Poisson-Nernst-Planck System with Steric Effect

Peter Hirvonen ongoing work with Ansgar Jüngel

KEY REFERENCES

- [1] Tai-Chia Lin and Robert (Bob) Eisenberg, A new approach to the lennard-jones potential and a new model: Pnp-steric equations, Communications in Mathematical Sciences **in the press** (2013), 149–173.
- [2] Chia-Yu Hsieh, *Global existence of solutions for the poisson–nernst–planck system with steric effects*, Nonlinear Analysis: Real World Applications **50** (2019), 34–54.
- [3] Ansgar Jüngel, *The boundedness-by-entropy method for cross-diffusion systems*, Nonlinearity **28** (2015), no. 6, 1963–2001.

CONTACT

Peter Hirvonen TU Wien Institute of Analysis and Scientific Computing

peter.hirvonen@tuwien.ac.at

Model Equations

To model the influence of ion sizes for ion transport in ion channels, in [1] Lin and Eisenberg proposed the Poisson-Nernst-Planck equations with steric effect. This *n*-species Poisson-Nernst-Planck model for ion concentrations u_i is given by the following system of equations

and the entropy $H(u) = \int$ Ω $h(u)dx$. Furthermore, we can define entropy variables

$$
\partial_t u_i = D_i \cdot \text{div} \left(\nabla u_i + z_i u_i \nabla \Phi + u_i \sum_{j=1}^n a_{ij} \nabla u_j \right) =: D_i \text{div } J_i
$$

$$
\Delta \Phi = -\sum_{i=1}^n z_i u_i
$$

Theorem 1. *Consider the assumptions (A1)-(A4) from above.* Let $q' = 2d + 1$ and $q = (2d + 2)/(2d + 1)$. There exists a global weak solution (u, Φ) with

- $u_1, \ldots, u_n \in L^2(0, T; H^1(\Omega)),$
- $\partial_t u_1, \ldots, \partial_t u_n \in L^{q'}(0,T;W^{1,q}(\Omega)'),$
- $\Phi \in L^2(0,T;H^1(\Omega)),$

Entropy-Structure

We define the entropy density

$$
h(u) = \sum_{i=1}^{n} u_i (\log u_i - 1) + \frac{1}{2} |\nabla (\Phi - \Phi^D)|^2 + \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} u_i u_j
$$

$$
w_i - w_i^D = \frac{\partial h}{\partial u_i} = \log u_i + z_i(\Phi - \Phi^D) + \sum_{j=1}^n a_{ij} u_j,
$$

where we differentiated formally and set w_i^D $i^D = z_i \Phi^D$. By existence of an inverse to $u \mapsto w(u)$, we obtain a priori non-negativity of solutions. For the global existence proof, we will use an entropy inequality, which for constant Φ^D reads:

 \overline{d} dt $H(u,\Phi|\bar{u},\Phi)$ $\bar{\bar{\Phi}}$ $\leq CH(u, \Phi | \bar{u}, \bar{\Phi}),$ (3)

 $H(u, \Phi | \bar{u}, \bar{\Phi}) = H(u | \bar{u}) + H(\Phi | \bar{\Phi})$ $\bar{\bar{\Phi}}$

Theorem 3. Let $a_{ij} = \kappa > 0$ such that $(a_{ij})_{i,j = 1,...,n}$ is of rank one. Then for $\textit{some} \, \, \alpha > 0 \,$ there exists a classical solution $u \in C^{1+\alpha,1}(\bar{\Omega}_T; \mathbb{R}^d)$ under the *conditions:*

 $\partial \Omega \in C^{2+\alpha}, \quad z_i = z, \quad \Phi \in C^{2}_b$ $\forall x \in \Omega : u_0(x) \geq c > 0.$

$$
\frac{d}{dt}H(u) \leq -\sum_{i=1}^n \int_{\Omega} \frac{1}{u_i} \left| \nabla u_i + z_i u_i \nabla \Phi + u_i \sum_{j=1}^n a_{ij} \nabla u_j \right|^2 dx \leq 0.
$$

This gives suitable gradient estimates after further calculations.

Existence of Global Weak Solutions

to the weak problem

for $i = 1, \ldots, n$. We have the assumptions:

(A1) Domain: $\Omega \subseteq \mathbb{R}^d$ bounded with Lipschitz boundary $\partial \Omega = \Gamma_D \dot{\cup} \Gamma_N$ with $meas(\Gamma_D) > 0.$

(A2) Data: $D_i > 0$, $z_i \in \mathbb{R}$, and $(a_{ij})_{i,j=1,...,n}$ positive definite.

(A3) Initial Data: $u_i(0, x) = u_{i,0}(x) \in L^2(\Omega)$.

(A4) Boundary Conditions: $J_i\cdot \nu=0$ on $\partial\Omega,\,\nabla\Phi\cdot \nu=0$ on $\Gamma_N,$ and $\Phi=\Phi^D$ on Γ_D , where $\Phi^D\in W^{1,\infty}(\Omega)$ is supposed to solve

$$
\int_0^T \langle \partial_t u_i, \varphi_i \rangle dt + \int_0^T \int_{\Omega} \left(\nabla u_i + z_i u_i \nabla \Phi + u_i \sum_{j=1}^n a_{ij} \nabla u_j \right) \cdot \nabla \varphi_i dx dt = 0, \qquad (1)
$$

$$
\int_0^T \int_{\Omega} \nabla \Phi \cdot \nabla \theta dx dt = \int_0^T \int_{\Omega} \left(\sum_{i=1}^n z_i u_i \right) \theta dx dt, \qquad (2)
$$

for all $\varphi_i \in L^q(0,T;W^{1,q}(\Omega)), \theta \in L^2(0,T;H^1_D(\Omega)), i = 1,\ldots,n$.

Outline of Proof. We use the boundedness-by-entropy method, developed in [3], but slightly adapt the method to fit our case of coupled equation.

Weak-Strong Uniqueness

Theorem 2. *Let* (u, Φ) *be a weak solution, and* (\bar{u}, Φ) $\bar{\bar{\Phi}}$ *be a strong solution, i.e.* $\bar{u}_i, \bar{\Phi} \in L^{\infty}(0,T;W^{1,\infty}(\Omega))$, to (1)-(2) satisfying the same initial data. *Then* $u(t, x) = \bar{u}(t, x)$ as well as $\Phi(t, x) = \bar{\Phi}(t, x)$ for almost all $x \in \Omega$ and $t \in [0, T)$.

Outline of Proof. We want to show a relative entropy inequality of the form

where

and

$$
H(u|\bar{u})=H(u)-H(\bar{u})-H'(\bar{u},\bar{\Phi})(u-\bar{u}).
$$

The novelty is the use of a relative Rao-entropy being an upper bound

$$
H_R(u|\bar{u}) = \int_{\Omega} \sum_{i,j=1}^n a_{ij} (u_i - \bar{u}_i)(u_j - \bar{u}_j) dx \geq C \sum_{i=1}^n ||u_i - \bar{u}_i||_{L^2(\Omega)}^2.
$$

After proving (3), one can use Grönwall's inequality to show the result.

Further Topics

Other interesting properties include:

• Long-time behaviour of solutions (work in progress).

• Boundedness of weak solutions (currently unsolved).