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Abstract

This thesis addresses challenges and advancements in the automated analysis of proba-
bilistic loops. It contributes to the theoretical foundations and computational techniques
for analyzing the safety and liveness of probabilistic loops.

A core contribution is the development of a fully automated method for computing
higher moments of program variables for a large class of probabilistic loops. This method
leverages linear recurrences with constant coefficients to model higher moments of loop
variables and compute their exact closed-form expressions. Introducing the theory
of moment-computable loops, we show that our approach is complete for a class of
programs supporting branching statements, polynomial arithmetic, and both discrete
and continuous probability distributions. For probabilistic systems with unknown model
parameters, we introduce a novel technique for automatic sensitivity analysis with respect
to these parameters. By representing unknown parameters with symbolic constants and
modeling sensitivities using recurrences, we show that our technique is applicable even to
loops that are not moment-computable.

Furthermore, this thesis explores hardness bounds for computing the strongest polynomial
invariant for classical polynomial loops, showing that this problem Skolem-hard. As
an intermediary result of independent interest, we show that point-to-point reachability
for polynomial dynamical systems is also Skolem-hard. Through the notion of moment
invariant ideals, we extend these hardness results from classical to probabilistic program
analysis. Despite the hardness results, we propose a method for computing polynomial
invariants of bounded degree for (probabilistic) polynomial loops and a synthesis procedure
to over-approximate polynomial loops with linearizable loops.

Additionally, the thesis introduces Polar, a tool implementing the developed techniques,
demonstrating its capability to analyze benchmarks previously out of reach for state-of-
the-art methods.

Regarding termination analysis, we propose a novel approach based on asymptotic bounds
for polynomial probabilistic loops, leading to the development of Amber, the first tool
to certify both probabilistic termination and non-termination.
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Kurzfassung

Diese Dissertation beschreibt Herausforderungen und Fortschritte in der automatisierten
Analyse von probabilistischen Schleifen, bezüglich ihrer Sicherheit und Lebendigkeit.

Ein Kernbeitrag ist die Entwicklung einer vollautomatischen Methode zur Berechnung
höherer Momente von Programmvariablen für eine große Klasse von probabilistischen
Schleifen. Diese Methode nutzt lineare Rekurrenzen mit konstanten Koeffizienten, um
höhere Momente von Schleifenvariablen zu modellieren und exakte geschlossenen Aus-
drücke für sie zu berechnen. Mit der Einführung der Theorie der moment-berechenbaren
Schleifen zeigen wir, dass unser Ansatz vollständig für eine Klasse von Programmen
ist, die Verzweigungsanweisungen, polynomielle Arithmetik und sowohl diskrete als
auch kontinuierliche Wahrscheinlichkeitsverteilungen unterstützen. Für probabilistische
Systeme mit unbekannten Modellparametern führen wir eine neue Technik für die au-
tomatische Sensitivitätsanalyse bezüglich dieser Parameter ein. Indem wir unbekannte
Parameter mit symbolischen Konstanten darstellen und Sensitivitäten mit Rekurrenzen
modellieren, zeigen wir, dass unsere Technik sogar auf Schleifen anwendbar ist, die nicht
moment-berechenbar sind.

Darüber hinaus untersucht diese Dissertation Härtegrenzen für die Berechnung der
stärksten polynomiellen Invarianten für klassische polynomielle Schleifen. Wir zeigen,
dass dieses Problem Skolem-hart ist. Als ein Zwischenergebnis von eigenem Interesse
zeigen wir, dass die Punkt-zu-Punkt-Erreichbarkeit für polynomielle dynamische Sys-
teme ebenfalls Skolem-hart ist. Durch das Konzept der Moment-Invarianten-Ideale
erweitern wir diese Härteergebnisse von der klassischen zur probabilistischen Program-
manalyse. Trotz der Härteergebnisse entwickeln wir eine Methode zur Berechnung von
polynomiellen Invarianten begrenzten Grades für (probabilistische) polynomielle Schleifen
sowie ein Syntheseverfahren, um polynomielle Schleifen mit linearisierbaren Schleifen zu
überapproximieren.

Zusätzlich führt die Dissertation Polar ein, ein Tool, das die entwickelten Techniken
implementiert und Benchmarks analysieren kann, die bisher nicht gelöst werden konnten.

Bezüglich Terminierungsanalyse führen wir einen neuen Ansatz basierend auf asympto-
tischen Grenzen für polynomielle probabilistische Schleifen ein, was zur Entwicklung
von Amber, dem ersten Tool führt, das sowohl probabilistische Terminierung als auch
Nicht-Terminierung beweisen kann.
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CHAPTER 1
Overview

Software systems and programs are omnipresent in our modern world and deeply embed-
ded in virtually every aspect of our daily lives. Ensuring the correctness and quality of
programs is thus of utmost importance. This is especially true for programs employed
in safety-critical environments. Manual inspection of program code is cumbersome and
error-prone, rendering an automated approach inevitable. Program analysis is a term
subsuming a plethora of methods and techniques for automatically inferring various
properties of programs. The inferred properties can then enable different tasks such as
finding bugs and security issues or reasoning about the correctness of programs.

Loops are fundamental program constructs that enable the definition of repetitive tasks
in programs and as such constitute an integral part of almost every software system.
However, the convenience and power of loops come at a price: loops are the main source
of undecidability and uncomputability in program analysis. This fact has been known
since the early days of computer science. Alan Turing showed in 1937 that the most
fundamental liveness property, termination, is undecidable [Tur37]. In 1953, Rice proved
that every non-trivial property of the behavior of a program is undecidable [Ric53].
Contrary to what these negative results might suggest, program analysis is an active area
of research up to this day. The barriers posed by undecidability can be circumvented by
resorting to semi-algorithms and approximation.

Allowing programs to draw from probability distributions or execute different parts of
their code based on coin flips further adds to the difficulty of program analysis posed
by loops. For instance, the termination problem is strictly harder for probabilistic
loops [KKM19].

In this thesis, we confront the challenges posed by integrating loops with probabilities
head-on. We develop automated techniques for the analysis of probabilistic loops, which
are the crux of probabilistic program analysis.

1



1. Overview

x , y = 0 , 0
while ⋆ :

d = B e r n o u l l i (1/2)
if d == 0 :

x = x+1 {1/2} x−1
else:

y = y+1 {1/2} y−1
end

end

(a)

stop = 0
count = 0
x = 1
while stop == 0 :

stop = B e r n o u l l i (1/2)
count = count+1
x = 2∗x

end

(b)

Figure 1.1: Two examples of probabilistic programs.

1.1 Probabilistic Programs
Probabilistic programming languages enrich classical imperative or functional languages
with native primitives to draw samples from random distributions, such as Bernoulli,
Uniform, and Normal distributions. The resulting probabilistic programs (PPs) [Koz85,
BKS20a] embed uncertain quantities, represented by random variables, within stan-
dard program control flows. As such, PPs offer a unifying framework to naturally
encode probabilistic machine learning models [Gha15], for example, Bayesian net-
works [KKMO16], into programs. Moreover, PPs enable programmers to handle uncer-
tainty resulting from sensor measurements and environmental perturbations in cyber-
physical systems [SRB+15, CYS20]. Other notable examples of PPs include the im-
plementation of cryptographic [BGB12] and privacy [BKOB12] protocols, as well as
randomized algorithms [MR95].

Fig. 1.1 shows two probabilistic loops. The infinite loop from Fig. 1.1a models a symmetric
random walk in the XY-plane. In every iteration, a draw from a Bernoulli distribution with
parameter 1/2 determines whether the process moves in the x or y dimension. Depending
on the outcome of the draw, either the variable x or the variable y is reassigned. The
respective variable is incremented or decremented by 1, each with probability 1/2. The
probabilistic loop from Fig. 1.1b contains a non-trivial loop guard. It terminates whenever
the draw from the Bernoulli distribution in its loop body is 0. The variable count counts
the number of loop iterations until termination while x doubles in every iteration.

PPs can be viewed from two different perspectives: first as randomized algorithms and
second as succinct descriptions of complex probability distributions.

PPs as randomized algorithms. In randomized algorithms, a source of randomness
is used to influence their outcomes or runtimes [MR95]. For some problems, the use of
randomization gives rise to algorithms whose worst-case expected runtimes are significantly
faster compared to the worst-case runtimes of their deterministic versions. For instance,

2



1.1. Probabilistic Programs

Quicksort is a sorting algorithm with a worst-case runtime of O(n2). Randomly shuffling
the inputs before sorting leads to a randomized version of Quicksort with a worst-case
expected runtime of O(n log(n)). A further notable use of randomness in algorithms is to
break symmetries. In distributed systems, indistinguishable processes can self-stabilize
by using randomness to break the symmetry between them [Sch93].

PPs as distributions. Program variables of PPs encode uncertain quantities. The
outcome of a single run of a PP amounts to a draw from a particular probability distri-
bution. Thus, PPs effectively describe complex probability distributions by integrating
known distributions such as Bernoulli and Normal within standard program constructs.
This integration facilitates building more intricate distributions in a structured and
well-defined manner. In special cases, these distributions can be characterized by “simpler
means”. For example, the variable count in the program from Fig 1.1b counts the number
of Bernoulli trials until the first success. Hence, upon termination of the program, the
variable is fully described by a Geometric distribution. Generally, however, the distribu-
tions of PPs are considerably more complex. Distributions and even expected values of
program variables upon termination are uncomputable for arbitrary PPs [KKM19].

Despite the challenge of uncomputability, the expressive power of PPs offers notable
benefits. Historically, various graphical models such as Bayesian networks or Markov
networks were used to model probabilistic systems [KF09]. PPs extend these models,
providing a unified and structured framework that eliminates the need for distinct
syntaxes, inference methods, and analysis algorithms [BKS20a]. As such, a wide range
of systems can be modeled and analyzed in a unifying manner using PPs. In this
context, PPs are created as models for analysis and query purposes, unlike classical
programs designed for execution. Therefore, not only guarded loops but also infinite
loops serve an important purpose in PPs. Infinite probabilistic loops can model stochastic
processes. An example is the loop from Fig. 1.1a modeling a symmetric random walk in
two dimensions. For infinite loops, distributions or moments of program variables can be
given parameterized by the number of loop iterations n.

Fig. 1.2a presents closed-form expressions for the expected values and second moments
of the variables for the PP from Fig. 1.1a. Guarded loops can be treated as infinite loops
by assuming that the values of program variables remain constant after the loop guard is
falsified. Fig. 1.2b shows closed-forms for specific moments of the guarded probabilistic
loop from Fig. 1.1b. Moments after termination derive from analyzing the limiting
behavior of their closed-forms (detailed in Chapter 2). For instance, the closed-form of
the expected value of count in Fig. 1.2b implies that its expected value after termination
and hence the expected runtime of the loop is 2. In contrast, the expected value of the
variable x post-termination is infinite. The possibility of expected values of program
variables being infinite after termination, even for loops with finite expected runtime,
illustrates the limitations of sampling methods and the need for formal techniques in PP
analysis. With sampling alone, it is impossible to determine that the expected value of x
is infinite after termination because every concrete sample for x is a finite value.

3



1. Overview

Closed-forms:

E(xn) = E(yn) = 0
E(x2

n) = E(y2
n) = n/2

Invariants:

E(x) = E(y) = 0
E(x2) − E(y2) = 0

(a) Closed-forms and invariants for the PP from Fig. 1.1a.

Closed-forms:

E(stopn) = 1 − 1/2n

E(countn) = 2 − 2/2n

E(count2
n) = (3 · 2n − 2n − 3) · 2/2n

E(xn) = n + 1

Invariants:

2E(stop) − E(count) = 0

2E(count)E(x) + E(count)
− E(count2) − 4E(x) + 4 = 0

(b) Closed-forms and invariants for the PP from Fig. 1.1b.

Figure 1.2: Closed-forms and invariants for probabilistic programs from Fig. 1.1.

Similar to classical programs, decidability issues arise with PPs containing loops. The
two central classes of properties in the analysis of classical and probabilistic programs
are safety and liveness properties. Intuitively, safety properties state that nothing
bad happens and involve capturing the set of reachable program states by invariants.
Liveness properties express something good happening eventually and are closely related
to the termination problem. The specification of probabilistic models as programs allows
their analysis using techniques from program languages and verification. In this thesis,
we develop program analysis techniques in the setting of liveness as well as safety for
probabilistic loops, which are at the center of automated PP analysis.

1.2 Algebraic Loop Analysis
In program loops, the values of program variables after any iteration are calculated
based on their values in previous iterations. Similarly, algebraic recurrence equations, or
just recurrences, relate elements of a sequence to preceding elements [EvdPSW03]. This
parallel makes recurrences a natural tool for analyzing loops, enabling the application of
recurrence theory for program analysis.

For example, ignoring the loop guard in the program from Fig. 1.1b, the values of
the program variable x can be characterized by the linear recurrence equation x(n +
1) = 2 · x(n) with initial value x(0) = 1. This recurrence admits the closed-form
solution x(n) = 2n which allows for the computation of x after n iterations without
executing the loop. Recurrences have been widely recognized as vital in classical program
analysis [RcK04, RK07, Kov08, HJK18b, FK15, KCBR18, KBCR19, BCKR20]. However,
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1.3. Contributions & Synopsis

applying algebraic recurrences to probabilistic loop analysis presents challenges, as
program variables do not adhere to a predetermined numeric sequence. In Chapter 2,
we introduce a novel method utilizing recurrences for the analysis of probabilistic loops,
facilitating computing the closed-form expressions presented in Fig. 1.2 fully automatically

C-finite recurrences are linear recurrence equations with constant coefficients and con-
stitute a class of recurrences that is particularly tractable [KP11]. C-finite recurrences
obey strong closure properties and their solutions always exist and are computable,
rendering them particularly suitable for program analysis. Indeed, many loops can be
effectively analyzed using this class of recurrences [Kov08]. For instance, as we establish
in Chapter 2, all moments of all variables for the PPs in Fig. 1.1 can be modeled by
C-finite recurrences.

As previously mentioned in Section 1.1, invariants play an essential role in the safety
analysis of programs. An important class of invariants are polynomial invariants. For
classical loops, polynomial invariants are polynomials in program variables that evaluate
to 0 after every loop iteration. Notably, the set of polynomial invariants associated
with a given loop always forms an ideal – a concept from algebraic geometry [CLO97].
This relationship allows for the application of techniques from computational algebraic
geometry in computing and studying polynomial invariants. We extend the concepts
of polynomial invariants and invariant ideals to the probabilistic setting in Chapter 4.
Figure 1.2 shows some polynomial invariants over moments of program variables for
the PPs from Figure 1.1. With the theory and techniques presented in this thesis, all
polynomials from Figure 1.2 can be computed fully automatically.

Integrating the theory of C-finite recurrences and computational algebraic geometry
proves immensely useful in program analysis. For instance, invariant ideals can be
derived from the closed-form expressions of specific C-finite recurrences using techniques
from computational algebraic geometry. A recurring theme throughout this thesis is
the adoption of approaches from both fields to develop and study techniques for the
automated analysis of probabilistic loops.

1.3 Contributions & Synopsis
Each chapter of this thesis is based on one or two peer-reviewed publications, which are
listed at the beginning of every chapter. Designed to be self-contained, every chapter
introduces its notation, preliminaries, and related work, allowing for independent reading
from the rest of the thesis. The contributions of this thesis are as follows.

Chapter 2 – Computing Moments. In this chapter, we develop a novel static analysis
technique that utilizes recurrences to compute exact closed-form expressions for higher
moments of program variables for a large class of probabilistic loops. Additionally, we
present the concept of moment-computable PPs, a class of probabilistic loops for which our
technique is complete. Moment-computable PPs adhere to specific restrictions concerning
branching statements and the arithmetic within their loop bodies. As we show, removing

5



1. Overview

the restriction on branching statements immediately leads to uncomputability. We present
the new tool Polar implementing all techniques from this chapter and demonstrate
applications of exact higher moment computation in computing tail probabilities and
recovering probability distributions of loop variables. Furthermore, through experimental
evaluation, we highlight the practicality of Polar, successfully solving several benchmarks
previously beyond the reach of the state-of-the-art probabilistic program analysis.

Chapter 3 – Automated Sensitivity Analysis. When modeling stochastic pro-
cesses using probabilistic loops, values or even distributions of model parameters are
often unknown. To manage this lack of information, we can represent unknown model
parameters with symbolic constants that stand for any real number. Sensitivity analysis
of (higher) moments of program variables aims to quantify how small changes in these
parameters affect the variable moments. In this chapter, we introduce an exact technique
to compute sensitivities of (higher) moments of probabilistic loop variables on symbolic
parameters. We introduce the notion of sensitivity recurrence enabling sensitivity analysis
even for probabilistic loops that are not moment-computable.

Chapter 4 – Strong Invariants Are Hard. In addition to branching statements and
probabilities, the complexity of automated loop analysis significantly depends on the type
of arithmetic permitted within the loop bodies. For classical loops containing only linear
assignments, the strongest polynomial invariant, or its invariant ideal, is known to be
computable. However, even for classical loops with polynomial assignments, this problem
remained wide open. In this chapter, we show that computing the strongest polynomial
invariant for polynomial loops is at least as hard as the Skolem problem, a famous
problem whose decidability has been open for almost a century. As an intermediate result
of independent interest, we prove that point-to-point reachability for polynomial loops
is Skolem-hard as well. Furthermore, we introduce the notion of moment invariant
ideals and show that they generalize the strongest polynomial invariant for classical
loops to probabilistic loops. This generalization allows us to transfer hardness results
for classical loops to the probabilistic setting. While we show that moment invariant
ideals are computable for the probabilistic loops supported by our static analyzer Polar,
our hardness results justify that no restriction on Polar’s input programs can be lifted
without running into serious hardness boundaries.

Chapter 5 – (Un)Solvable Loop Analysis. Program loops with arbitrary polynomial
assignments are termed unsolvable, whereas those that can be linearized are referred
to as solvable. The results from Chapter 4 demonstrate that computing the strongest
polynomial invariant for unsolvable loops is out of reach. Despite this, in this chapter, we
introduce a novel method for synthesizing polynomial invariants of bounded degree for
unsolvable loops. Our approach automatically partitions program variables and identifies
so-called defective variables that characterize unsolvability. We present a technique
that automatically synthesizes polynomials in defective variables that admit closed-form
solutions and thus lead to polynomial loop invariants. Moreover, we propose a synthesis

6



1.4. Impact of the Thesis

procedure that creates an over-approximation of an unsolvable loop in terms of a solvable
loop. While the theoretical foundation of this chapter primarily addresses classical
loops, we also demonstrate its applicability to probabilistic loops, showcasing its broader
relevance.

Chapter 6 – Automated Termination Analysis. In stark contrast to classical
loops, probabilistic loops can terminate with probability 1 yet exhibit an infinite expected
runtime. This distinctive feature necessitates a nuanced approach to termination analysis,
differentiating between almost-sure termination (AST) – which denotes termination
with probability 1 – and positive almost-sure termination (PAST), characterized by
finite expected runtime. In this chapter, we present a fully automated approach to the
termination analysis of probabilistic loops whose guards and assignments are polynomial
expressions. Because proving (P)AST is undecidable in general, existing proof rules
typically provide sufficient conditions. We refine and expand upon four proof rules from
the literature. We effectively automate the extended proof rules by computing asymptotic
bounds on polynomials in program variables using recurrences. The resulting algorithms
and software tool Amber can check AST, PAST as well as their negations for a large class
of polynomial probabilistic loops. Our experimental results underscore the advantages of
our generalized proof rules and demonstrate that Amber can analyze probabilistic loops
that are out of reach for other state-of-the-art tools.

Chapter 7 – The Probabilistic Termination Tool Amber. In this chapter, we
provide a comprehensive overview of our probabilistic termination analysis tool Amber,
as introduced in the preceding chapter. We delve into the methodologies employed by
Amber and extend the method of asymptotic bounds to analyze probabilistic termination
by further supporting symbolic constants and common probability distributions, which
may be continuous, discrete, finitely- or infinitely supported. Furthermore, we expand
upon the experimental evaluation of Amber. This includes an increased number of
benchmarks and a comparison with other state-of-the-art tools, offering insights into
Amber performance and applicability.

Chapter 8 – Summary & Outlook. In this chapter, we conclude the thesis and
provide a discussion on potential avenues for future work that could build upon our
findings.

1.4 Impact of the Thesis

Included publications. The results presented in this thesis stem from a series of
peer-reviewed publications. The author of this thesis has served as either the main
contributor or one of the main contributors in all listed works.
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[MBKK21a] Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. Auto-
mated Termination Analysis of Polynomial Probabilistic Programs. In Proc. of
ESOP, 2021.

[MBKK21b] Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. The
Probabilistic Termination Tool Amber. In Proc. of FM, 2021.

[MBKK22] Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. The
Probabilistic Termination Tool Amber. Formal Methods Syst. Des., 2022.

[ABK+22] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moos-
brugger, and Miroslav Stankovic. Solving Invariant Generation for Unsolvable
Loops. In Proc. of SAS, 2022.

[MSBK22a] Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. This
Is the Moment for Probabilistic Loops. Proc. ACM Program. Lang., (OOPSLA2),
2022.

[MMK23] Marcel Moosbrugger, Julian Müllner, and Laura Kovács. Automated Sensitivity
Analysis for Probabilistic Loops. In Proc. of iFM, 2023.

[MMK24] Julian Müllner, Marcel Moosbrugger, and Laura Kovács. Strong Invariants Are
Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic)
Programs. Proc. ACM Program. Lang., (POPL), 2024.

[ABK+24] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moos-
brugger, and Miroslav Stankovic. (Un)Solvable Loop Analysis. Formal Methods
Syst. Des., 2024. To appear.

Excluded publications. This thesis also influenced additional papers, though their
content is not incorporated in this thesis. The author of this thesis served as one of the
main contributors in all listed publications.

[KMS+22a] Ahmad Karimi, Marcel Moosbrugger, Miroslav Stankovic, Laura Kovács, Ezio
Bartocci, and Efstathia Bura. Distribution Estimation for Probabilistic Loops. In
Proc. of QEST, 2022.

[KMS+22b] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and
Efstathia Bura. Moment-Based Invariants for Probabilistic Loops With Non-
Polynomial Assignments. In Proc. of QEST, 2022.

[KMS+24] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and
Efstathia Bura. Exact and Approximate Moment Derivation for Probabilistic
Loops With Non-Polynomial Assignments. ACM Trans. Model. Comput. Simul.,
2024.
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1.4. Impact of the Thesis

Awards & Honors. The research leading to the results presented in this thesis garnered
recognition in various forms:

• The publication [KMS+22b] received the Best Paper Award 2022 by the Interna-
tional Conference on Quantitative Evaluation of SysTems.

• The work on invariant synthesis for unsolvable loops [ABK+22] was honored with
the Radhia Cousot Best Young Researcher Paper Award, awarded by the program
committee of the Static Analysis Symposium.

• Three conference papers [MBKK21b, ABK+22, KMS+22b] were invited for publi-
cation as extended articles in journals [MBKK22, ABK+24, KMS+24].

• The Christina Hörbiger Prize from TU Wien was awarded in recognition of the
efforts and contributions towards this thesis.
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CHAPTER 2
Computing Moments

This chapter is based on the following publication [MSBK22a]:

Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. This Is
the Moment for Probabilistic Loops. Proc. ACM Program. Lang., (OOPSLA2), 2022.

2.1 Problem Statement
The random nature of probabilistic programs (PPs) makes their functional analysis very
challenging as one needs to reason about probability distributions of random variables
instead of computing with single variable values [BKS20a]. A standard approach towards
handling probability distributions associated with random variables is to estimate such
distributions by sampling PPs using Monte Carlo simulation techniques [Has70]. While
such approaches work well for statistical model checking [YS06], they are not suitable
for the analysis of PPs with potentially infinite program loops as simulating infinite-
state behavior is not always viable. Moreover, even for PPs with finitely many states,
simulation-based analysis is inherently approximative.

With the aim of precisely, and not just approximately, handling random variables,
probabilistic model checking [KNP11, DJKV17] became a prominent approach in the
analysis of PPs with finite state spaces. For analyzing unbounded PPs, these techniques
would however require non-trivial user guidance, in terms of assertion templates and/or
invariants.

We address the challenge of precisely analyzing, and even recovering, probability distribu-
tions induced by PPs with both countably and uncountably infinite state spaces. We do so
by extending both expressivity and automation of the state-of-the-art in PP analysis: We
(i) focus on PPs with probabilistic infinite loops (see Figure 2.1) and (ii) fully automate
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2. Computing Moments

the analysis of such loops by computing exact higher-order statistical moments of program
variables x parameterized by a loop counter n.

Functional representations f(n) for a program variable x, with f(n) characterizing the
kth moment E(xk

n) of x at iteration n, can be interpreted as a quantitative invariant
E(xk

n) − f(n) = 0, as the equation is true for all loop iterations n ∈ N. Inferring
quantitative invariants is arguably not novel. On the contrary, it is one of the most
challenging aspects of PP analysis, dating back to the seminal works of [MM05, KMMM10]
introducing the weakest pre-expectations calculus. Template-based approaches to discover
invariants or (super-)martingales emerged [BEFH16, KUH19] by translating the invariant
generation problem into a constraint solving one. The derived quantitative invariants are
generally provided in terms of expected values [CS14, KMMM10, MM05]. Nevertheless,
the expected value alone — also referred to as the first moment — provides only partial
information about the underlying probability distribution. This motivates the critical
importance of higher moments for PP analysis [KUH19, BKS20c, WHR21, SBK22].

Higher Moments for PP Analysis. Using concentration-of-measure inequalities
[BLM13], we can utilize higher moments E(Xk) to obtain upper and lower bounds on
tail probabilities P(X > t), measuring the probability that a given random variable X,
corresponding for example to our program variables x from Figure 2.1, surpasses some
value t. We also show that when a program variable x admits only k < ∞ many values,
we can fully recover its probability mass function as a closed-form expression in the loop
counter n using the first k−1 raw moments (see Section 2.6). Furthermore, raw moments
can be used to compute central moments E((X − E(X))k) and thus provide insights
on other important characteristics of the distribution such as the variance, skewness
and kurtosis [Dur19]. However, computing exact higher statistical moments for PPs is
computationally expensive [KKM19], a challenge which we also address, as illustrated in
Figures 2.1–2.2 and described next.

Computing Higher Moments. The theory we establish describes how to compute
higher moments of program variables for a large class of probabilistic loops and how
to utilize these moments to gain more insights into the analyzed programs. We call
this theory the theory of moment-computable probabilistic loops (Section 2.5). Our
approach is fully automatic, meaning it does not rely on externally provided invariants
or templates. Unlike constraint solving over templates [BEFH16, KUH19], we employ
algebraic techniques based on systems of linear recurrences with constant coefficients
describing so-called C-finite sequences [KP11]. Different equivalence preserving program
transformations (Section 2.3) and power reduction of finite valued variables (Section 2.4)
allow us to simplify PPs and represent their higher moments as linear recurrence systems
in the loop counter. Figure 2.1 shows a PP with many unique features supported
by our technique towards PP analysis: it has an uncountable state-space, contains
if-statements, symbolic constants, draws from continuous probability distributions with
state-dependent parameters, and employs polynomial arithmetic as well as circular
variable dependencies. We are not aware of other works automating the reasoning about
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2.1. Problem Statement

t o g g l e , s u m , x , y , z = 0 , s0 , 1 , 1 , 1
while ⋆ :

t o g g l e = 1−t o g g l e
if t o g g l e == 0 :

x = x+1 {1/2} x+2
y = y+z+x∗∗2 {1/3} y−z−x
z = z+y {1/4} z−y

end
l = Laplace ( x+y , 1)
g = Normal (0 , 1 )
if g < 1/2 : sum = sum+x end

end

E(togglen) = 1
2 − (−1)n

2

E(xn) = 5
8 + 3n

4 + 3(−1)n

8

E(x2
n) = 15

32 + 17n
16 + 9n(−1)n

16 + 17(−1)n

32 + 9n2

16

E(ln) = −17
8 − 15n

4 + 67·2−n·6 n
2

10 + 67·2−n6
1+n

2
30 −

37·3−n6
n
2

10 − 37·3−n6
1+n

2
20 + 67·6 n

2 (−1)n

10·2n −
15(−1)n

8 − 67·6
1+n

2 (−1)n

30·2n + 37·6
1+n

2 (−1)n

20·3n −
37·6 n

2 (−1)n

10·3n

Figure 2.1: An example of a multi-path PP loop, with Laplace and Normal distributions
parametrized by program variables. Our work fully automates the analysis of such and
similar PP loops by computing higher moments. Several moments for program variables
in the loop counter n are listed on the right. Each moment was automatically generated.

such and similar probabilistic loops, in particular for computing precise higher moments
of variables. Figure 2.1 lists some of the variables’ moments computed automatically by
our technique. Further, these moments can be used to compute tail probability bounds
or central moments, such as the variance, to characterize the distribution of the program
variables as the loop progresses.

Thanks to our power reduction techniques (Section 2.4), our approach supports arbitrary
polynomial dependencies among finite valued variables. Moreover, our technique can
fully recover the value distributions of finite valued program variables, from finitely many
higher moments. We illustrate this in Section 2.6 for Herman’s self-stabilization protocol
depicted in Figure 2.2, a randomized algorithm for recovering faults in a process token
ring [Her90].

Theory and Practice in Computing Higher Moments. In theory, our approach
can compute any higher moment for any variable and PP of our program model, under
assumptions stated in Sections 2.3 and 2.5. We also establish the necessity of these
assumtions in Section 2.5.3. In a nutshell, the completeness theorem (Theorem 6) holds
for probabilistic loops for which non-finite program variables are not polynomially self-
dependent and all branching conditions are over finite valued variables. We strengthen
the theory of [BKS19] to support if-statements, circular variable dependencies, state-
dependent distribution parameters, simultaneous assignments, and multiple assignments,
and establish the necessity of our assumptions. Moreover, unlike [WHR21], our approach
does not rely on templates and provides exact closed-form representations of higher
moments parameterized by the loop counter.

In practice, our approach is implemented in the Polar tool and compared against
exact as well as approximate methods [MSBK22b]. Our experiments (Section 2.7) show
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x1 , x2 , x3 = 1 , 1 , 1
t 1 , t 2 , t3 = 1 , 1 , 1
p = 1/2 ; tokens = t1 + t2 + t3
while ⋆ :

x1o , x2o , x3o = x1 , x2 , x3
if x1o == x3o : x1=Bernoul l i (p ) else: x1=x3o end
if x2o == x1o : x2=Bernoul l i (p ) else: x2=x1o end
if x3o == x2o : x3=Bernoul l i (p ) else: x3=x2o end

if x1 == x3 : t1 = 1 else: t1 = 0
if x2 == x1 : t2 = 1 else: t2 = 0
if x3 == x2 : t3 = 1 else: t3 = 0
tokens = t1 + t2 + t3

end

E(tokensn) = 1 + 2 · 4−n | E(tokens2
n) = 1 + 8 · 4−n | E(tokens3

n) = 1 + 26 · 4−n

Figure 2.2: Herman’s self stabilization algorithm with three nodes encoded as a proba-
bilistic loop together with three moments of tokens.

that Polar outperforms the state-of-the-art of moment computation for probabilistic
loops in terms of supported programs and efficiency. Furthermore, Polar is able to
compute exact higher moments magnitudes faster than sampling can establish reasonable
confidence intervals.

Contributions. Our main contributions are listed below:

• An automated approach for computing higher moments of program variables for a
large class of probabilistic loops with potentially uncountable state spaces (Sections
2.3-2.5).

• We develop power reduction techniques to reduce the degrees of finite valued
program variables in polynomials (Section 2.4).

• We prove completeness of our approach for computing higher moments (Section
2.5).

• We fully recover the distributions of finite valued program variables and approximate
distributions for unbounded/continuous program variables from finitely many
moments (Section 2.6).

• We provide an implementation and empirical evaluation of our approach, outper-
forming the state-of-the-art in PP analysis in terms of automation and expressivity
(Section 2.7).
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2.2. Preliminaries

2.2 Preliminaries
We use the symbol P for probability measures and E for the expectation operator. The
support of a random variable X is denoted by supp(X).

2.2.1 Probability Theory
Operationally, a probabilistic program is a Markov chain with potentially uncountably
many states. Let us recall some notions about Markov chains. For more details on
Markov chains and probability theory in general we refer the reader to [Dur19].

For a fixed set S, a σ-algebra is a non-empty set of subsets of S closed under complemen-
tation and countable unions.

Definition 1 (Sequence Space). Let (S, S) be a measurable space, that is, S is a
set with a σ-algebra S. Its sequence space is the measurable space (Sω, Sω) where
Sω := {(s1, s2, . . . ) : si ∈ S} and Sω is the σ-algebra generated by the cylinder sets
Cyl[B1, . . . , Bn] := {θ : θi ∈ Bi, 1 ≤ i ≤ n} for all prefixes B1, . . . , Bn ∈ S and all n ∈ N.

A Markov kernel is, on a high level, a generalization of transition probabilities between
states to uncountable state spaces and is required for the definition of a Markov chain.

Definition 2 (Markov Chain). Let (S, S,P) be a probability space and p : S × S → [0, 1]
a Markov kernel. A stochastic process Xn is a Markov chain with Markov kernel p if

P(Xn+1 ∈ B | X0 = x0, X1 = x1, . . . , Xn = xn) = p(Xn, B). (2.1)

Given a measurable space (S, S) , an initial distribution µ, a stochastic process Xn and
a Markov kernel p, Kolmogorov’s Extension Theorem says that there is a unique measure
P such that Xn is a Markov chain in (Sω, Sω,P).

For a random variable X, central moments E((X − E(X))k) can be computed from raw
moments E(Xk) and vice versa through the transformation of center:

E (X − b)k = E ((X − a) + (a − b))k =
k

i=0

k

i
E (X − a)i (a − b)k−i. (2.2)

2.2.2 Linear Recurrences
We briefly recall standard terminology on algebraic sequences and recurrences. For
further details, we refer the reader to [KP11]. A sequence (an)∞

n=0 is called C-finite if it
obeys a linear recurrence with constant coefficients, that is, (an)∞

n=0 satisfies an equation
of the form

an+l = cl−1 · an−l−1 + cl−2 · an−l−2 + · · · + c0 · an,

for some order l ∈ N, some constants ci ∈ R and all n ∈ N.
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lop ∈ {and, or}, cop ∈ {=, ̸=, <, >, ≥, ≤}, Dist ∈ {Bernoulli, Normal, Uniform, . . . }

⟨sym⟩ ::= a | b | . . . ⟨var⟩ ::= x | y | . . .

⟨const⟩ ::= r ∈ R | ⟨sym⟩ | ⟨const⟩ ( + | * | / ) ⟨const⟩
⟨poly⟩ ::= ⟨const⟩ | ⟨var⟩ | ⟨poly⟩ (+ | - | *) ⟨poly⟩ | ⟨poly⟩**n
⟨assign⟩ ::= ⟨var⟩ = ⟨assign_right⟩ | ⟨var⟩ , ⟨assign⟩ , ⟨assign_right⟩
⟨categorical⟩ ::= ⟨poly⟩ ({⟨const⟩} ⟨poly⟩)* [{⟨const⟩}]

⟨assign_right⟩ ::= ⟨categorical⟩ | Dist(⟨poly⟩∗) | Exponential(⟨const⟩/⟨poly⟩)
⟨bexpr⟩ ::= true (⋆) | false | ⟨poly⟩ ⟨cop⟩ ⟨poly⟩ | not ⟨bexpr⟩ | ⟨bexpr⟩ ⟨lop⟩ ⟨bexpr⟩
⟨ifstmt⟩ ::= if ⟨bexpr⟩: ⟨statems⟩ (else if ⟨bexpr⟩: ⟨statems⟩)∗ [else: ⟨statems⟩] end
⟨statem⟩ ::= ⟨assign⟩ | ⟨ifstmt⟩ ⟨statems⟩ ::= ⟨statem⟩+

⟨loop⟩ ::= ⟨statem⟩* while ⟨bexpr⟩ : ⟨statems⟩ end

Figure 2.3: Grammar describing the syntax of probabilistic loops ⟨loop⟩.

Theorem 1 (Closed-form [KP11]). Every C-finite sequence (an)∞
n=0 can be written as

an exponential polynomial, that is an = m
i=1 ndiun

i for some natural numbers di ∈ N
and complex numbers ui ∈ C. We refer to m

i=1 ndiun
i as the closed-form or the solution

of the sequence (an)∞
n=0 or its recurrence.

An important fact is that closed-forms of linear recurrences with constant coefficients of
any order always exist and are computable. This also holds for all variables in systems of
linear recurrences with constant coefficients.

2.3 Probabilistic Program Model
In this section we introduce our programming model (Section 2.3.1) and describe its
semantics in terms of Markov chains (Section 2.3.2). Moreover, we introduce transforma-
tions (2.3.3) normalizing a probabilistic program to simplify its analysis.

2.3.1 Probabilistic Program Syntax

The syntax defining our program model is given by the grammar in Figure 2.3. Throughout
the chapter, we will use the phrases (probabilistic) loops and (probabilistic) programs
interchangeably for loops adhering to the syntax in Figure 2.3. We infer higher moments
E(xk

n) of program variables x parameterized by the loop counter n. We abstract from
concrete loop guards by defining the guards of programs in our program model to be
true (written as ⋆). Guarded loops while ϕ: . . . can be modeled as an infinite loops
while ⋆: if ϕ: . . ., with the limit behaviour giving the moments after termination (cf.
Section 2.5.1).
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Our program model defined in Figure 2.3 contains non-nested while-loops which are
preceded by a loop-free initialization part. The loop-body and initialization part allow
for (nested) if-statements, polynomial arithmetic, drawing from common probability
distributions, and symbolic constants. Symbolic constants can be used to represent
arbitrary real numbers and are also used for uninitialized program variables. Categorical
expressions (defined by the non-terminal ⟨categorical⟩ in Figure 2.3) are expressions of the
form v1{p1} . . . vl{pl} such that pi = 1. Their intended meaning is that they evaluate
to vi with probability pi. The last parameter pl can be omitted and in that case is set
to pl := 1 − l−1

i=1 pi. For a program P we denote with Vars(P) the set of P’s variables
appearing on the left-hand side of an assignment in P’s loop-body. The programs of
Figures 2.1-2.2 are examples of our program model defined in Figure 2.3. In comparison
to the probabilistic Guarded Command Language (pGCL) [BKS20a], programs of our
model contain exactly one while-loop, no non-determinism 1 but support continuous
distributions and simultaneous assignments.

2.3.2 Program Semantics
In what follows we define the semantics of probabilistic programs in terms of Markov
chains on a measurable space. We then introduce the notion of normalized probabilistic
loops by means of so-called P-preserving program transformations (Section 2.3.3).

Definition 3 (State & Run Space). Let P be a probabilistic program with m variables.
We denote by ND(P) the non-probabilistic program obtained from P by replacing every
probabilistic choice C in P by a non-deterministic choice over supp(C). Let StatesP ⊆ Rm

be the set of program states of ND(P) reachable from any initial state. The state space of
P is the measurable space (StatesP , SP), where SP is the Borel σ-algebra on Rm restricted
to StatesP . The run space of P is the sequence space (Statesω

P , Sω
P) =: (RunsP , RP).

In what follows, we omit the subscript P whenever the program P is irrelevant or clear
from the context. Executions/runs of a probabilistic program P define a stochastic
process, as follows.

Definition 4 (Run Process). Let P be a probabilistic program with m variables. The run
process Φn : Runs → States is a stochastic process in the run space mapping a program
run to its nth state, that means, Φn(run) := runn.

For program variable x with index i ≥ 1, we denote by xn the projection of Φn to its ith
component Φn(·)(i). Given an arithmetic expression A over P’s variables, we write An

for the stochastic process where every program variable x in A is replaced by xn.

Remark 1. Given an initial distribution of program states µ and a Markov kernel p
defined according to the standard meaning of the program statements, by Kolmogorov’s

1Non-determinism is different from probabilistic choice. Demonic (angelic) non-determinism is
concerned with the worst-case (best-case) behavior. For instance, a variable can be assigned to 0 or 1 both
with probability 1/2. This is different from assigning 0 or 1 non-deterministically, where the probability is
not specified.

17
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Extension Theorem we conclude that there is a unique probability measure PP on
(RunsP , RP) such that the run process is a Markov chain. (RunsP , RP ,PP) is the
probability space associated to program P. Distributions and (higher) moments of P’s
variables are to be understood with respect to this probability space.

For probabilistic loops according to the syntax in Figure 2.3, the initial distribution µ of
values of loop variables is the distribution of states after the statements ⟨statem⟩∗ just
before the while-loop. Moreover, the loop body in Figure 2.3 is considered to be atomic,
meaning the Markov kernel p describes the transition between full iterations in contrast
to single statements.

2.3.3 P-Preserving Transformations
Our probabilistic programs defined by the grammar in Figure 2.3 support rich arithmetic
and complex probabilistic behavior/distributions. Such an expressivity of Figure 2.3
comes at the cost of turning the analysis of programs defined by Figure 2.3 cumbersome. In
this section, we address this difficulty and introduce a number of program transformations
that allow us to simplify our probabilistic programs to a so-called normal form while
preserving the joint distribution of program variables. Normal forms allow us to extract
recursive properties from the program, which we will later use to compute moments for
program variables (Section 2.5).

Schemas and Unification. The program transformations we introduce in this section
build on the notion of schemas and program parts. A program part is an empty word
or any word resulting from any non-terminal of the grammar in Figure 2.3. For our
purposes, a schema S is a program part with some subtrees in the program part’s syntax
tree being replaced by placeholder symbols ṡ1, . . . , ṡl. A substitution is a finite mapping
σ = {ṡ1 → p1, . . . , ṡl → pl} where p1, . . . , pl are program parts. We denote by S[σ] the
program part resulting from S by replacing every ṡi by pi, assuming S[σ] is well-formed.
For two schemas S1 and S2 a substitution u such that S1[u] = S2[u] is called a unifier
(with respect to S1 and S2). In this case S1 and S2 are called unifiable (by u).

Transformations. In what follows, we consider P to be a fixed probabilistic program
defined by Figure 2.3 and give all definitions relative to P. A transformation T is a
mapping from program parts to program parts with respect to a schema Old. T is
applicable to a subprogram S of P if S and Old are unifiable by the unifier u. Then, the
transformed subprogram is defined as T (S) := New[u] where New is a schema depending
on Old and u. A transformation is fully specified by defining how New results from Old
and u. We write T (P, S) for the program resulting from P by replacing the subprogram
S of P by T (S).

The first transformation we consider removes simultaneous assignments from P. For
this, we store a copy of each assignment in an auxiliary variable to preserve the values
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used for simultaneous assignments, in case an assigned variable appears in an assignment
expression. Variables are then assigned their intended value.

Definition 5 (Simultaneous Assignment Transformation). A simultaneous assignment
transformation is the transformation defined by

ẋ1, . . ., ẋl = v̇1, . . ., v̇l → t1=v̇1; . . .; tl=v̇l; ẋ1=t1; . . .; ẋl=tl,
where t1, . . . , tl are fresh variables.

In what follows, we assume that parameters of common distributions used in programs are
constant. Nevertheless, the following transformation enables the use of some non-constant
distribution parameters.

Definition 6 (Distribution Transformation). A distribution transformation is a trans-
formation defined by either of the mappings

• ẋ = Normal(ṗ,v̇) → t = Normal(0,v̇); ẋ=ṗ+t

• ẋ = Uniform(ṗ1,ṗ2) → t = Uniform(0,1); ẋ=ṗ1+(ṗ2−ṗ1)∗t

• ẋ = Laplace(ṗ,ḃ) → t = Laplace(0,ḃ); ẋ=ṗ+t

• ẋ = Exponential(ċ/ṗ) → t = Exponential(ċ); ẋ=ṗ∗t

where, for every mapping, t is a fresh variable.

Example 1. In Figure 2.1, l,g = Laplace(x+y,1),Normal(0,1) is a simultaneous assignment
and can be transformed using the transformation rules from Definitions 5-6 as follows:

(sim)→
t1=Laplace ( x+y,1 )
t2=Normal (0 , 1 )
x=t1
y=t2

(dist)→

t3=Laplace (0 , 1 )
t1=x+y+t3
t2=Normal (0 , 1 )
x=t1
y=t2

To simplify the structure of probabilistic loops, we assume else if branches to be
syntactic sugar for nested if else statements. We remove else by splitting it into
if-statements (if C and if not C). Since variables in C could be changed within the
first branch, we store their original values in auxiliary variables and use those for the
condition C ′ of the second if statement. We capture this transformation in the following
definition.

Definition 7 (Else Transformation). An else transformation is the transformation

if Ċ :
...

Branch1

else:
...

Branch2 end
, u →

t1=x1 ; . . . ; tl=xl

if Ċ :
...

Branch1 end

if not C ′ :
...

Branch2 end
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where x1, . . . , xl are all variables appearing in Ċ[u] which are also being assigned in...
Branch1[u]. Every ti is a fresh variable and C ′ results from Ċ[u] by substituting every
xi with ti.

To further simplify the loop body into a flattened list of assignments, we equip every
assignment a of form “x = value”with a condition Ca (initialized to true ⊤) and a default
variable da (initialized to x), written as “x = value [Ca] da”. The semantics of the condi-
tioned assignment is that x is assigned value if Ca holds just before the assignment and
da otherwise. With conditioned assignments, the loop body’s structure can be flattened
using the following transformation.

Definition 8 (If Transformation). An if transformation is the transformation defined by

if Ċ1 :
ẋ = v̇ [ Ċ2 ] ẋ...
Rest end

, u →
t = ẋ

ẋ = v̇ [ Ċ1 and Ċ2 ] ẋ

if C :
...

Rest end

where t is a fresh variable and C results from Ċ1[u] by substituting ẋ[u] by t. If
...

Rest[u]
is empty, the line if C:

...
Rest end is omitted from the result. If ẋ[u] does not appear in

Ċ1[u] the line t = ẋ is dropped.

Example 2. The following program containing nested if-statements can be flattened as
follows:

if x == 1 :
x = B e r n o u l l i (1/2)
if x == 0 : y = 1 end
end

(if)→
if x == 1 :
x = B e r n o u l l i (1/2)
y = 1 [ x == 0 ] y
end

(if)→

t = x
x = B e r n o u l l i (1/2) [ t == 1 ] x
if t == 1 :
y = 1 [ x == 0 ] y
end

(if)→
t = x
x = B e r n o u l l i (1/2) [ t == 1 ] x
y = 1 [ t == 1 ∧ x == 0 ] y

To bring further simplicity to our program P , we ensure for each variable to be modified
only once within the loop body. To remove duplicate assignments we introduce new
variables x1, . . . , xl−1 to store intermediate states. Assignments to other variables, in
between the updates of x, will be adjusted to refer to the latest xi instead of x.

Definition 9 (Multi-Assignment Transformation). A multi-assignment transformation
is the transformation defined by
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ẋ = v̇1 [ Ċ1 ] ẋ ;
...

Rest1 ;
ẋ = v̇2 [ Ċ2 ] ẋ ;

...
Rest2 ;

. . . ; ẋ = v̇l [ Ċl ] ẋ ;
, u →

x1 = v̇1 [ Ċ1 ] ẋ ; Rest1 ;
x2 = v2 [ C2 ] x1 ; Rest2 ;
. . . ; ẋ = vl [ Cl ] xl−1 ;

where x1, . . . , xl−1 are fresh variables. For i ≥ 2, vi, Ci and Resti result from v̇i[u], Ċi[u]
and

...
Resti[u], respectively, by replacing ẋ[u] by xi−1.

Example 3. In the program of Figure 2.2, program line if x1 == x3: t1 = 1 else: t1 = 0
can be transformed using transformation rules from Definitions 7-9 as follows:

(else)→
if x1 == x3 : t1 = 1
if x1 != x3 : t1 = 0

(if)→
t1 = 1 [ x1 == x3 ] t1
t1 = 0 [ x1 != x3 ] t1

(multi)→
t11 = 1 [ x1 == x3 ] t1
t1 = 0 [ x1 != x3 ] t11

With program transformations defined, we can turn our attention to program properties.
In particular, we show that our transformations of P do not change the joint distribution
of P’s variables. Since our transformations may introduce new variables, we consider
program equivalence with respect to program variables in order to ensure that the
distribution of P is maintained/preserved by our transformations.

Definition 10 (Program Equivalence). Let P1 and P2 be two probabilistic programs.
We define P1 and P2 to be equivalent with respect to a set of program variables X, in
symbols P1 ≡X P2, if:

1. X ⊆ Vars(P1) ∩ Vars(P2), and

2. the joint distributions of X arising from P1 and P2 are equal.

To relate a program P to its transformed version T (P, S) we consider the distribution of
variables of the original program P. If P retains the joint distribution of its variables
after applying transformation T , we say that T is P-preserving.

Definition 11 (P-Preserving Transformation). We say that a transformation T is P-
preserving if P ≡Vars(P) T (P, S) for all subprograms S of P which are unifiable with
Old.

It is not hard to argue that the transformations defined above are P-preserving, yielding
the following result.

Lemma 2. The transformations from Definitions 5-9 are P-preserving.
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By exhaustively applying the P-preserving transformations of Definitions 5-9 over P,
we obtain a so-called normalized program PN , as defined below. The normalized PN

will then further be used in computing higher moments of P in Sections 2.5, as the PN

preserves the moments of P (Theorem 3).

Definition 12 (Normal Form). A program P is in normal form or a normalized program
if none of the transformations from Definitions 5-9 are applicable to P.

Theorem 3 (Normal Form). For every probabilistic program P there is a PN in normal
form such that P ≡Vars(P) PN . Moreover, PN can be effectively computed from P by
exhaustively applying transformations from Definitions 5-9.

Proof. There are two claims in the theorem, which we need to address: (i) exhaustively
applying transformation rules terminates (termination), and (ii) it preserves statistical
properties of the (original) program variables (correctness).

For termination, we show that programs become smaller, in some sense, after every
transformation. In particular, we consider the program size to be given by a tuple (Sim,
Dist, Else, If, MultiB , MultiI), representing the number of simultaneous assignments, non-
trivial distributions, else statements, assignments within if branches (weighted for nested
ifs), and number of variables with multiple assignments in the loop body and initialization
part, respectively. With respect to the lexicographic order, each transformation reduces
the size of the program which is lower-bounded by 0.

Correctness can be shown by treating each transformation separately and showing that
it does not alter the variables’ distributions after a single application (Lemma 2). This is
true for all transformations from Definitions 5-9. Auxiliary variables are used to store
the original value to prevent intervening variable modifications. For Multi-Assignment
Transformation (Definition 9), we also revise the rest of the assignments to reflect the
change of the original variable. The Distribution Transformation (Definition 6) uses
statistical properties of well-known distributions.

Properties of Normalized Programs. Figure 2.4 shows a normal form for the
program from Figure 2.1. Normalized programs have the following important properties:
(1) all distribution parameters are constant; (2) the loop body is a sequence of guarded
assignments; (3) every program variable is only assigned once in the loop body. More-
over for every guarded assignment v = assigntrue [C] assignfalse, the guard C is a boolean
condition and assignfalse is a single variable which is assigned to v if C evaluates to false.
If C evaluates to true, the variable v is assigned assigntrue. The expression assigntrue is
either a distribution with constant parameters or a probabilistic choice of polynomials as
illustrated in Figure 2.4.

Remark 2. Based on the order in which transformations are applied to a program P
and the names used for auxiliary variables, several different normalized programs can
be achieved for P. For our approach, only the existence of a normal form is relevant.
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2.4. Finite Types in Probabilistic Programs

t o g g l e = 0 ; sum = s0
x = 1 ; y = 1 ; z = 1
while ⋆ :

t o g g l e = 1−t o g g l e
x = 1+x {1/2} 2+x [ toggle==0 ] x
y = y+z+x∗∗2 {1/3} −x+y−z [ toggle==0 ] y
z = z+y {1/4} z−y [ toggle==0 ] z
t1 = Laplace (0 , 1)
l = t1+x+y
g = Normal (0 , 1)
sum = sum+x [ g < 1/2 ] sum

end

Figure 2.4: A normal form for the program in Figure 2.1.

Moreover, from the definitions of the transformation, it is apparent that exhaustively
applying them leads to a normal form whose size is linear in the size of the original
program.

2.4 Finite Types in Probabilistic Programs
Given a probabilistic program P in our programming model, the transformations of
Section 2.3.3 simplify P by computing its normalized form while maintaining the distri-
bution (and hence also moments) of P . Nevertheless, the normalized form of P contains
computationally expensive polynomial arithmetic, potentially hindering the automated
analysis of P in Section 2.5 due to a computational blowup. Therefore, we introduce
further simplifications for P by means of power reduction techniques.

Example 4. Consider Figure 2.1 and assume we are interested in the kth power of
variable toggle and deriving the raw moment E(togglek

n). Our analysis relies on replacing
variables with their assignments (see Section 2.5), leading to the expression (1−togglen−1)k.
When expanded, this is a polynomial in togglen−1 with k+1 monomials:

(1 − togglen−1)k =
k

i=0

k

i
(−1)itogglei

n−1

Higher moments, together with the aforementioned replacements, may lead to blowups
of the number of monomials to consider. However, observing that the variable toggle
is binary, we have togglek

n = togglen = 1 − togglen−1 for any k ≥ 0. Arbitrary powers
of the finite variable toggle with 2 possible values can be written in terms of powers
smaller than 2. In the rest of this section, we show that this phenomenon generalizes
from binary variables to arbitrary finite valued variables, thus simplifying the analysis of
higher moments of finite valued program variables.
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2. Computing Moments

As defined in Definition 4, for an arithmetic expression X over program variables, Xn

denotes the stochastic process mapping a program run to the value of X after iteration n.

Definition 13 (Finite Expression). Let P be a probabilistic program and X an arithmetic
expression over the variables of P. We say that X is finite if there exist a1, . . . , am ∈ R
such that for all n ∈ N : Xn ∈ {a1, . . . , am}.

2.4.1 Power Reduction for Finite Types
As established in [BKS20b, Lemma 1], high powers k of a random variable X over a
finite set can be reduced. We adapt their result to our setting as follows.

Theorem 4 (Finite Power Reduction). Let m, k ∈ Z and X be a discrete random
variable over A = {a1, . . . , am}. Then we can rewrite Xk as a linear combination of
1, X, X2, · · · , Xm−1. Furthermore,

Xk = akM−1X, (2.3)

where ak = (ak
1, . . . , ak

m), M is an m × m matrix with Mij = ai−1
j (with 00 := 1), and

X = (X0, . . . , Xm−1)T .

In other words, Theorem 4 implies that any higher moment of X, can be computed from
just its first m−1 moments. Furthermore, we build on Theorem 4 and establish the
inverse of matrix M explicitly (M is explicit in Theorem 4 but its inverse is implicit).

Theorem 5 (Reduction Formula). Recall that the kth elementary symmetric polynomial
with respect to a set V = {v1, . . . , vn} is ek(V ) =

1≤j1<···<jk≤n

vj1 · · · vjk
and let A−j =

A \ {aj}). Then the inverse of M in (2.3) is given by

M−1
ij = −(−1)jem−j(A−i)

a∈A−i
(a − ai)

. (2.4)

Proof. Let MN = B for M as of (2.3) and N as of (2.4). We show that B = I by
showing that Bij = 1 if i = j and Bij = 0 otherwise. We have

Bij =
1≤k≤m

NikMkj =
1≤k≤m

−(−1)kem−k(A−i)
a∈A−i

(a − ai)
ak−1

j

= 1
a∈A−i

(a − ai) 1≤k≤m

−(−1)kak−1
j em−k(A−i)

= 1
a∈A−i

(a − ai) 0≤k≤m−1
(−aj)kem−k−1(A−i)

= 1
a∈A−i

(a − ai) a∈A−i

(a − aj),
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2.5. Computing Higher Moments of Probabilistic Programs

where the last equation comes from the expansion of product a∈A−i
(a−aj) and grouping

by the exponent of aj . We can clearly see that the last expression is 1 if i = j and 0
otherwise.

Example 5. Let X be a random variable over A := {−2, 0, 1, 3}. Using Theorem 4-5,
we obtain the 10th power of X as:

X10 = (−2)10 010 110 310




0 −1/10 2/5 −1/30
1 −5/6 −1/3 1/6
0 1 1/6 −1/6
0 −1/15 1/30 1/30







X0

X1

X2

X3




= 1934X3 + 2105X2 − 4038X.

2.5 Computing Higher Moments of Probabilistic Programs
We now bring together the results from Sections 2.3-2.4 to develop the theory of moment-
computability for probabilistic loops. We establish the technical details leading to sufficient
conditions that ensure moment-computability, culminating in the proof of Theorem 6.
The main ideas of our method are illustrated on the probabilistic loop from Figure 2.1 in
Example 6 at the end of this section.

Definition 14 (Moment-Computability). A probabilistic loop P is moment-computable
if a closed-form (according to Theorem 1) of E(xk

n) exists and is computable for all
x ∈ Vars(P) and k ∈ N.

We will describe the class of moment-computable probabilistic loops through the properties
of the dependencies between program variables.

Definition 15 (Variable Dependency). Let P be a probabilistic loop and x, y ∈ Vars(P).
We define:

• y depends conditionally on x, if there is an assignment of y within an if-else-
statement and x appears in the if-condition.

• y depends finitely on x, if x is finite and appears in an assignment of y.

• y depends linearly on x, if x appears only linearly in every assignment of y.

• y depends polynomially on x, if there is an assignment of y in which x appears
non-linearly and x is not finite (motivated by Section 2.4.1).

• y depends on x if it depends on x conditionally, finitely, linearly, or polynomially.

Furthermore, we consider the transitive closure for variable dependency as follows: If z
depends on y and y depends on x, then z depends on x. If one of the two dependencies
is polynomial, then z depends polynomially on x.
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A crucial point to highlight in Definition 15 is that due to transitivity, variables can
depend on themselves. For instance, if variable x depends on y and y on x, then x is
self-dependent. Moreover, if either of the dependencies between x and y is non-linear,
x depends, by Definition 15, polynomially on itself. The absence of such polynomial
self-dependencies is a central condition for our notion of moment-computable loops.

Theorem 6 (Moment-Computability). A probabilistic loop P is moment-computable if
(1) none of its non-finite variables depends on itself polynomially, and (2) if the variables
in all if-conditions are finite.

Note that none of the program transformations from Section 2.3.3 can introduce a
polynomial (self-)dependence. We capture this in the following lemma:

Lemma 7 (Non-Dependency Preservation). If a variable x ∈ Vars(P) does not depend
on itself polynomially, neither does x ∈ Vars(PN ).

Before we prove Theorem 6, let us first show its validity for programs in normal form (as
defined in Section 2.3.3). Recall that a normalized program’s loop body is a flat list of
(guarded) assignments, one for every (possibly auxiliary) program variable.

Lemma 8 (Normal Moment-Computability). The Moment-Computability Theorem
(Theorem 6) holds for loops in normal form.

Proof. We have to show that for an arbitrary normalized program P satisfying the
conditions of Theorem 6, all x ∈ Vars(P) and all k ∈ N, the kth moment of x (that is
E(xk

n)) admits a closed-form as an exponential polynomial. E(xk
n) admits a closed-form

as an exponential polynomial in n if it satisfies a linear recurrence. We show a slightly
more general statement. That is, we show that for any monomial of program variables
M (and hence also for xk) E(M) satisfies a linear recurrence. The main idea of the proof
is to show that E(M) only depends on a finite set of monomials, each (in some sense)
not larger than M itself. Intuitively, the finite set of monomials on which E(M) depends
on are all monomials of program variables such that their expected values determine
E(M). We will show that this set of monomials exists, is finite, and leads to a system
of linear recurrences containing E(M), implying a computable exponential polynomial
closed-form for E(M) by Theorem 1.

Let P be a normalized program satisfying the conditions of Theorem 6, x ∈ Vars(P),
k, n ∈ N arbitrary, and M the set of all monomials over Vars(P) with the powers of
every finite variable d bounded by the number of possible values of d (higher powers can
be reduced as of Theorem 4).

Recurrences over Moments. Given the syntax of probabilistic programs and prop-
erties of expectation, for any monomial M ∈ M there is a natural way to express the
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2.5. Computing Higher Moments of Probabilistic Programs

expected value of M in iteration n+1, that is E(Mn+1), as a linear combination of
expectations of monomials in iteration n:

E(Mn+1) =
N∈M∗

cNE(Nn), (2.5)

for some finite set M∗ ⊂ M, and non-zero constants cN . Equation (2.5) is called the
recurrence of E(M). The set M∗ is the set of monomials that appear in the recurrence
of E(M). We define the ∗ operator to give such a set for any monomial and extend the
definition to sets by

S∗ =
M∈S

M∗.

The exact recurrence can be computed from E(Mn+1) by replacing variables appearing
in M by their assignments and using the linearity of E to convert expected values of
polynomials to linear combinations of expected monomials. Recall that for a program in
normal form, every program variable is only assigned once, all distribution parameters
are constant, and the loop body is a flat list of guarded assignments (Section 2.3.3). The
guarded assignments are of the form

x = a0{p0} . . . {pi−1}ai[Cx]dx,

for polynomials of program variables a0, . . . , ai and constant probabilities p0, . . . , pi−1, or

x = Dist[Cx]dx

for some admissible distribution Dist. The guard [Cx] is a boolean condition and for
normalized programs, dx is always a program variable. Assume, that the variable x
appears in the monomial M . Hence, M = M ′ ·xk

n+1 for some monomial M ′ not containing
x. If the single assignment of x is a (guarded) probabilistic choice of polynomials we
rewrite E(Mn+1) to

E(Mn+1) = E(M ′ · xk
n+1) = E M ′ dx[¬Cx] + pia

k
i [Cx] . (2.6)

If the single assignment of x is a (guarded) draw from a distribution we rewrite E(Mn+1)
to

E(Mn+1) = E(M ′ · xk
n+1) = E M ′dx[¬Cx] + E M ′[Cx] E Distk . (2.7)

Variables in conditions [Cx] are all finite since they come from branch conditions. We
further simplify the expressions of Equations (2.6)-(2.7) by replacing the logical conditions
[Cx] by polynomials that evaluate to 1 whenever variables satisfy the condition [Cx] and
to 0 otherwise. It is possible to write any logical condition over finitely valued variables
as such a polynomial ([SBK22]), with [x = c] := d∈ω(x)\{c}

x−d
c−d , [¬C] = 1 − [C], and
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[C1 ∧C2] = [C1] · [C2], where ω(x) is the set of possible values of x2. Converting conditions
to polynomials in the equation above leads to polynomials over moments of program
variables. We can compute the recurrence of E(M) in Equation (2.5) by replacing all
variables in M of iteration n+1 from last to first (by their appearance in P ’s loop body).
Throughout, the linearity of E is used to convert expected values of polynomials to linear
combinations of expected monomials. In Example 6, we illustrate this computation on
the program from Figure 2.1 with its normal form from Figure 2.4.

Ordering. Now that we can compute the recurrences, we need to introduce the order
for monomials, such that the monomials appearing in the recurrence for M are not larger
than M . We will need this to show that computing the recurrences as described above is,
indeed, a finite process. Intuitively, a variable y is larger than (or equal to) x if it depends
on x. Mutually dependent variables will form an equivalence class. We then extend the
order to monomials based on their degrees with respect to the variables’ equivalence
classes.

More formally, let ⪯ be a smallest total preorder on variables such that x ⪯ y whenever
y depends on x. We write x ≺ y iff x ⪯ y and y ̸⪯ x, and x ∼ y iff x ⪯ y and y ⪯ x. Let
x be the equivalence class of x induced by ∼. Note, that all variables in an equivalence
class are mutually dependent. However, because of our assumptions on the program
P, the mutual dependencies among non-finite variables are all linear (as there are no
polynomial self-dependencies).

We extend ⪯ to a preorder on the set of monomials M. For every monomial M and
non-finite variable x, we consider the degree deg(x, M) of M in the equivalence class of x3.
We associate M with the sequence of deg(x, M) for equivalence classes of all non-finite
variables, ordered reverse-lexicographically with respect to ⪯. Then the relations ≺, ∼,
and equivalence classes (−) follow naturally from ⪯.

By Theorem 4 and the definition of ⪯, the equivalence class M is finite for each M ∈ M.
Let M∼ be the set of equivalence classes of ∼. The preorder ⪯ induces a partial order
⪯∼ on M∼. Note that monomials only contain non-negative powers and a finite number
of variables. These facts together with ⪯ being total imply that ⪯∼ is a well-order. We
will write ⪯ instead of ⪯∼ when the meaning is clear from the context.

With these orders defined, we have N ⪯ M for any N ∈ M∗ and M ∈ M. Intuitively,
this means that for every monomial M , the monomials occurring in the recurrence of
M are not larger than M itself. This is true because the order on variables is defined
according to variable dependencies, the order on monomials is a reverse-lexicographic
extension of the order on variables, and the fact that polynomial self-dependencies are
not allowed by assumption.

2Because negation and conjunction are functionally complete for propositional logic, we can also
handle disjunctions using De Morgan’s laws: [P ∨Q] = [¬(¬P ∧¬Q)] = 1−(1− [P ]) ·(1− [Q]). Inequalities
can then be transformed into a disjunction of equalities since we assume that all variables appearing in
if-conditions are finitely valued.

3deg(x, M) :=
x∈x

deg(x, M), where deg(x, M) is the degree of x in M .
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Finite S(Q) We show, that for any monomial Q, there is a finite set of monomials
S(Q) ⊂ M containing Q such that M∗ ⊂ S(Q) for any M ∈ S(Q). Because M∗ is the set
of all monomials in the recurrence of M , this means that S(Q) contains all monomials
necessary to construct a system of linear recurrences containing E(Q) (if it exists and is
finite).

Let
S(Q) := Q ∪

A∈Q
∗

A≺Q

S(A). (2.8)

Clearly Q ∈ S(Q) and M∗ ⊂ S(Q) for any M ∈ S(Q) by construction. We are left to show
that S(Q) is finite for all Q ∈ Q ∈ M∼, which we can do by transfinite induction over
M∼.

For the base case, we have to show that S(Q) is finite for all Q in 1 (the trivial monomial).
Since 1 = { d∈F dλd | λd ≤ md}, where F is the set of finite program variables and
md are upper bounds on their powers as of Theorem 4, S(Q) = 1 is finite for all Q ∈ 1.
Suppose S(A) is finite for all A ≺ Q. Since Q

∗ is finite, so is the union in (2.8) and, as a
result, S(Q).

Moments. A system of linear recurrences with constant coefficients can be constructed
for monomials in S(Q). Therefore, the closed-form of any E(M) ∈ M exists and is
computable.

We now turn back to Theorem 6 and establish its validity. The crux of our proof below
relies on the fact that our transformations computing normal forms of P (see Section 2.3.3)
are P-preserving.

Proof (of Theorem 6). By Theorem 3 (Normal Form Termination), P can be transformed
to a normalized loop PN . By Lemma 7 (Non-Dependency Preservation), PN satisfies
all conditions from Lemma 8 (Normal Moment-Computability). Thus, PN is moment-
computable and the moments are equivalent to those of P for x ∈ Vars(P) by Theorem 3
(Normal Form Correctness).

The proofs of Theorem 6 and Lemma 8 are constructive and describe a procedure to
compute (higher) moments of program variables by (1) transforming a probabilistic
loop into a normal form according to Theorem 3, (2) constructing a system of linear
recurrences as in the proof of Lemma 8 and (3) solving the system of linear recurrences
with constant coefficients. In the following example, we illustrate the whole procedure on
the running example from Figure 2.1.

Example 6. We return to the probabilistic loop P from Figure 2.1. A normal form PN
for P was given in Figure 2.4. To compute a closed-form of the expected value of the
program variable z, we will model E(zn) as a system of linear recurrences according to
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the proof of Lemma 8. For a cleaner presentation we will refer to the variable toggle by
t. Note that t is binary. To construct the recurrence for E(zn), we start with E(zn+1)
at the assignment of z in PN and repeatedly replace variables by the right-hand side of
their assignment starting from z’s assignment and stopping at the top of the loop body.
Throughout the process we use the linearity of expectation to convert expected values of
polynomials to linear combinations of expected monomials (as required by Equation 2.5):

E(zn+1)

↓ assignment of z

E(([tn+1 = 0](zn + yn+1) {1/4} [tn+1 = 0](zn − yn+1)) + [tn+1 ̸= 0]zn)

↓ replace (in)equalities by polynomials

E(((1 − tn+1)(zn + yn+1) {1/4} (1 − tn+1)(zn − yn+1)) + tn+1zn)

↓ E on categorical

1
4E((1 − tn+1)(zn + yn+1)) + 3

4E((1 − tn+1)(zn − yn+1)) + E(tn+1zn)

↓ simplify; E linearity

E(zn) + 1
2E(tn+1yn+1) − 1

2E(yn+1)

↓∗ similarly, replace yn+1, xn+1, tn+1

E(zn) − 1
6E(tnxn) − 1

2E(tnyn) − 1
6E(tnx2

n) + 1
12E(tn) + 1

6E(tnzn).

The last line of the calculation represents the recurrence equation of the expected value of z.
For every monomial in the recurrence equation of E(zn) (that is: z∗ = {tx, ty, tx2, t, tz}),
we compute its respective recurrence equation and recursively repeat this procedure which
eventually terminates according to Lemma 8.

The ordering of variables and monomials, which is essential for proving termination in
Lemma 8 comes from an ordering of variables t, x, y, z, l, g, sum. Based on the program
assignments, we need t ⪯ x ≺ y ⪯ l; y ⪯ z; t ⪯ z ⪯ y; x ⪯ sum; g ⪯ sum. Variables
y and z form an equivalence class, since y ⪯ z and z ⪯ y. Notice that some variables
are not ordered, for example t and g. This gives some freedom in choosing the total
preorder, any will work. Let us have t ≺ g ≺ x ≺ sum ≺ y ∼ z ≺ l. This gives an order
on the equivalence classes {t} ≺ {g} ≺ {x} ≺ {sum} ≺ {y, z} ≺ {l}. The ordering on
monomials then considers the classes of non-finite program variables, i.e. all equivalence
classes except {t}. A monomial is then assigned a sequence of degrees with respect to
each equivalence class, e.g. z → (0, 0, 0, 1, 0), tz → (0, 0, 0, 1, 0), and x2 → (0, 0, 2, 0, 0),
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with monomials ordered reverse-lexicographically with respect to their sequence. For the
monomials in this example: 1 ∼ t ≺ x ∼ tx ≺ x2 ∼ tx2 ≺ y ∼ z ∼ ty ∼ tz.

After computing all necessary recurrence equations, we are faced with a system of linear
recurrences of the expected values of the monomials z, tx, ty, x, y, tx2, t, tz, x2 and 1
with recurrence matrix

1 −1
6 −1

2 0 0 −1
6

1
12

1
6 0 0

0 −1 0 1 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0
0 0 0 1 0 0 3

2 0 0 0
0 1

3 0 0 1 1
3 −1

6 −1
3 0 0

0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 −1 0 0 1
1 0 0 0 0 0 0 −1 0 0
0 3 0 0 0 0 5

2 0 1 0
0 0 0 0 0 0 0 0 0 1


.

Using any computer algebra system, such as sympy4, we arrive at the closed-form solution
for the expected value of z, E(zn), parameterized by the loop counter n:

E(zn) = 883
32 + 29n

16 − 201
20 2−n6

n
2 − 67

202−n6
1+n

2 − 37
103−n6

n
2

− 37
203−n6

1+n
2 − 201

20 6
n
2

−1
2

n

− 37
106

n
2

−1
3

n

+ 67
206

1+n
2

−1
2

n

+ 37
206

1+n
2

−1
3

n

+ 9
16n(−1)n + 29

32(−1)n + 9
16n2.

This example highlights the strength of algebraic techniques for probabilistic program
analysis in comparison to constraint-based methods employing templates. We are not
aware of any template-based method able to handle functions of the complexity of E(zn).
Our tool Polar is able to find the closed-form of E(zn) in under one second (see
Section 2.7).

2.5.1 Guarded Loops
When we model a guarded loop while ϕ: . . . as an infinite loop while ⋆: if ϕ: . . ., we
impose the same restrictions on ϕ as on if-conditions (that means ϕ only contains finite
variables) to guarantee computability and correctness. The kth moment of x after
termination is then given by

lim
n→∞E(xk

n | ¬ϕn) = lim
n→∞

E(xk
n · [¬ϕn])

E([¬ϕn]) . (2.9)

4https://www.sympy.org
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If the limit exists, we can use standard methods from computer algebra to compute
it, as the (higher) moments our approach computes are given as exponential polynomi-
als [Gru96].

Example 7. Consider the following loop, in which x after termination is geometrically
distributed with parameter 1/2:

x , stop = 0 , 0
while stop == 0 :

s top=Bernoul l i (1/2)
x=x+1

end

With Equation 2.9 and the techniques from this section we get:

E(x) = lim
n→∞E(xn | stopn = 1)

= lim
n→∞

E(xn · stopn)
E(stopn)

= lim
n→∞

−n2−n − 21−n + 2
1 − 2−n

= 2.

Moreover, whenever the variables in the loop guard are not probabilistic, traditional
techniques can be applied to determine the number of loop iterations n which can then be
plugged into the (higher) moments computed by our approach. Apart from the guarded
loops, many systems show the type of infinite behavior naturally modeled with infinite
loops, such as probabilistic protocols or dynamical systems.

2.5.2 Infinite If-Conditions
Theorem 6 on moment-computability requires the variables in all if-conditions to be
finite. Nevertheless, in some cases, if-conditions containing infinite variables can be
handled by our approach. Let P be a probabilistic loop containing an if-statement with
condition F and I where F contains only finite variables and I contains infinite variables.
Without loss of generality, no variable in I is assigned in or after the if-statement. Let
the transformation removing I be defined by

if F and I : Branch →
t = B e r n o u l l i (p)
if F and t == 1 :
Branch end

where t is a fresh variable and p := P(I) (potentially symbolic). Then, the transformation
preserves the distributions of all x ∈ Vars(P) under the following assumptions:

1. I is iteration independent, meaning for every variable x in I neither x nor any
variable x depends on (as of Definition 15) has a self-dependency.

2. I is statistically independent from F and all conditions in Branch.
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3. For every assignment A in Branch and every variable x in A which has been
assigned before A, it holds that I and x are statistically independent.

Assumption 1 ensures that P(I) = E([I]) is constant. Assumption 2 and 3 further
ensure that E([I]) can always be “pulled out” (that means E([I]x) = E([I])E(x)) in the
construction of the recurrences. Assumptions 1-3 can often be checked automatically.

Example 8. Consider the statement if g < 1/2: sum=sum+x of the program from Fig-
ure 2.1, where the value of g is drawn from a standard normal distribution. In this case,
the transformation’s parameter p represents P(Normal(0, 1) < 1/2), but is left symbolic
for the moment computation. The integral P(Normal(0, 1) < 1/2) can be solved separately
and the result be substituted for p.

2.5.3 On the Necessity of the Conditions Ensuring
Moment-Computability

Theorem 6 states two conditions that are sufficient to ensure that the closed-forms of
the program variables’ higher moments always exist and are computable. Condition
1 enforces that there is no variable with potentially infinite values with a polynomial
self-dependency. Condition 2 demands that all variables appearing in if-conditions are
finite. Our approach for computing the moments of variables of probabilistic loops can
handle precisely the programs that satisfy these two conditions. We argue that both
conditions are necessary, in the sense that if either of the conditions does not hold,
the existence or computability of the variable moments’ closed-forms as exponential
polynomials cannot be guaranteed for all programs from our program model when one or
both conditions are removed from Theorem 6.

Condition 1. Relaxing condition 1 of Theorem 6 means that we allow for polynomial
self-dependencies of non-finite variables. The logistic map [May76] is a quadratic first-
order recurrence defined by xn+1 = r · xn(1 − xn) and well-known for its chaotic behavior.
A famous fact about the logistic map is that it does not have an analytical solution for
most values of r [Mar20]. By neglecting condition 1, we can easily devise a loop modeling
the logistic map:

while ⋆ :
x = r ·x(1−x )

end

The value of the program variable x after iteration n is equal to the nth term of the
logistic map. This means, for most values of r and initial values of x, there does not exist
an analytical closed-form solution for the program variable x. Moreover, our counter-
example illustrates that condition 1 is necessary already for programs with a single
variable and without stochasticity and if-statements.

33



2. Computing Moments

Condition 2. Loosening condition 2 of Theorem 6 and allowing for non-finite variables
in if-conditions renders our programming model Turing-complete. Intuitively, one can
model a Turing machine’s tape with two variables l and r such that the binary rep-
resentation of l represents the tape’s content left of the read-write-head. The binary
representation of r represents the tape’s content at the position of the read-write-head and
towards the right. The least significant bit of r is the current symbol the Turing machine
is reading. We can extract the least significant bit of r in our programming model (and
neglecting condition 2) by introducing a variable lsb and using a single if-statement
involving non-finite variables: whenever the loop changes the value of r, we set lsb := r.
The while-loop’s body is of the form “if lsb > 1: lsb=lsb−2 else transitions end”. The
Turing machine’s transition table can be encoded using if-statements. Writing and
shifting can be accommodated for by multiplying by 2 or 1/2 and using addition and
subtraction. The Turing machine’s state can be modelled by a single finite variable.
Therefore, by dropping condition 2, being able to model the program variables by linear
recurrences would give rise to a decision procedure for the Halting problem: assume
we introduce a variable terminated which is initialized to 0 before the loop and set
to 1 whenever the Turing-machine terminates. If terminated can be modelled by a
linear recurrence of order k, it suffices to check the first k values of the recurrence to
determine whether or not terminated is always 0 [KP11] and the Turing-machine does
not terminate. As the Halting problem is well-known to be undecidable, condition 2 is
necessary to guarantee that the program variables can be modelled by linear recurrences,
even without stochasticity and polynomial arithmetic.

Remark 3 (Sequential & Nested Loops). Our program model consists of single non-
nested loops. Sequential loops can be analyzed one by one with the same techniques as
presented in this section. For nested loops, one could design a program transformation
transforming a nested loop into a non-nested loop and then apply the techniques presented
in this section. Alternatively, we conjecture that the approach presented for guarded
loops (Section 2.5.1) could be used to first compute the moments of the most inner loops
and then use the obtained information to compute the moments of the outer loops. The
main challenge lies in ensuring the moment-computability conditions for the outer loops
(Theorem 6) once the inner loops have been analyzed.

2.6 Use-Cases of Higher Moments
For probabilistic loops, computing closed-forms of the variables’ (higher) moments poses
a technique for synthesizing quantitative invariants: Given a program variable x and
a closed-form f(n) of its kth moment, the equation E(xk

n) − f(n) = 0 is an invariant.
Moreover, closed-forms of raw moments can be converted into closed-forms of central
moments, such as variance, skewness or kurtosis (cf. Section 2.2.1). In addition, this
section provides hints on two further use-cases of higher moments of probabilistic loops:
(i) deriving tail probabilities (Section 2.6.1) and (ii) inferring distributions of random
variables from their moments (Section 2.6.2).
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2.6.1 From Moments to Tail Probabilities
Tail probabilities measure the probability that a random variable surpasses some value.
The mathematical literature contains several inequalities providing upper- or lower bounds
on tail probabilities given (higher) moments [BLM13]. Two examples are Markov’s
inequality for upper and the Paley-Zygmund inequality for lower bounds.

Theorem 9 (Markov’s Inequality). Let X be a non-negative random variable, and t ≥ 0,
then

P(X ≥ t) ≤ E(Xk)
tk

.

Theorem 10 (Paley-Zygmund Inequality). Let X be a random variable with X ≥ t
almost-surely. Then

P(X > t) ≥ (E(X) − t)2

E(X2) − 2tE(X) + t2 .

Example 9. For Herman’s Self-Stabilization program from Figure 2.2 almost-surely
tokens ∈ {0, 1, 2, 3}. With the techniques from previous sections, we can compute the
first two moments E(tokensn) = 1 + 2 · 4−n and E(tokens2

n) = 1 + 8 · 4−n. Markov’s
inequality (Theorem 9) gives us the upper bound P(tokensn ≥ 2) ≤ 1/2 + 4−n using the
first moment and P(tokensn ≥ 2) ≤ 1/4 + 2 · 4−n utilizing the second moment.

For the Paley-Zygmund inequality (Theorem 10) both the first and the second moment
are required, yielding the lower bound P(tokensn ≥ 2) = P(tokensn > 1) ≥ 4−n. The
theorem’s precondition that almost-surely tokens ≥ 1 might not be apparent at first sight.
We take this for granted for now and will clarify this fact in Example 10.

Markov’s inequality and the Paley-Zygmund inequality are just two examples showing
that our technique for moment computation can be leveraged for further program analysis
using known results from probability theory. Our approach computes the exact moments
of variables in probabilistic loops instead of just approximations or bounds on moments.
This enables our technique to be readily combined with results from probability theory
that require exact moments.

2.6.2 From Moments to Distributions
For finite random variables, their full distribution can be recovered from finitely many
moments. More precisely, given a random variable X with m possible values, the
distribution of X can be recovered from its first m−1 moments, as the following theorem
states:

Theorem 11. Let X be a random variable over {a1, . . . , am} and pi := P (X = ai). The
values pi are the solutions of the system of linear equations given by m

i=1 pia
j
i = E(Xj)

for 0 ≤ j < m.
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Figure 2.5: The empirical density of program variable x for the benchmark Bimodal (cf.
Table 2.1) and loop iterations 10 (left) and 100 (right) obtained by 105 samples, together
with two approximations using the Gram-Charlier A Series with 6 (red dashed lines) and
12 (blue solid lines) moments.

Proof. There are m unknowns pi for 1 ≤ pi ≤ m. Note that all ai are constant and that
the first m−1 raw moments of X are fixed. Using the definition of raw moments, we get
m linear equations m

i=1 pia
j
i = E(Xj) for 0 ≤ j < m. The solutions of the system of m

linear equations are the values pi that determine the distribution of X.

Example 10. Consider Herman’s Self-Stabilization program from Figure 2.2. In Ex-
ample 9 we obtained upper and lower bounds for tail probabilities of the tokens variable
using the first one or two moments. With the first three moments we can fully re-
cover the distribution of the tokens variable. We have that tokens ∈ {0, 1, 2, 3}. Let
pi := P(tokensn = i) for 0 ≤ i ≤ 3. By Theorem 11, we get the following system:

p0 + p1 + p2 + p3 = E(tokens0
n) = 1,

p1 + 2p2 + 3p3 = E(tokensn) = 1 + 2 · 4−n,

p1 + 4p2 + 9p3 = E(tokens2
n) = 1 + 8 · 4−n,

p1 + 8p2 + 27p3 = E(tokens3
n) = 1 + 26 · 4−n.

The solution can be obtained using standard techniques and tools, yielding p0 = 0; p1 =
1 − 4−n; p2 = 0; p3 = 4−n.

Note that probabilities are given as functions of the loop iteration n. Moreover, the
solution shows that almost-surely tokens ≥ 1, which we assumed to be true in Example 9.

The distributions of program variables with potentially infinitely many values, including
continuous variables, cannot be, in general, fully reconstructed from finitely many
moments. However, expansions such as the Gram–Charlier A Series [Kol06] can be used
to approximate a probability density function using finitely many moments. Figure 2.5
illustrates how exact moments computed by our approach can be used to approximate
unknown probability density functions of program variables. While Figure 2.5 shows
approximations for specific loop iterations, we emphasize that the symbolic nature of our
approach allows for approximating the densities of program variables for all – potentially
infinitely many – loop iterations simultaneously. Therefore, our technique is constant in
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the number of loop iterations, whereas sampling has linear complexity. We compute the
approximations from Figure 2.5 for all infinitely many loop iterations in ∼22 seconds,
with the experimental setup from Section 2.7. In comparison, sampling the loop 105

times takes ∼3.6 minutes for loop iteration 10 and ∼33 minutes for loop iteration 100.

2.7 Implementation and Evaluation
Implementation. The program transformations (Section 2.3) and (higher) moment
computation (Section 2.5) are implemented in the new tool Polar [MSBK22b]. The
experiments can be reproduced using the corresponding artifact5. For automatically
inferring finiteness of program variables, we use a standard approach based on abstract
interpretation. Polar is implemented in python3, consisting of ∼3300 LoC, and uses
the packages sympy6 and symengine7 for symbolic manipulation of mathematical
expressions. Together with all our benchmarks, Polar is publicly available at https:
//github.com/probing-lab/polar.

Experimental Setting and Evaluation. The evaluation of our method is split into
three parts. First, we evaluate Polar on the ability of computing higher moments for
15 probabilistic programs exhibiting different characteristics (Section 2.7.1). Second, we
compare Polar to the exact tool Mora [BKS20c] which computes so-called moment-
based invariants for a subset of our programming model (Section 2.7.2). Third, we
compare our tool to approximate methods estimating program variable moments by
confidence intervals through sampling (Section 2.7.3). All experiments have been run
on a machine with a 2.6 GHz Intel i7 (Gen 10) processor and 32 GB of RAM. Runtime
measurements are averaged over 10 executions.

2.7.1 Experimental Results with Higher Moments
Table 2.1 shows the evaluation of Polar on the program from Figure 2.1 and 14
benchmarks which are either from the literature on probabilistic programming [KNP12]
(Herman-3 ), [MM05] (Duelling-Cowboys), [GKM13] (Martingale-Bet), [CS14] (Hawk-
Dove-Symbolic, Variable-Swap), [BEFH16] (Gambler-Ruin-Momentum), [BCK+21]
(Retransmission-Protocol), differential privacy schemes [War65] (Randomized-Response),
Dynamic Bayesian Networks (DBN-Umbrella, DBN-Component-Health) or well-known
stochastic processes (Las-Vegas-Search, Pi-Approximation, Bimodal). The benchmarks
Retransmission-Protocol and Hawk-Dove-Symbolic were further generalized from their
original definition by replacing concrete numbers with symbolic constants. This makes
these benchmarks only harder as solutions to the generalized versions are solutions for the
concretizations. Table 2.1 illustrates that Polar can compute higher moments for various
probabilistic programs exhibiting different features, like circular variable dependencies,

5https://doi.org/10.5281/zenodo.7055030
6https://www.sympy.org
7https://github.com/symengine

37

https://github.com/probing-lab/polar
https://github.com/probing-lab/polar
https://doi.org/10.5281/zenodo.7055030
https://www.sympy.org
https://github.com/symengine


2. Computing Moments

Table 2.1: Evaluation of Polar on 15 benchmarks. All times are in seconds. #V =
number of variables in benchmark; C = benchmark contains circular dependencies; If =
contains if-statements; S = contains symbolic constants; INF = state space is infinite;
CONT = state space is continuous; Moment = Moment to compute; RT = Total runtime.

Benchmark #V C/If/S/INF/CONT Moment RT

Running-Example (Fig. 2.1) 7 ✓/ ✓/ ✓/ ✓/ ✓ E(z) 0.67

Herman-3 10 ✓/ ✓/ ✗/ ✗/ ✗ E(tokens3) 0.58

Las-Vegas-Search 3 ✗/ ✓/ ✗/ ✓/ ✗ E(found20) 0.36

Pi-Approximation 4 ✗/ ✓/ ✗/ ✓/ ✓ E(count3) 0.47

50-Coin-Flips 101 ✗/ ✓/ ✗/ ✗/ ✗ E(total) 0.91

Gambler-Ruin-Momentum 4 ✓/ ✗/ ✓/ ✓/ ✗ E(x3) 2.89

Hawk-Dove-Symbolic 5 ✗/ ✓/ ✓/ ✓/ ✗ E(p1bal4) 2.00

Variable-Swap 4 ✓/ ✗/ ✗/ ✓/ ✓ E(x30) 2.42

Retransmission-Protocol 4 ✗/ ✓/ ✓/ ✓/ ✗ E(fail3) 1.62

Randomized-Response 7 ✗/ ✓/ ✓/ ✓/ ✗ E(p13) 0.59

Duelling-Cowboys 4 ✓/ ✓/ ✓/ ✗/ ✗ E(ahit) 1.14

Martingale-Bet 4 ✗/ ✓/ ✓/ ✓/ ✗ E(capital3) 8.44

Bimodal 5 ✗/ ✓/ ✗/ ✓/ ✓ E(x10) 4.50

DBN-Umbrella 2 ✗/ ✓/ ✓/ ✗/ ✗ E(umbrella5) 0.77

DBN-Component-Health 3 ✗/ ✓/ ✗/ ✗/ ✗ E(obs5) 0.26

if-statements, and symbolic constants with finite, infinite, continuous, and discrete state
spaces. Moreover, the table shows that the number of program variables is not the
primary factor for the complexity of computing moments. For instance, the benchmarks
50-Coin-Flips and Duelling-Cowboys have 101 and 4 program variables respectively. Nev-
ertheless, the runtimes for computing first moments for the two benchmarks only differ
by 0.23 s. The complexity of computing moments lies in the complexity of the resulting
systems of recurrences which depend on the concrete features present in the benchmarks
like specific variable dependencies, symbolic constants, or degrees of polynomials.

2.7.2 Experimental Comparison to Exact Methods

To the best of our knowledge, Mora is the only other tool capable of computing higher
moments for variables of probabilistic loops without templates – as described in [BKS19].
Mora operates on so-called Prob-solvable loops which form a strict subset of our program
model (Section 2.3). Prob-solvable loops do not admit circular variable dependencies,
if-statements, or state-dependent distribution parameters. We compare Polar against
Mora on the Mora benchmarks taken from [KUH19, CHWZ15, CS14, KMMM10].
Details can be found in Table 2.2. The experiments illustrate that Polar can handle all
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Table 2.2: Comparison of Polar to Mora. The runtimes are in seconds per tool,
benchmark, and moment. For Polar the comparison contains in brackets the seconds
spent on parsing, normalizing, and type inference.

Benchmark Moment Mora Polar

COUPON
E(c)
E(c2)
E(c3)

0.25
0.27
0.29

0.29
0.29
0.29

(0.07)

COUPON4
E(c)
E(c2)
E(c3)

0.71
0.87
1.22

0.36
0.36
0.36

(0.08)

RANDOM_WALK_1D
E(x)
E(x2)
E(x3)

0.07
0.11
0.10

0.12
0.23
0.24

(0.07)

SUM_RND_SERIES
E(x)
E(x2)
E(x3)

0.27
0.97
2.48

0.27
0.43
0.79

(0.07)

PRODUCT_DEP_VAR
E(p)
E(p2)
E(p3)

0.37
1.41
4.03

0.28
0.46
0.97

(0.08)

RANDOM_WALK_2D
E(x)
E(x2)
E(x3)

0.10
0.21
0.17

0.12
0.24
0.24

(0.08)

BINOMIAL(p)
E(x)
E(x2)
E(x3)

0.12
0.32
0.79

0.25
0.29
0.44

(0.07)

STUTTERING_A
E(s)
E(s2)
E(s3)

0.29
1.13
3.32

0.26
0.43
0.97

(0.07)

STUTTERING_B
E(s)
E(s2)
E(s3)

0.26
0.94
2.26

0.27
0.39
0.79

(0.07)

STUTTERING_C
E(s)
E(s2)
E(s3)

0.76
12.43
74.83

0.40
1.94
8.19

(0.08)

STUTTERING_D
E(s)
E(s2)
E(s3)

0.76
8.19
25.67

0.43
1.34
4.33

(0.07)

STUTTERING_P
E(s)
E(s2)
E(s3)

0.26
1.17
3.53

0.28
0.49
1.17

(0.07)

SQUARE
E(y)
E(y2)
E(y3)

0.30
0.88
1.98

0.29
0.45
0.65

(0.07)
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Table 2.3: Comparison of Polar to approximation through sampling. Polar = the
tools runtime to compute the precise moment; CI N = an approximated 0.95-CI-interval
from N samples; T100.000 = the runtime for CI 100.000. The symbolic constant p in
Retransmission-Protocol is set to 0.9 and for Hawk-Dove-Symbolic we set v = 4 and c = 8.

Benchmark Moment
CI 100
CI 1.000
CI 100.000

T100.000 Polar

Running-Example (Fig. 2.1) E(z10)
(−55.6, 6.55)
(−58.5, −39.3)
(−45.6, −43.7)

545.6s 0.67s

Retransmission-Protocol E(fail10)
(0.09, 0.25)
(0.11, 0.16)
(0.109, 0.114)

146.2s 0.30s

Variable-Swap E(y10)
(4.47, 5.75)
(5.06, 5.45)
(5.50, 5.54)

245.8s 0.13s

Hawk-Dove-Symbolic E(p1bal10)
(8.28, 12.3)
(9.07, 10.5)
(9.86, 10.0)

347.4s 0.27s

programs and moments that Mora can. Mora, however, cannot compute any moment
for any program in Table 2.1. On simple benchmarks, Polar is slightly slower than
Mora due to the constant overhead of the program transformations and type inference
to identify finite valued variables. On complex benchmarks Polar provides a significant
speedup compared to Mora. For instance, for the STUTTERING_C benchmark Polar
computes the moment E(s3) in about 8 seconds, whereas Mora needs over one minute.

2.7.3 Experimental Comparison with Sampling

For a probabilistic loop with program variable x the moment E(xk
n) can be approximated

for fixed k and n by sampling xk
n and calculating the sample average or confidence

intervals. Table 2.3 compares Polar to computing confidence intervals by sampling for
k = 1 and n = 10. The table shows that our tool is able to compute precise moments
in a fraction of the time needed to sample programs to achieve satisfactory confidence
intervals. An advantage of sampling is that it is applicable for any probabilistic loop.
However, by its nature, sampling fails to give any formal guarantees or hard bounds
on the approximated moments. This is critical if the loop body contains branches that
are executed with low probability. If applicable, Polar can provide exact moments for
symbolic n (and involving other symbolic constants) faster than sampling can establish
acceptable approximations. Moreover, even if the sampling of the loops is sped up by
using a more efficient implementation, Polar enjoys complexity theoretical advantages.
The complexity of sampling is linear in both the number of samples and the number of
loop iterations. In contrast, Polar does not need to take multiple samples for higher
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Figure 2.6: Samples obtained by simulation plotted together with precise moments
computed by Polar. In each benchmark, the thin gray lines are 200 samples over 30
iterations. The thick red line is the precise expected value. The dotted red lines are the
expected values ± twice the standard deviation given by the precise first two moments.
Figure 2.6a is symmetric log scale.

precision as it symbolically computes the exact moments. Additionally, our method is
constant in the number of loop iterations. With Polar, computing the moment for a
specific loop iteration, say 105, just amounts to evaluate the closed-form at 105.

Figure 2.6 illustrates the importance of higher moments for probabilistic loops. The
first moment provides a center of mass but contains no information on how the mass is
distributed around this center. For this purpose higher moments are essential.

2.7.4 Evaluation Summary

Our experimental evaluation demonstrates that: (1) Polar can compute higher moments
for a rich class of probabilistic loops with various characteristics, (2) Polar outperforms
the state-of-the-art of moment computation for probabilistic loops in terms of supported
programs and efficiency, and (3) Polar computes exact moments magnitudes faster than
sampling can establish reasonable approximations.

2.8 Related Work
Using recurrence equations to extract closed-forms for variables and quantitative invariants
of loops is a well-studied technique for non-probabilistic programs [FK15, BCKR20,
KBCR19, KCBR18, dOBP16, HJK17, HJK18b, Kov08, RcK04]. Because a classical
program is a special case of a probabilistic program, our technique presented in Section 2.5
is a generalization of the closed-form computation for classical programs to probabilistic
programs. Moreover, the generalization to probabilistic programs is not trivial. One
reason for this is that for classical programs the closed form for xp is just the closed-form
for x to the power p. However, this fails for moments, as in general E(xp) is not equal to
E(x)p.
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A common approach to quantitatively and exactly analyze probabilistic programs is
to employ probabilistic model checking techniques [BK08, KNP11, DJKV17, KZH+11,
HJVC+21].

Exact inference for computing precise posterior distributions for probabilistic programs
has been studied in [GMV16, HdBM20, NCR+16, CRN+13, SRM21]. An interesting
direction for future research is using our techniques to assist probabilistic inference in
the presence of loops.

A different approach to characterize the distributions of program variables are statistical
methods such as Monte Carlo and hypothesis testing [YS06]. Simulations are however
performed on a chosen finite number of program steps and do not provide guarantees
over a potentially infinite execution, such as unbounded loops, limiting thus their use (if
at all) for invariant generation.

In [MM05], a deductive approach, the weakest pre-expectation calculus, for reasoning about
PPs with discrete program variables is introduced. Based on the weakest pre-expectation
calculus, [KMMM10] presents the first template-based approach for generating linear
quantitative invariants for PPs. Other works [FZJ+17, CHWZ15] also address the
synthesis of non-linear invariants or employ martingale expressions [BEFH16]. All of
these works target a slightly different problem and, unlike our approach, rely on templates.
The first data-driven technique for invariant generation for PPs is presented in [BTP+22].

Another line of related work comes with computing bounds over expected values [BGP+16,
Kar94, CFGG20] and higher moments [KUH19, WHR21]. The approach in [BGP+16]
can provide bounds for higher moments and can handle non-linear terms at the price
of producing more conservative bounds. In contrast, our approach natively supports
probabilistic polynomial assignments and provides a precise symbolic expression for
higher moments.

The technique presented in [BKS19] automates the generation of so-called moment-based
invariants for a subclass of PPs with polynomial probabilistic updates and sets the basis
for fully automatic exact higher moment computation. Relative to our approach, [BKS19]
supports neither if-statements (thus also no guarded loops), state-dependent distribution
parameters, nor circular variable dependencies. Our work establishes stronger theoretical
foundations.

2.9 Conclusion
We describe a fully automated approach for inferring exact higher moments for program
variables of a large class of probabilistic loops with complex control flow, polynomial
assignments, symbolic constants, circular dependencies among variables, and potentially
uncountable state spaces. Our work uses program transformations to normalize and
simplify probabilistic programs while preserving the joint distribution of program variables.
We propose a power reduction technique for finite program variables to ease the complex
polynomial arithmetic of probabilistic programs. We prove soundness and completeness
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of our approach, by establishing the theory of moment-computable probabilistic loops.
We demonstrate use cases of exact higher moments in the context of computing tail
probabilities and recovering distributions from moments. Our experimental evaluation
illustrates the applicability of our technique, solving several examples whose automation
so far was not yet supported by the state-of-the-art in probabilistic program analysis.
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CHAPTER 3
Automated Sensitivity Analysis

This chapter is based on the following publication [MMK23]:

Marcel Moosbrugger, Julian Müllner, and Laura Kovács. Automated Sensitivity Analy-
sis for Probabilistic Loops. In Proc. of iFM, 2023.

3.1 Problem Statement
A challenging task in the analysis of probabilistic programs comes from the fact that values,
or even value distributions, of symbolic parameters used within program expressions over
probabilistic program variables are often unknown. Sensitivity analysis aims to quantify
how small changes in such parameters influence computation results [ABH+21, BEG+18].
Sensitivity analysis thus provides additional information about the probabilistic program
executions, even if some parameters are (partially) unknown. This sensitivity information
can further be used, among others, in code optimization: sensitivity information quantifies
the influence of parameters on the program variables, allowing to derive cost-effective
estimates and optimize expected runtimes of probabilistic loops.

The sensitivity analysis of probabilistic programs is however hard due to their intrinsic
randomness: program variables are no longer assigned single values but rather hold
probability distributions [BKS20a]. Uncountably infinite state spaces and non-linear
assignments are further obstacles to the formal analysis of probabilistic programs. In
recent years, several frameworks to manually reason about the sensitivity of probabilistic
programs were proposed [ABH+21, BEG+18, VVB22]. However, the state-of-the-art in
automated sensitivity analysis mainly focuses on loop-free programs such as Bayesian
networks [CD02, CD04, BKS20b, SBK22] and statically-bounded loops [HWM18]. The
technique presented in [WFC+20] supports loops with variable-dependent termination
times, but can only verify that the sensitivities obey certain bounds. To the best of our
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(a) (b)

Figure 3.1: Two examples of parameterized probabilistic loops, where our approach
automatically derives loop sensitivities ∂p as polynomial expressions depending on the
loop counter n and other parameters; for example infected_prob with respect to
vax_param (Fig. 3.1a) or that of u with respect to p (Fig. 3.1b). Using these results, our
approach shows that, when assuming decline=0.9, contact_param=0.7, after n = 10
time steps and currently having vax_param=0.1, then a small change ε in vax_param
will decrease infected_prob by approximately 1.7ε in the next time step of Fig. 3.1a.

knowledge, up to now, there is no automated and exact method supporting the sensitivity
analysis of (potentially) unbounded probabilistic loops.

We propose a fully automatic technique for the sensitivity analysis of unbounded probabilis-
tic loops. The crux of our approach lies within the integration of methods from symbolic
computation, probability theory and static analysis in order to automatically capture
sensitivity information about probabilistic loops. Such an integrated framework allows
us to also characterize a class of loops for which our technique is sound and complete.

Our framework for algebraic sensitivity analysis. We advocate the use of algebraic
recurrences to model the behavior of probabilistic loops. We combine and adjust tech-
niques from symbolic summation, partial derivatives, and probability theory to provide a
step towards the exact and automated sensitivity analysis of probabilistic loops, even in
the presence of uncountable state spaces and polynomial assignments. Figure 3.1 shows
two probabilistic loops for which our approach automatically computes the sensitivities
of program variables with respect to different parameters. For example, Fig. 3.1a depicts
a probabilistic program, modelling the incidence of a disease within a population. More
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precisely, it models the probability infected_prob that a single organism within the
population is infected, in dependence on symbolic parameters that model the amount of
social interaction (contac_param), the frequency of vaccinations (vax_param) and
effect of a vaccination weakening over time (decline). Sensitivity analysis helps to
reason about the influence of these parameters on the disease infection process, answering
for example the question “How will an increase in the rate of vaccinations vax_param
influence the probability infected_prob of an infection?”. Our work provides an
algebraic approach to answering such and similar questions.

In a nutshell, our technique computes exact closed-form solutions for the sensitivities of
(higher) moments of program variables for all, possibly infinitely many, loop iterations.
Higher moments are necessary to recover/estimate the value distributions of probabilistic
loop variables and hence these moments help in inferring valuable sensitivity information
for the variance or skewness. We utilize algebraic techniques in probabilistic loop analysis
to model moments of program variables with linear recurrences, so-called moment
recurrences [MSBK22a, BKS19]. However, moment recurrences do not support loops
with intricate polynomial arithmetic, such as the loop in Figure 3.1b. To overcome this
limitation, we propose the notion of sensitivity recurrences, which shortcut computing
closed-forms for variable moments and directly model sensitivities via linear recurrence
equations. In Figure 3.1b, the program variable w is independent of the parameter p. By
exploiting the independence of program variables from parameters, sensitivity recurrences
enable the exact sensitivity analysis for loops such as Figure 3.1b. We characterize a class
of probabilistic loops for which we prove sensitivity analysis via sensitivity recurrences to
be sound and complete.

Our contributions. We integrate symbolic computation, in particular symbolic sum-
mation and partial derivation, in combination with methods from probability theory
into the landscape of probabilistic program reasoning. In particular, we argue that
recurrence-based loop analysis yields a fully automated and precise way to derive sensi-
tivity information over unknown symbolic parameters in probabilistic loops. As such,
our contributions are as follows:

• We propose a fully automated approach for the sensitivity analysis of probabilistic
loops based on moment recurrences (Section 3.3.1).

• We introduce sensitivity recurrences and an algorithm for sensitivity analysis going
beyond moment recurrences (Section 3.3.2, Algorithm 1).

• We provide a precise characterization of the class of probabilistic loops for which
sensitivity recurrences are provably sound and complete (Theorem 15).

• We describe an experimental evaluation demonstrating the feasibility of our tech-
niques on many interesting probabilistic programs (Section 3.4).
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3.2 Preliminaries
We write N for the natural numbers, R for the reals, Q for the algebraic numbers, and
K[x1, . . . , xk] for the polynomial ring with coefficients in the field K. A polynomial
consisting of a single monic term is a monomial. The expected value operator is denoted
as E.

3.2.1 Syntax and Semantics of Probabilistic Loops
Syntax. We focus on unbounded probabilistic while-loops, as illustrated by the two
examples of Figure 3.1 and introduced in [MSBK22a]. Our programming model considers
non-nested while-loops preceded by a variable initialization part, with the loop body being
a sequence of (nested) if-statements and variable assignments. Unbounded probabilistic
loops occur frequently when modeling dynamical systems. Guarded loops while G:
body can be analyzed by considering the limiting behavior of unbounded loops of the
form while true: if G: body.

The right-hand side of every variable assignment is either a probability distribution with
existing moments (e.g. Normal or Uniform) and constant parameters, or a probabilistic
choice of polynomials in program variables, that is x = poly1{p1} . . . polyk{pk}, where
x is assigned to polyi with probability pi. Further, programs can be parameterized by
symbolic constants which represent arbitrary real numbers.

Throughout this chapter, we refer to programs from our programming model simply by
(probabilistic) loops or (probabilistic) programs. For a program P we denote the set of
program variables by Vars(P) and the set of symbolic parameters by Params(P).

Dependencies between program variables is a syntactical notion introduced next, repre-
senting a central part in our technique.

Definition 16 (Variable Dependency). Let P be a probabilistic loop and x, y ∈ Vars(P).
We say that x depends directly on y, and write x −→ y, if y appears in an assignment of
x or an assignment of x occurs in an if-statement where y appears in the if-condition.
Furthermore, we say that the dependency is non-linear, denoted as x N−→ y, if y appears
non-linearly in an assignment of x.

By ↠ we denote the transitive closure of −→. Regarding non-linearity, we write x
N↠ y, if

at least one of the direct dependencies from x to y is non-linear.

Example 11. In Figure 3.1b, we have (among others) y −→ z, w N−→ x, u
N↠ w, and w

N↠ u.
To illustrate the influence of if-conditions, in Figure 3.1a, note that efficiency −→ vax and
infected_prob ↠ vax.

Semantics. Operationally, every probabilistic loop models an infinite-state Markov
chain, which in turn induces a canonical probability space. Due to brevity, we omit the
straightforward but rather technical construction of the Markov chains associated to
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probabilistic loops. For more details, we refer the interested reader to [MSBK22a, Dur19].
For an arithmetic expression Expr in program variables, we denote by Exprn the stochastic
process evaluating Expr after the nth loop iteration.

3.2.2 C-finite Recurrences

We recall relevant notions from algebraic recurrences [EvdPSW03, KP11].

A sequence of algebraic numbers is a function u : N → Q, succinctly denoted by ⟨u(n)⟩∞
n=0

or ⟨u(n)⟩n. A recurrence for the sequence u of order ℓ ∈ N is specified by a function
f : Rℓ+1 → R and given by the equation u(n+ℓ) = f(u(n+ℓ−1), . . . , u(n+1), u(n), n).
The solutions of a recurrence are the sequences satisfying the recurrence equation.
Of particular relevance is the class of linear recurrences with constant coefficients or
more shortly, C-finite recurrences. The sequence u satisfies a C-finite recurrence if
u(n+ℓ) = cℓ−1u(n+ℓ−1) + cℓ−2u(n+ℓ−2) + · · · + c0u(n) holds, where c0, . . . , cℓ−1 ∈ Q
are constants and c0 ̸= 0. Every C-finite recurrence is associated with its characteristic
polynomial xn − cℓ−1xℓ−1 − · · · − c1x − c0. The solutions of C-finite recurrences can
always be computed [KP11] and written in closed-form as exponential polynomials. More
precisely, if ⟨u(n)⟩n is the solution to a C-finite recurrence, then u(n) = r

k=1 Pk(n)λn
k

where Pk(n) ∈ Q[n] and λ1, . . . , λr are the roots of the characteristic polynomial. The
properties of C-finite recurrences also hold for systems of C-finite recurrences (systems of
linear recurrence equations with constant coefficients, specifying multiple sequences).

3.2.3 Higher Moment Analysis using Recurrences

For a random variable x, its higher moments are defined as E(xk) for k ∈ N. More
generally, mixed moments for a set of random variables S are expected values of monomials
in S. Recent works in probabilistic program analysis [MSBK22a, BKS20c] introduced
techniques and tools based on C-finite recurrences to compute higher moments of program
variables for probabilistic loops. For example, for a probabilistic loop, k ∈ N and a
program variable x, a closed-form solution for the kth higher moment of x parameterized
by the loop iteration n, that is E(xk

n), is computed in [MSBK22a] using the Polar
tool. This is achieved by first normalizing the program to eliminate if-statements and
ensure every variable is only assigned once in the loop body. Then, a system of C-
finite recurrences is constructed that models expected values of monomials in program
variables. More precisely, for a monomial M in program variables, the work of [MSBK22a]
constructs a linear recurrence equation, relating the expected value of M in iteration
n+1 to the expected values of program variable monomials in iteration n. The linear
recurrence for the expected value of M in iteration n+1 is constructed by starting with
the expression E(Mn+1) and replacing variables contained in the expression by their
assignments bottom-up as they appear in the loop body. Throughout, the linearity of
expectation is used to convert expected values of polynomials into expected values of
monomials.
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We adopt the setting of [MSBK22a, BKS20c] and refer by moment recurrences to the
recurrence equations these techniques construct for moments of program variables.

Definition 17 (Moment Recurrence). Let P be a probabilistic loop and M a monomial
in Vars(P). A moment recurrence for M is an equation E(Mn+1) = r

i=1 ci · E(W (i)
n )

where ci ∈ Q and all W (i) are monomials in Vars(P).

In order to compute a closed-form solution for E(xk
n), we employ [MSBK22a] to first

compute a moment recurrence R for the monomial xk. Next, we derive moment recur-
rences for all monomials W (i) in R (cf. Definition 17) to construct a system of C-finite
recurrences.

Example 12. Consider the program from Figure 3.1a. For a more succinct representation,
we abbreviate the symbolic parameters as cp := contact_param; vp := vax_param and
d := decline. The first moments of the program variables are modeled through the following
system of C-finite recurrences [MSBK22a]:

E(infected_probn+1) = cp − cp · E(efficiencyn)

E(efficiencyn+1) = (d − d · vp) · E(efficiencyn) + 3
4 · vp

The initial values of E(infected_probn) and E(efficiencyn) are both 0. The system can be
automatically solved [KP11] to obtain closed-form solutions, which are, when expanded,
exponential polynomials, e.g. for E(infected_probn):

E(infected_probn) = cp +
3 · vp · cp · (d − d · vp)n−1 − 1

4(d · vp − d + 1)

We note that moment recurrences do not always exist. Moreover, termination is not
guaranteed when recursively inferring the moment recurrences for all monomials W (i) in
Definition 17 in order to construct a C-finite system.

Example 13. To illustrate that the approach based on moment recurrences does not
work unconditionally, consider the loop from Figure 3.1b and construct the moment
recurrence E(wn+1) = 5 · E(wn) + E(x2

n). Since the recurrence contains E(x2
n), we require

the moment recurrence E(x2
n+1) = E((5+wn+1 +xn)2) = E(w2

n+1)+ . . . which requires the
recurrence for E(w2

n). This in turn necessitates a recurrence for E(x4
n), which necessitates

the recurrence for E(w4
n) and so on. This process will repeatedly require recurrences for

increasing moments of xn and wn, implying that this process will not terminate.

To circumvent variable dependencies and compute closed-forms of moment recurrences,
we note that the following two conditions on the probabilistic loops ensure existence and
computability of higher order moments.

Definition 18 (Admissible Loop). A loop is admissible if
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1. all variables in branching conditions only assume values in a finite set (i.e. they
are finite valued), and

2. no variable x is non-linearly self-dependent (x ̸ N↠ x) 1.

Example 14. The probabilistic loop in Figure 3.1a is admissible. However, the program
in Figure 3.1b is not admissible. It does not satisfy condition 2: the variable x depends
linearly on w and w depends quadratically on x; therefore, x is non-linearly self-dependent.

Admissible probabilistic loops are moment-computable [MSBK22a], that is, higher mo-
ments of program variables admit computable closed-forms as exponential polynomials.
The restriction on finite valued variables in branching conditions is necessary to guarantee
computability and completeness: a single branching statement involving an unbounded
variable renders the program model Turing-complete [MSBK22a].

3.3 Sensitivity Analysis
In this section, we study the sensitivity of program variable moments with respect to
symbolic parameters. We present two exact and fully automatic methods to answer
the question of how small changes in symbolic parameters influence the moments of
program variables. As such, we exploit the fact that closed-forms for variable moments
in admissible loops are computable (Section 3.3.1). We further go beyond the admissible
loop setting (Section 3.3.2) and devise a sensitivity analysis technique applicable to some
non-admissible loops, such as the program in Figure 3.1b.

Definition 19 (Sensitivity). Let P be a probabilistic loop, x ∈ Vars(P) and p ∈
Params(P). The sensitivity of the kth moment of x with respect to p, denoted as
∂pE(xk

n), is defined as the partial derivative of E(xk
n) with respect to p, and parameterized

by loop counter n. For monomials M of variables, the sensitivity ∂pE(Mn) is defined
analogously.

Similar to moment computability [MSBK22a], we define a program to be sensitivity
computable if the sensitivities of all the variables’ expected values are expressible in
closed-form.

Definition 20 (Sensitivity Computability). Let P be a probabilistic program and
p ∈ Params(P). P is sensitivity computable with respect to p, if for every variable
x ∈ Vars(P) the sensitivity ∂pE(xn) has an exponential polynomial closed-form that is
computable.

1While [MSBK22a] allows arbitrary dependencies among finite valued variables, we omit this general-
ization for simplicity. Nevertheless, our results also apply to admissible loops with arbitrary dependencies
among finite valued variables.
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3.3.1 Sensitivity Analysis for Admissible Loops
As mentioned in Section 3.2, for admissible loops, any moment of every program variable
admits a closed-form solution as an exponential polynomial which is computable. That
is, for a program variable x and k ∈ N, the kth moment of x can be written as
E(xk

n) = r
j=0 Pj(n)λn

j , where Pj ∈ Q[n] and λj ∈ Q may contain symbolic parameters.
We next show that based on the closed-forms of variable moments, we can compute
exponential polynomials representing the sensitivities of moments on parameters.

Theorem 12 (Admissible Sensitivities). Let P be an admissible program, x ∈ Vars(P),
p ∈ Params(P), and k ∈ N. Then, the sensitivity ∂pE(xk

n) has an exponential polynomial
closed-form that is computable.

Proof. Because P is admissible, E(xk
n) can be expressed as an exponential polyno-

mial. We show that the sensitivity can be expressed as an exponential polynomial
by expanding E(xk

n) into a sum of exponential monomials: E(xk
n) = r

j=0 Pj(n)λn
j =

r
j=0

mj

i=0 Mij(n)λn
j , where mj is the number of monomials in Pj and every Mij is a

monomial. Note that every Mij and λj may depend on the symbolic constant p. The
derivative of the exponential monomials can then be obtained by applying the product
rule for derivatives:

∂pE(xk
n) =

r

j=0

mj

i=0
(∂pMij(n))λn

j + Mij(n) · n · (∂pλj) · λn−1
j

=
r

j=0
(∂pPj(n) + Pj(n) · n · ∂pλj · 1

λj
)λn

j

It is left to show that the exponential polynomial ∂pE(xk
n) is computable. Because P is

admissible, an exponential polynomial for E(xk
n) is computable. Now, the second claim

follows from the fact that exponential polynomials are elementary and that the derivative
of any elementary function is computable.

As a corollary, admissible loops are sensitivity computable. Although sensitivity com-
putability only refers to first moments, Theorem 12 shows that for admissible loops,
sensitivities of all higher moments of program variables admit a computable closed-form.

Example 15. Consider Figure 3.1a. In Example 12 we stated the closed-form solutions of
E(infected_probn). The sensitivities of the respective expected values can be computed by
symbolic differentiation and, by Theorem 12, can be expanded to exponential polynomials.
For example, the following expression describes the sensitivity of E(infected_probn) with
respect to the parameter vp:

∂vpE(infected_probn) =3 · cp(1 − vp · n + d(1 + vp)(n · vp − vp − 1))(d(1 − vp))n

4(vp − 1)2d(1 + d · vp − d)2

+ 3 · cp · (d − 1)
4(1 + d · vp − d)2
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3.3.2 Sensitivity Analysis for Non-Admissible Loops
In general, moments of program variables of non-admissible loops do not satisfy linear
recurrences. Therefore, we cannot utilize closed-forms of the moments for sensitivity
analysis. Nevertheless, sensitivity analysis is feasible even for some non-admissible
loops. In this section, we propose a novel sensitivity analysis approach applicable to
non-admissible loops. Moreover, we characterize the class of (non-admissible) loops for
which our method is sound and complete.

For admissible loops, linear recurrences describing variable moments can be used as an
intermediary step to compute sensitivities. The core of our approach towards handling
non-admissible loops is to shortcut moment recurrences and devise recurrences directly for
sensitivities. Due to independence with respect to the sensitivity parameter, sensitivities
of program variables can follow a linear recurrence even though their moments do not.
We illustrate the idea of our new method on the non-admissible loop from Figure 3.1b.

Example 16. Consider the non-admissible program from Figure 3.1b. The moment
recurrences for all program variables are:

E(zn+1) = E(zn) + 0.5 · (p + p2) E(yn+1) = E(yn) − 5p · E(zn+1)
E(wn+1) = 5 · E(wn) + E(x2

n) E(xn+1) = 5 + E(wn+1) + E(xn)
E(un+1) = E(xn+1) + p · E(zyn+1)

As illustrated in Example 13, we cannot complete the recurrences to a C-finite system
because both w and x are non-linearly self-dependent. Therefore, we cannot compute
closed-form solutions for E(wn) and E(xn). However, we can shortcut solving for E(wn)
and E(xn) by differentiating the moment recurrences with respect to p and establish
recurrences directly for the sensitivities:

∂pE(zn+1) = ∂pE(zn) + 0.5 · (1 + 2p)
∂pE(yn+1) = ∂pE(yn) − 5p · ∂pE(zn+1) − 5 · E(zn+1)
∂pE(wn+1) = 5 · ∂pE(wn) + ∂pE(x2

n)
∂pE(xn+1) = ∂pE(wn+1) + ∂pE(xn)
∂pE(un+1) = ∂pE(xn+1) + E(zyn+1) + p · ∂pE(zyn+1)

Now, because the variables w and x do not depend on the parameter p, we conclude that
∂pE(wn) ≡ ∂pE(xn) ≡ 0. The sensitivity recurrences thus simplify:

∂pE(zn+1) = ∂pE(zn) + 1 + 2p

2
∂pE(yn+1) = ∂pE(yn) − 5p · ∂pE(zn+1) − 5 · E(zn+1)
∂pE(un+1) = E(zyn+1) + p · ∂pE(zyn+1)

We can interpret sensitivities such as ∂pE(zn) or ∂pE(un) as atomic recurrence variables.
In the resulting recurrences, all variables with non-linear self-dependencies vanished.
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Therefore, the recurrences can be completed to a C-finite system and solved by existing
techniques, even though E(wn) and E(xn) are not C-finite. The resulting system of
recurrences consists of all recurrences for sensitivities and moments that appear on the
right-hand side of another recurrence. That is, the system of recurrences consists of the
sensitivity recurrences for ∂pE(z), ∂pE(y), ∂pE(u), ∂pE(yz), ∂pE(z2) and the moment
recurrences for E(z), E(y), E(yz), E(z2).

Motivated by Example 16, we introduce the notion of sensitivity recurrences.

Definition 21 (Sensitivity Recurrence). Let P be a program, p ∈ Params(P) a symbolic
parameter, M a monomial in Vars(P) and let E(Mn+1) = r

i=1 ci · E(W (i)
n ) be the

moment-recurrence of M . Then the sensitivity recurrence of M with respect to p is
defined as

∂pE(Mn+1) := ∂E(Mn+1)
∂p

= ∂

∂p

r

i=1
ci · E W (i)

n

=
r

i=1

∂

∂p
ci · E W (i)

n + ci · ∂pE W (i)
n

(3.1)

The sensitivity recurrence of M equates the sensitivity of M at iteration n+1 to mo-
ments and sensitivities at iteration n. Along the ideas in Example 16, we provide with
Algorithm 1 a procedure for sensitivity analysis also applicable to non-admissible loops.
The idea of Algorithm 1 is to determine ∂pE(Mn) by constructing a C-finite system
consisting of all necessary recurrence equations for the moments and sensitivities of
program variables. As illustrated in Example 16, we can exploit the independence of
variables from the sensitivity parameter p to simplify the problem: if a monomial W ′ is
independent from p then ∂pE(W ′

n) ≡ 0. Moreover, if p does not appear in the constant ci

of Equation (3.1), then (∂/∂p)ci = 0, and hence the moment recurrence of W ′ does not
need to be constructed (lines 8–9 of Algorithm 1). This is essential if the expected value
of W ′ does not admit a closed-form. Algorithm 1 is sound by construction, however,
termination is non-trivial. In the remainder of this section, we formalize the notion
of parameter (in)dependence and give a characterization of the class of non-admissible
loops for which Algorithm 1 terminates. As a consequence of Algorithm 1, we show
that sensitivity recurrences yield an exact and complete technique for sensitivity analysis
(Theorem 15).

Definition 22 (p-Dependent Variable). Let P be a program and p ∈ Params(P) a
parameter. A variable x ∈ Vars(P) is p-dependent, if (1) p appears in an assignment
of x, (2) x depends on some y ∈ Vars(P) (x ↠ y) and y is p-dependent or (3) an
assignment of x occurs in an if-statement where p appears in the if-condition. A variable
is p-independent if it is not p-dependent. A monomial M in program variables is p-
dependent if M contains at least one p-dependent variable, otherwise it is p-independent.
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Algorithm 1 Computing Sensitivities via Sensitivity Recurrences
Input: program P, monomial M in Vars(P), p ∈ Params(P)
Output: closed-form for ∂pE(Mn)

1: if M is p-independent then
2: return 0
3: end if
4: Eqs ← ∅; Mom ← ∅; Sens ← {M}
5: while Sens ̸= ∅ do ▷ Add all necessary sensitivity recurrences
6: pick W ∈ Sens; Sens ← Sens \ {W}
7: SRec ← sensitivity recurrence of W
8: Replace every ∂pE(W ′

n) in SRec by 0 if W ′ is p-independent
9: Replace every (∂/∂pc)E(W ′

n) in SRec by 0 if (∂/∂pc) = 0
10: Eqs ← Eqs ∪ {SRec}
11: Add to Sens all monomials W ′ s.t. ∂pE(W ′

n) in SRec
12: → and the sensitivity recurrence of W ′ ̸∈ Eqs
13: Add to Mom all monomials W ′ s.t. E(W ′

n) in SRec
14: end while
15: while Mom ̸= ∅ do ▷ Add all necessary moment recurrences
16: pick W ∈ Mom; Mom ← Mom \ {W}
17: MRec ← moment recurrence of W
18: Eqs ← Eqs ∪ {MRec}
19: Add to Mom all monomials W ′ s.t. E(W ′

n) in MRec
20: → and the moment recurrence of W ′ ̸∈ Eqs
21: end while
22: S ← solve system of C-finite recurrences Eqs
23: return closed-form of ∂pE(Mn) from S

For any p-independent monomial M in program variables, the corresponding sensitivity
∂pE(Mn) is zero (by using induction on n and applying Definition 22).

Lemma 13. Let P be a program, p ∈ Params(P) a symbolic parameter and M a p-
independent monomial in Vars(P), then it holds that the sensitivity variable of M is zero,
i.e., ∀n ≥ 0 : ∂pE(Mn) = 0.

In Example 16, the moments E(wn) and E(xn) do not admit closed-forms. We resolved this
issue by differentiating all moment recurrences and working directly with the sensitivity
recurrences, where the moment recurrences for w and x vanished. Crucial for this
phenomenon is the fact that the variables w and x are independent of the sensitivity
parameter p.

However, a second fact is necessary to guarantee that the moment recurrences of w and
x do not appear in the resulting system of recurrences: Assume some new variable v
depends on x and has the moment recurrence E(vn+1) = E(vn) + p · E(xn). Then the
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sensitivity recurrence for v is given by ∂pE(vn+1) = ∂pE(vn) + E(xn) + p · ∂pE(xn). Even
though x itself is p-independent, E(xn) remains in the sensitivity recurrence of v because
the coefficient of E(xn) contains the parameter p. A similar effect occurs if the moment
recurrence for v was E(vn+1) = E(vn) + E(znxn), because z is p-dependent.

Our goal is to characterize the class of probabilistic loops for which sensitivity recurrences
yield a sound and complete method for sensitivity analysis. Hence, we need to capture
the notion that some dependencies between variables are free of multiplicative factors
involving the sensitivity parameter. We do this in the following definition by refining our
dependency relation ↠.

Definition 23 (p-Influenced Dependency). Let P be a program with parameter p ∈
Params(P) and x, y ∈ Vars(P) with x −→ y. Then, the direct dependency between x and
y is p-influenced, written as x −→p y, if at least one of the following conditions hold:

• An assignment of x contains y and occurs in an if-statement with the if-condition
involving p or a p-dependent variable.

• An assignment of x contains y and is a probabilistic choice with some probability of
the choice depending on p.

• An assignment of x contains a term c · M · y where c is constant and M is a
monomial in program variables (possibly containing y). Moreover, either c contains
p or M contains a p-dependent variable.

If x ↠ y, we write x ↠p y if some dependency from x to y is p-influenced. If x ↠ y and
x ̸↠p y we call the dependency between x and y p-free.

Definition 23 covers all cases in the construction of moment recurrences that introduce
multiplicative factors depending on the sensitivity parameter p [MSBK22a].

More concretely, assume P to be a program and x ∈ Vars(P). The moment recurrence
of x contains expected values of monomials M of program variables. Additionally, the
moment recurrences of any M will again contain expected values of monomials of program
variables and so on. We capture all of these monomials with the notion of descendant
monomials in Definition 24. Intuitively, to construct a system of moment recurrences for
E(xn) one needs to include the moment recurrences of all descendants of x.

Definition 24 (Descendant Monomial). Let P be a program, x ∈ Vars(P), and M a
monomial in program variables. The monomial M is a descendant of the variable x if
(1) M = x, or (2) M occurs in the moment recurrence of a monomial W and W is a
descendant of x. The variable x is an ancestor of M .

There is a dependency between x and any variable of any descendant of x, which means
x ↠ y for every descendant M of x and every variable y in M . Our dependency relation
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from Definition 23 allows us to pinpoint the variables in the moment recurrence of any
descendant of x (Definition 24) with a multiplicative factor involving the sensitivity
parameter. Definitions 23 and 24 together with the procedure constructing moment
recurrences yield:

Lemma 14 (p-Influenced Moment Recurrence). Let P be a program, x ∈ Vars(P), and
p ∈ Params(P). Assume M is a monomial in program variables descending from x. Let
W be a monomial in M ’s moment recurrence with non-zero coefficient c. If the parameter
p occurs in c, then for all variables y in W we have x ↠p y. Moreover, if some variable
z in W is p-dependent, then for all variables y in W different from z we have x ↠p y.

We now state our main result (Theorem 15) describing the class of probabilistic loops for
which Algorithm 1 terminates and, hence, sensitivity recurrences are sound and complete.
We characterize the class of loops in terms of our dependency relations as well as variables
with non-linear self-dependencies, which we refer to as defective variables.

Definition 25 (Defective Variables). Let P be a program and x ∈ Vars(P), then x is
defective if x

N↠ x. Otherwise, x is effective.

Theorem 15 (Non-Admissible Sensitivities). Let P be a probabilistic program, p ∈
Params(P), x ∈ Vars(P), and assume all the following conditions:

1. All variables occuring in branching conditions are finite.

2. All defective variables are p-independent.

3. All dependencies on defective variables are p-free.

Then, for every monomial M in program variables descending from x, Algorithm 1
terminates on input P, M and p.

Proof. First, we cover the case where the monomial M contains a defective variable. If
M contains a defective variable y, then y must be p-independent by condition 2. As M
is a descendant of x, we have x ↠ y. Moreover, if there exists a p-dependent variable
z in M different from y, Lemma 14 gives us x ↠p y. However, x ↠p y contradicts
our condition 3 that all dependencies on defective variables must be p-free. Hence, the
monomial M is p-independent and Algorithm 1 terminates on line 2.

For the second, more involved case, assume all variables in M are effective and possibly
p-dependent. Algorithm 1 does not terminate if and only if the algorithm adds infinitely
many monomials W ′ to the set Sens one line 11 or to the set Mom on lines 13 or 19.
Every monomial W ′ added to the set Mom occurs in the moment recurrence of W from
line 16. Moreover, every monomial W ′ added to the set Sens occurs in the sensitivity
recurrence of W from line 6 and hence also occurs in the moment recurrence of W . That
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is because the sensitivity recurrence and the moment recurrence of W share the same
monomials (Definition 21).

In [MSBK22a], the authors showed that every monomial W ′ occurring in the moment
recurrence of a monomial W decreases with respect to a well-founded ordering if (A)
all variables in branching conditions are finite, and (B) all variables in W and W ′ are
effective. Premise (A) matches our condition 1. Therefore, to show that only finitely many
monomials are added to Sens and Mom (and hence establish termination of Algorithm 1),
it suffices to show that all monomials W ′ added to Sens and Mom only contain effective
variables.

First, note that every monomial W ′ added to Sens or Mom is a descendant of the variable
x. This holds because the algorithm starts with Sens = {M}, Mom = ∅, the monomial M
is a descendant of x, and W ′ occurs in the moment recurrence of some W ∈ Sens ∪ Mom.

Claim: All monomials W ′ added to Sens on line 11 only contain effective variables.
Towards a contradiction, assume some monomial W ′ is added to Sens on line 11 and
W ′ contains a defective variable y. By condition 2, y is p-independent. By Lemma 14
and condition 3, all variables in W ′ are p-independent. Hence, the monomial W ′ is
p-independent and ∂pE(W ′

n) was replaced by 0 on line 8. Therefore, W ′ could not have
been added to Sens on line 11.

Claim: All monomials W ′ added to Mom on line 13 only contain effective variables.
Towards a contradiction, assume some monomial W ′ is added to Mom on line 13 and W ′

contains a defective variable y. The monomial W ′ occurs in the sensitivity recurrence
of W (fixed at line 6) with coefficient (∂/∂pc). Therefore, W ′ occurs in the moment
recurrence of W with coefficient c. By Lemma 14 and condition 3, the constant c does
not contain the parameter p. Hence, (∂/∂pc) = 0 and E(W ′

n) was replaced by 0 on line 9.
Therefore, W ′ could not have been added to Mom on line 13.

Claim: All monomials W ′ added to Mom on line 19 only contain effective variables. First,
note that for all monomials W ′ added to Mom on line 13, the corresponding coefficient
(∂/∂pc) ̸= 0 and hence c must contain the parameter p. Therefore, by Lemma 14, for all
variables y in all monomials W ′ added to Mom in the first while-loop, we have x ↠p y.
By transitivity of ↠p, we get x ↠p y for all variables y in all monomials W ′ added to
Mom on line 19. Therefore, all W ′ added to Mom on line 19 cannot contain defective
variables by condition 3.

Theorem 15 characterizes the class of probabilistic loops for which sensitivity recurrences
provide a sound and complete method for sensitivity analysis. As an immediate corollary,
this class of loops is sensitivity computable because every variable is a descendant of itself.
Note that all conditions of Theorem 15 are statically checkable: the concepts of defective
variables, p-independent variables, and p-free dependencies are purely syntactic notions.
Moreover, program variables occurring in branching conditions only admitting finitely
many values can be verified using standard techniques based on abstract interpretation.
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Theorem 15 also applies to sensitivity analysis for higher moments: let v ∈ Vars(P) and
k ∈ N, then Theorem 15 covers the sensitivity of v’s kth moment if vk is a descendant of
some variable. Otherwise, vk can be dealt with by introducing a fresh variable w and
appending the assignment w := vk to P’s loop body.

The proof of Theorem 15 provides an alternative argument for admissible loops being
sensitivity computable (Theorem 12); as admissible loops do not contain defective
variables by definition (Definition 18), the class of loops characterized by Theorem 15
subsumes the class of admissible loops.

3.4 Experiments and Evaluation
We evaluate our methods for sensitivity analysis for admissible loops (Section 3.3.1) and
non-admissible loops (Section 3.3.2). Our techniques for sensitivity analysis extend the
Polar framework [MSBK22a], which is publicly available at https://github.com/
probing-lab/polar. For admissible loops, we use the existing functionality of the
Polar framework to compute closed-forms for the moments of program variables.

Experimental Setup. We split our evaluation into two parts. First, we compute the
sensitivities of (higher) moments of program variables for admissible loops by automati-
cally differentiating the closed-forms of the variables’ moments (Table 3.1). In the second
part, we consider our method using sensitivity recurrences, which is also applicable to
non-admissible loops (Table 3.2). To the best of our knowledge, our method provides the
first exact and fully automatic tool to compute the sensitivities of (higher) moments of
program variables for probabilistic loops. All our experiments have been executed on a
machine with a 2.6 GHz Intel i7 (Gen 10) processor and 32 GB of RAM with a timeout
(TO) of 120 s.

Differentiating Closed-Forms. Table 3.1 shows the evaluation of our sensitivity
analysis technique for admissible loops (Section 3.3) on 11 benchmarks. The benchmarks
consist of the running example from Figure 3.1a and parameterized probabilistic loops
from the benchmarks in [MSBK22a], coming from literature on probabilistic program
analysis [BEFH16, CS14, GKM13, BKS20b]. All the benchmarks contain at least one
symbolic parameter with respect to which the sensitivities are computed. Table 3.1
shows that our approach is capable of computing the sensitivities of higher moments of
program variables for challenging loops with various characteristics, such as discrete and
continuous state spaces as well as drawing from common distributions.

Sensitivity Recurrences. Table 3.2 shows the evaluation of our sensitivity analysis
technique from Algorithm 1 using sensitivity recurrences. The benchmarks consist of four
non-admissible loops (Fig. 3.2) and six admissible loops from Table 3.1. Non-admissible
loops are known to be notoriously hard to analyze automatically [ABK+22]. Table 3.2
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Table 3.1: Evaluation of the sensitivity computation for 11 admissible loops by differenti-
ating closed-forms of variable moments. Rec: size of the recurrence system to compute
the variables’ moments; RT: runtime in seconds; TO: timeout.

Benchmark Sensitivity Rec, RT Sensitivity Rec, RT

50-Coin-Flips ∂pE(total) 51, 1.56 ∂pE(total2) TO, TO

Bimodal ∂pE(x) 3, 0.40 ∂pE(x2) 5, 0.72

Component-Health ∂p1E(obs), 2, 0.61 ∂p1E(obs2), 2, 0.62

Umbrella ∂u1E(umbrella) 2, 0.97 ∂u1E(umbrella2) 2, 0.98

Gambler’s Ruin ∂pE(money) 4, 11.2 ∂pE(money2) 10, 64.6

Hawk-Dove ∂vE(p1bal) 1, 0.34 ∂vE(p1bal2) 2, 0.67

Las-Vegas-Search ∂pE(attempts) 2, 0.57 ∂pE(attempts2) 4, 7.31

1D-Random-Walk ∂pE(x) 1, 0.27 ∂pE(x2) 2, 0.39

2D-Random-Walk ∂p_rightE(x) 1, 0.28 ∂p_rightE(x2) 2, 0.41

Randomized-Response ∂pE(p1) 1, 0.29 ∂pE(p12) 2, 0.42

Vaccination (Fig. 3.1a) ∂vpE(infected) 2, 1.25 ∂vpE(infected2) 2, 1.19

Table 3.2: Evaluation of the sensitivity computation for 10 loops (4 are non-admissible)
using sensitivity recurrences. Rec: size of the recurrence system to compute the variables’
sensitivities; RT: runtime in seconds; TO: timeout.

Benchmark Sensitivity Rec, RT Sensitivity Rec, RT

Non-Admissible (Fig. 3.1b) ∂pE(u) 9, 1.40 ∂pE(y2) 9, 1.75

Non-Admissible-2 ∂parE(y) 5, 6.56 ∂parE(xz) 4, 3.67

Non-Admissible-3 ∂pE(total) 6, 12.6 ∂pE(z12) 12, 56.5

Non-Admissible-4 ∂p1E(z) 4, 0.48 ∂p1E(cnt2) 3, 0.39

Bimodal ∂varE(x) 3, 0.28 ∂varE(x2) 5, 0.42

Component-Health ∂p1E(obs) 3, 0.74 ∂p1E(obs2) 3, 0.73

Gambler’s Ruin ∂pE(money) 7, 66.9 ∂pE(money2) TO, TO

Las-Vegas-Search ∂pE(attempts) 3, 0.81 ∂pE(attempts2) 7, 13.3

Randomized-Response ∂pE(p1) 1, 0.30 ∂pE(p12) 3, 0.40

Vaccination (Fig. 3.1a) ∂vpE(infected) 3, 8.26 ∂vpE(infected2) 3, 7.85
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u,w,x,y,z = 0,1,2,3,4
while ⋆:
z = z+p2 {1/2} z+p
y = y - 5*p*z
w = 5*w + x2

x = 5 + w+x
u = x + p*z*y

end

(a) Non-Admissible (Fig. 3.1b)

x,y,z,var = 1,2,a,0
d1,d2 = 5,3
run = -1
while ⋆:
run = 2*run + z2

z = z+1
d1,d2 = d1*d2+3, d1+z
x = 3*x + d2 + par2

*z + run*z
y = 3*(x-y) + par2

*run
end

(b) Non-Admissible-2

cnt,total = 0,0
x1,x2 = 1,2
y1,y2 = 0,3
z1,z2 = 1,5
while ⋆:

cnt = cnt + 1
x1 = x12 + q*x2
x2 = y1 + cnt + q
y1 = r*(y1-cnt) + y2*cnt
y2 = r*y1 + 5
z1 = cnt2 - cnt + p*z1
z2 = z1*3 - 5*(z2-p)
total = x2 + y2 + z2

end

(c) Non-Admissible-3

y,x,z,cnt = 0,0,0,0
while ⋆:
x = DiscreteUniform(1,5)
if x < 3:

inc = Bernoulli(p1)
cnt = cnt + inc

else:
inc = Bernoulli(p2)
cnt = cnt - inc

end
f = DiscreteUniform(0,10)
y = y2 + x * f
z = cnt2 - 3*y

2 + x3

end

(d) Non-Admissible-4

Figure 3.2: Four parameterized non-admissible loops used for our experiments (Table 3.2).

shows that sensitivity recurrences are capable of computing the sensitivities for admissible
as well as non-admissible loops.

Experimental Summary. When comparing both approaches on admissible loops,
the differentiation-based approach typically performs better, e.g., on the benchmarks
“Gambler’s Ruin” or “Vaccination”. This is not surprising, as the main complexity in
both approaches lies in solving the system of recurrences and when using sensitivity
recurrences, the number of recurrences tends to be higher. However, the exact number of
recurrences depends on the program structure, and as such, there are cases where the
approach using sensitivity recurrences performs equally well, such as in the “Randomized-
Response” benchmark. Nevertheless, for the class of loops characterized in Section 3.3.2,
the differentiation-based approach fails, whereas sensitivity recurrences still deliver exact
results in a fully automated manner.

Our experiments demonstrate that our novel techniques for sensitivity analysis can
compute the sensitivities for a rich class of probabilistic loops with discrete and continuous
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state spaces, drawing from probability distributions, and including polynomial arithmetic.
Moreover, the technique based on our new notion of sensitivity recurrences can compute
sensitivities for probabilistic loops for which closed-forms of the variables’ moments do
not exist.

3.5 Related Work

Sensitivity & Probabilistic Programs. Bayesian networks can be seen as special
loop-free probabilistic programs. The sensitivity of Bayesian networks with discrete
probability distribution was studied in [CD02, CD04]. The works of [BKS20b, SBK22]
provide a framework to analyze properties (sensitivity among others) of Prob-solvable
Bayesian networks. In contrast, our technique focuses on probabilistic loops with
more complex control flow and supports continuous distributions. In recent years,
techniques emerged to manually reason about sensitivities of probabilistic programs,
such as program calculi [ABH+21], custom logics [BEG+18], or type systems [VVB22].
Although applicable to general probabilistic programs, these techniques require manual
reasoning or user guidance, while our approach focuses on full automation.

A fully-automatic and exact sensitivity analyzer for probabilistic programs with statically
bounded loops was proposed in [HWM18]. In comparison, our approach focuses on
potentially unbounded loops. The authors of [WFC+20] introduce an automatable
approach for expected sensitivity based on martingales. Their technique proves that
a given program is Lipschitz-continuous for some Lipschitz constant. In contrast, our
technique produces exact sensitivities for unbounded loops and we characterize a class of
loops for which our technique is complete.

Recurrences in Program Analysis. Recurrence equations are a common tool in
program analysis. The work of [RcK04, RK07] first introduced the idea of using linear
recurrences and Gröbner basis computation to synthesize loop invariants. This line of work
has been further generalized in [Kov08, HJK18b] to support more general recurrences.
In [FK15, KCBR18] the authors apply linear recurrences to more complex programs and
combine it with over-approximation techniques.

The work [BCKR20] combines recurrence techniques with template-based methods to
analyze recursive procedures. Recurrence equations were first used for the analysis of
probabilistic loops in [BKS19] to synthesize so-called moment-based invariants. This
approach was further generalized by [MSBK22a]. Our technique of sensitivity recurrences
is applicable to loops whose variables’ moments do not satisfy linear recurrences. The
recent work [ABK+22] studies the synthesis of invariants for such loops, but does not
address sensitivity analysis.
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3.6 Conclusion
We establish a fully automatic and exact technique to compute the sensitivities of
higher moments of program variables for probabilistic loops. Our method is applicable
to probabilistic loops with potentially uncountable state spaces, complex control flow,
polynomial assignments, and drawing from common probability distributions. For
admissible loops, we utilize closed-forms of the variables’ moments obtained through
linear recurrences. Moreover, we propose the notion of sensitivity recurrences enabling
the sensitivity analysis for probabilistic loops whose moments do not admit closed-forms.
We characterize a class of loops for which we prove sensitivity recurrences to be sound and
complete. Our experiments demonstrate the feasibility of our techniques on challenging
benchmarks.
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CHAPTER 4
Strong Invariants Are Hard

This chapter is based on the following publication [MMK24]:

Julian Müllner, Marcel Moosbrugger, and Laura Kovács. Strong Invariants Are Hard:
On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs. Proc.
ACM Program. Lang., (POPL), 2024.

4.1 Problem Statement
Loop invariants describe valid program properties that hold before and after every
loop iteration. Intuitively, invariants provide correctness information that may prevent
programmers from introducing errors while making changes to the loop. As such,
invariants are fundamental to formalizing program semantics as well as to automate
the formal analysis and verification of programs. While automatically synthesizing loop
invariants is, in general, an uncomputable problem, when considering only single-path
loops with linear updates (linear loops), the strongest polynomial invariant is in fact
computable [Kar76, MS04a, Kov08]. The computability remains intact for linear loops
with non-deterministic branching [HOPW18]. Yet, already for single-path loops with
“only” polynomial updates, computing the strongest invariant has been an open challenge
since 2004 [MS04b]. We bridge the gap between the computability result for linear
loops and the uncomputability result for general loops by providing, to the best of our
knowledge, the first hardness result for computing the strongest polynomial invariant of
single-path polynomial loops.

Problem setting. Let us motivate our hardness results using the two loops in Figure 4.1,
showcasing that very small changes in loop arithmetic may significantly increase the
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f u v w ← 1 −1 2 0
while ⋆ do

t ← 3t + 2u − 5w
u ← u + 3w
v ← 4u + 3v + w
w ← t + u + 2v

end while
(a) An affine loop from [KLO+22].

x y ← x0 y0
while ⋆ do

x
y

← x + y · ∆t

y + y · 1 − x2 − x · ∆t

end while
(b) A polynomial loop, modelling the discrete-time
Van der Pol oscillator [DDP17] for some constant
sampling time ∆t.

Figure 4.1: Two examples of deterministic programs.

difficulty of computing the strongest invariants. Figure 4.1a depicts an affine loop, that
is, a loop where all updates are affine combinations of program variables. On the other
hand, Figure 4.1b shows a polynomial loop whose updates are polynomials in program
variables.

An affine (polynomial) invariant is a conjunction of affine (polynomial) equalities holding
before and after every loop iteration. The computability of both the strongest affine
and polynomial invariant has been studied extensively. For affine loops, the seminal
paper [Kar76] shows that the strongest affine invariant is computable, whereas [Kov08]
proves computability of the strongest polynomial invariant for single-path affine loops.
Regarding polynomial programs, for example the one in Figure 4.1b, [MS04a] gives an
algorithm to compute all polynomial invariants of bounded degree.

Based on these results, the strongest polynomial invariant of Figure 4.1a is thus com-
putable. Yet, the more general problem of computing the strongest polynomial invariant
for polynomial loops without any restriction on the degree remained an open challenge
since 2004 [MS04b]. We address this challenge, which we coin as the SPInv problem
and define below.

The SPInv Problem: Given a single-path loop with polynomial updates, compute the
strongest polynomial invariant.

In Section 4.4, we prove that SPInv is very hard, essentially “defending” the state-of-
the-art that so far failed to derive computational bounds on computing the strongest
polynomial invariants of polynomial loops. The crux of our results is based on the Skolem
problem, a prominent algebraic problem in the theory of linear recurrences [EvdPSW03,
Tao08], which we briefly recall below and refer to Section 4.2.3 for details.

The Skolem Problem [EvdPSW03, Tao08]: Does a given linear recurrence sequence
with constant coefficients have a zero?

The decidability of the Skolem problem has been open for almost a century, and its
decidability is connected to far-fetching conjectures in number theory [BLN+22, LLN+22].
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In Section 4.4, we show that SPInv is at least as hard as the Skolem problem, providing
thus a computational lower bound showcasing the hardness of SPInv.
To the best of our knowledge, our results from Section 4.4 are the first lower bounds for
SPInv and provide an answer to the open challenge posed by [MS04a]. While [HOPW23]
proved that the strongest polynomial invariant is uncomputable for multi-path polynomial
programs, the computability of SPInv has been left open for future work. With our
results proving that SPInv is Skolem-hard (Theorem 19), we show that the missing
computability proof of SPInv is not surprising: solving SPInv is really hard.

Connecting invariant synthesis and reachability. A computational gap also exists
in the realm of model-checking between affine and polynomial programs, similar to the
computability of SPInv. Point-to-point reachability is arguably the simplest model-
checking property; it asks whether a program can reach a given target state from a given
initial state. For example, one may start the Van der Pol oscillator from Figure 4.1b in
some initial configuration (x0, y0) and certify that it will eventually reach a certain target
configuration (xt, yt). Reachability, and even more involved model-checking properties,
are known to be decidable for affine loops [KLO+22]. However, the decidability or mere
reachability of polynomial loops remains unknown without any existing non-trivial lower
bounds. We refer to this reachability quest via the P2P problem.

The Point-To-Point Reachability Problem (P2P): Given a single-path loop with
polynomial updates, is a given target state reachable starting from a given initial
state?

In Section 4.3, we resolve the lack of computational results on reachability in polynomial
loops. In particular, we show that P2P is Skolem-hard (Theorem 18) as well. To reduce
Skolem to P2P, we construct a polynomial loop from a given linear recurrence sequence,
such that the loop reaches the all-zero state if and only if the linear recurrence sequence
has a zero. For our reduction, a linear recurrence sequence of order k is encoded as a
loop with k variables. The crux of the reduction in Section 4.3 is that every variable is a
shifted “non-linear variant”of the original sequence such that, once any variable becomes
0, it remains 0 forever. Then, the resulting loop reaches the all-zero state if and only
if the original sequence has a zero. To the best of our knowledge, this yields the first
non-trivial hardness result for P2P.
In Section 4.4, we further show that P2P and SPInv are connected in the sense that P2P
reduces to SPInv. To reduce P2P to SPInv, we show how to decide whether a given
loop reaches a given target state only using polynomial invariants. For the reduction,
we add an auxiliary variable to the loop that becomes and remains 0 as soon as the
original loop reaches the given target state. Intuitively, the auxiliary variable is eventually
invariant if and only if the original loop reaches the target state. Utilizing techniques
from computational algebraic geometry, we show how to decide whether the auxiliary
variable is eventually invariant given the strongest polynomial invariant. Hence, we show
that SPInv is at least as hard as P2P.
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Therefore, our reduction chain Skolem ≤ P2P ≤ SPInv implies that the decidability
of P2P and/or SPInv would immediately solve the Skolem problem a longstanding
conjecture in number theory.

Beyond (non)deterministic loops and invariants. In addition to computational
limits within standard, (non)deterministic programs, we further establish computational
(hardness) bounds in probabilistic loops. Probabilistic programs model stochastic pro-
cesses and encode uncertainty information in standard control flow, used for example
in cryptography [BGB12], privacy [BKOB12], cyber-physical systems [KMS+22b], and
machine learning [Gha15].
Because classical invariants, as in SPInv, do not account for probabilistic information,
we provide a proper generalization of the strongest polynomial invariant for probabilistic
loops in Section 4.5 (Lemma 20). With this generalization, we transfer the SPInv
problem to the probabilistic setting. We hence consider the probabilistic version of
SPInv as being the Prob-SPInv problem.

The Prob-SPInv Problem: Given a probabilistic loop with polynomial updates,
compute the “probabilistic analog” of the strongest polynomial invariant.

In Section 4.5 we prove that Prob-SPInv inherits Skolem-hardness from its classical
SPInv analog (Theorem 23). We also show that enriching the probabilistic program model
with guards or branching statements renders the strongest polynomial (probabilistic)
invariant uncomputable, even in the affine case (Theorems 21). We nevertheless provide
a decision procedure when considering Prob-SPInv for a restricted class of polynomial
loops: we define the class of moment-computable (polynomial) loops and show that
Prob-SPInv is computable for such loops (Algorithm 2). Despite being restrictive, our
moment-computable loops subsume affine loops with constant probabilistic choice. As
such, Section 4.5 shows the limits of computability in deriving the strongest polynomial
(probabilistic) invariants for probabilistic polynomial loops.

Our contributions. In conclusion, the main contributions are as follows:

• In Section 4.3, we provide a reduction from Skolem to point-to-point reachability
for polynomial loops, proving that P2P is Skolem-hard (Theorem 18).

• Section 4.4 gives a reduction from P2P to the problem of computing the strongest
polynomial invariant of polynomial loops, establishing the connection between P2P
and SPInv. As such, we prove that SPInv is Skolem-hard (Theorem 19).

• In Section 4.5, we generalize the concept of strongest polynomial invariants to the
probabilistic setting (Lemma 20). We show that Prob-SPInv is Skolem-hard
(Theorem 23) and uncomputable for general polynomial probabilistic programs
(Theorem 21), but it becomes computable for moment-computable polynomial
probabilistic programs (Algorithm 2).
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4.2 Preliminaries
We write N for the natural numbers, Q for the rationals, R for the reals, and Q for the
algebraic numbers. We denote by K[x1, . . . , xk] the polynomial ring over k variables with
coefficients in some field K. Further, we use the symbol P for probability measures and
E for the expected value operator.

4.2.1 Program Models
In accordance with [HOPW23, KV23], we consider polynomial programs P = (Q, E, q0)
over k variables, where Q is a set of locations, q0 ∈ Q is an initial location, and
E ⊆ Q × Q[x1, . . . , xk]k × Q is a set of transitions. The vector of variable valuations
is denoted as x⃗ = (x1, . . . , xk), where each transition (q, f, q′) ∈ E maps a (program)
configuration (q, x⃗) to some configuration (q′, f(x⃗)). A transition (q, f, q′) ∈ E is affine if
the function f is affine. In case all program transitions (q, f, q′) ∈ E are affine, we say
that the polynomial program P is an affine program.

A loop is a program L = (Q, E, q0) with exactly two locations Q = {q0, q1}, such that
the initial state q0 has exactly one outgoing transition to q1 and all outgoing transitions
of q1 are self-loops, that is, E = {(q0, f1, q1), (q1, f2, q1), . . . , (q1, fn, q1)}.

In a guarded program, each transition is additionally guarded by an equality/inequality
predicate among variables of the state vector x⃗. If in some configuration the guard of an
outgoing transition holds, we say that the transition is enabled, otherwise the transition
is disabled.

(Non)Deterministic programs. If for any location q ∈ Q in a program P there is
exactly one outgoing transition (q, f, q′), then P is deterministic; otherwise P is nonde-
terministic. A deterministic guarded program may have multiple outgoing transitions
from each location, but for any configuration, exactly one outgoing transition must be
enabled. For a guarded nondeterministic program, we require that each configuration
has at least one enabled outgoing transition. Deterministic, unguarded programs are
called single-path programs.

To capture the concept of a loop invariant, we consider the collecting semantics of P,
associating each location q ∈ Q with a set of vectors Sq that are reachable from the initial
state (q0, 0⃗). More formally, the sets {Sq | q ∈ Q} are the least solution of the inclusion
system

Sq0 ⊇ {⃗0} and Sq′ ⊇ f(Sq) for all (q, f, q′) ∈ E.

Definition 26 (Invariant). A polynomial p ∈ Q[x1, . . . , xk] is an invariant with respect to
program location q ∈ Q, if for all reachable configurations x⃗ ∈ Sq the polynomial vanishes,
that is p(x⃗) = 0. Moreover, for a loop L, the polynomial p is an invariant of L, if p is an
invariant with respect to the looping state q1.
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Probabilistic programs. In probabilistic programs, a probability pr is added to each
program transition. That is, E ⊆ Q × Q[x1, . . . , xk]k × (0, 1] × Q, where we require that
each location has countably many outgoing transitions and that their probabilities pr sum
up to 1. Under the intended semantics, a transition (q, f, pr, q′) then maps a configuration
(q, x⃗) to configuration (q′, f(x⃗)) with probability pr. Again, for guarded probabilistic
programs, we require that each configuration has at least one enabled outgoing transition
and that the probabilities of the enabled transition sum up to 1.

For probabilistic programs P , we consider moment invariants over higher-order statistical
moments of the probability distributions induced by P (see Section 4.5). In this respect, it
is necessary to count the number of executed transitions in the semantics of P . Formally,
the sets {Sn

q | q ∈ Q, n ∈ N0} are defined as

S0
q0 := {⃗0} and Sn+1

q′ := f Sn
q for all (q, f, pr, q′) ∈ E and n ∈ N0.

In addition, the probability of a configuration x⃗ in location q after n iterations, in symbols
P(x⃗ | Sn

q ), can be defined inductively: (i) in the initial state, the configuration 0⃗ after 0
executed transitions has probability 1; (ii) for any other state, the probability of reaching
a specific configuration is defined by summing up the probabilities of all incoming paths.
More formally, the probability P(x⃗ | Sn

q ) is defined by

P x⃗ | S0
q := 1 q = q0 ∧ x⃗ = 0⃗

0 otherwise
and

P x⃗ | Sn+1
q′ :=

(q,f,pr,q′)∈E y⃗∈f−1(x⃗)
pr · P(y⃗ | Sn

q ).

We then define the nth higher-order statistical moment of a monomial M in program
variables as the expected value of M after n loop iterations. Namely,

E[Mn] :=
q∈Q x⃗∈Sn

q

M(x⃗) · P(x⃗ | Sn
q ), (4.1)

where M(x⃗) evaluates the monomial M in a specific configuration x⃗.

Example 17. The following loop encodes a symmetric 1-dimensional random walk
starting at 0. In every step, the random walk moves left or right with probability 1/2. The
loop is given in code:

x ← 0
while ⋆ do

x ← x + 1 [1/2] x − 1
end while

Replacing the probabilistic choice in the loop body with non-deterministic choice, results
in a non-deterministic program.
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Universality of loops. In this chapter, we focus on polynomial loops. This is justified
by the universality of loops [HOPW23, Section 4], as every polynomial program can be
transformed into a polynomial loop that preserves the collecting semantics. Intuitively,
this is done by merging all program states into the looping state and by introducing
additional variables that keep track of which state is actually active while invalidating
infeasible traces. It is then possible to recover the sets S(n)

q of the original program from
the sets S(n)

q of the loop.

4.2.2 Computational Algebraic Geometry & Strongest Invariants

We study polynomial invariants p(x⃗) of polynomial programs; here, p(x⃗) are multivariate
polynomials in program variables x⃗. We therefore recap necessary terminology from
algebraic geometry [CLO97], to support us in reasoning whether p(x⃗) = 0 is a loop
invariant. In the following K denotes a field, such as R, Q or Q.

Definition 27 (Ideal). A subset of polynomials I ⊆ K[x1, . . . , xk] is an ideal if (i) 0 ∈ I;
(ii) for all x, y ∈ I: x + y ∈ I; and (iii) for all x ∈ I and y ∈ K[x1, . . . , xk]: xy ∈ I.
For polynomials p1, . . . , pl ∈ K[x1, . . . , xk] we denote by ⟨p1, . . . , pl⟩ the ideal generated
by these polynomials, that is

⟨p1, . . . , pl⟩ :=
l

i=1
qipi q1, . . . qk ∈ K[x1, . . . , xk]

The set I = ⟨p1, . . . , pl⟩ is an ideal, with the polynomials p1, . . . , pl being a basis of I.

Of particular importance is the set of all polynomial invariants of a program location. It
is easy to check that this set forms an ideal.

Definition 28 (Invariant Ideal). Let P be a program with location q. The set I of all
invariants with respect to the location q is called the invariant ideal of q. If P is a loop
and I is the invariant ideal with respect to the looping state q1, we call I the invariant
ideal of the loop P 1.

As the invariant ideal I of a loop L contains all polynomial invariants, a basis for I is
the strongest polynomial invariant of L. This is further justified by the following key
result, establishing that every ideal has a basis.

Theorem 16 (Hilbert’s Basis Theorem). Every ideal I ⊆ K[x1, . . . , xk] has a basis. That
is, I = ⟨p1, . . . , pl⟩ for some p1, . . . , pl ∈ I.

1Computing bases for invariant ideals is equivalent to computing the Zariski closure of the loop: the
Zariski closure is the smallest algebraic set containing the set of reachable states [HOPW18].
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While an ideal I may have infinitely many bases, the work of [Buc06] proved that every
ideal I has a unique (reduced) Gröbner basis, where uniqueness is guaranteed modulo
some monomial order. A monomial order < is a total order on all monomials such that
for all monomials m1, m2, m3, if m1 < m2 then m1m3 < m2m3. For instance, assume
our polynomial ring is K[x, y, z], that is, over three variables x, y, and z. A total order
z < y < x over variables can be extended to a lexicographic ordering on monomials,
denoted also by < for simplicity. In this case, for example, xyz3 < xy2 and y2z < x.
For a given monomial order, one can consider the leading term of a polynomial p which
we denote by LT (p). For a set of polynomials S we write LT (S) for the set of all
leading terms of all polynomials. Continuing the example mentioned before, we have
LT (xyz3 + xy2) = xy2 and LT ({y + z, y2z + x}) = {y, x}.

Definition 29 (Gröbner Basis). Let I ⊆ K[x1, . . . , xk] be an ideal and fix a monomial
order. A basis G = {g1, . . . , gk} of I is a Gröbner basis, if ⟨LT (g1), . . . , LT (gl)⟩ =
⟨LT (I)⟩. Further, G is a reduced Gröbner basis if every gi has leading coefficient 1 and
for all g, h ∈ G with g ̸= h, no monomial in g is a multiple of LT (h).

Gröbner bases provide the workhorses to compute and implement algebraic operations over
(infinite) ideals, including ideal intersections/unions, variable eliminations, and polynomial
memberships. Given any basis for an ideal I, a unique reduced Gröbner basis with respect
to any monomial ordering < is computable using Buchberger’s algorithm [Buc06]. A
central property of Gröbner basis computation is that repeated division of a polynomial
p by elements of a Gröbner basis results in a unique remainder, regardless of the order in
which the divisions are performed. Hence, to decide if a polynomial p is an element of
an ideal I, that is deciding polynomial membership, it suffices to divide p by a Gröbner
basis of I and check if the remainder is 0. Moreover, eliminating a variable y from an
ideal I ⊆ K[x, y] is performed by computing the Gröber basis of the elimination ideal
I ∩ K[x] only over x.

4.2.3 Recurrence Equations
Recurrence equations relate elements of a sequence to previous elements. There is a
strong connection between recurrence equations and program loops: assignments in
program loops relate values of program variables in the current iteration to the values
in the next iteration. It is therefore handy to interpret a (polynomial) program loop as
a recurrence. We briefly introduce linear and polynomial recurrence systems and refer
to [KP11] for details.

We say that a sequence u(n) : N0 → Q is a linear recurrence sequence (LRS) of order k,
if there are coefficients a0, . . . , ak−1 ∈ Q, where a0 ̸= 0 and for all n ∈ N0 we have

u(n + k) = ak−1u(n + k−1) + . . . + a1u(n + 1) + a0u(n) (4.2)

The recurrence equation (4.2) is called a linear recurrence equation, with the coefficients
a0, . . . , ak−1 and the initial values u(0), . . . , u(k−1) uniquely specifying the sequence u(n).
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Any LRS u(n) of order k as defined via (4.2) can be specified by a system of k linear
recurrence sequences u1(n), . . . , uk(n), such that each ui(n) is of order 1 and, for all
n ∈ N0, we have u(n) = u1(n) and

u1(n + 1) =
k

i=1
a

(1)
i ui(n) = a

(1)
1 u1(n) + . . . + a

(1)
k uk(n)

... (4.3)

uk(n + 1) =
k

i=1
a

(k)
i ui(n) = a

(k)
1 u1(n) + . . . + a

(k)
k uk(n)

Again, the LRS u(n) is uniquely defined by the coefficients a
(j)
i and the initial values

u1(0), . . . , uk(0).

Polynomial recursive sequences are natural generalizations of linear recurrence sequences
and allow not only linear combinations of sequence elements but also polynomial com-
binations [CMP+20]. More formally, a sequence u(n) is polynomial recursive, if there
exists k ∈ N sequences u1(n), . . . , uk(n) : N0 → Q such that u(n) = u1(n) and there are
polynomials p1, . . . , pk ∈ Q[u1, . . . , uk] such that, for all n ∈ N0, we have

u1(n + 1) = p1(u1(n), . . . , uk(n))
... (4.4)

uk(n + 1) = pk(u1(n), . . . , uk(n))

The sequence u(n) from (4.4) is uniquely defined by the polynomials p1, . . . , pk and the
initial values u1(0), . . . , uk(0). In contrast to linear recurrence sequences (4.2), polyno-
mial recursive sequences (4.4) cannot be in general modeled using a single polynomial
recurrence [CMP+20]. Systems of recurrences are widely used to model the evolution of
dynamical systems in discrete time.

We conclude this section by recalling the Skolem problem [BLN+22, LLN+22] related
to linear recurrence sequences, whose decidability is an open question since the 1930s.
We formally revise the definition from Section 4.1 as:

The Skolem Problem [EvdPSW03, Tao08]: Given an LRS u(n), n ∈ N0, does there
exist some m ∈ N0 such that u(m) = 0?

In the upcoming sections, we show that the Skolem problem is reducible to the decid-
ability of three fundamental problems in programming languages, namely P2P, SPInv
and Prob-SPInv from Section 4.1. As such, we prove that the Skolem problem gives
us intrinsically hard computational lower bounds for P2P, SPInv, and Prob-SPInv.
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4.3 Hardness of Reachability in Polynomial Programs
We first address the computational limitations of reachability analysis within polynomial
programs. It is decidable whether a loop with affine assignments reaches a target state
from a given initial state [KL80]. Additionally, even problems generalizing reachability are
known to be decidable for linear loops, such as various model-checking problems [KLO+22].
However, reachability for loops with polynomial assignments, or equivalently discrete-time
polynomial dynamical systems, has been an open challenge. In this section, we address
this reachability challenge via our P2P problem, showing that reachability in polynomial
program loops is at least as hard as the Skolem problem (Theorem 18). To this end, let
us revisit and formally define our P2P problem from Section 4.1, as follows.

The Point-To-Point Reachability Problem (P2P): Given a system of k polynomial
recursive sequences u1(n), . . . , uk(n), n ∈ N0 and a target vector t⃗ = (t1, . . . , tk), does
there exist some m ∈ N0 such that for all 1 ≤ i ≤ k, it holds that ui(m) = ti?

To the best of our knowledge, nothing is known about the hardness of P2P for polynomial
recursive sequences2, and hence for loops with arbitrary polynomial assignments, apart
from the trivial lower bounds provided by the linear/affine cases [KL80, KLO+22].

In the sequel, in Theorem 18 we prove that the P2P problem for polynomial recursive
sequences is at least as hard as Skolem. Doing so, we show that solving Skolem can be
solved by reducing it to inputs for P2P, written in symbols as Skolem ≤ P2P. We thus
establish a computational lower bound for P2P in the sense that providing a decision
procedure for P2P for polynomial recursive sequences would prove the decidability of
the long-lasting open decision problem given by Skolem.

Our reduction for Skolem ≤ P2P. In a nutshell, we fix an arbitrary Skolem
instance, that is, a linear recurrence sequence u(n) of order k. We say that the instance
u(n) is positive, if there exists some m ∈ N0 such that u(m) = 0, otherwise we call the
instance negative. Our reduction Skolem ≤ P2P constructs an instance of P2P that
reaches the all-zero vector 0⃗ if and only if the Skolem instance is positive. Hence, a
decision procedure for P2P would directly lead to a decision procedure for Skolem.

Following (4.2), let our Skolem instance of order k to be the LRS u(n) : N0 → Q
specified by coefficients a0, . . . ak−1 ∈ Q such that a0 ̸= 0 and, for all n ∈ N0, we have

u(n + k) = ak−1 · u(n + k − 1) + . . . + a1 · u(n + 1) + a0 · u(n) =
k−1

i=0
ai · u(n + i). (4.5)

From our Skolem instance (4.5), we construct a system of k polynomial recursive
sequences x0, . . . , xk−1, as given in (4.4). Namely, the initial sequence values are defined

2For linear systems, the Point-To-Point Reachability problem (P2P) is also referred to as the Orbit
problem in [KL80].
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inductively as

x0(0) := u(0) xi(0) := u(i) ·
i−1

ℓ=0
xℓ(0) (1 ≤ i < k)

With the initial values defined, the sequences x0, . . . , xk−1 are uniquely defined via the
following system of recurrence equations:

xi(n + 1) := xi+1(n) (1 ≤ i < k − 1)

xk−1(n + 1) :=
k−1

i=0
ai · xi(n) ·

k−1

ℓ=i

xℓ(n)
(4.6)

Intuitively, the xi sequences are “non-linear variants” of the Skolem instance u(n) such
that, once any xi reaches 0, xi remains 0 forever. The target vector for our P2P instance
is therefore t⃗ = 0⃗.

Let us illustrate the main idea of our construction with the following example.

Example 18. Assume our Skolem instance from (4.5) is given by the recurrence
u(n+3) = 2u(n+2) − 2u(n+1) − 12u(n) and initial values u(0) = 2, u(1) = −3, u(2) = 3.
Following our reduction (4.6), we construct a system of polynomial recursive sequences
xi(n) given by the initial values

x0(0) = u(0) = 2,

x1(0) = u(1)x0(0) = −6,

x2(0) = u(2)x0(0)x1(0) = −36,

and the following system of recurrences.

x0(n + 1) = x1(n)
x1(n + 1) = x2(n)
x2(n + 1) = 2x2(n)2 − 2x1(n)2x2(n) − 12x0(n)2x1(n)x2(n)

The first few sequence elements of u(n) and x0(n) are shown in Figure 4.2 and illustrate
the key property of our reduction:

(i) x0(n) is non-zero as long as u(n) is non-zero, which we prove in Lemma 17;

(ii) if there is an N such that u(N) = 0, it holds that for all n ≥ N : x0(n) = 0. The
other sequences x1 and x2 in the system are “shifted” variants of x0. Hence, the
constructed sequences all eventually reach the all-zero configuration and remain
there. In Theorem 18, we prove that this is the case if and only if the Skolem
instance u(n) is positive.
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Figure 4.2: The first 15 sequence elements of u(n) and x0(n) in Example 18.

Correctness of Skolem ≤ P2P. To prove the correctness of our reduction Skolem ≤
P2P and to assert the properties (i)-(ii) of Example 18 among u(n) and xi(n), we

introduce k auxiliary variables s0, . . . , sk−1 defined as

si(0) := 1 (i = 0)
i−1
ℓ=0 xℓ(0) (1 ≤ i < k)

si(n + 1) := si+1(n) (i ̸= k − 1)
sk−1(n) · xk−1(n) (i = k − 1)

As illustrated in Example 18, the high-level idea of our reduction is that the xi sequences
are “non-linear variants” of the Skolem instance u(n) such that, once any xi reaches 0, xi

remains 0 forever. With the next lemma, we make the connections between the sequences
xi(n) and u(n) precise, using the auxiliary sequences si(n). The central connection is
x0(n) = s0(n) · u(n) and s0(n) = n−1

l=0 x0(l), which we utilize in the correctness proof in
Theorem 18. The main idea behind the construction of the P2P instance is to ensure
that this connection, and similar connections for the other sequences xi and si, do hold.
We formally prove these properties by induction.

Lemma 17. For the system of polynomial recursive sequences in (4.6), it holds that
∀n ≥ 0 and 0 ≤ i < k

xi(n) = si(n) · u(n + i), and (4.7)

si(n) =
n−1

ℓ=0
x0(ℓ) ·

i−1

ℓ=0
xℓ(n). (4.8)

Proof. We prove the two properties by well-founded induction on the lexicographic order
(n, i), where n ≥ 0 and 0 ≤ i < k. Here, (n, i) ≤ (n′, i′) if and only if n < n′ or
n = n′ ∧ i < i′. The order has the unique least element (0, 0).

Base case: n = 0. If i = 0, then properties (4.7) and (4.8) hold by definition of
s0(0) := 1 = −1

ℓ=0 x0(ℓ) · −1
ℓ=0 xℓ(0) and x0(0) := u(0) = s0(0) · u(0). Also, if 0 < i < k,
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then properties (4.7) and (4.8) are trivially satisfied by the definition of the initial values:
si(0) := i−1

ℓ=0 xℓ(0) and xi(0) := u(i) · i−1
ℓ=0 xℓ(0) = u(i) · si(0).

Induction step – Case 1: n > 0 ∧ 0 ≤ i < k−1. By the lexicographical ordering, it holds
that (n, i+1) < (n+1, i). Hence, we can assume that properties (4.7) and (4.8) hold for
(n, i+1). Thus, we have the induction hypothesis

xi+1(n) = si+1(n) · u(n + i + 1), and (4.9)

si+1(n) =
n−1

ℓ=0
x0(ℓ) ·

i

ℓ=0
xℓ(n). (4.10)

To prove property (4.7) for (n+1, i) means to show that

xi(n + 1) = si(n + 1) · u(n + i + 1).

The sequences xi and si are defined by xi(n+1) = xi+1(n) and si(n+1) = si+1(n) and
hence property (4.7) follows from the induction hypothesis (4.9).

To prove property (4.8) for (n+1, i) means to show that

si(n + 1) =
n

ℓ=0
x0(ℓ) ·

i−1

ℓ=0
xℓ(n + 1).

We prove the equation by using the induction hypothesis (4.10), the definitions xi(n+1) =
xi+1(n) and si(n+1) = si+1(n), and index manipulation:

si(n + 1) = si+1(n) =
n−1

ℓ=0
x0(ℓ) ·

i

ℓ=0
xℓ(n)

=
n−1

ℓ=0
x0(ℓ) · x0(n) ·

i−1

ℓ=0
xℓ+1(n)

=
n

ℓ=0
x0(ℓ) ·

i−1

ℓ=0
xℓ(n + 1)

Induction step – Case 2: n > 0 and i = k−1. We show that property (4.7) holds for
(n+1, k−1) by proving it to be equivalent to the definition of xk−1(n+1). To do so, we
first instantiate property (4.7) and replace both sk−1(n+1) and u(n+k) by their defining
recurrence:

xk−1(n + 1) = sk−1(n + 1) · u(n + k)

= sk−1(n) · xk−1(n) ·
k−1

i=0
ai · u(n + i)
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Next, we rearrange and apply the induction hypothesis (4.8) for (n, k−1) and (n, i) and
obtain:

xk−1(n + 1) = xk−1(n) ·
k−1

i=0
ai · u(n + i) · sk−1(n)

= xk−1(n) ·




k−1

i=0
ai · u(n + i) ·

n−1

ℓ=0
x0(ℓ) ·

k−2

ℓ=0
xℓ(n)

sk−1(n) by I.H. (4.8)





= xk−1(n) ·




k−1

i=0
ai · u(n + i) ·

n−1

ℓ=0
x0(ℓ) ·

i−1

ℓ=0
xℓ(n)

=si(n) by I.H. (4.8)

·
k−2

ℓ=i

xℓ(n)




= xk−1(n) ·

k−1

i=0
ai · u(n + i) · si(n) ·

k−2

ℓ=i

xℓ(n)

=
k−1

i=0
ai · u(n + i) · si(n) ·

k−1

ℓ=i

xℓ(n)

Now, we can apply the induction hypothesis (4.7) to replace u(n+i) · si(n) by xi(n) and
arrive at the relation:

xk−1(n + 1) =
k−1

i=0
ai · xi(n) ·

k−1

ℓ=i

xℓ(n)

However, this is exactly the defining recurrence equation from (4.6). Hence, property
(4.8) necessarily holds for (n, k−1).

To prove property (4.8) for (n+1, k−1) we use the defining equation of sk−1(n+1) and
the induction hypothesis for (n, k−1):

sk−1(n + 1) = sk−1(n) · xk−1(n) = xk−1(n) ·
n−1

ℓ=0
x0(ℓ) ·

k−2

ℓ=0
xℓ(n) =

n−1

ℓ=0
x0(ℓ) ·

k−1

ℓ=0
xℓ(n)

=
n−1

ℓ=0
x0(ℓ) · x0(n) ·

k−2

ℓ=0
xℓ+1(n) =

n

ℓ=0
x0(ℓ) ·

k−2

ℓ=0
xℓ(n + 1)

As we have covered all possible cases, we conclude the proof.

Lemma 17 establishes two central properties of our reduction. We now use these properties
to show that P2P is at least as hard as Skolem.

Theorem 18 (Hardness of P2P). P2P is Skolem-hard. That is, Skolem ≤ P2P.
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Proof. We show that our polynomial recursive system constructed in (4.6) reaches the
all-zero vector from the initial value if and only if the original Skolem instance is positive.

(⇒) : Assume the Skolem instance is positive, then there is some smallest N ∈ N0 such
that u(N) = 0. Property (4.7) of Lemma 17 implies

x0(N) = s0(N) · u(N) = 0.

Using this equation and property (4.8) of Lemma 17, we deduce that for all n > N ,
each si(n) contains x0(N) as a factor and hence si(n) = 0. Additionally, as xi(n) =
si(n) · u(n+i) by property (4.7), we conclude that for all n > N also xi(n) = 0. Hence,
the polynomial recursive system reaches the all-zero vector.

(⇐) Assume that the Skolem instance is negative, meaning that the linear recurrence
sequence u(n) does not have a 0. In particular, u(i) ̸= 0 for all 0 ≤ i < k. Therefore, by
definition of the polynomial recursive system (4.6), xi(0) ̸= 0 for all 0 ≤ i < k. Towards
a contradiction, assume that the polynomial recursive system still reaches the all-zero
vector. Hence, there is a smallest N ∈ N0 such that xi(N) = 0 for all 0 ≤ i < k. In
particular, x0(N) = 0. Moreover, x0 is the last sequence to reach 0, because of the
recurrence equation xi(n+1) = xi+1(n) for 0 ≤ i < k. Therefore, N is also the smallest
number such that x0(N) = 0. By property (4.7) of Lemma 17, we have

x0(N) = s0(N) · u(N) = 0.

However, s0(N) must be non-zero, because

s0(N) =
N−1

ℓ=0
x0(ℓ),

by property (4.8) of Lemma 17, and the fact that N is the smallest number such that
x0(N) = 0. Then we necessarily have u(N) = 0, yielding a contradiction.

Theorem 18 shows that P2P for polynomial recursive sequences is at least as hard as
the Skolem problem. Thus, reachability and model-checking of loops with polynomial
assignments is Skolem-hard. A decision procedure establishing decidability for P2P
would lead to a major breakthrough in number theory, as by Theorem 18 this would
imply the decidability of the Skolem problem.

Remark 4. In [HOPW23] the authors show that the the strongest polynomial invariant
is uncomputable for polynomial programs with nondeterminism. The proof reduces from
an undecidable problem to finding the strongest polynomial invariant for nondeterministic
polynomial programs. A similarity between our reduction from this section and the reduc-
tion in [HOPW23] is the idea of projecting specific states to the zero vector. Nevertheless,
the setting and reasons for using such a projection differ significantly between the two
reductions. The reduction in [HOPW23] maps invalid program traces to the zero state to
argue about the dimension of an algebraic set. In contrast, our reduction maps the single
program trace to the zero state if and only if the original Skolem instance is positive.
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On polynomial recurrences. The original Skolem problem is defined for linear
recurrence sequences. The extensive use of polynomial arithmetic in the reduction
of Skolem to P2P might suggest that it is possible to generalize our reduction to
reduce from the equivalent of the Skolem problem for polynomial recurrences. Such
a generalization would undoubtably strengthen our hardness result. However, our
reduction critically depends on the linearity of the Skolem instance. The resulting
P2P instance xi(n) does not account for the polynomial degrees of the recurrence.
Therefore, without further modifications, the reduction generates the same P2P instance
for all original recurrences that only differ in their polynomial degrees. For instance,
in Example 18, the reduction would produce the same P2P instance xi(n) for the
linear recurrence u(n+3) = 2u(n+2) − 2u(n+1) − 12u(n) and the polynomial recurrence
v(n+3) = 2v(n+2) − 2v(n+1) − 12v2(n), assuming they have the same initial values.
Since the instances xi(n) and sequences si(n) are identical for both recurrences, but the
two original sequences u(n) and v(n) are not equivalent, the central Lemma 17 cannot
hold for polynomial recurrences.
Furthermore, the reduction cannot be easily adapted to account for polynomial recurrences.
The core idea of the reduction is to construct a polynomial recursive sequence x(n) from
a given recursive sequence u(n) such that

x(n) = u(n)s(n) (4.11)

and s(n) =
n−1

i=0
u(i). (4.12)

If u(n) is fixed, for instance by the polynomial recurrence u(n + 1) = u2(n) + u(n) with
u(0) = 1, we can attempt to solve for a recurrence for x(n):

x(n + 1) = u(n + 1)s(n + 1) (by 4.11)

= s(n + 1) u2(n) + u(n) (by the recurrence for u(n))

= s(n + 1) x2(n)
s2(n) + x(n)

s(n) (by 4.11)

= x2(n)s(n + 1)
s2(n) + x(n)s(n + 1)

s(n) (by reordering)

= x2(n)x(n)
s(n) + x(n)x(n) (by 4.12)

For sequences u(n) defined by linear recurrences, the last expression in the derivation
above is always free of s(n). This results in a single polynomial recurrence defining
x(n) and corresponds to the P2P instance from our reduction. However, for polynomial
recurrences, occurences of s(n) cannot be eliminated in general, hindering the construction
of a polynomial recurrence for x(n). Hence, a potential reduction from the equivalent of
the Skolem problem for polynomial recurrences to P2P would require a fundamentally
different approach than the one presented in this chapter.
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4.4 Hardness of Computing the Strongest Polynomial
Invariant

This section goes beyond reachability analysis and focuses on inferring the strongest
polynomial invariants of polynomial loops. As such, we turn our attention to solving the
SPInv problem of Section 4.1, which is formally defined as given below.

The SPInv Problem: Given an unguarded, deterministic loop with polynomial updates,
compute a basis of its polynomial invariant ideal.

We prove that finding the strongest polynomial invariant for deterministic loops with
polynomial updates, that is, solving SPInv, is at least as hard as P2P (Theorem 19).
Hence, P2P ≤ SPInv.

Then, by the Skolem ≤ P2P hardness result of Theorem 18, we conclude the Skolem-
hardness of SPInv, that is Skolem ≤ P2P ≤ SPInv. To the best of our knowledge, our
Theorem 18 together with Theorem 19 provide the first computational lower bound on
SPInv, when focusing on loops with arbitrary polynomial updates (see Table 4.1).

Our reduction for P2P ≤ SPInv. We fix an arbitrary P2P instance of order k,
given by a system of polynomial recursive sequences u1, . . . , uk : N0 → Q and a target
vector t⃗ = (t1, . . . , tk) ∈ Qk. This P2P instance is positive if and only if there exists an
N ∈ N0 such that (u1(N), . . . , uk(N)) = t⃗. For reducing P2P to SPInv, we construct
the following deterministic loop with polynomial updates over k+2 variables:

f g x1 . . . xk ← 1 0 u1(0) . . . uk(0)
while ⋆ do

x1
...

xk

f
g

 ←


p1(x1, . . . , xk)

...
pk(x1, . . . , xk)

f · (x1 − t1)2 + . . . + (xk − tk)2

g + 1


end while

(4.13)

The polynomial recursive sequences u1, . . . , uk are fully determined by their initial
values and the polynomials p1, . . . , pk ∈ Q[u1, . . . , uk] defining the respective recurrence
equations ui(n+1) = pi(u1(n), . . . , uk(n)). Hence, by the construction of the SPInv
instance (4.13), every program variable xi models the sequence ui. As such, for any
number of loop iterations n ∈ N0, we have xi(n) = ui(n). Moreover, the variable g models
the loop counter n, meaning g(n) = n for all n ∈ N0. The motivation behind using the
program variable f is that f becomes 0 as soon as all sequences ui reach their target ti;
moreover, f remains 0 afterward. More precisely, for n ∈ N0, f(n) = 0 if and only if
there is some N ≤ n such that x1(N) = t1 ∧ . . . ∧ xk(N) = tk. Hence, the sequence f
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has a 0 value, and subsequently, all its values are 0, if and only if the original instance of
P2P is positive.
Let us illustrate the main idea of our P2P ≤ SPInv reduction via the following example.

Example 19. Consider the recursive sequences x(n+1) = x(n)+2 and y(n+1) = y(n)+3,
with initial values x(0) = y(0) = 0. It is easy to see that the system S = (x(n), y(n))
reaches the target t⃗1 = (4, 6) but does not reach the target t⃗2 = (5, 7). Following are the
two SPInv instances produced by our reduction for the P2P instances (S, t⃗1) and (S, t⃗2).

SPInv instance for (S, t̃1):
f g x y ← 1 0 0 0

while ⋆ dox
y
f
g

 ←

 x + 2
y + 3

f · (x − 4)2 + (y − 6)2

g + 1


end while

Invariant ideal: ⟨x − 2g, y − 3g, g(g − 1)f⟩

SPInv instance for (S, t̃2):
f g x y ← 1 0 0 0

while ⋆ dox
y
f
g

 ←

 x + 2
y + 3

f · (x − 5)2 + (y − 7)2

g + 1


end while

Invariant ideal: ⟨x − 2g, y − 3g⟩

The invariant ideals for both instances are given in terms of Gröbner bases with respect
to the lexicographic order for the variable order g < f < y < x.
For the instance with the reachable target t⃗1, we have f(n) = 0 for n ≥ 2. Hence,
g(g − 1)f is a polynomial invariant and must be in the invariant ideal of this SPInv
instance; in fact, g(g − 1)f is not only in the invariant ideal but even a basis element
for the Gröbner basis with the chosen order. However, g(g − 1)f is not in the ideal of
the SPInv instance with the unreachable target t⃗2. These two SPInv instances illustrate
thus how a basis of the invariant ideal can be used to decide P2P.
While, for simplicity, our recursive sequences x(n) and y(n) are linear, our approach to
reducing P2P to SPInv also applies to polynomial recursive sequences. In Theorem 19,
we show that a polynomial such as g(g − 1)f is an element of the basis of the invariant
ideal (with respect to a specific monomial order) if and only if the original P2P instance
is positive.

Correctness of P2P ≤ SPInv. To show that it is decidable whether f(n) has a 0
given a basis of the invariant ideal, we employ Gröbner bases and an argument introduced
in [Kau05] for recursive sequences defined by rational functions, adjusted to our setting
using recursive sequences defined by polynomials.

Theorem 19 (Hardness of SPInv). SPInv is at least as hard as P2P. That is, P2P ≤
SPInv.

Proof. Assume we are given an oracle for SPInv, computing a basis B of the polynomial
invariant ideal I = ⟨B⟩ of our loop (4.13). We show that given such a basis B, it is
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decidable whether f(n) has a root, which is equivalent to the fixed P2P instance being
positive.

Note that by the construction of the loop (4.13), if f(N) = 0 for some N ∈ N0, then
∀n ≥ N : f(n) = 0. Moreover, such an N exists if and only if the P2P instance is
positive. This is true if and only if there exists an N ∈ N0 such that the sequence

n → f(n) · n · (n − 1) · (n − 2) · . . . · (n − N + 1)

is 0 for all n ∈ N0. Consequently, the polynomial invariant ideal I contains a polynomial

P := f · g · (g − 1) . . . · (g − N + 1) (4.14)

for some N ∈ N0 only if the P2P instance (4.13) is positive. It is left to show that,
given a basis B of I, it is decidable whether I contains a polynomial (4.14). Using
Buchberger’s algorithm [Buc06], B can be transformed into a Gröbner basis with respect
to any monomial order. We choose a total order among program variables such that
g < f < x1, . . . , xk. Without loss of generality, we assume that B is a Gröbner basis with
respect to the lexicographic order extending the variable order.

In what follows, we argue that if a polynomial P as in (4.14) is an element of I, then P
must be an element of the basis B. As the leading term of P is gN · f , there must be
some polynomial Q in B with a leading term that divides gN · f . By the choice of the
lexicographic order, this polynomial must be of the form Q = Q1(g) · f − Q2(g), since if
any other term would occur in Q, it would necessarily be in the leading term. As both
P ∈ I and Q ∈ I, it holds that

P · Q1 − g · (g − 1) . . . · (g − N + 1) · Q ∈ I.

By expanding P and Q, we see that the above polynomial is equivalent to

Q2 · g · (g − 1) . . . · (g − N + 1).

As this polynomial is in the ideal I, it follows that for all n ∈ N0:

Q2(n) · n · (n − 1) . . . · (n − N + 1) = 0.

However, this implies that Q2(n) has infinitely many zeros, a property that is unique to
the zero polynomial. Therefore, we conclude that Q2 ≡ 0. Hence, if the original P2P
instance is positive, there necessarily exists a basis polynomial of the form Q1(g) · f .

We show that this basis polynomial Q1(g)·f actually has the form (4.14): choose the basis
polynomial of the form Q1(g) · f such that Q1 has minimal degree. Assume Q1(g) is not
of the form g · (g−1) . . . · (g−N+1). Then, at least one factor (g−m) is not a factor of Q1,
or equivalently Q1(m) ̸= 0. Then, necessarily f(m) = 0 and g · (g−1) · . . . · (g−m+1) · f
must be in the ideal I, contradicting the minimality of the degree of Q1.

Therefore, we conclude that the P2P instance is positive if and only if the Gröbner basis
contains a polynomial of the form (4.14). As the basis B is finite, this property can be
checked by enumeration of the basis elements of B. Hence, given an oracle for SPInv,
we can decide if the P2P instance is positive or negative.
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Theorem 19 shows that SPInv is at least as hard as the P2P problem. Together with
Theorem 18, we conclude that SPInv is Skolem-hard.

An improved direct reduction from Skolem to SPInv. Theorem 19 together
with Theorem 18 yields the chain of reductions

Skolem ≤ P2P ≤ SPInv.

Within these reductions, a Skolem instance of order k yields a P2P instance with k
sequences, which in turn reduces to a SPInv instance over k+2 variables.

We conclude this section by noting that, if the linear recurrence sequence of the Skolem-
instance is an integer sequence, then a reduction directly from Skolem to SPInv can
be established by using only k+1 variables. A slight modification of Skolem ≤ P2P
reduction of Section 4.3 results in a reduction from Skolem instances of order k directly
to SPInv instances with k+1 variables. Any system of polynomial recursive sequences
can be encoded in a loop with polynomial updates. Hence, the instance produced by the
Skolem ≤ P2P reduction can be interpreted as a loop. It is sufficient to modify the
resulting loop in the following way:

xk−1 ←
k−1

i=0
ai · xi ·

k−1

ℓ=i

xℓ

sk−1 ← xk−1 · sk−1

→ xk−1 ←
k−1

i=0
ai · xi ·

k−1

ℓ=i

2 · xℓ

sk−1 ← 2 · xk−1 · sk−1

As in the reduction in Section 4.3, the equation u0(n) = x0(n)
s0(n) still holds and the resulting

loop reaches the all-zero configuration if and only if the original Skolem-instance is
positive (the integer sequence has a 0). Additionally, the resulting loop has infinitely
many different configurations if and only if the Skolem instance is positive, as the
additional factor in the updates forces a strict increase in |sk−1|. Assuming a solution
to SPInv for the constructed loop, that is a basis of the polynomial invariant ideal,
it is decidable whether the number of reachable program locations (and its algebraic
closure) is finite or not [CLO97]. Therefore, an oracle for SPInv implies the decidability
of Skolem for integer sequences, while the chain of reductions Skolem ≤ P2P ≤ SPInv
is also valid for rational sequences. For more details, we refer to [Mül23].

Summary of computability results in polynomial (non)determinstic loops.
We conclude this section by overviewing our computability results in Table 4.1, focusing
on the strongest polynomial invariants of (non)deterministic loops and in relation to the
state-of-the-art.

4.5 Strongest Invariant for Probabilistic Loops
In this section, we finally go beyond (non-)deterministic programs and address com-
putational challenges in probabilistic programming, in particular loops. Unlike the
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Table 4.1: Summary of computability results for strongest invariants of nonprobabilistic
polynomial loops, including our own results (Theorems 18 & 19). With ’✓’ we denote
decidable problems, while ’✗’ denotes undecidable problems.
Program Model Strongest Affine Invariant Strongest Polynomial Invariant

Det.
Unguarded Affine ✓ [Kar76] ✓ [Kov08]

Poly. ✓ [MS04a] Skolem-hard Theorems 18 & 19

Guarded (=, <) Affine
✗ (Halting Problem)Poly.

Nondet.
Unguarded Affine ✓ [Kar76] ✓ [HOPW23]

Poly. ✓ [MS04a] ✗ [HOPW23]

Guarded (=, <) Affine
✗ [MS04b]Poly.

programming models of Section 4.3–4.4, probabilistic loops follow different transitions
with different probabilities (cf. Example 17).

Recall that the standard definition of an invariant I, as given in Definition 26, demands
that I holds in every reachable configuration and location. As such, when using Defi-
nition 26 to define an invariant I of a probabilistic loop, the information provided by
the probabilities of reaching a configuration within the respective loop is omitted in
I. However, Definition 26 captures an invariant I of a probabilistic loop when every
probabilistic loop transition is replaced by a nondeterministic transition.

Nevertheless, for incorporating probability-based information in loop invariants, Defini-
tion 26 needs to be revised to consider expected values and higher (statistical) moments
describing the value distributions of probabilistic loop variables [Koz83, MM05]. For
instance, the symmetric 1-dimensional random walk from Example 17 does not have
any non-trivial polynomial invariants. However, considering expected values of program
variables, E[x] = 0 is an invariant property of Example 17. Therefore, in Definition 31
we introduce polynomial moment invariants to reason about value distributions of prob-
abilistic loops. We do so by utilizing higher moments of the probability distributions
induced by the value distributions of loop variables during the execution (Section 4.5.1).
The notion of polynomial moment invariants is the main contribution of this section
as it allows us to transfer specific (un)computability results for classical invariants to
the probabilistic case. We prove that polynomial moment invariants generalize classical
invariants (Lemma 20) and show that the strongest moment invariants up to moment
order ℓ are computable for the class of so-called moment-computable polynomial loops
(Section 4.5.2). In this respect, in Algorithm 2 we give a complete procedure for comput-
ing the strongest moment invariants of moment-computable polynomial loops. When
considering arbitrary polynomial probabilistic loops, we prove that the strongest moment
invariants are (i) not computable for guarded probabilistic loops (Section 4.5.3) and (ii)
Skolem-hard to compute for unguarded probabilistic loops (Section 4.5.4).
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4.5.1 Polynomial Moment Invariants
Higher moments capture expected values of monomials over loop variables, for example,
E[x2] and E[xy] respectively yield the second-order moment of x and a second-order
mixed moment. Such higher moments are necessary to characterize, and potentially
recover, the value distribution of probabilistic loop variables, allowing us to reason about
statistical properties, such as variance or skewness, over probabilistic value distributions.

When reasoning about moments of probabilistic program variables, note that in general
neither E[xℓ] = E[x]ℓ nor E[xy] = E[x]E[y] hold, due to potential dependencies among
the (random) loop variables x and y. Therefore, describing all polynomial invariants
among all higher moments by finitely many polynomials is futile. A natural restriction is
to consider polynomials over finitely many moments, which we do as follows.

Definition 30 (Moments of Bounded Degree). Let ℓ be a positive integer. Then the set
of program variable moments of order at most ℓ is given by

E≤ℓ := E xα1
1 xα2

2 · · · xαk
k | α1 + . . . + αk ≤ ℓ .

Classical invariants are defined over a finite set of program variables. In the probabilistic
setting, the elements of E≤ℓ serve as the formal variables over which moment invariants
are defined. As such, bounding the degrees of the moments is different from bounding
the degrees of the invariants, which is a common technique for classical programs
[MS04b]. Although the moments in E≤ℓ are bounded, in this section, we study unbounded
polynomial invariants involving these moments. While Definition 30 uses a bound ℓ to
define the set of moments of bounded degree, our subsequent results apply to any finite
set of moments of program variables.

Recall that Section 4.2.1 defines the semantics Sn
q of a probabilistic loop with respect

to the location q ∈ Q and the number of executed transitions n ≥ 0. The set Sn
q in

combination with the probability of each configuration allows us to define the moments of
program variables after n transitions. Further, for a monomial M in program variables,
we defined E[Mn] in (4.1) to be the expected value of M after n transitions. For example,
E[xn] denotes the expected value of the program variable x after n transitions. With
this, we define the set of polynomial invariants among moments of program variables, as
follows.

Definition 31 (Moment Invariant Ideal). Let E≤ℓ = {E[M (1)], . . . ,E[M (k)]} be the set
of program variable moments of order less than or equal to ℓ. The moment invariant
ideal I≤ℓ is defined as

I≤ℓ = p E[M (1)], . . . ,E[M (k)] ∈ Q E≤ℓ ∀n ∈ N0 : p E[M (1)
n ], . . . ,E[M (k)

n ] = 0 .

We refer to elements of I≤ℓ as polynomial moment invariants.

Intuitively, the moment invariant ideal I≤ℓ is the set of all polynomials in the moments E≤ℓ

that vanish after any number of executed transitions. For example, using Definition 31,
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a polynomial p(E[x],E[y]) in the expected values of the variables x and y is a polynomial
moment invariant, if p(E[xn],E[yn]) = 0 for all number of transitions n ∈ N0. Note that,
although E≤ℓ is a finite set, the moment invariant ideal I≤ℓ is, in general, an infinite set.

Example 20. Consider two asymmetric random walks xn and yn that both start at the
origin. Both random walks increase or decrease with probability 1/2, respectively. The
random walk xn either decreases by 2 or increases by 1, while yn behaves conversely,
which means yn either decreases by 1 or increases by 2. Following is a probabilistic loop
encoding this process together with the moment invariant ideal I≤2. The loop is given as
program code. The intended meaning of the expression e1[pr]e2 is that it evaluates to e1
with probability pr and to e2 with probability 1−pr.

x y ← 0 0
while ⋆ do

x
y

← x + 2 [1/2] x − 1
y + 1 [1/2] y − 2

end while

Basis of the moment invariant ideal I≤2:

E x2 − E y2

9 · E[x] − 2 · E[xy] − 2 · E y2

E[xy]2 + 2 · E[xy] · E y2 + 81/4 · E[xy] + E y2 2

2 · E[xy] + 9 · E[y] + 2 · E y2

This ideal I≤2 contains all algebraic relations that hold among E[xn], E[yn], E x2
n , E y2

n

and E[(xy)n] after all number of iterations n ∈ N0. The ideal provides information
about the stochastic process encoded by the loop. For instance, using the basis, it can be
automatically checked that E[xy]−E[x]E[y] is an element of I≤2. Hence, E[xy] = E[x]E[y]
is an invariant, witnessing x and y being uncorrelated.

Moment invariant ideals of Definition 31 generalize the notion of classical invariant ideals
of Definition 28 for nonprobabilistic loops. For a program variable x of a nonprobabilistic
loop, the expected value of x after n transitions is just the value of x after n iterations,
that is E[xn] = xn. Furthermore, E[xn · yn] = xn · yn for all program variables x and
y. Hence, a moment invariant such as E[x2]3 − E[y]E[y2] corresponds to the classical
invariant x6 − y3. To formalize this observation, we introduce a function ψ mapping
invariants involving moments to classical invariants.

Definition 32 (From Moment Invariants to Invariants). Let P be a program with vari-
ables x1, . . . , xk. We define the natural ring homomorphism ψ : Q[E≤ℓ] → Q[x1, . . . , xk]
extending ψ(E[M ]) := M . That means, for all p, q ∈ Q[E≤ℓ] and c ∈ Q the function ψ
satisfies the properties (i) ψ(p + q) = ψ(p) + ψ(q); (ii) ψ(p · q) = ψ(p) · ψ(q); and (iii)
ψ(c · p) = c · ψ(p).

The function ψ maps polynomials over moments to polynomials over program variables,
for example, ψ(E[x2]3 − E[y]E[y2]) = ψ(E[x2])3 − ψ(E[y])ψ(E[y2]) = x6 − y3. If p is a
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polynomial moment invariant of a probabilistic program, ψ(p) is in general not a classical
invariant. However, for nonprobabilistic programs, ψ(p) is necessarily an invariant for
every moment invariant p, as we show in the next lemma.

Lemma 20 (Moment Invariant Ideal Generalization). Let L be a nonprobabilistic loop.
Let I be the classical invariant ideal and I≤ℓ the moment invariant ideal of order ℓ. Then,
I≤ℓ and I are identical under ψ, that is

ψ I≤ℓ := ψ(p) | p ∈ I≤ℓ = I.

Proof. We show that ψ(I≤ℓ) ⊆ I. The reasoning for I ⊆ ψ(I≤ℓ) is analogous.

Let q ∈ ψ(I≤ℓ). Then, there is a p(E[M (1)], . . . ,E[M (m)]) ∈ I≤ℓ for some monomials in
program variables M (i) such that ψ(p) = p(M (1), . . . , M (m)) = q. The polynomial p in
moments of program variables is an invariant because it is an element of I≤ℓ. Moreover,
because the loop L is nonprobabilistic, we have E[Mn] = Mn for all number of transitions
n ∈ N0 and all monomials M in program variables 3. Hence, q = p(M (1), . . . , M (m))
necessarily is a classical invariant as in Definition 26 and therefore q ∈ I.

Lemma 20 hence proves that Definition 31 generalizes the notion of invariant ideals of
nonprobabilistic loops.

4.5.2 Computability of Moment Invariant Ideals
We next consider a special class of probabilistic loops, called moment-computable poly-
nomial loops. For such loops, we prove that the bases for moment invariant ideals I≤ℓ

are computable for any order ℓ. Moreover, in Algorithm 2 we give a decision procedure
computing moment invariant ideals of moment-computable polynomial loops.

Let us recall the semantical notion of moment-computable loops [MSBK22a], which we
adjusted to our setting of polynomial probabilistic loops.

Definition 33 (Moment-Computable Polynomial Loops). A polynomial probabilistic
loop L is moment-computable if, for any monomial M in loop variables of L, we have
that E[Mn] exists and is computable as E[Mn] = f(n), where f(n) is an exponential
polynomial in n, describing sums of polynomials multiplied by exponential terms in n.
That is, f(n) = k

i=0 pi(n) · λn where all pi ∈ Q[n] are polynomials and λ ∈ Q.

As stated in [KP11], we note that any LRS (4.2) has an exponential polynomial as
closed form. As proven in [MSBK22a], when considering loops with affine assignments,
probabilistic choice with constant probabilities, and drawing from probability distributions
with constant parameters and existing moments, all moments of program variables follow

3If the loop contains nondeterministic choice, this property holds with respect to every scheduler
resolving nondeterminism. For readability and simplicity, we omit the treatment of schedulers and refer
to [BKS20a] for details on schedulers.
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Algorithm 2 Computing moment invariant ideals
Input: A moment-computable polynomial loop L and an order ℓ ∈ N
Output: A basis B for the moment invariant ideal I≤ℓ

▷ Closed forms of moments as exponential polynomials
C ← compute_closed_forms(L,E≤ℓ)
▷ A basis for the ideal of all algebraic relations among sequences in C
B ← compute_algebraic_relations(C)
return B

linear recurrence sequences. Moreover, one may also consider polynomial (and not
just affine) loop updates such that non-linear dependencies among variables are acyclic.
If-statements can also be supported if the loop guards contain only program variables
with a finite domain. Under such structural considerations, the resulting probabilistic
loops are moment-computable loops [MSBK22a]: expected values E[Mn] for monomials
M over loop variables are exponential polynomials in n. Furthermore, a basis for
the polynomial relations among exponential polynomials is computable [KZ08]. We
thus obtain a decision procedure computing the bases of moment invariant ideals of
moment-computable polynomial loops, as given in Algorithm 2 and discussed next.

The procedure compute_closed_form(L, S) in Algorithm 2 takes as inputs a moment-
computable polynomial loop L and a set S of moments of loop variables and computes
exponential polynomial closed forms of the moments in S; here, we adjust results
of [MSBK22a] to implement compute_closed_form(L, S). Moreover, in Algorithm 2,
compute_algebraic_relations(C) denotes a procedure that takes a set C of ex-
ponential polynomial closed forms as input and computes a basis for all algebraic
relations among them; the procedure, compute_algebraic_relations(C) is imple-
mented using [KZ08]. Soundness of Algorithm 2 follows from the soundness arguments
of [MSBK22a, KZ08]. We implemented Algorithm 2 in our tool called Polar4, allowing
us to automatically derive the strongest polynomial moment invariants of moment-
computable polynomial loops.

Example 21. Using Algorithm 2 for the probabilistic loop of Example 20, we compute
a basis for the moment invariant ideal I≤2 in approximately 0.4 seconds and for I≤3 in
roughly 0.8 seconds, on a machine with a 2.6 GHz Intel i7 processor and 32 GB of RAM.

4.5.3 Hardness for Guarded Probabilistic Loops
As Algorithm 2 provides a decision procedure for moment-computable polynomial loops,
a natural question is whether the moment invariant ideals remain computable if we relax

(C1) the restrictions on the guards,

(C2) the structural requirements on the polynomial assignments
4https://github.com/probing-lab/polar
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of moment-computable polynomial loops.

We first focus on (C1), that is, lifting the restriction on guards and show that in this case
a basis for the moment invariant ideal of any order becomes uncomputable (Theorem 21).

We recall the seminal result of [MS04b] proving that the strongest polynomial invariant
for nonprobabilistic loops with affine updates, nondeterministic choice, and guarded
transitions is uncomputable. Interestingly, nondeterministic choice can be replaced by
uniform probabilistic choice, allowing us to also establish the uncomputability of the
strongest polynomial moment invariants, which means a basis for the ideal I≤ℓ, for any
order ℓ.

Theorem 21 (Uncomputability of Moment Invariant Ideal). For the class of guarded
probabilistic loops with affine updates, a basis for the moment invariant ideal I≤ℓ is
uncomputable for any order ℓ.

Proof. The proof is by reduction from Post’s correspondence problem (PCP), which
is undecidable [Pos46]. A PCP instance consists of a finite alphabet Σ and a finite
set of tuples {(xi, yi) | 1 ≤ i ≤ N, xi, yi ∈ Σ∗}. A solution is a sequence of indices (ik),
1 ≤ k ≤ K where ik ∈ {1, . . . , N} and the concatenations of the substrings indexed by
the sequence are identical, written in symbols as

xi1 · xi2 · . . . · xiK = yi1 · yi2 · . . . · yiK

Note that the tuple elements may be of different lengths. Moreover, any instance of the
PCP over a finite alphabet Σ can be equivalently represented over the alphabet {0, 1} by
a binary encoding.

Now, given an instance of the (binary) PCP, we construct the guarded probabilistic loop
with affine updates shown in Figure 4.3. We encode the binary strings as integers and
denote a transition with probability pr, guard g and updates f as [pr] : g : x⃗ ← f(x⃗).

q0 q1

[1] : (x = y ∧ x > 0) : t ← 1

[1] : ⊤ : x, y, t ← 0, 0, 0
for each 1 ≤ i ≤ N :
[1/N] : (x ̸= y ∨ x ≤ 0) :
x
y

← 2|xi| · x + xi

2|yi| · y + yi

Figure 4.3: A guarded probabilistic loop with affine updates simulating the PCP.

The idea is to pick a pair of integer-encoded strings uniformly at random and append
them to the string built so far. This is done by left-shifting the existing bits of the string
(by multiplying by a power of 2) and adding the randomly selected string.
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If the PCP instance does not have a solution, we have t = 0 after every transition. Hence,
E[t] = 0 must be an invariant. Therefore, E[t] is necessarily an element of I≤ℓ for any
order ℓ.

If the PCP instance does have a solution (ik), 1 ≤ k ≤ K, then after exactly n = K + 2
transitions it holds that P(xn = yn) ≥ 1

N

K
, as this is the probability of choosing the

correct sequence uniformly at random. Because t is an indicator variable, E[tn] = P(tn =
1) = P(xn = yn) ≥ 1

N

K
> 0. Hence, E[tn] ̸= 0 after n transitions and E[t] cannot be

an element of I≤ℓ for any order ℓ.

Consequently, for all orders ℓ, the PCP instance has a solution if and only if E[t] is an
element of I≤ℓ. However, given a basis, checking for ideal membership is decidable (cf.
Section 4.2.2). Hence, a basis for the moment invariant ideal I≤ℓ must be uncomputable
for any order ℓ.

Note that the PCP reduction within the proof of Theorem 21 requires only affine updates
and affine invariants. Therefore, allowing loop guards renders even the problem of finding
the strongest affine invariant for a finite set of moments uncomputable for probabilistic
loops with affine updates.

4.5.4 Hardness for Unguarded Polynomial Probabilistic Loops
In this section we address challenge (C2), that is, study computational lower bounds for
computing a basis of moment invariant ideals for probabilistic loops that lack guards and
nondeterminism, but feature arbitrary polynomial updates. We show that addressing
(C2) boils down to solving the Prob-SPInv problem of Section 4.1, which in turn we
prove to be Skolem-hard (Theorem 23). As such, computing the moment invariant
ideals of probabilistic loops with arbitrary polynomial updates as stated in (C2) is
Skolem-hard.

We restrict our attention to moment invariant ideals of order 1. Intuitively, a basis for
I≤1 is easier to compute than I≤ℓ for ℓ > 1. A formal justification in this respect is given
by the following lemma.

Lemma 22 (Moment Invariant Ideal of Order 1). Given a basis for the moment invariant
ideal I≤ℓ for any order ℓ ∈ N, a basis for I≤1 is computable.

Proof. The moment invariant ideal I≤ℓ is an ideal in the polynomial ring with variables
E≤ℓ. Moreover, E≤1 ⊆ E≤ℓ. Hence, I≤1 = I≤ℓ ∩ Q[E≤1], meaning I≤1 is an elimination
ideal of I≤ℓ. Given a basis for a polynomial ideal, bases for elimination ideals are
computable [CLO97].

Using Lemma 22, we translate challenge (C2) into the Prob-SPInv problem of Sec-
tion 4.1, formally defined as follows.
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The Prob-SPInv Problem: Given an unguarded, probabilistic loop with polynomial
updates and without nondeterministic choice, compute a basis of the moment invariant
ideal of order 1.

Recall that computing a basis for the classical invariant ideal for nonprobabilistic programs
with arbitrary polynomial updates, that is, deciding SPInv, is Skolem-hard (Theorem 18
and Theorem 19). We next show that SPInv reduces to Prob-SPInv, thus implying
Skolem-hardness of Prob-SPInv as a direct consequence of Lemma 20.

Theorem 23 (Hardness of Prob-SPInv). Prob-SPInv is at least as hard as SPInv,
in symbols SPInv ≤ Prob-SPInv.

Proof. Assume L is an instance of SPInv. That is, L is a deterministic loop with
polynomial updates. Let x1, . . . , xk be the program variables and I the classical invariant
ideal of L. Note that L is also an instance of Prob-SPInv and assume B is a basis for
the moment invariant ideal I≤1. From Lemma 20 we know that ψ(I≤1) = I. For order
1, the function ψ is a ring isomorphism between the polynomial rings Q[x1, . . . , xk] and
Q[E[x1], . . . ,E[xk]]. Hence, the set {ψ(b) | b ∈ B} is a basis for I. Therefore, given a
basis for I≤1, a basis for I is computable.

Theorem 23 shows that Prob-SPInv is at least as hard as the SPInv problem. Together
with Theorem 18 and Theorem 19, we conclude the following chain of reductions:

Skolem ≤ P2P ≤ SPInv ≤ Prob-SPInv

On attempting to prove uncomputability of Prob-SPInv– A remaining open
challenge. While Theorem 23 asserts that Prob-SPInv is Skolem-hard, it could be
that Prob-SPInv is uncomputable.

Recall that for proving the uncomputability of moment invariant ideals for guarded prob-
abilistic programs in Theorem 21, we replaced nondeterministic choice with probabilistic
choice. The “nondeterministic version” of Prob-SPInv refers to computing the strongest
polynomial invariant for nondeterministic polynomial programs, which has been recently
established as uncomputable [HOPW23]. Therefore, it is natural to consider transferring
the uncomputability results of [HOPW23] to Prob-SPInv by replacing nondeterministic
choice with probabilistic choice. However, such a generalization of [HOPW23] to the
probabilistic setting poses considerable problems and ultimately fails to establish the
potential uncomputability of Prob-SPInv, for the reasons discussed next.

The proof in [HOPW23] reduces the Boundedness problem for Reset Vector Addition
System with State (VASS) to the problem of finding the strongest polynomial invariant
for nondeterministic polynomial programs. A Reset VASS is a nondeterministic program
where any transition may increment, decrement, or reset a vector of unbounded, non-
negative variables. Importantly, a transition can only be executed if no zero-valued variable
is decremented. The Boundedness Problem for Reset VASS asks, given a Reset VASS
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and a specific program location, whether the set of reachable program configurations is
finite. The Boundedness Problem for Reset VASS is undecidable [DFS98] and therefore
instrumental in the reduction of [HOPW23].

Namely, in the reduction of [HOPW23] to prove uncomputability of the strongest polyno-
mial invariant for nondeterministic polynomial programs, an arbitrary Reset VASS V with
n variables a1, . . . , an is simulated by a nondeterministic polynomial program P with n+1
variables b0, . . . bn. Note that the programming model is purely nondeterministic, that is,
without equality guards, since introducing guards would render the problem immediately
undecidable [MS04b]. To avoid zero-testing the variables before executing a transition,
the crucial point in the reduction of [HOPW23] is to map invalid traces to the vector 0⃗
and faithfully simulate valid executions. By properties of the reduction, it holds that the
configuration (b0, . . . , bn) is reachable in P, if and only if there exists a corresponding
configuration 1/b0 · (b1, . . . , bn) in V . Essential to the reduction of [HOPW23] is, that even
though there may be multiple configurations in P for each configuration in V, all these
configurations are only scaled by the factor b0 and hence collinear. By collinearity, the
variety of the invariant ideal can be covered by a finite set of lines if and only if the set
of reachable VASS configurations is finite. Testing this property is decidable, and hence
finding the invariant ideal must be undecidable.

Transferring the reduction of [HOPW23] to the probabilistic setting of Prob-SPInv by
replacing nondeterministic choice with probabilistic choice poses the following problem:
in the nondeterministic setting, any path is independent of all other paths. However,
this does not hold in the probabilistic setting of Prob-SPInv. The expected value
operator E[xn] aggregates all possible valuations of x in iteration n across all possible
paths through the program. Specifically, the expected value is a linear combination of
the possible configurations of V, which is not necessarily limited to a collection of lines
but may span a higher-dimensional subspace. This is the step where a reduction similar
to [HOPW23] fails for Prob-SPInv.

Example 22. Consider a Reset VASS V with variable x initialized to 0, initial state q0,
and additional state q1. Assume a single transition from q0 to q1 incrementing x and
two transitions from q1 to q1. One transition from q1 to q1 decrements x, whereas the
other leaves x unchanged. In a Reset VASS, it is forbidden to decrement a zero-valued
variable. Therefore, the set of reachable configurations in q1 is {0, 1} and hence finite.
The reduction in [HOPW23] constructs from V a nondeterministic polynomial program
P with two variables y and z. Similar to V, the program P has two states q̂0 and q̂1,
one transition from q̂0 to q̂1 and two transitions from q̂1 to itself. In contrast to V, the
transitions in P model polynomial assignments for the variables y and z. For more details
on the reduction, we refer to [HOPW23]. Important are the reachable configurations
of P depicted in the computation tree in Figure 4.4. For every reachable configuration
(y, z) ̸= (0, 0) we have z/y ∈ {0, 1} Hence, all reachable configurations lie on finitely many
lines. Replacing nondeterministic choice in the state q̂1 by uniform probabilistic choice
and considering expected values breaks this central property of the reduction. The sequence
of expected values for y and z can be obtained by averaging the variable values for every
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(1, 0)

(22, 22)

(25, 0)

(0, 0)
...

(211, 0)
...

(26, 26)

(213, 0)
...

(214, 214)
...

Figure 4.4: Computation tree of the program P from Example 22.

level in the computation tree in Figure 4.4 and is (1, 0), (4, 4), (48, 32), (4096, 6656), . . . .
The ratios of the expected values after n ≥ 1 transitions are can be calculated to be

E[zn]
E[yn] = 1

n−1
i=0

1
22i−1

,

and hence the points {(E[yn],E[zn]) | n ∈ N} cannot be covered with finitely many lines.

It is however worth noting how well-suited the Boundedness Problem for Reset VASS
is for proving the undecidability of problems for unguarded programs. A Reset VASS
is not powerful enough to determine if a variable is zero, yet the Boundedness Problem
is still undecidable. The vast majority of other undecidable problems that may be
used in a reduction are formulated in terms of counter-machines, Turing machines, or
other automata that rely on explicitly determining if a given variable is zero, hindering
a straightforward simulation as unguarded programs. Therefore, we conjecture that
any attempt towards proving (un)computability of Prob-SPInv would require a new
methodology, unrelated to [HOPW23]. We leave this task as an open challenge for future
work.

4.5.5 Summary of Computability Results for Probabilistic Polynomial
Loop Invariants

We finally conclude this section by summarizing our computability results on the strongest
polynomial (moment) invariants of probabilistic loops. We overview our results in
Table 4.2.

4.6 Related Work
We discuss our work in relation to the state-of-the-art in computing strongest (proba-
bilistic) invariants and analyzing point-to-point reachability.
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Table 4.2: Our computability results for strongest polynomial (moment) invariants of
polynomial probabilistic loops. The symbol ’✓’ denotes computable problems, ’?’ shows
open problems, and ’✗’ marks uncomputable problems.

Program Model Strongest Affine Invariant Strongest Polynomial Invariant

Prob.

Unguarded & Affine ✓ Algorithm 2 ✓ Algorithm 2
Guarded (finite) Poly. ? Skolem-hard Theorem 23

Guarded (=, <) Affine
✗ Theorem 21Poly.

Strongest Invariants. Algebraic invariants were first considered for unguarded deter-
ministic programs with affine updates [Kar76]. Here, a basis for both the ideal of affine
invariants and for the ideal of polynomial invariants is computable [Kar76, Kov08].

For unguarded deterministic programs with polynomial updates, all invariants of bounded
degree are computable [MS04a], while the more general task of computing a basis for
the ideal of all polynomial invariants, that is solving our SPInv problem, was stated as
an open problem. In Section 4.4 we proved that SPInv is at least as hard as Skolem
and P2P. Strengthening these results by proving computability for SPInv would result
in a major breakthrough in number theory, as this would imply the decidability of the
Skolem problem.

For guarded deterministic programs, the strongest affine invariant is uncomputable,
even for programs with only affine updates. This is a direct consequence of the fact
that this model is sufficient to encode Turing machines and allows us to encode the
Halting problem [HU69]. Nevertheless, there exists a multitude of incomplete methods
capable of extracting useful invariants even for non-linear programs, for example, based
on abstract domains [KCBR18], over-approximation in combination with recurrences
[FK15, KBCR19] or using consequence finding in tractable logical theories of non-linear
arithmetic [KKZ23].

For nondeterministic programs with affine updates, a basis for the invariant ideal is
computable [Kar76]. Furthermore, the set of invariants of bounded degree is computable
for nondeterministic programs with polynomial updates, while bases for the ideal of all
invariants are uncomputable [MS04a, HOPW23]. Additionally, even a single transition
guarded by an equality or inequality predicate renders the problem uncomputable, already
for affine updates [MS04b].

Point-To-Point Reachability. The Point-To-Point reachability problem formalized
by our P2P problem appears in various areas dealing with discrete systems, such as
dynamical systems, discrete mathematics, and program analysis. For linear dynamical
systems, P2P is known as the Orbit problem [COW13], with a significant amount of
work on analyzing and proving decidability of P2P for linear systems [KL80, COW13,
COW15, BFJ+21]. In contrast, for polynomial systems, the P2P problem remained
open regarding decidability or computational lower bounds. Existing techniques in this
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respect resorted to approximate techniques [DDP17, DT12]. Contrarily to these works,
in Section 4.3 we rigorously proved that P2P for polynomial systems is at least as hard
as the Skolem problem. The P2P problem is essentially undecidable already for affine
systems that additionally include nondeterministic choice [FGH13, KNP18].

Probabilistic Invariants. Invariants for probabilistic loops can be defined in various in-
comparable ways, depending on the context and use case. Dijkstra’s weakest-precondition
calculus for classical programs was generalized to the weakest-preexpectation (wp) cal-
culus in the seminal works [Koz83, Koz85, MM05]. In the wp-calculus, the semantics
of a loop can be described as the least fixed point of the characteristic function of
the loop in the lattice of so-called expectations [KKM19]. Invariants are expectations
that over- or under-approximate this fixed point and are called super- or sub-invariants,
respectively. One line of research is to synthesize such invariants using templates and
constraint-solving methods [GKM13, BCK+21, BCJ+23]. A calculus, analogous to the
wp-calculus, has been introduced for expected runtime analysis [KKMO18] and amortized
expected runtime analysis [BKK+23]. The work of [CNZ17] introduces the notion of
stochastic invariants, that is, expressions that are violated with bounded probability.
Other notions of probabilistic invariants involve martingale theory [BEFH16] or utilize
bounds on the expected value of program variable expressions [CS14]. The techniques
presented in [MSBK22a, BKS19] compute closed forms for moments of program variables
parameterized by the loop counter.

The different notions of probabilistic invariants, in general, do not form ideals or are
relative to some other expression. Furthermore, the existing procedures to compute
invariants are heuristics-driven and hence incomplete. Contrarily to these, our polynomial
moment invariants presented in Section 4.5 form ideals and relate all variables. Moreover,
our Algorithm 2 computes a basis for all moment invariants and is complete for the class
of moment-computable polynomial loops. Going beyond such loops, we showed that
Prob-SPInv is Skolem-hard and/or uncomputable (Theorem 23 and Theorem 21).

4.7 Conclusion
We prove that computing the strongest polynomial invariant for single-path loops with
polynomial assignments (SPInv) is at least as hard as the Skolem problem, a famous
problem whose decidability has been open for almost a century. As such, we provide
the first non-trivial lower bound for computing the strongest polynomial invariant for
deterministic polynomial loops, a quest introduced in [MS04b]. As an intermediate result,
we show that point-to-point reachability in deterministic polynomial loops (P2P), or
equivalently in discrete-time polynomial dynamical systems, is Skolem-hard. Further,
we devise a reduction from P2P to SPInv. We generalize the notion of invariant ideals
from classical programs to the probabilistic setting, by introducing moment invariant
ideals and addressing the Prob-SPInv problem. We show that the strongest polynomial
moment invariant, and hence Prob-SPInv, is (i) computable for the class of moment-
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computable probabilistic loops, but becomes (ii) uncomputable for probabilistic loops
with branching statements and (iii) Skolem-hard for polynomial probabilistic loops
without branching statements. Going beyond Skolem-hardness of Prob-SPInv and
SPInv are open challenges we aim to further study.
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CHAPTER 5
(Un)Solvable Loop Analysis

This chapter is based on the following article [ABK+24]:

Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moos-
brugger, and Miroslav Stankovic. (Un)Solvable Loop Analysis. Formal Methods Syst.
Des., 2024. To appear.

The article is an extended version of the conference paper [ABK+22]:

Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moos-
brugger, and Miroslav Stankovic. Solving Invariant Generation for Unsolvable Loops.
In Proc. of SAS, 2022.

5.1 Problem Statement
With substantial progress in computer-aided program analysis and automated reason-
ing, several techniques have emerged to automatically synthesise loop invariants, thus
advancing a central challenge in the computer-aided verification of programs with loops.
We address the problem of automatically generating loop invariants in the presence of
polynomial arithmetic, which is still unsolved. This problem remains unsolved even
when we restrict consideration to loops that are non-nested, without conditionals, and/or
without exit conditions. Our work improves the state of the art under such and similar
considerations.

Loop invariants, in the sequel simply invariants, are properties that hold before and
after every iteration of a loop. Invariants therefore provide the key inductive argu-
ments for automating the verification of programs; for example, proving correctness
of deterministic loops [RcK04, Kov08, dOBP16, KCBR18, HJK18b] and correctness
of hybrid and probabilistic loops [HFM+14, KKMO16, BKS19], or data flow analysis
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and compiler optimisation [MS04a]. One challenging aspect in invariant synthesis is
the derivation of polynomial invariants for arithmetic loops. Such invariants are de-
fined by polynomial relations P (x1, . . . , xk) = 0 among the program variables x1, . . . , xk.
While deriving polynomial invariants is, in general, undecidable [HOPW23], efficient
invariant synthesis techniques emerge when considering restricted classes of polynomial
arithmetic in so-called solvable loops [RcK04], such as loops with (blocks of) affine
assignments [Kov08, dOBP16, HJK18b, KCBR18].

A common approach for constructing polynomial invariants, first pioneered in [EGLW72,
KM76], is to (i) map a loop to a system of recurrence equations modelling the behaviour of
program variables; (ii) derive closed-forms for program variables by solving the recurrences;
and (iii) compute polynomial invariants by eliminating the loop counter n from the closed-
forms. The polynomial invariants resulting from step (iii) over-approximate the fixed
point of the loop. The central components in this setting follow. In step (i) a recurrence
operator is employed to map loops to recurrences, which leads to closed-forms for the
program variables as exponential polynomials in step (ii); that is, each program variable
is written as a finite sum of the form j Pj(n)λn

j parameterised by the nth loop iteration
for polynomials Pj and algebraic numbers λj . From the theory of algebraic recurrences,
this is the case if and only if the behaviour of each variable obeys a linear recurrence
equation with constant coefficients [EvdPSW03, KP11]. Exploiting this result, the class
of recurrence operators that can be linearised are called solvable [RcK04]. Intuitively,
a loop with a recurrence operator is solvable only if the non-linear dependencies in
the resulting system of polynomial recurrences are acyclic (see Section 5.3). However,
even simple loops may fall outside the category of solvable operators, but still admit
polynomial invariants and closed-forms for combinations of variables. This phenomenon is
illustrated in Figure 5.1 whose recurrence operators are not solvable (i.e. unsolvable). In
other works, the generation of polynomial invariants is usually limited to those variables
that admit closed-forms. With our approach, specifically in step (iii), we can generate
polynomial invariants from combinations of program variables that admit closed-forms
(where individual variables may fail to do so). This analysis can lead to a tighter over-
approximation of a loop’s fixed point. In general, the main obstacle in the setting of
unsolvable recurrence operators is the absence of “well-behaved” closed-forms for the
resulting recurrences.

5.1.1 Related Work

To the best of our knowledge, the study of invariant synthesis from the viewpoint of
recurrence operators is mostly limited to the setting of solvable operators (or minor
generalisations thereof). In [RcK04, RK07] the authors introduce solvable loops and
mappings to model loops with (blocks of) affine assignments and propose solutions for steps
(i)–(iii) for this class of loops: all polynomial invariants are derived by first solving linear
recurrence equations and then eliminating variables based on Gröbner basis computation.
These results have further been generalised in [Kov08, HJK18b] to handle more generic
recurrences; in particular, deriving arbitrary exponential polynomials as closed-forms
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z ← 0
while ⋆ do

z ← 1 − z
x ← 2x + y2 + z
y ← 2y − y2 + 2z

end while

Closed-form of x + y:
x(n)+y(n) = 2n(x(0)+y(0)+
2) − (−1)n/2 − 3/2

(a) The program P□.

x, y ← 1, 1
while ⋆ do

w ← x + y
x ← w2

y ← w3

end while

Polynomial Invariant:
y2(n) − x3(n) = 0

(b) The program PSC.

Figure 5.1: Two running examples with unsolvable recurrence operators. Nevertheless,
P□ admits a closed-form for combinations of variables and PSC admits a polynomial
invariant. Herein we use ⋆ (rather than a loop guard or true) as loop termination is not
our focus. For the avoidance of doubt: we consider standard mathematical arithmetic (e.g.
mathematical integers) rather than machine floating-point and finite precision arithmetic.

of loop variables and allowing restricted multiplication among recursively updated loop
variables. The authors of [FK15, KCBR18] generalise the setting: they consider more
complex programs and devise abstract (wedge) domains to map the invariant generation
problem to the problem of solving C-finite recurrences. (We give further details of
this class of recurrences in Section 5.2). All the aforementioned approaches are mainly
restricted to C-finite recurrences for which closed-forms always exist, thus yielding loop
invariants. In [BKS19, BKS20b] the authors establish techniques to apply invariant
synthesis techniques developed for deterministic loops to probabilistic programs. Instead
of devising recurrences describing the precise value of variables in step (i), their approach
produces C-finite recurrences describing (higher) moments of program variables, yielding
moment-based invariants after step (iii).

Pushing the boundaries in analyzing unsolvable loops is addressed in [KCBR18, FHG20].
The approach of [KCBR18] extracts C-finite recurrences over linear combinations of loops
variables from unsolvable loops. For example, the method presented in [KCBR18] can
also synthesise the closed-forms identified by our approach for Figure 5.1a. However,
unlike [KCBR18], our method is not limited to linear combinations (we can extract C-
finite recurrences over polynomial relations in the loop variables). As such, the technique
of [KCBR18] cannot synthesise the polynomial loop invariant in Figure 5.1b, whereas
our technique can. A further related approach to our method is given in [FHG20], yet
in the setting of loop termination. However, our method is not restricted to solvable
loops that are triangular, but can handle mutual dependencies among (unsolvable) loop
variables, as evidenced in Figure 5.1.

Related work in the literature introduces techniques from the theory of martingales in
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order to synthesise invariants in the setting of probabilistic programs [CS13]. Therein,
the programming model is represented by a class of loop programs where all updates
are linear and the synthesised invariants are given by linear templates. By contrast,
our method allows us to handle polynomial arithmetic; in particular, we automatically
generate invariants given by monomials in the program variables. On the other hand, the
approach of [CS13] can also synthesise supermartingales whereas our work is restricted
to invariants defined by equalities.

5.1.2 Our Contributions
We consider the sister problems of invariant generation and solvable loop synthesis in
the setting of unsolvable recurrence operators. We introduce the notions of effective and
defective program variables where, figuratively speaking, the defective variables are those
“responsible” for unsolvability. Our main contributions are summarised below.

1. Crucial for our synthesis technique is our novel characterisation of unsolvable
recurrence operators in terms of defective variables (Theorem 27). Our approach
complements existing techniques in loop analysis, by extending these methods to
the setting of ‘unsolvable’ loops.

2. On the one hand, defective variables do not generally admit closed-forms. On
the other hand, some polynomial combinations of such variables are well-behaved
(see e.g., Figure 5.1). We show how to compute the set of defective variables in
polynomial time (Algorithm 3).

3. We introduce a new technique to synthesise valid linear relations in defective
monomials such that these relations admit closed-forms, from which polynomial
loop invariants follow (Section 5.5).

4. Given an unsolvable loop, we introduce an algorithmic approach (Algorithm 4) that
synthesises a solvable loop with the following property: every polynomial invariant
of the solvable loop is also an invariant of the given unsolvable loop (Section 5.6).

5. We generalise our technique to the analysis of probabilistic program loops (Sec-
tion 5.7) and showcase further applications of unsolvable operators in such programs
(Section 5.8).

6. We provide a fully automated approach in the tool Polar1. For evaluating our
method, we compiled an extensive lists of challenging loops from the literature,
including applications of mathematical and physical modelling. Our experiments
demonstrate the feasibility of invariant synthesis for ‘unsolvable’ loops and the
applicability of our approach to deterministic loops, probabilistic models, and
biological systems (Section 5.9).

1https://github.com/probing-lab/polar
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5.1.3 Beyond Invariant Generation
We believe our approach can provide new solutions towards compiler optimisation chal-
lenges. Scalar evolution2 is a technique to detect general induction variables. Scalar
evolution and general induction variables are used for a multitude of compiler optimisa-
tions, for example inside the LLVM toolchain [LA04]. On a high-level, general induction
variables are loop variables that satisfy linear recurrences. As we show, defective variables
do not satisfy linear recurrences in general; hence, scalar evolution optimisations cannot
be applied upon them. However, some linear combinations of defective monomials do
satisfy linear recurrences, which opens avenues where we can apply scalar evolution
techniques over such monomials. In particular, our method automatically computes
polynomial combinations of some defective loop variables, which potentially enlarges the
class of loops that, for example, LLVM can optimise.

5.1.4 Structure and Summary of Results
We briefly recall preliminary material in Section 5.2. Section 5.3 abstracts from concrete
recurrence-based approaches to invariant synthesis via recurrence operators. Section 5.4
introduces effective and defective variables, presents Algorithm 3 that computes the set
of defective program variables in polynomial time, and characterises unsolvable loops in
terms of defective variables (Theorem 27). In Section 5.5 we present our new technique
that synthesises linear relations in defective monomials that admit well-behaved closed-
forms. In Section 5.6 we introduce Algorithm 4 to synthesise solvable loops. That is,
given an unsolvable loop, Algorithm 4 outputs a solvable loop, if it exists such that
each polynomial invariant of the solvable loop is also an invariant of the unsolvable loop.
In Section 5.7 we detail the necessary changes to the algorithms in Sections 5.5 and
5.6 for probabilistic programs. We illustrate our approach with several case-studies in
Section 5.8, and describe a fully-automated tool support of our method in Section 5.9. We
also report on accompanying experimental evaluation in Sections 5.8–5.9, and conclude
in Section 5.10.

5.2 Preliminaries

5.2.1 Notation
We write N, Q, and R to respectively denote the sets of natural, rational, and real
numbers. We write Q, the algebraic closure of Q, to denote the field of algebraic numbers.
We write R[x1, . . . , xk] and Q[x1, . . . , xk] for the polynomial rings of all polynomials
P (x1, . . . , xk) in k variables x1, . . . , xk with coefficients in R and Q, respectively (with
k ∈ N and k ̸= 0). A monomial is a monic polynomial with a single term.

For a program P , Vars(P) denotes the set of program variables. We adopt the following
syntax in our examples. Sequential assignments in while loops are listed on separate

2https://llvm.org/docs/Passes.html
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lines (as demonstrated in Figure 5.1). In programs where simultaneous assignments
are performed, we employ vector notation (as demonstrated by the assignments to the
variables x and y in program PMC in Example 25).

We refer to a directed graph with G, whose edge and vertex (node) sets are respectively
denoted via A(G) and V (G). We endow each element of A(G) with a label according to
a labelling function L. A path in G is a finite sequence of contiguous edges of G, whereas
a cycle in G is a path whose initial and terminal vertices coincide. A graph that contains
no cycles is acyclic. In a graph G, if there exists a path from vertex u to vertex v, then
we say that v is reachable from vertex u and say that u is a predecessor of v.

5.2.2 C-finite recurrences
We recall relevant results on (algebraic) recurrences and refer to [EvdPSW03, KP11]
for further details. A sequence in Q is a function u : N → Q, shortly written also as
⟨u(n)⟩∞

n=0 or simply just ⟨u(n)⟩n. A recurrence for a sequence ⟨u(n)⟩n is an equation
u(n+ℓ) = Rec(u(n+ℓ−1), . . . , u(n+1), u(n), n), for some function Rec: Rℓ+1 → R. The
number ℓ ∈ N is the order of the recurrence.

A special class of recurrences we consider are the linear recurrences with constant
coefficients, in short C-finite recurrences. A C-finite recurrence for a sequence ⟨u(n)⟩n is
an equation of the form

u(n+ℓ) = aℓ−1u(n+ℓ−1) + aℓ−2u(n+ℓ−2) + · · · + a0u(n) (5.1)

where a0, . . . , aℓ−1 ∈ Q are constants and a0 ̸= 0. A sequence ⟨u(n)⟩n satisfying a C-finite
recurrence (5.1) is a C-finite sequence and is uniquely determined by its initial values
u0 = u(0), . . . , uℓ−1 = u(ℓ−1). The characteristic polynomial associated with the C-finite
recurrence relation (5.1) is

xn+ℓ − aℓ−1xn+ℓ−1 − aℓ−2xn+ℓ−2 − · · · − a0xn.

The terms of a C-finite sequence can be written in a closed-form as exponential poly-
nomials, depending only on n and the initial values of the sequence. That is, if
⟨u(n)⟩n is determined by a C-finite recurrence (5.1), then u(n) = r

k=1 Pk(n)λn
k where

Pk(n) ∈ Q[n] and λ1, . . . , λr are the roots of the associated characteristic polynomial. Im-
portantly, closed-forms of (systems of) C-finite sequences always exist and are computable
[EvdPSW03, KP11].

5.2.3 Invariants
A loop invariant is a loop property that holds before and after each loop iteration [Hoa69].
We focus on polynomial invariants, the class of invariants given by Boolean combinations
of polynomial equations among loop variables. There is a minor caveat to our characteri-
sation of (polynomial) loop invariants. We assume that a (polynomial) invariant consists
of a finite number of initial values together with a closed-form expression of a monomial
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in the loop variables. Thus the closed-form of a loop invariant must eventually hold after
a (computable) finite number of loop iterations. Let us illustrate this caveat with the
following loop example.

Example 23.
x, y, z ← 0, 1, 0
while ⋆ do

x ← 1
y ← y + x
z ← z + 1

end while

The loop admits the polynomial invariant y −z −1 = 0 given by the initial values x(0) = 0,
y(0) = 1, z(0) = 0 and the closed-forms x(n) = 1, y(n) = n + 1, and z(n) = n. For each
n ≥ 1, we denote by v(n) the value of a loop variable v at loop iteration n.

Herein, we synthesise invariants that satisfy inhomogeneous first-order recurrence relations
and it is straightforward to show that each associated closed-form holds for n ≥ 1.

5.2.4 Polynomial Invariants and Invariant Ideals

A polynomial ideal is a subset I ⊆ Q[x1, . . . , xk] with the following properties: I contains
0; I is closed under addition; and if P ∈ Q[x1, . . . , xk] and Q ∈ I, then PQ ∈ I. For a
set of polynomials S ⊆ Q[x1, . . . , xk], one can define the ideal generated by S by

I(S) := {s1q1 + · · · + sℓqℓ | si ∈ S, qi ∈ Q[x1, . . . , xk], ℓ ∈ N}.

Let P be a program as before. For xj ∈ Vars(P), let ⟨xj(n)⟩n denote the sequence whose
nth term is given by the value of xj in the nth loop iteration. The set of polynomial
invariants of P form an ideal, the invariant ideal of P [RK07]. If for each program
variable xj the sequence ⟨xj(n)⟩n is C-finite, then a basis for the invariant ideal can be
computed as follows. Let fj(n) be the exponential polynomial closed-form of variable
xj . The exponential terms λn

1 , . . . , λn
s in each of the fj(n) are replaced by fresh symbols,

yielding the polynomials gj(n). Next, with techniques from [KZ08], the set R of all
polynomial relations among λn

1 , . . . , λn
s (that hold for each n ∈ N) is computed. Then we

express the polynomial relations in terms of the fresh constants, so that we can interpret
R as a set of polynomials. Thus

I({xj − gj(n) | 1 ≤ i ≤ k} ∪ R) ∩ Q[x1, . . . , xk]

is precisely the invariant ideal of P . Finally, we can compute a finite basis for the invariant
ideal with techniques from Gröbner bases and elimination theory [KZ08].
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5.3 From Loops to Recurrences
5.3.1 Recurrence Operators
Modelling properties of loop variables by algebraic recurrences and solving the resulting
recurrences is an established approach in program analysis. Multiple works [Kov08, FK15,
KCBR18, HJK17, HJK18b] associate a loop variable x with a sequence ⟨x(n)⟩n whose
nth term is given by the value of x in the nth loop iteration. These works are primarily
concerned with the problem of representing such sequences via recurrence equations
whose closed-forms can be computed automatically, as in the case of C-finite sequences.
A closely connected question to this line of research focuses on identifying classes of loops
that can be modelled by solvable recurrences, as advocated in [RcK04]. To this end,
over-approximation methods for general loops are proposed in [FK15, KCBR18] such
that solvable recurrences can be obtained from (over-approximated) loops.

In order to formalise the above and similar efforts in associating loop variables with
recurrences, herein we introduce the concept of a recurrence operator, and the characteri-
sation of both solvable and unsolvable operators. Intuitively, a recurrence operator maps
program variables to recurrence equations describing some properties of the variables; for
instance, the exact values at the nth loop iteration [RcK04, Kov08, FK15] or statistical
moments in probabilistic loops [BKS19].

Definition 34 (Recurrence Operator). A recurrence operator R maps the program
variables Vars(P) to the polynomial ring R[Varsn(P)]. The set of equations

{x(n+1) = R[x] | x ∈ Vars(P)}
constitutes a polynomial first-order system of recurrences. We call R linear if R[x] is
linear for all x ∈ Vars(P).

One can extend the operator R to R[Vars(P)]. Then, with a slight abuse of notation, for
P (x1, . . . , xj) ∈ R[Vars(P)] we define R(P ) by P (R[x1], . . . , R[xj ]).

Example 24. Consider the program PSC in Figure 5.1b. One can employ a recurrence
operator R in order to capture the values of the program variables in the nth iteration.
For v ∈ Vars(PSC), R[v] is obtained by bottom-up substitution in the polynomial updates
starting with v. As a result, we obtain the following system of recurrences:

w(n+1) = R[w] = x(n) + y(n)
x(n+1) = R[x] = x(n)2 + 2x(n)y(n) + y(n)2

y(n+1) = R[y] = x(n)3 + 3x(n)2y(n) + 3x(n)y(n)2 + y(n)3.

Similarly, for the program P□ of Figure 5.1a, we obtain the following system of recurrences:

z(n+1) = R[z] = 1 − z(n)
x(n+1) = R[x] = 2x(n) + y(n)2 − z(n) + 1
y(n+1) = R[y] = 2y(n) − y(n)2 − 2z(n) + 2.
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5.3.2 Solvable Operators

Systems of linear recurrences with constant coefficients admit computable closed-form
solutions as exponential polynomials [EvdPSW03, KP11]. This property holds for a larger
class of recurrences with polynomial updates, which leads to the notion of solvability
introduced in [RcK04]. We adjust the notion of solvability to our setting by using
recurrence operators. In the following definition, we make a slight abuse of notation and
order the program variables so that we can transform program variables by a matrix
operator.

Definition 35 (Solvable Operators [RcK04, dOBP16]). The recurrence operator R is
solvable if there exists a partition of Varsn; that is, Varsn = W1 ⊎ · · · ⊎ Wk such that for
x(n) ∈ Wj,

R[x] = Mj · W ⊤
j + Pj(W1, . . . , Wj−1)

for some matrices Mj and polynomials Pj. A recurrence operator that is not solvable is
said to be unsolvable.

This definition captures the notion of solvability in [RcK04] (see discussion in [dOBP16]).

We conclude this section by emphasising the use of (solvable) recurrence operators
beyond deterministic loops, in particular relating its use to probabilistic program loops.
As evidenced in [BKS19], recurrence operators model statistical moments of program
variables by essentially focusing on solvable recurrence operators extended with an
expectation operator E( · ) to derive closed-forms of (higher) moments of program
variables, as illustrated below.

Example 25. Consider the probabilistic program PMC of [SO19, CVS16] modelling
a non-linear Markov chain, where Bernoulli(p) refers to a Bernoulli distribution with
parameter p. Here the updates to the program variables x and y occur simultaneously.

while ⋆ do
s ← Bernoulli(1/2)
if s = 0 then

x
y

← x + xy
1
3x + 2

3y + xy

else
x
y

← x + y + 2
3xy

2y + 2
3xy

end if
end while

We can construct recurrence equations, in terms of the expectation operator E( · ), for
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this program as follows:

E(sn+1) = 1
2

E(xn+1) = E(xn) + 1
2E(yn) + 5

6E(xnyn)
E(yn+1) = 1

6E(xn) + 4
3E(yn) + 5

6E(xnyn).

5.4 Defective Variables
To the best of our knowledge, existing approaches in loop analysis and invariant synthesis
are restricted to solvable recurrence operators. In this section, we establish a new
characterisation of unsolvable recurrence operators. Our characterisation pinpoints the
program variables responsible for unsolvability, the defective variables (see Definition 38).
Moreover, we provide a polynomial time algorithm to compute the set of defective
variables (Algorithm 3), in order to exploit our new characterisation for synthesising
invariants in the presence of unsolvable operators in Section 5.5.

For simplicity, we limit the discussion in this section to deterministic programs. We note
however that the results presented herein can also be applied to probabilistic programs.
The details of the necessary changes in this respect are given in Section 5.7.

In what follows, we write Mn(P) to denote the set of non-trivial monomials in Vars(P)
evaluated at the nth loop iteration so that

Mn(P) := x∈Vars(P)x
αx(n) | ∃x ∈ Vars(P) with αx ̸= 0 .

We next introduce the notions of variable dependency and dependency graph, needed to
further characterise defective variables.

Definition 36 (Variable Dependency). Let P be a loop with recurrence operator R and
x, y ∈ Vars(P). We say x depends on y if y appears in a monomial in R[x] with non-zero
coefficient. Moreover, x depends linearly on y if all monomials with non-zero coefficients
in R[x] containing y are linear. Analogously, x depends non-linearly on y if there is a
non-linear monomial with non-zero coefficient in R[x] containing y.

Furthermore, we consider the transitive closure for variable dependency. If z depends
on y and y depends on x, then z depends on x and, if in addition, one of these two
dependencies is non-linear, then z depends non-linearly on x. We otherwise say the
dependency is linear.

For each program with polynomial updates, we further define a dependency graph with
respect to a recurrence operator.

Definition 37 (Dependency Graph). Let P be a program with recurrence operator R. The
dependency graph of P with respect to R is the labelled directed graph G = (Vars(P), A, L)
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with vertex set Vars(P), edge set A := {(x, y) | x, y ∈ Vars(P) ∧ x depends on y}, and a
function L : A → {L, N} that assigns a unique label to each edge such that

L(x, y) = L if x depends linearly on y, and
N if x depends non-linearly on y.

Given a program and a recurrence operator, its dependency graph can be constructed
automatically with standard techniques. In our approach, we partition the variables
Vars(P) of the program P into two sets: effective- and defective variables, denoted by
E(P) and D(P) respectively. Our partition builds on the definition of the dependency
graph of P, as follows.

Definition 38 (Effective-Defective). A variable x ∈ Vars(P) is effective if:

1. x appears in no directed cycle with at least one edge with an N label, and

2. x cannot reach a vertex of an aforementioned cycle (as in 1).

A variable is defective if it is not effective.

Example 26. From the recurrence equations of Example 24 for the program PSC (see
Figure 5.1b), one obtains the dependencies between the program variables of PSC: the
program variable w depends linearly on both x and y, whilst x and y depend non-linearly
on each other and on w. By definition, the partition into effective and defective variables
is E(PSC) = ∅ and D(PSC) = {w, x, y}.

Similarly, we can construct the dependency graph for the program P□ from Figure 5.1a,
as illustrated in Figure 5.2. We derive that E(P□) = {z} and D(P□) = {x, y}.

w

x y

L N L N

N

N

z

x y

L

L L

N

L N

Figure 5.2: The dependency graphs for PSC and P□ from Figure 5.1.

We give the following straightforward corollary of Definition 38.

Corollary 23.1. Given any effective variable x ∈ E(P), the recurrence relation R[x] is
a polynomial in effective variables.
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The concept of effective, and, especially, defective variables allows us to establish a new
characterisation of programs with unsolvable recurrence operators: a recurrence operator
is unsolvable if and only if there exists a defective variable (as stated in Theorem 27 and
automated in Algorithm 3). We formalise and prove this results via the following three
lemmas.

Lemma 24. Let P be a program with recurrence operator R. If D(P) is non-empty, so
that there is at least one defective variable, then R is unsolvable.

Proof. Let x ∈ Vars(P) be a defective variable and G = (Vars(P), A, L) the dependency
graph of P with respect to a recurrence operator R. Following Definition 38, there exists
a cycle C such that x is a vertex visited by or can reach said cycle and, in addition, there
is an edge in C labelled by N .

Assume, for a contradiction, that R is solvable. Then there exists a partition W1, . . . , Wk

of Varsn(P) as described in Definition 35. Moreover, since C is a cycle, there exists
j ∈ {1, . . . , k} such that each variable visited by C lies in Wj . Let (w, y) ∈ C be an
edge labelled with N . Since w depends on y non-linearly, and R[w] = Mj · W ⊤

j +
Pj(W1, . . . , Wj−1) (by Definition 35), it is clear that y(n) ∈ Wℓ for some ℓ ̸= j. We also
have that y(n) ∈ Wj since C visits y. Thus we arrive at a contradiction as W1, . . . , Wk is
a partition of Varsn(P). Hence R is unsolvable.

Given a program P whose variables are all effective, it is immediate that a pair of
distinct mutually dependent variables are necessarily linearly dependent and, similarly, a
self-dependent variable is necessarily linearly dependent on itself. Consider the following
binary relation ∼ on program variables:

x ∼ y ⇐⇒ x = y ∨ (x depends on y ∧ y depends on x).

Thus, any two mutually dependent variables are related by ∼. Under the assumption that
all variables of a program P are effective, it is easily seen that ∼ defines an equivalence
relation on Vars(P). The partition of the equivalence classes Π of Vars(P) under ∼
admits the following notion of dependence between equivalence classes: for π, π̂ ∈ Π we
say that π depends on π̂ if there exist variables x ∈ π and y ∈ π̂ such that variable x
depends on variable y.

Lemma 25. Suppose that all variables of a program P are effective. Consider the graph
G with vertex set given by the set of equivalence classes Π and edge set A′ := {(π, π̂) |
(π ̸= π̂) ∧ (π depends on π̂)}. Then G is acyclic.

Proof. From the definition of G, it is clear that the graph is directed and has no self-loops.
Now assume, for a contradiction, that G contains a cycle. Since the relation ∼ is transitive,
there exists a cycle C in G of length two. Moreover, the variables in a given equivalence
class are mutually dependent. Thus the elements of the two classes in C are equivalent
under the relation ∼, which contradicts the partition into distinct equivalence classes.
Therefore the graph G is acyclic, as required.
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Lemma 26. Let P be a program with recurrence operator R. If each of the program
variables of P is effective then R is solvable.

Proof. By Lemma 25, the associated graph G = (Π, A′) on the equivalence classes
of Vars(P) is directed and acyclic. Thus there exists a topological ordering of Π =
{π1, . . . , π|Π|} such that for every (πi, πj) ∈ A′ we have i > j. Thus if x ∈ πi then x
does not depend on any variables in class πj for j > i. Moreover, for each πi ∈ Π, if
x, y ∈ πi then x cannot depend on y non-linearly because every variable is effective (and
all the variables in πi are mutually dependent). Thus Π evaluated at loop iteration n
partitions Varsn(P) and satisfies the criteria in Definition 35. We thus conclude that R
is solvable.

Together, Lemmas 24–26 yield a new characterisation of unsolvable operators.

Theorem 27 (Defective Characterisation). Let P be a program with recurrence operator
R, then R is unsolvable if and only if D(P) is non-empty.

In Algorithm 3 we provide a polynomial time algorithm that constructs both E(P) and
D(P) given a program and a recurrence operator. We use the initialism “DFS” for the
depth-first search procedure. Algorithm 3 terminates in polynomial time as both the
construction of the dependency graph and depth-first search exhibit polynomial time
complexity. The procedure searches for cycles in the dependency graph with at least one
non-linear edge (labelled by N). All variables that reach such cycles are, by definition,
defective.

Algorithm 3 Construct E(P) and D(P) from program P with operator R.
1: Construct the dependency graph G = (Vars(P), A, L) of P with respect to R.
2: D(P) ← ∅
3: for (x, y) ∈ A where L(x, y) = N do
4: if x = y then
5: predecessor ← ∅
6: DFS(x,predecessor)
7: D(P) ← D(P) ∪ predecessor
8: end if
9: if x ̸= y then

10: predecessor ← ∅
11: DFS(y,predecessor)
12: if x ∈ predecessor then
13: D(P) ← D(P) ∪ predecessor
14: end if
15: end if
16: end for
17: E(P) ← Vars(P) \ D(P)
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In what follows, we focus on programs with unsolvable recurrence operators, or equiv-
alently by Theorem 27, the case where D(P) ̸= ∅. The characterisation of unsolvable
operators in terms of defective variables and our polynomial algorithm to construct the
set of defective variables is the foundation for our approach synthesising invariants in the
presence of unsolvable recurrence operators in Section 5.5.

Remark 5. The recurrence operator R[x] for an effective variable x will admit a closed-
form solution for every initial value x0. For the avoidance of doubt, the same cannot be
said for the recurrence operator of a defective variable. However, it is possible that a set
of initial values will lead to a closed-form expression as a C-finite sequence: consider a
loop with defective variable x and update x ← x2 and initialisation x0 ← 0 or x0 ← ±1.

5.5 Synthesising Invariants
In this section we propose a new technique to synthesise invariants for programs with
unsolvable recurrence operators. The approach is based on our new characterisation of
unsolvable operators in terms of defective monomials (Section 5.4).

For the remainder of this section we fix a program P with an unsolvable recurrence
operator R, or equivalently with D(P) ̸= ∅. We start by extending the notions of effective
and defective from program variables to monomials of program variables. Let E be the
set of effective monomials given by

E(P) =


x∈E(P)

xαx | αx ∈ N

.

The complement, the defective monomials, is given by D(P) := M(P) \ E(P). The
difficulty with defective variables is that in general they do not admit closed-forms.
However, linear combinations of defective monomials may allow for closed-forms as
illustrated in previous examples. The main idea of our technique for invariant synthesis
in the presence of defective variables is to find such polynomials. We fix a candidate
polynomial called S(n) based on an arbitrary degree d ∈ N:

S(n) =
W ∈Dn(P)↾d

cW W, (5.2)

where the coefficients cW ∈ R are unknown real constants. We use Dn(P) ↾d to indicate
the set of defective monomials of degree at most d.

Example 27. For P□ in Figure 5.1a we have Dn(P□) ↾1= {x, y}, and Dn(P□) ↾2=
{x, y, x2, y2, xy, xz, yz}.

On the one hand, all variables in S(n) are defective; however, S(n) may admit a closed-
form. This occurs if S(n) obeys a “well-behaved” recurrence equation; that is to say, an
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inhomogeneous recurrence equation where the inhomogeneous component is given by a
linear combination of effective monomials. In such instances the recurrence takes the
form

S(n+1) = κS(n) +
M∈En(P)

cM M (5.3)

where the coefficients cM are unknown. Thus an intermediate step towards our goal of
synthesising invariants is to determine whether there are constants cM , cW , κ ∈ R that
satisfy the above equations. If such constants exist then we come to our final step: solving
a first-order inhomogeneous recurrence relation. There are standard methods available
to solve first-order inhomogeneous recurrences of the form S(n+1) = κS(n) + h(n),
where h(n) is the closed-form of M∈En(P) cM M , see e.g., [KP11]. We note h(n) is
computable and an exponential polynomial since it is determined by a linear sum of
effective monomials. Thus ⟨S(n)⟩n is a C-finite sequence.

Remark 6. Observe that the sum on the right-hand side of equation (5.3) is finite,
since all but finitely many of the coefficients cM are zero. Further, the coefficient cM of
monomial M is non-zero only if M appears in R[S].

Going further, in equation (5.3) we express S(n+1) in terms of a polynomial in Varsn(P)
with unknown coefficients cM , cW , and κ. An alternative expression for S(n+1) in
Varsn(P) is given by the recurrence operator S(n+1) = R[S]. Taken in combination, we
arrive at the following formula

R[S] − κS(n) −
M∈En(P)

cM M = 0,

yielding a polynomial in Varsn(P). Thus all the coefficients in the above formula are
necessarily zero as the polynomial is identically zero. Therefore all solutions to the
unknowns cM , cW , and κ are computed by solving a (quadratic) system of equations.
The main complexity of our invariant synthesis technique lies in solving the quadratic
system. In the candidate polynomial, every monomial in defective variables (of degree at
most d) is associated with a unique unknown coefficient. Hence, the size of the quadratic
system can be polynomial in d and exponential in the number of defective variables.

Example 28. Consider the following illustration of our invariant synthesis procedure.
Recall program P□ from Figure 5.1a:

z ← 0
while ⋆ do

z ← 1 − z
x ← 2x + y2 + z
y ← 2y − y2 + 2z

end while
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From Algorithm 3 we obtain E(P□) = {z} and D(P□) = {x, y}. Because D(P□) ̸= ∅,
we deduce using Theorem 27 that the associated operator R is unsolvable. Consider the
candidate S(n) = ax(n) + by(n) with unknowns a, b ∈ R. The recurrence for S(n) given
by R is

S(n+1) = R[S] = aR[x] + bR[y]
= a + 2b + 2ax(n) + 2by(n) − (a + 2b)z(n) + (a − b)y2(n).

We next express S(n+1) in terms of an inhomogeneous recurrence equation (cf. equa-
tion (5.3)). When we substitute for S(n), we obtain

S(n+1) = κ(ax(n) + by(n)) + (cz(n) + d)

where the coefficients in the inhomogeneous component are unknown. We then combine
the preceding two equations (for brevity we suppress the loop counter n in the program
variables x, y, z) and derive

(a + 2b − d) + (−a − c − 2b)z + (2a − κa)x + (2b − κb)y + (a − b)y2 = 0.

Thus we have a polynomial in the program variables that is identically zero. Therefore,
all the coefficients in the above equation are necessarily zero. We then solve the resulting
system of quadratic equations, which leads to the non-trivial solution a = b, κ = 2, d = 3a,
and c = −3a. We substitute this solution back into the recurrence for R[S] and find

S(n+1) = 2S(n) + 3a(1 − z(n)) = 2S(n) + 3a
1 + (−1)n

2 .

Here, we have used the closed-form solution z(n) = 1/2− (−1)n/2 of the effective variable
z. We can compute the solution of this inhomogeneous first-order recurrence equation.
In the case that a = 1, we have S(n) = 2n(S(0) + 2) − (−1)n/2 − 3/2. Therefore, the
following identity holds for each n ∈ N:

x(n) + y(n) = 2n(x(0) + y(0) + 2) − (−1)n/2 − 3/2

and so we have synthesised the closed-form of x + y for program P□ of Figure 5.1a.

5.5.1 Solution Space of Invariants for Unsolvable Operators
Given a program and a recurrence operator, our invariant synthesis technique is relative-
complete with respect to the degree d of the candidate S(n). This means, for a fixed
degree d ∈ N, our approach is in theory able to compute all polynomials of defective
variables with maximum degree d that satisfy a “well-behaved” recurrence; that is, a
first-order recurrence equation of the form (5.3). This holds because of our reduction of
the problem to a system of quadratic equations for which all solutions are computable.
It is not guaranteed that a solution does exist. In that case, our technique can rule out
the existence of well-behaved polynomials of defective variables of degree at most d if the
resulting system has no (non-trivial) solutions.
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Example 29. The following loop models the logistic map [May76] which is well-known
for its chaotic behaviour.

while ⋆ do
x ← rx(1 − x)

end while

The single variable x is defective due to its non-linear self-dependency. For most values
of r and initial values of x the logistic map does not admit an analytical solution and
well-behaved polynomials in x do not exist. [Mar20]. Hence, our invariant synthesis
technique provides no solution for candidates of fixed degrees.

Let P be a program with program variables Vars(P) = {x1, . . . , xk}. The set of polyno-
mials P with P (x1(n), . . . , xk(n))=0 for all n ∈ N form an ideal, the invariant ideal of
P. The requirement of closed-forms is the main obstacle for computing a basis for the
invariant ideal in the presence of defective variables. Our work introduces a method that
includes defective variables in the computation of invariant ideals, via the following steps
of deriving the polynomial invariant ideal of an unsolvable loop:

• For every effective variable xi, let fi(n) be its closed-form and assume h(n) is the
closed-form for some candidate S given by a polynomial in defective variables.

• Let λn
1 , . . . , λn

s be the exponential terms in all fi(n) and h(n). Replace the ex-
ponential terms in all fi(n) as well as h(n) by fresh constants to construct the
polynomials gi(n) and l(n) respectively.

• Next, construct the set R of polynomial relations among all exponential terms, as
explained in Section 5.2. Then, the ideal

I({xi − gi(n) | xi ∈ E(P)} ∪ {S − l(n)} ∪ R) ∩ Q[x1, . . . , xk]

contains precisely all polynomial relations among program variables implied by the
equations {xi = fi(n)} ∪ {S = g(n)} in the theory of polynomial arithmetic.

• A finite basis for this ideal is computed using techniques from Gröbner bases and
elimination theory. This step is similar to the case of the invariant ideal for solvable
loops, see e.g., [RcK04, Kov08].

In conclusion, we infer a finite representation of the ideal of polynomial invariants for
loops with unsolvable recurrence operators.

5.6 Synthesising Solvable Loops from Unsolvable Loops
In previous sections, we introduced a new technique to compute invariants for unsolvable
loops; that is, loops containing defective variables. An orthogonal challenge is to
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synthesise a solvable loop from an unsolvable loop that preserves or over-approximates
given specifications.

In this section we establish, with Algorithm 4, a new method to synthesise a solvable loop
P ′ from an unsolvable loop P. The solvable loop P ′ over-approximates the behaviour
of P in the sense that every polynomial invariant of P ′ is an invariant of P. Moreover,
we show the invariants among effective variables of P and P ′ coincide. The following
example illustrates the main idea leading to Algorithm 4.

Algorithm 4 Solvable Loop Synthesis
Input: Unsolvable loop P with recurrence operator R, degree d ∈ N
Output: Solvable loop P ′

1: Compute E(P) and D(P) using Algorithm 3.
2: Fix candidate polynomial S(n) of degree d (as in Section 5.5 (5.2)).
3: Solve for coefficients in
4: S(n+1) = κS(n) + M∈En(P) cM M (as in Section 5.5 (5.3)).
5: initial = []
6: body_left = []
7: body_right = []
8: ▷ Add all effective variables to new loop
9: for x ∈ E(P) do

10: initial.append(x ← x0)
11: body_left.append(x)
12: body_right.append(R[x])
13: end for
14: ▷ Add well-behaved combination of defective monomials
15: if S ̸= 0 then
16: Choose a fresh symbol s.
17: initial.append(s ← S(0))
18: body_left.append(s)
19: body_right.append(κs + M∈E(P) cM M)
20: end if
21: P ′ ← initial “while ⋆ do” body_left ← body_right “end while”return P ′

Example 30. Example 28 showed how to synthesise the polynomial S = x+y of defective
variables x and y for the loop in Figure 5.1a such that S admits a closed-form. In this
case, the polynomial of program variables S satisfies the linear inhomogeneous recurrence
S(n + 1) = 2S(n) − 3z(n) + 3. We can use this recurrence to construct a solvable loop
from the unsolvable from Figure 5.1a that captures the dynamics of the only effective
variable z as well as S:
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z ← 0
while ⋆ do

z ← 1 − z
x ← 2x + y2 + z
y ← 2y − y2 + 2z

end while

Algorithm 4
−→

z ← 0
s ← x0 + y0
while ⋆ do

z
s

← 1 − z
2s − 3z + 3

end while
Our algorithmic approach, as given in Algorithm 4, synthesises the solvable loop from
the unsolvable loop on the left. Such a synthesis step is implemented within our tool
(Section 5.9), allowing us to synthesize the above solvable loop in about 1 second.

The inputs for Algorithm 4 are an unsolvable loop P with recurrence operator R and
a fixed degree d ∈ N; the algorithm outputs a solvable loop P ′, if it exist. Briefly,
the algorithm invokes the invariant synthesis procedure from Section 4 (for degree d)
and constructs the loop P ′ from P by removing all the defective variables and then
introducing a new variable s that models an invariant among defective monomials, if such
an invariant exists. The recurrence operator R′ associated with the synthesised loop P ′

is the canonical recurrence operator: R′ maps every program variable to its assignment.

Lemma 28 (Soundness). The loop P ′ returned by Algorithm 4 is solvable. Moreover, we
have E(P) ⊆ Vars(P ′).

Proof. Using our characterisation of solvable and unsolvable loops in terms of effective
and defective variables (Theorem 27), we show that all variables in P ′ are effective. The
variables of P ′ consist of the effective variables of P as well as the fresh variable s:
Vars(P ′) = E(P) ∪ {s}, or Vars(P ′) = E(P) if no invariant among defective monomials
with degree d exists.

First, every x ∈ E(P) necessarily remains effective for the synthesised program P ′: in
the dependency graph of P ′, the variable x cannot occur in a cycle containing s, because
s is a fresh variable and hence cannot appear in the recurrence R[y] for any y ∈ E(P)
(Algorithm 4 line 16). Hence, if z ∈ E(P) ∩ D(P ′), then there must exist a cycle in the
dependency graph of P ′ with a non-linear edge (x, y) (i.e., L(x, y) = N) such that every
vertex in the cycle is in E(P). Consequently, this cycle is also present in the dependency
graph of the original program P . This means that not all variables in E(P) are effective,
which is a contradiction.

Second, the variable s is effective. Because s is a fresh variable, the only incoming edge
of s in the dependency graph of P ′ is a linear self-loop (Algorithm 4 line 19). Hence s
cannot occur in a cycle with a non-linear edge. Moreover, all outgoing edges point to
effective variables. Thus s ∈ E(P ′) is effective.

With the next two lemmas, we prove that the loop P ′ synthesised by Algorithm 4 over-
approximates the invariants of the unsolvable loop P . Let Inv(P) and Inv(P ′) denote the
invariant ideals of P and P ′ respectively. The next lemma establishes that the synthesised
loop P ′ is complete with respect to invariants among effective variables.
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Lemma 29 (Completeness with respect to Effective Variables). The invariant ideals of
P and P ′ coincide when restricted on the effective variables of P. That is,

Inv(P) ∩ Q[E(P)] = Inv(P ′) ∩ Q[E(P)].

Proof. By the construction of P ′, every x ∈ E(P) is also a variable of P ′. To distinguish
the variable x in P from the variable x in P ′ we refer to the latter by x′. We will show
that for every x ∈ E(P) the sequences ⟨x(n)⟩n and ⟨x′(n)⟩n coincide. If this is the
case, the polynomial invariants for the programs P and P ′ among the variables E(P)
necessarily coincide as well.

Let R and R′ be the recurrence operators associated to P and P ′, respectively. For every
x ∈ E(P) we have R[x] = R′[x′] and x0 = x′

0 by the construction of P ′. Furthermore, by
Corollary 23.1, defective variables cannot occur in R[x] for any x ∈ E(P). Moreover, the
fresh variable s cannot occur in R′[x′] by the construction of P ′. Hence the two systems of
first-order recurrences {x(n+1) = R[x] | x ∈ E(P)} and {x′(n+1) = R′[x′] | x ∈ E(P)}
together with the initial values {x0 | E(P)} and {x′

0 | E(P)} induce the same sequences
⟨x(n)⟩n and ⟨x′(n)⟩n for all x ∈ E(P).

We note that when an invariant among defective monomials of degree d does not exist,
the variables of the synthesised loop P ′ are precisely the effective variables of P . In this
case, Lemma 29 fully characterises the relationship between the invariants of P and P ′.

In the following, let us consider the complementary case, namely when an invariant
among the defective monomials of P exists. Hence, the synthesised loop P ′ contains
the additional fresh variable s modelling the behaviour of this invariant. With the next
lemma, we confirm that the synthesised loop P ′ is indeed a sound over-approximation
of the unsolvable loop P. We show that every invariant of P ′ is also an invariant of
P. The program variable s ∈ Vars(P ′) introduced by Algorithm 4 is however not a
program variable of P ; nevertheless, s models the polynomial S of defective variables in
P . Hence, to compare the invariant ideals of P and P ′, we need to “substitute” s by the
polynomial of defective variables it models. This can be done by adding the equation
s = S (s − S = 0) to the invariant ideal of P ′ and restricting the resulting ideal to
Vars(P):

I(Inv(P ′) ∪ {s − S}) ∩ Q[Vars(P)]. (5.4)

Lemma 30 (Over-Approximation). Let J be the ideal in (5.4) constructed from the
invariant ideal of P ′ by replacing the program variable s by the polynomial of defective
variables it models. Then, J ⊆ Inv(P).

Proof. As argued in the proof of Lemma 29, for every x ∈ E(P), the sequences cor-
responding to the variable x in both P and P ′ coincide; that is, ⟨x(n)⟩n ≡ ⟨x′(n)⟩n.
Furthermore, we have Vars(P ′) = E(P) ∪ {s}. The fresh variable s in P ′ models the
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polynomial S ∈ Q[Vars(P)]. Let ⟨s(n)⟩n be the sequence induced by the program variable
s in P ′ and, likewise, ⟨S(n)⟩n the sequence induced by the polynomial S ∈ Q[Vars(P)].
Then, by the construction of P ′, we have ⟨s(n)⟩n ≡ ⟨S(n)⟩n.

Let Q ∈ Inv(P ′). By the definition of the ideal J in (5.4), it holds that

Q ∈ Inv(P ′) ⇐⇒ Q{s → S} ∈ J

(where the notation indicates that S is substituted for s).

Now, Q is a polynomial relation among the sequences induced by the variables in Vars(P ′).
Because ⟨x(n)⟩n ≡ ⟨x′(n)⟩n for every x ∈ E(P) and ⟨s(n)⟩n ≡ ⟨S(n)⟩n, the polynomial
Q{s → S} represents a relation among the sequences induced by the variables in Vars(P).
Hence we have Q ∈ Inv(P).

Remark 7. Our loop synthesis procedure given in Algorithm 4 computes a single in-
variant among defective monomials (if such an invariant exists) of an unsolvable loop P.
The results in this section naturally generalise to multiple invariants among defective
monomials, as follows: for every invariant I, add a fresh variable sI modelling the
behaviour of I to the synthesised program P ′. Note that with each additional invariant
I added, the dynamics of the synthesised loop P ′ more closely resembles that of the
unsolvable loop P.

5.7 Adjustments for Unsolvable Operators in Probabilistic
Programs

5.7.1 Defective Variables in Probabilistic Loop Models
The works [MSBK22a, BKS19] defined recurrence operators for probabilistic loops.
Specifically, a recurrence operator is defined for loops with polynomial assignments,
probabilistic choice, and drawing from common probability distributions with constant
parameters. Recurrences for deterministic loops model the precise values of program
variables. For probabilistic loops, this approach is not viable, due to the stochastic nature
of the program variables. Thus a recurrence operator for a probabilistic loop models
(higher) moments of program variables. As illustrated in Example 25, the recurrences of
a probabilistic loop are taken over expected values of program variable monomials.

The authors of [MSBK22a, BKS19] explicitly excluded the case of circular non-linear
dependencies to guarantee computability. However, in contrast to our notions in Sec-
tions 5.3, they defined variable dependence not on the level of recurrences but on the level
of assignments in the loop body. To use the notions of effective and defective variables
for probabilistic loops, we follow the same approach and base the dependency graph on
assignments rather then recurrences. We illustrate the necessity of this adaptation in the
following example.

Example 31. A probabilistic assignment x ← a {p} b intuitively means that x is assigned
a with probability p and b with probability 1−p. Consider the following probabilistic loop
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and associated set of first-order recurrence relations in terms of the expectation operator
E( · ).

while ⋆ do
y ← 4y(1 − y)
x ← x − y {1/2} x + y

end while

E(yn+1) = 4E(yn) − 4E(y2
n)

E(xn+1) = E(xn)

E(x2
n+1) = 1

2E((xn − yn+1)2) + 1
2E((xn + yn+1)2)

= E(x2
n) + E(y2

n+1)

It is straightforward to see that variable y is defective from the deterministic update
y ← 4y(1 − y) with its characteristic non-linear self-dependence. Moreover, y appears in
the probabilistic assignment of x: However, due to the particular form of the assignment,
the recurrence of E(xn) does not contain y. Nevertheless, y appears in the recurrence of
E(x2

n). This phenomenon is specific to the probabilistic setting. For deterministic loops,
it is always the case that if the values of a program variable w do not depend on defective
variables, then neither do the values of any power of w.

In light of the phenomenon exhibited in Example 31, we adapt our notion of variable
dependency, for probabilistic loops. Without loss of generality, we assume that every
program variable has exactly one assignment in the loop body. Let P be a probabilistic
loop and x, y ∈ Vars(P). We say x depends on y, if y appears in the assignment of x.
Additionally, the dependency is linear if all occurrences of y in the assignment of x are
linear, else the dependency is non-linear. Further, we consider the transitive closure of
variable dependency analogous to deterministic loops and Definition 36.

With variable dependency thus defined, the dependency graph and the notions of effective
and defective variables follow immediately. Analogous to our characterisation of unsolvable
recurrence operators in terms of defective variables for deterministic loops, all (higher)
moments of effective variables of probabilistic loops can be described by a system of
linear recurrences [MSBK22a, BKS19]. For defective variables this property will generally
fail For instance, in Example 31, the variable x is now classified as defective and E(x2

n)
cannot be modelled by linear recurrences for some initial values.

The only necessary change to the invariant synthesis algorithm from Section 5.5 is as
follows: instead of program variable monomials, we consider expected values of program
variable monomials. Now, our invariant synthesis technique from Section 5.5 can also be
applied to probabilistic loops to synthesise combinations of expected values of defective
monomials that do satisfy a linear recurrence.

5.7.2 Synthesising Solvable Probabilistic Loops
In Algorithm 4 we introduced a procedure, utilising our new invariant synthesis technique
from Section 5.5, to over-approximate an unsolvable loop by a solvable loop. The
inputs to Algorithm 4 are an unsolvable loop with a recurrence operator and a natural
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number specifying a fixed degree. As mentioned, our invariant synthesis procedure is
also applicable to probabilistic loops using the recurrence operator modelling moments
of program variables introduced in [MSBK22a, BKS19]. Hence, Algorithm 4 can also be
used to synthesise solvable loops from unsolvable probabilistic loops. In the probabilistic
case, however, the invariants computed by our approach are over moments of program
variables. Therefore, the invariant ideal of probabilistic loops describes polynomial
relations among a given set of moments of program variables, such as the expected
values. Consequently, the loop synthesised by Algorithm 4 for a given probabilistic loop
will be deterministic and model the dynamics of moments of program variables of the
probabilistic loop.

Example 32. Recall the program PMC of Example 25. An invariant synthesised by our
approach in Section 5.5 with degree 1 is E(xn − yn) = 5n

6n (x0 − y0). Hence the solvable
loop synthesised by Algorithm 4 for PMC with input degree 1 is
f ← x0 + y0
while ⋆ do

s ← 1
2

f ← 5
6f

end while

where f is the fresh variable introduced by Algorithm 4 modelling E(xn − yn). Our
approach from Algorithm 4 synthesises this solvable loop from PMC, using less than 0.5
second within our implementation (Section 5.9).

5.8 Applications of Unsolvable Operators towards
Invariant Generation

Our approach automatically generates invariants for programs with defective variables
(Section 5.5), and pushes the boundaries of both theory and practice of invariant genera-
tion: we introduce and incorporate defective variable analysis into the state-of-the-art
methodology for reasoning about solvable loops, complementing thus existing methods,
see e.g., [RcK04, Kov08, KCBR18, HJK18b], in the area. As such, the class of unsolvable
loops that can be handled by our approach extends (aforementioned) existing approaches
on polynomial invariant generation. The experimental results of our approach (see Sec-
tion 5.9) demonstrate the efficiency and scalability of our technique in deriving invariants
for unsolvable loops. Since our approach to loops via recurrences is generic, we can deal
with emerging applications of programming paradigms such as: transitions systems and
statistical moments in probabilistic programs; and reasoning about biological systems.
We showcase these applications in this section and also exemplify the limitations of our
approach. In the sequel, we write E(t) to refer to the expected value of an expression t,
and denote by E(tn) (or E(t(n))) the expected value of t at loop iteration n.

Example 33 (Moments of Probabilistic Programs [SO19]). As mentioned in Example 32,
E(xn − yn) = 5n

6n (x0 − y0) is an invariant for the program PMC introduced in Example 25.
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Closed-form solutions for higher order expressions are also available; for example,

E((xn − yn)d) = (2d + 3d)n

2n · 3dn
(x0 − y0)d

refers to the dth moment of x(n)−y(n). While the work in [SO19] uses martingale theory
to synthesise the above invariant (of degree 1), our approach automatically generates
such invariants over higher-order moments (see Table 5.2). We note to this end that
the defective variables in PMC are precisely x and y as can be seen from their mutual
non-linear interdependence. Namely, we have D(PMC) = {x, y} and E(PMC) = {s}.

Example 34 (non-lin-markov-2). We give a second example of a non-linear Markov
chain. We analyse the moments of this probabilistic program in the next section.

x, y ← 0, 1
while ⋆ do

s ← Bernoulli(1/2)
if s = 0 then

x
y

←
4
10(x + xy)

4
10(13x + 2

3y + xy)
else

x
y

←
4
10(x + y + 2

3xy)
4
10(2y + 2

3xy)
end if

end while

Example 35 (Biological Systems [BFPS02]). A model for the decision-making process
of swarming bees choosing one nest-site from a selection of two is introduced in [BFPS02]
and further studied in [DDP16, SCGP20]. Previous works have computed probability
distributions for this model [SCGP20]. The (unsolvable) loop is a discrete-time model
with five classes of bees (each represented by a program variable). The coefficient ∆ is
the length of the time-step in the model and the remaining coefficients parameterise the
rates of change. All coefficients here are symbolic.


x
y1
y2
z1
z2



 ←




Normal(475, 5)

Uniform(350, 400)
Uniform(100, 150)
Normal(35, 1.5)
Normal(35, 1.5)




while ⋆ do


x
y1
y2
z1
z2



 ←




x − ∆(β1xy1 + β2xy2)

y1 + ∆(β1xy1 − γy1 + δβ1y1z1 + αβ1y1z2)
y2 + ∆(β2xy2 − γy2 + δβ2y2z2 + αβ2y2z1)

z1 + ∆(γy1 − δβ1y1z1 − αβ2y2z1)
z2 + ∆(γy2 − δβ2y2z2 − αβ1y1z2)




end while

122



5.8. Applications of Unsolvable Operators towards Invariant Generation

We note that the model in [SCGP20] uses truncated Normal distributions. Contrary to
our approach, their technique is limited to finite supports for the program variables.

In the loop above, each of the variables exhibits non-linear self-dependence, and so
the variables are partitioned into D(P) = {x, y1, y2, z1, x2} and E(P) = ∅. While the
recurrence operator of the loop above is unsolvable, our approach infers polynomial loop
invariants using defective variable reasoning (Section 5.5). Namely, we generate the
following closed-form solutions over expected values of program variables:

E(x(n) + y1(n) + y2(n) + z1(n) + z2(n)) = 1045,

E((x(n) + y1(n) + y2(n) + z1(n) + z2(n))2) = 3277349/3, and
E((x(n) + y1(n) + y2(n) + z1(n) + z2(n))3) = 1142497455.

One can interpret such invariants in terms of the biological assumptions in the model.
Take, for example, the fact that E(x(n) + y1(n) + y2(n) + z1(n) + z2(n)) is constant.
This invariant is in line with the assumption in the model that the total population of
the swarm is constant. In fact, our invariants reflect the behaviour of the system in the
original continuous-time model proposed in [BFPS02], because our approach is able to
process all coefficients (most importantly ∆) as symbolic constants.

Example 36 (Probabilistic Transition Systems [SO19]). Consider the following proba-
bilistic loop modelling a probabilistic transition system from [SO19]:

while ⋆ do
a
b

← Normal(0, 1)
Normal(0, 1)

x
y

← x + axy
y + bxy

end while

While [SO19] uses martingale theory to synthesise a degree one invariant of the form
aE(xk) + bE(yk) = aE(x0) + bE(y0), our technique automatically generates invariants
over higher-order moments involving the defective variables x and y, as presented in
Table 5.2.

The next example demonstrates an unsolvable loop whose recurrence operator cannot
(yet) be handled by our approach.

Example 37 (Trigonometric Updates). As our approach is limited to polynomial updates
of the program variables, the loop below cannot be handled by our technique:

while ⋆ do
x
y

← cos(x)
sin(x)

end while
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Note the trigonometric functions are transcendental, from which it follows that one
cannot generally obtain closed-form solutions for the program variables. Nevertheless,
this program does admit polynomial invariants in the program variables; for example,
x2 + y2 = 1. Although our definition of a defective variables does not apply here, we
could say the variable x here is somehow defective: while the exact value of sin(x) cannot
be computed, it could be approximated using power series. Extending our approach with
more general notions of defective variables is an interesting line for future work.

Examples 38–41 (below) are custom-made benchmarks. We have tailored these bench-
marks to demonstrate the flexibility and applicability of our method to the current state
of the art. Our experimental analysis is delayed to Section 5.9.

Example 38 (squares+).
s, x, y, z ← 0, 2, 1, 0
while ⋆ do

s ← Bernoulli(1/2)
z ← z − 1 {1/2} z + 2
x ← 2x + y2 + s + z
y ← 2y − y2 + 2s

end while

Example 39 (prob-squares).
g ← 1
while ⋆ do

g ← Uniform(g, 2g)
a

b
c


 ←


 a2 + 2bc − df + b

df − a2 + 2bd + 2c
g − bc − bd + 1

2a




end while

Example 40 (squares-squared).
while ⋆ do


x
y
z
m


 ←




xyz + x2

2y + z − x2 + 3ymz2
3
2x + 3

2z + 1
2y + 1

2x2
2
3z + 3m − 1

3x2 − 1
3xyz − ymz2




end while

Example 41 (deg-d). The benchmarks deg-5, deg-6, deg-7, deg-8, deg-9, and
deg-500 are parameterised by the degree d in the following program.
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x, y ← 1, 1
while ⋆ do

z ← Normal(0, 1)
x
y

← 2xd + z + z2

3xd + z + z2 + z3

end while

The following set of examples are taken from the literature on the theory of trace maps.
Arguably the most famous example is the classical Fibonacci Trace Map f : R3 → R3

given by f(x, y, z) = (y, z, 2yz − x) (Example 42 below); said map has garnered the
attention of researchers in fields as diverse as invariant analysis, representation theory,
geometry, and mathematical physics (cf. the survey papers [BGJ93, RB94]). From a
computational viewpoint, trace maps arise from substitution rules on matrices (see, again,
the aforementioned survey papers). Given two matrices A, B ∈ SL(2,R) (the group of
2 × 2 matrices with unit determinant), consider the following substitution rule on strings
of matrices: A → B and B → AB. The classical Fibonacci Trace Map is determined by
the action of this substitution on the traces of the matrices; i.e.,

f tr(A), tr(B), tr(AB) = tr(B), tr(AB), − tr(A) + 2 tr(B) tr(AB) .

Further examples of trace maps (Example 43 and Example 44 below) are constructed
from similar substitution rules on strings of matrices. For Examples 42–44, our method
generates the cubic polynomial invariant

x2 + y2 + z2 − 2xyz = x2
0 + y2

0 + z2
0 − 2x0y0z0,

from the well-studied class of Fricke–Vogt invariants as well as higher-degree polynomial
invariants.

Example 42 (fib1).
while ⋆ do

x
y
z


 ←


 y

z
2yz − x




end while

Example 43 (fib2). A Generalised Fibonacci Trace Map
while ⋆ do

x
y
z


 ←


 y

2xz − y
4xyz − 2x2 − 2y2 + 1




end while
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Example 44 (fib3). A second Generalised Fibonacci Trace Map
while ⋆ do

x
y
z


 ←


1 + x + y + xy − z

x
y




end while

Examples 45–46 are while loops that generate Markov triples [Cas72, Chapter II.3];
that is, at every iteration each loop variable takes an integer value that appears in a
Diophantine solution of the Markov equation x2 + y2 + z2 = 3xyz.

Example 45 (markov-triples-toggle). A while loop that generates an infinite
sequence of nodes on the Markov tree (the walk alternates between ‘upper’ and ‘lower’
branches).

x,y,z = 1,1,2;
branch = 0;
while ⋆ do

if branch = 0 then
x

y
z


 ←


 x

3xy − z
y


;

branch = 1;
else

x
y
z


 ←


 y

3yz − x
z


;

branch = 0;
end if

end while

For this example, our approach generates the polynomial invariant, the Markov equation,
given by x2 + y2 + z2 − 3xyz = 0.

Example 46 (markov-triples-random). A while loop that simulates a Bernoulli
walk on the Markov tree.

x,y,z = 1,1,2
while ⋆ do

p ← Bernoulli(1/2)
if p = 1 then

x
y
z


 ←


 x

3xy − z
y




else
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x

y
z


 ←


 y

3yz − x
z




end if
end while

For this benchmark, our technique generates both closed-forms and invariants in (higher)
moments of program variables such as E(x2

n+y2
n+z2

n−3xnynzn) = 0 and E(xn−zn) = 2−n.

The next two benchmarks concern a special class of polynomial automorphisms, the
Yagzhev maps, (sometimes cubic-homogeneous maps) introduced (independently) by
Yagzhev [Jag80] and Bass, Connell, and Wright [BCW82] in the context of the Jacobian
conjecture. Recall that Yagzhev maps f : Cn → Cn take the form f(x) = x − g(x) such
that det f ′(x) = 1 for all x, and g : Cn → Cn is a homogeneous polynomial mapping of
degree 3. De Bondt exhibited a Yagzhev mapping in 10 dimensions that has no linear
invariants (providing a counterexample to the “linear dependence conjecture” for the class
of maps) [dB06]. Zampieri demonstrated that De Bondt’s example has quadratic and
cubic invariants [Zam08] (see Example 47 for such a Yagzhev map in 9 dimensions). Work
by Santos Freire, Gorni, and Zampieri [dSFGZ08] exhibited a Yagzhev mapping in 11
dimensions that has neither linear invariants nor quadratic invariants (see Example 48).

Example 47 (yagzhev9 [Zam08]).
while ⋆ do



x1
x2
x3
x4
x5
x6
x7
x8
x9




←





x1 + x1x7x9 + x2x2
9

x2 − x1x2
7 − x2x7x9

x3 + x3x7x9 + x4x2
9

x4 − x3x2
7 − x4x7x9

x5 + x5x7x9 + x6x2
9

x6 − x5x2
7 − x6x7x9

x7 + (x1x4 − x2x3)x9
x8 + (x3x6 − x4x5)x9

x9 + (x1x4 − x2x3)x8 − (x3x6 + x4x5)x7




end while

For this example, our method generates an invariant quadratic homogeneous polynomial in
six variables and three symbolic constants, which we can interpret in terms of determinants
(as given below):

a
x1(n) x2(n)
x3(n) x4(n) + b

x3(n) x4(n)
x5(n) x6(n) + c

x1(n) x2(n)
x5(n) x6(n)

= a
x1(0) x2(0)
x3(0) x4(0) + b

x3(0) x4(0)
x5(0) x6(0) + c

x1(0) x2(0)
x5(0) x6(0) .

127



5. (Un)Solvable Loop Analysis

Our computation confirms previous work by the authors of [Zam08]. Those authors
demonstrated that this example has no linear invariants, but does admit the above quadratic
invariant.

Example 48 (yagzhev11 [dSFGZ08]).
while ⋆ do



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11





←





x1 − x3x2
10

x2 − x2x2
11

x3 + x1x2
11 − x2x2

10
x4 − x6x2

10
x5 − x6x2

11
x6 + x4x2

11 − x5x2
10

x7 − x9x2
10

x8 − x9x2
11

x9 + x7x2
11 − x8x2

10
x10 + (x3x5 − x2x6)x7 + (x1x6 − x3x4)x8 + (x2x4 − x1x5)x9

x11 − x3
10




end while

For this example, our approach generates an invariant cubic homogeneous polynomial,
which we can interpret as the determinant of a matrix in the program variables:

x1(n) x2(n) x3(n)
x4(n) x5(n) x6(n)
x7(n) x8(n) x9(n)

=
x1(0) x2(0) x3(0)
x4(0) x5(0) x6(0)
x7(0) x8(0) x9(0)

.

For the avoidance of doubt, the above polynomial was previously found by the authors
of [dSFGZ08]. Indeed, our implementation confirms previous results: there are neither
linear nor quadratic invariants for this example.

Example 49 (nagata [Nag72]). Let us now consider the classical Nagata automorphism
introduced by Nagata [Nag72, pg. 41] (see also [vP03]).

while ⋆ do
x

y
z


 ←


x − 2(xz + y2)y − (xz + y2)2z

y + (xz + y2)z
z




end while

For the Nagata Automorphism, it is easy to see that the variable z is effective and so
contributes a linear invariant. When used to search for quadratic closed-forms, our
method generates the polynomial

c(x(n)z(n) + y(n)2) = az(0) + bz(0)2 − az(n) − bz(n)2 + c(x(0)z(0) + y(0)2)

where a, b, and c are symbolic constants. Here we note that x(n)z(n) and y(n)2 are de-
fective monomials. Our computation confirms the invariants and closed-forms established
in [Nag72].
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5.9 Experiments
In this section, we report on our implementation towards fully automating the analysis
of unsolvable loops and describe our experimental setting and results.

5.9.1 Implementation
Algorithm 3, our method for synthesising invariants involving defective variables, and
Algorithm 4, for the synthesis of solvable loops from unsolvable loops, are implemented
in the Polar tool3. We use python3 and the sympy package [MSP+17] for symbolic
manipulations of algebraic expressions.

5.9.2 Benchmark Selection
While previous works [RcK04, RK07, dOBP16, HJK18a, BKS19, KCBR18] consider
invariant synthesis, their techniques are only applicable in a restricted setting: the
analysed loops are, for the most part, solvable; or, for unsolvable loops, the search for
polynomial invariants is template-driven or employs heuristics. In contrast, the work
herein complements and extends the techniques presented for solvable loops in [RcK04,
RK07, dOBP16, HJK18a, BKS19, KCBR18]. Indeed, our automated approach turns the
problem of polynomial invariant synthesis into a decidable problem for a larger class of
unsolvable loops.

While solvable loops can clearly be analysed by our approach, the main benefit of our
method comes with handling unsolvable loops by translating them into solvable ones.
For this reason, in our experimentation we are not interested in examples of solvable
loops and so only focus on unsolvable loop benchmarks. There is therefore no sensible
baseline that we can compare against, as state-of-the-art techniques cannot routinely
synthesise invariants for unsolvable loops in the generality we present.

We present a set of 23 examples of unsolvable loops, as listed in Table 5.14. Common to
all 23 benchmarks from Table 5.1 is the exhibition of circular non-linear dependencies
within the variable assignments. We display features of our benchmarks in Table 5.1
(for example, column 3 of Table 5.1 counts the number of defective variables for each
benchmark).

Three examples from Table 5.1 are challenging benchmarks taken from the invariant
generation literature [CVS16, DDP16, SO19, SCGP20]; full automation in analysing these
examples was not yet possible. These examples are listed as non-lin-markov-1, pts,
and bees in Table 5.1, respectively corresponding to Example 25 (and hence Example 33),
Example 36, and Example 35 from Section 5.8. Eight further benchmarks, as described in
Examples 42–49, are drawn from the theoretical physics and pure mathematics literature
(references are given in Section 5.8).

3https://github.com/probing-lab/polar
4each benchmark in Table 5.1 references, in parentheses, the respective example
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Table 5.1: Features of the benchmarks. Var = Total number of loop variables; Def =
Number of defective variables; Term = Total number of terms in assignments; Deg =
Maximum degree in assignments; Cand-7 = Number of monomials in candidate with
degree 7; Eqn-7 = Size of the system of equations associated with a candidate of degree
7; - = Timeout (60 seconds).

Benchmark Var Def Term Deg Cand-7 Eqn-7

squares (Fig. 5.1a) 3 2 8 2 35 113

squares+ (Ex.38) 4 2 12 2 35 204

non-lin-markov-1 (Ex. 25) 2 2 11 2 35 64

non-lin-markov-2 (Ex. 34) 2 2 11 2 35 64

prob-squares (Ex. 5.1b) 3 3 4 3 119 337

pts (Ex. 36) 4 2 6 3 35 57

squares-squared (Ex. 28) 4 4 15 4 329 -

bees (Ex. 35) 5 5 21 5 791 -

deg-5 (Ex. 41) 3 2 8 5 35 42

deg-6 (Ex. 41) 3 2 8 6 35 42

deg-7 (Ex. 41) 3 2 8 7 35 42

deg-8 (Ex. 41) 3 2 8 8 35 43

deg-9 (Ex. 41) 3 2 8 9 35 43

deg-500 (Ex. 41) 3 2 8 500 35 43

fib1 (Ex. 42) 3 3 4 2 119 204

fib2 (Ex. 43) 3 3 7 3 119 368

fib3 (Ex. 44) 3 3 7 2 119 204

markov-triples-toggle (Ex. 45) 3 3 10 2 119 454

markov-triples-random (Ex. 46) 3 3 9 2 119 254

yagzhev9 (Ex. 47) 9 9 29 3 11439 -

yagzhev11 (Ex. 48) 11 11 30 3 31823 -

nagata (Ex. 49) 3 2 9 4 35 1313
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The remaining 12 examples of Table 5.1 are self-constructed benchmarks to highlight
the key ingredients of our method in synthesising invariants associated with unsolvable
recurrence operators.

Experimental Setup
We evaluate our approach in Polar on the examples from Table 5.1. All our experiments
were performed on a machine with a 1.80GHz Intel i7 processor and 16 GB of RAM.

Evaluation Setting
The landscape of benchmarks in the invariant synthesis literature for solvable loops can
appear complex with: high numbers of variables, high degrees in polynomial updates,
and multiple update options. However, we do not intend to compete on these metrics
for solvable loops. The power of our invariant synthesis technique lies in its ability to
handle ‘unsolvable’ loop programs: those with cyclic inter-dependencies and non-linear
self-dependencies in the loop body. Regarding Algorithm 4, specifying our method for
synthesising solvable from unsolvable loops, the main complexity lies in constructing
an invariant involving defective variables. Once, such an invariant has been found, the
remaining complexity of Algorithm 4 is linear in the number of program variables. Hence,
the experimental results for our invariant synthesis technique also show the feasibility of
our new method synthesising solvable from unsolvable loops. While the benchmarks of
Table 5.1 may be considered simple, the fact that previous works cannot systematically
handle such simple models crystallises that even simple loops can be unsolvable, limiting
the applicability of state-of-the-art methods, as illustrated in the example below.

Example 50. Consider the question: does the unsolvable loop program deg-9 in
Table 5.1 (i.e. Example 41) possess a cubic invariant? The program variables for deg-9
are x, y, and z. The variables x and y are defective. Using Polar, we derive that the
cubic, non-trivial polynomial p(xn, yn, zn) given by

12(ayn + by2
n + cy3

n + dxn + exnyn + fxny2
n) − (3a + 24b + 117c + 2d + 17e + 26f)x2

n

− (6a − 6b + 315c + 4d − 2e + 88f)x2
nyn + 3(3a − 3b + 144c + 2d − e + 35f)x3

n

yields a cubic polynomial loop invariant, where a, b, c, d, e, and f are symbolic constants.
Moreover, for n ≥ 1, the expectation of this polynomial (deg-9 is a probabilistic loop) in
the nth iteration is given by

E(p(xn, yn, zn)) = −108a + 312b − 1962c − 68d + 52e − 68f.

Experimental Results
Our experiments using Polar to synthesise invariants are summarised in Table 5.2,
using the examples of Table 5.1. Patterns in Table 5.2 show that, if time considerations
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Table 5.2: The time taken to search for polynomial candidates with closed-forms (results
in seconds); - = Timeout (75 seconds); * = Found invariant of the corresponding degree.

Candidate Degree
Benchmark 1 2 3 4 5 6 7

squares (Fig. 5.1a) *0.95 1.09 1.66 2.72 4.98 11.67 19.87

squares+ (Ex. 38) *0.67 1.02 1.92 3.77 7.39 15.66 28.78

non-lin-markov-1 (Ex. 25) *0.42 *0.68 *1.04 *2.35 *4.02 *9.81 *13.58

non-lin-markov-2 (Ex. 34) *0.38 *0.59 *1.15 *2.40 *3.19 *5.91 *14.91

prob-squares (Ex. 39) *0.76 1.50 4.69 20.85 - - -

squares-and-cube (Fig. 5.1b) 0.32 *0.51 *1.20 *4.21 *19.49 - -

pts (Ex. 36) *0.35 *0.49 *0.71 *1.13 *1.90 *3.42 *5.98

squares-squared (Ex. 40) *0.48 *1.55 *8.92 - - -

bees (Ex. 35) *0.69 *3.27 *42.16 - - - -

deg-5 (Ex. 41) *0.46 *0.65 *1.01 *1.94 *4.04 *8.20 *19.28

deg-6 (Ex. 41) *0.54 *0.69 *1.62 *1.91 *4.32 *8.24 *19.75

deg-7 (Ex. 41) *0.49 *0.98 *1.06 *1.84 *4.42 *8.98 *19.39

deg-8 (Ex. 41) *0.45 *0.62 *1.08 *2.04 *4.07 *8.93 *20.97

deg-9 (Ex. 41) *0.47 *0.65 *1.11 *1.84 *4.31 *7.85 *19.67

deg-500 (Ex. 41) *0.47 *0.65 *1.08 *1.96 *4.29 *8.58 *21.05

fib1 (Ex. 42) 0.31 0.41 *0.91 2.02 2.97 *5.47 14.66

fib2 (Ex. 43) 0.31 0.49 *1.34 3.06 8.64 *17.24 -

fib3 (Ex. 44) 0.31 0.48 *1.73 3.46 16.92 - -

markov-triples-toggle (Ex. 45) 0.39 0.61 *1.41 2.63 5.84 *9.45 22.71

markov-triples-random (Ex. 46) *0.44 *0.62 *1.65 *3.52 *7.93 *21.39 *71.23

yagzhev9 (Ex. 47) 0.47 *2.44 *24.31 - - - -

yagzhev11 (Ex. 48) 0.59 7.12 *39.27 - - - -

nagata (Ex. 49) 0.33 *1.04 *3.49 *8.19 *40.03 - -
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are the limiting factor, then the greatest impact cannot be attributed to the number
of program variables nor the maximum degree in the program assignments (Table 5.1).
Three of the examples in Table 5.1 exhibit timeouts (60 secs) in the final column. The
property common to each of these examples is the high number of monomial terms in
any polynomial candidate of degree 7. In turn, this property feeds into a large system of
simultaneous equations, which we solve to test for invariants. Indeed, time elapsed is not
so strongly correlated with either of these program features. As supporting evidence we
note the specific attributes of benchmark deg-500 whose assignments include polynomial
updates of large degree and yet returns synthesised invariants with relatively low time
elapsed in Table 5.2. We note the significantly longer running times associated with
the benchmark bees (Example 35). This suggests that mutual dependencies between
program variables in the loop assignment explain this phenomenon: such inter-relations
lead to the construction of larger systems of equations, which itself feeds into the problem
of resolving the recurrence equation associated with a candidate.

Experimental Summary
Our experiments illustrate the feasibility of synthesising invariants and solvable loops using
our approach for programs with unsolvable recurrence operators from various domains
such as biological systems, probabilistic loops, and classical programs (see Section 5.5).
This further motivates the theoretical characterisation of unsolvable operators in terms
of defective variables (Section 5.4).

5.10 Conclusion
We establish a new technique that synthesises invariants for loops with unsolvable recur-
rence operators and show its applicability for deterministic and probabilistic programs.
Our work is further extended to translate unsolvable loops into solvable ones, by ensuring
that the polynomial loop invariants of the solvable loop are invariants of the given
unsolvable loop. Our work is based on a new characterisation of unsolvable loops in
terms of effective and defective variables: the presence of defective variables is equivalent
to unsolvability. In order to generate invariants, we provide an algorithm to isolate the
defective program variables and a new method to compute polynomial combinations of
defective variables admitting exponential polynomial closed-forms. The implementation
of our approach in the tool Polar and our experimental evaluation demonstrate the
usefulness of our alternative characterisation of unsolvable loops and the applicability of
our invariant synthesis technique to systems from various domains.
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CHAPTER 6
Automated Termination Analysis

This chapter is based on the following publication [MBKK21a]:

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. Automated
Termination Analysis of Polynomial Probabilistic Programs. In Proc. of ESOP, 2021.

6.1 Problem Statement
Classical program termination. Termination is a key property in program analy-
sis [CPR11]. The question whether a program terminates on all possible inputs – the
universal halting problem – is undecidable. Proof rules based on ranking functions have
been developed that impose sufficient conditions implying (non-)termination. Automated
termination checking has given rise to powerful software tools such as AProVE [GAB+17]
and NaTT [YKS14] (using term rewriting), and UltimateAutomizer [HCD+18] (using
automata theory). These tools have shown to be able to determine the termination of
several intricate programs. The industrial tool Terminator [CPR06] has taken termination
proving into practice and is able to prove termination – or even more general liveness
properties – of e.g., device driver software. Rather than seeking a single ranking function,
it takes a disjunctive termination argument using sets of ranking functions. Other results
include termination proving methods for specific program classes such as linear and
polynomial programs, see, e.g., [BMS05, HFG20].

Termination of probabilistic program. Probabilistic programs extend sequential
programs with the ability to draw samples from probability distributions. They are used
e.g. for, encoding randomized algorithms, planning in AI, security mechanisms, and in
cognitive science. In this chapter, we consider probabilistic while-programs with discrete
probabilistic choices, in the vein of the seminal works [Koz81] and [MM05].
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x ← 10
while x > 0 do

x ← x + 1 {1/2} x − 1
end while

(a)

x ← 10
while x > 0 do

x ← x − 1 {1/2} x + 2
end while

(b)

x, y ← 0, 0
while x2 + y2 < 100 do

x ← x + 1 {1/2} x − 1
y ← y + x {1/2} y − x

end while
(c)

x, y ← 10, 0
while x > 0 do

y ← y + 1
x ← x + 4y {1/2} x − y2

end while
(d)

Figure 6.1: Examples of probabilistic programs in our probabilistic language. Pro-
gram 6.1a is a symmetric 1D random walk. The program is AST but not PAST.
Program 6.1b is not AST. Programs 6.1c and 6.1d contain dependent variable updates
with polynomial guards and both programs are PAST.

Termination of probabilistic programs differs from the classical halting problem in several
respects, e.g., probabilistic programs may exhibit diverging runs that have probability
mass zero in total. Such programs do not always terminate, but terminate with probability
one – they are almost surely terminating (AST). An example of such a program is given
in Figure 6.1a where variable x is incremented by 1 with probability 1/2, and otherwise
decremented with this amount. This program encodes a one-dimensional (1D) left-
bounded random walk starting at position 10.

Another important difference to classical termination is that the expected number of
program steps until termination may be infinite, even if the program almost surely
terminates. Thus, almost sure termination (AST) does not imply that the expected
number of steps until termination is finite. Programs that have a finite expected runtime
are referred to as positively almost surely terminating (PAST). Figure 6.1c is a sample
program that is PAST. While PAST implies AST, the converse does not hold, as evidenced
by Figure 6.1a: the program of Figure 6.1a terminates with probability one but needs
infinitely many steps on average to reach x=0, hence is not PAST. (The terminology AST
and PAST was coined in [BG05] and has its roots in the theory of Markov processes.)

Proof rules for AST and PAST. Proving termination of probabilistic programs is
hard: AST for a single input is as hard as the universal halting problem, whereas PAST is
even harder [KK15]. Termination analysis of probabilistic programs is currently attracting
quite some attention. It is not just of theoretical interest. For instance, a popular way
to analyze probabilistic programs in machine learning is by using some advanced form
of simulation. If, however, a program is not PAST, the simulation may take forever.
In addition, the use of probabilistic programs in safety-critical environments [ARS13,
BBR+15, FDG+19] necessitates providing formal guarantees on termination.
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Different techniques are considered for probabilistic program termination ranging from
probabilistic term rewriting [ALY20], sized types [DG19], and Büchi automata the-
ory [CH20], to weakest pre-condition calculi for checking PAST [KKMO18]. A large
body of works considers proof rules that provide sufficient conditions for proving AST,
PAST, or their negations. These rules are based on martingale theory, in particular
supermartingales. They are stochastic processes that can be (phrased in a simplified
manner) viewed as the probabilistic analog of ranking functions: the value of a random
variable represents the “value” of the function at the beginning of a loop iteration.
Successive random variables model the evolution of the program loop.

Being a supermartingale means that the expected value of the random variables at
the end of a loop does not exceed its value at the start of the loop. Constraints on
supermartingales form the essential part of proof rules. For example, the AST proof rule
in [MMKK18] requires the existence of a supermartingale whose value decreases at least
with a certain amount by at least a certain probability on each loop iteration. Intuitively
speaking, the closer the supermartingales comes to zero – indicating termination – the
more probable it is that it increases more. The AST proof rule in [MMKK18] is applicable
to prove AST for the program in Figure 6.1a; yet, it cannot be used to prove PAST of
Figures 6.1c-6.1d. On the other hand, the PAST proof rule in [CS13, FFH15] requires
that the expected decrease of the supermartingale on each loop iteration is at least some
positive constant ϵ and on loop termination needs to be at most zero – very similar to the
usual constraint on ranking functions. While [CS13, FFH15] can be used to prove the
program in Figure 6.1c to be PAST, these works cannot be used for Figure 6.1a. They
cannot be used for proving Figure 6.1d to be PAST either.

The rule for showing non-AST [CNZ17] requires the supermartingale to be repulsing.
This intuitively means that the supermartingale decreases on average with at least ε and
is positive on termination. Figuratively speaking, it repulses terminating states. It can
be used to prove the program in Figure 6.1b to be not AST. In summary, while existing
works for proving AST, PAST, and their negations are generic in nature, they are also
restricted for classes of probabilistic programs. We propose relaxed versions of existing
proof rules for probabilistic termination that turn out to treat quite a number of programs
that could not be proven otherwise (Section 6.4). In particular, (non-)termination of all
four programs of Figure 6.1 can be proven using our proof rules.

Automated termination checking of AST and PAST. Whereas there is a large
body of techniques and proof rules, software tool support to automate checking termi-
nation of probabilistic programs is still in its infancy. We present novel algorithms to
automate various proof rules for probabilistic programs: the three aforementioned proof
rules [CS13, FFH15, MMKK18, CNZ17] and a variant of the non-AST proof rule to
prove non-PAST [CNZ17]1. We also present relaxed versions of each of the proof rules,
going beyond the state-of-the-art in the termination analysis of probabilistic programs.

1For automation, the proof rule of [MMKK18] is considered for constant decrease and probability
functions.
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We focus on so-called Prob-solvable loops, extending [BKS19]. Namely, we define Prob-
solvable loops as probabilistic while-programs whose guards compare two polynomials
(over program variables) and whose body is a sequence of random assignments with
polynomials as right-hand side such that a variable x, say, only depends on variables
preceding x in the loop body. While restrictive, Prob-solvable loops cover a vast set of
interesting probabilistic programs (see Remark 8).

An essential property of our programs is that the statistical moments of program variables
can be obtained as closed-form formulas [BKS19]. The key of our algorithmic approach
is a procedure for computing asymptotic lower, upper and absolute bounds on polynomial
expressions over program variables in our programs (Section 6.5). This enables a novel
method for automating probabilistic termination and non-termination proof rules based
on (super)martingales, going beyond the state-of-the-art in probabilistic termination. Our
relaxed proof rules allow us to fully automate (P)AST analysis by using only polynomial
witnesses. Our experiments provide practical evidence that polynomial witnesses within
Prob-solvable loops are sufficient to certify most examples from the literature and even
beyond (Section 6.6).

Our termination tool Amber. We have implemented our algorithmic approach
in the publicly available tool Amber. It exploits asymptotic bounds over polynomial
martingales and uses the tool mora [BKS19] for computing the first-order moments
of program variables and the computer algebra system package diofant. It employs
over- and under-approximations realized by a simple static analysis. Amber establishes
probabilistic termination in a fully automated manner and has the following unique
characteristics:

• it includes the first implementation of the AST proof rule of [MMKK18], and

• it is the first tool capable of certifying AST for programs that are not PAST and
cannot be split into PAST subprograms, and

• it is the first tool that brings the various proof rules under a single umbrella: AST,
PAST, non-AST and non-PAST.

An experimental evaluation on various benchmarks shows that: (1) Amber is superior
to existing tools for automating PAST [NCH18] and AST [CS13], (2) the relaxed proof
rules enable proving substantially more programs, and (3) Amber is able to automate
the termination checking of intricate probabilistic programs (within the class of programs
considered) that could not be automatically handled so far (Section 6.6). For example,
Amber solves 23 termination benchmarks that no other automated approach could so far
handle.
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Main contributions. To summarize, the main contributions are:

1. Relaxed proof rules for (non-)termination, enabling treating a wider class of pro-
grams (Section 6.4).

2. Efficient algorithms to compute asymptotic bounds on polynomial expressions of
program variables (Section 6.5).

3. Automation: a realisation of our algorithms in the tool Amber (Section 6.6).

4. Experiments showing the superiority of Amber over existing tools for proving
(P)AST (Section 6.6).

6.2 Preliminaries
We denote by N and R the set of natural and real numbers, respectively. Further, let
R denote R ∪ {+∞, −∞}, R+

0 the non-negative reals and R[x1, . . . , xm] the polynomial
ring in x1, . . . , xm over R. We write x ← E(1) {p1} E(2) {p2} . . . {pm−1} E(m) for the
probabilistic update of program variable x, denoting the execution of x ← E(j) with
probability pj , for j = 1, . . . , m − 1, and the execution of x ← E(m) with probability
1 − m−1

j=1 pj , where m ∈ N. We write indices of expressions over program variables in
round brackets and use Ei for the stochastic process induced by expression E. This
section introduces our programming language extending Prob-solvable loops [BKS19] and
defines the probability space introduced by such programs. We assume the reader to be
familiar with probability theory [KSK76].

6.2.1 Programming Model: Prob-Solvable Loops
Prob-solvable loops [BKS19] are syntactically restricted probabilistic programs with
polynomial expressions over program variables. The statistical higher-order moments of
program variables, like expectation and variance of such loops, can always be computed
as functions of the loop counter. We extend Prob-solvable loops with polynomial loop
guards in order to study their termination behavior, as follows.

Definition 39 (Prob-solvable loop L). A Prob-solvable loop L with real-valued variables
x(1), ..., x(m), where m ∈ N, is a program of the form: IL while GL do UL end, with

• (Init) IL is a sequence x(1) ← r(1), ..., x(m) ← r(m) of m assignments, with r(j) ∈ R

• (Guard) GL is a strict inequality P > Q, where P, Q ∈ R[x(1), . . . , x(m)]

• (Update) UL is a sequence of m probabilistic updates of the form

x(j) ← a(j1)x(j) + P(j1) {pj1} a(j2)x(j) + P(j2) {pj2} ... {pj(lj−1)} a(jlj)x(j) + P(jlj),

where a(jk) ∈ R+
0 are constants, P(jk) ∈ R[x(1), ..., x(j−1)] are polynomials, p(jk) ∈

[0, 1] and k pjk < 1.
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If L is clear from the context, the subscript L is omitted from IL, GL, and UL. Figure 6.1
gives four example Prob-solvable loops.

Remark 8 (Prob-solvable expressiveness). The enforced order of assignments in the loop
body of Prob-solvable loops seems restrictive. Notwithstanding these syntactic restrictions,
many non-trivial probabilistic programs can be naturally modeled as succinct Prob-solvable
loops. These include complex stochastic processes such as 2D random walks and dynamic
Bayesian networks [BKS20b]. Almost all existing benchmarks on automated probabilistic
termination analysis fall within the scope of Prob-solvable loops (cf. Section 6.6).

In the sequel, we consider an arbitrary Prob-solvable loop L and provide all definitions
relative to L. The semantics of L is defined next, by associating L with a probability
space.

6.2.2 Canonical Probability Space
A probabilistic program, and thus a Prob-solvable loop, can be semantically described as
a probabilistic transition system [CS13] or as a probabilistic control flow graph [CNZ17],
which in turn induce an infinite Markov chain (MC) 2. An MC is associated with a
sequence space [KSK76], a special probability space. In the sequel, we associate L with
the sequence space of its corresponding MC, similarly as in [HKGK20]. To this end, we
first define the notions state and run for a Prob-solvable loop.

Definition 40 (State, Run of L). The state of Prob-solvable loop L over m variables, is
a vector s ∈ Rm. Let s[j] or s[x(j)] denote the j-th component of s representing the value
of the variable x(j) in state s. A run ϑ of L is an infinite sequence of states.

Note that any infinite sequence of states is a run. Infeasible runs will however be assigned
measure 0. We write s ⊨ B to denote that the logical formula B holds in state s.
A probability space (Ω, Σ,P) consists of a measurable space (Ω, Σ) and a probability
measure P for this space. First, we define a measurable space for L and later equip it
with a probability measure.

Definition 41 (Loop Space of L). The Prob-solvable loop L induces a canonical measur-
able space (ΩL, ΣL), called loop space, where

• the sample space ΩL := (Rm)ω is the set of all program runs,

• the σ-algebra ΣL is the smallest σ-algebra containing all cylinder sets Cyl(π) :=
{πϑ | ϑ ∈ (Rm)ω} for all finite prefixes π ∈ (Rm)+, that is ΣL := ⟨{Cyl(π) | π ∈
(Rm)+}⟩σ.

2In fact, [CNZ17] consider Markov decision processes, but in absence of non-determinism in Prob-
solvable loops, Markov chains suffice for our purpose.
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To turn the loop space of L into a proper probability space, we introduce a probability
measure. To this end, we define the probability p(π) of a finite non-empty prefix π
of a program run. Let µI(s) denote the probability that, after initialization IL, the
loop L is in state s. Because probabilistic constructs are not allowed in IL, µI(s) is
a Dirac-distribution, such that µI(s) = 1 for the unique state s defined by IL and
µI(s′) = 0 for s′ ̸= s. Moreover, µU (s, s′) denotes the probability that, after one loop
iteration starting in state s, the resulting program state is s′. Note that µI(s) and
µU (s, s′) are solely determined by IL and UL. The probability p(π) of a finite non-empty
prefix π of a program run is then defined as

p(s) := µI(s), p(πss′) := p(πs) · [s′ = s], if s ⊨ ¬GL
p(πs) · µU (s, s′), if s ⊨ GL

where [. . .] denote the Iverson brackets, i.e. [s′ = s] is 1 iff s′ = s. Intuitively, p(π) is the
probability that prefix π is the sequence of the first |π| program states when executing L.
We note that the effect of the loop body U is considered as atomic.

Definition 42 (Loop Measure of L). The loop measure of a Prob-solvable loop L is a
canonical probability measure PL : ΣL → [0, 1] on the loop space of L, with PL(Cyl(π)) :=
p(π).

The loop space and the loop measure of L form the probability space (ΩL, ΣL,PL).

6.2.3 Probabilistic Termination
In order to formalize termination properties of a Prob-solvable loop L, we define the
looping time of L to be a random variable in L’s loop space. A random variable X in a
probability space (Ω, Σ,P) is a (Σ-)measurable function X : Ω → R, i.e. for every open
interval U ⊆ R it holds that X−1(U) ∈ Σ. The expected value of a random variable X,
denoted by E(X), is defined as the Lebesgue integral of X over the probability space,
i.e. E(X) := Ω XdP. In the special case that X takes only countably many values,
we have E(X) = Ω XdP = r∈X(Ω) P(X = r) · r. We now define the looping time of a
Prob-solvable loop L, as follows.

Definition 43 (Looping Time of L). The looping time of L is the random variable
T ¬G : Ω → N ∪ {∞}, where T ¬G(ϑ) := inf{i ∈ N | ϑi ⊨ ¬G}.

Intuitively, the looping time T ¬G maps a program run of L to the index of the first
state falsifying the loop guard G of L or to ∞ if no such state exists. We now formalize
termination properties of L using the looping time T ¬G .

Definition 44 (Termination of L). The Prob-solvable loop L is AST if P(T ¬G < ∞) = 1.
L is PAST if E(T ¬G) < ∞.
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6.2.4 Filtrations and Martingales
For a thorough analysis of the hardness of deciding AST and PAST we refer to [KK15].
While for arbitrary probabilistic programs, answering P(T ¬G < ∞) and E(T ¬G < ∞)
is undecidable, sufficient conditions for AST, PAST and their negations have been
developed [CS13, FFH15, MMKK18, CNZ17]. These works use (super)martingales which
are special stochastic processes. In this section, we adopt the general setting of martingale
theory to a Prob-solvable loop L and then formalize sufficient termination conditions for
L in Section 6.3.

Definition 45 (Stochastic Process of L). A stochastic process (Xi)i∈N is a sequence of
random variables. Every arithmetic expression E over the program variables of L induces
the stochastic process (Ei)i∈N, Ei : Ω → R with Ei(ϑ) := E(ϑi). For a run ϑ of L, Ei(ϑ)
is the evaluation of E in the i-th state of ϑ.

In the sequel, for a boolean condition B over program variables x of L, we write Bi to
refer to the result of substituting x by xi in B. In Figure 6.1a, the stochastic process
(xi)i∈N is such that every xi maps a given program run ϑ to the value of the variable x
in the i-th state of ϑ. Note that the σ-algebra ΣL contains the cylinder sets for finite
program run prefixes of arbitrary length. This does not capture the gradual information
gain when executing L iteration by iteration. In probability theory, filtrations are a
standard notion to formalize the information available at a specific point in time.

Definition 46 (Filtration [KSK76]). For a probability space (Ω, Σ,P), a filtration is a
sequence (Fi)i∈N such that (1) every Fi is a sub-σ-algebra and (2) Fi ⊆ Fi+1. Further,
(Ω, Σ, (Fi)i∈N,P) is called a filtered probability space.

We adopt filtrations to Prob-solvable loops and enrich the loop space of L to a filtered
probability space, as follows.

Definition 47 (Loop Filtration of L). The loop filtration (FL
i )i∈N of ΣL is defined

by FL
i = ⟨{Cyl(π) | π ∈ (Rm)+, |π| = i+1}⟩σ. (ΩL, ΣL, (FL)i∈N,PL) is a filtered

probability space of L.

Based on Definition 47, note that FL
0 is the smallest σ-algebra containing the cylinder

sets of finite prefixes of program runs of length 1. That is, the cylinder sets of finite
prefixes of program runs of length greater than or equal to 2 are not present in FL

0 . Hence,
FL

0 captures exactly the information available about the program run after executing
just the initialization IL. Similarly, FL

i captures the information about the program run
after the loop body UL has been executed i times. In Figure 6.1a, for example, the event
{ϑ ∈ Ω | xi(ϑ) = r} denoted by {xi = r} is FL

i -measurable for every i ∈ N and every
r ∈ R, as the value of xi depends only on information available up to the i-th iteration
of the loop body of Figure 6.1a. The following definition formalizes this observation.

Definition 48 (Adapted Process [KSK76]). A stochastic process (Xi)i∈N is said to be
adapted to a filtration (Fi)i∈N if Xi is Fi-measurable for every i ∈ N.
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It is not hard to argue that, for any arithmetic expression E over the variables of L, the
induced stochastic process (Ei)i∈N is adapted to the loop filtration FL

i of L: the value of
Ei only depends on the information available up to the i-th loop iteration of L.

The concept of (super)martingales builds upon the notion of conditional expected values
which is defined as follows.

Definition 49 (Conditional Expected Value [KSK76]). For a probability space (Ω, Σ,P),
an integrable random variable X and a sub-σ-algebra ∆ ⊆ Σ, the expected value of X
conditioned on ∆, E(X | ∆), is any ∆-measurable function such that for every D ∈ ∆ we
have D E(X | ∆)dP = D XdP. The random variable E(X | ∆) is almost surely unique.

We now introduce (super)martingales as special stochastic processes. In Section 6.3 these
notions are used to define sufficient conditions for PAST, AST and their negations.

Definition 50 (Martingales). Let (Ω, Σ, (Fi)i∈N,P) be a filtered probability space and
(Mi)i∈N be an integrable stochastic process adapted to (Fi)i∈N. Then (Mi)i∈N is a
martingale if E(Mi+1 | Fi) = Mi (or equivalently E(Mi+1−Mi | Fi) = 0). More-
over, (Mi)i∈N is called a supermartingale (SM) if E(Mi+1 | Fi) ≤ Mi (or equivalently
E(Mi+1−Mi | Fi) ≤ 0). For an arithmetic expression E over the program variables of L,
the conditional expected value E(Ei+1 − Ei | Fi) is called the martingale expression of E.

6.3 Proof Rules for Probabilistic Termination
While AST and PAST are undecidable in general [KK15], sufficient conditions, called
proof rules, for AST and PAST have been introduced, see e.g. [CS13, FFH15, MMKK18,
CNZ17]. In this section, we survey four proof rules, adapted to Prob-solvable loops. In
the sequel, a pure invariant is a loop invariant in the classical deterministic sense [Hoa69].
Based on the probability space corresponding to L, a pure invariant holds before and
after every iteration of L.

6.3.1 Positive Almost Sure Termination (PAST)
The proof rule for PAST introduced in [CS13] relies on the notion of ranking supermartin-
gales (RSMs), which is a SM that decreases by a fixed positive ϵ on average at every loop
iteration. Intuitively, RSMs resemble ranking functions for deterministic programs, yet
for probabilistic programs.

Theorem 31 (Ranking-Supermartingale-Rule (RSM-Rule) [CS13], [FFH15]). Let M :
Rm → R be an expression over the program variables of L and I a pure invariant of L.
Assume the following conditions hold for all i ∈ N:

1. (Termination) G ∧ I =⇒ M > 0

2. (RSM Condition) Gi ∧ Ii =⇒ E(Mi+1 − Mi | Fi) ≤ −ϵ, for some ϵ > 0.
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Then, L is PAST. Further, M is called an ϵ-ranking supermartingale.

Example 51. Consider Figure 6.1c, set M := 100 − x2 − y2 and ϵ := 2 and let I be
true. Condition (1) of Theorem 31 trivially holds. Further, M is also an ϵ-ranking
supermartingale, as E(Mi+1−Mi | Fi) = 100−E(x2

i+1 | Fi)−E(y2
i+1 | Fi)−100+x2

i +y2
i =

−2 − x2
i ≤ −2. That is because E(x2

i+1 | Fi) = x2
i + 1 and E(y2

i+1 | Fi) = y2
i + x2

i + 1.
Figure 6.1c is thus proved PAST using the RSM-Rule.

6.3.2 Almost Sure Termination (AST)
Recall that Figure 6.1a is AST but not PAST, and hence the RSM-rule cannot be used
for Figure 6.1a. By relaxing the ranking conditions, the proof rule in [MMKK18] uses
general supermartingales to prove AST of programs that are not necessarily PAST.

Theorem 32 (Supermartingale-Rule (SM-Rule) [MMKK18]). Let M : Rm → R≥0
be an expression over the program variables of L and I a pure invariant of L. Let
p : R≥0 → (0, 1] (for probability) and d : R≥0 → R>0 (for decrease) be antitone (i.e.
monotonically decreasing) functions. Assume the following conditions hold for all i ∈ N:

1. (Termination) G ∧ I =⇒ M > 0

2. (Decrease) Gi ∧ Ii =⇒ P(Mi+1 − Mi ≤ −d(Mi) | Fi) ≥ p(Mi)

3. (SM Condition) Gi ∧ Ii =⇒ E(Mi+1 − Mi | Fi) ≤ 0.

Then, L is AST.

Intuitively, the requirement of d and p being antitone forbids that the “execution progress”
of L towards termination becomes infinitely small while still being positive.

Example 52. The SM-Rule can be used to prove AST for Figure 6.1a. Consider M := x,
p := 1/2, d := 1 and I := true. Clearly, p and d are antitone. The remaining conditions
of Theorem 32 also hold as (1) x > 0 =⇒ x > 0; (2) x decreases by d with probability p
in every iteration; and (3) E(Mi+1 − Mi | Fi) = xi − xi ≤ 0.

6.3.3 Non-Termination
While Theorems 31 and 32 can be used for proving AST and PAST, respectively, they
are not applicable to the analysis of non-terminating Prob-solvable loops. Two sufficient
conditions for certifying the negations of AST and PAST have been introduced in [CNZ17]
using so-called repulsing-supermartingales. Intuitively, a repulsing-supermartingale M on
average decreases in every iteration of L and on termination is non-negative. Figuratively,
M repulses terminating states.

Theorem 33 (Repulsing-AST-Rule (R-AST-Rule) [CNZ17]). Let M : Rm → R be an
expression over the program variables of L and I a pure invariant of L. Assume the
following conditions hold for all i ∈ N:
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1. (Negative) M0 < 0

2. (Non-Termination) ¬G ∧ I =⇒ M ≥ 0

3. (RSM Condition) Gi ∧ Ii =⇒ E(Mi+1 − Mi | Fi) ≤ −ϵ, for some ϵ > 0

4. (c-Bounded Differences) |Mi+1 − Mi| < c, for some c > 0.

Then, L is not AST. M is called an ϵ-repulsing supermartingale with c-bounded differ-
ences.

Example 53. Consider Figure 6.1b and let M := −x, c := 3, ϵ := 1/2 and I := true.
All four above conditions hold: (1) −x0 = −10 < 0; (2) x ≤ 0 =⇒ −x ≥ 0; (3)
E(Mi+1 − Mi | Fi) = −xi − 1/2 + xi = −1/2 ≤ −ϵ; and (4) |xi − xi+1| < 3. Thus,
Figure 6.1b is not AST.

While Theorem 33 can prove programs not to be AST, and thus also not PAST, it
cannot be used to prove programs not to be PAST when they are AST. For example,
Theorem 33 cannot be used to prove that Figure 6.1a is not PAST. To address such cases,
a variation of the R-AST-Rule [CNZ17] for certifying programs not to be PAST arises by
relaxing the condition ϵ > 0 of the R-AST-Rule to ϵ ≥ 0. We refer to this variation by
Repulsing-PAST-Rule (R-PAST-Rule).

Example 54. Consider Figure 6.1a. We set M := −x, c := 1 and ϵ := 0. Note that
E(Mi+1 − Mi | Fi) = −xi + xi ≤ 0 and it is easy to see that all four conditions of
Theorem 33 hold (with ϵ ≥ 0). Thus, the R-PAST-Rule proves that Figure 6.1a is not
PAST.

6.4 Relaxed Proof Rules for Probabilistic Termination
While Theorems 31-33 provide sufficient conditions proving PAST, AST and their
negations, the applicability to Prob-solvable loops is somewhat restricted. For example,
the RSM-Rule cannot be used to prove Figure 6.1d to be PAST using the simple expression
M := x, as explained in detail with Example 55, but may require more complex witnesses
for certifying PAST, complicating automation. In this section, we relax the conditions
of Theorems 31-33 by requiring these conditions to only hold “eventually”. A property
P (i) parameterized by a natural number i ∈ N holds eventually if there is an i0 ∈ N such
that P (i) holds for all i ≥ i0. Our relaxations of probabilistic termination proof rules
can intuitively be described as follows: If L, after a fixed number of steps, almost surely
reaches a state from which the program is PAST or AST, then the program is PAST
or AST, respectively. Let us first illustrate the benefits of reasoning with “eventually”
holding properties for probabilistic termination in the following example.

Example 55 (Limits of the RSM-Rule and SM-Rule). Consider Figure 6.1d. Setting
M := x, we have the martingale expression E(Mi+1 − Mi | Fi) = −y2

i/2 + yi + 3/2 =
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x, y ← x0, 0
while x > 0 do

y ← y + 1
x ← x+(y−5) {1/2} x−(y−5)

end while
(a)

x, y ← 1, 2
while x > 0 do

y ← 1/2 · y
x ← x + 1 − y {2/3} x − 1 + y

end while
(b)

Figure 6.2: Prob-solvable loops which require our relaxed proof rules for termination
analysis.

−i2/2 + i + 3/2. Since E(xi+1 − xi | Fi) is non-negative for i ∈ {0, 1, 2, 3}, we conclude
that M is not an RSM. However, Figure 6.1d either terminates within the first three
iterations or, after three loop iterations, is in a state such that the RSM-Rule is applicable.
Therefore, Figure 6.1d is PAST but the RSM-Rule cannot directly prove using M := x.
A similar restriction of the SM-Rule can be observed for Figure 6.2a. By considering
M := x, we derive the martingale expression E(xi+1 − xi | Fi) = 0, implying that M is a
martingale for Figure 6.2a. However, the decrease function d for the SM-Rule cannot be
defined because, for example, in the fifth loop iteration of Figure 6.2a, there is no progress
as x is almost surely updated with its previous value. However, after the fifth iteration of
Figure 6.2a, x always decreases by at least 1 with probability 1/2 and all conditions of the
SM-Rule are satisfied. Thus, Figure 6.2a either terminates within the first five iterations
or reaches a state from which it terminates almost surely. Consequently, Figure 6.2a is
AST but the SM-Rule cannot directly prove it using M := x.

We therefore relax the RSM-Rule and SM-Rule of Theorems 31 and 32 as follows.

Theorem 34 (Relaxed Termination Proof Rules). For the RSM-Rule to certify PAST
of L, it is sufficient that conditions (1)-(2) of Theorem 31 hold eventually (instead of
for all i ∈ N). Similarly, for the SM-Rule to certify AST of L, it is sufficient that
conditions (1)-(3) of Theorem 32 hold eventually.

Proof. We prove the relaxation of the RSM-Rule. The proof of the relaxed SM-Rule
is analogous. Let L := I while G do U end be as in Definition 39. Assume L satisfies
the conditions (1)-(2) of Theorem 31 after some i0 ∈ N. We construct the following
probabilistic program P, where i is a new variable not appearing in L:

I; i ← 0
while i < i0 do U ; i ← i + 1 end
while G do U end

(6.1)

We first argue that if P is PAST, then so is L. Assume P to be PAST. Then, the looping
time of L is either bounded by i0 or it is PAST, by the definition of P . In both cases, L
is PAST. Finally, observe that P is PAST if and only if its second while-loop is PAST.
However, the second while-loop of P can be certified to be PAST using the RSM-Rule
and additionally using i ≥ i0 as an invariant.
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Remark 9. The central point of our proof rule relaxations is that they allow for simpler
witnesses. While for Example 55 it can be checked that M := x + 2y+5 is an RSM, the
example illustrates that the relaxed proof rule allows for a much simpler PAST witness
(linear instead of exponential). This simplicity is key for automation.

Similar to Theorem 34, we relax the R-AST-Rule and the R-PAST-Rule. However,
compared to Theorem 34, it is not enough for a non-termination proof rule to certify
non-AST from some state onward, because L may never reach this state as it might
terminate earlier. Therefore, a necessary assumption when relaxing non-termination
proof rules comes with ensuring that L has a positive probability of reaching the state
after which a proof rule witnesses non-termination. This is illustrated in the following
example.

Example 56 (Limits of the R-AST-Rule). Consider Figure 6.2b and set M := −x. As a
result, we get E(Mi+1 −Mi | Fi) = yi/6−1/3 = 2−i/3−1/3. Thus, E(Mi+1 −Mi | Fi) = 0 for
i = 0, implying that M cannot be an ϵ-repulsing supermartingale with ϵ > 0 for all i ∈ N.
However, after the first iteration of L, M satisfies all requirements of the R-AST-Rule.
Moreover, L always reaches the second iteration because in the first iteration x almost
surely does not change. From this follows that Figure 6.2b is not AST.

The following theorem formalizes the observation of Example 56 relaxing the R-AST-Rule
and R-PAST-Rule of Theorem 33.

Theorem 35 (Relaxed Non-Termination Proof Rules for). For the R-AST-Rule to certify
non-AST for L (Theorem 33), as well as for the R-PAST-Rule to certify non-PAST for
L (Theorem 33), if P(Mi0 < 0) > 0 for some i0 ≥ 0, it suffices that conditions (2)-(4)
hold for all i ≥ i0 (instead of for all i ∈ N).

Proof. We prove the relaxation of the R-AST-Rule. The proof for the R-PAST-Rule
is analogous. Let L := I while G do U end be as in Definition 39. Assume L satisfies
conditions (2)-(4) of the R-AST-Rule for all i ≥ i0 for some fixed i0 ∈ N. Moreover,
assume P(Mi0 < 0) > 0.
We construct again a probabilistic program P as in (6.1). Observe that for the second
while-loop of P, we have i ≥ i0. By assumption, the second while-loop of P satisfies
conditions (2)-(4) of the R-AST-Rule. By the R-AST-Rule, we conclude P being not AST,
if there is a Cyl(π) ∈ FP

i0 , such that PP(Cyl(π)) > 0 and Mi0(ϑ) < 0 for all ϑ ∈ Cyl(π).
By the definition of P, it then follows for L that if there is a Cyl(π) ∈ FL

i0 , such
that PL(Cyl(π)) > 0 and Mi0(ϑ) < 0 for all ϑ ∈ Cyl(π), then L is not AST. As
PL(Mi0 < 0) > 0, we conclude that such a Cyl(π) exists and derive that L is not
AST.

Note that for a repulsing supermartingale M , the condition P(Mi0 < 0) > 0 implies
that there is a positive probability of reaching iteration i0, because M would have to be
almost surely non-negative upon termination.
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In what follows, whenever we write RSM-Rule, SM-Rule, R-AST-Rule or R-PAST-Rule
we refer to our relaxed versions of the proof rules.

6.5 Algorithmic Termination Analysis through
Asymptotic Bounds

The two major challenges when automating reasoning with the proof rules of Sections 6.3
and 6.4 are (i) constructing expressions M over the program variables and (ii) proving
inequalities involving E(Mi+1 − Mi | Fi). In this section, we address these two challenges
for Prob-solvable loops. For the loop guard GL = P > Q, let GL denote the polynomial
P − Q. As before, if L is clear from the context, we omit the subscript L. It holds that
G > 0 is equivalent to G.

(i) Constructing (super)martingales M . For a Prob-solvable loop L, the polynomial
G is a natural candidate for the expression M in termination proof rules (RSM-Rule, SM-
Rule) and −G in the non-termination proof rules (R-AST-Rule, R-PAST-Rule). Hence,
we construct potential (super)martingales M by setting M := G for the RSM-Rule and
the SM-Rule, and M := −G for the R-AST-Rule and the R-PAST-Rule. The property
G =⇒ G > 0, a condition of the RSM-Rule and the SM-Rule, trivially holds. Moreover,
for the R-AST-Rule and R-PAST-Rule the condition ¬G =⇒ −G ≥ 0 is satisfied. The
remaining conditions of the proof rules are:

• RSM-Rule: (a) Gi =⇒ E(Gi+1 − Gi | Fi) ≤ −ϵ for some ϵ > 0

• SM-Rule: (a) Gi =⇒ E(Gi+1 − Gi | Fi) ≤ 0 and (b) Gi =⇒ P(Gi+1 − Gi ≤ −d |
Fi) ≥ p for some p ∈ (0, 1] and d ∈ R+ (for the purpose of efficient automation, we
restrict the functions d(r) and p(r) to be constant)

• R-AST-Rule: (a) Gi =⇒ E(−Gi+1+Gi | Fi) ≤ −ϵ for some ϵ > 0 and (b)
|Gi+1 − Gi| ≤ c, for some c > 0.

All these conditions express bounds over Gi. Choosing G as the potential witness
may seem simplistic. However, Example 55 already illustrated how our relaxed proof
rules can mitigate the need for more complex witnesses (even exponential ones). The
computational effort in our approach does not lie in synthesizing a complex witness but in
constructing asymptotic bounds for the loop guard. Our approach can therefore be seen
as complementary to approaches synthesizing more complex witnesses [CS13, CFG16,
CNZ17]. The martingale expression E(Gi+1 − Gi | Fi) is an expression over program
variables, whereas Gi+1 − Gi cannot be interpreted as a single expression but through a
distribution of expressions.

Definition 51 (One-step Distribution). For expression H over the program variables of
Prob-solvable loop L, let the one-step distribution UH

L be defined by E → P(Hi+1 = E | Fi)
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with support set supp(UH
L ) := {B | UH

L (B) > 0}. We refer to expressions B ∈ supp(UH
L )

by branches of H.

The notation UH
L is chosen to suggest that the loop body UL is “applied” to the expression

H, leading to a distribution over expressions. Intuitively, the support supp(UH
L ) of an

expression H contains all possible updates of H after executing a single iteration of UL.

Example 57 (One-step Distribution). Consider the following Prob-solvable loop:
x, y ← 1, 1
while x > 0 do

y ← y + 1 {1/2} y + 2
x ← x + y {1/3} x − y

end while
For the expression H := x2, the one-step distribution UH

L is as follows:

Expression E UH
L (E)

x2
i + 2xiyi + 2xi + y2

i + 2yi + 1 1/6

x2
i + 2xiyi + 4xi + y2

i + 4yi + 4 1/6

x2
i − 2xiyi − 2xi + y2

i + 2yi + 1 1/3

x2
i − 2xiyi − 4xi + y2

i + 4yi + 4 1/3

Any other E 0

The first entry in the table can be derived like:

x2
i+1 = (xi + yi+1)2 = x2

i + 2xiyi+1 + y2
i+1 (with probability 1/3)

= x2
i + 2xi(yi + 1) + (yi + 1)2 (with probability 1/2 · 1/3)

= x2
i + 2xiyi + 2xi + y2

i + 2yi + 1 (with probability 1/6)

(ii) Proving inequalities involving E(Mi+1 −Mi | Fi). To automate the termination
analysis of L with the proof rules from Section 6.3, we need to compute bounds for
the expression E(Gi+1 − Gi | Fi) as well as for the branches of G. In addition, our
relaxed proof rules from Section 6.4 only need asymptotic bounds, i.e. bounds which
hold eventually. In Section 6.5.2, we propose Algorithm 5 for computing asymptotic
lower and upper bounds for any polynomial expression over program variables of L. Our
procedure allows us to derive bounds for E(Gi+1 − Gi | Fi) and the branches of G. Before
formalizing our method, let us first illustrate how reasoning with asymptotic bounds
helps to apply termination proof rules to L.
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Example 58 (Asymptotic Bounds for the RSM-Rule). Consider the following program:
x, y ← 1, 0
while x < 100 do

y ← y + 1
x ← 2x + y2 {1/2} 1/2 · x

end while

Observe yi = i. The martingale expression for G = 100 − x is E(Gi+1 − Gi | Fi) =
1/2(100 − 2xi − (i + 1)2) + 1/2(100 − xi/2) − (100 − xi) = −xi/4 − i2/2 − i − 1/2. Note that if
the term −xi/4 would not be present in E(Gi+1 − Gi | Fi), we could certify the program
to be PAST using the RSM-Rule because −i2/2 − i − 1/2 ≤ −1/2 for all i ≥ 0. However,
by taking a closer look at the variable x, we observe that it is eventually and almost
surely lower bounded by the function α · 2−i for some α ∈ R+. Therefore, eventually
−xi/4 ≤ −β · 2−i for some β ∈ R+. Thus, eventually E(Gi+1 − Gi | Fi) ≤ −γ · i2 for
some γ ∈ R+. By our RSM-Rule, the program is PAST.

Now, the question arises how the asymptotic lower bound α · 2−i for x can be computed
automatically. In every iteration, x is either updated with 2x + y2 or 1/2 · x. Considering
the updates as recurrences, we have the inhomogeneous parts y2 and 0. Asymptotic
lower bounds for these parts are i2 and 0, respectively, where 0 is the “asymptotically
smallest one“. Taking 0 as the inhomogeneous part, we construct two recurrences: (1)
l0 = α, li+1 = 2li + 0 and (2) l0 = α, li+1 = 1/2 · li + 0, for some α ∈ R+. Solutions
to these recurrences are α · 2i and α · 2−i, where the last one is the desired lower bound
because it is “asymptotically smaller“. We will formalize this idea of computing asymptotic
bounds in Algorithm 5.

Example 59 (Bounds & R-AST-Rule). Consider the following Prob-solvable loop:
x, y ← 1, 2
while x > 0 do

y ← 1/2 · y
x ← x + 1 − y {2/3} x − 1 + y

end while

The martingale expression for −G = −x is E(Mi+1 − Mi | Fi) = yi
6 − 1

3 = 2−i

3 − 1
3 ,

using yi = 2−i. We observe that almost surely xi is eventually lower bounded (and upper
bounded) by a function α · i for some α ∈ R+. Therefore, eventually E(Gi − Gi+1 |
Fi) ≤ −β holds for some β ∈ R+. Consequently, −x is eventually an ϵ-repulsing
supermartingale. A bound c on the differences |xi+1 − xi| can be established by a similar
style of reasoning to arrive at |xi+1 −xi| < γ, for some γ ∈ R+. Because all the conditions
of the R-AST-Rule are satisfied and there is a positive probability of reaching any iteration
(necessary for the relaxation of the R-AST-Rule), the program is not AST.
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Example 60 (Bounds & SM-Rule). Consider the following Prob-solvable loop:
x, y ← 10, 0
while x > 0 do

y ← y + 1 {1/3} y + 2 {1/3} y + 3
x ← x + y2 − 1 {1/2} x − y2 + 1

end while

The martingale expression for G = x is E(Gi+1 − Gi | Fi) = 0, i.e. x is a martingale. To
apply the SM-Rule, we need to provide a p ∈ (0, 1] and a d ∈ R+ such that eventually
x decreases by at least d with a probability of at least p. To that end, we consider all
branches B ∈ supp(UG

L ): xi + y2
i + 2yi, xi + y2

i + 4yi + 3, xi + y2
i + 6yi + 8, xi − y2

i − 2yi,
xi − y2

i − 4yi − 3 and xi − y2
i − 6yi − 8. All branches occur with probability 1

6 .

For branch xi − y2
i − 2yi, we get that x changes by −y2

i − 2yi. Moreover, yi is eventually
lower bounded (and upper bounded) by some function α · i for some α ∈ R+. This implies
that eventually −y2

i − 2yi ≤ −β · i2 for some β ∈ R+. Hence, it holds that eventually x
decreases by at least 1 with probability at least 1

6 . Therefore, the program is AST.

We next present our method for computing asymptotic bounds over martingale expressions
in Sections 6.5.1-6.5.2. Based on these asymptotic bounds, in Section 6.5.3 we introduce
algorithmic approaches for our proof rules from Section 6.4, solving our aforementioned
challenges (i)-(ii) in a fully automated manner (Section 6.5.4).

6.5.1 Prob-solvable Loops and Monomials
Algorithm 5 computes asymptotic bounds on monomials over program variables in a
recursive manner. To ensure termination of Algorithm 5, it is important that there are
no circular dependencies among monomials. By the definition of Prob-solvable loops,
this indeed holds for program variables (monomials of order 1). Every Prob-solvable loop
L comes with an ordering on its variables and every variable is restricted to only depend
linearly on itself and polynomially on previous variables. Acyclic dependencies naturally
extend from single variables to monomials.

Definition 52 (Monomial Ordering). Let L be a Prob-solvable loop with variables
x(1), ..., x(m). Let y1 = m

j=1 x
pj

(j) and y2 = m
j=1 x

qj

(j), where pj , qj ∈ N, be two monomials
over the program variables. The order ⪯ on monomials over the program variables of L
is defined by y1 ⪯ y2 ⇐⇒ (pm, ..., p1) ≤lex (qm, ..., q1), where ≤lex is the lexicographic
order on Nm. The order ⪯ is total because ≤lex is total. With y1 ≺ y2 we denote
y1 ⪯ y2 ∧ y1 ̸= y2.

Example 61 (Monomials). Let L be a Prob-solvable loop with variables x(1), ..., x(m).
The following statements hold for the monomial order ⪯:

1 ≺ x(1) ≺ x(2) ≺ ... ≺ x(m−1) ≺ x(m), xk
(1) ≺ x(2) for any k ∈ N

x2
(1) ≺ x3

(1) and x4
(3)x

100
(2) x99

(1) ≺ x5
(3)x

2
(2)x

3
(1).
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To prove acyclic dependencies for monomials we exploit the following fact.

Lemma 36. Let y1, y2, z1, z2 be monomials. If y1 ⪯ z1 and y2 ⪯ z2 then y1 · y2 ⪯ z1 · z2.

By structural induction over monomials and Lemma 36, we establish:

Lemma 37 (Monomial Acyclic Dependency). Let x be a monomial over the program
variables of L. For every branch B ∈ supp(Ux

L) and monomial y in B, y ⪯ x holds.

Proof. We use structural induction over monomials. The base case for which x is a single
variable holds by the definition of L being a Prob-solvable loop. Let x := s · t where s
and t are monomials over the variables of L and

• for every Bs ∈ supp(Us
L) and every monomial u in Bs it holds that u ⪯ s,

• for every Bt ∈ supp(U t
L) and every monomial w in Bt it holds that w ⪯ t,

Let B ∈ supp(Ux
L) be an arbitrary branch of x. By definition of Ux

L, we get B = Bs · Bt,
where Bs is a branch of s and Bt is a branch of t. Note that Bs and Bt are polynomials
over program variables or equivalently linear combinations of monomials. Therefore,
for every monomial y in B we have y = u · w where u is a monomial in Bs and w a
monomial in Bt. By the induction hypothesis, u ⪯ s and w ⪯ t. Using Lemma 36, we
get u · w ⪯ s · t which means y ⪯ x.

Lemma 37 states that the value of a monomial x over the program variables of L only
depends on the value of monomials y which precede x in the monomial ordering ⪯. This
ensures the dependencies among monomials over the program variables of L to be acyclic.

6.5.2 Computing Asymptotic Bounds for Prob-solvable Loops
The structural result on monomial dependencies from Lemma 37 allows for recursive
procedures over monomials. This is exploited in Algorithm 5 for computing asymptotic
bounds for monomials. The standard Big-O notation does not differentiate between
positive and negative functions, as it considers the absolute value of functions. We,
however, need to differentiate between functions like 2i and −2i. Therefore, we introduce
the notions of Domination and Bounding Functions.

Definition 53 (Domination). Let F be a finite set of functions from N to R. A function
g : N → R is dominating F if eventually α · g(i) ≥ f(i) for all f ∈ F and some α ∈ R+.
A function g : N → R is dominated by F if all f ∈ F dominate {g}.

Intuitively, a function f dominates a function g if f eventually surpasses g modulo a
positive constant factor. Exponential polynomials are sums of products of polynomials
with exponential functions, i.e. j pj(x) · cx

j , where cj ∈ R+
0 . All functions arising in
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Algorithms 5–9 are exponential polynomials. For a finite set F of exponential polynomials,
a function dominating F and a function dominated by F are easily computable with
standard techniques, by analyzing the terms of the functions in the finite set F . With
dominating(F ) we denote an algorithm computing an exponential polynomial dominating
F . With dominated(F ) we denote an algorithm computing an exponential polynomial
dominated by F . We assume the functions returned by the algorithms dominating(F )
and dominated(F ) to be monotone and either non-negative or non-positive.

Example 62 (Domination). The following statements are true: 0 dominates {−i3 +
i2 + 5}, i2 dominates {2i2}, i2 · 2i dominates {i2 · 2i + i9, i5 + i3, 2−i}, i is dominated by
{i2 − 2i + 1, 1

2 i − 5} and −2i is dominated by {2i − i2, −10 · 2−i}.

Definition 54 (Bounding Function for L). Let E be an arithmetic expression over the
program variables of L. Let l, u : N → R be monotone and non-negative or non-positive.

1. l is a lower bounding function for E if eventually P(α · l(i) ≤ Ei | T ¬G > i) = 1
for some α ∈ R+.

2. u is an upper bounding function for E if eventually P(Ei ≤ α · u(i) | T ¬G > i) = 1
for some α ∈ R+.

3. An absolute bounding function for E is an upper bounding function for |E|.

A bounding function imposes a bound on an expression E over the program variables
holding eventually, almost surely, and modulo a positive constant factor. Moreover,
bounds on E only need to hold as long as the program has not yet terminated.

Given a Prob-solvable loop L and a monomial x over the program variables of L,
Algorithm 5 computes a lower and upper bounding function for x. Because every
polynomial expression is a linear combination of monomials, the procedure can be used
to compute lower and upper bounding functions for any polynomial expression over L’s
program variables by substituting every monomial with its lower or upper bounding
function depending on the sign of the monomial’s coefficient. Once a lower bounding
function l and an upper bounding function u are computed, an absolute bounding function
can be computed by dominating({u, −l}).

In Algorithm 5, candidates for bounding functions are modeled using recurrence relations.
Solutions s(i) of these recurrences are closed-form candidates for bounding functions
parameterized by loop iteration i. Algorithm 5 relies on the existence of closed-form
solutions of recurrences. While closed-forms of general recurrences do not always exist, a
property of C-finite recurrences, linear recurrences with constant coefficients, is that their
closed-forms always exist and are computable [KP11]. In all occurring recurrences, we
consider a monomial over program variables as a single function. Therefore, throughout
this section, all recurrences arising from a Prob-solvable loop L in Algorithm 5 are
C-finite or can be turned into C-finite recurrences. Moreover, closed-forms s(i) of C-finite
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recurrences are given by exponential polynomials. Therefore, for any solution s(i) to a
C-finite recurrence and any constant r ∈ R, the following holds:

∃α, β ∈ R+, ∃i0 ∈ N : ∀i ≥ i0 : α · s(i) ≤ s(i + r) ≤ β · s(i). (6.2)

Intuitively, the property states that constant shifts do not change the asymptotic behavior
of s. We use this property at various proof steps in this section. Moreover, we recall that
limits of exponential polynomials are computable [Gru96].

For every monomial x, every branch B ∈ supp(Ux
L) is a polynomial over the program

variables. Let Rec(x) := {coefficient of x in B | B ∈ supp(Ux
L)} denote the set of

coefficients of the monomial x in all branches of L. Let Inhom(x) := {B − c · x |
B ∈ supp(Ux

L) and c = coefficient of x in B} denote all the branches of the monomial x
without x and its coefficient. The symbolic constants c1 and c2 in Algorithm 5 represent
arbitrary initial values of the monomial x for which bounding functions are computed.
The fact that they are symbolic ensures that all potential initial values are accounted
for. c1 represents positive initial values and −c2 negative initial values. The symbolic
constant d is used in the recurrences to account for the fact that the bounding functions
only hold modulo a constant. Intuitively, if we use the bounding function in a recurrence
we need to restore the lost constant. Sign(x) is an over-approximation of the sign of the
monomial x, i.e., if ∃i : P(xi > 0) > 0, then + ∈ Sign(x) and if ∃i : P(xi < 0) > 0, then
− ∈ Sign(x).

Algorithm 5 Computing bounding functions for monomials
Input: A Prob-solvable loop L and a monomial x over L’s variables
Output: Lower and upper bounding functions l(i), u(i) for x

1: inhomBoundsUpper ← {upper bounding function of P | P ∈ Inhom(x)} (recursion)
2: inhomBoundsLower ← {lower bounding function of P | P ∈ Inhom(x)} (recursion)
3: U(i) ← dominating(inhomBoundsUpper)
4: L(i) ← dominated(inhomBoundsLower)
5: maxRec ← max Rec(x)
6: minRec ← min Rec(x)
7: I ← ∅
8: if + ∈ Sign(x) then
9: I ← I ∪ {c1}

10: end if
11: if − ∈ Sign(x) then
12: I ← I ∪ {−c2}
13: end if
14: uCand ← closed-forms of {yi+1 = r · yi + d · U(i) | r ∈ {minRec, maxRec}, y0 ∈ I}
15: lCand ← closed-forms of {yi+1 = r · yi + d · L(i) | r ∈ {minRec, maxRec}, y0 ∈ I}
16: u(i) ← dominating(uCand)
17: l(i) ← dominated(lCand)
18: return l(i), u(i)
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Lemma 37, the computability of closed-forms of C-finite recurrences and the fact that
within a Prob-solvable loop only finitely many monomials can occur, implies the termina-
tion of Algorithm 5. Its correctness is stated in the next theorem.

Theorem 38 (Correctness of Algorithm 5). The functions l(i), u(i) returned by Algo-
rithm 5 on input L and x are a lower- and an upper bounding function for x, respectively.

Proof. Intuitively, it has to be shown that regardless of the paths through the loop body
taken by any program run, the value of x is always eventually upper bounded by some
function in uCand and eventually lower bounded by some function in lCand (almost
surely and modulo positive constant factors). We show that x is always eventually upper
bounded by some function in uCand. The proof for the lower bounding function is
analogous.

Let ϑ ∈ Σ be a possible program run, i.e. P(Cyl(π)) > 0 for all finite prefixes π of ϑ.
Then, for every i ∈ N, if T ¬G(ϑ) > i, the following holds:

xi+1(ϑ) = a(1) · xi(ϑ) + P(1)i(ϑ) or xi+1(ϑ) = a(2) · xi(ϑ) + P(2)i(ϑ)
or ... or xi+1(ϑ) = a(k) · xi(ϑ) + P(k)i(ϑ),

where a(j) ∈ Rec(x) and P(j) ∈ Inhom(x) are polynomials over program variables.
Let u1(i), ..., uk(i) be upper bounding functions of P(1), ..., P(k), which are computed
recursively at line 14. Moreover, let U(i) := dominating({u1(i), ..., uk(i)}), minRec =
min Rec(x) and maxRec = max Rec(x). Let l0 ∈ N be the smallest number such that for
all j ∈ {1, ..., k} and i ≥ l0:

P(P(j)i ≤ αj · uj(i) | T ¬G > i) = 1 for some αj ∈ R+, and (6.3)
uj(i) ≤ β · U(i) for some β ∈ R+ (6.4)

Thus, all inequalities from the bounding functions uj and the dominating function U
hold from l0 onward. Because U is a dominating function, it is by definition either
non-negative or non-positive. Assume U(i) to be non-negative, the case for which U(i) is
non-positive is symmetric. Using the facts (6.3) and (6.4), we establish: For the constant
γ := β · maxj=1..k αj , it holds that P(P(j)i ≤ γ · U(i) | T ¬G > i) = 1 for all j ∈ {1, ..., k}
and all i ≥ l0. Let l1 be the smallest number such that l1 ≥ l0 and U(i + l0) ≤ δ · U(i)
for all i ≥ l1 and some δ ∈ R+.

Case 1, xi is almost surely negative for all i ≥ l1. Consider the recurrence relation
y0 = m, yi+1 = minRec · yi + η · U(i), where η := max(γ, δ) and m is the maximum
value of xl1(ϑ) among all possible program runs ϑ. Note that m exists because there are
only finitely many values xl1(ϑ) for possible program runs ϑ. Moreover, m is negative
by our case assumption. By induction, we get P(xi ≤ yi−l1 | T ¬G > i) = 1 for all
i ≥ l1. Therefore, for a closed-form solution s(i) of the recurrence relation yi, we get
P(xi ≤ s(i − l1) | T ¬G > i) = 1 for all i ≥ l1. We emphasize that s exists and can
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effectively be computed because yi is C-finite. Moreover, s(i − l1) ≤ θ · s(i) for all i ≥ l2
for some l2 ≥ l1 and some θ ∈ R+. Therefore, s satisfies the bound condition of an upper
bounding function. Also, s is present in uCand by choosing the symbolic constants c2
and d to represent −m and η respectively. The function u(i) := dominating(uCand),
at line 16, is dominating uCand (hence also s), is monotone and either non-positive or
non-negative. Therefore, u(i) is an upper bounding function for x.

Case 2, xi is not almost surely negative for all i ≥ l1. Thus, there is a possible
program run ϑ′ such that xi(ϑ′) ≥ 0 for some i ≥ l1. Let l2 ≥ l1 be the smallest number
such that xl2(ϑ̂) ≥ 0 for some possible program run ϑ̂. This number certainly exists,
as xi(ϑ′) is non-negative for some i ≥ l1. Consider the recurrence relation y0 = m,
yi+1 = maxRec · yi + η · U(i), where η := max(γ, δ) and m is the maximum value of xl2(ϑ)
among all possible program runs ϑ. Note that m exists because there are only finitely
many values xl2(ϑ) for possible program runs ϑ. Moreover, m is non-negative because
m ≥ xl2(ϑ̂) ≥ 0. By induction, we get P(xi ≤ yi−l2 | T ¬G > i) = 1 for all i ≥ l2. Therefore,
for a solution s(i) of the recurrence relation yi, we get P(xi ≤ s(i − l2) | T ¬G > i) = 1
for all i ≥ l2. As above, s exists and can effectively be computed because yi is C-finite.
Moreover, s(i − l2) ≤ θ · s(i) for all i ≥ l3 for some l3 ≥ l2 and some θ ∈ R+. Therefore, s
satisfies the bound condition of an upper bounding function Also, s is present in uCand
by choosing the symbolic constants c1 and d to represent m and η respectively. The
function u(i) := dominating(uCand), at line 16, is dominating uCand (hence also s), is
monotone and either non-positive or non-negative. Therefore, u(i) is an upper bounding
function for x.

Example 63 (Bounding functions). We illustrate Algorithm 5 by computing bounding
functions for x and the Prob-solvable loop from Example 58: We have Rec(x) := {2, 1

2}
and Inhom(x) = {y2, 0}. Computing bounding functions recursively for P ∈ Inhom(x) =
{y2, 0} is simple, as we can give exact bounds leading to inhomBoundsUpper = {i2, 0} and
inhomBoundsLower = {i2, 0}. Consequently, we get U(i) = i2, L(i) = 0, maxRec = 2
and minRec = 1

2 . With a rudimentary static analysis of the loop, we determine the (exact)
over-approximation Sign(x) := {+} by observing that x0 > 0 and all P ∈ Inhom(x) are
strictly positive. Therefore, uCand is the set of closed-form solutions of the recurrences
y0 := c1, yi+1 := 2yi + d · i2 and y0 := c1, yi+1 := 1

2yi + d · i2. Similarly, lCand is
the set of closed-form solutions of the recurrences y0 := c1, yi+1 := 2yi and y0 := c1,
yi+1 := 1

2yi. Using any algorithm for computing closed-forms of C-finite recurrences,
we obtain uCand = {c12i − di2 − 2di + 3d2i − 3d, c12−i + 2di2 − 8di − 12d2−i + 12d}
and lCand = {c12i, c12−i}. This leads to the upper bounding function u(i) = 2i and the
lower bounding function l(i) = 2−i. The bounding functions l(i) and u(i) can be used
to compute bounding functions for expressions containing x linearly by replacing x by
l(i) or u(i) depending on the sign of the coefficient of x. For instance, eventually and
almost surely the following inequality holds: −xi

4 − i2

2 − i − 1
2 ≤ −1

4 · α · 2−i − i2

2 − i − 1
2

for some α ∈ R+. The inequality results from replacing xi by l(i). Therefore, eventually
and almost surely −xi

4 − i2

2 − i − 1
2 ≤ −β · i2 for some β ∈ R+. Thus, −i2 is an upper
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bounding function for the expression −xi
4 − i2

2 − i − 1
2 .

Remark 10. Algorithm 5 describes a general procedure computing bounding functions
for special sequences. Figuratively, that is for sequences s such that si+1 = f(si, i)
but in every step the function f is chosen non-deterministically among a fixed set of
special functions (corresponding to branches in our case). We reserve the investigation of
applications of bounding functions for such sequences beyond the probabilistic setting for
future work.

6.5.3 Algorithms for Termination Analysis of Prob-solvable Loops
Using Algorithm 5 to compute bounding functions for polynomial expressions over
program variables at hand, we are now able to formalize our algorithmic approaches
automating the termination analysis of Prob-solvable loops using the proof rules from
Section 6.4. Given a Prob-solvable loop L and a polynomial expression E over L’s
variables, we denote with lbf (E), ubf (E) and abf (E) functions computing a lower, upper
and absolute bounding function for E respectively. Our algorithmic approach for proving
PAST using the RSM-Rule is given in Algorithm 6.

Algorithm 6 Ranking-Supermartingale-Rule for proving PAST
Input: Prob-solvable loop L
Output: If true then L with G satisfies the RSM-Rule; hence L is PAST

1: E ← E(Gi+1 − Gi | Fi)
2: u(i) ← ubf (E)
3: limit ← limi→∞ u(i)
4: return limit < 0

Example 64 (Algorithm 6). Let us illustrate Algorithm 6 with the Prob-solvable loop
from Examples 58 and 63. Applying Algorithm 6 on L leads to E = −xi

4 − i2

2 − i − 1
2 .

We obtain the upper bounding function u(i) := −i2 for E. Because limi→∞ u(i) < 0,
Algorithm 6 returns true. This is valid because u(i) having a negative limit witnesses that
E is eventually bounded by a negative constant and therefore is eventually an RSM.

We recall that all functions arising from L are exponential polynomials (see Section 6.5.2)
and that limits of exponential polynomials are computable [Gru96]. Therefore, the
termination of Algorithm 6 is guaranteed and its correctness is stated next.

Theorem 39 (Correctness of Algorithm 6). If Algorithm 6 returns true on input L, then
L with GL satisfies the RSM-Rule.

Proof. When returning true at line 4 we have P(Ei ≤ α · u(i) | T ¬G > i) = 1 for
all i ≥ i0 and some i0 ∈ N, α ∈ R+. Moreover, u(i) < −ϵ for all i ≥ i1 for some
i1 ∈ N, by the definition of lim. From this follows that ∀i ≥ max(i0, i1) almost surely
Gi =⇒ E(Gi+1 − Gi | Fi) ≤ −α·ϵ, which means G is eventually an RSM.
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Our approach proving AST using the SM-Rule is captured with Algorithm 7.

Algorithm 7 Supermartingale-Rule for proving AST
Input: Prob-solvable loop L
Output: If true, L with G satisfies the SM-Rule with constant d and p; hence L is AST

1: E ← E(Gi+1 − Gi | Fi)
2: u(i) ← ubf (E)
3: if not eventually u(i) ≤ 0 then
4: return false
5: end if
6: for B ∈ supp(UG

L ) do
7: d(i) ← ubf (B − G)
8: limit ← limi→∞ d(i)
9: if limit < 0 then

10: return true
11: end if
12: end for
13: return false

Example 65 (Algorithm 7). Let us illustrate Algorithm 7 for the Prob-solvable loop L
from Figure 6.2a: Applying Algorithm 7 on L yields E ≡ 0 and u(i) = 0. The expression
G (= x) has two branches. One of them is xi − yi + 4, which occurs with probability
1/2. When the for-loop of Algorithm 7 reaches this branch B = xi − yi + 4 on line 6,
it computes the difference B − G = −yi + 4. An upper bounding function for B − G is
given by d(i) = −i. Because limi→∞ d(i) < 0, Algorithm 7 returns true. This is valid
because of the branch B witnessing that G eventually decreases by at least a constant with
probability 1/2. Therefore, all conditions of the SM-Rule are satisfied and L is AST.

Theorem 40 (Correctness of Algorithm 7). If Algorithm 7 returns true on input L, then
L with GL satisfies the SM-Rule with constant d and p.

Proof. Similarly as for the correctness of Algorithm 6, G is a supermartingale if Algo-
rithm 7 returns true. Moreover, there is a branch B ∈ supp(UG

L ) such that G changes
eventually and almost surely by at most α · d(i), for some α ∈ R+. In addition, because
limi→∞ d(i) < 0, it follows that d(i) ≤ −ϵ for all i ≥ i0 for some i0 ∈ N, ϵ ∈ R+.
Therefore, eventually G decreases by at least α · ϵ with probability at least UG

L (B) > 0.
Hence, all conditions of the SM-Rule are satisfied.

As established in Section 6.4, the relaxation of the R-AST-Rule requires that there is a
positive probability of reaching the iteration i0 after which the conditions of the proof
rule hold. Regarding automation, we strengthen this condition by ensuring that there is
a positive probability of reaching any iteration, i.e. ∀i ∈ N : P(Gi) > 0. Obviously, this
implies P(Gi0) > 0. Furthermore, with CanReachAnyIteration(L) we denote a computable
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under-approximation of ∀i ∈ N : P(Gi) > 0. That means, CanReachAnyIteration(L)
implies ∀i ∈ N : P(Gi) > 0. Our approach proving non-AST is summarized in Algorithm 8.

Algorithm 8 Repulsing-AST-Rule for proving non-AST
Input: Prob-solvable loop L
Output: if true, L with −G satisfies the R-AST-Rule; hence L is not AST

1: E ← E(−Gi+1 + Gi | Fi)
2: u(i) ← ubf (E)
3: if not eventually u(i) ≤ 0 then
4: return false
5: end if
6: if ¬CanReachAnyIteration(L) then
7: return false
8: end if
9: ϵ(i) ← −u(i)

10: if ϵ(i) ̸∈ Ω(1) then
11: return false
12: end if
13: differences ← {B + G | B ∈ supp(U−G

L )}
14: diffBounds ← {abf (d) | d ∈ differences}
15: c(i) ← dominating(diffBounds)
16: return c(i) ∈ O(1)

Example 66 (Algorithm 8). Let us illustrate Algorithm 8 for the Prob-solvable loop L
from Figure 6.2a: Applying Algorithm 8 on L leads to E = yi

6 − 1
3 = 2−i

3 − 1
3 and to the

upper bounding function u(i) = −1 for E on line 2. Therefore, the if-statement on line 3
is not executed, which means −G is eventually a ϵ-repulsing supermartingale. Moreover,
with a simple static analysis of the loop, we establish CanReachAnyIteration(L) to be
true, as there is a positive probability that the loop guard does not decrease. Thus, the
if-statement on line 6 is not executed. Also, the if-statement on line 10 is not executed,
because ϵ(i) = −u(i) = 1 is constant and therefore in Ω(1). E eventually decreases
by ϵ = 1 (modulo a positive constant factor), because u(i) = −1 is an upper bounding
function for E. We have differences = {1 − yi

2 , 1 + yi
2 }. Both expressions in differences

have an absolute bounding function of 1. Therefore, diffBounds = {1}. As a result
on line 15 we have c(i) = 1, which eventually and almost surely is an upper bound on
| − Gi+1 + Gi| (modulo a positive constant factor). Therefore, the algorithm returns true.
This is correct, as all the preconditions of the R-AST-Rule are satisfied (and therefore L
is not AST).

Theorem 41 (Correctness of Algorithm 8). If Algorithm 8 returns true on input L, then
L with −GL satisfies the R-AST-Rule.

Proof. With the same reasoning as for the correctness of Algorithm 7, −G is a super-
martingale if Algorithm 8 returns true. Moreover, the condition P(−Gi0 < 0) > 0 of
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the R-AST-Rule is satisfied, due to the under-approximation CanReachAnyIteration(L)
and the if-statement on line 6. The function u(i) is an upper bounding function for
E(−Gi+1 + Gi | Fi). Hence, eventually and almost surely E(−Gi+1 + Gi | Fi) ≤ −α · ϵ(i)
for ϵ(i) := −u(i) and some α ∈ R+. The if-statement at line 10 ensures that ϵ(i) is lower
bounded by a constant. Therefore, −G eventually is an (α · ϵ)-repulsing supermartingale.
The function c(i), assigned to dominating(diffBounds), is a function dominating absolute
bounding functions of all branches of −Gi+1 + Gi. Consequently, c(i) is a bound on
the differences of G, i.e. eventually and almost surely | − Gi+1 + Gi| ≤ β · c(i) for some
β ∈ R+. Algorithm 8 returns true only if c(i) can be bounded by a constant which in
turn means G has (β · c)-bounded differences. Thus, if Algorithm 8 returns true, all
preconditions of the R-AST-Rule are satisfied.

We finally provide Algorithm 9 for the R-PAST-Rule. The algorithm is a variation
of Algorithm 8 (for the R-AST-Rule). The if-statement on line 2 forces −G to be a
martingale. Therefore, after the if-statement −G is an ϵ-repulsing supermartingale with
ϵ = 0.

Algorithm 9 Repulsing-PAST-Rule for proving non-PAST
Input: Prob-solvable loop L
Output: If true, L with −G satisfies the R-PAST-Rule; hence L is not PAST

1: E ← E(−Gi+1 + Gi | Fi)
2: if E ̸≡ 0 then
3: return false
4: end if
5: if ¬CanReachAnyIteration(L) then
6: return false
7: end if
8: differences ← {B + G | B ∈ supp(U−G

L )}
9: diffBounds ← {abf (d) | d ∈ differences}

10: c(i) ← dominating(diffBounds)
11: return c(i) ∈ O(1)

6.5.4 Ruling out Proof Rules for Prob-Solvable Loops
A question arising when combining our algorithmic approaches from Section 6.5.3 into a
unifying framework is that, given a Prob-solvable loop L, what algorithm to apply first
for determining L’s termination behavior? In [BKS19] the authors provide an algorithm
for computing an algebraically closed-form of E(Mi), where M is a polynomial over L’s
variables. The following lemma explains how the expression E(Mi+1 − Mi) relates to the
expression E(Mi+1 − Mi | Fi).

Lemma 42 (Rule out Rules for L). Let (Mi)i∈N be a stochastic process. If E(Mi+1 −Mi |
Fi) ≤ −ϵ then E(Mi+1 − Mi) ≤ −ϵ, for any ϵ ∈ R+.
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Proof.

E(Mi+1 − Mi | Fi) ≤ −ϵ =⇒ (Monotonicity of E)
E(E(Mi+1 − Mi | Fi)) ≤ E(−ϵ) ⇐⇒ (Property of E(· | Fi))
E(Mi+1 − Mi) ≤ E(−ϵ) ⇐⇒ (−ϵ is constant)
E(Mi+1 − Mi) ≤ −ϵ

The contrapositive of Lemma 42 provides a criterion to rule out the viability of a given
proof rule. For a Prob-solvable loop L, if E(Gi+1 − Gi) ̸≤ 0 then E(Gi+1 − Gi | Fi) ̸≤ 0,
meaning G is not a supermartingale. The expression E(Gi+1 − Gi) depends only on i and
can be computed by E(Gi+1 − Gi) = E(Gi+1) − E(Gi), where the expected value E(Gi)
is computed as in [BKS19]. Therefore, in some cases, proof rules can automatically be
deemed nonviable, without the need to compute bounding functions.

6.6 Implementation and Evaluation
6.6.1 Implementation
We implemented and combined our algorithmic approaches from Section 6.5 in the
new software tool Amber to stand for Asymptotic Martingale Bounds. Amber and all
benchmarks are available at https://github.com/probing-lab/amber. Amber
uses Mora [BKS19][BKS20c] for computing the first-order moments of program variables
and the diofant package3 as its computer algebra system.

Computing dominating and dominated. The dominating and dominated procedures
used in Algorithms 5 and 8 are implemented by combining standard algorithms for Big-O
analysis and bookkeeping of the asymptotic polarity of the input functions. Let us
illustrate this. Consider the following two input-output-pairs which our implementation
would produce: (a) dominating({i2 + 10, 10 · i5 − i3}) = i5 and (b) dominating({−i +
50, −i8 + i2 − 3 · i3}) = −i. For (a) i5 is eventually greater than all functions in the
input set modulo a constant factor because all functions in the input set are O(i5).
Therefore, i5 dominates the input set. For (b), the first function is O(i) and the second
is O(i8). In this case, however, both functions are eventually negative. Therefore, −i is a
function dominating the input set. Important is the fact that an exponential polynomial

j pj(i) · ci
j , where cj ∈ R+

0 will always be eventually either only positive or only negative
(or 0 if identical to 0).

Sign Over-Approximation. The over-approximation Sign(x) of the signs of a mono-
mial x used in Algorithm 5 is implemented by a simple static analysis: For a monomial x
consisting solely of even powers, Sign(x) = {+}. For a general monomial x, if x0 ≥ 0 and
all monomials on which x depends, together with their associated coefficients are always

3https://github.com/diofant/diofant
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positive, then − ̸∈ Sign(x). For example, if supp(Ux
L) = {xi + 2yi − 3zi, xi + ui}, then

− ̸∈ Sign(x) if x0 ≥ 0 as well as − ̸∈ Sign(y), + ̸∈ Sign(z) and − ̸∈ Sign(u). Otherwise,
− ∈ Sign(x). The over-approximation for + ̸∈ Sign(x) is analogous.

Reachability Under-Approximation. The procedure CanReachAnyIteration(L),
used in Algorithm 8, needs to satisfy the property that if it returns true, then loop L
reaches any iteration with positive probability. In Amber, we implement this under-
approximation as follows: CanReachAnyIteration(L) is true if there is a branch B of the
loop guard polynomial GL such that B − GLi is non-negative for all i ∈ N. Otherwise,
CanReachAnyIteration(L) is false. In other words, if CanReachAnyIteration(L) is true,
then in any iteration there is a positive probability of GL not decreasing.

Bound Computation Improvements. In addition to Algorithm 5 computing bound-
ing functions for monomials of program variables, Amber implements the following
refinements:

1. A monomial x is deterministic, which means it is independent of probabilistic choices,
if x has a single branch and only depends on monomials having single branches. In
this case, the exact value of x in any iteration is given by its first-order moments
and bounding functions can be obtained by using these exact representations.

2. Bounding functions for an odd power p of a monomial x can be computed by u(i)p

and l(i)p, where u(i) is an upper- and l(i) a lower bounding function for x.

Whenever the above enhancements are applicable, Amber prefers them over Algorithm 5.

6.6.2 Experimental Setting and Results
Experimental Setting and Comparisons. Regarding programs which are PAST, we
compare Amber against the tool Absynth [NCH18] and the tool in [CS13] which we refer
to as Mgen. Absynth uses a system of inference rules over the syntax of probabilistic
programs to derive bounds on the expected resource consumption of a program and
can, therefore, be used to certify PAST. In comparison to Amber, Absynth requires
the degree of the bound to be provided upfront. Moreover, Absynth cannot refute
the existence of a bound and therefore cannot handle programs that are not PAST.
Mgen uses linear programming to synthesize linear martingales and supermartingales
for probabilistic transition systems with linear variable updates. To certify PAST, we
extended Mgen [CS13] with the SMT solver Z3 [dMB08] in order to find or refute the
existence of conical combinations of the (super)martingales derived by Mgen which yield
RSMs.

With Amber-Light we refer to a variant of Amber without the relaxations of the proof
rules introduced in Section 6.4. That is, with Amber-Light the conditions of the proof
rules need to hold for all i ∈ N, whereas with Amber the conditions are allowed to only
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hold eventually. For all benchmarks, we compare Amber against Amber-Light to show
the effectiveness of the respective relaxations. For each experimental table (Tables 6.1-
6.3), ✓ symbolizes that the respective tool successfully certified PAST/AST/non-AST
for the given program; ✗ means it failed to certify PAST/AST/non-AST. Further, NA
indicates the respective tool failed to certify PAST/AST/non-AST because the given
program is out-of-scope of the tool’s capabilities. Every benchmark has been run on
a machine with a 2.2 GHz Intel i7 (Gen 6) processor and 16 GB of RAM and finished
within a timeout of 50 seconds, where most benchmarks terminated within a few seconds.

Benchmarks. We evaluated Amber against 38 probabilistic programs. We present
our experimental results by separating our benchmarks within three categories: (i) 21
programs which are PAST (Table 6.1), (ii) 11 programs which are AST (Table 6.2)
but not necessarily PAST, and (iii) 6 programs which are not AST (Table 6.3). The
benchmarks have either been introduced in the literature on probabilistic programming
[NCH18, CS13, BKS19, GGH19, MMKK18], are adaptations of well-known stochastic
processes or have been designed specifically to test unique features of Amber, like the
ability to handle polynomial real arithmetic.

The 21 PAST benchmarks consist of 10 programs representing the original benchmarks
of Mgen [CS13] and Absynth [NCH18] augmented with 11 additional probabilistic
programs. Not all benchmarks of Mgen and Absynth could be used for our comparison
as Mgen and Absynth target related but different computation tasks than certifying
PAST. Namely, Mgen aims to synthesize (super)martingales, but not ranking ones,
whereas Absynth focuses on computing bounds on the expected runtime. Therefore,
we adopted all (50) benchmarks from [CS13] (11) and [NCH18] (39) for which the
termination behavior is non-trivial. A benchmark is trivial regarding PAST if either (i)
there is no loop, (ii) the loop is bounded by a constant, or (iii) the program is meant to
run forever. Moreover, we cleansed the benchmarks of programs for which the witness
for PAST is just a trivial combination of witnesses for already included programs. For
instance, the benchmarks of [NCH18] contain multiple programs that are concatenated
constant biased-random-walks. These are relevant benchmarks when evaluating Absynth
for discovering bounds, but would blur the picture when comparing against Amber
for PAST certification. With these criteria, 10 out of the 50 original benchmarks of
[CS13] and [NCH18] remain. We add 11 additional benchmarks which have either been
introduced in the literature on probabilistic programming [BKS19, GGH19, MMKK18],
are adaptations of well-known stochastic processes or have been designed specifically
to test unique features of Amber. Notably, out of the 50 original benchmarks from
[NCH18] and [CS13], only 2 remain which are included in our benchmarks and which
Amber cannot prove PAST (because they are not Prob-solvable). All our benchmarks
are available at https://github.com/probing-lab/amber.

Experiments with PAST – Table 6.1. Out of the 21 PAST benchmarks, Amber
certifies 18 programs. Amber cannot handle the benchmarks nested_loops and sequen-
tial_loops, as these examples use nested or sequential loops and thus are not expressible
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Table 6.1: 21 programs which are PAST.

Program Amber Amber-Light Absynth MgenZ3

2d_bounded_random_walk ✓ ✓ ✗ NA
biased_random_walk_constant ✓ ✓ ✓ ✓

biased_random_walk_exp ✓ ✓ ✗ ✓

biased_random_walk_poly ✓ ✗ ✗ ✗

binomial_past ✓ ✓ ✓ ✓

complex_past ✓ ✗ ✗ NA
consecutive_bernoulli_trails ✓ ✓ ✓ ✓

coupon_collector_4 ✓ ✗ ✗ ✓

coupon_collector_5 ✓ ✗ ✗ ✓

dueling_cowboys ✓ ✓ ✓ ✓

exponential_past_1 ✓ ✓ NA NA
exponential_past_2 ✓ ✓ NA NA
geometric ✓ ✓ ✓ ✓

geometric_exponential ✗ ✗ ✗ ✗

linear_past_1 ✓ ✓ ✗ ✗

linear_past_2 ✓ ✓ ✗ NA
nested_loops NA NA ✓ ✗

polynomial_past_1 ✓ ✗ ✗ NA
polynomial_past_2 ✓ ✗ ✗ NA
sequential_loops NA NA ✓ ✗

tortoise_hare_race ✓ ✓ ✓ ✓

Total ✓ 18 12 8 9

as Prob-solvable loops. The benchmarks exponential_past_1 and exponential_past_2
are out of scope of Absynth because they require real numbers, while Absynth can
only handle integers. MgenZ3 cannot handle benchmarks containing non-linear variable
updates or non-linear guards. Table 6.1 shows that Amber outperforms both Absynth
and MgenZ3 for Prob-solvable loops, even when our relaxed proof rules from Section 6.4
are not used. Yet, our experiments show that our relaxed proof rules enable Amber to
certify 6 examples to be PAST, which could not be proved without these relaxations by
Amber-Light.
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Table 6.2: 11 programs which are AST and not necessarily PAST.

Program Amber Amber-Light

fair_in_limit_random_walk NA NA
gambling ✓ ✓

symmetric_2d_random_walk ✗ ✗

symmetric_random_walk_constant_1 ✓ ✓

symmetric_random_walk_constant_2 ✓ ✓

symmetric_random_walk_exp_1 ✓ ✗

symmetric_random_walk_exp_2 ✓ ✗

symmetric_random_walk_linear_1 ✓ ✗

symmetric_random_walk_linear_2 ✓ ✓

symmetric_random_walk_poly_1 ✓ ✗

symmetric_random_walk_poly_2 ✓ ✗

Total ✓ 9 4

Experiments with AST – Table 6.2. We compare Amber against Amber-Light
on 11 benchmarks which are AST but not necessarily PAST and also cannot be split
into PAST subprograms. Therefore, the SM-Rule is needed to certify AST. To the
best of our knowledge, Amber is the first tool able to certify AST for such programs.
Existing approaches like [ACN18] and [CH20] can only witness AST for non-PAST
programs, if - intuitively speaking - the programs contain subprograms which are PAST.
Therefore, we compared Amber only against Amber-Light on this set of examples.
The benchmark symmetric_2d_random_walk, which Amber fails to certify as AST,
models the symmetric random walk in R2 and is still out of reach of current automation
techniques. In [MMKK18] the authors mention that a closed-form expression M and
functions p and d satisfying the conditions of the SM-Rule have not been discovered yet.
The benchmark fair_in_limit_random_walk involves non-constant probabilities and can
therefore not be modeled as a Prob-solvable loop.

Experiments with non-AST – Table 6.3. We compare Amber against Amber-
Light on 6 benchmarks which are not AST. To the best of our knowledge, Amber is
the first tool able to certify non-AST for such programs, and thus we compared Amber
only against Amber-Light. In [CNZ17], where the notion of repulsing supermartingales
and the R-AST-Rule are introduced, the authors also propose automation techniques.
However, the authors of [CNZ17] claim that their “experimental results are basic“ and
their computational methods are evaluated on only 3 examples, without having any
available tool support. For the benchmarks in Table 6.3, the outcomes of Amber
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Table 6.3: 6 programs which are not AST.

Program Amber Amber-Light

biased_random_walk_nast_1 ✓ ✓

biased_random_walk_nast_2 ✓ ✓

biased_random_walk_nast_3 ✓ ✓

biased_random_walk_nast_4 ✓ ✓

binomial_nast ✓ ✓

polynomial_nast ✗ ✗

Total ✓ 5 5

and Amber-Light coincide. The reason for this is R-AST-Rule’s condition that the
martingale expression has to have c-bounded differences. This condition forces a suitable
martingale expression to be bounded by a linear function, which is also the reason why
Amber cannot certify the benchmark polynomial_nast.

Experimental Summary. Our results from Tables 6.1-6.3 demonstrate that:

• Amber outperforms the state-of-the-art in automating PAST certification for
Prob-solvable loops (Table 6.1).

• Complex probabilistic programs which are AST and not PAST as well as programs
which are not AST can automatically be certified as such by Amber (Tables 6.2,
6.3).

• The relaxations of the proof rules introduced in Section 6.4 are helpful in automating
the termination analysis of probabilistic programs, as evidenced by the performance
of Amber against Amber-Light (Tables 6.1-6.3).

6.7 Related Work
Proof Rules for Probabilistic Termination. Several proof rules have been proposed
in the literature to provide sufficient conditions for the termination behavior of proba-
bilistic programs. The work of [CS13] uses martingale theory to characterize positive
almost sure termination (PAST). In particular, the notion of a ranking supermartingale
(RSM) is introduced together with a proof rule (RSM-Rule) to certify PAST, as discussed
in Section 6.3.1. The approach of [FFH15] extended this method to include (demonic)
non-determinism and continuous probability distributions, showing the completeness of
the RSM-Rule for this program class. The compositional approach proposed in [FFH15]
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was further strengthened in [HFCG19] to a sound approach using the notion of descent
supermartingale map. In [ACN18], the authors introduced lexicographic RSMs.

The SM-Rule discussed in Section 6.3.2 was introduced in [MMKK18]. It is worth men-
tioning that this proof rule is also applicable to non-deterministic probabilistic programs.
The work of [HFC18] presented an independent proof rule based on supermartingales
with lower bounds on conditional absolute differences. Both proof rules are based on
supermartingales and can certify AST for programs that are not necessarily PAST. The
approach of [TOUH18] examined martingale-based techniques for obtaining bounds on
reachability probabilities — and thus termination probabilities— from an order-theoretic
viewpoint. The notions of nonnegative repulsing supermartingales and γ-scaled submartin-
gales, accompanied by sound and complete proof rules, have also been introduced. The
R-AST-Rule from Section 6.3.3 was proposed in [CNZ17] mainly for obtaining bounds
on the probability of stochastic invariants.

An alternative approach is to exploit weakest precondition techniques for probabilistic
programs, as presented in the seminal works [Koz81, Koz85] that can be used to certify
AST. The work of [MM05] extended this approach to programs with non-determinism
and provided several proof rules for termination. These techniques are purely syntax-
based. In [KKMO18] a weakest precondition calculus for obtaining bounds on expected
termination times was proposed. This calculus comes with proof rules to reason about
loops.

Automation of Martingale Techniques. The work of [CS13] proposed an automated
procedure — by using Farkas’ lemma — to synthesize linear (super)martingales for
probabilistic programs with linear variable updates. This technique was considered in our
experimental evaluation, cf. Section 6.6. The algorithmic construction of supermartingales
was extended to treat (demonic) non-determinism in [CFNH18] and to polynomial
supermartingales in [CFG16] using semi-definite programming. The recent work of [CH20]
uses ω-regular decomposition to certify AST. They exploit so-called localized ranking
supermartingales, which can be synthesized efficiently but must be linear.

Other Approaches. Abstract interpretation is used in [Mon01] to prove the probabilis-
tic termination of programs for which the probability of taking a loop k times decreases
at least exponentially with k. In [EGK12], a sound and complete procedure deciding
AST is given for probabilistic programs with a finite number of reachable states from
any initial state. The work of [NCH18] gave an algorithmic approach based on potential
functions for computing bounds on the expected resource consumption of probabilistic
programs. In [LLMR17], model checking is exploited to automatically verify whether a
parameterized family of probabilistic concurrent systems is AST.

Finally, the class of Prob-solvable loops considered in this chapter extends [BKS19]
to a wider class of loops. While [BKS19] focused on computing statistical higher-
order moments, we address the termination behavior of probabilistic programs. The
related approach of [GGH19] computes exact expected runtimes of constant probability
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programs and provides a decision procedure for AST and PAST for such programs. Our
programming model strictly generalizes the constant probability programs of [GGH19],
by supporting polynomial loop guards, updates and martingale expressions.

6.8 Conclusion
This chapter reported on the automation of termination analysis of probabilistic while-
programs whose guards and expressions are polynomial expressions. To this end, we
introduced mild relaxations of existing proof rules for AST, PAST, and their negations,
by requiring their sufficient conditions to hold only eventually. The key to our approach is
that the structural constraints of Prob-solvable loops allow for automatically computing
almost sure asymptotic bounds on polynomials over program variables. Prob-solvable
loops cover a vast set of complex and relevant probabilistic processes including random
walks and dynamic Bayesian networks [BKS20b]. Only two out of 50 benchmarks in
[CS13, NCH18] are outside the scope of Prob-solvable loops regarding PAST certification.
The almost sure asymptotic bounds were used to formalize algorithmic approaches for
proving AST, PAST, and their negations. Moreover, for Prob-solvable loops four different
proof rules from the literature uniformly come together in our approach.

Our approach is implemented in the tool Amber (github.com/probing-lab/amber),
offering a fully automated approach to probabilistic termination. Our experimental
results show that our relaxed proof rules enable proving probabilistic (non-)termination
of more programs than could be treated before. A comparison to the state-of-art
in automated analysis of probabilistic termination reveals that Amber significantly
outperforms related approaches. To the best of our knowledge, Amber is the first tool
to automate AST, PAST, non-AST and non-PAST in a single tool-chain.
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CHAPTER 7
The Probabilistic Termination

Tool Amber
This chapter is based on the following article [MBKK22]:

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. The
Probabilistic Termination Tool Amber. Formal Methods Syst. Des., 2022.

The article is an extended version of the conference paper [MBKK21b]:

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. The
Probabilistic Termination Tool Amber. In Proc. of FM, 2021.

7.1 Problem Statement
Probabilistic programming obviates the need to manually provide inference methods for
different stochastic models and enables rapid prototyping [Gha15, BKS20a]. Automated
formal verification of probabilistic programs, however, is still in its infancy. In this
chapter, we provide a step towards closing this gap when it comes to automating
the termination analysis of probabilistic programs, which is an active research topic
[EGK12, CS13, FFH15, CFG16, ACN18, CNZ17, MMKK18, HFC18, CH20, CGMZ22].
Probabilistic programs are almost-surely terminating (AST) if they terminate with
probability 1 on all inputs. They are positively AST (PAST) if their expected runtime is
finite [BG05].

Addressing the challenge of (P)AST analysis, we describe Amber, a fully automated
software artifact to prove/disprove (P)AST. Amber supports the analysis of a class of
polynomial probabilistic programs. Probabilistic programs supported in our program-
ming model consist of single loops whose body is a sequence of random assignments
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with acyclic variable dependencies. Moreover, Amber’s programming model supports
programs parametrized by symbolic constants and drawing from common probability
distributions, such as Uniform or Normal (Section 7.3). To automate termination anal-
ysis, Amber automates relaxations of various existing martingale-based proof rules
ensuring (non-)(P)AST [CFN20] and combines symbolic computation with asymptotic
bounding functions (Sections 7.4-7.5). Amber certifies (non-)(P)AST without relying on
user-provided templates/bounds over termination conditions. Our experiments demon-
strate Amber outperforming the state-of-the-art in automated termination analysis of
probabilistic programs (Section 7.7). Our tool Amber is available at

https://github.com/probing-lab/amber.

Related Work. While probabilistic termination is an actively studied research chal-
lenge, tool support for probabilistic termination is limited. We compare Amber with
computer-aided verification approaches proving probabilistic termination. The tools
MGen [CS13] and LexRSM [ACN18] use linear programming techniques to certify PAST
and AST, respectively. A modular approach verifying AST was recently proposed
in [CH20]. Automated techniques for refuting (P)AST were proposed in [CNZ17] and
techniques for synthesizing polynomial ranking supermartingales using semi-definite
programming in [CFG16]. The work [CGMZ22] introduced a sound and relatively
complete algorithm to prove lower bounds on termination probabilities. However, the
works of [CH20, CFG16, CNZ17, CGMZ22] lack full tool support. The recent tools
Absynth [NCH18], KoAT2 [MHG21] and ecoimp [AMS20] can establish upper bounds
on expected costs, therefore also on expected runtimes, and thus certify PAST. While
powerful on respective AST/PAST domains, we note that none of the aforementioned
tools support both proving and disproving AST or PAST. Our tool Amber is the first to
prove and/or disprove (P)AST in a unifying manner. Our recent work [MBKK21a] intro-
duced relaxations of existing proof rules for probabilistic (non-)termination together with
automation techniques based on asymptotic bounding functions. We utilize these proof
rule relaxations in Amber and extend the technique of asymptotic bounds to programs
drawing from various probability distributions and including symbolic constants.

Contributions. This chapter describes the tool Amber, a fully automatic open-source
software artifact for certifying probabilistic (non-)termination.

• We provide techniques to extend the method of asymptotic bounds for probabilistic
termination to support symbolic constants and drawing from common probability
distributions which can be continuous, discrete, finitely- or infinitely supported
(Section 7.3 and Section 7.5).

• We describe the various components and give an overview of the implementation
principles of Amber (Section 7.6).
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• We extensively compare Amber to related tools and report on our experimental
findings (Section 7.7).

• We provide a benchmark suite of 50 probabilistic programs as a publicly available
repository of probabilistic program examples (Section 7.7).

Extending [MBKK21b], we provide the theoretical prerequisites in Section 7.2. Sec-
tions 7.4-7.5 complement [MBKK21b] with new material introducing the supported
termination proof rules and illustrating Amber’s algorithmic approach towards termi-
nation analysis. Moreover, Section 7.5 describes extensions of the asymptotic bound
algorithm [MBKK21a] to programs drawing from common probability distributions and
containing symbolic constants. Section 7.6 goes beyond the details of [MBKK21b] in
describing the different components of Amber and their interplay.

7.2 Preliminaries
By N, Q and R we denote the set of natural, rational, and real numbers, respectively. We
write Q, the real algebraic closure of Q, to denote the field of real algebraic numbers. We
write Q[x1, . . . , xk] for the polynomial ring of all polynomials P (x1, . . . , xk) in k variables
x1, . . . , xk with coefficients in Q (with k ∈ N and k ̸= 0). We assume the reader to be
familiar with Markov chains and probability theory in general. For more details we refer
to [KSK76, Dur19].

7.2.1 C-finite Recurrences
We recall some relevant notions and results from algebraic recurrences. For more details
we refer to [EvdPSW03, KP11]. A sequence in Q is a function f : N → Q. A recurrence
of order r for a sequence is an equation f(i+r) = R(f(i+r−1), . . . , f(i+1), f(i), i), for
some function R : Rr+1 → R. A special class of recurrences relevant to our approach are
linear recurrences with constant coefficients, or C-finite recurrences in short. A C-finite
recurrence for a sequence f(i) is an equation of the form

f(i+r) = ar−1·f(i+r−1) + ar−2·f(i+r−2) + · · · + a0·f(i) (7.1)

where a0, . . . , ar−1 ∈ Q are constants and a0 ̸= 0. A sequence satisfying a C-finite
recurrence (7.1) is a C-finite sequence and is uniquely determined by its initial values
f(0), . . . , f(r−1) ∈ Q. The terms of a C-finite sequence can be written in closed-form
as exponential polynomials (i.e. as a linear combination of exponential sequences and
polynomials), depending only on i and the initial values of the sequence. That is, if f(i)
is C-finite, then f(i) = k

n=0 Pn(i)·λi
n where all Pn(i) ∈ Q[i] and all λn ∈ Q; we refer to

k
n=0 Pn(i)λi

n as an exponential polynomial. Moreover, every polynomial exponential
over i ∈ N is the solution of some C-finite recurrence. Importantly, closed-forms of
C-finite sequences always exist and are computable [KP11].
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bop ∈ {+, −, ∗, /}, cop ∈ {>, <} dist ∈ {uniform, gauss, laplace, bernoulli, binomial,
geometric, hypergeometric, exponential, beta, chi-squared, rayleigh}

⟨program⟩ ::= ⟨i_assign⟩∗ while ⟨poly⟩ ⟨cop⟩ ⟨poly⟩: ⟨body⟩
⟨body⟩ ::= ⟨rv_assign⟩∗ (⟨rv_assign⟩ | ⟨v_assign⟩) ⟨v_assign⟩∗

⟨i_assign⟩ ::= ⟨var⟩ = ⟨const⟩ | ⟨var⟩ = ⟨rv_expr⟩
⟨rv_assign⟩ ::= ⟨var⟩ = ⟨rv_expr⟩
⟨v_assign⟩ ::= ⟨var⟩ = ⟨branches⟩
⟨rv_expr⟩ ::= RV(⟨dist⟩ [, ⟨const⟩]∗)

⟨branches⟩ ::= ⟨poly⟩ | ⟨poly⟩ @ ⟨const⟩; ⟨branches⟩
⟨poly⟩ ::= p ∈ C[V ]

⟨sym⟩ ::= [a-zA-Z][a-zA-Z0-9]∗

⟨var⟩ ::= [a-zA-Z][a-zA-Z0-9]∗

⟨const⟩ C ::= n ∈ N | ⟨sym⟩ | - ⟨const⟩ | ⟨const⟩ ⟨bop⟩ ⟨const⟩

Figure 7.1: The input syntax of Amber, where C[V ] denotes the set of polynomials in V
(program variables) with coefficients from C (constants); ** is used as the power operator
to express polynomials in ⟨poly⟩.

Special recurrences relevant for the internals of Amber are inhomogeneous linear recur-
rences with exponential polynomials as inhomogeneous parts:

f(i+1) = a·f(i) +
k

n=0
Pn(i)·λi

n, (7.2)

where a ∈ Q. Every sequence satisfying a recurrence of form (7.2) is C-finite, because the
inhomogeneous part in (7.2) is C-finite and all components of systems of C-finite sequences
are C-finite. Moreover, if a ≥ 0 and all λn ≥ 0, then the exponential polynomial closed-
form for f(i) only contains positive exponential terms. For such exponential polynomials
the limit l ∈ R ∪ {−∞, ∞} as i → ∞ can always be computed [Gru96].

7.3 Amber: Programming Model
Amber analyzes the probabilistic termination behavior of a class of probabilistic pro-
grams involving polynomial arithmetic and random drawings from common probability
distributions, parameterized by symbolic constants. The grammar in Figure 7.1 defines
the input programs to Amber. Inputs to Amber consist of an initialization part and
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a while-loop, whose guard is a polynomial inequality over program variables. The ini-
tialization part is a sequence of assignments either assigning (symbolic) constants or
values drawn from probability distributions. Within the loop body, program variables
are updated with either (i) a value drawn from a distribution or (ii) one of multiple
polynomials over program variables with some probability. Additional to the structure
imposed by the grammar in Figure 7.1, input programs are required to satisfy the
following structural constraint: Each variable updated in the loop body only depends
linearly and non-negatively on itself and in a polynomial way on variables preceding it
in the loop body. On a high level, this structural constraint is what enables the use of
algebraic recurrence relations in probabilistic termination analysis. More concretely, the
restriction to linear self-dependencies is necessary to ensure that the resulting recurrence
relations (cf. Section 7.5) are C-finite and guaranteed to have computable closed-forms.
Even seemingly simple first-order quadratic recurrences are problematic: the recurrence
f(n+1) = r · f(n)2 − r · f(n) does not have known analytical closed-form solutions for
most values of r ∈ R [Mar20]. Furthermore, coefficients in linear self-dependencies
are required to be non-negative to prevent oscillating dynamics. For instance, the se-
quence defined by the recurrence f(n+1) = −1 · f(n) oscillates between 1 and −1 for
f(0) = 1. Amber computes asymptotic bounds for monomials in program variables using
recurrences. A central requirement of the termination analysis technique implemented
in Amber (cf. Section 7.5) is that the asymptotic bounds are eventually monotone
and non-negative or non-positive. Restricting coefficients in linear self-dependencies to
be non-negative ensures this necessary property. Moreover, the algorithm computing
asymptotic bounds for a program variable x first recursively computes the asymptotic
bounds for all (monomials in) program variables on which x depends. Hence, to ensure
termination, the dependencies among variables must be acyclic. This is guaranteed by
restricting variable dependencies to preceding variables.

Despite the syntactical restrictions, most existing benchmarks on automated probabilis-
tic termination analysis [MBKK21a] and dynamic Bayesian networks [BKS20b] can be
encoded in our programming language. Figure 7.2 shows three example input programs
to Amber. For each of these examples, Amber automatically infers the respective termi-
nation behavior, by relying on its workflow described in Section 7.6. Our programming
model extends Prob-solvable loops [BKS20c] with polynomial inequalities as loop guards.
For a loop with loop guard G of the form P > Q we write G for the expression P−Q. In
the sequel, we refer to programs of our programming model simply by loops or programs.

7.4 Proof Rules for Probabilistic Termination
We now describe the theoretical foundations of existing proof rules for establishing prob-
abilistic (non-)termination, which are used and further refined in Amber (Section 7.5).

Loop Space. Operationally, every program loop represents a Markov chain (MC) with
state space Rm if the loop has m program variables. This MC in turn induces a canonical
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x = RV(gauss, 0, 1)
y = RV(gauss, 0, 1)
while x**2+y**2 < c:

s = RV(uniform, 1, 2)
t = RV(gauss, 0, 1)
x = x+s @1/2; x+2*s
y = y+x+t**2 @1/2; y-x-t**2

(a)

x = x0
while x > 0:

x = x+c @1/2; x-c
(b)

x = x0
while x > 0:

x = x+c @1/2+e; x-c
(c)

Figure 7.2: Examples of programs supported by Amber, with symbolic constants
c, x0, e ∈ R+; program 7.2a is PAST; program 7.2b is AST but not PAST; program 7.2c
is not AST

probability space. In this way, every loop L is associated with a (filtered) probability
space (ΩL, ΣL, (RunL

i ),PL). We omit the superscripts if L is clear from context. The
sample space Ω is the set of all infinite program runs. More precisely, if L has m program
variables, then Ω = (Rm)ω. Σ is the σ-algebra constructed from all finite program run
prefixes. The purpose of the loop filtration (Runi) is to capture the information gain as
the loop is executed. Every σ-algebra Runi of the filtration is constructed from all finite
program run prefixes of length i+1. In this way, Runi allows measuring events concerned
with the first i loop iterations. Finally, P is the probability measure defined according
to the intended semantics of the program statements. For a formal definition of P and
more details regarding the semantics of probabilistic loops we refer to [MBKK21a]. For
an expression E over the program variables, Ei denotes the random variable mapping a
program run to the value of E after the i-th iteration. With the loop space at hand, the
notions of AST and PAST (originally considered in [Sah78]) can be defined in terms of a
random variable capturing the termination time.

Definition 55 ((Positive) Almost-sure Termination). The termination time of a loop L
with guard G is the random variable T ¬G:

T ¬G : Ω → N ∪ {∞} with T ¬G(ϑ) := inf{i ∈ N | ϑi ⊨ ¬G}

L is said to be almost-surely terminating (AST) if P(T ¬G < ∞) = 1 and positively
almost-surely terminating (PAST) if E(T ¬G) < ∞.

7.4.1 Termination Proof Rules
Despite the fact that the problems of AST and PAST are undecidable in general [KK15],
several proof rules – sufficient conditions – have been developed to certify PAST, AST
and their negations. On a high level, many proof rules require a witness in the form of
an arithmetic expression over program variables that satisfies some conditions based on
martingale theory. Amber utilizes three martingale-based proof rules from the literature,
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one for PAST [CS13, FFH15], one for AST [MMKK18] and one rule able to certify
non-AST and non-PAST [CNZ17]. In [MBKK21a], the authors relaxed these three proof
rules such that their conditions only need to hold eventually rather than always. A
property P (i) holds eventually, if P (i) is true for all i ≥ i0 for some i0 ∈ N. These
relaxations enable using asymptotic reasoning when automating the respective proof rules.
Amber implements the relaxed versions of these proof rules by choosing the loop guard
expression G (defined as P−Q for loop guard G = P > Q for polynomials P and Q) as
the potential witness and checking the proof rule conditions using asymptotic bounds (cf.
Section 7.5). To certify PAST, Amber uses the Ranking SM-Rule.

Theorem 43 (Ranking SM-Rule [CS13, FFH15, MBKK21a]). Let L be a probabilistic
loop with guard G. Assume the following condition holds eventually:

E(Gi+1 − Gi | Runi) ≤ −ϵ, for some ϵ > 0

Then, L is PAST. In this case, G is called a ranking supermartingale.

Probabilistic programs with an infinite expected runtime can still terminate with proba-
bility one. The symmetric one-dimensional random walk (Figure 7.2b) is a well-known
example that is AST but not PAST. For such programs, the SM-Rule provides a solution
to certify AST.

Theorem 44 (SM-Rule [MMKK18, MBKK21a]). Let L be a probabilistic loop with guard
G, d > 0 and p ∈ (0, 1]. Assume the following conditions hold eventually:

1. E(Gi+1 − Gi | Runi) ≤ 0

2. P(Gi+1 − Gi ≤ −d | Runi) ≥ p

Then, L is AST. If G satisfies condition 1, it is called a supermartingale.

For non-terminating programs, the Repulsing SM-Rule can certify their divergence. It is
capable of certifying non-AST as well as non-PAST.

Theorem 45 (Repulsing SM-Rule [CNZ17, MBKK21a]). Let L be a probabilistic loop
with guard G. Assume ∀i : P(Gi) > 0 and that the following conditions hold eventually:

1. E(Gi − Gi+1 | Runi) ≤ −ϵ, for some ϵ > 0

2. |Gi − Gi+1| < c, for some c > 0.

Then, L is not AST. If all conditions are true with the domain of ϵ in condition 1 relaxed
to include 0 (i.e. ϵ ≥ 0), then L is not PAST.
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The Ranking SM-Rule as well as the SM-Rule require G, and the Repulsing SM-Rule −G,
to be a supermartingale. An expression E cannot be a supermartingale if E(Ei+1−Ei) > 0
[MBKK21a]. The tool Mora [BKS19, BKS20c] can compute an exponential polynomial
closed-form of E(Ei+1−Ei) for Amber’s input programs. In Amber, we utilize the
functionality of Mora to compute a closed-form of E(Gi+1−Gi). Amber uses this
closed-form in trying to rule-out the applicability of some of the proof rules.

7.5 Effective Termination Analysis through Asymptotic
Bounds

The conditions in the proof rules from Section 7.4.1 contain three types of inequalities:

• Type 1: Inequalities over conditional expected values, as
E(Gi+1−Gi | Runi) ≤ −ϵ (≤ 0) in the Ranking SM-Rule (SM-Rule) for proving
PAST (AST).

• Type 2: Inequalities over conditional probabilities, as
P(Gi+1−Gi ≤ −d | Runi) ≥ p in the SM-Rule for establishing AST.

• Type 3: Inequalities over absolute values, as |Gi−Gi+1| < c in the Repulsing
SM-Rule for disproving AST.

In the sequel we detail how these three type of inequalities are handled in Amber for
proving/disproving (P)AST .

Type 1. For Amber’s programming model, the expression E(Gi+1−Gi | Runi) is a
polynomial in the program variables. For the program in Figure 7.2a we have G =
c−x2−y2. The expression E(Gi+1−Gi | Runi) = E(Gi+1 | Runi)−Gi can be computed
by starting with G, substituting left-hand sides of assignments by right-hand sides in
a bottom-up fashion, averaging over probabilistic statements and finally subtracting G.
For Figure 7.2a, this leads to the polynomial E(Gi+1−Gi | Runi) = −x2

i −11xi−115/6.
Thus, the expected change of the loop guard from an arbitrary iteration i to iteration
i+1 is −x2

i −11xi−115/6, where xi is the value of program variable x after iteration i. For
an input program and a polynomial poly, E(polyi+1 | Runi) itself is always a polynomial.
That is because all expressions in probabilistic branching statements are polynomials, all
branching probabilities are constants and all distributions input programs can draw from
have constant parameters and thus also constant moments. Crucially, all inequalities
in the termination proof rules only need to hold eventually. Therefore, knowing the
asymptotic behavior of the polynomial E(Gi+1−Gi | Runi) can be helpful in answering the
respective inequalities: for instance, an asymptotic upper bound to E(Gi+1−Gi | Runi)
that tends to a negative number witnesses that eventually E(Gi+1−Gi | Runi) ≤ −ϵ for
some ϵ > 0.
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Type 2. After fixing the values drawn from distributions in the loop body at iteration
i, every expression, and in particular G, can only progress to finitely many expressions
in iteration i+1. We refer to these possible follow-up expressions, as branches. For the
program in Figure 7.2b, the expression G (= x) is either x+c or x−c after one iteration.
If for at least one of these branches B of G, we have that eventually Bi−Gi ≤ −d
for some d > 0 for any choice of values drawn from distributions, then it holds that
P(Gi+1−Gi ≤ −d | Runi) ≥ p for some p > 0. This holds, due to the fact that all
probabilities in probabilistic branching statements are constant and non-zero. Similar to
the inequalities of type 1, asymptotic bounds provide a method to answer inequalities
of type 2: if for some branch B of G and any choice of values drawn from probability
distributions, the polynomial Bi−Gi obeys an asymptotic upper bound tending to a
negative number, then it holds that eventually P(Gi+1−Gi ≤ −d | Runi) ≥ p for some
d > 0 and p ∈ (0, 1].

Type 3. In contrast to the inequalities of type 2 that have to hold with at least some
non-zero probability, inequalities of type 3 have to hold almost-surely, that means with
probability one. Nevertheless, type 3 inequalities can be approached similarly as type 2
inequalities: if for every (in contrast to some as for type 2 inequalities) branch B of G
and any choice of values drawn from probability distributions, eventually |Gi−Bi| < c
for some c > 0, then eventually and almost-surely |Gi−Gi+1| < c. In contrast to type
1 and 2 inequalities, tackling type 3 inequalities with asymptotic bounds requires one
extra step. Due to the presence of the absolute value function, asymptotic upper bounds
for the polynomials Gi−Bi do not suffice. Additional to upper bounds, asymptotic lower
bounds are needed. Given an asymptotic upper bound u(i) and an asymptotic lower
bound l(i) for the polynomial Gi−Bi, max(−l(i), u(i)) is an asymptotic upper bound for
|Gi−Bi|.

7.5.1 Computing Asymptotic Bounds
We argued that all main conditions of the termination proof rules from Section 7.4.1
reduce to the task of finding asymptotic lower- and upper bounds for polynomials
in program variables. For this purpose, Amber utilizes a recently introduced bound
algorithm [MBKK21a]. The algorithm builds on the notion of dominant functions.

Definition 56 (Domination). Let f and g be two functions from N to R. We say f
dominates g if eventually c·f(i) ≥ g(i) for some c ∈ R+. Let F be a finite set of functions
from N to R. A function f ∈ F is most dominant with respect to F , if f dominates
all functions in F . Similarly, f is least dominant with respect to F , if every g ∈ F
dominates f .

The bound algorithm described in this section produces bounds in the form of exponential
polynomials with positive exponential terms as mentioned in Section 7.2. For every
such function f , we can always construct a monotonic and non-positive or non-negative
function g with the same asymptotic behavior, meaning that g dominates f and f
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dominates g. The function g can be established by simplifying f to its fastest increasing
or decreasing term, its leading term. For instance, if f(i) = i2i − 2i − i2, then g(i) = i2i is
monotonic, non-negative, and has the same asymptotic behavior as f . In the remainder,
we assume that every asymptotic lower- and upper bound is simplified to its leading
term. Moreover, for two exponential polynomials with positive exponential terms, we
can always decide which dominates the other by comparing their leading terms. We
illustrate the algorithm for computing asymptotic bounds in the following example. For
the algorithm’s pseudo-code and further details, we refer to [MBKK21a].

Example 67. Consider the following program:
x = x0
y = y0
while y > 0:

x = 2x+1 @1/2; x-1
y = y + x**2 - x

Assume, we want to compute an asymptotic lower bound and asymptotic upper bound
for the program variable y. This means that we are trying to find functions l(i) and
u(i) such that eventually and almost-surely c1·l(i) ≤ yi ≤ c2·u(i) for some positive
constants c1 and c2. For every iteration i, yi+1 is either equal to yi+4x2

i +2xi or equal to
yi+x2

i −3xi+2, both with probability 1/2. These polynomials are the branches of y. The
algorithm in [MBKK21a] first recursively computes asymptotic lower- and upper bounds
for the monomials x and x2 in order to construct bounds for y.

Asymptotic bounds for x: The branches of x are 2xi+1 and xi−1 with inhomoge-
neous parts 1 and −1 respectively. The bound algorithm first computes bounds for the
inhomogeneous parts. Because the inhomogeneous parts are both constants, both their
lower- and upper bounds are just given by the inhomogeneous parts themselves. This is the
base case of the algorithm. The base case will always be reached, because of the constraint
of Amber’s programming model that the dependencies among program variables in the
loop body are acyclic (cf. Section 7.3). The recurrence coefficients of x are 2 and 1
respectively. These are the constant coefficients of xi in the branches of x. The results of
[MBKK21a] establish that an upper bound for x is given by the solution of one of the
following four recurrence relations:

f(i + 1) = a·f(i) + 1, for f(0) ∈ {d, −d}, a ∈ {2, 1} (7.3)

The recurrences (7.3) are inhomogeneous first-order recurrences. Their recurrence co-
efficients are given by the minimum and maximum recurrence coefficients of x. The
inhomogeneous term in (7.3) is the most dominant upper bound of the inhomogeneous
parts of x. The initial values of the recurrences (7.3) are d or −d for a positive symbolic
constant d. With a simple static analysis, Amber establishes that the program variable
x can become positive as well as negative. Because x can be positive, d is among the
initial values, and because x can be negative −d is also required as an initial value. The
solutions (closed-forms) to the four recurrences of f(i) are respectively given by
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• (d+1)2i−1;

• (1−d)2i−1;

• i+d;

• i−d.

According to [MBKK21a], one of these four solutions is an upper bound to x. The closed
form (d+1)2i−1 of f(i) dominates all other solutions. As we are only interested in
asymptotic bounds modulo a constant factor, an asymptotic upper bound for x is therefore
given by the leading term of (d+1)2i−1; that is, x is asymptotically upper bounded by 2i.

An asymptotic lower bound for x is computed analogously as the least dominant solution
to one of the recurrences

f(i + 1) = a·f(i) − 1, for f(0) ∈ {d, −d}, a ∈ {2, 1}. (7.4)

In contrast to the upper bound computation, the inhomogeneous term in (7.4) is given by
the least dominant lower bound of the inhomogeneous parts of x, i.e. −1. The leading
term in the least dominant solution of the recurrences (7.4) is −2i and provides an
asymptotic lower bound for x. Consequently, we established that eventually and almost
surely

c1·(−2i) ≤ xi ≤ c2·2i for some c1, c2 ∈ R+.

An absolute bounding function of x is an asymptotic bound for |xi| and is given by the
most dominant function of u(i) = 2i and −l(i) = −(−2i). Note, that all recurrences in
(7.3)–(7.4) are first-order inhomogeneous linear recurrences with non-negative coefficients
and exponential polynomials as inhomogeneous parts such that all exponential terms
are positive. As argued in Section 7.2, recurrences of this type can always be solved
automatically and lead to solutions for which their limits can be computed.

Asymptotic bounds for x2: The branches of the monomial x2 are 4x2+4x+1 and
x2−2x+1. Therefore the recurrence coefficients are given by 4 and 1. The inhomogeneous
parts are 4x+1 and −2x+1. Utilizing the already computed bounds for x, we get that
4x+1 as well as −2x + 1 are asymptotically upper bounded by 2i and lower bounded by
−2i. Hence, the most dominant upper bound of the inhomogeneous parts is 2i and the
least dominant lower bound is −2i. Following the bound algorithm of [MBKK21a], we get
that an asymptotic upper bound is given by the most dominant solution of the following
recurrences:

f(i + 1) = a·f(i) + 2i, for f(0) ∈ {d}, a ∈ {4, 1}
Computing the solutions of these recurrences and taking the leading term of the most
dominant solution leads to the asymptotic upper bound 4i for x2. Note that the possible
initial values are restricted to the positive constant d, as x2 can never be negative. An
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asymptotic lower of −2i can be computed analogously. However, due to the non-negativity
of x2, the constant 0 is a tighter lower bound which is taken into account by the bound
algorithm.

Asymptotic bounds for y: Finally, we can compute asymptotic bounds for y using
the bounds for x and x2. The branches of y are y+4x2+2x and y+x2−3x+2 with
inhomogeneous parts 4x2+2x and x2−3x+2, respectively. Moreover, y has a single
recurrence coefficient of 1. An asymptotic upper bound for the inhomogeneous part
x2−3x+2 can be established by substituting the bounds for the individual monomials. For
x2 we substitute its upper bound and for x its lower bound, due to the negative coefficient
of x in the respective branch. For x2−3x+2 this leads to an asymptotic upper bound of 4i

and an asymptotic lower bound of −2i. Likewise, for the inhomogeneous part 4x2+2x, we
get an asymptotic upper bound of 4i and an asymptotic lower bound of −2i. Therefore,
the most dominant upper bound of the inhomogeneous parts is 4i, and the least dominant
lower bound is −2i. Similar to the bounds computations for x and x2, an asymptotic
upper bound is given by the most dominant solution of

f(i + 1) = a·f(i) + 4i, for f(0) ∈ {d, −d}, a ∈ {1}.

The leading term of the most dominant solution is 4i and represents an asymptotic upper
bound for y. An asymptotic lower bound for y of −2i can be computed analogously.

The bound algorithm introduced in [MBKK21a] only supports programs of Amber’s
programming model, where every assignment in the loop body is a probabilistic branching
statement over polynomials. In the remainder of this section, we describe how the
techniques of [MBKK21a] can be extended to support symbolic constants and drawing
from common probability distributions with constant parameters.

7.5.2 Supporting Symbolic Constants
A symbolic constant represents an arbitrary number from an infinite set of real numbers.
For example, the program in Figure 7.2b encodes a symmetric one-dimensional random
walk with symbolic step size c. For our purposes, defining a symbolic constant c to
semantically represent any arbitrary real number c ∈ R is problematic, as illustrated in
the following example.

Example 68. Consider the following program with symbolic constant c:
x = 1
while x > 0:

x = x+c @1/2; x

Following the bound algorithm of [MBKK21a] for x would result in the lower bound of x
being the least dominant of c·i and 1. Now, if c semantically represents an arbitrary real
number, we cannot conclusively decide whether c · i or 1 is more dominant: if c > 0, then
c·i dominates 1 and if c ≤ 0, then 1 dominates c·i.
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To remedy the problem illustrated in the previous example, Amber adopts the semantic
that symbolic constants represent an arbitrary positive real number. Negative constants
can be modeled with the explicit use of “−”. Still, the bound algorithm is incomplete for
input programs with positive symbolic constants. A counter-example can be constructed
from Example 68 by replacing c with c−d where both c and d are symbolic constants.
Now, the lower bound for the variable x is the least dominant of (c−d)·i and 1 which
cannot be answered without a case distinction involving the symbolic constants c and d.
Nevertheless, experiments show that adopting the semantic of positive symbolic constants
is useful and provides a solution to many challenging benchmarks (cf. Section 7.7).

7.5.3 Supporting Common Probability Distributions

Amber supports programs drawing from various common probability distributions
with constant parameters (cf. Figure 7.1). The first key property of every supported
distribution D is that E(Dp) exists and is computable for every p ∈ N. This ensures that
for any polynomial poly in program variables, E(polyi+1 | Runi) remains a polynomial.

The second key property is that D’s support is an interval. More precisely, if D is
continuous, then supp(D) = (a, b) (or [a, b]) for a, b ∈ R ∪ {−∞, ∞} and if D is discrete,
then supp(D) = {a, a+1, . . . , b−1, b} for a, b ∈ R ∪ {−∞, ∞}. Because the support of
D is an interval, tight bounds for the support of Dp for p ∈ N can be computed using
interval arithmetic.

Amber extends the main bound algorithm to support programs drawing from such
distributions. Let x be a program variable drawing from a probability distribution, M a
monomial of program variables not containing x, and p ∈ N. Then Amber computes
the asymptotic bounds for the monomial xp·M in the following way: First, an upper
bound u(i) and lower bound l(i) for M are computed recursively. Second, the boundaries
a and b (with a ≤ b) of the support of xp are computed using interval arithmetic.
Finally, an upper bound (lower bound) of xp · M is given by the most dominant function
(least dominant function) of a·u(i), b·u(i), a·l(i) and b·l(i). Due to Amber supporting
unbounded distributions, a, b, l(i) and u(i) can be ±∞. The handle calculations involving
infinities, we use the usual arithmetic rules for ±∞: x+∞=∞; x−∞=−∞; if x > 0 then
x·∞=∞; if x < 0 then x·∞=−∞. Note that, because the asymptotic bounds b(i) are
always monotonic and non-positive or non-negative, Amber can always decide whether
∞ · b(i) is ∞ or −∞ (if b(i) itself is not ±∞ or 0). In case of indeterminate forms (∞−∞
and 0·∞), Amber aborts the bound computation and resorts to the loosest possible
bounds of −∞ and ∞.

Example 69. Let x be a program variable drawing from a continuous uniform distribution
between −1 and 2 and M a monomial of program variables not containing x. Assume
M obeys an asymptotic lower bound l(i) = i and an asymptotic upper bound u(i) = i2.
Asymptotic bounds for x3·M are computed as follows. We have supp(x3) = (−1, 8). Let
F = {−1·i2, 8·i2, −1·i, 8·i}. The most dominant function in F is 8·i2 and because positive
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constant factors of asymptotic bounds can be absorbed, i2 is an asymptotic upper bound
for x3·M .

Although Amber requires the parameters of distributions to be constant, some state-
dependent parameters can be modeled through distribution transformations. For instance,
Normal(poly, c) is equivalent to poly + Normal(0, c). Likewise, Uniform(poly1, poly2) is
equivalent to poly1+(poly2−poly1)·Uniform(0, 1) for the continuous uniform distribution.
Similar transformations exist for other distributions.

With the generalized bound algorithm, Amber can compute asymptotic upper- and lower
bounds for polynomials of program variables, even if the programs draw from probability
distributions. However, this generalization alone is not sufficient, in particular for the
SM-Rule.

Example 70. The following program models a symmetric 1-dimensional random walk:
x = 1
while x > 0:

s = RV(uniform, -1, 1)
x = x+s

The program can be proven to be AST using the SM-Rule. We have G = x. Amber
computes E(xi+1−xi | Runi) = 0 and hence establishes condition 1 of the SM-Rule.
However, condition 2 poses a problem. Amber extracts the only branch of x, that is
x+s, and computes the asymptotic bounds for x+s − x = s, resulting in the lower bound
−1 and the upper bound 1. Because the upper bound is always positive, without further
information Amber cannot conclude that x decreases by some constant with constant
probability. For this example, the problem can be mitigated by constructing an equivalent
program in which the variable s is split into three different parts:
x = 1
while x > 0:

s1 = RV(uniform, -1, -1/2)
s2 = RV(uniform, -1/2, 1/2)
s3 = RV(uniform, 1/2, 1)
x = x+s1 @1/4; x+s2 @1/2; x+s3 @1/4;

Now, for the branch x+s1, Amber established the bounds for x+s1 − x = s1 to be −1
and −1/2. As the asymptotic upper bound is negative, Amber concludes that eventually
x decreases by at least some constant with at least some constant probability. Thus,
condition 2 of the SM-Rule is verified and Amber certifies the program to be AST.

In Example 70, the program variable s is drawn from a uniform distribution whose
support contains positive and negative values. Without further information, Amber can
only establish that s is lower bounded by −1 and upper bounded by 1 but is oblivious to
the fact that there is a constant probability such that s is negative. In Example 70, this
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fact is made explicit to Amber through constructing an equivalent program by splitting
the uniform distribution into three different parts such that two parts are bounded away
from 0. In general, this exact approach is not feasible when drawing from more complex
distributions. However, note that neither the exact probability of 1/4 of branch x+s1,
nor the exact distribution of s1 are necessary to answer condition 2 of the SM-Rule. It
suffices that the branch is associated with some constant positive probability and that
the support of s1 is strictly negative and bounded away from 0. In this sense, the only
relevant information about the distribution of s is its support.

Following this observation, Amber implements an over-approximation when considering
the branches of expressions, abstracting from concrete distributions: let B be a branch
containing a variable s drawn from a probability distribution D with support boundaries
a < 0 and b > 0. With Tr(D; α, β) we denote the truncated distribution of D with
lower bound α and upper bound β. Assume D is a continuous distribution. For discrete
distributions, the following process is analogous. Let ϵ > 0 with |a| > ϵ and b > ϵ and
define

p1 :=
−ϵ

a
dD p2 :=

ϵ

−ϵ
dD p3 :=

b

ϵ
dD.

We have p1, p2, p3 > 0 and can split D into three different parts such that one part has
strictly negative, one part strictly positive support, and both supports are bounded away
from 0. With C ∼ Categorical(3, p1, p2, p3) we have

s ∼ [C = 1] · Tr(D, a, −ϵ)+
[C = 2] · Tr(D, −ϵ, ϵ)+
[C = 3] · Tr(D, ϵ, b).

[P ] denotes the Iverson bracket which equals 1 if P is true and 0 otherwise. Now,
the goal of Amber is to split the branch B containing s into three branches, where
s is replaced by s1 ∼ Tr(D, a, −ϵ), s2 ∼ Tr(D, −ϵ, ϵ) and s3 ∼ Tr(D, ϵ, b) respectively.
However, the distributions of s1, s2, and s3 are potentially more complex than the original
distribution D, and the constants p1, p2, and p3 each require solving an integral. Amber
overcomes these issues with over-approximation. As previously argued, the precise values
of p1, p2, and p3 are not needed and only required to be positive, which is guaranteed.
Moreover, the only relevant information about the distributions of s1, s2, and s3 are
their supports. Therefore, Amber over-approximates Tr(D, α, β) by Symb(α, β), where
Symb(α, β) represents any distribution D′ with supp(D′) = [α, β]. With v ∼ Symb(α, β)
we denote that v ∼ D′ for some D′ ∈ Symb(α, β). Consequently, for condition 2 of the
SM-Rule and for condition 2 of the Repulsing SM-Rule, Amber splits every branch B
containing a variable s drawn from a probability distributions D with mixed-sign support
into three new branches B[s/s1], B[s/s2], and B[s/s3]. The substituted variables are such
that s1 ∼ Symb(a, −ϵ), s2 ∼ Symb(−ϵ, ϵ), and s3 ∼ Symb(ϵ, b) where a and b are the
boundaries of the support of D and ϵ is a fresh positive symbolic constant. This process
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Figure 7.3: Main components of Amber and interactions between them

is repeated until all such variables s have been eliminated and the only distributions with
mixed-sign supports left are over-approximations.

Example 71. Consider the following program:
x = 1
while x > 0:

s = RV(normal, 0, 1)
x = x+s

For G = x, Amber computes the expression E(xi+1−xi | Runi) = 0. Therefore, condition
1 of the SM-Rule is satisfied. Regarding condition 2, Amber starts with the only branch of
x which is x+s. The branch x+s contains the variable s whose distribution has the mixed-
sign support (−∞, ∞). Hence, Amber splits the branch x+s into the three branches
(1) x+s1, (2) x+s2, and (3) x+s3, where s1 ∼ Symb(−∞, −ϵ), s2 ∼ Symb(−ϵ, ϵ),
s3 ∼ Symb(ϵ, ∞) and ϵ is a fresh positive symbolic constant. For the new branch (1)
x+s1, an upper bound for x+s1 − x = s1 is given by −ϵ. Therefore, x decreases by at
least ϵ with some constant positive probability, confirming that also condition 2 of the
SM-Rule is satisfied. Consequently, Amber certifies AST for this example.

7.6 Amber: Implementation and Components
Implementation. Amber is implemented in python3 and relies on the lark-parser1

package to parse its input programs. Further, Amber uses the diofant2 package as
its computer-algebra system to (i) construct and manipulate mathematical expressions
symbolically; (ii) solve algebraic recurrence relations, and (iii) compute function limits.
To compute closed-form expressions for statistical moments of monomials over program

1https://github.com/lark-parser/lark
2https://github.com/diofant/diofant
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variables only depending on the loop counter, Amber uses the tool Mora [BKS20c].
However, for efficient integration within Amber, we reimplemented and adapted the
Mora functionalities exploited by Amber (Mora v2), in particular by deploying dynamic
programming to avoid redundant computations. Altogether, Amber consists of ∼ 2000
lines of code. In what follows we discuss the main components of Amber, as illustrated
in Figure 7.3.

7.6.1 Decision in Amber
After parsing the input program, the decision module of Amber is executed to initialize
and call the probabilistic termination proof rules to be used on the input program.
In order to initialize the proof rules, Amber’s decision module first constructs three
expressions: (1) E(Gi+1−Gi | Runi) (martingale expression); (2) E(Gi−Gi+1 | Runi)
(negated martingale expression); and (3) E(Gi+1−Gi) (expected loop guard change).
For Figure 7.2a with loop guard x2+y2 < c, we get the following expressions: (1)
E(Gi+1−Gi | Runi) = −x2

i −11xi−115/6; (2) E(Gi−Gi+1 | Runi) = x2
i +11xi+115/6; and

(3) E(Gi+1−Gi) = −(81/16)i2−(1225/48)i−121/6. Amber utilizes the relaxed proof rules
from Section 7.4 and automates them using asymptotic bounds (cf. Section 7.5). As
such, the decision module of Amber initializes relaxed proof rules with the expressions
above, applies the respective proof rules to the input program, and reports the analysis
result containing potential witnesses for (non-)PAST or (non-)AST.

7.6.2 Probabilistic Termination Proof Rules in Amber
Initial State Rule. The Initial State Rule checks whether or not the initial state,
given by the assignments preceding the loop, already falsifies the loop guard. More
precisely, the rule returns a witness for PAST if the initial state falsifies the loop guard
with probability one. The rule considers all possible combinations of lower and upper
bounds of the initial assignments to the variables given by the support of the respective
distributions.

Example 72. In Figure 7.2a, the symbolic constant c in the loop guard represents an
arbitrary positive constant. Therefore, for Figure 7.2a the probability of the initial state
falsifying the loop guard is not 1 and the Initial State Rule does not return a witness for
PAST.

Ranking SM-Rule. The Ranking SM-Rule checks whether the polynomial G is even-
tually a ranking supermartingale (i.e. E(Gi+1−Gi | Runi) ≤ −ϵ) to conclude the input
program to be PAST. If E(Gi+1−Gi) > 0, G cannot be a (ranking) supermartingale.
The rule determines its own applicability using diofant and the expected loop guard
change E(Gi+1−Gi) to check E(Gi+1−Gi) > 0. If the rule is applicable, the Bound
Store module of Amber is called to compute an asymptotic upper bound u(i) for the
martingale expression E(Gi+1−Gi | Runi) (see Section 7.6.3). If limi→∞ u(i) < 0, then
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G is eventually a ranking supermartingale and the input program is PAST. The Ranking
SM-Rule uses diofant to verify limi→∞ u(i) < 0. If the condition holds, the Ranking
SM-Rule constructs and returns a witness for PAST.

Example 73. For Figure 7.2a, we have E(Gi+1−Gi) = −(81/16)i2 − (1225/48)i − 121/6 ̸> 0.
Thus the Ranking SM-Rule is applicable. For the martingale expression E(Gi+1−Gi |
Runi) = −x2

i − 11xi − 115/6, the Bound Store module computes an upper bounding
function u(i) = −i2. Because limi→∞ u(i) = −∞ < 0, the Ranking SM-Rule returns the
martingale expression together with u(i) as a witness for Figure 7.2a being PAST.

SM-Rule. If the Ranking SM-Rule fails, the SM-Rule attempts to certify AST. The
rule checks whether G is eventually a supermartingale (i.e. E(Gi+1−Gi | Runi) ≤ 0) and
whether G eventually decreases at least by some fixed constant with positive probability.
The applicability criterion for the proof rule is the same as for the Ranking SM-Rule
(E(Gi+1−Gi) ̸> 0), implemented in the same way. Moreover, Amber concludes G to be
a supermartingale similarly to concluding it to be a ranking supermartingale. The only
difference is that for the martingale expression’s upper bound u(i), its limit is allowed to
be 0 (instead of negative). Amber automates the decrease condition by looping through
all branches of G, splitting them as described in Section 7.5.3, and checking whether for
one of the resulting branches B, the polynomial B − G has an upper bounding function
with a negative limit. This entails that eventually G decreases in any iteration with
positive probability.

Example 74. For Figure 7.2b, we have G = x. The martingale expression is E(Gi+1−Gi |
Runi) = 0, which has limit 0 implying that G is a supermartingale. Amber retrieves the
two branches of G, namely x+c and x−c, where c is a positive symbolic constant. For the
second branch Amber computes x−c − x = −c which it determines to have the negative
limit −c. Therefore, Amber concludes that G (eventually) decreases by (at least) −c
with positive probability and returns the martingale expression, the eventually decreasing
branch and its asymptotic bound as a witness for AST.

Repulsing SM-Rule. The Repulsing SM-Rule can potentially certify non-AST and
non-PAST. It is applied in Amber whenever either the status of AST or PAST of the
input program is not yet known after applying the Ranking SM-Rule and the SM-Rule.
Moreover, E(Gi+1−Gi) ̸< 0 has to hold in order for the rule to be applicable because −G
needs to be a (ranking) supermartingale to certify non-PAST (non-AST). The applicability
criterion as well as checking −G to be a (ranking) supermartingale is realized with the
same techniques as for the aforementioned proof rules. Additionally, Amber has to verify
two more properties: (i) Eventually |Gi−Gi+1| < c for some c ∈ R+; and (ii) in every
iteration, there is a positive probability of G not decreasing. The first property (i) is
realized with retrieving an absolute bounding function a(i) from the Bound Store module
and checking whether a(i) is dominated by 1. Amber verifies the property (ii) by looping
through all branches of G, splitting them as described in Section 7.5.3, and checking
whether for one of the resulting branches B, the expression G−B is always non-negative,
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with a simple static analysis. This entails that there is always a positive probability that
G does not decrease. Amber returns a witness for non-PAST (non-AST) if all properties
are satisfied and −G is a (ranking) supermartingale.

Example 75. For Figure 7.2c with −G = −x we have the negative martingale expression
E(Gi−Gi+1 | Runi) = −2c·e, where c and e are positive symbolic constants. Therefore,
−G is a ranking supermartingale. The two branches of −x are (1) −x−c and (2) −x+c.
For both branches B we have |B−(−x)| = c and a corresponding absolute bounding
function a(i) = c. Hence, property (i) is satisfied. Property (ii) holds, because there is
always a possibility of G not decreasing through branch (2). Thus, for Figure 7.2c as
input, the Repulsing SM-Rule returns a witness for non-AST.

7.6.3 Fundamentals in Amber
Bound Store. Amber’s Bound Store component derives lower, upper and absolute
bounds for polynomials over program variables. These bounds are used by Amber’s
termination proof rules (cf. Section 7.6.2). Asymptotic bounding functions only depend on
the loop counter i and asymptotically bound the value of a program variable polynomials
(modulo a positive constant factor). Asymptotic bounding functions for polynomials
arise from combining bounding functions of its monomials. For monomials, asymptotic
bounding functions are computed using the bound algorithm introduced in Section 7.5.

Other Fundamentals. The Branch Store module provides the functionality for ex-
tracting the branches of a given expression for the input program. The Asymptotics
component of Amber reasons about asymptotic properties of functions and simplifies
expressions while preserving their asymptotic behavior. Multiple termination proof
rules require the capability of checking whether some property over program variables is
eventually invariant. This common requirement is implemented in Amber’s Invariance
module.

7.7 Evaluation
Experimental Setup. Amber and our benchmarks are publicly available at https:
//github.com/probing-lab/amber. The output of Amber includes the martin-
gale expression and an answer (“Yes”, “No” or “Maybe”) to PAST and AST for the input
program. If the answer to (P)AST is definite (“Yes” or “No”), the output additionally
contains a witness of the answer. We took all 39 benchmarks from [MBKK21a] and
extended them by 11 new programs to test Amber’s capability to handle symbolic
constants and drawing from probability distributions. The 11 new benchmarks are con-
structed from the 39 original programs, by adding noise drawn from common probability
distributions and replacing concrete constants with symbolic ones. As such, we conduct
experiments using a total of 50 challenging benchmarks. Further, we compare Amber
not only against Absynth and MGen, but also evaluate Amber in comparison to the
recent tools LexRSM [ACN18], KoAT2 [MHG21] and ecoimp [AMS20]. Note that MGen
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Table 7.1: 27 programs which are PAST

Program Amber Absynth MGen LexRSM KoAT2 ecoimp

2d_bounded_random_walk ✓ ✗ NA NA ✗ ✗

biased_random_walk_const ✓ ✓ ✓ ✓ ✓ ✓

biased_random_walk_exp ✓ ✗ ✓ ✗ ✗ ✗

biased_random_walk_poly ✓ ✗ ✗ NA ✗ ✗

binomial_past ✓ ✓ ✓ ✓ ✓ ✓

complex_past ✓ ✗ NA NA ✗ ✗

consecutive_bernoulli_trails ✓ ✓ ✓ ✓ ✓ ✓

coupon_collector_4 ✓ ✗ ✓ ✓ ✓ ✓

coupon_collector_5 ✓ ✗ ✓ ✓ ✓ ✓

dueling_cowboys ✓ ✓ ✓ ✓ ✓ ✓

exponential_past_1 ✓ NA NA NA ✗ NA
exponential_past_2 ✓ NA NA NA ✗ NA
geometric ✓ ✓ ✓ ✓ ✓ ✓

geometric_exp ✗ ✗ ✗ ✗ ✗ ✗

linear_past_1 ✓ ✗ ✗ ✗ ✗ ✗

linear_past_2 ✓ ✗ NA ✗ ✗ ✗

nested_loops NA ✓ ✗ ✓ ✓ ✓

polynomial_past_1 ✓ ✗ NA NA ✗ ✗

polynomial_past_2 ✓ ✗ NA NA ✗ ✗

sequential_loops NA ✓ ✗ ✓ ✓ ✓

tortoise_hare_race ✓ ✓ ✓ ✓ ✓ ✓

dependent_dist* NA NA NA NA ✗ ✓

exp_rw_gauss_noise* ✓ NA NA NA NA NA
gemoetric_gaussian* ✓ NA NA NA NA NA
race_uniform_noise* ✓ ✗ ✓ ✓ ✗ ✓

symb_2d_rw* ✓ ✗ NA NA ✗ ✗

uniform_rw_walk* ✓ ✓ ✓ ✓ ✓ ✓

Total ✓ 23 9 11 12 11 13

can only certify PAST and LexRSM only AST. Moreover, the tools Absynth, KoAT2
and ecoimp mainly aim to find upper bounds on expected costs. Tables 7.1-7.3 summa-
rize our experimental results, with benchmarks separated into PAST (Table 7.1), AST
(Table 7.2), and not AST (Table 7.3). Benchmarks marked with * are part of our 11 new
examples. In every table, ✓ (✗) marks a tool (not) being able to certify the respective
termination property. Moreover, NA symbolizes that a benchmark is out-of-scope for a
tool, for instance, due to not supporting some distributions or polynomial arithmetic.
All benchmarks have been run on a machine with a 2.6 GHz Intel i7 (Gen 10) processor
and 32 GB of RAM and finished within a timeout of 50 seconds, where most experiments
terminated within a few seconds.
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Table 7.2: 14 programs which are AST and not necessarily PAST

Program Amber LexRSM

fair_in_limit_random_walk NA NA
gambling ✓ ✗

symmetric_2d_random_walk ✗ NA
symmetric_random_walk_constant_1 ✓ ✗

symmetric_random_walk_constant_2 ✓ ✗

symmetric_random_walk_exp_1 ✓ ✗

symmetric_random_walk_exp_2 ✓ NA
symmetric_random_walk_linear_1 ✓ ✗

symmetric_random_walk_linear_2 ✓ ✗

symmetric_random_walk_poly_1 ✓ NA
symmetric_random_walk_poly_2 ✓ NA

gaussian_rw_walk* ✓ NA
laplacian_noise* ✓ NA
symb_1d_rw* ✓ NA

Total ✓ 12 0

Table 7.3: 9 programs which are not AST

Program Amber

biased_random_walk_nast_1 ✓

biased_random_walk_nast_2 ✓

biased_random_walk_nast_3 ✓

biased_random_walk_nast_4 ✓

binomial_nast ✓

polynomial_nast ✗

binomial_nast_noise* ✓

symb_nast_1d_rw* ✓

hypergeo_nast* ✓

Total ✓ 8

Experimental Analysis. Amber successfully certifies 23 out of the 27 PAST bench-
marks (Table 7.1). Although Absynth, KoAT2 and ecosimp can find expected cost
upper bounds for large programs [NCH18, MHG21, AMS20], they struggle on small
programs whose termination is not known a priori. For instance, they struggle when a
benchmark probabilistically “chooses” between two polynomials working against each
other (one moving the program state away from a termination criterion and one towards
it). Our experiments show that Amber handles such cases successfully. MGen supports
the continuous uniform distribution and KoAT2 the geometric distribution whose support
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is infinite. With these two exceptions, Amber is the only tool supporting continuous dis-
tributions and distributions with infinite support. To the best of our knowledge, Amber is
the first tool certifying PAST supporting both discrete and continuous distributions as well
as distributions with finite and infinite support. Amber successfully certifies 12 bench-
marks to be AST which are potentially not PAST (Table 7.2). Whereas the LexRSM tool
can certify non-PAST programs to be AST, such programs need to contain subprograms
that are PAST [ACN18]. The well-known example of symmetric_1D_random_walk,
contained in our benchmarks, does not have a PAST subprogram. Therefore, the LexRSM
tool cannot establish AST for it. In contrast, Amber using the SM-Rule can handle such
programs. To the best of our knowledge, Amber is the first tool capable of certifying
non-AST for polynomial probabilistic programs involving drawing from distributions and
symbolic constants. Amber is also the first tool automating (non-)AST and (non-)PAST
analysis in a unifying manner for such programs.

Experimental Summary. Tables 7.1-7.3 demonstrate that (i) Amber outperforms
the state-of-the-art in certifying (P)AST, and (ii) amber determines (non-)(P)AST for
programs with various distributions and symbolic constants.

7.8 Conclusion
We described Amber, an open-source tool analyzing the termination behavior for poly-
nomial probabilistic programs, in a fully automatic way. Amber computes asymptotic
bounding functions and martingale expressions and is the first tool to prove and/or
disprove (P)AST in a unifying manner. Amber can analyze continuous, discrete, finitely-
and infinitely supported distributions in polynomial probabilistic programs parameter-
ized by symbolic constants. Our experimental comparisons give practical evidence that
Amber can prove and disprove (P)AST for a substantially larger class of programs than
state-of-the-art tools.
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CHAPTER 8
Summary & Outlook

In this thesis, we described various novel techniques for the automated analysis of
probabilistic loops, relevant to safety as well as liveness of stochastic systems. Beyond
algorithms and tools, this thesis contributes to and expands the foundational theory of
invariant synthesis, relevant to both classical and probabilistic programs.

As a core contribution, we developed a fully automated method for computing exact closed-
form expressions for higher moments of program variables for a large class of probabilistic
loops. Our method models higher moments of loop variables using linear recurrences
with constant coefficients. We established the theory of moment-computable loops and
syntactically characterized a class of programs for which our approach is complete.
Moment-computable loops allow for complex control flow, polynomial assignments,
symbolic constants, as well as discrete and continuous probability distributions. The
main restrictions on the supported loops are that variables within branching conditions
must be finite, and non-linear dependencies must be acyclic.

For probabilistic systems with unknown model parameters, we introduced a novel ap-
proach to automatically compute the sensitivity of the system with respect to these
unknown parameters. This method models parameters using symbolic constants and
computes closed-form expressions for sensitivities of higher moments of program variables.
By utilizing recurrences to model sensitivities directly – rather than moments – we demon-
strated that sensitivity analysis is feasible for loops that are not moment-computable.

The new techniques for moment computation and sensitivity analysis have been imple-
mented in the newly developed tool Polar. Our experimental evaluation showcases
the applicability of these techniques, solving benchmarks that previously could not be
automatically analyzed by the state-of-the-art.

The moment computation method introduced in this thesis imposes restrictions on
the arithmetic permissible within loop bodies. Already for classical loops, the type of
arithmetic used is known to be a major dimension of complexity. Although it is established
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8. Summary & Outlook

that the strongest polynomial invariant can be computed for linear loops, this problem
has remained unresolved for polynomial loops. These loops are also called unsolvable loops
and are equivalent to polynomial dynamical systems. We provided the first non-trivial
lower bound for computing the strongest polynomial invariant for polynomial loops,
by demonstrating that the problem is Skolem-hard. Additionally, as an intermediary
result of independent interest, we showed that point-to-point reachability for polynomial
dynamical systems is Skolem-hard as well. Furthermore, we generalized the notion
of invariant ideals from classical programs to probabilistic programs, introducing the
notion of moment invariant ideals. As a consequence, we were able to transfer various
hardness results for classical program analysis to the probabilistic setting and justify
that no restriction on the loops supported by Polar can be lifted without encountering
significant hardness boundaries.
Despite the challenges presented by the hardness results, we introduced a novel approach
for computing polynomial invariants of bounded degree for unsolvable loops. At the
heart of our methodology is a new characterization of unsolvability in terms of defective
variables. Leveraging the results of our invariant computation technique, we developed a
synthesis procedure to over-approximate unsolvable loops with solvable loops.
Regarding termination analysis, we relaxed four proof rules from the literature that provide
sufficient conditions for almost-sure termination, positive almost-sure termination and
their negations. These modifications to the proof rules, alongside structural constraints on
probabilistic loops, enabled us to algorithmically compute almost-sure asymptotic bounds
on polynomials in program variables. Leveraging these bounds, we successfully automated
all proof rules, leading to the new tool Amber, the first tool to certify both probabilistic
termination and non-termination. We further extended the approach of asymptotic
bounds for termination analysis to support symbolic constants and various common
discrete and continuous probability distributions. Through experimental evaluation,
we demonstrated that Amber can prove and refute probabilistic termination for a
substantially larger class of programs than other state-of-the-art tools.
Building upon the foundations laid out in this thesis, several avenues for future research
emerge. A particularily promising direction is the exploration of Polar’s application in
modeling control systems. Control systems with uncertainty in their sensor measurements
or potential computational delays are inherently probabilistic and are frequently modeled
using Markov jump linear systems. Preliminary investigations suggested a close connection
between the loops analyzable by Polar and Markov jump linear systems, with findings
indicating Polar’s capability to certify mean-square stability of various closed-loop
control systems. Advancing this line of inquiry could unveil new applications for Polar
and enhance the field of probabilistic loop analysis.
Another compelling avenue involves adopting approximation techniques to extend the
capabilities of our techniques and handle a wider array of probabilistic models. The
hardness results established in this thesis make it difficult the expand the class of loops we
can analyze using purely exact methods. However, these obstacles might be surmountable
– without undermining the usefulness of the results – by integrating exact methods with
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approximation techniques. For instance, in a publication not part of this thesis, we
used approximation techniques to substitute trigonometric functions with polynomial
expressions. As such, we enabled Polar to analyze various movement models subject
to uncertainty. Despite utilizing these approximation methods, the resulting estimators
were often unbiased, ensuring that the computed expected values remained exact. Similar
hybrid approaches could offer a practical path forward, circumventing the inherent
hardness barriers while retaining the utility and relevance of your analyses.
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