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Kurzfassung

Neuronale Ranking- und Retrieval-Modelle, die auf vortrainierten Sprachmodellen basieren,
haben im Vergleich zu statistischen und frühen neuronalen Ranking-Modellen im Bereich der
Websuche große Effizienzgewinne gezeigt. Die Übertragung dieser Fortschritte auf domänenspe-
zifische Retrieval-Aufgaben stellt die neuronalen Ranking- und Retrieval-Modelle vor mehrere
Herausforderungen: die Fragen und Dokumente können länger sein als bei Websuche, und für das
domänenspezifische Retrieval sind im Vergleich zur Websuche weniger hochwertige Evaluierungs-
und Trainingsdaten verfügbar. In dieser Arbeit befassen wir uns mit diesen Herausforderungen mit
dem Ziel, die Adaption von neuronalen Ranking- und Retrievalmodellen für domänenspezifische
Retrievalaufgaben zu fördern und zu verbessern. Dokument-zu-Dokument Retrieval-Aufgaben,
bei denen die Fragen und die Dokumente im Korpus lange Dokumente sind, sind wichtige Aufga-
ben im Rechts- und Patentbereich. Wir reproduzieren und verbessern ein Interaktionsmodell auf
Paragraphenebene für die Dokument-zu-Dokument-Suche in der Rechtsdomäne und demonstrie-
ren die Effektivität der Modelle für die Suche nach Prior Art Search im Patentbereich. Um die
Verbesserungen der ersten Stufe der Retrieval-Methoden aus der Websuche auf die Aufgabe der
Dokument-zu-Dokument-Suche zu übertragen, schlagen wir ein Passagenaggregationsmodell
vor. Das Passagenaggregationsmodell befreit neuronale Retrievalmodelle für Retrieval in der
ersten Stufe von ihrer begrenzten Eingabelänge und erhöht die Effektivität und Interpretierbar-
keit für die Aufgabe des Retrievals von Rechtsfällen. Wir verbessern die Verfügbarkeit von
qualitativ hochwertigen Evaluierungsdaten, indem wir eine Annotationskampagne durchführen
und Relevanzsignale aus den Klickdaten mit unseren menschlichen Annotationen für die domä-
nenspezifische Suche in der Gesundheitsdomäne vergleichen. Da annotierte Trainingsdaten für
domänenspezifische Retrieval-Aufgaben begrenzt und teuer zu erstellen sind, untersuchen wir
das Training neuronaler Ranking- und Retrieval-Modelle mit einem begrenzten Annotations- und
Trainingsbudget. Wir untersuchen, inwieweit aktive Lernmethoden die Annotationseffizienz für
das Training von neuronalen Ranking- und Retrievalmodellen verbessern, wobei wir uns auf eine
kostenbasierte Bewertung konzentrieren.
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Abstract

Neural ranking and retrieval models based on pretrained language models have demonstrated
great effectiveness gains for Information Retrieval (IR) in the web domain compared to statistical
and early neural ranking models. Bringing these advancements to domain-specific retrieval tasks
poses multiple challenges for neural ranking and retrieval models: the queries and documents
can be much longer than in web search and there is less high-quality evaluation and training data
available for domain-specific retrieval compared to web search.

In this thesis we address these challenges with the goal of promoting and improving the adoption
of neural ranking and retrieval models for domain-specific retrieval tasks. Document-to-Document
retrieval tasks, where the query and the documents in the corpus are long documents, are important
tasks in the legal and patent domain. We reproduce and improve a paragraph-level interaction
re-ranking model for the document-to-document retrieval task of legal case retrieval and we
demonstrate the re-ranking models’ effectiveness for prior art search in the patent domain. In
order to bring improvements of first stage retrieval methods from web search to the task of
document-to-document retrieval, we propose a paragraph aggregation retrieval model. The
paragraph aggregation retrieval model liberates neural first stage retrieval models from their
limited input length and increases effectiveness and interpretability in the first stage retrieval for
the task of legal case retrieval.

We increase the availability of high-quality evaluation data by conducting an annotation campaign
and comparing relevance signals from the click data to our human-label annotations for domain-
specific retrieval in the health domain. Since annotated training data is limited and expensive
to produce for domain-specific retrieval tasks, we study training neural ranking and retrieval
models under a limited annotation and training budget. We investigate active learning methods
for improving the annotation efficiency for training neural ranking and retrieval models focusing
on a cost-based evaluation.
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CHAPTER 1
Introduction

Search engines are omnipresent, processing over 3 billion queries and serving millions of users
each day [Goo]. There are many different ways in which search engines assist us: for planning a
trip, for entertainment, or for executing work tasks. Especially for executing work tasks, search
engines are an essential tool for professionals in various domains, particularly for those whose
duties involve retrieval tasks as a core component of their work [RRCA18].

As Search Example ➊ let us consider an attorney in the United States, whose task at work is
to defend a client in a trial. Since in the United States the legal system relies on precedent legal
cases, the attorney needs to find already decided precedent cases, which are similar to the case of
his client, in order to develop a defense strategy for this case. Here it is crucial, that the attorney
finds all precedent cases, that are somehow related to the clients case, in order to develop the best
possible defense strategy and to be prepared for possible arguments of the opposite lawyer. Here
the lawyer can use search engines to collect necessary evidence, provide guidance, and develop a
defense strategy. Let us assume that the attorney queries the search engine with the description of
the current client case, in order to find other similar legal cases [RKG+20]. This example is an
example for prior case retrieval in the legal domain.

As Search Example ➋ let us consider a patent attorney, whose task is to write a patent application
for a novel invention. This involves checking the current state-of-the-art of granted patents, that
are related to the patent application about the novel invention. Thus the patent attorney needs
to find related patents, that have already been granted and check if the novel patent application
is significantly different and novel compared to the existing patents and if needed re-write the
patent application, so that the patent application does not infringe on existing, granted patents.
Here it is important, that the patent attorney finds all related, already granted patents, so that he
can differentiate the novel patent application from the state-of-the-art and if needed cite related,
already granted patents in the novel patent application. Here the patent attorney can use search
engines to collect existing patents and compare them to the novel patent application. Let us
assume that the patent examiner queries the search engine with the novel patent application, in
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1. INTRODUCTION

order to find other related patents [PLHZ11]. This example is an example for prior art search in
the patent domain.

As Search Example ➌ let us consider a medical doctor in the United Kingdom, who is working
in an emergency department of a hospital and needs to find a medical treatment for a patient. His
task is to find the best possible treatment for his patient considering the patients’ health condition
and patients’ characteristics like age, gender or medical history as well as the state-of-the-art of
clinical research results. Furthermore his decisions are time-critical, thus he needs to find the best
treatment strategy quickly. Here the medical doctor can use a search engine to collect evidence,
develop a treatment strategy and make critical decisions. Let us assume that the medical doctor
queries the search engine with short, medical terms describing the patients health condition,
in order to find medical treatments or clinical trials [RLS+21]. These are two examples of
domain-specific search, that will guide us through this thesis. This example is an example for
ad-hoc retrieval in the web domain.

We want to define the scope of domain-specific search in this thesis. We follow the definition of
Lupu et al. [LSH14] for domain-specific search, who define a domain-specific search [engine
or process] as a search [engine or process] that specifies one or more of the following five
dimensions:

1. subject areas/domains e.g. legal, patent, medical

2. modality e.g. text, images, videos, sounds

3. users e.g. a paralegal, a patent examiner, a doctor

4. tasks e.g. prior legal case retrieval, prior art patent search, health ad-hoc retrieval

5. tools, techniques and algorithms required to complete the tasks, e.g. query completion
limited to specific vocabularies, cross-lingual search, possibility to store search results

This definition shows that domain-specific search can be characterized by different aspects:
characteristics of the information sources (the subject area or modality), characteristics of the
users (the users or tasks) or technical aspects (tools, techniques and algorithms) being domain-
specific. We do not limit this definition of domain-specific search to search with professional
users e.g. users who conduct search in a work context [VHW+19]. When users conduct search
in a work context and the users are paid professionals, this is defined as professional search
[Tai14, VHW+19, RRCA18, KH17]. We consider professional search as domain-specific search
if the search fulfills one of the above mentioned properties, however in domain-specific search
the users can be professionals and also layperson.

Search Example ➊ fulfills multiple of the above mentioned characteristics: the search process
is in the legal domain, the user is a legal professional and the task is a specific one e.g. prior
case retrieval in the legal domain. In Search Example ➋ the search process also fulfills multiple
characteristics from the above definition. The search process is in the patent domain, the user is a
professional patent attorney and the task is prior art search. In Search Example ➌ the search
process is subject to the medical domain, the user is a medical professional and the task is health
ad-hoc retrieval.
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Due to the many stakeholders in industry, government and research, who face domain-specific
retrieval tasks on a daily basis [LSH14], studying domain-specific retrieval tasks is at the core
of Information Retrieval (IR) research and has a long history within the community [HTBO09a,
GCR16, LSH14]. Improving retrieval systems for domain-specific retrieval tasks benefits a
variety of stakeholders and can leverage more effective and efficient execution of work tasks
[RRCA18]. In a world with an exponentially growing amount of information [Num] and with an
increasing amount of information tasks in the workplace, research on domain-specific retrieval
tasks becomes even more important and is crucial for the future development of IR research.

With the advent of large pre-trained language models [DCLT19] based on Transformers [VSP+17]
in the Natural Language Processing community and their powerful capabilities of representing
and contextualizing text, their application in the context of ranking and retrieval systems is natural.
Ranking and retrieval models based on large pre-trained language models, which we also refer
to as neural ranking and retrieval models or neural rankers, have shown massive effectiveness
gains for retrieval tasks in the web domain [NC19, CMYC19]. The neural models can be
categorized into ranking (also re-ranking) and retrieval models by their computational complexity
[KOM+20, KZ20, NC19]. Theoretically neural ranking models could also be used to score the
whole collection and retrieve relevant documents, but due to the models’ high computational
complexity and thus the models’ long inference time at query time, the neural re-ranking models
are used to re-rank a list of top N documents, which are retrieved in a first stage by a much more
efficient retrieval model [NC19].

The great potential of large pre-trained language models and the continuous research on their
capabilities [CRM+22, Ope23] and on how to employ them most effectively for ranking and
retrieval [HLY+21, DZM+23], will make neural ranking and retrieval models even more effective
in the future.

Neural ranking and retrieval models hold the promise to bring the demonstrated advancements
in the web domain also to domain-specific retrieval tasks. The powerful contextualization
mechanisms [VSP+17] and the immense pre-training of the neural models [DCLT19] address
shortcomings of currently existing lexical or shallow neural retrieval models [RZ09]. Given
the large improvements of neural ranking and retrieval models in the web domain [CMYC19,
CMYC20, NC19], we hypothesize that the adaptation of neural ranking and retrieval models for
domain-specific retrieval has a great potential for boosting retrieval effectiveness. Bringing the
large effectiveness gains of neural ranking and retrieval models from the web domain to domain-
specific retrieval tasks, is also crucial for the democratization of neural ranking and retrieval
models so that not only large corporations in web search, but also stakeholders of domain-specific
retrieval tasks benefit from the research advancements.

Domain-specific retrieval tasks are challenging and difficult retrieval problems, due to the domain-
specific information workflows during the task [Kuh91, KT01], the domain-specific information
needs of the users [LSH14, FEL19], and the domain-specific notion of relevance [vOS17].
Domain-specific retrieval tasks may have very different characteristics than tasks in the web
domain: domain-specific retrieval tasks may have a different notion of relevance than relevance
in web search [vOS17]; the tasks may inherit different information needs than web search for
example high-recall search [LSH14, FEL19, RGK21] like our Search Example ➊ or Search
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1. INTRODUCTION

Example ➋; tasks may have different characteristics like long queries and long documents in the
collection [RKG+20, PH19] like our Search Example ➊ or Search Example ➋; and the user
queries and documents may be written in domain-specific language containing domain-specific
terms and classification schemes [RLS+21, RKG+20, PH19] like our Search Example ➌.
Retrieval systems need to be designed and evaluated along the domain-specific tasks’ workflows
and characteristics [SW21], in order to fulfill the information needs of the users. The different
characteristics of domain-specific retrieval tasks lead to challenges, when employing neural
ranking and retrieval models for those tasks: to learn and evaluate the different notion of relevance,
large scale training and reliable evaluation sets are necessary; different metrics than in web search
need to be employed to evaluate if the retrieval systems fulfill the information need; different
model architectures for long queries and documents are necessary; and different pre-trained
language models are necessary to contextualize the domain-specific language effectively. To
attain highly effective domain-specific retrieval models, it is necessary to investigate, how neural
ranking and retrieval models can be reliably evaluated, effectively and efficiently trained and
adapted for domain-specific retrieval tasks.

1.1 Open Challenges

In this thesis we address two main challenges of neural ranking and retrieval models for domain-
specific tasks: handling long queries and long documents, which we refer to as document-to-
document retrieval tasks, and availability of evaluation and training data.

Document-to-document retrieval tasks, also referred to as query-by-example tasks [AVA22]
or extremely long queries and documents [AVA+23], are retrieval tasks where the query and
the items in the collection to be retrieved are long documents. With long documents we refer
to documents that greatly exceed the average length of queries or web pages as in the web
domain [HVCB99]. There are various domain-specific document-to-document retrieval tasks for
example in the legal [RKG+20], the patent [NFIH10], and the scientific domain [CFB+20]. The
active research on those tasks with evaluation campaigns [PLHZ11] and competitions [RKG+20]
demonstrates the importance of the tasks within the IR community and for the stakeholders in the
industry.

Our Search Example ➊ is an example for a document-to-document retrieval task in the legal
domain. Here the query is the current legal client case, which is a long document, and the
collection consists of precedent legal cases, which are also long documents. Furthermore Search
Example ➋ is also an example for a document-to-document retrieval task, but in the patent
domain. The query is the novel patent application, thus a long document, and the documents in
the collection are granted patents, that are also long documents.

Incorporating the whole content of the query and the documents for neural re-ranking shows large
effectiveness gains for prior case retrieval in the legal domain [SML+20], thus it is a promising
and important direction to investigate these findings for their generalizability for document-to-
document retrieval tasks in other domains. Furthermore it is an open question, how we can
adapt neural first stage retrieval models for document-to-document retrieval tasks, so that they
effectively take the whole content of the query and document into account.

4



1.1. Open Challenges

The availability of data for both training and evaluation is a primary obstacle for researching
domain-specific, neural ranking and retrieval models. Data availability is crucial for evaluating and
comparing any model to another as well as for training a model. Even the retrieval effectiveness of
lexical retrieval models, which do not need to be trained, benefit from training data to be used for
fine-tuning its input parameters [RZ09]. Thus the lack of data is a bottleneck to expand research
on domain-specific neural ranking and retrieval models in the Information Retrieval community.
Especially for neural ranking and retrieval models, their high effectiveness relies on large-scale,
human-labelled training data [CMYC19, CMYC20]. Without additional investigation it is not
clear, how well old, domain-specific test collections are suited to evaluate novel neural ranking
and retrieval models [VSL22], when neural ranking and retrieval models did not participate in
the pooling process. Thus for evaluating neural ranking and retrieval models in the context of
domain-specific search, it is crucial to have reliable and reusable evaluation data at hand, where
neural ranking and retrieval models contributed to the pool to be judged. For domain-specific
retrieval tasks, we lack large-scale, human-labelled training and reliable evaluation sets for the
various tasks within those domains. Furthermore it is highly expensive create such training or
evaluation sets, since the annotation of the samples needs to be done by domain experts with high
hourly rates and the relevance assessments usually take more time than in web search [AHVH22].

Since reliable evaluation data is rare and very expensive to produce for domain-specific re-
trieval tasks, some common, domain-specific test collections rely on relevance signals from user
behaviour [RLS+21, TRR+21]. It is an open research gap, how reliable domain-specific test
collections, which do not rely on relevance judgements from pooled system rankings, are for
evaluating retrieval systems that did not take part in the pooling for relevance.

Our Search Example ➌ is an example for a domain-specific retrieval task in the medical
domain with little, human-annotated evaluation data [RDVH16, RLS+21]. Whereas a variety
of evaluation campaigns exist in the medical domain [CMS21, RDV+22, RDV+19, RDVH16],
these evaluation campaigns often focus on specific aspects of ad-hoc retrieval in the medical
domain e.g. health misinformation [CMS21] or cancer patients [RDV+19] or are other retrieval
tasks e.g. systematic reviews [?].

Large-scale, high-quality training data is necessary for trained neural ranking and retrieval models
to perform well [CMYC19, CMYC20]. Since it is costly to annotate training samples for domain-
specific retrieval tasks, it is an open research gap how we can effectively train neural ranking and
retrieval models under a limited cost budget. It is an open, but important question, how we can
minimize the annotation cost while optimizing the effectiveness of the trained neural ranking
or retrieval model using active learning methods. Active learning methods hold the promise to
minimize the number of annotations of the training samples while maximizing the effectiveness
of the trained model by selecting iteratively which training samples to annotate, following a
pre-defined selection strategy [CGJ96].
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1. INTRODUCTION

1.2 Research Questions

We bridge the above research gaps by addressing the following research questions:

RQ1 How can neural ranking and retrieval models be adapted for document-to-document re-
trieval tasks?

We divide this research questions into neural ranking approaches and neural retrieval models and
investigate:

RQ1.1 How can neural ranking models be adapted for document-to-document retrieval tasks?

We study how neural ranking models proposed for ad-hoc retrieval in the web domain [NC19]
can be adapted for document-to-document retrieval tasks. We specifically study the document-
to-document retrieval tasks of prior case retrieval in the legal domain and prior art search in the
patent domain. Here we reproduce the novel neural re-ranking architecture BERT-PLI, which
was proposed for prior case retrieval [SML+20], and investigate the transferability of BERT-PLI
for the task of prior art search in the patent domain [PLHZ11]. Thus we investigate the following
sub research questions:

RQ1.1.1 Does fine-tuning BERT on domain specific paragraphs improve the retrieval
performance for document retrieval?

Since we reproduce Shao et al.’s [SML+20] work, we re-investigate their findings and study if
fine-tuning the BERT-PLI model for modelling the paragraph interactions on domain specific
paragraphs improves the overall retrieval performance of the BERT-PLI model.

RQ1.1.2 To what extent is a BERT-PLI model, which is trained on patent retrieval, benefi-
cial for document retrieval in the patent domain?

In addition to the reproduction, we explore how effective the BERT-PLI model is for the task of
prior art search in the patent domain, which is also a document-to-document retrieval task.

RQ1.1.3 To what extent is cross-domain transfer on paragraph- and document-level of the
domain specific BERT-PLI model between legal and patent domain possible?

Furthermore we investigate the effectiveness of cross-domain transfer of the domain-specific
BERT-PLI models. Here we evaluate the BERT-PLI model, trained on the prior legal case retrieval
task, for prior art search in the patent domain and vice versa. With this we study, to what extend
we can transfer the neural ranking model across the legal and patent domain.

RQ1.2 How can neural retrieval models be adapted for document-to-document retrieval
tasks?

We investigate how we can adapt neural retrieval models, proposed for ad-hoc retrieval in the
web domain [KOM+20], for document-to-document retrieval tasks, where we also investigate
prior case retrieval in the legal domain and prior art search in the patent domain. For this we
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propose a novel paragraph-aggregation retrieval model (PARM), which liberates neural retrieval
models from their limited input length. PARM retrieves documents on the paragraph-level and
then aggregates the relevant results per query paragraph into one ranked list for the whole query
document. For the aggregation we propose vector-based aggregation with reciprocal rank fusion
(VRRF) weighting, which is an aggregation approach that combines rank-based aggregation of
results [CCB09] and topical aggregation based on the neural embedding. Thus we investigate:

RQ1.2.1 How does VRRF compare to other aggregation strategies within PARM?

We compare our novel aggregation strategy VRRF to other aggregation strategies [CCB09, Lee97,
SF94] for the paragraph-aggregation retrieval model (PARM) and study which aggregation
strategy leads to the highest effectiveness for the task of legal case retrieval. Furthermore we
study:

RQ1.2.2 How effective is PARM with VRRF for document-to-document retrieval?

We train and evaluate the paragraph-aggregation retrieval model (PARM) for the task of legal
case retrieval and compare its effectiveness to other neural and non-neural first stage retrieval
models. Here we investigate the effectiveness of taking into account the whole query document
and the whole document in the corpus compared to only using a smaller text representation of the
query or the document.

RQ1.2.3 How can we train neural retrieval models for PARM for document-to-document
retrieval most effectively?

Since freely, available training data for the domain-specific retrieval task of legal case retrieval
is limited [RKG+20], we investigate how we can train neural retrieval models for PARM most
effectively. Here we compare the effect of training on paragraph-level training data only or
additionally training on document-level training data on the effectiveness of PARM with the
neural retrieval model.

RQ2 How can the problem of limited available annotated evaluation and training data be ad-
dressed in domain-specific retrieval?

In order to address the problem of limited available annotated evaluation and training data, we
investigate two possible directions. First, we conduct an annotation campaign, in which human
annotators annotate an evaluation set, that previously only contained relevance labels based on
click-signals. With this annotation campaign, we create a human-annotated evaluation set for the
task of medical ad-hoc retrieval. We investigate:

RQ2.1 How do human-label annotations compare to click signals for medical ad-hoc re-
trieval?

We compare our human-annotated evaluation set for medical ad-hoc retrieval with the click-based
labels from the original evaluation set quantitatively and qualitatively, in order to investigate the
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difference of the annotations to the click-labels. We also investigate the effect of the different
labels on the evaluation of different retrieval and ranking systems.

In order to address the problem of limited available training data for training domain-specific
neural ranking and retrieval models, we investigate:

RQ2.2 To what extent does active learning improve annotation efficiency for training neural
ranking and retrieval models?

Active learning or active selection strategies are strategies to select and annotate training samples,
that aim to minimize the number of annotations needed and maximize the effectiveness of the
model trained on that annotated training set [CGJ96]. We study how active learning methods
influence the annotation efficiency for annotating the training set, when training neural ranking
and retrieval models. Since we want to disentangle the effects of active learning for efficient
training data annotation from possible effects of training domain-specific neural ranking and
retrieval architectures like BERT-PLI or PARM, we investigate these active learning strategies
for "common" neural ranking and retrieval model architectures [NC19, KOM+20, KZ20], that
do not consider long documents. For investigating training neural ranking and retrieval models,
we investigate two scenarios. First, training the neural ranking or retrieval model from "scratch",
where the training starts with a pre-trained large language model that is not trained on a ranking
or retrieval task yet. Second, adapting a neural ranking or retrieval model, that is already trained
on an ad-hoc retrieval task in the web domain, to ad-hoc retrieval in the health domain. In
order to investigate the effects of adapting the language domain, we choose to investigate a
similar task, that exists in the web as well as in the health domain (ad-hoc retrieval). Another
reason for choosing the tasks of ad-hoc retrieval in the web domain and the medical domain
when investigating active learning methods for data efficient training of neural rankers, is the
availability of large-scale, annotated training data for these two tasks [NRS+16, RLS+21], which
we need, in order to simulate the selection and annotation process in the training. We divide the
above research question in multiple sub research questions and investigate:

RQ2.2.1 What is the effect of the size of the labelled training data on the effectiveness of
neural rankers?

Since investigate training neural ranking and retrieval models under a limited annotation and
training budget, we study the effect of the size of the labelled training data on the effectiveness of
the neural ranking and retrieval model, that is trained on different sizes of training data. Here we
study training neural ranking and retrieval models from scratch for ad-hoc retrieval in the web
domain or adapting neural ranking and retrieval models, already trained for web ad-hoc retrieval,
to the task of ad-hoc retrieval in the medical domain. Then we investigate:

RQ2.2.2 How do different active selection strategies influence the effectiveness of neural
rankers?

We adapt active selection strategies, that were proposed for classification [XAZ07, LG94] or
non-neural ranking models [FSST97], for neural ranking and retrieval models and study their
influence on training neural rankers. We evaluate their effectiveness for different training datasizes
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for ad-hoc retrieval in the web and the health domain. In order to conduct a cost-aware evaluation,
we investigate:

RQ2.2.3 What is the effect of using an an active selection strategy to fine-tune a neural
ranker under a constrained budget?

We propose a cost-aware evaluation, that takes into account the annotation cost as well as
the training cost of training the neural rankers. Furthermore we measure the annotation and
training cost for training neural rankers with different active selection strategies and compare the
annotation and training cost to the effectiveness of the trained neural rankers. With answering
these research questions, we overall investigate how to train neural rankers under a limited
annotation and training budget and address the problem of limited training data for training neural
ranking and retrieval models.

1.3 Thesis Contributions

Along our main research questions, our contributions are the following:

RQ1 How can neural ranking and retrieval models be adapted for document-to-document re-
trieval tasks?

First we investigate for neural ranking models:

RQ1.1 How can neural ranking models be adapted for document-to-document retrieval tasks?

In order to investigate how neural re-ranking models can be adapted for document-to-document
retrieval tasks, we reproduce the experiments by Shao et al. [SML+20], who propose a paragraph-
level interaction re-ranking model for legal prior case retrieval. We make our reproduction code
publicly available at the following URL 1 as well as the models under the following repository
[Alt20]. Contrary to the original paper we find that domain-specific paragraph-level modelling
does not benefit the effectiveness of the neural re-ranking model for the task of prior case retrieval
in the legal domain. We extend the work by Shao et al. [SML+20] by training the proposed model
architecture for the document-to-document retrieval task of prior art search in the patent domain
and investigate the generalizability of the findings to the task of prior art search. Furthermore we
evaluate cross-domain transfer of the re-ranking models and find first promising results.

RQ1.2 How can neural retrieval models be adapted for document-to-document retrieval
tasks?

For a high-recall, first-stage retrieval of document-to-document retrieval tasks we propose a
paragraph aggregation retrieval model (PARM) for neural document-to-document retrieval and
make the code and trained models publicly available under the following URL 2. PARM liberates
neural retrieval models from their limited input length and thus makes it possible to apply neural

1https://www.github.com/sophiaalthammer/bert-pli
2https://www.github.com/sophiaalthammer/parm
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retrieval models for document-to-document retrieval including the whole content of the query
and the document. In order to aggregate the retrieved paragraphs, we propose vector-based
aggregation with reciprocal rank fusion weighting (VRRF) for neural retrieval with PARM and
find that VRRF leads to the highest recall for PARM compared to other common aggregation
strategies [SF94, CCB09]. In our experiments we demonstrate higher retrieval effectiveness for
neural retrieval with PARM compared to retrieval without PARM and to lexical retrieval with
PARM for the task of prior case retrieval in the legal domain. Furthermore we investigate PARM
for the task of prior art search in the patent domain and find that neural retrieval models are not
yet beneficial for this task, both with the PARM architecture and with off-the-shelf neural retrieval
with limited input length.

RQ2 How can the problem of limited available annotated evaluation and training data be ad-
dressed in domain-specific retrieval?

When creating an evaluation set through an annotation we campaign, we investigate:

RQ2.1 How do human-label annotations compare to click signals for medical ad-hoc re-
trieval?

To increase the availability of evaluation data in the medical domain, we create the relevance
judgement-based test collection TripJudge for TripClick health retrieval and make it publicly
available under the following URL 3. We ensure the quality and re-usability of TripJudge by
a variety of statistical and neural ranking and retrieval systems for pool creation, by multiple
judgements per query-document pair, and by an at least moderate inter-annotator agreement in
our large-scale annotation campaign. We compare evaluation with click-based TripClick and our
judgment-based TripJudge and find that click and judgment-based evaluation lead to substantially
different system rankings.

RQ2.2 To what extent does active learning improve annotation efficiency for training neural
ranking and retrieval models?

We investigate to what extent active learning methods improve the annotation efficiency for
training neural ranking and retrieval models. In order to distinguish the impact of active learning
on the annotation efficiency of training data from any potential influences related to domain-
specific neural ranking and retrieval architectures such as BERT-PLI or PARM, we are examining
these active learning methods within the context of "common" neural ranking and retrieval model
architectures [NC19, KOM+20, KZ20], which are not designed to handle lengthy documents.
To explore the training of neural ranking and retrieval models, we are investigating two distinct
scenarios. Firstly, there is the approach of training the neural ranking or retrieval model "from
scratch," which entails initiating training with a pre-trained large language model that has not
previously been fine-tuned for ranking or retrieval tasks. Here we study training a neural ranker
under a limited annotation and training budget for the task of ad-hoc retrieval in the web domain.
Secondly, we are examining the process of adapting a neural ranking or retrieval model, that has

3https://www.github.com/sophiaalthammer/tripjudge
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already been trained for ad-hoc retrieval in the web domain, to the specific context of ad-hoc
retrieval in the medical domain. Our goal in choosing this adaptation scenario is to assess the
impact of transferring the model across different language domains, as we are working with a
similar task, that is applicable in both web and health domains, which is ad-hoc retrieval. One
additional factor in the selection of ad-hoc retrieval tasks within the web and medical domains
for our exploration of active learning methods for training neural rankers is the availability of
large-scale, annotated training data for these specific tasks [NRS+16, RLS+21]. This annotated
training data is needed for simulating the process of selection and annotation during training,
since we do not have the resources, to do an interactive annotation campaign during the selection
and training process. We adapt active learning strategies [LG94, XAZ07, CGZW11] for training
neural ranking or retrieval models and propose a budget-aware evaluation schema including
aspects of annotation and computational cost. We conduct an extensive analysis of active learning
strategies for training neural ranking and retrieval models investigating the trade-offs between
effectiveness, annotation budget and computational budget. Interestingly, we find that no active
learning method consistently and significantly outperforms random selection of training data
for annotation and training. However, we find that some subsets of the training data result
in considerably higher effectiveness than others. Our budget-aware evaluation shows that the
investigated active learning strategies do not deliver consistent budget savings.

1.4 Synopsis

We give an overview of the outline of the thesis by describing each chapter and then list the
publications that some of the chapters are based on. In these chapters, the results are presented as
they were at the time of publication, there are no new baselines added retrospectively.

• In the first chapter of the thesis we give an introduction we motivate our research questions,
outline open challenges in section 1.1 and introduce the research questions in section 1.2
that are addressed in this thesis. Furthermore we state the contributions of this thesis on
top of the current research landscape in section 1.3.

• In the second chapter we give the background about the domains in section 2.3 and their
respective retrieval and ranking tasks in section 2.4, that we study in this thesis. Furthermore
we introduce the datasets in section 2.5 and model architectures that will be used.

• In the third chapter of the thesis, we lay out the related work for document-to-document
retrieval in section 3.1 as well as the challenge of lack of data for domain-specific retrieval
tasks in section 3.2.

• In the fourth main part of this thesis, we describe our approach to investigate, how to adapt
neural ranking and retrieval models for document-to-document retrieval tasks. In particular
we study the task of legal case retrieval in the legal domain and the task of prior art search
in the patent domain and focus on a high-recall evaluation for these tasks. In section 4.1
we investigate how neural re-ranking models can be adapted for document-to-document
retrieval tasks by reproducing the experiments by Shao et al. [SML+20] and extending the
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experiments for the task of prior art search. In section 4.2 we investigate the adaptation of
neural first stage retrieval models for document-to-document retrieval tasks. We propose a
paragraph aggregation retrieval model (PARM) for neural document-to-document retrieval
and study its effectiveness for the tasks of legal case retrieval and prior art search.

• In the fifth main part of this thesis, we address the problem of limited available annotated
evaluation and training data for domain-specific retrieval tasks specifically in the health and
web domain. In section 5.1 we address the data availability of reliable evaluation data in the
health domain by creating the relevance judgement-based test collection TripJudge for the
TripClick health retrieval dataset. Additionally to creating new data resources for domain-
specific retrieval tasks, we investigate in section 5.2 how we can train neural ranking and
retrieval models under a limited data annotation and training budget. Here we investigate to
what extent active learning methods improve the annotation efficiency for training neural
ranking and retrieval models for the TripClick health retrieval task as well as for web
search. In our investigation, we aim to disentangle the influence of active learning on the
efficient annotation of training data from any potential effects introduced by specialized
neural ranking and retrieval architectures like BERT-PLI or PARM. To accomplish this,
we examine active learning strategies in the context of "common" neural ranking and
retrieval model architectures, as identified in the literature [NC19, KOM+20, KZ20].
These architectures are primarily tailored for handling shorter documents and are not
explicitly designed for accommodating longer ones. As these neural models are originally
proposed for the task of ad-hoc retrieval in web domain and are optimized to handle brief
queries and documents that fit within the input length of the BERT encoder [DCLT19], we
narrow our focus to web and medical ad-hoc retrieval tasks, when investigating the impact
of active learning methods on annotation efficiency. As ad-hoc retrieval tasks are more
precision-oriented than recall-oriented, we focus in our evaluation on precision-oriented
metrics.

• In the last main chapter 6 we conclude our research findings, describe the contributions
to the field as well as we discuss limitations and possible future directions for developing
domain-specific neural ranking and retrieval models.

The chapter 4 and 5 are based on four publications that were published in peer-reviewed confer-
ences. We visualize the main focus area of each of the publications (and the respective chapter in
the thesis) and the tasks and domains tackled in the publication in Figure 1.1.

The publications that the chapters 4.1, 4.2, 5.1, 5.2 are based on, are the following:

• Section 4.1 is based on following publication:

2021 ECIR
Cross-domain Retrieval in the Legal and Patent Domains: a Repro-
ducibility Study [AHH21]
S. Althammer, S. Hofstätter, A. Hanbury
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Figure 1.1: Overview of different aspects of our thesis, categorized by tasks and domains, main
focus of the work, and year of publication

In this publication we investigate how neural re-ranking models can be adapted for
document-to-document retrieval tasks by reproducing the experiments by Shao et al.
[SML+20]. Shao et al. propose a paragraph-level interaction re-ranking model for legal
prior case retrieval and we investigate shortcomings in the data pre-processing of the
original paper and add missing code for reproduction. We extend the work by Shao et al.
[SML+20] by training the proposed model architecture for the document-to-document re-
trieval task of prior art search in the patent domain and investigate the generalizability of the
findings to the task of prior art search. Furthermore we propose a cross-domain evaluation
approach, in order to evaluate the zero-shot effectiveness of the neural re-ranking model,
trained on the prior case retrieval, for prior art search and vice versa. For the effectiveness
of the cross-domain transfer of the re-ranking models, we find first promising results.

• Section 4.2 is based on the publication:

2022 ECIR
PARM: A Paragraph Aggregation Retrieval Model for Dense
Document-to-Document Retrieval [AHS+22]
S. Althammer, S. Hofstätter, M. Sertkan, S. Verberne, A. Hanbury

In this publication we investigate the adaptation of neural first stage retrieval models
for document-to-document retrieval tasks. We propose a paragraph aggregation retrieval
model (PARM) for neural document-to-document retrieval. PARM liberates neural retrieval
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models from their limited input length and thus make it possible to apply neural retrieval
models for document-to-document retrieval including the whole content of the query and
the document. We design and evaluate the PARM architecture along the requirements of
the workflow of the retrieval task [SW21], which is a high recall for prior case retrieval in
the legal domain and prior art search in the patent domain [RRCA18]. In order to aggregate
the retrieved paragraphs, we propose vector-based aggregation with reciprocal rank fusion
weighting (VRRF) for neural retrieval with PARM and find that VRRF leads to the highest
recall for PARM compared to other common aggregation strategies [SF94, CCB09]. We
demonstrate higher retrieval effectiveness for neural retrieval with PARM compared to
retrieval without PARM and to lexical retrieval with PARM for the task of prior case
retrieval in the legal domain. Furthermore we investigate PARM for the task of prior art
search in the patent domain and find that neural retrieval models are not beneficial yet
for this task, both with the PARM architecture and with off-the-shelf neural retrieval with
limited input length. Overall we propose with PARM a neural first stage retrieval model for
document-to-document retrieval, which is more efficient than previous works [SML+20].

• Section 5.1 is based on the publication:

2022 CIKM
TripJudge: A Relevance Judgement Test Collection for TripClick
Health Retrieval [AHVH22]
S. Althammer, S. Hofstätter, S. Verberne, A. Hanbury

In this publication we address the data availability of reliable evaluation data in the
health domain by creating the relevance judgement-based test collection TripJudge for
TripClick health retrieval. As previous research in the web domain suggests [KKT09],
relevance labels from click signals are highly noisy and differ greatly from human-labelled
annotations. We re-evaluate this hypothesis in the context of retrieval in the health domain
for the TripClick collection. We compare evaluation with click-based TripClick and our
judgment-based TripJudge and find that click and judgment-based evaluation can lead to
different system rankings.

• Section 5.2 is based on the publication:

2023 SIGIR-AP
Annotating Data for Fine-Tuning a Neural Ranker? Current Active
Learning Strategies are not Better than Random Selection [AZH+23]
S. Althammer, G. Zuccon, S. Hofstätter, S. Verberne, A. Hanbury

In this publication we investigate the question to what extent active learning methods
improve the annotation efficiency for training neural ranking and retrieval models. We
first investigate how the amount of labelled data used for training the neural ranking or
retrieval model impacts its effectiveness and find a great variability in effectiveness when
training a neural ranking or retrieval model on different subsets of the same size. We adapt
active learning strategies [LG94, XAZ07, CGZW11] to the task of training neural ranking
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or retrieval models and propose a budget-aware evaluation schema including aspects of
annotation and computational cost. We conduct an extensive analysis of active learning
strategies for training neural ranking and retrieval models investigating the trade-offs
between effectiveness, annotation budget and computational budget. Interestingly, we find
that no active learning method consistently and significantly outperforms random selection
of training data for annotation and training. However, we find that some subsets of the
training data result in considerably higher effectiveness than others. Our budget-aware
evaluation shows that the investigated active learning strategies do not deliver consistent
budget savings.

In the following we will use the rhetorical "we" in research when referring to work, which was
lead by myself and jointly authored with my co-authors.

Furthermore we will use the terms test collection interchangeably with evaluation set/data/dataset
or testing set/data/dataset or test set/data/dataset. Similarly we use the terms training set/data/-
dataset. Furthermore we use the term domain-specific search and domain-specific retrieval
interchangeably.
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CHAPTER 2
Background

In this section we introduce the background in Information Retrieval, evaluation metrics, domains,
and their retrieval tasks, which we investigate in this thesis in the context of neural ranking
and retrieval models. Furthermore we introduce the datasets, which model the domain-specific
retrieval tasks. We give a brief overview of the neural ranking and retrieval models and active
learning models. This section is a background needed to understand the related work section as
well as the upcoming chapters.

2.1 Information Retrieval

"Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within large collections
(usually stored on computers)." [MRS08]

Manning et al. [MRS08] define information retrieval as the task of finding material from an
unstructured source that fulfills the information need of the user. While the users used to be
mainly librarians, paralegals, and professional searcher [MRS08] with the emergence of the world
wide web now there are billions of users every day search the web.

Information retrieval is a dynamic and evolving research field at the intersection of computer
science, information science, and data management [MRS08]. At its core, this discipline is
concerned with the efficient and effective retrieval of information from vast and often unstructured
data sources, such as text documents, multimedia content, or databases [MRS08]. The overarching
goal of information retrieval is to provide users with access to relevant information in response to
their queries, facilitating the extraction of knowledge and insights from an ever-expanding digital
universe.

In order to explore each aspect and dimension of this Information Retrieval problem, the research
in Information Retrieval spans a wide range of techniques and methodologies, including natural
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language processing, machine learning, user studies and information retrieval models. These
methods aim to enhance the information seeking process, by enabling systems to not only retrieve
relevant documents, but also rank them based on their relevance to the user’s query or by designing
interfaces that help the user navigate in their information seeking process. As our reliance on
digital information continues to grow, the field of information retrieval plays a crucial role in
shaping, how we access and utilize the wealth of information available to us in the modern era.

2.2 Evaluation Metrics

Evaluation metrics [MRS08] serve as the backbone for assessing the performance and effective-
ness of machine learning and information retrieval systems. They play a pivotal role in quantifying,
how well these systems accomplish their intended tasks and provide valuable insights for re-
searchers, developers, and end-users. In the realms of machine learning and information retrieval,
evaluation metrics are indispensable for comparing and fine-tuning different algorithms, models,
and techniques.

These essential metrics help answer critical questions:

• Accuracy: How well does the model or system predict or retrieve relevant information,
and how often does it do so correctly?

• Precision and Recall: In the context of information retrieval, how many of the retrieved
documents are relevant (precision), and how many relevant documents were successfully
retrieved (recall)?

• F1 Score: This metric strikes a balance between precision and recall, particularly useful
when precision and recall are in conflict.

The choice of evaluation metrics depends on the nature of the problem. For instance, classification
tasks may prioritize metrics like accuracy and F1 score. In information retrieval, the metrics
are tailored to the task of retrieving and ranking documents based on relevance. While the
above metrics are common metrics also used in Natural Language Processing and general
Machine Learning [RKG+20, PLHZ11, GCR16, KJC+21], we want to introduce precision-
oriented metrics specifically developed for evaluating information retrieval systems.

In information retrieval, there is a trade-off between precision and recall of a retrieval system:
The trade-off between precision and recall arises because increasing precision leads to a decrease
in recall and vice versa. This trade-off is primarily driven by two key factors.

The first key factor is thresholding. The retrieval system uses a ranking mechanism or a threshold
to decide, which documents to present to the user. By setting a higher threshold, the system
becomes more conservative and returns fewer results, which are more likely to be relevant, thus
increasing precision but reducing recall. Conversely, lowering the threshold results in more
retrieved documents, potentially improving recall but decreasing precision.

The second key factor is relevance ranking. The ranking of documents is heavily influenced
by the retrieval model and the scoring functions employed. Some retrieval models focus on
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optimizing precision by assigning higher scores to the documents that are more likely to be
relevant. Others may prioritize recall by casting a wider net to capture a larger pool of potential
relevant documents. These choices can have a significant impact on the precision-recall trade-off.

Thus this trade-off plays a critical role in the design and evaluation of retrieval systems, as it
directly influences the performance and utility of retrieval systems.

Having discussed the trade-off between precision and recall, we want to delve into precision-
oriented metrics other than precision. Precision-oriented evaluation metrics in information
retrieval are essential tools for assessing how well a system retrieves and ranks documents,
emphasizing the relevance and precision of the results. These metrics offer valuable insights into
the quality of retrieved information by considering not only the number of relevant documents
retrieved but also their order in the ranked list.. Three prominent precision-oriented metrics in
Information Retrieval are Mean Average Precision (MAP), Normalized Discounted Cumulative
Gain (NDCG) [JK17] and Mean Reciprocal Rank [Cra09].

Mean Average Precision (MAP)

MAP [MRS08] is a widely recognized and highly regarded metric for assessing the performance
of information retrieval systems [JK17]. It focuses on the precision and rank of relevant documents
in the retrieved list. The key components of MAP are:

• Precision: For each query, precision is calculated by dividing the number of relevant
documents retrieved by the total number of documents retrieved.

• Average Precision (AP): AP is computed by taking the average of precision values at
various cut-off points in the ranked list. It rewards systems that place relevant documents
at the top of the list.

• Mean Average Precision: MAP calculates the average AP across all queries, providing an
overall measure of system performance. A higher MAP indicates better performance, with
a maximum value of 1 when all relevant documents are ranked at the top.

Normalized Discounted Cumulative Gain (nDCG)

nDCG [JK02], like MAP, assesses the quality of ranked lists in information retrieval, with a
specific focus on ranking relevance [JK17]. nDCG takes into account both the relevance of
documents and their position in the list. Key aspects of nDCG include:

• Discounted Cumulative Gain (DCG): DCG assigns higher scores to relevant documents
that appear at the top of the list, while gradually discounting the importance of documents
lower in the ranking.

• Ideal DCG (IDCG): IDCG represents the best possible DCG score achievable for a given
set of queries, where all relevant documents are perfectly ranked at the top.

• Normalized DCG (nDCG): nDCG is obtained by dividing the DCG by the IDCG. This
normalization ensures that the metric has a value between 0 and 1, making it comparable
across different queries and systems.
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nDCG is aligned with the user’s perspective, as it rewards systems for placing relevant items at
the top of the list, which is crucial for user satisfaction and engagement [JK17]. nDCG can be
calculated at various rank cutoffs (k), enabling a nuanced analysis of system performance. Differ-
ent applications may prioritize different portions of the ranked list, and nDCG can accommodate
these preferences.

Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) [Cra09] is a fundamental metric in the field of information
retrieval and search engine evaluation. It focuses on the effectiveness of ranked retrieval systems
by considering the rank of the first relevant document for each query. MRR is particularly
valuable in scenarios, where the emphasis is on quickly providing the most relevant result to
users.

The core idea behind MRR is straightforward: it calculates the reciprocal of the rank of the first
relevant document for each query and then computes the average of these reciprocals across all
queries in the dataset that is evaluated. In essence, MRR answers the following question: "On
average, how quickly does the system return the most relevant result to users?"

The steps involved in calculating MRR are as follows:

• For each query, the system ranks the relevant documents based on their relevance to the
query.

• MRR considers the reciprocal of the rank of the highest-ranked relevant document for each
query. If a relevant document is ranked first, its reciprocal is 1; if it’s ranked second, its
reciprocal is 1/2; and so on.

• Finally, the MRR is computed as the average of these reciprocals across all queries.

MRR is particularly well-suited for evaluating information retrieval systems when users are
primarily interested in quickly finding the most relevant information. It places a strong emphasis
on effectiveness of retrieving that first relevant result. The higher the MRR score, the more
effective the system is at promptly delivering valuable content to users, which is especially
valuable in applications like web search and question-answering systems.

MAP, nDCG and MRR are highly valuable in information retrieval, especially for tasks like web
search, document retrieval, and recommendation systems. They provide a nuanced assessment
of a system’s ability to retrieve relevant information, giving credit to the precision and rank of
relevant documents in the final results. These metrics are pivotal in guiding the development
and optimization of information retrieval systems to ensure that users receive high-quality and
relevant information.
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2.3 Domains

After introducing the evaluation metrics, we give a short introduction to the domains, which we
consider in the thesis, and their characteristics.

2.3.1 Web Domain

Retrieval in the web domain refers to retrieval from the vast corpus of online content that can
be searched, indexed, and retrieved [BP98]. This includes websites, blogs, forums, social media
platforms, and other types of digital content that are accessible through the world wide web. The
domain of web search is constantly evolving and expanding, with new content being added to the
web every day [YHT+16]. Search in the web domain is thus characterized by its large volume.

Search engines like Google, Bing, and Yahoo are perhaps the most well-known applications of
web information retrieval. These systems use algorithms to index and rank web pages, enabling
users to find information based on their search queries. Techniques such as crawling, indexing,
and ranking play a pivotal role in the operation of search engines [MRS08]. For web search
engines it is crucial to be able to search the ever expanding content of the world wide web.
Thus it is crucial for web search engine providers to have efficient and effective web crawling
algorithms that automatically and systematically traverse the web in order to discover and collect
web pages. Search engine crawlers or web spiders explore websites, follow links, and store
data in a structured manner [HN99]. Efficient crawling is crucial for keeping search engine
indexes up-to-date. Then the crawled web pages are stored in a distributed index to facilitate
fast and relevant retrieval [BDH03]. These indexes typically store information about the content,
keywords, and links on each page. Inverted indexes are commonly used to map terms to the
documents, where they occur [RZ09].

In web search, the queries, which are issued by the user, are characterized by a short length
and also the passages or documents in the collection are rather short compared to search in
professional domains [NRS+16, SWJS01]. The queries include key word queries as well as
questions [NRS+16].

When a user submits a query, web search engines employ query processing techniques to identify
relevant documents. These query processing techniques include query parsing, where the query
is parsed into individual terms [FSMZ10], query expansion, where the original query is expanded
by some terms [LNP+18, ZCZ+23], or query term weighting, where the terms in the query
are weighted based on their importance in the query [SLK+23]. To lower the users cognitive
load when searching, web search engines contain a query auto-completion module, which
suggests one or multiple completions to complete the query, that the user is typing at the moment
[CdR16, HMRS14].

The users in web search are lay persons as well as domain experts with different information
needs. Broder et al. [Bro02] identify and categorize the different information needs of users
in web search to navigational, informational and transactional information needs. These needs
induce various retrieval tasks. For a navigational information need, the intent of the user is to
reach a certain web page, also referred to as known-item search. For the informational need, the
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user wants to acquire some information that can be presented by multiple web pages. Broder et
al. define a transactional need to reach a certain web page where further interaction takes place,
like shopping or downloading files.

Relevance ranking is at the core of web search. In commercial web search engines relevance rank-
ing includes different ranking functions, semantic matching features, query rewriting [YHT+16],
incorporating implicit user feedback [ABD06, RKJ08], link analysis [PBMW98], anchor-text
[CHR01] and features like recency [DCZ+10]. Furthermore for relevance ranking, commercial
web search engines, like Google, also include features of ad revenue in their ranking models,
optimizing the trade-off between relevance and ad revenue [RBC+08].

The advent of mobile devices has revolutionized the way people access information on the World
Wide Web. Mobile devices encompass a range of devices, including mobile phones, smartphones,
Personal Digital Assistants (PDAs), smartwatches, and other internet-connected devices that lack
standard-sized screens or traditional keyboards [CMS19]. With the proliferation of smartphones
and tablets, web search on mobile devices has unique characteristics and considerations that set
it apart from traditional desktop web search [CMS19]. These changing characteristics include
mobile-friendly design, voice search, location-based search, integration of apps and vertical
search with various verticals, such as image search, video search, and news search.

Recently, personal voice assistants like Google assistant, Amazon Alexa or Cortana have emerged
as personal assistants, where the users interact with the assistant via voice. Furthermore large
language models like ChatGPT [Ope23] have emerged, where the user interacts with the language
model in a conversational way. These novel technologies change, how users interact with systems
and search for information, which is in a more conversational way. Thus the field of conversational
information seeking [ZTDR23, DXC20] has emerged in the web domain, which is concerned
with a sequence of interactions between one or more users and an information system and includes
applications like conversational search [JOH+19], conversational question answering [ZZS+22],
and conversational recommendation [LKS+18].

In the information retrieval community, various evaluation campaigns for web search were
conducted over the course of more than 20 years in order to evaluate ranking models [HVCB99,
CH02, CMY+21b, DXC20]. These many campaigns reflect the large interest and importance of
web search in the information retrieval community.

2.3.2 Legal Domain

In the legal domain, lawyers, legal professionals and paralegals conduct searches in order to find
prior cases to a given case, in order to analyze current regulations and statutes or to find evidence
for a current case. Although there are also private persons conducting legal searches, we focus
here on professional legal search conducted by legal professionals.

Search Example ➊ is also an example of a search process in the legal domain.

Where most of the legal searches were originally based on printed materials [How95], since the
1970s the electronically stored information in legal research has been exponentially growing
[vOS17], so that nowadays most of the legal searches are conducted with online libraries. The
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growing amount of electronically stored legal information also holds the risk that it is hard to
distinguish the quality and impact of different court decisions of same legal status [BT07, MS08],
therefore a legal professional needs to take the legal hierarchy of a document at hand into account.

Apart from the challenges of quantities of information in legal information search, also the quality
of legal search is complex [vOS17]. Legal work is an intertwined combination of research,
drafting, negotiation, counselling, managing and argumentation [LPS96]. Therefore the tasks in
the legal domain are not limited to finding prior court decisions, which are relevant to a given
case, but are a complex process of obtaining legal evidence. In the literature legal information
seeking is defined as the behaviour displayed by lawyers when using a range of existing legal
resources to find information required for their work [vOS17].

Legal documents are written in legal language [Glo23]. This legal language are characterized the
use of precise, formal, and complex language in legal documents that establishes a framework
for interpreting and enforcing the law while maintaining consistency and objectivity within the
legal system [Tie00]. Legal language is precise and specific and aims to eliminate ambiguity and
vagueness by using well-defined terminology and terms that have specific legal meanings [Tie00].
This precision is crucial to ensure that laws and legal documents are interpreted and applied
consistently. Legal language is highly formal and often uses archaic or specialized vocabulary
and also uses latin phrases, such as "pro bono", which are often used as legal shorthand for
specific legal concepts [Tie00]. Furthermore legal documents have long, complex sentences and
convoluted syntax. This makes legal documents written with legal language different to other
documents in other domains and poses different challenges for retrieval of these documents.

Search in the legal domain has certain characteristics, which sets legal retrieval tasks apart from
retrieval tasks in other domains. Turtle [How95] and van Opijnen et al. [vOS17] find specific
characteristics of the legal domain that distinguish it from other domains. Some aspects relate to
the legal texts itself, other with the way legal materials are used. The different characteristics are
the following:

• Volume: Although the longstanding impressive volumes of legal materials are surpassed by
web and social media data, the amount of legal data is still impressive [vOS17]. The US
case law comprises roughly 50 GB of text which grows by 2 GB each year [How95].

• Document size: Legal documents have a longer average length compared to other domains
like the web or social media domain. [RGK+22, BGG+19, AVA+23]

• Structure: Legal documents have a very specific internal structure, statutes and administra-
tive codes have a hierarchical structure, case law documents have a jurisdiction specific
structure [How95, PST07] containing for example summaries and the claims of the case
[RKG+20, BGG+19]

• Heterogeneity of document types: there is a variety of document types ranging from
legislation and court decisions to parliamentary documents, contracts, commentaries etc
[vOS17]
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• Self-contained documents: the documents in the legal domain are not just about the law,
but they contain and constitute the law themselves [vOS17]

• Legal hierarchy: the legal documents are in a hierarchical organization with regard to
the type of the documents and their authority. The importance of a document depends
on its origin, for example a supreme court opinion overrules a municipal court decision.
[Tur95, vOS17]

• Temporal aspects: legislation changes over time and therefore it is important to consider
temporal aspects in the search [Tur95]

• Importance of citations: citations are an integral part of argumentation in the legal domain
[vOS17, WV20]

These characteristics of the legal domain need to be considered when designing an information
retrieval system for legal information seeking as well as when conducting a legal professional
search.

2.3.3 Patent Domain

Innovation is crucial for the progress of technology and society. As technology builds on previous
advancements, it benefits society when technical innovations are publicly available and well-
described [LH13] and the patent system was established to achieve this goal by incentivizing
inventors to share their expertise in exchange for temporary monopolies [SZ19]. According to
the WIPO intellectual property handbook [wip04], a patent is a government-issued document
that describes an invention and creates a legal environment, in which the patent holder is the only
one authorized to exploit it. Patents provide immense economic value, and as the number of filed
patent applications continually rises each year, there is an increasingly urgent need for effective
systems to manage this massive amount of data [KJ19]. Retrieval in the patent domain aims
to develop techniques and methods that can efficiently and effectively retrieve relevant patent
documents in response to a given search request.

Patent documents are spread across various datasets, patent offices, and resources that require
different patent search systems and online services, such as Google Patents and Espacenet, among
others [Sal17]. Searching through multiple resources is crucial in certain patent search tasks
with the goal of achieving the broadest coverage possible. As patent retrieval tasks are typically
recall-oriented, it is essential to retrieve all related patent documents to avoid significant economic
repercussions [KJ19, MGHC13]. Therefore, conducting an efficient and effective search across
all patent sources is of utmost importance in the patent domain.

Search Example ➋ is an example for a search process in the patent domain, where the search
process also demands a high recall.

2.3.4 Medical Domain

Scientific information in the medical domain is expanding rapidly, where a daily average of 75
clinical trials and 11 systematic reviews were published in 2010 alone [BGC10]. Similarly for
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biomedical publications, more than 1 million papers are published on PubMed each year [Lan16],
which is around 2 papers per minute. However, despite its growth in size, scientific information
becomes outdated quickly, with new publications presenting recent experimental results that
can alter the understanding of a topic or disprove previous findings. Additionally, researchers
may prioritize maximizing their publication count, leading to fragmentation of literature and
the emergence of specialized subfields of research [Her20]. The vast and evolving nature of the
medical knowledge and thus the documents in the medical domain are one characteristic of the
medical domain [XSW21].

Especially during the international Covid-2019 pandemic, the fast evolving nature of the medical
domain was evident and the Covid-19 pandemic has influenced and challenged information
retrieval in the medical domain [WLC+20, RAB+20]. The pandemic led to a massive increase in
the demand for medical information and at the same time led to an unprecedented acceleration in
the publication of medical research papers and studies about COVID-19 [RAB+20].

Another characteristic of the medical domain is its specialized terminology [AAZ18, CCHJ94,
MC02]. The medical field relies on highly specialized terminology and jargon, including medical
conditions, treatments, procedures, anatomical structures, and pharmaceuticals. The use of
structured taxonomies like the MeSH taxonomoy [LB94, DGGCMV+08] is common in the
medical domain to categorize and organize medical concepts and is also crucial to be integrated
for retrieval.

Ensuring that the information retrieved is credible and trustworthy is also critical in healthcare
[SR17, VP17, UPV21]. Retrieval systems should consider the source’s reputation and the quality
of the information.

It is important to recognize that different types of medical information require distinct retrieval
approaches. For example, patient-specific information, which can be either structured or narrative,
is most relevant to healthcare practitioners who work directly with patients. On the other hand,
knowledge-based information such as experimental findings, summaries, and observations, is
valuable to both clinicians and researchers as it can be applied to individual patient cases [Her20].
For sensitive patient data, there are strict regulations which govern the storage and retrieval of
medical information. Also many healthcare providers use electronic health records systems and
effective information retrieval should integrate with electronic health record systems to provide
seamless access to patient information.

Retrieval tasks within the medical domain can be extremely time-sensitive, for example in cases
where the Intensive Care Unit team must assess a patient’s condition and electronic health records,
and search medical literature to make critical decisions for treating the patient. Despite their best
efforts to obtain the most accurate, up-to-date, and comprehensive information possible, these
teams are often under tremendous pressure and have only a few hours, or less, to make their
decision [Cas03].

Search Example ➌ is also an example of a search process in the medical domain that is
extremely time-critical, as the doctor is working in the emergency department of the hospital and
the treatment of patients requires quick decision making.
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Other types of medical searches, such as literature searches for systematic reviews, are at the op-
posite end of the spectrum. These processes are slow, methodical, and involve multiple iterations
and manual labor from qualified researchers. Recent studies suggest that a full systematic review
can take an average of 67 weeks to complete [BBCK17].

There are some similarities between the search processes used in the medical domain and those
applied to legal or patent applications. In both cases, conducting a formal search of secondary
studies involves using detailed documentation and Boolean queries as standard procedures
[RRM20, SZKC20, SZK21]. A Boolean query is a type of search query that allows users to
combine multiple keywords or search terms using logical operators such as AND, OR, and
NOT. Boolean queries enable users to create complex and precise search queries. While exact-
match search tools are commonly used to retrieve all relevant documents [RZ09], it requires an
understanding of operators and underlying databases, and thus tends to be aimed more towards
"power users" [Her20]. However, ongoing research is being conducted on other approaches, often
based on semi-automation, to form search queries when looking for information in electronic
medical records [TTSS+20].

2.3.5 Conclusion

As introduced in this section, the web, legal, patent and medical domain have each different,
special characteristics including the nature of information needs in each domain, the language
of the queries and documents in each domain, the different structure of documents, the ever
expanding volume of the collections, as well as temporal aspects. For designing and modelling an
effective and efficient retrieval system it is crucial to take into account the respective characteristics
of each of the domains and to know the domains, which tasks one wants to address and solve.

2.4 Tasks

The different characteristics of each domain affect the retrieval tasks, which appear in the domains
[SW21]. A task is in general defined as a set of connected physical, cognitive, and affective
actions through which individuals try to reach a goal [Bys07, MBB+07]. In the context of
information retrieval, the task is the representation of the goal of the search process [SW21].

This section focuses on generic information seeking and retrieval tasks [MWL20] in the different
domains. These have been classified by the intent such as search task versus a browse task.
These are tasks that are “carried out by a [user] as a means to obtain information associated
with fulfilling the work task” [IJ05]. Having introduced the specific domains, we now give a
brief overview of some of the information seeking and retrieval tasks in each domain, which
we identify as important and open challenges for retrieval systems and which are of particular
interest for our work.

2.4.1 Tasks in the Web Domain

One retrieval and ranking task in the web domain is ad-hoc retrieval [HVCB99], which is a
standard retrieval task in which the user indicates his/her information need with a query. This
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query initiates a search for documents which are to be expected relevant to the user [BR11]. The
task is called ad-hoc because the task is not planned nor part of a larger search process rather it is
an information need that the user has in the moment. The queries can be keyword queries as well
as questions [SWJS01].

Another task in web search is the web page finding task, which is defined as finding a specific
web page [CH02]. This task refers to the navigational information need identified by Broder et al.
[Bro02].

There are works studying information needs and tasks in a more fine-grained way in web search
by analyzing the browsing behaviour and the goals of users [RL04, Dum13, BJ12]. Broder et al.
[Bro02] categorize user behaviour in web search into navigational, informational and transactional
information needs. Similarly Russell et al. [RTKJ09] identify different search tasks in web search
including navigation, finding simple evidence (like looking up a phone number), finding complex
information, which could be acquired from multiple sources, acquiring documents for example
in order to download them, exploring/learning, and playing. Broder et al. as well as Russell et
al. find that the information information need or informational tasks make up the most of the
information needs/tasks in web search, compared to navigational and transactional information
needs/tasks.

Bailey et al. [BJ12] further refine the tasks identified by Russell et al. by using the web search
iterative taxonomy developed by Rose et al. [RL04]. They identify action-based tasks from
user browsing behavior. Most frequent tasks include monitoring frequently updated information,
browsing a social network, or comparing products or services for use. These tasks can but not
have to be completed within one session and can expand over multiple search sessions.

With the rise of mobile devices for accessing the web the tasks in the web domain are changing
and evolving and moving more to tasks like question answering [Cla18a, NRS+16], in order
to fulfill the information need of the user. In question answering, the goal is not to find a
document but an answer to a question thus the user does not have to browse through the web
pages themselves. This can also be enhanced in the search engine result page by highlighting the
relevant information of a web page [Hel23].

Recently, personal voice assistants like Google Assistant, Amazon Alexa, and Cortana have
emerged as virtual companions, allowing users to interact with these assistants using their voices.
Furthermore, the rise of extensive language models like ChatGPT [Ope23] has introduced a
conversational way of interacting with information systems, transforming how users search for
information. Consequently, the field of conversational information seeking [ZTDR23, DXC20],
within the web domain, has come to the forefront. This field is concerned with the series of
interactions between one or more users and an information system and includes applications like
conversational search [JOH+19], conversational question answering [ZZS+22], and conversa-
tional recommendation [LKS+18].

The information retrieval community has conducted various evaluation campaigns for web search
spanning over two decades, aimed at assessing ranking models [HVCB99, CH02, CMY+21b,
DXC20]. These numerous campaigns reflect the substantial interest and significance of web
searching within the information retrieval community.
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2.4.2 Tasks in the Legal Domain

There are different types of retrieval in the legal domain ranging from traditional ad-hoc queries,
where the user types in a query and expects to receive a set of relevant documents as response,
to known-item search or navigational search to within document retrieval [How95]. We review
the literature for search tasks in the legal domain and we describe two legal search tasks in more
detail, eDiscovery and prior case retrieval.

The legal search tasks depends also on the different law systems, there are case law and statue
law systems. In case law systems the body of law is created by judges and the precedent cases
determine the law, and statute law systems, which is written law passed by a body of legislature.
For the prior case/precedent retrieval task [AKTVJ01, Loc17, RKG+20, SML+20] in case law
systems one only needs to return few top cases that have high conceptual relevance, possibly low
keyword overlap and high juristic value for a query, concurring decision by lower courts can be
safely ignored [vOS17].

In prior case retrieval typically a current case, called instant case [JAKTV03] is at hand for which
relevant prior cases need to be retrieved. The task should lead to prior cases which should be
taken into account for solving the current case [RKG+20], in other words which support or
contradict the current case [SML+20]. The information source is primary literature containing
previous court decisions and the queries are formed using keywords and Boolean operators
[BT07, Tur94]. The desired output of the search is a list of prior cases, sorted by relevance or
temporal aspects. In order to develop an effective defense strategy and to know all possible
arguments from opponents, it is crucial, to find all related precedent legal cases, thus this task
requires a high recall [RKG+20].

For example, Search Example ➊ is a prior case retrieval task in the legal domain. In this example
it is important to find all relevant prior cases, thus the retrieval model should aim and be evaluated
for a high recall.

In statute retrieval [BGG+19] there is also a query case given and it is the task to retrieve the
statutes which are relevant to solving the query case. In contrast to case law retrieval, in the
statute retrieval task [BGG+19] the claim has to be complete and it would be highly critical for
the legal process to miss a relevant statute.

Similar to prior case/precedent and statute retrieval there is also argument retrieval in the legal
domain in order to support the argumentation line of legal practitioners [Ash14, AW13, MBPR07].
This task is useful to employ retrieved information in proposing new arguments, and to explain
any proposed evidence or conclusions [AW13].

Another legal search task eDiscovery is widely represented and analyzed in the literature [BT07,
Con10, GCHO11, OBH+10]. eDiscovery is defined as any process (or series of processes) in
which electronic data is sought, located, secured, and searched with the intent of using it as
evidence in a civil or criminal legal case. This data can include emails, images, audio or video
files, calendar invitations, instant messages, spreadsheets, or computer programs. Court-ordered
or government sanctioned inspection of data for the purpose of obtaining critical evidence is also
a type of eDiscovery [Con10]. Here the lawyers’ inquiry in discovery is intended to capture all or
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as many as possible relevant materials of evidence to the case at hand [OBH+10], thus there is
a emphasis on recall over precision. During the discovery phase of a litigation, one legal party
can make a production request, which is a formal request, where one party asks the other party
to produce or provide copies of specific documents, electronically stored information, or other
types of evidence that are relevant to the case [GCHO11]. This production request can include an
outline of specific documents or categories of documents that the requesting party seeks and is the
initial information at hand to start the search task. The search is performed by a lawyer, paralegal
or legal practitioner. The query is then formulated by extracting keywords and their synonyms
from the production request and the formulation of a Boolean query [OBH+10]. The search
results are then manually viewed to identify cases that are relevant to the production request.

2.4.3 Tasks in the Patent Domain

Patent search can occur at various stages in the patent lifecycle, performed by different stake-
holders, and for a range of purposes. As a result, specific search tasks exist at different stages in
the patent lifecycle with different information needs. These search tasks include prior art search,
patentability, novelty, freedom to operate, and infringement [AYF+11]. However, a significant
challenge arises from the lack of a common framework defining all the different search tasks
that can be conducted. What is considered an identical task for one researcher may be regarded
as a different category by another researcher. This variation is influenced by the level of detail
considered when identifying tasks.

Azzopardi et al. [AVJ10] distinguished between novelty and patentability searches, while other
researchers considered them identical. In their work, Azzopardi et al. considered novelty as the
main search type, with patentability falling under the novelty category when a patent application
exists. Through a pair-wise comparison, they found a high correlation between novelty and
patentability. Shalaby and Zadrozny, in 2019, treated infringement search and freedom to operate
search as different tasks [SZ19]. They defined infringement search as the main type of search
with the goal of finding infringement, while freedom to operate extends beyond infringement
search to give the freedom to sell products that do not infringe on existing patents. Additionally,
patent landscaping was identified as the same as state of the art by Alberts et al. [AYF+11], with
the only difference being in the way the results are presented.

Below is a summary of the different patent search tasks gathered from various works including
[AYF+11, AVJ10, BCC10, Cla18b, HNR07, LH13, SZ19]

• state of the art/prior art search/patent landscaping: This task involves identifying the
current state of the art in a particular field. It helps to identify potential competitors and
opportunities for improvement. Since it is crucial not to miss patents that are prior art to
the given patent, this task is recall-oriented. Search example ➋ is an example for a prior
art search task, since the patent attorney needs to identify the current state of the art, in
order to file a patent application for the novel invention.

• novelty: This task involves determining whether an invention is novel and unique compared
to existing patents and is an essential step in the patent application process.
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• patentability: This task involves assessing whether an invention meets the legal require-
ments for obtaining a patent. It includes determining whether the invention is novel,
non-obvious, and useful.

• validity: This task involves assessing the validity of an existing patent. It helps to determine
whether the patent is enforceable and whether it can withstand legal challenges.

• infringement: This task involves determining whether a particular product or process
infringes on an existing patent. Often this task is done if the product or process already
exists [AYF+11]. It is important for businesses to avoid infringing on others’ patents and
for patent owners to protect their intellectual property.

• freedom to operate: This task is usually done when considering developing a technology or
launching a new product or process to avoid potential legal issues and involves assessing
whether the potential technology development or product launch infringes on existing
patents.

Overall, these tasks vary in their scope, purpose, and methods, and they are essential for var-
ious stakeholders involved in the patent lifecycle, including inventors, businesses, and legal
professionals.

2.4.4 Tasks in the Medical Domain

In the medical domain, there are various search tasks differing by their users, their timeframe and
their output goal. In this section we will introduce ad-hoc retrieval in the medical domain and the
task of systematic reviews.

Ad-hoc retrieval (health information seeking) in the medical domain is a process of searching for
relevant information in a collection of medical documents or databases to answer a user’s query
for which the information need of the user occurs in the moment. In the medical domain, ad-hoc
retrieval is often used to support clinical decision-making, medical research, and other healthcare-
related tasks [MMM15]. Ad-hoc retrieval in the medical domain is challenging because of the
complexity and diversity of medical knowledge, the use of specialized terminology, and the need
for accurate and timely information. The users vary from domain experts like doctors to lay
persons like patients [GKL14]. In this search task the focus is not be exhaustive and find all
relevant documents, but to quickly find relevant documents. Thus this task is precision-oriented
and aims at providing relevant information at a high rank of the result list.

For example, Search Example ➋ is an example of an ad-hoc retrieval task in the medical domain.
Here the doctor works in an emergency department of a hospital and needs to decide quickly on
medical treatments of patients. He needs to have a search system at hand, that provides him with
relevant evidence quickly. Thus the search system is required to have a high precision.

Systematic review is a search task with the goal of producing a secondary study that provides a
comprehensive summary of all relevant data that meets pre-defined criteria to answer a specific
research question. This approach employs rigorous scientific methods to minimize bias and derive
robust conclusions, which can guide doctors or medical practitioners in their decision-making
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process [JRJ+09]. The Cochrane Collaboration1 has been producing systematic reviews of
healthcare interventions globally since 1993. In order to verify all empirical evidence, researchers
must find all publications relevant to the research question. Such publications are later on
evaluated and interpreted. The initial information for the task are research questions and a
pre-defined protocol which includes information on Population, Intervention, Comparison and
Outcome (PICO). The protocol also includes specific study design requirements as well as
inclusion and exclusion criteria [HTC+23]. The users conducting the search are information
specialists or librarians. Each search query, if possible, is also peer-reviewed to check for errors
that could reduce the recall [CBVC+18, HTC+23]. The search is conducted with multiple
databases like CENTRAL, Embase or MEDLINE. The queries are Boolean queries extended
with MeSH and thesaurus terms, in order to expand the search query with indexing terms,
synonyms, abbreviations and spelling variations [JRJ+09, WLZ23]. The output of the search is a
list of publications matching the Boolean query [SZKC20, SZK21]. The subsequent steps in the
Systematic Review process are the selection, analysis and summarization of the list of relevant
publications. Selection is conducted by at least two rounds that comprise first title and abstract
screening followed by full-text document screening. Data from selected publications are later
extracted and synthesised using quantitative methods (i.e. risk of bias assessment). The whole
process is finally summarised in a Systematic Review report [JRJ+09].

2.4.5 Overview of Tasks and Conclusion

In order to give an overview of the different tasks in each of the domains, we visualize the
different tasks in Table 2.1 including the task name, the domain that the task appears in, examples
for that task, references and its characteristic.

In this section we have introduced various different tasks in each of the domains of web, legal,
patent and health. Each of the tasks has different characteristics, different users (laypersons or
professionals), different query and document characteristics and require a high precision and/or a
high recall, in order to fulfill the information need of the user. When designing and evaluating an
effective retrieval system for a specific task, it is crucial to take these special characteristics into
account.

In this thesis, we propose and evaluate ranking and retrieval systems in the context domain-
specific tasks, which take into account the special characteristics of the task. We investigate
neural ranking and retrieval models for document-to-document retrieval task in the legal and
patent domain, namely prior case retrieval and prior art search. Here we focus on a high recall
in the evaluation of the neural ranking and retrieval models, since both tasks are recall-oriented.
Furthermore we address the problem of limited evaluation data for the task of medical ad-hoc
retrieval and address the problem of limited training data for the task of ad-hoc retrieval in the web
and health domain. In our study, we aim to isolate the impact of active learning on the efficient
annotation of training data, distinct from any potential influence coming from domain-specific
neural ranking and retrieval architectures such as BERT-PLI or PARM. To achieve this, we
explore active learning strategies within the context of "common" neural ranking and retrieval

1https://www.cochrane.org
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Task Domain Users Characteristic References
Ad-hoc retrieval Web Layperson &

Professionals
Precision-oriented [HVCB99]

Web page finding Web Layperson Precision-oriented [CH02]
Question-Answering Web Layperson Precision-oriented [Cla18a, NRS+16]
Conversational Search Web Layperson Precision-oriented [ZTDR23, DXC20, JOH+19]
eDiscovery Legal Professionals Recall-oriented [BT07, Con10, GCHO11]
Prior case retrieval Legal Professionals Recall-oriented [JAKTV03, Loc17, RKG+20]
Argument retrieval Legal Professionals Precision-oriented [Ash14, AW13, MBPR07]
Prior Art Search Patent Professionals Recall-oriented [AYF+11, AVJ10, Cla18b, LH13]
Patentability Patent Professionals Recall-oriented [AYF+11, AVJ10, Cla18b, LH13]
Novelty Patent Professionals Recall-oriented [AYF+11, AVJ10, Cla18b, LH13]
Freedom to Operate Patent Professionals Recall-oriented [SZ19]
Validity Patent Professionals Precision-oriented [AYF+11, AVJ10]
Infringement Patent Professionals Recall-oriented [SZ19]
Ad-hoc retrieval Medical Layperson &

Professionals
Precision-oriented [GKL14]

Systematic review Medical Professionals Recall-oriented [JRJ+09, CBVC+18, HTC+23]

Table 2.1: Overview of the different search tasks that we introduced per domain and their
characteristics in terms of focus on precision and/or recall.

model architectures [NC19, KOM+20, KZ20], which are primarily designed for handling shorter
documents and do not explicitly cater to long documents. As these neural architectures are
proposed for the task of ad-hoc retrieval in the web domain [NC19, KOM+20, KZ20] and are
designed to handle short queries and document, that do not exceed the input length of the BERT
encoder [DCLT19], we focus on the tasks of web and medical ad-hoc retrieval for studying the
impact of active learning methods on the annotation efficiency. Here we focus in our evaluation
on precision-oriented metrics, since ad-hoc retrieval tasks require a high precision.

2.5 Datasets

After presenting the domains and some selected retrieval tasks in the respective domains, we
introduce the datasets and test collections, which are employed in our work and which model the
respective retrieval tasks.

2.5.1 Datasets for Tasks in the Web Domain

In our experiments, we focus on the task of ad-hoc retrieval in the web domain thus we use
publicly available training and test collections for that task. In our work we conduct experiments
on the large scale MS Marco passage collection [NRS+16]. MS Marco is based on around 1
million queries sampled from Bing’s query logs and contains 8.8 million passages in its corpus.
The passages are extracted from 3.5 million web documents which are retrieved by Bing. Its
passage training set contains 503k human-labelled training samples of relevant documents and

32



2.5. Datasets

its test set contains 12k test queries. For the training and test queries there is roughly only one
document labelled as relevant on average.

Based on the MS Marco passage collection there are multiple test collections created during the
TREC Deep Learning track [CMY+21b] and we use the test set from the TREC Deep Learning
track 2019 [CMYC19] and 2020 [CMYC20], since these test sets were available at the time of
conducting the experiments and demonstrate a reliable evaluation across various retrieval systems
in the TREC track.

The Deep Learning track 2019 was studying ad hoc ranking in the web domain, comparing neural
ranking and retrieval models in a large data regime. As a result of the evaluation campaign the
TREC DL 2019 test collection was created employing the Cranfield evaluation paradigm and
using assessors from NIST organized by TREC [CMYC19]. The reusable test set for the passage
retrieval task consists of 43 queries containing 9k judgements in total and was pooled from 75
runs of the participating groups.

In the TREC 2020 Deep Learning track another reusable test collection was created also based
on the MS Marco passage collection and with a similar methodology as in to previous year. The
passage retrieval test collection TREC DL 2020 consists of 54 test queries with 11k judgements
and has demonstrated to be a reliable and reusable test collection for benchmarking neural ranking
and retrieval models.

2.5.2 Datasets for Tasks in the Legal Domain

In the legal domain we focus on the document-to-document retrieval task of prior case retrieval
introduced in Section 2.4. We go in more detail about related work on document-to-document
retrieval tasks in Section 3.1. It is a document-to-document retrieval task since the query is a
(potentially long) document and the items in the corpus to be retrieved are also long documents.
For prior case retrieval there are multiple training and test collections publicly available, in our
work we use the COLIEE training and test collections from the COLIEE evaluation campaign in
2019 and 2020 and 2021 [RKG+20] as well as the Case Law test collection published by Locke
et al. [LZ18].

COLIEE [RKG+20] is a competition for legal information extraction and retrieval which provides
datasets for legal case retrieval and case entailment. The collections in COLIEE are based on
cases from the Canadian case law system and are written in English. The cases are provided in a
structured format and contain paragraph sections of the legal cases. The COLIEE datasets are the
respective datasets that were provided in the respective year of the respective challenge.

Task 1 of COLIEE is a document retrieval task, called the legal case retrieval task, where a query
case is given together with a corpus of candidate documents. We refer to the COLIEE dataset
as the dataset that was provided to the participants during that challenge. In COLIEE 2019
and 2020 [RKG+20] Task 1 was a re-ranking task, where for each query case a set of already
retrieved cases was given and the task was to re-rank the given documents. Thus the COLIEE
2019 and 2020 datasets contain query cases and a list of already retrieved cases to be re-ranked.
From 2021 onwards Task 1 was changed to a full retrieval task, where the whole corpus of 4415
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legal cases was given along with a training set and test set consisting of query cases and their
relevance judgements. The relevant cases are the cases which are referenced in the query case,
the references are not on a paragraph-level but on the document-level.

In Task 1 of COLIEE 2021 [RGK+22], the legal case retrieval task, query cases with their
relevance judgements on the document-level are provided together with a corpus of candidate
documents. The corpus consists of 4415 legal cases and a set of training and test queries with
relevance annotations is given. The training set continuously increased in size over the years
resulting in 650 query cases with on average 5 relevant prior cases for COLIEE 2021 and the test
set consists of 250 query cases.

Task 2 of COLIEE 2020 [RKG+20] involves the identification of a paragraph which entails the
given query paragraph, called legal case entailment. When a paragraph of a legal case entails
the query paragraph, it means that the legal reasoning, principles, or rules established in the
paragraph of the found legal case are applied and extended to the query paragraph. We will refer
to the dataset, which was provided in the Task 2 of COLIEE 2020, as COLIEE 2020 Task 2. This
dataset contains relevance labels on the legal case paragraph level, given a query claim, a set of
claims, which are candidates to be the entailing paragraph to the query claim, as well as relevance
labels for the candidate claims. In COLIEE 2021, Task 2 [RGK+22] consisted of a training and
testing sets containing 326 and 100 base cases respectively. The training data consists of a query,
a noticed case and the paragraph number of the paragraph in the noticed case which entails the
query paragraph, thus is relevant.

For a broader evaluation, we also conduct evaluation on the prior case retrieval test collection
CaseLaw [LZ18]. CaseLaw contains a corpus of legal cases downloaded from CourtListener,
providing cases with its text and additional data like the date on which the case was filed and a
list of unique IDs of other cases that cite the particular case. The collection contains a corpus
of 63k legal cases and 12 topics with 100 human-labelled query cases with 2600 assessments in
total. The relevance assessments were manually conducted by two lawyers and one paralegal,
who were familiar with the case law search task and did case law retrieval on a weekly basis in
their jobs. The relevance assessments denote on average 7 relevant cases per query case.

2.5.3 Datasets for Tasks in the Patent Domain

Since we focus on document-to-document retrieval tasks in our work, we are particularly in-
terested in the document-to-document retrieval task of prior art search in the patent domain.
For conducting experiments on this task we employ the publicly available CLEF-IP collection
[PH19, PLH13], which was created over the course of multiple the CLEF evaluation campaigns
between 2009 and 2013.

The CLEF-IP collection provides a corpus of 3.5 million patents extracted from the larger
MAREC dataset2 which contains documents representing over 19 million patents published at
the EPO (European Patent Office), USPTO (United States Patent and Trademark Office), WIPO
(World Intellectual Property Office) and JPO (Japan Patent Office).

2The MAtrixware REsearch Collection http://ifs.tuwien.ac.at/imp/marec
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There are two datasets of CLEF-IP of interest for our work: the dataset of the document-to-
document retrieval task of prior art search and the dataset from the passage retrieval task starting
from claims. Both datasets contain English, French and German queries, where we only consider
the English queries and candidates. The relevance labels are based on the "X" citations which
are manually assigned during the patent granting process by trained patent examiners. These
citations are publicly available for all patents and thus can be extracted and used as a measure of
relevance.

The task in prior art search is given a patent document to find relevant prior patents in the corpus.
For this task there are 351 training documents available and 100 test queries with on average
3 relevant patents. The patent documents have a pre-defined structure and consist of a title,
abstract, the legal claims and a technical description. Often the technical description also contains
technical drawings and pictures, however in these tasks only the text of the patents is taken into
account [PLHZ11].

The task in the passage-level retrieval task is given a set of claims occuring in a patent application
to find documents from the corpus which are considered relevant to the claims and to identify the
passages of the documents which are relevant to the claims. The training set consists of 44 claims
and the test set of 42 claims. The patent documents here have the same structure as in the prior
art search task.

2.5.4 Datasets for Tasks in the Medical Domain

In the medical domain, we focus on the task of ad-hoc retrieval (health information seeking)
and employ in our work the recently proposed benchmark of the publicly available TripClick
collection [RLS+21]. We choose this dataset because it contains a large-scale training and test set,
different to other datasets in the medical domain, where only a small training dataset [RIS+20] or
no training dataset [RDV+19, RDV+17] is available.

TripClick contains large-scale real user queries and real user click logs from Trip, an English
health search engine with professional and non-professional users. The usage of the Trip search
engine is for free and thus attracts expert as well as non-expert users. The TripClick dataset
contains real user queries and click-based annotations as well as a collection of medical articles
and documents. The collection contains 1.5 million passages from MedLine articles, consisting
of the title and abstract of the article. TripClick contains 680k training queries with an average
length of 6 words. The queries are mainly keyword queries or short questions. Test queries are
divided with respect to their frequency into three sets of 1, 750 queries respectively; the three
sets are Head, Torso, and Tail. For the Head queries a Document-Click-Through-Rate (DCTR)
model [CMdR15] was used to create relevance signals from the click labels. This results in
multiple test sets with labels based on the clicks of the users, either estimating relevance by the
raw clicks (‘Raw’) or by the rate of clicks of a document over all retrieved documents for a query
(‘DCTR’) [CMdR15]. This dataset is representative of the task of health information seeking
since it contains real user queries and real user interactions from the real, live health search engine
Trip.
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First Stage Retriever Second Stage Re-Ranking

Figure 2.1: Retrieval Workflow with first stage retrieval and second stage re-ranking

2.6 Models

We visualize the general retrieval workflow in Figure 2.1. The general retrieval workflow consists
of a query that the system receives, in our example the query is "How to make a good cappucino".
Then the system employs a first stage retrieval model and retrieves the most relevant documents
from a large corpus. How many documents are retrieved is a variable that can be chosen in the
retrieval process, usually one uses the top 1000 documents. For the first stage retrieval process it
is important that the retrieval model is very efficient, since it needs to score (potentially) billions
of documents [NRS+16] in the whole corpus. At the same time the first stage retrieval model
is required to have a high recall, since we do not want to miss any relevant documents from the
collection.

In the second stage a re-ranking model is employed that re-ranks the top documents, that were
retrieved in the first stage. Then the re-ranked model yields a re-ranked list of documents,
depending on the task it can crop this list to only top 10 or display the whole re-ranked top
1000 list. For the second stage re-ranking model it is important that it has a high precision, in
order to rank relevant documents highly. Furthermore second stage re-ranking models can be
computationally more heavy, since the re-ranking model only needs to score the top documents,
that were retrieved in the first stage.

In the following we will introduce the ranking and retrieval models that we employ and expand
on in this thesis. We first introduce the statistical ranking and retrieval model BM25 and then
describe the architecture and training of neural re-ranking and retrieval models.

2.6.1 Statistical Models

There are various different statistical retrieval models. Since we use the statistical ranking and/or
retrieval models as baseline for comparing their performance to neural ranking and retrieval
models, we choose the one statistical model as baseline, which has a robust, high retrieval and
ranking performance across various retrieval and ranking tasks, called BM25 [RZ09].

BM25 is a ranking function that evaluates a collection of documents based on the query terms
present in each document, regardless of the relationship between these terms within a document,
such as their proximity. It is based on the probabilistic retrieval framework developed by
Robertson et al. [RZ09]. BM25 is not a single function, but rather a collection of scoring
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functions that differ in their components and parameters. It is a member of the BM family of
retrieval models, which stands for Best Match. The most prominent instance of the BM family
is BM25, which scores relevance as follows: The score of a query q, containing the key words
q1, .., qn and a document d is:

s =
n�

i=1
IDF (qi)

TF (qi, d)(k1 + 1)
TF (qi, d) + k1


1 − b + b |d|

avgdl


with the term frequency function TF (qi, d), the inverse document frequency function IDF (qi)
and avgdl the average document length in the collection. b and k1 are hyperparameters to be
optimized for each retrieval collection.

The term frequency TF (qi, d) is defined as the number of occurrences of a query term qi in
document d. The inverse document frequency of a query term qi is defined as:

IDF (qi) = ln


N − n(qi) + 0.5

n(qi) + 0.5 + 1


where N is the number of documents in the collection and n(qi) is the number of documents
containing qi.

2.6.2 Neural Re-Ranking Models

We introduce two neural re-ranking models, namely cross-encoder BERT (MonoBERT) and
ColBERT, both which we employ in our research. In this thesis we also refer to neural re-ranking
models as simply neural ranking models.

Neural models are divided into re-ranking and retrieval models with different computational
complexity. Theoretically neural ranking models could also be used to score the whole collection
and retrieve relevant documents, but due to the models’ high computational complexity and thus
the models’ slow latency at query time, the neural re-ranking models are used to re-rank a list of
top N documents. This list of top N documents is retrieved in the first stage retrieval by either a
statistical or highly efficient neural retrieval model.

The neural ranking and retrieval models use transformer-based [VSP+17] pre-trained language
models like BERT [DCLT19] as backbone to encode the text. There are different pre-trained
language models with the same architecture as BERT, and depending on the domain of the text
which we want to encode we choose the backbone language model. For example we employ the
SciBERT model [BLC19], which is pre-trained on scientific texts, or the PubMedBERT model
[GTC+21], which is pre-trained on PubMed articles and medical literature, for encoding medical
texts. Similarly we use the LegalBERT [CFM+20] model, trained on European, UK and US
legislation texts, for encoding legal texts.

In order to decrease the computational complexity at training and inference time, one can also
employ smaller BERT-like models with fewer layers. In our work we use DistilBERT [SDCW19]
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Figure 2.2: Architectural diagram of a MonoBERT model, taken from TU Wien, Advanced
Information Retrieval lecture https://github.com/sebastian-hofstaetter/
teaching/tree/master/advanced-information-retrieval.

as efficient encoding model, which is trained with knowledge distillation from the original BERT
model and has 40% less parameters compared to BERT.

The BERT models convert the text input to tokens. The tokens can be whole words or subwords
[ZFM+19]. This process is called tokenization. Each token is then linked to an embedding
representation and this representation is learned during the pre-training. In its default architecture,
a BERT model has an input length of 512 tokens and is thus limited in the amount of text it can
process at once.

Cross-encoder BERT (MonoBERT)

In the cross-encoder model, MonoBERT, query and passage text are concatenated, encoded with
BERT [DCLT19] and the CLS representation from BERT is scored with a linear layer W on top
of the encoding:

s = W BERT(CLS; q; SEP; p; SEP)CLS (2.1)

where SEP is the separator token and s is the final score of passage p for query q. In Figure 2.2
there is also an architectural diagram of the MonoBERT model, where the concatenation process
of the query and passage, the encoding with BERT and prediction of relevance score is visualized.

Empirical findings show MonoBERT reaches a high re-ranking effectiveness [NC19], however
each passage needs to be encoded at query time and therefore this architecture is computationally
resource-heavy and is characterized by high query latency [SZZ22, HH19]. For the same reason,
this ranker is commonly used only in top-N re-ranking settings, and not for retrieval (i.e., scoring
the whole collection for each query) [NC19, NYCL19].

MonoBERT is trained using training triples consisting of the query text, the text of a relevant
passage/document (also denoted as positive passage/document) and the text of an irrelevant
passage/document (also denoted as negative passage/document). During training different losses
can be employed, in our implementation we use the RankNet loss [Bur10], if not noted otherwise.
RankNet loss maximizes the difference between the relevance score of the positive and the
negative passage using the Binary Cross Entropy loss as implemented in PyTorch 3.

3Binary Cross Entropy loss with logits used from PyTorch
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Figure 2.3: Architectural diagram of a ColBERT model, taken from [KZ20].

ColBERT

The ColBERT method delays the interaction between the query and passage to after the encoding
by computing the relevance score as the sum of the maximum similarity scores between all token
representations of the query and passage:

s =
�

j

max
i

�
BERT(CLS; q; SEP)j · BERT(CLS; p; SEP)i

�
(2.2)

As for single representation bi-encoder methods, also in ColBERT the passage representation can
be pre-computed offline and thus the query processing is sped up. In Figure 2.3 the ColBERT is
visualized as architectural diagram, where the independent encoding and the maximum similarity
relevance score computation is visualized. Empirical results show that ColBERT achieves a
competitive effectiveness compared to MonoBERT [KZ20] while minimizing query latency
compared to MonoBERT.

Like MonoBERT, ColBERT is also trained with the training triples and the RankNet loss, if not
noted otherwise.

2.6.3 Neural Retrieval Models

The dense passage retrieval model (DPR/bi-encoder) [KOM+20] encodes the query and passages
independently using a language encoder model like BERT [DCLT19]. The relevance of a passage
p to a query q is estimated using the dot-product between the CLS token representation q and that
of p:

s = BERT(CLS; q; SEP)CLS · BERT(CLS; p; SEP)CLS (2.3)

The independence of query and passage encoding and dot-product relevance scoring make it
possible to pre-compute and store the passage representations in the index and enable efficient
retrieval at query time with approximate nearest neighbor search [MY20, JDJ19]. In Figure 2.4 a
dense passage retrieval model is visualized with an architectural diagram. The diagram visualizes
the independent encoding of query and passage and the relevance scoring with the dot-product
between their respective representations.

39



2. BACKGROUND

Figure 2.4: Architectural diagram of a dense passage retrieval (DPR) model,
taken from TU Wien, Advanced Information Retrieval lecture https://
github.com/sebastian-hofstaetter/teaching/tree/master/
advanced-information-retrieval.

DPR is trained on triples of query text, the text of a relevant and an irrelevant document. For
training the DPR model effectively Karpukhin et al. [KOM+20] propose in-batch negatives. In-
batch negatives are a method to increase the number of training triples without adding additional
computational complexity during training. In the training implementation, the query text and
the positive text are also paired with the negative texts from the triples in the same batch and
the loss is also computed for the triples with the in-batch negatives and added to the loss of the
original training triples. This study is extended on by Qu et al. [QDL+21]. They optimize the
training of the DPR model by selecting hard negative samples in the triples. The idea behind
selecting hard negatives is that it is harder for the retrieval model to distinguish the positive
passage from a hard negative and thus training with hard negatives results in higher retrieval
quality [QDL+21, ZML+21].

In this thesis, we follow the implementation of Karpukhin et al. [KOM+20] for in-batch negatives.
For selecting negatives for the training triple, we follow Karpukhin et al. [KOM+20] and select
negatives from the BM25 top 1000 documents, which are not labelled as relevant in the training
set.
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CHAPTER 3
Related Work

In this section we review the field and set the scene by outlining the related work on document-to-
document retrieval tasks as well as on the lack of data for evaluation and training of ranking and
retrieval models.

3.1 Document-to-Document Retrieval

In our work we focus on document-to-document retrieval tasks, thus we will give a brief definition
of document-to-document retrieval and will lay out related work for document-to-document
retrieval tasks as well as other approaches for handling long documents for text processing.

3.1.1 Document-to-Document retrieval tasks

We define document-to-document retrieval tasks as those where the query is a (long) document
and the items in the collection to be retrieved are also long documents. With long documents
we refer to documents that greatly exceed the average length of queries in the web domain
[HVCB99]. Document-to-document retrieval tasks are also referred to as query-by-example tasks
[AVA22] or extremely long queries and documents [AVA+23] tasks in the related literature.

When we recall Search Example ➊, where the attorney is retrieving similar cases to a given
current case, we see that this example is a document-to-document retrieval task. Similarly Search
Example ➋, where the patent attorney is searching related, granted patents to his new patent
application, is also an example for a document-to-document retrieval task.

If the citations are used as label of relevance in a task, one could suggest that citation prediction
[ABHH21] is the same task as document-to-document retrieval. Furthermore one could view
document similarity prediction as document-to-document retrieval task since similar documents
should be retrieved in document-to-document retrieval tasks. However we differentiate document-
to-document retrieval tasks from document similarity or citation prediction, as the latter two tasks
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are classification tasks and not retrieval tasks. In the web domain there are also various efforts
addressing document retrieval [CMY+21b], however here the queries are short and thus this task
has different characteristics than document-to-document retrieval.

Many documents in document-to-document retrieval tasks have a pre-defined structure like
paragraphs or different sections of a document. For example legal cases in prior case retrieval
are structured by their paragraphs or patents are structured in title, abstract, claims, technical
description and possibly technical drawings and images.

There are many document-to-document retrieval tasks [CFB+20, MOMZ21, NFIH10], explored
in the information retrieval community; we will focus in this work on the tasks of prior case
retrieval in the legal domain and prior art search in the patent domain. These tasks are challenging
retrieval tasks which are actively studied in the Information Retrieval community in various
evaluation campaigns and competitions like CLEF [PLH13], COLIEE [RKG+20] and FIRE
[BGG+19] and are tackled with a variety of different retrieval approaches. Having introduced
the retrieval tasks and the related datasets in Section 2.4 and 2.5 for prior case retrieval and prior
art search, we will now outline the different retrieval approaches for these document-to-document
retrieval tasks.

The CLEF-IP evaluation campaign addresses the document-to-document retrieval task of prior
art search [PH19] over the course of multiple campaigns form 2009 to 2013. Overall Piroi et al.
[PH19] find that expertise in the Intellectual Property (IP) domain is essential for implementing
Information Retrieval (IR) approaches to assist with certain tasks within this field requires
domain-specific knowledge.

3.1.2 Approaches for Document-to-Document Retrieval Tasks

The retrieval approaches employ statistical and neural retrieval models. There are various
strategies for handling long documents including key word extraction, summarization of the long
documents and exploiting the inherent structure of the documents for retrieval. In Figure 3.1
we summarize the different approaches for handling long documents for document-to-document
retrieval tasks or text processing in general and link to the relevant publications, that we describe
in the following two chapters in more detail.

Within the FIRE AILA workshop for legal case retrieval, Gao et al. [GNS+19] handle the long
query documents by extracting topic words from the given case and use the topic words as query.
They investigate the vector space model [SWY75], the probabilistic BM25 model [RZ09] and a
language model [SC99] to identify relevant legal prior cases with the topic word queries and reach
competitive performance compared to other runs. In the same workshop, Zhao et al. [ZNL+19]
reach the highest effectiveness by extracting the top 50% query terms from the query document
with the highest inverse document frequency (IDF) and using the extracted terms as keywords for
retrieval with BM25. In the following year also key word extraction approaches combined with
BM25 dominated the leaderboard [LMTM20, LLH20].

For the COLIEE prior case retrieval dataset described in Section 2.5, statistical and neural ranking
models show great effectiveness combined with key word extraction, summarization of long
documents and chunking the documents in passages for handling the long queries and documents.
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Long Documents

Truncation Summarization Paragraphs Longer Input Extraction
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[YZL+20,
AV21, AVA22,
Ope23, BPC20,

CWCT23]

[GNS+19,
ZNL+19,
LMTM20,

LLH20,
BWMK09,
GAvR09,
HAS+20]

Figure 3.1: Approaches for handling long documents for document-to-document retrieval tasks
or text processing

Shao et al. [SML+20] train a re-ranking MonoBERT model for scoring chunked passages of the
query document and with the chunked passages of a candidate document, where the candidate
documents are retrieved in the first stage with BM25. The scores of each passage are then
aggregated to an overall score of relevance between the query document and the candidate
document. Since the MonoBERT re-ranker has a limited input length of 256 tokens for the
query and 256 tokens for the document, the approach of Shao et al. makes it feasible to take
into account the whole query and candidate document for re-ranking. However this approach is
highly computationally expensive, since one BERT inference is already costly and the number of
BERT inferences for scoring one candidate document to a query scales quadratically with the
number of passages of the query and candidate document. This approach is extended by Ma et al.
[MSL+21] by adding a filter after the re-ranking model to remove unreasonable candidates from
the result list. Askari et al. [AVA+23] extend the passage-level re-ranking by embedding chunked
sentences with a dense retrieval model and re-ranking the documents based on a proportional
relevance score.

In the COLIEE evaluation campaign, Rossi et al. [RK19] combine text summarization and a
generalized language model to predict pairwise relevance for the legal case retrieval task, whereas
Tran et al. [TNS19] apply a summarization method and the extraction of lexical features for
handling the long documents. They rank the candidates using an early neural phrase scoring
model and a learning-to-rank model. Ranking based on the summaries of the query and candidate
document is also employed for a neural re-ranking model based on BERT by Askari et al.
[AV21]. However optimizing the BM25 model with additional extracted key words from the
query demonstrates higher effectiveness than the re-ranking with a trained MonoBERT model.

For handling the long queries and the long patent documents for retrieval, different approaches of
either extracting query terms from the query patent or using the structure of the patent documents
and splitting the documents into its different textual fields or in passages are employed for retrieval
in the CLEF-IP evaluation campaign.
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Since to the date of the CLEF-IP evaluation lab no neural, transformer-based ranking models had
been developed yet, most participants experimented with statistical retrieval models extending
them with machine learning classification models like k-nearest neighbour algorithms or support
vector machines. These machine learning models were trained with the available training set.
However the results with the higher effectiveness leveraged domain-specific knowledge and
exploited patent specific data like citations or IPC classes [LR09, LR10, MJ10, MGHC13].

Participants studied which part of the patent document to take into account for ranking or retrieval
and which contributed the most to improve the retrieval result. These approaches included
experiments to select which text parts of the patent document to index and to weigh the scores
of query terms extracted from certain parts of the patent documents [VD09, GPTR10, GR12].
Some of the participants decide to index the whole text of the document by concatenating all text
fields, while some other approaches index the different parts of the patent document separately or
construct indices on the passage-level of the patents [MLJ09, SHG09, WA10]. Several studies
investigate which key word queries to extract from the query patent documents in order to achieve
higher effectiveness than just retrieval with the whole patent document [BWMK09, GAvR09].

3.1.3 Handling long documents for text processing

After having introduced document-to-document retrieval tasks and approaches for handling long
queries and long documents, we also want to outline general approaches how long document text
is handled in the literature.

A natural but computationally complex approach to take into account longer text of the query and
the document is to employ Transformer models which are designed to handle long input sequences
like LongFormer [BPC20], however these approaches have not shown high effectiveness for
document-to-document retrieval tasks [AV21]. However training MonoBERT with a multi-task
ranking objective to train with longer input lengths shows competitive effectiveness for two
document-to-document retrieval tasks [AVA22]. Liu et al. [YZL+20] propose similar document
matching for documents up to a length of 2048, however here the input length is still bounded
and the computational cost of training and using the model is increased. With the recent rise
of language models with extremely long input length [Ope23, BPC20, CWCT23], it becomes
an open direction if these large language models with long input lengths are more suitable for
encoding long queries and documents for ranking and retrieval tasks.

Another approach for handling long text of document is generating summaries of the text and
then using the summaries of the documents as textual representation. Askari et al. [AV21] train a
LongFormer model [BPC20] to produce summaries of legal cases and then train a MonoBERT
re-ranking model on the summaries of the legal text. While maintaining a high effectiveness
by pre-computing the summaries of the legal cases, this re-ranking approach is outperformed
by a lexical retrieval model, which hyperparameters are optimized for the retrieval task. Hartl
et al. [HK22] also use summaries of news articles for fake news detection. They propose a
CMTR-BERT framework that integrates various text representations to overcome the inherent
sequential limitations and information loss of the off-the shelf transformer architecture. Alhindi

44



3.1. Document-to-Document Retrieval

et al. [AKF13] use profile-based summarization to provide contextualization and interactive
support for site search and enterprise search.

Another approach for handling long text is learning to select, which of the document parts are a
relevant context for the underlying task. Hofstätter et al. [HAS+20] propose an intra-document
cascading approach for re-ranking long documents to a given query, which is a passage-to-
document retrieval task. This strategy involves first employing a more cost-effective model,
referred to as ESM (Efficient Student Model), to filter out passages from a candidate document.
Subsequently, a MonoBERT model, that is more computationally intensive and more, is utilized
for re-ranking. Their optimization process involves training the ESM through knowledge distilla-
tion from the MonoBERT model. This distillation process enables the MonoBERT model to select
and run only on a reduced set of passages, ensuring a consistent passage size across documents
regardless of their length and also reducing the computational complexity of re-ranking the
documents.

For the task of re-ranking long documents to a given query, the most simplistic approach is to
truncate the text of the document, when the passage of the document exceeds the input length
[NYCL19]. While this approach is easy to implement, the effectiveness of the approach depends
on the characteristics of the document, namely if the relevant information of the document
for ranking/retrieval is at the beginning of the document. This approach has the risk to miss
information that is relevant for the specific task, if this information is contained later in the text of
the document after the truncation limit. To mitigate this risk, Li et al. [LYM+20] propose to split
up the document into passages and then train a MonoBERT re-ranking model on re-ranking each
of the passages. Here simply the maximum passage score of a document is taken as the overall
document relevance score. Thus with this approach the whole text of the document is considered
for re-ranking. Similarly instead of modelling the full query-to-document interaction, Gao et
al. [GC22] propose to leverage the attention operator and a modular Transformer re-ranking
framework. In the first step, they independently encode individual document chunks through
an encoder module. Subsequently, an interaction module encodes the query and facilitates joint
attention, allowing for interaction between the query and all document chunk representations.
They show the benefits of their novel approach, which offers the retrieval model the flexibility to
aggregate relevant information from the entire document.

The passage level influence for retrieval of documents has been analyzed in multiple works
[BK08, LC02, WML+20, WML+19] and shown to be beneficial, but in these works the focus lies
on passage-to-document retrieval. Cohan et al. [CFB+20] present document-level representation
learning strategies for ranking, however the input length remains bounded by 512 tokens and only
title and abstract of the document are considered. Abolghasemi et al. [AVA22] present multi-task
learning for document-to-document retrieval. Liu et al. [YZL+20] propose similar document
matching for documents up to a length of 2048 however here the input length is still bounded and
the computational cost of training and using the model is increased.
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3.1.4 Aggregation strategies in Information Retrieval

In the context of breaking down document-to-document retrieval tasks at the passage level, it
becomes necessary to explore methods for consolidating passage-level results into a cohesive
document-level representation. Consequently, we will examine prior research on aggregation
strategies within the field of Information Retrieval.

Aggregating results from different ranked lists has a long history in IR. Shaw et al. [Lee97, SF94]
investigate the combination of multiple result lists by summing the scores. Different rank
aggregation strategies like Condorcet [MA02] or Borda count [Wu12] are proposed, however
it is demonstrated [CCB09, ZYL21] that reciprocal rank fusion outperforms them. Ai et al.
[AOC18] propose a neural passage model for scoring passages for a passage-to-document retrieval
task. Multiple works [AYWY+19, AYYZL19, DC19, ZYL21] propose score aggregation for
re-ranking with BERT on a passage-to-document task ranging from taking the first passage of a
document to the passage of the document with the highest score. Different to rank/score-based
aggregation approaches, Li et al. [LYM+20] propose vector-based aggregation for re-ranking for
a passage-to-document task. Different to our approach they concatenate query and passage and
learn a representation for binary classification of the relevance score. The focus of score/rank
aggregation is mainly on federated search or passage-to-document tasks, however we focus on
document-to-document retrieval. We have not seen a generalization of aggregation strategies for
the query and candidate paragraphs for document-to-document retrieval yet. Different to previous
work, we propose to combine rank and vector-based aggregation methods for aggregating the
representation of query and candidate documents independently.

3.1.5 Summary

The various evaluation campaigns for prior case retrieval and prior art search promote research in
these fields and show the great interest in the Information Retrieval community in document-to-
document retrieval tasks as well as the impact of improving the performance for these retrieval
tasks for the stakeholders in professional search. Document-to-document retrieval tasks pose
various interesting and widely discussed challenges for statistical and especially for transformer-
based neural ranking and retrieval models, the models we focus on in this work. The length
of the query document and the documents in the collection usually exceeds the input length of
transformer-based neural ranking and retrieval models. Thus it is not possible to take the text
of the whole query document and of the whole document, which is ranked or retrieved, into
account for neural ranking and retrieval with off-the-shelf solutions. However it is crucial for a
high ranking and retrieval effectiveness to not miss important parts of the query and candidate
document. Related work demonstrates that ranking and retrieval with long documents as query
and documents in the collection is not trivial and various different lines of research exist when it
comes to the question how to handle the long documents in the best way. It is an open research
question how to handle long documents in document-to-document retrieval tasks for neural
ranking and retrieval models including aspects of efficiency of the ranking/retrieval process.
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Figure 3.2: Sources for attaining labels

3.2 Lack of Data

The lack of data for evaluation and training poses a significant obstacle to the progress of research
within the Information Retrieval community. In the following we lay out the research landscape
for different strategies of attaining labels including evaluation campaigns with expert annotators,
crowdsourcing with annotation campaigns or user interaction or using meta data as labels. We
categorize the related work in Figure 3.2 and link to the relevant literature that is described in
more detail in the following chapters.

3.2.1 Evaluation campaigns

Thus there is a long history of evaluation campaigns in IR like TREC [Sob21], CLEF [BTM+18]
and NCTIR [KYD22]. The goal of these evaluation campaigns is promoting research for certain
retrieval and ranking tasks by providing a forum to compare and measure different retrieval
approaches of the participating teams during the campaign and by providing reusable and reliable
evaluation sets after the campaign. Depending on the task also training sets for training and
fine-tuning of ranking and retrieval models are created and made publicly available.

An evaluation set is a dataset that is used not to train a model, but to evaluate the performance
of a model using metrics, that are defined for the retrieval task or the evaluation set. Evaluation
sets need to fulfill certain requirements: they should be reliable and reusable. Thus a great
effort in IR research is put into creating test collections that fulfill these requirements [Zob98,
Voo18, VSL22, Sob17], especially in those task-specific evaluation campaigns. These campaigns
follow the Cranfield paradigm [Cle91] to create relevance judgements on the pooled output of the
participating systems as well as multiple instructed assessors. An IR test collection is reliable if
the annotations of the samples in the evaluation set and the resulting metrics reflect the overall
users preference between two systems. An IR test collection is called reusable if it unbiased
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towards systems that did not participate in the collection-building process [VR21]. The most
common way of testing the re-usability of a collection is the Leave-Out-Uniques (LOU) test
[BDSV07, Zob98]. The LOU test compares rankings from two test collections, the original
collection and a reduced collection in which the relevant documents that were contributed to the
pools by a single run are removed. One rule of thumb to achieve re-usability of the test collections
is to judge the pooled runs deeply, so that at least 66% of judged documents are irrelevant
[Voo18, CMYC19]. Furthermore a large variety of retrieval approaches of the runs, which are
participating to the pool, diversifies the pools and leads to a reusable test collection. Zobel et
al. [Zob98] analyze the reliability of the TREC test collections and their empirical investigation
demonstrates that the evaluation results based on the relevance assessments formed from a limited
depth pool are reliable in case the pool is sufficiently deep for systems that contributed to the
pool.

There are tracks, in order to evaluate models for certain retrieval tasks [GCR16, HTBO09b,
VR21], and a track to specifically evaluate neural ranking and retrieval models when training
data is available in a large amount [CMY+21b, CMYC19]. Although old TREC test collections
did not have neural ranking or retrieval models as participating runs, since neural models did not
exist back then, Voorhees et al. [VSL22] find that old TREC collections are still able to reliably
evaluate neural ranking and retrieval models.

Creating test collections following the Cranfield paradigm is costly, since it requires many
instructed annotators with domain knowledge to obtain sufficient relevance feedback. Thus one
can use additional data of the documents for example like citations to determine relevance. The
CLEF-IP test and training set for example uses the citations of the patent examiners, which
are assigned during the patent granting process, as measures of relevance [PH19]. Similarly
the COLIEE test and training set use the citations of the court cases as relevant documents
[RKG+20]. Another relevance signal, which requires less cost to attain the relevance labels,
is implicit feedback from users. These implicit feedback signals include user behaviour like
viewing of documents, time spent to view a document, clicking on a document or scrolling actions
[KT03, RLS+21]. For example the test set of the TripClick collection, which we described in
Section 2.5, relies on the clicks of the users. However when comparing the ranking results of used
click signals to relevance assessments, Kamps et al. [KKT09] find that the different relevance
measurements can lead to highly different rankings of the evaluated retrieval systems. Since
human annotation is expensive, especially if large amounts of labelled data are required in order
to train a neural ranking or retrieval model, another way of obtaining relevance labels is to use
additional data like citations [RKG+20, PLHZ11].

The TREC Deep Learning track was the first initiative in the Information Retrieval community
with the goal of comparing statistical and neural ranking and retrieval models in the large-data
regime [CMYC19, CMYC20]. The organizers make the large-scale training set MS Marco
available, which we described in Section 2.5, accompanied by a reliable and reusable test
collection as a result of the evaluation campaign. These efforts allow training neural ranking and
retrieval models for the task of ad-hoc retrieval in the web domain. The relevance labels in the
MS Marco training data set come from human annotators, who are trained experts to annotate the
training samples, thus the relevance labels in the training set have a high quality.
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3.2.2 Crowdsourcing

Similar to annotation campaigns, crowdsourcing campaigns with non-expert annotators can be
used in order to annotate training or testing datasets or to create other data resources.

Crowdsourcing offers a scalable solution for collecting annotations from a diverse group of
human workers, or "crowd", to create training and test set for neural models in natural language
processing and Information retrieval. Crowdsourcing platforms, such as Amazon Mechanical
Turk (AMT) and Prolific, have revolutionized data annotation. Kittur et al. [KCS08] discuss
how crowdsourcing harnesses collective intelligence to perform complex tasks efficiently. This
collective wisdom contributes to various aspects of NLP and IR, such as document classification,
entity recognition, and sentiment analysis. Poesio et al. [PCK+15] use this collective intelligence
in a gamified way to create language resources through a game with players as annotators.
In this game the players annotate sentences for co-reference resolution [CPK16, MBC+19,
PCP+19]. For identifying which language resources need to be annotated in co-reference
resolution, Madge et al. [MYC+19] propose a high-performance automatic detection model
for this gamified approach of collecting crowdsourced annotations. For this gamified approach
of crowdsourced annotations, Yu et al. [YPC+23] release a large-scale, annotated dataset for
co-reference resolution, where they increase the size of the dataset using a resolve-and-aggregate
paradigm to ‘complete’ markable annotations through the combination of a co-reference resolver
and an aggregation method for co-reference.

While crowdsourcing offers the advantage of scale, ensuring the quality of annotations is a crucial
concern. Snow et al. [SOJN08] delve into the intricacies of quality control in crowdsourced data
annotation tasks. Their work highlights mechanisms for improving the accuracy and reliability of
labels in NLP and IR datasets. Similarly, Aker et al. [AEAK12] investigate factors which can
influence the quality of the annotations obtained from Amazon’s Mechanical Turk crowdsourcing
platform. They explore the effects of varied presentation methods in the annotation campaign,
the location of the annotators, and payment scales on the resulting quality of the annotations.
One of the intriguing findings is that their results do not align with prior studies that suggested
an increase in payment attracts more noise. They also discover that the country of origin only
exerts an influence in some categories and solely in general text questions, with no significant
difference at the highest pay.

Efficiency in crowdsourcing experiments is also an important direction for lowering the annotation
cost and increasing the efficiency of the annotators. Chamberlain et al. [CKP18] propose to
increase the efficiency of crowdsourcing annotations through the implementation of a validation
process, evaluated across four key parameters: quality, cost, noise, and speed. They show that an
additional validation process can increase the overall quality of annotations without introducing
more noise, thus a validation step can provide higher quality results than just acquiring more
annotations.

Relevance judgments, critical for evaluating search engines and ranking algorithms, are often
obtained through crowdsourcing [GL10, AL11, KKM11]. Grady et al. [GL10] conduct a
crowdsourcing experiment for relevance annotation of search queries using amazon Mechanical
Turk. In their study they measure the accuracy, time, and cost of the annotators. For accuracy
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they compare the non-expert annotations to TREC NIST relevance judgements and find that
the overlap between the assessors is moderate. Specifically they discuss that it is important to
include a graded relevance scale rather than a binary relevance scale for annotation. Alonso
et al. [AM12] compare crowdsourcing annotators from Amazon Mechanical Turk to TREC
annotators. When solely comparing the relevance judgements between the two groups, they
report a low agreement between the relevance judgements, however they find to improve the
agreement when grouping the non-expert annotators in particular groups. They find that in
cases of disagreement, the evaluations conducted by TREC assessors can be deemed at least
questionable. Workers have demonstrated not only accuracy in their assessments of relevance
but, in certain instances, have shown precision on par with or even surpassing that of the original
expert assessors. Furthermore effective task design is crucial for obtaining accurate annotations.
Kazai et al. [KKM11] examine the intricacies of designing crowdsourcing tasks for IR relevance
assessment and provide guidelines for creating high-quality tasks.

In addition to explicit relevance judgments, click-through data is another valuable resource for IR
evaluation [SK13, LKS12, FK01, RKJ08]. Joachims [Joa02] explore the use of crowdsourcing
to generate click-through training data, emphasizing its importance in improving search engine
performance. Furthermore Joachims et al. [JGP+17] investigate the trustworthiness of implicit
feedback produced from click-through data within the context of web search. By scrutinizing
users’ decision-making processes through eye-tracking and contrasting implicit feedback with
manual assessments of relevance, the authors ascertain that clicks provide valuable insights but
are subject to bias. While this introduces challenges in interpreting clicks as definitive measures
of relevance, their findings demonstrate that relative preferences deduced from clicks are, on
average, reasonably accurate.

3.2.3 Addressing limited training data

For retrieval tasks, for which there is no large-scale training data available, there are alternate
research directions on how to use neural ranking and retrieval models.

The research directions include zero-shot retrieval, where the neural ranking and retrieval models
are trained on another, resource-rich, retrieval task or domain [XXS+22, TRR+21] and then
solely applied to the respective retrieval task. Here the effectiveness is limited by the relatedness
of the resource-rich task and the target task and the transferability of the notion of relevance from
the resource-rich task to the target task.

Another direction includes few-shot learning and prompt-based in-context learning with few-shot
examples [DZM+23, LLH+23, RM21]. Here a few samples for the task are labelled and are
either used for fine-tuning or are directly used in the prompt of the language model to prime the
generation of the language model on the few, labelled samples. There are also several studies
on how to include the in-context learning samples. One technique is called Chain-of-Thought
prompting [WWS+22], where the authors demonstrate a higher effectiveness of the large language
model, where the model is asked to produce a chain of thought as output text. This chain of
thought generation mode of the large language model gives the model the ability to decompose
multi-step problems into intermediate steps and thus improves the reasoning capabilities of the
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model. With an exceeding context length of large language models [Ope23, CWCT23] this
direction of few-shot in-context learning is a promising new direction for adapting large language
models for specific tasks.

Another approach for addressing lack of data for training neural ranking and retrieval models is
generating training data using large language models [WTRG22]. Wang et al. [WTRG22] use a
large generation model trained on another retrieval training dataset to generate relevant queries to
a given document. These generated training samples can then be filtered to remove queries with
low quality. Then the training samples can then be scored with an already trained MonoBERT
model to either filter the samples or to train the final ranking model with a more fine-grained
relevance distribution using knowledge distillation [HAS+20].

3.2.4 Active learning

Another direction which is not yet explored for neural ranking and retrieval models, but for
early ranking models like learning-to-rank models is active learning. Active Learning seeks
to optimize the efficiency of model training by reducing the cost of acquiring training labels
while simultaneously maximizing the effectiveness of the trained model. The majority of Active
Learning approaches have relied on two main strategies: uncertainty [LG94, Sha48] and diversity-
based [SZ05]. Furthermore there are other methods including the expected gradient information
in the training of the model [SCR07, SC08] or the expected performance prediction of the model
[RM] for active learning. These methods have been extensively tested and validated across
various learning tasks and datasets.

Active learning has been demonstrated to successfully reduce the annotation cost while improving
effectiveness for various tasks in Natural Language Processing [ZSH22]. In a recent study by
Schröder et al. [SNP22], these uncertainty-based strategies were revisited, particularly in the
context of Transformer-based models, and they presented empirical results for text classification.
They assess different query strategies on a well-established benchmark and achieve results that
approach state-of-the-art performance in text classification, despite utilizing only a small portion
of the training data. They also show that in contrast to prevailing belief, the prediction entropy, the
supposedly strongest uncertainty-based baseline, is outperformed by several uncertainty-based
strategies on this benchmark.

For measuring uncertainty for neural models, Gal et al. [GG16] have demonstrated that dropout
can serve as an approximation of inference and a means to gauge model uncertainty. This
deep Bayesian approach has found application in diverse natural language processing tasks
[SL18, SPK+21].

Another active learning method explored for natural language processing tasks is using the
gradient information first introduced by [SCR07]. Here the training sample is chosen with the
highest impact on the weights of the model that is trained. Settles et al. [SC08] apply this strategy
for sequence labeling and study it in the context of sequence labeling benchmarks. Zhang et al.
[ZLW17] investigate a variant of expected gradient length designed for neural networks, focusing
solely on word embedding gradients and demonstrating its efficacy in text classification.
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For diversity-based selection, multiple studies in the field of natural language processing inves-
tigate active learning based on diversity [XYT+03, Zhd19, YKZ+22, MZK+22]. Maekawa et
al. [MZK+22] investigate the effectiveness of current active learning approaches in the con-
text of interactive labeling within a low-resource setting. Their experiments show that existing
methods frequently yield sub-optimal results in the specific scenario, with increased response
times of annotators and limited adaptability. To address these issues, they propose a novel active
learning technique, which combines hybrid sampling strategies to reduce labeling costs and
acquisition delays, while offering the flexibility to adapt to dataset variability through user-guided
interactions.

Active Learning has been applied to several tasks and scenarios in the field of Information
Retrieval [CGJ96, LC94, SOS92, YWGH09, ZWYT08, LBC+15, DC09, SGV14, DC08]. Cai
et al. [CGZW11] employ a transfer learning approach, where they adapt a learning-to-rank (LTR)
model trained on one domain for use in another domain. They employ the Query-by-Committee
(QBC) algorithm [SOS92] for active query selection during domain adaptation. QBC is used
to intelligently select queries from both the target and source domains, as well as to mix their
respective training sets. This strategy results in more effective domain adaptation for LTR models
compared to random query selection, especially when training data is limited. Xu et al. [XAZ07]
explore active learning strategies that emphasize diversity in updating query relevance scoring.
They propose a combination of diversity and density-based selection for enhancing LTR models.
However, the use of Active Learning in the context of fine-tuning neural rankers has not been
explored until now.

A variation of the Active Learning setting that has shown success in certain domain-specific tasks
is that of continuous active learning [GC11, YMLF22, SC22], where documents are iteratively
retrieved by actively learning for one specific query, typically aiming for total recall [GCR16].
For the task of technology assisted review (TAR), Yang et al. [YLF21] propose a TAR cost
framework, however this framework focuses on cost modeling for reviewing one specific query.

The effect of the size of training data available for a task has been observed in the context of
training neural ranking and retrieval models. Previous studies find that decreasing the train-
ing data size significantly decreases the ranking or retrieval effectiveness of a neural ranking
or retrieval model in the web domain [KOM+20, GM22, FAPH22, ZXM+22, CMY+21a] as
well for domain-specific retrieval tasks [HYX+22, GC21, WTRG22, MBB21]. Nogueira et al.
[NJPL20] observed variations in the effectiveness of fine-tuning a MonoBERT ranker on subsets
of the training data of different sizes. Iurii et al. [MBB21] investigated transfer learning for
MonoBERT rankers by first fine-tuning them on MS MARCO and then transferring them to
question-answering tasks in both a zero-shot and full training setting. They examined the impact
of training on subsets of the training data and found that the effectiveness increased as the number
of training queries increased. They also noted that the source and target domains had large
training datasets. Zhang et al. [ZYL20] explore domain transfer of BERT cross-encoders in a
situation with limited data availability. Specifically, they investigate the transfer of MonoBERT
from web search (trained on MS Marco) to small, domain-specific retrieval tasks. Surprisingly,
they found that using small in-domain training data sometimes reduced search effectiveness
compared to the zero-shot application of MonoBERT.
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This research demonstrates that it is critical for a highly effective neural ranking or retrieval
model, to be trained on a large-scale, high quality training dataset.

3.2.5 Summary

Overall this related work shows that lack of reliable evaluation data and lack of training data
or cost efficient methods for acquiring training data are open, important research fields. There
has been extensive work on creating resources for testing and comparing ranking and retrieval
systems in evaluation campaigns. We have described different evaluation campaigns which
create resources for a variety of retrieval tasks. Another approach for addressing the lack of
data for evaluation and training ranking models is to use crowdsourcing. We have introduced
related work on crowdsourcing for attaining datasets for testing and training ranking and retrieval
models. Furthermore we have described approaches to address limited training data, like zero-shot
application of ranking models, few-shot and in-context learning as well as generating labels using
large language models. In more detail we describe related work in active learning in the Natural
Language Processing and Information Retrieval community. Overall pursuing these research
directions of addressing lack of data for training and testing ranking and retrieval models can
be advantageous for numerous stakeholders in the Information Retrieval community in the long
term, and it may initiate a diverse set of subsequent studies.
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CHAPTER 4
Neural Ranking and Retrieval for
Document-to-Document Retrieval

As we show with Search Example ➊ and Search Example ➋ there are document-to-document
retrieval tasks in specific domains, that require an effective and exhaustive search process for
finding all relevant evidence. We investigate in this section, how to adapt neural ranking and
retrieval models for document-to-document retrieval tasks and address the research question:

RQ1 How can neural ranking and retrieval models be adapted for document-to-document re-
trieval tasks?

We study this research question in the context of the prior case retrieval task in the legal domain
and prior art search in the patent domain. In the first subchapter we investigate how neural ranking
architectures can be adapted for document-to-document retrieval tasks and then focus on the
adaptation of neural retrieval models in the second subchapter.

4.1 Paragraph-Level Interaction Re-Ranking for
Document-to-Document Retrieval

This chapter is based on the publication [AHH21].

In the last years, pre-trained language models – such as BERT – revolutionized web and news
search [Nay19, NC19]. Naturally, the community aims to adapt these advancements to cross-
domain transfer of retrieval models for domain specific search. In the context of legal case retrieval,
Shao et al. propose the BERT-PLI framework by modeling the Paragraph-Level Interactions with
the language model BERT [SML+20]. In order to investigate how we can adapt neural ranking
models for document-to-document retrieval tasks, we reproduce the original experiments, we
clarify pre-processing steps and add missing scripts for framework steps, however we are not able
to reproduce the evaluation results. Contrary to the original paper, we demonstrate that the domain
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specific paragraph-level modelling does not appear to help the performance of the BERT-PLI
model compared to paragraph-level modelling with the original BERT. In addition to our legal
case retrieval reproducibility study, we investigate BERT-PLI for prior art search in the patent
domain. We find that the BERT-PLI model does not yet achieve performance improvements
for patent document retrieval compared to the BM25 baseline. Furthermore, we evaluate the
BERT-PLI model for cross-domain retrieval between the legal and patent domain on individual
components, both on a paragraph and document-level. We find that the transfer of the BERT-PLI
model on the paragraph-level leads to comparable results between both domains as well as first
promising results for the cross-domain transfer on the document-level. For reproducibility and
transparency as well as to benefit the community we make our source code and the trained models
publicly available.

4.1.1 Introduction

Bringing the substantial effectiveness gains from contextualized language retrieval models from
web and news search to other domains is paramount to the equitable use of machine learning
models in Information Retrieval (IR). The promise of these pre-trained models is a cross-domain
transfer with limited in-domain training data. Thus we investigate in this work the document
retrieval on two specific language domains, the legal and the patent domain, and study the
transferability of the retrieval models between both domains.

In case law systems the precedent cases are a key source for lawyers, therefore it is essential
for the lawyers’ work to retrieve prior cases which support the query case. Similarly in the
patent domain, patent examiners review patent applications and search for prior art, in order
to determine what contribution the invention makes over the prior art. The recent advances in
language modelling have shown that contextualized language models enhance the performance of
information retrieval models in the web and news domain compared to traditional ad-hoc retrieval
models [HH19, HZH20a]. However for legal and patent retrieval we have a different task setting
as the documents contain longer text with a mean of 11,100 words per document [RGK+22]. In
document retrieval every passage may be relevant, therefore in a high-recall setting such as ours it
is crucial for the retrieval model to take the whole document into account. This is a challenge for
contextualized language retrieval models, which are only capable of computing short passages
with a length up to 512 tokens [GDC20, YXL+19, NZG+20].

Recently, Shao et al. [SML+20] aimed to bring the gains of language modelling to legal document
retrieval and tackle the challenge of long documents by proposing BERT-PLI, a multi-stage
framework which models Paragraph-Level Interactions of queries and candidates with multiple
paragraphs using BERT [DCLT19]. The document-level relevance of each query and candidate
pair is predicted based on paragraph-level interaction of the query and candidate paragraphs
which are aggregated with a recurrent neural network (LSTM or GRU). The BERT-PLI model
is trained in two stages: first, BERT is trained on a paragraph entailment task, and second the
recurrent aggregation component is trained on a binary classification task.

In order to answer the research question:

RQ1.1 How can neural ranking models be adapted for document-to-document retrieval tasks?
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, we reproduce the results of BERT-PLI for the legal retrieval task and extend the study by training
and evaluating BERT-PLI for prior art search in the patent domain.

For the reproduction on the legal case retrieval task, we found shortcomings in the description of
the data pre-processing and evaluation methods, after a discussion with the authors of the original
paper we could clarify how the evaluation results are achieved. As the published code is missing
crucial parts, we re-implement the preprocessing, the first stage BERT fine-tuning as well as the
retrieval with BM25 in the second stage and the overall evaluation. Furthermore we analyze the
ablation study of the original paper and answer the following research question:

RQ1.1.1 Does fine-tuning BERT on domain specific paragraphs improve the retrieval performance
for document retrieval?

The original paper finds a 7 − 9% performance improvement of the BERT-PLI model for legal
retrieval, when fine-tuning BERT on the legal paragraphs. Contrary to the original paper, we
find that the paragraph-level modelling with BERT, fine-tuned on the domain specific paragraph-
level modelling, does not appear to help the BERT-PLI model’s performance on legal document
retrieval. In line with that, we also demonstrate that the patent specific paragraph-level modelling
harms the performance of the BERT-PLI model also for the patent retrieval task and remains a
promising opportunity.

In order to analyze the proposed BERT-PLI model for another document retrieval task with long
documents, we investigate following research question:

RQ1.1.2 To what extent is a BERT-PLI model, which is trained on patent retrieval, beneficial for
document retrieval in the patent domain?

We find that the patent domain BERT-PLI model is outperformed by the BM25 baseline for the
patent retrieval task. This shows that the document retrieval with BERT is not yet beneficial for
the patent retrieval and stays a promising opportunity.

As the legal and patent documents come from similar language domains, it becomes an interesting
question to what extent we can transfer the domain specific retrieval models from one to the other
domain. Especially because of the restricted accessibility of domain specific, labelled retrieval
data there is the need for studying cross-domain transfer of document retrieval models.

RQ1.1.3 To what extent is cross-domain transfer on paragraph- and document-level of the domain
specific BERT-PLI model between legal and patent domain possible?

We show that the transfer of the domain specific paragraph-level interaction modelling is possible
between the legal and patent domain with similar performance of the retrieval model. Furthermore
we find on the document-level transfer that the zero-shot application of a patent domain specific
BERT-PLI model for the legal retrieval task achieves a lower performance than the BM25 baseline.
Showing first promising results, the cross-domain transfer of retrieval models stays an open and
exciting research direction. Our main contributions are:

• We reproduce the experiments of Shao et al. [SML+20] and investigate shortcomings in
the data pre-processing and model methods. Contrary to the original paper we find that
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domain specific paragraph-level modelling does not appear to help the performance of the
BERT-PLI model for legal document retrieval

• We train a domain specific BERT-PLI model for the patent domain and demonstrate that it
does not yet outperform the BM25 baseline

• We analyze the cross-domain transfer of the BERT-PLI model between the legal and patent
domain with first promising results

• In order to make our results available for reproduction and to benefit the community, we
publish the source code and trained models in the Github repository linked in Section 1.3

4.1.2 Methods

Task description

Document retrieval in the legal and patent domain are specialized IR tasks with the particularity
that query and candidates are long documents which use domain specific language.
In legal document retrieval, the relevant documents are defined as the previous cases which should
be noticed for solving the query case [RKG+20], in other words which support or contradict
the query document [SML+20]. The legal documents consist of long text containing the factual
description of a case.
Relevance in the patent domain is defined for the prior art search task [PLHZ11], i.e. it is the
task to find documents in the corpus that are related to the new invention or describe the same
invention. The patent documents consist of a title, an abstract, claims and a description as well as
metadata like the authors or topical classifications. As we investigate retrieval and classification
based on the textual information, we will only consider the textual data of the patent documents.

BERT-PLI architecture overview

As the BERT model advanced the state-of-the-art in natural language processing and information
retrieval, but has the restriction that it can only model the relation between short paragraphs, Shao
et al. [SML+20] propose a multi-stage framework model using BERT for the retrieval of long
documents which is illustrated in Figure 4.1. The training is separated into two stages. In stage
1, a MonoBERT re-ranking model, as introduced in Section 2.6.2 is fine-tuned on a relevance
prediction task on a paragraph-level. MonoBERT takes the concatenated query and document
paragraph as input and is then fine-tuned on predicting the relevance of the candidate paragraph
to the query paragraph given the output vector of the special [CLS] token of BERT. Therefore
this output vector is trained to be a relevance representation on a paragraph-level of the two
concatenated input paragraphs.

This fine-tuned MonoBERT ranker is used in stage 2, where the full document retrieval with
paragraph-level interaction modelling takes place. For a query document q the top K candidates
are retrieved from a corpus using BM25 [RZ09], and the query document as well as the top K
candidates are split into paragraphs. Then for each candidate i ∈ 1, .., K the first N paragraphs
of the query document and the first M paragraphs of the candidate are concatenated and their

58



4.1. Paragraph-Level Interaction Re-Ranking for Document-to-Document Retrieval

Stage 1 Stage 2

query
paragraph

concat

Prediction

query document q corpus

top K candidates d1, ..,dK

concat

split in
paragraphs

split in paragraphsper candidate i

Interaction Matrix
Maxpool qi

1

qi
N

Attention
RNN Prediction

Paragraph-Level
Interaction

Document-Level
Interaction

q1 qN... di
1 di

M...

di
1

q1

qN

.   .   .   .   .   . 

.

.

.

.

BM 25

BERTBERT

candidate
paragraph

[CLS]
di

M

Figure 4.1: BERT-PLI Multistage architecture

relevance representation is calculated with the BERT model from stage 1. This yields an
interaction matrix between the query and candidate paragraphs. An additional Maxpooling layer
captures the strongest matching signals per query paragraph and yields a document-level relevance
representation of the query and the candidate. This document-level relevance representation
is used to train an RNN model with a succeeding attention and fully-connected forward layer
which we will refer to as Attention RNN. This Attention RNN yields the binary prediction of the
relevance for the query and candidate document.

Cross-domain evaluation approach

In the first stage of the BERT-PLI framework the BERT model learns to model the paragraph-level
interaction. For the two different domains we fine-tune the BERT model on a paragraph-level
relevance prediction task, which yields the paragraph-level interaction LawBERT model for the
legal and the PatentBERT model for the patent domain. In order to analyze the influence of the
domain specific paragraph-level modelling, we compare the document retrieval models trained
with the paragraph-level modelling of LawBERT or PatentBERT to document retrieval models
trained on the paragraph-level modelling of the original BERT model. The paragraph-level
modelling with the original BERT model is denoted with BERTORG as in Figure 4.2. Based on
these paragraph-level interaction representations we train an AttentionRNN on the legal as well
as on the patent document-level retrieval task, which we denote with LawRNN or PatentRNN
respectively. In order to isolate the impact of the different modelling of the paragraph-level
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Figure 4.2: Cross-domain evaluation approach

interactions from LawBERT and PatentBERT, we additionally train an AttentionRNN on the
patent document retrieval task given their LawBERT relevance representations and vice versa.
We evaluate the resulting models on the legal or the patent test document retrieval set, namely
LawDocTest or PatentDocTest. This process is visualized in Figure 4.2 and yields six evaluation
results R1-6 for each test set. For example for LawDocTest, R3 is the in-domain evaluation result,
whereas the other results denote cross domain evaluations. For LawDocTest the results R1, R3
and R5 are all from LawRNN document retrieval, but the LawRNNs differ in the paragraph-level
relevance representation they are trained with. Therefore comparison of the results R1, R3
and R5 on LawDocTest shows the transferability of the paragraph-level modelling between the
legal and patent domains and the difference of domain-specific paragraph-level modelling to
the non-domain specific modelling. Furthermore to analyze the cross-domain transfer on the
document-level, we compare the evaluation results of LawDocTest and PatentDocTest of R1 and
R2, R3 and R4 as well as R5 and R6. This comparison shows the cross-domain transferability on
the document-level as the LawRNN and PatentRNN share the same paragraph-level relevance
representations, which they are trained on.

4.1.3 Experiments

Datasets

Legal retrieval dataset Like Shao et al. [SML+20], we use the legal retrieval collections from
the COLIEE evaluation campaign 2019 [RKG+20] introduced in section 2.5, which consist of
a paragraph-level and a document-level retrieval task. Both retrieval collections are based on
cases from the Canadian case law system and are written in English. The paragraph-level task
(COLIEE 2019 Task 2) involves the identification of a paragraph which entails the given query
paragraph [RKG+20]. For this task the COLIEE evaluation campaign provides training and test
queries with relevance judgements which we will refer to as LawParaTrain and LawParaTest.
In the document-retrieval task (COLIEE 2019 Task 1) it is asked to find supporting cases from
a provided set of candidate documents, which support the decision of the query document. As
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Table 4.1: Statistics of the training and test set for the paragraph the document-level retrieval task

LawPara LawDoc PatentPara PatentDoc

Train Test Train Test Train Test Train Test

# of queries 181 41 285 61 44 42 351 100
avg # of candidates 32.12 32.19 200 200 3.5M 3.5M 3.5M 3.5M
avg # relevant candidates 1.12 1.02 5.21 5.41 43.52 76.3 3.27 2.85

in the original paper we take 20% of the queries of the training set as validation set, denoted
with LawDocVal. We will refer to the training and test datasets for the document retrieval as
LawDocTrain and LawDocTest.

Patent retrieval dataset For the patent retrieval queries and relevance judgments we use the
datasets from the CLEF-IP evaluation campaign [PLH13] introduced in section 2.5. We choose
the CLEF-IP collection since it provides a patent corpus and training and test collections for
patent retrieval tasks on the paragraph- and document-level. The tasks contain English, French
and German queries, we only consider the English queries and candidates. For the paragraph-level
training and test collection we choose the provided queries and relevance judgements from the
passage retrieval task starting from claims of the CLEF-IP 2013 [PLH13] where the participants
are asked to find passages from patent documents which are relevant to a given set of claims.
We refer to these datasets as PatentParaTrain and PatentParaTest. As the document-level
training and test collection we choose the queries and relevance judgements from the prior art
candidate search from the CLEF-IP evaluation campaign 2011 [PLHZ11] and refer to them as
PatentDocTrain and PatentDocTest. As in the original paper, we take 20% of the training set as
validation set, denoted with PatentDocVal. Both patent retrieval tasks retrieve paragraphs and
documents from the patent corpus which consists of 3.5 million patent documents filed at the
European Patent Office (EPO) or at the World Intellectual Property Office (WIPO).
The dataset statistics can be found in Table 4.1.

Experiment setting

We conceptualize the training of the BERT-PLI model in stage 1 (paragraph-level interaction
fine-tuning) and stage 2 (document retrieval) in the pseudo-code 1. In the pseudo-code we use the
example of training BERT-PLI for legal case retrieval and thus on the legal datasets, described
in the previous section, however this process is the same for training BERT-PLI on the prior art
search task with the difference of using the datasets for the respective task.

Stage 1: MonoBERT fine-tuning

In the first stage we fine-tune the MonoBERT model1 on the paragraph-level relevance ranking for
either the legal domain or the patent domain to attain LawBERT and PatentBERT. As there was
no code open-sourced for fine-tuning BERT, we use the HuggingFace transformers library2 and

1Checkpoint from https://github.com/google-research/bert.
2https://github.com/huggingface/transformers
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Algorithm 1 Training process of BERT-PLI with Stage 1 (paragraph-level interaction) and Stage
2 (document retrieval) on the example of training BERT-PLI for legal case retrieval

Input: LawParaTrain paragraph-level training set, LawDocTrain document-level training
set, M MonoBERT (not trained), BM25 BM25 model, ARNN AttentionRNN Layer of
BERT-PLI, MP Max-Pooling layer of BERT-PLI, epara number of epochs for paragraph-level
training, edoc number of epochs for document-level training, N number of query paragraphs in
BERT-PLI, M number of document paragraphs in BERT-PLI

Output: M MonoBERT trained on LawParaTrain, ARNN AttentionRNN trained on Law-
DocTrain
Stage 1 Paragraph-level training
for n in epara do

Concatenate query and candidate paragraph from LawParaTrain to training sample t
Train M with t

end
Stage 2 Document-level training
Index documents of LawDocTrain in inverted index I
Retrieve top 50 documents D for queries in LawDocTrain from I with BM25
Split queries in LawDocTrain and candidate documents D into paragraphs
Take first N query paragraphs q1, .., qN and first M document paragraphs d1, .., dM

Concatenate all qi, dj paragraphs for i ∈ N , j ∈ M and score with M
MP layer to get query-document representations q1

i , .., qN
i

for n in edoc do
Train ARNN with q1

i , .., qN
i

end

add the MonoBERT fine-tuning script to the published code. Different to the MonoBERT ranking
training with RankNetloss, we use the Binary Cross entropy loss for fine-tuning MonoBERT
on the task of classifying relevant documents as relevant and irrelevant document as irrelevant.
We use this loss as Shao et al. [SML+20] also describe the fine-tuning of MonoBERT with the
Binary Cross entropy loss.

For LawBERT we use the LawParaTrain as training and LawParaTest as test queries and relevance
judgements. In order to use the queries and relevance judgements for a binary classification task,
we consider the paragraph pairs of the query and one relevant candidate as positive samples.
It was not stated clearly in the original paper how the paragraph pairs of negative samples are
constructed, therefore we investigate this data pre-processing decision. We find that taking
all paragraph pairs constructed of the query and a non-relevant paragraph from the paragraph
candidates as negatives, yields comparable results for fine-tuning the BERT model on the legal
domain as in the original paper. This negative sampling approach results in 3% positive and 97%
negative samples in the training set. The queries and paragraph candidates have less than 100
words on average and are truncated symmetrically if they exceed the maximum input length of
512 tokens of BERT. For the training batch size we do a grid search and find that the F1-score of
LawParaTest is the highest with a batch size of 2 (65.1% F1-Score) instead of 1 (63.4% F1-Score)
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after fine-tuning BERT for 3 epochs on LawParaTrain, contrary to the original paper: they report
the highest F1-score of 65.2% without reporting the batch size. As stated in the original code, we
assumed they used the batch size of 1, due to our comparison we use a batch size of 2 instead of
1. After a remark of the original authors it turns out the original implementation was done with a
batch size of 16. For the learning rate we also do a grid search and find that the learning rate of
1e − 5 is optimal as in the original paper. As in the original paper, we fine-tune for 3 epochs and
we do the final fine-tuning of the LawBERT model on the merged training and test set. This is
permissible as we train and evaluate the BERT-PLI model on LawDocTrain and LawDocTest, the
LawParaTrain and LawParaTest sets are only used for fine-tuning LawBERT.
For the PatentBERT fine-tuning we use the PatentParaTrain as training and PatentParaTest as
test set. We construct the negative paragraph pairs by sampling randomly paragraphs (which are
not the relevant paragraph) from the documents which contain a relevant paragraph to a query
paragraph. Here we sample randomly 5 times the number of positive paragraphs as negatives, as
otherwise the share of positive pairs is below 1% and in order to have a similar ratio as for the
legal domain. We do a grid search for the training batch size and learning rate and find that a
batch size of 2 with a learning rate of 2e − 5 yields the highest F1-score of 19.0%. We fine-tune
PatentBERT solely on PatentParaTrain as it is practice in machine learning to hold out the test set.

Stage 2: Document retrieval

In stage 2 the first step is to retrieve relevant documents from the given set of candidates (in the
legal domain) or from the whole corpus (in the patent domain). As it was not clearly stated in
the original paper nor was there code published, how to employ the BM25 algorithm [RZ09] for
this first step, we re-implement this step and use the BM25 algorithm with k1 = 0.9 and b = 0.4
implemented in the Pyserini toolkit3. Furthermore we do a grid search for the input length to
the BM25 algorithm and find that the top K = 50 retrieval with input length of 250 leads to
similar recall scores as the original paper for the LawDocTrain set (93.22%) and the LawDocTest
(92.23%). Here we only consider recall scores as in the original paper, as the focus of the first
step BM25 retrieval is to retrieve all relevant cases for re-ranking for the training and test set.
For patent document retrieval, the task is to retrieve relevant documents from the patent corpus
with 3.5 million documents. As in the patent document retrieval task only 3.27 relevant patent
documents per query document are contained and as the recall does not significantly increase
when taking K = 50 candidates, we choose the top K = 20 from the BM25 retrieval, in
order to have a similar ratio of positive and negative pairs as in the legal document retrieval
for training the AttentionRNN. Here we find that the BM25 algorithm with the document input
length of 250 reaches the highest recall score of 9.42% on PatentDocTrain compared to other
document input lengths. Due to the low recall score of the retrieved documents on PatentDocTrain
we add the relevant documents from the relevance judgements to PatentDocTrain and sample
randomly non-relevant documents from the BM25 candidates for the training dataset, so that
we have in total 20 candidates. For PatentDocTest we retrieve the top 50 candidates as in the
original implementation where we reach a recall of 10.66%, but we do not add the relevant
candidates after the BM25 retrieval step. In order to reproduce the experiments for modelling the

3https://github.com/castorini/pyserini
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paragraph-level interaction and training the Attention RNN, we use the open-sourced repository4

of the original paper. As in the original paper we set the number of paragraphs of the query
N = 54 and the number of paragraphs of the candidate M = 40 for legal and patent retrieval.
The query and candidate documents are split up in paragraphs of 256 tokens. We model the
paragraph-level interactions of LawDocTrain, LawDocTest, PatentDocTrain and PatentDocTest
using LawBERT or PatentBERT or BERTORG. With these paragraph-level representations of
each query and its candidate document we train an AttentionRNN network with either an LSTM
[HS97] or a GRU network [CvMG+14] as RNN on classifying the relevance between the query
and candidate document. The AttentionRNN trained on the LawDocTrain is denoted with
LawRNN, on PatentDocTrain it is denoted with PatentRNN. For training the AttentionRNN
we use the same hyperparameter as in the original implementation, except for the PatentBERT
LawRNN configuration, where we find that the learning rate of 1e − 4 is better suited, when
evaluated on the LawDocVal set.

4.1.4 Evaluation and Analysis

In-domain evaluation for legal document retrieval (RQ1.1.1)

Shao et al. [SML+20] evaluate their models using the binary classification metrics precision,
recall and F1-Score on the whole test set. Furthermore they compare their model performance
to the two best runs from the COLIEE 2019 denoted by the team names JNLP [TNS19] and
ILPS [RK19]. As it was not clearly stated in the original paper, we assume that Shao et al.
[SML+20] evaluate the BERT-PLI models on the whole LawDocTest set with all 200 given
candidates per query. With the first retrieval step, the top 50 query candidate pairs are retrieved
for binary classification, therefore we assume the lower 150 candidates classified as irrelevant.
As in [SML+20], we use a cutoff value of 5 for the evaluation of ranking algorithms like BM25,
this means the top 5 retrieved documents are classified as relevant, whereas the remaining 195
are considered irrelevant.
As Shao et al. [SML+20] evaluate in their published code the top 50 candidates, we investigate the
overall evaluation of our reproduced BERT-PLI models for all 200 candidates with the precision,
recall and F1-score using the SciKitlearn classification report 5. The results can be found in Table
4.2, we test the statistical significance compared to the BM25 baseline with the Student’s paired,
independent t-test [SAC07, ULH19]. Comparing the evaluation results stated in the original
paper and our evaluation results, we find that our reproduced BERT-PLI LawBERT LSTM and
GRU model reach similar values. On the effect of domain specific paragraph-level modelling
on the legal case retrieval task (RQ1.1.1), the original paper reports a 7 − 9% performance
improvement for legal retrieval with the BERT-PLI model, when BERT is fine-tuned on the legal
paragraph-level modelling compared to the original BERT. Contrary to that, we find that the
domain specific paragraph-level modelling does not appear to help the performance of the legal
case retrieval. Our reproduced BERTORG LawRNN GRU model outperforms all other BERT-PLI
models except on the recall, however this shows that contrary to the findings in the original paper,

4https://github.com/ThuYShao/BERT-PLI-IJCAI2020
5https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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Table 4.2: Precision, Recall and F1-Score comparison of Shao et al. [SML+20] and our reproduc-
tion, BM25 cutoff value of 5 as in [SML+20], JNLP [TNS19] and ILPS [RK19] denote the best
two runs of the COLIEE 2019, † indicates statistically significant difference to BM25, α = 0.05

Team/Model Precision Recall F1-Score

JNLP [TNS19] 0.6000 0.5545 0.5764
ILPS [RK19] 0.68 0.43 0.53
BERTORG LawRNN LSTM [SML+20] 0.5278 0.4606 0.4919
BERTORG LawRNN GRU [SML+20] 0.4958 0.5364 0.5153
LawBERT LawRNN LSTM [SML+20] 0.5931 0.5697 0.5812
LawBERT LawRNN GRU [SML+20] 0.6026 0.5697 0.5857

Reproduction

BM25 (cutoff at 5) 0.5114 0.5360 0.5234
Repr BERTORG LawRNN LSTM 0.7053† 0.5017† 0.5863†

Repr BERTORG LawRNN GRU 0.8972† 0.4501† 0.5995†

Repr LawBERT LawRNN LSTM 0.8620† 0.4295† 0.5733†

Repr LawBERT LawRNN GRU 0.3826† 0.6838† 0.4907†

the domain specific paragraph-level modelling does not always improve the performance of the
BERT-PLI model.

In-domain evaluation for patent document retrieval (RQ1.1.2)

In order to investigate the applicability of the BERT-PLI model for information retrieval in the
patent domain, we evaluate the PatentBERT PatentRNN models trained on PatentDocTrain. The
results can be found in Table 4.3, now we analyze the in-domain evaluation for the PatentBERT
PatentRNN models on PatentDocTest. This shows that the in-domain, patent BERT-PLI model
is not beneficial for patent document retrieval, as it is outperformed by the BM25 baseline on
all metrics. We reason this could be due to the number of considered query and candidate
paragraphs (N and M ), which is fit to the legal retrieval but not to the patent retrieval and could
be unsuitable for patent retrieval as PatentDocTrain and PatentDocTest contain on average more
paragraphs than LawDocTrain and LawDocTest. This demonstrates that the document retrieval
with contextualized language models for the patent domain is not yet beneficial and needs to
be taken under further investigation. In line with the findings regarding RQ1.1.1 for the legal
document retrieval, we find that the paragraph-level modelling with the PatentBERT model
impairs the performance of the document retrieval compared to the paragraph-level modelling
with BERTORG. This shows that the domain specific paragraph-level modelling is not always
beneficial for BERT-PLI for the legal and patent document retrieval.

Cross-domain evaluation (RQ1.1.3)

In order to analyze the cross-domain retrieval between the legal and patent domain, we evaluate
each model on LawDocTest and PatentDocTest set as illustrated in Figure 4.2 and compare
for each test set the performance of the different models in order to gain insights about the
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Table 4.3: In-domain and cross-domain evaluation on the legal and patent document retrieval
test set, in-domain evaluation for LawBERT LawRNN models on LawDocTest and PatentBERT
PatentRNN on PatentDocTest, R1-6 denote the result numbers from Figure 4.2, † indicates
statistically significant difference to BM25, α = 0.05

LawDocTest PatentDocTest

Model Prec Rec F1 Prec Rec F1

In-domain

BM25 (cutoff at 5) 0.5114 0.5360 0.5234 0.0500 0.3968 0.0888

LawBERT LawRNN (R3) LSTM 0.8620† 0.4295† 0.5733† 0.0207† 0.4761† 0.0398†

GRU 0.3826† 0.6838† 0.4907† 0.0181† 0.4444† 0.0349†

PatentBERT PatentRNN (R6) LSTM 0.7500† 0.2268† 0.3482† 0.0365† 0.1904† 0.0613†

GRU 0.1153† 0.0412† 0.0607† 0.0416† 0.1904† 0.0683†

Cross-domain

LawBERT PatentRNN (R4) LSTM 0.1103† 0.5292† 0.1826† 0.0277† 0.1587† 0.0472†

GRU 0.0961† 0.2749† 0.1424† 0.0246† 0.1904† 0.0436†

PatentBERT LawRNN (R5) LSTM 0.8000† 0.4673† 0.5900† 0.0188† 0.3650† 0.0357†

GRU 0.5460† 0.5704† 0.5579† 0.0233† 0.5555† 0.0448†

BERTOrg PatentRNN (R2) LSTM 0.0000† 0.0000† 0.0000† 0.0602† 0.0793† 0.0684†

GRU 0.0000† 0.0000† 0.0000† 0.0769† 0.0952† 0.0851†

BERTOrg LawRNN (R1) LSTM 0.7053† 0.5017† 0.5863† 0.0160† 0.8095† 0.0314†

GRU 0.8972† 0.4501† 0.5995† 0.0199† 0.4285† 0.0381†

transferability of the models between the legal and patent retrieval task and on the paragraph as
well as on the document-level.
Analyzing the cross-domain transfer on the paragraph-level for LawDocTest, we see in Table
4.3 that the performance is similar for the LawRNNs when modelling the paragraph-level inter-
action with PatentBERT instead of LawBERT. An interesting result is the performance of the
PatentBERT PatentRNN LSTM model, which was not trained on modelling legal paragraph-
interactions nor legal document retrieval, but performs well on LawDocTest, however it does
not outperform the domain independent BM25 baseline. On the document-level we see that the
PatentRNN models have on average a 40% lower F1-Score than the LawRNN models with the
same paragraph-level modelling, although we see a positive effect of modelling the paragraph-
level interactions with BERTORG instead of LawBERT or PatentBERT.
For the cross-domain evaluation on PatentDocTest, we find that each BERT-PLI model is out-
performed by the BM25 baseline, except for the precision of the BERTORG PatentRNN models
and the recall of the BERTORG LawRNN models. On the document-level transfer we see a con-
sistent performance improvement of the PatentRNN models compared to the LawRNN models
independent of the paragraph-level modelling, which leads to the conclusion that the domain
specific training for patent document retrieval is beneficial here. On a paragraph-level transfer
we can see a similar performance of the LawRNN models, independent of the paragraph-level
modelling. For the PatentRNN models we find that the paragraph-level modelling with BERTORG
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outperforms the modelling with PatentBERT and LawBERT.

4.1.5 Conclusion

We reproduce the BERT-PLI model of Shao et al. [SML+20] for the legal document retrieval
task of the COLIEE evaluation campaign 2019 [RKG+20]. We have addressed shortcomings of
the description of the data pre-processing and the second stage retrieval, which we investigated
and for which we complemented the published code. Contrary to the original paper, we find that
modelling the paragraph-level interactions with a BERT model fine-tuned on the domain does
not appear to help the performance of the BERT-PLI model for document retrieval compared
to modelling the paragraph-level interactions with the original BERT model. Furthermore we
have analyzed the applicability of the BERT-PLI model for document retrieval in the patent
domain, but we find that the BERT-PLI model does not yet improve the patent document retrieval
compared to the BM25 baseline. We reason that the optimal number of query and candidate
paragraphs to be considered for the interaction modelling could be a decisive hyperparameter
to take into account. However bringing the gains from contextualized language model to patent
document retrieval stays an open problem. We have investigated to what extend the BERT-PLI
model is transferable between the legal and patent domain on the paragraph and document-level
by evaluating the cross-domain retrieval of the BERT-PLI model. We show that the cross-domain
transfer on the paragraph-level yields comparable performance between the legal and the patent
domain. Furthermore the comparison on the document-level transfer shows first promising results
when applying the BERT-PLI model trained on the patent domain to the legal domain. How
to bring the benefits of contextualized language models to domain-specific search and how to
transfer retrieval models across different domains remain open and exciting questions.

Limitations and future work

One limitation in this study is the focus on English. The legal case retrieval task exists in
many different national legislations [MSW+21], thus the documents are also written in different
languages rather than English. Furthermore for the task of prior art search in patent retrieval,
the focus on English language is another limitation. The same patent can exist in many different
languages and patents can also be multilingual, thus it is important for future work to investigate
these findings for other languages or multilingual documents.

Another limitation is the focus on the language model BERT [DCLT19] for contextualizing and
embedding the language representation for ranking. There are many different language models
[BMR+20, RSR+20, LOG+19], which could be used as bases for the paragraph-level interaction
model. Future work is needed to investigate how the choice of large language model influences
the effectiveness of the BERT-PLI model.
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4.2 Passage-Aggregation Retrieval Model for
Document-to-Document Retrieval

After investigating the adaptation of neural re-ranking models for document-to-document retrieval
tasks, we investigate in this chapter:

RQ1.2 How can neural retrieval models be adapted for document-to-document retrieval
tasks?

This chapter is based on the publication [AHS+22].

Neural first stage retrieval models, like dense passage retrieval models (DPR) [KOM+20], show
great effectiveness gains in first stage retrieval for the web domain [KOM+20, HLY+21, ?].
However in the web domain we are in a setting with large amounts of training data [NRS+16] and
a query-to-passage or a query-to-document retrieval task [CMYC19]. In this study we investigate
neural retrieval models in the context of legal case retrieval and prior art search, which are both
document-to-document retrieval tasks.

We investigate dense document-to-document retrieval with limited labelled target data for training,
in particular legal case retrieval. In order to use DPR models for document-to-document retrieval,
we propose a Paragraph Aggregation Retrieval Model (PARM) which liberates DPR models
from their limited input length. PARM retrieves documents on the paragraph-level: for each
query paragraph, relevant documents are retrieved based on their paragraphs. Then the relevant
results per query paragraph are aggregated into one ranked list for the whole query document.
For the aggregation we propose vector-based aggregation with reciprocal rank fusion (VRRF)
weighting, which combines the advantages of rank-based aggregation [CCB09] and topical
aggregation based on the dense embeddings. Experimental results show that VRRF outperforms
rank-based aggregation strategies for dense document-to-document retrieval with PARM for
legal case retrieval, but not for our test collection of prior art search in the patent domain. We
compare PARM to document-level retrieval and demonstrate higher retrieval effectiveness of
PARM for lexical and dense first-stage retrieval on two different legal case retrieval collections.
We investigate how to train the dense retrieval model for PARM on limited target data with labels
on the paragraph or the document-level. In addition, we analyze the differences of the retrieved
results of lexical and dense retrieval with PARM.

4.2.1 Introduction

Neural first stage retrieval models, also referred to as dense passage retrieval (DPR) [KOM+20],
brought substantial effectiveness gains to information retrieval (IR) tasks in the web domain
[GDFC20, KOM+20, XXL+21]. The promise of DPR models is to boost the recall of first
stage retrieval by leveraging the semantic information for retrieval as opposed to traditional
retrieval models [RZ09], which rely on lexical matching. The web domain is a setting with
query-to-passage or query-to-document retrieval tasks and a large amount of training data
[CMYC20, NRS+16], while training data is much more limited in other domains [RKG+20,
PLHZ11]. Furthermore we see recent advances in neural retrieval remain neglected for document-
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to-document retrieval despite the task’s importance in several, mainly professional, domains
[Loc17, Pir10, RKG+20, RAHK20].

In this work we investigate the effectiveness of dense retrieval models for document-to-document
tasks, in particular legal case retrieval and prior art search in the patent domain. We focus on
first stage retrieval with dense models and therefore aim for a high recall. The first challenge for
DPR models in document-to-document retrieval tasks is the input length of the query documents
and of the documents in the corpus. In legal case retrieval and prior art search the cases tend
to be long documents [vOS17] with an average length of 1269 words in the COLIEE case
law corpus [RKG+20]. However the input length of DPR models is limited to 512 tokens
[KOM+20] and theoretically bound of how much information of a long text can be compressed
into a single vector [LETC21]. Furthermore we reason in accordance with the literature [BK08,
SML+20, WML+20, WML+19] that relevance between two documents is not only determined
by the complete text of the documents, but that a candidate document can be relevant to a query
document based on one paragraph that is relevant to one paragraph of the query document. In the
web domain DPR models are trained on up to 500k training samples [NRS+16], whereas in most
domain-specific collections only a limited amount of hundreds of labelled samples is available
[GNS+19, HTBO09b, RKG+20].

In this work we address these challenges by proposing a paragraph aggregation retrieval model
(PARM) for dense document-to-document retrieval. PARM liberates dense passage retrieval
models from their limited input length without increasing the computational cost. Furthermore
PARM gives insight on which paragraphs the document-level relevance is based, which is
beneficial for understanding and explaining the retrieved results. With PARM the documents
are retrieved on the paragraph-level: the query document and the documents in the corpus are
split up into their paragraphs and for each query paragraph a ranked list of relevant documents
based on their paragraphs is retrieved. The ranked lists of documents per query paragraph need
to be aggregated into one ranked list for the whole query document. As PARM provides the
dense vectors of each paragraph, we propose vector-based aggregation with reciprocal rank
fusion weighting (VRRF) for PARM. VRRF combines the merits of rank-based aggregation
[CCB09, dHSMM15] with semantic aggregation with dense embeddings. We investigate:

RQ1.2.1 How does VRRF compare to other aggregation strategies within PARM?

We find that our proposed aggregation strategy of VRRF for PARM leads to the highest retrieval
effectiveness in terms of recall compared to rank-based [CCB09, SF94] and vector-based aggrega-
tion baselines [LYM+20] for legal case retrieval. For prior art search the neural retrieval models
either utilized with the PARM architecture or off-the-shelf dense retrieval do not outperform the
statistical retrieval model BM25. Furthermore we investigate:

RQ1.2.2 How effective is PARM with VRRF for document-to-document retrieval?

We compare PARM with VRRF to document-level retrieval for lexical and dense retrieval methods
on two different test collections for the document-to-document task of legal case retrieval. We
demonstrate that PARM consistently improves the first stage retrieval recall for dense document-
to-document retrieval. Furthermore, dense document-to-document retrieval with PARM and
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VRRF aggregation outperforms lexical retrieval methods in terms of recall at higher cut-off
values.

The success of DPR relies on the size of labelled training data. As we have a limited amount of
labelled data as well as paragraph and document-level labels we investigate:

RQ1.2.3 How can we train neural retrieval models for PARM for document-to-document retrieval
most effectively?

For training the neural retrieval model DPR for PARM we compare training with relevance labels
on the paragraph or document-level for legal case retrieval. We find that despite the larger size of
document-level labelled datasets, the additional training data is not always beneficial compared
to training DPR on smaller, but more accurate paragraph-level samples. Our contributions are:

• We propose a paragraph aggregation retrieval model (PARM) for dense document-to-
document retrieval and demonstrate higher retrieval effectiveness for dense retrieval with
PARM compared to retrieval without PARM and to lexical retrieval with PARM for the
task of prior case retrieval in the legal domain

• We investigate PARM for the task of prior art search in the patent domain and find that
dense retrieval models are not beneficial yet for this task, both with PARM and with
off-the-shelf dense passage retrieval

• We propose vector-based aggregation with reciprocal rank fusion weighting (VRRF)
for dense retrieval with PARM and find that VRRF leads to the highest recall for PARM
compared to other aggregation strategies.

• We investigate training DPR for PARM and compare the impact of fewer, more accurate
paragraph-level labels to more, potentially noisy document-level labels for prior case
retrieval.

• We publish the code int the Github repository linked in Section 1.3

4.2.2 Paragraph aggregation retrieval model (PARM)

In this section we propose PARM as well as the aggregation strategy VRRF for PARM for dense
document-to-document retrieval and training strategies.

Workflow

We use the DPR model [KOM+20] as described in section 2.6.3.

As the input length of BERT [DCLT19] is limited to 512 tokens, the input length for the query and
the candidate passage for DPR [KOM+20] is also limited by that. The length of query and candi-
date documents for document-to-document tasks exceeds this input length. For example the aver-
age length of a document is 1296 words for the legal case retrieval collection COLIEE [RKG+20].
We reason that for document-to-document tasks a single paragraph or multiple paragraphs can
be decisive for the relevance of a document to another one [BK08, LC02, WML+20, WML+19]

70



4.2. Passage-Aggregation Retrieval Model for Document-to-Document Retrieval

and that different paragraphs contain different topics of a document. Therefore we propose
a paragraph aggregation retrieval model (PARM), in order to use DPR models for dense
document-to-document retrieval. PARM retrieves relevant documents based on the paragraph-
level relevance.

The workflow of PARM is visualized in Fig. 4.3. For the documents in the corpus we split
each document d into paragraphs p1, .., pmd

with md the number of paragraphs of document
d. We take the paragraphs of the document as passages for DPR. We index each paragraph pj ,
j ∈ 1, .., md of each document d in the corpus and attain a paragraph-level index containing the
encoded paragraphs p̂j for all documents d in the corpus. At query time, the query document q
is also split up into paragraphs q1, ..., qnq , where nq is the number of paragraphs of q. For each
query paragraph qi with i ∈ 1, .., nq the top N most relevant paragraphs are retrieved from the
paragraph-level corpus. The result is a ranked list ri with i ∈ 1, .., nq per query paragraph qi with
N relevant paragraphs. The paragraphs in the ranked lists ri with i ∈ 1, .., nq are replaced by the
documents that contain the paragraphs. Therefore it is possible that one document occurs multiple
times in the list. In order to attain one ranked list for the whole query document q, the ranked
paragraph lists of retrieved documents r1, ..., rnq of each query paragraph qi with i ∈ 1, .., nq

need to be aggregated to one ranked list.

Vector-based aggregation with reciprocal rank fusion weighting (VRRF)

Multiple works have demonstrated the benefit of reciprocal rank fusion [CCB09, dHSMM15,
MMM15] for rank-based aggregation of multiple ranked retrieved lists. Using dense retrieval
with PARM we have more information than the ranks and scores of the retrieved paragraphs: we
have dense embeddings, which encode the semantic meaning of the paragraphs, for each query
paragraph and the retrieved paragraphs. In order to make use of this additional information for
aggregation, we propose vector-based aggregation with reciprocal rank fusion weighting
(VRRF), which extends reciprocal rank fusion for neural retrieval. VRRF combines the advan-
tages of reciprocal rank fusion with relevance signals of semantic aggregation using the dense
vector embeddings.

In VRRF we aggregate documents using the dense embeddings p̂i of the passages pi, which are
from the same document d and which are in the retrieved list ri with i ∈ 1, .., nq, with a weighted
sum, taking the reciprocal rank fusion score [CCB09] as weight. The dense embeddings q̂i of
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each query paragraph qi with i ∈ 1, .., nq are aggregated by adding the embeddings without a
weighting:

q̂ =
nq�
i=1

q̂i d̂ =
nq�
i=1

�
p∈d,d∈ri

rrf(qi, pi) p̂i

We compute the relevance score between query and candidate document with the dot-product
between the aggregated embedding of query q̂ and candidate document d̂.

To confirm the viability of VRFF aggregation, we propose simple baselines: VRanks and
VScores, where the paragraph embeddings p̂i of d are aggregated with the rank or the score of
the passage pi as weight.

Training strategies

As we have a limited amount of labelled target data, we examine how to effectively train a DPR
model for PARM with the training collections at hand. We assume that we have test collections
consisting of documents with clearly identifiable paragraphs, with relevance assessments on
either the paragraph or the document-level.

Paragraph-level training

For the paragraph-level labelled training we take the relevant paragraphs in the training set as
positives and sample random negatives from the paragraphs in the corpus. Here we sample as
many negatives as we have positive samples for each query paragraph, thereby balancing the
training data following a standard methodology when training ranking and retrieval models on
triples [SML+20, HLY+21, NC19].

Document-level training

For the document-level labelled training the collection contains query documents and a corpus of
documents with relevance assessments for each query document. We sample negative documents
randomly from the corpus. In order to use the document-level labelled collection for training the
DPR model, we split up the query document as well as the positive documents into its paragraphs
and consider each paragraph of the query document relevant to each paragraph of each positive
document. Equivalently we consider each paragraph of a negative document irrelevant to each
query paragraph. As on average each document in the COLIEE dataset [RKG+20] contains 42.44
paragraphs, one relevant document leads to 42 · 20 = 840 paragraph-level labels containing one
positive and one negative sample to a query paragraph. Therefore this method greatly increases
the number of paragraph-level annotations, however this comes with the risk of potentially noisy
labels [AYYZL19].

4.2.3 Experiment Design

We introduce the data collections for training and testing the retrieval models and give details
about the training and retrieval.
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Training and test collections

We focus on the document-to-document task of legal case retrieval and the prior art search
in the patent domain because of the importance of the tasks in the respective domains [LZ18,
Loc17, SLM+20, SML+20, PLHZ11] which facilitates the availability of training collections
with relevance annotations on the paragraph and the document-level [RKG+20]. For training the
DPR models, we use paragraph and document-level labelled collections. For the evaluation we
use the document-level collections.

Paragraph-level labelled collections

COLIEE [RKG+20] is a competition for legal information extraction and retrieval which provides
datasets for legal case retrieval and case entailment as described in section 2.5. Task 2 of COLIEE
2020 [RKG+20] provides a training and test collection for legal case entailment. It contains
relevance labels on the legal case paragraph level, given a query claim, a set of candidate claims
to the query claim as well as relevance labels for the candidate claims. We denote these sets with
COLIEEPara train/test.

For prior art search we use the training and test datasets from the claims to passage retrieval task
from the CLEF-IP evaluation campaign, which we introduced in section 2.5. The task provides a
training and test collection based on claims citing relevant passages from other patent documents.
We denote the sets with CLEFIPPara train/test.

Document-level labelled collections

In Task 1 of COLIEE 2021 [RKG+20], the legal case retrieval task, query cases with their
relevance judgements on the document-level are provided together with a corpus of candidate
documents. The corpus consists of 4415 legal cases and a set of training and test queries with
relevance annotations is given. The relevant cases are the cases which are referenced in the query
case, the references are not on a paragraph-level but on the document-level. We divide the training
set of COLIEEDoc into a training and validation set. The validation set contains the last 100
queries of the training set from query case 550 to 650. We will denote the training, validation and
test collection with COLIEEDoc train/val/test.

For a broader evaluation, we evaluate our models additionally on the CaseLaw collection [Loc17]
introduced in section 2.5. It contains a corpus of legal cases, query cases and their relevance
judgements for legal case retrieval.

For the task of prior art search in the patent domain, we use the CLEF-IP prior art search training
and test datasets, introduced in section 2.5. The document-level training set is divided in a
training and validation set. We denote the training and test collection on the document-level with
CLEFIPDoc train/val/test. The statistics for the sets can be found in Table 4.4.

Data preprocessing

For COLIEEDoc, we remove the French versions of the cases, we divide the cases into an
introductory part, a summary, if it contains one, and its claims, which are indicated by their
numbering. As indicated in Table 4.4, the paragraphs have an average length of 84 words and
96.2% of the paragraphs are not longer than 512 words. The documents in the corpus have an
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Table 4.4: Statistics of paragraph- and document-level labelled collections.

Labels Dataset Train/ Statistics
Test # queries ∅ # docs ∅ # rel ∅ para % para < ∅ # para

docs length 512 words

Para

COLIEEPara Train 325 32.12 1.12 102 95.5% -
COLIEEPara Test 100 32.19 1.02 117 95.2% -
CLEFIPPara Train 44 3.5M 8.5 115 96.1% -
CLEFIPPara Test 42 3.5M 18.2 92 97.8% -

Doc

COLIEEDoc Train 650 4415 5.17 84 96.2% 44.6
COLIEEDoc Test 250 4415 3.60 92 97.8% 47.5
CaseLaw Test 100 63431 7.2 219 91.3% 7.5
CLEFIPDoc Train 351 3.5M 19.5 43.4 98.8% 25.9
CLEFIPDoc Test 100 3.5M 19.4 43.6 98.6% 25.7

average length of 3309 words and contain on average 20 paragraphs with an average length of
164 words. The query descriptions in the AILA dataset have an average length of 454 words,
therefore we split them up into paragraphs with an average length 222 words to fit the input
size of the DPR model and get on average 2.04 paragraphs per query. The CaseLaw dataset is
split along the line breaks of the text and merged to paragraphs by concatenating sentences until
the paragraphs exceed the length of 200 words. The documents in the corpus have an average
length of 1669 words, the query cases have an average length of 6341 words and the paragraphs
219 words. The documents in the corpus contain on average 8 paragraphs, the query cases 31
paragraphs.

For CLEF-IP we filter out the non-English patents and only use English patents in the training
and test collection, both for the paragraph-level and the document-level sets. For CLEFIPDoc,
the patent documents have a title, abstract, claims and a technical description. Preliminary experi-
ments showed that concatenating the claims to one paragraph achieves the highest effectiveness
for retrieval with PARM BM25. Thus we leverage PARM with 3 paragraphs: the title and abstract,
all concatenated claims, and the description.

Baselines

As baseline we use the statistical retrieval model BM25 [RZ09], as described in section 2.6.1.
For BM25 we use ElasticSearch6 with parameters k = 1.3 and b = 0.8, which we optimized on
COLIEEDocval.

VRRF aggregation for PARM (RQ1.2.1)

In order to investigate the retrieval effectiveness of our proposed aggregation strategy VRFF for
PARM, we compare VRRF to the commonly used score-based aggregation strategy CombSum

6https://github.com/elastic/elasticsearch
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[SF94] and rank-based aggregation strategy of reciprocal rank fusion (RRF) [CCB09] for PARM.
Since PARM is not effective for the CLEF-IP test collection, we only investigate the research
question for legal case retrieval.

As baselines for vector-based aggregation, we investigate VSum, VMin, VMax, VAvg, which are
originally proposed by Li et al. [LYM+20] for re-ranking on a passage-to-document retrieval task.
In order to use VSum, VMin, VMax, VAvg in the context of PARM, we aggregate independently
the embeddings of both, the query and the candidate document. In contrast to Li et al. [LYM+20]
we aggregate the query and paragraph embeddings independently and score the relevance between
aggregated query and aggregated candidate embedding after aggregation. The learned aggregation
methods of CNN and Transformer proposed by Liu et al. [LYM+20] are therefore not applicable
to PARM, as they learn a classification on the embedding of the concatenated query and paragraph.
PARM VRRF for dense document-to-document retrieval (RQ1.2.2)

In order to investigate the retrieval effectiveness of PARM with VRRF for dense document-
to-document retrieval, we compare PARM to document-level retrieval on two document-level
collections (COLIEEDoc and CaseLaw) for legal case retrieval and on CLEFIPDoc for prior art
search. Because of the limited input length, the document-level retrieval either reduces to retrieval
based on the First Passage (FirstP) or the passage of the document with the maximum score
(MaxP) [AYWY+19, ZYL21]. In order to separate the impact of PARM for lexical and dense
retrieval methods, we also use PARM with BM25 as baseline. For PARM with BM25 we also
investigate which aggregation strategy leads to the highest retrieval effectiveness in order to have
a strong baseline. As BM25 does not provide dense embeddings only rank-based aggregation
strategies are applicable.
Paragraph and document-level labelled training (RQ1.2.3) We train a DPR model on a
paragraph- and another document-level labelled collection and compare the retrieval performance
of PARM for document-to-document retrieval. As bi-encoders for DPR we choose BERT
[DCLT19] and LegalBERT [CFM+20] and SciBERT [BLC19].

For legal case retrieval, we train DPR on the paragraph-level labelled collection COLIEEPara
train and additionally on the document-level labelled collection COLIEEDoc train as described
in Section 4.2.2. For prior art search, we train DPR respectively on the paragraph-level and
document-level training sets of CLEFIPPara and CLEFIPDoc. We use the public code7 and train
DPR according to Karpukhin et al. [KOM+20]. We sample the negative paragraphs randomly
from randomly sampled negative documents and take the 20 paragraphs of a positive document
as positive samples, which have the highest BM25 score to the query paragraph. This training
procedure lead to the highest recall compared to training with all positive paragraphs or with
BM25 sampled negative paragraphs. We also experimented with the DPR model pre-trained on
open-domain QA as well as TAS-balanced DPR model [HLY+21], but initial experiments did
not show a performance improvement. We train each DPR model for 40 epochs and take the
best checkpoint according to COLIEEPara test/COLIEEDoc val. We use batch size of 22 and a
learning rate of 2 ∗ 10−5, after comparing three commonly used learning rates (2 ∗ 10−5, 1 ∗ 10−5,
5 ∗ 10−6) for [KOM+20].

7https://github.com/facebookresearch/DPR
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Table 4.5: Aggregation comparison for PARM on COLIEEval, VRRF shows best results for
dense retrieval, stat. sig. difference to RRF w/ paired t-test (p<0.05) denoted with †, Bonferroni
correction with n=7. For BM25 only rank-based methods applicable.

Aggregation BM25 DPR BERT DPR LegalBERT
R@100 R@500 R@1K R@100 R@500 R@1K R@100 R@500 R@1K

Rank-based
CombSum [SF94] .5236 .7854 .8695 .4460 .7642 .8594 .5176 .7975 .8882
RRF [CCB09] .5796 .8234 .8963 .5011 .8029 .8804 .5830 .8373 .9049

Vector-based
VAvg [LYM+20] - - - .1908† .4668† .6419† .2864† .4009† .7466†

VMax [LYM+20] - - - .3675† .6992† .8273† .4071† .6587† .8418†

VMin [LYM+20] - - - .3868† .6869† .8295† .4154† .6423† .8465†

VSum [LYM+20] - - - .4807 .7496† .8742 .5182† .8069 .8882
Vector-based with rank-based weights (Ours)
VScores - - - .4841 .7616† .8709 .5195† .8075† .8882†

VRanks - - - .4826 .7700† .8804 .5691† .8212 .8980
VRRF - - - .5035 .8062† .8806 .5830† .8386† .9091†

4.2.4 Results and Analysis

We evaluate the first stage retrieval performance with nDCG@10, recall@100, recall@500 and
recall@1k using pytrec_eval. We focus our evaluation on recall because the recall performance of
the first stage retrieval bounds the ranking performance after re-ranking the results in the second
stage for a higher precision. We do not compare our results to the reported state-of-the-art results
as they rely on re-ranked results and do not report evaluation results after the first stage retrieval.

RQ1.2.1: VRRF aggregation for PARM

As we propose vector-based aggregation with reciprocal rank fusion weighting (VRRF) for
PARM, we first investigate:
(RQ1.2.1) How does VRRF compare to other aggregation strategies within PARM?
We compare VRRF, which combines dense-vector-based aggregation with rank-based weighting,
to score/rank-based and vector-based aggregation methods for PARM. The results in Table 4.5
show that VRRF outperforms all rank and vector-based aggregation approaches for the dense
retrieval results of DPR PARM with BERT and LegalBERT. For the lexical retrieval BM25
with PARM, only rank-based aggregation approaches are feasible, here RRF shows the best
performance, which will be our baseline for RQ1.2.2.

RQ1.2.2: PARM VRRF vs Document-level retrieval

As we propose PARM VRRF for document-to-document retrieval, we investigate:
(RQ1.2.2) How effective is PARM with VRRF for document-to-document retrieval?
We evaluate and compare PARM and document-level retrieval for lexical and dense retrieval
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Table 4.6: Doc-to-doc retrieval results for PARM and Document-level retrieval for legal case
retrieval on COLIEEDoc and CaseLaw. No comparison to results reported in prior work as those
rely on re-ranking, while we evaluate only first stage retrieval evaluation. nDCG cutoff at 10, stat.
sig. difference to BM25 Doc w/ paired t-test (p < 0.05) denoted with † and Bonferroni correction
with n=12, effect size >0.2 denoted with ‡.

Model Retrieval COLIEEDoc test CaseLaw
nDCG R@100 R@500 R@1K nDCG R@100 R@500 R@1K

BM25

BM25
Doc .2435 .6231 .7815 .8426 .2653 .4218 .5058 .5438
PARM RRF .1641†‡ .6497†‡ .8409†‡ .8944†‡ .0588†‡ .3362†‡ .5716†‡ .6378†‡

DPR

BERT para

Doc FirstP .0427†‡ .3000†‡ .5371†‡ .6598†‡ .0287†‡ .0871†‡ .1658†‡ .2300†‡

Doc MaxP .0134†‡ .1246†‡ .5134†‡ .6201†‡ .0000†‡ .0050†‡ .4813†‡ .4832†‡

PARM RRF .0934†‡ .5765†‡ .8153†‡ .8897†‡ .0046†‡ .1720†‡ .5019†‡ .5563†

PARM VRRF .0952†‡ .5786†‡ .8132†‡ .8909†‡ .1754†‡ .3855†‡ .5328†‡ .5742†‡

LegalBERT
para

Doc FirstP .0553†‡ .2447†‡ .4598†‡ .5657†‡ .0397†‡ .0870†‡ .1844†‡ .2248†‡

Doc MaxP .0073†‡ .0737†‡ .3970†‡ .5670†‡ .0000†‡ .0050†‡ .4846†‡ .4858†‡

PARM RRF .1280†‡ .6370 .8308†‡ .8997†‡ .0177†‡ .2595†‡ .5446†‡ .6040†‡

PARM VRRF .1280†‡ .6396 .8310†‡ .9023†‡ .0113†‡ .4986†‡ .5736†‡ .6340†‡

LegalBERT
doc

Doc FirstP .0682†‡ .3881†‡ .6187†‡ .7361†‡ .0061†‡ .0050†‡ .4833†‡ .4866†‡

Doc MaxP .0008†‡ .0302†‡ .2069†‡ .2534†‡ .0022†‡ .0050†‡ .4800†‡ .4833†‡

PARM RRF .1248†‡ .6086† .8394†‡ .9114†‡ .0117†‡ .2277†‡ .5637†‡ .6265†‡

PARM VRRF .1256†‡ .6127† .8426†‡ .9128†‡ .2284†‡ .4620†‡ .5847†‡ .6402†‡

methods on the two test collections (COLIEEDoc and CaseLaw) for document-to-document
retrieval in Table 4.6. For prior art search we compare PARM to document-level retrieval for
lexical and dense retrieval models on CLEF-IPDoc in Table ??. For legal case retrieval, for BM25
we find that PARM-based retrieval outperforms document-level retrieval at each recall stage,
except for R@100 on CaseLaw.

For dense retrieval we evaluate DPR models with BERT trained solely on the paragraph-level
labels and with LegalBERT trained on the paragraph-level labels (denoted with LegalBERT para)
and with additional training on the document-level labels (denoted with LegalBERT doc). For
dense document-to-document retrieval PARM consistently outperforms document-level retrieval
for all performance metrics for both test collections. Furthermore PARM aggregation with VRRF
outperforms PARM RRF in nearly all cases. Overall we find that LegalBERTdoc-based dense
retrieval with PARM VRRF achieves the highest recall at high ranks. When comparing the
nDCG@10 evaluation we find that PARM lowers the nDCG@10 score for BM25 as well as for
dense retrieval. Therefore we suggest that PARM is beneficial for first stage retrieval, so that in
the re-ranking stage the overall ranking can be improved.
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Figure 4.4: Recall at different cut-off values for
PARM-VRRF (DPR) and PARM-RRF (BM25)
and Document-level retrieval with BM25 and DPR
for COLIEEDoc test.

COLIEEDoc CaseLaw
BM25 DPR BM25 DPR

Total
relevant 900 900 720 720
PARM 892 896 578 545
Doc 751 662 419 199

Sets
PARM ∩ Doc 750 661 417 196
PARM\Doc 142 235 161 349
Doc\PARM 1 1 2 3

Figure 4.5: Number of relevant documents
retrieved in comparison between PARM
and Doc-level retrieval for COLIEEDoc and
CaseLaw with BM25 or LegalBERT_doc-
based DPR.

For legal case retrieval we further analyze the results. In Figure 4.4 we show the recall at different
cut-off values for PARM-VRRF with DPR (based on LegalBERTdoc) and PARM-RRRF with
BM25 compared to document-level retrieval (Doc FirstP) of BM25/DPR. When comparing PARM
to document-retrieval, we can see a clear gap between the performance of document-level retrieval
and PARM for BM25 and for DPR. Furthermore we see that dense retrieval (PARM-VRRF DPR)
outperforms lexical retrieval (PARM-RRF BM25) at cut-off values above 500.

In order to analyze the differences between PARM and document-level retrieval further, we
analyze in Figure 3.5, how many relevant documents are retrieved with PARM or with document-
level retrieval with lexical (BM25) or dense methods (DPR). Furthermore we investigate how
many relevant documents are retrieved by both PARM and document-level retrieval (PARM ∩
Doc), and how many relevant documents are retrieved only with PARM and not with document-
level retrieval (PARM\Doc) and vice versa (Doc\PARM). When comparing the performance of
PARM and document-level retrieval, we find that PARM retrieves more relevant documents in
total for both test collections. PARM retrieves 142 − 380 of the relevant documents that did not
get retrieved with document-level retrieval (PARM\Doc), which are 15 − 52% of the total number
of relevant documents. This analysis demonstrates that PARM largely retrieves many of relevant
documents that are not retrieved with document-level retrieval. We conclude that PARM is not
only beneficial for dense but also for lexical retrieval for legal case retrieval.

For prior art search, we see in Table 4.7 that BM25 on the document-level outperforms all neural
retrieval approaches, both with PARM and also with the FirstP retrieval. This holds true in terms
of nDCG@10 as well as for recall at all cut-offs from 100 to 1000. Thus we do not investigate
any other aggregation approaches for PARM like VRRF or document-level retrieval with MaxP.

Overall we find that PARM greatly improves the first stage retrieval for legal case retrieval,

78



4.2. Passage-Aggregation Retrieval Model for Document-to-Document Retrieval

Table 4.7: Doc-to-doc retrieval results for PARM and Document-level retrieval on CLEFIPDoc
for prior art search. No comparison to results reported in prior work as those rely on re-ranking,
while we evaluate only first stage retrieval evaluation. nDCG cutoff at 10, stat. sig. difference to
BM25 Doc w/ paired t-test (p < 0.05) denoted with † and Bonferroni correction with n=12, effect
size >0.2 denoted with ‡.

Model Retrieval CLEFIPDoc test
nDCG R@100 R@200 R@300 R@500 R@1k

BM25

BM25
Doc .0562†‡ .1369†‡ .1620†‡ .1746†‡ .1989†‡ .2405†‡

PARM RRF .0344 .1043 .1405 .1539 .1764 .2144

DPR

BERT
Doc FirstP .0022 .0224 .0362 .0479 .0673 .0801
PARM RRF .0059 .0244 .0432 .0521 .0600 .0703

LegalBERT
Doc FirstP .0040 .0233 .0362 .0489 .0579 .0812
PARM RRF .0077 .0240 .0313 .0399 .0528 .0832

SciBERT
Doc FirstP .0027 .0356 .0404 .0452 .0574 .0803
PARM RRF .0055 .0279 .0499 .0586 .0733 .0906

however this does not hold true for the CLEF-IP patent test collection. We suggest that there
needs to be further future work to investigate PARM for prior art search, since the CLEF-IP
test collection only relies on the citations of the patent examiners and thus the relevance labels
are heavily biased towards the retrieval model employed in the search of the patent examiners.
Most probably the retrieval system employed in the labelling run is based on keywords and thus
benefits BM25. Therefore one future direction could be to analyze the CLEF-IP test collection
for its suitability to evaluate neural first stage retrieval models.

RQ1.2.3: Paragraph-level vs Document-level Labelled Training

As labelled in-domain data for document-to-document retrieval tasks is limited, we ask: (RQ1.2.3)
How can we train neural retrieval models for PARM for document-to-document retrieval most
effectively? We compare the retrieval performance for BERT-based and LegalBERT-based
dense retrieval models in Table 4.8 for legal case retrieval, which are either trained solely on
the paragraph-level labelled collection or additionally trained on the document-level labelled
collection. The upper part of the table shows that for BERT the additional training data on
document-level improves the retrieval performance for document-level retrieval, but harms the
performance for PARM RRF and PARM VRRF. For LegalBERT the additional document-level
training data highly improves the performance of document-retrieval. For PARM the recall
is improved at higher cut-off values (@500, @1000) for a cut-off. Therefore we consider the
training on document-level labelled data beneficial for dense retrieval based on LegalBERT. This
reveals that it is not always better to have more, potentially noisy data, for BERT-based dense
retrieval the training with fewer, but accurate paragraph-level labels is more beneficial for overall

79



4. NEURAL RANKING AND RETRIEVAL FOR DOCUMENT-TO-DOCUMENT RETRIEVAL

Table 4.8: Paragraph- and document-level labelled training of DPR. Document-level labelled
training improves performance at high ranks for LegalBERT, statistical significantly different to
paragraph-level training compared to paragraph- and document-level training with paired t-test (p
< 0.05) denoted with † (Comparison for each model is training with para Labels vs training with
para+doc Labels)

Model Retrieval Train COLIEEDoc val
Labels R@100 R@200 R@300 R@500 R@1K

DPR Retrieval

BERT

Doc FirstP para .3000 .4018 .4566 .5371 .6598
Doc FirstP + doc .3800† .4641† .5160† .6054† .7211†

PARM RRF para .5765 .6879 .7455 .8153 .8897
PARM RRF + doc .5208† .6502† .7100† .7726† .8660
PARM VRRF para .5786 .6868 .7505 .8132 .8909
PARM VRRF + doc .5581† .6696 .7298† .7970 .8768

LegalBERT

Doc FirstP para .2447 .3286 .3853 .4598 .5657
Doc FirstP + doc .3881† .4665† .5373† .6187† .7361†

PARM RRF para .6350 .7323 .7834 .8308 .8997
PARM RRF + doc .6086† .7164 .7561† .8394 .9114
PARM VRRF para .6396 .7325 .7864 .8310 .9023
PARM VRRF + doc .6098† .7152 .7520† .8396 .9128†

document-to-document retrieval with PARM.

Analysis of paragraph relations

With our proposed paragraph aggregation retrieval model for dense document-to-document
retrieval we can analyze on which paragraphs the document-level relevance is based. To gain
more insight in what the dense retrieval model learned to retrieve on the paragraph-level with
PARM, we analyze which query paragraph retrieves which paragraphs from relevant documents
with dense retrieval with PARM and compare it to lexical retrieval with PARM. In Figure 4.6, a
heatmap visualizes which query paragraph how often retrieves which paragraph from a relevant
document with PARM BM25 or PARM DPR on the COLIEEDoc test set. As introduced in
Section 4.2.3, the legal cases in COLIEEDoc contain an introduction, a summary and claims as
paragraphs. For the introduction (I) and the summary (S) we see the paragraph relation for lexical
and dense retrieval that both methods retrieve also more introductions and summaries from the
relevant documents. We reason this is due to the special structure of the introduction and the
summary which is distinct to the claims. For the query paragraphs 1.-10. we see that PARM
DPR seems to focus on to the diagonal different to PARM BM25. This means for example that
the first paragraph retrieves more first paragraphs from relevant documents than they retrieve
other paragraphs. As the claim numbers are removed in the data preprocessing, this focus relies
on the textual content of the claims. This paragraph relation suggests that there is a topical or
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Figure 4.6: Heatmap for PARM retrieval with BM25 or DPR visualizing which query paragraph
how often retrieves which paragraph from a relevant document. I denotes the introduction, S the
summary, 1.-10. denote the claims 1.-10. of COLIEEDoc test.

hierarchical structure in the claims of legal cases, which is learned by DPR and exhibited with
PARM. This structural component can not be exhibited with document-level retrieval.

4.2.5 Conclusion

In this work we address the challenges of using dense passage retrieval (DPR) in first stage
retrieval for document-to-document tasks with limited labelled data. We propose the paragraph
aggregation retrieval model (PARM), which liberates dense passage retrieval models from their
limited input length and which takes the paragraph-level relevance for document retrieval into
account. We demonstrate for legal case retrieval on two test collections higher first stage recall for
dense document-to-document retrieval with PARM than with document-level retrieval. For legal
case retrieval, we also show that dense retrieval with PARM outperforms lexical retrieval with
BM25 in terms of recall at higher cut-off values. As part of PARM we propose the novel vector-
based aggregation with reciprocal rank fusion weighting (VRFF), which combines the advantages
of rank-based aggregation with RRF [CCB09] and topical aggregation with dense embeddings.
We demonstrate the highest retrieval effectiveness for PARM with VRRF aggregation compared
to rank and vector-based aggregation baselines. For the document-to-document retrieval task
of prior art search, we find that dense retrieval approaches based on PARM and off-the-shelf
dense retrieval do not outperform lexical retrieval with BM25. Furthermore we investigate
how to train dense retrieval models for dense document-to-document retrieval with PARM. For
legal case retrieval, we find the interesting result that training DPR models on more, but noisy
document-level data does not always lead to overall higher retrieval performance compared to
training on less, but more accurate paragraph-level labelled data. Finally, we analyze how PARM
retrieves relevant paragraphs and find that the dense retrieval model learns a structural paragraph
relation which it exhibits with PARM and therefore benefits the retrieval effectiveness.

Limitations and future work
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Similarly to the limitations described in section 4.1.5 this study also is limited by its focus on
the English language and future work is needed to investigate if the findings of the study also
generalize to other languages. Additionally this work is also limited to the language model BERT
as encoder and future work needs to determine how the choice of large language model for the
DPR model influences the effectiveness of PARM.

Another limitation is the generalizability of the findings regarding PARM for document-to-
document retrieval tasks with documents, which do not have a predefined structure as the legal
cases. For the legal cases, the predefined claim structure captures topically coherent blocks of the
document and since single claims are relevant to other claims of other document, PARM uses this
characteristic of the legal case retrieval task to its advantage. It remains unclear and needs future
work, how the findings of PARM generalize to document-to-document retrieval tasks, where the
splitting up in paragraphs is not predefined by semantically coherent paragraphs in a structured
document.

Another limitation of this study is the reliability of the CLEF-IP test collection for evaluating
neural first stage retrieval models that have not participated in the pool creation for annotation. In
order to have confidence in the evaluation results of the CLEF-IP test collection, we see some
future work in analyzing the suitability of the CLEF-IP test collection to evaluate neural first
stage retrieval models since only statistical models contributed to the pool for creating the test
collection.
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CHAPTER 5
Addressing Data Availability for

Evaluation and Training

After investigating domain-specific neural ranking and retrieval models for the document-to-
document retrieval tasks of prior case retrieval and prior art search, we now want to focus on the
problem of data availability for domain-specific retrieval for evaluation and for training data and
investigate the research question:

RQ2 How can the problem of limited available annotated evaluation and training data be ad-
dressed in domain-specific retrieval?

We divide this chapter in two sections. In the first section we describe our annotation campaign
for creating a human-annotated health test set and compare it to relevance signals from user clicks.
In the second section we investigate how we can train neural ranking and retrieval models under
a limited annotation and training budget. Here we investigate two scenarios: in the first scenario
we train a neural ranking and retrieval model for web search, in the second scenario we adapt a
fine-tuned neural ranker to the health domain. Since we want to disentangle the effects of active
learning for efficient training data annotation from a possible impact of training domain-specific
neural ranking and retrieval architectures like BERT-PLI [SML+20] or PARM, we investigate
these active learning strategies for "common" neural ranking and retrieval model architectures
[NC19, KOM+20, KZ20], that do not consider long documents. Thus in this chapter we consider
ad-hoc retrieval tasks in the web and health domain, that do not contain long documents as queries
or in the collection and thus the neural ranking and retrieval models introduced in chapter 2.6 do
not need to be adapted in their architecture for these tasks. The second reason for choosing the
tasks of ad-hoc retrieval in the web domain and the medical domain when investigating active
learning methods for data efficient training of neural rankers, is the availability of large-scale,
annotated training data for these two tasks [NRS+16, RLS+21]. Since we do not have the
resources to do an interactive annotation and training process with annotators, we simulate the
selection and annotation process in the training of the neural rankers and for that simulation we
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need large-scale, annotated training datasets, like MS Marco [NRS+16] and TripClick [RLS+21].
Since ad-hoc retrieval tasks are precision-oriented, our evaluation in this chapter is focussed on
precision-oriented metrics.

5.1 Capturing Relevance Signals in Annotation

In this chapter we investigate how human-labelled annotations compare to relevance signals
from clicks for evaluating domain-specific retrieval in the health domain, answering the research
question:

RQ2.1 How do human-label annotations compare to click signals for medical ad-hoc re-
trieval?

For this investigation we consider the task of medical ad-hoc retrieval, which is exemplified in
the Search Example ➌. This chapter is based on the publication [AHVH22].

Recently there is a growing interest in evaluating retrieval systems for domain-specific retrieval
tasks, however these tasks often lack a reliable test collection with human-annotated relevance
assessments following the Cranfield paradigm [RLS+21, RKG+20, PLHZ11, TRR+21]. In the
medical domain, the TripClick collection was recently proposed [RLS+21], which contains click
log data from the Trip search engine and includes two click-based test sets. However the clicks
are biased to the retrieval model used, which remains unknown, and a previous study shows
that the test sets have a low judgement coverage for the Top-10 results of lexical and neural
retrieval models [HASH22]. We present the novel, relevance judgement test collection TripJudge
for TripClick health retrieval. We collect relevance judgements in an annotation campaign and
ensure the quality and re-usability of TripJudge by a variety of ranking methods for pool creation,
by multiple judgements per query-document pair and by an at least moderate inter-annotator
agreement. Since the annotators are students with no particular expertise in health and medicine,
we evaluate the agreement between students’ annotations with the annotations of experts in the
health and medical domain and find a moderate agreement. Furthermore we compare a subset
of the non-expert annotations with annotations done by medical experts and find a high overlap
between the labels. We compare system evaluation with TripJudge and TripClick and find that
that click and judgement-based evaluation can lead to substantially different system rankings.

5.1.1 Introduction

Reliable and robust evaluation of ranking systems is crucial to Information Retrieval (IR) research
[Zob98]. Thus a great effort in IR research is put into creating reusable and robust test collections
[Voo18, VSL22, Sob17] in task-specific evaluation campaigns like TREC [CCV12, CMY+21b]
or CLEF. These campaigns follow the Cranfield paradigm [Cle91] to create relevance judgements
on the pooled output of the participating systems. Recently there has been a growing interest
in evaluating the retrieval performance of retrieval models for domain-specific retrieval tasks
[TRR+21, ZXM+22, HASH22, HKA+22, AHH21] including the medical domain [RLS+21,
RDV+17, XLS+20]. Domain-specific retrieval tasks often lack a reliable test collection with
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human relevance judgments following the Cranfield paradigm [RLS+21, TRR+21, RKG+20].
Furthermore it remains unclear how well old test collections can be used to evaluate neural
retrieval models, which were not part of the pooling process [VSL22].

In the medical domain, a recently proposed benchmark is the publicly available TripClick
collection [RLS+21], which we introduced in section 2.5. TripClick contains large-scale click
logs from Trip, an English health search engine with professional and non-professional users. It
provides two test sets with labels based on the clicks of the users, either estimating relevance by
the raw clicks (‘Raw’) or by the rate of clicks of a document over all retrieved documents for
a query (‘DCTR’). As the TripClick test sets are based on the clicks of the users, the test sets
are biased towards the retrieval model employed by the search engine [Whi13], which remains
unknown. In a previous study [HASH22] the test sets were shown to have a low annotation
coverage of at most 41% of the Top10 results for lexical and neural retrieval models.

In this work we address these shortcomings of click-based test collections by creating TripJudge,
a relevance judgement test collection for TripClick. We collect relevance judgements by running
an annotation campaign on the test set queries of TripClick. In order to increase the re-usability
of our test collection [BDSV07], we use three participating systems for the pool creation from
Hofstätter et al. [HASH22] employing lexical and neural retrieval models. To control the quality
of the relevance assessments we monitor the annotation time per query, we employ a graded
relevance scheme [GL10, AM12] and we employ multiple relevance assessments per query-
document pair (we aim for three assessments but have at least two). We reach an at least moderate
inter-annotator agreement measured with Cohen’s Kappa.

In order to ensure the quality of non-expert annotations, we conduct an additional annotation
campaign with medical experts. In this annotation campaign the health and medical experts
annotate a subset of the TripJudge test set using the same set-up as for the annotation campaign
with the students. We aggregate the expert annotations with majority vote (the same methodology
as for the non-expert annotations) and reach a moderate inter-annotator agreement. We compare
the resulting expert annotations with the non-expert annotations and find a high accuracy between
both: 78% of binary relevance labels are the same between experts and non-experts.

Furthermore we compare the click and judgement-based evaluation of various retrieval systems
and investigate how the rankings of the systems change when evaluated with TripJudge or
TripClick. Related work about comparing clicks and judgements for evaluation come to different
conclusions. While Joachims et al. [JGP+05] and Zobel et al. [Zob98] find reasonable agreement
between the clicks and relevance judgements, Kamps et al. [KKT09] demonstrate that system
rank correlations between evaluation based on clicks or judgements is low. First we analyze
the overlap of the click-based test collections with TripJudge and find that the majority of the
documents that are judged as relevant are not labelled in the click-based collections and therefore
are considered irrelevant during evaluation. Similar to related work [Voo98, BV04, VB02], we
measure system rank correlation between evaluation with different test collections with Kendalls
τ correlation [Ken38]. We find that the rankings with the evaluation of TripJudge differ from the
rankings with the click-based test collections. Our contributions are the following:

• We create the relevance judgement-based test collection TripJudge for TripClick health
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Figure 5.1: Two examples of the TripClick dataset: the query "copd antibiotics exacerbation" and
the query "twin pregnancy" with the text of a document, that was clicked by users (labelled as
relevant in the TripClick test set) below in light gray.

retrieval and make it publicly available in the Github repository linked in Section 1.3;

• We ensure the quality and re-usability of TripJudge by a variety of systems for pool
creation, by multiple judgements per query-document pair, and by an at least moderate
inter-annotator agreement in our annotation campaign;

• We compare a subset of the non-expert annotations with annotations of medical expert and
find a high accuracy between the labels from the non-experts and experts.

• We compare evaluation with click-based TripClick and our judgment-based TripJudge and
find that click and judgment-based evaluation can lead to different system rankings

5.1.2 TripClick dataset

As introduced in chapter 2.5, TripClick is a large-scale dataset of click logs, derived from user
engagements on the Trip Database health web search engine. This click log dataset encompasses
approximately 5.2 million user interactions and real user queries, systematically collected during
the period from 2013 to 2020. An example of a user query and documents that were clicked by
the user is visualized in Figure 5.1.
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5.1.3 Methodology

We describe how we preprocess the TripClick test queries as well as the pool creation followed
by the annotation campaign.

Data and Pool Preparation

In the TripClick test sets the queries are grouped by their user interaction frequency into Head,
Torso and Tail. For the annotation campaign we used the 1175 head queries. Head queries are
selected because these are the queries that more different users ask in the Trip engine, thus there
are more user interaction relevance signals for those queries and the TripClick labels are based on
multiple different user interaction signals, thus are more reliable. During the campaign we notice
duplicate queries, which differ in their casing (lower/uppercasing) or queries without any natural
text (for example "#1 or #2"). We discard these queries from our TripJudge test collection and
end up with 1136 unique queries1.

For the pool creation we use the runs from Hofstätter et al. [HASH22]. In order to have different
first stage retrieval methods we use the lexical retrieval run with BM25 [RZ09] (run 1 in Table
5.2) as well as the DPR SciBERT run (run 2 in Table 5.2) which is based on dense retrieval
[HLY+21, AHS+22]. As additional run we use the Ensemble which re-ranks BM25 Top-200
candidates using an Ensemble of MonoBERT based on SciBERT, PubMedBERT-Abstract and
PubMedBert-Full Text (run 7 in Table 5.2). We create the pool by taking the union of the
query-document pairs from the Top-10 of the three runs for all test queries and keep the highest
rank among the three runs. This results in a total of 29581 pairs and prioritize the annotation
according to the rank of the document: all Top-n pairs have priority 10 − k(k ∈ [1..n]); the
higher the priority, the earlier they are selected for annotation in the annotation interface.

In order to maintain a low latency in our annotation system, we needed to truncate the documents.
As the dense retrieval models rely on the text up to 512 BERT tokens, we truncate the document
text to this length, which applies to 10% of the documents.

Annotation Campaign

We conduct the annotation campaign among 135 computer science students with a target of 300
annotations per annotator and reach an average of 287 annotations per annotator (Table 5.1). We
aim for a high number of different annotators to not exhaust the annotators and in order to collect
a large variety of relevance signals from different annotators. The background of the annotators
is that they are computer science students familiar with information retrieval tasks who had a
lecture about how to annotate query-document pairs for relevance.

The users of the Trip search engine are a mix of experts and non-experts. As the annotators
are non-experts and as previous work points out the challenges with students as annotators
[PZB+16, BCS+08], we take several steps to ensure and monitor the quality of the annotations:
1) We use a 4-graded, ordinal relevance scheme: Wrong (1), Topic (2), Partial (3), and Perfect
(4), as suggested in related work [GL10, AM12] 2) Having more annotators per query-passage

1We publish the reasons for removal, the removed, and remaining queries in the GitHub repository
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sample improves the reliability of the labels, thus we aim for a trade-off between having multiple
annotators per sample as well as annotating many samples in order to annotate with a high
depth for each test query. In the literature there is a range from 1 annotator [Voo00] to multiple
annotators per query-passage pair [HZS+20, CMYC19]. We aim for three relevance assessments
per query-document pair, on average we reach 2.92 relevance assessments per pair, where we
employ majority voting or a heuristic in case of no majority. We discard the pairs with only one
relevance assessment (57 query-passage pairs in total). 3) We monitor the average annotation
time per pair per relevance grade, we remove annotations with a short annotation time (below
1 second) and reach an average annotation time of 48 seconds per judgement. The reason for
choosing the threshold at 1 second is the distribution of annotation time, which follows a roughly
normal distribution with mean at 48 seconds, but has a outlier at annotations with annotation
time below 1 second. 4) We collect feedback about the campaign from the students at the end of
the annotation campaign. 5) We conduct another annotation campaign with expert annotators
and compare the relevance judgements of the experts with the non-expert annotators. 6) We
encourage the annotators to read up on concepts contained in the queries or documents that they
are not familiar with using external tools like web search engines.

We conducted the annotation campaign using the FiRA interface [HZH20b, HZS+20] and ran the
campaign for 7 days with a fixed deadline. We publish the annotation guidelines in our GitHub
repository as well as in the Appendix of this thesis in Section 6.3. To control the quality of
the judgements during the campaign, we monitored the average number of judgements per 12
hours and we observe the daily average annotation time per relevance grade to detect random
judgements. We reach a high average annotation time per relevance grade (Table 5.1).

Overall the students gave us positive feedback about the evaluation campaign: 33% rated it
Very good, 28% Good and 27% Decent, only 12% of the students did not like it. The students
could also give written feedback. The main feedback was that it was hard to distinguish between
the relevance grades of Topic and Partial. This difficulty is also reflected in the average time
per annotation for these relevance grades. While it took the annotators on average 39 seconds
to decide on Wrong, the annotations for Topic and Partial took 47 and 54 seconds on average,
respectively. We reached 38810 total judgements and judged at least until the Top-4 for our pool.

5.1.4 Quality analysis

After the annotation campaign we processed the 38810 raw relevance judgements to form the
TripJudge test collection which we publish in the standard TREC format for qrels.

We removed the query-document pairs with only one judgement. We grouped the relevance
grades Wrong and Topic into Irrelevant and Partial and Perfect into Relevant, in order to attain a
2-graded relevance judgement with potential higher agreement. We computed the final relevance
judgement either via full agreement, if all annotators agree on the relevance grade or with majority
voting, if the annotators disagree, or with the heuristic of taking the lowest relevance grade, if
the annotators disagree and there is no majority for a relevance grade. We apply this heuristic
with the assumption that if disagreement is high, the relevance cannot be definitely decided and
therefore the document should be annotated as irrelevant. In Figure 5.2 we visualize the 4-grade
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# of queries 1136
# of documents in collection 2.3M

# annotated q-d pairs 12590
# of judgements 38810
avg # assessments per query 2.92

# (%), avg annotation time for Wrong 3811 (10%), 39s
# (%), avg annotation time for Topic 10901 (28%), 47s
# (%), avg annotation time for Partial 13008 (33%), 54s
# (%), avg annotation time for Perfect 11090 (29%), 44s

# annotators 135
avg # of annotations per annotator 287

Table 5.1: Statistics of the annotation campaign.
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Figure 5.2: Distribution of relevance grades for 4-grade and 2-grades, percentage of heuristic and
majority voting.
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Figure 5.3: Cohen’s Kappa agreement between the non-expert annotators and the annotations
aggregated with majority voting.

and 2-grade distribution of the judgements and their percentage of full agreement, majority voting
and the heuristic. While the full agreement is low (20% of all queries) for the 4-grade relevance
judgements, the full agreement for the 2-grade relevance judgements is substantially higher with
48% of all queries. Furthermore, a high percentage of judgements is decided via majority vote.
For the 4-grade relevance judgements, 22% of the queries are decided by the heuristic which
indicates a high disagreement between the annotators, but the percentage of heuristic decisions
for the 2-grade relevance judgements is low with 2%. This shows that the 2-grade relevance
judgements are more robust and have a higher agreement between the annotators.

We also study the inter-annotator agreement between the annotators for all relevance judgements.
We measure the inter-annotator agreement with Cohen’s Kappa κ [Coh60], which is a standard
metric to compare multiple sets of judgements and to measure the subjectivity in the assessments.
As the 4-grade annotations are ordinal, we use a linear weighted Kappa for them.

In Figure 5.3 the 2-grade and 4-grade agreement with Cohen’s Kappa is visualized with an
average κ of 0.63 for the 2-grade and an average weighted κ of 0.60 for the 4-grade relevance
judgements, which indicates moderate agreement for the 4-grade and substantial agreement
for the 2-grade. For both the 4-grade and 2-grade agreement we reach an at least moderate
agreement with 50% of the kappa values between 0.50 and 0.70. Furthermore, a certain level
of disagreement in the relevance judgement is expected due to the subjectivity of the individual
annotators [Bor03, VvdBWK17] and our agreement levels align with previous work [AM12],
which also employs non-expert annotators for judgements of TREC collections.

5.1.5 Expert annotation campaign

In order to ensure and control the quality of non-expert annotations in TripJudge, we conduct
another annotation campaign with experts from the medical and health domain. We compare
the aggregated expert annotations to the non-expert annotations in TripJudge and measure the
accuracy between the labels, similar to the approach of Snow et al. [SOJN08]. Snow et al.
[SOJN08] evaluate non-expert annotations for natural language tasks including affect recognition,

90



5.1. Capturing Relevance Signals in Annotation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cohen's Kappa

4-Grade

2-Grade

Figure 5.4: Cohen’s Kappa agreement between the expert annotators and the annotations aggre-
gated with majority voting.

word similarity, and recognizing textual entailment. They compare the non-expert annotations to
gold standard labels by measuring the accuracy between both labels.

Since expert annotations are highly costly, we annotate a subset of the TripJudge test set, in order
to evaluate, how much the non-expert annotations agree with the expert annotations. We conduct
the expert annotation campaign using Prolific2, which is a platform to recruit study participants
for online research. In this platform it is possible to specify certain skill sets and employment
characteristics of the study participants. In order to recruit study participants similar to the user
distribution of the Trip search engine as well as to recruit participants that are experts in the health
and medical domain, we specify certain characteristics that the study participants need to fulfill:

• The study participants need to have the current country of residence in either the United
Kingdom or the United States of America,

• the study participants need to have English as their primary language,

• the study participants need to have education in health and medicine and

• the study participants need to be employed in the sector of medicine.

We have in total 12 study participants. For the annotation campaign we use the same annotation
interface as for the campaign with the non-expert annotators with the same instructions.

Since expert annotations are highly costly, we annotate a randomly sampled subset of the
TripJudge test collection. We randomly sample 50 query-passage pairs from the TripJudge test
collection and collect 3 annotations per sample. We collect 150 relevance judgements in total and
each annotator annotates maximally 15 query-passage pairs. Following the same methodology as
in the non-expert annotation campaign, we aggregate the label from the expert annotations using
the majority voting.

We also measure the inter-rater agreement of the expert annotators using Cohen’s Kappa. In
Figure 5.4 the 2-grade and 4-grade agreement of the expert annotations is visualized with Cohen’s

2https://www.prolific.com/
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Kappa. For the 2-graded relevance judgements we reach a median kappa score of 61.2% denoting
substantial agreement of annotators. For the 4-graded relevance judgements we reach a moderate
agreement of the annotators with a median kappa score of 52.2%. These agreement scores are
relatively similar to the non-expert agreements and show that experts and non-experts similarly
agree and disagree for this annotation task.

In order to compare the expert annotations with the non-expert annotations we compute the
accuracy between the aggregated labels of the expert annotation campaign and the aggregated
labels of TripJudge, following the approach of Snow et al. [SOJN08].

For the 2-graded relevance labels we reach an accuracy of 78% and for the 4-graded relevance
labels we reach an accuracy of 48% between the aggregated expert and non-expert labels. This
denotes that the experts and non-experts agree in 78% of the cases, deciding if a passage is
relevant to a given query or not. This accuracy level aligns with similar accuracy values of
Snow et al. [SOJN08], who measure an accuracy of 82% between non-expert and gold standard
annotations for the task of recognizing textual entailment, when collecting 3 annotations per
sample. It is to be expected that the accuracy for the 4-graded relevance is lower than the accuracy
for the binary relevance judgements, since with 4 different classes the chances of disagreement are
higher and only minor differences for example if the expert label is "Perfect" but the non-expert
label is "Partial" are evaluated as disagreement. Since the experts and non-experts agree in the
aggregated binary relevance judgements in more than 3 out of 4 cases, the non-expert annotations
align in most cases with the expert annotations and can be used as labels to compare different
ranking and retrieval systems. These results align with the results of Snow et al. [SOJN08], who
also conclude that for many natural language annotation tasks a small number of non-expert
annotations per sample is necessary to match the performance of an expert annotator.

5.1.6 TripJudge vs TripClick

We compare the relevance judgements of TripJudge with the click-based labels of TripClick
and investigate the system ranking difference of the two test collections. Due to the higher
inter-annotator agreement we consider the 2-graded judgements of TripJudge.

Coverage and Intersection

We analyze the coverage and intersection of the annotated query-document pairs between Trip-
Judge and TripClick DCTR and Raw test collection. Figure 5.5 visualizes the percentage of
relevant and irrelevant relevance judgements from TripJudge. The different patterns of the bar
visualize the label from the TripClick DCTR or Raw test collection. The labels 1/2/3 from
TripClick refer to relevant documents, Label 0 denotes irrelevant documents and unlabelled
documents are considered as irrelevant during evaluation. The green bars denote agreement
between the annotation from TripJudge and TripClick, the red bars denote disagreement. It is
striking that all of the relevant documents from the Top-4 of TripJudge are unlabelled in DCTR
and therefore considered as irrelevant. Furthermore there is high disagreement between the
judgements of TripJudge and click-based labels of TripClick DCTR and Raw.
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Figure 5.5: Relevance judgements from TripJudge for the Top-4 of the pool vs TripClick click-
based labels from the DCTR or Raw test collection. Green bars denote agreement between the
relevance judgement of TripJudge and the click label from TripClick, red bars denote disagree-
ment.

Model TripJudge TripClick (DCTR) TripClick (Raw)
J@5 J@10 n@5-j n@5 n@10 R@100 J@5 J@10 n@5 n@10 R@100 J@5 J@10 n@5 n@10 R@100

First stage retrieval
1BM25 78% 47% .761 .694.570 .771 33% 31% .122.140 .499 30% 27% .199.198 .464
2DPR SciBERT 87% 50% .602.540.456 .636 48% 41% .232.243 .562 44% 38% .362.328 .496
3DPR PMBERT 49% 36% .652.377.356 .649 45% 40% .223.235 .582 42% 37% .345.318 .518

Re-Ranking (BM25 Top-200)
4ColSciBERT 64% 44% .758.538.501 .790 52% 47% .254.270 .589 49% 43% .395.367 .547
5ColPMBERT 63% 44% .758.527.493 .777 55% 49% .261.278 .595 52% 45% .412.382 .551
6MonoBERT 64% 45% .757.540.506 .818 56% 50% .271.287 .594 53% 46% .421.389 .552
7Ensemble 88%51% .756 .698.592 .814 58%52% .285.303 .600 55%48% .443.409 .556

Table 5.2: Effectiveness results and judgement coverage for judgement-based TripJudge and
click-based TripClick DCTR/Raw test collection. J@m denotes the judgement coverage at rank
m, n@m denotes the nDCG at cutoff m, -j denotes the j-option in trec_eval when only evaluating
on the judged query-document pairs. Top-10 of run 1,2,7 create the pool for TripJudge.
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Measure TripJudge–DCTR TripJudge–Raw DCTR–Raw

nDCG@5 0.333 0.333 1.000
nDCG@10 0.428 0.428 1.000
MRR@10 0.238 0.238 1.000
Recall@100 0.238 0.333 0.714

Table 5.3: Kendall tau correlation between system rankings of TripJudge and TripClick DC-
TR/Raw for four metrics.

Qualitative analysis of the discrepancies

In order to investigate potential reasons for the discrepancies between the click-based and human-
annotated labels, we conduct a qualitative analysis. For that we look at 5 randomly sampled
query-document pairs, that are annotated as relevant in TripJudge, but are labelled as irrelevant
by the click-labels from TripClick (DCTR) and TripClick (Raw). In the following list are the 5
randomly sampled query-document pairs with the query IDs, query text, document IDs and the
document text, which is the beginning snippet of the document text.

Example 1

Query ID: 13739

Query: gestational diabetes mellitus

Document ID: 8991404

Document text: The Comparative Effectiveness of Diabetes Prevention Strategies to Reduce Postpartum
Weight Retention in Women With Gestational Diabetes Mellitus: The Gestational Diabetes’
Effects on Moms (GEM) Cluster Randomized Controlled Trial OBJECTIVE : To compare
the effectiveness of diabetes prevention strategies addressing postpartum weight retention
for women with gestational diabetes mellitus (GDM) delivered at the health system level:
mailed recommendations (usual care) versus usual care plus a Diabetes Prevention Program
(DPP)-derived lifestyle intervention. RESEARCH DESIGN AND METHODS : This study
was a cluster randomized controlled trial of 44 medical facilities (including 2,280 women
with GDM) randomized to intervention or usual care. The intervention included mailed
gestational weight gain recommendations plus 13 telephone sessions between 6 weeks and
6 months postpartum...

Example 2

Query ID: 1291

Query: macular degeneration

Document ID: 9336985
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Document text: Statins for age-related macular degeneration. BACKGROUND : Age-related macular
degeneration (AMD) is a progressive, late-onset disorder of the macula affecting central
vision. It is the leading cause of blindness in people over 65 years in industrialized countries.
Recent epidemiologic, genetic, and pathological evidence has shown that AMD shares a
number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert
protective effects in AMD. OBJECTIVES : The objective of this review was to examine
the effectiveness of statins compared with other treatments, no treatment, or placebo in
delaying the onset and progression of AMD. SEARCH METHODS : We searched the
Cochrane Central Register of Controlled Trials...

Example 3

Query ID: 4284

Query: postnatal depression

Document ID: 9089460

Document text: Identification of depression in women during pregnancy and the early postnatal period
using the Whooley questions and the Edinburgh Postnatal Depression Scale: protocol
for the Born and Bred in Yorkshire: PeriNatal Depression Diagnostic Accuracy (BaBY
PaN INTRODUCTION : Perinatal depression is well recognised as a mental health con-
dition but <50% of cases are identified by healthcare professionals in routine clinical
practice. The Edinburgh Postnatal Depression Scale (EPDS) is often used to detect symp-
toms of postnatal depression in maternity and child services. The National Institute for
Health and Care Excellence (NICE) recommends 2 ’ultra-brief’ case-finding questions
(the Whooley questions) to aid identification of depression during the perinatal period,
but this recommendation was made in the absence of any validation studies in a perinatal
population...

Example 4

Query ID: 1585386

Query: rheumatoid arthritis juvenile arthritis juvenile idiopathic arthritis air pollut

Document ID: 9569762

Document text: Ambient air pollution exposures and risk of rheumatoid arthritis. OBJECTIVE : Envi-
ronmental factors may play a role in the development of rheumatoid arthritis (RA). We
previously observed increased RA risk among women living closer to major roads (a
source of air pollution). Herein, we examined whether long-term exposures to specific air
pollutants were associated with RA risk among women in the Nurses’ Health Study (NHS).
METHODS : The NHS is a large US cohort of female nurses followed up prospectively
every 2 years since 1976. We studied 111,425 NHS participants with information on air
pollution exposures as well as data concerning other lifestyle and behavioral exposures and
disease outcomes. Outdoor levels of different size fractions of particulate matter (PM10 and
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PM2.5 ) and gaseous pollutants (SO2 and NO2 ) were predicted for all available residential
addresses using monitoring data from the US Environmental Protection Agency. We exam-
ined the association of time-varying exposures 6 and 10 years before each questionnaire
cycle and cumulative average exposure with the risk of RA, seronegative (rheumatoid
factor and anti-citrullinated peptide antibody negative) RA, and seropositive RA...

Example 5

Query ID: 47480

Query: nausea vomiting pregnancy

Document ID: 7779586

Document text: Pregnancy complications and birth outcomes among women experiencing nausea only or
nausea and vomiting during pregnancy in the Norwegian Mother and Child Cohort Study
BACKGROUND : To compare pregnancy complications and birth outcomes for women
experiencing nausea and vomiting in pregnancy, or nausea only, with symptom-free women.
METHODS : Pregnancies from the Norwegian Mother and Child Cohort Study (n = 51
675), a population-based prospective cohort study, were examined. Data on nausea and/or
vomiting during gestation and birth outcomes were collected from three questionnaires
answered between gestation weeks 15 and 30, and linked with data from the Medical Birth
Registry of Norway. Chi-squared tests, one way analysis of variance, multiple linear and
logistic regression analyses were used. RESULTS : Women with nausea and vomiting
(NVP) totalled 17 070 (33%), while 20 371 (39%) experienced nausea only (NP), and 14
234 (28%) were symptom-free (SF)...

When analyzing Example 1 we see that the user query is "gestational diabetes mellitus" and
the document, that is annotated as relevant in TripJudge, is a study about different prevention
strategies to reduce postpartum weight retention in women with gestational diabetes mellitus.
While the document includes patients with gestational diabetes mellitus, it is only related to the
topic and does not mainly talk about gestational diabetes mellitus.

In Example 2 the user query is "macular degeneration" and the document, that is annotated as
relevant in TripJudge, is a study about statins for age-related macular degeneration, thus we
would annotate that document as relevant to the query although it was not clicked by users of
Trip.

In Example 3 the user query is "postnatal depression" and the document is a study about
identifying depression in women during pregnancy and the early postnatal period, thus the
document is related to postnatal depression and is relevant for the query, different to the label of
the TripClick test set.

In Example 4 the query is a combination of the key word "rheumatoid arthritis juvenile idiopathic
arthritis air pollut". The user probably wants to find studies investigating relations of rheumatoid
arthritis or juvenile idiopathic arthritis with air pollution. Thus the study about air pollution
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Figure 5.6: Two examples of query-document pairs where the TripClick (Raw) label and the
TripJudge label disagree. ON the left side the click-label is 0 (irrelevant), but the TripJudge
judgement is 1 (relevant), on the right side it is the opposite case: The TripClick label is 1
(relevant), but the TripJudge label is 0 (irrelevant).

exposures and risks of rheumatoid arthritis seems like a relevant document, although it was not
clicked by the users of Trip.

In Example 5 the user query is "nausea vomitting pregnancy" and the document is about
pregnancy complications and birth outcomes of women who experience nausea or vomiting
during pregnancy. While this study might not be the most relevant document for this search query,
we would still say it is a relevant study for this query.

Furthermore we visualize another disagreement example in Figure 5.6. On the left side of the
Figure 5.6 we see an example of a query and a document, where the raw label of the TripClick
(Raw) dataset is 0 (irrelevant) but the judgement in TripJudge for this query-document pair is 1
(relevant). On the right side of the Figure, we see the opposite case: The TripClick (Raw) label
is 1 (relevant), but the judgement annotation in TripJudge is 0 (irrelevant). On the left side the
user query is "coffee mortality" and the document looks like a study investigating the effect of
coffee and tea intake on the overall and cause-specific mortality of men and women. Thus this
seems to be a study drawings connections between coffee and mortality and the author would also
denote this study as relevant, although it was not clicked by the users. On the right side the user
query is "green tea weight loss", where the users intent is probably to find studies that investigate
the connection of green tea and weight loss. However the document is a study about the effect
of green tea plus coffee intake on body weight maintenance. It also takes into account that the
participants first have lost weight, thus the document text contains the words "weight loss", but
the study does not investigate direct connections of green tea and weight loss, but connections of
green tea and weight maintenance. Thus we would also not consider this document as relevant.

This qualitative analysis reveals that for 4 out of 5 random examples the judgements of TripJudge
make sense and the author agrees with the label of TripJudge and disagrees with the click-label
from TripClick. Furthermore we analyze two more examples where the click-based and human-
annotation-based label disagree and find that the human-label seems to be more in line with the
judgement of relevance of the author. That sheds a light on the discrepancies between the labels
of TripJudge and TripClick that are visualized in Figure 5.5 and shows that a non-click does not
automatically mean that the document is not relevant to the query.
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System evaluation

We compare the system rankings and the coverage of the relevance judgements for the runs for
TripJudge and TripClick DCTR and Raw. For TripJudge and TripClick unlabelled documents
are considered as irrelevant. In Table 5.2 the effectiveness metrics as well as the judgements
coverage measured as J at rank n is displayed for various statistical and neural retrieval systems
from Hofstätter et al. [HASH22]. For TripJudge we see that the coverage measure with J@5 for
the runs in the pool (run 1,2,7) is high (around 80%) compared to the coverage of the runs which
did not participate in the pooling. However the coverage of TripJudge is higher than the coverage
of TripClick DCTR and Raw for the respective runs. The Ensemble of MonoBERT based on
SciBERT, PubMedBERT-Abstract and PubMedBert-Full Text (run 7) consistently reaches the
highest retrieval performance for the judgement and click-based test collections. Interestingly the
dense retrieval model DPR SciBERT (run 2) underperforms BM25 (run 1) when evaluated with
TripJudge, although showing substantially higher retrieval effectiveness for the click-based test
collections. This suggests that the higher retrieval effectiveness of run 2 compared to run 1 for
the click-based collections is due to the higher coverage of annotations.

Furthermore, we compare the difference in system rankings between two test collection with
Kendall τ [Ken38], which is a common measure to compare the correlation between two system
rankings [Voo98, SS07]. In Table 5.3 are the Kendall tau correlations between two rankings
of two test collections regarding four metrics. Test collections with τ > 0.9 are considered
equivalent [Voo98].

For the comparison of TripJudge with the click-based test collections, we see a low correlation
of the system rankings for all 4 evaluation metrics. For the click-based test collections we see
that they are equivalent for most of the metrics. We conclude that the system rankings differ
drastically between TripJudge and TripClick and that TripJudge offers a valuable and reusable
relevance judgement set beside the TripClick test sets for evaluating retrieval systems.

5.1.7 Conclusion

We present the TripJudge test collection with 38810 relevance judgements for TripClick health
retrieval. We describe the annotation campaign for creating the relevance judgements. For
increased re-usability we used lexical and neural retrieval systems for pool creation. We reach an
at least moderate inter-annotator agreement among non-expert annotators. In order to control
the quality of the non-expert annotations in TripJudge, we compare the non-expert annotations
with expert annotations on a subset of the TripJudge test set and find a high overlap between
the relevance labels. When comparing the relevance judgements of TripJudge with the click-
based annotations from the TripClick test collections, we find that a majority of judged relevant
documents were unlabelled in TripClick, and there is a high disagreement between the relevance
judgements and the click-based annotations. We re-evaluate lexical and neural models and find
a higher judgement coverage for the retrieval runs for TripJudge than for the TripClick test
collections. The system rankings substantially differ between the evaluation with the relevance-
based and click-based collections.
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Limitations and future work

One limitation of TripJudge is the depth of the relevance judgements is usually a half [CMY+21b]
or a third of the annotated query-document pairs should be relevant [Voo18, VR21] while we have
65% relevant. Therefore we see possible future work in annotating to a higher depth. Nevertheless
we view TripJudge as a valuable resource for evaluation of the domain specific task of health
retrieval. Another limitations is that TripJudge is annotated by non-experts and the whole test
set is not annotated by experts. To mitigate this limitation and in order to control the quality
of the non-expert annotations we conduct another expert annotation campaign and find a high
overlap of expert and non-expert annotations. Still it is a limitation of that study that we mainly
employed non-expert annotators. Another limitation is the number of annotators per sample.
We had to manage a trade-off between annotating at least all samples from the test set with the
number of annotators and thus decided on a compromise of 3 annotators per query-document
sample, while of course more annotators per query-document sample would improve the quality
of the test set. Furthermore one direction that was not investigated in this work is the choice of
aggregation method for the annotations per query-document sample. While majority voting is a
rather simplistic choice there are more elaborate heuristics for aggregating the labels, that can be
studied in future work.

In conclusion, we argue that there must be more effort put into creating relevance judgements
based test collections for domain specific retrieval tasks, in order to evaluate different systems in
a robust and conclusive way.
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5.2 Active Learning for Annotation Efficiency Improvements

Having investigated the difference between human-labelled and click-based relevance annotations
for evaluation of medical ad-hoc retrieval, we now want to focus on exploring the problem of
training neural rankers with limited training data. We investigate:

RQ2.2 To what extent does active learning improve annotation efficiency for training neural
ranking and retrieval models?

We study this research question in the context of the tasks of ad-hoc retrieval in the web and
medical domain. In our research, we aim to isolate the impact of active learning for efficient
training data annotation, distinct from the potential influence of domain-specific neural ranking
and retrieval architectures like BERT-PLI [SML+20] or PARM. To achieve this, we focus on
"common" neural ranking and retrieval models [NC19, KOM+20, KZ20], which are not explicitly
designed for long documents. This chapter centers on ad-hoc retrieval tasks in the web and medical
domains, where long documents are not part of the queries or collections, obviating the need for
architectural modifications in the models introduced in Chapter 2.6. Also we choose to focus
on medical and web ad-hoc retrieval tasks because of the accessibility of large-scale, annotated
training data for these tasks, including MS Marco [NRS+16] and TripClick [RLS+21]. Due to
resource limitations, we simulate the selection and annotation processes during training and thus
need large-scale already annotated training datasets for this simulation. Our evaluation focuses
on precision-oriented metrics, given the precision-focused nature of ad-hoc retrieval tasks. This
chapter is based on the publication [AZH+23].

Search methods based on Pre-trained Language Models (PLM) have demonstrated great effec-
tiveness gains compared to statistical and early neural ranking models [CMYC19, CMYC20].
However, fine-tuning neural rankers requires a great amount of annotated training data [NRS+16,
CMYC20]. Annotating data involves a large manual effort and thus is expensive, especially in
domain specific tasks [CBLL20]. In this chapter we consider the problem of fine-tuning neural
rankers under limited training data and budget. We investigate two scenarios: fine-tuning a ranker
from scratch, and domain adaptation starting with a ranker already fine-tuned on general data,
and continuing fine-tuning on a target dataset.

We observe a great variability in effectiveness when fine-tuning on different randomly selected
subsets of training data. This suggests that it is possible to achieve effectiveness gains by actively
selecting a subset of the training data that has the most positive effect on the rankers. This way,
it would be possible to fine-tune effective neural rankers at a reduced annotation budget. To
investigate this, we adapt existing Active Learning (AL) strategies to the task of fine-tuning
neural rankers and investigate their effectiveness, also considering annotation and computational
costs. Our extensive analysis shows that AL strategies do not significantly outperform random
selection of training subsets in terms of effectiveness. We further find that gains provided by
AL strategies come at the expense of more assessments (thus higher annotation costs) and AL
strategies underperform random selection when comparing effectiveness given a fixed annotation
cost. Our results highlight that “optimal” subsets of training data that provide high effectiveness
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at low annotation cost do exist, but current mainstream AL strategies applied to neural rankers
are not capable of identifying them.

5.2.1 Introduction

Search methods based on large Pre-trained Language Models (PLM) have shown great effective-
ness gains compared to common statistical models and early neural methods [LNY21, CMY+21b,
Ton22]. These language models are pre-trained for language representation learning on a back-
ground corpus; they are then further trained for a specific task – a process referred to as fine-tuning.
Typically, neural rankers are created through the fine-tuning of a PLM to the ranking task (and
possibly, to a specific domain) [NC19, NYCL19]. The fine-tuning of neural rankers typically
requires a great amount of labelled training data [NC19, HLY+21]. This can be a challenge when
considering search tasks with no or little training data available. Data annotation typically requires
a large manual effort and thus is expensive, especially in domain-specific tasks where annotators
should be domain experts [CBLL20]. In real-life settings, annotation and computational budget3

is often limited, especially for start-ups or in domain-specific contexts [Tai14].

In this work we focus on the problem of fine-tuning neural rankers under limited training data
and budget. There are alternative directions one may take to deploy a neural ranker in a specific
task for which no or limited training data is available. These include for example the zero-
shot application of neural rankers trained on another, resource-rich, retrieval task or domain
[XXS+22, TRR+21], the learning with few-shot examples [DZM+23], and approaches based
on pseudo-labelling [WTRG22]. However the effectiveness of these approaches depends on
the relatedness of the fine-tuning task or the pre-training domain of the language model to the
target retrieval task [WSKZ22]; thus their generalization capabilities remain unclear. Therefore
performing domain adaptation by fine-tuning the neural ranker on the target task with annotated
training data (the setting investigated in this work) remains favourable for a (reliable) high
effectiveness [CMY+21a].

It is unclear however how much annotated training data is required for training an effective neural
ranker. Furthermore, in presence of a budget constraint that restricts the amount of data that can
be annotated for training, it is unclear whether it is possible to select training data to minimise
annotation cost while maximising ranker effectiveness.

In this work, (1) we investigate how the amount of labelled data used for fine-tuning a neural
ranker impacts its effectiveness, (2) we adapt active learning (AL) strategies to the task of
training neural rankers, (3) we propose a budget-aware evaluation schema including aspects
of annotation and computation cost, (4) we conduct an extensive analysis of AL strategies for
training neural rankers investigating the trade-offs between effectiveness, annotation budget and
computational budget. We do this in the context of three common neural ranker architectures:
cross-encoders (MonoBERT [NC19]), single representation bi-encoders (DPR [KOM+20]) and
multi-representation bi-encoders (ColBERT [KZ20]), and two scenarios:

3With annotation budget we refer to the amount of money set aside for paying annotators to label pairs of queries
and documents. With computational budget, we refer to the amount of money set aside for paying the computation
costs arising from the training/fine-tuning of the neural rankers. These costs may include the hardware and energy
costs, or the purchase of cloud solutions.
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➊ Scratch: the PLM is pre-trained on a background corpus, but has yet to be fine-tuned to the
target ranking task and dataset;

➋ Adapt: domain adaptation of the neural ranker is performed. The PLM is pre-trained on a
background corpus and fine-tuned to a ranking task and a specific dataset, but further fine-
tuning has yet to be performed to transfer the ranker to another dataset and, possibly, a ranking
task with characteristics that differ from those of the first fine-tuning process.

In our study we investigate the following research question:

RQ2.2.1 What is the effect of the size of the labelled training data on the effectiveness of neural
rankers?

To investigate the effect of the amount of labelled data on the effectiveness of neural rankers, we
select incremental amounts of data to fine-tune a ranker. Our empirical results show that the size
of the dataset available for fine-tuning the neural ranker greatly influences the effectiveness of the
ranker. While, somewhat unsurprisingly, we find that in general more training data leads to higher
effectiveness, we also find large variability in effectiveness between different randomly selected
training sets of the same size. Furthermore we find that, for some training sizes, the best random
selection run outperforms the worst one, and significantly. This shows that there are subsets of
the training data which lead to significant improvements within the same training data size.

This variability motivates us to investigate whether we can select those “high-yield” samples
using Active Learning (AL) strategies. The intuition is that a good selection strategy would
lead to a smaller amount of data to be annotated, and thus a lower annotation cost, while still
producing a highly effective ranker. We investigate:

RQ2.2.2 How do different active selection strategies influence the effectiveness of neural rankers?

Selection of training data has been extensively investigated in AL for machine learning. Here,
common active selection strategies are based on uncertainty or diversity criteria [CGJ96, LG94,
SZ05]. We thus adapt representative methods that implement these criteria to the context of
fine-tuning neural rankers. We evaluate the representative active selection strategies in terms of
their effectiveness for fine-tuning neural rankers on different training data sizes and compare the
strategies to random selection of training data as baseline. For both scenarios the active selection
strategies do not offer statistically significant improvements compared to random selection. For
certain scenarios and neural rankers we find varying beneficial selection strategies, however no
selection strategy shows consistent and robust higher effectiveness than random selection.

Since it is not our goal to minimize the training data size, but actually we aim to minimize the
total cost of fine-tuning neural rankers, we investigate:

RQ2.2.3 What is the effect of using an an active selection strategy to fine-tune a neural ranker under
a constrained budget?

We revisit the results in light of a budget-aware evaluation which we introduce in this work. This
evaluation includes aspects of annotation cost as well as cost of computing resources. With this,
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we find that the annotations are the main cost factor. Since each selection methods requires a
different number of assessments to annotate a training set of a certain size, we compare the number
of assessments to the effectiveness of the neural rankers for random and active selection strategies.
This reveals that the (marginal, if any) effectiveness gains provided by AL strategies come at the
expense of more assessments (thus higher annotation costs) and AL strategies under-perform
random selection when comparing both effectiveness and associated cost.

Our contributions are the following:

• We find a great variability in effectiveness when fine-tuning a neural ranker on different
subsets of the same size;

• We adapt active selection strategies to the task of training neural rankers;

• We propose our novel budget-aware evaluation schema including aspects of annotation
cost and cost for computational resources;

• We conduct an extensive analysis of active learning strategies for training neural rankers
for two different training scenarios in the context of budget-aware evaluation.

5.2.2 Considered neural rankers

In this study we consider three neural ranker architectures considered: a cross-encoder model
(MonoBERT) [NC19], a single representation bi-encoder model (DPR) [KOM+20], and a multi
representation bi-encoder model (ColBERT) [KZ20]. We refer to details about the model
architectures to our background section 2.

5.2.3 Training Scenarios & Annotation Modeling

We consider two scenarios for training the neural rankers: ➊ Scratch training from scratch,
starting with a PLM and ➋ Adapt domain fine-tuning after rank/retrieval fine-tuning of the PLM.
These are common scenarios that are encountered in the practical application of neural rankers to
search problems [DZM+23, HLY+21, HASH22].

In ➊ Scratch our objective is to train a neural ranker “from scratch”, i.e., without having already
performed any fine-tuning on a retrieval task. There are many reasons this scenario could occur in
the practical deployment of neural rankers. For example, no suitable labelled data corresponding
to the ranking task may be available, or the data that may be available is protected by a license
that prevents its use within a product (e.g., the MS Marco dataset). We model the first scenario
by starting from a pre-trained BERT model [DCLT19, SDCW19] and conduct experiments by
training the ranker on the MS Marco dataset, a large scale web search collection commonly used
to train these rankers [NC19, HLY+21, QDL+21]. Note, in our experiments we assume that no
labels are available for the dataset, and labels are iteratively collected (in a simulated setting)
within the AL cycle.

In ➋ Adapt our goal is to adapt a neural ranker to a specific retrieval task (potentially in a
specific domain). Here we assume that the neural ranker has already undergone fine-tuning on
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Algorithm 2 Incremental annotation and training process

Input: T whole training set, I number of iterations, s number of added samples per iteration, M
is a neural ranker/retriever

Output: D annotated training set, M neural ranker trained on D
D ← {}
for i in I do

Select subset S ⊂ T of size |S| = s with selection strategy
Annotate S
D ← D ∪ S
Train M with D

end

a high-resource retrieval task (e.g., using the common MS Marco dataset [NRS+16, KOM+20,
HLY+21, QDL+21]), and the goal is to further fine-tune the ranker with additional data, on a
different retrieval task or data domain. This is a common setting in domain-specific IR settings
[DZM+23, WTRG22, HASH22]. The assumption is that the initial fine-tuning on the non-target
retrieval task or domain data still highly contributes to the effectiveness of the ranker, especially
when the target data available for fine-tuning is limited. We model the second scenario by
starting from a ranking or retrieval model fine-tuned on MS Marco and fine-tune the model for
a domain-specific retrieval task. In our experiments, we choose to validate the models using
the retrieval task and datasets associated with health-oriented web search in the medical domain
[GJK+16]. We choose this task due to the availability of the TripClick dataset [RLS+21], a
large-scale training and test set for this task, and the availability of the TripJudge test collection
[AHVH22]. The TripClick dataset has similar characteristics to MS Marco (e.g. query length,
sparse judgments). In contrast to other domain adaptation approaches [CGZW11], we do not mix
the training sets of the source and the target domain. Instead, in our experiments, we only rely on
the availability of the neural ranker already fine tuned on the non-target data. We do this so to
(i) be able to separate the effects of mixing the training sets from the active domain adaptation
strategies, and (ii) study neural ranker development and deployment strategies that are in line
with the green IR principles of reuse and recycle [SZZ22].

In order to model the real-life process of incremental annotation and training we incrementally
increase our training set D used for fine-tuning. The details of this incremental process are
depicted in Algorithm 2. We start with an empty training set D = {} and in each iteration a
subset S of the whole training set T (S ⊂ T ) is selected to be added to the training dataset D.
We model the annotation process by attaining the labels from the training set qrels and adding the
samples to the training set (D = D ∪ S). Then we train the neural ranker on the updated training
set D and, based on random or active selection strategies, we select the next subset to annotate
and add it to the training set.

104



5.2. Active Learning for Annotation Efficiency Improvements

5.2.4 Active Selection Strategies

We consider three active selection strategies to identify training data for labelling and to then
use within the neural ranker fine-tuning: uncertainty-based selection [LG94, ZWYT08, Yu05],
query-by-committee (QBC) [CGZW11], and diversity-based selection [XAZ07]. In addition, we
consider random selection as a baseline selection strategy. Next, we describe the active selection
strategies and how we adapt them for fine-tuning neural rankers.

Uncertainty-based selection

The uncertainty-based selection strategy selects samples by measuring the model’s (ranker)
uncertainty in the scores it produced and then selecting the samples with the least confidence
[LG94, CGJ96]. Uncertainty-based strategies are commonly applied to classification problems,
and often the score provided by the classifier is used as direct indication of uncertainty [EDHG+20,
LG94]: scores are in the range [0, 1], the decision boundary is set to 0.5 and the confidence in
the classification is measured in function of the distance to the decision boundary (the closer, the
least confident) [EDHG+20, LG94].

This approach is not directly transferable to neural rankers since their relevance scores are not
necessarily bounded and therefore there is no clear decision boundary measuring the uncertainty
in the ranking. We note that uncertainty estimation in Information Retrieval is a fundamental
but largely unexplored problem [TC96, CLvR98, CC07], especially for neural rankers [LRC+21,
CML+21].

In this work, we model the decision boundary by the mean of the score distribution of the top K
ranked passages for all queries in the training set T\D and select the query-passage pairs with
the relevance score closest to the mean of the score distribution for the ranker, hence with the
highest uncertainty. We leave the investigation of other upcoming approaches for future work
(see Section 5.2.8 for further insights).

In order to model the annotation and training process for the selected query-passage pairs,
the selected passage is assigned its label from the training qrels. In case the selected passage
is relevant we sample an irrelevant passage randomly from the BM25 top 1,000 to construct
a training triplet (query, positive passage, negative passage). In case the selected passage is
irrelevant, we take the selected passage as negative for the triplet and take the first relevant
passage in the BM25 top100 list re-ranked by the neural ranker as positive passage. In case the
positive passage is not in the BM25 top 100 we still add the positive passage from the training
qrels. For each selected query-passage pair we add one triplet to the train set.

Query-by-committee selection

The query-by-committee (QBC) method [SOS92, FSST97] is a specific uncertainty-based se-
lection strategy. In QBC, multiple committee members (models) are used to classify or rank
samples; then the disagreement between the committee members on classified/ranked samples is
measured and the samples with the highest disagreement are selected for annotation. A previous
adaptation of QBC to information retrieval is due to Cai et al. [CGZW11] who apply QBC to
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Learning-to-Rank for domain adaptation. For this, they train different members of the committee
by training on subsets of the currently annotated training set at hand. The disagreement between
the committee members is then measured by the vote entropy of the different rankings of the
members for the queries which are not yet annotated. In the vote entropy the committee members
M vote on the partial order of two passages N(p1 ≺ p2) in the ranked list R, counting how many
of the members rank p1 higher than p2. The vote entropy of a query q is then defined as:

V E(q) = −1
|M |

�
pi,pj∈R

N(pi ≺ pj)log


N(pi ≺ pj)

|M |


(5.1)

The queries with the highest vote entropy are selected for annotation. In order to model the
annotation process and to select training triples, for every query that is selected to add to the
training set we take the first relevant passage in the BM25 top100 list re-ranked by the neural
ranker as positive passage and sample a random negative passage from the BM25 top 1,000
passages. We choose to use the re-ranked list of the first member for selection. For every query
we add one training triplet to the training set.

Diversity-based selection

Diversity-based selection strategies select training samples based on the diversity of the samples –
typically comparing already selected samples to those yet to select [XAZ07]. Within Information
Retrieval, diversity-based selection strategies have been used for Learning-to-Rank models
[XAZ07, SZ05, YWGH09]. In those settings, diversity is measured by clustering queries using
an external unsupervised clustering model and taking one representative query from each cluster.

In our adaptation of diversity-based selection strategies to neural rankers, to compute diversity
we consider the query representation made by the neural ranker. This has the advantage that
we leverage the model’s representations to compute diversity, instead of relying on an external
model. Furthermore, this representation changes in each iteration as the neural ranker is trained
incrementally through training sets of increasing size: therefore, the query representation also
accounts for changes within the ranker itself. For DPR and ColBERT, we use the CLS token
representation of the encoded query as query representation. For MonoBERT we encode the
query without a passage and also take the CLS representation for measuring the diversity. We
cluster the query representations of queries in T\D with the number of clusters equaling the
number of training samples to be added in that iteration (s). From each cluster, we randomly
sample one query to be annotated.

To add a training triplet to the training set for each selected query, we rely on the same annotation
process used in QBC.

5.2.5 Budget-aware evaluation

Next we introduce a framework to evaluate active learning to neural ranker fine-tuning within
budget constraints. For this, we model the costs related to both annotation effort and computation.
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Annotation Costs

For measuring the annotation costs, we count the number of assessments needed to annotate a
training triplet for a single query. The number of assessments corresponds to the rank of the
first relevant passage found in the ranking of the neural ranker, which is trained in the previous
iteration of the AL process. In our setting, the annotation for a query stops when one relevant
passage for a selected query is found – thus we need to assess all passages in the ranking for that
query up until the relevant passage is found and also annotated. This implies that the number of
assessments differs from the training data size (the number of queries), e.g., one query sample in
the training data can account for 10 assessments required when the first relevant passage is found
at rank 10.

Then total annotation cost is the sum of the number of assessments for all the queries added to
the training set multiplied with the costs for annotating them. Formally, let A(i) be the number
of assessments needed to create the training data of iteration i, Ah be the number of assessments
an annotator finishes in one hour and AC be the cost for an annotator per hour4. Then, the total
annotation cost at iteration i is computed as:

CA(i) = A(i)
Ah

· AC (5.2)

Computational Costs

Next we model the computational costs involved in executing the active selection strategies.
These strategies usually will require both CPU and GPU based computation, which incur different
costs and thus we account for separately. Let HGP U (i) be the accumulated number of GPU hours
needed for training a neural ranker for iteration i and Gh be the cost of running an GPU for one
hour. Then, the total computational cost at iteration i is computed as:

CC(i) = HGP U (i) · Gh + HCP U · Ch · (i − 1) (5.3)

with HCP U the number of CPU hours needed for computing the selection strategy and Ch the
cost of one hour CPU.

Total Cost

Finally, the total cost at iteration i can then be computed using Equations 5.2 and 5.3:

C(i) = CA(i) + CC(i) (5.4)

= A(i)
Ah

· AC + HGP U (i) · Gh + HCP U · Ch · (i − 1)

4Note that certain search tasks or domain may require multiple annotators to examine the same sample: in this
case AC would be the sum of the hourly rates associated to all the annotators.
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5.2.6 Experimental Setup

Next we describe the experimental setup we have devised to study the AL strategies for neural
ranker fine-tuning we have illustrated above. We develop our investigation along the following
three lines of inquiry:

RQ2.2.1 What is the effect of the size of the labelled training data on the effectiveness of neural
rankers?

RQ2.2.2 How do different active selection strategies influence the effectiveness of neural rankers?

RQ2.2.3 What is the effect of using an an active selection strategy to fine-tune a neural ranker under
a constrained budget?

Passage Collection & Query Sets

For ➊ Scratch, we use the MS Marco passage collection [NRS+16] as described in section 2.5.
MS Marco is based on sampled Bing queries and contains 8.8 million passages; its training set
contains 503k training triplets. We use the training portion for fine-tuning and evaluate on the
TREC DL 2019 [CMYC19] and 2020 [CMYC20] with nDCG@10.

For ➋ Adapt, we use the TripClick dataset [RLS+21] as described in section 2.5 and our
TripJudge test set, introduced in section 5.1. The TripClick dataset contains real user queries
and click-based annotations. It consists of 1.5 million passages and 680k training queries. Test
queries are divided with respect to their frequency into three sets of 1, 750 queries respectively;
the three sets are Head, Torso, and Tail. For the Head queries a DCTR [CMdR15] click model
was used to create relevance signals from the click labels. We evaluate on the Head DCTR and
the Torso Raw test set as in related work [RLS+21, HASH22, AHVH22].The TripJudge test set
contains relevance judgements for the Head test queries, where the relevance judgements are
based on human annotations.

Neural ranker details

We train MonoBERT, ColBERT and DPR using training triplets with a RankNet loss [Bur10].
The triplets consist of the query, a relevant and an irrelevant passage; negative passages are taken
from the top 1000 BM25 negatives. We train DPR and ColBERT with a batch size of 100, while
we use a batch size of 32 for MonoBERT due to its high computational requirements. We train all
models for 200 epochs with a learning rate of 7 × 10−6 and we use early stopping. For training,
we impose a maximum input length of 30 tokens for the query and 200 tokens for the passage; this
setting truncates only a few outlier samples in the dataset but provides computational advantages
for batching.

In ➊ Scratch we perform fine-tuning from scratch; as underlying PLMs we use DistilBERT
[SDCW19] for DPR and ColBERT and the bert-base-uncased model [DCLT19] for
MonoBERT both provided by Huggingface. We choose these models as starting point so that they
match the fine-tuned models for ➋ Adapt. In ➋ Adapt we start with neural rankers fine-tuned on

108



5.2. Active Learning for Annotation Efficiency Improvements

MS Marco. For DPR we start from TASB [HLY+21], trained with knowledge distillation and
topic-aware sampling; for ColBERT from a ColBERT DistilBERT model trained with knowledge
distillation; for MonoBERT from a bert-base-uncased model solely trained on MS Marco.

For MonoBERT and ColBERT, we report results in a re-ranking context, i.e. using these neural
rankers to re-rank the top 1,000 results retrieved by BM25. For DPR, we instead consider a
retrieval setting, where all the collection is scored and then only the top 1,000 are used for
evaluation. However, the findings we observe for DPR in the retrieval setting are similar to those
we obtained for the same PLM in a re-ranking setting (not reported here). We decided to report
retrieval results for DPR, rather than re-ranking as for the other two PLM, because DPR is more
commonly used for retrieval (while the other two for re-ranking) [KOM+20, QDL+21, XXL+20].

Active learning details

As foundational experiment we train the neural rankers on different subsets of the training
data of differing sizes; as size, we explore the values [1k, 5k, 10k, 20k, 50k]. We repeat these
experiments 4 times with different random seeds for sampling the subsets, so that each time we
train on different subsets with the same size and we can measure variance.

For the active learning process, we increase the training subsets incrementally as denoted in
Algorithm 1. In each iteration we train the neural ranker from scratch to exclude a potential bias
from incrementally training a ranker. In the first iteration we randomly select the first subset
with the same random selection across the different active learning strategies. For uncertainty
and diversity selection one could select the first batch with the selection strategy, however for
QBC this is not possible different committee members for selection are not available in the first
iteration. Therefore we do random selection in the first iteration to be able to fairly compare
across the three strategies.

We use random selection as a baseline and also increase the training set incrementally. We run
the random baseline 4 times with different random seeds.

For fast and resource efficient active selection, we train the neural rankers for 15 epochs and use
the trained ranker for active selection. For the sake of evaluation and in order to compare the
effectiveness at different iterations, we resume the training after 200 epochs.

For the uncertainty-selection and QBC strategies, we score the BM25 top 100 passages of each
training queries and use these passages for actively selecting the queries for annotation. For the
QBC selection strategy we use the same hyper-parameters as Cai et al. [CGZW11]; we use 2
members in the committee and train each member on 80% of the subset available at each iteration
for training. We choose the size of the training subsets so that each 80% portion aligns with the
other training set sizes.

For ➊ Scratch we add in each iteration s = 5, 000 training samples to the training size. For ➋

Adapt we have s = 5, 000 samples for the first 2 iterations until the training size is 10k, from then
on we use s = 10, 000 samples for the remaining iterations in order to decrease computational
cost.
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Costs for Budget-Aware Evaluation

For computing the annotation effort, for each triplet added to the training we store the rank of the
first relevant document in the ranked list generated by the neural ranker trained in the previous
iteration. Since we do not have a trained neural ranker in the first iteration, we start with the
initial ranking provided by BM25. For the random baseline, we also use the initial BM25 ranking
for computing the number of assessments.

We conduct our experiments on servers equipped with NVIDIA A40 GPUs and measure the
GPU and CPU hours spent in the training of the neural ranker and the execution of the selection
strategies.

For the computational cost, we refer to common cloud computing costs5 and set Gh = 3.060$ and
Ch = 0.408$. For the number of annotations per hour Ah we rely on estimates from Althammer
et al. [AHVH22], who conducted an annotation campaign on TripClick test set. Here annotators
needed 47.7 seconds to annotate a query-passage pair on average, which corresponds to 75
assessments per hour. For the annotation cost per hour, AC , we assume 50US$ as hourly rate of
a domain expert annotator.

5.2.7 Results

RQ2.2.1: Effect of Size of Training Data

We visualize the effect of training data size on the effectiveness of neural rankers for ➊ Scratch
(Figure 5.7a) and for ➋ Adapt (Figure 5.7b). The boxplots visualize the range of effectiveness
when the neural ranker is trained on different subsets of the same size.

In both cases, it is observed that as the size of the training data increases, nDCG@10 improves for
all three neural rankers. When considering effectiveness across neural rankers, it is noteworthy
to observe ColBERT and MonoBERT. Recall from the literature that MonoBERT outperforms
ColBERT on MS Marco when both are trained on the whole MS Marco training data [CMY+21b],
and the same holds for TripClick [HASH22]. However, in our experiments, we observe that
ColBERT outperforms MonoBERT for smaller training data sizes. MonoBERT eventually
becomes better than ColBERT but only once more than 10,000 training samples are used for the
➋ Adapt scenario. For the ➊ Scratch scenario the two rankers becomes largely indistinguishable
when the training data is 50,000 samples, and eventually MonoBERT takes the lead thereafter
(not shown in the figure).

In ➊ Scratch, the improvement in effectiveness with increasing training size is particularly
remarkable for small training subsets. For example, the improvement by adding 4k training
samples from 1k to 5k samples is between 18% and 63% of the median nDCG@10. Noting the
wide scale of the y-axis from 0.2 to 0.7 nDCG@10, we observe a large variability when training
neural rankers on limited data. This is particularly the case for MonoBERT, where we find a
large difference from maximum and minimum nDCG@10 from 19 (0.27–0.46 nDCG@10) for

5From https://aws.amazon.com/ec2/pricing/on-demand/. Costs valid as of 02 January 2023.
GPU costs refer to a p3.2xlarge instance and CPU costs to an a1.4xlarge instance.
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(a) ➊ Scratch.

(b) ➋ Adapt.

Figure 5.7: Boxplot of nDCG@10 effectiveness on TREC DL 2020 (➊ Scratch, Figure 5.7a)
and on TripClick Head DCTR test (➋ Adapt, Figure 5.7b), visualizing the variability of training
on different training sample sizes. neural rankers are trained on subsets of respective sets (MS
Marco/TripClick) with different sizes. To measure variability, for each train data size we repeat
random sampling 4 times.
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Table 5.4: nDCG@10 effectiveness across different amounts of training data for ➊ Scratch on
TREC DL 2019 & 2020. Bold numbers denote highest effectiveness for each neural ranker and
training size. Statistically significant differences to random selection baseline (Random) are
denoted with * (paired t-test; p < 0.05, Bonferroni correction with n=3). No consistently best
performing method and no statistically significant difference to Random. ‘-’ indicates no result at
that training size.

nDCG@10 ➊ Scratch: MS Marco
TREC DL 2019 TREC DL 2020

Train data size 0 5k 10k 20k 50k 0 5k 10k 20k 50k

0 BM25 .501 .475

MonoBERT (re-rank BM25 top 1,000)
1 Random .051 .5935 .6272 .6430 .6705 .041 .5590 .5871 .6148 .6552

2 QBC .6193 .6157 .6246 .6728 .5507 .5844 .6443 .6630
4 Uncertainty .6118 .6232 .6588 .6509 .5875 .5873 .6336 .6595
5 Diversity .5925 .6341 .6448 .6640 .5407 .6237 .6338 .6670

ColBERT (re-rank BM25 top 1,000)
6 Random .352 .6176 .6385 .6352 .6614 .246 .5944 .6091 .6291 .6577
7 QBC .6192 .6297 .6541 .6680 .5813 .6159 .6511 .6758
9 Uncertainty .6257 .6034 .6089 .6370 .5987 .6076 .6001 .6246
10 Diversity .6271 .6239 .6402 .6644 .5912 .6038 .6211 .6363

DPR (full retrieval)
11 Random 0.0 .3674 .4390 .4457 .5006 0.0 .3225 .3789 .4190 .4757
12 QBC .3465 .4343 .4628 .5079 .3023 .3849 .4090 .4534
14 Uncertainty .3961 .4067 .4255 .3757∗ .3660 .3733 .4476 .4254
15 Diversity .3713 .4086 .4593 .4750 .3437 .4030 .4198 .4998

1k samples to 7 (0.53–0.60) for 10k samples. The worst and the best MonoBERT run obtained
are statistically significantly different for train size 1k and 5k. For DPR, the inter-quartile range
is up to a difference of 5 nDCG@10 (0.38-0.43 for 10k), thus 50% of the effectiveness points are
within a range of 5 nDCG@10. A substantial variability in the effectiveness of DPR is observed
when trained on 50k samples. The best and the worst runs for DPR are statistically significantly
different for 5k and 10k samples. It is noteworthy that the boxplots for 5k samples overlap in part
with those for 10k, and similarly the 10k with those for 20k. This means that specific subset of
training data of size 5k (10k) allow to reach the same effectiveness obtained when training the
ranker on double the amount of data, i.e. 10k (20k).

For ➋ Adapt (Figure 5.7b) we also notice variability in search effectiveness; yet, we observe a
relatively smaller variability compared to ➊ Scratch. The differences between the worst and best
runs for each training data size are not statistically significant in this scenario. We suspect that
this smaller variability in effectiveness is due to starting from an already fine-tuned neural ranker
instead of training from scratch. Although our empirical results suggest a smaller variability, we
still see overlaps of the boxplots, especially between 10k and 20k sample: that is, the same or
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Table 5.5: nDCG@10 effectiveness across different amounts of training data for ➋ Adapt
on TripClick Head DCTR & Torso Raw. Bold numbers denote highest effectiveness for each
neural ranker and training size. Statistically significant differences to random selection baseline
(Random) are denoted with * (paired t-test; p < 0.05, Bonferroni correction with n=3). For DPR,
Random consistently is best; all statistically significant differences to Random are significantly
lower. ‘-’ indicates no result at that training size.

nDCG@10 ➋ Adapt: TripClick
Head test DCTR Torso test raw

Train data size 0 5k 10k 20k 50k 0 5k 10k 20k 50k

0 BM25 .140 .206

MonoBERT (re-rank BM25 top 1,000)
1 Random .036 .1715 .1833 .1941 .2129 .036 .2279 .2352 .2426 .2710
2 QBC .1731 .1835 .2065 .2059 .2046 .2328 .2423 .2679
4 Uncertainty - .1920 .1981 .2190 - .2356 .2362 .2705
5 Diversity - .1837 .1933 .2123 - .2294 .2450 .2650

ColBERT (re-rank BM25 top 1,000)
6 Random .155 .1675 .1770 .1813 .1912 .227 .2300 .2351 .2397 .2475
7 QBC .1302∗ .1791 .1860 .1962 .1558∗ .2273 .2292 .2360
9 Uncertainty - .1645 .1536 .1753∗ - .2190 .1909 .2274

10 Diversity - .1645 .1811 .1957 - .2187 .2362 .2481

DPR (full retrieval)
11 Random .139 .1389 .1459 .1516 .1621 .200 .1837 .1745 .1924 .2023
12 QBC .0849∗ .1043 .1368 .1603 .0895 .1122 .1312 .1440
14 Uncertainty .1060 .1165 .1283 .1336 .0907 .0946 .1030 .1031
15 Diversity .1059 .1150 .1163 .1458 .0907 .1041 .1217 .1473

even better effectiveness could have been reached with half the training data.

These results suggest that it is possible to select subsets of training data that would “speed-up”
the learning: in other words, some subsets of training data can achieve the same or even higher
effectiveness as using double the amount of data. This thus serves as a motivation for this work:
is it possible to identify “high-yield” training subsets so as to spare annotation costs but yet obtain
high effectiveness? To this aim, we investigate the effectiveness of active learning strategies,
which we discuss next.

RQ2.2.2: Effectiveness of Active Selection

We report the effectiveness of the active learning strategies from Section 5.2.4, along with
the random selection baseline, when used for training MonoBERT, ColBERT and DPR across
different amounts of training data in Table 5.4 for scenario ➊ Scratch and in Table 5.5 for ➋

Adapt.

For the random selection baseline we report the mean effectiveness when randomly sampling and
training on different subsets of the same size multiple times – we perform four random selections
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Figure 5.8: nDCG@10 effectiveness (lines, left y-axis) and stacked annotation and computational
cost (bars, right y-axis) for different train data sizes on TREC DL 2020 for ➊ Scratch. For
Random (4 runs) the blue line denotes mean, shaded area denotes the range between min and
max effectiveness. Good results would be expected to be between mean and max of Random, bad
results between mean and min. For stacked cost, only annotation cost is visible since it greatly
exceed computational costs.

for each training size. Note that because the AL selection strategies are deterministic, there is
only one result for each strategy at a certain training size, not multiple runs as for the Random
baseline.

Various AL strategies outperform the Random baseline at most training data sizes in ➊ Scratch.
However these effectiveness gains are not consistent throughout all training sizes: there is no
single AL strategy that always performs better than the others and, importantly, that always
outperforms the random selection baseline. For example, on TREC DL 2020 the uncertainty-
based selection for DPR reaches the highest effectiveness when training with 20k samples, but
effectiveness drops sensibly when training with 50k samples. Furthermore, effectiveness gains
across all methods are not statistically significant, nor are the improvements substantial. When
evaluating the neural rankers on MS Marco Dev, we find similar results: there are varying,
non-statistically significant improvements of AL strategies to the Random baseline.

The effectiveness results are more consistent across methods and training data sizes in scenario
➋ Adapt. Random outperforms all AL selection strategies when using DPR. The QBC strategy
reaches slightly higher effectiveness than random selection when ColBERT is used; however,
none of the improvements are significant despite the large number of test queries in the TripClick
Head and Torso test sets. No statistical significance is found even when the worst random
selection run is considered in place of the mean of the random runs.

In summary, we found that for the task of fine-tuning neural rankers, there is no single active
learning selection strategy that consistently and significantly delivers higher effectiveness com-
pared to a random selection of the training data. This is a surprising and interesting result. Active
learning has been shown to be effective in natural language tasks [LG94], also for methods that
rely on PLM models [EDHG+20]: yet, popular AL methods do not work in the context of neural
rankers. However, RQ2.2.1 shows that there are subsets of the training data that when used for
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Figure 5.9: nDCG@10 effectiveness versus number of assessed query-passage pairs on TREC
DL 2020 for ➊ Scratch. Number of assessments per sample is measured with rank of highest
relevant passage during selection. For the Random baseline the blue line denotes mean, blue
shaded area denotes the range between max and min effectiveness versus mean of the number of
assessments. Selection strategies are not consistently more effective considering the number of
assessments to annotate the training samples.

Figure 5.10: nDCG@10 effectiveness (lines, left y-axis) and stacked annotation and computational
cost (bars, right y-axis) for different train data sizes on TripClick Head DCTR for ➋ Adapt. For
Random (4 runs) the blue line denotes mean, shaded area denotes the range between min and
max effectiveness. Good results would be expected to be between mean and max of Random, bad
results between mean and min. For stacked cost, only annotation cost is visible since it greatly
exceed computational costs.

fine-tuning neural rankers deliver sensibly higher effectiveness than others – but AL methods are
unable to identify those high-yield training samples.
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Figure 5.11: nDCG@10 effectiveness versus number of assessed query-passage pairs on TripClick
Head DCTR for ➋ Adapt. Number of assessments per sample is measured with rank of highest
relevant passage during selection. For the Random baseline the blue line denotes mean, blue
shaded area denotes the range between max and min effectiveness versus mean of the number of
assessments. Selection strategies are not consistently more effective considering the number of
assessments to annotate the training samples.

Figure 5.12: nDCG@10 effectiveness (lines, left y-axis) and stacked annotation and computational
cost (bars, right y-axis) for different train data sizes on TripJudge for ➋ Adapt. For Random
(4 runs) the blue line denotes mean, shaded area denotes the range between min and max
effectiveness. Good results would be expected to be between mean and max of Random, bad
results between mean and min. For stacked cost, only annotation cost is visible since it greatly
exceed computational costs.

RQ2.2.3: Budget-aware Evaluation

Since the goal of actively selecting training data is to minimize the annotation cost, we investigate
the active selection strategies in the context of constrained budgets. For this, we use the budget-
aware evaluation of Section 5.2.4, which accounts for the number of assessments needed to
annotate the training data as well as the computational cost of the training and selection.
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Figure 5.13: nDCG@10 effectiveness versus number of assessed query-passage pairs on Trip-
Judge for ➋ Adapt. Number of assessments per sample is measured with rank of highest relevant
passage during selection. For the Random baseline the blue line denotes mean, blue shaded area
denotes the range between max and min effectiveness versus mean of the number of assessments.
Selection strategies are not consistently more effective considering the number of assessments to
annotate the training samples.

We visualize the effectiveness and associated costs at different training set sizes for the AL
strategies for the three neural rankers in Figure 5.8 for ➊ Scratch on TREC DL 2020 and in
Figure 5.10 and 5.12 for ➋ Adapt on TripClick Head DCTR and TripJudge. The lines and the
left y-axis refer to the rankers’ effectiveness, measured as nDCG@10. The bars and the right
y-axis refer to the total cost computed with the budget-aware evaluation. The bars are stacked (the
annotation and computational cost), but since with our cost settings the annotation cost greatly
exceeds the computational cost, the bars for the GPU and CPU costs are not visible. In all figures
the blue line denotes the effectiveness of Random, with the blue shade representing the range
measured between the worst and best random selection runs (recall that random selection was ran
four times, and Random is the mean effectiveness of these runs).

A first observation is that the main cost factor is the annotation cost, and hence the number of
assessments needed to create the training data, which largely overrules the computational cost.
Because of this, in Figures 5.9 (➊ Scratch) and 5.11 and 5.13 (➋ Adapt) we further visualise
the effectiveness of the AL strategies relative to the number of assessments needed to reach that
effectiveness.

Next, we analyse the results for ➊ Scratch (Figures 5.8 and 5.9). For MonoBERT, the active
selection strategies often provide higher effectiveness than Random when more than 10k samples
are available – these effectiveness gains are however not significant. Nonetheless, QBC and
diversity require a lower budget than the Random baseline with savings of up to 15k$ when 50k
query-document samples are collected. We note that the uncertainty-based strategy provides
similar effectiveness to Random (especially from 20k samples), at no cost-savings.
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For ColBERT, QBC consistently provides higher effectiveness than Random, however at a much
higher cost. For example, when 50k training samples are selected, using QBC costs nearly $200k
more than Random, requiring annotations for roughly 200k more query-document pairs. In fact,
when approximately the same budget/number of annotations are used, QBC and Random obtain
the same effectiveness (in Figure 5.9 compare the last point of Random with the third last point of
QBC). Aside from QBC, all other active selection strategies deliver similar or lower effectiveness
of Random, for the same or higher cost.

For DPR, the uncertainty-based strategy consistently delivers inferior effectiveness than the
baseline. QBC and diversity-based selection do provide effectiveness gains when the training
data is in the range 10k to 40-45k samples. For QBC, however, these gains come at a large
budget expense: for 30k the QBC selection requires 90k$ more annotation budget than Random.
The diversity-based strategy instead does deliver some costs-savings compared to Random. For
example, for Random to reach the same effectiveness of BM25, about 600k annotations are
needed, while diversity delivers the same level of effectiveness with only 420k annotations.
However, we note using more annotations with diversity-based sampling does not necessarily
translate in a more effective model: going from 600k to about 750k annotations deteriorates the
search effectiveness of the ranker.

Looking across neural rankers, we observe that while the annotation costs across selection
strategies are relatively similar for MonoBERT, they are higher for QBC than all other strategies
when ColBERT and DPR are considered.

Overall, the selection strategies show relatively unstable effectiveness, the effectiveness can even
decrease when training data increases. This is particularly the case for uncertainty selection for
DPR: for example, its effectiveness decreases by from 0.45 to 0.37 when the amount of training
data doubles from 20k to 40k.

We next analyse the results for scenario ➋ Adapt. While some selection strategies provide
gains over random selection, these gains largely depend on which PLM is used and the training
size (Figure 5.10 and 5.12). Nevertheless, despite the specific gains in effectiveness, all active
selection strategies require more assessments, and thus a higher budget, to reach the same level
of effectiveness obtained when using random selection (Figure 5.11 and 5.13).

On TripClick test, for MonoBERT, uncertainty selection exhibits (non-significant) improvements
when training data is less than 30k. In fact, for small amounts of training data, uncertainty
sampling does provide some cost savings: for example MonoBERT with uncertainty sampling
needs about 65,000 query-passage pairs assessments to obtain the same effectiveness obtained
with random selection with ≈ 100k assessed pairs. However, this effect is lost when the training
data size increases further, with the budget required by uncertainty sampling becoming similar
(or more in some instances of random selection) to that of Random to obtain the same level of
effectiveness. All other active selection strategies, when used with MonoBERT, deliver either
lower effectiveness than Random, or higher costs. This is the case particularly for QBC. In
fact, although there is one setting in which QBC delivers major cost savings to reach the same
effectiveness of the random baseline (QBC achieves nDCG@10 higher than 0.2 using a sensibly
lower amount of annotated query-passage pairs), cost savings are not consistent across all training
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data sizes and larger sizes correspond to a higher number of assessments required compared to
Random.

For ColBERT, QBC and diversity selection outperform the baseline from training data sizes of
20k onward. This however comes with a considerable increase of query-passage pairs to be
assessed and thus of annotation cost. For example, with a training subset of 30k, random selection
costs about $200,000 while diversity selection costs nearly double that – but the increase in search
effectiveness is marginal. It is interesting to compare these results with that obtained for scenario
➊ Scratch. While in both scenarios uncertainty selection shows effectiveness losses when more
training data is added, and QBC is associated with higher costs, diversity selection performs
differently: it provides similar effectiveness for a similar cost in ➊ Scratch, and a marginal
effectiveness improvement for a largely higher cost in ➋ Adapt.

For DPR, all selection strategies underperform random selection, with the exception of QBC that
provides marginal improvements when the training subset is larger than 30k, but this at the expense
of a higher budget. The budget-aware evaluation, in fact, shows that all selection strategies require
more query-passage pairs to be assessed (higher cost) than the random selection baseline to reach
the same search effectiveness (and some strategies cannot even achieve that effectiveness). An
example is QBC that requires 730,000 assessments to reach the same effectiveness obtained by
Random with just ≈ 250k assessments.

We see a similar picture when evaluating scenario ➋ Adapt with TripJudge. Overall all neu-
ral rankers greatly underperform BM25 in terms of effectiveness, however this is already ob-
served when using the TripClick training data based on user clicks, but evaluating on TripJudge
[AHVH22]. For MonoBERT, all selection strategies improve over random selection when trained
on 40k samples or more. However the active selection strategies require more assessments than
random selection. For ColBERT, we see the similar picture as for TripClick Head DCTR: QBC
and diversity-based selection outperform random selection at a certain training size, whereas
uncertainty-based selection has a negative impact on the effectiveness of the neural ranker. For
DPR only QBC selection outperforms random selection, however the active selection strategies
require largely more assessments for training DPR than random selection. Additionally the
effectiveness gains on TripJudge are not significant for all neural rankers.

In summary, in answer to RQ2.2.3, we found that the use of the investigated active selection
strategies does not deliver consistent budget savings. In our experiments, the budget is largely
dominated by the assessment cost and all active selection strategies tend to require a higher
amount of query-passage pairs to be annotated than random selection. Even in contexts where
assessment is very cheap, active selection would not provide budget savings because more
assessments are required for active selection than for random selection. We do note that there are
cases where specific active selection strategies provide similar search effectiveness than random
selection at a reduced cost. However, these cases occur for specific choices of selection strategy,
neural ranker and training subset size and thus are unlikely to generalise in practice.
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5.2.8 Conclusion

We investigated fine-tuning neural rankers under limited data and budget. For this, we adapted
several active selection strategies, representing different key approaches in active learning that
have been shown effective in many natural language processing tasks. Surprisingly, we found
that for the task of fine-tuning neural rankers no AL strategy consistently and significantly
outperformed random selection of training data. However we found that there are subsets of the
training data which lead to significantly higher effectiveness than others, thus we see it as an
important open challenge to be able to automatically identify those training samples. Similarly,
our budget-aware evaluation showed that the investigated AL strategies do not deliver consistent
budget savings since they require a higher amount of assessments than random selection.

Limitations and future work

One limitation of our study is that the estimation of annotation costs relies on sparse annotations
of the training set. Potentially, the required number of assessments could be lower, since another
relevant passage – that is not marked as relevant in the data – could be found earlier in the ranked
list.

Furthermore another limitation that is related to the measurement of annotation cost, is that we
only simulate the selection and annotation process, but in reality we have a static collection with
a set of static, already determined labels, before we start the process. This could also lead to
differences in the selection of training samples. We argue, however, that this should affect all
selection strategies and does not benefit one strategy particularly. Possible future experiments
including a real annotation pipeline during training where it is possible to measure the annotation
costs of annotating each sample would be needed to test the if the findings of this study also hold
with a live annotation campaign and with the real measured cost of annotations.

Another limitation is the way uncertainty was computed in our experiments. Uncertainty estima-
tion in Information Retrieval is a fundamental but largely unexplored problem [TC96, CLvR98,
CC07], especially for neural rankers [LRC+21, CML+21]. Attempts have been made to exploit
uncertainty in relevance estimation for traditional statistical models such as language models
and BM25 [ZWCT09, WZ09], but in these works the actual estimation of uncertainty is based
on assumptions and heuristics such as to be related to similarities or covariance between term
occurrences [ZWCT09, WZ09, ZA10], to follow the Dirichlet distribution [WZ09], or to be
computed based on score distributions obtained through query term re-sampling [CC07]. Recent
attempts have been made to model uncertainty for neural rankers, for example Transformer
Pointer Generator Network (T-PGN) model [LRC+21], or Cohen et al.’s [CML+21] efficient
uncertainty and calibration modelling strategies based on Monte-Carlo drop-out [GG16], but
these are not readily applicable to the neural ranker architectures we consider. In future work we
plan to adapt and investigate these uncertainty estimations.

Another limitations is the choice of tasks and datasets. While this study presents results on MS
Marco and TripClick, it is an open question how our findings generalize to other retrieval and
ranking tasks and datasets.

Finally we also highlight that we only considered common baseline active learning methods
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[XAZ07, LG94, FSST97]. More sophisticated AL methods exist [AZK+20, YLB20, MVBA21],
including alternating between selection types like in AcTune, which alternates active learning
and self-training [YKZ+22], and Augmented SBERT which alternates random selection and
kernel density estimation based selection [TRDG21]. However, each of these approaches present
specific challenges to be adapted to ranking. We also were interested to understand the promise
AL has for neural rankers, and provide a framework, inclusive of evaluation methodologies and
baselines, in which these more advanced methods could be studied.
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CHAPTER 6
Conclusion

In this thesis, we investigate how neural ranking and retrieval models can be adapted for document-
to-document retrieval tasks and we address the problem of data availability for evaluation and
training of neural ranking and retrieval models in domain-specific retrieval.

In the beginning of the thesis we introduced Search Example ➊, which is a legal attorney, who
needs to find related prior cases to his current case. In Search Example ➋ a patent attorney needs
to find prior patents that are related to his new patent application and in Search Example ➌ a
medical doctor needs to find treatment strategies for a patient in the emergency department. In
this thesis and in the context of the research questions, we have addressed the challenges of neural
ranking and retrieval models for the retrieval tasks in Search Example ➊-➌. Search Example
➊ and Search Example ➋ are examples for the document-to-document retrieval tasks of prior
case retrieval in the legal domain and prior art search in the patent domain and in this thesis we
have studied how we can adapt neural ranking and retrieval models for prior case retrieval and
prior art search. For medical ad-hoc retrieval, exemplified in the Search Example ➌, we have
addressed in this thesis the problem of limited evaluation and training data, when training neural
ranking and retrieval models. We have conducted a human annotation campaign, in order to
create TripJudge, a test collection for the task of medical ad-hoc retrieval. Furthermore we have
investigated how to train neural ranking and retrieval models for ad-hoc retrieval in the medical
and web domain under a limited annotation and training budget.
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6.1 Revisiting Research Questions

We revisit the research questions introduced in section 1.2 and lay out how we addressed the
research questions in this work.

6.1.1 Domain-specific neural rankers for document-to-document retrieval tasks

Since neural ranking and retrieval models show great effectiveness gains for ranking and retrieval
tasks in the web domain, it is an open and important question how these findings generalize to
domain-specific ranking and retrieval tasks. Especially for document-to-document retrieval tasks
with long queries and long documents, it is not trivial and an open question how neural ranking
and retrieval models can be adapted to these document-to-document retrieval tasks. We tackle the
research question:

RQ1 How can neural ranking and retrieval models be adapted for document-to-document re-
trieval tasks?

We divide this research question between neural ranking and neural retrieval models and investi-
gate in section 4.1 the following research question:

RQ1.1 How can neural ranking models be adapted for document-to-document retrieval tasks?

In order to study how neural ranking models can be adapted to document-to-document retrieval
tasks, we successfully reproduce Shao et al.’s [SML+20] BERT-PLI model for the legal document
retrieval task evaluated in the COLIEE evaluation campaign 2019. In doing so, we address certain
shortcomings in the data pre-processing. Our investigation led us to complement the published
code. However, in contrast to the original paper, our findings suggest that fine-tuning a BERT
model on domain-specific data for modeling paragraph-level interactions does not significantly
enhance the performance of the BERT-PLI model for document re-ranking when compared to
using the original BERT model for this purpose.

Additionally, we explore the applicability of the BERT-PLI model in the patent domain for the
task of prior art search but find that it does not outperform the BM25 baseline. Yet, effectively
harnessing the potential of contextualized language models for patent document re-ranking
remains an unsolved challenge.

We also investigate the transferability of the BERT-PLI model between the legal and patent do-
mains, both at the paragraph and document level in the BERT-PLI model. Our results demonstrate
comparable performance when transferring the model at the paragraph level. Moreover, initial
results in cross-domain document-level transfer indicate promise when applying a BERT-PLI
model trained on the patent domain to the legal domain. The question of how to transfer the
concept of relevance across these domains remains intriguing and open.

Additionally to investigating the adaptation of neural ranking models for document-to-document
retrieval tasks, we investigate:

RQ1.2 How can neural retrieval models be adapted for document-to-document retrieval
tasks?
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We study how neural first stage retrieval models can be adapted for document-to-document
retrieval tasks or legal case retrieval and prior art search. In this work we address the challenges
of using dense passage retrieval models (DPR) in first stage retrieval for document-to-document
tasks when training the dense passage retrieval model with limited labelled data.

Our solution, the Paragraph Aggregation Retrieval Model (PARM), overcomes the constraints
of input length in dense passage retrieval models and takes into consideration the relevance of
paragraphs in the context of document retrieval. When applied to legal case retrieval using two
test collections, PARM demonstrates a higher first-stage recall in dense document-to-document
retrieval compared to document-level retrieval with the fixed input length DPR. Moreover, in the
case of legal case retrieval, we show that dense retrieval with PARM surpasses lexical retrieval
using BM25 in terms of recall at higher cut-off values.

As an integral component of PARM, we introduce the novel Vector-Based Aggregation with
Reciprocal Rank Fusion Weighting (VRFF). VRFF combines the benefits of rank-based aggre-
gation using Reciprocal Rank Fusion (RRF) and topical aggregation with dense embeddings.
Our experiments reveal that PARM with VRFF aggregation achieves the most effective retrieval
performance when compared to rank and vector-based aggregation baselines.

However, in the context of prior art search for document-to-document retrieval, we find that dense
retrieval methods based on PARM and standard dense retrieval techniques do not outperform
lexical retrieval using BM25.

To ensure the reliability of evaluation results on the CLEF-IP test collection, we suggest future
work to investigate the suitability of this test collection for evaluating neural first-stage retrieval
models, given that only statistical models were involved in its creation.

Additionally, we delve into the training of dense retrieval models for dense document-to-document
retrieval with PARM. Notably, in the realm of legal case retrieval, our findings indicate that
training DPR models on more but noisy document-level data doesn’t consistently result in higher
overall retrieval performance compared to training on less but more accurate paragraph-level
labeled data.

Finally, we conduct an analysis of how PARM retrieves relevant paragraphs and observe that
the dense retrieval model learns a structural paragraph relationship, which it utilizes to enhance
retrieval effectiveness in the context of PARM.

Overall answering research question RQ1, we successfully and effectively adapt neural ranking
and retrieval models for the task of prior case retrieval in the legal domain. We evaluate the neural
models in the context of the tasks’ requirements, that is a high recall for the first stage retrieval
and a high precision for re-ranking. We find that domain-specific neural re-ranking and first stage
retrieval models that take into account the whole content of the query document and the document
in the collection, are beneficial for the effectiveness of the model. However for prior art search in
the patent domain, we find that domain-specific neural ranking and retrieval models do not yet
bring the expected effectiveness gains compared to traditional, lexical ranking models.
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6.1.2 Availability of evaluation and training data for domain-specific tasks

A second great, open challenge of ranking and retrieval models for domain-specific tasks is the
availability to training and evaluation datasets. Thus we investigate in this thesis:

RQ2 How can the problem of limited available annotated evaluation and training data be ad-
dressed in domain-specific retrieval?

We address the problem of limited available evaluation data by providing the community with a
human-label annotation test collection for health retrieval. When proposing this novel test set, we
investigate:

RQ2.1 How do human-label annotations compare to click signals for medical ad-hoc re-
trieval?

We address the limited availability of annotated evaluation data for domain-specific retrieval
tasks by successfully running an annotation campaign for an ad-hoc retrieval task in the health
domain. Here we compare our human-label annotations with the original relevance labels based
on click signals. We find that human relevance annotations greatly differ from the click-based
relevance labels and thus the ranking of lexical and neural ranking and retrieval models highly
differs between the two different test sets.

Furthermore the domain-specific neural ranking and retrieval models do not as greatly outperform
the lexical retrieval baseline, when evaluated on the humanly judged evaluation set, compared
to the great effectiveness gains on the click-based test set. We suggest that by training on the
click-based labels, the neural ranking and retrieval models learn the relevance signals from the
clicks, thus the effectiveness improvements on the click-based test collection are larger than on
the human-labelled test set and potentially exaggerated. This demonstrates that high effectiveness
of domain-specific neural ranking and retrieval models needs high-quality training data.

This finding leads us to the next research question, where we investigate how we can train neural
ranking and retrieval models under a limited training data annotation and model training budget.
Here active learning strategies are a promising direction for minimizing the amount of annotations
of training data while maximizing the effectiveness of the models trained on that training data.
Here we investigate:

RQ2.2 To what extent does active learning improve annotation efficiency for training neural
ranking and retrieval models?

Since it is costly to annotate domain-specific training data on a large scale, we study to what extent
active learning methods improve the annotation efficiency for training effective neural ranking
and retrieval models. In order to have no potential influence of domain-specific neural ranking
and retrieval architectures, which we proposed in chapter 4, we study this research question in the
context of ranking and retrieval tasks in the web and health domain. We see varying gains of the
investigated active selection strategies compared to random selection, but with our cost-effective
evaluation schema we find that these gains come at the cost of more assessments for annotating
the training samples. Thus the investigated active selection strategies do not yet minimize the
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annotation cost while maintaining a high effectiveness. However we find that there subsets of high
yield training samples that achieve significant effectiveness improvements compared to random
selection, but the investigated active learning strategies do not identify them. Furthermore we
find that adapting neural ranking and retrieval models from the web to the health domain already
outperforms statistical retrieval models, when adapted only on small subsets of the training data.
Overall we find that neural ranking and retrieval models are beneficial for ad-hoc retrieval in
the web and health domains and outperform strong lexical retrieval baselines, when enough,
high-quality training data is available.

Overall we find that domain-specific neural ranking and retrieval models advance the performance
for domain-specific retrieval tasks, when adapting them to the tasks’ specific characteristics and
having reliable evaluation and enough high-quality training data available.

6.2 Limitations

We want to conclude limitations of our work and summarize the limitations of the individual
studies already described in sections 4.1.5, 4.2.5,5.1.7, 5.2.8.

Neural rankers for document-to-document retrieval tasks

For neural ranking and retrieval models, that we studied in the context of document-to-document
tasks, we see a limitation of our study that we focus only on English text of documents. While
legal case retrieval and prior art search are important and often studied tasks in English [RGK+22,
NFIH10], these tasks also exist in contexts where the documents are in other languages than
English [MSW+21, PLHZ11] or the documents contain multiple languages [PLHZ11]. In this
work we have only studied the neural re-ranking and neural retrieval models in English due to the
availability of training and evaluation datasets in English. However it remains open, how these
findings generalize to document-to-document retrieval tasks with languages other than English.

Another limitation pertains to the generalizability of the findings regarding neural ranking and
retrieval models when applied to document-to-document retrieval tasks involving documents
without a predefined structure. We have studied neural ranking and retrieval models in the context
of legal case retrieval and prior art search. Here the legal claims and the patents have a through,
predefined structure, that organizes the long documents into topically coherent sections. The
neural ranking and retrieval models leverage this predefined structure and operate on a paragraph-
level, thus how the documents are split up into different paragraphs is an important factor for
the neural ranking and retrieval models. As in legal case retrieval, the relevance of a document
can be determined of relevance of paragraphs of the query document and the document itself
[RKG+20], the neural ranking and retrieval models use that to their advantage. Similarly in
prior art search, the patent documents consist of topically very different sections and relevance
can be determined on the relevance between those sections. However, it remains unclear and
necessitates further research to determine how the insights derived from neural ranking and
retrieval models for legal case retrieval and prior art search apply for document-to-document
retrieval tasks, where paragraph divisions are not predefined by semantically coherent sections in
a structured document.
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Annotation campaign for addressing availability of evaluation datasets

For addressing the problem of data availability for evaluation and training in domain-specific
retrieval tasks, we conduct an human-annotation campaign and create TripJudge, a test collection
for TripClick based on human-annotation. Our study on TripJudge has several limitations. First,
the depth of relevance judgments is typically only a half or a third of the annotated query-
document pairs, compared to our 65% relevance rate [CMYC19, CMY+21b]. This suggests a
need for future work involving higher-depth annotations.

Another limitation is that TripJudge relies on annotations from non-experts, and not the entire
test set is annotated by experts. To control the quality of non-expert annotations, we conducted
an additional expert annotation campaign to validate the non-expert annotations. While there was
a high overlap between expert and non-expert annotations, the reliance on non-expert annotators
remains a limitation of the study.

Additionally, the number of annotators per sample is constrained. We had to strike a balance
between annotating all test set samples and the number of annotators available, leading to our
decision to have three annotators per query-document sample. Having more annotators per sample
would enhance the quality of the test set.

Moreover, this study did not explore various methods for aggregating annotations per query-
document sample. While majority voting was employed, future work could investigate more
sophisticated heuristics for label aggregation.

Nevertheless, TripJudge remains a valuable resource for evaluating domain-specific health re-
trieval tasks.

Active learning for training neural rankers

When investigating in Section 5.2, how we can train neural ranking and retrieval models, we con-
duct experiments on the three model architectures introduced in Section 2.6, however it remains
open how the findings would translate to other ranking model architectures like [ZQJ+23].

Another limitation of this study is that we only simulate the selection and annotation process,
while in reality, we have a static training collection with predetermined labels before we begin.
This could introduce variations in the selection of training samples. However, we argue that this
should impact all selection strategies uniformly, rather than favoring one strategy. Furthermore a
limitation of the simulated annotation process, is that we can not measure the annotation cost of
annotating a query-document sample. The estimation of annotation costs in our study relies on
sparse annotations of the training set. It is possible that a lower number of assessments might
suffice, as an additional relevant passage not marked as such in the data could be found earlier
in the ranked list. To address this limitation, future experiments involving a live annotation
campaign, with the actual measured costs of annotations, would be necessary to validate the
findings of our study.

Another limitation relates to how uncertainty was computed in our experiments. Estimating
uncertainty in Information Retrieval is a fundamental yet underexplored issue, especially for
rankers based on pre-trained language models. While some attempts have been made to exploit
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uncertainty in relevance estimation, they often rely on assumptions and heuristics, such as
similarities or covariance between term occurrences [CC07]. Recent attempts to model uncertainty
for neural rankers might not be readily applicable to the architectures we considered. Future work
will involve adapting and investigating these uncertainty estimation methods.

Lastly, our study only considered common baseline active learning methods [CGJ96, XAZ07,
SOS92, FSST97]. More sophisticated active learning methods exist, including those that alternate
between selection types. These approaches present specific challenges when adapting them to
ranking tasks. Our intention was to provide a framework and evaluation methodologies for
studying the promise of active learning in neural rankers, and more advanced methods can be
explored in this context.

Additionally, our study focuses on specific tasks and datasets, namely MS Marco and TripClick.
Generalizing our findings to other retrieval and ranking tasks and datasets remains an open
question.

Overall limitations of the thesis

Overall there are limitations of this thesis concerning the choice of language model as encoder,
choice of model architectures, choice of datasets, choice of tasks and choice of domains for
domain-specific neural rankers.

There exist a lot of different large, pre-trained language models [LOG+19, LCG+20, SDCW19,
RSR+20, BMR+20, DCLT19] that could be used as encoder language model base for the neural
ranking and retrieval models. Since BERT and DistilBERT are the most common language models
used as encoders [HLY+21, NC19, NYCL19] for neural ranking and retrieval models, we focus
in our thesis on these language models as encoders. We employ domain-specific language models
like LegalBERT [CFM+20] for encoding domain-specific language, however these models have
the same architecture as BERT and are only pre-trained on a different language corpus. Thus
a limitation of our thesis is the choice of large, pre-trained language model as encoder and the
effect of different encoder models for domain-specific neural rankers is an open question.

Furthermore a limitation of this thesis is the choice of model architectures. We study the neural
re-ranking model architectures of cross-encoder BERT (MonoBERT) and ColBERT, which we
introduced in section 2.6. However there are other model architectures like RankT5 [ZQJ+23],
who employ a different language model and a different ranking model architecture as neural
re-ranking model. The generalizability of our findings to other neural model architectures remains
an open research question.

In our experiments we limit our thesis to the training and evaluation datasets, which we introduced
in Section 2.5. For example for the legal case retrieval task it remains open, how BERT-PLI or
PARM would perform for the FIRE AILA dataset, which is a dataset for Indian case law retrieval
established in the FIRE evaluation campaign [BGG+19]. As already mentioned above, for the
investigation of active learning for neural ranking and retrieval models, it remains open how
active learning strategies would have performed for training neural ranking and retrieval models
on other training and evaluation datasets.
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Another limitation of our thesis is the choice of tasks for our experiments. In section 2.4 we
have introduced various ranking and retrieval tasks in the web, legal, health and patent domain.
However we limit us in our experiments to the tasks of legal case retrieval in the legal domain,
patent prior art search in the patent domain, health information seeking/ad-hoc retrieval in the
health, and ad-hoc retrieval in the web domain. Especially when investigating how to train neural
ranking and retrieval models under a limited training and annotation budget, it is a limitation to
investigate ad-hoc retrieval tasks and it is an interesting question how active learning strategies
perform for training neural rankers for other ranking and retrieval tasks.

Finally a limitation of this thesis is the choice of domains, in which context we conduct our
experiments. We employ tasks in the web, legal, health and patent domain, however there
are many other domains including domain-specific and professional information seeking tasks
like news domain [SHH20], music domain [KJC+21], cooking domain [FEL22], where neural
ranking and retrieval models can be explored and where these models also promise effectiveness
gains in performance. Thus it is an open question how the findings of this thesis generalize to
other domains and other ranking and retrieval tasks in these domains.

6.3 Future Work

In the following we point out some possible future these directions and some challenging, open
questions to be addressed for domain-specific, neural ranking and retrieval models. While
our research on domain specific document-to-document retrieval tasks and on domain-specific
data availability already has sparked some follow up work [AVA22, AVA+23, BGPG22, Sta22,
SGHS22, LRA23], there are yet unresolved challenges and novel questions for neural ranking
and retrieval models in the context of domain-specific retrieval tasks. Our research lays the basis
for multiple future directions for domain-specific neural ranking and retrieval models, which we
elaborate in the following.

Large-scale, domain-specific training and evaluation data for document-to-document re-
trieval

In order to gain a comprehensive understanding of the potential of neural ranking and retrieval
models for domain-specific document-to-document retrieval tasks, it is a necessary requirement
to have large-scale, high-quality training data and reliable and reusable evaluation sets that are
suitable for evaluating neural ranking and retrieval models. For many of domain-specific tasks,
we do not yet have the resources to train and reliably evaluate domain-specific neural models as
we find with our work on prior art search in the patent domain. For ad-hoc retrieval in the health
domain we see a future necessity to have a large-scale, human-labelled, training data available
that models the domain-specific notion of relevance. Thus we also see continuous ongoing efforts
for creating artifacts for domain-specific evaluation and training as crucial for the advancements
in this area. In order to be able to evaluate newly upcoming, domain-specific neural ranking
and retrieval models, we see it as an on-going, continuous necessity to have domain-specific
evaluation campaigns that include runs of a variety of non-neural and neural ranking and retrieval
approaches for judgement.
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Generation of domain-specific training data

One potential future direction for advancing the availability of training data is employing the
power of large, pre-trained language models for generating training samples [DZM+23] for
domains, where no or limited humanly labelled training samples are available. Since these large
language models rapidly progress in their capabilities [Ope23], the question of how to employ
them to generate high-quality training data becomes more critical. When training domain-specific
rankers on generated training data, it is an essential step for a high effectiveness to select the
high-quality training samples from the generated training set and only train on those. This
selection step is crucial for a high effectiveness of the resulting neural ranking or retrieval model
[DZM+23], thus research on how to identify those high-yield training samples is highly relevant
also for generating training samples.

Active learning for neural ranking and retrieval

Furthermore we see some future work in extending active learning strategies for neural ranking and
retrieval models. Especially how uncertainty of neural ranking and retrieval models is measured
is an open but for numerous applications important question [TC96, CLvR98, CC07, LRC+21].

Domain-specific features included in neural ranking and retrieval models

We see one major direction for improving the effectiveness of domain-specific ranking and
retrieval models to include features other than the textual data for relevance ranking. Domain-
specific features like recency, citations of the document [Wig23], authors of document, date of
the document, location, or classifications like MeSH terms in the medical domain or IPC terms in
the patent domain highly influence relevance in domain-specific retrieval. Thus including these
domain-specific features in the training and inference of neural ranking and retrieval models
holds a great potential for boosting the performance of domain-specific neural models, which so
far only rely on textual data.

Continually updating neural ranking and retrieval models

For search indices in production, there are continuously millions of new data points which need
to be included in the search index in real-time [Sta21, BP98]. To be able to rank or retrieve
high-quality, relevant, and recent results, the novel content not only needs to be included in the
search index, but the ranking or retrieval models needs to account for the content shift and update
the index in real-time. This poses a challenge for neural ranking and retrieval models which are
so far trained on a static training collection and it is not clear how neural ranking and retrieval
models cope with the temporal evolution of real Web data [GDS+23]. Thus it is an open research
direction how neural ranking and retrieval models can continually be updated for ranking or
retrieving the novel content [Alt21].

Generative search engines

With the emergence or large foundation models like ChatGPT [Ope23], a more conversational way
of information seeking of the users [ZTDR23] and the shift of search engines towards question-
answering [Cla18a] in the web domain, it is an open research question, how this movement will
influence, how users interact with information retrieval systems and which information needs
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they will have in the future. This different way of interacting and searching for information,
could also translate to domain-specific retrieval systems. Thus the users could expect domain-
specific retrieval systems to offer similar capabilities as web search engines for interacting and
searching for relevant information in a more conversational way with a generated response text or
a generated answer. For domain-specific retrieval systems this poses challenges, how to adapt the
existing models for question-answering [Cla18a], retrieval-augmented generation [LPP+20] or
conversational search [ZTDR23] to domain-specific retrieval tasks and thus will be an exciting
and promising research direction.
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Appendix

Appendix A: Annotation Guidelines for TripJudge Annotation
Campaign

These are the annotation guidelines, that the non-expert and expert participants of the annotation
campaign saw before being directed to the annotation task:

Welcome to Fira! Our goal is to create fine-grained relevance annotations for query - document
snippet pairs.

In the annotation interface you will see 1 query and 1 document snippet and a range of relevance
classes to select.

For each pair you must select 1 from 4 relevance classes: - Wrong If the document has nothing to
do with the query, and does not help in any way to answer it - Topic If the document talks about
the general area or topic of a query, might provide some background info, but ultimately does
not answer it - Partial The document contains a partial answer, but you think that there should
be more to it - Perfect The document contains a full answer: easy to understand and it directly
answers the question in full

Important annotation guidelines and Fira usage tips:

(1) You should use your general knowledge to deduce links between query and answers, but if
you don’t know what the question (or part of it such as an acronym) means, " + ’fall back to see
if the document clearly explains the question and answer and if not score it as Wrong or Topic
only. We do not assume specific domain knowledge requirements.

(2) For Partial and Perfect grades you need to select the text spans, that are in fact the relevant
text parts to the questions. You can select multiple words (the span) with your mouse or by once
tapping or clicking on the start and once on the end of the span. You can select more than one
and you can also select them before clicking on the grade button.
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Now before we get started, let’s have a look at an example from each relevance grade:
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