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Model Equations

To model the influence of ion sizes for ion transport in ion channels, in [1]
Lin and Eisenberg proposed the Poisson-Nernst-Planck equations with steric
effect. This n-species Poisson-Nernst-Planck model for ion concentrations u;
IS given by the following system of equations

Oru; = D, - div (Vuz + z;u; VO + u; Z CL@'VUj) —: D, div J;

j=1
n

AP = — Zzzuz

1=1
for: =1,...,n. We have the assumptions:

(A1) Domain: 2 C R? bounded with Lipschitz boundary 02 = I' pUI' 5 with
meas(I'p) > 0.

(A2) Data: D; > 0, z; € R, and (aij)@j:l,m’n positive definite.
(A3) Initial Data: u;(0,z) = u; o(z) € L*(9).

(A4) Boundary Conditions: J;-v =00n 90, V®.-v =0on 'y, and & = &~
on I'p, where & ¢ W1 (Q) is supposed to solve

APY =0 inQ, dP.-v=0 onTy.
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Entropy-Structure
We define the entropy density

= Zui(logui — 1) +
i=1
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and the entropy H (u fﬂ u)dz. Furthermore, we can define entropy va-
riables
p_ Oh D -
Wi =W =5~ = log u; + 2 (P — @) + Zaijuja

j=1

where we differentiated formally and set w” = z;®". By existence of an
inverse to u — w(w), we obtain a priori non-negativity of solutions. For the

global existence proof, we will use an entropy inequality, which for constant
®L reads:

2
dx < 0.
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This gives suitable gradient estimates after further calculations.
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Existence of Global Weak Solutions

Theorem 1. Consider the assumptions (A1)-(A4) from above.

Letq" =2d+1 andq = (2d+2)/(2d+1). There exists a global weak solution
(u, ®) with

* Uly...,Unp - L2(07T7 Hl(ﬂ))’

° atul, c e 6’tun S Lq/((), T, Wl’q(ﬂ)/),

.« d e L2(0,T; HY()),

to the weak problem
T
/ (Orui, i )dt+
0

/ / (vuz + 2u; VO 4 uy Z aquJ> Veidzdt =0, (1)

/ /VCD VOdzxdt = / / ( zzui) Odxdt, (2)

forall p; € L0, T;Wh1(Q)),0 € L*(0,T; H(Q2)),i = 1,...,n.

Outline of Proof. We use the boundedness-by-entropy method, developed in
[3], but slightly adapt the method to fit our case of coupled equation.

Weak-Strong Uniqueness

Theorem 2. Let (u, ®) be a weak solution, and (4, ®) be a strong solution,
e u;,® € L=0,T;Wh>(Q)), to (1)-(2) satisfying the same initial data.
Then u(t,x) = u(t,a:) as well as ®(t,x) = ®(t,x) for almost all x € ) and
te|0,7T).

Outline of Proof. We want to show a relative entropy inequality of the form

d

EH(%@W% CTD) < CH (u, ®|u, <i>), (3)
where ) )
H(u,®|u,®) = H(u|lu) + H(P|P)
and )
H(uln) = H(u) — H(u) — H (u, ®)(u — u).

The novelty is the use of a relative Rao-entropy being an upper bound

n

Halult) = [ 3 asyus =2 (u; = )dz 2 €Y s =
1=1

2,7=1

After proving (3), one can use Gronwall’s inequality to show the result.

Further Topics

Theorem 3. Leta;; = k > 0 such that (a;;); j=1....n IS Of rank one. Then for
some o > 0 there exists a classical solution v € C1T*1(Qr;RY) under the
conditions:

o0 e C*1e,

€ Gy (),

2 = 2, Ve € Q:ug(z) > c> 0.
Other interesting properties include:
» Long-time behaviour of solutions (work in progress).

* Boundedness of weak solutions (currently unsolved).
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