
Diplomarbeit

Deep Gestures
a human-machine drawing conversation

ausgeführt zum Zwecke der Erlangung des akademischen Grades
einer Diplom-Ingenieurin
unter der Leitung von

Christian Kern
Univ.Prof.Arch.Dipl.Ing.
E264/2 Institut für Kunst und Gestaltung
Dreidimensionales Gestalten und Modellbau
eingereicht an der Technischen Universität Wien
Fakultät für Architektur und Raumplanung
von

Michaela Nömayr
01325588

Wien, am 3. März 2022

Abstract

This master thesis explores the space of possibilities offered by the convergence
of novel Machine Learning techniques and established Numerical Fabrication
technology, by focusing on applications in the context of the early stages of the
design process.

By experimentally engaging with the making and the programming of an inter-
active drawing machine in its hardware and software components, this research
offers an alternative interpretation to the praxis of sketching and of intuitively
representing ideas in the two-dimensional space.

Moving away from the concept of computers as passive receivers of pre-con-
ceived creative impulses, the machine is here framed as an active instrument
which is capable of perceiving and processing external inputs. As the machine
co-participates in the unfolding of the creative process, the role of the designer/
user is necessarily re-defined.

Currently, applications of Machine Learning in the creative field are mostly fo-
cused on the processing of pixel-based images or texts. As part of the thesis, the
potential of a Hierarchical Generative Network for the creation of vector files
in the SVG format (DeepSVG) is investigated. As opposed to image creation
in raster format, vector representation opens the door to digital production,
since its properties allow for a direct translation to machine code and CNC
operations.

The core of the thesis consists in a set of experiments investigating user-machine
interaction for a simple, feedback-based, design process. The physical drawing
of a user is fed to a neural network by means of computer vision techniques
(skeleton tracing).

The pre-trained network generates new content by interpolating the user input
with a selected item from a large library of vector icons, the SVG-Icons8 dataset.
The set of newly machine-generated frames is filtered by the user, who chooses
a single solution to be printed back in the physical space by a custom-made
pen plotter. By engaging in this open-ended process of interaction, the user can
build up further drawn responses to feed to the machine, which in turn will
keep on generating new and unexpected content until the process is stopped
according to user defined criteria.

Rather than solving a specific design problem, an experimental Machine Learn-
ing application is designed and explored. The main objective of this work is not
looking for a single optimal solution, but it is the creative exploration of the
unfolding of a hybrid process of collaboration.

Abstrakt

Diese Masterarbeit erforscht die Möglichkeiten, die sich aus der Konvergenz
neuartiger Techniken des maschinellen Lernens und etablierter Technologien
der numerischen Fabrikation ergeben, indem sie sich auf Anwendungen im
Kontext der frühen Phasen des Designprozesses konzentriert.

Durch die experimentelle Auseinandersetzung mit der Fertigung und Pro-
grammierung einer interaktiven Zeichenmaschine in ihren Hardware- und
Softwarekomponenten bietet diese Forschung eine alternative Interpretation
der Praxis des Skizzierens und der intuitiven Darstellung von Ideen im zweidi-
mensionalen Raum.

In Abkehr vom Konzept des Computers als dem passiven Empfänger von
vorgefassten kreativen Impulsen wird die Maschine hier als aktives Instrument
verstanden, das in der Lage ist, externe Eingaben wahrzunehmen und zu verar-
beiten. Da die Maschine an der Entfaltung des kreativen Prozesses teilnimmt,
wird die Rolle des Designers/Nutzers zwangsläufig neu definiert.

Derzeit konzentrieren sich Anwendungen des maschinellen Lernens im
kreativen Bereich meist auf die Verarbeitung von pixel-basierten Bildern oder
Texten. Im Rahmen dieser Arbeit wird das Potenzial eines Hierarchischen Gen-
erativen Netzes für die Erstellung von Vektordateien im SVG-Format (Deep-
SVG) untersucht. Im Gegensatz zur Bilderstellung im Rasterformat öffnet die
Vektordarstellung die Tür zur digitalen Produktion, da ihre Eigenschaften eine
direkte Übersetzung in Maschinencode und CNC-Operationen ermöglichen.

Der Kern der Arbeit besteht aus einer Reihe von Experimenten zur Un-
tersuchung der Benutzer-Maschine-Interaktion für einen einfachen, Feed-
back-basierten Designprozess. Die physische Zeichnung eines Benutzers wird
mit Hilfe von Computer-Vision-Techniken (durch Abrufen des topologischen

Skeletts) in ein neuronales Netz eingespeist. Das trainierte Netzwerk generi-
ert neue Inhalte durch Interpolation der Benutzereingabe mit einem aus-
gewählten Element aus einer großen Bibliothek von Vektorsymbolen, dem
SVG-Icons8-Datensatz. Die maschinell erzeugten Bilder werden vom Benutzer
gefiltert, der eine einzige Lösung auswählt, die dann mit einem speziell ange-
fertigten Stiftplotter in den physischen Raum gedruckt wird. Durch diesen
ergebnisoffenen Interaktionsprozess kann der Benutzer weitere gezeichnete
Antworten erstellen, die ihrerseits immer wieder neue und unerwartete Inhalte
generiert, bis der Prozess nach benutzerdefinierten Kriterien gestoppt wird.

Anstatt ein spezifisches Designproblem zu lösen, wird eine experimentelle
Anwendung für maschinelles Lernen entworfen und erforscht. Das Hauptz-
iel dieser Arbeit ist nicht die Suche nach einer einzigen optimalen Lösung,
sondern die kreative Erforschung der Entfaltung eines hybriden Prozesses der
Zusammenarbeit.

Acknowledgements

As I regard this thesis as a result of a collaboration with the people in my own
network, I want to thank them for their support:

First I have to thank Christian Kern for extensive support, helpful suggestions
and critical feedback in the creation of this body of work.

I would particularly like to thank Marco Palma and Florian Rist, without
whom this work would not have been possible in this depth and scope. Thank
you for all the support, tireless explanations, inspiring talks, your most valuable
feedback and all the things you taught me.

I also have to thank the team of the model building workshop - Walter Fritz,
Kornelia Fischer, Ronald Buchinger, Lena Grünbauer, Johanna Kübert, Katja
Puschnik, Ruben Mahler and Alexander Ortner - for providing me with a first
class workplace, technical support, equipment, coffee and nice words to keep
up motivation and work pace.

A special thank you goes to my friends and family for support, endless pep
talks, valuable feedback and guidance through a demanding year.

Index

1 Premise 11

 1.1 Motivation 12
 1.2 Summary 20

2 Theoretical Framework 23

 2.1 Neural Networks 25
 2.1.1 Artificial Neural Network 25
 2.1.2 Deep Learning 31
 2.1.3 Generative Adversarial Networks 41
 2.1.4 Hierarchical Generative Networks 47

 2.2 Digital Fabrication 49
 2.2.1 Digital Fabrication 51
 2.2.2 Computational Fabrication 55
 2.2.3 Adaptive Computational Fabrication 59

 2.3 Machine Learning, Digital Fabrication Feedback 63

3 Implementation 73

 3.1 Concept 75
 3.1.1 Methodology 75
 3.1.2 Human-Machine Interaction 77
 3.1.3 One iteration 79
 3.1.4 Interpolation 81
 3.1.5 Design Process 83
 3.1.6 Experimental Setup 85

 3.2 Hardware 87
 3.2.1 Assembled Hardware - Mechanics 88
 3.2.2 Assembled Hardware - Electronics 93
 3.2.3 Drawing and Webcam Setup 109
 3.2.4 Acoustic insulation 113

 3.3 Software 115
 3.3.1 Software Environment, Language, Platform 115
 3.3.2 Data Pipeline 117
 3.3.3 Firmware 122
 3.3.4 Communication - Interoperability 124

4 Application 131

 4.1 Abstract (simple) experiments 133
 4.2 Figurative experiments 139
 4.3 Conversation between human and machine 153
 4.4 Path order 167
 4.5 Composition/pattern creation 181
 4.6 Superimposed drawings 187
 4.7 Current limitations 203
 4.7.1 Hardware limitations 203
 4.7.2 Software limitations 203

5 Conclusions 205

 5.1 Further implementations 210

6 Bibliography 213

1 Premise

This chapter provides the motivation for the thesis as well as an overview in the
form of a short summary of the chapters to come.

12 Premise

1.1 Motivation

“The true challenge to artificial intelligence proved to be solving the tasks that are
easy for people to perform but hard for people to describe formally—problems that
we solve intuitively, that feel automatic, like recognizing spoken words or faces in
images.” 1

“Designers struggle to sketch with a technology as invisible and intangible as ML.
(...) Carnegie Mellon human-computer interaction professor John Zimmerman
explains, “When I teach a designer, I can give them cardboard and say, ‘Make a
stool; make a hat.’ (...) But I can’t send somebody to play with machine learning
like that.” (...) Since we can’t cut it and fold it like cardboard, how do we engage
with ML as a design material? One method is to focus not on how the tech works,
but rather on its capabilities.” 2

The motivation for this thesis project was the development of a generative pro-
cess - addressing human-machine interaction and involving Machine Learning
and Numerical Production methods - rather than the development of an opti-
mal design solution to a well described quantifiable problem.

This generative process shall enhance the designer’s agency in the early stages of
the design workflow, specifically by addressing the intuitive two-dimensional
representation of concepts and ideas. Sketches are one of the tools of choice
for architects and designers when it comes to convey and communicate ideas
during the conceptual stage.

Following the evolution of numerically controlled production machines from
passive tools to active collaborators, the role of the designer has also evolved.
The relationship between machine and designer today is an entirely different
one than it was 40 years ago. Researchers and artists in the field of computa-
tional design and fabrication recently started to address machines as their per-

1 Goodfellow,
Bengio and Courville,

2016, Chapter 1 - Introduc-
tion, page 1

2 Armstrong and
Dixon, 2021, page 24f

13Premise

ceiving and sensing counterparts, leveraging their interactive capabilities as well
as their role as instruments that can extend the designer’s creative reach in the
exploration of novel design possibilities.

14 Premise

As part of his Phd. thesis, Ivan Sutherland developed Sketchpad, a precursor of
modern CAD programs. Users were able to draw directly on a display using the
Light Pen and a set of push buttons and turning knobs representing different
geometrical operations. The results of the drawing process were plotted on pa-
per using a connected pen plotter that acts as a passive receiver and produces the
physical output of this feedback-based digital process.

Figure 1.01:
Ivan Sutherland’s
Sketchpad, 1962.

15Premise

Figure 1.02:
Connected pen plotter
as passive receiver.

16 Premise

The innovator of generative and computational art, Georg Nees, created his
artworks in a fully mediated process. He used a programming interface which
was connected to a pen plotter that still served as a passive receiver of coded
instructions. Those were subsequently plotted directly onto a sheet of paper.
The plots are the physical output of a linear digital process.

Figure 1.03:
Machine as Actuator.

17Premise

Figure 1.04:
Schotter, 1968 (left).

Figure 1.05:
Code to Gravel written
in the language ALGOL
(right).

18 Premise

Sougwen Chung’s series of collaborative art is based on AI systems that have
been trained on data from her own work of art. The series culminated in a per-
formance on a collective scale - a mutual drawing process of the artist and a set
of twenty custom robots. The physical interface posing a room-sized horizon-
tal, blank canvas is enhanced with sensing equipment. The drawing collective
serves as sensors and actuators of a digital and physical feedback process. The
robots receive digital input from camera feeds in New York City. While moving
they are analyzing their position within the collective. While drawing they are
miming a collective urban movement.

Figure 1.06:
Omnia per Omnia,

Sougwen Chung, 2018.

19Premise

The tools or instruments that artists and designers use have a considerable
impact on the user itself as well as on the process of creation. In recent years,
numerically controlled machines have evolved from passive receivers to active,
sensing collaborators. Simultaneously to that evolution, the relation between
artist and their instrument of choice has changed as well as the output or work
of art itself.

Figure 1.07:
Machines as Collabo-
rators.

20 Premise

1.2 Summary

The following chapter Theoretical Framework provides a short introduction
to the theory of Neural Networks and illustrates meaningful related applica-
tions in Digital Fabrication.

The chapter Implementation includes the concept for the experiments as well
as a detailed description of the assembled hardware and implemented software.

In the chapter Application, visual and textual documentation of the experi-
ments is presented and confronted with the current limitations of both code
and electro-mechanical apparatus.

The final chapter presents the conclusions drawn from the experimental results
and illustrates ideas for further developments and implementations.

2 Theoretical Framework

The following chapter provides the theoretical background for the following
Implementation chapter. It gives an introduction to the theory of Artificial
Neural Networks and illustrates meaningful related applications in Digital
Fabrication.

24 Theoretical Framework

Figure 2.01:
Applications of Ma-

chine Learning
The Nooscope Manifest

Pasquinelli and Joler,
2020

25Theoretical Framework

2.1 Neural Networks

2.1.1 Artificial Neural Network

“As an instrument of knowledge, machine learning is composed of an object to be
observed (training dataset), an instrument of observation (learning algorithm)
and a final representation (statistical model).” 1

ANNs are simplified models of the human brain consisting of a multitude of
connected neural cells - the neurons. The neurons are linked between each oth-
er via their synapses. They pass electrical impulses from sending cells to receiv-
ing cells.

As in the natural model, the basic element of an artificial neural network is
also called a neuron. The artificial neuron is defined by a mathematical func-
tion. On its activation the neuron does not receive electrical impulses but a
numerical, initial value from the connected, sending neuron. The solution of
the neuron’s inherent mathematical function is passed onto the next artificial,
receiving neuron.

1 Pasquinelli and
Joler, 2020, page 3

26 Theoretical Framework

Figure 2.02:
Scheme of a
Perceptron.

27Theoretical Framework

The Perceptron is a simplified artificial neural network consisting of a single
neuron, adjustable weights and a threshold value. Introduced by Frank Rosen-
blatt in the late 1950s, it was the first type of artificial neuron and could be
implemented for linear classification problems.

ANNs are usually constructed in layers. There are initial start layers that receive
information. As briefly described above, information is thus passed from those
start layers over a series of hidden layers to the output layers in one forward pass.

The training process of ANNs can be compared to any other natural learning
process. Based on the principle of trial and error, different connections between
neurons are strengthened or weakened. What stories and real-life situations rep-
resent for a human brain are the training and test dataset for an artificial neural
network. One of the basic tasks for an ANN is solving a classification problem.
Its application ranges from the detection of spam emails to cancer diagnosis.
The network can, for instance, classify a tumor as benign or malicious. What
happens will be made visible through the example of handwritten digit recog-
nition in this context.

Both training and test dataset contain data that is paired with a list of the solu-
tion for this data. A popular example of datasets consists of photos of handwrit-
ten digits in Bitmap format, the MNIST dataset. It consists of 60,000 training
images from 0 to 9 and 10,000 testing images. Each image is itemized as a matrix
of 28x28 cells, each containing a grayscale pixel value.2

2 LeCun, Cortes
and Burges, 2022

28 Theoretical Framework

Successful classifica-
tion of a handwritten

digit.

29Theoretical Framework

The information of a single image - RGB values pixel per pixel - is passed
through the network. After confronting the network with the right solution, all
the weights are adjusted in a backward pass. The weights represent the connec-
tions between the neurons. The network’s weights are fixed during the training
process. The network is subsequently tested to accuracy using the test dataset.

Weights and the topology of a trained model can be saved and transferred. One
talks about a learning transfer in this context.

30 Theoretical Framework

Figure 2.03:
Classification of Deep

Learning as a sub-
category of Machine

Learning.

31Theoretical Framework

2.1.2 Deep Learning

“(...) machine learning algorithms are the most powerful algorithms for informa-
tion compression.” 3

“This solution is to allow computers to learn from experience and understand the
world in terms of a hierarchy of concepts, with each concept defined through its
relation to simpler concepts. (...) The hierarchy of concepts enables the computer
to learn complicated concepts by building them out of simpler ones. If we draw a
graph showing how these concepts are built on top of each other, the graph is deep,
with many layers. For this reason, we call this approach to AI deep learning.” 4

Deep Learning poses one discipline of Machine Learning (see figure 2.03) and
applies artificial neural networks as an essential component. While machine
learning algorithms were constructed following mathematical logic, the neural
networks that are applied in deep learning have been constructed after the nat-
ural model of the brain.

3 Pasquinelli and
Joler, 2020, page 2

4 Goodfellow,
Bengio and Courville,

2016, Chapter 1, Introduc-
tion, page 1f

32 Theoretical Framework

Figure 2.04:
Scheme of a Multilayer

Perceptron.

33Theoretical Framework

The Multilayer Perceptron or Feedforward Neural Network represents a sim-
plified artificial network for Deep Learning. It is a derivative of the Perceptron
that was introduced with respect to Machine Learning. Its multiple layers re-
moved the computational restrictions that the Perceptron was subject to. An-
other difference to the Perceptron is its non-linear activation. The activation
function is determining if the output of one neuron equals 0 or 1. The MLP
forms the basis of many important applications like Convolutional Neural
Networks.5

The model structure for deep learning algorithms is defined by multiple hid-
den layers between the input and output layer. The advantage of using artificial
neural networks lies in the in-depth abstraction of correlations between input
data and between the abstracted neural values and the output data.

Convolutional Neural Networks are specialized in image classification. Their
structure is based on those of conventional neural networks. They dispose over
an additional convolutional and pooling layer and can handle feature engineer-
ing more efficiently.

5 Goodfellow et
al., 2016, p. 164f

34 Theoretical Framework

Figure 2.05:
Data size benchmark.

35Theoretical Framework

The concept of Deep Learning is not new: What is today referred to as Deep
Learning (starting in 2006), has been the object of research as Connectionism
in the 1980s and 1990s and as Cybernetics in the 1940s to 1960s.6 One of the
reasons why deep learning has become popular in recent years are advances in
digital electronics resulting in increased computational performance of com-
puters. Because computers can process a lot of information faster, it is possible
to train deep neural networks in a decent amount of time.

Computational speed is not the only resource needed: The Age of “Big Data”
that is a consequence of the increasing “digitization of society” 7, that eventu-
ates in large amounts of data that can be curated as datasets for DL applica-
tions. Figure 2.05 shows the benchmark of sizes of datasets over time.

6 Goodfellow et
al., 2016, p. 12f

7 Goodfellow et
al., 2016, p. 19f

36 Theoretical Framework

Deep Learning models perform well with large amounts of data and are ap-
plied, when conventional machine learning models cannot improve after reach-
ing a saturation point. They are also preferably used, when separate Feature
Extraction might be waived. “(...) a feature is any measurable input that can be
used in a predictive model.” 8 While conventional ML models depend on manu-
al feature engineering, ANNs can compress a multitude of input dimensions to
their features because of their inherent structure. Feature extraction is essential
for classification problems.

Figure 2.06:
Different feature

engineering processes
for ML and DL.

8 Patel, 2021

37Theoretical Framework

Figure 2.07:
Schematic diagram of
a feature extraction
process.

38 Theoretical Framework

Figure 2.08:
Scheme of a Deep

Autoencoder.

39Theoretical Framework

At the moment, most artificial neural networks are applied for supervised learn-
ing, meaning regression or classification problems. Supervised learning requires
labeled datasets and has a clearly predefined goal for the application of the al-
gorithm.9 Deep Autoencoders are applied for unsupervised learning problems.
They are neural nets that reduce a large amount of data in input dimensions
to a small number of dimensions. The reduction or encoding process is done
in several steps, the reduced dimensions become feature vectors. During the
decoding process, the dimensions are enlarged in several steps resulting in an
abstract and reconstructed model of the original input (image). Abstract simi-
larity models are created in this way.

9 Armstrong,
2021, page 154

41Theoretical Framework

2.1.3 Generative Adversarial Networks

“We propose a new framework for estimating generative models via an adver-
sarial process, in which we simultaneously train two models: a generative model
G that captures the data distribution, and a discriminative model D that esti-
mates the probability that a sample came from the training data rather than
G. The training procedure for G is to maximize the probability of D making a
mistake. This framework corresponds to a minimax two-player game. (...) In the
case where G and D are defined by multilayer perceptrons, the entire system can
be trained with backpropagation. (...) Experiments demonstrate the potential of
the framework through qualitative and quantitative evaluation of the generated
samples.” 10

“Neurography is short for “neural photography”. It is the way of working with
neurally generated images, since it is as much a process of search and discovery
as it is one of creation. Like a photographer who goes into the world, discovers an
interesting motif and then looks for the best ways to frame and capture it, I go into
the multidimensional latent spaces of my GANs on the hunt for interestingness.
The difference to classical photography is that by training my own GANs I can
create and explore new and different worlds every time and am not limited to the
single one we are all living in.” 11

10 Goodfellow et
al., 2014

11 Klingemann,
2019

42 Theoretical Framework

Figure 2.09:
The GAN Pipeline.

43Theoretical Framework

GANs were first developed in 2014 by Ian Goodfellow.12 Two networks are
working against each other: The Generator takes the latent sample z as input
and learns to create fake images. The Discriminator is nothing but a traditional
classifier. It uses a set of training data and compares it to the output of the
Generator. The first few times, the Generator will not be able to fool the Dis-
criminator into telling that his image is the training image. It will detect the
fake image. After training, the Generator will get better and it will be more and
more difficult for the Discriminator to tell which is the fake and which is the
training image. In figure 2.09 the generation of new data based on the MNIST
dataset using a GAN can be seen. There are GANs for several applications:

12 Goodfellow et
al., 2014

44 Theoretical Framework

Figure 2.10:
“Nice scarf! Knitted it

yourself?”, 2017

Generative Art by Mario
Klingemann using

Generative Adversarial
Networks.

45Theoretical Framework

The Pix2Pix network transforms Sketches to photorealistic images. CycleGAN
performs style transfer and has the advantage that it does not require paired
training data needed (unsupervised learning).

Artists like Mario Klingemann are interested in applying GANs for their works
for their generative aspect.

“At the moment I am completely focused on making a new installation called
“Circuit Training” for the show at the Barbican. It is definitely my biggest proj-
ect to date. What I am trying to create is a machine that makes the art people
want (or deserve, depending on how you read it). Being confined to an exhibition
space the only material it can work with are the visitors themselves. It will work by
continuously collecting images of people and using them to train data for models
from which it will try to generate “art”. This art will then be judged by the au-
dience and from the feedback it gets it will try to learn which aesthetics, motifs,
styles or compositions people prefer to see and adjust its training and classification
processes accordingly. So, you could say that the whole system is a big GAN with
humans being the data and the discriminators.” 13 13 Interview with

Mario Klingemann, March
2019

46 Theoretical Framework

Figure 2.11:
 Schematic diagram of

a Hierarchical
Generative Network.

47Theoretical Framework

2.1.4 Hierarchical Generative Networks

In the following, a Hierarchical Generative Network architecture is explained
using an example:

In figure 2.11, there is a schematic representation of a Hierarchical Genera-
tive Network. The network, that is by definition a variational auto-encoder, is
constructed out of two main parts: an encoder network on the left side E and
a decoder network on the right side D. The hierarchical representation of an
SVG file is the base of both networks, meaning that each SVG file consists of
multiple paths which are a description of commands written in XML.14

Every path of an SVG file is encoded separately using a path encoder E(1). D(2)

contains the input of the latent space z and distributes it into blocks of infor-
mation. A Multi-Layer Perceptron predicts SVG properties such as paths, attri-
butes and visibility. The output of the MLP is decoded, retaining the symmetry
of the network.

14 Carlier et al.,
2020, page 4f

48 Theoretical Framework

Figure 2.12:
The 3D-printed stain-
less steel bridge was

designed by Joris Laar-
man and built by MX3D

using six-axis robotic
arms equipped with

welding gear. (Amster-
dam, 2021)

49Theoretical Framework

2.2 Digital Fabrication

The evolution of fabrication technologies started with the implementation of
CAD and CAM software for Digital Fabrication. The next step in this devel-
opment was the use of integrated CAD-to-CAM processes for Computational
Fabrication. At the moment this technology culminates at Adaptive Compu-
tational Fabrication which is using CAD-to-CAM technology incorporating
feedback processes.

“Computer-Assisted Conception and Fabrication (CFAO) systems have two types
of use in industry. [...]. CFAO systems have certainly increased the productivi-
ty of the idea, but fundamentally they offer no advances over the work done by
hand. Now, we can envisage a second-generation of systems in which objects are no
longer designed but calculated. The use of parametric functions opens two great
possibilities for us. […], these second-generation systems lay the foundation for a
non-standard mode of production. In fact, the modification of calculation pa-
rameters allows the manufacture of a different shape for each object in the same
series. Thus, unique objects are produced industrially.” 15

15 Cache, 1995

51Theoretical Framework

2.2.1 Digital Fabrication

“The MIT system combines digital and analogue processes under feedback control
to govern a milling machine whose cutting tool moves in three planes relative to
the work piece.” 16

The first documented example of digital fabrication is An Automatic Machine
Tool.

16 Pease, 1952,
page 109

52 Theoretical Framework

The machine and its control system was developed by the MIT Servomecha-
nisms Laboratory under the guidance of William Pease. In figure 2.15 the fin-
ished workpiece can be seen (on the right side). The machine instructions to
move and control the cutting tool as well as the machine tabele were encoded
on punch tape. The functioning system of a “continuous-path numerically-con-
trolled milling machine” 17 was first presented in 1952.

Figure 2.13:
Machine instructions

were encoded on punch
tape

17 Institute Ar-
chives, MIT Libraries, 2004

53Theoretical Framework

Figure 2.14:
An Automatic Machine
Tool, Pease, 1952.

In this example, the representation was partially mediated by CAD software.
The translation of the drawing to machine instructions was partially mediated
by CAM software. The fabrication process was fully mediated by the CNC
machine.

55Theoretical Framework

2.2.2 Computational Fabrication

“As the robot could be driven directly by the design data, without our having to
produce additional implementation drawings, we were able to work on the design
of the facade up to the very last minute before starting production.” 18

An example of digital fabrication is the facade of the Winery Gantenbein in
Switzerland.

18 Gramazio &
Kohler, 2009, page 90

56 Theoretical Framework

The project was designed by Bearth & Deplazes Architects and realized at
the research facilities of the ETH Zürich under the guidance of Prof. Fabio
Gramazio and Prof. Matthias Kohler. 72 individual facade elements were pre-
fabricated in an automated process. The application of the two-component
bonding agent that had to be applied to each brick in a different position and
area as each brick had a different rotation posed one additional difficulty.

Figure 2.15:
Interior view of the

finished brick facade of
the Winery Gantenbein
by Gramazio & Kohler,

2006.

57Theoretical Framework

Figure 2.16: Automated
robotic fabrication.

In this project, the representation was fully mediated by programming the
CAD software. The translation of the drawing to machine instructions was
fully mediated by programming the CAM software. The fabrication process
was fully mediated by instructing the CNC machine.

59Theoretical Framework

2.2.4 Adaptive Computational Fabrication

“In order for a robot to build structures on the construction site with high accuracy,
it needs to be able to track the position of the tool it is using with respect to some fixed
reference frame. (...) These developments are broken up into three main functional
parts: robot localisation within the construction site, alignment between the sens-
ing reference frame and the CAD model, and feedback of the building accuracy
during construction.” 19

The In-Situ Fabricator is an example of digital fabrication incorporating sens-
ing equipment.

19 Giftthaler,
Sandy, Dörfler et al., 2017,

page 4

60 Theoretical Framework

The construction of a head-high, wave-like brick wall was realized using the
In-Situ Fabricator, a mobile and autonomous robot. During the autonomous
process of stacking discrete building elements, the Fabricator had to reposition
itself which also required self-location and environment scanning. Visual sens-
ing poses a prerequisite to these new advances of on-site digital fabrication. Be-
fore the start of the fabrication process, a 3D ambient scan was used to adjust
the parametric model to the real dimensions of the building site.

Figure 2.17:
In-Situ Fabricator,

Giftthaler, Sandy, Dörfler
et al., 2015.

61Theoretical Framework

Figure 2.18:
Ambient point cloud.

In this example, sensing was fully mediated by programming a sensing device.
The translation of the drawing to machine instructions was fully mediated by
reprogramming the CAD software according to sensed information. Prepara-
tion was fully mediated by programming the CAM software. The fabrication
process was fully mediated by instructing the CNC machine.

62 Theoretical Framework

Figure 2.19:
SEEK, Negroponte and

The Architecture Ma-
chine Group, 1970.

63Theoretical Framework

The use of Machine Learning or Deep Learning algorithms in connection with
Numerically Controlled machines in a creative context has the most illustrious
precedents in the research produced by the Architecture Machine Group ast
MIT under the guidance of Nicholas Negroponte between 1967 and 1985.

In most recent years, Machine Learning and Digital Fabrication have been
widely used in significant artistic and research-based applications: three proj-
ects addressing automated feedback processes are presented in the following.

2.3 Machine Learning, Digital Fabrication, Feedback

“Today, we are witnessing the transition from automated to autonomous systems
of production. Increased access to advanced sensing, machine learning (ML), and
artificial intelligence (AI) techniques are augmenting existing machines with new
levels of understanding for their surroundings. Now, instead of being restricted
to short, repetitive, pre-programmed tasks, fabrication machines are gaining the
ability to dynamically see and respond to their changing environment without the
need for human involvement.” 20 20 Gannon, 2018,

page 14

64 Theoretical Framework

In her work on Mimus, Madeline Gannon explores the use of an industrial
robotic arm behaving like a living, breathing, mechanical creature. Mimus was
shown as an installation at the Design Museum in London in 2017. It was able
to engage and communicate with its visitors in body language and gestures
showing danger, curiosity or empathy on a frequency only human beings could
perceive. A belt of motion-tracking cameras provided visual feedback about

Figure 2.20:
Mimus’ installation at

the Design Museum in
London, Gannon, 2017.

65Theoretical Framework

Figure 2.21:
Visual feedback of the
visitors.

the visitors who could approach the attentive machine as far as a security glass
fencing allowed it. Gannon proposed this kind of natural and human-centered
language interface for autonomous fabrication machines to promote a more
natural and spontaneous way of communicating.21 21 Gannon, 2018,

page 150f

66 Theoretical Framework

In their paper, Wu and Kilian introduce a method for assembling naturally
grown wooden blocks autonomously incorporating an industrial robotic arm
and deep learning. Past applications are based on predefined geometric mod-
els as design goals for the finished structure. Using their approach, it is not
necessary to define the geometry of the material before the beginning of the
fabrication. An implemented and trained network based on CNNs is used to
make suggestions for positioning the elements iteratively as well as it provides
information regarding topological changes from potential connections as well
as local assembly constraints.22

Figure 2.22:
 Stochastic assembly,

Wu and Kilian, 2018.

22 Wu and Kilian,
2018

67Theoretical Framework

Figure 2.23:
Positioning of wooden
logs using an industrial
robotic arm.

68 Theoretical Framework

NORAA [Machinic Doodles] is an interactive drawing installation created
by Jessica In and her team that enables collaboration between human and ma-
chine. Being a customized pen plotter, NORAA is trying to understand the
visitors’ drawings and learning how to draw. NORAA is based on Magenta’s
Sketch-RNN (Magenta, SketchRNN, 2018), a network that was trained on
Google’s Quick Draw Dataset incorporating labeled sketches in 345 catego-

Figure 2.24:
 NORAA - an interactive

drawing installation
was created by Jessica

In in 2018.

69Theoretical Framework

Figure 2.25:
Schematic sketch of
installation concept.

ries as time-stamped vectors (GoogleCreativeLab, Quick Draw Dataset, 2017).
If NORAA recognizes the doodle it is confronted with, it will complete the
drawing, if not, it hallucinates - meaning that it draws an answer in the form of
a sketch that is closest or similar to what the visitor has drawn.23 23 In, 2018

70 Theoretical Framework

Sketching and any comparable form of human intuitive activity poses a chal-
lenge for machine learning scientists. In the following, user-machine inter-
action incorporating sensing, Numerically Controlled Machines and Deep
Learning will be investigated.

3 Implementation

The following chapter includes a conceptual and technical description of the
project. Starting with concept and methodology, it covers the technical back-
ground to both assembled hardware and software and ends with a depiction
of current limitations of code and electro-mechanical apparatus, respectively.

74 Implementation

DESIGN

ACTUATOR

physical space

MODEL

USER INPUT

material
physics
technology

sensors

virtual space

INTENTION
deep learning algorithm

75Implementation

3.1 Concept

3.1.1 Methodology

As part of the thesis, the potential of a Hierarchical Generative Network for the
creation of vector files in the SVG format (DeepSVG) is investigated. The core
of the thesis is composed of a set of experiments investigating user-machine
interaction for a simple, feedback-based, design process. The physical drawing
of a user is fed to a neural network by means of computer vision techniques
(by retrieving the topological skeleton). The pre-trained network generates new
content by interpolating the user input with a selected item from a large library
of vector icons, the SVG-Icons8 dataset. The set of newly machine-generated
frames is filtered by the user, who chooses a single solution to be printed back in
the physical space by a custom-made pen plotter. By engaging in this open-end-
ed process of interaction, the user can build up further drawn responses to feed
to the machine, which in turn will keep on generating new and unexpected
content until the process is stopped according to user defined criteria.

The model in the diagram on the right depicts a design process that takes place
in virtual and physical space. An actuator receives instructions that were de-
signed in the virtual space, but is influenced by forces that are inherent to the
physical such as the design intention.

Opposite page:
Design process taking
place both in virtual
and physical space.

76 Implementation

iteration x

iteration 1

iteration 2

USERMACHINE

user’s sketch

user’s response

icon

file 1file 0

selected
interpolation frame

machine-generated
frame

user’s response

selected
interpolation frame

selected
interpolation frame

COMPOSITION

machine-generated
frame

77Implementation

3.1.2 Human-Machine Interaction

Machine and user communicate in an iterative process. The conversation is
started in Iteration I with an icon selected by the machine as File 0 and is re-
plied with a sketch hand-drawn by the user as File 1. The machine generates a
set of new frames which interpolate between File 0 and File 1. The user chooses
one of the results of the interpolation as the new input for Iteration II on the
machine side. The process is repeated in this manner until the user is satisfied
with the output and decides to conclude the conversation at Iteration x. The
last frame serves as input for a small program that generates a composition.

Opposite page:
Schematics of User-Ma-
chine Conversation.

78 Implementation

drawing with brush on paper

drawing with brush on paper

taken by webcam
saved in PNG format

simplification, pickling

USER INPUT

SNAPSHOT

performed by DeepSVG
INTERPOLATION

MACHINE OUTPUT

PREPROCESS

USER’S MIND
intuition/creative process/

reaction/learning/playing

STEP 2

STEP 1

STEP 3

STEP 4

STEP 5

physical space

virtual space

physical space

79Implementation

3.1.3 One iteration

Step 1
The user draws a sketch consisting of up to eight strokes on the right half of
the canvas.

Step 2
On pressing the Take snapshot button on the user interface, a webcam installed
above the drawing space, is taking a photo. As the canvas is made of rewritable
cloth used for calligraphy, the user’s sketch, drawn with a brush filled with dis-
tilled water, will disappear within moments after the snapshot is taken.

Step 3
The paths on the snapshot in Bitmap format are translated into vectors and
saved in the SVG format. After preprocessing, the file is output in PKL format,
which serves as input for the interpolation performed by the network.

Step 4
The interpolation is performed between the taken snapshot of the user’s sketch
and the output of the previous iteration. In iteration I, an icon of the dataset is
used as the second value for the interpolation.

Step 5
The user is able to browse through 25 interpolation steps displayed on the com-
puter screen by moving a slider on the user interface. In order to select one of
the results, the Draw selection button has to be pressed on the interface. The
SVG file gets translated into machine instructions and the machine draws the
chosen step of the interpolation onto the left side sheet of magic paper. For a
moment both, the machine’s and the user’s drawing will be present next to one
another until they fade.

Step 6 / Step 1
The user starts the process again by drawing a response to the machine drawing
and taking a snapshot of it.

Opposite page:
Schematics of informa-
tion flow occurring in a
single iteratio
 of the user-machine
conversation.

80 Implementation

 Interpolation per-
formed by a pretrained
Deep Neural Network.

DeepNN

Interpolation between 0 and 1

file 1file 0

81Implementation

3.1.4 Interpolation

Input
Two files in SVG format, as Variant 0 and 1, serve as the input for the inter-
polation. In order to be able to be processed by the network, they have to be
preprocessed in two steps. The output of the second preprocessing step is a file
in PKL format.

Interpolation
The interpolation is performed by a pretrained Deep Neural Network, the
DeepSVG. The network was trained based on the SVG-Icons8 dataset.

Output
The interpolation process outputs 25 images in SVG format that lie between
the two input values.

82 Implementation

Figure 3.01:
Horst Rittel’s design

processes of generat-
ing variety and reducing

variety:

a) linear sequence
b) testing or scanning
c) systematic produc-
tion of several alterna-

tive approaches
d) forming alternatives
in a multi-step process

83Implementation

3.1.5 Design process

“Design processes can be described in terms of sequences of different forms depend-
ing on the level of observation. Horst Rittel’s diagrams show four basic possibilities
for structuring the design process. He calls designing an “iterative process of gen-
erating variety and reducing variety”. (Rittel 1992, pp. 75 ff.) The individual
iterative steps could be seen as a circular, constantly recurring sequence of the work
stages described above, which take the form of a spiral curve.
(...)
If further work shows that this approach is not going to produce the desired re-
sult, then the designer goes back to the beginning and tries a different route to the
solution. Rittel calls the formation of alternatives the systematic production of
several alternative approaches to a solution and the selection of the best one using
an evaluation filter that covers all relevant aspects. It can also be done by forming
alternatives in a multi-step process. In order to eliminate as many nonsensical al-
ternatives as possible from the outset, Rittel recommends working with constraints
(self-imposed limitations) for this process, which help to cut down the variety of
possible design solutions to a sensible and manageable number.” 1

Horst Rittel describes the design process as an iterative process which coincides
with the ideas mentioned above and reinforces the ideas of this project.

Different forms of this iterative process are visually displayed in figure 3.01:
“the linear sequence, testing or scanning, a systematic production of several alter-
native approaches and the forming of alternatives in a multi-step process”. The
third form describes this work best, it generates alternatives at each iteration.

1 Gänshirt, 2021,
page 80

85Implementation

3.1.6 Experimental Setup

The experimental setup consists of a machine equipped with drawing and
photography setup, a computer that sends information to the machine’s con-
trolling unit, a Deep Neural Network that performs an interpolation based on
the information that is fed in and a graphical user interface that enables user
interaction. The machine, as the essence of the setup, is custom-built and there-
fore documented in detail in this chapter.

To ensure communication between all components, custom programs have
been mostly written in the Python language and are supported by the Visual
Studio Code platform.

86 Implementation

87Implementation

3.2 Hardware

The following chapter describes the hardware that was used in the building
process of the pen plotter that is the basis for the set of experiments that was
carried out and is described in the next chapter.

Oppisite page:
Top view of the ma-
chine setup.

88 Implementation

3.2.1 Assembled Hardware - Mechanics

The mechanics of the assembled hardware can be itself divided into two parts:
the base that is built out of connected steel tubes and the four linear axes that
are assembled with aluminum connectors.

Drilling holes into the
connecting pieces.

89Implementation

Base
The customized pen plotter is mounted on a wooden desk, but it is designed
in a way that it can be mounted on a different sturdy base. Steel tubes of rect-
angular and square profile form the basis of the machine which are connected
using screws. The photos on the left show the production of connecting pieces,
drilling holes and the tapping of threads.

Tapping threads using a
thread-cutting tap.

90 Implementation

Linear axes
The x-axis with a length of 1260 mm is mounted directly onto the basis. Con-
nectors were milled out of aluminum, holding the four axes in a position and
forming a right-handed xyz-coordinate system with an additional z-axis.

All axes work with a spindle or ball screw drive which ensures precision of rep-
etition and positioning. The x-axis and y-axis (with a length of 1000 mm) form
a drawing space of approximately 1000 x 600 mm. Both z-axes have a travel
length of 220 mm.

Milling connectors us-
ing the milling machine.

91Implementation

Mounting of z-axes
assembling aluminum
connectors.

92 Implementation

Simplified diagram of
the electronic setup. All
devices are connected

to ground.

93Implementation

3.2.1 Assembled Hardware - Electronics

Essential for the correct movement of each of the pen plotter’s axes is a control
unit that receives information from the computer and communicates with the
machine. There are two sockets for each axis: The first one sends signals to the
respective stepper motor in the form of electric pulses. The second one receives
information from the limit switches.

94 Implementation

Stepper motor per axis.

Pressure switch on
y-axis. (left)

Figure 3.16:
Roller lever microswitch

on z-axis. (right)

95Implementation

Stepper motors
All axes use bipolar stepper motors with a step angle of 1.8° and 200 steps per
revolution. The other specifics from weight to shaft length differ from motor
to motor as the axes require different power per axis. For instance, the holding
torque is 12.0 Nm, (x-axis) 300 Ncm (y-axis), 52 Ncm (z-axis), respectively.

Limit switches
Limit switches are electromechanical devices that are operated by applying
a physical force. There is one limit switch mounted at the origin of each axis
to identify the maximum travel length. When the linear carriage triggers the
switch, an electric circuit is closed or opened, depending on the type and con-
figuration of the switch. Signals from the limit switch are essential for the hom-
ing of the machine. Two types of switches were installed: Threaded rods trigger
a pressure switch on the x- and y-axis. Roller lever microswitches are triggered
by the linear carriages on the z-axes.

96 Implementation

97Implementation

Control Unit
In order to be able to control the pen plotter’s movements, an aluminum case
was equipped with a power supply, stepper motor drivers, an Arduino board
and connections to the pen plotter and the computer.

Power supply
Power enters the case at the 230V power socket and is distributed to the three
power supply units. The power supply was installed for 48V, 24V - the stepper
drivers require different voltages - and 5V each. The Arduino board is powered
with 5V.

Opposite page:
The open aluminum
case, still without wiring
between its compo-
nents:

1) 230V power socket
2) sockets to connect
the incoming wiring
from the axes
3) two USB sockets
connecting the Arduino
with the computer
4) 5V power supply
5) 24V power supply
6) 48V power supply
7) stepper drivers
8) 3,5” shield display
9) 2 LED bulbs and the
emergency stop button

98 Implementation

Stepper driver DM556T
(x-axis).

99Implementation

Stepper drivers
Five stepper drivers of different types (DM556T (x-axis), DM542T (y-axis and
tool) and DM320T(z-axes)) are used to receive signals from the microcontrol-
ler and translate them into electric pulses as input for the stepper motors. Each
of the five stepper drivers is connected to the microcontroller, to ground, to
the power supply and to the output socket in the case that is connected to the
wiring to the respective stepper motor (wiring left to right, see photo on the
left side).

One can specify the current and microstep resolution by setting an 8-bit DIP
switch. In figure 3.15, the first three switches (SW1-SW3) are setting the dy-
namic current to its maximum of 5.6A for the peak current, and 4.0A for
the RMS current. Switch SW4 is set to full current and the last four switches
(SW5-SW8) set 8000 microsteps per revolution which is 40 microsteps per 1.8°.

100 Implementation

Arduino Mega 2560
An Arduino Mega 2560 is used to mount GRBL and enable the communica-
tion between computer and pen plotter. The G-Code files are sent to the Ardu-
ino via USB, received by GRBL and are executed by the machine.

Front
The front of the controlling unit was designed and assembled in a second step.
It accommodates the display, a rotary button to control the display, LED lights

The open aluminum
case with wiring.

101Implementation

 Mounted fans and
stripboard with compo-
nents.

which show the current state of the machine and a kill switch. All the openings
on the front side were milled out of the aluminum plate to ensure precision.

A stripboard or double sided prototyping board was used to mount the micro-
controller and other prefabricated modules that are used to connect the other
devices (LED lights etc.). All connections were manually wired.

102 Implementation

Display
A thin-film transistor (TFT) display of 3.2 inch and a resolution of 240x320
pixels was mounted to show additional information about the machine status.
There are various libraries that provide example code: the open-source hard-
ware distributor Adafruit , the TFT Adafruit Bus IO Library and Arduino’s
TFT Library .

The backside of the
stripboard.

103Implementation

All components and
connectors assembled.

104 Implementation

Arduino Pro Mini
In order to be able to control the display as well as the buttons and LED lights,
an Arduino Pro Mini was added. It is positioned on the back of the display (see
figure on the right). On the Pinout in figure 3.02 all the inputs and outputs of
the Arduino board can be seen. The Arduino board uses an ATmega32U4 mi-
crocontroller. The two Arduino boards communicate with each other via TX
RX serial communication.

Figure 3.02:
Arduino Pro Mini

Pinout.

105Implementation

Mounting of the strip-
board on top of the TFT
display.

106 Implementation

Temperature sensor
The DS18B20 is a programmable temperature sensor that is used to monitor
the operating temperature of the power supplies.

Mounted fans.

107Implementation

Fans
The Arduino Pro Micro is controlling the fans using pulse-width modulation.
PWM reduces the power of an electrical signal. Ventilations slits were milled
into both lateral parts of the aluminum case to enable the circulation of air.

The side of the case
with the mounted fans.

108 Implementation

Philips webcam. (left)

Drawing setup. (right)

109Implementation

3.2.3 Drawing and Webcam Setup

Photo setup
A snapshot of the user’s drawing is made using a Philips webcam. It is currently
positioned directly above the area on the paper where the user is drawing.

Drawing setup
The output from the network is drawn using a brush filled with distilled water
onto a rewritable cloth that is used to learn calligraphy. The refillable brush is
mounted onto one z-axis using a customized 3d printed pen holder.

110 Implementation

Other part of the draw-
ing setup in form of a

wooden writing pad and
rewritable cloth.

Canvas
A wooden writing pad was built to ensure the correct distance from the brush
that has been mounted onto the z-axis to the canvas. Magnets were inserted
into both longitudinal sides of the wooden pad. Two steel rulers are fixated on
the magnets and hold the textile canvas into place. The rewritable cloth is usu-
ally used for practicing calligraphy.

111Implementation

Above: Distilled water
is used to draw on the
textile canvas.

Below: Several proto-
types were built.

112 Implementation

M6 screws that usually
hold the base together,

covered by rubber rings.

The comb-like layers of
rubber were inserted

in between the steel
tubes before inserting
the above mentioned

screws.

113Implementation

3.2.4 Acoustic insulation

Rubber damper
In an additional step, rubber was inserted in between the steel tubes that form
the base of the machine.

TPU lids
The steel tubes themselves were filled with plastic granulate mats and closed
with customized 3d printed lids in TPU.

114 Implementation

COMPUTER BRUSH

USER INTERFACE

PEN PLOTTER

user’s drawing

microcontrollers, fireware GRBL

Touchpad, TouchOSC

pretrained network, DeepSVG

CLIENT

CLIENT

SERVER

SERVER

WEBCAM

BRUSH
machine’s drawing

USER INTERACTION
buttons, slider, visual feedback

SERIAL PORT

virtual space physical space

115Implementation

3.3 Software

The following chapter describes the software and framework that was used to
ensure interoperability and which is the basis for the set of experiments that was
carried out and is described in the next chapter.

3.3.1 Software environment, language, platform

Python
Interoperability was ensured using the Python programming language. As the
DeepSVG environment works with this version, Python 3.7 was used for the
entire project.

Anaconda
Anaconda is a distribution of the Python programming languages for scientific
computing that aims to simplify package management and deployment.2

Visual Studio Code
Visual Studio Code is a source-code editor that is provided by Microsoft and is
available cross-platform for Windows, macOS and Linux. In contrast to Visual
Studio, VS Code does not work using a project system, but users are able to
open one or more directories. The editor is popular because of its environment
tool.

The first deep learning exercises were all done using Jupyter Notebooks. This
web-based platform was abandoned because of its dependence on a stable in-
ternet connection.

Opposite page:
Higher order diagram

of the software
implementation

2 Anaconda
(Python distribution)

116 Implementation

takeSnapshotUSER INPUT
take snapshot

USER INPUT
browse through/display interpolation output

USER INPUT
select a drawing and send the created G-Code to the machine

applySkeletonTracing

preprocessing

performInterpolation

displayPNGs

selectSVG

saveSVGtoGCode

117Implementation

3.3.2 Data Pipeline

The data pipeline is described in its basic structure in both diagrams (on the left
and the next page) and describes the sequence of steps that have to be computed
in one iteration (that was conceptually and sequentially described in chapter
3.1.3). A more in-depths description of what happens on the code side is pro-
vided in the following:

The iteration starts with a snapshot of the user’s drawing which works as the
first input of data in the form of a Bitmap image. A PNG is saved to the first
folder of the directory. The brush strokes are extracted and saved in SVG for-
mat.

A first attempt to do this was implementing RhinoInside, Grasshopper and its
Firefly plugin. The Traveling Salesman Algorithm was used to connect extract-
ed points from the Bitmap photo in the order of the shortest distance to one
another. This method was abandoned as it was quite computation-intensive
and did not produce satisfying results. The parameters could not be set in a way
that a broad range of different user drawings could be translated into polylines
that would replicate them.

Skeletonization is used in the actual version of the pipeline. A more detailed
description of this process is provided in the following.

Preprocessing of the resulting SVG images is a prerequisite for the interpola-
tion. The interpolation is performed using a Deep Hierarchical Network, the
pretrained model published as DeepSVG.

Opposite page:
Pseudocode applica-
tion software

118 Implementation

The user inputs data here for the second time within the process. Browsing
through the output of the interpolation is possible and a selection of one of the
frames results in the SVG being translated into machine instructions and sent
to the pen plotter.

As introduced before, the code was written in Python, in the Anaconda envi-
ronment and using Visual Studio Code editor. All the user input is handled via
TouchOSC.

Snapshot user drawing.

119Implementation

The project comprises around 750 lines of code that were written in the scope
of this project. The program performing Skeleton Tracing includes around 300
lines of code. The code from DeepSVG that was used in this project is not in-
cluded in this summation.

Skeletonization.

120 Implementation

The user inputs data here for the second time within the process. Browsing
through the output of the interpolation is possible and a selection of one of the
frames results in the SVG being translated into machine instructions and sent
to the pen plotter.

As introduced before, the code was written in Python, in the Anaconda envi-
ronment and using Visual Studio Code editor. All the user input is handled via
TouchOSC.

Result Skeletonization
in SVG format.

121Implementation

DeepSVG
As mentioned above, the code and pretrained network that was published in
2020 accompanying the paper ‘“DeepSVG: A Hierarchical Generative Net-
work for Vector Graphics Animation” was used for the interpolation process.

RhinoInside
RhinoInside made it possible to embed Grasshopper files in the data pipeline.

Grasshopper
Grasshopper was used for geometry manipulation.

SkeletonTracing
The SkeletonTracing App was developed at the Frank-Ratchye Studio for Cre-
ative Inquiry at Carnegie Mellon University and is available in all common lan-
guages on Github. In this morphological operation, a binary image is reduced
to its topological skeleton. Another term for the process of skeletonization is
thinning.3

Github
It would go beyond the scope of this book to publish all written code. The
code is open-source and available on this link: https://github.com/mnoemayr/
experiment-1

3 Huang, L.,
Skeleton Tracing

122 Implementation

3.3.3 Firmware

G-Code
G-Code is widely used for computer numerical control. The following com-
mands were mostly used to communicate with the pen plotter:

G90
(Set to absolute positioning;
coordinates are absolute to the origin of the machine)

G1 X0 Y225.5 Z0
(Linear move;
Xnnn (position to move to on X axis)
Ynnn (position to move to on Y axis)
Znnn (position to move to on Z axis)
Fnnn (feed rate per minute / speed of travel from point to
point))

G4 P0.1
(Dwell; pauses the machine for a defined period of time:
Pnnn (time to dwell in milliseconds)
Snnn (time to dwell in seconds))

123Implementation

GRBL
Grbl is a free firmware used to control CNC milling machines. It runs on all
Arduino boards with the Atmega 328 microchip. Grbl supports G-Code, but
also comes with its own commands.

$ commands are used for the configuration of the machine, give
user feedback or execute specific machine jobs:

$H (Run homing cycle)

? (Status Report Query)

124 Implementation

3.3.4 Communication between IDE and Firmware and Application
Software - Interoperability

The smooth operation of the written programs and communication between
the devices is essential for the information exchange between virtual and phys-
ical environments.

There are two parts of code that make this information exchange possible: The
first one exchanges information between the pen plotter and the computer and
is responsible for the execution of sent machine instructions. The second one
assures communication between the user interface and computer, embeds the
code of the Deep Neural Network and receives data created by the user in the
form of webcam snapshots.

125Implementation

UDP Protocol
Figure 3.06 shows the communication process of UDP server and client in the-
ory.

There is one server-client couple on the machine side: In order to perform the
homing cycle once and be able to send updating G-Code commands to the
machine, a UDP-based server and client are set up.

The other server-client couple is handling all information regarding drawings
in vector and raster format, the implementation of the pretrained Deep Neural
Network and user input.

126 Implementation

UDP Server

#Create socket
UDPServerSocket = socket.socket(family=socket.AF_INET,
type=socket.SOCK_DGRAM)

#Bind to Port and IP
localIP = “127.0.0.1”
localPort = 20001
UDPServerSocket.bind((localIP, localPort))

#Listen for incoming messages
while(True):
 bytesAddressPair = UDPServerSocket.recvfrom(buffSize)
 message = bytesAddressPair[0]
 address = bytesAddressPair[1]
 clientMsg = “Message from Client:{}”.format(message)
 clientIP = “Client IP Address:{}”.format(address)

 # Sending a reply to client
 UDPServerSocket.sendto(bytesToSend, address)

127Implementation

UDP Client

#Create socket
UDPClientSocket = socket.socket(family=socket.AF_INET,
type=socket.SOCK_DGRAM)

#Send message to server
UDPClientSocket.sendto(bytesToSend, serverAddressPort)

#Receive message from server
msgFromServer = UDPClientSocket.recvfrom(bufferSize)
msg = “Message from Server {}”.format(msgFromServer[0])2 2 UDP - Client

And Server Example
Programs In Python, 2022

128 Implementation

TouchOSC
TouchOSC calls itself a modular control surface. It supports all platforms and
sends and receives MIDI and OSC messages. OSC is a protocol that is used
to control music instruments and stage lighting control systems. TouchOSC
enables easy creation of interfaces and provides an option for sending and re-
ceiving signals via UDP.

Graphical
 user interface.

129Implementation

The TouchOSC uses a so-called bridge connection to communicate from the
touchpad to the computer. It functions as a UDP client in this case. The server
on the computer listens to data from this client.

Touchpad and User
Interface.

4 Application

This chapter includes a visual and textual documentation of the set of experi-
ments that have been conducted in the scope of this thesis.

The following targets were set for the experiments: The behavior of the net-
work and setup were tested under predefined conditions that are mentioned at
the beginning of each block of tests. For the first two blocks, the focus has been
set on abstract and figurative drawings. Expected results were compared with
what actually happens in a simple experimental setup with one iteration max-
imum. The third block of experiments documents a conversation conducted
between user and machine.

First drawing (left)
 result image tracing

(right)

Second drawing (left)
 result image tracing

(right)

133Application

4.1 Abstract experiment

Prerequisites
Abstract, geometric interpolations were tested in this first block of experi-
ments. User drawings of simple geometry, such as open, straight, parallel lines
and closed, curved lines, were used. The output was evaluated according to the
comprehensibility of the performed interpolation and the complexity of the
geometry generated.

Results
The results of what was tested, has been visually and textually documented on
the website https://deepgestures.carrd.co/ as a research portfolio in the first set
of abstract experiments (1.1 to 1.10). In order to improve readability, the visual
results of experiment 1.3 Abstract interpolation between two parallel lines and
two orthogonal lines will be presented on the next two pages.

Interpolation frames of
the abstract, geometric
interpolation between
two straight, parallel
and two straight, or-
thogonal lines.

136 Application

Conclusions
This set of experiments was conducted in order to gain a basic understanding of
what happens during the interpolation in the deep neural network. Beginning
with single straight or curved strokes, complexity was added incrementally.

In some cases, the process of image tracing adds new aspects to both initial
geometries. If reflections occur on the PNG file, the image cannot be trans-
lated correctly by the Skeleton Tracer. It is possible that a single straight brush
stroke is depicted as two segments. Thus, new serendipitous and unpredictable
frames emerge during the interpolation process. However, a realistic picture of
the interpolation between both figures is not drawn in that case.

The developers of the pre-trained deep neural network DeepSVG state that the
network would be able to process inputs in SVG format with up to eight paths
(Carlier, 2020). The results of the experiments show that in the case of man-
ually drawn and preprocessed input (PNG - image tracer - preprocessing), up
to four paths can be used. However, this circumstance does not undermine the
concept.

Figurative Experiment A
Digital input

First drawing

Second drawing

139Application

4.2 Figurative experiments

Prerequisites
Figurative interpolations were tested in this second block of experiments. Input
was provided both in digital form (icons from the Icon8-dataset) as in the form
of user drawings (made after the icons). The output of both was compared and
evaluated according to the comprehensibility of the performed interpolation
and the complexity of the geometry generated.

Results
The results of what was tested, has been visually and textually documented on
the website https://deepgestures.carrd.co/ as a research portfolio in the set of
figurative experiments (2.1 to 2.3). The visual results of these three individual
experiments will be presented on the next pages.

Interpolation frames of
the figurative interpola-
tion between two icons
with two strokes each.
The icons were chosen
from the Icon8-dataset
which the DeepSVG net-
work was trained on.

First drawing (left)
 result image tracing

(right)

Second drawing (left)
 result image tracing

(right)

Figurative Experiment B
Manually drawn input

Interpolation frames of
the figurative interpola-
tion between two icons
with 2 strokes each.
The images were drawn
after the icons from the
last experiments.

First drawing

Second drawing

Figurative Experiment C
Digital input

Interpolation frames of
the figurative interpola-
tion between four and
seven paths. The icons
were chosen from the
Icon8-dataset which the
DeepSVG network was
trained on.

150 Application

Conclusions
This set of experiments was conducted in order to gain a better understanding
of what happens during the interpolation in the deep neural network. Some
geometric and semantic relations could only be grasped using figurative input.

Each figure or icon is composed out of multiple strokes possessing a defined
meaning. When the order of the strokes differ in each icon, regarding the se-
mantic meaning of the stroke, a complex interpolation output is the result, that
leads to interesting and unforeseen geometry, but is not comprehensible.

Without the sorting of the SVG paths before the interpolation, new unexpect-
ed behavior is introduced in the process, but at the same time it loses in compre-
hensibility. This is visible in both experiment using digital input:

In the first experiment, the arrow-head and -body are differently colored, the
same color depicting the same position in the order of paths in the SVG code.
From frame to frame, the arrow does not rotate from one direction to the other
as intended, but the arrowhead is formed of the body of the other arrow and
vice versa.

In the second experiment, this can be observed as well. The body of the chick is
translated into the rooster’s comb, the chick’s claw into the rooster’s body etc.

The limit of four strokes for physical input in the form of a user drawing is cir-
cumvented using digital input. The interpolation is still performed using seven
strokes as input.

First drawing

Second drawing (left)
 result image tracing

(right)

Iteration 1

153Application

4.3 Conversation between human and machine

Prerequisites
A human-machine conversation was registered in this third block of experi-
ments. The conversation starts with one icon from the Icon8-Dataset one the
machine side, but the topic is changed by the user and is drawn in the direction
of basic geometry.

Results
The results of what was tested, has been visually and textually documented on
the website https://deepgestures.carrd.co/ as a research portfolio in section 3
on a conversation between user and machine. A visualization of this conversa-
tion will be presented on the next pages.

Interpolation frames of
the first iteration of the
conversation between
user and machine. The
conversation starts
with one icon from the
Icon8-Dataset one the
machine side, but the
topic is changed by the
user and is drawn in
the direction of basic
geometry.

Machine drawing (left)
selected frame 12

(right)

Second drawing (left)
 result image tracing

(right)

Iteration 2

Interpolation frames
of the second iteration
of the conversation
between user and
machine.

Machine drawing (left)
selected frame 8 (right)

Second drawing (left)
 result image tracing

(right)

Iteration 3

Interpolation frames of
the third iteration of the
user-machine conver-
sation.

164 Application

Conclusions
This set of experiments was conducted in order to gain a better understand-
ing of what happens in the course of a conversation between a user and the
machine. Some relations between user input, image visualization and machine
output could only be grasped by visualizing them sequentially.

The user is leading the conversation as he or she is the one selecting the frame
on which the next iteration is based. The dialogue can always be led into a direc-
tion that he or she prefers or be altered completely. It is an open-ended process
of interaction that can at any iteration be concluded or picked up again, as all
the frames are stored in the digital memory.

165Application

Conversation end:
Machine drawing of
selected frame 20

First drawing

Experiment A

Second drawing

167Application

4.4 Path order

Prerequisites
In this block of experiments figurative interpolations were tested for a second
time and improved with focus on the semantics of the images. Input was pro-
vided in digital form (icons from the Icon8-dataset)v. Before performing the in-
terpolation, the input was revised regarding the order of the paths. The output
of both was compared and evaluated according to the comprehensibility of the
performed interpolation and the complexity of the geometry generated.

Results
The results of what was tested, has been visually and textually documented on
the website https://deepgestures.carrd.co/ as a research portfolio in section 4
on revised figurative experiments (4.1 to 4.2).The results of these two experi-
ments are visualized on the following pages.

Interpolation frames of
the revised figurative
interpolation. The SVG
paths were sorted
before performing the
interpolation.

First drawing

Second drawing

Experiment B

Interpolation frames of
the revised figurative
interpolation. The SVG
paths were sorted
before performing the
interpolation.

174 Application

Conclusions
Although sorting of the SVG paths was done manually in this step, it led to the
desired results in the first experiment. An automated way to sort the SVG paths
according to the semantic meaning is proposed. Some additional code would
be necessary to automate this step and implement it in the preprocessing step
of the data pipeline. Although SVG code is readable by humans, automated
handling of SVG code reduces the risk of manual mistakes in this process.

In the second experiment, the interpolation process shows unexpected, unsat-
isfying results. As the interpolation proved to work using other icons as input,
the preprocessing steps are reexamined.

First drawing

Second drawing

Simplified drawing (left)
Pickled and unpickled
drawing (right)

Simplified drawing (left)
Pickled and unpickled
drawing (right)

178 Application

Conclusions
It is visible that in this step already - not only in the interpolation process - the
geometry of the two drawings changes. Additionally, some small shape gets lost
in the pickling process.

What exactly happens in this pickling step, in the process of object serialization
(converting an object hierarchy into stream of bytes using the pickle module in
Python), is not visible - as the output of this process is code that is not readable
for humans. The results of this pickling process are only visible, when unpick-
ling those .pkl files again.

Conclusion of the
conversation

181Application

4.5 Composition/pattern creation

Prerequisites
Each user-machine dialogue concludes at a point and a certain geometry. In
this example, the implementation of this newly generated content into an algo-
rithm for pattern creation is examined.

Results
The results of what was tested, has been visually and textually documented on
the website https://deepgestures.carrd.co/ as a research portfolio in section 5
on composition/pattern creation. The result can be seen on the following pag-
es.

Comparison
input/output

Point subdivision

Composition

184 Application

Conclusions
The output of the composition quickly adds complexity to the relatively simple
input curves (which are the result of the conversation of user and machine of
chapter 4.3).

This creation canm be visualized on a screen during the user experimentation.
Another option would be to make use of the second z-axis, use a brush filled
with paint and a sheet of paper to paint it.

This composition uses some lines code in Grasshopper and C#. Some variables
have to be predefined, such as the radii of the circles. This could also be made
interactive, bearing in mind that some dependent processes, like the scaling of
the drawing, have to be automated.

First drawing

Iteration 1

Second drawing (left)
 result image tracing

(right)

187Application

4.6 Superimposed drawings

Prerequisites
One conversation in this mode is registered. The conversation starts with one
icon from the Icon8-Dataset one the machine side. The user draws a response
and after that, it is tested, if the machine can take its own drawings as input for
the next iteration (concept and distinction to the setup of the previous experi-
ments, see diagram above).

Results
The results of what was tested, has been visually and textually documented on
the website https://deepgestures.carrd.co/ as a research portfolio in section 6
on superimposed drawings. A visualization of this conversation will be present-
ed on the next pages.

USER INPUT
drawing

USER INPUT
drawing

ITERATION n

ITERATION n+1
MACHINE OUTPUT
selected frame previous interpolation

MACHINE OUTPUT

PREVIOUS EXPERIMENTS

selected frame previous interpolation

selected interpolation frame

189Application

Opposite page and this
page:

Superimposed draw-
ings: same output as
input.

The diagram shows the
difference between the
last and the next sets
of experiments.

ITERATION n

ITERATION n+1

NEXT SET OF EXPERIMENTS

MACHINE OUTPUT
selected frame previous interpolation

selected interpolation frame

MACHINE OUTPUT
selected frame previous interpolation

Interpolation frames
of a human-machine
dialogue with superim-
posed drawings. The
conversation starts
with one icon from the
Icon8-Dataset one the
machine side. The user
draws a response and
the machine takes its
own drawing as input
for the next iteration.

Selected frame 13 as
first drawing

Machine drawing (left)
 result image tracing

(right) as second
drawing

Iteration 2

Interpolation frames
of the second iteration
of a human-machine
dialogue with superim-
posed drawings.

Selected frame 0 as
first drawing

Machine drawing (left)
 result image tracing

(right) as second
drawing

Iteration 2

Interpolation frames
of the third iteration
of a human-machine
dialogue with superim-
posed drawings.

200 Application

Conclusions
This set of experiments was conducted in order to gain a better understanding
of what happens in the course of a conversation between a user and the ma-
chine adding complexity through superimposed drawings.

The user is still leading the conversation by selecting the frame on which the
next iteration is based. The dialogue can not be led into another preferred direc-
tion easily or be altered completely. It is an open-ended process of interaction
that can at any iteration be concluded or picked up again, as all the frames are
stored in the digital memory.

Conversation end:
Machine drawing of
selected frame 22

203Application

4.7 Current limitations

4.7.1 Hardware limitations

Because of the time it takes once the snapshot is taken of the user’s drawing to
process and preprocess data, feed it into the network and perform the interpo-
lation, there is a slight downside to interactivity and user feedback.

Comparing user input and machine output side to side, it is visible that the
brush sizes vary in thickness. On the user side, it is essential to draw using a
thicker brush and more water in order to have enough time for taking the snap-
shot. In addition to that, the drawing sensation is a different one using a thicker
brush that might allow some inaccuracy and corrections in the drawing process.

The thin brush is used with machinic precision, albeit drying very fast.

4.7.2 Software limitations

The DeepSVG network has been trained based on the SVG-Icons8 dataset. In-
terpolations with SVG files with more than eight vector paths are not possible.
Using physical input, in the form of a user drawing, only four- strokes or vector
paths are the limit for the interpolation. In the first case, using more than eight
paths and digital input, the interpolation fails. In the second case, using more
than four paths and physical input, only four paths are displayed as the result of
the interpolation process.

As the order of the paths of the input files has not been regarded, the interpo-
lation process of some figurative drawings possesses interesting complexity but
lacks replicability. A solution to this is posed in paragraph 4.4.

5 Conclusions

This final chapter presents the conclusions drawn from the experimental re-
sults and illustrates ideas for further developments and implementations.

206 Conclusion

Conclusions

The presented research project investigated the technical and creative space of
possibilities situated at the intersection of novel Machine Learning techniques
and established Numerical fabrication technologies, with a focus on graphical
applications in the 2-dimensional space.

The majority of Machine Learning applications in the creative field is currently
focused on the processing of pixel-based images or texts. As part of this work,
the potential of a Hierarchical Generative Network for the creation of vector
files in the SVG format (DeepSVG) was investigated. As opposed to image cre-
ation in raster format, vector representation opens the door to digital produc-
tion, enabling a direct translation of geometry to CNC machine operations.

The experimental focus of this work has been on the design and development
of a custom-made interactive computational system in its hardware and soft-
ware components. To validate such technical developments, the system was
creatively explored and critically analyzed in its behaviors and responses to a
variety of user inputs.

By critically looking at the process of interaction between user and machine
and by rejecting the conception of computers as passive receivers of pre-con-
ceived creative impulses, this work framed the machine as active instrument
which is capable of perceiving and processing external inputs to generate new
content, while at the same time it challenged and re-defined the user in its mod-
ern role of creative author.

Experiments
The set of experiments conducted in the scope of this work aimed at docu-
menting and evaluating the process of interaction between user and machine,
with the main objective of playfully exploring the system to unravel its inner

207Conclusion

logics and generative potential and, concurrently, of testing its technical and
performative response.

The results showed that the system was able to add further complexity even
during simple and abstract interpolations. Some of those serendipitous and un-
predictable frames emerge during the latent space operation in the deep neural
network. In some cases, the process of image tracing adds new aspects to the
initial geometries. The addition of complexity, however, comes at the cost of
comprehensibility, as a realistic image of the interpolation is not drawn in that
case.

Some geometric and semantic relations could only be grasped using figurative
input. Interpolating two icons of comparable content showed that the order
of the respective SVG paths was important and should correspond, as neglect-
ing this aspect would alter the semantic content of the interpolation results
completely. An automatic sorting algorithm during the preprocessing step is
proposed.

Initial experiments culminated in a dialogue between user and machine. The
user led the conversation by selecting the topic as well as by affecting the ma-
chine’s response in each iteration. This open-ended process of interaction
could be concluded or picked up again at any time, as all the machine’s answers
in the form of interpolation frames are stored in the digital memory.

On a more technical note, the results of the experiments showed that, in the
case of manually drawn input, the DeepSVG network is able to process an SVG
file of four paths maximum, whereas the developers of DeepSVG state that the
network would be able to process input with up to eight paths (Carlier, 2020).
Even if this circumstance does not undermine the concept, it certainly poses a
limit to the user’s creative possibilities.

208 Conclusion

Final Application
The last interpolation frame of the human-machine dialogue serves as input for
the final experiment. Deriving from the chosen conversation topic, this applica-
tion was the purpose of having this conversation in the first place.

Conceptualized in virtual space, the output of this application can be actualised
in a multitude of forms depending on a variety of variables, such as its realiza-
tion in 2- or 3-dimensional space, on its scale or materiality. This form provides
an indication on who the user might be. In this context, one could imagine an
architect, artist or designer exploring the generative aspect of the machine.

The role of the designer
In the process of employing (or developing) a deep neural network as a creative
tool, the designer has to challenge the knowledge about her role as a creator and
reflect on the design intention on a broader scale. Based on the direct experience
of this research, I saw the role of the designer being affected in two ways:

Firstly, by expanding her level of engagement, the designer stops from being
solely a focused task-solver looking for a specific solution to a well posed design
problem. She also becomes the creator of a higher level system which enables a
new type of cooperative design. This function can comprise a larger set of tasks
- such as the curation of a dataset at the beginning of the process, the evaluation
of a trained model or the fabrication at the end of the “outsourced” process.

Secondly, the role of the designer who is exposed to such systems, is bouncing
back and forth from the one of a playful explorer to one of a focused exploit-
er. The appropriation of and the continuous interaction with a complex sys-
tem not only fosters a deeper rational understanding on how these complex
networks process data, but also provides a real learning environment for the
designer who is exposed to a variety of initially unexpected inputs, which over-
time she will eventually incorporate and transform in a novel design sensibility.

209Conclusion

210 Conclusion

5.1 Further implementations

Although this project can be considered concluded in its prototypical state, re-
search could be expanded in multiple directions.

Performance
As certain calculations performed by the network involve rather heavy and
time-expensive computation, it would not be true to describe the drawing ex-
perience as real-time. In halting and non-fluent moments, trains of thought
cannot be immediately processed, leading to moments of excessive reflection or
irritation, significantly affecting the user’s experience.

In order to minimize the delay and to bring the interaction closer to real-time,
the computational performance would have to be reviewed. The processing of
code could be improved by using more powerful processors, switching to an-
other programming language, or, most importantly, by fine tuning and imple-
menting new computational strategies.

Alternative networks
The application of SketchRNN - based on Google’s Quick Draw Dataset - was
considered in the scope of this project. One advantage would be a faster re-
sponse to user input as well as the introduction of categories of sketches. As the
network is based on TensorFlow, a new environment and new libraries would
have to be introduced.

Customized dataset
The creators of DeepSVG chose a very large (and thus unspecified) dataset of
icons as the basis for training of the network. One next consequent step would
be the curation of an alternative, customized dataset in order to train and em-
ploy a new network with a more specific semantic, aesthetic or disciplinary tar-
get.

211Conclusion

6 Bibliography

List of Figures

If the figure is not included in this list, it is provided by the author.

Premise

Figure 1.01 Ivan Sutherland’s Sketchpad, 1962.
https://tamarind.unm.edu/wp-content/uploads/Ivan_Sutherland1962.jpg
accessed 13 January 2022

Figure 1.02 Connected pen plotter as passive receiver.
Sutherland, 2003, Sketchpad, A man-machine graphical communication system, Tech-
nical report based on dissertation submitted in January 1963, Cambridge, page 21

Figure 1.03 Machine as Actuator
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Automatisches_Ze-
ichengeraet_ZUSE_Z64_ubt.JPG/1280px-Automatisches_Zeichengeraet_ZUSE_Z64_
ubt.JPG
accessed 4 January 2022

Figure 1.04 Gravel, 1968 (left).
https://raw.githubusercontent.com/LindomarRodrigues/Georg-Nees-Schotter-Python/
master/Lindomar%20Rodrigues%2C%20Schotter.png
accessed 13 January 2022

Figure 1.05 Code to Gravel written in the language ALGOL (right).
http://cmuems.com/2013/a/wp-content/uploads/sites/2/2013/09/weiss-fig4-
493x480.jpg
accessed 13 January 2022

Figure 1.06 Omnia per Omnia, Sougwen Chung, 2018.
https://sougwen.com/wp-content/uploads/2018/05/sougwen-2018_omnia_03.jpg
accessed 13 January 2022

Figure 1.07 Machines as Collaborators.
https://sougwen.com/wp-content/uploads/2018/05/sougwen-2018_omnia_02.jpg
accessed 17 January 2022

Theoretical Framework

Figure 2.01 Applications of Machine Learning, the Nooscope Manifest , Pasquinelli and Joler,
2020
Pasquinelli and Joler, 2020, The Nooscope Manifested: Artificial Intelligence as Instru-
ment of Knowledge Extractivism, Essay, page 14

Figure 2.02 Scheme of a Perceptron.
https://miro.medium.com/max/1068/1*Z1_IgFO1c6tq4Tz1iwJraw.png
accessed 5 January 2022

Figure 2.03 Classification of Deep Learning as a subcategory of Machine Learning.
https://miro.medium.com/max/1400/1*JVbomzzzOuV7rhU3ErGBrw.jpeg
accessed 5 January 2022

Figure 2.04 Scheme of a Multilayer Perceptron.
https://static.packt-cdn.com/products/9781787121089/graphics/B12043_02_04.png
accessed 17 January 2022

Figure 2.05 Data size benchmark
Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. Cambridge, MIT Press,
Chapter 1, Introduction, page 19

Figure 2.06 Different feature engineering processes for ML and DL.
https://quantdare.com/wp-content/uploads/2019/06/deep_learning.png
accessed 13 January 2022

Figure 2.07 Schematic diagram of a feature extraction process.
https://miro.medium.com/max/800/0*sQzmiOf8Yb_18HX1.png
accessed 13 January 2022

Figure 2.08 Scheme of a Deep Autoencoder.
https://hackernoon.com/hn-images/1*8ixTe1VHLsmKB3AquWdxpQ.png
accessed 17 January 2022

Figure 2.09 The GAN Pipeline.
https://github.com/udacity/deep-learning-v2-pytorch/raw/661c38e1c6a1f6734c26e-
cd899b958533c41cf1f/gan-mnist/assets/gan_pipeline.png
accessed 5 January 2022

Figure 2.10 “Nice scarf! Knitted it yourself?”, 2017
Generative Art by Mario Klingemann using Generative Adversarial Networks.
https://i.pinimg.com/originals/d8/96/de/d896de6bfc31cddaca2ce17636260a91.png
accessed 6 January 2022

Figure 2.11 Schematic diagram of a Hierarchical Generative Network.
Carlier, A., Danelljan, M., Alahi, A., Timofte, R., 2020, DeepSVG: A Hierarchical Genera-
tive Network for Vector Graphics Animation, arXiv:2007.11301v3, page 5

Figure 2.12 The 3D-printed stainless steel bridge was designed by Joris Laarman and built by
MX3D using six-axis robotic arms equipped with welding gear. (Amsterdam, 2021)
https://starts-prize.aec.at/wp-content/uploads/2018/05/Amsterdams3DPrintedSteel-
Bridge3.jpg
accessed 21 March 2022

Figure 2.13 Machine instructions were encoded on punch tape.
Pease, W., 1951, An Automatic Machine Tool, Scientific American Inc, page 101

Figure 2.14 An Automatic Machine Tool, Pease, 1952.
Pease, W., 1951, An Automatic Machine Tool, Scientific American Inc, page 102

Figure 2.15 Interior view of the finished brick facade of the Winery Gantenbein by Gramazio &
Kohler, 2006.
https://gramaziokohler.arch.ethz.ch/data/ProjectImages/02_
Web/M/036/060823_036_Dokumentation_Ralphfeiner_006_WM.jpg
accessed 13 January 2022
Copyright 2016, Gramazio Kohler Research, ETH Zürich, Switzerland

Figure 2.16 Automated robotic fabrication.
https://www.aic-iac.org/wp-content/uploads/Element-production.jpg
accessed 13 January 2022
Copyright 2016, Gramazio Kohler Research, ETH Zürich, Switzerland

Figure 2.17 In-Situ Fabricator, Giftthaler, Sandy, Dörfler et al., 2015.
https://punkt4.info/fileadmin/user_upload/bauroboter_e.jpg
accessed 13 January 2022

Figure 2.18 Ambient point cloud.
https://media.springernature.com/lw685/springer-static/image/art%3A10.1007%2
Fs41693-017-0003-5/MediaObjects/41693_2017_3_Fig2_HTML.jpg
accessed 13 January 2022

Figure 2.19 SEEK, Negroponte and The Architecture Machine Group, 1970.
http://cyberneticzoo.com/wp-content/uploads/Seek_p3-x640.jpg
accessed 13 January 2022

Figure 2.20 Mimus’ installation at the Design Museum in London, Gannon, 2017.
https://www.cmu.edu/news/stories/archives/2017/february/images/mi-
mus_853x480-min.jpg.jpeg
accessed 6 January 2022

Figure 2.21 Visual feedback of the visitors.
https://images.squarespace-cdn.com/content/v1/5758289d27d4bd-
f581e1c031/1479333536100-LXSVWM0MZKS9JS5A0XPP/bridge_early_screengrab.
jpg?format=750w
accessed 13 January 2022

Figure 2.22 Stochastic assembly, Wu and Kilian, 2018.
https://media.springernature.com/original/springer-static/image/chp%3A10.1007%
2F978-3-319-92294-2_2/MediaObjects/450164_1_En_2_Figa_HTML.png
accessed 17 January 2022

Figure 2.23 Positioning of wooden logs using an industrial robotic arm.
https://media.springernature.com/original/springer-static/image/chp%3A10.1007%
2F978-3-319-92294-2_2/MediaObjects/450164_1_En_2_Fig5_HTML.png
accessed 17 January 2022

Figure 2.24 NORAA - an interactive drawing installation was created by Jessica In in 2018.
https://images.squarespace-cdn.com/content/v1/58b2e5605016e199ea87f-
8d3/1540675105287-4KR87YCA4NDNGRKQ5212/31036081008_345929067c_o_sm.
jpg
accessed 13 January 2022

Figure 2.25 Schematic sketch of installation concept.
https://images.squarespace-cdn.com/content/v1/58b2e5605016e199ea87f-
8d3/1551096706381-UU0JURBOC8HNKEKSFXD2/190216_2D_Choreography2-01_
medRes.png?format=1000w
accessed 13 January 2022

Implementation

Figure 3.01 Horst Rittel’s design processes of generating variety and reducing variety.
Gänshirt, C., 2021, Tools for Ideas, Birkhäuser, Basel, page 80

Figure 3.02 Arduino Pro Mini Pinout.
https://www.eitkw.com/wp-content/uploads/2019/11/promicropinout.jpg
accessed 28 January 2022

Figure 3.03 Python logo.
https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Python-logo-notext.
svg/1024px-Python-logo-notext.svg.png
accessed 31 January 2022

Figure 3.04 Anaconda logo.
https://www.generalcatalyst.com/wp-content/uploads/2017/10/logo-anacon-
da-372x372-1.png
accessed 31 January 2022

Figure 3.05 Visual Studio Code logo.
https://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Visual_Studio_
Code_1.35_icon.svg/2048px-Visual_Studio_Code_1.35_icon.svg.png
accessed 31 January 2022

Figure 3.06 UDP Server and Client communication in theory.
https://media.geeksforgeeks.org/wp-content/uploads/UDP.png
accessed 31 January 2022

Figure 3.07 TouchOSC logo.
https://hexler.net/site/images/app_icons/png_white/TouchOSC-icon.png
accessed 31 January 2022

Figure 3.08 DeepSVG logo.
https://repository-images.githubusercontent.com/281817032/68d82800-cc83-11ea-
846c-1fe78e3ef266
accessed 31 January 2022

Figure 3.09 Rhino3D logo.
https://www.filou.de/wp-content/uploads/2020/12/Rhino7-Logo-2_200.jpg
accessed 31 January 2022

Figure 3.10 Grasshopper logo.
http://3.bp.blogspot.com/_ZKKPQHRaR0I/S_VP9YeSoqI/AAAAAAAAApw/J4pdVe9_
eHk/s400/Grasshopper_logo.png
accessed 31 January 2022

Figure 3.11 Skeleton Tracing logo.
https://user-images.githubusercontent.com/7929704/79626790-c39c3980-8100-
11ea-82c8-3da4380c1128.png
accessed 31 January 2022

Figure 3.12 Github logo.
https://logosmarken.com/wp-content/uploads/2020/12/GitHub-Logo.png
accessed 31 January 2022

References

Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. Cambridge (EE. UU.): MIT
Press.

Armstrong, H., 2021, Big Data, Big Design, Why Designers Should Care About Artificial In-
telligence, Princeton

Matteo Pasquinelli and Vladan Joler, “The Nooscope Manifested: Artificial
Intelligence as Instrument of Knowledge Extractivism”, KIM research group
(Karlsruhe University of Arts and Design) and Share Lab (Novi Sad), 1 May
2020 (preprint forthcoming for AI and Society). https://nooscope.ai

LeCun, Y., Cortes, C., Burges, C., MNIST handwritten digit database, [online] Available at:
<http://yann.lecun.com/exdb/mnist/> [Accessed 8 January 2022]

Patel, H., 2021, What is Feature Engineering — Importance, Tools and Techniques for Ma-
chine Learning, [online] Available at: <https://towardsdatascience.com/what-is-feature-engi-
neering-importance-tools-and-techniques-for-machine-learning-2080b0269f10> [Accessed
17 January 2022]

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
Bengio, Y., 2014, Generative Adversarial Nets, Technical paper, arXiv:1406.2661v1

Klingemann, M., 2019, Interview with Mario Klingemann, [online] Available at: <https://www.
artmarket.guru/le-journal/interviews/mario-klingemann/> [Accessed 13 January 2022]

Cache, B., 1995, Earth Moves: the furnishing of territories, MIT Press, Cambridge, Mass.

Carlier, A., Danelljan, M., Alahi, A., Timofte, R., 2020, DeepSVG: A Hierarchical Generative
Network for Vector Graphics Animation, Technical paper, arXiv:2007.11301v3

Pease, W., 1951, An Automatic Machine Tool, Scientific American Inc

Heads of the MIT Servomechanisms Laboratory, Prepared by the Institute Archives, MIT Li-
braries
September 2004, [online] Available at: <https://libraries.mit.edu/mithistory/research/labs/
mit-servomechanisms-laboratory/> [Accessed 13 January 2022]

Gramazio & Kohler (2009), Facade Gantenbein Winery, Non-Standardised Brick Facade, Vol.
8

Giftthaler, M., Sandy, T., Dörfler, K., Brooks, I., Buckingham, M., Rey, G., Kohler, M., Gramazio,
F., Buchli, J., 2017, Mobile Robotic Fabrication at 1:1 scale: the In situ Fabricator, System Expe-
riences and Current Developments, Technical paper, arXiv:1701.03573v1

Gannon, M., 2018, Human-Centered Interfaces for Autonomous Fabrication Machines, Doc-
toral Thesis, Carnegie Mellon University

Wu, K., Kilian, A., 2019, Designing Natural Wood Log Structures with Stochastic Assembly
and Deep Learning, Copyright Springer Nature Switzerland AG 2019, J. Willmann et al. (Eds.):
ROBARCH 2018, Robotic Fabrication in Architecture, Art and Design 2018, pp. 16-30, 2019.

Magenta, Sketch RNN, 2018 [online] Available at: <https://magenta.tensorflow.org/assets/
sketch_rnn_demo/index.html> [Accessed 13 January 2022]

GoogleCreativeLab, Quick Draw Dataset , 2017 [online] Available at: <https://github.com/
googlecreativelab/quickdraw-dataset> [Accessed 13 January 2022]

In, J., NORAA , 2018 [online] Available at: <https://www.jessicain.net/pagesnoraa> [Accessed
13 January 2022]

Huang, L., Skeleton Tracing, Frank-Ratchye STUDIO for Creative Inquiry at Carnegie Mellon
University, [online] Available at: <https://skeleton-tracing.netlify.app/> [Accessed 31January
2022]

UDP - Client And Server Example Programs In Python, [online] Available at: <https://python-
tic.com/modules/socket/udp-client-server-example> [Accessed 31 January 2022]

Gänshirt, C., 2021, Tools for Ideas, Birkhäuser Verlag GmbH, Basel

Anaconda (Python distribution), [online] Available at: <https://en.wikipedia.org/wiki/Ana-
conda_(Python_distribution)> [Accessed 22 March 2022]

Carlier, A., 2020, [online] Available at: <https://github.com/alexandre01/deepsvg/issues/15>
[Accessed 8 February 2022]

