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ABSTRACT
In this paper, we study twooptimisation settings for an insurance company,
under the constraint that the terminal surplus at a deterministic and finite
time T follows a normal distribution with a given mean and a given vari-
ance. In both cases, the surplus of the insurance company is assumed to
follow a Brownianmotion with drift. First, we allow the insurance company
to pay dividends and seek to maximise the expected discounted dividend
payments or to minimise the ruin probability under the terminal distribu-
tion constraint. Here, we find explicit expressions for the optimal strategies
in both cases, when the dividend strategy is updated at discrete points in
time and continuously in time. Second, we let the insurance company buy
a reinsurance contract for a pool of insured or a branch of business. We set
the initial capital to zero in order to verify whether the premia are sufficient
to buy reinsurance and to manage the risk of incoming claims in such a
way that the desired risk characteristics are achieved at some terminal time
without external help (represented, for instance, by a positive initial capi-
tal). We only allow for piecewise constant reinsurance strategies producing
a normally distributed terminal surplus, whose mean and variance lead to
a given Value at Risk or Expected Shortfall at some confidence level α. We
investigate the question which admissible reinsurance strategy produces a
smaller ruin probability, if the ruin-checks are due at discrete deterministic
points in time.
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1. Introduction

This paper investigates the problem of dividendmaximisation and the problem of ruin minimisation
for an insurance company who aims to achieve a certain surplus distribution at a particular future
date. Indeed, the knowledge of the surplus distribution, for instance, at regulatory check-times is
an important information for the calculation of the necessary capital reserves, in view of the Sol-
vency regulations. Measuring the solvency of a collective of risks remains a key task in insurance
mathematics. In 1903 Filip Lundberg proposes a model (nowadays called the classical risk model or
Cramer–Lundberg model) for the surplus where the total claim amount of an insurance company or
of a collective of insured is represented by a compoundPoisson process, whilst the premia are assumed
to arrive at a constant positive rate. The surplus process which is made of incomes, the initial cap-
ital and premia, and payments, the claims, is then described by a jump process with drift that may
eventually take negative values if for instance claims exceed premia. One way to assess the solvency
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is to look at ruin probability, that is the probability that the surplus becomes negative in finite time.
This is the central object in the classical risk model and has been studied in diverse settings since
Harald Cramer republished the results of Lundberg in the 1930s. However, due to the presence of
jumps (claim sizes) in the expression of the surplus under the Cramer–Lundberg model, derivations
are quite complex. Explicit form representations of the ruin probability can be found just for a few
claim size distributions, exponential distribution above all. For this reason, one often considers an
approximation of a compound Poisson process by a diffusion, see, e.g. Schmidli (2008, p. 226) for
more details. It is clear that if the risk of having a claim cannot be entirely eliminated (for instance,
by buying a full reinsurance contract), the distribution of the surplus in the classical risk model, or in
it’s diffusion approximation, should allow for negative values. Thus, choosing a specific target distri-
bution for the future surplus one should keep in mind that this distribution cannot be concentrated
on the positive real line.

Over the years, several risk measures have been proposed and their properties have been investi-
gated, by adding risk constraints like, for example, value at risk.

One of the most popular risk measures is the value of expected discounted dividends. Here, one
searches for the ‘optimal’ dividend strategy, i.e. a strategy maximising the value of expected dis-
counted dividends up to the time when the surplus becomes negative. By considering the optimal
strategy, the focus is deliberately placed on the surplus’ evolution characteristics rather than on the
company’s managerial skills. Some results on dividend maximisation problems can be found, for
instance, in Asmussen & Taksar (1997) and Shreve et al. (1984). We further refer to Albrecher &
Thonhauser (2009), Avanzi (2009), Hipp (2020) and references therein for an overview of the existing
results.

The optimal dividend payout strategy in the most ‘unconstrained’ settings turns out to be of a bar-
rier or a band type, meaning that the strategy can change from ‘paying the maximal possible amount’
to ‘paying nothing’ in dependence on the current surplus value. This setup cannot be considered real-
istic or doable for an insurance company. Moreover, solvency requirements imposed by regulators
may not allow paying dividends according to the optimal, possibly bang-bang, strategy. To make the
models more realistic, one needs to impose restrictions. Paulsen (2003) studies the optimal dividend
problemwith a no-bankruptcy constraint – dividends will not be paid if the surplus is below a certain
barrier. An extended setting with transaction costs is analysed in Bai et al. (2012). Hipp (2003), con-
siders optimal dividend payment strategies under the constraint that the ruin probability stays under
a given boundary. Thonhauser & Albrecher (2011) maximise the total discounted utility of dividend
payments under strictly positive transaction costs.

The setting considered in the first part of this paper is novel in the following way. The surplus of
an insurance company in a finite time interval is modelled by a diffusion process. We concentrate
on the dividend payments – described by dividend rates – with two different objective functions:
expected discounted dividend payments and ruin probability. In the first case, one faces a maximisa-
tion problem, whereas in the second case the ruin probability should be minimised. The surplus can
only be controlled at discrete equidistant time points. We introduce a constraint on the set of admis-
sible strategies by requiring that the ex-dividend terminal wealth should be normally distributed with
fixed exogenously given mean and variance. To the best of our knowledge, such a constraint has not
been considered in an insurance optimisation problems before. As the surplus is modelled by a dif-
fusion, the choice of a normal distribution as a target distribution seems to be natural. We prove that
the optimal strategy in both cases should be deterministic, i.e. it is decided at time zero. As it is intu-
itively clear, the strategy leading to the maximal discounted dividend value starts with high payments
in the very beginning and decreases approaching the time horizon; the strategy minimising the ruin
probability behaves in an opposite way.

The results obtained in this first part of the paper heavily rely on the very nature of dividend pay-
ments. The control is acting solely on the drift, letting the volatility unchanged. This allows comparing
different strategies by comparing their paths. However, choosing a control problem with an impact
on the volatility of the surplus process will not permit the use of a path-comparison method and
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will require different, more complex techniques. A well-established, well-investigated and still quite
popular risk measure is, as mentioned above, the ruin probability – the probability that a company, a
strain of business or a pool of insured risks goes bankrupt in finite time, i.e. writes red numbers – the
aggregate claims exceed the collected premia. The surplus, with continuous paths or having jumps,
can be controlled, for instance, by a reinsurance, dividend payments, possible surplus investments
into dependent or independent markets.

A technical ruin, that is, the event in which the surplus becomes negative or touches zero, does
not compulsory mean that the company has to entirely stop operating. The time and the severity
of ruin are completely neglected by looking solely at the ruin probability. Also, due to Solvency II
requirements, companies have enough reserves to bridge a certain period of unfavourable business
development. For these reasons, the ruin probability might not be a desired risk measure to assess
a company’s performance. However, paired with some additional constraints it can help choosing a
strategy which is, for instance, more risk averse in the eyes of the insurance company.

In the second part of this manuscript, we are looking at the surplus of an insurance company who
buys proportional reinsurance contracts of a specific type. To control the risk exposure and to be able
to meet regulatory requirements, insurance companies need to pay attention to various constraints.
For instance, Bernard & Tian (2009), Lo (2017a, 2017b) and Huang & Yin (2019) search for the opti-
mal reinsurance strategy under a constraint (a strictly positive surplus or a fixed risk measure to stay
under some prespecified boundary) on the loss at the terminal time. Optimal investment and rein-
surance have been considered with constraints on the budget, see Bi et al. (2014), or on Value at Risk,
see, e.g. Choulli et al. (2001), Bi & Cai (2019) and Wang & Siu (2020). The problem of choosing a
reinsurance strategy to minimise the ruin probability with a Value at Risk (or a Conditional Value at
Risk) constraint is considered for instance in Zhang et al. (2016) and Chen et al. (2010) under finite
and infinite time horizons.

In this paper, we seek to find a proportional reinsurance strategy that minimises the ruin proba-
bility under a constraint imposed on the distribution of the terminal wealth. Adding a constraint of
this type on the terminal surplus has several advantages. For instance, one will be able to calculate any
risk measure acting on the terminal wealth: the Value at Risk, the Expected Shortfall or the expected
terminal utility, and hence address many regulatory requirements all at once.

We consider a finite time interval [0,T], and the direct insurer can choose the deductible only
twice – in the beginning and in the middle of the interval. The target is twofold: the terminal post-
reinsurance surplus atT should be normally distributedwith givenmean and variance, and the chosen
admissible strategy should lead to the smallest possible ruin probability. We show that the optimal
strategy is deterministic, i.e. it is chosen at time 0, and one is always acting in a risk averse way.
That is, the insurer buys less reinsurance in the beginning, in order to let the drift push the surplus
upwards, and buys more reinsurance in the second half, reducing the risk of ruin shortly before the
regulator’s check. We briefly discuss the case where the insurer can update the reinsurance strategy
three times, which provides some intuition on how to deal with more than two updates. To the best
of our knowledge, the presented approach is new in many aspects. Moreover, the discrete nature of
the optimal strategies, make this setting easily applicable from a practical point of view.

The paper is organised as follows. In Section 2, we introduce and solve the dividend maximisa-
tion problem. We address the ruin minimising problem in Section 3. The reinsurance optimisation
problem is discussed in Section 4. We conclude in Section 5.

2. Maximising dividends under a terminal distribution constraint

In this section, we consider an insurance companywho is allowed to pay dividends. The dividend rate
has to be chosen in such a way that the surplus at some future deterministic time T achieves a given
distribution. At the same time, the value of expected discounted dividends should be maximised.

We consider a probability space (�,F ,P), a finite time horizon T> 0 and a Brownian motion
W = (Wt)t∈[0,T]. We denoted by F = (Ft)t∈[0,T] the natural complete and right continuous filtration
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ofW, and set FT = F . The surplus of the insurance company in the interval [0,T] is modelled by a
Brownian motion with drift as

X0
t = x + μ̄t + σ̄Wt , t ∈ [0,T],

where x ≥ 0 represents the initial capital and μ̄, σ̄ > 0.
The company is allowed to pay dividends in form of dividend rates 0 ≤ c ≤ ξ for some given

ξ > 0. It means that the post-dividend process under a dividend strategy c = (cs)s∈[0,T] is given by

Xc
t = x + μ̄t −

∫ t

0
cs ds + σ̄Wt , t ∈ [0,T]. (1)

Our objective is to determine the strategies that maximise the expected discounted dividends and
simultaneously lead to a normally distributed post-dividend terminal surplus Xc

T . We assume that
the target distribution is Gaussian with the mean x+MT, and the variance δ2T, for someM ∈ R and
δ > 0.

At first, the company is only allowed to update a dividend strategy at n ∈ N equidistant time points
kT/n, k ∈ {0, . . . , n − 1} in the period [0,T]. An admissible strategy is a sequence c = (c0, . . . , cn−1)
of dividend rates such that for all k = 0, 1, . . . , n − 1, ck ∈ [0, ξ ] is an F kT

n
-measurable random vari-

able and the total surplus at time T satisfies Xc
T ∼ N(x + MT, δ2T). We denote the set of admissible

strategies by A(n), where the subscript (n) indicates the number of the allowed change points. The
accumulated dividends up to time t are then given by

n−1∑
k=0

ck
(

(k + 1)T
n

∧ t − kT
n

∧ t
)
.

It is worth mentioning that differently than in the classical dividend problems, see for instance
(Asmussen & Taksar 1997), dividends can be paid (up to time T) even if the surplus is negative. This
feature of our model alleviates, to some extent, the drawback of models stopping at the ruin time. A
technical, in fact, ruin does not mean that the company stops operating. In reality, some insurance
companies proceed with dividend payments even during protracted crisis times. A famous example
provided by Munich Re, known for not reducing its dividends since at least 2006, see Munich Re
(2022).

The following lemma indicates the range of achievable target expectations x+MT, by a post-
dividend Brownian surplus, see Equation (1), at time T.

Lemma 2.1: The parameter M in the target distribution of the surplus at time T has to fulfil μ̄ − ξ ≤
M ≤ μ̄.

Proof: For any admissible dividend strategy c = (c0, . . . , cn−1) ∈ A(n), the distribution of the surplus
in Equation (1) at time T is Gaussian with mean

x +
(

μ̄ −
n−1∑
k=0

E[ck]
n

)
T = x + MT.

Using the fact that 0 ≤ ck ≤ ξ , for every k ∈ {0, . . . n − 1} we get that

x + (μ̄ − ξ)T ≤ x +
(

μ̄ −
∑n−1

k=0 E[ck]
n

)
T ≤ x + μ̄T,

which proves the statement. �
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Note that, for large values of ξ , the range of achievable means may include negative values.
Although this is mathematically feasible, an insurance company would not pursue a strategy to
achieve a negative expected surplus, but it would rather choose M ∈ [0, μ̄], so to obtain a expected
net profit at time T, even if small. Next we better identify the characteristics of admissible strategies.

Proposition 2.2: Any admissible strategy c = (c0, . . . , cn−1) ∈ A(n) is such that
∑n−1

i=1 ci is F0-
measurable, i.e. deterministic.

Proof: Let c = (c0, . . . , cn−1) be an arbitrary admissible dividend strategy. The corresponding sur-
plus at time T is then given by

Xc
T = x + μ̄T − c0

T
n

− T
n

n−1∑
k=1

ck + σ̄WT . (2)

We now identify the set of dividend strategies that lead a normal distribution with mean x+MT and
variance δ2T. LetY be a generic random variable withY ∼ N(x + MT, δ2T). Then, for ζ ∈ R it holds

that E[eζY ] = eζ(x+MT)+ δ2
2 ζ 2T . Now we consider the surplus at time T, Xc

T . From Equation (2) and
the fact that c is an admissible strategy we get that Xc

T ∼ N(x + MT, δ2T) and it holds that

eζ(x+MT)+ δ2
2 ζ 2T = E[eζX

C
T ] = eζ(x+μ̄T−c0T/n)

E[eζ σ̄WT−ζ
∑n−1

k=1 ckT/n]. (3)

Let Q be a probability measure on (�,FT) equivalent to P, with the Radon–Nikodym derivative
dP
dQ |FT = e−ζ σ̄WT+ ζ2 σ̄2T

2 . By applying change of measure techniques in Equation (3) we obtain

E[eζ σ̄WT−ζ
∑n−1

k=1 ckT/n] = e
ζ2 σ̄2T

2 EQ[e−ζ
∑n−1

k=1 ckT/n].

Together with Equation (3), one gets for all ζ ∈ R

eζ(x+MT)+ δ2
2 ζ 2T = eζ(x+μ̄T−c0T/n)+ σ̄2Tζ2

2 EQ[e−ζ
∑n−1

k=1 ckT/n],

leading to

EQ[e−ζ
∑n−1

k=1 ckT/n] = eζ(M−μ̄+c0/n)T+ δ2−σ̄2
2 ζ 2T .

If δ2 − σ̄ 2 > 0, by uniqueness of the moment generating functions the variable
∑n−1

k=1 ck
T
n is

normally distributed with mean (M − μ̄ + c0/n)T and variance (δ2 − σ̄ 2)T. Hence, it has posi-
tive Q-probability to attain negative values, which contradicts the equivalence of Q and P, since∑n−1

k=1 ckT/n ≥ 0P-a.s.
If, instead, δ2 − σ̄ 2 < 0, there is no random variable with such a moment generating function.
Finally, if δ = σ̄ , the variable

∑n−1
k=1 ckT/nmust be a constant, i.e. deterministic. �

For the special case n = 2 we obtain the following corollary.

Corollary 2.3: The set of admissible strategiesA(2) only consists of deterministic pairs (c0, c1), i.e. c1 is
F0-measurable.

Note that the dividend strategies act solely on the drift and do not affect the volatility. This fact
allows comparing different strategies by looking at the surplus ‘path by path’. Another implication is
that, in the case n = 2, the optimal dividend strategy is completely decided at time t = 0; meaning
that once the dividend rate c0, to be valid in [0,T/2], is chosen, then c1 is also uniquely determined
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at time t = 0 so that the final distribution can be achieved. We will see in the reminder of the section
that the optimal strategy is deterministic also for n> 2.

Let now r> 0 be the preference rate of the insurer. We call return function corresponding to a
strategy c = (c0, . . . , cn−1) ∈ A(n) the expected total present value of the dividends paid up to time
T, that is

Vc(x) := Ex

[n−1∑
k=0

ck
r
e−r kTn

(
1 − e−r Tn

)]
.

The function Vc(x) can be derived from the usual definition of return functions corresponding to
continuous time dividend controls – as an integral over discounted dividend rates. Let ζ = (ζt)t∈[0,T]
with ζt = ckI[t∈[kT/n,(k+1)T/n)] for k ∈ {0, . . . , n − 1}. That is,

Vζ (x) = Ex

[∫ T

0
e−rsζs ds

]
= Ex

[n−1∑
k=0

∫ (k+1)T/n

kT/n
e−rsck ds

]

= Ex

[n−1∑
k=0

ck
r
e−r kTn

(
1 − e−r Tn

)]
= Vc(x).

Note that the dependence on the initial capital x is in this setting purely nominal. As stressed
before, we do not stop our considerations at the time of ruin. The strategy will depend solely on
the parameters of the surplus process and the target distribution.

The target of the insurance company is to find a strategy c∗ = (c∗0, . . . , c
∗
n−1) ∈ A(n) leading to

Vc∗(x) = max
c∈A(n)

Ex

[n−1∑
k=0

ck
r
e−r kTn

(
1 − e−r Tn

)]
. (4)

To analyse Problem (4), we start with the case of two periods, i.e. n = 2.

2.1. A 2-periodmodel

Suppose that the insurance company is allowed to update its dividend strategy only once, at time
T/2. Due to Corollary 2.3, we get that the set of admissible dividend strategies A(2) consists of all
deterministic pairs c = (c0, c1) with c0, c1 ∈ [0, ξ ], and such that

μ̄ − (c0 + c1)/2 = M.

As a direct consequence of the fact that c0, c1 ∈ F0, itmust also hold that σ̄ 2 = δ2, otherwise the target
distribution would not be reachable. In the next step, we investigate how to determine the optimal
strategy.

Proposition 2.4: The optimal strategy c∗ = (c∗0, c
∗
1) is given by

c∗0 = ξ ∧ 2(μ̄ − M),

c∗1 =
{
0 if 2μ̄ − 2M ≤ ξ

2μ̄ − 2M − ξ if 2μ̄ − 2M > ξ
.

Proof: We consider the problem

max
(c0,c1)∈A(2)

c0T
r

(
1 − e−rT/2

)
+ c1T

r
e−rT/2

(
1 − e−rT/2

)
. (5)
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It is easy to see that, for r> 0, the discounting coefficient in the first period, 1 − e−rT/2, is larger
than in the second period, e−rT/2(1 − e−rT/2). Therefore, to maximise the discounted dividends, c0
must be chosen as big as possible. Taking into account that 0 ≤ c0 ≤ ξ and that c0 + c1 = 2(μ̄ − M),
we get that c0 = min(ξ , 2(μ̄ − M)), and consequently, c1 = 2(μ̄ − M) − ξ if c0 = ξ and c1 = 0 if
c0 = 2(μ̄ − M). �

To summarise the result, in a two-period setting, the optimal dividend strategy pays dividends at
themaximum rate in the first period, and then adjusts the strategy to achieve the target distribution in
the second period. Such behaviour is justified by the effect of discounting which has a bigger impact
in the time interval [T/2,T].

2.2. An n-periodmodel

We now extend our analysis to an n-period framework. That is, the dividend strategy can be adjusted
n times in the interval [0,T]. Recall that, according to Proposition 2.2, strategies are not necessarily
deterministic, but the sum of dividend rates is.

To better explain themechanism for the computation of the optimal dividend strategy, we consider
an example with n = 3.

Example 2.5: Let n = 3 and let c = (c0, c1, c2) be an admissible strategy. The expected discounted
total dividends are given by

c0
r

(1 − e−rT/3) + e−rT/3(1 − e−rT/3)

r
E

[
c1 + c2e−rT/3

]
.

We easily see that, that due to discounting (r> 0), the strategy c0 to be applied in the first period has a
larger weight than the others, hence, as in the two period model, it would be optimal to choose it the
largest possible. Taking into account that x + MT = x + μ̄T − (c0+E[c1+c2])T

3 , and that ck ∈ [0, ξ ] for
k = 0, . . . , 2, we have that

c0 =
{
3(μ̄ − M) if 3(μ̄ − M) ≤ ξ

ξ if 3(μ̄ − M) > ξ
,

equivalently, c0 = min(3μ̄ − 3M, ξ). Now we move to the choice of c1, c2. After choosing c0 we get
that E[c1 + c2] = c1 + c2 = max(0, 3(μ̄ − M) − ξ), according to Proposition 2.2. If c0 = 3μ̄ − 3M,
since c1 and c2 are nonnegative, it holds that c1 = c2 = 0. If instead, c0 = ξ , using the same argu-
ment like for c0, we choose c1 and c2 so that c1 is the largest possible value according to the
constraints, i.e. c1 = min(3(μ̄ − M) − ξ , ξ), and c2 = max(3(μ̄ − M) − 2ξ , 0). Put in other words,
if 2ξ ≤ 3μ̄ − 3M < 3ξ , then c0 = c1 = ξ and c2 = 3μ̄ − 3M − 2ξ . If ξ < 3μ̄ − 3M < 2ξ , at time
T/3 we determine both c1 and c2, depending on the current surplus so that

μ̄T − (c1 + c2)T/3 = MT + ξT/3.

We stress that because c1 + c2 must be deterministic, we immediately get that c2 is FT/3 measurable.
That means, once c1 is found, then c2 is also determined, so that the constraint on the distribution is
satisfied. Moreover, the value 3(μ̄ − M) − ξ is the biggest possible choice for c1. The deterministic
strategy c∗ = (c0, c1, c2) where⎧⎪⎨⎪⎩

c∗0 = min(ξ , 3(μ̄ − M)),
c∗1 = max (min(ξ , 3(μ̄ − M) − ξ), 0) ,
c∗2 = max(3(μ̄ − M) − 2ξ , 0),

(6)
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fulfils all necessary conditions.
Next, we show that we cannot find a different, possibly stochastic, strategy with a higher expected

discounted dividends value, meaning that the optimal strategy is indeed deterministic.
Let c∗ = (c∗0, c

∗
1, c

∗
2) be the strategy in Equation (6) and let c̃ = (c̃0, c̃1, c̃2) ∈ A(3) be an arbitrary

admissible strategy, i.e. such that c̃m ∈ [0, ξ ] form = 0, 1, 2, and Xc̃
T ∼ N(x + MT, δ2T).

Then, there exist two random variables d1, d2 such that E[d1 + d2] = c∗0 − c̃0 ≥ 0, because c∗0 is
the largest possible dividend rate, and c̃1 = c∗1 + d1, c̃2 = c∗2 + d2. It holds that

V c̃(x) = c̃0(1 − e−
rT
3 ) + (1 − e−

rT
3 )e−

rT
3 E[c̃1 + c̃2e−

rT
3 ]

= Vc∗(x) − (c∗0 − c̃0)(1 − e−
rT
3 ) + (1 − e−

rT
3 )e−

rT
3 E[d1 + d2e−

rT
3 ]

= Vc∗(x) − (1 − e−
rT
3 )

(
E[d1 + d2] − e−

rT
3 E[d1 + d2e−

rT
3 ]
)
,

where in the last equality we have used the fact that (c∗0 − c̃0) = E[d1 + d2].
If E[d2] < 0, then, E[c∗2] > E[c̃2] ≥ 0; hence, necessarily c∗2 = 3(μ̄ − M) − 2ξ > 0 and c∗1 =

c∗0 = ξ . Since c∗0 + c∗1 + c∗2 = c̃0 + E[c̃1] + E[c̃2] we get that c̃0 + E[c̃1] > c∗0 + E[c∗1] = 2ξ leading
to a contradiction. Then, it must hold that E[d2] ≥ 0. Now we have two cases:

(i) If E[d1] < −e−rT/3
E[d2], then it is immediate that E[d1 + d2] − e−

rT
3 E[d1 + d2e−

rT
3 ] > 0

and then V c̃ ≤ Vc∗ ;
(ii) If E[d1] ≥ −e−rT/3

E[d2], we get that

c∗0 − c̃0 = E[d1 + d2] ≥ E[d1 + d2e−
rT
3 ] ≥ e−

rT
3 E[d1 + d2e−

rT
3 ],

which implies that V c̃ ≤ Vc∗ .

To conclude we observe that if E[d2] > 0 then the inequality is strict and the strategy (c∗0, c
∗
1, c

∗
2),

is optimal. If E[d2] = 0 we get that either E[d1] > 0 in which case the inequality is strict again, or
E[d1] = 0 which corresponds to the case where c̃ = c. �

The above example provides the argument for computing the optimal dividend strategy in an n-
period framework.

Proposition 2.6: Let n be the number of sub-periods in the interval [0,T] and let

κ := min{m ≥ 0 : n(μ̄ − M) < (m + 1)ξ}. (7)

Then, an optimal strategy c∗ = (c∗0, c
∗
1, . . . , c

∗
n−1) is given by⎧⎪⎨⎪⎩

c∗0 = · · · = c∗κ−1 = ξ ,
c∗κ = n(μ̄ − M) − κξ ,
c∗κ+1 = · · · c∗n−1 = 0.

(8)

Proof: Assume first κ = n − 1, then obviously the optimal strategy is (ξ , . . . , ξ).
Let now κ < n − 1 and let c̃ = (c̃0, . . . , c̃n−1) be an admissible strategy. Like in Example 2.5, there

exist d1, . . . , dn−1 such that c̃m = c∗m + dm for m ∈ {1, . . . , n − 1} and∑n−1
m=1 E[dm] = c∗0 − c̃0 ≥ 0.

Then we have that

V c̃(x) = Vc∗(x) − (c∗0 − c̃0)(1 − e−rT/n) + (1 − e−rT/n)

n−1∑
m=1

e−rTm/n
E[dm].

Note that since c∗m = ξ for all m ≤ κ − 1, and c∗m = 0 for all m > κ + 1, it must hold dm ≤ 0 for
m ≤ κ − 1 and dm ≥ 0 form ≥ κ + 1.
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Now we observe that, the function t �→ ∑n−1
m=1 e

rt κ−m
n E[dm] is decreasing, and hence it attains its

maximum at t = 0, i.e.
∑n−1

m=1 E[dm] ≥ ∑n−1
m=1 e

rT κ−m
n E[dm]. Therefore, we conclude that

c∗0 − c̃0 =
n−1∑
m=1

E[dm] ≥ e−rT κ
n

n−1∑
m=1

E[dm] ≥ e−rT κ
n

n−1∑
m=1

erT
κ−m
n E[dm].

The strict inequality holds true if there is at least one m with E[dm] 
= 0. If instead E[dm] = 0 for
all m = 1, . . . , n − 1, then strategies c̃ and c∗ coincide, i.e. in particular dm = 0 almost surely for all
m = 0, . . . , n − 1. This leads to V c̃ < Vc∗ if c̃ 
≡ c∗. �

Remark 2.7 (Continuous time): This procedure allows extending the setting to continuous time.
We denote by A(∞) the set of admissible strategies, consisting of the F-adapted processes c =

(cs)s∈[0,T] with 0 ≤ cs ≤ ξ and Xc
T from Equation (1) normally distributed with mean x+MT and

variance δ2T. Letting n → ∞ in the n-period models, the optimal strategy as given in Equation (8)
converges to a deterministic strategy in continuous time:

c∗s =
{

ξ : t ≤ T ∧ t∗,
0 : t > T ∧ t∗,

where t∗ = (μ̄ − M)T/ξ . We assume t∗ < T.
Let c̃ = (c̃s)s∈[0,T] be an admissible strategy and define ds := c̃s − c∗s . Sincewewould like to achieve

the same final distribution with strategies c∗ and c̃, it must hold that E[
∫ T
0 ds] = 0.

Moreover, it is clear that ds ≤ 0 for s ≤ t∗, ds ≥ 0 for s > t∗. As for the n-period models we get

V c̃(x) = Ex

[∫ T

0
e−rsc̃s ds

]
= Vc∗(x) + Ex

[∫ T

0
e−rsds ds

]
= Vc∗(x) + e−rt∗

Ex

[∫ T

0
e−r(s−t∗)ds ds

]
≤ Vc∗(x) + e−rt∗

Ex

[∫ T

0
ds ds

]
= Vc∗(x).

A strict inequality holds true if E[ds] 
= 0 for all s ∈ T where T ⊆ [0,T] is a Lebesgue measurable
non-zero set.

Therefore, in continuous time it is optimal to pay on the maximal rate as long as possible, and to
pay nothing afterwards. �

Note, that we have only considered the case of dividend rates. However, it is also possible to allow
for lump sum payments. Then, because r> 0 it is clear that one should pay the amount (μ̄ − M)T
directly at time zero.

Considering a setting with dividend ratesmay bemore preferable for reputational reasons. Indeed,
distributing the dividends over the whole period [0,T] rather than paying a lump sum at the begin-
ning of the period, may give a better impression to shareholders. This is guaranteed in our model by
the upper bound ξ on the admissible dividend rates. The value of ξ is a management decision: in our
setting it has to be small enough to distribute dividends over the whole period, and large enough to
achieve the target distribution.

3. DividendMinimising the Ruin Probability

At first glance, the title of this sections sounds controversial. Indeed, paying dividends increases the
probability of ruin, and in many settings the optimal dividend strategy even leads to a certain ruin.
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However, the constraint put on the terminal distribution allows finding a non-zero dividend strategy
that minimises the ruin probability over the set of admissible strategies.

We consider again an insurance company who pays dividends and aims to achieve a target distri-
bution of the terminal surplus at time T. However, we now assume that the objective of the insurer is
to minimise the ruin probability.

We consider the same setting like in Section 2 with a surplus, after dividends, described by
Equation (1). We recall that the set of achievable target means is given by μ̄ − ξ < M < μ̄ (see
Lemma 2.1) and that the set of admissible strategiesA(n) is the set of all strategies c = (c0, . . . , cn−1),
where

∑n−1
k=1 ck is F0-measurable (see Proposition 2.2), and c0 + ∑n−1

k=1 ck = n(μ̄ − M).
The goal of the insurance company is to minimise the ruin probability, which is given by

minP
[

inf
0≤t≤T

Xc
t < 0

]
(9)

over all admissible dividend strategies c ∈ A(n).
Like in Section 2, we begin by addressing Problem (9) in a two-period framework.

3.1. A 2-periodmodel

The set of admissible strategies is denoted byA(2), given in Section 2.1. That is, all admissible strate-
gies are of the form c = (c0, c1) with c0, c1 ∈ [0, ξ ] deterministic (see Corollary 2.3) and c0 + c1 =
2(μ̄ − M). We target to minimise the ruin probability in the time interval [0,T], i.e.

p(c, x) := P
[

inf
0≤t≤T

Xc
t < 0

]
,

over all c ∈ A(2). Note that differently than in Section 2 the dependence on the initial capital x is
crucial in this setting.

Proposition 3.1: Let c = (c0, c1) and c̃ = (c̃0, c̃1) be two admissible strategies, i.e. Xc,Xc̃ ∼ N(x +
MT, δ2T). We assume that c0 > c̃0. Then, c̃ is better than c, in the sense that

p(c̃, x) < p(c, x).

Proof: We first observe that at time T, both strategies c and c̃ lead to the same distribution of the final
surplus, i.e. Xc

T ,X
c̃
T ∼ N(x + MT, δ2T). Then, we have

inf
0≤t≤T

Xc
t = inf

0≤s≤T

⎧⎨⎩x + (μ̄ − c0)s + σ̄Ws : if s ≤ T
2

x + (μ̄ − c0)
T
2

+ σ̄Ws + (μ̄ − c1)(s − T
2

) : if s ∈ (T2 ,T]

= inf
0≤s≤T

⎧⎨⎩x + (μ̄ − c0)s + σ̄Ws : if s ≤ T
2

x + μ̄s + c0(s − T) + σ̄Ws − 2(μ̄ − M)(s − T
2

) : if s ∈ (T2 ,T]

= inf
0≤s≤T

{
Xc̃
s + (c̃0 − c0)s : if s ≤ T

2
Xc̃
s + (c0 − c̃0)(s − T) : if s ∈ (T2 ,T]

< inf
0≤t≤T

Xc̃
t .

Therefore, for all x> 0 we get that p(c, x) > p(c̃, x). �

As a consequence of Proposition 3.1, we get that c0 should be chosen as the smallest possible value.
This leads to the following result.
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Corollary 3.2: In a two-period framework, the ruinminimising dividend strategy is c∗ = (c∗0, c
∗
1)where{

c∗0 = max(2(μ̄ − M) − ξ , 0),
c∗1 = min(ξ , 2(μ̄ − M)).

3.2. An n-periodmodel

The extension to n-periods is obtained by replicating the reasoning of Proposition 3.1 and
Corollary 3.2.

Proposition 3.3: Let k := min{m ≥ 0 : n(μ̄ − M) < (m + 1)ξ}. Then, the ruin minimising dividend
strategy c = (c0, . . . , cn−1) fulfils ⎧⎪⎨⎪⎩

cn−1 = · · · = cn−k = ξ ,
cn−k−1 = n(μ̄ − M) − kξ ,
c0 = · · · = cn−k−2 = 0.

Remark 3.4 (Continuous time): Letting n → ∞ will produce the following optimal strategy: we
define t∗ as the time that realises (μ̄ − M)T = ξ t∗. Then, the optimal dividend rate is ct = 0 for all
0 < t < t∗ and ct = ξ for t ≥ t∗. �

Like in the dividend maximisation problem in Section 2, the ruin minimising strategy is deter-
ministic. An intuitive consequence of the result above (Proposition 3.3) is that the optimal strategy
that minimises ruin probability is also the strategy that minimises the value of expected discounted
dividends.

4. ReinsuranceWith a Target Terminal Distribution

In this section, we change the setting of Sections 2 and 3, and instead we consider an insurance
company who buys reinsurance for a certain branch of their business or a pool of insured claims.

We let (�,F ,P) be a probability space and T a fixed time horizon. We also let Z be a random
variable representing a claim size having positive finite first and secondmoments denoted byE[Z] =
μ andE[Z2] = μ2, respectively.We assume that the surplus of the insurance company is described by
a Brownianmotion with drift, approximating a Cramer–Lundbergmodel like, e.g. in Schmidli (2008,
p. 226),

Xt = x + λημt +
√

λμ2Wt , t ∈ [0,T],

where λ, η > 0 andW = (Wt)t∈[0,T] is a Brownianmotion.We also define by F = (Ft)t∈[0,T] natural
filtration of the Brownian motion, under the usual hypotheses. The insurance company is allowed
to buy proportional reinsurance with retention b ∈ [0, 1] to mitigate the losses. We assume that the
reinsurance premium is calculated via the expected value principle, that is the reinsurance premium
rate is (1 + θ)(λμ − λE[r(Z, b)]), where r(Z, b) = bZ. Then, the premium rate that remains to the
insurer (i.e. the difference between the insurance premium and the reinsurance premium) is

c(b) = λθE[r(Z, b)] − λμ(θ − η),

with c(0) < 0, see, e.g. Schmidli (2008, Ch. 2.2) for more details.
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Under a reinsurance strategy b = (bs)s∈[0,T], the surplus is given by

Xb
t = x + λμ

∫ t

0
(θbs − (θ − η)) ds +

√
λμ2

∫ t

0
bs dWs, t ∈ [0,T].

We denote by

X̄b
t := Xb

t − x, t ∈ [0,T],

the net value of collective, i.e. the part of the surplus that only accounts for insurance/reinsurance
premia and claims.

The insurance company wants to make sure that the collected premia are sufficient (in a certain
sense) to buy reinsurance, if necessary, and to pay the occurring claims. To achieve such level of
sustainability the target of the insurance is to choose a reinsurance strategy such that at time T the
distribution of the net collective is normal with mean MT, for some small M> 0 and variance δ2T.
To gain some intuition on the choice ofM and δ, we may interpretM as a (small) positive target gain,
and δ is fixed to fulfil P[−X̄B

T > �] ≤ 1 − α for some given � > 0 and α ∈ (0, 1). The latter is a con-
dition on the Value at Risk (VaR) at the confidence level α (for instance α = 99.5%). In particular, �
represents the loss that the insurer can bear with at most probability 1 − α. This can be interpreted
as the required capital ensuring the system’s solvency. Aiming at X̄B

T ∼ N(MT, δ2T) as a target distri-
bution is justified, for instance, by the existence of the closed form formulas for the VaR or Expected
Shortfall (ES) for Gaussian random variables, which can be easily calculated.1

To reach the target distribution, the insurance company follows a sustainable strategy, that is rein-
surance is only financed through premia, and we additionally require that reinsurance strategies do
not produce a negative premium rate for the insurer. This condition is, in spirit, similar to the self-
financing condition which is often assumed in finance. Indeed, a branch of business or a pool of
insured is considered as a closed system,where the insurance company does not intervene by injecting
or withdrawing additional capital.

Our next step is to define the set of possible controls leading to the desired distribution. We let B
denote the set of strategies b = (bt)t∈[0,T] with bt ∈ [0, 1] for all t ∈ [0,T], that are adapted to F and
such that X̄b

T ∼ N(MT, δ2T).
Note that, in particular, deterministic controls make the terminal distribution of the net collective

surplus Gaussian, see Example 4.1.

Example 4.1 (Deterministic controls): Let b = (b(t))t∈[0,T] be a continuous deterministic reinsur-
ance strategy, with b(t) ∈ [0, 1] for all t ∈ [0,T].2 Then b is an admissible control if the following two
conditions hold: ⎧⎪⎪⎨⎪⎪⎩

λμ

∫ T

0
(θb(s) − (θ − η)) ds = MT,

λμ2

∫ T

0
b(s)2 ds = δ2T.

(10)

1 Denoting by LT the terminal loss at time T, we immediately get that

VaRα(LT ) = −MT + δ
√
T
−1(α),

and

ESα(LT ) = −MT + δ
√
T
ϕ(
−1(α))

1 − α
,

for α ∈ (0, 1), where ϕ and
 denote the density and the cumulative distribution function of the standard normal, respectively.
2 In this example we use the notation b(t) in place of bt to emphasise the deterministic nature of the strategy.
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Figure 1. The strategy b(t) = A
A+Ct with A = 3.61, C = 6.58.

To make an example, b(t) = A
A+Ct is an admissible control for constants A, C which satisfy∫ T

0

A
A + Cs

ds = A2

C
ln
(
A + CT

A

)
= M + λμ(θ − η)T

λθμ
,∫ T

0

A2

(A + Cs)2
ds = A

C

(
1 − A

A + CT

)
= δ2

λμ2
.

For the parameter set given by μ = 0.05, λ = 1, η = 0.3, θ = 0.5, μ2 = 0.05, M = 0.06, δ = 0.15,
T = 2.5, we get that A = 3.613, C = 6.5837. The strategy is illustrated in Figure 1. �

In the sequel we restrict to the case where reinsurance strategies can be updated only at determin-
istic time points, which represent some apriori fixed checking dates, for instance all the four months
or all the six months. In fact, we concentrate on the case n = 2 and we refer to this case as the two
period model. The technical reason is that, differently than in the dividend case, reinsurance controls
affect both the drift and the volatility. Therefore, in this case, a pathwise comparison is not possible
anymore, and the problem must be addressed with different techniques. In the case n = 2, we are
still able to obtain an explicit solution with probabilistic methods. However, the problem becomes
immediately more complicated when we increase the number of periods (see Section 4.4), even if we
restrict to deterministic strategies.

4.1. Admissible strategies in a 2-periodmodel

We denote the set of admissible strategies by B(2), where, like before, the subscript indicates the
number of strategy updates up to time T. An admissible strategy is a pair b = (b0, b1), where b0 is
F0-measurable and b1 is FT/2 measurable. In this setting the retention level is updated only once, at
time T/2. Hence, at time T the net surplus satisfies

X̄b
T = λμθT

2
(b0 + b1) − λμ(θ − η)T +

√
λμ2b0WT/2 +

√
λμ2b1(WT − WT/2)
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= X̄b0
T/2 + b1

T
2

λμθ − λμ(θ − η)
T
2

+ b1
√

λμ2(WT − WT/2),

where X̄b0
T/2 = λμ(θb0 − θ + η)T2 + √

λμ2b0WT/2.
The set of admissible strategies is characterised in the lemma below. In particular, we show that

admissible strategies are deterministic.

Lemma 4.2: The set B(2) consists of all strategies b = (b0, b1) where b0, b1 are both F0-measurable,
taking values in [0, 1], and satisfying the following two conditions:

b1 = 2
M + λμ(θ − η)

λθμ
− b0,

b21 = 2δ2

λμ2
− b20.

(11)

Proof: Recall that for any normally distributed random variable Y with meanMT and variance δ2T,
themoment generating function is given byE[eζY ] = eζMT+ 1

2 ζ 2δ2T , for all ζ ∈ R. Let W̃T/2 = WT −
WT/2; then WT/2 and W̃T/2 are independent. Since b is chosen so that Xb

T ∼ N(MT, δ2T), it holds
that

E[eζX
B
T ] = eζMT+ 1

2 ζ 2δ2T ,

for all ζ ∈ R. Now, we let Q be a probability measure equivalent to P, with the Radon–Nikodym
derivative

dQ
dP

∣∣∣∣FT

= er
√

λμ2b1W̃T/2− r2
2 λμ2b21

T
2 .

Using the independence of W̃T/2 andWT/2 and the change of measure we get that

eζMT+ 1
2 ζ 2δ2T = E[eζ X̄

B
T ] = E

[
eζ X̄

b0
T/2+rλμ(θb1−θ+η) T2 +ζ

√
λμ2b1W̃T/2

]
= eζλμ(b0θ−θ+η)T/2+ ζ2λμ2b20T

4 E

[
eζλμ(θb1−θ+η) T2 +ζ

√
λμ2b1W̃T/2

]
= eζλμ(b0θ−θ+η)T/2+ ζ2λμ2b20T

4 EQ

[
eζλμ(θb1−θ+η) T2 + ζ2

2 λμ2b21
T
2

]
,

for all ζ ∈ R. This can be simplified to

EQ[eζλμ(θb1−θ+η) T2 + ζ2
2 λμ2b21

T
2 ] = eζMT−ζλμ(b0θ−θ+η) T2 + 1

2 ζ 2δ2T− ζ2λμ2b20T
4 .

Deriving the above expression with respect to ζ and letting ζ = 0 we see that all moments of b1
correspond to the moments of a normal distribution, meaning that the moment generating function
of b1 (written as a power series with the moments as coefficients) corresponds to that of a normal
distribution. Therefore, we conclude

b1 ∼ N
(
2
M + λμ(θ − η)

λμθ
− b0,

2δ2

λμ2
− b20

)
.

However, this is impossible because b1 can attain values only in [0, 1] P-a.s. (hence alsoQ-a.s.), which
means that b1 must be constant. �



SCANDINAVIAN ACTUARIAL JOURNAL 669

Because b0, b1 can take values only in [0, 1], it is clear that not all arbitrary values ofM and δ are
reachable. In the next lemma we specify the ranges ofM and δ.

Lemma 4.3: If there exist b0, b1 ∈ [0, 1] such that Condition (11) holds, then the target mean M and
the variance δ > 0 satisfy:

0 ≤ M ≤ λμη,(
M + λμ(θ − η)

λμθ

)2 M
λμθ

≤ δ2

λμ2
≤ min

{
2
(
M + λμ(θ − η)

λμθ

)2
, 1

}
.

(12)

Proof: From Condition (11), and the fact that b0, b1 take values in [0, 1], we get that 0 ≤ M ≤ λμη

and that δ2

λμ2
≤ 1. Using again the Conditions (11) and substituting the value of b1 into the second

equation we get that b0 must solve

2b20 − 4b0
M + λμ(θ − η)

λμθ
+ 4

(
M + λμ(θ − η)

λμθ

)2
− 2δ2

λμ
= 0.

Imposing the existence of a real solution leads to

δ2

λμ2
≥
(
M + λμ(θ − η)

λμθ

)2
.

Then, using the fact that b0 must take non-negative values leads to the bound:

δ2

λμ2
≤ min

{
2
(
M + λμ(θ − η)

λμθ

)2
, 1

}
.

�

Notice that because we do not allow for arbitrage and require η < θ , to ensure the existence
of a solution at least for the case η = θ , we must have that δ2

λμ2
≥ ( M

λμθ
)2, which is guaranteed by

Equations (12).
There is a clear trade-off between increasing profits and reducing risks. This is due to the fact

that a reinsurance strategy controls both the mean and the volatility. Under a reinsurance strategy
the mean and the volatility move into the same direction: increasing the retention level makes the
mean larger, but also the volatility. This observation has important consequences for the ruin prob-
ability. Indeed, a bigger retention level would make the drift of the net collective larger, meaning
that it potentially can push the surplus away from zero; however, at the same time, it increases the
riskiness by making the volatility larger. For instance, considering the parameters μ = 0.22;μ2 =
0.05; η = 0.3; θ = 0.35; λ = 2, M = 0.08< 0.132, we get that the admissible values of δ vary in the
range [0.2094, 0.2962]. If an insurance company aims at getting an expected gain of 8% at the end of
the observation period, it has to account for a relatively large risk of at least 21%.

We can write the range for δ as(
1 + M − λμη

λμθ

)2
≤ δ2

λμ2
≤ min

{
2
(
1 + M − λμη

λμθ

)2
, 1

}
.

From this expression it is clear that if the target return is close to λμη, the variance δ2 is approximately
λμ2, which corresponds to the case where no reinsurance is bought.
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Table 1. Admissible strategies and survival probabilities for different values of η < θ .

η b0 b1 p(b0, b1) p(b1, b0)

0.25 0.4448 0.7760 0.4088 0.5117
0.26 0.3339 0.8298 0.3772 0.5372
0.27 0.2468 0.8597 0.3485 0.5561
0.28 0.1715 0.8778 0.3154 0.5720
0.29 0.1038 0.8884 0.2637 0.5857
0.3 0.0416 0.8935 0.1254 0.5967

4.2. Ruin probabilities in a 2-periodmodel

For the case n = 2, the pairs of strategies that satisfy Conditions (11) are of the type (b0, b1) and
(b1, b0).

We assume that T
2 and T are the regulatory authorities’ inspection dates. A reinsurance strategy is

chosen so that the probability of having a positive surplus at both dates is maximised.
We now give a definition of ruinwithin this setting.We say that the ruin occurs if the insurance com-

pany showcases a negative surplus at any of the time points T/2 or T. Then, an equivalent formulation
of the problem is:

Find a reinsurance strategy that minimises the ruin probability.

In mathematical terms, the problem is formulated as follows. Let b = (b0, b1) and b̃ = (b1, b0) be the
two admissible strategies. Without loss of generality, we assume that b0 ≤ b1. For each strategy we
define the corresponding survival probabilities:

p(b) = P
[
X̄b
T/2 > 0, X̄b

T > 0
]
,

p(b̃) = P
[
X̄b̃
T/2 > 0, X̄b̃

T > 0
]
.

Our objective is to decide which of these two probabilities, p(b) or p(b̃), is the largest.
Table 1 below illustrates survival probability for different values of η < θ so that M and δ are

achievable forT = 1, λ = 2,μ = 0.22,μ2 = 0.05, θ = 0.35,M = 0.05, δ = 0.2. The last two columns
suggest that p(b) < p(b̃). This result is proved in Proposition 4.4 below.

Proposition 4.4: Let b0 < b1. Then the strategy (b1, b0) is better than the strategy (b0, b1), i.e. p(b̃) >

p(b).

Proof: Let (Wt)t≥0 and (Ŵt)t≥0 be two independent Brownian motions and denote

X̄b
T/2 = λμ (θ(1 − b) − η)T/2 +

√
λμ2bWT/2,

X̂b
T/2 = λμ (θ(1 − b) − η)T/2 +

√
λμ2bŴT/2.

Then, the survival probabilities can be rewritten as

p(b) = P
[
X̄b0
T/2 > 0, X̄b0

T/2 + X̂b1
T/2 > 0

]
,

p(b̃) = P
[
X̄b1
T/2 > 0, X̄b1

T/2 + X̂b0
T/2 > 0

]
,

(13)

having set ŴT/2 = WT − WT/2. The advantage of this representation stands in the fact that for every
b ∈ [0, 1], X̄b

T/2 and X̂b
T/2 are independent. We observe that there exist standard Brownian motions
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W0 andW1 such that √
λμ2b0Wt +

√
λμ2b1Ŵt =

√
λμ2(b20 + b21)W

0
t ,√

λμ2b1Wt +
√

λμ2b0Ŵt =
√

λμ2(b20 + b21)W
1
t ,

(14)

for all t ∈ [0,T]. We now let

Y0
t := λμθ(b0 + b1)t − 2λμ(θ − η)t +

√
λμ2(b20 + b21)W

0
t ,

Y1
t := λμθ(b0 + b1) − 2λμ(θ − η)t +

√
λμ2(b20 + b21)W

1
t ,

for all t ∈ [0,T]. Due to Equations (14) we get that for all t ∈ [0,T], Y0
t = Y1

t = 2Mt +
√
2δ2Ŵt ,

hence they are identically distributed.
Next, we write X̄b0

T/2 and X̄b1
T/2 in terms of Y0

T/2 and Y1
T/2. Since X̄b0

T/2 and X̄b1
T/2 are normally

distributed, we have that

X̄b0
T/2 = ρY0

T/2 + Z0, ρ :=
Cov(X̄b0

T/2,Y
0
T/2)

Var(Y0
T/2)

=
Var[X̄b0

T/2]

Var[Y0
T/2]

= λμ2b20
2δ2

,

X̄b1
T/2 = γY1

T/2 + Z1, γ :=
Cov(X̄b1

T/2,Y
1
T/2)

Var[Y1
T/2]

=
Var[X̄b1

T/2]

Var[Y1
T/2]

= λμ2b21
2δ2

= 1 − ρ,

where Y0
T/2 and Z0, Y1

T/2 and Z1 are independent, since they are all normally distributed and
Cov(Y0

T/2,Z
0) = Cov(Y1

T/2,Z
1) = 0.

Expectations and variances of Z0 and Z1 are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
E[Z0] = E[X̄b0

T/2 − ρY0
T/2] = λμ(θb0 − θ + η)T/2 − 2ρMT/2,

E[Z1] = E[X̄b1
T/2 − γY1

T/2] = λμ(θb1 − θ + η)T/2 − 2γMT/2 = −E[Z0],
Var[Z0] = λμ2b20T/2 − 2ρ2δ2T/2 = 2δ2ργT/2,
Var[Z1] = λμ2b21T/2 − 2γ 2δ2T/2 = 2δ2γρT/2.

(15)

Using Fubini’s theorem, we get

p(b) = P
[
Y0
T/2 + Z0

ρ
> 0, Y0

T/2 > 0
]

= P
[
Z0

ρ
> −Y0

T/2, Y
0
T/2 > 0

]

=
∫ ∞

0

⎛⎝1 − 


⎛⎝−y − E[Z0]
ρ√

δ2 γ
ρ
T

⎞⎠⎞⎠ fY0
T/2

(y) dy,

p(b̃) = P
[
Y1
T/2 + Z1

γ
> 0, Y1

T/2 > 0
]

= P
[
Z1

γ
> −Y1

T/2, Y
1
T/2 > 0

]

=
∫ ∞

0

⎛⎝1 − 


⎛⎝−y + E[Z0]
γ√

δ2 ρ
γ
T

⎞⎠⎞⎠ fY1
T/2

(y) dy,

where 
 is the standard normal distribution, fY0
T/2

(y) = fY1
T/2

(y) are the densities of the random

variables Y0
T/2 and Y1

T/2, respectively, and we have used that E[Z1] = −E[Z0].
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Since 
 is increasing, we consider the crucial quantities

z0 :=
−y − E[Z0]

ρ√
δ2 γ

ρ
T
2

and z1 :=
−y + E[Z0]

γ√
δ2 ρ

γ
T
2

. (16)

We have the following two cases:

(i) Assume first that E[Z0] ≤ 0, with E[Z0] from (15). Since 1 − 2ρ = λμ2
δ2

( δ2

λμ2
− b20) =

λμ2
δ2

b21−b20
2 > 0, it holds that z0 > z1 for all y> 0. Then, we can immediately conclude, that

p(b) < p(b̃), and hence the strategy b̃ = (b1, b0) is better than the strategy b = (b0, b1).
(ii) Assume next that E[Z0] > 0, with E[Z0] from (15). Note that since b0 ≤ b1 and b0, b1 ∈

[0, 1], then either b0 = b1 = 1, in which case there is nothing to prove since b and b̃ are equal,
or it cannot hold that b0 = 1. The latter implies that there always exists an y∗ ∈ (0,+∞) such
that for y < y∗, it holds that z0 < z1, and the opposite holds true for y > y∗, see, e.g. the right
panel in Figure 2.Now, we consider the functions η → b0(η) and η → b1(η) for η ∈ [0, θ].
We know that

b0(η) + b1(η) = 2
M − λμ(θ − η)

λμθ
and b0(η)2 + b1(η)2 = 2

δ2

λμ2
,

meaning that b′
0(η) + b′

1(η) = 2
θ

> 0 and b′
0(η)b0(η) + b′

1(η)b1(η) = 0. Consequently, since
b0 < b1 we get that b′

1(η) > 0 and b′
0(η) < 0, that is to say, b0 is decreasing with respect to η

and b1 is increasing. We let η = θ and note that, in this case for any a ∈ [0, 1] it holds that

X̄b
t = b

{
λμθ +

√
λμ2Wt

}
= b

a
X̄a
t , t ∈ [0,T].

Using this fact, Equation (13) and the fact that b0 < b1, we get

p(b) = P
[
X̄b0
T/2 > 0, X̄b0

T/2 + X̂b1
T/2

]
= P

[
X̄b1
T/2 > 0,

b0
b1

X̄b0
T/2 + X̂b0

T/2

]
= P

[
X̄b1
T/2 > 0,

b20
b21

X̄b1
T/2 + X̂b0

T/2

]
< P

[
X̄b1
T/2 > 0, X̄b1

T/2 + X̂b0
T/2

]
= p(b̃),

which proves the statement in case η = θ . Now, we let b(η) and b̃(η) be, respectively, the
strategies (b0, b1) and (b1, b0) corresponding to η ∈ (0, θ). Assume there is an η̄ ∈ (0, θ) such
that p(b(η̄)) > p(b̃(η̄)). Then, by the intermediate value theorem there exists an η∗ ∈ (η̄, θ)

such that p(b(η∗)) = p(b̃(η∗)). Assume that b(η∗) 
= b̃(η∗). Let X̄ be a random variable,
independent of Z1 and Z0 with X̄ ∼ N(MT, δ2T).

0 = p(b(η∗)) − p(b̃(η∗))

= P
[
γ X̄ + Z1 > 0, X̄ > 0

] − P
[
ηX̄ + Z0 > 0, X̄ > 0

]
= P

[
max

(
−Z1

γ
, 0
)

< X̄ < max
(

−Z0

η
, 0
)]

> 0.
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Figure 2. Survival density under the caseE[Z0] ≤ 0 (left panel), and underE[Z0] > 0 (right panel).

The last inequality follows from the fact that X̄, Z1 and Z0 are normally distributed. Hence,
this contradiction yields that b(η∗) = b̃(η∗). However, since it holds that b′

1 > 0 and b′
0 < 0

for b0 < b1, that means b0(η̄) > b0(η∗) and b1(η̄) < b1(η∗), contradicting b(η∗) = b̃(η∗).

That concludes the fact that b̃ = (b1, b0) is always better than b = (b0, b1). �

In the following, we discuss the situations where E[Z0] ≤ 0 and derive sufficient conditions for
this to hold.

Lemma 4.5: If

μη

μ2
≤ M

δ2
and

μθ

μ2
≥ 2M

δ2
, (17)

then E[Z0] ≤ 0 with E[Z0] given in (15).

Proof: We observe that E[Z0] ≤ 0 is equivalent to

−λμ2b20
δ2

MT + λμ(θb0 − θ + η)T ≤ 0, (18)

for all b0 ∈ [0, 1], where we have substituted ρ = λμ2b20
2δ2 . To show that (18) holds for all b0 ∈ [0, 1],

we consider the function

F(b) = −μ2b2

δ2
M + μ(θb − θ + η).

This function is concave and has a maximum at b∗ = μθδ2

2μ2M > 0. We observe that F(0) < 0 and that
F(1) = −μ2

δ2
M + μη, which is negative if the first of condition (17) holds true. Moreover, under the

second condition in (17) we also get that b∗ ≥ 1, which guarantees that E[Z] ≤ 0. �

Condition (17) is meaningful in terms of insurance and reinsurance premia. Indeed, it tells us that
the reinsurance is expensive and the income from the direct insurance premia is low. In this case the
result of Proposition 4.4 is intuitively clear: since reinsurance is costly, choosing a bigger retention
level (less reinsurance) in the first period has the advantage that a larger drift can drive the surplus
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away from zero, and hence it is better in terms of survival probability (i.e. minimises the ruin at times
T/2 and T).

To better understand the different cases (i.e. E[Z0] ≤ 0 and E[Z0] > 0) we let

G0(y) =
⎛⎝1 − φ

⎛⎝−y − E[Z0]
ρ√

δ2 1−ρ
ρ

T

⎞⎠⎞⎠ fY0
T/2

(y),

G1(y) =
⎛⎝1 − φ

⎛⎝−y + E[Z0]
γ√

δ2 1−γ
γ

T

⎞⎠⎞⎠ fY1
T/2

(y),

for all y> 0, so that

p(b) =
∫ ∞

0
G0(y)dy, p(b̃) =

∫ ∞

0
G1(y)dy.

Figure 2 represents the densities of the survival probability (i.e. G0(y) and G1(y)) relative to the
strategy b = (b0, b1) (dashed line) and the strategy b̃(b1, b0) (solid line), under given parameters.

The left panel corresponds to the case where condition (17) holds, i.e. insurance is cheap and
reinsurance is expensive. Here the survival probability of the strategy b̃ dominates that of the strategy
b for all values of y. In the right panel there exist a level y∗ > 0 ,small, at which these two curves
switch. However the area under the curve G1 in the set {y > y∗} largely compensates that in the set
{y < y∗}. Such point y∗ corresponds to y∗ = 2E[Z0]

1−2ρ (and it only exists in case E[Z0] > 0). Note that,
natural bounds on the value of η, i.e. 0 ≤ η ≤ θ , guarantee that such compensation of areas always
applies and hence p(b̃) > p(b), (see Proposition 4.4).

4.3. The penalisation problem

Suppose now, we have the following situation: the insurer may decide (at time zero) to have or not
to have an update in the reinsurance contract at time T/2. If she updates the contract, she will pay a
penalty amounting to PT at time T/2. In case of no changes, no penalty will be applied. The strategies
corresponding to these two different scenarios are chosen to achieve a Gaussian distribution at time
T with the same target variance δ2T. If the insurer does not change the strategy at time T/2 then the
mean of the net collective is M′T, uniquely determined by the condition on the target variance. In
case the strategy is changed at time T/2, the final expected wealth will be M < M′. Next, we show
that, due to the insurer’s objective to minimise the ruin probability, changing the strategy at time T/2
is more preferable, even with a smaller expected mean.

We assume thatM = M′ − P. Let b̂ = (b̂, b̂) be the strategy where the insurer decides to make no
changes at time T/2 and let b = (b0, b1) and b̃ = (b1, b0) be the admissible strategy where the insurer
switches, with b0 < b1. We already know, by Proposition 4.4, that strategy b̃ is better than b. The
survival probability of strategy b̂ is given by

p(b̂) = P
[
X̄b̂
T/2 > 0, X̄b̂

T > 0
]
.

We let Ŷ = X̄b̂
T . Then we get that Y ∼ N(M′T, δ2T), and we observe that

X̄b̂
T/2 = 1

2
Ŷ + Ẑ,

where

Ẑ ∼ N
(

λμ(θ b̂ − θ + η)
T
2

− M′T
2
,
1
4
δ2T

)
.
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Figure 3. Survival probabilities under penalisation. Black line corresponds to the survival probability of the strategy b̃, grey line to
that of b and the dashed line to that of the constant strategy b̂.

Random variables Ŷ and Ẑ are independent. This implies that

p(b̂) =
[
2Ẑ > −Ŷ , Ŷ > 0

]
=
∫ ∞

0

(
1 − φ

(
−y − 2E[Ẑ]√

δ2T

))
fŶ(y) dy.

Next, for the strategy b̃ the survival probability is given by:

p(b̃) =
∫ ∞

PT

⎛⎝1 − φ

⎛⎝−y + PT − E[Z1]
γ√

δ2 ρ
γ
T

⎞⎠⎞⎠ fŶ(y) dy,

where Z1 = N(λμ(θb1 − θ + η)T/2 − 2γ (M′ − P)T/2, γ (1 − γ )δ2T), like in the proof of Propo-
sition 4.4.

It is clear that for P = 0, there is a unique strategy, b̂, that leads to the desired distribution for the
net collective. For P> 0, however the strategy b̂ has a survival probability that is always smaller than
the survival probability of the optimal strategy b and larger than that of b̃. This difference is illustrated
in Figure 3.

4.4. A 3 periodmodel

To explain the complexity of the problem for n> 2, we consider the case n = 3. Here, the form of the
survival probability does not allow deriving conditions that ensure a clear dominance of one strategy.
In addition, the computational time increases with the number of periods.

To give some intuition on how to deal with this case, we restrict to deterministic strategies
b = (b0, b1, b2). These strategies satisfy

b0 + b1 + b2 = 3
M + λμ(θ − η)

λμθ
,

b20 + b21 + b22 = 3δ2

λμ2
,

b0, b1, b2 ∈ [0, 1],
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Figure 4. Admissible deterministic strategies for n = 3 and parameters T = 1;μ = 0.15;μ2 = 0.06; λ = 1; θ = 0.35; η =
0.2;M = 0.02; δ = 0.2;.

which means that there are infinitely many combinations of (b0, b1, b2) that lead to the target
distribution. In particular, admissible triplets build (a part of) a circle as shown in Figure 4.
To choose the ruin-minimising strategy we look at survival probability

p(b) = P
[
X̄b0

T
3

> 0, X̄b0,b1
2T
3

> 0, X̄b
T > 0

]
.

We define auxiliary random variables ζ 0, ζ 1 such that

ζ 0 ∼ N
(

λμ(θb0 − θ + η)
T
3

− Mρ0T, ρ0(1 − ρ0)δ
2T
)
,

ρ2ζ
0 + ζ 1 ∼ N

(
−λμθb2

T
3

+ λμ(θ − η)T + (1 − ρ1)MT, ρ1(1 − ρ1)δ
2T
)
,

which are correlated. Then, we have that

p(b) = P
[
ζ 0

ρ0
> −X̄b

T ,
ρ2ζ

0 + ζ 1

ρ1
> −X̄b

T , X̄
b
T > 0

]
=
∫ ∞

0
P
[
ζ 0

ρ0
> y,

ρ2ζ
0 + ζ 1

ρ1
> y

]
fY(y) dy.

where Y ∼ N(MT, δ2T), and fY(y) is the corresponding density.
Figure 5 shows the survival probability with respect to the first component b0. It is clear that, once

b0 is chosen, there are only two possible choices for b1 and b2. Suppose that, for instance b1 > b2, then
for a fixed b0, the possible strategies are (b0, b1, b2) and (b0, b2, b1).We see that the survival probability
is maximised by the largest b0 and the combination that leads to the higher survival probability is the
sorted one, i.e. (b0, b1, b2) with b0 > b1 > b2.

We conclude the section by showing that the sorted sequence b = (b0, b1, b2) leads to a bigger
survival probability than the ‘unsorted’ sequence b̃ = (b0, b2, b1). This means, in particular, that
as shown in Figure 5 any unsorted sequence will be overperformed by a sorted one. To prove this,
we denote by px(·) the survival probability of a strategy where x is the initial capital. Then,

p(b) = P
[
X̄b0
T/3 > 0, X̄(b0,b1)

2/3T > 0, X̄(b0,b1,b2)
T > 0

]
= E

[
I
X̄b0
T/3>0

pX̄
b0
T/3((b1, b2))

]
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Figure 5. Survival probabilities as functions of the first component b0 of the strategy (b0, b1, b2).

> E

[
I
X̄b0
T/3>0

pX̄
b0
T/3((b2, b1))

]
= p(b̃),

where the inequality follows from the case n = 2.

5. Conclusions

In this paper, we consider an insurance company whose objective is to choose a dividend payment
or a reinsurance strategy leading to a certain surplus distribution. The question which strategy to
prefer depends on the underlying target functional – the value of expected discounted dividends
(to be maximised) or the ruin probability (to be minimised). Such a problem is motivated by the
necessity of being able to compute risk measures, typically based on the distribution of a future loss at
some fixed date. Fixing a terminal wealth distribution would allow computing several risk measures
at once, instead of choosing a specific constraint in the beginning of an optimisation task. In this line,
the present paper represents the first step towards a more detailed and more realistic analysis of the
problems faced by practitioners on the almost daily basis.

In addition, we would like to stress that the dividend related problems can be easily generalised
to a continuous time framework. In the reinsurance setting we are able to fully analyse the 2-period
problem. Since, reinsurance contracts are usually difficult or even impossible to update before the
maturity date, this setting seems to be the most realistic one from a practical point of view.

Using a pool of possible distributions andmean/variance combinations instead of only one specific
distribution is a possible extension direction. However, in this paper our main target is to introduce
an idea and to illustrate with two clear settings how this idea can be implemented. For instance,
in the reinsurance setting, the discrete nature of the problem does not allow using the differential
equation approach. Any return function would depend on the initial surplus and on time. Changing
the length of one interval would completely change the optimal strategy, as more weight will be put
on the remaining intervals. Therefore, we are using purely probabilistic methods to prove our claims
for the 2-period case. In the general n-period setting, the admissible strategies are not necessarily
deterministic, and the optimal strategy may even not exist.

Our future research will concentrate on the extensions of the presented models. We plan to work
on the n-period model for the reinsurance setting. We will also consider problems with non-normal
target distributions and allow for continuous time ruin-checks.
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