
Foundations of Adaptor
Signatures for Distributed Ledger

Protocols

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Erkan Tairi
Registration Number 01029450

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Matteo Maffei
Second advisor: Dr. Daniel Slamanig

The dissertation has been reviewed by:

Sebastian Faust Foteini Baldimtsi

Vienna, February 12, 2024
Erkan Tairi

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Dipl.-Ing. Erkan Tairi

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, February 12, 2024
Erkan Tairi

iii

Acknowledgements

First and foremost, I would like to thank my advisors Matteo Maffei and Daniel Slamanig
for giving me the opportunity to write this thesis in the first place, and for guiding me
throughout my PhD. Their valuable academic guidance, enthusiasm for research and
unending motivation were sources of inspiration and helped me overcome the desperate
periods throughout my PhD. Moreover, I am also grateful to them for always trusting
and promoting me.

I would like to also thank all (past and present) members of the Security & Privacy
Research Unit at TU Wien, many of whom I consider to be good friends, for welcoming
me to the group and making me feel like surrounded by family. Furthermore, I would
like to thank Pedro Moreno-Sanchez for his support throughout my PhD, including
applications and thesis, and for always being a great friend.

I would like to express my gratitute to all my amazing collaborators in the past years,
from whom I learned immensely. In particular, I would like to thank Valerio Cini,
Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez, Sebastian Ra-
macher, Clara Schneidewind, Daniel Slamanig, Christoph Striecks, Sri AravindaKrishnan
Thyagarajan and Akin Ünal.

I am also grateful to Dario Fiore for hosting me for a research visit at IMDEA Software
Institute and to Dennis Hofheinz for hosting me at ETH Zürich. Learning from Dario’s
and Dennis’ creative thinking and vision for research has been enlightening.

I would like to thank my parents for their constant support and endless love, along
with my sister and brother-in-law for supporting and helping me throughout my time
in Vienna. I also want to thank my old friends in Macedonia for keeping me grounded
whenever I visit home.

Finally, and most significantly, I would like to thank Julija Martinkutė for reminding me
what are the most important things in life, which I often tend to forget, and for always
loving me and being there for me (even at the times when I am annoying).

v

Kurzfassung

Die Herausforderungen im Hinblick auf Skalierbarkeit und Interoperabilität bei aktuellen
Kryptowährungen führten zur Entwicklung kryptografischer Protokolle, welche effiziente
Anwendungen auf und zwischen weit verbreiteten Kryptowährungen wie Bitcoin oder
Ethereum ermöglichen. Beispiele für solche Protokolle sind (virtuelle) Zahlungskanäle,
atomare Tauschgeschäfte, orakelbasierte Verträge, deterministische Wallets und Coin
Mixing Services. Viele dieser Protokolle greifen lediglich auf minimale Funktionalitäten
zurück, welche von zahlreichen Kryptowährungen unterstützt werden. Insbesondere haben
sich Adaptor-Signaturen (AS) als effektives Werkzeug zum Entwerfen von Blockchain-
Protokollen erwiesen, die weitgehend unabhängig von der spezifischen Logik der zugrunde
liegenden Kryptowährung sind.

Obwohl AS-basierte Protokolle auf denselben kryptographischen Prinzipien aufbauen,
sind sie im Allgemeinen weder post-quantum sicher, noch gibt es eine modulare Methode,
um ihre Sicherheit zu analysieren. Stattdessen fokussieren sich sämtliche Arbeiten, die
derartige Protokolle untersuchen, auf das wiederholte Beweisen, wie Adapter-Signaturen
zur kryptografischen Verknüpfung von Transaktionen verwendet werden. Hierbei werden
stark vereinfachte Blockchain-Modelle berücksichtigt, die keine sicherheitsrelevanten
Aspekte der Transaktionsausführung im Konsens der Blockchain abbilden.

In dieser Arbeit entwickeln wir ein Post-Quantum-AS-Schema, das auf kryptographischen
Standardannahmen über Isogenien basiert. Wir belegen formal die Sicherheit unserer
Konstruktion im (Quanten-) Random Oracle Model. Anschließend behandeln wir AS im
Rahmen des Universal Composability (UC) Frameworks, um die Modularität von AS zu
ermöglichen.

Darüber hinaus präsentieren wir LedgerLocks, ein Framework für das sichere Design von
AS-basierten Blockchain-Anwendungen in Gegenwart einer realistischen Blockchain. Led-
gerLocks führt das Konzept der AS-gesperrten Transaktionen ein, welche Transaktionen
sind, deren Veröffentlichung an die Kenntnis eines kryptographischen Geheimnisses ge-
bunden ist. Wir argumentieren, dass AS-gesperrte Transaktionen gemeinsame Bausteine
von AS-basierten Blockchain-Protokollen sind. Gleichzeitig definieren wir mit GLedgerLocks
ein realistisches Ledger-Modell im UC-Framework, das über eingebaute Unterstützung
für AS-gesperrte Transaktionen verfügt. Durch die Abstraktion von LedgerLocks von
der kryptographischen Realisierung von AS-gesperrten Transaktionen können sich Proto-

vii

kolldesigner stattdessen auf die spezifischen Sicherheitsüberlegungen in der Blockchain
konzentrieren.

Wir zeigen schließlich die Verwendung von LedgerLocks bei der Modellierung und
dem Nachweis der Sicherheit von AS-basierten Blockchain-Protokollen, indem wir ei-
ne Zahlungskanal-Konstruktion und eine darauf aufbauende datenschutzfreundliche
Zahlungskanal-Hub-Konstruktion vorstellen.

Abstract

The scalability and interoperability challenges in current cryptocurrencies have motivated
the design of cryptographic protocols that enable efficient applications on top and across
widely used cryptocurrencies such as Bitcoin or Ethereum. Examples of such protocols
include (virtual) payment channels, atomic swaps, oracle-based contracts, deterministic
wallets, and coin mixing services. Many of these protocols are built upon minimal core
functionalities supported by a wide range of cryptocurrencies. Most prominently, adaptor
signatures (AS) have emerged as a powerful tool for constructing blockchain protocols
that are (mostly) agnostic to the specific logic of the underlying cryptocurrency.

Even though AS-based protocols are built upon the same cryptographic principles, they
in general are neither post-quantum secure nor there exists a modular way to reason
about their security. Instead, all the works analyzing such protocols focus on reproving
how adaptor signatures are used to cryptographically link transactions while considering
highly simplified blockchain models that do not capture security-relevant aspects of
transaction execution in blockchain-based consensus.

In this thesis, we construct a post-quantum AS scheme that relies on standard crypto-
graphic assumptions on isogenies, and we formally prove the security of our construction
in (quantum) random oracle model. Then, we provide a composable treatment of AS
within the Universal Composability (UC) framework to facilitate modularity of AS.

Moreover, we present LedgerLocks, a framework for the secure design of AS-based
blockchain applications in the presence of a realistic blockchain. LedgerLocks defines the
concept of AS-locked transactions, transactions whose publication is bound to the knowl-
edge of a cryptographic secret. We argue that AS-locked transactions are the common
building block of AS-based blockchain protocols and we define GLedgerLocks, a realistic
ledger model in the UC framework with built-in support for AS-locked transactions.
As LedgerLocks abstracts from the cryptographic realization of AS-locked transactions,
it allows protocol designers to focus on the blockchain-specific security considerations
instead.

Finally, we showcase the usage of LedgerLocks in modeling and proving security of
AS-based blockchain protocols by presenting a payment channel construction and a
privacy-preserving payment channel hub (PCH) construction built on top of it.

ix

Main Publications and
Contributions

This thesis is based on the following publications:

[TMS23] Erkan Tairi, Pedro Moreno-Sanchez, and Clara Schneidewind. LedgerLocks: A
Security Framework for Blockchain Protocols Based on Adaptor Signatures. In
ACM CCS 2023: 30th Conference on Computer and Communications Security,
pages 859-873, Copenhagen, Denmark, November 26-30, 2023. ACM Press.

[GMMMTT22] Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez, Erkan
Tairi, and Sri AravindKrishnan Thyagarajan. Foundations of Coin Mixing Services.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022: 29th Conference on Computer and Communications Security, pages 1259-1273,
Los Angeles, CA, USA, November 7-11, 2022. ACM Press.

[TMM21a] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2L: Anonymous Atomic
Locks for Scalability in Payment Channel Hubs. In 2021 IEEE Symposium on
Security and Privacy, pages 1834–1851, San Francisco, CA, USA, May 24–27, 2021.
IEEE Computer Society Press

[TMM21b] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. Post-Quantum Adaptor
Signature for Privacy-Preserving Off-Chain Payments. In Nikita Borisov and
Claudia Díaz, editors, FC 2021: 25th International Conference on Financial
Cryptography and Data Security, Part II, volume 12675 of Lecture Notes in Computer
Science, pages 131–150, Virtual Event, March 1–5, 2021. Springer, Heidelberg,
Germany.

To fit the above publications into the present thesis, I provide a unified introduction
in Chapter 1, and unified the notations and models of the cryptographic primitives
in Chapter 2. The results of the above publications are then rearranged and presented
in Chapters 3 to 6 as described below. Finally, I provide a conclusion and future research
directions in Chapter 7.

xi

Research projects are often highly collaborative, which makes it very difficult or even
impossible to split the final result into individual contributions and assign authorship
to each of them. The works underlying this thesis are no exception. Presented research
results developed through numerous fruitful discussions with my co-authors. In the
following, I aim to specify my contribution to the works underlying this thesis, where
possible.

Chapter 3 is based on the joint work [TMM21b] with Matteo Maffei and Pedro Moreno-
Sanchez. I designed the post-quantum adaptor signature scheme from isogenies and
proved its security in the (quantum) random oracle model. Moreover, I also provided an
implementation of the construction and performed the benchmarking. On the other hand,
Pedro Moreno-Sanchez and Matteo Maffei worked on providing concrete applications
of our post-quantum adaptor signature, such as a post-quantum multi-hop payment
protocol, which is not part of this thesis.

Chapters 4 and 5 are based on the joint work [TMSS23] with Pedro Moreno-Sanchez and
Clara Schneidewind. I developed the ideal functionalities and protocols for cryptographic
conditions and adaptor signatures, as presented in Chapter 4, and provided their security
proof with the Universal Composability (UC) framework.

Similarly, the LedgerLocks framework, given in Chapter 5, which includes the lock-
enabling ledger functionality and its corresponding protocol, was mostly designed and
proven secure with the UC framework by myself. Clara Schneidewind was responsible
for the analysis of state-of-the-art in blockchain protocols based on adaptor signatures,
along with providing a template for using our framework and showcasing an atomic swap
protocol within our framework. Pedro Moreno-Sanchez provided additional blockchain
protocols within our framework, such as a payment channel and multi-hop payment
constructions.

Chapter 6 is (mainly) based on previously published joint works [TMSS23, TMM21a,
GMM+22]. More precisely, Section 6.1 extends the partial payment channel construction
given in the joint work [TMSS23] with Pedro Moreno-Sanchez and Clara Schneidewind.
This partial payment channel construction was initially written down by Pedro Moreno-
Sanchez, however, it lacked an ideal functionality and its corresponding UC realization
proof. In this thesis, I filled these gaps by providing a concrete ideal functionality and
security proof for the payment channel construction within our LedgerLocks framework.
Clara Schneidewind worked out the concrete timelocks needed for secure realization of
our payment channel construction.

On the other hand, Section 6.2 is based on two joint works [TMM21a] and [GMM+22]
with Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez, and
Sri AravindKrishnan Thyagarajan. More precisely, [GMM+22] presents a potential
security flaw in [TMM21a] and supersedes that work. Additionally, [GMM+22] provides
blind conditional signatures, a modular building block for payment channel hub (PCH)
constructions, and provides constructions of PCH that are provably secure in both game-
based setting and within the UC framework. Giulio Malavolta, Matteo Maffei, and Pedro

Moreno-Sanchez identified the flaw in [TMM21a]. Sri AravindKrishnan Thyagarajan and
Noemi Glaeser mostly developed the notion of blind conditional signatures and provided
new PCH constructions along with security proofs. I helped in the development of the
constructions and performed the performance evaluation. This thesis only present the
UC secure PCH construction from [GMM+22], albeit it is re-written and re-proven secure
using our LedgerLocks framework.

Other Selected Publications

Some of the other publications not covered by this thesis, written in part by the author
of this thesis during his doctoral study, are listed below:

[TÜ24] Erkan Tairi, and Akın Ünal. Lower Bounds for Lattice-based Compact Functional
Encryption. In EUROCRYPT 2024 (to appear).

[CRSST24] Valerio Cini, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks, and Erkan
Tairi. (Inner-Product) Functional Encryption with Updatable Ciphertexts. In
Journal of Cryptology 2024.

[GRSSTZ23] Christian Göth, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks, Erkan
Tairi, and Alexander Zikulnig. Optimizing 0-RTT Key Exchange with Full Forward
Security. In CCSW ’23: Cloud Computing Security Workshop 2023, pages 55-68,
Copenhagen, Denmark, November 26, 2023. ACM Press.

[CRSST21] Valerio Cini, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks, and Erkan
Tairi. Updatable Signatures and Message Authentication Codes. In Juan Garay,
editors, PKC 2021: 24th International Conferences on Theory and Practice of
Public Key Cryptography, Part I, volume 12710 of Lecture Notes in Computer
Science, pages 691-723, Virtual Event, May 10-13, 2021. Springer, Heidelberg,
Germany.

xv

Contents

Kurzfassung vii

Abstract ix

Main Publications and Contributions xi

Other Selected Publications xv

Contents xvii

1 Introduction 1
1.1 Contributions . 5

2 Preliminaries 7
2.1 Mathematical Preliminaries . 7
2.2 Cryptographic Preliminaries . 9
2.3 Security and Communication Model 23
2.4 Blockchain and Payment Channels . 26

3 Post-Quantum Adaptor Signatures 31
3.1 CSI-FiSh Signature Scheme . 31
3.2 IAS Adaptor Signature Scheme . 33
3.3 Security Proof . 36
3.4 Performance Evaluation . 54

4 Universally Composable Adaptor Signatures 57
4.1 Global Conditions . 57
4.2 Composable Adaptor Signatures . 63

5 Security Framework for Protocols Based on Adaptor Signatures 71
5.1 Previous Approaches for Blockchain Protocol Analysis 71
5.2 Lock-Enabling Ledger . 76
5.3 Template for Using LedgerLocks . 80

xvii

6 Applications of Adaptor Signatures 85
6.1 Payment Channels . 85
6.2 Payment Channel Hub . 101

7 Conclusion and Directions for Future Research 119
7.1 Conclusion . 119
7.2 Directions for Future Research . 120

List of Figures 121

List of Tables 123

List of Algorithms 125

Bibliography 127

CHAPTER 1
Introduction

Blockchain-based cryptocurrencies such as Bitcoin, enable mutually distrusting users to
perform financial transactions without relying on a trusted third party. However, for
their large-scale adoption, cryptocurrencies face major interoperability and scalability
challenges. These challenges can be tackled with the help of cryptographic protocols that
form a more flexible application layer on top of the core cryptocurrency functionalities.
Prominent examples are atomic swaps [TMM22] for users to trade their coins across
different cryptocurrencies or payment channels [AEE+21] to perform an unlimited number
of fast bilateral payments while publishing only a small number of transactions on the
blockchain.

To ease the interoperability across cryptocurrencies, these protocols are usually realized
upon simple core operations supported by most cryptocurrencies (e.g., payment autho-
rization with a digital signature from the sender). This endeavor has been facilitated
by the recent discovery of adaptor signatures (AS) [AEE+21, EFH+21], which allow
for conditioning the creation of a digital signature on the knowledge of a cryptographic
secret.

More precisely, AS can be seen as an extended form of a standard digital signature,
where one can create a “pre-signature” that can be converted into a (full) signature with
respect to an instance of a hard relation R (e.g., the discrete logarithm relation RDL, i.e.,
(Y, y) ∈ RDL ⇐⇒ Y = gy). The resulting signature can then be verified by the miners
using the standard verification algorithm from the digital signature scheme. AS provide
the following two intuitive properties: (i) only the user knowing the witness of the hard
relation can convert the pre-signature into a valid signature; and (ii) anybody with access
to the pre-signature and the corresponding signature can extract the witness of the hard
relation.

This building block has been shown highly useful in practice to build off-chain payment
applications such as (generalized) payment channels [AEE+21], payment-channel net-

1

1. Introduction

works [MMS+19], payment channel hubs [TMM21a, GMM+22, QPM+23], decentralized
oracle contracts [MTV+22] and many others, being adopted in real-world blockchain
protocols, such as the Lightning Network, the COMIT Network, ZengoX and others.

Despite the ubiquity of AS, post-quantum security and simulation security of AS have
not been properly studied before. Moreover, there exists no modular way to reason about
the security of the existing AS-based blockchain protocols. We highlight these drawbacks
in more detail below and give our contributions in Section 1.1.

Post-Quantum AS. We can construct AS generically from digital signature schemes
obtained by identification schemes via the Fiat-Shamir transform [FS87], as shown
by Erwig et al. [EFH+21]. However, their transformation are not (fully) suitable for
post-quantum constructions. For example, lattice-based signature schemes are obtained
using rejection sampling, i.e., via the Fiat-Shamir-with-Aborts methods [Lyu09], however,
the generic transformation of [EFH+21] does not account for these potential aborts.
Moreover, isogeny-based signature schemes are usually based on cryptographic group
actions [ADMP20], which provides limited algebraic operations, and hence, does not
directly fit the framework of Erwig et al. [EFH+21].

Therefore, given the shortcomings of transformation given by Erwig et al. [EFH+21]
and the relevance in practice of AS, there is a need to design post-quantum instances of
AS. For instance, there exist several efforts from NIST to standardize quantum resistant
digital signatures1. The blockchain community has also shown interest in migrating
towards post-quantum secure alternatives. For example, Ethereum is planing2 to have an
option for a post-quantum signature and Zcash developers plan to update their protocol
with post-quantum alternatives3.

The first seminal contribution in this direction was by Esgin et al. [EEE20], who proposed
the first instance of a post-quantum AS, called LAS, which is based on the standard lattice
assumptions, such as Module-SIS and Module-LWE. This construction, however, presents
a few limitations with regard to the correctness, communication overhead, and privacy.
From the correctness point of view, LAS requires usage of two hard relations, R and R′,
where R is the base relation and R′ is the extended relation that defines the relation for
extracted witnesses. The reason for this is due to the inherent knowledge/soundness gap
in lattice-based zero-knowledge proofs [LNP22]. Hence, as mentioned by the authors,
LAS only achieves weak pre-signature adaptability, which guarantees that only the
statement/witness pairs satisfying R are adaptable, and not those satisfying R′. In
practice, this implies that the applications that use LAS as a building block require a
zero-knowledge proof to guarantee that the extracted witness is of sufficiently small norm
and belongs to the base relation R, which in turn guarantees that the pre-signature
adaptability would work. However, the currently most efficient variant of such a proof has
size of more than 10KB [LNP22], which would incur significant (off-chain) communication
overhead to the applications using LAS.

1https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
2https://ethereum.org/en/roadmap/future-proofing
3https://github.com/zcash/zcash/issues/6121

2

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
https://ethereum.org/en/roadmap/future-proofing
https://github.com/zcash/zcash/issues/6121

From the privacy point of view, when LAS is used inside certain applications, such as
building payment-channel networks (PCNs), it can leak non-trivial information that
hinders the privacy of the overall construction. In a nutshell, the reason for that is that
the witness for adapting the pre-signature in LAS is a vector whose infinity norm is 1.
Privacy-preserving applications, such as PCNs, require to encode a randomization factor
at each hop, which in LAS is encoded by adding a new vector whose infinity norm is
1 for each hop [EEE20, Section 4.2]. However, this leads to a situation where a node
at position k in the payment path receives a vector with infinity norm k with high
probability, learning at least how many parties are before it on the path. Moreover, if an
intermediary observes that the norm is 1, then it knows that (with high probability) the
party before it is the sender. Encoding a vector of random but small norm (i.e., padding)
for each hop does not help either, as each sender-receiver pair would use a unique norm,
thus breaking relationship anonymity.

Finally, given the ongoing standardizations efforts of NIST, it is useful to have several
candidates of quantum-resistant AS building upon different cryptographic assumptions to
aid the related discussion (e.g., if one assumption gets broken, we may still have standing
post-quantum constructions).

Security Analysis of AS-Based Blockchain Protocols. Despite the multitude of
cryptographic blockchain protocols relying on adaptor signatures [MMS+19, AEE+21,
AME+21, TMM21a, Mir22, ATM+22, LGKK22, MTV+22, ER22, TMM22, GMM+22,
BM22, QPM+23], the security analysis of these protocols are either not modular or
incomplete.

More precisely, all these AS-based blockchain protocols are proven secure in the Universal
Composability framework of Canetti [Can20]. However, there exists no adaptor signature
functionality that one can use to modularly describe and prove these protocols. This in
turn means that during the security proof of these protocols one needs to reprove how
adaptor signatures are used to cryptographically link transactions by doing reductions to
the properties of AS, hence, sacrificing modularity.

Moreover, these protocols not only rely on the correct usage of cryptographic primitives
used in the message exchanges between protocol participants but also on the guarantees
that stem from the underlying blockchain consensus. In spite of that, all current works
proposing new AS-based blockchain protocols study their security in the context of highly
simplified ledger models, defined in an ad-hoc manner [MMS+19, AMKM21a, AMKM21b,
AEE+21, TMM21a, TMM22, GMM+22, QPM+23].

However, the subtleties of the ledger model have a significant influence on the blockchain
protocol security and neglecting these aspects can easily result in undetected security
issues as we show in Section 5.1. Consequently, it is highly desirable to build an
infrastructure that facilitates the reasoning about AS-based blockchain protocols in the
presence of a realistic ledger. Such an infrastructure should ideally separate the reasoning
about ledger-specific aspects of AS-based blockchain protocols from the cryptographic
operations. We observe that adaptor signatures are used in these protocols to encode a

3

1. Introduction

generic building block that we call here AS-locked transactions. AS-locked transactions
are transactions whose publication on the blockchain is bound to the knowledge of a
cryptographic secret in two ways:

1. knowing the cryptographic secret is a prerequisite for a party holding the AS-locked
transaction to publish it on the ledger; and

2. the publication of the AS-locked transaction on the ledger reveals the secret to all
parties holding the AS-locked transaction.

By synthesizing this building block and integrating it into a realistic ledger functionality,
we can describe many blockchain protocols in terms of this functionality without the
cryptographic interactions between the protocol participants.

In the state of the art, AS-based blockchain protocols are mainly given through the
exchange of cryptographic messages among the participants. These interactions shall
ensure that the protocol participants can construct valid transactions to be published
on the blockchain (given through a simplified ledger functionality GL) in compliance
with the protocol goals. The cryptographic reasoning for showing the security of these
interactions is essentially the same throughout the state-of-the-art protocols.

Therefore, by defining a realistic ledger functionality that supports generic AS-locked
transactions, and thus, subsumes the cryptographic aspects of these protocols, we can
describe AS-based blockchain protocols in terms of AS-locked transactions without further
need for cryptographic interactions between the protocol participants. Consequently,
the subsequent security analysis of such protocols would not require cryptographic
reasoning but could focus on the ledger-specific security arguments. Lifting the burden
of concurrently reasoning about both cryptographic and ledger-specific security aspects
paves the ground for the security analysis of blockchain protocols in realistic ledger
models.

However, constructing such a realistic ledger functionality that supports AS-locked
transactions comes with multiple technical challenges. First, the logic of protocols using
AS-locked transactions usually relies on relating the transactions through the structure
of their cryptographic conditions. Therefore, for a truly modular reasoning we need a
general model of cryptographic conditions that integrates with the ledger functionality
and is adaptable to the protocol needs. Second, to show that such a ledger functionality
is realizable by adaptor signatures in the presence of cryptographic conditions, a novel
composable notion of adaptor signature security is needed. Finally, to facilitate flexible
reasoning in a faithful ledger model, we need to model that the ledger functionality
exposes provably realistic ledger behavior while supporting a generic notion of AS-locked
transactions.

4

1.1. Contributions

1.1 Contributions
This thesis aims at providing theoretical foundations of AS and blockchain protocols built
on top of them in order to tackle the previously described challenges. To this end, we
describe a post-quantum AS construction, formalize AS in the Universal Composability
(UC) framework and describe a novel framework to modularize and ease the reasoning
about security of AS-based blockchain protocols.

1.1.1 Post-Quantum Adaptor Signatures

In Chapter 3 we give a construction of post-quantum AS that preserves the security and
privacy guarantees required by off-chain application.

To this end, we design IAS, a construction for AS that builds upon the post-quantum
signature scheme CSI-FiSh [BKV19], and relies on hardness of standard cryptographic
assumptions from isogenies. We formally prove the security of IAS in (quantum) random
oracle model.

Additionally, we provide an optimized variant of IAS, for which we provide a parallelized
implementation and evaluate its performance, showing that it requires ∼1500 bytes of
storage on-chain (with a parameter set optimized for lower combined public key and
signature size) and 140 milliseconds to verify a signature on average (i.e., the computation
time for miners). We compare our construction with LAS [EEE20], a lattice-based AS
scheme, and observe that our on-chain storage size is 3x smaller than LAS while requiring
higher computation time.

1.1.2 Universally Composable Adaptor Signatures

In Chapter 4 we modularize AS by formalizing them within the UC framework of
Canetti [Can20].

For this purpose, we first model cryptographic conditions as a standalone (global) ideal
functionality GCond, which encodes operations over conditions, such as their composition.
We define a protocol ΠRDL

Cond, which realizes GCond for simple (individual) conditions, merged
conditions and 1-out-of-n conditions. We note that GCond can be easily extended to
account for other operations in a modular fashion, that is, without modifying the several
other functionalities using it in a shared manner to keep conditions consistent across
them.

Next, we model (two-party) adaptor signatures as an ideal functionality FAdaptSig and
prove that it is UC-realized by any two-party adaptor signature with aggregatable public
keys generated from an identification scheme as defined by Erwig et al. [EFH+21], a
class encompassing all the digital signatures used in current AS-based applications. This
realization makes use of the cryptographic conditions functionality GCond in order to
check the correctness of the conditions used within FAdaptSig.

5

1. Introduction

1.1.3 Security Framework for Protocols Based on Adaptor Signatures
In Chapter 5 we present a novel framework, named LedgerLocks, by defining GLedgerLocks,
an ideal functionality that models a realistic ledger with generic AS-locked transactions.
GLedgerLocks is based on the ledger functionality GLedger of Badertscher et al. [BMTZ17],
which has been proven to be realizable by the Bitcoin backbone protocol [BMTZ17]
as well as the proof of stake-based protocol Ouroboros Genesis [BGK+18]. We also
provide a protocol ΠLedgerLocks that UC-realizes GLedgerLocks in the presence of GLedger
from [BMTZ17] and our AS ideal functionality FAdaptSig.

Finally, in Chapter 6 we demonstrate the flexibility of our framework, by using it to
describe a payment channel protocol ΠChannel and a payment channel hub (PCH) protocol
ΠA2L, both of them protocols relying on AS-locked transactions.

To this end, we instantiate GLedgerLocks with support for UTXO-based transaction and
timelocks, which are crucial for payment channel and PCH security. The description of
ΠChannel follows along the lines of the generalized channels construction given by Aumayr
et al. [AEE+21], and it does not involve any additional cryptography, apart from AS.
Therefore, we do not need to consider any cryptographic reductions and instead can focus
on the delicate task of adjusting the protocol timelocks to provide security in the presence
of realistic blockchains as modeled by our functionality GLedgerLocks. On the other hand,
our PCH construction ΠA2L makes use of a commitment scheme, a linearly homomorphic
encryption scheme and a non-interactive zero-knowledge proof system, in addition to AS,
in order to provide certain privacy guarantees (we detail this in Section 6.2). Since AS
part is already encapsulated via our functionality GLedgerLocks, we only need to focus on
the security properties of the other cryptographic primitives, which again simplifies the
security proof.

6

CHAPTER 2
Preliminaries

Notation. We denote the security parameter by λ ∈ N, by which each scheme and
adversary is parameterized. For n ∈ N, set [n] = {1, 2, . . . , n}. We denote by x ←$ X the
uniform sampling of the variable x from the set X . We write x ← A(y) to denote that a
probabilistic polynomial time (PPT) algorithm A on input y, outputs x. We use the same
notation also for the assignment of the computational results, for example, s ← s1 + s2.
If A is a deterministic polynomial time (DPT) algorithm, we use the notation x := A(y).
We use the same notation for the projection of tuples, e.g., we write σ := (σ1, σ2) for
a tuple σ composed of two elements σ1 and σ2. We define polynomial and negligible
functions as follows,

poly(λ) := p : N → N | ∃d ∈ N : p(λ) ∈ O(λd) ,

negl(λ) := ε : N → [0, 1] | ∀d ∈ N : lim sup
λ→∞

ε(λ) · λd = 0 .

Throughout this thesis we implicitly assume that negligible functions are negligible in
the security parameter (i.e., negl(λ)).

2.1 Mathematical Preliminaries
2.1.1 Elliptic Curves and Isogenies
Let E be an elliptic curve over a finite field Fp with p a large prime, and let 0E be the
point at infinity on E. An elliptic curve is called supersingular iff its number of rational
points satisfies #E(Fp) = p + 1. Otherwise, an elliptic curve is called ordinary. We note
that in this work we are considering supersingular curves.

An isogeny between two elliptic curves E and E′ is a rational map ϕ : E → E′, such
that ϕ(0E) = 0E′ , and which is also a homomorphism with respect to the natural group

7

2. Preliminaries

structure of E and E′. An isomorphism between two ellliptic curves is an injective
isogeny. The j-invariant of an elliptic curve, which is a simple algebraic expression in the
coefficients of the curve, is an algebraic invariant under isomorphism (i.e., isomorphic
curves have the same j-invariant). As isogenies are group homomorphisms, any isogeny
comes with a subgroup of E, which is its kernel. Any subgroup S ⊂ E(Fpk) yields a
unique (up to automorphism) separable isogeny ϕ : E → E/S with ker ϕ = S.
The ring of endomorphisms End(E) consists of all isogenies from E to itself, and EndFp(E)
denotes the ring of endomorphisms defined over Fp. For an ordinary curve E/Fp we
have that End(E) = EndFp(E), but for a supersingular curve over Fp we have a strict
inclusion EndFp(E) ⊊ End(E). In particular, for supersingular elliptic curves the ring
End(E) is an order of a quarternion algebra defined over Q, while EndFp(E) is isomorphic
to an order of the imaginary quadratic field Q(√−p). We will identify EndFp(E) with
the isomorphic order which we will denote by O.
The ideal class group of O is the quotient of the group of fractional invertible ideals in
O by the principal fractional invertible ideals, and will be denoted as Cl(O). There is
a natural action of the class group on the class of elliptic curves defined over Fp with
order O. Given an ideal a ⊂ O, we can consider the subgroup defined by the intersection
of the kernels of the endomorphisms in a, more precisely, Sa = ∩α∈a ker α. As this is a
subgroup of E, we can divide out by Sa and get the isogenous curve E/Sa, which we
denote by a ⋆ E. This isogeny is well-defined and unique up to Fp-isomorphism and the
group Cl(O) acts via the operator ⋆ on the set E of Fp-isomorphism classes of elliptic
curves with Fp-rational endomorphism ring O. One can show that Cl(O) acts freely and
transitively on E (i.e., E is a principal homogeneous space for Cl(O)).
Notation. Following [BKV19], we see Cl(O) as a cyclic group with generator g, and we
write a = ga with a random in ZN for N = # Cl(O) the order of the class group. We
write [a] for ga and [a]E for ga ⋆ E. We note that under this notation [a][b]E = [a + b]E.

2.1.2 Computational Assumptions
The main hardness assumption underlying group actions based on isogenies is that it is
hard to invert the group action.

Definition 1 (Group Action Inverse Problem (GAIP) [DG19]). Given two elliptic curves
E and E′ over the same finite field and with End(E) = End(E′) = O, find an ideal
a ⊂ O such that E′ = a ⋆ E.

The CSI-FiSh signature scheme (see Section 3.1) relies on the hardness of random instance
of a multi-target version of GAIP, called MT-GAIP. In [DG19] it is shown that MT-GAIP
reduces tightly to GAIP when the class group structure is known (which is the case for
CSI-FiSh).

Definition 2 (Multi-Target GAIP (MT-GAIP) [DG19]). Given k elliptic curves E1, . . . , Ek

over the same field, with End(E1) = · · · = End(Ek) = O, find an ideal a ⊂ O s.t.
Ei = a ⋆ Ej for some i, j ∈ {0 . . . , k} with i ̸= j.

8

2.2. Cryptographic Preliminaries

The best known classical algorithm to solve the GAIP (and in this case also the MT-GAIP)
has time complexity O(

√
N), where N = # Cl(O). On the other hand, the best known

quantum algorithm is Kuperberg’s algorithm for the hidden shift problem [Kup05, Kup13].
It has a subexponential complexity with the concrete security estimates still being an
active area of research [BS20, Pei20]. We also remark that CSI-FiSh is not affected by
the recent devastating attacks on SIDH [CD23, Rob23].

2.2 Cryptographic Preliminaries
We review the cryptographic primitives of interest in this section.

2.2.1 Non-Interactive Zero-Knowledge Proofs
We first recall the definition of a hard relation.

Definition 3 (Hard Relation). Let R be a relation with statement/witness pairs (Y, y).
Let us denote L the associated language defined as L := {Y | ∃y s.t. (Y, y) ∈ R}. We say
that R is a hard relation if the following holds:

• There exists a PPT sampling algorithm GenR(1λ) that on input the security parameter
λ outputs a statement/witness pair (Y, y) ∈ R.

• The relation is poly-time decidable.

• For all PPT adversaries A there exists a negligible function negl, such that:

Pr (Y, y∗) ∈ R
(Y, y) ← GenR(1λ)

y∗ ← A(Y) ≤ negl(λ),

where the probability is taken over the randomness of GenR and A.

Let R be a binary relation as defined above, with L the language consisting of statements
in R. A non-interactive zero-knowledge (NIZK) proof system [BFM88] for a language
L allows proving in a non-interactive manner that some statements are in L without
leaking information about the corresponding witnesses. We formally define it as follows.

Definition 4 (Non-Interactive Zero-Knowledge Proof System with Online Extractor).
A non-interactive zero-knowledge proof of knowledge (NIZKPoK) ΠNIZK for a language
L ∈ NP (with witness relation R) with an online extractor (in the random oracle model)
is a tuple of algorithms ΠNIZK = (PGen, P, V), such that:

PGen(1λ): is a PPT algorithm that on input a security parameter 1λ, outputs a common
reference string crs.

P(crs, x, w): is a PPT algorithm that on input a common reference string crs, a statement
x and a witness w, outputs a proof π.

9

2. Preliminaries

V(crs, x, π): is a DPT algorithm that on input a common reference string crs, a statement
x and a proof π, outputs a bit b.

We require ΠNIZK to meet the following properties:

Completeness. For every (x, w) ∈ R we have that

Pr crs ← PGen(1λ), π ← P(crs, x, w) : V(crs, x, π) = 1 = 1.

Soundness. For every x ̸∈ L, and every adversary A, we have that

Pr crs ← PGen(1λ), π ← A(crs, x) : V(crs, x, π) = 1 ≤ negl(λ).

Zero-Knowledge. There exists a PPT algorithm S = (S1, S2) such that for every PPT
adversary A,

Pr crs ← PGen(1λ) : AP(crs,·,·)(crs) = 1

− Pr (crs, τ) ← S1(1λ) : AO(crs,τ,·,·)(crs) = 1 ≤ negl(λ),

where O(crs, τ, ·, ·) is an oracle that outputs ⊥ on input (x, w) when (x, w) ̸∈ R and
outputs π ← S2(crs, τ, x) when (x, w) ∈ R.

Online Extractor. There exists a PPT algorithm K, the online extractor, such that
the following holds for any adversary A. Let H be a random oracle, (x, π) ← AH(λ) and
QH(A) be the sequence of queries of A to H and H’s answers. Let w ← K(x, π, QH(A)).
Then, the following holds,

Pr (x, w) ̸∈ R ∧ VH(x, π) = 1 ≤ negl(λ).

2.2.2 Canonical Identification Scheme
We recall the notion of canonical identification scheme [KMP16], which can be transformed
to a digital signature using Fiat-Shamir heuristic [FS87].

Definition 5 (Canonical Identification Scheme [KMP16]). A canonical identification
scheme consists of four algorithms ID = (IGen, P, ChSet, V), where

IGen(1λ): is a PPT algorithm that on input a security parameter 1λ outputs a key pair
(sk, pk). We assume that pk defines the challenge set ChSet.

P: is a PPT algorithm composed of P1 and P2:

• P1(sk): on input a secret key sk, outputs a commitment R ∈ Drand and a state st.

• P2(sk, R, h, st): on input a secret key sk, commitment R ∈ Drand, challenge h ∈ ChSet
and state st, outputs a response s ∈ Dresp.

10

2.2. Cryptographic Preliminaries

V(pk, R, h, s): is a DPT algorithm that on input a public key pk, and conversation
transcript composed of (R, h, s), outputs a bit b.

We require that for all (sk, pk) ∈ IGen(1λ), all (R, st) ∈ P1(sk), all h ∈ ChSet and all
s ∈ P2(sk, R, h, st), we have that V(pk, R, h, s) = 1.

2.2.3 Digital Signature
We first recall the definition and security notions of a digital signature.

Definition 6 (Digital Signature Scheme). A digital signature scheme consists of three
algorithms Σ = (KeyGen, Sig, Ver) defined as follows:

KeyGen(1λ): is a PPT algorithm that on input a security parameter 1λ, outputs a key
pair (sk, pk).

Sig(sk, m): is a PPT algorithm that on input a secret key sk and message m ∈ {0, 1}∗,
outputs a signature σ.

Ver(pk, m, σ): is a DPT algorithm that on input a public key pk, message m ∈ {0, 1}∗

and signature σ, outputs a bit b.

Every signature scheme must satisfy correctness, meaning that for every λ ∈ N and every
message m ∈ {0, 1}∗, we have that

Pr Ver(pk, m, Sig(sk, m)) = 1 | (sk, pk) ← KeyGen(1λ) = 1.

The most common security requirement of a signature scheme is existential unforgeability
under chosen message attack (EUF-CMA security for short). On high level, it guarantees
a malicious party, that does not know the private key, cannot produce a valid signature
on a message m even if he knows polynomially many valid signatures on messages of his
choice (but different from m). We recall this notion in Definition 7.

Definition 7 (EUF-CMA Security). A signature scheme Σ is EUF-CMA secure if for
every PPT adversary A there exists a negligible function negl such that

Pr[SigForgeA,Σ(λ) = 1] ≤ negl(λ),

where the experiment SigForgeA,Σ is defined as follows:

SigForgeA,Σ(λ)

1 : Q ← ∅
2 : (sk, pk) ← KeyGen(1λ)
3 : (m, σ) ← AOS(·)(pk)
4 : return (m ̸∈ Q ∧ Ver(pk, m, σ))

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

11

2. Preliminaries

Existential unforgeability does not say anything about the difficulty of transforming a
valid signature on m into another valid signature on m. Hardness of such transformation
is captured by a stronger notion, called strong existential unforgeability under chosen
message attack (or SUF-CMA for short), which we recall next.

Definition 8 (SUF-CMA Security). A signature scheme Σ is SUF-CMA secure if for
every PPT adversary A there exists a negligible function negl such that

Pr[StrongSigForgeA,Σ(λ) = 1] ≤ negl(λ),

where the experiment StrongSigForgeA,Σ is defined as follows:

StrongSigForgeA,Σ(λ)

1 : Q ← ∅
2 : (sk, pk) ← KeyGen(1λ)
3 : (m, σ) ← AOS(·)(pk)
4 : return ((m, σ) ̸∈ Q ∧ Ver(pk, m, σ))

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m, σ}
3 : return σ

The advantage of the adversary A playing the game StrongSigForge is defined as follows:

AdvStrongSigForge
A = Pr[StrongSigForgeA,Σ(λ) = 1]

Randomizable Blind Signature. In Section 6.2 we make use of a digital signature
scheme that allows blind signing of a message and randomizing a signature. More
precisely, given a commitment com (as defined in Section 2.2.7) to a message m, one
blindly sign as σ∗ ← BlindSig(sk, com). Then, anyone with access to the decommitment
information decom can unblind the signature σ∗ to obtain a signature on m, i.e., σ ←
UnblindSig(decom, σ∗). Moreover, a signatures σ can be publicly randomized as σ′ ←
RandSig(σ). We call such a digital signatures scheme here as randomizable blind signature
(RBS), and denote it as ΣRBS. An example of such a digital signature scheme is the
Pointcheval-Sanders signature scheme [PS16, PS18].

We remark here that unlike the (classical) blind signature (BS) schemes that consider
the one-more unforgeability and blindness notions [HKL19], in RBS the security notion
is the aforementioned strong unforgeability notion, and the blindness comes from the
hiding property of the underlying commitment scheme (see Section 2.2.7). Moreover,
randomizable signatures can only achieve EUF-CMA security.

2.2.4 Two-Party Signature with Aggregatable Public Keys
We also make use of two-party signatures with aggregatable public keys, as defined by
Erwig et al. [EFH+21], which naturally extends the digital signature definition given
in Section 2.2.3 to a two-party setting.

12

2.2. Cryptographic Preliminaries

Definition 9 (Two-Party Signature with Aggregatable Public Keys [EFH+21]). A two-
party signature scheme with aggregatable public keys is a tuple of protocols and algorithms
Σ2 = (Setup, KeyGen, ΠSig, KAgg, Ver) defined as follows:

Setup(1λ): is a PPT algorithm that on input a security parameter 1λ, outputs public
parameters pp.

KeyGen(pp): is a PPT algorithm that on input public parameters pp, outputs a key pair
(sk, pk).

ΠSig⟨ski,sk1−i⟩(pk0, pk1, m): is an interactive PPT protocol that on input secret keys ski

from party Pi with i ∈ {0, 1}, and common values messages m ∈ {0, 1}∗ and public keys
pk0, pk1, outputs a signature σ.

KAgg(pk0, pk1): is a DPT algorithm that on input two public keys pk0, pk1, outputs an
aggregated public key apk.

Ver(apk, m, σ): is a DPT algorithm that on input an aggregate public key apk, message
m ∈ {0, 1}∗ and signature σ, outputs a bit b.

We can define completeness for Σ2 in a natural way: a two-party signature scheme
with aggregatable public keys Σ2 satisfies completeness, if for all public parameters
pp ← Setup(1λ), key pair (sk, pk)KeyGen(pp) and messages m ∈ {0, 1}∗, the proto-
col ΠSig⟨ski,sk1−i⟩(pk0, pk1, m) outputs a signature σ to both parties P0, P1, such that
Ver(apk, m, σ) = 1, where apk := KAgg(pk0, pk1).

A two-party signature scheme with aggregatable public keys should satisfy unforgeability.
At a high level, this property guarantees that if one of the two parties is malicious,
this party is not able to produce a valid signature under the aggregated public key
without the cooperation of the other party. We formalize this property via an experiment
SigForgeb

A,Σ2 , where b ∈ {0, 1} defines which of the two parties is corrupted.

Definition 10 (2-EUF-CMA Security). A two-party signature scheme with aggregatable
public keys Σ2 is 2-EUF-CMA secure if for every PPT adversary A there exists a negligible
function negl such that, for b ∈ {0, 1},

Pr[SigForgeb
A,Σ2(λ) = 1] ≤ negl(λ),

where the experiment SigForgeb
A,Σ2 is defined as follows:

13

2. Preliminaries

SigForgeb
A,Σ2(λ)

1 : Q ← ∅
2 : pp ← Setup(1λ)
3 : (sk1−b, pk1−b) ← KeyGen(pp)
4 : (skb, pkb) ← A(pp, pk1−b)

5 : (m, σ) ← AOb
ΠS

(·)(pk1−b, skb, pkb)
6 : apk := KAgg(pk0, pk1)
7 : return (m ̸∈ Q ∧ Ver(apk, m, σ))

Ob
ΠS

(m)

1 : Q := Q ∪ {m}
2 : σ ← ΠA

Sig⟨sk1−b,·⟩(pk0, pk1, m)

3 : return σ

2.2.5 Adaptor Signature
Next, we give a formal description of an adaptor signature and its properties. Adaptor
signatures have been introduced by the cryptocurrency community to tie together the
authorization of a transaction with leakage of a secret value. Due to its utility, adaptor
signatures have been used in previous works for various applications like atomic swaps
or payment channel networks [MMS+19]. An adaptor signature scheme is essentially
a two-step signing algorithm bound to a secret. First a partial signature is generated
such that it can be completed only by a party that knows a certain secret, where the
completion of the signature reveals the underlying secret.

More precisely, we define an adaptor signature scheme with respect to a standard signature
scheme Σ and a hard relation R. In an adaptor signature scheme, for any statement
Y ∈ L, a signer holding a secret key is able to produce a pre-signature w.r.t. Y on any
message m. Such pre-signature can be adapted into a full valid signature on m if and only
if the adaptor knows a witness for Y . Moreover, if such a valid signature is produced, it
must be possible to extract the witness for Y given the pre-signature and the adapted
signature. This is formalized as follows, where we take the message space M to be
{0, 1}∗.

Definition 11 (Adaptor Signature Scheme). An adaptor signature scheme w.r.t. a hard
relation R and a signature scheme Σ = (KeyGen, Sig, Ver) consists of four algorithms
ΞR,Σ = (PreSig, Adapt, PreVer, Ext) defined as:

PreSig(sk, m, Y): is a PPT algorithm that on input a secret key sk, message m ∈ {0, 1}∗

and statement Y ∈ L, outputs a pre-signature σ̂.

PreVer(pk, m, Y, σ̂): is a DPT algorithm that on input a public key pk, message m ∈
{0, 1}∗, statement Y ∈ L and pre-signature σ̂, outputs a bit b.

Adapt(σ̂, y): is a DPT algorithm that on input a pre-signature σ̂ and witness y, outputs
a signature σ.

Ext(σ, σ̂, Y): is a DPT algorithm that on input a signature σ, pre-signature σ̂ and state-
ment Y ∈ L, outputs a witness y such that (Y, y) ∈ R, or ⊥.

14

2.2. Cryptographic Preliminaries

We note that an adaptor signature scheme ΞR,Σ also inherits the KeyGen and Ver
algorithms from the underlying signature scheme Σ. In addition to the standard signa-
ture correctness, an adaptor signature scheme has to satisfy pre-signature correctness.
Informally, an honestly generated pre-signature w.r.t. a statement Y ∈ L is a valid
pre-signature and can be adapted into a valid signature from which a witness for Y can
be extracted.

Definition 12 (Pre-signature Correctness). An adaptor signature scheme ΞR,Σ satisfies
pre-signature correctness if for every λ ∈ N, every message m ∈ {0, 1}∗ and every
statement/witness pair (Y, y) ∈ R, the following holds:

Pr

PreVer(pk, m, Y, σ̂) = 1

∧
Ver(pk, m, σ) = 1

∧
(Y, y′) ∈ R

(sk, pk) ← KeyGen(1λ)
σ̂ ← PreSig(sk, m, Y)
σ := Adapt(σ̂, y)
y′ := Ext(σ, σ̂, Y)

 = 1.

Next, we define the security properties of an adaptor signature scheme. We start with
the notion of unforgeability, which is similar to existential unforgeability under chosen
message attacks (EUF-CMA) but additionally requires that producing a forgery σ for
some message m is hard even given a pre-signature on m w.r.t. a random statement
Y ∈ L. We note that allowing the adversary to learn a pre-signature on the forgery
message m is crucial as for our applications unforgeability needs to hold even in case
the adversary learns a pre-signature for m without knowing a witness for Y . We now
formally define the existential unforgeability under chosen message attack for adaptor
signature (aEUF-CMA).

Definition 13 (aEUF-CMA Security). An adaptor signature scheme ΞR,Σ is aEUF-CMA
secure if for every PPT adversary A there exists a negligible function negl such that:
Pr[aSigForgeA,ΞR,Σ(λ) = 1] ≤ negl(λ), where the experiment aSigForgeA,ΞR,Σ is defined as
follows:

aSigForgeA,ΞR,Σ(λ)

1 : Q := ∅
2 : (sk, pk) ← KeyGen(1λ)

3 : m ← AOS(·),OpS(·,·)(pk)
4 : (Y, y) ← GenR(1λ)
5 : σ̂ ← PreSig(sk, m, Y)

6 : σ ← AOS(·),OpS(·,·)(σ̂, Y)
7 : return (m ̸∈ Q ∧ Ver(pk, m, σ))

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

OpS(m, Y)

1 : σ̂ ← PreSig(sk, m, Y)
2 : Q := Q ∪ {m}
3 : return σ̂

15

2. Preliminaries

An additional property that we require from adaptor signatures is pre-signature adaptabil-
ity, which states that any valid pre-signature w.r.t. Y (possibly produced by a malicious
signer) can be adapted into a valid signature using the witness y with (Y, y) ∈ R. We
note that this property is stronger than the pre-signature correctness property from
Definition 12, since we require that even maliciously produced pre-signatures can always
be completed into valid signatures. The following definition formalizes this property.

Definition 14 (Pre-signature Adaptability). An adaptor signature scheme ΞR,Σ sat-
isfies pre-signature adaptability if for any λ ∈ N, any message m ∈ {0, 1}∗, any state-
ment/witness pair (Y, y) ∈ R, any key pair (sk, pk) ← KeyGen(1λ) and any pre-signature
σ̂ ← {0, 1}∗ with PreVer(pk, m, Y, σ̂) = 1, we have

Pr[Ver(pk, m, Adapt(σ̂, y)) = 1] = 1.

The last property that we are interested in is witness extractability. Informally, it
guarantees that a valid signature/pre-signature pair (σ, σ̂) for a message/statement pair
(m, Y) can be used to extract the corresponding witness y of Y .

Definition 15 (Witness Extractability). An adaptor signature scheme ΞR,Σ is witness
extractable if for every PPT adversary A, there exists a negligible function negl such
that the following holds: Pr[aWitExtA,ΞR,Σ(λ) = 1] ≤ negl(λ), where the experiment
aWitExtA,ΞR,Σ is defined as follows

aWitExtA,ΞR,Σ(λ)

1 : Q := ∅
2 : (sk, pk) ← KeyGen(1λ)

3 : (m, Y) ← AOS(·),OpS(·,·)(pk)
4 : σ̂ ← PreSig(sk, m, Y)

5 : σ ← AOS(·),OpS(·,·)(σ̂)
6 : y′ := Ext(pk, σ, σ̂, Y)
7 : return (m ̸∈ Q ∧ (Y, y′) ̸∈ R ∧ Ver(pk, m, σ))

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

OpS(m, Y)

1 : σ̂ ← PreSig(sk, m, Y)
2 : Q := Q ∪ {m}
3 : return σ̂

Although, the witness extractability experiment aWitExt looks similar to the experiment
aSigForge, there is one important difference, namely, the adversary is allowed to choose
the forgery statement Y . Hence, we can assume that the adversary knows a witness for
Y , and therefore, can generate a valid signature on the forgery message m. However, this
is not sufficient to win the experiment. The adversary wins only if the valid signature
does not reveal a witness for Y .

Combining the three properties described above, we can define a secure adaptor signature
scheme as follows.

16

2.2. Cryptographic Preliminaries

Definition 16 (Secure Adaptor Signature Scheme). An adaptor signature scheme ΞR,Σ
is secure, if it is aEUF-CMA secure, pre-signature adaptable and witness extractable.

2.2.6 Two-Party Adaptor Signature with Aggregatable Public Keys
In this section, we describe two-party adaptor signature with aggregatable public keys,
which is a natural extension of adaptor signatures given in Section 2.2.5 to a two-party
setting.

Definition 17 (Two-Party Adaptor Signature Scheme with Aggregatable Public Keys [EFH+21]).
A two-party adaptor signature scheme with aggregatable public keys is defined w.r.t.
a hard relation R and a two-party signature scheme with aggregatable public keys
Σ2 = (Setup, KeyGen, ΠSig, KAgg, Ver). It is run between parties P0, P1 and consists
of a tuple ΞR,Σ2 = (ΠPreSig, Adapt, PreVer, Ext) of efficient protocols and algorithms
defined as follows:

ΠPreSig⟨ski,sk1−i⟩(pk0, pk1, m, Y): is an interactive protocol with input secret key ski from
party Pi with i ∈ {0, 1} and common message m ∈ {0, 1}∗, public keys pk0, pk1 and
statement Y ∈ LR, outputs a pre-signature σ̂.

PreVer(apk, m, Y, σ̂): is a DPT algorithm with input an aggregated public key apk, a
message m ∈ {0, 1}∗, a statement Y ∈ LR and a pre-signature σ̂, outputs bit b.

Adapt(apk, σ̂, y): is a DPT algorithm with input an aggregated public key apk, pre-
signature σ̂ and witness y, outputs a signature σ.

Ext(apk, σ, σ̂, Y): is a DPT algorithm with input an aggregated public key apk, a signature
σ, pre-signature σ̂ and statement Y ∈ LR, outputs a witness y s.t. (Y, y) ∈ R, or ⊥.

We first define the two-party pre-signature correctness.

Definition 18 (Two-Party Pre-signature Correctness). A two-party adaptor signature
scheme with aggregatable public keys ΞR,Σ2 satisfies two-party pre-signature correctness if
for every λ ∈ N, every message m ∈ {0, 1}∗ and every statement/witness pair (Y, y) ∈ R,
the following holds:

Pr

PreVer(apk, m, Y, σ̂) = 1
∧

Ver(apk, m, σ) = 1
∧

(Y, y′) ∈ R

pp ← Setup(1λ)
(sk0, pk0) ← KeyGen(pp)
(sk1, pk1) ← KeyGen(pp)
(Y, y) ← GenR(1λ)
σ̂ ← ΠPreSig⟨sk0,sk1⟩(pk0, pk1, m, Y)
apk := KAgg(pk0, pk1)
σ := Adapt(apk, σ̂, y)
y′ := Ext(apk, σ, σ̂, Y)

= 1.

We now formally define the existential unforgeability under chosen message attack for
two-party adaptor signature scheme with aggregatable public keys (2-aEUF-CMA). It is

17

2. Preliminaries

similar to the two-party existential unforgeability under chosen message attacks (given
in Definition 10) but additionally requires that producing a forgery σ for some message
m is hard even given a pre-signature on m w.r.t. a random statement Y ∈ LR.

Definition 19 (2-aEUF-CMA Security). A two-party adaptor signature scheme with
aggregatable public keys ΞR,Σ2 is 2-aEUF-CMA secure if for every PPT adversary A there
exists a negligible function negl such that.

Pr[aSigForgeb
A,ΞR,Σ2

(λ) = 1] ≤ negl(λ),

where the experiment aSigForgeb
A,ΞR,Σ2

is defined as follows:

aSigForgeb
A,ΞR,Σ2

(λ)

1 : Q := ∅
2 : pp ← Setup(1λ)
3 : (sk1−b, pk1−b) ← KeyGen(pp)
4 : (skb, pkb) ← A(pp, pk1−b)

5 : m ← AOb
ΠS

(·),Ob
ΠpS

(·,·)(pk1−b, skb, pkb)
6 : (Y, y) ← GenR(1λ)
7 : σ̂ ← ΠA

PreSig⟨sk1−b,·⟩(m, Y)

8 : σ ← AOb
ΠS

(·),Ob
ΠpS

(·,·)(σ̂, Y)
9 : apk := KAgg(pk0, pk1)

10 : return (m ̸∈ Q ∧ Ver(apk, m, σ))

Ob
ΠS

(m)

1 : Q := Q ∪ {m}
2 : σ ← ΠA

Sig⟨sk1−b,·⟩(pk0, pk1, m)

3 : return σ

Ob
ΠpS

(m, Y)

1 : Q := Q ∪ {m}
2 : σ̂ ← ΠA

PreSig⟨sk1−b,·⟩(pk0, pk1, m, Y)

3 : return σ̂

Next, we formally define the property of pre-signature adaptability for two-party adaptor
signature with aggregatable keys.

Definition 20 (Two-Party Pre-signature Adaptability). A two-party adaptor signature
scheme with aggregatable public keys ΞR,Σ2 satisfies two-party pre-signature adaptability if
for any λ ∈ N, any message m ∈ {0, 1}∗, any statement/witness pair (Y, y) ∈ R, any pub-
lic keys pk0 and pk1, and any pre-signature σ̂ ← {0, 1}∗ satisfying PreVer(apk, m, Y, σ̂) =
1, where apk := KAgg(pk0, pk1), we have

Pr[Ver(apk, m, Adapt(apk, σ̂, y)) = 1] = 1.

The last property that we are interested in is witness extractability, which in two-party
setting can be defined as a natural adaptation of the definition given in Definition 15.

Definition 21 (Two-Party Witness Extractability). A two-party adaptor signature
scheme with aggregatable public keys ΞR,Σ2 two-party witness extractable if for every PPT
adversary A, there exists a negligible function negl such that the following holds:

Pr[aWitExtb
A,ΞR,Σ2

(λ) = 1] ≤ negl(λ),

18

2.2. Cryptographic Preliminaries

where the experiment aWitExtb
A,ΞR,Σ2

is defined as follows

aWitExtb
A,ΞR,Σ2

(λ)

1 : Q := ∅; pp ← Setup(1λ)
2 : (sk1−b, pk1−b) ← KeyGen(pp)
3 : (skb, pkb) ← A(pp, pk1−b)

4 : (m, Y) ← AOb
ΠS

(·),Ob
ΠpS

(·,·)(pk1−b, skb, pkb)
5 : σ̂ ← ΠA

PreSig⟨sk1−b,·⟩(m, Y)

6 : σ ← AOb
ΠS

(·),Ob
ΠpS

(·,·)(σ̂)
7 : apk := KAgg(pk0, pk1)
8 : y′ := Ext(apk, σ, σ̂, Y)
9 : return (m ̸∈ Q ∧ (Y, y′) ̸∈ R ∧ Ver(apk, m, σ))

Ob
ΠS

(m)

1 : Q := Q ∪ {m}
2 : σ ← ΠA

Sig⟨sk1−b,·⟩(pk0, pk1, m)

3 : return σ

Ob
ΠpS

(m, Y)

1 : Q := Q ∪ {m}
2 : σ̂ ← ΠA

PreSig⟨sk1−b,·⟩(pk0, pk1, m, Y)

3 : return σ̂

Combining the three properties described above, we can define a secure two-party adaptor
signature scheme with aggregatable public keys as follows.

Definition 22 (Secure Two-Party Adaptor Signature Scheme with Aggregatable Public
Keys). A two-party adaptor signature scheme with aggregatable public keys ΞR,Σ2 is
secure, if it is 2-aEUF-CMA secure, two-party pre-signature adaptable and two-party
witness extractable.

Generic Transformation. Erwig et al. [EFH+21] showed how to generically trans-
form a canonical identification scheme (as defined in Section 2.2.2) into an (two-party)
adaptor signature scheme. Here we describe the generic transformation from two-party
signature with aggregatable public keys (obtained from an identification scheme) to an
adaptor signature scheme, given in [EFH+21, Section 5.1]. This transformation is given
in Figure 2.1, and it makes use of the following functions and protocols:

• The randomness shift function fshift : Drand × L → Drand, takes as input a commitment
value R ∈ Drand of the identification scheme and a statement Y ∈ L of the hard relation,
and outputs a new commitment value R′ ∈ Drand. We assume that the inverse of this
function is well-defined (which is true for all currently known instantiations of it).

• The adaptation function fadapt : Dresp × Dw → Dresp, takes as input a pre-signature
value ŝ ∈ Dresp (which corresponds to the response value of the identification scheme)
and a witness y ∈ Dw of the hard relation R, and outputs a new value s ∈ Dresp.

• The witness extraction function fext : Dresp × Dresp → Dw, takes as input two response
values ŝ, s ∈ Dresp and outputs a witness y ∈ Dw.

• The randomness combining function fcom-rand : Drand × Drand → Drand, that takes as
input two randomness R0, R1 ∈ Drand and outputs a new combined randomness R ∈ Drand.

19

2. Preliminaries

ΠPreSig⟨ski,sk1−i⟩(pk0, pk1, m, Y)

1 : Parse pki = ((1λ, ppC , crs), pk′
i), i ∈ {0, 1}

2 : (Ri, sti, R1−i) ← ΠRand-Exc⟨ski,sk1−i⟩(ppC , crs)
3 : Rpre := fcom-rand(R0, R1)
4 : Rsign := fshift(Rpre, Y), h := H(Rsign, m)
5 : ŝi ← P2(ski, Ri, h, sti)
6 : ŝi−1 ← ΠExchange⟨ŝi, ŝi−1⟩
7 : (h, ŝ) := fcom-sig(h, (ŝi, ŝi−1))
8 : return σ̂ := (h, ŝ)

PreVer(apk, m, Y, σ̂ := (h, ŝ))

1 : Rpre := V0(apk, h, ŝ)

2 : return h = H(fshift(Rpre, Y), m)

Adapt(apk, σ̂ := (h, ŝ), y)

1 : return σ := (h, fadapt(ŝ, y))

Ext(apk, σ := (h, s), σ̂ := (h, ŝ), Y)

1 : return fext(s, ŝ)

Figure 2.1: Two-party adaptor signature scheme with aggregatable public keys ΞR,Σ2

with respect to Σ2 and hard relation R.

• The signature combining function fcom-sig, that takes as input two partial signatures
and returns a new combined signature.

• The randomness exchange protocol ΠRand-Exc.

• The partial signature exchange protocol ΠExchange.

In [EFH+21] it was shown how to instantiate the functions and protocols specified
above for different type of signatures, such as Schnorr [Sch91], Katz-Wang [KW03] and
Guillou-Quisquater [GQ88]. We note here that the recently proposed post-quantum
adaptor signatures, such as lattice-based LAS [EEE20] and isogeny-based IAS [TMM21b]
are also adaptor signature scheme obtained from an identification scheme. However, we
note that LAS [EEE20] can only achieve weak pre-signature adaptability due to the
inherent knowledge gap in lattice-based schemes, and IAS [TMM21b] cannot be extended
to two-party setting as no known key aggregation technique exists in isogeny-based
cryptography.

2.2.7 Commitment Scheme
A commitment scheme allows a user to commit to a message by generating a commitment
that can only be opened given the corresponding opening information. We formally
define a commitment scheme as follows.

Definition 23 (Commitment Scheme). A (non-interactive) commitment scheme consists
of pair of algorithms ΠCOM = (Commit, Open) defined as follows:

Commit(1λ, m): is a PPT algorithm that on input a security parameter 1λ and a message
m ∈ {0, 1}∗, outputs a commitment com and an opening information decom.

Open(com, decom): is a DPT algorithm that on input a commitment com and an opening
information decom, outputs either m or ⊥.

20

2.2. Cryptographic Preliminaries

We require the standard notion of correctness, which says that for every λ ∈ N and every
message m ∈ {0, 1}∗, it holds that

Pr Open(Commit(1λ, m)) = m = 1.

In terms of security we require the commitment scheme to satisfy computational hiding
and perfect binding properties [Dam99].

Definition 24 (Computational Hiding). A commitment scheme ΠCOM is computationally
hiding if for every PPT adversary A, there exists a negligible function negl, such that

Pr ComHidingA,ΠCOM(λ) = 1 ≤ 1
2 + negl(λ),

where the experiment ComHidingA,ΠCOM is defined as follows

ComHidingA,ΠCOM(λ)

1 : (m0, m1) ← A(1λ)
2 : b ←$ {0, 1}
3 : (com, decom) ← Commit(1λ, mb)
4 : b′ ← A(com)
5 : return b = b′

Definition 25 (Perfect Binding). A commitment scheme ΠCOM is perfectly binding
if for every λ ∈ N, no (computationally unbounded) adversary A can output a tuple
(com, decom, decom′), such that m ← Open(com, decom), m′ ← Open(com, decom′) and
m ̸= m′ ̸= bot.

2.2.8 Encryption Scheme
In this section we give a formal description of a (public-key) encryption scheme and its
properties.

Definition 26 (Encryption Scheme). An encryption scheme ΠE = (KeyGen, Enc, Dec)
with message space M consists of the following algorithms:

KeyGen(1λ): is a PPT algorithm that on input a security parameter 1λ, outputs an
encryption/decryption key pair (ek, dk).

Enc(ek, m): on input an encryption key ek and a message m, outputs a ciphertext c.

Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a message m ∈
M ∪ {⊥}

21

2. Preliminaries

We say that an encryption scheme ΠE is perfectly correct if for all λ ∈ N, for all
(ek, dk) ← KeyGen(1λ) and for all m ∈ M it holds that,

Pr [Dec(dk, Enc(ek, m)) = m] = 1.

Next, we recall the standard notion of indistinguishability under chosen ciphertext attacks
(IND-CCA security).

Definition 27 (IND-CCA). An encryption scheme ΠE is IND-CCA secure if for every
PPT adversary A, there exists a negligible function negl, such that

Pr [IND-CCAA,ΠE(λ) = 1] ≤ 1
2 + negl(λ),

where the experiment IND-CCAA,ΠE is defined as follows,

IND-CCAA,ΠE(λ)

1 : (ek, dk) ← KeyGen(1λ)
2 : (m0, m1) ← AODec(·)(ek)
3 : b ←$ {0, 1}
4 : c ← Enc(ek, mb)
5 : b′ ← AODec(·)(c)
6 : return b = b′

for a decryption oracle ODec(·) that outputs ⊥ if queried on the challenge ciphertext c.

In Section 6.2 we consider an encryption scheme that has unique decryption keys, which
we formalize below.

Definition 28 (Unique Decryption Keys). An encryption scheme ΠE has unique decryp-
tion keys if there exists an algorithm Gen, such that KeyGen algorithm is of the following
form:

• Sample dk ←$ {0, 1}λ.

• Compute ek ← Gen(dk).

• Output (ek, dk).

Moreover, for all ek output by KeyGen, there exists a unique dk, such that ek ← Gen(dk)
holds, i.e., Gen is injective.

We note that this property is already satisfied by most natural public-key encryption
schemes, but it can be generically achieved by augmenting the encryption key ek with a per-
fectly binding commitment to the decryption key dk, i.e., com ← ΠCOM.Commit(1λ, dk).

22

2.3. Security and Communication Model

2.3 Security and Communication Model
In this section we introduce the adversarial and communication model that we consider
for our protocols.

2.3.1 Universal Composability
To model security of our protocols in the presence of concurrent executions of different
protocols and allow for universal composition of building blocks, we resort to the Universal
Composability (UC) framework of Canetti [Can20] and its extended variant that supports
a global setup, called Universal Composition with Global Subroutines (UCGS) [BCH+20].
The following introduction is primary adapted from [Can20] and [Hos21].
An n-party protocol π is a collection of n different programs, where each is formally
modeled as an interactive Turing machine (ITM), designed to reach a joint and specific
goal. Each program is expected to be executed by a different computational entity while
exchanging messages with the remaining programs from the collection. In this thesis, we
often abstract from the distinction between an ITM and the entity operating it, and refer
to both as a party in the protocol π. Moreover, we assume that the set P = {P1, . . . , Pn}
of parties using the system is fixed.
A protocol π is executed in the presence of two additional entities, called the environment
E and the adversary A, both of which are modeled as ITMs. The role of the environment
is to present any external information to the current protocol execution. The environment
E provides input to both the adversary A and the parties P and observe their outputs.
The adversary A can corrupt any party in P at the beginning of the protocol execution,
i.e., we assume static corruption. When a party P is corrupted, the adversary A takes
full control over a P ’s actions and learns its internal state. The output of an environment
E interacting with a protocol π and an adversary A on input the security parameter 1λ

and auxiliary input z is denoted by EXECπ,A,E(λ, z).
An important concept in the UC framework is protocol emulation. At a high level, a
protocol π emulates another protocol ϕ if no PPT environment E is able to distinguish
whether it is interacting with the protocol π executed in the presence of an adversary
of its choice, or the protocol ϕ in the presence of another adversary, referred to as the
simulator. The formal definition of UC emulation is as follows.

Definition 29 (UC Emulation [Can20]). The protocol π UC-emulates the protocol ϕ,
if for every PPT adversary A there exists a PPT adversary S such that for every PPT
environment E we have

{EXECπ,A,E(λ, z)} λ∈N,
z∈{0,1}∗

≈c {EXECϕ,S,E(λ, z)} λ∈N,
z∈{0,1}∗

(where ≈c denotes computational indistinguishability).

In order to formalize the security of protocols, the UC framework utilizes the concept of
ideal functionalities. An ideal functionality is a single ITM defining the ideal behavior

23

2. Preliminaries

of the protocol we aim to design. This means that it defines the input/output behavior
of parties, and it specifies what information may be disclosed to the adversary during
the protocol execution. An ideal protocol defining the tasks for n parties consists of an
ideal functionality F and n dummy parties. These dummy parties are special ITMs that
upon receiving an input, directly forward it to the ideal functionality F together with
the information about the sender of the message. If dummy parties receive an output
from F addressed to a certain entity, the dummy parties simply forward this output to
the specified destination. We denote the ideal protocol for an ideal functionality F as
ϕF , and formalize UC-realization as follows.

Definition 30 (UC Realization [Can20]). The protocol π UC-realizes the ideal function-
ality F if it UC-emulates the ideal protocol ϕF .

We refer to the execution of the ideal protocol ϕF in the presence of a simulator S as the
ideal world, and to the execution of the real protocol π in the presence of an adversary A
as the real world.

The main advantage of the UC framework is its support for secure composition of
protocols. In order to state the UC composition theorem, we need to introduce several
technical terms first (we refer to [Can20] for the formal definitions).

Parties of a protocol π may have access to one or multiple subroutines. These are ITMs
that can communicate only with parties from the protocol π or with each other, e.g.,
they do not communicate with the environment E . Formally, subroutine ITMs are
part of the collection forming π and it must hold that (i) if a party Pi makes calls to
a subroutine ITM, then this ITM is part of π, and (ii) if an ITM which is part of π
accepts subroutine calls from a party Pi, then Pi is a party of the protocol π. We say
that ϕ is a subroutine protocol of the protocol π if: (i) ϕ is a valid protocol itself, and
(ii) ϕ consists of ITMs that are all subroutines of π. In the special case when ϕ is the
ideal protocol of some functionality G, we say that π works in the G-hybrid world. A
protocol π can have multiple subroutine protocols ϕ1, . . . , ϕm. We note that since ITMs
in each ϕi can communicate only with each other and with parties of the protocol π,
no iteration between the subroutine protocols is possible. Two protocols ϕ and ρ are
called identity-compatible if there is an injective correspondence between the parties of
the protocol ϕ and the protocol ρ. Furthermore, the external ITMs that are allowed to
interact with parties from ϕ and ρ are the same.

Now consider three protocols π, ϕ and ρ, where ϕ is subroutine protocol of π, and ϕ and
ρ are identity-compatible. The composed protocol, denoted as πϕ→ρ, is defined exactly
as π but replaces all calls to ϕ with calls to ρ. If ϕ is an ideal protocol of some ideal
functionality G, we write πG→ρ instead of πϕG→ρ. We are not ready to state the UC
composition theorem, which says that if ρ UC-emulates ϕ, then the composed protocol
UC emulates the original protocol π. In other words, no PPT environment can distinguish
between the interaction with the composed protocol and the original one.

24

2.3. Security and Communication Model

Definition 31 (Universal Composability [Can20]). Let π, ϕ and ρ be three protocols,
where ϕ is a subroutine protocol of π, ϕ and ρ are identity-compatible, and ρ UC-emulates
ϕ. Then, πϕ→ρ UC-emulates π.

A useful implication of the UC composition theorem is that if the protocol π working in
the G-hybrid world UC-realizes an ideal functionality F , and we know that a protocol ρ
UC realizes the ideal functionality G, then the composed protocol πG→ρ also realizes the
ideal functionality F . This allows us to design a protocol realizing F in several steps.
More precisely, we can first show how to design a protocol realizing the ideal functionality
while using some ideal building blocks, and then we can show how to realize these ideal
building blocks.

Global Ideal Functionalities. A disadvantage of the UC framework described above is
that it does not allow for a protocol π to share state with another protocol π′. Therefore,
it does not capture any global setup known to several protocol sessions and different
protocols. In the context of cryptocurrencies, this is particularly problematic since we are
not able to formally capture the public nature of the blockchain. Note that in practice,
the blockchain can be read and even modified by multiple protocols in parallel which is
impossible to express in the standard UC model.

Towards this end we utilize the UCGS framework introduced by Badertscher et al. [BCH+20],
which allows protocols to share state but in a controlled way. This is formalized us-
ing global functionalities. A global functionality is defined exactly as a standard ideal
functionality except that it can communicate with more than one protocol session.

In order to capture global functionalities within the standard UC framework, Badertscher
et al. [BCH+20] defined a so-called management protocol M[·], which is a transformation
that takes two protocols π and γ, and combines them into a single protocol µ := M[π, γ],
such that one instance of µ behaves like one instance of π and one or more instances
of γ, where the instances of γ take inputs both from the instance of π within µ, and
from outside µ. In the rest of this description we can consider that γ := ϕG , i.e., the
ideal protocol of some global functionality G. Using such a management protocol we can
define the UC-emulation with global subroutines as follows.

Definition 32 (UC Emulation with Global Subroutines [BCH+20]). Let π, ϕ and γ
be protocols. We say that π UC-emulates ϕ in the presence of γ if protocol M[π, γ]
UC-emulates protocol M[ϕ, γ].

It was observed in [BCH+20] that in order to use global subroutines within UC, the
protocols should be compliant, subroutine-exposing, subroutine respecting and regular (we
refer to [BCH+20] for formal definitions). Compliance and subroutine-exposing properties
ensure that the protocols are identity-compatible and communication between different
ITM instances (ITIs) is trustworthy. A protocol π is called γ-subroutine respecting if γ is
the only global setup π shares state with. More precisely, ITIs of the current session of π
communicate only with each other, their subroutines and instances of the global setup

25

2. Preliminaries

γ. On the other hand, the regularity condition prevents the shared subroutine itself to
spawn new higher-level sessions. More precisely, we say that γ is a ϕ-regular setup if,
in any execution, the main parties of an instance of γ do not invoke a new ITI of ϕ. In
general, most of the global setups used in the literature satisfy these restrictions. For
example, a global clock only tells the time on demand, or a global ledger requires parties
to register before participating in the protocol.

Badertscher et al. [BCH+20] showed that if a protocol ρ is γ-subroutine respecting,
where γ itself is ρ-regular and subroutine respecting, then the interaction between π and
the global subroutine γ is very structured without unexpected artifacts.

Now consider again three protocols π, ϕ and ρ, where ϕ is subroutine protocol of π. The
universal composition with global subroutines is the composition theorem for protocols
that are defined with respect to a global subroutine γ. Note that γ is not replaced, but
ϕ is replaced by its implementation ρ.

Definition 33 (Universal Composition with Global Subroutines [BCH+20]). Let π, ϕ, ρ
and γ be subroutine-exposing protocols, where γ is a ϕ-regular setup and subroutine
respecting, ϕ, ρ are γ-subroutine respecting and π is (ρ, ϕ)-compliant and (ρ, M [code, γ])-
compliant for code ∈ {ϕ, ρ}. If ρ UC-emulates ϕ in the presence of γ, then πϕ→ρ

UC-emulates π.

Throughout the rest of this thesis we will denote the global functionalities with G.

2.3.2 Synchrony and Communication
In all protocols presented in this thesis, we assume synchronous communication between
parties. This means that the protocol execution happens in rounds and this is kept track
using the global clock functionality GClock [KMTZ13, BCH+20], depicted in Figure 2.2.

The global clock functionality GClock mimics a clock by waiting for all honest parties and
ideal functionalities to indicate that they are ready to proceed to the next round, and
only then proceeds the clock to the next round. Moreover, the functionality also informs
all the registered parties and functionalities of the given round. In practice such a clock
synchrony among the parties and protocols can be achieved over the Internet.

2.4 Blockchain and Payment Channels
Blockchain. A blockchain constitutes a sequence of blocks containing some data,
which achieves immutability, i.e., the data of the added blocks cannot be tampered with,
and liveness, i.e., a new block is appended to the blockchain in regular time intervals.
The blockchain is maintained over a decentralized network and a set of parties run
consensus mechanisms to make a collective decision on the inclusion of new blocks. Some
examples of such consensus mechanisms include Proof-of-Work (used in Bitcoin and
formalized by Garay et al. [GKL15]) and Proof-of-Stake (used in Ethereum and formalized

26

2.4. Blockchain and Payment Channels

Ideal Functionality GClock

The functionality manages the set P of registered identities, i.e., parties P := (pid, sid). It also
manages the set F of functionalities (together with their session identifier). Initially, P = ∅ and
F = ∅.
For each session sid the clock maintains a variable τsid. For each identity P := (pid, sid) ∈ P it
manages variable dP . For each pair (F , sid) ∈ F it manages variable dF,sid (all integer variables
are initially 0).
Synchronization:

• Upon receiving (clock-update, sidC) from some party P ∈ P set dP = 1, execute Round-
Update and forward (clock-update, sidC , P) to S.

• Upon receiving (clock-update, sidC) from some functionality F in a session sid such that
(F , sid) ∈ F set d(F,sid) = 1, execute Round-Update and return (clock-update, sidC , F)
to this instance of F .

• Upon receiving (clock-read, sidC) from any participant (including the environment on
behalf of a party, the adversary, or any ideal—shared or local—functionality) return
(clock-read, sidC , τsid) to the requestor (where sid is the session identifier of the calling
instance).

Round-Update: For each session sid do: If d(F,sid) = 1 for all F ∈ F and dP = 1 for all honest
parties P := (·, sid) ∈ P , then set τsid = τsid + 1 and reset d(F,sid) = 0 and dP = 0 for all parties
P := (·, sid) ∈ P.

Figure 2.2: Ideal functionality GClock [KMTZ13, BCH+20].

by [KRDO17]). In the protocols presented in this thesis, we make use of the distributed
ledger (i.e., blockchain) functionality GLedger introduced by Badertscher et al. [BMTZ17].
It constitutes the most complete and faithful modeling of a blockchain, and it was shown
in [BMTZ17] that the Bitcoin backbone protocol UC-realizes GLedger. We show the
ideal functionality GLedger below for the sake of completeness and refer to [BMTZ17] for
its details. We note that in this thesis we primarily make use of the read and submit
interfaces of GLedger, i.e., for reading the state and submitting new transactions to the
blockchain, respectively.

Ideal Functionality GLedger

General: The functionality is parameterized by four algorithms Validate, ExtendPolicy, Blockify,
and predict-time, along with two parameters windowSize, Delay ∈ N. The functionality manages
variables state, NxtBC, buffer, τL and τ⃗state. Initially, state := τ⃗state, NxtBC := ε, buffer := ∅,
τL = 0.

Party Management: The functionality maintains the set of registered parties P , the (sub-)set
of honest parties H ⊆ P, and the (sub-)set of de-synchronized honest parties PDS ⊂ H. The
sets P, H, PDS are all initially set to ∅. When a new honest party is registered at the ledger,
if it is registered with the clock already, then it is added to the party set H and P, and the
current time of registration is also recorded; if the current time is τL > 0, it is also added to

27

2. Preliminaries

PDS . Similarly, when a party is deregistered, it is removed from both P (and therefore also
from PDS and H). The ledger maintains an invariant that it is registered (as a functionality)
to the clock whenever H ̸= ∅. A party is considered fully registered if it is registered with the
ledger and the clock.

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to
GClock and upon receiving response (clock-read, sidC , τ) set τL = τ and do the following:

1. Let P ⊆ PDS denote the set of de-synchronized honest parties that have been registered
(continuously) since time τ ′ < τL −Delay (to both ledger and clock). Set PDS := PDS \P .
On the other hand, for any synchronize party P ∈ H \ PDS , if P is not registered to the
clock, then PDS ∪ {P}.

2. If I was received from an honest party Pi ∈ P:

• Set I⃗T
H = I⃗T

H∥(I, P, τL).

• Compute N⃗ = (N⃗1, . . . , N⃗ℓ) := ExtendPolicy(I⃗T
H , state, NxtBC, buffer, τ⃗state) and if

N⃗ ̸= ε, set state := state∥Blockify(N⃗1)∥ · · · ∥Blockify(N⃗ℓ) and τ⃗state := τ⃗state∥τ ℓ
L,

τ ℓ
L = τL∥ · · · ∥τL.

• For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0, then delete BTX from buffer.
Also, reset NxtBC := ε.

• If there exists Pj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |,
then ptk := |state| for all Pk ∈ H \ PDS .

3. Depending on the input I and the ID of the sender, execute the respective code:

• Submitting a transaction:
If I = (submit, sid,tx) and is received from a party Pi ∈ P or from S (on behalf of
a corrupted party Pi), do the following:

– Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Pi).
– If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
– Send (submit, BTX) to S.

• Reading the state:
If I = (read, sid) is received from a fully registered party P , then set statei :=
state|min pti,|state| and return (read, sid, statei) to the requester. If requester is S, then
send (state, buffer, I⃗T

H) to S.
• Maintaining the ledger state:

If I = (maintain-ledger, sid, minerID) is received by an honest party Pi ∈ P , and (after
updating I⃗T

H as above) predict-time(I⃗T
H) = τ̂ > τL, then send (clock-update, sidC) to

GClock. Else, send I to S.
• The adversary proposing the next block:

If I = (next-block, hFlag, (txid1, . . . , txidℓ)) is sent from the adversary, update NxtBC
as follows:

– Set listOfTxid ← ϵ.
– For i = 1, . . . , ℓ do: if there exists BTX := (x, txid, minerID, τL, Pi) ∈ buffer with

ID txid = txidi, then set listOfTxid := listOfTxid∥txidi.

28

2.4. Blockchain and Payment Channels

– Finally, set NxtBC := NxtBC∥(hFlag, listOfTxid) and output (next-block, ok) to
S.

• The adversary setting state-slackness:
If I = (set-slack, (Pi1 , pt′

i1), . . . , (Piℓ
, pt′

iℓ
)), with {Pi1 , . . . , Piℓ

} ⊆ H\PDS is received
from the adversary S, do the following:

– If for all j ∈ [ℓ] : |state| − ptij
≤ windowSize and pti1 := pti1 for every j ∈ [ℓ]

and return (set-slack, ok) to S.
– Otherwise, set ptij

:= |state| for all j ∈ [ℓ].
• The adversary setting the state for de-synchronized parties:

If I = (desync-state, (Pi1 , state′
i1

), . . . , (Piℓ
, state′

iℓ
)), with {Pi1 , . . . , Piℓ

} ⊆ PDS from
the adversary S, set stateij

= state′
ij

for each j ∈ [ℓ] and return (desync-state, ok)
to S.

Cryptocurrencies can be built on top of the aforedescribed distributed ledger (i.e.,
blockchain) infrastructure by enforcing that the transactions submitted have a special
format. More precisely, we have that the transactions encode information such as a
sending address aidS , a recipient address aidR and a value v of the amount of coins
transferred. At a high level, an address has an associated predicate that needs to
be satisfied in order for the coins to be spent from this address. Then, the parties
that participate in the blockchain network validate the transactions by checking if the
associated predicates are satisfied, and only the valid transactions are added to the
blockchain at the end. For example, the sending address aidS may have an associated
predicate that is a signature verification algorithm Σ.Ver with respect to a public key
pkS . The sender would need to produce a valid signature σS on the transaction tx that
is verifiable with respect to pkS , i.e., Σ.Ver(pkS ,tx, σS) = 1. The transaction tx would
also include the predicate associated with the recipient address aidR that needs to be
satisfied in order to spend the coins from aidR. In the cryptocurrency literature these
predicates are referred to as scripts. These scripts can range anywhere from complex
spending conditions captured by Turing complete programs, referred as smart contracts,
to simple hash-based contracts, such as Hash Time-Lock Contracts (HTLCs), which
postulate that the coins from an address can be spent if the spender provides a pre-image
of some specific hash value. In the rest of this thesis we only consider scripts that can be
encoded with a plain and adaptor signature schemes.

Payment Channels. A payment channel is an off-chain payment protocol that allows
the involved parties to make several high frequency payments, while only registering the
initial and final balances on the chain. In order to do this, a payment channel protocol
proceeds in three phases.

In the first phase, referred as channel opening, the parties Alice and Bob open a payment
channel γAB by posting a single transaction on chain. This results in a shared address
aidAB between Alice and Bob, where some funds are deposited for some amount of time
t. Hence, both Alice and Bob have to agree on a transaction to spend from the channel
γAB before the time t. After the time t, the funds from aidAB are reimbursed to Alice
and Bob.

29

2. Preliminaries

The second phase, referred as channel update, involves Alice and Bob sending each other
coins (in the form of transactions) from the joint address aidAB, which updates the
corresponding balances of the parties within the channel γ. We note that these constitute
valid payment transactions, but they are not posted on the chain, and instead are stored
locally by updating the channel state.

The third phase, referred as channel closing, finalizes the payments between Alice and
Bob. This is done by one of the parties posting the most recent channel state on the
blockchain. This effectively distributes the funds between Alice and Bob according to
the latest channel state, and the channel is considered closed. As we can observe, no
matter the number payments between Alice and Bob, only two transactions go on chain.
This boosts the scalability of payments and leads to increased transaction processing
rates. Moreover, payment channels have been implemented and used in practice, where
Lightning Network built on top of Bitcoin and Raiden Network built on top of Ethereum
are some prominent examples.

We defer the formal description and construction of payment channels to Section 6.1.

30

CHAPTER 3
Post-Quantum Adaptor Signatures

In this chapter we present a post-quantum adaptor signature construction from isogenies,
which is based on CSI-FiSh signature scheme [BKV19]. First, in Section 3.1 we recall
CSI-FiSh signature scheme, and then in Section 3.2 we provide our post-quantum adaptor
signature construction. In Section 3.3 we formally prove the security of our construction
in (quantum) random oracle model, and lastly in Section 3.4 we evaluate the performance
of our construction.

3.1 CSI-FiSh Signature Scheme
CSI-FiSh is a signature scheme [BKV19] obtained by applying Fiat-Shamir transform to
an identification scheme. First, we recall the interactive zero-knowledge identification
scheme, where a prover wants to convince a verifier that it knows a secret element
a ∈ Cl(O) of its public key Ea = a ⋆ E0, for a = ga and a ∈ ZN , where E0 is a publicly
known base curve. The scheme is as follows:

• Prover samples a random b = gb for b ∈ ZN and commits to Eb = [b]E0 (this
corresponds to Eb = b ⋆ E0 with our notation).

• Verifier samples a random challenge bit c ∈ {0, 1}.

• If c = 0, prover replies with r = b, otherwise it replies with r = b − a mod N (reducing
modulo N to avoid any leakage on a).

• If c = 0, verifier verifies that Eb = [r]E0, otherwise verifies that Eb = [r]Ea.

This scheme is clearly correct, and it has soundness 1/2. For the zero-knowledge property,
it is important that elements in Cl(O) can be sampled uniformly, and that they have
unique representation.

In order to improve soundness, the authors of [BKV19] increased the size of the public key.
For a positive integer S, the secret key becomes the vector (a1, . . . , aS−1) of dimension

31

3. Post-Quantum Adaptor Signatures

S − 1, and public key is set to (E0, E1 = [a1]E0, . . . , ES−1 = [aS−1]E0). Then, the prover
proves to the verifier that it knows an s ∈ ZN , such that [s]Ei = Ej for some pair of
curves in the public key (with i ̸= j). In order to further increase the challenge space, one
can exploit the fact that given a curve E = [a]E0, its quadratic twist Et, which can be
computed very efficiently, is Fp-isomorphic to [−a]E0. Therefore, one can almost double
the set of public key curves going from E0, E1, . . . , ES−1 to E−S+1, . . . , E0, . . . , ES−1,
where E−i = Et

i , without any increase in communication cost. Combining all these the
soundness error drops to 1

2S−1 . To achieve security level λ (i.e., 2−λ soundness error), we
need to repeat the protocol tS = λ/ log2(2S − 1) times.

The described identification scheme when combined with the Fiat-Shamir heuristic, for a
hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS , gives the CSI-FiSh signature scheme
shown in Algorithm 1, where sign denotes the sign of the integer. In [BKV19] it is shown
that CSI-FiSh is SUF-CMA secure under the MT-GAIP assumption, when H is modeled
as a quantum random oracle, hence, it is strongly unforgeable in the quantum random
oracle model (QROM) [DFMS19].

Algorithm 1 CSI-FiSh Signature
1: Public parameters: base curve E0, class number N = #Cl(O), security parameters

λ, tS , S, hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS

2: procedure KeyGen(1λ)
3: for i ∈ {1, . . . , S − 1} do
4: ai ←$ ZN

5: Ei ← [ai]E0

6: Set sk := [ai : i ∈ {1, . . . , S − 1}]
7: Set pk := [Ei : i ∈ {1, . . . , S − 1}]
8: return (sk, pk)
9: procedure Sig(sk, m)

10: Parse sk as (a1, . . . , aS−1)
11: a0 ← 0
12: for i ∈ {1, . . . , tS} do
13: bi ← ZN

14: E′
i ← [bi]E0

15: (c1, . . . , ctS) = H(E′
1∥ · · · ∥E′

tS
∥m)

16: for i ∈ {1, . . . , tS} do
17: ri ← bi − sign(ci)a|ci| mod N

18: return σ := (r1, . . . , rtS , c1, . . . , ctS)
19: procedure Ver(pk, m, σ)
20: Parse pk as (E1, . . . , ES−1)
21: Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
22: Define E−i := Et

i for all i ∈ [1, S − 1]
23: for i ∈ {1, . . . , tS} do
24: E′

i ← [ri]Eci

25: (c′
1, . . . , c′

t) = H(E′
1∥ · · · ∥E′

tS
∥m)

26: if (c1, . . . , ctS) == (c′
1, . . . , c′

tS
) then

27: return 1
28: else
29: return 0

3.1.1 Zero-Knowledge Proof for Group Actions
Cozzo and Smart [CS20] showed how to prove knowledge of a secret isogeny generically.
In detail, they showed a zero-knowledge proof for the following relation:

Lj :=

 (E1, E′
1, . . . , Ej , E′

j), s :
j

i=1
E′

i = [s]Ei

 .

32

3.2. IAS Adaptor Signature Scheme

Intuitively, the prover wants to prove in zero-knowledge that it knows a unique witness
s for j simultaneous instances of the GAIP. In [CS20] two variants of such a proof are
given, one when E1 = · · · = Ej = E0, called Special case with soundness error 1/3, and
another one when that condition does not hold, called General case with soundness error
1/2. In our paper we only need the General case for j = 2. Since the proof has soundness
error of 1/2, we need to repeat it tZK = λ times to achieve a security level of λ. Using
a ”slow” hash function F , as in CSI-FiSh, which is 2k times slower than a normal hash
function we can reduce the number of repetitions to tZK = λ − k. For example, when
setting λ = 128 and k = 16, as in the fastest CSI-FiSh parameters, we get tZK = 112. In
the random oracle model the proof can be made non-interactive using a hash function F
with codomain {0, 1}tZK . For brevity, we only present the non-interactive single iteration
(i.e., tZK = 1) variant of the proof for Lj in Algorithm 2.

Algorithm 2 Non-interactive zero-knowledge proof for Lj

1: Public parameters: class number N = #Cl(O), hash function F : {0, 1}∗ → {0, 1}
2: procedure ΠNIZK.P(x, s)
3: Parse x as (E1, E′

1, . . . , Ej , E′
j)

4: b ←$ ZN

5: for i ∈ {1, . . . , j} do
6: Êi ← [b]Ei

7: c = F(E1∥E′
1∥Ê1∥ · · · ∥Ej∥E′

j∥Êj)
8: r ← b − c · s mod N
9: return π := ((Ê1, . . . , Êj), r)

10: procedure ΠNIZK.V(x, π)
11: Parse x as (E1, E′

1, . . . , Ej , E′
j)

12: Parse π as ((Ê1, . . . , Êj), r)
13: c = F(E1∥E′

1∥Ê1∥ · · · ∥Ej∥E′
j∥Êj)

14: if c = 0 then
15: return j

i=1([r]Ei = Êi)
16: else if c = 1 then
17: return j

i=1([r]E′
i = Êi)

3.2 IAS Adaptor Signature Scheme
Despite the fact that CSI-FiSh is simply a signature scheme obtained by applying Fiat-
Shamir to multiple repetitions of Schnorr-type identification scheme from isogenies, one
cannot trivially construct a Schnorr-type AS as described in [AEE+21].

Strawman Approach. Let us consider a single iteration of the identification scheme
(i.e., tS = 1), and a hard relation R1

E0 ⊆ E × Cl(O), for a set of elliptic curves E ,
to be defined as R1

E0 := {(EY , y) | EY = [y]E0}. A naïve approach to construct an
AS from a single-iteration CSI-FiSh, following the Schnorr AS from [AEE+21], is to
compute the randomness inside the pre-signature algorithm as E′ ← [b]EY instead of
doing E′ ← [b]E0 as in the original construction, and leave the rest of the algorithm
identical to the signing algorithm of CSI-FiSh. However, later during the pre-verification,
given the pre-signature σ̂ := (r̂, c), the statement EY and c-th public key Ec, one
cannot verify the correctness of the pre-signature σ̂. More concretely, we have that
r̂ = b − sign(c)a|c| mod N , Ec = [sign(c)a|c|]E0 and EY = [y]E0. Now, using these values
we can compute Ê′ = [r̂]Ec = [b]E0, but then we cannot combine Ê′ with EY to obtain
E′ = [b]EY , which we need for verification. Analogous problem happens if we first

33

3. Post-Quantum Adaptor Signatures

compute the group action Ê′ = [r]EY , and then try to combine it with Ec to obtain the
desired E′. The reason behind this problem is that we have a limited algebraic structure.
More precisely, the group action is defined as ⋆ : Cl(O) × E → E , for class group Cl(O)
and set of elliptic curves E . This implies that we can pair a class group element with an
elliptic curve to map it to a new elliptic curve, however, we do not have any meaningful
operation over the set E that would allow us to purely pair two elliptic curves and map
to a third one.

3.2.1 Our Construction
On a high-level, we have to circumvent the limited algebraic structure of CSI-FiSh,
which prevents us from extracting the randomness. We solve this problem by means
of a zero-knowledge proof showing the validity of the pre-signature construction. This
might remind of the ECDSA- based AS construction by Aumayr et al. [AEE+21], where
a zero-knowledge proof is also used to prove the consistency of the randomness, which
would not be otherwise possible due to the lack of linearity of ECDSA. Besides not being
post-quantum secure, their cryptographic construction (i.e., the underlying signature
scheme and thus the resulting zero-knowledge proof) is, however, fundamentally different
because the issue in CSI-FiSh is a limited algebraic structure as opposed to a lack of
linearity as in ECDSA.

More concretely, to compute the pre-signature for EY , the signer samples a random
b ←$ ZN , computes Ê′ ← [b]E0 and E′ ← [b]EY . Then, the signer uses E′ as input to
the hash function to compute the challenge c, and also includes E′ as part of the pre-
signature. Lastly, to ensure that the same value b is used in computation of both Ê′ and
E′, a zero-knowledge proof π that (E0, Ê′, EY , E′) ∈ L2 is attached to the pre-signature
(see Section 3.1.1 for such a proof). So, the pre-signature looks like σ̂ := (r̂, c, π, E′). The
pre-signature verification of σ̂ then involves extracting Ê′ by computing the group actions
[r̂]Ec, using it to verify the proof π, and finally, checking that the hash of E′ produces the
expected challenge c. The pre-signature adaptation is done by adding the corresponding
witness y to r̂ of the pre-signature to obtain the full valid signature σ := (r, c). In an
opposite manner, the extraction is done by subtracting r of the valid signature from r̂ of
the pre-signature.

Since CSI-FiSh involves multiple iterations (more concretely tS iterations), we extend
the hard relation R1

E0 to RtS
E0

⊆ E tS × Cl(O)tS , to be defined as RtS
E0

:= {(E⃗Y :=
(E1

Y , . . . , EtS
Y), y⃗ := (y1, . . . , ytS)) | Ei

Y = [yi]E0 for all i ∈ [1, tS]}, and apply the above
described method to every iteration with a different Ei

Y .

Although, the described scheme achieves correctness, one cannot prove its security directly.
As we would like to reduce both the unforgeability and witness extractability of the scheme
to the strong unforgeability of CSI-FiSh, inside the reduction we need a way to answer
the pre-signature queries by only relying on the signing oracle of CSI-FiSh, and without
access to the secret key sk or the witness (y1, . . . , ytS). In order to overcome this issue, we
use a modified hard relation. Let R∗

E0 consist of pairs IY := (E⃗Y , πY), where E⃗Y ∈ L
R

tS
E0

34

3.2. IAS Adaptor Signature Scheme

Algorithm 3 Adaptor Signature ΞR∗
E0

,ΣCSI-FiSh(IAS)

1: Public parameters: base curve E0, class number N = #Cl(O), security parameters
λ, tS , S, hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS

2: procedure PreSig(sk, m, IY)
3: Parse sk as (a1, . . . , aS−1)
4: Parse IY as (E⃗Y , πY)
5: Parse E⃗Y as (E1

Y , . . . , EtS
Y)

6: a0 ← 0
7: for i ∈ {1, . . . , tS} do
8: bi ← ZN

9: Ê′
i ← [bi]E0

10: E′
i ← [bi]Ei

Y

11: Set xi := (E0, Ê′
i, Ei

Y , E′
i)

12: πi ← ΠNIZK.P(xi, bi)
13: (c1, . . . , ctS) = H(E′

1∥ · · · ∥E′
tS

∥m)
14: for i ∈ {1, . . . , tS} do
15: r̂i ← bi − sign(ci)a|ci| mod N

16: return σ̂ := (r̂1, . . . , r̂tS , c1, . . . ,
17: ctS , π1, . . . , πtS , E′

1, . . . , E′
tS

)
18: procedure PreVer(pk, m, IY , σ̂)
19: Parse pk as (E1, . . . , ES−1)
20: Parse IY as (E⃗Y , πY)
21: Parse E⃗Y as (E1

Y , . . . , EtS
Y)

22: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
23: π1, . . . , πtS , E′

1, . . . , E′
tS

)
24: Set E−i = Et

i for all i ∈ [1, S − 1]
25: for i ∈ {1, . . . , tS} do
26: Ê′

i ← [r̂i]Eci

27: Set xi := (E0, Ê′
i, Ei

Y , E′
i)

28: if ΠNIZK.V(xi, πi) ̸= 1 then
29: return 0
30: if (c1, . . . , ctS) == H(E′

1∥ · · · ∥E′
tS

∥m)
then

31: return 1
32: else
33: return 0
34: procedure Ext(σ, σ̂, IY)
35: Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
36: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
37: π1, . . . , πtS , E′

1, . . . , E′
tS

)
38: for i ∈ {1, . . . , tS} do
39: y′

i ← ri − r̂i

40: Set y⃗′ := [y′
i : i ∈ {1, . . . , tS}]

41: if (IY , y⃗′) ̸∈ R∗
E0 then

42: return ⊥
43: return y⃗′

44: procedure Adapt(σ̂, y⃗)
45: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
46: π1, . . . , πtS , E′

1, . . . , E′
tS

)
47: Parse y⃗ as (y1, . . . , ytS)
48: for i ∈ {1, . . . , tS} do
49: ri ← r̂i + yi mod N

50: return σ := (r1, . . . , rtS , c1, . . . , ctS)

is as previously defined, and πY is a non-interactive zero-knowledge proof that E⃗Y ∈ L
R

tS
E0

.

Formally, we have that R∗
E0 := {((E⃗Y , πY), y⃗) | E⃗Y ∈ L

R
tS
E0

∧ ΠNIZK.V(E⃗Y , πY) = 1}.

Due to the soundness of the proof system, if RtS
E0

is a hard relation, then so is R∗
E0 . Since

we are in the random oracle model, the reduction then can use the random oracle query
table to extract a witness from the proof πY , and answer the pre-signature oracle queries
using this witness.

The resulting AS scheme, which we denote as ΞR∗
E0

,ΣCSI-FiSh and call as IAS, is depicted
in Algorithm 3. The security of our construction is captured by the following theorem,
which we formally prove in Section 3.3.

35

3. Post-Quantum Adaptor Signatures

Theorem 1. Let ΠNIZK be a NIZKPoK with an online extractor, the CSI-FiSh signature
scheme ΣCSI-FiSh be SUF-CMA secure and R∗

E0 be a hard relation, then the adaptor
signature scheme ΞR∗

E0
,ΣCSI-FiSh, as defined in Algorithm 3, is secure in QROM.

Optimization. Our construction, as defined in Algorithm 3, makes sure that all tS

parts of the signature are adapted (i.e., each ri, for i ∈ {1, . . . , tS}, is adapted). This
is due to the fact that IAS is based on CSI-FiSh, which in turn is constructed from
multiple iterations of a Schnorr-type identification scheme as described in Section 3.1.
However, this also points to the fact that CSI-FiSh is just a much less efficient version
of Schnorr. Therefore, one can have a more efficient variant of IAS by only adapting
one of the iterations (e.g., the first iteration). In this variant, during the pre-signature
algorithm we compute π1 and E′

1 using E1
Y as defined in Algorithm 3, and attach them to

the pre-signature σ̂ as before. But, for the rest of the iterations (i.e., for i ∈ {2, . . . , tS}),
we do not compute any zero-knowledge proof, and compute E′

i using E0 as done in the
signing algorithm of CSI-FiSh (see Algorithm 1). This means that the pre-signature σ̂
is only incomplete in the first component (i.e., only r̂1 needs to be adapted to obtain
a valid signature). Hence, the extraction and adaptation only depend on the first
component of the pre-signature/signature pair. Using this approach we revert from the
hard relation RtS

E0
to R1

E0 , and define a new modified relation R†
E0

, which consists of pairs
IY := (EY , πY), such that EY ∈ LR1

E0
and πY is a zero-knowledge proof that EY ∈ LR1

E0
.

More formally, we have that R†
E0

:= {((EY , πY), y) | EY ∈ LR1
E0

∧ ΠNIZK.V(EY , πY) = 1}.

Due to the soundness of the proof system, if R1
E0 is a hard relation, then so is R†

E0
. We

call this optimized variant O-IAS, and capture its security with the following theorem,
which we formally proof in Section 3.3.

Theorem 2. Let ΠNIZK be a NIZKPoK with an online extractor, the CSI-FiSh signature
scheme ΣCSI-FiSh be SUF-CMA secure and R†

E0
br a hard relation, the adaptor signature

scheme Ξ
R†

E0
,ΣCSI-FiSh

, is secure in QROM.

Remark 1. Although in this work we specifically focused on CSI-FiSh signature scheme,
we note that our techniques to construct an adpaptor signature scheme can also be
applied to other isogeny-based signatures that have similar algebraic limitations, such as
the recently proposed SQISign [DKL+20, DLRW23] signature scheme.
Remark 2. We also remark that our constructions cannot be turned to a two-party adaptor
signature with aggregatable keys (as defined in Definition 17) using the transformation
of Erwig et al. [EFH+21] while there exists no known public key aggregation technique
in isogeny-based cryptography.

3.3 Security Proof
In this section we formally prove the security of IAS. We recall the theorem stated in
Section 3.2, which we prove here.

36

3.3. Security Proof

Theorem 1. Let ΠNIZK be a NIZKPoK with an online extractor, the CSI-FiSh signature
scheme ΣCSI-FiSh be SUF-CMA secure and R∗

E0 be a hard relation, then the adaptor
signature scheme ΞR∗

E0
,ΣCSI-FiSh, as defined in Algorithm 3, is secure in QROM.

Proof. We begin by proving that the adaptor signature scheme ΞR∗
E0

,ΣCSI-FiSh (IAS) satisfies
pre-signature adaptability. In fact, we prove a slightly stronger statement, which says
that any valid pre-signature adapts to a valid signature with probability 1.

Lemma 1 (Pre-signature Adaptability). The adaptor signature scheme ΞR∗
E0

,ΣCSI-FiSh

satisfies pre-signature adaptability.

Proof. Let us fix some arbitrary (IY , y⃗) ∈ R∗
E0 , m ∈ {0, 1}∗, pk := (E1, . . . , ES−1) ∈ ES−1

and σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS , π1, . . . , πtS , E′
1, . . . , E′

tS
) ∈ ZtS

N ×{−S +1, . . . , S −1}tS ×
({0, 1}∗)tS × E tS . Let (c1, . . . , ctS) = H(E′

1∥ · · · ∥E′
tS

∥m) and for all i ∈ {1, . . . , tS},

Ê′
i ← [r̂i]Eci .

Assuming that PreVer(pk, m, IY , σ̂) = 1, we know that there exists (b1, . . . , btS) ∈ ZtS
N s.t.

for all i ∈ {1, . . . , tS}, Ê′
i := [bi]E0 and E′

i := [bi]Ei
Y for IY := (E⃗Y := (E1

Y , . . . , EtS
Y), πY).

Moreover, by the definition of Adapt, we know that Adapt(σ̂, y⃗ := (y1, . . . , ytS)) =
(r1, . . . , rtS , c1, . . . , ctS) for ri := r̂i + yi for all i ∈ {1, . . . , tS}. Hence, we have

H([r1]Ec1∥ · · · ∥[rtS]EctS
∥m) = H([y1][r̂1]Ec1∥ · · · ∥[ytS][r̂tS]EctS

∥m)
= H([y1]Ê′

1∥ · · · ∥[ytS]Ê′
tS

∥m)
= H(E′

1∥ · · · ∥E′
tS

∥m)
= (c1, . . . , ctS).

Lemma 2 (Pre-signature Correctness). The adaptor signature scheme ΞR∗
E0

,ΣCSI-FiSh

satisfies pre-signature correctness.

Proof. Let us fix some arbitrary (sk := (a1, . . . , atS), y⃗) ∈ Z2·tS
N and m ∈ {0, 1}∗, com-

pute Ei ← [ai]E0 and Ei
Y ← [yi]E0 for all i ∈ {1, . . . , tS}, set pk := (E1, . . . , EtS),

compute πY ← ΠNIZK.P((E0, E1
Y , . . . , E0, EtS

Y), y) and set IY := (E⃗Y , πY). For σ̂ :=
(r̂1, . . . , r̂tS , c1, . . . , ctS , π1, . . . , πtS , E′

1, . . . , E′
tS

) ← PreSig(sk, m, IY), and for all i ∈
{1, . . . , tS}, it holds that Ê′

i = [bi]E0, E′
i = [bi]Ei

Y , (c1, . . . , ctS) = H(E′
1∥ · · · ∥E′

tS
∥m)

and r̂i = bi − sign(ci)a|ci| mod N . Set for all i ∈ {1, . . . , tS},

Ê′
i := [r̂i]Eci = [bi]E0.

By correctness of ΠNIZK we know that ΠNIZK.V((E0, Êi, Ei
Y , E′

i), πi) = 1, and hence, we
have that PreVer(pk, m, IY , σ̂) = 1. By Lemma 1, this implies that Ver(pk, m, σ) = 1 for

37

3. Post-Quantum Adaptor Signatures

σ = (r1, . . . , rtS , c1, . . . , ctS) := Adapt(σ̂, y⃗ := (y1, . . . , ytS)). From definition of Adapt, we
know that ri = r̂i + yi for all i ∈ {1, . . . , tS}, and hence,

Ext(σ, σ̂, IY) = ri − r̂i = (r̂i + yi) − r̂i = yi for all i ∈ {1, . . . , tS}.

Lemma 3 (aEUF-CMA Security). Assuming that the CSI-FiSh signature scheme ΣCSI-FiSh
is SUF-CMA secure and R∗

E0 is a hard relation, the adaptor signature scheme ΞR∗
E0

,ΣCSI-FiSh ,
as defined in Algorithm 3, is aEUF-CMA secure.

Proof. We prove the adaptor unforgeability by reduction to strong unforgeability of
the CSI-FiSh signatures scheme, which was proved in [BKV19] to hold in quantum
random oracle model (QROM) [DFMS19]. We consider an adversary A who plays the
aSigForge game, and then we build a simulator S (i.e., a reduction) that plays the strong
unforgeability experiment for the CSI-FiSh signature scheme and uses A’s forgery in
aSigForge to win its own experiment. S has access to the signing oracle SigCSI-FiSh and the
random oracle HCSI-FiSh, which it uses to simulate oracle queries for A, namely random
oracle (H), signing (OS) and pre-signing (OpS) queries.

The main challenges in the oracle simulations arise when simulating OpS queries, since
S can only get full signatures from its own signing oracle, and hence, needs a way to
transform the full signatures into pre-signatures for A. In order to do so, the reduction
faces two challenges: 1) S needs to learn the witness y⃗ for the statement E⃗Y for which
the pre-signature is supposed to be generated, and 2) S needs to simulate the zero-
knowledge proofs πi, for {1, . . . , tS}, which proves the consistency of the randomnesses
in the pre-signature.

More precisely, upon receiving a OpS query from A on input a message m and an instance
IY := (E⃗Y , πY), S queries its signing oracle to obtain a full signature on m. Then, S
needs to learn a witness y⃗, s.t. Ei

Y = [yi]E0 for i ∈ {1, . . . , tS}, in order to transform the
full signature into a pre-signature for A. We make use of the extractability property of
the zero-knowledge proof πY , in order to extract y⃗, and consequently transform a full
signature into a valid pre-signature. Additionally, since a valid pre-signature contains
ts zero-knowledge proofs for L2 (see Section 3.1.1), the simulator has to simulate these
proof without knowledge of the corresponding witness. In order to achieve this, we make
use of the zero-knowledge property, which allows for simulation of a proof for a statement
without knowing the corresponding witness.

Game G0G0G0: This game corresponds to the original aSigForge game, where the adversary
A has to come up with a valid forgery for a message m of its choice, while having access
to oracles H, OpS and OS. Since we are in the random oracle model, we explicitly write
the random oracle code H. It trivially follows that

Pr[G0G0G0 = 1] = Pr[aWitExtA,ΞR∗
E0

,ΣCSI-FiSh
(λ) = 1].

38

3.3. Security Proof

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : m ← AOS(·),OpS(·,·)(pk)
5 : (IY , y⃗) ← GenR(1λ)
6 : σ̂ ← PreSig(sk, m, IY)
7 : σ∗ ← A(σ̂, IY)
8 : b := Ver(pk, m, σ∗)
9 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : σ̂ ← PreSig(sk, m, IY)
2 : Q := Q ∪ {m}
3 : return σ̂

Figure 3.1: The formal definition of game G0G0G0.

Game G1G1G1: This game works exactly as G0G0G0 with the exception that upon the adversary
outputting a forgery σ∗, the game checks if completing the pre-signature σ̂ using the
witness y⃗ results in σ∗. In that case, the game aborts.

Claim 1. Let Bad1 be the event that G1G1G1 aborts, then it holds that Pr[Bad1] ≤ negl(λ).

Proof. We prove this claim using a reduction to the hardness of the relation R∗
E0 . More

precisely, we construct a simulator S that breaks the hardness of the relation assuming it
has access to an adversary A that causes G1G1G1 to abort with non-negligible probability. S
gets a challenge I∗

Y , upon which it generates a key pair (sk, pk) ← KeyGen(1λ) in order to
simulate A’s queries to the oracles H, OpS and OS. The simulation of the oracles works
as described in G1G1G1.

Eventually, upon receiving the challenge message m from A, S computes a pre-signature
σ̂ ← PreSig(sk, m, I∗

Y) and returns the pair (σ̂, I∗
Y) to the adversary which outputs a

forgery σ. Assuming that Bad1 happened (i.e., Adapt(σ̂, y⃗) = σ), we know that due to the
correctness property, the simulator can extract y⃗∗ by executing Ext(σ, σ̂, I∗

Y) to obtain a
valid statement/witness pair for the relation R∗

E0 (i.e., (I∗
Y , y⃗∗) ∈ R∗

E0).

We note that the view of A is indistinguishable to his view in G1G1G1, since the challenge I∗
Y

is an instance of the hard relation R∗
E0 , and therefore, equally distributed to the public

output of GenR. Hence, the probability of S breaking the hardness of the relation is equal
to the probability of the event Bad1 happening. By our assumption, this is non-negligible,
which is a contradiction to the hardness of R∗

E0 .

39

3. Post-Quantum Adaptor Signatures

G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)
5 : (IY , y⃗) ← GenR(1λ)
6 : σ̂ ← PreSig(sk, m∗, IY)
7 : σ∗ ← A(σ̂, IY)
8 : if Adapt(σ̂, y⃗) = σ∗

9 : abort
10 : b := Ver(pk, m∗, σ∗)
11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : σ̂ ← Sig(sk, m, IY)
2 : Q := Q ∪ {m}
3 : return σ̂

Figure 3.2: The formal definition of game G1G1G1.

Since games G1G1G1 and G0G0G0 are equivalent except when event Bad1 happens, it holds that

Pr[G1G1G1 = 1] ≤ Pr[G0G0G0 = 1] + negl(λ).

Game G2G2G2: The only changes between G1G1G1 and G2G2G2 are for the OpS oracle. More precisely,
during the OpS queries, this game extracts a witness y⃗ by executing the extractor
algorithm K on input the statement E⃗Y , the proof πY and the list of random oracle
queries H. If for the extracted witness y⃗ it does not hold that ((E⃗Y , πY), y⃗) ∈ R∗

E0 , then
the game aborts.

Claim 2. Let Bad2 be the event that G2G2G2 aborts during an OpS execution, then it holds
that Pr[Bad2] ≤ negl(λ).

Proof. According to the online extractor property of ΠNIZK, for a witness y⃗ extracted from
a proof πY of statement E⃗Y such that ΠNIZK.V(E⃗Y , πY) = 1, it holds that ((E⃗Y , πY), y⃗) ∈
R∗

E0 , except with negligible probability in the security parameter λ.

Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2 happens, it holds that

Pr[G2G2G2 = 1] ≤ Pr[G1G1G1 = 1] + negl(λ).

40

3.3. Security Proof

G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)
5 : (IY , y⃗) ← GenR(1λ)
6 : σ̂ ← PreSig(sk, m∗, IY)
7 : σ∗ ← A(σ̂, IY)
8 : if Adapt(σ̂, y⃗) = σ∗

9 : abort
10 : b := Ver(pk, m∗, σ∗)
11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ̂ ← PreSig(sk, m, IY)
6 : Q := Q ∪ {m}
7 : return σ̂

Figure 3.3: The formal definition of game G2G2G2.

Game G3G3G3: This game extends the changes of the previous game to the OpS oracle by first
creating a valid full signature σ by executing the Sig algorithm, and then converting σ into
a valid pre-signature using the extracted witness y⃗. Furthermore, the game computes the
randomnesses (Ê′

1, . . . , Ê′
tS

) and (E′
1, . . . , E′

tS
) from σ, and simulates the zero-knowledge

proofs (πS
1 , . . . , πS

tS
) using the Ê′

i and E′
i values.

Claim 3. If NIZK proof system ΠNIZK is computationally zero-knowledge, then Pr[G3G3G3 =
1] ≤ Pr[G2G2G2 = 1] + negl(λ).

Proof. First, we observe that except for simulating the zero-knowledge proofs πS
i , the rest

of the changes between the games G2G2G2 and G3G3G3 are only syntactical as it involves rewriting
the full signature as a pre-signature. Hence, in order to show indistinguishability between
the two games we provide a reduction to the zero-knowledge property of ΠNIZK. To this
end, we construct a simulator S that breaks the zero-knowledge property by using the
adaptor unforgeability adversary A. S generates a key pair (pk, sk) ← KeyGen(1λ) in
order to simulate A’s queries to the oracles H, OpS and OS. When answering OpS queries,
S submits to the zero-knowledge challenger of ΠNIZK the statement (E0, Ê′

i, Ei
Y , E′

i), and
receives back a proof πS

i , which it returns to A as the output of the OpS query.

If the zero-knowledge challenger of ΠNIZK used the honest prover to generate the proof,
then the view of A is equal to that of G2G2G2, and if it used the simulator, then the view of

41

3. Post-Quantum Adaptor Signatures

G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)
5 : (IY , y⃗) ← GenR(1λ)
6 : σ̂ ← PreSig(sk, m∗, IY)
7 : σ∗ ← A(σ̂, IY)
8 : if Adapt(σ̂, y⃗) = σ∗

9 : abort
10 : b := Ver(pk, m∗, σ∗)
11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ ← Sig(sk, m)
6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
7 : Parse pk as (E1, . . . , ES−1)

8 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
9 : Parse y⃗ as (y1, . . . , ytS)

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi

12 : Ê′
i ← [ri]Eci

13 : E′
i ← [yi]Ê′

i

14 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
15 : Q := Q ∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

Figure 3.4: The formal definition of game G3G3G3.

A is equal to that of G3G3G3. Therefore, if A can distinguish between the two games with
non-negligible advantage, then S can break the zero-knowledge property of ΠNIZK. By the
zero-knowledge property of ΠNIZK this happens only with negligible probability, hence,
the claim follows.

Game G4G4G4: In this game, upon receiving the challenge message m∗ from A, the game
creates a full signature σ by executing the Sig algorithm, and transforming the resulting
signature into a valid pre-signature in the same way as was done in the previous game
during the OpS execution. Hence, the same indistinguishability argument as in the
previous game holds in this game as well, and it holds that

Pr[G4G4G4 = 1] ≤ Pr[G3G3G3 = 1] + negl(λ).

42

3.3. Security Proof

G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)
5 : (IY , y⃗) ← GenR(1λ)
6 : σ ← Sig(sk, m∗, IY)
7 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
8 : Parse pk as (E1, . . . , ES−1)

9 : Parse IY as (E⃗Y , πY)

10 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
11 : Parse y⃗ as (y1, . . . , ytS)
12 : for i ∈ {1, . . . , tS} do
13 : r̂i ← ri − yi

14 : Ê′
i ← [ri]Eci

15 : E′
i ← [yi]Ê′

i

16 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
17 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

18 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)
19 : σ∗ ← A(σ̂, IY)
20 : if Adapt(σ̂, y⃗) = σ∗

21 : abort
22 : b := Ver(pk, m∗, σ∗)
23 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ ← Sig(sk, m)
6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
7 : Parse pk as (E1, . . . , ES−1)

8 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
9 : Parse y⃗ as (y1, . . . , ytS)

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi

12 : Ê′
i ← [ri]Eci

13 : E′
i ← [yi]Ê′

i

14 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
15 : Q := Q ∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

Figure 3.5: The formal definition of game G4G4G4.

Having shown that the transition from the original aSigForge game (Game G0G0G0) to Game
G4G4G4 is indistinguishable, it remains to show that there exists a simulator (i.e., a reduction)
that perfectly simulates G4G4G4, and uses A to win the StrongSigForge game. In the following
we describe concisely the simulator code.

43

3. Post-Quantum Adaptor Signatures

SSigCSI-FiSh,HCSI-FiSh(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)
5 : (IY , y⃗) ← GenR(1λ)
6 : σ ← SigCSI-FiSh(m∗)
7 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
8 : Parse pk as (E1, . . . , ES−1)

9 : Parse IY as (E⃗Y , πY)

10 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
11 : Parse y⃗ as (y1, . . . , ytS)
12 : for i ∈ {1, . . . , tS} do
13 : r̂i ← ri − yi

14 : Ê′
i ← [ri]Eci

15 : E′
i ← [yi]Ê′

i

16 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
17 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

18 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)
19 : σ∗ ← A(σ̂, IY)
20 : return (m∗, σ∗)

OS(m)

1 : σ ← SigCSI-FiSh(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ← HCSI-FiSh(x)
3 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ ← SigCSI-FiSh(m)
6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
7 : Parse pk as (E1, . . . , ES−1)

8 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
9 : Parse y⃗ as (y1, . . . , ytS)

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi

12 : Ê′
i ← [ri]Eci

13 : E′
i ← [yi]Ê′

i

14 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
15 : Q := Q ∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

Figure 3.6: The formal definition of the simulator (i.e., reduction).

Simulation of oracle queries. Next, we show how the simulation of the oracle queries
are handled.

Signing queries: Upon A querying the oracle OS on input m, S forwards m to its
oracle SigCSI-FiSh and returns its response to A.

Random oracle queries: Upon A querying the oracle H on input x, if H [x] = ⊥, then
S queries HCSI-FiSh(x), otherwise the simulator returns H[x].

44

3.3. Security Proof

Pre-signing queries:

1. Upon A querying the oracle OpS on input (m, IY), the simulator extracts y⃗
using the extractability of ΠNIZK, forwards m to the oracle SigCSI-FiSh, and
parses the signature that is generated as σ := (r1, . . . , rtS , c1, . . . , ctS).

2. S generates a pre-signature from (r1, . . . , rtS , c1, . . . , ctS) by computing r̂i ←
ri − yi, for all i ∈ {1, . . . , tS}.

3. Finally, S simulates the zero-knowledge proofs πS
i , for i ∈ {1, . . . , tS}, proving

that Ê′
i and E′

i have the same group action. The simulator outputs σ̂ :=
(r̂1, . . . , r̂tS , c1, . . . , ctS , πS

1 , . . . , πS
tS

, E′
1, . . . , E′

tS
).

Challenge phase:

1. Upon A outputting the message m∗ as the challenge message, S generates
(IY , y⃗) ← GenR(1λ), forwards m∗ to the oracle SigCSI-FiSh, and parses the
signature that is generated as σ := (r1, . . . , rtS , c1, . . . , ctS).

2. S generates the required pre-signature σ̂ in the same way as during OpS
queries.

3. Upon A outputting a forgery σ∗, the simulator outputs (m∗, σ∗) as its own
forgery.

We emphasize that the main difference between the simulation and G4G4G4 are syntactical.
More concretely, instead of generating the secret/public keys and running the algorithms
Sig and H, the simulator S uses its oracles SigCSI-FiSh and HCSI-FiSh. It remains to show
that the forgery output by A can be used by the simulator (i.e., reduction) to win the
StrongSigForge game.

Claim 4. (m∗, σ∗) constitutes a valid forgery in the StrongSigForge game.

Proof. In order to prove this claim, we have to show that the tuple (m∗, σ∗) has not been
output by the oracle SigCSI-FiSh before. We note that the adversary A has not previously
made a query on the challenge message m∗ to either OpS or OS. Hence, SigCSI-FiSh is
only queried on m∗ during the challenge phase. As shown in game G1G1G1, the adversary
outputs a forgery σ∗ which is equal to the signature σ output by SigCSI-FiSh during the
challenge phase only with negligible probability. Therefore, SigCSI-FiSh has never output
σ∗ on query m∗ before, and consequently (m∗, σ∗) constitutes a valid forgery for the
StrongSigForge game.

From the games G0G0G0 −G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1]+negl(λ). Since S provides
a perfect simulation of game G4G4G4, we obtain

AdvaSigForge
A = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4] + negl(λ)
≤ AdvStrongSigForge

S + negl(λ).

45

3. Post-Quantum Adaptor Signatures

Since CSI-FiSh is secure in QROM with HCSI-FiSh modeled as a quantum random oracle,
this implies that IAS is aEUF-CMA secure in QROM. This concludes the proof of Lemma 3.

Lemma 4 (Witness Extractability). Assuming that the CSI-FiSh signature scheme
ΣCSI-FiSh is SUF-CMA secure and R∗

E0 is a hard relation, the adaptor signature scheme
ΞR∗

E0
,ΣCSI-FiSh, as defined in Algorithm 3, is witness extractable.

Proof. First, we start with the main intuition behind the witness extractability proof.
In overall this proof is very similar to the proof of Lemma 3. Our goal is to reduce
the witness extractability of ΞR∗

E0
,ΣCSI-FiSh to the strong unforgeability of the CSI-FiSh

signature scheme. More concretely, assuming that there exists a PPT adversary A
who wins the aWitExt experiment, we design another PPT adversary S that wins the
StrongSigForge experiment.

Similar to the unforgeability proof, the main challenge arises during the simulation of
pre-sign queries. Hence, the simulation is done exactly as in the proof of Lemma 3.
However, unlike in the aSigForge experiment, in aWitExt, A outputs the statement IY

for the relation R∗
E0 alongside the challenge message m∗. This means that the game

does not choose the pair (IY , y⃗). Therefore, S does not learn the witness y⃗, and hence,
cannot transform a valid full signature to a pre-signature by computing r̂i ← ri − yi, for
all i ∈ {1, . . . , tS}. Though, it is possible to extract y⃗ from the zero-knowledge proof
embedded in IY . After extracting y⃗, the same approach used in Lemma 3 to simulate
the pre-sign queries can be taken here as well.

Next, we continue with the sequence of games needed for the proof.

Game G0G0G0: This game corresponds to the original aWitExt game, where the adversary A
has to come up with a valid signature σ for a message m of its choice, given a pre-signature
σ̂ and a statement/witness pair (IY := (E⃗Y , πY), y⃗), while having access to oracles H,
OpS and OS, such that (IY , Ext(σ, σ̂, IY)) ̸∈ R∗

E0 . Since we are in the random oracle
model, we explicitly write the random oracle code H. It trivially follows that

Pr[G0G0G0 = 1] = Pr[aWitExtA,ΞR∗
E0

,ΣCSI-FiSh
(λ) = 1].

Game G1G1G1: This game only applies changes to the OpS oracle compared to the previous
game. More precisely, during the OpS queries, this game extracts a witness y⃗ by executing
the extractor algorithm K on inputs the statement E⃗Y , the proof πY and the list of
random oracle queries H. The game aborts, if for the extracted witness y⃗ it does not
hold that (IY := (E⃗Y , πY), y⃗) ∈ R∗

E0 .

Claim 5. Let Bad1 be the event that G1G1G1 aborts during an execution of OpS, then it holds
that Pr[Bad1] ≤ negl(λ).

46

3.3. Security Proof

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : (m, IY) ← AOS(·),OpS(·,·)(pk)
5 : σ̂ ← PreSig(sk, m, IY)

6 : σ ← AOS(·),OpS(·,·)(σ̂)
7 : y⃗′ := Ext(σ, σ̂, IY)
8 : b1 := Ver(pk, m, σ)
9 : b2 := m ̸∈ Q

10 : b3 := (IY , y⃗′) ̸∈ R∗
E0

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : σ̂ ← PreSig(sk, m, IY)
2 : Q := Q ∪ {m}
3 : return σ̂

Figure 3.7: The formal definition of game G0G0G0.

Proof. According to the online extractor property of ΠNIZK, for a witness y⃗ extracted from
a proof πY for statement E⃗Y such that ΠNIZK.V(E⃗Y , πY) = 1, it holds that ((E⃗Y , πY), y⃗) ∈
R∗

E0 , except with negligible probability.

Since games G1G1G1 and G0G0G0 are equivalent except when the event Bad1 happens, it holds that

Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + negl(λ).

Game G2G2G2: This game extends the changes to the OpS oracle from the previous game.
In the OpS execution, this game first creates a valid full signature σ by executing
the Sig algorithm, and converts σ into a pre-signature using the extracted witness y⃗.
Moreover, the game computes the randomnesses (Ê′

1, . . . , Ê′
tS

) and (E′
1, . . . , E′

tS
) from σ,

and simulates the zero-knowledge proofs (πS
1 , . . . , πS

tS
) using the Ê′

i and E′
i values.

As shown in Claim 3, we have that due to the zero-knowledge property of ΠNIZK, the
simulator can generate a proof πS

i that is computationally indistinguishable from an
honest proof πi ← ΠNIZK.P((E0, Ê′

i, EY , E′
i), bi). Hence, this game is indistinguishable

from the previous game, and it holds that

Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + negl(λ).

47

3. Post-Quantum Adaptor Signatures

G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : (m∗, IY) ← AOS(·),OpS(·,·)(pk)
5 : σ̂ ← PreSig(sk, m∗, IY)

6 : σ∗ ← AOS(·),OpS(·,·)(σ̂)
7 : y⃗′ := Ext(σ∗, σ̂, IY)
8 : b1 := Ver(pk, m∗, σ∗)
9 : b2 := m∗ ̸∈ Q

10 : b3 := ((IY , y⃗′) ̸∈ R∗
E0

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ̂ ← PreSig(sk, m, IY)
6 : Q := Q ∪ {m}
7 : return σ̂

Figure 3.8: The formal definition of game G1G1G1.

Game G3G3G3: In this game we apply the exact same changes made in the game G1G1G1 for OpS
oracle to the challenge phase of the game. During the challenge phase, this game extracts
a witness y⃗ by executing the extractor algorithm K on inputs the statement E⃗Y , the
proof πY and the list of random oracle queries H. If for the extracted witness y it does
not hold that ((E⃗Y , πY), y⃗) ∈ R∗

E0 , then the game aborts.

Claim 6. Let Bad2 be the event that G3G3G3 aborts during the challenge phase, then it holds
that Pr[Bad2] ≤ negl(λ).

Proof. This proof is analogous to the proof of G1G1G1 in the proof of Lemma 4.

Since games G2G2G2 and G3G3G3 are identical except if event Bad2 occurs, it holds that

Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1] + negl(λ).

Game G4G4G4: In this game we apply the exact same changes made in the game G2G2G2 for
OpS oracle to the challenge phase of the game. In the challenge phase, this game first
creates a valid full signature σ by executing the Sig algorithm, and converts σ into a pre-
signature using the extracted witness y⃗. Moreover, the game computes the randomness
and zero-knowledge proofs as described in the game G2G2G2, and hence, the same arguments

48

3.3. Security Proof

G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : (m∗, IY) ← AOS(·),OpS(·,·)(pk)
5 : σ̂ ← PreSig(sk, m∗, IY)

6 : σ∗ ← AOS(·),OpS(·,·)(σ̂)
7 : y⃗′ := Ext(σ∗, σ̂, IY)
8 : b1 := Ver(pk, m∗, σ∗)
9 : b2 := m∗ ̸∈ Q

10 : b3 := ((IY , y⃗′) ̸∈ R∗
E0

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ ← Sig(sk, m)
6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
7 : Parse pk as (E1, . . . , ES−1)

8 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
9 : Parse y⃗ as (y1, . . . , ytS)

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi

12 : Ê′
i ← [ri]Eci

13 : E′
i ← [yi]Ê′

i

14 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
15 : Q := Q ∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

Figure 3.9: The formal definition of game G2G2G2.

also apply here. Therefore, this game is indistinguishable from the previous game, and it
holds that

Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + negl(λ).

Having shown that the transition from the original aWitExt game (Game G0G0G0) to Game
G4G4G4 is indistinguishable, it remains to show that there exists a simulator (i.e., reduction)
that perfectly simulates G4G4G4, and uses A to win the StrongSigForge game. In the following
we describe concisely the simulator code.

Simulation of oracle queries. Next, we show how the simulation of the oracle queries
are handled.

49

3. Post-Quantum Adaptor Signatures

G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : (m∗, IY) ← AOS(·),OpS(·,·)(pk)

5 : Parse IY as (E⃗Y , πY)

6 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

7 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

8 : abort
9 : σ̂ ← PreSig(sk, m, IY)

10 : σ ← AOS(·),OpS(·,·)(σ̂)
11 : y⃗′ := Ext(σ∗, σ̂, IY)
12 : b1 := Ver(pk, m∗, σ∗)
13 : b2 := m∗ ̸∈ Q
14 : b3 := ((EY , πY), y⃗′) ̸∈ R∗

E0

15 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ ← Sig(sk, m)
6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
7 : Parse pk as (E1, . . . , ES−1)

8 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
9 : Parse y⃗ as (y1, . . . , ytS)

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi

12 : Ê′
i ← [ri]Eci

13 : E′
i ← [yi]Ê′

i

14 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i), 1)
15 : Q := Q ∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

Figure 3.10: The formal definition of game G3G3G3.

Signing queries: Upon A querying the oracle OS on input m, S forwards m to its
oracle SigCSI-FiSh and returns its response to A.

Random oracle queries: Upon A querying the oracle HCSI-FiSh on input x, if H [x] = ⊥,
then S queries HCSI-FiSh(x), otherwise the simulator returns H[x].

Pre-signing queries:

1. Upon A querying the oracle OpS on input (m, IY), the simulator extracts y⃗
using the extractability of ΠNIZK, forwards m to oracle SigCSI-FiSh and parses
the signature that is generated as σ := (r1, . . . , rtS , c1, . . . , ctS).

2. S generates a pre-signature from (r1, . . . , rtS , c1, . . . , ctS) by computing r̂i ←
ri − yi, for all i ∈ {1, . . . , tS}.

50

3.3. Security Proof

G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : (m∗, IY) ← AOS(·),OpS(·,·)(pk)

5 : Parse IY as (E⃗Y , πY)

6 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

7 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

8 : abort
9 : σ ← Sig(sk, m)

10 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
11 : Parse pk as (E1, . . . , ES−1)

12 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
13 : Parse y⃗ as (y1, . . . , ytS)
14 : for i ∈ {1, . . . , tS} do
15 : r̂i ← ri − yi

16 : Ê′
i ← [ri]Eci

17 : E′
i ← [yi]Ê′

i

18 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
19 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

20 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

21 : σ∗ ← AOS(·),OpS(·,·)(σ̂)
22 : y⃗′ := Ext(σ∗, σ̂, IY)
23 : b1 := Ver(pk, m∗, σ∗)
24 : b2 := m∗ ̸∈ Q
25 : b3 := ((EY , πY), y⃗′) ̸∈ R∗

E0

26 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x] ←$ CtS

4 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ ← Sig(sk, m)
6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
7 : Parse pk as (E1, . . . , ES−1)

8 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
9 : Parse y⃗ as (y1, . . . , ytS)

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi

12 : Ê′
i ← [ri]Eci

13 : E′
i ← [yi]Ê′

i

14 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
15 : Q := Q ∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

Figure 3.11: The formal definition of game G4G4G4.

3. Finally, S simulates the zero-knowledge proofs πS
i , for i ∈ {1, . . . , tS}, proving

that Ê′
i and E′

i have the same group action. The simulator outputs σ̂ :=
(r̂1, . . . , r̂tS , c1, . . . , ctS , πS

1 , . . . , πS
tS

, E′
1, . . . , E′

tS
).

51

3. Post-Quantum Adaptor Signatures

SSigCSI-FiSh,HCSI-FiSh(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← KeyGen(1λ)

4 : (m∗, IY) ← AOS(·),OpS(·,·)(pk)

5 : Parse IY as (E⃗Y , πY)

6 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

7 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

8 : abort
9 : σ ← SigCSI-FiSh(m∗)

10 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
11 : Parse pk as (E1, . . . , ES−1)

12 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
13 : Parse y⃗ as (y1, . . . , ytS)
14 : for i ∈ {1, . . . , tS} do
15 : r̂i ← ri − yi

16 : Ê′
i ← [ri]Eci

17 : E′
i ← [yi]Ê′

i

18 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
19 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

20 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

21 : σ∗ ← AOS(·),OpS(·,·)(σ̂)
22 : return (m∗, σ∗)

OS(m)

1 : σ ← SigCSI-FiSh(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ← HCSI-FiSh(x)
3 : return H[x]

OpS(m, IY)

1 : Parse IY as (E⃗Y , πY)

2 : y⃗ := ΠNIZK.K(E⃗Y , πY , H)

3 : if ((E⃗Y , πY), y⃗) ̸∈ R∗
E0

4 : abort
5 : σ ← SigCSI-FiSh(m)
6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
7 : Parse pk as (E1, . . . , ES−1)

8 : Parse E⃗Y as (E1
Y , . . . , EtS

Y)
9 : Parse y⃗ as (y1, . . . , ytS)

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi

12 : Ê′
i ← [ri]Eci

13 : E′
i ← [yi]Ê′

i

14 : πS
i ← ΠNIZK.S((E0, Ê′

i, Ei
Y , E′

i))
15 : Q := Q ∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , πS

tS
E′

1, . . . , E′
tS

)

Figure 3.12: The formal definition of the simulator (i.e., reduction).

Challenge phase:

1. Upon A outputting the message (m∗, IY) as the challenge message, S extracts
y⃗ using the extractability of ΠNIZK, forwards m∗ to the oracle SigCSI-FiSh and
parses the signature that is generated as σ := (r1, . . . , rtS , c1, . . . , ctS).

2. S generates the required pre-signature σ̂ in the same way as during OpS
queries.

52

3.3. Security Proof

3. Upon A outputting a forgery σ, the simulator outputs (m∗, σ∗) as its own
forgery.

We emphasize that the main difference between the simulation and G4G4G4 are syntactical.
More precisely, instead of generating the secret/public keys and running the algorithms
Sig and H, the simulator S uses its oracles SigCSI-FiSh and HCSI-FiSh. It remains to show
that the signature output by A can be used by the simulator to win the StrongSigForge
game.

Claim 7. (m∗, σ∗) constitutes a valid forgery in the StrongSigForge game.

Proof. In order to prove this claim, we have to show that the tuple (m∗, σ∗) has not been
output by the oracle SigCSI-FiSh before. We note that the adversary A has not previously
made a query on the challenge message m∗ to either OpS or OS. Hence, SigCSI-FiSh is only
queried on m∗ during the challenge phase. If the adversary outputs a forgery σ∗, which is
equal to the signature σ output by SigCSI-FiSh during the challenge phase, the extracted y⃗
would be in relation with the given public statement IY . Therefore, SigCSI-FiSh has never
output σ∗ on query m∗ before and consequently (m∗, σ∗) constitutes a valid forgery for
the StrongSigForge game.

From the games G0G0G0 −G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1]+negl(λ). Since S provides
a perfect simulation of game G4G4G4, we obtain

AdvaWitExt = Pr[G0G0G0 = 1]
≤ Pr[G4G4G4 = 1]negl(λ)
≤ AdvStrongSigForge

S + negl(λ).

Since CSI-FiSh is secure in QROM with HCSI-FiSh modeled as a quantum random oracle,
this implies that IAS achieves witness extractability even against quantum adversaries.
This concludes the proof of Lemma 4.

This concludes the proof of Theorem 1.

Next, we continue with the proof of the optimized variant of IAS (O-IAS), as defined
in Section 3.2. More concretely, we prove the following theorem.

Theorem 2. Let ΠNIZK be a NIZKPoK with an online extractor, the CSI-FiSh signature
scheme ΣCSI-FiSh be SUF-CMA secure and R†

E0
br a hard relation, the adaptor signature

scheme Ξ
R†

E0
,ΣCSI-FiSh

, is secure in QROM.

Proof. The proof is analogous to the proof of Theorem 1, with the only changes being
to the underlying hard relation and the adaptation procedure. More concretely, the

53

3. Post-Quantum Adaptor Signatures

hard relation R∗
E0 , which consists of pairs IY := (E⃗Y , πY), such that E⃗Y ∈ L

R
tS
E0

and

πY is a zero-knowledge proof that E⃗Y ∈ L
R

tS
E0

, is replaced with the hard relation R†
E0

,
which consists of pairs IY := (EY , πY), such that EY ∈ LR1

E0
and πY is a zero-knowledge

proof that EY ∈ LR1
E0

. Since both R∗
E0 and R†

E0
are hard relations, this proof goes

through exactly as the proof of Theorem 1, with the only caveat being that in the O-IAS
construction solely the first iteration of the pre-signature needs to be adapted. Hence,
when the simulator S transforms a full signature into a pre-signature for the adversary
A, it only needs to modify the first part of the signature (i.e., r1). This concludes the
proof of Theorem 2.

3.4 Performance Evaluation
In order to evaluate IAS we extended the commit 7a9d30a version of the proof-of-concept
implementation of CSI-FiSh4. The implementation depends on the eXtended Keccak
Code Package for the implementation of SHAKE256, which is used as the underlying
hash function and to expand the randomness. We also use the GMP library [Gt19] for
high precision arithmetic. We implemented the optimized variant O-IAS as explained
in Section 3.2. Since O-IAS and CSI-FiSh are composed of multiple independent iterations
of a non-interactive identification scheme, they are amenable to parallelization. Hence,
we provided a parallelized implementation using OpenMP. The source code is available
at https://github.com/etairi/Adaptor-CSI-FiSh.

Parameters. CSI-FiSh signature scheme is instantiated with the following parameters:
i) S, the number of public keys to use, ii) tS , the number of repetitions to perform, and
iii) k, the rate of the slow hash function (e.g., k = 16 means that the used hash function
is a factor 216 slower than a standard hash function, such as SHA-3). In order to ensure
λ bits of soundness security it suffices to take the parameters such that S−tS ≤ 2−λ+k.
As is described in [BKV19], the parameter S controls the trade-off between on the one
hand small public key and fast key generation (when S is small), and on the other hand
small signature and fast signing/verification (when S is large).

Testbed. All benchmarks were taken on a KVM-based VM with 2.0GHz AMD EPYC
7702 processor with 16 cores and 32GB RAM, running Ubuntu 18.04 LTS, and the code
was compiled with gcc 7.5.0.

3.4.1 Evaluation Results
In this section, we present our evaluation results and discuss the communication size and
computation time of O-IAS (i.e., sizes of objects and running times of the algorithms).
The results of our evaluation are summarized in Table 3.1. As shown, playing with the
parameters we can obtain different trade-offs, which we explain next. We divide our

4https://github.com/KULeuven-COSIC/CSI-FiSh

54

https://github.com/etairi/Adaptor-CSI-FiSh
https://github.com/KULeuven-COSIC/CSI-FiSh

3.4. Performance Evaluation

discussion on: (i) on-chain analysis (i.e., overhead imposed on the blockchain to support
O-IAS) and (ii) off-chain analysis (i.e., overhead for peers at the application level).

On-Chain Analysis. In order to support O-IAS, the blockchain only needs to verify
that each transaction is accompanied by a signature that correctly verifies under a given
public key according to the logic of the verification algorithm of CSI-FiSh. Thus, the
storage size imposed by CSI-FiSh is dominated by the signature and public key sizes and
the goal is thus to minimize these values. As was already described above, the parameter
S can be set to a small value to achieve compact public keys. This, however, yields larger
signatures. For instance, we can observe from Table 3.1 that by setting S = 2 one can
have public keys of only 128 bytes, but at the cost of signatures of size 1880 bytes.

Similarly, the computation time of IAS for the miners is represented by the running time
of the verification algorithm of CSI-FiSh. In our evaluation, we observe that increasing
the value of S reduces the verification time of CSI-FiSh. However, as was already noted,
this increases the public key sizes. Nevertheless, the technique of using Merkle trees
to obtain compact and constant size public keys (but large secret keys) as described
in [BKV19] can also be applied to our construction. Using that technique one can have
public keys of size 32 bytes, signatures of size 1995 bytes and verification algorithm
running time of 370 milliseconds with no parallelization, as shown in [BKV19, Table 4],
or 60 milliseconds with our parallelized implementation.

Off-Chain Analysis. The operations of O-IAS defined in Algorithm 3 are carried
out off-chain, meaning that the creation and verification of pre-signatures is done in
a peer-to-peer manner and thus do not need to be stored in the blockchain, nor to be
verified by the miners. Yet, we discuss here the computation time and communication
size for this part as it illustrates the overhead for applications building upon O-IAS.

In terms of communication size, a pre-signature σ̂ in IAS has size of ∼ 19KB on average.
We can observe from Table 3.1 that the pre-signature size only varies slightly the change
in parameters. The reason for this is that the pre-signature size is dominated by the
expensive zero-knowledge proof for L2 (see Section 3.1.1) that is required during pre-
signature computation, which has size ∼ 18KB, and it varies slightly with parameter
k (bigger k implies smaller proof size). On the other hand the running times of the

S tS k |sk| |pk| |σ̂| |σ| KeyGen Sig Ver PreSig PreVer Ext Adapt
21 56 16 16 128 19944 1880 0.05 0.24 0.23 3.59 3.55 0.005 0.005
22 38 14 16 256 19672 1286 0.06 0.16 0.16 2.75 2.68 0.005 0.005
23 28 16 16 512 19020 956 0.07 0.13 0.14 2.21 2.15 0.005 0.005
24 23 13 16 1024 19338 791 0.07 0.11 0.11 1.99 1.94 0.005 0.005
26 16 16 16 4096 18624 560 0.29 0.08 0.09 1.61 1.56 0.005 0.005
28 13 11 16 16384 19330 461 1.00 0.08 0.08 1.50 1.44 0.005 0.005
210 11 7 16 65536 19908 395 3.21 0.06 0.06 1.40 1.36 0.005 0.005
212 9 11 16 262144 19198 329 12.89 0.06 0.06 1.30 1.25 0.005 0.005
215 7 16 16 2097152 18327 263 102.02 0.06 0.06 1.16 1.11 0.005 0.005

Table 3.1: Performance of O-IAS. Time is shown in seconds and size in bytes.

55

3. Post-Quantum Adaptor Signatures

pre-signature and pre-verification algorithms decrease with the increased S value, meaning
with the decreased number of iterations tS . The reason for this is that during pre-signature
and pre-verification computation our implementation only parallelizes the computation
of the zero-knowledge proof for L2, but all the tS iterations are computed by a single
thread. We opted for this approach as the zero-knowledge proof is the dominating cost
in IAS, and it requires ∼ 750 milliseconds to compute and verify. On the other hand,
extraction and adaptation are generally extremely fast operations for our construction,
however, we point out that the time for extraction in Table 3.1 does not include the
verification that the extracted witness y⃗, which is a vector of size 1 for O-IAS, satisfies
(IY , y⃗) ∈ R∗

E0 (line 49 in Algorithm 3). We note that in practice one can just extract
the witness, adapt the pre-signature and then check that the signature verifies, which
is more efficient than actually checking in R∗

E0 , which requires verifying an expensive
zero-knowledge proof.

Lastly, we note that even though the communication size is a bit high these operations
are handled off-chain, and the pre-signatures are not stored in the blockchain.

3.4.2 Comparison with LAS
We compare our evaluation results with those of LAS [EEE20], which is the only other
known post-quantum AS, regarding on-chain and off-chain overhead. The authors
of [EEE20] did not provide any implementation, but they estimated the size of their
signature and pre-signature as 2701 and 3210 bytes, respectively. From this we can
observe that our signature sizes are 1.5 − 10x smaller depending on the parameter choices,
however, our pre-signature sizes are ∼ 6x larger. Though, due to the weak pre- signature
adaptability property of LAS the applications that use LAS require an expensive zero-
knowledge proof to ensure that the extracted witness is of correct norm. In [LNP22]
it is shown that such a proof has size of more than 10KB, which signifies that our
construction is more efficient with respect to both on-chain and off-chain communication
size. Moreover, LAS has public key size of 1472 bytes (observed from [DLL+17, Table 2]),
which implies that using the Merkle tree technique we can have public key sizes that
are 42x times smaller. In terms of computation time, LAS is an AS scheme based on
Dilithium [DLL+17], and thus, it can perform more than a hundred sign/verify operations
per second, as these operations take less than one millisecond for Dilithium, thereby
offering better computational performance than O-IAS.

In summary, our evaluation shows that it is feasible to adopt IAS to extend current
blockchains with post-quantum AS at the cost of ∼ 1500 bytes (for combined public
key and signature size using parameters S = 23, tS = 28, k = 16) of communication
size, which will be ∼ 3x smaller than LAS, and requiring only ∼ 100 milliseconds of
computation time (for signature verification using the same parameters). Analogous
results and reduction in communication size also applies to the off-chain setting, which
greatly benefits the off-chain applications using AS as building block, such as payment
channels, payment-channel networks, atomic swaps or payment-channel hubs, which are
performed over a WAN network, and thus, a reduction in communication is desirable.

56

CHAPTER 4
Universally Composable Adaptor

Signatures

In this chapter we present universally composable adaptor signatures. First, in Sec-
tion 4.1 we abstract away the conditions used within adaptor signatures in a standalone
functionality GCond. Then, in Section 4.2 we model the adaptor signature functionality
FAdaptSig and prove its realization with the help of GCond. We note that in this chapter
and in the rest of the thesis we consider two-party adaptor signatures with aggregatable
keys (as defined in Section 2.2.6).

4.1 Global Conditions
In existing blockchain protocols, adaptor signatures and their associated conditions are
analyzed within monolithic protocol descriptions. Here, we consider a more modular
handling and analyzes of conditions, by abstracting them away using a standalone global
functionality GCond.

Intuitively, a cryptographic condition describes the properties as given by a hard relation
R (as described in Section 2.2.1). Concretely, a condition is identified by a public
statement and we say that the condition is satisfied if the corresponding witness is
provided. Due to the hardness of the relation, without prior knowledge, it is hard to
come up with a witness satisfying a given condition. A typical example is the discrete
logarithm (DL) assumption over certain cyclic groups (G, g, q) (with generator g and
order q), where given a group element (the statement) Y = gy, it is hard to compute the
exponent y (the witness).

At first sight, it may seem counter-intuitive to define conditions as a standalone ideal
functionality. The reason for doing so is that the prerequisites for a party to craft
a witness related to a statement often emerge from a cryptographic protocol for the

57

4. Universally Composable Adaptor Signatures

condition creation. As an example, consider the following scenario. Alice plays a simple
guessing game with Bob. If Bob can guess a number between 1 and 10 then he gets a prize
from Alice. To implement this based on the DL assumption, Alice prepares ten secret
witnesses (ymask

i)i∈(1,10) and sends the corresponding statements
»

Y mask = (gymask
i)i∈(1,10)

to Bob. Bob himself prepares one witness ywin and ten witnesses (yblank
i)i∈(1,10). For the

guess j, Bob prepares # »

Y guess = (Y guess
i)i∈(1,10) such that for i ̸= j, Y guess

i = (Y mask
i)yblank

i

and Y guess
j = gywin . At this point, Bob knows the witness for Y guess

j , while he cannot
know the witness for any statement Y guess

i with i ̸= j, since for this, Bob would require
Alice’s secret masking values (ymask

i)i∈(1,10). Bob proves in zero-knowledge to Alice that
»

Y guess is well-formed. Now, Alice chooses a number m and prepares a payment to Bob
based on Y guess

m . Alice at this point, cannot know which condition Bob can open, only
that Bob can open exactly one out of the ten provided conditions. If Alice and Bob chose
the same number (j = m), Bob can complete the payment, otherwise, the money stays
with Alice.

For reasoning about the aforedescribed guessing game, we need to capture that there
are ten conditions out of which Bob can open exactly one. However, the creation of
conditions with this property involves a protocol itself. This condition-creation protocol
is independent of more advanced protocols relying on conditions with the respective
property.

In summary, by modeling conditions as a separate functionality, we can modularize
reasoning about condition creation (e.g., # »

Y guess) and protocols using these conditions
(e.g., the payment from Alice to Bob based on Y guess

m).

Technically, this means that we can extend the functionality GCond with further types of
conditions without reproving any of the results from Chapters 5 and 6. In this thesis, we
present only three different forms of conditions:

1. Plain conditions, named as individual conditions, which parties can create on their
own by creating a fresh witness and the corresponding statement for a given hard
relation.

2. Composed conditions, named merged conditions, which combine two existing condi-
tions. The concrete composition operation depends on the underlying hard relation
and is specified as a parameter fmerge to the functionality GCond.

3. 1-out-of-n conditions, which enable a party P together with a set of other parties
P to jointly create a vector of statements, such that P (without the collaboration
of the parties in P) only knows the witness to exactly one out of these statements.
For example, the previously described guessing game included the creation of
a 1-out-of-10 condition for the discrete logarithm relation with P = Bob and
P = {Alice}.

58

4.1. Global Conditions

4.1.1 Ideal Functionality GCond

We illustrate the (global) ideal functionality GCond for conditions in Figure 4.1. GCond is
parameterized by a hard relation R and a merging function fmerge. This is needed to enable
composability with the adaptor signature functionality FAdaptSig (given in Section 4.2),
which is also defined w.r.t. to a hard relation R.

GCond provides three interfaces and maintains a list L of conditions and their corresponding
openings. The individual conditions interface acts as a bulletin board for conditions
created outside the ideal functionality, and just stores the input condition/opening
(i.e., statement/witness) pair in the list L. The merged conditions interface models the
creation of a condition as the composition of two other conditions, where the concrete
composition operations are given by fmerge function. This function is split into an
operation + on witnesses and an operation · on statements, which need to satisfy that
(Y1 · Y2, y1 + y2) ∈ R if both (Y1, y1), (Y2, y2) ∈ R. The 1-out-of-n interface models the
creation of joint conditions amongst the set of parties, such that the initiating party only
knows opening to one of these conditions (which is specified with index). Lastly, the
open condition interface allows checking if a condition/opening pair is valid (i.e., is in L).

4.1.2 Protocol ΠCond

We describe the global conditions protocol ΠCond in Figure 4.2 for discrete logarithm
(DL) relation. More precisely, the protocol is parameterized with a group description
(G, g, q), where g is the generator and q is the order of the group, along with the DL
relation RDL over it, i.e., (Y, y) ∈ RDL ⇐⇒ Y = gy. Naturally, we assume that the group
G is a DL-hard group here. The function fmerge defines the witness operation (+) as
scalar addition and the statement operation (·) as the group operation.

In the case of individual conditions, the protocol checks if the input condition/opening
pair (i.e., statement/witness pair for RDL) is valid, and in such a case, returns it. In the
case of merged conditions, the protocol multiplies the inputted condition to form the
merged condition, which gets returned by this process. For the 1-out-of-n conditions, we
propose a multi-party protocol where each party provides a random share si for each of
the conditions Yj . Finally, the invoking party combines the shares from other users to
compute each Yj except for the position that she commits to, denoted by index, where
she just uses the condition for which she knows the opening. Moreover, she also proves
in zero-knowledge that the final (set of) conditions are computed correctly. Lastly, for
opening conditions, the protocol validates the membership of input condition/opening
(i.e., statement/witness) pair in the relation RDL, and returns the output bit b.

4.1.3 Security Proof

The security of our construction is established with the following theorem.

59

4. Universally Composable Adaptor Signatures

Ideal Functionality GR,fmerge
Cond

The functionality interacts with an adversary S and set of parties P = {P1, . . . , Pn}. Additionally,
the functionality maintains a list L that is indexed by conditions (i.e., statements) and stores
their corresponding openings (i.e., witnesses). The functionality is parameterized by a hard
relation R and a function fmerge for which the following invariant holds,

(Y1, y1) ∈ R ∧ (Y2, y2) ∈ R =⇒ (fmerge(stmt, R, (Y1, Y2)), fmerge(wit, R, y1, y2)) ∈ R.

Individual Conditions: Upon receiving (create-ind-cond, sid, (Y, y)) from some party P ,
• If (Y, y) ̸∈ R, then ignore the request. Otherwise, continue.
• Set L[Y] := y
• Send (created-ind-cond, sid, Y) to P and S.
Merged Conditions: Upon receiving (create-merged-cond, sid, (Y1, Y2)) from some party P ,
• If L[Y1] = ⊥ or L[Y2] = ⊥, then ignore the request. Otherwise, continue.
• Set Y ∗ := fmerge(stmt, R, (Y1, Y2)), y∗ := fmerge(wit, R, (L[Y1], L[Y2])), and L[Y ∗] := y∗.
• Send (created-merged-cond, sid, Y ∗) to P and S.
1-out-of-n Conditions: Upon receiving (create-1-of-n-cond, sid, (Y, y), index , n, {Pi}) from
some party P , do the following:
• If (Y, y) ̸∈ R, then ignore the request. Otherwise, continue.
• For all i ∈ [n] ∧ i ̸= index , sample random (Yi, yi) ∈ R.
• Set Y ∗ := (Y1, . . . , Yindex := Y, . . . , Yn).
• For all P ∗ ∈ {Pi}, send (join-1-of-n-cond, sid, P, Y ∗), and receive back
(joined-1-of-n-cond, sid, bi).
• If any bi = 0, then abort. Otherwise, continue.
• Set L[Y ∗] = (⊥, . . . , yindex := y, . . . , ⊥).
• Send (created-1-of-n-cond, sid, Y ∗) to P and S.
Open Conditions: Upon receiving (open-cond, sid, (Y ∗, y∗)) from some party P ∗,
• Set b := (L[Y ∗] ?= y∗).
• Send (opened-cond, sid, b) to P ∗ and S.

Figure 4.1: Ideal functionality GR,fmerge
Cond .

Theorem 3. Let ΠNIZK be a UC-secure non-interactive zero-knowledge proof system and
G be a DL-hard group, then the protocol ΠRDL

Cond UC-realizes the ideal functionality GR,fmerge
Cond ,

for R = RDL and fmerge as defined in Figure 4.2.

Proof. Throughout the following proof, we implicitly assume that all messages of the
adversary are well-formed, and we treat the malformed messages as aborts. We consider
a static corruption model, and we denote the set of users corrupted by the adversary
with C. The proof is composed of a series of hybrid arguments.

Hybrid H0: This corresponds to the original ΠCond protocol.

Hybrid H1: Replace the honestly computed NIZK proof πindex with a simulated proof
(in 1-out-of-n conditions).

60

4.1. Global Conditions

Protocol ΠRDL
Cond

The protocol is parameterized by group description (G, g, q), and the corresponding discrete
logarithm (DL) relation RDL over it, i.e., (Y, y) ∈ RDL ⇐⇒ Y = gy.
Individual Conditions: Party P upon receiving (create-ind-cond, sid, (Y, y)) from E , checks if
(Y, y) ∈ RDL. If not, then ignores the request. Otherwise, returns (Y, y).
Merged Conditions: Party P upon receiving (create-and-cond, sid, (Y1, Y2)) from E , compute
Y ∗ := Y1 · Y2 and return Y ∗.
Open Conditions: Party P upon receiving (open-cond, sid, (Y ∗, y∗)) from E , return ((Y ∗, y∗)

?∈
RDL).
1-out-of-n Conditions: Party P upon receiving (create-1-of-n-cond, (Y, y), index , n, {Pi}) from
E , for all P ∗ ∈ {Pi}, sends (n, {Pi}) to P ∗.
Party P ∗ ∈ {Pi} upon receiving (n, {Pi}) from P , does the following:
• For all j ∈ [n], sample si[j] ←$ Zq.
• For all j ∈ [n], compute hi[j] := gs[j].
• Send vector h⃗i := {hi[j]}j∈[n] to P and {Pi} \ {P ∗}.
Party P upon receiving h⃗i from P ∗ ∈ {Pi}, does the following:
• For all j ∈ [n], sample s[j] ←$ Zq.
• For all j ∈ [n] and j ̸= index , compute fj := i∈|{Pi}| hi[j] and c[j] := fj · gs[j].
• Set c[index] := Y and s[index] := y.
• Compute πindex ← ΠNIZK.P({∃(s⃗, index) | c[index] = gs[index] ∧ (∀j ∈ [n] ∧ j ̸= index , c[j] =
fj · gs[j])}, (s⃗, index)).
• Return ((c⃗, {fj}j∈[n] , πindex), y).
Definition of fmerge:
• fmerge(stmt, R, (Y1, Y2)) := Y1 · Y2
• fmerge(wit, R, (y1, y2)) := y1 + y2

Figure 4.2: Protocol ΠRDL
Cond.

Hybrid H2: For the set of corrupted parties C, if the adversary outputs (open-cond, (Y ∗, y∗)),
such that (Y ∗, y∗) ∈ RDL, for the condition Y ∗ created by some party P via (create-ind-cond,
(Y ∗, y∗)) and P ̸∈ C (i.e., uncorrupted party), then the experiment aborts by outputting
fail1.

Hybrid H3: For the set of corrupted parties C, if the adversary outputs (open-cond, (c⃗∗[index∗], y∗)),
such that (c⃗∗[index∗], y∗) ∈ RDL, for the conditions c⃗∗ created by some party P via
(create-1-of-n-cond, (Y ∗, y∗), index∗, n, {Pi}) and P ̸∈ C, then the experiment aborts by
outputting fail2.

Hybrid H4: For the set of corrupted parties C, if the adversary outputs (open-cond, (Y ∗, y∗)),
such that (Y ∗, y∗) ∈ RDL, for the condition Y ∗ created by some party P via (create-merged-cond,
(Y ∗

1 , Y ∗
2)) and P ̸∈ C, then the experiment aborts by outputting fail3.

Simulator S: The simulator S simulates the honest parties as in the previous hybrid,
except that its actions are dictated by the interaction with the ideal functionality GR,fmerge

Cond .

61

4. Universally Composable Adaptor Signatures

More precisely, the simulator proceeds as in the execution of hybrid H4 by simulating the
view of the adversary appropriately as it receives messages from the ideal functionality
GR,fmerge

Cond . If the simulated view deviates from the execution of the ideal functionality, then
the simulation must have already aborted (as given in cases of abort in the above hybrids).

Next, we proceed to proving the indistinguishability of the neighboring hybrids for the
environment E .

Lemma 5. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. The indistinguishability follows directly from the zero-knowledge property of
the NIZK proof system ΠNIZK. More precisely, assume towards a contradiction that
E can distinguish the two executions with a non-negligible probability. We give a
reduction to the zero-knowledge property of ΠNIZK. The reduction sets the statement
x := (c[index] = gs[index] ∧ (∀j ∈ [n] ∧ j ̸= index , c[j] = fj · gs[j])), and sends it to the zero-
knowledge challenger, which responds with a proof πindex that is either an honest proof or
a simulated proof. The reduction then acts as the honest party P in its interaction with E
during the creation of 1-out-of-n condition, computing everything as in hybrid H0, except
that it uses the proof πindex it received from the zero-knowledge challenger. At the end of
the execution, based on E ’s guess, it outputs a bit to the challenger (0 if E guesses hybrid
H0, and 1 otherwise), which will be correct with non-negligible advantage. However, this
violates the zero-knowledge property of ΠNIZK, and hence, the two executions must be
indistinguishable.

Lemma 6. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. Let fail1 be the event that triggers an abort in H2 but not in H1. In the following
we are going to show that the probability that such an event happens can be bounded
by a negligible function in the security parameter. Assume towards contradiction that
Pr[fail1 | H1] ≥ 1

poly(λ) . To show that the probability of fail1 happening in H2 cannot
be inverse polynomial we reduce it to the hardness of the relation RDL (as defined
in Section 2.2.1). The reduction receives as input a group element Y , and samples an
index j ∈ [1, s], where s ∈ poly(λ) is a bound on the total number of sessions. The
reduction sets the condition as Y ∗ = Y in the j-th session. If the event fail1 happens,
then the reductions returns the corresponding y∗, otherwise it aborts.

The reduction is clearly efficient, and whenever j is guessed correctly it does not abort.
Since fail1 happens it means that (Y ∗, y∗) ∈ RDL, for the condition Y ∗, and P ̸∈ C. This
implies that the reduction succeeded in breaking the hard relation RDL. By assumption
this happens with probability at least 1

s·poly(λ) , which is a contradiction and proves that
Pr[fail1 | H1] ≤ negl(λ).

62

4.2. Composable Adaptor Signatures

Lemma 7. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. The proof of this lemma is analogous to that of Lemma 6, except that we
need to account for index∗. More precisely, since (c⃗∗[index∗], y∗) ∈ RDL, we know
that c⃗∗[index∗] = gy∗ . Hence, the reduction needs to additionally guess index∗ ∈ [n]
before embedding the hard relation challenge. This incurs an additional 1

n loss, where
n ∈ poly(λ).

Lemma 8. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. The proof of this lemma is analogous to that of Lemma 6.

Lemma 9. For all PPT distinguishers E it holds that

EXECH4,A,E ≡ EXECGR
Cond,S,E .

Proof. The two experiments are identical and the change here is only syntactical. Hence,
indistinguishability of the real world and ideal world follows.

This concludes the proof of Theorem 3.

4.2 Composable Adaptor Signatures
In contrast to the adaptor signature scheme whose security is characterized in terms of
game-based security definitions (as given in Section 2.2.5), modeling adaptor signatures
as an ideal functionality, denoted by FAdaptSig, comes with the benefits of composable
reasoning within the UC framework. In particular, it enables modular reasoning with
respect to conditions, since our model of FAdaptSig relies on GCond to handle conditions.
This means that for signature adaptation FAdaptSig queries GCond for determining whether
the correct witness to open a condition was provided. We detail on this in Section 4.2.1.

In order to prove realization of FAdaptSig we create a wrapper protocol ΠAdaptSig around
the two-party adaptor signature scheme with aggregatable public keys. We note that
we can obtain two-party adaptor signature schemes generically by starting from any
digital signature scheme obtained via an identification scheme5, such as Schnorr [Sch91],
Katz-Wang [KW03] or Guillou-Quisquater [GQ90] signatures, as shown by Erwig et

5We remark that our post-quantum adaptor signatures scheme from Chapter 3 is also obtained from
an identification scheme, however, due to the limited algebraic structure present in group actions it does
not fit the framework of Erwig et al. [EFH+21].

63

4. Universally Composable Adaptor Signatures

al. [EFH+21]. In Section 4.2.2 we show that ΠAdaptSig UC-realizes FAdaptSig in GCond-hybrid
world. This realization is pictorially depicted in Figure 4.3.

Game-based
Security

Game-based
Security

R

R

DLOG
Schnorr

DLOG
Katz-Wang

Game-based
Security

R
TransformationTransformation

RSA
Guillou-

Quisquater

Figure 4.3: Realization of FAdaptSig in GCond-hybrid world.

4.2.1 Ideal Functionality FAdaptSig

We first define the adaptor signatures ideal functionality FAdaptSig, which accounts
for multiple keys per session and models two-party key generation (with public key
aggregation) and signing. Then, we show that any two-party adaptor signature scheme
with aggregatable public keys ΞR,Σ2 securely realizes the ideal functionality FAdaptSig.

The functionality FAdaptSig is depicted in Figure 4.4, and it extends the digital signature
functionality given in [KRDO17]. First, our functionality accounts for multiple keys
per session and models two-party key generation (with public key aggregation) and the
two-party (pre-)signing protocol. Additionally, to account for adaptor signatures we
parameterize the functionality with a hard relation R and a deterministic adaptation
function fadapt. The function fadapt transforms a pre-signature σ̂ and a witness y into a
corresponding full signature σ.

The parametrization with fadapt is required to stay fully modular with respect to GCond.
By using GCond in a modular fashion, we do not make any assumption about the creation
of conditions, and in particular about which protocol parties know the witness for a
condition. However, for parties knowing the witness y, the pre-signature σ̂ and the
corresponding adapted signature σ := fadapt(σ̂, y) are distinctly connected. For showing
that a protocol ΠAdaptSig UC-realizes FAdaptSig without assuming any knowledge about
which party knows y, we need to ensure that signatures created via the adaptation
interface of FAdaptSig cannot be distinguished from those created through the adaptation
algorithm (even for parties knowing y). If we let the simulator choose y at this point (as
one would usually do in such cases), the simulator could not be guaranteed to know y,
nor to complete the signature adequately (without leaking y or making an assumption
on condition generation). Consequently, we need to let FAdaptSig compute the correct
signature based on y, to which end we must fix fadapt.

The functionality FAdaptSig captures the expected correctness and security properties
of a two-party adaptor signature as described in Section 2.2.6. More precisely, it
captures completeness and consistency, along with (two-party) unforgeability and witness

64

4.2. Composable Adaptor Signatures

extractability. Pre-signature correctness and adaptability are captured with the help of
the function fadapt and global conditions functionality GCond.

Modeling Privacy of Adaptor Signatures. In a recent work, Dai et al. [DOY22]
provided the first game-based privacy notion for adaptor signatures, named unlinkability.
Intuitively, it ensures that adapted signatures cannot be distinguished from fresh full
signatures. Moreover, Dai et al. [DOY22] showed that all the existing adaptor signatures
achieve this property.

However, we note that our adaptor signature functionality from Figure 4.4 does not model
any privacy property. For example, capturing the unlinkability property for two-party
adaptor signatures is difficult because it inherently only holds against a third observer
party, i.e., a party that is not involved in (pre-)signature generation and only sees the
final signatures. Though, during the UC security proof we need to consider that the
parties actually involved in the two-party (pre-)signing are adversarial, hence, such a
third-party privacy notion is not provable.

More technically, in order to model such a privacy notion we need the simulator S to
produce a valid full signature σ without having access to the corresponding witness y.
One potential way to achieve this is inside the adaptation interface of FAdaptSig to make
a call to the simulator S, and let S return a fresh full signature σ′ that is independent
of the witness y. Then, we can argue that σ′ is indistinguishable from a full signature
σ, which is obtained by adapting a pre-signature σ̂ with the witness y. However, since
we are in the two-party adaptor signatures setting, it means that during the simulation
we have to assume that one of the two parties involved in (pre-)signature generation is
corrupted. Though, if one of the (pre-)signers is adversarial, then it is trivial for the
adversary to distinguish different protocol runs, and hence, different signatures, since it
is itself involved in the protocol execution and signature creation.

Nevertheless, we believe that a privacy notion, such as the unlinkability property of
Dai et al. [DOY22], is capturable and provable within the UC framework if we consider
regular (i.e., single party) adaptor signatures.

4.2.2 Protocol ΠAdaptSig

We depict in Figure 4.5 how to straightforwardly translate a two-party adaptor signature
scheme with aggregatable public keys (obtained from an identification scheme) ΞR,Σ2

into a protocol ΠR,fadapt
AdaptSig

6.

6Parameterizing the protocol with a deterministic adaptation function fadapt is without loss of
generality, since the generic transformation of Erwig et al. [EFH+21, Figure 7] considers that the
adaptation algorithm of two-party adaptor signature coincides with the function fadapt.

65

4. Universally Composable Adaptor Signatures

Ideal Functionality FR,fadapt
AdaptSig

The functionality is parameterized by a hard relation R and an adaptation function fadapt. It
maintains the list K that stores all generated keys, the list Q that stores tuples (m, σ, v, f)
representing message, signature, key and a verification flag, and the list P that stores tuples
(m, σ̂, σ, v, Y, y, f) representing message, pre-signature, signature, key, condition, witness, and
pre-verification flag. All lists are indexed by a session identifier and are initially set to ∅.
Key Generation: Upon receiving (keygen, sid) from P0 and P1, verify that sid = (P0, P1, sid′)
for some sid′. If not, ignore the request. Else, send (keygen, sid) to S. Upon receiving
(verification-key, sid, v) from S, add v into K[sid] and send (verification-key, sid, v) to P0 and
P1.
Adaptation: Upon receiving (adapt, sid, σ̂, v, y) from some party P , check if there is an
entry ℓ := (m, σ̂, ⊥, v, Y, ⊥, 1) ∈ P[sid]. If not, then ignore this request. Else, send
(open-cond, sid, (Y, y)) to GR,fmerge

Cond . Upon receiving (opened-cond, sid, b), if b = 0, then abort.
Else set σ := fadapt(σ̂, y) and update ℓ as (m, σ̂, σ, v, Y, y, 1) in P [sid], add (m, σ, v, 1) into Q[sid],
and send (adapted-signature, sid, σ) to P . (This guarantees pre-signature adaptability: any valid
pre-signature σ̂ can be adapted into a valid full signature σ using the witness y.)
Extraction: Upon receiving (extract, sid, σ, σ̂, v) from some party P , check if there is an entry
(m, σ̂, σ, v, Y, y, 1) in P [sid]. If not, then send (witness, sid, ⊥) to P , otherwise, send (witness, sid, y)
to P . (This guarantees witness extractability: any valid signature/pre-signature pair (σ, σ̂) can
be used to extract the corresponding witness y.)
(Pre-)Signature Generation: Upon receiving (sign, sid, m, v, Y,type) from P0 and P1, verify
that sid = (P0, P1, sid′) for some sid′ and v ∈ K[sid]. If not, ignore the request. Else, send
(sign, sid, m, v, Y,type) to S. Upon receiving (signature, sid, m, σ) from S,
• if type = signature and (m, σ, v, 0) ̸∈ Q[sid], then add (m, σ, v, 1) into Q[sid];
• if type = pre-signature and (m, σ, ⊥, v, Y, ⊥, 0) ̸∈ P[sid], then add (m, σ̂ := σ, ⊥, v, Y, ⊥, 1)
into P[sid].
If any of the above checks fail, then output an error and halt. Otherwise, output (signature, sid, σ)
to P0 and P1.
(Pre-)Signature Verification: Upon receiving (verify, sid, m, σ, v, Y,type) from some party
P , send (verify, sid, m, σ, v, Y,type) to S. Upon receiving (verified, sid, m, ϕ) from S, do the
following:
• If v ∈ K[sid], and (m, σ, v, 1) ∈ Q[sid] (if type = signature) or (m, σ̂ := σ, ·, v, Y, ·, 1) ∈ P [sid]
(if type = pre-signature), then set f = 1. (This condition guarantees completeness: if the
verification key v is registered before and σ is a legitimately generated (pre-)signature for m,
then the verification succeeds.)
• Else, if v ∈ K[sid], the signers are not corrupted, and (m, σ′, v, 1) ̸∈ Q[sid] (if type =
signature) or (m, σ′, ·, v, Y, ·, 1) ̸∈ P[sid] (if type = pre-signature) for any σ′, then set f = 0
and add (m, σ, v, 0) into Q[sid] (if type = signature) or add (m, σ̂ := σ, ⊥, v, Y, ⊥, 0) into P [sid]
(if type = pre-signature). (This condition guarantees unforgeability: if v is one of the registered
keys, the signers are not corrupted and never (pre-)signed m, then the verification fails.)
• Else, if there exists (m, σ, v, f ′) ∈ Q[sid] (if type = signature) or (m, σ̂ := σ, ·, v, Y, ·, f ′) ∈
P [sid] (if type = pre-signature), then set f = f ′. (This guarantees consistency: all verification
requests with identical parameters will result in the same answer.)
• Else, set f = ϕ, add (m, σ, v, ϕ) into Q[sid] (if type = signature) or add (m, σ̂ :=
σ, ⊥, v, Y, ⊥, ϕ) into P[sid] (if type = pre-signature).
Output (verified, sid, m, f) to P .

Figure 4.4: Ideal functionality FR,fadapt
AdaptSig.

66

4.2. Composable Adaptor Signatures

Note that the protocol ΠR,fadapt
AdaptSig is only a generic wrapper protocol around the algorithmic

interface of two-party adaptor signature scheme. Moreover, the protocol ΠR,fadapt
AdaptSig is

defined in GR,fmerge
Cond -hybrid world, where both ΠAdaptSig and GCond consider the same hard

relation R.

Protocol ΠR,fadapt
AdaptSig

We consider parties Pb for b ∈ {0, 1} running signing and pre-signing in Πfadapt
AdaptSig, and upon each

request we verify that sid := (Pb, P1−b, sid′) for some sid′, and if not, then we ignore the request.
Key Generation: Party Pb upon receiving (keygen, sid) from E :
• Generate keys (skb, pkb) ← Σ2.KeyGen(pp), for some public parameters pp.
• Store skb, and output (verification-key, sid, v := (pkb, pk1−b)).
Signing: Party Pb upon receiving (sign, sid, m, v, Y, signature) from E :
• Parse v as (pkb, pk1−b).
• Execute the protocol σ ← Σ2.ΠSig⟨skb,sk1−b⟩(pkb, pk1−b, m).
• Output (signature, sid, σ).
Pre-Signing: Party Pb upon receiving (sign, sid, m, v, Y, pre-signature) from E :
• Parse v as (pkb, pk1−b) and Y as Y .
• Execute the protocol σ̂ ← ΞR,Σ2 .ΠPreSig⟨skb,sk1−b⟩(pkb, pk1−b, m, Y).
• Output (signature, sid, σ̂).
Verify: Party P upon receiving (verify, sid, m, σ, v, Y, signature) from E :
• Parse v as (pkb, pk1−b).
• Compute apk := Σ2.KAgg(pkb, pk1−b) and f ← Σ2.Ver(apk, m, σ).
• Output (verified, sid, m, f).
Pre-Verify: Party P upon receiving (verify, sid, m, σ̂, v, Y, pre-signature) from E :
• Parse v as (pkb, pk1−b) and Y as Y .
• Compute apk := Σ2.KAgg(pkb, pk1−b) and f ← ΞR,Σ2 .PreVer(apk, m, Y, σ̂).
• Output (verified, sid, m, f).
Adaptation: Party P upon receiving (adapt, sid, σ̂, v, y, Y) from E :
• Invoke GR,fmerge

Cond on input (open-cond, sid, Y, y).
• Receive (opened-cond, sid, b) from GR,fmerge

Cond .
• If b = 0, then abort. Else, compute σ := fadapt(σ̂, y).
• Output (adapted-signature, sid, σ).
Extraction: Party P upon receiving (extract, sid, σ, σ̂, v) from E :
• Parse v as (pkb, pk1−b).
• Compute apk := Σ2.KAgg(pkb, pk1−b) and y ← ΞR,Σ2 .Ext(apk, σ, σ̂, Y).
• Output (witness, sid, y).

Figure 4.5: Protocol ΠR,fadapt
AdaptSig in GR,fmerge

Cond -hybrid world.

67

4. Universally Composable Adaptor Signatures

4.2.3 Security Proof
The security of our construction is established with the following theorem.

Theorem 4. Let ΞR,Σ2 be a secure two-party adaptor signature scheme with aggregatable
public keys (from an identification scheme) that is composed of a hard relation R and a
secure two-party signature scheme Σ2, then ΠR,fadapt

AdaptSig UC-realizes FR,fadapt
AdaptSig.

Proof. We give a proof by contradiction. Assume that ΠR,fadapt
AdaptSig does not realize FR,fadapt

AdaptSig,
i.e., there exists an environment E that can differentiate whether it is interacting with
FR,fadapt

AdaptSig and S in the ideal world, or with ΠR,fadapt
AdaptSig and A in the real world. We show

that ΞR,Σ2 (used to obtain ΠR,fadapt
AdaptSig) violates the definition of a secure two-party adaptor

signature scheme from Section 2.2.6. Since the environment E succeeds for any S, it
also succeeds for the following generic S, denoted by SAdaptSig, which runs a simulated
copy of A and does the following (where b ∈ {0, 1} defines which of the two parties is
corrupted):

Simulator SAdaptSig

Any input from E is forwarded to A, and any output from A is copied to SAdaptSig’s output (to
be read by E). Moreover, when A corrupts some party P , then SAdaptSig corrupts P in the ideal
world. If P is the signer, then SAdaptSig reveals the signing key sk (and the internal state of the
signing algorithm, if such a state exists) as P ’s internal state.

Upon receiving a message (keygen, sid) from FR,fadapt
AdaptSig:

1. If sid is not of the form (P1−b, Pb, sid′), then ignore the request.

2. Else, run (sk1−b, pk1−b) ← Σ2.KeyGen(pp), set v := (pk1−b, pkb), record the tuple (sid, sk1−b, v),
and send (verification-key, sid, v) to FR,fadapt

AdaptSig.

Upon receiving a message (sign, sid, m, v, Y, type) from FR,fadapt
AdaptSig:

1. If sid is not of the form (P1−b, Pb, sid′) and no tuple of the form (sid, sk1−b, v), has been
previously recorded, then ignore the request.

2. If type = signature, then parse v := (pk1−b, pkb), simulate a run of the protocol σ ←
Σ2.ΠA

Sig⟨sk1−b,·⟩(pk1−b, pkb, m) (by simulating the honest party P1−b), and send (signature, sid,

m, σ) to FR,fadapt
AdaptSig.

3. If type = pre-signature, then parse v := (pk1−b, pkb), simulate a run of the protocol
σ̂ ← ΞR,Σ2 .ΠA

PreSig⟨sk1−b,·⟩(pk1−b, pkb, m, Y) (by simulating the honest party P1−b), and send
(signature, sid, m, σ̂) to FR,fadapt

AdaptSig.

Upon receiving (verify, sid, m, σ, v, Y, type) from FR,fadapt
AdaptSig:

68

4.2. Composable Adaptor Signatures

1. If type = signature, then parse v := (pk1−b, pkb), compute apk := Σ2.KAgg(pk1−b, pkb), set
ϕ := Σ2.Ver(apk, m, σ), and send (verified, sid, m, ϕ) to FR,fadapt

AdaptSig.

2. If type = pre-signature, parse v := (pk1−b, pkb), compute apk := Σ2.KAgg(pk1−b, pkb), set
ϕ := ΞR,Σ2 .PreVer(apk, m, Y, σ̂), and send (verified, sid, m, ϕ) to FR,fadapt

AdaptSig.

Next, we assume that ΞR,Σ2 is both complete and consistent, and construct an attacker
B that breaks the unforgeability. B runs a simulated copy of E and simulates the
interactions with SAdaptSig and FAdaptSig. Analogous to SAdaptSig, B also runs a simulated
copy of A. However, in the first activation, instead of running Σ2.KeyGen to generate
the key, B gives to A the verification key pk1−b that it has received as an input from
its own challenger (where b ∈ {0, 1} defines which of the two parties is corrupted).
Whenever B needs to provide (pre-)signature on a message m, B asks its oracles to
(pre-)sign m and obtains (pre-)signature σ. Moreover, B and A jointly generate pre-
signature σ̂∗ on the challenge message m∗ (provided by A), where B just relays the
protocol messages of its own challenger when computing the joint pre-signature on
the same challenge message m∗. Finally, whenever the simulated E activates some
party with input (verify, sid, m∗, σ∗, v, Y, type), where type = signature, B checks whether
(m∗, σ∗) constitutes a valid forgery (i.e., m∗ is the challenge message and it has never
been signed before and Σ2.Ver(apk, m∗, σ∗) = 1, for apk := Σ2.KAgg(pk1−b, pkb), where
v := (pk1−b, pkb) and pkb is the verification key of A). If (m∗, σ∗) is a valid forgery, then
B outputs σ∗ as its own forgery and halts. Otherwise, it continues the simulation. If A
asks to corrupt the honest signer P1−b, then B halts with a failure.

We analyze the success probability of B. Let win denote the event that in a run of ΞR,Σ2

with A and E with sid = (P1−b, Pb, sid′), the signers generate the verification keys pk1−b

and pkb, such that v := (pk1−b, pkb), some party is activated with verification request
(verify, sid, m∗, σ∗, v, Y, type), where type = signature and Σ2.Ver(v, m∗, σ∗) = 1, party
P1−b is uncorrupted and signers never signed m∗. Since ΞR,Σ2 is complete and consistent,
we have that as long as the event win does not occur E ’s view of an interaction with
A and ΞR,Σ2 in the real world is statistically close to its view of an interaction with
SAdaptSig and FR,fadapt

AdaptSig in the ideal world. However, we are given that E distinguishes
with non-negligible probability between the ideal and real world, thus, we are guaranteed
that when E interacts with A and ΞR,Σ2 , event win occurs with non-negligible probability.

Finally, observe that from the point of view of A and E , the interaction with the forger B
looks the same as an interaction in the real world with ΞR,Σ2 . Hence, we are guaranteed
that event win occurs with non-negligible probability. Furthermore, event win can only
occur when P1−b is not corrupted. This means whenever event win occurs, B outputs a
successful forgery, which contradicts the unforgeability definition of ΞR,Σ2 .

We can construct a similar adversary B′ against the witness extractability property of
ΞR,Σ2 . B′ works exactly as B above, with the difference that the joint pre-signature σ̂∗

is computed over both the challenge message m∗ and challenge statement Y ∗ provided
by the adversary A. Moreover, the winning condition is adjusted such that m∗ is the

69

4. Universally Composable Adaptor Signatures

challenge message and it has never been signed before and Σ2.Ver(apk, m∗, σ∗) = 1, for
apk := Σ2.KAgg(pk1−b, pkb), where v := (pk1−b, pkb) and pkb is the verification key of A,
and (Y ∗, y′) ̸∈ R, for y′ := ΞR,Σ2 .Ext(v, σ∗, σ̂∗, Y ∗).

Lastly, we observe that pre-signature adaptability is captured within the adaptation
interface of the ideal functionality FAdaptSig, which in turn makes use of the global ideal
functionality GCond and its parameterized deterministic adaptation function fadapt. More
precisely, a valid pre-signature σ̂ w.r.t. a condition Y can be adapted into a valid signature,
i.e., σ := fadapt(σ̂, y), using the witness y that satisfies (Y, y) ∈ R.

This concludes the proof of Theorem 4.

70

CHAPTER 5
Security Framework for Protocols

Based on Adaptor Signatures

In this chapter we present our framework, named LedgerLocks, for proving security of
blockchain protocol based on adaptor signatures. First, in Section 5.1 we discuss the
previous approaches for analyzing the security of blockchain protocols based on adaptor
signatures and motivate the need for our framework. Then, in Section 5.2 we formally
describe our framework and in Section 5.3 we detail how one can use our framework to
model and prove security of adaptor signature-based blockchain protocols.

5.1 Previous Approaches for Blockchain Protocol Analysis
In this section, we overview the existing approaches to analyze the security of adaptor
signature-based (AS-based) blockchain protocols with an emphasis on the ledger modeling.
For this, we first give background on the workings of realistic ledgers and then illustrate
the impact of the ledger model on the security analysis using the examples of an atomic
swap and a multi-hop off-chain payment protocol. Finally, we discuss the ledger models
used in literature and their limitations.
Blockchain Workings. As described in Section 2.4, in cryptocurrencies built upon
a tamper-resistant distributed ledger (i.e., blockchain), network participants conduct
transactions by broadcasting them to the network. Specific network nodes, so-called
miners, group valid transactions into blocks and append them to the blockchain. To
ensure fairness, the miner selection process is randomized based on a resource in the
possession of miners (usually their computational power or financial stakes). If the
majority of the resource is owned by honest miners, then it is guaranteed that the system
will progress safely. More precisely, the system will reach consensus on a stable prefix of
the blockchain and valid transactions are guaranteed to be eventually included in such a
stable prefix.

71

5. Security Framework for Protocols Based on Adaptor Signatures

The resulting transaction execution model comes with several peculiarities. For example,
transactions submitted by honest users are not necessarily guaranteed to be included
in the blockchain but could still be outrun by (adversarial) transactions that invalidate
them, e.g., by consuming the same assets. Additionally, transactions are already public
before their inclusion in the blockchain, possibly leaking sensitive information to a
(miner-controlling) attacker.

Atomic Swaps. An atomic swap (shown in Figure 5.1) involves two ledgers A (blue),
B (orange) and two users Alice (A) and Bob (B), holding assets in A and B, respectively.
A correct atomic swap protocol ensures that Alice receives Bob’s assets on B and Bob
receives Alice’s assets on A if both parties are honest. An atomic swap protocol is
considered secure if an honest party always either (i) receives the other party’s assets; or
(ii) keeps their own assets.

A () BAB AB

Figure 5.1: Transactions in an atomic swap protocol.

To set up such an atomic swap, Alice locally creates a cryptographic secret x. Moreover,
Alice and Bob deposit their assets into a shared account AB in the respective chain
(through deposit transaction dtxA and dtxB). The assets in a shared account are set
up such that they can be released by the intended receiver showing the secret value
x or refunded to the original owner. This functionality is achieved by Alice and Bob
jointly creating AS-locked transactions ctxA and ctxB , which can only be submitted
upon the knowledge of secret x and whose publication will release x to the other party.
Furthermore, they create the refund transactions rtxA and rtxB that allow Alice and
Bob to retrieve back their assets in case the other party stops collaborating.

After a successful setup, Alice, who knows the secret x, can claim Bob’s assets in B
(using ctxA). Then, Bob can read x from B and use it to claim the assets in the shared
account on A (using ctxB). Alternatively (e.g., if the other user fails to cooperate), Alice
and Bob can refund their assets by publishing rtxA or rtxB , respectively. Alice’s refund
transaction rtxA is equipped with a timelock that ensures that it can only be published
after time t. This restriction prevents Alice from simultaneously publishing rtxA and
ctxA to retrieve the assets on both chains. Instead, if Alice has not claimed Bob’s assets
(through ctxA) until time right before t, Bob can publish rtxB to be refunded before
rtxA becomes valid at time t.

Although the idea behind the atomic swap protocol seems simple, it is only secure when
assuming a highly simplified ledger model. More precisely, its security relies on the
assumption that rtxB will be included immediately after Bob sent it to the network. In

72

5.1. Previous Approaches for Blockchain Protocol Analysis

practice, the ledger only guarantees, that rtxB will be included in the blockchain within
a time delay ∆. During this time, other transactions (even if submitted later) may be
included in the blockchain, invalidate rtxB and, thus, prevent its inclusion. Specifically,
a malicious Alice could send ctxB right after observing rtxB on the network. As a
consequence, ctxB could be included in the blockchain first, canceling rtxB .

BA () ABAB

BAB ABA ()

Figure 5.2: Atomic swap in a ledger with delayed inclusion (top). Attack in an atomic
swap in a realistic ledger (bottom).

To secure the atomic swap protocol in the presence of such ledgers, Bob’s behavior in
the protocol needs to be adapted as illustrated in Figure 5.2 (top). More precisely, right
before time t − 2∆, Bob needs to initiate the refund of their assets by publishing rtxB

(denoted by a dotted arrow). Like this, Bob knows right before time t − ∆ whether the
refund was successful or whether Alice managed to outrun Bob with ctxA . In the latter
case, Bob learns x and publishes ctxB , which is guaranteed to be included before t, the
time starting from which Alice could publish rtxA .

Interestingly, even the adapted protocol is insecure when considering another subtlety of
realistic ledger workings. A transaction, once submitted to the network, becomes public
to the miners even before being included in the blockchain. Considering that and despite
her advantage of exclusively knowing secret x, Alice is subject to an attack (Figure 5.2,
bottom). When Alice claims Bob’s assets (by publishing ctxA), a malicious Bob can
learn x and still outrun ctxA with rtxB . Then, Bob could claim Alice’s assets (publishing
ctxB) before Alice could refund her assets using rtxA at time t.

Multi-Hop Payments. The aforedescribed issues do not only apply to atomic swaps
but extend to a wide range of (AS-based) blockchain protocols. Another example is off-

73

5. Security Framework for Protocols Based on Adaptor Signatures

chain payments in payment channel networks such as described in [MMS+19]. Payment
channel networks allow parties that do not share a payment channel to still securely
exchange off-chain payments as long as they are connected via a path in a payment
channel network (for background on payment channels refer to Section 2.4).
For preparing a payment, the parties Pi on a payment path between sender S (= P0) and
receiver R (= Pn) lock channel funds for the payment such that the payment later can be
enforced atomically. To this end, the parties Pi (0 ≤ i < n) prepare conditional off-chain
payments based on some condition ci to their successors Pi+1 on the payment path. These
conditional off-chain payments are realized through AS-locked transactions ctxi on the
channel funds that can be published once the channel is closed. The conditions ci are set
up such that if party Pi+1 claims ctxi , this will reveal a secret xi to Pi allowing them
to satisfy ci−1 and claim ctxi−1 in turn. Once all conditional payments are set up, S
initiates the payment by revealing a secret sR to R that allows them to open cn−1. Next,
the payment gets propagated through the payment path, where collaborative parties
Pi and Pi+1 can update their payment channels off-chain after revealing the secret that
would enable ctxi . If Pi is not collaborating, Pi+1 can close the channel and use ctxi

to enforce the conditional payment based on the last channel state.
To ensure that a malicious sender cannot indefinitely lock the funds of intermediaries on
the path, the parties, in addition to ctxi prepare a refund transaction rtxi that allows
Pi to retrieve back their funds after time ti. As for the atomic swap protocol, such a
refund option introduces additional challenges in the design of a secure protocol. More
precisely, if party Pi+1 is not responding, honest Pi needs to close the channel and invoke
the refund using rtxi . However, even after successful channel closure while waiting for
rtxi to be included in the blockchain, Pi+1 may still decide to publish ctxi instead. In
this case Pi needs to observe ctxi on the blockchain, learn xi and use it to continue the
payment (either off-chain or on-chain). For this, it needs to be ensured that ctxi−1 is
still valid at this point and so that rtxi−1 has not been published yet.
This illustrates how the protocol design is closely intertwined with the precise guarantees
that the underlying ledger provides:

1. The protocol transactions need to have timelocks that respect the ledger inclusion
times. In particular, timelock ti of rtxi needs to be adjusted such that ti <
ti−1 + 2∆ + ∆close (for ti−1 being the timelock of rtxi−1 and ∆close being the
channel closing time) to ensure that ui after closing their outgoing channel and
publishing rtxi at ti, when learning (latest) at ti + ∆ whether rtxi or ctxi got
included in the blockchain there is still enough time to close their ingoing channel
and publish ctxi−1 on the blockchain (which may take up to ∆close + ∆).

2. The honest participant strategies need to respect the timing constraints. For
example, it is crucial that honest participants frequently poll the blockchain for the
inclusion of payment channel closing transactions and to react on the publication
of a claim transaction ctx on-chain in well-defined time windows to obtain the
desired correctness guarantees.

74

5.1. Previous Approaches for Blockchain Protocol Analysis

If the ledger model is not accounting for the exact ledger behavior concerning the
attacker’s delay and learning capabilities, wrong protocols can easily be proven secure.
For example, consider a version of the multi-hop payment protocol where receiver R
accepts S’s payment too late. After setting up the payment, if R receives sR only after
tn + ∆close, then R is not guaranteed anymore to receive the payment. If Pn−1 does not
collaborate in updating the channel, R needs to close the channel with Pn−1 (taking up to
∆close) and then publish ctxn at time t < tn. However, at tn a malicious Pn−1 already
submitted rtxn to outrun ctxn resulting in Pn−1 being refunded while still learning sR.
With the knowledge of sR, Pn−1 completes the payment and receives the funds meant
for R. Similar to the atomic swap example, such an attack could not be detected in the
presence of a ledger model with instant transaction inclusion or without modeling that
the attacker may learn transaction details (such as xi) before the transaction’s inclusion
in the blockchain.

State-of-the-Art Ledger Models. As highlighted by the examples in the last
paragraph, there are several realistic ledger features whose modeling comes with immediate
security implications. Foremost, this is a realistic attacker model that accounts for both
the attacker knowledge (e.g., the knowledge of transactions after they got submitted but
before they got included in the blockchain) and the attacker capabilities (e.g., to influence
the order and time of transaction inclusion). Related to the attacker capabilities, the
concrete inclusion time guarantees for honest users are crucial for secure protocol design
(e.g., for the correct adjustment of timeouts).

The importance of a realistic ledger model for the security analysis of blockchain protocols
is also emphasized by Kiayias and Litos [KL20], who propose a formal security analysis of
Bitcoin’s Lightning Network in the presence of the ledger model GLedger of Badertscher et
al. [BMTZ17]. The authors showcase that for precisely specifying the Lightning Network
protocol, it is inevitable to rely on the exact timing guarantees obtained from the ledger
in [BMTZ17]. Moreover, Kiayias and Litos [KL20] also prove that the simplified models
that are used in the security analysis of [DFH18, DEF18, DEFM19, EMM19, TMM22]
not only fail to reflect the guarantees of realistic ledgers but that it is impossible to
design a ledger that could provide such guarantees. This problem was further studied
by Badertscher, Hesse and Zikas [BHZ21], who showed that generic security-preserving
replacement of ledger functionalities by their protocol implementation can only work
under (often unrealistic) strong conditions on the underlying ledger.

Ledger Features Linst L∆ GLedger / GLedgerLocks
Attacker knowledge ✗ ✗∗ ✓

Attacker capabilities ✗ ✗∗ ✓

Inclusion time guarantees ✗ ✓ ✓

Realizability ✗ ✗† ✓

Table 5.1: Overview of features of ledger models used for the analysis of blockchain
protocols. ✗∗ denotes that the corresponding ledger feature is underspecified, ✗† indicates
that the realizability of L∆ is unknown.

75

5. Security Framework for Protocols Based on Adaptor Signatures

However, as summarized in Table 5.1, the state-of-the-art still analyses blockchain
protocols in the presence of simplified ledger models, which disregard security-relevant
ledger features. These works consider either

1. (provable unrealizable) ledgers Linst with immediate inclusion guarantees [DFH18,
DEF18, DEFM19, EMM19, TMM22]; or

2. ledgers L∆ that let the attacker delay the inclusion of a transaction up to some
delay parameter ∆ [TMSS20, AEE+21, AME+21, TMM21a, AMKM21b, GMM+22,
ATM+22, TM21, QPM+23].

For example, in [AEE+21], it is stated that upon a message being posted by the user,
the ledger should “wait until round τ1 ≤ τ0 + ∆ (the exact value of τ1 is determined by
the adversary)”. This description leaves open at which point in time and based on which
information the adversary determines the inclusion time τ1. Though, as shown for the
example of atomic swap and multi-hop payments, leaving these aspects underspecified
may result in the security analysis missing relevant attacks.

Hence, the aim of our framework is to simplify the design of AS-based blockchain protocols
in the presence of a realistic ledger. Towards this end, we propose the LedgerLocks
framework, which extends the realistic ledger model GLedger from [BMTZ17] to include
an abstraction for the cryptographic operations required to synchronize transactions in
AS-based protocols. In this way, the security analysis of these protocols can focus on the
ledger-specific aspects instead of cryptographic arguments.

5.2 Lock-Enabling Ledger
In Section 5.2.1, we define GLedgerLocks, an ideal functionality for a distributed ledger
with AS-locked transactions. In the design of GLedgerLocks, we follow the technique from
Badertscher et al. [BMTZ17], where the authors provide GLedger, an ideal functionality
modeling the subtleties of real-world blockchain consensus, in particular, realistic guaran-
tees about the inclusion of transactions into the ledger. Moreover, they give ΠLedger, a
description of the Bitcoin backbone protocol and prove that it UC-realizes GLedger.

We note that GLedger and ΠLedger are generic in that they do not fix the concrete transaction
format or ledger logic. Instead, both of them are parametrized with a predicate isValidTx,
which based on the internal ledger state determines whether a transaction is valid or not.

In this manner, the UC-realization proof holds for any instantiation of this predicate.
Furthermore, one can leverage the results in [BMTZ17] by extending GLedger in two ways:

1. instantiating isValidTx predicate to account for the specific transaction formats and
ledger logics; and

2. extending GLedger with additional interfaces to account for further ledger features.

76

5.2. Lock-Enabling Ledger

Our ideal functionality GLedgerLocks follows this blueprint to model multi-party account-
based transaction authorization. In more detail, GLedgerLocks allows multiple parties to
create a joint account. Transactions are associated with the set of all accounts, which
need to provide authorization for transaction publication on the ledger. In addition to
full authorization, accounts can lock a transaction on a condition, in which case any
account owner can complete the authorization by providing an appropriate witness. If
such an AS-locked transaction is published on the ledger, honest account owners learn
the corresponding witness, while a malicious owner learns the witness already upon
transaction submission.

We build GLedgerLocks from GLedger by (i) requiring the transaction format to include the
list of accounts to authorize the transaction; (ii) adding additional state and interfaces
for the new operations; and (iii) instantiating the validity predicate to check for correct
transaction authorization. The operation for releasing a AS-locked transaction thereby
makes use of GCond to determine whether a provided witness satisfies the condition of the
corresponding transaction. To stay general, we do not fully fix the transaction format
and the isValidTx predicate but introduce another predicate CheckBase, which performs
additional transaction validity checks. In this way, we can modularly add additional
functionality to GLedgerLocks, e.g., support for timelocks as we show in Section 6.1.

Finally, we show how to realize GLedgerLocks with a protocol ΠLedgerLocks, which uses GLedger
and FAdaptSig. Thanks to our modeling of GCond as global ideal functionality, the whole
construction and proof are independent of the concrete realization of conditions. We
depict this realization pictorially in Figure 5.3, and refer to Sections 5.2.1 and 5.2.2 for
more details.

R

R

Figure 5.3: Realization of GLedgerLocks in (FAdaptSig, GLedger)-hybrid world.

77

5. Security Framework for Protocols Based on Adaptor Signatures

5.2.1 Ideal Functionality GLedgerLocks

We formally describe functionality GLedgerLocks in Figure 5.4, which extends the ledger
functionality GLedger of Badertscher et al. [BMTZ17] (shown in Section 2.4) with accounts
and conditional payments. In Figure 5.3 we depict pictorially how GLedgerLocks is con-
structed from the base ledger GLedger [BMTZ17], and in the following we explain the
details of the functionality.

The functionality maintains a list LAccId, that contains the generated accounts. Addi-
tionally, it uses LAuths that contains authorized transactions, and LTxsCond that contains
conditional transactions. GLedgerLocks builds upon GLedger by adding interfaces, introducing
an additional state, and refining the transaction validation check (by instantiating the
predicate isValidTx). GLedgerLocks keeps three lists to model account management (LAccId),
authorization (LAuths) and locking of transactions (LTxsCond). The new validity predicate
CheckCond operates on transactions of the form (A,tx′) where A denotes the set of
accounts controlling the transaction tx′. For checking the validity of a transaction, it
checks LAuths for authorization of all accounts in A and invokes CheckBase for further
validity checks. In addition to the interfaces for submitting and reading transactions
provided by GLedger, GLedgerLocks provides five interfaces. The account generation interface
allows multiple parties to jointly generate an account (added to LAccId). Although the
ideal functionality models multi-party account generation, we note that in our protocol
(described in Section 5.2.2), we only consider two-party account generation as this is suf-
ficient for our envisioned applications. Moreover, a transaction can have several accounts
associated to it, contributing to the generality of the ideal functionality definition. In
particular, this allows for modeling UTXO-style cryptocurrencies, where a transaction
refers to multiple inputs, which may be controlled by different accounts.

The transaction locking interface allows the parties owning an account to jointly create
an authorization for a transaction, which is locked under a specified condition and can
only be released using the opening information for this condition. This authorization
is recorded in LTxsCond. The transaction release interface allows a party controlling the
respective account and knowing the opening information of the condition to submit a
locked transaction to the ledger, moving the transaction from LTxsCond to LAuths. The
witness signaling interface allows the account parties to extract the condition witness
from the published AS-locked transaction.

One subtlety in our model here is that witness signaling is only enabled when the
previously released transaction is added to the ledger. Only then we can guarantee that
any party (involved in its creation) would have seen both the AS-locked transaction and
the released transaction. We model this by checking whether the released transaction
is in the ledger’s view of the party invoking the witness signaling interface, which can
be accessed by the ledger state variable, as defined in GLedger. While an honest user is
only guaranteed to learn the witness upon inclusion of the transaction in the ledger, a
malicious user may learn the witness already upon the transaction’s submission to the
ledger. As motivated in Section 5.1, this situation may occur if the attacker controls

78

5.2. Lock-Enabling Ledger

both the user participating in the creation of the AS-locked transaction and a miner.
We reflect this subtlety in the release interface as follows: if any of the transaction’s
account owners is corrupted, then the witness is immediately sent to the adversary. As
described in Section 5.1, modeling this behavior is crucial for an accurate security analysis
of blockchain protocols.

5.2.2 Protocol ΠR
LedgerLocks

Our lock-enabling ledger protocol ΠR
LedgerLocks is defined in the (FR,fadapt

AdaptSig, GLedger)-hybrid
model and given in Figure 5.5.

During account generation, parties obtain verification keys by making calls to the key
generation interface of FAdaptSig. Analogously, authorization of transactions and locking
of transactions happen with a call to the signing interface of FAdaptSig, where in the latter
case, only a pre-signature σ̂ that is conditioned on Y is computed, whereas in the former
a full signature σ over the transaction is computed. Releasing of transactions happens
by calling the adaptation interface of FAdaptSig with the witness (i.e., opening) y of the
corresponding condition (i.e., statement) Y used during the locking procedure. Lastly,
witness signaling calls the extraction interface of FAdaptSig, which returns witness y.

Finally, the validation predicate CheckAdapt verifies the signatures attached to the
transactions. Note that the instantiation of GLedger used for ΠLedgerLocks differs from the
one that GLedgerLocks extends. More specifically, GLedger used in ΠLedgerLocks operates on
transactions of the form tx∗ = (tx, σ⃗) that (in addition to the account identities of tx)
hold the signatures S⃗ig that CheckAdapt verifies via FAdaptSig. To hide this difference in
format from a distinguishing environment, ΠLedgerLocks wraps the corresponding interfaces
of GLedger for reading and submitting.

5.2.3 Security Proof
The security of conditional ledger is captured with the following theorem.

Theorem 5. The protocol ΠR
LedgerLocks UC-realizes GLedgerLocks, in the (FR,fadapt

AdaptSig, GLedger)-
hybrid model.

Proof. We note that GLedgerLocks mostly inherits the security properties of GLedger, since the
only non-trivial properties that GLedgerLocks enforces (in addition to what the base ledger
functionality GLedger provides) are that only the account holders can submit transactions
and transactions can be tied to conditions. Since both of these properties are achieved
through the usage of adaptor signature functionality FAdaptSig, we have that the real
world indeed implements the stronger validation predicate. More precisely, due to the
security of FAdaptSig, we are guaranteed existence of the simulator SAdaptSig (as described
in Section 4.2.3), which can handle our calls in ideal world execution to perfectly simulate
the protocol. Our simulator SLedgerLocks is given below. We note that indistinguishability
follows because the simulator SLedgerCond makes exactly the same calls to FAdaptSig that

79

5. Security Framework for Protocols Based on Adaptor Signatures

an honest party makes in ΠLedgerLocks. Furthermore, in the case of releasing transactions,
we have that the simulator SLedgerCond learns the witness as long as it is involved in the
transaction, which coincides with the real world protocol. The rest of the operations
reduces to the security of GLedger, which was proven to be secure and realizable in the
UC framework by Badertscher et al. [BMTZ17]. Hence, as long as the protocol can be
simulated in the ideal world, the ideal and real world executions are indistinguishable.

Simulator SLedgerLocks

Initialization: The simulator internally runs A in a black-box way and simulates the interaction
between A and (emulated) real-world hybrid functionalities. The inputs from A to the base
ledger GLedger are simply relayed (and replies given back to A). The simulator maintains locally
a list of keys KP , list of pre-signed transactions PP and list of signed transactions QP , for
an honest party P . Moreover, the simulator has access to the adaptor signature functionality
FAdaptSig.

Messages from Lock-enabling Ledger:

• Upon receiving (account-req, sid, (P ′, P)) from GLedgerLocks, set sid′ := (sid, P, P ′), forward
(keygen, sid′) to the simulated adaptor signature functionality FAdaptSig in the name of P . Upon
receiving (verification-key, sid′, vk) from FAdaptSig, output this to A and store (P ′, vk) in KP .

• Upon receiving (auth-req, sid,tx, α) from GLedgerLocks, parse α as (AccountId, {P ∗}) and
{P ∗} as (P, P ′), set sid′ := (sid, P, P ′), and forward (sign, sid′,tx, vk, ⊥, signature) to the simu-
lated adaptor signature functionality FAdaptSig in the name of P . Upon receiving (signature, sid′, σ)
from FAdaptSig, output this answer to A and store (tx, vk, σ) in list QP .

• Upon receiving (lock-req, sid,tx, α, Y) from GLedgerLocks, parse α as (AccountId, {P ∗}) and
{P ∗} as (P, P ′), set sid′ := (sid, P, P ′), forward (sign, sid′,tx, vk, Y, pre-signature) to the simu-
lated adaptor signature functionality FAdaptSig in the name of P . Upon receiving (signature,
sid′, σ̂) from FAdaptSig, output this answer to A and store (tx, vk, Y, σ̂) in list PP .

• Upon receiving (release-tx, sid, y) from GLedgerLocks, store y.

This concludes the proof of Theorem 5.

5.3 Template for Using LedgerLocks
We provide an overview of the LedgerLocks framework in Figure 5.6. The main purpose
of LedgerLocks is to ease the description of an AS-based blockchain protocol ΠApp and
UC-realization of its corresponding ideal functionality FApp. More precisely, LedgerLocks
allows modeling ΠApp in (GCond, GLedgerLocks)-hybrid world and prove UC-realization of
FApp without the need to provide reductions to the properties of the adaptor signatures
or condition creation mechanism.

We outline here in detail the steps towards using LedgerLocks framework for AS-based
blockchain protocols. Later in Chapter 6 we apply these steps to showcase the usage of
LedgerLocks with concrete applications of adaptor signatures.

80

5.3. Template for Using LedgerLocks

Schnorr
Guillou-

Quisquater
Katz-Wang

Figure 5.6: Overview of the LedgerLocks framework.

Protocol Modeling. For describing a blockchain application protocol ΠApp (such as
the payment channel protocol ΠChannel given in Section 6.1) with the help of LedgerLocks,
ΠApp can be defined in a (GCond, GLedgerLocks)-hybrid world, meaning that it may interact
with both GCond and GLedgerLocks. Intuitively, all (adaptor) signature-related operations of
the protocols can be replaced with calls to the corresponding interfaces of GLedgerLocks.
GCond allows for a logical separation between the creation of conditions and their usage
to restrict transaction publication on GLedgerLocks.

In cases where ΠApp involves several blockchains, the description of ΠApp uses multiple
instances of GLedgerLocks. The characteristics of these blockchain instances can be further
refined by specifying the CheckBase predicate (and correspondingly the transaction format)
to describe the logic of transaction execution. In Section 6.1 we show to instantiate
CheckBase predicate to extend the blockchain logic with timelocks and UTXO style
transactions. Though, we note that this formalism is expressive enough to encode more
involved smart contract logic.

If ΠApp requires the creation of conditions with additional properties (that go beyond
the conditions presented in Section 4.1), then GCond can be extended with additional
condition creation interfaces to support the new condition types. In this case, for some
relation R (known to realize GCond) one needs to give a protocol ΠR

Cond and prove that it
realizes the newly added interfaces in GCond. Alternatively, one can immediately give a
new protocol ΠR∗

Cond for some new relation R∗ (that is known to be supported by some
adaptor signature scheme) and show that it realizes GCond.

Defining Protocol Security. LedgerLocks can also serve as a starting point for
defining the security of AS-based blockchain protocols. An ideal functionality FApp
capturing the desired security of ΠApp can be described by extending GLedgerLocks, e.g.,
by instantiating the CheckBase predicate that determines which transactions will be
considered valid in a faithful protocol execution. Similar to how we extended GLedger to
GLedgerLocks, FApp may make use of additional state to capture the desired correctness
and security properties of the protocol. For cross-chain blockchain protocols, FApp may

81

5. Security Framework for Protocols Based on Adaptor Signatures

hold several internal copies of extended GLedgerLocks functionalities.

Proving UC-Realization. Finally, one needs to prove that ΠApp UC-realizes FApp.
This proof should not involve cryptographic reductions7 but focus on how the interactions
of ΠApp with GLedgerLocks and GCond are translated into interactions with FApp. As FApp
uses GLedgerLocks as a component, the proof’s essence should lie in showing that the way
that transactions are created, locked and released within ΠApp enforces the transaction
inclusion logic encoded in FApp.

Limitations of LedgerLocks. LedgerLocks, in its current form, is not suitable for
modeling blockchain protocols operating on ledgers that do not support transaction
authorization through adaptor signature schemes8. However, most cryptocurrencies
base their transaction authorization on signature schemes shown to support adaptor
signatures, with one notable exception here being Zerocash [BCG+14]. Furthermore, since
GLedger is currently only shown to be realized by the Bitcoin (Proof-of-Work) backbone
protocol [BMTZ17] and the Ouroboros Genesis (Proof-of-Stake) protocol [BGK+18],
LedgerLocks (relying on the security of GLedger) only provides full end-to-end guarantees
for ledgers using one of these protocols.

7Here we assume that ΠApp does not make use of any other cryptographic primitive or protocol apart
from adaptor signatures and condition creation protocol.

8We note that by doing minor modifications to GLedgerLocks, our framework could be extended to also
support ledgers without adaptor signature support if they implement a scripting language with native
support for the condition checks (such as hash locks).

82

5.3. Template for Using LedgerLocks

Ideal Functionality GLedgerLocks

The functionality interacts with an adversary S and a set of parties P = {P1, . . . , Pn}.
It maintains a set of corrupted parties in C. It uses LAccId with entries of the form
(AccountId, (P1, . . . , Pm)), LAuths with entries of the form (AccountId,tx), and LTxsCond
with entries of the form (sid,tx, Y, {y, ⊥}). Moreover, we inherit the read and submit inter-
faces from GLedger of [BMTZ17] (cf. Section 2.4).
Account Generation: Upon receiving (create-account, sid, (P1, . . . , Pm)) from P do the follow-
ing:
• For each Pi in (P1, . . . , Pm): Send (acc-req, sid, (P1, . . . , Pm, P)) to Pi and receive
(acc-rep, sid, bi). If any bi = 0, then ignore the request.
• Send (account-req, sid, (P1, . . . , Pm, P)) to S, and upon receiving a reply
(account-rep, sid,AccountId), add (AccountId, (P1, . . . , Pm, P)) in LAccId and return
(create-account, sid,AccountId) to all P1, . . . , Pm and P .
Authorize TX: Upon receiving (auth-tx, sid,tx,AccountId) from P , do the following:
• Extract the pair α := (AccountId, {P ∗}) from LAccId. If it does not exist, then ignore the
request.
• Set auth-flag := 1. For Pi ∈ {P ∗} \ {P}: Send (auth-req, sid,tx, α) to Pi and S, and
receive (auth-rep, sid, bi) from Pi. If bi = 0, set auth-flag := 0.
• If auth-flag = 1, store (AccountId,tx) in LAuths.
• Return (auth-tx, sid,auth-flag) to P .
Lock TX: Upon receiving (lock-tx, sid,tx,AccountId, Y) from P , do the following:
• Extract the pair α := (AccountId, {P ∗}) from LAccId. If it does not exist, then ignore the
request.
• Set lock-flag := 1. For Pi ∈ {P ∗} \ {P}: Send (lock-req, sid,tx, α, Y) to Pi and S, and
receive (lock-rep, sid, bi) from Pi. If bi = 0, set lock-flag := 0.
• If lock-flag = 1, store (AccountId,tx, Y, ⊥) in LTxsCond.
• Return (lock-tx, sid,lock-flag) to P .
Release TX: Upon receiving (release-tx, sid,tx,AccountId, Y, y) from some party P , do the
following:
• Extract the pair (AccountId, {P ∗}) from LAccId. If it does not exist, then ignore the request.
• If P ̸∈ {P ∗}, then ignore the request.
• Extract the entry (AccountId,tx, Y, ⊥) from LTxsCond. If it does not exist, then ignore the
request.
• Invoke GR

Cond on input (open-cond, sid, (Y, y)) and receive (opened-cond, sid, b).
• If b = 1, then replace (AccountId,tx, Y, ⊥) with (AccountId,tx, Y, y) in LTxsCond, and
store (AccountId,tx) in LAuths.
• Invoke (submit, sid,tx). Moreover, if ∃P ∈ {P ∗}, such that P ∈ C, then send (release-tx, sid, y)
to S.
• Return (release-tx, sid, b) to P .
Signal Witness: Upon receiving (signal-tx, sid,AccountId,tx, Y) from party P , do the fol-
lowing:
• Extract the pair (AccountId, {P ∗}) from LAccId. If it does not exist, then ignore the request.
• If P ̸∈ {P ∗}, then ignore the request.
• Set statei := state|min{ptP,|state|}. Check if inState(tx, statei). Otherwise, ignore the request.
• Extract the entry (AccountId,tx, Y, w) from LTxsCond, where w := y or w := ⊥. Otherwise,
ignore the request.
• Return (signal-tx, sid, w) to P .
Validate Predicate: Our predicate CheckCond(tx, state) instantiates isValidTx(tx, state)
from [BMTZ17] as follows:
• Parse tx := (A,tx′). Then, for AccountIdi ∈ A: Set b1,i := ((AccountIdi,tx) ∈ LAuths).
• Set b2 := CheckBase(tx, state).
• Return b1,1 ∧ . . . ∧ b1,|A| ∧ b2.

Figure 5.4: Ideal functionality GLedgerLocks. Here, ptP is P ’s pointer into the state,
as defined for GLedger [BMTZ17]. Moreover, inState(tx, state) := ∃B ∈ state, tx ∈
Blockify−1(B), where Blockify is a predicate to parse transactions into a block [BMTZ17].

83

5. Security Framework for Protocols Based on Adaptor Signatures

Protocol ΠR
LedgerLocks

Each party has a list K with entries (P, vk), a list P with entries (tx, vk, Y, σ̂), and a list Q
with entries (tx, vk, σ).
Account Generation: Party P upon receiving (create-account, sid, P ′) from E :
• Party P : Compute sid′ := (sid, P, P ′), send (sid′) to P ′, and invoke FR,fadapt

AdaptSig on input
(keygen, sid′). Receive (verification-key, sid, vk) from FR,fadapt

AdaptSig, and store (P ′, vk) in K.
• Party P ′: Receive sid′ from P . Invoke FR,fadapt

AdaptSig on input (keygen, sid′) and receive
(verification-key, sid, vk). Store (P, vk) in K.
Authorize TX: Party P upon receiving (auth-tx, sid,tx, P0, P1, vk) from E :
• Party P : Send (auth-req, sid,tx, {P0, P1}) to P0 and P1 and receive (auth-rep, sid, fb) from
each Pb. If fb = 0, abort.
• Party P : Compute sid′ := (sid, P0, P1) and send (sid′, vk) to P0 and P1.
• Party Pb (symmetrically party P1−b): Receive (sid′, vk) from P . Parse sid′ :=
(sid, Pb, P1−b). Extract (P1−b, vk) from K, and otherwise abort. Invoke FR,fadapt

AdaptSig on input
(sign, sid′,tx, vk, ⊥, signature) and receive (signature, sid′, σ). Store (tx, vk, σ) in Q, and send σ
to P .
• Party P : Receive σ from Pb and P1−b, store (tx, vk, σ) in Q.
Lock TX: Party P upon receiving (lock-tx, sid,tx, Y, P0, P1, vk) from E :
• Party P : Send (pre-auth-req, sid,tx, {P0, P1}) to P0 and P1 and receive (auth-rep, sid, fb)
from each Pb. If fb = 0, abort.
• Party P : Compute sid′ := (sid, P0, P1) and send (sid′, vk) to P0 and P1.
• Party Pb (symmetrically party P1−b): Receive (sid′, vk) from P . Parse sid′ :=
(sid, Pb, P1−b). Extract (P1−b, vk) from K, otherwise, abort. Invoke FR,fadapt

AdaptSig on input
(sign, sid′,tx, vk, Y, pre-signature) and receive (signature, sid′, σ̂). Store (tx, vk, Y, σ̂) in P, and
send σ̂ to P .
• Party P : Receive σ̂ from Pb and P1−b, and store (tx, vk, Y, σ̂) in P.
Release TX: Party P upon receiving (release-tx, sid,tx, Y, y, P, P ′, vk) from E :
• Party P : Compute sid′ := (sid, P, P ′), extract entry (tx, vk, Y, σ̂) from P , invoke FR,fadapt

AdaptSig on
input (adapt, sid′, σ̂, vk, y), receive (adapted-signature, sid′, σ), and store (tx, vk, σ) in Q.
• Invoke GLedger on input (submit, sid, (tx, σ)).
Signal Witness: Party P upon receiving (signal-tx, sid,tx, Y, vk) from E :
• Extract the entry (tx, vk, Y, σ̂) from P, otherwise abort.
• Invoke GLedger on input (read, sid) and receive the current state.
• Check if inState(((vk1, . . . vkn),tx′), (σ1, . . . , σn), state) and vki = vk for some vki, otherwise
abort.
• Invoke FR,fadapt

AdaptSig on input (extract, σi, σ̂, vk), receive (witness, sid, y) and return y.
Ledger Read: Party P upon receiving (read, sid) from E , do the following:
• Invoke GLedger on input (read, sid) and receive the current state state := st1|| . . . ||stn.
• Set state′ := st1. Extract (tx1, (σ1,1, . . . , σ1,n))|| . . . ||(txm, (σm,1, . . . , σm,n′)) for st2, . . . , stn.
• Define new block content x⃗′ := tx1|| . . . ||txm. Set state′ := state′||Blockify(x⃗′) and return
(read, sid, state′).
Submit TX: Party P upon receiving (submit, sid,tx) from E :
• Parse tx := ((vk1, . . . , vkn),tx′) and check that each vki is in K. Otherwise, ignore the
request.
• Read the state from GLedger as above. For each vki, extract the entry (tx, vki, σi) from Q. If
any of them is missing, then abort.
• Invoke GLedger on input (submit, sid, (tx, (σ1, . . . , σn))).
Validate Predicate: Our predicate CheckAdapt(tx, state) instantiates isValidTx(tx, state)
in [BMTZ17] as follows:
• Parse tx∗ := (((vk1, . . . , vkn),tx′), (σ1, . . . , σn)). For each pair (vki, σi), invoke FR,fadapt

AdaptSig on
input (verify, sid,tx, σi, vki, ⊥, signature), receive (verified, sid,tx, fi), and set b1,i := fi.
• Set b2 := CheckBase(((vk1, . . . , vkn),tx′), state) and return b1,1 ∧ . . . ∧ b1,n ∧ b2.

Figure 5.5: Protocol ΠR
LedgerLocks in the (FR,fadapt

AdaptSig, GLedger)-hybrid world.

84

CHAPTER 6
Applications of Adaptor

Signatures

In this chapter we demonstrate two applications of adaptor signatures. First, in Section 6.1
we show a payment channel construction, and then in Section 6.2 we build on the previous
construction to create a payment channel hub (PCH). Both of these constructions are
presented within the LedgerLocks framework that we previously described in Chapter 5.

6.1 Payment Channels
In this section, we modify the generalized channels construction of Aumayr et al. [AEE+21]
and model it within our LedgerLocks framework. We clarify the modifications to the
ideal functionality and the protocol given in [AEE+21] at a later part of this section, and
first focus on how to properly instantiate GLedgerLocks for this application scenario.
In order to model the payment channel protocol we need to instantiate GLedgerLocks to
support simple UTXO style transactions and also instantiate the CheckBase predicate
accordingly. Towards this end, we first fix the transaction format. We refine CheckBase
to account for absolute (transaction-level) timelocks by fixing the transaction format of
tx to (tx′, tl), where tl denotes the absolute timelock. We further refine the format of
tx′ to be of the form (id, i⃗n, o⃗ut) with id being a transaction identifier, i⃗n being a vector
of inputs and o⃗ut being a vector of outputs. Inputs ini ∈ i⃗n are of the form (idout, j, rtl),
where (idout, j) refers to the output that the input is spending (with idout being the
transaction id and j the offset in the transactions output vector), and rtl denotes a
relative timelock indicating the number of blocks that need to have been included in
the blockchain since the publication of the transaction with the referenced out before
the transaction can be published. Outputs are outi ∈ o⃗ut, and each one of them are of
the form (aid, v), with aid denoting the id of the account controlling the output and v
denoting the output’s value.

85

6. Applications of Adaptor Signatures

In order to set up the timelocks correctly (which we discuss in more detail in Section 6.2),
we define the parameter #safe to be the maximum amount of time that it takes an honest
party on the ledger to include a transaction in reaction to a change in the blockchain state.
We set #safe := 5 · windowsize, where windowsize is a parameter that GLedgerLocks
inherits from GLedger of Badertscher et al. [BMTZ17], and denotes the maximum amount
of blocks that an honest party can be lacking behind the current state of the blockchain.
The reason for setting #safe := 5 · windowsize is that after transaction submission,
GLedger (and hence GLedgerLocks) guarantees a valid transaction to appear in party P ’s view
within 4 · windowsize blocks.

Next, we refine the CheckBase predicate, denoted as CheckBaseC, to account for the
additional UTXO checks. Intuitively, the following checks need to be conducted:

1. The transaction identifier is fresh.

2. The transaction inputs are unique.

3. The transactions should be required to be authorized by all accounts that control
consumed inputs.

4. The values of the outputs created by a transaction should not exceed the values of
the inputs consumed.

5. All consumed inputs should exist and respect the relative input timelocks.

6. All consumed inputs should not already been consumed by another transaction on
the blockchain (i.e., no double-spending).

To simplify these checks, we define a helper function getOutput that accesses information
of a transaction input in the blockchain state state. Given an input in and the blockchain
state state, getOutput returns a set containing tuples with additional information for that
output, namely the aid of the account controlling the spent output, the value v of the
output and the height h at which the transaction with the output was added to the state.

Note that getOutput should return either ∅ indicating that state does not contain a
transaction with the referred output or a singleton set containing the information for the
unique output in state. Formally, getOutput is defined as follows.

getOutput((idout, j, rtl), state) :=
{(idout, j, aid, v, h) | ∃b, statepre, statepost, i⃗n, o⃗ut,A, tl s.t.

state = statepre∥b∥statepost

∧ h = |statepre|
∧ (A, ((idout, i⃗n, o⃗ut), tl) ∈ b

∧ outj = (aid, v)}

86

6.1. Payment Channels

Using getOutput, we now define the CheckBaseC predicate in Figure 6.1. The numbered
conditions correspond to the checks described before.

CheckBaseC((A, (id, i⃗n, o⃗ut)), state) :=

¬∃tx A′ id′ i⃗n′ ⃗out′tl′,tx = (A′, ((id′, i⃗n′, ⃗out′), tl′)) ∧ inState(tx, state) ∧ id = id′ (1)

∧ ∀(idout, j, rtl) (id′
out, j′, rtl′) ∈ i⃗n. (idout, j) ̸= (id′

out, j′) (2)

∧
A =

aid | (id, j, aid, v, h) ∈
in∈i⃗n

getOutput(in, state)

 (3)

∧

(aid,v)∈o⃗ut

v ≤
(id′,j′,aid′,v′,h′)∈ in∈i⃗n getOutput(in,state)

v′

 (4)

∧ ∀(idout, j, rtl) ∈ i⃗n. ∃ aid ′ v′ h′. getOutput((idout, j, rtl), state) = {(idout, j, aid ′, v′, h′)}
∧ |state| − h ≥ rtl (5)

∧ ∀(idout, j, rtl) ∈ i⃗n.¬∃tx A′ id′ i⃗n′ ⃗out′tl′. tx = (A′, ((id′, i⃗n′, ⃗out′), tl′)) ∧ inState(tx, state)

∧ ∃(id′
out, j′, rtl′) ∈ i⃗n′. (id′

out, j′) = (idout, j) (6)

Figure 6.1: Definition of the CheckBaseC predicate.

6.1.1 Ideal Functionality GChannel

We capture the desired functionality of a payment channels as a global ideal functionality
GChannel. We model a payment channel γ as an attribute tuple (γ.id, γ.users, γ.cash, γ.st),
where γ.id ∈ {0, 1}∗ is the channel identifier, γ.users ∈ P × P denotes the parties involved
in the channel. For convenience, we use γ.otherParty : γ.users → γ.users defined as
γ.otherParty(P) := Q, for γ.users = {P, Q}. Furthermore, γ.cash ∈ R≥0 represents the
total amount of coins locked in γ, and γ.st = [θ⃗1, . . . , θ⃗n] is the state of γ composed of a
list of outputs. Each output θ⃗i has two attributes (aidi, vi), where the value vi ∈ R≥0

represents the amount of coins and the account identifier aidi ∈ {0, 1}∗ represents the
spending account.

Before describing our functionality, we informally define below the properties of interest
for our payment channels.

Consensus on creation: A payment channel γ is successfully created only if both
parties in γ.users agree with the creation.

Consensus on update: A payment channel γ is successfully updated only if both
parties in γ.users agree with the update.

87

6. Applications of Adaptor Signatures

Instant finality with punish: An honest party P ∈ γ.users has the guarantee that
either the current state of the channel can be enforced on the ledger, or P can enforce a
state where she gets all γ.cash coins. A state γ.st is called enforced on the ledger if a
transaction with this state appears on the ledger.

Optimistic update: If both parties in γ.users are honest, the update procedure takes a
constant number of rounds (independent of the blockchain delay).

Next, we describe our ideal functionality GChannel, which is shown in Figure 6.2. The
functionality keeps track of the corrupted parties in the set C, Moreover, it also maintains
a list Γ of all the created payment channels in their latest state and their corresponding
funding transaction, and it is indexed by the channel identifier. Furthermore, GChannel
makes calls to GLedgerLocks functionality to read the latest ledger state.

The channel creation procedure is initiated by a party P sending a create message to
GChannel. At this point GChannel sends a channel creation request to Q := γ.otherParty(P),
and if Q agrees (by sending back create-ok message), then GChannel expects a channel
funding transaction, that spends both funding sources txP and txQ, to appear on the
ledger GLedgerLocks. If this is true, then GChannel stores this transaction and the channel γ
in Γ, and informs both parties of successful channel creation by sending them created
message. We note that consensus on creation is achieved, since the channel creation is
initiated by a party P , and only succeeds if Q agrees with it.

Similarly, channel closure can be requested by any P ∈ γ.users by sending a message
close to GChannel. Then, GChannel sends a channel closing request to Q := γ.otherParty(P),
and if Q accepts the channel closure we have a peaceful closure. This in turn implies that
a transaction that spends the channel funding transaction and whose output corresponds
to the latest channel state γ.st, should appear on the ledger GLedgerLocks9. If only one
party requests the channel closure or if one of the parties is adversarial, then we execute
the ForceClose procedure, which ensures a forceful channel closing.

The channel update is initiated by one of the channel parties P ∈ γ.users by sending
update message to GChannel. Analogous to the generalized construction of Aumayr et
al. [AEE+21], the update is structured into two phases: (i) the prepare phase, and (ii)
the revocation phase. At a high level, the prepare phase models the fact that both parties
first agree on the new channel state, whereas the revocation phase models the fact that
an update is only completed once the two parties invalidate the previous channel state.
The parties P and Q agree to the prepare phase by sending setup-ok and update-ok,
respectively. Conversely, if these messages are not received it means that either of the
parties does not agree on the update or setting up off-chain objects failed, in which case
the parties abort the channel update. The abort can also result in forceful channel closing
via a call to ForceClose procedure. The revocation phase is initiated by P sending
revoke to GChannel, at which point Q also needs to agree on the revocation by sending

9We note that we do not need to explicitly model the blockchain delay as this is taken care by
GLedgerLocks, which inherits these properties from GLedger of Badertscher et al. [BMTZ17].

88

6.1. Payment Channels

back revoke-ok message. At this point GChannel informs both parties of successful channel
update by sending them updated message. Note that consensus on update is achieved
as both parties need to agree on the channel update, and if parties are honest we have
optimistic update procedure since update is independent of the ledger delay.

Ideal Functionality GChannel

The functionality maintains a set of all parties P, set of corrupted parties C, s.t. C ⊂ P.
Furthermore, we abbreviate Q := γ.otherParty(P) for P ∈ γ.users and P ∈ P . The functionality
also keeps track the payment channels in the list Γ, where Γ(id) is a pointer to the channel γ
with the identifier id, i.e., γ.id = id.
Channel Creation: Upon receiving (create, sid, γ,txP , aidP) from P , do the following:
• Send (create-req, sid, γ) to Q.
• If received (create-ok, sid, γ,txQ, aidQ) from Q, then invoke GLedgerLocks on input (read, sid),
and receive back (read, sid, state). Otherwise, abort.
• If ∃tx ∈ state s.t. tx.i⃗n = (txP .id,txQ.id) and tx.o⃗ut = [(aidPQ, γ.cash)], where aidPQ :=
(aidP , aidQ), then set Γ(γ.id) := ({γ},tx) and send (created, sid, γ) to γ.users. Otherwise, abort.
Channel Update: Upon receiving (update, sid, id, θ⃗) from P , do the following:
• Parse ({γ},tx) := Γ(id) and set γ′ := γ, γ′.st := θ⃗.
• Send (update-req, sid, id, θ⃗) to Q and (setup-req, sid, id) to P .
• If received (setup-ok, sid, id) from P , then send (setup-ok, sid, id) to Q. Otherwise, abort (P
rejected).
• If received (update-ok, sid, id) from Q, then send (update-ok, sid, id) to P . Else, if Q ̸∈ C
(i.e., Q is not corrupted), then abort (Q rejected). Otherwise, set Γ(id) := ({γ, γ′},tx), run
ForceClose(id) and stop.
• If received (revoke, sid, id) from P , then send (revoke-req, sid, id) to Q. Else, set Γ(id) :=
({γ, γ′},tx), run ForceClose(id) and stop.
• If received (revoke-ok, sid, id) from Q, then set Γ(id) := ({γ′},tx), send (updated, sid, id, θ⃗)
to γ.users and stop (accepted by both P and Q). Otherwise, set Γ(id) := ({γ, γ′},tx), run
ForceClose(id) and stop.
Channel Closing: Upon receiving (close, sid, id) from P , do the following:
• Send (close-req, sid, id) to Q.
• If did not receive (close-ok, sid, id) from Q or P ∈ C ∨ Q ∈ C (i.e., P or Q is corrupted), then
run ForceClose(id) and stop.
• Otherwise, let ({γ},tx) := Γ(id), invoke GLedgerLocks on input (read, sid), and receive back
(read, sid, state).
• If ∃tx′ ∈ state s.t. tx′.i⃗n = tx.i⃗n and tx′.o⃗ut = γ.st, set Γ(id) := ⊥ and send (closed, sid, id)
to γ.users. Otherwise, send (error, sid, id) to γ.users.
Monitor Status: Upon receiving (monitor, sid, id) from P , do the following:
• If Γ(id) = ⊥, then abort. Else, parse (X,tx) := Γ(id).
• Invoke GLedgerLocks on input (read, sid), and receive back (read, sid, state).
• If ∃tx′ ∈ state s.t. tx′.i⃗n = tx.i⃗n and tx′.o⃗ut = (aidP , γ.cash), for P ̸∈ C, set Γ(id) := ⊥,
send (punished, sid, id) to P and stop.
ForceClose(id) Let Γ(id) := (X,tx). Invoke GLedgerLocks on input (read, sid), and receive back
(read, sid, state). If tx ∈ state and tx unspent, then send (error, sid) to γ.users and abort.

Figure 6.2: The ideal functionality GChannel.

89

6. Applications of Adaptor Signatures

The monitor interface allows the parties to monitor the ledger GLedgerLocks on request,
in order to apply the punishment mechanism if misbehavior is detected. This is done
by checking if there is a punish transaction on the ledger GLedgerLocks, which spends
the funding transaction of the channel γ and assigns γ.cash coins to the honest party
P ∈ γ.users. This ensures the instant finality with punishment property.

We note that our ideal functionality GChannel omits some natural checks that one would
expect when receiving a message in order to ease the readability. For example, messages
with missing parameters should be ignored, the channel instructions should only be
accepted by parties of the channel, etc. One can formally capture these either by directly
embedding them into the functionality or by defining a wrapper functionality around
GChannel, as done in [AEE+21].

Lastly, we remark that our functionality follows along the lines of the functionality given
by Aumayr et al. [AEE+21], with a few differences which we clarify below.

1. We model the payment channels ideal functionality GChannel as a global functionality,
as opposed to a local functionality as done in [AEE+21]. This is particularly
motivated by the idea that once a payment channel is created it can serve as a
building block for multiple other higher level protocols that utilize payment channels,
such a payment channel network (PCN) construction using atomic multi-hop locks
(AMHL) [MMS+19] or payment channel hub (PCH) construction using anonymous
atomic lock (A2L) [TMM21a], which we present in Section 6.2. This implies that
multiple protocols might need to share the same channel state, hence the need for
a global functionality.

2. The ideal functionality of [AEE+21] is intended to be as generic as possible, and
hence, it is parameterized by two values T and k. The value T is an upper bound
on the maximal number of consecutive off-chain communication rounds between
the parties, and the value k defines the number of ways that the channel state can
be published on the ledger. On the other hand, our ideal functionality GChannel
is not parameterized with any value. More precisely, we only consider the case
of k = 1, which was also the case considered by Aumayr et al. [AEE+21] at a
protocol level. Moreover, we do not keep track of the individual rounds and have
no explicit upper bound T on the total off-chain communication rounds. Instead,
we implicitly assume that there is some bound ∆, such that if the functionality is
expecting a reply from a party, and it does not receive it within ∆ rounds, then
the functionality aborts the execution. This is without loss of generality, and is
done only to make the functionality more readable.

3. Since the ideal functionality of [AEE+21] keeps track of the concrete rounds, at
the end of each round the parties implicitly monitor their active payment channels
in order to catch and punish the misbehaving parties. Our GChannel functionality
instead provides an explicit monitor interface for this purpose, and the parties need
to call explicitly this interface to punish the misbehaving parties.

90

6.1. Payment Channels

4. The ideal functionality of [AEE+21] interacts with a very simplistic and ad-hoc
ledger functionality, which is unclear if it can be realized, as discussed in Section 5.1.
Instead, our GChannel functionality interacts with our GLedgerLocks functionality, which
in turn is based on the complete and realizable ledger functionality GLedger of
Badertscher et al. [BMTZ17], as described in Chapter 5.

6.1.2 Protocol ΠChannel

In this section we show how the generalized channels protocol of Aumayr et al. [AEE+21]
can be described using our LedgerLocks framework. The protocol in [AEE+21] makes use
of adaptor signatures, which in our case are encapsulated with AS-locked transactions in
our LedgerLocks framework and GLedgerLocks functionality.

Our protocol makes use of some auxiliary constructors for the transactions, which we
show in Figure 6.3. The protocol ΠChannel is defined in (GR,fmerge

Cond , GLedgerLocks)-hybrid world
and formally described in Figures 6.4 to 6.8.

We note that to shorten the description of the protocols and avoid repetition we omit the
messages to and from the environment E and make use of the following arrow notation
hereafter: by m −→ F we mean “invoke the ideal functionality F on the input message
m”, and by m ←− F we mean “receive the output message m from the ideal functionality
F”.

Next, we describe the high-level details of the protocol. Our protocol follows the
generalized channels protocol given by Aumayr et al. [AEE+21], with the exception that
we make use of our LedgerLocks framework and GLedgerLocks functionality, and we have a
different punish mechanism, which we clarify below.

We note that the parties keep track of their channel state in Γ, which is indexed by the
channel identifier. Hence, Γ(id) returns the state of the channel γ, such that γ.id = id.
We can access any of the previous states of the channel by using the second index i, e.g.,
Γ(id)[i] returns the i-th state of the channel γ, such that γ.id = id. The total number of
channel states is denoted by |Γ(id)|, hence, the index i ∈ [1, |Γ(id)|]. When the index i is
omitted we simply return the latest channel state.

Channel Creation. The channel creation procedure is depicted in Figure 6.4. It
starts by both parties generating their own pair of revocation public/secret pair (YR, yR)
and publishing public/secret pair (YP , yP) and sharing with each other the public values
YR, YP along with the funding transaction source (lines 1-4 of Figure 6.4). Next, they
create a join account and construct the body of the funding, commit, split, punish and
refund transactions (lines 5-12 of Figure 6.4). Analogous to the protocol of Aumayr
et al. [AEE+21] the parties generate and exchange signatures on the split transaction
txs which spends the commit transactions txc and whose output is equal to the initial
state γ.st := [(aidP , vP), (aidQ, vQ)] and γ.cash := vP + vQ. In our case this is handled
with call to the auth-tx interface of GLedgerLocks (lines 23-24 of Figure 6.4). Similarly, the
parties create a pre-signature on the commit transaction txc which is condition on the

91

6. Applications of Adaptor Signatures

public value YP . This is handled in our case by making a call to the lock-tx interface of
GLedgerLocks (lines 19-22 of Figure 6.4).

The difference with the protocol of Aumayr et al. [AEE+21] is that for punish transaction
we generate a merged condition Y ∗ := fmerge(stmt, R, YP , YR) and lock the transaction
txp on Y ∗ (lines 13-18 and 25-28 of Figure 6.4). Lastly, the parties wait for the funding
transaction txf on the ledger GLedgerLocks in #safe time, and if yes, then the channel
creation succeeds. Otherwise, the parties execute the refund procedure.

Channel Closing. The channel closing procedure is depicted in Figure 6.6. The
purpose of the closing procedure is to collaboratively publish the latest channel state
on the ledger. When parties want to close a channel, they first run a final update that
preserves the latest channel state, but removes the punishment layer. More precisely,
parties agree on a new split transaction that has exactly the same outputs as the last split
transaction but spends the funding transaction txf directly and sign this transaction
(lines 3-5 of Figure 6.6). Next, they publish it on the ledger (line 11 of Figure 6.6). If the
final update fails, parties close the channel forcefully (lines 15-16 of Figure 6.6).

Channel Update. To update a channel γ to a new state θ⃗, given by a vector of
outputs, parties have to (i) agree on the new commit and split transaction capturing
the new state and (ii) invalidate the old commit transaction. The first part is similar to
the agreement on the initial commit and split transaction as described previously in the
creation protocol. To realize the second part, in which the punishment mechanism of
the old commit transaction is activated, parties simply exchange the revocation secrets
corresponding to the previous commit transaction (lines 26-30 of Figure 6.5). Moreover,
analogous as in the channel creation procedure, we also create the body of the punish
transaction txp, generate a new merged condition Y ∗ and lock the punish transaction
txp with the condition Y ∗ (lines 8-14 and 21-24 of Figure 6.5). This completes the honest
channel update.

In the case of a misbehaving party, such as when one party locks (i.e., pre-signs) the
new commit transaction txc and the other does not, or when one party revokes the old
commit and the other does not, we instruct the protocol to execute a forceful closing
procedure ForceClose.

Punish. If an honest party P detects that a malicious party Q posted an old commit
transaction tx′

c, it can react by publishing the punishing transaction txP
p , which spends

tx′
c and assigns all coins to P . In order to do so, party P needs to construct the secret

yQ∗, which it needs to complete and release the punish transaction txP
p . We note that

yQ∗ := fmerge(wit, R, yQ
P , yQ

R), and P has the revocation secret yQ
R since the parties reveal

their revocation secret to each other and tx′
c is old. Hence, P only needs to recover the

secret yQ
P in order to recover yQ∗ and punish Q. Though, P can recover yQ

P by making a
call to the signal-tx interface of GLedgerLocks since the old transaction tx′

c has already be
published on the ledger GLedgerLocks. This procedure is shown in Figure 6.7.

92

6.1. Payment Channels

GenFund(txP ,txQ, aidPQ, γ)

parse txP := (AP , ((idP , ⃗inP , [(aidP , vP)]), tlP))
parse txQ := (AQ, ((idQ, ⃗inQ, [(aidQ, vQ)]), tlQ))
id∗ := H(idP ∥idQ)
return (({aidP , aidQ}, ((id∗, [(idP , 0, 0), (idQ, 0, 0)], [(aidPQ, γ.cash)]), 0)))

GenRefund(txP , aidR)

parse txP := (AP , ((idP , ⃗inP , [(aidP , vP)]), tlP))
id∗ := H(idP)
return (({aidR}, ((id∗, [(idP , 0, 0)], [(aidR, vP)]), 0)))

GenCommit(txf)

parse txf := (A, ((id, i⃗n, [(aidPQ, v)]), tl′))
id∗ := H(id)
return ({aidPQ}, ((id∗, [(id, 0, 0)], [(aidPQ, v)]), 0))

GenSplit(txc, θ⃗)

parse txc := (A, ((id, i⃗n, [(aidPQ, v)]), tl′))
id∗ ← H(id)
return ({aidPQ}, ((id∗, [(id, 0, #safe)], θ⃗), 0))

GenPunish(txc, aidP)

parse txc := (A, ((id, i⃗n, [(aidPQ, v)]), tl′))
id∗ := H(id)
return ({aidPQ}, ((id∗, [(id, 0, 0)], [(aidP , v)]), 0))

GenPay(txs, aidPQ, aid, tl)

parse txs := (A, ((id, i⃗n, [(aidPQ, v), outP , outQ]), tl′))
id∗ := H(id)
return ({aidPQ}, ((id∗, [(id, 0, 0)], [(aid, v)]), tl))

ComputeBalance(txf ,txs)

parse txf := (Af , ((idf , ⃗inf , ⃗outf), tlf))
parse txs := (As, ((ids, ⃗ins, ⃗outs), tls))
id∗ := H(idf)
return ({aidPQ}, ((id∗, [(idf , 0, 0)], ⃗outs), 0))

Figure 6.3: Definitions of transaction constructors used in the channel protocol. 93

6. Applications of Adaptor Signatures

Protocol ΠChannel

Create Channel
P (γ,txP , aidP) Q(txQ, aidQ)
1 : (Y P

P , yP
P) ← GenR(1λ) (Y Q

P , yQ
P) ← GenR(1λ)

2 : (Y P
R , yP

R) ← GenR(1λ) (Y Q
R , yQ

R) ← GenR(1λ)

3 : (γ,txP , Y P
P , Y P

R)

4 : (txQ, Y Q
P , Y Q

R)

5 : (create-account, sid, Q) −→ GLedgerLocks (acc-req, sid, (Q, P)) ←− GLedgerLocks

6 : (acc-rep, sid, b := 1) −→ GLedgerLocks

7 : (create-account, sid, aidPQ) ←− GLedgerLocks (create-account, sid, aidPQ) ←− GLedgerLocks

8 : txf := GenFund(txP ,txQ, aidPQ, γ) txf := GenFund(txP ,txQ, aidPQ, γ)
9 : txc := GenCommit(txf) txc := GenCommit(txf)

10 : txs := GenSplit(txc, γ.st) txs := GenSplit(txc, γ.st)
11 : txP

p := GenPunish(txc, aidP) txQ
p := GenPunish(txc, aidQ)

12 : txP
r := GenRefund(txP , aidr

P) txQ
r := GenRefund(txQ, aidr

Q)

13 : (create-ind-cond, sid, (Y P
P , yP

P)) −→ GR,fmerge
Cond (create-ind-cond, sid, (Y Q

P , yQ
P)) −→ GR,fmerge

Cond

14 : (created-ind-cond, sid, Y P
P) ←− GR,fmerge

Cond (created-ind-cond, sid, Y Q
P) ←− GR,fmerge

Cond

15 : (create-ind-cond, sid, (Y P
R , yP

R)) −→ GR,fmerge
Cond (create-ind-cond, sid, (Y Q

R , yQ
R)) −→ GR,fmerge

Cond

16 : (created-ind-cond, sid, Y P
R) ←− GR,fmerge

Cond (created-ind-cond, sid, Y Q
R) ←− GR,fmerge

Cond

17 : (create-merged-cond, sid, (Y Q
P , Y Q

R)) −→ GR,fmerge
Cond (create-merged-cond, sid, (Y P

P , Y P
R)) −→ GR,fmerge

Cond

18 : (create-merged-cond, sid, Y Q∗) ←− GR,fmerge
Cond (create-merged-cond, sid, Y P ∗) ←− GR,fmerge

Cond

19 : (lock-tx, sid,txc, aidPQ, Y P
P) −→ GLedgerLocks (lock-tx, sid,txc, aidPQ, Y Q

P) −→ GLedgerLocks

20 : (lock-req, sid,txc, (aidPQ, (P, Q)), Y Q
P) ←− GLedgerLocks (lock-req, sid,txc, (aidPQ, (P, Q)), Y P

P) ←− GLedgerLocks

21 : (lock-rep, sid, bP
c) −→ GLedgerLocks (lock-rep, sid, bQ

c) −→ GLedgerLocks

22 : (lock-tx, sid, bP Q
c) ←− GLedgerLocks (lock-tx, sid, bP Q

c) ←− GLedgerLocks

23 : (auth-tx, sid,txs, aidPQ) −→ GLedgerLocks (auth-req, sid,txs, (aidPQ, (P, Q))) ←− GLedgerLocks

24 : (auth-tx, sid, bQ
s) ←− GLedgerLocks (auth-rep, sid, bQ

s , aidPQ) −→ GLedgerLocks

25 : (lock-tx, sid,txP
p , aidPQ, Y Q∗) −→ GLedgerLocks (lock-tx, sid,txQ

p , aidPQ, Y P ∗) −→ GLedgerLocks

26 : (lock-req, sid,txQ
p , (aidPQ, (P, Q)), Y P ∗) ←− GLedgerLocks (lock-req, sid,txP

p , (aidPQ, (P, Q)), Y Q∗) ←− GLedgerLocks

27 : (lock-rep, sid, bP
p) −→ GLedgerLocks (lock-rep, sid, bQ

p) −→ GLedgerLocks

28 : (lock-tx, sid, bQ
p) ←− GLedgerLocks (lock-tx, sid, bP

p) ←− GLedgerLocks

29 : if bQ
s ∧ bP Q

c ∧ bQ
p ̸= 1 then abort if bP Q

c ∧ bP
p ̸= 1 then abort

30 : (auth-tx, sid,txf , aidP) −→ GLedgerLocks (auth-tx, sid,txf , aidQ) −→ GLedgerLocks

31 : (read, sid) −→ GLedgerLocks (read, sid) −→ GLedgerLocks

32 : (read, sid, state) ←− GLedgerLocks (read, sid, state) ←− GLedgerLocks

33 : hf := |state| hf := |state|
34 : (submit, sid,txf) −→ GLedgerLocks (submit, sid,txf) −→ GLedgerLocks

35 : while |state| < hf + #safe : while |state| < hf + #safe :
36 : (read, sid) −→ GLedgerLocks (read, sid) −→ GLedgerLocks

37 : (read, sid, state) ←− GLedgerLocks (read, sid, state) ←− GLedgerLocks

38 : if inState(txf , state) then if inState(txf , state) then
39 : ΓP (γ.id) := (γ, aidP , aidPQ,txf ,txc,txs,txP

p , ΓQ(γ.id) := (γ, aidQ, aidPQ,txf ,txc,txs,txQ
p ,

40 : Y P
P , yP

P , Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R) Y Q
P , yQ

P , Y P
P , Y Q

R , yQ
R , Y P ∗, Y P

R)
41 : else else
42 : (submit, sid,txP

r) −→ GLedgerLocks (submit, sid,txQ
r) −→ GLedgerLocks

43 : while |state| < hf + 2 · #safe : while |state| < hf + 2 · #safe :
44 : (read, sid) −→ GLedgerLocks (read, sid) −→ GLedgerLocks

45 : (read, sid, state) ←− GLedgerLocks (read, sid, state) ←− GLedgerLocks

46 : if inState(txf , state) then if inState(txf , state) then
47 : ΓP (γ.id) := (γ, aidP , aidPQ,txf ,txc,txs,txP

p , ΓQ(γ.id) := (γ, aidQ, aidPQ,txf ,txc,txs,txQ
p ,

48 : Y P
P , yP

P , Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R) Y Q
P , yQ

P , Y P
P , Y Q

R , yQ
R , Y P ∗, Y P

R)

Figure 6.4: Create channel protocol in (GR,fmerge
Cond , GLedgerLocks)-hybrid world. Here, Gen-

Fund, GenCommit, GenSplit, and GenPunish denote the constructors for txf , txc, txs

and txs, respectively, as described in Figure 6.3.94

6.1. Payment Channels

Protocol ΠChannel

Update Channel
P (id, θ⃗) Q(id, θ⃗)
1 : (Y P

P , yP
P) ← GenR(1λ) (Y Q

P , yQ
P) ← GenR(1λ)

2 : (Y P
R , yP

R) ← GenR(1λ) (Y Q
R , yQ

R) ← GenR(1λ)

3 : (Y P
P , Y P

R)

4 : (Y Q
P , Y Q

R)

5 : Extract (aidP , aidPQ,txf) from ΓP (id) Extract (aidQ, aidPQ.txf) from ΓQ(id)
6 : txc := GenCommit(txf) txc := GenCommit(txf)
7 : txs := GenSplit(txc, θ⃗) txs := GenSplit(txc, θ⃗)
8 : txP

p := GenPunish(txc, aidP) txQ
p := GenPunish(txc, aidQ)

9 : (create-ind-cond, sid, (Y P
P , yP

P)) −→ GR,fmerge
Cond (create-ind-cond, sid, (Y Q

P , yQ
P)) −→ GR,fmerge

Cond

10 : (created-ind-cond, sid, Y P
P) ←− GR,fmerge

Cond (created-ind-cond, sid, Y Q
P) ←− GR,fmerge

Cond

11 : (create-ind-cond, sid, (Y P
R , yP

R)) −→ GR,fmerge
Cond (create-ind-cond, sid, (Y Q

R , yQ
R)) −→ GR,fmerge

Cond

12 : (created-ind-cond, sid, Y P
R) ←− GR,fmerge

Cond (created-ind-cond, sid, Y Q
R) ←− GR,fmerge

Cond

13 : (create-merged-cond, sid, (Y Q
P , Y Q

R)) −→ GR,fmerge
Cond (create-merged-cond, sid, (Y P

P , Y P
R)) −→ GR,fmerge

Cond

14 : (create-merged-cond, sid, Y Q∗) ←− GR,fmerge
Cond (create-merged-cond, sid, Y P ∗) ←− GR,fmerge

Cond

15 : (lock-tx, sid,txc, aidPQ, Y P
P) −→ GLedgerLocks (lock-tx, sid,txc, aidPQ, Y Q

P) −→ GLedgerLocks

16 : (lock-req, sid,txc, (aidPQ, (P, Q)), Y Q
P) ←− GLedgerLocks (lock-req, sid,txc, (aidPQ, (P, Q)), Y P

P) ←− GLedgerLocks

17 : (lock-rep, sid, bP
c) −→ GLedgerLocks (lock-rep, sid, bQ

c) −→ GLedgerLocks

18 : (lock-tx, sid, bP Q
c) ←− GLedgerLocks (lock-tx, sid, bP Q

c) ←− GLedgerLocks

19 : (auth-tx, sid,txs, aidPQ) −→ GLedgerLocks (auth-req, sid,txs, (aidPQ, (P, Q))) ←− GLedgerLocks

20 : (auth-tx, sid, bQ
s) ←− GLedgerLocks (auth-rep, sid, bQ

s) −→ GLedgerLocks

21 : (lock-tx, sid,txP
p , aidPQ, Y Q∗) −→ GLedgerLocks (lock-tx, sid,txQ

p , aidPQ, Y P ∗) −→ GLedgerLocks

22 : (lock-req, sid,txQ
p , (aidPQ, (P, Q)), Y P ∗

) ←− GLedgerLocks (lock-req, sid,txP
p , (aidPQ, (P, Q)), Y P ∗) ←− GLedgerLocks

23 : (lock-rep, sid, bP
p) −→ GLedgerLocks (lock-rep, sid, bQ

p) −→ GLedgerLocks

24 : (lock-tx, sid, bQ
p) ←− GLedgerLocks (lock-tx, sid, bP

p) ←− GLedgerLocks

25 : if bQ
s ∧ bP Q

c ∧ bQ
p ̸= 1 then abort if bP Q

c ∧ bP
p ̸= 1 then abort

26 : Extract (Y P
R , yP

r) from ΓP (id) Extract (Y Q
R , yQ

r) from ΓQ(id)

27 : (Y P
R , yP

R)

28 : (Y Q
R , yQ

R)

29 : (open-cond, sid, (Y Q
R , yQ

R)) −→ GR,fmerge
Cond (open-cond, sid, (Y P

R , yP
R)) −→ GR,fmerge

Cond

30 : (opened-cond, sid, bP
0) ←− GR,fmerge

Cond 31 : (opened-cond, sid, bQ
0) ←− GR,fmerge

Cond

32 : bP
1 := Y Q

R

?∈ ΓP (id) bQ
1 := Y P

R

?∈ ΓQ(id)
33 : if bP

0 ∧ bP
1 ̸= 1 then if bQ

0 ∧ bQ
1 ̸= 1 then

34 : go to ForceClose(id, |ΓP (id)| − 1) go to ForceClose(id, |ΓQ(id)| − 1)
35 : else else
36 : ΓP (id) := ΓP (id) ∪ (γ, aidP , aidPQ,txf ,txc,txs,txP

p , ΓQ(id) := ΓQ(id) ∪ (γ, aidQ, aidPQ,txf ,txc,txs,txQ
p ,

37 : Y P
P , yP

P , Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R , yQ
R) Y Q

P , yQ
P , Y P

P , Y Q
R , yQ

R , Y P ∗, Y P
R , yP

R)

Figure 6.5: Update channel protocol in (GR,fmerge
Cond , GLedgerLocks)-hybrid world. Here, Gen-

Commit, GenSplit and GenPunish denote the constructors for txc, txs and txp, respec-
tively as described in Figure 6.3.

95

6. Applications of Adaptor Signatures

Protocol ΠChannel

Close Channel
P (id) Q(id)
1 : parse (γ, aidP , aidPQ,txf ,txc,txs,txP

p , parse (γ, aidQ, aidPQ,txf ,txc,txs,txP
p ,

2 : Y P
P , yP

P , Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R , yQ
R) := ΓP (id) Y P

P , yP
P , Y Q

P , Y P
R , yP

R , Y P ∗, Y P
R , yP

R) := ΓQ(id)
3 : txt := ComputeBalance(txf ,txs) txt := ComputeBalance(txf ,txs)
4 : (auth-tx, sid,txt, aidPQ) −→ GLedgerLocks (auth-req, sid,txt, (aidPQ, (P, Q))) ←− GLedgerLocks

5 : (auth-tx, sid, bt) ←− GLedgerLocks (auth-rep, sid, bt) −→ GLedgerLocks

6 : if bt = 0 then
7 : go to ForceClose(id, |ΓP (id)|)
8 : (read, sid) −→ GLedgerLocks

9 : (read, sid, state) ←− GLedgerLocks

10 : ht := |state|
11 : (submit, sid,txt) −→ GLedgerLocks

12 : while |state| < ht + #safe :
13 : (read, sid) −→ GLedgerLocks

14 : (read, sid, state) ←− GLedgerLocks

15 : if ¬inState(txt, state) then
16 : go to ForceClose(id, |ΓP (id)|)
17 : else ΓP (id) := ⊥

Figure 6.6: Close channel protocol in (GR,fmerge
Cond , GLedgerLocks)-hybrid world. Here, Com-

puteBalance denotes the constructor for txt as described in Figure 6.3.

Protocol ΠChannel

ForceClose Channel
P (id, i)
1 : parse (γ, aidP , aidPQ,txf ,txc,txs,txP

p ,

2 : Y P
P , yP

P , Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R , yQ
R) := ΓP (id)[i]

3 : (release-tx, sid,txc, aidPQ, Y P
P , yP

P) −→ GLedgerLocks

4 : (release-tx, sid, b := 1) ←− GLedgerLocks

5 : (read, sid) −→ GLedgerLocks

6 : (read, sid, state) ←− GLedgerLocks

7 : hc := |state|
8 : while |state| < hc + 2 · #safe :
9 : (read, sid) −→ GLedgerLocks

10 : (read, sid, state) ←− GLedgerLocks

11 : (submit, sid,txs) −→ GLedgerLocks

12 : ΓP (id) := ⊥

Punish Channel
P (id, i)
1 : parse (γ, aidP , aidPQ,txf ,txc,txs,txP

p ,

2 : Y P
P , yP

P , Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R , yQ
R) := ΓP (id)[i]

3 : (signal-tx, sid,txc, aidPQ, Y Q
P) −→ GLedgerLocks

4 : (signal-tx, sid, yQ
P) ←− GLedgerLocks

5 : if yQ
P = ⊥ then abort

6 : else
7 : yQ∗ := fmerge(wit, R, yQ

P , yQ
R)

8 : (release-tx, sid,txP
p , aidPQ, Y Q∗, yQ∗) −→ GLedgerLocks

9 : (release-tx, sid, b := 1) ←− GLedgerLocks

10 : ΓP (id) := ⊥

Figure 6.7: ForceClose and Punish algorithms in (GR,fmerge
Cond , GLedgerLocks)-hybrid world.

96

6.1. Payment Channels

Protocol ΠChannel

Monitor Channel
P (id)
1 : while true :
2 : (read, sid) −→ GLedgerLocks

3 : (read, sid, state) ←− GLedgerLocks

4 : for i ∈ [0, |ΓP (id)| − 2] :
5 : Extract txc from ΓP (id)[i]
6 : if inState(txc, state) then
7 : go to PunishChannel(id, i)

Figure 6.8: Monitor channel algorithm in (GR,fmerge
Cond , GLedgerLocks)-hybrid world.

6.1.3 Security Proof
The security of the protocol ΠChannel is established with the following theorem.

Theorem 6. The protocol ΠChannel UC-realizes GChannel, in the (GR,fmerge
Cond , GLedgerLocks)-

hybrid model.

Proof. In order to prove the theorem we provide the code of the simulator that simulates
the protocol ΠChannel, given access to the (global) ideal functionalities GR,fmerge

Cond and
GLedgerLocks. In our setting this is sufficient since parties do not obtain any secret inputs,
but only receive commands from the environment E , hence, we only need to handle
different behavior of malicious parties. Moreover, our realization only depends on the
external global ideal functionalities, and not on the security of any specific cryptographic
primitive, therefore, we do not need any hybrid arguments. Due to these reasons as long
as the protocol can be simulated in the ideal world, the ideal and real world executions
are indistinguishable.

We describe below the case of P honest and Q corrupted, while the reverse case is
symmetrical and simulation follows analogously.

Simulator for Channel Creation
Case P is honest and Q is corrupted

Party P upon (create, sid, γ, tidP) ←− E :

1. Set id = γ.id, send (create-ind-cond, sid) −→ GR,fmerge
Cond , receive (created-ind-cond, sid, (RP , rP))

←− GR,fmerge
Cond , send (create-ind-cond, sid) −→ GR,fmerge

Cond , receive (created-ind-cond, sid, (YP , yP)) ←−
GR,fmerge

Cond , and send (id, tidP , RP , YP) −→ Q.

2. Send (create-account, sid, Q) −→ GLedgerLocks and then receive (create-account, sid, aidP Q) ←−

97

6. Applications of Adaptor Signatures

GLedgerLocks.

3. Upon receiving (id, tidQ, RQ, YQ) ←− Q, create

[TXf] := GenFund((tidP , tidQ), γ),
[TXc] := GenCom([TXf]),
[TXs] := GenSplit(txc, txid∥1, γ.st).

4. Send (lock-tx, sid, [TXc], (aidP Q, (P, Q)), YQ) −→ GLedgerLocks and (auth-tx, sid, [TXs], aidP Q) −→
GLedgerLocks.

1. Sample (Y P
P , yP

P) ← GenR(1λ), (Y P
R , yP

R) ← GenR(1λ), and send (γ,txP , Y P
P , Y P

R) to Q.

2. Upon receiving (txQ, Y Q
P , Y Q

R) from Q, send (create-account, sid, Q) −→ GLedgerLocks and receive
(create-account, sid, aidPQ) ←− GLedgerLocks.

3. Create the body of the funding, commit, split, punish and refund transactions:

txf := GenFund(txP ,txQ, aidPQ, γ)
txc := GenCommit(txf)
txs := GenSplit(txc, γ.st)
txP

p := GenPunish(txc, aidP)
txP

r := GenRefund(txP , aidr
P)

4. Send (create-ind-cond, sid, (Y P
P , yP

P)) −→ GR,fmerge
Cond , (create-ind-cond, sid, (Y P

R , yP
R)) −→ GR,fmerge

Cond ,
and (create-merged-cond, sid, (Y Q

P , Y Q
R)) −→ GR,fmerge

Cond , receive (create-merged-cond, sid, Y Q∗)
←− GR,fmerge

Cond .

5. Send (lock-tx, sid,txc, aidPQ, Y P
P) −→ GLedgerLocks, receive (lock-req, sid,txc, (aidPQ, (P, Q)),

Y Q
P) ←− GLedgerLocks, send (lock-rep, sid, bP

c := 1) −→ GLedgerLocks, receive (lock-tx, sid, bP Q
c) ←−

GLedgerLocks.

6. Send (auth-tx, sid,txs, aidPQ) −→ GLedgerLocks, and receive (auth-tx, sid,txs, bQ
s) ←− GLedgerLocks.

7. Send (lock-tx, sid,txP
p , aidPQ, Y Q∗) −→ GLedgerLocks, receive (lock-req, sid,txQ

p , (aidPQ, (P,

Q)), Y P ∗) ←− GLedgerLocks, send (lock-rep, sid, bP
p := 1) −→ GLedgerLocks, receive (lock-tx, sid, bQ

p)
←− GLedgerLocks.

8. If bQ
s ∧ bP Q

c ∧ bQ
p ̸= 1, then abort. Otherwise, send (auth-tx, sid,txf , aidP) −→ GLedgerLocks and

(read, sid) −→ GLedgerLocks, receive (read, sid, state) ←− GLedgerLocks, set hf := |state| and send
(submit, sid,txf) −→ GLedgerLocks.

9. Wait for |state| ≥ hf + #safe, obtain state from GLedgerLocks, and if inState(txf , state) = true,
then set ΓP (γ.id) := (γ, aidP , aidPQ,txf ,txc,txs,txP

p , Y P
P , yP

P , Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R).

10. Otherwise, send (submit, sid,txP
r) −→ GLedgerLocks, wait for |state| ≥ hf + 2 · #safe, and if if

inState(txf , state) = true then set ΓP (γ.id) := (γ, aidP , aidPQ,txf ,txc,txs,txP
p , Y P

P , yP
P ,

Y Q
P , Y P

R , yP
R , Y Q∗, Y Q

R).

98

6.1. Payment Channels

Simulator for Channel Update

Case P is honest and Q is corrupted

Upon P sending (update, sid, id, θ⃗) −→ GChannel, do the following:

1. Sample (Y P
P , yP

P) ← GenR(1λ), (Y P
R , yP

R) ← GenR(1λ), and send (Y P
P , Y P

R) to Q.

2. Upon receiving (setup-req, sid, id) ←− GChannel, extract (aidP , aidPQ,txf) from ΓP (id), and
create the body of the commit, split and punish transactions:

txc := GenCommit(txf)
txs := GenSplit(txc, θ⃗)
txP

p := GenPunish(txc, aidP)

3. Send (create-ind-cond, sid, (Y P
P , yP

P)) −→ GR,fmerge
Cond , (create-ind-cond, sid, (Y P

R , yP
R)) −→ GR,fmerge

Cond ,
and (create-merged-cond, sid, (Y Q

P , Y Q
R)) −→ GR,fmerge

Cond , receive (create-merged-cond, sid, Y Q∗)
←− GR,fmerge

Cond .

4. If P sends (setup-ok, sid, id) −→ GChannel, then send (lock-tx, sid,txc, aidPQ, Y P
P) −→ GLedgerLocks,

receive (lock-req, sid,txc, (aidPQ, (P, Q)), Y Q
P) ←− GLedgerLocks, send (lock-rep, sid, bP

c := 1) −→
GLedgerLocks, receive (lock-tx, sid, bP Q

c) ←− GLedgerLocks.

5. Send (auth-tx, sid,txs, aidPQ) −→ GLedgerLocks, and receive (auth-tx, sid,txs, bQ
s) ←− GLedgerLocks.

6. Send (lock-tx, sid,txP
p , aidPQ, Y Q∗) −→ GLedgerLocks, receive (lock-req, sid,txQ

p , (aidPQ, (P,

Q)), Y P ∗) ←− GLedgerLocks, send (lock-rep, sid, bP
p := 1) −→ GLedgerLocks, receive (lock-tx, sid, bQ

p)
←− GLedgerLocks.

7. If bQ
s ∧ bP Q

c ∧ bQ
p ̸= 1, then instruct GChannel to abort, otherwise receive (update-ok, sid, id) ←−

GChannel.

8. Upon receiving (revoke, sid, id) ←− GChannel, extract (Y P
R , yP

R) from ΓP (id), and send (Y P
R , yP

R)
to Q.

9. Upon receiving (Y Q
R , yQ

R) from Q, send (open-cond, sid, (Y Q
R , yQ

R)) −→ GR,fmerge
Cond , and receive

(opened-cond, sid, bP
0) ←− GR,fmerge

Cond .

10. Set bP
1 := Y Q

R

?∈ ΓP (id), and if bP
0 ∧ bP

1 ≠ 1, then execute ForceClose(id, |ΓP (id)| − 1) and
stop.

11. Set ΓP (id) := ΓP (id)∪(γ, aidP , aidPQ,txf ,txc,txs,txP
p , Y P

P , yP
P , Y Q

P , Y P
R , yP

R , Y Q∗, Y Q
R , yQ

R).

Simulator for Channel Closing

Case P is honest and Q is corrupted

Upon P sending (close, sid, id) −→ GChannel, do the following:

1. Parse (γ, aidP , aidPQ,txf ,txc,txs,txP
p , Y P

P , yP
P , Y Q

P , Y P
R , yP

R , Y Q∗, Y Q
R , yQ

R) := ΓP (id).

99

6. Applications of Adaptor Signatures

2. Create the transaction txt := ComputeBalance(txf ,txs).

3. Send (auth-tx, sid,txt, aidPQ) −→ GLedgerLocks, receive (auth-tx, sid, bt) ←− GLedgerLocks and if
bt = 0 execute ForceClose(id, |ΓP (id)|).

4. Otherwise, send (read, sid) −→ GLedgerLocks, receive (read, sid, state) ←− GLedgerLocks, set hf :=
|state|, and send (submit, sid,txt) −→ GLedgerLocks.

5. Wait for |state| ≥ ht+#safe, and if inState(txt, state) = true, then set ΓP (id) := ⊥. Otherwise,
execute ForceClose(id, |ΓP (id)|).

Simulator for Monitoring

Case P is honest and Q is corrupted

Upon P sending (monitor, sid, id) −→ GChannel, then do the following:

1. Send (read, sid) −→ GLedgerLocks and receive (read, sid, state) ←− GLedgerLocks.

2. Parse ΓP (id) := {(γ, aidP , aidPQ,txf ,txc,txs,txP
p , Y P

P , yP
P , Y Q

P , Y P
R , yP

R , Y Q∗, Y Q
R , yQ

R)}i∈[m],
where m := |ΓP (id)|.

3. If inState(tx(i)
c , state) = true, for some i ∈ [m], then execute punish channel as follows:

a) Send (signal-tx, sid,txc, aidPQ, Y Q
P) −→ GLedgerLocks, and receive (signal-tx, sid, yQ

P) ←−
GLedgerLocks. If yQ

P = ⊥, then abort, else set yQ∗ := fmerge(wit, R, yQ
P , yQ

R).
b) Send (release-tx, sid,txP

p , aidPQ, Y Q∗, yQ∗) −→ GLedgerLocks, receive (release-tx, sid, b := 1)
←− GLedgerLocks, and set ΓP (id) := ⊥.

Simulator for ForceCloseP (id)

1. Parse (γ, aidP , aidPQ,txf ,txc,txs,txP
p , Y P

P , yP
P , Y Q

P , Y P
R , yP

R , Y Q∗, Y Q
R , yQ

R) := ΓP (id).

2. Send (release-tx, sid,txc, aidPQ, Y P
P , yP

P) −→ GLedgerLocks, receive (release-tx, sid, b := 1) ←−
GLedgerLocks. Send (read, sid) −→ GLedgerLocks, receive (read, sid, state) ←− GLedgerLocks and set
hc := |state|.

3. Wait for |state| ≥ hc+2·#safe, then send (submit, sid,txs) −→ GLedgerLocks, and set ΓP (id) := ⊥.

This concludes the proof of Theorem 6.

100

6.2. Payment Channel Hub

6.2 Payment Channel Hub
In this section we present a payment channel hub (PCH) construction, called Anonymous
Atomic Locks (A2L), which was initially proposed in [TMM21a], and later improved
in [GMM+22]. The high-level idea of the constructions given in [TMM21a, GMM+22] is
to use a synchronization puzzle.

A synchronization puzzle is a protocol between three parties: Alice, Bob, and Hub (refer
to Figure 6.9 for a pictorial description). The synchronization puzzle begins with Hub
and Bob executing a puzzle promise protocol (step 1) with respect to some message mHB ,
such that Bob receives a puzzle τ that contains a hidden signature σHB on mHB. Bob
wishes to solve the puzzle and obtain the embedded signature σHB . To do this, Bob sends
the puzzle τ privately to Alice (step 2), who executes a puzzle solve protocol (step 3) with
Hub with respect to some other transaction mAH such that, at the end of the protocol,
Alice obtains the signature σHB, whereas Hub obtains a signature σAH on mAH . Alice
then sends the signature σHB privately to Bob (step 4). Such a protocol must satisfy the
following properties.

Hub

1. Puzzle Promise

Alice

Bob

3. Puzzle Solve

Alice Bob

2. Send Puzzle

Alice Bob

4. Send Solution

Puzzle Promise

Puzzle Promise

Puzzle Solve

Puzzle Solve

Figure 6.9: Protocol flow of the synchronization puzzle, the underlying cryptographic
mechanism of TumbleBit [HAB+17] and A2L [TMM21a, GMM+22]. Dotted double-
edged arrows indicate 2-party protocols. Solid arrows indicate secure point-to-point
communication.

Blindness: The puzzle solve protocol does not leak any information to Hub about τ ,

101

6. Applications of Adaptor Signatures

and Hub blindly helps solve the puzzle. This ensures that Hub cannot link puzzles across
interactions.

Unlockability: If step 3 is successfully completed, then the secret s must be a valid
secret for Bob’s puzzle τ . This guarantees that Hub cannot learn a signature on mAH ,
without at the same time revealing a signature on mHB.

Unforgeability: Bob cannot output a valid signature on mHB before Alice interacts
with the Hub.

Towards a Payment Channel Hub. As shown in [HAB+17, TMM21a, GMM+22], a
synchronization puzzle is the cryptographic core of a PCH. First, Alice and Bob define
the messages as transactions, mAH := txAH and mHB := txHB, as follows

txAH : (A v−−→ H) and txHB : (H v−−→ B),

where (Pi
v−−→ Pj) denotes a payment over payment channels that transfers v coins from

party Pi to Pj . Second, Alice and Bob run the synchronization puzzle protocol with
Hub to synchronize the two aforementioned transfers. Here, the signatures σHB and σAH
are the ones required to validate the transactions txHB and txAH , respectively. The
anonymity of mixing follows from the fact that multiple pairs of users are executing the
synchronization puzzle simultaneously with Hub, and Hub cannot link its interaction on
the left to the corresponding interaction on the right.

In Section 6.2.1 we show an ideal functionality that captures the aforementioned properties
and in Section 6.2.2 we show a concrete protocol realizing this ideal functionality. However,
first we discuss the necessary timelocks, which are used in Section 6.2.2, i.e., at the
protocol level.

Timelocks. As already discussed in Section 5.1, one of the most delicate points
for protocol security are the concrete timelocks of the refund transactions and the
corresponding reaction times of the participants in the protocol. For example, consider
the previously discussed PCH scenario, where we note Hub with H, Alice with A and
Bob with B. Here, the timelocks need to ensure that H can always claim the funds it
pays to B from party A. To explain how the timelocks need to be set to ensure this, we
consider the following worst-case scenario: Assume that B is not responding to H and
that H at time tHB (the timelock of its refund transaction rtxHB for the money locked
on the channel with B), wants to submit rtxHB . Then, H needs to consider that rtxHB
can only be published once the channel with B has been closed, meaning that both the
commit transaction txHB

c and the split transaction txHB
s of this channel must have been

published. Since publishing txHB
c takes up to #safe block (from the perspective of H)

and after that (due to its relative timelock) txHB
s can only be submitted after additional

#safe blocks and may take #safe again until being published. Hence, H needs to start
closing the channel at least at block height tHB − 3 · #safe to be sure that txHB

s will be
published at tHB so that H can submit rtxHB.

102

6.2. Payment Channel Hub

Now, at this point, H cannot be sure that rtxHB will also be published on the blockchain
since rtxHB can still be outrun by ctxHB (published by B). However, H is guaranteed
that by tHB + #safe either rtxHB or ctxHB will be included in the ledger.

If indeed ctxHB was published, H still needs to have sufficient time to claim the payment
from A. In the optimistic case, this can be settled by an off-chain channel update.
However, if A does not collaborate, H also needs to close the channel with A (taking up
to 3 · #safe blocks), and afterwards publish ctxAH for claiming the money locked with
A on this channel (taking other #safe blocks). Consequently, it may take until 5 · #safe
blocks until H claims its funds in this way. To ensure that ctxAH is guaranteed to be
published, the timelock tAH of rtxAH needs to prevent that A could publish rtxAH
before (and in this way outrun ctxAH). For this reason, the parties need to ensure that
tAH > tHB + 5 · #safe. Therefore, in our protocols shown in Figures 6.15 and 6.16, we
set tHB := 5 · #safe and tAH := 2 · tHB. Furthermore, the parties ensure that during the
payment phase, they publish the claim transaction ctxAH at least 4 · #safe before the
timelock tAH (so that it will be included before rtxHB is enabled).

Note that it is also crucial for security that an honest party H starts closing the channel
with B (if B does not collaborate) latest at tHB − 3 · #safe to make sure that at latest at
tHB + #safe, A knows whether she need to initiate the forceful claim. If this would be
learned only later, the difference between the timelocks may not be sufficient to ensure a
secure execution.

6.2.1 Ideal Functionality FA2L

We describe the ideal functionality FA2L that captures the functionality and security
that we except from a payment channel hub (PCH) construction using synchronization
puzzles in the UC framework. Before describing our functionality, we informally define
below the properties of interest.

Atomicity: Atomicity ensures that the receiver Bob only receives the coins, if some
sender Alice paid the Hub first. Using our synchronization puzzle definition this means
that a puzzle can only be solved, if there has been a corresponding execution of the
puzzle solver protocol for that puzzle.

Unlinkability: Unlinkability means that the Hub does not learn any non-trivial infor-
mation that allows it to associate the sender Alice and the receiver Bob of a payment
(i.e, cannot link different runs of puzzle promise and puzzle solver protocols).

Griefing resistance: The PCH provides protection against griefing attacks [Rob19].
These attacks are mounted by Bob starting many puzzle promise operations, each of
which requires Hub to lock coins, whereas the corresponding puzzle solver interactions
are never carried out. As a consequence, all of Hub’s coins are locked and no longer
available, which results in a form of denial of service attack.

103

6. Applications of Adaptor Signatures

We note that the blidness property of a synchronization puzzle corresponds to the
unlinkability property of a PCH. Moreover, the above atomicity guarantee implies the
unlockability and unforgeability properties of a synchronization puzzle.

Our ideal functionality FA2L is formally described in Figure 6.10. The functionality FA2L
manages a list P that keeps track of all the synchronization puzzles generated. The
entries of the list P have the format (pid, b), where pid is the puzzle identifier, and b is
a bit specifying whether the puzzle has already been solved or not. Additionally, FA2L
managed a list T , which keeps track of the valid and used tokens.

The functionality FA2L has four interfaces: registration, puzzle promise, puzzle solver,
and open. The registration interface is initiated by the sender Alice by sending register to
FA2L. At this point FA2L sends a registration request to the Hub, and upon agreement by
the Hub it generates a token tid which is send to both Alice and Bob. This token is used
by the receiver Bob to initiate the puzzle promise by sending promise message along with
the token tid to FA2L. Before processing the request, FA2L ensures that the token is fresh
and if not aborts the request. This ensures the authenticity of the requests, i.e., that
puzzle promise can only be executed if a valid token has been acquired before and that
each token can only be used once. This authenticity property allows to provide griefing
protection if the sender Alice first has to lock a collateral before obtaining a token during
the registration procedure. Although this does not fully block griefing attacks, it makes
them financially prohibitive as the sender Alice has to lock coins for each execution of
puzzle promise.

Inside the puzzle promise interface FA2L sends a puzzle promise request to the Hub, and
if it agrees, then it generates a fresh puzzle pid, which is stores inside P (indicating that
it is currently unsolved) and shares the puzzle with Alice, Bob and the Hub. The puzzle
solver phase is initiated by Alice sending solver message to FA2L. At that point FA2L
samples a new puzzle identifier pid′ and asks the Hub if it wants to participate in the
puzzle solver yes. This ensures unlinkability since the Hub only sees a fresh identifier
pid′ during the puzzle solver phase, which it cannot link to the original identifier pid
that it received during puzzle promise phase. If the Hub agrees with the puzzle solving,
then FA2L marks the corresponding puzzle as solved in P and indicates this to Alice and
Bob. This ensures atomicity since a puzzle is marked as solved only upon a successful
execution of the puzzle solver procedure. Lastly, the open interface is initiated with open
message to FA2L, and allows to check opening of the puzzle.

6.2.2 Protocol ΠA2L

The protocol ΠA2L is defined in (GR,fmerge
Cond , GLedgerLocks, GChannel)-hybrid model, and formally

described in Figures 6.13 to 6.16. Our construction makes use AS-locked transactions
which are captured using GLedgerLocks, along with cryptographic primitives such as a
randomizable blind signature ΣRBS, a commitment scheme ΠCOM, a linearly homomorphic
encryption scheme ΠE, a non-interactive zero-knowledge proof system ΠNIZK and a secure
two-party computation (2PC) protocol Π2PC.

104

6.2. Payment Channel Hub

Ideal Functionality FA2L

The functionality maintains a list T of tokens and list P of puzzles.
Registration: Upon receiving (registration, sid, B) from A, do the following:
• Send (registration-req, sid, A) to H.
• Receive (registration-rep, sid, b) from H.
• If b = 0, then abort. Else, sample tid ←$ {0, 1}λ and add tid to T .
• Send (registered, sid, tid) to A, B and S.
Puzzle Promise: Upon receiving (promise, sid, tid, A) from B, do the following:
• If tid ̸∈ T , then abort. Otherwise, remove tid from T .
• Send (promise-req, sid, tid, B) to H and S.
• Receive (promise-rep, sid, b) from H.
• If b = 0, then abort. Else, sample pid ←$ {0, 1}λ.
• Store the tuple (pid, ⊥) into P.
• Send (promise, sid, pid) to A, B and H, and inform S.
Puzzle Solver: Upon receiving (solver, sid, B, pid) from A, do the following:
• If (pid, ⊥) /∈ P then abort.
• Sample pid′ ←$ {0, 1}λ.
• Send (solve-req, sid, A, pid′) to H and S.
• Receive (solve-rep, sid, b) from H.
• If b = 0, then abort. Else, set the entry to (pid, ⊤) in P.
• Send (solved, sid, pid, ⊤) to A, B and S.
Open: Upon receiving (open, sid, pid) from B, do the following:
• If (pid, b) /∈ P or b = 0, then send (open, sid, pid, b′ := 0) to B and abort. Else, send
(open, sid, pid, b′ := 1) to B.

Figure 6.10: Ideal functionality FA2L.

We note that apart from the main protocols of ΠA2L, such as the registration, puzzle
promise and puzzle solver protocols, we also define two auxiliary protocols for channel
update and locking up coins based on a condition in Figures 6.11 and 6.12. These
auxiliary protocols are defined in (GChannel, GLedgerLocks)-hybrid world. Below we skip the
auxiliary protocols and only explain the registration, puzzle promise and puzzle solver
protocols.

Registration. The purpose of the registration protocol is to defend against the griefing
attacks mentioned in Section 6.2.1. Our registration protocol is rather generic, and can
be used with other constructions that require protection against similar type of griefing
attack (e.g., TumbleBit [HAB+17]). The protocol is described in Figure 6.13.

The registration protocol is executed between the sender Alice and the Hub. It starts by
Alice and Hub generating a joint account aid ′

AH , and Alice locking coins in this escrow
account (lines 1-13). Next, Alice samples a random token identifier tid and computes a
commitment com to tid using the commitment scheme ΠCOM, along with a NIZK proof π
for the opening of the commitment, and sends the pair (com, π) to the Hub (lines 14-17).
Then, the Hub verifies the proof π, and (blindly) generates a signature σ∗ on the token

105

6. Applications of Adaptor Signatures

tid using the commitment com, and sends σ∗ to Alice (lines 18-21). Here, it is important
that tid is hidden (i.e., inside a commitment), otherwise, the Hub can trivially link Alice
and Bob during the puzzle promise and puzzle solver phases. The reason for this is that
the puzzle promise protocol (see Figure 6.15) starts with Bob sharing this tid in the clear
with the Hub as a form of validation (i.e., that there already exists a payment promised
to the Hub). This is also the reason why we require a signature scheme that allows to
(blindly) sign a value hidden inside a commitment (such as Pointcheval-Sanders [PS16]
signature scheme).

Next, Alice unblinds σ∗ using the decommitment information decom to obtain a valid
signature σtid on the token tid (line 22). Lastly, Alice sends the pair (tid, σtid) to Bob,
which concludes the registration protocol.

Puzzle Promise. The puzzle promise protocol is depicted in Figure 6.15. It starts by
Bob randomizing the signature σtid to obtain σ′

tid and sending the pair (tid, σtid)′ to the
Hub. We note that this randomization might not be necessary depending on the used
signature scheme, because during the registration phase the Hub does not see the final
signature. However, for example if one uses the Pointcheval-Sanders [PS16] signature
scheme, then both blinded and unblinded signatures share one component that is the
same and can be used by the Hub to break unlinkability. Hence, in this case we need to
randomize the signature to break any link.

Once the Hub receives the pair (tid, σtid)′, it checks that the signature σtid)′ is valid and
that the token tid has not been previously used (lines 3-5), in order to be protected
against replay attacks (i.e., Bob trying to claim the same collateral locked by Alice more
than once). For this reason the Hub has to keep a list T of all the previously seen token.

Next, the Hub samples a statement/witness pair (Y, y), encrypts the witness y using the
linearly homomorphic encryption scheme ΠE to obtain a ciphertext c, provides a NIZK
proof π proving that the encrypted value satisfies is the witness of Y , i.e., (Y, y) ∈ R
and shares the tuple (Y, c, π) with Bob (lines 7-11). Here we have that the pair (Y, c)
constitute the puzzle that Bob needs to solve in order to get paid by the Hub. More
precisely, the next step involves the Hub and Bob setting up the commit and refund
transactions, ctxHB and rtxHB, respectively, by locking a payment from the Hub to
Bob conditioned on the statement Y (lines 14-19). Since Bob cannot solve the puzzle
himself, he forwards the puzzle (Y, c) to Alice, who can initiate the puzzle solver protocol
with it in order to obtain the solution from the Hub.

We remark that the lines 20-24 from the Hub side of the puzzle promise protocol correspond
to the Hub monitoring the ledger GLedgerLocks and executing the refund transaction rtxHB
in case the current state (i.e., block height) has passed 3 · #safe + 1 (setup of the timelocks
was described at the beginning of this section). This only needs to happen if the peaceful
update during the puzzle opening (Figure 6.14) fails.

106

6.2. Payment Channel Hub

Puzzle Solver. The puzzle solver protocol is shown in Figure 6.16. It starts by Alice
generating a new statement/witness pair (Y, y′) and creating a new merged condition of
the form Y ∗ := fmerge(stmt, R, Y, Y ′), which she shares with the Hub (lines 1-6). This is
done in order to randomize the puzzle and break any link with the previously run puzzle
promise protocol.

Next, Alice and Hub setup the commit and refund transactions, ctxAH and rtxAH ,
respectively, by locking a payment from Alice to Hub conditioned on the merged statement
Y ∗ (lines 7-13). In order to unlock the transaction and get paid by Alice, the Hub needs
to recover the witness y∗. This is done by Alice and Hub running a secure 2PC protocol
Π2PC [HK07], where Alice inputs the pair (y′, c) and Hub inputs the decryption key dkH .
At the end of the protocol Hub learns the witness y∗ := fmerge(wit, R, y†, y′), where y† is
the decrypted value (line 14). If the extracted witness is correct, then the Hub shares it
with Alice.

At this point, Alice and Hub perform a peaceful channel update (lines 19-20) that transfers
the coins from Alice to the Hub. However, if the peaceful update does not happen because
one of the parties is not responding, then they monitor the ledger GLedgerLocks and either
performing the forceful payment or refund depending on the timelocks (lines 21-28).

Lastly, Alice unmerges the witness y∗ in order to obtain the witness y that Bob needs in
order to get paid by the Hub. Alice shares y with Bob, who performs the puzzle opening
and get paid by the Hub (Figure 6.14). During the puzzle opening Bob tries to perform
peaceful update with the Hub, and if this fails, then it uses y to forcefully receive the
money from the Hub.

Protocol ΠA2L

Update Channel
Update⟨P (γ, θ⃗), ·⟩ Update⟨·, Q(γ, θ⃗)⟩
1 : (update, sid, γ.id, θ⃗) −→ GChannel

2 : (update-req, sid, γ.id, θ⃗) ←− GChannel (setup-req, sid, γ.id) ←− GChannel

3 : (setup-ok, sid, γ.id) −→ GChannel (setup-ok, sid, γ.id) ←− GChannel

4 : (update-ok, sid, γ.id) ←− GChannel (update-ok, sid, γ.id) −→ GChannel

5 : (revoke, sid, γ.id) −→ GChannel (revoke-req, sid, γ.id) ←− GChannel

6 : (revoke-ok, sid, γ.id) −→ GChannel

7 : (updated, sid, γ.id, θ⃗) ←− GChannel (updated, sid, γ.id, θ⃗) ←− GChannel

8 : return ⊥ return ⊥

Figure 6.11: Update protocol in the GChannel-hybrid world.

107

6. Applications of Adaptor Signatures

Protocol ΠA2L

Lock Channel
Lock⟨P (γ, θ⃗, t, Y), ·⟩ Lock⟨·, Q(γ, θ⃗, t, Y)⟩
1 : Update⟨P (γ, θ⃗), ·⟩ Update⟨·, Q(γ, θ⃗)⟩
2 : Extract (aidP , aidQ, aidPQ,txs) from ΓP (γ.id) Extract (aidP , aidQ, aidPQ,txs) from ΓQ(γ.id)
3 : ctx := GenPay(txs, aidPQ, aidQ, 0) ctx := GenPay(txs, aidPQ, aidQ, 0)
4 : rtx := GenPay(txs, aidPQ, aidP , t) rtx := GenPay(txs, aidPQ, aidP , t)
5 : (auth-tx, sid,rtx, aidPQ) −→ GLedgerLocks (auth-req, sid,rtx, (aidPQ, (P, Q))) ←− GLedgerLocks

6 : (auth-tx, sid, ba) ←− GLedgerLocks (auth-rep, sid, ba) −→ GLedgerLocks

7 : (lock-tx, sid,ctx, aidPQ, Y) −→ GLedgerLocks (lock-req, sid,ctx, (aidPQ, (P, Q)), Y) ←− GLedgerLocks

8 : (lock-tx, sid, bl) ←− GLedgerLocks (lock-rep, sid, bl) −→ GLedgerLocks

9 : if ba = 0 ∨ bl = 0 then abort
10 : return (ctx,rtx) return (ctx,rtx)

Figure 6.12: Lock protocol in the (GLedgerLocks, GChannel)-hybrid world. Here, GenPay
denotes the constructors for ctx and rtx, respectively, as described in Figure 6.3.

Protocol ΠA2L

Registration
Registration⟨A(γAH , pkH ,txs), ·⟩ Registration⟨·, H(γAH , skH , pkH ,txs)⟩
1 : (create-account, sid, H) −→ GLedgerLocks (acc-req, sid, (A, H)) ←− GLedgerLocks

2 : (acc-rep, sid, b := 1) −→ GLedgerLocks

3 : (create-account, sid, aid ′
AH) ←− GLedgerLocks (create-account, sid, aid ′

AH) ←− GLedgerLocks

4 : Extract (aidA, aidH) from ΓA(γAH .id) Extract (aidA, aidH) from ΓH(γAH .id)
5 : t := 3 · 5 · #safe + 1 t := 3 · 5 · #safe + 1
6 : ctx := GenPay(txs, aid ′

AH , aidH , 0) ctx := GenPay(txs, aid ′
AH , aidH , 0)

7 : rtx := GenPay(txs, aid ′
AH , aidA, t) rtx := GenPay(txs, aid ′

AH , aidA, t)
8 : (auth-tx, sid,rtx, aid ′

AH) −→ GLedgerLocks (auth-req, sid,rtx, (aid ′
AH , (A, H))) ←− GLedgerLocks

9 : (auth-tx, sid, ba) ←− GLedgerLocks (auth-rep, sid, ba) −→ GLedgerLocks

10 : if ba = 0 then return ⊥
11 : (auth-tx, sid,ctx, aid ′

AH) −→ GLedgerLocks (auth-req, sid,ctx, (aid ′
AH , (A, H))) ←− GLedgerLocks

12 : (auth-tx, sid, ba) ←− GLedgerLocks (auth-rep, sid, ba) −→ GLedgerLocks

13 : if ba = 0 then return ⊥
14 : tid ←$ Zq

15 : (com, decom) ← ΠCOM(1λ, tid)
16 : π ← ΠNIZK.P(com, (decom, tid))
17 : com, π

18 : if ΠNIZK.V(π, com) ̸= 1 then
19 : return ⊥
20 : σ∗ ← ΣRBS.BlindSig(skH , com)
21 : σ∗

22 : σtid := ΣRBS.UnblindSig(decom, σ∗)
23 : if ΣRBS.Ver(pkH , σtid, tid) ̸= 1 then
24 : return ⊥
25 : return (tid, σtid) return ⊥

Figure 6.13: Registration protocol in (GR,fmerge
Cond , GLedgerLocks, GChannel)-hybrid model.

108

6.2. Payment Channel Hub

Protocol ΠA2L

Open
Open⟨H(γHB, θ⃗HB), ·⟩ Open⟨·, B(γHB, τ, y)⟩
1 : parse τ := (θ⃗HB,ctxHB, aidHB, Y, c)
2 : θ⃗HB := [(aidH , vH − vpay), (aidB , vB + vpay)] θ⃗HB := [(aidH , vH − vpay), (aidB , vB + vpay)]
3 : Update⟨H(γHB, θ⃗HB), ·⟩ Update⟨·, B(γHB, θ⃗HB)⟩
4 : while true :
5 : (read, sid) −→ GLedgerLocks

6 : (read, sid, state) ←− GLedgerLocks

7 : if |state| ≥ 4 · #safe + 1 then
8 : (release-tx, sid,ctxHB, aidHB, Y, y) −→ GLedgerLocks

9 : (release-tx, sid, b) ←− GLedgerLocks

10 : return ⊥ return b

Figure 6.14: Open protocol (GLedgerLocks, GChannel)-hybrid model.

Protocol ΠA2L

Puzzle Promise
PPromise⟨H(γHB, pkH , ekH), ·⟩ PPromise⟨·, B(γHB, ekH , tid, σtid)⟩
1 : σ′

tid ← ΣRBS.RandSig(σtid)

2 : tid, σ′
tid

3 : if tid ∈ T ∨ ΣRBS.Ver(pkH , σ′
tid, tid) ̸= 1 then

4 : return ⊥
5 : else T := T ∪ {tid}
6 : (Y, y) ← GenR(1λ)
7 : (create-ind-cond, sid, (Y, y)) −→ GR,fmerge

Cond
8 : (create-ind-cond, sid, Y) ←− GR,fmerge

Cond

9 : c ← ΠE.Enc(ekH , y)
10 : π ← ΠNIZK.P((ekH , Y, c), y)
11 : Y, c, π

12 : if ΠNIZK.V((ekH , Y, c), π) ̸= 1 then
13 : return ⊥
14 : Extract (aidH , aidB) from ΓH(γHB.id) Extract (aidH , aidB , aidHB) from ΓB(γHB.id)
15 : vH := GetBalance(ΓH(γHB.id), aidH) vH := GetBalance(ΓB(γHB.id), aidH)
16 : vB := GetBalance(ΓH(γHB.id), aidB) vB := GetBalance(ΓB(γHB.id), aidB)
17 : θ⃗HB := [(aidHB, vpay), (aidH , vH − vpay), (aidB , vB)] θ⃗HB := [(aidHB, vpay), (aidH , vH − vpay), (aidB , vB)]
18 : tHB := 5 · #safe + 1 tHB := 5 · #safe + 1
19 : (ctxHB,rtxHB) ← Lock⟨H(γHB, θ⃗HB, tHB, Y), ·⟩ (ctxHB,rtxHB) ← Lock⟨·, B(γHB, θ⃗HB, tHB, Y)⟩

20 : while true : Send (Y, c) to A

21 : (read, sid) −→ GLedgerLocks set τ := (θ⃗HB,ctxHB, aidHB, Y, c)
22 : (read, sid, state) ←− GLedgerLocks
23 : if |state| ≥ 3 · #safe + 1 then
24 : (submit, sid,rtxHB) −→ GLedgerLocks
25 : return ⊥ return τ

Figure 6.15: Puzzle promise protocol in (GR,fmerge
Cond , GLedgerLocks, GChannel)-hybrid model.

109

6. Applications of Adaptor Signatures

Protocol ΠA2L

Puzzle Solver
PSolver⟨A(γAH , Y, c), ·⟩ PSolver⟨·, H(γAH , dkH)⟩
1 : (Y ′, y′) ← GenR(1λ)

2 : (create-ind-cond, sid, (Y ′, y′)) −→ GR,fmerge
Cond

3 : (created-ind-cond, sid, Y ′) ←− GR,fmerge
Cond

4 : (create-merged-cond, sid, (Y, Y ′)) −→ GR,fmerge
Cond

5 : (created-merged-cond, sid, Y ∗) ←− GR,fmerge
Cond

6 : Y ∗

7 : Extract (aidA, aidH , aidAH) from ΓA(γAH .id) Extract (aidA, aidH , aidAH) from ΓH(γAH .id)
8 : vA := GetBalance(ΓA(γAH .id), aidA) vA := GetBalance(ΓH(γAH .id), aidA)
9 : vH := GetBalance(ΓA(γAH .id), aidH) vH := GetBalance(ΓH(γAH .id), aidH)

10 : v∗ := vpay + vfee v∗ := vpay + vfee

11 : θ⃗AH := [(aidAH , v∗), (aidA, vA − v∗), (aidH , vH)] θ⃗AH := [(aidAH , v∗), (aidA, vA − v∗), (aidH , vH)]
12 : tAH := 2 · 5 · #safe + 1 tAH := 2 · 5 · #safe + 1
13 : (ctxAH ,rtxAH) ← Lock⟨A(γAH , θ⃗AH , tAH , Y ∗), ·⟩ (ctxAH ,rtxAH) ← Lock⟨·, H(γAH , θ⃗AH , tAH , Y ∗)⟩
14 : Π2PC((y′, c), (dkH))

1 : if ekH ̸= ΠE.Gen(dkH)
2 : then abort
3 : y† ← ΠE.Dec(dkH , c)
4 : y∗ := fmerge(wit, R, y†, y′)
5 : return ((⊥), (y∗))

15 : (open-cond, sid, (Y ∗, y∗)) −→ GR,fmerge
Cond

16 : (opened-cond, sid, b) ←− GR,fmerge
Cond

17 : if b ̸= 1 then return ⊥
18 : y∗

19 : θ⃗AH := [(aidA, vA − v∗), (aidH , vH + v∗)] θ⃗AH := [(aidA, vA − v∗), (aidH , vH + v∗)]
20 : Update⟨A(γAH , θ⃗AH), ·⟩ Update⟨·, H(γAH , θ⃗AH)⟩
21 : while true : while true :
22 : (read, sid) −→ GLedgerLocks (read, sid) −→ GLedgerLocks
23 : (read, sid, state) ←− GLedgerLocks (read, sid, state) ←− GLedgerLocks
24 : if |state| ≥ 3 · #safe + 1 then if |state| ≥ 4 · #safe + 1 then
25 : (submit, sid,rtxAH) −→ GLedgerLocks (release-tx, sid,ctxAH , aidAH , Y ∗, y∗) −→ GLedgerLocks
26 : if y∗ = ⊥ then (release-tx, sid, b) ←− GLedgerLocks
27 : (signal-tx, sid,ctxAH , aidAH , Y ∗) −→ GLedgerLocks
28 : (signal-tx, sid, y∗) ←− GLedgerLocks
29 : y := fmerge(wit, R, y∗, −y′)
30 : Send y to B

31 : return y return ⊥

Figure 6.16: Puzzle solver protocol in (GR,fmerge
Cond , GLedgerLocks, GChannel)-hybrid model.

6.2.3 Security Proof
The security of the protocol ΠA2L is established with the following theorem.

Theorem 7. Let ΣRBS be a EUF-CMA secure randomizable blind signature, ΠCOM be a
secure commitment scheme, ΠE be an IND-CCA secure encryption scheme with unique
decryption keys, ΠNIZK be a UC-secure non-interactive zero-knowledge proof system, and
Π2PC be a UC-secure two-party computation protocol, then ΠA2L UC-realizes FA2L, in the
(GR,fmerge

Cond , GLedgerLocks, GChannel)-hybrid model.

Proof. In order to prove the theorem we provide the code of the simulator that simulates

110

6.2. Payment Channel Hub

the protocol ΠA2L, given access to the global ideal functionalities GChannel, GLedgerLocks
and GR,fmerge

Cond . We consider the cases where the adversary corrupts a different subset of
parties separately. We describe the simulator for a single session and the security of
the overall interaction is established via a standard hybrid argument, which reduces to
the security of the underlying cryptographic primitives. We ignore the update and lock
protocol given in Figures 6.11 and 6.12 in the rest of this proof since they are auxiliary
protocols that only involve making calls to the GChannel and GLedgerLocks functionalities,
hence, the simulator’s job is trivial in this case.

H Corrupted. We give a simulator SH , then give a series of hybrid experiments
that gradually change the real experiment (i.e., the construction in Figures 6.13, 6.15
and 6.16) into the ideal experiment given by the interaction of the corrupted H and
the simulator SH , which has access to FA2L along with the global ideal functionalities
GR,fmerge

Cond , GLedgerLocks and GChannel.

Simulator SH

Case A, B are honest and H are corrupted

Upon A sending (registration, sid, B) −→ FA2L, do the following:

1. Send (create-account, sid, H) −→ GLedgerLocks, receive (create-account, sid, aid ′
AH) ←− GLedgerLocks.

2. Extract (aidA, aidH) from ΓA(γAH .id), set ctx := GenPay(txs, aid ′
AH , aidH , 0) and rtx :=

GenPay(txs, aid ′
AH , aidA, t), for t := 3 · 5 · #safe + 1.

3. Send (auth-tx, sid,rtx, aid ′
AH) −→ GLedgerLocks, receive (auth-tx, sid, ba) −→ GLedgerLocks and if

ba = 0, then return ⊥.

4. Send (auth-tx, sid,ctx, aid ′
AH) −→ GLedgerLocks, receive (auth-tx, sid, ba) −→ GLedgerLocks and if

ba = 0, then return ⊥.

5. Compute (com, decom) ← ΠCOM(1λ, 0), simulate the NIZK proof π ← ΠNIZK.Sim(td, com),
and send (com, π) to H.

6. Upon receiving σ∗ from H , compute σtid := ΣRBS.UnblindSig(decom, σ∗), check if ΣRBS.Ver(pkH ,
σtid, tid) = 1, then send (registration-rep, sid, b := 1) −→ FA2L. Otherwise, send (registration-rep,
sid, b := 0) −→ FA2L.

7. Receive (registered, sid, tid) ←− FA2L and store (tid := 0, σtid).

8. If at any point before the successful completion of the registration protocol, the adversary
produces a valid signature σtid on any tid ̸∈ T , then send (registration-rep, sid, b := 0) −→ FA2L
and abort.

Upon B sending (promise, sid, A) −→ FA2L, do the following:

1. Compute σ′
tid ← ΣRBS.RandSig(σtid) and send (tid, σ′

tid) to H.

2. Upon receiving (Y, c, π) from H , if ΠNIZK.V((ekH , Y, c), π) = 1, then send (promise-rep, sid, b :=
1) −→ FA2L. Otherwise, send (promise-rep, sid, b := 0) −→ FA2L and abort.

111

6. Applications of Adaptor Signatures

3. Extract (aidH , aidB , aidHB) from ΓB(γHB.id), set vH := GetBalance(ΓB(γHB.id), aidH),
vB := GetBalance(ΓB(γHB.id), aidB), set θ⃗HB := [(aidHB, vpay), (aidH , vH−vpay), (aidB , vB)]
and tHB := 5 · #safe + 1, and run (ctxHB,rtxHB) ← Lock⟨·, B(γHB, θ⃗HB, tHB, Y)⟩.

4. Receive (promise, sid, pid) ←− FA2L and store (ctxHB, aidHB, Y, c).

Upon A sending (solver, sid, B, pid) −→ FA2L, do the following:

1. Sample a pair (Y ∗, y∗) ← GenR(1λ), send (create-ind-cond, sid, (Y ∗, y∗)) −→ GR,fmerge
Cond , receive

(create-ind-cond, sid, Y ∗) ←− GR,fmerge
Cond , and send Y ∗ to H.

2. Extract (aidA, aidH , aidAH) from ΓA(γAH .id), set vA := GetBalance(ΓA(γAH .id), aidA),
vH := GetBalance(ΓA(γAH .id), aidH), v∗ := vpay + vfee, set state θ⃗AH := [(aidAH , v∗),
(aidA, vA − v∗), (aidH , vH)], set timelock tAH := 2 · 5 · #safe + 1, and run (ctxAH ,rtxAH) ←
Lock⟨A(γAH , θ⃗AH , tAH , Y), ·⟩.

3. Initiate the 2PC protocol, and run the 2PC simulator SΠ2PC to recover its inputs dkH . If
ekH ̸= ΠE.Gen(dkH), program the output of 2PC to ⊥, otherwise to y∗.

4. Receive y∗ from H , and if y∗ = ⊥, then (signal-tx, sid,ctxAH , aidAH , Y ∗) −→ GLedgerLocks and
receive (signal-tx, sid, y∗) ←− GLedgerLocks.

5. Set θ⃗AH := [(aidA, vA − v∗), (aidH , vH + v∗)] and run Update⟨A(γAH , θ⃗AH), ·⟩.
6. If the above update failed, then read state from GLedgerLocks, and if |state| ≥ 3 · #safe + 1, then

(submit, sid,rtxAH) −→ GLedgerLocks.

7. Upon receiving (solved, sid, pid, ⊤) ←− FA2L, compute y ← ΠE.Dec(dkH , c), send (open, sid, pid)
−→ FA2L and return y.

Upon B sending (open, sid, pid) −→ FA2L, do the following:

1. Extract the stored (pid, (ctxHB, aidHB, Y, y, c), ⊥) from the list P.

2. Set θ⃗HB := [(aidH , vH − vpay), (aidB , vB + vpay)] and run Update⟨·, B(γHB, θ⃗HB)⟩.
3. If above update failed, then read state from GLedgerLocks. If |state| ≥ 4 · #safe + 1, then send

(release-tx, sid,ctxHB, aidHB, Y, y) −→ GLedgerLocks, receive (release-tx, sid, b) ←− FA2L and send
(open, sid, b) −→ FA2L and return ⊥.

Hybrid H0: This corresponds to the real protocol execution (Figures 6.13, 6.15 and 6.16).

Hybrid H1: Replace the honestly computed NIZK proof π (Figure 6.13, line 16) with a
simulated proof.

Hybrid H2: Replace the commitment com (Figure 6.13, line 15) with a commitment to
zero.

Hybrid H3: Abort if any valid signature σtid is received on any tid ̸∈ T before the
registration protocol has successfully completed.

112

6.2. Payment Channel Hub

Hybrid H4: Simulate the 2PC protocol Π2PC (Figure 6.16, line 14) and send the output
y∗ to H.

Hybrid H5: Sample (Y ∗, y∗) ← GenR(1λ) (i.e., remove lines 4-5 from Figure 6.16). If
ΠE.Gen(dkH) = ekH , then send y∗ to H. Otherwise, send ⊥.

Lemma 10. For all PPT distinguishers E,

EXECH0,A,E ≈ EXECH1,A,E

Proof. The indistinguishability follows directly from the zero-knowledge property of
the NIZK proof system ΠNIZK. More precisely, assume towards a contradiction that
E can distinguish the two executions with a non-negligible probability. We give a
reduction to the zero-knowledge property of ΠNIZK. The reduction sets the statement
x := (com := ΠCOM(1λ, tid)) for a randomly sampled tid ∈ Zq, and sends it to the zero-
knowledge challenger, which responds with a proof π that is either an honest proof or a
simulated proof. The reduction then acts as Alice in its interaction with E , computing
everything as in hybrid H0, except that it uses the proof π it received from the zero-
knowledge challenger. At the end of the execution, based on E ’s guess, it outputs a bit
to the challenger (0 if E guesses hybrid H0, and 1 otherwise), which will be correct with
non-negligible advantage. However, this violates the zero-knowledge property of ΠNIZK,
and hence, the two executions must be indistinguishable.

Lemma 11. For all PPT distinguishers E,

EXECH1,A,E ≈ EXECH2,A,E

Proof. Assume towards a contradiction that E can distinguish the two executions with a
non-negligible probability. We give a reduction to the computational hiding security game
of ΠCOM. The reduction sets m0 := tid and m1 := 0, sends them to the computational
hiding challenger, that responds with a commitment com. The reduction then acts as
Alice in its interaction with E , computing everything as in hybrid H1, except that it uses
the commitment com it received from the computational hiding challenger. At the end
of the execution, based on E ’s guess, it outputs a bit to the challenger (0 if E guesses
hybrid H0, and 1 otherwise), which will be correct with non-negligible advantage. This
violates the computational hiding property of ΠCOM, so the two executions must be
indistinguishable.

Lemma 12. For all PPT distinguishers E,

EXECH2,A,E ≈ EXECH3,A,E

Proof. Any distinguishing advantage implies a case in which the adversary A outputs
some valid signature σtid for some message tid ̸∈ T . This signature is a winning instance
in the EUF-CMA experiment of the randomizable blind signature scheme ΣRBS, but by
assumption this only occurs with a negligible probability, and hence, the distinguishing
advantage must be negligible.

113

6. Applications of Adaptor Signatures

Lemma 13. For all PPT distinguishers E,

EXECH3,A,E ≈ EXECH4,A,E

Proof. This indistinguishability follows directly from the UC-security of the 2PC protocol
Π2PC.

Lemma 14. For all PPT distinguishers E,

EXECH4,A,E ≈ EXECH5,A,E

Proof. The uniqueness of the decryption key and correctness of ΠE, ekH = Π.Gen(dkH)
implies that Π.Dec(dkH , Π(ekH , m)) = m for all m in the message space M of ΠE. Thus,
the output y∗ of the 2PC protocol Π2PC is necessarily y + y′, where (Y, y) ← GenR(1λ),
such that c = ΠE(ekH , y) ∧ (Y, y) ∈ R (this is guaranteed by the correctness of the
NIZK proof system ΠNIZK). Since y′ is uniformly random, y∗ is identically distributed
to fmerge(wit, R, y, y′). The same holds for Y ∗ and fmerge(stmt, R, Y, Y ′). Furthermore, it
holds that (Y ∗, y∗) ∈ R.

Lemma 15. For all PPT distinguishers E,

EXECH5,A,E ≡ EXECFA2L,S,E

Proof. H5 is identical to the ideal world. Moreover, since the transition from the real
world (i.e., H0) to the ideal world (i.e., H5) is indistinguishable, it implies that in the
ideal and real world are indistinguishable.

A,B Corrupted. We give a simulator SAB that interacts with FA2L and show by a
series of hybrids that our protocol is indistinguishable from an ideal experiment in which
the corrupted parties interact with the simulator SAB.

Simulator SAB

Case H is honest and A, B are corrupted

Upon receiving (registration-req, sid, A) from FA2L, do the following:

1. Receive (acc-req, sid, (A, H)) ←− GLedgerLocks, send (acc-rep, sid, b := 1) −→ GLedgerLocks, and
receive (create-account, sid, aid ′

AH) ←− GLedgerLocks.

2. Extract (aidA, aidH) from ΓH(γAH .id), set ctx := GenPay(txs, aid ′
AH , aidH , 0) and rtx :=

GenPay(txs, aid ′
AH , aidA, t).

3. Receive (auth-req, sid,rtx, (aid ′
AH , (A, H))) ←− GLedgerLocks, send (auth-rep, sid, ba := 1) −→

GLedgerLocks.

4. Receive (auth-rep, sid,ctx, (aid ′
AH , (A, H))) ←− GLedgerLocks, send (auth-rep, sid, ba := 1) −→

GLedgerLocks.

114

6.2. Payment Channel Hub

5. Upon receiving (com, π) from A, if ΠNIZK.V(π, com) = 1, then compute the signature σ∗ ←
ΣRBS.BlindSig(skH , com), send σ∗ to A and (registration-rep, sid, b := 1) −→ FA2L. Otherwise,
send (registration-rep, sid, b := 0) −→ FA2L and return ⊥.

Upon receiving (promise-req, sid, B) from FA2L, do the following:

1. Upon receiving (tid, σ′
tid) from B, if tid ∈ T ∨ ΣRBS.Ver(pkH , σ′

tid, tid) ̸= 1, then send
(promise-rep, sid, b := 0) −→ FA2L and return ⊥. Otherwise, set T := T ∪ {tid} and send
(promise-rep, sid, b := 1) −→ FA2L.

2. Sample a pair (Y, y) ← GenR(1λ), send (create-ind-cond, sid, (Y, y)) −→ GR,fmerge
Cond and receive

(create-ind-cond, sid, Y) ←− GR,fmerge
Cond .

3. Compute c ← ΠE.Enc(ekH , 0), simulate the NIZK proof π ← ΠNIZK.Sim(td, (ekH , Y, c)) and
send (Y, c, π) to B.

4. Extract (aidH , aidB) from ΓH(γHB.id), set vH := GetBalance(ΓH(γHB.id), aidH), vB :=
GetBalance(ΓH(γHB.id), aidB), set θ⃗HB := [(aidHB, vpay), (aidH , vH − vpay), (aidB , vB)] and
tHB := 5 · #safe + 1, and run (ctxHB,rtxHB) ← Lock⟨H(γHB, θ⃗HB, tHB, Y), ·⟩.

5. Read state from GLedgerLocks, and if |state| ≥ 3 · #safe + 1, then (submit, sid,rtxHB) −→
GLedgerLocks.

6. Upon receiving (promise, sid, pid) ←− FA2L, store (pid, (ctxHB, aidHB, Y, y, c), ⊥) into a list P .

Upon receiving (solve-req, sid, A, pid′) from FA2L do the following:

1. Extract the stored (pid, (·, ·, Y, y, c), ⊥) from the list P.

2. Upon receiving Y ∗ from A, extract (aidA, aidH , aidAH) from ΓH(γAH .id), set values vA :=
GetBalance(ΓH(γAH .id), aidA), vH := GetBalance(ΓH(γAH .id), aidH), v∗ := vpay + vfee, set
state θ⃗AH := [(aidAH , v∗), (aidA, vA − v∗), (aidH , vH)], set timelock tAH := 2 · 5 · #safe + 1,
and run (ctxAH ,rtxAH) ← Lock⟨·, H(γAH , θ⃗AH , tAH , Y)⟩.

3. Upon A initiating the 2PC protocol Π2PC, run the 2PC simulator SΠ2PC to recover its inputs
(y′, c′), and program the output to ⊥.

4. If c′ ∈ P, then set y∗ = fmerge(wit, R, y, y′), send (open-cond, sid, (Y ∗, y∗)) −→ GR,fmerge
Cond ,

receive (opened-cond, sid, b) ←− GR,fmerge
Cond . If b = 0, then return ⊥, otherwise, send y∗ to A and

(solver, sid, B, pid) −→ FA2L.

5. If c′ ̸∈ P , then compute y∗ ← ΠE.Dec(dkH , c′)+y′, send (open-cond, sid, (Y ∗, y∗)) −→ GR,fmerge
Cond ,

receive (opened-cond, sid, b) ←− GR,fmerge
Cond . If b = 0, then return ⊥, otherwise, send y∗ to A and

send nothing to FA2L. (Note that this corresponds to the case where some party Alice is
paying Hub without Bob initiating the interaction, which is something that she can do at
any time.)

6. Set θ⃗AH := [(aidA, vA − v∗), (aidH , vH + v∗)] and run Update⟨·, H(γAH , θ⃗AH)⟩.
7. If above update failed, then read state from GLedgerLocks. If |state| ≥ 4 · #safe + 1, then

send (release-tx, sid,ctxAH , aidAH , Y ∗, y∗) −→ GLedgerLocks, and receive (release-tx, sid, b) ←−
GLedgerLocks. Send (solve-rep, sid, b) −→ FA2L, and if b = 1, then set the last element of the
above entry from P to ⊤ (to indicate that the puzzle promise is solved).

115

6. Applications of Adaptor Signatures

Hybrid H0: This corresponds to the real protocol execution (Figures 6.13, 6.15 and 6.16).

Hybrid H1: Replace the honestly computed NIZK proof π (Figure 6.15, line 10) with a
simulated proof.

Hybrid H2: Simulate the 2PC protocol Π2PC (Figure 6.16, line 14).

Hybrid H3: Add the list P and steps 4-5 of the simulator for puzzle solver to Figure 6.16,
lines 15-17.

Hybrid H4: Replace the ciphertext c (Figure 6.15, line 9) with an encryption of zero.

Lemma 16. For all PPT distinguishers E,

EXECH0,A,E ≈ EXECH1,A,E

Proof. This indistinguishability follows directly from the zero-knowledge property of the
NIZK proof system ΠNIZK, and the proof is analogous to that of Lemma 10.

Lemma 17. For all PPT distinguishers E,

EXECH1,A,E ≈ EXECH2,A,E

Proof. This indistinguishability follows directly from the UC-security of the 2PC protocol
Π2PC.

Lemma 18. For all PPT distinguishers E,

EXECH2,A,E ≡ EXECH3,A,E

Proof. By definition, for c′ ∈ P , the corresponding y and Y in P are ΠE.Dec(dkH , c′) and
(Y, y) ∈ R, respectively. Therefore, we have that y∗ = fmerge(wit, R, y, y′), and the case
of c′ ̸∈ P is handled in an analogous way.

Lemma 19. For all PPT distinguishers E,

EXECH3,A,E ≈ EXECH4,A,E

Proof. Assume towards a contradiction that E can distinguish the two executions with
a non-negligible probability. We give a reduction to the IND-CCA security game of
ΠE. The reduction sets m0 := y and m1 := 0, sends them to the IND-CCA challenger,
that responds with c. The reduction then acts as the Hub in its interaction with E ,
computing everything as in hybrid H3, except that it uses the ciphertext c it received
from the IND-CCA challenger. Whenever it needs to decrypt some c∗ it uses the IND-CCA
decryption oracle. At the end of the execution, based on E ’s guess, it outputs a bit to the
IND-CCA challenger (0 if E guesses hybrid H3, and 1 otherwise), which will be correct
with non-negligible advantage. This violates the IND-CCA security of ΠE, so the two
executions must be indistinguishable.

116

6.2. Payment Channel Hub

Lemma 20. For all PPT distinguishers E,

EXECH4,A,E ≡ EXECFA2L,S,E

Proof. H4 is identical to the ideal world. Moreover, since the transition from the real
world (i.e., H0) to the ideal world (i.e., H4) is indistinguishable, it implies that in the
ideal and real world are indistinguishable.

A,H Corrupted. This case is trivial, as Bob has no secret information and the simulator
therefore simply follows the protocol.

H,B Corrupted. The simulator in this case follows the protocol honestly, and the
security follows from the security of the AS-locked transactions, which is captured by
GLedgerLocks and its usage of FR,fadapt

AdaptSig.

This concludes the proof of Theorem 7.

117

CHAPTER 7
Conclusion and Directions for

Future Research

7.1 Conclusion

In this thesis, we provided foundations for the security of adaptor signatures (AS) as
well as the applications using them as building blocks for blockchain protocols.

First, we showed a construction of an AS from isogenies that is provably secure in the
post-quantum setting, specifically in (quantum) random oracle model, which also allows
to achieve the security and privacy notions of interest for off-chain applications built
upon it.

Next, we provided composable treatment of standalone cryptographic conditions as well
as adaptor signatures within the Universally Composable (UC) framework. Towards this
end, we gave novel ideal functionalities and defined concrete protocols which securely
realize these functionalities.

We then defined a framework, dubbed LedgerLocks, for the secure design of AS-based
blockchain applications in the presence of a realistic blockchain. For this reason, Ledger-
Locks is composed of a lock-enabling ledger that models AS-locked transactions and
operates over the previously modularized cryptographic conditions and adaptor signatures.

Finally, we showcased the utility of our framework by using it to describe a payment
channel and payment channel hub (PCH) protocols in a clear and modular fashion. The
same blueprint can be used in the future to define other blockchain protocols based on
AS-locked transactions.

119

7. Conclusion and Directions for Future Research

7.2 Directions for Future Research
Throughout this thesis we focused on (two-party) AS built on top of (plain) digital
signatures. However, in some settings we might need an AS scheme that provides
additional capabilities than plain AS. For example, Qin et al. [QPM+23] defined the
notion of blind adaptor signatures and used it to construct a privacy-preserving PCH that
support variable payment amounts. However, Qin et al. [QPM+23] considered a fairly
weak form of blindness10 and provided only ECDSA-based construction. This brings us
to the following natural question:

Question 1. Can we generically construct (strongly) blind adaptor signatures?

Blind adaptor signatures constitute only one potential extension of adaptor signatures
to more advanced signatures. One can obviously also ask if we can construct adaptor
signatures from other types of advanced signature primitives, such as ring signatures
used in Monero or group signatures.

Question 2. Can we (generically) construct adaptor signatures from other types of
advanced signature primitives?

Even though most cryptocurrencies base their transaction authorization on signature
schemes shown to support adaptor signatures, there are some cryptocurrencies that do
not utilize signatures for this. One notable example here is Zerocash [BCG+14], which
makes use of zero-knowledge proofs. Hence, it would be potentially interesting to come
up with an adaptation functionality for zero-knowledge proofs, in order to embed some
cryptographic condition within the proofs. This brings us to the following question:

Question 3. Can we define and construct adaptor NIZK proof system?

Given that there are cryptocurrencies that base their transaction authorization on other
types of cryptographic primitives that do not support adaptor signatures, one can ask if
we can extend LedgerLocks to also support these other types of ledger.

Question 4. Can we extend LedgerLocks to account for other forms of transaction
authorization?

10In the weak blindness definition of Qin et al. [QPM+23] the adversary should not be able to recover
the message from a transcript but is allowed to link message/signature pair to a particular execution.

120

List of Figures

2.1 Two-party adaptor signature scheme with aggregatable public keys ΞR,Σ2 with
respect to Σ2 and hard relation R. 20

2.2 Ideal functionality GClock [KMTZ13, BCH+20]. 27

3.1 The formal definition of game G0G0G0. 39
3.2 The formal definition of game G1G1G1. 40
3.3 The formal definition of game G2G2G2. 41
3.4 The formal definition of game G3G3G3. 42
3.5 The formal definition of game G4G4G4. 43
3.6 The formal definition of the simulator (i.e., reduction). 44
3.7 The formal definition of game G0G0G0. 47
3.8 The formal definition of game G1G1G1. 48
3.9 The formal definition of game G2G2G2. 49
3.10 The formal definition of game G3G3G3. 50
3.11 The formal definition of game G4G4G4. 51
3.12 The formal definition of the simulator (i.e., reduction). 52

4.1 Ideal functionality GR,fmerge
Cond . 60

4.2 Protocol ΠRDL
Cond. 61

4.3 Realization of FAdaptSig in GCond-hybrid world. 64
4.4 Ideal functionality FR,fadapt

AdaptSig. 66
4.5 Protocol ΠR,fadapt

AdaptSig in GR,fmerge
Cond -hybrid world. 67

5.1 Transactions in an atomic swap protocol. 72
5.2 Atomic swap in a ledger with delayed inclusion (top). Attack in an atomic

swap in a realistic ledger (bottom). 73
5.3 Realization of GLedgerLocks in (FAdaptSig, GLedger)-hybrid world. 77
5.6 Overview of the LedgerLocks framework. 81
5.4 Ideal functionality GLedgerLocks. Here, ptP is P ’s pointer into the state, as de-

fined for GLedger [BMTZ17]. Moreover, inState(tx, state) := ∃B ∈ state, tx ∈
Blockify−1(B), where Blockify is a predicate to parse transactions into a
block [BMTZ17]. 83

5.5 Protocol ΠR
LedgerLocks in the (FR,fadapt

AdaptSig, GLedger)-hybrid world. 84

121

6.1 Definition of the CheckBaseC predicate. 87
6.2 The ideal functionality GChannel. 89
6.3 Definitions of transaction constructors used in the channel protocol. . . . 93
6.4 Create channel protocol in (GR,fmerge

Cond , GLedgerLocks)-hybrid world. Here, Gen-
Fund, GenCommit, GenSplit, and GenPunish denote the constructors for txf ,
txc, txs and txs, respectively, as described in Figure 6.3. 94

6.5 Update channel protocol in (GR,fmerge
Cond , GLedgerLocks)-hybrid world. Here, Gen-

Commit, GenSplit and GenPunish denote the constructors for txc, txs and
txp, respectively as described in Figure 6.3. 95

6.6 Close channel protocol in (GR,fmerge
Cond , GLedgerLocks)-hybrid world. Here, Compute-

Balance denotes the constructor for txt as described in Figure 6.3. 96
6.7 ForceClose and Punish algorithms in (GR,fmerge

Cond , GLedgerLocks)-hybrid world. . 96
6.8 Monitor channel algorithm in (GR,fmerge

Cond , GLedgerLocks)-hybrid world. 97
6.9 Protocol flow of the synchronization puzzle, the underlying cryptographic

mechanism of TumbleBit [HAB+17] and A2L [TMM21a, GMM+22]. Dotted
double-edged arrows indicate 2-party protocols. Solid arrows indicate secure
point-to-point communication. 101

6.10 Ideal functionality FA2L. 105
6.11 Update protocol in the GChannel-hybrid world. 107
6.12 Lock protocol in the (GLedgerLocks, GChannel)-hybrid world. Here, GenPay de-

notes the constructors for ctx and rtx, respectively, as described in Figure 6.3. 108
6.13 Registration protocol in (GR,fmerge

Cond , GLedgerLocks, GChannel)-hybrid model. . . . 108
6.14 Open protocol (GLedgerLocks, GChannel)-hybrid model. 109
6.15 Puzzle promise protocol in (GR,fmerge

Cond , GLedgerLocks, GChannel)-hybrid model. . 109
6.16 Puzzle solver protocol in (GR,fmerge

Cond , GLedgerLocks, GChannel)-hybrid model. . . 110

122

List of Tables

3.1 Performance of O-IAS. Time is shown in seconds and size in bytes. 55

5.1 Overview of features of ledger models used for the analysis of blockchain
protocols. ✗∗ denotes that the corresponding ledger feature is underspecified,
✗† indicates that the realizability of L∆ is unknown. 75

123

List of Algorithms

1 CSI-FiSh Signature . 32
2 Non-interactive zero-knowledge proof for Lj 33
3 Adaptor Signature ΞR∗

E0
,ΣCSI-FiSh(IAS) 35

125

Bibliography

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis.
Cryptographic group actions and applications. In Shiho Moriai and Huax-
iong Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part II,
volume 12492 of Lecture Notes in Computer Science, pages 411–439, Dae-
jeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.
→ Cited on page 2.

[AEE+21] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina
Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. Gen-
eralized channels from limited blockchain scripts and adaptor signatures.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2021, Part II, volume 13091 of Lecture Notes in Computer
Science, pages 635–664, Singapore, December 6–10, 2021. Springer, Heidel-
berg, Germany.
→ Cited on pages 1, 3, 6, 33, 34, 76, 85, 88, 90, 91, and 92.

[AME+21] Lukas Aumayr, Matteo Maffei, Oguzhan Ersoy, Andreas Erwig, Sebastian
Faust, Siavash Riahi, Kristina Hostáková, and Pedro Moreno-Sanchez.
Bitcoin-compatible virtual channels. In 2021 IEEE Symposium on Security
and Privacy, pages 901–918, San Francisco, CA, USA, May 24–27, 2021.
IEEE Computer Society Press.
→ Cited on pages 3 and 76.

[AMKM21a] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maf-
fei. Blitz: Secure multi-hop payments without two-phase commits. In
Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021:
30th USENIX Security Symposium, pages 4043–4060. USENIX Association,
August 11–13, 2021.
→ Cited on page 3.

[AMKM21b] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei.
Donner: UTXO-based virtual channels across multiple hops. Cryptology
ePrint Archive, Report 2021/855, 2021. https://eprint.iacr.org/
2021/855.
→ Cited on pages 3 and 76.

127

https://eprint.iacr.org/2021/855
https://eprint.iacr.org/2021/855

[ATM+22] Lukas Aumayr, Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta,
Pedro Moreno-Sanchez, and Matteo Maffei. Sleepy channels: Bi-directional
payment channels without watchtowers. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference
on Computer and Communications Security, pages 179–192, Los Angeles,
CA, USA, November 7–11, 2022. ACM Press.
→ Cited on pages 3 and 76.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 459–474, Berkeley, CA, USA, May 18–21, 2014. IEEE
Computer Society Press.
→ Cited on pages 82 and 120.

[BCH+20] Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and
Vassilis Zikas. Universal composition with global subroutines: Capturing
global setup within plain UC. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020: 18th Theory of Cryptography Conference, Part III,
volume 12552 of Lecture Notes in Computer Science, pages 1–30, Durham,
NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.
→ Cited on pages 23, 25, 26, 27, and 121.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th Annual ACM
Symposium on Theory of Computing, pages 103–112, Chicago, IL, USA,
May 2–4, 1988. ACM Press.
→ Cited on page 9.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and
Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference
on Computer and Communications Security, pages 913–930, Toronto, ON,
Canada, October 15–19, 2018. ACM Press.
→ Cited on pages 6 and 82.

[BHZ21] Christian Badertscher, Julia Hesse, and Vassilis Zikas. On the
(ir)replaceability of global setups, or how (not) to use a global ledger.
In Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory of
Cryptography Conference, Part II, volume 13043 of Lecture Notes in Com-
puter Science, pages 626–657, Raleigh, NC, USA, November 8–11, 2021.
Springer, Heidelberg, Germany.
→ Cited on page 75.

128

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology –
ASIACRYPT 2019, Part I, volume 11921 of Lecture Notes in Computer
Science, pages 227–247, Kobe, Japan, December 8–12, 2019. Springer,
Heidelberg, Germany.
→ Cited on pages 5, 8, 31, 32, 38, 54, and 55.

[BM22] Sergiu Bursuc and Sjouke Mauw. Contingent payments from two-party
signing and verification for abelian groups. Cryptology ePrint Archive,
Report 2022/719, 2022. https://eprint.iacr.org/2022/719.
→ Cited on page 3.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
Bitcoin as a transaction ledger: A composable treatment. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part I, volume 10401 of Lecture Notes in Computer Science, pages 324–
356, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany.
→ Cited on pages 6, 27, 75, 76, 78, 80, 82, 83, 84, 86, 88, 91, and 121.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of
CSIDH. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology
– EUROCRYPT 2020, Part II, volume 12106 of Lecture Notes in Computer
Science, pages 493–522, Zagreb, Croatia, May 10–14, 2020. Springer, Hei-
delberg, Germany.
→ Cited on page 9.

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5), sep 2020.
→ Cited on pages 3, 5, 23, 24, and 25.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
– EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes in Computer
Science, pages 423–447, Lyon, France, April 23–27, 2023. Springer, Heidel-
berg, Germany.
→ Cited on page 9.

[CS20] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret
keys to produce an actively secure distributed signing protocol. In Jintai
Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, pages 169–186, Paris, France,
April 15–17, 2020. Springer, Heidelberg, Germany.
→ Cited on pages 32 and 33.

129

https://eprint.iacr.org/2022/719

[Dam99] Ivan Damgård. Commitment Schemes and Zero-Knowledge Protocols, pages
63–86. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
→ Cited on page 21.

[DEF18] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. FairSwap: How to
fairly exchange digital goods. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference
on Computer and Communications Security, pages 967–984, Toronto, ON,
Canada, October 15–19, 2018. ACM Press.
→ Cited on pages 75 and 76.

[DEFM19] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski.
Perun: Virtual payment hubs over cryptocurrencies. In 2019 IEEE Sym-
posium on Security and Privacy, pages 106–123, San Francisco, CA, USA,
May 19–23, 2019. IEEE Computer Society Press.
→ Cited on pages 75 and 76.

[DFH18] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General
state channel networks. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference
on Computer and Communications Security, pages 949–966, Toronto, ON,
Canada, October 15–19, 2018. ACM Press.
→ Cited on pages 75 and 76.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the Fiat-Shamir transformation in the quantum random-oracle model.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture Notes in
Computer Science, pages 356–383, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany.
→ Cited on pages 32 and 38.

[DG19] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures
from class group actions. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 759–789, Darmstadt, Germany,
May 19–23, 2019. Springer, Heidelberg, Germany.
→ Cited on page 8.

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: Compact post-quantum signatures from quaternions
and isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology – ASIACRYPT 2020, Part I, volume 12491 of Lecture Notes
in Computer Science, pages 64–93, Daejeon, South Korea, December 7–11,
2020. Springer, Heidelberg, Germany.
→ Cited on page 36.

130

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS – Dilithium: Digital signatures
from module lattices. Cryptology ePrint Archive, Report 2017/633, 2017.
https://eprint.iacr.org/2017/633.
→ Cited on page 56.

[DLRW23] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski. Sqisignhd: New dimensions in cryptography. Cryptology
ePrint Archive, Paper 2023/436, 2023. https://eprint.iacr.org/
2023/436.
→ Cited on page 36.

[DOY22] Wei Dai, Tatsuaki Okamoto, and Go Yamamoto. Stronger security and
generic constructions for adaptor signatures. Cryptology ePrint Archive,
Report 2022/1687, 2022. https://eprint.iacr.org/2022/1687.
→ Cited on page 65.

[EEE20] Muhammed F. Esgin, Oguzhan Ersoy, and Zekeriya Erkin. Post-quantum
adaptor signatures and payment channel networks. In Liqun Chen, Ninghui
Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020: 25th
European Symposium on Research in Computer Security, Part II, volume
12309 of Lecture Notes in Computer Science, pages 378–397, Guildford,
UK, September 14–18, 2020. Springer, Heidelberg, Germany.
→ Cited on pages 2, 3, 5, 20, and 56.

[EFH+21] Andreas Erwig, Sebastian Faust, Kristina Hostáková, Monosij Maitra, and
Siavash Riahi. Two-party adaptor signatures from identification schemes.
In Juan Garay, editor, PKC 2021: 24th International Conference on Theory
and Practice of Public Key Cryptography, Part I, volume 12710 of Lecture
Notes in Computer Science, pages 451–480, Virtual Event, May 10–13,
2021. Springer, Heidelberg, Germany.
→ Cited on pages 1, 2, 5, 12, 13, 17, 19, 20, 36, 63, 64, and 65.

[EMM19] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. Atomic multi-
channel updates with constant collateral in bitcoin-compatible payment-
channel networks. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer
and Communications Security, pages 801–815, London, UK, November 11–
15, 2019. ACM Press.
→ Cited on pages 75 and 76.

[ER22] Andreas Erwig and Siavash Riahi. Deterministic wallets for adaptor signa-
tures. In European Symposium on Research in Computer Security, pages
487–506. Springer, 2022.
→ Cited on page 3.

131

https://eprint.iacr.org/2017/633
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2022/1687

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany.
→ Cited on pages 2 and 10.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume
9057 of Lecture Notes in Computer Science, pages 281–310, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.
→ Cited on page 26.

[GMM+22] Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez,
Erkan Tairi, and Sri Aravinda Krishnan Thyagarajan. Foundations of coin
mixing services. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022: 29th Conference on Computer and Communi-
cations Security, pages 1259–1273, Los Angeles, CA, USA, November 7–11,
2022. ACM Press.
→ Cited on pages xii, xiii, 2, 3, 76, 101, 102, and 122.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. Efficient digital public-key
signature with shadow (abstract). In Carl Pomerance, editor, Advances
in Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer
Science, page 223, Santa Barbara, CA, USA, August 16–20, 1988. Springer,
Heidelberg, Germany.
→ Cited on page 20.

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In Shafi Goldwasser,
editor, Advances in Cryptology – CRYPTO’88, volume 403 of Lecture Notes
in Computer Science, pages 216–231, Santa Barbara, CA, USA, August 21–
25, 1990. Springer, Heidelberg, Germany.
→ Cited on page 63.

[Gt19] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library, 6.1.2 edition, 2019.
→ Cited on page 54.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. TumbleBit: An untrusted bitcoin-compatible anonymous
payment hub. In ISOC Network and Distributed System Security Symposium
– NDSS 2017, San Diego, CA, USA, February 26 – March 1, 2017. The
Internet Society.
→ Cited on pages 101, 102, 105, and 122.

132

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party com-
putation in two rounds. In Alfred Menezes, editor, Advances in Cryptology
– CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
111–129, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Heidel-
berg, Germany.
→ Cited on page 107.

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind
signatures from identification schemes. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2019, Part III, volume
11478 of Lecture Notes in Computer Science, pages 345–375, Darmstadt,
Germany, May 19–23, 2019. Springer, Heidelberg, Germany.
→ Cited on page 12.

[Hos21] Kristina Hostáková. Foundations of Generalized State Channel Networks.
PhD thesis, Technische Universität, Darmstadt, 2021.
→ Cited on page 23.

[KL20] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. A composable
security treatment of the lightning network. In Limin Jia and Ralf Küsters,
editors, CSF 2020: IEEE 33rd Computer Security Foundations Symposium,
pages 334–349, Boston, MA, USA, June 22–26, 2020. IEEE Computer
Society Press.
→ Cited on page 75.

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for
signatures from identification schemes. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume
9815 of Lecture Notes in Computer Science, pages 33–61, Santa Barbara,
CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.
→ Cited on page 10.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Uni-
versally composable synchronous computation. In Amit Sahai, editor,
TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lec-
ture Notes in Computer Science, pages 477–498, Tokyo, Japan, March 3–6,
2013. Springer, Heidelberg, Germany.
→ Cited on pages 26, 27, and 121.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 357–388, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.
→ Cited on pages 27 and 64.

133

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM J. Comput., 35(1):170–188, July 2005.
→ Cited on page 9.

[Kup13] Greg Kuperberg. Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. In TQC 2013, pages 20–34, 2013.
→ Cited on page 9.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature
schemes with tight security reductions. In Sushil Jajodia, Vijayalakshmi
Atluri, and Trent Jaeger, editors, ACM CCS 2003: 10th Conference on
Computer and Communications Security, pages 155–164, Washington, DC,
USA, October 27–30, 2003. ACM Press.
→ Cited on pages 20 and 63.

[LGKK22] Thibaut Le Guilly, Nadav Kohen, and Ichiro Kuwahara. Bitcoin oracle
contracts: Discreet log contracts in practice. In 2022 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pages 1–8, 2022.
→ Cited on page 3.

[LNP22] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in
Cryptology – CRYPTO 2022, Part II, volume 13508 of Lecture Notes in
Computer Science, pages 71–101, Santa Barbara, CA, USA, August 15–18,
2022. Springer, Heidelberg, Germany.
→ Cited on pages 2 and 56.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 598–616, Tokyo, Japan, December 6–10, 2009. Springer,
Heidelberg, Germany.
→ Cited on page 2.

[Mir22] Arash Mirzaei. Daric: A storage efficient payment channel with penalization
mechanism. In 2022 52nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks - Supplemental Volume (DSN-S), pages
51–52, 2022.
→ Cited on page 3.

[MMS+19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate,
and Matteo Maffei. Anonymous multi-hop locks for blockchain scalability
and interoperability. In ISOC Network and Distributed System Security
Symposium – NDSS 2019, San Diego, CA, USA, February 24–27, 2019. The

134

Internet Society.
→ Cited on pages 2, 3, 14, 74, and 90.

[MTV+22] Varun Madathil, Sri AravindaKrishnan Thyagarajan, Dimitrios Vasilopou-
los, Lloyd Fournier, Giulio Malavolta, and Pedro Moreno-Sanchez. Practi-
cal decentralized oracle contracts for cryptocurrencies. Cryptology ePrint
Archive, Report 2022/499, 2022. https://eprint.iacr.org/2022/
499.
→ Cited on pages 2 and 3.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and
Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part II,
volume 12106 of Lecture Notes in Computer Science, pages 463–492, Zagreb,
Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.
→ Cited on page 9.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Kazue Sako, editor, Topics in Cryptology – CT-RSA 2016, volume 9610
of Lecture Notes in Computer Science, pages 111–126, San Francisco, CA,
USA, February 29 – March 4, 2016. Springer, Heidelberg, Germany.
→ Cited on pages 12 and 106.

[PS18] David Pointcheval and Olivier Sanders. Reassessing security of randomizable
signatures. In Nigel P. Smart, editor, Topics in Cryptology – CT-RSA 2018,
volume 10808 of Lecture Notes in Computer Science, pages 319–338, San
Francisco, CA, USA, April 16–20, 2018. Springer, Heidelberg, Germany.
→ Cited on page 12.

[QPM+23] Xianrui Qin, Shimin Pan, Arash Mirzaei, Zhimei Sui, Oguzhan Ersoy, Amin
Sakzad, Muhammed F. Esgin, Joseph K. Liu, Jiangshan Yu, and Tsz Hon
Yuen. BlindHub: Bitcoin-compatible privacy-preserving payment channel
hubs supporting variable amounts. In 2023 IEEE Symposium on Security
and Privacy, pages 2462–2480, San Francisco, CA, USA, May 21–25, 2023.
IEEE Computer Society Press.
→ Cited on pages 2, 3, 76, and 120.

[Rob19] D. Robinson. HTLCs considered harmful, 2019. https://cbr.
stanford.edu/sbc19/.
→ Cited on page 103.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
Part V, volume 14008 of Lecture Notes in Computer Science, pages 472–503,
Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.
→ Cited on page 9.

135

https://eprint.iacr.org/2022/499
https://eprint.iacr.org/2022/499
https://cbr.stanford.edu/sbc19/
https://cbr.stanford.edu/sbc19/

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, January 1991.
→ Cited on pages 20 and 63.

[TM21] Sri Aravinda Krishnan Thyagarajan and Giulio Malavolta. Lockable signa-
tures for blockchains: Scriptless scripts for all signatures. In 2021 IEEE
Symposium on Security and Privacy, pages 937–954, San Francisco, CA,
USA, May 24–27, 2021. IEEE Computer Society Press.
→ Cited on page 76.

[TMM21a] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2L: Anonymous
atomic locks for scalability in payment channel hubs. In 2021 IEEE
Symposium on Security and Privacy, pages 1834–1851, San Francisco, CA,
USA, May 24–27, 2021. IEEE Computer Society Press.
→ Cited on pages xii, xiii, 2, 3, 76, 90, 101, 102, and 122.

[TMM21b] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. Post-quantum
adaptor signature for privacy-preserving off-chain payments. In Nikita
Borisov and Claudia Díaz, editors, FC 2021: 25th International Conference
on Financial Cryptography and Data Security, Part II, volume 12675 of
Lecture Notes in Computer Science, pages 131–150, Virtual Event, March 1–
5, 2021. Springer, Heidelberg, Germany.
→ Cited on pages xii and 20.

[TMM22] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-
Sanchez. Universal atomic swaps: Secure exchange of coins across all
blockchains. In 2022 IEEE Symposium on Security and Privacy, pages
1299–1316, San Francisco, CA, USA, May 22–26, 2022. IEEE Computer
Society Press.
→ Cited on pages 1, 3, 75, and 76.

[TMSS20] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, Fritz Schmidt, and
Dominique Schröder. PayMo: Payment channels for monero. Cryptology
ePrint Archive, Report 2020/1441, 2020. https://eprint.iacr.org/
2020/1441.
→ Cited on page 76.

[TMSS23] Erkan Tairi, Pedro Moreno-Sanchez, and Clara Schneidewind. Ledgerlocks:
A security framework for blockchain protocols based on adaptor signatures.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, page 859–873, New York, NY, USA,
2023. Association for Computing Machinery.
→ Cited on page xii.

136

https://eprint.iacr.org/2020/1441
https://eprint.iacr.org/2020/1441

	Kurzfassung
	Abstract
	Main Publications and Contributions
	Other Selected Publications
	Contents
	Introduction
	Contributions

	Preliminaries
	Mathematical Preliminaries
	Cryptographic Preliminaries
	Security and Communication Model
	Blockchain and Payment Channels

	Post-Quantum Adaptor Signatures
	CSI-FiSh Signature Scheme
	IAS Adaptor Signature Scheme
	Security Proof
	Performance Evaluation

	Universally Composable Adaptor Signatures
	Global Conditions
	Composable Adaptor Signatures

	Security Framework for Protocols Based on Adaptor Signatures
	Previous Approaches for Blockchain Protocol Analysis
	Lock-Enabling Ledger
	Template for Using LedgerLocks

	Applications of Adaptor Signatures
	Payment Channels
	Payment Channel Hub

	Conclusion and Directions for Future Research
	Conclusion
	Directions for Future Research

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

