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Abstract

This thesis dives into the topic of quantum thermodynamics by exploring the new concept
of Quantum Field Machine, a device designed to perform a task in the quantum realm. Such
device requires quantum mechanics for its full description, while, at the same time, it is
unfeasible to account for each and every degree of freedom, making statistical considerations
crucial to describe its behaviour. These two requirements make it a genuine quantum heat
engine operating at the intersection of thermodynamics and quantum mechanics. In the
context of this work, a QFM is an ultra-cold atomic system consisting of three components.
The main task of this machine is to cool down one of its components, using two basic
operations (primitives), which have an equivalent counterpart in classical thermodynamics:
The first operation is compression or expansion of one of the components (corresponding to
a piston); the second operation consists of coupling pairs of components for energy exchange
(resembling a valve). In this work, we carry out a numerical study of each primitive as
well as several refrigeration cycles performed with the machine. We also demonstrate the
experimental proof-of-concept implementation of each primitive. To that purpose, we use one
dimensional Bose-Einstein condensates generated in the Atomchip platform. Furthermore, we
look in detail at the consequences of driving two uncorrelated components of the machine in
the strong coupling regime, where interesting phenomena, such as an anomalous flow of heat,
can be observed. This work paves the way to further studies in quantum thermodynamics
and provides tools for studying thermodynamics with quantum, finite systems, far from the
usually assumed thermodynamic limit.
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Resumo

Esta tese leva a cabo estudos no campo da termodinâmica quântica, propondo o conceito
novo de Máquina de Campo Quântico, desenhada para executar tarefas específicas no domínio
quântico. Para descrever completamente o comportamento desta máquina, são necessários
conceitos de mecânica quântica e, ao mesmo tempo, ferramentas de física estatística, uma vez
que não é viável descrever cada grau de liberdade do sistema individualmente. Tais requeri-
mentos fazem da Máquina de Campo Quântico uma genuina máquina térmica quântica que
opera na intersecção da mecânica quântica e da termodinâmica. No contexto deste trabalho,
a Máquina de Campo Quântico é um sistema de átomos frios constituído por três compo-
nentes. O propósito da MCQ é arrefecer uma destas componentes, usando duas operações
básicas (designadas de primitivas) que encontram equivalência na termodinâmica clássica:
A primeira operação é a compressão/expansão de uma das componentes (assemelhando-se a
um pistão); a segunda operação consiste em acoplar um par de componentes para transferên-
cia de energia (assemelhando-se a uma válvula). Neste trabalho, estudamos numericamente
cada primitiva, bem como vários ciclos de arrefecimento, resultantes da operação da máquina.
Também demonstramos a implementação experimental da prova-de-conceito de cada primi-
tiva. Para isso, usamos condensados de Bose-Einstein unidimensionais gerados na plataforma
Atomchip. Além disso, avaliamos ainda as consequências de migrar duas componentes inde-
pendentes para o regime de acoplamento forte, onde fenómenos como fluxo de calor anómalo
podem ser observados. Este trabalho abre caminho para futuras investigações em termod-
inâmica quântica e oferece ferramentas para estudar termodinâmica com sistemas quânticos
e finitos, fora do usual limite termodinâmico.
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Zusammenfassung

Diese Dissertation behandelt das Thema der Quanten-Thermodynamik. Sie widmet sich der
Erforschung des neuen Konzepts der Quantenfeldmaschine (QFM), ein Apparat zur Verrich-
tung von Arbeit im Quantenregime. So ein Apparat benötigt für seine vollständige Beschrei-
bung einerseits die Gesetze der Quantenmechanik, andererseits ist es aufgrund der schieren
Anzahl unmöglich jeden seiner Freiheitsgrade zu berücksichtigen, eine Tatsache die statistis-
che Methoden für die Modellierung des Verhaltens unabdinglich macht. Diese beiden Vorraus-
setzungen führen dazu, dass es sich dabei um eine wahrhaftige Quanten-Wärmekraftmaschine
handelt, die am Schnittpunkt von Thermodynamik und Quantenmechanik arbeitet.

Im Kontext dieser Arbeit besteht die QFM aus einer ultrakalten Atomwolke, die in drei
Bestandteile gegliedert ist, wobei sie zum Ziel hat einen davon zu kühlen. Dafür stehen zwei
grundlegende Operationen zur Verfügung, welchen jeweils eine Entsprechung aus der klas-
sischen Thermodynamik gegenübersteht: Bei der ersten Operation handelt es sich um die
Kompression oder Ausdehnung einer der Komponenten (gemäß eines Kolbens); die zweite
Operation ist die Kopplung von jeweils zwei der drei Teile, um einen Wärmeaustausch zu
erreichen (ähnlich eines Ventils). Zur Beschreibung der Funktionsweise werden in dieser Ar-
beit numerische Simulationen der grundlegenden Operationen, sowie mehrerer Arbeitszyklen
gezeigt. Weiters stellen wir experimentelle Ergebnisse für einen konzeptionellen Beweis der
einzelnen Arbeitsschritte der QFM vor. Für diesen Zweck verwenden wir eindimensionale
Bose-Einstein-Kondensate, die mithilfe eines Atomchips erzeugt werden. Schlussendlich wer-
fen wir einen detaillierten Blick auf die Dynamik zweier stark gekoppelter unkorrelierter
Bestandteile der QFM bei Anregung des Systems. Dabei können interessante Phänomene,
wie etwa ein irregulärer Wärmefluss, beobachtet werden. Diese Arbeit steht am Anfang
weiterführender Untersuchungen über die Quanten-Thermodynamik und liefert eine Tool-
box zum Studium finiter Quantensysteme, weit entfernt vom üblicherweise angenommenen
thermodynamischen Gleichgewicht.
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Chapter 1

Introduction

The field of Thermodynamics was born two centuries ago back with the invention of the steam
machine. Since then, the development of the field revealed to be extremely useful to study
macroscopic systems whose behavior was to be understood from properties that characterize
the state of a system without accounting for the individual dynamics of its constituents. Its
resilience is to be noted, since it resisted major revolutions in physics like the appearance
of General Relativity [1] and Quantum Mechanics [2]. Indeed, the applicability of the laws
of thermodynamics [3] ranges from big systems such as black-holes [4, 5], to small quantum
systems through the lens of information theory [6]. The applicability of thermodynamics to
the latter is, however, very challenging. In this chapter, we briefly review the current status
of the quantum thermodynamics field and introduce the work presented in this thesis as a
new approach on how to tackle thermodynamic properties of finite quantum systems, using
cold atoms described by Quantum Field Theory.

1.1 Thermodynamics and Quantum Mechanics

Thermodynamics and quantum mechanics are related since the birth of the latter. The
assumption that light is quantized [7,8] was introduced by Planck and developed by Einstein
to explain the radiation emitted by a thermal black body. Since then, quantum mechanics
and thermodynamics have taken different and independent paths. However, the increasing
interest in systems (such as quantum many-body systems) whose physics can be addressed
by both fields, makes it necessary to bring these together [9].

There is a fundamental problem when trying to bring these two fields under the same
wing. On one hand, Thermodynamics provides tools to study large systems by ignoring
individual motion and characterizing the global state of a system with a handful of param-
eters, e.g. temperature, volume and pressure. Furthermore, the time evolution of a system
is not time-reversible, as demonstrated by Boltzmann when he derived the H-theorem [10]
under the assumption of molecular chaos. An equivalent theorem for an isolated system is
impossible to formulate due to the non-varying entropy of an isolated system [11]. Quantum
Thermodynamics is then the field that tries to study how the tools and concepts of thermo-
dynamics can be applied in the quantum realm [3]. The best efforts at this enterprise have
been attempted by the Open Quantum Systems community. Usually the quantum system of
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Chapter 1. Introduction

interest is analyzed together with a ’bath’ system with which there is an interaction. This
approach yielded important results such as the Lindbald operator [12], and made possible
describing the dynamics of a wide range of systems [13]. In this context, it is usually as-
sumed that the system is Markovian and that the interaction between system and bath is
weak [14]. Under these approximations, the calculations are fairly simple. However, several
works have proposed solutions to go beyond these approximations, in pursuit of a universal
non-equilibrium thermodynamic framework [15,16].

Quantum thermodynamics, heavily influenced by the developments on open quantum
systems, attempts at solving some of the open questions by applying the tools of thermody-
namics to the quantum realm. Its ideal object of study is thus a system whose properties are
of interest to both subjects. A quantum many-body system requires quantum mechanics to
be described (by definition), while at the same time, it is infeasible to consider each and every
of its degrees of freedom, making it suitable for statistical predictions using concepts from
thermodynamics. In particular, the many-body system implemented by cold atom clouds,
provide a flexible and interesting platform to explore some of the problems raised by quantum
thermodynamics. The work presented in this thesis intends to do exactly that: using a cold
atoms platform to explore thermodynamics with finite, isolated quantum systems.

The field of experimental cold atoms was born in 1995 when Anderson et al [17] achieved
Bose-Einstein condensation of rubidium atoms. Since then, cold atoms experiments proved to
be a very useful platform to explore many different topics [18]. Almost perfect isolation from
the environment combined with a multiplicity of trap geometries and regimes of interactions,
make cold atoms a very suitable tool for the implementation of quantum simulators [19] or the
study of many-body physics. Regarding the latter, important contributions have been made
in the subjects of pre-thermalization, recurrence of correlations, and gaussianity [20–24].

In this work, we use one dimensional BECs in the weakly interacting regime to study
quantum thermodynamics in a goal-driven approach. We start by introducing the concept
of Quantum Field Machine, laying out the general building blocks of a device that performs
a task with a quantum system. Up until now, a diversity of heat machines working in the
quantum regime have been proposed [25–28] . However, most of these proposals consider
quantum systems whose degrees of freedom can be controlled, leaving aside the contribu-
tions from thermodynamics. The novelty of the machine proposed here is not only its very
clear purpose but also the genuine quantum and thermal nature of its functioning [29]. The
machine is conceived to be implemented with one dimensional BECs trapped with an atom-
chip [30]. We start by describing each of the primitive operations that are necessary for the
machine to perform work. Each of these basic operations is then investigated numerically
using the standard models to decribe one-dimensional cold gases. Furthermore, the basic
primitives are used to explore simple procedures such as energy transfer between two ini-
tially thermal clouds and more complex ones, namely, a cooling cycle which decreases the
energy in one of the system components. The proof-of-concept of the QFM’s building blocks
is then demonstrated experimentally. Moreover, the experimental investigation goes further
by exploring the energy dynamics of two atom clouds that are initially uncoupled and are
merged into the storng coupling regime. The evolution of the system after this procedure is
studied further, and phenomena such as heat flow is observed. This provides one of the first
results regarding the thermodynamics of a many-body system far from the thermodynamic
limit.
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1.2. Thesis outline

1.2 Thesis outline
• Chapter 2: The theoretical basis for working with cold atoms is provided. It starts by

showing a very common model used to describe 1D cold atom clouds and then focuses
on low-energy effective models, more suited to make prediction based on the measurable
observables.

• Chapter 3: The experimental apparatus is described. The general working scheme of
the experiment is provided. Since a lot of details have been carefully explained in other
works, this chapter focus solely on the most relevant experimental parts needed for the
work presented here. Namely, the procedure used to create arbitrary 1D potentials and
the different possibilities to measure the atom cloud.

• Chapter 4: The concept of Quantum Field Machine is introduced. The different
working parts of the machine are described and studied numerically. Afterwards, these
working parts are used to build a numerical simulation of a refrigeration cycle. The
chapter ends with a proof-of-concept experimental implementation of each primitive.

• Chapter 5: The local thermometry method is presented. The novelty brought by
this new method is the ability of performing thermometry in specific regions of space,
ignoring the remaining system. The method is exemplified and compared to previously
standard methods (density ripples). This is followed by an example of how different
temperatures in different regions of space can be measured and a subsequent discussion
on the limitations on this method’s applicability.

• Chapter 6: This chapter discusses the observation of heat flow in 1D Bose-Einstein
Condensates. Initially, the motivation for studying such phenomena is justified. The
notions of heat flow and anomalous heat flow in the context of 1D cold gases are
introduced. Then, the experimental implementation and preparation of the initial state
is described in detail. A theoretical description of this procedure is provided, comparing
the quadratic Bogoliubov model with the results from the Stochastic Gross-Pitaevskii
equation. Finally, the experimental results are presented, showing that both heat flow
and anomalous heat flow are observed.

3
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Chapter 2

Theoretical basis

This chapter covers the theoretical tools needed to understand the cold atom systems used
in our experimental setup. We start by briefly looking at some peculiarities of working in
one dimension. Afterwards, the Lieb-Liniger model is presented as the basis to derive the
effective models used to describe the atom clouds in the different trap configurations allowed
by the experiment. Then, the transition from 3D to 1D is discussed, clarifying the meaning of
having a one-dimensional atom cloud and how that influences the properties of the system.
Finally, we provide a description of the numerical methods used to simulate the relevant
physical processes studied in this work.

2.1 The 1D interacting Bose gas
One-dimensional quantum physics is proof that low dimensionality is not a synonym of
simplicity and uninteresting systems. On the contrary, 1D physics has proved to be an
ideal platform to study fundamental physics and provides a plethora of models, some of
them exactly solvable, others absolutely incalculable [31].

As an example, we can take a look at the free boson gas. At low enough temperatures, the
phenomena of Bose-Einstein condensation starts taking place. While in 3D low temperatures
or high densities lead to the condensation of the atoms in the ground state, in 1D such
phenomena is not possible due to the density of states dependence on the energy. In 3D
the density of states D(ϵ) ∝ √

ϵ, where ϵ is the energy of the system. In 1D however the
dependence is D(ϵ) ∝ 1/

√
ϵ, which means that for temperatures closer to zero, the number

of states goes to infinity. For this reason, a macroscopic occupation of the lowest state is not
possible in one dimension [32,33].

For the case of an interacting gas of bosons, if ultracold temperatures are considered,
the interaction between the different particles reduces to s-wave scattering. This is usually
described with a pseudo-potential Uint = g3Dδ(r− r′) [34], where the interaction constant g3D

is given by

g3D =
4πℏ2as

m
. (2.1)

Here, m is the mass of the atoms and as the s-wave scattering length. The sign of as defines
whether the interactions are repulsive (as > 0) or attractive (as < 0). We will focus our anal-
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Chapter 2. Theoretical basis

ysis on repulsive interactions, since for the 87Rb [35] atoms used in our experiment we find
as = 5.2nm. These interactions are inherited when the problem becomes one-dimensional.
however, the interacting potential becomes approximately Uint = g1Dδ(z − z′), with g1D the
one-dimensional interacting constant, and z the position along the axis of movement. The
transition from 3D to 1D is discussed in section 2.3. For now, we can look at some other
peculiarities of interacting gases in one dimension. When two particles collide in one di-
mension, the restrictions of energy and momentum conservation allow only for a swap of the
latter, leaving the whole momentum distribution unchanged. Such a system is said to be inte-
grable [36], in other words, the constraints on the system lead to many conserved quantities,
which effectively reduces the dimension of its phase-space. This prevents phenomena such as
thermalization. An experimental demonstration of a quantum Newton’s cradle implemented
with an integrable system was provided in [37].

In this section we will look at a 1D-model for interacting bosons introduced by Lieb and
Liniger [38] and derive an effective description for a 1D atom cloud using an extension of the
Bogoliubov theory for quasi-condensates.

2.1.1 Lieb-Liniger model

Bosons with a repulsive contact interaction can be described with the Hamiltonian [38]

H =

�
dzψ̂†(z)



− ℏ2

2m
∂2
z + U(z)− µ+

g1D
2

ψ̂†(z)ψ̂(z)
�
ψ̂(z), (2.2)

where ψ̂(z) is the field operator, U(z) is the external potential, µ is the chemical potential, and
g1D is the 1D coupling constant. If the external and chemical potentials are not considered,
the previous equation is known as the Lieb-Liniger (LL) Hamiltonian. This model has known
solutions for the ground state and excitation spectrum [38,39] .

We can construct two parameters that span the different regimes of the Lieb-Liniger
model. Assuming that the gas has a linear density n1D, then the well known Lieb-Liniger
parameter γ can be defined as

γ =
mg1D
ℏ2n1D

(2.3)

and defines the interaction strength. Note that the parameter (counter-intuitively) increases
when the density decreases.

If we consider thermal systems, a second parameter depending on temperature can be
defined as

t =
2ℏ2kBT
mg21D

, (2.4)

where T is the temperature of the gas.
Combinations of different values of γ and t span the distinct phases of the LL model (see

fig. 2.1). If γ ≫ 1 and the temperatures are low, the system approaches the Tonks-Girardeau
regime. There, the strong repulsion between particles mimics the Pauli exclusion principle
and the bosonic wavefunction can be mapped onto one of spinless fermions [31]. In regimes
with higher temperatures, the role of the interactions start to decrease, compared to the
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2.1. The 1D interacting Bose gas

Figure 2.1: Phases of the Lieb-Lieniger model. Image adapted from [40].

thermal energy, and the system can be described as an ideal Bose gas. The crossover to the
quasi-condensate regime happens when tγ3/2 = 1, where the interactions start to become
important again and suppress the fluctuations in density [40].

On the other hand, when temperatures and interactions are both small (γ, t ≪ 1), the
system is in the quasi-condensate regime, where density fluctuations are surpressed but phase
fluctuations prevail.

In the cross-over between the ideal Bose Gas and the quasi-condensate regime, there are
two sub-regimes worth mentioning. When the de Broglie wavelength λdB =

√
2πℏ2mkbT is

of the order of the interparticle distance (n1DλdB ≃ 1), the gas becomes degenerate and can
no longer be described as a classical gas. This happens when tγ2 = 1. Moreover, in the
region between the ideal Bose gas and the quasi-condensate, the gas is dominated by thermal
fluctuations. Only when tγ ≪ 1, the quantum fluctuations become important.

The experiment described in this work operates in temperatures between 10-100nK with
n1D ≃ 50µm−1. This translates to approximately 1 · 10−3 ≤ γ ≤ 5 · 10−3 and 2 · 102 ≤ t ≤
2.5 · 103, which places it in the quasi-condensate regime, dominated by thermal fluctuations.

2.1.2 Effective low energy models

There exist several analytical solutions for 1D systems cite{analytic solutions} but their
utility is rather limited when it comes to calculate the dynamics of the system. To overcome
this practicability problem, we use effective models which focus on the low-energy spectrum
of the system and allow the predictions of observables accessible in the experiment.

In this work, we follow reference [41], which proposes an extension of the Bogoliubov
theory to describe 1D quasi-condensates. The main idea is to do a perturbative expansion
of the system’s Hamiltonian and consider the relevant terms to describe our system.
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Chapter 2. Theoretical basis

In [41] the authors present a discretized version of the hamiltonian (2.2).

Ĥ =
*
z

lψ̂†(z)


− ℏ2

2m
∆+ U(z)− µ+

g1D
2

ψ̂†(z)ψ̂(z)
�
ψ̂(z). (2.5)

The differential operators are given by

∆f(z) =
f(z + l) + f(z − l)− 2f(z)

l2
, ∇f(z) =

f(z + l)− f(z − l)

2l
. (2.6)

The bosonic operator ψ̂ (ψ̂†) annihilates (creates) a particle in a cell of size l located at
z. The commutation relation is

[ψ̂, ψ̂†] =
δz,z′

l
. (2.7)

These operators can be written in terms of other pairs of operators which connect to the
experimental observables

ψ̂ = eiθ̂(z,t)
%

ρ0(z) + δρ̂(z, t), (2.8)

where θ̂(z, t) describes the fluctuating phase and δρ̂(z, t) the density fluctuations relative
to the average density ρ(z). These two new operators are also bosonic and inherit the
commutation relation [δρ̂(z), θ̂(z′)] = iδ(z−z′). It is important to mention that this definition
for the hermitian phase operator requires the space discretization mentioned above and that
each box is not empty. More details can be found in [41].

Now, considering δρ̂/ρ0 ≪ 1 and |l∇θ̂| ≪ 1 (density fluctuations and phase gradient are
small), we expand equation (2.8) in these parameters and sort the expansion terms by their
order 1 such that H = H0 +H1 +H2 + . . . .

The zeroth order is independent of both parameters and depends only on ρ0(z). It is
minimized for a density profile ρ0(z) such that √

ρ0 is the solution of the discretized Gross-
Pitaevskii equation (GPE):

H0 =



ℏ2

2m
∆+ U(z)− µ+ g1Dρ0(z)

�%
ρ0(z) = 0. (2.9)

For a density profile obtained from (2.9), H1 always vanishes, and H2 becomes the next
leading order contribution describing the fluctuations

H2 =
*
z

l

�
− ℏ2

2m

δρ̂

2
√
ρ0

∆

�
δρ̂

2
√
ρ0

�
+

ℏ2δρ̂2

8mρ
3/2
0

∆
√
ρ0+

+
g1D
2

ρ̂2 +
ℏ2

2m

%
ρ0(z)ρ0(z + l)

[θ̂(z + l)− θ̂(z)]2

l2

�
(2.10)

Although the space discretization is essential for the above description, in the coming
discussions we will always use the notation of the continuum limit for the sake of clarity. In
that context we can express equation (2.10) as

1We also assume both parameters to be of the same order.
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2.1. The 1D interacting Bose gas

Hcont.
2 =

�
dz

g1D
2

δρ̂2(z) +
ℏ2

2m
ρ0(z)

�
∂θ̂(z)

∂z

�2

− ℏ2

2m

δρ̂(z)

ρ0

�
∂δρ̂(z)

∂z

�2
 . (2.11)

The last term in the previous equation is the so called quantum pressure term. Neglecting
this term leads to a simpler Hamiltonian, known as the Tomonaga-Lutinger liquid (TLL)
model [42, 43]. This is a relevant simplification, since the TLL model provides a linear
dispersion relation, important for the observation of recurrent phenomena [22].

The Hamiltonian (2.11) can be diagonalized by a Bogoluibov transformation [44]. We
define the creation and anihilation operators b̂†k, b̂k for each mode and the basis functions
f±
k (z), we can write the fields in the new basis as

ρ̂(z) =

&
n1D

2

*
k

�
f+
k (z)b̂ke

−iωkt + H. c.
�
,

θ̂(z) =

&
1

2n1D

*
k

�
−if−

k (z)b̂ke
−iωkt + H. c.

�
.

(2.12)

In this work, we are mainly interested in the case where the atom trap has a box-shaped
potential. For this reason (see chapter 3 for implementation details), we model the effective
potential as a box with infinite walls and length L. For such a confinement, the particle flux
is zero at the boundaries. Thus, the phase field, whose spatial derivative is proportional to
the flux, has to fulfill Neumann boundary conditions

∂θ̂(z)

∂z
|z=0,L= 0. (2.13)

For this specific geometry, a box of length L has the following basis functions f±
k (z)

f±
k (z) =

1√
L

�
ϵk
Ek

�∓ 1
2

cos(kz), (2.14)

where the wavenumber k, the free particle energy Ek and the quasi-particle energy ϵk are
given by

k =
π

L
n, Ek =

ℏ2k2

2m
, ϵk =

%
Ek(Ek + 2n1Dg1D). (2.15)

By plugging equation (2.12) into (2.11), we obtain a diagonal hamiltonian in terms of the
newly defined operators b̂n and b̂†n

ĤLL =
*
n

ℏωnb̂
†
nb̂n. (2.16)

In the limit of low energies (ϵk/Ek ≪ 1), the energy of the quasiparticles can be approxi-
mated by

9



Chapter 2. Theoretical basis

ϵk ≃ ℏck = ℏωn, (2.17)

where c =
%

g1Dn1D/m is the speed of sound and ωk = πcn/L is the angular frequency of
the nth mode. This is the linear and commensurate spectrum of the TLL model mentioned
above.

2.2 The double well

In our experimental setup, we can manipulate the Radio-Frequency fields to transform the
single harmonic trap in a double well (DW) potential along one of the tightly confined
dimensions (see Chapter 3). Thus, it is possible to have two parallel gases separated by a
tunable barrier. By changing this barrier, it is possible to tune the interaction between the
two gases. Assuming that we remain in the regime of low energy scales, we can apply the
same model used in the case of the single gas ((2.2)). Now we consider this Hamiltonian for
each cloud and an extra coupling term [45]:

ĤDW = Ĥ1 + Ĥ2 + Ĥt, (2.18)

where

Ĥ1,2 =

�
dzψ̂†

1,2(z)



− ℏ2

2m
∂2
z + U(z)− µ+

g1D
2

ψ̂†
1,2(z)ψ̂1,2(z)

�
ψ̂1,2(z), (2.19)

Ĥt = −ℏJ
�

dz
�
ψ̂†
1ψ̂2 + ψ̂†

2ψ̂1



. (2.20)

Here J is the tunneling rate and sets how strong the transversal wavefunctions overlap.
Notice that Ĥt considers linear tunnel coupling. We consider a regime where the barrier is
high enough and higher order coupling terms can be neglected.

The DW configuration features the measurement of phase differences between the two
gases (see section 2.2.1). Since this is one of the main observables, the next subsection
describes in detail the mathematical framework to treat it. In the context of this work, we
will only analyze the case for J = 0, for all the measurements were done with completely
decoupled gases. For the case where J ̸= 0 the reader is referred to the PhD thesis mentioned
in the beginning of this chapter as well as [20, 21].

2.2.1 Uncoupled double well

In case the two adjacent gases are uncoupled (Ĥt = 0), each of them behaves as an indepen-
dent condensate and the ĤDW is simply the sum of the Hamiltonians in equation (2.19). It
is then possible to treat each of them as a gas in a single well, as discussed in section 2.1.2.
If this is the case, then the equation(2.11) describes each gas and the effective hamiltonian
for the DW reads 2 (we are neglecting the quantum pressure term)

2We have assumed the same density profile for both atom clouds.
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2.2. The double well

HDW
LL =

*
i

�
dz

g1D
2

δρ̂2i (z) +
ℏ2

2m
ρ0(z)

�
∂θ̂i(z)

∂z

�2
 . (2.21)

with i = 1, 2. It is now convenient to introduce the relative (r) and common (c) degrees of
freedom

δρ̂c(z) =δρ̂1(z) + δρ̂2(z), ϕc(z) =
1

2
[θ̂1(z) + θ̂2(z)] (2.22)

δρ̂r(z) =
1

2
[δρ̂1(z) + δρ̂2(z)], ϕr(z) = θ̂1(z) + θ̂2(z) (2.23)

Using this definition, it is possible to rewrite Hamiltonian (2.21) in terms of the new
degrees of freedom as

H i
LL =

*
i

�
dz

g1D δρ̂2i (z)√
ζ

+
ℏ2

4m
ρ0(z)

�%
ζ
∂ϕ̂i(z)

∂z

�2
 , (2.24)

where i = r, c and ζ rescales the terms in the hamiltonian for different i. We have ζr = 1 and
ζc = 4 [46]. Note however that to do this, it is crucial that the density profile is the same for
both clouds. In [47], it is described how to treat the problem if this is not the case.

For an ideal box confinement, the boundary conditions are inherited from the individual
gas. It is also possible to define the co-sine modes for the new degrees of freedom as before
by scaling the expansion coefficients accordingly

ρ̂ik =
%
ζ

&
n1D

2

µ

ϵk

�
b̂ke

−iωkt + b̂†ke
iωkt

�
, (2.25)

ϕi
k = −i

1√
ζ

&
1

2n1D

ϵk
µ

�
b̂ke

−iωkt − b̂†ke
iωkt

�
, (2.26)

where µ = g1Dn1D is the chemical potential

2.2.2 Phase correlation function

When the double well configuration is used, it is possible to measure the interference pattern
formed by the two parallel clouds (see chapter 3). From this interference pattern we can
extract the relative phase profile introduced in equation (2.23). Here we lay out how we can
use this degree of freedom to compute important spatial correlation functions which provide
information about the system. For the sake of simplicity, we will from now on drop the
subscript from ϕr, using simply ϕ to refer to the relative phase.

The second order correlation function of the fields is given by

⟨ψ1(z)ψ
†
2(z)ψ

†
1(z

′)ψ2(z
′)⟩

⟨|ψ1(z)|2⟩⟨|ψ2(z′)|2⟩ ≃ ⟨ei[ϕ(z)−ϕ(z′)]⟩, (2.27)
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Chapter 2. Theoretical basis

assuming density fluctuations to be negligible. For systems invariant under the transforma-
tion z → −z we can take the real part of equation (2.27), which yields

C(z, z′) = ⟨cos(ϕ(z)− ϕ(z′))⟩ = e−
1
2
⟨(ϕ(z)−ϕ(z′))2⟩. (2.28)

The second equality is valid under the quadratic approximation only.
We will refer to this quantity as the phase correlation function (PCF). It measures how

correlated the field ϕ is in two different points in space. It returns 1 if the points are totally
correlated and zero for uncorrelated ones. As we will see, it can be used to estimate the
temperature of the system and can also be used to probe local properties of it (see chapter
5).

If translational invariance can be assumed, the PCF depends only on the distance between
the two points

C(z̄ = |z − z′|) = exp
	−1

2
⟨[ϕ(z)− ϕ(z′)]2⟩� (2.29)

= exp
	− � ∞

0

dk
π
⟨|ϕk|2⟩[1− cos(kz̄)]

�
. (2.30)

If thermal, the bosonic fields follow the Bose-Einstein (BE) distribution [48], given by

nBE(ϵk) =
1

exp
�

ϵk
kBT

�
− 1

(2.31)

where ϵk is the energy of mode k. Given that the we work in the regime where ϵk/kBT ≪ 1,
we can approximate equation (2.31) with the Raylkeigh-Jeans approximation

nBE(ϵk) ≃ kBT

ϵk
. (2.32)

By inserting the expectation values of ⟨|ϕk|2⟩ given by equation (2.32) and performing
the integration, we arrive at

C(z̄) = exp



− 2z̄

λT

�
, (2.33)

where λT = 2ℏ2n1D/mkBT is the thermal coherence wavelength of the two gases (the
factor of two accounts for the double well configuration [49]).

Since the results presented in this thesis concern the box potential, the PCF for an atom
cloud in a box-like potential is exemplified in figure 2.2. Notice that the diagonal (where
z̄ = 0) is always one, while for points away from the diagonal the value of the PCF decreases.
The PCF decreases faster for higher temperatures.

2.3 3D to 1D crossover
So far, we’ve looked only at 1D models without providing any argument for the fact that our
system is effectively one-dimensional. This section justifies why this is the case.

12



2.3. 3D to 1D crossover

0.2 0.4 0.6 0.8 1

Figure 2.2: Phase correlation function for two quasi-condensates at different tem-
peratures. The phase correlation functtions were computed for atom clouds exhibiting
temperatures of a) 25 nK and b) 50 nK. In c) a cut for z = 5 µm is shown. As expected the
phase correlations decay faster for the hotter condensate. Both atom clouds are 50 µm long
and have a density of 50 µm−1.
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As any other physical system, the cold gases used in our experiment are three dimensional.
However, the effective dimensionality of the system can be lowered by using tight confinement
in some directions, as it is common practice in the field of cold atoms [50]. If this confinement
is such that the energy level spacing is much larger than the remaining energy scales, then
the surpressed dimensions can be integrated out. In our experiment, two of the directions
(called the transverse directions) are confined in a harmonic potential with trap frequency
ω⊥ such that

ℏω⊥ ≫ kBT, µ. (2.34)

This ensures that any thermal energy and the interaction energy per particle is much
smaller than the trapping frequency of the trap and thus no excitations in these directions
are possible.

In the next subsections, we dive deeper into how this affects our system.

2.3.1 Transverse broadening

To better understand the influence of the transverse directions and its consequences when
the condition given by (2.34) is not completely fulfilled, we follow references [51, 52]. The
Hamiltonian for Bosons in 3D with contact interaction under the influence of a potential
U(z) is

H =

�
dzΨ∗(r)



− ℏ2

2m
∂2
r +

mω2
⊥(x

2 + y2)

2
+ U(z) + g3D|Ψ(r)|2

�
Ψ(r), (2.35)

where g3D is given by (2.1). We want to look only to the dynamics along z. Assuming the
separability of the wavefunction Ψ(r) = ϕ(x, y) · ψ(z), we can integrate out the other two
directions. As it was mentioned before, the transverse directions are restricted to the ground
state of the harmonic confinement. Thus we can assume that ϕ is given by a Gaussian whose
standard deviation is the harmonic oscillator length a⊥ =

%
ℏ/mω

ϕ(x, y) =
1

a2⊥
√
π
e
−x2+y2

2a2⊥ (2.36)

Integrating the x and y components of (2.35) yields a constant (and unimportant) energy
shift and a renormalization of the interaction constant

g1D = g3D

�
dxdy|ϕ(x, y))|4, (2.37)

recovering eq. (2.38). Notice that, contrary to g3D, g1D depends on the trapping frequency.
If a⊥ is of the order of as a more meticulous analysis is necessary. Reference [53] presents

a relation between the 3D scattering length as and the 1D interaction constant g1D when this
is the case:

g1D = 2ℏω⊥as

�
1− γ

as
a⊥

�−1

, (2.38)
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2.3. 3D to 1D crossover

where γ ≃ 1.03 is a numerical factor and a⊥ =
%
ℏ/(mω⊥) accounting for a confinement

induced resonance [54] . In the experiment, we have as/a⊥ ≃ 0.02, which is well approximated
by (2.37). Given the context of this work, we have ω⊥ = 1.4 kHz, T = 40 nK and a linear
density of ρ0 = 50 µm−1 and as = 5.2 nm. Thus we find that kBT/(2πℏ) ≃ 1041 Hz and
µ/(2πℏ) = g1Dρ0/(2πℏ) ≃ 750 Hz, from where we conclude that condition (2.34) is only
partially fullfilled.

To investigate the consequences thereof, we consider that all atoms are in the transverse
ground state and that the interactions between them can be neglected only if the system
is dilute, i.e., n1Das ≪ 1. If this is not the case, then the interactions start to play a role
and are expected to broaden the transverse wavefunction ϕ. It is thus natural to consider an
ansatz where ϕ is a gaussian of variable width σ(z, t)

ϕ(x, y, σ(z, t)) =
1

σ2(z, t)
√
π
e
− x2+y2

2σ2(z,t) . (2.39)

Inserting this ansatz in eq. (2.35) and minimizing with respect to σ(z,t), we get

σ2(z, t) = a2⊥
%

1 + 2as|ψ(z)|2, (2.40)

and the chemical potential

µ = ℏω⊥
1 + 3asn1D√
1 + 2asn1D

. (2.41)

Using these results and inserting them in equations (2.39) and (2.35) and integrating over
the xy plane, we arrive at

H =

�
dzψ∗(z)



− ℏ2

2m
∂2
z + U(z) + ℏω⊥

%
1 + 2as|ψ(z)|2

�
ψ(z). (2.42)

Note that for as|ψ(z)|2 ≪ 1 (weak interaction regime), we recover eq. (2.2).
Using eq. (2.42) and applying the same method used in section 2.1.2 we get a new version

of the GPE equation which accounts for the effects of the transverse directions, also known
as the Non-Polynomial Schödinger Equation (NPSE) [51]


− ℏ2

2m
∆+ U(z)− µ+ ℏω⊥

1 + 3asρ0√
1 + 2asρ0

�√
ρ0 = 0. (2.43)

The interactions broaden the longitudinal wavefunction as shown in [55]. The broadening
of the longitudinal profile depends on its anisotropy along this direction [56]. In this work
we will be mainly concerned with a box-like potential, where the density is constant across
space. For this reason, the effects of the transverse broadening will not change the density
profile considerably [40], but will change other physical quantities.

The speed of sound, introduced in (2.17), can be written as [57, 58]

c =

&
n1D

m

∂µ

∂n1D
= c0

$
1

2

2 + 3asn1D

(1 + 2asn1D)3/2
=

&
gnn1D

m
, (2.44)
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Figure 2.3: Speed of sound in 1D: Comparison of the bare speed of sound from Bogoli-
ubov theory (red curve) and speed of sound from eq. (2.44), considering broadening of the
longitudinal profile (blue curve). The yellow curve indicates the deviation between the two
in percentage (right axis).

where c0 =
%

g1Dn1D/m is the bare speed of sound introduced before and gn is the
effective density-dependent interaction energy, which was obtained considering the second
order description of fluctuations.

For typical densities n1D ≃ 60 µm−1, we have differences on the order of 20 % (see fig. 2.3)
which has deep implications when computing the rephasing times of the modes or calculating
the position of perturbations in the system [22].

2.4 Numerical methods

Part of this work concerns the introduction of a new model for a Quantum Field Machine
(see chapter 4) and which primitive procedures are needed to operate it. To study the
building blocks of such machine and what kind of processes can emerge from them, we need
different numerical tools that simulate their dynamics. Not only is it important to perform
this simulations to study in detail the properties of the machine and its processes, but also
to have the theoretical predictions to compare with experimental results. For both these
purposes, we use two different software packages, briefly described in the following sections.

2.4.1 Tomonaga-Lutinger Liquid simulations

The code used to simulate the primitive operations needed to operate the QFM implements
the Tomonaga-Lutinger liquid Hamiltonian, the same as the one in equation. (2.11), when
the quantum pressure term is ignored. It reads
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HTLL =

�
dz

g1D
2

δρ̂2(z) +
ℏ2

2m
ρ0(z)

�
∂θ̂(z)

∂z

�2
 . (2.45)

In addition, we introduce an interaction term to regularize the zero mode [29]. This al-
lows us to simulate the dynamics of phonons and to calculate corresponding energy changes
in the system. As the model is quadratic, our simulations are done within the Gaussian
framework and are computationally efficient. The code also provides tools for the calcula-
tion of quantities related to quantum information, e.g., relative entropy. This is the only
information-theoretic related quantity discussed in this thesis and is defined as

S(ρ̂, γ̂) = Tr(ρ̂(log(ρ̂)− log(γ̂))). (2.46)

It quantifies the distance between two states with density matrices ρ̂ and γ̂. If ρ̂ = γ̂, then
S(ρ̂, γ̂) = 0. In the context of this work, we compute S between the state of the system we
study and a thermal state at temperature T . This is used to quantify how far from thermality
the system under study is.

The details about this simulation package can be found in section IV and appendix C
of [29]. The base code was written by Marek Gluza and was extended with contributions
from the collaborators.

2.4.2 SGPE method

To compare the experimental results with the predictions from theory, we use a code that
implements the Stochastic Gross-Pitaevskii equation (SGPE) and is tailored to match the
specifics of our experimental apparatus.

The SGPE method allows the simulation of thermal states by modeling incoherent scat-
tering with a thermal background. This is done by adding a dissipative term in the equation
of motion and noise term proportional to the temperature. The evolution of the field (for a
single gas) is given by the Langevin equation

iℏ∂tψ = (1 + iγ)HGPψ + η, (2.47)

where HGP is the non-polynomial GPE operator (see eq. (2.43)) and η is a complex Gaussian
white-noise with zero mean and variance [46]

⟨η(z, t)η(z′t′)⟩ = 2γ(z, t)kBTδ(z − z′)δ(t− t′). (2.48)

The term γ merely defines the speed with which convergence to a thermal state is achieved.
If one is interested only in the final thermal state and not the evolution, then this is an
arbitrary term. The code was written by Sebastian Erne (I adapted the code to extend its
functionalities. Namely, a double-box potential was added to allow compressing and merging
procedures, as discussed in chapter 6).
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Chapter 3

Experimental setup

In this chapter, we will describe the experimental apparatus used to study thermodynamics
with one dimensional quasi-condensates. The description won’t be extensive, since very
thorough descriptions are available in previous works. This introduction serves as a general
overview. For more specific and detailed descriptions of the experiment, the reader is referred
to [40, 49, 59–61].

In section 3.1, we provide a general description of the experimental cycle, which is ex-
ecuted before each measurement is performed. In general, the experiment relies on laser
cooling techniques [34, 62, 63] to reduce the temperature of the trapped 87Rb [35] atoms be-
fore these get under the influence of the atomchip. The atomchip is a device that allows
experimentation with one-dimensional atom clouds and lies at the core of the experimental
procedures described in this thesis. In section 3.2 we describe the magnetic harmonic traps
generated by this device. In sections 3.3 and 3.4 we overview the physics of dipole traps and
relevant details about light manipulation for the creation of arbitrary 1D potentials, respec-
tively. Regarding the latter, the box-shaped potential is crucial for the scope of this work.
For that reason, specific examples and particular details for this potential are mentioned
throughout the chapter.

3.1 Experimental cycle overview

In this section, we provide a short walk-through over the cycle that produces the quasi-BECs.
The experiment consists of two vacuum chambers as show in figure 3.1 .

The lower vacuum chamber holds Rubidium dispensers. The dispensers release 87Rb into
this chamber and these atoms are trapped in a standard six-beam 3D Magneto-Optical Trap
(MOT). This chamber is connected to an upper chamber, which we shall denote by “Science
Chamber”.

These two are connected through a nearly resonant laser beam which transports the atoms
from one chamber to the other. In the Science chamber there is another 3D MOT which
collects and cools the atoms coming from below. We name this MOT as the “upper MOT”.

The Science Chamber houses the atomchip, which is hanging upside down as shown in
figure 3.1 a). This prevents access from the top of the chamber. This is the reason why two
beams are reflected on the gold surface of the atom chip together with four incoming beams
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a b

c

Figure 3.1: Experimental apparatus: the atoms are cooled down in the a) Vacuum cham-
bers which hold the b) copper wire structures that help the manipulation of the magnetic.
On top of these copper wire structures lies the c) the atomchip. Note that the orientation
of the atomchip inside the vacuum chamber is the opposite of that found in c). The hang-
ing atomchip is visible through the vacuum chamber’s glass window in a). Figure adapted
from [40]

to create the upper MOT. Both MOTs are on for an approximate time of 10 seconds in total
(this is called the MOT phase). By tuning the intensities and frequencies of the laser and
increasing the magnetic fields, the upper MOT is compressed and shifted to move the atoms
closer to the atomchip.

In the next stage, further cooling of the atoms is performed through the process of optical
molasses. This method allows to achieve sub-doppler cooling [64] and is followed by optical
pumping which consists of a short laser pulse to populate the |F = 2,mF = 2⟩ spin state,
which can be magnetically trapped. At the end of this process, the atoms are loaded into a
magnetic trap which we will refer to as “Z-trap”.

Above the chip 1, there are macroscopic copper structures whose main purpose is to
generate a cigar-shape magnetic trap to hold the atoms before they are transfered to the
atomchip trap. The Z-trap is generated by the Z-shaped copper wire together with a bias
field generated by one of the Helmholtz coils around the vacuum chamber. At the end of this
cooling stage, we end up with a cloud of approximately 2 million atoms at a temperature

1To avoid confusion, we use figure 3.1 a) as a reference. Here, a “above” mean farther away from the
ground.
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3.2. The atomchip trap

Figure 3.2: Atom chip wire structure: The arrows indicate the direction of current flow
and the red elipse in the center represents the atomcloud. Although all the wires used in the
experiment are represented here, this is not the complete structure; for a complete description
of the atomchip see [60]. Figure adapted from [40].

of 1 − 3µK. While in this magnetic trap, the technique of evaporative cooling [65, 66] is
employed using radio frequency (RF). The RF fields are also generated by one of the copper
structures right above the chip.

While this process is carried on, the atoms are transfered to the chip, where the 1D har-
monic potential is created through the currents in the chip wires. The process of evaporative
cooling continues, leading to the preparation of the one-dimensional quasi-condensates. At
the end, we have a 1D atom cloud with around 10000 atoms with temperatures ranging from
15− 50nK (it depends on whether the dipole trap is used; usage of the dipole trap leads to
higher temperatures).

The atoms can be held in the chip trap for different amounts of time. Typically, experi-
mental investigations in the chip last up until 150ms. At the same time that the atoms are
being held in the chip and the evaporative cooling is carried on, the blue-detuned light which
creates the dipole trap is ramped. Ramping up the dipole light intensity instead of turning
it in a sudden fashion prevents atom loss and minimizes the energy introduced by atom-light
interaction.

The cycle ends with the imaging of the cloud. The atomchip trap is turned off and
absorption imaging takes place after time of flight (TOF) expansion. Some of the details of
the imaging and trapping geometries are discussed in the following sections.

3.2 The atomchip trap

The atomchip [30] is made of a single gold layer isolated from a silicon substrate by a thin
layer of silicon dioxide. A scheme of the atomchip wire structure is shown in figure 3.2.
Having the areas between the wires covered in gold, helps to increase the reflectivity on the
chip, which is important for the MOT phase (as discussed in section 3.1).

The main wire has a current IW going through, which generates a circular magnetic field.
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Figure 3.3: Atom chip and dipole trap: the atoms are subject to the superposition of the
magnetic trap generated by the Atomchip and the light field shaped by the DMD (section
3.4). The DMD has the ability to shape the light in time, allowing the implementation of
time dependent potentials. When used in the double well configuration, the light affects both
clouds in the same way. Image adapted from [40].

Together with the bias field in the x and y directions, these fields generate a very confined
trap in these directions. With the usual configurations, the minimum of the trap sits 100µm
below the chip [40]. The longitudinal confinement is generated by the U-wires shown in
figure 3.2. An additional bias field in the z direction lifts the frequency of the Zeeman energy
splitting in the trap center to 390kHz. The typical frequencies of trap are ω⊥ = 2π · 2.1kHz
for the very tightly confined directions and ωz = 2π · 10Hz in the weakly confined direction.

As already mentioned in chapter 2, it is possible to create a dressed trap which provides
a double well 1D harmonic configuration 3.3. This is possible by applying RF currents to the
30 µm wires on each side of the wider wire in the center of the atomchip. The oscillating field
pointing along y (here the vertical direction) creates a double well along x (perpendicular to
gravity). This specific orientation of the double well is achieved by setting a relative phase
shift of π between the currents in each wire (for more details consult [67, 68] ). Tipically,
each well in this configuration has trapping frequencies ω⊥ = 2π · 1.45kHz and ωz = 2π · 7Hz.
Changing the current magnitude allows the control of the coupling between the two wells.
In this thesis all the experiments were done in the uncoupled double well (see figure 3.3 for
an illustration).

Corrugations in the main trapping wire lead to imperfections on the current distribution
which then generate unwanted spatial modulations of the magnetic potential [69–71]. Besides
this, the harmonic potential (single or double well) is the only geometry achievable with the
atomchip. Other types of potentials can be achieved with a dipole trap. That is the topic of
the next section.
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3.3. Optical traps in a nutshell

3.3 Optical traps in a nutshell
Optical dipole traps make use of the electric-dipole interaction with far-detuned light. One
of the biggest advantages of this kind of traps is the fact that the optical excitation can
be kept extremely low and it allows for a wide range of trap geometries. In this section,
we will provide a brief description of the underlying mechanisms of dipole traps. We follow
reference [72], where a complete description can be found.

Considering the electric-dipole interaction between a two-level atom and an electric field
E, we can use second order perturbation theory to calculate the energy shift of the ground
state due to this interaction:

δϵ =
| ⟨e|V |g⟩ |2
ϵg − ϵe

, (3.1)

where V = −µeE is the interaction term with the electric field, ϵg,e are the energies of the
ground state |g⟩ and |e⟩, respectively. Considering the system “field and atom”, we can write
explicitly the energies ϵg,e. When the atom is in the ground state (internal energy is zero)
we have ϵg = nℏω, where n is the number of photons and ω the frequency of the field; if the
atom is excited, a photon is absorbed, which leads to ϵe = ℏω0 + (n − 1)ℏω, with ℏω0 the
energy of the atomic transition.

We can rewrite the energy shift of the ground state as

δϵ =
| ⟨e|µ |g⟩ |2

ℏ∆
=

3πc2

2ω3
0

Γ

∆
I (3.2)

where we have used the linewidth Γ

Γ =
ω3
0

3πϵ0ℏc3
| ⟨e|µ |g⟩ |2 (3.3)

and the intensity I = 2ϵ0c|E|2. Now it becomes clear that Stark shift on the ground state is
proportional to the detuning ∆. In a regime where the saturation is low, the atom spends
most of the time in the ground state and the light-shift can be interpreted as the relevant
potential for the atom. For the excited state, the shift has the opposite sign. Notice that for
blue-detuned light (∆ > 0) the potential created by the light becomes repulsive, while for
red-detuned light (∆ < 0) we get an attractive potential.

For multi-level atoms, the energy shift is calculated by summing the contributions from
all the electronically excited states. In particular for alkali atoms such as 87Rb, the fine
structure splitting of the D line leads to the dipole potential

Udip(r) =
πc2Γ

2ω3
0

�
1

∆D1

+
2

∆D2

�
I(r), (3.4)

where ∆D1 and ∆D2 are the individual detunings to the D1(
2S1/2 →2 P1/2) and D2(

2S1/2 →2

P3/2) lines. Here we assume all detunings are much larger than the excited state hyperfine
splitting. In equation 3.4, linearly polarized light was also assumed. The case for circularly
polarized light is discussed in [72].

Under the same assumptions, we can also write an expression for the scattering rate of
dipole light photons by the atoms
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Figure 3.4: Digital Micromirror Device (DMD): An example of the DMD showing a) a
checkers pattern and b) the logo of the Atominstitut. The reflected light intensity will have
the shape of the ON pixels (white in the figure). Figure adapted from [63]

Γsc(r) =
πc2Γ2

2ℏω3
0

�
1

∆2
D1

+
2

∆2
D2

�
I(r). (3.5)

It is now clear that Γsc/Udip ∝ ∆−1, meaning that larger detunings (together with high
intensities) reduce scattering. In our experiment, we use blue-detuned 660nm light which has
the additional advantage of reducing scattering further, since in blue-detuned traps the atoms
tend to sit in regions of reduced intensity. Being far detuned leads to Udip/ℏ ∼ 2π × 1 kHz,
making the scattering length ∼ 2π× 0.1mHz. This results in one spontaneous scattering per
second, for an ensamble of 104 atoms, causing negligible atom loss and heating [73] .

3.4 Arbitrary 1D potentials

3.4.1 Digital Micromirror Device (DMD)

To create box-like potentials and implement the operations described in chapter 4, we need
to spatially shape the light used in the dipole trap. For this kind of task, devices known as
Spatial Light Modulators (SLM) are used. There are several categories of these devices, in
our case we use a Digital Micromirror Device (DMD).
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3.4. Arbitrary 1D potentials

Figure 3.5: Scheme of a 4f-lens system. Since f1 > f2, it is a demagnifying system. The
slit, represented by the two vertical black lines, is placed in the Fourrier plane and is used to
filter Fourier modes. The second lens does the inverse Fourier transform and builds back the
inverted image in the image plane. The propagation plane are x (not shown) and y, while
the beam’s propagation direction is z.

A DMD is a two-dimensional array of individual pixels where each pixel is an addressable
micromirror. Every and each pixel has two possible stable mechanical states, “ON” and
“OFF”. When in the ON state, the pixel reflects the incident light to a pre-designed path,
while in the OFF state, the pixel reflects the light out of the path towards an irrelevant
direction. Specifically in our experiment, we use a DLP9500 DMD from Texas Instruments.
This device (see figure 3.4) has a resolution of 1920× 1080 pixels (FullHD), each pixel with
an area of 10.8 × 10.8 µm2. It offers full controllability, meaning that displayed images that
use the whole array of pixels, can be changed at a rate of 18 kHz. Instead of using the
total amount of available pixels, we use an area of interest (AOI) of 1920× 200 pixels, which
enables a refresh rate of 46 kHz. Since this refresh rate is much faster than the time scale
of the atoms (in the order of milliseconds), the DMD delivers enough time resolution for the
implementation of time-dependent potentials.

Because the pixels have only two states, the patterns produced by the DMD are binary,
which makes impossible the creation of grayscale patterns. However, these can be achieved
by applying spatial filtering. The DMD is part of an optical setup which is divided in
three different parts. The first part prepares the beam’s shape and polarization before being
modulated by the DMD. The second part serves as the first demagnification stage and a
spatial filter. The third part comprises a second demagnification stage which sets the beam
in the path to the atoms inside the vacuum chamber. We will focus on the details about the
second part only, to describe how grayscales are achieved with the DMD. The details about
the remaining parts are available in [63].

The fact that the DMD mirrors only have binary states allows the generation of binary
patterns only, if used alone. However, grayscales can be achieved by filtering some modes in
Fourier space. This is done in the experiment with a 4-f imaging system (see figure 3.5).

After being reflected by the DMD, the beam goes through a 4-f imaging system. It
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consists of two-lens focused imaging system, where the distance between the two lenses is
the sum of their focal lengths. Given that the focal lengths are f1 and f2, the magnification
of the beam going through this system is m = f2/f1 (see figure 3.5). The biggest advantage
of such a setup is that we can select Fourier components by using a mask in the Fourier
plane. This mask consists of a simple slit whose opening can be controlled in both x and y
directions. By leaving the slit completely open in the x direction and leaving only a small
(3 mm) opening on the y direction, we extend the contribution range of the pixels in this
direction. The pixels further away from the center of the DMD contribute less while the ones
closer to it have a more substantial contribution.

It is also worth mentioning that coherent light is used for the dipole trap. As a consequence
of that, interference between the light reflected by each micromirror in the DMD creates
interference patterns. Such interference might create unwanted features in the potential. To
correct these and other sources of error, an optimization cycle is used to achieve the desired
potential. The optimization cycle is described in the next section.

3.4.2 Pattern generation

To determine the effects of the dipole light on the atom cloud, we need to probe the density
(see section 3.5) to check what is the effect of the dipole light in the density profile. Since
it is not known a priori what potential landscape a DMD pattern will create, we need an
optimization cycle that consecutively adapts the current patterns, until the effective potential
cast upon the atoms is close enough to the desired potential. The feedback information
for such an optimization cycle is thus provided by the density profiles obtained from the
experiment.

Before starting the optimization procedure, we need to set a target potential VT . This
potential is then used to calculate a target density ρT , using the NPSE equation (see equation
2.43). By the end of the optimization process, the measured density profile should match ρT
up to an error ϵ.

The optimization procedure starts 2 by setting an initial pattern p0 in the DMD, typically
two blocks of pixels playing the role of the box walls. For the ith iteration of the cycle, we
measure the density ρi(zk) N times. The average of these profiles ρ̄i is then compared to the
target density ρT (zk) by computing the root mean square error

ϵiRMS =

())' 1

j − l

l*
k=j

�
ρT (zk)− ρ̄i

ρT (zk)

�2

, (3.6)

for a specific region between zj and zl.
For each point zk the optimization algorithm compares the measured density to the target

density. If the former is larger than the latter, it will turn on pixels in the DMD column
that affects that point in space; if the measured density is lower than ρT (zk), then a pixel
is turned off at that position. The details about which and how many pixels are turned on
or off to correct the density at a specific point in space vary depending on the optimization
stage and won’t be discussed here. For a detailed explanation see [73]

2There is a calibration process taking place before the procedure described here. The details can be found
in [73]
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Figure 3.6: Optimization result for a box with a length L = 160µm. The atomic
density and the potential shapes are shown on the right and left figures, respectively. The
yellow curve represents the starting point, the red curve indicates the target potential and
the blue dots are the final result. The ϵRMS = 4.4%, calculated over the region shaded with
gray. Figure adapted from [73].

The procedure described above is repeated until the error of the current cycle is smaller
than ϵRMS. An example of an optimized potential and the correspondent density profile is
shown in figure 3.6. Typically, a full optimization procedure whose ϵRMS < 10% lasts about
two hours.

The optimization of time-dependent potentials is technically possible, however infeasible.
It would require optimizing a potential for each time instant for a procedure that could take
up to 50ms. Instead, we take a simpler approach which interpolates intermediate patterns by
linearly changing a parameter of the potential (length of a box, for example). This process
is explained in more detail in chapter 4.

However, there’s an alternative approach which might be more efficient. Using Optimal
Control Theory (OCT), it might be possible not only to optimize a single potential more
efficient, but also to generate dynamic potentials using less resources and finding shortcuts
to adiabaticity [74, 75]. This approach is still under development.

3.4.3 Longitudinal double well

Shaping the potential landscape as described in this section applies only to the longitudinal
(enlongated) direction. The remaining directions are frozen and are not to be meddled with.
In chapters 5 and 6 we will present experimental results that rely on the use of the double
well potential in the longitudinal direction. This potential double well is not to be mistaken
with the atomchip double well described in section 2.2.

Figure 3.7 illustrates clearly each of the trap geometries separately and together. The
atomchip double well introduced in section 2.2 is generated by manipulating the current sent
to the atom chip wires. Its purpose is to create two identical atom clouds to allow the probing
of the relative phase field. The phase field is extracted through the matter-wave interference
resulting from the expanding clouds during the free fall (section 3.5).

The double well in the longitudinal direction, mainly described in chapters 5 and 6, is
created with the DMD by shining light at the center of a box potential (similar to the one
in figure 3.6) to create a local barrier that separates the two halves of the bigger box. This
manipulation of the longitudinal potential will be crucial to study some of the processes
described in the following chapters.
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Figure 3.7: Trap geometries from the atomchip and dipole trap: The atomchip
produces a magnetic trap which can take the shape of a double well as shown in a). The
longitudinal potential can be shaped arbitrarily as shown in b). In this example, we created
a barrier to separate the two halves of the big box. The scheme in c) shows both traps used
simultaneously. Each cigar shaped cloud is independent and the dipole light influences them
in the same way. The experiments are performed in the atomchip double well to allow the
measurement of the relative phase.

To summarize, the two different kinds of double wells are used simultaneously but with
independent and distinct purposes. The atomchip double well is needed to extract the relative
phase field. The two atom clouds are independent and are affected by the dipole trap light
in the same way. The double well described in the next chapters results from a manipulation
of the longitudinal direction performed with the DMD-shaped light from the dipole trap.
It aims at inducing dynamics to study the evolution of an out-of-equilibrium system. For
simplicity, we refer only the longitudinal potential landscape from chapter 4.

3.5 Probing

There are a plethora of techniques to probe atom densities in cold atoms systems [76]. In our
experiment we chose absorption imaging because of its easier and straight forward implemen-
tation. As discussed in section 3.5.2, this method uses resonant light which is absorbed by
the atoms. Counting the number of absorbed photons gives a measure of the cloud’s density
distribution. In our experiment, probing is done by releasing the atoms from all the active
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traps. After the traps are turned off, the atom cloud falls with gravity and expands mainly in
the confined directions. After a certain falling time, called time of flight, the resonant imag-
ing light is shined on the atoms and the absorption signal is recorded with a CCD camera.
The rest of the section will be dedicated to explain the details of this probing method along
with its undesirable effects.

In section 3.5.1, we take a look at how the time of flight expansion affects the wave-
function of the falling cloud. In section 3.5.2, we explain the basics of absorption imaging
and characterize each imaging system available in the experiment. The last three sections
overview the most used measurement methods for the results presented in this thesis.

3.5.1 Expansion in time of flight (TOF)

When the traps are turned off, the atoms fall with gravity. When a cloud falls, it expands
rapidly in the tightly confined directions before being imaged, during a period called the
Time of Flight (TOF).

We use different TOFs for different imaging systems. For different TOFs, the imaged
density will have expanded different amounts. Thus, it is important to understand how the
TOF affects the wavefunction of the system. We can start by assuming that the condensates
in well 1 and 2 after TOF t are described by the fields

Ψ1,2(r⃗, t) = ϕ1,2(x, y, t)ψ1,2(z, t). (3.7)

Due to the very tightly confined directions, the relevant expansion takes place in the trans-
verse directions [77], we focus on the radial part of the wavefunction ϕ1,2(x, y, t) and assume
it to be the ground state of the harmonic oscillator [49]

ϕ1,2(x, y, t) = exp
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− (x2 + y2)
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�
(3.8)

where a⊥ is the harmonic oscillator length, introduced above and σ2
t = a2⊥ +

�
ℏt

ma⊥

�
.

Notice that this calculations don’t consider interactions, which can be important (see
section 2.3.1). To understand the role of interactions, a numerical study of the GPE was
done in [40]. All the energy from interactions is transformed in kinetic energy in about 0.5
ms, meaning that even for the smallest time of flight used in the experiment (t = 2 ms) the
transverse direction is much larger than what it was in situ.

To model the expansion considering the interactions, we assume that the wavefunction
has a Gaussian shape at all times and reformulate the time dependent width σt to explicitly
include the broadening,

σ2
t,n =



a2⊥ +

�
ℏt

ma⊥

��√
1 + 2a⊥n1D. (3.9)

Regarding the non-confined direction, we can consider the expansion to be negligible lon-
gitudinally. The hydrodynamic expansion takes place in time scales of 1/ω⊥, too short to
affect dynamics in length scales we can measure. Thus, interactions can be neglected and
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expansion considered ballistic. As a consequence, features present in the measured density
can be connected to properties of the trapped system. For the box trap, if tTOF ≪ L/cπ then
there are no significant changes from the in situ density distribution. For typical box traps
used in this thesis L/cπ ≃ 16 ms, much longer than the 2 ms TOF used to probe densities
“in situ” 3.

Finally, let us look at the case where we have two parallel condensates in the double
well. As we will see, the expansion of two parallel clouds leads to matter-wave interference,
producing interference patterns which can be used to extract information about the system
(see section 2.2.2). Taking the Ψi(r⃗, t) operators introduced above, we can write the density
of both clouds as

n(r⃗) = |Ψ1(r⃗) + Ψ2(r⃗)|2
= |ψ1(z)|2|ϕ1(x, y)|2 + |ψ2(z)|2|ϕ2(x, y)|2 + 2Re[ψ∗

1(z)ψ2(z)ϕ
∗
1(x, y)ϕ2(x, y)]

∝ e
x2+y2

σ2
t

�
|ψ1(z)|2 + |ψ2(z)|2 + 2Re[ψ∗

1(z)ψ2(z)e
−i md

ℏtTOF
x

�

∝ e
x2+y2

σ2
t

�
n1(r⃗) + n2(r⃗) +

%
n1(z)n2(z) cos

�
θ1(z)− θ2(z) +

md

ℏtTOF
x

��
. (3.10)

The cross terms in equation 3.10 leads to an interference along the x-direction whose
phase depends on the distance d between the condensates and their phase difference ϕ(z) =
θ1(z)− θ2(z). We took the limit of σt ≫ a⊥ such that σt ≃ ℏt

ma⊥
. For this approximation to

be valid, we need a big time of flight, typically tTOF = 15.6 ms is used. The fringe spacing
λfs is given by the second term in the cosine

λfs =
2πℏtTOF

md
(3.11)

This interference pattern allows for the measurement of the in situ phase field, which is crucial
to characterize the dynamic processes presented in this work (see chapter 6). Notice that the
broadening from interactions affects the size of the entire pattern but not the interference
itself.

3.5.2 Absorption imaging

Absorption imaging [76, 78] consists in illuminating the atoms with a resonant laser beam
and imaging the shadow cast by the atoms onto a CCD camera. From the picture collected
by the camera, it is possible to measure the distribution of the atomic density. This is done
by comparing the intensity I0 of the incoming beam and the (lower) intensity I measured
when the light is absorbed by the atoms. Considering, without loss of generality, that the
atoms are imaged along the z direction, we have, for a two level system,

ln

�
I0(x, y)

I(x, y)

�
+

I0(x, y)− I(x, y)

Isat
= σρ̃(x, y), (3.12)

3The densities we image are never really in situ. We make this abuse of language by calling in situ pictures
the ones we image with 2 ms (very small) time of flight
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Figure 3.8: Scheme of the three imaging systems: a) single well and b) double well
configuration. the thin and red shapes at the top represent the atom cloud in situ, while
the light red oval below represents the expanded cloud after time of flight. For each imaging
direction, we see the integrated density profile captured by the cameras. In the double well
configuration, imaging in the vertical direction allows the probing of the interfered density
pattern. Figure reproduced with permission from [40].

where σ is the absorption cross-section, ρ̃(x, y) is the atomic density integrated in the z direc-
tion and Isat denotes the saturation intensity. Notice that we assumed that the populations of
the ground and excited state are in equilibrium and that the beam intensity doesn’t change,
otherwise equation 3.12 is not valid. The intensity I0(x, y) is obtained by taking a picture
without the atoms.

In our experiment we have absorption imaging systems for each and every spatial dimen-
sion as depicted in figure 3.8.

Each imaging system aims to obtain different information from the atom cloud. For
example, the longitudinal imaging system is used to check the atom number balance in the
double well, the transversal imaging system can probe the density in situ and the vertical
imaging system is used to access the interference pattern of the two expanding clouds, from
where the relative phase of the two can be extracted. A more detailed description for the
imaging system in each direction is provided below. For an even deeper analysis check [59,79].

It is necessary to point out that there will be many undesired effects preventing a perfect
image. Besides the typical limitations due to diffraction, we have the fact that the atom
cloud is often larger than the depth of field of the imaging system used. On top of that,
inhomogeinities on the imaging intensity reduce the cross section between the laser beam
and the atoms up to 20%. Recoil blurring, the phenomena of the image getting blurred
due to absorbed imaging photons that are re-emmited, has to be considered as well when
characterizing each imaging system. All unwanted effects are discussed in [79]. The values
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used in the next section to describe the imaging systems should then be taken as effective,
considering most of the effects mentioned above.

Transverse imaging system

The transverse imaging system images the atoms in the x direction, perpendicular to
gravity’s direction and the enlogated direction of the atom cloud (check figure 3.8). It uses
30% of the resonance saturation intensity I0sat, from equation 3.12. The typical TOFs used
are 2 ms and 11.2 ms. The former is used to image the density in situ, while the latter
is mainly used to perform Density Ripples thermometry (see section 3.5.3 and [80, 81]).
It should be pointed out that this imaging system has a high resolution objective with a
numerical apperture (NA) of 0.20 and a two lens telephoto on the image side. Together,
these magnify the image of the atom cloud by a factor of 12.4 onto a CCD camera (Andor
DV435-BV-958). The pixel size in object space is 1.05 µm and the field of view ranges an
area of 1.07mm × 0.72mm, which allows TOFs up to 12ms. For typical densities and cloud
geometries, and standard imaging parameters, we measure a spot size of σpsf ≃ 2.8µm.

For 2ms TOF, the imaging beam is reflected on the atomchip, under an angle of two
degrees [49]. The reflection of the beam on the chip creates a standing wave where the atom
cloud is located. Besides this, it also creates an additional virtual image. Both of this effects
have to be accounted for and make the analysis of the image more complex [78].

Longitudinal imaging system

The longitudinal imaging system is aligned with the weakly confined trap axis. Therefore,
the enlongated direction is integrated out and the resulting picture shows the density of the
condensate in the xy-plane. If the double-well trap is used, the interference of the clouds in
the longitudinal direction can be observed (see figure 3.8).

This imaging system consists of two doublet lenses and a CCD camera (Andor DV 435-
BV-958). The magnification of 5.3 leads to a pixel size of 2.45mm in object space. The field
of view spans 2.5mm× 1.67mm which allows up to ∼ 18ms for time of flight.

This kind of measurement is not particularly relevant for the results presented in this
thesis. It is mainly used to make sure that the two clouds in the double well have an equal
number of atoms. This is important to avoid coupling between the relative and common
degrees of freedom as discussed in section 2.2.1 .

Vertical imaging system

The vertical imaging system is (nearly) aligned with gravity’s direction, imaging the
atoms below the chip (y-axis). As with the Transverse imaging system, the imaging beam
used here has to be reflected on the chip. However, if the imaging beam is perfectly aligned
with gravity, then the unfocused virtual image will obstruct the real image. To avoid this, we
focus the imaging light close to the atomcloud and make sure that the atoms only interact
with the beam which is reflected from the chip. This way we can have access to the real
image of the atoms while maintaining an almost perfect alignment with the y direction.

When the single well is used, we obtain a picture similar to the one measured with the
vertical imaging system (see figure 3.8), where the density ripples can be observed. However,
if we use the double well configuration, this imaging system allows the measurement of the
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interference patterns created by the parallel expanding clouds.
We use a single doublet objective lens and a two lens telephoto combination that prepare

the imaging light to be captured by the CCD camera (Andor iXon DV887DCS-BV). The
magnification of 8.22 provides a pixel size in object space of 1.95µm, while the field of
view spans an area of 1mm × 1mm. Due to the vertical fall of the atoms, the focus needs
to be adjusted to the chosen time-of-flight. This has aditional complications due to the
astigmatism caused by the small misalignement of the beam with respect to the optical axis.
This aberration can, however, be compensated for [40]

3.5.3 Density ripples thermometry

The phase fluctuations in situ can be mapped to the density fluctuations of the gas in TOF
The density fluctuations measured in TOF encode the the original thermal or quantum

phase fluctuations existing in the cloud before it was released from the trap [80, 81]. To
measure these fluctuations, we image the atom cloud with the transverse imaging system in
11.2 ms TOF (see section 3.5.2).

The values for the temperature are obtained by computing and analyzing the two-point
density correlation function, frequently called the g2 function

g2(δz) =

� ⟨n(z + δz)n(z)⟩� ⟨n(z + δz)⟩⟨n(z)⟩ , (3.13)

where n(z) is the atomic density measured in TOF, integrated over the transversal directions.
The average is taken over the experimental realizations of the measurement. Tipically, 100
samples provide reliable results.

To extract a temperature from the g2 function, reference [80] provides an analytical ex-
pression that can be compared directly to the experiment. However, in our calculations we
use an alternative method that allows us to account for inhomogeneities in the density profiles
and the broadening of the cloud. It consists of producing simulated thermal wavefunctions
using the Luttinger Liquid model and propagate them freely for the expansion time tTOF.
From these numerically generated wavefunctions, we sample the ripple profiles and convolve
them with an effectively gaussian 3 point spread function (PSF). Afterwards, we compute
the g2 using these profiles. Figure 3.9 shows some examples for different temperatures and
PSFs. Doing this procedure for different temperatures and values of σPSF, we can compare
them to the experimental profile and find out which “guess” is the best one. Following refer-
ences [40,82], we extract λT as a fitting parameter, using the contrast (the difference between
the maximum and minimum of g2).

The experimental shot noise enters in g2(0) (see figure 3.9). Therefore, we ignore the first
point and only points with δz > 0 are considered for the fit. The minimum of the g2(δzmin),
used to compute the contrast, is extracted with a third-order polynomial fit closer to the
lowest points to compensate for the discrete experimental data. We should also note that
this method becomes less precise for higher temperatures, due to the inverse proportionality
between T and λT . Imprecisions for lower values of λT entail larger imprecisions for the
temperature.

If we consider the double well configuration, the same ripple patterns are observed. If
they are uncoupled (which is the case for the results presented in this thesis), we can consider
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Figure 3.9: g2 function for 35 nK (blue) and 74 nK (red) in a box potential. The circles are
experimental data points, while the continuous lines are the fits from which λT is extracted.
The atom numbers are 10521 for the colder condensate and 11754 for the hotter one.

that the imaged density fluctuations result from an incoherent sum of the patterns of each
condensate. In this case the correlation function in the double well trap gDW

2 relates to that
of a single well as

gDW
2 =

1

2
+

g2
2
, (3.14)

meaning that the temperature obtained for the double well configuration is the same for a
single well divided by a factor of two. For a derivation of the previous result see [79].

3.5.4 Relative phase measurement

It was mentioned in section 3.5.2 that the vertical imaging system can probe the interference
pattern of two parallel expanding quasi-condensates. This intereference pattern depends on
the relative phase ϕ(z) = θ1(z) − θ2(z), as shown in equation 3.10. It is thus possible to
extract the relative phase profile from the intereference pictures.

To do that, we fit each row of pixels of the interference picture with a cosine modulated
Gaussian, given by the function

f(x) = ae−
(x−b)2

2c2 · d cos
�
2π

x− b

λfs
+ ϕ

�
, (3.15)

where a is the contrast of the interference, d is the contrast and ϕ is the relative phase. These
are the free parameters. The fringe spacing λfs and the center of the Gaussian b are fixed
parameters.

34



3.5. Probing

Doing this for every point in the z direction, we can extract the relative phase field ϕ(z).
This allows the computation of correlation functions which can be used to infer properties of
the system (e.g. temperature) and study its dynamics [21, 83, 84]. This will be particularly
important in chapter 6, where we perform local thermometry based on the decay of the
correlation function C(z) introduced in section 2.2.2. Thus, we should take into account the
limited imaging resolution. To do so, we consider a gaussian PSF with a standard deviation
σpsf and account for that in the calculations, obtaining

C(z̄, σpsf) = exp


� ∞

0

dk
π
⟨|ϕk|2⟩e−k2σ2

psf(1− cos(kz̄))

�
. (3.16)

As before, we replace the phase mode amplitudes with their thermal expectation value.
Considering two uncoupled quasi-condensates, we obtain

C(z̄, σpsf) = exp

�
− 2z̄

λT

�
erf

�
z̄

2σpsf

�
+

2σpsf

z̄
√
π

�
e
−
�

z̄
σpsf

�
− 1

���
. (3.17)

To minimize the width of the PSF, the atom cloud should be as close as possible to the focus
of the vertical imaging system. We estimate a σpsf = 3µm after optimizing the focus with
the process described in reference [40].
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Chapter 4

The Quantum Field Machine (QFM)

In this chapter, we propose a blueprint for a quantum field machine (QFM) first conceived
in [9], with our system of choice being quasi-Bose-Einstein condensates in one dimension.
The model of QFM we propose intends precisely to address all of the challenges posed when
building genuine quantum machines: i) It is a genuine complex quantum many-body system,
describable by means of effective quantum field theories that capture emergent degrees of
freedom using different scales of refinement in the field theory model. In this particular work
we focus on a QFM tuned on a Gaussian regime which is efficiently simulated numerically [85]
and is also a very good approximation for moderately short time scales; ii) It offers potential
new tools for quantum liquids and gases, e.g., by providing an additional stage of cooling,
which does not involve diluting the system and can be applied after the use of existing
techniques; iii) The available degrees of controllability makes it possible to exploit strong
correlations and coherences for probing quantum effects. This is achieved by steering the
functioning of the machine by our understanding of the physics of the system, instead of
controlling individual degrees of freedom.

4.1 A new type of QFM

A quantum thermal machine can be constructed by choosing few suitable building blocks and
applying some operations on them in a cyclic fashion, forming a thermodynamic cycle. For
instance, as illustrated in figure 4.1 it is instructive to consider a quantum thermal machine
consisting of three elements, of which two are thermal baths, while the third is a piston
shuttling between them. With these components it is possible, e.g., to run a heat engine, by
allowing heat to be transferred from the hot bath to the cold one, while work can be extracted
from the piston. If quantum fluctuations play a significant role, the process of work extraction
would have to be investigated in a framework compatible with quantum mechanics. In case
that the individual objects are small and they feature large energy fluctuations, the systems
may exhibit complex out-of-equilibrium dynamics during the operation of the cycle. As
another example, if instead work is performed from outside, one can construct a heat pump
and use the piston to extract heat from one part of the machine and dispose it into another
part: in other words, the machine can operate as a refrigerator.

In order to implement such quantum field machines, we identify a set of general opera-
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Figure 4.1: The Quantum field refrigerator: Similar to canonical ideas employed in
ordinary thermal machines, we consider for a quantum many-body system a cycle consisting
of a small set of control operations on quantum working fluids, concatenated in order to
cool down a part of the machine (referred here as the “system”). This is achieved through a
protocol consisting of four steps: 1) Initialization of the system, the piston and the bath at
equal temperatures. 2) Compression of the piston and coupling to the bath which receives
energy, and decoupling after the heat transfer. 3) Decompression of the piston, therefore
decreasing its energy, then coupling to the system thus enabling heat transfer from the
system to the piston. 4) Decoupling of the piston from the system and compression to initial
size. Through steps 1-4), we expect to achieve a decrease in the system’s energy, while the
energy of the piston and bath should increase. This increase in energy happens in such a way
that the piston and bath can be reused for multiple cycles before they saturate. As we will
discuss, all these operations can be implemented experimentally with 1D quasi-condensates,
by manipulating them with the beam-shaping techniques described in section 3.4.

tions which will be denominated from now on as quantum thermodynamic primitives (QTPs).
These are the basic ingredients for the thermodynamic protocol presented here. The QTPs
can be concatenated in a modular fashion to build up the complex range of potential applica-
tions that the machine might have. A variety of operations can be conceived, corresponding
to different tasks such as activating or deactivating heat flow, injecting or extracting heat
from a system, performing or extracting work from a system, moving or shuttling a system
around, or suitably adding catalyzing systems [86–88].

In the following sections we introduce two QTPs which will be the building blocks of
the proposed thermal machine. In section 4.1.1 we will introduce the QTP that controls
the coupling between two longitudinally adjacent atom clouds and will allow the control
of energy flow between them. In section 4.1.2 we present the QTPs which implement the
compression and expansion of the atom clouds, the equivalent of the piston in a standard
thermodynamical cycle. This primitive will allow the creation of temperature gradients and
the manipulation of other thermodynamic parameters.
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4.1. A new type of QFM

4.1.1 Coupling control between two quasi-condensates: a valve

As depicted in figure 4.1, one of the essential ingredients for operating a QFM is coupling
its elements. This will be in general realized by allowing excitations to tunnel through a
barrier which allows to control the flow of energy between two parts of a QFM, just as it
happens with a valve. When considering a valve of a QFM, we expect to find some differences
compared to a similar type of operations in an ordinary thermal machine:

1. Specifically, in classical physics, merging of systems with identical density would be
largely featureless. Two quasi-condensates, in sharp contrast, if initially uncorrelated,
will have a random phase, and coupling will lead to a random phase gradient which
results in creation of additional excitations. In a quantum system, if we do not align
the relative phases of the quantum fields, merging adds excitations and entropy. Such
quantum phase diffusion [89–92] can, however, be countered by enabling yet another
quantum effect which is coherent tunneling through a barrier which leads to phase-
locking in an out-of-equilibrium situation [22,79,93–96].

2. Conversely, splitting the elements of the QFM – once they have established phase
[22,79,93–96] coherence – may introduce quantum noise [21,97] related to the dynamical
Casimir effect [98,99]. In a finite and well controlled system, production of excitations
in this process may add an amount of energy which is not negligible.

3. The individual elements are systems which feature correlations extending over sizable
lengths and time unlike in ordinary thermal machines. Notably, even at thermal equi-
librium a single quasi-condensate has a finite thermal coherence length λT ̸= 0 [79,100]
which would not be true if one were to simply set the reduced Planck constant to zero
ℏ → 0 entirely disregarding quantum effects.

4. Whenever the elements of the QFM have coherent dynamics then recurrences of evolu-
tion may occur as observed in [22]. This, among others, is one of the signatures of the
presence of non-Markovian effects in the system. Due to this, concatenation of cycles
in the QFM may depend on the precise timing.

Notice that these effects are particularly relevant because we cannot consider the thermo-
dynamic limit for the elements of the QFM as in state-of-the-art experiments it is not possible
to create thermodynamically large ultra-cold gases. As an example, while the amount of en-
ergy injected in a local operation should be intensive, its effect may be substantial for the
experiment. Another example is the fact that the coherence length in quasi-condensates is
comparable to their size.

4.1.2 Rescaling the length of a quasi-condensate

Changing the length of a quasi-condensate induces a change on the internal energy of the
gas. Being able to compress or expand the atom clouds allows the creation of temperature
gradients between the different components of the QFM. Combining this with the valve
introduced previously (section 4.1.1, it can then be used to study heat flow from the piston
to the bath, as illustrated in 4.2.3. Once more, it is important to account for the fact that
quantum effects come into play, namely,
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1. while the energy is changing due to compression or decompression the piston may go out
of thermal equilibrium, e.g., due to squeezing of internal modes [85,99]. If this quantum
feature will influence thermodynamic transformations involved in the operation of a
thermal machine, then such a machine will have richer physics compared to a standard
one. Hence understanding the performance limits of such potential machines must be
done by a thermodynamic framework including this non-classical effect.

2. Internal dynamics in our system occurs within time scales comparable to timings of
individual steps of the cycles considered. In contrast for classical thermal machines the
internal and cycle time scales are perfectly separated.

3. The piston can be modeled by considering a moving boundary which is also closely
related to the dynamical Casimir effect [99].

4.2 Numerical implementation

As sketched in Fig. 4.1 above, using the piston and the valve as fundamental building blocks
of a QFM allows to construct a refrigeration cycle. In this section, we will present results on
the numerical modeling of the individual QTPs involved.

Each QTP proposed here is modeled by a TLL Hamiltonian described in section 2.1.2,
which allows us to simulate the dynamics of phonons and to calculate the corresponding
energy changes in the system. As the model is a quadratic Hamiltonian, our simulations are
done within the Gaussian framework and are computationally efficient even when evaluating
sophisticated measures from quantum information theory such as the relative entropy. Our
focus will be to introduce and define the primitives, while emphasizing their physical meaning
and generality. The latter is crucial as it should be clear that all QTPs that we present are
independent of our modeling – qualitatively they represent robust quantum thermodynamic
operations, and the quantitative details should depend only on the specific implementation.
In the specific context of this work, the proposed implementation of such QTPs is done
having in mind the experimental setup described in Chapter 3. The parameters used in the
simulations, as well as the time and length scales, were chosen to match as close as possible
the ones usually used in the experiment.

The next two sections describe the numeric implementations of the QTPs introduced in
section 4.1. Section 4.2.3 shows how the QTPs can be used to observe heat flow between
the piston and the bath and section 4.2.4 gives an example of how to achieve cooling by
performing the QTPs cyclically.

4.2.1 An energy valve

Here, we consider a simple model, where two quasi-condensates can be coupled via a small
buffer region. Specifically, we will consider a bipartite system A and B, each part being
initially thermal and essentially homogeneous, the two parts being separated by a buffer
region of negligible size l ≃ ξh so that phonons cannot tunnel.

The TLL Hamiltonian discussed in section 2.1.2 is used to model the valve. We specify
a GP profile of two adjacent uncoupled boxes which smoothen at the edges, as shown in
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figure 4.2 a). Denoting by ρA0 and ρB0 the GP profiles of the systems in the left and the right,
respectively, the initial Hamiltonian of the two independent systems reads

ĤA|B = Ĥ[ρA0 ] + Ĥ[ρB0 ], (4.1)

where the tiny separation at the interface is modeled by having four Neumann boundary
conditions (introduced in section 2.1.2) in the Hamiltonian ĤA|B, two at the edges and two
at the barrier location.

We then define the joint system to have a GP profile

ρAB
0 (z) =

�
ρA0 (z), z ∈ A

ρB0 (z), z ∈ B,
(4.2)

implementing the "gluing" of the profiles. With this, we can take the final Hamiltonian of
the merged systems to be

ĤAB = Ĥ[ρAB
0 ] = ĤA|B + Ĥint, (4.3)

where now we have only two Neumann boundary conditions, one for each wall, and an
interacting part between both systems (for details on Ĥint, see ). It should be mentioned
that the buffer region was ignored in the simulations. This is based on the assumption that
in the experiment it will be small enough and the experimental removal of this buffer region
is negligible for the dynamics. As we will see in chapter 6, this is not always the case.
Nonetheless, the results the simulations yield are accurate enough that the important part
of the dynamics is captured.

Note that to merge the two systems, we need to eliminate two of the four initial boundary
conditions. To do this, we interpolate linearly from the uncoupled Hamiltonian ĤA|B to
the coupled Hamiltonian ĤAB in time tmerge as described by the following time-dependent
Hamiltonian

ĤA−B(t) =

�
1− t

tmerge

�
ĤA|B +

t

tmerge
ĤAB, (4.4)

with t ∈ [0, tmerge]. The linear interpolation describes the external potential smoothly
being changed to couple both densities 1 .

In order to study the dynamics of merging two quasi-condensates, we consider initial
conditions that are typical for the experiment used in this thesis. For this simulation, we
use two independent thermal atom clouds at temperatures TA = TB = 50 nK. The thermal
states are defined as

ρ̂[Ĥ] :=
e
− Ĥ

kBT

Z , (4.5)

where Z = Tr

�
e
− Ĥ

kBT

�
is the partition function. In this specific simulation, Ĥ will be

the Hamiltonian (2.45) for each system individually. Both quasi-condensates have the same
density ρA0 = ρB0 = 100 atoms/µm and falling off towards a smaller value at the edges (see

1As it can be seen in Appendix C of [29] , the mixing of boundary conditions is well defined.
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Figure 4.2: Operating a valve between two identical and independent thermal quasi-
condensates. (a): GP profiles: We consider two quasi-condensates which are homogeneous
in the bulk but their density falls off towards zero at their edges. At position z = 0 there
is initially the boundary condition that in our effective model at a single point implements
the separation between the two systems. As the systems become coupled, the energy can
tunnel between the two systems through this point. Throughout on line plots of real-space
quantities bullets indicate the discretization lattice used in the simulation while the continu-
ous lines are merely a guide to the eye. (b): Dynamics of energy density. We plot dE(z)/dz
defined in Eq. (6) for different times during the coupling of two quasi-condensates. Initially,
the energy density in each quasi-condensate is uniform, and we use that value to normalize
the plotted values. During the coupling, localized energy is injected at the interface of the
two systems and travels ballistically away in form of wave-packets, which increase the energy
density by ∼ 15%.

figure 4.2). The density decrease near the boundary conditions is modelled with an error
function to account for the finite-sized box walls found in the experiment. The TLL model
is solved for this background density.

In figure 4.2 b), we show the numerical results for a linear ramp with merging time
tmerge = 40 ms. This is a rather long time-scale and it was chosen here to show that the
excitations can start returning towards the interface (z = 0) if the merging takes a long time.
Initially, the energy is distributed homogeneously in each system so we present the energy
distribution relative to that value. This relative measure, which will be employed throughout,
allows to disregard the cut-off dependent shift coming from zero-point fluctuations. In fact,
our effective Hamiltonian is not normal-ordered but rather regularized by the finite healing
length ξh = ℏ/(mc) in the system (note that the cutoff ∆z in our numerical simulations is
higher than the healing length). We find that, as anticipated, merging two systems via tunnel
coupling induces excitations in form of two counter-propagating wave-packets traveling with
the respective speed of sound, which in typical experiments on the Atomchip platform is about
c = 2 µm/ms. The simulation predicts that the presence of the wave-packets increases the
local energy by quite a sizable amount of about ∼ 15%. This may cause system dynamics to
deviate from the TLL model. Nevertheless, the higher-order terms that could become relevant
in the experiment should have only the effect of dispersing the wave-packets. According to the
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simulations 2, the amount of injected excitations is higher if the systems are coupled at peak
density (see appendix C2 in [29]). The reason for this is that in the lattice approximation we
are adding an off-diagonal coupling between the two respective edges of A and B of scaling
with time and density ∼ (1− t/tmerge)ρ0(z = 0) and so the merging is “softer” if the density
value is lowered at the interface.

It is instructive to analyze the correlations of the coupled state during the merging.
As shown in figure 4.3, we find that initially there are no correlations between A and B
and hence we see that two independent thermal TLLs are not thermal with respect to the
joint Hamiltonian. During the merging the systems become coupled and the established
correlations drive the state towards being close to the joint thermal state, see appendix C2
of [29] for more details. Interestingly, after the first traversal time, i.e., when a local excitation
at the merging interface has traveled to the edges, the joint system is close to being thermal
in the bulk as shown in the inset of 4.3.

In order to check if the merging QTP is intensive we calculate the relative entropy of
the state evolving during merging with respect to the thermal state of the coupled Hamil-
tonian at T = 50nK. Initially, the relative entropy decreases rapidly, reflecting the ongoing
thermalization around the interface of the two systems, where the correlations are being es-
tablished. For the whole system the relative entropy does not reach zero and levels off to a
constant value within about 10ms. This is due to the wave-packets being always present in
the system, hence the impossibility for the entire system to be in thermal equilibrium. This
is in line with the fact that quadratic Hamiltonians never thermalize, due to the absence of
interactions. If we consider the reduced covariance matrix describing only the bulk middle
region, we see that around 20ms the relative entropy drops essentially to zero. This means
that once the excitations leave the window of observation, the system left behind agrees, in
that region, with the (joint) thermal state. Finally, for longer times the wave-packets come
back to the bulk and allow for detecting an out-of-equilibrium component of the state.

4.2.2 Compression and expansion

In this section, we propose a model to describe what happens to phonons when the confining
trap (space ocupied by the trap) changes in time. More precisely, we will continuously change
the length L of a box-shaped potential, which will induce a change in the GP profile ρ0. We
assume that the total number of atoms N = ρ0L is conserved at all times so that

ρ0(t) = ρ0
L(0)

L(t).
(4.6)

This time-dependent GP profile assumes that the change in volume is slow, so that a
homogeneous system remains homogeneous at all times. Under this assumption, the TLL
Hamiltonian will now have a time dependence. Specifically, the integration in Hamiltonian
(2.45) is performed over the time dependent length L(t). In the homogeneous case, the

2The higher modes mentioned here are the ones coming from the quantum pressure term in Hamiltonian
(2.11), which is quadratic. Check Chapter 6 for a more thorough discussion considering a Hamiltonian beyond
the quadratic approximation.

43



Chapter 4. The Quantum Field Machine (QFM)

Figure 4.3: Correlations before and after merging. The initial covariance matrix Γ(t = 0ms
(inset top) is characterized by phase fluctuations Γϕϕ = 2Cϕϕ ranging only over the individual
systems, no cross-correlations between phase and density operators Γϕρ ≡ 0, and density
fluctuations Γρρ = 2Cρρ being essentially diagonal. When heat excitations reach the edges,
the covariance matrix Γ(t = 26ms (inset bottom) restricted to the bulk region of the system
agrees with the thermal covariance matrix of the joint Hamiltonian: phase fluctuations Γϕϕ

become uniform over the joint system, in the bulk of the system crosscorrelations vanish
Γϕρ ≈ 0, while density fluctuations Γρρ are diagonal. Quantitatively, we plot the relative
entropy ofthe time-dependent covariance matrix with respect to that of the thermal state
of the coupled Hamiltonan at T = 50nK and observe that it decreases rapidly over around
10ms. Due to the presence of the heat wave packets, the relative entropy for the full system
(red crosses) does not converge to zero over time, while for the covariance matrix restricted
to the bulk region (blue squares) again. it essentially vanishes at around t = 26 ms and then
increases (for details on how the covariance matrix is calculated, see appendix A).

following change of the integration variable

z → ζ = zλ(t), λ(t) =
L(0)

L(t)
(4.7)

allows the time-dependent Hamiltonian to be written as

Ĥ(t) =

� L(0)

0

dζ


ℏ2λ2(t)ρ0

2m
(∂ζ ϕ̂(ζ))

2 +
g

2
λ(t)δν̂2(ζ)

�
(4.8)

where we have defined a rescaled density fluctuation field δν̂ = δρ̂/λ(t) in order to preserve the
canonical commutation relations, i.e., [δν̂(ζ), ϕ̂(ζ ′)] = iδ(ζ−ζ ′). Here we made the integration
limits explicit and changed the frame so that the length of the system is effectively constant
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Figure 4.4: Single stroke of a piston. A piston initially thermal and homogeneous and
of length 40µm is compressed to half size within 15 ms and then expanded back to the
initial length in the same time. (a): Energy density during compression. The piston keeps
a homogeneous energy density which, however, increases while the length is reduced. (b):
(Non-)equilibrium properties of piston during the stroke. We plot over time the global energy
relative to its initial value (blue dots) and the relative entropy to the closest thermal state
as a color gradient during the whole stroke (i.e., compression and decompression). We find
that the compression increases the total energy of the system due to increasing pressure of
the phononic gas. Furthermore, the piston goes out of equilibrium, as the relative entropy to
the closest thermal state also increases during compression. The reverse happens when the
piston decompresses. In particular, the piston is again fully thermal at the initial energy and
temperature at the end.

but the Hamiltonian density becomes time-dependent due to the dimensionless length ratio
λ(t).

We observe that if the system stays homogeneous then for all times t the time-dependent
Hamiltonians 4.8 share the same momentum-eigenmodes, which will become squeezed. We
hence should expect that compressing will have an effect of introducing squeezing of phase
and density quadratures in the system, see [99] for a related discussion.

With this model we can simulate the functioning of a piston: In figure 4.4 we show the
results of a simulation of a single stroke. We consider a piston in the same initial state
as either of the two systems shown in 4.2 before merging. We then compress the system
uniformly by half in tcomp = 15 ms and then decompress it back to the initial size in the same
time. We find that the energy stays essentially homogeneously distributed during the piston
stroke, see figure 4.4 (a). It is moreover possible to check whether the piston stays thermal
during the compression and decompression. The necessary condition is fulfilled as the energy
density is uniform at all times and changes in relation to volume. As shown in figure 4.4 (b)
the total energy increases and comes back the initial value during the stroke of the piston.
However, a more refined check involving the relative entropy shows that the system is not at
thermal equilibrium at all times. At a sequence of times during the evolution we evaluated
the relative entropy of the time-dependent state to thermal states with temperatures taken
from a certain range. The temperature of the thermal state with the lowest relative entropy
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Figure 4.5: Heat flow between the piston and bath. Initially, the piston and bath are two
independent condensates, with the bath being 3 times larger in size. The piston on the
left is compressed to half of its original size. Then, it is coupled to the piston to the bath
at t = 15 ms and decoupling starts right after. (a) Energy density over time. Energy as
a color gradient in a space-time grid. The coupling between the two parts introduces the
propagation of wave packets at the speed of sound, which is higher in the piston, due to the
higher density resulting from compression. (b) Energy dynamics in nonequilibrium. The plot
shows the ratio of average energy versus initial energy in the piston over time. We observe
that it first increases strongly, while decreasing to a value that is less than 1, just before
the piston starts coupling with our system of interest. This is what will allow the system to
be cooled with a full Otto cycle. We also plot the relative entropy to the best fit thermal
state as a color gradient in the background and observe that during coupling the system goes
strongly out of equilibrium, while returning to be close to equilibrium at the end.

gives the effective fit for the temperature. It is clear that if the time-dependent state remains
thermal at all times, then there will be a temperature for which the relative entropy vanishes.
If the piston is away from thermal equilibrium then the value will be strictly positive. We
find that as the energy increases the relative entropy measure shows that the state is pushed
away from thermal equilibrium, and comes back to it only when the stroke is finished.

4.2.3 Heat flow between two components

We now can use the compression QTP in order to enable heat flow between two systems. In
figure 4.5, we show the steps (1-2) of the Otto cycle that were sketched in figure 4.1, i.e. we
compress the piston, couple it to the bath and, after decoupling, decompress it back to its
initial state. As before, the piston and bath are both thermal initially and have the same
overall shape of the GP profile with the only difference that the bath is three times larger than
the piston. As was shown above, coupling two systems with the same temperatures does not
lead to heat flow. In order to enable it, we compress the piston using the compression QTP.
After the piston is compressed its energy is higher and so is its effective temperature. The
bath remains static so there is a temperature difference between the piston and bath which
means heat will flow from the piston to the bath. Using the coupling QTP we effectively
open the valve between the piston and bath so that heat can flow. After this is completed
we split the two systems closing the heat flow valve and decompress the piston to its initial
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length. This means that the piston has performed a stroke but in its compressed state has
released heat to the bath. After it comes back to its initial length it should therefore be
colder than it was initially. In figure 4.5 we show the results of this protocol plotting the full
spatio-temporal dynamics of the energy density and in figure 4.5 we show that the compressed
piston couples to the bath with effectively squeezed modes and the two systems are not at
thermal equilibrium while the valve is open. Nevertheless energy in the piston decreases as
heat flows into the bath which is also seen in figure 4.5 (a) in form of a light color stripe
entering the bath. Finally, we find that the total energy in the piston decreases to a lower
value than initially and thus we conclude that the piston has been overall cooled down at the
end of this protocol. Interestingly, at the end of the protocol the decompression undoes the
squeezing of the modes. The low value of the relative entropy at the end of expansion shows
evidence that the piston ends in a state very close to thermal equilibrium.

Summarizing, it should be stressed that we have performed work on the piston which
allowed us to enable heat flow and by composing the compression QTP with the open valve
QTP we deposited some of the piston’s energy into the bath. An experimental demonstration
of heat flow is presented in Chapter 6. The experimental procedure for the observation of heat
flow is simpler than the procedure described in this section. Nevertheless, we demonstrate
the flow of energy from one condensate to the other and explore further important physics
regarding non-markovianity that are not captured by the TLL simulation.

4.2.4 Example of a cooling cycle

We now join the QTPs introduced above and the knowledge about the possibility of trans-
ferring heat from one component to the other to build a cyclic machine. The idea is to use
the three components mentioned in figure 4.1 and apply a set of operations similar to those
used in section 4.2.3 to perform cooling on the ’System’ component. In more detail, the cycle
works as follows:

1. The machine is initialized with a system, a piston and a bath, each at thermal equilib-
rium.

2. The first non-trivial thermodynamic transformation is the compression of the piston
with a subsequent interaction with the bath. The work inserted to compress the piston
enables heat flow as described in section 4.2.3.

3. After splitting the piston from the bath, the piston is expanded back to its initial length.
This aims to cool it down and when it subsequently interacts with the system it should
take up some heat from it.

4. Finally, the piston and system are split again and the cycle can be repeated.

In figure 4.6 we depict the energy changes of these three pieces of the QFM over the
duration of the Otto refrigeration protocol obtained from a numerical simulation. It can be
seen that the piston first increases its energy due to compression (tcomp = 15 ms) and then
lowers it during interaction with the bath and successive expansion (tmerge + tcomp = 35 ms).
Finally, the piston increases again its energy when interacting with the system and then
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Figure 4.6: Top: Quantum field refrigerator. The QFM is initialized in thermal equilib-
rium and equal density, i.e., the system, piston, and bath differ only in length, which is
40, 40, 120µm, respectively. We run the Otto cycle by compressing the piston (15 ms), de-
positing heat in the bath (40 ms), and then expanding the piston again (15 ms). The cooling
begins at around 70 ms by coupling the initially thermal system to the cooled piston. The
systems exchange energy by the physical mechanism of the valve described in Sec. 4.2.1.
After the final splitting of the system and piston, we find that the system cools down, while
the quantum field refrigerator extracts approximately 5% of the system’s initial energy. Fur-
ther cycles continue to contribute to cooling of the system, but only in very small amounts.
Bottom: time-and-space-resolved energy dynamics during the operation of the QFM. From
the top we show the system, piston (which changes in size) and bath. Whenever a valve QTP
is operated, wave packets are injected and multiple reflections in each system can occur. The
principal wave packet in the bath is timed to arrive at the interface to the piston at around
160 ms when the valve is closing, so that the piston energy is not further increased. The
overall amount of energy in the bath increases, which is due to the presence of multiple wave
packets.
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resizing to its original length (tmerge + tcomp = 35 ms). Overall, at the end of the first cycle
(tcycle = 110 ms), the piston has slightly decreased in energy, while system and bath have
consistently decreased and increased their energy, respectively. By performing three Otto
cycles, we obtained cooling of about 10%.

4.3 Experimental implementation - a piston

This section provides a detailed explanation for how the compression and expansion opera-
tions are implemented in the experiment. The very first step is the optimization of a box
potential as described in section 3.4.2. Once the optimization of a box potential is finished,
implementing compression or expansion, consists in changing the size of the optimized box
by turning on or off, respectively, columns of light in the DMD. The protocol for compression
is thus a sequence of DMD patterns in time, where the following pattern has walls closer to
each other than the previous one. To implement the inverse process, i.e. expansion, the same
patterns are used but the sequence is reversed.

Experimentally, two parameters can be controlled when performing this QTP. We can
choose how much the the atom cloud is to be compressed or expanded and we can control how
fast we do it. Each of these parameters will have different effects on the system. Faster length
changes will induce more energy and excitations into the gas, while slow processes (slower
than the speed of sound) will have smaller effects. The amount of change in the length also has
an effect on the temperature of the gas. The more the condensate is compressed (expanded)
the more it is expected to heat up (cool down). In the following sections we quantify the
effects of these processes and demonstrate the implementation of a piston stroke, reproducing
the experimental implementation of the operation discussed in section 4.2.2.

4.3.1 Compression and expansion

Figure 4.7 shows the density profiles of an atom cloud being compressed. Turning on more
and more columns of light closer to the center of the trap, decreases the length of the box-like
potential. Since the interactions between the atoms and the dipole trap light is repulsive,
more and more atoms will move closer to the center of the box. The length is changed
linearly, similarly to what was done in the numerical simulations. Since the number of atoms
is conserved, the density increases and becomes narrower. The inverse happens if the gas is
expanded.

The compression shown in figure 4.7 was executed moving each wall 1µmms−1, a speed
smaller than the speed of sound in the gas (typically c ≃ 1.8 − 2µm/ms). It is evident
that, although the compression speed is slow compared to the time scales of the system,
this process still introduces perturbation on the order of 20% of the mean density. These
perturbations show that the system goes out of thermal equilibrium during the process and
it also becomes evident that its energy increased.

Quantifying how the system’s energy changes after this QTP can be achieved through
thermometry measurements. To do so, the atoms are cooled down in a box-like potential with
length L0. Starting from this point, the atom cloud is then compressed or expanded such that,
at the end of the operation, the box length is L. The temperature of the system is measured
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Figure 4.7: Compressing a 1D-BEC: Immediately before the compression (t = 0ms) the
atom cloud is 100µm long. As the condensate is compressed, the linear density increases and
the length of the atom cloud decreases. After 50 ms, the compression ends and the cloud
has half of its size. The compression rate is 1µm/ms which is approximately half the speed
of sound.

before and after each compression/expansion. For all the different compressions/expansions
the speed of the moving walls is kept constant to investigate how the energy change depends
on the initial and final lengths Li and Lf, respectively.

It has to be taken into account that immediately after a compression or expansion the
system might not have reached equilibrium. For that reason, the atom cloud evolves in the
trap for 100ms after the QTP is finished. Only then the thermometry measurement takes
place. This way, the excitations induced by the length rescaling will decay and the system is
homogeneous and in thermal equilibrium at the time of measurement.

It is possible to predict the final temperature after an adiabatic compression/expansion.
If the process falls within the regime of adiabaticity, then the mode occupation n(ϵk) remains
constant. The phononic energy depends on the length of the box as follows (section 2.1.2)

ϵk = ℏck = ℏc
π

L
n, (4.9)

with c the speed of sound. If the length of the box changes adiabatically from Li to Lf, then
the energy ϵk of mode k becomes ϵ′k. According to the theory in adiabaticity, we have

n(ϵk) = n(ϵ′k) =⇒ ϵk
kBTi

=
ϵ′k

kBTf
, (4.10)

where n(ϵk) follows the Bose-Einstein distribution and Ti,f are the temperatures of the atom
cloud before and after the length change, respectively.
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Figure 4.8: Temperature change after a compression/expression: The box starts with
lenght Li = 100 µm. The length is changed linearly, by moving the walls symetrically at the
constant speed of 1µmms−1 until the final length Lf is reached. The blue points indicate the
ratio between final and initial temperatures as a function of the ratio Lf/Li. As expected,
the temperature increases when the length is decreased and vice versa. The black-dashed
curve shows the adiabatic prediction, while the red-dashed curve shows the fitting result of
the exponent in equation (4.11), yielding a value of 1.32± 0.15.

Sticking to the low-energy approximation, we can use equations 4.9 and the speed of
sound to derive the relation between the ratios of initial and final temperatures and box
lengths.

Tf

Ti
=

�
Li

Lf

� 3
2

. (4.11)

The red dotted curve in figure 4.8 shows the resulting curve when the exponent of the
length ratio is extracted through fitting. A value of 1.32 ± 0.15 was computed when the
wall speed is 1 µmms−1. The fitted curve shows that a compressing/expanding speed at half
the speed of sound is close to the adiabatic scenario, probably achievable in the experiment
if a slower compressing/expanding speed is used. However, from the point of view of the
practical implementation of the QFM, an adiabatic process is not desired, since that would
increase significantly the operating time of the machine. On the other hand, the 15 ms used
for the simulations (see section 4.2.2) don’t fall within the adiabatic scenario and make the
implementation of the piston irreversible, as it will be shown in the following section.

51



Chapter 4. The Quantum Field Machine (QFM)

0 20 40 60 80 100

-80

-60

-40

-20

0

20

40

60

80
0

20

40

60

80

100

-50 0 50
0

20

40

60

80

100

120

Figure 4.9: Implementing a piston by sequentially compressing and expanding a
BEC. Both compression and expansion last 50ms. The quasi-condensate’s length is com-
pressed to half and then restored to its original size.

4.3.2 Implementing the piston

Having demonstrated the ability to implement this QTP, it is interesting to implement the
full piston stroke. This way it is possible to experimentally test the prediction from section
(4.2.2), claiming the piston state should be the same after sequentially compressing and
expanding the gas. In figure 4.9, we show the density profile of the cloud across time as a
consequence of these processes. The condensate is compressed 50µm at a rate of 1 µmms−1.
The expansion restores the original length of the system in the same amount of time. As
expected, the density doubles when the compression finishes and goes back to its initial value
when expanded again. However, it is clear that the density profile is not similar to the initial
one, especially close to the walls, where the deviations from the mean initial density reach
20− 30%. However, the profile becomes the same as the initial one after 15ms of evolution,
approximately.

To study how the speed of compression/expansion affects the the piston, we repeat the
protocol similar to the one described above. The piston stroke is implemented with different
speeds, which is the same to say that the speed of the moving walls will be different for
each case. The temperature of the piston is measured before and after the stroke procedure.
In order to make sure the gas is in equilibrium, it evolves 50ms before the temperature
measurement takes place. Table 4.1 presents the thermometry results before and after the
piston stroke. It is evident that the faster the stroke is executed, the higher will be the
temperature. Notice that the model used to fit the data assumes a system that is thermal.
The bigger χ2 values found for faster processes hints that the atom cloud had not reached
equilibrium at the time of measurement. The same does not happen when the piston stroke
takes 80ms to be executed. This demonstrates that only for very long times would it be
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Table 4.1: Consequences of a piston stroke. Measured temperatures before and after
sequentially applying a compression and an expansion procedure. The compressions and
expansions are implemented with different durations. Slower compressing/expanding times
yield more reliable results. The temperatures were computed considering a heating rate of
0.1 nKms−1 in the trap.

Duration ms T (nK) λT (µK) χ2

Before stroke 53 ± 4 14 ± 1 2.1
40 184 ± 7 5 ± 0.1 9.6
60 184 ± 8 5 ± 0.1 3.5
80 120 ± 18 7 ± 0.5 1.6
100 116 ± 15 7 ± 0.6 0.9

possible to perform this QTP close to adiabaticity.
These observations demonstrate that a piston stroke is not a reversible operation when

executed in finite time, even for time scales considerably larger than the systems time scales.
Besides the energy increase after the process, it is clear that changing the length of the system
in a way that preserves density homogeneity can only be done at very slow speeds (smaller
than c/2), which makes the implementation of the QFM cycle infeasible. Note, however, that
the implementation presented in this section relies only on linear operations. In other words,
the changes to the box-like potential were done through simple linear interpolations between
the initial and final potentials. The use of Optimal Control Theory (OCT) to implement
such processes [75] is expected to minimize the perturbations introduced in the system.

4.4 Controlling longitudinal coupling

In section 4.2.1 we discussed the merging operations of two TLLs using a linear interpolation
between two Hamiltonians with different interaction terms. Although this simple approach
was enough to investigate some of the dynamics resulting from this process, it offers no insight
to how the quasi-condensate behaves under the influence of an interface that locally changes
the coupling in the longitudinal direction.

The experimental implementation of this QTP demands a closer look at how the presence
of a barrier influences the degrees of freedom of the quasi-BECs. Specifically, in section 4.4.1
we will look at how the presence of a local barrier affects the phase correlation function and
how that can be used to quantify the strength of the barrier. Section 4.4.2 demonstrates how
local coupling is implemented experimentally.

4.4.1 Modelling a finite barrier barrier

To investigate the implications of a local potential barrier in the condensate, we follow refer-
ence [95] as a basis to the following calculations 3. We will also use the notion of correlation
functions used in section 2.2.2.

3Thanks to Igor Mazets for the enlightening discussions and help with the calculations.
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Figure 4.10: Analytic expression for the decay of correlations over a thin barrier (solid yellow
line), versus the modelling function to fit the effective phase decay (dashed black line).

In the following, we will assume that we have an elongated condensate of length L ≫ ξh
(with ξh the healing length) and a barrier at z = 0, the center of the condensate. In the spirit
of reference [95], we will consider a perturbation of wavenumber k propagating from left to
right and will assume that this perturbation is not affected by the barrier if the distance
between them is greater than an amount ∆zB. If that’s the case, then we can describe the
perturbation with the wavefunction ηk(z)

ηk(z) ∝
�

eikz + r̃ke
−ikz, z < −∆zB

t̃ke
ikz, z > ∆zB,

(4.12)

where t̃k and r̃k are the transmission and reflection coefficients, respectively. Their properties
are described in reference [95]. For now, it suffices to say that the they are orthogonal, i.e.,
|t̃k ± r̃k| = 1 and that they obey the condition |t̃k|2 + |r̃k|2 = 1 (see more details in appendix
B).

If we consider the regime where the barrier is strong, we fulfill the condition |t̃k| ≪ 1 and
thus |r̃k| ∼ 1.

With this new way of expressing ϕk, we can write the new eigenfunctions

ηck(z) = cos(kz + sign(z) · χck) (4.13)
ηsk(z) = cos(kz + sign(z) · χsk), (4.14)

where χck =
1
2
arg (t̄k + r̄k) and χsk =

1
2
arg (t̄k − r̄k). Here sign(z) is the sign function defined

as

sign(z) =

��
−1, if z < 0

0, if z = 0

1, if z > 0

(4.15)
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The arguments χc,sk can only be computed numerically. Instead of doing that, we make a
few assumptions to simplify our analysis.

If we consider only the lowest Bogoliubov modes, we can assume |t̄k| ∼ 1 and a linear
dependence with the wavenumber t̄k ∼ 2αk [95] , where α is a real constant. In this case, we
have χck ∼ χsk. Additionally, we assume that we have k ≲ λ−1

T (low temperatures). Using
the new basis functions (B.3) and performing the integration yields,

⟨eiϕ(z)−iϕ(z′)⟩ = exp

�
− 2

λT

(|z − z′|+ |sign(z)− sign(z′)|α)
�
. (4.16)

If we take α to be positive, this is equivalent to introducing a Wigner delay in the phase
shift [101]. The phase correlation has a drop after the barrier, proportional to the magnitude
of this parameter.

In reality the barrier will have a width ∆zB. Instead of the discontinuity at the barrier
position, the phase decays smoothly over the region where the influence of the barrier is
present. To account for the decay of correlations under the barrier, we use an error function
to model the logarithm of the PCF by summing a linear curve with an error function. To
each PCF profile we fit a function (see figure 4.10)

f(z) =
a

2
erf

�
z − b

c

�
+ dx+ e (4.17)

where the parameter a plays the role of α introduced in equation (B.6) and the parameters
b and c depend on the position and width of the barrier, respectively. The slope d depends
on the temperature of the gas and the parameter e is an offset which ensures that the curve
starts at 0, where log(C(z0, z0) = 1) is maximum.

SGPE simulations of a static box-potential with different barriers at its center helps
illustrating the predictions made above. In figure 4.11 we can see the effects of barriers with
different strength on the correlation function. Away from the barrier, the correlations decay
exponentially, as expected. How fast they decay, depends only on the temperature 4 of the
system. Notice that the decay rate of the correlations is the same for points outside of barrier’s
region of influence, defined by ∆zB. However, for points in the vicinity of the barrier, the
phase correlation function decay accelerates, decreasing faster for stronger barriers. When
comparing the correlations from cases with different barrier strengths, we find that, far from
the barrier, the slope of the curves is the same, the correlations are identical up to an offset.

This makes it clear that a sharp change in the potential leads to loss of correlations over
space, which can be used to control the coupling between to quasi-condensates in a head-to-
tail configuration. A barrier bigger than the chemical potential is enough to uncorrelate the
regions of space that it separates. By controlling the strength of the barrier in time, we can
implement a valve that allows or prohibits the transfer of energy and matter between two
distinct parts of a system.

Although the effect of the barrier on the phase correlations seems to be clear, it is so only
for low enough temperatures. Indeed, the effects just described are more easily observed if
there is no competition between the decay induced by the potential landscape and the one

4It also depends on the density ρ0 and the scattering length as, however, in this discussion we are assuming
these to be constant.
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Figure 4.11: Correlation decay over barriers of different strength: simulation per-
formed with the SGPE method for a quasi-condensate with a temperature of 30 nK. In the
absence of a barrier (blue dots) the correlations decay exponencially (notice the log scale).
When a barrier is present, the correlations decay faster under its influence. The decay rate
is the same in regions where the influence of the barrier is negligible. The dashed gray lines
are the curves from fitting each set of points with equation 4.10.

due to temperature. Figure 4.12 shows the evolution of the phase correlations over space at
different temperatures when the same barrier is present. For systems at higher temperature,
the correlations vanish after the barrier, or approach zero very quickly. Note that the effect
of the barrier is not stronger due to the higher temperature 5, it merely becomes harder to
quantify the strength of the barrier when the correlations after it are practically zero. For
this reason, the modelling expression (4.17) might not be applicable if the temperatures are
not low enough.

4.4.2 Experimental implementation of the valve QTP

Experimentally, the coupling between two different parts of a condensate can be controlled
using the dipole light in a specific point in space. The presence of the blue detuned light
reduces the density locally, which alters the the amount of quasi-particles that travel through
that region of space. The repulsive potential created by the light is proportional to its
intensity. Thus, it is expected that different amounts of light can be used to control the
amount of coupling between the atoms on each side of the barrier.

The barrier is implemented by turning DMD pixels on. More precisely, the pixels giving
shape to a rectangle of dimensions HB × WB are turned on, where HB specifies the height
of the barrier (number of vertical pixels) and WB specifies the width of the barrier (number

5Counter-intuitively, the gap in the correlation function due to the barrier is actually smaller for higher
temperatures (see appendix B).
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Figure 4.12: Phase correlations in the presence of the barrier for quasi-condensates
at different temperatures. The presence of the barrier becomes harder to detect, due to
the faster decay of the phase correlation function. For higher temperatures, the value of C(z̄)
is lower, making its value closer to zero after the barrier and thus harder or impossible to
detect.

of horizontal pixels). The higher the values of HB and WB, the stronger the barrier is. Our
main purpose here is to demonstrate that by creating different barriers with the DMD, we
are able to achieve different coupling levels between two different parts of the atom cloud.

The measurement preparation consists in cooling down the atoms in a 100µm box po-
tential divided by a barrier with dimensions HB × WB. For each value of WB, we prepare
10 different values of HB to scan the barrier size in both dimensions. For the first of these
preparations, no barrier is loaded (HB = 0) so that we have a reference for comparison.

To ascertain the effects of the barrier precisely, we measure the relative phase of the
longitudinal clouds and compute their phase correlation functions. The correlation function
C(z, z′) introduced in section 2.2.2 is plotted for barriers of different strengths in figure ??.
Reading the figure from top to bottom (increasing barrier height), we see that for HB = 0
we observe the typical PCF pattern for a square homogeneous box. As the value of HB

increases, it is clear that the barrier starts decreasing the correlations between the left side of
the box (z < 0) and the right side of the box (z>0). For the figures with higher HB values,
we observe again the PCF of a single homogeneous box repeated twice. This is evidence that
the two halves of the system are less and less correlated as the potential barrier becomes
more relevant. Note that the effect of the barrier becomes more relevant for lower values of
HB when higher values of WB are used, since the strength of the barrier is proportional to
its volume, which is proportional to the number of pixels turned on in the DMD.
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Figure 4.15: Phase decay lengths under and far away from the barrier. On the left,
the decay lengths fitted for a reference point fixed at z0 = 25 µm are shown for different
values of HB and WB. All the fitted values at this reference point lie in between 20 µm and
30 µm. On the right the decay length under the barrier can be found. As expected, the decay
becomes smaller for larger barriers. Note that the decay lengths converge to the same value
of ∼ 5 µm, hinting that a stronger barrier does not achieve lower correlations. The lines are
a guide to the eye.

As discussed before, lower temperatures make the effects of the barrier more evident,
whereas higher temperatures make the influence of the barrier harder to observe. This
becomes clear by having a closer look at the PCF. Figure 4.14 shows how the PCF changes
in space for a reference point z0 = −20µm for the same measurements showed in figure ??.
The red vertical bar marks the position of the barrier, while the green horizontal one signals
the noise level at 3 dB. The noise level was chosen by measuring the PCF in regions where
correlations are known to be practically zero. This region corresponds to distances z̄ ∼ 3λB

T ,
where C(z̄) ∼ 0.01 is negligible. It is clear that the correlations are affected by the barrier,
however, the behaviour discussed in section 4.4.1 does not seem to be present systematically.
The explanation relies on the fact that the temperatures of the atom clouds, varying from
50− 60 nK, are too high for that analysis to be applicable.

Nonetheless, it is still possible to analyze the barrier strength quantitatively. With that
purpose in mind, we chose a reference point z0 and compute the decay of the phase correlations
around that point for the different barriers. Additionally, we evaluate how rapidly the phase
correlations decay under the influence of the barrier, by using the same fitting procedure,
using the center of the barrier as the reference point. Note that the decay of the phase
correlation function under the barrier depends on the strength of the barrier (see figure
4.11).

Figure 4.15 shows the decay lengths found in the two different situations. As expected,
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the correlations are approximately constant when the reference point is far from the barrier,
while under the barrier the correlations decay faster when its strength is bigger. It is also
possible to observe that this decay is more pronounced for the barrier with WB = 9, since the
volume of the barrier increases faster with height for larger widths. Furthermore, note that
the decay rate reaches a plateu for the different barrier strengths, meaning that the further
increase in strength will not have any effect on the correlation function. This is evidence that
the two halves of the condensate are completely separate.

Figure 4.15 shows the decay lengths found in the two different situations. As expected,
the correlations are approximately constant when the reference point is far from the barrier.
Under the barrier, the phase correlations decay faster for higher values of HB, confirming the
previous observations. It is interesting to note that although a faster decay is clearly observed
for the thickest barrier, the values of the decay rates converge to a plateu around 5 µm,
indicating that a stronger barrier will not decrease the decay rate of the phase correlations
further. This is evidence that controlling the amount of light used to generate the barrier
can be used to locally tune the coupling between two different parts of the atom cloud.

4.5 Summary and discussion

This chapter introduced the concept of a quantum field machine. The operation of this ma-
chine can in general be decomposed in two basic primitives: length scaling of a subsystem
and coupling control between two subsystems of such a machine. In the context of this
work, the QFM was conceived with the goal of being experimentally implemented with one-
dimensional BECs using the atomchip platform. Therefore, the Tomonaga-Lutinger liquid
model was chosen, for it is the standard model to describe such systems. Each primitive
operation was implemented numerically showing the consequences of each procedure. The-
oretically speaking, changing the length of one of the machine’s components is a reversible
task, provided that it is done slowly enough. The energy (and entropy) is increased when a
cloud is compressed and the opposite happens when the cloud is expanded in the same way.
Splitting and merging disturbs the system and are not reversible processes. This primitive
drives the system out of equilibrium through the introduction of perturbations that prop-
agate across the system. By stitching these operations together it was possible to build a
cycle with three components, a system, a piston and a bath, and reduce the energy of the
first one by 9%.

The experimental implementation of the aforementioned primitives was demonstrated.
The compression and expansion of the atom clouds is achieved by linearly changing the
position of the walls with the DMD. It was shown that the quasi-condensate’s temperature
increases when it is compressed, while the opposite behaviour is observed when the quasi-
condensate is expanded, as expected. The piston stroke was also implemented. Although
the density behaves as predicted, it is clear that the final state of the gas after the piston
stroke is not the same even if it is executed slowly. It should however be mentioned that the
implementation of this primitive relied only on linear procedures. Compression and expansion
using non-linear trajectories for the walls were studied [102] and its implementation in the
experiment is possible. These type of procedures use Optimal Control Theory techniques to
achieve an efficient and clean change of length, using, for instance, shortcuts to adiabaticity
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[74]. Due to the high computational resources required and the difficulties of matching
experimental results with numerical ones, this work is still under development.

We proceeded to the demonstration of the amount of coupling that can be achieved
between two different parts of the quasi-condensate. Although it was clear that it is possible to
manipulate the size of the barrier to change the amount of coupling, the effects of temperature
introduce a lot of noise which reduces the accuracy of the measurement.
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Local thermometry

In the last twenty years, the interest in the topic of the locality of temperature has risen.
Driven essentially by the technological development which allows probing of micro and
nanoscale dimensions, the necessity of understanding the thermal properties of small sys-
tems became unavoidable [103–105]. Also in the fields of cold atoms and atomtronics, the
concept of temperature plays a central role in the description of systems in equilibrium or
close to it [20]. In recent years, there has been a lot of discussion on the role of temperature
in the quantum thermodynamics community, regarding its validity in the quantum realm and
significance for smaller systems [106,107].

Temperature is widely used to characterize large systems in equilibrium. The disciplines
of thermodynamics and statistical mechanics use it to characterize a global state of a system,
where the characterization of individual particle dynamics is unfeasible. Therein, a global
temperature is assigned to the system, usually assuming the thermodynamic limit to be valid.
Arguing for the existence of local temperatures is thus a subtle topic.

Although it has been demonstrated that such a concept is valid and useful [105], it is good
to gve an overview why it is so. Since temperature is associated to a system in equilibrium,
the concept of local temperature contradicts the global character of this quantity. For it to
be valid locally, the concept of temperature has to apply to the partition of the system which
is being considered. In other words, when looking at a specific sub-part of the whole system,
it has to be indistinguishable from a canonical state.

If different partitions of the same system show similar temperatures, this shows that the
system is globally in equilibrium. If this is not the case, then it is an indication of a global
non-equilibrium state, since a redistribution of energy is likely to happen. However, such local
analysis poses a problem, because the sub-systems are not isolated from each other. What
are, then, the conditions under which it is valid to use temperature as a local parameter?
The answer relies on the correlations existing between different sub-divisions of the system.
According to [108], the temperature is intensive on a given length scale if and only if the
correlations with other parts of the system in that length scale are negligible. In other
words, as far as the different regions of space are uncorrelated, it is valid to consider different
temperatures for each of these regions. Since we are considering independent temperatures
for uncorrelated points in the same system, temperature is deemed here as a local quantity.

Given that an assessment of the temperature for different points in space is possible, this
thermometry method is particularly interesting for 1D quasi-condensates. It can be used
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as a method to probe out-of-equilibrium states as well as a way to map (up to a certain
resolution) the distribution of energy over space. This last point is utterly important for
studying energy transport in phenomena such as heat flow through the quasi-condensate.

Following this line of thought, the next section discusses the concept of local temperatures
applied to the 1D-condensates described throughout this thesis. We start by looking at how
we can find local temperatures in these systems and what are the assumptions behind this
thermometry method. Then, we show examples of the usefulness of local temperatures by
looking at examples of systems in thermal equilibrium and systems where different temper-
atures can be found in distinct regions of space.

5.1 Local thermometry method
The relationship between the phase coherence length and the temperature of a quasi-1D BEC
is the starting point for the development of local thermometry the context of the systems
described in this thesis. As mentioned in section 2.2.2, the phase correlation function C(z, z′)
of a homogeneous and thermal condensate decays exponentially in space as follows

C(z = |z − z′|) = e
− 2z

λT . (5.1)

Here, λT is the decay length given by

λT =
2ℏ2n1d

mkBT
(5.2)

usually known as the thermal coherence wavelength. The factor of two in the exponent
accounts for the fact that we consider the double well configuration. Notice that both homo-
geneity and thermal equilibrium must be fullfilled for equation (5.1) to be valid.

The correlation function C(z̄) can be measured experimentally. To obtain a temperature,
a reference point z0 is chosen and the thermal coherence wavelength λT can be extracted
through fitting. The λT provides information about the temperature and is also a reference
length scale which allows to ascertain which points are significantly correlated to z0 and which
ones are not. Note that to obtain λT , we regard the phase correlations between z0 and all the
other points. Thus, this is a parameter that characterizes the system globally (non-locally).
If the system is in thermal equilibrium, we will obtain the same value for λT , regardless of
the reference point z0. In other words, the correlations decay with the same rate for every
point in space. Otherwise, it is safe to assume that the gas is not in thermal equilibirum.

The main claim here states that a non-thermal correlation function can be interpreted
as the existence of localized temperatures in uncorrelated regions of space [108]. It is only
possible to do such an interpretation provided that within the considered region, the system
is homogeneous and the correlations decay exponentially. These are the same conditions
required for the validity of equation (5.1), applied only to the partition of the system under
analysis 1.

To compare temperatures of two distinct parts of the system, the two conditions men-
tioned just above are not enough. In addition, it is required that these two sub-systems are

1In fact, a homogeneous density is not required to define local temperatures. However, since it simplifies
the problem substantially, we shall move forward with it.
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Figure 5.1: Illustration of local temperature method: The red shade represents the
one-dimensional atom cloud in space. The phase correlations are sketched for two different
reference points (blue for z0 and green for z1). The vertical black solid lines mark the limits
of the analysis region for each of the reference points. Notice that at the boundaries of these
regions the correlations are practically inexistent. The regions defined for each reference point
are also distant enough such that no correlations exist between them. By extracting a decay
length within each region, we can effectively compute a temperature that characterizes each
of the regions, making the analysis local. Since the correlations within the region defined by
z1 decay faster, we will find a higher temperature around this point, compared to the one
found for the region defined by z0.

sufficiently far away from each other, in order to avoid correlations between them. Negligible
correlations are crucial because it approximates each sub-system to the “isolated system” sce-
nario. Although it is true that these partitions of the system are not isolated and exchange
energy with the surroundings, the fact that they are uncorrelated makes them independent,
allowing an unambiguous interpretation of the phenomena happening locally (see figure 5.1).

To measure the temperature at a specific region, we select the reference point z0 at the
center of that region. Fitting the correlation decay in the surroundings of z0 allows the
extraction of the decay length of the phase correlation functions λD on that region. The
different notation for the decay length emphasizes that this parameter refers to a region of
the system and not to the whole space. Knowing the value of λD allows the calculation of an
effective temperature Teff, valid only in the surroundings of z0. Given we can perform this
analysis for every point in space, we can write a local version of equation (5.2)

Teff(z) =
2ℏ2n1d

mkBλD(z)
(5.3)

Note that the value of λD has to be similar or smaller than the region’s length, otherwise
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Figure 5.2: Local thermometry method applied to a thermal state: Comparison
of the local thermometry method (red dots) with Density ripples thermometry (gray bar).
The density profile (dashed black line) is shown for visual reference only. A region of 24 µm
around each point was chosen to fit a decay length of the phase correlation function. The
atom cloud with ∼ 5000 atoms was measured in a box-like potential with a length of 100 µm.
All the error bars were computed using a confidence level of 68%.

important correlations are being thrown away. Regions on the order of the decay length of
the correlations ensure that the intensive property of the effective temperature is respected
(see figure 5.3). Since we are working under the local density approximation, n1D in (5.3) is
the mean value of the density within the region of analysis.

Besides the requirements above, we need to take into account other technical details when
applying this method. Therefore, there are specific criteria to evaluate the validity of this
method. A thorough discussion of such criteria is provided in section 5.4.

5.2 Example: homogeneous thermal cloud

As a first example, we apply the local thermometry method to a thermal cloud in a 100 µm
long box potential. This scenario provides a system under well known conditions and allows
the comparison with the standard Density Ripples (DR) thermometry method. Figure 5.2
shows the comparison between these two methods. The blue line indicates the temperature
found with DR and the shaded area indicates the error computed with a confidence level of
68%. The red dots show the temperatures found with the local thermometry method for the
corresponding red shaded regions (each one 20 µm long).

Each of the remaining gray points, indicate the temperatures that were extracted if they
had been chosen as the reference point for a region centered around it. For all of them we find
similar temperatures, as expected, since the system is thermal and homogeneous. It is also
interesting to observe that the temperatures from both methods are similar, confirming the
reliability of the local thermometry method described before. Notice that the selected regions
are far enough apart such that they are effectively uncorrelated. The distance between them
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Figure 5.3: Finding the smallest region for local thermometry: The center of the box
was used as reference. We find that the coherence wavelength converges for regions which are
of the same scale as this parameter. Too short regions neglect relevant correlations, making
such regions not suitable for local thermometry. This shows how to find a lower limit for the
size of region of interest for such a method.

exceeds the value of λD, which indicates that the mutual information shared between both
is inexistent [109]. The selected points are at least 20 µm from the box edges, to make sure
that the influence of the vanishing density near the boundaries is negligible.

Choosing how big a region of analysis should be, is crucial to obtain reliable results for the
temperature. By truncating the region where C(z, z′) is being fitted, it is necessary to make
sure that important correlations are not neglected. Figure 5.3 shows the extracted decay
lengths λD for different region sizes. It is clear that the value of λD converges for regions
of larger size. A value of approximately 25 µm is obtained reliably for regions of 24 µm or
larger. Regions considerably smaller than 25 µm yield bigger values with larger uncertainties,
revealing that important correlations were neglected. From this, we infer that a region of
analysis is only valid when from the point in which increasing its size does not yield a different
decay length of the phase correlation function.

5.3 Example: two different temperatures across space

We now apply the local thermometry method on a system where two distinct (and indepen-
dent) atom clouds have different temperatures. The system consists in two boxes with half
the size of that shown in figure 5.2. The boxes are uncorrelated, separate by a potential
barrier, so that energy can not flow from one box to the other. At the end of cooling, the
two halves of the system show similar temperatures. A temperature imbalance is created
by shining random blue-detuned light over a period of 175 ms (for a full description of the
heating procedure, see section 6.3) on the right box. After the heating procedure, the system
consists of two independent atom clouds in a head-to-tail configuration, exhibiting different
temperatures. The local thermometry method can be then applied to each of the smaller
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Figure 5.4: Thermometry in different regions of space: The blue and red data points
show the measured temperature for the cold box (blue shaded region) and for the hot box
(red shaded region), respectively. The coherence lenght λD found for the cold and hot boxes
are, respectively, 19 µm and 9 µm, smaller than the 24 µm regions considered. The points
were chosen to be in the middle of each box to avoid the influence of boundary conditions.
The light-gray points indicate the temperatures found when each of those points is used
as a reference. The bigger errorbars close to the barrier position show that the method is
not reliable when the density is not homogeneous enough. The dashed black line shows the
density profile shape as a guide to the eye. The density profile was measured after 15.6ms
time of flight.

thermal clouds.
The results yielded by the local thermometry are shown in figure 5.4. To compare the

temperature in the different boxes, we choose the reference points to be at the center of each
box. The regions around these points are chosen to be 24 µm long and are independent from
each other. As expected, the heated box has a higher temperature than the box where no
heating was performed.

The gray points shown in 5.4 show the temperatures that would have been obtained if
the respective points were chosen as the reference. It is interesting to observe that the gray
points close to the chosen references show similar temperatures, indicating that around the
selected regions the temperature is constant. On the other hand, the points close to the
barrier position show larger error bars, indicating less reliability. Indeed, around the barrier
the density is not homogeneous, which falls out of the local density approximation assumed
before.

Notice that the two small boxes are independent due to the presence of a potential barrier
between them. This makes it possible to compare a point of the cold box with any of the
points in its hotter counterpart and vice versa. For the specific case of the regions presented
in figure 5.4, the comparison would still be valid even if a barrier was not present. This is
possible due to the distance between them (∼ 30 µm), which exceeds largely the coherence
wavelength found within those regions (see figure 5.4 caption).
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Figure 5.5: Effects of the imaging system: The green points show the simulations set
temperatures vs the fitted temperatures extracted with the local thermometry method. The
yellow points show the same but considering the effects of the imaging system. The imaging
system introduces an offset temperature and the fitted temperatures grow by a factor of 1.3.
Moreover, the results are not reliable anymore for higher temperatures, due to the width
σPSF of the point spread function. The dashed lines (and correspnding text) show the fit
curve (and fit parameters) with and without the imaging system. When the imaging system
is considered, only the full points are considered for the fit.

5.4 Discussion

5.4.1 Validation criteria

The local thermometry analysis can be applied using any space point as a reference to define
a region. However, as mentioned before, not every region of space yields a result which can
be interpreted as a temperature. The local thermometry method requires homogeneity and
thermality in the spatial region being analyzed. Since there might be dynamics in the system,
the validity of analysis of a specific region can change in time. Thus, it is necessary to find
adequate criteria and verify that the region around a specific reference point fulfills these
conditions at different times.

To address the density’s homogeneity, we calculate the averaged density variance of the
initial state, known to be thermal, and use it as a reference for the future instants. Using
the averaged density is crucial, for it eliminates the thermal fluctuations and accounts for
all the inhomogeneities present due to the box-potential imperfections. Using the averaged
density variance of the initial state as a variance, we proceed to the calculation of the same
quantity at later times (t > 0) in the selected space regions. For such region to be considered
homogeneous, its (averaged) density variance has to match that of the initial state, making
sure there is resemblance between the thermal density and the one being analyzed. Otherwise,
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the effective temperature extracted in the selected space region is not valid, that is, this
specific region of space at that instant cannot be used for local thermometry, due to the
non-homogeneity of the density.

Thermality within the region of analysis can be checked by comparing the distribution
of the measured phase variance with the phase variance distribution of a reference thermal
state 2. The reference thermal states are generated using the Ornstein-Uhlenbeck process to
simulate thermal wavefunctions at different temperatures. We also simulate the measurement
process (see section 5.4.2 for details) so that the simulated data is in the same situation as
the experimental one. Then, for each temperature, we can calculate the phase variance
distribution of the reference thermal states.

Having extracted the local temperature T exp
L from the experimental data, we can compare

the phase variance distribution within the region of analysis to that of the thermal state with
the correspondent simulated temperature Tset. Since the phase distributions are known to be
exponential (see appendix C), we consider the distribution to be the same if the same mean
value is found for both.

These are the two criteria used to validate the computed effective local temperatures.
Although these criteria fulfill the requirements introduced in section 5.1, there are experi-
mental and technical limitations that introduce further restrictions for the validity of local
thermometry. These are discussed in the following section.

5.4.2 Limitations

The limited resolution of the imaging system imposes restrictions on the upper limit for
temperature measurement. Since temperature is computed through the fitted decay length
λD, the smallest value for this quantity is limited by the resolution available. The point
spread function of the vertical imaging system (described in 3.5.2) is modulated with a
gaussian function, whith width σPSF = 3 µm. Figure 5.5 shows how the imaging system
affects the measured value of the temperature with this method. By simulating thermal
states with the Ornstein-Uhlenbeck process [110], we apply the local thermometry method
before and after considering the effects of the imaging system 3. Without taking into account
the imaging system, the temperatures computed from simulated wavefunctions match closely
the temperatures initially set in the simulations. When the imaging system is considered, the
relation between the set temperatures and the ones fitted is only linear for lower temperatures.
Moreover the linear relation is not without an offset and a slope that deviates from 1 by 30%.
For the densities presented in this work (n1D ∼ 60−70 µm−1), the linear relation stops being
valid for temperatures close to ∼ 150 nK, when the correspondent λT starts getting close to
σPSF. For this reason, we disregard values of λT < 5 µm.

Besides the restrictions enunciated above for the application of this method, there are
other limitations that have to be accounted for. The phase correlations don’t decay expo-
nentially if the reference point is close to the system boundaries (local density approximation

2Here we mean the spatial variance of the phase field. For each experimental/simulated realization, the
phase variance is computed for a specific region.

3The effect of the imaging system can be simulated by computing the expansion of the wavefunction in
time of flight and convolving the evolved wavefunction with the PSF [79]. The code was written by Thomas
Schweigler and developed further by Frederik Møller.
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breakdown) [111] . Thus, a local temperature can only be extracted when far its reference
point is not in these conditions. In the context of this thesis, the reference points are always
located at the center of a box, as in the example in figure 5.4.

71



Chapter 5. Local thermometry

72



Chapter 6

Heat flow

In this chapter we look at the first experimental endeavors exploring the thermodynamics of
non-equilibrium 1D cold gases. We start by motivating this endeavor in section 6.1. Here it is
also clarified what is meant by heat flow and how it can be measured with the available tools.
The general scheme of how this topic will be studied in the experiment is described in section
6.2. The basic idea is simply merging two 1D atom clouds at different temperatures and
observe the consequences for the following dynamics. To achieve this temperature imbalance
for the initial state, we need to heat up one of the clouds at the final stage of evaporative
cooling in the trap. This local heating procedure is described in section 6.3. After describing
the experimental details that allow the investigation of heat flow in 1D systems, a theoretical
description and the experimental results are presented in sections 6.4 and , respectively. We
conclude by providing a summary and a discussion on the results presented throughout the
chapter.

6.1 Motivation

The merging procedure studied numerically in section 4.2.1 is one of the pillars of the QFM.
Implementing it experimentally is thus of paramount importance to have a completely func-
tioning QFM, for it is through this process that energy is shuttled between different parts.
On the other hand, it is also a very interesting problem solely from the thermodynamic point
of view. Inducing an energy exchange through coupling in one dimension, requires evolving
a non-equilibirum state, a subject of great interest in the recent years [21, 46,112] .

To address this process experimentally, we start with a simple protocol which consists of
coupling two atom clouds that are initially separated by a potential barrier sufficiently strong
to uncouple them (see figure 6.1). This barrier is then lowered linearly in a finite amount
of time to merge the two clouds into one. For an energy exchange to happen, we make sure
that the two clouds to be merged have different temperatures. This simple setup allows the
detailed study of the merging process, sparing the complications of extra procedures, as the
ones shown in secion 4.2.3 .

After merging, we intuitively expect to see some redistribution of energy due to the
different temperatures that the systems hold in the beginning, namely an evolution towards
a global thermal state. We denominate this redistribution of energy as heat flow. To measure
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heat flow, we use temperature as a proxy quantity, since this is accessible from the measurable
observables in the experiment (Chapter 3). Note that we are dealing with an isolated system,
whose total energy can be assumed to remain constant (after the merging). Since the energy
distribution is not homogeneous in space, we expect that it will change in the subsequent
dynamics. Thus, the heat flow that we adress here is actually a local quantity, which varies
over time. For this reason, we apply the local thermometry method, described in chapter 5.

Even though an approach to a thermal state is expected, it is known that the Poincaré
theorem [113] is also valid for a system with discrete energy spectrum [21,114–116]. Therefore,
it is expectable that after the merging is complete, we observe the system returning to a state
close to the initial one. Thus, we expect that the heat flow takes the merged system to a
state closer to thermality and that this evolution is somehow reversed, bringing the system
to a state closer to a non-equilibrium one. Since this last redistribution of energy drives the
system away from thermality, opposite to what is expected classically, we denominate this
energy flux as anomalous heat flow. The theoretical description for this phenomena is laid
down in section 6.4.

6.2 Experimental procedure

To study the merging procedure, we cool down the atoms in the double well trap by applying
evaporative cooling for 400ms. While evaporative cooling takes place, the light of the dipole
trap (see section 3.4.2) is ramped up to create a potential landscape that consists of two boxes
adjacent to each other, as illustrated in figure 6.1. The slow increase of the light intensity
allows the atoms to adapt to the new potential while avoiding heating through scattering.
The cooling procedure happens uniformly over the longitudinal direction. Since the initial
state for the merging protocol requires two boxes with different temperatures, an additional
local heating procedure is performed, while the atoms are being cooled down. One of the
boxes is heated up for a period theat, which determines its final temperature. More details
on this heating procedure are presented in section 6.3.

As soon as the preparation of the initial state finishes, the barrier that separates the
two condensates starts being removed. The removal happens through a linear decrease of
the barrier height that lasts 9 ms. After this, the system evolves in the full box (the two
initial boxes without the barrier).The evolution after the merging is complete ranges from
100ms to 145ms, depending on the length of the full box (see section ). After the evolution
of the merged system, the traps are turned off and a measurement takes place. Since the
measurement is destructive, the procedure is executed several times, tipically 300 repetitions.

This experiment is performed in the double well configuration such that an interference
pattern can be measured and the relative phase field extracted from it, as described in
section 3.5.4. The investigation about the system dynamics will be carried on by looking
at the evolution of the phase correlation function and by applying the local thermometry
method.
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Figure 6.1: Merging procedure scheme: The initial state consists of two adjacent and
uncorrelated gases at different temperatures. After the preparation of the initial state, the
barrier between the two condensates is removed linearly in ∆t = 5ms. The system evolves in
the full box for enough time to styudy the subsequent dynamics. The main goal is to observe
how the redistribution of energy in the joint system will take place. The observation of a
single temperature in the whole box shows that heat flow ocurred.

6.3 Local heating

This section describes how a difference in temperature between two condensates in a head-
to-tail configuration is achieved. Having such a spacial-dependent temperature difference in
the initial state is convenient to study the propagation of energy through the system when
the two independent quasi-condensates are coupled. At the end of the cooling cycle, due to
the global effect of evaporative cooling, both condensates have the same temperature. To
create a temperature difference, extra procedures are necessary.

It would be possible to create such a difference in temperature through compression of
one of the condensates. However, this procedure brings some technical challenges because
changing the length of one condensate also changes its density. Since a zero net flow of
particles between the two boxes is to be achieved, coupling two atom clouds with different
densities would require the manipulation of the chemical potential of at least one of the
clouds. Although this is deemed possible, it would increase substantially the complexity of
implementing this protocol.

A simpler approach consists in introducing random noise in one of the condensates to
increase its average energy and thus its temperature. The random noise is implemented by
shining the dipole light in the region of space where the quasi-condensate to be heated is
located. The dipole light, manipulated with the DMD, will dynamically change the bottom
of the heating box in such a way that the atoms get moved around but the chemical potential
remains unchanged. This is the mechanism through which the temperature of the atoms in
one box can be achieved without any particle loss or major change in the potential. The
details of the implementation of this procedure as well as its consequences are described in
detail throughout the next sections.
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6.3.1 Heating with white noise

The phase and density fluctuations of a quasi-condensate can be described in k-space (see
section 2.1.2) through a cosine transform

δρ̂(z) =

&
2

L

*
k

δρ̂k cos(kz), θ̂(z) =

&
2

L

*
k

θ̂k cos(kz), (6.1)

where δρ̂ and θ̂ are the mode amplitudes, following bosonic commutation relations. In a
thermal state, the occupations of these modes follow the Bose-Einstein (BE) distribution [48]

nBE(ϵk) =
1

exp
�

ϵk
kBT

�
− 1

(6.2)

where ϵk is the energy of mode k. The temperature of the condensate is related to the
distribution of energy over the different modes. The bigger the occupation of the modes,
the higher the temperature of the condensate. It is thus clear that in order to increase the
temperature of a quasi-condensate, a mechanism that increases the occupation of all the
modes is needed.

Although the BE distribution is not linear, working in the regime of low energies (ϵk/kBT ≪
1) allows a linear approximation to be made

nBE(ϵk) ≃ kBT

ϵk
. (6.3)

Given that this approximation is valid for the setup of this work, it becomes clear that to
increase the temperature by a certain amount, it suffices to increase the energy of all the
accessible modes by the same ratio. The natural choice for the energy-inducing noise used
to heat up the quasi-condensate is white noise. White noise has the property of having a
constant power spectral density, that is, all the frequencies have the same amplitude [117].
By changing the bottom of a box potential with white noise, it is possible to excite all the
box modes equally, increasing the mode occupation in the desired fashion.

The noise is implemented by manipulating the dipole trap light with the DMD. It consists
of a sequence of changing patterns displayed in the DMD over time. The different patterns
in the DMD create a dynamic trap in time.

Specifically, in each DMD pattern, a random number of pixels is turned on in each column
that affects the targeted quasi-condensate. In each pattern a different number of pixels is
turned on in each column. The sequence of pictures in time makes the light intensity random
at each point in space, creating the random changing box-bottom that will increase the energy
of the atoms.

Although the number of active pixels in a column is random, an upper bound Nmax is
defined. This way, the average number of active pixels per column in a picture will be Nmax/2.
The value of Nmax is kept constant for the entire sequence of images. This allows the strength
of the noise to be controlled. A higher value of Nmax will increase the amount of average
active pixels, leading to a bigger change in energy.

It is now clear that there are two parameters to control the heating process of the quasi-
condensate: the noise ’amplitude’, defined by Nmax and the duration of the process.
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6.3. Local heating

The pixel size defines the width of columns, which sets an upper bound for the box modes
that can be populated. If the columns’ width is not small enough, the uniform excitations
of the energy modes in equation (6.3) is not achievable. The column width in the plane of
atoms is l = 0.417µm ( slightly larger than the typical healing length ξh ∼ 0.3µm). A simple
calculation with typical experimental parameters is sufficient to see that we are within the
requirements to perform the desired heating procedure. The ratio between the box’s length
L ≃ 50 and the columns width quantifies how many modes can be targeted with the DMD
resolution

L

l
=

50

0.417
∼ 120. (6.4)

This is well above the number of modes entailed by the low-energy approximation used in
equation (6.3).

Recall that during all this process, the two longitudinal clouds are separated by a potential
barrier which uncouples both clouds and thus avoids tunneling of excitations between the
two. As a consequence, the energy input from the heating process is restricted in space and
only one of the quasi-condensates is heated up.

6.3.2 Effects of the heating procedure

In this section we look at the consequences of executing the heating procedure. There are
two parameters that can be controlled experimentally: the duration of the process and the
noise strength. To demonstrate the effects of each one, we consider two adjacent boxes,
separate by a barrier which completely uncouples them. The atoms are cooled down in this
’box-with-barrier’ potential and thus each of the small boxes has a similar temperature. The
noisy light is shined on the box on the right. After the heating process finishes, the cloud is
measured. All the temperatures in this section are computed using the local thermometry
method introduced in section 5.

Figure 6.2 shows the difference in temperatures between the two boxes when the heating
procedure is carried on for different times. The value of Nmax is fixed to 5 pixels. For
smaller heating times, the temperatures of the two boxes remain similar, while for times
longer than 300ms significant differences between the temperatures of the two boxes start to
emerge, reaching differences in temperature as high as 60nK. Notice how the temperature
of the unheated box remains constant for different heating times. This reveals that the two
adjacent quasi-condensates are indeed independent and that this heating procedure can be
targeted to one specific cloud without perturbing the other.

We now look at the consequences of using different noise amplitudes for the heating
procedure. Figure 6.3 shows how the temperature of each box changes for each value of
Nmax used in the heating process. The targeted box was heated for a period of 437ms. It
is clear that using a bigger value of Nmax will decrease the coherence length of the targeted
condensate (see the inset in figure 6.3). It is thus expected that the temperature exhibits the
opposite behaviour. However, that is not observed. Instead, we see the temperature found
for values of Nmax > 5 are similar or smaller compared to the one found when Nmax = 5.
This happens because higher values of Nmax don’t conserve the number of particles of the
targeted quasi-condensate. The amount of energy input is enough to expel a considerable
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Figure 6.2: Different heating periods. Top: Temperature for each box after the heating
procedure takes place. The temperature of the right (targeted) box increases for longer
heating periods, while the left box (blue squares) remains constant, regardless of the heating
time. The value of Nmax was set to 5 DMD pixels. Bottom: Atom number in each box.
Heating duration doesn’t have an effect on the number of atoms in each box, a difference in
temperature can be achieved while conserving the atom number in each box.

amount of atoms out of the trap (see bottom of figure 6.3). This effect is important to be
accounted for, not only to know the actual meaning of temperature but also because equal
densities are desired at the end of the heating procedure.

It should also be pointed out that the relation between the obtained temperature and
the value of Nmax might change whith the optimization of the specific potential being used.
Since more or less light might be needed for the optimization of a potential, the amount of
DMD pixels demanded to produce significant noise might change. It is highly recommend-
able checking these dependence before any experiments requiring temperature differences are
performed.

6.3.3 Conclusions

We have seen that heating an isolated 1D atom cloud is achievable by using a random pattern
of light in space and time. The spatial distribution of the light should populate the different
spatial frequencies uniformly, following the statistics of White Noise. The range of frequencies
spanned by the random patterns should at least cover frequencies on the order of 1/ξh to
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Figure 6.3: Heating with different noise amplitudes. Top: Temperature for each box
after the heating procedure for different values of Nmax. The non-heated box shows the same
temperature for the different values, indicating that it is not affected by the heating in the
adjacent box. The heated box shows a significant higher temperatures for Nmax > 3. Notice
that although the box is hotter when Nmax > 5, the temperature is similar or smaller than
for the case of Nmax = 5. This is due to the fact that higher noise amplitudes don’t conserve
the number of particles in the heated box (see picture below). Bottom: Atom number in each
box as a function of Nmax. Higher noise amplitudes (Nmax > 5) input enough energy for some
atoms to leave the trap, this has implications in the value computed for the temperature.

ensure that all the relevant mode frequencies are addressed.

Experimentally the noise patterns are generated by turning on a random number of pixels
in the columns that affect the region to be heated. This provides the ability of controlling how
much the cloud heats up by tuning the amplitude of the noise (set by Nmax, the maximum
number of pixels per column) and the amount of time that the heating procedure lasts.
Increasing the heating period or amplitude will result in higher temperatures. It has to be
taken into account that a very high noise amplitude results in a loss of atoms in the trap.
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6.4 Theoretical description
Classically, if two similar gases under the same pressure at different temperatures establish
contact, it is expected that they find there equilibrium state at a temperature which is the
average of the two initial ones [48]. However, the 1D BECs used in the context of this work
are integrable systems, meaning that thermalization is not expected to occur [114,118]. It is
thus interesting to investigate how the merging process of two gases at different temperatures
evolves in time.

We may start such investigation by looking again at the Bogoliubov theory, introduced
in section 2.1.2. This theory is dominated by the lower part of the energy spectrum and
considers that the quasi-particles in the sytem propagate freely (the approximations used in
this model are discussed below in 6.4.1 ). Assuming that the barrier and the merging time
are small, we start by projecting the modes of the initial small boxes in the basis of the big
box. The operators in the new basis read

⟨b†mbn⟩ =
1

n1DL2

*
j=p,q

∞*
j=1

�
Ej

ϵj

&
EmEn

ϵmϵn
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ϵj
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&
ϵmϵn
EmEn

�
Im,jIn,j⟨b†jbj⟩, (6.5)
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&
ϵmϵn
EmEn

�
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where bm is the anihilation operator for mode m of the full box, and bp,q is the corresponding
operator for each of the small boxes. The subscript p and q are used to denote the mode
indexes of the initially cold and hot boxes, respectively. The term Ii,j is given by (more
details in appendix D)

Ii,j =

 δ i
2
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1
2

�
L

π(i−2j)
sin

�
π
2
i− πj

�
+ L

π(i+2j)
sin

�
π
2
i+ πj

�

if i is odd

(6.7)

Note that minor quantum contributions were neglected.
Figure 6.4 shows the initial mode distribution in the basis of the full box. The distribution

shows a GGE state [84], characterized by at least two temperatures, the higher one associated
with the odd modes, which encode the temperature difference between the two boxes, and
the lower one associated with the even modes.

Knowing the values of the correlators from equations (6.5) and (6.6), we can now compute
the evolution of the phase variance. Using the general formula for the phase variance evolution
[46], adapted to the specific geometry of the box trap used here, we have

⟨∆ϕ̂(z, z′,t)2⟩ =
1

2n1D

�*
m=1

Bm,m(z, z
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k,(n−k)
tBk,k−n(z, z

′)⟨bkbk,n−k⟩+ H.c.

�
.

(6.8)
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Figure 6.4: Mode occupation in the full box: The initial state consists of two boxes 50 µm
long, with temperatures of 50 and 100 nK, with 5000 atoms each. Using the projection from
equations (6.5) and(6.6), we get a distribution where the odd modes have a higher occupation
than the even modes (except for n = 1). Such distribution is a GGE state, where even and
odd modes have a thermal occupation with distinct temperatures.

The first and second summations account, respectively, for the diagonal and non-diagonal
terms of the matrix

Bm,n(z, z
′) = Fm(z, z

′)Fn(z, z
′), (6.9)

where the function Fn(z, z
′) =
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��

relates the basis functions (2.14)
in the two spatial coordinates. Furthermore, the frequency sum and difference δω±

k,(n−k) =
ωn−k ± ωk, specify the time evolution for the non-diagonal elements of the B matrix. By
inserting the result of equation (6.8) into equation (2.28), we can compute the time evolution
of the phase correlation function.

For the low-momentum modes, which dominate the Bogoliubov theory, the energy can
be approximated as ϵk = ℏπcn/L, providing a comensurate energy spectrum. Therefore, we
expect these modes to dephase during the evolution and to rephase again at the recurrence
time trec given by [21]

trec = 2L/c, (6.10)

corresponding to the instant in which the first mode (n = 1) completes a full revolution.
Figure 6.5 shows the phase correlation function calculated with equation (6.8) for a few
relevant time instants. At t = 0 the system shows the two uncorrelated boxes. The difference
in temperature between them is reflected on how fast the correlation decays in space. At trec/4
we reach the point where all the modes are dephased and the system resembles a thermal
state. This coincides with the moment that the wavepackets introduced by the barrier reach
the edges of the full box. Although globally the system is known not to be thermal, a local
analysis disregarding points close to the boundaries can’t distinguish between this actual state
and a thermal one with the same temperature (see 4.3). At trec/2 all the even modes will
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Figure 6.5: Evolution of the phase correlation function: Each plot shows the phase
correlation function at an instant t, multiple of trec. At t = 0, trec/2, trec the system shows
the two uncorrelated boxes (with their spatial positions inverted at t = trec/2) due to the
rephased mode interference. At t = trec/4, 3trec/4 the modes are dephased and the whole
system resembles a thermal state (when the correlations at the edges are ignored). This
evolution is obtained by projecting the individual mode distribution of each box in the basis
of the full box. After this, the correlation function is propagated with equation (6.8). This
example shows a box with length L = 100 µm and 5000 atoms, resulting in a trec = 100ms.
The initial temperatures of each box are T = 50 nK and T = 100 nK.
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have completed a full rotation, while the odd modes rotated a half-integer rotation, reaching
the "inverse" state relatively to the initial point. That explains the fact that, at this instant,
we recover the uncorrelated boxes with different temperatures with their positions swapped.
From this point on, the modes dephase again (we get a pseudo-thermal state at 3trec/4 as we
did at trec/4) and recover the initial state with the full rephasing of the modes at trec.

From a thermodynamic point of view, the evolution between t = 0 and t = trec/4 can be
regarded as heat flow, since the initial temperature gradient between the two halves of the
system is not present at this stage and the system evolved to a state closer to thermality. The
evolution away from this state to one where two regions of space are clearly distinguishable,
can be interpreted as the ocurrence of anomalous heat flow, since there is an evolution towards
a (apparent) less entropic state. This reading is valid from a local perspective, as the one
adopted in section 4.2.1, when the state can not be distinguished from a thermal one if the
effects of removing the barrier are not considered.

6.4.1 Limitations of the Bogoliubov theory

Some of the approximations used in the previously described model are not fulfilled by
the circumstances in which the experiment is performed. Therefore, we will discuss the
assumptions that are not respected and the consequences of neglecting them completely.

In this application of the Bogoliubov model it is assumed that the density is constant at
all times. The merging procedure is implemented by removing a barrier that is infinitely thin.
Therefore, the consequences of removing a real barrier (such as perturbations in the density)
are not accounted for. Furthermore, removing the barrier is an irreversible process that might
involve modes in the incommensurate part of the energy spectrum. It is also considered that
the box trap has perfect walls. This is not possible to achieve in the experiment due to
the limitations imposed by the optical systems that generate the trap (section 3.4.2). It is
known that having a box potential whose walls have a finite width hampers the ocurrence of
a perfect rephasing of the modes [40].

This theory was derived under the harmonic approximation, i.e., the Hamiltonian de-
scribing the dynamics is quadratic and does not consider higher order terms which might be
important, considering the complex dynamics involved.

6.4.2 SGPE simulations

In order to understand the consequences of the merging procedure considering some of the
experimental limitations, we perform simulations of such process with the SGPE method (see
section 2.4.2). Contrary to the Bogoliubov model, SGPE allows to simulate conditions that
suit some of the experimental apparatus limitations and also considers higher order terms
that go beyond the quadratic approximation, which encode, for instance, phonon-phonon
interactions. In this simulations we implement a 1 µm wide barrier which is removed in 5ms,
mimicking what actually happens in the experiment. Moreover, the box-potential considered
has imperfect walls, with a width of 1 µm. The different temperatures for each box in the
initial state is prepared by making the noise term η in equation (2.47) spatially dependent.

Figure 6.6 shows the full phase correlation function at different times for the 100 µm long
box. The estimated recurrence time was calculated taking into account the barrier removal
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Figure 6.6: Evolution of the phase correlation function under evolution with SGPE:
Each plot shows the phase correlation function at an instant t, multiple of trec + 10ms,
accounting for the removal of the barrier starting at t = 5ms and lasting 5ms. At t = 0 the
system shows the two uncorrelated boxes. After merging the two boxes, the rephasing of the
modes as predicted by the Bogoliubov theory is not observed. Instead, the system resembles
a thermal state whose temperature is close to the one of the initially hot box. The dispersive
dynamics is explained by the terms of higher order consider in th SGPE equation. This
example shows a box with length L = 100 µm and 6000 atoms, mimicking the experimental
parameters. The initial temperatures of each box are T = 50 nK and T = 100 nK.
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Figure 6.7: Evolution of the phase correlation function for each box: Each of the
three rows of plots show the evolution of the correlation function for different box sizes. The
carpet plots on the left show the evolution of the phase corrleation function in time and space,
where the center of the cold (top) and hot (bottom) boxes are used as reference points. The
plots on the right show the same quantity where the second point was fixed at a distance
l = 6 µm from the box center. The parameters used in this simulations are the same as the
ones mentioned in 6.6
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time (5ms). In comparison with Bogoliubov theory, it is clear that the recurrent behaviour
of the system is not as clear as the one shown in figure 6.5. It is possible to observe that, at
t = 35ms where the system is closer to thermality, the correlation function shows a peak at
the box edges, as before. At trec/2, the scenario is different from the inverse state provided by
the half-integer rotation of the odd modes. Here, although the correlation function displays
larger values on the right side of the box, they are not as high as the ones exhibited by the
hot box in the beginning. Afterwards the system is barely distinguishable from a thermal
state even at trec. It is interesting to observe that at t = 75ms, the peaks on the correlation
function associated with the wavepackets introduced by the barrier removal are not present.
The dispersion of these wavepackets can be explained by the higher order terms considered
in this simulation (and neglected by the quadratic theory).

To investigate more closely the evolution of the correlation function under the SGPE, we
look at the evolution in time and space of C(zC , z, t), where zC is a reference point centered
in the cold box. Figure 6.7, shows the evolution of C(zC , z, t) for three different box lengths.
The initially hot box becomes colder in time, and the opposite happens for the cold box.
This behaviour seems to invert, leading to a state which is qualitatively closer to the initial
one, where the initially colder box is again the coldest. This evolution is more easily observed
for the smaller boxes, due to the smaller recurrence times.

Even though these simulations account for some experimental imperfections, there are
more factors (such as atom number fluctuations or trap heating) which have not been con-
templated. In section , a discussion about these imperfections as well as a comparison between
the simulated and experimental data is presented.

6.5 Experimental results

Figure 6.8 shows an example of the phase correlation evolution after the barrier that separates
the two halves of the system is lowered. For the initial state (t = 0ms) the difference in tem-
perature between the two small boxes is clear. The left box (z < 0) shows a longer coherence
length when compared to the right box (z > 0). The corresponding computed temperatures
are, 49 nK and 75 nK, respectively. It is also visible that there are no correlations between the
two boxes. After the barrier is completely removed (t = 9ms), the correlations in the colder
box start to fade away, while in the hotter box there seems to be a slight increase for the first
instants after the merging procedure is complete. For later times, the phase correlations of
the whole system resemble those of a thermal cloud in a box potential. The evolution of the
phase correlation is similar the one computed by the SGPE in section 6.4.2.

Choosing specific regions of space to investigate how the phase correlations evolve in time
allows to find out whether there are recurrences holding evidence of memory of the initial
state. To analyze the time evolution of the correlation functions, we average n points to
compute the average C̄(z, z′, t) of C(z, z′, t) in each region

C̄(z, z′, t) =
1

N

*
z,z′

C(z, z′, t), z, z′ ∈ [zmin, zmax] (6.11)

where zmin, zmax define the region under consideration. Figure 6.9 shows the evolution of
the averaged correlations C̄(z, z′, t) for three boxes with different length L (after merging).
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Figure 6.8: Phase correlation evolution in time: Each small box is 40 µm long and
they are separated by a 1 µm barrier which is removed in 9ms, starting at t = 0ms. The
temperatures measured for the cold and hot box are, respectively, 49 nK and 75 nK. The
total number of atoms is N = 5000, equally distributed by both boxes in the beginning. The
expected recurrence time is trec = 49ms.

The heating procedure to achieve the initial temperature gradient between the small boxes is
the same for each data set. The colder box starts at an initial temperature T ∼ 50 nK whereas
the hot box shows approximately double the temperature (T ∼ 100 nK). We compute the
value of C̄(z, z′, t) for a region encompassing the points belonging to each of the initial small
boxes in the initial state.

In any of the three cases shown in figure 6.9 it is clear that each small box have distinct
levels of correlations in the beginning. After the barrier is removed, the average value of the
correlation in the cold box decreases. After achieving the minimum at trec/2, the correlations
seem to stay around the value of 0.6 for the remaining instants for the larger lengths. When
L = 80, 90 µm, the value of the correlations goes up slightly close to the recurrence time. This
is evidence that there exists some memory of the initial state. Observations for the initially
hotter box are less clear. The correlations start at a lower value and seem to increase slightly
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Figure 6.9: Averaged phase correlation evolution: The total length of the full box is,
from top to bottom, L = 80µm, 90µm, 100µm, respectively. The heating process is performed
such that (for all three values of L) the temperature of the cold box is T = 50nK and the
hotter one is T ∼ 100nK. The total evolution time is proportional to the value of L. For
L = 80µm, 90µm, 100µm the total evolution time is, respectively, 115, 125, 145ms. The value
of C̄(z, z′, t) was calculated with pairs of points close to the center of each box.
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Figure 6.10: Fitted recurrence times for different boxes. The recurrence times were
extracted through fitting, using equation (6.12). The blue dots show the times resulting
from the analysis of the correlations in the cold box, while the red points show the same
quantity regarding the hot box. The gray dahsed lines (as well as the aiding texts) show the
times predicted by the Bogoliubov theory for each box size. The correlations in the colder
box seem to provide more reliable predictions fot the recurrence times, showing that there is
some preserved memory of the initial state.

in the first 30ms of evolution. After that the value tends to go back to the initial one and
remains approximately constant for the remaining instants. Interestingly, for the L = 100 µm
box, there seems to be an increase of the correlations in the hot box starting around 75ms.
Although delayed in time, this behaviour seems to agree qualitatively with the predictions
from the SGPE simulations.

The theoretical predictions agree about the qualitative behaviour of the cold box, while
measured correlations regarding the hot box don’t match the theoretical predictions. It
should be considered that the results presented in section 6.4.2 don’t account for the effects
of the imaging system, nor other experimental imperfections (see 5.4). This kind of effects
limits the amount of features observable on the measured data.

It is possible to further analyze the time evolution of the correlations, to find out if
the second peak observed for the cold box relates to the expected recurrence times in each
different box. Figure 6.10 shows the recurrence times obtained by fitting the function

f(t) = a · e− 1
2(

t−b
c )

2

+ d · e− 1
2(

t−e
f )

2

+ g, (6.12)

where the fitting parameters are represented with the letters a–f . The fitting parameter e
corresponds to the recurrence time introduced in 6.4. The resulting fitting curves obtained
with this function are shown with dashed lines in figure 6.9. The recurrence times extracted
by fitting the phase correlations in the cold box yield results close to the ones expected
theoretically. In this specific case, we compute the recurrence time using equation (6.10) and
adding 9ms to account for the barrier removal. Applying the same analysis to the colder box
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returns less clear results. The fitted recurrence time for the largest box is off by 20ms. The
80 µm box shows a value that, although not far from the expected one, yields a very high
uncertainty. The fact that the correlations are considerably lower in the beginning (due to
a higher temperature) and the additional heating due to the barrier removal make recurrent
phenomena harder to observe. Nevertheless, the results obtained for the cold box, provide
good evidence that some memory of the initial state is still present.

6.5.1 Application of the local thermometry method

To investigate how the energy is distributed over the system, we use the local thermometry
method introduced in section 5. By computing a temperature for specific regions of the
full system, it is possible to map the energy distribution, assuming that the assigned local
temperature is a good proxy for that quantity. The heat flow is then measured by looking at
how the temperature changes in each of the chosen regions of observation. For the purpose
of the work presented here, we select two regions, each one centered around the middle point
of one of the small initial boxes.

Figure 6.11 shows both the temperatures and the fitted decay lengths used to compute
them. It is clear that the temperatures are distinct in the beginning for the three different
lengths. After the barrier is removed, the temperatures in both regions increase. This increase
is steeper for the region associated with the cold box, since its initial temperature is lower.
Notice that most of the effective local temperatures after the barrier removal are not valid to
be interpreted as such. This is expected due to the propagating wavepackets introduced by
the barrier. These make the density non-homogeneous in the regions of analysis, breaking one
of the criteria to do local thermometry. From this point on, the effective local temperatures
on each region seem to converge to a value that is higher than the initial ones. From this fact
it can be deduced that the energy introduced by the barrier can’t be neglected and heats up
the system significantly, enough for the final temperatures of each box to be larger than the
initially hotter temperature.

Performing local thermometry in these circumstances leads to a considerable amount of
uncertainty, as demonstrated by the Terr errorbars in figure 6.11. Furthermore, many of the
effective local temperatures extracted are not valid due to the limitations of the imaging
sytem or the complex non-equilibrium state after the merging of the two clouds. This makes
the analysis of the dynamics more difficult, however, most of it is more clearly encoded on
the values of λD.

The initial behavior exhibited by λD is the inverse of the one described for the local
effective temperatures, as expected. After the barrier removal, they converge to a value close
to 6 µm. Close to trec/2, we observe a higher value for the hot region, relatively to the one
recorded for the cold region. This is an inversion of the relative positions compared to the
initial state, matching the prediction that the relative magnitude of the two regions should
swap. This is a signature of a heat flow towards a thermal state (when the two values converge
after the barrier removal), followed by a departure from such state through an anomalous
heat flow (when the values of λD diverge). From this point onwards, the values of the two
regions converge again and seem to remain close to the value of 5 µm.

To confirm whether the experimental data points corroborates the theoretical predictions,
we compare the results of the local thermometry method applied to the experiment and both
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Figure 6.11: Local thermometry analysis: Each rows shows the results of the local
thermometry method for different times for a region at the center of the initially cold box
(blue) and hot box (red). The first column shows the extracted phase decay lengths λD for
these regions. From these values, the effective temperatures Teff are calculated, taking into
account the density of the condensate at that moment. The points filled in gray show the
time instants where interpreting the calculated value of Teff as a local effective temperature
is not valid (the validity criteria is described in Chapter 5).
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Figure 6.12: Comparison between experimental and simulated data: Evolution of
the decay length λD in time for Bogoliubov theory (dashed lines), the SGPE (solid lines) and
the experimental data (sqare and rounded points). The blue color refers to the λD in the
initially colder box, while the red color is associated with the remaining box. For each lenght
(L = 80, 90, 100 µm, from top to bottom) six values over the length of each box are averaged.
The shades around the SGPE predictions indicate the statistical uncertainties found for this
method. For these simulated values, the effects of the imaging system were accounted for.
All the errorbars and uncertainty levels indicate a confidence interval of 68%.
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SGPE and Bogoliubov theory predictions. Figure 6.12 shows clearly that the Bogoliubov
theory is far from capturing the dynamics happening after the barrier removal. The results
obtained from the SGPE equation provide a much more accurate prediction, showing the
damped inverted state at trec/2 and a path to thermalization afterwards. Such a result implies
that the damping of the oscillations of λD are due to the higher order terms neglected in the
Bogoliubov theory.

6.5.2 Evolution of the common density

We’ve been mainly concerned with the relative phase degree of freedom, since this is our main
probe into the system dynamics. It is also possible to observe the consequences of coupling
the two atom clouds by measuring the common density.

Figure 6.13 shows the evolution of the common density before and after the merging
procedure. The consequences of removing the barrier are visible through the light cone
propagation of the two emerging wavepackets. It is also clear that these perturbations decay
in approximately 25ms, matching approximately the time they take to be reflected by the
box walls.

It is interesting to analyze the density evolution while the boxes are being merged (figure
6.13 b) ). Notice that although the height of the barrier was decreased linearly (by decreasing
the number of pixels that compose it), the behaviour of the density at the merging point does
not seem linear. At t = 3ms, when the barrier has one third of the height, the density seems
not to notice the change in the potential. In the following instants, the density behaves
as expected, leading to a full atom cloud with no defined separation. This indicates that
there is a delay between the time at which the barrier is lowered and the time at which the
density reacts to the change in potential (notice that at t = 9ms the barrier still appears to be
present, even though it has been removed already). This matter requires further investigation
that is not pursued here.

6.5.3 Discussion

The comparison between the theoretical and experimental results shown in figure 6.12 shows
clearly that the Bogoliubov theory is not enough to make accurate predictions about the
consequences of coupling two adjacent atom clouds. On the other hand the results obtained
with SGPE capture the dynamics of the system more accurately, even if some of the events
(such as anomalous heat flow, for instance) seem a bit delayed or different in magnitude.
It is interesting to discuss why this is the case and to point out what are the sources that
explain these differences. Some of these sources stem from experimental limitations, while
others arise due to the many-body physics taking place.

The atom number in each realization of the experiment fluctuates, which makes the speed
of sound differ for different realizations. Since the speed of sound depends on the density,
it will also change every time a measurement is performed. This makes the rephasing of
different modes less coherent, since there recurrence time depends on the speed of sound
as well. The typical standard deviation for the atom number rangers from 10–15% of the
average. The phase correlation function computed to analyze the dynamics is an average
over the different realizations. As a consequence, some recurrent phenomena might not show
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Figure 6.13: Common density evolution: Merging two 40µm long boxes. The colder box
has a temperature T = 50 nK, while for the hotter one T = 70 nK. The merging starts
immediately after the initial state is prepared and lasts 9ms.
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up as clearly as in the simulated data (notice the smaller difference in λT at trec/2 for the
L = 100 µm box, for instance). Post-selecting the data mitigates this effect but it is never
completely overcome. Due to the long measurement times, there is some atom loss in the
box trap. This also plays a role on the fact that at the last instants of evolution, the system
dynamics is more difficult to predict. In the data presented here, the atom loss is always 10%
or less.

An imbalance in the number of atoms in each of the longitudinal clouds can induce a cou-
pling between the relative and the common degrees of freedom [89]. Before the measurements
performed here, the number of atoms in each well was optimized such that the imbalance
would be minimal.

The imperfection of the box potential are another source of error that induces damping
in any recurrent phenomena. The steepness of the box walls not only weakens the validity
of the perfect-box approximation (used in the Bogoliubov theory) [40], it also contributes
significantly for the dispersion of the propagating quasiparticles in the condensate (see 6.13
a)). This effect is, however, considered in the SGPE simulations. On the other hand, the
box is not perfectly flat, due to the limitations of the optimization process (section 3.4.2).
Despite this technical imperfection, the optimization error is bounded in 10% which should
not affect the present results significantly.

The results of figure 6.12 shows that the Bogoliubov theory, dominated by the low energy
part of the spectrum, is not enough to describe the dynamics after the merging protocol.
This suggests that the evolution subsequent to the barrier removal is highly influenced by
the higher terms that go beyond the quadratic approximation. Although these can be studied
numerically with the GPE equation, it is hard to describe what role each scattering term
plays in the merging of the two atom clouds. Indeed, the exact consequences of driving
two uncorrelated atom clouds into the strongly coupled regime (a complete barrier removal)
remain unclear. This problem has some parallelism with the one that the Kane-Fischer
model [119] tries to solve. This model is meant to describe transmission through barriers
in interacting one-dimensional electron gases. However, the common techniques used to
approach it are not suitable for the setup presented here [120, 121] . Other works have
attempted to tackle the interaction between adjacently coupled BECs with their analysis
regarding the weak coupling regime only [122,123].

The local thermometry method is essential to study the kind of dynamics induced by
the merging procedure. It requires a local analysis with a proxy variable to energy that
allows deriving conclusions about its distribution over time. The system dynamics seems
to be well captured by the decay lengths λD. Both in theory and experiment, these values
are precise enough to observe the expected features of heat flow and anomalous heat flow.
Even though at trec the system is expected to recover partially the initial energy distribu-
tion (i.e., the initial colder box becomes colder again), this becomes increasingly difficult to
measure experimentally due to the limitations described above, inherent to the experimental
apparatus.

On the other hand, the associated local effective temperatures don’t allow a similar anal-
ysis due to the lack of precision of the computed values. This is a consequence of the
temperature interval in which the experiment is performed. The temperatures measured in
the different experiments range from 40 − 150 nK. Due to the limitations of the imaging
system, no temperatures above 150 nK can be measured reliably. For higher temperatures
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the precision of Teff decreases significantly due to the inverse proportion relation to λD. Since
the energy in the system increases significantly after the barrier is removed, it is hard to
evaluate, in detail, the behaviour of the system after this event, based on the values of Teff

only. It is enough, however, to claim that for long evolution times both regions show the
same temperature, one higher than the ones in the initial state.

Starting this procedure with colder atom clouds could make the observation of expected
features more clear. However, this was not possible to achieve, since the lowest temperatures
that can be reached in the box trap were ∼ 40 nK. Smaller boxes would also provide better
results, because the recurrence time would be smaller, leading the quasiparticles to disperse
less and reduce the incoherence brought about by the experimental imperfections. Nonethe-
less achieving smaller boxes with the dipole light makes the cooling in the atomchip trap
less efficient and the temperatures achieved in the initial state are not low enough to have
conclusive results.

6.6 Summary

We’ve seen that studying the merging protocol is interesting to investigate the thermody-
namics of a 1D many-body system and its implementation is also a relevant milestone for a
future implementation of a QFM. We implement the merging protocol by coupling two un-
correlated clouds adjacent to one another in a head-to-tail configuration. Initially the clouds
have different temperature, so that, once they are merged, a redistribution of energy, here
denominated heat flow, takes place during the joint evolution.

It is possible to create a temperature imbalance in two uncoupled regions of the condensate
through a local heating technique. To increase the energy of a specific cloud, white noise is
shined on the targeted spatial region for a controllable period of time and amplitude. Both
these parameters will influence how much the cloud heats up. In the examples shown here,
the colder box starts close to a temperature of 40−50 nK and the hotter one is approximately
100 nK.

The initial prediction for the observation of anomalous heat flow is provided by the
recurrent behaviour expected by the Bogoliubov theory, where the dephasing and rephasing
of the modes will take the system to a state closer to thermality and restore the initial
state after the recurrence time trec, when all the modes have completed an integer number of
complete rotations simultaneously. The predictions provided by the Bogoliubov theory are
however not accurate due to the very strict approximations required. Simulating the same
merging protocol using the SGPE, allows not only to consider some experimental limitations
in the numerics but also take into account higher order terms which play an significant role
on the dynamics subsequent to the barrier removal.

The experimental results agree with the SGPE predictions, even though there are some
deviations regarding timings and the magnitude of some events. These can be explained
considering some experimental limitations, the most relevant being the atom number fluc-
tuations, the high temperatures in which the experiment is performed and the limitations
of the imaging system. Despite these imperfections, these results hold the first observation
of anomalous heat flow on a many-body system. This is of utter importance, for it holds a
fruitful investigation bridging fields of Cold Atoms, Many-body and Quantum Thermodyn-
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mics, more specifically, we drive two systems into the strong coupling regime, a regime that
is usually not tackled theoretically.

97



Chapter 6. Heat flow

98



Chapter 7

Outlook

This thesis aimed at introducing the concept of Quantum Field Machine (QFM), a type of
heat engine that operates at the quantum level implemented in a quantum many-body system
that requires statistical considerations to describe its dynamics. Furthermore, the entrails
of the machine were numerically and experimentally investigated, paving the way to a full
implementation in the future and opening new questions regarding the thermodynamics of
quantum systems in 1D.

Chapter 4 motivates the need for the concept of a genuinely quantum heat engine, a
device that performs a specific task, requiring quantum mechanics and thermodynamics
simultaneously for its behavior to be described. The QFM is then decomposed in its basic
primitive operations, namely, compression/expansion (playing the role of the classical piston)
and merging/splitting (playing the role of a valve at the quantum level). Each of these
primitives is implemented using the Tomonaga-Luttinger Liquid (TLL) model and explored
individually. It is concluded that under a slow enough change of length of the machine’s
component, the system can be driven out of equilibrium and restored to the initial situation if
the reverse operation takes place. The splitting/merging primitive is the one allowing energy
exchange between two components of the machine. It was found that this kind of operations
introduce extra energy in the system in the form of counter propagating wavepackets. This
however, doesn’t prevent the exchange of energy to happen. Indeed, it is demonstrated that
reducing the energy of the piston component is possible by compressing, coupling it to the
bath and decompressing it to the initial length. This process is used several times between
different pairs of components to decrease the energy of the System by 9% after three cycles.
Due to the finite size of the machine, the cooling power will be exhausted in a finite number
of cycles. This is one of the interesting observations of performing thermodynamics far from
the thermodynamic limit [29].

After the numerical study, an experimental proof-of-concept implementation of each prim-
itive was provided. Compression/expansion were implemented by moving the walls of the
box symmetrically inwards or outwards, respectively. Even if the process was carried on
slower than the typical time scales of the system, perturbations due to the wall movement
could not be avoided. Although changes in length close to adiabaticity could be achieved, the
presence of these perturbations do not allow the system to be restored to the initial state as
predicted by theory. This poses severe limitations to a full implementation of the machine,
since compression and expansion don’t seem to be reversible at the time scales that allow
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a feasible experimental realization of such machine. Nevertheless, it has to be taken into
account that this primitive is performed in a linear fashion which might not be the optimal
way to do it. Optimal Control Theory (OCT) can be used to optimize the time-dependent
operations [102,124].

Although the experimental implementation of the full valve is not shown in chapter 4, a
demonstration of the coupling control between two adjacent atom clouds is demonstrated.
Some brief theoretical considerations regarding the decay of correlations before and after
barriers of different strength are provided. The high temperatures found in the experiment
didn’t allow to clearly observe a match between such considerations and the experimental
data, however, the different coupling strengths between the two clouds could be demonstrated.

In chapter 5.1 a method to measure temperature locally is presented. The motivation
behind the development of such a method is the ability of having an effective temperature
associated to different (uncorrelated) regions of space. This way, it is possible to use the
effective temperatures as a proxy to energy and map its distribution over space and time.
This is a crucial tool to study the evolution of systems in a situation far from equilibrium.
For a local effective temperature to be measured in a specific region of space, the system has
to appear thermal inside that region. In other words, the density of the condensate should
be homogeneous and the decay of the phase correlations has to be exponential (the region
should be on the order of the phase decay length, or larger). This method is better suited
for lower temperatures, due to the big uncertainties obtained otherwise. Furthermore, the
resolution of the imaging system has to be taken into account, for it sets an upper bound on
the temperatures that can be measured with this method.

Chapter 6 looks at the implementation of the merging process studied before numerically.
The purpose of investigating the coupling of two (initially uncorrelated) thermal clouds which
exhibit different temperatures. The motivation is justified regarding its importance both
to characterize one of the primitive operations of the QFM and the possibility to probe
interesting quantum thermodynamics phenomena (e.g. anomalous heat flow). After detailing
how the procedure is carried on, the process is modeled using the Bogoliubov theory and
simulated with the SGPE. It is clear that the lnearized theory fails to capture most of the
dynamics taking place after the two atom clouds are merged. On the other hand, the results
obtained from the SGPE can predict the evolution of the phase decay length λD, used for
local thermometry, showing that a quadratic approximation is insufficient to describe the
merging procedure accurately.

The results presented throughout this thesis show that the implementation of a full cy-
cle of the QFM is a big challenge. The simplest experimental realization of single primitives
revealed that the smooth operations (like compressing/expanding) induce non-negligible per-
turbations in the system that make difficult achieving the goal of cooling down part of the
system. Besides perturbing the system, processes described here have to be implemented
quickly enough, otherwise, long cycles hinder a feasible experimental implementation due to
lack of stability for long time scales (typically the experiments carried on in our platform don’t
last more than 200ms). Nonetheless, the attempts at implementing the primitive operations
demonstrated here were the first step, performed in a simple fashion. Further optimization
using OCT techniques and alternative ways of performing the desired tasks are still to be
explored. As an example, the coupling between atom clouds for energy exchange purposes
might only require a small decrease in the barrier strength instead of the full removal.
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Even if the implementation of a QFM cycle is deemed infeasible, this platform is still
interesting to tackle interesting problems from a quantum thermodynamics point of view.
The strong coupling of two initially uncorrelated condensates is an example. To the best of
our knowledge, there isn’t a model that describes this type of strong, finite, local coupling.
Furthermore, attempts at computing information-theoretic quantities for a quantum many-
body system have been successfully attempted [109]. This shows how versatile this platform
can be and how it gathers a physical system that allows to explore complex and rich physics
in regimes usually not available experimentally or not tackled theoretically.
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Appendix A

Details on the QFM numerical study

In this appendix we provide details on the implementation of the numerical simulations of
the QFM, presented in chapter 4 . Although the next sections offer enough information to
understand how the TLL model was simulated, some of the details were left out for the sake
of simplicity. Some of these technicalities are out of the scope of this work, however, they
can be found in the appendices of reference [29] .

A.1 Gaussian models in simulations of primitive opera-
tions

The continuous Hamiltonian given in eq. (2.45) can be appropriately discretized, which we
explain in Section . The system can then be described in terms of quadrature operators, in
particular, one can describe the quantum states and dynamics with the Gaussian framework
of covariance matrices and symplectic transformations. In this section, we present a short
summary of the formalism of Gaussian quantum information, see, e.g., references [125, 126]
for more complete reviews on the subject.

We consider bosonic systems of N bosonic modes, associated with quadratures

X̂ := (q̂1, q̂2, . . . , q̂N , p̂1, p̂2, . . . , p̂N)
T (A.1)

that can be seen as the N position and momentum operators, respectively. The canonical
commutation relations can be captured as [X̂l, X̂m] = iΩl,m for l,m = 1, . . . , N , giving rise
to the symplectic form

Ω =

�
0 1l
−1l 0

�
. (A.2)

Given a density matrix γ̂, we define the vector of mean values X̄ := X̂γ̂ = tr(γ̂X̂): these are
the first moments of the set of quadrature operators X̂ corresponding to the quantum state.
The second moments can be collected in the covariance matrix with entries

Γi,j := X̂iX̂j + X̂jX̂iγ̂ − 2X̂iγ̂X̂j γ̂ . (A.3)

For a single mode, namely N = 1, the diagonal elements of Γ are simply the two variances
Γ1,1 = 2(∆q̂1)

2
γ̂ and Γ2,2 = 2(∆p̂1)

2
γ̂. The single constraint for the real-valued matrix to
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correspond to a physical state is given by the Heisenberg uncertainty relation, which can be
concisely written as a semi-definite constraint as

Γ + iΩ ≥ 0. (A.4)

A general Gaussian state of N modes is fully described by the vector of mean values and
the covariance matrix corresponding to all modes. Gaussian states are ubiquitous in physical
systems. For example, thermal states γ̂β[Ĥ] = exp

�
−βĤ

�
/ tr

	
exp

�
−βĤ

��
are Gaussian

whenever the Hamiltonian Ĥ is quadratic in the field operators, which again is a very common
situation in many physical settings. In condensed matter physics and in quantum field theory,
such a situation would be referred to as being non-interacting. Generally, every Gaussian
state with full support 1 can be written in a form resembling thermal states of quadratic
Hamiltonians, namely there exists a H such that

γ̂[H] =
1

Z
exp

�
−1

2
(X̂− X̄)TH(X̂− X̄)

�
, H =

�
Hqq Hqp

Hpq Hpp

�
, (A.5)

where H is a real positive semi-definite 2N ×2N matrix written in block form for clarity and

Z = tr
�
exp

�
−1

2
(X̂− X̄)TH(X̂− X̄)

�

=

%
det((Γ + iΩ)/2) (A.6)

is the normalization, which can be fully determined by the covariance matrix of the Gaussian
state Γ. The relation between Γ and the matrix H appearing in the expression above is

H = 2iΩ arcoth(iΓΩ), Γ = iΩcoth(iΩH/2). (A.7)

In turn, any generic quadratic (Hermitian) Hamiltonian can be written similarly as above,
i.e., with H being a real positive-semi-definite 2N × 2N matrix. The (Gaussian) unitary
evolution corresponding to the time-independent quadratic Hamiltonian translates into the
symplectic transformation acting on the covariance matrix, given by

G(t) = exp(ΩHt), (A.8)

such that the evolved covariance matrix is Γ(t) = G(t)Γ(0)G(t)T . A similar relation holds
for the evolution with time-dependent Hamiltonians, see for example the discussion on the
QTP primitives in section . Thus, in the framework of Gaussian states and operations one
can work directly with just the mean vector and the covariance matrix, since they jointly
contain all the information that characterizes the Gaussian state.

A.2 Details of the numerical simulations

Before diving in the detailed implementation of each primitive, let us provide some details
on the lattice discretization scheme and write the discrete Hamiltonian explicitly.

1This means that the density matrix has no zero eigenvalue.
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We define a lattice version of the phononic Hamiltonian, obtained by discretising the
interval [−L,L] into N pixels, each of size ∆z = 2L/N [41, 127]. This is particularly im-
portant to make numerical calculations, especially for the case of non-homogeneous external
potentials. Fixing N , for i = 1, . . . , N + 1 the coordinates of the discretization lattice
read zi = −L + 2L i−1

N
, and we define discretization pixels which are the closed intervals

pi = [zi, zi+1] for i = 1, . . . , N . We then introduce the discretized version of density and
phase operators as the integration of the field operators via

ϕ̂
(N)
i =

1

∆z

�
pi

dz ϕ(z), δρ̂
(N)
i =

1

∆z

�
pi

dz δρ(z), (A.9)

with |pi| = ∆z = 2L/N . These discretized operators yields a vector of canonical coordinates

X̂ =
�
δρ̂

(N)
1 . . . δρ̂

(N)
N , ϕ̂

(N)
1 , . . . ϕ̂

(N)
N

�T

, (A.10)

satisfying (re-scaled) bosonic canonical commutation relations

[X̂j, X̂k] = iΩj,k/∆z , (A.11)

where Ω is defined in equation (A.2). As explained in reference [85], in the continuum limit
N → ∞, the right-hand side will yield a Dirac delta because ∆z → 0.

To discretise the model, we follow reference [41] and consider the geometric mean

ηi =
%

ρ0(zi)ρ0(zi+1) (A.12)

for i = 1, . . . , N . The discretization of the effective model will be a quadratic operator in the
discretised modes ϕ̂

(N)
i and δρ̂

(N)
i . At the lowest order approximation, one obtains

Ĥ ≈ ∆z
N−1*
i=1

ℏ2ηi
2m

�
ϕ̂
(N)
i − ϕ̂

(N)
i+1

∆z

�2

+∆z
N*
i=1

g(zi)

2

�
δρ̂

(N)
i

�2

=: ĤN . (A.13)

Note that so far in the main text, we have suppressed for simplicity the possible spatial
dependence of the coupling constant g, which is true for a homogeneous quasi-condensate
and in general has little influence. In general g depends on the GP profile,

g(z) = ℏω⊥as(2 + 3asρ0(z))/(1 + 2asρ0(z))
3/2 (A.14)

where ω⊥ is the radial trapping frequency and as is the scattering length [22, 51] . This
dependency on the spatial coordinate z has been included in our numerical simulations.
From this, we obtain the matrix representation of the above Hamiltonian

H =
1

2
· X̂⊤ (Hρρ[g,∆z]⊕Hϕϕ[ρ0,∆z]) X̂ , (A.15)

Hρρ[∆z] = ∆z · diag�g(z1), g(z2), · · · , g(zNc)
�
, (A.16)

Hϕϕ[ρ0,∆z] =
ℏ2

m∆z

�����
η1 −η1
−η1 η1 + η2 −η2

. . .
−ηN−2 ηN−2 + ηN−1 −ηN−1

−ηN−1 ηN−1

!!!!!
+ 2ℏ diag (J(z1)η(z1), . . . , J(zN)η(zN)) , (A.17)
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where we have used the functional notation Hϕϕ[ρ0,∆z] to emphasize that these couplings
depend on the mean-field density profile and the size of the pixels. We additionally added a
small term ∝ J which is meant to regularize the zero-mode. This way, all computations are
made with fully-supported Gaussian states so that numerical instabilities do not occur. Phys-
ically, it can be interpreted as adding a small mass term of the type ĤJ = hJ

�
dzρ0(z)ϕ̂(z)

2

and we have checked that, as long as the coupling is chosen to be around J ≈ 0.01 the
dynamics is not affected in the times scales of 300ms that we have in mind. See also section
below for a more extended discussion.

We now porvide the details on the implementation on the merging primitive. Since the
splitting primitive is a mere inversion of the mergin process, the technical details of one apply
to the other as well.

A.2.1 Compression/expansion primitive

While performing the compression/expansion primitive, we assume the number of particles
to be conserved and that the process ocurrs in a slow fashion (adiabatically). Under these
assumptions, the Hamiltonian reads

Ĥ(t) =

� L(t)

0

dz



ℏ2ρ0(z, t)

2m

�
∂zϕ̂

�2

+
g

2
δρ̂2

�
, (A.18)

where the upper limit is time dependent.
We now describe how this process works in an infinitesimal stepwise fashion. The in-

finitesimal length change is

L → Lϵ = (1 + ϵ)L, (A.19)

and, correspondingly, a homogeneous GP profile ρ0 changes to ρ0(ϵ) = (1 + ϵ)−1ρ0. Then,
the Hamiltonian after the size change reads

Ĥϵ =

� Lϵ

0

dz



ℏ2ρ0

2m(1 + ϵ)

�
∂zϕ̂

�2

+
g

2
δρ̂2

�
. (A.20)

Thus we observe that if a GP profiles changes slowly in length then the phonons are described
by a similar Hamiltonian, only with modified couplings.

In the lattice model, we perform a similar procedure, but work fully in real space, this
time with the Hamiltonian as a functional of both mean-field density and the small-distance
cutoff. Starting from the discretized Hamiltonian Ĥ[ρ0,∆z] of a single condensate with
pixels, length L = ∆z, and density ρ0, we perform at each step a small length change
L Z→ Lϵ = ∆ζ, corresponding to a renormalization

H[ρ0,∆z] Z→ H[ρ0(ϵ),∆ζ] = Hρρ(1 + ϵ)⊕Hϕϕ/(1 + ϵ)2 , (A.21)

where we have used that ρ0(ϵ) = ρ0/(1 + ϵ) and ∆ζ = (1 + ϵ)∆z. Thus, we see that we are
implementing a discretized version of the Hamiltonian (A.20).

Then, in order to complete the full length change ∆L in a time tcomp = Nt∆t, where ∆t
is a small time interval and Nt is the total number of Trotter steps, at each discrete time
step we perform an inifinitesimal length change, such that

ϵ = ∆L/Nt. (A.22)
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What we get is the state of the phonons after compressing by a finite amount. This assumes
that the phonons always see a quasi-static background metric, that is their dynamical time-
scales are much faster than how we compress the condensate. We observe that a sufficiently
slow compression will not mix much between the modes and there will be thermal squeezing
of the phonons. We also see that the energy will in fact change.

Let us now discuss a technical detail mentioned already in the main text. An implicit
difference between the initial and final Hamiltonians of a compression/expansion step is
that the continuous field theory should be defined in the time-dependent line [0, L(t)]. In
principle, we can also make a change of the integration variable z Z→ ζ = zL(0)/L(t), such
that the theory is defined with a constant length. However, a subtle issue arises: the field
commutation relations [δρ̂(z), ϕ̂(z′)] = ßδ(z−z′) depend on the coordinate z; thus a rescaling
of the coordinate must be compensated by a corresponding rescaling of the density fluctuation
field, in order to maintain the correct commutation relations. Then, calling λ(t) = L(0)/L(t)
we define the transformation

ζ = λ(t)z,

δν̂ = δρ̂/λ(t),
(A.23)

such that Hamiltonian (A.18) becomes

Ĥ =

� L(0)

0

dζ



ℏ2(z, 0)λ2(t)

2m

�
∂ζ ϕ̂

�2

+
g

2
λ(t)δν̂2

�
, (A.24)

which effectively amounts to a renormalization of the line differential as

dz Z→ dζ = λ(t) dz, (A.25)

at the same time ensuring that the fields satisfy the correct commutation relations:

[δρ̂(ζ), ϕ̂(ζ ′)] = iδ(ζ − ζ ′)/λ(t) ⇒ [δν̂(ζ), ϕ̂(ζ ′)] = iδ(ζ − ζ ′). (A.26)

A.2.2 Merging/splitting primitive

The merging primitive involves two condensates A and B with lengths LA and LB and
densities ρA0 and ρB0 . We have the following time dependent Hamiltonian

ĤA−B(0) = ĤNA [ρA0 ] + ĤNB [ρB0 ], (A.27)

where our Hamiltonians are given by the lattice model in equation (A.13) and (keeping
constant the small distance cutoff ∆z) are functionals of the initial mean-field density profiles
of the two condensates. Note that since we would like to couple the two systems, we require
them to have a consistent momentum cutoff (∆z)A = (∆z)B = ∆z (so that waves traveling
across quasi-condensates with same atom density in the simulation should not change in
speed due to the different discretization), and consequently their number of pixels will be in
the same proportion as their lengths, i.e.,

NA

LA

=
NB

LB

= ∆z. (A.28)
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The coupling matrix of the uncoupled Hamiltonian in equation (A.27) is given by

Hρρ,A|B = Hρρ,A ⊕Hρρ,B, Hϕϕ,A|B = Hϕϕ,A ⊕Hϕϕ,B . (A.29)

To merge the condensates, an interaction Hamiltonian is switched on, so that the joint
Hamiltonian as in equation (A.15) has a matrix representation given by

Hρρ,AB = Hρρ,A ⊕Hρρ,B, (A.30)

Hϕϕ,AB = Hϕϕ,A ⊕Hϕϕ,B +
t

tmerge

Hint,

where the interaction matrix is given by

(Hint)i,j =
ℏ2

2m∆z
ηNA

�
δNA,iδNA,j + δNA+1,iδNA+1,j − δNA,iδNA+1,j − δNA+1,iδNA,j

�
. (A.31)

with ηNA :=
%
ρA(NA) · ρB(1). Note that this interaction contains also the local terms in

the boundary region [NA, NA + 1]. We hence see that the couplings during the merging are
given by

HA−B(t) = (1− t
tmerge

)HA|B + t
tmerge

HAB. (A.32)

For the numerical implementation, we also discretize the time evolution so that we divide
the [0, tmerge] time interval into Nt steps of duration ∆t = tmerge/Nt. Then, the symplectic
evolution matrix reads

Gmerge(tmerge) =
Nt#
j=1

exp (ΩHA−B(tj)/∆z) , (A.33)

where HA−B(t) = HNA +HNB + (j/Nt)Hint.
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Appendix B

Notes on local coupling

To include the influence of a barrier centered at z = 0 we follow reference [95], as we did
in section . We consider a rectangular barrier that separates two adjacent condensates in a
head-to-tail configuration, Consider a perturbation in the quasicondensate at wavenumber k.
Given that the influence of the barrier spreads over a distance ∆zB, we write a wavefunction
for such a qusiparticle and assume that it appreoaches the barrier from the left.

ηk(z) ∝
�

eikz + r̃ke
−ikz, z < −∆zB

t̃ke
ikz, z > ∆zB.

(B.1)

The properties of transmission and reflection amplitudes (t̃k and r̃k, respectively) are as
follows

1. |t̃k|2 + |r̃k|2 = 1

2. t̃k and r̃k are orthogonal, i.e., |t̃k ± r̃k| = 1

3. In general, t̃k − r̃k ̸= 1, since the wave is a phonon in a quasicondensate and not a free
particle. In other words, |t̃k − r̃k| = 1 but arg(t̃k − r̃k) ̸= 0

Assuming a very thin barrier , we can define even and odd eigenfunctions

ηck(z) = cos(kz + sign(z) · χck) (B.2)
ηsk(z) = cos(kz + sign(z) · χsk), (B.3)

where χck = 1
2
arg (t̄k + r̄k) and χsk = 1

2
arg (t̄k − r̄k). Here sign(z) is the sign function

defined as

sign(z) =

��
−1, if z < 0

0, if z = 0

1, if z > 0

(B.4)

The arguments χc,sk can only be computed numerically. Instead of doing that, we can make
some observations about these coefficients.
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Chapter B. Notes on local coupling

Since t̄k → 1 for k → 0, for very small k, we have arg(t̄k) ≃ 2αk (linear dependence).
As long as 1 − |t̄k| ≪ 1, we have χck ≃ χsk ≃ αk. On the regime of vey low tranmission,
|t̄k| ≪ 1, leads to χck ≃ −χsk. Note that the low transmission regime can still be achieved
in the phononic regime.

To compute the phase correlation function under the influence of the barrier, the term
multiplying the expectation values of ϕk in equation (2.30) should be replaced by

(1− cos(kz)) → 1

2

�
cos2(kz + sign(z)χck) + cos2(kz′ + sign(z′)χck)

−2 cos(kz + sign(z)χck) cos(kz
′ + sign(z′)χck)

+ sin2(kz + sign(z)χsk) + sin2(kz′ + sign(z′)χsk)

−2 sin(kz + sign(z)χsk) sin(kz
′ + sign(z′)χsk)


 (B.5)

The analysis simplifies for low enough temperatures (k ≤ λ−1
T ) where |t̃k| ≃ 1 is a good

approximation. We are thus in the regime where χck ≃ χsk. Using the new basis functions,
simple integration leads to

⟨eiϕ(z)−iϕ(z′)⟩ = exp

�
− 2

λT

(|z − z′|+ |sign(z)− sign(z′)|α)
�
. (B.6)

Now we analyze the role of α to get a better understanding of the barrier influence.
If we consider a barrier considerably larger than the healing length (in the experiment

the barrier is approximately 1 µm, while the healing length is lh = 0.3 µm), we can neglect
the effect of the quantum pressure everywhere. Thus, we can apply the equation of phonon
propagation in an homogeneous medium

k2ηk = − ∂

∂z



c̃2(z)

∂

∂z
ηk

�
, (B.7)

where c̃(z) = c(z)/c(∞) is the ratio of the speeds of sound at point z and in the bulk,
respectively.

Using the new variable

z̃ =

� z

0

dz′
1

c̃2(z)
, (B.8)

we can reduce equation (B.7) to a Schrödinger-like equation

− ∂

∂z
ϕk + k2{1− c̃2(z̃)}ϕk = k2ϕk. (B.9)

Since we are interested in long wavelengths, the potential term can be replaced by a
short-ranged potential k2aδ(z̃), where

a =

� ∞

−∞
dz̃(1− c̃2(z̃)) =

� ∞

−∞
dz

�
1

c̃2(z)
− 1

�
, (B.10)

then, the scattering problem can be solved.
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We find the following expression for ηk

ϕk = eikz̃ +
eik|z̃|

2ik
k2aηk(0), (B.11)

where ηk(0) = 1/(1+ ika
2
). Simplifying further, we obtain the expression for the wavefunction

before and after the barrier

ηk(z̃) =

eikz̃ − ika
2

e−ikz̃

1+i ka
2

e−ikz̃

1+i ka
2

(B.12)

The argument of the complex transmission amplitude is a sum of two contributions:
the denominator defined by the wavefunction at the barrier position and the exponential
dependent on z̃.

In total, we obtain t̃ = e2iαk, where α is given by

α =
1

4

� ∞

−∞
dz



1

c̃2(z)
− 1

�
> 0. (B.13)

A positive α corresponds to a Wigner delay of phonons propagating through a barrier.
Figure B.1 illustrates how the phase correlation behaves in the presence of the barrier. In
reality, the jump is not discontinuous, but has a finite width due to the variation of the speed
of sound.

It is interesting to observe that for higher temperatures, the jump in the correlation
function becomes smaller. This is due to the fact that the phase shifht introduced by the
barrier happens at a point where the correlations are already lowe compared to condensates
at lower temperatures. The correlation will decrease after the barrier, however, since it is
lower bounded at 0, the decrease is smaller.
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Figure B.1: Effects of the barrier in the phase correlation function: a) The green
line shows the curve given by the analytical solution (B.6) together with the effective smooth
decay (dashed black line) due to the change of the speed of sound around the barrier. The gray
shade indicates the position of a 1 µm wide barrier. b) Different phase correlation functions
of a condensate at T = 40 nK for several barrier strengths, characterized by the parameter
α. c) Behaviour of the phase correlation function of condensates at different temperatures
when a barrier with α = 0.3 is used. d) Height of the jump seen in c) for the different
temperatures. The gap decreases as the temperature increases. A confidence level of 95%
was used to compute the errors.
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Appendix C

Distribution of the local phase variance

To apply the local thermometry method described in 5.1, we need to compute the phase
variance within the region where we want to measure the temperature. Although some
theoretical calculations can be done on this subject, here it will suffice to briefly introduce
the main equations and focus on numerical and experimental results.

We start by noting that the phase variance is computed over many different experimental
realizations. Let us then consider N phase measured profiles, each one denoted by θi(z),
where i = 1, ..., N . The variance over a region R that spans between points z1 and zM reads

σ2
R = ⟨ 1

M

M*
j=1

(θi(zj)− {θi(z1, zM)})2⟩, (C.1)

where the angled brackets denote the average over the N realizations, the curly brackets
denote the mean value of the phase over the points zj, which belong to the region of space
defined by z1 and zM . In more detail, we have

{θi(z1, zM)} =
1

M

*
j

θi(zj)

=
1

M

*
j

1√
2ρ0

*
k

−if−
k b

i
ke

ikzj +H.c.

=
1

L

� zM

z1

dz
1√
2ρ0

*
k

−if−
k b

i
ke

ikzj +H.c.

=
1√
2ρ0

*
k

−if−
k b

i
k

�
1

L

� zM

z1

dzeikz

�
+H.c.

=
1√
2ρ0

*
k

−if−
k b

i
kIm +H.c.,

(C.2)

where Im is a compact notation for the term in curly brackets on the fourth line of equation
(C.2) and L = zM − z1 is the region’s length.

We can now use this expression in equation (C.1) and write everything as a function of
the basis functions and the creation/anihilation operators
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σ2
R =

1

N

*
i

1

M

*
j

(θi(zj)− {θi(zj)})2

=
1

2ρ0

1

N

*
i

1

M

*
j

�
(
*
k

−if−
k b

i
ke

ikzj +H.c.)− (
*
p

−if−
b b

i
pIp +H.c.)

�2

.

(C.3)

If the state is considered to be thermal, the operators bk can be sampled as a Gaussian complex
random variable that depends on the Bose-Einstein distribution [128]. In the context of this
work, we compare the values of σ2

R obtained experimentally to the ones computed using
thermal states generated thorugh the Ornstein-Uhlenbeck process [110]. This way, we can
consider the effects of the imaging system on the calculation of σ2

R. Figure C.1 shows the
distribution of σ2

R for two distinct temperatures. The distributions are exponential and the
mean values computed for numerical and experimental data are in agreement.
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Figure C.1: Local phase distribution: The histograms show the phase variance distribu-
tions for two different temperatures, ∼ 50 nK for the left column and ∼ 100 nK for the right
column. A region 12 µm was chosen. The red lines show the fitted exponential distributions
with the respective mean values indicated by µ. The errors were computed with a confidence
level of 95%.
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Appendix D

Full box basis

Here we present a detailed calculation of how to project the modes of each individual adjacent
box in the basis of the full, merged box. We work under the Classical Fields Approximation
[79]. The density fluctuations and phase fields of a thermal box of length L can be written
as

δρ(z) =
1√
L

*
p

�
ϵp
Ep

�− 1
2

cos
�πp
L
z
�
(bp + b†p) (D.1)

ϕ(z) =
−i√
L

*
p

�
ϵp
Ep

� 1
2

cos
�πp
L
z
�
(bp − b†p) (D.2)

In the initial state, we have two uncoupled thermal boxes of lengths L1 = L2 = L/2, each
one at a specific temperature T1 and T2. From now onwards, we will assume T1 < T2. We
can write the density fluctuations of each box using the previous equations

δρ1(z) =
1√
L

*
p

�
ϵp
Ep

�− 1
2

cos

�
2πp

L
z

�
(bp + b†p), (D.3)

δρ2(z) =
1√
L

*
q

�
ϵq
Eq

�− 1
2

cos

�
2πq

L

�
z − L

2

��
(bq + b†p), (D.4)

where the energies ϵj and Ej are the same as defined in 2.1.2, and the bp,q are the ani-
hilation operators of the different modes for the different boxes. For the sake of simplicity
and clarity, we will always associate the index p with the Box 1 and the index q with Box
2. Notice the extra term L/2 subtracted in the argument of the co-sine used to decompose
Box2. This factor accounts for the fact that the modes of this box are oscillating in the
second half of the full box of lengh L.

After merging the boxes by quickly removing the barrier, we project the joint state of
the two uncorrelated boxes in the basis of the full box with length L. We keep in mind that
the end goal is the computation of the phase correlation functions. To achieve that, we are
interested in calculating the quasiparticle correlations ⟨b†mbm⟩ and ⟨bmbm⟩ given by [46]
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⟨b†mbm⟩ =
1

2

� �
dz dz′



f−
m(z)f̄

−
n (z

′)⟨δρ(z)δρ(z′)⟩
n0

+
f+
m(z)f̄

+
n (z

′)⟨ϕ(z)ϕ(z′)⟩
n−1
0

�
, (D.5)

⟨bmbm⟩ = 1

2

� �
dz dz′



f̄−
m(z)f̄

−
n (z

′)⟨δρ(z)δρ(z′)⟩
n0

− f̄+
m(z)f̄

+
n (z

′)⟨ϕ(z)ϕ(z′)⟩
n−1
0

�
. (D.6)

Since the space we are integrating over is divided in two distinct regions, we can break
the integrals from equations (D.5) and (D.6) in four parts

⟨b†mbm⟩ =
� L

0

� L

0

dz dz′(...) =� L
2

0

� L
2

0

dz dz′(...) +
� L

2

0

� L

L
2

dz dz′(...)+� L

L
2

� L
2

0

dz dz′(...) +
� L

L
2

� L

L
2

dz dz′(...).

(D.7)

Since the two initial boxes hold no correlations between them, the second and third terms
correlating the these boxes vanish, remaining the first and last terms of the sum. These are
the quantities that need to be computed next. Since for the specific case of the square box
the basis functions are co-sines. the expressions for the non-vanishing integrals in equation
(D.7) simplify significantly. We will show the calculations explicitly for the part of the integral
regarding the density. The result is the same for the phase field, apart from the multiplication
by n0.

The first integral on the second line of equation (D.7) reads

� L
2

0

� L
2

0

dz dz′
1√
L

�
ϵm
Em

�− 1
2

cos
�πm

L
z
�
· 1√

L

�
ϵn
En

�− 1
2

cos
�πn
L

z
�

*
p,p′


&
2

L

�
ϵm
Em

�− 1
2

cos

�
2πp

L
z

�&
2

L

�
ϵ′p
E ′

p

�− 1
2

cos

�
2πp′

L
z

��
⟨b†pb′p⟩

+ phase term

(D.8)

The sum running the mode indexes of the small box reduces to a sum over a single index
due to the modes’ orthogonality. We can thus write a more simplified expression, separating
the two spactial coordinates in two different integrals. We have

2√
L2

*
p

� L
2

0

$
EmEp

ϵmϵp

� L
2

0

dz cos
�πm

L
z
�
cos

�
2πp

L
z

�
·$

EnEp

ϵnϵp

� L
2

0

� L
2

0

dz′ cos
�πn
L

z′
�
cos

�
2πp

L
z′
�
⟨b†pbp⟩.

(D.9)
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It is now convenient to calculate each integral by performing the calculation for even and
odd modes separately. For even modes, the calculation becomes a simple integration over
the basis of a box of size L/2 as in the beginning. As such, the first integral simply yields the
value of δm/2,p, with the same happening for the second integral for the z′ coordinate with
index n.

For the odd modes, we simplify the integral by using the trignometric identity

cos(α) cos(β) =
cos(α− β) + cos(α + β)

2
. (D.10)

Each of the integrals in equation (D.9) can, then, be calculated as follows

� L
2

0

� L
2

0

dz cos
�πm

L
z
�
cos

�
2πp

L
z

�
=

=

� L
2

0

dz
cos

�
π
L
(m− 2p)z

�
+ cos

�
π
L
(m+ 2p)z

�
2

=
1

2



L

π(m− 2p)
sin

�π
2
(m− 2p)

�
+

L

π(m+ 2p)
sin

�π
2
(m+ 2p)

��
= Im,p.

(D.11)

The quantity Im,p is merely a way of condensing the notation for the integral’s result. The
integral corresponding to the phase term can be computed in a similar way.

The only integral left to compute is the last term in equation (D.7), accounting for the
contributions of Box 2. Notice that this integral is similar to the one we just computed, the
only difference being the shift of L/2 in space. Since the integral is computing the same
quantity in Box 2 as the same integral we computed for Box 1, it can be solved in the
same way, yielding the same result but using the Bogoliubov operators for the second box.
Therefore, we can write the complete expressions for the mode decomposition in the full box

⟨b†mbn⟩ =
1

L2

*
j=p,q

∞*
j=1

�
Ej

ϵj

&
EmEn

ϵmϵn
+

ϵj
Ej

&
ϵmϵn
EmEn

�
Im,jIn,j⟨b†jbj⟩ (D.12)

⟨b†mbn⟩ =
1

L2

*
j=p,q

∞*
j=1

�
Ej

ϵj

&
EmEn

ϵmϵn
− ϵj

Ej

&
ϵmϵn
EmEn

�
Im,jIn,j⟨b†jbj⟩ (D.13)

119



Chapter D. Full box basis

120



Bibliography

[1] Ted Jacobson. Thermodynamics of spacetime: the einstein equation of state. Physical
Review Letters, 75(7):1260–1263, 1995.

[2] Paul Skrzypczyk, Anthony J. Short, and Sandu Popescu. Work extraction and thermo-
dynamics for individual quantum systems. Nature Communications, 5(1):4185, 2014.

[3] Ronnie Kosloff. Quantum thermodynamics: A dynamical viewpoint. Entropy,
15(6):2100–2128, 2013.

[4] Jacob D. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333–2346,
1973.

[5] Markus Heusler. The four laws of black hole physics. Black Hole Uniqueness Theorems,
170:102–121, 2010.

[6] John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, and Paul Skrzypczyk. The
role of quantum information in thermodynamics-a topical review. Journal of Physics
A: Mathematical and Theoretical, 49(14):143001, 2016.

[7] Max Karl Ernst Ludwig Planck. Zur Theorie des Gesetzes der Energieverteilung im
Normalspectrum. Verhandl. Dtsc. Phys. Ges., 2:237, 1900.

[8] A. Einstein. Über einen die erzeugung und verwandlung des lichtes betreffenden heuris-
tischen gesichtspunkt. Annalen der Physik, 322(6):132–148, 1905.

[9] Jörg Schmiedmayer. One-Dimensional Atomic Superfluids as a Model System for Quan-
tum Thermodynamics, pages 823–851. Springer International Publishing, Cham, 2018.

[10] L. Boltzmann. Weitere studien über das wärmegleichgewicht unter gasmolekülen.
Sitzungsberichte Akademie der Wissenschaften, pages 275–370, 1872.

[11] I. A. Sadovskyy M. V. Suslov V. M. Vinokur G. B. Lesovik, A. V. Lebedev. H-theorem
in quantum physics. Scientific Reports, 6:32815, 2016.

[12] G. Lindblad. On the generators of quantum dynamical semigroups. Communications
in Mathematical Physics, 48(2):119–130, 1976.

[13] Timothy C. Berkelbach and Michael Thoss. Special topic on dynamics of open quantum
systems. The Journal of Chemical Physics, 152(2):020401, 2020.

121



BIBLIOGRAPHY

[14] Susana F. Huelga Angel Rivas. Open Quantum Systems. Oxford Univeristy Press, 2012.

[15] Marco Pezzutto, Mauro Paternostro, and Yasser Omar. Implications of non-markovian
quantum dynamics for the landauer bound. New Journal of Physics, 18(12):123018,
2016.

[16] M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, and J. Eisert. Strong coupling
corrections in quantum thermodynamics. Phys. Rev. Lett., 120:120602, Mar 2018.

[17] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cor-
nell. Observation of bose-einstein condensation in a dilute atomic vapor. Science,
269(5221):198–201, 1995.

[18] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ul-
tracold gases. Reviews of Modern Physics, 80(3):885–964, 2008.

[19] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. Quantum simulations with
ultracold quantum gases. Nature Physics, 8(4):267–276, 2012.

[20] D. Adu Smith, M. Gring, T. Langen, M. Kuhnert, B. Rauer, R. Geiger, T. Kitagawa,
I. Mazets, E. Demler, and J. Schmiedmayer. Prethermalization revealed by the relax-
ation dynamics of full distribution functions. New Journal of Physics, 15:0–31, 2013.

[21] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets,
D. Adu Smith, E. Demler, and J. Schmiedmayer. Relaxation and prethermalization in
an isolated quantum system. Science, 337(6100):1318–1322, 2012.

[22] Bernhard Rauer, Sebastian Erne, Thomas Schweigler, Federica Cataldini, Moham-
madamin Tajik, and Jörg Schmiedmayer. Recurrences in an isolated quantum many-
body system. Science, 360(6386):307–310, 2018.

[23] Thomas Schweigler, Marek Gluza, Mohammadamin Tajik, Spyros Sotiriadis, Federica
Cataldini, Si-Cong Ji, Frederik S. Møller, João Sabino, Bernhard Rauer, Jens Eisert,
and Jörg Schmiedmayer. Decay and recurrence of non-gaussian correlations in a quan-
tum many-body system. Nature Physics, 17(5):559–563, 2021.

[24] Marek Gluza, Thomas Schweigler, Mohammadamin Tajik, João Sabino, Federica Catal-
dini, Frederik Skovbo Møller, Si-Cong Ji, Bernhard Rauer, Jörg Schmiedmayer, Jens
Eisert, and Spyros Sotiriadis. Mechanisms for the emergence of gaussian correlations.
SciPost Physics, 12(3):113, 2022.

[25] David Gelbwaser-Klimovsky, Wolfgang Niedenzu, and Gershon Kurizki. Thermody-
namics of Quantum Systems Under Dynamical Control. Advances in Atomic, Molecular
and Optical Physics, 64:329–407, 2015.

[26] Marco Pezzutto, Mauro Paternostro, and Yasser Omar. An out-of-equilibrium non-
markovian quantum heat engine. Quantum Science and Technology, 4(2):025002, 2019.

[27] Wolfgang Niedenzu, Igor Mazets, Gershon Kurizki, and Fred Jendrzejewski. Quantized
refrigerator for an atomic cloud. Quantum, 3(nil):155, 2019.

122



BIBLIOGRAPHY

[28] D. Gelbwaser-Klimovsky and G. Kurizki. Heat-machine control by quantum-state
preparation: From quantum engines to refrigerators. Physical Review E, 90(2):022102,
2014.

[29] Marek Gluza, João Sabino, Nelly H.Y. Ng, Giuseppe Vitagliano, Marco Pezzutto,
Yasser Omar, Igor Mazets, Marcus Huber, Jörg Schmiedmayer, and Jens Eisert. Quan-
tum field thermal machines. PRX Quantum, 2:030310, Jul 2021.

[30] Vladan Vuletić Jakob Reichel. Atom Chips. []. Wiley-VCH Verlag GmbH & Co. KGaA,
2011.

[31] Thierry Giamarchi. Quantum Physics in One Dimension. Oxford Univeristy Press,
2004.

[32] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one-
or two-dimensional isotropic heisenberg models. Physical Review Letters, 17(22):1133–
1136, 1966.

[33] P. C. Hohenberg. Existence of long-range order in one and two dimensions. Physical
Review, 158(2):383–386, 1967.

[34] C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. Bose-Einstein
Condensation in Dilute Gases. Cambridge University Press, 2008.

[35] A. D. Steck. Rubidium 87 d line data.

[36] Jean-Sébastien Caux and Jorn Mossel. Remarks on the notion of quantum integrability.
Journal of Statistical Mechanics: Theory and Experiment, 2011(02):P02023, 2011.

[37] Toshiya Kinoshita, Trevor Wenger, and David S. Weiss. A quantum Newton’s cradle.
Nature, 440(7086):900–903, 2006.

[38] Elliott H Lieb and Werner Liniger. Exact Analysis of an Interacting Bose Gas. I. The
General Solution and the Ground State. Phys. Rev., 130(4):1605–1616, may 1963.

[39] Elliott H Lieb. Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum.
Phys. Rev., 130(4):1616–1624, may 1963.

[40] Bernhard Rauer. Non-equilibrium dynamics beyond dephasing : Recurrences and loss
induced cooling in one-dimensional Bose gases. (September 2018):127, 2018.

[41] Christophe Mora and Yvan Castin. Extension of bogoliubov theory to quasicondensates.
Phys. Rev. A, 67:053615, May 2003.

[42] Sin-itiro Tomonaga. Remarks on Bloch’s Method of Sound Waves applied to Many-
Fermion Problems. Progress of Theoretical Physics, 5(4):544–569, 1950.

[43] J M Luttinger. An Exactly Soluble Model of a Many-Fermion System. Journal of
Mathematical Physics, 4(9):1154–1162, 1963.

123



BIBLIOGRAPHY

[44] N. N. Bogoliubov, V. V. Tolmachev, D. V. Shirkov, and R. Bruce Lindsay. A new
method in the theory of superconductivity. Physics Today, 13(5):44–44, 1960.

[45] Nicholas K. Whitlock and Isabelle Bouchoule. Relative phase fluctuations of two cou-
pled one-dimensional condensates. Physical Review A, 68(5):053609, 2003.

[46] Sebastian Erne. Far-From-Equilibrium Quantum Many-Body Systems From Universal
Dynamics to Statistical Mechanics. PhD thesis, 2018.

[47] T Langen, T Schweigler, E Demler, and J Schmiedmayer. Double light-cone dynam-
ics establish thermal states in integrable 1d bose gases. New Journal of Physics,
20(2):023034, 2018.

[48] Kerson Huang. Statistical Mechanics. 1991.

[49] Michael Gring. Prethermalization in an Isolated Many Body System. PhD thesis, TU
Wien, 2012.

[50] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-
Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle. Re-
alization of bose-einstein condensates in lower dimensions. Physical Review Letters,
87(13):130402, 2001.

[51] L. Salasnich, A. Parola, and L. Reatto. Effective wave equations for the dynamics
of cigar-shaped and disk-shaped bose condensates. Physical Review A, 65(4):043614,
2002.

[52] F Gerbier. Quasi-1D Bose-Einstein condensates in the dimensional crossover regime.
Europhysics Letters (EPL), 66(6):771–777, jun 2004.

[53] M. Olshanii. Atomic scattering in the presence of an external confinement and a gas
of impenetrable bosons. Physical Review Letters, 81(5):938–941, 1998.

[54] Elmar Haller, Manfred J. Mark, Russell Hart, Johann G. Danzl, Lukas Reichsöllner,
Vladimir Melezhik, Peter Schmelcher, and Hanns-Christoph Nägerl. Confinement-
induced resonances in low-dimensional quantum systems. Phys. Rev. Lett., 104:153203,
Apr 2010.

[55] J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule. Mapping out the quasi-
condensate transition through the dimensional crossover from one to three dimensions.
Phys. Rev. A, 83:021605, Feb 2011.

[56] Luca Salasnich. Generalized nonpolynomial schrödinger equations for matter waves
under anisotropic transverse confinement. Journal of Physics A: Mathematical and
Theoretical, 42(33):335205, jul 2009.

[57] P Pitaevskii and Sandro Stringari. Bose-Einstein Condensation. 2003.

[58] L. Salasnich, A. Parola, and L. Reatto. Dimensional reduction in bose-einstein-
condensed alkali-metal vapors. Phys. Rev. A, 69:045601, Apr 2004.

124



BIBLIOGRAPHY

[59] Tim Langen. Non-equilibrium dynamics of one-dimensional Bose gases. PhD thesis,
TU Wien, 2013.

[60] Maximilian Kuhnert. Thermalization and Prethermalization in an ultracold Bose Gas.
PhD thesis, TU Wien, 2013.

[61] Martin Göbel. Low-Dimensional Traps for Bose-Fermi Mixtures. PhD thesis, TU Wien,
2008.

[62] Y. Castin, J. Dalibard, and C. Cohen-Tannoudji. Laser Cooling and Trapping of Neutral
Atoms, pages 173–201. Bose-Einstein Condensation. Cambridge University Press, 1995.

[63] Mohammadamin Tajik. Arbitrary One-Dimensional Optical Dipole Potentials on an
Atom Chip, 2017.

[64] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the doppler limit by polar-
ization gradients: Simple theoretical models. Journal of the Optical Society of America
B, 6(11):2023, 1989.

[65] K. B. Davis, M. O. Mewes, and W. Ketterle. An analytical model for evaporative
cooling of atoms. Applied Physics B Laser and Optics, 60(2-3):155–159, 1995.

[66] O. J. Luiten, M. W. Reynolds, and J. T. M. Walraven. Kinetic theory of the evaporative
cooling of a trapped gas. Physical Review A, 53(1):381–389, 1996.

[67] Thorsten Schumm. Bose-Einstein condensates in magnetic double well potentials. PhD
thesis, Universit¨at Heidelberg, 2005.

[68] I. Lesanovsky, T. Schumm, S. Hofferberth, L. M. Andersson, P. Krüger, and J. Schmied-
mayer. Adiabatic radio-frequency potentials for the coherent manipulation of matter
waves. Physical Review A, 73(3):033619, 2006.

[69] C. Figl J.-B. Trebbia C. Aussibal H. Nguyen D. Mailly I. Bouchoule C. I. Westbrook
A. Aspect T. Schumm, J. Estève. Atom chips in the real world: the effects of wire
corrugation. Eur. Phys. J. D, 32:171–180, 2005.

[70] J. Estève, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. I. Westbrook,
and A. Aspect. Role of wire imperfections in micromagnetic traps for atoms. Physical
Review A, 70(4):043629, 2004.

[71] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph,
J. Schmiedmayer, and P. Krüger. Matter-wave interferometry in a double well on an
atom chip. Nature Physics, 1(1):57–62, 2005.

[72] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. Optical Dipole Traps
for Neutral Atoms, pages 95–170. Advances In Atomic, Molecular, and Optical Physics.
Elsevier, 2000.

125



BIBLIOGRAPHY

[73] Mohammadamin Tajik, Bernhard Rauer, Thomas Schweigler, Federica Cataldini, João
Sabino, Frederik S. Møller, Si-Cong Ji, Igor E. Mazets, and Jörg Schmiedmayer. Design-
ing arbitrary one-dimensional potentials on an atom chip. Optics Express, 27(23):33474,
2019.

[74] W. Rohringer, D. Fischer, F. Steiner, I. E. Mazets, J. Schmiedmayer, and M. Trupke.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional
bose gas. Scientific Reports, 5(1):9820, 2015.

[75] Martino Calzavara-Jörg Schmiedmayer Tommaso Calarco Andreas Kugi Andreas
Deutschmann-Olek, Mohammadamin Tajik. Iterative shaping of optical potentials for
one-dimensional bose-einstein condensates. arXiv:2208.00706v1, 2022.

[76] D.M. Stamper-Kurn W. Ketterle, D.S. Durfee. Making, probing and understanding
bose-einstein condensates. arXiv:cond-mat/9904034, 1999.

[77] Yuri D. van Nieuwkerk, Jörg Schmiedmayer, and Fabian H. L. Essler. Projective phase
measurements in one-dimensional Bose gases. SciPost Phys., 5:046, 2018.

[78] David A. Smith, Simon Aigner, Sebastian Hofferberth, Michael Gring, Mauritz Ander-
sson, Stefan Wildermuth, Peter Krüger, Stephan Schneider, Thorsten Schumm, and
Jörg Schmiedmayer. Absorption imaging of ultracold atoms on atom chips. Optics
Express, 19(9):8471, 2011.

[79] Thomas Schweigler. Correlations and dynamics of tunnel-coupled one-dimensional Bose
gases. 2019.

[80] D. S. Petrov V. Gritsev S. Manz S. Hofferberth T. Schumm Demler E A. Imambevok,
I. E. Mazets and J Schmiedmayer. Density ripples in expanding low-dimensional gases
as a probe of correlations. pages 1–14, 2009.

[81] S. Manz, R. Bücker, T. Betz, Ch Koller, S. Hofferberth, I. E. Mazets, A. Imambekov,
E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm. Two-point density correlations
of quasicondensates in free expansion. Physical Review A - Atomic, Molecular, and
Optical Physics, 81(3):1–4, 2010.

[82] W Rohringer. Dynamics of One-Dimensional Bose Gases in Time-Dependent Traps.
PhD thesis, TU Wien, 2014.

[83] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer. Non-
equilibrium coherence dynamics in one-dimensional bose gases. Nature, 449(7160):324–
327, 2007.

[84] Tim Langen, Sebastian Erne, Remi Geiger, Bernhard Rauer, Thomas Schweigler, Max-
imilian Kuhnert, Wolfgang Rohringer, Igor E. Mazets, Thomas Gasenzer, and Jörg
Schmiedmayer. Experimental observation of a generalized gibbs ensemble. Science,
348(6231):207–211, 2015.

126



BIBLIOGRAPHY

[85] M. Gluza, T. Schweigler, B. Rauer, C. Krumnow, J. Schmiedmayer, and J. Eisert.
Quantum read-out for cold atomic quantum simulators. Communications Physics,
3(1):12, 2020.

[86] M. Klimesh. Inequalities that collectively completely characterize the catalytic ma-
jorization relation. arXiv:0709.3680, 2007.

[87] N H Y Ng, L Mančinska, C Cirstoiu, J Eisert, and S Wehner. Limits to catalysis in
quantum thermodynamics. New Journal of Physics, 17(8):085004, 2015.

[88] S Turgut. Catalytic transformations for bipartite pure states. Journal of Physics A:
Mathematical and Theoretical, 40(40):12185–12212, sep 2007.

[89] M. Lewenstein and L. You. Quantum phase diffusion of a bose-einstein condensate.
Phys. Rev. Lett., 77:3489–3493, Oct 1996.

[90] Juha Javanainen and Martin Wilkens. Phase and phase diffusion of a split bose-einstein
condensate. Phys. Rev. Lett., 78:4675–4678, Jun 1997.

[91] A. J. Leggett and F. Sols. Comment on “phase and phase diffusion of a split bose-
einstein condensate”. Phys. Rev. Lett., 81:1344–1344, Aug 1998.

[92] Juha Javanainen and Martin Wilkens. Javanainen and wilkens reply:. Phys. Rev. Lett.,
81:1345–1345, Aug 1998.

[93] Marine Pigneur, Tarik Berrada, Marie Bonneau, Thorsten Schumm, Eugene Demler,
and Jörg Schmiedmayer. Relaxation to a phase-locked equilibrium state in a one-
dimensional bosonic josephson junction. Phys. Rev. Lett., 120:173601, Apr 2018.

[94] Marine Pigneur and Jörg Schmiedmayer. Analytical pendulum model for a bosonic
josephson junction. Phys. Rev. A, 98:063632, Dec 2018.

[95] Yu. Kagan, D. L. Kovrizhin, and L. A. Maksimov. Anomalous tunneling of phonon
excitations between two bose-einstein condensates. Phys. Rev. Lett., 90:130402, Apr
2003.

[96] Vladimir Gritsev, Anatoli Polkovnikov, and Eugene Demler. Linear response theory
for a pair of coupled one-dimensional condensates of interacting atoms. Phys. Rev. B,
75:174511, May 2007.

[97] C. Menotti, J. R. Anglin, J. I. Cirac, and P. Zoller. Dynamic splitting of a bose-einstein
condensate. Phys. Rev. A, 63:023601, Jan 2001.

[98] I. Carusotto, R. Balbinot, A. Fabbri, and A. Recati. Density correlations and analog
dynamical casimir emission of bogoliubov phonons in modulated atomic bose-einstein
condensates. The European Physical Journal D, 56(3):391–404, 2009.

[99] Marios H. Michael, Jörg Schmiedmayer, and Eugene Demler. From the moving piston
to the dynamical casimir effect: Explorations with shaken condensates. Phys. Rev. A,
99:053615, May 2019.

127



BIBLIOGRAPHY

[100] Thomas Schweigler, Valentin Kasper, Sebastian Erne, Igor Mazets, Bernhard Rauer,
Federica Cataldini, Tim Langen, Thomas Gasenzer, Jürgen Berges, and Jörg Schmied-
mayer. Experimental characterization of a quantum many-body system via higher-order
correlations. Nature, 545(7654):323–326, 2017.

[101] Eugene P. Wigner. Lower limit for the energy derivative of the scattering phase shift.
Physical Review, 98(1):145–147, 1955.

[102] Katharina Schrom. Optimal Control Strategies for Quantum Field Thermal Machines,
2021.

[103] Scaling behavior of interactions in a modular quantum system and the existence of
local temperature. Europhysics Letters, 65(5):613–619, 2004.

[104] Michael Hartmann, Günter Mahler, and Ortwin Hess. Existence of temperature on the
nanoscale. Physical Review Letters, 93(8):1–4, 2004.

[105] Michael Hartmann. Minimal length scales for the existence of local temperature. Con-
temporary Physics, 47(2):89–102, 2006.

[106] Arnau Riera Martin Kliesch. Properties of Thermal Quantum States: Locality of Tem-
perature, Decay of Correlations, and More, pages 481–502. Springer International Pub-
lishing, Cham, 2018.

[107] Thomas M. Stace Antonella De Pasquale. Quantum Thermometry, pages 503–527.
Springer International Publishing, Cham, 2018.

[108] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert. Locality of Tem-
perature. Physical Review X, 4(3):1–19, 2014.

[109] Spyros Sotiriadis Bernhard Rauer Thomas Schweigler Federica Cataldini João
Sabino Frederik Møller Philipp Schüttelkopf Si-Cong Ji Dries Sels Eugene Demler
Jörg Schmiedmayer Mohammadamin Tajik, Ivan Kukuljan. Experimental verification
of the area law of mutual information in quantum field theory. arXiv:2206.10563, 2022.

[110] H.-P. Stimming, N. J. Mauser, J. Schmiedmayer, and I. E. Mazets. Fluctuations and
stochastic processes in one-dimensional many-body quantum systems. Physical Review
Letters, 105(1):015301, 2010.

[111] S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock, D. S. Petrov,
G. V. Shlyapnikov, H. Kreutzmann, L. Santos, and M. Lewenstein. Observation of
phase fluctuations in elongated bose-einstein condensates. Phys. Rev. Lett., 87:160406,
Oct 2001.

[112] Marine Pigneur, Tarik Berrada, Marie Bonneau, Thorsten Schumm, Eugene Demler,
and Jörg Schmiedmayer. Relaxation to a phase-locked equilibrium state in a one-
dimensional bosonic josephson junction. Phys. Rev. Lett., 120:173601, Apr 2018.

[113] Henry Poincaret. Sur le problème des trois corps et les équations de la dynamique, par
h. poincaré. Acta Mathematica, 13:1–270, 1890.

128



BIBLIOGRAPHY

[114] P. Bocchieri and A. Loinger. Quantum recurrence theorem. Phys. Rev., 107:337–338,
Jul 1957.

[115] Ian C. Percival. Almost Periodicity and the Quantal H Theorem. Journal of Mathe-
matical Physics, 2(2):235–239, March 1961.

[116] T. Hogg and B. A. Huberman. Recurrence phenomena in quantum dynamics. Phys.
Rev. Lett., 48:711–714, Mar 1982.

[117] Bruce Ron Carter, Mancini. Op Amps For Everyone. 2002.

[118] Marcos Rigol, Vanja Dunjko, Vladimir Yurovsky, and Maxim Olshanii. Relaxation in a
completely integrable many-body quantum system: An ab initio study of the dynamics
of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett., 98:050405,
Feb 2007.

[119] C. L. Kane and Matthew P.A. Fisher. Transport in a One-Channel Luttinger Liquid.
Physical Review, 68(8), 1992.

[120] Charles Kane, Leon Balents, and Matthew P.A. Fisher. Coulomb interactions and
mesoscopic effects in carbon nanotubes. Physical Review Letters, 79(25):5086–5089,
1997.

[121] C. L. Kane and Matthew P.A. Fisher. Transmission through barriers and resonant tun-
neling in an interacting one-dimensional electron gas. Physical Review B, 46(23):15233–
15262, 1992.

[122] Abhik Kumar Saha and Romain Dubessy. Dynamical phase diagram of a one-
dimensional bose gas in a box with a tunable weak link: From bose-josephson os-
cillations to shock waves. Phys. Rev. A, 104:023316, Aug 2021.

[123] A Tononi, F Toigo, S Wimberger, A Cappellaro, and L Salasnich. Dephasing–rephasing
dynamics of one-dimensional tunneling quasicondensates. New Journal of Physics,
22(7):073020, jul 2020.

[124] Lorenzo Magrini, Philipp Rosenzweig, Constanze Bach, Andreas Deutschmann-Olek,
Sebastian G. Hofer, Sungkun Hong, Nikolai Kiesel, Andreas Kugi, and Markus As-
pelmeyer. Real-time optimal quantum control of mechanical motion at room temper-
ature. Nature, 595:373–377, 2021.

[125] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro,
and S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84:621, 2012.

[126] J. Eisert and M. B. Plenio. Introduction to the basics of entanglement theory in
continuous-variable systems. Int. J. Quant. Inf., 1:479, 2003.

[127] A. Carmichael and Juha Javanainen. Mean-field stationary state of a Bose gas at a
Feshbach resonance. Phys. Rev. A, 77:043616, 2008.

129



BIBLIOGRAPHY

[128] P.B. Blakie†, A.S. Bradley†, M.J. Davis, R.J. Ballagh, and C.W. Gardiner. Dynamics
and statistical mechanics of ultra-cold bose gases using c-field techniques. Advances in
Physics, 57(5):363–455, 2008.

130


	Introduction
	Thermodynamics and Quantum Mechanics
	Thesis outline

	Theoretical basis
	The 1D interacting Bose gas
	Lieb-Liniger model
	Effective low energy models

	The double well
	Uncoupled double well
	Phase correlation function

	3D to 1D crossover
	Transverse broadening

	Numerical methods
	Tomonaga-Lutinger Liquid simulations
	SGPE method


	Experimental setup
	Experimental cycle overview
	The atomchip trap
	Optical traps in a nutshell
	Arbitrary 1D potentials
	Digital Micromirror Device (DMD)
	Pattern generation
	Longitudinal double well

	Probing
	Expansion in time of flight (TOF)
	Absorption imaging
	Density ripples thermometry
	Relative phase measurement


	The Quantum Field Machine (QFM)
	A new type of QFM
	Coupling control between two quasi-condensates: a valve
	Rescaling the length of a quasi-condensate

	Numerical implementation
	An energy valve
	Compression and expansion
	Heat flow between two components
	Example of a cooling cycle

	Experimental implementation - a piston
	Compression and expansion
	Implementing the piston

	Controlling longitudinal coupling
	Modelling a finite barrier barrier
	Experimental implementation of the valve QTP

	Summary and discussion

	Local thermometry
	Local thermometry method
	Example: homogeneous thermal cloud
	Example: two different temperatures across space
	Discussion
	Validation criteria
	Limitations


	Heat flow
	Motivation
	Experimental procedure
	Local heating
	Heating with white noise
	Effects of the heating procedure
	Conclusions

	Theoretical description
	Limitations of the Bogoliubov theory
	SGPE simulations

	Experimental results
	Application of the local thermometry method
	Evolution of the common density
	Discussion

	Summary

	Outlook
	Details on the QFM numerical study
	Gaussian models in simulations of primitive operations
	Details of the numerical simulations
	Compression/expansion primitive
	Merging/splitting primitive


	Notes on local coupling
	Distribution of the local phase variance
	Full box basis

