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Kurzfassung

Das Internet der Dinge (engl. Internet of Things, IoT) ist eines der am schnellsten wach-
senden Paradigmen in der Informationstechnologie. Es umfasst eine Vielzahl physischer
Geräte, die mit Sensor-, Kommunikations-, Netzwerk- und/oder Verarbeitungstechnologi-
en ausgestattet sind, mit dem Ziel, sich mit anderen Geräten und Systemen über das
Internet zu verbinden, um Daten auszutauschen. Obwohl diese Geräte für die alltägli-
chen Aufgaben des durchschnittlichen Benutzers recht praktisch sind, sind sie aufgrund
der begrenzten Speicher- und Verarbeitungskapazitäten nicht leistungsfähig genug, um
komplexe Aufgaben alleine auszuführen. Die fehlenden Ressourcen findet das IoT in einer
symbiotischen Beziehung mit der Cloud. Die Cloud bietet praktisch unbegrenzte Speicher-
und Verarbeitungsleistung und hat in Zusammenarbeit mit dem IoT bemerkenswerte
Erfolge gezeigt. Allerdings nehmen die IoT-Anwendungsfälle und -Domänen ständig zu,
so dass das Cloud-IoT-Paradigma allmählich an seine Grenzen stösst. Ein Bereich, in
dem sich die Cloud als unzureichend erwiesen hat, sind Systeme, bei denen die Echtzeit-
Datenverarbeitung eine entscheidende Rolle spielt. Die Cloud-Rechenzentren, die eine
zentralisierte Datenverarbeitung bereitstellen, sind oft weit vom Endbenutzer entfernt,
was zu einer hohen Zugriffslatenz führt. Hier ist die Fog eine sinnvolle Alternative. Fog
Computing ist eine Erweiterung des Cloud Computings und bietet die erforderlichen
Ressourcen physisch näher an den IoT-Geräten, am Rande des Netzwerks. Sie bietet zeit-
nahe Dienste für zeitkritische Probleme, Standortbewusstsein, geringe Latenz, ermöglicht
die geografische Verteilung und Interaktionen in Echtzeit.

Die Fog bietet daher Lösungen für die Datenverarbeitung im IoT. Dies ist jedoch nur
dann der Fall, wenn genügend Fog-Knoten bereitgestellt werden und zusammenarbeiten,
um den besten Service zu liefern. Da die Fog noch ein sehr junges Paradigma ist, sind
viele Aspekte noch nicht vollständig erforscht. Ein solches Konzept ist ein effektiver
Anreizmechanismus, der Netzwerkknoten dazu anregt, ihre Ressourcen für den Rest des
Netzwerks zur Verfügung zu stellen. Genau das ist das Hauptanliegen dieser Arbeit – wir
schlagen einen nicht-negativen kreditbasierten belohnungsorientiert Anreizmechanismus
vor, das als Ziel hat, das Knoten-Engagement im Fog-Netzwerk zu erhöhen.

Um dies zu erreichen, implementieren wir einen Algorithmus, der die teilnehmenden
Knoten belohnt und sie für die Aufgabenausführung in Credits bezahlt. Je mehr Aufgaben
ein Knoten ausführt, desto mehr Credits verdient er. Die erworbenen Credits spielen
bei der Job-Übermittlung eine wichtige Rolle, wobei die Jobs der Knoten mit einem
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höheren Credit-Saldo priorisiert werden. An die Designphase schließt sich ein ausführlicher
Umsetzungsprozess an, der mit einer detaillierten Evaluation abgeschlossen wird. Darin
zeigen wir, dass die Knotenbeteiligung in Szenarien mit hoher Arbeitslast bis zu 100%
erreichen kann. Dies bedeutet, dass alle Knoten zu beitragenden Mitgliedern des Systems
werden.



Abstract

The Internet of Things (IoT) is one of the fastest-growing paradigms in information
technology. It encompasses a wide variety of physical devices (“things”), embedded with
sensory, communication, networking, and/or processing technologies, with the goal of
connecting with other devices and systems over the Internet, to exchange data. These
devices, although quite convenient for average-user daily tasks, are usually characterized
by limited storage and processing abilities, and are not powerful enough to perform
complex tasks on their own. The resources it lacks, IoT found in a symbiotic relationship
with the Cloud. The Cloud offers virtually unlimited storage and processing power and
has shown remarkable success in cooperation with the IoT. However, with continuously
increasing use cases and application domains, the Cloud-IoT realm is starting to display
some limitations. One such domain, where Cloud has proven insufficient, are systems
where real-time data processing plays a crucial role. Cloud data centers, providing
centralized data processing, are often located a long way from the end-user, causing high
access latency. This is where the Fog becomes effective. Fog computing is an extension
of Cloud computing, offering the necessary resources physically closer to the IoT devices,
at the edge of the network. It provides timely services to time-sensitive issues, location
awareness, low latency, enables geographical distribution and real-time interactions.

The Fog offers solutions to computing problems in the IoT. However, this is only the
case when enough Fog nodes are deployed and work together to deliver the best service.
Given that the Fog is still a very young paradigm, many aspects have not yet been fully
explored. One such concept is an effective incentive mechanism that stimulates network
nodes to make their resources available for the rest of the network. Precisely that is the
main concern of this thesis – we propose a non-negative credit-based reward incentive
mechanism, aiming to increase node engagement in the Fog network.

This is accomplished by implementing an algorithm to award the participating nodes,
paying them for task execution in credits. The more tasks the node executes, the more
credits it will earn. The acquired credits play an important role during job submission,
prioritizing the jobs of the nodes with a higher credit balance. The design phase is
followed by an elaborate implementation process and concluded with a detailed evaluation.
In it, we show that in high workload scenarios, node involvement can reach up to 100%,
meaning that all nodes become contributing members of the system.
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CHAPTER 1
Introduction

1.1 Motivation
The Internet of Things (IoT) has gained a lot of popularity in the last decade, with
recent predictions forecasting that the total IoT market will reach more than one trillion
U.S. dollars in 2030 [72]. The IoT can be defined as the pervasion of business and
private spaces with “a variety of things or objects ... [which] interact with each other and
cooperate with their neighbors to reach common goals” [11], forming “an interconnected
world-wide network based on sensory, communication, networking, and information
processing technologies” [45]. IoT devices are capable of collecting information from their
surroundings by using different types of sensors. This data can then be shared with other
IoT devices, forwarded to data stakeholders, or stored in the cloud. The usage of IoT
technologies has been proposed for many different application areas, including smart
healthcare, smart cities, and smart agriculture, to name just some examples [38]. Hassan
et al. [35] present a taxonomy of IoT application fields, based on the work of recent
studies. They declare health care, the environmental, smart cities, commercial, industrial,
and infrastructural fields as main areas of IoT, each with additional subdomains.

The IoT enables devices to operate without human interaction, and quite often without
human knowledge. According to Statista [73], the number of IoT-connected devices
worldwide will nearly triple from 8.74 billion in 2020 to more than 25 billion IoT devices
in 2030. Another report predicts that, “by 2023, IoT devices will account for 50 percent
of all networked devices (nearly a third will be wireless)” [3].

The above-mentioned IoT devices are characterized by limited storage and processing
capacities, which raises concerns regarding their reliability, performance, security, and
privacy [55]. This is where Cloud computing comes into play as a major enabler of the
IoT. Cloud computing offers virtually unlimited storage [71] and processing capabilities,
and, at least partially, solves important IoT issues by expanding the available storage
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1. Introduction

and by increasing the processing capabilities [17]. The National Institute of Standard
and Technologies (NIST), in its definition, outlines the main aspects of Cloud computing
as follows: “Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction” [52].
Accordingly, the Cloud, permitting an on-demand lease of nearly unlimited resources
and storage, as well as uncostly processing capabilities, assists the IoT to compensate
its technological constraints. At the same time, by extending its scope and dealing with
real-world things in a more distributed manner, while delivering new services in a large
number of real-life scenarios, the Cloud also benefits from the IoT. In many cases, the
Cloud serves as an intermediary layer between IoT devices and (end-user) applications,
obfuscating all of the complexities and functionalities required to incorporate the latter.
As already mentioned, Cloud computing helps to avoid some IoT limitations, but there
are others, like mobility support, geo-distribution, location awareness, and low latency for
which Cloud computing is not well-suited. Likewise, there are still some concerns about
data security and user privacy in the Cloud [26]. For instance, there are several drawbacks
in the relationship between highly geo-distributed IoT devices, and a centralized Cloud
used for processing data coming from these devices. High link delays (latency), low data
transfer speed, neglecting of computational and storage resources of IoT devices, security
and privacy are often named the most critical ones [37].
The number of IoT applications that are delay-sensitive and rely on real-time data
processing is increasing in many application scenarios [18]. That is why, the (drastic)
reduction of latency of IoT applications is very significant, enabling real-time communica-
tion resulting in improved decision making. An example would be a smart transportation
system, where each car generates massive amounts of data, not all of which needs to be
sent to the Cloud. In this situation, it is of crucial importance that the IoT devices (such
as cars) process real-time data and make correct decisions. Waiting for the data to be
transferred to the Cloud, and then waiting for the results from the Cloud to implement
the decision is out of the question in situations like these [74]. In fact, time-sensitive data
should be processed in an edge computing architecture at the point of origin, or sent to
an intermediary server located in close geographical proximity to the data source. This
way, the car will make an informed decision on the fly to avoid potentially dangerous
circumstances.
Seeing that, as previously noted, IoT devices do often not have the capacity to do
(heavyweight) computations themselves, another layer between the Cloud and the IoT
devices is needed. This is where Fog computing enters the picture. The Fog offers solutions
to the discussed problems by extending services and resources offered by the Cloud to the
edge of the network, and therefore closer to the end devices [54]. An overview of a typical
Fog scenario can be found in Figure 1.1. The OpenFog Consortium defines Fog computing
as “a horizontal, system-level architecture that distributes computing, storage, control and
networking functions closer to the users along a cloud-to-thing continuum” [58].
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The Cloud

TabletPC PrinterPC MobileLaptop

Fog nodeFog node Fog node

LaptopLightbulb Airconditioner

Fog node

Cloud layer

Fog layer

Edge layer

Figure 1.1: Overview of Fog Computing

The Fog extends the Cloud, bringing it closer to the devices that generate the data and
act on it, potentially right up to the sensors and actuators of IoT devices. Cisco’s white
paper [2] gives a pretty broad definition of what a fog node is, saying that “Any device
with computing, storage, and network connectivity can be a fog node”. Yi et al. [86] deliver
a slightly more detailed definition, describing a Fog node as any facility or infrastructure
that is able of providing resources for services at the edge of the network.

Both Fog and Cloud computing are built on compute, storage, and networking resources.
The Fog however offers many characteristics that make it a non-trivial extension of the
Cloud, such as edge location, location awareness, low latency, geographical distribution,
support for mobility, real-time interactions, and device heterogeneity [16].

In addition to the already mentioned benefits, Fog computing may also provide enhanced
privacy to the end-user. In Cloud computing, personal data has to travel through the
whole network to be collected and stored in a central place, while Fog applications can
keep personal data at the edge, transferring only essential (anonymized or encrypted)
data to the cloud.

Considering the significant improvements Fog computing provides, especially in certain
domains, it should be in our interest that more nodes join Fog computing networks. The
nodes in the Fog network can share their idle resources and collaboratively accomplish
computing tasks [89], meaning, the more nodes there are in the network, the better the
overall performance will be. Unfortunately, the nodes in that network are not aware of
this. In real networks, these nodes can be selfish, and unwilling to communicate and
cooperate with other nodes [44]. They need to experience that they are gaining something
in order to participate, i.e. they need to be properly motivated. One way of motivating
the nodes to cooperate is by offering them an appealing incentive mechanism. This is
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1. Introduction

exactly what we will deal with in this thesis. Since there has not been many research
published on this topic, we will conceptualize and implement an incentive mechanism
that would make sure more nodes join a Fog network.

Researching, and analyzing existing, and implementing a pertinent and engaging incentive
mechanism in Fog computing is the main goal of this thesis.

1.2 Aim of Work and Methodology
An incentive mechanism can be defined as “a treatment or measure to motivate and
encourage people (i.e., to participate in a learning network)” [19]. However, incentive
mechanisms are not constrained only to people or learning networks. This definition can
be extended so that it can be applied to computer networks as well. If we are talking
about Fog computing, our goal would be to motivate and encourage nodes to join a
Fog network. Each node operating inside a network helps to improve the system, and
contributes to the success of the whole network. As previously mentioned, the nodes are
not always willing to contribute to a certain network. We need to find a way to persuade
them.

Precisely that is the objective of this thesis – to find an incentive mechanism whose
results would be attractive for the network, motivating nodes to be a contributive part
of it.

Today, there is not enough research published that addresses this issue in Fog computing
or even in the IoT. Incentive mechanisms in the area of Social Computing [67], Peer-to-
Peer (P2P) systems [41, 64], Crowdsensing [83], etc., as well as a more general approach,
the impact of incentive mechanisms on project performance [53], have been analyzed, but
the research is lacking in the Fog computing domain. As already explained in the previous
section, Fog computing brings significant improvements to the constantly-increasing world
of the IoT. Thus, the goal of this thesis is to conceptualize and implement an appropriate
incentive mechanism for Fog computing, using the already mentioned mechanisms from
other fields and adapting them to the Fog.

In order to achieve this, the work in this thesis will be divided into the following phases:

1. Literature research. The first step is a thorough research of existing incentive
mechanisms. A quick investigation done so far shows that a detailed discussion
on incentive mechanisms in Fog computing has not been published yet. This
examination will be deepened and extended during the work on this thesis. Assuming
no such mechanisms have been proposed in the field of Fog computing, we will have
to research and analyze incentive mechanisms from different domains, including,
but not limited to, the above mentioned fields, that could potentially be transferred
to Fog networks.

2. Assessment. Those mechanisms will then be assessed and evaluated. The pa-
rameters which will be used in the assessment will be derived from the needs of
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1.3. Structure of the Thesis

Fog networks. During this phase, the attention will be turned to the mechanisms
that would be advantageous in Fog computing network, i.e., mechanisms that could
be modified and/or extended to fit to Fog networks. Mechanisms for which no
application can be found in Fog networks will be discarded. Another major step
during this stage is to narrow down the focus to a single incentive mechanism.
From the previous analysis, one mechanism that could potentially provide (the
most) beneficial results will be chosen.

3. Design and Implementation. The chosen mechanism will most likely have to
be modified and/or adapted to be implemented as an incentive mechanism in Fog
computing. From the information acquired in the previous steps, an incentive
mechanism will be conceptualized. This stage also covers the design of that
mechanism. After this has been determined and documented, a prototype of the
mechanism will be implemented.

4. Evaluation. The final step is the evaluation. This phase will start by using a
software that simulates a Fog network. During this step, it will be observed, if the
implemented incentive mechanism has any, and if yes, what kind of positive and
negative influence on the nodes in the network. There are a couple of potential
approaches to the evaluation: For instance, the individual benefits of a single node
can be monitored, and/or the benefits of the network as a whole can be observed.
Cost, available resources, and/or latency will be considered as viable comparison
metrics.

1.3 Structure of the Thesis
Following the methodology described in the previous section, the remainder of the
work will be divided into six chapters. Chapter 2 provides background on the most
important concepts and technologies needed for the further understanding of the thesis,
such as IoT, the Fog, and incentive mechanisms. Chapter 3 presents some research
papers, from different domains that deal with this topic, and whose discoveries could be
beneficial for finding an appropriate incentive mechanism for the Fog. A new/modified
incentive mechanism suitable for the Fog network is presented in the Chapter 4, whose
implementation follows in Chapter 5. Chapter 6 deals with the evaluation of the
implemented incentive mechanism. This is where the mentioned metrics will be analyzed
and compared to see what effect did the proposed mechanism have on the nodes in the
network. Chapter 7 brings the conclusion, as well as some possible future work.
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CHAPTER 2
Background

2.1 Internet of Things
2.1.1 History
The concept of IoT has first been introduced in 1999 by Kevin Ashton, as a title of a
presentation he held, when he linked the new idea of Radio Frequency Identification
(RFID) technology to a company’s supply chain [8]. He described the IoT as a network of
physical objects (things) that have sensors and are connected to the Internet. Today, 23
years later, an exact (or a common, for that matter) definition of IoT is still not coined.
Different researchers and organizations provide different definitions, depending on the
perspective taken. The core concept is nonetheless clear – everyday objects are able to
communicate with one another over the Internet to achieve a common goal, by equipping
them with identifying, sensing, network and processing capabilities [80].

As previously mentioned, the initiator of IoT is RFID technology, that enabled devices
to function without human interaction. This technology has first been applied during
the Second World War, to identify friendly aircraft [23]. In the early 2000s, companies
realized that by attaching RFID tags to products in the initial stages of manufacturing,
they can drastically reduce supply chain costs [10]. Manpower needed for tracking and
monitoring the product could be replaced with a simple tag of negligible cost. The
tag follows the product down the supply chain, to the retail stores, all the way to the
customer. The purpose of the tag varies, depending on the stage in the supply chain.
At first, it can be used for tracking and/or environmental condition checking. Once
it reaches the stores, the tag could serve as a price tag, while, once purchased by the
customer, it can be used as a warranty information source.

Since then, IoT has advanced, making everyday devices, such as smoke detectors, window
blinds, home appliances etc., smart by attaching technology, making them directly
accessible (from other devices or people) via the Internet. In this system, devices perceive
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for themselves and respond faster and better than humans would, using analytics and
business intelligence. This happens without human interaction, and quite often without
human awareness.

Wide application, constantly reducing cost of devices, higher availability and continuous
advancements in sensor technology embedded in IoT devices, created a growing interest
in IoT.

2.1.2 Application
One of the main purposes of IoT devices is to help improve (the quality of) our lives.
As such, they found application in many areas. There are examples of IoT systems all
around us, which according to Hassan et al. [35] can be classified into six categories:
healthcare, environmental, smart cities, commercial, industrial, and infrastructure. The
most commonly-used device in healthcare is some kind of a wearable used for tracking,
and monitoring of certain factors. Another option could be biosensors that are attached
to the body, for personal remote health monitoring. Smart farming, smart agriculture,
climate changes monitoring that use smart device, Wireless Sensor Network (WSN), or
smart home system are further examples from the environmental domain. Smart cities
include smart homes, smart buildings, urban computing traffic, monitoring security and
emergencies. Digital forensics using smartphones and computers, Big Data processing
with MapReduce devices, real-time low power routing protocol with WSN devices are some
of the potential focus areas in this domain. Hassan et al. propose shopping systems and
retail that use smart devices and IoT sensors as sub-domains of commercial applications.
Smart grid and smart metering employing (industrial) sensors and mobile devices are
mentioned as part of the industrial application. The infrastructural domain focuses on
real-time performance and energy-efficient utilization of smart devices, wearable devices,
smart sensors etc.

An example of the application domains of IoT is shown in the Figure 2.1.

2.1.3 Example Scenario
The previously mentioned example of smart transportation (Fig. 2.2) (Section 1.1) is a
good example of how the IoT helps to facilitate our lives, improving liveability, workability
and sustainability [57]. These connected vehicles, that are able to “communicate” with
the environment and to transmit data, can bring great changes to the field of autonomous
driving, making our everyday commute faster and more comfortable. Parking in a busy
city can be troubling. Enabling the vehicle to interact with its surroundings can make
this experience much easier, providing live data on parking spaces, and automating the
parking process. This concept is called Vehicle-to-Everything (V2X) [42]. Based on the
data collected from their surroundings, vehicles can make informed decisions, considering
every aspect of traffic at the same time. According to the European Telecommunications
Standards Institute (ETSI) [4], there are four types of V2X, i.e., four categories of
connectivity based on IoT in vehicles:
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Figure 2.1: Applications of IoT [10]

• Vehicle-to-Infrastructure (V2I) - Interaction between vehicles and external objects

• Vehicle-to-Network (V2N) - Interaction between vehicles and V2X

• Vehicle-to-Pedestrian (V2P) - Interaction between vehicles and a vulnerable road
user, such as pedestrian or cyclist

• Vehicle-to-Vehicle (V2V) - Interaction between vehicles

In order to achieve a safe driving experience, it is important that a vehicle communicates
with all traffic participates, and to do that in a timely manner. Since most of the
traffic participants are constantly moving, real-time data processing is crucial to avoid
potentially dangerous scenarios. Satellite-based Global Positioning System (GPS) is
used for location determination, while built-in sensors detect physical objects in the
surrounding.

2.1.4 Architecture
To put it simply, IoT is the concept of connecting devices with the Internet or each other.
Using different kind of sensors, IoT devices can produce and transmit data in real-time,
that can further be stored/analyzed/processed/shared. IoT devices that can capture
streaming data for rapid analysis and perform immediate actions or processing of the
data, are called edge devices [34].

Service-Oriented Architecture (SoA), implemented in IoT, ensures interoperability among
the heterogeneous devices [59]. In [45] a four-layer SoA is presented, with the following
layers:

• Sensing layer - integrated in the IoT devices, and used to collect information
from the environment
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Figure 2.2: Smart transport [51]

• Network layer - the infrastructure that enables wireless or wired connection
among IoT devices

• Service layer - creates and manages services required by users/applications

• Interfaces layer - methods for application interaction

Sensing Layer

The interconnected world-wide network formed by the IoT devices enables them to
communicate and to be controlled remotely. At the sensing layer, the focus is on usage of
tags and sensors to automatically sense (the changes in) the environment and share this
information among devices. The RFID tags or barcode readers and sensors are wireless
devices responsible for collecting raw data. Essentially, they make the devices “things” of
an IoT system. All these objects in an IoT system can be uniquely identified and tracked
in the digital domain. Main functions of the sensing layer are to sense, actuate, identify,
interact and communicate.

Network Layer

The main task of the network layer is to connect all the things, routing the data from
the sensor to either other devices, or the next layer. It plays the main role in sharing
the data with the connected devices. The network layer also provides aggregating
functionalities from Information Technology (IT) infrastructures that can transmit the
data to decision-making units. A precondition is to have large storage capabilities to
store massive amounts of data received each second.
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Service Layer

All service-oriented activities are performed at the service layer. Such activities include
information exchange, storage and analysis, device analysis, data management, data
mining etc. This layer can also be observed as a management service layer [10] since its
purpose is to filter through and extract important in formations, from the immense raw
data collected. The services in the service layer run directly in the network to efficiently
locate new services for an application.

Interfaces Layer

This layer is responsible for the utilization of the data collected by the sensors. Displaying
the data to the user, and letting users interact with the results (filtering, aggregation,
graphical representation etc.) via, e.g., a smartphone is the main task of this layer.

In our smart transportation system example, sensors are continuously sensing the move-
ment of the traffic participants (sensing layer), and sending data through wireless
communication to the database (network layer). This data is then filtered, processed and
analyzed (service layer) and the result, i.e., the relevant data, is sent back to the edge
devices, in this case vehicles, where they are presented to the user, and considered by the
traffic participants for the next steps (interfaces layer).

2.2 Cloud Computing
IoT devices, although very useful in our daily lives, do not have the ability to perform
complex tasks on their own. They are characterized by limited storage and processing
capabilities that raise concerns regarding their reliability, performance, security, and
privacy [55]. This is where the virtually unlimited storage and processing capabilities
offered by the Cloud computing prove useful, solving many IoT problems at least partially.
Low cost of practically infinite storage [71] and processing capabilities permitted a new
computation model, which offers virtualized resources to be leased in an on-demand
fashion.

2.2.1 Cloud and IoT
The complementary characteristics of IoT and the Cloud, presented in Table 2.1, play a
significant role in the integration of the two. Many researchers saw a possibility to gain
great benefits in specific application scenarios by combining them [6, 7, 31], creating a
paradigm called CloudIoT [17, 13].

The relationship between Cloud and IoT is a symbiotic one. IoT can use the resources
it lacks, and Cloud offers. Simultaneously, Cloud can broaden its scope to deal with
real-world objects in a more distributed and dynamic manner, and deliver new services
in a variety of real-world scenarios. In simplest terms, more often than not, Cloud can
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Table 2.1: Complementary aspects of Cloud and IoT [17]

IoT Cloud
Displacement pervasive centralized
Reachability limited ubiquitous
Components real-world things virtual resources
Computational capabilities limited virtually unlimited
Storage limited to none virtually unlimited
Role of the Internet point of convergence means for delivering service
Big Data source means to manage

provide the intermediate layer between the things and the applications, hiding all the
complexity and functionality.

Researches have categorised the motivation driving the integration of the Cloud and IoT,
i.e., drivers, into three main categories: communication, storage and computation [17].

Communication. The two main aspects of the communication category are data
and application sharing. The CloudIoT enables the delivery of personalised ubiquitous
applications through the IoT, and, at the same time, applies automation to both data
collection and distribution at low cost. Using customizable portals and built-in apps, the
Cloud provides a cost-effective and efficient way to connect, track, and manage anything
from anywhere at any time [14]. High-speed networks enable effective monitoring and
control of remote items [14, 28, 61], their location [28, 61], their communications [28],
and real-time access to the data produced [14].

It should also be considered, that even though Cloud can significantly improve communi-
cation in IoT, it can also represent a bottleneck in some scenarios – limitations can be
encountered when transferring huge amounts of data from edge devices to the Cloud.

Storage. Large numbers of the things making up the IoT network produce an enormous
amount of data every minute. In 2019, Cisco predicted that by 2021, 850 Zettabytes (ZB)1

will be generated by all people, machines, and things. One of the most important drivers
for CloudIoT is certainly the large-scale and long-lived, low-cost, on-demand storage
provided by the Cloud. As such, Cloud offers opportunities for data aggregation [28],
integration [88] and sharing with third parties [88]. Once it reaches the Cloud, data can
be analyzed, protected, visualized, stored for later processing etc.

Computation. The (small) size of the edge devices results in reduced processing and
energy resources which prevents complex, on-site data analysis and/or processing. The
collected data is transmitted to more powerful nodes (the Cloud) where data manipulation
can happen.

1one zettabytes = one trillion gigabytes
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2.2.2 Architecture
The Cloud computing architecture follows a layered computing model with four layers [90]:

• Hardware layer
This layer is in charge of the Cloud’s physical resources, such as physical servers,
routers, switches, power, and cooling systems, and is usually implemented in the
data centers.

• Infrastructure layer
The infrastructure layer, also known as the virtualization layer, partitions physical
resources using virtualization technologies like VMware [1] to create a pool of
storage and computing resources.

• Platform layer
The platform layer consists of operating systems and application frameworks, build-
ing on top of infrastructure layer. Minimizing the burden of deploying applications
directly into Virtual Machine (VM) containers is the main goal of this layer.

• Application layer
At the top of the hierarchy is the application layer, consisting of the actual Cloud
applications.

Types of Cloud

In the literature [17, 90], the following types of Cloud have been identified: Public Clouds
intended for the open use by the public. Services are made available to organizations and
users over a public network through a browser. They are location independent, reliable
and highly scalable, but less secure and not customizable. Private Clouds intended for an
exclusive use of an organization, group or individuals. It is owned, managed and operated
by that organisation/group/individual. They have limited scalability and are restricted
to an area, however they can be customized to fully fit one’s needs. Community Clouds
are usually shared by more organisations that have a common interest. An example
would be universities, that use them for learning and research. Hybrid Clouds present
a combination of different Cloud types, with core activities hosted on a private Cloud,
while other are outsourced to a public Cloud or a community Cloud.

2.3 Fog Computing
It is undeniable that Cloud services have clear advantages, nevertheless, they also have a
major drawback: Cloud data centers are centralized and, as a result, are often located
distant from the end user, resulting in high access latency. While this is sufficient for
many application domains such as enterprise or Web applications, some more modern
application areas require additional properties [15]. Our smart transportation system is
such an example. Such applications are usually deployed on edge devices. In that case,
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edge devices provide low access latency due to the physical proximity, but now we have
the problem of limited resources and processing capabilities, which is intolerable in the
mentioned scenario. This is where Fog computing comes into play, allowing us to achieve
low latency granted by the edge devices, while at the same time having access to infinite
resources offered by the Cloud [15].

Fog computing is an extension of Cloud computing, offering Cloud resources closer to
the devices, i.e., at the edge of the network. It serves as a layer between the Cloud
and the underlying edge devices, solving issues like mobility support, geo-distribution,
location awareness and low latency, that Cloud faces [26]. Fog enables real-time data
distribution, which is particularly useful for time-sensitive services, such as healthcare or
transportation related topics [5]. It can also provide preparatory smart actions, before
notifying or transferring data further to the Cloud. Another intended use of the Fog
network is the temporary data processing, which does not require data to be sent to the
Cloud to do a simple, temporary task, but can be done easily, efficiently, and quickly in
the Fog network.

In November 2015, ARM, Cisco, Dell, Intel, Microsoft and Princeton University Edge
Computing Laboratory founded OpenFog Consortium to stimulate interest in Fog com-
puting and its development [58]. The name, Fog, comes from the vizualization that fog
describes the clouds close to the ground, relating to the clouds up in the sky in the Cloud
network (see Fig. 1.1).

Fog computing is a valuable addition to Cloud computing, not a replacement. It allows
for edge processing for certain application components (such as latency-sensitive ones),
while retaining the ability to interact with the Cloud (for, e.g., delay-tolerant and
computational intensive components) [54]. The Fog can not operate in standalone mode.
It plays a significant role in the areas where Cloud computing meets its limitations
such as latency-sensitive scenarios. Connected vehicles (i.e., transportation system) [74],
fire detection and firefighting [84], smart grid [74], and content delivery [81] are some
examples for such domains. Privacy is another issue for which Fog offers a better solution.
In Cloud applications, personal data is collected in a central place. As opposed to Fog
application that keep personal data at the edge, forwarding only aggregated and properly
anonymized/protected data to the Cloud.

Edge vs. Fog Computing

A term often used interchangeably with Fog computing is Edge computing. If that is
correct depends strongly on the source. Some researches say that they both refer to the
same concept [68], while others argue that they are in fact two different notions [69].
Edge computing is concerned with the computation done at the edge of the network,
without any Cloud service. Fog computing is either the same as Edge computing, or is
defined as a combination of Cloud, edge, and any intermediate nodes [15]. In this paper,
we will take the later to be true.
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2.3.1 Characteristics
Compute, storage, and networking resources present the building blocks of both the
Cloud and the Fog. Here, we will discuss the characteristics that make Fog a non-trivial
extension of the Cloud [16, 85]:

• Location awareness: Location awareness, in which nodes can be deployed in different
locations, is supported in Fog computing. In a Fog network, the nodes are aware of
their location and can use this information for further processing. The information is
extremely beneficial in some applications, such as our smart transportation system.
Devices like smart traffic lights, vehicles and other traffic participants, heavily rely
on these values, since the information required by these nodes depends on their
location. Obtaining this information, for mobile and geographically distributed
devices, can be difficult in the Cloud, since Cloud offers more global and centralized
services [75].

• Low latency: In order for data from edge devices to be processed it has to be
transferred to the few and far located Cloud data centers. Even though this
process is relatively fast, for some applications this is not sufficient (e.g., smart
transportation system, health care etc.). Fog, offering resources closer to the edge,
ensures lower latency for such critical domains.

• Geographical distribution: In contrast to the centralized Cloud, the services and
applications in Fog network benefit from/require widely distributed deployments,
since they are not stationary, but are mobile. An example would be streaming to
vehicles, through access points along tracks.

• Real-time interactions: Instead of using the batch processing utilized by the Cloud,
Fog applications employ real-time interactions between fog nodes.

• Heterogeneity: Fog nodes, or end devices come from different manufactures, and
have different specifications (routers, switches, access points, user devices etc.). The
Fog is capable of supporting and managing all these in a uniform and consistent
way, while working on different platforms these devices need to be deployed to.

• Scalability/Flexibility: The Fog provides distributed and dynamically allocated
processing and storage capabilities, in order to meet the constantly changing
requirements of the network.

• Large number of nodes: A side effect of having the nodes distributed across the
network is a very large number of nodes. Data from all these nodes has to be
collected and analyzed.

• Interoperability: Certain services, such as streaming, necessitate the collaboration
of several service providers. Hence, Fog nodes need to be able to interoperate with
different domains and across different providers.
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• Cloud support: Processes that require low latency are done in the Fog network.
Some data, however, might need to be saved in a more permanent storage or
demands more complex data processing, in which case data is transferred to Cloud
data centers.

2.3.2 Example Scenario cont.
Let’s go back to our example scenario from Section 2.1.2. In V2X, each traffic participant
is an IoT device, producing massive amount of data (i.e., a stream of data). At the same
time, they connect to other traffic participants, trying to establish data-synchronization
to provide safe and comfortable travels. In order to archive that, it is crucial that the data
from moving objects is controlled in real time. Transmitting the (dynamically generated)
data, from all devices in such a system, to the Cloud, waiting for them to be processed,
and sending the result back to the end devices in real time is challenging, to say the least.
Besides demanding low latency, these scenarios require that the location is taken into
account when making important decisions, i.e., these devices need to know how close
other participants in traffic are (e.g., distance from the vehicle to pedestrian). This is
where Fog computing offers satisfactory solutions. Fog nodes can be used to execute
processes that do not need processing that is too complex, but demand fast responses
that take mobility into consideration. Tasks that require more computational power, or
should be stored permanently are forwarded to the Cloud [75].

2.3.3 Fog Nodes
Cisco describes a fog node as a “mini Cloud”, placed at the edge of the network, that is
implemented through a range of interconnected edge devices [48]. The OpenFog Reference
Architecture (RA) paper [58] states that the computational, networking, storage and
acceleration elements of the new model, in which computation is moved closed to the
ground, possibly right up to the IoT sensors, are known as fog nodes. These nodes are
not entirely fixed to the physical edge, but rather should be viewed as a fluid network of
connectivity. The nodes in a Fog system form a grid to provide load balancing, resilience,
fault tolerance and minimization of Cloud communication [22]. They use two modes for
communication: laterally (peer-to-peer, east to west) and up and down (north to south),
and are able to discover, trust, and make use of service offered by other nodes, in order
to sustain reliability-availability-serviceability [22]. A fog node can be any device with
computing, storage and network connectivity. Examples would be industrial controllers,
switches, routers, video surveillance cameras etc.

2.3.4 Architecture
The Fog bridges the gap between the Cloud and the IoT devices to enable a service
continuum [21], creating a new opportunity for services, called Fog-as-a-Service [9]. In
such a system, a service provider establishes a collection of nodes (tenants) across its
geographic footprint and acts as their landlord. These nodes each have computation,
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Figure 2.3: Pillars of Fog Computing [58]

networking and storage capabilities, that can, in comparison to expensive Clouds, be
deployed and operated by small companies at different scales, depending on the needs of
their customers [21].

A mobile phone, for example, might serve as a fog node for wearable devices, providing
local control and analytics. While driving, the vehicle can act as a fog node for the user’s
phone, allowing various smartphone features to be shifted to the vehicle, such as display,
user interface, audio, and phone book. For the moving vehicles, roadside unit can adopt
the role of a fog node.

The architecture of Fog computing, according to the OpenFog Consortium, is driven by
the eight core principles called pillars (Fig. 2.3) [58]. These pillars define the criteria for
component manufacturers, system vendors, software providers, and application developers
in the fog supply chain.

OpenFog presents the Fog architecture description as seen in the Figure 2.4. The OpenFog
RA description is a composite of viewpoints of various stakeholder and perspectives that
are utilized to meet the needs of a specific fog computing deployment or scenario [58].

Software View presented in the top three layers shown in the architecture description,
includes Application Services, Application Support, and Node Management & Software
Backplane.

System View presented in the middle layers shown in the architecture description,
includes everything from Hardware Platform Infrastructure up to Hardware Virtualization.

Node View presented in the bottom layer shown in the architecture description, includes
Protocol Abstraction Layer and Sensors, Actuators, and Control.
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Figure 2.4: Fog Computing Reference Architecture [58]

Besides the architecture of the Fog system itself, there are five cross-cutting concerns
in the Fog, which apply to all the layers of the architecture. They are Performance,
Security, Manageability, Data Analytics and Control, and IT Business and Cross Fog
Applications [58] (Fig. 2.4).
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CHAPTER 3
State of the Art

3.1 Incentive Mechanisms
NIST defines an incentive mechanism as “a means of providing blockchain network users
an award for activities within the blockchain network” [82]. Another definition says
an incentive mechanism is “a treatment or measure to motivate and encourage people
(i.e., to participate in a learning network)” [19]. These definitions that speak of specific
cases (a blockchain network, a learning network, people), can indeed be extended to
include other networks and other participants. Many researchers and organizations have
dealt with this topic, in various domains: from the impact of incentive mechanisms on
project performance [53], to incentives in Social computing [66, 67], P2P systems [41, 64],
Crowdsensing [83], etc. The questions such as what incentive mechanism is chosen, how it
is implemented and what results does it give, all provide very relative answers, depending
on the concrete use case. Meaning, that a mechanism that provides the best results in
P2P systems might not be suited for Fog computing at all.

Finding an incentive mechanism that would deliver the greatest outcomes for Fog networks,
engaging more nodes to participate in the network activities, is the purpose of this thesis.
To achieve this, papers examining incentive mechanisms from many fields, including, but
not limited to the above-mentioned domains, are analyzed, and a single mechanism that
could potentially be the most effective is chosen, and adapted to fit the Fog’s needs.

A brief overview of feasible methods is provided in this chapter.

3.2 Related Work
3.2.1 Project Performance
As already mentioned, incentive mechanisms can be applied to any area in life. Research
with a more general approach, presented by Meng and Gallagher [53], analyzes how
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incentive mechanisms work, whether the use of incentives has a significant influence on
project performance, as well as which incentive approaches are more effective. With
the help of a questionnaire and a case study, incentives were proven to be a powerful
tool for promoting best practices and ensuring project success. As a first step, they
examined four payment methods in terms of their impact on cost performance. Next,
they compared time and quality performance in incentive vs. non-incentive projects.
Lastly, time and quality performances were compared in projects using single incentive
mechanism vs. the ones where multiple incentive mechanisms were used. Concluding, a
case study, examining how to appropriately apply incentives in practice was conducted.

The survey reported four types of incentives: time, cost, quality and safety, as well as
some disincentives1, either separately or combined with incentives. Cost incentives were
usually incorporated with the payment method, while time and quality incentives cover
both incentives and disincentives.

The case study conducted was a complement to the survey, and lead to the conclusion
that the use of multiple incentives is complicated to manage but nevertheless their usage
can improve the overall performance of a project, if project members are willing to put
in extra work. Another significant discovery says that multiple incentive mechanisms
can help to increase project performance overall, whereas a single incentive may be more
successful in a specific performance field. They also deduce that incentives should be
used together with disincentives to provide a more positive effect on project performance.

3.2.2 Data Acquisition and Distributed Computing
In the field of smartphone collaboration, Duan et al. [25] suggest an incentive mechanism
for a client to motivate the collaboration of smartphone users on both data acquisition
and distributed computing applications. For data acquisition applications, they introduce
a reward-based collaboration mechanism, in which the interaction happens in two stages.
In Stage I, the client announces the total reward to be shared among collaborators,
as well as the the minimum number of collaborators needed. During Stage II, users
individually choose whether to be a collaborator or not. They demonstrate that if the
client is aware of the users’ cooperation costs, they may choose to include just those with
the lowest costs by offering a small total reward. However, if users can hold their private
cost information from the client, the client needs to offer a larger reward to get enough
collaborators.

To achieve collaboration in distributed computing, contract theory is used to study how
a client decides on different task-reward combinations for many different types of users.

3.2.3 Crowdsourcing
Crowdsourcing is a business model where tasks are accomplished by the general public,
i.e., the crowd. It is an online practice that uses the crowd’s aggregate abilities and skills

1Incentives are defined as a reward and disincentives as a penalty.
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to achieve specific goals. Focusing on the fact that the success of Crowdsourcing systems
relies on the level of collaboration of the users, Kattmada et al. have written a paper [40],
that gives an overview of user motives and incentives, and present appropriate incentive
mechanisms to trigger these. They identified (i) learning/personal achievement, (ii)
altruism, (iii) enjoyment/intellectual curiosity, (iv) social motives, (v) self-marketing, (vi)
implicit work, and (vii) direct compensation as motives relevant to the Crowdsourcing
environment. They explain that each motive can be triggered by one or more incentives.
For example, access to the knowledge and feedback of experts or peers would be a suitable
incentive for learning (i). Social motives (iv) could be activated by the will to attain
social status and/or respect by organizers and peers, as well as the desire to present a
good social image.

In their paper, they classified the incentive mechanism into four categories: reputation
systems, gamification, social incentive mechanisms, and financial rewards and career
opportunities (Fig. 3.1). The middle of the circle is populated by the user motives
in different colors. In the outer circles, with matching colors, are incentives suitable
for each motive presented. They are mapped to the incentive mechanisms that sustain
them, shown in the image’s four corners. Examples of the Crowdsourcing (CS) platforms
are positioned according to the incentive mechanism they implement. As an example,
Reddit is located between Social Incentive Mechanisms and Reputation system, because
it incorporates both social elements and features a reputation system. They further
describe each of the categories, along with providing recommendation on their careful
design.

3.2.4 Crowdsensing
Yang et al. use smartphones, which hold sensing (e.g., accelerometer, compass, GPS,
microphone etc.), collecting, and analyzing capabilities, as the base of their Crowdsensing
research [83]. In it, they describe a new parading, Crowdsensing, as a wireless network of
millions of personal smartphones exploited to sense, collect, and analyze data of human
activities and surrounding environments, without the need to deploy thousands of static
sensors. Since participation in Crowdsensing tasks has some drawbacks for the users
(such as battery and computation power usage, as well as potential privacy threads), a
satisfying compensation must be provided in exchange for their involvment.

The authors describe two types of incentive mechanisms for a crowdsensing system: A
crowdsourcer-centric model and a user-centric model. In the former, the crowdsourcer
possesses the absolute control over the payment, and users can only adapt their activities
to the crowdsourcer’s request. In the latter, the roles are reversed, meaning users have
more control over the payment they will receive. A user proclaims the lowest price
at which it is willing to sell a service, after which the crowdsourcer selects a subset of
users, and pays them an amount that is no lower than the user’s declared price. For the
crowdsourcer-centric model, an incentive mechanism is designed that uses a Stackelberg
game [29], in which the crowdsourcer is the leader and the users are the followers, while
both are players in the game. In the first stage of the game, the crowdsourcer announces
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Figure 3.1: User motives, incentives and incentive mechanisms [40]

its reward R (the strategy of the crowdsourcer), following strategizing of their sensing
time in order to maximize their utility by the users, in the second stage. It is then showed
how to compute the unique Stackelberg Equilibrium, at which point the crowdsourcer’s
utility is maximized, and none of the users can unilaterally boost its utility by diverging
from its existing strategy. For the user-centric model, they design an auction-based
incentive mechanism, that takes bids from the users as input, chooses a subset of users
as winners, and determines the payment to each winning user. This approach has proved
to be computationally efficient, individually rational, profitable, and truthful, as stated
by the authors.

3.2.5 Peer-to-Peer
Rius et al. [64] claim that one of the most critical aspect in the design of P2P systems is
developing an incentive technique liable for the encouragement of cooperation and resource
sharing among the participants. As a solution, they offer an incentive mechanism based
on credits with a two-level topology. They implemented non-negative credit function
with a historic term used to differentiate between newcomers and old collaborative peers,
with the goal to prevent ID-changing cheating.

Their system describes three types of roles, a peer in the network can assume: managers
(M) that are in charge of managing the system and assigning the tasks, workers (W) that
provide the resources for task execution, and masters (MS) – a peer that submitted a
job to the system and is currently monitoring its execution. Peers grouped together in a
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neighbouring area make up the low level of the topology. The association is made up
of one manager and n workers, depending on the network properties, bandwidth and
latency. Areas interconnected through the managers by means of an overlay make up
the upper level. The credit-based incentive scheme, called Weighted, is proposed at the
low level. A peer that launches a job has to pay for it to be executed. In the event
that the peer does not dispose of the full amount of the credits required, the job will be
nevertheless executed and the worker nodes will be paid in full. In this case, the initiator
node will pay everything it has (leaving its account at zero) and the system will create
the rest of the required credits for the workers. Tasks launched by peers with credits on
their account will be prioritized, while the tasks coming from nodes without credit will
be selected in a First In, First Out manner, and executed only when the system is idle.

They claim that the proposed incentive mechanism surpasses alternative approaches,
increasing the system performance up to 50%2 on average.

Kaune et al. [41], explore the relationship between P2P system and cooperation in
human society. The similarities they found between P2P systems and human societies,
along with the studies that showed that the concept of reputation was successful in
encouraging cooperation in human societies, lead them to design a new reputation-based
incentive scheme, encouraging honest nodes to participate, while blocking the free-rider
nodes. They present a distributed reputation infrastructure, where reputation values
are presented by a globally binary digit that can be either 0 – representing a good (G),
or 1 – representing a bad (B) standing. Those values are assigned to the nodes based
on their last action in the role of service provider. A reputation transition, depending
on i) the current reputation of the service provider, ii) the current reputation of the
service consumer, and iii) the action taken by the service provider (cooperate (C) or
deny cooperation (D)) , evaluates the goodness of the action. Consequently, each tuple is
mapped to either 0 or 1 defining the new reputation value for the given peer. A decision
function is used by each peer individually to decide how to behave towards requesting
service consumer.

They conclude by saying that the simulation they conducted showed that nearly all peers
who wanted to successfully launch service, have to contribute to the system, resulting in
the elimination of the free-riders. They also stated that malicious peers, interested only
in disrupting the network, were quickly ostracized.

3.2.6 Fog Computing
A couple of research papers addressing the issue of incentive mechanism have been
published, focusing on one specific aspect of the Fog network.

The paper published by Nazih et al. [56] focuses on Vehicular Fog Computing (VFC),
tackling the problem of resource allocation in a VFC environment. Since they do not

2Increase in the marginal participation cause by reinvestment policy, since the more credits reinvested
in the system, the more peers will be able to launch their jobs.
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presume that vehicles just assume the role of a Fog node unconditionally, they propose a
game theoretic based incentive mechanism that motivates vehicles at the edges to share
their computational resources. They start by considering that every UserEquipment
(UE)3 chooses a Data Service Operator (DSO) that has a shared pool of computing
resources. The DSO then proposes a price to the UE, while trying to sign a contract with
the granted vehicle for its idle resources. This scenario contains multiple DSOs, which
results in them competing to offer an acceptable price. A joint optimization framework is
presented, that combines a Stackelberg game, to model the interaction between the DSOs
and UEs, and contact theory, to manage the relation between the DSOs and vehicles. In
the first stage, demands coming from UEs are set as a pricing relationship modeled as a
Stackelberg game. Validation of the proposed price, as well as the size of the computing
resources purchased by the UE also takes place at this time. Stage two includes the
creation of a contract with multiple contract items, where each contract item specifies a
relationship between the amount of computing resources requested from the vehicle, and
the corresponding payment for its contribution.

They claim that the simulation results demonstrate that devoting the computing resources
of vehicles to the UEs demands considerably enhances the performance of a VFC in
terms of resource-sharing.

Zeng et al. [89] use the framework of contract theory to devise negotiation between
task publisher and Fog nodes as an optimization problem. This is done as an incentive
mechanism to encourage nodes to participate in computation offloading, by sharing
their idle computing resources. The authors describe the following idea: Fog nodes
that participate in computation offloading, and accomplish tasks in time, are offered a
monetary reward by the task publisher. The task publisher, however, does not know
in advance how many nodes are willing to participate, and to what extend are they
willing to contribute. Their solution: the proposed contract defines the monetary reward
for various latency requirements, with higher incentives being provided to Fog nodes
that can execute jobs within shorter latency. The optimal designed contract is the Nash
equilibrium solution achieved by task publisher and Fog nodes. In this case, the utility of
the task publisher, as well as that of the Fog nodes is maximized and can not be further
enhanced on their own.

Simulation findings indicate that an optimal contract can increase task publisher utility,
while also ensuring individual rationality and incentive compatibility across Fog nodes.

3.3 Discussion
The proposed Fog computing incentives have some constraints, and cannot be applied
in general without certain modifications, e.g., the method proposed by Nazih et al. [56]
focuses only on VFC, and does not consider other applications. The goal of our paper is
to create an incentive mechanism that would have no such constraints, and could apply

3Any device used directly by an end-user to communicate
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to the whole Fog network. Other incentive mechanisms described in this section come
from different domains, that are all more or less different than Fog computing, e.g. in
architecture, topology, services etc. The most important aspects of Fog computing, and
how they are different than the already-mentioned areas will be portrayed in the next
section.
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CHAPTER 4
Design

4.1 Requirements Analysis
In this section, the most important aspects of Fog computing that should be taken
into consideration when designing an incentive mechanism, are discussed. We start by
discussing a typical system architecture for the Fog (Section 4.1.1). We then move on to
address major characteristics of Fog computing and how they influence the design of an
incentive mechanism, namely heterogeneity (Section 4.1.2), proximity awareness (Section
4.1.3), scalability (Section 4.1.4), and volatility (Section 4.1.5).

4.1.1 System Architecture
As already depicted in Fig. 1.1, Fog architectures are usually hierarchical, consisting of
three layers, out of which two are relevant for the development of an incentive mechanism.
The lower level is inhabited by the edge devices, while the upper level consists of Fog
nodes [77].

• Edge Devices Layer : consists of a large amount of small heterogeneous devices,
usually focused on one aspect of the process. They are equipped with sensing
abilities and low store/processing capabilities. The limited resources of the nodes
in this layer are insufficient to perform more complex operations, which is where
Fog nodes, also called processing nodes, are engaged. Thanks to their sensors, edge
devices possess information related to their respective context, which enables them
to act as source nodes for the processing nodes, i.e., nodes in the upper level.

• Fog Nodes Layer : contains less devices that execute processing task at the edge of
the network, offering virtualized resources closer to the edge devices. Fog nodes are
also responsible for identification of source nodes.
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This architecture is significantly different from other system types where incentive
mechanisms play an important role. P2P systems do not have a layered architecture.
Such systems rely on a flat hierarchy, in which all nodes are observed as equals. Every
node in the network can create direct links with any other network member, in order
to share or download information [60]. In crowdsourcing, there are two main actors,
namely an initiator and the participants [36]. The initiator designs and launches the
crowdsourcing action, distributes the resources to the participating nodes, and is in
charge of collecting and evaluating the result. Participants, at the very least, offer their
resources to the task initiator. If that is required, they also do some kind of processing
tasks, and (optionally) report the results back to the initiator.

4.1.2 Heterogeneity

This is one of the main, and most important, characteristics of Fog computing. It refers to
both heterogeneity of the devices themselves, as well as resource heterogeneity of the nodes.
The former is concerned with how many different types of nodes are present in a network
(smartphone, smart watch, remote controlled air-condition, traffic lights, autonomous
vehicles, health monitoring wearables etc.), while the latter deals with the very wide
range of resource capacities the processing nodes possess. These capabilities can be in
regard to Central Processing Unit (CPU) and memory, but also regarding host services
and applications [39]. Another significant aspect of heterogeneity is that Fog nodes
are deployed and working on a variety of environments and platforms [16]. Therefore,
supporting node heterogeneity becomes essential, not only in the existing network, but
also has to be taken into consideration when creating an incentive mechanism, to ensure
that a Fog system runs smoothly. The network, as well as the mechanism, should know
which node needs to be attracted for which position in the hierarchy, and which tasks
they should be in charge of.

Contrary to the Fog, other systems do not take heterogeneity into account when dis-
tributing tasks. In P2P networks, the system assigns each node equal responsibilities
regarding routing messages and storing data, even though not all nodes in the system
possess the same capacities [76]. In crowdsourcing, the initiator launches a task without
regard of resources of individual nodes [36].

4.1.3 Proximity Awareness

Since communication and information distribution are more efficient between nodes
that are close-by (both physically and logically), than those who rely on centralized
intermediaries located far away [30], making sure that the processing nodes are located
as close as possible to the IoT devices is another important goal of Fog computing. This
enables reduction in communication latency. That means, when creating an incentive
mechanism, we want to acquire the node that is in close proximity with as many nodes
as possible. Those are the ones that interest us the most, since they will have the biggest
effect on the performance of the network. However, this task can be challenging in
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Fog computing, since proximity measurements may clash with other aspects [39]. For
example, a node could be in proximity with many nodes and would be a great asset to
the system, but at the same time offers very little processing power, which is also an
important factor when entering the Fog network.

P2P and crowdsourcing networks do not usually consider proximity as factor when
distributing their messages, which results in an arbitrary long travel distance of the
messages. Some more recent P2P overlay infrastructures, such as Tapestry [91] and
Pastry [65] propose an approach where a proximity metric among pairs of nodes is
measured, and choose the nodes that are nearby to include in their routing table. This
comes at the cost of a more expensive overlay maintenance protocol [20].

4.1.4 Scalability
As already discussed, the number of IoT devices is increasing constantly and rapidly [73].
To be able to properly handle the ever-growing demand of edge devices, the number of
Fog compute nodes needs to rise as well. Keeping in mind that processing nodes span
from the edge of the network to the Cloud, the Fog network may need to scale to a great
extent. What makes this process even more difficult is that new nodes can join or leave
the network at any time. In addition, as discussed in Section 4.1.3, interests of the Fog
system have to be taken into account when including new nodes.

Both P2P and crowdsourcing networks are scalable by design, since the networks can
expand productivity with near-zero marginal cost. This aspect can be inherited from the
incentive mechanisms from these fields.

4.1.5 Volatility
Volatility plays a big role in Fog computing. Nodes in the system can come and go
at any time, meaning that computing resources in the Fog can appear and disappear
rapidly [12]. The vehicular Fog is a great example of volatility: the connection between
edge devices and Fog nodes (e.g., cars and roadside unit) is established for a short period
of time, until the car passes by, during which period the next car has already joined the
network and so on. The system needs to take this aspect into consideration, and enforce
an appropriate mechanism that is able to detect the arrival and removal of resources.

As a decentralized system, P2P has also a very volatile topology [87]. The same is true
for crowdsourcing systems. Once again, with regard to this aspect, incentive mechanisms
from these domains can be adapted.

4.2 Design
When choosing an incentive mechanism for a Fog network all the aspects discussed in
Section 4.1 need to be taken into consideration. Most of the mechanisms described in
Chapter 3 do not cover all these topics, and therefore would not be a good fit, i.e., would
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need a lot of modification. In their paper, Rius et al. [64], compared to other mentioned
approaches, consider the most of the discussed requirements, and propose a mechanism
that reflects them. Consequently, we have decided to use this paper, and the incentive
mechanism for a P2P network they describe, as a reference for this thesis.

In their earlier paper [63], they present a global P2P credit-based scheduling model
that captures P2P user dynamics, efficiently penalizes free-riders, and encourages peer
engagement. This incentive mechanism is implemented in a decentralized architecture
for distributing computation with a tree-like architecture called CoDiP2P [49, 50]. The
paper analyzed in Section 3, i.e., [64], provides an extension to their work by abandoning
the tree topology, and making it possible for the model to run on any type of structure,
given it can be sub-grouped and managed by a super-peer. Based on the mechanism
proposed in these two papers, our take on an incentive mechanism for the Fog network
will be presented in this chapter.

4.2.1 The Framework

In this section, we define framework conditions, as well as the assumptions made, in
order to have a better understanding of the presented incentive mechanism.

The system consists of logical areas that are interconnected through one single point of
contact. Each logical area has an arbitrary amount of nodes (a device in the Fog network)
and operates independently from other areas. When joining the Fog network, new nodes
can be attached to an existing area (if the capacity is not at a maximum), or cause a
creation of a new area if all current areas are full. This quality, alongside the fact that
node disconnection does not cause restructuring, speaks to the scalability of the system.
A more detailed discussion on the architecture is provided in Section 4.2.2.

We define two kinds of roles in an area (also in the system in general) that a node can
have: manager and worker. Each area has one manager, which is also a point of contact
for other areas, and many worker nodes. At any given point of time, any node can submit
a task for execution (this node is then called submitter). A manager’s main obligation
is to schedule and assign tasks making up the submitted job to the worker nodes in
the same or neighboring areas (taking proximity awareness into consideration), after
which the manager receives a commission. Worker nodes are in charge of processing the
scheduled tasks, for which they are compensated. Only worker nodes can submit a job
to the system, paying a certain amount of credits for this action. Further evidence on
roles in the system are presented in Section 4.2.3.

In order to keep track of all the submitted jobs, the manager stores these in a Queue.
The queue is a local storage of all submitted jobs in a certain area, to which only a
manager of that area has access. Once a submitter launches a job, it lands in the queue,
where it is prioritized (a debate on job prioritization is conducted in Section 4.2.5). As
long as the queue is not empty, the manager takes the first element of the queue and
processes it, earning a “processing fee” as a reward.
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The processing performed by the manager includes scheduling and assigning tasks from
said job to the workers, based on the requirements of the tasks, as well as the workers.
Heterogeneity of the system is seen through the fact that each worker disposes of certain
quantity of computational resources, that can be measured in CPU, memory or bandwidth.
These criteria play a significant role when calculating the computational potential of
a worker. At the same time, each task has different difficulty level (determined by the
computing capacity required for its execution), meaning the manager has to find an
appropriate worker that can handle the task at question. Taking into account that one
worker can only process one task at a time, we can consider the full potential of the
worker. By defining workers as mono-task workers, a worker is marked busy as soon as it
has a task currently executing. On the other hand, a worker is free when no task has
been assigned to it, or it has finished the execution of the assigned task. Section 4.2.5
provides additional examination of this topic.

The main idea behind this framework is to use a non-negative credit-based system to
motivate the nodes to participate in resource sharing. To accomplish their goal (have a
certain job executed), they need to pay for it in credits. The success of a job launching
depends on the acquired credits of the submitter. As a means to acquire said credits,
they need to execute tasks submitted by other nodes. Therefore, the principal purpose
of the suggested credit policy is to increase system throughput. Reinvestment is another
option supporting this. Managers can reinvest some of the credits they receive from
processing the submissions into the system, stimulating the workers even more. Besides
increasing credit flow through the system, it is also a good technique to tackle volatility
in Fog systems (see 4.2.5 for supplementary report on this topic).

4.2.2 Architecture
Rius et al. [64] introduce a system with a two-level topology, where the worker nodes,
grouped under one manager, make up an area. The upper area is an overlay by which
the managers of the areas communicate with each other.

An area is a logical space made up of a specified amount of workers governed by a
manager. The number of workers, represented by N, depends on the network properties,
bandwidth, and latency, and can vary for all areas in the network. Per area, there is one
manager. An example of an area is depicted in Fig. 4.1.

Although forming of these areas is not the focus of this thesis, this paragraph provides
an overview of the architecture. This logical area corresponds to a modified version
of the architecture described in [49], that has scalability, distributed management, self-
organization, and heterogeneous resource management as main goals. The structure
supports three main operations:

1. Insertion: When a node joins a network, it communicates with the node closest to
it, which returns the address of the manager of its area. After receiving the request,
the manager checks if its area has a free site for the new node. If that is the case,
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Figure 4.1: An area consisting of one manager and N = 5

it proceeds to become a new worker in that area. If there is no room in its area,
the manager forwards the request to the neighboring managers which do the same
thing for their areas. If all areas are full, the managers try to find a worker that
can be changed to a manager so that a new area can be created to locate the new
node.

2. Maintenance of the System: Every T seconds a manager sends ManagerAlive
message to the workers in its area. The workers respond with information about
their available computational resources.

3. Output: If a node does not send its statistical information, the manager assumes
that the worker has (voluntarily or involuntarily) left the network. In that case the
node is simply detached from the network1.

An area presents the lower level of the mentioned two-level topology. Multiple areas
can be interconnected through the managers by the means of an overlay, composing the
upper layer, where each area can have a different number of K neighbors, i.e., links. Fig.
4.2 shows an example of such a topology.

Once a worker node submits a job, the job arrives at the manager of that area. The
manager checks if enough resources are available in their local area to process the job. If
the answer is positive, the manager assigns the tasks to workers from ita area as explained
in Section 4.2.5. If the local area can not handle the job, the manager communicates
with their neighboring areas and tries to find one that can (discussed in Section 4.2.4).

Number of nodes in a Fog system can rapidly increase, and can reach very high numbers.
By splitting the network into two logical layers, we increase performance of the system.

1Failure of the manager node will be discussed in 7.2
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Figure 4.2: A system overlay where K = 2

Manager is the center entity of information in an area, and possesses knowledge about
all the nodes in its area (number, CPU, load, status etc.), as well as all about the jobs
submitted to the area (submitter node, timestamp of submission, number of tasks etc.).
If we would have only one manager for all worker nodes in the system, pulling and storing
all that information could become troublesome. In addition, since there would be only
one manager, the submitted jobs would most likely have to “travel” a greater distance
to reach the manager. Lastly, submitters would have to wait longer for its job to be
processed, since the manger is mono-task and can only schedule one task at a time.

The proposed architecture takes all this into account, and divides the network in multiple
areas with one manager per area, handling a certain amount of nodes, usually receiving
jobs of submitter nodes from its own area (that means physically the closest). Man-
agers can assign tasks parallel with other area’s managers, significantly increasing job
throughput.

4.2.3 Roles
This incentive mechanism relies mostly on managers that have multiple functions (Fig.
4.3). The following are the responsibilities of a manager:

• Job queue management: After a node submits a job to the system, it lands in the
manager’s queue, where it is prioritized.

• Job scheduling: The manager node acts as an intermediary between the node that
submitted the job, and those which will process it (also respectively called sender
and receiver). After it has received the job in the queue, and it has been accepted,
a manager makes sure to find workers to process the job’s tasks. For this function,
managers earn commission.
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Figure 4.3: Roles a node can have in our system

• Reinvestment: Credits earned through commission can be reinvested in the system,
as a means to motivate the nodes to participate even more, i.e., give their resources
to the system.

Any node in the system that is not a manager, is called a worker (Fig. 4.3). Workers
can either:

• Submit a job to the system they want to be processed, for which they have to pay
a certain amount of credits.

• Process a task of the job submitted by a worker, for which they will receive a
certain amount of credits.

The manager position is reserved for the older nodes (workers) in each area. This way
we ensure some Quality of Service (QoS) for the network, minimize churn rate (discussed
in 7.2), and hinder manager ID-changing (Identity-changing) (discussed in the next
section).

An alternative would be to always choose the most powerful node. This approach could
also guarantee some QoS, but it does not solve the other mentioned problems. If a node
leaves the network and decides to rejoin (to gain better reputation, or for any other
reason), it starts off as a completely new node, meaning that all the nodes in the area
are older, and have a better chance of becoming a manager one day. Awarding the most
powerful nodes, and not taking age into consideration does not decrease the total number
of nodes leaving the network (the churn rate), unlike the suggested approach. By giving
older nodes the role of manager, we discourage nodes to disconnect from the network
and reconnect.

4.2.4 Upper-level Incentive Mechanism
The upper-level Incentive Mechanism, also called global, focuses on three scheduling
criteria the managers consider during task allocation: Computing Capacity with Neighbors,
Distance and Reputation.
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Computing Capacity with Neighbors (CCN)
Keeping in mind the fact that each manager knows the number, CPU power and load
of each worker in its area, Computing Capacity (CC) for its local area can be easily
calculated. If we assume that managers have the ability to delegate duties to their
neighboring areas, we can also consider the CC for these areas. We define CCN of an
area i as the weighted local CC, increased by the average CC of the neighboring areas:

CCNi = α · CCi + (1 − α) ·
�Ki

j=0 CCj

Ki
(4.1)

The α parameter regulates the amount of tasks distributed to the powerful areas. The
greater the α, the more tasks are assigned to the local area and fewer are distributed
to the neighboring managers, and vice versa. Experiments carried out in [64] show that
load balancing, task propagation and information sharing performance reach a maximum
when α = 0.35. This results in a more balanced and efficient scheduling, since setting
the value greater than 0.35 leads to the scheduling policy taking only local CC into
consideration, neglecting the neighboring resources2.

Distance
In scenarios where communication plays an important role, distance between nodes is a
crucial aspect. Such case is our smart transport example scenario. In the computational
world, distance usually signifies the latency between two users, in our case – nodes. Since
calculating the distance between the submitter and each potential worker would be too
expensive, an attribute called Mass Center (MC) is introduced. This property represents
the area’s degree of dispersion. The higher the MC, the less dispersed the workers in an
area are, and vice versa. It is based on the CC of the worker, and defined as the weighted
average of the relative position of the worker in an area. This means that a powerful
worker’s distance will have a greater impact on the area’s MC than the distance of a
node with a low CC. The proximity of each manager to the mass center is hence highly
evaluated when a job is submitted. The MC of an area i is calculated as:

MCi =

�Ni
j=0(distmax − distj

distmax
· CCj)�Ki

j=0 CCj

(4.2)

The distance between two nodes is calculated using the Vivaldi [24] system. Vivaldi
accurately predicts the communication latency between two hosts based on the distance,
whereby the distance presents the distance between two synthetic coordinates assigned
by the method.

Reputation
The Reputation (R) of a manager is defined as the probability of the said manager’s

2For more information on this parameter, and how it effects the task propagation, load balancing
and information spreading, please refer to [64].
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successful service invocation. This is relatively easy to calculate, once the manager has
already participated in the scheduling process, and we define it as the ratio between the
total assigned tasks by the manager of an area (TT) and successfully completed tasks by
the assigned workers of the area (ST):

Ri = STi

TTi
(4.3)

The issue arises with the ones that had no assigned tasks previously – the new managers.
There is no perfect solution to this, since setting the initial value close to 1 would result
in prioritization of the new managers, that could potentially be dangerous. At the same
time, setting the value close to 0 would put new managers at a disadvantage, for no
concrete reason at all. Considering all this, as well as the fact that reputation is only one
of the three criteria used to qualify the resources controlled by a manager, we decided to
keep the initial reputation value at 0.5.

This could raise the question that if a manager earns a reputation lower than 0.5, that
it could try to disconnect and rejoin a network as a manager, to gain a better initial
reputation. However this is prevented by the manager-position assigning discussed in the
last section.

Scheduling Criteria
All these values are used in the Scheduling Criteria (V), on which the scheduling procedure
of tasks across the network of interconnected managers is based. Per area i, it is calculated
as the sum of weighted normalized MC of that area, weighted normalized CCN of the
area and weighed reputation of the area’s manager.

Vi = ( MCi

MCmax
) · β1 + ( CCNi

CCNmax
) · β2 + Ri · β3 (4.4)

where β1 +β2 +β3 = 1, and the weight assigned to those attributed is dependant from the
job attributes. It would be important that β1 is higher in scenarios such as our example
scenario, where communication is the most important aspect. β2 should be considered in
jobs that require high computation intensity, while β3 could be used to guarantee QoS.

Global Scheduling Algorithm

The manager will update all the Scheduling Criteria (Vi) from its Ka neighbors before
applying Algo 4.1. The algorithm checks if the workers in the current area can handle
the load. This calculation is done using the µ parameter, which can be user-defined and
presents the percentage how many workers should be free, for an area to process these
tasks. If the number is closer to 1, the algorithm tends to assign the tasks to the local
area, while a number closer to 0 usually results in task propagation across the upper
layer, scanning the system for the best workers. Experiments in [64] showed that by
knowing 10% of the system, the scheduling reaches 80% of the optimum performance.
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Algorithm 4.1: Global Scheduling Algorithm
1 Require: (Job): Input Parameter;
2 if #Tasks of the Job < µ·Workersa then
3 Schedule Tasks using Local Scheduling Algorithm;
4 else
5 if exists Vi so that Vi > Va then
6 Managerhighest = Manager with highest Scheduling Criteria;
7 submit job to the Managerhighest

8 else
9 Schedule Tasks using Local Scheduling Algorithm;

10 end
11 end

That number increases to 90% when 50% of the system is familiar. They concluded that
the optimal value for µ is between 10 and 20 (i.e., between 0.1 and 0.2), since at that point
the scheduling reaches 80-85%, respectively, of the optimum scheduling3. Everything
above that is considered too expensive. Task allocation in the local area (lines 3 and 9)
is described in the following section. Line 5 checks if any of the neighbors have a higher
Scheduling Criteria (Vi) than the manager executing the algorithm (Va). If that is the
case, the job will be forwarded to the manager with the highest Scheduling Criteria (line
7). If line 5 returns false, the job stays with the current manager, and should be executed
locally (line 9). This Va comes from formula 4.1, where α = 1 (so that only information
about the own local area are taken into consideration).

4.2.5 Lower-level Incentive Mechanism
At the lower level (also: area-level), a credit-based incentive scheme, implementing a
non-negative credit function is proposed.

Credit Management

When a new node joins the system, it starts with zero credits. The main motive behind
this is to prevent ID-changing attacks. ID-changing attacks are occurrences in which a
participant reconnects to the system with a new identifier to be treated as a new user [64].
There are two potential scenarios in which this would be beneficial:

1. If the system awards newcomers to motivate them to participate in the network.
In this scenario, after spending their initial reward, a node could leave the network
and connect again with a new ID, obtaining the initial credits anew. This can
happen repeatedly, thus enabling free-riding4.

3For further information on this parameter, please refer to [64]
4A circumstance in which a node uses the system resources without contributing to it.
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Algorithm 4.2: Job Admission Algorithm
1 Require: (Job): Input Parameter;
2 Manager receives Job from Sender ;
3 if Area is idle then
4 Manager schedules Job;
5 else
6 Manager queues Job;
7 end

2. Allowing nodes to have a negative credit balance, which would in some way penalize
them (e.g., lower priority in job processing), could also push nodes to reconnect
and get around this disadvantage.

To properly handle this in our system, a few mechanisms have been implemented. First,
newcomers always start with zero credits. This way, rejoining the system does not bring
any gain. By not making it possible for a node to have negative credits, i.e., not having
a disadvantage in comparison to the newcomers, the node’s interest in reconnecting
decreases. Lastly, a historical term, recording the number of collaborations made by each
worker, discourages nodes to practice ID-changing. This serves to distinguish between the
malicious ID-changing free-riders and collaborative nodes who have used up all of their
credits by submitting work to the system. That means, to launch their jobs, newcomers
will have to first share their resources, and execute foreign tasks.

Nevertheless, since the resources of the system are volatile, meaning if they are not
assigned they are wasted, if the system is idle, i.e., there are no jobs in the queue, a
job launched by a node with not enough credits, will also be accepted, and executed.
Consequently, workers processing the job, as well as the manager will receive the deserved
amount of credits. Since they can not receive the credits from the submitter, the incentive
mechanism will produce the credits needed.

The behaviour of the system, with regard to volatility is represented in the Job Admission
Algorithm (Alg. 4.2), which checks if the system is in an idle state (line 3). If that is the
case, the submitted job is processed straight away (line 4), otherwise the job is added to
the queue (line 6).

An alternative to the process in which the system itself creates the required credits
could be that the submitters have to actually buy them. The main goal of this incentive
mechanism is to motivate the nodes to become a contributing part of the network, by
processing the tasks and earning credits for their effort. These gathered credits come into
play when a node needs to submit a task to the network. Workers that do not execute
tasks, do not receive credits. Instead of saying that the system will make up for the
difference of submitter’s missing credits, we could make nodes buy the credits they need.
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Another aspect of credit management is reinvestment. Managers, being rewarded for
each job they schedule, may accumulate a lot of credits. In the described system, they
can reinvest some of those credits into the system, to stimulate collaboration. The
additional credits coming from the manager serve to stimulate workers to execute more
tasks. The more tasks the workers execute, the more credits they receive, the more tasks
are submitted for launching. The managers are rewarded with additional credits when
more jobs are scheduled. Thus, by reinvesting in the system (awarding workers), the
managers earn credits5. The purpose of such design is to increase system throughput.

In comparison to other approaches, this mechanism does not distribute the credits
uniformly in the network, but they are divided between the participating nodes, thus not
rewarding free-riding inactive nodes.

Local Scheduling Algorithm

For a worker node to be even considered for a job, it needs to first define the price
of the job. This is done via a method that takes the CPU, memory, and bandwidth,
or any combination, into account. This method intends to rate the relative value of
computational resources of each node, which are presented in credits and portray the
price a submitter has to pay for the job execution. These prices are used in the scheduling
algorithm described in this section and are stored in the manager of the respective area
as respective cost Value5.

The queue, which keeps track of the submitted jobs, takes the following criteria into
account during prioritization:

• Credits available in the submitter’s account.

• The number of jobs launched by the submitter, also called historical term.

• Time elapsed during which the job has been waiting in the queue to be served.

The purpose of this mechanism is to penalize free-riders by assigning them the lowest
priority in the queue. We ensure that peers can only enhance the launching priority by
completing system tasks using this methodology.

The Local Scheduling Algorithm (Alg. 4.3) explains how tasks are distributed to the
worker nodes. It takes the next highest prioritized job (line 3) and uses a reverse Vickery
algorithm [79] to choose the workers to execute the job. The job is divided into tasks,
and each task is assigned to a different worker in the area. Considering only workers
that have enough resources to handle the task at hand, the manager chooses the worker
with the lowest cost value in the area to process the task (line 7). This worker is in
return awarded with the difference between the second lowest value and its own (line 10).
For its scheduling duties, the manager is compensated with the difference between the

5The method itself is not defined, since it depends on the end user and can be customized.
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Algorithm 4.3: Local Scheduling Algorithm
1 Require: (Job): Input Parameters;
2 AvgValueDif = Average difference between sorted values offered by the workers;
3 Manager gets the next Job from its Queue;
4 Profit_M = 0, Rein = 0;
5 Vmax = Maximum Worker cost in the area;
6 foreach Task in Job do
7 Workerlowest = Free Worker with the lowest Value in the area ;
8 V aluelowest = Lowest free Worker cost in the area;
9 V alue2nd_lowest = Second lowerst free Worker cost in the area;

10 Profit_Workerlowest = V alue2nd_lowest - V aluelowest;
11 Profit_M = Profit_M + (Vmax - V aluelowest ) ·(1−δ);
12 Rein = Rein + (Vmax - Workerlowest ) ·δ;
13 Manager sends Task to Workerlowest;
14 Submitter pays Worker the Profit_Workerlowest amount;
15 end
16 Submitter pays Manager the Profit_M amount;

maximal and the minimal value cost in the area (line 11). That is why it will always
choose the best option, i.e., the one in which it gains the biggest profit. The reinvestment
policy described in the section above is portrayed by the δ factor in lines 11 and 12,
which takes some of the credits earned by the manager and saves them in the Rein
variable. This represents the total number of credits that can be reinvested in the system
by the manager, which can be done using different reinvestment policies. The proposed
incentive mechanism distributes credits in a non-uniform manner based on the worker’s
contribution to the system and, in particular, their computational demands. Accordingly,
δ allows us to specify the portion of the manager’s credits that will be distributed among
the workers. The submitter pays for each task execution individually, after successful
termination (line 14). After all tasks of the job have been executed, the submitter pays
the manager fee (line 16).

By using the reverse Vickery auction, we prevent node cheating in which workers offer
values lower than their respective cost. If a worker attempts to get selected by decreasing
their cost Value, in the case that the second lowest cost is higher, selecting it will result
in a negative profit. Thus, cheating is discouraged.

During the job scheduling step, we need to consider a couple of edge cases:

1. Workers with the lowest and the second lowest value offer the same price

2. There is only one free worker available

In these scenarios worker executing the task, as well as the manager would not receive
any credits, considering that the result of the subtraction would be 0. To avoid that in
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Figure 4.4: Credits shared amongst devices of one user

the first scenario, the algorithm will take the next (third) lowest element, then the fourth
and so on. If all remaining workers have the same value (which is, in the sense of profit,
equivalent to scenario 2), both worker and manager will be awarded an average value
difference, calculated in line 2.

Shared credits
A Fog network, having two types of devices (edge devices and Fog nodes), faces some
issues regarding the described mechanism. Edge devices, being solely a data source, do
not participate in job execution. Consequently, the stated behaviour is restricted only to
Fog nodes, meaning only Fog nodes can earn credits. In other terms, jobs submitted by
edge devices would always have the lowest priority in the manager queue (since they do
not provide any credits). As a solution to this conduct, we have designed a joint user
account option. Such an approach enables the owner to have one account and use the
credits from it for all their devices (Fig. 4.4). As an example, a user can have one Fog
node in an area, executing foreign tasks, and earning credits (label 1 in Fig. 4.4). These
credits are all collected in the joint account of the owner (label 2 in Fig. 4.4), and can be
used by any node (edge or Fog) of that user (label 3 in Fig. 4.4).

At this point, the question “why not use Fog nodes from own account to execute own
tasks” could be raised. A couple of reasons exist why this is indeed not the desired
behavior. First, as suggested in the 4.2.2 section, it can happen that nodes from the same
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owner do not reside in the same area. This is the case when more user nodes connect
to the network after some time, while in the meantime the total number of nodes for
its closest area is already reached. In such an event, the newcomer node has to join
another area. Furthermore, enabling such an option could significantly hurt our incentive
mechanism, since Fog nodes in the system could decide to execute only tasks coming from
their account. The workers could execute some foreign tasks at the beginning, earning
enough credits for an edge node from the same account to submit a task. This task will
then be executed by the Fog node of the same user, not allowing the credits to leave the
account. If the submitters are not too demanding (submitting only so many tasks as the
worker(s) of the same user can process), the worker(s) will have no reason to contribute
to the rest of the network, creating sub-areas of their own. Put in another way, Fog
nodes that do not have joint account would have harder time executing their tasks.

Due to the aforementioned reasons, we have decided that our incentive mechanisms
does not take joint accounts into consideration during job scheduling process, and every
submitter and worker is considered as an independent individual6.

4.2.6 System Flow
In this section, the flow from system startup is described:

1. At system startup, none of the users have credits. They are all considered equals,
and no single node, i.e., their job, is prioritized over another. At this point, the job
queue uses a First In, First Out (FIFO) scheduling policy.

2. Considering that the system is idle, the first node to launch a job is allowed to do
so for free. However, the system creates the necessary credits to reward the workers
executing the job.

3. The job lands with the manager, which decides whether its local area has enough
resources to execute the whole job. If the answer is positive, a worker node is
selected (based on criteria explained in Section 4.2.5) and the job is forwarded to
the worker. However, if the answer is negative, the job is conveyed to the manager
of the neighboring area that has the most available resources (i.e., the highest
chances of processing the task), which repeats the same process.

4. After the worker receives its compensation for the executed task, it becomes the
only node in the system that has some credits (beside the manager). As of this
moment, the jobs launched by this node is executed first, making the job scheduling
policy a priority-based queue. In case that this node does not submit any new jobs,
the system behaves once again as stated in Step 1, i.e., it selects jobs in a FIFO
manner.

6Joint user account option plays an important role only as a means for the edge nodes to be able to
pay for their tasks.
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5. If the current credit balance of a node amounts to less than needed for job execution,
(after the job has been selected based on the priority-based queue) the node will
pay with all its credits, leaving the balance at zero. The rest of the credits the
executing node is entitled to are created by the system. This increases the credit
growth in the system, making sure nothing happens to the node if it runs out of
money.

Surely, the approach in which the system accepts and executes task from the nodes not
having (enough) credits could be exploited by some nodes, creating a free-rider problem.
However the risk of this happening is very small, since the only scenario in which the
task of a node with not enough credits would be accepted, is if the system was idle. In
that case, rather than the resources going to waste, accepting and executing the task
brings gains to the whole system – the submitter’s task is executed, workers get paid for
task execution, and the manager earns commission.

Figure 4.5 portrays this flow inside one area, in which there are enough resources to
process the submitted job. It is to understand that the workers, as well as the manager,
from step 4, are the same entities as in step 1, i.e., 3, but are presented as new objects
solely for better readability.
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4.3 Discussion

This chapter provided an overview of the most important aspects of Fog computing, with
regard to developing an effective incentive mechanism. The bigger part of the section
described a new approach on how to motivate nodes to join a Fog network. The main
idea is to enforce a non-negative credit-based reward mechanism that awards contributing
nodes, and penalizes free-riders. That is achieved by implementing a two layer architecture
that partitions the system into multiple areas, each of which has one manager, and N
worker nodes that submit and/or execute computing tasks. Inside one area, a submitter
launches a job it needs executed, which lands with the manager, i.e., in the manager’s job
queue. In case there are no jobs in the queue, meaning the system is idle, the manager
takes the job and processes it promptly. Otherwise, the job is compared to the jobs in
the manager’s waiting queue and accordingly prioritized. The manager takes the highest
prioritized job from the queue and starts the scheduling process. In the event that the
job load can not be handled by the nodes in the current area, the job is forwarded to
the neighboring area in which there is the highest probability of it being successfully
executed. As long as the workers of the current area have enough capabilities to take
care of the submitted jobs, the manager continues with the scheduling algorithm. For
each task of the job, it finds the worker that demands the lowest payment for its services
and assigns the task to the worker. The task executor is awarded with credits upon
satisfactorily termination, and the manager earns commission for its employment. In
addition, the manager receives reinvestment credits that can be used (as per user-defined
functions) to further motivate participating nodes.

The two-layer architecture proposed for a P2P system, by Rius et al. [64], was used as a
starting point for this thesis. Fog systems, being different than a P2P network, could
not fully apply the proposed approach and demanded multiple changes. The biggest
difference between these two systems (with regard to incentive mechanism) is that in P2P
networks, only one type of nodes exist, so all nodes are considered equal. In Fog, a system
node can either be an edge node or a Fog node, and they have to be treated accordingly.
In our described mechanism, Fog nodes earn credits, used in job prioritization during the
submission action, by executing tasks. Since edge nodes do not execute tasks, they do not
receive any credits. To tackle this problem, we defined a joint account model, in which
edge nodes can use credits earned by the Fog nodes owned by the same user. To further
accommodate needs of Fog, the global scheduling algorithm required modifications. If a
high number of workers would be occupied by the submitted job, the manager tries to
find a neighbor that has a higher Scheduling Criteria, and could execute the job. If that
is not possible, the job stays with the current manager, and waits for the a worker (during
this phase the formula for CCN was also modified to better fit our desired network).
In the local scheduling process, modifications had to be implemented as well. In the
case that during the calculation of the profit, it occurs that a worker or the manager
would receive zero credits (in situations already discussed in the previous section), we
implemented a fallback option, where the affected node will receive the average of the
value differences between sorted workers. This way, we make sure all nodes are paid for
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their services. Another significant distinction is the payment of the submitter node for
each task immediately after its execution, it does not wait for all tasks to be handled to
make the payments. In such manner, processing nodes receive their payment as soon as
they are done with execution. The manager profit is paid after all tasks of the job are
executed.
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CHAPTER 5
Implementation

Now that we have proposed an incentive mechanism that would (in theory) be fitting
for a Fog network, we want to test it as to see how it behaves in such environments
in praxis. To that goal, we have implemented a program that simulates the described
performance, allowing us to test the conduct, the power and the limitations of the system.
This chapter offers details on the implementation of our simulator.

5.1 Existing Simulators
Several simulators in the field of Fog computing have been proposed, such as iFogSim [33]
(followed by the extended version iFogSim2 [47]), MyiFogSim [46], EdgeCloudSim [70],
YAFS [43] etc. All these simulators support some form of cost, energy and network model.
Most of them are built on top of CloudSim [32] and have a tree-like network topology
(except for YAFS that is implemented in Python, and has a graph topology). They are all
event-based, meaning simulation is based on events and not on the packets sent over the
network. iFogSim, besides simulating fog computing infrastructures, enables execution of
simulated applications in order to assess latency, energy consumption, network usage, and
resource management. FogNetSim++ [62] is built on top of OMNet++ [78], and includes
a traffic management system evaluation for scalability and effectiveness demonstration,
in terms of memory and CPU. Network parameters such as execution delay, packet error
rate, handovers and latency are provided. FogNetsim++ has support for sensors, fog
nodes, distributed data centers, and a broker node in a static or dynamic environment.
The broker’s job is to monitor other devices and their demands. It allows resource
scheduling algorithms to be executed, as well as provides an energy model and several
price models.

In order to correctly test our incentive mechanism, we need to observe worker behaviour,
monitoring contributions made to the system. One of the most important metrics we
need to consider is the number of executed tasks per worker, as well as the number of
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submitted jobs. We need to analyze which nodes are usually selected for task processing,
and which nodes never get selected. Job prioritization is another topic for the evaluation.
We should try to find the limitation of the system, and see if there are any loopholes in
the proposed system. Another important aspect is the ratio between the jobs executed
locally and the jobs forwarded to the neighboring areas.

None of the above-mentioned simulators deal with these issues in depth. They have some
other metrics in their focus, and lack the capabilities to address the issues at hand. That
is why we have decided to implement a new, simple simulator that puts the emphasis
precisely on these measurements.

5.2 Our Simulator
The simulator used for the experiments is a newly developed multi-thread program,
written in Java. In enables parallel execution of multiple tasks (by different workers), job
submissions, as well as the uninterrupted manager operations. The program converts the
algorithms described in the previous section into Java code, and simulates task execution,
while logging and storing data in a MongoDB database, providing us with an overview of
what is happening with the data at all times.

5.2.1 Premises
This subsection explains the premises on which the system is built (partially discussed in
Section 4.2.1):

• Managers do not execute tasks or submit jobs. Both operations can only be done
by a worker node. The manager’s only responsibility it to schedule and assign
already submitted jobs/tasks.

• The worker submitting a job is not marked as busy, meaning that a node that is
submitting a job can be selected to execute a certain task. Likewise, a node that is
already executing some task, can at any point submit a job to its manager.

• As soon as a job is submitted to the manager, any worker node in the system can
execute its tasks, including the submitter. This is a very unlikely scenario – if the
submitter has enough resources to execute the task, it would not need to submit it
to the network. However, we do not concern ourselves with why the submitter did
not execute its job locally. Once the job is stored in the manager’s queue, it does
not differentiate between the submitter and “the rest”.

• Payment operations are assumed to be atomic. The same is true for job prioritiza-
tion, retrieving jobs from the queue and the assignment operation.

• Task execution is simulated by a sleeping thread. Based on the task difficulty, the
worker-thread executing the task at hand will be put to sleep for a certain period
of time.
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5.2.2 Workflow
The flow chart in Figure 5.1 visualizes the system workflow. Threads are shown in yellow,
decision boxes (mostly determining the frequency of the subsequent event) in brown,
simplified actions are purple, and termination processes are red. Once the area thread is
started, the manager thread is launched once, while submitter threads can be scheduled
to run n times. All subbranches of the area thread are happening simultaneously, until
the terminate threads action (in the middle line), after which all threads in the system
start their closing process. Manager thread does its process (left branch) for each job it
has to schedule.

The system workflow is carried out in the following steps (the respective step are marked
in Fig. 5.1):

1. The system provides multiple program arguments that configure various values
throughout the program. On startup, based on the provided arguments, a manager
and a list of workers for each area are created (and stored). In this step, the local
Computing Capacity of each area is calculated and stored in the manager. In
addition, neighboring areas are defined and noted in the manager.

2. After the areas are set up, all areas start their own area thread, which functions as
a container for the manager and job submissions.

3. Each area thread starts a manager thread, and schedules submitter threads to be
executed. The operations now continue in the newly started threads.

4. Meanwhile, the area thread sleeps for a specific amount of time, after which it
starts the shutting down process, terminating the manager thread, while allowing
for a cooldown phase in which running threads finish their tasks.

5. The scheduled submitter threads are periodically started with a single mission: to
create and submit a job, after which they close.

6. During this time, the manager thread continuously looks for new jobs in its queue.
As soon as there is a job to be scheduled, the manager checks the capability of its
area and decides to either process the job locally or to forward it to a neighboring
area.

7. Once all tasks have locally been assigned to workers (inside the manager thread), a
new job execution thread is launched, allowing the manager thread to continue its
work.

8. For each task-worker combination, a worker thread is started, whose only job is to
simulate task execution, by making the thread sleep for a certain period. As soon
as the worker thread “wakes up”, i.e., the sleeping period runs out, the worker is
granted its profit, and the submitter pays for this specific task.
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9. After all tasks of the job are executed, the submitter pays the manager, and closes
the job execution thread.

5.2.3 Threads
As already mentioned, in order to enable parallel performance of all the nodes in the
network, multi-threading with special focus on synchronization was implemented. Besides
one area and one manager thread per area, all other threads are short-lived, and have a
very specific job to do, after which their terminate successfully. This section provides a
detailed description of the responsibilities the threads in the system have.

Area Thread. Each area starts its own thread that acts as a container for all node
processes. After all managers and their workers have been initialized on program startup,
area threads start by calculating MC and CCN values, followed by a single manager
thread launch (displayed in line 2 of Listing 5.1). Using ScheduledExecutorService from
the java.util.concurent package, job submission (via submitter thread) is scheduled every
one, three and ten seconds, with respective delays of zero, one, and four seconds (lines
6-8). Subsequently, the threads sleeps for the provided amount of time, before it starts the
thread termination process. Line 12 initiates an orderly shutdown, allowing the previously
submitted tasks to finish execution, but no new tasks will be accepted, meaning no jobs
will be submitted. Subsequently, the executor blocks until all tasks have completed
execution, or the timeout occurs in line 13. We then provide a cooldown phase in which
the manager still has time to finish processing the queued jobs, before interrupting the
manager thread in line 17 (proper error handling is done in the manager thread). With
that the area thread closes. All area threads start and end at the same time.

Submitter Thread. The submitter thread is a fairly simple java class, with a straight-
forward function – to submit a job. It starts by retrieving a random worker node from
its area, and creating a new job with a random task list. The job is persisted to the
database, and added to the submitter’s list of jobs, while increasing the historical term.
Furthermore, the job is added to the manager’s queue where it is automatically sorted.
Both manager and worker node are updated in the database, and the thread closes.

This action covers, implicitly, the job prioritization process as well. A manager’s job
queue is defined as PriorityBlockingQueue of Jobs. This allowed us to define a comparison
function, that compares the new job with the jobs already in the queue, and sorts them at
once. In the Job class (Fig. 5.2), we define compareTo method with the implementation
showed in Listing 5.21. As discussed in Section 4.2.5, the jobs are first sorted based on
the available credits of the submitter (lines 6-7). The second criterion is the historical
terms of the submitter (lines 12-13), in which we prioritize the nodes that have already
contributed to the system, paying for previous job executions. Lastly, in line 18, we sort
the jobs based on time elapsed waiting in the queue.

1To keep the code part short and simple, some parts of the implementation were obscured.
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Listing 5.1: Partial code from AreaThread
1 ManagerThread managerThread = new ManagerThread(manager, DELTA_CONSTANT);
2 managerThread.start();
3
4 Runnable runnable = () -> new SubmitterThread(area.getId()).start();
5
6 executor.scheduleAtFixedRate(runnable, 0, 3, TimeUnit.SECONDS);
7 executor.scheduleAtFixedRate(runnable, 1, 5, TimeUnit.SECONDS);
8 executor.scheduleAtFixedRate(runnable, 4, 10, TimeUnit.SECONDS);
9

10 Thread.sleep(runtime * 1000);
11
12 executor.shutdown();
13 executor.awaitTermination(10, TimeUnit.SECONDS);
14
15 Thread.sleep(10000);
16
17 managerThread.interrupt();

Manager Thread. One manager thread is started per running area, which takes care of
the manager operations described in the Local Scheduling Algorithm in previous chapter.
The main concern of the manager is to schedule and assign tasks to workers, for which it
is compensated. On thread startup, the manager enters a loop where it looks for a job
in its queue. As soon as a job lands in the queue, the manager removes the job from
it, and commences with processing. The first thing the manager does is to update its
Scheduling Criteria (Eq. 4.4). This includes its local CC, CCN (Eq. 4.1), MC (Eq. 4.2),
and reputation (Eq. 4.3). In the next step, the manager decides if it should process the
job locally, i.e., does it have enough resources available, or should the job be forwarded
to a neighboring area. In the latter case (left branch in Fig. 5.2), the manager with the
highest Scheduling Criteria is found. Provided that is the current node, the job will be
processed by the local area in the next step. Otherwise, the job is added to the job queue
of the selected manager. In both cases, the thread starts from the beginning, expecting
new jobs to execute.

Supposing the area can handle the job load, the manager proceeds to perform the Local
Scheduling Algorithm (right branch in Fig. 5.2). After all tasks of the job have been
assigned as described in Section 4.2.5, a new thread dealing with the execution is launched.
The manager continues to update its values and to store them in the database, before it
starts from the top, waiting for new jobs to handle.

Job Execution Thread. The job execution thread can be observed as a wrapper for job
execution. It ensures all tasks are executed, and everybody gets paid after the process is
finished. It also makes sure to update the manager’s profit and reputation after successful
termination. The thread receives a map with all tasks and their assigned workers, as well
as the profit workers and the manager should receive. For each worker in the map, a new
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Listing 5.2: Job comparison method
1 @Override
2 public int compareTo(Job job) {
3 // .... more code
4
5 // first criterion
6 if (currentHasEnoughCredits && !comparingHasEnoughCredits) return -1;
7 if (!currentHasEnoughCredits && comparingHasEnoughCredits) return 1;
8
9 // .... more code

10
11 // second criterion
12 if (currentHistoricalTerm > comparingHistoricalTerm) return -1;
13 if (currentHistoricalTerm < comparingHistoricalTerm) return 1;
14
15 // .... more code
16
17 // third criterion
18 return isCurrentBefore ? -1 : (isCurrentAfter ? 1 : 0)
19 }

worker thread is started that deals with individual task execution. The job execution
thread waits for all worker threads to finish, ahead of updating the submitter’s and the
manager’s database entries.

Worker Thread. The worker thread has a very simple job – to sleep for a certain
amount of time determined by the task difficulty discussed in Section 5.2.6. After the
time passes, the worker node is rewarded its profit, and submitter’s credits are decreased
and persisted. The thread gives signal to the job execution thread that it has finished,
and closes.

5.2.4 Models

The class diagram presented in Fig. 5.3 portrays the model structure in the described
system. An area contains multiple nodes – one manager and many worker nodes, both
subclasses of the abstract Node class. The worker node has a list of jobs waiting for
execution (all submitted jobs from this worker), whereas a manager node has a list of
jobs waiting to be executed. A job has a list of tasks to be executed by the worker nodes.

5.2.5 Program Arguments

In order to make the program customizable, and to make experimentation easier, we
introduced multiple program arguments that can be provided. If no explicit value is
supplied for an argument, the default value is used.
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• Runtime: An integer that determines how long the program should run, i.e., after
which time should the submitters stop launching jobs and the manager should stop
listening for new jobs, given in seconds. Default value is 50.

• Delta Constant: A double value that defines the delta constant used in the Local
Scheduling Algorithm (see Section 4.2.5). Default value is 0.5.

• Minimum number of workers: An integer value setting the minimum amount of
workers in an area. Default is 1.

• Maximum number of workers: An integer value setting the maximum amount of
workers in an area. Default is 50.

• Number of areas: An integer that determines the number of areas in the system.
Default is 1.

• Number of neighboring areas: An integer value that identifies how many neighbors
should each area in the network have. Default value is 0.
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Figure 5.3: Class diagram

5.2.6 Predefined Values
To be able to run our experiments, and focus on the aspects important to the incentive
mechanism proposed in this thesis, some valuation had to be predefined and/or randomly
generated.

• The number of workers in each area is determined by randomly choosing a value
between the (provided) minimum and maximum.

• The computational resources offered by each worker are generated randomly. The
range will be experimented on in the next chapter of the thesis.

• The number of tasks in a job is selected randomly by the program. The range will
be experimented on in the next chapter of the thesis.

• For simplicity, we decided to provide three different task difficulty levels: easy,
medium, and high. Easy difficulty requires 10 computational resources for processing,
and the executions of easy tasks “last” 1 second. Medium tasks require 20 resources,
and require 2 seconds for execution, while hard ones “cost” 50 resources and finish
in 5 seconds.
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5. Implementation

• The distances of workers in an area, used in Eq. 4.2, are also randomly elected, in
the range of 100 to 300 ms.

• As already mentioned, the optimal value for α (Eq. 4.1) is 0.35, so we chose this
value as a final constant.

• Considering that in our example scenario, communication plays the most important
role, we decided to set β1 from Eq. 4.4 to 0.7, while β3, as next important aspect,
is defined at 0.2, and β2 is set to 0.1.

• The µ constant from global scheduling algorithm (Section 4.2.4) is fixed at 0.2 (as
experimentation suggested).

• While looking for a free worker, to avoid endless loops, the manager thread will
terminate after 10 seconds, if it does not find a free worker.

5.2.7 Problems Encountered
Unquestionably, the biggest problem during the development phase was the synchroniza-
tion between threads. Considering that a large amount of threads, all writing and reading
to and from the database, can be running in parallel, the problem of data overwriting,
resulting in working with outdated values, was encountered. This could be resolved with
synchronized blocks in Java, where each critical database interaction is put in one of
such blocks.

Another issue occurred after area thread termination. At the point where the runtime
has run out, immediate program termination resulted in many unfinished (unexecuted
and unassigned) tasks/jobs. To deal with that, we introduced a cooldown phase after
runtime expired, to allow threads to finish up their processes. Experimentation on this
cooldown period will be addressed in the next chapter.

5.3 Critical Discussion
As is often the case with new approaches, our algorithm also has some limitations and
potential for improvement. In this section, such issues will be discussed, but we will not
deal with their implementation, we leave that for the future work (Section 7.2).

When a worker node submits a job for execution, it does not know how much its execution
will cost. The current implementation takes tasks from the job, one by one, and executes
them, for which the submitter pays. After all tasks of the submitted jobs are executed,
the submitter pays the manager its processing fee. Before the job launch, the submitter
can not know how much will it have to pay, since that heavily depends on the available
workers in the network at the given moment, and their “prices”. An alternative would be
for a submitter node to set an upper boundary representing the maximum it is willing to
pay for the process. In case that is not possible within the provided range, the job would
not be executed in the current area.

56



5.3. Critical Discussion

Another aspect that needs more attention is fault tolerance during job execution. As
already stated, in the current system the submitter pays, and workers are awarded after
each task execution. From the view of the workers executing the tasks, that is the desired
behaviour, since they should be paid for their effort. On the other hand, observing from
the submiiter’s perspective, what if something happened during the execution of one
of the tasks, and the job has not been processed fully? The submitter would have had
already paid for certain tasks to be executed, but its request (the whole job) would have
not been successfully processed. Finding a solution that would work for both workers
processing and the one submitting the job, could be demanding and we leave that to
future work.
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CHAPTER 6
Evaluation

Testing the system in a controlled and governed environment allows us to analyse the
results from different scenarios, observe the edge cases, detect any vulnerabilities and
discover limitations of the system. This chapter delivers a thorough examination of the
system, with regard to the mechanism behaviour and the results.

The main focus of this evaluation is to understand how the system behaves with different
input data. We will analyse the number of jobs created, executed and unfinished. The
focus will lie on the number of tasks each node executes, as well as the profit it receives.
We will discuss the main causes for node contribution and try to find the reasons for the
lack of it. Communication across multiple areas, including job forwarding will also be a
debated topic.

Given that the general evaluation setup was already explained in the last chapter (see
Section 5.2.1), the focus of this section lies on the experimentation scenarios. We will
begin the analysis with a lower number of workers, tasks, runtime etc., and throughout
the assessment, these numbers will increase, trying to find the limitations of the system.

6.1 Single Area
We will first consider the scenario where only one area exists. Such situation would be
relevant in a smaller Fog network, in which case we do not expect too many nodes to
join, or too much traffic to be generated, so one area, i.e., one manager to handle the
load, would suffice.
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6. Evaluation

Table 6.1: Job collection after program termination1

_id submitterId forceProcessLocally numberOfTasks
6233ab86b881ed3dec9aca3f 6233ab85b881ed3dec9aca18 false 4
6233ab88b881ed3dec9aca40 6233ab85b881ed3dec9aca2d false 3
6233ab89b881ed3dec9aca41 6233ab85b881ed3dec9aca32 false 2
6233ab8ab881ed3dec9aca42 6233ab85b881ed3dec9aca18 false 3
6233ab8cb881ed3dec9aca43 6233ab85b881ed3dec9aca21 false 4
6233ab8db881ed3dec9aca44 6233ab85b881ed3dec9aca25 false 3
6233ab8fb881ed3dec9aca45 6233ab85b881ed3dec9aca1c false 3
6233ab92b881ed3dec9aca46 6233ab85b881ed3dec9aca21 false 3
6233ab92b881ed3dec9aca47 6233ab85b881ed3dec9aca26 false 3
6233ab94b881ed3dec9aca48 6233ab85b881ed3dec9aca37 false 2
6233ab95b881ed3dec9aca49 6233ab85b881ed3dec9aca32 false 2
6233ab97b881ed3dec9aca4a 6233ab85b881ed3dec9aca20 false 4
6233ab98b881ed3dec9aca4b 6233ab85b881ed3dec9aca1c false 3
6233ab9bb881ed3dec9aca4c 6233ab85b881ed3dec9aca39 false 3
6233ab9cb881ed3dec9aca4d 6233ab85b881ed3dec9aca29 false 1
6233ab9eb881ed3dec9aca4e 6233ab85b881ed3dec9aca27 false 1
6233ab9eb881ed3dec9aca4f 6233ab85b881ed3dec9aca2f false 1
6233aba1b881ed3dec9aca50 6233ab85b881ed3dec9aca1e false 3
6233aba1b881ed3dec9aca51 6233ab85b881ed3dec9aca35 false 4
6233aba4b881ed3dec9aca52 6233ab85b881ed3dec9aca26 false 3

The program is started with the following arguments:
1 --runtime=30 --minWorkers=5 --maxWorkers=50 --delta=0.5

stating that we want it to run for 30 seconds (+ 10 seconds cooldown period). The
area should have a random number of workers between 5 and 50, and the delta constant
should be set to 0.5, meaning half of the credits earned by the manager will be set aside
for the reinvestment, and the other half are the profit.

6.1.1 Jobs
During the 30 seconds of runtime, the area thread has scheduled and launched 20
submitter threads. The same number of jobs has been created and stored in our database
(see Table 6.1), summing up to a total of 55 tasks. The field forceProcessLocally is always
false, since we have only one area, and in no case would we even consider forwarding a
job to the neighboring area, meaning no forcing is needed either. Each job contains an id
of its, randomly selected, submitter. In addition, the list of randomly generated tasks for
each job is saved. In this scenario, there could be between one and five tasks per job.
These tasks can be either easy, medium or difficult and accordingly need different times
and computational resources for their executions (see Section 5.2.6).

1For simplicity, some fields were obscured, and instead of showing all task objects, only the number
of tasks in each job is displayed.
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6.1. Single Area

Listing 6.1: Manager values after 30 seconds runtime
1 {
2 "name": "Manager 1",
3 "profit": 23953,
4 "reinvestment": 23953,
5 "jobsExecuted": 20,
6 "jobsAssigned": 20,
7 "numberOfJobsExecutedLocally": 20,
8 "numberOfJobsForwardedToNeighbours": 0,
9 "queue": [],

10 ...
11 }

6.1.2 Manager Node
After each job submission, assignment and execution, the manager is updated. Listing 6.1
shows the values, the manager holds at the program end2. Considering that the profit
and reinvestment were equally divided (δ = 0.5), it is not surprising that the profit and
the reinvestment have the same value, in this case – 239533. That is the amount the
manager has earned while scheduling tasks. Taking into account that only one manager
exists in the system, no calculations for the Global Scheduling Algorithm (described in
Section 4.2.4) such as CCN, MC etc., are required, the manager has no neighboring areas,
and the number of forwarded jobs stays at zero. There are no jobs in the manager queue,
meaning all submitted jobs were assigned to workers. By implementing a 10 seconds
cooling phase, we allowed all assigned tasks to finish their execution, so there are no open
processes.

6.1.3 Worker Node
In this test run, 41 workers were generated, with a random number of computational
resources between 5 and 1000 (Fig. 6.1), whereby values between 9 and 978 were assigned
(see Fig. 6.2). The same graph provides a quick overview of characteristics4 of the credit
distribution among workers in the system. Figure 6.3 shows the same information in
terms of the number of jobs submitted, and the number of tasks executed5. Following

2Only data relevant to this scenario are shown, the rest is obscured.
3In our implementation, we do not implement a reinvestment policy. This can be user-defined, and

modified to user desires and use case. Our experiment serves to show how much does the manager have
at its disposal to use for a reinvestment strategy.

4By characteristics, we mean: the median, the lower quartile, the upper quartile, the lower whisker
and the upper whisker [27].

5The only reason these values are separated into two graphs is the high variation in value, which
would not allow data to be interpreted in a meaningful way if merged into a single graph.
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6. Evaluation

the system termination, no node had jobs waiting for execution, demonstrating that all
jobs assigned by the manager were indeed executed, and all workers were free.

Table 6.2 reveals a more detailed worker information, restricting to those fields significant
for our current discussion. In it, we can see how many computational resources each
node has, how many jobs it submitted (historicalTerm), how many credits it has earned,
and the amount of the tasks it executed. The nodes are sorted based on the number of
executed tasks, descending.

Right at first glance, we can notice that there are two workers that executed the most
tasks (each 9 tasks), one of which, Worker 1.23, has also earned by far the most credits
(933). The reason lies in the fact that this particular worker has the lowest “price” for
its computational resources – 14, excluding Worker 1.38 that does not have enough
resources to execute any task6. That is five times lower than the next lowest value of a
worker – 70. Since our algorithm is programmed to always look for the cheapest option, it
will always select the Worker 1.23, so long it is available. Bearing in mind that this node
has only 14 resources, it is important to mention that it can only process the tasks with
difficulty level easy7. There was a total number of 13 easy tasks submitted to the system,
and 9 from those were assigned to and processed by the Worker 1.23. Considering that
easy tasks are processed in one second, this worker was quickly available to take up a
new task, which is how it manager to execute so many of them.

We can also notice that there are a couple of workers which, even though they participated
in the task execution, wound up having very little (potentially zero) credits at the end.
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Figure 6.1: Randomly generated computational resources for the workers, displayed as a
scatter plot

6The simplest task requires 10 computational resources (see Section 5.2.6)
7Easy task require 10, medium 15 computational resources (as explained in Section 5.2.6).
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6.1. Single Area

Table 6.2: Partial excerpt from worker node collection after program termination, sorted
on the number of executed tasks

_id name resources historicalTerm credits tasksExecuted
6233ab85b881ed3dec9aca29 Worker 1.20 98 1 86 9
6233ab85b881ed3dec9aca2c Worker 1.23 14 0 933 9
6233ab85b881ed3dec9aca20 Worker 1.11 128 1 3 8
6233ab85b881ed3dec9aca3a Worker 1.37 70 0 276 8
6233ab85b881ed3dec9aca36 Worker 1.33 124 0 109 6
6233ab85b881ed3dec9aca25 Worker 1.16 140 1 177 5
6233ab85b881ed3dec9aca1f Worker 1.10 199 0 297 4
6233ab85b881ed3dec9aca23 Worker 1.14 129 0 44 4
6233ab85b881ed3dec9aca1d Worker 1.8 273 0 2 2
6233ab85b881ed3dec9aca16 Worker 1.1 822 0 0 0
6233ab85b881ed3dec9aca17 Worker 1.2 340 0 0 0
6233ab85b881ed3dec9aca18 Worker 1.3 907 2 0 0
6233ab85b881ed3dec9aca19 Worker 1.4 779 0 0 0
6233ab85b881ed3dec9aca1a Worker 1.5 599 0 0 0
6233ab85b881ed3dec9aca1b Worker 1.6 464 0 0 0
6233ab85b881ed3dec9aca1c Worker 1.7 593 2 0 0
6233ab85b881ed3dec9aca1e Worker 1.9 704 1 0 0
6233ab85b881ed3dec9aca21 Worker 1.12 275 2 0 0
6233ab85b881ed3dec9aca22 Worker 1.13 352 0 0 0
6233ab85b881ed3dec9aca24 Worker 1.15 710 0 0 0
6233ab85b881ed3dec9aca26 Worker 1.17 540 2 0 0
6233ab85b881ed3dec9aca27 Worker 1.18 314 1 0 0
6233ab85b881ed3dec9aca28 Worker 1.19 978 0 0 0
6233ab85b881ed3dec9aca2a Worker 1.21 702 0 0 0
6233ab85b881ed3dec9aca2b Worker 1.22 697 0 0 0
6233ab85b881ed3dec9aca2d Worker 1.24 418 1 0 0
6233ab85b881ed3dec9aca2e Worker 1.25 479 0 0 0
6233ab85b881ed3dec9aca2f Worker 1.26 274 1 0 0
6233ab85b881ed3dec9aca30 Worker 1.27 335 0 0 0
6233ab85b881ed3dec9aca31 Worker 1.28 526 0 0 0
6233ab85b881ed3dec9aca32 Worker 1.29 874 2 0 0
6233ab85b881ed3dec9aca33 Worker 1.30 522 0 0 0
6233ab85b881ed3dec9aca34 Worker 1.31 620 0 0 0
6233ab85b881ed3dec9aca35 Worker 1.32 304 1 0 0
6233ab85b881ed3dec9aca37 Worker 1.34 909 1 0 0
6233ab85b881ed3dec9aca38 Worker 1.35 675 0 0 0
6233ab85b881ed3dec9aca39 Worker 1.36 310 1 0 0
6233ab85b881ed3dec9aca3b Worker 1.38 9 0 0 0
6233ab85b881ed3dec9aca3c Worker 1.39 409 0 0 0
6233ab85b881ed3dec9aca3d Worker 1.40 438 0 0 0
6233ab85b881ed3dec9aca3e Worker 1.41 464 0 0 0
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Figure 6.2: Information on computational
resources (CR) and credits distribution
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Figure 6.3: Information on historical term (HT)
and executed tasks distribution

These are usually workers that have submitted jobs for execution. This means that the
execution of the jobs they submitted costed almost as many credits as they earned for
their task execution. However, even if they currently posses little credits (or potentially
none), their historical term (the number of submitted jobs) is higher than in some other
nodes, meaning that their job would be prioritized compared to the jobs of the nodes
which also do not have enough credits to pay for it, but have not submitted a job either.

Out of 41 workers introduced in the system, 9 contributed to the network by processing
tasks8, which is around 22% of all the workers. Put another way, the average number of
executed tasks is 1.3 (the diamond mark in 6.3). The same 22% percent of the workers
have a credit balance higher than zero. These numbers come as a result of launching 20
jobs (total of 55 tasks) in an area of 41 workers, where jobs are submitted periodically,
and task execution has a relatively short duration, allowing the cheap workers to quickly
finish their tasks, and offer their resources in the new scheduling phase. An area in which
more processing power is required, or similarly, the tasks were more complex (demand
longer processing), would result in deployment of more different workers.

Another element worth mentioning is the historical term9, and its dependency on the
credits quantity. We can observe that workers which have higher historical terms, usually
have less credits (or none). This is justified by the fact that job submissions are expensive.
Thus, to submit more jobs, nodes need to execute more tasks and earn more credits,

8Technically, job submissions are also considered contribution to the network, but are not our focus
in the current analysis.

9Historical term value analysis per se will not take place, considering it is a result of a random
selection process.
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Figure 6.4: Graphical representation of credits received compared to computational
resource of nodes after simulation termination

contributing further to the system, and achieving exactly that what the main goal of this
thesis is.

In general, it can be concluded that nodes with lower computational resources were
selected more often for task execution, compared to the workers with higher computational
resources. Since the work load in the system was not very high, meaning not all nodes
had to be employed, half of the nodes (those with the higher resource prices) were never
selected in the assignment process. This is nicely visualized in Figure 6.4. We can see
that, the higher the blue dots are (price of the resources), the lower the red squares are
(credits earned), and vice versa. As already mentioned, in the case were we would have
more tasks (or less workers) in an area, a higher percentage of workers would be engaged,
regardless of their price. This will be observed and discussed in the next evaluation
scenario.

6.2 Single Area with High Workload
In the previous scenario, 20 jobs were launched in an area with 41 associated workers.
That would count as an area with pretty low workload, which is also the reason we had
a lot of nodes that did not get the chance to participate in the task execution. In this
simulation we will analyze an area with a higher volume of work, by reducing the amount
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Listing 6.2: Manager values after 30 seconds
1 {
2 "name": "Manager 1",
3 "profit": 7262,
4 "reinvestment": 7262,
5 "jobsExecuted": 20,
6 "jobsAssigned": 20,
7 "numberOfJobsExecutedLocally": 20,
8 "numberOfJobsForwardedToNeighbours": 0,
9 "queue": [],

10 ...
11 }

of available workers in the area, while maintaining the number of submitted jobs. The
same could be achieved by preserving the number of workers, and increasing the number
of jobs and/or tasks instead.

This time, we want to have a maximum number of 20 workers, and will allow a minimum
of two workers. The delta variable and the runtime will stay the same:

1 --runtime=30 --minWorkers=2 --maxWorkers=20 --delta=0.5

6.2.1 Jobs
In the course of those 30 seconds, 20 jobs were submitted, each with one to five tasks,
same as in the previous test case. These 20 jobs generated 53 tasks in total. Being that,
once again, we have only one area, no force execution is done, and the forceProcessLocally
field is false in all the jobs.

6.2.2 Manager Node
Listing 6.2 shows manager values at the end of program execution. The manager has once
more accomplished to schedule all submitted jobs, so there were none left in the queue.
We are still dealing with only one area, therefore all the jobs were executed locally. The
manager profit has significantly changed to that of the previous case – 7262, compared
to 23953, which is the result of the lower range of computational resources offered by the
nodes in this scenario, and will be discussed further.

6.2.3 Worker Node
Worker collection looks a lot different this time around. Only seven workers were generated
to execute 53 tasks, resulting in more (all!) nodes being involved in the system operations.
Same as before, graphs in Fig. 6.5 and Fig. 6.6 provide an overview of value distribution
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regarding computational resources, credits earned, jobs submitted and tasks executed,
respectively. By comparing Fig. 6.4 with Fig. 6.1 from the previous test run, we can
understand why was there such a big difference between the profits of the two managers.
A more restricted computational resource range (as is the case in Fig. 6.4), means the
manager earns a lower profit10. The gap between the average and the maximum earned
credits was lowered, since we do not have so many nodes with zero credits. Another
detail that stands out in these graphs, compared to the ones from the last example, is
that the average number of the executed tasks amounts to 7.6 – much higher than 1.3
from the previous scenario.

Table 6.3 enables us to examine the results of worker nodes more thoroughly. From it,
we can conclude that Worker 1.7 executed the most tasks, 10 to be precise. However,
in this instance, unlike in the last run, the worker that executed the most tasks is not
the worker with the most credits. Worker 1.6 has earned 1003 credits within 30 seconds.
The reason it has so many credits is seen in the fact that it has submitted only 1 job,
in contrast to nodes higher up in the table. As an example, Worker 1.4 has processed
nine tasks, but launched seven jobs for execution, which costed more that it received
for the completed tasks. Nevertheless, we have a great example of a successful incentive
mechanism in Worker 1.7. This node executed 10 tasks, earning enough credits to have
its jobs executed, leaving the rest for later job submissions.

A visual representation of the credits earned put into relation with resource prices is
portrayed in Fig. 6.7.

10The manager is rewarded the difference between the highest computational price and the price of
the selected worker node (see Section 4.2.5)
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Table 6.3: Partial excerpt from worker node collection after program termination, sorted
by the number of executed tasks

_id name resources historicalTerm credits tasksExecuted
6233a291b89b3259d17e829b Worker 1.7 176 3 814 10
6233a291b89b3259d17e8298 Worker 1.4 605 7 0 9
6233a291b89b3259d17e8297 Worker 1.3 74 3 507 8
6233a291b89b3259d17e829a Worker 1.6 363 1 1003 8
6233a291b89b3259d17e8296 Worker 1.2 498 2 195 7
6233a291b89b3259d17e8299 Worker 1.5 542 1 0 6
6233a291b89b3259d17e8295 Worker 1.1 658 3 194 5

This test run delivered 100% node contribution. All nodes were meaningful supporters
of the system. In fact, on several occasions, all worker nodes in the network were busy,
so the manager had to wait for a worker to finish its task execution in order to assign
a new task. This is where the cooldown phase shows useful. Jobs are constantly being
submitted, and tasks executed. However the manager can not assign them immediately
(either busy with the assignment of the previous job, or no workers are free), so the jobs
accumulate. By giving the system participants another 10 seconds after the jobs have
stopped submitting, we give them a chance to finish their processes – task scheduling
and execution.
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Figure 6.7: Graphical representation of credits received compared to computational
resource of nodes after simulation termination
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6.3. Multiple Areas

6.3 Multiple Areas
This step of the evaluation process will define three areas, with interconnected managers
(two neighbors each), creating a scenario in which one area has considerably less compu-
tational capacity, and will have to forward its more demanding jobs to a neighboring
manager.

The following parameters are used to start the program:
1 --runtime=30 --minWorkers=5 --maxWorkers=50 --areas=3 --neighbours=2

Within 30 seconds of runtime, 60 jobs were submitted to three different areas. Not all of
these jobs have finished their execution, and not all were processed in the area they were
submitted to.

6.3.1 Manager Node
Listing 6.3 displays manager values for all created areas upon program termination. In
Area 1, 12 workers were generated, Area 2 contains 20 workers, while Area 3 has 47
available workers. Consequently, Manager 1 has executed nine jobs locally (from the 19
jobs that were submitted in Area 1), with another ten being forwarded to a neighboring
area. The manager of the second area had enough capabilities to handle all of its 19 jobs
locally, while Area 3 assigned and processed 29 jobs in total (19 own, and 10 forwarded).

The profit earned by the managers reflects the number of executed tasks in its area. The
manager that locally assigned the least credits, was also awarded with the lowest profit11.
The manager of the area in which 29 tasks were successfully handled, has accordingly
received the biggest payment.

Remembering the check whether the job should be processed locally from the Global
Scheduling Algorithm in Section 4.2.4, and the decision to set µ constant to 0.2 in Section
5.2.6, it comes at no surprise that Area 1 can only schedule jobs with one or two tasks. All
the submitted jobs that have a higher number of tasks, were forwarded to the neighboring
manager with the highest Scheduling Criteria. In our scenario that is Manager 3. In
Listings 6.3a, 6.3b, 6.3c, Scheduling Criteria, along side values needed for its calculation,
of each area are displayed. It can be quickly concluded that the area with the highest
amount of workers, and with that highest local computing capacity, has also the highest
Scheduling Criteria.

As long as all assigned jobs are successfully accomplished (such is the case in our test),
the reputation of the managers will stay at one, and the queues empty. Decreasing the
cooldown period would most probably result in unfinished jobs, with the reputation lower
than one, and jobs waiting in the queue.

11Job forwarding does not result in a monetary reward.
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Listing 6.3: Manager values

(a) Manager of area 1 upon program termination

1 {
2 " areaId " : 1 ,
3 "name" : " Manager 1 " ,
4 " p r o f i t " : 4401 ,
5 " re investment " : 4401 ,
6 " workerIds " : [ 12 ] ,
7 " managerIdsFromNeighbouringAreas " : [ 2 ] ,
8 " jobsExecuted " : 9 ,
9 " jobsAss igned " : 9 ,

10 " r e pu ta t i o n " : 1 ,
11 " loca lComputat ionalCapac i ty " : 5228 ,
12 " computedCapacityWithNeighbours " : 12617 . 525 ,
13 " massCenter " : 47 . 25092640014461 ,
14 " s c h e d u l i n g C r i t e r i a " : 0 . 17734994416453057 ,
15 " numberOfJobsExecutedLocally " : 9 ,
16 " numberOfJobsForwardedToNeighbours " : 10 ,
17 " queue " : [ ] ,
18 }

(b) Manager of area 2 upon program termination

1 {
2 " areaId " : 2 ,
3 "name" : " Manager 2 " ,
4 " p r o f i t " : 15583 ,
5 " re investment " : 15583 ,
6 " workerIds " : [ 20 ] ,
7 " jobsExecuted " : 19 ,
8 " jobsAss igned " : 19 ,
9 " r e pu ta t i o n " : 1 ,

10 " loca lComputat ionalCapac i ty " : 10569 ,
11 " computedCapacityWithNeighbours " : 12730 . 575 ,
12 " massCenter " : 114 . 09910396199935 ,
13 " s c h e d u l i n g C r i t e r i a " : 0 . 2777049337212561 ,
14 " numberOfJobsExecutedLocally " : 19 ,
15 " numberOfJobsForwardedToNeighbours " : 0 ,
16 " queue " : [ ] ,
17 }

(c) Manager of area 3 upon program termination

1 {
2 " areaId " : 3 ,
3 "name" : " Manager 3 " ,
4 " p r o f i t " : 32550 ,
5 " re investment " : 32550 ,
6 " workerIds " : [ 47 ] ,
7 " managerIdsFromNeighbouringAreas " : [ 2 ] ,
8 " jobsExecuted " : 29 ,
9 " jobsAss igned " : 29 ,

10 " r e pu ta t i o n " : 1 ,
11 " loca lComputat ionalCapac i ty " : 22918 ,
12 " computedCapacityWithNeighbours " : 13155 . 325 ,
13 " massCenter " : 435 . 23453820345634 ,
14 " s c h e d u l i n g C r i t e r i a " : 1 . 008691296711742 ,
15 " numberOfJobsExecutedLocally " : 29 ,
16 " numberOfJobsForwardedToNeighbours " : 0 ,
17 " queue " : [ 0 ] ,
18 }
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6.3. Multiple Areas

Table 6.4: Percentage of contributing nodes in the whole system

task
execution

in %

positive
credit balance

in %

job
submission

in %
Area 1 25 8 75
Area 2 45 40 70
Area 3 34 32 36

6.3.2 Worker Node

Figures 6.8, 6.9, 6.10, and 6.11 depict the most important worker information for all three
areas, upon simulation termination. Already, in the first graph, representing the credits
earned (upper-left), we can see an immense discrepancy between the credits earned in
Area 1 compared to those earned in Area 3. This occurrence can be explained by the
fact that only one single worker, out of the 12 in the area, owns credits after the 30
seconds of runtime. In total, three workers with the lowest computational resources have
participated in the execution of the nine jobs processed in Area 1. The rest was forwarded
to other areas. The worker that executed the most tasks in Area 1 (6) is the only one
with a positive credit balance. At the same time, that is also the worker with the lowest
computational resources of its area. Area 2 occupies the middle ground between the two
extremes. Its average lies at 64 credits, with a maximum of 308 credits, and exactly 40%
nodes with positive credit balance. The worker that has the maximum credits in Area 3
(949) is the worker node with 17 computational resources, and 12 executed tasks. Once
more, we have a situation where a node is much cheaper than the rest, and it quickly
handles the appointed tasks, rapidly rejoining the assignment process as a free node. In
Area 3, around 32% percentage of the workers were rewarded credits.

Computational resources were relatively evenly dispersed across the system, which is
why they did not play a big role in the tasks assignment, or the payment process. The
average amount of executed tasks in the area is pretty similar in all three areas, and
spans between 0.9 (in Area 1) and 2 (in Area 2). By looking at the provided graphs,
a relationship between the executed tasks and the final credit balance of nodes can
clearly be derived. Another value that directly affects the amount of credits earned is
the historical term. On average, every node submitted 1.6 jobs in the Area 1, while that
number was significantly lower in the Area 3 – 0.4. Since each of those job submission
cost credits, it explains the low credit balances in Area 1.

Table 6.4 provides a quick overview of the nodes contributing to the network. It shows
how many node from each area executed a task, finished the simulation with a positive
credit balance, and submitted a task, respectively, showed in percentage.
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6.4 Benchmarking
The previous test cases covered all the main ideas of the implemented incentive mechanism.
This section serves to expand on this analysis, and to scale up the system, observing the
behaviour of the program.

For the next test, we wanted to run the simulation with 30 areas. After program
termination we, realized that current parameters set in the program, were not optimized
for large number of areas. Namely, 30 areas assigned 908 workers (10 to 50 workers per
area), and submitted 600 jobs. After 30 seconds of runtime, approximately 4.4 jobs were
executed by each area, while an average of 16 did not get the chance to be assigned. The
source of such behaviour is found in synchronization. We have quite a lot of threads
running at the same time, all accessing database information, and processing those in
parallel. To make sure that we always have the most current state of the database, and
to prevent database data from being overwritten, for every value change, we first have to
retrieve the newest data from the database, modify it and then persist it. These sets
of instructions in Java have to be implemented in a synchronized block. This makes
sure that other threads have to wait to access the data, until the current one is done
using it. When we have 30 manager-, 600 submission-, and many job execution threads,
all accessing the manager database collection it can take some time to process all the
information.

6.4.1 Reducing the Number of Submitted Jobs
One way to deal with this problem is to reduce the workload of the system. Our first try
was to reduce the number of the jobs being submitted. By removing line 7 in Listing 5.112,
we reduced the number of threads interacting with the database. In doing so, we managed
to decrease the average number of unfinished jobs from 16 to 5, and to increase the
amount of successfully executed jobs from 4.4 to 9.5.

This time, 911 workers were available to processing 419 jobs. Fig. 6.12 represents the
variations of manager profits across the areas, while Figure 6.13 shows a more detailed
comparison of the area metrics. Looking at it, we can confirm our previous hypothesis –
the node contribution depends heavily on the area workload. In the areas where more
nodes are associated (with the same job workload), the percentage of worker node
contribution to the system is lower, than in those area where less workers are connected13.

6.4.2 Incresing the Cooldown Phase
An alternative to dealing with a big workload is to enable for a longer cooldown period,
to give the nodes enough time to carry out the expected operations. Leaving the reduced

12This line schedules job submission every 5 seconds, by starting a new SubmitterThread.
13Areas 4 and 27, where number of executed jobs is zero is a special occurrence, where an area is too

small to execute its jobs.
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Figure 6.12: Profits of the manager in each area

number of jobs submitted (done in the previous test), in this run through we will,
additionally, allow for a 30 seconds cooling period (instead of 10).

This test allowed for 100 areas, each with two neighboring areas, to generate 5435 worker
nodes (5 to 100 per area), and to submit 1390 jobs. Observing the result of this simulation,
we can establish that the implemented program reached its limits. In the defined 30
seconds runtime, plus the 30 seconds cooldown phase, managers of the 100 areas executed
1.56 jobs on average, while 12.97 jobs were left waiting in the queue. The explanation
for this occurrence can be found in the the above-mentioned synchronization issue – too
many threads required database interactions, and were blocking job scheduling.

6.5 Discussion
Experimentation scenarios ran and analyzed in this chapter helped us to elucidate
program limitations, and get a better understanding of how the system behaves in certain
scenarios. In the course of this evaluation, we managed to identify major factors in
node participation, and those that prevent a node from being a contributing part of the
network.

Per Algorithm 4.3, outlined in Section 4.2.5, the proposed incentive mechanism always
chooses the worker node with the lowest price for its computational resources. That could
undoubtedly be seen in the executed test cases. Those workers usually only execute the
easiest tasks (earning the least profit), but are finished faster, and quickly ready for a
new task assignment, not allowing other nodes with higher computational resources to
be elected.
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Figure 6.13: Graphical representation of the final value state in all 30 areas

The performed simulations revealed that the node engagement in task execution depends
heavily on the workload of an area. In the areas where the ratio of the submitted jobs
(i.e., tasks) and their respective worker nodes was lower, the involvement of the nodes in
the system processes was much higher. Higher workload, and consequently higher node
involvement can be achieved in four ways:

• Reduced number of the workers in an area, for the same number of jobs

• Increased number of the submitted jobs, for the same amount of worker nodes

• Increased number of the job tasks, for the same amount of workers and jobs

• Increased execution time of the tasks, for the same amount of workers, jobs and
job tasks
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All of these possibilities achieve the same thing – worker nodes with low computational
resources are busy, so we need to select the ones with the higher values. In this case, our
mechanism does not care about the price14 – the task has to be executed.

Our second test case showed how the reduced number of workers in an area increased the
number of node participation in task execution. Having more jobs, i.e., tasks to execute,
more workers need to be assigned. Since our algorithm considers only free nodes during
the task assignment, the nodes with higher resources would also need to be selected.

In this chapter, we also discussed the credits the worker nodes earn for successful task
execution. These credits represent a currency for our system, considering that a job
submission is paid with those credits. All nodes that execute a task receive a specific
amount of credits. Hence, the more tasks a node executes, the more credits it will earn.
However, if a node submits a lot of jobs during its runtime, as we have already considered,
it can happen that at the program termination, it has very little or none credits available.
This is the desired behaviour, since that means that the node has contributed to the
system by submitting jobs, allowing for other workers to execute those tasks. In addition,
those nodes now have a high historical term, meaning their next submitted jobs will be
highly prioritized.

Furthermore, although out of scope in this thesis, an additional motivation for the worker
nodes can be implemented, awarding the cooperating nodes more notably. This can be
achieved by implementing a user-defined reinvestment policy that would take a part of
the manager’s earnings and reinvest them into the system, increasing the profit of the
execution nodes.

From the conducted analysis, we can additionally recognize that there are some potential
scalability issues, that will be discussed in the future work (see Section 7.2).

14Free workers are still ordered and selected by increasing computational price.
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CHAPTER 7
Conclusion

7.1 Summary

The IoT refers to the ever-growing network of interconnected devices made accessible
via the Internet. In the past decade, these devices found application in various domains,
constantly increasing the requirements for their employment. This is how the Fog was
brought into existence, as a response to the expanding demands of IoT devices. Fog
computing is still a relatively novel and unexplored paradigm. For it to be successful,
nodes need to want to join and participate in the network operations. This is where we
saw a need (and an opportunity) for an effective incentive mechanism.

This thesis was aimed at developing a pertinent and engaging incentive mechanism, with
the goal of motivating network nodes to join a Fog network.

We began this thesis by defining the relevant concepts, explaining IoT use cases, and
distinguishing between Cloud and Fog computing, employing an examination of their
capabilities and purposes. Through an example of a smart transportation system, we
illustrated the necessity for real-time data processing and the demand for supplementary
research on Fog computing, including how to attract more nodes to join the Fog.

Taking the novelty of the Fog into consideration, the analysis of the related work
was dedicated to exploring and analyzing existing approaches from other domains.
Studies from crowdsourcing, crowdsensing and P2P network were considered and assessed,
comparing the underlying systems and their requirements with those of the Fog.

The central part of the thesis proposed a new incentive mechanism to stimulate network
nodes to join a Fog network and become a contributing part of it. This was accomplished
in two phases: (i) documenting the idea, i.e., the design of the system, and (ii) revealing
the associated implementation.
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7. Conclusion

The design process commenced with an outline of the requirements of the Fog, in terms of
an incentive mechanism, and comprised the system architecture, heterogeneity, proximity
awareness, scalability, and volatility as the main features. A comprehensive description
of a non-negative credit-based reward mechanism with a two-layer architecture followed.
The lower layer represents a single area with numerous workers submitting and executing
jobs, and one manager in charge of scheduling and assigning those jobs. The upper layer
constructs an overlay through which the managers of the neighboring areas communicate
with each other.

Global and local scheduling algorithms were introduced, moderating the credit allocation.
For each task of the job submitted to the network, the manager applies the local scheduling
algorithm that finds the node with the lowest cost for task execution and assigns the
task to it. After the task has successfully been processed, the worker node receives its
payment in credits, which the submitter pays. Upon satisfactory execution of all tasks of
a job, the manager is rewarded a profit for its effort (also paid by the submitter). In the
case, a local area can not handle the job load, it is forwarded to one of the neighboring
managers via an overlay, which does the same in its local area. The credits earned are
utilized during the job submission process as job prioritization criteria.

The introduced mechanism was then practically tested with the help of a simulator built
in the course of this thesis. The focus of these experiments was put on identifying the
key elements influencing the node participation, or the lack of it. The results revealed
that the percentage of the nodes contributing to the system is determined greatly by
the workload of the area. In other terms, if an area has more workers than the jobs
submitted, only the part of the network with lower computational resources will be
employed for their execution. On the other hand, if a larger amount of jobs is submitted
to an area than there are workers in it, we can be sure that almost all workers will be
included in their processing. The second test scenario shows that in an environment
where seven workers are in charge of executing 53 tasks, node participation will be at
100%. Possibilities in how to ensure a fairly high workload are also considered.

7.2 Future Work
During the thesis, a couple of issues arose that were not handled completely (i.e., are
considered out of scope) and would be a good topic for the futur. This section tackles
such matters.

Churn rate: Plays a big role in networks such as the Fog. Considering nodes can
unpredictably connect and disconnect from the network at any given time, making sure
the system stays stable is an ongoing challenge for network designers. In our system,
workers can come and go as they please (as explained in Section 4.2.2). Nodes that
can not leave the network without causing substantial problems are the manager nodes.
Managers, as the main point of contact, store information of the whole area, schedule the
jobs, and communicate with other areas. Disconnecting, without a proper fault tolerance
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7.2. Future Work

mechanism in place could potentially be disastrous. We leave this issue to future work,
but offer some ideas on how could it be properly handled.

Once a node is promoted to become a manager, another node (a worker) from its area
could be determined as a backup. All the information the manager node possess would
be replicated and stored in the replication node. In such a case, once the manager
disconnects, the chosen node would immediately be promoted to become the manager
and continue the work of its predecessor. The rest of the system would receive an update
that the address of the node has changed, but they would not experience any disruptions
in their processes.

A general problem with such an approach, of having a centralized manager, is that there
exists a single point of failure. An alternative would be to use the blockchain in the
place of the manager. Instead of one node storing all necessary information centralized
and confiding in a single node, the data the manager possesses could be distributed and
available to anyone. Thus, not only increasing the fault tolerance, but the integrity of
the data as well.

Payment boundaries: As discussed in Section 5, the current implementation does not
offer any information to the submitter as to how much the job processing will cost in
total. In the existing design, the submitter has to pay the workers and the managers
their profits, regardless of how much it costs. An appealing feature would be an option
for the submitter to set the upper boundary of how much it is willing to pay for the job
execution. If that limit is overrun, the job would not be executed.

Partial job execution: In the case that some parts (i.e., tasks) of the submitted job
are not successfully terminated, the submitter still has to pay for the others that were.
Provided partial job execution is not wanted, or does not cause the aspired effect, it
would mean that the submitter has not received the already-paid-for service. Again,
some sort of fault tolerance mechanism would be desirable.

Scalability of the implementation: The current implementation has certain scala-
bility limits, as discussed in Section 6. In larger scenarios with many areas, a great
amount of running threads, all interacting with the database and constantly locking
the resources, results in a very slow job scheduling process. In such scenarios, where
many area are expected to be running at the same time, it would be crucial to find an
alternative solution.
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