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Thesis abstract

Vegetation optical depth (VOD) from microwave remote sensing observations has been increasingly
used for large-scale monitoring of vegetation dynamics in recent years. Since VOD is sensitive to the
vegetation water content, and microwave observations at lower frequencies are not affected by cloud
cover (Woodhouse, 2005), VOD holds additional information on the vegetation layer than optical
remote sensing data. To which extent the VOD signal can be used to derive certain vegetation
properties, however, is still focus of ongoing research. In this PhD thesis, the relationship between
VOD and gross primary production (GPP) is analyzed for the purpose of deriving a conceptual model
for estimating GPP based on VOD (VOD-GPP model).

For assessing the potential of VOD for estimating GPP, VOD observations from different microwave
frequencies, from active and passive sensors and from single sensor or merged products were analyzed
and compared with state-of-the-art global remote sensing data sets and in situ GPP estimates. Ac-
cordingly, the VOD-GPP model was derived, which represents a carbon sink-driven approach. It
consists of a combination of bulk VOD and change in VOD for describing the temporal dynamic and
the grid-cell median VOD as a static component representing differences in vegetation cover. Results
showed in general good agreement between VOD-based GPP and other GPP estimates. Differences
were observed between frequencies, yielding overall best performance with X-band VOD for this ap-
plication. Results further demonstrated that VOD-based GPP estimates tend to overestimate GPP
compared with other global data sets. This behavior was assumed to be related to the lack of temper-
ature dependence of autotrophic respiration in the model formulation. The addition of temperature as
further model input could partly reduce the GPP overestimation. An analysis of the impact of water
availability demonstrated, however, that the VOD-based GPP estimates are not significantly related
to varying conditions of dryness and wetness in large parts of the world, and thus further supports
the applicability of the VOD-GPP model.

To conclude, the VOD-GPP model provides an independent, remote sensing based GPP data
set that is capable of monitoring vegetation dynamics. Through its sink-driven perspective, it further
offers complementary information on carbon related vegetation dynamics than commonly used source-
driven approaches. The VOD-GPP model may thus contribute to further our understanding of large-
scale responses of vegetation to environmental changes.
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Kurzzusammenfassung

Die optische Tiefe der Vegetation (VOD) - ein Parameter, der sich aus Beobachtungen von Fern-
erkundungssatelliten im Mikrowellenbereich ableitet - hat in den letzten Jahren für die großräumige
Auswertung der Vegetationsdynamik an Bedeutung gewonnen. Durch den Zusammenhang zwischen
VOD und dem Wassergehalt der Vegetation sowie dem vernachlässigbaren Einfluss der Bewölkung für
Mikrowellenbeobachtungen im unteren Frequenzbereich (Woodhouse, 2005), liefert VOD zusätzliche
Informationen über die Vegetationsschicht verglichen mit Fernerkundungsdaten im optischen Wellen-
längenbereich. Inwieweit das VOD-Signal zur Ableitung bestimmter Pflanzeneigenschaften genutzt
werden kann, ist jedoch noch Gegenstand der laufenden Forschung. Diese Arbeit befasst sich mit dem
Zusammenhang zwischen VOD und der Bruttoprimärproduktion (GPP) und stellt ein konzeptionelles
Modell zur Ermittlung von GPP auf Basis von VOD vor.

Um das Potential von VOD für die Berechnung von GPP zu untersuchen, wurde VOD aus ver-
schiedenen Mikrowellenfrequenzen, aus aktiven und passiven Sensoren sowie Produkten von einzel-
nen Sensoren bzw. aus mehreren Sensoren zusammengesetzt analysiert und mit modernsten glob-
alen Fernerkundungsdatensätzen und in-situ GPP-Schätzungen verglichen. Daraus abgeleitet wurde
das VOD-GPP-Modell erstellt, welches darauf basiert GPP indirekt über die Senken für Kohlen-
stoff im pflanzlichen Kohlenstoffkreislauf zu beschreiben. Das Modell besteht aus einer Kombination
von VOD-Signal und der zeitlichen Änderung von VOD, welche die zeitlich-dynamische Komponente
darstellt. Hinzu kommt der Median von VOD je Gitterzelle, welcher als statische Komponente die
räumlichen Unterschiede in der Vegetationsbedeckung ausgleicht. Die Ergebnisse zeigen eine gute
Übereinstimmung zwischen dem VOD-basierten GPP und den globalen GPP-Datensätzen. Es wur-
den Unterschiede zwischen den Frequenzen beobachtet, wobei insgesamt die besten Ergebnisse für
VOD im X-Band des Mikrowellenbereichs für diese Anwendung erzielt wurden. Im Vergleich mit an-
deren fernerkundungsbasierten globalen GPP-Datensätzen zeigte sich weiter, dass das VOD-basierte
GPP dazu tendiert das jährliche GPP zu überschätzen. Eine mögliche Erklärung war, dass die Über-
schätzung durch die fehlende Temperaturabhängigkeit der autotrophen Respiration bedingt wird. Bei
Hinzunahme der Temperatur als Eingangsvariable, konnte jedoch gezeigt werden, dass dieser Effekt
die Überschätzung nur teilweise reduzieren konnte. Eine Analyse des Einflusses von Änderungen in
der Wasserverfügbarkeit ergab allerdings auch, dass das Modell in weiten Teilen der Welt nicht sig-
nifikant mit Änderungen zwischen trockenen und feuchten Phasen korreliert, was die Anwendbarkeit
des Modells weiter stärkt.

Insgesamt liefert das VOD-GPP-Modell einen unabhängigen, fernerkundungsbasierten GPP-Datensatz.
Durch den Ansatz die Kohlenstoffsenken zu beschreiben, bietet das Modell ergänzende Informationen
zur Vegetationsdynamik in Bezug auf den Kohlenstoffkreislauf im Vergleich mit herkömmlichen An-
sätzen, welche direkt GPP abschätzen. Das VOD-GPP-Modell kann somit zu einem besseren Ver-
ständnis des Einflusses von Umweltveränderungen auf die Vegetation auf globaler Ebene beitragen.

v



vi



Contents

Acknowledgments i

Thesis abstract iii

Kurzzusammenfassung v

List of Figures x

List of Tables xvii

1 Introduction 1
1.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theoretical background for VOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Paper summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Paper 1: Assessing the relationship between microwave vegetation optical depth
and gross primary production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Paper 2: A carbon sink-driven approach to estimate gross primary production
from microwave satellite observations . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.3 Paper 3: Impact of temperature and water availability on microwave-derived
gross primary production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contribution to the scientific community . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Assessing the relationship between microwave vegetation optical depth and gross
primary production 7
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Vegetation remote sensing data . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Ancillary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Variables for relating VOD to GPP . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Global patterns of VOD, GPP and SIF . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Temporal agreement with respect to SIF . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Comparison of the three variables for relating VOD to GPP . . . . . . . . . . . 17

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



CONTENTS

2.5.1 Temporal agreement between VOD, GPP and SIF . . . . . . . . . . . . . . . . 20
2.5.2 Occurrence of negative correlations between VOD and GPP . . . . . . . . . . . 21
2.5.3 Effect of sensor frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.4 Comparison of the three VOD variables in relation to GPP . . . . . . . . . . . 22

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Appendices 25
2.A Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A carbon sink-driven approach to estimate gross primary production from mi-
crowave satellite observations 29
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 VOD data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 GPP data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Meteorological data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Theoretical model for estimating GPP based on VOD . . . . . . . . . . . . . . . . . . 34
3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Experimental setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.3 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.1 Temporal extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.2 Spatial extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3 Upscaling of in situ GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.1 Relationship between VOD and GPP . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.2 Impact of VOD frequency on the relationship with GPP . . . . . . . . . . . . . 48
3.7.3 Extrapolation of VOD-GPP relationship . . . . . . . . . . . . . . . . . . . . . . 49
3.7.4 Performance of GPP upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.5 Impact of model simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendices 53
3.A Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Impact of temperature and water availability on microwave-derived gross pri-
mary production 67
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Choice of microwave frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



CONTENTS

4.3.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.3 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.4 GPP estimation based on VOD . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Model representation of temperature dependency . . . . . . . . . . . . . . . . . 73
4.4.2 Evaluation at site-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Impact of adding temperature dependency at the global scale . . . . . . . . . . 75
4.4.4 Interannual variability and varying conditions of water availability . . . . . . . 76

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 Impact of adding temperature as model input . . . . . . . . . . . . . . . . . . . 79
4.5.2 Bias between GPP data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.3 Implications of possible saturation of VOD at high biomass . . . . . . . . . . . 81
4.5.4 Independence of global GPP data sets . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.5 The “zero-GPP problem” and non-structural carbohydrates . . . . . . . . . . . 82
4.5.6 Magnitude of input terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.7 Response to water availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8 Author contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.9 Competing interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Appendices 87
4.A Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusions and outlook 95

ix



List of Figures

2.1 (a-g) Temporal median value of VOD data sets (a-e), SIF (f) and GPP (g). VOD is
dimensionless, GPP is in gCm−2d−1 and SIF in mWm−2nm−1sr−1. For visualization
purposes, each data set is scaled between the 5th and the 95th percentile. (a-f) r
denotes the spatial Spearman rank correlation between maps of temporal medians
of GPP and VOD or SIF. All coefficients are highly significant (p<0.001). (h) Map
of CCI land cover grid cells with a dominant land cover over 75% that correspond to
the analyzed grid cells in Figure 2.4. The center of the red circle marks the location
of the grid cell shown in Figure 2.8. Note that the size of the grid cells is enhanced
for clearer visibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 (a-e) Spearman rank correlation between GPP and VOD data sets at 0.25° and
8-daily resolution. Correlations that are not significant (p>0.05) are masked in
grey. Corresponding correlations at 0.5° and monthly resolution are displayed in
Figure 2.A.4. (f) Spearman rank correlation between GPP and SIF at 0.5° and
monthly resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 As Figure 2.2 but for the anomalies from the mean seasonal cycle. For a-e, the
corresponding correlations at 0.5° and monthly resolution are shown in Figure 2.A.5. 16

2.4 Violin plots of Spearman rank correlation between VOD and GPP (green) and be-
tween VOD and SIF (blue) at 0.5° and monthly resolution for grid cells with a
dominant land cover fraction above 75%. Results are grouped according to the CCI
land cover classification and single frequency data sets are ordered along increasing
microwave frequency. The number of grid cells (n) is displayed above each graph.
Horizontal lines within the violins indicate quartiles. Values that are not significant
(p>0.05) are excluded. For the description of the land cover abbreviations see Ta-
ble 2.2, for the spatial distribution of grid cells see Figure 2.1h. Note that DNF is
not displayed since the analysis did not result in significant correlations for this land
cover type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 As Figure 2.2a-e but for the correlation between VOD and the residuals of the GPP-
SIF relationship at 0.5° and monthly resolution. . . . . . . . . . . . . . . . . . . . 18

2.6 Violin plots of Spearman rank correlation between GPP and VOD (green), ΔVOD
(yellow) or ΔVOD≥0 (orange) at 0.25° and 8-daily resolution. Results are displayed
for grid cells with a dominant land cover fraction above 75% and grouped according
to land cover (Table 2.2). n is the number of grid cells. Horizontal lines within the
violins indicate quartiles. Values that are not significant (p>0.05) are excluded. See
Figure 2.A.3 for the spatial map of the analyzed grid cells. . . . . . . . . . . . . . . 19

2.7 As Figure 2.6 but for the lag. Lag values are excluded if the lag is larger than half a
year or the correlation of the lagged time series is not significant (p>0.05). . . . . 20

x



LIST OF FIGURES

2.8 Time series (a-d) and scatter plots (e-g) at 8-daily resolution for a cropland-dominated
grid cell in West Sahel, located at 16.125W 14.625N, for the period 2009-2012 (lo-
cation is indicated in Figure 2.1f). (a) Skin temperature (T) and monthly sums of
precipitation (P). (b-d) VOD (b), ΔVOD (c), or ΔVOD≥0 (d) together with GPP.
Data are smoothed and scaled between their minimum and maximum for visualiza-
tion purposes. Note that the unscaled ΔVOD includes negative values. (e-g) Scatter
plots of scaled VOD variables against unscaled GPP for the same data as in (b-d). 21

2.A.1 Map of CCI land cover. For the land cover abbreviations see Tables 2.2 and 2.A.1.
Note that the color code is different from that in Figures 2.1h and 2.A.3. . . . . . 25

2.A.2 (a-g) Coefficient of quartile variation for VOD data sets (a-e), SIF (f) and GPP (g).
Data are scaled between the 5th and the 95th percentile. (a-f) r indicates the spatial
Spearman rank correlation between maps of GPP and VOD or SIF. All coefficients
are highly significant (p<0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.A.3 Map of CCI land cover for grid cells with a dominant land cover over 75% that are
shown in Figure 2.6. Note that grid cells are enhanced for visualization purposes. . 26

2.A.4 (a-e) Spearman rank correlation between GPP and VOD data sets at 0.5° and
monthly resolution. Not significant correlations (p>0.05) are masked in grey. . . . 27

2.A.5 As Figure 2.A.4 but for the correlation between the anomalies of GPP and VOD
data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.A.6 (a-e) Spearman rank correlation between GPP and ΔVOD data sets at 0.25° and
8-daily resolution. Not significant correlations (p>0.05) are masked in grey. . . . . 28

2.A.7 As Figure 2.A.6 but for the correlation between GPP and ΔVOD≥0 data sets. . . 28

3.1 Time series plot for a grid cell dominated by rainfed cropland (35.125°E, 15.125°S) for
different VOD data sets for the period 1/2009 to 12/2010: 8-daily FLUXCOM GPP
and a) GPP(V OD, ΔV OD), b) V OD and c) ΔV OD. GPP(V OD, ΔV OD) was
trained at this grid cell against FLUXCOM data for the period 1/2007 to 12/2008.
Data in (b) and (c) are scaled between 0 and 1 to aid visual comparison of the
temporal dynamics. (d) Monthly precipitation and 8-daily surface temperature. . . 40

3.2 Spearman rank correlation (r) between FLUXCOM GPP and GPP(V OD, ΔV OD)
for different VOD data sets for the testing period (AMSR-E: 1/2009 to 9/2011; AS-
CAT: 1/2009 to 12/2015). The analysis is based on data at 8-daily and 0.25° sam-
pling. GPP(V OD, ΔV OD) is trained at each grid cell separately against FLUXCOM
using data from the period 1/2007 to 12/2008. Correlations that are not significant
(p>0.05) are masked in grey. The median values denote the median of significant
correlations for each data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Leave-site-out cross validation for Spearman rank correlation (r) at monthly, 0.5° and
8-daily, 0.25° sampling. The analysis is based on the full signals of in situ FLUXNET
GPP and GPP estimates based on VOD or SIF. Labels on the x-axis indicate which
input variables are used for each model. Box plot whiskers extend to the 5th and 95th
data percentile. Abbreviations – mdnSIF : temporal grid cell median SIF ; ΔV OD:
temporal change in V OD between two consecutive observations; and mdnV OD:
temporal grid cell median V OD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 As Fig. 3.3 but for the anomalies of in situ FLUXNET GPP and GPP estimates
based on VOD or SIF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



LIST OF FIGURES

3.5 Difference in AIC between model setups with respect to AIC for GPP(V OD, ΔV OD,
mdnV OD) for each VOD data set. For SIF, the AIC difference between GPP(SIF )
and GPP(SIF , mdnSIF ) is very low (1.67) compared with VOD data sets and
therefore not displayed. The analysis is based on data at monthly, 0.5° or 8-daily,
0.25° sampling. Positive values indicate model improvement when using all three
variables as input compared to models with a lower number of input variables. . . 44

3.6 GAM Partial dependence plots for GPP(V OD, ΔV OD, mdnV OD) obtained during
upscaling (a-c) and histogram of input variables (d-f) for AMSRE_X at 8-daily and
0.25° sampling. Dashed lines in (a-c) indicate the confidence intervals. . . . . . . . 45

3.7 Spearman rank correlation (r) between GPP data sets (FLUXCOM, MODIS) and
upscaling for GPP(V OD, ΔV OD, mdnV OD) or GPP(SIF ). Data were trained
against in situ GPP estimates (FLUXNET) at 8-daily, 0.25° or monthly, 0.5° sam-
pling. a) Relative frequency of grid cells with significant and not significant cor-
relations with respect to all possible land grid cells at each resolution. Areas that
do not contain results relate to gaps obtained during masking for radio frequency
interference or to not produced pixels in the original data products. b) Violin plot
of significant correlations. Horizontal grey lines indicate correlation values of 0.5,
0.8 and 0.9. Dashed lines indicate the median (long dashes) and the 25th and 75th
percentile (short dashes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Mean annual GPP for the period 2007 to 2010: a) upscaling of GPP(V OD, ΔV OD,
mdnV OD) for VOD AMSRE_X, b) difference in mean annual GPP between FLUX-
COM and AMSRE_X c) difference in mean annual GPP between MODIS and AM-
SRE_X. Values in (b) and (c) are displayed between -1 and 1. d) Zonal mean of
mean annual GPP. Estimates for GPP(V OD, ΔV OD, mdnV OD) were produced
using data at 8-daily, 0.25° sampling. The area denoted by Min/Max represents the
minimum and maximum of the zonal means for the ten model runs obtained during
the uncertainty analysis for GPP(V OD, ΔV OD, mdnV OD) with VOD AMSRE_X. 47

3.9 Differences in mean annual GPP between AMSRE_X and FLUXCOM or MODIS
stratified along the aridity index. The analysis is based on the period 2007 to 2010
and uses 8-daily, 0.25° data. Mean annual GPP for AMSRE_X is computed using
GPP(V OD, ΔV OD, mdnV OD). Box plot whiskers represent the 5th and 95th data
percentile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.A.1 Temporal median maps for VOD (a-h), SIF (j) and GPP (i, k) data sets. . . . . . 53

3.A.2 FLUXNET2015 Tier 1 data set: (a) location of FLUXNET sites, (b) sum of available
observations per year and (c) temporal data coverage per site. The site IDs are shown
in Table 3.A.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.A.3 Analysis of window size: a) Spearman rank correlation (r) and b) root mean square
error (RMSE) for AMSRE_X at 8-daily, 0.25° sampling using different window
sizes between 5 to 15 time steps for the smoothing during the calculation of ΔV OD.
The model setup is similar to the temporal extrapolation experiment and uses V OD

and ΔV OD as input. Results for the window size 11 are highlighted in grey. For
comparison, the 25th, 50th and 75th percentile of the box plot for the window size
11 are displayed as red lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xii



LIST OF FIGURES

3.A.4 Root mean square error (RMSE, gCm−2d−1) between FLUXCOM GPP and GPP(V OD,
ΔV OD) for different VOD data sets for the testing period (AMSR-E: 1/2009 to
9/2011; ASCAT: 1/2009 to 12/2015). The analysis is based on data at 8-daily, 0.25°
sampling and uses data from the period 1/2007 and 12/2008 for training GPP(V OD,
ΔV OD) against FLUXCOM at each grid cell separately. The median of RMSE is
displayed for each data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.A.5 Site-specific evaluation of temporal extrapolation using Spearman rank correlation
(r) between the full signal of in situ FLUXNET GPP and GPP estimates based
on VOD or SIF. Models were trained using data from the years 2007 to 2008 and
tested during the remaining period. Input variables are SIF , V OD, ΔV OD or the
combination of V OD and ΔV OD as indicated on the x-axis. Box plot whiskers
extend to the 5th and 95th data percentile. . . . . . . . . . . . . . . . . . . . . . . 58

3.A.6 Leave-site-out cross validation for the index of agreement (IoA) at monthly, 0.5°
and 8-daily, 0.25° sampling. The analysis is carried out for the full signals of in
situ FLUXNET GPP and GPP estimates based on VOD or SIF. Labels on the
x-axis indicate which input variables are used for each model. Box plot whiskers
extend to the 5th and 95th data percentile. Abbreviations – mdnSIF : temporal
grid cell median SIF ; ΔV OD: temporal change in V OD between two consecutive
observations; and mdnV OD: temporal grid cell median V OD. . . . . . . . . . . . 58

3.A.7 As Fig. 3.A.6 but for the root mean square error (RMSE). . . . . . . . . . . . . . 59

3.A.8 Leave-site-out cross validation for the index of agreement (IoA) at monthly, 0.5°
and 8-daily, 0.25° sampling. The analysis is carried out for the anomalies of in situ
FLUXNET GPP and GPP estimates based on VOD or SIF. Labels on the x-axis
indicate which input variables are used for each model. Box plot whiskers extend to
the 5th and 95th data percentile. Abbreviations as in Fig. 3.A.6. . . . . . . . . . . 59

3.A.9 As Fig. 3.A.8 but for the root mean square error (RMSE). . . . . . . . . . . . . . 60

3.A.10 Leave-site-out cross validation for Spearman rank correlation (r). The analysis is
performed for the full signals of in situ FLUXNET GPP and GPP estimates based
on AMSR2 VOD or SIF. Labels on the x-axis indicate which input variables are
used for each model. Box whiskers extend to the 5th and 95th data percentile.
Abbreviations as in Fig. 3.A.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.A.11 As Fig. 3.A.10 but for the index of agreement (IoA). . . . . . . . . . . . . . . . . . 61

3.A.12 As Fig. 3.A.10 but for the root mean square error (RMSE). . . . . . . . . . . . . 61

3.A.13 Spatial map of Spearman rank correlation between the upscaled GPP(V OD, ΔV OD,
mdnV OD) and FLUXCOM GPP at 8-daily, 0.25° sampling. GPP(V OD, ΔV OD,
mdnV OD) is trained against in situ FLUXNET GPP estimates. Correlations that
are not significant are masked in grey. For each data set, the median of significant
correlations is displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.A.14 As Fig. 3.A.13 but for data at monthly, 0.5° sampling. . . . . . . . . . . . . . . . . 63

xiii



LIST OF FIGURES

3.A.15 Spearman rank correlation (r) between GPP data sets (FLUXCOM, MODIS) and up-
scaling of GPP(V OD, ΔV OD, mdnV OD) for AMSR2 VOD data sets or GPP(SIF).
Data were trained against in situ GPP estimates (FLUXNET) at 8-daily, 0.25° or
monthly, 0.5° sampling. a) Relative frequency of grid cells with significant and not
significant correlation with respect to all possible land grid cells at each resolution.
Areas that do not contain results relate to gaps obtained during masking or to not
produced pixels in the original data products. b) Violin plot of significant correla-
tions. Horizontal grey lines indicate correlation values of 0.5, 0.8 and 0.9. Dashed
lines denote the median (long dashes) and the 25th and 75th percentile (short dashes). 64

3.A.16 Standard deviation of mean annual GPP for ten model runs obtained during the
uncertainty analysis of GPP(V OD, ΔV OD, mdnV OD) for VOD AMSRE_X. The
models for each run were trained with data from 90% of the stations that were
randomly drawn. The analysis is based on the period 2012 to 2015 and uses data at
8-daily, 0.25° sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.A.17 Mean annual GPP for the period 2012 to 2015: a) upscaling of GPP(V OD, ΔV OD,
mdnV OD) for VOD AMSR2_X, b) difference in mean annual GPP between FLUX-
COM and AMSR2_X c) difference in mean annual GPP between MODIS and
AMSR2_X. Values in b) and c) are displayed between -1 and 1. d) Zonal mean
of mean annual GPP. Estimates for GPP(V OD, ΔV OD, mdnV OD) were produced
using data at 8-daily, 0.25° sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Partial dependency plot for GPPvodtemp for each input variable: (a) V OD, (b)
ΔV OD, (c) mdnV OD and (d) T2M . The model was trained with data from the
period 2003-2014. Dashed lines in (b) and (c) denote the 95% confidence interval.
The interaction between V OD and T2M (a,d), which represents a surface in the
3-dimensional space, is displayed as projection on the 2D plane for each of the two
input variables. For this, the parameter space was divided into 10 equally spaced
bins between minimum and maximum of the respective variable. The bin edges are
displayed as colored lines as indicated in the legend. . . . . . . . . . . . . . . . . . 74

4.2 Scatter plots of 8-daily in situ GPPfluxnet versus global GPP data sets (a) GP-
Pvodtemp, (b) GPPvod, (c) GPPfluxcom and (d) GPPmodis for the period 2003-
2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 (a): Pearson correlation between GPPvodtemp and GPPfluxcom. (b): Difference
between GPPvodtemp and GPPvod for Pearson correlation with GPPfluxcom. (c):
ubRMSE between GPPvodtemp and GPPfluxcom. (d): Difference between GP-
Pvodtemp and GPPvod for ubRMSE with GPPfluxcom. (e): Bias between GP-
Pvodtemp and GPPfluxcom. (f): Difference between GPPvodtemp and GPPvod for
the bias with GPPfluxcom. The unit for ubRMSE and bias is g C m-2 d-1. Areas
with non-significant correlations in (a) and (b) are marked in grey. The analysis is
computed over the whole study period (2003-2015). . . . . . . . . . . . . . . . . . . 76

4.4 Zonal mean of annual GPP for GPPfluxcom, GPPmodis, GPPvodtemp and GPPvod
for the study period 2003-2015. (a): Absolute latitudinal distribution. (b): Scaled
latitudinal distribution. To obtain zonal means, data were averaged over all grid
points of the same latitude. Scaled data were computed by dividing the latitudinal
distribution by the maximum of the latitudinal distribution for each data set. . . . 77

xiv



LIST OF FIGURES

4.5 Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis
and (a) GPPvod or (b) GPPvodtemp over the whole study period (2003-2015).
Shaded areas indicate the standard deviation over the aggregated grid cells. The
region is located in Europe, 5 to 15°E and 46 to 51°N, and was selected as an exam-
ple where the correlation analysis between GPP residuals and SPEI largely yield no
significant correlations. 8-daily data were smoothed to aid visual comparison. . . . 77

4.6 Hovmöller diagramm for zonal means of annual GPP anomalies (z-scores) for (a)
GPPvodtemp, (b) GPPfluxcom and (c) GPPmodis over the study period. Zonal
means were calculated by averaging data over all grid points of the same latitude. 78

4.7 Correlation between residuals of standardized GPP (GPPvodtemp-GPPfluxcom and
GPPvodtemp-GPPmodis) and SPEI. Non-significant correlations are indicated in
grey. (a,c): GPPvodtemp-GPPfluxcom, (b,d): GPPvodtemp-GPPmodis, (a,b): SPEI03
(short-term response), (c,d): SPEI12 (long-term response). Regions A-D: US corn-
belt (A), Argentina (B), Eastern Africa (C) and Eastern Australia (D). The analysis
is based on the whole study period (2003-2015). . . . . . . . . . . . . . . . . . . . . 78

4.8 Regional mean of standardized GPP values for regions as indicated in Figure 4.7
over the study period. Shaded areas denote the standard deviation for the regional
aggregated time series. Vertical grey areas indicate periods with different levels
of dryness conditions for regional aggregated SPEI12: SPEI12<-1 (dark grey), -
1<=SPEI12<0 (light grey) and SPEI12>=0 (white areas). Data were smoothed to
aid visual comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.A.1 Pre-analysis of correlation between in situ FLUXNET GPP and single sensor VOD
from L- and X-band. (a): Pearson correlation between FLUXNET GPP (mean
of GPP_DT_VUT_REF and GPP_NT_VUT_REF) and L-band VOD (SMOS
VOD-L, 7/2010–12/2014) and X-band VOD (AMSR-E VOD-X, 1/2007–9/2011).
Data were resampled to 8-daily or monthly values. The analysis was conducted only
for stations where both of the VOD data set are available (47 stations). For details
about the VOD datasets and their data processing, see Teubner et al. (2018). (b): As
in (a) but for the subset of forest land cover classes (ENF, DBF, EBF and MF). (c):
Composition of IGBP land cover classes for the stations used in this pre-analysis.
Abbreviations: GRA (Grasslands), CRO (Croplands), ENF (Evergreen Needleleaf
Forests), DBF (Deciduous Broadleaf Forests), EBF (Evergreen Broadleaf Forests),
SAV (Savannas), MF (Mixed Forests), WET (Permanent Wetlands), WSA (Woody
Savannas) and OSH (Open Shrublands). . . . . . . . . . . . . . . . . . . . . . . . . 88

4.A.2 Temporal median maps for (a) GPPvodtemp, (b) GPPfluxcom, (c) GPPvod, (d)
GPPmodis and (e) difference between the median maps of GPPvodtemp and GP-
Pvod. For GPPvodtemp and GPPvod, areas where both GPPfluxcom and GPP-
modis are missing were masked, since these data were not used during the analysis.
Data were computed over the whole study period (2003-2015). . . . . . . . . . . . 88

4.A.3 Location of FLUXNET Tier1 v1 stations within the period 2003 to 2014. The size
of the circles represents the number of available years for each station. The blue
rectangle denotes the location of the region in Europe used Figure 4.5. . . . . . . . 89

xv



LIST OF FIGURES

4.A.4 Scatterplot of annual GPP for GPPfluxnet versus (a) GPPvodtemp, (b) GPPvod,
(c) GPPfluxcom and (d) GPPmodis. Annual values were calculated from 8-daily
GPP for each data set and cover the FLUXNET period 2003-2014. . . . . . . . . . 89

4.A.5 Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis
and (a,c) GPPvod or (b,d) GPPvodtemp for the two regions US cornbelt (a,b; region
A) and Argentina (c,d; region B) from Figures 4.7, 4.8 and 4.A.7. The analysis is
based on the study period 2003-2015. Shaded areas represent the standard deviation
over the aggregated grid cells. 8-daily data were smoothed to aid visual comparison. 90

4.A.6 Hovmöller diagramm for zonal means of annual GPP anomalies (z-scores) for GP-
Pvod over the study period 2003-2015. . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.A.7 Correlation between residuals of standardized GPP (GPPvod-GPPfluxcom and GPPvod-
GPPmodis) and SPEI. Non-significant correlations are indicated in grey. (a,c):
GPPvod-GPPfluxcom, (b,d): GPPvod-GPPmodis, (a,b): SPEI03 (short-term re-
sponse), (c,d): SPEI12 (long-term response). Regions A-D: US cornbelt (A), Ar-
gentina (B), Eastern Africa (C) and Eastern Australia (D). Results are computed
based on the study period 2003-2015. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.A.8 Boxplot of residuals between standardized GPP values of GPPvodtemp and GPPflux-
com or GPPmodis along SPEI12 categories for the data in Figure 4.8. The intervals
for the different SPEI12 categories are given in the legend. Box whiskers indicate
1.5 of the interquartile range. The analysis is based on the whole study period
(2003-2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xvi



List of Tables

2.1 Data set overview. Acronyms: Enhanced Vegetation Index (EVI), Leaf Area Index
(LAI), MODIS band 7 - Middle Infrared Reflectance (MIR), Normalized Difference
Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Land
Parameter Retrieval Model (LPRM). . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 CCI land cover abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.A.1 CCI land cover abbreviations for classes that are shown in Figure 2.A.1 in addition
to the classes presented in Table 2.2. These classes are excluded from the analysis. . 25

2.A.2 Spatial similarity between maps of temporal correlations for Figure 2.2 (GPP-VOD),
Figure 2.A.6 (GPP-ΔVOD) and Figure 2.A.7 (GPP-ΔVOD≥0). Spatial similarity was
determined using Spearman rank correlation. All coefficients are highly significant
(p<0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Data set overview for VOD and GPP data sets. Acronyms – EVI: Enhanced Vegeta-
tion Index, fAPAR: fraction of Absorbed Photosynthetically Active Radiation, LAI:
Leaf Area Index, MIR: MODIS band 7 - Middle Infrared Reflectance, NDVI: Normal-
ized Difference Vegetation Index, NDWI: Normalized Difference Water Index, LPRM:
Land Parameter Retrieval Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.A.1 Overview of FLUXNET sites in the FLUXNET2015 Tier 1 data set. . . . . . . . . . 53

3.A.2 Spearman rank correlation between FLUXCOM GPP and different GPP estimates
developed per grid cell at 8-daily, 0.25° and monthly, 0.5° sampling. Models were
trained against FLUXCOM using data from the years 2007 and 2008, and tested with
data from the remaining period for each data set. Q25, Q50, and Q75 are the 25th,
50th and 75th percentile of significant correlations, respectively. sig (not_sig) stands
for the fraction of significant (not significant) correlations with respect to all possible
land grid cells at each resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.A.1 Overview of FLUXNET Tier1 v1 stations within the period 2003 to 2014. Land cover
from IGBP (International Geosphere–Biosphere Programme) is obtained from the
FLUXNET station metadata. Land cover abbreviations and number of stations per
land cover class sorted by station number: ENF (Evergreen Needleleaf Forests; 23),
GRA (Grasslands; 22), DBF (Deciduous Broadleaf Forests; 14), CRO (Croplands; 11),
EBF (Evergreen Broadleaf Forests; 9), WET (Permanent Wetlands; 9), OSH (Open
Shrublands; 7), MF (Mixed Forests; 6), SAV (Savannas; 6), WSA (Woody Savannas;
4) and CSH (Closed Shrublands; 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xvii



LIST OF TABLES

4.A.2 Leave-site-out cross validation for GPPvodtemp and GPPvod. The analysis was con-
ducted for the full signal as well as for the anomalies from the mean seasonal cycle.
Anomalies were calculated after model application. Values represent mean and stan-
dard deviation of the metrics over the cross validation results for each site. . . . . . 93

xviii



Chapter 1

Introduction

1.1 Introduction and motivation

Vegetation optical depth (VOD) has gained much attention in recent years due its capabilities in
vegetation monitoring. As VOD is sensitive to the vegetation water content, it has been employed
for deriving various applications including estimation of aboveground living biomass (Liu et al., 2011;
Chaparro et al., 2019; Wigneron et al., 2020), ecosystem scale isohydricity (Konings and Gentine,
2017), burned area modeling (Forkel et al., 2017, 2019) or potential for drought monitoring (Crocetti
et al., 2020), to name a few. The concept of relating VOD and biomass was first introduced by Liu
et al. (2011). Taking this concept a step further, VOD is assumed here to provide also a link to gross
primary production (GPP).

GPP is the flux of carbon dioxide uptake by plants though photosynthesis (Bonan, 2015). The
resulting carbohydrates are utilized by plants to build up biomass (which contributes to net primary
production, NPP) and to support autotrophic respiration (Ra):

GPP = NPP + Ra (1.1)

GPP plays a vital role in the global carbon cycle since the net uptake by plants acts as a natural
sink for atmospheric carbon dioxide (Bonan, 2015). Primary production presents the basis of the food
chain and is linked to the evolution of oxygen, which is released during photosynthesis (e.g., Bonan,
2015). In addition, carbon dioxide is the most commonly known greenhouse gas (Intergovernmental
Panel on Climate Change, 2018) and, therefore, understanding the terrestrial carbon cycle is of key
importance in view of climate change studies. For deriving GPP, a major challenge are the observed
uncertainties among GPP estimates. They are mostly, but not exclusively, found in the tropical region
(Beer et al., 2010; Anav et al., 2015), where the availability of in situ data is scarce (Pastorello et al.,
2020). This lack of in situ data in the tropics hampers model evaluation for this region (O’Sullivan
et al., 2020). To tackle the complexity of estimating GPP, different and independent methods are
necessary. Although various studies have been conducted with this regard over the time (e.g., Beer
et al., 2010; Anav et al., 2015; Sitch et al., 2015; MacBean et al., 2018; Badgley et al., 2019; O’Sullivan
et al., 2020; Zhang and Ye, 2021), the quantification of absolute GPP and the reduction of GPP
uncertainty at the global scale are still topics of ongoing research.

Methods for estimating GPP range from processed-based to data-driven models. Process-based
models describe the ecosystem’s carbon balance by simulating the underlying biogeochemical processes
(Bonan, 2015; Sitch et al., 2015). Data-driven models for estimating GPP often employ machine-
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learning or regression methods to estimate GPP (Tramontana et al., 2016; Jung et al., 2020) and
usually rely on optical remote sensing data as main input (e.g., Joiner et al., 2013; Jung et al., 2020).
These include the light-use efficiency model, where GPP is quantified based on how much of the
photosynthetically active radiation is absorbed by plants (Monteith, 1972; Running et al., 2004), and
solar induced fluorescence (SIF), where GPP is determined by the amount of fluorescence that is
emitted during photosynthesis (Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013; Sun
et al., 2018). In contrast to process-based models, data-driven methods that try to estimate the right-
hand side terms, i.e., the sink terms of equation 1.1, however, are often limited to in situ observations
and often focus on NPP alone (Clark et al., 2001a; Nunes et al., 2013; Campioli et al., 2016). Making
use of VOD from microwave satellite observations, the concept of the VOD-GPP model provides the
opportunity to study sink terms in the plant carbon cycle at a large scale and in addition presents an
independent, remote sensing-based dataset.

1.2 Theoretical background for VOD

In radiative transfer theory, VOD (or also referred to as τ) is a coefficient that determines the atten-
uation of radiation due to absorption and scattering as the signal travels through the vegetation layer
(Woodhouse, 2005):

τ = κeh (1.2)

where κe is the extinction coefficient and h the path through the volume.
With this definition, the transmissivity of the vegetation layer, which describes how much of the
incident radiation arrives at the end of the vegetation layer, can be written as (Woodhouse, 2005):

γv = e
− τ

cos(Θ) (1.3)

with the incidence angle Θ.
The retrieval of VOD, however, differs for active and passive microwave sensors, since the observed
physical quantities are different in two cases. For active microwave remote sensing, the concept of
deriving VOD is commonly described through the water cloud model (Attema and Ulaby, 1978). In
the water cloud model, the vegetation water content is treated as a cloud layer (Attema and Ulaby,
1978). The sensor emits a signal and detects the returned signal that has traveled through the
vegetation layer to the soil surface and back. The attenuation along the path is expressed through
the two terms optical depth τ and single scattering albedo ω (Woodhouse, 2005). The quantity
retrieved from radar observations is the normalized backscatter coefficient or normalized radar cross-
section σ0, which is related to the ratio of backscattered to incident power and depends on the object’s
dielectric properties, shape, orientation and roughness (Woodhouse, 2005). The backscatter coefficient
is composed of three terms - contribution of the soil, the vegetation layer and an interaction term - the
latter term is commonly considered negligible (Woodhouse, 2005). The formula for σ0 is then given
by (Attema and Ulaby, 1978; Woodhouse, 2005):

σ0 = γ2
vσ0

soil + σ0
v (1.4)

σ0 = γ2
vσ0

soil + cos(Θ)3ω

4 (1 − γ2
v) (1.5)
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with ω = κs
κe

, where κs is the backscattering coefficient.
For passive microwave remote sensing, radiation is detected that is emitted from the target object

itself according to its brightness temperature TB. TB defines the temperature that a blackbody would
have if the object had the same brightness as the blackbody. With the Rayleigh-Jeans law, TB can
be expressed as the product of the object’s physical temperature T and its emissivity � (Woodhouse,
2005). The detected signal travels through the vegetation layer only once. Total TB comprises three
terms, direct emissions from the surface TBs and the volume TBv (vegetation layer), and emissions
from the volume that are first scattered at the surface TBvs (Woodhouse, 2005):

TB = TBs + TBv + TBvs (1.6)

TBs = �sTsγv (1.7)

TBv = Tv(1 − ω)(1 − γv) (1.8)

TBvs = Tv(1 − ω)(1 − γv)Γγv (1.9)

with surface emissivity �s, surface temperature Ts, volume temperature Tv and surface reflectivity Γ.
Microwave frequencies that are commonly used for earth observation are L-band (1-2 GHz), C-

band (4-8 GHz), X-band (8-12 GHz) and Ku-band (12-18 GHz). Since the impact of the atmosphere
is small below 20 GHz or even negligible below approximately 10 GHz (Woodhouse, 2005), microwave
observations for these frequencies are considered independent of cloud cover (Woodhouse, 2005). This
provides an advantage over optical remote sensing data, especially in cloud-prone regions like the
tropics.

The relation between microwave frequency and size of the considered objects in the vegetation
layer plays an important role. Lower frequencies are more sensitive to large plant parts like trunks
and branches and exhibit a high penetration depth of the vegetation layer, while higher frequencies
correspond to small plant parts like twigs and leaves but show a low penetration depth (Woodhouse,
2005). All together and with a satellite revisit time of up to twice a day, VOD has the advantage
that it can provide large-scale observations for monitoring of vegetation dynamics at a relatively high
temporal resolution.

1.3 Research Questions

This PhD thesis evolves around the following questions, which were the basis for the analysis in the
three papers and the derivation of the conceptual model.

1. Can the relationship between VOD and aboveground biomass be used to derive a relationship
between VOD and GPP?

2. How can a potential relationship between VOD and GPP be described?

3. What input variables are required for estimating GPP based on VOD?

4. What impact does the microwave frequency have on the relationship between VOD and GPP?

5. Do active and passive microwave observations yield similar performance with regard to the GPP
estimation?

3
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6. Which frequency is best suited for this application?

7. Does the VOD-based GPP estimation hold true under variations in dry- and wetness conditions?

1.4 Paper summaries

1.4.1 Paper 1: Assessing the relationship between microwave vegetation optical
depth and gross primary production

The potential for estimating GPP based on VOD was investigated by comparing different VOD metrics
with GPP estimates, both at a local and global scale. These metrics include the bulk VOD signal
(VOD), the change in VOD (ΔVOD) and positive changes in VOD (ΔVOD≥0), and rely on approaches
that are used for estimating NPP from in situ biomass data. Although NPP presents only part of
the right-hand side of the equation for GPP (Eq. 1.1), it provides a first step for developing the
modeling approach. In addition to analyzing the potential of input variables, the question of which
frequency is best suited for this application arises. Microwave theory states that the frequency strongly
corresponds to the size of the considered objects (Woodhouse, 2005). Therefore, it can be assumed that
differences between various frequencies exist. To tackle this question, VOD from different frequencies,
ranging from L- to X-band, were analyzed. In addition to correlation analysis, the lag between the
variables was determined. Results showed that performance differed with microwave frequency, i.e.,
higher performance for X- than for L-band, and with land cover classes along a gradient of vegetation
density. The analysis of the temporal lag between GPP and VOD metrics demonstrated that none of
the metrics yielded a lag of zero and that the sign of the lags were opposite. This suggests that the
combination of VOD and ΔVOD is required for describing the relationship between VOD and GPP.

1.4.2 Paper 2: A carbon sink-driven approach to estimate gross primary produc-
tion from microwave satellite observations

For the model derivation, the concept of combining VOD and ΔVOD is further investigated. Gener-
alized Additive Models (GAM) were chosen as regression method. In GAM, the relationship between
each input variable and the response variable is estimated from the data itself and thus does not need
to be defined beforehand. This is of advantage, since the relationship between VOD and biomass,
which presents the overall basis for this approach, in not known a prior. Another aspect is how re-
gional differences in the vegetation layer are reflected in the model. Since the previous analysis yielded
a dependence with vegetation density, the grid cell median VOD (mdnVOD) was introduced as a proxy
for land cover. Which microwave frequency is best suited for this application, however, was still an
open question. Since performance was found to increase with frequency, the current study focused
on higher frequencies extending from C- to Ku-band. In order to assess the general applicability,
the model was evaluating against global GPP estimates at each single grid point. This gives a first
indication of the potential performance that can be expected. Results showed overall good model
performance. It was further found that mdnVOD is required as additional input, which appears to
support regional differences in the model. The resulting model formulation thus uses VOD, ΔVOD
and mdnVOD as input for estimating GPP. With regard to the used frequencies, results showed over-
all best performance for X-band VOD. An important further result here was that the model tends
to overestimate GPP compared to other global remote-sensing based GPP estimates, which was thus
analyzed in the third PhD paper.
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1.4.3 Paper 3: Impact of temperature and water availability on microwave-derived
gross primary production

Two key aspects in the VOD-GPP model have still not been investigated. This is firstly the tendency
for overestimation of annual GPP. It could be assumed that this might be related to the missing
temperature dependence for Ra. Like the relationship between VOD and biomass, the relationship for
the temperature dependence is difficult to determine explicitly and thus is further implemented via
GAM again. Considering the temperature dependence in the model formulation demonstrated that
an improvement in performance can be achieved in general. The response in the metrics, however, was
found to be regionally different. Further, the bias between VOD-based GPP and other remote-sensing
based global GPP products largely increased, especially in mid-latitudes. The second question is, how
the model performs under variation in dry- and wetness conditions. Since VOD is sensitive to the
vegetation moisture content, it was addressed if the estimation of GPP based on VOD holds true when
the plants experience variations in dry- and wetness. To test this, the residuals of source- (GPP from
optical remote sensing) and sink-driven (VOD-based GPP) approaches were analyzed with respect
to water availability as represented through the Standardized Precipitation and Evapotranspiration
Index (SPEI). In the ideal case, this analysis should yield no significant relationship. Analyzing
SPEI, non-significant correlations were observed for large areas of the world. In some regions, such as
Argentina and the US corn belt, however, a response to variations in SPEI was observed.

1.5 Contribution to the scientific community

The presented sink-driven modeling approach has the potential to provide additional information
than models based on optical remote sensing data. Given that both source and sink terms represent
robust estimates, it is possible to balance those two terms. Such an approach may contribute to our
understanding and description of processes in the carbon cycle, e.g., in terms of aboveground versus
belowground dynamics or allocation in general. In addition, it provides the possibility to further our
knowledge about the response of vegetation to environmental changes at the global scale.
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Chapter 2

Assessing the relationship between
microwave vegetation optical depth
and gross primary production

2.1 Abstract

At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through pho-
tosynthesis is commonly estimated through vegetation indices or biophysical properties derived from
optical remote sensing data. Microwave observations of vegetated areas are sensitive to different com-
ponents of the vegetation layer than observations in the optical domain and may therefore provide
complementary information on the vegetation state, which may be used in the estimation of Gross Pri-
mary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD),
a biophysical quantity derived from microwave observations, is not yet known. This study aims to
explore the relationship between VOD and GPP. VOD data were taken from different frequencies
(L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced
Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave
Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from
various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-
Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2).
FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical
satellite data, while SIF observations present a measure of photosynthetic activity and are often used
as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time
series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show
widespread positive correlations between VOD and GPP with some negative correlations mainly oc-
curring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD
and GPP were similar or higher than between VOD and SIF. When comparing the three variables
for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than
for ΔVOD or ΔVOD≥0 in case of sparsely to moderately vegetated areas and evergreen forests, while
the opposite was true for deciduous forests. Results suggest that original VOD time series should be
used jointly with changes in VOD for the estimation of GPP across biomes, which may further benefit
from combining active and passive VOD data.
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2.2 Introduction

Vegetation plays an important role in the Earth system as plants take up atmospheric carbon dioxide
through photosynthesis and transport water from the soil into the atmosphere through transpiration
(Lambers et al., 2008). In addition, vegetation can influence the Earth’s surface energy balance through
differences in surface albedo compared to bare soil or snow cover, which is especially pronounced for
boreal forests (Bonan, 2008). Therefore, monitoring the vegetation state in terms of photosynthetic
activity as well as plant water status is of importance for hydrological, ecological and climate change
applications (Bonan, 2015).

The uptake of atmospheric carbon dioxide by vegetation through photosynthesis is commonly
referred to as Gross Primary Production (GPP) and is the largest carbon flux in the global carbon
cycle (Ciais et al., 2013). GPP can be determined at site level from eddy covariance measurements
of carbon dioxide net exchange, which is partitioned into GPP and ecosystem respiration (Baldocchi
et al., 2001; Reichstein et al., 2005; Jung et al., 2011; Lasslop et al., 2012). Another approach is the
biometric method, which combines estimates of plant growth, chamber flux measurements and stock
inventories (Campioli et al., 2016). GPP can be assessed from local to global scales using process-
based models that describe the canopy light absorption and the energy and enzyme limitations of the
carboxylation rate to estimate gross carbon assimilation (e.g. Farquhar et al., 1980; Collatz et al., 1992).
However, current process-based models show large uncertainties because of a limited understanding
of the processes that are involved in photosynthesis (Rogers et al., 2017). Alternatively, data-driven
approaches that combine satellite observations with empirical models can be used to estimate GPP
at large scales (Beer et al., 2010).

Most of the approaches to estimate GPP from satellite observations use optical data to charac-
terize biophysical properties or photosynthetic activity. Biophysical properties such as the Fraction
of Absorbed Photosynthetically Active Radiation (FAPAR) are used in light-use efficiency models
to estimate GPP, assuming a linear relationship between FAPAR and GPP which is modulated by
temperature and water stress (Monteith, 1972; Nemani et al., 2003). Additionally, machine learn-
ing algorithms, driven by meteorological and/or satellite data, have been used to upscale site-level
observations of GPP (Beer et al., 2010; Jung et al., 2011; Tramontana et al., 2016). Alternatively,
Solar-Induced chlorophyll Fluorescence (SIF), an estimate of photosynthetic activity, has been pro-
posed as a global proxy for GPP in recent years (Frankenberg et al., 2014; Guanter et al., 2014; Damm
et al., 2015; Zhang et al., 2016b).

Optical remote sensing data, however, are often affected by clouds and aerosols (Myneni et al.,
2002; Forkel et al., 2013) and sun-sensor geometry (Dorigo, 2012; Morton et al., 2014). A common
method to reduce the influence of cloud cover on optical data is temporal compositing (Huete et al.,
2011; Holben, 1986), which decreases the native temporal resolution. Alternatively, time series filtering
can be applied (Chen et al., 2004).

In contrast to optical data, microwave radiation below a frequency of 10 GHz is less influenced by
clouds and is independent of the sun as source of illumination (Woodhouse, 2005). Microwave satellite
observations over vegetation are thus able to provide crucial information in areas with extensive cloud
cover like the tropics or high latitudes. The penetration depth of the microwave radiation into the
vegetation canopy depends on frequency, dielectric properties, size and geometry of the interacting
vegetation parts. As such, microwave observations from different frequencies theoretically contain
information from different parts of the vegetation (Woodhouse, 2005). Whereas high frequencies
(short wavelengths) predominantly interact with small structures like leaves and twigs at the top of the
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vegetation layer, low frequencies (long wavelengths) can penetrate deeper into the vegetation and are
more sensitive to large structures like branches or trunks (Woodhouse, 2005). Accordingly, microwave
radiation exhibits a higher penetration depth than optical radiation due to its longer wavelength,
and should theoretically be better suited for monitoring denser canopies, as the observed signal does
not saturate as quickly as for optical sensors (Woodhouse, 2005; Dorigo et al., 2007). Therefore,
microwave satellite observations have the potential to provide valuable information on the vegetation
state complementary to optical satellite data which are traditionally used for estimating GPP.

Microwave Vegetation Optical Depth (VOD) describes the attenuation of radiation due to scat-
tering and absorption within the vegetation layer, which is caused by the water contained in the
vegetation (Woodhouse, 2005). At low biomass, VOD is linearly related to the vegetation water con-
tent (VWC; expressed in kg/m2) (Jackson and Schmugge, 1991; Woodhouse, 2005). In addition, VOD
can be related to aboveground living biomass (Liu et al., 2015; Tian et al., 2016) and to Leaf Area
Index (LAI), especially in crop- and grasslands (Zribi et al., 2011; Kim et al., 2012; Sawada et al.,
2015).

VOD data have been analyzed for different applications such as long-term trends in biomass
(Andela et al., 2013; Liu et al., 2013a,b, 2015), forest loss (Van Marle et al., 2016), phenology metrics
(Jones et al., 2011, 2012), vegetation water stress (Miralles et al., 2016), evaporation retrievals (Miralles
et al., 2011; Martens et al., 2016) and ecosystem resilience (Verbesselt et al., 2016). However, short-
term variations in VOD have not been assessed with regard to GPP.

The aim of this study is to explore the relationship between VOD and GPP and assess if VOD can
provide additional information about GPP on top of what is provided by SIF. In addition, this study
investigates the effect of different microwave frequencies (between 1 and 10 GHz) and of active and
passive sensors (hereafter referred to as active and passive VOD) on the relationship between VOD
and GPP.

2.3 Data and methods

2.3.1 Vegetation remote sensing data

The analysis is based on five VOD data sets, upscaled GPP estimates, and SIF observations (Table 3.1).
The data sets have different temporal coverage with a common overlap of about one year. The period
from January 2007 to December 2015 was selected in order to obtain a minimum number of four years
of overlap with the GPP data set.

VOD ASCAT

Active microwave VOD data were retrieved from microwave backscatter measurements of the Advanced
Scatterometer (ASCAT) onboard the meteorological operational satellite A (MetOp-A). ASCAT mea-
sures backscatter at 5.25 GHz (C-band) in vertical co-polarization. The retrieval of VOD is based on
slope estimates of the angular backscatter dependency, which are calculated during the soil moisture
retrieval using the TU-Wien change detection algorithm. VOD is obtained by relating the angular
sensitivity of measured backscatter to the sensitivity of modelled bare soil backscatter (Melzer, 2013;
Vreugdenhil et al., 2016, 2017) and, therefore, represents a measure of volume scattering due to vege-
tation relative to bare soil volume scattering. VOD is derived jointly from measurements in ascending
and descending mode (9:30 a.m./p.m. equatorial crossing).
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VOD AMSR-E

Measurements at 6.9 GHz (C-band) and 10.7 GHz (X-band) were used from the Advanced Microwave
Scanning Radiometer for Earth Observation System (AMSR-E). For both frequencies, VOD was ob-
tained with the Land Parameter Retrieval Model (LPRM) v06 (van der Schalie et al., 2017). The
algorithm uses a radiative transfer model (Mo et al., 1982) and includes an analytical solution for VOD
using the Microwave Polarization Difference Index (MPDI) (Meesters et al., 2005). LPRM retrieves
VOD and soil moisture simultaneously under the assumption of a globally constant single scattering
albedo and further assumes that soil and canopy temperature are similar (Owe et al., 2001). Since the
latter assumption generally does not hold for daytime observations, we only used observations from
the descending mode for this analysis (1:30 a.m. equatorial crossing).

VOD SMOS

VOD from the Soil Moisture Ocean Salinity (SMOS) radiometer, which provides observations at
1.4 GHz (L-band), was also retrieved with the LPRM v06 (van der Schalie et al., 2016, 2017). Only data
from the ascending mode were analyzed (6 a.m. equatorial crossing) as soil and canopy temperatures
are usually more similar in the morning than in the late afternoon although seasonal and latitudinal
variations exist.

VOD merged

In addition to the single frequency data sets, a merged passive microwave VOD data set developed
by Liu et al. (2015) was included in this analysis. For the period 2007-2012, the data set comprises
observations from AMSR-E (6.9 GHz, C-band), WindSat (6.8 GHz, C-band), and the FengYun-3B
Microwave Radiometer Imager (10.7 GHz, X-band). Prior to merging, the single sensor data sets were
rescaled by applying the cumulative distribution function (CDF) matching technique with AMSR-E
as the reference (Liu et al., 2009).

GPP FLUXCOM

The FLUXCOM GPP data set presents an upscaling of flux tower measurements based on multiple
machine learning algorithms and satellite data (Tramontana et al., 2016). Different remotely sensed
data in the optical domain from the Moderate Resolution Imaging Spectroradiometer (MODIS) were
used as input, including the Enhanced Vegetation Index (EVI), LAI, band 7 - Middle Infrared Re-
flectance (MIR), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water
Index (NDWI) (Tramontana et al., 2016).

SIF GOME-2

The GOME-F v26 SIF data were obtained from the Global Ozone Monitoring Experiment-2 (GOME-2)
sensor. The retrieval is based on the filling-in of Frauenhofer lines, which is caused by the chlorophyll
fluorescence emitted from the Earth’s surface (Joiner et al., 2013). The algorithm uses principal
components analysis and radiative transfer theory to determine SIF at 740 nm (Joiner et al., 2013,
2014, 2016). In this study, SIF observations from the MetOp-A platform were used.
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Table 2.1: Data set overview. Acronyms: Enhanced Vegetation Index (EVI), Leaf Area Index (LAI),
MODIS band 7 - Middle Infrared Reflectance (MIR), Normalized Difference Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI), and Land Parameter Retrieval Model (LPRM).
Name Data set Period used Frequency/

wavelength/
data input

Spatial
resolution

Temporal
resolution

Type Method/
algorithm

Reference

SMOS SMOS 7/2010 - 12/2015 1.4 GHz 0.25° Daily Passive
microwave

LPRMv06 van der Schalie et al. (2017)

ASCAT ASCAT 1/2007 - 12/2015 5.25 GHz 12.5 km Daily Active
microwave

TU-Wien
change
detection

Melzer (2013);
Vreugdenhil et al. (2016, 2017)

AMSRE_C AMSR-E 1/2007 - 9/2011 6.9 GHz 0.25° Daily Passive
microwave

LPRMv06 van der Schalie et al. (2017)

AMSRE_X AMSR-E 1/2007 - 9/2011 10.7 GHz 0.25° Daily Passive
microwave

LPRMv06 van der Schalie et al. (2017)

VODmerged AMSR-E,
WindSat,
FY-3B

1/2007 - 9/2011,
1/2007 - 6/2012,
11/2010 - 12/2012

6.9 GHz,
6.8 GHz,
10.7 GHz

0.25° Daily Passive
microwave

LPRMv05 Liu et al. (2015)

GPP FLUXCOM 1/2007 - 12/2015 MODIS EVI,
LAI, MIR,
NDVI, NDWI

10 km 8-daily Optical Machine
learning

Tramontana et al. (2016)

SIF GOME2_F v26 1/2007 - 12/2015 740 nm 0.5° Monthly Optical Joiner et al. (2013, 2014)

2.3.2 Ancillary data

CCI land cover

The European Space Agency (ESA) Climate Change Initiative (CCI) global land cover data set v1.6.1
was used for identifying homogenous grid cells and stratifying results according to land cover. The
data set is derived from Medium Resolution Imaging Spectrometer (MERIS) surface reflectance time
series and has a spatial resolution of 300 m (Bontemps et al., 2013). The maps are available for three
epochs that cover the periods 1998-2002, 2003-2007, and 2008-2012, respectively. In this study, the
map for the period 2008-2012 was used as it falls within the overall data period.

GPCP

Precipitation data from the Global Precipitation Climatology Project (GPCP) are displayed as refer-
ence in the time series plot. GPCP 1DD version 1.2 provides daily precipitation estimates at 1° spatial
resolution (Huffman et al., 2001). The precipitation estimates are produced from satellite data in the
high frequency microwave (>10 GHz) to infrared region in combination with gauge data (Huffman
et al., 2001).

ERA-Interim

Skin temperature and snow depth from ERA-Interim were used to mask VOD. ERA-Interim is the
current global atmospheric reanalysis produced by the European Centre for Medium-Range Weather
Forecasts for the period from 1979 onwards (Dee et al., 2011). Data are assimilated using a 4-
dimensional variational analysis. The horizontal resolution is about 0.7° at the equator.

Topographic complexity

Topographic complexity was used to mask VOD during the analysis of homogeneous grid cells. It is
described by the standard deviation of elevation within a grid cell. A map of topographic complexity
is available as ancillary data for the ESA-CCI soil moisture v02.2 data set (Dorigo et al., 2015) with
a spatial resolution of 0.25°. The topographic complexity is computed from the USGS 30-Arc-Second
Global Elevation Data Set (GTOPO30) (USGS, 1996).
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2.3.3 Variables for relating VOD to GPP

In this study, three variables for comparing VOD with GPP are investigated: (1) original time series
of VOD, (2) change in VOD (ΔVOD), and (3) positive changes in VOD (ΔVOD≥0). The latter
two variables treat VOD as a proxy for aboveground biomass of the vegetation layer, which includes
leaves and woody components. Liu et al. (2015) showed that the relationship between VOD and forest
biomass data is monotonically increasing, which makes VOD a suitable proxy for biomass. Changes
in VOD may thus relate to changes in biomass and hence to Aboveground Net Primary Production
(ANPP), which contributes to total Net Primary Production (NPP).

1) Original VOD time series: For crop- and grasslands, VOD is proportional to total VWC (Jackson
and Schmugge, 1991; Woodhouse, 2005) and thus scales with LAI (Zribi et al., 2011; Kim et al.,
2012; Sawada et al., 2015), which in turn is related to GPP (Suyker et al., 2005; Gitelson et al.,
2014). The original time series of VOD may thus be related to GPP.

2) ΔVOD: For forests, ANPP is commonly estimated through biomass changes between two con-
secutive measurements (Clark et al., 2001a; Campioli et al., 2011; Nunes et al., 2013; Wagner
et al., 2013a; Campioli et al., 2016). Therein, biomass changes are determined from changes in
stem circumference, which are converted to whole-tree biomass using allometric relations, and
from litter traps or LAI. In this study, this method is adopted by calculating the change in VOD.

ΔV OD(t) = V ODt − V ODt−1

where ΔVOD(t) is the change in VOD at time t, and VODt and VODt−1 are VOD observations
at time t and t-1, respectively.

3) ΔVOD≥0: For grasslands, common metrics for determining annual ANPP include peak standing
biomass, difference between maximum and minimum standing biomass, sum of positive biomass
changes with negative values set to zero, and change in biomass (Scurlock et al., 2002). These
metrics are designed for a low number of observations as the sampling of herbaceous vegetation
is destructive and is often carried out once per growing season. Since the study focuses on the
temporal agreement instead of annual metrics and the change in VOD is already analyzed as
the second variable, the method of positive biomass changes is used as third variable.

ΔV OD≥0(t) =

ΔV OD(t) if ΔVOD(t) ≥ 0

0 otherwise

In order to compare the results of all three variables, changes in VOD (ΔVOD and ΔVOD≥0) are
also compared with the FLUXCOM GPP data set although, conceptually, they should relate more
closely to NPP than GPP. However, direct measurements of large-scale NPP are not possible and,
therefore, NPP is often derived from remote sensing-based GPP estimates using either a constant
NPP:GPP ratio at annual time scales (Waring et al., 1998) or the difference between GPP and au-
totrophic respiration at shorter time scales (Running et al., 2004; Zhao et al., 2005). For this reason,
VOD variables in this study are related to GPP and not to NPP.
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Table 2.2: CCI land cover abbreviations.

Abbreviation CCI land cover class

CRO Cropland, rainfed
EBF Tree cover, broadleaved, evergreen, closed to open (>15%)
DBF Tree cover, broadleaved, deciduous, closed to open (>15%)
ENF Tree cover, needleleaved, evergreen, closed to open (>15%)
DNF Tree cover, needleleaved, deciduous, closed to open (>15%)
SHR Shrubland
GRA Grassland

SPARSE Sparse vegetation (tree, shrub, herbaceous cover) (<15%)

2.3.4 Data preparation

The global data sets of VOD and GPP were resampled to a common resolution of 8 days and 0.25°.
Resampling was performed by averaging over the 8-day period for VOD data sets or over the grid
points within each 0.25° by 0.25° grid cell for GPP. Prior to the resampling of the daily VOD data sets,
the data were masked for conditions of frozen soil or snow based on ERA-Interim. Observations were
excluded if the daily mean skin temperature was ≤0 °C or snow cover was present. For consistency
with the VOD data sets, GPP and SIF were also masked accordingly. Passive microwave observations
can be affected by radio frequency interference (RFI), which is caused by artificial sources of radiation
and hence is not related to land surface properties (Li et al., 2004; Njoku et al., 2005). Therefore,
passive VOD data were additionally masked for RFI. For ASCAT, negative values can occur due to
a lower sensitivity of the modelled bare soil backscatter compared to the observed backscatter in the
angular dependency (Vreugdenhil et al., 2016). These negative values were not set to zero in order to
avoid introducing a bias. For the comparison with SIF observations, GPP and VOD data sets were
further resampled to monthly and 0.5° resolution using temporal and spatial means, respectively.

Land cover data were converted into fractional land cover at 0.25° (or 0.5°) resolution using the
level 1 legend of the CCI classification scheme. The resulting map of dominant land cover at 0.25°
resolution is displayed in Figure 2.A.1. The corresponding abbreviations are summarized in Tables 2.2
and 2.A.1. For global correlation maps, grid cells with a dominant land cover class of permanent
snow/ice or water were systematically excluded.

For stratifying the results according to land cover, only homogeneous grid cells were evaluated in
order to minimize the influence of pixel heterogeneity. Using the ESA CCI land cover map, a grid cell
was considered homogeneous if the fraction of dominant land cover within a 0.25° by 0.25° grid cell
exceeded an arbitrary threshold of 75%. Additionally, grid cells were discarded if either topographic
complexity or percentage of water bodies were higher than 10% following Draper et al. (2012) and
Dorigo et al. (2015), since both factors have a strong impact on the emitted or reflected microwave
signal (Owe et al., 2008).

Data smoothing was applied in two cases: 1) prior to calculating changes in VOD (ΔVOD and
ΔVOD≥0) and 2) for visualization purposes in the time series plots. The smoothing was performed
using a Savitzky-Golay filter of order three with a window size of 11 observations.

2.3.5 Statistical analysis

Linear relationships were assessed using correlation analysis. Prior to the correlation analysis, the
assumption of normality was tested following D’Agostino (1971) and D’Agostino and Pearson (1973).
As not all grid cell data were normally distributed (p>0.05), the non-parametric Spearman rank
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correlation was used instead of the parametric Pearson correlation. Due to this absence of normal
distribution for some grid cell data, non-parametric measures were used when analyzing full-length
time series data: the median for displaying the global distribution of the data sets and the coefficient
of quartile variation (CQV, Kokoska and Zwillinger, 2000) for assessing signal variability. CQV is
calculated using the 25th (Q1) and the 75th (Q3) percentile:

CQV = (Q3 − Q1)/(Q3 + Q1)

In addition to the zero-lagged correlation analysis, time lags for which the cross-correlations max-
imized were calculated as an additional measure to determine how well the signals match. Results for
homogeneous grid cells are displayed as violin plots, which are similar to box plots but visualize the
kernel estimation of the data distribution.

To compare the data sets independent of the strong seasonal signals that affect vegetation proper-
ties in many regions, anomalies relative to the mean seasonal cycle were calculated. The mean seasonal
cycles were obtained from the 8-daily or monthly time series by averaging over each valid day in a year
within the study period. Due to the relatively short data periods, no detrending was applied prior to
calculating the mean seasonal cycles.

Residuals of the GPP-SIF relationship were analyzed to assess the potential use of VOD for
estimating GPP. Residuals were calculated using a linear regression model following Guanter et al.
(2014) and Damm et al. (2015). The regression models were evaluated for each grid cell separately
with SIF as predictor variable. For grid cells with a significant regression (p<0.05), residuals were
obtained as the difference between the observed and the SIF-based estimate of GPP.

In addition to temporal correlations, spatial correlations were calculated to assess the similar-
ity between maps. Since the spatial data were not normally distributed (p>0.05), Spearman rank
correlation was used.

2.4 Results

2.4.1 Global patterns of VOD, GPP and SIF

Temporal median values of VOD, GPP and SIF reveal similar spatial patterns (Figure 2.1a-g), although
spatial coverage of SMOS is reduced due to RFI masking. The spatial agreement with GPP is highest
for SIF (r=0.87), followed by the passive VOD data sets (0.73<r<0.79) and is lowest for ASCAT
(r=0.47). In general, regions of high VOD, i.e. high biomass, coincide with highly productive regions,
which are primarily located in the tropics. In addition, high values are also found at high latitudes.
In these regions, data masking due to low temperature and snow results in wintertime data gaps,
which in turn increases temporal median values as they represent medians over the growing season
only. Nevertheless, these relatively high values of productivity or VOD at high latitudes are mainly
consistent across data sets.

Considering the absolute values of the VOD data, the data range differs between the data sets,
which relates on the one hand to differences in the retrieval algorithm and version number and on the
other hand to differences in sensor frequency. Since the focus of this study, however, is the temporal
agreement between the data sets, differences in the absolute values were not further analyzed.

Global temporal correlations between the original VOD time series and GPP at lag zero reveal
positive agreement across large areas (Figure 2.2a-e). However, also some regions with negative
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Figure 2.1: (a-g) Temporal median value of VOD data sets (a-e), SIF (f) and GPP (g). VOD is
dimensionless, GPP is in gCm−2d−1 and SIF in mWm−2nm−1sr−1. For visualization purposes, each
data set is scaled between the 5th and the 95th percentile. (a-f) r denotes the spatial Spearman rank
correlation between maps of temporal medians of GPP and VOD or SIF. All coefficients are highly
significant (p<0.001). (h) Map of CCI land cover grid cells with a dominant land cover over 75% that
correspond to the analyzed grid cells in Figure 2.4. The center of the red circle marks the location of
the grid cell shown in Figure 2.8. Note that the size of the grid cells is enhanced for clearer visibility.

correlations are observed. For ASCAT, negative correlations are found in Central America, South
America, Africa and Southeast Asia. The passive VOD data sets show negative correlations mainly in
South America (in particular in the Amazon) and Southeast Asia. Although the results for different
passive VOD data sets are similar in most areas, deviations from this behavior are found for SMOS
and the merged VOD. For SMOS, negative correlations in central Africa coincide with those for
ASCAT. For the merged VOD, predominantly positive correlations with GPP are observed in the
Amazon, which contrasts with the negative values found for the other passive VOD data sets and may
be related to differences in the algorithm version. Compared to the VOD data sets, the correlation
between GPP and SIF (Figure 2.2f) is positive everywhere and on average much stronger. Nevertheless,
also regions with no significant correlations (p>0.05) occur, which are mainly located in the tropics
and in Australia. In the tropics, both GPP and SIF exhibit low variability, while the opposite, i.e.
high variability for both data sets, is found in Australia (Figure 2.A.2).

Correlations between the anomalies of VOD and GPP (Figure 2.3a-e) also exhibit predominantly
positive correlations. On average, the correlations are lower in magnitude than for the original time
series but also show a lower number of negative values. Regions with relatively high correlations for
the anomalies coincide with regions of high temporal agreement for the original time series, while
some regions with negative correlations for the original time series result in no significant correlations
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Figure 2.2: (a-e) Spearman rank correlation between GPP and VOD data sets at 0.25° and 8-daily
resolution. Correlations that are not significant (p>0.05) are masked in grey. Corresponding corre-
lations at 0.5° and monthly resolution are displayed in Figure 2.A.4. (f) Spearman rank correlation
between GPP and SIF at 0.5° and monthly resolution.

Figure 2.3: As Figure 2.2 but for the anomalies from the mean seasonal cycle. For a-e, the corre-
sponding correlations at 0.5° and monthly resolution are shown in Figure 2.A.5.

for the anomalies. Highest correlation coefficients are observed in Australia. The correlations for
the anomalies of GPP and SIF (Figure 2.3f) are of similar strength as the correlations between the
anomalies of GPP and VOD.
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Figure 2.4: Violin plots of Spearman rank correlation between VOD and GPP (green) and between
VOD and SIF (blue) at 0.5° and monthly resolution for grid cells with a dominant land cover fraction
above 75%. Results are grouped according to the CCI land cover classification and single frequency
data sets are ordered along increasing microwave frequency. The number of grid cells (n) is displayed
above each graph. Horizontal lines within the violins indicate quartiles. Values that are not significant
(p>0.05) are excluded. For the description of the land cover abbreviations see Table 2.2, for the spatial
distribution of grid cells see Figure 2.1h. Note that DNF is not displayed since the analysis did not
result in significant correlations for this land cover type.

2.4.2 Temporal agreement with respect to SIF

The direct comparison of correlations between VOD and either GPP or SIF at homogeneous grid
points (Figure 2.4) shows that the temporal agreement between VOD and SIF is similar to that found
between VOD and GPP. In most cases, however, the median correlation coefficient is lower for the
correlation between VOD and SIF than between VOD and GPP. This is especially pronounced for
sparsely vegetated grid cells, which are mostly located in Australia (see Figure 2.1h).

In order to assess if VOD can provide additional information about GPP on top of that provided
by SIF, VOD was correlated with the residuals of the GPP-SIF relationship (Figure 2.5). The spatial
maps reveal mainly positive correlations with negative correlations in the same areas as for the original
time series but show a larger number of not significant correlations. In those areas where correlations
are significant, VOD can explain variations in GPP that are not expressed through SIF using linear
regression.

2.4.3 Comparison of the three variables for relating VOD to GPP

For the comparison of the three variables with GPP, only grid cells that resulted in significant correla-
tions for all three variables are shown in Figure 2.6. For shrub-, crop-, grassland and sparse vegetation,
all three variables yielded consistent, mainly positive correlations. Median values are generally lowest
for the correlation between SMOS and GPP and appear to increase with sensor frequency. In most
cases, the original VOD time series result in higher median correlations with GPP than the changes
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Figure 2.5: As Figure 2.2a-e but for the correlation between VOD and the residuals of the GPP-SIF
relationship at 0.5° and monthly resolution.

in VOD. Highest median correlations are observed for shrubland for both frequencies of AMSR-E.
Comparing the changes in VOD, results show that ΔVOD≥0 generally leads to higher correlations
than ΔVOD.

For forests, results are not as consistent as for the sparsely to moderately vegetated areas. Never-
theless, forests also show on average a lower magnitude of correlation between SMOS and GPP than
for the remaining VOD data sets. Similar as for the sparsely to moderately vegetated areas, evergreen
needleleaf forests exhibit generally higher correlations for the original VOD time series than for ΔVOD
and ΔVOD≥0. In contrast, deciduous forests mainly yield higher median correlations for ΔVOD and
ΔVOD≥0 than for the original VOD time series. Evergreen broadleaf forests, which exhibit low signal
variability (see Figure 2.A.2) and a high number of negative correlations, do not show a consistent
pattern for the three variables. Comparing only the changes in VOD for all forests, median correla-
tions tend to be higher for ΔVOD than for ΔVOD≥0 and thus show the opposite behavior as for the
sparsely to moderately vegetated areas.

The spatial distributions of the correlations between GPP and the three VOD variables (Fig-
ures 2.2, 2.A.6 and 2.A.7) tend to complement each other. For grid points where the original VOD
time series results in high correlations, ΔVOD and ΔVOD≥0 have lower correlations and vice versa.
Since ΔVOD and ΔVOD≥0 both represent changes in VOD, their spatial correlation patterns with
GPP are more similar compared to the correlation pattern between original VOD time series and GPP
(Table 2.A.2).

The lag analysis (Figure 2.7) is based on the same grid cells as in Figure 2.6. On average, the
original VOD time series follow the GPP signal: changes in GPP are reflected with some delay by
subsequent changes of the VOD signal. Apart from the broadleaf forests, all land cover classes exhibit
median lag values ranging between 0 and 50 days. For ASCAT in deciduous broadleaf forest, the half a
year’s lag corresponds to the strong negative correlations found before for the zero-lagged correlations
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Figure 2.6: Violin plots of Spearman rank correlation between GPP and VOD (green), ΔVOD (yellow)
or ΔVOD≥0 (orange) at 0.25° and 8-daily resolution. Results are displayed for grid cells with a
dominant land cover fraction above 75% and grouped according to land cover (Table 2.2). n is the
number of grid cells. Horizontal lines within the violins indicate quartiles. Values that are not
significant (p>0.05) are excluded. See Figure 2.A.3 for the spatial map of the analyzed grid cells.

(Figure 2.6). In contrast to the positive lag found for the original VOD time series, the lag values for
ΔVOD and ΔVOD≥0 are negative, which indicates that changes in VOD generally precede the GPP
signal. In some cases, as for example in the deciduous broadleaf forest for AMSRE_C, AMSRE_X
and the merged VOD, the absolute value of the median lag is smaller for ΔVOD and ΔVOD≥0 than
for the original VOD time series. In these cases, calculating the change in VOD leads to a closer
temporal agreement with GPP, which corresponds to the higher correlation coefficients found for the
zero-lagged correlations.

This shift from positive to negative lag values for the different variables is further illustrated in
Figure 2.8 for a rainfed cropland-dominated grid cell. Comparing the data close to the seasonal
peaks, the original VOD time series decrease slower than the GPP signal, resulting in a positive
lag (Figure 2.8b). For ΔVOD, the signal rises earlier than for GPP, which yields a negative lag
(Figure 2.8c). Apart from the opposite sign of the lag value, the scaled ΔVOD signal shows a different
shape than the GPP signal. ΔVOD exhibits a high number of values around 0.5, which represent
ΔVOD values close to zero and are a result of the relatively long period of small changes in VOD. In
this case, considering only positive changes in VOD appears to result in a higher temporal matching
with GPP (Figure 2.8d), which explains the higher correlations found for ΔVOD≥0 compared to
ΔVOD in sparsely to moderately vegetated areas (Figure 2.6). Despite the overall higher temporal
agreement for ΔVOD≥0 than for ΔVOD, the decline in GPP is better captured by ΔVOD.

The relationships between the three VOD variables and GPP can be further assessed with the cor-
responding scatter plots (Figures 2.8e-g). This relationship describes a seasonal hysteresis. Comparing
all three variables, the shape of the mean seasonal cycle appears to be similar for the original VOD
time series and ΔVOD as they both exhibit a pronounced linear part, while this feature is missing for
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Figure 2.7: As Figure 2.6 but for the lag. Lag values are excluded if the lag is larger than half a year
or the correlation of the lagged time series is not significant (p>0.05).

ΔVOD≥0. The linear part for the original VOD, however, corresponds to the GPP increase, while for
ΔVOD the linear part relates to the GPP decrease.

2.5 Discussion

2.5.1 Temporal agreement between VOD, GPP and SIF

In this study, large parts of the world reveal positive correlations between VOD and GPP both for
the original time series and for the anomalies from the mean seasonal cycle. In addition, correlations
between VOD and the residuals of the linear GPP-SIF relationship demonstrate that VOD can explain
variations in GPP that are not explained by SIF. These findings suggests that VOD provides useful
information with regard to GPP.

Water limitation appears to foster the coupling between VOD and GPP as areas with particularly
high correlations between VOD and GPP in this study seem to coincide with areas of low water
availability (Miralles et al., 2016; Papagiannopoulou et al., 2017). In these areas, vegetation responds
more rapidly to changes in water availability (De Keersmaecker et al., 2015), which in turn is reflected
in a close association between VOD and GPP.

The most prominent example of low correlations in this study is found for evergreen broadleaf
forests, which can be attributed to the low signal variability found in the tropics. This is in line
with the generally low predictability of GPP in tropical forests (Tramontana et al., 2016) and can
be linked to isohydricity, which describes the plant strategy of stomatal control in response to water
stress (Konings and Gentine, 2017). Evergreen broadleaf forests are very isohydric, i.e. they try to
minimize changes in leaf water potential by closing stomata (Fisher et al., 2006; Konings and Gentine,
2017). This closing of stomata may result in a decoupling of VWC and photosynthetic activity and
hence cause a weaker relationship between VOD and GPP.
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Figure 2.8: Time series (a-d) and scatter plots (e-g) at 8-daily resolution for a cropland-dominated
grid cell in West Sahel, located at 16.125W 14.625N, for the period 2009-2012 (location is indicated in
Figure 2.1f). (a) Skin temperature (T) and monthly sums of precipitation (P). (b-d) VOD (b), ΔVOD
(c), or ΔVOD≥0 (d) together with GPP. Data are smoothed and scaled between their minimum and
maximum for visualization purposes. Note that the unscaled ΔVOD includes negative values. (e-g)
Scatter plots of scaled VOD variables against unscaled GPP for the same data as in (b-d).

2.5.2 Occurrence of negative correlations between VOD and GPP

Negative correlations between VOD and GPP can be attributed to land surface properties and veg-
etation phenology. For ASCAT, negative correlations can be explained with the contribution of dry
soil to volume scattering (Vreugdenhil et al., 2016), which is often found for ASCAT backscatter in
arid and semi-arid regions (Wagner et al., 2013b; De Jeu et al., 2008). Liu et al. (2016) showed for
L-band backscatter that the scattering mechanism of the soil shifts from surface scattering under wet
conditions to volume scattering under very dry conditions; below a certain soil moisture threshold,
the backscatter increases again with decreasing soil moisture. Some grid cells showing negative cor-
relations are found in the tropical dry forest biome, which regularly experience a pronounced dry
season lasting up to six months (Olivares and Medina, 1992). Therefore, depending on the duration
and severity of the seasonal dry period and on the soil properties, volume scattering of dry soil might
lead to spurious signals in the VOD if soil volume scattering is not taken into account in the retrieval
algorithm, as is the case for the ASCAT TU-Wien algorithm (Hahn et al., 2017).

In contrast to the active VOD, most negative correlations for passive VOD data can be linked to
wetlands (Jones et al., 2011; Liu et al., 2011; Vreugdenhil et al., 2017). Jones et al. (2011) demonstrated
that passive VOD data exhibit an inverse relationship with vegetation growth for areas that are
seasonally inundated.

For evergreen broadleaf forest, negative correlations with GPP for SMOS, AMSRE_C, and AM-
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SRE_X may partly relate to leaf phenology. Jones et al. (2014) reported asynchronous behavior
between flux tower GPP estimates and AMSR-E C-band VOD for the Amazon forest, which may be
linked to an inverse relationship between leaf age and photosynthetic capacity. New leaves, which
flush during the dry season (Wright and Van Schaik, 1994; Huete et al., 2006), are photosynthetically
more active than old leaves (Kitajima et al., 2002; Hutyra et al., 2007) but may also cause overall
lower values of VOD.

Similarly, negative correlations found for SMOS in Africa may relate to the phenology in tropical
dry forests. Early studies demonstrated that deciduous trees in dry forests minimize their water loss by
leaf shedding, and that some trees also flower during the dry season or often leaf out at the end of the
dry season (Olivares and Medina, 1992; Borchert, 1994a,b). In terms of the VOD signal, this means
that trunks and branches still contain a relatively high amount of water during the dry season. Since
L-band data is most sensitive to larger structures (Woodhouse, 2005), this asynchronous behavior of
the stem water content may lead to the observed negative correlations between SMOS and GPP.

2.5.3 Effect of sensor frequency

The comparison of different sensor frequencies between 1 and 10 GHz (L-, C-, and X-band) showed
that for sparsely to moderately vegetated areas median correlations increased with sensor frequency.
In line with this result, Calvet et al. (2011) demonstrated for a dense wheat field that C- and X-band
microwave observations obtained from a ground-based radiometer are more sensitive to VWC than
L-band data. Since VWC is linearly related to VOD (Jackson and Schmugge, 1991; Woodhouse, 2005),
this can explain the lower magnitude of the correlation coefficients between SMOS and GPP compared
to the remaining VOD data sets. For forested regions, a similar behavior, with a low magnitude of
the correlation for SMOS, was observed in this study. This suggests that C- and X-band microwave
observations are better suited for relating VOD to GPP than L-band data.

2.5.4 Comparison of the three VOD variables in relation to GPP

Detailed knowledge about land cover is of decisive importance when assessing VOD in relation to
GPP. Large differences exist for the three VOD variables between forested and non-forested regions.
While ΔVOD shows a higher temporal agreement with GPP over forests, the original VOD time series
yield higher correlations with GPP for sparsely to moderately vegetated areas.

According to the lag analysis, all three VOD variables generally did not yield a zero lag. The
opposite signs for VOD compared to ΔVOD and ΔVOD≥0 suggest that at the global scale neither
the original VOD time series nor the changes in VOD alone can be used for relating VOD to GPP,
but instead should be combined. The reason why both VOD and ΔVOD (or ΔVOD≥0) are linked
to GPP, i.e. the sum of NPP and autotrophic respiration, can be explained with the contribution of
both biomass and growth-related terms to GPP.

NPP relates to the sum of above- and belowground NPP as well as losses through volatile organic
compounds (VOC), herbivory and root exudates (Clark et al., 2001a,b; Gower et al., 2001; Girardin
et al., 2010). Assuming that belowground NPP is a fraction of ANPP (Clark et al., 2001a), these
two terms relate to changes in biomass and, hence, to ΔVOD. The magnitude of the VOC flux was
estimated to be small compared to NPP or GPP (Guenther et al., 1995; Kesselmeier et al., 2002), and
losses through herbivory between consecutive observations and root exudates are difficult to quantify.

Autotrophic respiration can be expressed as the sum of maintenance and growth respiration; while
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maintenance respiration is proportional to living biomass, growth respiration is a function of the
change in biomass (Ryan, 1990; Lavigne et al., 1996). Hence, VOD and ΔVOD can be related to
maintenance and growth respiration, respectively. This suggests that GPP may be expressed as a
combination of VOD and ΔVOD.

The relationship between VOD, ΔVOD or ΔVOD≥0 and GPP may also vary throughout the
season leading to hysteresis as shown in this study for a cropland-dominated grid cell. Similarly,
but for the relationship between LAI and GPP, Gitelson et al. (2014) emphasized the importance of
seasonal hysteresis. In the current study, the hysteresis was also present for ΔVOD, which indicates
that this behavior is not merely a result of using a state (VOD) rather than a flux variable (ΔVOD).
The presence of a seasonal hysteresis also explains here the on average lower correlations found for
GPP vs VOD compared to GPP vs SIF, since such a hysteresis decreases the strength of the linear
relationship. Combining the original VOD time series and the change in VOD thus might reduce the
strength of the seasonal hysteresis and thereby improve the temporal agreement with GPP.

2.6 Conclusions

The global analysis of VOD from different frequencies (L-, C- and X-band) in relation to GPP indicates
that microwave VOD, which provides complementary information to optical data, has the potential
to serve as explanatory variable for estimating GPP. Although some negative correlations occurred
in dry and wet areas for active and passive VOD, respectively, VOD and changes in VOD (ΔVOD
or ΔVOD≥0) generally demonstrated a high temporal agreement with GPP, especially for C- and
X-band data. The mainly non-overlapping distributions of negative correlations for active and passive
observations indicate that active and passive VOD data should be used jointly. Land cover based
differences in lag and correlation coefficient further suggest to combine original VOD time series
with changes in VOD for relating VOD to GPP. In addition, seasonal hysteresis was observed for
the relationship between VOD variables and GPP, which demonstrates that this relationship may
vary both in space and in time. This underpins the need to further investigate the spatio-temporal
relationship between VOD and GPP in order to make full use of microwave satellite vegetation data
for regional to global ecosystem analyses and vegetation monitoring.
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Appendix

2.A Supplement

Table 2.A.1: CCI land cover abbreviations for classes that are shown in Figure 2.A.1 in addition to
the classes presented in Table 2.2. These classes are excluded from the analysis.

Abbreviation CCI land cover class

CRO_irr Cropland, irrigated or post-flooding
MOSAIC_cro Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)
MOSAIC_nat Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)

MF Tree cover, mixed leaf type (broadleaved and needleleaved)
MOSAIC_tree_shrub Mosaic tree and shrub (>50%) / herbaceous cover (<50%)

MOSAIC_herb Mosaic herbaceous cover (>50%) / tree and shrub(<50%)
LM Lichens and mosses

Table 2.A.2: Spatial similarity between maps of temporal correlations for Figure 2.2 (GPP-VOD),
Figure 2.A.6 (GPP-ΔVOD) and Figure 2.A.7 (GPP-ΔVOD≥0). Spatial similarity was determined
using Spearman rank correlation. All coefficients are highly significant (p<0.001).

SMOS ASCAT AMSRE_C AMSRE_X VODmerged

(GPP-VOD) vs (GPP-ΔVOD) 0.22 0.20 0.05 0.03 -0.27
(GPP-VOD) vs (GPP-ΔVOD≥0) 0.25 0.21 0.09 0.08 -0.23

(GPP-ΔVOD) vs (GPP-ΔVOD≥0) 0.96 0.93 0.93 0.91 0.96

Figure 2.A.1: Map of CCI land cover. For the land cover abbreviations see Tables 2.2 and 2.A.1.
Note that the color code is different from that in Figures 2.1h and 2.A.3.
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Figure 2.A.2: (a-g) Coefficient of quartile variation for VOD data sets (a-e), SIF (f) and GPP (g).
Data are scaled between the 5th and the 95th percentile. (a-f) r indicates the spatial Spearman rank
correlation between maps of GPP and VOD or SIF. All coefficients are highly significant (p<0.001).

Figure 2.A.3: Map of CCI land cover for grid cells with a dominant land cover over 75% that are
shown in Figure 2.6. Note that grid cells are enhanced for visualization purposes.
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Figure 2.A.4: (a-e) Spearman rank correlation between GPP and VOD data sets at 0.5° and monthly
resolution. Not significant correlations (p>0.05) are masked in grey.

Figure 2.A.5: As Figure 2.A.4 but for the correlation between the anomalies of GPP and VOD data
sets.
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Figure 2.A.6: (a-e) Spearman rank correlation between GPP and ΔVOD data sets at 0.25° and 8-daily
resolution. Not significant correlations (p>0.05) are masked in grey.

Figure 2.A.7: As Figure 2.A.6 but for the correlation between GPP and ΔVOD≥0 data sets.
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Chapter 3

A carbon sink-driven approach to
estimate gross primary production
from microwave satellite observations

3.1 Abstract

Global estimation of Gross Primary Production (GPP) – the uptake of atmospheric carbon dioxide
by plants through photosynthesis - is commonly based on optical satellite remote sensing data. This
presents a source-driven approach since it uses the amount of absorbed light, the main driver of pho-
tosynthesis, as a proxy for GPP. Vegetation Optical Depth (VOD) estimates obtained from microwave
sensors provide an alternative and independent data source to estimate GPP on a global scale, which
may complement existing GPP products. Recent studies have shown that VOD is related to above-
ground biomass, and that both VOD and temporal changes in VOD relate to GPP. In this study,
we build upon this concept and propose a model for estimating GPP from VOD. Since the model is
driven by vegetation biomass, as observed through VOD, it presents a carbon sink-driven approach to
quantify GPP and, therefore, is conceptually different from common source-driven approaches. The
model developed in this study uses single frequencies from active or passive microwave VOD retrievals
from C-, X- and Ku-band (Advanced Scatterometer (ASCAT) and Advanced Microwave Scanning
Radiometer for Earth Observation (AMSR-E)) to estimate GPP at the global scale. We assessed
the ability for temporal and spatial extrapolation of the model using global GPP from FLUXCOM
and in situ GPP from FLUXNET. We further performed upscaling of in situ GPP based on different
VOD data sets and compared these estimates with the FLUXCOM and MODerate-resolution Imaging
Spectroradiometer (MODIS) GPP products. Our results show that the model developed for individual
grid cells using VOD and change in VOD as input performs well in predicting temporal patterns in
GPP for all VOD data sets. For spatial extrapolation of the model, however, additional input vari-
ables are needed to represent the spatial variability of the VOD-GPP relationship due to differences
in vegetation type. As additional input variable, we included the grid cell median VOD (as a proxy
for vegetation cover), which increased the model performance during cross validation. Mean annual
GPP obtained for AMSR-E X-band data tends to overestimate mean annual GPP for FLUXCOM and
MODIS but shows comparable latitudinal patterns. Overall, our findings demonstrate the potential
of VOD for estimating GPP. The sink-driven approach provides additional information about GPP
independent of optical data, which may contribute to our knowledge about the carbon source-sink
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balance in different ecosystems.

3.2 Introduction

The uptake of the greenhouse gas carbon dioxide by vegetation during photosynthesis, i.e. Gross Pri-
mary Production (GPP), is a key ecosystem process. Estimation of GPP from satellite observations
commonly uses optical data together with empirical or semi-empirical models (Gilabert et al., 2017;
Running et al., 2004) or machine learning approaches (Beer et al., 2010; Jung et al., 2011; Tramontana
et al., 2016; Yang et al., 2007). Biophysical properties obtained from optical remote sensing that are
often used to estimate GPP include the fraction of Absorbed Photosynthetically Active Radiation (fA-
PAR), Normalized Difference Vegetation Index (NDVI), or Leaf Area Index (LAI). These approaches
rely on the light-use efficiency theory (Monteith, 1972) whereby GPP depends on the incoming Pho-
tosynthetically Active Radiation (PAR), the fraction of PAR that is absorbed, i.e. fAPAR, and the
efficiency of converting light to assimilated carbon (Beer et al., 2010; Gilabert et al., 2017; Jung et al.,
2011; Running et al., 2004; Tramontana et al., 2016; Yang et al., 2007). Another variable retrieved from
optical data is Solar-Induced chlorophyll Fluorescence (SIF), which is a measure for photosynthetic
activity (Frankenberg et al., 2011; Guan et al., 2016). SIF has received much attention in recent years,
because of its linear relationship with GPP at canopy scale (Damm et al., 2015; Frankenberg et al.,
2014; Guanter et al., 2014; Zhang et al., 2016b), especially at coarser temporal resolution like monthly
sampling (Guanter et al., 2014). SIF has also been used for estimating GPP globally through the
use of artificial neural networks (Alemohammad et al., 2017). Optical biophysical properties provide
an estimate for the amount of carbon that is taken up by plants based on the absorption (fAPAR)
or re-emission (SIF) of sunlight (source-driven). In recent years, however, it has been proposed that
plant growth may be stronger limited by sink- rather than source-activity (Fatichi et al., 2014; Körner,
2015), and that considering sinks of fixed carbon can improve constrains in global vegetation models
(Leuzinger et al., 2013).

Microwave Vegetation Optical Depth (VOD) is a measure of the attenuation of microwave radia-
tion caused by vegetation (Woodhouse, 2005) and thus relates to the total vegetation water content
(Jackson and Schmugge, 1991). VOD can be retrieved from different frequencies/wavelengths in the
microwave region, which can provide information on different parts of the canopy. In theory, lower
frequencies like L-band are more sensitive to large plant structures like stems and large branches,
while higher frequencies like X-band are more closely related to small structures like leaves and twigs
(Woodhouse, 2005). Microwave satellite observations at frequencies below 10 GHz are not affected by
cloud cover (Woodhouse, 2005). Therefore, VOD can provide valuable information on the vegetation
layer in addition to products derived from optical remote sensing data.

In recent years, studies have proposed to use VOD to estimate aboveground living biomass (Liu
et al., 2011, 2015; Momen et al., 2017; Rodríguez-Fernández et al., 2018a; Tian et al., 2016). Biomass
and/or temporal change in biomass, however, relate to Net Primary Production (NPP) (Clark et al.,
2001a,b; Girardin et al., 2010; Gower et al., 2001; Lavigne and Ryan, 1997; Luyssaert et al., 2007) and
to Autotrophic Respiration (Ra) (Lavigne and Ryan, 1997; Ryan, 1990), the sum of which constitutes
GPP (e.g. Bonan, 2015; Odum, 1959). Due to this causal relationship between biomass and GPP, a
relationship is expected between VOD and GPP. Teubner et al. (2018) showed that both the original
VOD time series (V OD) and the temporal change in VOD (ΔV OD) are correlated to GPP and
suggested that the combination of V OD and ΔV OD has the potential to provide complementary
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information to GPP estimates from optical data.
In this study, we build upon the explorative work of Teubner et al. (2018) and develop a model to

estimate GPP based on VOD using Generalized Additive Models (GAM; Hastie and Tibshirani, 1987).
Complementary to source-driven approaches, we are proposing a model that is driven by vegetation
biomass, as expressed through VOD, which thus presents a sink-driven approach that does not depend
on PAR as model input. We assessed the performance of VOD observations from different sensors
and multiple frequencies, since it is not clear which frequencies most closely relate to GPP. As input
variables to the model, we use different VOD variables, i.e. V OD, ΔV OD and the temporal grid
cell median VOD (mdnV OD). The latter serves as a proxy for land cover and thus aids the spatial
extrapolation of the model to different vegetation types without requiring further ancillary data. Due
to the complex relationship between VOD and GPP, we conducted a separate analysis based on SIF
using similar experimental setups as for VOD. This additional analysis gives insight into differences in
model performance between setups that are not caused by using VOD variables as input to the model.
The aim of this study is 1) to assess the model’s capability for temporal extrapolation, 2) to evaluate
the model’s performance in spatial extrapolation and determine the required model structure using
model selection, and 3) to perform upscaling of in situ FLUXNET GPP and compare the upscaled
VOD-based GPP estimates with global GPP estimates from FLUXCOM and the MODerate-resolution
Imaging Spectroradiometer (MODIS).

3.3 Data sets

The analysis is based on the period from 2007 to 2015 and uses VOD data from C-, X- and Ku -band
and various GPP data sets. The data sets have different temporal coverage, which is summarized
for VOD and GPP data in Table 3.1. Global temporal median maps of the remotely sensed VOD
and GPP data sets are displayed in Fig. 3.A.1. For FLUXNET data, a list of the sites and graphs
illustrating the location and data coverage are given in Table 3.A.1 and Fig. 3.A.2.

Our analysis was carried out for different passive VOD frequencies from both the Advanced Mi-
crowave Scanning Radiometer for Earth Observation System (AMSR-E) and its successor the Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2). The overlap period between AMSR2 and in situ
FLUXNET data, however, is considerably short (2 years and 5 months) and is further reduced by the
lower number of FLUXNET sites in the later period, which potentially leads to less robust results
in some parts of the analysis. For this reason and because AMSR-E and AMSR2 generally yielded
similar results, the study focuses on results for AMSR-E. For results using AMSR2 frequencies, please
see the supplement.

3.3.1 VOD data sets

ASCAT VOD

The Advanced Scatterometer (ASCAT) is an active microwave sensor measuring C-band (5.25 GHz)
backscatter in vertical co-polarization and flies onboard the meteorological operational satellite A
(MetOp-A). The retrieval of daily VOD at 12.5 km sampling is based on the TU-Wien change de-
tection model developed by Wagner et al. (1999). VOD is derived using slope and curvature of the
angular backscatter dependency, which describe the volume scattering caused by vegetation (Melzer,
2013; Vreugdenhil et al., 2016, 2017). The VOD retrieval uses observations from both ascending and
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descending mode (ascending/descending at 9:30 a.m./p.m. equatorial crossing).

AMSR-E VOD

AMSR-E is a passive microwave sensor measuring brightness temperature at different frequencies.
VOD was retrieved using the Land Parameter Retrieval Model (LPRM) v06 (van der Schalie et al.,
2017). LPRM is a radiative transfer model, which estimates VOD and soil moisture simultaneously
with the use of an analytical solution based on the Microwave Polarization Difference Index (Meesters
et al., 2005; Mo et al., 1982). We analyzed VOD from C- (6.9 GHz), X- (10.7 GHz) and Ku-band
(18.7 GHz) obtained for descending mode (equatorial crossing at 1:30 a.m.), since the assumption
in LPRM that soil and vegetation temperature are similar is best met during nighttime. Data are
available at daily, 0.25° sampling.

AMSR2 VOD

AMSR2 measures brightness temperature both at the same frequencies as AMSR-E as well as at
additional frequencies. VOD was retrieved analogously to AMSR-E using LPRM v06. In the analysis,
we used VOD from C- (C1: 6.9 GHz, C2: 7.3 GHz), X- (10.7 GHz) and Ku-band (18.7 GHz) in
descending mode (1:30 a.m. equatorial crossing) at daily, 0.25° sampling.

3.3.2 GPP data sets

FLUXCOM GPP

FLUXCOM is a global GPP product that is based on upscaling site-level eddy covariance estimates
of GPP by using variables from optical satellites and different machine learning algorithms including
tree-based methods, regression splines, neural networks and kernel methods (Tramontana et al., 2016).
For comparability with satellite VOD data, we used the satellite-based version of FLUXCOM GPP.
The data set represents the median of 18 ensemble members, which consist of 9 machine learning
algorithms applied to both daytime and nighttime GPP estimates. Data are available at 8-daily,
10 km sampling.

MODIS GPP

MODIS GPP (Running et al., 2004; Zhao et al., 2005) is based on the light-use efficiency concept
introduced by Monteith (1972) in which absorbed solar energy is related to plant productivity. MODIS
GPP is provided by the land product MOD17; the algorithm uses fAPAR derived from optical data
for calculating the absorbed PAR (Running et al., 1999, 2000). Several versions of MOD17, differing
in spatial and temporal resolution, are available. We used the MOD17A2H v006 GPP, which has
8-daily, 500 m sampling.

GOME-F SIF

SIF observations at 740 nm (GOME-F v26) are obtained from measurements of the Global Ozone
Monitoring Experiment-2 (GOME-2) sensor flying onboard MetOp-A (Joiner et al., 2013, 2014, 2016).
The retrieval algorithm of SIF proposed by Joiner et al. (2013) utilizes the filling-in of Fraunhofer lines
caused by the plants chlorophyll fluorescence. Data are available at monthly, 0.5° sampling.
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FLUXNET2015 GPP

FLUXNET20151 provides a compilation of in situ flux observations spread around the world. The
stations measure water, heat and carbon fluxes by means of the eddy covariance method (Baldocchi,
2003). The carbon dioxide flux, i.e. net ecosystem exchange, is further partitioned into ecosystem
respiration and GPP using the daytime (Lasslop et al., 2010) or nighttime (Reichstein et al., 2005)
partitioning method. For our analysis, we used GPP estimates from the publicly available Tier 1
data set that were obtained with the daytime partitioning method with a variable friction velocity
threshold.

3.3.3 Meteorological data sets

Precipitation

We used daily, 1° precipitation estimates from the Global Precipitation Climatology Project (GPCP)
1DD version 1.2 to aid the interpretation of the time series plot. Precipitation is estimated using a
combination of satellite observations and gauge measurements (Huffman et al., 2001). The satellite
data include microwave observations of frequencies above 10 GHz and infrared radiation.

Temperature and snow depth

Frozen conditions and snow cover lead to erroneous VOD retrievals. For this reason, we masked
VOD observations using skin temperature and snow depth from ERA-Interim. ERA-Interim is a
global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts
which incorporates a 4-dimensional variational analysis (Dee et al., 2011). Data are available at 0.7°
horizontal sampling at the equator for the period from 1979 onwards.

Aridity Index

Since water availability is a main driver for plant growth, we analyzed results along a gradient of
aridity in order to determine whether VOD-based GPP estimates perform differently in different
climatic regions. The aridity index is typically calculated as the ratio of the long-term averages
of potential evaporation and precipitation (Good et al., 2017; Greve et al., 2014). For computing
this index, we used long-term averages of potential evaporation from the Global Land Evaporation
Amsterdam Model (GLEAM; Miralles et al., 2011) v3.a (Martens et al., 2017) and precipitation from
the Multi-Source Weighted-Ensemble Precipitation (MSWEP; Beck et al., 2017) v1.1 for the period
1980 to 2017. Both data sets are available at 0.25° sampling.

3.4 Theoretical model for estimating GPP based on VOD

For describing the relationship between VOD and GPP, we consider the following equation which
relates GPP to NPP and Ra (e.g. Bonan, 2015; Odum, 1959):

GPP = Ra + NPP (3.1)

Ra represents the portion of the assimilates that is used by plants for their metabolism. Ra can be
further separated into growth and maintenance respiration, which are proportional to the change in

1Fluxnet2015 data set (accessed June 9, 2016): http://fluxnet.fluxdata.org//data/fluxnet2015-dataset/
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biomass (dB
dt ) and biomass (B), respectively (Lavigne and Ryan, 1997; Ryan, 1990):

Ra = a0
dB
dt

+ b0 B (3.2)

Ra generally depends on temperature and is often modelled by assuming an exponential increase of
Ra with temperature (Atkin and Tjoelker, 2003; Atkin et al., 2005; Smith and Dukes, 2013; Tjoelker
et al., 2001; Vanderwel et al., 2015; Wythers et al., 2013). Consequently, the coefficients a0 and
b0 in equation (3.2) are functions of temperature, although this temperature sensitivity is mainly
attributed to the maintenance term of Ra (Ryan, 1990). Modelling the relationship between Ra and
temperature, however, is not straight forward. Acclimation and adaptation of plants to changes in
temperature further modulate the temperature sensitivity of Ra (Atkin and Tjoelker, 2003; Gifford,
2003; Smith and Dukes, 2013; Vanderwel et al., 2015), although these two processes are acting on
different time scales (Smith and Dukes, 2013). Therefore, representation of Ra in models presents
a complex task (Atkin and Tjoelker, 2003; Atkin et al., 2005; Gifford, 2003; Ryan, 1991; Smith and
Dukes, 2013; Vanderwel et al., 2015). For simplicity of our model, we assume that the coefficients
a0 and b0 are independent of temperature and discuss the potential impact of this simplification in
Section 3.7.5.

NPP is the remaining portion of the assimilates, i.e. the difference between GPP and Ra, and
contains the following terms (Clark et al., 2001a,b; Girardin et al., 2010; Gower et al., 2001; Luyssaert
et al., 2007):

NPP = dB
dt

+ VOC + Herbivory + Root exudates (3.3)

VOC stands for volatile organic compounds and are organic molecules produced by plants that are
released into the ambient air. VOC may play an important role in ecology and atmospheric chemistry
but constitute only a small fraction of NPP (Guenther, 2002; Kesselmeier et al., 2002). Herbivory
describes the loss of above- and belowground plant biomass through animals that are feeding on these
plants. Root exudates are plant-produced compounds that are released into the ground to enhance
nutrient uptake or feed mycorrhiza and can also be used as a defense mechanism (Bais et al., 2006;
Bertin et al., 2003; Jones et al., 2009). All these terms are not directly reflected in VOD and are thus
neglected in the current model description for relating VOD to GPP. Combining equations (3.1)-(3.3)
and setting a = 1 + a0 and b = b0, we arrive at the following differential equation for GPP:

GPP = a
dB
dt

+ b B (3.4)

a and b represent coefficients for growth and maintenance related terms, respectively, analogous to
the concept developed by Ryan (1990) for Ra, i.e. equation (3.2), but now extended for GPP.

The last step in the formulation of the relationship between VOD and GPP requires a description
of the relationship between VOD and biomass. This relationship, or more specifically that between
VOD and aboveground biomass (AGB), is not straightforward. Liu et al. (2015) proposed an empirical,
non-linear function for converting VOD to AGB using a passive merged VOD data set. Similar to
this concept, but without explicitly stating the relationship between AGB and V OD, we assume that
AGB can be expressed as a function of V OD:

AGB = f(V OD) = �V OD (3.5)
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Assuming that above- and belowground terms in equation (4.2) are proportional, which allows to
express B as a function of V OD, we arrive at the relationship between VOD and GPP, which can be
described by the following differential equation:

GPP = a
d�V OD

dt
+ b �V OD + c (3.6)

c is a time-invariant offset, which is added from a mathematical point of view and does not
necessarily reflect the neglected terms in equation (3.3) but rather aids the conversion of VOD to
GPP if the offset is not already included in f(V OD).

Equation (4.3) presents the theoretical concept in this study, which we aim to model for different
VOD data sets through the use of GAM (Hastie and Tibshirani, 1987).

3.5 Methods

3.5.1 Generalized Additive Models

GAM is a regression approach which can utilize different link functions for fitting a limited set of
predictor variables (x) against the expected value of the response variable (y) (Hastie and Tibshirani,
1987). For calculating the conditional expected value (E

�
y | x

�
), the algorithm requires specification

of the data distribution for the response variable. The approach allows non-linear and non-monotonic
relationships between a response variable and predictor variables, which are represented by fitting
smooth spline functions (f) for each predictor (Hastie and Tibshirani, 1987, 1990). As such, GAM
does not require specification of the underlying relationship between predictor and response variable.
Since we do not explicitly know the shape of the relationship between biomass and each VOD data
set, GAM presents a suitable method in this study for estimating GPP based on VOD.

For the analysis, we used LinearGAM from the python package pygam (Servén et al., 2018), which
uses the normal distribution together with the identity as link function. In this case, GAM with p

input variables has the form (Hastie and Tibshirani, 1987):

E
�
y | x

�
= α +

p�
j=1

fj(xj) (3.7)

We used LinearGAM with 25 splines of order 3, which allows variability in the shape of the fitted
spline across the data range, together with a value of 200 for the smoothing parameter lambda, which
provides strong smoothing to ensure generalizability.

We applied GAM by fitting different sets of input variables against global or in situ GPP estimates.
To indicate which set of input variables was used for training GAM, we refer to the model as GPP()
with a list of input variables in parenthesis. For example, GPP(V OD, ΔV OD) denotes a GAM setup
that uses V OD and ΔV OD as input.

3.5.2 Experimental setups

Our analysis comprises three experiments. The first experiment assesses the model’s performance
in temporal extrapolation, while the second experiment evaluates the model’s capability in spatial
extrapolation using cross validation and model selection. These experiments allow to determine the
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model’s performance during periods or at locations it has not been trained on, which relates to the
situation during the upscaling of in situ GPP assessed in the third experiment.

Testing temporal extrapolation

For testing the model’s ability to reproduce the temporal dynamics of GPP, we trained GPP(V OD,
ΔV OD) at each grid cell against the global GPP from FLUXCOM. The comparison with an existing
global GPP product has the advantage of minimizing the impact of scale differences, which are often
observed for in situ observations versus satellite data. It can thus demonstrate if the model can be
used in general for estimating GPP. For the analysis, we split the data in time using the first two years
of each data set for training the model (AMSR-E, ASCAT, SIF: 1/2007 to 12/2008; AMSR2: 7/2012
to 6/2014) and the remaining period for testing (AMSR-E: 1/2009 to 9/2011; ASCAT, SIF: 1/2009 to
12/2015, AMSR2: 7/2014 to 12/2015). To support global results, we repeated the analysis using in
situ FLUXNET observations. For this setup, AMSR2 data are omitted since the overlap period with
FLUXNET extends only through 2014.

In addition to the analysis of GPP(V OD, ΔV OD), we determined the added value of using the
combination of V OD and ΔV OD compared to V OD or ΔV OD alone. The reason for treating V OD

and ΔV OD separately against our proposed theory, was to exclude the possibility that either signal
alone is able to match the GPP signal merely by applying a non-linear regression like GAM.

Testing spatial extrapolation using cross validation and model selection

Using leave-site-out cross validation with FLUXNET GPP as target variable, we assessed the model’s
ability for spatial extrapolation. For each site, GPP(V OD, ΔV OD) or GPP(SIF ) was trained with
data from all sites except the site under evaluation. The model was then applied to the data that
was left out and compared against the target variable. As the data were split in space, the training
and testing period each span the full overlap period with FLUXNET for each data set. Apart from
the full signal, we also assessed the performance of anomalies of the resulting GPP estimates in order
to evaluate the strength of the relationship in the absence of seasonality. Anomalies were calculated
as differences to the mean seasonal cycle during the testing period for the VOD- or SIF-based GPP
estimates (i.e., after model application) and FLUXNET GPP.

We further assessed if the additional use of the temporal grid cell median of each data set
(mdnV OD or mdnSIF ) can improve the spatial extrapolation of the model, i.e. GPP(V OD, ΔV OD,
mdnV OD) or GPP(SIF , mdnSIF ). mdnV OD is a static component for each data set, which varies
with each grid cell and thus does not contribute to the temporal dynamic of the resulting estimate.
mdnV OD identifies areas of similar biomass and thus further relates to land cover, since grassland
generally has a lower biomass than shrubland, which in turn has a lower biomass than a dense for-
est. In contrast, mdnSIF identifies areas of similar photosynthetic activity and therefore reflects a
different property than mdnV OD.

To assess whether an improvement in model performance can be attributed to a gain in information
through the addition of the respective variable or is caused by an additional degree of freedom, we
computed the Akaike Information Criterion (AIC; Akaike, 1974). For this analysis, we randomly split
the station data into two data sets. We used one half of the stations for training and the remaining
half for testing.
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Upscaling

In the third experiment, we estimated GPP globally based on VOD using the best performing model
setup as assessed during cross validation and model selection. The upscaling was performed similarly
to cross validation with the difference that the model for each setup was trained against all available
in situ FLUXNET GPP. After applying the model to the global VOD data sets, we evaluated the
model’s performance by comparing the VOD-based GPP estimates with global GPP estimates from
FLUXCOM and MODIS. For the analysis of mean annual GPP, we additionally performed an uncer-
tainty analysis to determine the influence of the choice of the stations on the GPP estimation. For
this, we repeated the VOD-based upscaling ten times, each time reducing the number of stations by
10%. The excluded stations were randomly drawn without replacement. Therefore, each model run
in the uncertainty analysis is based on data from 90% of the stations.

3.5.3 Data preparation

The analysis is based on two different resolutions: for the comparison between VOD, FLUXCOM and
MODIS data, the common sampling is 8-daily, 0.25° while for the comparison with SIF, the common
sampling is monthly, 0.5°. We aggregated data sets with a higher resolution using the average over 8
days or the average over the grid cell. For data sets with a lower spatial resolution like snow depth
and temperature data, we performed nearest neighbor resampling.

VOD observations were masked when temperature was below 0°C and snow cover was present.
The masking was also applied to GPP data sets for comparability. In addition to snow and tem-
perature masking, VOD from passive sensors was masked for radio frequency interference using the
accompanying flags, since it can also lead to erroneous retrievals of VOD (Li et al., 2004; Njoku et al.,
2005).

We approximate the derivative of VOD at each grid cell (xi) with the change of the smoothed
V OD signal between two consecutive V OD observations:

ΔV OD(xi, tj) = V OD(xi, tj) − V OD(xi, tj−1) (3.8)

The smoothing was computed using a Savitzky-Golay filter (Savitzky and Golay, 1964) with a win-
dow size of 11 time steps for 8-daily data and 5 time steps for monthly data. The window size for
each resolution was chosen after visual inspection of the smoothed time series at the location of the
FLUXNET sites. Additionally, we performed a cross validation similar to the temporal extrapolation
experiment for 8-daily AMSRE_X and for GPP(V OD, ΔV OD) but using different window sizes dur-
ing the computation of ΔV OD (Figs. 3.A.3). Results for Spearman correlation and RMSE confirmed
that a window size of 11 time steps is a suitable choice presenting a trade-off between a preferably
high median correlation, low median RMSE and still relatively low window length.

During cross validation, we additionally assessed the performance of the GPP anomalies relative
to the mean seasonal cycle. We calculated anomalies for sites with more than two years of data using
the python package pytesmo (Paulik et al., 2015).

3.5.4 Statistical analysis

Prior to the analysis, we tested if grid cell data of the global data sets follow normal distribution using
the D’Agostino and Pearson’s test (D’Agostino, 1971; D’Agostino and Pearson, 1973). We found that
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on average 75% of the grid cells differ from normal distribution. For this reason, we calculated the
non-parametric Spearman rank correlation and used the temporal grid cell median instead of the mean
in the analysis.

We evaluated model performance by calculating the Spearman rank correlation coefficient (r) and
root mean square error (RMSE). For the leave-site-out cross validation, we additionally analyzed
the index of agreement (IoA), which is a standardized measure for the model prediction error and is
defined after Willmott (1981) as:

IoA = 1 −
	n

i=1(pi˘oi)2	n
i=1(| pi˘ō | + | oi˘ō |)2 with n = number of observations (3.9)

where p represents the model output and o the in situ observations. The index ranges between 0
(worst agreement) and 1 (best agreement).

For model selection, we computed AIC using the python package RegscorePy2. AIC is a relative
measure for the goodness of fit for different model setups while penalizing higher numbers of input
variables (Akaike, 1974). The model setup with the lowest AIC is then considered as the optimal
choice.

3.6 Results

3.6.1 Temporal extrapolation

The application of GAM for each grid cell is illustrated for a grid cell dominated by rainfed cropland
in Fig. 3.1. In this example, GPP(V OD, ΔV OD) is able to capture the temporal dynamics of
FLUXCOM GPP (Fig. 3.1a). In contrast, V OD shows a positive temporal lag with respect to GPP
(Fig. 3.1b), while ΔV OD results in a negative lag with GPP. Making use of both V OD and ΔV OD,
the model can largely compensate the observed lags for the individual signals of V OD and ΔV OD.

Applying the model per grid cell globally at 8-daily, 0.25° sampling, the resulting GPP estimates
show high temporal agreement with FLUXCOM GPP (Fig. 3.2). Correlations are higher for passive
VOD data sets (0.69 ≤ median r ≤ 0.72) than for the active VOD data set (median r=0.61). For
passive VOD data sets, correlations are especially high over Africa, parts of Australia and Europe.
For the active VOD, high correlations are observed over Europe, North America and parts of South
America. Consistent with the correlation results, RMSE (Fig. 3.A.4) yields lower global median
values for passive VOD data sets (0.85 ≤ median RMSE ≤ 0.88 gCm−2d−1) than for the active
VOD (median RMSE=0.99 gCm−2d−1). Comparing the different frequencies of the passive VOD
data sets, Ku-band results in the lowest median RMSE closely followed by X-band. Regions with
lowest RMSE are observed over Australia for all VOD data sets, while regions with highest RMSE

are found mainly in northern latitudes.
The correlations increase for all data sets when performing the analysis at monthly, 0.5° sampling

(Table 3.A.2), yielding median r between 0.80 and 0.82 for passive VOD and 0.74 for the active VOD.
When repeating the analysis using either V OD or ΔV OD alone as input, we found that GPP(V OD,
ΔV OD) outperforms GPP(V OD) and GPP(ΔV OD) at both resolutions (Table 3.A.2) with an aver-
age difference in median r of about 0.1 and 0.2 for GPP(V OD) and GPP(ΔV OD), respectively. The
different frequencies of AMSR-E generally yield similar results. However, X-band data consistently

2RegscorePy v1.0: https://pypi.org/project/RegscorePy/
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Figure 3.1: Time series plot for a grid cell dominated by rainfed cropland (35.125°E, 15.125°S) for dif-
ferent VOD data sets for the period 1/2009 to 12/2010: 8-daily FLUXCOM GPP and a) GPP(V OD,
ΔV OD), b) V OD and c) ΔV OD. GPP(V OD, ΔV OD) was trained at this grid cell against FLUX-
COM data for the period 1/2007 to 12/2008. Data in (b) and (c) are scaled between 0 and 1 to aid
visual comparison of the temporal dynamics. (d) Monthly precipitation and 8-daily surface tempera-
ture.
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Figure 3.2: Spearman rank correlation (r) between FLUXCOM GPP and GPP(V OD, ΔV OD) for
different VOD data sets for the testing period (AMSR-E: 1/2009 to 9/2011; ASCAT: 1/2009 to
12/2015). The analysis is based on data at 8-daily and 0.25° sampling. GPP(V OD, ΔV OD) is
trained at each grid cell separately against FLUXCOM using data from the period 1/2007 to 12/2008.
Correlations that are not significant (p>0.05) are masked in grey. The median values denote the
median of significant correlations for each data set.

showed the highest correlation at both resolutions. This finding was also observed for AMSR2 fre-
quencies (Table 3.A.2). Compared with correlations obtained for SIF (median r=0.73), GPP(V OD,
ΔV OD) at monthly, 0.5° sampling shows comparable or slightly higher median correlations for active
and passive VOD, respectively.

The added value of combing V OD and ΔV OD can be further confirmed using in situ FLUXNET
GPP. Correlations for GPP(V OD, ΔV OD) are higher than for the individual signals, i.e. GPP(V OD)
and GPP(ΔV OD) (Fig. 3.A.5) with an average increase in median r of about 0.1 and 0.3 for
GPP(V OD) and GPP(ΔV OD), respectively. Comparing median correlations of the in situ analy-
sis with those obtained in the global comparison, the median r for SIF yields almost the same value
(0.73 obtained for global GPP compared to 0.72 for in situ GPP). For VOD data sets, however, median
r for the in situ analysis is on average lower by 0.1 than for the global comparison.

These results, especially for the global comparison, demonstrate the model’s capability in temporal
extrapolation and support our theory of representing the relationship between VOD and GPP with a
differential equation.

3.6.2 Spatial extrapolation

Using leave-site-out cross validation, we evaluated the performance in spatial extrapolation of the
relationship between VOD and GPP. For the full signals (Fig. 3.3, 3.A.6 and 3.A.7), the performance
for SIF is generally higher than for VOD data. Median values of IoA and r are comparable to or
lower for VOD than for SIF, while median RMSE is higher for VOD than for SIF in all cases. The
addition of the temporal median as input to GAM does not appear to have the same effect for VOD
and SIF. While the performance for V OD increases when adding mdnV OD, SIF does not appear
to benefit from including mdnSIF since the correlations do not differ markedly between GPP(SIF )
and GPP(SIF , mdnSIF ). For VOD, however, the increase in performance upon adding mdnV OD

indicates that the offset, which is already implicitly included in GAM, is not a globally constant value
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but instead varies for each grid cell. The relationship between VOD and GPP thus is additionally
modified by a static component of vegetation biomass within a grid cell as represented by mdnV OD.
In contrast, the offset in the relationship between SIF and GPP presents a global value and does not
vary with mdnSIF .

Results for the anomalies of the VOD- or SIF-based GPP estimates (Fig. 3.4, 3.A.8 and 3.A.9)
reveal a slightly higher performance for VOD than for SIF. Median values of IoA and r are comparable
or in some cases higher for VOD than for SIF, while median RMSE is lower for VOD than for SIF in
all cases. Including the temporal median does not affect the metrics except for IoA for VOD. In this
case, the anomalies for GPP(V OD, ΔV OD, mdnV OD) result in slightly higher IoA values than for
GPP(V OD, ΔV OD).

For the different AMSR-E frequencies, the cross validation results further reveal that X-band data
result in higher performance than C- and Ku-band data in most cases, which is especially true for
data at 8-daily, 0.25° sampling.

The two extrapolation experiments for the full signals further show that correlations for the spatial
extrapolation (Fig. 3.3) are generally lower than for the temporal extrapolation (Fig. 3.A.5). Even
when adding mdnV OD, median r during spatial extrapolation is on average lower by about 0.1
than during temporal extrapolation at both resolutions. Similarly, SIF also experiences a reduction
in correlation during spatial extrapolation compared to temporal extrapolation. The difference in
median r, however, is about 0.05 and thus smaller than for VOD. This indicates that the reduction in
performance for VOD data is not alone caused by the model representation itself but is also strongly
affected by scale differences between point measurements and the spatial coverage of the grid cell data.

Cross validation results for the full signals for AMSR2 (Fig. 3.A.10, 3.A.11 and 3.A.12) are gen-
erally similar to those obtained for AMSR-E. AMSR2 frequencies, however, show a slight decrease in
performance for r and IoA and a slight increase in performance for RMSE compared to AMSR-E
frequencies (Fig. 3.A.12). Consistent with AMSR-E data, AMSR2 X-band often shows higher perfor-
mance than the remaining frequencies.

The previous results suggest that the combination of all three input variables, i.e. V OD, ΔV OD

and mdnV OD, can improve model performance. Results of AIC for the different model setups relative
to AIC for GPP(V OD, ΔV OD, mdnV OD) in Fig. 3.5 further confirm this finding. For all VOD
data sets at both resolutions, the combination of V OD and ΔV OD yields lower AIC values than
for each input variable alone. When adding mdnV OD, AIC is further reduced in the majority of
cases. Exceptions from this rule are found for AMSRE_C and AMSRE_X at 8-daily, 0.25° sampling,
where the use of all three variables increases AIC. Since this finding is not consistent with results at
monthly, 0.5° sampling for the same frequencies, we suspect that this might be an artifact of the choice
of stations. We thus still suggest the use of all three variables for upscaling GPP based on VOD data.
In case of SIF, the difference in AIC between GPP(SIF ) and GPP(SIF , mdnSIF ) is negligible. This
confirms that, unlike for VOD, the relationship between SIF and GPP does not depend on the data
set median.

3.6.3 Upscaling of in situ GPP

Based on the results for cross validation and model selection, we used GPP(V OD, ΔV OD, mdnV OD)
for the global upscaling with VOD and GPP(SIF) for the upscaling with SIF for further analysis. We
will put an emphasis on the output from X-band due to the overall better performance during the
temporal and spatial extrapolation experiments.
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Figure 3.3: Leave-site-out cross validation for Spearman rank correlation (r) at monthly, 0.5° and
8-daily, 0.25° sampling. The analysis is based on the full signals of in situ FLUXNET GPP and
GPP estimates based on VOD or SIF. Labels on the x-axis indicate which input variables are used
for each model. Box plot whiskers extend to the 5th and 95th data percentile. Abbreviations –
mdnSIF : temporal grid cell median SIF ; ΔV OD: temporal change in V OD between two consecutive
observations; and mdnV OD: temporal grid cell median V OD.

Figure 3.4: As Fig. 3.3 but for the anomalies of in situ FLUXNET GPP and GPP estimates based on
VOD or SIF.
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Figure 3.5: Difference in AIC between model setups with respect to AIC for GPP(V OD, ΔV OD,
mdnV OD) for each VOD data set. For SIF, the AIC difference between GPP(SIF ) and GPP(SIF ,
mdnSIF ) is very low (1.67) compared with VOD data sets and therefore not displayed. The analysis is
based on data at monthly, 0.5° or 8-daily, 0.25° sampling. Positive values indicate model improvement
when using all three variables as input compared to models with a lower number of input variables.

Relationship between VOD and GPP

The partial dependence plots for GPP(V OD, ΔV OD, mdnV OD), which are examplified for AM-
SRE_X in Fig. 3.6, demonstrate the contribution of the three input variables to the model. For
all VOD data sets, we observed that the functions for V OD and ΔV OD mainly increase, while the
function for mdnV OD decreases. The increase for ΔV OD is true for the region where the majority of
data are located and the confidence interval is small. For AMSRE_X, this region ranges between -0.3
and 0.4 (Fig. 3.6e). The inverse relationship between V OD and mdnV OD and the additive linking of
variables in GAM suggest that mdnV OD is subtracted from V OD.

Global correlation of upscaled GPP

Results for GPP(V OD, ΔV OD, mdnV OD) at 8-daily, 0.25° sampling show moderate temporal agree-
ment with FLUXCOM and MODIS GPP (Fig. 3.7). Median r ranges between 0.54 and 0.62 for
FLUXCOM and between 0.52 and 0.60 for MODIS. The correlations also include some negative val-
ues (Fig. 3.A.13). For significant correlations, the fraction of negative correlations lies between 5 to 9%
for passive VOD and about 12% for active VOD. Highest median correlations are observed for X-band
data, which is consistent with the results from temporal and spatial extrapolation. At monthly, 0.5°
sampling, the global median r increases, ranging between 0.67 and 0.71 for FLUXCOM and between
0.66 and 0.70 for MODIS. For GPP(SIF ), median r reaches 0.71 for FLUXCOM and 0.66 for MODIS.

Results for AMSR2 frequencies (Fig. 3.A.15) are generally similar to those obtained for AMSR-E,
although AMSR2 frequencies yield slightly lower median correlations than AMSR-E frequencies.

Comparing correlations with FLUXCOM between the upscaling and the global temporal extrap-
olation (Section 3.6.1), median r for SIF is similar. For VOD, however, correlations for the upscaling
are markedly lower than during temporal extrapolation, which is consistent with the reduction in
model performance during cross validation.
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Figure 3.6: GAM Partial dependence plots for GPP(V OD, ΔV OD, mdnV OD) obtained during
upscaling (a-c) and histogram of input variables (d-f) for AMSRE_X at 8-daily and 0.25° sampling.
Dashed lines in (a-c) indicate the confidence intervals.

Figure 3.7: Spearman rank correlation (r) between GPP data sets (FLUXCOM, MODIS) and up-
scaling for GPP(V OD, ΔV OD, mdnV OD) or GPP(SIF ). Data were trained against in situ GPP
estimates (FLUXNET) at 8-daily, 0.25° or monthly, 0.5° sampling. a) Relative frequency of grid cells
with significant and not significant correlations with respect to all possible land grid cells at each res-
olution. Areas that do not contain results relate to gaps obtained during masking for radio frequency
interference or to not produced pixels in the original data products. b) Violin plot of significant cor-
relations. Horizontal grey lines indicate correlation values of 0.5, 0.8 and 0.9. Dashed lines indicate
the median (long dashes) and the 25th and 75th percentile (short dashes).
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Comparison of annual GPP

In addition to assessing the temporal dynamics, we compared mean annual GPP for GPP(V OD,
ΔV OD, mdnV OD) from AMSRE_X with mean annual GPP for FLUXCOM and MODIS. The
analysis is based on data points where all three data sets are available. In general, GPP(V OD,
ΔV OD, mdnV OD) shows the expected spatial pattern with highest values observed in tropical regions
(Fig. 3.8a). Nevertheless, GPP(V OD, ΔV OD, mdnV OD) for AMSRE_X tends to overestimate
annual GPP in many regions compared to FLUXCOM and MODIS (Fig. 3.8b-c). Closest agreement
between AMSRE_X and FLUXCOM or MODIS is observed for tropical regions. Consistent with these
results, we observed lowest differences between AMSRE_X and FLUXCOM or MODIS at low aridity
(Fig. 3.9), which represents very humid regions like the tropics. Under mesic conditions, differences
between products are slightly higher than for very dry or very humid regions.

The observed overestimation is also apparent in the zonal mean (Fig. 3.8d). GPP(V OD, ΔV OD,
mdnV OD) consistently overestimates annual GPP from FLUXCOM and MODIS and is closest
to FLUXCOM and MODIS near the equator. Despite the overestimation, GPP(V OD, ΔV OD,
mdnV OD) shows similar latitudinal features as for FLUXCOM and MODIS. The uncertainty analysis
of GPP(V OD, ΔV OD, mdnV OD) for AMSRE_X further demonstrates that the choice of stations
for the upscaling has an effect on the GPP estimation (Fig. 3.8d). The range of the ten model runs is
larger in the tropics and the southern hemisphere than in the northern hemisphere, which is caused
by differences in station density in these regions. The map of the standard deviation for the ten model
runs (Fig. 3.A.16) shows that differences between the model runs are most pronounced in the tropics,
the Sahel, southern parts of Africa and large parts of Australia.

GPP(V OD, ΔV OD, mdnV OD) for AMSR2_X results in a higher agreement with FLUXCOM
and MODIS than for AMSRE_X. In contrast to AMSRE_X, AMSR2 yields smaller differences in
annual GPP with FLUXCOM and MODIS (Fig. 3.A.17a-c), which is in line with the smaller RMSE

observed for AMSR2 during cross validation. Annual GPP for AMSR2, however, also exhibits ar-
eas where FLUXCOM and MODIS are underestimated, which are located mainly in the Sahel and
Australia. The latitudinal distribution of annual GPP (Fig. 3.A.17d) shows that AMSR2_X overall
yields a closer agreement between with FLUXCOM or MODIS than for AMSRE_X. Similar as for
AMSRE_X, AMSR2_X deviates less from FLUXCOM and MODIS in the tropics.

3.7 Discussion

3.7.1 Relationship between VOD and GPP

Our study presents a model for estimating GPP based on VOD, which describes the relationship be-
tween VOD and GPP through a differential equation. The model uses different VOD variables, i.e.
V OD, ΔV OD, and mdnV OD, as input. The approach is based on the assumption that VOD provides
an estimate for aboveground living biomass (Liu et al., 2011, 2015), which has been employed by mul-
tiple studies for detecting trends in biomass (Andela et al., 2013; Liu et al., 2013a,b, 2015; Van Marle
et al., 2016). In support of this theory, Tian et al. (2016) have demonstrated the applicability of the
biomass-VOD relationship in a dryland ecosystem.

The relationship between biomass and VOD, however, is rather complex. Since VOD presents a
measure of vegetation water content (Jackson and Schmugge, 1991), it can also be considered as the
product of biomass and relative water content (Momen et al., 2017), a quantity that is closely related
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Figure 3.8: Mean annual GPP for the period 2007 to 2010: a) upscaling of GPP(V OD, ΔV OD,
mdnV OD) for VOD AMSRE_X, b) difference in mean annual GPP between FLUXCOM and AM-
SRE_X c) difference in mean annual GPP between MODIS and AMSRE_X. Values in (b) and (c) are
displayed between -1 and 1. d) Zonal mean of mean annual GPP. Estimates for GPP(V OD, ΔV OD,
mdnV OD) were produced using data at 8-daily, 0.25° sampling. The area denoted by Min/Max rep-
resents the minimum and maximum of the zonal means for the ten model runs obtained during the
uncertainty analysis for GPP(V OD, ΔV OD, mdnV OD) with VOD AMSRE_X.
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Figure 3.9: Differences in mean annual GPP between AMSRE_X and FLUXCOM or MODIS stratified
along the aridity index. The analysis is based on the period 2007 to 2010 and uses 8-daily, 0.25° data.
Mean annual GPP for AMSRE_X is computed using GPP(V OD, ΔV OD, mdnV OD). Box plot
whiskers represent the 5th and 95th data percentile.

to the water potential of vegetation (Barnard et al., 2011; Brodribb and Holbrook, 2003; Momen et al.,
2017). For this reason, VOD has also been used as a surrogate for fuel moisture in fire modelling (Forkel
et al., 2017) or for leaf water potential and isohydricity of vegetation (Konings and Gentine, 2017;
Konings et al., 2017a,b). The impact of the relative water content on the relationship between biomass
and VOD, however, is not entirely clear. Using in situ estimates of leaf water potential, Momen et al.
(2017) have shown that variations in VOD are largely driven by changes in leaf water potential or the
interaction of leaf water potential and LAI rather than LAI alone. Nevertheless, studies connected
leaf water potential to maximum stomatal conductivity (Klein, 2014; Running, 1976). Since stomatal
conductivity controls photosynthesis by regulating the CO2 uptake (e.g. Damour et al., 2010), this
can provide an additional indication for the potential use of VOD to estimate GPP. Considering VOD
as a proxy for leaf water potential, however, cannot explain the increase in temporal agreement when
combining the original VOD signal and its derivative as observed in our study. Therefore, we propose
that in our context VOD presents an estimate of the metabolically active biomass.

3.7.2 Impact of VOD frequency on the relationship with GPP

We observed that VOD data from X-band appear to be a suitable predictor for estimating GPP.
This finding may be counter-intuitive since VOD from lower frequencies (i.e. longer wavelengths),
such as L-band, rather than from higher frequencies was demonstrated to correlate closely with total
aboveground vegetation biomass (Rodríguez-Fernández et al., 2018a). Total aboveground biomass,
however, is a rather poor predictor of GPP due to the presence of large-size plant parts functioning
as structural components that are less metabolically active (Litton et al., 2007). This is in accordance
with observations of lower correlations between VOD and GPP for L-band than for C- or X-band VOD
(Teubner et al., 2018). In contrast, the metabolically active plant parts, i.e. leaves and fine roots,
present a suitable estimator for GPP (Litton et al., 2007). Since metabolically active cells contain
water, the use of VOD in our model can present a suitable proxy for the aboveground metabolically
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active parts, which in turn can be related to GPP. In addition to this, Litton et al. (2007) demonstrated
that in forests the partitioning of carbon to leaves is a constant fraction of GPP. This implies that
total GPP can be obtained by estimating the portion of GPP that goes into the leaf compartment.
Those two concepts together with the theoretically stronger sensitivity of higher VOD frequencies to
small vegetation parts, i.e. leaves and small structural components (Woodhouse, 2005), can explain
why high frequency VOD rather than low frequency VOD is suited for retrieving GPP.

3.7.3 Extrapolation of VOD-GPP relationship

In both extrapolation experiments (temporal and spatial), we observed a lower agreement of VOD-
based estimates with in situ GPP than with global GPP. In contrast, SIF only showed a slight reduction
in performance during spatial extrapolation. This indicates that subpixel heterogeneity plays a more
important role for the relationship between VOD and GPP than between SIF and GPP. From a math-
ematical point of view, the relationship between VOD and GPP strongly depends on the appropriate
weighting of the two dynamic terms in the model, V OD and ΔV OD, in order to match the temporal
dynamic of the reference GPP. Since variations in the weighting result in a temporal shifting of the
VOD-based GPP estimate, weights that are not representative for the respective grid cell may decrease
model performance. Therefore, scale differences potentially have a stronger impact on the upscaling
of GPP with VOD than with SIF.

For the spatial extrapolation experiment, we further found that the offset in the VOD-GPP rela-
tionship varies between grid cells, unlike for the SIF-GPP relationship for which the offset is a global
value. The reason for this may be linked to the contribution of structural components to VOD. VOD
contains information both on woody and leaf parts (Tian et al., 2017). For estimating total GPP, how-
ever, the relevant aboveground information are mainly the leaves (Litton et al., 2007). Larger plant
parts, which also contribute to the VOD signal, exhibit lower metabolic activity than leaves (Litton
et al., 2007). Adding mdnV OD as input to GAM thus seems to ensure that structural components
within the grid cells are subtracted, thereby making the remainder more closely related to the leaves.
When considering longer periods, the static mdnV OD should thus be replaced with a metric that
varies over time in order to reflect changes in land cover.

The extrapolation experiments overall indicated that further input variables may be needed to
enhance the model’s extrapolation capability. Including land cover information, which is commonly
used in upscaling of in situ GPP (Chen et al., 2010; Jung et al., 2009; Tramontana et al., 2015, 2016),
may help reduce the impact of scale differences. A second variable, which may improve extrapolation,
is the fraction of C3, C4 and CAM plants within a grid cell. These plants employ different strategies
for carbon uptake and, hence, have a different efficiency in photosynthesis (e.g. Bonan, 2015). In turn,
this may alter the VOD-GPP relationship.

3.7.4 Performance of GPP upscaling

The VOD-based upscaling of GPP generally compared well with GPP from FLUXCOM and MODIS.
Some areas exhibit inverse temporal dynamics with GPP. This, however, is not an issue of the model
formulation but of the VOD observations itself. Microwave VOD observations can exhibit an inverse
relationship to optical vegetation parameters in wet regions for passive VOD and in dry regions for
active VOD (Jones et al., 2011; Liu et al., 2011; Vreugdenhil et al., 2017). Without explicitly accounting
for this behavior, these patterns of negative correlations are propagated through to the VOD-based
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GPP estimates.
Considering annual GPP, we observed a closer agreement with GPP from FLUXCOM and MODIS

for X-band VOD from AMSR2 than from AMSR-E. On the one hand, this finding may be linked to
differences between the sensors themselves. Du et al. (2017) reported that small differences between the
performance for AMSR-E and AMSR2 exist. In line with this, we observed lower RMSE for AMSR2
than for AMSR-E during cross validation. On the other hand, the differences between AMSR-E
and AMSR2 could also be caused by the different analysis periods. Considering that the temporal
coverage of FLUXNET stations varies for AMSR-E and for AMSR2, this likely has the same effect as
seen for the uncertainty analysis, because stations used for upscaling AMSR-E were not necessarily
present in the period for AMSR2, and vice versa. The reason for these differences still requires further
investigation.

Apart from methodological differences between the VOD-based GPP estimation and GPP from
FLUXCOM or MODIS, further variations may arise from differences in the setup. FLUXCOM and
MODIS GPP products both have a higher spatial resolution than VOD data, which potentially reduces
the impact of scale differences. The FLUXNET data set used for the upscaling in FLUXCOM also
differs in the data period and incorporates a larger number of sites (Tramontana et al., 2016). As
shown for the uncertainty analysis, the choice of FLUXNET stations has an impact on the VOD-
based upscaling and, thus, likely contributes to observed differences between VOD-based GPP and
FLUXCOM GPP. In addition, FLUXCOM and MODIS incorporate ancillary information on land
cover (Running et al., 1999; Tramontana et al., 2016), which was already discussed in Section 3.7.3 as
possibility for model improvement.

3.7.5 Impact of model simplifications

The framework neglects the temperature dependency of Ra, which is often represented as an expo-
nential increase of Ra with temperature (Wythers et al., 2013; Vanderwel et al., 2015; Tjoelker et al.,
2001; Smith and Dukes, 2013; Atkin et al., 2005; Atkin and Tjoelker, 2003). Not accounting for this
effect thus may explain the observed overestimation of the VOD-based GPP estimates. The compar-
ison of estimates from AMSR-E and AMSR2, however, showed a closer agreement with FLUXCOM
and MODIS for AMSR2 than for AMSR-E even without including temperature in the model. This
indicates that, in addition to the temperature dependency of Ra, other effects play an important role,
which need to be considered for a more robust estimation of GPP based on VOD. These parameters
likely include the choice of training data as demonstrated by the variability in mean annual GPP
during the uncertainty analysis.

Another simplification is that our model assumes similar temporal dynamics of above- and be-
lowground biomass, which allows expressing biomass as function of VOD. The ratio of above- and
belowground growth, however, may vary between years in response to environmental stresses like
droughts, as shown by Doughty et al. (2015a) for forest plots in the Amazon basin. Depending on
the strength of this effect, mismatches in above- and belowground dynamics can potentially lead to
differences between the VOD-based upscaling of GPP and GPP retrieved from optical data.

In general, differences and temporal shifts between GPP derived from microwave and optical
data can point towards additional terms of carbon loss or storage that were not considered in the
simplified model formulation. A study conducted by Würth et al. (2005) demonstrated for a semi-
deciduous tropical forest how seasonal variations in the concentration of non-structural carbohydrates
can support temporal shifts between carbon assimilation and vegetation growth. Therefore, differences
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between source- and sink-driven GPP can potentially give further insight into large-scale patterns of
carbon partitioning or allocation.

3.8 Conclusion

We have proposed a model for estimating GPP globally based on single frequency microwave satellite
VOD. The approach uses VOD as proxy for aboveground living biomass and describes the relationship
between VOD and GPP through a differential equation, which connects VOD and its derivative. Using
temporal changes in consecutive VOD observations (ΔV OD) as approximation for the derivative, we
implemented the model using Generalized Additive Models. The proposed model is driven by VOD-
based observations of vegetation biomass, and thus presents a sink-driven approach. Our results show
that the model performs well in temporal extrapolation but requires further input variables like the
grid cell median VOD for spatial extrapolation of the VOD-GPP relationship. We have attributed
this behavior to varying proportions of structural components captured by the VOD signal, which
contribute less to the GPP estimation and may be reduced by including median VOD. Our approach
tends to overestimate GPP with respect to FLUXCOM and MODIS GPP, which is probably caused
by the lack of temperature dependency of autotrophic respiration in the current model formulation.
Overall, our results demonstrate the global applicability of the model and highlight the potential use
of microwave VOD for providing GPP estimates that are complementary to source-driven approaches
based on optical remote sensing data.
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3.A Supplement

Figure 3.A.1: Temporal median maps for VOD (a-h), SIF (j) and GPP (i, k) data sets.

Table 3.A.1: Overview of FLUXNET sites in the FLUXNET2015 Tier 1 data set.
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ID FLUXNET-ID Name Lon [°E] Lat [°N] Period used

1 AR-SLu San Luis -66.46 -33.46 2009-2011
2 AR-Vir Virasoro -56.19 -28.24 2010-2012
3 AT-Neu Neustift 11.32 47.12 2007-2012
4 AU-ASM Alice Springs 133.25 -22.28 2010-2013
5 AU-Ade Adelaide River 131.12 -13.08 2007-2009
6 AU-Cpr Calperum 140.59 -34.00 2010-2013
7 AU-Cum Cumberland Plains 150.72 -33.61 2012-2013
8 AU-DaP Daly River Savanna 131.32 -14.06 2008-2013
9 AU-DaS Daly River Cleared 131.39 -14.16 2008-2013
10 AU-Dry Dry River 132.37 -15.26 2008-2013
11 AU-Emr Emerald, Queensland, Australia 148.47 -23.86 2011-2013
12 AU-Fog Fogg Dam 131.31 -12.55 2007-2008
13 AU-GWW Great Western Woodlands, Western

Australia, Australia
120.65 -30.19 2013-2014

14 AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 -14.56 2011-2013
15 AU-Rig Riggs Creek 145.58 -36.65 2011-2013
16 AU-Rob Robson Creek, Queensland, Australia 145.63 -17.12 2014-2014
17 AU-Tum Tumbarumba 148.15 -35.66 2007-2013
18 AU-Whr Whroo 145.03 -36.67 2011-2013
19 BE-Bra Brasschaat 4.52 51.31 2007-2013
20 BE-Lon Lonzee 4.75 50.55 2007-2014
21 BE-Vie Vielsalm 6.00 50.31 2007-2014
22 CA-Qfo Quebec - Eastern Boreal, Mature Black

Spruce
-74.34 49.69 2007-2010

23 CH-Cha Chamau 8.41 47.21 2007-2012
24 CH-Fru Früebüel 8.54 47.12 2007-2012
25 CH-Oe1 Oensingen grassland 7.73 47.29 2007-2008
26 CN-Cng Changling 123.51 44.59 2007-2010
27 CN-Du2 Duolun_grassland (D01) 116.28 42.05 2007-2008
28 CN-Sw2 Siziwang Grazed (SZWG) 111.90 41.79 2010-2012
29 CZ-BK1 Bily Kriz forest 18.54 49.50 2007-2008
30 DE-Akm Anklam 13.68 53.87 2009-2014
31 DE-Gri Grillenburg 13.51 50.95 2007-2014
32 DE-Hai Hainich 10.45 51.08 2007-2012
33 DE-Kli Klingenberg 13.52 50.89 2007-2014
34 DE-Lkb Lackenberg 13.30 49.10 2009-2013
35 DE-Obe Oberbärenburg 13.72 50.78 2008-2014
36 DE-RuS Selhausen Juelich 6.45 50.87 2011-2014
37 DE-Spw Spreewald 14.03 51.89 2010-2014
38 DE-Tha Tharandt 13.57 50.96 2007-2014
39 DK-NuF Nuuk Fen -51.39 64.13 2008-2014
40 DK-Sor Soroe 11.64 55.49 2007-2012
41 DK-ZaH Zackenberg Heath -20.55 74.47 2007-2008
42 ES-LgS Laguna Seca -2.97 37.10 2007-2009
43 ES-Ln2 Lanjaron-Salvage logging -3.48 36.97 2009-2009
44 FI-Hyy Hyytiala 24.30 61.85 2007-2014
45 FR-Gri Grignon 1.95 48.84 2007-2013
46 FR-Pue Puechabon 3.60 43.74 2007-2013
47 GF-Guy Guyaflux (French Guiana) -52.92 5.28 2007-2012
48 IT-CA1 Castel d’Asso 1 12.03 42.38 2011-2013
49 IT-CA2 Castel d’Asso 2 12.03 42.38 2011-2013

continued on next page
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continued from previous page
ID FLUXNET-ID Name Lon [°E] Lat [°N] Period used
50 IT-CA3 Castel d’Asso 3 12.02 42.38 2011-2013
51 IT-Cp2 Castelporziano 2 12.36 41.70 2012-2013
52 IT-Isp Ispra ABC-IS 8.63 45.81 2013-2014
53 IT-Lav Lavarone 11.28 45.96 2007-2012
54 IT-Noe Arca di Noé - Le Prigionette 8.15 40.61 2007-2012
55 IT-Ren Renon 11.43 46.59 2007-2013
56 IT-Ro1 Roccarespampani 1 11.93 42.41 2007-2008
57 IT-Ro2 Roccarespampani 2 11.92 42.39 2007-2012
58 IT-SR2 San Rossore 2 10.29 43.73 2013-2014
59 IT-SRo San Rossore 10.28 43.73 2007-2012
60 IT-Tor Torgnon 7.58 45.84 2008-2013
61 NL-Hor Horstermeer 5.07 52.24 2007-2011
62 NL-Loo Loobos 5.74 52.17 2007-2013
63 NO-Adv Adventdalen 15.92 78.19 2012-2014
64 RU-Cok Chokurdakh 147.49 70.83 2007-2013
65 RU-Fyo Fyodorovskoye 32.92 56.46 2007-2013
66 SD-Dem Demokeya 30.48 13.28 2007-2009
67 US-AR1 ARM USDA UNL OSU Woodward

Switchgrass 1
-99.42 36.43 2009-2012

68 US-AR2 ARM USDA UNL OSU Woodward
Switchgrass 2

-99.60 36.64 2009-2012

69 US-ARM ARM Southern Great Plains site- Lamont -97.49 36.61 2007-2012
70 US-Blo Blodgett Forest -120.63 38.90 2007-2007
71 US-Ha1 Harvard Forest EMS Tower (HFR1) -72.17 42.54 2007-2012
72 US-Los Lost Creek -89.98 46.08 2007-2014
73 US-MMS Morgan Monroe State Forest -86.41 39.32 2007-2014
74 US-Me6 Metolius Young Pine Burn -121.61 44.32 2010-2012
75 US-Myb Mayberry Wetland -121.77 38.05 2011-2014
76 US-Ne1 Mead - irrigated continuous maize site -96.48 41.17 2007-2013
77 US-Ne2 Mead - irrigated maize-soybean rotation

site
-96.47 41.16 2007-2013

78 US-Ne3 Mead - rainfed maize-soybean rotation
site

-96.44 41.18 2007-2013

79 US-SRM Santa Rita Mesquite -110.87 31.82 2007-2014
80 US-Syv Sylvania Wilderness Area -89.35 46.24 2007-2014
81 US-Ton Tonzi Ranch -120.97 38.43 2007-2014
82 US-Tw3 Twitchell Alfalfa -121.65 38.12 2013-2014
83 US-UMd UMBS Disturbance -84.70 45.56 2007-2014
84 US-Var Vaira Ranch- Ione -120.95 38.41 2007-2014
85 US-WCr Willow Creek -90.08 45.81 2010-2014
86 US-Whs Walnut Gulch Lucky Hills Shrub -110.05 31.74 2007-2014
87 US-Wkg Walnut Gulch Kendall Grasslands -109.94 31.74 2007-2014
88 ZA-Kru Skukuza 31.50 -25.02 2007-2010
89 ZM-Mon Mongu 23.25 -15.44 2007-2009
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Figure 3.A.2: FLUXNET2015 Tier 1 data set: (a) location of FLUXNET sites, (b) sum of available
observations per year and (c) temporal data coverage per site. The site IDs are shown in Table 3.A.1.

Table 3.A.2: Spearman rank correlation between FLUXCOM GPP and different GPP estimates de-
veloped per grid cell at 8-daily, 0.25° and monthly, 0.5° sampling. Models were trained against
FLUXCOM using data from the years 2007 and 2008, and tested with data from the remaining period
for each data set. Q25, Q50, and Q75 are the 25th, 50th and 75th percentile of significant correla-
tions, respectively. sig (not_sig) stands for the fraction of significant (not significant) correlations
with respect to all possible land grid cells at each resolution.

monthly, 0.5° 8-daily, 0.25°
Data set Model setup Q25 Q50 Q75 sig not_sig Q25 Q50 Q75 sig not_sig

SIF GPP(SIF ) 0.54 0.73 0.85 0.77 0.20
GPP(V OD, ΔV OD) 0.67 0.80 0.89 0.62 0.23 0.52 0.69 0.81 0.70 0.14

AMSRE_C GPP(V OD) 0.55 0.68 0.79 0.49 0.37 0.40 0.55 0.69 0.60 0.25
GPP(ΔV OD) 0.54 0.67 0.79 0.51 0.35 0.37 0.51 0.63 0.61 0.23

GPP(V OD, ΔV OD) 0.69 0.82 0.90 0.67 0.20 0.55 0.72 0.83 0.76 0.12
AMSRE_X GPP(V OD) 0.56 0.69 0.79 0.55 0.32 0.41 0.56 0.70 0.68 0.20

GPP(ΔV OD) 0.55 0.69 0.79 0.55 0.32 0.38 0.51 0.64 0.66 0.22
GPP(V OD, ΔV OD) 0.68 0.81 0.89 0.67 0.20 0.52 0.69 0.81 0.75 0.14

AMSRE_Ku GPP(V OD) 0.56 0.68 0.78 0.49 0.38 0.40 0.55 0.69 0.63 0.26
GPP(ΔV OD) 0.55 0.68 0.79 0.59 0.29 0.37 0.49 0.61 0.66 0.23

GPP(V OD, ΔV OD) 0.74 0.85 0.92 0.55 0.33 0.56 0.72 0.83 0.66 0.22
AMSR2_C1 GPP(V OD) 0.61 0.74 0.85 0.36 0.51 0.44 0.58 0.72 0.50 0.38

GPP(ΔV OD) 0.64 0.78 0.88 0.43 0.44 0.43 0.58 0.71 0.57 0.31
GPP(V OD, ΔV OD) 0.73 0.84 0.91 0.51 0.36 0.53 0.69 0.81 0.63 0.25

AMSR2_C2 GPP(V OD) 0.60 0.73 0.85 0.34 0.54 0.43 0.56 0.70 0.46 0.42
GPP(ΔV OD) 0.63 0.76 0.88 0.41 0.47 0.42 0.56 0.70 0.55 0.33

GPP(V OD, ΔV OD) 0.76 0.86 0.93 0.59 0.30 0.57 0.73 0.84 0.71 0.19
AMSR2_X GPP(V OD) 0.63 0.75 0.86 0.40 0.49 0.46 0.59 0.72 0.55 0.35

GPP(ΔV OD) 0.65 0.79 0.89 0.46 0.43 0.44 0.58 0.71 0.59 0.31
GPP(V OD, ΔV OD) 0.74 0.85 0.92 0.57 0.32 0.54 0.70 0.82 0.67 0.23

AMSR2_Ku GPP(V OD) 0.61 0.74 0.85 0.38 0.50 0.44 0.58 0.72 0.53 0.37
GPP(ΔV OD) 0.63 0.76 0.87 0.43 0.45 0.41 0.54 0.67 0.55 0.35

GPP(V OD, ΔV OD) 0.57 0.74 0.84 0.82 0.13 0.42 0.61 0.74 0.85 0.11
ASCAT GPP(V OD) 0.48 0.64 0.76 0.74 0.22 0.34 0.52 0.67 0.80 0.16

GPP(ΔV OD) 0.44 0.59 0.71 0.70 0.25 0.26 0.40 0.52 0.72 0.24
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Figure 3.A.3: Analysis of window size: a) Spearman rank correlation (r) and b) root mean square
error (RMSE) for AMSRE_X at 8-daily, 0.25° sampling using different window sizes between 5 to
15 time steps for the smoothing during the calculation of ΔV OD. The model setup is similar to the
temporal extrapolation experiment and uses V OD and ΔV OD as input. Results for the window size
11 are highlighted in grey. For comparison, the 25th, 50th and 75th percentile of the box plot for the
window size 11 are displayed as red lines.

Figure 3.A.4: Root mean square error (RMSE, gCm−2d−1) between FLUXCOM GPP and
GPP(V OD, ΔV OD) for different VOD data sets for the testing period (AMSR-E: 1/2009 to 9/2011;
ASCAT: 1/2009 to 12/2015). The analysis is based on data at 8-daily, 0.25° sampling and uses data
from the period 1/2007 and 12/2008 for training GPP(V OD, ΔV OD) against FLUXCOM at each
grid cell separately. The median of RMSE is displayed for each data set.
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Figure 3.A.5: Site-specific evaluation of temporal extrapolation using Spearman rank correlation (r)
between the full signal of in situ FLUXNET GPP and GPP estimates based on VOD or SIF. Models
were trained using data from the years 2007 to 2008 and tested during the remaining period. Input
variables are SIF , V OD, ΔV OD or the combination of V OD and ΔV OD as indicated on the x-axis.
Box plot whiskers extend to the 5th and 95th data percentile.

Figure 3.A.6: Leave-site-out cross validation for the index of agreement (IoA) at monthly, 0.5° and
8-daily, 0.25° sampling. The analysis is carried out for the full signals of in situ FLUXNET GPP
and GPP estimates based on VOD or SIF. Labels on the x-axis indicate which input variables are
used for each model. Box plot whiskers extend to the 5th and 95th data percentile. Abbreviations –
mdnSIF : temporal grid cell median SIF ; ΔV OD: temporal change in V OD between two consecutive
observations; and mdnV OD: temporal grid cell median V OD.
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Figure 3.A.7: As Fig. 3.A.6 but for the root mean square error (RMSE).

Figure 3.A.8: Leave-site-out cross validation for the index of agreement (IoA) at monthly, 0.5° and
8-daily, 0.25° sampling. The analysis is carried out for the anomalies of in situ FLUXNET GPP and
GPP estimates based on VOD or SIF. Labels on the x-axis indicate which input variables are used
for each model. Box plot whiskers extend to the 5th and 95th data percentile. Abbreviations as in
Fig. 3.A.6.
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Figure 3.A.9: As Fig. 3.A.8 but for the root mean square error (RMSE).

Figure 3.A.10: Leave-site-out cross validation for Spearman rank correlation (r). The analysis is
performed for the full signals of in situ FLUXNET GPP and GPP estimates based on AMSR2 VOD
or SIF. Labels on the x-axis indicate which input variables are used for each model. Box whiskers
extend to the 5th and 95th data percentile. Abbreviations as in Fig. 3.A.6.
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Figure 3.A.11: As Fig. 3.A.10 but for the index of agreement (IoA).

Figure 3.A.12: As Fig. 3.A.10 but for the root mean square error (RMSE).
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Figure 3.A.13: Spatial map of Spearman rank correlation between the upscaled GPP(V OD, ΔV OD,
mdnV OD) and FLUXCOM GPP at 8-daily, 0.25° sampling. GPP(V OD, ΔV OD, mdnV OD) is
trained against in situ FLUXNET GPP estimates. Correlations that are not significant are masked
in grey. For each data set, the median of significant correlations is displayed.
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Figure 3.A.14: As Fig. 3.A.13 but for data at monthly, 0.5° sampling.
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Figure 3.A.15: Spearman rank correlation (r) between GPP data sets (FLUXCOM, MODIS) and
upscaling of GPP(V OD, ΔV OD, mdnV OD) for AMSR2 VOD data sets or GPP(SIF). Data were
trained against in situ GPP estimates (FLUXNET) at 8-daily, 0.25° or monthly, 0.5° sampling. a)
Relative frequency of grid cells with significant and not significant correlation with respect to all
possible land grid cells at each resolution. Areas that do not contain results relate to gaps obtained
during masking or to not produced pixels in the original data products. b) Violin plot of significant
correlations. Horizontal grey lines indicate correlation values of 0.5, 0.8 and 0.9. Dashed lines denote
the median (long dashes) and the 25th and 75th percentile (short dashes).

Figure 3.A.16: Standard deviation of mean annual GPP for ten model runs obtained during the
uncertainty analysis of GPP(V OD, ΔV OD, mdnV OD) for VOD AMSRE_X. The models for each
run were trained with data from 90% of the stations that were randomly drawn. The analysis is based
on the period 2012 to 2015 and uses data at 8-daily, 0.25° sampling.
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Figure 3.A.17: Mean annual GPP for the period 2012 to 2015: a) upscaling of GPP(V OD, ΔV OD,
mdnV OD) for VOD AMSR2_X, b) difference in mean annual GPP between FLUXCOM and
AMSR2_X c) difference in mean annual GPP between MODIS and AMSR2_X. Values in b) and
c) are displayed between -1 and 1. d) Zonal mean of mean annual GPP. Estimates for GPP(V OD,
ΔV OD, mdnV OD) were produced using data at 8-daily, 0.25° sampling.
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Chapter 4

Impact of temperature and water
availability on microwave-derived gross
primary production

4.1 Abstract

Vegetation optical depth (VOD) from microwave satellite observations has received much attention
in global vegetation studies in recent years due to its relationship to vegetation water content and
biomass. We recently have shown that VOD is related to plant productivity, i.e. gross primary
production (GPP). Based on this relationship between VOD and GPP we developed a theory-based
machine learning model to estimate global patterns of GPP from passive microwave VOD retrievals.
The VOD-GPP model generally showed good agreement with site observations and other global data
sets in temporal dynamic but tended to overestimate annual GPP across all latitudes. We hypothesized
that the reason for the overestimation is the missing effect of temperature on autotrophic respiration in
the theory-based machine learning model. Here we aim to further assess and enhance the robustness
of the VOD-GPP model by including the effect of temperature on autotrophic respiration within
the machine learning approach and by assessing the interannual variability of the model results with
respect to water availability. We used X-band VOD from the VOD Climate Archive (VODCA) data
set for estimating GPP and used global state-of-the art GPP data sets from FLUXCOM and MODIS
to assess residuals of the VOD-GPP model with respect to drought conditions as quantified by the
Standardized Precipitation and Evaporation Index (SPEI).

Our results reveal an improvement in model performance for correlation when including the temper-
ature dependency of autotrophic respiration (average correlation increase of 0.18). This improvement
in temporal dynamic is larger for temperate and cold regions than for the tropics. For ubRMSE and
bias, the results are regionally diverse and are compensated in the global average. Improvements are
observed in temperate and cold regions while decreases in performance are obtained mainly in the
tropics. The overall improvement when adding temperature was less than expected and thus may
only partly explain previously observed differences between the global GPP datasets. On interannual
time scales, estimates of the VOD-GPP model agree well with GPP from FLUXCOM and MODIS.
We further find that the residuals between VOD-based GPP estimates and the other data sets do
not significantly correlate with SPEI which demonstrates that the VOD-GPP model can capture re-
sponses of GPP to water availability even without including additional information on precipitation,
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soil moisture or evapotranspiration. Exceptions from this rule were found in some regions: signifi-
cant negative correlations between VOD-GPP residuals and SPEI were observed in the US corn belt,
Argentina, Eastern Europe, Russia and China, while significant positive correlations were obtained
in South America, Africa and Australia. In these regions, the significant correlations may indicate
different plant strategies for dealing with variations in water availability.

Overall, our findings support the robustness of global microwave-derived estimates of gross primary
production for large-scale studies on climate-vegetation interactions.

4.2 Introduction

Vegetation optical depth (VOD) from microwave satellite observations provides the opportunity for
studying large-scale vegetation dynamics due to its sensitivity to the vegetation water content and
above-ground biomass. Different studies have employed VOD for deriving various plant properties or
vegetation characteristics that can be related to the plant’s water content, including biomass estimation
(Liu et al., 2015; Brandt et al., 2018; Rodríguez-Fernández et al., 2018b; Chaparro et al., 2019; Fan
et al., 2019; Frappart et al., 2020; Wigneron et al., 2020; Li et al., 2021), crop yield (Chaparro
et al., 2018), tree mortality (Rao et al., 2019; Sapes et al., 2019), analysis of burned area (Forkel
et al., 2019), ecosystem-scale isohydricity (Konings and Gentine, 2017), plant water uptake during dry
downs (Feldman et al., 2018) and plant water storage (Tian et al., 2018). VOD, or microwave satellite
observations in general, are also analyzed for its potential in detecting the impact of drought (Song
et al., 2019; Crocetti et al., 2020). Despite the sensitivity of VOD to vegetation water content, the
relationship between VOD and GPP has not yet been analyzed with regard to how the relationship
responds to varying conditions of dry- or wetness.

Recently, we have shown that VOD is related to plant productivity, i.e. gross primary production
(GPP) (Teubner et al., 2018). Based on these findings, we developed a theory-guided machine learning
model to estimate GPP from VOD (VOD-GPP model) and trained the model using eddy covariance
estimates of GPP from the FLUXNET network (Teubner et al., 2019). The VOD-GPP model relies
on estimating carbon sink terms, i.e. net primary production (NPP) and autotrophic respiration (Ra),
based on VOD as a proxy for above-ground living biomass. The VOD-GPP model thus represents a
carbon sink-driven approach. Since the VOD-GPP model uses biomass as main input, the estimation
of GPP does not rely on input variables that are commonly used in source-driven approaches, e.g.
absorption of photosynthetically active radiation as primary input term or vapor pressure deficit as
controlling factor for stomatal conductance (Running et al., 2000; Turner et al., 2005; Goodrich et al.,
2015; Zhang et al., 2016a, 2017). Although different studies are tackling the question of how much
information on biomass is actually contained in the VOD signal (Momen et al., 2017; Vreugdenhil
et al., 2018; Zhang et al., 2019), it might be worth noting that the water content can be seen as an
important aspect in our model approach since it presents the living part of the vegetation and only
living cells, which contain water, are able to respire. We have shown that the VOD-GPP model can
well represent temporal dynamics of GPP but that it overestimates GPP especially in temperate and
boreal regions (Teubner et al., 2019). We hypothesize that this overestimation may be caused by a
missing representation of temperature dependency of autotrophic respiration in the VOD-GPP model.

Ra is the process through which chemical energy that was stored by building up carbohydrates
during photosynthesis is gained by converting carbohydrates back into carbon dioxide. It is generally
known that Ra is a temperature-dependent process (e.g., Atkin and Tjoelker, 2003). Modelling the
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response of Ra to temperature, however, is complex due to the existence of thermal acclimation (Atkin
and Tjoelker, 2003). Ra is commonly represented through an exponential function with Q10 as base
which is multiplied with a basal respiration rate (e.g., Smith and Dukes, 2013). The base value Q10
describes how much Ra changes when temperature changes by 10°C (e.g., Atkin et al., 2008). Although
global models often use constant values for either one parameter or both parameters (Gifford, 2003;
Smith and Dukes, 2013), studies have shown that both basal respiration rate and Q10 may vary with
temperature (Tjoelker et al., 2001; Wythers et al., 2013). The implementation of such temperature
acclimation yields a functional representation that decreases again at higher temperatures and thus
takes into account that respiration may decrease outside an optimum temperature range (Smith and
Dukes, 2013).

Here we aim to assess the impact of the temperature dependency of Ra in the VOD-GPP model
and if it can improve model performance. Furthermore, we will test the plausibility of the model
by comparing the estimated interannual variability of GPP with independent state-of-the art global
data sets of GPP and by assessing model residuals with respect to variations in climatological water
availability as represented by the Standardized Precipitation and Evaporation Index (SPEI). Since
source- (GPP) and sink-terms (NPP + Ra) should theoretically be in balance, any differences between
the two approaches that are related to variations in water availability may give insight into different
plant strategies for dealing with dry or wet conditions and thus may be of interest for ecological or
plant-physiological studies at large-scale.

4.3 Data and methods

4.3.1 Choice of microwave frequency

The VOD-GPP model relies on biomass as input. Nevertheless, the choice of microwave frequency for
estimating GPP may look counterintuitive. On the one hand, VOD from low microwave frequencies
like L-band has been demonstrated to be better suited as proxy for mapping total above-ground
biomass than high frequency VOD, i.e. X-band VOD, as L-band VOD saturates less at high biomass
values (Chaparro et al., 2019; Frappart et al., 2020; Li et al., 2021). On the other hand, previous
analyses demonstrated that X-band VOD shows a closer agreement with GPP (Teubner et al., 2018,
2019; Kumar et al., 2020). In Figure 4.A.1 we further corroborated this observation by a correlation
analysis between in situ GPP and VOD from L- and X-band, respectively (for details about the single
sensor VOD datasets, see Teubner et al., 2018). Despite the high fraction (38%) of forest pixels used
for this computation, higher correlations were obtained for X-band than for L-band. An explanation
could be that whole plant biomass was found to be less suited for estimating GPP as opposed to
biomass of metabolically active plant parts like leaves and fine roots (Litton et al., 2007). Based on
these findings, we concluded that higher frequency VOD appears to be better suited for estimating
GPP and therefore we used X-band VOD in our analysis.

4.3.2 Data sets

We analyzed different GPP data sets derived from microwave and optical sensors as well as SPEI. As
input to the VOD-GPP model, we used X-band VOD data from the VOD Climate Archive (VODCA).
Since global coverage for VODCA X-band data starts in 2003 (Moesinger et al., 2020) and SPEI data
are available through 2015, we used the common period from 2003 to 2015 for our analysis. Temporal
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median maps for the global GPP data sets are displayed in the supplement (Figure 4.A.2).

VODCA

VOD retrievals from single sensors often span only a certain period in time, which may hamper the
analysis of longer periods. To overcome this problem, we used a merged single frequency VOD from the
VOD Climate Archive (VODCA; Moesinger et al., 2020) as input to our model. VODCA (Moesinger
et al., 2020) X-band (VODCAX) contains nighttime observations of passive VOD derived from TMI
(10.7 GHz; variable overpass time), AMSR-E (10.7 GHz; descending 1:30 am), WindSat (10.7 GHz;
descending 6:00 am) and AMSR2 (10.7 GHz; descending 1:30 am). The VOD input data are obtained
from the Land Parameter Retrieval Model (LPRM; van der Schalie et al., 2017). The use of nighttime
observations on the one hand meets the LPRM assumption of homogeneous temperature conditions
(Owe et al., 2001) and on the other hand is better suited as proxy for plant water status than daytime
observations. Due to diurnal differences in plant water status and the refilling during the night
(El Hajj et al., 2019; Konings and Gentine, 2017), nighttime observations are closer to the predawn
water potential which is commonly used as estimator for the daily vegetation water status (Konings
and Gentine, 2017; Konings et al., 2019). During the processing of VODCAX, data are masked for
radio frequency interference (RFI) (Moesinger et al., 2020) since RFI can introduce spurious retrievals
(Li et al., 2004; Njoku et al., 2005). Data are available at daily resolution and 0.25° grid spacing.

Independent global GPP data sets

The MOD17A2H v006 product provides global estimates of GPP which are derived from surface
reflectances (Running et al., 2004, 2015). The algorithm is based on the light-use efficiency concept
by Monteith (1972) and uses the fraction of Photosynthetically Absorbed Radiation for deriving plant
productivity (Running et al., 1999, 2000). Data are produced as 8-daily GPP estimates at 500 m
resolution.

FLUXCOM presents an upscaling of GPP from eddy covariance measurements using an ensemble
of machine learning approaches (Jung et al., 2020). The data set is available at 8-daily resolution and
10 km grid spacing. FLUXCOM estimates are produced in two setups: the FLUXCOM RS is based on
remote sensing data as input to the machine learning models and the FLUXCOM RS+METEO uses
meteorological data and only the mean seasonal cycle of remote sensing data (Jung et al., 2020). Since
our approach is mainly based on remote sensing data, i.e. VOD observations, we used FLUXCOM
RS in our analysis. The FLUXCOM algorithm uses the following MODIS variables as input: En-
hanced Vegetation Index, Leaf Area Index, MODIS band 7 - Middle Infrared Reflectance, Normalized
Difference Vegetation Index and Normalized Difference Water Index.

In situ GPP estimation from FLUXNET

The Fluxnet2015 data set (Pastorello et al., 2020) provides daily in situ estimates of carbon, water and
heat fluxes, which are determined using the eddy covariance technique. GPP estimates are available
for two flux partitioning methods, i.e. daytime and nighttime partitioning method. We used the mean
of both partitioning methods, as suggested in (Pastorello et al., 2020), with variable friction velocity
threshold (GPP_DT_VUT_REF, GPP_NT_VUT_REF) from the freely available station data set
(Tier1 v1). Since data are available until 2014, we used data for the period from 2003 to 2014 as
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training data for estimating GPP based on VOD. An overview of the FLUXNET sites is given in
Figure 4.A.3 and Table 4.A.1.

SPEI

For analyzing the impact of variations in water availability, we used SPEI from the SPEIbase (Be-
guería et al., 2017; Vicente-Serrano et al., 2010). The climatological water balance is calculated on
different time scales ranging from 1 up to 48 months. Since drought can act on different time scales,
we used SPEI at two different aggregations, 3- and 12-month, for investigating the response to dry
and wet conditions. The 3-month SPEI (SPEI03) represents short-term effects, while the 12-month
SPEI (SPEI12) relates to dry or wet conditions at annual time scale. Although SPEI cannot be used
to express actual water shortage for plants, it allows to indicate relative deviations from mean condi-
tions. Because of the use of both precipitation and temperature, SPEI further enables the comparison
between different biomes (Vicente-Serrano et al., 2010). The SPEI data has monthly resolution and a
grid spacing of 0.5°.

ERA5-Land

ERA5-Land produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) (C3S,
2019; Muñoz-Sabater, 2019) provides a reanalysis data set of meteorological parameters. ERA5 uses
a 4D variational data assimilation scheme and a Simplified Extended Kalman Filter (Hersbach et al.,
2020). We used skin temperature and snow data for masking VOD. In the VOD-GPP model, we
incorporated 2m air temperature (T2M) for representing the temperature dependency of autotrophic
respiration. T2M was used in our analysis, since this parameter is most common for describing the
temperature dependency of autotrophic respiration for above-ground vegetation (e.g., Ryan et al.,
1997; Running et al., 2000; Ceschia et al., 2002; Drake et al., 2016). The data has hourly resolution
and 9 km spatial sampling.

4.3.3 Data processing

VODCAX data were masked for low temperature (skin temperature < 0°C) and snow cover (snow
depth > 0cm) and then aggregated to 8-daily estimates by computing the mean over 8 days to match
the temporal resolution of GPPmodis and GPPfluxcom. These 8-daily values were then used as input
to the VOD-GPP model and for further analysis throughout the study. GPPfluxcom and GPPmodis
were aggregated to 0.25° to match the spatial sampling of VODCAX. For the comparison with SPEI, 8-
daily GPP estimates were further resampled to monthly resolution while SPEI was spatially resampled
to 0.25° using the nearest neighbour method.

4.3.4 GPP estimation based on VOD

The approach of estimating GPP based on microwave radiation and the corresponding equations are
described in detail in Teubner et al. (2019). In short, the VOD-GPP model uses VOD as a proxy of
above-ground living biomass (Equation 4.1). It determines GPP by estimating sinks for carbohydrates,
i.e. the sum of NPP and Ra, which are represented through different VOD-derived variables: 1) time
series of the bulk VOD signal (V OD; 8-daily aggregated native VOD time series), 2) time series of the
temporal change in VOD (ΔV OD; ΔV ODt = V ODt −V ODt−1 computed from the smoothed 8-daily
aggregated VOD time series) and 3) the grid cell median of VOD (mdnV OD; calculated over the
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entire VOD time series of the grid cell; used as a proxy for vegetation cover). While NPP is related to
ΔV OD, Ra is related to both V OD and ΔV OD using the concept proposed by Ryan et al. (1997) of
dividing Ra into maintenance and growth respiration (Equation 4.2). By assuming that belowground
biomass terms are proportional to above-ground biomass (i.e. biomass B can be expressed through
above ground biomass AGB) and by adding a static term c supporting the conversion in Equation 4.2,
GPP can be represented through a differential equation with VOD as input (Equation 4.3).

AGB = f(V OD) = �V OD (4.1)

GPP = NPP + Ra =
�

dB
dt

+ loss terms
�

+
�

a0
dB
dt

+ b0 B
�

≈ a
dB
dt

+ b B (4.2)

GPP = a
d�V OD

dt
+ b �V OD + c (4.3)

The formulation in GAM for this previous model, which uses only VOD variables as input (GP-
Pvod; Equation 4.4), then reads:

GPPvod = s(V OD) + s(ΔV OD) + s(mdnV OD) (4.4)

where s denotes spline terms for representing the functions between each input variable and the
response variable GPP in the 2-dimensional space.

For adding the temperature dependency of Ra, we are considering the two terms of Ra, i.e. main-
tenance and growth respiration. Since the temperature sensitivity mainly applies to the maintenance
term (Ryan et al., 1997), we are only incorporating an interaction term with temperature for the
maintenance part of the model formulation. Although all terms potentially may be dependent on
temperature due to the general temperature dependency of enzymatic activity, the temperature de-
pendency for modelling growth related sink terms (growth respiration and net primary production)
may be of less importance. For the current model formulation (GPPvodtemp; Equation 4.5), we now
introduced an interaction term between V OD and temperature:

GPPvodtemp = te(V OD, T2M) + s(ΔV OD) + s(mdnV OD) (4.5)

where te stands for a tensor term, which represents the interaction between V OD and temperature
and spans a surface in the 3-dimensional space.

Consistent with our previous model, we used GAM as regression method for deriving GPP. The
pyGAM (Servén and Brummitt, 2018) version 0.8.0 provides the possibility of adding an interaction
term. An advantage of GAM is that the relationships between input variables and response variable
are not required to be known beforehand, but instead can be estimated from the data itself (Hastie
and Tibshirani, 1987). Since the relationship between VOD and GPP as well as its relationship with
temperature is difficult to determine a priori, this method is well suited for our approach.

In GAM, a number of basis spline functions are fitted to the data and the resulting function is
further smoothed to obtain the final response function (Servén and Brummitt, 2018). The degree
of smoothing is determined by the smoothing factor, which yields strong smoothing for high values
and low smoothing for low values. For the current models we used a smoothing factor of 2, which
is lower than for the model in Teubner et al. (2019). This was done since the response function for
the tensor term was too smooth using the default number of 10 splines for tensor terms and resulted
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in unrealistically high GPP values at high V OD. For ΔVOD, the default number of 20 splines for
spline terms were used, while for mdnV OD we reduced the number of splines to 5 in order to obtain
a smooth relationship.

4.3.5 Statistical analysis

For model comparison, we computed Pearson correlation, unbiased Root Mean Square Error (ubRMSE)
and bias. For studying the error characteristics, ubRMSE was used instead of RMSE to exclude the
impact of bias, which was observed during our analysis. In addition, cross validation was computed
for the above metrics using the leave-site-out method, where the model performance is evaluated at
each site by omitting the respective site data from model training and then using the left-out data for
computing the statistics. The analysis was carried out for the full signal and the anomalies from the
mean seasonal cycle.

In case of analyzing annual GPP anomalies as a measure for interannual variability and residuals
of the VOD-GPP model, we based our analysis on standardized annual or 8-daily time series data (z-
scores). This was done in order to analyze GPP data in the absence of systematic differences between
the data sets. The standardization for the 8-daily or the annual data was applied to each grid cell
time series by subtracting the mean and dividing by the standard deviation.

For generating the smoothed time series in the calculation of ΔV OD and for aiding visual com-
parison in time series plots, we applied a Savitzky-Golay filter with window size of 11 data points.

4.4 Results

4.4.1 Model representation of temperature dependency

We find that the sensitivity of V OD to GPP increases with temperature as shown by the partial
dependency plots (Figure 4.1). For low temperatures, the sensitivity of the VOD-GPP-relationship
is relatively low (Figure 4.1a). As temperature increases, the sensitivity also increases and further
exhibits an optimum behavior. At high temperatures, however, the maxima of the curves are lower
than for moderate temperatures. The partial dependency for T2M (Figure 4.1d) shows an optimum
behavior with a peak around 20°C, which slightly differs between the V OD values. The partial
dependencies for ΔV OD and mdnV OD (Figure 4.1b,c) are consistent with the previous model and
yield an increasing relationship with GPP for ΔV OD in the middle part of the value range and a
general decreasing relationship for mdnV OD.

In addition to identifying the underlying relationships, we can further assess the magnitude of the
contribution to GPP for the input variables based on the data range in the partial dependency plots.
The main contribution to GPP in the model comes from the interaction term between V OD and T2M

with a range of about 12 gC m-2 d-1, which is followed by ΔV OD with a range of about 6 gC m-2

d-1 and mdnV OD with a range of about 4 gC m-2 d-1. The contribution of the maintenance part, as
represented through the interaction term, thus, is higher than for ΔV OD which represents the sum
of NPP and the growth term in Ra.

4.4.2 Evaluation at site-level

At FLUXNET in situ stations, global GPP datasets overall show similar results (Figure 4.2). GP-
Pvod exhibits a slight accumulation of GPP values at around 4 g C m-2 d-1, while the density for
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Figure 4.1: Partial dependency plot for GPPvodtemp for each input variable: (a) V OD, (b) ΔV OD,
(c) mdnV OD and (d) T2M . The model was trained with data from the period 2003-2014. Dashed
lines in (b) and (c) denote the 95% confidence interval. The interaction between V OD and T2M (a,d),
which represents a surface in the 3-dimensional space, is displayed as projection on the 2D plane for
each of the two input variables. For this, the parameter space was divided into 10 equally spaced bins
between minimum and maximum of the respective variable. The bin edges are displayed as colored
lines as indicated in the legend.
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Figure 4.2: Scatter plots of 8-daily in situ GPPfluxnet versus global GPP data sets (a) GPPvodtemp,
(b) GPPvod, (c) GPPfluxcom and (d) GPPmodis for the period 2003-2014.

GPPvodtemp is relatively smooth and comparable to GPPfluxcom and GPPmodis. Both GPPvod
and GPPvodtemp show a relatively high number of non-zero GPP at around zero GPPfluxnet, which
is less pronounced for GPPvodtemp than for GPPvod. Cross validation results in Table 4.A.2 further
confirm a higher performance of GPPvodtemp compared to GPPvod. For the full signal as well as for
the anomalies from the mean cycle, correlation, ubRMSE and bias generally yield higher performance
for GPPvodtemp. The increase in performance is more pronounced for the full signal than for the
anomalies. Despite an overall agreement of GPPvodtemp, GPPfluxcom and GPPmodis with in situ
GPP, all three data sets exhibit an underestimation of GPP at high values of GPP compared with in
situ GPPfluxnet. At annual time scale, the difference with GPPfluxnet at high GPP becomes much
lower for GPPvodtemp compared to GPPfluxcom and GPPmodis (Figure 4.A.4), which indicates on
the one hand that GPPvodtemp is able to match the in situ training data and on the other hand
suggests that differences in GPP already exist between the training data set used in our study and the
independent global GPP data sets, which may contribute to differences at global scale. The observed
overestimation of GPP for GPPvodtemp at low in situ GPP can also be observed at annual time scale.
This may be an explanation for the general tendency for overestimation of microwave-derived GPP
estimates and appears not to be entirely related to the temperature sensitivity of Ra, since it is still
present for GPPvodtemp.
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4.4.3 Impact of adding temperature dependency at the global scale

Performance metrics for GPPvod and GPPvodtemp were assessed with respect to both GPPfluxcom
and GPPmodis. Since the results for GPPfluxcom and GPPmodis are similar, we are only showing
results for GPPfluxcom.

Correlations with GPPfluxcom (Figure 4.3a) reveal widespread strongly positive values with a
global mean of 0.63. Some areas in the tropics and in the Australian desert exhibit an inverse temporal
dynamic with GPPfluxcom. Compared with GPPvod, correlations increase in large parts of the
world (Figure 4.3b) with a global average difference of 0.18. Regions that benefit most from adding
temperature as input are temperate and cold regions, which could be expected since these regions per
definition are strongly controlled by temperature. Tropics and subtropics, however, mainly show only
minor changes in correlation coefficient with a few exceptions of decreasing correlations. Since the
annual temperature amplitude in these regions is low, the model’s sensitivity to temperature is also
low, which makes the interaction term mainly controlled by VOD.

The global average for ubRMSE between GPPvodtemp and GPPfluxcom (Figure 4.3c) yields a
value of 1.20. Consistent with the increase in performance for the correlation, areas in the temperate
and cold region show an improvement in error, i.e. a decrease of ubRMSE compared to GPPvod
(Figure 4.3d). Other regions, however, exhibit an increase in ubRMSE. The global average of the
difference between results for GPPvodtemp and GPPvod is -0.05. Therefore, gains and losses in error
are largely compensated at the global scale.

The bias between GPPvodtemp and GPPfluxcom (Figure 4.3c) is generally positive everywhere
with a global average of 1.64. This finding is also evident from the higher range in the median maps
for GPPvodtemp compared with GPPfluxcom and GPPmodis (Figure 4.A.2). Comparing the results
for GPPvod and GPPvodtemp, the addition of temperature shows an increase in bias mainly in the
tropics (Figure 4.3d), which is also evident for the difference of the median maps (Figure 4.A.2e).
Despite this increase in the tropics, also regions with a reduction in bias exist, which are mainly found
in temperate and cold regions. On the global scale, decreases and increases in bias compensate and
yield an average difference of -0.05.

The latitudinal distribution of annual GPP (Figure 4.4a) further demonstrates that the addition
of temperature yields a reduction of GPP mainly for regions outside -35°N and +60°N. The reduction
in the zonal mean, however, is smaller than may have been expected probably due to compensating
effects. For the region between +30°N and +60°N, where reductions in bias were observed on the global
map, positive and negative values for the bias appear to compensate yielding no net reduction in the
zonal mean. In the tropical region, the increase in bias for GPPvodtemp compared with GPPvod is
again evident. When considering the latitudinal distribution of annual GPP relative to the latitudinal
maximum, however, the distribution for GPPvodtemp is actually closer to the independent datasets
than GPPvod (Figure 4.4b). This suggests that although the bias largely increases in the tropics,
the relative distribution between tropics and temperate to boreal regions is better represented by the
setup that includes temperature.

For a region in Europe (5 to 15°E and 46 to 51°N), where we generally did observe an increase
in all three performance metrics, we find that for GPPvod mainly winter time estimates of GPP are
too high compared to GPPfluxcom and GPPmodis (Figure 4.5). By adding temperature as input to
the model, winter observations are markedly dampened and summer observations are only slightly
increased. Nevertheless, even when including the temperature dependency, winter GPP estimates
are still slightly higher for GPPvodtemp than for GPPfluxcom or GPPmodis. A similar behavior is
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Figure 4.3: (a): Pearson correlation between GPPvodtemp and GPPfluxcom. (b): Difference be-
tween GPPvodtemp and GPPvod for Pearson correlation with GPPfluxcom. (c): ubRMSE between
GPPvodtemp and GPPfluxcom. (d): Difference between GPPvodtemp and GPPvod for ubRMSE
with GPPfluxcom. (e): Bias between GPPvodtemp and GPPfluxcom. (f): Difference between GP-
Pvodtemp and GPPvod for the bias with GPPfluxcom. The unit for ubRMSE and bias is g C m-2 d-1.
Areas with non-significant correlations in (a) and (b) are marked in grey. The analysis is computed
over the whole study period (2003-2015).

observed for other temperate regions (Figure 4.A.5).
In the remaining study, due to the observed bias (both at site-level and global scale), we are

analyzing relative rather than absolute values for comparing interannual variability and the impact
of water availability. In addition, we are focusing our further analysis on GPPvodtemp since this
setup overall showed higher performance than GPPvod. Results for GPPvod are displayed in the
supplement for comparison with GPPvodtemp.

4.4.4 Interannual variability and varying conditions of water availability

The latitudinal distribution of annual GPP anomalies reveals a general agreement between the GPP
datasets (Figures 4.6 and 4.A.6). Although differences exist between all data sets, key features are
observed among all data sets, such as the positive anomalies at -55°N in 2003, at -30°N in 2011 or at
+75°N in 2012 and the negative anomalies at +75°N in 2003 and 2015 and at around -40° in 2009
and 2011. Despite the fact that these key features are found in all data sets, we also observe that
the magnitude of the anomalies often differs between the data sets, which thus yields a generally
relatively high variability between all data sets. In terms of the overall latitudinal pattern, it appears
that GPPvodtemp is more similar to GPPmodis than to GPPfluxcom.

For the correlation of the residuals between standardized GPP (GPPvodtemp-GPPfluxcom or
GPPvodtemp-GPPmodis) and SPEI, we find that large areas show no significant correlation with
SPEI03 (Figure 4.7a,b). For the long-term climatological water balance, i.e. SPEI12 (Figure 4.7c,d),
these areas with non-significant correlations further increase. In terms of model applicability, the
non-significant correlations are the desired result. Given that correlations between GPPvodtemp and
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Figure 4.4: Zonal mean of annual GPP for GPPfluxcom, GPPmodis, GPPvodtemp and GPPvod for
the study period 2003-2015. (a): Absolute latitudinal distribution. (b): Scaled latitudinal distribution.
To obtain zonal means, data were averaged over all grid points of the same latitude. Scaled data were
computed by dividing the latitudinal distribution by the maximum of the latitudinal distribution for
each data set.
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Figure 4.5: Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis and
(a) GPPvod or (b) GPPvodtemp over the whole study period (2003-2015). Shaded areas indicate the
standard deviation over the aggregated grid cells. The region is located in Europe, 5 to 15°E and 46
to 51°N, and was selected as an example where the correlation analysis between GPP residuals and
SPEI largely yield no significant correlations. 8-daily data were smoothed to aid visual comparison.

GPPfluxcom or GPPmodis are high in these regions, this demonstrates that GPPvodtemp shows a
similar behavior as GPPfluxcom or GPPmodis in response to variations in dry or wet conditions. This
finding thus provides a strong indication that the VOD-GPP-relationship generally remains similar
under varying conditions of water availability.

Apart from the widespread areas with non-significant correlation, some significant correlations,
both positive and negative, occur at both time scales. Negative correlations indicate that during dry
conditions GPPvodtemp is higher relative to the reference GPP than during wet conditions, while
positive correlations mean that during dry conditions GPPvodtemp is lower relative to the reference
GPP than during wet conditions. The spatial distribution of these significant correlations is largely
consistent between GPPfluxcom and GPPmodis. For the short-term response to SPEI (Figure 4.7a,b),
negative correlations are more frequent than positive correlations, indicating that the response to short-
term drought events is often a reduction of source-driven GPP relative to sink-driven GPP. Negative
correlations are mainly observed in the US corn belt, Argentina, Eastern Europe, Russia and China,
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Figure 4.6: Hovmöller diagramm for zonal means of annual GPP anomalies (z-scores) for (a) GP-
Pvodtemp, (b) GPPfluxcom and (c) GPPmodis over the study period. Zonal means were calculated
by averaging data over all grid points of the same latitude.

Figure 4.7: Correlation between residuals of standardized GPP (GPPvodtemp-GPPfluxcom and
GPPvodtemp-GPPmodis) and SPEI. Non-significant correlations are indicated in grey. (a,c):
GPPvodtemp-GPPfluxcom, (b,d): GPPvodtemp-GPPmodis, (a,b): SPEI03 (short-term response),
(c,d): SPEI12 (long-term response). Regions A-D: US cornbelt (A), Argentina (B), Eastern Africa
(C) and Eastern Australia (D). The analysis is based on the whole study period (2003-2015).

with the strongest negative correlations being in the US, Argentina and Russia. Positive correlations
are obtained mainly over South America, Africa and Australia. For the long-term response to SPEI
(Figure 4.7c,d), the number of positive correlations increase. Similar to the short-term response,
positive correlations are mainly found over South America, Africa and Australia.

The analysis of GPPvod residuals reveals a similar result as for GPPvodtemp (Figure 4.A.7).
For GPPvod, however, the number of grid cells with non-significant correlations in the four analyses
is lower by about 2 to 4 % than for GPPvodtemp, while the global average correlation is nearly
identical. The higher number of non-significant correlations for GPPvodtemp than for GPPvod is
expected, because the addition of temperature accounts for some variation in the VOD-based GPP
estimation.

For specific regions, which are indicated in Figure 4.7, we analyzed the time series of the standard-
ized GPP (Figure 4.8) and the response to SPEI categories (Figure 4.A.8) in order to inspect under
which situations negative or positive correlations with SPEI occur.
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For the region in the US corn belt (Figure 4.8a), where we found moderately negative correlations
with SPEI, all three GPP data sets show a reduction in summer GPP in 2006 and 2012. Compared
with other years, however, the reduction of GPPvodtemp tends to be less than for GPPfluxcom and
GPPmodis. This behavior can be verified by considering the residuals along the SPEI12 gradient
(Figure 4.A.8a). During dry conditions, the residuals are higher than during wet conditions. Since
higher residuals indicate that GPPvodtemp is higher relative to the reference data sets, this result
confirms the findings for the time series.

In Argentina (Figure 4.8b), we observed strongly negative correlations for the analysis with SPEI.
For this region, a pronounced dry condition is observed at the end of 2008 and beginning of 2009. In
this period, GPPfluxcom and GPPmodis are reduced more strongly than GPPvodtemp. In the first
following year, the GPPvodtemp peak is slightly lower than for GPPfluxcom and GPPmodis at the
end of 2009. In the second following year, end of 2011, GPPvodtemp is similar as for GPPfluxcom
and GPPmodis again. This result is further supported by the pronounced decrease of the residuals
with SPEI12 in Figure 4.8b. In addition to the interannual variability, we also find that the spring
peak is more pronounced in GPPfluxcom and GPPmodis than in GPPvodtemp, which might point
towards a surplus of carbohydrates in spring that are incorporated for building up biomass later in
the year or may be related to differences in land cover.

For the example in Africa (Figure 4.8c), where correlations with SPEI12 were positive, GP-
Pvodtemp generally appears to be a bit higher relative to GPPfluxcom and GPPmodis at the end of
each growing period. In face of dry conditions, however, GPPvodtemp shows a stronger reduction in
GPP than GPPfluxcom and GPPmodis at the end of the growing season, as observed in 2006 and
2009. Despite some differences in the time series between GPPvodtemp and the reference data sets, the
temporal dynamic is generally similar between the data sets. This indicates that the sink-driven GPP
shows a slightly different response to changes in environmental conditions for this region, which then
results in the observed positive correlations with SPEI. Considering the residuals along the SPEI12
gradient for this region, we find that the residuals increase with SPEI12 for all categories except for
very wet conditions (Figure 4.A.8c).

The time series for Australia (Figure 4.8d) shows that GPPvodtemp is generally reduced during dry
conditions and increases relative to GPPfluxcom and GPPmodis during wet conditions. The increase
in GPPvodtemp relative to the reference data sets appears to be strongest for the period following
one year after long-term dry conditions, i.e. in 2009, 2011 and 2012. Consistently, the residuals show
a clear increase along the SPEI12 categories (Figure 4.A.8d).

4.5 Discussion

4.5.1 Impact of adding temperature as model input

The performance of the VOD-GPP model was shown to improve with the addition of an interaction
term between V OD and temperature mainly in terms of temporal dynamic. Our results showed
that the improvement in temporal dynamic was mainly observed for temperate and cold regions.
Since the growing season in these regions is largely controlled by temperature, this indicates that
the improvement may largely be a seasonal effect. When analyzing the temperature response of
respiration across biomes, both spatial and temporal differences resulting from thermal acclimation
need to be taken into account (Vanderwel et al., 2015). On the spatial scale, temperature sensitivity
largely varies with mean annual temperature across biomes (Piao et al., 2010; Vanderwel et al., 2015).

79



CHAPTER 4 – IMPACT OF TEMPERATURE AND WATER AVAILABILITY ON
MICROWAVE-DERIVED GROSS PRIMARY PRODUCTION

2

1

0

1

2

G
P

P
 z

-s
c
o
re

a) US cornbelt

GPPfluxcom GPPmodis GPPvodtemp

b) Argentina

2004 2006 2008 2010 2012 2014
Date

2

0

2

4

G
P

P
 z

-s
c
o
re

c) Eastern Africa

2004 2006 2008 2010 2012 2014
Date

d) Eastern Australia

Figure 4.8: Regional mean of standardized GPP values for regions as indicated in Figure 4.7 over the
study period. Shaded areas denote the standard deviation for the regional aggregated time series.
Vertical grey areas indicate periods with different levels of dryness conditions for regional aggregated
SPEI12: SPEI12<-1 (dark grey), -1<=SPEI12<0 (light grey) and SPEI12>=0 (white areas). Data
were smoothed to aid visual comparison.

On the temporal scale, temperature-corrected respiration rates, as observed for stem respiration of
deciduous trees or for needle-leave evergreen trees, exhibit a seasonal variation leading to higher
respiration rates during summer than during winter (Maier et al., 1998; Ceschia et al., 2002; Vose
and Ryan, 2002; Zha et al., 2004). Consistently, we observed a dampening of GPPvodtemp during
winter compared to GPPvod. The addition of temperature thus seems to enable the model to reflect
differences in basal respiration rates between growing and dormant periods in these regions. Although
the temporal component of thermal acclimation of respiration appears to be the dominant contribution,
the resulting dependency on temperature represents the cumulative effect of spatial and temporal
thermal acclimation of respiration as the relationship for the temperature dependency was estimated
from the data without a priori assumptions.

In addition to the temperature dependency, Ra also varies with tissue nitrogen content (Maier et al.,
1998; Ceschia et al., 2002; Vose and Ryan, 2002; Tjoelker et al., 2008), which may thus contribute
to uncertainties in the GPP estimation derived from VOD. Ra is also known to vary between plant
tissues (Vose and Ryan, 2002; Gifford, 2003). The respiration of woody tissue is generally lower than
for leaves (Vose and Ryan, 2002). Since VOD generally increases with the fraction of woody vegetation
(Chaparro et al., 2019), using the median of VOD as model input may potentially compensate at least
partly for differences in respiration rates of stems and branches versus leaves within a grid cell.

4.5.2 Bias between GPP data sets

The addition of temperature dependency revealed contrasting results for the bias. While reductions in
bias were observed for temperate and cold regions, a strong increase in bias was found for the tropics.
Since the interaction term between V OD and T2M represents a relationship in the 3-dimensional
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space, certain combinations of V OD and T2M intervals in the parameter space may not be well
represented by the training data. FLUXNET stations are not evenly distributed around the globe,
as the majority of stations are located in the temperate region. This may have caused the model
to be not well constrained in certain regions, e.g. where temperature and V OD are very high, and
thus might have contributed to the increase in bias in the tropics. Therefore, additional FLUXNET
stations might help to better constrain the VOD-GPP model. Nevertheless, differences between the
dataset were already evident at the site-level, which suggests that the observed difference at global
scale may at least partly be caused by differences in the training dataset. In general, the agreement in
annual GPP estimates is lowest in the tropics (Anav et al., 2015). Estimates for the FLUXCOM RS
setup, which was used in our study, were reported to yield lower global estimates than the FLUXCOM
RS+METEO setup or GPP estimates from vegetation models (Jung et al., 2020). Similarly, MODIS
was found to underestimate GPP in the tropics (Turner et al., 2006). The need for better constraints
for GPP estimates especially in the tropics is well recognized (MacBean et al., 2018) and tackled in
different studies (e.g., MacBean et al., 2018; Sun et al., 2018; Wu et al., 2020) but is usually hampered
by the availability of in situ estimates.

4.5.3 Implications of possible saturation of VOD at high biomass

The choice of microwave frequency for the estimation of GPP may have certain implications. Different
studies have demonstrated that L-band VOD yields more robust estimates of total above-ground
biomass than X-band VOD, as low frequency VOD does not saturate at high biomass values (Chaparro
et al., 2019; Frappart et al., 2020; Li et al., 2021). Nonetheless, the impact of such potential saturation
with biomass on the estimation of GPP is less trivial, especially with regard to densely vegetated areas
like the tropics. Non-linearity in the conversion between VOD and AGB should ideally be reflected
in the partial dependency plot of GAM, which was also the reason for choosing this type of modelling
approach. Scatterplots of the resulting GPPvodtemp estimates did not show clear signs of saturation
at high in situ GPP. The FLUXNET training data set, however, only has few stations in the tropics
and thus the robustness of the model may be limited by the availability of in situ stations. Apart
from this, the relationship between VOD and GPP has been found to be in closer agreement for X-
band VOD than for L-band (Teubner et al., 2018, 2019; Kumar et al., 2020), which was also observed
for the correlation with in situ FLUXNET GPP (Figure 4.A.1). At first glance, this might appear
contradictory to the above-mentioned better performance of L-band VOD for biomass estimation. A
comparison of biomass estimates from different plant components with GPP, however, demonstrated
that large structural components, which make up a large fraction of the total biomass, may contribute
less to GPP than metabolically active plant parts (Litton et al., 2007). Since high frequency VOD
is more sensitive to small plant parts like leaves and twigs (Woodhouse, 2005), this could be an
explanation why X-band VOD might be better suited for the estimation of GPP and why saturation
at high total above-ground biomass may be less of an issue here.

4.5.4 Independence of global GPP data sets

For the comparison with VOD-based GPP estimates, we used independent global data set from FLUX-
COM and MODIS. Both data sets include to some extent information from FLUXNET data. FLUX-
COM has been trained against FLUXNET data (Tramontana et al., 2016; Jung et al., 2020), however,
with a larger number of stations than in the freely available Tier 1 data set that was used for our
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model. Also, MODIS has been partly calibrated to some FLUXNET stations (Running et al., 1999).
Therefore, the FLUXCOM and MODIS may not be fully independent from our VOD-based GPP esti-
mates. Nevertheless, there is no alternative to constrain absolute GPP estimates at global scale than
by using FLUXNET data. In addition, the agreement between GPP and VOD-based GPP estimates
was also confirmed at site level using leave-site-out cross validation. Since this analysis is independent
from the comparison with global data sets, it supports the use of VOD for deriving GPP.

4.5.5 The “zero-GPP problem” and non-structural carbohydrates

For GPPvodtemp, we observed that winter GPP values for an example over Europe were slightly
higher compared to GPPfluxcom and GPPmodis. This issue of estimating GPP values close to zero
was also observed in the scatter plots between GPPvodtemp and in situ GPPfluxnet. The reason
for the overestimation at low GPP may be on the one hand an artefact related to the rehydration of
plant residues after rain events and on the other hand may be explained by the sink-driven nature
of our approach. In the latter case, the non-zero GPPvodtemp values may be caused by perennial
vegetation. Both evergreen and deciduous vegetation are respiring throughout the dormant period
(Maier et al., 1998; Vose and Ryan, 2002) and concurrently are containing water. In turn, this presence
of vegetation water content is detected through microwave sensors leading to non-zero GPPvodtemp
estimates. It thus may point towards the existence of a storage term. In plants, photosynthetic
assimilates can be stored in the form of non-structural carbohydrates (NSC), which can be converted
back to plant usable sugars to support respiration during the dormant period and growth at the start
of the growing season (e.g., Martínez-Vilalta et al., 2016). For tropical forest plots, the balancing of
plot level measurements of source and sink terms showed a decoupling between the two in response
to drought which the authors attributed to the existence of NSC (Doughty et al., 2015b). Therefore,
such a storage term can thus support a temporary imbalance between sources and sinks of carbon,
which may translate into differences between source- and sink-driven GPP.

4.5.6 Magnitude of input terms

Based on the partial dependency plots, we found that for the maintenance-related term, i.e. the
interaction term between V OD and T2M , the value range is higher than for ΔV OD. Although our
model represents the sum of NPP and growth Ra and not just growth Ra, the magnitude of the two
input terms is consistent with studies that analyzed the contribution of maintenance and growth to Ra.
For whole plants as well as for stem respiration of boreal needle-leave trees, maintenance respiration
was shown to play the dominant role for Ra with a contribution 70% (Chambers et al., 2004) and 80%
(Zha et al., 2004), respectively.

4.5.7 Response to water availability

The analysis of VOD-GPP residuals with respect to FLUXCOM and MODIS revealed that GP-
Pvodtemp largely showed a similar behavior as the independent GPP data sets as demonstrated by
the widespread non-significant correlations with SPEI. This result is further supported by the gen-
eral agreement in interannual variability. In addition to the possible impact of NSC, occurrences of
significant correlations between VOD-GPP residuals and SPEI may indicate different plant strategies
for dealing with changes in dry or wet conditions. For negative correlations, this could be mainly re-
lated to differences in plant hydraulics, while for positive correlations, it might indicate shifts between
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above- and belowground carbon allocation.
Different plant strategies with regard to hydraulics can be expressed with the concept of isohydric-

ity, which describes the regulation of stomatal control (Konings and Gentine, 2017; Giardina et al.,
2018; Martínez-Vilalta and Garcia-Forner, 2017). At ecosystem level, this parameter can be obtained
using the difference in twice daily overpasses of microwave observations (Konings and Gentine, 2017).
Although Martínez-Vilalta and Garcia-Forner (2017) argue that the regulation of water potential may
not necessarily be strongly coupled with the assimilation during drought, the degree of isohydricity
may still be an explanation for the observed variation in GPPvodtemp relative to GPPfluxcom and
GPPmodis. Pronounced negative correlation for the analysis of GPP residuals were found in Argentina
and the US corn belt, which are regions where Konings and Gentine (2017) observed high values of
isohydricity. Corn, which exhibits isohydric behavior (Lambers and Oliveira, 2019; Martínez-Vilalta
and Garcia-Forner, 2017), i.e. is maintaining water potential through strong regulation of stomata,
additionally has the ability, like other grasses, to roll up leaves in response to drought for reducing the
loss of water from the plant’s cuticular (e.g., Ribaut et al., 2009). In conjunction with the isohydric
behavior, this might be an explanation for the strong signal reduction of GPPfluxcom and GPPmodis
relative to GPPvodtemp observed over Argentina. Although our analysis is based on 8-daily time
steps, characteristics of plant hydraulics which are retrieved from sub-daily data show similar features
as for our analysis of residuals between source- and sink-driven GPP in response to changes in water
availability.

In contrast to the isohydric behavior, anisohydric behavior should not lead to pronounced differ-
ences between GPPvodtemp and GPPfluxcom or GPPmodis as stomatal conductance and leaf water
potential are both reduced in response to dry conditions (Lambers and Oliveira, 2019). The anisohy-
dric behavior thus potentially relates to the non-significant correlations. Nevertheless, the degree of
isohydricity may also vary between wet and dry season (Konings and Gentine, 2017), which also needs
to be taken into account for the interpretation of the residuals.

The observed positive correlations, i.e. reductions of GPPvodtemp relative to GPPfluxcom or
GPPmodis, could be associated with a stronger shift of assimilates to belowground plant organs.
Different studies have shown that root growth may increase in face of drought to maintain water
access (Sanaullah et al., 2012; Burri et al., 2014) and consequently also nutrient supply (Lambers and
Oliveira, 2019). Since VOD observations only detect above-ground living vegetation, a shift towards
belowground plant organs may lead to apparently lower GPPvodtemp. Nevertheless, also the inverse,
i.e. an increase of allocation to shoots, was observed in the presence of legume species during drought
(Sanaullah et al., 2012) and for tropical forest plots after drought (Doughty et al., 2015b).

Comparisons of GPPvodtemp with in situ observations of vegetation properties during such ex-
treme events like drought, however, may be needed to improve the understanding of the plant’s
response to changes in environmental conditions at the ecosystem to global scale.

4.6 Conclusions

The VOD-GPP model was analyzed with regard to the impact of adding temperature as model input
in order to account for the temperature dependency of autotrophic respiration. The resulting GPP
estimates, GPPvodtemp, showed a high consistency with GPPfluxcom and GPPmodis for the temporal
dynamic both at intra- and interannual time scale. For bias and error, the addition of temperature
resulted in a regionally diverse response with a general improvement for temperate and cold regions

83



CHAPTER 4 – IMPACT OF TEMPERATURE AND WATER AVAILABILITY ON
MICROWAVE-DERIVED GROSS PRIMARY PRODUCTION

and a decrease in performance mainly in the tropics. The improvement upon adding temperature,
however, was less than might have been expected, which indicates that the previous lack of temperature
dependency in the model formulation can only partly account for the observed differences between
the global GPP datasets. Nevertheless, this result demonstrates that an improvement by adding
temperature is possible but might require further model constraints for a more robust estimation of
GPP.

The analysis of the VOD-GPP residuals revealed that GPPvodtemp largely yields a similar be-
havior as GPPfluxcom and GPPmodis with respect to SPEI. This highlights that the relationship
between VOD and GPP generally may be valid even under varying conditions of water availability.
For some regions, where significant correlations were observed, the observed differences between GP-
Pvodtemp and GPPfluxcom or GPPmodis may indicate different plant strategies for dealing with
drought conditions.

Overall, our results showed that GPPvodtemp potentially contains information on plant charac-
teristics that may be relevant for large-scale ecological studies that are addressing the response to
varying environmental conditions.

4.7 Data availability

VODCA products are available at https://doi.org/10.5281/zenodo.2575599. FLUXCOM prod-
ucts are available from http://www.fluxcom.org or on request to Martin Jung (mjung@bgc-jena.mpg.de).
MODIS GPP estimates can be accessed at https://lpdaac.usgs.gov/products/mod17a2hv006/.
Data form the FLUXNET network is available at https://fluxnet.org/data/fluxnet2015-dataset/.
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Appendix

4.A Supplement
Table 4.A.1: Overview of FLUXNET Tier1 v1 stations within the period 2003 to 2014. Land cover
from IGBP (International Geosphere–Biosphere Programme) is obtained from the FLUXNET station
metadata. Land cover abbreviations and number of stations per land cover class sorted by station
number: ENF (Evergreen Needleleaf Forests; 23), GRA (Grasslands; 22), DBF (Deciduous Broadleaf
Forests; 14), CRO (Croplands; 11), EBF (Evergreen Broadleaf Forests; 9), WET (Permanent Wet-
lands; 9), OSH (Open Shrublands; 7), MF (Mixed Forests; 6), SAV (Savannas; 6), WSA (Woody
Savannas; 4) and CSH (Closed Shrublands; 1).

FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover

AR-SLu San Luis -66.46 -33.46 2009-2011 MF
AR-Vir Virasoro -56.19 -28.24 2010-2012 ENF
AT-Neu Neustift 11.32 47.12 2003-2012 GRA
AU-ASM Alice Springs 133.25 -22.28 2010-2013 ENF
AU-Ade Adelaide River 131.12 -13.08 2007-2009 WSA
AU-Cpr Calperum 140.59 -34.00 2010-2013 SAV
AU-Cum Cumberland Plains 150.72 -33.61 2012-2013 EBF
AU-DaP Daly River Savanna 131.32 -14.06 2008-2013 GRA
AU-DaS Daly River Cleared 131.39 -14.16 2008-2013 SAV
AU-Dry Dry River 132.37 -15.26 2008-2013 SAV
AU-Emr Emerald, Queensland, Australia 148.47 -23.86 2011-2013 GRA
AU-Fog Fogg Dam 131.31 -12.55 2006-2008 WET
AU-GWW Great Western Woodlands, Western

Australia, Australia
120.65 -30.19 2013-2014 SAV

AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 -14.56 2011-2013 WSA
AU-Rig Riggs Creek 145.58 -36.65 2011-2013 GRA
AU-Rob Robson Creek, Queensland, Australia 145.63 -17.12 2014-2014 EBF
AU-Tum Tumbarumba 148.15 -35.66 2003-2013 EBF
AU-Whr Whroo 145.03 -36.67 2011-2013 EBF
BE-Bra Brasschaat 4.52 51.31 2004-2013 MF
BE-Lon Lonzee 4.75 50.55 2004-2014 CRO
BE-Vie Vielsalm 6.00 50.31 2003-2014 MF
BR-Sa3 Santarem-Km83-Logged Forest -54.97 -3.02 2003-2004 EBF
CA-NS1 UCI-1850 burn site -98.48 55.88 2003-2005 ENF
CA-NS3 UCI-1964 burn site -98.38 55.91 2003-2005 ENF
CA-NS4 UCI-1964 burn site wet -98.38 55.91 2003-2005 ENF
CA-NS5 UCI-1981 burn site -98.49 55.86 2003-2005 ENF
CA-NS6 UCI-1989 burn site -98.96 55.92 2003-2005 OSH
CA-NS7 UCI-1998 burn site -99.95 56.64 2003-2005 OSH
CA-Qfo Quebec - Eastern Boreal, Mature Black

Spruce
-74.34 49.69 2003-2010 ENF

continued on next page
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Figure 4.A.1: Pre-analysis of correlation between in situ FLUXNET GPP and single sensor VOD from
L- and X-band. (a): Pearson correlation between FLUXNET GPP (mean of GPP_DT_VUT_REF
and GPP_NT_VUT_REF) and L-band VOD (SMOS VOD-L, 7/2010–12/2014) and X-band VOD
(AMSR-E VOD-X, 1/2007–9/2011). Data were resampled to 8-daily or monthly values. The analysis
was conducted only for stations where both of the VOD data set are available (47 stations). For
details about the VOD datasets and their data processing, see Teubner et al. (2018). (b): As in
(a) but for the subset of forest land cover classes (ENF, DBF, EBF and MF). (c): Composition of
IGBP land cover classes for the stations used in this pre-analysis. Abbreviations: GRA (Grasslands),
CRO (Croplands), ENF (Evergreen Needleleaf Forests), DBF (Deciduous Broadleaf Forests), EBF
(Evergreen Broadleaf Forests), SAV (Savannas), MF (Mixed Forests), WET (Permanent Wetlands),
WSA (Woody Savannas) and OSH (Open Shrublands).

Figure 4.A.2: Temporal median maps for (a) GPPvodtemp, (b) GPPfluxcom, (c) GPPvod, (d) GPP-
modis and (e) difference between the median maps of GPPvodtemp and GPPvod. For GPPvodtemp
and GPPvod, areas where both GPPfluxcom and GPPmodis are missing were masked, since these
data were not used during the analysis. Data were computed over the whole study period (2003-2015).
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Figure 4.A.3: Location of FLUXNET Tier1 v1 stations within the period 2003 to 2014. The size of
the circles represents the number of available years for each station. The blue rectangle denotes the
location of the region in Europe used Figure 4.5.
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Figure 4.A.4: Scatterplot of annual GPP for GPPfluxnet versus (a) GPPvodtemp, (b) GPPvod, (c)
GPPfluxcom and (d) GPPmodis. Annual values were calculated from 8-daily GPP for each data set
and cover the FLUXNET period 2003-2014.

continued from previous page
FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover
CA-SF1 Saskatchewan - Western Boreal, forest

burned in 1977
-105.82 54.49 2003-2006 ENF

CA-SF2 Saskatchewan - Western Boreal, forest
burned in 1989

-105.88 54.25 2003-2005 ENF

CA-SF3 Saskatchewan - Western Boreal, forest
burned in 1998

-106.01 54.09 2003-2006 OSH

CH-Cha Chamau 8.41 47.21 2006-2012 GRA
CH-Fru Früebüel 8.54 47.12 2006-2012 GRA
CH-Oe1 Oensingen grassland 7.73 47.29 2003-2008 GRA
CN-Cha Changbaishan 128.10 42.40 2003-2005 MF
CN-Cng Changling 123.51 44.59 2007-2010 GRA
CN-Dan Dangxiong 91.07 30.50 2004-2005 GRA
CN-Din Dinghushan 112.54 23.17 2003-2005 EBF
CN-Du2 Duolun_grassland (D01) 116.28 42.05 2006-2008 GRA
CN-Ha2 Haibei Shrubland 101.33 37.61 2003-2005 WET
CN-HaM Haibei Alpine Tibet site 101.18 37.37 2003-2004 GRA
CN-Qia Qianyanzhou 115.06 26.74 2003-2005 ENF
CN-Sw2 Siziwang Grazed (SZWG) 111.90 41.79 2010-2012 GRA
CZ-BK1 Bily Kriz forest 18.54 49.50 2003-2008 ENF
CZ-BK2 Bily Kriz grassland 18.54 49.49 2004-2006 GRA
DE-Akm Anklam 13.68 53.87 2009-2014 WET
DE-Gri Grillenburg 13.51 50.95 2004-2014 GRA

continued on next page
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Figure 4.A.5: Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis and
(a,c) GPPvod or (b,d) GPPvodtemp for the two regions US cornbelt (a,b; region A) and Argentina
(c,d; region B) from Figures 4.7, 4.8 and 4.A.7. The analysis is based on the study period 2003-
2015. Shaded areas represent the standard deviation over the aggregated grid cells. 8-daily data were
smoothed to aid visual comparison.
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Figure 4.A.6: Hovmöller diagramm for zonal means of annual GPP anomalies (z-scores) for GPPvod
over the study period 2003-2015.
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Figure 4.A.7: Correlation between residuals of standardized GPP (GPPvod-GPPfluxcom and
GPPvod-GPPmodis) and SPEI. Non-significant correlations are indicated in grey. (a,c): GPPvod-
GPPfluxcom, (b,d): GPPvod-GPPmodis, (a,b): SPEI03 (short-term response), (c,d): SPEI12 (long-
term response). Regions A-D: US cornbelt (A), Argentina (B), Eastern Africa (C) and Eastern Aus-
tralia (D). Results are computed based on the study period 2003-2015.
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Figure 4.A.8: Boxplot of residuals between standardized GPP values of GPPvodtemp and GPPfluxcom
or GPPmodis along SPEI12 categories for the data in Figure 4.8. The intervals for the different SPEI12
categories are given in the legend. Box whiskers indicate 1.5 of the interquartile range. The analysis
is based on the whole study period (2003-2015).
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FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover
DE-Hai Hainich 10.45 51.08 2003-2012 DBF
DE-Kli Klingenberg 13.52 50.89 2004-2014 CRO
DE-Lkb Lackenberg 13.30 49.10 2009-2013 ENF
DE-Obe Oberbärenburg 13.72 50.78 2008-2014 ENF
DE-RuS Selhausen Juelich 6.45 50.87 2011-2014 CRO
DE-Spw Spreewald 14.03 51.89 2010-2014 WET
DE-Tha Tharandt 13.57 50.96 2003-2014 ENF
DK-NuF Nuuk Fen -51.39 64.13 2008-2014 WET
DK-Sor Soroe 11.64 55.49 2003-2012 DBF
DK-ZaH Zackenberg Heath -20.55 74.47 2003-2008 GRA
ES-LgS Laguna Seca -2.97 37.10 2007-2009 OSH
ES-Ln2 Lanjaron-Salvage logging -3.48 36.97 2009-2009 OSH
FI-Hyy Hyytiala 24.30 61.85 2003-2014 ENF
FI-Jok Jokioinen 23.51 60.90 2003-2003 CRO
FR-Gri Grignon 1.95 48.84 2004-2013 CRO
FR-Pue Puechabon 3.60 43.74 2003-2013 EBF
GF-Guy Guyaflux (French Guiana) -52.92 5.28 2004-2012 EBF
IT-CA1 Castel d’Asso 1 12.03 42.38 2011-2013 DBF
IT-CA2 Castel d’Asso 2 12.03 42.38 2011-2013 CRO
IT-CA3 Castel d’Asso 3 12.02 42.38 2011-2013 DBF
IT-Cp2 Castelporziano 2 12.36 41.70 2012-2013 EBF
IT-Isp Ispra ABC-IS 8.63 45.81 2013-2014 DBF
IT-Lav Lavarone 11.28 45.96 2003-2012 ENF
IT-Noe Arca di Noé - Le Prigionette 8.15 40.61 2004-2012 CSH
IT-PT1 Parco Ticino forest 9.06 45.20 2003-2004 DBF
IT-Ren Renon 11.43 46.59 2003-2013 ENF
IT-Ro1 Roccarespampani 1 11.93 42.41 2003-2008 DBF
IT-Ro2 Roccarespampani 2 11.92 42.39 2003-2012 DBF
IT-SR2 San Rossore 2 10.29 43.73 2013-2014 ENF
IT-SRo San Rossore 10.28 43.73 2003-2012 ENF
IT-Tor Torgnon 7.58 45.84 2008-2013 GRA
JP-MBF Moshiri Birch Forest Site 142.32 44.39 2003-2005 DBF
JP-SMF Seto Mixed Forest Site 137.08 35.26 2003-2006 MF
NL-Hor Horstermeer 5.07 52.24 2004-2011 GRA
NL-Loo Loobos 5.74 52.17 2003-2013 ENF
NO-Adv Adventdalen 15.92 78.19 2012-2014 WET
RU-Che Cherski 161.34 68.61 2003-2005 WET
RU-Cok Chokurdakh 147.49 70.83 2003-2013 OSH
RU-Fyo Fyodorovskoye 32.92 56.46 2003-2013 ENF
RU-Ha1 Hakasia steppe 90.00 54.73 2003-2004 GRA
SD-Dem Demokeya 30.48 13.28 2005-2009 SAV
US-AR1 ARM USDA UNL OSU Woodward

Switchgrass 1
-99.42 36.43 2009-2012 GRA

US-AR2 ARM USDA UNL OSU Woodward
Switchgrass 2

-99.60 36.64 2009-2012 GRA

US-ARM ARM Southern Great Plains site- Lamont -97.49 36.61 2003-2012 CRO
US-Blo Blodgett Forest -120.63 38.90 2003-2007 ENF
US-Ha1 Harvard Forest EMS Tower (HFR1) -72.17 42.54 2003-2012 DBF
US-Los Lost Creek -89.98 46.08 2003-2014 WET
US-MMS Morgan Monroe State Forest -86.41 39.32 2003-2014 DBF
US-Me6 Metolius Young Pine Burn -121.61 44.32 2010-2012 ENF

continued on next page
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FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover
US-Myb Mayberry Wetland -121.77 38.05 2011-2014 WET
US-Ne1 Mead - irrigated continuous maize site -96.48 41.17 2003-2013 CRO
US-Ne2 Mead - irrigated maize-soybean rotation

site
-96.47 41.16 2003-2013 CRO

US-Ne3 Mead - rainfed maize-soybean rotation
site

-96.44 41.18 2003-2013 CRO

US-SRM Santa Rita Mesquite -110.87 31.82 2004-2014 WSA
US-Syv Sylvania Wilderness Area -89.35 46.24 2003-2014 MF
US-Ton Tonzi Ranch -120.97 38.43 2003-2014 WSA
US-Tw3 Twitchell Alfalfa -121.65 38.12 2013-2014 CRO
US-UMd UMBS Disturbance -84.70 45.56 2007-2014 DBF
US-Var Vaira Ranch- Ione -120.95 38.41 2003-2014 GRA
US-WCr Willow Creek -90.08 45.81 2003-2014 DBF
US-Whs Walnut Gulch Lucky Hills Shrub -110.05 31.74 2007-2014 OSH
US-Wkg Walnut Gulch Kendall Grasslands -109.94 31.74 2004-2014 GRA
ZA-Kru Skukuza 31.50 -25.02 2003-2010 SAV
ZM-Mon Mongu 23.25 -15.44 2007-2009 DBF

Table 4.A.2: Leave-site-out cross validation for GPPvodtemp and GPPvod. The analysis was con-
ducted for the full signal as well as for the anomalies from the mean seasonal cycle. Anomalies were
calculated after model application. Values represent mean and standard deviation of the metrics over
the cross validation results for each site.

Pearson r [-] UbRMSE [gC m-2 d-1] Bias [gC m-2 d-1]

GPPvod 0.40 ± 0.32 2.57 ± 1.14 -0.04 ± 2.01
GPPvodtemp 0.54 ± 0.31 2.30 ± 1.01 -0.08 ± 2.01
GPPvod anomalies 0.18 ± 0.22 1.57 ± 0.78 -0.00 ± 0.00
GPPvodtemp anomalies 0.22 ± 0.19 1.53 ± 0.76 0.00 ± 0.00
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Chapter 5

Conclusions and outlook

In this PhD thesis, VOD was evaluated for its potential of estimating GPP. The derived VOD-GPP
model showed good agreement with other remote sensing based GPP estimates, especially in terms of
temporal dynamic, but tended to overestimate annual GPP as already mentioned above. The latter
could only partly be reduced by accounting for the temperature dependence of autotrophic respiration
in the model formulation. In tropical regions, the bias further increased when including temperature
as model input. The lack of improvement for tropical regions might be attributed to the especially
low spatial distribution of in situ training stations. Thus, increasing the number of in situ stations in
regions with low station density might contribute to the robustness of the model estimates.

One of the aspects, which may improve model performance, is the representation of land cover. In
the current model formulation, land cover is represented through the grid cell median VOD, which,
however, is a static component. Although the bulk VOD signal already implicitly tracks land cover
changes, the overall effect of land cover changes potentially is not fully represented since the median
VOD is static per grid cell and, hence, does not change over time. In addition, the median VOD is
only a rough proxy for land cover which may require refinement. Thus, analyzing the impact of a
static versus a dynamic component and the model’s sensitivity to different land cover classes might
improve model performance.

A further aspect is the scale difference between in situ GPP training data and VOD observations.
Compared with optical remote sensing, the spatial resolution of current VOD products is much lower.
This coarse spatial resolution may lead to potential mismatches during model training if the station
is not representative for the overall VOD grid cell. Efforts of deriving VOD products at higher
spatial resolution might contribute to bridging this gap. Those efforts include the derivation of VOD
from Sentinel observations (Vreugdenhil et al., 2020) or future VOD retrievals from the upcoming
Copernicus Imaging Microwave Radiometer (CIMR) mission (Earth and Division, 2019). Such a
higher spatial resolution of VOD observations could support more robust model training in the future.

The choice of VOD frequency for estimating GPP presented one of the key issues in this PhD
thesis. Since the concept for the VOD-GPP model relies on biomass as input and since microwave
observations are sensitive to the object size (Woodhouse, 2005), it was expected that L-band VOD
would be better suited than high-frequency VOD. Although L-band VOD is observed to saturate less
at high biomass (Chaparro et al., 2019; Frappart et al., 2020; Li et al., 2021), results in this PhD thesis
demonstrated that X-band VOD yields higher performance in estimating GPP. This suggests that the
small vegetation parts like leaves and twigs constitute the dominant contribution. This finding, which
is supported by in situ observations of autotrophic respiration for different plant parts (Chambers
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et al., 2004; Zha et al., 2004) and the comparison of GPP with plant biomass estimates Litton et al.
(2007), only refers to the use of a single VOD frequency. It is not clear if the use of a single frequency
is sufficient, i.e., could be justified via allometric relations to serve as proxy for all sink-terms, or if a
more detailed representation of the various plant parts could help to improve the model. As metabolic
activity differs between plant components such as leaves and stems (e.g., Chambers et al., 2004; Zha
et al., 2004; Litton et al., 2007), an analysis of jointly using X- and L-band VOD in a multi-frequency
approach could help to test this hypothesis. In addition to currently available VOD datasets, the
CIMR mission will provide VOD at L-, C- and X-band from the same platform (Earth and Division,
2019), which could generate a suitable data basis for such an analysis that could thus provide further
insights into the required model structure of the sink-driven approach.

In addition to uncertainties in absolute GPP values, also trends in GPP and interannual variability
are subject to a high variability among GPP estimates (Anav et al., 2015). The upcoming long-
term GPP record (Wild et al., 2021) presents an additional independent GPP dataset which has
the potential to contribute to further investigate these observed variabilities as it presents a different
perspective through the sink-term approach but at the same time is data-driven. It is important to
note, however, that the satellite observations can only represent the aboveground vegetation parts. The
VOD-GPP model makes the assumption that aboveground and belowground dynamics are similar. At
first glance this might appear as a drawback. However, if balanced with source-driven GPP, changes in
the ratio of aboveground to belowground dynamics in response to extreme environmental conditions
may be detected with the VOD-based GPP estimates. As the VOD-based GPP will be available
as long-term record (Wild et al., 2021), it is suitable for environmental or climate change studies
that focus on quantifying sink-terms of carbon or the relation between aboveground and belowground
carbon allocation.

With the all-weather capabilities of microwave observations and satellite revisit times of up to
twice a day, VOD-based GPP estimates can potentially be produced at daily resolution. At such
short time scale, however, the temperature dependence may result in a stronger contribution of the
instantaneous temperature response of autotrophic respiration at the expense of the seasonal response
and thus may differ from the relationship found at 8 day resolution. In addition, short-term variations
in the vegetations water content might play a stronger role at daily time scale and could potentially
affect the robustness of the model. The impact of both effects thus needs to be investigated, when
aiming at increasing the temporal resolution of the VOD-GPP model.

To conclude, the VOD-GPP model presents an independent GPP data set and provides the oppor-
tunity to study sink terms in the plant carbon cycle. In conjunction with source-driven approaches,
the model can thus contribute to gain knowledge about large-scale variations in carbon allocation
pattern. The VOD-GPP model might thus provide the means to further our understanding on the
impact of natural disturbances and how vegetation can cope with environmental changes at a large
scale.
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