
Towards Automating Induction for
Software Verification
Guiding Inductive Reasoning in

Superposition-based Theorem Proving

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Pamina Georgiou, BSc
Matrikelnummer 01125496

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr.techn. Laura Kovács, MSc
Zweitbetreuung: Univ.Prof. Dipl.-Ing. Georg Weissenbacher, D.Phil.

Diese Dissertation haben begutachtet:

Reiner Hähnle Martina Seidl

Wien, 4. März 2024
Pamina Georgiou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Towards Automating Induction for
Software Verification
Guiding Inductive Reasoning in

Superposition-based Theorem Proving

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Dipl.-Ing. Pamina Georgiou, BSc
Registration Number 01125496

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr.techn. Laura Kovács, MSc
Second advisor: Univ.Prof. Dipl.-Ing. Georg Weissenbacher, D.Phil.

The dissertation has been reviewed by:

Reiner Hähnle Martina Seidl

Vienna, March 4, 2024
Pamina Georgiou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Pamina Georgiou, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. März 2024
Pamina Georgiou

v

Danksagung

Mein herzlicher Dank gilt meiner Betreuerin Laura Kovács, deren unerschütterliche
Unterstützung, unschätzbare Anleitung und vorbildliche Mentorrolle während dieser
Reise von entscheidender Bedeutung waren. Ich bin ebenso meinem Co-Betreuer Georg
Weissenbacher, und meinen Co-Autoren Bernhard Gleiss, Michael Rawson, Ahmed Bhayat,
Clemens Eisenhofer und Martón Hajdu für ihre Expertise, intellektuellen Austausch und
konstruktives Feedback zutiefst verpflichtet. In diesem Sinne möchte ich mich auch bei
meinen Gutachtern Reiner Hähnle und Martina Seidl für die ausführlichen Reviews und
das umfangreiche Feedback zu dieser Arbeit bedanken.
Ich bin zutiefst dankbar für die Unterstützung und Kameradschaft, die mir von meinen
Kollegen Petra, Sarah, Marcel, Sophie, Giovanni, Sanja, Federica, Anja, Michael und
Matthias unter vielen anderen an der TU Wien entgegengebracht wurde. Ihre Ermutigung,
aufschlussreichen Gespräche und Freundschaft waren eine ständige Bereicherung. Besonde-
rer Dank gilt auch Beatrix für ihre unglaubliche Unterstützung bei allen organisatorischen
und bürokratischen Fragen und Anliegen.
Ich schulde meinen Eltern Brigitte und Nikolaos, dabei insbesondere meiner Mutter
Brigitte, einen großen Dank, deren grenzenlose Ermutigung, unerschütterlicher Glaube
an mein Potenzial und unermüdliche Unterstützung die Eckpfeiler meiner akademischen
Reise waren. Ihre Ermutigung, meine Leidenschaften und Träume zu verfolgen, war die
treibende Kraft hinter diesem Erfolg.
Darüber hinaus möchte ich meinen Großeltern, Hilde und Günther, für ihre kontinuierliche
Unterstützung während meiner gesamten Ausbildung von Herzen danken. Ihre Großzü-
gigkeit und ihr Glaube an meine Fähigkeiten haben die mit dem Studium verbundenen
Belastungen gemildert und es mir ermöglicht, mich voll und ganz auf mein Studium zu
konzentrieren.
Besonderer Dank gilt meinem Partner Stefan, dessen Liebe, Unterstützung und kontinu-
ierlicher Glaube an meine Fähigkeiten mich durch die Höhen und Tiefen dieses Vorhabens
getragen haben, insbesondere in den letzten Zügen der Niederschrift.
An meine lieben Freunde, die mich auf dieser akademischen Reise begleitet haben,
insbesondere Andjela, Corinna, Sandra und Sophie, eure Unterstützung und Ermutigung
waren eine Quelle der Kraft während der Triumphe und Herausforderungen des Doktorats.
Ihre Anwesenheit hat diese Erfahrung noch erfüllender und denkwürdiger gemacht.

vii

Schließlich möchte ich all jenen meinen aufrichtigen Dank aussprechen, deren Namen hier
vielleicht nicht genannt werden, die aber durch ihre Unterstützung einen wesentlichen
Beitrag zur Entstehung dieser Arbeit geleistet haben.
Diese Arbeit wäre ohne die kollektive Unterstützung aller oben genannten Personen
nicht möglich gewesen. Ich danke euch, dass ihr ein wesentlicher Bestandteil dieser
transformativen Reise waren.

Acknowledgements

I extend my heartfelt gratitude to my main supervisor, Laura Kovács, whose unwavering
support, invaluable guidance, and exemplary mentorship have been instrumental through-
out this journey. I am equally indebted to my co-supervisor, Georg Weissenbacher, and
co-authors, Bernhard Gleiss, Michael Rawson, Ahmed Bhayat, Clemens Eisenhofer and
Martón Hajdu, for their expertise, intellectual exchange, and constructive feedback. On
this note I’d also like to thank my reviewers Reiner Hähnle and Martina Seidl for their
detailed reviews and constructive feedback of this thesis.
I am deeply appreciative of the support and camaraderie extended to me by my colleagues
Petra, Sarah, Marcel, Sophie, Giovanni, Sanja, Federica, Anja, Michael and Matthias
among many others at TU Wien. Your encouragement, insightful conversations, and
friendship have been a constant source of enrichment. Special thanks also goes to
Beatrix for your incredible support with all organizational and bureaucratic questions
and concerns.
I owe a debt of gratitude to my parents, Brigitte and Nikolaos, particularly my mother,
Brigitte, whose boundless encouragement, unwavering belief in my potential, and relentless
support have been the cornerstone of my academic journey. Your encouragement to
pursue my passions and dreams has been the driving force behind this success.
Furthermore, I extend my heartfelt appreciation to my grandparents, Hilde and Günther,
for their unwavering support throughout my education. Your generosity and belief in my
abilities have alleviated the burdens associated with academic pursuits, allowing me to
focus wholeheartedly on my studies.
Special thanks are extended to my partner, Stefan, whose love, encouragement, and
continuous confidence in my abilities have sustained me through the highs and lows of
this pursuit, especially in the finishing stretches of writing it down.
To my dear friends who have accompanied me on this academic journey, especially
Andjela, Corinna, Sandra and Sophie, your support and encouragement have been a
source of strength during both the triumphs and challenges of doctoral studies. Your
presence has made this experience more fulfilling and memorable.
Finally, to all those whose names may not be mentioned but whose support, encourage-
ment, and contributions have played a significant role in shaping this thesis, I offer my
sincere gratitude. This work would not have been possible without the collective support,
encouragement, and guidance of all those mentioned above. Thank you for being an
integral part of this transformative journey.

ix

Kurzfassung

Diese Arbeit untersucht die Automatisierung induktiver Schlüsse für Programmverifikation
mit Hilfe von automatisierten Theorembeweisern in der Prädikatenlogik erster Stufe,
die auf dem sogenannten Superpositionskalkül basieren. Dabei untersuchen wir in erster
Linie jene Programme, die Schleifen, Arrays oder rekursive Funktionsaufrufe enthalten.
Wir schlagen neue Methoden zur Automatisierung induktiver Beweisführung in theorem
proving vor, die die vollautomatische Verifikation solcher Programme erlaubt.
Im ersten Teil der Arbeit erforschen wir die Induktion in der sogenannten Trace Logic,
einer Instanz der Prädikatenlogik erster Stufe mit Theorien und Datenstrukturen. Wir
schlagen zwei Methoden vor, um induktive Schlüsse für Programmschleifen in Trace Logic
handzuhaben und implementieren unsere Arbeit im Rapid Verifikationssystem und dem
ihm zugrundeliegenden Theorem Prover Vampire.
In unserem ersten Ansatz erweitern wir die Programmsemantik in Trace Logic um soge-
nannte Trace Lemmata. Trace Lemmata drücken allgemeine, induktive Eigenschaften
über Programme aus, die Schleifen, Integer und (unendliche) Arrays beinhalten können.
Wir identifizieren eine Reihe sinnvoller Trace Lemmata, die den automatisierten Theo-
rembeweiser beim induktiven Schließen unterstützen. Dies ermöglicht die vollständige
Automatisierung von Beweisen durch beschränkte Induktion über Programmzeitpunkte.
Darüber hinaus, erforschen wir induktive Inferenzen für Trace Logic direkt im zugrun-
deliegenden Theorem Prover um die Abhängigkeit von Trace Lemmata zu reduzieren.
Hierfür erweitern wir den automatisierten Prover um zwei induktive Inferenzen, die
spezifisch für Korrektheitsbeweise in Trace Logic verwendet werden, nämlich multi-clause
goal induction und array mapping induction. Diese ermöglichen lemmaloses, induktives
Beweisen gültiger Eigenschaften über Programme mit Schleifen, Arrays und ganzen
Zahlen, ohne dass a priori induktive Lemmata oder Invarianten formalisiert werden
müssen.
Der zweite Teil der Arbeit befasst sich mit Programmsemantik und induktiven Schlüssen
rekursiver Programme. Insbesondere formalisieren wir die funktionale Programmsemantik
in der Prädikatenlogik erster Stufe und zeigen unseren Ansatz, indem wir die Korrektheit
gängiger Sortieralgorithmen beweisen. Zu diesem Zweck erweitern wir den Prover Vampi-
re um spezifische, strukturelle Induktionsregeln basierend auf Listen, die durch einen
beliebigen Datentyp parametrisiert sind, der eine lineare Ordnung zulässt. Wir liefern
einen vollautomatischen Korrektheitsbeweis für den rekursiven Quicksort-Algorithmus
unter anderen Sortieralgorithmen.

xi

Abstract

This thesis explores automating inductive reasoning for software verification of programs
containing loops, arrays and recursive function calls. We propose new methods of
automating induction in first-order theorem proving based on the superposition calculus
allowing for fully automated verification using theorem proving for such programs.

In the first part of the thesis, we explore induction in trace logic, an instance of many-
sorted first-order logic with theories. We propose two methodologies to handle inductive
loop reasoning in trace logic and implement our work in the Rapid verification framework
and the underlying saturation prover Vampire. In our first approach, we extend trace
logic program semantics with so-called trace lemmas. Trace lemmas express common
properties over programs with loops, integers and unbounded arrays based on bounded
induction over timepoints. We identify a set of trace lemmas for such programs. These
lemmas help the automated theorem prover with inductive reasoning and enable the full
automation of proofs of such programs. Furthermore, we reduce reliance on trace lemmas
by introducing bounded induction over timepoints directly in the underlying theorem
prover. That is, we extend the saturation-based prover with two inductive inferences
specific to reasoning in trace logic, namely multi-clause goal induction and array mapping
induction, for lemmaless reasoning over loop iterations. Both inference rules enable the
prover to derive safety properties over programs with loops, arrays and integers without
the need of a priori trace lemma reasoning.

The second part of the thesis deals with program semantics and inductive reasoning for
recursive programs. Specifically, we formalize functional program semantics in many-
sorted first order logic and showcase our approach by proving common sorting algorithms
correct. To this end, we extend the saturation prover Vampire with specific structural
induction rules based on lists parameterized by any sort that allows for a linear order,
namely computation induction. Based on this methodology we provide a fully automated
correctness proof of the recursive Quicksort algorithm among other sorting algorithms.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 5
1.3 Publications and Relation to Contributions 7
1.4 Outline . 8

2 Background and Preliminaries 9
2.1 Saturation-based Automated Theorem Proving 9
2.2 Induction and Superposition . 13
2.3 Trace Logic . 13
2.4 Axiomatic Semantics in Trace Logic L 18

3 Trace Lemma Reasoning 23
3.1 Trace Logic for Safety Verification . 24
3.2 A Suitable Set of Trace Lemmas for W programs 26
3.3 Trace Lemma Correctness . 30
3.4 Related Work . 33

4 Lemmaless Inductive Reasoning 35
4.1 Motivating Example . 37
4.2 A Final Trace Lemma . 38
4.3 Multi-Clause Goal Induction for Lemmaless Induction 39
4.4 Array Mapping Induction for Lemmaless Induction 41
4.5 Related Work . 43

5 Extracting Invariants with Trace Lemma Reasoning 45
5.1 Extended Expressions and Symbol Elimination 46
5.2 Invariant Generation in Trace Logic 47

xv

5.3 Related Work . 50

6 Computation Induction for Recursive Sorting Algorithms 53
6.1 Background . 55
6.2 First-Order Semantics of Functional Sorting Algorithms 56
6.3 Computation Induction in Saturation 58
6.4 Proving Recursive Quicksort . 59
6.5 Lemma Generalizations for Guided Proof Splits 63
6.6 Related Work . 67

7 Tooling and Implementation 71
7.1 The Rapid Verification Framework . 71
7.2 Verification Modes . 77
7.3 Verifying Partial Correctness in Rapid 79
7.4 The Vampire Theorem Prover . 80

8 Experiments and Evaluation 83
8.1 Rapid Experimental Results . 83
8.2 Computation Induction and Sorting Experiments 87

9 Conclusion and Future Work 91

List of Figures 95

List of Tables 97

Bibliography 99

CHAPTER 1
Introduction

1.1 Motivation
Over the course of the last few decades, the digital transformation of society has marked
the world sustainably. In today’s world, software is ubiquitous and has become an integral
part of our day-to-day lives. From the first sound of our alarm clock to the precision
of our GPS navigation system to the ease of our social media connections, software
has permeated every aspect of life. However, its influence extends beyond individual
interactions, besieging industries, health care, education, leisure, and more.
As technology advances, the incorporation of software into our daily lives not only provides
convenience and efficiency, but can also put us at risk. Software bugs, often unexpected
glitches or bugs in the code, come in all shapes and sizes, from minor hiccups to major
malfunctions. Despite developers’ best efforts to create robust, reliable software, the
complexity of modern apps and the ever-evolving nature of technology make it difficult
to eliminate bugs completely.
However, vulnerabilities can be costly. Several famous software bugs have made headlines
over the years, causing significant disruptions, for example, at airports [Sko20], financial
repercussions such as [Kan18, O’K20, She20] and breaches to personal data, most notably
in social networks as for example [WS20, Rot22]. Whether it’s the failure of a space
mission, the billions of euros lost in financial transactions, or the disruption of commu-
nication networks that bring society to a standstill ([GNT10, WLL17, Kra22]) – these
incidents demonstrate the significance of software quality assurance and the imperative of
verifiable correctness of critical infrastructure in software development. More importantly,
the ever-evolving nature of software necessitates the automatization of quality assurance
processes.

Software Testing. Testing is the most widely used method of ensuring software quality
and reducing the amount of errors that can lead to software failure or exploitation by

1

1. Introduction

malicious attackers. Essentially, testing allows to check whether a computation matches
the expectation for specific inputs and outputs.
From unit tests, white-box and black-box testing to automated test case generation and
test coverage assessments, testing has become an integral part of the software development
cycle with a vast range of methodologies, see for example [AO16, MBTS04]. Software
developers are generally familiar with testing as part of the development process as most
programming languages and frameworks come equipped with several tools that allow
developers to find bugs. Due to this accessibility and practicability, software testing has
evolved as the standard methodology to ensure software quality.
While many important software bugs can be found and circumvented with testing, full
correctness, however, cannot be guaranteed. Granted, considerable progress has been
made in the field of testing technology, both in the academic and industrial fields.
Nevertheless, testing is often insufficient for asserting the safe execution of a program. As
Dijkstra famously put it in [DDH72], "Program testing can be used to show the presence
of bugs, but never to show their absence!". Given the profound integration of software in
everyday life, Dijkstra’s claim that a programmer’s challenge is not only to implement
a program but also show its correctness dating back to 1969 is as relevant as ever. We
need methods to verify program correctness and, ideally, we want those approaches to be
automated.

1.1.1 Program Correctness and Induction

Software verification is a robust methodology that eliminates the drawbacks of testing.
The approach relies on verifying the absence of implementation errors by considering the
general execution of a program, that is any computation independent of specific inputs.
Doing so, its aim is to determine that a program meets specified (functional) behavior.
The only way to reliably assert whether a software system meets the functional require-
ments for a particular piece of code is to specify and prove it – formally and rigorously.
It is, thus, evident that in order to determine program correctness, mathematical proof is
required: only a formal specification of program semantics and requirements allows us
to establish the validity of safety properties. Proofs are the core of formal methods for
software verification.

When it comes to mathematical proofs for program correctness one technique is indis-
pensable: induction. The principle of mathematical induction allows us to elegantly
prove general statements P , for instance, about natural numbers:

�
P (0) ∧ ∀k . P (k) → P (k + 1)

� → ∀k . k ≥ 0 → P (k)

We first prove that P holds for the smallest natural number 0, the base case P (0). We
proceed to show the step case ∀k . P (k) → P (k + 1) by assuming that P holds for some
arbitrary but fixed number k. This assumption is called the induction hypothesis and
it can be used to show that P still holds for k + 1. Proving the base and the step case
allows us to use the conclusion of the principle, that is P holds for all natural numbers.

2

1.1. Motivation

In program verification, this proof concept is vital once our programs contain loops,
algebraic data types, or recursive calls. It is not surprising that any system that evaluates
large (and potentially infinite) numbers of possible executions of a software program
utilizes induction, either implicitly or explicitly. When considering loops, it is necessary
to provide an abstraction of each individual run and to demonstrate a general statement
about what a loop can compute. This is achieved through the use of loop invariants
which, to a certain degree, describe the behavior of a loop and abstract it from specific
variable values.
The concept of loop invariants dates back to the 1960s when Hoare and Floyd [Flo67,
Hoa69] began to recognize the significance of "assigning meaning to programs", that is
conceptualizing them as mathematical objects that could be formally reasoned about.
They proposed an axiomatic semantics and a deductive system for program correctness
that is now widely known as Floyd-Hoare Logic and was further developed into the
predicate transformers by the Dijkstra in 1975 [Dij75]. To this day, these works were
the first systematic approaches to manual program verification and laid the theoretical
foundation for automated verification procedures yet to come.
All of these works underpin how loop invariants are necessary for proving correctness:
by showing that an invariant is inductive and that it implies a safety property (together
with a negated loop condition), we can prove partial correctness. To demonstrate an
invariant’s inductive nature, we have to prove two things: (1) a loop invariant must
hold prior to the first iteration, while (2) an invariant that holds prior to some iteration
should also hold prior to the next iteration. In this context, (1) can be understood as
showing the base case of an induction axiom, while condition (2) corresponds to proving
the inductive step of an induction axiom.
However, writing such proofs by hand is tedious, time-consuming and not feasible for
large amounts of code given the rapid evolution of code, even for security-sensitive
applications. Hence, automation of (inductive) proof writing is indispensable for the
verification process.

1.1.2 Automated Verification Techniques
Automating inductive proofs is notoriously hard:

"I shall show that there is no general method which tells whether a given
formula U is provable in K."

With these words from [Tur36], Alan Turing opened his famous proof showing that the
Halting problem has no solution, that it is undecidable. His proof essentially eliminated
all hope to find an automated procedure that when given a program and a property can
decisively answer true or false. Some decision problems are undecidable. Together with
Church’s theorem [Chu36] stating that the set of all valid formulas of first-order logic
is not effectively decidable, or Rice’s theorem [Ric53] that any non-trivial property of
a program is effectively undecidable, the outlook on an automated procedure to prove
programs correct is at best grim.

3

1. Introduction

However, not all hope is lost. The quest for reliable and rigorous methods to ensure the
correctness of software has been a driving force in the evolution of automated verification
techniques. The field of automated software verification, while proven to be deeply
undecidable on multiple occasions, has experienced major advancements and has been
shown to be effective in practice. Over the years, researchers and practitioners have
explored various approaches, each contributing to the intricate tapestry of software
verification [HH19, DKW08, WLBF09, APS14, KG99].

Satisfiability Modulo Theories. When it comes to automated reasoning techniques,
satisfiability modulo theories (SMT) solvers based on the DPLL(T) decision procedure
[Nel80, NO79] combining first-order logic and theories are on the forefront of automated
technologies. Today, they build the reasoning engine for many different techniques
of proving program correctness, such as [FPMG19, GSV18, CGU20, CGU21, Lei10]
among many. Most notably Z3 [DMB08] and CVC4 [BCD+11] are used as deductive
backends that come with strong reasoning for multiple theories and first-order logic.
However, they have limitations in quantified reasoning as such solvers depend on quantifier
instantiation strategies [DNS05, FJS04, GBT07, RTDM14] and are thus mostly restricted
to quantifier-free and universally quantified formulas.
Additionally, the main challenge of handling inductive reasoning over loops in a first-order
setting is still not solved in a clear-cut way. Many tools and approaches relying on SMT-
solvers still depend on the user to specify loop invariants, contracts or other methods to
annotate a program with inductive properties that can be used in automated verification
to deduce whether a property holds, see e.g. [Lei10, FP13, PMP+14, ABB+05]. Others,
while inferring loop invariants in an automated way, are restricted to quantifier-free
or universally quantified properties and program semantics [FPMG19, GSV18, CGU20,
CGU21].

Proof assistants. Interactive proof assistants based on higher-order logic do support
inductive proofs. Provers such as Isabelle/HOL [NWP02], Coq [BC13], ACL2 [BM90,
KMM00] or the KeY system [ABB+05] allow to verify inductive proof steps in a machine-
assisted way. However, while some heuristics are in place [BSVH+93] to determine which
variables to use in induction, such tools usually rely on the proof engineer to decipher
the correct way of applying induction during proof construction. That is, the user has to
define or choose the induction scheme to apply when reasoning about loops or recursive
function calls.
All of the above mentioned methodologies to reason about programs are based on
induction, either explicitly or implicitly. Either an induction scheme must be explicitly
provided to the prover, loop invariants are employed to reason about loop execution, or
method contracts serve as an inductive hypothesis for recursive calls.

Superposition-based Theorem Proving. In contrast to the above approaches,
first-order theorem provers [KV13] enable quantified reasoning modulo theories [KRV17,
RBSV16, RSV21], such as linear integer arithmetic and arrays, in a fully automated

4

1.2. Contributions

manner. The combination of full first order quantification, uninterpreted functions,
and theory-specific symbols provides proof engineers with great modeling capabilities.
Moreover, thanks to recent advances, they offer a possibility of built-in automated
inductive reasoning [EP20, Cru15, HKV21, HHK+20, HHK+22]. First-order reasoning
can, thus, complement the aforementioned verification efforts when it comes to proving
program properties that require inductive reasoning and complex quantification.

In this thesis, we address the question of how to leverage and advance the development of
first-order superposition-based theorem provers for the purpose of software verification
and how to automate the inductive reasoning required for this aim.

1.2 Contributions
We believe that our work strongly advocates the use of automated first-order theorem
provers with regards to software verification. Even in the sight of undecidability, inductive
reasoning over programs containing recursive data structures, loops, linear arithmetic
but also functional programming constructs can be efficiently automated by leveraging
and extending their capabilities. Our contributions are summarized in the following.

Inductive Reasoning with Trace Logic. Trace logic L [BEG+19, GGK20a], an
instance of many-sorted first-order logic, enables the partial correctness verification of
imperative programs containing loops, arrays and linear integer arithmetic. Trace logic
generalizes semantics of program locations and captures loop semantics by encoding
properties at arbitrary timepoints and loop iterations. The crux in automating partial
correctness proofs with saturation-based theorem proving is the automated handling
of inductive reasoning over loops. We propose two different methodologies to handle
inductive reasoning in trace logic and implement our work in the Rapid verification
framework [GGB+22] and the underlying saturation prover Vampire [KV13]:

∗ Trace Lemma Reasoning. In our first approach [GGK20a] towards handling induc-
tion, we guide and automate inductive loop reasoning in trace logic L (Chapter
3). We automatically instantiate a set of predefined generic trace lemmas that
represent common inductive properties over a wide set of programs containing loops,
unbounded arrays and linear integer arithmetic. Intuitively, these lemmas capture
inductive loop invariants over array-transforming loops with bounded induction
over program execution timepoints.We prove soundness of each trace lemma.

∗ Lemmaless Reasoning. We extend trace logic with generic bounded induction
schemata over timepoints and loop counters, reducing reliance on trace lemmas
(Chapter 4). Inferring and proving loop invariants becomes an inductive inference
step within superposition-based first-order theorem proving. We introduce two
new inference rules, multi-clause goal induction and array mapping induction, for
lemmaless reasoning over loop iterations. The inference rules are compatible with
any saturation-based inference system used for first-order theorem proving and
work by carrying out induction on terms corresponding to final loop iterations.

5

1. Introduction

∗ Invariant Extraction. We revise symbol elimination and consequence-finding [KV09]
for invariant extraction with first-order theorem provers in the context of trace
logic L (Chapter 5).

∗ The Rapid Verification Framework. We implement our work in the Rapid frame-
work for automatic software verification by applying first-order reasoning in trace
logic (Chapter 7). Rapid establishes partial correctness of programs with loops
and arrays by inferring invariants necessary to prove program correctness using a
saturation-based automated theorem prover. Rapid can heuristically instantiate
trace lemmas, or alternatively, exploit nascent support for induction to fully auto-
mate inductive reasoning in a lemmaless style. In addition, Rapid can be used as
an invariant generation engine, supplying other verification tools with quantified
loop invariants necessary for proving partial program correctness.

Computation Induction for Recursion. Apart from inductive reasoning in trace
logic, we investigate built-in induction in saturation-based theorem proving to establish
functional program correctness for recursive algorithms. Specifically we formalize func-
tional program semantics in many-sorted first order logic and showcase our approach by
proving common sorting algorithms correct. Full automation without requiring a priori
defined invariants is powered by structural and recursion induction over parameterized
lists in the superposition-based first-order theorem prover Vampire:

∗ Recursive Sorting Algorithms. We formalize the semantics of functional programs
with recursive data structures in the first-order theory of lists with parameterized
sorts (Chapter 6). Particularly, we capture the correctness of functional versions of
common sorting routines via two properties over lists, namely the sortedness and
the permutation equivalence property, and introduce a first-order formalization of
these properties. Rather than focusing on specific first-order theories such as lists
of integer arithmetic, our formalization relies on a parameterized sort abstracting
(arithmetic) theories.

∗ Computation Induction. We further adjust recent efforts [HHK+20, HHK+22] for
automating inductive reasoning in saturation-based first-order theorem proving.
We extend first-order theorem proving to include inductive inferences based on
computation induction. Based on our first-order semantics of sorting algorithms,
we showcase compositional reasoning via first-order theorem provers with built-in
induction.

∗ Compositional Reasoning. Importantly, we advocate a compositional reasoning
approach for fully automating the verification of functional programs implementing
and preserving sorting and permutation properties over parameterized list structures
with saturation-based theorem proving. We exploit a divide-and-conquer approach
implemented by sorting algorithms and provide a fully automated correctness proof
of the recursive Quicksort algorithm. We generalize our inductive lemmas to
prove the functional correctness of further recursive sorting algorithms such as
Mergesort and Insertionsort.

6

1.3. Publications and Relation to Contributions

1.3 Publications and Relation to Contributions
This thesis is based on the following publications:

1.[GGK20a] Pamina Georgiou, Bernhard Gleiss, and Laura Kovács. Trace Logic for
Inductive Loop Reasoning. In Proceedings of the 20th International Conference
on Formal Methods in Computer-Aided Design (FMCAD 2020), pages 255-263.
TU Wien Academic Press, 2020.
The main content of Chapter 3 is based on this publication.

[BGE+22] Ahmed Bhayat, Pamina Georgiou, Clemens Eisenhofer, Laura Kovács, and
Giles Reger. Lemmaless Induction in Trace Logic. In International Conference
on Intelligent Computer Mathematics (CICM 2022) , pages 191-208. Springer,
2022.
Chapter 4 is extending this publication.

[GGB+22] Pamina Georgiou, Bernhard Gleiss, Ahmed Bhayat, Michael Rawson, Laura
Kovács, and Giles Reger. The Rapid Software Verification Framework. In Pro-
ceedings of the 22nd International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2022), pages 255-260. IEEE, 2022.
This publication serves as the foundation for Chapters 5 and 7.

[GHK23] Pamina Georgiou, Marton Hajdu, and Laura Kovács. Sorting Without Sorts.
No. 10632. EasyChair Preprint, 2023. Currently under submission.
Chapter 6 draws upon the content of this publication.

For publications [BGE+22, GGB+22] and [GHK23], I acted as the main author, leading
the respective research results of these papers. For [GGK20a] I have been the main
author of efforts to guide inductive reasoning in trace logic.

Prior publication leading up to this thesis:
1.[BEG+19] Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura Kovács,

and Matteo Maffei. Verifying relational properties using trace logic. In Pro-
ceedings of the 19th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2019), pages 170-178. Springer, 2019

7

1. Introduction

1.4 Outline
This thesis is organized as follows.
The first part of the thesis deals with automating inductive reasoning for trace logic L
[GGK20a]. After giving some preliminaries on first-order theorem proving and program
semantics in trace logic in Chapter 2, we dive into trace lemma reasoning in Chapter 3
based on [GGK20a]. Chapter 4 overviews our lemmaless reasoning approach [BGE+22]
with built-in induction support for trace logic-based timepoint reasoning. Our invariant
generation method for trace logic was first introduced in [GGB+22]. We revisit and
extend our presentation based on symbol elimination in Chapter 5.
Chapter 6 deals with our built-in reasoning support of computation induction for recursive
algorithms. We present our first-order formalizations of functional sorting routines and
outline their compositional proofs based on our work in [GHK23].
In Chapter 7 we start by outlining the Rapid verification framework [GGB+22] with all its
different capabilities based on trace lemma reasoning, lemmaless induction and invariant
generation support. We proceed into our changes to the Vampire automated first-
order theorem prover that supports our reasoning in trace logic, as well as computation
induction for recursive algorithms in the theory of parameterized lists.
Finally, Chapter 8 summarizes our experiments drawing from multiple publications. We
first describe our Rapid-based experimental evaluation of trace lemma versus lemmaless
reasoning in Section 8.1. Additionally, we compare results with other state-of-the-art
inductive reasoning tools. Furthermore, we report on our experiments on computation
induction for sorting routines in Section 8.2 before concluding in Chapter 9.

8

CHAPTER 2
Background and Preliminaries

2.1 Saturation-based Automated Theorem Proving
Many-Sorted First-Order Logic. We consider standard many-sorted first-order logic
with built-in equality, denoted by ≃ . We allow all standard boolean connectives and
quantifiers of this language. By s = F [u] we indicate that the term u is a subterm of s
surrounded by (a possibly empty) context F .
We use x, y to denote variables, l, r, s, t for terms and sk for Skolem symbols. A literal
is an atom A or its negation ¬A. A clause is a disjunction of literals L1 ∨ ... ∨ Ln, for
n ≥ 0. A disjunction without literals, that is n = 0, is called the empty clause denoted
by □. Given a formula F , we denote by CNF(F) the clausal normal form of F .
A signature is any finite set of symbols. We consider equality ≃ as part of the language;
hence, ≃ is not a symbol. The signature of a formula F is the set of all symbols occurring
in this formula. We write F1, . . . , Fn ⊨ F to denote that the formula F1 ∧ . . . ∧ Fn → F
is a tautology. In particular, we write ⊨ F , if F is valid.
For a logical variable x of sort S we write xS . A first-order theory denotes the set of
all valid formulas on a class of first-order structures. Any symbol in the signature of
a theory is considered interpreted. All other symbols are uninterpreted. In particular,
we use the theory of linear integer arithmetic denoted by I and the boolean sort B. For
a complete axiomatization of integer arithmetic and booleans, we refer to [RS17] and
[KKV15] respectively.
We further consider the theory of finite term algebras for inductive data types. An
inductive data type consists of a set of constructors of which at least one is constant. Let
Σ be a finite set of function symbols (constructors) with at least one constant, consider�

f∈Σ
∃y . x ≃ f(y). (A1)

f(x) ̸≃ g(y) (A2)

9

2. Background and Preliminaries

for every f, g ∈ Σ such that f ̸≃ g.

f(x) ≃ f(y) → x ≃ y (A3)

for every f ∈ Σ of arity ≥ 1.
t ̸≃ x (A4)

for every non-variable term t in which x appears.

The set of formulas (A1) ot (A4) are the axioms of the theory of finite term algebras.
Every element of Σ is equal to some purely inductive term (A1). Constructors are distinct
(A2) and injective (A3). Terms are acyclic, that is no term is equal to its proper subterm
(A4). For details of finite term algebras in the context of saturation based theorem
proving, we refer to [KRV17].
We specifically use term algebras in two ways, that is for natural numbers and acyclic
lists. We consider natural numbers as the term algebra N with four symbols in the
signature: the constructors 0 and successor suc, as well as pred and < respectively
interpreted as the predecessor function and less-than relation. Note that we do not define
any arithmetic on naturals. Further, we use the inductive datatype of lists with two
constructors nil and cons(x, xs), where nil is the empty list and x and xs are respectively
the head element and the recursive tail of a list.
We assume familiarity with the basics of saturation theorem proving, yet we provide a
brief overview in the following.

Saturation. Rather than using arbitrary first-order formulas G, most first-order the-
orem provers rely on a clausal representation C of G. The task of first-order theorem
proving is to establish that a formula/goal G is a logical consequence of a set A of
clauses, including assumptions. Doing so, first-order provers clausify the negation ¬G
of G and derive that the set S = A ∪ {¬G} is unsatisfiable1. To this end, first-order
provers saturate S by computing all logical consequences of S with respect to some sound
inference system I. A sound inference system I derives a clause D from clauses C such
that C → D. The saturated set of S w.r.t. I is called the closure of S w.r.t. I, whereas
the process of deriving the closure of S is called saturation. By soundness of I, if the
closure of S contains the empty clause □, the original set S of clauses is unsatisfiable,
implying the validity of A → G; in this case, we established a refutation of ¬G from A,
hence a proof of validity of G.

Superposition Inference System. An inference rule is an n-ary relation on formulas,
where n ≥ 0. The elements of such a relation are called inferences, written as:

F1 . . . Fn

F
1For simplicity, we denote by ¬G the clausified form of the negation of G.

10

2.1. Saturation-based Automated Theorem Proving

The formulas F1, . . . , Fn are called the premises of this inference, whereas the formula F
is the conclusion of the inference. An inference system is a set of inference rules. An
axiom of an inference system is any conclusion of an inference with 0 premises.
In our work we use the superposition inference system [BG94, BG01, NR01], implemented
by most modern automated theorem provers for full first-order logic. The superposition
calculus is a common inference system used by saturation-based provers for FOL with
equality.

The underlying superposition inference system is parameterized by a simplification
ordering [DP01] such that it does not (for efficiency reasons) rewrite smaller terms into
larger terms. For the sake of being self-contained, let us recall the notion of a simplification
orderings on terms. An ordering ≻ on terms is a simplification ordering if the following
four conditions hold:

1. ≻ is well-founded: there exists no infinite sequence of terms t0, t1, ... such that
t0 ≻ t1 ≻

2. ≻ is monotonic: if l ≻ r, then s[l] ≻ s[r], for all terms l, r, s.
3. ≻ is stable under substitution: if l ≻ r, then lθ ≻ rθ for some substitution θ
4. ≻ has the subterm property: if l is a subterm of r and l ̸= r, then r ≻ l

A common simplification ordering in superposition-based theorem proving is the Knuth-
Bendix ordering (KBO) [KB83], parameterized by a symbol precedence ≻S and a weight
function w assigning weights to symbols. We denote KBO by ≻kbo. The weight function
allows to compare weights of terms and their subterms respectively if necessary.
Specifically, the weight function is lifted to terms as follows:

w(f(t1, ..., tn)) = w(f) +
�

w(ti).

Let w0 be a positive integer, such that w(c) ≥ w0 for all symbols c, where we have
w(x) = w0 for all variables x. Given terms s and t, we inductively define s ≻kbo t such
that

(1) for all variables x, the number of occurrences of x in s is greater or equal to that
in t, and

(2) either w(s) > w(t),
(3) or w(s) = w(t) and one of the following conditions holds:

(a) t is a variable x and s = fn(x) for some function symbol f and n > 0
(b) s = f(s1, ..., sn), t = f(t1, ..., tn) where si ≻kbo ti for some i and sj =kbo tj for

j < i
(c) s = f(s1, ..., sn), t = g(t1, ..., tm) such that f ≻S g.

Note that the symbol precedence ≻S can be defined in numerous ways, for instance by
the number of occurrences in the problem or the arity of symbols such that symbols with
smaller arity are also smaller with regards to the precedence.

While simplification orderings direct the rewriting order, a literal selection function
[BG01] determines what terms to rewrite. For every non-empty clause, a selection
function selects a non-empty subset of literals. That is, for a clause L ∨ C, literal L

11

2. Background and Preliminaries

is selected, denoted by underlining. Note that a selection function can select multiple
(and even all) literals of a clause, for instance all maximal literals with respect to the
simplification ordering. A standard complete selection function in the superposition
calculus selects either a negative literal or all maximal literals with respect to ≻. We call
such a selection function well-behaved.

While the superposition calculus is a family of inference systems parameterized by a
simplification ordering and a selection function, we define a standard superposition
inference system, denoted by SUP, as follows:

Binary Resolution

A ∨ C ¬A′ ∨ D

(C ∨ D)θ

where θ := mgu(A, A′).

Factoring

A ∨ A′ ∨ C

(A ∨ C)θ

where θ :=mgu(A, A′).

Superposition

s ≃ t ∨ C L[s′] ∨ D

(L[t] ∨ C ∨ D)θ
s ≃ t ∨ C u[s′] ̸≃ u′ ∨ D

(u[t] ̸≃ u′ ∨ C ∨ D)θ
s ≃ t ∨ C u[s′] ≃ u′ ∨ D

(u[t] ≃ u′ ∨ C ∨ D)θ

where θ := mgu(s, s′); tθ ̸⪰ sθ;
(first rule only) L[s′] is not an equality literal;
and (second and third rules only) u′θ ̸⪰ u[s′]θ.

Equality Resolution

s ̸≃ t ∨ C

Cθ

where θ := mgu(s, t).

Equality Factoring

s ≃ t ∨ s′ ≃ t′ ∨ C

(s ≃ t ∨ t ̸≃ t′ ∨ C)θ

where θ := mgu(s, s′); tθ ̸⪰ sθ; and
t′θ ̸⪰ tθ.

Figure 2.1: The superposition inference system SUP. Underlined literals are selected.

Given a well-behaved selection function, the superposition inference system SUP is sound
and refutationally complete. For the former, we mean that if the empty clause □ is
derivable from a set S of formulas in SUP, then S is unsatisfiable. For the latter, we mean
that for any unsatisfiable set S of formulas, saturation in SUP derives the empty clause □
as a logical consequence of S.

12

2.2. Induction and Superposition

2.2 Induction and Superposition
Inductive reasoning has recently been embedded in saturation-based theorem prov-
ing [HHK+22, HKV21, HHK+20], by extending the superposition calculus with a new
inference rule based on induction axioms:

L[t] ∨ C(Ind) cnf(¬F ∨ C)
where (1) L[t] is a quantifier-free (ground) literal,

(2) F → ∀x.L[x] is a valid induction axiom,
(3) cnf(¬F ∨ C) is the clausal form of ¬F ∨ C.

An induction axiom refers to an instance of a valid induction schema. In our work, we
use different induction schemata, such as bounded induction over naturals (as defined in
Section 3.2), structural and computational induction (Section 6.3) schemata.
In particular, we use the following structural induction schema over lists:�

L[nil] ∧ ∀x, ys.(L[ys] → L[cons(x, ys)])


→ ∀zs.L[zs] (2.1)

Then, considering the induction axiom resulting from applying schema (2.1) to L, we
obtain the following Ind instance for lists:

L[t] ∨ C

L[nil] ∨ L[σys] ∨ C
L[nil] ∨ L[cons(σx, σys)] ∨ C

where t is a ground term of sort list, L[t] is ground, and σx and σys are fresh constant
symbols. The above Ind instance yields two clauses as conclusions and is applied during
the saturation process.

2.3 Trace Logic
In this section we introduce trace logic, denoted by L, as an instance of many-sorted
first-order logic with theories. Trace logic is the logical basis for reasoning about software
correctness with first-order theorem provers. Precisely, it is the logic that enables our
approach to automated inductive reasoning for while-like languages, namely by trace
lemma reasoning as will be introduced in Chapter 3 as well as lemmaless reasoning
(Chapter 4). We thus, first introduce a while-like language W in Section 2.3.1, proceed
with expressions in trace logic L (Section 2.3.2) and finally establish the axiomatic
semantics of W in L in Section 2.4.

2.3.1 Programming Model W
We consider programs written in an imperative while-like programming language W.
This section recalls terminology from [BEG+19], however adapted to our setting of safety
verification as in [GGK20a]. Unlike [BEG+19], we do not consider multiple program
traces in W. Moreover, we extend [BEG+19] by defining our programming model for

13

2. Background and Preliminaries

1 func main() {
2 const Int[] a;
3 Int[] b;
4 Int i = 0;
5 Int j = 0;
6 while (i < a.length) {
7 if (a[i] ≥ 0) {
8 b[j] = a[i];
9 j = j + 1:
10 }
11 i = i + 1;
12 }
13 }
14 assert(∀kI.∃lI.((0 ≤ k < j ∧ a.length ≥ 0) → b(k) = a(l)))
15

Figure 2.2: Program copying positive elements from array a to b. The safety property
ensures that for any element in array b, there exists an equivalent element in a.

program ::= function
function ::= func main(){ subprogram }

subprogram ::= statement | context
context ::= statement; ... ; statement

statement ::= atomicStatement
| if(condition){ context } else { context }
| while(condition){ context }

Figure 2.3: Grammar of W.

arbitrarily nested programs. In Section 2.4, we then introduce a generalized program
semantics in trace logic L.
Figure 2.3 shows the (partial) grammar of our programming model W , emphasizing the
use of contexts to capture lists of statements. An input program in W has a single main-
function, with arbitrary nestings of if-then-else conditionals and while-statements. For
simplicity, whenever we refer to loops, we mean while-statements. We consider mutable
and constant variables, where variables are either integer-valued numeric variables or
arrays of such numeric variables. We include standard side-effect free expressions over
booleans and integers.

2.3.2 Expressions in Trace Logic
Locations and Timepoints. A program in W is considered as sets of locations, with
each location corresponding to positions/lines of program statements in the program.

14

2.3. Trace Logic

Given a program statement s, we denote by ls its (program) location. We reserve the
location lend to denote the end of a program. For programs with loops, some program
locations might be revisited multiple times. We therefore model locations ls corresponding
to a statement s in a loop as functions of iterations when the respective location is
visited. For simplicity, we write ls also for the functional representation of the location ls
of s. We thus consider locations as timepoints of a program and treat them as being
functions ls over iterations. The target sort of locations ls is L. For each enclosing loop
of a statement s, the function symbol ls takes arguments of sort N, corresponding to
loop iterations. Further, when s is a loop itself, we also introduce a function symbol nls
with argument and target sort N; intuitively, nls corresponds to the last loop iteration of
s, that is the first iteration such that the loop condition of s is false. We parameterize
nls by an argument of sort N for each enclosing loop of s. This way, nls denotes the
iteration in which s terminates for given iterations of the enclosing loops of s. We denote
the set of all function symbols ls as SL, whereas the set of all function symbols nls is
written as Snl.

Example 1 (Timepoints). We refer to program statements s by their (first) line number
in Figure 2.2. Thus, l4 encodes the timepoint corresponding to the first assignment of i
in the program (line 4). We write l6(0) and l6(n6) to denote the timepoints of the first
and last loop iteration, respectively. The timepoints l7(suc(0)) and l7(it) correspond to
the beginning of the loop body in the second and the it-th loop iterations, respectively.
Note that we model natural numbers with term algebra expressions of N.

Expressions over Timepoints. We next introduce commonly used expressions over
timepoints. For each while-statement w of W, we introduce a function itw that returns
a unique variable of sort N for w, denoting loop iterations of w. Let w1, . . . , wk be the
enclosing loops for statement s and consider an arbitrary term it of sort N. We define
tps to be the expressions denoting the timepoints of statements s as

tps := ls(itw1 , . . . , itwk) if s is non-while statement
tps(it) := ls(itw1 , . . . , itwk , it) if s is while-statement

nls := ns(itw1 , . . . , itwk) if s is while-statement

If s is a while-statement, we also introduce nls to denote the last iteration of s. Further,
consider an arbitrary subprogram p, that is, p is either a statement or a context. The
timepoint startp (parameterized by an iteration of each enclosing loop) denotes the
timepoint when the execution of p has started and is defined as

startp :=

����
tpp(0) if p is while-statement
tpp if p is non-while statement
starts1 if p is context s1;. . . ;sk

15

2. Background and Preliminaries

We also introduce the timepoint endp to denote the timepoint upon which a subprogram
p has been completely evaluated and define it as

endp :=

��������������������

starts if s occurs after p in a context
endc if p is last statement in context c
ends if p is context of if-branch or

else-branch of s
tps(suc(its)) if p is context of body of s
lend if p is top-level context

Finally, if s is the topmost statement of the top-level context in main(), we define

start := starts.

Program Variables. We express values of program variables v at various timepoints
of the program execution. To this end, we model (numeric) variables v as functions
v : L �→ I, where v(tp) gives the value of v at timepoint tp. For array variables v, we
add an additional argument of sort I, corresponding to the position where the array
is accessed; that is, v : L × I �→ I. The set of such function symbols corresponding to
program variables is denoted by SV .
Our framework for constant, non-mutable variables can be simplified by omitting the
timepoint argument in the functional representation of such program variables, as
illustrated below.

Example 2 (Program variables). For Figure 2.2, we denote by i(l4) the value of program
variable i before being assigned in line 4. As the array variable a is non-mutable (specified
by const in the program), we write a(i(l7(it))) for the value of array a at the position
corresponding to the current value of i at timepoint l7(it). For the mutable array b, we
consider timepoints where b has been updated and write b(l8(it), j(l8(it))) for the array
b at position j at the timepoint l8(it) during the loop.

We emphasize that we consider (numeric) program variables v to be of sort I, whereas
loop iterations it are of sort N. This is due to the fact, that reasoning over iterations is
limited to reasoning over {0, suc, ≤} and we don’t consider arithmetic expressions over
addition and multiplication {+, ∗} for loop iterations.

Program Expressions. Arithmetic constants and program expressions are modeled
using integer functions and predicates. Let e be an arbitrary program expression and
write �e�(tp) to denote the value of the evaluation of e at timepoint tp.
We continue by defining some properties over values of expressions e at arbitrary time-
points that we will use in the axiomatization of program statements in the following
section: Let v ∈ SV , that is a function v denoting a program variable v. Consider

16

2.3. Trace Logic

e,e1,e2 to be program expressions and let tp1, tp2 denote two timepoints. We define

Eq(v, tp1, tp2) :=�∀posI. v(tp1, pos) ≃ v(tp2, pos),, if v is an array
v(tp1) ≃ v(tp2), otherwise

to denote that the program variable v has the same values at tp1 and tp2. We further
introduce

EqAll(tp1, tp2) :=
	

v∈SV

Eq(v, tp1, tp2)

to define that all program variables have the same values at timepoints tp1 and tp2.

Remark 1 (Framing). Note that we have to introduce these predicates as a result of
having timepoints in our formalism: when an assignment at a timepoint occurs, we also
have to exclude the possibility of a value change of other program variables not having
been affected by some program statement. This closely relates to the frame problem in
many first-order and temporal logics [MH69]. The frame problem in first-order logic
essentially deals with the question of how to formalize things that do not happen upon an
event. Since a theorem prover cannot infer by itself what does not happen when moving
in time from one program line to the next, we have to formally exclude value changes
to program variables that have not been affected by a specific program statement. The
resulting Eq and EqAll predicates in our formalization can, thus, be understood as frame
axioms that logically exclude the occurrences of any variable value changes by moving
from timepoint tp1 to timepoint tp2.

We further define

Update(v, e, tp1, tp2) :=
v(tp2) ≃ �e�(tp1) ∧

v′∈SV \{v} Eq(v′, tp1, tp2),

asserting that the numeric program variable v has been updated while all other program
variables v’ remain unchanged. This definition is further extended to array updates as

UpdateArr(v, e1, e2, tp1, tp2) :=
∀posI. (pos ̸≃ �e1�(tp1) → v(tp2, pos) ≃ v(tp1, pos))
∧ v(tp2, �e1�(tp1)) ≃ �e2�(tp1)

v′∈SV \{v} Eq(v′, tp1, tp2),

to declare that the numeric array variable v is updated at timepoint tp2 at the position
given by the evaluation of expression �e1�(tp1) to the value of �e2�(tp1) while array
contents in all other positions remain unchanged.

17

2. Background and Preliminaries

Example 3 (Updates). In Figure 2.2, we refer to the value of i+1 at timepoint l11(it) as
i(l11(it)) + 1. Let S1

V be the set of function symbols representing the program variables
of Figure 2.2. For an update of j in line 9 at some iteration it, we derive

Update(j,j+1, l8(it), l9(it)) := j(l9(it)) ≃ (j(l8(it)) + 1)
∧

	
v′∈S1

V \{j}
Eq(v′, l8(it), l9(it)).

For the array update of b in line 8, we have

UpdateArr(b,j,a[i], l7(it), l8(it)) :=
∀posI. (pos ̸≃ j(l7(it)) → b(l8(it), pos) ≃ b(l7(it), pos)
∧ b(l8(it), j(l7(it))) ≃ a(i(l7(it)))

v′∈SV \{b} Eq(v′, l7(it), l8(it)).

2.4 Axiomatic Semantics in Trace Logic L
Trace logic L has been introduced in [BEG+19], yet for the setting of relational verification.
In this work we use the generalized formalization introduced in [GGK20a].

2.4.1 Trace Logic L
Trace logic L is an instance of many-sorted first-order logic with equality. We define the
signature Σ(L) of trace logic as

Σ(L) := SN ∪ SI ∪ SL ∪ SV ∪ Sn,

containing respectively the signatures of the theory of natural numbers (as a term algebra)
N, the in-built integer theory I, as well the respective sets of symbols for timepoints SL,
program variables SV and last iterations Sn as defined in section 2.3.2.
We next define the semantics of W in trace logic L.

2.4.2 Reachability and its Axiomatization

We introduce a predicate Reach : L �→ B to capture the set of timepoints reachable in an
execution and use Reach to define the axiomatic semantics of W in trace logic L. We define
reachability Reach as a predicate over timepoints, in contrast to defining reachability as a
predicate over program configurations such as in [HB12, BGMR15, FPMG19, ISIRS20].
We axiomatize Reach using trace logic formulas as follows.

Definition 1 (Reach-predicate). For any context c, any statement s, let Conds be the

18

2.4. Axiomatic Semantics in Trace Logic L

expression denoting a potential branching condition in s. We define

Reach(startc) :=

������������������������������

true,

if c is top-level context
Reach(starts) ∧ Conds(starts),

if c is context of if-branch of s
Reach(starts) ∧ ¬Conds(starts),

if c is context of else-branch of s
Reach(starts) ∧ its < nls,

if c is context of body of s.

For any non-while statement s′ occurring in context c, let

Reach(starts′) := Reach(startc),

and for any while-statement s′ occurring in context c, let

Reach(tps′(its′)) := Reach(startc) ∧ its′ ≤ nls′ .

Finally let Reach(end) := true.

Note that our reachability predicate Reach allows specifying properties about intermediate
timepoints (since those properties can only hold if the referred timepoints are reached)
and supports reasoning about which locations are reached.

2.4.3 Axiomatic Semantics of W
We axiomatize the semantics of each program statement in W , and define the semantics
of a program in W as the conjunction of all these axioms.

Main-function. Let p0 be an arbitrary, but fixed program in W ; we give our definitions
relative to p0. The semantics of p0, denoted by �p0�, consists of a conjunction of one
implication per statement, where each implication has the reachability of the start-
timepoint of the statement as premise and the semantics of the statement as conclusion:

�p0� :=
	

s statement of p0

∀enclIts.
�
Reach(starts) → �s��

where enclIts is the set of iterations {itw1 , . . . , itwn} of all enclosing loops w1, . . . , wn of
some statement s in p0, and the semantics �s� of program statements s is defined as
follows.

Skip. Let s be a statement skip. Then

�s� := EqAll(ends, starts) (2.2)

19

2. Background and Preliminaries

Integer assignments. Let s be an assignment v = e, where v is an integer-valued
program variable and e is an expression. The evaluation of s is performed in one step such
that, after the evaluation, the variable v has the same value as e before the evaluation.
All other variables remain unchanged and thus

�s� := Update(v, e, ends, starts) (2.3)

Array assignments. Consider s of the form a[e1] = e2, with a being an array
variable and e1,e2 being expressions. The assignment is evaluated in one step. After the
evaluation of s, the array a contains the value of e2 before the evaluation at position pos
corresponding to the value of e1 before the evaluation. The values at all other positions
of a and all other program variables remain unchanged and hence

�s� := UpdateArr(v, e1, e2, ends, starts) (2.4)

Conditional if-then-else Statements. Let s be if(Cond){c1} else {c2}. The
semantics of s states that entering the if-branch and/or entering the else-branch does
not change the values of the variables and we have

�s� := �Cond�(starts) → EqAll(startc1 , starts) (2.5a)
∧ ¬�Cond�(starts) → EqAll(startc2 , starts) (2.5b)

where the semantics �Cond� of the expression Cond is according to Section 2.3.2.

While-Statements. Let s be the while-statement while(Cond){c}. We refer to
Cond as the loop condition. The semantics of s is captured by conjunction of the
following three properties: (2.6a) the iteration nls is the first iteration where Cond does
not hold, (2.6b) entering the loop body does not change the values of the variables, (2.6c)
the values of the variables at the end of evaluating s are the same as the variable values
at the loop condition location in iteration nls. As such, we have

�s� := ∀its
N. (its < nls → �Cond�(tps(its)))

∧ ¬�Cond�(tp(nls)) (2.6a)
∧ ∀its

N. (its < nls → EqAll(startc, tps(its)) (2.6b)
∧ EqAll(ends, tps(nls)) (2.6c)

2.4.4 Soundness and Completeness.
The axiomatic semantics of W in trace logic is sound. That is, given a program p in W
and a trace logic property F ∈ L, we have that any interpretation in L is a model of
F according to the small-step operational semantics of W. We conclude with the next
theorem - and refer to [GGK20b] for details.

Theorem 1 (W-Soundness). Let p be a program. Then the axiomatic semantics �p� is
sound with respect to standard small-step operational semantics.

20

2.4. Axiomatic Semantics in Trace Logic L

Next, we show that the axiomatic semantics of W in trace logic L is complete with
respect to Hoare logic [Hoa69], as follows.
Intuitively, a Hoare Triple {F1}p{F2} corresponds to the trace logic formula

∀enclIts.
�
Reach(startp) → ([F1](startp) → [F2](endp))

�
(2.7)

where the expressions [F1](startp) and [F2](endp) denote the result of adding to each
program variable in F1 and F2 the timepoints startp respectively endp as first arguments.
We therefore define that the axiomatic semantics of W is complete with respect to Hoare
logic, if for any Hoare triple {F1}p{F2} valid relative to the background theory T , the
corresponding trace logic formula (2.7) is derivable from the axiomatic semantics of W
in the background theory T . With this definition at hand, we get the following result,
proved formally in [GGK20b].

Theorem 2 (W-Completeness with respect to Hoare logic). The axiomatic semantics of
W in trace logic is complete with respect to Hoare logic.

21

CHAPTER 3
Trace Lemma Reasoning

A prior version of this chapter has been published as

Pamina Georgiou, Bernhard Gleiss, and Laura Kovács. Trace Logic for
Inductive Loop Reasoning. In Proceedings of the 20th International Conference
on Formal Methods in Computer-Aided Design (FMCAD 2020), pages 255-263.
TU Wien Academic Press, 2020.

One of the main challenges in automating software verification comes with handling
inductive reasoning over programs containing loops. Until recently, automated reasoning
in formal verification was the primary domain of satisfiability modulo theory (SMT)
solvers [DMB08, BCD+11], yielding powerful advancements for inferring and proving loop
properties with linear arithmetic and limited use of quantifiers, see e.g. [KBI+17, GSV18,
FPMG19]. Formal verification, however, also requires reasoning about unbounded data
types, such as arrays, and inductively defined data types in combination with full
first-order quantification and (arithmetic) theories.
Specifying, for example as shown in Figure 3.1, that every element in the array b is
initialized by a non-negative array element of a requires reasoning with quantifiers
and can be best expressed in many-sorted extensions of first-order logic such as trace
logic L (Section 2.3). Trace logic enables automated verification by expressing program
semantics in L and using superposition-based first-order theorem proving to prove partial
correctness of such programs.
However, using first-order reasoning with theories begs the question of how to handle
inductive reasoning automatically in the presence of loops. In this chapter we will address
the automation of induction by introducing trace lemma reasoning. In a nutshell, trace
lemmas are helpful inductive properties over arbitrary program timepoints/loop iterations
that enable the underlying reasoner to find proofs of partial software correctness in the
superposition calculus. For programs such as Figure 3.1 that contain integers, arrays and
loops, we identified a set of three such lemmas supporting the automated verification

23

3. Trace Lemma Reasoning

1 func main() {
2 const Int[] a;
3 Int[] b;
4 Int i = 0;
5 Int j = 0;
6 while (i < a.length) {
7 if (a[i] ≥ 0) {
8 b[j] = a[i];
9 j = j + 1:
10 }
11 i = i + 1;
12 }
13 }
14 assert(∀kI.∃lI.((0 ≤ k < j(end) ∧ a.length ≥ 0) → b(k, end) = a(l)))
15

Figure 3.1: Program copying positive elements from array a to b. The safety property
here is expressed in trace logic L. It ensures that for any element in array b, there exists
an equivalent element in a.

process of multiple properties and programs that handle unbounded integer arrays with
loops. We hence outline how trace lemmas are used to handle inductive reasoning steps for
programs containing such programming constructs. To showcase the necessary reasoning
steps, we will outline how trace lemmas are instantiated for two sample programs, namely
Figure 3.1 and Figure 3.2.

3.1 Trace Logic for Safety Verification
Let us introduce the use of trace logic L for verifying safety properties of W programs
and outline the use of trace lemma reasoning throughout this process. We consider safety
properties F expressed in trace logic L, as illustrated in line 14 of Figure 3.1. Thanks to
soundness and completeness of the axiomatic semantics of W , a partially correct program
p with regard to F can be proved to be correct using the axiomatic semantics of W in
trace logic L. That is, we assume termination and establish partial program correctness.
Assuming the existence of an iteration violating the loop condition can be help backward
reasoning and, in particular, automatic splitting of loop iteration intervals.
However, proving correctness of a program p annotated with a safety property F faces
the reasoning challenges of the underlying logic, in our case of trace logic. Due to the
presence of loops in W , a challenging aspect in using trace logic for safety verification is to
handle inductive reasoning as induction cannot be generally expressed in first-order logic.
To circumvent the challenge of inductive reasoning and automate verification using trace
logic, we introduce a set of trace lemmas, and extend the semantics of W programs in
trace logic with these trace lemmas. Trace lemmas describe generic inductive properties
over arbitrary loop iterations and any logical consequence of trace lemmas yields a valid

24

3.1. Trace Logic for Safety Verification

1 func main() {
2 const Int[] a;
3 Int[] b, c;
4 Int i, j, k = 0, 0, 0;
5 while(i < a.length) {
6 if(a[i] ≥ 0) {
7 b[j] = a[i];
8 j = j + 1;
9 } else {
10 c[k] = a[i];
11 k = k + 1;
12 }
13 i = i+1;
14 }
15 }
16 assert(∀kI.∃lI.((0 ≤ k < i(end) ∧ a.length ≥ 0 ∧ a(k) ≥ 0) → b(l, end) = a(k)))
17

Figure 3.2: Program partitioning an array a into two arrays b, c containing positive and
negative elements of a respectively. The specification expresses that for every positive
element in a, there exists an element in array b after the computation for some input
array a of arbitrary non-negative length.

program loop property as well. We summarize our approach to program verification
using trace logic L:

Safety Verification in Trace Logic. Given a program p in W and a safety property
F ,

(i) we express program semantics �p� in trace logic L, as given in Section 2.4;
(ii) we formalize the safety property in trace logic L, that is we express F by using

program variables as functions of locations and timepoints (see assertion in Figure 2.2
and its translation to trace logic L in Figure 3.1). For simplicity, let us denote the
trace logic formalization of F also by F ;

(iii) we introduce instances T p
L of a set TL of trace lemmas, by instantiating trace

lemmas with program variables, locations and timepoints of p;
(iv) to verify F , we then show that F is a logical consequence of �p� ∧ T p

L ;
(v) however to conclude that p is partially correct with regard to F , two more challenges

need to be addressed. First, in addition to Theorem 1, soundness of our trace
lemmas TL needs to be established, implying that our trace lemma instances T p

L
are also sound. Soundness of T p

L implies then validity of F , whenever F is proven
to be a logical consequence of sound formulas �p� ∧ T p

L . However, to ensure that F
is provable in trace logic, as a second challenge we need to ensure that our trace
lemmas TL, and thus their instances T p

L , are strong enough to prove �p�∧T p
L =⇒ F .

That is, proving that F is a safety assertion of p in our setting requires finding a
suitable set TL of trace lemmas.

25

3. Trace Lemma Reasoning

3.2 A Suitable Set of Trace Lemmas for W programs
Finding a suitable set of trace lemmas heavily depends on the underlying programs and
safety properties that are addressed. In this section, we introduce a set of three trace
lemmas that were established to be strong enough to prove a wide range of example
programs containing integers, unbounded integer-arrays and loops correct. We further
show that these trace lemmas TL are sound consequences of bounded induction.

Bounded Induction over Loop Iterations. Let P be a first-order formula with one
free variable x of sort N. We recall the standard (step-wise) induction scheme for natural
numbers as being �

P (0) ∧ ∀x′
N.

�
P (x′) → P (suc(x′))

�
→ ∀xN.P (x) (Ind)

In our work, we use a variation of the induction scheme (Ind) to reason about intervals
of loop iterations. Let P be an arbitrary trace logic formula with free variables bl and br,
we use the following schema of bounded induction

P (bl) ∧ (base case)

∀x′
N.

��
bl ≤ x′ < br ∧ P (x′)

� → P (suc(x′))


(inductive case)

→ ∀xN.
�
bl ≤ x ≤ br → P (x)


,

(B-Ind)

where bl, br ∈ N are term algebra expressions of N, referred to respectively as left and
right bounds of bounded induction.

Trace Lemmas TL for Verification. Trace logic properties support arbitrary quan-
tification over timepoints and describe values of program variables at arbitrary loop
iterations and timepoints. We therefore can relate timepoints with values of program
variables in trace logic L, allowing us to describe the value distributions of program
variables as functions of timepoints throughout program executions. As such, trace logic
L supports

(1) reasoning about the existence of a specific loop iteration, allowing us to split the
range of loop iterations at a particular timepoint, based on the safety property we
want to prove. For example, we can express and derive loop iterations corresponding
to timepoints where one program variable takes a specific value for the first time
during loop execution;

(2) universal quantification over the array content and range of loop iterations bounded
by two arbitrary left and right bounds, allowing us to apply instances of the
induction scheme (B-Ind) within a range of loop iterations bounded, for example,
by it and nls for some while-statement s.

To capitalize on these advantages of trace logic, we express generic patterns of inductive
program properties as trace lemmas. Identifying a suitable set TL of trace lemmas to

26

3.2. A Suitable Set of Trace Lemmas for W programs

automate inductive reasoning in trace logic L is however challenging and domain-specific.
We propose three trace lemmas for inductive reasoning over arrays and integers, by
considering
(A1) one trace lemma describing how values of program variables change during an

interval of loop iterations;
(B1-B2) two trace lemmas to describe the behavior of loop counters.

(A1) Value Evolution Trace Lemma

Let w be a while-statement, let v be a mutable program variable and let ◦ be a reflexive
and transitive relation - that is ≃ , ≤ or ≥ in the setting of trace logic. The value
evolution trace lemma of w, v, and ◦ is defined as

∀blN, brN.
∀itN.

�
(bl ≤ it < br ∧ v(tpw(bl)) ◦ v(tpw(it)))

→ v(tpw(bl)) ◦ v(tpw(suc(it)))


→ �
bl ≤ br → v(tpw(br)) ◦ v(tpw(br))

� (A1)

In our work, the value evolution trace lemma is mainly instantiated with the equality
predicate ≃ to conclude that the value of a variable does not change during a range of
loop iterations, provided that the variable value does not change at any of the considered
loop iterations.

Example 4. For Figure 3.1, the value evaluation trace lemma (A1) yields the property

∀jI. ∀blN. ∀brN.
∀itN.

�
(bl ≤ it < br ∧ b(l6(bl), j) ≃ b(l6(it), j))

→ b(l6(bl), j) ≃ b(l6(s(it)), j)


→ �
bl ≤ br → b(l6(bl), j) ≃ b(l6(br), j)

�
,

which allows to prove that the value of b at some position j remains the same from the
timepoint it where the value was first set until the end of program execution. That is,
we derive b(l6(end), j(l6(it))) ≃ a(i(l6(it))). Note that the lemma is instantiated with the
timepoint l6 that denotes the beginning of the loop.

Remark 2 (Quantified Bounds). Effectively, in Example 4 the prover uses the value evo-
lution lemma to conclude that from the next iteration after the value of b(l8(it), j(l8(it)))
is changed to a(i(l8(it))) for some iteration it the values of b at this position are not
changed any further at any time point between and including the left bound bl and the
right bound br. Specifically to derive b(l6(end), j(l6(it))) ≃ a(i(l6(it))), the prover infers
that bl is suc(it) and br is nl6. This begs the question why lemma bounds bl, br are

27

3. Trace Lemma Reasoning

quantified and not immediately instantiated. The reason for this is the way proof search
works in superposition-based theorem provers: the left bound mostly stems from the
negation of the conjecture and is thus a skolem function. The lemma is hence simplified
with this skolem to derive a contradiction, hence (given multiple other proof steps)
proving the validity of the original property. Thus, choosing the right term, particularly
for the left bound, has to be performed by the prover during superposition-based proof
search.

Example 5. Similarly, (A1) is applied to prove the safety property of Figure 3.2:

∀jI. ∀blN. ∀brN.
∀itN.

�
(bl ≤ it < br ∧ b(l5(bl), j) ≃ b(l5(it), j))

→ b(l5(bl), j) ≃ b(l5(s(it)), j)


→ �
bl ≤ br → b(l5(bl), j) ≃ b(l5(br), j)

�
,

that is we can conclude that if for any iteration it bigger than or equal to the left bound
bl, the value of b at some position j remains step-wise the same in any successive iteration
suc(it), we have that the values of b at position j remain unchanged throughout and
including at the right bound bl.

Density
For the following two lemmas, we introduce the notion of dense integer variables. Let w
be a while-statement and let v be a mutable program variable. We call v to be dense if
the following holds:

Densew,v := ∀itN.
�
it < nlw →�

v(tpw(suc(it))) ≃ v(tpw(it)) ∨
v(tpw(suc(it))) ≃ v(tpw(it)) + 1

�
Further, we refer to v as strongly-dense if the following holds:

StrDensew,v := ∀itN.
�
it < nlw →�

v(tpw(suc(it))) ≃ v(tpw(it)) + 1
�

Note that we use two variations of density with the following intuition. While some
numeric program variables, particularly loop counters are incremented in each of the
loop’s iterations, that is they are strongly dense, others are only conditionally updated.
Notably, program variables such as array length counters might be incremented based
on branching, thus an increment might only occur in some of the loop iterations. Such
variables are hence dense, but not strongly-dense.

28

3.2. A Suitable Set of Trace Lemmas for W programs

(B1) Intermediate Value Trace Lemma

Let w be a while-statement and let v be a mutable program variable. The intermediate
value trace lemma of w and v is defined as

∀xI.
��

Densew,v ∧ v(tpw(0)) ≤ x < v(tpw(nlw))
� →

∃itN.
�
it < nlw ∧ v(tpw(it)) ≃ x ∧
v(tpw(suc(it))) ≃ v(tpw(it)) + 1

� (B1)

The intermediate value trace lemma (B1) allows us to conclude that if the variable v is
dense, and if the value x is between the value of v at the beginning of the loop and the
value of v at the end of the loop, then there exists an iteration in the loop, where v has
exactly the value x and, particularly in this iteration is about to be incremented. This
trace lemma is mostly used to find specific iterations corresponding to positions x in an
array. Specifically, it enables the prover to determine the iteration where an update at
some position of an array occurs.

Example 6. In Figure 3.1, using trace lemma (B1) we synthesize the iteration it such
that b(l8(it), j(l8(it))) ≃ a(i(l8(it))).

∀xI.
��

Densel6,i ∧ j(l6(0)) ≤ x < j(l6(nl6))
� →

∃itN.
�
it < nl6 ∧ j(l6(it)) ≃ x ∧
j(l6(suc(it))) ≃ j(l6(it)) + 1

�
.

Given the semantics of the program in Figure 3.1, the prover can conclude that it is the
iteration when the update to j, hence also to b at the current value of j, occurs.

Example 7. In Figure 3.2 we use this lemma to determine the iteration it where the
update b(l7(it), j(l7(it))) ≃ a(i(l7(it))) occurs with the following instance:

∀xI.
��

Densel5,i ∧ i(l5(0)) ≤ x < i(l5(nl5))
� →

∃itN.
�
it < nl5 ∧ i(l5(it)) ≃ x ∧
i(l5(suc(it))) ≃ i(l5(it)) + 1

�
.

The reasoning here is not as straightforward as in Example 6. One would assume that
the intermediate value theorem is applied to j since j is used as the access variable for
array b. However, the automated proof uses this theorem on the access variable to a,
namely i to determine the iteration and derives the update to b via the semantics of the
conditional within the loop.

29

3. Trace Lemma Reasoning

(B2) Iteration Injectivity Trace Lemma

Let w be a while-statement and let v be a mutable program variable. The iteration
injectivity trace lemma of w and v is

∀it1
N, it2

N.
��

StrDensew,v ∧ it1 < it2 ≤ nlw
�

(B2)

→ v(tpw(it1)) ̸≃ v(tpw(it2))


The trace lemma (B2) states that a strongly-dense variable visits each array-position at
most once. As a consequence, if each array position is visited only once in a loop, we
know that its value has not changed after the first visit, and in particular the value at
the end of the loop is the value after the first visit.

Example 8. For the property of Figure 3.1 we instantiate (B2) for j:

∀it1
N, it2

N.
��

StrDensel6,j ∧ it1 < it2 ≤ nl6
�

→ j(l6(it1)) ̸≃ j(l6(it2))


Trace lemma (B2) is necessary in Figure 3.1 to apply the value evolution trace lemma (A1)
for b, as we need to make sure we will never reach the same position of j twice.

Example 9. Similarly, we apply trace lemma (B2) to j in Figure 3.2. Since j is used to
access the mutable array variable b, we have to make sure that once a value is updated
at b[j], we do not update the same position at a later timepoint. Hence we have

∀it1
N, it2

N.
��

Densel5,j ∧ j(l5(suc(it1)) = j(l5(it1)) + 1

∧ it1 < it2 ≤ nl5
�

→ j(l5(it1)) ̸≃ j(l5(it2))

.

In combination with the value evolution trace lemma (A1), this enables the prover to
infer that once a value of b at some position is changed it will not be revisited or changed
at a later time point at this particular position concluding the proof of the property in
Figure 3.2. Note the difference in the proof compared to Example 8: the conditional in
Figure 3.2 changes the nature of the proof. While the intermediate value theorem and
the iteration injectivity lemmas are applied to the same program variable in Figure 3.1,
namely j, the same is not sufficient to prove the safety property in Figure 3.2. Thus,
even seemingly simple conditionals can change the need for trace lemmas throughout
proof search.

3.3 Trace Lemma Correctness
In this section we prove soundness of trace lemmas (A1) and (B1)-(B2). We apply
bounded induction (B-Ind) to establish the correctness of the above lemmas.

30

3.3. Trace Lemma Correctness

(Soundness of Value Evolution (A1)). Let bl and br be arbitrary but fixed and assume
that the premise of the outermost implication of (A1) holds. That is,

∀itN.
�
(bl ≤ it < br ∧ v(tpw(bl)) ◦ v(tpw(it)))
→ v(tpw(bl)) ◦ v(tpw(suc(it)))

� (3.1)

We use the induction axiom scheme (B-Ind) and consider its instance with P (it) :=
v(tpw(bl)) ◦ v(tpw(it)), yielding the following instance of (B-Ind):�

v(tpw(bl)) ◦ v(tpw(it)) ∧ (3.2a)

∀itN.
�
(bl ≤ it < br ∧ v(tpw(bl)) ◦ v(tpw(it))) (3.2b)

→ v(tpw(bl)) ◦ v(tpw(suc(it)))
�

→ ∀itN.
�
bl ≤ it ≤ br → v(tpw(bl)) ◦ v(tpw(it))


(3.2c)

Note that the base case property (3.2a) holds since ◦ is reflexive. Further, the induc-
tive case (3.2b) holds since it is identical to the assumption (3.1). We thus derive
property (3.2c), that is ∀itN.

�
bl ≤ it ≤ br → v(tpw(bl)) ◦ v(tpw(it))


. In particular, by

instantiating it in the conclusion 3.2c to br yields bl ≤ br ≤ br → v(tpw(bl)) ◦ v(tpw(br)).
By reflexivity of ≤ we conclude bl ≤ br → v(tpw(bl)) ◦ v(tpw(br)), proving thus trace
lemma (A1).

(Soundness of Intermediate Value (B1)). We prove the following equivalent contraposi-
tive formula obtained from the intermediate value trace lemma (B1) by modus tollens.

∀xI.

�
Densew,v ∧ v(tpw(0)) ≤ x ∧

∀itN.
�
(it < nlw ∧ v(tpw(suc(it))) ≃ v(tpw(it)) + 1)

→ v(tpw(it)) ̸≃ x
�

→ v(tpw(nlw)) ≤ x

 (3.3)

The proof proceeds by deriving the conclusion of formula (3.3) from the premises of
formula (3.3).
Consider the instance of the induction axiom scheme with

Base case: v(tpw(0)) ≤ x (3.4a)

Inductive case: ∀itN.
��

0 ≤ it < nlw ∧ v(tpw(it)) ≤ x
�

(3.4b)

→ v(tpw(suc(it))) ≤ x


Conclusion: ∀itN.
�
0 ≤ it ≤ nlw → v(tpw(it)) ≤ x


, (3.4c)

31

3. Trace Lemma Reasoning

obtained from the bounded induction axiom scheme (B-Ind) with P (it) := v(tpw(it)) ≤ x
for bounds 0 to nlw.
The base case (3.4a) holds by assumption, as it is the second premise of (3.3). For the
inductive case (3.4b), assume 0 ≤ it < nlw and v(tpw(it)) ≤ x. By density of v, we obtain
two cases:

(1) Either we have v(tpw(suc(it))) = v(tpw(it)). By assumption v(tpw(it)) ≤ x holds,
hence we obtain v(tpw(suc(it))) ≤ x.

(2) Or we have v(tpw(suc(it))) = v(tpw(it)) + 1. From (3.4b) we have it < nlw. We can
thus apply the third premise of formula (3.3), and obtain v(tpw(it)) ̸≃ x. Combined
with our assumption v(tpw(it)) ≤ x and the totality-axiom of < for integers, we
have v(tpw(it)) < x. By integer theory, we thus have v(tpw(suc(it))) < x + 1 and
finally derive v(tpw(suc(it))) ≤ x.

This concludes the proof of the inductive case (3.4b). Thus, the conclusion (3.4c) holds.
Since the theory axiom ∀itN. 0 ≤ it holds, formula (3.4c) implies the conclusion of formula
(3.3), which concludes the proof.

(Soundness of Iteration Injectivity (B2)). For arbitrary but fixed iterations it1
N and it2

N,
assume that the premises of the lemma hold. Now consider the instance of the induction
axiom scheme with

Base case: v(tpw(it1)) < v(tpw(suc(it1))) (3.5a)

Inductive case: ∀itN.
��

suc(it1) ≤ it < nlw
∧ v(tpw(it1)) < v(tpw(it))

�
(3.5b)

→ v(tpw(it1)) < v(tpw(suc(it)))


Conclusion: ∀itN.
�
suc(it1) ≤ it ≤ nlw →
v(tpw(it1)) < v(tpw(it))


, (3.5c)

obtained from the bounded induction axiom scheme (B-Ind) with P (it) := v(tpw(it1)) <
v(tpw(it)), by instantiating bl and br to suc(it1), respectively nlw.
The base case (3.5a) holds since by integer theory we have ∀xI. x < x + 1 and by
assumption StrDensew,v hence v(tpw(suc(it1))) = v(tpw(it1)) + 1 holds.
For the inductive case, we assume for arbitrary but fixed it that v(tpw(it1)) < v(tpw(it))
holds. Combined with StrDensew,v and ∀xI.(x < y → x < y + 1) this yields v(tpw(it1)) <
v(tpw(suc(it))), so (3.5b) holds. Since both premises (3.5a) and (3.5b) hold, also the
conclusion (3.5c) holds. Next, it1 < it2 implies suc(it1) ≤ it2 (using the monotonicity
of suc). We therefore have suc(it1) ≤ it2 < nlw, so we are able to instantiate the
conclusion(3.5c) to obtain v(tpw(it1)) < v(tpw(it2)). Finally, we use the arithmetic
property ∀xI, yI.(x < y → x ̸≃ y) to conclude v(tpw(it1)) ̸≃ v(tpw(it2)).

Based on the soundness of our trace lemmas, we conclude the next result.

32

3.4. Related Work

Theorem 3 (Trace Lemmas and Induction). Let p be a program. Let L be a trace lemma
for some while-statement w of p and some variable v of p. Then L is a consequence of
the bounded induction scheme (B-Ind) and of the axiomatic semantics of �p� in trace
logic L.

Our work is implemented in the Rapid verification framework and relies on the Vampire
theorem prover. For implementation details and the experimental evaluation, we refer to
Chapter 7 and Chapter 8 respectively.

3.4 Related Work
Our work is closely related to recent efforts in using first-order theorem provers for proving
software properties [KV09, GKR18]. While [GKR18] captures program semantics in the
first-order language of extended expressions over loop iterations, in our work we further
generalize the semantics of program locations and consider program expressions over loop
iterations and arbitrary timepoints. We introduce and prove trace lemmas to automate
inductive reasoning based on bounded induction over loop iterations. Our generalizations
in trace logic proved to be necessary to automate the verification of properties with
arbitrary quantification, which could not be effectively achieved in [GKR18]. Our work
is not restricted to reasoning about single loops as in [GKR18].
A variation of our approach has already been successfully applied to relational verification
in [BEG+19] to prove 2-safety properties of programs such as non-interference and
sensitivity. Recent developments in first-order theorem proving allowed us to generalize
these ideas to a wider setting of provable properties. Compared to [BEG+19], we ensure
soundness of our trace lemmas for safety verification.
In comparison to verification approaches based on program transformations [KFG20,
CGU20, YFG19], we do not require user-provided functions to transform program states
to smaller-sized states [ISIRS20], nor are we restricted to universal properties generated
by symbolic execution [CGU20]. Rather, we use only three trace lemmas that we prove
sound and automate the verification of first-order properties, possibly with alternations
of quantifiers.
The works [DDA10, CCL11] consider expressive abstract domains and limit the generation
of universal invariants to these domains, while supporting potentially more generic
program grammars than our W language. Our work, however, can verify universal and/or
existential first-order properties with theories, which is not the case in [KFG20, CGU20,
DDA10, CCL11]. Verifying universal loop properties with arrays by implicitly finding
invariants is addressed in [GSV18, FPMG19, KBGM15, FKB17, FB18, MTK20], and
by using constraint Horn clause reasoning within property-driven reachability analysis
in [HB12, CG12].
Another line of research proposes abstraction and lazy interpolation [ABG+12, ACC+20],
as well as recurrence solving with SMT-based reasoning [RL18]. Synthesis-based ap-
proaches, such as [FPMG19], are shown to be successful when it comes to inferring
universally quantified invariants and proving program correctness from these invariants.

33

3. Trace Lemma Reasoning

Synthesis-based term enumeration is used also in [YFG19] in combination with user-
provided invariant templates. Compared to these works, we do not consider programs
only as a sequence of states, but model program values as functions of loop iterations and
timepoints, allowing thus to express program semantics over sequences of sequences of
states. Further, we use trace logic reasoning to synthesize bounds on loop iterations and
infer first-order loop invariants as logical consequences of our trace lemmas and program
semantics in trace logic.

34

CHAPTER 4
Lemmaless Inductive Reasoning

This chapter extends work published in

Ahmed Bhayat, Pamina Georgiou, Clemens Eisenhofer, Laura Kovács, and
Giles Reger. Lemmaless Induction in Trace Logic. In International Conference
on Intelligent Computer Mathematics (CICM 2022) , pages 191-208. Springer,
2022.

At a high level, our verification framework based on trace lemma reasoning [GGK20a]
works by translating a program into trace logic, adding a number of ad hoc trace lemmas,
asserting a desired property, and then running an automated theorem prover on the
result. The effectiveness of this approach depends not only on the underlying trace
lemmas but also on the search space - adding trace lemmas automatically always results
in unnecessary instantiations that are not helpful for proof search but rather increase the
search space. However, static analysis is not enough to prune this search space efficiently.
This chapter thus focuses on building induction support into the underlying theorem
prover Vampire to reduce reliance on trace lemma reasoning as introduced in Chapter 3.
Trace logic is an instance of first-order logic with theories, such that the program semantics
of imperative programs with loops, branching, integers, and arrays can be directly encoded
in a formal manner. A key feature of this encoding is tracking program executions by
quantifying over execution timepoints (rather than only over single states), which are
themselves be parameterised by loop iterations. In principle, we can check whether
a translated program entails the desired property in trace logic using an automated
theorem prover for first-order logic. In our case, we make use of the saturation-based
theorem prover Vampire which implements the superposition calculus [BG01]. However,
a straightforward use of theorem proving often fails in establishing validity of program
properties in trace logic, as the proof requires some specific induction, in general not
supported by superposition-based reasoning. Thus, automating inductive reasoning in
trace logic remains a challenge in order to prove inductive program properties over
timepoints of program execution.

35

4. Lemmaless Inductive Reasoning

In our prior work [GGK20a], we overcame this challenge by introducing trace lemmas
(see Chapter 3.2) capturing common patterns of inductive loop properties over arrays
and integers. Inductive loop reasoning in trace logic is then achieved by generating
and adding trace lemma instances to the translated program. However, there are three
significant limitations to using trace lemmas:

1. Trace lemmas capture inductive patterns/templates that need to be manually
identified, as induction is not generally expressible in first-order logic. As such,
they cannot be inferred by a first-order reasoner, implying that the effectiveness
of trace logic reasoning depends on the expressiveness of manually supplied trace
lemmas.

2. When instantiating trace lemmas with appropriate inductive program variables, a
large number of inductive properties are generated, causing saturation-based proof
search to diverge and fail to find program correctness proofs in reasonable time.
This means that, even for small input programs, it is quite common that too many
trace lemma instances are generated, decreasing the efficiency of first-order proving.

3. Certain necessary inductive properties, for instance to relate values of two or more
program variables require too many automatically instantiated additions to the
input problem, thus causing more harm than good. Such lemmas exceed the
capabilities of trace lemma reasoning with first-order theorem provers as adding
them for all adequate combinations explodes the search space and renders proof
search divergent.

Recent advances in first-order theorem proving automating integer and structural induc-
tion [HKV21, HHK+20] have paved the way for exploring automated inductive reasoning
for programs containing loops and unbounded data structures natively in the first-order
reasoner. However, the main challenge remains to find reasonable terms to induct upon.
In this chapter we address these limitations and challenges by drastically reducing the
need for trace lemmas. We achieve this by introducing a couple of novel induction
inferences specialized for the software verification setting in trace logic. That is, we
include inductive inferences based on bounded induction over loop iterations directly in
the underlying theorem prover such that they are performed during proof search. Firstly,
multi-clause goal induction which applies induction in a goal oriented fashion as many
safety program assertions are structurally close to useful loop invariants. Secondly, array
mapping induction which covers certain cases where the required loop invariant does not
stem from the goal but rather depends on the program semantics. Specifically, we make
the following contributions:
Contribution 1. We introduce two new inference rules, multi-clause goal and array
mapping induction, for lemmaless induction over loop iterations (Sections 4.3–4.4). The
inference rules are compatible with any saturation-based inference system used for first-
order theorem proving and work by carrying out induction on terms corresponding to
final loop iterations.
Contribution 2. We implemented our approach in the first-order theorem prover Vam-
pire [KV13]. Further, we extended the Rapid framework [GGK20a] to support inductive
reasoning in the automated backend. We describe such implementation details in Chap-

36

4.1. Motivating Example

1 func main() {
2 const Int[] a;
3 const Int[] b;
4 Int[] c;
5 const Int length;
6 Int i = 0;
7
8 while (i < length) {
9 c[2*i] = a[i]
10 c[(2*i) + 1] = b[i]
11 i = i + 1;
12 }
13 }
14 assert(∀posI.∃lI.((0 ≤ pos < (2 × length)) → c(end, pos) = a(l) ∨ c(end, pos) = b(l)))

Figure 4.1: Program copying elements from arrays a and b to even/odd positions in
array c.

ter 7. We carry out an extensive evaluation of trace lemma versus lemmaless reasoning (see
Chapter 8) and compare against state-of-the-art approaches SeaHorn [GSV18, GKKN15]
and Vajra/Diffy [CGU20, CGU21].

4.1 Motivating Example
We motivate our work with the example program in Figure 4.1. The program iterates
over two arrays a and b of arbitrary, but fixed length length and copies array elements
into a new array c. Each even position in c contains an element of a, while each odd
position an element of b. Our task is to prove the safety assertion at line 14: at the
end of the program, every element in c is an element from a or b. Note that the length
of array c is twice length after computation. This property involves (i) alternation
of quantifiers and (ii) is expressed in the first-order theories of linear integer arithmetic
and arrays. In the safety assertion, the program variable length is modeled as a logical
constant of the same name of sort integer, whilst the constant arrays a and b are modeled
as logical functions from integers to integers. The mutable array variable c is additionally
equipped with a timepoint argument end, indicating that the assertion is referring to the
value of the variable at the end of program execution.
Proving the correctness of this example program remains challenging for most state-of-
the-art approaches, such as [GKKN15, FPMG19, CGU20, CGU21], mainly due to the
complex quantified structure of our assertion. Moreover, it cannot be achieved in the trace
lemma framework either, as existing trace lemmas do not relate the values of multiple
program variables, notably equality over multiple array variables. In fact, to automatically
prove the assertion, we need an inductive property/trace lemma formalizing that each
element at an even position in c is an element of a or b at each valid loop iteration,
thereby also restricting the bounds of the loop counter variable i. Naïvely adding such a

37

4. Lemmaless Inductive Reasoning

trace lemma would be highly inefficient as automated generation of verification conditions
would introduce many instances that are not required for the proof. Similarly, undirected
application of induction rules within the first-order prover would lead to an even more
dramatic explosion of the search space. Some guidance on what terms to induct on is
clearly necessary. To this end, we introduce two inductive multi-clausal inference rules,
namely multi-clause goal induction (Section 4.3) and array-mapping induction (Section
4.4), that specialize the terms we induct upon. While these inference rules dramatically
reduce the need for trace lemma based reasoning, we introduce one new trace lemma
(Section 4.2) that is necessary to handle a small but significant part of the reasoning task
that is not covered by built-in induction.

4.2 A Final Trace Lemma

We directly equip the first-order reasoner with multi-clause induction on natural numbers
specifically designed for trace logic. This mechanism allows the prover to find the induction
hypotheses automatically and relies on proving the base and step case respectively.
Nonetheless, due to some limitations in our first-order prover, we are unable to completely
do away with additional lemmas. Specifically, we need to nudge the prover to deduce
that a loop counter variable will, at the end of loop execution, have the value of the
expression it is compared against in the loop condition. We thus introduce the Equal
Lengths Trace Lemma for increasing loop counter variables:

(C) Equal Lengths Trace Lemma

Let w be a while-statement, Cw := e < e’ be the loop condition where e’ is a program
expression that remains constant during the execution of w. The equal lengths trace
lemma of w, e and e’ is defined as

�
Densew,e ∧ �e�(tpw(0)) ≤ �e’�(tpw(0))

� → (C)�e�(tpw(nlw)) ≃ �e’�(tpw(nlw)).

Trace lemma C states that a dense expression e smaller than or equal to some expression
e’ that does not change in the loop, will eventually, specifically in the last iteration,
reach the same value as e’. This follows from the fact that we assume termination of a
loop, hence we assume the existence of a timepoint nlw where the loop condition does
not hold anymore. As a consequence, given that the loop condition held at the beginning
of the execution, we can derive that the loop counter value immediately after the loop
execution �e�(tpw(nlw)) will necessarily equate to �e’�(tpw(0)) = �e’�(tpw(nlw)). In the
special case where e’ contains no mutable variables, the conclusion of the lemma can
be simplified to �e�(tpw(nlw)) = �e’�. Note that a similar lemma can just as easily be
added for dense but decreasing loop counters.

38

4.3. Multi-Clause Goal Induction for Lemmaless Induction

Example 10. For the program in Figure 4.1, we instantiate lemma C for variable i and
obtain �

Densel8,i ∧ i(l8(0)) ≤ length
� → i(l8(nl8)) ≃ length.

4.3 Multi-Clause Goal Induction for Lemmaless Induction
The main focus of our work is moving induction into the saturation prover with the aim
of proving inductive program properties using only the trace logic progam semantics,
thus reducing the need for extra trace lemmas. We achieve this by adding inference rules
that apply bounded induction over loop iterations directly in the underlying theorem
prover. To this end, we identify loop counter terms and leverage recent theorem proving
efforts on bounded (integer) induction in saturation [HKV21, HHK+20]. However, as
illustrated in the following, these recent efforts cannot be directly used in trace logic
reasoning since we need to (i) adjust bounded induction for the setting of loop iterations,
i.e. natural numbers, and (ii) generalize to multi-clause induction. We discuss these steps
using Figure 4.1. Verifying the safety assertion of Figure 4.1 requires proving the trace
logic formula:

∀posI. ∃jI. (0 ≤ pos < (2 × length) (4.1)
→ (c(end, pos) ≃ a(j) ∨ c(end, pos) ≃ b(j))

For proving (4.1), it suffices to prove that the following, slightly modified statement is a
loop invariant of Figure 4.1:

∀itN. it < nl8 → ∀posI. ∃jI. (0 ≤ pos < (2 × i(tpw(it)))) (4.2)
→ (c(l8(it), pos) ≃ a(j) ∨ c(l8(it), pos) ≃ b(j))

where l8 refers to the time point of the loop statement in Figure 4.1. As part of the
program semantics in trace logic, we have formula (4.3) which links the value of c at the
end of the loop (iteration nl8) to its value at the end of the program. Moreover, using
the trace lemma C, we also derive formula (4.4) in trace logic:

∀posI.c(l8(nl8), pos) ≃ c(end, pos) (4.3)
i(l8(nlw)) ≃ length (4.4)

It is tempting to think that in the presence of these clauses (4.3)–(4.4), a saturation-based
prover would rewrite the negated conjecture (4.1) to

¬(∀posI. ∃jI. (0 ≤ pos < (2 × i(l8(nl8))))
→ (c(l8(nl8), pos) ≃ a(j) ∨ c(l8(nl8), pos) ≃ b(j)))

from which a bounded natural number induction inference (similar to the IntInd< rule
of [HKV21]) would quickly introduce an induction hypothesis with (4.2) as the conclusion,

39

4. Lemmaless Inductive Reasoning

by induction over nl8. However, this is not the case, as most saturation provers work
by first clausifying their input. The negated conjecture (4.1) would not remain a single
formula, but be split into the following four clauses where sk is a Skolem symbol:

a(x) ̸≃ c(end, sk) b(x) ̸≃ c(end, sk)
¬(sk ≤ 0) sk ≤ 2 × length

These clauses can be rewritten using (4.3)–(4.4). For example, the first clause can be
rewritten to a(x) ̸≃ c(l8(nl8, sk)). However, attempting to prove the negation of any
of the rewritten clauses individually via induction would merely result in the addition
of useless induction formulas to the search space. For example, attempting to prove
∀itN. it < nl8 → (∃xI. a(x) ≃ c(l8(it), sk)), is pointless as it is clearly false. The solution
we propose in this work is to use multi-clause induction, whereby we attempt to prove
the negation of the conjunction of multiple clauses via a single induction inference. For
our example in Figure 4.1, we can use the following rewritten versions of clauses from the
negated conjecture a(x) ̸≃ c(l8(nl8, sk)), b(x) ̸≃ c(l8(nl8, sk)), and sk ≤ 2 × i(l8(nl8)),
with induction term nl8, to obtain the following multi-clause induction formula:

¬
�

∀xI. a(x) ̸≃ c(i(l8(0)), sk)
∧ ∀xI. b(x) ̸≃ c(i(l8(0), sk))
∧ sk ≤ 2 × i(l8(0))


∧ StepCase

→
∀itN. it < nl8 →

¬� ∀xI. a(x) ̸≃ c(i(l8(it), sk)
∧∀xI. b(x) ̸≃ c(i(l8(it), sk)
∧ sk ≤ 2 × i(l8(it))

 (4.5)

where StepCase is the formula:
∀itN. it < nl8 ∧
¬

�
∀xI. a(x) ̸≃ c(i(tpw(it)), sk)

∧ ∀xI. b(x) ̸≃ c(i(tpw(it)), sk)
∧ sk ≤ i(tpw(y)

 →
¬

�
∀xI. a(x) ̸≃ c(i(tpw(suc(it)), sk)

∧∀xI. b(x) ̸≃ c(i(tpw(suc(it)), sk)
∧ sk ≤ 2 × i(tpw(suc(it)))


Using the induction formula (4.5), a contradiction can then easily be derived, establishing
validity of (4.1). In what follows, we formalize the multi-clause induction principle we
used above. To this end, we introduce a generic inference rule, called multi-clause goal
induction and denoted as MCGLoopInd.

C1[nlw] C2[nlw] . . . Cn[nlw]

CNF

���
� ¬(C1[0] ∧ C2[0] ∧ . . . ∧ Cn[0]) ∧

∀itN.

((it < nlw) ∧ ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it])) →
¬(C1[suc(it)] ∧ C2[suc(it)] ∧ . . . ∧ Cn[suc(it)]))

� �
→ (∀itN. (it < nlw) → ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it]))

���
For performance reasons, we mandate that the premises C1 . . . Cn be derived from trace
logic formulas expressing safety assertions and not from formulas encoding the program
semantics. The MCGLoopInd rule is formalized only as an induction inference over last
loop iteration symbols. While restricting to nlw terms is of purely heuristic nature, our
experiments justify the necessity and usefulness of this condition (Section 8.1).

40

4.4. Array Mapping Induction for Lemmaless Induction

1 func main(){
2 const Int alength;
3 Int[] a;
4 Int i = 0;
5 const Int n;
6
7 while(i < alength){
8 a[i] = a[i] + n;
9 i = i + 1;
10 }
11
12 Int j = 0;
13 while(j < alength){
14 a[j] = a[j] - n;
15 j = j + 1;
16 }
17 }
18 assert(∀posI.((0 ≤ pos < alength) → a(end, pos) = a(start, pos)))
19

Figure 4.2: Program that adds and subtracts n to every element of array a.

4.4 Array Mapping Induction for Lemmaless Induction
Multi-clause goal induction neatly captures goal-oriented application of induction. Nev-
ertheless, there are verification challenges where MCGLoopInd fails to prove inductive
loop properties. This is particularly the case for benchmarks containing multiple loops,
such as in Figure 4.2. We first discuss the limitations of MCGLoopInd using Figure 4.2,
after which we present our solution, the array mapping induction inference.
Let w1 be the first loop statement of Figure 4.2 and w2 be the second loop. Let l7 and
l13 denote the timepoints of the first and second loop with nl7 and nl13 being their last
iteration symbols respectively. Using MCGLoopInd, we would attempt to prove

∀itN. it < nl13 →
∀posI. (0 ≤ pos < j(l13(it))) → (a(l13(it), pos) ≃ a(start, pos) (4.6)

However, formula (4.6) is not a useful invariant for proving the assertion. Since the prior
loop at location l7 changes the original contents of array a, we cannot derive the above
induction axiom. Rather, for w2 we need a loop invariant similar to

∀itN. it < nl13 → ∀posI. (0 ≤ pos < j(l13(it)))
→ (a(l13(it), pos) ≃ a(l13(0), pos) − n

(4.7)

and an equivalent invariant for loop w1. The loop invariant (4.7) is however not linked
to the safety assertion of Figure 4.2, and thus multi-clause goal induction is unable to
infer and prove with it. To aid with the verification of benchmarks such as Figure 4.2,
we introduce another induction inference which we call array mapping induction. In this

41

4. Lemmaless Inductive Reasoning

case, we trigger induction not on clauses and terms coming from the goal, but on clauses
and terms appearing in the program semantics.
The array mapping induction inference rule, denoted as AMLoopInd is given below.
Essentially, AMLoopInd involves analyzing a clause set to heuristically devise a suit-
able loop invariant. Guessing a candidate loop invariant is a difficult problem. The
AMLoopInd inference is triggered if clauses of the shapes of C1 and C2 defined below
are present in the clause set. Intuitively, C1 states that i increases by m in each iteration
of the loop. Clause C2 can be read as saying that on each round of some loop w, some
array a at position i is set to some function F of its previous value at that position.
Together the two clauses suggest that the loop is mapping the function F to each mth
location of the array starting from the array cell located at i(tpw(0)). This is precisely
what the induction formula attempts to prove. Note that for ease of notation, we present
the inference for the case where the indexing variable is increasing. It is straightforward
to generalise to the decreasing case. The AMLoopInd rule is1

C1 = i(tpw(suc(x))) ≃ i(tpw(x)) + m ∨ ¬(x < nlw)
C2 = a

�
tpw(suc(x)), i(tpw(x))

� ≃ F [a
�
tpw(x), i(tpw(x))

�
] ∨ ¬(x < nlw)

CNF(StepCase → Conclusion)

where w is some loop and F an arbitrary non-empty context. Let i0 be an abbreviation
for i(tpw(0)). Then:

StepCase : ∀itN.
�∀yI. it < nlw ∧

y < i(tpw(it)) − i0 ∧ y ≥ 0 ∧ y mod m = 0
→ a(tpw(it), i0 + y) ≃ F [a(tpw(0), i0 + y)]

� →
(∀yI. y < i(tpw(suc(it))) − i0 ∧ y ≥ 0 ∧ y mod m = 0

→ a(tpw(suc(it)), i0 + y) ≃ F [a(tpw(0), i0 + y)])
Conclusion : ∀xI. x < i(tpw(nlw)) − i0 ∧ x ≥ 0 ∧ x mod m = 0

→ a(tpw(nlw), i0 + x) ≃ F [a(tpw(0), i0 + x)]

To prove StepCase, it is necessary to be able to reason that positions in the array a remain
unchanged until visited by the indexing variable. This can be achieved via the addition
of another induction to the conclusion of the inference. Our approach is implemented
as an extension of the Rapid framework, using the first-order theorem prover Vampire
described in Chapter 7, Section 7.2.2. The AMLoopInd inference is thus sufficient to
prove the assertion of Figure 4.2. While AMLoopInd is a limited approach for guessing
inductive loop invariants, we believe it can be extended towards further, more generic
methods to guess invariants, as discussed in Chapter 9. We conclude this section by
noting that our induction rules are sound, based on trace logic semantics. Since both
rules merely add instances of the bounded induction schema for natural numbers (B-Ind)
to the search space, soundness is trivial and we do not provide a proof.

1In the conclusion we ignore the base case of the induction formula as it is trivially true.

42

4.5. Related Work

Theorem 4 (Soundness of Lemmaless Induction). The inference rules MCGLoopInd
and AMLoopInd are sound.

4.5 Related Work
Most of recent research in verifying inductive properties of array-manipulating programs
focuses on quantified invariant generation is mostly restricted to proving universally quan-
tified program properties. The works [GSV18, FPMG19] generate universally quantified
inductive invariants by iteratively inferring and strengthening candidate invariants. These
methods use SMT solving and as such are restricted to first-order theories with a finite
model property. Similar logical restrictions also apply to [RL18], where linear recurrence
solving is used in combination with array-specific proof tactics to prove quantified pro-
gram properties. A related approach is described in [CGU21], where relational invariants
instead of recurrence equations are used to handle universal and quantifier-free inductive
properties. Unlike these works, our work is not limited to universal invariants but can
both infer and prove inductive program properties with alternations of quantifiers.
With the use of extended expressions and induction schemata, our work shares some
similarity with template-based approaches [SG09, LRCR13, KM16]. These works [SG09,
LRCR13, KM16] infer and prove universal inductive properties based on Craig interpola-
tion, formula slicing and/or SMT generalizations over quantifier-free formulas. Unlike
these works, we do not require any assumptions on the syntactic shape of the first-order
invariants. Moreover, our invariants are not restricted to the shape of our induction
schemata. Rather, we treat inductive (invariant) inferences as additional rules of first-
order theorem provers, maintaining thus the efficient handling of arbitrary first-order
quantifiers. Our framework can be used in arbitrary first-order theories, even with theories
that have no interpolation property and/or a finite axiomatization, as exemplified by our
experimental results using inductive reasoning over arrays and integers.
Inductive theorem provers (ITP), such as ACL2 [KM97] and HipSpec [CJRS13], imple-
ment powerful induction schemata and heuristics. However these provers, to the best of
our knowledge, automate inductive reasoning for only universally quantified inductive
formulas using a goal/subgoal architecture, for which user-guidance is needed to split
conjectures into subgoals. In contrast, our work can prove formulas of full first-order
logic by integrating and fully automating induction in saturation-based proof search.
By combining induction with saturation, we allow these techniques to interleave and
complement each other, something that pure induction provers cannot do. Unlike tools
such as Dafny [Lei10], our approach is fully automated requiring no user annotations.
Another technique used to heuristically guide induction in ITP is rippling [BSVH+93].
Rippling deductively steers the goal towards the induction hypothesis through applications
of rewriting, thereby reducing arbitrary rule applications of ITP that will likely not result
in a proof. While, at first glance, this may sound similar to our multi-clause goal induction
inference rule that applies to clauses derived from the safety assertion, hence the goal,
our approach is fundamentally different to ITP. Our heuristics to guide induction are to
some extent built-in in the inference rules by restricting their applications only to certain

43

4. Lemmaless Inductive Reasoning

clauses of the search space. Both our induction inference rules add new formulas to the
search space and can thus replace the tactics of [BSVH+93] by integrating induction
directly in superposition-based reasoning.
First-order theorem proving has previously been used to derive invariants with alternations
of quantifiers in our previous work [GGK20a]. Our current work generalizes the inductive
capabilities of [GGK20a] by reducing the expert knowledge of [GGK20a] in introducing
inductive lemmas to guide the process of proving inductive properties.

44

CHAPTER 5
Extracting Invariants with Trace

Lemma Reasoning

Partial results of this chapter are published in

Pamina Georgiou, Bernhard Gleiss, Ahmed Bhayat, Michael Rawson, Laura
Kovács, and Giles Reger. The Rapid Software Verification Framework. In
Proceedings of the 22th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2022), pages 255-260. IEEE, 2022.

In the previous two chapters, we formalized and proved safety assertions in trace logic
for programs containing integers and arrays with various forms of automated inductive
reasoning. However, synthesizing loop invariants is just as significant of a challenge as
establishing automated proofs.
Invariants can be a useful tool for continuous software verification: annotating already
verified code simplifies the task of re-establishing the validity of functional specifications
to potential changes in the code. Extracting loop invariants also allows integration with
other methods of verification. They can be reused for compositionally automated proofs
by integrating them in various other tools such as Dafny [Lei10] or Why3 [FP13].Thus
many state-of-the-art verification tools that handle array theory are based on invariant
synthesis [FPMG19, PSM16, KBI+17].
When it comes to reasoning in the combination of recursive data structures such as
unbounded arrays and linear arithmetic, such invariants usually contain quantification.
In the realm of first-order theorem provers, the symbol elimination method [KV09] has
been exploited to generate quantified invariants [KV09, GKR18, HKV11]. We adopt and
revise this method for trace logic L.

45

5. Extracting Invariants with Trace Lemma Reasoning

5.1 Extended Expressions and Symbol Elimination

Extended Expressions. Previous works such as [KV09] were based on program/loop
semantics with so-called extended expressions: for any variable v appearing in a loop
L, define an expression v(i) designating the value of v in the loop state σi, that is at
some iteration i. Let σ0 be an initial state for the computation of a loop. A formula
Φ potentially containing extended expressions, consequently, is valid for L if it is true
for any computation of L, that is ∀i. i ≥ 0 → Φ(i). Using extended expressions (and
disregarding loop conditions) allowed to generate quite general inductive properties about
loops and their program variables through static analysis. An example of such auxiliary
loop properties are monotonicity properties: e.g. given a scalar program variable v that
is dense and strictly increasing, we can conclude that ∀i. v(i) = v(0) + i. Note that
extended expressions, in contrast to expressions in trace logic L, define values merely
over iterations, not timepoints. A loop is, therefore, semantically regarded as a sequence
of states such that each iteration represents one such state. In contrast, our semantics in
L define multiple states for each iteration, hence are more fine-grained.
However, arrays were handled in this setting as well: rather than using full-fledged program
semantics such as in trace logic, the authors introduced so-called update predicates defining
array updates at some position p at loop iteration i by some value v. These predicates
allowed on the one hand to capture program behavior for loops that update arrays, and on
the other, to determine inductive properties with extended expressions over such updates.
For example, if an array a is updated at some position p at iteration i but is not updated
in any further iteration, then a[p] will have the value that was assigned at iteration i at
the end of the computation of the loop. That is, upda(i, p, v) ∧ ∀j . j > i → a(n)[p] = v
for some value v and the final iteration n. Note that our value evolution theorem (A1)
is a generalization of this property, allowing us to deduce the equivalent in L based on
bounded induction.
Using an automated theorem prover on such a formalism produces many consequences.
However, these consequences might contain many of the auxiliary symbols introduced by
the use of extended expressions, respectively trace logic L. Consequently, to obtain loop
invariants in first-order logic, these auxiliary symbols need to be eliminated while finding
proper consequences of the program/loop semantics.

Symbol Elimination. Symbol elimination with automated theorem proving was
first introduced in [KV09] and is based on symbol-eliminating inferences. The symbol
elimination approach defined some set of program symbols undesirable, and only reports
consequences that have eliminated such symbols from their predecessors. Essentially,
the mechanism deals with ridding the consequences of clauses that contain extended
expressions or are purely theory-based conclusions. To be able to express interesting
properties without the use of extended expressions, it is necessary to define new symbols
for program variables, so-called target symbols. The idea is the following: for any program
variable v, integer or array, we define v0 and vn such that v0 = v(0) and vn = v(n)

to represent each program variable before and after the execution of the loop. Any

46

5.2. Invariant Generation in Trace Logic

1 func main() {
2 Int[] a;
3 const Int[] b;
4 const Int length
5 Int i = 0;
6
7 while (i < length) {
8 a[i] = b[i]
9 i = i + 1;
10 }
11 }
12 assert(∀posI.((0 ≤ pos < length) → a(end, pos) = b(pos)))
13

Figure 5.1: Program copying elements from array b to array a.

consequence that represents a loop invariant (1) should contain at least one target symbol
or a skolem function (introduced during saturation), and (2) should only contain symbols
that are either target symbols, skolem function or theory symbols, that is interpreted
functions such as arithmetic symbols. Such symbols are called useful. Note that clauses
containing only theory symbols are also eliminated as they are rather useless for inductive
loop reasoning. While being valid consequences, they do not represent loop invariants
and are, hence, eliminated.
To achieve finding such clauses during saturation, the internal ordering has to be adapted:
by making all other useless symbols large in precedence, the prover applies inferences
on "heavy" clauses first and thus eventually removes them from the search space. All
consequences containing useful symbols can then be outputted as loop invariants. If
such a clause contains a skolem function, it can be de-skolemized by reintroducing an
existential quantifier. Appropriating saturation in such a way, therefore, enables finding
quantified invariants potentially with quantifier alternations. We revisit this method in
the context of trace logic L.

5.2 Invariant Generation in Trace Logic
Reasoning in trace logic can also be exploited as an invariant generation engine, syn-
thesizing first-order invariants using the Vampire theorem prover. In contrast to prior
work, our program semantics in trace logic is more complex: rather than considering
loop iterations as a single program state, we might have multiple program states per
loop. Trace logic is an extension of extended expression where locations are not merely
iterations, but timepoints - a cross product of locations and iterations. Consequently, we
have to adapt the symbol-eliminating mode of Vampire to derive logical consequences of
the trace logic semantics. Some of these consequences may be loop invariants. Intuitively,
we generate consequences from our program semantics and trace lemmas, such that a
conjunction of some of those consequences is strong enough to derive some safety asser-

47

5. Extracting Invariants with Trace Lemma Reasoning

tion. Given the quantified nature of our trace lemmas, this allows us to derive complex
properties that may contain quantifier alternation. Additionally, we want to eliminate
any intermediate timepoints from our consequences as we want to find formulas that are
valid at any point in time. However, there is no guarantee that relevant consequences
will be derived quickly or at all, as there may be an infinite number of consequences.
Therefore, some heuristics must be applied to guide consequence finding for invariant
synthesis.
The basic idea is aligned with [KV09]: loop invariants should only contain symbols from
the input loop language, with no timepoints. We, thus, define symbols to be either
colored or transparent, and eliminate colored symbols to obtain (quantified) formulas
as conclusions containing only transparent symbols. Transparent symbols are either
predefined target symbols, constant program variables that do not include any timepoints
to begin with, or theory symbols. Note, however, that clauses containing only theory
symbols are also eliminated as they are rather useless for inductive loop reasoning. While
being valid consequences, they do not represent loop invariants and are, hence, eliminated.
To the avid reader, it is evident that colored symbols are those representing program
variables that are used in assignments. Specifically on the left-hand side of assignments
since these are the program variables that change in value throughout computation
and will, therefore, contain timepoints in their logical representation. To remove such
constructs, we apply symbol elimination: any symbol representing a variable v used on
the left-hand side of an assignment is eliminated. However, we still want to generate
invariants containing otherwise-eliminated variables at specific locations, so for each
eliminated variable v we define v_init = v(l1) and v_final = v(l2) for appropriate
timepoints l1, l2: these new symbols need not be eliminated. Now, the most interesting
timepoints for loop invariants are, of course, the first iteration lw(0) of some loop w since
it represents the values of v before the execution of a loop, as well as the end of the loop
execution represented by lw(nlw). That is for each loop w and each program variable v
used the loop we define

v_init = v(lw(0))

and
v_final = v(lw(nlw))

as target symbols and color the original program variable v.

Example 11 (Target symbols). Consider the program in Figure 5.1 that copies elements
from immutable array b to the mutable array a in a loop. Since only a and loop counter
variable i appear on the left-hand side of assignments, we color these symbols and define
their target symbols in the following way

1. ∀x. a_init(x) = a(l7(0), x)
2. ∀x. a_final(x) = a(l7(nl7), x)
3. i_init = i(l7(0))
4. i_final = i(l7(nl7))

48

5.2. Invariant Generation in Trace Logic

Note that immutable symbols b and length as well as above defined target symbols
a_init, a_final, i_init and i_final are transparent and hence can/should appear
in generated consequences.

5.2.1 Refreshing Symbol Elimination
Theorem proving technology (and Vampire in particular) has changed and improved
somewhat since the original work on this method. To restore the ability to extract useful
invariants, the symbol elimination technique must be adapted to the current state of
Vampire. Happily, most changes simply fix new Vampire features that did not consider
symbol elimination.
Additionally, reasoning in trace logic and expressing trace lemmas for programs produces
more complex encodings than in the original work, typically relying heavily on a theorem
prover’s ability to simplify consequences. The original approach yields candidate invariants
as soon as undesirable symbols are eliminated, but this means candidates are not subject
to the full set of simplifications Vampire offers. We further adjusted symbol elimination
to output fully-simplified consequences during proof search in Vampire (the so-called
active set [KV13]) at the end of a user-specified time limit. Consequences that contain
colored symbols or are pure consequences of theories are removed at this stage. Our
approach reduces the number of candidates produced per unit time, in exchange for
“nicer” invariants that reflect all information available to the theorem prover.

5.2.2 Reasoning with Integers vs. Naturals
In the standard setting of reasoning with trace logic, we use natural numbers, that is
terms of sort N to describe loop iterations. This benefits proof search as we limit the
amount of theory axioms necessary to describe loop iterations to 0, suc and the <-relation.
Omitting any arithmetic relieves the prover of unnecessary theory-based derivations that
will not result in a proof.
However, in some situations it is advantageous to use the theory of integers I: incremental
loop counter variables i of sort I will have the same numerical value as nl of sort N at
the end of a loop. The automated theorem prover cannot infer such reasoning when
two different sorts are in use. We need integer-based loop iterations to allow deriving
i(l(nl)) = nl, and finally i_final = nl as a loop invariant by symbol-eliminating
inferences.
Additionally, a clause such as i(l(nl)) = nl can be very helpful for further consequence-
finding. Let us consider the following property

∀xI . 0 ≤ x ≤ length → a(x) = b(x). (5.1)

Assertion (5.1) essentially requires us to prove that two arrays a, b are equal in all
positions between 0 and length. Such a property might for example be useful to prove
when we copy from an array b into an array a in a loop with loop condition i < length
where i is the loop counter variable incremented by one in each iteration such as in
Figure 5.1. Now, when we make use of the symbol elimination method, we might be

49

5. Extracting Invariants with Trace Lemma Reasoning

able to derive a property ∀x. 0 ≤ x < nl → a(x) = b(x), essentially stating that the
property holds for all iterations of the loop. Additionally, the prover can easily deduce
that i_final ≥ length for some loop counter variable i thanks to our semantics and
thus conclude the validity of property (5.1).
However, in case of natural numbers N we cannot deduce that i(l(nl)) = nl holds since
the sorts of i and nl differ. Such a consequence is nonetheless required for the conjunction
of generated invariants to be strong enough to prove postcondition (5.1). Consequently,
we would depend upon the prover to discover the invariant ∀x. 0 ≤ x ≤ i_final →
a(x) = b(x) directly which cannot be deduced by the prover as our loop semantics are
bounded by loop iterations rather than the loop counter values.
With integer-based loop iterations we can circumvent this problem as the prover finds
the equality i(l(nl)) = nl as a consequence which makes the conjunction of clauses strong
enough to prove the desired postcondition.

Example 12 (Invariant generation with integers). Consider again the program in Figure
5.1. Given a program semantics using integers as loop iterations and colored symbols
a and i, we derive the following three invariants containing target symbols i_final,
a_final and transparent symbols nl7, length and b during saturation with symbol
elimination:

(Inv1) i_final = nl7
(Inv2) i_final ≥ length
(Inv3) ∀x. 0 ≤ x < nl7 → a_final(x) = b(x)

It is easy to see that the conjunction of (Inv1)–(Inv3) is strong enough to prove the safety
assertion containing target symbols:

∀x.0 ≤ x < length → a_final(x) = b(x).

By definition of the target symbols, it follows that property (5.1) holds for the program
in Figure 5.1.

5.3 Related Work
Loop invariant synthesis is a highly active research field. A wide range of approaches to
loop analysis and (quantified) invariant generation has been developed in recent years.
However, loop invariant synthesis over array-transforming loops becomes very challenging
as complex quantification might be involved. Most state-of-the-art approaches that
produce quantified invariants are based on SMT-solving such as [GSM16, KBI+17], thus
by nature of the underlying solvers restricted to universal quantification. The work
[KBI+17] is based on iteratively generating quantifier-free properties and lift them to
universally quantified invariants.
When it comes to generating invariants for programs containing unbounded data struc-
tures, we have to most notably mention the constrained Horn clause (CHC) solvers
Spacer/Quic3 [KCSG20, GSV18] and FreqHorn [FPMG19]. These approaches are
based on IC3/PDR [HB12], for the former, and sampling/enumerating invariants until a

50

5.3. Related Work

conjunction of generated formulas is inductive, for the latter. Given that these approaches
heavily rely on SMT-solvers to verify the validity of invariants with regards to a program
and a safety assertion, they are mostly limited to universally quantified invariants if
quantification is supported at all.
Another line of research is based on invariant templates with universal quantification.
In [BMR13], quantifier-free invariants are computed and lifted by universally quantified
templates. A similar approach is used in [LRCR13]. Both of these approaches use
SMT-solving and thus suffer from the same limitations.
Another approach based on enumerating formulas as invariant candidates can be found
in [MPMW20, PSM16]. Specifically, [MPMW20] generates so-called representation
invariants that synthesize invariants over the values of recursive datatypes by enumerating
and alternatingly weakening and strengthening of invariant candidates. However the
input language is restricted to universally quantified specifications.
Similarly, [YTGN22] can establish quantified invariants for distributed protocols based
on sampling distributed protocol states at different instance sizes and enumerating
the strongest possible invariants for these samples. To check inductiveness of the
candidate invariants an SMT-solver is employed, hence candidates are iteratively weakened
making invariant discovery efficient. However, contrary to our approach the SMT-solving
bottleneck on existential quantification applies.
While most works suffer from the limitations of SMT-solving, there are some approaches
that can handle existential or alternating quantification. The work of [KPIA20] extends
the IC3/PDR algorithm with so-called quantified separators, allowing them to generate
non-trivial formulas automatically. While it is unclear whether their approach works on
programs with loops and unbounded data structures, they could establish some invariants
with quantifier alternations for distributed protocols in their approach. Further, [ZCF23]
provides a novel approach of CHC-solving for recursive datatypes with by generating
recursive functions. They employ first-order theorem provers rather than relying on
SMT to check the validity of their candidate functions. However, given the universally
quantified nature of algebraic datatypes’ inductive definitions, it is indefinite whether
queries with existential or alternating quantification can be solved.

51

CHAPTER 6
Computation Induction for

Recursive Sorting Algorithms

This chapter is based on our work

Pamina Georgiou, Marton Hajdu, and Laura Kovács. Sorting Without Sorts.
No. 10632. EasyChair Preprint, 2023. Currently under submission.

Sorting algorithms are integrated parts of any modern programming language, hence
ubiquitous in computing, which naturally triggers the demand of validating the functional
correctness of sorting routines. They typically implement recursive/iterative operations
over potentially unbounded data structures, for instance lists or arrays, combined with
arithmetic manipulations of numeric data types, such as naturals, integers or reals.
Automating the formal verification of sorting routines, therefore, brings the challenge of
automating recursive/inductive reasoning in extensions and combinations of first-order
theories, while also addressing the reasoning burden arising from design choices made
for the purpose of efficient sorting. Most notably, Quicksort [Hoa62] is known to be
easily implemented when making use of recursive function calls, for example, as given in
Figure 6.1, whereas procedural implementations of Quicksort would require additional
recursive data structures such as stacks. While Quicksort and other sorting routines
have been proven correct by means of manual efforts [FH71], proof assistants [NBE+21,
WS04, BSSU17], abstract interpreters [GMT08], or model checkers [JM07], to the best
of our knowledge such correctness proofs so far have not been fully automated.
In this chapter we aim to verify the partial correctness of functional programs with
recursive data structures, in an automated manner by using saturation-based first-order
theorem proving. To achieve this, we turn the automated first-order reasoner into a
complementary approach to interactive proof assistance: (i) we rely on manual guidance
in splitting inductive proof goals into subgoals (Sections 6.4 and 6.5), but (ii) fully
automate inductive proofs in saturation-based reasoning (Section 6.3).

53

6. Computation Induction for Recursive Sorting Algorithms

1 datatype a’ list = nil | cons(a’, (a’ list))
2
3 quicksort :: a’ list → a’ list
4 quicksort(nil) = nil
5 quicksort(cons(x, xs)) =
6 append(
7 quicksort(filter<(x, xs)) ,
8 cons(x, quicksort(filter≥(x, xs))))
9
10 append :: a’ list → a’ list → a’ list
11 append(nil, xs) = xs
12 append(cons(x, xs), ys) = cons(x, append(xs, ys))
13

Figure 6.1: Recursive functional algorithm of Quicksort, using the recursive function
definitions append, filter< and filter≥ over lists of sort a. The datatype list
is inductively defined by the list constructors nil and cons. Here, xs, ys denote lists
whose elements are of sort a, whereas x is a list element of sort a. The append function
concatenates two lists. The filter< and filter≥ functions return lists of elements y
of xs such that y < x and y ≥ x, respectively.

The crux of our approach is a compositional reasoning setting based on superposition-
based first-order theorem proving [KV13] with native support for induction [HHK+22]
and first-order theories of recursively defined data types [KRV17]. We extend this setting
to support the first-order theory of list data structures parameterized by an abstract
background theory/sort a and advocate computation induction for induction on recursive
function calls. As such, our framework allows us to automatically discharge manually
split verification conditions that require inductive proofs, without requiring manually
proven or a priori given inductive annotations such as loop invariants, nor user input to
perform proofs by induction. Doing so, we automatically derive induction axioms during
saturation to establish the functional correctness of the recursive implementation of
Quicksort from Figure 6.1 by means of automated first-order reasoning. In a nutshell,
we proceed as follows.
(i) We formalize the semantics of functional programs in extensions of the first-order
theory of lists (Section 6.2). Rather than focusing on lists with a specific background
theory, such as integers/naturals, our formalization relies on a parameterized sort/type
a abstracting specific (arithmetic) theories. To this end, we impose that the sort a
has a linear order ≤. We then express program semantics in the first-order theory of
lists parameterized by a, allowing us to quantify over lists of sort a as they are domain
elements of our first-order theory.
Doing so, we remark that one of the major reasoning burdens towards establishing the
correctness of sorting algorithms comes with formalizing permutation properties, for
example that two lists are permutations of each other. Universally quantifying over
permutations of lists is, however, not a first-order property and hence reasoning about
list permutation requires higher-order logic. While counting and comparing the number

54

6.1. Background

of list elements is a viable option to formalize permutation equivalence in first-order
logic, the necessary arithmetic reasoning adds an additional burden to the underlying
prover. We overcome this challenge by introducing an effective first-order formalization of
permutation equivalence over parameterized lists. Our permutation equivalence property
encodes multiset operations over lists, eliminating the need of counting list elements, and
therefore arithmetic reasoning, or fully axiomatizing (higher-order) permutations.
(ii) We revise inductive reasoning in first-order theorem proving (Section 6.3) and introduce
computation induction as a means to tackle recursive divide-and-conquer algorithms.
We, therefore, extend the first-order reasoner with an inductive inference based on the
computation induction scheme and outline its necessity for recursive sorting routines.
(iii) We leverage first-order theorem proving for compositional proofs of recursive parame-
terized sorting algorithms (Section 6.4), in particular of Quicksort from Figure 6.1.
By embedding the application of induction directly in saturation-based proving, we
automatically discharge manually split proof obligations. Each such condition represents
a first-order lemma, and hence a proof step. We emphasize that the only manual effort
in our framework comes with splitting formulas into multiple lemmas (Section 6.5.1);
each lemma is established automatically by means of automated theorem proving with
built-in induction. That is, all our lemmas/verification conditions are automatically
proven by means of structural and/or computation induction during the saturation
process. Thanks to the automation of induction in saturation, we turn first-order theorem
proving into a powerful approach to guide human reasoning about recursive properties.
We do not rely on user-provided inductive properties, nor on user guidance to perform
proofs by induction, but generate inductive hypotheses/invariants via inductive inferences
automatically as logical consequences of our program semantics.
(iv) We note that sorting algorithms often follow a divide-and-conquer approach (see
Figure 6.2). We, thus, apply our approach on other sorting routines and investigate
a generalized set of manual proof splits/lemmas that is applicable to verify functional
sorting algorithms on recursive data structures (Section 6.5) and guides compositional
reasoning in saturation-based theorem proving for this purpose.

Our work is implemented in the Vampire theorem prover [KV13]. Details are provided in
Section 7.4.2. We demonstrate our findings with an experimental evaluation in Chapter
8, Section 8.2.

6.1 Background

Parameterized Lists. We use the first-order theory of recursively defined datatypes
[KRV17]. In particular, we consider the list datatype with two constructors nil and
cons(x, xs), where nil is the empty list and x and xs are respectively the head and tail of
a list. We introduce a type parameter a that abstracts the sort/background theory of the
list elements. Here, we impose the restriction that the sort a has a linear order <, that
is, a binary relation which is reflexive, antisymmetric, transitive and total. For simplicity,

55

6. Computation Induction for Recursive Sorting Algorithms

we also use ≥ and ≤ as the standard ordering extensions of <. As a result, we work in
the first-order theory of lists parameterized by sort a, allowing us to quantify over lists as
domain elements of this theory. For simplicity, we write xsa, ysa, zsa to mean that the
lists xs, ys, zs are parameterized by sort a; that is their elements are of sort a. Similarly,
we use xa, ya, za to mean that the list elements x, y, z are of sort a. Whenever it is clear
from the context, we omit specifying the sort a.

Function definitions. We make the following abuse of notation. For some function f in
some program P, we use the notation f(arg1, ...) to refer to function definitions/calls
appearing in the input algorithm, while the mathematical notation f(arg1, ...) refers
to its counterpart in our logical representation, that is the function call semantics in
first-order notation as introduced in Section 6.2.

6.2 First-Order Semantics of Functional Sorting
Algorithms

We outline our formalization of recursive sorting algorithms in the full first-order theory
of parameterized lists.

6.2.1 Recursive Functions in First-Order Logic

We investigate recursive algorithms written in a functional coding style and defined over
lists using list constructors. That is, we consider recursive functions f that manipulate
the empty list nil and/or the list cons(x, xs).
Many recursive sorting algorithms, as well as other recursive operations over lists,
implement a divide-and-conquer approach: let f be a function following such a pattern, f
uses (i) a partition function to divide lista, that is a list of sort a, into two smaller sublists
upon which f is recursively applied to, and (ii) calls a combination function that puts
together the result of the recursive calls of f. Figure 6.2 shows such a divide-and-conquer
pattern, where the partition function partition uses an invertible operator ◦, with
◦−1 being the inverse of ◦; f is applied to the results of ◦ before these results are merged
using the combination function combine.

Note that the recursive function f of Figure 6.2 is defined via the declaration f ::
a′list → ... → a′list, where ... denotes further input parameters. We formalize the
first-order semantics of f via the function f : (lista × ...) �→ lista, by translating the
inductive function definitions f to the following first-order formulas with parameterized
lists (in first-order logic, function definitions can be considered as universally quantified
equalities):

56

6.2. First-Order Semantics of Functional Sorting Algorithms

1 f :: a’ list → ... → a’ list
2 f(nil, ...) = nil
3 f(cons(y,ys), ...)=
4 combine(
5 f(partition◦(cons(y,ys))),
6 f(partition◦−1(cons(y,ys)))
7)
8

Figure 6.2: Recursive divide-and-conquer approach.

f(nil) = nil
∀xa, xsa . f(cons(x, xs)) = combine(f(partition◦(cons(x, xs))),

f(partition◦−1(cons(x, xs)))).
(6.1)

The recursive divide-and-conquer pattern of Figure 6.2, together with the first-order
semantics (6.1) of f, will be respectively used in Sections 6.4-6.5 for proving correctness
of the Quicksort algorithm (and other sorting algorithms), as well as for applying
lemma generalizations for divide-and-conquer list operations. We next introduce our
first-order formalization for specifying that f implements a sorting routine.

6.2.2 First-Order Specification of Sorting Algorithms
We consider a specific function instance of f implementing a sorting algorithm, expressed
through sort :: a′list → a′list. The functional behavior of sort needs to satisfy two speci-
fications implying the functional correctness of sort: (i) sortedness and (ii) permutation
equivalence of the list computed by sort.

(i) Sortedness: The list computed by the sort function must be sorted w.r.t. some
linear order ≤ over the type a of list elements. We define a parameterized version of this
sortedness property using an inductive predicate sorted as follows:

sorted(nil) = ⊤
∀xa, xsa . sorted(cons(x, xs)) = (elem≤list(x, xs) ∧ sorted(xs)), (6.2)

where elem≤list(x, xs) specifies that x ≤ y for any element y in xs. Proving correctness
of a sorting algorithm sort thus reduces to proving the validity of:

∀xsa . sorted(sort(xs)). (6.3)

(ii) Permutation Equivalence: The list computed by the sort function is a permuta-
tion of the input list to the sort function. In other words the input and output lists of
sort are permutations of each other, in short permutation equivalent.

57

6. Computation Induction for Recursive Sorting Algorithms

1 filterQ :: a’ → a’ list → a’ list
2 filterQ(x, nil) = nil
3 filterQ(x, cons(y,ys))=
4 if (Q(y,x)) {
5 cons(y,filterQ(x,ys))
6 } else {
7 filterQ(x,ys)
8 }
9

Figure 6.3: Function filterQ filtering elements of a list, by using a predicate Q(y, x) over
list elements x, y.

Axiomatizing permutations requires quantification over relations and is thus not express-
ible in first-order logic [LM96]. A common approach to prove permutation equivalence of
two lists is to count the occurrence of elements in each list respectively and compare the
occurrences of each element. Yet, counting adds a burden of arithmetic reasoning over
naturals to the underlying prover, calling for additional applications of mathematical
induction. We overcome these challenges of expressing permutation equivalence as follows.
We introduce a family of functions filterQ manipulating lists, with the function filterQ

being parameterized by a predicate Q and as given in Figure 6.3.
In particular, given an element x and a list ys, the functions filter=, filter<, and
filter≥ compute the maximal sublists of ys that contain only equal, resp. smaller and
greater-or-equal elements to x. Analogously to counting the multiset multiplicity of x in
ys via counting functions, we compare lists given by filter=, avoiding the need to count
the number of occurrences of x and hence prolific axiomatizations of arithmetic. Thus,
to prove that the input/output lists of sort are permutation equivalent, we show that,
for every list element x, the results of applying filter= to the input/output list of sort
are the same over all elements. Formally, we have the following first-order property of
permutation equivalence:

∀xa, xsa . filter=(x, xs) = filter=(x, sort(xs)). (6.4)

6.3 Computation Induction in Saturation
In this section, we describe our reasoning extension to saturation-based first-order theorem
proving, in order to support inductive reasoning for recursive sorting algorithms as
introduced in Section 6.2. Our key reasoning ingredient comes with a structural induction
schemata of computation induction, which we directly integrate in the saturation proving
process.
We revisited the structural induction schema over lists in Section 2.2. Sorting algo-
rithms, however, often require induction axioms that are more complex than instances of
structural induction (2.1). Such axioms are typically instances of computation/recursion

58

6.4. Proving Recursive Quicksort

induction schema, arising from divide-and-conquer strategies as introduced in Section
6.2.1. Particularly, the complexity arises due to the two recursive calls on different parts
of the original input list produced by the partition function that have to be taken into
account by the induction schema. We therefore use the following computation induction
schema over lists:

L[nil] ∧ ∀x, ys.


L[partition◦(x, ys)]∧
L[partition◦−1(x, ys)]


→ L[cons(x, ys)])


→ ∀zs.L[zs] (6.5)

yielding the following instance of the Ind inference rule that can be applied by the prover
during saturation:

L[t] ∨ C

L[nil] ∨ L[partition◦(σx, σys)] ∨ C
L[nil] ∨ L[partition◦−1(σx, σys)] ∨ C

L[nil] ∨ L[cons(σx, σys)] ∨ C

where t is a ground term of sort list, L[t] is ground, σx and σys are fresh constant symbols,
and partition◦ and its inverse refer to the functions that partition lists into sublists
within the actual actual sorting algorithms. Note that the above Ind inference instance
results in three clauses.
In the following, we show how instances of the Ind inference rule with schemes (2.1) and
(6.5) are leveraged to automatically prove sortedness and permutation equivalence over
sorting routines by splitting proof obligations into multiple first-order lemmas.

6.4 Proving Recursive Quicksort

We now describe our approach towards proving the correctness of the recursive parame-
terized version of Quicksort, as given in Figure 6.1. Note that Quicksort recursively
sorts two sublists that contain respectively smaller and greater-or-equal elements than the
pivot element x of its input list. We therefore reduce the task of proving the functional
correctness of Quicksort to the task of proving the (i) sortedness property (6.3) and
(ii) the permutation equivalence property (6.4) of Quicksort. As mentioned in Sec-
tion 6.2.2, a similar reasoning is needed for most sorting algorithms, which we evidence
in Section 6.5, as well as in our experimental evaluation (Section 8.2).

6.4.1 Proving Sortedness for Quicksort

Given an input list xs, we prove that Quicksort computes a sorted list by considering
the property (6.3) instantiated for Quicksort. That is, we prove:

∀xsa . sorted(quicksort(xs)) (6.6)

The sortedness property (6.6) of Quicksort is proved via compositional reasoning
over (6.6). Namely, we enforce the following two properties that together imply (6.6):

59

6. Computation Induction for Recursive Sorting Algorithms

(S1) By using the linear order ≤ of the background theory a, for any element y in the
sorted list quicksort(filter<(x, xs)) and any element z in the sorted list quicksort(filter≥(x, xs)),
we have y ≤ x ≤ z.

(S2) The functions filter< and filter≥ of Figure 6.3 are correct. That is, filtering
elements from a list that are smaller, respectively greater-or-equal, than an element x
results in sublists only containing elements smaller than, respectively greater-or-equal,
than x.

Similarly to (6.2), in order to express property (S2) we introduce the predicates
elem≤list :: a′ → a′list → bool and list≤list :: a′list → a′list → bool, defined inductively
as:

∀xa . elem≤list(x, nil) = ⊤
∀xa, ya, ysa . elem≤list(x, cons(y, ys)) = x ≤ y ∧ elem≤list(x, ys),

(6.7)

and
∀ysa . list≤list(nil, ys) = ⊤

∀xa, xsa, ysa . list≤list(cons(x, xs), ys) = (elem≤list(x, ys) ∧ list≤list(xs, ys)).
(6.8)

That is, for some element x and lists xs, ys, we express that x is smaller than or equal
to any element of xs by elem≤list(x, xs). Similarly, list≤list(xs, ys) captures that every
element in list xs is smaller than or equal to any element in ys.
The inductively defined predicates of (6.7)–(6.8) allow us to express necessary lemmas
over list operations preserving the sortedness property (6.6), for example, to prove that
appending sorted lists yields a sorted list.
Proving properties (S1)–(S2), and hence deriving the sortedness property (6.6) of
Quicksort, requires three first-order lemmas in addition to the first-order seman-
tics (6.1) of Quicksort. Each of these lemmas is automatically proven by saturation-
based theorem proving using the structural and/or computation induction schemata
of (2.1) and (6.5); hence, by compositionality, we obtain (S1)–(S2) implying (6.6). We
next discuss these three lemmas and outline the complete (compositional) proof of the
sortedness property (6.6) of Quicksort.
• In support of (S1), lemma (6.9) expresses that for two sorted lists xs, ys and a list
element x, such that elem≤list(x, xs) holds and all elements of the constructed list
cons(x, xs) are greater than or equal to all elements in ys, the result of concatenating ys
and cons(x, xs) yields a sorted list. Formally, we have

∀xa, xsa, ysa .
�
sorted(xs) ∧ sorted(ys) ∧ elem≤list(x, xs)∧
list≤list(ys, cons(x, xs))

�
→ sorted(append(ys, cons(x, xs)))

(6.9)

• In support of (S2), we need to establish that filtering greater-or-equal elements for
some list element x results in a list whose elements are greater-or-equal than x. In other
words, the inductive predicate of (6.7) is invariant over sorting and filtering operations
over lists.

∀xa, xsa . elem≤list(x, quicksort(filter≥(x, xs))). (6.10)

60

6.4. Proving Recursive Quicksort

• Lastly and in further support of (S1)–(S2), we establish that all elements of a list xs
are “covered” with the filtering operations filter≥ and filter< w.r.t. a list element
x of xs. Intuitively, a call of filter<(x,xs) results in a list containing all elements
of xs that are smaller than x, while the remaining elements of xs are those that are
greater-or-equal than x and hence are contained in cons(x, filter≥(x, xs)). By applying
Quicksort over the input list xs, we thus have:

∀xa, xsa .
list≤list(quicksort(filter<(x, xs)), cons(x, quicksort(filter≥(x, xs)))). (6.11)

The first-order lemmas (6.9)–(6.11) guide saturation-based proving to instantiate struc-
tural/computation induction schemata and derive the following induction axiom necessary
to prove (S1)–(S2), and hence sortedness of Quicksort:�

sorted(quicksort(nil))∧
∀xa, xsa .

�
sorted(quicksort(filter≥(x, xs)))∧
sorted(quicksort(filter<(x, xs)))


→ sorted(quicksort(cons(x, xs))


→ ∀xsa . sorted(quicksort(xs)),

(6.12)

where axiom (6.12) is automatically obtained during saturation from the computation
induction schema (6.5). Intuitively, the prover replaces F by sorted(quicksort(t)) for
some term t, and uses filter< and filter≥ as partition◦ and partition◦−1 respectively
to find the necessary computation induction scheme. We emphasize that this step is fully
automated during the saturation run.
The first-order lemmas (6.9)–(6.11), together with the induction axiom (6.12) and the first-
order semantics (6.1) of Quicksort, imply the sortedness property (6.4) of Quicksort;
this proof can automatically be derived using saturation-based reasoning. Yet, the
obtained proof assumes the validity of each of the lemmas (6.9)–(6.11). To eliminate this
assumption, we propose to also prove lemmas (6.9)–(6.11) via saturation-based reasoning.
Yet, while lemma (6.9) is established by saturation with structural induction (2.1) over
lists, proving lemmas (6.10)–(6.11) requires further first-order formulas. In particular,
for proving lemmas (6.10)–(6.11) via saturation, we use four further lemmas, as follows.
• Lemmas (6.13)–(6.14) indicate that the order of elem≤list and list≤list is preserved
under quicksort, respectively. That is,

∀xa, xsa . elem≤list(x, xs) → elem≤list(x, quicksort(xs)) (6.13)

and

∀xsa, ysa . list≤list(ys, xs) → list≤list(quicksort(ys), xs). (6.14)

• Proving lemmas (6.13)–(6.14), however, requires two further lemmas that follow from
saturation with built-in computation and structural induction, respectively. Namely, lem-
mas (6.15)–(6.16) establish that elem≤list and list≤list are also invariant over appending
lists. That is,

∀xa, ya, xsa, ysa .
�
y ≤ x ∧ elem≤list(y, xs) ∧ elem≤list(y, ys)

�
→ elem≤list(y, append(cons(x, ys), xs)) (6.15)

61

6. Computation Induction for Recursive Sorting Algorithms

and
∀xsa, ysa, zsa .

�
list≤list(ys, xs) ∧ list≤list(zs, xs)

�
→ list≤list(append(ys, zs), xs) (6.16)

With lemmas (6.13)–(6.16), we automatically prove lemmas (6.9)–(6.11) via saturation-
based reasoning. The complete automation of proving properties (S1)–(S2), and hence
deriving the sortedness property (6.6) of Quicksort in a compositional manner, requires
thus altogether seven lemmas in addition to the first-order semantics (6.1) of Quicksort.
Each of these lemmas is automatically established via saturation with built-in induction.
Hence, unlike interactive theorem proving, compositional proving with first-order theorem
provers can be leveraged to eliminate the need to a priori specifying necessary induction
axioms to be used during proof search.

6.4.2 Proving Permutation Equivalence for Quicksort

In addition to establishing the sortedness property (6.6) of Quicksort, the functional cor-
rectness of Quicksort also requires proving the permutation equivalence property (6.4)
for Quicksort. That is, we prove:

∀xa, xsa . filter=(x, xs) = filter=(x, quicksort(xs)). (6.17)

In this respect, we follow the approach introduced in Section 6.2.2 to enable first-
order reasoning over permutation equivalence (6.17). Namely, we use filter= to filter
elements x in the lists xs and quicksort(xs), respectively, and build the corresponding
multisets containing as many x as x occurs in xs and quicksort(xs). By comparing
the resulting multisets, we implicitly reason about the number of occurrences of x in
xs and quicksort(xs), yet, without the need to explicitly count occurrences of x. In
summary, we reduce the task of proving (6.17) to compositional reasoning again, namely
to proving following two properties given as first-order lemmas which, by compositionality,
imply (6.17):
(P1) List concatenation commutes with filter=, expressed by the lemma:

∀xa, xsa, ysa . filter=(x, append(xs, ys)) = append(filter=(x, xs),
filter=(x, ys)). (6.18)

(P2) Appending the aggregate of both filter-operations results in the same multisets
as the unfiltered list, that is, permutation equivalence is invariant over combining inverse
reduction operations. This property is expressed via lemma:

∀xa, ya, xsa . filter=(x, xs) = append(filter=(x, filter<(y, xs)),
filter=(x, filter≥(y, xs))). (6.19)

Similarly as in Section 6.4.1, we prove lemmas (6.18)–(6.19) by saturation-based rea-
soning with built-in induction. In particular, investigating the proof output shows that
lemma (6.18) is established using the structural induction schema (2.1) in saturation,
while the validity of lemma (6.19) is obtained by applying the computation induction
schema (6.5) in saturation.

62

6.5. Lemma Generalizations for Guided Proof Splits

By proving lemmas (6.18)–(6.19), we thus establish validity of permutation equivalence
(6.17) for Quicksort. Together with the sortedness property (6.6) of Quicksort
proven in Section 6.4.1, we conclude the functional correctness of Quicksort in a
compositional manner, using automated saturation-based theorem proving with built-in
induction and altogether nine first-order lemmas in addition to the first-order seman-
tics (6.1) of Quicksort.

6.5 Lemma Generalizations for Guided Proof Splits
Establishing the functional correctness of Quicksort in Section 6.4 uses nine first-
order lemmas that express inductive properties over lists in addition to the first-order
semantics (6.1) of Quicksort. While each of these lemmas is proved by saturation using
structural/computation induction schemata, coming up with proper inductive lemmas
remains crucial in reasoning about inductive data structures. That is, we have to find
effective ways to split the proof such that the first-order theorem prover can automatically
discharge all proof steps with built-in induction.
In Section 6.5.1, we describe when and how we split proof obligations into lemmas, so
that each of these lemmas can further be proved automatically using first-order theorem
proving. In Section 6.5.2, we next demonstrate that the lemmas of Section 6.4 can be
generalized and leveraged to prove correctness of other divide-and-conquer list sorting
algorithms, in particular within the Mergesort routine of Figure 6.5. The generality of
our inductive lemmas from Section 6.4 also helps reasoning about sorting routines that
do not necessarily follow a divide-and-conquer strategy, such as the Insertionsort
algorithm of (Figure 6.4).

6.5.1 Guided Proof Splitting

Contrary to automated approaches that use inductive annotations to alleviate inductive
reasoning, our approach synthesizes the correct induction axioms automatically during
saturation runs to prove properties and lemmas correct. However, a manual limitation
remains, namely proof splitting. That is, deciding when a lemma is necessary or helpful
for the automated reasoner.
Splitting the proof into multiple lemmas is necessary to guide the prover to find the right
terms to apply the inductive inferences of Section 6.3. This is particularly the case when
input problems, such as sorting algorithms, contain calls to multiple recursive functions -
each of which has to be shown to preserve the property that is to be verified.
In the following, we illustrate and examine the need for proof splitting using lemma (6.9).

Example 13 (Compositional reasoning over sortedness in saturation). Consider the
following stronger version of lemma (6.9) in the proof of Quicksort:

∀xa, xsa, ysa .�
sorted(xs) ∧ sorted(ys)

� → sorted(append(ys, cons(x, xs))). (6.20)

63

6. Computation Induction for Recursive Sorting Algorithms

This formula could automatically be derived by saturation with computation induc-
tion (6.5) while trying to prove sortedness of the algorithm. However, formula (6.20) is
not valid with regards to the specification of Quicksort since the value of x is not cor-
rectly restricted w.r.t. ≤ to xs, ys (e.g. concatenating a sorted xs with an arbitrary x not
necessarily yields a sorted list). Thus, the prover needs additional information to verify
sortedness. Therefore, the assumptions elem≤list(x, xs) and list≤list(ys, cons(x, xs)) are
needed in addition to (6.20), resulting in lemma (6.9). Yet, lemma (6.9) from Section 6.4
can be automatically derived via saturation with compositional reasoning, based on
computation induction (6.5). That is, we manually split proof obligations based on
missing information in the saturation runs: we derive (6.20) from (6.5) via saturation,
strengthen the hypotheses of (6.20) with missing necessary conditions elem≤list(x, xs)
and list≤list(ys, cons(x, xs)), and prove their validity via saturation, thus yielding (6.9).

Discussion. Contrary to loop invariants or other inductive annotations, our approach
inductively proves each lemma correct by synthesizing the correct induction axioms during
proof search fully automatically. In case a proof fails, we investigate the synthesized
induction axioms, manually strengthen the property and add any additional assumptions
as proof obligations whose validity is in turn again verified with the theorem prover and
built-in induction. That is, we do not simply assume inductive lemmas but also provide
a formal argument of their validity. We emphasize that we manually split the proof
into multiple verification conditions such that inductive reasoning can be automated in
saturation.

6.5.2 Lemma Generalizations for Sorting
The lemmas from Section 6.4 represent a number of common proof splits that can be
applied to various list sorting tasks. In the following we generalize their structure and
apply them to two other sorting algorithms, namely Mergesort and Insertionsort.

Common Patterns of Inductive Lemmas for Sorting Algorithms. Consider the
computation induction schema (6.5). When using (6.5) for proving the sortedness (6.6)
and permutation equivalence (6.17) of Quicksort, the inductive formula F of (6.5) is,
respectively, instantiated with the predicates sorted from (6.6) and filter= from (6.17).
The base case F [nil] of schema (6.5) is then trivially proved by saturation for both
properties (6.6) and (6.17) of Quicksort.
Proving the induction step case of schema (6.5) is however challenging as it relies on
partition-functions which are further used by combine functions within the divide-and-
conquer patterns of Figure 6.2. Intuitively this means, that proving the induction
step case of schema (6.5) for the sortedness (6.6) and permutation equivalence (6.17)
properties requires showing that applying combine functions over partition functions
preserve sortedness (6.6) and permutation equivalence (6.17), respectively. For divide-
and-conquer algorithms of Figure 6.2, the step case of schema (6.5) requires thus proving

64

6.5. Lemma Generalizations for Guided Proof Splits

1 insertsort :: a’ list → a’ list
2 insertsort(nil) = nil
3 insertsort(cons(x, xs)) = insert(x, insertsort(xs))
4
5 insert :: a’ → a’ list → a’ list
6 insert(x, nil) = cons(x, nil)
7 insert(x, cons(y, ys)) =
8 if (x ≤ y) {
9 cons(x, cons(y, ys))
10 } else {
11 cons(y, insert(x, ys))
12 }
13

Figure 6.4: Recursive algorithm of Insertionsort using the recursive function def-
inition insertsort and auxiliary (recursive) function insert. Insertionsort
recursively sorts the list by inserting single elements in the correct order with the helper
function insert.

the following lemma:

∀xa, ysa.

combine

L[partition◦(x, ys)],

L[partition◦−1(x, ys)]

�
→ L[cons(x, ys)])

��
. (6.21)

To do so, we next describe generic instances of lemmas to be used in proving such
step cases and hence functional correctness of sorting algorithms, depending on the
partition/combine function of the underlining divide-and-conquer sorting routine.

(i) Combining sorted lists preserves sortedness. For proving the inductive step
case (6.21) of the sortedness property (6.3) of sorting algorithms, we require the following
generic lemma (6.3):

∀xsa, ysa .
�
sorted(xs) ∧ sorted(ys)

� → sorted(combine(xs, ys)), (6.22)

ensuring that combining sorted lists results in a sorted list. Lemma (6.22) is used to
establish property (S1) of Quicksort, namely used as lemma (6.9) for proving the
preservation of sortedness under the append function.
We showcase that generality of lemma (6.22), by using it upon sorting routines dif-
ferent than Quicksort. Consider, for example, Mergesort as given in Figure 6.5.
The sortedness property (6.3) of Mergesort can be proved by using saturation with
lemma (6.22); note that the merge function of Mergesort acts as a combine function
of (6.22). That is, we establish the sortedness property of Mergesort via the following
instance of (6.22):

∀xsa, ysa . sorted(xs) ∧ sorted(ys) → sorted(merge(xs, ys)) (6.23)

65

6. Computation Induction for Recursive Sorting Algorithms

1 mergesort :: a’ list → a’ list
2 mergesort(nil) = nil
3 mergesort(xs) =
4 merge(
5 mergesort(take((xslength div 2), xs)) ,
6 mergesort(drop((xslength div 2), xs))
7)
8
9 merge :: a’ list → a’ list → a’ list
10 merge(nil, ys) = ys
11 merge(xs, nil) = xs
12 merge(cons(x, xs), cons(y, ys)) =
13 if (x ≤ y) {
14 cons(x, merge(xs, cons(y, ys)))
15 } else {
16 cons(y, merge(cons(x, xs), ys))
17 }
18

Figure 6.5: Recursive Mergesort using the recursive functions merge, take, and drop
over lists of sort a. Mergesort splits the input list xs into two halves by using take
and drop that, respectively, take and drop the first half of elements of the input list
(corresponding to partition functions of Figure 6.2). Both halves are recursively sorted
and combined by the merge function, yielding a sorted list (corresponding to combine
of Figure 6.2).

Finally, lemma (6.22) is not restricted to divide-and-conquer routines. For example,
when proving the sortedness property (6.3) of the Insertionsort algorithm of Figure
6.4, we use saturation with lemma (6.22) applied to insert. As such, sortedness of
Insertionsort is established by the following instance of (6.22):

∀xa, xsa . sorted(xs) → sorted(insert(x, xs)) (6.24)

(ii) Combining reductions preserves permutation equivalence. Similarly to
Section 6.4.2, proving permutation equivalence (6.4) over divide-and-conquer sorting
algorithms of Figure 6.2 is established via the following two properties:
• As in (P1) for Quicksort, we require that combine commutes with filter=:

∀xa, xsa, ysa . filter=(x, combine(xs, ys)) = combine(filter=(x, xs),
filter=(x, ys))

(6.25)

Note that lemma (6.18) for Quicksort is an instance of (6.25), as the append function
of Quicksort acts as a combine function of Figure 6.2.

66

6.6. Related Work

• Similarly to (P2) for Quicksort, we ensure that, by combining (inverse) reduction
functions, we preserve (6.4). That is,

∀xa, xsa . filter=(x, xs) = combine(filter=(x, partition◦(xs)),
filter=(x, partition◦−1(xs)))

(6.26)

Note that lemma (6.19) for Quicksort is an instance of (6.26), as the filter< and
filter≥ functions correspond to the (inverse) partition functions of Figure 6.2.
To prove the permutation equivalence (6.4) property of Mergesort, we use the functions
take and drop as the partition functions of lemmas (6.25)–(6.26). Doing so, we embed
a natural number n argument (of sort N) in lemmas (6.25)–(6.26), with n controlling
how many list elements are taken and dropped, respectively, in Mergesort. As such,
the following instances of lemmas (6.25)–(6.26) are adjusted to Mergesort:

∀xa, xsa, ysa . filter=(x, merge(xs, ys)) = append(filter=(x, xs),
filter=(x, ys))

(6.27)

and

∀xa, nN, xsa . filter=(x, xs) = append(filter=(x, take(n, xs)),
filter=(x, drop(n, xs))),

(6.28)

with lemmas (6.27)–(6.28) being proved via saturation. With these lemmas at hand, the
permutation equivalence (6.4) of Mergesort is established, similarly to Quicksort.
Finally, the generality of lemmas (6.25)–(6.26) naturally pays off when proving the
permutation equivalence property (6.4) of Insertionsort. Here, we only use a
simplified instance of (6.25) to prove (6.4) is preserved by the auxiliary function insert.
That is, we use the following instance of (6.25):

∀xa, ya, ysa . filter=(x, cons(y, ys)) = filter=(x, insert(y, ys)), (6.29)

which is automatically derivable by saturation with computation induction (6.5).
We conclude by emphasizing the generality of the lemmas (6.22) and (6.25)–(6.26) for
automating inductive reasoning over sorting algorithms in saturation-based first-order the-
orem proving: functional correctness of Quicksort, Mergesort, and Insertionsort
are proved using these lemmas in saturation with induction. Moreover, each of these
lemmas is established via saturation with induction. Thus, compositional reasoning in
saturation with computation induction enables proving challenging sorting algorithms in
a fully automated manner.

6.6 Related Work
While Quicksort has been proven correct on multiple occasions, first and foremost
in the famous 1971’s pen-on-paper proof by Foley and Hoare [FH71], not many have

67

6. Computation Induction for Recursive Sorting Algorithms

investigated a fully automated proof of the algorithm. A partially automated proof
of Quicksortrelies on Dafny [Lei10], where loop invariants are manually provided
[CDEM+16]. While [CDEM+16] claims to prove some of the lemmas/invariants, not
all invariants are proved correct (only assumed to be so). Similarly, the Why3 frame-
work [FP13] has been leveraged to prove sortedness and permutation equivalence of
Mergesort [Lév14] over parameterized lists and arrays. These proofs also rely on
manual proof splitting with the additional overhead of choosing the underlying prover
for each subgoal as Why3 is interfaced with automated first-order and SMT solvers as
well as interactive theorem provers.
The work of [WS04] reports on the verification of functional implementations of multiple
sorting algorithms with VeriFun [WS03]. Specifically, the correctness of the sortedness
property of Quicksort is established with the help of 13 auxiliary lemmas while also
establishing the permutation property of Mergesort by comparing the number of
elements, thus requiring additional axiomatization on integer addition. In contrast, our
proofs involve less auxiliary lemmas, avoid the overhead of arithmetic reasoning through
our formalization of the permutation property over set equivalence and prove functional
implementations with arbitrary sorts permitting a linear order.
The work of [SH20] establishes the correctness of permutation equivalence for multiple
sorting algorithms based on separation logic through inductive lemmas. However, [SH20]
does not address the correctness proofs of the sortedness property. Contrarily, we
automate the correctness proofs of sorting algorithms, using compositional first-order
reasoning in the theory of parameterized lists.
Verifying functional correctness of sorting routines has also been explored in the abstract
interpretation and model-checking communities, by investigating array-manipulating pro-
grams [GMT08, JM07]. In [GMT08], the authors automatically generate loop invariants
for standard sorting algorithms of arrays of fixed length; the framework is, however,
restricted solely to inner loops and does not handle recursive functions. Further, in [JM07]
a priori given invariants/interpolants are used in the verification process. Unlike these
techniques, we do not rely on a user-provided inductive invariant, nor are we restricted
to inner loops.
There are naturally many examples of proofs of sorting algorithms using interactive
theorem proving (ITP), see e.g. [JZ17, Lam20]. The work of [JZ17] establishes correctness
of insertion sort. Similarly, the setting of [Lam20] proves variations of Introsort and
Pdqsort – both using Isabelle/HOL [WPN08]. However, ITP relies on user guidance
to provide induction schemes, a burden that we eliminate in our approach.
Further, Beckert et al. [BSSU17] verified a real-world implementation of Quicksort,
namely Java’s inbuilt dual pivot Quicksort class, with the semi-automatic KeY prover
[ABB+05]. The KeY system can be understood as an interactive theorem prover for
object-oriented programming languages, most notably Java, offering some automation
through the integration of multiple fully automated solvers based on SMT and bounded
model checking. Java’s Dual Pivot Quicksort class comprises multiple different
sorting routines including Mergesort whose choice to sort arrays of Java’s primitive
data types depends on multiple factors such as the data type of array elements, array

68

6.6. Related Work

size and structure. Additionally, the KeY prover has also been leveraged to analyze
industrial implementations of RadixSort and CountingSort [dGdBR16]. By relying
on inductive method annotations such as loop invariants or method contracts and the user
to guide the proof rule application during the verification process, the work faces similar
limitations as the ones using Dafny, Why3 or ITP. While we manually split our proofs
into multiple steps, our lemmas are proved automatically thanks to saturation-based
theorem proving with structural/computation induction. As such, we do not require
guidance on rule application or inductive annotations. However, it’s important to note
that the goal of these works is very different from ours. Instead of proving a real-world
implementation in a machine-assisted manner, our purpose is to push the boundaries of
automating proofs that require induction even further.
When it comes to the landscape of automated saturation-based reasoning, we are not
aware of other techniques enabling the fully automated verification of such sorting
routines, with or without compositional reasoning.

69

CHAPTER 7
Tooling and Implementation

This chapter extends our paper

Pamina Georgiou, Bernhard Gleiss, Ahmed Bhayat, Michael Rawson, Laura
Kovács, and Giles Reger. The Rapid Software Verification Framework. In
Proceedings of the 22nd International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2022), pages 255-260. IEEE, 2022.

Our approaches are based on the Rapid verification framework and/or the first-order
theorem prover Vampire. We highlight implementation details for reasoning in trace logic
with the Rapid verification framework and establish extensions made to the automated
theorem prover Vampireto automate inductive reasoning for verification purposes.

7.1 The Rapid Verification Framework
We now present the Rapid framework for automatic software verification by applying
first-order reasoning in trace logic L. Rapid establishes partial correctness of programs
with loops and arrays by inferring invariants necessary to prove program correctness
using a saturation-based automated theorem prover. Rapid can heuristically generate
trace lemmas (Chapter 3), common program properties that guide inductive invariant
reasoning. Alternatively, Rapid can exploit nascent support for induction in modern
provers to fully automate inductive reasoning without the use of trace lemmas (Chapter
4). In addition, Rapid can be used as an invariant generation engine (Chapter 5),
supplying other verification tools with quantified loop invariants necessary for proving
partial program correctness.
In this chapter, we present what Rapid can do, sketch its design (Section 7.1.1), and
describes its main components and implementation aspects (Sections 7.1.2–7.2.3). Exper-
imental evaluation using the SV-Comp benchmark [Bey21] showing Rapid’s efficacy in
verification is explored in Chapter 8.

71

7. Tooling and Implementation

Given a program loop annotated with pre/post-conditions, Rapid offers two modes for
proving partial program correctness. In the first, Rapid relies on so-called trace lemmas,
a priori identified inductive properties that are automatically instantiated for a given
program as described in Chapter 3. In the second, Rapid delegates inductive reasoning
to the underlying first-order theorem prover [HKV21, RV19], without instantiating trace
lemmas as given in Chapter 4. In either mode, the automated theorem prover used
by Rapid is Vampire [KV13]. Rapid can also synthesize quantified invariants from
program semantics, complementing other invariant-generation methods as discussed in
Chapter 5.

Related Work. A prominent line of research in verifying programs with unbounded
data structures can use model checking for invariant synthesis. Tools like Spacer/Quic3
[KCSG20, GSV18], SeaHorn [GKKN15] or FreqHorn [FPMG19] are based on con-
strained horn clauses (CHC) and use either fixed-point calculation or sampling/enu-
merating invariants until a given safety assertion can be proved. These approaches use
SMT solvers to check validity of invariants and are mostly limited to quantifier-free or
universally-quantified invariants. Recurrence solving and data-structure-specific tactics
can be used to infer and prove quantified program properties [RL18]. Diffy [CGU21]
and Vajra [CGU20] derive relational invariants of two mutations of a program such
that inductive properties can be enforced over the entire program, without invariants for
each individual loop. In contrast to these works, Rapid is not limited to universal or
quantifier-free safety assertions but can prove and infer loop properties, such as invari-
ants, in full first-order theories, possibly with alternations of quantifiers (see example in
Figure 3.2).

7.1.1 System Overview of Rapid
The Rapid framework consists of approximately 10,000 lines of C++ 1. Figure 7.1
summarizes the Rapid workflow. Inputs to Rapid are programs P written in W along
with properties F expressed in L. Rapid uses smt-lib syntax [BFT17] to encode
properties in L. Preprocessing in Rapid applies program transformations for common
loop-altering programming constructs, such as break, continue and early-return
statements, as well as timepoint inlining to obtain a simplified program P ′ from P (see
Section 7.1.2).
Next, Rapid performs inductive verification (see Section 7.2) by generating the axiomatic
semantics [[P ′]] expressed in L and instantiating a set L1, ..., Ln of inductive properties —
so-called trace lemmas — for the respective program variables of P ′. For establishing
some property F , Rapid supports two modes of inductive verification: standard and
lemmaless mode. Both modes generate a first-order verification task corresponding
to a partial correctness statement: from the semantics [[P ′]] and from some lemmas
L1, ..., Ln, prove F . The difference in both versions relates to the underlying support
for automating inductive reasoning while proving F . The standard verification mode

1available at https://github.com/vprover/rapid

72

https://github.com/vprover/rapid

7.1. The Rapid Verification Framework

Figure 7.1: Overview of the Rapid verification framework.

equips the verification task with the trace lemmas L1, ..., Ln, providing helpful induction
schemes for proving F . The lemmaless verification mode uses built-in inductive reasoning
and relies less, or not at all, on trace lemmas. In either mode, the verification tasks
of Rapid are encoded in the smt-lib format. Finally, a third Rapid mode can be
used for invariant generation by appropriating symbol elimination for trace logic (see
Chapter 5). In this mode, Rapid outputs (quantified) logical consequences of the input
program semantics using smt-lib syntax; these consequences might represent necessary
loop invariants that can further be used by other verification tools.
For proving verification tasks, and thus verifying partial correctness, Rapid uses the
first-order theorem prover Vampire (see Section 7.3). To this end, we extended the
smt-lib format to support Rapid-style reasoning and devised Rapid-specific portfolio
modes in Vampire, in the spirit of [WL99].

7.1.2 Preprocessing in Rapid
We describe the main translations and optimizations Rapid performs to simplify its
verification task.

Program Transformations. We use standard program transformations to translate
away break, continue and return statements. For these, Rapid introduces fresh

73

7. Tooling and Implementation

1 while(i < alength) {
2 if (a[i] == x) {
3 break;
4 }
5 i = i + 1;
6 }
7

1 Bool break = false;
2 while(i < alength && !break)

{
3 if (a[i] == x) {
4 break = true;
5 }
6 if (!break) {
7 i = i + 1;
8 }
9 }

10

Figure 7.2: Loop transformation for break-statement.

Boolean program variables indicating whether a statement has been executed. The
program is adjusted accordingly: return statements end program execution; break
statements invalidate the first enclosing loop condition; and for continue the remaining
code of the first enclosing loop body is not executed.
For break and return we must ensure that the relevant enclosing loop conditions
additionally check that the statement has not been executed. We note that return
statements are defined to work as early returns, which implies termination of the entire
program. A break statement only requires modifying the first enclosing loop condition,
but an early-return results in execution stopping altogether. Therefore, all enclosing
loops and any code following a block containing a return-statement will also be guarded
and only executed if return is not yet reached. For continue it is only required that
the remaining code of the first enclosing loop body is only executed when continue was
not reached, and loop execution may continue to the next iteration.

Example 14. We exemplify used program transformations in Rapid with three examples.
Figure 7.2 shows a standard transformation for a break statement. Figure 7.3 illustrates
such a transformation for continue, while Figure 7.4 demonstrates the transformation
of an early return statement breaking program execution.

Timepoint Inlining. Rapid uses SSA-style inlining [BC94, App98, App04] for time-
points to simplify axiomatic program semantics and trace lemmas of a verification task.
Specifically, Rapid caches (i) for each integer variable the current program expression
assigned to it, and (ii) for each integer-array variable the last timepoint where it was
assigned. Cached values are used during traversal of the program tree to simplify
later program expressions by removing unnecessary equalities. Thus we avoid defin-
ing irrelevant equalities of program variable values over unused timepoints, and only
reference timepoints relevant to the property. This option can be toggled with a flag
-inlineSemantics on/off and is on by default. We illustrate this on two examples:

74

7.1. The Rapid Verification Framework

1 while (i < alength) {
2 if (a[i] < 0) {
3 i = i + 1;
4 continue;
5 }
6 i = i + 1;
7 sum = sum + a[i];
8 }
9

1 Bool continue = false;
2 while (i < alength) {
3 if (a[i] < 0) {
4 i = i + 1;
5 continue = true;
6 }
7 if(!continue){
8 i = i + 1;
9 sum = sum + a[i];

10 }
11 }
12

Figure 7.3: Loop transformation for continue-statement.

1 while (i < alength) {
2 if (a[i] == x) {
3 return i;
4 }
5 i = i + 1;
6 }
7 found = 1;
8

1 Bool return = false;
2 while (i < alength && !return

) {
3 if (a[i] == x) {
4 return = true;
5 }
6 if (!return) {
7 i = i + 1;
8 }
9 }

10 if (!return) {
11 found = 1;
12 }
13

Figure 7.4: Loop transformation for return-statement.

Example 15 (Inlining assignments.). The effect of inlined semantics can be observed
when we encounter block assignments to integer variables: we can skip assignments
and use the last assigned expression directly in any reference to the original program
variable. Consider the partial program in Figure 7.5a. Our axiomatic semantics in trace
logic [GGK20a] would result in

a(l2) = a(l1) + 2 ∧ b(l2) = b(l1) ∧
c(l2) = c(l1) ∧ a(l3) = a(l2) ∧

b(l3) = 3 ∧ c(l3) = c(l2) ∧
a(lend) = a(l3) ∧ b(lend) = b(l3) ∧

c(lend) = a(l3) + b(l3)

75

7. Tooling and Implementation

1 a = a + 2;
2 b = 3;
3 c = a + b;
4
5 assert(a(end) < c(end))
6

(a) Partial program with constant assignment.

1 if (x > 1) {
2 skip;
3 } else {
4 x = 0;
5 }
6 while (y > 0) {
7 y = y - 1;
8 }
9 assert(x(end) ≥ 0)

10

(b) Partial program with branching.

Figure 7.5: Examples for Value Inlining

whereas the inlined version of semantics is drastically shorter:

a(lend) = a(l1) + 2 ∧ c(lend) = (a(l1) + 2) + 3.

In contrast to the extended semantics that define all program variables for each timepoint,
the inlined version only considers the values of referenced program variables at the
timepoint of their last assignment. Thus, when c is defined, Rapid directly references
the (symbolic) values assigned to a and b. While b is not defined at all, note that a is
defined as a(lend) is referenced in the conjecture. Furthermore, the inlined semantics only
make use of two timepoints, l1, and lend, as the remaining timepoints are irrelevant to
the conjecture.

Example 16 (Inlining with branching.). Figure 7.5b shows another program that benefits
from inlining equalities, as well as only considering timepoints relevant to the conjecture.
The original semantics defines program variables x and y for all program locations: l1, l2,
l3, l4, l6(it), l6(nl6), lend, for some iteration it and final iteration nl6. While the program
contains two variables x and y, only x is used in the property we want to prove. Since
no assignments to x contain any references to y, the loop semantics do not interfere with
x, so Rapid produces

x(l3) < 1 → x(l6(0)) = x(l3) ∧
x(l3) ≥ 1 → x(l6(0)) = 0 ∧

x(lend) = x(l6(0))

where the semantics of the loop defining y are omitted by the tool. Note that all
timepoints of the if-then-else statements are flattened into the timepoint at the beginning
of the loop at l6 in iteration 0. The axiomatic semantics thus reduce to three conjuncts
defining the value of x throughout the execution. However, x is not defined in any loop
iteration other than the first as they are irrelevant to the property.

76

7.2. Verification Modes

User-defined input. Rapid is fully automated. However, it may still benefit from
manually-defined invariants to support the prover. Users can therefore extend the input
to Rapid with first-order axioms written in the smt-lib format with our proprietary
idiom (axiom ()).

7.2 Verification Modes
As mentioned above, Rapid implements two verification modes; in the default standard
mode, Rapid uses trace lemmas to prove inductive properties of programs. In its
lemmaless mode Rapid relies on built-in induction support in saturation-based first-order
theorem proving. In this section we elaborate on both modes further.

7.2.1 Standard Verification Mode: Reasoning with Trace Lemmas
Rapid’s standard mode relies on trace lemma reasoning to automate inductive reasoning.
Trace lemmas are sound formulas that are: (i) derived from bounded induction over loop
iterations; (ii) represent common inductive program properties for a set of similar input
programs; and (iii) are automatically instantiated for all relevant program variables of a
specific input program during its translation to trace logic; see Chapter 3.
In all of our experiments from Section 8, including the examples from Figure 3.1 and
Figure 3.2, we only instantiate three generic inductive trace lemmas to establish partial
correctness. One such trace lemma asserts, for example, that a program variable is not
mutated after a certain execution timepoint as discussed in Chapter 3.

Multitrace Generalization. Rapid can also be used to prove k-safety properties
over k traces, useful for security-related hyperproperties such as non-interference and
sensitivity [BEG+19]. For such problems it is sufficient to extend program variables to
functions over time and trace, such that program variables are represented as (L×T �→ I).
Program locations, and hence timepoints, are similarly parameterized by an argument of
sort T to denote the same timepoint in different executions.

7.2.2 Lemmaless Verification Mode
When in lemmaless mode Rapid does not add any trace lemma to its verification
task but relies on first-order theorem proving to derive inductive loop properties. An
extended version of smt-lib (see Section 7.3) is used to provide the underlying prover
with additional information to guide the search for necessary inductive schemes, such
as likely symbols for induction. We further equip saturation-based theorem proving
with two new inference rules that enable induction on such terms; see [BGE+22] for
details. Multi-clause goal induction takes a formula derived from a safety assertion
that contains a final loop counter, that is a symbol denoting last loop iterations, and
inserts an instance of the induction schema for natural numbers with the negation of
this formula as its conclusion into the proof search space. For example, consider the

77

7. Tooling and Implementation

formula x(l5(nl5)) < 0. Multi-clause goal induction introduces the induction hypothesis
x(l5(0)) ≥ 0 ∧ ∀itN. (it < nl5 ∧ x(l5(it)) ≥ 0) → x(l5(s(it))) ≥ 0 → x(l5(nl5)) ≥ 0.
If the base and step cases can be discharged, a contradiction can be easily produced from
the conclusion and original clause.
Array mapping induction also introduces an instance of the induction schema to the
search space, but is not based on formulas derived from the goal. Instead, this rule uses
clauses derived from program semantics to generate a suitable conclusion for the induction
hypothesis. For implementation details of these rules in the underlying saturation-based
theorem prover, we refer to Section 7.4.1.

Extensions to Rapid. Rapid takes as an input a W program along with a property
expressed in L. It outputs the semantics of the program expressed in L using smt-lib
syntax along with the property to be proven. For our “lemmaless induction” framework,
we have extended Rapid as follows. Firstly, we prevent the output of all trace lemmas
other than trace lemma C (Section 4.2). We added custom extensions to the smt-lib
language to identify trace logic symbols, such as loop iteration symbols, program variables,
within the Rapid encodings. This way, trace logic symbols to be used for induction
inferences are easily identified and can also be used for various proving heuristics. We
refer to this version (available online2) as Rapidlemmaless. To run use the command
./rapid -dir OUTPUT_DIR -outputTraceLemmas off BENCHMARK.

7.2.3 Invariant Generation Mode

Rapid can also be used as an invariant generation engine, synthesizing first-order
invariants using the Vampire theorem prover. Rather than performing a proof of partial
correctness for some specific safety assertion, Rapid can be used to generate consequences
purely from program semantics. Some of these consequences may be loop invariants. To
do so, we use a special mode of Vampire to derive logical consequences of the semantics
produced by Rapid. However, there is no guarantee that relevant consequences will be
derived quickly or at all, as there may be an infinite number of consequences. Therefore,
some heuristics must be applied to guide consequence finding for invariant synthesis.
The symbol elimination approach of [KV09] defined some set of program symbols un-
desirable, and only reports consequences that have eliminated such symbols from their
predecessors. In Rapid, we adjust symbol elimination for deriving invariants with trace
logic using Vampire’s mode for symbol elimination (Option -symbol_elimination
on). These invariants may contain quantifier alternations, and some conjunction of them
may well be enough to help other verification tools show some property. Specifically,
we eliminate colored trace logic-specific symbols and obtain (quantified) formulas as
conclusions containing only transparent symbols that are either target symbols, constant
program variables (no timepoints), or theory symbols as described in Chapter 5.

2See commit 285e54b7e of https://github.com/vprover/rapid/tree/
ahmed-induction-support.

78

https://github.com/vprover/rapid/tree/ahmed-induction-support
https://github.com/vprover/rapid/tree/ahmed-induction-support

7.3. Verifying Partial Correctness in Rapid

When Rapid is in invariant generation mode, the encoding of the problem is optimized
for invariant generation. We do not include the conjecture in the main problem encoding,
but print it to a separate file. This allows for generated consequences to be checked
against it to determine a conjunction of consequences strong enough to prove it. Further,
we limit trace lemmas to more specific versions of the bounded induction scheme. We
also remove Rapid-specific symbols such as lemma literals (Option -inlineLemmas
on). This disables splitting trace lemmas by introducing lemma literals, instead we the
basic form of trace lemmas:

P1 ∧ ... ∧ Pn → ConclusionL

Invariant generation mode in Rapid is enabled with the flag -invariantGeneration
on.

7.3 Verifying Partial Correctness in Rapid
For proving the verification tasks of Section 7.2, and thus verifying partial program
correctness, Rapid relies on saturation-based first-order theorem proving. To this end,
each verification mode of Rapid uses the Vampire prover, for which we implemented
the following, Rapid-specific adjustments.

7.3.1 Extending smt-lib
Each verification task of Rapid is expressed in extensions of smt-lib, allowing us to
treat some terms and definitions in a special way during proof search:

(i) declare-nat: The Vampire prover has been extended with an axiomatization
of the natural numbers as a term algebra, especially for Rapid-style verification
purposes. We use the command (declare-nat Nat zero s p Sub) to declare
the sort Nat, with constructors zero and successor s, predecessor p and ordering
relation Sub.

(ii) declare-lemma-predicate: Our trace lemmas are usually of the form (P1 ∧ ... ∧
Pn) → ConclusionL for some trace lemma L with premises P1 ∧ ... ∧ Pn. In terms
of reasoning, it makes sense for the prover to derive the premises of such a lemma
before using its conclusion to derive more facts, as we have many automatically
instantiated lemmas of which we can only prove the premises of some from the
semantics. To enforce this, we adapt literal selection such that inferences from
premises are preferred over inferences from conclusions. Lemmas are split into
two clauses (P1 ∧ ... ∧ Pn) → PremiseL and PremiseL → ConclusionL, where
PremiseL is declared as a lemma literal. We ensure our literal selection function
selects either a negative lemma literal3 if available, or a positive lemma literal only
in combination with another literal, requiring the prover to resolve premises before
using the conclusion.

3Note that lemma literals become negative in the premise definition after CNF-transformation.

79

7. Tooling and Implementation

The lemmaless mode of Rapid introduces the following additional declarations to smt-
lib:

(i) declare-const-var: This declaration is used to assign symbols representing
constant program variables a large weight in the prover’s term ordering, allowing
constant variables to be rewritten to non-constant expressions.

(ii) declare-program-var: Rapid declares mutable program variables with this
keyword for the prover to be able to differentiate between constant and other
program variables.

(iii) declare-timepoint: This declaration indicates to the prover that symbol repre-
sents a timepoint to distinguish from program variables, guiding Vampire to apply
induction upon timepoints.

(iv) declare-final-loop-count: This keyword declares a symbol as a final loop
count symbol, thus eligible for induction.

7.3.2 Portfolio Modes
We further developed a collection of Rapid-specific proof options in Vampire, using for
example extensions of theory split queues [GS20] and equality-based rewritings [GKR20].
Such options have been distilled into a Rapid portfolio schedule that can be run with
--mode portfolio -sched rapid. Moreover, the multi-clause goal induction rule
and the array mapping induction inference of Rapid have been compiled to a separate
portfolio mode, accessed via --mode portfolio -sched induction_rapid.

7.4 The Vampire Theorem Prover
All of our work is based on the theorem prover Vampire. Beyond making changes to the
parser according to input formats in Rapid or for recursion induction over parameterized
lists, we here give some details on our implementation of the various forms of built-in
induction used in this work.

7.4.1 Lemmaless Reasoning in Vampire
We implemented the MCGLoopInd inference rule and a slightly simplified version of the
AMLoopInd rule in a new branch of Vampire4. The new induction support is diverging
from previous induction work in Vampire and controlled by a separate set of options.
The main issue with the induction inferences MCGLoopInd and AMLoopInd is their
explosiveness which can cause proof search to diverge. We have, therefore, introduced
various heuristics in the implementation to try and control them. For MCGLoopInd we
not only necessitate that the premises are derived from the conjecture, but that their
derivation length from the conjecture is below a certain distance controlled by an option.
The premises must be unit clauses unless another option multi_literal_ clauses
is toggled on. The option induct_all_loop_counts allows MCGLoopInd induction

4See commit 4a0f319f of https://github.com/vprover/vampire/tree/ahmed-rapid.

80

https://github.com/vprover/vampire/tree/ahmed-rapid

7.4. The Vampire Theorem Prover

to take place on all loop counter terms, not just final loop iterators. In order for the
MCGLoopInd and AMLoopInd inferences to be applicable, we need to rewrite terms
not containing final loop counters to terms that do. However, rewriting in Vampire
is based on superposition, which is parameterised by a term order preventing smaller
terms to be rewritten into larger ones. In this case, the term order may work against us
and prevent such rewrites from happening. We implemented a number of heuristics to
handle this problem. One such heuristic is to give terms representing constant program
variables a large weight in the ordering. Then, equations such as alength ≃ i(tpw(nlw))
will be oriented left to right as desired. We combined these options with others to form a
portfolio of strategies5 that contains 13 strategies each of which runs in under 10s.

7.4.2 Recursion Induction in Vampire
Beyond portfolio modes for Rapid-style verification, we extend Vampire with induction
inference rules to handle computation induction over parameterized lists (see Chapter 6).
Our work on saturation with induction in the first-order theory of parameterized lists
(Chapter 6) is implemented in the first-order prover Vampire [KV13]. In support of
parameterization, we extended the SMT-LIB parser of Vampire to support parametric
data types from SMT-LIB [BFT16] – version 2.6. In particular, using the par keyword,
our parser interprets (par (a1 ... an) ...) similar to universally quantified
blocks where each variable ai is a type parameter. That is, parametric functions are
specified via (declare-fun f (par ...)) and (define-fun[-rec] f (par
...)).
Appropriating a generic saturation strategy, we adjust the simplification orderings (LPO)
for efficient equality reasoning/rewrites to our setting. For example, the precedence
of function quicksort is higher than of symbols nil, cons, append, filter< and filter≥,
ensuring that quicksort function terms are expanded to their functional definitions.
We further apply recent results of encompassment demodulation [DK22] to improve
equality reasoning within saturation (-drc encompass). We use induction on data
types (-ind struct), including complex data type terms (-indoct on).

5--mode portfolio --schedule rapid_induction [benchmark.smt2]

81

CHAPTER 8
Experiments and Evaluation

In this chapter, we report on our experimental evaluations performed on Rapid’s reasoning
capabilities (Section 8.1), as well as on recursion induction for sorting algorithms (Section
8.2).

8.1 Rapid Experimental Results
8.1.1 Benchmarks
For our experimental evaluation of Rapid, we use a total of 111 examples whose
verification involved proving safety assertions of different logical complexity (quantifier-
free, only universally/existentially quantified, and with quantifier alternations). Our
benchmarks are divided into four groups, as indicated in Table 8.1: (i) the first 13
problems have quantifier-free proof obligations; (ii) the majority of benchmarks, in total
68 examples, contain universally quantified safety assertions; (iii) 7 problems come with
the task of verifying existentially quantified assertions; (iv) and the last 23 programs
contain assertions with quantifier alternation.
The examples from (i)-(ii), a total of 81 programs, come from the array verification
benchmarks of the SV-Comp [Bey12] repository 1, with most of these examples originating
from [DDA10, GSV18].2 These examples correspond to the set of those SV-Comp
benchmarks which use the fragment of C supported by W in Rapid; specifically, when
selecting examples (i)-(ii) from SV-Comp, we omitted examples containing pointers or
memory management. In general SV-Comp benchmarks are bounded to a certain array
size N . By contrast, we treat arrays as unbounded in Rapid and reason using arbitrary
but fixed symbolic array lengths. All SV-Comp input problems from (i)-(ii) are thus

1https://github.com/sosy-lab/sv-benchmarks
2In order to reproduce the results reported in Table 8.1, instructions are provided at

https://github.com/vprover/vampire_publications/tree/master/experimental_
data/CICM-2022-RAPID-INDUCTION

83

https://github.com/sosy-lab/sv-benchmarks
https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION
https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION

8. Experiments and Evaluation

adapted to our input format, and pre-/postcondition pairs are translated to trace logic
formulas. Further, benchmarks (iii)-(iv) are new examples crafted by us, in total 30
new problems. They specifically contain existential and alternating quantification in
safety assertions to highlight Rapid’s capabilities in contrast to SMT-based verification
approaches.

8.1.2 Experimental Setting
We used both versions of Rapid in our experiments - the standard and the lemmaless
mode as described in Section 7.2. First, (1) Rapidlemmaless denotes our Rapid approach,
using lemmaless induction MCGLoopInd and AMLoopInd in Vampire (see Chapter
4). Further, (2) RAPIDstd uses trace lemmas for inductive reasoning, as described in
Chapter 3. We also compared Rapidlemmaless with other verification tools. In particular,
we considered (3) SeaHorn and (4) Vajra (and its extension Diffy that produced
for us exactly the same results as Vajra). SeaHorn converts the program into a
constrained horn clause (CHC) problem and uses the SMT solver Z3 for solving. Vajra
and Diffy implement inductive reasoning and recurrence solving over loop counters; in
the background, they also use Z3. We summarize our findings below.

8.1.3 Results
Table 8.1 shows that Rapidlemmaless is superior to Rapidstd for the given benchmark
set, as it solves a total of 93 problems, while Rapidstd proves 78 assertions correct.
Particularly, Rapidlemmaless can solve benchmark merge_interleave_2 corresponding
to example 4.1, and other challenging problems such as find_max_local_1 also
containing quantifier alternations, while maintaining most results proven by Rapidstd.
Rapidlemmaless could establish correctness of a total of 18 problems that Rapidstd could
not solve. It is, thus, interesting to look into which problems Rapidlemmaless solves: many
of the newly solved safety assertions are structurally very close to the loop invariants
needed to prove them. This is where multi-clause goal-oriented induction MCGoalInd
makes the biggest impact. For instance, this allows Rapidlemmaless to prove the partial
correctness of find_max_ from_second_0 and find_max_from_second_1.
On the other hand, Rapidlemmaless also lost five challenging benchmarks that were
previously solved by Rapidstd, such as swap_0 and partition_5. This could be
for two reasons: (1) the strategies in the induction schedule of Rapidlemmaless are too
restrictive for such benchmarks, or (2) the step case of the induction axiom introduced
by our two rules are too difficult for Vampire to prove. That is, the prover cannot derive
the conclusion which might prove the conjecture. Strengthening lemmaless induction
with additional trace lemmas from Rapidstd is an interesting line of further work.

Comparing with other tools. Both, SeaHorn and Vajra/Diffy require C code
as input, whereas Rapid uses its own syntax. We translated our benchmarks to C code
expressing the same problem. However, a direct comparison of Rapid with most other
verifiers requiring standard C code as an input is not possible as we consider slightly

84

8.1. Rapid Experimental Results

Table 8.1: Rapid Experimental Results in Detail.

Benchmark (1) (2) (3) (4)
atleast_one_iteration_0
atleast_one_iteration_1
count_down - - -
eq - -
find_sentinel - -
find1_0 -
find1_1 -
find2_0 -
find2_1 -
indexn_is_arraylength_0 -
indexn_is_arraylength_1 -
set_to_one
str_cpy_3 -
add_and_subtract - -
both_or_none -
check_equal_set_flag_1 -
collect_indices_eq_val_0 -
collect_indices_eq_val_1 - -
copy -
copy_absolute_0 -
copy_absolute_1 -
copy_and_add - -
copy_nonzero_0 -
copy_partial -
copy_positive_0 -
copy_two_indices - -
find_max_0 -
find_max_2 -
find_max_from_second_0 - -
find_max_local_2 - - - -
find_max_up_to_0 - - - -
find_max_up_to_2 - - - -
find_min_0 -
find_min_2 - -
find_min_local_2 - - - -
find_min_up_to_0 - - - -
find_min_up_to_2 - - - -
find1_4 - - -
find2_4 - -
in_place_max -
inc_by_one_0 -
inc_by_one_1 -
inc_by_one_harder_0 -
inc_by_one_harder_1 -
init - -
init_conditionally_0 - -
init_conditionally_1 -
init_non_constant_0 - -
init_non_constant_1 -
init_non_constant_2 -
init_non_constant_3 -
init_non_constant_easy_0 - -
init_non_constant_easy_1 -
init_non_constant_easy_2 -
init_non_constant_easy_3 -
init_partial -

Benchmark (1) (2) (3) (4)
init_prev_plus_one_0 - -
init_prev_plus_one_1 - -
init_prev_plus_one_alt_0 - -
init_prev_plus_one_alt_1 - -
insertion_sort - - - -
max_prop_0 -
max_prop_1 -
merge_interleave_0 - -
merge_interleave_1 - -
min_prop_0 -
min_prop_1 -
partition_0 -
partition_1 -
push_back -
reverse - -
rewnifrev - -
rewrev - -
skipped - -
str_cpy_0 - -
str_cpy_1 - -
str_cpy_2 - -
swap_0 -
swap_1 -
vector_addition -
vector_subtraction -
check_equal_set_flag_0 - -
find_max_1 - - - -
find_max_from_second_1 - - -
find1_2 - -
find1_3 - -
find2_2 - -
find2_3 - -
collect_indices_eq_val_2 - - -
collect_indices_eq_val_3 - - -
copy_nonzero_1 - -
copy_positive_1 - -
find_max_local_0 - - - -
find_max_local_1 - - -
find_max_up_to_1 - - - -
find_min_1 - - - -
find_min_local_0 - - - -
find_min_local_1 - - -
find_min_up_to_1 - - - -
merge_interleave_2 - - -
partition_2 - -
partition_3 - -
partition_4 - - - -
partition_5 - - -
partition_6 - - - -
partition-harder_0 - -
partition-harder_1 - -
partition-harder_2 - - -
partition-harder_3 - - -
partition-harder_4 - - -
str_len - -

Total solved 93 78 13 47
85

8. Experiments and Evaluation

Table 8.2: Rapid Extended Experiment Overview

Total Rapidstd Rapidlemmaless Diffy SeaHorn
140 91 (5) 103 (10) 61 (1) 17 (0)

different semantics. In contrast to SeaHorn and Vajra/Diffy, we assume that integers
and arrays are unbounded and that all array positions are initialized by arbitrary data.
Further, we can read/write at any array position without allocating the accessed memory
beforehand.
Apart from semantic differences, Rapid can directly express assertions and assumptions
containing quantifiers and put variable contents from different points in time into relation
thanks to trace logic L. In order to deal with the latter, we introduced history variables
in the code provided to SeaHorn and Vajra/Diffy. Quantification was simulated by
non-deterministically assigned variables and/or loops. As a result, SeaHorn verified only
13 examples, whereas Vajra/Diffy could solve 47 of our benchmarks. As Vajra/Diffy
restrict their input programs to contain only loops having very specific loop-conditions,
several of our benchmarks failed. For example, i < length is permitted, whereas a[i] ̸= 0
is not. Vajra/Diffy could prove correctness for nearly all the programs satisfying these
restrictions. SeaHorn, on the other hand, has problems with the complexity introduced
by the arrays. It could solve especially those benchmarks whose correctness do not
depend on the arrays’ content.

8.1.4 Extended Experiments
We subsequently conducted another round of experiments based on the above benchmark
set. However, we extended this set to a total of 140 benchmarks to include most of
the c/ReachSafety-Array category of the SV-Comp repository, specifically from
the array-examples/* subcategory3 as it contains problems suitable for our input
language.
Many benchmarks in the original SV-Comp repository are minor variations of each
other that differ only in one concrete integer value, for example to increment a program
variable by some integer. Instead of copying each such variation for different digits, we
abstract such constant values to a single symbolic integer constant such that just one of
our benchmark covers numerous cases in the original SV-Comp setup.
We again compare our two Rapid verification modes, indicated by Rapidstd and
Rapidlemmaless respectively, against SeaHorn and Diffy. All experiments were run on
a cluster with two 2.5GHz 32-core CPUs and one TB RAM with a 60-second timeout.

Results. Table 8.2 summarizes our results, parentheticals indicating uniquely solved
problems for each solver/configuration. Note that Diffy produced the same results as
its precursor Vajra in this experiment. Of a total of 140 benchmarks, Rapidstd solves
91 problems, while Rapidlemmaless surpasses this number by 12 problems. Particularly,

3https://github.com/sosy-lab/sv-benchmarks/tree/master/c/array-examples

86

https://github.com/sosy-lab/sv-benchmarks/tree/master/c/array-examples

8.2. Computation Induction and Sorting Experiments

Rapidlemmaless could solve more variations with quantifier alternations, as property-driven
induction works well for such problems, thus confirming our prior experiment. Again a
small number of instances was solved by Rapidstd but not by Rapidlemmaless within the
time limit, indicating that trace lemma reasoning can help to fast-forward proof search.
In total, Rapid solves 112 unique benchmarks, whereas SeaHorn and Diffy could
respectively prove 17 and 61 problems (with mostly universally quantified properties).

8.2 Computation Induction and Sorting Experiments
8.2.1 Experimental Evaluation
We evaluated our approach discussed in Chapter 6 on challenging recursive sorting algo-
rithms taken from [NBE+21], namely Quicksort, Mergesort, and Insertionsort.
The authors list a wide variety of known algorithms in a functional programming style
and outline their type-theoretic proofs based on interactive theorem provers. We show
that the functional correctness of these sorting routines can be verified automatically by
means of saturation-based theorem proving with induction, as summarized in Table 8.3.
We divide our experiments according to the specification of sorting algorithms: the
upper part refers to the sortedness property (6.3) while the lower part PermEq shows
the experiments of all sorting routines w.r.t. permutation equivalence (6.4), together
implying the functional correctness of the respective sorting algorithm. Here, the inductive
lemmas of Sections 6.4–6.5 are proven in separate saturation runs of Vampire with
structural/computation induction; these lemmas are then used as input assumptions to
Vampire to prove validity of the respective property.4
The benchmarks are categorized as follows. A benchmark category SA-PR[-Li] indicates
that it belongs to proving the property PR for sorting algorithm SA, where PR is one
of S (sortedness (6.3)) and PE (permutation equivalence (6.4)) and SA is one of IS
(Insertionsort), MS (Mergesort) and QS (Quicksort). Additionally, an optional
Li indicates that the benchmark corresponds to the i-th lemma for proving the property
of the respective sorting algorithm.

Experimental Setup. We prove using saturation-based theorem proving with induc-
tion: each benchmark or lemma is tested with a portfolio of solver configurations running
a total of five minutes on a machine with an AMD Epyc 7502 chip comprising a 2.5 GHz
CPU with 1 TB RAM, of which we use 1 core and 16 GB RAM per benchmark. To
identify the successful configuration, we ran Vampire on each benchmark in a portfolio
setting with strategies enumerating all combinations of options that we hypothesized to
be relevant for solving these problems.

Results. For our experiments, we ran all possible combinations of lemmas to determine
the minimal lemma dependency for each benchmark. For example, the sortedness property

4Benchmarks and instructions to run the experiments can be found at https://github.com/
mina1604/sorting_wo_sorts.

87

https://github.com/mina1604/sorting_wo_sorts
https://github.com/mina1604/sorting_wo_sorts

8. Experiments and Evaluation

Sortedness

Benchm. Pr. T Required lemmas
IS-S 0.01 {IS-S-L1}
IS-S-L1 8.28 -
MS-S 0.08 ∅
MS-S-L1 * 0 -
MS-S-L2 0.02 ∅

QS-S 0.09
{QS-S-L1,QS-S-L2,
QS-S-L3}, {QS-S-L1,
QS-S-L3,QS-S-L4}

QS-S-L1 0.27 ∅
QS-S-L2 0.04 {QS-S-L4}
QS-S-L3 11.82 {QS-S-L4,QS-S-L5}
QS-S-L4 8.28 {QS-S-L6}
QS-S-L5 0 {QS-S-L7}
QS-S-L6 0.02 ∅
QS-S-L7 0.02 ∅

PermEq

Benchm. Pr. T Required lemmas
IS-PE 0.02 {IS-PE-L1}
IS-PE-L1 0.13 ∅
MS-PE 0.06 {MS-PE-L1,MS-PE-L2}
MS-PE-L1 * 0 -
MS-PE-L2 0.03 ∅
MS-PE-L3 0.15 ∅
QS-PE 0.5 {QS-PE-L1,QS-PE-L2}
QS-PE-L1 0.05 ∅
QS-PE-L2 0.09 ∅

Table 8.3: Experimental Evaluation of Computation Induction on Sorting Algorithms.

of Quicksort (QS-S) depends on at least three lemmas (see Section 6.4.1) where two
different subsets of lemma combinations enable the proof. The third lemma for this
property (QS-S-L3) depends on two further lemmas namely QS-S-L4 and QS-S-L5.
The second column Pr. indicates that Vampire solved the benchmark during portfolio
mode, by using a minimal subset of needed lemmas given in the fourth column. The
third column T shows the running time in seconds of the respective saturation run using
the first solving strategy identified during portfolio mode.
In accordance with Table 8.3, Vampire compositionally proves permutation equivalence
of Insertionsort and Quicksort and sortedness of Mergesort and Quicksort.

88

8.2. Computation Induction and Sorting Experiments

Table 8.4: Structural Induction Applications in Proof Search and Proof.

Benchmark IndProofSearch IndProof

IS-S 4 1
IS-S-L1 339 2
IS-PE 5 1
IS-PE-L1 34 1
MS-S 8 1
MS-S-L2 22 1
MS-PE 14 1
MS-PE-L2 16 1
MS-PE-L3 136 3
QS-S 10 2

Benchmark IndProofSearch IndProof

QS-S-L1 510 2
QS-S-L2 9 1
QS-S-L3 130 2
QS-S-L4 183 3
QS-S-L5 0 0
QS-S-L6 26 1
QS-S-L7 16 2
QS-PE 12 1
QS-PE-L1 10 1
QS-PE-L2 42 4

Note that sortedness of Mergesort is proven without any lemmas, hence lemma
MS-S-L1 is not needed. Interestingly, while MS-S-L1 is actually synthesized auto-
matically during saturation of MS-S, it could not be verified by means of portfolio
configurations in the solver. The lemmas MS-PE-L1 for the permutation equivalence
of Mergesort and IS-S-L1 for the sortedness of Insertionsort could be proven
separately by more tailored search heuristics in Vampire (hence ∗), but our cluster
setup failed to consistently prove these with the portfolio setting.
From Section 6.4 it is already evident that the sortedness proof of Quicksort is by far
the most complex while Mergesort could be established by following the ideas presented
in Section 6.5. It is easily seen that simple algorithms not requiring complex recursive calls
such as Insertionsort are efficiently proven by automating computation induction:
both sortedness and permutation equivalence only require one automatically established
lemma respectively.

8.2.2 Inductive Inferences during Proof Search
For all conjectures and lemmas that were proved in portfolio mode, we summarized the
applications of inductive inferences with structural and computation induction schemata
in Table 8.4. Specifically, Table 8.4 compares the number of inductive inferences performed
during proof search (column IndProofSearch) with the number of used inductive
inferences as part of each benchmark’s proof (column IndProof). While most safety
properties and lemmas required less than 50 inductive inferences, thereby using mostly
one or two of them in the proof, some lemma proofs exceeded this by far. Most
notably IS-S-L1 and QS-S-L1, Insertionsort’s and Quicksort’s first lemma
respectively, depended on many more inductive inferences until the right axiom was
found. Such statistics point to areas where the prover still has room to be finetuned for
software verification and quality assurance purposes, here especially towards establishing
correctness of functional programs.

89

CHAPTER 9
Conclusion and Future Work

We will now briefly conclude on our work and raise some potential future lines of work.
In this thesis, we addressed the problem of inductive reasoning for software verification
with automated first-order theorem provers based on the superposition calculus. To that
end, we combined and adapted several techniques of induction.

Inductive Reasoning in Trace Logic. We introduced trace lemma reasoning to
automatically prove safety properties over programs containing arrays, integers and loops.
Trace logic supports explicit timepoint reasoning to allow arbitrary quantification over
loop iterations. We introduced trace lemmas – consequences of bounded induction over
timepoints – to automate inductive loop reasoning in trace logic. Generalizing our work
to termination analysis and extending our programming language, and its semantics in
trace logic, with more complex constructs are interesting tasks for future work.
Moreover, we established lemmaless induction to fully automate the verification of
inductive properties of programs with loops over unbounded arrays and integers. We
introduced goal-oriented and array mapping induction inferences, triggered by loop
counters, in superposition-based theorem proving, We, thus, combined reasoning about
programs in first-order logic with induction in saturation. Both these are active areas of
investigation, and the combination of the two approaches – trace lemma and lemmaless
reasoning – shows great promise when it comes to verifying properties over programs
that contain loops.
Our results show that lemmaless induction in trace logic outperforms other state-of-
the-art approaches in the area. There are various ways to further develop lemmaless
induction in trace logic. On larger benchmarks, particularly those containing multiple
loops, our approach struggles. For loops where the required invariant is not connected to
the conjecture, we introduced array mapping induction. However, the array mapping
induction inference is limited in the form of invariants it can generate. Investigating
other methods, such as machine learning for synthesizing loop invariants could be a

91

9. Conclusion and Future Work

line of future work. One option would be to use machine learning to suggest possible
invariants based on the terms generated by the prover. Another avenue of investigation
is to consider how unhelpful induction lemmas with non-provable base or step cases can
be rejected early.

Invariant Generation. We revisit the symbol elimination method to generate and
extract invariants from superposition-based proof search. These invariants may contain
universal, existential as well as alternating quantification over programs with loops, un-
bounded arrays and linear integer arithmetic and can, thus, complement other state-of-the-
art invariant inference techniques. An interesting line of future work is to combine symbol
elimination with inductive reasoning for invariant generation, and use Avatar [Vor14] to
guide splitting inductive goals. Modifying Avatar to accommodate symbol elimination
would be very useful here, as it allows separately solving base and inductive steps, but it
is not yet clear how to achieve this.

Rapid Verification Framework. All of these works culminated in the Rapid ver-
ification framework for proving partial correctness of programs containing loops and
arrays, and its applications towards efficient inductive reasoning and invariant generation.
To this end, we implemented and described different reasoning modes that implement
trace lemma and lemmaless verification approaches, as well as an invariant generation
method through consequence-finding. Extending Rapid and its axiomatic semantics in
trace logic with function calls, and automation thereof, is an interesting task for future
work. Moreover, a prior result to this thesis [BEG+19] showed that trace logic and trace
lemma reasoning can be extended to hyperproperty verification of two-safety properties.
However, this work has not been revisited with built-in induction yet and might benefit
from saturation-based automated induction.

Inductive Reasoning for Recursion. Apart from trace logic based reasoning, we
presented an integrated formal approach to establish program correctness over recursive
programs based on saturation-based theorem proving. We automatically prove recursive
sorting algorithms, particularly the Quicksort algorithm, by formalizing program
semantics in the first-order theory of parameterized lists. Doing so, we expressed the
common properties of sortedness and permutation equivalence in an efficient way for first-
order theorem proving. By leveraging common structures of divide-and-conquer sorting
algorithms, we advocate compositional first-order reasoning with built-in structural and
computation induction. Proving further recursive sorting/search algorithms in future
work, with improved compositionality, is therefore an interesting challenge to investigate.
Another path that is to be explored is using higher-order logic and lambda abstractions
for reduction operations as a means to make our general strategy wider applicable.
Our work has two primary implications. Firstly, integrating inductive reasoning in
automated theorem proving to prove (sub)goals during interactive theorem proving has
the potential to significantly reduce the burden of proof engineers manually demonstrating

92

proof obligations, as automated theorem proving based on our work can synthesize
induction hypotheses to validate such conditions. Secondly, the search for reasonable
strategies to automatically split proof obligations on input problems can tremendously
enhance the level of automation for proofs that require heavy inductive reasoning. We
anticipate that our work will open up new directions in the combination of interactive
and automated reasoning, by further reducing the manual effort in proof splitting and
improving the applicability of superposition frameworks to a broader variety of recursive
algorithms.

93

List of Figures

2.1 Superposition inference system SUP. 12
2.2 Program copying non-negative elements from array a to b. 14
2.3 Grammar of W. 14

3.1 Program copying positive elements from array a to b with safety property in
L. 24

3.2 Program partitioning positive, respectively negative elements in array a into
two arrays b, c. 25

4.1 Program copying elements from arrays a and b to even/odd positions in array
c. 37

4.2 Program that adds and subtracts n to every element of array a. 41

5.1 Program copying elements from array b to array a. 47

6.1 Recursive algorithm of Quicksort. 54
6.2 Recursive divide-and-conquer approach. 57
6.3 Function filterQ filtering elements of a list over a predicate Q. 58
6.4 Recursive algorithm of Insertionsort. 65
6.5 Recursive algorithm of Mergesort. 66

7.1 Overview of the Rapid verification framework. 73
7.2 Loop transformation for break-statement. 74
7.3 Loop transformation for continue-statement. 75
7.4 Loop transformation for return-statement. 75
7.5 Examples of value inlining. 76

95

List of Tables

8.1 Rapid Experimental Results in Detail. 85
8.2 Rapid Extended Experiment Overview. 86
8.3 Experimental Evaluation of Computation Induction on Sorting Algorithms. 88
8.4 Structural Induction Applications in Proof Search and Proof. 89

97

Bibliography

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin
Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth,
Steffen Schlager, et al. The KeY tool: integrating object oriented design
and formal verification. Software & Systems Modeling, 4:32–54, 2005.

[ABG+12] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise,
and Natasha Sharygina. Lazy abstraction with interpolants for arrays. In
International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), pages 46–61. Springer, 2012.

[ACC+20] Mohammad Afzal, Supratik Chakraborty, Avriti Chauhan, Bharti Chimdyal-
war, Priyanka Darke, Ashutosh Gupta, Shrawan Kumar, Charles Babu,
Divyesh Unadkat, and R Venkatesh. VeriAbs: Verification by abstraction
and test generation (competition contribution). In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 383–387. Springer, 2020.

[AO16] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[App98] Andrew W Appel. SSA is functional programming. ACM SIGPLAN Notices,
33(4):17–20, 1998.

[App04] Andrew W Appel. Modern compiler implementation in C. Cambridge
University Press, 2004.

[APS14] Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. Formal verification of
security protocol implementations: a survey. Formal Aspects of Computing,
26:99–123, 2014.

[BC94] Preston Briggs and Keith D Cooper. Effective partial redundancy elimina-
tion. ACM SIGPLAN Notices, 29(6):159–170, 1994.

[BC13] Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions, volume 1 of
Texts in Theoretical Computer Science. An EATCS Series (TTCS). Springer,
2013.

99

[BCD+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In International Conference on Computer-Aided Verification (CAV), pages
171–177. Springer, 2011.

[BEG+19] Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura
Kovács, and Matteo Maffei. Verifying relational properties using trace logic.
In Formal Methods in Computer-Aided Design (FMCAD), pages 170–178.
IEEE, 2019.

[Bey12] Dirk Beyer. Competition on software verification: (sv-comp). In Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 504–524. Springer, 2012.

[Bey21] Dirk Beyer. Software verification: 10th comparative evaluation (SV-COMP
2021). In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 401–422. Springer, 2021.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BFT17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.6. Technical report, Department of Computer Science, The
University of Iowa, 2017. Available at www.SMT-LIB.org.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[BG01] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 2, pages 19–99. Elsevier Science, 2001.

[BGE+22] Ahmed Bhayat, Pamina Georgiou, Clemens Eisenhofer, Laura Kovács, and
Giles Reger. Lemmaless induction in trace logic. In International Conference
on Intelligent Computer Mathematics (CICM), pages 191–208. Springer,
2022.

[BGMR15] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko.
Horn Clause Solvers for Program Verification. In Fields of Logic and
Computation II: Essays Dedicated to Yuri Gurevich on the Occasion of His
75th Birthday, pages 24–51. Springer, 2015.

[BM90] Robert S Boyer and J Strother Moore. A theorem prover for a computational
logic. In International Conference on Automated Deduction (CADE), pages
1–15. Springer, 1990.

100

[BMR13] Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. On solving
universally quantified horn clauses. In International Symposium on Static
Analysis (SAS), pages 105–125. Springer, 2013.

[BSSU17] Bernhard Beckert, Jonas Schiffl, Peter H Schmitt, and Mattias Ulbrich.
Proving jdk’s dual pivot quicksort correct. In International Conference on
Verified Software. Theories, Tools, and Experiments (VSTTE), pages 35–48.
Springer, 2017.

[BSVH+93] Alan Bundy, Andrew Stevens, Frank Van Harmelen, Andrew Ireland, and
Alan Smaill. Rippling: A heuristic for guiding inductive proofs. Artificial
Intelligence, 62(2):185–253, 1993.

[CCL11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A Parametric
Segmentation Functor for Fully Automatic and Scalable Array Content
Analysis. In Symposium on Principles of Programming Languages (POPL),
pages 105–118. ACM, 2011.

[CDEM+16] Razvan Certezeanu, Sophia Drossopoulou, Benjamin Egelund-Muller, K Rus-
tan M Leino, Sinduran Sivarajan, and Mark Wheelhouse. Quicksort revisited:
Verifying alternative versions of quicksort. Theory and Practice of Formal
Methods: Essays Dedicated to Frank de Boer on the Occasion of His 60th
Birthday, pages 407–426, 2016.

[CG12] Alessandro Cimatti and Alberto Griggio. Software model checking via IC3.
In International Conference on Computer-Aided Verification (CAV), pages
277–293. Springer, 2012.

[CGU20] Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Verifying
array manipulating programs with full-program induction. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 22–39. Springer, 2020.

[CGU21] Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Diffy:
Inductive Reasoning of Array Programs Using Difference Invariants. In
International Conference on Computer-Aided Verification (CAV), pages
911–935. Springer, 2021.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):345–363, 1936.

[CJRS13] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Au-
tomating inductive proofs using theory exploration. In International Con-
ference on Automated Deduction (CADE), pages 392–406. Springer, 2013.

[Cru15] Simon Cruanes. Extending superposition with integer arithmetic, structural
induction, and beyond. PhD thesis, École polytechnique, 2015.

101

[DDA10] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong
vs. weak updates. In European Symposium on Programming (ESOP), pages
246–266. Springer, 2010.

[DDH72] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare.
Structured programming, volume 8 of A.P.I.C. Studies in Data Processing.
Academic Press Ltd., 1972.

[dGdBR16] Stijn de Gouw, Frank S de Boer, and Jurriaan Rot. Verification of counting
sort and radix sort. Deductive Software Verification–The KeY Book: From
Theory to Practice, pages 609–618, 2016.

[Dij75] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457, 1975.

[DK22] André Duarte and Konstantin Korovin. Ground joinability and connect-
edness in the superposition calculus. In International Joint Conference on
Automated Reasoning (IJCAR), pages 169–187. Springer, 2022.

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7):1165–1178,
2008.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 337–340. Springer, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B Saxe. Simplify: a theorem prover
for program checking. Journal of the ACM (JACM), 52(3):365–473, 2005.

[DP01] N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 9, pages 535–610. Elsevier Science, 2001.

[EP20] Mnacho Echenim and Nicolas Peltier. Combining induction and saturation-
based theorem proving. Journal of Automated Reasoning, 64(2):253–294,
2020.

[FB18] Grigory Fedyukovich and Rastislav Bodík. Accelerating syntax-guided
invariant synthesis. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 251–269.
Springer, 2018.

[FH71] Michael Foley and Charles Antony Richard Hoare. Proof of a recursive
program: Quicksort. The Computer Journal, 14(4):391–395, 1971.

102

[FJS04] Cormac Flanagan, Rajeev Joshi, and James B Saxe. An explicating theorem
prover for quantified formulas. Draft manuscript, May, 2004.

[FKB17] Grigory Fedyukovich, Samuel J Kaufman, and Rastislav Bodík. Sampling
invariants from frequency distributions. In Formal Methods in Computer-
Aided Design (FMCAD), pages 100–107. IEEE, 2017.

[Flo67] RW Floyd. Assigning meaning to programs. In Mathematical Aspects
of Computer Science. Proceedings of Symposia in Applied Mathematics,
volume 19, pages 19–32. American Mathematical Society, 1967.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs
meet provers. In European Symposium on Programming (ESOP), pages
125–128. Springer, 2013.

[FPMG19] Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti Gupta.
Quantified invariants via syntax-guided synthesis. In International Con-
ference on Computer-Aided Verification (CAV), pages 259–277. Springer,
2019.

[GBT07] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification
conditions using satisfiability modulo theories. In International Conference
on Automated Deduction (CADE), pages 167–182. Springer, 2007.

[GGB+22] Pamina Georgiou, Bernhard Gleiss, Ahmed Bhayat, Michael Rawson, Laura
Kovács, and Giles Reger. The RAPID software verification framework.
In Formal Methods in Computer-Aided Design (FMCAD), pages 255–260.
IEEE, 2022.

[GGK20a] Pamina Georgiou, Bernhard Gleiss, and Laura Kovács. Trace logic for
inductive loop reasoning. In Formal Methods in Computer-Aided Design
(FMCAD), pages 255–263. IEEE, 2020.

[GGK20b] Pamina Georgiou, Bernhard Gleiss, and Laura Kovács. Trace logic for
inductive loop reasoning. Extended Version. arXiv:2008.01387, 2020.

[GHK23] Pamina Georgiou, Márton Hajdu, and Laura Kovács. Sorting without sorts.
EasyChair Preprint no. 10632, 2023.

[GKKN15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A
Navas. The SeaHorn verification framework. In International Conference
on Computer-Aided Verification (CAV), pages 343–361. Springer, 2015.

[GKR18] Bernhard Gleiss, Laura Kovács, and Simon Robillard. Loop analysis by
quantification over iterations. In International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), pages 381–399.
Springer, 2018.

103

https://arxiv.org/abs/2008.01387
https://easychair.org/publications/preprint/pc6P

[GKR20] Bernhard Gleiss, Laura Kovács, and Jakob Rath. Subsumption demodula-
tion in first-order theorem proving. In International Joint Conference on
Automated Reasoning (IJCAR), pages 297–315. Springer, 2020.

[GMT08] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting Abstract
Interpreters to Quantified Logical Domains. In Symposium on Principles of
Programming Languages (POPL), pages 235–246. ACM, 2008.

[GNT10] Michael Grottke, Allen P Nikora, and Kishor S Trivedi. An empirical
investigation of fault types in space mission system software. In 2010
IEEE/IFIP International Conference on Dependable Systems & Networks
(DSN), pages 447–456. IEEE, 2010.

[GS20] Bernhard Gleiss and Martin Suda. Layered clause selection for theory
reasoning. In International Joint Conference on Automated Reasoning
(IJCAR), pages 297–315. Springer, 2020.

[GSM16] Arie Gurfinkel, Sharon Shoham, and Yuri Meshman. SMT-based verification
of parameterized systems. In ACM Symposium on Foundations of Software
Engineering (FSE), pages 338–348. ACM, 2016.

[GSV18] Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. Quantifiers on demand. In
Automated Technology for Verification and Analysis (ATVA), pages 248–266.
Springer, 2018.

[HB12] Kryštof Hoder and Nikolaj Bjørner. Generalized property directed reach-
ability. In Theory and Applications of Satisfiability Testing (SAT), pages
157–171. Springer, 2012.

[HH19] Reiner Hähnle and Marieke Huisman. Deductive software verification: from
pen-and-paper proofs to industrial tools. Computing and Software Science:
State of the Art and Perspectives, pages 345–373, 2019.

[HHK+20] Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. Induction with generalization in superposition reasoning.
In International Conference on Intelligent Computer Mathematics (CICM),
pages 123–137. Springer, 2020.

[HHK+22] Márton Hajdu, Petra Hozzová, Laura Kovács, Giles Reger, and Andrei
Voronkov. Getting saturated with induction. In Principles of Systems
Design: Essays Dedicated to Thomas A. Henzinger on the Occasion of His
60th Birthday, pages 306–322. Springer, 2022.

[HKV11] Kryštof Hoder, Laura Kovács, and Andrei Voronkov. Invariant generation
in Vampire. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 60–64. Springer,
2011.

104

[HKV21] Petra Hozzová, Laura Kovács, and Andrei Voronkov. Integer induction in
saturation. In International Conference on Automated Deduction (CADE),
pages 361–377. Springer, 2021.

[Hoa62] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[ISIRS20] Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, and Sharon Shoham.
Putting the squeeze on array programs: loop verification via inductive rank
reduction. In International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 112–135. Springer, 2020.

[JM07] Ranjit Jhala and Kenneth L. McMillan. Array abstractions from proofs.
In International Conference on Computer-Aided Verification (CAV), pages
193–206. Springer, 2007.

[JZ17] Dongchen Jiang and Miao Zhou. A comparative study of insertion sorting
algorithm verification. In IEEE Information Technology, Networking, Elec-
tronic and Automation Control Conference (ITNEC), pages 321–325. IEEE,
2017.

[Kan18] Michael Kan. Ticketfly goes down after hacker steals customer info. PC
Mag, 2018.

[KB83] Donald E Knuth and Peter B Bendix. Simple word problems in universal
algebras. Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970, pages 342–376, 1983.

[KBGM15] Anvesh Komuravelli, Nikolaj Bjorner, Arie Gurfinkel, and Kenneth L McMil-
lan. Compositional verification of procedural programs using horn clauses
over integers and arrays. In Formal Methods in Computer-Aided Design
(FMCAD), pages 89–96. IEEE, 2015.

[KBI+17] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky,
and Sharon Shoham. Property-directed inference of universal invariants or
proving their absence. Journal of the ACM (JACM), 64(1):1–33, 2017.

[KCSG20] Hari Govind Vediramana Krishnan, YuTing Chen, Sharon Shoham, and
Arie Gurfinkel. Global guidance for local generalization in model checking.
In International Conference on Computer-Aided Verification (CAV), pages
101–125. Springer, 2020.

[KFG20] Naoki Kobayashi, Grigory Fedyukovich, and Aarti Gupta. Fold/unfold
transformations for fixpoint logic. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages
195–214. Springer, 2020.

105

[KG99] Christoph Kern and Mark R Greenstreet. Formal verification in hardware
design: a survey. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 4(2):123–193, 1999.

[KKV15] Evgenii Kotelnikov, Laura Kovács, and Andrei Voronkov. A first class
Boolean sort in first-order theorem proving and TPTP. In International
Conference on Intelligent Computer Mathematics (CICM), pages 71–86.
Springer, 2015.

[KM97] Matt Kaufmann and J. Strother Moore. An industrial strength theorem
prover for a logic based on Common Lisp. IEEE Transactions on Software
Engineering, 23(4):203–213, 1997.

[KM16] E. G. Karpenkov and D. Monniaux. Formula slicing: Inductive invariants
from preconditions. In International Haifa Verification Conference (HVC),
pages 169–185. Springer, 2016.

[KMM00] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-
Aided Reasoning: An Approach, volume 1 of Advances in Formal Methods
(ADFM). Springer, 2000.

[KPIA20] Jason R Koenig, Oded Padon, Neil Immerman, and Alex Aiken. First-order
quantified separators. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 703–717. ACM, 2020.

[Kra22] Herb Krasner. The cost of poor software quality in the us: A 2022 report.
Consortium for Information and Software Quality (CISQ), pages 1–61, 2022.

[KRV17] Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to Terms
with Quantified Reasoning. In Symposium on Principles of Programming
Languages (POPL), pages 260–270. ACM, 2017.

[KV09] Laura Kovács and Andrei Voronkov. Finding loop invariants for pro-
grams over arrays using a theorem prover. In International Conference on
Fundamental Approaches to Software Engineering (FASE), pages 470–485.
Springer, 2009.

[KV13] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and
Vampire. In International Conference on Computer-Aided Verification
(CAV), pages 1–35. Springer, 2013.

[Lam20] Peter Lammich. Efficient verified implementation of introsort and pdqsort.
In International Joint Conference on Automated Reasoning (IJCAR), pages
307–323. Springer, 2020.

[Lei10] K Rustan M Leino. Dafny: An automatic program verifier for functional cor-
rectness. In International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), pages 348–370. Springer, 2010.

106

[Lév14] Jean-Jacques Lévy. Simple proofs of simple programs in Why3. Essays for
the Luca Cardelli Fest, page 177, 2014.

[LM96] Cosimo Laneve and Ugo Montanari. Axiomatizing permutation equivalence.
Mathematical Structures in Computer Science, 6(3):219–249, 1996.

[LRCR13] Daniel Larraz, Enric Rodríguez-Carbonell, and Albert Rubio. SMT-based
array invariant generation. In International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), pages 169–188.
Springer, 2013.

[MBTS04] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The
Art of Software Testing, volume 2. Wiley Online Library, 2004.

[MH69] John McCarthy and Patrick J Hayes. Some philosophical problems from
the standpoint of artificial intelligence. Machine Intelligence, 4:463–502,
1969.

[MPMW20] Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. Data-
driven inference of representation invariants. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 1–15.
ACM, 2020.

[MTK20] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. RustHorn:
CHC-based verification for Rust programs. In European Symposium on
Programming (ESOP), pages 484–514. Springer, 2020.

[NBE+21] Tobias Nipkow, Jasmin Blanchette, Manuel Eberl, Alejandro Gómez-
Londoño, Peter Lammich, Christian Sternagel, Simon Wimmer, and Bohua
Zhan. Functional Algorithms, Verified, 2021.

[Nel80] Charles Gregory Nelson. Techniques for program verification. Stanford
University, 1980.

[NO79] Greg Nelson and Derek C Oppen. Simplification by cooperating decision
procedures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1(2):245–257, 1979.

[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 7, pages 371–443. Elsevier Science, 2001.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283 of Lecture Notes in
Computer Science (LNCS). Springer, 2002.

[O’K20] Sean O’Kane. Boeing finds another software problem on the 737 max. The
Verge, 2020.

107

[PMP+14] Pieter Philippaerts, Jan Tobias Mühlberg, Willem Penninckx, Jan Smans,
Bart Jacobs, and Frank Piessens. Software verification with VeriFast:
Industrial case studies. Science of Computer Programming, 82:77–97, 2014.

[PSM16] Saswat Padhi, Rahul Sharma, and Todd Millstein. Data-driven precondition
inference with learned features. ACM SIGPLAN Notices, 51(6):42–56, 2016.

[RBSV16] Giles Reger, Nikolaj Bjorner, Martin Suda, and Andrei Voronkov. AVATAR
modulo theories. In 2nd Global Conference on Artificial Intelligence (GCAI),
pages 39–52, 2016.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358–
366, 1953.

[RL18] Pritom Rajkhowa and Fangzhen Lin. Extending VIAP to handle array
programs. In International Conference on Verified Software. Theories, Tools,
and Experiments (VSTTE), pages 38–49. Springer, 2018.

[Rot22] Emma Roth. Meta fined $276 million over facebook data leak involving
more than 533 million users. The Verge, 2022.

[RS17] Giles Reger and Martin Suda. Set of support for theory reasoning. In
International Workshop on the Implementation of Logics (IWIL), pages
124–134. EasyChair, 2017.

[RSV21] Giles Reger, Johannes Schoisswohl, and Andrei Voronkov. Making theory
reasoning simpler. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 164–180.
Springer, 2021.

[RTDM14] Andrew Reynolds, Cesare Tinelli, and Leonardo De Moura. Finding con-
flicting instances of quantified formulas in SMT. In 2014 Formal Methods
in Computer-Aided Design (FMCAD), pages 195–202. IEEE, 2014.

[RV19] Giles Reger and Andrei Voronkov. Induction in saturation-based proof
search. In International Conference on Automated Deduction (CADE),
pages 477–494. Springer, 2019.

[SG09] S. Srivastava and S. Gulwani. Program Verification using Templates over
Predicate Abstraction. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 223–234. ACM, 2009.

[SH20] Mohsen Safari and Marieke Huisman. A generic approach to the verification
of the permutation property of sequential and parallel swap-based sorting
algorithms. In International Conference on Integrated Formal Methods
(IFM), pages 257–275. Springer, 2020.

108

[She20] Michael Sheetz. Boeing takes $410 million charge to redo failed astronaut
flight test if nasa requires. CNBC, 2020.

[Sko20] Clea Skopeliti. Thousands stranded at heathrow due to check-in systems
meltdown. The Guardian, 2020.

[Tur36] Alan M Turing. On computable numbers, with an application to the
Entscheidungsproblem. Journal of Mathematics, 58(345-363):5, 1936.

[Vor14] Andrei Voronkov. Avatar: The architecture for first-order theorem provers.
In International Conference on Computer-Aided Verification (CAV), pages
696–710. Springer, 2014.

[WL99] Andreas Wolf and Reinhold Letz. Strategy parallelism in automated theo-
rem proving. International Journal of Pattern Recognition and Artificial
Intelligence, 13(02):219–245, 1999.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzger-
ald. Formal methods: Practice and experience. ACM Computing Surveys
(CSUR), 41(4):1–36, 2009.

[WLL17] W Eric Wong, Xuelin Li, and Philip A Laplante. Be more familiar with our
enemies and pave the way forward: A review of the roles bugs played in
software failures. Journal of Systems and Software, 133:68–94, 2017.

[WPN08] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle
Framework. In Theorem Proving in Higher Order Logics (TPHOLs), pages
33–38. Springer, 2008.

[WS03] Christoph Walther and Stephan Schweitzer. About VeriFun. In International
Conference on Automated Deduction (CADE), pages 322–327. Springer,
2003.

[WS04] Christoph Walther and Stephan Schweitzer. Verification in the classroom.
Journal of Automated Reasoning, 32:35–73, 2004.

[WS20] Julia Carrie Wong and Olivia Solon. Google to shut down google+ after
failing to disclose user data leak. The Guardian, 2020.

[YFG19] Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. Lemma synthesis for
automating induction over algebraic data types. In Principles and Practice
of Constraint Programming (CP), pages 600–617. Springer, 2019.

[YTGN22] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. {DuoAI}: Fast, au-
tomated inference of inductive invariants for verifying distributed protocols.
In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 485–501. USENIX, 2022.

109

[ZCF23] Lucas Zavalía, Lidiia Chernigovskaia, and Grigory Fedyukovich. Solving
constrained Horn clauses over algebraic data types. In International Confer-
ence on Verification, Model Checking, and Abstract Interpretation (VMCAI),
pages 341–365. Springer, 2023.

110

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Contributions
	Publications and Relation to Contributions
	Outline

	Background and Preliminaries
	Saturation-based Automated Theorem Proving
	Induction and Superposition
	Trace Logic
	Axiomatic Semantics in Trace Logic L

	Trace Lemma Reasoning
	Trace Logic for Safety Verification
	A Suitable Set of Trace Lemmas for W programs
	Trace Lemma Correctness
	Related Work

	Lemmaless Inductive Reasoning
	Motivating Example
	A Final Trace Lemma
	Multi-Clause Goal Induction for Lemmaless Induction
	Array Mapping Induction for Lemmaless Induction
	Related Work

	Extracting Invariants with Trace Lemma Reasoning
	Extended Expressions and Symbol Elimination
	Invariant Generation in Trace Logic
	Related Work

	Computation Induction for Recursive Sorting Algorithms
	Background
	First-Order Semantics of Functional Sorting Algorithms
	Computation Induction in Saturation
	Proving Recursive Quicksort
	Lemma Generalizations for Guided Proof Splits
	Related Work

	Tooling and Implementation
	The Rapid Verification Framework
	Verification Modes
	Verifying Partial Correctness in Rapid
	The Vampire Theorem Prover

	Experiments and Evaluation
	Rapid Experimental Results
	Computation Induction and Sorting Experiments

	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography

