors - one of which being the hashrate that supports
a given chain7. Therefore, it is more appropriate to refer to the expected extractable value
(EEV) when comparing potential/future rewards of mining strategies, pending blocks,
or forks.

Definition 5 (Expected Extractable Value EEVi(·)). The expected extractable value
EEVi(·), describes the total incoming value in value units, subtracted by the outgoing
value, which is transferred to actor i on expectation using a certain strategy which
produces a transaction, sequence of transactions (τ), or blocks (c) that later become part
of the main chain with some probability.

7Another one being propagation times, but we will ignore that for now.
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To maximize the EEV, actors will pick an according strategy. Hereby, the probability
space depends on the concrete model under which a given strategy is analyzed.

Observeration 4. In permissionless PoW cryptocurrencies, the number of participants
|P| is theoretically unbounded, as miners can join and leave at any time. Thus the sample
space of possible events is theoretically unbounded as well.

Therefore, certain assumptions e.g., regarding the available resources of (potential) players
are required, to bound their influence (i.e., action space) on a given cryptocurrency.

We now describe a simple idealized system model and strategy and use it as a reference
to compare deviating strategies and changes in the model against this setting. We
therefore, assume that there is only one resource of interest and no further actors join
the cryptocurrency.

Definition 6 (The strategy Honest ). We define the strategy Honest for miners in
a cryptocurrency R, as the process of always extending the currently known longest
(heaviest) chain and immediately publishing and forwarding every found block and
transaction.

If every miner plays Honest and has a constant hashrate, then this results in an infinitely
repeated game, in which every miner receives exactly the reward that is proportional to
his hashrate. Therefore, Honest satisfies ideal chain quality [GKL14], as the percentage
of blocks in the blockchain of every actor is exactly proportional to their individual
hashing power8. We assume that this is the desired ideal state in which the system should
be and thus the goal of the mechanism design. Moreover, it is more-or-less the empirically
observed behavior of miners as serious deviations are rarely observed in mainstream
cryptocurrencies9.

Assume a miner i that does not receive or send any transactions (apart from collecting
rewards from mined blocks), and that the extractable value is given in normalized block
rewards (including fees) as a value unit. Then if everybody plays Honest, the strategy
Honest for a sequence of n blocks, would have the EEV depicted in equation 6.1. The
strategy would be profitable if the mining costs (costsmining) for mining the respective
number of blocks is lower than the EEV. This also assumes that the hashrate (pi) of
actor i is common knowledge and static for the duration of the evaluation.

8Note that, in a model with constant hashrate and difficulty, deviations like selfish mining [ES14],
only increase the relative reward of an actor compared to others and not the absolute reward over
time [SSZ16, NKMS16]. So in a constant difficulty model, selfish mining would not be more profitable
over time than ordinary mining. This observation also holds in a model with variable difficulty until the
difficulty is adjusted. In Bitcoin for example, this happens roughly every two weeks (2016 blocks).

9As an analysis of Bitcoin shows [HC21], miners more-or-less stick to the rules, except for preferring
transactions with higher fees and smaller blocks for faster propagation
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EEVi (R, Honest, n) := n · pi (6.1)
ρi := EEVi (R, Honest) − costsmining · n (6.2)

If the respective actor i also performs and receives transactions, and all of them are
uniquely attributable to i, then expected extractable value has to be extended by the
extractable value from those transactions. As we are in a scenario where all actors act
Honest, no malicious forks10 will happen.

Apart from such simple toy examples, estimating the expected extractable value becomes
more involved, as soon as different attacks and their probabilities and consequences
should be captured. As there are plenty of possible attacks, we cannot cover them all in
this thesis and refer to the related research on estimating the success probability in such
cases [Ros14, SZ16, ZQT+20, GKW+16, LK17]. For the rest of the chapter we focus
on the potential economic consequences of large-scale attacks and their relation to the
minimum EEV (given in normalized block rewards) required to incentivize deviating
strategies that could lead to consensus instability while accounting for all future rewards.

6.3 Estimation of the EEV in the Context of Attacks
We now look at the question how much EEV for a participant can lead to consensus
instability. Thus we have to investigate the EEV in presence of attacks and especially
their economic consequences. Therefore, we view the cryptocurrency R from a game-
theoretic standpoint and model it as an infinitely repeated game. But first we describe
how the EEV can be used to compare different strategies against each other. The
question whether any attack strategy is profitable for some actor i, can be summarized
by comparing the EEV as well as the costs of the attack against the behavior intended
by the protocol designer, i.e., the strategy Honest, for that actor.

EEVi (R, Attack) − costsAttack > EEVi (R, Honest) − costsHonest (6.3)

In other words, if a deviation form the Honest strategy is more profitable, then this
strategy is economically rational. Here the costs can also incorporate potential losses
of value of already accumulated resources due to negative consequences of the attack
on the exchange rate of those resources. The security and incentive compatibility of a
cryptocurrency, against an attack strategy Attack, can thus be ensured if the following
condition in Formula 6.3 holds at any time for all actors. Formula 6.3 can also be
described as a version of the formula provided by Böhme in a presentation [Böh19].

uP (w(P )) − c(P ) > uP̄ w(P̄ ) − c(P̄ ) + s(P̄ ) (6.4)

Hereby, P denotes the strategy of following the original protocol, whereas P̄ stands for
the worst of all other actions (attacks). The function u(·) provides the utility and thereby

10With the simplifying assumption that no blocks are found concurrently.
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reflects the real-world preference of an implicit actor which is not explicitly denoted. The
function w(·) provides the wealth in protocol coins, which could potentially be reduced
by the costs c(·) of launching the attack. There may also be a side-payment (bribe) s(·)
to compensate for this loss.

Observeration 5. The expected extractable value, as well as the utility of an actor,
describe the achievable gain from a certain strategy. Thus the utility of an actor as well
as the EEV are equivalent and can be used as synonyms.

In our model a side-payment, or “bribe”, can be expressed as part of the EEV e.g.,
as an incoming payment that is only valid on the chain desired by the attacker (hence
conditional). This illustrates that (side-)payments can influence the incentives of actors.
If the EEV of an attack is large enough to overcompensate for the induced costs, an
attacker can use a portion of his profit to bribe other miners to convince them to mine on
the attack chain. Using side-payments any economically rational actor can be incentivized
to support an attack. The question directly related to EEV is: How large does such a
side-payment have to be to incentivize illicit activity of other actors. To address this
question we also have to take into account potential future EEV (or payoffs/rewards in
terms of game theory) and the reduction of such, in case of an event that reduces the
exchange rate for the attacked resource, i.e., a value loss.

6.3.1 Single Resource (R)

We now compare potential future EEV and thus the overall payoff for different strategies.
From a game-theoretic point of view, we model a cryptocurrency as an infinitely repeated
game with discounting11. Therefore, we have to define a discount factor δ ∈ (0, 1), which
specifies the preference of either immediate or future rewards. If δ is close to 0 immediate
rewards are preferred. If δ is close to 1 future rewards are almost as good as immediate
rewards. If δ = 0 we would have a single-shot game as there would not be any future
reward. To account for mining shares and δ, we have to extend our definition of a
resource:

Definition 7 (A resource R). From the perspective of an actor i each resource R is
a quadruple r, e, p, δ consisting of: The quantity r the actor i holds in the respective
resource. The exchange rate e for the conversion in value units which reflect the individual
preference of that actor. A parameter p which represents the power (e.g., hashrate) of
that actor in this resource, which is used together with a discount factor δ to denote
expected future rewards in that resource.

11Pass et al. [PS17] pointed out that PoW blockchains cannot stop without becoming insecure, so
they have to run infinitely long.
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As the payoffs in an infinite game create a geometric series (p + p · δ + p · δ2 + p · δ3 . . . ),
the payoff for the first n rounds can be written as:

rn := pi · (1 − δn)
1 − δ

(6.5)

This can be rewritten as a closed form formula for the infinite case since δn goes to 0 as
n goes to infinity. Thus the EEV for a single actor i with hashrate pi ≤ 1 in our infinite
game, where every actor plays Honest, can be approximated by:

EEVi(R, Honest, ∞) := pi

1 − δ
(6.6)

This estimation again denotes the EEV in normalized block rewards as a value unit
(with e = 1) and assumes that the hashrate of actor i remains static in relation to the
hashrates of all other actors.

We now compare this payoff to another strategy which requires a different (attack) action
once and then falls back to the original honest behavior, but with a potential negative
consequence on future rewards as the exchange rate has dropped. This is comparable to a
grim trigger strategy in infinitely repeated games, although in our case the environment
executes the grim trigger strategy by devaluing the global exchange rate (e < 1).

In our scenario, ε is the one-time side-payment to motivate the deviation and e is the
value loss in terms of a drop in exchange rate, which of course also has the same negative
impact on future EEV and thus must also be accounted for in all potential future mining
rewards if the loss is (in the worst case) permanent.

EEVi(R, Attack, ∞) := ε + δ · pi · e

1 − δ
(6.7)

As we are only interested in an approximation, we abstract the particular success
probability calculations to evaluate the likelihood of a single attack being successful.
Furthermore, we omit the loss of blocks a miner potentially faces if the chain he contributed
to becomes stale. If known, this value can be included by adding it to the required bribe
ε.

We now estimate how high this one-time side-payment ε has to be to incentivize a
one-time deviation form the Honest strategy with permanent consequence on e for a
mainstream cryptocurrency. Therefore, we first have to define some plausible range for
the discount factor δ miners might have in practice. Figure 6.1 shows the normalized
block reward after a certain number of passed blocks for different values of δ and a
hashrate of p = 0.1. It can be observed that a relatively high value δ = 0.99995 is needed
already to approximate (within a 5% margin) the average income in normalized block
rewards after one Bitcoin difficulty period (2016 blocks). For a far sighted miner that has
a one to two year interest in Bitcoin a δ = 0.999999 would suffice to be within a margin
of 5% of the average number of normalized block rewards after two years.
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Figure 6.1: Figure to approximate δ by comparing the average block rewards received
by a miner with p = 0.1, to the expected infinite game rewards for the same miner with
different discount factors δ. All rewards are given in normalized block rewards.

Now that we have picked some plausible values for δ, we can approximate the required
total side-payment ε that would be required to change the incentives of participating
miners with different hashrates. Therefore, we compare the EEV of honest behavior
with the EEV of the attack. Assuming the costs of mining in both cases are identical,
the EEV of the attack has to be more profitable than the honest behavior, for the attack
to be realistic.

So far we have not taken into account that miners could also hold funds (fi(r)), which
are distinct from hashrate (which describes future gains given out as currency units).
Since a successful attack will lead to a potential drop in the exchange rate, we have to
consider this for all future rewards, as well as all funds the miner is currently holding.
Equation 6.10 compares the two strategies under the assumption that there is only one
resource (r) the respective miner cares about. Hereby, the hashrate is viewed as some
share in the protocol which provides future rewards in the respective cryptocurrency (in
r) proportional to the size of the share.
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EEVi(R, Honest, ∞) := p

1 − δ
+ fi(r) (6.8)

EEVi(R, Attack, ∞) := ε + δ · p · e

1 − δ
+ fi(r, e) (6.9)

EEVi(R, Honest, ∞) < EEVi(R, Attack, ∞) (6.10)

Solving equation 6.10 for ε, we can calculate the required side-payment for the following
example: To compensate a five percent value drop (e = 0.95) for a miner with zero funds
(fi(r) = 0) and 10% hashrate (p = 0.1), a side-payment in approximately the size of 500
times the normalized block reward is needed (if δ = 0.99999). If the side-payment itself
is performed in r, and thus subject to the same value drop of 5% as well, then ≈ 527
times the normalized block reward is required as a side-payment.

Although theoretically possible, such high bribes in the size of hundreds of normalized
block rewards appear unlikely in practice from a current stand point. Moreover, for an
attack to be economically viable for an attacker, he would have to perform a double-spend
of a transaction which is much larger than the required overall side-payments. Ideally
the attacker himself (as well as the victim) does not possess any hashrate in the targeted
cryptocurrency, such that his personal future income will not be negatively affected by
the consequences of the attack, i.e., drop in exchange rate. Moreover, the attacker is
advised to use all his funds in r in the double-spend transaction to further minimize
the negative effects on the exchange rate. The leftovers from the double-spend, after
subtracting the required side-payments to incentivize a sufficient portion of the hashrate
to support the attack chain, could be viewed as profit for the attacker. So for such an
attack to work, funds would have to be unevenly distributed amongst actors and an
individual payment must only be limited by the available overall supply of the respective
resource. Then the amount of a double-spend can theoretically be high enough that the
excess profit of the attacker can be used to bribe a majority of miners to support an
attack chain.

Observeration 6. In a scenario where there is only one cryptocurrency participants
care about, the side-payment necessary to incentivize a deviation has to account for all
current and future losses.

6.3.2 Multiple Resources (R)
The analysis so far assumed that all actors only care about the same single resource, i.e.,
cryptocurrency, and express their extractable value in normalized block rewards of this
resource. The resulting question is, what if there are multiple resources and not all actors
necessarily care about the same set of resources to a comparable degree?

To approach this question, we modify equation 6.10 to estimate the EEV for the
honest strategy, as well as for the attack strategy, by accounting for all resources (e.g.,
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cryptocurrencies) a player i cares about. Hereby, we model the individual hashrates
(p) as a part of each resource which defines the share of future rewards an actor will
receive in the respective resource. Additionally there is a set of δ values for each resource.
Moreover, in this scenario a bribe does not necessarily have to be paid in the resource
where the attack action should happen, thus several bribes are possible {ε0, ε1, ε2, . . . }.

EEVi(R, Honest, ∞) :=
|R|

j=0

pj

1 − δj
+

|R|

j=0
fi(rj) (6.11)

EEVi(R, Attack, ∞) := fi(r0 + ε0, e0) + δ0 · p0 · e0
1 − δ0

(6.12)

+
|R|

j=1

pj · ej

1 − δj
+

|R|

j=1
fi(rj + εj , ej) (6.13)

Compared to the single resource case in Section 6.3.1 the multi-resource case now allows
actors to escape certain negative consequences on the exchange rate e0, e.g., by moving
their hashrate to another permissionless PoW cryptocurrency (like for example R1). This
of course only works if the miner’s hardware can also be efficiently used in the other
cryptocurrency and e1 is not affected to the same degree, or generally much higher to
begin with (e1 ≥ e0 and δ1 ≥ δ0). If also current holdings in resources can be transferred
to other resources through exchange services, then in the worst case it may be possible
to evade all negative consequences from attacks on a certain target resource R0. To
which degree such negative consequences can be evaded depends on several factors: The
availability of adequate alternatives, the type of the attack, as well as how fast resources
can be moved and exchange rates adopt (cf. [BBTL22]).

If such evasion techniques are possible, this raises an interesting question from a game-
theoretic point of view. The previously infinitely repeated game, now becomes a finite
game, as actors can leave the system at will. Therefore, the option to defect in the
(personally) last round of the (now) finite game suddenly becomes an economically
rational strategy.

Observeration 7. If appropriate alternative resources exist, parties can evade negative
attack consequences on their overall EEV, by moving their assets to another less, or
even positively affected resource. Thereby, the once infinite game becomes finite from
their perspective.

6.4 Example Scenarios with Multiple Resources
In the following we describe and visualize some hypothetical profitable and non-profitable
events in this multi-resource model from the perspective of an individual player. Therefore,
we compare the normalized EEV before the event with the EEV after the event. To
denote the difference of an event not in absolute numbers, but relative to the current
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valuation of some miner or user, we assume that the normalized valuation includes all
expected future payoffs, as well as all currently held funds before the event happens.
We then calculate the difference to this value after the event. Equation 6.14 shows this
simplified relation for an event to be profitable compared to the current state.

|Ri|

j=0
ej · (rj + pj) <

|Ri|

j=0
ej · rj + pj (6.14)

Figure 6.2 and 6.3 provide visualizations of the consequences of the relative difference
in the valuation of the player in terms of his desired resources. Each sub-figure visually
compares the total normalized valuation of the player before an hypothetical event, with
the valuation of the same actor after the respective event.

Double-spend: Figure 6.2a shows a classic double-spend attack on a cryptocurrency
specified as resource R0 = r0, p0 for the respective player. This player is also invested
in another resource R1 = r1, p1 , where the total valuation of the player is normalized.
This means all his current and expected future holdings, that she will earn with her
hashrate/voting power, in the respective cryptocurrencies is given by r0 +r1 +p0 +p1 = 1,
where r0 = 0.1, p0 = 0.2 and r1 = 0.2, p1 = 0.5. In other words the player is more invested
into R1 than in R0. If the player now decides to launch a double-spending attack on R0,
this can lead to a drop in the exchange rate of this cryptocurrency (e0), but might leave
the exchange rate e1 of the other resource unaffected. If the double-spend is successful,
the original funds in R1 can be spend again, but the attacker has already received the
purchased good, hows value is denoted with r3 in this case, as it might be denominated in
an additional resource. Additionally, if the voting power (hashrate p0) can be switched to
R1, the negative effects on the exchange rate on the hashing power p0 can be evaded. In
summary, the example attack is profitable even if the held funds r0 cannot be transferred
in this example parameterization.

Goldfinger attack: Figure 6.2b shows a Goldfinger attack on a cryptocurrency R0.
In this scenario the player is invested more in R1 compared to R0, therefore the drop
in exchange rate e0 < e0 is compensated by the increase of exchange rate in the other
resource, i.e., e1 > e1. Due to the distribution of funds and mining resources the
Goldfinger attack results in an overall gain for this specific player.

Chain split from the perspective of a miner: Figure 6.2c shows a permanent
hard-fork, or chain split, in a PoW cryptocurrency from the perspective of a miner. The
total valuation (funds + expected future payoffs), i.e., the EEV is normalized to one
before the fork (e0 = 1). In this example, 85% come from expected mining rewards, and
15% from current holdings in r0. After the fork the 15% are suddenly also available in
another cryptocurrency r1, but the exchange rate of r0 has dropped to e0 = 0.5 and the
exchange rate for the newly created cryptocurrency is given by e1 = 0.7. Thus, overall
the miners loses more than he gains from the chain split.
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Chain split from the perspective of a user: Figure 6.2d shows the same situation
as in Figure 6.2c but now from the perspective of a user who now also holds funds in r1
after the fork. Due to the fork, his new funds in r1 are worth 70% of the funds he has in
r0. Therefore, from the perspective of this user a fork is always profitable if the exchange
rates of both cryptocurrencies combined is higher than the original exchange rate of the
hard-forked cryptocurrency (e0 + e1 > e0).

Attack without escape resource: Figure 6.3a depicts an attack on a cryptocurrency,
again from the perspective of a miner. In this case 80% (p0 = 0.8) of the miners future
expected rewards come from mining, while at the same time the 20% of this current
valuation come from held funds. If there now is an attack in which the value of r0 drops
(e0 = 0.9), this of course would have a negative effect on the valuation of this miner. Our
example shows a total value loss of 10% (e = 0.9) in r0, leading to an overall drop of the
miners current valuation below 1.

Attack with escape route: Figure 6.3b shows the same situation, but now the miner
can move his funds into a different cryptocurrency r1, which does not suffer from a value
loss (e1 = e1 = 1). Thereby, the induced financial damage can be reduced. In this case
the hashrate of the miner cannot be moved to another cryptocurrency, because there
is no profitable alternative which uses the same PoW algorithm, i.e., the specialized
hardware is bound to R0. To over compensate for the remaining losses from future
mining rewards in R0, the miner receives a bribe in r1. Thereby, the overall valuation of
the miner increases thus making the underlying actions economically rational from the
perspective of this particular miner.

Merged mining: Figure 6.3c shows the opportunity to merge mine a different cryp-
tocurrency with the same hashrate p0, but a much lower exchange rate e1 < e0. Since, in
this case, merged mining has no negative effect on the exchange rate of R0, any additional
gain from utilizing the already available hashrate would be profitable for the player in this
model. Of course, in practice the additional costs of adapting the software accordingly
has to be taken into account.

Pitchforks attack: Figure 6.3d shows a pitchfork attack, in which the same hashrate
as well as the funds are suddenly available in another newly created cryptocurrency,
but the original cryptocurrency faces a drop in exchange rate (e0 < e0). If this drop is
exchange rate is smaller than the exchange rate of the newly created cryptocurrency
then such an attack would be profitable. This assumes, that the mining strategy that
has to be applied to blocks, such that they are valid in both cryptocurrencies, has not
negative impact on the income in R0. If this is the case, this negative consequence has
to be accounted for as well.

These examples further illustrate, that miners who are tied to a cryptocurrency due to
their specific mining hardware, have a higher incentive not to risk negative consequences
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on the exchange rate of that cryptocurrency. If switching to another equally, or more
profitable alternative is possible though, attacks become more attractive. This high-
lights, that in an environment in which multiple cryptocurrencies co-exist and represent
alternative resources to each other, the EEV cannot be estimated by looking at a single
resource/cryptocurrency alone. Especially since cryptocurrencies can be created at any
point in time, for example through forks, which change the overall cryptocurrency land-
scape and potentially affect the exchange rates of existing cryptocurrencies in one, or the
other way.

Observeration 8. In the multi-cryptocurrency environment where new resources can
be created, the EEV can be influenced by these new resources, since the set of available
resources for actors changes. Thereby, providing new alternatives, or modifying existing
exchange rates and discount factors.

This problem of considering out-of-band income streams in economic security models
of permissionless PoW cryptocurrencies, is also nicely illustrated by various bribing, or
algorithmic incentive manipulation attacks which utilize out-of-band payments [Bon16,
TJS16, MHM18, JSZ+19, JSZ+21b] as well as other economic arguments regarding the
incentive structure of such systems [FB19, Bud18].
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Figure 6.2: Visual illustration of different events and their consequences on a participant
with R := {R0, R1}. The total valuation of a participant before the respective event is
normalized to 1. This means that the values for the initial exchange rates are e0,1 = 1
(s.t. f(r0,1, 1) = r0,1), and that δ is static and thus ignored (δ0,1 = 0). In other words
expected future rewards where already accounted for in the relation between p0,1 and
r0,1, s.t. p0 + r0 + p1 + r1 = 1.

(a) A double-spend attack on a cryptocurrency R0
from the perspective of a miner. Before: The total
expected future income from mining is p0 = 0.2 and
p1 = 0.5, in relation to the currently held funds in
r0 = 0.1 and r1 = 0.2. After : A double-spend of
all available funds r0, leads to an additional gain of
r3 = 0.1 through the double-spend, but also to nega-
tive consequences on the exchange rate e0 = 0.65. This
drop is evaded by moving all hashrate to R1, where
the exchange rate remains constant e1 = 1. This leads
to a gain of exactly the exchange rate in R0 as the
double-spend funds cannot be moved without losses:
r0 · e0 + (p0 + p1 + r1) · e1 + r3 = 1.065

(b) A Goldfinger attack [KDF13, MHM18, Bon18] on
a cryptocurrency R0 from the perspective of a miner.
Before: The total expected future income from mining
is p0 = 0.2 and p1 = 0.3, in relation to the currently
held funds in r0 = 0.05 and r1 = 0.45.
After : The Goldfinger attack leads to a drop in the
exchnage rate in R0 of 50% (e0 = 0.5), while the ex-
change rate in R1 increses by 30% (e1 = 1.3). Due to
the distribution of his current holdings and expeceted
future income in those two resources R1 and R2, at the
end of the day m profits more from the increase than
he loses from the decrease:
(p0 + r0) · e0 + (p1 + r1) · e1 = 1.1

(c) A fork of R0 into R0 and R1 from the perspective
of a miner. Before: The total expected future mining
rewards are p0 = 0.85 while r0 = 0.15 come from cur-
rent holdings. After : The fork changes the exchange
rate to e0 = 0.5, thus cutting the previous total valua-
tion in half and at the same time adds the funds from
the new resource r1 = r0 = 0.15 with an exchange rate
e1 = 0.7. This leads to an overall loss for the miner:
(p0 + r0) · e0 + r1 · e1 = 0.605

(d) The same fork as in Figure 6.2c from the perspec-
tive of a user. Before: There is no expected future
income p0 = 0, thus 100% come from current holdings
in R0 (r0 = 1). After : The forks changes the exchange
rate to e0 = 0.5, thus cutting the previous total valua-
tion in half, but at the same time adds the funds from
the new resource r1 = r0 = 1 with an exchange rate
e1 = 0.7. This leads to a surplus of 0.2 for the user in
this case: (p0 + r0) · e0 + r1 · e1 = 1.2
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Figure 6.3: Visual illustration of different events and their consequences on a participant
with R := {R0, R1}. The total valuation of a participant before the respective event is
normalized to 1. This means that the values for the initial exchange rates are e0,1 = 1
(s.t. f(r0,1, 1) = r0,1), and that δ is static and thus ignored (δ0,1 = 0). In other words
expected future rewards where already accounted for in the relation between p0,1 and
r0,1, s.t. p0 + r0 + p1 + r1 = 1.

(a) An attack on a R0 from the perspective of a miner.
Before: The total expected future income from mining
is p0 = 0.8, while r0 = 0.2 come from current holdings.
After : An attack with negative consequences on the
exchange rate e0 = 0.9 is depicted leading to a loss for
the miner:
(p0 + r0) · e0 = 0.9

(b) The same attack as Figure 6.3a, but in this case
the funds r0 = 0.2 can be transferred to an alternative
cryptocurrency R1 in which no value loss occures (e1 =
1). Furthermore, a bribe ε = 0.1 is payed in r1 to
the miner to accommodate for the induced losses. In
this case the miner would have surplus, although his
hashrate p0 is non-transferable.
(p0 + r0) · e0 + (r1 + ε) · e1 = 1.02

(c) An opportunity to merge mine another cryptocur-
rency R1 which is worth 7% of R0. Before: The total
expected future income from mining is p0 = 0.8, while
r0 = 0.2 come from current holdings. After : An ad-
ditional cryptocurrency is merge mined with the same
hashrate and no consequences on the exchange rate of
the original one
(p0 + r0) + (p1 · e1) = 1.056

(d) A pitchfork attack is exectued on R0 which leads
to a value drop of 5% s.t. e0 = 0.95. At the same
time the exchange rate of the newly created and merge
mined attack coin is given by a slightly higher rate
e1 = 0.07, which would result in overall additional gain
when joining the pitchfork attack: (p0 + r0) · e0 + (p1 +
r1) · e1 = 1.02
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6.5 Consequences of Optimizing EEV and Mitigation
Strategies

The presented observations highlight that accurately estimating the EEV of a particular
miner is impossible, even when knowing all transactions belonging to this miner, as well
as all current preferences regarding cryptocurrencies and resources the respective miner
cares about and to which degree. There are two major reasons for this: First, it is not
possible to predict the actions taken by other actors interacting with the system by
issuing transactions which either directly, or indirectly affect the respective miner i, or
the exchange rate of a resource. Second, if miner i is open for accepting payments or
new resources (e.g., validator roles which provide future incomes), then the fact that new
cryptocurrencies can be forked, or created at any point in time (with a free choice of
rules and distribution of funds) provides new possibilities of income to i. As even the
sheer existence of new cryptocurrencies can have a negative affect on the valuation of
existing cryptocurrencies, this can also influence the EEV of i. Even more so, if the rules
of the newly created cryptocurrencies are designed in a way that actively harm existing
ones, as outlined in [JSSW18]. Algorithmic incentive manipulation (AIM) attacks, with
their offered bribes, are another way of how an attacker can interfere with the EEV of
players [JSZ+21b, JSZ+19], providing another potential source of uncertainty regarding
the EEV of other actors. In other words, precisely calculating the EEV of a miner i is
impossible.

Nevertheless, it may still be possible to approximate the EEV, if the number of possibly
available resources R, the computational capabilities of actors, as well as their overall
number, can be meaningfully bounded. As cryptocurrencies provide the possibility to
virtually create new resources at any point in time, this can technically not be prevented
in practice. It is therefore questionable, if economic security models of permissionless
cryptocurrencies that take the interplay between multiple resources into account, will
be able to produce satisfactory security guarantees, compared to the high standards
regarding security proofs that we are used to, for our cryptographic primitives, formally
verified smart contracts, or classical Byzantine fault tolerant consensus systems.

This leaves us with the open question on how to best include economic considerations into
the choice of the security parameter k determining the number of required confirmation
blocks. In Section 6.5.1 we show a simple workaround that relieves us from the burden
of correctly determining the right value for k.

6.5.1 The Let’s Go Shopping Defense
We now describe a simple defensive strategy a merchant M can use to transfer the risk of
choosing an insufficient security parameter kM , to another merchant W . In our scenario
we, assume that merchant M offers some quantity v of resource r for sale to a customer
C. For this technique to work, we need to assume that there exists a merchant W with
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an already defined security parameter kW . Furthermore, merchant W offers some easily
tradable good/resource r that is purchasable in arbitrary quantity and also stable in
price. Then merchant M can now choose his kM such that kM > kW , and immediately
use all received funds directly to acquire r . Therefore, M has to create a transaction
txM that immediately uses all funds that were used by the customer to purchase r. In
other words the transaction of M builds up on the transaction of C, i.e., txC → txM .
In an UTXO model cryptocurrency this can be achieved by using the respective UTXO
as input, whereas in an account-based model a dedicated account can be created to
handle the purchase12. Technically, in most prevalent cryptocurrencies txC and txM can
even be part of the same block if included in the right order and if M broadcasts txM

immediately after observing txC in the P2P network.

Using this technique, merchant M can be sure to receive vr before he has to hand out
vr. If now transaction txC is double-spent, or otherwise is invalidated so will be txM ,
but at that point either M has not yet handed out vr, or already received vr . In both
cases M does not face any direct damage from an attack.

6.5.2 Consequences of (Miner) Extractable Value
We have shown that MEV is a special form of value extractable by miners, and that
there is a difference between the extractable value that is computed in retrospect and
expected extractable value (EEV) that is also forward looking and takes the probability
of events influencing it into account. Further we have shown that estimating the EEV
of any actor i is hard or even impossible in practice as we have to deal with imperfect
information and possibly multiple cryptographically interlinked cryptocurrencies. The
EEV depends on several factors: Transactions affecting i, which reach from incoming and
outgoing regular payments, over bribes, to front-running and arbitrage opportunities, as
well as all consequences of actions affecting the valuation of assets in different resources
actor i cares about. The difficulty to accurately estimate the EEV is further amplified
by the fact that new cryptocurrencies might pop up, increasing the set of resources actors
care about, or putting pressure on existing cryptocurrencies. Although, theoretically
workable, a rather unsatisfactory workaround is described to transfer the risk of choosing
an insufficiently large security parameter k to another merchant. In the wake of more and
more attacks that exploit aspects of the economic rationally of actors (like for example
front-running), a better understanding of the economic interplay between such actors, as
well as cryptocurrency systems as a whole, is desperately required to more accurately
model the security guarantees of prevalent permissionless cryptocurrencies under such
economical considerations and attacks. If the lack of descriptive models (which take
practical economic considerations into account) persists, we have to ask ourselves if
economic incentives in permissionless cryptocurrencies can ever produce satisfactory
security grantees, our just occasionally worked “better in practice, than in theory” for a
while.

12Alternatively a smart contract can be used to execute any future trade immediately, but we ignore
this possibility for now.
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7
Adversarial Games: Formalization

of AIM attacks on Nakamoto
Consensus

In Chapter 6, we have shown that the concept of AIM using bribes and extractable
value (EEV) are related since a bribe can be viewed as another source of extractable
value. In this chapter, we are interested in the conditions when AIM attacks are possible
from a technical standpoint, as well as highlighting the underlying assumptions that are
required in this regard. To express and explain attacks on Nakamoto consensus-based
permissionless cryptocurrencies, such as front-running, double-spending, or bribing in
general, under a common technical framework, we define a state machine replication
(SMR) based model tailored for prevalent permissionless cryptocurrencies. This should
improve the understanding of these attacks, which are regularly observed in practice,
and make different types of attacks more comparable. Thereby, the security of such
protocols can be assessed more accurately while taking economic considerations into
account. Moreover, our model allows us to recap and classify different extractable
value optimization approaches and attacks, as well as different types of temporary and
permanent forks under a common framework. In the end, the presented model is used to
show that the creation of adversarial games is always possible from a technical standpoint.
Assuming that the targeted Nakamoto consensus-based permissionless cryptocurrency is
efficiently verifiable and eventually makes progress.
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7.1 Nakamoto Consensus-based State Machine
Replication

In our model, we try to relate certain aspects and design decisions of permissionless
cryptocurrencies based on Nakamoto consensus (NC) to the area of distributed systems,
especially state machine replication (SMR) [CSV16]. Thereby, we also want to take certain
economic considerations and incentives into account. The main goal of our model is to
express and explain observed attacks such as front-running, double-spending, or bribing
in general under a common framework. Therefore, our model of Nakamoto consensus-
based state machine replication should resemble the actual functionality of mainstream
cryptocurrencies as closely as possible and, at the same time, overlap as much as possible
with established formalisms used to reason about such protocols, such as the backbone
model [GKL20] or subsequent security analysis of NC-style protocols [GKR20, DKT+20].

To better understand and describe the characteristics of known attacks with our model,
it is necessary to distinguish between operations that perform the actual state transitions
within the system and transactions which represent the atomic execution steps describing
these operations. In NC-style cryptocurrencies, the operations which advance the state of
the system are called blocks. Unlike classical operations in the context of state machine
replications, blocks additionally contain a cryptographic reference to their respective
predecessor. Moreover, the validity of a block cannot be determined independently
but is dependent on the history of its predecessors. Therefore, the validity of a single
transaction cannot be determined independently as well because it is also dependent on
the transactions which happened before. Another distinguishing characteristic is that
transactions cannot be created arbitrarily but require a cryptographic signature of an
authorized party. In other words, in NC-style cryptocurrencies, transactions are batched
together into blocks which form a blockchain representing the history of performed state
transitions in the context of this chain.

Definition 8 (Operation o). An operation is a finite ordered sequence of atomic execution
steps of length at least 1 and at most ℵ describing a state transition and optionally some
additional metadata.

A state is subsequently defined by the sequence of operations leading to this point (see
17).

Definition 9 (Transaction tx). A transaction is a finite description of an atomic execution
step within an operation together with a cryptographic signature.

The details of how a transaction encodes an atomic execution step are not important for
our model. Important is that by our definitions:

• Transactions are not allowed to be infinitely large, and therefore, there can only be
finitely many possible transactions.
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• Transactions must comply with formatting rules checked by the predicate WellFormed(·)
(see Section 7.1 for details).

• The validity of a single transaction cannot be determined individually but re-
quires the context of all previous transactions, i.e., a system state, which is deter-
mined by the execution of these transactions and the associated execution function
Execute(·) (see Section 18 for details), which represents the interpretation rules
of the respective protocol.

An unordered set of transactions is denoted by T , e.g., {tx2, tx0, tx1}, while an ordered
sequence of transactions is denoted by τ , e.g., τ = (tx0, tx1, tx2). The ordering of a
sequence of transactions is not necessarily dependent on some property of the respective
transactions. If an ordered sequence of transactions τ exists as a subsequence in another
ordered sequence of transactions τ , we can write τ ≺ τ .

Since we focus on blockchains and cryptocurrencies, all operations in our model are
assumed to be blocks. The key difference is that all blocks, except the genesis block,
contain a cryptographic reference to their predecessor.

Definition 10 (Block bn). A block is an operation with a cryptographic reference to
its predecessor. It is a finite ordered sequence of transactions of length at least 1 and
at most ℵ describing a state transition, as well as a cryptographic hash which identifies
the previous operation n − 1, or no cryptographic hash iff n = 1 and represents the first
block in a chain, also called genesis block.

Definition 11 (Blockchain cn). A blockchain cn = (b1, b2, . . . , bn) is a finite ordered
sequence of n = |cn| cryptographically linked blocks starting from an initially defined
genesis block b1 with no predecessor. If the length of the chain is not relevant, the
subscript is omitted.

Analogous to our notation for sequences of transactions, we write c ≺ c if a sequence
of blocks c exists somewhere in the prefix of another sequence of blocks c . If a block
b exists somewhere in a chain c, we write b ∈ c. A single coherent blockchain can only
have one block at any given height. However, there can exist multiple blockchains with
overlapping blocks in their prefix. In this case, the result is an in-tree of blocks, which is
described in more detail later in this section. A coherent blockchain represents a single
path to the root (genesis block) in this in-tree.

We further define the following helper functions, which return the length of a given chain,
the last block in a given chain, and the sequence of transactions from a block or sequence
of blocks.

Definition 12 (Length(c) or |c|). The function Length(c), abbreviated as |c|, returns
the number of blocks, i.e., the length, of the given chain.

Definition 13 (Head(c)). The function Head(c) returns the last block, i.e., the tip, in
a given chain.
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Definition 14 (Prev(bn)). The function Prev(bn) returns the previous block, i.e., bn−1,
in the given chain.

Definition 15 (Chain(bn)). The function Chain(·) returns the entire ordered sequence
of blocks (i.e., the blockchain), which consists of all predecessors leading to the given
block.

Definition 16 (Txseq(bn) or Txseq(c)). The function Txseq(·) returns the ordered
sequence of transactions that have been included in the given block (bn) or chain (c).

After defining the required data structures, we can define the concept of a state.

Definition 17 (State sn). We define a system state sn as the interpretation of a finite
ordered sequence of n operations determined by its execution and an initial starting state
s1 which in turn is determined by a genesis block b1.

Based on the definition of state machine replication (SMR) by Cachin et al. [CSV16], we
define an execution function as follows.

Definition 18 (Execute(sn, bn+1)). We define a deterministic execution function that
takes a starting state s together with an operation1 b as input and outputs a successor
state s together with some response or result rst. The genesis block b1 defines the
initial state s1 and therefore represents the only transition with no predecessor state, i.e.,
s0 = ⊥. The function is required to terminate on all inputs. Moreover, we require that
the function runs in a polynomially bounded number of computational steps. If an error
occurs or no subsequent state can be computed after this upper bound of computational
steps, the original state is returned, and rst := ⊥.

Execute(sn, bn+1) :=


Execute(s0, b1) ∧ s0 = ⊥ s1, rst1

Execute(sn, bn+1) where bn+1 leads to a new state sn+1, rstn+1

Execute(sn, bn+1) where bn+1 does not lead to a new state sn, ⊥
This ensures that when a correct process executes a sequence of operations (b1, . . . , bn),
then the sequences of states (s0, s1, . . . , sn) and responses (rst1, . . . , rstn), i.e., outputs,
satisfy ∀i ∈ (1, . . . , n)Execute(si−1, bi) = si, rsti .

Given our definition of the execution function, we can now define the validity of a block
by also requiring the validity of all blocks before, which led to this particular block. The
validity of the genesis block as the first block (b1) in any chain is given by definition, as
this block determines the starting state.

1In our case all operations are assumed to be blocks as they contain a cryptographic reference to
their predecessor.
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Definition 19 (Valid(bn)). We define a predicate Valid(bn) → {True , False }, which
returns true when a given operation (bn) is valid according to the rules of the protocol,
false otherwise. The validity of a block bn can only be determined by looking at the
respective blockchain, i.e., the sequence of operations till bn. Therefore, the predicate for
blocks is recursively defined starting from a genesis block b1 which is valid per definition:

Valid(bn) :=




bn = b1 True
Valid(bn−1) ∧ Execute(sn−1, bn) = sn, rstn ∧ rstn = ⊥ True
otherwise False

Definition 20 (Set of potentially constructible valid blocks O). We define the set of all
potentially constructible valid blocks, starting from the genesis block b1 of the protocol,
as the set of finite input strings from the domain D, for which the predicate Valid(b)
returns true.

O := {b ∈ D | Valid(b)}

Although permissionless PoW blockchains are theoretically required to run infinitely
long [PS17], in practice, there will only ever exist chains of finite length. Therefore, we
restrict our model to only consider instances of protocol runs with finitely many blocks.
See Section 7.1.2 for more Information.

Definition 21 (Set of potentially reachable states S). We define the set of all potentially
reachable system states S, over the domain of potentially valid blocks O, as the set of
states that could be reached starting from an initial state of the protocol determined by
the genesis block b1, when given as input to the function Execute(·, ·), i.e.,

S := {bn ∈ O
n

i=1
Execute(si−1, bi) }

To extend a chain, a new block has to be created. In the context of PoW this process is
referred to as mining performed by a miner, whereas in the context of PoS a new block is
signed by an authorized proposer/validator. To account for different system rules under
which a new valid block can be created, we define a function Propose(·, ·), which extends
a sequence by a new valid block. This function takes the block to extend upon bn and a
block template b̄n+1 of its successor. The block template contains all transactions but is
missing a valid system-specific approval, such as a PoW, or a cryptographic signature by
one or more validators in PoS.

Definition 22 (Propose(bn, b̄n+1)). We define a proposing function that takes a pre-
decessor block bn, upon which to extend, as well as a template for a new block b̄n+1
and returns a new valid block bn+1, s.t. Valid(bn+1), or {∅} if no valid block can be
produced from the given template.
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Equation 7.3 shows an example application of the mining function in our notation. The
chain containing a not yet rightfully proposed block (b̄4) is also marked with a bar (c̄4):

c3 := b1, b2, b3 (7.1)
c̄4 := b1, b2, b3, b̄4 (7.2)
c4 := b1, b2, b3, Propose(b3, b̄4) (7.3)
c4 = b1, b2, b3, b4 (7.4)

The longer the sequence of blocks (i.e., a blockchain) that builds up on a particular block,
the higher the confidence that this particular block indeed represents some agreed-upon
state of the system confirming the transactions within it. To reason about different
chains of blocks and detect and agree on a common prefix, we need a function to identify
the canonical chain, also sometimes referred to as the main chain when viewed from
an individual perspective of a participant. For example, in a PoW-based model with
constant difficulty (i.e., all blocks have the same difficulty target), the longest chain is
also the heaviest chain with the most accumulated PoW and, thus, the canonical chain.
We define a function Main(·), which returns the main chain given a graph containing all
chains of blocks known by the respective participant. In our case this data structure is a
rooted directed acyclic graph (DAG), where each node has exactly one outgoing edge.
More accurately, the set of possible blockchains starting at a certain genesis block form
an anti-arborescene (also referred to as in-tree). An arborescene is a directed, rooted
tree in which all edges point away from the root. Additionally, for every vertex there
is precisely one directed path to the root. An anti-arboresence is an arborescene that
converges to a root node (in our case, the genesis block) instead of diverging from it. We
denote this data structure with InTree.

Finding the main chain (where all blocks have the same difficulty target) corresponds to
the problem of finding the longest path in the given graph. The problem of finding the
longest path in a graph is NP-hard in general, but the complexity of finding the longest
path in a DAG is linear in the number of vertices and edges of the DAG [CLRS01], i.e.,
O(|V | + |E|), and the maximum number of edges in a DAG is bounded by n

i=1 i =
n(n−1)

2 = n2+n
2 = n−1

2 .

The number of vertices in our data structure represents the total number of mined blocks.
The number of edges in our data structure is lower than the maximum number of edges
in a DAG. As every arborescence is also a DAG (but not every DAG is an arboresence),
we can use the same algorithm with the advantage that each block, except for the genesis,
has exactly one outgoing edge to its predecessor s.t. O(|V | + |V − 1|).
If two or more chains are equally long, one of the equally long chains is selected de-
terministically and returned by the function Main(·). Hereby it is not important how
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tie-breaking works in detail, only that they are deterministically resolved. For example,
by selecting the chain where the last block has the smaller hash value2.

Definition 23 (Main(InTree)). We define the function Main(InTree), which returns
the main chain, i.e., the longest path in a given directed acyclic graph (InTree ), or if
there is a tie, one of the equally long chains has to be selected deterministically.

Equation 7.9 shows an example application of the main chain finding function in our
notation:

c3 := b1, b2, b2 (7.5)
c4 := b1, b1, b2, b3 (7.6)
c3 := b0, b1, b2 (7.7)

InTree := {c3, c4, c3} (7.8)
Main(InTree) = c4 (7.9)

The fundamental mechanism by which Bitcoin and similar PoW-based permissionless
cryptocurrency systems reach agreement depends upon consensus participants extending
a proof-of-work (PoW) weighted hash chain, i.e., a blockchain (c). Specifically, it
is assumed that a sufficient honest majority of these participants, so-called miners,
will only build upon the branch with the most cumulative PoW, where each element,
i.e., block (b), adheres to some pre-agreed set of protocol rules Π under which it is
considered valid. As the validity of a block b can only be assessed in the context of its
predecessors, we use (cn, bn+1) as an abbreviation for appending a block to a given chain,
i.e., (b1, b2, . . . , bn, bn+1). This results in a sequence of blocks (i.e., a blockchain), where
bn+1 is the latest block in this specific chain, also called the head of this specific chain.

Relation of Transaction and Blocks

Any new block which should be proposed has to be based on the set of available
transactions. Hereby, we differentiate between well-formed and valid transactions. In
prevalent cryptocurrencies, the validity of a transaction (as well as the validity of the
associated cryptographic signatures) can only be assessed given all its predecessors, i.e., a
specific chain of blocks leading to this transaction. Thus, validity can only be determined
in the context of a specific history of state transitions, i.e., previous blocks. In contrast,
a transaction can be well-formed if there exists the possibility for the transaction to be
valid in a particular state. Thereby, it is irrelevant if this required state is ever reached in
a specific instance of the protocol. An example would be a correctly signed transaction
that complies with the formatting rules of the protocol, but the underlying addresses do
not have any associated funds yet.

2Naïve tie-breaking methods can lead to security concerns as they might provide an advantage for an
attacker (e.g., [ES14]), so special care has to be taken in practice.
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Definition 24 (WellFormed(tx)). The predicate WellFormed returns True if the
given transaction can be valid in the context of at least one chain of valid blocks and
their transactions. There exists a block in the set of all possible valid blocks, which
includes the respective transaction.

WellFormed(tx) := ∃b ∈ O, Valid(b) ∧ tx ∈ Txseq(b) True
otherwise False

(7.10)

Depending on the set of available well-formed transactions, certain future blocks become
theoretically reachable or stay unreachable since the respective valid operation to reach it
cannot be created. To reason about this aspect of permissionless blockchains systems, we
define a predicate Reachable, which returns true if a desired block is reachable given a
starting block and a set of not already included well-formed transactions.

Definition 25 (Reachable(bn, bm, T )). Returns True if block bm is reachable starting
from block bn using only blocks containing well-formed transactions provided in T , which
have not yet been included in the history of bn.

Reachable(bn, bm, T , ) := (7.11)



bn = bm True
bn bm False
∃tx ∈ T , tx ∈ Txseq(Chain(bn)) ∧ m > n False
Reachable bn, bm−1, T \ Txseq(bm) ∧ Txseq(bm) ∈ T True
otherwise False

(7.12)

Based on our definition of the predicate Reachable(·) we define a function Future(·)
returning the set of possible future blocks given a starting block and a set of available
well-formed transactions.

Definition 26 (Future(bn, T )). Returns the set of reachable, i.e., constructible, future
blocks −→O given a starting block and a set of available well-formed transactions that have
not yet been included in a chain determined by the block bn.

Future(bn, T ) := {b ∈ O | Reachable(bn, b, T )} (7.13)

If bn = b1 and all potentially constructible well-formed transactions are available in T ,
then −→O = O. In any case, it holds that −→O ⊆ O.

A blockchain can thus also be viewed as a sequence of blocks (i.e., operations according
to SMR), which reduces the cardinality of the set of all reachable valid future blocks.
The reason for this is that any particular block negates the validity of all potential other
blocks at the same height. Thereby, a block influences the validity of potential future
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transactions and, thus, also potential future blocks. In turn, this influences the set of all
potentially reachable future system states.

The function Future returns the set of reachable operations −→O given a starting state
and a set of available well-formed transactions. First, we provide an example where all
(theoretically constructible) well-formed transactions are assumed to be available in T . As
the total number of reachable blocks decreases with every block for any two consecutive
blocks, it holds that ∀bn ∈ O |Future(bn−1, T )| > |Future(bn, T \Txseq(bn−1))|. Any
progress in the blockchain can thus be viewed as shrinking the overall set of reachable
future blocks (and therefore also states) by settling on a specific history.

We have now defined all required components to construct a Nakamoto consensus protocol.

7.1.1 A Nakamoto Consensus Protocol
Using our previous definitions in combination with some assumptions regarding the
network, we can now define and instantiate a Nakamoto consensus (NC) protocol.
Thereby, we rely on the properties persistence and liveness for robust transaction ledgers,
which were first described in [GKL20]. Since then, variations thereof have been used in
various works such as [DKT+20, GKR20]. The details regarding the definition of these
two desired properties slightly differ within the respective papers. Therefore, we just
provide an intuitive description sufficient to understand the essence of those properties
across different papers and formalisms.

• Persistence (referred to as consistency in [GKR20]) parameterized by k, referring
to the number of suffix blocks to discard s.t. all honest nodes are synchronized and
agree on the remaining blocks of their longest chain.

• Liveness is parameterized by u, referring to the number of slots in which there is
at least one block contributed from an honest party in his longest chain.

In a secure NC-like longest chain protocol, these properties should hold with high
probability in relation to their security parameters. In general, the security of NC-like
longest chain protocols has been shown as long as honest nodes contribute proportionally
more blocks (i.e., are able to produce more proof-of-work successes) than adversarial
nodes. According to [GKR20, DKT+20], the concrete ratio is dependent on the network
delay and the respective success rates s.t.

ra <
1

Δ0 + 1/rh
, (7.14)

where rh is the expected number of honest PoW successes per time unit, and ra is the
expected number of adversarial successes. In addition, there exists the assumption that
no message is delayed more than Δ0 time units. Hereby, the respective PoW successes
are modeled as independent Poisson processes. More accurately, a discrete approximation
to the Poisson distribution is used in [GKR20], in which time is divided into small slots
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of length s and where the probability of an adversarial success in a single slot is given
by pa = s · ra (and vice versa for the honest case). The network delay, in terms of the
maximum number of slots an adversary can delay a message, is given by Δ = Δ0/s .
Under this model and assumptions, a NC protocol fulfills the desired properties of
persistence and liveness if,

pa <
1

Δ − 1 + 1/ph
. (7.15)

For the simple case, where s = 1 and there is no network delay, s.t., every message is
available in the next round Δ = 1. This gives us the common majority bound on the
adversarial hashrate:

pa <
1

1/ph
(7.16)

pa < ph (7.17)

As we are primarily interested in the characteristics of NC when interpreted as a game,
including economically rational actors, we omit further details and provide an instantiation
of a concrete NC protocol under our model. The proofs in [GKR20, DKT+20, GKL20] are
constructed in a very generic way s.t. they can be applied to different NC-like protocols.
Therefore, if only honest/altruistic and adversarial/Byzantine actors are considered, also
our instantiation is covered. For the details regarding the associated security proofs for
NC-like protocols in a setting where there are only honest players and adversarial ones,
we refer the reader to the respective papers [GKR20, DKT+20, GKL20].

Definition 27 (NC Protocol). We define a NC protocol Π as 5-tuple:
Π := b1, Execute(·, ·), Valid(·), Propose(·, ·), Main(·) , where b1 is the genesis block,
which defines the starting state s1, i.e., (s1, rst1) := Execute(⊥, b1). Under the as-
sumption that participants exchange information on blocks and transactions over direct
point-to-point communication channels in a Δ-synchronous network setting, a NC pro-
tocol Π maintains a robust public transaction ledger [GKL20, DKT+20] if the ledger is
organized as blocks of transactions and satisfies the properties persistence and liveness.

In comparison to the backbone model [GKL20], our predicate Valid(·) is comparable
to the validate algorithm parameterized by the content validation predicate V (·).
The Main(·) function is comparable to the maxvalid functionality used for chain
comparison, and the Propose function resembles the pow algorithm in the backbone
model. The Execute(·) function is comparable to the chain reading function R(·).
The input contribution function I(·) is the subject of Section 7.1 and onwards, where
we discuss how different types of economically rational players would interact with the
protocol and the resulting challenges for those players as well as for the protocol as a
whole.
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7.1.2 Finite Blocks and Finite Chains in Finite Instances
In the context of most NC-based cryptocurrencies, a state is represented by a sequence
of n blocks starting from the genesis block, e.g., sn = (b1, b2, . . . , bn). In Bitcoin, for
example, an operation is equivalent to a block b, which itself contains a finite ordered
sequence of transactions. As in our model, blocks have a size limit. This implies
that the number of transactions in a block, as well as their size, is also bounded and
thus finite. By our definition, each transaction has size 1/ℵ. Thus we can denote the
maximum number of transactions in a block with ℵ. This is a difference compared to
other models, such as [GKL15, GKL20], where blocks are unbounded in size to ensure
that transactions cannot be efficiently censored to achieve liveness. Instead, in [GKL15,
GKL20], the number of messages (including transactions) per round is bounded by the
used computational model of ITM (interactive Turing machines) from [Can00].

Note that we also implicitly restrict the set of potentially valid operations O to be finite
by requiring that the predicate Valid(·) has to return a value for all operations. This
requires checking the validity of all previous operations in the respective chain. As
the predicate Valid(·) is required to be computable, i.e., terminate on all inputs, this
prohibits infinitely long chains from being valid.

In the case of permissionless PoW, this restriction to finite blockchains leads to an
interesting observation. As pointed out by Pass et al. [PS17], PoW blockchains cannot
stop without becoming insecure, as equally long or even longer heaver chains can be
constructed with a different history after the protocol has terminated. This would make
it impossible for a new participant to distinguish a chain created in retrospect from the
original discontinued longest chain. Thus, permissionless PoW blockchains are required
to run infinitely long in theory3 . To not contradict this requirement, we restrict our
model to finite instances of protocol executions. This, in turn, can only lead to finite
sequences of operations, i.e., blocks describing state transitions, which can be used as
input to the validity predicate and return true if valid.

7.2 Types of Protocol Changes and Parallel Executions
We now use our model to describe, classify and compare different types of forking events
and relate them to the relevant literature. Thereby, we want to demonstrate the usefulness
of our model even for corner cases in NC-like protocols and highlight which conditions
make the difference between a so-called soft-fork, where a chain split typically does not
occur, and a so-called hard-fork in which a permanent chain split leads to the existence
of two parallel systems. We divide these permanent forking events into protocol changes
and parallel executions.

3In relation to this, another interesting observation regarding the necessity of protocol updates is
outlined in Appendix A.9.
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The concept of temporary forks is a core design property of Nakamoto consensus (NC).
Even without the interference of malicious actors, the proposal of a block by two different
miners at approximately the same point in time can trigger a fork. Such a temporary
fork eventually resolves as soon as new blocks on top of either branch are found and
propagated. The non-deterministic nature of the hash-based PoW employed in such
systems, as well as the relatively weak synchrony assumptions of the underlying peer-
to-peer network, can lead to situations where multiple valid branches are created and
extended in parallel. However, the probability of such a blockchain fork prevailing for
prolonged periods decreases exponentially in its length if a sufficient majority of miners
only extend the heaviest chain (known to them) and the synchrony assumptions for
the network still hold [Nak08, GKL15]. This brings us to the question of how a change
Π → Π to the underlying protocol rules may affect this consensus mechanism.

Apart from these temporary forks that are resolved when one branch takes the lead,
there also exists the concept of a permanent fork, also referred to as a chain split. In such
a case, the end result is a split into two different systems. This can happen intentionally
or unintentionally, for example, when the underlying protocol has to be updated. In this
context, the loosely defined terms hard-fork, soft-fork, and velvet-fork have established
themselves as descriptors of different classes of upgrade mechanisms for the underlying
rules. The term hard-fork has established itself [BMC+15, GCR16] as a descriptor for
protocol changes that can incur a permanent split of the blockchain, as they permit
or even enforce the creation of blocks considered invalid under previous protocol rules.
In contrast to this, soft-forks intend to retain some level of compatibility with older
protocol versions, specifically for clients adhering to previous protocol rules [Bita, Bitb].
In contrast to temporary forks, which can happen during normal operation, hard- and
soft-forks refer to a protocol upgrade that might or might not lead to a permanent
(scheduled) fork, i.e., a chain split. Therefore, we will refer to them more accurately as
protocol changes (e.g., in the form of updates) in the following sections.

In the following, we will investigate different situations of disagreement on the validity
of a block b under different rules, i.e., protocol changes. If there are both types of
nodes in the network following either definition of rules, this can lead to a permanent
chain split in the blockchain, where a subset of participants will always reject branches
building on a, to them invalid, block, regardless of the cumulative PoW these branches
accumulate. We now present an overview and definitions of these different upgrade
mechanisms and outline their relationships. Hereby, we expose examples where different
types of modification techniques or related constructions have already been used in
cryptocurrencies. Furthermore, we expand upon the concept of different protocol changes
by discussing potential security implications that can arise from different approaches if
used as part of an attack.
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7.2.1 Types of Protocol Changes and Parallel Executions in the
Literature

The term hard-fork has established itself [BMC+15, GCR16] as a descriptor for protocol
changes that can incur a permanent split of the blockchain, as they permit or even
enforce the creation of blocks considered invalid under previous protocol rules. As an
alternative, soft-forks intend to retain some level of compatibility with older protocol
versions, specifically for clients adhering to previous protocol rules. The concepts of both
hard- and soft-forks are described in the Bitcoin developer guide [Bita], as well as the
Bitcoin-Wiki [Bitb]. In scientific literature, some of the principal differences between these
two types of consensus rule upgrades have been covered in [BMC+15, GCR16, CDFZ17].
McCorry et al. furthermore provides a history of forking events in both Bitcoin and
Ethereum as part of their work on how parties can bindingly perform atomic cross-chain
trades in case of a permanent blockchain fork [MHM17]. A closer description of different
protocol forking mechanisms and their relation to each other was also presented in a
blog post by Buterin in [But17], where Buterin distinguishes between strictly expanding
and bilateral hard-forks. Bilateral hard-forks can prevent protocol interactions between
permanent forks by rendering their rules incompatible, which may not be ensured in the
case of a strictly expanding hard-fork. As an example, consider mutually valid transaction
rules, which can render transactions valid on either blockchain of a permanent fork and
can lead to replay attacks. Apart from all these mentions of hard- and soft-forks and
high-level descriptions, the terms have never been properly defined, although they are
being used throughout the cryptocurrency community.

If we consider the possibility of a permanent blockchain split as the defining characteristic
of hard-forks, most protocol changes would fall into this category. For example, reducing
the validity set of rules in a protocol update, which is generally considered to be a
soft-fork, can lead to a permanent split in case the majority of consensus participants are
not upgraded. Conversely, if an expanding protocol change, i.e., a hard-fork, does not
reach a majority among consensus participants, no permanent fork is actually incurred
as upgraded clients will continue to follow the chain with the most cumulative PoW
(for more details see the examples provided in table 7.1). By this example, it becomes
apparent that the distinction between hard- and soft-forks is not as clear. This dichotomy
helps outline the difficulties in presenting a clear distinction between the different types
of forks.

7.2.2 Types of Protocol Changes
To provide a finer distinction between the possible impacts of protocol upgrades in
NC and their potential for permanent chain splits, we first present different classes of
protocol changes (see Table 7.1) from old protocol Π to a new protocol Π with respect
to their influence on the set of valid blocks (operations) O, i.e., possible blockchains,
which changes to O under the new rules. Depending on the degree of support a rule
change receives amongst participating nodes, referred to as miners, the system might
split into two systems following either set of protocol rules (Π and Π respectively) or
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remain united under the set of rules followed by the majority of miners. There might also
be changes or designs of protocols that are constructed to be incompatible with another
system right from the start, which immediately results in the parallel execution of two
different systems (for such a construction, we refer to Section 7.2.3).

Type Set of valid blockchains: Incurred Split: Examples
Venn Diagram

(O is gray)
Relation O is majority O is majority

No change

O = O

O = O
S = S

- - Normal operation

Expanding
Operations

O U

O = O ∪ U
O ⊃ O

no chain split
(soft-fork)

chain split
(hard-fork)

triggered when:
b ∈ U \ O

Blocksize increase,
new opcode

Reducing
Operations

O U

O = O \ U
O ⊂ O

chain split
(hard-fork)

triggered when:
b ∈ O ∩ U

no chain split
(soft-fork)

Blocksize decrease,
opcode removal,
SegWit

Overlapping
and

Conflicting
Operations
(Bilateral)

O U
O =

(O ∪ U) \ (O ∩ U)
O = O U
O ∩ O = ∅

chain split
(hard-fork)

triggered when:
b ∈ U

no chain split
(soft-fork)

when b ∈ O \ U

chain split
(hard-fork)

triggered when:
b ∈ U

no chain split
(soft-fork)

when b ∈ O \ U

Opcode redefinition,
chain ID for
replay protection
in ETH/ETC fork

Table 7.1: Overview of classes of protocol changes from old to new rules Π → Π . Thereby, O
and O denote the sets of valid blocks under the old and new protocol rules. The new set of valid
blocks O is colored gray. U denotes the validity set changes introduced by the protocol update.

No Change

In the simplest case, there is no rule change and hence no new set of valid blocks
O . In this scenario, all attacks and temporary forks can be described as changes in
the longest block sequence, and thus lie within O. The attractiveness to engage in
malicious temporary forks depend on the profitability and reachability of certain blocks
(see Figure 7.1).

Expanding Operations

The new protocol rules Π increase the set of blocks considered valid with respect to the
previous protocol rules Π, i.e., O ⊃ O. Hereby, the update with the set of new blocks
that become valid under the new rules Π is denoted U . Expanding protocol changes can
cause a permanent split in the blockchain if the consensus participants adhering to Π
form a majority. However, if a majority retains protocol rules Π, no permanent chain
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split occurs, as clients adhering to Π also consider any blockchain under protocol rules
Π as valid. Examples include blocksize increase or defining previously unused values as
new Bitcoin/Ethereum opcodes.

Reducing Operations

The new protocol rules Π reduce the set of blocks considered valid with respect to the
previous protocol rules Π. Specifically, the new set of valid blocks O is a proper subset
of the valid blocks of the previous protocol, i.e., O ⊂ O. Reducing protocol changes
do not lead to a permanent chain split, i.e., they represent a soft-fork, as long as the
majority of consensus participants adhere to the new rules Π . If, however, Π retains a
majority, a permanent chain split is incurred as updated clients and miners will consider
some blocks that are valid under old protocol rules Π as invalid. Examples could be a
blocksize decrease, the introduction of SegWit (BIP 141 [LLW] and the removal of an
opcode.

Overlapping and Conflicting Operations (Bilateral)

We refer to updates introducing mutual incompatibilities as conflicting or bilateral
protocol changes. Here, the goal is to intentionally cause a permanent fork of the
blockchain and prevent potential interactions between the resulting chains, such as the
chain ID introduced in Ethereum for replay protection or redefinition of a Bitcoin opcode.
Although both systems share a common history, they also have overlapping operations
considered valid in both systems. Therefore, as long as overlapping blocks in the common
history O \ U are mined by the majority of miners, no permanent chain split will be
triggered. This would resemble the situation before a scheduled block height, after which
the rule change is activated.

If a permanent chain split is triggered, this immediately results in a situation where there
are multiple resources that have to be considered when calculating the EEV, i.e., the old
and the new cryptocurrency in which a participant could have assets. This directly leads
to the question of optimizing protocol compositions.

7.2.3 Types of Parallel Executions
Some of the protocol changes described in Section 7.2 can lead to permanent chain splits
s.t. in the end there exist two different systems in parallel. As such systems might share
some common history, or even certain rules, this can lead to interesting interactions
between systems running in parallel. An example for a problematic interaction, would
be the missing replay protection for transactions when Ethereum Classic split up from
Ethereum4.

This section describes different types of interactions in parallel protocol executions (i.e.,
compositions) and how they can be used or have been used in different AIM attacks.

4cf. https://eips.ethereum.org/EIPS/eip-155
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Therefore, we need to look at scenarios in which there exist at least two systems in
parallel to investigate how these systems can influence each other. This inherently requires
that there exist at least two systems players care about and that they participate in
or actively follow events in the respective systems. By cryptographically interlinking
actions in one system with actions in another cryptocurrency, the two systems can
become interleaved. Thus, the incentive to perform a certain action is not only tied
to in-band profit opportunities but also to out-of-band profit opportunities. Using
such methods, also incentives for temporary forks or permanent protocol changes can
be created in other systems. Examples of such constructions have been described
in [JSSW18, JSZ+21a, JSZ+21b, Ros21], as well as in Chapters 2, 3, and 4 of this thesis.
Table 7.2 shows the different types of parallel protocol executions and their potential for
interference.

Type Set of valid blocks: Description of Different Protocols: Examples
Venn Diagram

(O is gray)
Relation Π Π

Disjoint
Operations

O O

O ∩ O = ∅ org. protocol
(e.g., Bitcoin)

new protocol
(e.g., Litecoin)

Creation of new cryptocurrencies
like Litecoin etc.

Alternative
Interpretation
of Operations
(Velvet-fork)

O = O

O = O
S = S

no chain split
in org. protocol
unaware users
may produce

only states in S

no chain split
in new protocol

aware users
can produce
states in S

Colored coins [Ros12],
Adoption of NIPoPoWs [KMZ17]

Superset
Operations

b b

b

O O

b

O ∩ O = ∅
∃b ∈ O ∃b ∈ O , b ⊂ b

org. protocol
new protocol,

some blocks are
supersets of

blocks from org.
protocol

Merged mining [JZS+17],
P2Pool [P2P],
Out-of-band variants of
pay-to-win Attack [JSZ+19],
GoldfingerCon [MHM18]

Overlapping
and

Superset
Operations

b b

b

O O

b

O ∩ O = ∅
∃b ∈ O ∃b ∈ O , b ⊂ b

org. protocol
new protocol shares
some common history
with org. protocol,
new blocks might incorporate
blocks of org. protocol

Pitchfork [JSSW18]

Table 7.2: Overview of different types of protocol compositions of two protocols Π (original) and
Π (new). Thereby, O and O denote the sets of valid blocks under the different protocol rules.

Disjoint Operations

In the simplest case, parallel systems have disjoint sets of valid operations, i.e., have no
overlap with each other and thus coexist without any direct interference. This is the
case for any newly created cryptocurrency with its own consensus algorithm and genesis
block, for example, Bitcoin and Litecoin. Both are cryptocurrencies based on NC with
PoW, but they use different PoW algorithms and different genesis blocks. Therefore,
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those two protocols do not interfere directly with each other, e.g., actions in one protocol
cannot be replayed in the other protocol.

Due to the characteristics and usage of cryptography in prevalent cryptocurrencies, even
systems with disjoint sets of valid operations can be connected by creating a third system
that combines operations from both systems within it. A payment channel would be one
example. For more information, see the Section on superset operations below.

Alternative Interpretation of Operations (Velvet-fork)

A so-called velvet-fork [KMZ17] seeks to add additional meaning to operations without
affecting the validity rules of the original protocol. More accurately, a velvet-fork creates
a new protocol Π , which provides an alternative interpretation of inputs to some original
protocol Π. The new protocol rules Π only change the execute function s.t. it invokes
and computes the original execute function with the current state of the original protocol
sn and the new block bn+1 as input. This is required to deduce if a new valid state is
computed in the original protocol, i.e., the result is not ⊥. If so, the new execute function
Execute is invoked with the current state of the new protocol sn and the exact same
block bn+1 from the original protocol as input. This function then potentially produces a
different output state sn+1 and result (which is not ⊥) for the new protocol Π . Therefore,
the set of potentially reachable systems states in Π changes (S = S), but the overall set
of valid operations stays the same O = O.

The two protocols, Π and Π , are thus executed in parallel, and every input to Π is also
forwarded to Π . So only if blocks or transactions are valid under the old (and thus
also the new rules) the new rules can be applied in addition and potentially lead to a
new state in the new protocol Π . The resulting state can differ from the state of the
original protocol. If a block does not produce a result, the new rules are ignored as well,
as previous protocol rules Π are relied upon to determine validity.

Since these changes only provide an alternative interpretation in a newly created system,
velvet-forks never incur a (permanent) protocol fork or chain split, as any element
considered valid under Π is also considered valid under Π, therefore O = O. The term
velvet-fork can hence be considered somewhat of a misnomer. Examples of such systems
are colored coins [Ros12] or the adoption of NIPoPoWs [KMZ17].

Colored Coins: A concept closely related to the idea of velvet-forks is that of overlay
protocols and colored coins, inter alia described in [Ros12]. The term colored coin refers
to cryptocurrency transactions where the outputs are additionally “colored“ to represent
some assets or tokens, allowing to use of such outputs in transactions to transfer their
ownership. Rosenfeld presents an overview of colored coins and describes a possible
implementation approach in [Ros12]. We consider colored coins to be part of the class
of overlay protocols and herein focus on the latter, more general concept. Overlay
protocols leverage an underlying property of NC systems, namely, providing an ordering
of transactions. Under the assumption that NC eventually produces a total ordering
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of transactions within its common prefix that is unlikely to change, the result can be
compared to total order broadcast or atomic broadcast, which has been shown to be
equivalent to consensus [CT96] and can, for instance, be used to readily implement
state machine replication. As such, encoding messages in regular valid transactions
allows overlay protocols to utilize NC or similar systems as if they were a “eventual
total order broadcast” protocol. While this approach may provide overlay protocols
with a mechanism for eventually reaching agreement on the ordering of messages, it
does not extend any guarantees towards their correctness. In particular, miners may
remain completely oblivious to the rules Π of the overlay protocol and only adhere to the
underlying base protocol Π. Hence, transactions encoding invalid messages of the overlay
protocol Π , which have to be ignored by the participants of the overlay system, may
be included in blocks [BMC+15]. However, if participants in the overlay system agree
to both the same set of rules Π and the “eventual ordering” of both valid and invalid
messages, then ignoring messages considered invalid under Π by all (honest) participants
leads to the same (eventually) consistent system state. Overlay protocols are a form of
velvet-fork in that they impose no restrictions and apply new protocol rules Π only if
the input is considered valid.

Superset Operations

In this case, a block in O can be a superset of operations in O containing one or
multiple operations from O. In other words, a block b ∈ O can contain a block b ∈ O
s.t. b ⊂ b . Because the set O is not transitive, no block from O is directly valid as
a block in O , hence O ∩ O = ∅. Examples of such parallel construction are merged
mining [JZS+17], P2Pool [P2P], and out-of-band variants of pay-to-win attacks [JSZ+19],
as well as GoldfingerCon [MHM18].

Under the assumption that there are overlapping sets of participants, using such con-
structions, it is possible to create interdependencies between operations in two systems
with disjoint operations. The ephemeral chain relay constructed in [JSZ+19], as well as in
Chapter 4, is an example of such a causal dependency. Other examples of compositions
of protocols with superset operations are P2Pool and merged mining.

P2Pool: P2Pool [P2P] is a protocol for implementing decentralized mining pools
presented in 2011. In contrast to conventional mining pools, attestation of each miner’s
contribution to solving the next block’s PoW puzzle and the distribution of rewards are
accomplished without a trusted operator. P2Pool uses an additional, length-bounded
blockchain, the sharechain, consisting of otherwise valid blocks which fail to meet the
mining difficulty target d but exceed a minimal target dshare, agreed upon and determined
by the protocol5, sometimes referred to as near or weak blocks. These blocks are used
to attest each miner’s contribution, while the reward distribution is, in turn, achieved
by introducing the following rule: "Each time a miner finds a block exceeding the

5The target dshare is adjusted such that the sharechain maintains an average block interval of 30
seconds.
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target d, she can claim 0.5% of the block reward, while the rest must be distributed
among all participating miners according to their portion of the last N sharechain blocks".
This additional rule is transparent to the mined blockchain, i.e., it generates fully
backward compatible blocks and hence remains oblivious to all but P2Pool miners, which
additionally follow the sharechain, i.e., the protocol executing in parallel. As a result,
any valid block generated by P2Pool miners adhering to the rules of Π will be accepted
by non-P2Pool miners in Π. In turn, P2Pool miners only accept blocks in the sharechain
if they follow the agreed reward distribution. Moreover, as the sharechain accepts blocks
with lower difficulty, not all sharechain blocks are valid in Π.

Merged Mining: Merged mining refers to the process of reusing (partial) PoW so-
lutions from a parent blockchain as valid proofs-of-work for one or more child block-
chains [JZS+17]. It was first introduced in Namecoin [Namb] both as a bootstrapping
technique and to mitigate the fragmentation of computational power among competing
cryptocurrencies sharing the same PoW. While a child cryptocurrency is required to
implement and support merged mining, parent blockchains only need to allow miners
to include additional arbitrary data in their blocks. This arbitrary field is then used to
link blocks to the merge mined child cryptocurrency. From the perspective of the parent
cryptocurrency, merged mining can be considered a velvet-fork, as new consensus rules,
namely those of the merge mined children, are incorporated in the parent blockchain in a
fully backward compatible way. If either invalid or no links to child blocks are included
in a block, the data will be ignored by participants of merged mining, but the block is
nevertheless accepted in the parent chain as usual. From an overall perspective, merged
mining is a composition of at least two protocols, whereby there is one protocol (the child
blockchain) in which there exist operations that are a superset of operations (i.e., blocks)
in another protocol called the parent blockchain. As the parent blockchain block carrying
the PoW is only a subset of the entire child chain block, merged mining can be considered
a perfect example of a protocol composition with superset operations. Merged mining
and P2Pool make use of the same principle mechanisms, with the marked difference
being that in merged mining, additional rewards are received in the child cryptocurrency,
whereas P2Pool sharechain blocks represent claims to portions of the next valid block
reward on the main chain.

Overlapping and Superset Operations

A combination of overlapping and superset operations is also possible. In this case,
Π and Π share a common history. In addition, operations in O might contain valid
blocks from O after a permanent chain split has occurred. An example would be the
Pitchfork attack [JSSW18]. In this attack, a chain split is scheduled, and after this event,
every new block in O is required to link to a valid block in O. Therefore, it holds that
∃b ∈ O \ O ∃b ∈ O \ O , b ⊂ b .

Due to the chaining property of blockchains, overlapping blocks only exist if both systems
share a common history, i.e., genesis block. Therefore, it is not directly possible for a
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single block of two different instances to overlap if they do not share a common ancestor
block. This is a difference compared to a paper by Lindell et al. [LLR04], in which the
authors prove that authenticated Byzantine Agreement protocols only remain secure
under parallel or concurrent composition (even for just two executions) when more than
2/3 of the participating parties are honest. The reason for this is that participants do not
know in which execution they currently are. The solution to the problem is the usage of
unique identifiers or sequence numbers for each execution. Blockchains inherently have
this property due to the chaining of blocks

In comparison, superset operations can always be used when the state of a targeted
NC system is required as input in another system. The ability to interconnect different
NC-style systems and thereby influence the economic incentive structures of those systems
is further explored in Sections 7.5, 7.6, and 7.7. In these sections, we describe and use
the concept of adversarial games (AG) to construct a new system Π , which decides,
depending on the outcome of the original system Π, whether a preferable state was reached
and then issues rewards accordingly. Depending on the capabilities of the targeted system,
the promised rewards can be issued using in-band payments or out-of-band payments.
The three adversarial games should illustrate how to use our model to construct and
describe such attacks with varying capabilities and interference with consensus and what
the necessary assumptions for those attacks are.

7.3 Challenges of Modelling Nakamoto Consensus-based
Cryptocurrencies as Games

So far we have only discussed NC without considering incentives. Most cryptocurrencies
also provide some incentive to participate by issuing some form of reward for advancing
the protocol. Due to this rewarding mechanism, such cryptocurrencies can also be viewed
as games. In this section, we want to describe some basic characteristics of NC-based
cryptocurrencies when considering incentives and then highlight challenges in modeling
NC-based cryptocurrencies as games according to game theory.

In Section 7.4 we describe a simplified blackbox approach to abstract all game elements
and the concept of incentives by a function that determines the expected extractable
value (EEV), or in other words, the utility of a block for a player. For a more detailed
definition and discussion of EEVwe refer to [JSSW22a] or Chapter 6 of this thesis .

7.3.1 Game like Characteristics of NC-based Cryptocurrencies
In this section, we augment the already described NC protocol and describe a basic
reward mechanism that captures the essential characteristics of the rewarding mechanisms

152



7.3. Challenges of Modelling Nakamoto Consensus-based Cryptocurrencies as Games

found in prevalent cryptocurrencies based on NC. The result is a Nakamoto Consensus
game (abbreviated as NC game). This game shares some resemblance with infinitely
repeated stochastic games in game theory and was already modeled as such in previous
modeling attempts [KKKT16]. In practice, any NC protocol is executed by a set of
participants. Therefore, the NC game has to be played by a set of players P. The total
number of players is denoted by |P|. Each participant has a certain probability p to
succeed in creating a new block {p1, p2, · · · , p|P|}, where |P|

i=1 pi = 1. In other words, for
PoW cryptocurrencies pi can be viewed as the hashrate of participant i, which depends
on his computational power.

In contrast to [KKKT16], there is also a distinction between miners and users in
practice. A user can be modeled as a participant who has zero probability of mining a
new block6.Therefore, the set of miners can be defined as M, where M ⊆ P , where

|M|
i=0 pi = 1. Additionally, there is a potentially empty set of users U ⊂ P. , where
|U|
i=0 pi = 0.

In addition to a certain probability of success pi in mining a new block, a participant
i can also have funds, i.e., resources in terms of the associated cryptocurrency ri. All
available resources in a cryptocurrency are distributed (following some distribution)
amongst participants and bounded by the overall currency limit F , s.t., |P|

i=0 ri = F
holds at any point in a given chain of blocks, even if F changes during the runtime
(height) of the chain. A transaction (tx) might change the distribution of funds amongst
participants. Therefore, the current overall balance (total amount of available resources)
is always tied to some block height/number n , i.e., ∀n ∈ N,

|P|
i=0 rni = Fn.

A state in NC is represented by a rooted in-tree of blocks (starting at a given genesis
block). In a model where miners have complete information and immediately release their
blocks7 the NC game can be represented in extensive form by a game tree containing
all possible blocks as well as the combinations in which players can make them. The
outcome of a NC game is described by the blockchain that is generated from traversing
the game tree in a specific path. The path to a leaf defines the order of transactions
produced by the associated longest chain of blocks, which in turn have been produced by
the respective miners in this path.

In prevalent cryptocurrencies, the first transaction in every block is the payout trans-
action8, which delivers the reward payout rreward of the respective block to the address
provided by its miner9. By assuming that this payout transaction also carries all block-

6As such non-mining nodes have zero chance to mine a block, their (non-zero) utility to participate
comes from the fact that they can send or receive payments (see assumption 10 in Section 7.5.1).

7Such a model has been used in immediate-release games with the Frontier strategy defined
in [KKKT16]

8This transaction is sometimes also called coinbase transaction.
9Note that in Ethereum, for example, there is no dedicated coinbase/payout transaction. The

beneficiary is directly specified in the block header. Also, this behavior can be modeled by a virtual
payout transaction at the beginning of the block, which specifies the reward (including fees) for the
beneficiary.
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specific metadata (e.g., time stamp, hash, etc.), the exact same sequence of transactions
will always result in the same outcome. This is currently not the case in prevalent
cryptocurrencies such as Ethereum, due to the ability of smart contracts to access block
information. This has been termed semantic malleability and was outlined by Stifter et
al. [SJSW22].

Apart from the payout transaction, all other transactions in a block are payload trans-
actions, which are used to change the state of the system, e.g., make a payment to
transfer funds. Therefore they are also sometimes called payment transactions. There is
a maximum number of transactions ℵ that can be included in one block. So a block must
have at least one transaction (which in this case must be the payout transaction) and at
most ℵ transactions, of which ℵ − 1 must be payload transactions. The root block (b1) is
called the genesis block and cannot be changed. It includes the first payout transaction
tx0, which might be used to initially distribute funds. So the outcome of a NC game is a
sequence of blocks that might look as follows:

c = b1(tx0), b2(tx1), b3(tx2, tx3), b4(tx4), . . . , b|c|(tx|τ |−1, tx|τ |) (7.18)

The respective blocks define a total ordering of a sequence of enclosed transactions
τ = (tx0, tx1, tx2, tx3, . . . , tx|τ |), where |c| denotes the length of the respective chain and
|τ | denotes the length of the embedded sequence of transactions. This directly leads to
the question, when does a chain of blocks represent a termination point in the context
of a NC game? In other words, when does a (sub-)game of the NC game terminate,
s.t. (some) payouts can be considered performed, or when does the entire NC game
terminate? This challenge is described in

Rewards in our Model

Participating in the mining process generates costs rminingcosts and produces rewards
rreward for every block. In a basic setting, without any optimization from the miners or
attacks, the reward consists of the block reward plus fees, rreward = rblockreward + rfees.
As the focus of this work is modeling and analyzing the feasibility of algorithmic incentive
manipulation attacks, the operational mining costs play only a subordinate role, as they
would occur anyway, even without any attack. For an analysis of the relationship between
mining costs and attacks, we refer the reader to [TE18, CKWN16, Bud18]. Since most
costs, in practice, are paid in another currency and thus require an exchange of currency
units at runtime, we introduce the abstract notion of utility to refer to funds as well as
costs in the same denomination. In our case, the value unit of account is normalized
rewards (rreward = 1) of a reference resource. We further assume that all funds can
readily be exchanged into the required currency units if needed.

In contrast to other modeling attempts of NC using game theory, we focus on the
feasibility of algorithmic incentive manipulation attacks under economically rational
players. Therefore, we are primarily interested in the execution of the game, as well as in
the outcome, and not particularly in finding equilibrium strategies of the original game.
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7.3.2 Challenges in Modeling NC using Game Theory
In this section, we outline some challenges when modeling NC-based public permissionless
cryptocurrencies using game theory.

Sub-Games and Payouts

As already stated in Section 7.1.2, a NC protocol must, in theory, run infinitely long, so
there would not be any final termination point of the game. In [KKKT16], a payout for
block n occurs at block n + d, i.e., after d blocks. These intermediate termination points
also introduce a concept of finality and thereby would also work as a fork resolution
mechanism for long-range forks as their length is limited to d steps. The first branch,
which succeeds in having a descendant d generations later, is rewarded with a payout,
and all miners will completely ignore every branch that starts at an earlier node. The
general idea of the parameter d stems from a global parameter d = 100 used in Bitcoin,
after which the payout of the mining reward (rreward) is unlocked and thus spendable in
a new transaction.

Although a definition of d as a fixed payout delay (such as in [KKKT16]) has proven to
be useful for modeling certain game-theoretic aspects of NC, it does not accurately reflect
that there is no global security parameter k in NC that always holds. Instead, any k only
provides probabilistic guarantees, i.e., the probability that any block is reverted drops
exponentially with the number of subsequent blocks (assuming network delay and the
rate of honest block contributions is within the allowed bounds 7.1.1). So setting d = k
for receiving payouts would result in a practically workable system with parametrizable
error probabilities.

Unfortunately, in practice, there is no agreed-upon global security parameter k for
prevalent cryptocurrencies. Moreover, there are not only payout but also payload/payment
transactions. As a result, participants choose their own values (krecipient) for this
parameter to define the waiting period after which they consider a payment transaction
confirmed. This does not only have implications for payment transactions but also for
payout transactions. The reason for this is that miners can use the payout transaction in
their blocks to perform payments. In such a case, it is up to the recipient of the payout
transaction as payment when the transaction is considered confirmed. It is possible to
choose a confirmation period of krecipient < d, even if this means the recipient cannot
reuse the received funds in a new transaction till d further blocks in the future. This ties
to the question: When does a (sub-)game of NCG end s.t. payouts can be considered
performed?

As the game is infinite, there is no final termination point of the NC game where all
payouts are performed at once. One solution approach would be to define sub-games
where payouts are performed regularly, e.g., at every block x, the payout for block x − d
is made, where d = k. In other words, forks longer than d violate common prefix property
and thus are unlikely in practice. Nevertheless, the probability of a fork with length

> d is not zero. If this should ever happen, the safety of the NC protocol is violated,
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and the previous state before the fork might never be reachable on a different chain due
to semantic malleability [SJSW22], even if all transactions will be included in the exact
same order.

In addition to block rewards (from fees and base rewards), there are also payouts received
from payment transactions, i.e., all transactions which are not the first in a block (i.e.,
coinbase transactions), which we will also model in our approach. If we assume that
every participant has chosen the same value for k, i.e., kparticipants = k = d, which is the
same as the parameter after which payouts are considered confirmed , then the block at
position x + d not only confirms the payout transaction of block x, but also all recipients
of payments consider the transactions in this block as “confirmed”.

Note that it is possible that confirmed in the context of a block can have different
meanings, depending on what it refers to. If there are different preferences of participants
regarding krecipient, then d confirms the payout transaction/reward of a block, while kA

confirms a single transaction in a block for recipient A, while kB confirms a transaction for
recipient B, but at a later point in the chain as kA < kB . This is one reason why modeling
cryptocurrencies is complex. A cryptocurrency is not just one game, but the transactions
in a cryptocurrency can be viewed as multiple games running in parallel. Moreover, all
these games are not necessarily aligned with the underlying payout mechanism. The
fact that there are different individually chosen krecipient in practice can also be used to
avoid risks as a merchant. This let’s go shopping defense is described in [JSSW22a], or
Chapter 6 of this thesis

Intended Moves

In all permissionless NC-style cryptocurrencies, the concept of a binding move does not
exist. Any new block b is considered an intended move and defines a non-final state
transition. Moreover, there can be parallel or even contradictory intended moves that
lead to temporary or even permanent forks. The difference to other classic games is that
intended moves, compared to regular moves are not final. This makes cryptocurrencies
with the ability to fork hard to model compared to other games.

Validity of Moves has no Time-Bound

In addition, NC-style systems allow different moves (i.e., blocks) to be issued, even later
on, if a player deems this necessary. This is theoretically possible as blocks have no
time bound after which they become invalid. Even old blocks can be included in their
respective place in the game tree, i.e., branch/fork of the chain, as long as they result in
valid state transition. If they form a new longest chain, they are considered to be the
canonical chain. This means that any majority assumption regarding honest hashrate
has to hold also in the future. Otherwise, past blocks might get reverted later on. In
practice, the implementations of Nakamoto consensus might reject blocks belonging to
a fork of a certain depth, for example, the go Ethereum client (geth), which in some
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pruning modes rejects blocks longer than 128 blocks in the past. Here, the question
arises, what is the theoretical foundation that justifies this exact value, and how to come
up with a theory to derive such values?

Permissionlessness Exit and Join

The concept of permissionlessness is commonly understood as the ability to allow players
to join and exit the (theoretically) infinite game at any point in time. Thereby, the
previously infinite game becomes finite for the exiting player. This changes the properties
of the game and further complicates game-theoretic modeling. Moreover, this also
implicitly requires that the rate between honest and malicious players is maintained over
the entire execution of the protocol.

Built-In Asset Transfer (in-band)

The primary function of any cryptocurrency is the ability to transfer assets in-band.
This allows players (and especially miners) to transfer funds to other players, which
from a game theory perspective, falls in the category of games with transferable utility.
Depending on the degree to which such payments can be conditioned, e.g., if they
are only valid on a specific branch or after a particular event, this also provides some
enforcement capabilities. It can thus be argued that cryptocurrencies inherently allow
for side-payments/bribes as part of their design. This immediately crosses out all system
models in mechanism design that are not capable of dealing with side-payments among
players.

Moreover, if a cryptocurrency offers the possibility to create smart contracts that are
expressive enough, it might be possible to agree on side-deals or soft-fork rule changes by
using smart contracts as an internal binding commitment/enforcement layer.

Asset Transfer with External Resources (out-of-band)

Besides the ability to utilize a targeted cryptocurrency directly for side-payments, the
fact that a large ecosystem of multiple cryptocurrencies currently exists opens up the
possibility for out-of-band side-payments issued in other (cryptographically interlinked)
cryptocurrencies. Hereby, expressive smart contract capable cryptocurrencies already
provide a suitable platform to launch AIM attacks against other cryptocurrencies as
highlighted in [JSZ+19], or Chapter 4 of this thesis.

Therefore, it also appears conceivable that AIM may be used to undermine security
assumptions in closed, so-called permissioned blockchains and DLT by targeting the
implicit incentive structures that are often ignored in classical system models yet are
likely present in real-world systems. This implies that DLT in closed systems that do
not explicitly support cryptocurrencies may nevertheless be vulnerable to (cross-chain)
bribing attacks. One future research direction is hence the analysis and application of
AIM in such environments and the question of how constrained scripting capabilities in
DLTs have to be able to avoid these issues.
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Generally speaking, as soon as a system either temporarily or permanently agrees (i.e.,
decides) on a particular state, this result can be used as input to another interlinked
system providing incentives to reach an attacker desired decision in the targeted system.
Hereby, the system models of both systems share some interdependencies and can either
worsen or constrain the problem at hand.

Asset Transfer with New External Resources (out-of-band)

Depending on the concrete scenario, the required financial resources (the budget) to
successfully execute bribing and AIM attacks can be quite large. For example, if deep-
forks or Goldfinger attacks are concerned. Some AIM attacks can work around this by
performing less intrusive attacks that do not require costly forks, by programmatically
sharing the potential profits with miners, or by crowdfunding the required resources.

Besides these techniques, there also exists the possibility to generate new virtual resources
which can be used to finance AIM attacks. For example, the pitchfork attack described
in [JSSW18], or in Chapter 2 of this thesis, creates a new cryptocurrency whose market
value can be used to subsidize the Goldfinger attack on the targeted system, which
inherently is part of the new protocol.

Non-Finality (also of Transactions)

Cryptocurrencies based on Nakamoto consensus, which provide probabilistic guarantees
that a certain transaction has occurred at some place in the canonical chain, are not
suited to derive final decisions regarding the transfer of external assets/resources. The
reason for this lies in the fact that, as soon as a merchant has accepted a payment via
this system and handed over the goods, the creator of the transactions has no more value
associated with the respective account/key-pair. Therefore, the creator can equivocate
and in retrospect cryptographically sign different payment transactions promising almost
all (already spent) assets to other entities in the system. This attack is theoretically
risk-free as the assets have been spent already anyway, but in the best case, some of these
assets can be regained if the right entities can be bribed with the promised rewards. This
makes any fork-able system a non-ideal candidate for a base layer of any cryptocurrency
where the finality of an asset transfer is a necessary design feature from the perspective
of all users that want to accept payments.

Even if the target system offers finality but at the same time assumes economically
rational actors, then also “final” agreement could be revocable. If sufficiently large bribes
are offered in a funding cryptocurrency to a threshold of nodes in the targeted system,
it might be possible to incentivize a safety violation and thus lead to an agreement
failure. For example, if equivocation is more profitable due to bribes (also accounting for
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slashing and economic punishment in the target system), then equivocation (and thus an
agreement failure) becomes economically rational.

7.4 Economically Rational Block Selection
In this section we describe a simplified blackbox approach to abstract all game elements
and the concept of incentives by a function that determines the expected extractable
value (EEV) of a player. For an economically rational miner a block b is preferred,
compared to a different block b , if the expected extractable value (EEV) for i is higher.
This simple relation is depicted in equation 7.19. For a more detailed definition and
discussion of EEV we refer to [JSSW22a], or Chapter 6 of this thesis.

EEVi(R, b ) > EEVi(R, b) (7.19)

When we focus on this individual perspective from a player i, we use an abbreviated
notation for referring to EEVi(R, . . . ):

EEV(b ) > EEV(b). (7.20)

With this definition of EEV we follow a blackbox approach in which all costs and expected
future profits are abstracted by the function EEV. This function computes the expected
extractable value (i.e., the utility of proposing or reaching this block for the respective
play), while considering the probabilistic nature of NC and, thus, the likelihood of current
and potential future payoffs, as well as accounting for potential losses of funds and
missed opportunities. For more information on how to calculate the EEV, we refer
to [JSSW22a, JSSW22b], or the respective Chapters 5 and 6 of this thesis. If a player
i is assumed to act economically rational, she will select the block which promises the
highest expected extractable value. As we assume the economically rational behavior of
proposers, their actions are primarily motivated by the expected gain in the respective
resource(s). From the perspective of other actors, the resulting behavior can also be
viewed as an attack on their individual gains. Therefore, we might also use the term
attack if appropriate, especially later when we describe methods for third parties to
incentivize the respective behavior , e.g., through bribes as part of algorithmic incentive
manipulation. This should emphasize that the economically rational behavior of one
party might lead to losses of another party and thus can be termed an attack from the
perspective of the latter (cf. [JSSW22b] and Chapter 5).

But how does a proposer or miner construct or identify the most profitable block? Per
definition, there can only be finitely many transactions in a block (determined by the
block size ℵ), and a transaction is also required to be finite. Thus, depending on the actual
size of a transaction, there can be a vast but necessarily finite number of potentially valid
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transactions for any block. Still, there can only be ℵ valid transactions in the next block.
Given the potentially huge search space and the open nature of the protocol, a natural
question is how to select a sequence of transactions for the next block to determine the
next operation. To answer this question, the set of transactions that are available to a
certain player, the incentives of players as well as and their expected extractable value
(EEV) from a certain sequence of transactions is relevant.

7.4.1 The Set of Available Transactions for Blocks
Block proposers have to select their next block based on their individual set of available
well-formed transactions. We define the set of all well-formed transactions available
to a player i as Ti. The critical aspect here is that not every player can create every
well-formed transaction. In practice, this is the case because it is infeasible to forge the
cryptographic signatures required for the transactions.

Definition 28 (Ti). The set of all well-formed transactions available to player i consists
of:

• The set of all well-formed transactions collected by i, e.g., the mempool. These
transactions have been created by other players that are not i, hence we denote them
by −i, as a commonly used notation in the area of game theory. The transactions
in this set cannot be created by i. The set of all well-formed transactions collected
by i is denoted by T −i

i .

• The set of all well-formed transactions player i can create on his own, denoted by
T i

i .

Ti := T −i
i ∪ T i

i (7.21)

The set Ti consists of all well-formed transactions available to player i, consisting of
collected transactions that other players have created, denoted by T −i

i , in addition to
all well-formed transactions player i can create by himself, denoted as T i

i .

Depending on the set of well-formed transactions available to a given player i, certain
future blocks become theoretically reachable for this player or stay unreachable since
the respective valid operation to reach it cannot be created. In turn, this means that
the set of all potentially constructible valid operations changes with the set of available
transactions. In other words, creating a blockchain is selecting a path through the set of
all possible valid blocks O of NC. Thereby, the set of the possible valid future blocks −→O
changes with each step, i.e., block. The set of possible valid future blocks −→O depends
on the set of available transactions T , i.e., more available transactions in the mempool
unlock a larger set of possible next blocks. Suppose now some actor published a new
transaction tx, which exploits an arbitrage opportunity and directly bribes the miner
of the next block for including it, the set of available well-formed transactions changes
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Figure 7.1: A blockchain is depicted as a specific sequence of n blocks within the set of all possible
valid blocks. Starting from the latest block at height n, two potential next blocks in two different sets of
valid future blocks are depicted. These two sets differ depending on the available set of transactions, i.e.,−→O = Future(bn, T ) and −→O = Future(bn, T ), where T ⊂ T and thus −→O ⊂ −→O .

to T . This, in turn, changes the set of reachable potentially valid future blocks to −→O .
Figure 7.1 shows such an example.
This example illustrates that an attack can influence the choice of the next block by
an economically rational miner by publishing new transactions T such that a desired
block gets more valuable for miners. Economically rational proposers will certainly not
participate in such an attack if the existence of a more profitable block can be ruled out
from his perspective:

¬∃bn+1 ∈ Future(bn, {∀b ∈ O|Txseq(b)}), EEV(bn+1) > EEV(bn+1). (7.22)

If this does not hold, then there exists a set of transactions that leads to a more
profitable block than bn+1. Therefore, bribing attacks could potentially be feasible. For
example, this means that mining a block with the desired ordering of some arbitrageur
could be more profitable than mining a block without this specific transaction or set
of transactions. If the resulting ordering is also more profitable for the issuer of the
transaction, then this is a win-win situation. Although, the problem in practice is that
if the respective guaranteed profit transaction becomes visible to other profit-seeking
players, this transaction is vulnerable to front-running, leading to the observed behavior
of bots [DGK+20, ZQC+21]. Note that, in such a bidding game, the achievable rewards
of the miner increase while the achievable profits of the bidders decrease.
The same mechanism can also be used to incentivize miners to facilitate a double-spending
attack. For example, by offering some of the achievable rewards as bribes. In such a
double-spending attack, the block height x of the block to extend would be determined by
the security parameter of the victim s.t. x = n − kV . Moreover, the transactions in the
respective blocks, which should become stale would again become part of the mempool
and can be included in new blocks. Except the transaction tx, which should be double-
spent and must therefore be excluded in the new sequence Txseq((bn−kV

, . . . , bn)) \ tx.
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Instead, a new conflicting transaction tx is issued and part of the set of transactions T
that is available for inclusion. If T also contains some bribing transaction(s) TB that
are only available in the attacker-preferred branches/chains, an economically rational
miner i could prefer mining on the double-spending branch. Conversely, if there does
not exist any set of transactions such that blocks can be constructed that offer more
expected extractable value compared to bn+1, then an economically rational miner will
not engage in any such attack as for him bn+1 is already the most profitable option.

∀bn+1 ∈ Future(bn, T ),
¬∃bx+1 ∈ Future(bx, {∀b ∈ O|Txseq(b)}), EEV(bx+1) > EEV(bn+1). (7.23)

This again implies that the function EEV also accounts for potential losses due to the
fork, e.g., of already contributed blocks, received payments, or drops in the exchange
rate. This is analyzed in [JSSW22a, JSSW22b] as well as in Chapters 6 and 5. For the
attacker, incentivizing deep-forks is profitable if the rewards from the double-spend are
greater than the issued bribes. For the potentially bribable miners, the offered bribes
have to be higher than their previously expected extractable value.

Those two examples differ regarding their level of interference with the rules of the system.
In the first case, no fork is required, whereas in the case of a double-spend a fork of
sufficient length is required. For a classification of different attacks regarding their level
of interference with the rules of the system, see Appendix A.3.

7.4.2 Protocol Compositions using Adversarial Games
Apart from identifying profitable revenue opportunities on their own, proposers/miners
can also be incentivized to propose certain attacker preferred blocks through AIM using
bribes. Thereby, they do not have to search for the most profitable block themself, but
instead, they rely on a block provided by an attacker, which also carries an above-average
reward. By following this approach, proposers voluntarily participate in the attack carried
out by the initiator.

For example, an attacker can offer some of the achievable rewards from the attack as
bribes to complacent proposers under the condition that a specific block or a series of
blocks is proposed. As such attacks might also lead to losses of already contributed
blocks, received payments, or drops in the exchange rate due to malicious activity, the
function calculating the expected extractable value (EEV) for the proposer needs to
account for that. In a multi-resource scenario, drops in the exchange rate can be avoided
by having stakes in other non-affected or positively affected resources. For a discussion
of this multiple-resources scenario see [JSSW22a, JSSW22b], or Chapter 6 and 5.

Losses of already contributed blocks can be avoided by compensations through bribes
or larger rewards. In general, the ability to accurately reward compliant behavior
automatically by using smart contracts (such as described in [JSZ+19, WHF19], or
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Chapter 4 and 5) reduces the costs of the attack drastically, compared to in-band reward
methods in cryptocurrencies where this is not possible. In the UTXO model of Bitcoin,
for example, the paper [KNW20] shows that immediate payoffs are preferred by miners
if their hashrate is small, compared to larger rewards later on when payouts are only
received later if all selected miners comply.

If out-of-band rewards are accepted by bribees, the situation changes drastically as
sophisticated attacks which accurately reward compliant behavior can be constructed in
external systems. This has been practically demonstrated in [JSZ+19] (Chapter 4 and
Appendix A.6)and is generalized in Section 7.6.

We now want to analyse how and under which conditions adversarial games, targeting
cryptocurrencies based on NC, can be constructed to facilitate algorithmic incentive
manipulation. Thereby we use out-of-band payments to incentivize certain actions of
economically rational miners in a way that is profitable for all compliant parties.

7.5 Adversarial Game to Manipulate Transaction
Ordering (no-fork)

In the following, we describe adversarial games to facilitate algorithmic incentive manip-
ulation. We begin with an adversarial game (AG) to incentivize a certain transaction
ordering. This variant of the game represents an unintrusive optimization method for
participating miners.

For this first scenario, we assume an attacker Eve (E), which wants to manipulate
the ordering in a currently ongoing NC game by manipulating block proposals to her
advantage. In contrast to other “classical” double-spending/private chain attacks, no
revision (i.e., no fork) of the blockchain is required for such an attack. The attack can be
started at any point in time and targets an unconfirmed transaction sequence τ , which
includes the transactions tx1 and tx2 in this order in the suffix of sequence τ . We denote
this as tx1 < tx2. In this case, transaction tx1 comes from some other actor V , who is
the victim in this case. The respective transactions have not yet been mined and thus
have not been included in a block. Eve wants to replace this sequence with a sequence
τ , in which the transactions are reordered s.t. tx2 < tx1.

To do so, Eve starts a new adversarial game called OrderGame (Π ) to influence the
creation of the next block bn+1, in the targeted system Π. As soon as the transactions in
question are published and known by Eve, Π is initialized. Without such a game, at this
point in time, every miner would create his individual block proposal, which might look
like b̄n+1(. . . , tx1, tx2, . . . ). This would create a chain of blocks c, where τ ≺ Txseq(c),
as soon as the topmost block has been mined. To create this block proposal b̄n+1 a
miner would include a coinbase/reward transaction txreward and append the new payment
transactions to be mined after that. If lucky, the created block in sequence c then possibly
becomes confirmed later, s.t. the miner can collect his block reward, including fees from
transaction txreward in his previously created block bn+1(txreward, . . . , tx1, tx2, . . . ).
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If there now is a proposal chain c̄ , where the head of the chain is b̄n+1(. . . , tx2, tx1, . . . ),
which provides higher expected profit than the original proposal chain c̄, it can be assumed
that economically rational miners would prefer this one over the other. To achieve this,
the OrderGame pays out funds to the miner of a confirmed block bn+1 if this block
really includes the transactions (. . . , tx2, tx1, . . . ) in this particular order. As this attack
can be executed multiple times in succession, it is sufficient to describe and analyze it for
the ordering of the next block at height n + 1.

The remaining question for a successful attack is how Eve can specify transaction txreward

without knowing who will mine the respective block. There are two possible solutions to
this: The first approach is to add oneself (Eve) as a beneficiary in the txreward transaction
and compensate the respective bribed miner of the attacker desired block without a
reward in the adversarial game Π . In Π Eve can pay out the compensation for the
reward in Π together with the additional bribe. This approach is used in this section.
The second approach is introduced in Section 7.6 where it is used in a different attack
scenario.

An example attack, including concrete transaction sequences and the resulting chains, is
listed below. Let’s assume the current state of the blockchain and the associated ordered
transaction sequence is as follows:

cn = b1(txi), . . . , bn(txj) (7.24)
Txseq(cn) = (txi, . . . , txj) (7.25)

A miner could now extend this sequence as shown in τ . The resulting sequence τ would
then be used to create a new block template b̄n+1 which is used as input to some mining
functions to create the chain cn+1.

τ = (txi, . . . , txj , txreward, . . . , tx1, tx2, . . . ) (7.26)
cn+1 = b1(txi), . . . , bn(txj), bn+1(txreward, . . . , tx1, tx2, . . . ) (7.27)

If an attacker now wants to ensure that the resulting transaction sequence contains tx2
before tx1 he either has to mine the next block, or incentivize other miners to include
these transactions in this particular order. To do so he has to ensure the transaction
sequence τ is mined to create a chain resembling cn+1.

τ = (txi, . . . , txj , txreward, . . . , tx2, tx1, . . . ) (7.28)
cn+1 = b1(txi), . . . , bn(txj), bn+1(txreward, . . . , tx2, tx1, . . . ) (7.29)

Due to the probabilistic nature of NC, he has to define and wait for a confirmation period
kE after which he considers the desired sequence of transactions confirmed.

cn+1+kE
= b1(txi), . . . , bn(txj), bn+1(txreward, . . . , tx2, tx1, . . . ), . . . , bn+1+kE

(. . . )
(7.30)
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7.5.1 Assumptions of the AG OrderGame
In this section, we explicitly highlight all necessary assumptions for the attack. Some of
these assumptions will later be lifted when their individual effect is analyzed in greater
detail. Our basic assumption is that some fraction of miners is economically rational
with respect to some set of resources R. The fraction of economically rational miners, as
well as the number of resources in R, is dependent on the analyzed scenario and thus
can vary depending on the respective case.

Assumption 1 (Economically Rational players). Some fraction of miners in the targeted
NC game is economically rational with respect to some set of resources R.

As in other models [GKL15], we simplify by requiring the difficulty in PoW cryptocur-
rencies to be constant. Thereby, the longest chain is also the heaviest chain in terms of
difficulty.

Assumption 2 (Constant difficulty). For NC based on PoW, the difficulty for the whole
duration of the game is constant.

To correctly payout rewards and compensations in the adversarial game Π , it is required
that the players in the targeted Π are able to assign information to receive payments
to their attacker desired actions in Π. Otherwise, it would not be possible to correctly
reward bribed players in Π, and as a result, no player in Π would have an incentive to
accept bribes as it could not be ensured that they really receive them.

Assumption 3 (Attributability). Blocks are uniquely attributable to addresses/accounts
of (pseudonymous) players to provide rewards.

To prevent corner cases where payouts in Π are handled incorrectly, both games are
assumed to be synchronized and that there is no network delay. This, for example, makes
it impossible that a chain of blocks is submitted to Π without being submitted to Π as
well since players in Π (including Eve) can always forward any received blocks to Π in
time. For more details regarding the synchrony requirements between the two games see
Section 7.5.4.

Assumption 4 (Synchronous communication). All messages (blocks and transactions)
are received by all players before a known upper bound Δ. This does not mean that
there necessarily exists a block in every interval. If there is a block in a certain interval,
it is received by all players before the end of that interval.

Assumption 5 (No network delay). All messages are transmitted without any network
delay.

165



7. Adversarial Games: Formalization of AIM attacks on Nakamoto Consensus

With assumption 6, it should be ensured that all miners know that an adversarial game
exists and are able to understand and verify its rules and payout scheme.

Assumption 6 (Perfect information regarding AG). All miners have perfect information
regarding the adversarial game.

With assumption 7, it should be ensured that at least two payload transactions are
available so that the ordering can become relevant.

Assumption 7 (Transaction availability |Ti \ Txseq(Chain(bn))| ≥ 3). The number of
transactions available to i, which have not yet been included in a block known to i, is at
least |Ti \ Txseq(Chain(bn))| ≥ 3, one of which is the payout transaction.

7.5.2 Rules of the AG OrderGame

In this attack, the attacker Eve (E) creates a new adversarial game Π called OrderGame
, which is defined by the 5-tuple Π = Π, bn, τ , , kE .

Hereby, the arguments to the game Π initiated by E are: The specification of the
original/targeted cryptocurrency, which itself is a NC game Π. This specification contains
all necessary predicates, functions as well as the genesis block of Π. The current latest
block bn in the targeted game Π. The desired sequence of transactions τ , including
the transactions which have yet to be mined in the given order, as well as the offered
bribe . Of course, the structure of the adversarial game has to plausibly assure that
the offered reward is indeed paid out if Π terminates. Depending on the concrete
implementation as well as the computational capabilities of the targeted system, this
payment can happen in-band (i.e., in the targeted cryptocurrency Π) or out-of-band (e.g.,
in a different cryptocurrency). The latter requires that there is more than one resource
economically rational miners care about, i.e., |R| ≥ 2. In both cases, the OrderGame
can be implemented as a smart contract on Ethereum, as demonstrated in [JSZ+19].
Either to attack Ethereum itself or another cryptocurrency with the help of Ethereum.

Moreover, a security parameter kE is provided, which specifies the length of the suffix,
after which the state of Π is considered acceptable in Π . The adversarial game Π has
two termination conditions. The outcome of Π is determined by the condition which
happens first.

Termination condition I (success)

A player of Π provides the game with a valid input sequence c of length at least n+1+kE

confirming the adversarial sequence of transactions τ is part of the current state of Π.
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Therefore, the following conditions hold:

bn ≺ Head(c ) ∧ (7.31)
Length(c ) ≥ n + 1 + kE ∧ (7.32)

Valid(c ) ∧ (7.33)
τ = Txseq(bn+1 ∈ c ) (7.34)

In other words, c contains the desired list of transactions τ , where tx2 occurs before tx1.

If Π is constructed using out-of-band payments, the chain c has to be submitted to
AG before some player provides Π with any other valid input sequence c of length
n + 1 + kE , where τ ⊀ Txseq(c). This is required to not reward old/stale chains from
Π in Π . More information on the required synchrony between Π and Π can be found in
Section 7.5.4. If a valid attacker-preferred sequence of transactions of length n + 1 + kE

has been submitted, the game rewards the miner of block bn+1 with an additional , i.e.,
with rreward + in total, as also the rewards coming from payout transactions have to be
compensated. This is necessary since the payout transaction in txreward in τ is paid to
Eve instead (in the original game Π). After the reward of Π has been paid, the game
terminates. The sequence c, which has been submitted to Π , can then be replayed in Π
as the new longest chain.

Termination condition II (fail)

A player of AG OrderGame provides the game with any other valid input sequence c
of length at least n + 1 + kE , where the following conditions hold:

bn ≺ Head(c) ∧ (7.35)
Length(c) ≥ n + 1 + kE ∧ (7.36)

Valid(c) ∧ (7.37)
τ = Txseq(bn+1 ∈ c ) (7.38)

Then the AG terminates without paying out any rewards. The sequence c can also be
submitted to AG by Eve if observed in the original game Π, and the AG has not yet
terminated, i.e., if this is the first sequence of length, at least n + 1 + kE .

7.5.3 Technical Feasibility and Computability of the AG OrderGame
As we are primarily interested in analyzing practical scenarios, we focus on instances of
NC with a finite number of steps played and a finite set of players. We call these finite
chain instances. To evaluate the practicality of adversarial game attacks on such instances,
we analyze the computational feasibility of such scenarios, as well as the conditions for
their profitability. We first show that adversarial game attacks on finite chain instances
necessarily are technically feasible and efficiently verifiable in the out-of-band case. The
feasibility of the in-band case depends on the capabilities of the targeted platform. We
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then analyze the required assumptions s.t. OrderGame attacks on the NC game can
be made profitable for economically rational miners.

Note that we are not interested in the complexity of the mining process itself, only in
the evaluation and verification of its rules. Generally, for PoW, the process of mining
can be split into two parts:

• Block Mining: This refers to spending a scarce resource, such as finding the solution
to an intentionally hard puzzle, as done with PoW.

• Block content composition: This refers to the optimization problems to generate
the maximum reward with a new block proposal.

Even for cryptocurrencies without smart contracts, block content composition is an
NP-hard 10 problem. To avoid defining the exact complexity and hardness of the whole
mining process, including the associated optimization process, we focus on evaluating
the rules given a set of blockchains, i.e., the evaluation of the predicate Valid(·) and the
functions Execute(·) and Main(·). This ensures that blockchains can be verified and
the longest one can be selected. Note that, in a model where the difficulty is constant,
the longest chain is automatically also the heaviest chain and thus the main chain.

In other words, we focus on the computability of evaluating the rules of NC as well as
the computability of the rules of the adversarial game to attack it. As in practice, we can
only observe finite chain instances, we will only consider finitely many finite blockchains
and finite executions of the adversarial game that is aimed to attack it.

In an OrderGame attack, Eve is required to construct a desired/malicious sequence
τ of transactions. Therefore, Eve would have to create a block proposal b̄n+1 with
her desired sequence of payment transactions. In our example, this would result in an
ordering where tx2 comes before tx1. As b̄n+1 is a block proposal, the rational miner
who will successfully mine this proposal cannot readily be determined. Therefore, the
fist transaction in the block which determines the reward in Π (i.e., txreward) cannot
be defined correctly upfront by Eve. In this section, we work around this by letting
Eve define a transaction sequence where the payout of txreward goes to her, while the
adversarial game compensates the miner for the missing payout reward.

To analyze the computability of the described OrderGame attack and its adversarial
game targeting finite chain instances, we first start by providing the necessary definitions.

Definition 29 (Finite chain instance). An instance of infinite NC with finitely many
players, which has been executed for finitely many steps, i.e., blocks, is called a finite
chain instance.

10cf. https://freedom-to-tinker.com/2014/10/27/bitcoin-mining-is-np-hard/
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The focus on finite chain instances implies that there can only be finitely many competing
blockchains. As a result, only finitely many chains have to be checked to determine the
longest and thus the canonical chain. This is the case because we are in a model with
constant difficulty, in which the longest chain equals the heaviest chain.

In our OrderGame attack approach, Eve defines a block template, e.g., b̄n+1(txreward, t2, t1),
in the adversarial game Π , containing a transaction txreward paying the block reward in
Π to Eve. In this case, Π has to reward the adversary and compensate the reward for
this block (including fee) to the respective miner directly in the adversarial game. As we
are interested in the practical feasibility, we focus on attacking a finite number of steps
of a specific instance of NC. Therefore, we define an efficiently verifiable game as follows.

Definition 30 (Efficiently verifiable game). A game is efficiently verifiable if its rules
can be evaluated, for a finite number of steps and players in polynomial time.

Lemma 1 (The NC game is efficiently verifiable). Finite chain instances of NC are
efficiently verifiable , i.e., its predicate and functions, except the function Propose(·),
can be evaluated for a finite number of chains, steps, and players in polynomial time.

The NC game is efficiently verifiable. Per Definition 30, we are only interested in in-
stances with finitely many steps. Therefore, the longest chain and thus all other chains
can only have finitely many blocks. This also implies that there can only be finitely
many competing chains that might have been produced. As a result, an InTree of all
blockchains with a common genesis block can only have finitely many vertices, i.e., blocks.
To prove that NC is efficiently verifiable, we now show that the time complexity, measured
in execution steps, of all functions and predicates in NC is polynomially bounded:

• Execute(·) runs on a given state as well as a block. Per definition, the function is
polynomially bounded and required to terminate to either return a response or ⊥.
Thus, per definition, Execute(·) clearly runs in polynomial time for some input
m and some constant c1, i.e., O(mc1).

• Valid(·) invokes Execute(·) and runs on a chain of blocks of length n. Fur-
thermore, it might require another constant c2. Therefore, it has time com-
plexity nc2 · Execute(·). Thus Valid(·) runs in polynomial time as well, i.e.,
O(max(n, m)c1+c2).

• Main(·) runs on a given InTree , thus the complexity of finding the longest path
is linear in the number of vertices and edges [CLRS01]. Let N be the number of
vertices. As every block only has exactly one predecessor and the genesis block
has none, there are exactly N − 1 edges in the InTree . Thus the complexity of
finding the longest path is O(N + (N − 1)) which simplifies to O(N) . Under the
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assumption that the InTree is constructed at each client and only valid blocks
are added to the InTree , the longest path represents the canonical chain. If also
invalid blocks (except for the correctness of the cryptographic hash) can be included
in the InTree , the function still runs in polynomial time. As shown, checking if
the initially found longest path, i.e., chain, is valid, runs in polynomial time. If the
discovered longest path is not valid, the last node (block) of the path is removed
from the InTree , and the algorithm is executed again. In the worst case, this
results in N executions, checking in the worst case a chain of length N in the first
round. Thus the worst case complexity is O(N) · O(N) · O(max(N, m)c1+c2), which
simplifies to O(max(N, m)2+c1+c2).

As all necessary functions and the predicate Valid(·) of NC run in polynomial time, we
have shown that NC is an efficiently verifiable game according to Definition 30.

Now we have to show that if the NC game can be considered efficiently verifiable, then
an adversarial OrderGame can be constructed to attack the incentives of NC that are
also efficiently verifiable and eventually terminates if the targeted system makes progress.
To keep the proof generic for adoption in Section 7.6, we only refer to the OrderGame
as adversarial game (or abbreviate it by AG) for the rest of this section.

Theorem 3 (There exists an AG targeting a NC game that is efficiently verifiable and
eventually terminates). An adversarial game (AG) targeting a finite chain instance of
the NC game is efficiently verifiable and eventually terminates if the targeted instance of
a NC game is efficiently verifiable and eventually makes progress.

To prove that it is indeed technically and computationally feasible to construct an AG
for Π, we first prove that such an AG is efficiently verifiable if the underlying NC game is
efficiently verifiable. Then we show that the AG eventually terminates if the underlying
NC game eventually makes progress.

Lemma 2 (The AG is efficiently verifiabale). If a NC game is efficiently verifiable, i.e.,
its rules can be computed in polynomial time, then an adversarial game (AG) aimed to
attack a finite chain instance of the NC game is also efficiently verifiable.

The AG is efficiently verifiable. The blockchain up to block bn, as well as any other
blockchain of length n, is necessarily finite (as long as n is finite which is the case per
definition). Since NC is efficiently verifiable and the function Valid(·) has polynomial
runtime, there must exist an efficient algorithm deciding if a chain of blocks c is valid in
1 + kE additional steps of the original NC protocol. The helper functions Length(·),
Prev(·), and Head(·), can also run in at least n steps (for traversing the given chain) and
may require some constant exponent. Therefore, they also clearly run in polynomial time.
Selecting bn+1 ∈ c can be done by executing Prev(·) for kE times and therefore also
runs in polynomial time. Additionally, we have to show that determining bn ≺ Head(c ),
and τ = Txseq(bn+1), is also doable in polynomial time. Let x be the length of the
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smaller sequence of transactions or blocks respectively. Then identifying if a sequence
is a prefix or equivalent of another sequences is clearly doable in polynomial time as
iterating and comparing two lists of transactions or blocks is bound by the (necessarily
finite) number of elements of the smaller sequence and thus a polynomial P (x). The
same holds for determining bn ≺ c , or bn ⊀ c . Therefore, the AG is efficiently verifiable
if NC is efficiently verifiable.

Lemma 3 (The AG eventually terminates). If a targeted NC game eventually makes
progress, an attacking adversarial game (AG) will eventually terminate.

The AG eventually terminates. If NC eventually makes progress, some chains will even-
tually reach n + 1 + kE blocks. Since we are only interested in attacking a specific
instantiation of NC, and thus a finite sequence of steps of NC, this implies that there
can only be finitely many chains of blocks for NC (i.e., forks) at any given point in time,
which in turn can be submitted to the AG. As the AG terminates when the first valid
chain of length n + 1 + kE is found, only finitely many blockchains have to be validated
by AG, as AG terminates on the first valid chain of this length. Therefore, if NC makes
progress, some chains will eventually reach the required number of blocks and can be
submitted to the AG, which will eventually terminate.

There exists an AG that is efficiently verifiable and eventually terminates. From our
Lemma 2, it follows that the AG is efficiently verifiable if the targeted NC game is
efficiently verifiable. From Lemma 1, we know that the NC game is indeed efficiently
verifiable and so must be the AG to attack it. Lemma 3 shows that the AG eventually
terminates if the targeted NC game eventually makes progress. Therefore it follows that
an AG is indeed efficiently verifiable and eventually terminates if the targeted finite chain
instance of the NC game is efficiently verifiable and eventually makes progress.

7.5.4 Practical Considerations for the OrderGame
The possibility of constructing an AG (such as the OrderGame ) with in-band rewards
depends on the capabilities offered by the targeted system. For Ethereum, for example,
it is possible, as shown in [JSZ+19], while for Bitcoin, it is not possible as the ordering
of transactions is not accessible from within the system.

For the out-of-band case, the proof of Theorem 3 shows that it is technically feasible
to construct an efficiently verifiable AG which is running in parallel to the original NC
game. Provided that the out-of-band rewards for the AG can be credibly paid out and
are available in a resource R ∈ R economically rational players of the targeted NC game
care about. If this is the case, then this composition could interfere with the incentives
of such players in the NC game. If the state and all messages of the targeted NC game
are publicly observable, as it is the case with so-called permissionless cryptocurrencies, it
is not feasible to prevent the creation of such external adversarial games as all the data
to construct them is publicly available.
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An interesting question and subject for future work are the exact communication and
synchrony requirements between those two games, as well as the impact and inheritance
characteristics of the chosen consensus approach (finality vs non-finality, permissionless
vs permissioned). In the following we will highlight key challenges and possible solution
approaches from a practical perspective.

Synchrony between the two games and Finality

From an attacker’s perspective, targeting a cryptocurrency that does not offer finality
also has some disadvantages. If the targeted system does not provide finality, also the
attacking system cannot offer finality without risking false payouts. In the simplest case,
the targeted game Π would actually agree on states and thereby offer some form of
finality, i.e., a resulting agreed-upon state. This final state can then be used as input to
the adversarial game Π . Therefore, Π could also offer finality and decide 11 based on
the decision made in Π. The remaining challenge would be to inform sufficiently many
players of Π about the potential rewards in Π before they make their final decision about
the respective state in Π, which should be influenced by Π .

Unfortunately, NC never actually agrees and thus does not offer finality (as described
in Section 7.3). Therefore, it is necessary to prevent the AG Π from making a wrong
decision regarding the actual state of the targeted NC game Π. As in the original NC
protocol, the probability that some sequence remains part of the canonical chain can be
adjusted by the choice of the security parameter kE . Hereby, it is even possible that the
original global security parameter of the NC game is smaller than the parameter used in
the AG, i.e., k < kE . So in terms of the decision, the AG can only provide probabilistic
guarantees if the targeted system only provides probabilistic guarantees. But how to
ensure that the same inputs are used in both games?

To prevent that some chain of length N = n + 1 + kE is only submitted to the AG Π ,
but not to the original NC game Π, some form of relay between those two systems is
required. As Eve wants her attack to have an effect on Π, she is assumed to replay any
chain c sent to Π to Π. If there is no network delay (Assumption 5), every input to Π
can immediately be replayed and used as input to the original NC protocol Π as well.
Moreover, Eve has a strong incentive to prevent the AG Π from paying out unnecessary
rewards. Therefore she will relay current information on the state of Π (i.e., non-attack
chains c) to the AG as well. Note that it would not be relevant if Π terminates after the
same input has already been verified in Π, as long as all inputs received are processed in
sequential order by Π . So it is fine if Π takes polynomially more time to compute the
rules and terminates after Π has already produced a result for the same chain of blocks.

11If the attacking system works by agreeing on the output (consensus decision) of the targeted system,
then this agreement can of course only happen after the target system has agreed. Thus if the target
system is asynchronous, also the attack has to be asynchronous (not necessarily the underlying system
which for example hosts the attack smart contract). If the target system is synchronous, the synchrony
bound regarding the output of the target system, from the perspective of the attacking system, needs to
be before the attacking system can agree.
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If we would not assume synchrony, and there would be some network delay, the Π could
be tricked into paying out bribes even though the required state has not occurred in Π.
In the worst case, both systems are not synchronized, and Π receives a chain of length
N and terminates, while this specific chain will not become part of the canonical chain in
Π. The reason for this lies in the nature of NC as a probabilistic system. Still, due to the
properties of NC valid inputs (i.e., blocks), even from older rounds, will not be discarded
but included in the InTree at their respective positions. Therefore, valid blocks always
have some effect, such as advancing a stale branch to make further attacks more likely.

Let us now sketch some other approaches of how to deal with this aspect of synchrony
between AG and the NC game in this context:

Always propagate changes in Π to Π The first approach would be to tie the state
and thus the outcome of Π to the state of Π. This would for example be possible in
case of an in-band attack if the descriptiveness of the target cryptocurrency allows the
creation of Π on the application layer of the target cryptocurrency. For example, if the
target cryptocurrency supports expressive smart contracts such as in Ethereum, Π can
be constructed as a smart contract in the respective currency under attack, thereby all
state changes in Π would immediately propagate to Π , where it leads to the correct
decision. Such an in-band attack based on smart contracts in Ethereum was described
in [JSZ+19]. In this case, it is also not necessary to compensate the block rewards of
miners participating in Π and mining the block with the respective ordering.

Provide incentives to comply In this approach, Π is constructed in a way such that
it is more profitable to comply than to sabotage Π . In our case, for example, mining and
keeping 1+kE blocks secret to only submit them to Π is less profitable than participating
in the mining process of Π directly and only later if sufficient blocks have been found,
submit them to Π if this promises additional rewards.

Transfer the risk by cashing out Another approach would be to transfer the risk
that the state of the target cryptocurrency changes in retrospect by introducing some
additional delay to be able to cash out in Π as long as the attack chain is in the lead.
For this to work, Π has to be adapted in a way that a delta (ΔkE1) between the highest
block of the attack chain and the second longest chain without the attack must reach
a certain value. If this delta (in terms of blocks) is reached, another phase starts in
which there is a new delta ΔkE2 and some delay, after which the AG really terminates,
and all rewards and bribes are paid if still no other longest chain is known. With this
construction, there is now a time window between the advantage of ΔkE1 and the new
delta ΔkE2 , in which the longest chain known is the attack chain. Therefore, Eve can
use the respective chain and submit it to Π, where it will take the lead. If Eve now finds
a merchant who has a fixed security parameter kmerchant that fits between the current
head of the chain and the new delta ΔkE2 , she can use this merchant to cash out her
in-band profits from the attack and thus will keep them even if Π later reverts. Still, Π
would have paid out rewards unnecessarily, but Eve already has secured her gains and
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thus can ignore this fact. This is comparable to the let’s go shopping approach described
in [JSSW22a], as well as in Chapter 6.

7.5.5 Profitability of the AG OrderGame
(pA + pV + pB = 0)
To assess the general profitability, we first have to analyze what attributes are required,
s.t. participating in Π becomes economically attractive for economically rational miners
in Π. In this setting, all miners are assumed to be economically rational, and the victim is
assumed to be a user which does not launch a counter-attack. To analyze if economically
rational miners would participate in the attack, the expected extractable value of a miner
is higher when he participates in Π than when he decides to continue to exclusively play
the original NC game Π. Playing Π offers a higher expected extractable value for miners
if the cost of participating (rparticipate) is smaller than the additional income from the
bribe ( ). In this case, the costs might arise when submitting the final result c to the
smart contract implementing the logic of Π . Since the costs for mining (rminingcost) are
the same with, as well as without the attack, they can be ignored. Therefore, if there
exists an adversarial game Π which offers an additional reward − rparticipate > 0 for a
block proposal for a sequence τ compared to a block proposal for a sequence τ , then an
economically rational miner would prefer the sequence τ and thus work on c to be later
able to submit it to Π , as pi · (rreward + − rparticipate) > pi · rreward.

Profitability of the AG OrderGame for Eve

We now analyze the required conditions s.t. the attack becomes economically attractive
for the economically rational attacker Eve. We then analyze under which assumptions
launching an AG attack can still be profitable for the attacker. For the attack to be
profitable for an attacker E, the expected extractable value for Eve from the ordering τ ,
compared to τ , has to be higher than the paid bribe plus operational costs for launching
the adversarial game, i.e., +roperational < EEV(bn+1), where τ Txseq(Chain(bn+1)).
This can be the case, for example, when winning an auction or due to making a trade to
exploit a market inefficiency as described in [DGK+20]. Then creating an adversarial
game Π to incentivize the OrderGame , offers a higher expected profit for the attacker
in terms of cryptocurrency units of the targeted system than playing the original NC
game.

Analysis for cases where not all miners are economically rational can be found in Chapter 4
as well as Appendix A.5 and A.6.

7.5.6 Countermeasures
What options does the victim V have to mitigate the attack of Eve? If V also has perfect
information regarding the attack, he can initiate a counter-attacker that works in the
same manner as the original attack, i.e., he immediately launches an adversarial game
Π = (Π, bn, τ, V ), where V > . Then there would be two opposing attacks running in
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parallel, and the miners would have to pick the most profitable one. In one game, the
attacker is Eve, and in the other game, the attacker is Vincent. This could lead to an
arms race, in which the original attacker, Eve, also increases the rewards of her original
attack s.t., again > V , and so forth. In the end, this leads to a bidding game for the
desired transaction ordering.

For a discussion of possible countermeasures, also see [JSZ+19, JSZ+21b], as well as the
Chapters 4 and 3 of this thesis.

7.6 Adversarial Game to Exclude Transactions
(near-fork)

For this scenario, we assume an attacker Eve (E), which does not want that a specific
transaction txV from some victim V is included in the blockchain for a certain period of
blocks > 0, which denotes the duration of the attack. To do so, Eve starts the attack as
soon as an unconfirmed transaction txV is broadcasted and would result in a transaction
sequence τ , which includes the unwanted transaction. Eve now wants to replace this
sequence with a sequence τ , which excludes txV , such that τ gets confirmed. Therefore,
it has to be ensured that the transaction is not included within the next blocks. If

= 1, then the attack only lasts for one block. If > 1 then the attacks need to sustain
blocks to ensure the transaction txV will not be included in later blocks until block

n + , where n is the current block height. Therefore, Eve needs to provide a reward
for each block from bn+1 to bn+ if the unwanted transaction txV is not included in those
blocks. To incentivize this behavior, the adversarial game ExclusionGame is created.

In the following, we want to provide a list of example sequences and blockchains for
the described attack. First of all, let’s assume the current state of the blockchain is bn,
containing the sequence of transactions τm, i.e., Txseq(bn) = τm).

τm = (tx0, . . . , txm) (7.39)
cn = b1(tx0), . . . , bn(txm) (7.40)

When the targeted transaction txV is published, the unmodified blockchain would be c
which includes the transaction in question.

τ = (tx0, . . . , txm, txm+1, . . . , txV ) (7.41)
cn+1 = b1(tx0), . . . , bn(txm), bn+1(txm+1, . . . , txV ) (7.42)

Eve now wants to exclude txV for the duration of blocks, which should result in a
blockchain c of length n + without txV in it. In the end, this chain will be confirmed
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by some suffix sufficiently deep such that the security parameter (kE) of Eve is satisfied.

τ = (tx0, . . . , txm, . . . , txj) (7.43)
cn+ = b1(tx0), . . . , bn(txm), . . . , bn+ (. . . , txj) (7.44)

cn+ +kE
= b1(tx0), . . . , bn(txm), . . . , bn+ (. . . , txj), . . . , bn+ +kE

(. . . ) (7.45)

We argue that this censorship attack is different compared to attacking the liveness
property of a transaction. In comparison, the liveness property of a transaction ensures
the sender that the transaction eventually gets included in the canonical chain. In
contrast, we consider a transaction effectively censored when it is not included in a
certain sender-defined state or until before a certain sender-defined position in the
sequence of transactions. Therefore, transaction liveness is a weaker security property
compared to transaction censorship, as the value of a transaction for the sender might
depend on sender-defined inclusion requirements. For example, a profitable arbitrage or
front-running transaction is worthless if another transaction is executed before. Another
example would be the closing of a payment channel.

7.6.1 Assumptions of the AG ExclusionGame
All assumptions from Section 7.5.1 still apply. Moreover, for our initial description, we
also introduce the following assumptions, which will be lifted and discussed in the context
of counter-attacks. For now, these assumptions should simplify the profitability analysis
of the attack, as no additional payments to miners have to be considered (besides regular
block rewards).

Assumption 8 (Independent transactions). For the duration of the attack, all transac-
tions are independent and thus do not build upon each other.

Assumption 9 (No payment transactions to miners). For the duration of the attack,
i.e., from the block at position n to the end of the attack, miners do not receive any
payment transactions, only reward transactions with the respective block.

7.6.2 Rules of the AG ExclusionGame
For the attack, Eve creates a new adversarial game Π called ExclusionGame , which
is defined by the 7-tuple Π = Π, bn, EExecute(·), EValid(·), , kE , .

Hereby, the arguments to the game Π initiated by E are: The specification of the
original/targeted cryptocurrency, which itself is a NC game Π. This specification contains
all necessary predicates, functions as well as the genesis block of Π. The current latest
block bn in the targeted game Π. A new function EExecute(·) that only produces a
response that is not ⊥ if a desired state is computed in the required block interval. This
is only the case if the effects of the unwanted transaction have not occurred, i.e., if txV is
not part of that respective block interval. For all other inputs not containing txV or not
in the respective interval, the response messages from Execute(·) and EExecute(·)
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are equivalent. The computed states of Execute(·) and EExecute(·) are the same
for all inputs. Moreover, such as Execute(·), the function EExecute(·) is assumed
to run in polynomial time. As a wrapper around the new execute function, a function
EValid(·) is used, which works the same as the original function Valid(·) but invokes
EExecute(·) instead of Execute(·).
The offered bribe per block is denoted by , and the duration of the attack is given by .
The parameter kE denotes the security parameter of the attacker Eve and represents the
waiting period after which the submitted attack sequence is considered confirmed by Π .

Of course, the structure of the adversarial game has to plausibly assure that the offered
reward is indeed paid out if Π terminates. Depending on the concrete implementation,
this payment can happen in-band (i.e., in the targeted cryptocurrency Π) or out-of-band
(i.e., in a different cryptocurrency). In both cases, this can be ensured with the help of a
smart contract, for example, demonstrated for Ethereum in [JSZ+19].

The adversarial game Π has two termination conditions. The outcome of Π is determined
by the condition which happens first.

Termination condition I (success)

A player of Π has to provide the adversarial game with a valid input sequence c of
length at least n + + kE , where the following conditions hold:

bn ≺ c ∧ (7.46)
Length(c ) ≥ n + + kE ∧ (7.47)

Valid(c ) ∧ (7.48)
Length(cn+ ) = n + ∧ (7.49)

EValid(cn+ ) (7.50)

In other words, this submitted blockchain c confirms a sub-chain cn+ from block n
to block , which does not contain the effects of the unwanted transaction txV , i.e.,
EValid(cn+ ) = True . If this is the case, then the game rewards every miner from
block n + 1 to block n + , with an additional per block in the new game Π . Since
the attacker does not have to predefine the entire transaction sequence, i.e., the content
of the blocks, the game does not have to compensate the respective miners for missing
rewards in Π. Therefore, the total amount paid out for blocks in the range [n + 1, n + ]
is:

n+

i=n+1
(7.51)

After the rewards have been paid, the game terminates.
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Termination condition II (fail)

A player of Π provides the adversarial game with any other valid input sequence c of
length at least n + + kE , where the following holds:

bn ≺ c ∧ (7.52)
Length(c) ≥ n + + kE ∧ (7.53)

Valid(c) ∧ (7.54)
Length(cn+ ) = n + ∧ (7.55)

EValid(cn+ ) (7.56)

In other words, a different blockchain c which does not satisfy EValid(cn+ ) has been
submitted before a desired chain c has been submitted. Note that such a chain c can
also be submitted to Π by Eve if she observed this chain in Π and the AG has not yet
terminated, i.e., if this is the first blockchain of length, at least n + + kE . For this AG,
several different rewarding schemes can be imagined. In the following, we will describe
two, namely no compensation and effort-related compensation.

No Compensation: If the attack was not successful, i.e., txV was included in the
respective interval, the adversarial game terminates without paying any reward. This is
comparable to the attack described in [KNW20] or the pay-per-miner variant in [WHF19].

Effort-related Compensation: In this case, the adversarial game accepts and extends
one candidate chain ccandidate, which is initialized with bn. A block bnew is appended to
ccandidate if the following conditions hold:

Prev(bnew) = Head(ccandidate) ∧ (7.57)
bn ccandidate, cnew ∧ (7.58)

n < Length ccandidate, cnew ≤ n + ∧ (7.59)

Valid ccandidate, bnew ∧ (7.60)

EValid ccandidate, bnew (7.61)

After any chain c (of length, at least n + + kE) has been submitted to Π , it terminates
as described above. But now, if Π has failed, it still compensates all blocks in ccandidate

with rreward, i.e.,

Length(ccandidate)

i=n+1
rreward. (7.62)

This ensures that blocks of complacent miners are compensated, even if the attack is
unsuccessful, i.e., ccandidate did not become part of the canonical chain.
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This compensation scheme could also be built in a way that monitors any block race,
i.e., all submitted chains in the respective interval, and in the end, rewards the longest
candidate chain.

Note that extending an already running attack is always possible by chaining different
attacks. The important aspect is that already promised rewards must not be negatively
affected, i.e., reduced. Increasing the overall budget for bribes is always possible for Eve.
If Eve starts with a small 1 and increases the duration of the attack by adding another
attack 2 and so forth till the overall is reached.

7.6.3 Technical Feasibility and Computability of the AG
ExclusionGame

For analyzing the proposed exclusion attack, we are again interested in its computational
feasibility. Analogous to Section 7.5.3, we first show that the AG ExclusionGame
attack on a finite number of steps of the NC game is computationally feasible to construct
under the defined conditions and assumptions.

To apply our original proof of Theorem 3, it is important that the newly introduced
predicate EValid(·) and the underlying function EExecute(·) only introduce polyno-
mially bounded runtime overhead. Moreover, for the effort-related compensation reward
mechanism, we have to show that the AG still terminates. Therefore, the original proofs
for the lemmas 2 and 3 to prove the Theorem 3 have to be adapted. To show that
the ExclusionGame is efficiently verifiable and eventually terminates, we extend the
original proofs as follows:

The AG is efficiently verifiable. The blockchain up to block bn, as well as any other
blockchain of length n, is necessarily finite, as long as n is finite. Since NC is efficiently
verifiable and the function Valid(·) has polynomial runtime, there must exist an efficient
algorithm deciding if a chain of blocks c is valid in 1 + + kE additional steps of the
original NC protocol. The helper functions Length(·), Prev(·), and Head(·), can also
run in at least n steps (for traversing the given chain), and may require some constant
exponent. Therefore, they also clearly run in polynomial time. Additionally, we have to
show that determining bn ≺ Head(c ), and τ ⊀ Txseq(c ), is also doable in polynomial
time. Let x be the length of the smaller sequence of transactions. Then identifying if a
sequence is a prefix of another sequences is clearly doable in polynomial time as iterating
and comparing two lists of transactions or blocks is bound by the (necessarily finite)
number of elements of the smaller sequence and thus a polynomial P (x). The same holds
for determining bn ≺ c , or bn ⊀ c . Per definition, EExecute(·) runs in polynomial time.
As EValid(·) executes EExecute(·) for n + + kE times, it also runs in polynomial
time. Therefore, AG is efficiently verifiable if NC is efficiently verifiable.
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The AG eventually terminates. If the targeted finite chain instance of the NC game
eventually makes progress, some chains will eventually reach n + + kE blocks. Since we
are only interested in attacking a specific instantiation of NC, and thus a finite sequence
of steps of NC, this implies that there can only be finitely many chains of blocks for NC
(i.e., forks) at any given point in time, which in turn can be submitted to the AG. As
the AG terminates when the first valid chain of length n + + kE is found, only finitely
many blockchains have to be validated and tracked by AG, as AG terminates on the first
valid chain of this length. Therefore, if NC makes progress, some chains will eventually
reach the required number of blocks and can be submitted to the AG, which then will
eventually terminate.

With the changed proofs for both lemmas, the original theorem 3 can again be proven as
done in Section 7.5.3. As the RevisionGame attack also relies on the same techniques
used and described in the ExclusionGame variants, i.e., a predicate EValid(·), no
change to the proofs are required, besides adapting the length of the chain.

7.6.4 Practical Considerations for the ExclusionGame
If a variant of the ExclusionGame can be implemented using in-band payments depends
on the capabilities of the target cryptocurrency. A variant of the ExclusionGame with
no compensations and in-band rewards is possible to construct using smart contracts in
Ethereum as demonstrated in [JSZ+19].

As with the OrderGame , the proof of Theorem 3 shows that it is possible to construct
an out-of-band variant of the ExclusionGame that runs in parallel to the targeted
NC game. Again this requires that the out-of-band rewards for the AG can be credibly
paid out and are available in a resource R ∈ R economically rational players of the
targeted NC game care about. If this is the case, then this composition could interfere
with the incentives of such players in the NC game. If the state and all messages of the
targeted NC game are publicly observable, as it is the case with so-called permissionless
cryptocurrencies, it is not feasible to prevent the creation of such external adversarial
games as all the data to construct them is publicly available.

The requirements and options regarding communication/synchrony requirements between
those two games are the same as in the OrderGame .

7.6.5 Profitability of the ExclusionGame
In the beginning, we assume that there are only economically rational miners and the
victim(s) do not have hashrate, i.e., pA + pV + pB = 0. In this case, there are only
economically rational miners, and the victim(s) (V) have no hashrate. Therefore, the
profitability of participating in the adversarial ExclusionGame (Π ), while mining
blocks for the targeted NC game Π, can be ensured for the remaining NC miners if
playing Π offers a higher expected extractable value for NC miners than playing only the
original NC game, i.e., if − (rparticipate + EEV(txV )) > 0. Therefore, a rational miner
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would prefer the sequence excluding txV to be able to submit the resulting blocks to Π ,
as pi · (rreward + − rparticipate −EEV(txV )) > pi · rreward. As every economically rational
miner would pick this strategy, a fine-grained distinction between rewarding/compensation
schemes for Π is irrelevant in this case.

To analyze the profitability in the case where the victim and/or altruistic miners have
some hashrate ( pA + pV > 0), distinguishing between different rewarding/compensation
schemes becomes relevant. For effort-related compensation, the main aspect regarding
the profitability of the attack for a NC miner is that transactions txV , which has to be
excluded, cannot provide extractable value, e.g., transaction fees, to any Π compliant
miner. Due to the compensation scheme, bribees do not lose any block rewards even if they
support a later unsuccessful attack. Therefore, the situation for individual economically
rational miners becomes the same as if all miners would be economically rational. This
means if pi · (rreward + − costparticipate − EEV(txV ) > pi · rreward economically rational
miners will decide to participate in the attack and accept the bribe. If not all miners
participate in the attack, then the probability of finding a block on the attack chain is
even better. As all contributed blocks on the (longest) attack chain get compensated,
this situation might even be more attractive for potential bribees.

For Eve, initiating an ExclusionGame is profitable if the extractable value from
excluding the transaction is higher than the costs for bribing all miners between n and
n + and the operation of Π . Therefore the expected extractable value of the chain c ,
which does not include txV has to be larger than the promised bribes, EEV(c ) > · .
Moreover, the attack requires a budget of · max(rreward, ) to plausibly ensure that all
payouts can be performed, even if the attack fails.

For details regarding success probability and costs of such attacks, see [JSZ+19, JSSW22b],
or the Chapters 4 and 5 of this thesis.

7.6.6 Countermeasures
If the victim recognizes the attack, a countermeasure would be to raise the available fee
for txV such that − (rparticipate + EEV(txV )) ≤ 0. If miners are facing participation
costs (rparticipate > 0), or the attacker is facing operational costs roperational > 0, this
defense is inherently cheaper than the attack. This makes raising the fee an efficient
counter-attack.

If Assumption 8 (independent transactions) does not hold, then all potential transactions
which will build up on tz have to be considered as well. This can be modeled by increasing
EEV(txV ) by the extractable values of these potential transactions, which could not be
included if txV has not been included.

If Assumption 9 (no payment transactions to miners) would not hold, then txV or any
subsequent transaction might contain a payment to a player P which is also a miner
P ∈ M. Therefore, P would face a direct loss if the attack is successful. In this case,
the incentives of the respective miner change, and he is no longer indifferent (P /∈ I).
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Instead, he becomes a victim (P ∈ V) and will work against the attack with his hashrate
if he is rational (P ∈ R). The same would hold true if P is altruistic (P ∈ A) as he
would want to stick to the protocol and include txV . Therefore the cases P ∈ A and
P ∈ R would lead to the same behavior in this situation. The only difference would be
that an altruistic miner would not continue mining on a fork that is behind the longest
chain, while this would be an option for a rational miner if the stakes are high enough.

For an analysis of counter-attacks where the victims do not give up that easily, see [JSSW22b],
or Chapter 5 of this thesis.

7.7 Adversarial Game to Revise Transactions (deep-fork)
For this scenario, we assume an attacker Eve (E) that wants to manipulate the outcome
of a sub-game of the infinite NC game to her advantage, i.e., perform a deep-fork. Let τ
be the original sequence of transactions containing some transaction txE which represents
a payment to some merchant V . Let cn+kV

be the original chain of blocks, including τ .
This chain occurred during normal operation of the NC game.

τ = (tx0, tx1, . . . , txE , . . . ) (7.63)
cn+kV

= b1(tx0), . . . , bn+1(. . . , txE , . . . ), . . . bn+kV
(. . . ) (7.64)

Now let’s assume Eve has a preferred sequence in which she wants to change txE to a
different transaction txE because she wants to launch a double-spend. Since NC does
not offer finality, the original sequence τ is subject to change, and thus the payout txE

can be changed to txE in retrospect. The resulting desired transaction sequence τ can
be equivalent to τ except for transaction txE .

τ = (tx0, tx1, . . . , txE , . . . ) (7.65)
cn+kV +1 = b1(tx0), . . . , bn+1(. . . , txE , . . . ), . . . bn+kV +1(. . . ) (7.66)

The resulting chain c must have at least one more block s.t. it is longer than cn+kV
.

The goal of the attack is it to convince economically rational miners of the NC game to
mine the sequence c as soon as block cn+kV

is reached. Therefore, Eve constructs an
adversarial game Π that credibly promises rewards to influence the overall payouts of a
specific sub-game of the NC game, that led to sequence cn+kV

. If successful, Π incentivizes
the creation of the chain c as a result. This chain then can be replayed/submitted to
the original NC game and thereby also create a new longest chain confirming txE .

7.7.1 Assumptions of the AG ExclusionGame

The assumptions from Section 7.7.1 still apply. Moreover, as we are double-spending a
payment here, we have one additional assumption in this case
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Assumption 10 (External Transaction Utility). Each time a payout or payment is
considered confirmed after krecipient blocks, this creates an external utility, e.g., a (digi-
tal)good is received in return for the payment. This requires that there are at least two
resources in the individual set of resources R of every participant.

Note that assumption 10 also holds for payout transactions as they can also be used by
miners to perform payments as the recipient can freely be chosen by them.

7.7.2 Rules of the AG RevisionGame
For the attack, Eve (E) creates a new adversarial game Π called RevisionGame , that
is defined by the 8-tuple Π = Π, bn, EExecute(·), EValid(·), , kE , , kV .

Hereby, the arguments to a game Π initiated by E are: The specification of the
original/targeted cryptocurrency, that itself is a NC game Π. This specification contains
all necessary predicates, functions as well as the genesis block of Π. The current latest
block bn in the targeted game Π. This is the point in the chain to which the system’s state
is reverted when the attack starts. A new function EExecute(·), that only produces
a response that is not ⊥ if a desired state is computed in the required block interval
between n and n + kV . This is only the case if the effects of txE have occurred in the
respective block interval. For all other inputs, the response messages from Execute(·)
and EExecute(·) are equivalent. The computed states of Execute(·) and EExecute(·)
are the same for all inputs. Moreover, such as Execute(·), the function EExecute(·)
is assumed to run in polynomial time. As a wrapper around the new execute function, a
function EValid(·) is used, which works the same as the original function Valid(·) but
invokes EExecute(·) instead of Execute(·).
The offered bribe per block is denoted by , and the fork depth of the attack is given by
kV and thus is defined indirectly by the victim of the double-spend. The parameter kE

denotes the security parameter of the attacker Eve and represents the waiting period
after which the submitted attack sequence is considered confirmed by Π . The duration
of the attack is dependent on the progress of the individual chains and the overall budget
of Eve to finance the attack. We denote the overall number of blocks for which bribes
could be financed by N . In the attack initialization itself, Eve publishes bribing funds for

< N blocks. Thereby she has the possibility to extend the attack further if she deems
it has a realistic chance of success. Between a block bn+kV

and a block bn+kV +N+kE
,

there is a block at height n + kV + until the attack, and thus the race of both chains is
currently funded. In the best case, only one additional block in c is required ( = 1) as
all miners are economically rational and switch to the attack chain immediately.

Of course, the structure of the adversarial game has to plausibly assure that the offered
reward is indeed paid out if Π terminates. This includes a guarantee that (and its
associated funds) can only be increased and not reduced. As Eve is not in possession of
infinite funds, the attack will run out of funds eventually - and thus terminate. Depending
on the concrete implementation, the payment can happen in-band (i.e., in the targeted
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cryptocurrency Π), or out-of-band (i.e., in a different cryptocurrency). In both cases,
this might be ensured with the help of a smart contract, for example, demonstrated
in [JSZ+19]. Depending on the concrete rewarding scheme of Π and the expressiveness
of the available smart contract languages, either in-band or out-of-band payments are
easier to implement (see [JSZ+19] for details).

The adversarial game Π has two termination conditions. The outcome of Π is determined
by the condition which happens first.

Termination condition I (success)

A player of Π has to provide the adversarial game with a valid input sequence c of
length at least n + kV + + kE , where the following conditions hold:

bn ≺ c ∧ (7.67)
Length(c ) ≥ n + kV + + kE ∧ (7.68)

Valid(c ) ∧ (7.69)
Length(cn+1) = n + 1 ∧ (7.70)

EValid(cn+1) (7.71)

In other words, the submitted blockchain c confirms a sub-chain cn+kV + from block n to
block n + kV + , which does contain the effects of transaction txE , i.e., EValid(cn+1) =
True . If this is the case, then the game rewards every miner from block n + 1 to block
n + kV + , with an additional per block in the new game Π . Moreover, to provide the
same incentive for all miners, including the ones who have already contributed blocks to
the original chain cn+kV

containing txE to mine on an attack chain, those original miners
have to be compensated for their lost stale blocks from cn+kV

as well.

Therefore, in the best case, the total amount paid out for blocks in the range [n + 1, n +
kV + ] is:

n+kV +

i=n+1
+

n+kV

i=n+1
rreward. (7.72)

After the rewards have been paid, the game terminates.

If the original chain also progresses, while the attack chain progresses, it is necessary to
incentivize (i.e., fund) further blocks on the attack chain. For every additional block on
the attack chain, an additional bribe has to be paid until the budget of the attacker (of
N blocks) has been consumed.

If it is not possible to implement a function EValid(·) with the available in-band or
the desired out-of-band payment option, e.g., due to constraints of the respective smart
contract language, specifying the desired sequence of transactions is an alternative. In
this case, the attacker predefines the entire transaction sequence τ , i.e., the content of
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the blocks from n + 1 to n + kV + , as proposed in [JSZ+19]. In this case, the game Π
has to compensate the respective miners for missing rewards in Π, as the recipient of the
payout transaction cannot readily be predetermined by the attacker. Therefore, also the
regular block rewards rreward have to be paid by Π .

Termination condition II (fail)

A player of Π provides the adversarial game with any other valid input sequence c of
length at least n + kV + + kE , where the following holds:

bn ≺ c ∧ (7.73)
Length(c) ≥ n + kV + + kE ∧ (7.74)

Valid(c) ∧ (7.75)
Length(cn+1) = n + 1 ∧ (7.76)
EValid(cn+1) = False (7.77)

In other words, a different blockchain c which does not satisfy EValid(cn+1), has been
submitted before a desired chain c has been submitted. Note that such a chain c can
also be submitted to Π by Eve if she observed this chain in Π and the AG has not yet
terminated, i.e., if this is the first blockchain of length at least n + kV + + kE . Again
also, for this AG, several different rewarding schemes can be imagined. In the following,
we will describe two, namely no compensation and effort-related compensation.

No Compensation: In this case, nothing is paid if the attack is unsuccessful. The
history revision contract proposed in [MHM18] is comparable to this scenario. In this
attack, the in-band bribe is only paid if the required state has been reached. The
condition if the required state has been reached can be checked by a smart contract that
is in possession of the required funds. The drawback of this approach is that the risk
of the attack being successful is on the side of the participating miners. This can be
changed in the effort-related compensation scheme.

Effort-Related Compensation: In this case, the risk of the attack being successful
is shifted to the side of the attacker. Therefore, miners are more likely to participate
since they do not lose anything if the attack is unsuccessful but might gain higher profits
if the attack is successful. A practical example are the pay-to-win attacks described
in [JSZ+19].

To correctly assess the contribution of each miner to the attack and at the same time
prevent abuse, the adversarial game has to maintain multiple candidate chains. This
means it extends one, or multiple chains ccandidate, which are initialized with bn. A block
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bnew is appended to ccandidate if the following conditions hold:

Prev(bnew) = Head(ccandidate) ∧ (7.78)
bn ≺ ccandidate, bnew ∧ (7.79)

n < Length ccandidate, bnew ≤ n + kV + + kE ∧ (7.80)

Valid ccandidate, bnew ∧ (7.81)

(7.82)

If now the first candidate chain reaches a length of n + kV + + kE , the respective
termination conditions of Π are checked: If Π terminated successfully, the miners from
block n + 1 to block n + kV + of the respective chain can collect their additional bribes
and miner of now stale blocks from bn+1 to bn+kV

get a refund of their lost block rewards
of rreward per block.

If Π terminated unsuccessfully, the miners from block n + 1 to block n + kV of the
largest candidate chain ccandidate where bn+1 ∈ ccandidate | EValid(bn+1) = True can
collect a refund for their contributed blocks in the range n + 1 to n + kV + in the height
of the respective block reward rreward. This ensures that blocks of complacent miners
are compensated, even if the attack is unsuccessful and c did not become part of the
canonical chain. Therefore, the total amount of compensations that have to be paid if
the attack fails is:

n+kV +

i=n+1
rreward (7.83)

Whereas the total amount of bribes and compensations paid if the attack succeeds is:
n+kV +

i=n+1
+

n+kV

i=n+1
rreward. (7.84)

7.7.3 Practical Considerations of the RevisionGame
Depending on the variant of the attack and the targeted cryptocurrency, it can be
implemented using in-band payments or out-of-band payments.

For the no compensation case, any cryptocurrency in which the addresses of miners
are publicly known, and payments can depend on previous payments, the creation of
mutually exclusive transactions is possible. Therefore, it is possible to pay a merchant V
in one branch, and in another branch, the same coins/funds can be used to share profits
with miners to incentivize them to contribute to the attack. Hereby, different methods
are possible. One example would be the usage of direct payments to addresses belonging
to miners that mined the blocks from n to n + kV on the original chain, as well as all the
issuance bribing transactions to all (or a significant fraction of) miners for supporting
the attacker desired branch. If the respective miners observe these transactions carrying
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large enough funds, they could try to make the necessary branch part of the canonical
chain to collect those funds. This would represent a basic form of AG with in-band
rewards. In our model, publishing such bribing transactions changes the set of reachable
system states and thus unlocks the possibility for some miners to reach states which are
more profitable for them. If the expected profit for miners is large enough, this could
also incentivize changing the current system state in retrospect, i.e., perform a deep-fork.

One practical example would be one of the first bribing attacks on Bitcoin proposed
by Bonneau et al. [Bon16], where such a scenario is described for Bitcoin using anyone
can spend transaction. This approach has the drawback that Eve could propose other
unconfirmed transactions rewarding different miners (or herself) at any point in time.
Using smart contracts to lock and issue promised payments, either in-band or out-of-
band, mitigates this risk and makes the attacks more trustworthy from the perspective
of potential collaborating miners.

As RevisionGame requires exactly the same primitives as the ExclusionGame , the
proofs from Section 7.6.3 regarding efficient verification and eventual termination equally
apply. As with the OrderGame and the ExclusionGame , the proof of theorem 3
shows that it is possible to construct an out-of-band variant of the RevisionGame that
runs in parallel to the targeted NC game. This requires that the out-of-band rewards
for the AG can be credibly paid out and are available in a resource R ∈ R economically
rational players of the targeted NC game care about. If this is the case, then this
composition could interfere with the incentives of such players in the NC game. If the
state and all messages of the targeted NC game are publicly observable, as it is the case
with so-called permissionless cryptocurrencies, it is not feasible to prevent the creation
of such external adversarial games as all the data to construct them is publicly available.
The requirements and options regarding communication/synchrony requirements between
those two games are the same as in the OrderGame .

The variant with effort-related compensation has the advantage that it is theoretically
risk-less for participating miners, as rewards for contributed attack chain blocks are
paid to bribees even if the overall attack fails. This circumstance allows Eve to reduce
the size of the bribes and thus the overall costs of a successful attack, as described
in [JSZ+19, JSSW22b], or the Chapters 4 and 5 of this thesis. Moreover, for collaborating
miners, it could be even more profitable to join an attack if not all miners do so as well
because then the chance is higher to contribute a block to the attack chain as less hashrate
is concentrated on this chain. This could make such attacks even more attractive in the
first place. For more information, we refer to [JSSW22b]or Chapter 5 of this thesis.

7.7.4 Profitability of the RevisionGame
For our initial analysis, the assumptions independent transactions (see Section 8) and no
payment transactions to miners prevent that there are additional fees or payments to
miners besides the usual block reward and average fee. This makes it easier to estimate
the required expected extractable value in terms of normalized block rewards that are
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needed to incentivize and fund such attacks. For a detailed analysis as well as simulations
on the profitability of deep-fork attacks, we refer to [JSZ+19, JSSW22b].

The question of what is economically rational and how it is possible to factor in a drop in
the respective exchange rates is discussed in [JSSW22a], or Chapter 6 of this thesis. In
general, it can be said that, that the rewards collectible through mining only grow linear
with the number of blocks [Bud18]. If the potential gain from the double-spend/deep-fork
is large enough, from an economic perspective, an arbitrary number of blocks could be
reverted.

7.7.5 Countermeasures
As with the other AIM attacks, a counter-attack by the victim(s), which increases the
expected extractable value of blocks on the original chain, is an economically rational
countermeasure of the victim. Nevertheless, the situation is not desirable from a user
perspective, as it requires every merchant to monitor the chain and potentially diminish
his income as he could be forced to bid against maliciously funded racing attack chains.
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8
Discussion and Directions for

Future Work

“The incentive may help encourage nodes to stay honest.”

– Satoshi Nakamoto [Nak08]

In this chapter, we recapitulate the results of this thesis and relate them to the game
theory literature to discuss our results. We then present some directions for future work
and provide some concluding remarks.

8.1 Results
In this thesis, we have provided the first systematization of bribing, Goldfinger, Pitch-
fork, front-running, and other related attacks targeting the incentives of cryptocurrency
participants (see Chapter 3). Thereby, we exposed them as different instances of the
same category of attacks which we termed algorithmic incentive manipulation (AIM).
Algorithmic incentive manipulation attacks utilize the properties and technologies of
cryptocurrencies and distributed systems to facilitate the collusion of players by imple-
menting enforceable side payments. These, side payments, also called bribes, can be
triggered automatically by providing cryptographic proofs about the state of the targeted
cryptocurrency system. By classifying different attacks according to their requirements,
reward mechanism as well as their capabilities and impact on the consensus layer of cryp-
tocurrencies (i.e., as no-fork, near-fork, deep-fork etc.), we addressed research question
RQ1 (see Section 1.4.1). Our systematization also highlights that this attack space is not
yet exhaustively explored.

Some of the identified gaps have been addressed by proposing new attacks and improved
analysis techniques. We described a new attack called Pitchfork (see Chapter 2) which
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demonstrates that public permissionless PoW-based cryptocurrencies are vulnerable
against the (malicious) interlinking of their protocol rules using merged mining. Moreover,
we provide proof that such an attack can only be counter-attacked if the attacker hashrate
is below 1/3, or below 1/4 depending on the side effects of the direct counter-attack
(see Section 2.4.2). Moreover, we describe a new attack called Pay-to-win (P2W) that
is capable of reverting, reordering or excluding any transaction from a targeted public
permissionless cryptocurrency based on NC, provided that the respective attacker has a
sufficient budget on a different funding cryptocurrency (see Chapter 4). Our analysis
includes simulations as well as a fully functional proof-of-concept implementation of the
attack showing its technical feasibility. These new attacks show that the landscape of
incentive-related attacks has not yet been exhaustively explored. Thereby answering the
initial research question RQ2 (see Section 1.4.2) in the negative.

To better analyze the proposed attacks and other related variants, we devised a practically
oriented model to calculate the success probability as well as the profitability of finite
AIM attacks (see Chapter 5). By considering finite chain races, already contributed
blocks, as well as the incentives of economically rational victims, we addressed research
question RQ3 (see Section 1.4.3). Moreover, for cases where the attacker is only one
block behind and tries to catch-up infinitely long, we where able to prove that his
profitability on the fork increases beyond his expected profit for staying on the original
chain as soon as he has a hahsrate greater than 1/φ2 ≈ 38.2%. Thereby, providing an
explanation for the value ≈ 38.2%, which was a result from previous numerical analysis
approaches [TJS16, MHM18].

In Chapter 6 we address research question RQ4 (see Section 1.4.4) and relate the concepts
of miner extractable value (MEV) (or expected extractable value as a more general term)
and algorithmic incentive manipulation (AIM). Thereby, we show that the concept of
AIM using bribes and the concept of extractable value (EEV) are related: A bribe can
be viewed as yet another source of extractable value. Moreover, we highlight that the
MEV of other participants cannot readily be estimated, especially if they are interested
in more than one resource/cryptocurrency.

In Chapter 7 we address research question RQ5 (see Section 1.4.5) from a technical
standpoint. Therefore, we devise a model of Nakamoto consensus-based state machine
replication (SMR) and prove that adversarial games to attack the mechanism design of
such permissionless cryptocurrencies can technically always be constructed, provided that
the targeted system is efficiently verifiable and eventually makes progress. Thereby, we
also expose the assumptions and conditions under which such AIM attacks are technically
possible.

We now discuss these results with respect to research question RQ5 regarding the incentive
compatibility of cryptocurrencies and relate them to the game theory literature.
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8.2 Game Theory, AIM, and Cryptocurrencies

The field of game theory is much older than the first cryptocurrencies based on NC. As
incentives undoubtedly play a role in cryptocurrencies, a natural question is how the
identified issues with permissionless cryptocurrencies regarding AIM relate to established
results in the field of game theory and its associated rich body of literature. The problem
of collusion and side payments (bribes) between participants has long been described
in game theory and is known to be the Achilles heel of mechanism design [GBI18]. For
truthful revelation regarding the funding of a public project, Green and Laffont [GL79]
showed in 1979 that there exists no efficient, incentive-compatible mechanism in the
presence of coalitions and bribes. This result was later extended by Schummer [Sch00] to
other settings, showing that truthful revelation and efficient allocation are incompatible
when considering collusion and bribes.

To address these impossibility results, assumptions are introduced which constrain the
capabilities of players to collude [CM12]. For example, the number of possible colluders
is bounded, the colluders are unable to keep their cooperation secret, or they are not able
to make side payments. The line of research focusing on group-strategyproofnsess for
example, has produced promising results under the assumption that agents only collude
if they directly profit from it and that there is no way of compensating/bribing each
other to redistribute utility [GBI18].

Other researchers have argued that “collusion is only too human, and to develop a
realistic theory of human interactions it will be crucial to consider mechanisms and
solution concepts resilient to collusion” [CM12]. Therefore, another branch of research
tries to bypass previous impossibility results by changing the system model such that
coalitions are required to have dominant strategies and/or introduce the ability to punish
players [CM12, GBI18]. However, there are system models and settings which remain
a problem, as noted in 2018 by Gorokh et al. [GBI18]: “For our second negative result,
we consider a collective decision making problem, where agents must choose between one
of two options, and monetary reparations are allowed. Here we show that not only is
collusion resilience impossible, but in fact, any non-trivial constant-factor approximation
of welfare is impossible under coalitional dominant strategies. Thus, in a sense, collective
decision making is the worst case scenario for mechanism design in the face of collusion.”

Given these results, the question arises, what is the appropriate game-theoretic system
model for distributed systems implementing permissionless cryptocurrencies, and what
are the best possible guarantees that can be achieved by proper mechanism design?

8.2.1 Incentive compatibility

The question if cryptocurrencies based on NC are incentive compatible and thus can be
considered strongly stable has been issued early on in the research community [BMC+15].
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“ Nakamoto originally argued that Bitcoin will remain stable as long as all miners
follow their own economic incentives, a property called incentive compatibility. Incentive
compatibility has never been formally defined in the context of Bitcoin or cryptocurrencies;
its prevalence as a term likely stems from its intuitive appeal and marketing value. [...] In
game-theoretic terms, if universal compliance were shown to be a Nash equilibrium, this
would imply incentive compatibility for Bitcoin as no miner would have any incentive to
unilaterally change strategy. This would imply a notion of weak stability if other equilibria
exist and strong stability if universal compliance were the sole equilibrium. If on the other
hand non-compliant strategies dominate compliance, we must ask whether the resulting
strategy equilibrium leads to stability for the consensus protocol.” [BMC+15]

There are several different degrees and definitions of incentive compatibility. Informally,
incentive compatibility describes a state in game theory and economics in which the
incentives that motivate the actions of individual participants in a specific system are
consistent with following the rules established by the group. This property is especially
important in interactions in which a participant does not know perfectly what another
participant knows or does. If the rules of the interactions are designed such that a
participant with more information is motivated to act in the interest of the other party,
or has less incentive to exploit an advantage, the result is incentive compatibility [Jam14].

There have been several indicators that incentive compatibility (or group strategyproofness)
is too much to ask for in the context of cryptocurrencies based on NC (cf., [ES14, Bon16,
Bon18, JSSW18, JSZ+19, FB19, KF19, JSZ+21b, FB19]). In [BMC+15], the authors
divide the question regarding the incentive compatibility and, thus, the stability of NC
into three sub-questions:

1. “Stability with bitcoin-denominated utility”, which assumes that the sole objective
of a miner is obtaining the respective currency unit of the system.

2. “Stability with external-denominated utility”, where the miners have a utility func-
tion that allows them to convert their coins into other assets.

3. “Stability with incentives other than mining income”, where the miners’ utility is
not purely derived from mining rewards but external resources. Goldfinger [KDF13]
attacks and feather forking [sAM] have been used as examples.

The results provided in this thesis show that if incentives other than mining income
(e.g., external-denominated utility such as other financial resources) are, in principle,
able to change the behavior of miners in the targeted system and can be provided
by an attacker in sufficient quantity, then adversarial games can be constructed for
permissionless cryptocurrencies based on NC to reward attacker desired outcomes with
the respective resources. In this thesis, we have shown that this holds for any targeted
instance of NC that is efficiently verifiable and eventually makes progress. As a result,

192



8.3. Future Work

resilience against such attacks cannot be ensured by purely technical means. Instead,
economic bounds on the availability and/or attractiveness of external resources have to
be assumed to provide security guarantees under such economic attacks. Therefore, we
argue that the question of whether NC can be considered stable under incentives other
than mining income or sufficient external-denominated utility has to be answered in the
negative. Thereby, we also support the argument presented by Ford and Böhme [FB19]
that rational participants can be turned Byzantine, given a sufficient incentive.

8.3 Future Work
As we have shown in this thesis, AIM can lead to interesting side effects and attacks in
NC-based public permissionless cryptocurrencies. This encourages further research and
raises new questions that have not yet been conclusively answered.

What is (economically) rational in the context of an AIM attack? All AIM
attacks assume some form of (economically) rational behavior of participants. In practice,
it is hard to define rational behavior in a general way, as also the individual investments
and the long-term interests of miners (or stakers) play an important role. However, there
may be scenarios where miners are capable of providing PoW or signatures for a targeted
cryptocurrency, but at the same time, they do not have any long-term interest in the
well-being of the target. Consider the real-world example of Bitcoin and BitcoinCash,
or Ethereum and Ethereum Classic, which utilize (or utilized) the same form of PoW
and can be considered rivals. Thus, the question if the proposed attacks are possible in
practice is difficult to answer scientifically.

Large-scale temporary majority attacks, in which an attacker overtakes a cryptocurrency
for a short period of time, have gained further practical importance as they have been
observed more frequently in recent history. There is already empirical evidence from
previous large-scale attacks by miners, especially on smaller cryptocurrencies [coi20,
coi19b, coi19a, btg20], as well as AIM attacks that optimize extractable value through
different types of front-running [DGK+20]. These cases demonstrate that large-scale
attacks happen and that the topic of incentives in cryptocurrencies is an area that
deserves further study.

How does the exchange rate of different cryptocurrencies relate to each other?
Regarding the possibility of such attacks (especially Goldfinger attacks), the development
of the exchange rates of different cryptocurrencies under large-scale attacks on individual
systems is an interesting question. If the exchange rates of spared cryptocurrencies are
not, or even positively affected, this could increase the probability of AIM attacks as
evading negative economic consequences of attacks becomes a viable option.

What system model combinations for the targeted and the attacking system
benefit or prevent attacks? The system model, especially the synchrony and finality
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properties of the targeted system, influence the design of adversarial games aimed at
attacking it. Adversarial games rely on input from the targeted system. Therefore,
specific characteristics of the target system model propagate to the adversarial game or
the attacking system, respectively. As mentioned in the discussion, certain combinations
of system models seem to hamper attacks, while other combinations make the construction
of attacks easier. Mapping the landscape of different combinations, as well as resulting
meta-system models and their exact influence on the construction of attacks, is subject
to future work.

How are permissionless PoS cryptocurrencies affected by AIM attacks? Since
all considered attacks primarily target PoW cryptocurrencies, the applicability of AIM on
PoS cryptocurrencies is not sufficiently understood yet. It remains to be understood which
techniques are transferable to PoS cryptocurrencies and which additional mitigations
(e.g., providing collateral, slashing) can increase the induced costs of attacks in this
setting.

8.4 Conclusion
As Satoshi Nakamoto pointed out [Nak08]: “the incentive may help encourage nodes to
stay honest”, but as shown in this thesis, incentives may as well encourage nodes to act
maliciously or Byzantine.

We have shown that bribing, front-running, as well as Goldfinger attacks are no isolated
attack examples. Instead, they belong to the larger category of algorithmic incentive
manipulation attacks, which we described within this thesis. We have proven that it is
always computationally possible to construct adversarial games that target permissionless
cryptocurrencies (based on our model of NC), under the assumption that the targeted
system is efficiently verifiable and eventually makes progress. Our results show that, even
if the cryptocurrency internal transaction semantic is sufficiently restricted, adversarial
games can always be constructed using out-of-band rewards that incentivize reaching
the attacker’s desired system states. This includes arbitrary ordering- and exclusion of
transactions, as well as deep-forks. The main conditions for this to be possible require that
the respectively capable miners have perfect information regarding the adversarial game
and that the promised out-of-band payments are sufficient and happen in an external
resource that is deemed valuable for the respective miners. The practical technical
feasibility of such attacks has been demonstrated by a proof-of-concept of an AIM attack
on Bitcoin, which can be operated and funded from an Ethereum smart contract.

Given imperfect information regarding the available external resources and the attribution
of transactions to players, it is impossible to accurately assess the economic security of
prevalent permissionless cryptocurrencies based on NC, as the potential extractable value
of specific actions for other participants is unknown. Moreover, capable actors could
be incentivized to join for the sole purpose of attacking the system (which has already
happened in some smaller cryptocurrencies [coi20, coi19b, coi19a, btg20]). Therefore, we
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agree with the argument presented by Ford and Böhme [FB19] that economic rationality
can lead to Byzantine behavior given sufficient incentives.

Even if no other external resource is available for out-of-band payments, depending on
the expressiveness of transactions within a targeted cryptocurrency, AIM attacks utilizing
in-band payments can also incentivize attacks with devastating effects. A key observation
that was already noted by Bonneau [Bon16] and Budish [Bud18] is that the security
guarantees of Nakamoto consensus against any bribing attack which facilitates deep- or
near-forks are linear in the number of blocks in terms of the financial resources required.
In contrast, the achievable security guarantees of many other investments in IT security,
for example, in cryptography, are designed to “yield convex returns” [Bud18].

Without an honest majority assumption, the security guarantees not only depend on
computer science aspects (e.g., the cryptographic primitives) but also on economic con-
siderations, and the assumed behavior of players. Therefore the security of permissionless
cryptocurrencies lies at the intersection of economics, game theory, mechanism design
and computer science. It is well known that the answer to the question “is it secure?”
always depends on the chosen threat model and that there is no 100% secure system in
practice. Therefore, on the positive side, algorithmic incentive manipulation through
adversarial games provides a price estimate for the achievable level of economic security.
So although we have shown that it is impossible to implement solely technical protections
against some AIM attacks on permissionless cryptocurrencies based on NC, it is still
possible that there are countermeasures that increase the costs and thus reduce the
likelihood of such attacks. For example, consensus algorithms with finality and order
fairness, reward distribution over multiple blocks as well any long-term commitment of
nodes in the form of collateral in combination with punishment/slashing for malicious
behavior could drastically increase the costs for successful AIM attacks. Further research
is required to identify the most promising approaches.

Given the environmental impact, one of the most critical ongoing changes is replacing
NC based on PoW with different consensus systems. In this regard, different NC-style
Proof-of-Stake (PoS) systems have established themselves as potential candidates. In
any case, a good understanding of the achievable security guarantees of the consensus
layer is of utmost importance for all applications that build on top of such systems,
such as smart contracts and payment channels. Therefore, a good understanding of
algorithmic incentive manipulation is crucial, especially for PoS systems, as in such
systems, the distribution of funds is directly related to the security of the underlying
consensus layer. With this thesis, we lay the groundwork for a better understanding
of algorithmic incentive manipulation in distributed systems and the resulting security
implications.
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APPENDIX A
Appendices

A.1 Merged Mining Security Considerations
In this section, we briefly outline some practically relevant security considerations re-
garding merged mining that have, to the best of our knowledge, not been explicitly
documented before. These remarks should serve as a starting point for the interested
reader that might want to dig into the respective subjects.

A.1.1 Merged Mining with Simultaneous Direct Mining
In the early days of merged mining, Namecoin allowed merge mined blocks with Bitcoin,
as well as blocks that have been directly mined for Namecoin. Due to the fact that
Namecoin was the first fork of Bitcoin, it shared the same code base. Thus large parts of
the functionality, as well as the data structures, were similar to Bitcoin. This included the
structure of the block header. In the way that merged mining was, and partially still is,
implemented for these two cryptocurrencies, the cryptographic link to the auxiliary (i.e.,
child) block header of Namecoin is stored in the Bitcoin block as part of a Merkle tree.
The Merkle tree root hash itself is stored in the coinbase transaction of the respective
Bitcoin block.

Due to the close resemblance of a Bitcoin- and a Namecoin block header, it would have
been possible to submit a Namecoin block header to Namecoin as a Bitcoin header for
merged mining, provided that the required difficulty of the PoW has been achieved.
This would have allowed an adversary to mine on a Namecoin block header directly, as
well as to include a Merkle tree root hash in the coinbase of the associated transactions
within the same Namecoin block. This Merkle tree root hash could have contained a
cryptographic link to another Namecoin block for an alternative Namecoin chain. With
this construction, it would have been possible for an adversarial miner to miner on two
different chains simultaneously. This, of course, is problematic in Nakamoto consensus,
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as the miner can then later reveal a presumably “merge mined” Namecoin child chain
that might be more favourable for the attacker e.g., includes a double-spend.

To the best of our knowledge, this issue was never explicitly mentioned for such designs.
Luckily, this specific flaw was first prevented by some validation rule not directly focused
on that specific subject. Later this flaw was eliminated by disallowing direct mining of
most merged mined cryptocurrencies while only allowing merge mined blocks.

A.1.2 No Cryptographic Links Between Parent Chain Blocks

It is common in merged mining not to require cryptographic links between the parent
chain blocks. The only requirement is that parent chain blocks include a sufficiently
difficult PoW. The underlying assumption is that an economically rational miner would
always want to extend the longest (heaviest) parent chain to potentially receive the
rewards associated with the respective parent chain block.

Although, in some scenarios, the missing cryptographic reference between parent chain
blocks might be problematic. For example, in a pay-to-win (P2W) attack, as described
in Chapter 4, on a merge mined child cryptocurrency, the collaborating bribees would be
able to simultaneously mine on the entire attack chain for the child cryptocurrency as
the content is already predetermined by the attack smart contract. Thereby, each bribed
miner can mine on a different block, while at the same time keep on mining for the parent
chain as normal. If, in such a scenario, a bribed miner finds a valid PoW, he submits it
to the attack smart contract and continues with another block. Suppose the attack(er) is
able to assign miners to exclusively mine on specific blocks. In that case, no computation
power is wasted in forks or repeated invalid brute force attempts by different miners.

Another scenario where this circumstance might be problematic is for cryptocurrencies
that are merge mined with multiple parent chains, especially when miners of different
parent chains collude and agree on block content and assigned slots with child chain
blocks to mine on.

More generally, this means that the requirements of a typical execution, namely that
no insertion or prediction [GKL20] occurred, do not hold in such merge mined cryp-
tocurrencies in which no links between parent block headers are required. Thus the
respective security proofs in [GKL20] are not directly applicable to such merge mined
cryptocurrencies.

A.2 Optimal Transaction Ordering
We hereby want to analyze how hard it is to find an optimal ordering in this setting,
where the player does not contribute her own transactions, i.e., T i

i = ∅. Hence we call
this approach passive, as no new transactions are created.
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In comparison to Ethereum, the fees in Bitcoin are static i.e., they do not dependent
on the position of a transaction. Therefore, when constructing a block in Bitcoin, it
is only relevant that no transactions in the new block are contradictory. If all Bitcoin
transactions would carry an equally large fee, mining would be an instance of the maximum
independent-set problem. In practice, Bitcoin transactions can have different (but static)
fees, as well as different sizes. Therefore, the optimization problem a Bitcoin miner is
facing is an instance of the knapsack problem, which is NP-hard 1.

In Ethereum, the situation is even more complex as the fee (i.e., the used gas) can be
dependent on the position of the transaction within the block. Depending on the position
in a block, the transaction executes on a different global state and thus might require
less or more instructions to execute. Therefore, it can consume less or more gas. So
by optimizing the order in which transactions are included in a block, miners might be
able to extract a higher amount of fees. This, for example, is the case when more gas is
consumed by transactions. If we make the simplifying assumption that the number of
transactions in a block is constant and that there are finitely many new transactions in
the transaction pool T := Ti \ Txseq(Chain(bn)), which have not yet been included in
a block, then the upper bound for finding the optimal ordering for a new block template
b̄n+1 can be derived as follows:

Proposition 2 (Optimal ordering for new transactions). Finding the optimal ordering
of a set of transactions for a block template requires, at most ℵ! · [|T |]ℵ steps if |T | > ℵ
holds and |T |! steps if |T | ≤ ℵ holds. Both scenarios require constant space, which is
approximately ℵ.

Optimal ordering for new transactions. The number of possible combinations of size ℵ
of all transactions in the set T is given by [|T |]ℵ. For each of these combinations, the
miner has to check all combinations of transactions to fill the block, which are ℵ!. If
|T | ≤ ℵ all transactions fit in the current block thus the number of possible combinations
reduces to |T |!. To select the best one, it is sufficient to only store the currently best
candidate and replace it if better ordering has been found. This leads to approximately
ℵ required space for one particular ordering configuration.

These bounds of naïve order optimization show that finding an optimal ordering starts
getting computationally infeasible rather quickly for practical block sizes. For example, a
full Ethereum block currently contains around 250 transactions. Under the assumption
that the transaction pool would be equally large, this would already amount to 250! ≈
3.23 . . . · 10492, which is far beyond being computable. Moreover, we have not yet
considered the possibility that the miner can create transactions as well and add them to
the transaction pool to increase the extractable value from other transactions already in
the pool.

1Cf. https://freedom-to-tinker.com/2014/10/27/bitcoin-mining-is-np-hard/
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Of course there are good approximations for finding a profitable block, this is done, for
example, in front-running and related approaches [DGK+20, QZG22, ZQC+21, ZQT+20,
TIGS21]. Nevertheless, the overall complexity of finding the optimal sequence of trans-
actions could be exploited by a briber who offers a block candidate b̄n+1 defined by
himself, which promises a certain (above average) reward to the respective miner (e.g., as
described in [JSZ+19] , or Chapter 4 of this thesis). Mining this block candidate provided
by an adversary could be easier for the miner than investing the resources to search for a
more profitable order on his own. This trend towards separating block content creation
from block confirmation/mining is also something we see currently in designs for proposer
builder separation (PBS) in Ethereum [But21].

A.3 Types of Extraction Optimizations Methods
In this section we depict different attacks as methods to optimize the extraction of
value. Depending on the willingness to interfere with the rules of the protocol and
the ability to create transactions we classify known attacks in this area. What all
approaches have in common is that, form the perspective of AIM, they all rely on
economically rational behavior of actors. For our classification we build upon previous
classifications [EMC19, QZG22, JSZ+21b].

On a high level we divide value extraction optimization techniques into unintrusive and
intrusive methods. Unintrusive methods do not interfere with the process of achieving
consensus, i.e., require no-forks and thus have also been termed no-fork attacks [JSZ+21b].
Intrusive methods require interference with the process of achieving consensus, i.e., require
a fork. Moreover, intrusive methods can be further divided into protocol coherent and
protocol changing extraction optimizations. There difference being that the latter changes
the protocol rules and thus requires a so-called hard-fork.

Both, unintrusive and intrusive, variants can be incentivized through AIM attacks using
in-band, or out-of-band payments/bribes. If out-of-band payments and bribes, issued in
different cryptocurrencies, are considered, this implies that at least two cryptocurrencies
are executed in parallel. In such a case, we have to differentiate between a target cryp-
tocurrency in which the desired effects have to be triggered and a funding cryptocurrency
in which (additional) rewards are issued conditioned on the actions taken in the target
cryptocurrency.

A.3.1 Unintrusive methods
Unintrusive methods do not interfere with the process of achieving consensus, i.e., require
no-forks and thus have also been termed no-fork attacks [JSZ+21b]. Some of these attacks
can therefore be executed by miners as well as users. Unintrusive methdos can be further
separated into:

Passive no-fork attack, approaches which do not require the creation of transactions,
but do require voting power, i.e., can only be executed by proposers. Examples are:
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• Passive no-fork order optimization [DGK+20], in which the ordering which provides
the highest value (e.g., in terms of fees) is selected without creating new transactions.
Another possibility, would be to intentionally order transactions such that they
consume the most gas in Ethereum. For an analysis on how to find the optimal
ordering see Appendix A.2.

• No-fork exclusion attacks [MHM18, JSZ+19, WHF19], in which a transaction is
not included into a block because there is a revenue opportunity for the miner in
this case, e.g., due to a side payment (bribe or AIM attack), or because he himself
is then able to profit directly e.g., by winning an auction. Since we are still in a
no-fork scenario, the miner can only prevent or ensure the inclusion of tx if she
mines the next block. If she wants to prevent the inclusion of tx for multiple blocks,
the same miner has to mine multiple blocks in a row. An analysis of this case can
be found in Appendix A.6.

Active no-fork attack, approaches which do require the creation of additional transac-
tions. Examples are:

• Active no-fork order optimization [DGK+20], in which not only the ordering which
provides the highest value in terms of fees is selected, but also additional transactions
can be created if needed to extract additional value, e.g., a guaranteed profit
opportunity through arbitrage is observed, or an any-on-can-spend output is
observed and collected. This case includes all kinds of attacks such as front-
running [EMC19, DGK+20], back-running, sandwich-attacks, etc. [QZG22, ZQC+21,
ZQT+20, TIGS21].
Actors in this scenario are not necessarily required to be proposers (e.g., miners in
context of PoW). As long as actors share some of their potential profits from the
desired ordering with the respective miner, then both parties might be able to profit.
This can be done by increasing the fee of transactions to incentivize their inclusion,
as empirically observed by MEV bots [DGK+20, ZQC+21]. Alternatively, miners
could be bribed directly to produce the desired ordering [JSZ+19, JSZ+21b]. Also,
this behavior is already observed in current MEV extraction bots, which trigger
code that directly bribes the beneficiary of the respective block [SJSW22].

• Active no-fork exclusion attacks, in which other transactions are excluded by broad-
casting sufficiently many high priority transactions (e.g., with high fee) to fill all
available space in blocks. An example would be the Fomo3D exploitation [fom18].
This approach has also been referred to as clogging [QZG22], or transaction trig-
gering [JSZ+21b]. Attacks in this category can be executed by every actors that
can created or incentivize sufficiently many transactions.
Alternatively, this can be achieved with a bribing contract that later offers a
higher reward when a certain transaction was not included until a particular height.
Examples of such attacks are described in [MHM18, JSZ+19, WHF19, KNW20],
Chapter 4 and Appendix A.6 of this thesis.
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A.3.2 Intrusive methods

which require interference with consensus i.e., a fork. Attacks in this category require
the active participation of actors with voting power (i.e., miners with hashrate in context
of PoW). We distinguish between protocol coherent and protocol changing methods. In a
protocol coherent method an attacker preferred a certain branch regarding the resolution
of a temporary fork. In a protocol changing method the rules of the preferred attacker
branch are incompatible with the original rules and therefore necessitate a so-called
hard-fork. Intrusive methods can be separated into the following categories.

Deep-fork attacks, where a fork with a depth of at least exceeding a security parameter
kV of some victim V is necessary (i.e., > kV ). The victim defines kV [GKL15, SZ16],
and it refers to its required number of confirmation blocks for accepting transactions2.
In other words, the victim indirectly defines the required minimum fork length by
his choice of kV . The classic example of a deep-fork attack is the double-spending
attack [Ros14, DKT+20], in which a transaction is revised, and the amount is transferred
back to the original sender s.t., the sender can spend the same amount multiple times.

A double-spend necessarily requires the issuance of a transaction at some point in
time. Therefore, the distinction between active and passive double-spending attacks
makes no sense, as all double-spending attacks must be active attacks as there initially
must be a transaction to double-spend. Moreover, in classic double-spending attacks,
another conflicting transaction tx has to be issued and included instead of tx. Although,
issuing a conflicting transaction is not necessary for a double-spend to be successful, as
demonstrated by opportunistic double-spending attacks [SJSW22].

Near-fork attacks, , where the required fork depth is not dependent on some security
parameter kV chosen by a concrete victim, but forks might be required by the performed
extractable value optimization. In other words, the attacker defines a gap kgap, that
is chosen independently from any other security parameter kV . It could be smaller
than any kV , or larger 3. If a miner identified a large enough revenue opportunity,
she could decide to launch a near-fork attack. For example, if the currently available
set of transactions T would allow the miner to extract more profit in retrospect, she
could either mine certain more profitable blocks herself or change the order of already
confirmed transactions so that they are more profitable. This, for example, is the case in
a time bandit attack, where previously issued and already included transactions can be
reordered to gain a higher trading profit due to cheaper purchases and more valuable
sales. Hereby, the gap would be defined by the required maximum block height x to
make these trades possible again, s.t. x ≤ n and kgap = n − x. All transactions from
block x to n are then available again for inclusion, as they are a subset of all known
transactions, Txseq( bx, . . . , bn) ⊆ T .

2We emphasize that each transaction has a recipient (and thus a potential victim with an individual
kV ), in practice, there is no global security parameter k, that holds for all transactions.

3The length of kgap also depends on the attacker’s resources and willingness to succeed (e.g., to
exclude a certain block).
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Examples of near-fork attacks are:

• Undercutting attack [CKWN16], in which the miner forks the latest block (or
multiple blocks) to mine the included transactions himself.

• Censorship or (near-fork) exclusion attack [MHM18, JSZ+19, WHF19], which is
conceptionally the same as the no-fork exclusion attack, but in this case, the
extractable value for excluding a transaction is large enough to incentivize a near-
fork. An early variant of this has also been termed feather forking [BMC+15].

• Time bandit attack [DGK+20], in which the attacker reorders transactions that
have already been included in a block in retrospect. Since the point in time when
this reordering happens is independent of the individual security parameter (kV )
of the involved transaction, this type of attack can be categorized as a near-fork
attack.

• Selfish mining [ES14, NKMS16, SSZ16]. Selfish mining is also a form of near-fork
attack in which the additional extractable value comes in the form of a relative
increase in rewards after the difficulty has been adjusted.

Hard-fork attacks, where the required fork changes the protocol rules and thus is
incompatible with the original rules. This special case is therefore called protocol changing.
Most formal protocol security analysis necessarily assumes that the protocol under
investigation is static. This is a justifiable assumption, as in most cases, the maintenance
and initial distribution of the protocol are controlled by a central, trusted party. In
cryptocurrencies, the situation is slightly different. Practice shows that protocol changes
are necessary and have happened several times in the past in different cryptocurrencies,
e.g., in Bitcoin, for introducing segregated witness (SegWit). In Section 7.2, we revisit
different types of protocol changes and discuss their relation and implication regarding
the financial optimization of certain actors. An example Robin Hood attack is provided
in Appendix A.4.

A.4 Adoption of Protocol Changes and the Robin Hood
Attack

Which rules the majority of miners adopt depends on a variety of factors. The information
regarding the new rules must be available to the miners, as well as the time (block height)
at which these new rules become active. Moreover, the EEV under the new rules,
compared to the EEV under the old rules plays a role. New rules Π , imply a new execute
function Execute and thus also a new predicate Valid and Reachable as well as
a new function Future . An economically rational miner i, would stick to the original
rules and ignore the new rules (starting at block bn), when these rules do no lead to any
block with higher expected extractable value.
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∀bn+1 ∈ Future(bn, T ),
¬∃bn+1 ∈ Future (bn, T ), EEV(bn+1) > EEV(bn+1). (A.1)

If this is not the case, this provides room for incentive manipulation. For example, for
an attacker who bribes miners to follow his favored branch of a chain split. In the past,
schemes have been developed that allow for the atomic swap of coins in case of a chain
split [MHM17]. The motivation for this was a bet between two wealthy Bitcoin users
(Roger Ver and Loaded) on whether or not some chain split will happen. Although this
theoretically enables two parties to bet on the execution of a chain split, it was not
presented as an attack to increase the likelihood of this event actually taking place. In
the Paper [JSSW22a], as well as in Chapter 6,an example is given for a case where a
permanent fork could be beneficial for users, namely if the exchange rate of both resulting
cryptocurrencies is more than the original exchange rate the initial cryptocurrency. In
this case, the amount of resources for users increased through the fork. Historical, forking
events in cryptocurrencies lead to such situations, such as the dispute that motivated the
split between Ethereum and Ethereum Classic (2016-06-28) where the exchange rate of
Ethereum stayed between $ 12 USD and $ 13 USD and Ethereum Classic started with
an exchange rate of around $ 1.6 USD, which effectively increased the resources of all
users holding that asset before the split4.

In the following section, we want to sketch an attack that is aimed at increasing the
likelihood of a protocol change and, thus, a resulting chain split.

A.4.1 The Robin Hood Attack
We assume that there is a participant or set of participants V which is known to possess
a substantial amount of funds. Moreover, the associated addresses or unspent transaction
outputs holding these funds are publicly known as well. Then some party can propose a
changed set of rules Π , which expropriates V and redistributes these funds to all other
mining participants. This would be an overlapping and conflicting change and requires
that the new rules Π are known to every miner. As long as a potential drop in the
exchange rate is less than the gain from the distributed funds, it could be profitable for
the majority of miners to accept this protocol change. If participants in V do not control
any hashrate, they cannot even intervene directly. In this case, they would be dependent
on miners to support the original rules. Knowing this, supporting miners might require
some financial compensation for doing so, leading to a loss of funds as well. If neither
side gives up, the protocol change would turn into a permanent chain split and thus
result in two different cryptocurrencies.

Given the distribution of coins in prevalent cryptocurrencies, substantial amounts can
be attributed to certain parties. In Bitcoin, for example, addresses that are attributed

4cf. https://www.investing.com/crypto/ethereum/historical-data and https:
//www.investing.com/crypto/ethereum-classic/historical-data

204

https://www.investing.com/crypto/ethereum/historical-data
https://www.investing.com/crypto/ethereum-classic/historical-data
https://www.investing.com/crypto/ethereum-classic/historical-data


A.5. Transaction Ordering attack (in-band)

to Satoshi Nakamoto hold around 1.1 million BTC, and addresses attributed to the
company Binance hold around 200 thousand BTC, to just provide two examples 5.

A.5 Transaction Ordering attack (in-band)
This no-fork attack pays additional rewards within a targeted cryptocurrency (in-band)
to miners for reordering unconfirmed transactions, comparable to front-running at-
tacks [EMC19, DGK+20]. In front-running attacks, the adversary increases the chance
of his transaction being included before others by increasing the transaction fee paid to
miners. However, the result is an all-pay auction: even if the attack fails, the high-fee
transaction can be included by miners. As such, the adversary must always pay the
fee, independent of the attack outcome [DGK+20]. In contrast, our attack ensures the
adversary pays colluding miners only if the attack was successful, i.e. if the desired
transaction ordering was achieved.

A.5.1 Description
Initialization. The adversary (Blofeld) observes the P2P network and initiates the
attack once he sees a victim’s (Vincent) transaction txV , which he wants to front-run
(e.g., registering a domain name or interacting with an exchange). First, Blofeld publishes
his front-running transaction txB. Simultaneously, he initializes an attack contract with
the necessary information on the desired outcome, as well as the locked bribe, which
serves as an incentive for miners to work towards reaching the attacker desired state. How
this can be implemented on a technical level in Ethereum is discussed in Section A.5.2.

Attack. If the attack is successful, colluding miners generate a block that has the
desired ordering of transactions. Note: even if the victim attempts to update the original
transaction txV with txV , e.g. using replace by fee [Wik], txV remains valid and can
alternatively be included by miners to invalidate txV . Rational miners will hence include
txB and txV in the specified order, fulfilling the payout conditions, as long as this results
in the highest reward.

Payout. After kB blocks (kB is the blockchain’s security parameter defined by the
attacker in this case), miners can claim their payouts, whereby the smart contract first
checks if the ordering of the two transactions is as specified.

A.5.2 Details and implementation of tx ordering in-band
On a high level, we differentiate between three methods to implement functions for
verifying a certain transaction ordering in Ethereum. The first method only relies on
proofs over the transaction trie of a given block to verify the desired transaction ordering.
The second method tries to verify the desired state. The third method enables the
attacker to specify the entire content of the desired block upfront. In the first two

5cf. https://bitinfocharts.com/de/top-100-richest-bitcoin-addresses.html
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versions, the checks are performed at the level of individual transactions, whereas the
third method verifies the state of an entire block.

Verify transaction ordering

For this technique, it is sufficient that identifiers of the two transactions, the desired order
( txB < txV ), the block in which the transaction(s) are to be included, and a bribe , are
provided as a transaction to the attack contract. Thereby, the respective transactions,
as well as the initialization transaction to the attack contract, can be included in the
same block. Once the initialization transaction has been included in a block, (i) the
configuration can no longer be changed, and (ii) the bribe is locked until the attack times
out. This is necessary to prevent the attacker from attempting to defraud colluding
miners by altering the payout conditions after the attack was executed.

The verification in this method works via a transaction trie inclusion proof provided to
the attack smart contract. Since the key in the trie is the index of the transaction in the
block and the value is the transaction hash, the ordering of any two or more transactions
can be proven to a smart contract in retrospect.

The advantage of this approach is that it is conceptionally simple, but it bears certain
drawbacks. Let us assume the transaction hash of the involved target transaction txV

changes e.g., if a transaction was updated via replace by fee, or a completely different
but conflicting transaction from the same address with the same nonce has been issued
txV . This case can still be captured by an attack contract which also checks the nonce of
the respective transaction. Since the original transaction txV is still valid and can be
included by a complacent rational miner, all transactions with the same nonce from the
same account become invalid.

A problem arises if the victim publishes another transaction txV , from a different account
that has not been included in the initialization of the attack contract. This transaction
might be semantically equivalent to txV , e.g., it would register the same name in sENS
but would not be covered in the attack condition of the contract. Thus, a naive contract
only working with transaction hashes and nonces of known transactions can be fooled by
a victim to pay out bribes, although the attack was not successful because txV has been
included before txB and just txV has been included after txB.

Verify operation on specific state

This approach addresses the issue of interfering transactions mentioned in the previous
section in two different ways.

Retrospective check It is proven to the attack contract in retrospect that it has
successfully operated on the correct world-/smart contract state before any funds are
unlocked.
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Up to Ethereum EIP-150 revision, the transaction receipt also contained the post-
transaction6 state Rσ. This would have allowed proving to the attack contract the state
before any transaction as well as the state after a specific transaction. Unfortunately, the
post-transaction state was removed from the transaction receipt for performance reasons.

A currently working generic method for Ethereum around this would be to require that
the racing attack transaction has to be at index 0 in the new block mined by the miner.
It would then be possible to prove to the attack contract in retrospect that the specified
transaction at index 0 operated on a specific world state i.e., the word state of the
previous block, e.g., where the name to register was not registered yet. The only way to
also generically prove that the resulting state was indeed the required one without any
side effects is that only transactions which are directly relevant to the attack are included
in the new block in the respective order because then the resulting world state can be
pre-computed. This, of course, renders the attack more expensive and less generic.

Runtime check During runtime, a smart contract in Ethereum does not know at
which position the transaction that invoked the contract is located in the respective
current block. Moreover, it is not possible to query the indices of other transactions
during runtime. An alternative to working with indices of transactions is working directly
with the required states. The attack contract checks if it is operating on the correct
world state directly before even performing the attack e.g., check if the name it wants
to register is available. If the attack contract encounters an error while performing an
attack, it could prevent any future payouts of bribes.

In our front-running example, the front-running transaction can also be sent to the
attack contract directly, which additionally works as a proxy or dispatcher and only
forwards i.e., performs the transaction, iff a queriable attack condition is met i.e., the
target contract is in a specific pre-defined state. Since the state (storage) of a contract
cannot directly be accessed from another contract, only accessible functions, variables,
and certain state variables such as balance can be accessed. Note that for publicly
accessible variables, getter functions are created automatically. These runtime checks
ensure that no payments happen if the attack is unsuccessful. Summarizing, checking
for the desired state at runtime (if possible) can make attacks more efficient, and at the
same time, more complex attack scenarios can be envisioned.

Specify the entire list of transactions

In this method, the attacker needs to specify and broadcast the entire ordering of the
respective block, i.e., the root hashes of all transactions and the desired block height at
which a block containing this specific list of transactions should be mined. The bribees’
task is to create the entire block, including a valid PoW. To construct the desired block,
any potential bribee requires all associated transactions under the attacker-provided root

6The according Ethereum yellowpaper describing this is still available at http://gavwood.com/
Paper.pdf (accessed: 2019-05-04)
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hash. This necessitates an additional communication channel where this data is made
available by the attacker to all potential bribees.

Unfortunately, for the attacker, the specified transaction hash cannot include the initial-
ization transaction itself, as it would be required to include a hash over itself. Therefore,
the initialization transaction needs to be included in any subsequent block. Suppose this
initialization transaction can be included within the next 256 blocks. In that case, the
attack smart contract is able to verify if the specified block within the last 256 blocks
indeed has the specified transaction root hash, given the associated block header of this
block as input. The transaction root hash from the given header can then be compared
against the desired one, and the hash of the header can be checked against the block
hash at the desired height with the EVM opcode blockhash (0x40).

In the given construction, miners can verify that the block desired by the attacker with
the specified transactions is valid and therefore be sure to receive at least the regular
block reward for such a block. Moreover, in the best case, they would also receive the
additional bribe later. As this approach already requires an additional communication
channel between the attacker and potential bribees, a variation of this attack is possible
in which the attacker only sends out signed messages, including the desired transaction
root hash as well as the desired block height. These messages can then be included in a
transaction created by the bribee that wants to redeem his reward from the pre-funded
attack contract as proof that the attacker indeed confirmed the creation of the respective
block.

To provide an additional guarantee to the potential bribees, the attacker over-funds the
attack contract up-front with locked currency units. Thereby, he would ensure that there
still is sufficient money in the attack contract to pay the bribe, even if the attacker would
issue multiple signed messages containing transaction root hashes and block heights.

A.5.3 Evaluation with Rational Miners Only (pR = 1)
First, we assume a scenario where all miners act rationally, i.e., are bribable. Miners are
incentivized to collude with the adversary, as the contract guarantees a reward > 0 in
addition to regular mining. Participation in the attack does not require to mine on an
alternative fork. Hence colluding miners face no additional risk that their blocks will be
excluded from the main chain.

A.5.4 Evaluation with Altruistic Miners
(pR + pA = 1)
In theory, this attack is possible with any hashrate of bribable miners pR > 0. However,
the higher the hashrate, the higher the chances of success. If 2/3 of the hashrate is
controlled by rational miners, the attack is expected to succeed in two out of three
cases. We refer to Section A.6 in the Appendix for an analysis where rational miners
are additionally incentivized to near-fork main chain blocks to successfully remove an
undesired block from the chain.
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A.5.5 Counter Mechanisms
For a list of general counter mechanisms, e.g., require blinded commitments up-front,
which can be used to avoid such a vulnerability during the design of smart contracts,
see [DGK+20, EMC19]. In this section, we focus on counter-bribing as a mitigation
strategy. Therefore, we distinguish the counter-bribing based on the point in time where
the counter-attack is performed.

Immediate Counter-bribing As long as the new block has not been mined, an
effective countermeasure against this attack is to immediately perform counter-bribing
through the same attack mechanism. Hereby, the attacker and the victim engage in
an English auction, as only the winner pays the bribe, instead of the all-pay-auction
observed in other front-running [DGK+20]. This defensive strategy assumes that Vincent
actively monitors the P2P network and immediately becomes aware of the attack.

Delayed Counter-bribing If Vincent only has an SPV (Simple Payment Verification
[Nak08]) wallet, he may only recognize the attack after a new block with the intended
ordering of the attacker has already been mined. Since Vincent is not in possession of
any hashrate, he cannot directly launch a counter-attack to fork the respective block.
Thus, the costs for a successful counter-bribing attack have become much higher than
the costs for the original attacker Blofeld. For an analysis of how much it costs to remove
one block from the chain, we refer to [JSSW22b] or Chapter 5 of this thesis.

A.6 Transaction Exclusion (in-band)
The purpose of this near- or no-fork attack is it to exclude one or multiple unconfirmed
transactions from their generated blocks. The targeted cryptocurrency is Ethereum.
Thus the attacker is able to use smart contracts to offer in-band payments to incentivize
compliant behavior. Such attacks can be profitable for an attacker attempting to falsely
close an off-chain payment channel (i.e., publish an old/invalid state) but prevent the
victim from executing the usual penalizing measures [PD16, MBKM19, DW15]. In this
section, we outline the general functionality of the attack as well as discuss the technical
details of how such attacks could be implemented in Ethereum.

A.6.1 Description
The non-inclusion of a specific transaction should be rewarded with an in-band bribe.
There are multiple ways to prove the non-existence of a specific transaction (or its effects)
to a smart contract in Ethereum, which we discuss in Section A.6.2. In general, the
attack can be separated into three different phases.

Initialization. The attacker knows some transaction txV which he wants to prevent
from getting into the main chain. He then initializes the attack contract at block e1,
specifying the transaction and the duration N (in blocks) of the exclusion attack.
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Attack. The attack contract will pay an extra for every block mined between block e1
and eN that (i) does not include transaction txV itself and (ii) does not extend any block
that included transaction txV . If an altruistic miner decides to include txV in his block
ei (i < N), colluding miners must perform a near-fork, i.e., extend block ei−1 rather than
ei, if they wish to receive rewards.

Payout. Collaborating miners can claim payouts once kB blocks have passed after the
end of the attack, i.e., at a block eT ≥ eN+kB

, where kB is the security parameter defined
by the attacker.

A.6.2 Details and implementation of tx exclusion in-band

The two crucial aspects of this attack are: i) Determine if the unwanted transaction txV

was included, and if so, in which block ii) Correctly reward complacent miners. To collect
the reward, a rational miner has to submit the block header he mined in the respective
range to the attack contract. The attack contract then checks if this block indeed lies
in the respective interval in the recent history of the chain. In Ethereum, the last 256
block hashes can be accessed from within a smart contract. Thereby the smart contract
can verify if a submitted block header is indeed part of the recent history. From the
submitted block header, the contract can also extract the beneficiary / coinbase address
of the respective miner directly.

Transaction inclusion proof

Most PoW blockchains use accumulators, such as Merkle trees, to store and efficiently
prove the inclusion of transactions in a block. However, proving the non-existence of an
element in Merkle trees is inefficient. To this end, the attack contract will reward any
submitted block between e1 and eN unless the adversary submits an inclusion proof for
txV before the payouts are claimed in block eT . If the adversary proves that a block ex

included txV , any blocks extending ex, i.e., ex+1, ex+2, ..., will not receive any payouts.
Figure A.1 shows a failed attack where txV was included in block e3 - thus, only blocks
up to, but not including, e3 are rewarded.
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Figure A.1: The figure shows an ongoing-, a failed- as well as a successful Transaction exclusion
attack with in-band payments. The attack is initialized when the attack contract is published
in block e1. If the unwanted transaction has been included, this can be proven to the attack
contract, as shown in the failure case in block eN+x. The payouts are performed in block eT . The
colored blocks are rewarded by the attack contract with an additional .

The naïve way of determining if txV has been included in a block is to request a Merkle
Patricia trie inclusion proof, as described in Section A.5.2, that the respective transaction
is part of a given block header that lies in the defined interval. This approach has the
drawback of not detecting other semantically equivalent transactions with a different
hash.

A way around this in an in-band scenario on Ethereum is to define state conditions that
must be met depending on the use case at hand. For example, a transaction can be
submitted to the attack smart contract containing an inclusion proof of a transaction
to a specific (unwanted) address as a payload. If this transaction happened in the
specified block interval, this could be considered a proof that an unwanted interaction
with the respective address has occurred. Therefore, no rewards will be paid by the attack
smart contract to miners starting from the block that includes the unwanted transaction.
Thereby, care has to be taken to account for transaction obfuscation via proxy contracts,
which perform message calls on behalf of a transaction from an externally owned account.
These cannot easily be proven to a contract since the respective transaction has to be
evaluated on the EVM with the correct world-state. Thus, this variant is only error-free
if the unwanted transaction has to come directly from an externally owned account, e.g.,
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as required by certain Tokens7.

Therefore, the safest variant is to check whether the state change or condition that an
unwanted transaction should have triggered has occurred. For example, if the balance of
a contract has been raised/decreased or if a particular publicly accessible state variable
has changed in an undesired way. If the attack contract can check this before performing
any payouts, it is only possible to collect rewards if the requested condition has been
fulfilled.

Block template in-band

Another way around the previously outlined problem of proving that an unwanted
transaction has not occurred is to specify what transactions are allowed to take place.
Interestingly, this is easier in an out-of-band scenario than in an in-band scenario since
the attacker has to convincingly ensure the collaborating rational miners that they will
receive their bribes while defining the content of all blocks in a way that can be proven to
the attack smart contract. At the same time, the content of the blocks also has to define
those blocks, which leads to a recursive dependency since the transaction to the attack
contract cannot define itself because its hash is not known in advance. Conceptionally,
the same techniques, such as sending out signed messages of transaction root hashes and
block heights, as described in Section A.5.2 can also be used in this case.

A.6.3 Evaluation with Rational Miners Only (pR = 1)
Estimating the costs of such an attack in a scenario where all miners are rational
(pB = pA = 0 and pR = 1) and have perfect information about the attack is trivial. In
this case, it is a no-fork attack, and the respective transaction would not be included in
the blockchain as long as the bribe for non-inclusion surpasses the fee miners can gain
from including the respective transaction, i.e., > fee(txV ).

A.6.4 Evaluation with Altruistic Miners
(pR + pA = 1)
If a fraction of miners behaves altruistically, i.e., will not join the attack independent
of profit, rational miners need an additional incentive to perform near-forks, excluding
blocks containing txV .

Probability of success without a fork As rational miners find a block with proba-
bility pR, the likely hood of rational miners finding chains of consecutive blocks decreases
exponentially in their length . For example, given pR = 2

3 the probability of generating
a chain of = 6 consecutive blocks is merely 8.8%. However, another possible attack
might only require delaying a specific reoccurring transaction at any point in time within

7Interestingly, a UTXO model would also be easier to censor if the output which has to be spent in
an unwanted transaction is known.
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the subsequent N blocks. For example, denying all transactions to a smart contract
to prevent price updates. The probability for a miner with hashrate pR = 2

3 to mine
at least = 6 consecutive blocks at least once within the next n = 100 total blocks
is approximately 97.2%. This can be calculated for different values of n, and pR by
computing the matrix of the finite Markov chain depicted in A.2 with n as exponent, as
shown in formula A.2.

S0
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... S
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pR pR
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Figure A.2: Finite Markov chain for calculating the probability of mining at least consecutive
blocks with hashrate pR.

P =


pA pR 0 · · · 0
pA 0 pR · · · 0
...

...
... . . . ...

pA 0 0 · · · pR
0 0 0 · · · 1



n

· 1 0 0 · · · 0 (A.2)

Probability of success and costs with near-forks To increase the chance of success,
the adversary must increase the bribe paid to colluding miners, to reimburse the risk of
losing block rewards rreward due to a failed fork. Assume altruistic miners mined a block
containing txV . In this scenario, the attack chain, i.e., the fork produced by collaborating
miners, which must not contain txV , is only one block behind the main chain. As such,
the required bribing funds are significantly lower when compared to deep-fork bribing
attacks. For an evaluation of this scenario, we refer to [JSSW22b]or chapter 5 of this
thesis.

Comparison to Existing Attacks

A comparable attack allowing arbitrary transaction exclusion is HistoryRevisionCon [MHM18].
While HistoryRevisionCon only requires bribing amounts between 0.09375 · re and
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1.4375 · re (depending on how effective uncle block inclusion can be optimized), it also re-
quires a substantial attacker hashrate (pB > 1

3). For comparison: if we assume pR = 0.33
s.t., pE = 0.28 and pM = 0.05, our attack would require ≈ 0.603 · re.

The only comparable transaction exclusion attack is the Script Puzzle 38.2% attack,
which requires pB > 38.2% (in Bitcoin). For comparison, if we assume pR = 0.382, our
attacks require a bribe value close to zero: mining on the attacker chain becomes the
highest paying strategy independent of the bribe.

A.6.5 Counter Mechanisms
Unique transaction specification: To deny some transaction from getting into the
blockchain, the respective transaction has to be known. We made the simplifying
assumption that the transaction hash is known to the attacker and will not change.
Although, in practice, this might not hold because there are several counter measures
the victim can take. Even if transaction malleability is not possible for any third party,
transactions can be recreated by the sender s.t. they are semantically equivalent but
their transaction hash differs. Ethereum actively supports this as replace-by-fee, when a
new transaction from the same account with a higher gas value is available, miners will
prefer it. The new transaction is not even required to be semantically equivalent to the
original one.

Therefore, the victim can evade the attack if the attack contract relies on transaction
hashes. A possible but less generic way around this is to evaluate contract states instead
of transaction hashes to determine if the effects of some unwanted transaction have made
it into the blockchain. Although this seems like a promising approach, the feasibility of
this solution highly depends on the individual implementation of the attack. As outlined
in Section A.5.2, the specification of the entire list of transactions by the attacker would
not have this problem.

Counter-bribing The most effective countermeasure against the attack, is to increase
the fee of txV s.t. it surpasses the value promised by the attack contract. For transaction
exclusion, the required conditions have to be made public. Therefore this attack cannot
be considered stealthy in the target cryptocurrency. This motivates that the operation
of the attack is orchestrated from another funding cryptocurrency (utilizing out-of-
band payments) and thus hidden from clients that only operate and monitor the target
cryptocurrency. Such an attack is described in the Section 4.5

Counter-attack The exact same incentive attack can be used to keep an inclusion
proof for the unwanted transaction out of the blockchain. We now show that this is
not necessarily a cost efficient counter-attack by introducing an additional cost gap. To
introduce this cost gap between the attack and its counter-attack, the stabilization period
between eN and eT can be increased s.t. it is larger than the period between e1 and eN .
Thereby, the counter-attack gets more expensive than the original attack. This leverages
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the fact that the victim has to get his transaction into the blockchain before eN , whereas
the attacker can choose a longer stabilization period.

Proof a negative If the successful execution of the attack relies on a proof that the
unwanted transaction txV was included to correctly payout rewards and detect unwanted
inclusion, rational miners would be disincentivized to include this proof and keep collecting
the rewards for complacent blocks instead.

Therefore, an approach that poses more convincing evidence of transaction absence is
desirable. An in-band method that relies on a proof that the transaction txV was indeed
not included in the chain in the respective interval would be ideal. Thereby, the attacker
can be sure that the payment only happens if the requested condition is fulfilled. In
practice, such proofs are less efficient in current cryptocurrencies such as Ethereum. A
possible way around this is to provide a block template for every block, which miners
must use to be later able to collect the associated additional reward . Thereby, it can
be ensured by the attacker that only wanted transactions are included as well as their
order. The block template can be provided in a transaction to an attack contract which
encompasses all transaction hashes in their respective order, which should be included in
the next block, excluding his own hash.

Another alternative would be to use out-of-band techniques and launch the attack from
a different smart contract capable funding cryptocurrency whose miners are not affected
by the attack. Moreover, if the set of miners is distinct, the incentives of the miners
to not include an inclusion proof of txV is less of an issue. We describe an out-of-band
attack that uses the technique of block templates and also allows for arbitrary ordering in
Section 4.5.

A.7 Comparison Tables for “How much is the fork”

In this section, we want to list and compare concrete values of different models and
configurations described in Chapter 5. To aid reproducibility and allow readers to spot
small changes in values which are not observable in figures, we provide tables for some
parameterizations. If the required bribe in a cell is 0 the cell is colored blue. The code
that generates all tables and figures can be found on GitHub8.

8https://github.com/kernoelpanic/howmuchisthefork_artefacts
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pm = 0.05 pm = 0.1 pm = 0.2 pm = 0.3 pm = 0.33 pm = 0.382 pm = 0.4

pE = 0.00

pA = 0.950
ρ = 0.050

= 17.054
ρ = 0.050
Pr = 0.003

pA = 0.900
ρ = 0.100

= 7.125
ρ = 0.100
Pr = 0.012

pA = 0.800
ρ = 0.200

= 2.321
ρ = 0.200
Pr = 0.060

pA = 0.700
ρ = 0.300

= 0.883
ρ = 0.300
Pr = 0.159

pA = 0.670
ρ = 0.330

= 0.649
ρ = 0.330
Pr = 0.200

pA = 0.618
ρ = 0.382

= 0.353
ρ = 0.382
Pr = 0.282

pA = 0.600
ρ = 0.400

= 0.275
ρ = 0.400
Pr = 0.314

pE = 0.05

pA = 0.900
ρ = 0.052

= 7.529
ρ = 0.052
Pr = 0.012

pA = 0.850
ρ = 0.105

= 4.126
ρ = 0.105
Pr = 0.031

pA = 0.750
ρ = 0.210

= 1.556
ρ = 0.210
Pr = 0.103

pA = 0.650
ρ = 0.315

= 0.596
ρ = 0.315
Pr = 0.230

pA = 0.620
ρ = 0.346

= 0.430
ρ = 0.346
Pr = 0.279

pA = 0.568
ρ = 0.401

= 0.216
ρ = 0.401
Pr = 0.373

pA = 0.550
ρ = 0.420

= 0.159
ρ = 0.420
Pr = 0.408

pE = 0.10

pA = 0.850
ρ = 0.055

= 4.359
ρ = 0.055
Pr = 0.031

pA = 0.800
ρ = 0.110

= 2.645
ρ = 0.110
Pr = 0.060

pA = 0.700
ρ = 0.219

= 1.067
ρ = 0.219
Pr = 0.159

pA = 0.600
ρ = 0.329

= 0.399
ρ = 0.329
Pr = 0.314

pA = 0.570
ρ = 0.362

= 0.278
ρ = 0.362
Pr = 0.369

pA = 0.518
ρ = 0.419

= 0.122
ρ = 0.419
Pr = 0.471

pA = 0.500
ρ = 0.439

= 0.081
ρ = 0.439
Pr = 0.508

pE = 0.20

pA = 0.750
ρ = 0.059

= 1.860
ρ = 0.059
Pr = 0.103

pA = 0.700
ρ = 0.117

= 1.212
ρ = 0.117
Pr = 0.159

pA = 0.600
ρ = 0.235

= 0.497
ρ = 0.235
Pr = 0.314

pA = 0.500
ρ = 0.352

= 0.157
ρ = 0.352
Pr = 0.508

pA = 0.470
ρ = 0.388

= 0.095
ρ = 0.388
Pr = 0.569

pA = 0.418
ρ = 0.449

= 0.017
ρ = 0.449
Pr = 0.672

pA = 0.400
ρ = 0.470

= 0.000
ρ = 0.471
Pr = 0.706

pE = 0.30

pA = 0.650
ρ = 0.060

= 0.827
ρ = 0.060
Pr = 0.230

pA = 0.600
ρ = 0.120

= 0.531
ρ = 0.120
Pr = 0.314

pA = 0.500
ρ = 0.240

= 0.183
ρ = 0.240
Pr = 0.508

pA = 0.400
ρ = 0.360

= 0.020
ρ = 0.360
Pr = 0.706

pA = 0.370
ρ = 0.396

= 0.000
ρ = 0.398
Pr = 0.760

pA = 0.318
ρ = 0.459

= 0.000
ρ = 0.472
Pr = 0.843

pA = 0.300
ρ = 0.480

= 0.000
ρ = 0.496
Pr = 0.867

pE = 0.33

pA = 0.620
ρ = 0.060

= 0.626
ρ = 0.060
Pr = 0.279

pA = 0.570
ρ = 0.119

= 0.390
ρ = 0.119
Pr = 0.369

pA = 0.470
ρ = 0.239

= 0.112
ρ = 0.239
Pr = 0.569

pA = 0.370
ρ = 0.358

= 0.000
ρ = 0.362
Pr = 0.760

pA = 0.340
ρ = 0.394

= 0.000
ρ = 0.405
Pr = 0.810

pA = 0.288
ρ = 0.456

= 0.000
ρ = 0.474
Pr = 0.883

pA = 0.270
ρ = 0.478

= 0.000
ρ = 0.495
Pr = 0.904

pE = 0.38

pA = 0.568
ρ = 0.058

= 0.345
ρ = 0.058
Pr = 0.373

pA = 0.518
ρ = 0.116

= 0.187
ρ = 0.116
Pr = 0.471

pA = 0.418
ρ = 0.232

= 0.006
ρ = 0.232
Pr = 0.672

pA = 0.318
ρ = 0.348

= 0.000
ρ = 0.371
Pr = 0.843

pA = 0.288
ρ = 0.383

= 0.000
ρ = 0.409
Pr = 0.883

pA = 0.236
ρ = 0.444

= 0.000
ρ = 0.468
Pr = 0.937

pA = 0.218
ρ = 0.464

= 0.000
ρ = 0.487
Pr = 0.951

pE = 0.40

pA = 0.550
ρ = 0.057

= 0.262
ρ = 0.057
Pr = 0.408

pA = 0.500
ρ = 0.114

= 0.126
ρ = 0.114
Pr = 0.508

pA = 0.400
ρ = 0.229

= 0.000
ρ = 0.235
Pr = 0.706

pA = 0.300
ρ = 0.343

= 0.000
ρ = 0.372
Pr = 0.867

pA = 0.270
ρ = 0.377

= 0.000
ρ = 0.408
Pr = 0.904

pA = 0.218
ρ = 0.437

= 0.000
ρ = 0.465
Pr = 0.951

pA = 0.200
ρ = 0.457

= 0.000
ρ = 0.482
Pr = 0.963

Table A.1: Comparison of minimum bribe required per block for ρfork bl. > ρmain bl.
with probabilities calculated using our Markov chain. The axis iterate the hashrate
of an individual miner pm, and other attackers pE . The table also shows the expected
reward of miner m, if pm would be directed towards the attack chain ρ = ρfork bl., as well
as the expected reward ρ = ρmain bl., if pm would be directed towards the main chain.
All attacks start with a disadvantage of z = 1, a duration of N = 8 and the following
configuration of the Markov chain −→

k = 1,
←−
k = 10, ηattack = 0, ηmain = 0, pV = 0.000000.
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pm = 0.05 pm = 0.1 pm = 0.2 pm = 0.3 pm = 0.33 pm = 0.382 pm = 0.4

pE = 0.00

pA = 0.850
ρ = 1.050

= 20.157
ρ = 1.050
Pr = 0.002

pA = 0.800
ρ = 1.100

= 9.004
ρ = 1.100
Pr = 0.011

pA = 0.700
ρ = 1.200

= 3.617
ρ = 1.200
Pr = 0.055

pA = 0.600
ρ = 1.300

= 2.015
ρ = 1.300
Pr = 0.149

pA = 0.570
ρ = 1.330

= 1.755
ρ = 1.330
Pr = 0.188

pA = 0.518
ρ = 1.382

= 1.429
ρ = 1.382
Pr = 0.267

pA = 0.500
ρ = 1.400

= 1.342
ρ = 1.400
Pr = 0.298

pE = 0.05

pA = 0.800
ρ = 1.050

= 10.039
ρ = 1.050
Pr = 0.011

pA = 0.750
ρ = 1.103

= 6.021
ρ = 1.103
Pr = 0.028

pA = 0.650
ρ = 1.208

= 2.988
ρ = 1.208
Pr = 0.095

pA = 0.550
ρ = 1.314

= 1.856
ρ = 1.314
Pr = 0.217

pA = 0.520
ρ = 1.346

= 1.659
ρ = 1.346
Pr = 0.264

pA = 0.468
ρ = 1.401

= 1.404
ρ = 1.401
Pr = 0.356

pA = 0.450
ρ = 1.420

= 1.336
ρ = 1.420
Pr = 0.390

pE = 0.10

pA = 0.750
ρ = 1.045

= 6.781
ρ = 1.045
Pr = 0.028

pA = 0.700
ρ = 1.100

= 4.630
ρ = 1.100
Pr = 0.055

pA = 0.600
ρ = 1.212

= 2.639
ρ = 1.212
Pr = 0.149

pA = 0.500
ρ = 1.325

= 1.786
ρ = 1.325
Pr = 0.298

pA = 0.470
ρ = 1.358

= 1.630
ρ = 1.358
Pr = 0.352

pA = 0.418
ρ = 1.417

= 1.424
ρ = 1.417
Pr = 0.453

pA = 0.400
ρ = 1.437

= 1.369
ρ = 1.437
Pr = 0.489

pE = 0.20

pA = 0.650
ρ = 1.007

= 4.355
ρ = 1.007
Pr = 0.095

pA = 0.600
ρ = 1.069

= 3.398
ρ = 1.069
Pr = 0.149

pA = 0.500
ρ = 1.196

= 2.319
ρ = 1.196
Pr = 0.298

pA = 0.400
ρ = 1.326

= 1.777
ρ = 1.326
Pr = 0.489

pA = 0.370
ρ = 1.365

= 1.673
ρ = 1.365
Pr = 0.550

pA = 0.318
ρ = 1.433

= 1.534
ρ = 1.433
Pr = 0.653

pA = 0.300
ρ = 1.457

= 1.496
ρ = 1.457
Pr = 0.688

pE = 0.30

pA = 0.550
ρ = 0.918

= 3.365
ρ = 0.918
Pr = 0.217

pA = 0.500
ρ = 0.987

= 2.827
ρ = 0.987
Pr = 0.298

pA = 0.400
ρ = 1.129

= 2.160
ρ = 1.129
Pr = 0.489

pA = 0.300
ρ = 1.277

= 1.805
ρ = 1.277
Pr = 0.688

pA = 0.270
ρ = 1.322

= 1.737
ρ = 1.322
Pr = 0.743

pA = 0.218
ρ = 1.402

= 1.652
ρ = 1.402
Pr = 0.828

pA = 0.200
ρ = 1.430

= 1.631
ρ = 1.430
Pr = 0.854

pE = 0.33

pA = 0.520
ρ = 0.880

= 3.153
ρ = 0.880
Pr = 0.264

pA = 0.470
ρ = 0.950

= 2.692
ρ = 0.950
Pr = 0.352

pA = 0.370
ρ = 1.096

= 2.112
ρ = 1.096
Pr = 0.550

pA = 0.270
ρ = 1.249

= 1.803
ρ = 1.249
Pr = 0.743

pA = 0.240
ρ = 1.296

= 1.745
ρ = 1.296
Pr = 0.794

pA = 0.188
ρ = 1.379

= 1.676
ρ = 1.379
Pr = 0.870

pA = 0.170
ρ = 1.408

= 1.660
ρ = 1.408
Pr = 0.892

pE = 0.38

pA = 0.468
ρ = 0.801

= 2.818
ρ = 0.801
Pr = 0.356

pA = 0.418
ρ = 0.873

= 2.464
ρ = 0.873
Pr = 0.453

pA = 0.318
ρ = 1.023

= 2.011
ρ = 1.023
Pr = 0.653

pA = 0.218
ρ = 1.183

= 1.775
ρ = 1.183
Pr = 0.828

pA = 0.188
ρ = 1.233

= 1.735
ρ = 1.233
Pr = 0.870

pA = 0.136
ρ = 1.321

= 1.693
ρ = 1.321
Pr = 0.927

pA = 0.118
ρ = 1.352

= 1.685
ρ = 1.352
Pr = 0.943

pE = 0.40

pA = 0.450
ρ = 0.771

= 2.706
ρ = 0.771
Pr = 0.390

pA = 0.400
ρ = 0.842

= 2.383
ρ = 0.842
Pr = 0.489

pA = 0.300
ρ = 0.993

= 1.968
ρ = 0.993
Pr = 0.688

pA = 0.200
ρ = 1.155

= 1.757
ρ = 1.155
Pr = 0.854

pA = 0.170
ρ = 1.206

= 1.722
ρ = 1.206
Pr = 0.892

pA = 0.118
ρ = 1.296

= 1.689
ρ = 1.296
Pr = 0.943

pA = 0.100
ρ = 1.328

= 1.685
ρ = 1.328
Pr = 0.956

Table A.2: Comparison of minimum bribe required per block for ρfork bl. > ρmain bl.
with probabilities calculated using our Markov chain. The axis iterate the hashrate
of an individual miner pm, and other attackers pE . The table also shows the expected
reward of miner m, if pm would be directed towards the attack chain ρ = ρfork bl., as well
as the expected reward ρ = ρmain bl., if pm would be directed towards the main chain.
All attacks start with a disadvantage of z = 1, a duration of N = 8 and the following
configuration of the Markov chain −→

k = 3,
←−
k = 10, ηattack = 0, ηmain = 1, pV = 0.100000.
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pm = 0.05 pm = 0.1 pm = 0.2 pm = 0.3 pm = 0.33 pm = 0.382 pm = 0.4

pE = 0.00

pA = 0.850
ρ = 0.050

= 0.000
ρ = 1.000
Pr = 0.000

pA = 0.800
ρ = 0.100

= 0.000
ρ = 1.000
Pr = 0.000

pA = 0.700
ρ = 0.200

= 0.000
ρ = 1.000
Pr = 0.000

pA = 0.600
ρ = 0.300

= 0.000
ρ = 1.000
Pr = 0.000

pA = 0.570
ρ = 0.330

= 0.000
ρ = 1.000
Pr = 0.000

pA = 0.518
ρ = 0.382

= 0.000
ρ = 1.000
Pr = 0.001

pA = 0.500
ρ = 0.400

= 0.000
ρ = 1.000
Pr = 0.001

pE = 0.05

pA = 0.800
ρ = 0.053

= 0.000
ρ = 0.500
Pr = 0.000

pA = 0.750
ρ = 0.105

= 0.000
ρ = 0.667
Pr = 0.000

pA = 0.650
ρ = 0.211

= 0.000
ρ = 0.800
Pr = 0.000

pA = 0.550
ρ = 0.316

= 0.000
ρ = 0.857
Pr = 0.001

pA = 0.520
ρ = 0.347

= 0.000
ρ = 0.868
Pr = 0.001

pA = 0.468
ρ = 0.402

= 0.000
ρ = 0.884
Pr = 0.003

pA = 0.450
ρ = 0.421

= 0.000
ρ = 0.889
Pr = 0.003

pE = 0.10

pA = 0.750
ρ = 0.056

= 0.000
ρ = 0.333
Pr = 0.000

pA = 0.700
ρ = 0.111

= 0.000
ρ = 0.500
Pr = 0.000

pA = 0.600
ρ = 0.222

= 0.000
ρ = 0.667
Pr = 0.000

pA = 0.500
ρ = 0.333

= 0.000
ρ = 0.750
Pr = 0.001

pA = 0.470
ρ = 0.367

= 0.000
ρ = 0.767
Pr = 0.002

pA = 0.418
ρ = 0.424

= 0.000
ρ = 0.793
Pr = 0.005

pA = 0.400
ρ = 0.444

= 0.000
ρ = 0.800
Pr = 0.007

pE = 0.20

pA = 0.650
ρ = 0.062

= 0.000
ρ = 0.200
Pr = 0.000

pA = 0.600
ρ = 0.125

= 0.000
ρ = 0.333
Pr = 0.000

pA = 0.500
ρ = 0.250

= 0.000
ρ = 0.500
Pr = 0.001

pA = 0.400
ρ = 0.375

= 0.000
ρ = 0.600
Pr = 0.007

pA = 0.370
ρ = 0.412

= 0.000
ρ = 0.623
Pr = 0.011

pA = 0.318
ρ = 0.477

= 0.000
ρ = 0.656
Pr = 0.020

pA = 0.300
ρ = 0.500

= 0.000
ρ = 0.667
Pr = 0.025

pE = 0.30

pA = 0.550
ρ = 0.071

= 0.000
ρ = 0.143
Pr = 0.001

pA = 0.500
ρ = 0.143

= 0.000
ρ = 0.250
Pr = 0.001

pA = 0.400
ρ = 0.286

= 0.000
ρ = 0.400
Pr = 0.007

pA = 0.300
ρ = 0.429

= 0.000
ρ = 0.500
Pr = 0.025

pA = 0.270
ρ = 0.471

= 0.000
ρ = 0.524
Pr = 0.035

pA = 0.218
ρ = 0.546

= 0.000
ρ = 0.560
Pr = 0.062

pA = 0.200
ρ = 0.571

= 0.000
ρ = 0.571
Pr = 0.074

pE = 0.33

pA = 0.520
ρ = 0.075

= 0.000
ρ = 0.132
Pr = 0.001

pA = 0.470
ρ = 0.149

= 0.000
ρ = 0.233
Pr = 0.002

pA = 0.370
ρ = 0.298

= 0.000
ρ = 0.377
Pr = 0.011

pA = 0.270
ρ = 0.448

= 0.000
ρ = 0.476
Pr = 0.035

pA = 0.240
ρ = 0.492

= 0.000
ρ = 0.500
Pr = 0.049

pA = 0.188
ρ = 0.570

= 0.748
ρ = 0.570
Pr = 0.083

pA = 0.170
ρ = 0.597

= 0.898
ρ = 0.597
Pr = 0.099

pE = 0.38

pA = 0.468
ρ = 0.081

= 0.000
ρ = 0.116
Pr = 0.003

pA = 0.418
ρ = 0.162

= 0.000
ρ = 0.207
Pr = 0.005

pA = 0.318
ρ = 0.323

= 0.000
ρ = 0.344
Pr = 0.020

pA = 0.218
ρ = 0.485

= 1.664
ρ = 0.485
Pr = 0.062

pA = 0.188
ρ = 0.534

= 1.813
ρ = 0.534
Pr = 0.083

pA = 0.136
ρ = 0.618

= 1.722
ρ = 0.618
Pr = 0.137

pA = 0.118
ρ = 0.647

= 1.644
ρ = 0.647
Pr = 0.161

pE = 0.40

pA = 0.450
ρ = 0.083

= 0.000
ρ = 0.111
Pr = 0.003

pA = 0.400
ρ = 0.166

= 0.000
ρ = 0.200
Pr = 0.007

pA = 0.300
ρ = 0.333

= 0.000
ρ = 0.333
Pr = 0.025

pA = 0.200
ρ = 0.500

= 2.233
ρ = 0.500
Pr = 0.074

pA = 0.170
ρ = 0.549

= 2.168
ρ = 0.549
Pr = 0.099

pA = 0.118
ρ = 0.636

= 1.878
ρ = 0.636
Pr = 0.161

pA = 0.100
ρ = 0.666

= 1.760
ρ = 0.666
Pr = 0.189

Table A.3: Comparison of minimum bribe required per block for ρfork comp. > ρmain comp.
with effort-related compensation and probabilities calculated using our Markov chain.
The axis iterate the hashrate of an individual miner pm, and other attackers pE . The
table also shows the expected reward of miner m, if pm would be directed towards
the attack chain ρ = ρfork comp., as well as the expected reward ρ = ρmain comp., if pm

would be directed towards the main chain. All attacks start with a disadvantage of
z = 6 and a duration of N = 8 and the following configuration of the Markov chain−→
k = 3,

←−
k = 10, ηattack = 0, ηmain = 0, pV = 0.100000.
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(a) Minimum in classic model with z = 6, N =
∞

(b) Minimum in Markov model with pV =
0, z = 6,

−→
k = 1,

←−
k = 9, N = 10

(c) Minimum in Markov model with
pV = 0.25, z = 6,

−→
k = 3,

←−
k = 9, N = 10

(d) Minimum in Markov model with con-
tribued blocks pV = 0.25, z = 6,

−→
k = 3,

←−
k =

9, N = 10, ηattack = 3

(e) Minimum in Markov model with effort-
related compensation pV = 0.25, z = 6,

−→
k =

3,
←−
k = 9, N = 10, ηmain = 3

(f) Minimum in Markov model with efffort-
related compensation pV = 0.25, z = 6,

−→
k =

3,
←−
k = 9, N = 10, ηmain = 0

Figure A.3: Minimum bribe value in normalized block rewards for different models and
configurations.
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A.8 Comparison of Other Definitions of Extractable
Value from Related Work

In this section, we outline concurrent work on defining different forms of extractable
value.

A.8.1 Clockwork Finance
In concurrent work [BDKJ21] a formal definition of MEV was provided within the
clockwork finance framework (CFF), which uses “formal verification techniques to reason
about the profit extractable from the system by a participant” [BDKJ21]. The goal of CFF
is it to prove bounds on the economic security of certain contracts without manually
coding adversarial strategies, which is defined as the “maximum amount adversaries
can extract from them” [BDKJ21]. Therefore, they use the K Framework [Ros17], an
executable semantic framework in which they modeled certain interesting DeFi contracts
and reasoned about the maximum extractable value they offer if deployed together on
the same system. They validated the modeled contracts empirically in a very elegant
way, by utilizing the capabilities of K to use concrete inputs to programs to be evaluated.
Therefore, they were able to replay previously collected real-world data of interactions
with the respective contracts to the modeled contracts and compare the final states.
Furthermore, they provide scripts to download, process, and validate this data for each
analyzed protocol.

Clearly, this work is of practical importance for quickly discovering and analyzing attacks
on deployed and new DeFi contracts and protocols, which result in a situation where
attackers can extract high amounts of value if certain contracts are deployed/used in
combination. This property is referred to as the composability of contracts in [BDKJ21].
However, the chosen approach and model also face certain limitations and challenges,
which we will discuss in more detail after summarizing the original paper.

In the paper [BDKJ21] extractable value (EV) is defined as the “maximum value, expressed
in terms of the primary token, that can be extracted by a given player from a valid sequence
of blocks that extends the current chain.”. More formally, the extractable value for a
player P , with accounts AP , starting from a state s and given a valid block sequence B
of length k is defined by the maximum achievable balance in the primary token on all his
accounts after k blocks. A summary of relevant variables and symbols according to the
model from [BDKJ21] is given in Table A.4.

EV(P, B, s) = max
(B1,...,Bk)∈B


a∈AP

balancek(a)[0] − balance0(a)[0]

 (A.3)

From this definition of EV, they define the miner extractable value (MEV or k-MEV) if
P is a miner as the EV from all valid blocks that can be created by P in state s:
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MEV(P, s) = EV P,validBlocks1(P, s), s (A.4)
k-MEV(P, s) = EV P,validBlocksk(P, s), s (A.5)

In other words, the miner extractable value of player P , is the maximum value that can
be extracted from all valid blocks that can be created by P in state s. Note that these
definitions assume that P is going to mine the next or the next k blocks, but so far, the
definition does not account for the probability or the difficulty of this to happen. To
capture the probability to mine the exactly k consecutive blocks, the concept of weighted
MEV (WMEV) is defined in the appendix of the respective paper [BDKJ21]:

WMEV(P, s) =
∞

k=1
pk · k-MEV(P, s) (A.6)

With the concept of MEV, DeFi Composability is defined as follows in the paper [BDKJ21]:

(DeFi Composability): Consider a state s and a player P , A DeFi instrument C is
ε-composable under (P, s) if

MEV(P, s ) ≤ (1 + ε)MEV(P, s) (A.7)

Here s refers to the state of the system if contract C is added to state s. In other words,
this definition states that a certain contract C is DeFi composable with a system in
state s, for a given player P , if this player cannot gain significantly more value out of the
system when C is deployed on s.

Challenges, Open Problems and the Relation to our Model

In this section, we discuss the differences in the definitions of EV and MEV given in the
paper [BDKJ21] to the paper [JSSW22a]. Furthermore, we comment on some challenges
and open problems that arise from the definitions of EV and MEV introduced in the
paper [BDKJ21] and their relation to the paper at hand. The discussion is continued
in Section A.8.2, after summarizing a follow-up work [OSS+21] in Section A.8.2, which
extends upon certain aspects of the model presented in [BDKJ21] and also provides some
open problems in this space.

Definitions: The main differences between the chosen definition of EV in the pa-
per [BDKJ21] the paper [JSSW22a], are the explicit definition of the current state (s)
as a parameter of the function, whereas the state in our definitions ( 3,4,5) is defined
implicitly by the entire history of the blockchain, i.e., all its transactions which represent
the individual state transitions.
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Variable Description
P A player
B Set of valid block sequences of length k

k Length of specified block sequence B
s State of the system
B1, . . . , Bk Blocks in B
AP Set of accounts belonging to player P

a ∈ AP Individual account of player P

balancex(a)[0] Function that returns the balance of a given account a at
height x measured in the primary token ([0]), e.g., ether.

datax(a) Function returning the data of a given account a at height
x

validBlocksk(P, s) Denotes the set of all valid blocks (or block sequences
length k) that can be created by player P in state s if it
could work as a miner.

pk Probability that P mines exactly k consecutive blocks
s State of the system, when contract C is added to s

Table A.4: Overview of necessary notation and variables used in the model presented
in [BDKJ21].

The other significant difference lies in the definition of EV as the maximum extractable
value by a particular participant, which is implicitly assumed to be one self. From
the perspective of the paper [BDKJ21] this makes sense as they aim to operate on
unconfirmed transactions since no-forks are considered. Although, this makes this
definition not directly applicable when talking about the extractable value of already
settled blocks, although this could be augmented.

Furthermore, it should be noticed that identifying the maximum EV of future blocks
requires perfect information regarding the set of available transactions. As this set
is dependent on the transactions other players make, it cannot readily be predicted,
especially for multiple blocks into the future. This indicates that, although searching and
approximating the maximum achievable extractable value makes sense from a personal
profit-oriented perspective, defining EV and MEV as the maximum value that could be
extracted is not optimal given all the computational and practical limitations, as well as
for reasoning about potential consensus instability issues.

Combinatorial explosion and required information: As already noted in [BDKJ21],
the number of possible orderings of transactions grows factorial in the number of transac-
tions in the mempool. Given that blocks in Ethereum approximately contain 200-250
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transactions, reasoning over all possible orderings is computationally infeasible. In the
paper [BDKJ21] this problem is tackled by only considering transactions that are relevant
(i.e., interact) with the contracts under investigation. Therefore the set of transactions
that was considered per block is reduced to 7 to 10 transactions. This is a reasonable
approach, as current block sizes and intervals in Ethereum with around 15 transactions
per second (TPS) lead to a relatively low number of relevant interactions with specific
smart contracts (or a set of smart contracts). However, this restriction may not apply
to future versions of Ethereum, which aim to scale up the number of transactions per
second. Moreover, such restrictions might not be applicable to current high-throughput
alternatives such as Solana 9 or polygon 10, which claim to handle thousands of trans-
actions per second. So identifying the maximum value that can be extracted from a
specific set of transactions is a computational problem that is difficult to solve in practice
if systems and TPS grow larger.

Potential dependencies between certain transactions might, on-first sight, reduce the
overall search space. However, complicated transaction dependencies might still increase
the overall computational costs for identifying a valid profitable ordering. As not all
reorderings are valid by the protocol rules, the validity of each ordering has to be checked
as well, which further increases the overall computational costs as it potentially requires
the evaluation of the entire ordering. Although this can be augmented, the validity of
profitable orderings identified with CFF is not automatically checked at the moment.

Personal MEV, and MEV of other players: In the paper [BDKJ21], MEV is
mostly viewed from the a single player’s perspective, which is implicitly assumed to
be one self. This is reasonable and makes sense if someone wants to discover lucrative
arbitrage/value extraction opportunities, which has been demonstrated to be possible
with CFF. However, this analysis method cannot prove the absence of MEV exploitation
vectors for any other player in the system, as their capabilities, as well as their accounts,
might not be known to a third party. Therefore, reasoning about consensus instability
requires further adaption of the chosen approach.

DeFi composability does not imply the security of contracts: The introduced
notion of DeFi composability in [BDKJ21] is only concerned with the value that can be
extracted by a given actor P . On the one hand, this definition of DeFi composability does
not consider the state of contracts, which leads to a situation in which the deployment of
another contract C can trigger an existing contract C to reach a different (locked) state,
or even self-destruct, such that C can no longer operate. This would not be a problem
under the notion of DeFi composability. Suppose the value of the extractable funds does
not increase significantly. In this case, C and C are still DeFi composable, even if every
player would lose significant amounts of funds if C is deployed.

9cf. https://solana.com/.
10cf. https://polygon.technology/.
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On the other hand, DeFi composability can be instantly violated by deploying a contract
C which hands out funds x, where x > ε, to the first player who calls the respective
contract. In this case, DeFi composability is violated for contract C and every player P ,
although only one player might be able to collect the promised (bribing) funds in the
end.

Model does not consider forks: As also noted in the paper [BDKJ21] the model
currently does not consider the likelihood and potential impact of forks in forkable
blockchains.

Scope limited to a single system/domain/base resource: Currently, the model
presented in the paper [BDKJ21] considers only balances of the primary asset and
tokes/contracts based within the same system/domain i.e., smart contract cryptocurrency.
The balance()̇[T] function is used to provide the balance of the respective asset T,
conversions and exchange rate to the primary currency/asset are not discussed. Therefore,
no cross-chain interactions and value extraction opportunities are modeled. This topic
was addressed by another recent publication [OSS+21] which will be summarized and
discussed in Section A.8.2.

A.8.2 Unity is Strength
In concurrent work [OSS+21] the authors address the concept of cross-domain (maximal)
extractable value and outline a series of open questions in relation to this concept. There-
fore, they adopt the definitions of EV,MEV/k-MEV given in [BDKJ21] and extend them
to a cross-domain i.e., cross-chain context. The authors of [OSS+21] define extractable
value as follows:

“Extractable value is the value between one or more blocks accessible to any user in a
domain, given any arbitrary re-ordering, insertion and censorship of pending or existing
transactions.”

More formally, they define the extractable value from the perspective of a user/player P ,
in a specific domain/system i as the difference in his overall balance after a sequence of
actions a1, . . . , an is executed on an initial state s. For a summary of relevant variables
and symbols introduced in the respective paper [OSS+21], see Table A.5.

evi(P, s, a1, . . . , an) = bi(s , P ) − bi(s, P ) (A.8)

Note that this definition is more abstract in the sense that it does not talk about blocks
but actions and thus might be applicable to a broader range of systems compared
to [BDKJ21]. Based on this definition of extractable value, the concept of maximal
extractable value (MEV) is defined as follows:
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“Maximal Extractable Value (MEV) is the maximal value extractable between one or more
blocks, given any arbitrary re-ordering, insertion or censorship of pending or existing
transactions.”

mevj
i (P, s) = max

a1,...,an∈Aj

evi(P, s, a1, . . . , an) (A.9)

Here j is the domain in which the actions are taken, and i is the domain in which the
balance change occurs. In a one-domain context i = j. Again, as in [BDKJ21] this
concept refers to the maximum value that can be extracted, by a certain sequence of
actions. The question, though is how can this sequence of actions be defined and then
explored in practice? See Section A.8.2 regarding a discussion on this subject. The given
definition of mev can then be extended to a cross-domain setting by adding a domain.
Here is an example of a two-domain setting:

mevi,j
i,k(P, s) = max

a1,...,an∈Ai∪Aj

evi(P, s, a1, . . . , an) + pi→j evj(P, s, a1, . . . , an) (A.10)

This can, of course, be further extended by including more domains, a generalization for
n domains is given in [OSS+21]. At the end the paper [OSS+21] closes with a series of
open questions, which we will also discuss in Section A.8.2:

I How do we best define the action space?

II Aside from cross-domain arbitrage, what are other forms of cross-domain MEV?

III What does a protocol for sequencer collusion look like and what are its desirable
properties?

IV How can we identify and quantify cross-chain MEV extraction taking place?

V What can we learn from existing distributed and parallel programming literature?

Challenges, Open Problems and the Relation to this Paper

In this section, we outline the different definitions of MEV given in the paper [OSS+21]
and their relation to the paper [JSSW22a]. In this context, we discuss some challenges
and open problems that arise from the definitions of extractable value introduced in the
paper [OSS+21].
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Variable Description
P A player
s A system state
AP (s) Set of all actions available to player P in state s

a1, . . . , an ∈ AP Series of n actions of player P

A Set of all actions of all players in the protocol
i, j Two different domains / systems
bi(s, P ) Functions returning the balance of a player
pj→i Pricing function, indicating the balance in domain j is

expressed in units of the native asset of domain i

Table A.5: Overview of important notation and variables used in the model presented
in [OSS+21].

Definitions: In resemblance to the definitions given in paper [BDKJ21], the definition
in [OSS+21] also uses the player and the current state as parameters to the function EV.
In contrast to [BDKJ21], the other parameter is actions instead of blocks or transactions.
This makes this definition more abstract and thus broader applicable. MEV is defined
as the maximum extractable value from a sequence of actions, while the action space is
not yet well defined and left to future work. Furthermore, cross-domain scenarios are
considered, which would roughly resemble a multi-resources settings in the model of the
paper [JSSW22a]. The analysis of the implications of such a cross-domain model is left
to future work.

Sets of players and actions: The definition of the available actions space is stated
as an open question in the paper [OSS+21]. The probabilistic nature of the interactions
in Nakamoto-Style systems was already mentioned in the paper [OSS+21] as a factor
that makes the definition of the available action space a challenging task.

We now want to add some more aspects, which introduce additional challenges. The
combinatorial explosion of possible orderings of transactions as well as the required infor-
mation, was already discussed in Section A.8.1, and can also be considered a challenge in
defining the action space. Furthermore, at least in theory, current permissionless [Vuk15]
Nakamoto-Style systems allow players (especially miners) to join and leave at any time.
Therefore, the set of players is theoretically infinite. As a result, also the overall action
space of players is theoretically unbounded as the number of players is unbounded.

In practice, given a finite world, the set of players is still challenging to define as it might
change drastically over time. This, in turn, also changes the available action space over
time.
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Balance and Pricing of Assets: In the paper [OSS+21], a pricing function was
assumed to model the exchange of units in different domains into the native asset of the
base domain. Also, more complex models which depend on the supply and demand or
the quantity exchanged are mentioned. In addition to this discussion on how to define
the price of different assets in different domains, we would like to add the following
challenge: The price or utility of a given asset is highly dependent on a specific player
and his investment and interest in different systems/domains. Therefore, the price of the
very same asset might be different for two different players due to the domains they are
invested in or things such as colored coins [Ros12]. The pricing function also implicitly
assumes perfect information regarding the exchange rates.

A.9 Proof that Finite Blocks Require Protocol Updates
As pointed out by Pass et al. [PS17], permissionless PoW blockchains cannot stop without
becoming insecure, as equally long or even longer heaver chains can be constructed with
a different history after the protocol has terminated. This would make it impossible for a
new participant to distinguish a chain created in retrospect from the original discontinued
longest chain. Thus, permissionless PoW blockchains are required to run infinitely long in
theory. This implies that the individual block size cannot be static and finite, as outlined
in the following proposition.

Proposition 3 (Finite blocks require protocol updates). A NC blockchain protocol that
uses blocks that are finite in size requires protocol updates to increase the block size to
provide a consistent chain of blocks, where every block has exactly one valid predecessor.

Proof. Since blocks are cryptographically linked to each other using a cryptographically
secure hash function, the hash of the previous block requires space in the size of the
output of the hash function, which is defined to be κ bits. Let’s assume a blockchain
that is only a concatenation of κ bit hash and a κ bit nonce value without any additional
payload and a static difficulty. If the cryptographic hash function is modeled as a random
oracle, the set of available outputs is exhausted as soon as the 2κ blocks have been
concatenated. Thus, the previous block hash of block 2κ + 1 leads to a collision, breaking
the integrity and consistency11 property of the chain. Therefore, a protocol update is
required in block number 2κ to increase the available space in a block and potentially
the used hash function to one with a larger output space to avoid collisions.

As we restrict our model to only consider finite chain instances, the usage of finite blocks
does not lead to the stated issue.

11In comparison to the backbone model [GKL20], a consistent chain would require that no insertions,
copies, or predictions of blocks are possible [GKL20].
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Notation, Variables and Symbols

Notation Description
:= Assignment operator e.g., x := y

= Equalitity operator e.g., x = x =
0xff The prefix 0x denotes an hexadecimal representation. In this

case the hexadecimal representation of the decimal number
255

x[251 : 255] Denotes a range in the representation of variable x e.g., refers
to the bits from 251 to 255 of variable x

x||y Denotes the concatiation of the strings x and y i.e., string
concatination

|S| Cardinality of S i.e., the number of elements in the set or
sequence e.g., |{a, b, c}| = 3

[S]x Set of all x element subsets of set S e.g., S := {a, b, c}, x := 2
then this would be {{a, b}, {a, c}, {b, c}}, where |[S]x| is equiv-
alent to |S|

x . The total number of distinct subsets of a set S
is given by |S|

x=0
|S|
x = 2|S|

∪, ∩, \ Classical set operations: union, intersection, difference
∅ The empty set

s := (a, b, c) Sequence of ordered elements, such that a is before b and b is
before c, i.e., a ≺ b ≺ c

s := (s1, s2) Concatenation of two sequences s1 and s2, where sequence s2
is appended to s1 resulting in the new sequence s

(. . . , x̂n) Removal of the last element xn in a sequence s := (. . . , xn),
where |s| = n e.g., if s := (s1, s2) then (s1, ŝ2) = s1 = s

s0 ≺ s1 Denotes that sequence s0 is a prefix of sequence s1

s0 s1 Denotes that sequence s0 is either a prefix of sequence s1 or
equal to sequence s1

Continued on next page
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H(x) Generic cryptographic hash function. Takes a message x of
arbitrary but finite size and outputs a fixed size hash h (also
called digest).

Hx(·) Chained use of Hash function x times e.g., H2(x) = H(H(x))
z Number of leading zero bits of valid PoW hashes in Bitcoin

i.e., of the 256 bit number T

P The set of participants/actors/players i.e., P =
{P1, P2, . . . , P|P|}

P Individual participant/actor/player
p Voting power in a NC style system, which in terms of PoW

cryptocurrency is measured in hashrate.
M The set of miners, i.e., players with voting pin the system e.g.,

hashrate
U The set of users, i.e., players without vopting pin the system

e.g., hashrate
B The set of byzantine participants/actors/players encompassing

all palyers that collude towards a common objective
B Individual byzantine participant/actor/player
A The set of altruistic participants/actors/players following the

rules of the protocol
A Individual altruistic participant/actor/player
R The set of economically rational participants/actors/players

following the rules of the protocol as long as it is the most
profitable option available

R Individual altruistic participant/actor/player
V The set of participants/actors/players that suffers value loss

from a particular attack i.e., the victims
V Individual participant/actor/player that is a victim of an attack
E Individual participant/actor/player that launches an attack to

exploit some opportunity which results in higher profit
I Individual participant/actor/player that indifferent to an ongo-

ing attack as long as it has no consequences on his individual
profits

Continued on next page
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o A abstraction state transition, sometimes also referred ot as
operation e.g., a block bin the context of most cryptocurrencies

O The set of all possible valid operations/blocks starting from a
given genesis block b1−→O The set of all possible reachable valid operations from a given
starting state.

D The set of all possible inputs to Valid(·) including invalid ones
S The set of all potentially reachable valid system states.
tx A transaction i.e., smallest state transition unit in the system.

If used, the subscript txx refers to a specific transaction at
position x

τ Ordered sequence of transactions, e.g., (tx0, tx1, tx2, tx3)
T A unordered set of transactions, e.g., {tx3, tx1}, like the trans-

action pool. If furhter superscript and subscript is used, this
indicates the set of all known transactions by player i, till a
given block height, including the unconfirmed transaction pool
e.g., T i

n

ℵ Transaction limit, which refers the maximum number of trans-
actions which can be included in one batch/operation e.g., a
block

b A block (i.e., a state transition) for some blockchain. If used,
the subscript bxy (·) refers to a block mined at position x in
the chain e.g., b1 is the genesis block

b̄ A block template, which is a block that is defined in terms of
its transactions, i.e., state transitions, but not yet mined such
that it containes a valid PoW

c A chain of blocks linked with cryptographic hashes, i.e.,
a blockchain. If used, the subscript gives the length
of the chain in terms of its blocks. A blockchain rep-
resents a certain sequence of transactions s, e.g., c1 =
b1(tx0), b2(tx1), b3(tx2, tx3) , c2 = b1(tx0), b2(tx1), b3(tx2)

c̄ A blockchain template c̄x which is a chain of blocks with a suffix
of one or multiple blocks, which have already been specified
regarding their content, but do not yet include a valid PoW.

Continued on next page
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C The set of all potentially constructable valid blockchains start-
ing from an initally defined genesis block b1 defined by the
protocol rules.

DAG Directly Acyclic Graph (DAG) of blocks, encompasing multiple
chains.

InTree In-Tree (also called anti-arborescence) where blocks are vertices
and a edges are cryptographic hash points to the previous block.
The resutling graph represents an in-tree encompasing multiple
chains.

k Global security paramter, specifing the number of suffix blocks
to discard s.t. the rest can be considered the common pre-
fix [GKL20, SZ16], of the chain, which is the same for all
hoenst nodes

κ Security parameter for required cryptographic primitives, e.g.,
in [GKL20] κspecifies the length of the hash function

N Duration of an attack in blocks, i.e., the maximum number of
blocks/steps the attack can be sustained

z The number of blocks the attack is behind a compeating chain
when the attack starts

←−
k The number of blocks an attack chain can fall behind st. the

attack is assumed to clearly lose
−→
k The number of blocks an attack chain is before a compeating

chain st. the attack is assumed to clearly win
η The number of contribued blocks to an chain during a fork/at-

tack
r Amount of a certain resource the respective player has.
e Personal exchange rate of a certain resource the respective

player has.
δ Personal discount factor for a certain resource the respective

player has.
R A single resource, defined by the by a quadruple Ri = r, e, p, δ

R Set of all resources an individual player cares about, the re-
spective player might be indicated by a subscript Ri.

F Overal available quantity of a certain resource.
cost Some cost value for the event given as subscript.

Continued on next page
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rst An optional result of the execute function
Execute(s, o) The execute function taking a state (s) and an operation (o),

and returning a new state s and optionally a result rst. In
case of most Nakamoto consensus blockcahins, there is no
dedicated result, just a state like for example the state tree in
Ethereum, or der UTXO set.

EExecute(s, o) An alternative version of the execute function, taking the same
argument, but returning ⊥ as a response on more inputs than
the original execute function.

Reachable Predicate which returns true if a desired operation is reachable
given a set of of available transactions as well as a starting
operation

Future Returns the set of future reachable operations, given a starting
operations and a set of available transactions

Length(c) Return the length of a given chain in blocks. Same as |c| =
Length(c).

Head(c) Returns the last block at the end of the given chain.
Txseq Returns the ordered sequence of transactions from the given

block or chain
Chain(b) Returns the entire ordered sequence of blocks (i.e., the

blockchain) leading to b which determined all predecessors
in this chain

Order Orders the set or sequence of transactions in some way.
funds Function that return the funds of an individual player or set of

players for a given state, resource/cryptocurrency and exchange
rate. Hereby, the state can be the hight of a blockchain. It is
also possible, that state, resource/cryptocurrency and exchange
is omitted if clear from the context e.g., funds(B)

P Probability of some event i.e., 0 ≤ P(x) ≤
ρ The proft for some player i, after substracting his costs i.e., ρi

Valid(c) Predicate that returns true if a given sequence of operations
e.g., a chain of blocks, leads to a valid system state, false
otherwise. This predicate invokes the function Execute(·).

Continued on next page

239



Table 1 – Continued from previous page
Notation Description
EValid(c) Predicate that returns true if a given sequence of operations

e.g., a chain of blocks, leads to a system state considered valid
by some attacker, false otherwise. This predicate invokes the
function EExecute(·).

WellFormed(tx) Predicate that returns true if a given transaction or set of
transactions is well-formed i.e., the exists a valid system state
in which the given transaction is valid
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