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Abstract

In this thesis we study the classical de Sitter scenario in type II string theories: in
a regime where string corrections to the effective theory are negligible, we analyze de
Sitter solutions in flux compactifications with orientifolds – a crucial area for linking
string theory to cosmological models. In particular, we explore classical scalar poten-
tials derived from string theory and study in detail the constraints on the existence
of their critical points. These extrema correspond to solutions with maximally sym-
metric spacetimes, including (anti-)de Sitter and Minkowski. Our results reveal that
classical flux compactifications leading to d-dimensional (quasi-)de Sitter solutions
face strong constraints on their existence. These no-go theorems categorically exclude
classical de Sitter in dimensions d ≥ 7, revealing a preference for four-dimensional
spacetimes. This is rigorously checked by computing the parameter c of the de Sitter
Swampland Conjecture for each no-go theorem, showing consistency with the bounds
given by the Trans-Planckian Censorship Conjecture, with numerous saturation cases
in dimensions d > 3. This analysis demonstrates a profound agreement between the
low-energy limits of string theory and cosmology, while strengthening the validity of
the proposed bounds.

In addition, the newly proposed Anti-Trans-Planckian Censorship Conjecture in-
troduces a framework for characterizing negative scalar potentials in the quantum
gravity effective theory. This conjecture states that in a contracting spacetime, modes
squeezing to sub-Planckian lengths challenge the validity of the effective theory. As a
consequence, it imposes bounds on the potential and its derivatives in the asymptotics
of field space, which have been tested in various string compactifications. By extend-
ing these bounds to anti-de Sitter solutions characterized by radius l, we predict the
presence of a scalar field with mass m satisfying m2l2 ≲ −2. This result has significant
implications for the corresponding dual conformal field theory.

Recent constructions propose the existence of de Sitter solutions in models with
O8-planes/D8-branes that circumvent a classical no-go theorem via unusual sources
or, equivalently, corresponding boundary conditions on the bulk fields. Motivated
by the ongoing debates on whether these sources arise in classical supergravity, we
explore a minimal extension of the classical de Sitter scenario by including 4-derivative
corrections in the α′ expansion of the O-plane/D-brane action. While higher-order
terms and bulk corrections are of minor importance, our analysis shows that even
this extended model fails to yield the desired solutions; a conclusion that extends to
models with additional O6-planes/D6-branes.

Keywords: string theory, supergravity, de Sitter, D-brane, orientifold
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Kurzfassung

In dieser Arbeit untersuchen wir das klassische de Sitter-Szenario in Typ II String-
theorien. In einem Regime, in dem die Stringkorrekturen gegenüber der effektiven
Theorie vernachlässigbar sind, analysieren wir de Sitter-Lösungen in Flusskompak-
tifizierungen mit Orientifolds – ein wichtiger Ansatz, um die Stringtheorie mit kos-
mologischen Modellen zu verbinden. Insbesondere untersuchen wir klassische skalare
Potentiale, die aus der Stringtheorie abgeleitet sind, und studieren im Detail die Be-
dingungen für die Existenz ihrer kritischen Punkte. Diese Extremstellen entsprechen
Lösungen mit maximal symmetrischen Raumzeiten, einschließlich (Anti-)de Sitter und
Minkowski. Unsere Ergebnisse zeigen, dass klassische Flusskompaktifizierungen, die
zu d-dimensionalen (quasi-)de Sitter-Lösungen führen, strikten Einschränkungen be-
züglich ihrer Existenz unterliegen. No-Go-Theoreme schließen klassische de Sitter-
Lösungen in den Dimensionen d ≥ 7 kategorisch aus und zeigen eine Präferenz für
vierdimensionale Raumzeiten. Diese Einschränkungen werden rigoros überprüft, in-
dem der Parameter c der „de Sitter Sumpfland Vermutung“ für jedes No-Go-Theorem
berechnet und die Übereinstimmung mit dem Grenzwert der „Trans-Planckian Cen-
sorship Conjecture“ in Dimensionen d > 3 gezeigt wird. Dieses Ergebnis bestätigt die
gute Übereinstimmung zwischen den Niedrigenergiegrenzen der Stringtheorie und den
kosmologischen Modellen.

Darüber hinaus bietet die postulierte „Anti-Trans-Planckian Censorship Conjec-
ture“ einen Rahmen zur Charakterisierung negativer Skalarpotentiale. Diese Hypo-
these besagt, dass auf Sub-Planck-Längen komprimierte Moden in einer kontrahierten
Raumzeit die Gültigkeit der effektiven Theorie in Frage stellen. Daher werden Grenzen
für das Potential und seine Ableitungen in den Asymptoten des Feldraums aufgestellt,
die in verschiedenen Kompaktifizierungen getestet werden. Durch Anwendung dieser
Grenzen auf Anti-de Sitter-Lösungen sagen wir die Existenz eines Skalarfeldes der
Masse m voraus, das die Bedingung m2l2 ≲ −2 erfüllt. Dieses Ergebnis hat wichtige
Implikationen für die duale konforme Feldtheorie.

Weiterhin deuten neuere Konstruktionen auf die Existenz von de Sitter-Lösungen
in O8-plane/D8-brane-Modellen hin, die ein klassisches No-Go-Theorem durch unge-
wöhnliche Quellen oder entsprechende Randbedingungen für die Bulk-Felder umgehen.
Angesichts der Debatten darüber, ob diese Quellen in der klassischen Supergravitati-
on auftreten können, untersuchen wir eine minimale Erweiterung des klassischen de
Sitter-Szenarios durch die Einführung von Korrekturen nächsthöherer Ordnung in der
α′-Entwicklung der O-plane/D-brane-Wirkung. Während Terme höherer Ordnung und
Bulk-Korrekturen von geringer Bedeutung sind, zeigt unsere Analyse, dass selbst die-
ses erweiterte Modell nicht die gewünschten Lösungen liefert. Diese Schlussfolgerung
gilt auch für Modelle mit zusätzlichen O6-planes/D6-branes.

Schlüsselwörter: Stringtheorie, Supergravitation, de Sitter, D-Brane, Orientifold
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Résumé

Dans cette thèse, nous étudions le scénario de Sitter classique dans les théories de
cordes de type II : dans le régime où les corrections de cordes à la théorie effective sont
négligeables, nous analysons les solutions de Sitter dans les compactifications avec flux
avec des orientifolds – un domaine crucial pour lier la théorie des cordes aux modèles
cosmologiques. En particulier, nous explorons les potentiels scalaires classiques dérivés
de la théorie des cordes et étudions en détail les contraintes sur l’existence de leurs
points critiques. Ces extrêma correspondent à des solutions avec des espaces-temps
maximalement symétriques, incluant (anti-)de Sitter et Minkowski. Nos résultats ré-
vèlent que les compactifications avec flux classiques menant à des solutions (quasi-)de
Sitter de dimension d font face à de fortes contraintes sur leur existence. Ces théorèmes
no-go excluent catégoriquement de Sitter classique dans les dimensions d ≥ 7, révélant
une préférence pour les espaces-temps quadri-dimensionnel. Cela est rigoureusement
vérifié en calculant le paramètre c de la Conjecture de Sitter du Swampland pour
chaque théorème no-go, montrant la cohérence avec les limites fixées par la « Conjec-
ture de Censure Trans-Planckienne », avec de nombreux cas de saturation dans des
dimensions d > 3. Cette analyse démontre un accord profond entre les limites à basse
énergie de la théorie des cordes et la cosmologie, tout en renforçant la validité des
limites proposées.

En outre, la nouvelle « Conjecture de Censure Anti-Trans-Planckienne » proposée
introduit un cadre pour caractériser les potentiels scalaires négatifs dans la théorie
effective de la gravité quantique. Cette conjecture stipule que dans un univers en
contraction, les modes atteignant des longueurs sub-Planckiennes remettent en ques-
tion la validité de la théorie effective. En conséquence, elle impose des limites sur le
potentiel et ses dérivées dans les asymptotiques de l’espace des champs, qui ont été
testées dans diverses compactifications de cordes. En étendant ces bornes aux solutions
anti-de Sitter caractérisées par le rayon l, nous prédisons la présence d’un champ sca-
laire de masse m satisfaisant m2l2 ≲ −2. Ce résultat a des implications significatives
pour la théorie des champs conforme duale correspondante.

Des constructions récentes proposent l’existence de solutions de Sitter dans des
modèles avec des O8-plans/D8-branes qui contournent un théorème no-go classique
via des sources inhabituelles ou, de manière équivalente, des conditions aux limites
correspondantes sur les champs du bulk. Motivés par les débats en cours sur l’origine
de ces sources dans la supergravité classique, nous explorons une extension minimale
du scénario de Sitter classique en incluant des corrections à 4 dérivées dans l’expansion
en α′ de l’action des O-planes/D-branes. Bien que les termes d’ordre supérieur et les
corrections soient de moindre importance, notre analyse montre que même ce modèle
étendu ne parvient pas à produire les vides désirés ; une conclusion qui s’étend aux
modèles avec des O6-planes/D6-branes supplémentaires.

Mots clés : théorie des cordes, supergravité, de Sitter, D-brane, orientifold
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1 Introduction and outline

Towards a unified theory

In the landscape of 20th century theoretical physics, two fundamental theories stood out
for their rigorous experimental verification and profound theoretical implications: General
Relativity and the Standard Model of particle physics. Notably, no known experiment
has yet contradicted the predictions of either theory. General Relativity has transformed
our understanding of gravity as a geometric property of space and time, providing a so-
phisticated explanation of macroscopic cosmological phenomena. At the quantum level,
the Standard Model provides a comprehensive quantum field theoretical framework that
explains the electromagnetic, weak and strong interactions among fundamental particles.
This model, when extended to include neutrino masses, is consistent with the observed
particle spectrum up to currently available energy scales of several thousand GeV and
competently explains physical phenomena well below the Planck scale.

Despite their remarkable successes, these theories leave important questions unresolved
and face serious challenges when extended beyond their respective domains of validity
at the cosmic and quantum frontiers. General Relativity and the Standard Model, as
separate entities, provide incompatible descriptions under conditions where both quantum
and gravitational effects dominate, such as close to the singularities of black holes and
in the early stages of the universe. Here, the Standard Model falls short since it fails to
include gravity or to explain the cosmological observations of dark matter, dark energy
and the accelerated expansion of the universe.

Although the Standard Model effectively describes the interactions of the three fun-
damental forces at lower energies, it suffers from theoretical shortcomings that undermine
its status as a fully comprehensive framework. Central to these issues is the dependence
of the model on empirically derived parameters, such as the coupling constants of elemen-
tary particles. This introduces a problem of naturalness, as these parameters exhibit large
variations in magnitude that are not predicted by the theory, but rather are adjusted to
fit experimental results. Such inconsistencies have led to theories suggesting an underly-
ing structure more fundamental than the Standard Model itself, perhaps indicated by the
symmetry properties that the current framework does not satisfactorily explain.

One avenue that extends beyond the Standard Model and improves our understand-
ing of fundamental interactions are Grand Unified Theories (GUTs), which propose that
at energy levels above the GUT scale the electromagnetic, weak and strong forces may
converge into a single force governed by a simple Lie group. The precise energy level at
which unification might occur, assuming it is realized in nature, depends on the physics at
scales that are currently unexplored by experimental capabilities. Supposing the existence
of a vast range of energies without new physics – often referred to as the "desert" – and
involving a theory of supersymmetry, the unification energy is estimated to be around 1016

GeV1. This potential unification would label the Standard Model as a low-energy effective
1The most advanced particle accelerator, the Large Hadron Collider (LHC), reaches energies up to 105

GeV in proton-proton collisions. This puts the hypothetical GUT scale only a few orders of magnitude
below the Planck scale of 1019 GeV, and far beyond the operational capability of any current collider.
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theory of a more fundamental one, which differentiates into the various forces observed in
nature as the energy level decreases.

A "theory of everything" that aims to unify the electroweak and strong forces with
gravity requires a significantly higher energy level, recognizing the conspicuous absence
of gravitational forces in the Standard Model. At the energy scales typically explored
in particle physics, gravity remains negligible until one reaches the Planck scale, Mp ≈
1019 GeV, where gravitational effects become comparable to those of quantum physics.
Consequently, a model that unifies all fundamental interactions, including gravity, is not
considered essential at the energy levels commonly studied. However, this view changes
dramatically in the context of extremely high energy densities or spacetime curvatures, such
as those found in black holes or the early universe, where quantum theory interacts with
strong gravitational fields. The main challenge in incorporating gravity into a unified model
lies in its (perturbatively) non-renormalizable nature, due to the Einstein-Hilbert action.
Unless there is some unexpected cancellation, its naive quantization results in divergent
amplitudes. This limitation not only highlights the exclusion of gravity from the Standard
Model due to differences in scales, but also emphasizes the need for a comprehensive new
theory that effectively integrates gravity with quantum interactions to provide a unified
description encompassing all fundamental forces – essentially, a theory of quantum gravity
(QG).

A major conundrum in modern cosmology, known as the cosmological constant problem,
involves the large discrepancy between the theoretically predicted value of the cosmological
constant and its empirically observed value, which is several orders of magnitude smaller.
Precise measurements that support the standard cosmological model (ΛCDM) indicate that
the universe is undergoing an accelerated expansion, consistent with the characteristics of
a de Sitter (dS) spacetime. This expansion is driven by a cosmological constant, Λ, with a
corresponding mass scale, MΛ =

√
Λ ≈ 10−12 GeV, orders of magnitude smaller than the

Planck mass. The origin of this surprisingly small scale and properties of the associated
"dark energy" remain elusive and pose significant conceptual challenges. These may go
beyond current theoretical frameworks, possibly requiring a theory of QG or extra spatial
dimensions.

In discussions about the underlying structure of the Standard Model, another theoret-
ical issue is the Higgs boson, whose discovery was crucial for confirming the mechanism
of electroweak symmetry breaking. Prior to its experimental verification in 2012, the pre-
dicted mass of the Higgs boson required fine-tuning to extremely precise values to avoid
large quantum corrections that could destabilize the electroweak scale; an issue commonly
referred to as the Higgs hierarchy problem. Such precise level of fine-tuning is considered
unnatural. Supersymmetry proposes a theoretical framework that could solve this problem
by introducing superpartners for each particle, thereby naturally balancing the quantum
corrections and stabilizing the Higgs mass.

Supersymmetry (SUSY) is a robust extension of the Standard Model of particle physics.
This global symmetry extends the Poincaré group by adding fermionic generators in the
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corresponding Lie superalgebra, thus avoiding the Coleman-Mandula no-go theorem. In a
four-dimensional (4D) spacetime, the number of supersymmetries, denoted by N , varies
from one to four for fields with spin one, and up to eight for spin-two particles such as
the graviton. In supersymmetric models, particles are grouped into multiplets containing
both fermions and bosons, typically in equal numbers and with identical masses, ensuring
that each particle is paired with a superpartner whose spin differs by one half. However,
this exact symmetry is not observed at energies typical for the Standard Model, suggesting
that SUSY must be broken at higher energy scales.

Despite the complexities introduced by SUSY, including multiple breaking schemes and
unobserved superpartners, such extensions have significant advantages. The additional
symmetry in supersymmetric gauge theories imposes strict constraints, so that quantum
corrections are typically more manageable due to the cancellation between bosonic and
fermionic contributions. Another asset is the refinement of the GUTs: the three coupling
constants of the Standard Model converge exactly to a single point when projected to
higher energies. These attractive properties have strongly driven the adoption of SUSY in
the Standard Model.

Considering SUSY as a local symmetry inevitably leads to supergravity (SUGRA) the-
ories. These are theories of gravity that are supersymmetric and more constrained than
conventional General Relativity. Notably, in an 11D spacetime, the theory is uniquely
defined by its symmetries. In reduced dimensions, different supergravity theories can be
formulated, with possible connections between them. Although these theories provide a
way to extend SUSY into a framework that includes gravity, achieving renormalizability
remains a significant challenge. Despite these obstacles, supergravity theories, especially
those in higher dimensions, provide a distinctive and promising path towards developing a
potential theory of QG.

Physics beyond the Standard Model is not inherently related to a theory of QG, espe-
cially when considering the scales involved. As noted above, QG effects become significant
at the Planck scale, whereas expansions of the Standard Model typically focus on phenom-
ena at the electroweak scale2. Nonetheless, from a unification perspective, these two areas
should eventually overlap. Moreover, if one can develop a theory of QG that also includes
certain gauge groups, this raises the possibility that at lower energies some extensions of
the Standard Model might be observable. The theory involved is string theory [2–6].

String theory

String theory proves to be a profound framework for a unified theory of QG, wherein
the fundamental constituents are not point-like particles, but 1D "strings" embedded in a
higher-dimensional (target) spacetime. The mass and charge of the particles are defined
by the oscillations of these strings through different vibration modes. They also provide a
solution to the UV divergences observed in point-particle theories, which are inherently re-
solved by the extended nature of the strings. Moreover, string theory inherently includes a

2Note that the concept of species scale can significantly alter the relationship between these scales [1].
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rank-two symmetric tensor, the graviton, a quantum particle associated with gravity. This
property implies a natural integration of gravity via the massless modes when string theory
is quantized. Nonetheless, string theory is characterized by finite amplitudes, confirming
the renormalizable nature of gravity within this model.

In the perturbative approach to string theory, a unique characteristic is the inherent
spacetime SUSY, which includes both bosonic and fermionic degrees of freedom. This
property is important because it ensures that all consistent string theories are anomaly-
free, but it requires a 10D spacetime. Among these models are five superstring theories,
including type IIA and IIB, which are characterized by N = 2 supersymmetry. Type I
and two heterotic string theories, distinguished by their gauge groups, either E8 × E8 or
SO(32), are N = 1.

In regimes of low-energy and weak coupling3, these theories approximate classical
SUGRA, albeit corrected by higher-order derivatives and both perturbative and non-
perturbative quantum effects. This requires that the parent theory’s massive modes are
sufficiently large to be negligible, typically realized by a mass scale given by the string
length, ls. Remarkably, this is the only universal constant in string theory that is left
undefined. Despite the lack of a specific reason, it is commonly associated with the Planck
scale. Moreover, these theories, along with 11D M-theory4, are connected by dualities
and thus are understood as different representations of a unified theory under different
constraints.

The connection to the observable universe, in particular the ability of string theory
to reproduce known physical properties in its low-energy limit, is one of the major chal-
lenges. For consistency, superstring theories require a 10D spacetime, but only four of
these dimensions are observed at the macroscopic scale. The remaining six dimensions
are assumed to be compact and closed on themselves. These dimensions form a smooth
compact manifold, typically called M6, which would only become observable at energy lev-
els beyond those currently achieved experimentally. Therefore, M6 remains undetectable,
which is why we call it "internal space". The 10D space is then a topological product of
M4×M6. The product of six circles T 6 is a simple example where each geometric param-
eter, such as the mean radius, introduces an additional compactification scale, Mc. More
complicated configurations include Calabi-Yau manifolds, which are favored for preserving
N = 1 supersymmetry in the 4D effective theory.

Starting from string theory, we develop its low-energy limit by a so-called dimensional
reduction to obtain an effective 4D description. An important step in the development of
this effective theory is the identification of light (or massless) modes of the full theory, which
typically manifest as small fluctuations around a stable background or vacuum state of the
potential. Only these modes are then retained in the theory, provided that this selective
approach maintains consistency. The result is a robust low-energy effective theory, here
4D SUGRA. It is critical to proceed with caution. First identify the light modes and then

3For the SUGRA approximation to hold, the string coupling constant, gs, must be small to ensure that
the theoretical description remains perturbative.

4Its fundamental objects are higher-dimensional extended objects, known as M-branes. The low-energy
effective theory is then considered to be 11D SUGRA.
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determine the possibility of eliminating interactions with massive modes before truncating
the spectrum. To illustrate the process of dimensional reduction to an effective 4D theory,
it is instructive to consider a simple example in which light modes play a central role.

The concept of dimensional reduction originated in the 1920s. Consider a field theory
defined on M4 × S1. In this model, the fields can be expanded into a Fourier series along
the periodically compactified fifth dimension, with each term in the series ∼ e−i(n/R)x5

representing quantized momenta, n/R, along the circle of radius R. Any value of the
momentum contributes to the mass of the corresponding 4D modes, mn

2 ∼ (n2/R2), sup-
posing the fields are massless in 5D. The action can then be integrated over the compact
dimension to deduce an effective 4D description. Higher Kaluza-Klein modes (correspond-
ing to higher values of n) contribute progressively less to the action. Additionally, a smaller
radius reduces the contribution of modes with n ̸= 0. This process, known as Kaluza-Klein
reduction, involves integrating out the heavy modes and retaining only the 4D massless
modes to reformulate the full action. This is equivalent to the fields being independent of
the internal coordinates.

Returning to 4D SUGRA, to be consistent with (extensions of) the Standard Model,
this effective theory is typically given by N = 1 supergravity and SUSY should be broken
on a scale far below the compactification scale. Therefore, string compactifications are
central to aligning the theoretical 10D spacetime with the observable world. However,
this process poses several conceptual challenges, particularly in the stabilization of moduli
fields φi. These massless scalars in the 4D effective (bosonic) action

S(4) =

�
d4x

√−g4

�
M2

p

2
R4 − 1

2
Gij∂µφ

i∂µφj − V (φ)

�
, (1.1)

are critical for defining properties such as the volume of the internal space. Although, their
effective potential, V (φ), remains flat due to their inherent lack of mass. Therefore, their
vacuum expectation values and the physical parameters they control remain undefined,
which is a significant hurdle in the development of realistic models. The existence of
moduli fields contradicts empirical observations, emphasizing the urgent need for effective
moduli stabilization strategies across different string compactifications.

A promising approach to the moduli problem is flux compactifications [7–9], where
background fluxes generate a potential for the moduli. While this method often success-
fully stabilizes many moduli, it does not universally address all moduli comprehensively,
necessitating the incorporation of additional measures, such as quantum corrections to the
effective potential. These corrections are difficult to calculate accurately. In addition, the
potential generated by these fluxes, along with effects from local structures, may uninten-
tionally destabilize some moduli, leading to the possible appearance of tachyons in the 4D
theory.

Such complexities, together with the intricacies of the flux quantization conditions,
make the explicit construction of realistic models technically challenging, especially in sce-
narios without inherent protective properties such as SUSY that could prevent the presence
of tachyons. The quest for fully stable and realistic moduli stabilization is riddled with ob-
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stacles, emphasizing the ongoing challenge of mapping 10D string theories into observable
phenomena in our universe.

Heterotic strings have been important due to their integration of non-abelian gauge
groups, which are suitable for Grand Unified Theories and may potentially match the
gauge interactions of the Standard Model. However, the full realization of this ambitious
program remains incomplete. Meanwhile, type II string theory, which typically features
abelian gauge fields in its perturbative spectrum, has gained prominence following advances
in non-perturbative physics, in particular the AdS/CFT correspondence. The potential to
introduce non-abelian gauge groups through non-perturbative objects known as D-branes
has made type II a more adaptable and promising framework for effectively modeling field
content, gauge groups and couplings. For this reason, type II SUGRA will be the main
focus of this thesis.

Within type II string theory, initially defined in a perturbative sense, D-branes are
indispensable extended objects, conceived as solitonic membranes or hypersurfaces of dif-
ferent dimensions that evolve dynamically in time. These branes, characterized by their
ability to anchor the endpoints of open strings under Dirichlet boundary conditions, ex-
hibit dynamics driven by the perturbative oscillations of these open strings. In classical
SUGRA, the dynamics of D-branes are governed by scalar and vector fields arising from
the massless modes of the open strings on the worldvolume of the branes. In particular,
the vector fields can lead to non-abelian gauge theories, positioning D-branes as essential
for exploring complex physical phenomena beyond the limits of perturbative string theory.
Meanwhile, the scalar fields act as moduli that determine the position of the brane in
spacetime.

In the landscape of string theory, alongside D-branes and fundamental strings, orien-
tifold planes (O-planes) play a crucial role. O-planes are hypersurfaces defined by specific
symmetries of the underlying spacetime. They are identified as fixed points within a man-
ifold, resulting from the imposition of a finite symmetry on the fields coupled with an
inversion of the worldsheet orientation. This symmetry operation involves not only spatial
reflections, but also a reversal in the orientation of the strings, which profoundly affects
the physical properties and types of allowed interactions in string models.

Both D-branes and O-planes act as sources of Ramond-Ramond (RR) charges, gener-
ating electric and magnetic fields, and they influence the gravitational landscape by adding
tension, which alters the overall energy density of the vacuum. Together, they facilitate
non-abelian gauge interactions through vector fields located on the worldvolumes and mod-
ify the theoretical construction of the universe by altering spacetime properties at their
localized positions. These unique properties establish D-branes and O-planes as essential
components within the broader framework of string theory. They interact intricately with
other extended objects, such as NS5-branes, KK monopoles or anti-D-branes (D-branes),
all of which are manifestations of the deeper symmetries and dualities inherent in the
theory. However, the latter are not relevant to our current studies.

D-branes/O-planes are localized on submanifolds within the 10D spacetime, which
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plays a critical role in several aspects of theoretical physics. Their localization is essential
to ensure consistency during the compactification process, especially in scenarios involving
background fluxes. From a phenomenological point of view, these localized sources offer
several advantageous properties; they facilitate the breaking of SUSY and induce a signifi-
cant warping of spacetime5, highlighting the profound impact these structures have on the
fabric of spacetime. In the broader context of string cosmology, which will be extensively
explored in this thesis, local sources are essential for developing a coherent understand-
ing of the fundamental properties of the universe. However, their presence significantly
complicates the equations of motion. Achieving a complete solution that fully accounts
for their effects is an ambitious challenge, often beyond current analytical capabilities in
classical SUGRA. This complexity is explored in more detail in this thesis.

A practical approach to the challenges posed by localized sources is to replace them
with a homogeneous charge distribution that is "smeared" across the internal manifold,
a technique known as the smeared approximation [12–15]. In this method, the delta-
functions, which localize the sources in the supergravity equations, are replaced by regular
functions. The main advantage of this approach is the significant simplification of the
calculations, since it allows the equations of motion to be treated on an integrated rather
than a localized one. In addition, smearing facilitates well-established methods such as
consistent truncations [16–18]. On the other hand, the treatment of localized sources
would require a more sophisticated framework such as warped compactifications [19, 20],
which remain ambiguous.

However, this simplification comes at the cost of neglecting source backreaction effects
on both the internal fields and the geometry of the compact space. This omission can
have significant effects on 4D observables, such as the values of the moduli or the cosmo-
logical constant. There is an ongoing debate as to whether these backreaction effects are
non-negligible, since the fully backreacted 10D equations are not satisfied by the smeared
solutions. Therefore, the validity of smeared solutions as accurate representations of lo-
calized scenarios is still under debate, underscoring the critical need to understand the
backreaction of localized sources. This issue is particularly relevant since the majority of
solutions currently in the literature rely on the smeared approximation, with only a limited
number exploring fully localized configurations. We will explore this topic further in the
course of this thesis.

The string landscape

A profound challenge in deriving low-energy physics from string theory is the vast number of
compactification choices, resulting in a metaphorical landscape of around 10500 vacua6, each
with unique physical properties [22]. This is often referred to as the string landscape. How
does string theory select a 4D effective theory that matches our observable universe from
this extensive set? In other words, the chosen 4D spacetime must be phenomenologically
viable.

5This warping is crucial and typically cannot be achieved by SUGRA alone. For more details, see the
discussion of the Maldacena-Nuñez no-go theorem [10,11].

6But it could be as high as 10272 000 or more [21].
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Maximally symmetric spacetimes are important in this context. Minkowski spacetimes
are relevant for mimicking phenomena of the Standard Model. Anti-de Sitter (AdS) space-
times are considered in holographic contexts [23, 24], certain dS constructions [25, 26] and
discussions of scale separation [27, 28]. However, string theory must also account for the
accelerated expansion of the universe, which can be achieved by a positive cosmological
constant or by rolling scalar fields. This work focuses on the former, specifically on com-
pactifications to a dS spacetime.

Despite extensive research over the past two decades, the feasibility of dS compacti-
fications within string theory remains uncertain. While several promising scenarios have
been proposed, including [25,26], fully explicit models of dS space have yet to be realized.
Moreover, several theoretical arguments have cast suspicion on the compatibility of dS
spacetime with QG [29–31].

One major difficulty is that dS solutions are inherently non-supersymmetric, which
complicates the task of satisfying all the equations of motion compared to supersymmetric
solutions. Furthermore, without SUSY, there is no intrinsic mechanism to ensure the sta-
bility of the solutions, making moduli stabilization problematic. Additionally, dS solutions
are ruled out in the simplest classical compactifications [10,11], thus requiring corrections
to the classical SUGRA approximation or localized sources of negative tension.

In string theory, two main strategies for obtaining dS vacua are prominent in the
literature. One way is to include higher derivative corrections and non-perturbative effects
in the classical SUGRA approximation. Another notable approach is the classical dS
scenario [32, 33], which explores compactifications with O-planes and background fluxes
in the classical regime of type II string theory [16, 34–36]. The low-dimensional effective
theory is obtained by dimensional reduction of 10D type II SUGRA at the 2-derivative
level, including the action of localized O-planes/D-branes at the leading-order in α′. This
approach ensures that both perturbative and non-perturbative string corrections remain
minimal in the effective theory, although not necessarily everywhere in 10D. This is the
case for small string coupling and sufficiently large volume.

The classical dS scenario offers several advantages in type IIA, such as providing explicit
models that avoid the need for complex moduli stabilization and the difficult computations
of the full moduli dependence of instanton corrections. However, this approach has serious
limitations. Many classical models are disqualified by no-go theorems that exclude dS
extrema [32, 37–39]. The few identified dS extrema are often perturbatively unstable, or
they encounter issues with strong curvature and large string coupling7. These instabilities
are often associated with a tachyon [43,44].

Despite these obstacles, the classical dS scenario has not been explicitly ruled out [45],
leaving room for ongoing research and possible counterexamples in the field.

Outline and summary

This thesis builds upon the research published in [35,36,39,46, 47].
7See also the arguments suggesting that classical dS vacua with small curvature and coupling are not

possible in many classes [40, 41], as well as possible counterexamples [42].
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In Section 2.2, we clarify the conventions adopted and provide an overview of basic
aspects of type II flux compactifications with localized sources. In Section 2.3, we explore
the various boundary conditions employed throughout this thesis, and in Section 2.4, we
revisit and rationalize the use of the smeared approximation, a pivotal element of our
analytical framework.

In Section 3, we illustrate the process of dimensional reduction using two distinct sets
of scalar fields. Our objective is to establish the transformation laws for these fields into
canonical forms and to derive the corresponding potential of a d-dimensional effective
theory as specified in (1.1) for each set of scalars.

Constraints on (quasi-)de Sitter solutions in 10D SUGRA

String theory, traditionally formulated in 10D spacetime, presents a stark contrast to the
4D universe we observe, raising fundamental questions about the dimensional nature of our
universe and the theoretical landscape of string theory [48]: why are only four dimensions
observable? Given that string theory does not inherently favor any specific dimensionality,
it becomes essential to explore the viability of higher-dimensional scenarios within this
framework.

The study of classical dS solutions in dimensions d ≥ 3 is therefore not just a theo-
retical curiosity, but is motivated by various factors [49]. To date, all explicit and robust
solutions within string theory feature a non-positive cosmological constant. This observa-
tion supports the widespread view that the landscape of flux vacua is devoid of metastable
dS solutions [30]. To challenge this prevailing belief, we need to find a single counterex-
ample that is metastable, de Sitter and reliable, without any constraints on its dimension
or SUSY breaking scale.

Exploring higher-dimensional solutions may simplify complexities associated with mod-
uli stabilization, fluxes and branes, potentially easing the search for dS solutions. Addi-
tionally, these searches might also yield simpler models for testing theoretical proposi-
tions, such as the dS/CFT correspondence [50], and even facilitate the development of
4D quintessence models through dimensional reduction [51]. By extending our search to
arbitrary dimensions, we aim to address both theoretical and phenomenological questions,
thereby deepening our understanding of dS spaces in string theory and their implications
for our universe.

In Section 4 we explore the possibility of identifying classical (quasi-)dS solutions across
various dimensions. In an attempt to both identify and constrain such configurations, nu-
merous studies have concentrated on classical dS solutions in four dimensions. For a com-
prehensive list of these studies, see [52]. Despite these efforts, the successful identification
of these solutions remains limited, leading to the formulation of several no-go theorems
that constrain fluxes, sources and manifold properties necessary for viable supergravity
configurations [38,45,53].

This thesis contributes to this area by deriving no-go theorems within type II SUGRA,
effectively ruling out dS solutions in a classical context. While proving that a dS solution

9



is forbidden in SUGRA is sufficient to rule out its existence in a classical regime, the
reverse is not necessarily true; discovering a dS solution in 10D SUGRA does not guarantee
its presence in the classical string background. This validation even fails in known 4D
cases [41, 54], and generic arguments for such failures have been given in [40,45, 55].

Our discussion extends well-established no-go theorems [38] in d = 4 to arbitrary
dimensions, 3 ≤ d ≤ 10, introducing some novel aspects related to this dimensional expan-
sion. This effort also builds upon the foundational work in [49], where such dimensional
extensions were first explored; our work reproduces and expands on these results.

In Section 4.2 we establish no-go theorems using 10D equations which, under cer-
tain assumptions, yield an inequality Rd ≤ 0 that effectively forbids dS solutions. We
deliberately ignore complications arising from smeared orientifolds and the backreaction
of localized sources, focusing instead on scenarios that allow classical dS solutions with
smeared sources. Further studies of non-classical approaches in higher dimensions may
also face similar difficulties. This remains a fertile area for future research.

In Section 4.3 we systematically apply these no-go theorems in dimensions d ≥ 4. As
the dimension increases, the constraints on flux and source content become more stringent,
often automatically satisfying some of the theoretical requirements of the no-go theorems.
This is particularly evident in Section 4.3.2, where we focus on configurations that preserve
SUSY.

Our conclusion, summarized in Section 4.3.3, explicitly rules out the existence of clas-
sical dS solutions in dimensions d ≥ 7, while the possibilities in dimensions d = 5, 6 are
limited and further dismissed by additional theoretical conjectures, as outlined in [35,45].
These results suggest a theoretical bias towards d ≤ 4, potentially indicating a preference
for d = 4. We extend these observations to quasi-dS solutions in Section 4.4.

Asymptotic behavior of scalar flux potentials in lower-dimensional effective
theories

Our earlier discussion revealed significant challenges in the search for classical (quasi-)dS
solutions in arbitrary dimensions. Meanwhile, the swampland program [56, 57] seeks to
establish criteria that distinguish whether a consistent effective theory can emerge as a
low-energy limit of string theory. Theories that do not meet these criteria are considered
to lie in the "swampland". From this perspective, all dimensions should be equally con-
sidered, implying that the scope of the swampland conjectures applies universally across
string compactifications in arbitrary external dimensions, unless QG provides a compelling
argument for a specific dimensional preference.

Within this context, the de Sitter Conjecture [30] proposes a systematic obstacle to dS
solutions, formulated as an inequality

Mp|∇V (φ)| ≥ c V (φ) , c ∼ O(1) . (1.2)

Although primarily studied in 4D [38], this conjecture is valid in d ≥ 3. More recently, this
inequality is thought to hold only in the asymptotic limits of moduli space, as shown by the
Trans-Planckian Censorship Conjecture (TCC) [58], introducing a theoretical minimum for
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the constant c,

c ≥ c0 , c0 =
2�

(d− 1)(d− 2)
. (1.3)

In Section 5, we rigorously test this bound through no-go theorems. If it were to be
validated in our observable universe, it would necessitate more complex cosmological mod-
els [59,60]. Furthermore, our motivation to study the classical regime of string theory lies
in its agreement with the asymptotics where these inequalities are assumed to be valid,
which is ideal for probing the TCC.

We recapitulate the SUGRA no-go theorems using a d-dimensional effective theory,
where V (φ) > 0, similar to (1.1). Under certain assumptions, we derive an inequality
akin to (1.2), which reveals a specific value for c and effectively rules out dS critical points.
This derivation is consistent with the inequalities obtained in 10D, confirming that |∇V (φ)|
cannot vanish or even remain small. We elaborate on this in Section 5.3, where we detail
how this derivation also precludes quasi-dS solutions, characterized by a positive potential
with minimal gradient and slow field dynamics. While extensive analyses have previously
focused on d = 4 [38], our work extends this to determine a d-dependent value of c,
facilitating direct comparison with the bound in (1.3).

Our results, summarized in Section 5.4 and illustrated in Table 6 and Figure 4, confirm
the TCC bound in dimensions d ≥ 4, showing multiple instances of saturation consistent
with those observed in d = 4. This consistency across dimensions serves as a substantial
validation of the TCC bound, supporting the universal nature of swampland conjectures.
Furthermore, in Section 5.4.1, we explore an intriguing anomaly in d = 3, where a newly
established no-go theorem indicates a c value below the TCC threshold, related to the
peculiarities of gravity in this dimension.

In Sections 5.2 and 5.4.2, we compare the TCC with other theoretical proposals that
have appeared in the literature, including the Swampland Distance Conjecture. In Section
5.4.3, we also discuss an asymptotic upper bound on |∇V (φ)| necessary for cosmic accel-
erated expansion. When violated, it suggests alternative cosmological scenarios and opens
pathways for further research, especially if the TCC bound holds true.

We then shift our focus to negative scalar potentials. Although these might seem less
relevant to cosmological models, despite ekpyrosis and bouncing cosmologies [61–66], AdS
vacua, which are subject to extensive studies due to advances in holography [23, 24, 67],
also fall under this category. The structural similarities between negative and positive
scalar potentials in string theory, which primarily differ by variations in the values and
signs of the coefficients, suggest a unified approach could be applied to both types. These
similarities indicate that methods developed for analyzing positive potentials might be
effectively adapted for their negative counterparts.

Our analysis employs models that describe spacetimes characterized by either expansion
or contraction, as indicated by the scale factor a(t) in the metric. Detailed discussions of
this subject are provided in Sections 5.1 and 6.1.1. The concept of contracting spacetimes
is particularly important in the context of the Anti-Trans-Planckian Censorship Conjecture
(ATCC):
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Anti-Trans-Planckian Censorship Conjecture. In any (lower-dimensional) effective
theory of QG (1.1) with V < 0 admitting a contracting cosmology, modes with a wavelength
close to the typical length scale of the universe at ti should not shrink to sub-Planckian
levels at some later time t > ti without losing the validity of the effective theory.

This statement can be analytically expressed as

a(t)

a(ti)
≥

�|V (φ(ti))|
M2

p

, ∀ t > ti . (1.4)

The ATCC reinterprets our understanding of contracting universes with V < 0, which
lack the horizon mechanisms utilized in dS spaces as proposed in the original TCC [58].
Instead, it emphasizes the importance of maintaining the validity of the effective theory
by ensuring that the typical energy scale, i.e. the scalar potential, remains sub-Planckian.
We delve deeper into this topic in Section 6.1.2, highlighting that solutions violating 1.4
fall outside the regime of validity. This refined approach is not merely speculative; it is
grounded in the physical constraints dictated by the fundamental scales of the theory.

In Section 6.1.3, we derive an explicit bound on the lifetime, interpreted in the context
of spacetime contraction. From 1.4, we develop a framework for characterizing negative
potentials in dimensions 3 ≤ d ≤ 10 using Planckian units, focusing on a single scalar
field. This framework necessitates an assumption about V and a(t) that, while naturally
satisfied for V > 0, requires careful scrutiny for V < 0. We derive an exponential lower
bound, V (φ) ≥ −e−c0|φ−φi|, applicable across the entire field space. This leads to the
following condition in the asymptotic limit of field space,�

−V ′

V

�
φ→±∞

≥ c0 , (1.5)

mirroring the one of the TCC despite subtle differences in their derivations. This condition
does not categorically rule out AdS critical points in the asymptotic limits, similarly to
how the TCC does not explicitly exclude dS spaces. Instead, it imposes constraints on the
asymptotic behavior of the potential and sets a lower bound on the exponential rates. In
Section 6.1.4, we verify the validity of these bounds as well as the previous assumption in
various cosmological models, including AdS and dynamical solutions with rolling fields.

In Section 6.2, we introduce a novel condition on the second derivative of the potential,�
V ′′

V

�
φ→∞

≥ 4

(d− 1)(d− 2)
. (1.6)

This asymptotic condition suggests that in every d-dimensional AdS solution of typical
length l, there exists a scalar field with mass m satisfying

m2l2 ≲ −2 . (1.7)

This flexible bound naturally holds for perturbatively unstable solutions [68,69].
We rigorously test this condition against a variety of perturbatively stable config-
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urations. Most supersymmetric setups obey this bound, despite some debated excep-
tions [25, 26, 70]. In contrast, non-supersymmetric models often require more flexibility
and may exhibit some deviations from this established rule. However, many of these are
prone to non-perturbative instabilities [71]. A comprehensive summary of these examples
is provided in Tables 7 and 8. Furthermore, the holographic implications of this bound for
a dual CFT are discussed in Section 6.3.3.

Finally, Sections 6.4 and 6.5 explore multi-field models and apply the ATCC to specific
string compactifications. We validate the ATCC bounds for a semi-universal potential,
V (ρ, τ, σ), initially derived in Section 3, and in the context of flux compactifications leading
to so-called DGKT solutions [70].

Almost classical de Sitter

Recently, the authors of [72] claimed to have identified classical dS vacua in a remarkably
simple model referred to as CDT1. This model, employing type IIA string theory with
parallel O8-planes and the Romans mass as the sole flux, simplifies the equations of motion
to solvable ordinary differential equations (ODEs) that include the nonlinear backreaction
of the O-planes. Subsequent analyses, however, have shown that these localized sources
are not consistent with the conventional string theory interpretation of O8-planes at the
leading order in α′ [73]. More generally, it has been found that the classical type IIA bulk
action, together with the leading-order O8/D8 action within the α′ expansion, excludes
classical dS in all flux compactification lacking higher codimension sources [73,74].

In a later paper [75], a potential loophole due to ambiguities in the SUGRA equa-
tions was suggested, and "permissive" boundary conditions were proposed that could allow
source terms violating the assumptions made by [73]. In Sections 2.3 and 7.1.2, we will
argue that these ambiguities are not evident at the level of classical SUGRA, and that the
sources must conform to those specified in the no-go theorem.

As indicated by [73], this conclusion might be modified by considering the effect of
leading α′ corrections in the O-plane/D-brane action, which are known to appear at the 4-
derivative level [76–84]. To explore further, Section 7.1.3 introduces the "almost classical"
dS scenario, a minimal extension of the classical dS framework that incorporates leading
α′ corrections while neglecting higher-order derivatives. Despite potential concerns about
regions where the α′ expansion may not hold, it is claimed that the classical terms and
their 4-derivative corrections dominate the contribution of the O-planes to the vacuum
energy, with the effects of the non-perturbative hole region playing a role only in short-
range physics. Nonetheless, this approach still fails to produce metastable dS solutions,
thereby affirming the validity of the no-go theorem.

The CDT2 model, which incorporates both O6/O8-planes, is also discussed in Section
7.2.1. This model, though more complex, retains solvable equations that account for
nonlinear O-plane backreaction. However, similar to the CDT1 model, the CDT2 model
adheres to a classical dS no-go theorem outlined in Section 7.2.3, leading exclusively to
AdS solutions. The introduction of 4-derivative couplings in Section 7.2.4 does not resolve
these challenges, as their effects remain secondary in low-curvature regimes.
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This section underscores the persistent challenges in achieving stable dS vacua within
the framework of string theory and illustrates the limitations inherent in both classical and
near-classical dS scenarios. Despite offering valuable insights, these models have not yet
provided a viable path to stable dS solutions, highlighting the ongoing need for further
research and exploration of alternative strategies in the field.
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2 Preliminaries

In this section we review the basic principles and recent developments in flux compactifi-
cations from 10D type II supergravity to a d-dimensional effective theory characterized by
a maximally symmetric spacetime. Given that both orientifolds and D-branes are intrin-
sically localized objects, it is essential to carefully analyze the boundary conditions they
impose on the bulk fields. A thorough discussion of this topic is presented in Section 2.3,
with a focus on models containing O8-planes, as discussed in [72]. Furthermore, Section 2.4
will provide a comprehensive analysis of backreaction effects and elucidate their connection
to the smeared approximation.

2.1 Differential geometry

We follow [85–87] in our conventions for tensors and differential forms. The vector space
of (smooth) r-forms on a m-dimensional manifold M is denoted by Ωr(M). The set of
r-forms,

dxa1 ∧ . . . ∧ dxar =
!
P

sgn(P ) dxaP (1) ⊗ dxaP (2) ⊗ . . .⊗ dxaP (r) , (2.1)

serves as a coordinate basis, where sgn(P ) = +1 (−1) for even (odd) permutations of
1, . . . , r. A differential form ω ∈ Ωr(M) can be expressed as a linear combination

ω =
1

r!
ω[a1...ar] dx

a1 ∧ dxa2 ∧ . . . ∧ dxar (2.2)

of the basis vectors. Indices in brackets indicate a unit-weight (anti-)symmetrization,
ω(ab) = 1

2 (ωab + ωba) and ω[ab] =
1
2 (ωab − ωba), reflecting the antisymmetry of the basis

(2.1). For differential forms ξ ∈ Ωp(M) and η ∈ Ωq(M), the wedge product is defined as

ξ ∧ η =
1

p!q!
ξ[a1...apηb1...bq ] dx

a1 ∧ . . . ∧ dxap ∧ dxb1 ∧ . . . ∧ dxbq , (2.3)

with the following properties

(ξ ∧ η) ∧ ω = ξ ∧ (η ∧ ω) , ξ ∧ η = (−1)pq η ∧ ξ ,

ξ ∧ ξ = 0 if q is odd .
(2.4)

The exterior derivative d : Ωr(M) → Ωr+1(M) of an r-form is defined by

dω =
1

r!
∂[bωa1...ar] dx

b ∧ dxa1 ∧ . . . ∧ dxar , (2.5)

which satisfies the conditions d2 = 0 and

d(ω ∧ ξ) = (dω) ∧ ξ + (−1)r ω ∧ (dξ) . (2.6)

The Levi-Civita symbol, denoted by εa1...am , and the corresponding tensor are defined
such that εP (1)...P (m) = sgn(P ). If the manifold M is endowed with a metric gab, the
m-dimensional Levi-Civita tensor is given by ϵa1...am =

�|detgab| εa1...am , where the deter-
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minant of the m-dimensional metric is involved. Note that

ϵa1a2...am = ga1b1ga2b2 . . . gambmϵb1b2...bm = g−1ϵb1b2...bm . (2.7)

The Hodge star operator ∗ : Ωr(M) → Ωm−r(M) is defined by the action on the basis
vectors,

∗ (dxa1 ∧ . . . ∧ dxar) =
1

(m− r)!
ϵa1...ar br+1...bm dxbr+1 ∧ . . . ∧ dxbm , (2.8)

implying that

∗1 =
1

m!
ϵa1...am dxa1 ∧ . . . ∧ dxam , (2.9)

where the right-hand side is the invariant volume element vold. For any element ω ∈
Ωr(M),

∗ω =
1

r!(m− r)!
ωa1...arϵ

a1...ar
br+1...bm dxbr+1 ∧ . . . ∧ dxbm , (2.10)

and
∗∗ω = (−1)r(m−r)+t ω , (2.11)

with the number t of timelike dimensions in the m-dimensional space8. For a 10D manifold
decomposed into a product space Md × M10−d, we introduce another relation for ξ ∈
Ωp(Md) and η ∈ Ωq(M10−d),

∗10 (ξ ∧ η) = (−1)p(10−d−q) ∗dξ ∧ ∗10−dη , (2.12)

where we define the Hodge operators ∗d and ∗10−d of the lower-dimensional spaces with
respect to the corresponding metrics. Finally, for all ω, σ ∈ Ωr(M), the relations

|ω · σ| = 1

r!
ωa1...arσ

a1...ar , |ω · σ|ab = 1

(r − 1)!
ωaa2...arσb

a2...ar (2.13)

and the properties

∗ω ∧ σ = ∗σ ∧ ω = |ω · σ|∗1 , |∗ω · ∗σ| = (−1)t |ω · σ| ,
|∗ω · ∗σ|ab = (−1)t (gab|ω · σ| − |ω · σ|ab) ,

(2.14)

will be useful in later discussions.

2.2 Type II supergravity

In the following section, we introduce the framework, notation and equations necessary for
the rest of this work [2, 3, 88]. Given the simplifying assumptions that we adopt, we will
specify the compactification setting and refine our conventions at the beginning of each
section.

Let us begin by defining our compactification ansatz in a more general way. We are
working in (massive) 10D type II SUGRA, where the 10D spacetime is considered as a

8More specifically, t = 0 if (M, g) is Riemannian and t = 1 if it is Lorentzian.
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warped product of the form Md×M10−d. In its most general form, the metric is given by

ds210 = gMN (X)dXMdXM = e2A(y)gµν(x)dx
µdxν + gmn(x, y)dy

mdyn , (2.15)

which preserves the d-dimensional Lorentz invariance (maximal symmetry). In this context,
we use capital Latin indices M,N to label all 10 directions, while Greek indices, µ, ν =

0, . . . , d−1, are employed to denote external directions. Furthermore, Latin indices, m,n =

d, . . . , 9, are used to label internal dimensions. The external spacetime is either (anti-)de
Sitter or Minkowski, characterized by a constant scalar curvature Rd. The Ricci scalar of
the internal compact manifold, R10−d, is defined with respect to the metric gmn. We assume
that the signature of both the 10D and the d-dimensional spacetime is (−,+, . . . ,+). The
localized sources are accounted for by the warp factor e2A.

We turn to the field content; the bulk fields include the dilaton ϕ, the metric gMN ,
which is characterized by 10D curved indices, and the Kalb-Ramond 2-form B2, which
defines the NSNS field strength H3 = dB2. The dilaton must be a function of the internal
coordinates only in order to preserve d-dimensional Lorentz invariance. We now proceed
to discuss the RR sector. In the democratic formulation of type II string theory [89, 90],
odd-degree forms appear in type IIA and even-degree forms in type IIB. These differential
forms are given in terms of gauge potentials Cq, where q = 1, . . . , 9. Note, however, that
these potentials are not completely independent. This point will be discussed in more
detail below. The RR field strengths,

Fq = dCq−1 −H3 ∧ Cq−3 + F0e
B2 |q , (2.16)

with q ≥ 1, are given in terms of B2 and Cq−1, which are defined on local gauge patches
away from the localized sources. Moreover, F0 is the mass parameter (Roman mass) in
massive type IIA SUGRA, which lacks propagating degrees of freedom.

In the classical SUGRA approximation of type II string theory, the bosonic part of the
effective action is given by

S = Sbulk + Sloc . (2.17)

This equation includes the (pseudo-)action

Sbulk =
1

2κ210

�
d10x

√−g

e−2ϕ

�
R+ 4(∂ϕ)2 − 1

2
|H3|2

�
− 1

4

10!
q=0

|Fq|2
 , (2.18)

with 2κ210 = (2π)7α′4, in the string frame and the democratic formalism. In the following,
we set 2π

√
α′ = 1. For F0 = 0, this results in the standard massless type IIA theory, as

presented in [3]. The term "pseudo" refers to the redundant degrees of freedom in Cq, which
are convenient for deriving the equations of motion. To avoid the degenerate degrees of
freedom compared to the standard type II string theory formulation in Appendix A, which
contains only lower-degree forms, any redundancy must be removed on-shell, i.e. at the
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level of the equations of motion. This is done by imposing the self-duality constraint,

∗10Fq = (−1)
q(q−1)

2 F10−q , (2.19)

on the RR field strengths. By breaking the democracy among the RR forms, a genuine
action can be obtained that contains only the independent degrees of freedom. It is neces-
sary to remove half of the Fq using the self-duality constraint. For the time being, we will
continue with the democratic formalism, but in Appendix A we will discuss the standard
action of type II SUGRA in more detail [3, 74].

We turn to the source content; we study spacetime-filling (anti-)Op±i -planes and Dpi-
branes with d − 1 ≤ pi ≤ 9, wrapped on (pi + 1)-dimensional sub-manifolds Σi. Thus, pi
is the space dimension of the i-th source. In particular, we exclude NS5-branes, Kaluza-
Klein monopoles and fundamental strings due to tadpole cancellation problems. Moreover,
the backreaction of KK monopoles raises concerns and the identification of stable cycles
for these branes remains a challenge [33]. The sources are classified according to their
dimensionality pi, and each class contains sets i of parallel sources placed along identical
directions. The superscripts ± indicate different signs of the tension, while "anti" refers to
a reversed sign of the RR charge. The action of these sources contains two contributions,

Sloc =
!
i

S
(pi)
loc =

!
i

�
S
(pi)
DBI + S

(pi)
CS

�
, (2.20)

the Dirac-Born-Infeld action and the Chern-Simons part9. We define

S
(pi)
loc = −Ti

�
Σi

dpi+1x
�−gpi+1 e

−ϕ
�
1 + Lα′2,i

�
+ Ti

�
Σi

Cpi+1 , (2.21)

where gpi+1 denotes the pullback of the metric gMN to Σi and Ti ∈ {TOp±i
, TDpi} is the

tension (charge) of the sources, set to10

TOp±i
= ±2pi−5TDpi , TDpi =

2π

(2π
√
α′)pi+1

. (2.23)

The couplings to B2 and the worldvolume gauge field are not relevant to this study and
the action for an anti-Op±i -plane/anti-Dpi-brane is given by reversing the sign of the CS
term. We also introduce 4-derivative corrections (Lα′2,i) in the α′ expansion of the classical
source action. The location of an O-plane is defined by fixed points, i.e., the surface being
invariant under its target space involution σpi . In addition, the RR-form field strengths
also transform under the involution function. To analyze the parity of the fluxes, we use

9The CS term is topological and, as such, does not contribute to the Einstein equations.
10On the covering space of an orientifold, equation (2.23) must be modified to reflect

TOp±i
= ±2pi−4TDpi . (2.22)
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the conventions outlined in [49], where σpi(H3) = −H3 and

σpi(Fq) = +χ(Fq) , for pi = 2, 3, 6, 7 ,

σpi(Fq) = −χ(Fq) , for pi = 0, 1, 4, 5, 8, 9 .
(2.24)

This definition introduces the operator χ, which is used to invert the indices of a q-form
according to

χ(Fq) = +Fq , for q = 0, 1, 4, 5, 8, 9 ,

χ(Fq) = −Fq , for q = 2, 3, 6, 7 .
(2.25)

In Section 7, where we explore an "almost classical" theory of type IIA SUGRA, we
study 4-derivative corrections in the α′ expansion of the source action, given by

Lα′2,i = (2π)4α′2
�
c1ie

4ϕF 4
0 + c2ie

2ϕF 2
0R+ c3iR2 + c4iH

4
3 + c5iH

2
3R

+ c6ie
2ϕF 2

0H
2
3 + c7ie

4ϕF 4
2 + c8ie

4ϕF 2
0F

2
2 + c9ie

2ϕF 2
2R+ c10ie

2ϕF 2
2H

2
3 + . . .

�
. (2.26)

The terms R2, H2
3R, . . . represent all possible scalars derived from the Riemann tensor or

components of the field strengths pulled back to the source. Note that the α′ expansion
of the RR sector is characterized as an expansion in powers of eϕFq. However, this does
not cover all corrections in next-to-leading order. Both the bulk and the Chern-Simons
actions also receive α′ corrections. Furthermore, the equation (2.26) contains other terms,
including F4 and derivatives of the dilaton. These corrections, as well as the exact numerical
values of the coefficients cai, are not critical for the discussion in this work, although the
latter are easily obtainable [76–84].

At last, we will address the equations of motion and Bianchi identities for the classical
action, which is defined by Lα′2,i = 0. The dilaton equation of motion reads

e−2ARd +R10−d = 4eϕ∇2e−ϕ + 2de−A∇2eA

+ d(d− 1)(∂A)2 − 4d(∂A · ∂ϕ) + 1

2
|H3|2 + 1

2

!
i

Ti

2π
eϕδ(Σi) , (2.27)

while the (trace-reversed) external and internal Einstein equations are

e−2ARd =
d

4
eϕ∇2e−ϕ + de−A∇2eA +

d

4
(∂ϕ)2 − d(8 + d)

4
(∂A · ∂ϕ) + d(d− 1)(∂A)2

− d

8
|H3|2 −

!
q

(q − 1)d

16
e2ϕ|Fq|2 −

!
i

Ti

2π

(7− pi)d

16
eϕδ(Σi) , (2.28)

Rmn =2eϕ∇m∂ne
−ϕ + de−A∇m∂ne

A +
gmn

4
eϕ∇2e−ϕ +

gmn

4
(∂ϕ)2 − d

4
gmn(∂A · ∂ϕ)

− 2(∂mϕ)(∂nϕ) +
1

2
|H3|2mn − gmn

8
|H3|2

+
1

2
e2ϕ

10−d!
q=0

�
|Fq|2mn − q − 1

8
gmn|Fq|2

�
+

1

2
eϕ

�
T loc
mn − gmn

8
T loc
10

�
, (2.29)
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where both the Laplacian and the covariant derivative are defined with respect to the
warped metric gmn and all spacetime-filling fluxes have been dualized to internal ones
according to (2.19)11. We also define the energy-momentum tensor of the localized sources,

2πe−ϕ T loc
MN = − 2√−g

δSloc

δgMN
= −e−ϕ

!
i

TiΠ
(i)
MNδ(Σi) (2.30)

with T loc
10 =

"
i T

(pi)
10 = gMNT loc

MN . The projector Π
(i)
MN to Σi, wrapped by the source pi,

is given by gMN for directions parallel to the source and zero otherwise. A complete list
of the Einstein equations can be found in Appendix A. The delta-distributions are most
easily explained by considering their effect on a test function f defined over the internal
coordinates, �

d10x
√−g10 fδ(Σi) =

�
Σi

dpi+1x
�−gpi+1 f |Σi , (2.31)

or δ(Σi) = δ(x⃗)/
√
g9−pi in local coordinates. Moreover, the equations of motion and the

Bianchi identities for the field strengths are given together by

d (∗10Fq) = −H3 ∧ ∗10Fq+2 , dFq = H3 ∧ Fq−2 − (−1)
q(q+1)

2

!
pi=8−q

Qi

2π
δ9−pi ,

d
�
e−2ϕ∗10H3

�
= −

!
q

∗10Fq ∧ Fq−2, dH3 = 0 ,
(2.32)

where δ9−pi = δ(Σi) vol⊥i
and Qi = ±Ti, with a negative sign for anti-Opi/anti-Dpi.

When integrating the Bianchi identity over the internal space transverse to the sources,
the combination of the integrated fluxes H3 ∧ Fq−2 must cancel the charge presented by
the integrated source form. This requirement, which ensures that the net flux and source
terms effectively cancel each other, is known as the tadpole cancellation condition.

2.3 Boundary conditions of localized sources

In anticipation of discussions on localized sources in string compactifications [72, 73, 75],
we aim to clarify some ambiguities in the equations of motion. This complex topic will
be discussed in more detail in Section 7 and [47], but an initial discussion here serves as a
useful introduction to the effects of localized sources.

By varying the action shown in (2.21), the O-planes/D-branes manifest themselves as
delta-functions in the equations of motion. This description is typically understood as
the backreaction of these delta-function sources on the bulk fields. However, there are
alternative interpretations, which we will briefly explore.

VOp/Dp in
scalar potential

Couplings
in Sloc

δ(Σi) in 10D
equations

Boundary conditions
φ|Σi at source positions

O-planes are often conceptualized not as extended physical objects but as expressions of the
11In d = 3, the H3 flux is allowed to fill the entire 3D spacetime, thus introducing an additional term in

the equations of motion, as detailed in Appendix A.
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background structure inherent to orientifolds. The fields defined within this background
are subject to specific boundary conditions that affect how the fields couple to the O-
planes, as detailed in equation (2.21). Furthermore, these sources contribute to the scalar
potentials in the effective theory derived from the 10D action by dimensional reduction,
as discussed in Section 3. While these perspectives are alternative but equivalent views of
the effects of localized O-planes/D-branes, ambiguities in this formalism remain [75].

To further illustrate these points, particularly in the context of the source configuration
explored in Section 7, we study an O8−-plane. The properties of this model, which will be
discussed in detail later, are described by the metric

ds210 = e2A(z)ds24 + e−2A(z)
�
e2λ(z)ds2κ5

+ dz2
�
, (2.33)

with a warp factor e2A, the dilaton ϕ and a conformal factor e2λ. The internal space
consists of a 5D Einstein space κ5 wrapped by the O8− and a circle S1 with the orientifold
localized at z = 0. Assuming that the delta-functions primarily describe the local behavior
of the fields near an O8−, the classical equations in Section 2.2 can be written as

(eA−ϕϕ′)′ = −20 δ(z) + . . . ,

(eA−ϕA′)′ = −4 δ(z) + . . . ,

(eA−ϕλ′)′ = −8 δ(z) + . . . ,

(2.34)

with ′ denoting ∂z. The remaining terms, including contributions from curvature, fluxes
and first derivatives, result only in higher-order corrections in the field expansion around
z = 0, while the leading terms in the bulk fields are sourced by the delta-functions12.
Combining the equations (2.34), we find�

eA−ϕ
�′′

= 16 δ(z) + . . . . (2.35)

Since
�
eA−ϕ

�′ remains finite, this local equation integrates well in a distributional sense,
thus addressing the issue of ill-defined distributions previously claimed in [75]. The solution
around z = 0 is then given by

eA−ϕ = c0 + 8|z|+ . . . , (2.36)

where c0 is the integration constant. Therefore, we detail the dynamics of the bulk fields
as z approaches zero is obtained from

eA = a0 − 2a0
c0

|z|+ . . . , eϕ =
a0
c0

− 10a0
c20

|z|+ . . . , eλ = l0 − 4l0
c0

|z|+ . . . , (2.37)

for c0 ̸= 0 with a0, l0 ̸= 0. For c0 = 0, the expansion becomes

eA = a0|z|− 1
4 + . . . , eϕ =

a0
8
|z|− 5

4 + . . . , eλ = l0|z|− 1
2 + . . . . (2.38)

12We implicitly assume that only second-order derivative terms contribute to the delta-functions, a
stance that proves to be self-consistent in [72, 75].
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To analyze next-to-leading-order coefficients, we combine the equations detailed in (2.34)
to eliminate the delta-function sources. For the case c0 ̸= 0, dividing by eA−ϕ simplifies
the results, leading to�

A− ϕ

5

�′′
= 0 + . . . , (2A− λ)′′ = 0 + . . . . (2.39)

With the delta-functions now excluded, the system becomes more tractable, although the
case c0 = 0 introduces more complexity. As indicated by the expansion (2.36), we may
need to consider terms such as eA−ϕδ(z) ∼ |z|δ(z) within the equations of motion (2.34).
This inclusion leads to ambiguities in the equations (2.39),�

A− ϕ

5

�′′
= C1 δ(z) + . . . , (2A− λ)′′ = C2 δ(z) + . . . , (2.40)

where CI are free parameters. Despite these changes, both modified equations (2.40)
remain well-defined and integrable, yielding the following expressions

eA = a0|z|− 1
4 + a1|z| 34 + . . . ,

eϕ =
a0
8
|z|− 5

4 +
5

16
(2a1 − C1a0) |z|− 1

4 + . . . ,

eλ = l0|z|− 1
2 +

l0
2a0

(4a1 − C2a0)|z| 12 + . . . .

(2.41)

Setting CI = 0 provides a solution to the equations (2.39). Further details and implications
of these sub-leading coefficients will be explored in due course. For now, we provide a brief
overview of the corresponding boundary conditions [47, 75], illustrated in the diagram
below;

classical
CI = 0

permissive
CI , a1 indefinite

restrictive
CI = a1 = 0

In the context of the equations of motion, we refer to delta-function sources according to
the boundary conditions they impose. However, we will temporarily set aside the discussion
of restrictive boundary conditions, as they are not the main focus of the current dialogue,
despite their presence in simple solutions [91]. Instead, our interest shifts to exploring
whether we are dealing with classical or permissive sources, a crucial distinction since only
the latter are known to potentially facilitate dS solutions [72, 73,75,92].

We take a critical stance on the validity of permissive sources within the framework of
classical SUGRA. This skepticism arises from the fact that c0, which represents the zero
mode of eA−ϕ and acts as a dynamical field, must vanish for permissive sources. As a
degree of freedom, the modulus c0 may experience fluctuations whether it is stabilized or
not. However, such fluctuations should not affect the fundamental nature of the sources.
Consequently, the derivation of the equations (2.39) and (2.40), where c0 is then set to
zero in the latter, is expected to yield identical results. This consistency justifies setting
CI to zero.
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The possibility that c0 lacks dynamical properties is considered negligible, given its role
as a universal modulus in string compactifications, as illustrated in (2.37) and discussed
in [20,93,94]. Moreover, the orientifold involution of O8− does not project out c0 [90]. For
a comprehensive and structured analysis in a consistent mathematical context, the reader
is referred to [95]. In line with the results in [73], we conclude that permissive sources are
implausible in classical SUGRA, justifying the claim that CI = 0.

Considering the potential for string corrections to challenge this conclusion [73,75], we
initially study next-to-leading-order (4-derivative) corrections (2.26), with coefficients cai,
in the α′ expansion of the classical source action. These corrections introduce "almost
classical" boundary conditions, which naturally reproduce the classical conditions when
cai = 0;

classical
CI = cai = 0

permissive
cai = 0

restrictive
CI = a1 = cai = 0

almost classical
CI = 0

However, our initial optimism is tempered upon closer examination of the field dependence
of the corrections in (2.26), which reveals that almost classical sources differ significantly
from permissive ones, even when considering general values of cai. Furthermore, the 4-
derivative terms affect all equations of motion and not just specific combinations such as
(2.40). The subtle effect of these 4-derivative corrections casts doubt on their ability to
generate non-classical source terms, as proposed in [72], which could potentially facilitate
dS solutions. In Section 7, we will explore why achieving dS solutions with (almost)
classical sources in the CDT1 model [72] or similar setups with O6/D6 cannot be realized.

2.4 Smeared versus localized

We revisit some arguments previously discussed in [14, 15, 96] regarding the effects of lo-
calized sources. These sources induce non-trivial profiles for the internal metric, the warp
factor and the dilaton by their backreaction on spacetime. In the equations of motion, the
action of O-planes/D-branes introduces these sources as delta-functions, which can lead
to regions of intense curvature (or energy densities) near the sources, where the classical
SUGRA description may become inadequate, necessitating the inclusion of string correc-
tions. To circumvent these complexities, we explore a regime where the backreaction of the
sources is minimized over the entire spacetime, thus reducing the regions prone to string
corrections and preserving the integrity of the SUGRA framework.

A practical solution to the challenges posed by localized sources is to replace them
with a continuous distribution of the tension "smeared" over the compact space. This
approach, known as the smeared approximation, is discussed in detail in references such
as [8, 12, 13, 97]. In this refined framework, the delta-functions δ(Σi), which represent the
i-th source with support on the worldvolume Σi, are replaced in the equations by smooth
functions. For example,

δ(Σi) → 1

Vi
, (2.42)

where Vi is the volume of the (9 − pi)-dimensional transverse space. These functions are
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designed to integrate to the same total value as the original delta-functions. Despite such
approximations, where fields like the warp factor and dilaton may show negligible spatial
variation and remain almost constant, the source tension (or charge) still plays a significant
role in the dynamics described by the equations of motion. An alternative perspective
involves the expansion of the fully backreacted 10D solution into Fourier modes. In this
perturbative framework, the smeared solution represents the leading-order term, which is
particularly dominant in the limit of large internal volumes, weak string coupling or small
cosmological constants. Each of these serves as an expansion parameter, the nuances of
which will be discussed in due course.

In essence, the smeared limit allows us to solve the equations in a controlled manner in
regimes characterized by small gs or large internal volumes, as highlighted in [15,98]. The
use of smeared sources allows consistent truncations in string compactifications on group
manifolds, as discussed in [16, 99, 100], apart from simplifying solution finding. However,
by their very definition, a D-brane is characterized by its boundary conditions and an O-
plane by its involution, which implies that the smeared approximation does not adequately
reflect the localized nature of these sources. This inherent discrepancy has led to criticism
concerning the validity of such approximations in the literature. Nevertheless, recent de-
velopments suggest that the smeared approach remains a justifiable method [15,70,98,101].

In the following discussion, we will study in more detail the conditions under which
the backreaction of sources is negligible, thus supporting the use of the smeared approach.
For sources of dimensionality pi ≤ 6, the backreaction of an Op−i -plane is quantified by

gsTi

r7−pi
, (2.43)

where r is the radial coordinate in the (9−pi)-dimensional transverse space, and the source
is localized at r = 0 [91,102]. Notably, the backreaction becomes significantly pronounced
in the vicinity of the sources. More precisely, backreaction effects are ≳ O(1) within a
spherical region, defined by

r ≲ rcrit ≡ (gs|Ti|)
1

7−pi (2.44)

around the orientifold. Within this critical sphere, an interesting behavior of the warp
factor is observed: e−4A becomes negative, leading to an imaginary metric according to
(2.15). Beyond this radius, the metric loses its physical interpretation, indicating that the
classical SUGRA description becomes unreliable and string corrections gain importance.
In this so-called "hole" region, the curvature diverges as one approaches rcrit, rendering the
solution unreliable even some distance before reaching the boundary where the curvature
becomes ≳ O(1), as illustrated in Figure 1. For additional discussions of similar phenomena
in flat space, especially regarding brane solutions with negative tension, we refer to [91].
Building on the previous arguments, it can be deduced that as

gs → 0 , (2.45)

the unphysical hole disappears. Considering a characteristic length scale R of our space,
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Figure 1: This figure illustrates the smeared limit within the transverse space of Op−i -planes
for pi ≤ 6 [96]. In regimes where both the volume and gs are of order one, a pronounced
backreaction of the sources is observed across large spatial regions (indicated as shaded
areas). In these regions, where neither the warp factor nor the dilaton are well-defined,
the classical SUGRA framework proves inadequate. However, the backreaction at generic
points typically vanishes as gs, gsR

pi−7 → 0, aligning the profiles of the warp factor and
the dilaton with those anticipated by the smeared approach throughout space (represented
as dashed lines).

the continuous limit13

gs
R7−pi

→ 0 (2.46)

implies that backreaction effects are negligible at generic points in the 10D spacetime.
Nevertheless, maintaining a finite and large R is essential to suppress α′ corrections in the
bulk, leading to gs/R

7−pi → 0 iff gs → 0. In summary, under conditions where backreaction
effects are effectively absent throughout the 10D spacetime, type II supergravity, or the
dimensionally reduced effective theory and its scalar potential, can be properly described
by the smeared approximation, as shown in Figure 1.

This analysis also leads to another insightful conclusion, identified in [96] and previ-
ously discussed in [15, 73, 103], known as the "Small-Hole Condition": as gs → ϵ with a
small but finite ϵ – indicating a small hole – and with sufficiently large volume, the smeared
approximation remains valid and the classical SUGRA framework remains reliable for de-
riving the potential, albeit with some leading higher-derivative corrections. It is important
to clarify that while the smeared SUGRA background accurately represents the physics
of the low-energy theory, it does not fully capture the local properties of the 10D parent
theory near the O-planes. This discrepancy arises because negligible corrections at the
level of the effective theory do not necessarily translate into negligible local corrections in
ten dimensions. In particular, within any small but finite stringy region surrounding an
O-plane, string or backreaction corrections persistently affect the local physics in 10D.

Recent studies [15, 96, 98] have developed a more precise mathematical framework to
13While it seems physically unreasonable, the possibility of a discontinuous limit, where backreaction

effects remain significant in the effective theory even as gs → 0, cannot be entirely dismissed.
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support what was previously a rather speculative discussion. These works have derived the
perturbative expansion of the 10D solutions in regions characterized by small backreaction.
The leading term is consistent with the smeared SUGRA assumption, while the subsequent
higher-order terms, which contain backreaction corrections, behave as

gs
!
i

TiGi , (2.47)

where Gi, the Green’s function of the transverse space to the i-th source normalized by
a constant shift, satisfies ∇2Gi = 1/Vi − δ(Σi) [96]. At generic points in an isotropic
space, the Green’s function scales as 1/R7−pi , and at r ≪ R as G ∼ 1/r7−pi , mirroring
the behavior of the Green’s function in flat space. Thus, the backreaction described in
(2.47) is consistent with the heuristic result (2.43), i.e., of the order gsTi/R

7−pi at generic
points. It is crucial to note, however, that isotropy is not a prerequisite for the validity of
the equation (2.47); further details can be found in [96,104].

In addition, the critical radius defined in (2.44), beyond which backreaction effects be-
gin to diverge, can also be determined. Since the equation (2.47) is primarily concerned
with the behavior of next-to-leading-order corrections, there is no a priori guarantee that
a fully backreacted solution, including the complete backreaction of an Op−i -plane, would

necessarily exhibit a singular hole for r ≲ (gs|Ti|)
1

7−pi . However, the local structure near an
Op−i in any compactification is expected to resemble the one observed in flat space (which
has a singularity), albeit with slight modifications. This link between strong backreaction
and the appearance of singular regions underscores the importance of staying within re-
gions where the smeared approximation is valid over most of 10D spacetime.

Building on our discussion of O8−-planes in Section 7, we now focus on this specific
case. The Green’s function for S1 is expressed as

G8 = R

�
z2

4π
− |z|

2
+

π

4

�
≲ O(R) , (2.48)

where z ∈ [0, 2π) and the radius is R. With the source located at z = 0, the backreaction
from any O8− (as well as O8+, D8) is approximately ≲ gs|Ti|R, vanishing in cases of large
volume or small gs, provided that gsR → 0. Unlike pi ≤ 6, G8 remains bounded as z → 0.
This finite behavior extends to the warp factor and other functions, even within the fully
backreacted solution [91], ensuring that the SUGRA description remains robust and reli-
able throughout space, without the complications typically associated with large curvature
or singular holes, as shown in Figure 2. It is important to recognize that our analysis is
carried out within a compact framework. From this discussion, it is clear that there are
regimes where both the backreactions of O6−-/O8−-planes and the string corrections are
negligibly small, preserving the integrity of the theoretical model.

As for Op+i -planes/Dpi-branes with positive tension, they do not generate holes where
the warp factor becomes negative for 3 < pi ≤ 6. Nevertheless, there remains a stringy
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Figure 2: This figure illustrates the smeared limit in the compact transverse space S1 of
an O8− [47]. For gsR ≳ O(1), backreaction effects are pronounced (left, center), although
singular holes do not necessarily occur (center). To ensure tadpole cancellation, an O8+-
plane is strategically placed at the opposite end of S1.

region surrounding the source where the curvature diverges and classical SUGRA ceases
to be reliable [75, 91]. This issue underscores the necessity to include higher-order string
corrections into our theoretical framework, although such problematic regions disappear
in the smeared limit. But there are other regimes to be considered, as the dynamics are
notably different for D-branes; in systems involving a stack of Dpi, the curvature remains
small at distances beyond the string length, indicating that classical SUGRA provides a
consistent description for D-brane solutions even without the smeared approximation.

To summarize this complex discussion, in regions of spacetime severely affected by the
backreaction from an Op−i -plane with pi ≤ 6, singular holes or regions of large curvature
manifest, leading to the failure of classical SUGRA. As gsR

7−pi → 0, these singularities
and the backreaction effects disappear, rendering the smeared solution valid over the entire
10D spacetime. On the other hand, for O8±-planes and D-branes, despite pronounced
backreaction, no singularities develop, and the SUGRA solution remains robust and reliable
without resorting to the smeared approach.

Throughout this thesis, we will frequently use the smeared approximation because
it provides control over string corrections and singular regions. However, it is crucial to
confirm that our discussions in the smeared limit are supported by fully backreacted equiv-
alents. This careful approach ensures the reliability and completeness of our theoretical
models.
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3 Dimensional reduction and effective action

We proceed to outline the mathematical framework for the dimensional reduction of a
theory from D spacetime dimensions to an effective theory in d dimensions. First, we
establish the relation between the actions of the D- and d-dimensional theories [53]. The
D-dimensional action

S =
1

2κ2D

�
dDx

√−gD e−2ϕ
�RD + 4∂Mϕ∂Mϕ

�
+ . . . , (3.1)

with the gravitational constant κ2D, includes the standard Einstein-Hilbert term along
with the kinetic term for the dilaton ϕ. The other terms, denoted by ellipses, include
contributions from the H3 flux, the RR field strengths and the O-planes/D-branes, hereafter
collectively referred to as sources, details of which will be explained later. In contrast, the
d-dimensional action in the Einstein frame,

S(d) =

�
ddx

√−gd

�
M2

p

2
Rd − 1

2
Gij∂µφ

i∂µφj − V (φ)

�
, (3.2)

features the potential V (φ) of the minimally coupled scalar fields φi, which arise from
dimensional reduction, and the field space metric Gij . The Planck mass is given by

M2
p =

1

κ2D

�
dD−dy

√
gD−d g

−2
s , (3.3)

where gD−d is the metric of the (D−d)-dimensional compactified space. The Ricci scalars
are defined by the metric tensors gMN of the higher-dimensional theory and gµν of the
reduced d-dimensional effective theory, where µ, ν = 0, . . . , d− 1.

Within this lower-dimensional framework, a critical point of the scalar potential, char-
acterized by the absence of the scalar kinetic energy, corresponds to a stable vacuum
solution. This scenario implies that the dynamics of the d-dimensional theory is stationary
with respect to variations in the scalar fields, thus providing a solution to the equations of
motion derived from the effective potential. These critical points are crucial for identifying
stable configurations in compactified theories and play an important role in the landscape
of string theory vacua. They allow the calculation of physical properties such as field
masses and interaction couplings. Furthermore, evaluating the trace of the d-dimensional
Einstein equation on-shell, i.e. at the critical point, so that

d− 2

d
Rd =

2

M2
p

V |0 , (3.4)

shows that a dS solution corresponds to an extremum of a positive potential, V (φ) > 0.
In the following, we will explore additional terms in the scalar potential arising from

contributions of the H3 flux, the RR field strengths and the sources to the D-dimensional
action. We will also discuss the kinetic terms for various scalar fields in type II SUGRA,
whose definitions and corresponding scalar potentials are detailed in the text. For clarity
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and parametric control, we adopt the smeared approximation, which involves keeping a
constant background dilaton, eϕ0(x) = gs, and neglecting the warp factor in the metric
(2.15). As mentioned above, this approximation is justified by the expectation that an
approximately smeared regime is sufficient to ensure the validity of classical SUGRA.

3.1 Semi-universal scalar fields (ρ, τ, σ)

To derive the effective action of any quantum field theory, we can use the background
field method. This technique involves expanding the quantum fields around a classical
background value. Specifically, the scalars in (3.2) are treated as perturbations around the
10D background fields, which include the metric and the dilaton. Starting with the initial
set of scalar fields {ρ, τ, σ}, we adopt the following formal expression for the D-dimensional
metric [32,43]

ds2D = τ−2(x)gµν(x)dx
µdxν + ρ(x)gmn(x, y)dy

mdyn , (3.5)

which allows a decomposition of the Ricci scalar as follows,

RD = τ2Rd + ρ−1RD−d + . . . , (3.6)

where RD−d = gmnRmn and Rd = gµνRµν . The ellipses represent additional terms, which
will be explained in more detail. The fluctuations of the dilaton field are expressed by the
equation eϕ(x) = gse

δϕ(x). We will omit any explicit mention of the coordinate dependence
in the following discussions. To eliminate the scalar field prefactors in the Einstein-Hilbert
term of the d-dimensional action, we perform the following transformation,

eδϕ = τ−
d−2
2 ρ

D−d
4 . (3.7)

This definition leads to the first term in the scalar potential,

V = − 1

2κ2D

�
dD−dy

√
gD−d g

−2
s τ−2ρ−1RD−d . (3.8)

In the following sections, additional contributions from the kinetic term of the dilaton and
other terms of the D-dimensional action will be explored.

3.1.1 Kinetic terms

To derive the energy density of the scalar fields, we start with the kinetic term of the 10D
dilaton,

4(∂ϕ)2D = τ2
�
(D − d)2

4
ρ−2(∂ρ)2 +

(d− 2)2

4
τ4(∂τ−2)2

+
(d− 2)(D − d)

2
τ2ρ−1∂µτ

−2∂µρ

�
, (3.9)
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expanding upon the results presented in [34]. We distinguish between D- and d-dimensional
derivatives. Further evaluation of the Ricci scalar and an exact derivation of (3.6) leads to

RD = τ2Rd + ρ−1RD−d − d

2
τ4∂µτ

−2∂µ(ρgmn)ρ
−1gmn

− τ2

4

�
ρ−1gmn∂(ρgmn)

�2 −∇µ

�
(d− 1)τ4∂µτ−2 + τ2ρ−1gmn∂µ(ρgmn)

�
− (d+ 2)(d− 1)

4
τ6(∂τ−2)2 +

τ2

4
∂µ(ρgmn)∂

µ(ρ−1gmn) . (3.10)

Inserting this expression into the D-dimensional action and performing partial integration
results in�

ddx
√−gd τ

−2RD =

�
ddx

√−gd

�
Rd + τ−2ρ−1RD−d

− (d− 1)(d− 2)

4
τ4(∂τ−2)2 − d− 2

2
τ2∂µτ

−2∂µ(ρgmn)ρ
−1gmn

− 1

4

�
ρ−1gmn∂(ρgmn)

�2
+

1

4
∂µ(ρgmn)∂

µ(ρ−1gmn)

�
, (3.11)

with the prefactor τ−2 emerging from those in (3.1) and the process of dimensional re-
duction. For the sake of argument, we assume that the determinant of the metric ten-
sor, gD−d = det gmn, is independent of the external coordinates. It can be shown that
gmn∂µgmn = 0, as ∂µ ln(detM) = Tr(M−1∂µM) for an invertible matrix M . We then
obtain�

ddx
√−gd τ

−2RD =

�
ddx

√−gd

�
Rd + τ−2ρ−1RD−d

− (d− 1)(d− 2)

4
τ4(∂τ−2)2 − (d− 2)(D − d)

2
τ2ρ−1∂µτ

−2∂µρ

− (D − d)2

4
ρ−2(∂ρ)2 − D − d

4
ρ−2(∂ρ)2 +

1

4
∂µ(gmn)∂

µ(gmn)

�
. (3.12)

This relation, together with the dilaton term in the equation (3.9) and simplifying the
resulting expression, leads to the action of the d-dimensional effective theory,

S(d) =

�
ddx

√−gd

�
M2

p

2
Rd −

M2
p

2

�
(d− 2)τ−2(∂τ)2

+
D − d

4
ρ−2(∂ρ)2 − 1

4
∂µ(gmn)∂

µ(gmn)
�
− V

�
, (3.13)

with the scalar potential, as further specified in the following section. Before proceeding,
we define another scalar field, σ, which is related to the internal geometry as described
in [43, 44],

gmndy
mdyn = σAδabe

a||eb|| + σBδcde
c⊥ed⊥ . (3.14)

In this analysis, we use the orthonormal coframe, often referred to as the flat basis,
{ea||}, {ea⊥} of the compact manifold, such that the internal metric is given by ds2D−d =

δabe
aeb with one-forms ea = eam(y)dym in terms of the vielbeins eam(y) [34, 36]. The
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indices a||, b|| refer to the internal dimensions along a set of parallel sources, while c⊥, d⊥
denote those orthogonal to them. In anticipation of string compactifications on group
manifolds, the spin connection can be described using parameters denoted by fa

bc. Given
the previous assumption, the exponents A,B are defined to ensure the determinant of the
internal metric remains independent of the external coordinates, i.e.,

A = pi + 1−D , B = pi + 1− d . (3.15)

The σ field refers to fluctuations of the internal volume wrapped by the O-planes/D-branes.
Consequently, we define a σi for each set of parallel sources, indicating the dependence on
the specific source configuration. This requires a slight generalization of the previously
derived results to accommodate multiple sets of Opi/Dpi. For each set of parallel sources,
which may vary in dimensionality pi, we can define a fluctuation of the vielbeins according
to [36],

ea||im → σi
Ai
2 ea||im , ea⊥im → σi

Bi
2 ea⊥im , (3.16)

with Ai = pi + 1 −D and Bi = pi + 1 − d, in analogy to (3.14) and (3.15). Given these
fluctuations, each vielbein is scaled by powers of σi,

eam → πae
a
m , with πa =

�
i

σi
Pi(a)

2 , (3.17)

where Pi(a||i) = Ai, Pi(a⊥i
) = Bi, and the index a is not summed over. Note that

these fields may not be linearly independent, as demonstrated by considering a source
configuration in D = 10, d = 4 with two sets of O5-planes along internal dimensions 12,
34, and D7-branes along 123414. In such cases, the independence of the internal volumes
wrapped by the O-planes/D-branes is not guaranteed, resulting in a redundancy among
the σi fields.

In terms of the field space metric defined in the action (3.2), this redundancy results
in a vanishing determinant. To address this, a field redefinition is performed to eliminate
redundant fields σx, which leads to vanishing metric coefficients along the directions ∂µσx

and thus to a vanishing determinant. Before constructing the field space metric, it is
necessary to identify a set of independent fields σm. This is done by the redefinition

σm → σm
�
x

σsxm
x , σx → σx , (3.18)

to isolate independent field components and remove σx from πa, the constituents of the
potential, if

Px(a) +
!
m

sxmPm(a) = 0 , ∀ a,X . (3.19)

After this transformation, we have a non-degenerate field space metric and a set of inde-
pendent scalars. Although the field redefinition (3.18) is not the most general form, it has
proven sufficient in several cases [35, 36].

14Unless otherwise specified, internal dimensions in source configuration examples are denoted by Arabic
numerals starting with 1.
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Finally, the kinetic term in the action (3.13) for a single σ field is given by

−1

4
∂µ(gmn)∂

µ(gmn) =
AB(A−B)

4
σ−2(∂σ)2 =

1

4
(D − p− 1)(p+ 1− d)(D − d)σ−2(∂σ)2 ,

(3.20)
as detailed in [45], leading to the transformation laws for canonically normalized fields,

τ̂ =
√
d− 2Mp ln τ , ρ̂ =

 
D − d

4
Mp ln ρ , σ̂ =

 
−AB(B −A)

4
Mp lnσ . (3.21)

This results in a comprehensive understanding of the behavior of the scalar fields and their
impact on the overall dynamics of the dimensionally reduced theory.

3.1.2 Scalar potential

In the following analysis, we focus on 10D type II SUGRA, detailed in Section 2.2. We
extend the derivation of the universal potential V (ρ, τ) to arbitrary dimensions d, drawing
on insights from [32,33]. This involves analyzing the contribution of each term in the 10D
action to the scalar potential. As discussed earlier, the scaling of the Ricci scalar is given
by (3.8), i.e.,

R10 → −τ−2ρ−1R10−d , (3.22)

where τ−2 emerges from the prefactor in the 10D action. This method is similarly applied
to derive contributions to the potential from other terms in the action [49], including the
fluxes,

|H3|2 → −τ−2ρ−3|H3|2 , e2ϕ|Fq|2 → −τ−dρ
10−d−2q

2 g2s |Fq|2 , (3.23)

and the sources,
eϕT

(pi)
10 → −τ−

d+2
2 ρ

2pi−8−d

4 gsT
(pi)
10 . (3.24)

The powers of ρ, indicating fluctuations around the vacuum value of the field gmn, arise
either from the square of the fluxes (2.13) or from the property that T

(pi)
10 , as defined

in (2.42), is inversely proportional to the transverse volume of the O-plane/D-brane. As
outlined in Section 2.2 and Appendix A, the sources must satisfy pi + 1 ≥ d in order
to preserve maximal symmetry. For d > q, the fluxes are completely aligned along the
internal directions, which requires q ≤ 10− d. The contribution of spacetime-filling fluxes
for d ≤ q will be discussed below.

Spacetime-filling fluxes, defined on-shell as Hodge duals (A.1) of the internal ones, in-
troduce an additional d-dimensional boundary term in the on-shell action, ensuring gauge-
independent boundary conditions, such as δ∗4F4|∞ = 0. A detailed analysis for d = 4

is given in [38]. The introduction of this new boundary term affects the scalar potential,
effectively changing the expected contribution of spacetime-filling fluxes from φ|F10−q|2
to −φ−1|F10−q|2. We summarize the contributions to the potential from spacetime-filling
fluxes in the 10D action:

|Hd
3 |2 → −τ2(d−1)ρd−3|H7|2 boundary−−−−−−→

term
τ2(1−d)ρ3−d|H7|2 ,

e2ϕ|F d
q |2 → −τdρ−

10−d−2(10−q)
2 g2s |F10−q|2 → τ−dρ

10−d−2(10−q)
2 g2s |F10−q|2 ,

(3.25)
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where we use the on-shell condition |∗10−dF10−q|2 = |F10−q|2, noting that F 10
q lacks a

metric factor. Therefore, its powers in ρ, τ are determined solely by the dilaton prefactor
and the square of the fluxes.

Having established the rules for contributions to the scalar potential, we define the
potential in d dimensions as

V (ρ, τ) =
1

2κ210

�
d10−dy

√
g10−d g

−2
s

�
τ−2

�
−ρ−1R10−d +

1

2
ρ−3|H3|2

�

+
1

2
τ2(1−d)ρ3−d|H7|2 + g2s

2
τ−d

10−d!
q=0

ρ
10−d−2q

2 |Fq|2 − τ−
d+2
2

!
i

ρ
2pi−8−d

4
gsT

(pi)
10

pi + 1

�
. (3.26)

The dependence on the σ field, as specified in (3.14), has not yet been considered. Assuming
a single set of sources with T

(pi)
10 = T10, and therefore a single σ field, we extend the

derivation of the σ dependence to arbitrary dimensions, following the approach in [38,
53]. For sources of dimensionality pi, the internal flux is given by Fq =

"pi−3
n=0 F

(n)
q ,

where n denotes the number of legs along the source, and F
(0)
q = Fq|⊥ represents the

component orthogonal to the O-plane/D-brane. The square of the fluxes results in |Fq|2 ="pi−3
n=0 |F (n)

q |2 with

|F (n)
q |2 = 1

n!(q − n)!
Fq a1||...an||an+1⊥...aq⊥Fq

a1||...an||an+1⊥...aq⊥ , (3.27)

and similarly for the field strength H3. This notation allows us to deduce fluctuations of
σ around the background fluxes H

(n)
3 and F

(n)
q

15,

T10 → σ− 1
2
B(9−pi)T10 ,�

|H(n)
3 |2, |F (n)

q |2
�
→ σ−An−B(q−n) ×

�
|H(n)

3 |2, |F (n)
q |2

�
,

|(∗10−dH7)
(n)|2 → −σAn+B(q−d−n) × |(∗10−dH7)

(n)|2 .
(3.30)

The latter also applies to |(∗10−dF10−q)
(n)|2 and the coefficients A and B are defined in

(3.15). Since B = pi + 1− d specifies the number of internal dimensions wrapped by a set
of sources, we confirm that

∗10−dF
(n)
10−q = (∗10−dF10−q)

(ñ) , (3.31)

15In cases involving multiple sets of parallel sources, the fluctuation of each contribution to the potential
is expressed mathematically as

H3 abc → (πaπbπc)
−1H3 abc , Fq a1...aq → (πa1 . . . πaq )

−1Fq a1...aq , fa
bc → πa(πbπc)

−1fa
bc , (3.28)

where the latter transformation is especially relevant for group manifolds. The resulting expression for the
internal Ricci scalar is derived using the established formula (3.34). The fluctuation of the source term
T

(pi)
10 reflects the fluctuation of vol||i ,

T
(pi)
10 → T

(pi)
10

�
a=a||i

πa . (3.29)

For an exhaustive discussion of sources of multiple dimensionalities pi, and thus multiple fields, we refer
to [36, 45].

33



with ñ = pi + 1− d− n and

Añ+B(q − d− ñ) = −An−B(10− q − n) . (3.32)

This framework allows us to rewrite the contribution of spacetime-filling fluxes in the
potential and deduce

V (ρ, τ, σ) =
1

2κ210

�
d10−dy

√
g10−d g

−2
s

�
τ−2

�
− ρ−1R10−d(σ)

+
1

2
ρ−3

!
n

σ−An−B(3−n)|H(n)
3 |2

�
+

1

2
τ2−2dρ3−d

!
n

σ−An−B(7−n)|H(n)
7 |2

+
g2s
2
τ−d

10−d!
q=0

ρ
10−d−2q

2

!
n

σ−An−B(q−n)|F (n)
q |2

− τ−
d+2
2 ρ

2pi−8−d

4 σ
1
2
B(pi−9) gsT10

pi + 1

�
. (3.33)

The dependence of the internal Ricci scalar R10−d(σ) on the parameter σ is rather complex.
While a comprehensive derivation is detailed in [53], our focus here is limited to compact
group manifolds characterized by their structure constants fa

bc, which are intrinsic to the
underlying Lie algebra. This algebraic structure helps to identify the respective group
manifold. However, it is important to note that these algebraic features alone do not fully
define the global properties of the manifold, in particular its compactness. The expression
for the Ricci scalar is given by [38,53]

R10−d = R|| +R⊥
|| −

1

2
|f ||

⊥⊥ |2 − δcdf b⊥
a||c⊥f

a||
b⊥d⊥ , (3.34)

with the auxiliary variables defined as follows

2R|| = −δcdfa||
b||c||f

b||
a||d|| −

1

2
δadδ

beδcgfa||
b||c||f

d||
e||g|| ,

2R⊥
|| = −δcdf b⊥

a⊥c||f
a⊥

b⊥d|| − δahδ
bgδcd

�
fh⊥

g⊥c||f
a⊥

b⊥d|| + fh⊥
g||c||f

a⊥
b||d||

�
,

|f ||
⊥⊥ |2 =

1

2
δabδcdδeff

e||
a⊥c⊥f

f||
b⊥d⊥ .

(3.35)

The σ dependence can be derived explicitly from this decomposition,

R10−d(σ) = −σ−B(δcdf b⊥
a||c⊥f

a||
b⊥d⊥)

0+σ−A
�
R|| +R⊥

||
�0− 1

2
σ−2B+A|f ||0

⊥⊥ |2 . (3.36)

The superscript 0 is used to denote background quantities. To avoid complicating the
notation by cluttering the equations with unnecessary indices, we will not use this notation
in the following discussion. Since all contributions to the potential for the scalar fields ρ, τ
and σ are gathered in the equations (3.33) and (3.36), we introduce the simplified notation

d10−dy
√
g10−d T10

vol10−d
→ T10 , (3.37)
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for each internal quantity in the potential. As a consequence, the prefactor in V can be
replaced by M2

p /2.

To summarize, our analysis in 10D type II SUGRA has highlighted the central role
of two universal scalar fields in classical flux compactifications, our primary focus; the d-
dimensional dilaton τ and the (10−d)-dimensional volume ρ. On the other hand, the field
σ corresponds to the internal volume vol|| wrapped by a set of parallel O-planes/D-branes,
or equivalently to vol⊥. With respect to the potential (3.33), our discussion is constrained
to a single set of sources. For more complex configurations involving multiple intersecting
sets of sources, we refer to the literature [34, 36, 45]. Using the simplified notation (3.37),
we rewrite the potential (3.33),

2V (ρ̂, τ̂ , σ̂) = −e
−2√
d−2

τ̂
e

−2√
10−d

ρ̂R10−d(σ̂)

+
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2
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!
n

e
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� −4
AB(B−A)

σ̂|H(n)
3 |2

�
+

1

2
e

2(1−d)√
d−2
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e

2(3−d)√
10−d

ρ̂
!
n

e
(−An−B(7−n))

� −4
AB(B−A)
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+
g2s
2
e

−d√
d−2
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10−d!
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!
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� −4
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− e
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√
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τ̂
e

2pi−8−d

2
√
10−d

ρ̂
e

1
2
B(pi−9)

� −4
AB(B−A)

σ̂ gsT10

pi + 1
(3.38)

in Planckian units, with respect to the transformation laws (3.21) to canonically normalized
fields. Moreover, if the compact space is a group manifold, the internal Ricci scalar (3.36)
is given by

R10−d(σ̂) = −e
−
�

−4B
A(B−A)

σ̂
�
δcdf b⊥

a||c⊥f
a||

b⊥d⊥

�0

+ e

�
−4A

B(B−A)
σ̂
�
R|| +R⊥

||
�0 − 1

2
e
(−2B+A)

� −4
AB(B−A)

σ̂|f ||0
⊥⊥ |2 . (3.39)

3.2 A new set of scalar fields (τ, r)

Having established the basic framework for deriving scalar potentials in flux compactifica-
tions of type II SUGRA, we now turn our attention to a new set of scalar fields. In addition
to the d-dimensional dilaton τ , we introduce the radion r and extend the analysis of [38]
to arbitrary dimensions d. Building on the methods of the previous section, we decompose
the D-dimensional metric as follows,

ds2D = τ−2(x)gµν(x)dx
µdxν + r2(x)(e1)2 +

D−d!
a=2

δabe
aeb , (3.40)
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with ea = eam(y)dym. Going to the d-dimensional Einstein frame, we define the fluctuation
around the background dilaton field according to

eδϕ = τ
2−d
2 r

1
2 , (3.41)

due to the expression for the Ricci scalar, RD = τ2Rd +RD−d(r) + . . ., in D dimensions.
This results in a prefactor of −τ−2 in the d-dimensional action, analogous to the equation
(3.8).

3.2.1 Kinetic terms

We will now focus on the kinetic terms for these scalars. For simplicity and without loss
of generality, we will work in a flat basis where gµν = ηµν and eam = δam. We analyze each
term in the expression RD + 4(∂ϕ)2D separately. The kinetic term of the D-dimensional
dilaton is given by

4(∂ϕ)2D = (d− 2)2 (∂τ)2 + 2(2− d)τ2∂µ ln τ∂
µ ln r + τ2 (∂ ln r)2 , (3.42)

while the explicit calculation of RD results in

RD = τ2Rd +RD−d(r) + 2τ2∂µ ((d− 1)∂µ ln τ − ∂µ ln r)

− 2τ2 (∂ ln r)2 − (d− 2)(d− 1) (∂τ)2 + 2(d− 2)τ2∂µ ln τ ∂
µ ln r . (3.43)

By substituting these results into the equation (3.1) and performing partial integration,
we obtain the d-dimensional action,

S(d) =

�
ddx

√−gd

�
M2

p

2
Rd −

M2
p

2

�
(d− 2) (∂ ln τ)2 + (∂ ln r)2

�
− V

�
, (3.44)

a crucial step in establishing the transformation laws for canonically normalized fields:

τ̂ =
√
d− 2Mp ln τ , r̂ = Mp ln r . (3.45)

3.2.2 Scalar potential

As we continue our analysis, we set D = 10 and introduce a new notation, F (n)
q and H

(n)
3 ,

where n = 0, 1 denotes the number of legs along the internal dimension 1 parallel to the
direction of the scalar field r. In this framework, the contributions to the scalar potential
from the various terms in the 10D action are given by

|H3|2 → −τ−2
�
|H(0)

3 |2 + r−2|H(1)
3 |2

�
,

e2ϕ|Fq|2 → −τ−dg2s

�
r|F (0)

q |2 + r−1|F (1)
q |2

�
,

(3.46)

and for the sources,

eϕT
(pi)
10 → −τ−

d+2
2

�
δ
||
1r

1
2 + δ⊥1 r

− 1
2

�
gsT

(pi)
10 . (3.47)
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For spacetime-filling fluxes, we derive the relations

1

2
|Hd

3 |2 →
1

2
τ2(1−d)

�
|(∗10−dH7)

(0)|2 + r2|(∗10−dH7)
(1)|2

�
,

e2ϕ
1

2
|F d

q |2 →
1

2
τ−dg2s

�
r−1|(∗10−dF10−q)

(0)|2 + r|(∗10−dF10−q)
(1)|2

�
,

(3.48)

using a similar reasoning as before. We can further simplify these relations using the
equations

|(∗10−dH7)
(n)|2 = |H(|1−n|)

7 |2 , |(∗10−dF10−q)
(n)|2 = |F (|1−n|)

10−q |2 . (3.49)

The resulting scalar potential in D = 10, including the scalar fields τ and r, is given by

V (τ, r) =
1

2κ210

�
d10−dy

�
|g10−d| g−2

s

�
τ−2

�
−R10−d(r) +

1

2

�
|H(0)

3 |2 + r−2|H(1)
3 |2

��

+
1

2
τ2−2d

�
|H(1)

7 |2 + r2|H(0)
7 |2

�
+ τ−d g

2
s

2

10−d!
q=0

�
r|F (0)

q |2 + r−1|F (1)
q |2

�
− τ−

d+2
2

!
i

�
δ
||i
1 r

1
2 + δ⊥i

1 r−
1
2

� gsT
(pi)
10

pi + 1

�
. (3.50)

To study the dependence of the internal Ricci scalar on r, we again assume that the internal
space is a group manifold. In particular, the relevant expression in [38],

R10−d(r) = R0
10−d + (r−2 − 1)R0

11 +
1

4
(2− r2 − r−2)δikδjl(f1

ij)
0(f1

kl)
0 , (3.51)

remains applicable and crucial to our analysis, since it is independent of the dimensionality
of the external spacetime.
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4 Constraints on (quasi-)de Sitter solutions in 10D super-
gravity

In this section, we explore the possibility of a d-dimensional dS solution in the classical
regime of string theory, which provides a more simple and controlled framework compared
to those involving (non-)perturbative elements. One question arises from the discrepancy
between the familiar four dimensions of our universe and the ten dimensions proposed by
string theory: Why prioritize four dimensions? In response, we study various constraints
and possible exclusions of classical string backgrounds with a dS spacetime in d ≥ 3.
While demonstrating that a dS solution is excluded in SUGRA is sufficient to rule out its
existence in a classical string context, the converse is not inherently true: it remains to be
shown that any solution found in 10D SUGRA is consistent within the classical regime.

Extensive research has been devoted to classical dS solutions, aiming at both their iden-
tification and constraining them [52, 72, 74, 105], with pioneering efforts noted in [49, 106].
In light of these challenges, several no-go theorems have been formulated that impose re-
strictions on the internal manifold, fluxes or source content [38, 45, 53]. These theorems
typically result from one of two approaches. The first method, which we adopt here, in-
volves combining the classical 10D equations of motion and Bianchi identities to establish,
under certain assumptions, an inequality of the form Rd ≤ 0 that effectively excludes
classical de Sitter. An alternative method uses a d-dimensional effective theory with the
respective (positive) scalar potential, which is further detailed in Section 5.

The structure of this section is as follows; in Section 4.1, we review the general compact-
ification ansatz and outline the constraints relevant to our analysis. Section 4.2 is devoted
to deriving no-go theorems against the existence of classical solutions with a d-dimensional
dS spacetime, thus extending and refining previous theorems in d = 4. In Section 4.3, we
apply these no-go theorems in various dimensions, with particular attention to the nature
of the fluxes and sources, especially those preserving SUSY, as detailed in Section 4.3.2.
Our results conclusively rule out classical dS solutions for d ≥ 7, indicate limited possi-
bilities for d = 5, 6 and suggest viable options for d ≤ 4, while supporting conjectures
from [35, 45]. Finally, Section 4.4 extends this discussion to quasi-dS solutions, providing
a comprehensive exploration of the potential landscape in different dimensional settings in
string theory.

4.1 Theoretical framework: conventions and 10D equations

We continue with the compactification ansatz previously established in A, imposing addi-
tional constraints detailed below, and focus on O-planes/D-branes in type II SUGRA. Al-
though classical compactifications may include other sources such as NS5-branes, Kaluza-
Klein monopoles, fundamental strings and anti-D-branes, we omit these from the current
discussion for simplicity and to preserve parametric control [36]. It is important to note
that the inclusion of O-planes and anti-D-branes introduces significant complexities, in
particular the breaking of SUSY within effective theory. Furthermore, the roles of O-
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planes and D-branes are mutually coherent in the Bianchi identities and the equations of
motion, which is crucial for the formulation of no-go theorems. However, this coherence is
broken when anti-D-branes are included, as discussed in Footnote 9. We further restrict
our analysis to smeared sources, assuming a constant background dilaton gs = eϕ and the
absence of a warp factor. The motivation for this approach has been extensively discussed
before.

In the democratic formalism, O9-planes and D9-branes serve as electric sources for a
C10 gauge potential, which, lacking a field strength in ten dimensions, does not support any
propagating degrees of freedom. In order to prevent a singular behavior of the propagator,
O9/D9 charge cancellation is a mandatory requirement [3], which is also confirmed by the
Bianchi identity, leading to

T
(9)
10 = 0 . (4.1)

Therefore, the mere presence of either O9 or D9 without the other is not viable within our
framework. More details on this topic are provided in Section 4.3.

We then proceed to introduce several key equations from Appendix A, beginning with
the dilaton equation of motion,

2R10 + gs
!
i

T
(pi)
10

pi + 1
− |H10

3 |2 = 0 . (4.2)

Using the trace-reversed Einstein equations described in (A.7), the 10D Einstein trace is
given by

4R10 +
gs
2
T10 − |H10

3 |2 − g2s
2

7!
q=0

(5− q)|Fq|2 = 0 . (4.3)

Similarly, the d-dimensional Einstein trace,

Rd =
d

16

gs
!
i

7− pi
pi + 1

T
(pi)
10 − 2|H3|2 − 6|H7|2 + g2s

7!
q=0

(1− q)|Fq|2 = 0

 , (4.4)

follows from the equation (A.11). These particular equations will be central to the argu-
ments in the following sections. Furthermore, the implicit dependence of the non-vanishing
source and flux content on the dimension of the external spacetime will be further explored.

4.2 Constraints on classical de Sitter in d ≥ 3

A no-go theorem in theoretical physics establishes constraints that frame what is possible
within a particular theoretical framework, often including inherent assumptions. In this
context, no-go theorems serve as invaluable tools for formulating and testing scientific
theories. More specifically, these theorems define a set of constraints that constrain classical
string backgrounds with a dS spacetime, with notable insights provided in works such
as [16, 32,37,85,107].

In the following section, we aim to extend the work done in [38, 74, 105] and to for-
mulate no-go theorems that exclude classical solutions with a d-dimensional dS spacetime.
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While such theorems are typically derived from fundamental physical principles, our ap-
proach here relies mainly on algebraic manipulations of three crucial equations: (4.2),
(4.3) and (4.4). By employing this method, we seek to elucidate the boundaries that limit
the viability of classical dS solutions and explore possible ways to navigate around these
restrictions.

No-go theorem by Maldacena and Nuñez

Given its relevance to this thesis, we seek to review the reasoning behind the Maldacena-
Nuñez no-go theorem [10,11]. Here, we provide a concise outline of the argument. All 10D
string theories, except for massive type IIA, obey the strong energy condition,

RMN uMuN ≥ 0 , (4.5)

for any non-spacelike vector field uM in ten dimensions, which characterizes the attractive
nature of gravity [108]. In particular, this implies that the time component of the 10D
Ricci tensor satisfies R00 ≥ 0.

To compactify a 10D gravitational theory with an Einstein-Hilbert term coupled to
matter fields down to d dimensions, as outlined in equation (3.1), we use the metric ansatz
presented in (2.15). The trace-reversed Einstein equations are then given by

RMN = TMN − 1

8
gMNTP

P , with TMN = − 2√−g

δS

δgMN
, (4.6)

where TMN represents the full stress-energy tensor of the theory, unlike (2.30) which refers
only to sources. For a warped product metric, the Ricci tensor takes the form

Rµν = R̃µν − gµν
d

e−dA∇2
10−de

dA . (4.7)

This equation relates the Ricci tensor of the warped metric to the one of the unwarped
metric g̃µν . The trace with gµν yields

∇2
10−de

dA = e(d−2)AR̃d + edA
�
−Tµ

µ +
d

8
TP

P

�
= e(d−2)AR̃d + edAT , (4.8)

where the trace T of the stress-energy tensor remains non-negative if the parent theory
satisfies the strong energy condition. Assuming this holds for pure gravity, integrating
(4.8) over the compact space results in��

M10−d

e(d−2)A

�
R̃d = −

�
M10−d

edA T , (4.9)

which shows that a positive external scalar curvature is unfeasible.
How does this apply to supergravity? Because the graviton is governed by an Einstein-

Hilbert term and obeys the strong energy condition, it interacts with various fields and
localized sources. Maldacena and Nuñez showed that contributions from fluxes and scalar
fields positively affect the overall trace of the stress-energy tensor [10,11]. Localized sources
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violating the strong energy condition require a negative tension Ti, leading to repulsive
gravity. Hence, dS compactifications require the presence of Op−-planes. In summary,
the Maldacena-Nuñez no-go theorem states that no classical string background with a dS
spacetime can emerge from a non-singular wrapped compactification. We will obtain this
constraint by carefully combining the equations of motion.

To simplify the analysis, we exploit the dilaton equation of motion (4.2) to eliminate
the Ricci scalar R10 in the 10D Einstein trace (4.3),

gs
!
i

pi − 3

pi + 1
T
(pi)
10 + 2|H10

3 |2 − g2s

7!
q=0

(5− q)|Fq|2 = 0 , (4.10)

which then allows the elimination of the H3 flux in (4.4), leading to

Rd =
d

4

gs
!
i

T
(pi)
10

pi + 1
− g2s

7!
q=0

|Fq|2 − 2|H7|2
 . (4.11)

Given that the second and third term contribute negatively, a positive cosmological con-
stant, and thus a dS spacetime, is only possible if the first term sufficiently compensates
for these negative contributions. This leads to the Maldacena-Nuñez no-go theorem:

No-go theorem 1. There is no classical dS solution if ∀ pi : T (pi)
10 ≤ 0 .

As noted above, the most straightforward way to satisfy this condition is to include negative
tension sources, such as Op−-planes, whose contributions must exceed those of the Dp-
branes16. As a consequence, the Maldacena-Nuñez no-go theorem can be generalized to
arbitrary dimensions d ≥ 3 and to sources of multiple dimensionalities.

Sources of single dimensionality

We continue our discussion with sources of single dimensionality pi, which are either parallel
or intersect in different sets. For this purpose, we simplify

"
i T

(pi)
10 = T10, while keeping

in mind that pi ≥ d− 1. We extend a no-go theorem, originally derived in four dimensions
by [37] and in ten dimensions by [74], by first eliminating the source term in (4.2) using

16The number of O-planes/D-branes is constrained by the tadpole cancellation condition. Without
fluxes, this is simplified to [109]�

µi = µDp
�
nDp − nDp − 2p−5 �nOp− − nOp− − nOp+ + nOp+

��
= 0 , (4.12)

for a given set of parallel sources containing nDp Dp, nDp anti-Dp, and multiple O-planes (nOp− Op−,
nOp− anti-Op−, nOp+ Op+, nOp+ anti-Op+), while the total tension is given by�

Ti = TDp
�
nDp + nDp − 2p−5 �nOp− + nOp− − nOp+ − nOp+

��
= 2TDp

�
nDp − 2p−5 �nOp− − nOp+

��
. (4.13)

The requirement for negative tension is�
Ti < 0 ⇔ nDp < 2p−5 �nOp− − nOp+

�
. (4.14)

Our current analysis does not consider flux contributions in (4.12). Including these would modify (4.14)
by adding terms proportional to nflux.
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the equation (4.3),

�−2R10 + |H10
3 |2� (pi − 3) + 2|H10

3 |2 − g2s

7!
q=0

(5− q)|Fq|2 = 0 . (4.15)

With this result, we eliminate T10 from the equation (4.11),

�
2 +

4

d

�
Rd = −2R10−d + |H3|2 − 3|H7|2 − g2s

7!
q=0

|Fq|2 . (4.16)

By subtracting the equation (4.15) from (4.16), multiplied by pi − 3, we obtain

4(pi − 3)

d
Rd = −2|H3|2 + 2(4− pi)|H7|2 + g2s

7!
q=0

(8− pi − q)|Fq|2 . (4.17)

This extends the approach in [74] to the more general dimension d ≥ 3, allowing us
to propose the following no-go theorem against classical string backgrounds with a dS
spacetime of dimension d ≥ 3:

No-go theorem 2. There is no classical dS solution for pi = 7, 8 or 9 .

We also address another no-go theorem, extending the work in [74, 105] to arbitrary
dimension d ≥ 3. While we previously focused on sources of maximal dimensionality pi, we
now consider the minimal dimension pi = d − 1, where vol⊥i

= vol10−d. We then project
the Bianchi identity of the sources (2.32)

dF8−pi −H ∧ F6−pi = εpi
T10

pi + 1
vol⊥i

, with εpi = −(−1)
(8−pi)(7−pi)

2 , (4.18)

onto vol10−d, which leads to the scalar equation

2gs
T10

pi + 1
= |H3|2 + g2s |F6−pi |2 − |∗10−dH + εpigsF6−pi |2 + 2εpigs (dF8−pi) , (4.19)

with dF8−pi = (dF8−pi) vol10−d. Another important result is obtained by summing the
equations (4.10) and (4.11) after multiplying the latter by −4(pi +1)/d, which is given by

−4(pi + 1)

d
Rd = −4gs

T10

pi + 1
+ 2|H3|2 + 2pi|H7|2 + g2s

7!
q=0

(pi + q − 4)|Fq|2 . (4.20)

We use the equation (4.19) to extract

Rd = − d

2(pi + 1)

�
− 2gsεpi (dF8−pi) + |∗10−dH + εpigsF6−pi |2 + pi|H7|2

+ g2s
�−|F2−pi |2 + 2|F8−pi |2 + 3|F10−pi |2 + 4|F12−pi |2 + 5|F14−pi |2 + 6|F16−pi |2

� �
, (4.21)

where 2 ≤ pi ≤ 9. To develop this theorem further, we integrate over the internal space
M10−d, noting that a (smeared) dS solution implies


M10−d

vol10−dRd = Rd


M10−d

vol10−d.
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Given our focus on pi = d− 1, we conclude that�
M10−d

dF8−pi =

�
M10−d

dF9−d =

�
∂M10−d=0

F9−d = 0 , (4.22)

which yields a negative integral of (4.21) for d > 3 or pi > 2:

No-go theorem 3a. There is no classical dS solution for pi = d− 1 in d ≥ 4 .

Due to the subtleties in the equation (4.21), introduced by Fpi−2, the extension of this no-go
theorem to sources of a single dimensionality pi = 2 leads to the following conclusion:

No-go theorem 3b. There is no classical dS solution for pi = 2 in d = 3 with F0 = 0 .

Sources of multiple dimensionalities

In this short paragraph, we extend the analysis of the previous section to include sources
of multiple dimensionalities, pi and p̃j . These results will be crucial in Section 4. We begin
by generalizing the derivation of the equation (4.17) for a given pi,

4(pi − 3)

d
Rd = gs

!
p̃j ̸=pi

pi − p̃j
p̃j + 1

T
(p̃j)
10 −2|H3|2+2(4−pi)|H7|2+g2s

7!
q=0

(8−pi−q)|Fq|2 . (4.23)

Similarly, we generalize the equation (4.20). By using the approach previously applied to
sources of a single dimensionality, we add another source term,

− 4(pi + 1)

d
Rd = −4gs

T
(pi)
10

pi + 1
+ gs

!
p′j ̸=pi

p̃j − pi − 4

p̃j + 1
T
(p̃j)
10

+ 2|H3|2 + 2pi|H7|2 + g2s

7!
q=0

(pi + q − 4)|Fq|2 . (4.24)

Applying the Bianchi identity for pi = d − 1, including sources with p̃j > pi requires a
modification of the no-go theorem 3a to relax its constraints:

No-go theorem 4. There is no classical dS solution for pi = d − 1 in d ≥ 4 and ∀ p̃j :

(p̃j − pi − 4)T
(p̃j)
10 ≥ 0 .

This result is not entirely new, and is consistent with the discussion found in [105] for
d = 4 in type IIB SUGRA.

Vanishing field strength

We now focus more closely on sources of single dimensionality pi, in particular those that
have not been addressed before. We extend algebraic no-go theorems derived in [74,110,111]
for d = 4 to arbitrary dimension. For O6-planes/D6-branes, it is necessary to impose
F0 ̸= 0 to ensure a positive scalar curvature and thus a classical dS solution. This result
follows from the equation (4.17) for pi = 6,

12

d
Rd = −2|H3|2 − 4|H7|2 + g2s

�
2F 2

0 − 2|F4|2 − 4|F6|2
�
. (4.25)
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Similarly, we require F1 ̸= 0 for O5-planes/D5-branes due to the equation (4.17) with
pi = 5, which leads to

8

d
Rd = −2|H3|2 − 2|H7|2 + g2s

�
2|F1|2 − 2|F5|2 − 4|F7|2

�
. (4.26)

When we evaluate (4.17) for sources of dimensionality pi = 4, we deduce

4

d
Rd = −2|H3|2 + g2s

�
4F 2

0 + 2|F2|2 − 2|F6|2
�
. (4.27)

To circumvent the last no-go theorem and obtain a classical dS solution, it seems necessary
to ensure that either F0 ̸= 0 or F2 ̸= 0. Revisiting the argument from [53], we note that
for pi = 4 the Bianchi identity, dF0 = 0, indicates a constant F0 flux. However, due
to the orientifold projection, F0 must be odd over the O4-plane, resulting in F0 = 0.
Therefore, the presence of O4-planes/D4-branes requires F2 ̸= 0 to ensure that classical
dS solutions exist. In summary, we can state the following no-go theorem for sources of
single dimensionality pi, provided that the condition pi ≥ d− 1 is satisfied:

No-go theorem 5a. There is no classical dS solution for p = 4, 5 or 6 in d ≥ 3 with
F6−p = 0 .

While a similar no-go theorem cannot be found for O3-planes/D3-branes, the unique case
of pi = 2 for d = 3 yields an interesting result. Again, we consider the equation (4.17) for
pi = 2, which leads to

4

d
Rd = 2|H3|2 − 4|H7|2 − g2s

�
6F 2

0 + 4|F2|2 + 2|F4|2
�
. (4.28)

Since all terms of the RR fluxes contribute negatively, we turn our attention to obtaining
the necessary condition for the NSNS field strength:

No-go theorem 5b. There is no classical dS solution for pi = 2 in d = 3 with H = 0 .

This is a new and interesting result, the implications of which will be discussed in a moment.
But first, let us take a look at another case.

Non-negative internal curvature

The no-go theorem presented in this section, which has been previously studied in [49] and
derived in [37,74], is once again directed at sources of single dimensionality pi. We proceed
to combine the equations (4.17) and (4.16), where the latter is multiplied by 2, giving in
the following relation,

d+ pi − 1

d
Rd = −R10−d − pi − 1

2
|H7|2 − g2s

4

7!
q=0

(pi + q − 6)|Fq|2 . (4.29)

We take into account the possible effects of O-planes projecting out certain fluxes, a feature
that is particularly apparent in the case of pi = 4 and F0, as discussed above. From this
analysis we can conclude that
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No-go theorem 6. There is no classical dS solution for pi ≥ 4, d ≥ 3 with R10−d ≥ 0 .

This no-go theorem emphasizes the connection between the source configuration and the
geometric and physical properties of the internal space, in particular the role of the internal
Ricci curvature.

No-go theorem for heterotic strings

While we will not delve into an introduction to heterotic strings here, as there is already an
extensive literature on the subject [5], it is crucial to clarify certain elements supporting the
arguments for a no-go theorem against the existence of classical dS vacua in heterotic string
theory at leading order in the α′ expansion. The 10D effective action for heterotic strings
at leading order in α′ couples N = 1 SUGRA to a 10D super-Yang-Mills theory [112].
Depending on the respective heterotic theory, the gauge group could be either E8 ×E8 or
SO(32). The bosonic part of the low-energy effective action at leading order in α′ involves
the bosonic fields of the 10D SUGRA multiplet – namely the metric gMN , the dilaton ϕ

and the NSNS two-form B2. The kinetic terms for the fields in the Yang-Mills multiplet,
including the gauge field AM with field strength FMN , appear at order α′

S(α′) = − α′

8κ210

�
M10

d10x
√−g e−2ϕ trv|F2|2 . (4.30)

Note that there are no RR fields in heterotic theories and the gauge trace trv is normalized
to the vector representation of either SO(32) or SO(16), a subgroup of E8 [102]. In the
absence of excited gauge fields, at zeroth order in α′, heterotic SUGRA effectively becomes
a truncation of the NSNS sector of type II SUGRA. The d-dimensional Einstein trace (4.4)
then yields

Rd = −d

8

�|H3|2 + 3|H7|2
�
, (4.31)

which can be further simplified to

Rd = −d

2
|H3|2 , (4.32)

using the equation (4.11). We conclude with the following no-go theorem:

No-go theorem 7. There is no classical dS solution in d ≥ 3 in heterotic SUGRA at
leading-order in the α′ expansion .

Furthermore, for d ≥ 4 and H7 = 0, only Minkowski vacua are feasible in heterotic string
theory at leading order in α′. On the other hand, for d = 3 and non-zero H and H7, AdS
solutions become possible, e.g. Freund-Rubin compactifications [113], as well as the pure
NSNS configuration on AdS3 × S3 × T 4 in [114].

4.3 Source configurations for classical de Sitter solutions

Building on the no-go theorems presented in the previous section, which challenge the
existence of classical dS solutions, the following study attempts to constrain and potentially
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exclude such solutions in various dimensions. We begin by identifying the non-trivial source
content and the relevant fluxes for each dimension, which are integral to the assumptions
underlying these theorems.

In Section 4.3.1, we discuss the consequences of these no-go theorems for classical string
backgrounds with a d-dimensional dS spacetime. Inspired by [49], which studies metastable
dS solutions under SUSY-preserving source configurations, our analysis not only confirms
some results for d > 7, but also introduces new insights related to the no-go theorem 3a.
Throughout our discussion in Section 4.3.2, we draw parallels and identify differences with
the results in [49]. We conclude this analysis in Section 4.4, where we extend the scope to
quasi-de Sitter solutions, addressing one of the central topics of this section.

4.3.1 Existence constraints

We have summarized the respective source and flux content of type II supergravities in
arbitrary dimensions in Tables 1 and 2. For the type IIA theory compactified to ten dimen-

Dimension Theory Fluxes Source dimensionality
IIA F0 ∅

d = 10 IIB ∅ 9
IIA F0 8

d = 9 IIB F1 9
IIA F0, F2 8

d = 8 IIB F1 7, 9
IIA F0, F2, H3 6, 8

d = 7 IIB F1, F3, H3 7, 9

Table 1: This table summarizes the source and flux content of type II supergravities in
dimensions d = 7 to d = 10.

sions, hereafter referred to as type IIA|10, the absence of sources rules out the existence of
classical dS backgrounds, as dictated by the Maldacena-Nuñez no-go theorem 1.

Similarly, type IIB|10 is subject to constraints due to the no-go theorem 2. This also
applies to dS solutions in dimensions 9 and 8, although the constraints are limited to
sources of single dimensionality in d = 8. In contrast, type IIB|8 can be considered a priori
as a potential avenue for solutions with sources of multiple dimensionalities, an option not
covered in [49]. However, the combination of the equations (4.2), (4.3) and (4.11) leads to
the expression

R8 = −gs
T
(9)
10

10
, (4.33)

which culminates in the no-go theorem 4.24 for pi = 7, p̃j = 9; note also (4.1). These
observations suggest:

Constraint 1. There is no classical dS solution in d = 8, 9 or 10 .

We now turn to more intriguing cases starting with d = 7, focusing on sources of single
dimensionality that invoke either the no-go theorem 2 or 3a, especially for pi = 6. However,
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our main interest is in models involving sources of multiple dimensionalities. For type IIA|7,
the equation (4.23) yields

R7 =
7

6

�
−gs

T
(8)
10

9
− |H3|2 + g2sF

2
0

�
=

7

10

�
gs
T
(6)
10

7
− |H3|2 − g2s |F2|2

�
, (4.34)

which suggests that T
(6)
10 > 0 for classical dS, while the theorem 4 implies T

(8)
10 > 0, thus

requiring F0 ̸= 0. Note that the presence of both the O6- and O8-planes is confirmed. The
O8 involution (2.24) causes F0 to be an odd function over its fixed points, while the O6
involution, with its transverse space spanning the entire M10−d, requires F0 to be even.
Despite these peculiar but compatible conditions, we conclude:

Constraint 2a. There is no classical dS solution in type IIA|7 unless we have O6- and
O8-planes along with F0 ̸= 0 .

Further discussion in [35] draws parallels to similar constraints observed for O4- and O6-
planes in d = 4, where classical dS solutions are viable, albeit with F0 = 0.

For type IIB|7 with sources of dimensionality pi = 7, 9, our analysis becomes more
complex; the equation (4.23) results in

R7 = −7

8

�
gs
T
(9)
10

10
+ |H3|2 + g2s |F3|2

�
=

7

12

�
gs
T
(7)
10

8
− |H3|2 − g2s

�|F1|2 + 2|F3|2
��

,

(4.35)
which leads to T

(7)
10 > 0 and T

(9)
10 < 0, indicating the presence of O7-planes and D9-branes.

However, the F1 Bianchi identity implies that dF1 ∼ T
(7)
10 vol⊥O7 , which requires F1 ̸= 0.

This requirement excludes the presence of O9-planes, which would imply F1 = 0, leaving
only D9-branes as viable objects. This conclusion has been previously refuted around the
equation (4.1):

Constraint 2b. There is no classical dS solution in type IIB|7 .

Dimension Theory Fluxes Source dimensionality
IIA F0, F2, F4, H3 6, 8

d = 6 IIB F1, F3, H3 5, 7, 9
IIA F0, F2, F4, H3 4, 6, 8

d = 5 IIB F1, F3, F5, H3 5, 7, 9
IIA F0, F2, F4, F6, H3 4, 6, 8

d = 4 IIB F1, F3, F5, H3 3, 5, 7, 9
IIA F0, F2, F4, F6, H3, H7 2, 4, 6, 8

d = 3 IIB F1, F3, F5, H3, H7 3, 5, 7, 9

Table 2: This table summarizes the source and flux content of type II supergravities in
dimensions d = 3 to d = 6.

We then proceed to higher dimensional theories, starting with d = 6 in type IIA|6,
where classical dS solutions with sources of single dimensionality pi = 6 are studied under
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the no-go theorem 2. Here, our focus shifts to configurations with multiple dimensionalities
pi = 6, 8, guided by the equation (4.23), (4.23),

R6 =
3

5

�
gs
T
(6)
10

7
− |H3|2 − g2s

�|F2|2 + 2|F4|2
��

= −gs
T
(8)
10

9
− |H3|2 + g2s

�
F 2
0 − |F4|2

�
,

(4.36)
which provides the conditions T

(6)
10 > 0, indicating the presence of O6-planes, and g2sF

2
0 −

gsT
(8)
10 /9 > 0. The second inequality, treated similarly to the previous case, employs the

Bianchi identity dF0 ∼ T
(8)
10 vol⊥O8 to confirm F0 ̸= 0. The presence of O8-planes suggests

a scenario similar to d = 7, but with the possibility of non-overlapping pi = 6, 8 sources.
Here, the localization of the O8-plane at a fixed point on the O6-plane results in F0 being
odd along the O6 direction due to the O8 involution. However, although σO6(F0) = F0,
the involution along the O6 is trivial and there are no complications from overlapping or
non-overlapping sources with multiple dimensionalities pi = 6, 8:

Constraint 3a. There is no classical dS solution in type IIA|6 unless we have O6-planes
and F0 ̸= 0 .

The constraints applied in type IIB|6, based on the no-go theorems 2 and 3a, exclude clas-
sical dS for single-dimensional sources, which leads us to consider configurations involving
multiple dimensionalities. The equation (4.23),

R6 =
1
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gs
T
(7)
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8
+ 2gs
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−2gs
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(9)
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− gs

T
(7)
10

8
− |H3|2 + g2s |F1|2

�
, (4.39)

reveals that T
(5)
10 > 0 due to T

(9)
10 = 0 and thus the presence of O5-planes. Furthermore,

the constraint 4 and the equation (4.24) imply T
(7)
10 > 0, thus indicating the presence of

O7-planes. Analogous to type IIA|7, this configuration requires F1 ̸= 0 due to the Bianchi
identity, which effectively excludes pi = 9 sources:

Constraint 3b. There is no classical dS solution in type IIB|6 unless we have O5- and
O7-planes along with F1 ̸= 0 .

This comprehensive analysis sets the stage for further detailed studies of classical dS so-
lutions in various dimensions, as well as for exploring the intriguing realm of d = 5 and
below, where additional complexities and possibilities for dS solutions arise.

Turning to type IIA|5, sources of single dimensionality pi = 4, 8 are excluded by the
theorems 3a and 2. However, for pi = 6, the theorem of Maldacena and Nuñez 1 indicates
the presence of O6-planes. This observation holds for configurations involving sources of
multiple dimensionalities: for models with O4-planes/D4-branes, the no-go theorem 4 still
requires O6-planes, independent of pi = 8 sources. Even without pi = 4 sources, the
equation (4.24) with pi = 4 leads to the same conclusion:
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Constraint 4a. There is no classical dS solution in type IIA|5 unless we have O6-planes.

The no-go theorems 1 and 2 also restrict single-dimensional sources to O5-planes in type
IIB|5. For multiple dimensionalities, we analyze the equation (4.23) for pi = 5, 7, 9,
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gs
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8
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, (4.42)

where T
(9)
10 = 0 due to (4.1). This analysis yields the conditions: T

(5)
10 > 0, supporting the

presence of O5-planes, and g2s |F1|2 − gsT
(7)
10 /8 > 0, interpreted as F1 ̸= 0 via the Bianchi

identity. However, as mentioned above, this implies the absence of O9-planes/D9-branes.
Therefore, classical dS solutions are only possible without pi = 9 sources. We conclude:

Constraint 4b. There is no classical dS solution in type IIB|5 unless we have O5-planes
and F1 ̸= 0 .

We now consider the phenomenologically relevant case of d = 4. Given the extensive
research on this dimension, we refer to the vast literature on single-dimensional sources
[45,53], where only sources with pi = 4, 5 or 6 are viable, with pi = 4 subject to significant
constraints [35]. On the other hand, configurations with sources of multiple dimensional-
ities offer additional possibilities for classical string backgrounds with a dS spacetime, as
detailed in [35,105].

Finally, we explore the intriguing case of d = 3. For a broad range of possibilities to
obtain classical dS solutions, we turn to [115] in type IIA|3, which includes anti-Dp-branes,
and [116] in type IIB|3. Although no solutions have been found in the latter setup, the
introduction of a F7 flux certainly enriches the discussion. It is important to note that
in the previous section we have derived additional no-go theorems for d = 3, while some
constraints are not applicable. In particular, in type IIA|3 with pi = 2, we address the
no-go theorems 3b and 5b. Further discussion of this topic will continue in the next section.

4.3.2 Supersymmetric source configurations

SUSY-preserving string compactifications offer several compelling advantages that make
them particularly attractive for theoretical and phenomenological studies [102,117]. First,
such configurations are inherently stable and free of tachyons, which simplifies their anal-
ysis. In the context of SUGRA, solutions satisfying first-order SUSY conditions also in-
herently satisfy the more complex second-order SUGRA equations of motion. Thus, the
search for vacuum solutions in string theory often starts from configurations in which SUSY
is partially preserved, facilitating the transition to broken SUSY rather than solving the
full equations of motion outright. From a phenomenological perspective, supersymmetric
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backgrounds serve as a robust framework for constructing models in particle physics, es-
pecially when SUSY is broken at energy scales much lower than the fundamental string
scale. Furthermore, even if SUSY does not manifest itself at the TeV scale, the study of
SUSY-preserving models provides valuable insights into the dynamics of string compact-
ifications. Therefore, the discussion of SUSY breaking remains a critical aspect of model
building [35].

In our study of static brane and orientifold configurations, it is essential to assess their
potential to preserve SUSY. Such a test of whether these configurations are mutually BPS
is crucial for advancing our understanding of string compactifications and their practical
applications in theoretical physics. Type II string theories each possess N = 2 SUSY, or
equivalently 32 supercharges [2, 3]. A single set of parallel branes halves these supersym-
metries, while two orthogonal sets can potentially reduce them further, preserving only a
quarter. This conservation requires that the sum of the Neumann-Dirichlet (ND) bound-
ary conditions NND be a multiple of four. More specifically, the directions unique to a set
must also be a multiple of four, otherwise SUSY is completely broken17. In our orthogo-
nal coframe setup, SUSY checks are trivial due to the clear separation of d external and
pi + 1− d internal dimensions, which can be ND.

Let us demonstrate this with an example in d = 4; For configurations with sources of
single dimensionality, two intersecting pi = 4 sources give NND = 2, breaking SUSY. For
pi ≥ 5, preserving SUSY while ensuring that the total number of internal dimensions of
two intersecting sets is less than six requires us to define N = pi − 5 for each pair. Here,
N represents the number of common internal dimensions that guarantees homogeneous
overlap and the preservation of SUSY. This analysis extends to sources of multiple dimen-
sionalities, applying the NND/4 ∈ Z rule to determine those that preserve some SUSY,
with each orthogonal pair preserving a quarter of the initial supersymmetries. We now ex-
plore the behavior of the parallel and orthogonal brane configurations described in Section
4.3.1.

We revisit the highest possible dimension, d = 7, for classical dS solutions in type IIA
with O6-/O8-planes and a non-vanishing F0 flux, as outlined in the constraint 2a. Due to
the overlapping nature of the O6-/O8-planes, we find that NND = 2, which excludes any
SUSY-preserving source configuration in d = 7.

Constraint 5. There is no classical dS solution in a SUSY-preserving theory in d = 7.

In type IIA|6, as detailed in the constraint 3a, the configurations include O6-planes with
non-zero F0 flux. When these planes intersect, they yield NND = 2, breaking SUSY, which
may change upon considering non-overlapping O8-planes, as detailed in Table 3 and below
equation (4.36). The internal dimensions are given in Arabic numerals, starting with 1.
Applying T-duality relations along any internal dimension leads to configurations involving
O5- and O9-planes/D9-branes, or O7-planes/D7-branes, which, according to 3b, exclude
the possibility of classical dS backgrounds. The likelihood of obtaining dS solutions with

17Including anti-D-branes in a configuration with O-planes also breaks SUSY, providing another argu-
ment for avoiding them.
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Sources Spacetime dimensions 1 2 3 4
O6, (D6) x x
(O8, D8) x x x x

Table 3: Source configurations preserving SUSY for classical dS solutions in type IIA|6
supergravity.

parallel O6-planes within a single set is also low, as indicated by [45] and further supported
by [118]. However, the lack of a definitive (algebraic) no-go theorem means that we cannot
categorically dismiss this configuration. It is also worth noting that [118] reports finding
solutions involving KK5 monopoles and KKO5-planes in type IIA|6 that preserve half of
the supersymmetries. However, these solutions face challenges due to the potential non-
compactness of the internal space.

In the context of type IIB|6, the condition 3b suggests a source configuration that
includes O5- and O7-planes. However, similar to observations in type IIA|7, the spacetime-
filling nature of the O5-planes rules out the preservation of SUSY.

Constraint 6. There is no classical dS solution within a SUSY-preserving theory in d = 6

unless from the source configurations in Table 3.

Finally, we explore type IIA|5, emphasizing the necessity of O6-planes as outlined in the
constraint 4a. The inclusion of O4-planes/D4-branes in SUSY-preserving configurations
is ruled out due to the spacetime-filling nature of pi = 4 sources. With respect to the
equation (4.23) for pi = 6,

R5 =
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gs
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10

5
− gs

T
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10
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− |H3|2 + g2s

�
F 2
0 − |F4|2 − 2|F6|2

��
, (4.43)

and with T
(4)
10 = 0 we derive an additional condition, g2sF

2
0 − gsT

(8)
10 /9 > 0. Revisiting

the discussion under (4.36), we can include O8-planes/D8-branes. However, the only con-
figurations that preserve SUSY are those listed in Table 4, which require NND = 4. In

Sources Spacetime dimensions 1 2 3 4 5
O6, (D6) x x x
(O6, D6) x x x

O6, (D6) x x x
(O8, D8) x x x x x

Table 4: Source configurations preserving SUSY for classical dS solutions in type IIA|5
supergravity.

type IIB|5, the relevant configuration outlined in the constraint 4b includes O5-planes and
potential D5-branes, along with pi = 7 sources. This setup mirrors considerations in type
IIA|6, where similar rules apply. For sources of single dimensionality pi = 5, only one set of
O5/D5 can preserve SUSY, while combinations of pi = 5, 7 offer more diverse possibilities,
summarized in Table 5. We draw the following conclusion:
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Sources Spacetime dimensions 1 2 3 4 5
O5, (D5) x x
(O7, D7) x x x x

Table 5: Source configurations preserving SUSY for classical dS solutions in type IIB|5
supergravity.

Constraint 7. There is no classical dS solution within a SUSY-preserving theory in d = 5

unless from the source configurations in Tables 4 and 5.

Doubts remain for d = 5, similar to problems previously identified in type IIA|6, since
configurations with only parallel sources preclude classical dS solutions [45]. In addition, T-
dualities applied to the source configurations listed in Tables 4 and 5 result in configurations
that definitively exclude dS backgrounds.

4.3.3 Conclusion

In our analysis of flux compactifications to arbitrary dimension d, we initially reduced the
number of sources and fields. In higher dimensions, this reduction is often consistent with
the assumptions of the no-go theorems discussed in Section 4.2, allowing us to definitively
rule out or severely constrain the possibility of d-dimensional dS solutions. Furthermore,
when focusing on SUSY-preserving source configurations in Section 4.3.2, classical dS com-
pactifications are unambiguously ruled out in d = 7 and in type IIB for d = 6. The few
remaining viable source configurations that could support dS spacetimes are detailed in
Table 3 for d = 6 and Tables 4 and 5 for d = 5. These results not only echo but also build
on those of [49], and we intend to extend these results to quasi-dS solutions in Section 4.4.

Focusing our analysis on SUSY-preserving source configurations is a pragmatic ap-
proach that enhances the phenomenological relevance, as it potentially allows for a super-
symmetric d-dimensional effective theory. For d = 6 and d = 5, the viable configurations
typically involve at most two intersecting sets of sources, as shown in the tables above.
This subtlety is dictated by the SUSY algebra which does not support only 4 supercharges
in dimensions d ≥ 5. Therefore, preserving SUSY in these dimensions usually allows no
more than two intersecting sets of sources. This principle is critical in the context of Con-
jecture 4 in [35], which will be discussed in 4 dimensions.

Three conjectures concerning classical dS solutions have been proposed in [45], with
our focus here on Conjecture 1. This conjecture posits the non-existence of classical dS
solutions in configurations with only a single set of sources. Although it remains neither
proven nor refuted, it is considered valid within the ansatz outlined in [45] and may have
broader applicability. In our studies [35], we propose an extension of this conjecture:

Conjecture 4. There is no classical dS solution with two intersecting sets of sources.

Our confidence in this conjecture is supported by empirical data; none of the classical dS
solutions classified in [35] have less than three sets of sources. Moreover, our dedicated
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search for dS solutions with only two sets of sources across various classes have been
unsuccessful.

Further support for Conjecture 4 comes from T-duality analysis. Certain source config-
urations are T-dual to each other, and in particular, when restricted to exactly two source
sets, either two O-planes or one O-plane with one D-brane, we identify two T-duality
chains that include all configurations that allow exactly two sets, leaving no class isolated.
The support for Conjecture 4 is based on the no-go theorems against classical dS solutions
in these specific classes, as detailed in [105]. The T-duality relations suggest that similar
constraints apply to related classes. However, a comprehensive T-duality relationship be-
tween these classes is not definitively established, since certain fields within one class may
prevent a solution from being T-dual to the other, even though the sources themselves are
potentially dualizable. For further details, see [35]. Despite these nuances, it remains a
strong indication of a universal obstruction to dS solutions across all classes within these
T-duality chains, each of which allows exactly two source sets.

An important outcome of Conjecture 4 is its implications for a 4D effective theory, where
"effective" in this context refers to (consistent) truncations that preserve the contributions
of sources without eliminating them. Such truncations typically lead to 4D gauged SUGRA,
as noted in [45], which ensures that any solution in this 4D framework corresponds to one
in the 10D theory. Indeed, if a classical dS solution involves three or more intersecting sets
of sources, then, as discussed in Section 4.3.2, SUSY is broken by a factor of at least 8,
and we can confidently conclude [35]:

Implication. A 4D effective theory derived from a classical string compactification, which
includes a dS extremum, is inherently constrained to have N = 1 SUSY.

However, a non-supersymmetric 4D theory, likely prone to instabilities, is also a theoretical
possibility.

Nevertheless, many 4D gauged supergravities, defined by unique gaugings, often do
not originate from classical compactifications. Identifying dS solutions in these theories,
especially those having extended SUSY, N > 1, poses significant challenges when strictly
derived from classical compactifications. This difficulty is consistent with the Conjecture 4.
Typically, finding (meta-)stable dS solutions in such supergravities involves elements such
as non-compact gaugings, Fayet-Iliopoulos terms or non-geometric fluxes, whose higher-
dimensional origins remain ambiguous or controversial, as discussed in [119–121].

The implications of Conjecture 4 are significant for phenomenology. Intersecting source
configurations, which are frequently utilized in the construction of particle physics models,
allow for chirality under the condition that N ≤ 1 in 4D [105,122,123]. Regarding classical
dS solutions in higher dimensions, the supersymmetric source configurations discussed in
Section 4.3.2 are typically restricted to at most two sets. If Conjectures 1 and 4 are
validated, dS solutions would be precluded in dimensions d ≥ 5, leaving d = 4 the highest
viable dimension for such model.
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4.4 Extension to quasi-de Sitter

The constraints on classical dS solutions discussed in Sections 4.3.1 and 4.3.2 naturally ex-
tend to quasi-dS. For this analysis, we transition from a 10D framework to a d-dimensional
effective theory featuring a scalar potential, following dimensional reduction as detailed in
Section 3. Here, a dS solution is defined by an extremum of the positive potential while
quasi-dS is characterized by a small gradient |∇V (φ)|. This distinction will be elaborated
upon shortly.

In our analysis, the constraints on the existence of classical dS solutions, as derived in
previous sections, incorporate several critical components. These include a linear combina-
tion of the 10-dimensional equations of motion (4.2), (4.3) and (4.4), along with the Bianchi
identities for the fluxes F0, F1 and F9−d. Additionally, the rules of orientifold projection
and the preservation of SUSY within the d-dimensional effective theory are fundamental.

Furthermore, we demonstrate that the dilaton equation of motion, given in (4.2), can
be derived from a combination of the universal potential (3.26) and its derivatives
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evaluated on-shell where ρ = τ = 1 and using the expression (3.4). Employing a similar
method, we deduce the 10-dimensional Einstein trace (4.3) from
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at the critical point. Concurrently, the combination
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yields the d-dimensional Einstein trace on-shell. The Bianchi identities remain applicable
within the d-dimensional theory, albeit potentially modified by positive factors associated
with the scalar fields. Consequently, the critical elements required for deriving no-go
theorems in Section 4.2 continue to be relevant in the effective theory.

It is important to emphasize that the reasoning behind these constraints, leading to
Rd ≤ 0 and thus excluding dS solutions, relies on the signs of individual terms in the
equations rather than on their linear combinations. This indicates that the inclusion of
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scalar fields does not affect the results of these constraints. This stands in contrast to
situations where constraints rely on combinations of terms with differing power scaling, as
elaborated in [38] under the term "field-dependent" condition. In essence, we can replicate
the derivation of the no-go theorems discussed earlier, which restrict the possibility of
classical dS solutions, within a d-dimensional framework that involves a scalar potential
and its derivatives. Rather than concluding with Rd ≤ 0 we derive a comparable on-shell
statement that remains valid both at and away from the critical point (off-shell). In the
coming section, we will further explore these constraints to either exclude or more tightly
constrain d-dimensional quasi-dS solutions.
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5 No-go theorems in lower-dimensional effective theories

In Sections 4.2 and 4.3.1, we established numerous no-go theorems against classical string
backgrounds with a d-dimensional dS spacetime. Drawing on Conjecture 1 [45] and Con-
jecture 4 [35], we argue against the existence of such solutions in d ≥ 5, suggesting that
viable models, if any, would likely appear in d ≤ 4. As noted above, no-go theorems can
be derived in two ways: One approach involves combining 10-dimensional equations, and
another uses a d-dimensional effective theory as derived in section 3. The latter approach
leads, under some assumptions, to an inequality of the form

aV (φ) +
!
i

biφ
i∂φiV (φ) ≤ 0 , a > 0 , ∃ bi ̸= 0 , (5.1)

which effectively excludes dS critical points. In this section, we shall take the d-dimensional
Planck mass to be equal to one. When evaluated on-shell, where φi = 1, this inequality
can typically be matched with the 10-dimensional result, Rd ≤ 0. The benefit of employing
a d-dimensional derivation is its capacity to exclude quasi-de Sitter solutions as discussed
in greater detail in Sections 4.4 and 5.3. The equation (5.1) is typically rephrased in the
form

|∇V (φ̂)| ≥ c V (φ̂) , c ∼ O(1) (5.2)

for canonically normalized fields φ̂i, thereby allowing the evaluation of a value of c. This
rate is then compared to the bound proposed by the Trans-Planckian Censorship Conjec-
ture (TCC) [58],

ctcc =
2�

(d− 1)(d− 2)
, (5.3)

in the swampland program, as outlined in Section 5.2. Our results, summarized and
discussed in Section 5.4, confirm that the TCC bound holds in all dimensions, with multiple
cases of saturation already noted in d = 4. These checks support the validity of the TCC
bound, although there is no fundamental principle that supergravity no-go theorems would
reproduce it in d ≥ 3. A more detailed discussion of this topic can be found in Section
5.4.1, which includes an intriguing result in d = 3, probably related to the unique properties
of gravity in this dimension. After strengthening the TCC bound for dimensions d ≥ 4,
we proceed in Section 5.4.2 to contrast this bound with various proposals cited from the
literature, in particular those found in [124]. In addition, our discussion will extend to
the Distance Conjecture [125], focusing on a speculative d-dependent formulation for the
lower bound on its rate λ. In Section 5.4.3, we explore an asymptotic upper bound on the
gradient of the potential, a critical requirement for cosmic accelerated expansion.

5.1 Accelerated expansion in string cosmology

Following the notation in [126], we explore the d-dimensional uncompactified part of our
universe. The Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

ds2d = gµνdx
µdxν = dt2 − a(t)2

�
dr2

1− kr2
+ r2dΩd−2

�
, (5.4)
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describes an isotropic and homogeneous spacetime in spherical coordinates, including the
scale factor a(t), which depends on the proper cosmological time, and the parameter of
spatial curvature k, which adopts values of −1, 0,+1, according to open, flat and closed
universes. The effective action (3.2),

S(d) =

�
ddx

√−gd

�
1

2
Rd − 1

2
gµνGij∂µφ

i∂νφ
j − V (φ)

�
, (5.5)

repeated here for convenience, follows from consistent truncation of the 10-dimensional
parent theory. It involves several minimally coupled scalar fields φi, a field space metric
Gij and an effective scalar potential V (φ). The specific structure of the potential depends
on the details of the string compactification, see Section 3. The scalar fields φi = φi(t)

are a priori functions of time alone. Such a theoretical framework can support solutions
where the d-dimensional spacetime is maximally symmetric with a cosmological constant
Λd. The action (5.5) allows us to derive the cosmological equations, which include the two
Friedmann equations

(d− 1)(d− 2)

2

�
H2 +

k

a2

�
− 1

2
Gijφ̇

iφ̇j − V (φ) = 0 ,

(d− 2)

�
Ḣ − k

a2

�
+Gijφ̇

iφ̇j = 0 ,

(5.6)

characterized by the Hubble parameter H = ȧ/a; the dots indicate derivatives by proper
time. In addition, we consider the equations of motion for the scalar fields

φ̈i + Γi
jkφ̇

jφ̇k + (d− 1)Hφ̇i + ∂φiV (φ) = 0 , (5.7)

with indices lowered by Gij and Γi
jk representing the Christoffel symbols associated with

the field space metric. To simplify these equations, we assume the energy-momentum
tensor of a perfect fluid. Therefore, the energy density and pressure of the scalar fields are
given by

ρ =
1

2
Gijφ̇

iφ̇j + V (φ) , p =
1

2
Gijφ̇

iφ̇j − V (φ) , (5.8)

and the equation of state parameter w = p/ρ. In the following sections we will study
positive scalar potentials, V (φ) > 0. In this model, a positive H is necessary to ensure an
expanding universe, while ä > 0 is required for acceleration. As a consequence, the second
Friedmann equation imposes

w < −d− 3

d− 1
, (5.9)

leading to a constraint on the scalar potential, as identified in [124] and further elaborated
on in Section 5.4.3. This inequality actually represents a violation of the strong energy
condition (4.5) in d dimensions. For the sake of clarity, we first consider the dynamics
under slow-roll conditions. This approximation relies on two key assumptions: First, the
kinetic terms are negligible with respect to the potential, i.e.

V (φ) ≫ 1

2
Gijφ̇

iφ̇j . (5.10)
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Second, the friction term in (5.7) dominates any term of second-order,

(d− 1)Hφ̇i ≫ φ̈i + Γi
jkφ̇

jφ̇k . (5.11)

These assumptions allow a simplification of the first Friedmann equation and the scalar
field equation of motion,

(d− 1)(d− 2)

2
H2 − V (φ) = 0 , (d− 1)Hφ̇i + ∂φiV (φ) = 0 , (5.12)

which shows that the expansion of the universe can lead to near exponential growth,
known as inflation. It is important to note, however, that inflation can also occur outside
the slow-roll regime.

A solution to (5.6) with a d-dimensional de Sitter spacetime, corresponds to an ex-
tremum of the potential, ∇V (φ)|0 = 0, where the scalar fields lack kinetic energy. On
the other hand, a quasi-de Sitter solution involves positive V (φ) with small |∇V (φ)|, and
(slowly) rolling fields. A natural question arises: Can a model consistent with these clas-
sical string backgrounds be derived directly from string theory?

5.2 Swampland criteria and de Sitter

Addressing the challenges of identifying viable solutions in string models is at the heart of
the swampland program [56,57], which strives to establish universal bounds on the scalar
potentials within effective theories of quantum gravity. Although this task is inherently
complex, it is possible to provide definitive answers in certain regions of field space. There
is strong support for the notion that the potential V (φ) exhibits a universal behavior near
points of divergent geodesic distance in field space,

s(φ(t)) =

� t

t0

dt
�

Gijφ̇iφ̇j → ∞ , (5.13)

often referred to as the asymptotic limit. At these points, it has been observed that the
potential satisfies

γ ≡
� |∇V (φ)|

V (φ)

�
s→∞

≥ c , (5.14)

where c is a constant that can vary with d and we refer to γ as the (asymptotic) de
Sitter coefficient [126]. Any gradient of V (φ) satisfying (5.14) must neither vanish nor
be small. Because of this, the inequality is in a sense an asymptotic formulation of the
de Sitter Conjecture [30, 31], that postulates a fundamental obstacle to the existence of
de Sitter solutions in regions where parametric control over corrections to the effective
theory is maintained. This constraint highlights our interest in the classical regime, which
is consistent with these asymptotics and where the bound in (5.14) is assumed to be
valid. Therefore, this regime is suitable for testing the asymptotic de Sitter conjecture, a
challenge we will face in the following sections. However, it is important to understand that
the constraint (5.14) holds only within these asymptotic limits, and does not preclude de
Sitter solutions elsewhere in field space where parametric control may be lost. Moreover,
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this conjecture is evident in various compactifications of string theory [38, 40, 55], where
the potential consistently decreases exponentially at a rate γ as it approaches points of
infinite geodesic distance.

We then discuss particular swampland conjectures and their refinements, which provide
estimates for the bound on the de Sitter coefficient from various arguments:

• According to the Trans-Planckian Censorship Conjecture [58], any consistent effective
theory of quantum gravity should prevent cosmological expansions that allow sub-
Planckian fluctuations to expand beyond the Hubble scale, freeze out and classicalize.
This conjecture sets a lower bound on the de Sitter coefficient, γ ≥ ctcc, as given in
the equation (5.3).

• The Strong de Sitter Conjecture [124, 127] states that any effective theory that sat-
isfies the asymptotic condition (5.14) with

cstrong =
2√
d− 2

, (5.15)

will uphold this constraint after dimensional reduction. This suggests that the de
Sitter Conjecture is robust to dimensional reduction, provided that c = cstrong. More-
over, this condition implies that the strong energy condition, outlined in the equations
(4.5) and (5.4.3), persists at late times in the asymptotic regions of field space, thus
ruling out any possibility of asymptotic accelerated expansion. We will return to this
topic in Section 5.4.3.

Given that ctcc < cstrong, we will argue in Section 5.4.3 that the Trans-Planckian Censorship
Conjecture still allows for a cosmic accelerated expansion. For the sake of completeness, we
mention another swampland constraint in the context of a d-dimensional effective theory
(3.2) coupled to Einstein gravity.

• The Distance Conjecture [125] proposes that the moduli space is inherently non-
compact. More specifically, starting from any point φ(t0) in field space, it is always
possible to find another point φ(t) at an infinite geodesic distance s(φ(t)) → ∞.
This conjecture leads to a far-reaching consequence under the assumption that such
asymptotic points exist in moduli space: Approaching a point at infinite geodesic
distance in field space, an infinite tower of states, characterized by a mass scale m,
becomes exponentially lighter,

m(φ(t)) ∼ m(φ(t0)) e
−λs(φ(t)) , as s(φ(t)) → ∞ . (5.16)

However, the conjecture does not specify the exponential rate λ > 0. We will return
to this topic in Section 5.4.2.

Below we discuss whether the first bound, γ ≥ ctcc, is consistent with the no-go theorems
derived earlier.
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5.3 Scalar flux potentials and no-go theorems in supergravity

After setting up the framework of a d-dimensional effective theory in Section 3, we will
revisit the no-go theorems derived from the 10D equations in Section 4 to constrain the
existence of classical (quasi-)de Sitter solutions in an arbitrary dimension d. Our focus will
be on sources of single dimensionality pi. As discussed in Section 4.4, the d-dimensional
representation of these no-go theorems, given by the inequality (5.1), replicates the con-
straints in the 10D theory, i.e. Rd ≤ 0, at the critical point of the potential.

Upon transforming to canonical fields, as detailed in equation (3.21) for (ρ, τ, σ) and
in (3.45) for (τ, r), we derive the formal expression

aV (φ̂) +
!
i

b̂i∂φ̂iV (φ̂) ≤ 0 , (5.17)

from the inequality (5.1) [45, 52]. The slope of the potential, |∇V (φ̂)|/V (φ̂), in (5.14) is
bounded by

c =

�
a2"
i b̂

2
i

. (5.18)

As we will see in this section, this formalism is consistent with the asymptotic de Sitter
Conjecture in equation (5.14), in particular with the bound (5.3) of the Trans-Planckian
Censorship Conjecture [58]. Therefore, for any no-go theorem in arbitrary dimension d that
relies on field-independent assumptions, we derive the respective value of c and compare
it to the bound proposed by the TCC, as discussed in [38] for d = 4.

No-go theorem by Maldacena and Nuñez

According to the equations above, the scalar potential (3.26) and its derivatives can be
combined to form

2 (2V + τ∂τV ) =
d− 2

2

�
τ−

d+2
2

!
i

ρ
2pi−8−d

4 gs
T
(pi)
10

pi + 1

− 2τ2−2dρ3−d|H7|2 − τ−dg2s
!
q

ρ
10−d−2q

2 |Fq|2
�
. (5.19)

When evaluated on-shell, this leads to the statement (4.11) of the no-go theorem 1 by
Maldacena and Nuñez, given by the inequality

2V +
√
d− 2 ∂τ̂V ≤ 0 , if ∀ pi : T

(pi)
10 ≤ 0 , (5.20)

using canonical fields (3.21). The respective value of c is then obtained as c2 = 4/(d− 2).

Sources of single dimensionality

The first constraint for sources of single dimensionality pi results from the unique combi-
nation
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2

�
2(pi − 3)

d− 2
V − d+ 4− 2pi

2(d− 2)
τ∂τV + ρ∂ρV

�
= −τ−2ρ−3|H3|2

+ (4− pi)τ
2−2dρ3−d|H7|2 + τ−d 1

2
g2s

!
q

ρ
10−d−2q

2 (8− pi − q) |Fq|2 , (5.21)

which, when evaluated on-shell, gives the equation (4.17) and eventually leads to the no-go
theorem 2,

2(pi − 3)

d− 2
V − d+ 4− 2pi

2
√
d− 2

∂τ̂V +

 
10− d

4
∂ρ̂V ≤ 0 , if pi = 7, 8 or 9 . (5.22)

The corresponding value of c is given by

c2 =
4(pi − 3)2

(d− 2)((pi − 3)2 + (pi − 5)(2− d))
. (5.23)

Before we study this expression in more detail, let us first derive another constraint in form
of no-go theorem 3a. To this end, we compute the following combination of the potential
and its derivatives,

2

�
2(pi + 1)

d− 2
V − d− 4− 2pi

2(d− 2)
τ∂τV + ρ∂ρV

�
= −

###τ−1ρ−
3
2 ∗10−dH3 + εpigsτ

− d
2 ρ

2pi−2−d

4 F6−pi

###2 + 2τ−
d+2
2 ρ

2pi−8−d

4 gsεpi(dF8−pi)

− piτ
2−2dρ3−d|H7|2 + 1

2
τ−dg2s

!
q ̸=6−pi

ρ
10−d−2q

2 |Fq|2 (4− pi − q) . (5.24)

In this equation, we have employed the Bianchi identity (4.19), which has been multiplied
by powers of the scalar fields and reorganized to conform to the off-shell formulation of
the no-go theorem. The term containing (dF8−pi) has a priori no definite sign. Similar to
the 10-dimensional approach, we notice that the integration of (dF8−pi) over the compact
space, implicitly defined in (3.37), vanishes for pi = d−1 according to the equation (4.22).
Therefore, the linear combination (5.24) satisfies the inequality

2d

d− 2
V +

d+ 2

2
√
d− 2

∂τ̂V +

 
10− d

4
∂ρ̂V ≤ 0 ,

if d ≥ 4 & pi = d− 1, or d = 3 & F0 = 0 , (5.25)

leading to the no-go theorems 3a and 3b. The respective value of c is given by

c2 =
d2

(d− 2)(d− 1)
. (5.26)

Vanishing field strength

Going back to the inequality (5.22), one confirms its validity for pi = 4, 5, 6 with F6−pi = 0,
thus successfully deriving the d-dimensional analog of the no-go theorem 5a. The denom-
inator of the rate c in equation (5.23) has no roots in the range 3 ≤ d ≤ 10, where the
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minimal dimensionality dictated by Lorentz invariance is pi = d− 1. This guarantees the
validity of the equation over the above range and allows us to study the dependence of the
slope c on the dimensionality of the sources. We illustrate this relation in Figure 3, which
shows that the plot of c(pi, d) has a minimum at pi = 3 and a maximum at pi = 7. It

ctcc

2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pi

c

Figure 3: This figure shows the plot of c(pi, d = 6) in the equation (5.23) and the value of
(5.3) for d = 6. The qualitative properties of this function remain consistent for dimensions
3 ≤ d ≤ 10.

is important to remember that pi ≥ d − 1. As can be seen from equation (5.23) and the
figure above, the minimal value of c in the range 4 ≤ pi ≤ 9 is reached for pi = 4. This
value exactly matches the rate (5.3) of the Trans-Planckian Censorship Conjecture.

In order to identify a further no-go theorem, we divide equation (5.21) by (pi − 3) and
set d = 3. Given that pi ≥ d − 1, we may employ arguments similar to those previously
discussed to derive the constraint 5b under the assumption H3 = 0. The value of the
rate in equation (5.23) is also applicable in this case, resulting in the following formula for
pi = 2,

c2 =
4

(d− 2)(3d− 5)
, (5.27)

in d = 3. It is remarkable that the value of c falls below the threshold of ctcc, a fact already
evident from Figure 3; Although the value for pi = 4 satisfies the bound in equation 5.3, as
discussed above, c(pi = 2, d = 6) remains below this threshold. This pattern is consistently
observed across dimensions in the range 3 ≤ d ≤ 10. We will resume this discussion later
on.

Non-negative internal curvature

The no-go theorem 6 is given by the unique combination of the potential and its derivatives

2

�
2(d+ pi − 1)

d− 2
V − d− 4− 2pi

2(d− 2)
τ∂τV + ρ∂ρV

�
= −2τ−2ρ−1R10−d

+ (1− pi)τ
2−2dρ3−d|H7|2 + 1

2
τ−dg2s

!
q

ρ
10−d−2q

2 (6− pi − q) |Fq|2 , (5.28)
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which is consistent with the on-shell equation (4.29) in the 10D case. Applying the transfor-
mation laws (3.21) to canonical fields, the above expression leads to the following inequality,

2(d+ pi − 1)

d− 2
V − d− 4− 2pi

2
√
d− 2

∂τ̂V +

 
10− d

4
∂ρ̂V ≤ 0 , if R10−d ≥ 0 & pi ≥ 4 , (5.29)

which agrees with the corresponding no-go theorem. The c value in equation (5.18) is
defined by

c2 =
4(d+ pi − 1)2

(d− 2)(−1 + d− dpi + 4pi + p2i )
. (5.30)

Since the denominator has no roots in the desired range, the validity of the equation above
is confirmed for 3 ≤ d ≤ 9 and pi ≥ d− 1.

No-go theorem for heterotic strings

As discussed earlier, the bosonic action of heterotic string theory at leading-order in α′

is given by the NSNS sector in (2.18). Therefore, the potential (3.26) is reduced to the
contribution from the internal Ricci scalar R10−d and the H3 flux term. The following
combination of this potential and its derivatives,

2

�
V +

4− d

4
τ∂τV +

d− 2

2
ρ∂ρV

�
= −d− 2

2
τ−2ρ−3|H3|2 , (5.31)

equals the on-shell equation (4.32) in the 10D theory. Returning to canonical fields, the
adjustment of the potential to heterotic strings allows us to reformulate the no-go theorem
7 in a d-dimensional framework,

V +
(4− d)

√
d− 2

4
∂τ̂V +

(d− 2)
√
10− d

4
∂ρ̂V ≤ 0 . (5.32)

In this context, the value of c is defined as

c2 =
4

(d− 2)(d− 1)
. (5.33)

At this point, we have successfully reproduced the no-go theorems excluding classical de
Sitter solutions in arbitrary dimensions from their original 10-dimensional formulations in
Section 4.2 within a d-dimensional framework. With these analytical tools at hand, we
can now expand our studies to include two additional no-go theorems, originally presented
in [38, 53] for d = 4.

No-go theorem for λ ≤ 0

In this section we reproduce a no-go theorem, recently discussed in [38, 45, 53], within
a d-dimensional effective theory. This constraint takes a more restricted approach than
previous ones, especially targeting group manifolds for the internal space, which implies
constant fa

bc, and assuming constant fluxes. The relevant RR flux components entering
the Bianchi identities are F

(0)
6−pi

and F
(1)
8−pi

. Since the NSNS field strength is odd under the
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orientifold involution, its non-vanishing components are limited to H
(0)
3 and H

(2)
3 . In the

following combination of the potential (3.33) and its derivatives,

2

�
4(B −A)

(d− 2)
V +

(B −A)(d+ 2)

2(d− 2)
τ∂τV − (A+B)ρ∂ρV + 2σ∂σV

�
= (B −A)

�
− 2τ−2ρ−1

�
σ−Bδcdf b⊥

a∥c⊥f
a∥

b⊥d⊥ + σA−2B|f ||
⊥⊥ |2

�
− 2τ−2ρ−3σ−3B|H(0)

3 |2 + (n− 1− pi)τ
2−2dρ3−d

!
n

σ−An−B(7−n)|H(n)
7 |2

+ 4τ−
d+2
2 ρ

2pi−8−d

4 σ
1
2
B(p−9)gs

T10

pi + 1

+
1

2
τ−dg2s

!
q

ρ
10−d−2q

2

!
n

σ−An−B(q−n)(2 + 2n− pi − q)|F (n)
q |2

�
, (5.34)

we have replaced the internal curvature by the equation (3.36). Because of the similarities
with the equation (5.24), we use the Bianchi identity (4.19), which has been multiplied by
powers of the scalar fields and reorganized to conform to the off-shell formulation of the
no-go theorem, where we replace (dF8−pi)⊥ with

2τ−
d+2
2 ρ

2pi−8−d

4 σB
pi−9

2 εpigs(dF8−pi)⊥

= −
!
a∥

###τ−1ρ−
1
2σ

A−2B
2 ∗⊥ (dea∥) |⊥ − τ−

d
2 ρ

2p−6−d
4 σ

−A−B(7−p)
2 εpigs

�
ι∂a∥F

(1)
8−pi

�###2
+ τ−dρpi−3− d

2σ−A−B(7−pi)g2s |F (1)
8−pi

|2 + τ−2ρ−1σA−2B|f∥
⊥⊥|2 , (5.35)

in terms of the relevant RR flux components, F
(1)
8−pi

, defined above. Substituting the
Bianchi identity into the equation (5.34) leads to

2

M2
p

�
4(B −A)

(d− 2)
V +

(B −A)(d+ 2)

2(d− 2)
τ∂τV − (A+B)ρ∂ρV + 2σ∂σV

�

= (B −A)

�
− 2

###τ−1ρ−
3
2σ

−3
2
B∗⊥H(0)

3 + εpigsτ
− d

2 ρ
2pi−2−d

4 σB
pi−6

2 F
(0)
6−pi

###2
− 2τ−2ρ−1σ−Bδcdf b⊥

a∥c⊥f
a∥

b⊥d⊥ + (n− 1− pi)τ
2−2dρ3−d

!
n

σ−An−B(7−n)|H(n)
7 |2

− 2
!
a∥

###τ−1ρ−
1
2σ

A−2B
2 ∗⊥ (dea∥) |⊥ − τ−

d
2 ρ

2pi−6−d

4 σ
−A−B(7−pi)

2 εpigs

�
ι∂a∥F

(1)
8−pi

�###2
+

1

2
τ−dg2s

!
q ̸=6−pi & n ̸=0
q ̸=8−pi & n ̸=1

ρ
10−d−2q

2 σ−An−B(q−n)(2 + 2n− pi − q)|F (n)
q |2

�
. (5.36)

We will study each term of this analytical expression separately in terms of flux compo-
nents. The H7 field strength, which is only present in d = 3, is proportional to vol10−d

and extends over each internal dimension wrapped by the sources. Therefore, the only
non-vanishing component is found for n = pi + 1 − d, where n is the number of internal
dimensions parallel to the sources. The leading factor of the H7 term is negative. Apply-

64



ing the same argument to the RR fluxes, the parameter n satisfies 2 + 2n − pi − q ≤ 0,
consistent with the more obvious conditions n ≤ q and n ≤ pi +1− d. Therefore, the only
term whose sign is not fixed leads us to conclude that the existence of classical de Sitter
solutions is excluded for

−δcdf b⊥
a∥c⊥f

a∥
b⊥d⊥ ≡ λ |f∥

⊥⊥|2 ≤ 0 . (5.37)

By extending the condition |f∥⊥⊥|2 ̸= 0, as derived in [74] for d = 4, to an arbitrary
dimension d, the above inequality becomes equivalent to the condition λ ≤ 0. Substituting
this into the combination of the potential and the derivatives in the equation (5.36), we
obtain the following no-go theorem,

4(B −A)

(d− 2)
V +

(B −A)(d+ 2)

2
√
d− 2

∂τ̂V − (A+B)

 
10− d

4
∂ρ̂V

+
�
−AB(B −A)∂σ̂V ≤ 0 , if 3 ≤ d ≤ 9 & λ ≤ 0 . (5.38)

The value of the rate in equation (5.18) results in

c2 =
4

(d− 2)(d− 1)
. (5.39)

Internal parallel Einstein equations

We introduce another set of scalar fields, (τ, r), which leads to the potential (3.50). With
this setup we establish an additional no-go theorem. This constraint has been validated
for d = 4 using the 10D equations of motion, as shown in [45], and in a 4-dimensional
effective theory in [38]. We analyze the following linear combination of the potential and
its derivatives,

2 (2V + τ∂τV + (d− 2)r∂rV ) = −(d− 2)

�
− τ−2r2

1

2
δikδjlf1

ijf
1
kl

+ τ−2r−2|H(1)
3 |2 + τ2−2d|H(1)

7 |2 + τ−dr−1g2s
!
q

|F (1)
q |2

− gsτ
− d+2

2 r−
1
2

!
i

T
(pi)
10

pi + 1
δ⊥i
1 + τ−2r−2

�
1

2
δikδjlf1

ijf
1
kl − 2R11

��
, (5.40)

paying careful attention to the sign of each term in order to formulate a conclusion. We
focus our analysis on sources of dimensionality pi ≤ d and assume that all O-planes extend
along the radion direction 1. This configuration ensures that δ⊥i

1 = 0, which leads to
the elimination of the source term in (5.40). Note that sets containing only Dpi are not
relevant, since they satisfy T

(pi)
10 < 0. In addition, our assumption of a group manifold

results in
1

2
δikδjlf1

ijf
1
kl − 2R11 ≥ 0 , (5.41)
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as detailed in [38]. In this case, only the first term may have the wrong sign. Using the
transformation laws to canonical fields (3.45), we obtain the no-go theorem

2V +
√
d− 2 ∂τ̂V + (d− 2) ∂r̂V ≤ 0 , if ∀ i, j : δ⊥i

1 = 0 and f1
ij = 0 . (5.42)

The corresponding value of c is

c2 =
4

(d− 2)(d− 1)
. (5.43)

5.4 Summary and discussion

In the previous section, we have successfully formulated no-go theorems that challenge the
existence of classical string backgrounds with a d-dimensional (quasi-)de Sitter spacetime.
These constraints arise from the dimensional reduction of 10D type II supergravity theories,
of which the first five were supported by the 10D equations in Section 4.2. However, the
assumptions we make do not depend on the scalar fields but rather on the 10D background.
This approach extends the study recently presented in [38] for the 4-dimensional case and
applies it more broadly. In Section 5.3, we define a unique c value for each no-go theorem,
which corresponds to the parameter of the de Sitter Conjecture discussed in [30] and further
explored in Section 5.2. In particular, we focus on comparing these values with the bound
proposed by the Trans-Planckian Censorship Conjecture in [58].

In the following Section 5.4.1 we will discuss this comparison of rates in more detail,
with special emphasis on the unique case of d = 3. In Section 5.4.2 we will extend our anal-
ysis to alternative values suggested in the literature and explore related conjectures. Our
discussion concludes in Section 5.4.3, where we consider the implications for cosmological
theories of accelerated expansion.

5.4.1 No-go theorems and the Trans-Planckian Censorship Conjecture

A summary of the c values derived for the no-go theorems discussed in this section is given
in table 6. An important observation is that for dimensions from 4 to 10, all values
of the rate (5.18) meet or exceed the lower TCC bound given by the equation (5.3). In
particular, the cases where c = ctcc correspond exactly to those identified in d = 4 [38].
Note that there is no inherent reason for these results to coincide, since the analysis was
performed purely within the framework of supergravity, which is supposedly unrelated
to the quantum gravity and cosmological arguments that underlie the Trans-Planckian
Censorship Conjecture. However, if the TCC holds, such a consistency underscores the
swampland perspective, given that supergravity is the asymptotic, both perturbative and
classical, limit of string theory. From this perspective, the c values derived in this work
strongly verify the TCC hypothesis. Remarkably, the precise agreement of ctcc in four
dimensions, where c =

�
2/3, may be generalized to any formula across d dimensions, as

investigated in Section 5.4.2. This alignment demonstrates a universal consistency with
the Trans-Planckian Censorship Conjecture.

In addition, the Figure 4 shows how the values of c vary with the dimension d, relative
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No-go theorem Value of c, (5.18)

Maldacena-Nuñez 2√
d−2

pi = 7, 8 or 9 2(pi−3)√
(d−2)((pi−3)2+(pi−5)(2−d))

≥ ctcc
pi = 4, 5 or 6 with F6−pi = 0

pi = 2 with H3 = 0 (in d = 3)
2√

(d−2)(3d−5)
(= 1) < ctcc

pi = d− 1
d√

(d−2)(d−1)

R10−d ≥ 0
2(d+pi−1)√

(d−2)(−1+d−dpi+4pi+p2i )
> 1

Heterotic strings at (α′)0

2√
(d−2)(d−1)λ ≤ 0

Internal parallel Einstein equations

Table 6: This table lists the no-go theorems analyzed in this study, along with the d-
dependent c values derived from (5.18).

to ctcc. The case of d = 3 presents unique challenges. Our results indicate anomalies in
this dimension, as outlined in the equation (5.27), where the no-go theorems suggest a
violation of the TCC bound. However, the integrity of its algebraic derivation remains
robust even in d = 3. On the other hand, the fundamental physical arguments based on
preventing quantum fluctuations from becoming classical might not be applicable. Given
the peculiar topological nature of gravity in d = 3, where gravitational fluctuations are
inherently absent, it is plausible that the underlying reasoning of the TCC may not extend
to this dimension. This extraordinary observation highlights a potential limitation in the
application of the TCC to d = 3, as supergravity sensitively detects these subtleties by
providing a counterexample to this bound.

The broader implications of swampland conjectures in d = 3 remain ambiguous. While
generally applicable in dimensions 4 and above, and less so in dimensions 2 and below,
d = 3 poses unique theoretical challenges, evident in the distinct properties of black holes
and the absence of gravitational fluctuations, which complicate the application of standard
swampland arguments. However, papers such as [128] have affirmed swampland conjectures
in d = 3, while others like [129,130] have applied these without contradiction. However, the
peculiar no-go theorem and the associated value of c for d = 3, attributed to O2-planes/D2-
branes exclusive to this dimension, suggest new dynamics that may conflict with established
bounds such as the TCC. Further explorations in d = 3, such as those involving scale-
separated AdS3 solutions [131, 132], may reveal more instances that challenge swampland
conjectures, especially those related to the TCC and the de Sitter Conjecture.

5.4.2 Exploring connections in the swampland

Testing the TCC bound (5.3), which establishes a minimum value of c ≥ ctcc, via SUGRA
no-go theorems in various dimensions, offers substantial support for this proposal. However,
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pi = 7, 8 or 9; pi = 4, 5 or 6 with F6-pi = 0; pi = 2 with H = 0

ℛ10-d ≥ 0

accelerated expansion; Maldacena-Nuñez

ctcc; heterotic at (α')0; λ ≤ 0; internal parallel Einstein equations

pi = d-1

pi = 2

3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

d

c

Figure 4: This figure plots the values of c(d) for each no-go theorem listed in Table 6
as a function of the dimension d. The presentation is specified in the caption above,
with colored lines representing pi-dependent values corresponding to the dimensionality
of the Opi/Dpi. Theoretical bounds are also included; the lower ctcc, the upper bound
for accelerated expansion as mentioned in Section 5.4.3, and a shaded region where both
bounds are satisfied. Note that the figure shows a violation of the TCC bound by a no-go
theorem at d = 3.

the universal validity of this bound is not obvious. While saturation has been observed
in d = 4 [38], one might have expected different expressions for arbitrary dimensions.
For instance, investigations into the Distance Conjecture within the complex structure
moduli space of Calabi-Yau manifolds have revealed potential alternatives, as suggested
in [133,134]. More specifically, these studies suggest that

c ≥ 4s√
10− d

, s =

 1 for 10−d
2 even

1
2 for 10−d

2 odd
, (5.44)

where (10−d)/2 denotes the complex dimension of the Calabi-Yau space. This formulation
illustrates one among several proposals for different bounds on c, aligning with c =

�
2/3

in d = 4. It is noteworthy, however, that a coherent expression for c in arbitrary dimensions
emerges consistently from the no-go theorems discussed in this thesis.

Recent studies, such as those in [124, 127] and further discussions in [60, 135], suggest
a minimal c value (5.15) that surpasses the TCC bound. This value, proposed to remain
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invariant under dimensional reduction, is anticipated to hold in the asymptotics of field
space and is applied considering the full gradient, |∇V | – see also the discussion in Section
6.4. This approach necessitates a more stringent, thus higher, value of c. However, an in-
depth analysis reveals that the derivation of the no-go theorems in Section 5.3 is effectively
single field. More specifically, the relation

aV +
!
i

b̂i∂φ̂iV ≤ 0 ⇔ cV + ∂t̂V ≤ 0 (5.45)

defines a single canonically normalized field t̂ according to

!
i

b̂i∂φ̂i =

�!
i

b̂2i ∂t̂ , (5.46)

which successfully reproduces the Strong de Sitter Conjecture since ∂t̂V ≥ −|∇V |. An
alternative interpretation is that our approach focuses on the slope of the potential along
a single field direction, while stabilizing other fields φi at their critical point values, i.e.
φi = 1 or ∂φiV = 0. In this case, |∂t̂V | = |∇V |. This formulation has been rigorously
validated for negative potentials in Section 6.5.

Moreover, a compelling relation between the Distance Conjecture [125] and the de
Sitter Conjecture states that the mass scale of the tower of states is directly correlated
with the scalar potential in the asymptotics of field space [31,38,58],

m ∼ V α . (5.47)

In string compactifications, scalar potentials are typically represented as sums of exponen-
tials, with emphasis on the dominant term, V ∼ e−cφ, as one approaches the asymptotic
limit18. Therefore, the relation (5.47) matches the decay rate of the Distance Conjecture,
m ∼ e−λφ with λ > 0, with the c value of the de Sitter Conjecture such that λ = αc,
especially for their respective minimal values,

λmin = α cmin . (5.48)

This reasoning fosters the assumption that cmin = ctcc with α = 1/2, as validated in 4
dimensions [38]. Therefore, the robustness of the TCC bound in d ≥ 4 motivates

λmin =
2α�

(d− 2)(d− 1)
, (5.49)

with α = 1/2 in d = 4, consistent with the potential range of α from 1/d to 1/2 for (quasi-)
de Sitter proposed in [124, 137, 138]. This leads to the prediction of a tower decaying at a
rate 1/

�
(d− 2)(d− 1) in the asymptotics of field space.

In [135] an alternative interpretation is proposed by introducing a lower bound, λmin =

1/
√
d− 2, which represents the minimum rate of the lightest tower. This implies that

although a tower can decay at a rate of 1/
�

(d− 2)(d− 1) in the asymptotics of field
18The asymptotics typically correspond to |V | → 0 [136].
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space, [135] argues that there will always be a lighter tower that decays at a faster rate,
exceeding 1/

√
d− 2. This argument facilitates the validation of (5.48) with α = 1/2, in

the light of the bound (5.15) discussed earlier. We intend to revisit these complex relation
between conjectures, associated decay rates and bounds in future work.

5.4.3 Criteria for asymptotic accelerated expansion

In cosmological terms, the constraints on |∇V |/V strongly reduce, and may even preclude,
the possibility of achieving a quasi-de Sitter spacetime or any form of accelerated expansion.
Given a cosmological model in d dimensions, equipped with a FLRW metric and a single
canonical scalar field19 φ with a positive potential V (φ), we obtain the upper bound

|V ′|
V

<
2√
d− 2

, (5.50)

an asymptotic condition for cosmic accelerated expansion [30, 60, 124]. From a physical
perspective, the nature of this bound can be understood as follows: The constraint (5.9)
requires that the kinetic energy is negligible. This condition would be violated if the slope
of the potential were too steep, therefore justifying the upper bound on the gradient. To
verify this claim, we re-evaluate the given bound and offer two separate derivations of
(5.50).

A positive potential alone does not suffice for achieving cosmic accelerated expansion.
The universe, if homogeneous, undergoes accelerated expansion provided that q, the de-
celeration parameter, is negative. Defined by

q ≡ − äa

ȧ2
= −1− Ḣ

H2
< 0 ⇔ ϵ < 1 , (5.51)

with ϵ ≡ −Ḣ/H2, this parameter is a dimensionless measure reflecting the acceleration
rate of the expanding FLRW spacetime. The slow-roll approximation (5.10) and (5.11),
which simplifies the equations of motion and guarantees that inflation will occur, then
becomes

ϵ ≪ 1 . (5.52)

In addition, the following equation,

ϵ =
d− 1

2

φ̇2

V
=

d− 2

4

|V ′|2
V 2

, (5.53)

emerges from the simplified equations (5.12). Within the slow-roll approximation we ex-
pand w as

w = −1 +
2ϵ

d− 1
+O(ϵ2) = −1 +

d− 2

2(d− 1)

|V ′|2
V 2

+O(ϵ2) . (5.54)

At leading-order, the condition for accelerated expansion (5.9) eventually returns the bound
(5.50). This result aligns with the established bounds for exponential potentials in d = 4,
such as |V ′|/V ≤ √

2, discussed extensively in [139–141].
19This implies a number of simplifications in Section 5.1: Gij = δij , Γ

i
jk = 0, ∇V = V ′.
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Following the work of [142, 143], which was originally restricted to 4 dimensions, we
extend the derivation to arbitrary dimension d ≥ 3 – see also the more recent work in [60].
By defining the variables

x =
φ̇√
6H

, y =

�
V (φ)√
3H

, (5.55)

for V > 0, we analyze a system of equations that includes an energy density ρm and
pressure pm, in addition to the scalar field and potential. The derivatives of x and y with
respect to N = ln a are given by

dx

dN
= −

 
3

2

V ′

V
y2 − (d− 1)x+

x

d− 2

�
6x2 +

ρm + pm
H2

�
,

dy

dN
=

 
3

2

V ′

V
xy +

y

d− 2

�
6x2 +

ρm + pm
H2

�
,

(5.56)

using the equation of motion of the scalar field and the second Friedmann equation. In
addition, the contribution ρm + pm can be rewritten via the first Friedmann equation
along with the parameter wm = pm/ρm. In this case, we choose to set ρm = pm = 0 to
match our initial assumptions. Identifying fixed points where dx/dN = 0 and dy/dN = 0

reveals the asymptotic behavior of the N -flow (time flow). In this context, the ratio V ′/V
should be regarded as an asymptotic expression that remains constant along the flow when
considering an exponential potential. The resulting fixed points and the related equation
of state parameters are given by

• for V ′ ̸= 0 : (x, y) = (0, 0), w undefined

• (x, y) =

�
±
�

(d−1)(d−2)
6 , 0

�
, w = 1

• (x, y) =

�
− (d−2)

2
√
6

V ′
V ,±

√
(d−2)

2
√
6

�
4(d− 1)− (d− 2)

�
V ′
V

�2�
, w = −1 + d−2

2(d−1)

�
V ′
V

�2
.

However, the last expression gives the only viable fixed point for V > 0 capable of achieving
cosmic acceleration. This is confirmed by the condition (5.9), which in turn leads to the
bound (5.50) on accelerated expansion.

These analyses reveal that each of the two derivations relies on assumptions, either the
slow-roll approximation or an asymptotic limit to a fixed point. Whether these assump-
tions are equivalent remains to be seen. However, the last fixed point is consistent with
(5.12). These assumptions open up potential ways to violate the bound (5.50) yet still
obtain accelerated expansion; leaving the slow-roll regime or entering a transient phase
of accelerated expansion. In addition, the constraint on accelerated expansion defined by
provides a narrow operational range, while conforming to the TCC bound (5.3):

2�
(d− 2)(d− 1)

≤ |V ′|
V

<
2√
d− 2

, (5.57)

illustrated in Figure 4. Moving beyond this upper bound using the strategies mentioned
above could broaden the scope for viable models such as those based on quintessence.
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6 Anti-Trans-Planckian Censorship and scalar potentials

The swampland program [56, 57] seeks to classify effective theories of quantum gravity.
A key aspect of this research has been the formulation of criteria to characterize scalar
potentials within these theories. In particular, some advances have proposed to limit the
characterization of scalar potentials to the asymptotic limits of moduli space. A prominent
example of this approach is the Trans-Planckian Censorship Conjecture [58] in Section 5.2,
which provides conditions for V > 0 and V ′ ≤ 0 for a single canonical field:

0 < V (φ) ≤ e−ctcc|φ−φi| ,
�
−V ′

V

�
φ→∞

≥ ctcc , ctcc =
2�

(d− 1)(d− 2)
, (6.1)

where Mp = 1. In contrast, this section shifts the focus to negative scalar potentials, which
are capable of producing a contracting phase in the universe. Despite the formal similarities
between positive and negative potentials, typically distinguished only by the signs and
values of the coefficients, the functional relations with respect to the field variables remain
generally consistent. Based on the literature [28], it has been postulated that negative
potentials should conform to

|∇V |
|V | ≥ c or

min∇∂V

|V | ≤ c′ , with c, c′ ∼ O(1) , (6.2)

in Planckian units, where min∇∂V is the minimal eigenvalue of the mass matrix M i
j =

Gik∇k∂jV . In particular, at an AdS extremum of the potential, the first condition
may be breached, necessitating compliance with the second. An alternative constraint
noted in [144] prefers the maximal eigenvalue max∇∂V to maintain consistency with the
Breitenlohner-Freedmann bound (6.42). This is similar to the refined de Sitter conjec-
ture [31],

|∇V |
V

≥ c or
min∇∂V

V
≤ −c′ , with c, c′ ∼ O(1) , (6.3)

where the positive scalar potential of a theory coupled to gravity has to obey one of the two
conditions. The Refined de Sitter Conjecture (6.3) is weakened by the implications of the
TCC (6.1). In the second conjecture, the constraint on the first derivative of the potential
is preserved, but applies only to the asymptotics of field space. The second condition in
(6.3) is replaced by an upper bound on the lifetime, as detailed in [58].

On this basis, we introduce the Anti-Trans-Planckian Censorship Conjecture (ATCC),
which extends the characterization to negative potentials. The same differences and re-
laxations apply to (6.2); the condition on |∇V |/V becomes an asymptotic one and the
second constraint is relaxed, in particular for AdS critical points. Before discussing the
details of the ATCC, it is reasonable to revisit and refine the TCC. Both conjectures an-
alyze solutions with a d-dimensional FLRW metric, considering cases of both expansion
and contraction, with the refined TCC specifically addressing expanding universes [46]:

Refined Trans-Planckian Censorship Conjecture. In any effective theory of quantum
gravity (5.5) with V > 0 admitting an expanding cosmology, modes shorter than the Planck
length at ti should not exceed the typical length scale of the universe at some later time t
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without losing the validity of the effective theory.

In a mathematical formulation:

a(ti)

a(t)
≥

�
V (φ(t))

M2
p

, (6.4)

derived for the highly restrictive initial condition involving a Planckian wavelength and
Mp/

√
V representing the typical length scale of the universe, as a replacement for 1/H in

the original TCC inequality [58].
The choice of

√
V /Mp rather than H is justified by the limitations of H in providing

a consistent measure of typical lengths outside (quasi-)de Sitter spacetimes. Furthermore,
in settings close to (quasi-)de Sitter conditions, as explored in [58], this replacement does
not lead to substantial differences and the characterization of the potential as described in
equation (6.1) remains intact with this substitution.

This nuanced approach to the application of the TCC suggests that violations of (6.4)
do not necessarily conflict with quantum gravity, but simply break the validity of the effec-
tive theory. This reformulation pragmatically claims that the usual energy scale (or energy
cutoff) of the effective theory, given by V , should not exceed the Planck scale within its
domain of validity. Therefore, we find that 1 ≥ √

V /M2
p , which is consistent with the equa-

tion (6.4) for an expanding universe. The ATCC thus introduces, through our refinement
of the TCC, a solid physical argument underlying these proposals, based on the regime of
validity of an effective theory of quantum gravity. The refinement of the TCC provides
a theoretical foundation that could explain why the verification of the TCC bound, as
discussed in Section 5, has been consistently successful.

Motivated by this conceptual and technical refinement, we now shift our focus to neg-
ative potentials and proceed to formulate the statement of the Anti-Trans-Planckian Cen-
sorship Conjecture.

6.1 The Anti-Trans-Planckian Censorship Conjecture (ATCC)

In this section, we first review the general cosmological framework outlined in Section
5.1. We then introduce the Anti-Trans-Planckian Censorship Conjecture in Section 6.1.2
and explore its multiple implications. In particular, we establish an explicit bound on the
lifetime of a contracting universe and detail the asymptotic properties of negative scalar
potentials in Section 6.1.3, based on an additional postulate. The discussion then concludes
with an examination of the well-established AdS solution and two dynamical solutions in
Section 6.1.4.

6.1.1 General framework

In this section we focus on effective theories of quantum gravity (5.5) with 3 ≤ d ≤ 10.
These models include scalar fields φi that are minimally coupled to gravity, leading to
solutions with a d-dimensional maximally symmetric spacetime defined by a cosmological
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constant Λd. They are the critical points of the potential where ∇V = 0 and Ekin,φi = 0,
satisfying the relation

Λd =
d− 2

2d
Rd = M−2

p V |0 . (6.5)

In addition, we study more dynamical situations with scalars characterized by either rolling
down or climbing up the potential. To treat these cases properly, we restrict our attention
to metrics of the FLRW form (5.4). Finally, we consider a single, homogeneous scalar field
φ. The dynamics is governed by the two Friedmann equations (5.6) and the equation of
motion for the scalar (5.7), with the energy density and pressure given by the equation
(5.8).

Most of the discussion in this section involves negative scalar potentials, V < 0, which
have several notable implications. For one, the second Friedmann equation can be written
as follows

(d− 1)
ä

a
=

2

d− 2
V − φ̇2 , (6.6)

which leads to the conclusion that ȧ < 0, indicating a decelerating universe. We will also
study solutions with φ̇ = 0, allowing for negative energy densities. Under these constraints,
the first Friedmann equation implies the choice of k = −1. While this value is in conflict
with the observable universe, which favors k = 0, our intention is not to model a realistic
cosmology. This choice also differs from the Trans-Planckian Censorship Conjecture, which
assumes k = 0. To resolve this discrepancy, we will make a few minor adjustments to our
arguments compared to [58]. In Section 6.1.4, we will study explicit solutions for this
model, including the AdS spacetime.

6.1.2 Statement of ATCC

The Trans-Planckian Censorship Conjecture was introduced with a focus on an expanding
universe and its implications for modes evolving from a sub-Planckian to a classical regime.
Our current discussion shifts to a contracting spacetime, ȧ < 0, where we similarly study
the evolution of modes to characterize negative scalar potentials. As recalled from Section
6.1.1, negative potentials inherently imply deceleration, ä < 0, while several examples
in Section 6.1.4 show a contracting phase under the condition V < 0, including the AdS
solution and other dynamical models. This connection provides the basis for our discussion
of contracting universes and leads us to formulate the ATCC [46]:

Anti-Trans-Planckian Censorship Conjecture. In any effective theory of quantum
gravity (5.5) with V < 0 admitting a contracting cosmology, modes with a wavelength
close to the typical length scale of the universe at ti should not shrink to sub-Planckian
levels at some later time t > ti without losing the validity of the effective theory.

This proposal refers to modes that are initially considered classical. Unlike de Sitter,
where horizons facilitate the freezing and classicalization of modes, contracting universes
with V < 0 lack an equivalent mechanism due to the absence of a horizon, as will be
discussed in Section 6.1.4. Here, the concept of a classical regime is replaced by the regime
of validity defined by the energy cutoff of the effective theory. This refined perspective on
the ATCC also leads to the subtle revision of the TCC discussed around equation (6.4).
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To emphasize, in contracting models with V < 0, traditional metrics such as the Hubble
parameter H or horizon-based scales fail to provide a sensible typical length. Instead, the
characteristic length scale is related to the cosmological constant (6.5), or more aptly, the
inverse square root of the absolute value of the potential, Mp/

�|V |. This adjustment also
reflects the role of the potential as a typical energy scale in the effective theory. According
to the ATCC, the initial scale a(ti)λ0 ∼ Mp/

�|Vi|, with Vi = V (φ(ti)), should not shrink
below the Planck length, a(t)λ0 ≲ lp = 1/Mp, at any given time. In a mathematical
formulation20:

a(t)

a(ti)
≥

�|Vi|
M2

p

⇔
� t

ti

dt′H(t′) = ln
a(t)

a(ti)
≥ ln

�|Vi|
M2

p

, ∀ t > ti , (6.7)

which is expected to apply in the regime of validity of the effective theory and becomes
trivial for Mp → ∞. This implies that the scale factor a(t) cannot dwindle to zero, thus
avoiding a potential Big Crunch and ensuring that the contraction stops at a Planckian
threshold where the effective theory loses its meaning (see Section 6.1.4). We then turn to
the broad implications of the Anti-Trans-Planckian Censorship Conjecture.

6.1.3 Immediate consequences

The ATCC provides a solid framework for the analysis of scalar potentials in the context
of contracting cosmology. We first establish a bound on the lifetime that is consistent
with the progression towards a final crunch in a finite period. In contrast to the simple
characterization of positive potentials guided by the TCC, the ATCC requires a "second
assumption". While this condition is inherently satisfied for V > 0, it introduces additional
complexity for V < 0. We rigorously test this condition through detailed case studies of
contracting universes, including the AdS solution and two dynamical models involving
rolling scalar fields, in Section 6.1.4.

Upper bound on lifetime

Physically, it is reasonable to expect that a contracting and decelerating universe would
have a finite lifetime. This expectation is supported by the behavior of the concave and
positive scale factor a(t), which starts from a finite initial value ai and decreases to zero,
or a(t) < ai, within a finite period. By employing the ATCC, we can circumvent the
complexities of deriving an explicit formula for this upper bound, using methods similar
to those in [58].

In our model, in which the universe with k = −1 contains only one scalar field with
corresponding potential V (φ), the relation ρ + p ≥ 0 coupled to the second Friedmann
equation (5.6) implies that Ḣ < 0, indicating a deceleration of the universe. Therefore,

20An earlier attempt to adapt the TCC to contracting universes by reversing time [58] suggested a
different scaling relation (6.7), but did not alter the dynamics governed by ä or V . Given the importance
of H in this attempt, the time-reversed TCC condition is inconsistent with our observations, leading us to
rely on the latter.
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Hi > Hf , where Hi = H(ti) and Hf = H(tf ). This leads to the inequality� tf

ti

dt′H(t′) < Hi(tf − ti) , (6.8)

which, combined with the ATCC bound (6.7), imposes the constraint

tf − ti <
1

|Hi| ln
�

M2
p�|Vi|

�
(6.9)

on the lifetime of our contracting, decelerating universe. As understood by the ATCC,
this bound dictates that beyond a certain period – defined by the inequality above – the
universe enters a Planckian regime. It is at this point that our conventional low-energy
theoretical framework ceases to be reliable. The refinement of the TCC above equation
(6.4) allows for the same logic to be applied to the interpretation of the lifetime bound
presented in [58]. However, this estimate is subject to ambiguity due to its reliance on
the Hubble parameter H(t). As detailed in Section 6.1.4, the value |Hi| is typically very
small, while the argument of the logarithmic function is large, suggesting a considerably
large upper bound on the lifetime. Note that this estimation varies if ti is chosen closer
to the final crunch, resulting in a larger |Hi| and consequently a tighter constraint on the
lifetime.

Consequences of ATCC for scalar potentials

Starting from the Anti-Trans-Planckian Censorship Conjecture, we aim to derive universal
properties of negative scalar potentials in any effective theory of quantum gravity. We
assume, for the sake of argument, that

− k

a2
(d− 1)(d− 2)

2
+

V

M2
p

≥ 0 , (6.10)

which becomes trivial as Mp → ∞ for k = 0,−1. This condition, less intuitive than the
inequality (6.7), is by definition satisfied for positive potentials with k = 0. However, we
face some significant challenges and differences from the TCC, starting with (6.10), for
negative potentials with k = −1, which is a necessary condition for AdS solutions and
other contracting, decelerating universes. Although we have successfully verified this as-
sumption for several cosmological solutions in Section 6.5, it is not intrinsically satisfied
and will require further discussion to understand its motivation. For convenience, we will
set the Planck mass to one in the rest of this section.

Under the previous assumption, we use the statement (6.7) of the Anti-Tans-Planckian
Censorship Conjecture to characterize negative scalar potentials. Following the methods
in [58], we assume a definite sign for the gradient V ′ and study, without loss of generality,
a scalar field climbing up the potential, V (φ) ≥ Vi. We choose the initial condition φ̇ ≥ 0

and rewrite the inequality (6.10) in terms of the Friedmann equation for a contracting
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universe, H ≤ 0:

H2 ≥ φ̇2

(d− 1)(d− 2)
⇔ Hdt ≤ − dφ�

(d− 1)(d− 2)
. (6.11)

We integrate this expression over a finite period and obtain� t

ti

dt′H ≤ − φ− φi�
(d− 1)(d− 2)

. (6.12)

By applying the ATCC inequality (6.7) to this relation, we get

ln
��

|Vi|
�
≤ − |φ− φi|�

(d− 1)(d− 2)
, (6.13)

where we use the absolute value, |φ− φi|, to preserve the generality of the field direction.
For V ′ ≥ 0 and V < 0, this inequality imposes a lower bound on the potential,

V (φ) ≳ −e
− 2|φ−φi|√

(d−1)(d−2) (6.14)

up to some constant of order one, which is illustrated in Figure 5 along with several
exponential potentials in Planckian units. The potential has a lower bound that is a
monotonically increasing exponential function. Before we move on, it is important to study

0

0

φ

V(φ)

Figure 5: This figure illustrates the upper (TCC, purple) and lower (ATCC, blue) bounds
on scalar potentials as defined by the equations (6.1) and (6.14). It also shows various
exponential potentials in Planckian units, demonstrating compliance with these bounds
for φ ≥ 0.

some details of this exponential bound (6.14). For φ = φi this simplifies to Vi ≳ −1, which
is invoked implicitly around the equation (6.7) to differentiate

�|Vi| from the Planck scale.
Since V ′ ≥ 0, this bound remains valid over time for any field value φ(t), provided that
the effective theory, or equivalently the inequalities (6.7) and (6.10), retains its validity.
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We then analyze the average value of the first derivative of the potential,�
−V ′

V

�
=

1

∆φ

� φ

φi

dφ̃
V ′

−V
=

ln(|Vi|)
∆φ

− ln(|V |)
∆φ

≥ ln(|Vi|)
∆φ

+
2�

(d− 1)(d− 2)
, (6.15)

to derive a constraint on the slope in the large field limit. This implies that |∆φ| =

|φ − φi| ≠ 0, which makes the inequality inapplicable at an AdS critical point. In the
asymptotic limits of field space we get�

−V ′

V

�
φ→±∞

≥ 2�
(d− 1)(d− 2)

, (6.16)

where we encounter two limits due to the possible directions in field space, corresponding to
the sign of V ′, as the scalar field climbs up the potential. It should be noted that ascending
the potential implies V ′dφ̃ ≥ 0, resulting in a positive average, which is consistent with
the positive bound given in (6.16).

For exponential potentials, V (φ) ∼ V0 e
−cφ with V0 < 0, with the rate c > 0, typical

in the large field limits of string compactifications (φ → ∞), the asymptotic bound (6.16)
imposes a constraint on the rate,

c ≥ 2�
(d− 1)(d− 2)

. (6.17)

This value corresponds to the rate of the Trans-Planckian Censorship Conjecture in equa-
tion (6.1). Our confidence in the validity of the bound (6.17) is strengthened by the fact
that the same rate has been verified for positive potentials in the context of supergravity
no-go theorems, as discussed in Section 5. However, it is important to emphasize that the
inequality (6.16) does not hold for AdS solutions with φ̇ = 0. This loophole raises serious
challenges for both the TCC and the ATCC. In particular, while the constraint on the
slope does not completely exclude critical points corresponding to AdS solutions in the
asymptotics of field space, it strongly restricts the permissible region for localizing such
vacua.

As mentioned above, the ATCC weakens the stricter conditions previously set by (6.2)
for the characterization of negative scalar potentials. The constraint on the first derivative
of the potential evolves into an asymptotic requirement, while the second constraint is
relaxed, particularly at AdS extrema, therefore shifting the focus away from the ongoing
debate on scale separation for V < 0.

6.1.4 Examples from cosmology

In this section we validate the conditions, mathematical assumptions, and properties of
negative potentials described above. We apply them to various solutions of the Friedmann
equations (5.6) and the scalar field equation of motion (5.7). Our analysis focuses on a
decelerating and contracting universe with |V | < 1, while working in Planckian units. The
models considered include the AdS solution and two dynamical ones with variables a(t)

and φ(t).
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Figure 6: This figure shows the scale factor a(t) and the Hubble parameter H(t) for an
anti-de Sitter solution with radius l = 1.

Anti-de Sitter spacetime

The anti-de Sitter spacetime, which is characterized by vanishing kinetic energy, negative
potential and negative cosmological constant, Λd = V |0, emerges as a solution to the
Friedmann equations

ȧ2 +
a2

l2
= 1 , ä+

a

l2
= 0 , l2 = −(d− 1)(d− 2)

2Λd
, (6.18)

with the characteristic length scale l. This maximally symmetric spacetime, which may be
regarded as a d-dimensional hyperboloid embedded in a (d+1)-dimensional flat spacetime,

ds2d = l2
�−dψ2 + sin2(ψ)

�
dχ2 + sinh2(χ)dΩ2

d−2

��
, (6.19)

is equivalent to the FLRW metric for

k = −1 , a(t) = l sin

�
t

l

�
. (6.20)

This configuration allows us to plot the functions a(t) and H(t) for a numerical AdS
solution in Figure 6. In this example, the contracting phase starts at t = πl/2 and ends
at the final crunch, tf = πl. In contrast to a dS spacetime, the Hubble parameter is
neither constant nor bounded, raising questions about the use of a horizon or H(t) as a
characteristic length. Indeed, both the particle horizon

hp = a(t)

� t

ti=0

dt′

a(t′)
= l sin

�
t

l

�
× ln tan

�
t′

2l

�####t
ti=0

→ ∞ (6.21)

and the event horizon

he = a(t)

� tf=πl

t

dt′

a(t′)
= l sin

�
t

l

�
× ln tan

�
t′

2l

�####tf=πl

t

→ ∞ (6.22)

are unbounded. Instead, this confirms our proposal to use the scalar potential or the
cosmological constant or the AdS radius l as the characteristic length in the development
of the Anti-Trans-Planckian Censorship Conjecture. We then apply the arguments and
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conclusions of the previous sections to this analytical solution of the Friedmann equations
and check their consistency. We start with the algebraic assumption in equation (6.10).
For an AdS solution, this inequality becomes

l2 ≥ a2 ⇔ sin2
�
t

l

�
≤ 1 , (6.23)

which applies universally. In the same way, the ATCC condition (6.7) is given by

sin

�
t

l

�
≥ lp

l
×
 

(d− 1)(d− 2)

2
sin

�
ti
l

�
≡ lp

l
× δ , (6.24)

for small lp/l. For the purposes of this argument, let us assume that the initial time is set
near the maximum size of the AdS spacetime, ensuring we commence within the regime
of validity of the effective theory, where sin (ti/l) ≲ 1. Without loss of generality, we set
δ = 1 and define a time interval δt = tf − t that quantifies the distance from the end time.
Taking the limit ∆t → 0, i.e. starting close to the Big Crunch, we obtain

sin

�
π − ∆t

l

�
= sin

�
∆t

l

�
∼ ∆t

l
≥ lp

l
. (6.25)

This threshold marks the entry into a Planckian regime near the final crunch, signaling
the point at which our effective theory may no longer be reliable. Furthermore, when
evaluating the lifetime bound (6.9), focusing on the contracting phase after ti > πl/2

yields

tf − ti < l
### tan� ti

l

� ### ln� l

lp
×
�

2

(d− 1)(d− 2)

�
, (6.26)

where we use the relation (6.18) between the cosmological constant and characteristic AdS
length scale. Evaluating the right-hand side poses a challenge due to its dependence on
the initial time, which complicates the analysis. However, it is important to compare this
to the total contraction time of AdS. In the case of an AdS solution, which aligns with
the critical point of V (φ) where φ̇ = 0, the bound on the potential (6.14) is specified as
Λd = V ≥ −1 in Planckian units. The conclusion follows from the premise that −Λd, the
typical energy scale of effective theory, should remain below the Planck mass.

Although the condition (6.16) does not apply directly to anti-de Sitter, it is reassuring
to note that this spacetime, considered one of the most well-established solutions within
string theory, is consistent with the ATCC and its implications.

Dynamical solutions

We will now focus on two dynamical solutions derived numerically in d = 4 with k = −1

using the equations introduced earlier. Before entering exponential potentials, it is impor-
tant to note that the second Friedmann equation is inherently satisfied by any solution
of the first one and of the equation of motion (5.7) during both the contracting and the
expanding phase, provided that H(t) ̸= 0. Our discussion here focuses on the former case,
characterized by ȧ(t) < 0. When exploring properties of potentials and initial conditions,
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it is important to clarify that our analysis is restricted to regions where V < 0, ignoring
any positive part of the potential. This approach also allows for situations where the ki-
netic energy is negligible, requiring the choice of ρ(ti) < 0. With respect to the field φ(t),
we consider two initial states – either climbing up or rolling down the potential gradient –
with a preference for the latter. Note that these explicit initial conditions do not limit the
generality of our approach. The logic applied and the results derived from the following
numerical solutions remain valid for different initial configurations.

The finite lifetime of a contracting, decelerating universe has important consequences
for our numerical analysis. The Big Crunch, characterized by a(tc) = 0, inevitably arrives
after a finite time, regardless of the initial conditions. However, our numerical solution
will stop just before tc due to divergences and singularities that arise as a(t) approaches
zero. With that in mind, we may proceed with a comprehensive study of each individual
numerical solution.

Exponential potential. Solving the equations (5.6) and (5.7) requires us to specify the
potential V (φ). As discussed above, most potentials in string compactifications exhibit
exponential behavior in the asymptotics of field space. Therefore, the potential

V (φ) = 0.04 e−1.74φ − 0.05 e−0.87φ , (6.27)

as shown in Figure 7, is an obvious candidate for testing the Anti-Trans-Planckian Cen-
sorship Conjecture and its consequences. In order to obtain a numerical solution for the
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Figure 7: This figure shows the potential V (φ), the scalar field φ(t), the scale factor a(t)

and the Hubble parameter H(t) for a dynamical solution with an exponential potential
(6.27).
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functions φ(t), a(t) and H(t), as shown in Figure 7, we impose the initial conditions

φ(0) = 22 , φ̇(0) = −0.01 , a(0) = 10 (6.28)

at the time ti = 0. Under these conditions, the field φ rolls down the potential, passes
through the minimum and then rises slightly to the left of the critical point Vmin =

−0.015625 at φmin = 0.540234. Passing through the minimum does not affect the be-
havior of the functions. Our numerical method breaks down at tf ≈ 8.29096 with

a(tf ) = 0.00035871 , φ(tf ) = 0.0463959 , V (φ(tf )) = −0.0111242 . (6.29)

Moving on we will check the assumption (6.10) and the bound (6.14) within this dynamical
model. In order to verify that the assumption holds over the entire period for which our
numerical analysis is reliable, it is plotted in Figure 8. The statement of the ATCC,
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V(φ(t
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Figure 8: This figure shows a successful check of the assumption (6.10) for a dynamical
solution with an exponential potential (6.27).

represented by the inequality (6.7), is also satisfied in the entire time interval [ti, tf ], which
implies that

a(t)−
�

|Vi|a(ti) ≥ 0 , (6.30)

in the contracting spacetime, or a(tf )−
�|Vi|a(ti) = 2.02651× 10−4, where our numerical

analysis fails. Because of the validity of the above conditions, we expect the bound (6.14)
to hold for this dynamical solution as well. It remains interesting to see how. For the
exponential potential, the asymptotic inequality (6.14) simplifies to a bound on the rate
(6.17), which is consistent with the dominant term in (6.27) in the large field limit, i.e.
V (φ) ∼ −0.05 e−0.87φ.

KKLT-inspired potential. Inspired by the KKLT construction in [25], this paragraph
studies the potential

V (φ) = 1012
e−0.2φ

�−3× 10−4 e0.1φ + 0.1φ+ 3
�

6φ2
, (6.31)
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which has a minimal value of Vmin = −0.0199658 at φmin = 113.589, as shown in Figure
9. Following the same method as before, we fix the initial conditions,
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Figure 9: This figure shows the potential V (φ), the scalar field φ(t), the scale factor a(t)

and the Hubble parameter H(t) for a dynamical solution with a KKLT-inspired potential
(6.31).

φ(0) = 140 , φ̇(0) = −0.082 , a(0) = 10 , (6.32)

and solve the equations of motion to obtain the numerical solutions for φ(t), a(t), and
H(t), as shown in Figure 9. Our numerical analysis stops at tf ≈ 5.3379 with

a(tf ) = 0.000627402 , φ(tf ) = 117.175 , V (φ(tf )) = −0.0178131 . (6.33)

In contrast to the previous case, the field rolls down the potential without crossing its
minimum. One might criticize our dynamical models for consistently showing the field
rolling down the potential rather than climbing up, as was originally assumed when deriving
the bounds in Section 6.1.3. However, as noted above, this behavior does not invalidate our
results, and we can still explore the physics of negative potentials. By reversing the sign
of the initial condition, φ̇(0) → −φ̇(0), we can also find solutions where the field climbs
up the potential.

We then return to the discussion of (6.10) and study the consequences of the condition
(6.7) for the potential. Verification of the assumption is straightforward by plotting the
left-hand side over the entire period for which our numerical solution remains valid, as
shown on the left in Figure 10. The numerical solution also verifies the statement of the
ATCC, given by the inequality (6.7), up to the point where the universe approaches the Big
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Figure 10: The left figure shows a successful check of the assumption (6.10) for a dynamical
solution with a KKLT-inspired potential (6.31). The right figure shows a comparison
between the potential and the exponential growth of the bound (6.14) with φi = 140. The
intersection point of the two curves is at φ = 148.79.

Crunch, suggesting that the condition holds within the regime of validity of the effective
theory.

Following the constraints previously validated up to the final crunch, we further dis-
cuss the bound (6.14) on the potential. Interestingly, this inequality is not satisfied by
the KKLT-inspired potential, as shown in Figure 10. In particular, the potential crosses
the bound set by (6.14) at φ = 148.79. A possible explanation for this violation of the
constraint could be that our numerical solution only probes the region φ < 148.79 in field
space where the relevant algebraic assumption and the bound (6.7) are satisfied. Therefore,
the dynamical solution may not fully capture the anomalies due to its limited exploration
of φ. The potential may be consistent within the effective theory of quantum gravity only
for lower field values. The violation of (6.14) in regions of large field values is further
proved by the asymptotic constraint (6.16), resulting in ⟨−V ′/V ⟩φ→∞ = 0.1 that is below
the expected value of 0.82.

Furthermore, compared to the KKLT constructions analyzed in Table 7, this inconsis-
tency becomes apparent at higher field values due to differences in V ′′ from the expected
asymptotic behavior.

6.2 A new bound on V ′′

To extend the discussion of analytical bounds, we have derived an additional asymptotic
bound on the second derivative of the scalar potential. This constraint is notable because
it applies to both positive potentials, with V ′ ≤ 0, and negative potentials, with V ′ ≥ 0.
Note that the chosen field direction does not limit the generality of our approach. For the
sake of simplicity, we assume φ − φi ≥ 0 in the asymptotic limit, φ → ∞, which implies
that the scalar field rolls down the potential for V > 0 and climbs up for V < 0. Our
discussion begins with the equation

� φ

φi

dφ̃
V ′′

V
=

� φ

φi

dφ̃
V ′′V − V ′V ′

V 2
+

� φ

φi

dφ̃

�
V ′

V

�2
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=

� φ

φi

dφ̃

�
V ′

V

�′
+

� φ

φi

dφ̃

####V ′

V

####2 . (6.34)

Using the Cauchy-Schwarz inequality,��
dφ̃ f(φ̃)g(φ̃)

�2

≤
�

dφ̃ f(φ̃)2
�

dφ̃ g(φ̃)2 , (6.35)

with f(φ̃) = |V ′/V | and g(φ̃) = 1, we obtain the following inequality� φ

φi

dφ̃
V ′′

V
≥

� φ

φi

dφ̃

�
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V
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+
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∆φ
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|V ′|
|V |
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=
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####φ
φi

+∆φ
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|V |

�2

. (6.36)

In summary, the resulting expression is given by�
V ′′

V

�
≥ 1

∆φ

V ′

V

####φ
φi

+

� |V ′|
|V |

�2

. (6.37)

We propose a minor assumption that the ratio V ′/V is locally bounded in the large field
limit. This is obvious for potentials that exhibit asymptotic exponential behavior, which
is common in string compactifications. In particular, we require that the first term on the
right-hand side of the inequality (6.37) vanishes. If this condition is satisfied, we can apply
the asymptotic (A)TCC bound (6.16) on the first derivative of the potential. Taking into
account the signs of both V ′ and V , we eliminate the need for absolute values. For a single
canonical field, this gives the local condition�

V ′′

V

�
φ→∞

≥ 4

(d− 1)(d− 2)
, (6.38)

which is the square of the exponential rate in the inequality (6.17). It is not surprising
that when the potential is constrained by an exponential, as indicated in (6.14), there are
natural constraints on both the first and second derivatives.

We will discuss the consequences of the asymptotic bound (6.38) for a single canonical
scalar field. In this case, the mass of φ corresponds to the second derivative, m2 = V ′′. We
omit the averaging, which is justified for potentials with exponential behavior. However,
one has to be careful when interpreting these results, since the bounds (6.16) and (6.38)
are only valid in the asymptotics of field space and thus not directly at a critical point
corresponding to an (anti-)de Sitter solution.

6.2.1 Consequences for V > 0

We establish a lower bound for positive potentials,

m2 ≥ 4

(d− 1)(d− 2)
V . (6.39)

This inequality requires careful handling and cannot be applied directly to the extrema of
scalar potentials. Therefore, it should be distinguished from the presence of tachyons in
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de Sitter solutions [45,52], or conjectures about their existence in the swampland program
[31,145,146]. However, by continuity in field space one can extend the consequences of this
bound to critical points, suggesting the existence of a state with m2 > 0 in the vacuum
solutions. This claim can be tested by analyzing the full mass spectrum in a dataset of de
Sitter solutions [147]. Remarkably, each spectrum appears to contain a state that satisfies
the bound (6.39).

Alternatively, for a tower of states with mass scale m in the asymptotic regions of field
space, the condition (6.39) suggests the possibility of scale separation, consistent with the
conjecture in [45]. The conjecture states that classical de Sitter backgrounds are likely to
exhibit scale separation, in particular in the large field limit. According to our discussion,
this scale separation would be local [54, 148], but not parametrically controlled [40].

6.2.2 Consequences for V < 0

For negative potentials, there is an upper bound on the square of the mass,

m2 ≤ 4

(d− 1)(d− 2)
V . (6.40)

This suggests the existence of a state with negative m2. However, this result should be
distinguished from those in the swampland program [27,28,144], which focus primarily on
light states or scale separation.

6.3 Mass bound in AdS and a holographic perspective

As mentioned above, the inequality (6.40) is intended for use in asymptotic regions, away
from any critical point of the potential. But due to continuity in the field space, this
bound can have important consequences in such vacua. More precisely, the mass spectrum
of any solution may undergo a continuous transition from regions where equation (6.40)
is applicable to an extremum of the potential, which may cause slight deformations. The
following section studies this extrapolation towards a critical point in more detail. Our
analysis focuses on the possible effects for d-dimensional AdS solutions in d ≥ 4, given
the peculiarities of gravity in d = 3 and the violations of the TCC or ATCC outlined in
Sections 5.3 and 6.5.

At the critical point of a negative potential, the d-dimensional AdS vacuum, hereafter
simply referred to as AdSd, is characterized by a cosmological constant Λd = V |0, which is
related to the length scale l as defined in the equation (6.18). For d ≥ 4, the bound (6.40)
is given by

m2l2 ≲ −2 . (6.41)

In other words, there exists a scalar field with mass m that satisfies (6.41) in any d-
dimensional AdS solution. The notation ≲ is deliberately used here to allow flexibility,
given the complexity of modifications to the mass spectrum discussed earlier.

In flat or de Sitter spacetimes, scalar fields with negative m2 typically imply instabilities
due to an "upside-down" potential. In AdSd, however, negative m2 for a bulk field does
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not guarantee unstable solutions, provided that

m2l2 ≥ −(d− 1)2

4
, (6.42)

and that the field fluctuations follow a specific asymptotic behavior not discussed here.
This is known as the Breitenlohner-Freedman (BF) bound [68,69]. For more details and a
comprehensive overview, see [149, 150]. The BF bound dictates that for d ≥ 4, all pertur-
batively unstable AdS solutions adhere to the mass bound specified in (6.41). Therefore,
we will limit our discussion to perturbatively stable solutions of quantum gravity and their
respective mass spectra, which provide a structured overview that highlights compliance
or violations of the bound (6.41). As part of this exercise, we will explore possible coun-
terexamples and study whether and how significant changes in their mass spectra might
occur as we navigate through field space. We aim to provide a better understanding of
the challenges and complexities that arise in the discussion of both supersymmetric and
non-supersymmetric solutions in string theory.

6.3.1 Supersymmetric AdS

In Table 7, we present perturbatively stable AdS solutions in dimensions d ≥ 4, which
are also supersymmetric. Most of these solutions satisfy our proposed bounds, except for
certain well-known compactifications, which are discussed below:

• Supersymmetric AdS4 in M-theory: The mass spectrum of AdS4×S7, with the SO(8)

symmetry group [151, 163], is given by ∆ = E0 and m2l2 = −2 + Mass2/4, using
the equation (6.43) and the notation of [151]. This spectrum is consistent with the
bound (6.41), since the lowest masses for scalar states 0±(1) are m2l2 = −9

4 , corre-
sponding to the BF bound, or m2l2 = −2. In [152], four additional supersymmetric
AdS4 solutions have been studied in M-theory, in particular within maximal gauged
supergravity, each obeying (6.41).

• AdS4 × S6 in massive type IIA supergravity: The solutions differ in the residual
symmetry group of the internal space and the preserved SUSY [153, 154, 164]. Mass
spectra in [153] show that all seven supersymmetric solutions have a scalar field with
m2l2 ≤ −2.

• KKLT, LVS, DGKT: These controversial AdS4 solutions, along with their quantum
gravity origins, have been discussed in [102, 117], focusing on the control of pertur-
bative and non-perturbative corrections, as well as the smearing of sources:

∗ KKLT scenario [25]: Including non-perturbative corrections, both the moduli
which define the shape of the complex structure of the Calabi-Yau manifold
and the dilaton are stabilized by the tree-level potential. The mass spectrum
for these scalar fields satisfies m2l2 ≥ 0 [25]. The condition m2l2 > 0 also holds
for the spectrum of the Kähler moduli [155].

∗ LVS scenario [26]: This construction involves perturbative corrections and fea-
tures light scalars with m2l2 ≥ 0 [156].
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Dim. Solution Specification N Spectrum Lowest scalar
mass (m2l2)

d = 4

AdS4, M-theory

SO(8) 8 [151, Tab. 4] −9/4

SU(3)× U(1) 2

[152]

−2.222

G2 1 −2.242

U(1)× U(1) 1 −2.25

SO(3) 1 −2.245

AdS4 × S6, IIA

G2 1

[153, App. B]
[154, App. A]

−2.24158

SU(3)× U(1) 2 −20/9

SO(3)× SO(3) 3 −9/4

SU(3) 1 −20/9

U(1) 1 −2.23969

∅ 1 −2.24943

U(1) 1 −2.24908

KKLT, IIB 1 [25,155] ≥ 0

LVS, IIB 1 [156, Sec. 2] ≥ 0

DGKT, IIA 1 [70,157] > 0

DGKT-like, IIA Branch A1-S1 1 [158, Tab. 2] −2

S-fold, IIB
U(1)× U(1) 1

[159]
−2

U(1)× U(1) 2 −2

SO(4) 4 −2

d = 5 AdS5 × S5, IIB SO(6) 8 [160] −4

SU(2)× U(1) 2 [161, Tab. D.4] −4

d = 7 AdS7 × S3, IIA 1 [162] −8

Table 7: This table shows the properties of perturbatively stable supersymmetric anti-de
Sitter solutions, including the symmetry group of the internal space, the preserved SUSY
and the lowest m2l2 in the mass spectrum of each solution.

∗ (Original) DGKT solution [70,101]: Fluctuations of the metric and the dilaton
satisfy m2l2 > 0, while the square of the masses of axionic fields depend on the
sign of the fluxes. They remain positive in supersymmetric solutions [157].

The mass spectra of all three solutions violate our fixed bound. If these solutions are
indeed part of the landscape, the apparent violation of our bound could be explained
by serious changes of the mass spectra as we approach the critical point in field space.

• Generalized DGKT solutions: Appears in three branches in d = 4; the supersym-
metric branch has light scalars with m2l2 ≥ −2, where the lowest mass is exactly
−2 [158]. The non-supersymmetric branches are discussed separately.

• Uplift to type IIB string theory in the form of S-folds: For three supersymmetric
AdS4 solutions [159], uplifted to type IIB string theory as S-folds, corresponding to
different symmetry groups, the lowest scalar mass satisfies m2l2 = −2. For more
details see [165–167].

• Higher dimensional supersymmetric solutions:

∗ AdS5 × S5: The mass spectrum of solutions in SO(6) gauged supergravity
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[160, 168] and SU(2) × U(1) [169, 170] is consistent with the mass bound, see
also [161].

∗ Supersymmetric AdS7 solutions in type IIA string theory [162]: The dilaton
field always satisfies bound (6.41).

6.3.2 Non-supersymmetric AdS

In Table 8, the majority of non-supersymmetric AdS solutions conform to the mass bound
given in (6.41), especially when we consider possible changes in the mass spectrum that
may occur during the motion through field space. For example, the lowest mass squared

Dim. Solution Specification Non-pert. Spectrum Low. scalar
instability mass (m2l2)

d = 4

AdS4, M-theory SO(3)× SO(3) [171] [172] −12/7

AdS4 × S6, IIA

G2 [173]

[153, App. B]
[154, App. A]

−1

SU(3) −1.58174

SO(3)× U(1) −1.71379

SO(3) −1.71663

SU(3) −1.70679

SO(3)× U(1) −1.70677

SO(3)× SO(3) −1.96422

U(1) −2.18141

∅ −2.24727

DGKT-like, IIA Branch A1-S1 [174] [158] −2

Branch A2-S1 0

d = 7 AdS7 × S3, IIA d = 2 [162] [162] −9

d = 3 0

Table 8: This table shows the properties of perturbatively stable non-supersymmetric
anti-de Sitter solutions, including the symmetry group of the internal space and the lowest
m2l2 in the mass spectrum of each solution. References to potential non-perturbative
instabilities are included where applicable.

is only slightly above −2. However, two exceptions do not have negative m2 in their mass
spectra. These solutions, among others, are non-perturbatively unstable according to the
conjecture in [71] and are excluded from the landscape of viable quantum gravity solutions.
The individual cases are discussed below:

• Non-supersymmetric AdS4 in M-theory: Most are perturbatively unstable [152,172],
satisfying (6.41). An exception is the symmetry group G = SO(3)×SO(3) [175,176],
where the lowest scalar mass obeys m2l2 = −12/7 [171]. This solution, while showing
a non-perturbative brane-jet instability [172], satisfies the bound if we allow slight
modifications as we approach the AdS critical point.

• AdS4 × S6 in massive type IIA supergravity: Many solutions contain a scalar field
with m2l2 ≃ −2 [153], assuming some flexibility. Those characterized by the symme-
try groups G = G2 or G = SU(3) have large lowest mass values. This problem has
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not been solved [177], even when higher order Kaluza-Klein modes are considered, as
in [178]. This requires a more detailed analysis than is provided here to confirm that
they do indeed respect the flexibility allowed by the mass bound. Although these
solutions are not supersymmetric [71], they are perturbatively stable. However, the
G = G2 configuration in particular exhibits a non-perturbative instability. In con-
trast to the previously mentioned brane-jet instability [154], this instability manifests
as a "bubble of nothing" [154,173,179], raising concerns about its validity.

• Generalized DGKT solutions: Two branches in d = 4 are non-supersymmetric; one
has a scalar with m2l2 = −2, while A2-S1 lacks any state with negative mass squared
in the spectrum. The latter is a potential counterexample to the mass bound, al-
though these non-supersymmetric solutions also exhibit non-perturbative instabili-
ties.

• Higher dimensional non-supersymmetric solutions: In type IIA string theory, the
dilaton field of non-supersymmetric AdS7 solutions has a non-negative m2 [162], yet
these solutions suffer from non-perturbative instabilities related to NS5-brane bub-
bles. Furthermore, these configurations may contain several scalar fields associated
with the representation of the SU(2) R-symmetry or the presence of D8-branes. The
masses of these fields may satisfy the bound (6.41).

These results raise the possibility that all (non-)supersymmetric counterexamples are even-
tually part of the landscape. If so, the modifications of the mass spectrum as we approach
the critical point of the potential may be more significant than previously thought. Under-
standing this evolution, and why supersymmetric solutions have more consistent spectra
while non-supersymmetric solutions do not, remains a promising direction for future study.

6.3.3 Holographic consequences

After applying the bound (6.41) to individual cases, our next task is to briefly explore its
holographic interpretation within the dual conformal field theory (CFT) for dimensions
d ≥ 4. We start by revisiting the well-established relation between the masses of scalar
fields and the conformal dimension ∆ of an operator in the dual CFT,

∆(∆− (d− 1)) = m2l2 , ∆± =
d− 1

2
± 1

2

�
(d− 1)2 + 4m2l2 , (6.43)

such that the presence of a state satisfying the inequality (6.41) results in

∆0
− ≤ ∆ ≤ ∆0

+ , ∆0
± =

d− 1

2
± 1

2

�
(d− 1)2 − 8 . (6.44)

This relation is illustrated in Figure 11. In practice, the existence of a state whose mass
satisfies the bound (6.41) indicates the presence of an operator in the dual CFT with
the property (6.44). When considered together with the scalar unitarity bound21, ∆ ≥

21In a quantum field theory, unitarity requires that all states within a given representation have a positive
norm, which constrains the conformal dimensions of operators in the dual CFT.
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Figure 11: This figure plots m2l2 as a function of conformal dimension ∆. The curve follows
a consistent pattern for all d ≥ 4. The masses within the blue region are constrained by
the lower Breitenlohner-Freedman bound, indicating perturbative stability, and by (6.41),
along with the corresponding bounds on the conformal dimension as given by (6.44).

(d− 3)/2, the mass bound for scalar fields in d = 4 guarantees the unitarity bound for the
corresponding operators in the CFT. Furthermore, for d = 4, the bound in (6.44) leads to
unique integer values 1 ≤ ∆ ≤ 2. Reaching the mass bound, specifically m2l2 = −2, entails
that the conformal dimensions are integers. This is a crucial property of scale-separated
AdS solutions and their corresponding dual conformal field theories [157,180–183]. In these
studies, the appearance of integer conformal dimensions is related to the unique nature of
scale separation.

6.4 Multi-field models

In discussing the implications of the ATCC, we have simplified the problem by focusing only
on a single, canonically normalized scalar field. This approach contrasts with the typical
effective theories derived from string compactifications, which include multiple scalars. In
the following, we aim to extend the results of the Sections 6.1 and 6.2 to a multi-field
context. Our discussion will be brief, as a full treatment of this complex task is beyond
the scope of this thesis. In the multi-field extension, we first focus on a 1D trajectory
in field space, parametrized by an affine parameter ŝ or a single canonical field direction.
Here, as before, it is convenient to extend the arguments of [58], which focus on positive
scalar potentials, to discuss negative potentials in a multi-field framework. Without loss
of generality, we assume that ∇ŝV ≥ 0, where the gradient along the trajectory is given
by

∇ŝV =
∂φi

∂ŝ
∂iV , (6.45)

with ∂i = ∂/∂φi. We define the average in the multi-field extension as follows,�∇ŝV

V

�
=

1

∆ŝ

� ŝ

ŝi

ds
∇ŝV

V
, (6.46)
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where ∆ŝ = |ŝ− ŝi|. This results in constraints on the negative potential,

V (φ(ŝ)) ≥ −e
− 2|ŝ−ŝi|√

(d−1)(d−2) , (6.47)

and its first derivative, �∇ŝV

|V |
�

ŝ→±∞
≥ 2�

(d− 1)(d− 2)
. (6.48)

Note that the exponential rate is consistent with single-field effective theories, as detailed
in the equations (6.14) and (6.16). In the remainder of this section, we will address the
challenges presented by this generalization to multiple fields.

This approach introduces an inherent ambiguity due to the flexibility in choosing dif-
ferent local paths. We opt to select a field direction in which the potential is represented
as a negative, monotonically increasing exponential function. This choice is crucial for
analyzing the asymptotic behavior of the potential, in particular within the ATCC frame-
work, with respect to the exponential rate and the bound given above. Identifying such
paths is challenging and significantly complicates the analysis. Beyond the multitude of
possible paths, there remains the question of whether it is wise to limit ourselves to one
particular field direction. This requires a mechanism that effectively stabilizes other fields
at some finite values. This line of thought leads to the conclusion that the definition of
the gradient given in (6.45) is not completely unambiguous.

Alternatively, defining

∇V (φ) =
�
Gij∂iV (φ)∂jV (φ) (6.49)

allows us to analyze derivatives across all fields in the multi-field space. This definition of
the gradient is central to the Strong de Sitter Conjecture [124,127], which is characterized
by an asymptotic bound with the rate (5.15),� |∇V (φ)|

V (φ)

�
s→∞

≥ cstrong , (6.50)

for V > 0 and any divergent geodesic distance s in field space. This is more stringent than
the TCC bound (5.3), which aligns with ∇V ≥ |∇ŝV |. For negative potentials, this leads
to a multi-field extension of the ATCC,�∇V

|V |
�

s→∞
≥ 2√

d− 2
. (6.51)

As before, the discrepancy in the bounds is due to a different definition of the gradient.
By stabilizing other fields, both definitions converge, possibly causing inconsistencies in
the bounds (6.47) and (6.51). Recent work on Calabi-Yau compactifications in d = 4 [126]
sheds light on this multi-field extension for V > 0 and the discrepancy between the different
definitions of the gradient: Although the TCC has been extensively tested across many
paths [38, 39], a direction among the scalar fields has been identified that violates the
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asymptotic behavior of the potential proposed by (5.14). Moreover, some scalar fields
(e.g., Kähler fields) in this potential cannot be stabilized perturbatively, leaving ambiguity
in defining the gradient.

The remaining challenge is to extend the asymptotic bound (6.38) on the second deriva-
tive of the potential to multiple fields. However, this requires a more comprehensive and
careful analysis. From previous results, we can confidently state that for positive potentials�

max∇∂V

V

�
s→∞

≥ 4

(d− 1)(d− 2)
, (6.52)

and for negative potentials�
min∇∂V

|V |
�

s→∞
≤ − 4

(d− 1)(d− 2)
. (6.53)

Here, the mass matrix M i
j = Gik∇k∂jV is used. Note the difference to the bound in (6.2):

While the inequality (6.53) aligns with the Refined de Sitter Conjecture for V > 0 [56],
except for a constant of order one, the corresponding condition presented in (6.2) shows a
clear distinction from our results when applied to negative potentials. We will revisit this
distinction in the following section by exploring actual examples of string compactifications.

6.5 Examples from string theory

In Section 6.1.4, we have discussed the Anti-Trans-Planckian Censorship Conjecture and
its implications for negative potentials in various solutions of the Friedmann equations
and the scalar field equation of motion, independent of string theory. Building on these
insights, we will now study scalar potentials typically found in string compactifications.
We will test these potentials against the condition (6.14) and the asymptotic bounds given
in the equations (6.16) and (6.48), the latter for multiple scalar fields. Before turning to
specific examples, let us recall our expectations, which are based on fundamental concepts
of string theory. Scalar potentials in the effective theory can show three distinct asymp-
totic behaviors: Divergence towards positive values, convergence to values infinitesimally
close to zero (lim|φ|→∞ V → 0±) or divergence towards negative values. The latter creates
inconsistencies, while convergence to a finite constant is problematic as cosmological con-
stants usually appear at critical points rather than a constant potential. Therefore, the
ATCC restricts this to one viable case: a potential approaching 0− in the asymptotic limit
of field space.

Moving to canonical fields, potentials in string compactifications can typically be ex-
pressed as sums of exponential terms. For a single scalar field, the dominant contribution
in the large field limit is V ∼ e−cφ with c > 0, thus simplifying the constraints (6.16) and
(6.48), leading to the inequality (6.17) on the rate. However, with multiple scalar fields, the
behavior of the potential does not consistently converge to 0− for each field individually,
but rather along a particular field direction, a linear combination of the fields. Our analysis
will identify this direction while stabilizing the orthogonal directions at finite values. The
gradient along this single field direction will be compared to the lower bound (6.16). As
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noted in Section 6.4, the inclusion of additional scalar fields increases the gradient |∇V |.
Since we are testing lower bounds against single-field gradients, we find it appropriate to
ignore the other orthogonal directions in our discussion.

6.5.1 Scalar potential for (ρ, τ, σ)

The semi-universal potential V (ρ, τ, σ), central to classical string compactifications across
dimensions, is discussed in Section 3.1. Using canonically normalized fields, the potential
is given in (3.38) and the internal Ricci scalar in (3.39). With this potential defined, we
can check its compliance with the bound on the rate (6.17). We then study the asymptotic
behavior of V along the axes of ρ̂, τ̂ and σ̂, as well as a yet unidentified direction t̂1. The
asymptotic behavior in field space is defined by the limits τ̂ , ρ̂ → ∞ (large volume and
small string coupling), while moving towards −∞ violates the supergravity approximation
in classical string theory [32, 33]. The σ field is unbounded in either direction, σ̂ → ±∞.

Exponential rates

First we will test the bound in (6.17) along the directions ρ̂, τ̂ and σ̂. We then determine the
sign of each term in the equations (3.38) and (3.39): Flux terms are always positive, while
the source term and individual contributions to R10−d(σ̂) can be negative. We proceed
to analyze the exponential rates associated with these terms. The rate associated with τ̂

is −(d + 2)/(2
√
d− 2) for the source term and −2/

√
d− 2 for the curvature term, both

obeying the bound (6.17) for dimensions d ≥ 3. However, the rate of ρ̂ in the curvature
term violates this bound in d = 3, which is attributed to the unique dynamics of gravity
in this dimension. This result is consistent with the discussion of the Trans-Planckian
Censorship Conjecture in Section 5.3 Since this issue has little relevance to our broader
analysis, we omit a detailed discussion of d = 3 compactifications. For the source term, we
note that 2pi − 8− d < 0 is consistent with the desired asymptotic behavior, leading to a
reformulation of the bound in (6.17),

(2pi − 8− d)2

4(10− d)
− 4

(d− 1)(d− 2)
≥ 0 . (6.54)

This condition is universally satisfied, with exceptions including the case of d = 3, d =

7 with pi = 7 and d = 4 with pi = 5. The latter two are resolved via the Bianchi
identity (4.18) and do not strictly violate the ATCC bound. From the perspective of
the effective theory this argument seems to stem from quantum gravity: In consistent
string compactifications, the Bianchi identity requires that a non-vanishing source term
is accompanied by additional fluxes. In the first case, involving sources of dimensionality
pi = 7, we find that F1 ̸= 0, magnetically sourced by the O7-planes. However, the RR
flux provides a positive, monotonically increasing exponential contribution to the scalar
potential, which dominates the source term in the large field limit. This situation remains
irrelevant for the discussion of negative potentials. Turning to compactifications in d = 4,
the F3 flux is magnetically sourced by O5-planes/D5-branes. However, the Bianchi identity
dF3−H∧F1 ∝ T

(5)
10 can also be satisfied by a combination of the F1 and H flux, leading to a
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similar conclusion as above. Therefore, we assume F3 ̸= 0 in the absence of F1. According
to (3.38), the F3 flux term lacks dependence on ρ̂ and contributes to the potential as a
positive constant relative to ρ̂, leading to a positive potential in the large field limit.

With respect to the σ field, we obtain the condition AB ̸= 0, or equivalently d ≤ pi ≤ 8

in terms of the source dimensionality. The complexity of the curvature term requires a
careful discussion of each contribution in the equation (3.39). Among these terms, only the
first two can be negative, yet they exhibit opposing exponential behavior: as σ approaches
infinity, one term increases while the other decreases. This dynamic suggests that if one
term violates the ATCC bound, the other may counteract this violation by becoming
dominant. Therefore, a thorough analysis of the signs and the intricate nature of the
string compactification is required, which is beyond the scope of this thesis. Regarding the
source term, a detailed evaluation shows that the reformulation of the bound (6.17) leads
to

(9− pi)(pi + 1− d)

10− d
− 4

(d− 1)(d− 2)
≥ 0 , (6.55)

which is true for d ≤ pi ≤ 8 and d ≥ 4, with the exception of d = 3, which remains
problematic. In conclusion, our study of the exponential rates explicitly present in the po-
tential (3.38) for the fields ρ̂, τ̂ and σ̂ shows no significant violation of (6.17) for dimensions
greater than three. Nonetheless, d = 3 remains a persistent challenge. It is important to
remember that the potential is likely to exhibit the desired asymptotic behavior only along
a certain direction in field space, a topic that we will explore in the following discussion.

Anti-de Sitter no-go theorems

Unlike de Sitter, AdS vacua are rarely constrained by no-go theorems, largely because
these solutions are usually preferred by the equations of motion [184]. However, orientifold
projections involving specific sets of O-planes can impose stringent constraints on the flux
content, potentially excluding AdS solutions in certain source configurations. These models
and their corresponding non-vanishing variables are extensively studied in [39], which uses
an ansatz similar to the one in the first part of this thesis but with additional assumptions
[45,74,105]. To summarize these simplifications, we use a smeared approximation and limit
our focus to a 6D group manifold characterized by structure constants fa

bc = −fa
cb of

the underlying Lie algebra. This includes the simple example of a flat torus. Our analysis
is further restricted to a basis where fa

ab = 0, without summation [110]. In the smeared
limit, the absence of a warp factor ensures that the dilaton remains constant, eϕ = gs, and
so are the variables in the equations of motion:

fa
bc , Habc , gsFq a1...aq , gsT

(pi)
10 . (6.56)

For further details, refer to [39].
We begin with a source configuration consisting of three sets of O5-planes, outlined in

Table 9, each intersecting the others within the internal space. When considering a single
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O5-plane, only the variables

O5 : fa||
b⊥c⊥ , f

a⊥
b⊥c|| , F

(0)
1 , F

(1)
3 , F

(2)
5 , H(0), H(2) (6.57)

retain non-zero values. The numbers in brackets indicate the number of legs of the flux
components along the sources. Therefore, the solution class for the source configuration in

Sources Spacetime dimensions 1 2 3 4 5 6
O5, (D5) x x x
O5, (D5) x x x
O5, (D5) x x x

Table 9: Source configuration in type IIB|4 with 3 sets of O5-planes/D5-branes. Sources
in brackets are not required a priori.

Table 9 is characterized by eight flux components and 24 structure constants:

F3 : F3 135, F3 136, F3 145, F3 146, F3 235, F3 236, F3 245, F3 246,

fa
bc : f3

15, f3
16, f3

25, f3
26, f4

15, f4
16, f4

25, f4
26, f1

53,

f1
63, f1

54, f1
64, f2

53, f2
63, f2

54, f2
64, f5

13, f5
23,

f5
14, f5

24, f6
13, f6

23, f6
14, f6

24 .

(6.58)

Since all internal directions are equivalent, this setup retains its generality. Previous work
has shown that dS solutions are not feasible within this class [34]. Extending the analysis
to AdS solutions, the equation (4.17) shows that

(pi − 3)R4 = −2|H|2 + g2s
�
(7− pi)|F1|2 + (5− pi)|F3|2 + (3− pi)|F5|2

�
(6.59)

in d = 4 [105]. The configuration 9 projects out several fields, including H = F1 = F5 = 0

via (6.58), leading to
R4 = 0 , (6.60)

for pi = 5. This illustrates a no-go theorem against classical AdS solutions due to excessive
inclusion of orientifolds in different intersecting sets.

We then analyze a source configuration with one set of O4-planes/D4-branes along the
internal direction 4 and two sets of O6-planes/D6-branes along directions 123 and 156,
detailed in Table 10. The general nature of this class remains valid. An O4 projection

Sources Spacetime dimensions 1 2 3 4 5 6
O4, (D4) x x
O6, (D6) x x x x
O6, (D6) x x x x

Table 10: Source configuration in type IIA|4 with 1 set of O4-planes/D4-branes and 2 sets
of O6-planes/D6-branes. Sources in brackets are not required a priori.

96



yields the following non-vanishing variables

O4 : fa||
b⊥c⊥ , f

a⊥
b⊥c|| , F

(0)
2 , F

(1)
4 , H(0) , (6.61)

while an O6 projection is leading to

O6 : fa||
b⊥c⊥ , f

a⊥
b⊥c|| , f

a||
b||c|| , F

(0)
0 , F

(1)
2 , F

(2)
4 , F

(3)
6 , H(0), H(2) . (6.62)

The non-zero variables for the source configuration in Table 10 include 12 flux components
and 12 structure constants:

F2 : F2 25, F2 26, F2 35, F2 36,

F4 : F4 1245, F4 1246, F4 1345, F4 1346,

H : H125, H126, H135, H136,

fa
bc : f2

45, f2
46, f3

45, f3
46, f4

52, f4
62, f5

42, f6
42,

f4
53, f4

63, f5
43, f6

43 .

(6.63)

Note that this source configuration is T-dual to the previously discussed model in Table
9, which suggests a similar no-go theorem against AdS solutions. Combining the 4D trace
(4.4) with the 6D (trace-reversed) Einstein equation (A.7), we deduce

Rab =
g2s
2

�
F2 acF2 b

c +
1

3!
F4 acdeF4 b

cde

�
+

1

4
HacdHb

cd

+
gs
2

�
Tab − δab

!
i

T
(pi)
10

pi + 1

�
+

δab
4

�R4 + 2g2s |F6|2
�
. (6.64)

The indices a, b denote the flat basis of the internal space. In this setup, where only sources
of dimensionality pi = 6 wrap the internal dimension 1, we get T11 = T

(6)
10 /7, by implicitly

summing over all sets of O6-planes/D6-branes parallel to 1. In addition, the equation
(6.64) imposes further constraints on the Ricci tensor components, including R11 = 0

due to f1
ab = fa

1b = 0, which are projected out by the O-planes [45]. For the source
configuration in Table 10 and the flux components given in (6.63), where F0 = F6 = 0, the
equation

R4 = gs
2T

(4)
10

5
− 2|H|2 − 2g2s |F4|2 (6.65)

follows directly from (6.64). Note that F2 is missing components along the direction 1.
Comparing the equation (6.65) with the trace (4.23) for pi = 6 yields R4 = 0, thus proving
a no-go theorem against (anti-)de Sitter solutions and rendering Minkowski unique in both
solution classes 9 and 10.

It would be instructive to extend these 10D no-go theorems to a 4D framework to
compute the value of c in (5.18) and compare it to the rate (6.17) of the ATCC. This
requires the tools from the Sections 3 and 5. As shown in equation (5.17), no-go theorems
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against classical (quasi-)anti-de Sitter solutions are formulated as

aV (φ̂) +
!
i

bi∂φ̂iV (φ̂) ≤ 0 . (6.66)

This formalism was introduced to compare no-go theorems with the underlying conjec-
tures in the swampland program, such as the Trans-Planckian Censorship Conjecture. By
rewriting the previous relation as

cV (t̂1) + ∂t̂1V (t̂1) ≤ 0 (6.67)

in terms of the canonically normalized field direction t̂1, we have structured our comparative
analysis. The scalar t̂1 is defined by

!
i

bi∂φ̂i =

�!
i

b2i ∂t̂1 , (6.68)

whose exponential rate c in the potential is given in equation (5.18). We will apply this
approach to the previously derived 10D no-go theorems against (quasi-)anti-de Sitter so-
lutions in a 4D effective theory. We will then compare the exponential rate for a yet to be
determined field direction with the bound (6.17) proposed by the ATCC.

For the source configuration 9, with three intersecting sets of O5-planes/D5-branes, we
reformulate the 10D no-go theorem (6.60) in our 4D framework using the scalar potential
V (ρ̂, τ̂) defined in Section 3. This is leading to

2V +
1√
2
∂τ̂V +

 
3

2
∂ρ̂V = 0 , (6.69)

which vanishes for the configuration in question. The corresponding exponential rate c =√
2 satisfies the ATCC bound (6.17) in d = 4. To determine the field direction t1, we define

the field space diffeomorphism for vectors ∂φ̂ and 1-forms dφ̂ using the matrix [52]

P =

�
∂φ̂

∂t̂

�
, P T∂φ̂ = ∂t̂ , P−1(dφ̂)T = (dt̂)T . (6.70)

The first row of P T comes from the equation (6.68), with its components (P T )ij associated
with the canonical fields φ̂i and t̂j , which ensure that the matrix is orthonormal, P T = P−1.
This property guarantees that the equation (6.68) is also valid for 1-forms and specifies
the second row in P T , leading to

t̂1 =
b1�

b21 + b22
φ̂1 +

b2�
b21 + b22

φ̂2 , t̂2 = − b2�
b21 + b22

φ̂1 +
b1�

b21 + b22
φ̂2 , (6.71)

as shown in [38]. For the source configuration 9, with φ̂1 = ρ̂, φ̂2 = τ̂ and t̂1 = t̂, t̂2 = t̂⊥,
we obtain

t̂ =

√
3

2
ρ̂+

1

2
τ̂ , t̂⊥ = −1

2
ρ̂+

√
3

2
τ̂ (6.72)

via the no-go theorem (6.69). The potential (3.38) expressed in these new fields is captured
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by the equation

2V (t̂, t̂⊥) = e−
√
2t̂

�
−e

−
�

2
3
t̂⊥R6 − gs

T10

6
e
−
�

8
3
t̂⊥ +

1

2
g2s |F3|2e−

√
6t̂⊥

�
, (6.73)

where the total prefactor reflects the exponential rate of t̂, consistent with the bound (6.17)
for d = 4. However, a complete comparison with the Anti-Trans-Planckian Censorship
Conjecture requires evaluating the sign within the brackets, which depends on the details
of the given string compactification.

Another no-go theorem in equation (6.65) applies to the solution class 10. We will
reproduce this constraint in the 4D approach using the scalar potential

2V (ρ, τ, σ1, σ2, σ3) = −τ−2ρ−1R6(σ1, σ2, σ3) +
1

2
τ−2ρ−3σ−3

1 σ3
2σ

3
3|H|2

+
1

2
τ−4ρσ−2

1 |F2|2 + 1

2
τ−4ρ−1σ2

1|F4|2

− τ−3ρ−1σ
−5
2

1 σ
3
2
2 σ

3
2
3

T
(4)
10

5
− τ−3σ

3
2
1 σ

− 9
2

2 σ
− 9

2
3

�
σ6
3

T
(62)
10

7
+ σ6

2

T
(63)
10

7

�
, (6.74)

where σ1 is related to the set of O4-planes/D4-branes, while σi=2,3 are related to two
intersecting sets of O6-planes/D6-branes with tension T

(6i=2,3)
10 . For a group manifold, the

Ricci scalar

R6(σ1, σ2, σ3) = R1σ
5
1σ

−9
2 σ3

3 +R2σ
−7
1 σ3

2σ
3
3 +R3σ

5
1σ

3
2σ

−9
3

+R4 σ
−1
1 σ−3

2 σ3
3 +R5σ

5
1σ

−3
2 σ−3

3 +R6σ
−1
1 σ3

2σ
−3
3 (6.75)

is obtained in [36], using the following expressions

−2R1 = f2
45

2
+ f2

46
2
+ f3

45
2
+ f3

46
2
,

−2R2 = f4
25

2
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26
2
+ f4

35
2
+ f4

36
2
,

−2R3 = f5
24

2
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34
2
+ f6

24
2
+ f6

34
2
,

−R4 = f2
45f

4
25 + f2

46f
4
26 + f3

45f
4
35 + f3

46f
4
36 ,

R5 = f2
45f

5
24 + f3

45f
5
34 + f2

46f
6
24 + f3

46f
6
34 ,

−R6 = f4
25f

5
24 + f4

35f
5
34 + f4

26f
6
24 + f4

36f
6
34 .

(6.76)

The 10D no-go theorem is given by the following linear combination of the potential (6.74)
and its first derivatives,

V +
1

3
ρ∂ρV +

1

4
τ∂τV +

1

6

3!
i=1

σi∂σiV = 0 , (6.77)

which vanishes for the source configuration 10 with the variables in (6.63). To derive the
corresponding value of c from the equation (6.67), we rewrite (6.77) in terms of canonically
normalized fields. Although we know the transformation laws for ρ and τ , finding those
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for σi=1,2,3 requires diagonalizing the field space metric [36]

Gij =

������

3
2ρ

−2 0 0 0 0

0 2τ−2 0 0 0

0 0 15
2 σ

−2
1 −9

2(σ1σ2)
−1 −9

2(σ1σ3)
−1

0 0 −9
2(σ1σ2)

−1 27
2 σ
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2 −9

2(σ2σ3)
−1

0 0 −9
2(σ1σ3)

−1 −9
2(σ2σ3)

−1 27
2 σ

−2
3

������ . (6.78)

More specifically, we solve the eigenvalue problem for the metric block of the scalars σi to
determine the canonical σ̂i fields satisfying Gij∂σi∂σj =

"
i(∂σ̂i)

2. This leads to

σ̂1 = 3 ln

�
σ2
σ3

�
, σ̂2 =

�
β2 ln (σ

α2
1 σ2σ3) , σ̂3 =

�
β3 ln (σ

α3
1 σ2σ3) ,

α2 =
1

6
(1−

√
73) , α3 =
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6
(1 +

√
73) , β2 =

9

4

�
1 +

7√
73

�
, β3 =

9

4

�
1− 7√

73

�
.

(6.79)
The transformation laws of the vectors ∂σ, ∂σ̂ are obtained from the diffeomorphism matrix
with components

�
∂σ̂

∂σ

�
ij
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�
∂σ̂i
∂σj

�
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� 0 3σ−1
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3
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√
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√
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√
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� , (6.80)

resulting in�∂σ1

∂σ2

∂σ3

� =

�
∂σ̂

∂σ

�T

�∂σ̂1

∂σ̂2

∂σ̂3

� =

� σ−1
1 (α2

√
β2∂σ̂2 + α3

√
β3∂σ̂3)

σ−1
2 (3∂σ̂1 +

√
β2∂σ̂2 +

√
β3∂σ̂3)

σ−1
3 (−3∂σ̂1 +

√
β2∂σ̂2 +

√
β3∂σ̂3)

� , (6.81)

due to the equation (6.70). This transformation allows us to reformulate the combination
(6.77) as

V +
1

4
τ∂τV +

1

3
ρ∂ρV +

1

6

3!
I=1

σI∂σIV = 0

⇒ V +
1

2
√
2
∂τ̂V +

1√
6
∂ρ̂V +

2 + α2

6

�
β2∂σ̂2V +

2 + α3

6

�
β3∂σ̂3V = 0 , (6.82)

in terms of canonical fields. The resulting value of c, derived from the equation (6.67) as

c =
√
2 , (6.83)

satisfies the rate (6.17) proposed by the ATCC in d = 4. This is expected since the
no-go theorem is T-dual to the previous one in (6.69), which suggests the same rate c

even if different equations are used in the 10D derivation. To clarify, this no-go theorem
specifies a particular direction of a canonically normalized field, along with the associated
exponential rate in the scalar potential given by (6.83). This definition is consistent with
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methods previously established.

6.5.2 DGKT-inspired potentials

In the last part of Section 6.5 we study a family of classical AdS solutions in a 4D effective
theory, known as DGKT solutions [70, 101, 158]. Furthermore, due to the complexities
previously outlined in d = 3, we also probe similar compactifications to a 3D AdS spacetime
[131,132].

The original DGKT solution

We begin our analysis with the simplest example of classical AdS4 solutions, which are
obtained by the compactification of type IIA SUGRA on T 6/Z2

3 to a 4D effective theory
with reduced N = 1 supersymmetry. This is the original DGKT solution [70, 97, 101].
The source content in this model is built entirely from smeared O6-planes/D6-branes. To
stabilize the moduli, we require the presence of the NSNS field strength along with several
RR fluxes of different form degrees,

H3 = −pβ0 , F0 = m0 , F2 = 0 , F4 = eiw̃
i , (6.84)

with parameters p, m0, ei. We define a basis β0, representing the imaginary component of
the holomorphic 3-form in a Calabi-Yau compactification, which is odd under the orientifold
projection Ωp(−1)FLσ6. This involves the target space involution

σ6 : zi → −z̄i , (6.85)

where i = 1, 2, 3. The zi are the complex coordinates of the compact space, the three
2-tori. Moreover, we construct a basis {wi} of 2-cycles,

wi =
�
κ
√
3
�1/3

i dzi ∧ dz̃i , κ ≡
�
T 6/Z2

3

w1 ∧ w2 ∧ w3 , (6.86)

which is odd under the transformation (6.85), where the intersection number κ is arbitrary.
The dual basis {w̃i} of even 4-forms is given by

w̃i =

�
3

κ

�1/3

(i dzj ∧ dz̃j) ∧ (i dzk ∧ dz̃k) ,

�
T 6/Z2

3

wi ∧ w̃j = δji , (6.87)

where j, k are two indices, each taking the values 1, 2 or 3, different from i.
In the following discussion we briefly review and summarize several results of [70, 185]

and the formalism in [157, 181]. The moduli space comprises two distinct components.
The first part encompasses the vector multiplets, which include the Kähler moduli, while
the second part consists of the hypermultiplets, incorporating the dilaton and the complex
structure moduli. The metric on each component is determined by its respective Kähler
potential, which will play an important role in defining the canonical fields. Due to the
discrete symmetry of the internal space, the moduli of the effective theory are reduced to
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the γi fields and the scalars bi, related to the NSNS 2-form potential

B2 =
3!

i=1

biw
i , (6.88)

for each torus in T 6 = T 2 × T 2 × T 2. The former correspond to the sizes of each 2-torus
and appear in the parameterization of the internal space metric,

ds26 =

3!
i=1

γidz
idz̄i . (6.89)

However, rather than using the three complex parameters γi, we consider the rescaled
quantities

υi =
1

2

1

(κ
√
3)1/3

γi , (6.90)

which are identified with the Kähler moduli of 4D supergravity. Therefore, the volume of
the internal manifold results in

vol ≡
�
T 6/Z2

3

d6y
√
g6 = κυ1υ2υ3 . (6.91)

In addition, we consider the 4-dimensional dilaton D and its partner, the axion ξ, arising
from the C3 potential. The relation between these superfields and the 10D dilaton ϕ is
given by

eD =
eϕ√
vol

. (6.92)

Note that there are no moduli associated with the RR 1-form C1 and the complex structure
moduli are projected out. Following the previous examples, our path is set. First we have
to identify the kinetic terms of the scalars to derive the transformation laws of the canonical
fields. Our strategy is based on the formalism of N = 1 supergravity, as detailed in [185]
and further supported by more recent work [157, 181]. Also have a look at the work
in [99, 186,187] for a better understanding of this section.

Before we continue, we briefly review the stability analysis in [70]. The scalar fields bi, ξ
are fixed by the AdS scale alone, independent of any field strength, while the few remaining
moduli covering the spectrum of metric and dilaton fluctuations are stabilized by the fluxes.
Again, it is important to remember that in AdS spacetime the presence of a tachyonic
mode does not necessarily imply instability. Tachyonic fields with a negative m2 beyond
the Breitenlohner-Freedman bound (6.42) do not lead to unstable perturbations. We then
derive the kinetic terms for the remaining moduli by introducing the superfields [157]

ti = bi + iυi , S = e−D + i
ξ√
2
, with i = 1, 2, 3 . (6.93)

The metric on the moduli space is defined with respect to the Kähler potential,

K = − ln

�
4

3
× 6 vol

�
− 4 ln

�
S + S̄

�
, (6.94)
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whose derivatives define the Kähler metric KIJ̄ , according to

KSS̄ =
∂2K

∂S∂S̄
= e2D , Kti t̄i =

∂2K

∂ti∂t̄i
=

1

4υ2i
. (6.95)

Therefore, the kinetic terms of the superfields ΦI in equation (6.93) are given by

e−1Lkin = KIJ̄∂Φ
I∂ΦJ̄ = (∂D)2 +

1

4

3!
i=1

1

υ2i
(∂υi)

2 . (6.96)

As mentioned above, the axion ξ and the bi fields have no physical degrees of freedom. We
also introduce the volume e of the external spacetime. Since the geometry of our problem
is isotropic, we can reduce the degrees of freedom for the components of the rescaled metric
(6.90) by fixing υi = υ/|ei|. We are left with only one Kähler modulus v. After introducing
the scalar fields g and r [70],

eD = |p|
 

|m0|
E

g , υ =

�
E

|m0|r
2 , (6.97)

where we set E = υ3/vol = |e1e2e3|/κ, the Lagrangian of the kinetic terms can be rewritten
in a simple form,

e−1Lkin =
1

2

�
2

g2
(∂g)2 +

6

r2
(∂r)2

�
. (6.98)

From this equation, the transformation laws to canonical fields are easy to find,

r = e
1√
6
r̂
, g = e

1√
2
ĝ
. (6.99)

In the second part, we derive the scalar potential of the effective theory. The presence
of a non-vanishing F0 flux, characterized by the mass parameter m0, requires the use of
massive type IIA supergravity, with the action [70,188]

S = Sbulk + S
(6)
loc = Sbulk + S

(6)
DBI + S

(6)
CS . (6.100)

This equation includes the action of the bulk fields,

Sbulk =
1

2κ210

�
d10x

√−g

�
e−2ϕ

�
R+ 4(∂ϕ)2 − 1

2
|H3|2

�
− �

m2
0 + |F2|2 + |F4|2

��
,

(6.101)

in the string frame22. The Dirac-Born-Infeld and the Chern-Simons part of the O6-
planes/D6-branes is given by

S
(6)
loc = −T6

�
O6

d7x
√−g7 e

−ϕ +
√
2 T6

�
O6

C7 . (6.102)

22Note that we adhere to the conventions outlined in [185] for the RR fields, including the treatment of
the Romans mass. In particular, there is a change in notation from the one used in the rest of this thesis,
which follows Polchinski’s conventions [2, 3]. This difference leads to the relation Cq = C

(Polch.)
q /

√
2.
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We can ignore the Chern-Simons term from this discussion since it does not affect our
results. As shown in [70], O6-planes induce a tadpole for C7 that can be eliminated by
adding background fluxes. Therefore, we can safely ignore the second term in the equation
(6.102). Having selected fluxes that are consistent with the tadpole cancellation condition,
we proceed from the action (6.100) to systematically study the contribution of each term
to the effective potential of the moduli fields. In order to define the potential, we assume
that the scalars vi, bi, ϕ and ξ are independent of the internal coordinates. Because of the
relation �

T 6/Z2
3

d6y
√
g6 e

−2ϕ = vol e−2ϕ , (6.103)

the transition to the 4D Einstein frame implies the redefinition

gµν =
e2ϕ

vol
ĝµν , (6.104)

which leads to the following equation for the Ricci scalar

√−g4R4 =
e2ϕ

vol

�
−ĝ4 R̂4 . (6.105)

Now that we have already introduced the kinetic term, we will focus on the contribution of
the fluxes and sources to the effective potential. Substituting the background fluxes from
(6.84) into the equation (6.101) we obtain

|F4|2 vol10 = F4 ∧ ∗F4 = eiej(w̃
i ∧ ∗w̃j) =

�
3!

i=1

e2i υ
2
i

�
(vol)−2 ,

|H3|2 vol10 = H3 ∧ ∗H3 = p2(β0 ∧ ∗β0) = p2(vol)−1 .

(6.106)

As a result, the contribution of the fluxes to the potential is given by

V =
p2

4

e2ϕ

(vol)2� �� �
H flux

+
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2

�
3!

i=1

e2i υ
2
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�
e4ϕ
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F4 flux

+
m2

0

2

e4ϕ

vol� �� �
Romans

+ . . . . (6.107)

Since the spacetime-filling O6-planes wrap internal 3-cycles, the metric determinant can
be decomposed as follows,

√−g7 =
√−g4

√
g3 =

e4ϕ

(vol)2
�
−ĝ4

√
g3 . (6.108)

Substituting this expansion into the Dirac-Born-Infeld action (6.102),

S
(6)
loc = −T6

�
d4x

�
−ĝ4

��
d3y

√
g3

e3ϕ

(vol)2

�
, (6.109)
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yields the contribution of the sources [189]

VO6 = −2κ210 T6
e3ϕ

(vol)2

�
d3y

√
g3 , (6.110)

where the integral

d3y

√
g3 scales with (vol)1/2. Under the tadpole cancellation condition

[70], the tension of the sources is given by m0p = −2κ210
√
2T6, in terms of flux numbers

(6.84). Therefore, the effective potential results in
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(vol)2
+

1

2
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. (6.111)

This equation can be written as

V =
p2

4

e2D

υ3
E +

3

2

e4D

υ
E +

m2
0

2

e4D

E
υ3 −

√
2|m0p|e3D , (6.112)

using the volume of the Calabi-Yau manifold (6.91) and the 4D dilaton (6.92), and is finally
given by

1

λ
V (g, r) =

1

4
g2r−6 +

3

2
g4r−2 +

1

2
g4r6 −

√
2g3 , (6.113)

due to the equation (6.97) and the definition of λ = p4|m0|5/2E−3/2. Using the transfor-
mation laws for canonical fields (6.99), the scalar potential becomes

1

λ
V (ĝ, r̂) =

1

4
e
√
2ĝe−

√
6r̂� �� �

H flux

+
3

2
e2

√
2ĝe

−
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2
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F4 flux

+
1

2
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2ĝe

√
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Romans

−
√
2e

3√
2
ĝ

� �� �
O6-planes

. (6.114)

Again, note that the conventions of 10D supergravity differ slightly from our approach,
which may lead to small changes in the numerical coefficients of the potential. However,
since our focus is on the exponential rates, these small differences do not significantly affect
our analysis. In our discussion of the DGKT potential in (6.114), we observe no violation
of the bound (6.17) proposed by the ATCC, a result that is not unexpected. The relation
to the scalar fields ρ, τ can be clearly seen from the equations (3.38) and (6.113),

ρ ∝ r2 (υ) , τ ∝ g−1 (e−D) . (6.115)

As shown in Section 6.5.1, the exponential rates of these fields are consistent with the
ATCC bound, thus confirming our intuition.

Similar to the previous sections, we study a specific direction in the field space, which
shows the expected behavior of the potential in the asymptotics. From the on-shell equation

g∂gV + 2r∂rV = 0 , (6.116)

we derive the constraint
gr6 =

5

4
√
2

(6.117)
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on the scalar fields. Because of the relation ∂µĝ = −2
√
3∂µr̂, the kinetic term in the

equation (6.98) becomes (∂ĝ)2 + (∂r̂)2 = 13(∂r̂)2 ≡ (∂t̂)2, where we have introduced the
new field t̂ according to

∂µt̂ =
√
13∂µr̂ = −

√
13

2
√
3
∂µĝ . (6.118)

By specifying ∂µt̂⊥ = 0, we remove any orthonormal direction t̂⊥. If we integrate the
equation (6.118) and simplify the result by setting the integration constant to zero, we
obtain

t̂ =
√
13r̂ = −

√
13

2
√
3
ĝ +

 
13

6
ln

�
5

4
√
2

�
. (6.119)

Finally, with this new field direction t̂, we can write the potential as

1

λ
V (t̂) =

1875

2048
e
−
�

26
3
t̂ − 975

2048
e
−3

�
6
13

t̂
, (6.120)

which has the expected behavior in the asymptotics of field space, as shown in Figure 12.
The exponential rate of the term which dominates for t̂ → ∞ satisfies the bound
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Figure 12: This figure shows the potential V (t̂) as defined in (6.120), highlighting its
expected behavior in the asymptotic regions of field space.

3
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13
>

 
2

3
(6.121)

proposed by the ATCC in d = 4. This finding is particularly noteworthy given the unique
features of the proposed AdS4 solutions, which include parametric control in the classical
regime, complete moduli stabilization and scale separation.

DGKT-inspired AdS3 solutions

After studying the DGKT construction in d = 4, we turn our attention to potentials
derived from flux compactifications leading to DGKT-like AdS3 vacua [131]. We continue
our work in 10D type IIA supergravity, where the internal space is given by T 7/Z3

2 with G2

holonomy, leading to AdS3 vacua with minimal SUSY. The sources and fluxes of this model
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include smeared O2-/O6-planes and non-vanishing F0, F4 and H. These solutions retain
some of the intriguing properties of the AdS4 vacua summarized at the end of the previous
section. We will avoid going into the details of the compactification. Instead, we will
identify the independent moduli and their kinetic terms, which lead to the transformation
laws for canonical fields. Finally, we will study the scalar potential, focusing in particular
on its behavior along a specific direction in field space.

This model includes several scalar fields: The universal moduli x and y are given by

x√
7
= −3

8
ϕ+

β

2
υ , y = −1

4
ϕ− 21β

2
υ . (6.122)

in terms of the 10D dilaton ϕ and the internal volume υ, with α =
√
7/4 and β = −α/7.

The latter appears in the decomposition of the 10D metric,

ds210 = e2αυds23 + e2βυds̃27 . (6.123)

Furthermore, we introduce the scalar fields si=1,...,7, which correspond to the volumes of
3-cycles. Therefore, the volume of the internal manifold scales as

vol7 ∼
�

7�
i=1

si

� 1
3

∼
�
eβυ

�7
, (6.124)

which is consistent with the metric (6.123). Rather than keeping the scalars si, we define
the unit volume fluctuations ŝi,

si = s̃ie3βυ ,

7�
i=1

s̃i = 1 , (6.125)

which are moduli for the G2 metric deformations. Note that only 6 moduli fields s̃a=1,..,6

are linearly independent because of the second condition in the equation above. The
Lagrangian for the kinetic terms of all 9 scalar fields is given by [131]

e−1Lkin = −1

4
(∂x)2 − 1

4
(∂y)2 − δij

4s̃is̃j
∂µs̃

i∂µs̃j , (6.126)

with the 3D volume e. With the equation (6.125) and the definition of the field space
metric G̃ab = (δab + 1)/(4s̃a∂s̃b) [116] we conclude that

e−1Lkin = −1

4
(∂x)2 − 1

4
(∂y)2 − G̃ab∂µs̃

a∂µs̃b . (6.127)

This results in the transformation laws to canonical fields,

x̂ =
1√
2
x , ŷ =

1√
2
y , (6.128)

for the universal moduli x, y. Regarding the fields ŝa, we establish an orthonormal basis by
addressing the eigenvalue problem defined by the field space metric G̃ab. By additionally
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normalizing the eigenvectors by the square root of their respective eigenvalues, we derive
the following expressions for the canonical fields ŝa,

ln s̃1 =
1√
21

ŝ1 − ŝ2 − 1√
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ŝ3 − 1√
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ŝ1 + ŝ2 − 1√
3
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(6.129)

where 2G̃ab∂µs̃
a∂µs̃b = δab∂µŝ

a∂µŝb. The scalar potential is given by [131]
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(6.130)
which introduces the Romans mass C = m2/16 and the functions
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f2

16

�
6!

a=1

(s̃a)2 + 36

6�
a=1

(s̃a)−2

�
,

H(s̃a) =
h2

16

�
6!

a=1

(s̃a)−2 +
6�

a=1

(s̃a)2

�
,

T (ŝa) =
hm

8

�
6!

a=1

(s̃a)−1 +
6�

a=1

s̃a

�
.

(6.131)

In this case, F0 = m corresponds to the mass parameter, while f and h denote the flux
quanta for F4 and H3, respectively, which have to be quantized accordingly. The term hm

refers to the tension of the O6-planes due to the tadpole cancellation, or equivalently the
Bianchi identity of the sources. We also find that VO2 = −VD2 and the flux F6 is trivial in
the smeared limit. We compare the scalar potential V (x̂, ŷ, s̃a) with (3.38) to obtain the
equations

ρ̂ = − 1

4
√
2

�√
7ŷ + 5x̂

�
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√
2

�
5ŷ −

√
7x̂

�
(6.132)

between the universal scalar fields in d = 3. The potential is shown in Figures 13 and 14,
where we first have to fix the remaining flux numbers by the flux quantization conditions
[131],

h = (2π)2K , m = (2π)−1M , f = (2π)3N , KM = 16 , (6.133)

with N,K,M ∈ Z. The tadpole cancellation condition leads to the final relation. For
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illustration, we set K = 16, M = N = 1 where (6.130) reaches a critical point, suggesting
the presence of an AdS vacuum. In our search for supersymmetric solutions, we have to
ensure that the derivatives of the superpotential [131],

P = −f
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(6.134)
with respect to x̂, ŷ and s̃a vanish. In the framework of 3D massive supergravity, the scalar
potential takes the from [131]

V (φ) = Gij∂iP∂jP − 4P 2 , (6.135)

with the field space metric Gij = diag(1/4, 1/4, G̃ab). The scalar potential (6.130) then
results from our choice of P . The supersymmetric conditions, ∂iP = 0, lead to a super-
symmetric AdS vacua with

h

f
e
2
�

2
7
x̂0 = 0.515696 ,

m

f
e
−

√
2

2
ŷ0− 5

2

�
2
7
x̂0 = 3.43111 , s̃a0 = 1.32691 . (6.136)

We can see that x̂0 = −1.49381 and ŷ0 = −9.31713. Unfortunately, the potential (6.130)
does not show the expected behavior in the asymptotics of the field space along any field
direction. A more detailed discussion of the exponential rates of the potential shows that
the only negative term, the contribution of the O6-planes, is dominated by positive terms
in the asymptotic limit of x̂ and ŷ, as shown in Figure 13. Furthermore, the potential
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Figure 13: This figure illustrates the potential defined in (6.130) as a function of a single
canonical field direction, either x̂ or ŷ, with all remaining fields held at their vacuum values.

exhibits the same asymptotic behavior for the scalar fields s̃a, as shown in Figure 14. In
conclusion, our analysis reveals no clear violation of the bound set by (6.17) in the field
directions considered here. This result is unexpected since we are working in d = 3, which
has been problematic before. However, using the same approach as for AdS4, we explore
a specific direction in the x̂ŷ-plane of the field space.

We first revisit the detailed derivation of the potential (6.120) in the DGKT solution,
starting with (6.114). Note that H3, F0 and the source term for the O6-planes exhibit
identical field dependence with respect to t̂, while the F4 flux shows a different behavior.
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Figure 14: This figure illustrates the potential defined in (6.130) as a function of a single
canonical field direction, ŝa, with all remaining fields held at their vacuum values. We refer
to the relations specified in (6.129) to determine the dependence on ŝa.

With the same analytical criteria for the behavior of each term in the potential, we iden-
tify a specific field direction in d = 3 obeying this property. We start with the on-shell
condition,

∂x̂V +
1√
7
∂ŷV = 0 , (6.137)

for the potential (6.130), while stabilizing the other scalar fields, s̃a = s̃a0, to focus on a
single dimension in field space. This equation defines a new field direction by imposing the
constraint

x̂ = −
√
7

9
ŷ +

√
14

9
lnA , (6.138)

characterized by a positive constant

A =
−T (s̃a0) +

�
96CH(s̃a0) + T (s̃a0)

2

8H(s̃a0)
, (6.139)

which satisfies the quadratic equation 4A2H(s̃a0) +AT (s̃a0)− 6C = 0. The potential along
this direction is given by

V (ŷ) = F (s̃a0)A
− 4

9 e
20

√
2

9
ŷ +A− 14

9
�
H(s̃a0)A

2 − T (s̃a0)A+ C
�
e

16
√
2

9
ŷ . (6.140)

Similar to the potential (6.120), the second term dominates in the asymptotic regions of
field space, which is defined by ŷ → −∞. This term is negative under the condition

H(s̃a0)A
2 − T (s̃a0)A+ C ≤ 0 ⇔ 1.38988 ≤ 105 ×A ≤ 13.7585 , (6.141)

which allows us to test the rate (6.17) of the ATCC. According to our solution in the
equation (6.136), we get A = 3.78707 ·10−5, which agrees with the bounds given in (6.141).
Note that the notation in (6.140) can be misleading because the field direction defined in
this way is not canonically normalized. This problem can be solved by implementing the
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redefinition

t̂ =
2
√
22

9
ŷ . (6.142)

Therefore, the behavior of the potential in the asymptotics along t̂ is dominated by a
negative term, as shown in Figure 15. The exponential rate of this term satisfies the
bound in (6.17), i.e.
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Figure 15: This figure shows the potential (6.140) along the field direction (6.138) with
A = 3.78707 · 10−5.
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7 Almost classical de Sitter

No-go theorems often preclude dS solutions in the classical regime. Typically, the few
identified solutions either exhibit O(1) curvature and string coupling, or are perturbatively
unstable. Notably, [72] claimed to have found reliable vacua within a simple "CDT1"
model, where the equations of motion include the full nonlinear backreaction of the O8-
planes. However, [73] pointed out a critical inconsistency: the localized sources in the
CDT1 model appear in the 10D SUGRA equations in a manner that deviates from the
conventional O-plane action at leading order in α′, thus casting doubt on their authenticity
as genuine O8-planes.

In an effort to address these concerns, [75] explored ambiguities in the SUGRA equa-
tions of motion that might allow source terms that violate the assumptions underlying
the no-go theorem, as detailed in Section 2.3. Nevertheless, supported by forthcoming
studies [95], we will argue that such ambiguities do not exist at the classical SUGRA level,
suggesting that the O-planes should coincide with those postulated in the no-go theorem.

Furthermore, leading α′ corrections to the O8/D8 actions could revise this conclusion.
These corrections introduce additional couplings between the O8/D8 and the bulk fields,
changing how these fields are sourced in the equations of motion. In the following sections,
we will explore this notion by proposing a minimal extension of the classical dS scenario that
incorporates leading α′ corrections – the "almost classical" dS scenario – while assuming
that higher-order corrections remain minimal. In addition, we will examine the "CDT2"
model introduced by [75], which includes both O6- and O8-planes, to discuss whether it
faces similar challenges to those identified in the CDT1 model.

7.1 Type II flux vacua with O8/D8

Motivated by the proposed existence of dS solutions within the CDT1 model [72], we
investigate source configurations with O8±-planes and D8-branes coupled with a non-
vanishing F0 flux. The internal space consists of M5 × S1, where M5 is a negatively
curved Einstein space wrapped by two O8±-planes, localized on a circle S1 parameterized
by the coordinate z ∈ [0, 2π). This configuration is illustrated in Figure 16. Our analysis

Figure 16: Schematic representation of the CDT1 model with sets of parallel O8±-planes
localized at z = 0 and z = π along the internal circle S1 [72].

will maintain a level of generality that refrains from specifying the nature of the sources
– whether O-planes or D-branes – or their precise distribution. Moreover, we will not
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explicitly define the dimensions of the external and compact spaces, instead focusing solely
on the mass parameter F0 and excluding models with F4 flux as detailed in [72].

The structure of this section is as follows: First, we will show that these models preclude
classical dS solutions with Lα′2,i = 0, since the equations of motion impose a vanishing
cosmological constant when only leading-order terms are included in the effective action.
This no-go theorem can be approached in two different ways. The first is to use the full 10D
theory, including the fully backreacted 10D solution as presented in [73]. Alternatively,
we can analyze the scalar potential in the d-dimensional effective theory derived from
the dimensional reduction of type IIA SUGRA, as discussed in Section 3. In the latter
approach, we assume that the smeared approximation is valid over most of the compact
space, implying that backreaction corrections do not significantly alter the scalar potential.
As explained in Section 2.4, the existence of such a smeared regime is crucial (though not
always necessary) to avoid large singular holes and thereby ensure the reliability of classical
SUGRA. This serves as an important consistency check for resolving classical equations of
motion involving O-planes. Note that in the smeared limit both the warp factor and the
dilaton are constants, simplifying the analytical expressions.

The classical no-go theorem, as discussed in [73, 75], suggests that the dS solutions
explored in [72] may be feasible if non-standard source terms are included in the equations
of motion. "Classicality" in this context refers to focusing only on the leading-order terms
in the actions (2.18) and (2.21). Consequently, we will investigate whether this no-go the-
orem can be circumvented by integrating additional corrective terms into the action of the
O8±/D8.

Before we proceed, a final note: most of our previous analysis was done in the Einstein
frame, which led us to omit the superscript E. In this section, however, the scenario is
different. We will switch between frames as needed for each specific calculation, following
the conventions established in the referenced papers [72,73,96]. For clarity, we will explicitly
use superscript notation for quantities defined in the Einstein frame throughout this section.

7.1.1 Dimensional reduction and scalar potential

Before going into the derivation of the no-go theorem, we will first examine the scalar po-
tential for our model in the smeared approximation, which also takes into account possible
4-derivative corrections. Our analysis will focus primarily on the two universal moduli ρ
and τ , for which we derived the potential in Section 3. We will exclude additional scalar
fields such as cycle volumes or axions from this study. In order to be consistent with
the notation used in [96], we will slightly modify the definitions of these moduli. Specifi-
cally, we define τ = e−ϕ to represent the dilaton modulus and set gmn = ρ

2
10−d ĝmn, where

ρ =

d10−dy

√
g10−d ensures that ĝ maintains unit volume. These adjustments do not

significantly change the results of our analysis, although they deviate from our original
definitions in Section 3.

In this discussion, we consider only the F0 mass, ignoring other fluxes. The possible
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4-derivative terms (2.26) are expressed as

Lα′2,i =
�
c1i(e

ϕF0)
4 + c2i(e

ϕF0)
2R+ c3iR2

�
, (7.1)

where R2 includes any contraction of two Riemann tensors or their sum, involving either
tangent or normal indices relative to the O8/D8. For the scalar potential corrections, only
the internal components of the Riemann tensor are relevant; external components modify
the Einstein-Hilbert term of the bulk action or contribute to curvature-squared terms and
are considered irrelevant in the regime of small curvature. In addition, terms involving
covariant derivatives are omitted since they scale similarly with the β field defined below
and thus do not change our conclusions.

We continue with the action of type IIA supergravity as defined in the equations (2.18)
and (2.21),

S ⊃ 2π
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. (7.2)

We perform the integration over the compact (10−d)-dimensional space using the simplified
notation as defined in the equation (3.37) with M2

p /2 = 1 and 2κ210 = 1/2π. By the
definition

gµν = τ−
4

d−2 ρ−
2

d−2 gEµν , (7.3)

we return to the Einstein frame, which in turn leads to the scalar potential
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The quantities labeled with hats are defined by the metric ĝmn, and the index i runs
over all sets of O8±-planes/D8-branes. The external Ricci scalar in the Einstein frame
is represented by the on-shell potential, as detailed in equation (3.4). To understand the
stability of dS solutions within these models and to study the properties of the critical
points of the scalar potential, we introduce another field redefinition,

ρ = (αβ)10−d , τ = β . (7.5)

This transformation leads to the following expression,

V = β− 20
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−α− 16
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, (7.6)
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where we have introduced shorthand notation

T ≡
!
i

Ti

2πV̂i

. (7.7)

Note that this formulation preserves the generality of the potential, especially with respect
to the source content, without being specific to any particular model.

In the smeared approximation, the mass F0 remains constant, but is odd under an O8
involution [90], leading to F0 = 0. This is consistent with the results of [72], where F0

changes sign over an O8-plane in the backreacted solution, effectively rendering its mean
zero, thus identifying F0 as a backreaction effect23. In any model with O8-planes, including
the CDT1 model, the potential (7.6) is simplified to

V = β− 20
d−2

�
−α− 16

d−2 R̂10−d + α− 18−d
d−2 T

�
+ β− 4(d+3)

d−2 α− 10+3d
d−2

!
i

Ti

2πV̂i

c3iR̂2
10−d , (7.8)

except for source configurations containing only D8-branes, where F0 does not necessarily
vanish in the absence of the O8 involution. However, this setup often requires anti-D8-
branes to cancel out the tadpole induced by D8-branes, a scenario typically fraught with
instabilities due to open-string tachyons. Notably, in the CDT1 model [72], the leading
source term in (7.8) effectively disappears because TO8+ +TO8− = 0, and the circle volume
Vi is the same for all O8±-planes. If the coefficients c3i are identical for all sources,
the 4-derivative corrections are absent, resulting in a classical potential at least at the
4-derivative level. In addition, the tadpole cancellation implies a classical potential in
other configurations, such as those involving only O8−-planes/D8-branes. However, the
appearance of anti-O8−-planes or anti-D8-branes does not necessarily lead to a vanishing
source term.

Our extensive discussion is intended to provide a thorough review of the theoretical
framework and underlying motivations. In the following section, we will delve more deeply
into the general potential (7.6), leaving aside the specific model discussed earlier. We will
show that metastable dS solutions, whether classical or modified by 4-derivative correc-
tions, are unattainable in models with O8±/D8, regardless of the presence of a F0 flux.

7.1.2 A classical no-go theorem

We begin our discussion by focusing on the classical theory, deliberately excluding α′

corrections to the action and potential. In particular, we focus on configurations with
pi = 8 sources and F0 flux, especially in the context of the CDT1 model. As noted above,
we validate the same no-go theorem against classical dS vacua using two different methods.
At first, we use the classical 10D equations of motion derived from (2.18) and (2.21) with
Lα′2,i = 0 and the presence of O8±-planes/D8-branes along with the energy density F 2

0 .
This approach includes the complete backreaction of the sources. Our analysis studies a
particular combination of the dilaton equation of motion and the 10-dimensional Einstein

23This observation agrees with the absence of a topological F2 flux in compactifications with O6-planes
[12, 15,98]. It manifests itself as a backreaction effect.
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equation, which leads to

e−2ARd =
e−dA+2ϕ

√
g10−d
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�√
g10−de

d−10
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ϕ∂medA− d
5
ϕ
�
, (7.9)

in the string frame. Integrating this equation over the compact space after multiplying by
edA−2ϕ results in ��

d10−dy
√
g10−de

(d−2)A−2ϕ

�
Rd = 0 . (7.10)

At first glance, this equation suggests that no classical (anti-)de Sitter solutions are pos-
sible. However, a closer look reveals that the vacuum energy does not vanish completely;
only the classical contribution vanishes, with string corrections still to be considered. Thus,
equation (7.10) indicates that in models with O8±-planes/D8-branes, such as CDT1, the
sign of Rd or, when evaluated on-shell, V , is not determined by classical contributions
alone. In a regime characterized by sufficiently large volume, or equivalently, small string
coupling, the curvature over the entire 10D spacetime is small, as shown in the right plot
of Figure 2. In this case, the sign of the vacuum energy is determined by next-to-leading-
order terms in the α′ expansion of the equations of motion [73]. These corrections include
8-derivative terms in the bulk and localized 4-derivative corrections to the source action.
Due to their predominance, our analysis will henceforth focus mainly on these localized
corrections.

In scenarios where gs exceeds a critical threshold gs,crit, as shown in the left plot of Fig-
ure 2, the integration of the equation (7.9) over the internal space presents complexities [75].
These complications arise from the appearance of singular holes around O8−-planes, ren-
dering the α′ expansion unreliable in this regime. To address this problem, we adapt our
integration approach by restricting the integration up to the boundary of these singulari-
ties, introducing additional boundary terms Bi(ϵ) into the equation (7.10). The diameter ϵ
of these holes decreases as gs approaches gs,crit from above. Beyond this theoretical mini-
mum, the α′ expansion remains valid everywhere. For consistency, the boundary term Bi(0)

must coincide with the correction terms in the α′ expansion, specifically the 4-derivative
terms and the higher-order corrections in the O8− action. These corrections represent
the leading contributions to the equation (7.10) from the O8−-planes. Even when slightly
deviating from the limit of a vanishing hole diameter, where gs ≳ gs,crit, it is expected that
Bi(ϵ) = Bi(0) + O(ϵ) will approximately hold, suggesting that any corrections due to the
holes are equivalent to localized higher-derivative corrections. Consequently, the sign of
the vacuum energy, which remains undefined in classical calculations, can only be defini-
tively resolved by analyzing the α′ corrections. This conclusion holds in scenarios with
sufficiently small singular regions where the perturbative approach of classical SUGRA, as
discussed in this section and in [72, 73, 75], remains applicable.

As we revisit the d-dimensional effective theory and its scalar potential V in the fol-
lowing sections, it proves useful to repeat the no-go theorem discussed here in this di-
mensionally reduced framework, highlighting the similarities with our previous derivation.
We proceed in the smeared limit, starting with the classical contributions to the scalar
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potential as given by the equation (7.6) with cai = 0,

Vclass = β− 20
d−2

�
−α− 16

d−2 R̂10−d +
1

2
α− 2(10−d)

d−2 F 2
0 + α− 18−d

d−2 T

�
. (7.11)

This formulation deliberately omits any string corrections to (7.11), whether they arise in
the bulk spacetime or from regions containing the O-planes and holes. When evaluated
on-shell, we observe

β∂βVclass = − 20

d− 2
Vclass = 0 ⇒ Vclass|0 = 0 . (7.12)

In other words, the classical vacuum energy vanishes on-shell, consistent with the result
(7.10) derived from the 10D equations of motion. As before, we study the consequences of
string corrections to Vclass,

V = Vclass + δVcorr . (7.13)

Note that the classical computation of the vacuum energy remains reliable only if all string
corrections are indeed sub-leading. This requirement is mathematically expressed as

Vclass|0 ̸= 0 , Vclass|0 ≫ δVcorr|0 , (7.14)

for (anti-)de Sitter vacua, or in terms of the scalar field masses

(m2)class ̸= 0 , (m2)class ≫ δ(m2)corr . (7.15)

If the latter condition is not satisfied, the classical derivation alone cannot sufficiently
confirm the stability of the solutions. Although the condition (7.14) is satisfied in certain
cases, such as the classical AdS solutions in the DGKT-CFI class of type IIA SUGRA
[70,101], the dS solutions of the O8/D8 models discussed here fail to meet this requirement.
However, it is crucial to note that while the DGKT flux vacua pass these preliminary tests,
as indicated by

V |0 ≈ Vclass|0 , (7.16)

with only minor corrections [15], their non-perturbative stability remains unproven. Never-
theless, according to the no-go theorem outlined in (7.10) or (7.12), the leading contribution
to the vacuum energy in the O8/D8 model is governed by string corrections, i.e.

V |0 = δVcorr|0 , (7.17)

casting doubt on the existence of dS solutions at the classical level in these compactifica-
tions. Importantly, this scenario does not arise due to holes or regions of strong curvature
around the orientifold where the classical SUGRA description fails due to non-perturbative
short-distance physics. Instead, classical SUGRA might still be the dominant contributor
to the vacuum energy, as observed in other models with different source configurations.

In the context of the CDT1 model [72], the existence of dS vacua has been proposed
based on numerical solutions of the classical equations, assuming R4 > 0. An analytical

117



solution supporting this claim appears in [92]. This corresponds to the implicit assump-
tion that δVcorr|0 > 0, according to the equation (7.17). However, [72] did not explicitly
determine the sign of the string corrections to the potential, leaving open the possibility
that δVcorr|0 ≤ 0. Thus, the classical calculations do not inherently favor (anti-)de Sitter
or Minkowski solutions [73].

Although the CDT1 solutions satisfy the classical bulk equations, [73, 75] suggest a
possible escape from the no-go constraints via non-standard boundary terms that are in-
consistent with the classical actions of O8-planes/D8-branes. This prompts the inclusion
of string corrections, especially at the 4-derivative level in the α′ expansion of the O8/D8
action. By going beyond classical calculations and showing that these α′ corrections con-
tribute a positive δVcorr|0 > 0 to the otherwise vanishing vacuum energy, we may uncover a
feasible way around the no-go theorem (7.10), provided that higher-derivative corrections
are adequately suppressed within the potential. While not strictly classical, these solutions
are close to it, and we are willing to explore these prospects further.

7.1.3 Including α′ corrections

Now that the context provides clear definitions of on-shell expressions, we will omit the
notation |0. As a first step, we revisit the classical potential described in (7.11) and examine
the runaway behavior V ∼ β− 4(d+3)

d−2 . The only way to suppress this behavior is to satisfy
the following condition at the critical point for α,

−α− 16
d−2 R̂10−d +

1

2
α− 2(10−d)

d−2 F 2
0 + α− 18−d

d−2 T = 0 , (7.18)

Under this condition, β becomes a flat direction and V = 0 off-shell, consistent with the
no-go theorem (7.12). This scenario mirrors the dynamics observed in the GKP vacua
of type IIB supergravity [190], where the runaway behavior of the potential is similarly
constrained by a condition analogous to (7.18), resulting in V = 0 and a flat direction.

Moving on to the general O8/D8 models with the scalar potential given by (7.6),
including up to 4-derivative corrections, and considering the implications of (7.18), we see
that β can now be stabilized. This implies that the runaway behavior can be suppressed,
provided that the other scalar fields are stabilized so that the no-scale condition (7.18) is
violated,

−α− 16
d−2 R̂10−d +

1

2
α− 2(10−d)

d−2 F 2
0 + α− 18−d

d−2 T ≡ C ̸= 0 . (7.19)

This adjustment is crucial to prevent the runaway behavior V ∼ β− 4(d+3)
d−2 . The stabilization

of β also suggests that the 4-derivative terms are fine-tuned to the leading terms in (7.6)
within this regime of small curvature and energy densities. However, we will not delve into
a detailed analysis of this fine-tuning, nor will we specify the particular models in which it
might be achievable, as we have a more pressing problem in the model under consideration.
Satisfying the equation of motion ∂βV = 0 leads to

∂2
βV < 0 , (7.20)
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for V > 0, as indicated by the on-shell equation

V = − (d− 2)2

80(d+ 3)
β2∂2

βV , (7.21)

suggesting the presence of a tachyon according to Sylvester’s criterion [34, 191, 192]. Con-
sequently, if dS solutions exist within this framework, they are perturbatively unstable,
making only anti-de Sitter or Minkowski vacua plausible outcomes. While we will not
delve deeply into these vacua here, a brief comment is in order. In the regime of small
curvature, the smeared CDT1 model, characterized by F0 = T = 0, exhibits a runaway
behavior unless R10−d = 0, leading to V = 0 off-shell. Therefore, at the 4-derivative
level, only Minkowski solutions seem feasible, regardless of the stability analysis discussed
earlier. For more complicated models with non-zero flux F0 or source T , a quick analy-
sis suggests that achieving a fine-tuned C, small string coupling, large volume or small
backreaction is challenging, effectively ruling out self-consistent regimes. Furthermore, the
possible presence of an open-string tachyon has not been addressed in this discussion.

In summary, our efforts to solve the problems identified in [73] by minimally extending
the model in [72] have not been successful. Although theoretically feasible, departing from
the simplicity of this model to explore configurations with corrections at higher orders
introduces significant complexity. Specifically, we could consider incorporating α′ correc-
tions in the O8/D8 action beyond the 4-derivative level, or introducing higher-derivative
corrections in the bulk action. Nevertheless, the need for further fine-tuning to balance
various corrections at different levels further complicates the situation.

A potential limitation of our analysis is the reliance on the smeared approximation
in the d-dimensional approach. Backreaction effects in the potential could significantly
alter the results discussed here, possibly changing the vacuum energy and the mass of
the scalar field β to circumvent (7.21) and challenge the no-go theorem (7.1.2) against
dS solutions.However, the 10D derivation, as discussed in Section 7.1.2, does not make
specific assumptions regarding the warp factor, the internal metric or the dilaton. Although
backreaction effects are fully accounted for in this approach, they do not affect the classical
vacuum energy. The backreaction mainly induces singular regions around the O8-planes, as
shown in Figure 2, where string corrections are important. However, our analysis focuses on
scenarios where classical SUGRA is reliable over most of the spacetime. This is particularly
true in the limit of point-like singularities and small curvatures or energy densities. In
this limit, the dominant contribution to the vacuum energy comes from the 4-derivative
corrections in the actions of the O8-planes/D8-branes, as discussed earlier in the smeared
approximation. Slight deviations to small but finite diameters of these singular holes are
also expected to preserve this approximation. Consequently, the left-hand side of (7.21)
remains largely unaffected by backreaction effects. However, the backreaction on the mass
of the beta field remains ambiguous and require further investigation, which we leave to
future studies [95].

In addition, we recognize that dS solutions may be viable in regimes where singular
regions extend significantly over the 10D spacetime. In such cases, classical SUGRA models
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referred to in [72, 73, 75] become inappropriate. Addressing these scenarios would require
a worldsheet analysis or other non-perturbative techniques. Given the comprehensive and
detailed nature of such investigations, they are beyond the scope of the current work, which
leads us to move on to the next model.

7.2 Type II flux vacua with O6/D6 and O8/D8

In this section, we focus on source configurations incorporating O8-planes/D8-branes and
(anti-)O6-planes/D6-branes. Specifically, we critically evaluate the CDT2 model [75] to
challenge the proposed existence of (almost) classical dS solutions. Employing methods
akin to those discussed in the previous sections, we analyze both classical and α′-corrected
O-planes/D-branes up to the 4-derivative order. Following the framework outlined in
Section 7.1, we establish a no-go theorem against the existence of classical dS vacua within
the CDT2 model. Our arguments are formulated using two distinct strategies: initially,
we use the smeared approximation, under which the backreaction effects of the sources
are considered negligible over the entire 10D spacetime. Then, we consider scenarios that
account for the full backreaction from the orientifold planes, consistent with the methods
employed in establishing the no-go theorem in Section 7.1.2 and detailed in [73]. We
also demonstrate that the inclusion of α′ corrections up to the 4-derivative order in the
O-plane/D-brane actions does not alter this outcome.

Furthermore, we reveal that the numerical dS solutions within the CDT2 model circum-
vent the no-go theorem by including non-standard source terms that are incompatible with
both classical and α′-corrected source actions. Due to the complexity of this approach, we
refrain from exploring an extension of this model. Instead, our focus remains exclusively on
the CDT2 construction. A detailed discussion of this extension is available in [47], where
some constraints and assumptions of the CDT2 model are relaxed, particularly regarding
the flux and source content as well as the geometry, to consider a more generalized model.

7.2.1 The CDT2 model

We commence with the metric ansatz of the CDT2 model as detailed in [75]. The 10D
metric is given by

ds210 = e2A(z)gµνdx
µdxν + e−2A(z)

�
e2λ3(z)ds2κ3

+ e2λ2(z)ds2S2 +R2dz2
�
, (7.22)

where κ3 represents a 3D Einstein space with negative scalar curvature, Rκ3 < 0, S2

denotes a unit sphere and z parameterizes a 1D interval with z ∈ [0, π]. In this setting,
R serves as a length scale and standard spherical coordinates (θ, ϕ) are used on S2. The
compactification space can conceptually be described as a κ3 × S2 fibration over z. The
metric (7.22) is crucial for calculating various curvatures and covariant derivatives. Note
that the notation used here differs from the one in [75], where e2A(z) = e2W (z) and R2 = e2q0 .

Regarding the flux and source content, the configuration includes (anti-)O6−-planes
localized on S2 and along z, as well as O8+-planes transverse to z, all wrapping the 3D
Einstein space κ3. It is important to clarify that this description concerns the covering
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space. On the orientifold, both O6-planes are identified, and the O8-plane wraps κ3×RP2.
The orientifold projection is defined by Ωσ8 for O8-planes and Ω(−1)FLσ6 for O6-planes, as
elaborated in [75]. As a reminder, Ω is the worldsheet parity operator, FL is the left-moving
fermion number and σi denotes the spacetime involution (2.24),

σ8 : z → π − z , σ6 : (θ, ϕ) → (π − θ, ϕ+ π) . (7.23)

The fixed loci of σ6, at positions where e3λ2(z) = 0 and S2 shrinks to a point, have codi-
mension 3, corresponding to the (anti-)O6−-planes. On the other hand, the fixed loci of
σ8, having codimension 1, define the O8+-planes. The non-vanishing fluxes are given by

F0(z) , F2 = f2(z) volS2 , H3 = h(z) dz ∧ volS2 . (7.24)

Following the orientifold projection, which induces the transformations [90]

Ω : F0 → −F0 , F2 → F2 , H3 → −H3 ,

(−1)FL : F0 → −F0 , F2 → −F2 , H3 → H3 ,

σ6, σ8 : dz → −dz , volS2 → −volS2 ,

(7.25)

the following conditions are necessary for the fluxes to comply with both orientifold pro-
jections,

F0(z) = −F0(π − z) , f2(z) = f2(π − z) , h(z) = h(π − z) . (7.26)

7.2.2 Challenges in the smeared limit

It is appropriate to initiate our discussion on dS vacua in the smeared limit, characterized by
negligible backreaction from the sources, thereby ensuring the validity of classical SUGRA
everywhere. As elaborated in Section 2.4, the singular regions surrounding the O-planes
are exceedingly small and expected to minimally impact the lower-dimensional effective
theory, including the scalar potential. However, our analysis will demonstrate that the
CDT2 model lacks non-trivial vacuum solutions in the smeared approximation, indicating
that significant backreaction effects are inevitable over a large part of the 10D spacetime.
This claim holds not only for classical source terms but also when considering 4-derivative
corrections.

Turning to the details of the metric (7.22), the smeared limit implies a constant warp
factor, e2A(z) = 1, and a constant internal curvature. While consistent with the metric
configuration in (7.22), these conditions do not impose a unique geometry. For instance,
different compactifications may arise based on the specific choices of λ2 and λ3. Possible
configurations include κ3 × S2 × S1 for e2λ3(z) = 1 and e2λ2(z) = const., or the product
S4 × S2 with constant curvature, for e2λ3(z) = R2 sin2(z) and e2λ2(z) = const., where the
3D Einstein space is an S3 and thus non-trivially fibered over z. The exact nature of
the compact space in the smeared limit remains non-trivial and open to various geometric
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interpretations. A natural choice, however, is

κ3 × S3 , for e2λ3(z) = 1 , e2λ2(z) = R2 sin2(z) , (7.27)

justified by the backreaction of the (anti-)O6 in (7.22), which causes the warp factor,
dilaton and fluxes to vary with z while remaining independent of the angular coordinates
of S2. This variation is coherent only if S2 reduces to a singular point at the locations of the
(anti-)O6, that is, at the fixed points of σ6 in the absence of backreaction. Consequently,
(anti-)O6-planes would be incompatible with a constant, finite e2λ2 , necessitating that the
S2 is non-trivially fibered over z. This leads to the product space κ3 × S3 with the metric

ds210 = gµνdx
µdxν + ds2κ3

+R2
�
sin2(z) ds2S2 + dz2

�
(7.28)

in the smeared limit, as shown in Figure 17. In the smeared approximation, the symmetry

Figure 17: The internal space S3 with an O6−-plane, an anti-O6−-plane and an O8+-plane
wrapping an S2 [47].

of S3 ensures that F0, |F2|2 and |H3|2 remain constant. Following the flux ansatz specified
in the equations (7.24) and (7.26), we find

F0 = 0 , F2(z) = f̃2 sin
2(z) volS2 , H3 = h̃ sin2(z) dz ∧ volS2 , (7.29)

determined by the constants f̃2 and h̃. Furthermore, the smeared F2 Bianchi identity,
dF2 = 0, results from the cancellation of smeared contributions (zero modes) from O6−

and anti-O6−, leading to

F0 = 0 , F2 = 0 , H3 = h̃ sin2(z) dz ∧ volS2 . (7.30)

Consequently, H3 is topological on S3, while F0 and F2 manifest as backreaction effects
of the O-planes. Assuming a regime with negligible backreaction from the sources, the
leading-order equations in the CDT2 model, as outlined in Section 2.2, are dominated by
the zero modes of the O-plane sources. Higher modes are irrelevant, except in the vicinity
of the O-planes. As defined in (2.42), it is practical to replace the delta-functions in the
equations of motion with

δ(ΣO6−), δ(ΣO6−) →
1

VS3

=
1

2π2R3
, δ(ΣO8+) →

VS2

VS3

=
2

πR
, (7.31)
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including the radius R of S3 and VS2 =

S3 d

3y
√
gS3 δ(ΣO8+).

Using the metric (7.28), the flux ansatz (7.29) and the leading behavior of the sources
(7.31), the trace-reversed Einstein equations (2.29) simplify to

Rzz =
gzz
8

�
3|H3|2 − 14eϕ

π2R3
+

144eϕ

πR

�
, Rab =

gab
8

�
3|H3|2 − 14eϕ

π2R3
+

16eϕ

πR

�
, (7.32)

where a, b are the indices of S2. As previously discussed, the S2 must remain non-trivially
fibered over z to form an S3 in the smeared solution, leading to Rab = 2gab/R

2 and
Rzz = 2gzz/R

2. However, this configuration is inconsistent with the equations (7.32)
unless the terms related to the O8-plane are negligible. Given the necessity for a large R

to ensure perturbative control of the α′ expansion in the bulk, 1/R3 ≪ 1/R implies that
the O6 terms must similarly vanish. Therefore, the smeared limit of vanishing backreaction
of the O-planes in the CDT2 model requires

δ(ΣO6−), δ(ΣO6−), δ(ΣO8+) → 0 , (7.33)

in contrast to (7.31). In essence, the CDT2 model is incompatible with a smeared limit
in which the predominant contributions from the O-planes are represented by their zero
modes, as outlined in (7.31). The smeared approximation, defined by minimal backreaction
effects from the sources, can only be achieved if all Fourier modes, including the zero modes,
are negligible in the equations of motion.

An alternative perspective is provided by the F0 Bianchi identity, which simplifies to
dF0 = 0 following the application of (7.33). This outcome is consistent with our previous
flux ansatz (7.29) in the smeared limit. However, replacing the localized O8-plane with
(7.31) in the Bianchi identity yields dF0 ∼ dz, indicating that backreaction corrections to
F0 arise from the zero mode of the O8-plane. Such corrections should not appear, especially
in the limit of negligible backreaction. In line with our analysis from the Einstein equations,
we confirm that (7.33) is the appropriate approach when considering small backreaction
effects.

Using the metric (7.28) and the flux ansatz (7.29), along with the prescription (7.33),
we can analytically identify possible vacuum solutions. The equations of motion in Section
2.2 are given by

−R4 − 1

2
|H3|2 = 0 , 2R4 + 2Rκ3 + 2RS3 − |H3|2 = 0 ,

−Rκ3 −
3

8
|H3|2 = 0 , −RS3 +

9

8
|H3|2 = 0 ,

(7.34)

which relate H3 to the scalar curvatures of the internal and external spaces. This analysis
confirms that the only viable solution is

R4 = Rκ3 = RS3 = |H3|2 = 0 . (7.35)

Thus, in a regime where the O-plane backreaction is negligible, the CDT2 model fails to
provide non-trivial vacuum solutions.
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In the previous discussion we assumed that the classical source terms are dominant.
However, our reasoning extends to scenarios involving four-derivative (or higher-order)
corrections in the α′ expansion of the O-plane action, especially in regimes of negligible
curvature or field strengths where such corrections are next-to-leading-order relative to
classical contributions. Given the vanishing effect of classical source terms in the equations
(7.32), it follows that 4-derivative corrections would also be minimal, maintaining the
integrity of our analytical framework. Some critics might contend that the α′ expansion
becomes unreliable near the O-planes, challenging our assumption that 4-derivative terms
are irrelevant compared to classical sources. Nevertheless, our analysis is carried out in
the smeared approximation, where point-like singularities are smoothed out, and only
the uniform zero modes of the O-plane sources span the entire 10D spacetime. If the zero
modes of the 4-derivative corrections were to surpass those of the classical sources, it would
suggest a breakdown of the α′ expansion over the entire 10D spacetime, not just near the
O-planes. This would undermine our reliance on SUGRA for the CDT2 model. Therefore,
we conclude that the inclusion of α′-corrected source terms does not yield reliable dS vacua
within the CDT2 model in the smeared limit.

Despite these conclusions, it is crucial to acknowledge that this analysis does not com-
pletely rule out the possibility of (almost) classical dS configurations in the CDT2 model.
Our assumptions, particularly regarding the behavior of the metric in the smeared approx-
imation, have not been definitively proven. As discussed in Section 2.4, a regime where the
smeared solution prevails is sufficient, though not always necessary, to avoid large singular
regions where classical SUGRA becomes unreliable. In particular, objects with positive
tension, such as the O8+-plane, prevent the formation of holes and thus circumvent singu-
larity issues. Hence, we might imagine a scenario where the pi = 6 sources have negligible
backreaction on most of the spacetime, avoiding large singularities, while the O8+ back-
reaction remains significant without causing control issues. The arguments presented here
do not entirely preclude the viability of these scenarios. To bridge this gap, the following
section will introduce a another no-go theorem for the CDT2 model, addressing the com-
plete nonlinear backreaction of the O-planes. This additional analysis will strengthen our
previous conclusions, conclusively ruling out the existence of (almost) classical dS vacua
in regions where SUGRA remains reliable throughout most of the 10D spacetime.

7.2.3 A classical no-go theorem

The following section presents an explicit no-go argument for the CDT2 model to address
the shortcomings of the previous discussion. This argument does not rely on the smearing
assumption and includes the full backreaction of the (anti-)O6−-/O8+-planes. Our ap-
proach mirrors the methods applied to the O8±/D8 models in Section 7.1.2, following the
strategy delineated by [73]. The idea is to manipulate the 10D equations in such a way
that, upon integration over the compact space, they yield an expression for the external
scalar curvature. Assuming that all singular regions where classical SUGRA fails remain
small, we will employ the classical equations of motion, inclusive of classical source terms.

The first step is to form a combination of the 4D scalar curvature and Rκ3/RS2 ,
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including a total derivative term. Using the equations (2.28) and (2.29), we deduce that

e−2AR4 =
4

3
e2A−2λ3Rκ3 + 4

e−4A+2ϕ

√
g6

∂m

�
e4A−2ϕ√g6 ∂

m (2A− λ3)
�

= −e2A−2λ2 +
e−4A+2ϕ

√
g6

∂m

�
e4A−2ϕ√g6 ∂

m (3A+ λ2 − ϕ)
�
,

(7.36)

for any solution adhering to the ansatz presented in Section 7.2.1, particularly under the
flux ansatz (7.24) and the assumption that all O-planes wrap κ3. The metric (7.22) is
used to evaluate scalar curvatures and covariant derivatives in these equations, with g6

corresponding to the six internal components of (7.22).
When integrating the above equation over the internal manifold, we obtain��

d6y
√
g6 e

2A−2ϕ

�
R4 =

4

3

��
d6y

√
g6 e

6A−2λ3−2ϕ

�
Rκ3

= −
�

d6y
√
g6 e

6A−2λ2−2ϕ ,

(7.37)

where the compact space is assumed to be closed and smooth, as we aim to consider
a compactification with a finite Kaluza-Klein scale. Consequently, the integral of the
derivative in (7.36) vanishes and all volume factors in (7.37) are integrable. By additionally
considering the relation between the (un)warped metrics using (7.22), √g6 ∼ e−6A+2λ2+3λ3 ,
results in the simplified integral��

dz e−4A+2λ2+3λ3−2ϕ

�
R4 =

4

3

��
dz e2λ2+λ3−2ϕ

�
Rκ3 = −

�
dz e3λ3−2ϕ . (7.38)

Given that the dS solutions in [75] exhibit Rκ3 < 0, they are inconsistent with the equation
(7.38). In other words, the CDT2 model allows only classical AdS solutions. This raises
the question whether other models where Rκ3 > 0 could support dS solutions. We study
these "CDT2-like" models in [47]. Furthermore, note that in the smeared approximation,
the equation (7.38) simplifies to R4 = 4Rκ3/3, which coincides with the result obtained
by combining the equations in (7.34).

It might be argued that integrating a classical equation over the entire internal space, in-
cluding the singular regions associated with the (anti-)O6−-planes where classical SUGRA
is inapplicable, is problematic. This criticism was notably highlighted by [75] with respect
to the equation (7.10), which relies on a similar formulation. To clarify our approach, con-
sider integrating (7.36) up to the boundary of two singular holes with centers at z = 0, π

and diameter ϵ, that is, over a region where classical SUGRA remains reliable. In each equa-
tion of (7.38) appear two additional boundary terms associated with each (anti-)O6−-plane
and depending on the diameter of the holes we cut out. However, due to the orientifold
projection (7.26), these terms are identical. Consequently, we obtain�� π−ϵ

ϵ
dz e−4A+2λ2+3λ3−2ϕ

�
R4 =

4

3

�� π−ϵ

ϵ
dz e2λ2+λ3−2ϕ

�
Rκ3 + B(1)(ϵ)

= −
� π−ϵ

ϵ
dz e3λ3−2ϕ + B(2)(ϵ) .

(7.39)
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As mentioned above equation (2.46), taking the limit gs → 0 causes these singular regions
and their boundaries to shrink to points, thus extending the scope of classical SUGRA over
the entire spacetime. We will not go into the details of this limit, other than to require
that it be one in which the backreaction from the O6-planes becomes small, thus ensuring
that the singularities disappear. As discussed in Section 7.2.2, the backreaction of the O8+

is not negligible in the CDT2 model without leading to trivial vacuum solutions; therefore,
we allow it to remain finite, which means that the dilaton and other functions may vary
considerably with z. Note that this does not contradict our discussion in Section 2.4, where
the backreaction effects of the O8+ dominate those of the O6-planes when the transverse
volume R is sufficiently large.

In the limit where gs approaches zero and the backreaction from the O6-planes is
absent, the boundary terms become classically negligible, making these corrections also
irrelevant for sufficiently small holes, where classical SUGRA retains its validity almost
everywhere except in minuscule singular regions. Therefore, for sufficiently small ϵ and
the analysis restricted to classical sources, the equation (7.38) holds and the singularities
do not affect the classical no-go result. While O6-planes within these boundaries may
introduce discontinuities that could prevent the boundary terms from vanishing as gs → 0,
the particular combinations of the equations of motion ensure that no delta-function source
terms appear at the classical level. Thus, the contribution of the O6-/O8-planes to (7.37)
occurs at most at the 4-derivative level, which, as we will see in the following section, are
generally insufficient to challenge the existing no-go theorem in the small-hole regime.

However, as gs increases, causing the holes to expand and occupy a larger fraction
of spacetime, thereby violating the Small-Hole Condition outlined in Section 2.4, string
corrections to (7.38) become significant and we can no longer reliably predict dS vacua.
Under such conditions, relying on classical SUGRA becomes unfeasible and using classical
equations of motion to search for dS vacua, as done in [75], is no longer tenable. Instead,
this scenario requires the use of non-perturbative techniques to accurately calculate the
vacuum energy. Therefore, we conclude that (7.38) effectively excludes the existence of dS
vacua in the CDT2 model in all regimes where classical SUGRA remains applicable.

7.2.4 Including α′ corrections

We revisit the derivation of the no-go theorem (7.38), which we previously discussed,
by including 4-derivative corrections (2.26) to the source action, while assuming that α′

corrections in the bulk spacetime remain negligible. Our objective is to evaluate the impact
of these modifications on the conclusion of the no-go theorem. The corrected equations of
motion provide an analog of (7.36), specifically

e−2AR4 =
4

3
e2A−2λ3Rκ3 + 4

e−4A+2ϕ

√
g6

∂m

�
e4A−2ϕ√g6 ∂

m (2A− λ3)
�

−
!
i

Ti

2π
e2ϕδ(Σi)

�
4

3
gxy

δ(e−ϕLα′2,i)

δgxy
− gµν

δ(e−ϕLα′2,i)

δgµν

�
, (7.40)

126



e−2AR4 =− e2A−2λ2 +
e−4A+2ϕ

√
g6

∂m

�
e4A−2ϕ√g6 ∂

m (3A+ λ2 − ϕ)
�

−
!
i

Ti

2π
e2ϕδ(Σi)

�
1

4
e−ϕLα′2,i +

1

4

δ(e−ϕLα′2,i)

δϕ
+

1

2
gxy

δ(e−ϕLα′2,i)

δgxy

+
1

2
gzz

δ(e−ϕLα′2,i)

δgzz
− 1

2
gµν

δ(e−ϕLα′2,i)

δgµν

�
, (7.41)

where x, y are the indices of the internal 3D Einstein space κ3. In addition, we introduce
another combination of the equations involving classical source terms,

e−2AR4 = −e2ϕF 2
0 − e4A−4λ2+2ϕf2

2 + 4
e−4A+2ϕ

√
g6

∂m

�
e4A−2ϕ√g6 ∂

mA
�

−
!
i

Ti

2π
e2ϕδ(Σi)

�
e−ϕ + 2e−ϕLα′2,i +

δ(e−ϕLα′2,i)

δϕ
− gµν

δ(e−ϕLα′2,i)

δgµν

�
, (7.42)

which will be important for the following discussion.
By integrating the above equation (7.40) over the internal manifold up to the boundary

of the singular regions, we derive

�� π−ϵ

ϵ
dz e−4A+2λ2+3λ3−2ϕ

�
R4 =

4

3

�� π−ϵ

ϵ
dz e2λ2+λ3−2ϕ

�
Rκ3 + B(1)

O6−(ϵ)

− TO8+

2πR
e−A+2λ2+3λ3

�
4

3
gxy

δ(e−ϕLα′2,O8+)

δgxy
− gµν

δ(e−ϕLα′2,O8+)

δgµν

�#####
z=π/2

, (7.43)

including the boundary term B(1)

O6−(ϵ) associated with the (anti-)O6−-planes. A similar
expression arises for the other equations (7.41) and (7.42), where the boundary terms are
defined by

B(1)

O6−(ϵ) = − 8

R2
e2λ2+3λ3−2ϕ(2A− λ3)

′##
z=ϵ

,

B(2)

O6−(ϵ) = − 2

R2
e2λ2+3λ3−2ϕ(3A+ λ2 − ϕ)′

##
z=ϵ

,

B(3)

O6−(ϵ) = − 8

R2
e2λ2+3λ3−2ϕA′##

z=ϵ
.

(7.44)

From the analysis of the equations (7.40) and (7.41) it is evident that there is a potential
to circumvent the classical dS no-go theorem, provided that the terms associated with
the (anti-)O6−/O8+ are sufficiently large to compensate the negative contributions within
these equations. To explore this possibility, it is crucial to precisely define the boundary
conditions near the O6-planes.

We use Gauss’s law, or the divergence theorem of vector calculus, which establishes a
mathematical relation between a volume integral and a surface integral over the boundary
of that volume. Applying this theorem to the boundary terms (7.44) is challenging due to
their complexity. By equating these terms with an integral over the enclosed volume, we
effectively integrate over the problematic hole. However, for small singularities, where the
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string coupling approaches zero, the surface integral becomes identical to the contribution
from a probe O6-plane, whose backreaction is negligible, closely matching string theory
predictions [76–84]. Assuming these conditions retain their validity even at small, non-zero
values of ϵ, representing the size of these singularities, the appropriate boundary integral
is given by

B(1)

O6−(ϵ) = −2TO6−

8π2R
eA+3λ3

�
4

3
gxy

δ(e−ϕLα′2,O6−)

δgxy
− gµν

δ(e−ϕLα′2,O6−)

δgµν

�#####
z=ϵ

, (7.45)

and similarly for B(2)

O6− , B(3)

O6− , while ignoring corrections beyond the 4-derivative level.
However, caution is advised when the singularities are not minimal, i.e., ϵ ∼ O(1), where
the clear distinction between a weakly curved bulk and localized holes of O-planes becomes
obscured.

Moreover, we observe that the boundary conditions set in the numerical dS solution [75]
do not specify derivatives such as (2A − λ3)

′ near the singularities. This uncertainty
allows for deviations of the boundary terms in (7.43) from the theoretical contributions
expected from a standard O6-plane. This situation is similar to the unresolved permissive
boundary conditions observed in the CDT1 model, where the sources are undefined in
certain combinations of the equations of motion where the classical contributions from
the O8-planes are canceled; see Section 2.3. Our analysis emphasizes the need for the
derivatives to strictly conform to rigorous boundary conditions, which are determined by
the higher-derivative terms described in (7.45). As a result, (7.43) leads to the following
expression,

�� π−ϵ

ϵ
dz e−4A+2λ2+3λ3−2ϕ

�
R4 =

4

3

�� π−ϵ

ϵ
dz e2λ2+λ3−2ϕ

�
Rκ3

+
2TO6−

8π2R
eA+3λ3−ϕO(E2)O6−

##
z=ϵ

+
TO8+

2πR
e−A+2λ2+3λ3−ϕO(E2)O8+

##
z=π/2

, (7.46)

in which the quadratic terms in the energy densities/curvature, O(E2)i, arise from the α′

corrections, Lα′2,i.
We are now prepared to study whether 4-derivative corrections can circumvent the

classical no-go theorem. According to equation (7.46), the only solution is AdS, unless the
O(E2)i terms are sufficient to offset the integrated curvature. However, compensating a
classical term with α′ corrections while maintaining low energy densities and curvatures
appears challenging. Nonetheless, warping effects might play a crucial role, potentially
allowing a balance between terms of different orders in α′. This requires a more detailed
discussion.

Starting from (7.42) and the equivalent expression (7.45) for B(3)

O6− , we obtain�� π−ϵ

ϵ
dz e−4A+2λ2+3λ3−2ϕ

�
R4 = −

�� π−ϵ

ϵ
dz e−2A+2λ2+λ3

�
F 2
0

−
� π−ϵ

ϵ
dz e2A−2λ2+λ3f2

2 − 2TO6−

8π2R
eA+3λ3−ϕ

�
1 +O(E2)O6−
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z=ϵ
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− TO8+

2πR
e−A+2λ2+3λ3−ϕ

�
1 +O(E2)O8+

� ##
z=π/2

, (7.47)

which also includes classical source terms. For E2 ≪ 1, this equation suggests that

2|TO6− |
8π2R

eA+3λ3−ϕ
##
z=ϵ

≳ TO8+

2πR
e−A+2λ2+3λ3−ϕ

##
z=π/2

(7.48)

for de Sitter, which is why the α′ corrections for the O8 can be ignored in following analysis.
Using a similar result derived from (7.42) and the corresponding expression (7.45) for B(2)

O6− ,
we establish the de Sitter condition

2|TO6− |
8π2R

eA+3λ3−ϕ
##
z=ϵ

≳
� π−ϵ

ϵ
dz e3λ3−2ϕ . (7.49)

Given that supergravity is considered reliable throughout the integration interval, it is
essential that both the string coupling and the energy densities remain weak across this
domain, i.e.,

E ≪ 1 , eϕ ≪ 1 ,
e2A

R2
(ϕ′)2 ≪ 1 . (7.50)

The latter relation pertains to the energy density of the dilaton field. Additionally, the
string-frame curvatures must also be small to ensure control; thus, terms entering curvature
invariants such as the Ricci scalar must satisfy the following relation,

e2A

R2
(A′)2 ≪ 1 ,

e2A

R2
(λ′

3)
2 ≪ 1 , (7.51)

for all z ∈ [ϵ, π− ϵ]. To meaningfully discuss an effective supergravity solution, it is crucial
that the relevant length scales are large in string units. This requirement is particularly
important along the z interval, where (7.22) implies that

e−AR ≫ 1 , ∀z ∈ [ϵ, π − ϵ] , (7.52)

using the conditions (7.51). From these relations, it follows that |(eA+3λ3−2ϕ)′|/R ≪
e3λ3−2ϕ within the interval where supergravity is reliable, leading to

1
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##
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− eA+3λ3−2ϕ
##
zmin

�
≪

� π−ϵ

ϵ
dz e3λ3−2ϕ , (7.53)

where zmin ∈ [ϵ, π − ϵ] corresponds to the global minimum of eA+3λ3−2ϕ. Furthermore,
given that

1

R
eA+3λ3−2ϕ
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≤ 1

R(π − 2ϵ)

� π−ϵ

ϵ
dz eA+3λ3−2ϕ ≪

� π−ϵ

ϵ
dz e3λ3−2ϕ , (7.54)

we deduce
1

R
eA+3λ3−2ϕ

##
z=ϵ

≪
� π−ϵ

ϵ
dz e3λ3−2ϕ . (7.55)

From equation (7.49), which posits that classical terms can be balanced with α′ corrections,
and equation (7.55), which provides a condition based on the reliability of supergravity
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within the specified interval, we derive that eϕE2|z=ϵ ≫ 1. This result, however, stands in
stark contradiction to the constraints outlined in equation (7.50).

In the CDT2 model, attempts to balance classical bulk terms with α′ corrections arising
from O6 holes do not yield a viable dS solution where string coupling, curvature and energy
densities remain small throughout the bulk spacetime. The α′ corrections are insufficient
to compensate for the negative contributions from the classical terms. Furthermore, large
warping effects are untenable, since they invariably lead to large curvature and energy
densities within the bulk. Notably, this conclusion is reached independently of the specifics
of the 4-derivative corrections.

Consequently, in scenarios where singularities are small and classical supergravity re-
mains reliable over spacetime, (7.36) approximately holds. Even when considering 4-
derivative or higher-order corrections to the O-plane source terms, the dS no-go theorem
is not violated.

7.2.5 Non-standard sources

In the previous sections, we argued that the CDT2 model [75] is unlikely to support dS
vacua within a regime where classical SUGRA is considered reliable. Nevertheless, [75]
claims to have identified a numerical dS solution within this framework. This finding
implies that at least one of the assumptions fundamental to our analysis may have been
violated. In particular, we assumed that singular holes around the O-planes are sufficiently
small to allow a meaningful description of classical SUGRA over most of the spacetime;
the "Small-Hole Condition" discussed in Section 2.4. Furthermore, we have chosen the
source terms in the equations of motion to reflect either classical or slightly α′-corrected
contributions from the O-plane action, as detailed in Section 2.3. It is crucial to clarify that
satisfying these criteria alone does not prove the non-perturbative existence of a SUGRA
solution; rather, they serve as essential validity checks – necessary but not sufficient to
ensure a reliable solution.

We want to study these assumptions within the CDT2 model to see if it is possible
to circumvent the no-go theorem against (almost) classical dS solutions by considering
compactifications with larger singular regions or source terms that differ significantly from
the conventional O-plane action. However, these scenarios are generally regarded as un-
physical, since they violate the self-consistency of SUGRA, or the physical validity of the
sources becomes questionable.

The dS solution reported in [75] appears to involve non-standard sources. In particular,
the behavior of the fields near the (anti-)O6− is unconventional. The warp factor e−4A(z)

either remains finite or vanishes, while the exponential expression of the dilaton, eϕ, to-
gether with eλi , decays at an unexpected rate as one approaches the O6-planes, leading to
atypical irrational exponents that differ from classical SUGRA predictions. These anoma-
lies suggest a break from conventional models, potentially undermining the credibility of
this particular solution.

In [47, App. B], we have analytically replicated this behavior observed near the O6-
plane by solving the equations locally using a method similar to that used in [193, App.
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B] for a different compactification scenario. Our results are consistent with the behavior
reported in [75]. We assume a power-law dependence for the fields near O6, as suggested in
the latter reference. However, the possibility of boundary conditions that exhibit logarith-
mic scaling, and thus potentially more complex behavior, cannot be completely ruled out.
For simplicity, we specify the source location at z = 0 to ensure consistency throughout
our analysis without compromising generality. Under this assumption, both the dilaton
field and the warp factors adhere to

e−4A ∼ z−F+ 1
3

√−15F 2+48FM−60M2−24F+24M+12 , eϕ ∼ zF ,

eλ2 ∼ zM , eλ3 ∼ z
1
3
(2F−2M+1) ,

(7.56)

characterized by parameters M and F , depending on f2. In cases where limz→0 f2 → 0,
we obtain
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whereas for limz→0 f2 remaining finite, we conclude
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(7.58)

The irrational exponents in (7.56) indicate deviations from conventional models. Typically,
an O6-plane in flat space would yield

for z → 0 : e−4A ∼ z−1 , eϕ ∼ z
3
4 , eλ2 ∼ z , eλ3 ∼ z

1
2 . (7.59)

Identifying the specific delta-function sources required to generate the unconventional
boundary conditions outlined in (7.56), and confirming that these sources are inconsis-
tent with any known object in string theory, is crucial to further validate or refute the
physical plausibility of these solutions under standard interpretations of string theory.
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8 Summary and outlook

Our universe exhibits characteristics of a dS spacetime during certain epochs, notably the
inflationary period and the ongoing accelerated expansion. For string theory to effectively
model our observable universe, it must successfully integrate these de Sitter phases. This
thesis has explored this requirement by studying dS solutions within the classical regime of
string theory. In this section, we summarize our results and identify promising directions
for future research.

In section 4, we used the 10D equations to derive no-go theorems that constrain the
existence of classical dS solutions in spacetime dimensions d ≥ 3. The following analysis
of the field and source content in type II compactifications revealed a pronounced scarcity,
especially in higher dimensions. This shortness often satisfies the assumptions underlying
our no-go theorems, thus naturally excluding dS solutions in d ≥ 8. For dimensions
d = 7, 6, 5, viable configurations are severely constrained, especially when considering
SUSY-preserving sources. Consequently, only a few source configurations remain viable in
d = 6, 5, typically involving at most two intersecting source sets. This observation supports
two conjectures in [35, 45] that exclude dS solutions in d ≥ 5. Thus, d = 4 emerges as the
highest feasible dimension for dS solutions, which represents an interesting area for further
exploration.

This discussion opens up several avenues for future research. A focus on SUSY-
preserving configurations could refine the search for classical dS solutions, particularly
in higher dimensions where constraints on sources and fluxes are more stringent than in
d = 4, a dimension known for its complexity. Future studies could aim to validate or re-
fine the conjectures presented in [35,45]. In addition, extending this research to a stability
analysis of classical dS solutions could shed light on whether the admissible solution classes
might be perturbatively unstable [49,52]. Another compelling direction would be to explore
the conjecture proposed in [194] that accelerated cosmological expansion is unattainable in
the asymptotic regions of field space unless metastable dS vacua exist in higher dimensions.

In Section 5 we revisited established no-go theorems in the context of a d-dimensional
effective theory derived from type II compactifications. For each theorem, we computed
the value of c in the equation (5.2), which should be compared with the bound proposed
by the Trans-Planckian Censorship Conjecture. Notably, for dimensions 4 ≤ d ≤ 10, all
derived values either meet or exceed the bound, with multiple instances of saturation.
This agreement is particularly striking because our analysis was restricted to supergravity,
independent of the cosmological principles integral to the TCC. Furthermore, in d = 3, our
newly derived no-go theorem leads to a c-value that violates the TCC bound, underscoring
the unique topological nature of gravity in this dimension. This discrepancy initiates
a broader discussion about the applicability of swampland conjectures in d = 3, which
remains an open question.

These studies set the stage for several interesting future research directions. One par-
ticularly promising avenue is to explore the unique properties of gravity in d = 3. In-
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vestigating other specific examples in d = 3 that challenge the swampland conjectures,
in particular the TCC and the de Sitter conjecture, could prove enlightening. The type
IIA scale-separated AdS solutions discussed in [131,132] may provide relevant case studies.
Another compelling path is the detailed analysis of the relation between the TCC bound
and other proposals within the swampland [125]. Such an analysis could clarify how these
different bounds overlap and differ, thus improving our understanding of their implications
for cosmological models. This could be particularly important for the development of vi-
able quintessence scenarios.

In our analysis of negative scalar potentials in Section 6, which are particularly rel-
evant for AdS solutions, we found structural similarities with positive potentials. This
observation suggests that analytical methods developed for positive scalar potentials could
be effectively adapted to negative ones. Our models focus on contracting spacetimes,
consistent with the Anti-Trans-Planckian Censorship Conjecture, which redefines our con-
ventional understanding of contracting universes by emphasizing the need to preserve the
validity of effective theory. We established a lower bound for negative potentials and ex-
plored its implications for their asymptotic behavior. In addition, we derived asymptotic
conditions on the derivatives of the potential and studied their consequences and holo-
graphic implications.

Our recent discoveries, in particular the new condition on the second derivative of
the potential (6.38) and the flexible mass bound (6.41) in an AdS solution, require fur-
ther exploration of their broader implications. We observed that mass spectra are gener-
ally more stable in supersymmetric configurations and exhibit greater variability in non-
supersymmetric scenarios. A detailed study of the evolution of the mass spectrum across
the field space, especially towards AdS critical points, could provide profound insights.
Given the prevalence of multi-field models in typical string compactifications, extending
our analysis to multiple fields is crucial. A comprehensive study of these extensions, fur-
ther characterizing scalar potentials in multi-field settings, and a broader application of
the ATCC would be intriguing.

In the context of the CDT1/2 models [72, 75] discussed in Section 7, we have studied
the feasibility of dS vacua in flux compactifications with O8/D8 and O6/D6. Our analysis
shows that none of these models support classical metastable dS solutions. We sought to
maintain control over the α′ expansion and to obey the Small-Hole Condition [96], ensuring
that any singularity near the O-planes that would perturb supergravity is small relative
to the size of the compact space. This approach preserves the simplicity of the original
models, while introducing "almost classical" scenarios that include α′ corrections at the
4-derivative level to classical source terms, excluding higher-order corrections and those in
the bulk. Our study of how these 4-derivative corrections affect the classical no-go results
shows conclusively that dS vacua remain unattainable, unaffected by these modifications
in both the original and generalized models. These results imply that the numerical dS
solutions identified in [72,75] likely originate from unphysical sources that are incompatible
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with the conventional O-planes in string theory.
While our study highlights the limitations of the almost classical dS scenario within

these models, the implications of these findings warrant further investigation in other type
II flux compactifications. Future studies should explore scenarios where classical conditions
indicate either a Minkowski solution or a finely-tuned scenario where various classical terms
nearly cancel out in the vacuum energy. The 4-derivative corrections should be able to
raise the vacuum energy to a positive value without introducing instabilities. It is also
imperative to derive the backreacted analogues in models where our no-go arguments were
based on a smeared limit. Moreover, our results contribute to the emerging consensus
that dS solutions are likely unattainable in perturbative regimes of string theory where the
scalar potential is approximated by a few leading α′ terms [40, 96, 103]24. This consensus
underscores the need for further investigation of the universal constraints that string theory
imposes on cosmological models.

24See also [42] for possible counterexamples.
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Appendices

Appendix A Standard formulation of type II string theory

In this appendix, we elucidate the compatibility of the democratic action [89, 90] with
the standard formulations of (massive) type II SUGRA [3, 39, 74] previously used in this
thesis. Specifically, we address the nuances associated with spacetime-filling fluxes. Given
that the source content remains unchanged, it will not be further discussed in this section.
To be consistent with the conventional formulations of type II SUGRA, it is necessary to
break the democracy of the RR fluxes via the self-duality conditions defined in equation
(2.19). The 10D NSNS flux is denoted by H10

3 , whereas the RR fluxes specified in equation
(2.16) are given by F 10

q for 0 ≤ q ≤ 5, therefore excluding field strengths for q ≥ 6. In
dimensions d > 3, the fluxes F 10

0,1,2 = F0,1,2 are purely internal, both in their components
and coordinate dependencies, while H10

3 and F 10
3,4,5 may include d-dimensional components.

The requirement of maximal symmetry mandates that only the spacetime-filling fluxes Hd
3

and F d
q are non-zero for q ≥ d. We formulate this by expressing H10

3 = Hd
3 + H3 and

F 10
q = F d

q + Fq.
To elaborate further, by definition, F d

q with q ≥ d is parallel to the external spacetime,
that is vold, resulting in q − d legs along the internal directions. To accommodate these
fluxes, we introduce internal field strengths F10−q, where ∗10−dF10−q compensates for the
additional degrees of freedom. More specifically, the internal fluxes F10−q and H7 are
defined as

F d
q = (−1)

q(q+1)
2 ∗10F10−q = (−1)

q(q+1)
2 (−1)(10−q)d vold ∧ ∗10−dF10−q ,

Hd
3 = ∗10H7 = (−1)d vold ∧ ∗10−dH7 .

(A.1)

This convention aligns with the self-duality relation for F 10
5 , leading to

|F 10
q |2 = |Fq|2 − |F10−q|2 , |H10

3 |2 = |H3|2 − |H7|2 . (A.2)

In this framework, the bosonic part of the 10D bulk action in (2.17), which remains con-
sistent with the equations of motion outlined in Section 2.2, is captured by

Sbulk =
1

2κ210

�
d10x

√−g
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�
R+ 4(∂ϕ)2 − 1

2
|H3|2

�
− 1

2

4!
q=0

|F 10
q |2 − 1

4
|F 10

5 |2
 ,

(A.3)
in the string frame. It is important to note that the democratic formalism, especially
concerning the flux F 10

5 , cannot be entirely disregarded. The above equation (A.3) includes
a pseudo-action for F 10

5 , necessitating the imposition of the self-duality relation,

F 10
5 = −∗10F 10

5 ⇒ |F 10
5 |2 = 0 , (A.4)

on-shell. In addition, we detail our compactification ansatz for the metric and the dilaton.
The 10-dimensional metric (2.15), in the absence of any warp factor (smeared approxima-
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tion), is assumed as

ds210 = gµν(x)dx
µdxν + gmn(x, y)dy

mdyn . (A.5)

At this point, without going into detail, we briefly revisit the dilaton equation of motion,
as described in equation (2.27),
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�
= 0 , (A.6)

in the smeared limit, while the trace-reversed Einstein equation is given by
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(A.7)

The 10D Einstein trace is derived as follows,
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2
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3 |2 − e2ϕ
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q=0

(5− q)|Fq|2 + 18∇2ϕ− 20(∂ϕ)2 = 0 . (A.8)

We redefine the source energy-momentum tensor TMN using the orthonormal coframe
discussed in Section 3 and apply the transformation TAB = eMAe

N
BTMN . The metric, as

detailed in equation (A.5), facilitates the following decomposition,

TAB = δαAδ
β
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(A.9)

and Ta⊥i
b⊥i

= eMA⊥i
eNB⊥i

TMN = 0, where α, β correspond to the d-dimensional flat
indices, while the indices {a||i , a⊥i

} pertain to the (10−d)-dimensional internal directions,
either parallel or transverse to each source set i. From the equation (A.7) and
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= −gµν |F10−q|2 , (A.10)

we deduce the d-dimensional Einstein equation,
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Appendix B Résumé de la thèse

B.1 Vers une théorie unifiée

Dans le paysage de la physique théorique du XXe siècle, deux théories fondamentales se
sont distinguées par leur vérification expérimentale rigoureuse et leurs profondes implica-
tions théoriques : la relativité générale et le modèle standard de la physique des particules.
De façon remarquable, leurs prédictions n’ont, jusqu’à ce jour, jamais été mises en défaut
par aucune expérience connue. La relativité générale a transformé notre compréhension de
la gravité en tant que propriété géométrique de l’espace-temps, fournissant une explication
sophistiquée aux phénomènes cosmologiques. Au niveau quantique, le modèle standard
fournit un cadre théorique complet, qui repose sur la théorie des champs quantiques relati-
vistes, et décrit l’interaction électromagnétique ainsi que les forces nucléaires faible et forte
entre les particules élémentaires. Au prix de l’étendre pour y inclure des neutrinos mas-
sifs, ce modèle permet de reproduire le spectre des particules tel qu’on l’observe jusqu’aux
échelles d’énergie atteignables actuellement – soit plusieurs milliers de gigaélectronvolts
(GeV) – et se montre fiable pour expliquer les phénomènes physiques bien en dessous de
l’échelle de Planck.

Malgré leurs remarquables succès, ces théories laissent d’importantes questions en sus-
pens et sont confrontées à de sérieux défis lorsqu’elles sont étendues au-delà de leurs do-
maines de validité respectifs. La relativité générale et le modèle standard, en tant qu’en-
tités distinctes, fournissent des descriptions incompatibles lorsque les effets quantiques et
gravitationnels dominent, comme à proximité des singularités des trous noirs et dans les
conditions de l’Univers primordial. Le modèle standard s’y révèle inadapté car il n’incor-
pore aucune description de l’interaction gravitationnelle, et n’est pas en mesure d’expliquer
certaines observations cosmologiques, telles que les anomalies gravitationnelles que l’on at-
tribue généralement à l’existence de matière noire, la densité d’énergie noire, ou encore
l’expansion accélérée de l’Univers.

Bien que le modèle standard décrive efficacement trois des quatre interactions fonda-
mentales à basse énergie, il souffre de lacunes théoriques qui compromettent son statut
de théorie complète, au cœur desquelles on retrouve sa dépendance en une série de para-
mètres empiriques, tels que les constantes de couplage des particules élémentaires. Cela
pose ce qu’il convient d’appeller un problème de « naturalité », car ces paramètres pré-
sentent d’importantes variations de magnitude qui ne sont pas prédites par la théorie, mais
plutôt ajustées pour correspondre aux résultats expérimentaux. De telles incohérences ont
conduit à l’émergence d’une idée selon laquelle il existerait une structure sous-jacente plus
fondamentale que le modèle standard lui-même, peut-être régie par des propriétés de sy-
métrie que le cadre actuel n’explique pas de manière satisfaisante.

Une voie de recherche qui dépasse le modèle standard et améliore notre compréhension
des interactions fondamentales est celle des théories de grande unification (GUT, acronyme
de l’anglais grand unification theories). Celles-ci proposent qu’au-delà d’une certaine échelle
d’énergie, connue sous le nom d’« échelle GUT », les forces électromagnétique, faible et forte
puissent converger en une force unique régie par un simple groupe de Lie. Le niveau d’éner-
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gie précis auquel l’unification pourrait se produire, en supposant qu’elle se réalise dans la
nature, dépend des lois de la physique qui ont court à des échelles qui sont actuellement
inexplorées, car hors de portée de nos capacités expérimentales. En supposant l’existence
d’une vaste gamme d’énergies sans nouvelle physique (souvent appelée « désert ») et que
la théorie unificatrice soit supersymétrique (voir ci-dessous), l’énergie d’unification est es-
timée à environ 1016 GeV25. Cette unification potentielle ferait du modèle standard une
théorie effective, limite de basse énergie d’une théorie plus fondamentale, qui distinguerait
les différentes forces observées dans la nature à mesure que le niveau d’énergie diminue.

Une « théorie du tout » visant à unifier les forces électrofaible et forte avec la gravité
nécessite un niveau d’énergie nettement plus élevé, compte tenu de l’absence manifeste
de forces gravitationnelles dans le modèle standard. Aux échelles d’énergie généralement
explorées en physique des particules, la gravité reste négligeable, ses effets ne devenant com-
parables à ceux de la physique quantique qu’au voisinage de l’échelle de Planck, Mp ≈ 1019

GeV. Par conséquent, un modèle qui unifie toutes les interactions fondamentales, y compris
la gravité, n’est pas considéré comme essentiel aux niveaux d’énergie couramment étudiés.
Toutefois, ce point de vue change radicalement dans le contexte de densités d’énergie ou de
courbures de l’espace-temps extrêmement élevées, comme celles que l’on pourrait rencon-
trer dans les trous noirs ou dans l’Univers primordial, où la théorie quantique interagit avec
de puissants champs gravitationnels. Le principal défi que pose l’incorporation de la gravité
dans un modèle unifié réside dans la nature (perturbativement) non-renormalisable de la
relativité générale, gouvernée par l’action d’Einstein-Hilbert. Par conséquent, la quantifi-
cation naïve d’un tel modèle devrait mener à des amplitudes divergentes, à moins d’une
compensation inattendue des infinis. Cette limitation ne met pas seulement en évidence
l’exclusion de la gravité du modèle standard en raison des différences d’échelles, mais éga-
lement la nécessité de construire une nouvelle théorie complète qui traite la gravitation
de manière quantique et de façon analogue aux autres interactions fondamentales – une
théorie de la « gravité quantique » (GQ).

L’une des principales énigmes de la cosmologie moderne, connue sous le nom de « pro-
blème de la constante cosmologique », est l’écart important entre la valeur de la constante
cosmologique prédite par la théorie et sa valeur observée, qui lui est inférieure de plu-
sieurs ordres de grandeur. Des mesures précises, qui s’accordent avec le modèle standard
de la cosmologie (ΛCDM), suggèrent que l’univers connaît actuellement une expansion
accélérée. Sa géométrie peut donc être localement modélisée par un espace-temps de de
Sitter (dS), solution maximalement symétrique des équations d’Einstein en présence d’une
constante cosmologique strictement positive. L’expansion universelle peut ainsi être vue
comme l’effet d’une telle constante, notée Λ, avec une échelle de masse correspondante,
MΛ =

√
Λ ≈ 10−12 GeV, plusieurs ordres de grandeur en-dessous de la masse de Planck.

L’origine de cette échelle étonnamment petite et des propriétés de l’« énergie sombre »
qu’on lui associe souvent, reste insaisissable et pose d’importants défis conceptuels. Ceux-

25L’accélérateur de particules le plus avancé, le grand collisionneur de hadrons (LHC, pour large hadron
collider), atteint des énergies allant jusqu’à 105 GeV dans les collisions proton-proton. Cela place l’échelle
hypothétique GUT à quelques ordres de grandeur seulement sous de l’échelle de Planck de 1019 GeV, et
donc bien au-delà de la capacité opérationnelle de n’importe quel collisionneur actuel.
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ci peuvent dépasser les cadres théoriques actuels, nécessitant éventuellement une théorie
de la gravité quantique ou des dimensions spatiales supplémentaires.

Dans le cadre des discussions sur la structure sous-jacente du modèle standard, un
autre problème théorique est celui du boson de Higgs, dont la découverte a été cruciale
pour valider le mécanisme de brisure de la symétrie électrofaible. Avant sa confirmation
expérimentale en 2012, la masse prédite du boson de Higgs nécessitait un ajustement à des
valeurs extrêmement précises pour éviter d’importantes corrections quantiques susceptibles
de déstabiliser l’échelle électrofaible, un problème connu sous le nom de « problème de la
hiérarchie de Higgs ». Un tel niveau d’ajustement est considéré comme artificiel. La su-
persymétrie propose un cadre théorique qui pourrait résoudre ce problème en introduisant
des superpartenaires pour chaque particule, équilibrant ainsi naturellement les corrections
quantiques et stabilisant la masse du boson de Higgs.

La supersymétrie (SUSY) est une extension robuste des symétries du modèle standard
de la physique des particules : elle se présente sous la forme d’une symétrie globale addi-
tionnelle qui étend le groupe de Poincaré en y ajoutant des générateurs fermioniques dans
la super-algèbre de Lie correspondante, contournant ainsi les hypothèses du théorème no-go
de Coleman-Mandula. Dans l’espace-temps à quatre dimensions, le nombre de générateurs
de supersymétrie, noté N , varie de un à quatre pour les champs de spin un, et jusqu’à huit
pour les particules de spin deux telles que le graviton. Dans les modèles supersymétriques,
les particules sont regroupées en multiplets contenant à la fois des fermions et des bosons,
généralement en nombre égal et avec des masses identiques, ce qui garantit que chaque
particule est appariée avec un superpartenaire dont le spin diffère d’un demi. Cependant,
cette symétrie exacte n’est pas observée aux énergies typiques du modèle standard, ce qui
suggère qu’elle doit être brisée à des échelles d’énergie plus élevées.

Malgré les complications introduites par la SUSY, notamment les multiples schémas de
rupture et la prédiction de superpartenaires qui n’ont pas encore été observés, ces exten-
sions présentent des avantages significatifs. La symétrie supplémentaire dans les théories
de jauge supersymétriques impose des contraintes strictes, de sorte que les corrections
quantiques sont généralement plus faciles à gérer en raison de la compensation entre les
contributions bosoniques et fermioniques. Un autre atout de la SUSY est qu’elle permet
de préciser certaines propriétés des théories GUT : les trois constantes de couplage du mo-
dèle standard convergent exactement vers un point unique lorsqu’elles sont évaluées à des
échelles d’énergie plus élevées. Ces propriétés attrayantes ont fortement motivé l’adoption
de la SUSY dans le modèle standard.

Considérer la SUSY comme une symétrie locale conduit directement à des théories de
supergravité (SUGRA), plus contraignantes que la relativité générale conventionnelle. No-
tamment, sur un espace-temps à onze dimensions, la théorie est définie de manière unique
par ses symétries. En dimension inférieure, différentes théories de supergravité peuvent être
considérées, possiblement reliées entre elles. Bien que ces théories permettent d’étendre la
SUSY dans un cadre qui inclut la gravité, leur renormalisation constitue à nouveau un
sérieux défi. Elles offrent néanmoins une voie distinctive et prometteuse menant à une
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théorie potentielle de la GQ, en particulier dans les dimensions supérieures.

Il convient cependant de remarquer que la physique au-delà du modèle standard n’est
pas intrinsèquement liée à la théorie de la GQ, en particulier si l’on considère les échelles
concernées. Comme nous l’avons déjà stipulé, les effets de la GQ deviennent significatifs
à l’échelle de Planck, alors que les expansions du modèle standard se concentrent géné-
ralement sur les phénomènes à l’échelle électrofaible26. Néanmoins, du point de vue de
l’unification, ces deux domaines devraient finir par se recouper. De plus, être en mesure
de développer une théorie de la GQ qui inclut également certains groupes de jauge offre
la possibilité qu’à des énergies plus faibles, certaines extensions du modèle standard soient
observables. La théorie en question est bien sûr la théorie des cordes [2–6], que nous intro-
duisons dans le paragraphe suivant.

B.2 Théorie des cordes

La théorie des cordes se présente aujourd’hui comme un cadre formel pour une théorie
unifiée de la gravité quantique aux profondes implications, dans laquelle les constituants
élémentaires ne sont pas des particules ponctuelles, mais des « cordes » à une dimension,
intégrées dans un espace-temps de dimension supérieure (espace-cible ou target space). La
masse et la charge des particules sont définies par les oscillations de ces cordes excitées
dans différents modes de vibration. Ces dernières fournissent également une solution aux
divergences ultraviolettes (UV) rencontrées dans les théories de particules ponctuelles, qui
se résolvent ici naturellement par la nature étendue des cordes. Par ailleurs, le spectre
de la théorie des cordes contient intrinsèquement un tenseur symétrique de rang deux, le
graviton, une particule quantique messagère de l’interaction gravitationnelle. Cette pro-
priété implique qu’une fois quantifiée, cette théorie intègre naturellement la gravité parmi
ses modes de masse nulle, tout en contournant les problèmes de renormalisabilité – les
amplitudes quantiques des cordes étant finies.

Dans l’approche perturbative de la théorie des cordes, la supersymétrie est intégrée au
modèle comme symétrie de l’espace-cible, qui comprend donc à la fois des degrés de liberté
bosoniques et fermioniques. Cette symétrie est importante car elle garantit que toutes les
théories des cordes cohérentes sont exemptes d’anomalies, mais elle requiert de travailler
avec un espace-temps à dix dimensions. Parmi ces modèles, on trouve cinq théories des
supercordes, dont les types IIA et IIB, qui sont caractérisés par la présence de N = 2

générateurs de supersymétrie. Les théories de cordes hétérotiques de type I et II, quant à
elles, ne font appel qu’à un seul générateur de supersymétrie, N = 1 et se distinguent par
leur groupe de jauge, qui sont respectivement E8 × E8 et SO(32).

Dans les régimes de basse énergie et de couplage faible27, ces théories s’apparentent
à des théories classiques de supergravité, bien que corrigées par des dérivées d’ordre su-
périeur et des effets quantiques perturbatifs et non-perturbatifs. Il faut pour cela que les
modes massifs de la théorie de base soient suffisamment « lourds » pour pouvoir être né-

26Notons que le concept d’species scale peut modifier considérablement la relation entre ces échelles [1].
27Pour que l’approximation de la supergravité soit valable, la constante de couplage des cordes, gs, doit

être petite afin que la description théorique reste perturbative.
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gligés, typiquement au-delà d’une échelle de masse fixée par la longueur des cordes, ls. Il
est remarquable qu’il s’agisse de la seule constante universelle de la théorie des cordes qui
n’ait pas été fixée. Malgré l’absence d’une justification concluante, elle est communément
associée à l’échelle de Planck. De plus, ces théories effectives, de même que la « théorie
M » à onze dimensions28, sont reliées entre elles par des dualités : elles sont donc consi-
dérées comme des représentations diverses d’une théorie unifiée soumise à des contraintes
différentes.

Établir le lien avec l’Univers observable, en particulier la capacité de la théorie des
cordes à reproduire les propriétés physiques connues dans sa limite de basse énergie, est l’un
des principaux défis de cette approche. Alors que l’élaboration d’une théorie des supercordes
cohérente requiert dix dimensions d’espace-temps, seules quatre de ces dimensions sont
observées à l’échelle macroscopique. Les six dimensions restantes sont supposées compactes
et repliées sur elles-mêmes. Elles forment donc une variété lisse et compacte, généralement
appelée M6, et qui ne deviendrait observable qu’à des niveaux d’énergie supérieurs à
ceux actuellement atteints par l’expérience. Par conséquent, M6 demeure indétectable, ce
pourquoi nous l’appelons « espace interne ». L’espace-cible à dix dimensions est donc la
variété obtenue par le produit M4 ×M6. En guise d’exemple, le produit de six cercles T 6

est une variété particulièrement simple où chaque paramètre géométrique, tel que le rayon
moyen, introduit une échelle de compactification supplémentaire, Mc. Des configurations
plus compliquées incluent les variétés de Calabi-Yau, qui sont favorisées afin de préserver
la supersymétrie N = 1 dans la théorie effective à quatre dimensions.

L’on obtient la limite de basse énergie de la théorie des cordes au moyen d’une réduction
dimensionnelle afin d’obtenir une description effective à quatre dimensions. Une étape
importante dans le développement de cette théorie effective est l’identification des modes
« légers » (ou de masse nulle) de la théorie complète, qui se manifestent typiquement
comme de petites fluctuations autour d’un champ de fond (on utilise souvent le vocable
anglais background) stable ou d’un état de vide du potentiel. Seuls ces modes sont alors
retenus dans la théorie, à condition que cette approche sélective maintienne la cohérence.
Le résultat est une théorie effective robuste de basse énergie, la supergravité à quatre
dimensions dans le cas présent. Il est essentiel de procéder avec prudence : il faut d’abord
identifier les modes légers, puis déterminer la possibilité d’éliminer les interactions avec
les modes massifs avant de tronquer le spectre. Pour illustrer le processus de réduction
dimensionnelle à une théorie effective à quatre dimensions, il est instructif d’examiner un
exemple simple dans lequel les modes de masse nulle jouent un rôle central.

Le concept de réduction dimensionnelle a vu le jour dans les années 1920 dans les
travaux de Kaluza et Klein. Considérons une théorie des champs définie sur la variété
M4 × S1, où S1 représente un cercle de rayon R muni d’une coordonnée périodique que
nous notons x5. Dans ce cas, les champs peuvent être développés en série de Fourier dans
la dimension compacte, chaque terme de la série ∼ e−i(n/R)x5 représentant des moments
quantifiés, n/R. Toute valeur du moment contribue à la masse mn des modes correspon-

28Les objets fondamentaux de la « théorie M » sont des objets étendus de dimension supérieure à un,
connus sous le nom de M-branes. La théorie effective de basse énergie est alors considérée comme la
supergravité à onze dimensions.
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dants dans la théorie effective à quatre dimensions, mn
2 ∼ (n2/R2), en supposant que

les champs sont sans masse dans la théorie originelle à cinq dimensions. L’action de cette
dernière peut alors être intégrée sur la dimension compacte pour déduire une description
effective en dimension inférieure. Cela revient à dire que les champs sont indépendants des
coordonnées internes. Les modes de Kaluza-Klein plus élevés (correspondant à des valeurs
plus élevées de n) contribuent de moins en moins à l’action à mesure que n grandit. En
outre, un rayon plus petit réduit la contribution des modes avec n ̸= 0. Ce processus est
connu sous le nom de « réduction de Kaluza-Klein ».

Revenons à présent à la supergravité à quatre dimensions. Pour être cohérente avec
(les extensions du) modèle standard, cette théorie effective inclut typiquement un seul
générateur de supersymétrie (N = 1), cette dernière devant être brisée à une échelle bien
inférieure à l’échelle de compactification. Par conséquent, les compactifications de cordes
sont essentielles pour aligner l’espace-temps théorique à dix dimensions avec le monde
observable.

Cependant, ce processus pose plusieurs défis conceptuels, notamment en ce qui concerne
la stabilisation des « champs de modules ». Ces scalaires sans masse, dénotés par φi dans
l’action effective (bosonique) à quatre dimensions

S(4) =

�
d4x

√−g4

�
M2

p

2
R4 − 1

2
Gij∂µφ

i∂µφj − V (φ)

�
, (B.1)

sont essentiels pour définir des propriétés telles que le volume de l’espace interne. Cepen-
dant, leur potentiel effectif, V (φ), reste plat en raison de leur absence inhérente de masse.
Par conséquent, leurs valeurs moyennes dans le vide et les paramètres physiques qu’ils
contrôlent restent indéfinis, ce qui constitue un obstacle important au développement de
modèles réalistes. L’existence de champs de modules contredit les observations empiriques,
manifestant le besoin urgent de stratégies efficaces de stabilisation de ces modules à travers
différentes compactifications de cordes.

Une approche prometteuse pour résoudre ce problème est celle des « compactifications
de flux » [7–9], où des flux de background sont capables de générer un potentiel V (φ) pour
les champs de modules. Bien que cette méthode permette souvent de stabiliser avec succès
de nombreux configurations de champs de modules, elle ne les traite pas tous de manière
exhaustive, ce qui requiert des mesures supplémentaires telles que des corrections quan-
tiques du potentiel effectif, qui s’avèrent difficiles à calculer avec précision. En outre, les
potentiels générés par ces flux, ainsi que les effets des structures locales, peuvent involon-
tairement déstabiliser certains modules, ce qui pourrait entraîner l’apparition de tachyons
dans la théorie à quatre dimensions.

Ces complexités, ainsi que les subtilités des conditions de quantification des flux,
rendent la construction explicite de modèles réalistes techniquement compliquée, en par-
ticulier dans les scénarios dépourvus de propriétés « protectrices » telles que la supersy-
métrie, qui pourraient empêcher la présence de tachyons. La recherche d’une stabilisation
des modules qui soit totalement stable et réaliste est semée d’embûches, ce qui remet en
perspective le défi permanent que représente la mise en correspondance des théories des
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cordes à dix dimensions avec dans les phénomènes observables dans notre Univers.

Les cordes hétérotiques sont importantes car elles comprennent des groupes de jauge
non-abéliens, qui sont utiles pour construire des théories de grande unification et peuvent
potentiellement correspondre aux interactions de jauge du modèle standard. Cependant,
la réalisation de ce programme ambitieux reste incomplète. Entretemps, la théorie des
cordes de type II, qui présente généralement des champs de jauge abéliens dans son spectre
perturbatif, a gagné en importance à la suite des progrès réalisés dans le domaine de la
physique non-perturbative, en particulier la correspondance AdS/CFT. La possibilité d’y
introduire des groupes de jauge non-abéliens par le biais d’objets non-perturbatifs appelés
« D-branes » a fait des théories de type II un cadre plus adaptable et prometteur pour
modéliser efficacement le contenu en champs, les groupes de jauge et les couplages. Pour
cette raison, cette thèse se concentrera principalement sur la supergravité de type II.

Parmi les objets décrits par la théorie des cordes de type II, initialement définie per-
turbativement, les D-branes sont des objets étendus indispensables, conçus comme des
membranes solitoniques ou des hypersurfaces de différentes dimensions qui évoluent au
cours du temps. Ces branes sont en mesure de supporter les extrémités des cordes ou-
vertes soumises à des conditions au bord de Dirichlet : elles peuvent ainsi être mises en
mouvement grâce aux oscillations perturbatives des cordes qui leur sont attachées. En su-
pergravité classique, la dynamique des D-branes est gouvernée par des champs scalaires
et vectoriels provenant des modes de masse nulle des cordes ouvertes sur l’élément de vo-
lume sous-tendu par les branes. En particulier, les champs vectoriels peuvent conduire à
des théories de jauge non-abéliennes, ce qui rend les D-branes essentielles pour l’explora-
tion de phénomènes physiques complexes au-delà des limites de la théorie perturbative des
cordes. Parallèlement, les champs scalaires agissent comme des modules qui déterminent
la position de la brane dans l’espace-temps.

Ensuite, les plans orientifold (abrégés en O-plans ou O-planes en anglais) complètent les
D-branes et les cordes fondamentales dans le bestiaire de la théorie des cordes. Les O-plans
sont des hypersurfaces définies par des symétries spécifiques de l’espace-temps sous-jacent.
Ils sont identifiés comme des points fixes au sein d’une variété, résultant de l’imposition
d’une symétrie finie sur les champs, couplée à une inversion de l’orientation de la surface
d’univers. Cette opération de symétrie implique non seulement des réflexions spatiales,
mais également une inversion de l’orientation des cordes, ce qui affecte profondément les
propriétés physiques et les types d’interactions autorisées dans les modèles de cordes.

Aussi bien les D-branes que les O-plans agissent comme des sources de charges Ramond-
Ramond (RR), générant des champs électriques et magnétiques ; ils influencent également
le champ gravitationnel en ajoutant de la tension, ce qui modifie la densité d’énergie
globale du vide. Ensemble, ils facilitent les interactions de jauge non-abéliennes par le biais
de champs vectoriels vivant sur les volumes d’Univers qu’ils définissent et modifient la
construction théorique de l’Univers en altérant localement les propriétés de l’espace-temps.
Ces propriétés uniques font des D-branes et des O-plans des composants indispensables
dans le contexte plus large de la théorie des cordes. Ils interagissent de manière complexe
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avec d’autres objets étendus, tels que les « NS5-branes », les « monopôles KK » (ou « anti-
D-branes », dénotés D-branes), qui sont tous des manifestations des symétries et dualités
plus profondes, inhérentes à la théorie. Cependant, ces dernières ne sont pas pertinentes
pour l’étude que nous développons ici.

Faisant suite à ce qui a été expliqué auparavant, les D-branes et les O-plans s’identi-
fient à des sous-variétés de l’espace-temps à dix dimensions, ce qui joue un rôle central dans
plusieurs aspects de la physique théorique. Leur localisation est essentielle pour assurer la
cohérence du processus de compactification, en particulier dans les scénarios impliquant
des flux de background. D’un point de vue phénoménologique, ces sources localisées pré-
sentent un certain nombre d’avantages : elles facilitent la brisure de supersymétrie tout en
induisant une déformation significative de l’espace-temps29, soulignant l’impact profond de
ces structures sur le tissu de l’espace-temps. Dans le contexte plus général de la cosmologie
des cordes, qui sera largement exploré dans cette thèse, l’existence de telles sources locales
est essentielle pour développer une compréhension cohérente des propriétés fondamentales
de l’Univers. Cependant, leur présence complique considérablement les équations du mou-
vement. Dès lors, obtenir une solution complète qui tienne compte de leurs effets représente
une tâche bien ambitieuse, qui dépasse souvent ce que la supergravité peut actuellement
offrir en termes de dérivations analytiques. Cette complexité est étudiée en plus grands
détails dans cette thèse.

Une approche pratique des défis posés par les sources localisées consiste à les remplacer
par une distribution de charge homogène qui « s’étale » aux dépens de la variété interne,
une technique connue sous le nom d’approximation d’étalement (en anglais, smeared ap-
proximation) [12–15]. Dans cette méthode, les distributions delta, qui localisent les sources
dans les équations de la supergravité, sont remplacées par des fonctions régulières. Le prin-
cipal avantage de cette approche est la simplification significative des calculs, puisqu’elle
permet de traiter les équations du mouvement de manière intégrée plutôt que différen-
tielle. En outre, « l’étalement » facilite l’utilisation de méthodes bien établies telles que les
troncatures cohérentes [16–18], alors que le traitement des sources localisées nécessiterait
un cadre plus sophistiqué, tel que les compactifications déformées [19,20], qui souffrent de
quelques ambiguïtés dans leur traitement.

Cependant, cette simplification se fait au prix d’ignorer les effets de rétroaction de la
source sur les champs internes et la géométrie de l’espace compact. Cette omission peut
avoir des effets significatifs sur les observables du point de vue quadri-dimensionnel, telles
que les valeurs moyennes des modules ou de la constante cosmologique. La question de
savoir si ces effets de rétroaction peuvent être négligés ou non fait actuellement l’objet d’un
débat, étant donné que les solutions obtenues dans l’approximation d’étalement ne satisfont
pas aux équations de la théorie à dix dimensions, où la rétroaction complète est prise en
compte. Par conséquent, la validité de ces solutions en tant que représentations exactes des
scénarios localisés est toujours débattue, ce qui souligne le besoin impérieux de comprendre
la rétroaction des sources localisées. Cette question revêt un intérêt d’autant plus grand
que la majorité des solutions actuellement disponibles dans la littérature reposent sur cette

29Cette déformation est cruciale et ne peut généralement pas être réalisée par le truchement de la seule
supergravité (se référer à la discussion du théorème no-go de Maldacena-Nuñez [10,11] pour plus de détails).
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approximation, et seul un nombre limité d’entre elles se concentrent sur des configurations
entièrement localisées. Nous approfondirons ce sujet au cours de cette thèse.

B.3 Le « paysage » de la théorie des cordes

Le grand nombre de choix de compactifications possibles constitue un défi majeur pour
dériver la physique de basse énergie à partir de la théorie des cordes. Il en résulte un
ensemble d’environ 10500 vides compatibles30, chacun possédant des propriétés physiques
uniques [22]. Cet ensemble porte le nom métaphorique de « paysage » de la théorie des
cordes. Il s’agit alors de comprendre comment fonctionne le processus de sélection d’une
théorie effective à quatre dimensions qui corresponde à notre Univers observable au sein
de ce vaste ensemble. En particulier, l’espace-temps quadri-dimensionnel choisi doit être
phénoménologiquement viable.

Les espaces-temps à symétrie maximale sont importants dans ce contexte. Tout d’abord,
l’espace-temps de Minkowski est la géométrie d’élection pour imiter les phénomènes du
modèle standard. Les espaces-temps anti-de Sitter (AdS) sont particulièrement appro-
priés pour formuler des dualités holographiques [23,24], certaines constructions impliquant
l’espace-temps de de Sitter [25,26] et des discussions sur la séparation des échelles [27,28].
Cependant, la théorie des cordes doit également tenir compte de l’expansion accélérée de
l’Univers, qui peut être obtenue soit en supposant qu’une constante cosmologique positive
se manifeste aux échelles cosmologiques (ce qui écarte à la fois Minkowski et AdS), ou par
l’évolution de champs scalaires dits « roulants » (le processus slow roll par exemple). Ce
travail se concentre sur la première solution, en particulier sur les compactifications dans
un espace-temps dS.

Malgré des recherches approfondies au cours des deux dernières décennies, la faisabilité
des compactifications dS en théorie des cordes reste incertaine. Bien que plusieurs scénarios
prometteurs aient été proposés (voir notamment [25, 26]), des modèles entièrement expli-
cites de l’espace-temps dS n’ont pas encore été construits. En outre, plusieurs arguments
théoriques semblent remettre en question la compatibilité de l’espace-temps dS avec la
théorie des cordes [29–31].

Un écueil important réside dans le fait que les solutions dS sont intrinsèquement non-
supersymétriques, ce qui les empêche de satisfaire toutes les équations du mouvement par
rapport aux solutions supersymétriques. De plus, sans la SUSY, il n’y a pas de méca-
nisme intrinsèque pour assurer la stabilité des solutions, ce qui rend la stabilisation des
modules problématique. En outre, les solutions dS sont exclues dans les compactifications
classiques les plus simples [10,11], et requièrent donc des corrections à l’approximation de
la supergravité classique ou des sources localisées de tension négative.

En théorie des cordes, deux stratégies principales visant à obtenir des vides avec
constante cosmologique positive sont mises en avant dans la littérature. La première consiste
à inclure des termes correctifs impliquant des dérivées d’ordre supérieur et des effets non-
perturbatifs dans l’approximation de la supergravité classique. Une autre approche notable
est celle dite du « scénario dS classique » [32,33], qui explore les compactifications en pré-

30Ce nombre peut en fait atteindre 10272 000 ou plus [21].
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sence de O-plans et de flux de background dans le régime classique de la théorie des cordes
de type II [16,34–36]. La théorie effective en dimension inférieure est obtenue par réduction
dimensionnelle de la supergravité de type II à dix dimensions incorporant des termes allant
jusqu’au second ordre de dérivation, en incluant l’action des O-plans/D-branes localisés à
l’ordre supérieur en la constante de couplage α′. Cette approche garantit que les corrections
perturbatives et non-perturbatives des cordes restent minimales dans la théorie effective,
bien qu’elles ne soient pas nécessairement présentes partout dans la théorie originelle à dix
dimensions. Cela se produit si le volume considéré est suffisamment grand et le couplage
α′ suffisamment faible.

Le scénario dS classique offre plusieurs avantages pour la théorie des cordes de type
IIA, notamment en fournissant des modèles explicites qui ne requièrent ni stabilisation des
modules, ni calculs supplémentaires pour dériver la dépendance complète des modules en
les corrections instantoniques, deux tâches habituellement complexes. Cependant, cette ap-
proche présente de sérieuses limitations. De nombreux modèles classiques se voient écartés
par des théorèmes no-go qui excluent les solutions dS [32, 37–39]. Les quelques solutions
identifiés sont souvent perturbativement instables, ou rencontrent des problèmes pour des
configurations à courbure élevée ou couplage α′ important.31 Ces instabilités sont souvent
associées à un tachyon [43,44].

Malgré ces obstacles, le scénario dS classique n’a pas été explicitement exclu [45], ce
qui laisse une certaine latitude pour de nouvelles recherches dans cette direction, ainsi que
l’élaboration d’éventuels contre-exemples. Nous passons maintenant à la description du
contenu de la thèse et de sa structure.

B.4 Plan et résumé

Cette thèse est basée sur les résultats de recherche originaux publiés dans [35,36,39,46,47].

Dans la section 2.2, nous clarifions les conventions utilisées et passons en revue quelques
notions fondamentales concernant les compactifications de flux avec sources localisées en
théorie des cordes de type II. Nous explorons ensuite, dans la section 2.3, les différentes
conditions au bord utilisées dans cette thèse, avant de revisiter, dans la section 2.4, le rai-
sonnement derrière l’utilisation de l’approximation d’étalement, une composante essentielle
de notre approche analytique.

Enfin, dans la section 3, nous illustrons la procédure de réduction dimensionnelle en
utilisant deux ensembles de champs scalaires. Notre objectif est d’établir les lois de trans-
formation de ces champs dans la forme canonique et de dériver le potentiel correspondant
d’une théorie effective à d dimensions, et régie par une action de la forme (B.1), pour
chaque ensemble de champs scalaires.

31Voir aussi les arguments suggérant que les vides dS classiques en régime de courbure et couplage α′

faibles ne sont pas possibles dans de nombreuses classes [40,41], ainsi que les contre-exemples possibles [42].
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Contraintes sur les solutions (quasi-)de Sitter de la supergravité à dix dimen-
sions

Comme nous l’avons rappelé, la théorie des cordes est traditionnellement formulée dans
un espace-temps à dix dimensions, lequel diffère considérablement de l’Univers à quatre
dimensions que nous observons. Cette remarque soulève des questions fondamentales sur
la nature dimensionnelle de celui-ci ainsi que sur le paysage théorique de la théorie des
cordes [48] : en particulier, pourquoi n’y a-t-il que quatre dimensions observables et non
plus ? La théorie des cordes n’ayant pas de dimensionnalité privilégiée, nous en sommes
réduits à étudier la viabilité de scénarios en dimensions supérieures dans ce contexte.

L’étude des solutions dS classiques en dimensions d ≥ 3 n’est donc pas seulement une
curiosité théorique, mais est bien motivée par plusieurs facteurs [49]. Actuellement, toutes
les solutions explicites et robustes de la théorie des cordes présentent une constante cosmo-
logique négative ou nulle, ce qui renforce l’affirmation largement répandue selon laquelle
le « paysage » des vides est dépourvu de solutions dS métastables [30]. Pour remettre en
cause cette dernière, il nous suffit de trouver un seul contre-exemple qui soit métastable,
de Sitter et fiable, sans aucune contrainte sur sa dimension ou son échelle de brisure de
SUSY.

Étudier l’espace des solutions en dimension supérieure offre la possibilité de simpli-
fier les procédures de stabilisation des modules, flux et branes, et donc, potentiellement,
la recherche de solutions dS. En outre, ces recherches pourraient fournir des modèles
plus simples pour tester certaines propositions théoriques, telles que la correspondance
dS/CFT [50], et même faciliter le développement de modèles de quintessence à quatre
dimensions grâce à la réduction dimensionnelle [51]. En étendant notre recherche à des di-
mensions arbitraires, nous souhaitons être en mesure de répondre à des questions à la fois
théoriques et phénoménologiques, approfondissant ainsi notre compréhension des espaces-
temps dS en théorie des cordes et leurs implications pour notre Univers.

Dans la section 4, nous étudions la possibilité d’identifier des solutions (quasi-)dS clas-
siques en dimensions arbitraires. Dans ce même but d’identifier et contraindre de telles
configurations, plusieurs études se sont concentrées sur les solutions dS classiques en quatre
dimensions. Pour une liste exhaustive de ces études, on pourra consulter [52]. Malgré ces
efforts, l’entreprise n’a rencontré qu’un succès limité, ce qui a motivé le développement
de nombreux théorèmes no-go qui imposent des contraintes sur les flux, les sources et
les propriétés de la variété, nécessaires pour obtenir des configurations de supergravité
consistantes [38, 45,53].

Les travaux de recherche rassemblés dans cette thèse contribuent à cette ligne de re-
cherche en dérivant des théorèmes no-go qui excluent effectivement les solutions dS en
supergravité de type II. Alors que prouver qu’une solution dS ne se dérive pas de la
supergravité est suffisant pour l’exclure de tout régime classique, le contraire n’est pas
nécessairement vrai. En d’autres termes, dériver une solution dS de la supergravité à dix
dimensions n’implique pas automatiquement qu’elle soit également solution de la théorie
classique. Des arguments génériques allant dans ce sens ont été donnés dans [40, 45, 55] et
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l’on retrouve même des contre-exemples notoires à quatre dimensions [41,54].
Notre discussion étend les théorèmes no-go bien établis pour d = 4 [38] à des dimensions

d arbitraires telles que 3 ≤ d ≤ 10, en introduisant de nouveaux éléments liés à cette
extension. Cet effort s’appuie également sur les résultats fondamentaux de [49], où de telles
extensions dimensionnelles ont été étudiées pour la première fois, et que nous reproduisons
puis développons ici.

Dans la section 4.2, nous établissons à nouveau des théorèmes no-go en utilisant des
équations valables en dix dimensions et qui, sous certaines hypothèses, conduisent à une
inégalité Rd ≤ 0 pour le scalaire de courbure Rd, écartant effectivement les solutions
dS. Nous ne tiendrons pas compte des complications liées aux orientifolds étalés et à la
rétroaction des sources localisées, et nous nous concentrerons sur les cas qui admettent
des solutions dS classiques avec sources étalées. Des études plus élaborées d’approches
non-classiques en dimensions supérieures pourraient également rencontrer des difficultés
similaires : cela demeure ainsi un terrain fertile pour de futures investigations.

Dans la section 4.3, nous appliquons systématiquement ces théorèmes no-go en dimen-
sions d ≥ 4. Au fur et à mesure que la dimension augmente, les restrictions sur le flux et le
contenu de la source deviennent plus strictes, satisfaisant souvent certaines hypothèses de
ces théorèmes de façon automatique. Ceci est particulièrement manifeste dans la section
4.3.2, où nous nous concentrons sur les configurations qui préservent la supersymétrie.

Notre conclusion, résumée par la section 4.3.3, exclut explicitement l’existence de so-
lutions dS classiques en dimensions d ≥ 7, tandis que les possibilités en dimensions d = 5

et 6 restent limitées, voire parfois écartées par des conjectures théoriques supplémentaires,
comme indiqué dans [35,45]. Ces résultats suggèrent l’apparition d’un biais théorique vers
d ≤ 4, indiquant peut-être une préférence pour d = 4. Nous étendons ces observations aux
solutions quasi-de Sitter dans la section 4.4.

Comportement asymptotique des potentiels de flux scalaires dans les théories
effectives de dimension inférieure

La discussion que nous venons d’entretenir a révélé des défis importants dans la recherche
de solutions (quasi-)dS classiques dans des dimensions arbitraires. Parallèlement, le pro-
gramme « swampland » [56, 57] (vocable anglais pour « marécage », qui s’oppose donc au
« paysage » décrit plus haut), vise à définir des critères permettant de déterminer si une
théorie effective cohérente peut se dériver d’une limite de basse énergie de la théorie des
cordes. Les théories qui ne répondent pas à ces critères sont considérées comme se situant
dans le « swampland ». De ce point de vue, toutes les dimensions doivent être considérées
sur un même pied d’égalité. Cela implique que la portée des conjectures du programme
« swampland » s’étend aux compactifications de cordes sur des dimensions externes arbi-
traires, tant qu’il n’y a pas d’argument convaincant qui soit en accord avec le comportement
quantique supposé de la gravité, qui dicterait une certaine préférence dimensionnelle.

Dans ce contexte, la « conjecture de Sitter » [30] propose un obstacle systématique aux
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solutions dS, qui prend la forme de l’inégalité suivante

Mp|∇V (φ)| ≥ c V (φ) , c ∼ O(1) . (B.2)

Bien qu’étudiée principalement en quatre dimensions [38], cette conjecture est en fait éga-
lement valide pour toute dimension d ≥ 3. Plus récemment, l’on s’est mis à penser que
cette inégalité n’était valable que dans les limites asymptotiques de l’espace des modules :
en témoigne la conjecture de censure transplanckienne (TCC) [58], qui introduit une borne
inférieure sur la constante c,

c ≥ c0 , c0 =
2�

(d− 1)(d− 2)
. (B.3)

Dans la section 5, nous testons rigoureusement cette borne à l’aide de théorèmes no-go. Si
elle devait être validée dans notre Univers, cela nécessiterait de faire appel à des modèles
cosmologiques plus compliqués [59, 60]. De plus, notre motivation pour étudier le régime
classique de la théorie des cordes est basée sur le fait qu’il correspond à ces asymptotiques,
où ces inégalités sont supposées valides, ce qui est idéal pour étudier la TCC.

Nous récapitulons les théorèmes no-go de la supergravité en utilisant une théorie ef-
fective à d dimensions avec V (φ) > 0, semblable à (B.1). Sous certaines hypothèses, nous
dérivons une inégalité du type (B.2), ce qui révèle une valeur spécifique de c et exclut
les points critiques de de Sitter. Cette dérivation s’accorde avec les inégalités obtenues
en dix dimensions, et confirme que |∇V (φ)| ne peut ni s’annuler, si prendre des valeurs
trop faibles. Nous développons ce point dans la section 5.3, où nous expliquons comment de
telles dérivations excluent également les solutions quasi-dS. Ces solutions sont caractérisées
par un potentiel positif avec un gradient minimal et des champs qui « roulent » lentement
(c’est-à-dire lorsque le potentiel V (φ) domine sur les termes cinétiques). Alors que des
analyses approfondies se sont précédemment concentrées sur le cas d = 4 [38], notre travail
se fixe pour but de dériver une valeur de c dépendant de la dimension d, permettant ainsi
une comparaison directe avec la borne inférieure prescrite par (B.3).

Nos résultats, résumés dans la section 5.4 et illustrés dans le tableau 6 et la figure 4,
confirment la limite TCC pour les dimensions d ≥ 4, avec de multiples cas de saturation,
cohérents avec ceux observés dans le cas d = 4. Cette cohérence entre les dimensions sert de
validation substantielle de la limite TCC et supporte la nature universelle des conjectures
du « swampland ». Par ailleurs, dans la section 5.4.1, nous décrivons une anomalie intrigante
en trois dimensions, où un théorème no-go nouvellement établi suggère une valeur de c en
dessous du seuil fixé par la TCC, liée aux particularités de la gravité à trois dimensions.

Dans les sections 5.2 et 5.4.2, nous comparons la TCC avec d’autres propositions appa-
rues dans la littérature, notamment la « Swampland Distance Conjecture ». Dans la section
5.4.3, nous discutons également une borne supérieure asymptotique sur |∇V (φ)| nécessaire
pour modéliser une accélération de l’expansion cosmologique. Lorsqu’elle est violée, cela
suggère d’avoir recours à des scénarios cosmologiques alternatifs et ouvre d’autres pistes
de recherche, en particulier si la borne TCC se maintient.
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Nous nous intéressons ensuite aux potentiels scalaires négatifs. Les vides AdS entrent
dans cette catégorie. Bien qu’ils puissent sembler moins pertinents pour les modèles cos-
mologiques32, ils font par ailleurs l’objet d’études approfondies grâce aux progrès de l’ho-
lographie [23, 24, 67]. Les similitudes structurelles entre les potentiels scalaires négatifs et
positifs dans la théorie des cordes, qui diffèrent principalement par des variations dans
les valeurs et les signes des coefficients, suggèrent que les deux types pourraient bénéficier
d’une approche unifiée.

Notre analyse utilise des modèles qui décrivent des espaces-temps caractérisés, soit par
une expansion, soit par une contraction, en fonction du profil temporel du facteur d’échelle
a(t) présent dans la métrique. L’on peut trouver des discussions détaillées à ce sujet dans
les sections 5.1 et 6.1.1. La notion de contraction des espaces-temps est particulièrement
importante dans le contexte de la conjecture de censure anti-transplanckienne (ATCC) :

Conjecture de censure anti-transplanckienne. Dans toute théorie effective (de di-
mension inférieure) de la gravité quantique qui soit décrite par l’action (B.1) avec V < 0

admettant des solutions cosmologiques en contraction, les modes ayant une longueur d’onde
proche de l’échelle de longueur typique de l’Univers à ti ne devraient pas tomber sous
l’échelle de Planck à un moment ultérieur t > ti sans compromettre la validité de la théo-
rie effective.

Cette affirmation peut être exprimée analytiquement comme suit :

a(t)

a(ti)
≥

�|V (φ(ti))|
M2

p

, ∀ t > ti . (B.4)

L’ATCC modifie notre compréhension des Univers en contraction avec V < 0, auxquels
manquent les mécanismes d’horizon utilisés dans le cas des espaces-temps dS, et tels que
proposés dans la TCC originale [58]. Au lieu de cela, cette nouvelle conjecture insiste
sur l’importance de maintenir la validité de la théorie effective en s’assurant que l’échelle
d’énergie typique, c’est-à-dire le potentiel scalaire, reste inférieure à l’échelle de Planck.
Nous élaborons à ce sujet dans la section 6.1.2, en soulignant que les solutions violant
l’inégalité (B.4) sont considérées comme invalides. Ces considérations plus approfondies ne
sont pas seulement spéculatives, mais basées sur les contraintes physiques qu’imposent les
échelles fondamentales de la théorie.

Dans la section 6.1.3, nous dérivons une limite explicite sur la durée de vie de l’Univers,
interprétée dans le contexte de la contraction spatio-temporelle. À partir de la contrainte
(B.4), nous développons un formalisme pour caractériser les potentiels négatifs en dimen-
sions 3 ≤ d ≤ 10 en utilisant les unités de Planck et en nous concentrant sur un seul champ
scalaire. Ce formalisme requiert une hypothèse sur V et a(t) qui, bien que naturellement
satisfaite pour V > 0, doit faire l’objet d’un examen minutieux pour V < 0. Ce faisant,
nous dérivons une limite inférieure exponentielle, V (φ) ≥ −e−c0|φ−φi|, applicable à l’en-
semble de l’espace des champs et qui conduit, par conséquent, à la condition suivante dans

32Voir cependant les modèles « ekpyrosis » et cosmologies « à rebonds » [61–66].
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la limite asymptotique de l’espace des champs,�
−V ′

V

�
φ→±∞

≥ c0 , (B.5)

reflétant celle de la TCC malgré des différences subtiles dans leurs dérivations. Cette condi-
tion n’exclut pas catégoriquement les points critiques AdS dans les limites asymptotiques,
de la même manière que la TCC n’exclut pas explicitement les espaces dS. Au lieu de
cela, elle impose des contraintes sur le comportement asymptotique du potentiel et fixe
une borne inférieure aux taux exponentiels. Dans la section 6.1.4, nous vérifions la validité
de ces contraintes ainsi que l’hypothèse précédente dans différents modèles cosmologiques,
y compris les solutions AdS et les solutions dynamiques avec des champs « roulants ».

Dans la section 6.2, nous introduisons une nouvelle condition sur la dérivée seconde du
potentiel, �

V ′′

V

�
φ→∞

≥ 4

(d− 1)(d− 2)
. (B.6)

Cette condition asymptotique permet d’affirmer que pour toute solution AdS en dimension
d et de longueur typique l, il existe un champ scalaire de masse m satisfaisant à la condition
suivante :

m2l2 ≲ −2 . (B.7)

Cette inégalité quelque peu flexible est satisfaite par les solutions perturbativement in-
stables [68,69].

Nous vérifions la contrainte (B.7) de manière exhaustive pour un ensemble de confi-
gurations perturbativement stables. La plupart des configurations supersymétriques s’y
soumettent, malgré quelques exceptions, encore sujettes à débat [25, 26, 70]. En revanche,
les modèles non supersymétriques requièrent souvent une plus grande flexibilité et peuvent
présenter quelques déviations par rapport à la contrainte que nous avons dérivée. Cepen-
dant, nombre d’entre eux souffrent d’instabilités non-perturbatives [71]. Un résumé détaillé
de ces exemples est donné dans les tableaux 7 et 8. Nous complétons cette analyse par la
discussion des implications holographiques de cette contrainte pour une CFT duale dans
la section 6.3.3.

Enfin, les sections 6.4 et 6.5 se penchent sur les modèles à champs multiples et ap-
pliquent l’ATCC à des compactifications de cordes spécifiques. Nous validons les bornes
prescrites par l’ATCC pour un potentiel semi-universel, V (ρ, τ, σ), initialement dérivé dans
la section 3, et dans le contexte des compactifications de flux conduisant aux solutions
DGKT [70].

Scénario de Sitter « presque classique »

Récemment, les auteurs de [72] ont prétendu avoir identifié des vides dS classiques dans
un modèle remarquablement simple, que nous noterons CDT1. Ce dernier utilisait la théo-
rie des cordes de type IIA avec des O8-plans parallèles et la masse de Romans comme
seul flux, simplifiant les équations du mouvement en équations différentielles ordinaires
solubles, y compris la rétroaction non-linéaire des O-plans. Des analyses ultérieures ont
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cependant démontré que les sources localisées ne sont pas compatibles avec l’interpréta-
tion conventionnelle de la théorie des cordes des O8-plans à l’ordre dominant en α′ [73].
Plus généralement, l’on a montré que l’action globale classique de type IIA, ainsi que l’ac-
tion O8/D8 à l’ordre dominant dans l’expansion α′, exclut les solutions dS classiques dans
toutes les compactifications de flux sans sources de codimension supérieure [73,74].

Dans un article ultérieur [75], une faille potentielle due à des ambiguïtés dans les équa-
tions de la supergravité a été suggérée, et des conditions aux bords « permissives », auto-
risant l’ajout potentiel de termes de source violant les hypothèses considérées dans [73],
ont été proposées. Dans les sections 2.3 et 7.1.2, nous argumenterons que ces ambiguïtés
ne sont pas évidentes au niveau de la supergravité classique, et que les sources doivent être
conformes à celles spécifiées dans le théorème no-go.

Comme indiqué dans [73], cette conclusion pourrait être modifiée en considérant l’effet
des corrections en α′ dans l’action O-plan/D-brane, qui apparaissent notablement au qua-
trième ordre de dérivation [76–84]. Pour aller plus loin, nous introduisons dans la section
7.1.3 le scénario dS « presque » classique, une extension minimale du scénario dS clas-
sique qui incorpore des corrections de premier ordre en α′ tout en négligeant les dérivées
d’ordre supérieur. Bien que l’on puisse se préoccuper des régions où l’expansion en α′ serait
invalide, nous assertons que les termes classiques et leurs corrections jusqu’au quatrième
ordre de dérivation dominent la contribution des O-plans à l’énergie du vide, les effets de
la « région des trous » non-perturbative ne jouant un rôle que dans la physique à courte
portée. Néanmoins, cette approche ne parvient toujours pas à produire des solutions dS
métastables, confirmant ainsi la validité du théorème no-go.

Le modèle CDT2, qui comprend les deux O6-/O8-plans, est également abordé dans
la section 7.2.1. Bien que plus complexe, il conserve la propriété du modèle CDT1 quant
à la solvabilité des équations mais inclut également une rétroaction non-linéaire des O-
plans. Cependant, comme dans sa précédente version, le modèle CDT2 n’échappe pas à
un théorème classique no-go visant les solutions dS, et discuté dans la section 7.2.3, et ne
produisant de ce fait que des solutions AdS. L’inclusion de termes de couplage impliquant
quatre dérivées dans la section 7.2.4 ne résout pas ces problèmes, car leurs effets sont
sous-dominants dans les régimes à faible courbure.

Cette section met en évidence les défis actuels pour obtenir des vides dS stables dans
le cadre de la théorie des cordes, et illustre les limites des scénarios dS classiques et quasi-
classiques. Bien qu’ils fournissent des informations précieuses, ces modèles n’offrent pas
de voie viable vers des solutions dS stables, ce qui renforce la nécessité de poursuivre la
recherche et l’exploration de stratégies alternatives dans ce domaine.
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