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Abstract: Submerged aquatic vegetation, also referred to as submerged macrophytes, provides
important habitats and serves as a significant ecological indicator for assessing the condition of water
bodies and for gaining insights into the impacts of climate change. In this study, we introduce a
novel approach for the classification of submerged vegetation captured with bathymetric LiDAR
(Light Detection And Ranging) as a basis for monitoring their state and change, and we validated
the results against established monitoring techniques. Employing full-waveform airborne laser
scanning, which is routinely used for topographic mapping and forestry applications on dry land, we
extended its application to the detection of underwater vegetation in Lake Constance. The primary
focus of this research lies in the automatic classification of bathymetric 3D LiDAR point clouds
using a decision-based approach, distinguishing the three vegetation classes, (i) Low Vegetation,
(ii) High Vegetation, and (iii) Vegetation Canopy, based on their height and other properties like
local point density. The results reveal detailed 3D representations of submerged vegetation, enabling
the identification of vegetation structures and the inference of vegetation types with reference to
pre-existing knowledge. While the results within the training areas demonstrate high precision and
alignment with the comparison data, the findings in independent test areas exhibit certain deficiencies
that are likely addressable through corrective measures in the future.

Keywords: airborne LiDAR; bathymetry; point cloud classification; submerged vegetation; lake
monitoring

1. Introduction

Lakes are complex and dynamic ecosystems that support a diverse range of aquatic life.
Submerged macrophytes play a critical role in maintaining the ecological balance of these
systems. The significance of submerged aquatic vegetation lies in its ability to sustain clear-
water conditions in shallow water [1], which in return enhances habitat diversity by offering
organic matter, producing shade and shelter, regulating temperature, and creating aquatic
habitat structures [2]. At the same time, the dynamics of the occurrence of submerged
macrophytes in inland waters is an important indicator for determining the ecological status
of water bodies [3,4], which are influenced (directly or indirectly) by both anthropogenic
interventions and climate change. Therefore, assessing the spatial distribution and growth
of submerged macrophytes is an important tool for the lake management and conservation
of inland waters [5,6] as well as for climate research.

Conventional manual monitoring methods for submerged macrophytes often require
labor-intensive, time-consuming, and potentially destructive fieldwork [7]. Besides the
manual in situ visual assessment of species distribution, comprehensive sampling plays an
important role in traditional monitoring. The elevated error rate observed in manual moni-
toring can be explained by the presence of multiple contributing factors, including observer
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misidentification, imprecise estimation, and restricted accessibility to specific locations,
which may lead to an incomplete representation of the ecosystem’s heterogeneity [8].

For decades, remote sensing has been gaining importance in the field of mapping
the Earth’s land mass, and more recently, it has also become significant in surveying
water bodies [9]. Nevertheless, working in aquatic environments presents new challenges,
primarily due to the presence of a water column that weakens benthic reflectance signals
and creates heterogeneity within the scene, making the analysis more intricate [10,11].
The focus in aquatic surveying lies on passive techniques that use airborne and satellite-
based methods, which include pan-chromatic, true-color, multispectral, and hyperspectral
imaging. But also, active methods have recently been gaining increasing attention [8,12,13].
In particular, the active method of Airborne Laser Scanning (ALS), also referred to as
Airborne Laser Bathymetry (ALB), has found extensive applications in shallow water area
surveying [14–16]. The technology of bathymetric Light Detection and Ranging (LiDAR)
in particular, which works with laser pulses in the green range of the electromagnetic
spectrum, has extraordinary potential here [17]. Unlike infrared light, green laser radiation
is able to penetrate clear shallow water [18] and is reflected off the bottom surface, objects
located in the water body, and the water column itself.

Airborne laser bathymetry (ALB) is a laser scanning technique used to measure wa-
ter body bottom topography [19–22] or to detect the presence of underwater objects [23].
LiDAR has been used occasionally for mapping submerged vegetation, focusing mainly
on distinguishing between the presence and absence of vegetation [15,24–27]. Despite
its potential to overcome some of the limitations of conventional methods, there is little
research with more detailed quantitative or qualitative detection and modeling of sub-
merged macrophytes in shallow lakes with ALS, resulting in little research on analyzing
the collected data. This especially applies to the classification of ALS bathymetric point
clouds, which constitutes an imperative step for the 3D mapping of submerged vegetation,
and possibly the differentiation of vegetation types.

In general, bathymetric LiDAR sensors are tuned to maximize the depth measurement
performance, as light is strongly absorbed in medium water [20]. This applies to clear
water, but also, to a higher extent, to turbid water, where dissolved or solid particles
contribute to scattering and signal absorption in the water column [28]. A side effect of
the high sensitivity of the sensor is a high number of volume backscatter points in the
water column. Many of these points are neither reflections from the water surface or the
bottom nor reflections from objects in between, such as submerged macrophytes. This is
generally a typical situation for bathymetric 3D LiDAR point clouds, especially when the
laser waveform analysis used aims to obtain very weak echoes [29].

Standard strategies for classifying 3D ALS point clouds into ground and low/medi-
um/high vegetation start with filtering terrain and off-terrain points and classifying vege-
tation afterward, based on height thresholds [30]. Examples for existing software working
on this principle include SCOP++/Trimble [31], LAStools/rapidlasso [32], and TerraS-
can/Terrasolid. Using height thresholds above the terrain only, however, is not suitable for
the classification of submerged vegetation due to the high number of volume backscatter-
ing points.

Modern classification strategies utilize machine learning (ML) in general and deep
learning (DL) in particular [33–35]. The problem with ML-based methods is the existence
of labeled ground truth data. While such data are increasingly available for topographic
ALS via open government data from National Mapping Agencies [36], proper benchmark
datasets are still missing for bathymetric LiDAR [37].

Therefore, tailored processing strategies are required for bathymetric LiDAR. This
paper introduces a novel method for detecting and mapping submerged vegetation in
the littoral zone of Lake Constance through automatic point cloud classification based on
modern topo-bathymetric airborne laser scanning, referred to as ALB in the following.
The premise is that the accuracy of point cloud classification plays a vital role in the
usability and potential of ALB for the task of characterizing and quantifying submersed
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macrophytes. More specifically, this study focused on (1) the automatic classification of ALB
point clouds to identify underwater vegetation and differentiate between three vegetation
classes: Low Vegetation, High Vegetation, and Vegetation Canopy, (2) the creation of 3D digital
surface models (DSM) of submerged vegetation, and (3) the final classification of the point
cloud for 3D vegetation mapping. The distinction between vegetation classes is based on
characteristics that can be acquired through LiDAR surveys (volumetric density, reflectance,
etc.), rather than height markers only. It is imperative to highlight that the inherent quality
of the laser dataset is compromised by diverse biological and technical factors, causing an
unusually dense point cloud with a high number of noise points. Consequently, alongside
the laser point cloud, the data analysis incorporates reference datasets, which play an
essential role in the processing chain.

The study aimed to contribute to the field of remote sensing and environmental
monitoring by evaluating the potential of ALB as a cost-effective and efficient tool for col-
lecting information on submerged vegetation through automatic point cloud classification.
The work described in this article was conducted within the research project Seewandel,
which comprises multiple research endeavors aimed at investigating various aspects of
Lake Constance and seeks to gain a comprehensive understanding of the lake’s ecological,
hydrological, and environmental characteristics [38].

The remainder of this article is structured as follows. Section 2 introduces the study
area, the available ALB and reference data, and the used software framework. In Section 3,
we provide a detailed description of the employed classification strategy and explain our
quality assessment approach. We present the results in Section 4, critically validate them
in Section 5, and discuss the them in Section 6. This article ends with concluding remarks
in Section 7.

2. Materials
2.1. Study Area and Research Project

Lake Constance, also known as Bodensee, is the second-largest pre-alpine European
lake [39] with a surface area of 536 km2 [40] and shorelines in Germany, Switzerland,
and Austria (Figure 1a,b). The lake and its region are intensively influenced by local
anthropogenic activities [39,41] including dramatic changes in submersed vegetation in
the last decades [40] as well as affected by climate change, and it is said to be one of the
best-examined lakes with limnological research dating back more than 100 years. In 2018,
the research project SeeWandel was implemented by the IGKB (Internationale Gewässer-
schutzkommission für den Bodensee) [42] to further explore how Lake Constance responds
to changing environmental conditions [38].

The research team specifically investigated the resilience dynamics of submerged
macrophytes in the littoral zone of Lake Constance, focusing on recording the current
macrophyte populations at the species level and conducting a spatio-temporal analysis
of species composition and vegetation structure. In addition to conventional monitoring
methods, a LiDAR underwater vegetation survey approach was also tested and is the focus
of this paper. Figure 1 shows the locations of ten area-of-interest (AOI) tiles, each consisting
of a regular hexagon with a side length of approx. 200 m. The data analysis was performed
specifically for these tiles and was subsequently validated against two larger test areas
from the same dataset (T1 and T2).
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Figure 1. Location of the study area at the country (a) and local level (b). Distribution of areas of
interest (AOIs) and test areas T1 and T2 at the Lake Constance Lower Lake (c). Coordinate Reference
System: ETRS89/UTM zone 32N.

2.2. Dataset

The ALB data used in this research were generated by the Austrian company Airborne
Hydro Mapping (AHM) using a RIEGL VQ-880-G topo-bathymetric laser scanner. The VQ-
880-G system utilizes a green laser operating at a wavelength of 532 nm and has an accuracy
of 25 mm in the vertical and horizontal dimensions [43]. The scan pattern is circular (Palmer
scanner) with a constant off-nadir angle of 20 ◦. Data collection took place on 9 July 2019,
a date expected to align with the peak of vegetation growth. The following environmental
conditions were obtained during the flight campaign: the Secchi depth measured was
3.7 m, indicating a calcite precipitation event, and the water level at gauge was 447 cm
(gauge zero point at 391.89 m a.s.l.). The mean water level was 332 cm, which means that
the water level was 115 cm above the mean, indicating typical summer flood conditions.
The data were stored as a point cloud, comprising data points in a 3D ETRS89/UTM zone
32N coordinate reference system, in compressed LAS format (LAZ). LAS/LAZ is a widely
adopted industry standard for LiDAR [44]. Each point in the cloud corresponds to a unique
measurement reflecting the laser beam from features such as the water surface, ground,
aquatic vegetation, or particles in the water column [29].

In addition to the spatial information (i.e., 3D coordinates allowing for the accurate
positioning and mapping of the features represented), additional attributes were recorded
and stored for each point. The additional attributes included the PointId (assignment to
a specific flight strip); Reflectance (measure for the amplitude, or strength, of the reflected
signal providing information on the reflectivity of the target from which the emitted signal
was reflected); NumberOfReturns (indicating the number of echoes received from a single
transmitted laser pulse for each data point); and Pre-Classification (prior differentiation of
water, water surface, and noise conducted by the AHM). These attributes play crucial roles
in the data analysis process.
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The unusual environmental factors—including a calcite precipitation event and flood
conditions—given at the time of recording, coupled with the calculation approach em-
ployed by the AHM, where each deflection in the backscattered signal generates a point
irrespective of its significance [29], result in a point cloud characterized by a high number
of noise points resembling a dense ”point fog” that is difficult to interpret. This makes the
assistance of supplementary input data indispensable: the Digital Terrain Model (DTM),
named Tiefenschärfe-DTM [? ] and formatted in LAS, renders a comprehensive 3D de-
piction of Lake Constance’s bottom topography. (Tiefenschärfe was the name of a project
aiming for a complete survey of the bathymetry of Lake Constance and the surrounding
littoral terrain with data collection in 2013 and 2014. The term stems from optics and
literally translates to “depth of field”, but is not used in this context. The real meaning is
revealed when separating the two words “Tiefe” (depth) and “Schärfe” (acuity/sharpness).
The project aimed to provide a sharp geometric model of Lake Constance.). Additionally,
the results of the Aerial Photo Interpretation (based on ground truth field survey data from
a boat with a recording period from June to September 2019 and additional mapping in
July 2021) also conducted as part of the SeeWandel project are available. These manually
generated polygonal representations of submerged macrophyte patches provide a general
understanding of the distribution and density of aquatic vegetation. It is important to
emphasize that this classification only shows the dominant vegetation class of a patch,
and the presence of additional vegetation classes can never be excluded. Furthermore,
due to the limited visibility of submersed vegetation in the aerial photos taken during
the LiDAR campaign in July, the aerial photo interpretation was based on aerial photos
of August 2019, resulting in a time shift of about one month. Table 1 lists the vegetation
classes distinguished with the corresponding species. The Aerial Photo Interpretation with
the temporally corresponding orthophotos are compared with the classification results of
the LiDAR point cloud for evaluation in Section 5.

Table 1. Vegetation classes of the Aerial Photo Interpretation with corresponding species.

Class Height [cm] Species

Charophytes small (cs) 5–30 Chara aspera Willd., Chara aspera var. subinermis Kütz., Chara tomentosa L.,
Chara virgata Kütz., Nitella hyalina (DC.) C. Agardh

Charophytes medium (cm) 30–60
Chara contraria A. Braun ex Kütz., Chara dissoluta A. Braun ex Leonhardi,
Chara globularis Thuill., Nitella flexilis (L.) C. Agardh, Nitellopsis obtusa (Desv.)
J. Groves

Elodeids tall, large-leaved (etl) 120–600 Potamogeton angustifolius J. Presl, Potamogeton crispus L., Potamogeton lucens
L., Potamogeton perfoliatus L.

Elodeids tall, narrow-leaved (etn) 120–600

Ceratophyllum demersum L., Myriophyllum spicatum L., Potamogeton helveticus
(G. Fisch.) W. Koch, Potamogeton pectinatus L., Potamogeton pusillus L.,
Potamogeton trichoides Cham & Schltdl., Ranunculus circinatus Sibth.,
Ranunculus trichophyllus Chaix, Ranunuculus fluitans Lam., Zannichellia
palustris L. (tall)

Elodeids small, large-leaved (esl) 30–60 Elodea canadensis Michx., Elodea nuttallii (Planch.) H. St. John, Groenlandia
densa (L.) Fourr.

Elodeids small, narrow-leaved (esn) 30–60
Alisma gramineum Lej., Alisma lanceolatum With., Najas marina subsp.
intermedia (Wolfg. Ex Gorski) Casper, Potamogeton friesii Rupr., Potamogeton
gramineus L., Zannichellia palustris L. (small)

Other macroalgae (o) no data Cladophora sp. Kütz., Ulva (Enteromorpha) sp. L., Hydrodictyon sp. Roth,
Spirogyra sp. Link, Vaucheria sp. A.P. de Candolle

In general, the time difference between laser data and the respective reference data
must always be taken into account during the classification process, as well as during the
subsequent validation and discussion of the results.
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2.3. Software Framework

For the 3D mapping of submerged macrophytes based on dense ALB point clouds,
we used the scientific laser scanning software OPALS [46]. The centerpiece of the system
is the OPALS data manager [47], a component that provides (i) efficient spatial access to
large point clouds and (ii) a dynamic system for managing user-defined point attributes.
The software, available on Microsoft Windows and Linux, is composed of small compo-
nents, referred to as modules. The individual modules can be freely combined into complex
workflows using either shell or Python scripts. Our classification procedure was imple-
mented on the basis of a batch script. Processing was carried out with OPALS version 2.5.0
on a standard desktop computer with Windows 10.

3. Methods
3.1. Airborne Laser Scanning Data Processing

The method for classifying full-waveform (FWF) airborne laser bathymetry point
clouds mainly consists of (1) data preparation, (2) the classification of candidates—separately
for each vegetation class, (3) digital surface model creation, and (4) the final point cloud
classification. Figure 2 depicts a schematic representation of the data processing workflow.
As described in Section 2.3, the processing pipeline was implemented using the modular
program system OPALS [46] and Python 3.6.8 [48].

The original geo-referenced point clouds and the bathymetric Digital Terrain Model
Tiefenschärfe-DTM [? ] were used as primary input data. The DTM was assembled from
SONAR (Sound Navigation And Ranging) and ALB data. While multibeam echo sounding
(MBES) data served as base data for the 3D reconstruction of the pelagic (open water) and
benthic (bottom) zone, ALB was used for the littoral (shallow water) area. The latter was
acquired before the macrophytes’ growth season, i.e., optimal conditions for mapping the
lake bottom topography. However, in recent decades, some parts of the littoral zone show
overwintering, submerged vegetation [49], which may have impaired the accuracy of the
DTM. In addition to the DTM, field survey, aerial photo interpretation and orthophotos
were considered as comparative data to aid in the interpretation of properties such as
reflectance and point density, which significantly contribute to the classification process.
However, comparative data were not directly incorporated into the classification workflow,
which ensures that independent results are obtained.

Figure 2. Airborne laser scanning (ALS) processing chain applied for automatic classification of
submerged macrophytes.
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3.1.1. Data Preparation

For the subsequent processing, the point clouds of multiple overlapping flight strips
were merged, and the AOIs are depicted in Figure 1 are cut out of the combined dataset.
Each flight strip consists of two sets of point clouds composed of either the points of the laser
beams looking backward or forward in the direction of flight (Figure 3). To filter out “noise
points”, an existing pre-Classification of the point cloud as well as the Tiefenschärfe-DTM
were used.

Figure 3. Coverage of an AOI polygon using different flight strips (PointIds).

3.1.2. Classification of Candidates

The actual point cloud classification is preceded by the classification of the candidate
points, which is the core of this research work. Unlike in the final classification, aiming
at assigning a well-defined class to each point of the point cloud, we first identify some
but not necessarily all points that characterize a certain vegetation class. These points are
later used as representative points or candidate points for the further process. This step is
conducted for each vegetation class individually. However, the same scheme is used for
each vegetation class (Figure 4).

Figure 4. Processing chain of vegetation candidate classification.

At this point, the classification process can be conceptualized as an iterative filtering
process. Initially, an indicator variable (e.g., reflectance, average distance to neighboring
points, etc.) is defined based on existing point attributes or newly computed attributes.
We then examine the confounding variables and try to mitigate their effects by normaliz-
ing them using empirical formulas. We then analyze the distributions of the calculated
attributes and automatically determine suitable threshold values based on characteristic
distribution patterns. Points exceeding or falling below the threshold with respect to the
considered variables are filtered out.

A visualization and comparison with reference data are conducted to ascertain whether
the remaining points accurately represent the corresponding vegetation class, or if the
iteration necessitates the recalculation of attributes. If the result is satisfactory, the remaining
points are retained as candidates for the respective vegetation class. Note that the entire
strategy is not based on hard-coded threshold values, but that suitable values for class
delimitation are derived from the analysis of attribute distributions.

To illustrate the application of this approach, the first step of the processing chain, i.e.,
defining an indicator variable, is illustrated for each of the three vegetation classes Low
Vegetation, High Vegetation and Vegetation Canopy in Figures 5–7. In some tiles, a more precise
distinction is made between Low Vegetation and Low Vegetation 2 if, within a processed point
cloud, the class can be clearly distinguished into two sub-classes of different heights. No
fixed height difference is set as a limit value, but if the evaluation process shows a clearly
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bimodal distribution of vegetation height within the Low Vegetation class, the limit value
is calculated automatically based on the height distribution. In this way, the additional
information of clear height differences is included in the classification scheme. The actual
heights can be read in the 3D view.

Figure 5. Measure of the local 3D point density (variable dist_all, which indicates the sum of the
distances to the next 20 neighboring points and is therefore inversely proportional to the point density)
as a detection feature for Low Vegetation in LiDAR point cloud demonstrated on a cross section.

Figure 6. Reflectance values as a detection feature for High Vegetation in LiDAR point cloud demon-
strated on a point cloud cross section.

Figure 7. NumberOfReturns values as a detection feature for Vegetation Canopy in LiDAR point cloud
demonstrated on a point cloud cross section.
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3.1.3. Calculation of Digital Surface Models

The DSM calculation utilizes the classified candidates of the vegetation and ground
classes as inputs and performs an interpolation to derive the surface models overlying the
respective candidate points, as shown in Figure 8. The definition of ground candidates is
based on the available Tiefenschärfe-DTM. The interpolation algorithm used for calculating
the surface models was designed to only compute values at locations where candidate
points exist. This results in incomplete surface models that do not cover the entire area of
interest (cf. Section 4.1, Figure 10b).

When creating the DSMs of the respective vegetation classes, a grid width of 0.3 m
(with the exception of 0.6 m for the vegetation canopy class), 32 neighbors, a maximum
search range of 0.2 m, and the interpolation method “mean” (i.e., the average height of all
neighbor points) were used. This combination of parameters ensures that the structure of
the vegetation has a relatively good spatial resolution while not being negatively influenced
by individual outlier points, which would be a problem with fewer neighboring points.

Figure 8. Visualization of the DSM calculation principle for each vegetation class based on a cross
section. Candidate points for Low Vegetation (green), High Vegetation (light green), and Vegetation
Canopy (orange).

As the surface models are not continuous, they can easily be used to calculate the area
coverage of the individual vegetation classes (and ground class). This calculation relies
solely on the point count (pdsmclass

) information within each surface model, which is com-
pared against the polygon area (Apolygon) and grid width (gridwidth) of the model (Equa-
tion (1)).

coverageclass =
pdsmclass
Apolygon

gridwidth2

∗ 100[%] (1)

3.1.4. Classification of Point Cloud

For the actual classification of the entire point cloud, the point cloud and the DSMs are
superimposed. Points beneath the surface model of a particular class that have not yet been
classified are assigned the class ID of the respective surface model. The classification order
is a critical factor and is visually represented in Figure 9. Additionally, classes for ground,
water, and water surface are defined for the completion of the spatial representation.
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Figure 9. Classification order for automatic point cloud classification using DSMs.

3.2. Processing of Additional Data for Quality Assessment

In order to be able to better assess the quality of the automatic classification, two
additional areas (T1 and T2) are included (Figure 1) in addition to the ten AOIs. The two
test areas were surveyed at the same time as the AOI areas. To match the training area’s
data size (ten hexagonal tiles), the test areas are segmented into squares with a 200 m width
and analyzed in a piecemeal fashion.

The validation process adopts a qualitative approach, wherein results are manually
compared with reference data—consisting of orthophotos and aerial photo interpretations—
to assess the accuracy and consistency.

4. Results
4.1. Classification Results

The output of the data processing is the ten classified point clouds of the respective
AOI and the results of the two larger test areas consisting of several separately processed,
complementary point clouds. As an example, the top view of tile ETL4 with prominent
vegetation features—including the corresponding DSMs—is visualized in Figure 10. Ad-
ditional results—including the test areas—can be seen in the Appendix (Figures A1, A3,
A5, A7, A9, A11, A13, A15, A17 and A19). It should be noted that the fully classified
point clouds are shown in the following illustration. For some applications, however,
the representation of the candidate points is more suitable (e.g., 3D representations, cross
sections, or the highlighting of vegetation density).
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure 10. Results of the automatic classification of tile ETL4.

Table 2 shows the calculations of the percentage coverage based on the respective
vegetation classes (and ground) in the individual tiles based on the DSMs.

Table 2. Area covered by vegetation class and tile in percentage as calculated using Equation (1).

Tile Ground Low
Vegetation

Low
Vegetation 2

High
Vegetation

Vegetation
Canopy

ETL1 85.34 76.02 0.0 2.29 0.21
ETL2 68.89 64.18 0.0 0.0 0.0
ETL3 81.41 101.75 0.0 0.47 0.40
ETL4 75.30 60.69 0.0 38.66 1.56
ETL5 67.40 0.0 0.0 69.38 57.66
ETN1 39.53 46.55 0.0 0.0 0.82
ETN2 61.49 50.32 57.30 10.26 8.82
ETN3 91.49 70.0 3.10 0.01 0.0
ETN4 62.75 39,97 5.42 0.09 0.0
ETN8 56.35 44.50 0.0 22.09 3.59

4.2. Comparison with Reference Data

While precise accuracy metrics are challenging to define without accurate ground truth
data, the results are compared with the previous mentioned reference data—orthophotos
and field survey-supported aerial photo interpretations. In general, the time lag of one
month between LiDAR recordings and reference data must be taken into account in this
comparison. This applies to both the orthophotos and aerial photo interpretations. Figure 11
shows the comparison using the example of ETL4, while the Appendix also contains
comparisons of the other AOIs (Figures A2, A4, A6, A8, A10, A12, A14, A16, A18 and A19).

To enable the comparison of the automatic classification results (Figure 11a) with the
available manually delineated 2D polygons based on orthophotos (Figure 11c), Figure 12
provides an overview comparison of the respective “dominant” classes. It is important
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to emphasize that no one-to-one comparison of the classes is possible, as the subjective
delineation of patches from orthophotos is basically more generalized.

(a) (b) (c)

Figure 11. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) for ETL4.

Figure 12. Legend for aerial photo-based classification compared to LiDAR data-based classifica-
tion classes.

The class defined as Low Vegetation denotes vegetation near the bottom with the
identifying characteristic of a higher point density compared to the water body above.
While no specific height threshold is defined, typically, Low Vegetation is classified up to
approximately 1 m above ground level. This class is further subdivided into Low Vegetation
and Low Vegetation 2 if there are two different areas of this class with a recognizable
average height difference within a tile. This vegetation class can be compared to the small
(≤30 cm high) and medium charophyte (30–60 cm) vegetation classes as well as to the small
Elodeids (typical height ≤ 60 cm) used as a category in the aerial photo-based polygon
classification (Figure 12).

The simplified class High Vegetation describes vegetation in the water column (exclud-
ing the water surface) that is characterized by a higher Reflectance than its surroundings.
This class can be compared with the vegetation categories of tall (120–600 cm) Elodeids
from the aerial photo interpretation. Generally, the classes overlap to a limited extent due
to their fuzzy definitions.

The defined class Vegetation Canopy, which is reserved for plants reaching the water
surface and which is additionally characterized by a low NumberOfReturns, can be assigned
to the class of tall Elodeids in the polygons derived from aerial image interpretation.
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However, tall Elodeids with a height of 120–600 cm cover far more than what is included in
the Vegetation Canopy class (Figure 12).

5. Validation

Figure 11 illustrates the overall satisfactory outcome of the automatic classification
in relation to the comparative data. The discernible structures of vegetation areas are
evident across all representations (cf. Figure 11a–c). Supplementary results in the Ap-
pendix further demonstrate the comparable effectiveness for the classification method,
with notable exceptions in tiles ETN3 and ETN4 (cf. Figures A13 and A15). Since quality
deviations were observed for these two tiles, which may be due to sub-optimal data quality
in the corresponding flight strips, they are not discussed further in the following section.
However, the Tiefenschärfe-DTM might also have its limitations due to the fact that overwin-
tering, submerged macrophytes may have impaired its accuracy, potentially influencing the
classification process. Validation was performed separately for the individual vegetation
classes, as the separate processing requires individual validation. This is followed by a
summary of the classification process’s overall success, including the identification of its
strengths and weaknesses.

5.1. Validation of Ground and Low Vegetation Class

The comparison with the polygon classification highlights that the Low Vegetation
class shows a strong correlation with the Charophytes polygon class (cs, cm in Figure 12).
This can be seen particularly well in Figures 11, A2, A4, A6, A10 and A12 due to the
high-percentage coverage of class Low Vegetation in these tiles (Table 2).

When comparing the reference data and classification outcomes, a favorable classifica-
tion result for the Low Vegetation class is observed across all tiles. The classification quality
is particularly noticeable in tiles comprising solely of Low Vegetation and sediment, as is
evident in the tiles ETL2 (Figures A3 and A4) and ETN1 (Figures A9 and A10). This also
shows that the class can be detected in great detail and that even the smallest areas that
change between Low Vegetation and sediment are detected, providing insights into the high
density of Low Vegetation.

The distinction between the sub-classes in Low Vegetation and Low Vegetation 2 also
generally works well. Figure 13 shows the recognizable height difference of the sub-classes
using a section view of tile ETN2, which is the only tile that shows a large coverage of this
class (Table 2).

(a) (b)

Figure 13. Results of the automatic classification of tile ETN2; (a) top view and (b) selected cross section.

The classification of Low Vegetation is based on the limit value calculation of variables
that are based on the point density. However, this limit value calculation occasionally
shows errors, such as with tile ETN8 (Figures A17 and A18). Here, an incorrect limit value
was calculated in one of the two resulting flight strips (and thus point clouds), which led
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to Low Vegetation being incorrectly not recognized. It should be noted that in such cases, a
less sophisticated algorithm is responsible for the incorrect limit value calculation, but the
calculated variables still provide a good basis for distinguishing Low Vegetation and its
surroundings when checked manually.

Another source of error is the variation in water depth within a tile. Since the indicator
variable is calculated using the distance to nearest neighbors, a measure of the 3D density,
and the density of points decreases with increasing water depth due to signal attenuation,
the average point density depends on the water depth. Now, if parts of the tile exhibit
a water depth that deviates greatly from the average depth of the tile, the threshold will
not be appropriately chosen for these deviating areas. More precisely, this means that
Low Vegetation is incorrectly classified in ETL1 in the nearshore areas (Figures A1 and A2)
because the selected threshold in the nearshore areas would be significantly lower in a
separate analysis.

5.2. Validation of High Vegetation Class

By comparison to the orthophoto, Figure 11 shows that the High Vegetation was de-
tected very well. The vegetation boundaries match almost perfectly with the vegetation
boundaries of the orthophoto. Even smaller patches of vegetation as well as small gaps in
the vegetation were detected by the classification method. It is striking, however, that the
High Vegetation class in Figures 11 and A8, and Figure A8 (i.e., tiles with a high proportion of
High Vegetation according to Table 2) unexpectedly does not only correspond with the class
of tall Elodeids but also similarly well with the polygon classes of small and large-leaved
Elodeids. In addition to the temporal difference between the two classifications, the expla-
nation that only the dominant vegetation class is shown in the aerial photo interpretation
plays a role here, as the orthophoto, again, clearly shows high vegetation.

The three-dimensionality of the result is particularly important for this class. The
structures of the vegetation within the water body can be recognized and displayed, as can
be seen in the classification result of test area T2 (Figure 14).

(a) (b)

Figure 14. Results of the automatic point cloud classification of test area T2 (a) and selected cross
section (b) illustrating the structure of the class High Vegetation within the water column. Only
candidate points are presented.

In general, test area T2 (Figure A19) clearly shows that the classification of the High
Vegetation is homogeneous (across tile boundaries) and agrees well with the orthophoto,
which forms the basis for comparison. The biggest risk for misclassification is the threshold
setting of the underlying variables, which can be corrected manually.

5.3. Validation of Vegetation Canopy Class

Figure 11 clearly shows that Vegetation Canopy was classified exactly where there is
visible tall vegetation in the orthophotos. The small vegetation areas, which often appear
in a circle, are mostly located in the vicinity of High Vegetation.

While the classification results of the class Vegetation Canopy for the ten training tiles are
quite satisfactory and even very small vegetation areas can be recognized by the algorithm
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and clearly distinguished from their surroundings, this is not the case, to the same extent,
for the classification results of test area T2 (Figure A19). The individual classification results
are not homogeneous, which led to inconsistent results across the process boundaries. This
can be explained by the fact that most of the training areas have little or no Vegetation
Canopy (Table 2), and therefore, the algorithm for calculating the threshold value has not
been sufficiently trained.

Figure 15 illustrates that this is merely an instability in the statistical analysis and that
the actual classification method is nevertheless successful with regard to the underlying
indicator variable.

It can be seen that indicator variable dist4nn (based on NumberOfReturns) also behaves
homogeneously across the tile boundaries, and therefore, with a better threshold calculation,
a similarly homogeneous result as for the class High Vegetation and a better match with the
orthophoto can be expected.

(a) (b)

Figure 15. Indicator variable of the candidate classification of class Vegetation Canopy (dist4nn) in
(a) an orthophoto of (b) test area T2. Polygons of the aerial photo interpretation are superimposed
on both.

6. Discussion
6.1. Summary of the Validation

In general, the results suggest that the classification methodology successfully dis-
tinguishes between various vegetation classes as indicated by the correct detection of
vegetation and the distinction between vegetation and its surroundings. The selected
vegetation indicators, such as density for Low Vegetation, Reflectance for High Vegetation,
and NumberOfReturns for Vegetation Canopy, are indicative of their respective vegetation
classes. However, the conditions during the LiDAR data acquisition were not optimal. Due
to a lime precipitation event, the Secchi depth of less than 3 m was very low compared to
the maximum achievable values of around 10 m measured during the vegetation period in
2019. Furthermore, the high lake level indicated summer-flood conditions. It is important
to emphasize that despite the moderate quality of the LiDAR data, a significant classifi-
cation success was achieved. With regard to the data collection, we note that ALB flight
campaigns based on crewed aircraft require longer planning in advance. As a result, they
can hardly react to short-term changing conditions as this would, for instance, be the case
for drone-based ALB [50].

The errors in classification primarily stem from undetected or miscalculated thresh-
olds. As such, the issue is not so much with the classification workflow itself, but with the
mathematical or statistical procedures. It is important to note that, while a training area
comprising ten individual analysis areas is sufficient for automatic threshold value compu-
tations, it does not cover the full range of distributions and distribution forms of a variable
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required to compute accurate thresholds for other AOIs with high reliability. It is worth
mentioning that this study’s focus was not on evaluating the distributions mathematically,
but rather on the general classification concept. Hence, a significant enhancement of the
functions used for threshold calculation is possible, but it is beyond the scope of this study.

Another significant source of errors arises from heterogeneous analysis regions. A deeper
penetration of the laser pulse into the water body causes a loss of signal strength, which
strongly affects crucial attributes like 3D point density, Reflectance, and NumberOfReturns.
Although efforts have been made to adjust for water depth or distance to the water bottom
when calculating attributes, they cannot be entirely eliminated as confounding variables.

In general, it can be asserted that the classification method is successful, with the
exception of tiles ETN3 and ETN4, as the classification results of all other training areas
are good and match well with the comparison data. Classification boundaries in the
classified point cloud match well with color changes in the orthophotos. However, it is
difficult to determine the type, and impossible to estimate the height of vegetation, by
solely examining the orthophotos. When comparing with the polygons classified from
aerial photographs and field surveys, the point cloud classification results also reflect the
structure of the polygons, but with a higher level of detail. As a result, the boundaries of
the polygons only partially correspond to those of the classified point cloud. Furthermore,
the temporal displacement of one month between the aerial photographs used for polygon
classification and LiDAR data led to some differences, such as with ETN1 (Figure A10),
where the point cloud classification of High Vegetation is less consistent with the classified
polygons due to temporal changes in vegetation. Since some high-growing species such
as P. pectinatus start their senescence often already at the end of July and may lay down
on the ground due to storm events, as it happened in July 2019; they can hardly be
classified accurately in aerial photo interpretations. Nevertheless, the biggest challenge in
comparing the two classification methods is the distinction and representation of different
vegetation classes. While the point cloud classification distinguishes by vegetation height
and a main indicator variable, the polygon classification, supported by field survey data,
distinguishes by vegetation type, which limits their comparability. In addition, the polygon
classification only shows the “dominant” vegetation class in the selected patch, which leads
to a considerable loss of information if multiple vegetation types are present in one polygon.

6.2. Vertical Complexity of Macrophyte Stands

One advantage of LiDAR point cloud classification over orthophotos and polygon
classification lies in the ability to provide three-dimensional results. This allows for the
identification of clear structures of vegetation surfaces, beyond the mere presence or absence
of vegetation classes. However, the three-dimensional nature of the result is constrained,
as the vegetation classes may obscure each other.

The water current and associated orientation of vegetation in the water appear to play
a significant role in these observations. For instance, tile ETL4 is subjected to a notable
water flow. Concurrently, the High Vegetation largely obscures the Low Vegetation and the
ground in the classification results (Figure 10). This current promotes an inclined position
of the high vegetation, thereby impeding laser penetration and resulting in the inability
to image the multiple layers of the vegetation structure. Nonetheless, the presence of Low
Vegetation beneath is not entirely ruled out and is even likely based on reference data.

In contrast, tile ETL1 experiences minimal water flow, and upon examining the surface
models (Figure A1), Low Vegetation is clearly defined beneath the High Vegetation. The calm
water encourages a vertical orientation of the High Vegetation, facilitating laser penetration.
The classification revealing gaps in Low Vegetation DSM can be attributed to the small area
covered by Vegetation Canopy at the water surface, which can be explained by the horizontal
alignment of leaves on the water surface.

In addition to the flow conditions, the physical constraints of the data acquisition also
play a major role in the ability to recognize the entire three-dimensional structure of the
vegetation and several vegetation layers on top of each other.
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6.3. Potential for Improvement and Extensions

In addition to increasing accuracy and robustness of data processing, LiDAR data
can also provide opportunities for further analysis beyond submerged macrophythes
classification. These potential extensions include the following:

1. The calculation of the vegetation volume and biomass volume by combining the
knowledge of vegetation densities.

2. The extension of data analysis for determining vegetation density.
3. The determination of leaf size could also be included in the analysis, following the

aerial photo-based classification. The hypothesis is that plants with large leaf sizes
may allow less of the signal of the laser beam to penetrate compared to those with
small leaf size.

4. The most ambitious extension of LiDAR data analysis would be the development of an
advanced classification process that allows for detailed vegetation class distinctions or
even the identification of vegetation types by combining various indicator attributes.
Instead of using only one main indicator for each vegetation class, a combination of
several attributes such as vegetation height, vegetation area size, leaf size, vegetation
density, water depth, Reflectance, NumberOfReturns, and other influencing variables
could lead to a more precise classification. This idea could be further developed by
incorporating additional knowledge about vegetation types and their characteristics.

6.4. Transferability

To evaluate the transferability of the research findings to the field of monitoring
submerged macrophytes, it was crucial to estimate the method’s applicability to other
inland water datasets. However, it is essential to note that the entire methodology was
developed solely based on the Lake Constance dataset collected on 9 July 2019, between 7:30
a.m. and 10:00 a.m. Also, for example, Low Vegetation was not generally classified, but only
Low Vegetation with a high local point density as a detection feature, which is analogous
for the other classes. In other inland waters, Low Vegetation species may occur that are
not identifiable by a high point density, which may impede the transfer of the method
without prior adjustments. Nevertheless, the classification method could be applied to
other inland waters where submerged aquatic vegetation similar to that in Lake Constance
is expected, either based on previous research or due to similar climatic and environmental
conditions. This could, for instance, apply to other Alpine lakes. However, for reliable
vegetation classification in waters different from Lake Constance, a separate verification
of the represented vegetation classes and their typical characteristics is necessary for a
corresponding LiDAR data analysis.

Moreover, the algorithm might be more suitable for the temporal analysis of the same
area than for application to different water bodies. This means that to analyze the temporal
change in submerged vegetation in Lake Constance, the method can be applied to another
dataset of the same area but at a different time. A prior check of the data’s similarity and
quality is still necessary because even under the same external recording conditions (such
as the same scanner, time of year, data preparation, etc.), external factors such as deviations
in water quality can lead to significant differences in the dataset, requiring adjustments in
the analysis.

6.5. Applications

The classification of LiDAR data results in bio-volume data of submersed vegetation.
These can be parametrized by field measurements of vegetation biomass and thus serve
as a measure of the littoral primary production, which is an important measure used to
characterize a lake ecosystem [51]. This applies, in particular, to Lake Constance, where the
re-oligotrophication process leads to a shift of primary production from the pelagial zone
more to the littoral zone [40]. Furthermore, the classification results provide an accurate
3D representation of submersed vegetation structures, which serve as habitats for macro-
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invertebrates and fishes [52]. Thus, they provide a good basis for a quantitative assessment
of habitats.

7. Conclusions

In this paper, we introduced a novel method for classifying 3D topo-bathymetric
LiDAR point clouds into three main height-oriented vegetation classes—Low Vegetation,
High Vegetation, and Vegetation Canopy. The clouds were compared with reference data
(orthophotos and field survey-supported aerial photo interpretations) to create a separate
classification scheme for each vegetation class. These schemes consist of calculations of
threshold values for indicator attributes to classify representative points for each class.
These candidate points were then used to create digital surface models, which in turn
served as the basis for the final classification of the point clouds.

This research reveals that the automatic classification of LiDAR point clouds holds
potential for detecting submerged vegetation in Lake Constance and differentiating between
various categories of vegetation, namely, Low Vegetation, High Vegetation, and Vegetation
Canopy. The detection capability surpasses the mere identification of the presence or absence
of a vegetation class because it provides insight (i) into vegetation height and distribution,
enabling 3D mapping, and (ii) also captures the density of the vegetation. It is noteworthy
that the method exhibits a high level of precision in detecting vegetation, identifying even
the smallest vegetated areas and effectively distinguishing them from their surroundings.

Generally, it can be stated that the field of monitoring aquatic submerged macro-
phytes through airborne LiDAR data is in its early stages, with the necessary technological
developments currently underway. New surveying devices offering both better depth
penetration and higher point density increase the potential of this field of research as well
as in the domain of data science, where machine learning and deep learning will be of great
significance in the future. The results of this study demonstrate a high quality of automatic
point cloud classification for the classification of submerged vegetation, with enormous
potential for the entire surveying of littoral water zones through the further development
of data processing methods.
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Appendix A

Appendix A.1. Classification Results and Comparative Data

Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A1. Results of the automatic classification of tile ETL1.

(a) (b) (c)

Figure A2. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETL1.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A3. Results of the automatic classification of tile ETL2.

(a) (b) (c)

Figure A4. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETL2.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A5. Results of the automatic classification of tile ETL3.

(a) (b) (c)

Figure A6. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETL3.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A7. Results of the automatic classification of tile ETL5.

(a) (b) (c)

Figure A8. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETL5.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A9. Results of the automatic classification of tile ETN1.

(a) (b) (c)

Figure A10. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETN1.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A11. Results of the automatic classification of tile ETN2.

(a) (b) (c)

Figure A12. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETN2.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A13. Results of the automatic classification of tile ETN3.

(a) (b) (c)

Figure A14. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETN3.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A15. Results of the automatic classification of tile ETN4.

(a) (b) (c)

Figure A16. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETN4.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) Classified point cloud (b) DSMs of ground and vegetation (Low/High/Canopy) classes

Figure A17. Results of the automatic classification of tile ETN8.

(a) (b) (c)

Figure A18. Comparison of classification results (only candidate points) (a) with orthophoto (b) and
field survey-supported aerial photo interpretation (c) (legend presented in Figure 12) for ETN8.
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Ground Low Vegetation Low Vegetation 2 High Vegetation Vegetation Canopy

(a) (b)

(c) (d)

Figure A19. Comparison of classification results (only candidate points) (a,b) with orthophoto
(c,d) for T1 (a,c) and T2 (b,d). In each figure, the polygon boundaries of the field survey-supported
aerial photo interpretation are depicted in the background.
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