
© 2024 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI: 10.1109/ARSO60199.2024.10557907



Programming Robot Animation Through Human Body Movement

Helena Anna Frijns1, Darja Stoeva2, Oliver Schürer3, and Margrit Gelautz2

Abstract— The aim of our work is to make it easier for
non-programmers to program robot motion. We designed a
system that translates human motion to motion of a (virtual
and physical) humanoid Pepper robot. The system enables
programming robot animations using pose-matching imitation
of human motion. We developed a prototype that implements
recording functionality, evaluated the prototype, and revised
the system architecture based on feedback from participants
with expertise in dance or programming the Pepper robot. We
extend a conceptual design space for computer animation by
including a physical robot. On the basis of this design space
and the prototype development, we describe interaction design
considerations for robot animation systems that implement
human-humanoid imitation systems.

I. INTRODUCTION

Human-Robot Interaction (HRI) is a multidisciplinary
research field, necessitated by the complexity of developing
interactions with robotic systems taking place in human
social space. It has been argued that HRI research has thus
far been dominated by laboratory studies with simplified
views on social interaction [1], [2], [3]. Inclusion of domain
experts on social and nonverbal behavior such as interaction
designers, social scientists [2], [4], and expert dancers [5]
has been proposed as promising for developing robotics
applications for social settings [2], [4]. Researchers have
advocated for inclusion of animators and dancers in robot
motion design, due to their expertise on making characters
seem lifelike through motion [6], [7], audience perception,
and human movement features [8]. Sirkin and Ju [9] argue
that embodied design improvisation can help designers of
physical interactions with everyday objects (including robots)
bring out tacit knowledge, that is, knowledge arising from
the body and its situated interactions. However, experts with
knowledge required to develop social interactions may lack
robotics and programming expertise [2], [4].

To enable robot programming by domain experts such as
dancers, systems and input methods with a high ease of use
are beneficial. Our focus is on systems that produce robot
motion for social HRI and dance, using imitation of human
motion as a programming tool. We developed a prototype for
animating robot motion that implements a human-humanoid
pose-matching imitation system, as described in Sec. III.

1H.A. Frijns is with the Institute of Management Science, Faculty of
Mechanical and Industrial Engineering, TU Wien, 1040 Vienna, Austria
helena.frijns@tuwien.ac.at

2D. Stoeva and M. Gelautz are with the Institute of
Visual Computing and Human-Centered Technology, Faculty of
Informatics, TU Wien, 1040 Vienna, Austria {darja.stoeva,
margrit.gelautz}@tuwien.ac.at

3O. Schürer is with the Institute of Architectural Sciences, Fac-
ulty of Architecture and Planning, TU Wien, 1040 Vienna, Austria
schuerer@attp.tuwien.ac.at

The prototype uses Kinect v2 to realize imitation of human
motion by the Pepper robot, with a graphical user interface
(GUI) to start and stop the motion recording process. An
evaluation of the prototype led to a revision of the system
architecture. In Sec. IV, we outline interaction design consid-
erations for robot animation systems, especially in relation
to the development of our prototype. We extend a design
space for computer animation [10] for robot animation. The
contributions of this paper are this extended design space and
interaction design considerations for human-humanoid pose-
matching imitation systems, along with an implementation
and evaluation of a prototype.

II. RELATED WORK

Reasons for animation of robot motion include supporting
human-robot communication, generating convincing behav-
ior, suggesting emotion, animacy [11], or personality [12],
expressing information such as internal state, intentions,
and attitudes, or coordinating joint activity [13]. Our fo-
cus is on expressive gestural motion. Expressive motion
serves purposes such as communication, and its meaning
is influenced by contextual factors [14]. Gestural motion
involves gestures and behaviors that indicate a robot’s state
and convey information, and can be performed by execut-
ing a series of poses [15]. Techniques for robot motion
design include 3D animation studies, developing a skeleton
prototype of the robot, Wizard-of-Oz (WoZ) exploration of
movement possibilities, and video prototyping [13]. Tools
for realizing expressive robot motion need to guarantee
consistent playback, safety, and scalability, and balance the
complexity of information presentation while enabling access
to useful information [15]. Saerbeck and van Breemen [16]
distinguish three classes of robot motion design methods:
trajectory design methods, motion editing methods, and high-
level behavior design methods. Examples of input methods
for robot motion with high ease of use can be found
in the domains of Programming by Demonstration (PbD)
(also referred to as Learning from Demonstration (LfD) or
imitation learning [17]) and robot teleoperation (e.g., [18],
[19]). PbD is a technique in which a human shows a robot
example behaviors [20] that are used to generate a robot
program. Bravo et al. [20] describe PbD strategies: manipula-
tion of a robot body (kinaesthetic teaching or teleoperation),
manipulation of a physical object or a (virtual or physical)
robot representation, demonstration using a GUI or user
body movements, and multimodal demonstrations. Similarly,
input methods for LfD include kinaesthetic demonstrations,
teleoperation, and passive observation [17]. These methods
differ in terms of their ease of use, possibility of application



to systems with a high number of DOF (degrees of freedom),
and ease of mapping demonstrations to the robot.

Motion imitation systems using Kinect have been devel-
oped for the NAO [21], [22] and Pepper [23], [24], [25].
Our work differs from this, as our focus is not on the
imitation, but rather on the interaction design of a system for
robot animation that implements imitation. Several authors
describe choreographing or designing robot motion with a
GUI, e.g., for the HRP-4C robot [26], enabling dancers to
give feedback to CoBot robot motion [7], or observing how
animated motions combine with procedural layers [12]. Our
work differs from GUIs for robot animation, as we focus
on the interaction design of systems that are distributed
in space, involving, besides a GUI, a humanoid robot,
sensor(s) for detecting human joint positions, and an end user
controlling the robot with body movement. Depth sensors
such as Kinect have been used for computer animation
of virtual characters [27], [28], [29]. Our work focuses
on motion for a physical, co-located robot instead, which
has consequences for the spatial setup of the system and
how user attention is distributed across this space. Several
works implement puppeteering a robot using a GUI, e.g.,
for the desk-light shaped AUR robot [30], the customizable
Blossom robot [31], or a WoZ interface for controlling
Pepper [32]. Balit et al. [6] propose software for editing
robot motion and use the robot Poppy Torso to record poses.
Wölfel et al. [33] developed the ToolBot system for making
reproductions of handicraft with the KUKA LWR IV robot
arm and a GUI for editing motions recorded with motion
capture. Our work differs, as in our prototype the user’s
whole body is a form of input for animating a humanoid
robot. Work that is most similar is that by Porfirio et al. [4]
and work implementing Extended Reality (XR, an umbrella
term for methods such as VR, augmented reality, and mixed
reality) for HRI software tools as outlined by [34], [35].
Porfirio et al. [4] developed the system Synthé to program
social interactions for the NAO robot. This system enables
designers to use bodystorming, a technique in which they use
their bodies and props to brainstorm about the interaction.
We similarly focus on prototyping using the human body, but
their focus is on programming interaction scenarios and only
pre-programmed animations are used. Coronado et al. [35]
review research on HRI software tools that implement XR
devices, game engines, physical robots, and sensors for
human input. For example, Alonso et al. [34] outline a
system for VR teleoperation of the NAO robot. Here the
user views a virtual robot using a VR headset, which differs
from our setting in which the physical robot can be observed
by the human interaction partner at all times.

III. RECORDING MOTION FOR ANIMATION

Our focus is on systems for robot animation using a
human-humanoid pose-matching imitation system. A pro-
totype was developed that enables programming the robot
Pepper by means of human motion demonstrations with
Kinect v2 input. The system’s imitation functionality trans-
lates a human’s body pose to joint angles for Pepper, so

Fig. 1. User interaction with the system during recording (after revision,
see Sec. III-C). The screen (left) displays the recording GUI. Pepper’s tablet
displays an icon indicating current system state.

Fig. 2. Interaction during replay, when the robot executes recorded motion.

that it directly and continuously imitates the human’s body
pose. The system can be used to develop robot animations:
the user starts the recording, demonstrates a motion that is
directly imitated by the robot (Fig. 1), stops the recording,
and can then replay the recording for execution by the robot.
During replay (Fig. 2), the robot is not imitating the current
body pose of the user, but executing recorded poses. The
system needs to implement functionalities to store and replay
recordings. Moreover, the user has to be able to infer system
status and give commands to change it. Recording human
motion for replay on the robot can be seen as a form of robot
programming. Target groups include users with little to no
programming skills, for instance in the fields of education
and entertainment, or HRI researchers and others who want
to quickly prototype robot motions for use in interaction
scenarios. An iterative design process was followed in which
the prototype was evaluated (Sec. III-B) and then revised,
resulting in the system architecture in Fig. 3.

A. Technical implementation

The prototype was developed for the humanoid robot
Pepper by Aldebaran, which has 20 DOF [36], and Kinect
v2, with code for human-humanoid motion imitation running
on a laptop. A GUI provided functionality such as making
recordings and replaying them. The input to the program
consists of 3D human joint positions; output consists of robot
motion commands. During imitation, joint angles for Pepper
are calculated in near real time, and during replay the robot
executes motion based on recorded human joint position data.

Performing visual demonstrations of user body movements
suffers the drawback of the correspondence problem, as
there is a substantial difference between human and robot



Fig. 3. Overview of the revised system architecture. Kinect input data is processed and sent to a Python program via a websocket. On the Python side,
human joint positions are mapped to Pepper’s workspace and a kinematics module is used to calculate Pepper’s joint angles. During direct motion imitation,
these joint angles are sent to the Pepper robot as motion commands. When recording, joint angles are sensed and stored for later execution.

bodies [20], [17]. Human bodies have different motion possi-
bilities and constraints compared to robots, which means that
devising a mapping is required; Pepper’s arms have fewer
DOF than human arms and the robot does not have separate
legs but instead one ‘leg’ attached to a wheeled base. We
chose a mapping to achieve pose similarity rather than a
mapping between end-effector positions.

The imitation was realized by capturing human joint
positions using Kinect v2 skeletal tracking with a C# Visual
Studio project. The imitation system allows for controlling
Pepper’s ShoulderPitch, ShoulderRoll, ElbowYaw and El-
bowRoll joints of both arms, the HipRoll, HeadPitch and
HeadYaw joints, and the opening and closing of both hands.
In our system only the person closest to the sensor is tracked
and only a subset of Kinect frames is processed. Using C#
with an XAML project and the Kinect SDK, human joint
positions were visualized on the recording GUI. A websocket
was implemented that sent human joint positions to a Python
program. Human joint positions were scaled to fit Pepper’s
limb lengths and mapped to its workspace, to ensure a reach-
able position while maintaining the pose configuration. We
developed an inverse and forward kinematics module [37]
to calculate the required joint angles for Pepper to achieve
a human’s pose. The NAOqi Python SDK [36] was used to
generate motion commands for Pepper.

B. Intermediate evaluation for system development

A user evaluation was conducted with six participants
who either had dance/movement expertise or experience
programming Pepper. Pepper programmers are familiar with
the robot and can compare the use of our system to their
experiences programming Pepper. Movement experts are one
of the target groups, and the system needs to be easy to
use for them. Movement expert participants (2 women, 1
man, age M=35.3 years, SD=3.0 years) had occupations such
as movement or dance teacher, choreographer, and dancer.

Fig. 4. GUI and qiBullet simulator executing the same pose.

Self-reported programming experience scores (on a scale
from 1=very inexperienced to 10=very experienced, question
based on [38]) were 2, 3 and 4. Self-reported familiarity
with robots scores (on a scale from 1=not at all familiar
to 5=very familiar, question based on [39]) were 1, 2 and
3. Three participants, students in the fields of informatics
and electrical engineering, were invited who had experience
programming Pepper (2 women, 1 man, age M=27.3 years,
SD=3.2 years). Self-reported programming experience scores
were 8, 9 and 9. All three rated their familiarity with robots
to be 5 out of 5 and reported having programmed Pepper
using Choregraphe, Python, C++ and/or ROS wrappers.

Participants were given informed consent and data con-
sent forms to sign. Then, participants interacted with the
imitation system for 5-10 minutes to explore its function-
ality. Participants were asked to record three motions that
were developed by a dance professional and that covered
different kinematic chains and gaze directions. The robot
would imitate the participant’s motions continuously, except



when replaying a recording. Participants were interviewed on
their experience of the system. All participants completed
the task of recording and replaying the gestures using the
GUI. The System Usability Scale (SUS) rating of the system
with recording GUI by the movement experts was M=72.5
(SD=10.9), the programmers’ rating was M=87.5 (SD=11.5).
According to Bangor et al. [40], systems with a SUS rating
above 70 are acceptable in terms of usability while better
products score in the high 70 to 80 range.

Interviews were transcribed and analyzed using a the-
matic analysis approach [41] using MAXQDA [42]. The
convention we use in the following is that P1 indicates
participant 1 with experience programming Pepper robots
and D1 indicates participant 1 with dance/movement ex-
pertise. Across both groups, participants commented on the
recorded motion, the leaning motion that was part of the
recording, the motion imitation, motion speed and other
motion qualities, and responded to the whole system and
participant attention during the task. Regarding imitation
accuracy, responses included that fast motion looks fine
but slow motion may need to be smoothed as it looked
robotic or jittery (P1, P3), and that imitation worked very
well (P2, P3), experiencing imitation as intuitive (P2). D2
had the impression that it seemed easier for the system
to replicate fast movements than slow movements. There
were some differences between the responses of both groups.
Programming participants responded to the Kinect and per-
ceived sensor inaccuracies, responded to individual features
on the GUI, and suggested potential improvements for the
GUI. Movement experts responded to the robot, compared its
motion to human motion possibilities, remarked on a sense
of togetherness, compared the relation between human and
robot in this setup to a pedagogue-pupil relationship, and
indicated feeling a sense of empathy.

C. Revised System Architecture

After the evaluation, the robot’s motion in response to
the user, the method of trajectory generation, and the GUI
were changed. Fig. 3 shows an overview of the revised
system architecture. Recorded motion can be translated into
a trajectory by either using calculated robot angles that are
sent as motion commands or robot angles that are sensed
during motion imitation (angles that are actually reached),
and choices need to be made regarding the sampling rate.
To prevent recalculating angles for every replay, and for per-
sonal data protection considerations, the system architecture
was adapted to store robot trajectory data. Specifically, the
trajectory is now based on stored sensed robot angles, so
the trajectory during replay of motion is more predictable;
the sensed angles have been seen by the user during record-
ing. To realize smoother trajectory replay, a trajectory was
generated on the basis of sensed robot joint angle data
using the angleInterpolationBezier function from
the NAOqi ALMotion module for robot joint control. This is
a blocking call, as opposed to the non-blocking setAngles
command that was used previously.

Fig. 5. Design space for computer animation from Walther-Franks and
Malaka [10].

Fig. 6. Extended design space for robot animation based on [10] with the
additional item Robot.

The GUI was adapted to have boxes for separate record-
ings, and a virtual robot was added using qiBullet [43],
which implements a physics simulation of the Pepper robot
(Fig. 4) to enable programming without direct execution by
a physical robot. We added visual feedback on the tablet
regarding the robot’s status (e.g., a recording icon).

IV. INTERACTION DESIGN CONSIDERATIONS

In this section, we outline interaction design consider-
ations, using Walther-Franks and Malaka’s design space
for computer animation [10] (Fig. 5). We use this design
space and extend it, to emphasize how the introduction of
a physical robot platform complicates a computer animation
task, requiring consideration of additional interaction design
aspects. We extend the design space (Fig. 6) to describe sys-
tems for animating humanoid robot motion using imitation of
human body movement. The physical presence of the robot
and other devices that are distributed in space affect the way
the user will divide their attention across these devices.



A. Design space for computer animation

In the design space for computer animation by Walther-
Franks and Malaka [10] (Fig. 5), the entities involved in
interaction include the Artist (who designs the motion), the
Machine (combination of hardware and software), and the
Artifact (the moving virtual character). The Task refers to
what the tool is used for, namely animation. Integration
refers to the way the input device is used as a means of
control of character DOFs, and involves making decisions
regarding which joints are mapped. Correspondence refers
to the match between input entering the input device and
the resulting animation of the artefact. Metaphors mentioned
in [10] include the conversation metaphor, manipulation
metaphor, and embodiment metaphor. Directness refers to
the spatio-temporal distance or offset between user and ani-
mation, and includes issues such as precision and occlusion.
Orchestration refers to how information is presented to the
user and which actions the user can take in a particular
order. Space-time mapping refers to the mapping of the
dimensions of time and space from input to output. For
instance, video playback involves a mapping from time to
time, while computer puppetry involves a mapping from
space-time to space-time [10].

B. Extended design space for robot animation

In this section, we highlight interaction design considera-
tions for robot animation systems that implement a human-
humanoid imitation system, based on our prototype, using the
extended design space in Fig. 6. In systems for robot anima-
tion, the Artifact is split into a Virtual artifact (the recording
data and the animation of a virtual robot) and animation
of the physical Robot. Introducing a Robot adds additional
Correspondence relations and affects Orchestration.

1) Task: Main animation tasks include motion creation,
motion editing, and motion viewing [10]. For motion cre-
ation, choices are to be made regarding the type of demon-
stration (trajectory demonstration or keyframe demonstra-
tion), which data to use to generate a trajectory during replay,
the sampling rate, and speed of the robot’s motion. These
choices have several implications for the experience of the
interaction, and should be made in relation to the aim of
the system. Choices may affect, for example, the required
interaction during motion demonstration. A different user
interaction is required when the user can demonstrate a mo-
tion fluently, as compared to an interaction in which the user
demonstrates a series of poses for keyframe demonstration
(which the system will interpolate between). Choices may
also affect if timing information for the motion is recorded by
default or not, how predictable motion will be during replay,
and how detailed recorded motion will be. The sampling
rate has consequences for the smoothness and precision of
the motion. The sampling rate can be made dependent on
the motion speed of the robot, meaning that for fast mo-
tions, more frames per second are stored to preserve detail.
Recorded motion can be observed on a physical robot and/or
a virtual robot. There are different ways to view the motion;
viewing the motion while it is connected to the human

demonstrator, versus viewing the motion when replaying a
recording, disconnected from the human demonstrator. One
consequence is that the robot should safely be moved from
its current configuration into the first recorded pose when
executing a recorded motion. For motion viewing, the system
needs to take the starting pose into account, and move the
robot from its current configuration into the first recorded
pose. This is especially relevant for working with a physical
robot platform, as the robot may otherwise jolt into the
first pose. Potential extensions of the prototype for motion
editing include trajectory editing capabilities (for individual
joints). For generating motion that is both expressive and
goal-oriented, it may be necessary to combine different
types of motion, parametrize motions, or integrate additional
objectives when the trajectory is generated (see [15], [44],
[45], [12]).

Part of the Task involves interaction with the GUI, which
can include, e.g., visual representations of system status,
sensor information, existing recordings, feedback to user
action and feedback regarding mode changes. Providing a
stick figure that visualized human joint positions detected
with Kinect gave participants information regarding tracking
errors and accuracy (P1, P2). A virtual robot can be included
for replay of the motion, troubleshooting in case errors arise,
and working without the physical robot present. Providing
options to associate additional data to recorded motions can
be useful for organizing and reusing recorded motion. For
instance, recordings could be named, labeled with various
metadata, and visual representations of recorded trajectories
may be stored alongside. As suggested by P3, motion com-
mands could be exported to a Python script, to give end users
the option to use the code file with other software

2) Directness: Directness depends on the sensors, calcula-
tion speed, network delays, and speed of robot motion execu-
tion. Executing motion commands by a wireless connection
to the Pepper robot may add latency as compared to a virtual
robot [25]. Use of (a single) Kinect can lead to occlusions
and inaccuracies in the tracking data. Other possible input
methods include, e.g., different depth sensors, using a com-
bination of RGB(D) cameras to reconstruct the 3D scene, or
use of on-body sensors. Each method has its (dis)advantages.
Combining several sensors from different viewpoints may
make tracking more accurate, but may complicate the work
process and introduce costs for additional sensors.

3) Correspondence: We can consider the aspect of Cor-
respondence on several levels, for instance similarity be-
tween human and robot motion in pose configuration or
end-effector position (see Sec. III-A for discussion of the
correspondence problem), similarity in movement style,
and choices regarding spatial orientation/location change.
Choices have effects on the type of motion that can be
realized on the robotic platform, as well as the user’s
perception of the motion.

For devising a mapping, the first choice that needs to
be made regards whether it is more important to devise
a mapping between end-effector positions (e.g., similarity
between human hand location and the gripper of a robot



arm) or a mapping to achieve pose similarity (as in our pro-
totype). For human-humanoid imitation systems, the robot
has a limited workspace. Imitation is convincing only in a
particular human motion range. Consider also motion speed:
if the robot has a lower speed of motion than human users, it
will not be able to closely match a human’s motion at high
speeds. Dancers in the evaluation reported exploring how
the robot’s motion responded to theirs (D2, D3), including
how the robot would respond to motion it cannot reproduce,
such as jumping or lifting the shoulders. Moreover, they
reported that the robot moves in a way that is not human-
like, as it can isolate joints and it does not have a spine (D1).
For the prototype described here, only in-place motion is
considered, no location change. Locomotion and translation
involve movements that result in a change of the robot’s
position in space (whereas configuration change consists
of in-place body movements) [11]. Such motions could be
considered for inclusion, but introduce complications for our
prototype as a single RGBD sensor such as Kinect assumes
a frontal position. The user is required to stay in the sensor’s
field of view in order to be sensed.

4) Orchestration: Regarding Orchestration, user attention
is a factor of importance. Our prototype required changing
the orientation of the body towards the Kinect, robot or the
screen, visually attending to the screen and the robot, and
ensuring body data can be captured with Kinect. Sensors that
need to frontally capture human joint position data should
be placed so that the user can orient themselves toward the
robot. Mirroring of human motion by the robot (rather than
imitating) while the human and the robot are facing each
other was considered more familiar in the user evaluation
(from viewing oneself in the mirror). If a user whose motion
is imitated also needs to give commands using a GUI, the
interaction design relating to the choice of input modes
requires consideration, to avoid recording motion that should
not be reproduced. For instance, during the evaluation, the
user’s leaning motion towards the computer to give start and
stop commands was also reproduced. This should be avoided,
for example by using alternative ways of giving commands
to start and stop recording, e.g., with gesture control, speech
commands, a physical button, or working with an additional
person who starts and stops the recording. In the revised
prototype, a countdown timer was used to allow the user to
get into position prior to starting the recording.

The prototype required changing the orientation of the
body (towards the Kinect or the screen), visually attending to
parts of the system (the screen and the robot), and ensuring
body data can be captured with Kinect. To minimize the
need to continuously monitor all devices that are located
in different places, the interaction could be focused on the
robot, while an external screen is used for representing
recorded motion, viewing recorded motion (e.g., in absence
of a physical robot), and for setting the recording settings.
To what extent an external screen is necessary depends on
the chosen way of giving commands.

5) Integration: Decisions need to be made regarding
which joints are mapped. P1 reflected on adding the possi-

bility to the GUI to select individual limbs for recording. For
Integration, one important consideration is that such systems
make assumptions regarding bodies of users (see [46]) and
their movement capabilities. In the prototype, assumptions
arise due to the use of the Kinect and the mapping that
is made from human to the robot, for example that users
have two arms and are able to move them, which is not
the case for everyone. Ideally, options should be given to
customize which joints are detected and the robot’s motion
in response to human motion. But perhaps more importantly,
other ways of programming the robot should remain available
(e.g., providing code or specifying joint angle values).

6) Metaphor: Regarding Metaphor, dancers in the eval-
uation reported having the experience of embodying the
limitations of the robot, or of the robot’s limitations restrict-
ing their movement (D1). Some compared the interaction
to the practice of being a movement teacher (teacher-pupil
metaphor, D2), or reported experiencing the interaction as a
conversation (D2, D3), communication or duet. A sense of
connection or empathy was also reported.

7) Space-time mapping: Our prototype has a space-time
to space-time mapping, from human movement in 3D space
to robot movement in 3D space preserving timing. Generally,
if there is both a physical robot platform and a virtual
animation of a robot, this means that there are two space-
time mappings in the system. Systems can deviate from each
other. The program simulating the virtual robot can include
a physics simulator, but that is not necessarily the case.

V. CONCLUSION

We developed a prototype for robot animation of the Pep-
per robot, which was revised after evaluation with dancers
and programmers. The goal of the system is to facilitate
robot animation by users who may not have sufficient
programming skills but who do have other relevant expertise
for developing contextually appropriate human-robot inter-
actions. We extend a design space for computer animation
so that it becomes applicable for describing robot animation
systems that implement a human-humanoid pose-matching
imitation system. We identify interaction design considera-
tions connected to system architecture choices.

ACKNOWLEDGMENT

Supported by TU Wien Doctoral College TrustRobots,
FWF #ConnectingMinds grant to the project Caring Robots
// Robotic Care (CM 100-N), and a LINK-Masters project
grant by Stiftung Niedersachsen to “AI Tool for Dance
and Choreography: It’s embodied and personalized, dare
improvise?”

REFERENCES

[1] M. Jung and P. Hinds, “Robots in the wild: A time for more robust
theories of human-robot interaction,” ACM Transactions on Human-
Robot Interaction, vol. 7, no. 1, p. 5, 2018.

[2] E. Coronado, F. Mastrogiovanni, B. Indurkhya, and G. Venture,
“Visual Programming Environments for End-User Development of
intelligent and social robots, a systematic review,” Elsevier Journal
of Computer Languages, vol. 58, no. 100970, 2020.



[3] S. Šabanović, “Robots in society, society in robots: Mutual shaping of
society and technology as a framework for social robot design,” Int.
J. of Soc. Robot., vol. 2, no. 4, pp. 439–450, 2010.

[4] D. Porfirio, E. Fisher, A. Sauppé, A. Albarghouthi, and B. Mutlu,
“Bodystorming Human-Robot Interactions,” in Proceedings of
UIST’19. New Orleans LA USA: ACM, 2019, pp. 479–491.

[5] E. Jochum and J. Derks, “Tonight we improvise!: Real-time tracking
for human-robot improvisational dance,” in MOCO ’19. ACM, 2019,
pp. 1–11.

[6] E. Balit, D. Vaufreydaz, and P. Reignier, “Integrating animation artists
into the animation design of social robots an open-source robot
animation software,” in Proceedings of HRI’16, 2016, pp. 417–418.

[7] H. Knight and R. Simmons, “An intelligent design interface for dancers
to teach robots,” in RO-MAN 2017), 2017, pp. 1344–1350.

[8] A. LaViers, C. Cuan, C. Maguire, K. Bradley, K. Brooks Mata,
A. Nilles, I. Vidrin, N. Chakraborty, M. Heimerdinger, U. Huzaifa,
R. McNish, I. Pakrasi, and A. Zurawski, “Choreographic and somatic
approaches for the development of expressive robotic systems,” Arts,
vol. 7, no. 2, p. 11, 2018.

[9] D. Sirkin and W. Ju, “Using embodied design improvisation as a
design research tool,” in International Conference on Human Behavior
in Design, 2014, p. 7.

[10] B. Walther-Franks and R. Malaka, “An interaction approach to com-
puter animation,” Entertainment Computing, vol. 5, no. 4, pp. 271–
283, 2014.

[11] T. Schulz, J. Torresen, and J. Herstad, “Animation techniques in
human-robot interaction user studies: A systematic literature review,”
ACM Transactions on Human-Robot Interaction, vol. 8, no. 2, pp.
1–22, 2019.

[12] T. Ribeiro and A. Paiva, “The practice of animation in robotics,” in
Modelling Human Motion, N. Noceti, A. Sciutti, and F. Rea, Eds.
Springer International Publishing, 2020, pp. 237–269.

[13] G. Hoffman and W. Ju, “Designing robots with movement in mind,”
Journal of Human-Robot Interaction, vol. 3, no. 1, p. 89, 2014.

[14] G. Venture and D. Kulić, “Robot expressive motions: A survey of
generation and evaluation methods,” ACM Transactions on Human-
Robot Interaction, vol. 8, no. 4, pp. 1–17, 2019.

[15] J. Gray, G. Hoffman, S. O. Adalgeirsson, M. Berlin, and C. Breazeal,
“Expressive, interactive robots: Tools, techniques, and insights based
on collaborations,” in HRI 2010 Workshop: What do collaborations
with the arts have to say about HRI, 2010, p. 8.

[16] M. Saerbeck and A. J. N. v. Breemen, “Design guidelines and tools
for creating believable motion for personal robots,” in RO-MAN 2007,
2007, pp. 386–391.

[17] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
Advances in Robot Learning from Demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 297–
330, 2020.

[18] G. Adamides, C. Katsanos, Y. Parmet, G. Christou, M. Xenos,
T. Hadzilacos, and Y. Edan, “HRI usability evaluation of interaction
modes for a teleoperated agricultural robotic sprayer,” Applied Er-
gonomics, vol. 62, pp. 237–246, 2017.

[19] P. Rouanet, J. Bechu, and P.-Y. Oudeyer, “A comparison of three
interfaces using handheld devices to intuitively drive and show objects
to a social robot: the impact of underlying metaphors,” in RO-MAN
2009. IEEE, 2009, pp. 1066–1072.

[20] F. A. Bravo, A. M. González, and E. González, “A Review of Intuitive
Robot Programming Environments for Educational Purposes,” in 2017
IEEE 3rd Colombian Conference on Automatic Control (CCAC),
Cartagena, Colombia, 2017, pp. 1–6.

[21] M. Alibeigi, S. Rabiee, and M. N. Ahmadabadi, “Inverse kinematics
based human mimicking system using skeletal tracking technology,”
Journal of Intelligent & Robotic Systems, vol. 85, no. 1, pp. 27–45,
2017.

[22] F. Zuher and R. Romero, “Recognition of human motions for imitation
and control of a humanoid robot,” in 2012 Brazilian Robotics Sympo-
sium and Latin American Robotics Symposium, 2012, pp. 190–195.

[23] FraPorta, “Pepper teleoperation using OpenPose,” 2022. [Online].
Available: https://github.com/FraPorta/pepper openpose teleoperation

[24] ketchart, “Pepper-robot-controlled-by-kinect-in-ubuntu,” 2020,
https://doi.org/10.5281/zenodo.3828158.

[25] M. Hirschmanner, C. Tsiourti, T. Patten, and M. Vincze, “Virtual
Reality Teleoperation of a Humanoid Robot Using Markerless Human
Upper Body Pose Imitation,” in Humanoids 2019, Oct. 2019, pp. 259–
265.

[26] S. Nakaoka, “Choreonoid: Extensible virtual robot environment built
on an integrated GUI framework,” in 2012 IEEE/SICE International
Symposium on System Integration (SII), 2012, pp. 79–85.

[27] L. Leite and V. Orvalho, “Shape your body: control a virtual silhouette
using body motion,” in CHI ’12 Extended Abstracts on Human Factors
in Computing Systems. ACM, 2012, pp. 1913–1918.

[28] D. Parmar, J. Isaac, S. V. Babu, N. D’Souza, A. E. Leonard, S. Jörg,
K. Gundersen, and S. B. Daily, “Programming moves: Design and
evaluation of applying embodied interaction in virtual environments
to enhance computational thinking in middle school students,” in 2016
IEEE Virtual Reality (VR), 2016, pp. 131–140.

[29] A. Sanna, F. Lamberti, G. Paravati, and F. D. Rocha, “A kinect-based
interface to animate virtual characters,” Journal on Multimodal User
Interfaces, vol. 7, no. 4, pp. 269–279, Dec. 2013.

[30] G. Hoffman, R. Kubat, and C. Breazeal, “A hybrid control system for
puppeteering a live robotic stage actor,” in RO-MAN 2008, 2008, pp.
354–359.

[31] M. Suguitan and G. Hoffman, “Blossom: A handcrafted open-source
robot,” ACM Transactions on Human-Robot Interaction, vol. 8, no. 1,
pp. 1–27, 2019.

[32] F. Rietz, A. Sutherland, S. Bensch, S. Wermter, and T. Hellström,
“WoZ4u: An open-source wizard-of-oz interface for easy, efficient
and robust HRI experiments,” Frontiers in Robotics and AI, vol. 8,
p. 668057, 2021.

[33] K. Wölfel, J. Müller, and D. Henrich, “ToolBot: Robotically reproduc-
ing handicraft,” in Human-Computer Interaction – INTERACT 2021,
C. Ardito, R. Lanzilotti, A. Malizia, H. Petrie, A. Piccinno, G. Desolda,
and K. Inkpen, Eds. Springer International Publishing, 2021, vol.
12934, pp. 470–489.

[34] R. Alonso, A. Bonini, D. Reforgiato Recupero, and L. D. Spano,
“Exploiting virtual reality and the robot operating system to remote-
control a humanoid robot,” Multimedia Tools and Applications, vol. 81,
no. 11, pp. 15 565–15 592, 2022.

[35] E. Coronado, S. Itadera, and I. G. Ramirez-Alpizar, “Integrating
virtual, mixed, and augmented reality to human–robot interaction
applications using game engines: A brief review of accessible software
tools and frameworks,” Applied Sciences, vol. 13, no. 3, p. 1292, 2023.

[36] SoftBank Robotics, “Softbank robotics documentation,” 2021. [On-
line]. Available: http://doc.aldebaran.com/2-5/index dev guide.html

[37] D. Stoeva, H. A. Frijns, M. Gelautz, and O. Schürer, “Analytical
solution of pepper’s inverse kinematics for a pose matching imitation
system,” in 2021 30th IEEE International Conference on Robot Human
Interactive Communication (RO-MAN), 2021, pp. 167–174.

[38] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-
suring programming experience,” in 2012 20th IEEE International
Conference on Program Comprehension (ICPC), June 2012, pp. 73–
82.

[39] L. Bishop, A. van Maris, S. Dogramadzi, and N. Zook, “Social robots:
The influence of human and robot characteristics on acceptance,”
Paladyn, Journal of Behavioral Robotics, vol. 10, no. 1, pp. 346–358,
Oct. 2019.

[40] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of
the system usability scale,” International Journal of Human-Computer
Interaction, vol. 24, no. 6, pp. 574–594, 2008.

[41] A. Bladford, “Semi-structured qualitative studies,” in The Encyclope-
dia of Human-Computer Interaction, 2nd ed. The Interaction Design
Foundation, 2013.

[42] MAXQDA, VERBI GmbH, “MAXQDA | All-In-One Qualitative
& Mixed Methods Data Analysis Tool,” 2020. [Online]. Available:
https://www.maxqda.com/

[43] M. Busy and M. Caniot, “qiBullet, a Bullet-based simulator for the
Pepper and NAO robots,” arXiv preprint arXiv:1909.00779, 2019.

[44] J. Kim, K. S. Chun, and D.-S. Kwon, “Gesture motion program-
ming by applying robot motion hierarchy structure for the edu-
cational/entertainment robot engkey,” in 2012 IEEE Workshop on
Advanced Robotics and its Social Impacts (ARSO), 2012, pp. 36–39.

[45] E. Saad, J. Broekens, and M. A. Neerincx, “An iterative interaction-
design method for multi-modal robot communication,” in RO-MAN
2020, 2020, pp. 690–697.

[46] K. Spiel, “The bodies of TEI – investigating norms and assumptions
in the design of embodied interaction,” in TEI ’21, 2021, pp. 1–19.


