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Model Equations
To model the influence of ion sizes for ion transport in ion channels, in [1]
Lin and Eisenberg proposed the Poisson-Nernst-Planck equations with steric
effect. This n-species Poisson-Nernst-Planck model for ion concentrations ui

is given by the following system of equations

∂tui = Di · div
(
∇ui + ziui∇Φ+ ui

n∑
j=1

aij∇uj

)
=: Di div Ji

∆Φ = −
n∑

i=1

ziui

for i = 1, . . . , n. We have the assumptions:

(A1) Domain: Ω ⊆ Rd bounded with Lipschitz boundary ∂Ω = ΓD∪̇ΓN with
meas(ΓD) > 0.

(A2) Data: Di > 0, zi ∈ R, and (aij)i,j=1,...,n positive definite.

(A3) Initial Data: ui(0, x) = ui,0(x) ∈ L2(Ω).

(A4) Boundary Conditions: Ji ·ν = 0 on ∂Ω, ∇Φ ·ν = 0 on ΓN , and Φ = ΦD

on ΓD, where ΦD ∈ W 1,∞(Ω) is supposed to solve

∆ΦD = 0 in Ω, ΦD · ν = 0 on ΓN .

Entropy-Structure
We define the entropy density

h(u) =
n∑

i=1

ui(log ui − 1) +
1

2
|∇(Φ− ΦD)|2 + 1

2

n∑
i,j=1

aijuiuj

and the entropy H(u) =
∫
Ω
h(u)dx. Furthermore, we can define entropy va-

riables

wi − wD
i =

∂h

∂ui
= log ui + zi(Φ− ΦD) +

n∑
j=1

aijuj ,

where we differentiated formally and set wD
i = ziΦ

D. By existence of an
inverse to u 7→ w(u), we obtain a priori non-negativity of solutions. For the
global existence proof, we will use an entropy inequality, which for constant
ΦD reads:

d

dt
H(u) ≤ −

n∑
i=1

∫
Ω

1

ui

∣∣∣∇ui + ziui∇Φ+ ui

n∑
j=1

aij∇uj

∣∣∣2dx ≤ 0.

This gives suitable gradient estimates after further calculations.

Existence of Global Weak Solutions
Theorem 1. Consider the assumptions (A1)-(A4) from above.
Let q′ = 2d+1 and q = (2d+2)/(2d+1). There exists a global weak solution
(u,Φ) with

• u1, . . . , un ∈ L2(0, T ;H1(Ω)),

• ∂tu1, . . . , ∂tun ∈ Lq′(0, T ;W 1,q(Ω)′),

• Φ ∈ L2(0, T ;H1(Ω)),

to the weak problem∫ T

0

⟨∂tui, φi⟩dt+

+

∫ T

0

∫
Ω

(
∇ui + ziui∇Φ+ ui

n∑
j=1

aij∇uj

)
· ∇φidxdt = 0, (1)

∫ T

0

∫
Ω

∇Φ · ∇θdxdt =

∫ T

0

∫
Ω

(
n∑

i=1

ziui

)
θdxdt, (2)

for all φi ∈ Lq(0, T ;W 1,q(Ω)), θ ∈ L2(0, T ;H1
D(Ω)), i = 1, . . . , n.

Outline of Proof. We use the boundedness-by-entropy method, developed in
[3], but slightly adapt the method to fit our case of coupled equation.

Weak-Strong Uniqueness
Theorem 2. Let (u,Φ) be a weak solution, and (ū, Φ̄) be a strong solution,
i.e. ūi, Φ̄ ∈ L∞(0, T ;W 1,∞(Ω)), to (1)-(2) satisfying the same initial data.
Then u(t, x) = ū(t, x) as well as Φ(t, x) = Φ̄(t, x) for almost all x ∈ Ω and
t ∈ [0, T ).

Outline of Proof. We want to show a relative entropy inequality of the form

d

dt
H(u,Φ|ū, Φ̄) ≤ CH(u,Φ|ū, Φ̄), (3)

where
H(u,Φ|ū, Φ̄) = H(u|ū) +H(Φ|Φ̄)

and
H(u|ū) = H(u)−H(ū)−H ′(ū, Φ̄)(u− ū).

The novelty is the use of a relative Rao-entropy being an upper bound

HR(u|ū) =
∫
Ω

n∑
i,j=1

aij(ui − ūi)(uj − ūj)dx ≥ C

n∑
i=1

∥ui − ūi∥2L2(Ω).

After proving (3), one can use Grönwall’s inequality to show the result.

Further Topics
Theorem 3. Let aij = κ > 0 such that (aij)i,j=1,...,n is of rank one. Then for
some α > 0 there exists a classical solution u ∈ C1+α,1(Ω̄T ;Rd) under the
conditions:

∂Ω ∈ C2+α, zi = z, Φ ∈ C2
b (Ω), ∀x ∈ Ω : u0(x) ≥ c > 0.

Other interesting properties include:

• Long-time behaviour of solutions (work in progress).

• Boundedness of weak solutions (currently unsolved).


