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Kurzfassung

“Was sagt uns die holographische QCD über das anomale
magnetische Moment des Myons?”

Vor kurzem hat die Myon g − 2 Kollaboration am Fermilab eine langjährige Ab-
weichung zwischen dem Experiment und der Vorhersage des Standardmodells
der Teilchenphysik bestätigt. Mit 4.2σ steht man mit dieser fesselnden Diskrepanz
eventuell kurz vor einer Entdeckung und könnte Beweise für Physik jenseits des
Standardmodells finden. Neben experimentellen Verbesserungen wird es entschei-
dend sein, die Unsicherheiten in der aktuellen theoretischen Vorhersage zu ver-
ringern. Während QED und elektroschwache Effekte unter guter Kontrolle sind,
wird der Fehler von hadronischen Beiträgen dominiert. Aufgrund der nicht per-
turbativen Natur der QCD ist eine erste prinzipielle Berechnung dieser Beiträge
äußerst schwierig und man muss sich auf Gitter-QCD, den dispersiven Ansatz oder
auf Modelle mit hadronischen Freiheitsgraden verlassen.

Eine Klasse besonders interessanter hadronischer Modelle bietet die holographische
QCD. Unter Verwendung der stringtheoretisch motivierten Dualität zwischen Eich-
und Gravitationstheorien verbindet sie eine stark gekoppelte Quantenfeldtheorie
in D-Dimensionen mit einer schwach gekoppelten Gravitationstheorie in D + 1-
Dimensionen. Da bisher kein exaktes Gravitationsdual der QCD bekannt ist, ist man
auf Modelle angewiesen, die in bestimmten Eigenschaften der QCD ähneln. Mit
einigen der einfacheren holographischen QCD-Modelle ist es möglich, Confinement,
chirale Symmetriebrechung, das Spektrum und die Wechselwirkungen von Hadronen
und andere nichttriviale Merkmale mit nur einem minimalen Satz freier Parameter
mit überraschender Genauigkeit zu beschreiben.

Um die einleitende Frage zu beantworten, berechnen wir mehrere holographische
Vorhersagen für das anomale magnetische Moment des Myons. Während holo-
graphische Modelle nicht mit der subprozentualen Genauigkeit des dispersiven
Ansatzes beim Beitrag der hadronischen Vakuumpolarisation konkurrieren können,
gewinnen wir einige wertvolle Einblicke in den Beitrag der hadronischen Licht-
an-Licht-Streuung, bei dem der aktuelle Fehler ungefähr 20% beträgt. Mithilfe der
holographischen Modelle gelingt es, eine wichtige offene Frage zur Implementierung
der von Melnikov und Vainshtein eingeführten Einschränkung für kurze Distanzen zu
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lösen, wobei Axialvektormesonen eine zentrale Rolle spielen. Darüber hinaus berech-
nen wir ohne Einführung zusätzlicher freier Parameter den Beitrag von Glueballs zur
Licht-an-Licht-Streuung, der sich selbst nach dem Auffinden überraschend großer
Glueball-Photonen-Kopplungen beim aktuellen Präzisionsziel als vernachlässigbar
herausstellt.
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Abstract

“What does holographic QCD tell us about the anomalous
magnetic moment of the muon?”

Recently, the Muon g − 2 Collaboration at Fermilab has confirmed a long-standing
discrepancy between the experiment and the prediction of the Standard Model of
particle physics. At 4.2σ, this captivating disagreement is close to a discovery and
may give evidence for physics beyond the Standard Model. Besides experimental
improvements, it will be crucial to reduce the current uncertainties in the theoretical
prediction. While QED and electroweak effects are under good control, the error is
dominated by hadronic contributions. Due to the nonperturbative nature of QCD, a
first principle calculation of these contributions is exceedingly difficult and one has
to rely on lattice QCD, the dispersive approach or on models with hadronic degrees
of freedom.

A class of particularly interesting hadronic models is given by holographic QCD.
Using the string-theoretically motivated Gauge/Gravity duality, it relates a strongly
coupled quantum field theory in D dimensions to a weakly coupled theory of gravity
in D+1 dimensions. Since up to date no exact gravity dual of QCD is known, one has
to rely on models that resemble QCD in certain properties. Using some of the simpler
holographic QCD models it is possible to describe confinement, chiral symmetry
breaking, the spectrum and interactions of hadrons, and other nontrivial features
with only a minimal set of free parameters at a surprising accuracy.

To address the introductory question, we calculate several holographic predictions
for the anomalous magnetic moment of the muon. While holographic models cannot
compete with the sub percent accuracy of the dispersive approach in the hadronic
vacuum polarization contribution, we derive some valuable insights in the hadronic
light-by-light scattering contribution, where the current error is roughly 20%. Most
importantly, we resolve an open question on the implementation of the short-distance
constraint introduced by Melnikov and Vainshtein, emphasizing the role of axial-
vector mesons. Furthermore, without introducing additional free parameters, we
calculate the contribution of glueballs to light-by-light scattering, which even after
finding surprisingly large glueball-photon couplings turns out to be negligible at the
current precision goal.
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Introduction 0
„There are only two ways to live your life. One is

as though nothing is a miracle. The other is as
though everything is a miracle.

— Albert Einstein
Physicist

INCE the first measurement with sufficient accuracy at the Brookhaven
National Laboratory (BNL) [1], there is a long-standing discrep-
ancy between the theoretical and experimental prediction of the
anomalous magnetic moment of the muon aµ = (g − 2)µ/2, where
the current Standard Model (SM) prediction according to the White

Paper of the Muon g − 2 Theory Initiative [2] is

aSM
µ = 116 591 810(43) × 10−11. (0.1)

The discrepancy was only recently amplified by a measurement of the Fermilab
Muon g − 2 collaboration [3] raising it from 3.7σ to 4.2σ when combined with the
earlier BNL result to the experimental average

a exp
µ = 116 592 061(41) × 10−11. (0.2)

Since this discrepancy cannot be explained in the Standard Model, it gives hints at
new physics. However, to claim a discovery, it is necessary to improve the signifi-
cance even further. While there are future prospects of decreasing the experimental
uncertainty by additional runs at the Fermilab and by an entirely different approach
in the future J-PARC experiment [4], on the theoretical side the focus will be on the
two hadronic contributions dominating the error of the prediction.

Out of the two, the larger error is due to the hadronic vacuum polarization (HVP)
currently estimated to give the contribution [2]

aHVP
µ = 6 845(40) × 10−11. (0.3)
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Given its overall size, the estimated error is at only 0.6%, which however has been
recently challenged by a lattice calculation [5] claiming a 2% higher value with
comparable accuracy. If true, this would reduce the g − 2 discrepancy to 1.5σ, but
very likely give rise to tensions in other sectors of the SM [6, 7, 8, 9].

The second-largest error is in the hadronic light-by-light scattering (HLbL) contribu-
tion with a 20% uncertainty

aHLbL
µ = 92(18) × 10−11, (0.4)

according to Ref. [2]. Since the data-driven approach is limited for this contribution,
estimating the various channels also relies on hadronic models.

Holographic QCD is a particularly interesting approach of constructing hadronic
models that emerged from one of the most important theoretical developments
of the last few decades: the AdS/CFT (Anti-de-Sitter/Conformal Field Theory)
correspondence [10]. Realizing a duality between gauge theories and theories of
gravity, it allows to study strongly coupled gauge theories by a weakly coupled
gravity dual with one additional spacetime dimension. However, since QCD is not
conformal, a potential gravity dual needs to, among others, incorporate confinement
and chiral symmetry breaking.

The two main approaches to constructing holographic QCD models are the top-
down and the bottom-up approach. The top-down approach is based on D-brane
configurations in string theory, which are supposed to be dual to theories with
certain features of QCD. One of the most popular models, the Sakai-Sugimoto
model [11, 12], is based on a 10-dimensional D4-brane solution [13] breaking
supersymmetry and conformal invariance. The bottom-up approach, on the other
hand, is unconstrained by string theory. Some of the simpler models utilize a 5-
dimensional AdS space deformed in the infrared region either by a hard-wall [14, 15]
or by a soft-wall cutoff [16] to model nonperturbative effects of QCD.

In this thesis, we apply holographic QCD to study the anomalous magnetic moment
of the muon.

Thesis Structure

This thesis is structured in five parts, which will be summarized in the following.
Also mentioned are the previous publications of the author on which they are based
on.
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Part I

The first part will serve as a brief introduction to the anomalous magnetic moment
of the muon. After reviewing the status of the anomalous magnetic moment of the
electron, the muon and the tauon, we will present the Standard Model prediction for
the muon as compiled by the Muon g − 2 Theory Initiative and introduce important
short-distance constraints for the hadronic light-by-light scattering contribution.

Part II

In the second part of this thesis, we will introduce holographic QCD, an application
of the gauge/gravity duality. First, we will introduce the AdS/CFT correspondence,
mapping strongly coupled gauge theories to weakly coupled theories with gravity.
Then we will study applications of this duality to strongly coupled QCD, in particular
the Sakai-Sugimoto model and various bottom-up models.

Part III
Based on Refs. [I, II, IV, VI]

The third part will present results obtained from holographic QCD on the anomalous
magnetic moment of the muon, in particular on the hadronic light-by-light scattering
contribution. To start, we will calculate the pseudoscalar-pole contribution using
holographic predictions for the pion transition form factor. Then, we will turn to the
contribution of axial-vector mesons and show how they can be used to satisfy a class
of important short-distance constraints. Finally, we will consider predictions from
holographic models with finite quark masses.

Part IV
Based on Ref. [V]

In the fourth part of this thesis, we will turn to glueballs with the eventual aim
of estimating their effect on the anomalous magnetic moment of the muon. To
do so, we will consider the Sakai-Sugimoto model, which has a clear realization
of glueballs reviewed in the first chapter. Then, we will study the pseudoscalar
glueball, which plays an important role in the Witten-Veneziano mechanism, and
calculate its decay rates. Next, we will use the model’s vector meson dominance to
study glueball-photon interactions and finally to estimate their contribution to the
anomalous magnetic moment of the muon.
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Part V - Appendices
Based on Refs. [III, VII]

The fifth part will not only collect all the appendices of the previous parts, but
will also present two of the author’s publications not fitting into the main theme
of the thesis but presenting experimentally testable predictions that result from
the same sector of the Sakai-Sugimoto model that is responsible for the photon-
photon-pseudoscalar glueball interaction. The first one concerns decay rates of the
pseudovector glueball, while the second one studies central exclusive production of
axial-vector mesons in proton-proton scattering.
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Part I

Anomalous Magnetic Moment of the Muon

In this part of the thesis, we will briefly introduce the anomalous magnetic moment of
leptons and review their status. For the currently most interesting case of the muon,
we will then present the Standard Model contributions and predictions as compiled
by the Muon g − 2 Theory Initiative. For the hadronic light-by-light scattering
contribution, which contributes the second-largest error to the final estimate and
will be studied holographically in the following, we will furthermore introduce
important short-distance constraints from perturbative QCD.





Lepton Magnetic Moments
and their Status

1

„There is a theory which states that if ever anyone
discovers exactly what the Universe is for and
why it is here, it will instantly disappear and be
replaced by something even more bizarre and
inexplicable.

There is another theory which states that this
has already happened.

— Douglas Adams
The Restaurant at the End of the Universe

HAT is the anomalous magnetic moment of the muon? To answer
this question, we first look at the general properties of a lepton.
The Standard Model (SM) of particle physics has three charged
leptons: the electron (e−), the muon (µ−) and the tauon (τ−), see
Fig. 1.1. As charged leptons, they are elementary spin-1/2 fermions

with electric charge −1 in units of the positron charge e and have flavor-independent
coupling constants to gauge bosons. However, electrons, muons, and tauons are
not free but interact with other particles which due to their significantly different
masses me = 0.511 MeV, mµ = 105.658 MeV, and mτ = 1776.99 MeV effectively
leads to very distinct behavior. For example, the electron is a stable particle, the µ is
unstable and has a short lifetime of τµ = 2.197 × 10−6s and the τ is even less stable
with ττ = 2.906 × 10−13s. The µ− decays almost exclusively into an electron and
two neutrinos (e−νeνµ), while the τ− decays to roughly 65% into hadronic states
(π−ντ , π−π0ντ , . . . ) and to about 35% into the two main leptonic decay channels
e−νeντ and µ−νµντ [17].
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Figure 1.1. – Particles of the Standard Model. Illustration from Ref. [18].
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Two other very interesting properties of charged leptons, the magnetic, and electric
dipole moments, describe their behavior in electromagnetic fields. This is described
by the effective electromagnetic interaction Hamiltonian

H = −µm · B − de · E, (1.1)

where the magnetic dipole moment µm and the electric dipole moment de interact
with the magnetic and electric field strengths B and E, respectively. However, to
use this Hamiltonian the moments have to be known, e.g., by calculating them from
first principles.

As an example for a physical effect, let us look at the magnetic dipole moment of
an atom where the orbiting lepton with electric charge e, mass m, position r and
velocity v creates the orbital magnetic dipole moment

µorbital = e

2mc
L, (1.2)

with the angular momentum L = mr × v. A second contribution to the magnetic
dipole moment comes from the spin of the lepton described by the spin operator

S = σ

2 , (1.3)

where σi are the Pauli spin matrices and gives the contribution

µspin = gl
e

2mc
S, (1.4)

with the gyromagnetic ratio gl for the lepton l = e, µ, τ . Combining the two contri-
butions, the magnetic interaction realizes the (anomalous) Zeeman effect and splits
the levels of the atomic spectrum according to

ΔE = e

2mc
(L + glS) · B. (1.5)

This energy difference can be measured in the experiment and can be used to
determine the value of gl, which differs slightly from the classical value of gl = 2.
This anomalous contribution is parametrized by

al ≡ gl − 2
2 , (1.6)

the anomalous magnetic moment of the lepton l.

Another effect where the anomalous magnetic moment plays an important role and
that is currently used by the g − 2 Collaboration at Fermilab [3] to measure aµ is
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the Larmor precession of the direction of the lepton spin in electromagnetic fields
described by the angular frequency

ωa = e

m
aµB − aµ − 1

γ2 − 1 β × E . (1.7)

In the experimental setup, the muons are exposed to a uniform magnetic field B

such that they move in a circle and stay confined in a doughnut-shaped storage
ring, where an electric quadrupole field E additionally focuses the beam. However,
at the so-called magic energy of ∼ 3.1 GeV the relativistic Lorentz factor γmag ≡

(1 + aµ)/aµ ≈ 29.378 cancels the effect of the electric field on the precession
frequency. This energy also boosts the short muon lifetime τµ ≈ 2.197 × 10−6s by a
factor of γmag and allows for a reasonably sized storage ring with 14m diameter.

1.1 Experimental and Theoretical Status of al

Although in the SM the couplings of leptons to gauge bosons are flavor-independent,
this lepton universality is broken by quantum effects, such that ae = aµ = aτ . In the
following, we will briefly review the current status of the three lepton anomalous
magnetic moments.

Status of ae

Currently, the best measurement of ae, the anomalous magnetic moment of the
electron, was performed at Harvard [19] using a Penning trap and yields

aexp
e = 1 159 652 180.73(28) × 10−12. (1.8)

This is likely one of the most precisely known physical quantities [20]. To predict
this quantity at a comparable accuracy from theory, one has to include tenth-order
QED terms with coefficients (α/π)5 to obtain the result [21]:

ae(αCs) = 1 159 652 181.606 (11)(12)(229) × 10−12. (1.9)

The first error comes from the tenth-order QED terms, the second one from hadronic
terms, and the last and largest error comes from the uncertainty in determining the
fine-structure constant α using atomic interferometry of the Cs atom [22]. Recently,
a measurement using the Rb atom [23] improved the accuracy of the fine structure

10 Chapter 1 Lepton Magnetic Moments and their Status
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Figure 1.2. – Illustration of the 4.2σ discrepancy between the SM prediction and the experi-
mental average of (g − 2)µ [3].

constant by a factor of 2.4 and revealed a 5.4σ discrepancy with the Cs measurement.
Using this new value of α leads to

ae(αRb) = 1 159 652 180.252 (95) × 10−12, (1.10)

which reduces the discrepancy to the experiment to δae ≡ aexp
e − ae(αRb) = (4.8 ±

3.0)×10−13 (+1.6σ) compared to the previous δae ≡ aexp
e −ae(αCs) = (−8.8±3.6)×

10−13 (−2.4σ).

Status of aµ

While the theoretical calculation of the anomalous magnetic moment of the electron
is largely dominated by QED contributions, this is no longer true for the much heavier
muon (mµ/me ≈ 200) since quantum fluctuations including heavier particles with
mass M scale as

δal

al
∝ m2

l

M2 , (M ml). (1.11)

To obtain the current theoretical prediction

ath
µ = 116 591 810(43) × 10−11 (1.12)

1.1 Experimental and Theoretical Status of al 11



established in the 2020 White Paper of the Muon g − 2 Theory Initiative [3], it
is necessary to consider contributions from the whole Standard Model as will be
reviewed in the next chapter.

Comparing this prediction with the recently obtained result

aexp
µ (FNAL+BNL) = 116 592 061(41) × 10−11 (1.13)

of the g − 2 Collaboration at Fermilab [3] confirms a long-standing discrepancy
between the SM and the first experiment with sufficient precision, the E821/BNL
experiment [1]. While the Fermilab result on its own reduces the discrepancy from
3.7σ to 3.3σ, combining the two experimental results to the quoted value (1.13)
enhances the discrepancy to 4.2σ, see Fig. 1.2.

Since this discrepancy cannot be explained within the Standard Model, it hints to new
physics beyond the Standard Model. However, to claim a discovery, it is necessary
to establish a 5σ discrepancy. Experimentally, this will be pursued by upcoming
improvements of the Fermilab experiment and by an alternative experiment using
ultra-cold muons at J-PARC [4] in Japan. Additionally, it will be crucial to improve
the SM prediction where the error is dominated by hadronic effects.

Status of aτ

Given the prospects of aµ to discover physics beyond the SM, aτ with the even higher
mass of the tauon would in principle be a far more sensitive observable. However,
due to its very short lifetime, a precise measurement of the tauons anomalous
magnetic moment is currently beyond experimental possibilities.

The current experimental limit from the LEP experiments OPAL and L3 [24, 25]
reads

− 0.052 < aexp
τ < 0.013 (1.14)

at 95% C.L. and is in agreement with the SM prediction [26]

ath
τ = 117 721(5) × 10−8. (1.15)

12 Chapter 1 Lepton Magnetic Moments and their Status



Standard Model Prediction 2
„When you have eliminated all which is

impossible, then whatever remains, however
improbable, must be the truth.

— Arthur Conan Doyle
The Case-Book of Sherlock Holmes

URRENTLY, the most interesting lepton magnetic moment is the one
of the muon, where a 4.2σ discrepancy between the Standard
Model prediction and the experiment could soon give evidence for
new physics, while the one of the electron agrees almost perfectly
with the SM. Besides experimental improvements, lowering the

uncertainty in the theoretical prediction can help to establish a possible discovery.
In the Standard Model, the anomalous magnetic moment of the muon may be
calculated by considering the T-matrix element

µ−(p2)|jµ
em(0)|µ−(p1) . (2.1)

It can be written in the relativistic covariant decomposition

µ(p2)

µ(p1)

γ(q) = (−ie)ū(p2) γµFE(q2) + i
σµνqν

2mµ
FM (q2) u(p1), (2.2)

where u(p) are Dirac spinors and momentum conservation determines q = p2 − p1.
The electric or Dirac form factor FE(q2) and the magnetic or Pauli form factor FM (q2)
have the static limits

FE(0) = 1, FM (0) = aµ, (2.3)

where the first equation is the charge renormalization condition and the second
equation gives the prediction for the anomalous magnetic moment of the muon
aµ ≡ (g − 2)µ/2.
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The contributions from the SM can be divided into electromagnetic, hadronic and
electroweak contributions

aµ = aQED
µ + ahad

µ + aEW
µ , (2.4)

where the relevant hadronic contributions can be furthermore divided into hadronic
vacuum polarization (HVP) and hadronic light-by-light (HLbL) scattering contribu-
tions. The electromagnetic contribution contains all possible charged lepton and
photon loops. Quark and gluon loops, due to their strongly coupled nature, have
to be described by hadronic degrees of freedom and are collected in the hadronic
contribution. The last contribution is due to the weak interaction and includes the
W ±, Z bosons, neutrinos, and the Higgs particle H.

In the following, we will briefly review all these contributions and their current
status according to the White Paper of the Muon g − 2 Theory Initiative [2].

2.1 Electromagnetic Contribution

The electromagnetic or QED contribution to (g−2)µ includes loops of charged leptons
and photons. The contribution is further divided by the lepton-mass dependence,
according to

aQED
µ = A1 + A2(mµ/me) + A2(mµ/mτ ) + A3(mµ/me, mµ/mτ ) , (2.5)

where the lepton-mass independent term A1 is universal for all leptons. Individual
contributions are then calculated in a perturbative expansion in the small fine-
structure constant α = 1/137.035...

Ai = α

π
A

(2)
i + α

π

2
A

(4)
i + α

π

3
A

(6)
i + · · · , for i = 1, 2, 3 . (2.6)

The first coefficient A
(2)
1 = 1/2 corresponds to the Feynman diagram 2.1 and was

calculated by Schwinger in 1947 [27]. It exclusively contributes the leading three
digits to aµ. By now the entire tenth-order contribution, i.e. O(α5), is necessary to
match the experimental precision.

Summing all these terms, the QED contribution reads [28, 21]

aQED
µ (α(Cs)) = 116 584 718.931(7)(17)(6)(100)(23)[104] × 10−11 , (2.7)
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Figure 2.1. – Feynman diagram of the Schwinger term, which gives the leading contribution
a

(2)
µ = 1/(2πα) = 0.00116....

Figure 2.2. – Leading-order HVP contribution to g − 2. The shaded blob represents the HVP
two-point function.

where the uncertainties are due to the τ -lepton mass, the eighth-order, tenth-order,
and an estimate for the twelfth-order QED contributions. The fifth error comes from
the measurement of the fine-structure constant α using atomic interferometry of the
Cs atom [22]. The final error is the sum in quadrature of the individual errors and
is dominated by the estimate of the O(α6) contribution. It is, however, negligible
compared to the uncertainty in the hadronic contribution discussed next.

2.2 Hadronic Vacuum Polarization Contribution

The biggest hadronic effect is given by the O(α2) hadronic vacuum polarization
term, as depicted in Fig. 2.2. Fortunately, this contribution can be calculated in
the dispersive approach by relating it to measurements of the e+e− → hadrons
cross-section. The current conservative estimate reads [29, 30, 31, 32, 33, 34]

aHVP, LO
µ = 6931(40) × 10−11 , (2.8)

2.2 Hadronic Vacuum Polarization Contribution 15



Contribution Value ×1011

HVP LO (e+e−) 6931(40)
HVP NLO (e+e−) −98.3(7)
HVP NNLO (e+e−) 12.4(1)
HVP (e+e−, LO + NLO + NNLO) 6845(40)

Table 2.1. – Summary of the contributions to aHVP
µ [2].

with a relative uncertainty of only 0.6%, which to a big part comes from a tension
between the BABAR and KLOE data sets on the 2π channel. At higher order in the
perturbative expansion, the diagram 2.2 may contain additional photon or lepton
loops, or additional HVP insertions. These effects are considered with the values

aHVP, NLO
µ = −98.3(7) × 10−11[34] , aHVP, NNLO

µ = 12.4(1) × 10−11[35] , (2.9)

and are combined to the final prediction in Table 2.1.

On the side of lattice QCD, calculations have only recently achieved a comparable
precision with the result of the BMW collaboration [5]

aHVP, LO
µ (BMW) = 7075(55) × 1011, (2.10)

at 0.8% accuracy. Surprisingly, this is by about 2.1σ higher than the data-driven
evaluation and would move the WP result much closer to the experimental value of
aµ. However, even if the discrepancy in aµ would be eliminated by a change in the
HVP contribution, this would very likely lead to a tension in other parts of the SM
like the EW-fit as discussed in Ref. [6, 7, 8, 9]. Anyhow, the discrepancy between the
two approaches needs further investigation.

2.3 Hadronic Light-by-Light Scattering Contribution

After HVP, the HLbL scattering contribution gives the second-largest uncertainty
of the SM prediction to (g − 2)µ. Similar to the HVP contribution, one cannot use
perturbation theory to calculate this effect, but one has to rely on lattice QCD
or data-driven evaluations. Compared to the vacuum polarization described by
a two-point function, the more complicated light-by-light scattering amplitude is
described by a four-point function and is suppressed by an additional power of
the fine-structure constant α. The total contribution is therefore suppressed by two

16 Chapter 2 Standard Model Prediction
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Figure 2.3. – Expansion of the HLbL scattering amplitude. Figure from Ref. [36].

Contribution Value ×1011

π0, η, η -poles 93.8(4.0)
π, K-loops/boxes −16.4(0.2)
S-wave ππ rescattering −8(1)
scalars and tensors −1(3)
axial vectors 6(6)
u, d, s-loops / short-distance 15(10)
c-loop 3(1)
total 92(19)

Table 2.2. – Summary of the contributions to the phenomenological estimate of the LO
HLbL contribution [2].

orders of magnitude, and it suffices to have an error of about 10% to meet current
precision goals.

As depicted in Fig. 2.3, the HLbL amplitude can be expanded in diagrams with
an exchange of a single meson, diagrams with a loop of charged mesons, a quark
loop diagram, and other subleading diagrams. It is important to note that the
identification of the individual terms in this expansion is model dependent, and the
only unambiguous definition can be given within the dispersive framework [2].

In Table 2.2 we list the current phenomenological estimate of the individual contribu-
tions obtained by the Muon g − 2 Theory Initiative [2]. The first three contributions
from single-pseudoscalar poles [37, 38, 39] and from two-pion intermediate states
[40] are calculated with the dispersive approach, while the estimates for scalars,
tensors and axial-vector mesons [41, 42, 20, 43, 44, 45] are model-dependent. The
contributions of quark loops are based on Refs. [46, 47, 48].

While in the large-energy or short-distance regime the quark loop can be calculated
perturbatively, it is important to avoid a possible double-counting at low energies
where quarks are replaced by mesonic degrees of freedom. For increasing virtualities
of the photons, heavier and heavier intermediate states can contribute. Summing
an infinite number of these intermediate states should reproduce all short-distance
constraints (SDC) from perturbative QCD. Therefore, these constraints play an

2.3 Hadronic Light-by-Light Scattering Contribution 17



Contribution Value ×1011

HLbL (phenomenology) 92(19)
HLbL NLO (phenomenology) 2(1)
HLbL (lattice, uds) 79(35)
HLbL (phenomenology + lattice + NLO) 92(18)

Table 2.3. – Summary of the contributions to aHLbL
µ [2].

important role in the estimate of the error in the HLbL contribution, and will be
discussed in more detail in the next subsection.

The full SM HLbL prediction displayed in Table 2.3 is obtained by performing a
weighted average of the lattice QCD result [50] with the phenomenological result
for light quarks of Table 2.2. Afterwards, the c quark contribution and an estimate
for the NLO contribution based on Ref. [49] are added. The final error is about
20% but a reduction to 10%, meeting the precision goal of the Fermilab experiment,
seems feasible [2].

2.3.1 Short-Distance Constraints

To formulate the HLbL SDCs, we first have to introduce some notation. The HLbL
scattering amplitude is described by the polarization tensor

Παβµν(q1, q2, q3) := −i d4x d4y d4z e−i(q1x+q2y+q3z)

× Ω|T{Jα(x)Jβ(y)Jµ(z)Jν(0)}|Ω , (2.11)

with the electromagnetic quark currents Jµ(x) = eψ̄0Qγµψ0, where ψ0 is the bare
quark multiplet and Q is the quark charge matrix. Following Bardeen, Tung [51],
and Tarrach [52] (BTT), this tensor can be decomposed into 54 tensor structures

Παβµν =
54

i

T αβµν
i Πi, (2.12)

18 Chapter 2 Standard Model Prediction
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Figure 2.4. – Momentum labels in the leading-order HLbL contribution to g − 2.

without kinematic singularities or zeros. The HLbL contribution in Fig. 2.4 then
takes the form

aHLbL
µ = − e6

48mµ

d4q1
(2π)4

d4q2
(2π)4

1
q2

1q2
2(q1 + q2)2

1
(p + q1)2 − m2

µ

1
(p − q2)2 − m2

µ

× Tr (/p + mµ)[γρ, γσ](/p + mµ)γµ(/p + /q1 + mµ)γλ(/p − /q2 + mµ)γν

×
54

i=1

∂

∂qρ
4

T i
µνλσ(q1, q2, q4 − q1 − q2)

q4=0
Πi(q1, q2, −q1 − q2) , (2.13)

and can be further simplified to the master formula

aHLbL
µ = 2α3

3π2

∞

0
dQ1

∞

0
dQ2

1

−1
dτ 1 − τ2Q3

1Q3
2

×
12

i=1
Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ), (2.14)

by using the technique of Gegenbauer polynomials [53]. The integration variables
are the norms of the Euclidean momenta Q1,2 := |Q1,2| and τ , the cosine of the
angle between the two momenta. The 12 basis elements Π̄i are linear combinations
of the Πi functions and Ti are known kernel functions.

For the HLbL scattering, there are two kinds of interesting SDCs. First there are
constraints on the form factors describing the coupling of hadrons to photons, and
then there are constraints on the full four-point function (2.11).

2.3 Hadronic Light-by-Light Scattering Contribution 19



SDCs on the Form Factor

As a specific example, let us look at the transition form factor (TFF) FP of the pion1,
which is relevant for the largest HLbL contribution. The TFF is defined by

i d4xeiq1x Ω|T{Jµ(x)Jν(0)}|P (q1 + q2) = εµναβ(q1)α(q2)βFP (q2
1, q2

2). (2.15)

Using the operator product expansion (OPE), Refs. [55, 56] have obtained the SDC
in the symmetric limit

lim
Q→∞

Q2FP (−Q2, −Q2) = 2fπ

3 , (2.16)

where fπ is the pion decay constant. The corresponding single-virtual SDC has been
obtained by Brodsky and Lepage (BL) in Refs. [57, 58, 59] and reads

lim
Q→∞

Q2FP (−Q2, 0) = 2fπ. (2.17)

SDCs on the Four-Point Function

For the kinematics in the HLbL contribution, one of the four photons in the four-
point function has to be on-shell and soft, and we are left with two interesting
short-distance regimes.

In the first regime one takes one of the q2
i , e.g. q2

3, much smaller than the other two,
which implies q2

1 ∼ q2
2. The corresponding SDC has been derived by Melnikov and

Vainshtein (MV) [46] and reads

lim
Q3→∞

lim
Q→∞

Q2
3Q2Π̄1(Q, Q, Q3) = − 2

3π2 , (2.18)

in terms of the BTT basis (2.12). In the large-Nc and chiral limit one can even drop
the Q3-limit and the result holds for any Q3.

The second regime has all three q2
i large. In the symmetric limit q2

1 ∼ q2
2 ∼ q2

3, the
leading-order behavior of the SDC is identical to the perturbative quark loop and
reads [46, 47]

lim
Q→∞

Q4Π̄1(Q, Q, Q) = − 4
9π2 . (2.19)

Interestingly, if we only consider a finite number of intermediate meson states in the
expansion of the HLbL four-point function, the form factor SDCs result in too strong

1Other examples can be found in Ref. [54].
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a falloff, and we cannot fulfill the SDCs on the four-point function. As an illustration,
let us consider the contribution of the neutral pion in the pion-pole approximation

Π̄1 = F(q2
1, q2

2)F(q2
3, 0)

q2
3 − m2

π

∼ O(Q−4
3 Q−4), (2.20)

which is suppressed by an additional factor of Q−2
3 . The same holds true for any

other single particle intermediate state.

Currently, there are only three known ways to satisfy the SDCs on the four-point
function with hadronic degrees of freedom:

• By an ad hoc replacement of the single virtual TFF F(q2
3, 0) to be momentum-

independent. This was suggested in Ref. [46] and leads to a sizeable increase
in the pseudoscalar pole contributions.

• By summing an infinite number of excited pseudoscalar mesons in the Regge
model of Ref. [60, 48].

• By summing an infinite number of axial-vector mesons in holographic QCD
models [I, II, IV, 61].

Currently, only the Regge model estimate is included in the short-distance contri-
bution to HLbL scattering, as listed in Table 2.2. The holographic models hint to
slightly larger values. This will be discussed in more detail in Part III.

2.4 Electroweak Contribution

The electroweak (EW) contribution to aµ contains all SM diagrams not contained
in the pure QED, HVP, or HLbL contributions. The diagrams therefore include at
least one W or Z boson, or the Higgs. Their heavy masses strongly suppress the
EW contribution, such that it is comparable in size to the HLbL correction. Some
one-loop diagrams are shown in Fig. 2.5.

Currently, the EW contribution is calculated to two loops, but also estimates of the
leading logarithmic contribution beyond that are included in the estimate [62, 63]

aEW
µ = 153.6(1.0) × 10−11 . (2.21)

At two-loop level this contribution also contains hadronic loops, and they dominate
the uncertainty, which is still negligible compared to the one of the HVP and HLbL
contribution.
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Figure 2.5. – Sample one-loop Feynman diagrams relevant for aEW
µ .

Contribution Value ×1011

QED 116 584 718.931(104)
HVP (e+e−, LO + NLO + NNLO) 6845(40)
HLbL (phenomenology + lattice + NLO) 92(18)
Electroweak 153.6(1.0)
Total SM Value 116 591 810(43)
Experiment (E821+E989) 116 592 061(41)
Difference: Δaµ := aexp

µ − aSM
µ 251(59)

Table 2.4. – Summary of the contributions to aSM
µ [2].

2.5 Combined Standard Model Prediction

According to the White Paper of the Muon g − 2 Theory Initiative [2], summing the
SM contributions to the muon anomalous magnetic moment yields

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) × 10−11 , (2.22)

where the total error estimate is dominated by hadronic effects, see Table 2.4. The
largest uncertainty comes from HVP, where the relative error is already below 0.6%.
HLbL contributes the second-largest uncertainty, with an almost 20% relative error.

Comparing to the experimental average [1, 3]

aexp
µ (FNAL+BNL) = 116 592 061(41) × 10−11 , (2.23)

the difference
Δaµ := aexp

µ − aSM
µ = 251(59) × 10−11 , (2.24)

amounts to a 4.2σ discrepancy.
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Part II

Holographic QCD

In this part of the thesis, we will explore gauge/gravity duality and its application
to QCD. We will start with a brief introduction to the AdS/CFT correspondence,
which tries to describe strongly coupled gauge theories by their gravity duals. We
will then focus on applying this duality to strongly coupled QCD by introducing the
Sakai-Sugimoto model and various bottom-up models, as well as reviewing some
key concepts and calculations.





Gauge/Gravity Duality and
the Holographic Principle

3

„May it be a light to you in dark places, when all
other lights go out.

— J.R.R. Tolkien
The Fellowship of the Ring

EFORE we can discuss holographic QCD, we have to first understand
its underlying principle, gauge/gravity duality. As a duality, it states
that two seemingly distinct theories are actually equivalent. Their
Lagrangians or other physical descriptions may differ, but their ob-
servables and dynamics are the same. Unlike other known dualities,

which typically link string theories to string theories or quantum field theories to
quantum field theories, gauge/gravity duality relates quantum field theories to string
theories. In particular, this suggests that one can find a quantum field theory dual to
a promising candidate for quantum gravity.

Gauge/gravity duality realizes the holographic principle, stating that the number of
degrees of freedom in a given volume scales as its surface area. In this picture, the
quantum field theory can be thought of as living on the boundary of the theory of
gravity. This principle is motivated by the Bekenstein bound, which implies that for
a given volume, a black hole has maximal entropy proportional to its surface area.

The most famous realization of this duality is the AdS/CFT correspondence, discov-
ered by Maldacena in 1997 [10]. It relates a theory of quantum gravity in Anti-de
Sitter space with a quantum field theory invariant under conformal transformations.
In its most useful form, this duality is a strong-weak duality [65, 66], relating a
strongly coupled quantum field theory to a weakly coupled theory of gravity, or vice
versa.

If gauge/gravity duality is a general feature of nature, it would be fascinating to
construct a gravity dual to QCD that would allow one to recast strongly coupled
QCD calculations into weakly coupled gravity calculations. However, no exact dual
to QCD has yet been discovered, so one has to rely on duals of effective theories that
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only describe certain features of QCD. Examples of these holographic QCD models
will be presented in the following two chapters.

In this chapter, we will follow Refs. [67, 68] in giving a brief introduction to
the AdS/CFT correspondence. The AdS/CFT correspondence will be defined first,
followed by a heuristic derivation from string theory. We will go over the field-
operator map, also known as the holographic dictionary, before we will discuss the
steps required to construct a holographic dual of QCD.

3.1 The AdS/CFT Correspondence

Let us start with a definition of the AdS5/CFT4 correspondence [10], which is the
most well-known example of the AdS/CFT correspondence. In its strongest form, it
states [67]:

N = 4 Super Yang-Mills theory
with gauge group SU(N) and Yang-Mills coupling constant gYM

is dynamically equivalent to

type IIB superstring theory
with string length ls =

√
α and coupling constant gs

on AdS5 × S5 with curvature radius L and N units of F(5) flux on S5.

The two free parameters on the field theory side, i.e., gYM and N , are mapped
to the free parameters gs and L/

√
α on the string theory side by

g2
YM = 2πgs and 2g2

YMN = L4/α 2. (3.1)

The maximally supersymmetric (N = 4) Super Yang-Mills theory, which is conformal
and 4-dimensional, provides the field theory side of this duality. It is therefore
denoted as CFT4 or CFT side. It has two free parameters: the rank N of the gauge
group and the coupling constant gYM.1 On the other hand, we have the AdS side given
by the type IIB superstring theory on AdS5 × S5. After the Kaluza-Klein reduction on
the S5, this theory is 5-dimensional. Of the two length scales in this theory, only the
dimensionless ratio L/

√
α is of physical importance. The second free parameter is

1In holographic QCD applications, we are mostly interested in describing the strong interaction where
the rank of the gauge group is the number of colors Nc. Furthermore, the convention in the relation
(3.1) is based on the normalization − 1

4g2
YM

Tr FµνF µν of the Yang-Mills action and is related by

g2 = 2g2
YM to the conventional QCD coupling constant.
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the string coupling constant gs. After identifying the free parameters according to
Eq. (3.1), the two sides of the duality should be dynamically equivalent and describe
the same physics. If this correspondence holds, it links a theory with gravity on the
AdS side to a theory without gravitational degrees of freedom on the CFT side.

At this point, it is important to stress that the AdS5/CFT4 correspondence in its
strongest form is only a conjecture. The difficulty in constructing a proof and doing
explicit calculations is, among others, due to the difficulty of quantum string theory
in curved backgrounds. To avoid this issue, it is possible to take the weak coupling
limit gs 1 of the string theory, while keeping the ratio L/

√
α fixed. This results

in the strong form of the correspondence, where we have classical string theory at
leading order. On the CFT side, the corresponding limit is gYM 1 and g2

YMN fixed,
according to the identification (3.1). This is achieved by the large-N limit N → ∞.
Defining the ´t Hooft coupling λ ≡ g2

YMN , we see that this limit corresponds to the
planar limit of the gauge theory. Keeping λ fixed, the relation 1/N ∝ gs implies that
the 1/N expansion of the gauge theory corresponds to the expansion in the genus of
the string worldsheet.

Another useful form, the weak form, is obtained by taking additionally the point-
particle limit α /L → 0. The string length ls is then negligible compared to the
curvature radius L, and the type IIB string theory is replaced by type IIB super
gravity. On the CFT side, this corresponds to the strong coupling limit λ → ∞. Since
in this form the correspondence is a strong/weak duality, i.e., it maps a strongly
coupled theory to a weakly coupled one, we can use perturbative supergravity
calculations to get insights into the nonperturbative behavior of strongly coupled
gauge theories.

3.2 Heuristic Derivation

Even though there are some very non-trivial checks of the AdS/CFT correspondence,
there is no proof of it. There is, however, a heuristic derivation of the weak form of
the correspondence, following from two different descriptions of D-branes [69].

3.2.1 Open String Perspective

The first description, the open string perspective, views D-branes as higher-dimensional
objects on which open strings can end. For simplicity, we will restrict ourselves to
D3-branes, with their (3 + 1)-dimensional worldvolumes in (9 + 1)-dimensional

3.2 Heuristic Derivation 27



spacetime. The open string endpoints can only move in these four directions, while
closed strings can move freely in all directions, see Fig. 3.1a. The open and closed
string spectrum consists of a finite number of massless modes and an infinite amount
of excited massive states. By restricting to low energies E α −1/2, we can neglect
the massive states and the D3 brane and open string dynamics are described by the
Dirac-Born-Infeld (DBI) action and Chern-Simons (CS) term

SD3 = −T3 d4x e−φ − det (P [g]ab + 2πα Fab) + SCS , (3.2)

where e−φ is the dilaton field, P [g]ab is the induced metric on the D3-brane, Fab is a
field-strength on the 4-dimensional worldvolume, and T3 is the brane tension

T3 = 1
(2π)3gsl4s

= 1
(2π)3gsα 2 . (3.3)

Fluctuations of the embedding are described by six real scalar fields φi, one for each
transverse direction to the D3 brane worldvolume. Together with the four gauge
fields Aa, these six scalar fields describe the bosonic massless spectrum of open
strings. The fermionic degrees of freedom are described by four Weyl fermions ΨI .

The closed string spectrum is described by fluctuations of type IIB supergravity in
10-dimensional Minkowski space, most prominently fluctuations of the metric and
the dilaton. Through the brane action, these fluctuations then induce interactions
between the closed and open strings. In the Maldacena limit

α → 0 with u = r

α
kept fixed, (3.4)

where r is any distance, these interactions vanish and we can use the open string
perspective where branes and geometry decouple.

Let us now study the case of Nc stacked branes. The open string endpoints are then
confined to one particular brane, see Fig. 3.1b. This is described by giving the open
string modes an additional U(Nc) symmetry. This symmetry can be factored into
U(Nc) = SU(Nc) × U(1), where U(1) corresponds to center of mass motion and
due to global translation invariance can be decoupled from the theory. The open
string sector then realizes N = 4 SU(Nc) Yang-Mills theory in (3 + 1)-dimensional
spacetime.
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y 1
,..

.,y
6

Nc D3

(a) (3 + 1)D worldvolume of Nc

D3 branes in (9 + 1)D space-
time.

(b) Open strings endpoints on Nc D3 branes.

Figure 3.1. – D3 branes in 10-dimensional spacetime. Figure from Ref. [68].

3.2.2 Closed String Perspective

For the second description of D-branes, we consider them as massive, charged
solitonic objects of supergravity. As such, they source supergravity fields and curve
the spacetime. The corresponding type IIB supergravity solution of Nc D3 branes
extremizes the action (omitting the supergravity fermions)

S = 1
(2π)7l8s

d10x
√−g e−2φ(R + 4(∇ϕ)2) − 2

5!F
2
5 , (3.5)

with the black hole type metric

ds2 = f(r)−1/2ηµνdxµdxν + f(r)1/2 dr2 + r2 dΩ2
5 , (3.6)

where dΩ5 is the 5-sphere metric and

f(r) = 1 + L4

r4 , (3.7)

is a blackening factor with the horizon radius

L2 = 4πgsNcα = 4πgsNcl
2
s . (3.8)

The D3 brane solution is furthermore charged under the self-dual ∗F5 = F5 field
strength of the Ramond-Ramond (RR) four-form potential. This field strength is
normalized to

S5
∗F5 = Nc. (3.9)
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(a) Black hole type geometry of Nc D3
branes with AdS5 × S5 as near-horizon
geometry.

Nc D3

(b) Asymptotic region for r l is flat.

Figure 3.2. – Black hole type geometry of Nc D3 branes. Figure from Ref. [68].

We can now separate two different regions of the spacetime (3.6), the near-horizon
region r L and the asymptotic region r L. In the former limit, the near-horizon
geometry is AdS5 × S5, with the metric

ds2 = r2

L2 ηµνdxµdxν + L2

r2 dr2 + r2dΩ2
5 , (3.10)

as depicted in Fig. 3.2a. While in the asymptotic region, the blackening factor
approaches f(r) ≈ 1 and the geometry reduces to 10-dimensional flat space, see Fig.
3.2b. In the Maldacena limit (3.4), closed strings propagating in these two regions
decouple from each other [67] and the theory reduces to type IIB supergravity on
AdS5 × S5 plus type IIB supergravity on R9,1.

3.2.3 Combining the Perspectives

To conclude this heuristic derivation, one conjectures that the open string and closed
string perspective describe the same physics and are, in fact, dual to each other. In
the above-mentioned limits, both of them have two decoupled effective theories.
The open string perspective is described by N = 4 SU(Nc) Yang-Mills theory in
(3 + 1)-dimensional spacetime and type IIB supergravity on R9,1. The closed string
perspective, on the other hand, is described by type IIB supergravity on AdS5 × S5

and type IIB supergravity on R9,1. The two theories are then only equivalent if
N = 4 SU(Nc) Yang-Mills theory is dual to type IIB supergravity on AdS5 × S5,
as was conjectured by Maldacena in Ref. [10]. As a first non-trivial check of this
correspondence, one can compare the symmetries of the two theories and finds
that, indeed, in both cases they are given by the group PSU(2, 2|4). The bosonic
part of this group is given by SO(4, 2) and SO(6), which nicely agrees with the
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isometry group of AdS5 and S5, respectively. The fermionic part is generated by
sixteen Poincaré supercharges and sixteen superconformal supercharges.

3.3 Field-Operator Map

Having formulated and motivated the AdS/CFT correspondence, we now want to
specify the duality by giving the one-to-one map, or holographic dictionary, that
relates field theory operators to string states. Since both theories have the same
symmetry group, objects in a common representation should be mapped to each
other. On the CFT side, let us look at gauge invariant composite operators

OΔ(x) = Str φi1(x)φi2(x) . . . φiΔ(x) , (3.11)

where Δ is the conformal scaling dimension, and Str denotes the symmetrized trace
over the color indices of the elementary scalar fields φi.

In the weak form of the duality, the dual string states are given by linearized
fluctuations of type IIB supergravity fields. We split these fluctuations ϕ into a field
living on the AdS5 space and a part living on the S5

ϕ(x, z, Ω5) =
∞

I=0
ϕI(x, z)Y I(Ω5). (3.12)

The equations of motion for the S5 spherical harmonics Y I (Ω5) are

S5Y I = − 1
L2 l(l + 4)Y I , (3.13)

while the ones for the AdS field ϕI(x, z) depend on which fluctuations we are looking
at. Scalar fluctuations of the metric and the self-dual five-form field F5 are coupled
and can be diagonalized by taking linear combinations. One of these combinations
we call sI(z, x) and we find its equation of motion to be

AdS5sI(z, x) = 1
L2 l(l − 4)sI(z, x). (3.14)

By identifying l = Δ, we can check that sI(z, x) is in the same representation as
OΔ(x) and that they should be mapped to each other.
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To make this mapping more precise, we have to study the supergravity fields near
the AdS boundary at z → 0. But first, let us generalize the Klein-Gordon equation
(3.14) to the general case of d dimensions:

AdSd+1φ = 1
L2 Δ(Δ − d)φ =⇒ m2L2 = Δ(Δ − d). (3.15)

This equation of motion has two linear independent solutions, which we characterize
by their behavior near z → 0. We find the asymptotic solution

φ(z, x)|z→0 ∼ φ(0)(x)zd−Δ + φ+(x)zΔ + . . . . (3.16)

Evaluating the action on this solution at quadratic order, we find that the contribution
of φ(0)(x)zd−Δ diverges and is non-normalizable, while the contribution of φ+(x)zΔ

converges and is normalizable.2 Using dimensional analysis, the holographic dic-
tionary identifies the normalizable mode φ+(x) with the expectation value of the
field theory operator OΔ and the non-normalizable mode with its source. This map
further leads to the identification of the generating functional for connected Green’s
function W [φ(0)] and the classical supergravity action, according to

W [φ(0)] = Ssugra [φ]|limz→0(φ(z,x)zΔ−d)=φ(0)(x). (3.17)

This identification can be used to holographically calculate correlation functions
of field theory operators by varying the generating functional with respect to the
sources

O1 (x1) O2 (x2) . . . On (xn) CFT = − δnW

δφ1
(0) (x1) δφ2

(0) (x2) . . . δφn
(0) (xn)

φi
(0)=0

.

(3.18)

3.4 Towards a Holographic Dual of QCD

Up to know, we have studied gauge/gravity duality for conformal systems with
supersymmetry. These large symmetry groups allow one to match representations
on both sides of the duality and construct the field-operator map. In the weak form,
this duality is an interesting tool for studying strongly coupled gauge theories, for
which conventional calculations are often difficult. In the following chapters, we are
interested in extending this duality to non-supersymmetric gauge theories like QCD,

2Note that this behavior depends on the value of Δ and has to be interchanged in some special cases
[67].
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the theory of strong interactions. Unfortunately, a gravity dual of QCD is not known
and one has to rely on theories that only resemble QCD in certain limits. There are
two different strategies to construct such theories: the top-down and the bottom-up
approach.

The top-down approach tries to deform the AdS/CFT correspondence within the
framework of string theory. Important steps are the mechanisms of supersymmetry
breaking, conformal symmetry breaking, introduction of flavor degrees of freedom
and chiral symmetry breaking. Achieving all of this within string theory is highly
non-trivial and restricts the theory considerably. The most prominent example of
top-down holographic QCD, the Sakai-Sugimoto model, will be introduced in the
next chapter.

In the bottom-up approach, one considers gauge/gravity duality as a fundamental
principle of nature and assumes that it holds for any field theory. One starts by
selecting characteristic properties of the field theory, like the field content and
symmetries, and constructs the corresponding gravity dual by hand. It is clear that
this strategy has more freedom than the top-down approach and allows for a lot of
flexibility in modelling physical systems. This freedom, however, may come at the
cost of numerous free parameters and limit the predictivity of bottom-up models. In
Chapter 5, we study some easier bottom-up models that still have a relatively low
number of free parameters.
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The Sakai-Sugimoto Model 4
„Eppur si muove.

(And yet it moves.)

— Galileo Galilei
Physicist

HE Sakai-Sugimoto (SS) model [11, 12] is one of the most success-
ful holographic QCD models. As a top-down holographic model, it
is based on a 10-dimensional string construction where the back-
ground is a deformed AdS space, breaking conformal symmetry and
modelling confinement. To break supersymmetry, fermions get anti-

periodic boundary conditions with respect to an additional spatial dimension. Flavor
degrees of freedom are introduced by embedding probe branes in this background.
For Nf Nc, their backreactions can be ignored.

Using this model, one can derive an effective action describing low-energy QCD.
However, it is again critical to note that this model is not real QCD, but only an
approximation to its low-energy limit. The top-down nature of this model is a
significant advantage, as it limits the degrees of freedom in its construction. Besides
mesons, this model also nicely describes glueballs and baryons.

This chapter is structured as follows: First, we will review the brane construction of
the model. Then, we will show how mesonic degrees of freedom are described as
eigenmodes of functions in the holographic direction, how we can fit the parameters
of the model to low-energy observables, and how we can calculate simple decay
widths. Finally, we will couple the model to photons, show how vector meson
dominance is realized, and how one can calculate form factors.

4.1 D4/D8/D8 Brane System

The Sakai-Sugimoto model is based on a brane construction consisting of Nc D4
branes and Nf D8 and anti-D8 (D8) branes.
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0 1 2 3 (4) 5 6 7 8 9
D4 ◦ ◦ ◦ ◦ ◦

D8-D8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 4.1. – The D4/D8/D8 brane intersection in (9 + 1)-dimensional flat space.

Open string picture

To illustrate the setup, let us start with the open-string picture, where the branes are
embedded in 10-dimensional flat space according to Table 4.1. The direction x4 is
compactified on a circle S1 of radius M−1

KK with anti-periodic boundary conditions
for fermions (the gauginos). They therefore acquire a mass and can be neglected
at low energies, completely breaking supersymmetry. At low energies, we will only
consider massless string modes.

Depending on the endpoints of the strings, we can give them different interpretations.
The massless modes of strings beginning and ending on the D4 brane (4-4 strings)
consist of the gauge fields A

(D4)
µ (µ = 0, 1, 2, 3) and A

(D4)
4 along the D4 brane and

scalar fields Φi (i = 5, · · · , 9) transverse to the D4 worldvolume. The scalar fields
A

(D4)
4 and Φi get mass terms via one-loop corrections and can be neglected. We are

therefore left with a 4-dimensional U(Nc) gauge theory described by A
(D4)
µ .

The strings with one end on the D4 brane and the other end on the D8 or D8
brane are not subjected to the anti-periodic boundary conditions for the fermions.
The massless modes include Nf flavors of massless fermions in the fundamental
representation of U(Nc) which we interpret as quarks. The U(Nf )D8 × U(Nf )D8
gauge symmetry of the flavor branes then corresponds to the chiral symmetry of
QCD.

By separating the D8 and D8 branes in the x4 direction, the 8-8 strings get a mass
proportional to the distance Δx4 and are excluded from the theory.

We are therefore left with 4-dimensional U(Nc) gauge fields and Nf flavors of
massless fermions. Exactly the field content of QCD.

Closed string picture

In the closed string picture, one uses the supergravity description of D-branes. There
is, however, no known gravity solution for the setup in Table 4.1, but one instead
uses the assumption Nf Nc under which one can neglect the backreaction of the
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UKK

Figure 4.1. – Brane configuration in the τ − z subspace corresponding to the directions 4 − 5
in Table 4.1. The upper and lower visualization correspond to the open and
closed string picture respectively. Figure from Ref. [68].

flavor branes to the geometry, and the supergravity solution is simply the one of the
D4 brane. The D8 branes are then considered as probes and follow the geometry as
depicted in Fig. 4.1. As will be presented in the following, for maximal separation,
the D8 branes join at the tip of the cigar-shaped bulk space and geometrically realize
chiral symmetry breaking.
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4.1.1 D4 Background

Following the notation of Ref. [70], the type IIA supergravity background dual to Nc

D4-branes, with one of its four spatial worldvolume directions compactified on a
superysymmetry breaking circle S1, takes the form

ds2 = U

R

3/2
ηµνdxµdxν + f(U)dτ2 + R

U

3/2 dU2

f(U) + U2dΩ2
4 ,

eφ = gs
U

R

3/4
, F4 = dC3 = 2πNc

V4
4 , f(U) = 1 − U3

KK
U3 , (4.1)

where xµ (µ = 0, 1, 2, 3) are the four directions of our physical spacetime and to-
gether with the S1 coordinate τ (denoted by (4) in Table 4.1) span the worldvolume
of the D4-brane. The parameter R is proportional to the curvature radius and is
related to the string coupling constant gs and the string length ls by R3 = πgsNcl

3
s .

The 4-form field strength F4 is proportional to the volume form 4 of a unit S4

sphere with line-element dΩ2
4 and volume V4 = 8π2/3. The radial coordinate U in

the 5-directions transverse to the D4-branes is bounded from below by U ≥ UKK. To
not get a conical singularity at U = UKK, the period of the S1 must satisfy

τ ∼ τ + δτ , δτ ≡ 4π

3
R3/2

U
1/2
KK

, (4.2)

which can be used to define the Kaluza-Klein mass as

MKK = 2π

δτ
= 3

2
U

1/2
KK

R3/2 , (4.3)

specifying the energy scale below which the compactified direction is negligible, and
the dual gauge theory is given by a 4-dimensional Yang-Mills theory. The coupling
constant of the dual Yang-Mills theory is given by g2

YM = 2πgslsMKK.

One can check that the effective action written in terms of MKK and gYM is actually
independent of the string length ls. Without loss of generality, one can then choose
units in which

MKK = 1 , R3 = 9
4 , UKK = 1 ,

1
gsl3s

= 4π

9 Nc , λ−1 = 2
9 l2s . (4.4)

The last two equations show that the α expansion in the DBI action and loop
expansions in string theory (1/gs) correspond to 1/λ and Nc/λ3/2 expansions in the
Yang-Mills theory, respectively.
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4.1.2 Probe D8-Branes

In the brane configuration of Table 4.1, the embedding of a probe D8-brane in the
D4 background (4.1) is described by U = U(τ) and the induced metric

ds2
D8 = U

R

3/2
ηµνdxµdxν + U

R

3/2
f(U) + R

U

3/2 U 2

f(U) dτ2

+ R

U

3/2
U2dΩ2

4, (4.5)

with U = d
dτ U . The embedding is found by minimizing the D8-brane action propor-

tional to

SD8 ∝ d4xdτ 4 e−φ − det(gD8)

∝ d4xdτ U4 f(U) + R

U

3 U 2

f(U) , (4.6)

yielding the equation of motion

d

dτ


 U4f(U)

f(U) + R
U

3
U 2

f(U)


 = 0 . (4.7)

With the initial conditions U(0) = U0 and U (0) = 0 at τ = 0 the solution reads

τ(U) = U4
0 f(U0)1/2

U

U0

dU

U
R

3/2
f(U) U8f(U) − U8

0 f(U0)
, (4.8)

and for U0 = UKK we obtain the easiest configuration depicted in Fig. 4.1, where the
D8 and D8 are maximally separated at antipodal points on the S1 and join at the tip
UKK of the cigar-shaped subspace. In the following, we will always use this antipodal
embedding.

4.2 Mesonic Degrees of Freedom

Through the holographic principle, mesonic degrees of freedom are described by
fluctuations of the probe D8-brane characterized by the nine components of the
gauge field Aµ (µ = 0, 1, 2, 3), AU and Aα (α = 5, 6, 7, 8, the coordinates on the S4)
and one transverse scalar field φτ . We are only interested in the lowest spherical
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harmonics on the S4 and S1, so that the non-vanishing gauge fields to Aµ and AU

only have xµ and U dependence. The scalar field φτ is excluded due to its negative
τ -parity [71]. This quantum number does not exist in QCD and is therefore excluded
from the spectrum.

4.2.1 Equations of Motion

To study these fluctuations, the relevant action is a sum of the Dirac-Born-Infeld
(DBI) action and the Chern-Simons (CS) term

SD8 = −T d9x Tr e−φ − det(gMN + 2πα FMN ) + SCS

= κ d4xdZ Tr
1
2K−1/3F 2

µν + KM2
KKF 2

µZ + O(F 3) ,

(4.9)

where T = 1/((2π)8l9s) is the D8 brane tension, κ ≡ λNc/(216π3) and Tr denotes
the trace over flavor indices. The radial direction along the D8 brane is rewritten
as

K(Z) ≡ 1 + Z2 ≡ U

UKK

3
, (4.10)

such that Z runs from −∞ to +∞ and Z = 0 corresponds to U = UKK.

For the gauge fields, we make the separation ansatz

Aµ(xµ, Z) =
∞

n=1
B(n)

µ (xµ)ψn(Z) , (4.11)

AZ(xµ, Z) =
∞

n=0
ϕ(n)(xµ)φn(Z) , (4.12)

in terms of the complete sets {ψn(Z)} and {φn(Z)}.

Setting ϕ(n) = 0 for the moment, we obtain the equation of motion

− K1/3 ∂Z (K ∂Zψn) = λnψn , (4.13)

with eigenvalues λn. By demanding the normalization condition1

κ dZK−1/3 ψnψm = δnm , (4.14)
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we obtain the 4-dimensional action

SD8 = d4x
∞

n=1
2 Tr

1
4F (n)

µν F µν(n) + 1
2m2

n B(n)
µ Bµ(n) + O(F 3) , (4.15)

with finite masses m2
n ≡ λnM2

KK for all n ≥ 1.

Including non-vanishing modes ϕ(m), it can be shown that the radial functions are
related by φn = m−1

n ψ̇n (n ≥ 1), and from

FµZ = ∂µϕ(0)φ0 +
n≥1

m−1
n ∂µϕ(n) − B(n)

µ ψ̇n , (4.16)

one can see that ∂µϕ(n) can be absorbed into B
(n)
µ . The action then becomes

SD8 = − d4x 2 Tr

 1
2 ∂µϕ(0)∂µϕ(0) +

n≥1

1
4F (n)

µν F µν(n) + 1
2m2

n B(n)
µ Bµ(n)

 + O(F 3),

(4.17)

with the zero mode φ0 = 1/(
√

κπK) , satisfying the normalization condition

κ dZKφ2
0 = 1

π

∞

∞
dZ

1
1 + Z2 = 1. (4.18)

4.2.2 Meson Spectrum

To obtain the spectrum of the spin-1 mesons contained in the mode expansion (4.11),
we have to solve the differential equation (4.13), which is only possible numerically.
Since Eq. (4.13) is invariant under the transformation Z → −Z, we can assume that
ψn is an even or odd function, for which we choose the boundary conditions

∂Zψn(0) = 0 or ψn(0) = 0 , (4.19)

respectively. To get a normalizable solution, we furthermore demand the boundary
condition ψn(±∞) = 0. The resulting spectrum reads

λCP
n = 0.67−− , 1.6++ , 2.9−− , 4.5++ , · · · , (4.20)

1Note that the normalization of the radial modes depend on the normalization of the flavor matrices.
Sakai and Sugimoto use the normalization Tr T aT b = δab/2, while Ref. [72] uses Tr T aT b = δab.
The mode ψn(Z)B(n)a

µ (xµ)T a should be independent of the convention. Therefore, Ref. [72] uses
the normalization condition 2κ . . ., which results in radial modes smaller by a factor 1/

√
2 than

the ones obtained by Sakai and Sugimoto.
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where C and P stand for charge conjugation and parity transformation quantum
numbers, respectively. Parity is associated with the 5-dimensional proper Lorentz
transformation (x1, x2, x3, Z) → (−x1, −x2, −x3, −Z), under which B

(n)
µ behaves

as a vector when ψn is an even function or as an axial vector for odd functions.
Charge conjugation implies an interchange of the D8 and D8 branes, corresponding
to the transformation Z → −Z and additionally flipping the orientation of the
string. This flip amounts to taking the transpose of the gauge fields. B

(n)
µ is then

again odd or even when ψn(Z) is even or odd, respectively. Ordering the modes by
eigenvalue, we find that all ψ2k are odd and all ψ2k+1 are even; the lightest λ1 corre-
sponds to a vector meson and λ2 to an axial-vector meson, and so on. Comparing
ratios of eigenvalues, we find λ2/λ1 ≈ 1.53 very close to the experimental ratio
ma1/mρ ≈ 1.59. Identifying the second-lightest vector meson with the ρ(1450), we
get λ3/λ1 ≈ 2.07, which is in reasonable agreement with the experimental value
mρ∗/mρ ≈ 1.86.

The massless spin-0 meson ϕ(0) turns out to have quantum numbers JP C = 0−+

and is interpreted as a pseudoscalar meson, the Goldstone boson of chiral symmetry
breaking. For Nf = 3 it consists of pions, kaons, η and η mesons. In the chiral limit,
the η meson gets a mass due to the anomalous breaking of the axial U(1)A symmetry.
In the large-Nc limit, however, the anomaly is subleading and the symmetry is
restored. The η meson becomes massive only for large but finite Nc. The holographic
realization of the U(1)A anomaly and the η mass was already discovered in Ref.
[11], but we will only review it later in Chapter 10.

The pseudoscalar sector of the DBI action can be rewritten in the familiar form of
the chiral Lagrangian, coinciding with the Skyrme model

S = d4x
f2

π

4 Tr U−1∂µU
2

+ 1
32e2

S

Tr U−1∂µU, U−1∂νU
2

, (4.21)

where we use the path-ordered holonomy

U = P exp i
∞

−∞
dZAZ , (4.22)

and identify the pion decay constant

f2
π = 1

54π4 λM2
KKNc = 4

π
M2

KKκ. (4.23)

The other parameter eS is determined by the free parameters of the model, and has
the value e−2

S ≈ 30.5λNc/(27π7) [11].
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4.2.3 Choice of Parameters

At this point, it is useful to fix the free parameter MKK and λ of the model. The
usual fit of Refs. [11, 12] uses the ρ meson mass and the relation mρ =

√
λ1MKK ≈

776 MeV to fix the Kaluza-Klein mass to MKK = 949 MeV. After fixing the mass scale,
this fit then uses the experimental value of the pion decay constant fπ ≈ 92.4 MeV
and Eq. (4.23) to fix λ = 16.63. The resulting masses of vector mesons and axial-
vector mesons will be presented in the next chapter.

While the usual fit requires mesonic degrees of freedom, it is also possible to fit λ in
the pure YM-theory by fitting the string tension of a Wilson line connecting heavy
quarks at the boundary with large spatial separation. In the holographic picture,
they are represented by fundamental strings that minimize their energy. Since most
of their length is near the minimum of the holographic coordinate, their effective
string tension is approximated by

σ = 1
2πl2s

√−gttgxx
U=UKK

= 2λ

27π
M2

KK. (4.24)

By comparing to the large-Nc lattice result mρ/
√

σ = 1.504(50) of Ref. [73], we
can fit λ = 12.55. In Part IV of this thesis, we will make use of the range λ ≈
16.63 . . . 12.55 to estimate the variability of the predictions of this model.

4.2.4 Interactions

We can now use this model to make quantitative predictions on interactions of
mesons. By evaluating the higher-order terms of the brane action (4.9) on the
mode ansatz and integrating over the radial direction, we can derive an effective
4-dimensional interaction Lagrangian, first studied in Refs. [11, 12] and shortly
presented in Appendix A. The coupling constants are given in terms of radial
integrals and can be determined numerically. To compare to experimental data,
it is also useful to calculate decay rates. As a sample calculation, let us look at the
decay of a ρ meson into two pions, as presented in Ref. [72]. For the lowest vector
meson ρ ≡ v1, the interaction terms include

Lρππ = −√
2gρππ abc(∂µπa)ρbµπc, gρππ = dZ

1
πK

ψ1 = 24.030 λ− 1
2 N

− 1
2

c .

(4.25)
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The corresponding amplitude is obtained by variation with respect to the ρ and π

fields. In the rest frame of the ρ meson with polarization µ = (0, e) we get

M = igρππ
µ(pµ − qµ) = 2igρππ e · p, (4.26)

where the pion momenta are pµ = (|p|, p) and qµ = (|p|, −p). The decay rate then
reads

Γρ/mρ = 1
4π

dΩ |M|2
16πm2

ρ

=
g2

ρππ

48π
≈ 7.659

λNc
≈ 0.1535 (λ = 16.63)

0.2034 (λ = 12.55) , (4.27)

which brackets the experimental value Γρ/mρ = 0.191(1) from Ref. [74].

4.3 Vector Meson Dominance

In this section, we follow Ref. [12] in introducing external gauge fields (ALµ, ARµ)
by weakly gauging the U(Nf )L × U(Nf )R chiral symmetry. Most importantly, the
coupling of mesons to the photon field Aem

µ can be introduced by the combination

ALµ = ARµ = eQAem
µ , (4.28)

where e is the charge of the electron and Q is the electric quark charge matrix given
by

Q = 1
3




2
−1

−1


 , (4.29)

for Nf = 3. According to the holographic principle, the external gauge fields then
appear as the asymptotic values of the gauge field Aµ as

lim
Z→+∞

Aµ(xµ, Z) = ALµ(xµ) , lim
Z→−∞

Aµ(xµ, Z) = ARµ(xµ) , (4.30)

which changes the mode expansion (4.11) to

Aµ(xµ, Z) = ALµ(xµ)ψ+(Z) + ARµ(xµ)ψ−(Z) +
∞

n=1
B(n)

µ (xµ)ψn(Z) , (4.31)

where the non-normalizable zero modes of Eq. (4.13) appear as

ψ±(Z) ≡ 1
2(1 ± ψ0(Z)) , ψ0(Z) ≡ 2

π
arctan Z . (4.32)
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Interestingly, we have ∂Zψ±(Z) ∝ φ0(Z), which can be thought of as a continuation
of the identity ∂Zψn ∝ φn (n ≥ 1) obtained in the previous section.

The modes ψ±(Z) have non-vanishing values at the boundaries Z → ±∞ and are
thus non-normalizable. The kinetic terms of ALµ and ARµ therefore diverge and
have to be regulated. However, we are only interested in interactions of mesons with
external gauge fields and ignore this issue [12].

To make apparent the distinction between vector and axial-vector fields, we redefine
the modes as

Vµ ≡ 1
2(ALµ + ARµ) , Aµ ≡ 1

2(ALµ − ARµ) , vn
µ ≡ B(2n−1)

µ , an
µ ≡ B(2n)

µ . (4.33)

By inserting the mode expansion (4.31) in the quadratic action (4.9), we obtain an
action with a mixed kinetic term2

LD8 ⊃ 1
2Tr ∂µvn

ν − ∂νvn
µ

2
+ 1

2Tr ∂µan
ν − ∂νan

µ

2

+aVvnTr (∂µVν − ∂νVµ) ∂µvn
ν − ∂νvn

µ + aAanTr (∂µAν − ∂νAµ) ∂µan
ν − ∂νan

µ

+Tr (i∂µΠ + fπAµ)2 + m2
vnTr vn

µ

2
+ m2

anTr an
µ

2
, (4.34)

where the mixing parameters are given by overlap integrals of the radial modes

aVvn ≡ κ dZ K−1/3ψ2n−1 , aAan ≡ κ dZ K−1/3ψ2nψ0 . (4.35)

The mixed kinetic terms can be diagonalized by the non-unitary field redefinition

vn
µ ≡ vn

µ + aVvnVµ , (4.36)

an
µ ≡ an

µ + aAanAµ . (4.37)

One possible way to proceed is to apply this field redefinition to all terms in the
action. However, this entails a lot of bookkeeping for individual terms that will
eventually cancel with each other anyway. A far more elegant approach is to restart
at the mode expansion, which after the field redefinition takes the form

Aµ = Vµ ψv + Aµψa +
∞

n=1
vn

µ ψ2n−1 +
∞

n=1
an

µ ψ2n , (4.38)

2Note again that we use the convention Tr T aT b = δab/2, so we actually have canonically normalized
kinetic terms.
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where the non-normalizable modes formally take the form

ψv ≡ 1 −
∞

n=1
aVvnψ2n−1 , ψa ≡ ψ0 −

∞

n=1
aAanψ2n . (4.39)

Using the orthonormality condition (4.14) and the completeness relation

κ
∞

n=1
K−1/3(Z )ψn(Z)ψn(Z ) = δ(Z − Z ) , (4.40)

one can check that ψv and ψa are orthogonal to the basis elements ψm of normaliz-
able functions by

0 = dZ K−1/3ψvψm = dZ K−1/3ψaψm . (4.41)

As a result, they are also orthogonal to all normalizable functions f(z)

0 = dZ K−1/3ψvf = dZ K−1/3ψaf. (4.42)

Note that it is not allowed to set ψv = ψa = 0, which would mean that Vµ and Aµ

decouple completely from the theory. This is not the case since in Eq. (4.39) the
constant 1 and ψ0, the radial modes of Vµ or Aµ, are non-normalizable functions
and cannot be expressed completely in terms of the basis elements ψm. Roughly, one
can imagine that ψv = ψa = 0 are 0 everywhere except at the points Z = ±∞. The
only term in the action (4.9) where this is relevant is

M2
KK κ dZ Tr KF 2

Zν = Tr m2
vn(vn

µ − aVvnVµ)2 + m2
an(an

µ − aAanAµ)2 +

(i∂µΠ + fπAµ)2 + . . . , (4.43)

where we have used

κ dZ K ∂Zψv ∂Zψ2n−1 = −λ2n−1aVvn , (4.44)

κ dZ K ∂Zψa ∂Zψ2n = −λ2naAan . (4.45)

All the other terms in the action are independent of Vµ and Aµ due to Eq. (4.42).
This nicely realizes the so-called vector meson dominance (VMD) [75, 76], which
states that electromagnetic interactions of hadrons are only mediated through the

46 Chapter 4 The Sakai-Sugimoto Model



π

π

γ
ṽn

Figure 4.2. – Feynman diagram for the pion form factor using VMD.

exchange of vector mesons. From Eq. (A.4), one can read of the decay constants of
the vector and axial-vector mesons as

0|J (V )a
µ (0)|vnb = m2

vnaVvnδab
µ , 0|J (A)a

µ (0)|anb = m2
anaAanδab

µ . (4.46)

Electromagnetic form factors

As a first calculation utilizing VMD, let us calculate the pion form factor Fπ(q2)
defined by

πa(p)|J (V )c
µ (0)|πb(p ) = fabc(p + p )µFπ((p − p )2) , (4.47)

where fabc are the U(Nf ) structure constants. Due to VMD, we do not have a direct
ππV coupling but have to combine the ṽnππ and the ṽnV vertex as depicted in Fig.
4.2. Together with the ṽn propagator and a sum over all n, we obtain the pion form
factor

Fπ(Q2) =
∞

n=1

m2
vnaVvngvnππ

Q2 + m2
vn

. (4.48)

As a consistency check, we can set Q2 = 0 and use the sum relation ∞
n=1 aVvngvnππ =

1 to calculate Fπ(0) = 1. Additionally, we can use the expansion

Fπ(Q2) = 1 −
∞

n=1

aVvngvnππ

m2
vn

Q2 + O(Q4) , (4.49)

to identify the charge radius of the pion [12]

r2 π± = 6
∞

n=1

aVvngvnππ

m2
vn

(0.690 fm)2 , (4.50)
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which is independent of λ, making it a particularly sharp prediction in fantastic
agreement with the experimental value [74]

r2 π±

exp
(0.672 fm)2 . (4.51)

Bulk-to-Boundary Propagator

In this section, we have seen how the mode expansion (4.31) introduces external
photons and how we can perform explicit calculations including external photons.
Now we want to briefly mention an alternative but equivalent approach, which
will usually be used in bottom-up models. For this, we start with the momentum
dependent mode equation

Aµ(Q, Z) = Vµ(Q)J (Q, Z), (4.52)

where J (Q, Z) is the non-normalizable mode and all mesonic fields B
(n)
µ are set to

zero. The non-normalizable mode satisfies the differential equation

(1 + Z2)1/3∂Z (1 + Z2)∂ZJ = Q2

M2
KK

J , J (Q, Z = ±∞) = 1. (4.53)

For real photons, we get J (0, Z) = 1, which is consistent with the previous approach.
In a proof similar to the one given for the bottom-up model in the next chapter, one
can show that J satisfies the sum relation

J (Q, Z) =
n

F V
n ψ2n−1

Q2 + m2
vn

, (4.54)

with F V
n ≡ m2

vnaVvn . In this approach, we directly obtain a Vππ coupling from
the action, and one can easily check that it yields the same result for the pion
form factor (4.48). Using the sum relation (4.54) one can see that vector meson
interactions can be easily calculated by projecting out poles in the timelike region of
the corresponding (off-shell) photon interaction.
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Bottom-Up Models 5
„Everything must be made as simple as possible.

But not simpler.

— Albert Einstein
Physicist

VEN before the top-down construction of Sakai and Sugimoto de-
scribed in the previous chapter, the physics of chiral symmetry
breaking and hadrons was studied in holographic bottom-up mod-
els. While in the top-down approach, one tries to deform a su-
persymmetric theory coming from string theory to obtain QCD,

the bottom-up approach starts with QCD and tries to construct its 5-dimensional
holographic dual by hand. Unfortunately, an exact dual to QCD is not yet known,
and the best one can do is to build models that reproduce its characteristic fea-
tures, like chiral symmetry breaking, and resemble QCD in certain limits. Ideally,
the holographic models have few free parameters and can predict a large range of
observables. The HW1 model, for example, has four free parameters, which can be
fixed to well-measured observables. Stringy physics and the running of the QCD
coupling, both of which become important at higher energies, are ignored in the
construction of such models.

In this chapter, following the original literature, Ref. [68], and Ref. [II], we will
review three of the easier bottom-up holographic QCD models: two hard-wall (HW)
models and one soft-wall (SW) model. We will begin with the HW1 model introduced
by Erlich et al., and by Da Rold and Pomarol in Refs. [14, 77], respectively. This
model is called HW1 to distinguish it from the HW2 model of Hirn and Sanz [15],
which will be discussed next. After briefly discussing the SW model of Refs. [78],
we will conclude by comparing the spectra of the three bottom-up models and the
top-down holographic Sakai-Sugimoto model.
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5.1 Hard-Wall 1 Model

As a first step in the construction, we have to choose the field content of the model.
The holographic dictionary, using the field-operator map, dictates the 5D field
content through the duality between gauge-invariant local operators in the gauge
theory and bulk fields on the gravity side. Theoretically, QCD has an infinite number
of fields, e.g., composites of quark fields, corresponding to an infinite number of
fields in the dual gravity theory. However, we can limit the number of operators to
those that are important for chiral dynamics, such as chiral flavor symmetry currents
and the chiral order parameter. Their field-operator maps are given by

q̄LγµtaqL ↔ Aa
Lµ(x, z) ,

q̄RγµtaqR ↔ Aa
Rµ(x, z) ,

q̄α
Rqβ

L ↔ (2/z)Xαβ(x, z) , (5.1)

respectively. The 5D bulk mass of these fields is given by the relation m2
5 = (Δ −

p)(Δ + p − 4), where Δ is the conformal dimension of the p-form boundary operator.
For the currents we have p = 1, Δ = 3 and m2

5 = 0, while for the scalar X we have
p = 0, Δ = 3 and m2

5 = −3.

As a background for these fields, we chose simple AdS5 with the metric

ds2 = z−2(ηµνdxµdxν − dz2) , 0 ≤ z ≤ z0 , (5.2)

where the fifth coordinate z is cut off at a finite value z0 to break the conformal
isometry of the AdS space. It can be shown that high-energy QCD physics is reflected
in the behavior of the bulk fields close to the AdS boundary z = 0, which is therefore
referred to as the UV region. The region near the hard-wall cutoff z = z0 is then
called the IR region.

The action of the bulk fields (5.1) is given by

S = − 1
4g2

5
d4xdz

√−g Tr |FL|2 + |FR|2

+ d4xdz
√−g Tr |DX|2 − M2

X |X|2 + SCS , (5.3)

where we have introduced the covariant derivative DM X = ∂M X − iAL
M X + iXAR

M

and the Chern-Simons term SCS = SL
CS − SR

CS given by

SL,R
CS = Nc

24π2 Tr AF 2 − i

2A3F − 1
10A5

L,R

, (5.4)
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up to a potential subtraction of an IR-boundary term discussed in Ref. [79]. We
parametrize the bi-fundamental bulk scalar X as

X = eiπa(x,z)ta [1
2v(z)]eiπa(x,z)ta

, (5.5)

where πa(x, z) is a pseudoscalar field associated to axial transformations [80] and
v(z)/2 is the vacuum solution

v(z) = Mqz + Σ z3, (5.6)

with the parameters Mq and Σ related to the quark mass matrix and the quark
condensate. In the flavor symmetric case, they are proportional to the unit matrix,
and we take Σ = σ1 and Mq = mq1. With this, we have introduced the four free
parameters of the model: mq, σ, z0 and g5.

5.1.1 Vector Sector

The parameter g5 can be fixed by comparing the result for the vector current two-
point function with that of QCD. For the calculation, we introduce the vector field as
V = (AL + AR)/2 and start with the non-normalizable mode in the Vz = 0 gauge. It
satisfies the equation of motion

∂z
1
z

∂zJ (Q, z) − 1
z

Q2J (Q, z) = 0. (5.7)

With the boundary conditions J (Q, 0) = 1 and ∂zJ (Q, z0) = 0, the solution reads

J (Q, z) = Qz K1(Qz) + K0(Qz0)
I0(Qz0) I1(Qz) . (5.8)

Evaluating the action on this solution, we are left with the boundary term

S = 1
2g2

5
d4x

1
z

V a
µ ∂zV µa

z=
, (5.9)

with V µ(q, z) = J (q, z)V µ
0 (q), where V µ

0 (q) is the Fourier transform of the source of
the vector current Ja

µ = q̄γµtaq at the UV boundary. Varying the source V0, we can
derive the vector current two-point function

x
eiqx Ja

µ(x)Jb
ν(0) = δab(qµqν − q2gµν)ΠV (Q2), (5.10)
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with
ΠV (Q2) = − 1

g2
5Q2

1
z

∂zJ (Q, z)
z→0

= − Nc

2g2
5

ln Q2. (5.11)

Comparing to the calculation of the quark bubble [81]

ΠV (Q2) = − Nc

24π2 ln Q2, (5.12)

which is the leading-order diagram in QCD, leads to the identification of the first
parameter

g2
5 = 12π2

Nc
. (5.13)

To determine the remaining three parameters, we look at hadron physics, which is
described by normalizable modes of the bulk fields. For the vector sector, we use the
separation ansatz V a

µ = g5
∞
n=1 va

µ(x)ψn(z) to get the wave equation

∂z
1
z

∂zψn(z) + 1
z

M2
nψn(z) = 0, (5.14)

with boundary conditions ψn(0) = ψn(z0) = 0. The solutions ψn(z) ∝ zJ1(Mnz) are
given by Bessel functions and the discrete eigenvalues Mn = γ0,n/z0 determined by
the zeros of the Bessel function J0, denoted by γ0,n. To get canonically normalized
vector mesons upon integrating over the fifth direction in the action, we impose the
normalization condition z0

0 dz z−1ψn(z)2 = 1, yielding

ψn(z) =
√

2zJ1(γ0,nz/z0)
z0J1(γ0,n) . (5.15)

We can also define the Green’s function or bulk-to-bulk propagator by

1
z

LV + q2 GV (z, z ; q) = −δ(z − z ), LV (f) = z∂z
1
z

∂zf , (5.16)

which, in the spectral representation, has the solution

GV (z, z ; q) = −
n

ψn(z)ψn(z )
q2 − M2

n

. (5.17)

The bulk-to-bulk and bulk-to-boundary propagator can be related by using Green’s
2nd theorem:

dz
1
z

ψ LV + q2 χ − χ LV + q2 ψ

= − lim
z →0

ψ(z )DV
z χ(z ) − χ(z )DV

z ψ(z ) , (5.18)
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with DV
z = 1

z ∂z. Choosing ψ = J (q, z) and χ = GV (z, z ; q), we get

J (q, z ) = lim
z→0

1
z

∂zGV (z, z ; q) − GV (0, z ; q). (5.19)

Using Eq. (5.17), the second term cancels due to the boundary condition ψn(0) = 0
and the first term gives the result

J (q, z ) = −
n

[ψn( )/ ]ψn(z )
q2 − M2

n

= −
n

g5F V
n ψn(z )

q2 − M2
n

, (5.20)

where we have used the vector meson decay constant F V
n = ψn( )/(g5 ) defined

by
0|Ja

µ(0)|vb
n(q, λ) = F V

n εµ(q, λ)δab. (5.21)

5.1.2 Axial Sector

In the axial sector, given by A = (AL − AR)/2 and the pseudoscalar field π(x, z) in
Eq. (5.5), the Lagrangian reads

Laxial = − 1
4g2

5z
(∂M AN − ∂N AM )2 + β(z)

2g2
5z

(∂M π − AM )2, β(z) = g2
5v2/z2,

(5.22)
where an implicit contraction with the flat 5D Minkowski metric in mostly minus
metric convention is implied. In the gauge Az = 0, we split the gauge field as
Aµ = A⊥

µ + ∂µφ to obtain the coupled equations of motion

∂z
1
z

∂zφ + β(z)
z

(π − φ) = 0, (5.23)

∂z
β(z)

z
∂zπ + β(z)

z
q2 (π − φ) = 0, (5.24)

for the pseudoscalar fields φ and π. By defining y = ∂zφ/z they can be combined
into a single equation [82, 80]:

(LP S + q2)y := β(z)
z

∂z
z

β(z)∂zy − β(z)y + q2y = 0. (5.25)

From Eq. (5.24) we can construct the inverse transformation

∂zy = β(z)
z

(φ − π) (5.26)
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and

∂zπ = q2

β(z)zy. (5.27)

The normalizable boundary conditions φn( ) = 0, πn( ) = 0 translate to

z

β(z)∂zyn(z)
z=

= 0, (5.28)

while the non-normalizable boundary conditions φS(q, ) = 0, πS(q, ) = −1 give

z

β(z)∂zyS(q, z)
z=

= 1. (5.29)

At the infrared boundary z = z0, the boundary conditions have to cancel the
boundary term

1
2g2

5z0
q2φ∂zφ − βπ∂zπ

z=z0
= q2

2g2
5

y(z0) [φ(z0) − π(z0)] (5.30)

in the axial action [II]. The usual choice of Refs. [14, 77] is φ (z0) = 0, implying
y(z0) = 0. The other choice [φ(z0) − π(z0)] = 0 implies ∂zy|z=z0 = 0 and is used in
the HW3 model of Ref. [II] and Ref. [83].

To get canonically normalized pseudoscalars, we have to normalize the modes by

z0
dz

z

β(z)ynym =
z0

dz
1

zβ(z)∂zφn∂zφm = δmn

m2
n

. (5.31)

Plots of the first few mode functions can be seen in Fig. 5.1.

The non-normalizable mode yS can either be calculated numerically or be expressed
by the sum rule [80]

yS(q, z) =
n

m2
nyn( )yn(z)
q2 − m2

n

= −g5

∞

n=1

fπnm2
nyn(z)

q2 − m2
n

, (5.32)

where fπn = −yn( )/g5 are the pion decay constants defined by

0|JA,a
µ (0)|πb

n(q) = ifπnqµδab. (5.33)

Similar to the case of vector mesons, we can also define the pseudoscalar bulk-to-bulk
propagator by

z

β(z) LP S + q2 GP S(z, z ; q) = −δ(z − z ), (5.34)
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Figure 5.1. – The first four pion mode functions yn(z) in the HW1 and HW3 model, with
yn(0) = −g5fπn

. Figure from Ref. [II].

which in the spectral representation reads1

GP S(z, z ; q) = −
n

m2
nyn(z)yn(z )
q2 − m2

n

. (5.35)

Using again Green’s 2nd theorem (5.18), but with Dz = z
β(z)∂z and choosing ψ =

yS(q, z) and χ = GP S(z, z ; q), we find a relation between the bulk-to-bulk and
bulk-to-boundary propagator

yS(q, z ) = lim
z→0

z

β(z)∂zGP S(z, z ; q) − GP S(0, z ; q). (5.36)

In this case, we can use Eq. (5.35) to see that the first term cancels and the second
term results in Eq. (5.32).

For the axial-vector mesons, we make a separation ansatz A⊥
µ = g5

∞
n=1 a

(n)
µ (x)ψA

n (z),
similar to the one for the vector mesons, to obtain

∂z
1
z

∂zψA
n (z) + 1

z
M2

A,n − β(z) ψA
n (z) = 0. (5.37)

The resulting spectrum differs from the vector sector when v = 0, even though we
choose identical boundary conditions ψA

n (0) = ψA
n(z0) = 0. In the HW3 model, one

instead chooses the Dirichlet boundary condition ψA
n (z0)HW3 = 0, breaking chiral

symmetry similarly to the SS or HW2 model.

1The unusual m2
n is due to the normalization condition (5.31).
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5.1.3 Comparison to Experiment

In the following, we will compare the HW1 model to experimental low-energy data.
We will keep the parameter g5 fixed by Eq. (5.13) and then fit the remaining three
parameters.

In Ref. [14], two approaches for fitting the three free parameters are described;
they are called Model A and B. Model A computes z0 = 1/(323 MeV) by fitting the
lowest vector meson mass to the physical ρ meson mass. The quark mass mq and
chiral condensate σ are fitted to the experimental values of mπ and fπ, yielding
mq = 2.29 MeV and σ = (327 MeV)3. Table 5.1 displays a total of seven different
low-energy observables. Model A fits three of them, while the remaining four are
model predictions that can be compared to the experiment. The lowest axial-vector
mass ma1 and decay constant Fa1 slightly overshoot the experimental values, while
the ρ meson decay width and its coupling constant to two pions are slightly too low.
For these four predictions, the root-mean-square error is 15%.

Model B is given by a global fit over all seven observables listed in Table 5.1 and
yields z0 = 1/(346 MeV), mq = 2.3 MeV and σ = (308 MeV)3. In this case, we can
only compare how close all seven observables are to the experiment, which yields a
remarkable root-mean-square error of only 9%. In the following, due to its simplicity,
we will mostly use a parameter fit similar to Model A.

A nice comparison of the model with the chiral Lagrangian and the experimental
values of its low-energy coefficients Li at order O(p4) can be found in Ref. [77].
By integrating out heavy resonances, one obtains the effective Lagrangian of the
pseudo-Goldstone boson

L = f2
π

4 Tr DµU †DµU + U †χ + χ†U + L4 + O(p4) , (5.38)

with

U = ei
√

2 π/fπ , χ = −2 q̄q

f2
π

(Mq + ip) , Mq = Diag(mu, md, ms) , (5.39)
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Measured Model A Model B
Observable (MeV) (MeV) (MeV)

mπ 139.6 ± 0.0004 [84] 139.6∗ 141
mρ 775.8 ± 0.5 [84] 775.8∗ 832
ma1 1230 ± 40 [84] 1363 1220
fπ 92.4 ± 0.35 [84] 92.4∗ 84.0

F
1/2

ρ 345 ± 8 [85] 329 353
F

1/2
a1 433 ± 13 [86, 87] 486 440

gρππ 6.03 ± 0.07 [84] 4.48 5.29

Table 5.1. – Comparison of two different parameter fits of the HW1 model to the experi-
mental values. Model A fits three observables (indicated with *), while Model
B is a global fit over all seven observables. Table from Ref. [14].

Experiment AdS5
L1 0.4 ± 0.3 0.4
L2 1.4 ± 0.3 0.9
L3 −3.5 ± 1.1 −2.6
L4 −0.3 ± 0.5 0.0
L5 1.4 ± 0.5 1.7
L6 −0.2 ± 0.3 0.0
L9 6.9 ± 0.7 5.4
L10 −5.5 ± 0.7 −5.5

Table 5.2. – Holographic predictions for the ten Li compared to their experimental values
[88] at the scale Mρ in units of 10−3 . Table from Ref. [77].

and the fourth-order terms

L4 = L1 Tr 2 DµU †DµU + L2 Tr DµU †DνU Tr DµU †DνU

+ L3 Tr DµU †DµUDνU †DνU

+ L4 Tr DµU †DµU Tr U †χ + χ†U + L5 Tr DµU †DµU U †χ + χ†U

+ L6 Tr 2 U †χ + χ†U + L7 Tr 2 U †χ − χ†U + L8 Tr χ†Uχ†U + U †χU †χ

− iL9 Tr F µν
R DµUDνU † + F µν

L DµU †DνU + L10 Tr U †F µν
R UFLµν . (5.40)

In a similar fit to the Model A in Ref. [14], albeit with slightly different parameters,
one finds a nice agreement of the ten coefficients Li with experimental data displayed
in Table 5.2. Given the simplicity of the HW1 model, it is quite remarkable how
almost all ten Li are within the experimental error bars, with the only exceptions
being L2 and L9, which lie slightly outside.
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5.1.4 Chiral Limit

Because all the other models we are looking at are chiral, we also want to introduce
the chiral limit for the HW1 model. In this limit, the vector sector remains unchanged,
whereas the axial sector changes. As shown below, the axial-vector mesons only
get slightly different eigenvalues and eigenmodes, while the pion sector changes
significantly.

A useful formula for studying the chiral limit of the pion sector can be derived
from the normalization condition (5.31) in which the weight function z/β(z) is
concentrated at small z values for Mq Σz2

0 . The functions yn are relatively
constant for small z and can be pulled out of the integral

g2
5f2

πn
m2

n

∞

0
dz

z

β(z) = 1, (5.41)

which after performing the integral yields the Gell-Mann–Oakes–Renner relation

f2
πn

m2
n ≈ 2MqΣ. (5.42)

This implies a vanishing mass in the chiral limit for the ground-state pion with
fixed fπ1 = fπ. Excited states with m > 1 have non-vanishing masses and require
fπn → 0. From Eq. (5.32), we can see that the massive pions decouple from the
bulk-to-boundary propagator and therefore from the axial-vector current and axial
anomaly; the bulk-to-boundary propagator becomes yS → g5fπy1, fπ = fπ1 . The
chiral wave function yS ≡ ∂zΨ/z can be given analytically [89, 79] by

Ψ(z) = Γ(2
3) ξz3/2

1/3
I−1/3(ξz3) − I2/3(ξz3

0)
I−2/3(ξz3

0)I1/3(ξz3) , (5.43)

where ξ = g5σ/3 and g2
5 = 12π2/Nc. The parameter ξ = (0.424 GeV)3 is fixed by

fπ = 92.4 MeV.

5.2 Hard-Wall 2 Model

The second hard-wall model studied in this thesis was introduced by Hirn and Sanz
[15] and was first called HW2 in Ref. [90]. Compared to the HW1 model, it does
not introduce a bi-fundamental scalar field X, but instead breaks chiral symmetry,
similarly to the SS model, by introducing different boundary conditions for the
vector and axial-vector sector on the hard wall: Neumann for vector and Dirichlet
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for axial-vector mesons. The same conditions are applied in the SS model at the
point Z = 0, the point where the D8 and D8 branes join.

Vector mesons and the corresponding bulk-to-boundary propagator describing pho-
tons are the same as in the HW1 model and are given by Eq. (5.8) and (5.15).
Moreover, the value of z0 is unchanged, since in the usual fit it is fixed by the ρ

meson mass.

Axial-vector mesons are given by the same differential equation as vector mesons
(5.14)

∂z
1
z

∂zψA
n (z) + 1

z
M2

A,nψA
n (z) = 0, (5.44)

but have different boundary conditions ψA
n (0) = (ψA

n ) (z0) = 0, leading to the
solutions

ψA
n (z) ∝ zJ1(MA

n z), MA
n = γ1,n/z0. (5.45)

Pions are given by

Ψ(z) = 1 − z2

z2
0

. (5.46)

In this model we do not have the parameter σ to fix the pion decay constant, but we
have to use the parameter g5 and the equation

g2
5 = 2

f2
πz2

0
, (5.47)

instead. This fit yields g5 ≈ 4.932 for fπ = 92.4. By changing the value of g5, it is
clear that this model does not produce the correct asymptotics of the vector current
two-point function.

5.3 Soft-Wall Model

A common issue of the holographic QCD models described up to now is that they do
not correctly describe (radially) excited mesons. The holographic eigenvalues are
similar to a particle in a box, where the Schrödinger equation gives a spectrum of
squared masses m2

n growing as n2 for large n. The data of meson masses, however,
suggests a spectrum m2

n ∼ n.

This correct Regge-type spectrum can be achieved in soft-wall (SW) models, as was
first shown in Ref. [16]. As bottom-up models, they combine by hand a background
similar to the HW models with a nontrivial background dilaton field Φ(z) = κ2z2.
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This leads to the vector meson spectrum M2
n = 4κ2(n + 1) with κ = mρ/2 and

implements confinement by a soft cutoff as z → ∞. This cutoff, however, leads to an
unsatisfactory realization of spontaneous symmetry breaking where the parameters
of spontaneous and explicit symmetry breaking are not independent.2

We follow Ref. [90] in therefore not considering the original soft-wall model [16]
but instead consider the more heuristic model of Ref. [78], where the pion wave
function takes the Gaussian form

Ψ(z) = e−κ2z2
(5.48)

and axial-vector mesons are absent.

In this model, the bulk-to-boundary propagator has the analytic form

J (Q, κ, z) =
U( Q2

4κ2 , 0, (κz)2)
U( Q2

4κ2 , 0, 0)
= Γ(1 + Q2

4κ2 )U( Q2

4κ2 , 0, (κz)2), (5.49)

given by confluent hypergeometric functions of the second kind U(a, b, z).

5.4 Comparison of Spectra

In Table 5.3 and 5.4 we compare the holographic masses of the lowest three vector
and axial-vector masses to experimental values. We also include the HW2(UV-fit)
model, which is basically the HW2 model but not with g5 ≈ 4.932 fitted to the
pion decay constant (a low-energy observable), but with g5 = 2π, to reproduce the
correct vector current two-point function (a high-energy observable). However, this
change of parameter comes at the cost of bad IR fits, e.g., the ρ mass has 987.2 MeV.
The vector meson masses clearly show that the SS, HW1 and HW2 models have the
wrong Regge behavior and grow too quickly. The SW model grows slower, but also
fails to give a good fit of the excited vector meson masses. For axial-vector mesons,
the SS, HW1 and HW2 model give decent values for the lowest mass, while they are
absent in the considered SW model of Ref. [78].

2The axial sector of the original SW model [16] is worked out in Ref. [82], leading to unphysically
high axial-vector meson masses. See also Ref. [91] for improved SW models.
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mV mV ∗ mV ∗∗

SS 775 1606.0 2379.3
HW1,2 775 1778.9 2788.8
HW2(UV-fit) 987.2 2266.1 3552.6
SW 775 1096.0 1342.3
mρ (exp.) 775.26(25) 1465(25) 1720(20)
mω (exp.) 782.65(12) 1425(25) 1670(30)
mφ (exp.) 1019.461(19) 1680(20)

Table 5.3. – Comparison of the holographic masses of the lowest three vector mesons with
the experimental values [92]. Table from Ref. [IV].

mA mA∗ mA∗∗

SS 1186.5 2019.8 2843.2
HW1 1375.5 2154.2 2995.1
HW2 1234.8 2260.9 3278.6
HW2(UV-fit) 1573.0 2880.1 4176.4
ma1 (exp.) 1230(40) 1655(16) 1930(+30

−70)
mf1 (exp.) 1281.9(0.5) 1670(30) 1971(15)
mf1

(exp.) 1426.3(0.9)

Table 5.4. – Comparison of the holographic masses of the lowest three axial-vector mesons
with the experimental values [92]. Table from Ref. [IV].
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Part III

Holographic Predictions for aHLbL
µ

In this part of the thesis, we will present the main results of Refs. [I, II, IV, VI]
on holographic predictions for the HLbL contribution to the anomalous magnetic
moment of the muon. We will start with the calculation of the pseudoscalar-pole
contribution, where the crucial pion transition form factor will be studied in some
detail. Next, we will study the contribution of axial-vector mesons and their relevance
in satisfying short-distance constraints. We will end this part by extending our results
to holographic models with massive quarks and a brief discussion.





Pion Contribution to HLbL 6
„It’s a dangerous business, Frodo, going out your

door. You step onto the road, and if you don’t
keep your feet, there’s no knowing where you
might be swept off to.

— J.R.R. Tolkien
The Lord of the Rings

VEN though in recent years the formulation of a dispersive approach
for HLbL reduced the uncertainty in the pseudoscalar-pole contribu-
tion considerably, it is still interesting to consider model-dependent
calculations of this quantity. This is in particular true for holo-
graphic QCD models that can describe with a minimal set of free

parameters HLbL contributions from different intermediate states. After benchmark-
ing the models by comparing to model-independent results for the pseudoscalar
sector, they may also be used to make predictions for the axial-vector sector, where
up to now the dispersive approach cannot be used.

We will consider the holographic QCD models introduced in Part II, where we already
mentioned that holographic QCD is not real QCD. However, we have also seen that
the models often give predictions within a 10% uncertainty, which is well below the
current 20% uncertainty in HLbL.

In this chapter, we will present the results obtained in Ref. [VI]. First, we will
calculate the pion transition form factor from holographic QCD using the Chern-
Simons term. Then, we will compare its low-energy behavior with experimental
data from CELLO, CLEO, NA62 and recent preliminary data from BESIII. Further,
we will compare to the interpolators of Ref. [90] as well as to new ones introduced
in Ref. [93]. Next, we will calculate the high-energy behavior of the transition
form factor and compare to short-distance constraints from perturbative QCD and
to experimental data from BaBar. Finally, we will compute the pseudoscalar-pole
contribution to HLbL using the full 3-dimensional integral formulae of Ref. [94].
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Figure 6.1. – Dominant contributions to the HLbL tensor given by a pseudoscalar meson

exchange, where the shaded blobs are described by the pseudoscalar transition
form factor.

6.1 Transition Form Factor

The pseudoscalar-pole contribution to HLbL is given by the Feynman diagram 6.1,
where the shaded blobs represent the pseudoscalar transition form factor (TFF)
defined by

d4xe−iq1·x π(q1+q2)|T Je.m.
µ (x)Je.m.

ν (0) |0 = µνρσqρ
1qσ

2 Fπγ∗γ∗(Q2
1, Q2

2), (6.1)

for the pion and similarly for the other pseudoscalar mesons. In the previous part,
we have already collected all the necessary ingredients to holographically calculate
this TFF.

In all the considered models, it is determined by the universal form of the Chern-
Simons term [79, 95, 90, 96] resulting in1

K(Q2
1, Q2

2) ≡ F (Q2
1, Q2

2)
F (0, 0) = −

z0

0
J (Q1, z)J (Q2, z)∂zΨ(z)dz, (6.2)

where Ψ and J are the pion mode and bulk-to-boundary propagator as introduced
in Part II for the different models.2 The normalization of the TFF

Fπ0γ∗γ∗(0, 0) = Nc

12π2fπ
(6.3)

1We use F as a shorthand notation for Fπγ∗γ∗ .
2In the SS model the pion mode was called ψ0.
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Model α̂[GeV−2] β̂[GeV−4] γ̂[GeV−4]
SS −2.043 4.56 3.55
HW1 −1.595 3.01 2.63
HW2 −1.805 3.65 3.06
SW −1.665 3.56 2.76
DIP1 −1.760 3.33 3.78
DIP2 −1.760 3.33 3.88
DRV4 −1.742 ∞ 3.04
DRV9 −1.637 ∞ 2.68

Table 6.1. – Comparison of the IR behavior of the pion TFF. Table from Ref. [VI].

is fixed by the axial anomaly. In the HW1 model one additionally needs to subtract a
boundary term and the result reads [79]

KHW1(Q2
1, Q2

2) = −
z0

0
J (Q1, z)J (Q2, z)∂zΨ(z)dz + J (Q1, z0)J (Q2, z0)Ψ(z0).

(6.4)

6.1.1 Low-Energy Behavior

For the HLbL contribution, the low-energy regime below virtualities of 1 GeV2 is
crucial. It is therefore interesting to compare the low-energy behavior of our TFFs,
parametrized in the Taylor series

K(Q2
1, Q2

2) = 1 + α̂(Q2
1 + Q2

2) + β̂Q2
1Q2

2 + γ̂(Q4
1 + Q4

2) + O(Q6), (6.5)

with each other and the experiment.

In Table 6.1 the corresponding coefficients are collected. Unfortunately, there is only
experimental data on the slope parameter α̂ for which the current world average
of α̂ = −1.84(17) GeV−2 [92] is a combination of the CELLO collaboration result
α̂ = −1.76(22) GeV−2 [97] and the recent result α̂ = −2.02(31) GeV−2 [98] from an
analysis of Dalitz decays of π0 from NA62.

The other lines in the Table 6.1 correspond to the DIP1 and DIP2 interpolators
constructed in Ref. [90] to fit the average of α̂ and β̂, and the DRV4 and DRV9 inter-
polators of [93] considering experimental data up to 4 GeV or 9 GeV, respectively.

In Fig. 6.2 we compare the holographic models to spacelike π0 TFF data at Q2 ≤
4 GeV2 as compiled in Fig. 3 of Ref. [93], which includes data from CELLO, CLEO
and preliminary data from BESIII. Near Q2 = 0 and up to the first data point at 0.3
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Figure 6.2. – Comparison of the holographic pion TFF to data from CELLO, CLEO and
BESIII-preliminary as compiled in Ref. [93]. Figure from Ref. [VI].

GeV2, all holographic models lie within the error bound. However, at higher energies,
the SS model falls off too quickly. The bottom-up models all agree remarkably well
with the experimental data points.
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6.1.2 High-Energy Behavior

In the high-energy regime, one can use perturbative QCD to study the pion TFF,
which factorizes into a perturbatively calculable hard-scattering kernel and a non-
perturbative pion distribution amplitude [58, 59, 57, 99]. To leading order, this
consideration yields [93]

K∞(Q2
1, Q2

2) = 8π2f2
π

Q2
1 + Q2

2
f(w) (6.6)

with w = (Q2
1 − Q2

2)/(Q2
1 + Q2

2) and

f(w) = 1
w2 − 1 − w2

2w3 ln 1 + w

1 − w
; (6.7)

a generalization of the BL (2.17) and OPE-SDC (2.16)

F ∞(Q2, 0) = 2fπ

Q2 , F ∞(Q2, Q2) = 2fπ

3Q2 . (6.8)

In Ref. [79], it was shown that, for the usual parameter fit of σ, the HW1 pion TFF
has an asymptotic limit completely reproducing the LO pQCD result (6.7) with the
exact w-dependence for large virtualities

KHW 1(Q2
1, Q2

2) → 8π2f2
π

Q2
1 + Q2

2
1 − w2

∞

0
dξ ξ3K1(ξ

√
1 + w)K1(ξ

√
1 − w)

= 8π2f2
π

Q2
1 + Q2

2
f(w), (6.9)

using the dimensionless variable ξ = Qz.

The other bottom-up models also have the same functional form f(w), which is
a direct consequence of the asymptotic AdS5 geometry [90]. The coefficient may
however change: in the HW2 model 8π2f2

π is replaced by 4/z2
0 , and in the SW model

by 4κ2. This corresponds to approximately 61.6% and 89.3% of the LO pQCD result,
respectively. The asymptotic behaviors of the individual models are listed in Table
6.2.

In Refs. [90, 61], a different fit for the HW2 model (called HW2(UV-fit) in the fol-
lowing) is suggested. It does not fit z0 to the ρ-meson mass, a low-energy observable,
but instead uses z0 = 1/(

√
2πfπ) fitting the LO pQCD result to 100%. However, this

comes at the cost of increasing the ρ-meson mass to 987 MeV.
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Model F̄ (0, ∞) F̄ (∞, ∞)
SS 0 0
HW1 1.00 1.00
HW2 0.62 0.62
SW 0.89 0.89
DIP1 ∞ 1.00
DIP2 ∞ 1.00
DRV4 0.85 0.85
DRV9 0.90 0.90

Table 6.2. – Comparison of the UV behavior of the pion TFF, where F̄ = F/F ∞ and F ∞ is
the LO pQCD result (6.8). Table from Ref. [VI].

The top-down SS model does not reproduce the correct asymptotic behavior, since
the result

KSS(Q2
1, Q2

2) → 16
9π

2M2
KK

Q2
1 + Q2

2

3
2 2 + 5

√
1 − w2

(
√

1 − w +
√

1 + w)5 . (6.10)

falls off too quickly for large virtualities. This weakness is due to the higher dimen-
sional nature of the model, which begins to show above the Kaluza-Klein scale MKK.
The model can only make meaningful predictions in the low-energy regime; at high
energies, it is instead the dual of a 5-dimensional superconformal QFT.

In Figs. 6.3, 6.4 and 6.5, we compare the asymptotic behavior of the symmetric and
asymmetric single and double-virtual TFFs to the result of the dispersion relation
study [38], data from BaBar [100] and the result from the recent lattice extrapolation
[39]. The HW1 and SW model fit best with dispersion relation and the lattice studies.
For the double-virtual plots in Fig. 6.5, these two holographic models fit even better
than the DRV9 fit, suggesting that the functional form of the holographic TFFs could
be taken as an improvement of the DRV interpolators.

6.2 Contribution to g − 2

In Chapter 2, we have discussed the expansion of the HLbL contribution and the
dominant pseudoscalar pole contribution according to Fig. 2.3. The three possible
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Figure 6.3. – Comparison of the symmetric and asymmetric double-virtual TFFs with
DRV(η ) from [93] and experimental data from BaBar [100]. Dotted lines
correspond to an 10% upscaling of the mass scale within K(Q2

1, Q2
2). Figure

from Ref. [VI]

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

Q2[GeV2]

Q
2 F

(Q2
,0
)[Ge

V
] SS

HW1

HW2

SW

DIP1

DIP2

DRV9

disp .

Figure 6.4. – Comparison of the holographic single-virtual pion TFF and the DIP1 and DIP2
interpolators of [90] with the experimental DRV9 interpolators of [93] and the
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error of the dispersion result. Figure from Ref. [VI]
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π0,η,η

Figure 6.6. – Dominant contributions to the aHLbL
µ given by a pseudoscalar meson exchange.

In the pion-pole approximation the shaded blobs represent the transition form
factor FP γ∗γ∗(q2

1 , q2
2).

diagrams are shown in Fig. 6.6 where the shaded blobs stand for the pseudoscalar
TFF (6.1). According to Ref. [101], the contribution can be expressed as

aHLbL;π0
µ = α

π

3
aHLbL;π0(1)

µ + aHLbL;π0(2)
µ , (6.11)

aHLbL;π0(1)
µ = d4q1

(2π)4
d4q2
(2π)4

1
q2

1q2
2(q1 + q2)2[(p + q1)2 − m2

µ][(p − q2)2 − m2
µ]

×Fπ0γ∗γ∗(q2
1, (q1 + q2)2) Fπ0γ∗γ∗(q2

2, 0)
q2

2 − m2
π

T̃1(q1, q2; p) , (6.12)

aHLbL;π0(2)
µ = d4q1

(2π)4
d4q2
(2π)4

1
q2

1q2
2(q1 + q2)2[(p + q1)2 − m2

µ][(p − q2)2 − m2
µ]

×Fπ0γ∗γ∗(q2
1, q2

2) Fπ0γ∗γ∗((q1 + q2)2, 0)
(q1 + q2)2 − m2

π

T̃2(q1, q2; p) , (6.13)

where the kinematic functions T̃1,2(q1, q2; p) are presented in Appendix B. The first
and second diagram in Fig. 6.6 give identical contributions described by T̃1, while
the third diagram is described by T̃2.

Using the method of Gegenbauer polynomials, this 8-dimensional 2-loop integral
can be reduced to a 3-dimensional one. A simple formula can be found in Ref. [94]
and reads

aHLbL;π0(1)
µ =

∞

0
dQ1

∞

0
dQ2

1

−1
dτ w1(Q1, Q2, τ)

× Fπ0γ∗γ∗(−Q2
1, −(Q1 + Q2)2) Fπ0γ∗γ∗(−Q2

2, 0), (6.14)

aHLbL;π0(2)
µ =

∞

0
dQ1

∞

0
dQ2

1

−1
dτ w2(Q1, Q2, τ)

× Fπ0γ∗γ∗(−Q2
1, −Q2

2) Fπ0γ∗γ∗(−(Q1 + Q2)2, 0), (6.15)

with weight functions w1 and w2 again given in Appendix B.
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Model aπ0
µ aη

µ aη
µ sum

SS 48.3 11.7 7.8|9.5 69.4
SW 59.2 15.9 11.2|13.4 88.5
HW1 65.2 18.2 13.2|15.6 99.0
HW2 56.6 14.8 10.3|12.4 83.7
HW2UV-fit 75.4 21.9 16.1|19.0 119.4
DIP1 65.4 19.0 14.4|16.9 101.4
DIP2 65.8 19.2 14.6|17.1 102.2
DRV [93] 56(2) 15(1) 13(1) 84(4)
WP [2] 63.6(2.7) 16.3(1.4) 14.5(1.9) 94.3(5.3)

Table 6.3. – Holographic results for the pseudoscalar pole contribution to aHLbL
µ in multiples

of 10−11. The three bottom-up models (SW, HW1 & HW2) nicely bracket the
WP result. Table from Ref. [VI].

This formula with the holographic TFF of the pion can be used to holographically
predict the pion-pole contribution to aHLbL

µ . The various predictions for the holo-
graphic models are collected in Table 6.3. For estimating aη

µ and aη
µ we include the

experimental masses for η and η , keep the pion result for K(Q2
1, Q2

2) and simply
rescale F (0, 0) to the central experimental values quoted in Ref. [93]. In summing
the pseudoscalar contributions, we consider a second value for η that includes an
additional upscaling of the mass scale within the TFF by 10%. This is in line with
the presumably more realistic higher Λ parameter in Ref. [93].

Compared to the WP result, the DIP interpolators of Ref. [90] as well as the HW2(UV-
fit) model severely overestimate the pseudoscalar meson contribution. For the three
bottom-up holographic QCD models, the SW, HW1 and HW2 model, bracket the WP
result and can be combined to an overall holographic prediction. A more in-depth
discussion of the holographic results can be found at the end of Chapter 8.
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Axial-Vector Contribution to
HLbL

7

„When the snows fall and the white winds blow,
the lone wolf dies but the pack survives.

— George R.R. Martin
A Game of Thrones

LTHOUGH the holographic results for the pseudoscalar-pole contri-
bution to HLbL cannot compete with the dispersive approach, in
the previous chapter, we were able to make reasonable predictions
bracketing the WP result. By comparing to experimental data on
the TFF, we found that some holographic models do even better

than model-dependent parameter fits. An additional advantage of the holographic
models we will now turn to is that, without introducing additional parameters, we
can calculate the contribution of the infinite tower of axial-vector mesons to HLbL.

This chapter, following Ref. [IV], is structured as follows: First, we will construct the
holographic axial-vector TFF for the SS model and the HW models and compare them
to low-energy data from LHCb and L3, as well as to high-energy constraints from
pQCD. Then, we will calculate the axial-vector contribution to the HLbL scattering
four-point function and show how the infinite tower of axial-vector mesons satisfies
the Melnikov-Vainshtein SDC. Finally, we evaluate the contribution to g − 2.

7.1 Transition Form Factor

Similar to the pseudoscalar mesons discussed in the previous chapter, axial-vector
mesons can couple to two photons and can therefore contribute to the HLbL scatter-
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q3
Figure 7.1. – Axial-vector meson contributions to the HLbL tensor, where the shaded blobs

are described by the axial-vector transition form factor.

ing amplitude in Fig. 7.1. Again, the crucial ingredient is the TFF, which in the SS
model, can be obtained from the Lagrangian1

LAγγ = −i
Nc

12π2 Tr µνρσ
∞

−∞
dZ aµVν∂ρVσ + Vµaν∂ρVσ + VµVν∂ρaσ , (7.1)

while for the HW models the Z integral is replaced by 2 z0
0 dz(. . .). Using partial

integration, the Lagrangian can be simplified to

LAγγ = −i
Nc

12π2 Tr µνρσ
∞

−∞
dZ −3Vµaν∂ρVσ + Vµaν∂ρVσ

∞
Z=−∞

, (7.2)

where potentially an unwanted boundary term appears, which would result in a non-
vanishing 2-real-photon decay of the axial-vector meson, violating the Landau-Yang
theorem [102, 103]. The bulk term automatically satisfies the Landau-Yang theorem
by Vµ = 0 for Q2 → 0, since in this limit the bulk-to-boundary propagator becomes
constant. The boundary term vanishes automatically in the SS model and the HW2
model due to boundary conditions, but needs to be subtracted by hand in the HW1
model.

The amplitude γ∗(q1)γ∗(q2) → Aa can be written as

Ma = i
Nc

4π2 Tr (Q2ta) µ
1

ν
2

∗ρ
A µνρσ qσ

2 Q2
1A(Q2

1, Q2
2) − qσ

1 Q2
2A(Q2

2, Q2
1) , (7.3)

with the function A(Q2
1, Q2

2) given by2

AHW(Q2
1, Q2

2) = 2
Q2

1

z0

0
dz

d

dz
J (Q1, z) J (Q2, z)ψA(z) g−2

5
z0

0

dz

z
(ψA)2

1/2
,

(7.4)
1For simplicity, we will restrict to the lightest axial-vector meson mode here. A generalization to the

n-th mode is straightforward.
2Note that A(Q2

1, Q2
2) is not symmetric.
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with the axial-vector meson mode defined in Eq. (5.37) or Eq. (5.44) for the HW
models and

ASS(Q2
1, Q2

2) = 1
Q2

1

∞

−∞
dZ

d

dZ
J SS(Q1, Z) J SS(Q2, Z)ψA

SS(Z) κ
∞

−∞
dZ

Z
(ψA

SS)2
1/2

(7.5)
for the SS model, where ψA

SS ≡ ψ2 is defined by Eq. (4.13). The brackets [. . . ]1/2

make explicit the normalization conditions of the radial modes ψA of the axial-vector
mesons.

7.1.1 Low-Energy Behavior

Although the Landau-Yang theorem forbids the decay of an axial-vector meson into
two real photons, there is experimental data from the L3 Collaboration [104, 105] on
the so-called equivalent 2-photon decay width of the lightest f1 meson. It describes
the decay into one off-shell longitudinal photon and one transverse photon [106,
107]

Γ̃γγ = lim
Q2

1→0
Γ(A → γ∗

LγT )M2
A/(2Q2

1). (7.6)

This is related to the axial TFF as

Γ̃γγ = πα2MA

12 [F (1)
Aγ∗γ∗(0, 0)]2, (7.7)

with
M−2

A F
(1)
Aγ∗γ∗(0, 0) = Nc

4π2 Tr (Q2ta)A(0, 0). (7.8)

The experimental results Γ̃γγ = 3.5(8) keV for f1(1285) [104] and 3.2(9) keV for
f1(1420) [105] translate to the universal value

|A(0, 0)|exp. 15(2)GeV−2, (7.9)

with the mixing angle φf ≈ 20.4◦, which is close to φf = ±(24 ± 3)◦, the recent
LHCb result [108] as well as to other results obtained in Refs. [109, 110] pointing
to the range +(20 . . . 30)◦ .

To calculate A(0, 0) holographically, we can use that d
dz J (Q1, z) vanishes like Q2

1 for
small virtualities. In the HW2 model we get

A(0, 0) = −4
√

2J0(γ1,1) − 1
γ3

1,1J0(γ1,1) g5z2
0 = −0.3502g5z2

0 = −16.633 GeV−2 (HW2),

(7.10)
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in the HW1 model

A(0, 0) = −0.3478g5z2
0 = −21.043 GeV−2 (HW1) (7.11)

and in the SS model

A(0, 0) = −1.2379κ−1/2M−2
KK = −15.926 GeV−2 (SS). (7.12)

The results for the SS and HW2 models agree quite well with the experimental data
of f1, while the HW1 model overestimates the amplitude by about 40%.3

In Figure 7.2 and 7.3 we compare the single-virtual and double-virtual axial-vector
TFF from holographic models to the experimental fit of the L3 data [41]. In the
double-virtual case they deviate rather strongly since the holographic models manage
to have the same asymptotic power-law as in the single-virtual case, while the dipole
fit decays too quickly.

7.1.2 High-Energy Behavior

To study the asymptotic behavior, we use the parametrization

Q2
1,2 = r2

1,2Q2 ≡ (1 ± w)Q2,

Q2 = 1
2(Q2

1 + Q2
2), w = (Q2

1 − Q2
2)/(Q2

1 + Q2
2), (7.13)

with which we obtain for both HW models the result

AHW(Q2
1, Q2

2) → aA(0, 0)
(z0Q)4 r−1

1 r2
∞

0
dξ ξ3 K1(r1ξ) + r1ξK1(r1ξ) K1(r2ξ)

= aA(0, 0)
(z0Q)4

1
w4 w(3 − 2w) + 1

2(w + 3)(1 − w) ln 1 − w

1 + w
,

(7.14)

where a is a dimensionless constant depending on the model and the particular
axial-vector mode. After its holographic derivation in Ref. [IV], it was shown in Ref.
[54] to agree with pQCD in the Brodsky-Lepage formalism.

3In Ref. [II] instead of the value (7.9), we compare to |A(0, 0)|exp.
f1(1285) 16.6(1.5)GeV−2, which takes

into account SU(3) flavor breaking of our flavor-symmetric models and reduces the discrepancy to
below 30%.
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Figure 7.2. – Comparison of the single-virtual axial-vector TFF from holographic models
(SS: blue, HW1: orange, HW2: red, HW2(UV-fit): red dashed) to the dipole fit
of the L3 data for f1(1285) (gray band). Figure from Ref. [IV].
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Figure 7.3. – Comparison of the symmetric double-virtual axial-vector TFF from holographic
models (SS: blue, HW1: orange, HW2: red), to the extrapolation of the L3
data with a dipole model [41] (black dashed). Figure from Ref. [IV].
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Figure 7.4. – Comparison of the short-distance behavior of A(Q2
1, Q2

2) for different asymme-
try parameters w. The bottom-up HW models (black) agree with pQCD, while
the top-down SS model (blue) deviates from it. Figure from Ref. [IV].

The SS model, showing its higher-dimensional origin, does not agree with pQCD
and gives the result

ASS(Q2
1, Q2

2) → aSSASS(0, 0)M5
KK

Q5 r−1
1

∞

0
dξ ξ4(1 + 3r2)e−3(r1ξ+r2ξ)

= aSSASS(0, 0)M5
KK

Q5
8
81

6
√

1 − w +
√

1 + w√
1 + w(

√
1 − w +

√
1 + w)6 .(7.15)

In particular, here the large momentum scaling is ASS ∼ 1/Q5, while in the HW
models and pQCD we have A ∼ 1/Q4. The qualitatively different w-dependence is
displayed in Figure 7.4.

7.2 High-Energy Behavior of the Four-Point Function

In this section, we will show how the short-distance constraint by Melnikov and
Vainshtein [46] (MV-SDC) is satisfied in the HW models by summing the infinite
tower of axial-vector mesons.

As discussed in Chapter 2, the MV-SDC can be expressed as [60, 48]

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1(Q, Q, Q3) = − 2

3π2 . (7.16)
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In the previous chapter, we encountered the contribution of the pion to Π̄1(Q, Q, Q3),
which however scales as ∼ 1/(Q4

3Q2) and therefore does not contribute to the SDC.
Another contribution comes from the longitudinal part of the axial-vector mesons
and reads

Π̄1 = − g2
5

2π4

∞

n=1

z0

0
dz

d

dz
J (Q, z) J (Q, z)ψA

n (z) 1
(MA

n Q3)2

×
z0

0
dz

d

dz
J (Q3, z ) ψA

n (z ). (7.17)

From (7.14) and (7.4), we can see that at large virtualities the first integral behaves
as 1/Q2, while the second as 1/Q2

3. Together with the 1/Q2
3 from the propagator,

this shows that any single axial-vector meson does not contribute. It is only after
summing the infinite number of axial-vector contributions that one gets a finite
contribution. This holds true for both HW models, but for simplicity let us only
look at the HW2 model, where J and ψA are given in terms of Bessel functions.4

Recalling Chapter 5, the wave functions are solutions of

∂z
1
z

∂zψA
n (z) + 1

z
M2

A,nψA
n (z) = 0, (7.18)

and are given by
ψA

n (z) =
√

2zz−1
0 J1(γ1,nz/z0)/|J0(γ1,n)|. (7.19)

They are normalized to z0
0 dzz−1(ψA(z))2

n = 1 and satisfy the completeness rela-
tion ∞

n=1
ψA

n (z)ψA
n (z ) = zδ(z − z ). (7.20)

The Green’s function or bulk-to-bulk propagator of (5.44) reads

GA(Q; z, z ) = zz [K1 (Qz>) I1 (Qz0) − I1 (Qz>) K1 (Qz0)] I1 (Qz<) /I1 (Qz0) ,

(7.21)
where z< = min(z, z ) and z> = max(z, z ). An alternative form is given by the
spectral representation

GA(Q; z, z ) =
∞

n=1

ψA
n (z)ψA

n (z )
Q2 + (MA

n )2 , (7.22)

4A similar calculation for the HW1 model with quark masses will be presented in the next chapter.
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which for Q = 0 reduces to the sum ∞
n=1 ψA

n (z)ψA
n (z )/(MA

n )2. The same expression
as appears in Eq. (7.17). In this limit, the analytic form reduces to the simple result

GA(0; z, z ) = z2
<(z2

0 − z2
>)

2z2
0

. (7.23)

In the limit Q2 Q2
3, we use the parametrization Qz = ξ, Q3z = ξ to obtain

− g2
5

2π4
1

2Q2
3

∞

0
dξ

∞

0
dξ ξK1(ξ) d

dξ
[ξK1(ξ)] d

dξ
[ξ K1(ξ )]ξ2/Q2

= g2
5

2π4
1

2Q2
3

∞

0
dξξK1(ξ) d

dξ
[ξK1(ξ)]ξ2/Q2 = − 2

π2
1

2Q2
3

2
3Q2 . (7.24)

In the last step we have set g2
5 = 4π2 at Nc = 3 to exactly5 reproduce the MV-SDC

(8.14). Figure 7.5 illustrates the summation over the infinite tower.

In the large-Nc and chiral limit, one can show that the MV-SDC (8.14) is stronger
and holds for all values of Q3

lim
Q→∞

Q2Π̄1(Q, Q, Q3) = − g2
5

(2π)2
2

3π2Q2
3
. (7.25)

This is also realized in the HW2 model, where the pion gives the additional contri-
bution.

7.3 Contribution to g − 2

With the method of Gegenbauer polynomials, we can again reduce the 8-dimensional
integral of the 2-loop diagram to a 3-dimensional one of the form6

aAV
µ =

∞

0
dQ1

∞

0
dQ2

1

−1
dτ ρa(Q1, Q2, τ). (7.26)

The total contribution from all the axial-vector mesons is, as expected, dominated
by the lowest modes. This is illustrated in Figure 7.6, where the contribution of the
infinite sum is almost exclusively given by the ground state. The numerical results
for the considered models are collected in Table 7.1.

5This is not the usual choice of parameters for the HW2 model and corresponds to HW2(UV-fit). The
usual choice (5.47) only reaches 62% of the MV-SDC.

6The explicit formula is given in Appendix B.
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Figure 7.5. – Axial-vector meson contribution to Q2
3Q2Π̄1(Q, Q, Q3) at Q = 50 GeV and

normalized to the asymptotic value (8.14). The first 5 axial-vector mesons
(colored) decay too fast. It takes the infinite sum (black) to get the correct
asymptotic value. Figure from Ref. [IV].

j = 1 j ≤ 2 j ≤ 3 j ≤ 4 j ≤ 5 aAV
µ

HW1 31.4 36.2 37.9 39.1 39.6 40.6 × 10−11

HW2 23.0 26.2 27.4 27.9 28.2 28.7 × 10−11

HW2(UV-fit) 23.7 26.9 28.1 28.6 28.9 29.4 × 10−11

SS 13.8 14.5 14.7 14.8 14.8 14.8 × 10−11

Table 7.1. – Holographic results for the contribution of the infinite tower of axial-vector
mesons to aAV

µ . Table from Ref. [IV].

The combined holographic prediction for the pseudoscalar plus axial-vector pole
contributions are displayed in Table 7.2. For the realization of the MV-SDC, only
the longitudinal polarization of the axial-vector meson is relevant. It is responsible
for 57 − 58% of the total contribution and can be compared to the short-distance
contribution in Table 2.2. Numerically, our result is significantly smaller than what
is obtained by the simple MV model, but comparable in size to the WP result
of aWP,SDC

µ = 15(10) × 10−11. Comparing the axial-vector contribution aWP,axials
µ =

6(6) × 10−11 to our result for transverse axial-vector mesons suggests that it has
been underestimated so far.
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Figure 7.6. – The integrand ρa(Q1, Q2, τ) of Eq. (7.26) for the slice Q1 = Q2 and τ = 0. The
infinite sum (black) is almost exclusively given by the ground state (orange).
Figure from Ref. [IV].

HW1 HW2
aPS

µ [π0 + η + η ] × 1011 99.0[65.2 + 18.2 + 15.6] 83.7[56.6 + 14.8 + 12.4]
aAV

µ [L + T ] × 1011 40.6[23.2 + 17.4] 28.7[16.6 + 12.0]
aPS+AV

µ × 1011 140 112

Table 7.2. – Combination of the pseudoscalar pole contribution of Chapter 6 and the infinite
tower of axial-vector mesons. Table from Ref. [IV].
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Massive Pion Contribution to
HLbL

8
„Life is like a box of chocolates. You never know

what you’re gonna get.

— Forrest Gump
Forrest Gump

In the previous two chapters, we have considered predictions of chiral holographic
models to aHLbL

µ and found that the tower of axial-vector mesons is responsible
for satisfying the MV-SDC. In the chiral limit, excited pseudoscalars decouple from
the axial-vector current and the axial anomaly and were therefore not considered.
However, in the light of the Regge model of Ref. [60, 48] where an infinite tower of
pseudoscalars is responsible for the MV-SDC, the question arises what role they play
in holographic models.

Excited pions are most easily implemented in the HW1 model, where they are even
present in the chiral limit, but can also be studied with massive quarks described
by the vacuum expectation value (5.6) of the bifundamental scalar field X. To
get a range of predictions and to not only work with one model, it is possible to
also consider different variants of the HW1 model. Two possible modifications are
considering the second set of possible boundary conditions (5.30) giving rise to
what we call the HW3 model, and generalizing the scaling dimensions of the chiral
condensate and the quark mass described by the bulk mass M2

X of the bifundamental
scalar field.

In this chapter, we will address the role of massive pions following Ref. [II]. First,
we will introduce the different variants of the HW1 model with quark masses we are
considering. Next, we will present the necessary change of the CS-term when leaving
the chiral limit and derive an interesting and, as far as we know, novel sum relation.
Then, we will analytically derive the contribution of axial-vector mesons and pions
to the MV-SDC. Finally, we will calculate the contributions to g − 2 and end with a
brief discussion of the holographic predictions for the hadronic contribution to the
anomalous magnetic moment of the muon.
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8.1 Model Variants

So far, we have only considered chiral models in this part of the thesis. The model
with the easiest implementation of quark masses is the HW1 model, in which, as
explained in Chapter 5, quark masses and chiral condensates are described by the
vacuum solution (5.6) of the scalar field X. Following Ref. [83], we also consider a
generalization away from the usual choice M2

X = −3 to get the vacuum solution

v(z) = Mqz0(z/z0)Δ− + Σ z3
0(z/z0)Δ+

, (8.1)

with the scaling dimensions

Δ± = 2 ± 4 + M2
X ≡ 2 ± α, (8.2)

and the admissible range −4 < M2
X < 0 [83]. The additional free parameter M2

X

can then be used to fit the mass of the lowest axial-vector meson or the first excited
pion. This also generalizes the Gell-Mann–Oakes–Renner relation to

f2
πn

m2
n ≈ 2αMqΣ, (8.3)

which implies that the n > 1 massive pions have vanishing decay constants in the
chiral limit.

As a second generalization of the HW1 model, we change the chiral symmetry
preserving boundary conditions F L,R

zµ (z0) = 0 to chiral symmetry breaking ones
(AL

µ − AR
µ )(z0) = 0 and (F L

zµ + F R
zµ)(z0) = 0, as was suggested in Ref. [83]. This

variant we call HW3. We therefore consider four different HW models with non-
vanishing quark masses.

HW1m: is the original HW1 model as was introduced by Erlich, Katz, Son and
Stephanov [14], although we are using a slightly different parameter fit. In the
chiral limit, this coincides with the HW1 model considered in Refs. [IV, VI].

HW1m’: generalizes the HW1m model in the choice of M2
X to additionally fit the

mass of the a1 meson. This also lowers the mass of the first excited pion to a
more physical value, but it cannot be fitted exactly.

HW3m: is similar to the HW1 model, but has changed IR boundary conditions,
as proposed in Ref. [83]. In the HW3 models, no manual subtraction of the
infrared boundary in the CS term is necessary.
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mπ2[MeV] fπ2[MeV] |Fπ2γγ |[GeV−1] ma1[MeV] Fa1/ma1[MeV]

Experiment 1300(100) 2.20(46) < 0.0544(71) 1230(40) 168(7)
HW1(chiral) 1899 0 0.202 1375 177
HW1m 1892 1.56 0.203 1367 175
HW1m’ 1591 1.59 0.250 1230∗ 148
HW3m 1715 1.56 0.196 1431 195
HW3m’ 1300∗ 1.92 0.206 1380 186

Table 8.1. – Comparison of the most relevant masses and decay constants in the axial sector.
Experimental values are from Refs. [113][114][48][113][112], respectively.
Fitted values are denoted with ∗. A more detailed comparison of the model
values is given in Appendix C.

HW3m’: generalizes the HW3m model by using M2
X to fit the mass of the π(1300)

meson. This model is similar to the one of Domènech, Panico, and Wulzer in
Ref. [83] and deviates from it only in the parameter fit.

As can be seen in Table 8.1, the mass of the first excited pion is too high in all models,
except in the HW3m’ model, where it is fitted exactly. This fit also raises the value of
fπ2 to be consistent with the experimental bound. For the amplitude |Fπ2γγ | there
is at present no direct measurement available, but we can compare to the upper
bound of Ref. [48], which holographic results strongly overestimate. The masses of
the axial-vector mesons do not vary as widely as the masses of the first excited pion,
and are somewhere between the experimental values Ma1(1260) = 1230(40) MeV and
Mf1(1420) = 1426.3(9) MeV. For the decay constant of the axial-vector meson, we
define Fa1 such that it corresponds to F a=3

A mA and F a=3
A mA/

√
2 in [54, 111] and

[112], respectively. The ballpark (148 . . . 195) MeV is roughly consistent with the
result 168(7) MeV inferred from light-cone sum rules [111, 112].

8.2 Axial Anomaly and Massive Pions

To construct the TFF for massive pions, it turns out that we can no longer use the CS
term resulting in

Fπ1γ∗γ∗(Q2
1, Q2

2) = Nc

12π2fπ
KHW1,3(Q2

1, Q2
2). (8.4)
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with

KHW1,3(Q2
1, Q2

2) = −
z0

0
J (Q1, z)J (Q2, z)∂zΨ(z)dz + J (Q1, z0)J (Q2, z0)Ψ(z0),

(8.5)
and Ψ = φ − π as was introduced in Ref. [79] and used in Ref. [VI]. This is obvious
by looking at

KHW1,3(0, 0) = − Ψ(z)|z0
0 + Ψ(z0) = Ψ(0) = 1, (8.6)

which is only correct in the chiral limit, where the pion mode is proportional to
the bulk-to-boundary propagator (as demonstrated in Chapter 5) and therefore
Ψ1(0) ≡ Ψ(0) = 1. With quark masses, the boundary conditions instead imply
Ψn(0) = 0 resulting in the wrong axial anomaly.

In Ref. [II] we instead show that the correct expression is given by

Fπnγ∗γ∗(Q2
1, Q2

2) = Nc

12π2 g5Kn(Q2
1, Q2

2), (8.7)

with

Kn(Q2
1, Q2

2) = −
z0

0
dz J (Q1, z)J (Q2, z)zyn(z)

+J (Q1, z0)J (Q2, z0) z

β
∂zyn(z)

z→z0

. (8.8)

Expressed in terms of the φ and π modes the TFF reads

Kn(Q2
1, Q2

2) = −
z0

0
dz J (Q1, z)J (Q2, z)∂zφn(z)

+J (Q1, z0)J (Q2, z0) [φn(z0) − πn(z0)] , (8.9)

which implies
Kn(0, 0) = −πn(z0). (8.10)

In the chiral limit our definition agrees with Eq. (8.5) since π1(z) ≡ −1/(g5fπ1) and
hence ∂zΨ = ∂zφ1.

With non-vanishing quark masses the sum rule (5.32) implies yS(0, z) = g5
∞
n=1 fπnyn(z)

and consequently

g5

∞

n=1
fπnKn(0, 0) = 1, (8.11)

or equivalently
∞

n=1
fπnFπnγγ = Nc

12π2 , (8.12)
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which is an interesting generalization of the well-known chiral result fπFπγγ = Nc
12π2

following from the axial anomaly.

For the high-energy behavior of the pion TFF, we obtain the result

Fπnγ∗γ∗(Q2
1, Q2

2) → g2
5Nc

12π2
4fπn

Q2
1 + Q2

2

1
w2 − 1 − w2

2w3 ln 1 + w

1 − w
, (8.13)

as a generalization of Eq. (6.9).

8.3 High-Energy Behavior of the Four-Point Function

One of the main motivations for Ref. [II] was to investigate the role of massive pions
in the high-energy behavior of the HLbL four-point function. In the previous chapter
following Ref. [IV], we have seen that in the chiral HW1 model 100% of the MV-SDC
[60, 48]

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1(Q, Q, Q3) = − 2

3π2 (8.14)

is satisfied by the tower of axial-vector mesons. In light of the Regge model of Ref.
[60, 48], where the tower of massive pions is responsible for 100% of the MV-SDC,
it seems natural to ask how it is realized in the massive HW1 model with an infinite
tower of axial-vector mesons and pions.

Furthermore, it is interesting to consider the symmetric SDC [46, 47],

lim
Q→∞

lim
Q→∞

Q4Π̄1(Q, Q, Q) = − 4
9π2 , (8.15)

related to the perturbative quark loop and for which axial-vector mesons only
contribute around 80% to the coefficient [61, II]. It would be intriguing to also
realize the remaining 20% within holographic models.

8.3.1 Axial-Vector Contribution

In the previous chapter, we have sketched the derivation of the short-distance
behavior of

Π̄AV
1 = − g2

5
2π4Q2

3

z0

0
dz

z0

0
dz J (Q, z)J (Q, z)J (Q3, z )GA(0; z, z ), (8.16)
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for the HW2 model, where we have an analytic expression for the Green’s function
GA. In the HW1 model, the defining differential equation

z∂z
1
z

∂z − β(z) GA(0; z, z ) = −zδ(z − z ) (8.17)

can only be solved numerically. For large virtualities Q, Q3 mρ, the integrals in
Eq. (8.16) are dominated by the region z, z z0 and we can use the leading-order
solution

GA(0, z, z ) = 1
2 min(z, z ) 2 1 + O(Q−n) + O(Q−n

3 ) , n > 0, (8.18)

where n is a positive function of the scaling dimension Δ−, to calculate the MV-
SDC

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄AV

1 (Q, Q, Q3)

= − g2
5

2π4

∞

0
dξ

∞

0
dξ ξK1(ξ) d

dξ
[ξK1(ξ)] d

dξ
[ξ K1(ξ )]12ξ2

= g2
5

(2π)2
1

2π2

∞

0
dξξ2 d

dξ
[ξK1(ξ)]2 = − 2

3π2 , (8.19)

using z = ξ/Q and z = ξ /Q3. Since the behavior is dominated by the UV-region,
this result holds for all HW1 and HW3 models regardless of quark masses, value
of M2

X , or IR-boundary conditions. The only exception is at the border M2
X = 0 of

the allowed values, where Δ− = 0 and n = 0. Giving 100% of the MV-SDC, this
result implies that the infinite tower massive pions should not contribute. This will
be checked in the next subsection.

For now, let us continue by calculating the symmetric SDC

lim
Q→∞

Q4Π̄AV
1 (Q, Q, Q)

= − g2
5

2π4

∞

0
dξ

∞

0
dξ

1
2

d

dξ
[ξK1(ξ)]2 d

dξ
[ξ K1(ξ )]12[min(ξ, ξ )]2

= − g2
5

(2π)2π2

∞

0
dξ

∞

0
dξ [ξK1(ξ)]2[ξ K1(ξ )]ξδ(ξ − ξ )

= − g2
5

(2π)2π2

∞

0
dξ ξ[ξK1(ξ)]3 = −0.361 1

π2 , (8.20)

which is again valid for all here considered models and accounts for roughly 81% of
the desired result 4/(9π2) in Eq. 2.19.
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8.3.2 Pseudoscalar Contribution

Due to the boundary term in the pion TFF (8.8), the pion-pole contribution takes
the slightly more complicated form

Π̄(π)
1 = −

∞

n=1

Fπnγ∗γ∗(Q2
1, Q2

2)Fπnγ∗γ(Q2
3)

Q2
3 + m2

n

= − 1
4π2

n

1
Q2

3 + m2
n

J (Q1, z0)J (Q2, z0)J (Q3, z0) z

β
∂zyn(z)

2

z→z0

−J (Q1, z0)J (Q2, z0) z

β
∂zyn(z)

z→z0

z0

0
dzJ (Q3, z)zyn(z)

−J (Q3, z0) z

β
∂zyn(z)

z→z0

z0

0
dzJ (Q1, z)J (Q2, z)zyn(z)

+
z0

0
dzJ (Q1, z)J (Q2, z)zyn(z)

z0

0
dz J (Q3, z )z yn(z ) , (8.21)

where the first three terms, however, vanish in the large-Q limit due to limQ→∞ J (Q, z0) =
0 and limQ→∞ Q2J (Q, z0) = 0. The last term can then be formally written as

− 1
4π2

∞

n=1

z0

0
dzdz J (Q1, z)J (Q2, z)J (Q3, z )zz yn(z )(Q2

3 − LP S)−1yn(z)

= − 1
4π2

z0

0
dzdz J (Q1, z)J (Q2, z)J (Q3, z )z z(Q2

3 − LP S)−1GP S(z, z ; 0),

(8.22)

where LP S is the defining yn differential operator (5.25) and GP S the corresponding
bulk-to-bulk propagator (5.34). In the limit of the MV-SDC, we can use z z and
LP SGP S(z, z ; 0) = 0 to obtain

Π̄(π)
1

Q Q3 mρ

→ − 1
4π2Q2

3

z0

0
dzdz J (Q1, z)J (Q2, z)J (Q3, z )z zGP S(z, z ; 0).

(8.23)

To find the bulk-to-bulk propagator, we then use

∂z
z

β(z)∂zGP S(0; z, z ) = −δ(z − z ), β(z) ∼ M2
q (z/z0)2−2Δ− , (8.24)

for parametrically small z.

For M2
X = −3 we get

GP S(0; z, z ) → −M2
q ln max(z, z ) + const., (8.25)
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leading to the MV-SDC contribution

−Q2Q2
3Π̄(π)

1 (Q, Q, Q3) ∼ M2
q

4π2
ln(Q3)

Q2
3

∞

0
dξξ3[K1(ξ)]2

∞

0
dξ ξ 2K1(ξ )

=
M2

q

6π2
ln(Q2

3)
Q2

3
→ 0, (8.26)

for large Q Q3 mρ. As was the case for the axial-vector contribution, summing
the infinite tower enhances the scaling 1/Q2

3 of a single meson, but in this case
only by ln(Q2

3), which is not enough to contribute to the MV-SDC. Graphically, the
behavior of P1 ≡ −Q2Q4

3Π̄(π)
1 (Q, Q, Q3) is displayed in the left panels of Fig. 8.1.

Since the logarithmic behavior is not visible, as it is suppressed by the prefactor
M2

q /(3π2) ∼ 3 · 10−6 GeV2, we artificially enhance the quark mass by a factor 25 in
Fig. 8.2, where the slow build-up of the logarithm becomes visible.

In the case M2
X < −3, relevant for the HW1m’ and HW3m’ models, the logarithmic

enhancement disappears, and we get Q2Q2
3Π̄(π)

1 (Q, Q, Q3) ∼ Q−2
3 . For completeness,

let us also consider −3 < M2
X < 0, where 1 > Δ− > 0 and we obtain

GP S(0; z, z ) → M2
q

2(1 − Δ−)
z0
z

2(1−Δ−)
∝ Q

2(1−Δ−)
3 (8.27)

leading to the contribution

Q2Q2
3Π̄(π)

1 (Q, Q, Q3) ∼ −22Δ−−3Γ(Δ−)Γ(1 + Δ−)
3π2

M2
q

Q2
3

(z0Q3)2(1−Δ−)

1 − Δ− ∝ Q−2Δ−
3 .

(8.28)

Interestingly, massive pions also contribute in the chiral limit, where they decouple
from the axial-vector current. In this case, the bulk-to-boundary propagator

GP S(0; z, z )chiral → const. + Σ2z4
0

2(1 − Δ+)
z0
z

2(1−Δ+)
∝ const. + Q−2−2α

3 , (8.29)

produces no enhancement and does not contribute to the MV-SDC, regardless of the
value of M2

X .

The massive pion contribution to the symmetric SDC (8.15) is also given by Eq.
(8.22), but we cannot use the succeeding arguments to derive an analytic result.
Numerically, we did not find any evidence for an enhancement of the asymptotic
behavior beyond the asymmetric case, as can be seen in the right panels of Figs. 8.1
and 8.2.
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Figure 8.1. – Contribution of the first four pion modes to P1(Q, Q, Q3) =
−Q2Q4

3Π(π)
1 (Q, Q, Q3) in the HW1m model with Q = 200 GeV on the

left and Q3 = Q on the right. The sum is still suppressed by 1/Q2
3 as compared

to the MV-SDC and does not contribute. The logarithmic enhancement is not
visible. Figure from Ref. [II].
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Figure 8.2. – Similar to Figure 8.1, but with quark masses increased by a factor of 25, such
that the build-up of the logarithmic enhancement becomes visible. Figure from
Ref. [II].
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Model aπ0
µ aπ

µ aπ∪a1
µ aπ∗∪a1

µ(L) a
π∗∪a∗

1
µ(L) aP∗

µ aA
µ [L + T ] aA+P∗

µ

HW1(chiral) 65.2 66.1 76.2 6.6 2.2 3.5 40.6[23.2 + 17.4] 44.0
HW1m 66.0 66.8 77.0 6.7 2.2 3.5 40.8[23.3 + 17.5] 44.3
HW1m’ 64.3 66.1 77.0 8.1 3.7 7.2 43.3[25.0 + 18.3] 50.5
HW3m 66.6 67.4 77.4 6.5 1.9 3.4 39.9[22.7 + 17.2] 43.3
HW3m’ 66.0 67.5 77.8 7.4 2.7 6.1 41.2[23.5 + 17.7] 47.3

Table 8.2. – Partial sums of contributions to aHLbL
µ , where (L) denotes the longitudinal

contribution, π and a1 the entire towers, and π∗ and a∗
1 only the excited modes.

The flavor multiplet is collected in aA
µ ≡ 4aa1

µ and aP∗
µ ≡ 4aπ∗

µ , valid in the
flavor-symmetric case. Numerical results for single modes can be found in
Appendix C. Table from Ref. [II].

8.4 Contribution to g − 2

The calculation of the contribution to aHLbL
µ is analogous to the previous two chapters,

only with changed TFFs and masses. The detailed results are listed in Appendix
C and presented in partial sums of contributions in Table 8.2. We find that the
chiral result aπ0

µ = 65.2 × 10−11, also obtained in Chapter 6, is remarkably close
to the massive HW models with the range aπ0

µ = (64.3 . . . 66.6) × 10−11. For the
contribution of massive pions1, we find the range aπ∗

µ = (0.8 . . . 1.8) × 10−11. For
the tower of axial-vector mesons, we obtain the total contribution in the range
aA

µ = (39.3 . . . 43.3) × 10−11. Although in Chapter 6 we have worked out the η and
η contributions in the chiral HW1 mode, here we assume a flavor-symmetric setup
for the massive HW models. Contributions of the flavor asymmetry and the U(1)A

anomaly will be studied in a future work.

One weakness of the here considered HW models is that they do not have a running
coupling constant. As a result, the TFF might reach their SDCs too quickly, whereas at
large but not excessively large momenta perturbative corrections also contribute. As
an attempt to account for this and to make extrapolations to real QCD, we consider
a reduction of the coupling constant g2

5 by 10% and by 15% roughly corresponding
to the perturbative corrections in Refs. [115, 116]. The resulting increase in the
vector-vector-correlator function ΠV (5.11) is then also consistent with the next-to-
leading order result in Ref. [81]. The coupling constant reductions modify A1(0, 0)
and the contributions to aHLbL

µ according to the factors in Table 8.3 estimated from
the chiral HW1 model.

1Even though massive pions decouple from the axial-vector current in the chiral HW1 mode, they
still have a non-vanishing two photon coupling and contribute to the HLbL scattering amplitude.
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g2
5Nc

12π2 R(A(0, 0)n=1) R(aP1,P
µ ) R(aA1

µ ) R(aA
µ )

0.90 0.93 0.96 0.91 0.95
0.85 0.90 0.94 0.87 0.92

Table 8.3. – Reduction factors R to various quantities due to the coupling constant reduction
of g2

5 by 10% and by 15% as estimated from the chiral HW model. Table from
Ref. [II].

As a conservative estimate, we apply these reduction factors to the lower values in
our results according to

aπ0
µ = (R(aP1

µ )0.85 × 64.3 . . . 66.6) × 10−11

= (60.5 . . . 66.6) × 10−11, (8.30)

and analogously for the other contributions to obtain our final predictions

aP∗
µ = (3.2 . . . 7.2) × 10−11,

aA
µ(L) = (20.8 . . . 25.0) × 10−11,

aA
µ = (36.6 . . . 43.3) × 10−11,

aA+P∗
µ = (39.8 . . . 50.5) × 10−11. (8.31)

8.5 Discussion

In this part of the thesis, we have seen how holographic QCD can be used to make
predictions for the anomalous magnetic moment of the muon, particularly for the
HLbL contribution with its current theoretical uncertainty of 20% and even 100% in
the axial-vector contribution. The holographic pseudoscalar and axial-vector TFF
satisfy important SDC from pQCD and the OPE, and the infinite tower of axial-vector
mesons can be used to implement the MV-SDC on the HLbL scattering four-point
function. Besides fitting other low-energy observables, this is achieved with only
three free parameters in the chiral HW1 model.

As the primary contribution, we find a remarkable agreement of our prediction (8.30)
for the pion-pole contribution to the result aπ0

µ = 62.6+3.0
−2.5 × 10−11 of the data-driven

dispersive approach [38]. To compare the remaining contribution of the axial sector,
we combine the axial sector and SDC contributions aWP,axials

µ = 6(6) × 10−11 and
aWP,SDC

µ = 15(10)×10−11 of the WP [2] with linearly added errors to 21(16)×10−11.
This is significantly smaller than the corresponding holographic prediction aA+P∗

µ in
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Eq. 8.31. Since the holographic and the SM estimates for the SDC contributions are
compatible [117, 118], this points to an extra contribution of 20 × 10−11 in the
(transverse) axial-vector meson sector.

Apart from the axial-sector, holographic QCD models can also be used to consider
other hadronic contributions to aµ. Recently, the holographic scalar meson contri-
bution to aHLbL

µ was calculated in Ref. [119], albeit by introducing different sets of
parameters for the considered f0(500), f0(990), and the a0(980) mesons. Another, not
yet considered, contribution is mediated by glueballs, which are nicely implemented
in holographic models as will be discussed in the next part of this thesis.

For completeness, let us also comment on holographic predictions for HVP, as were
first calculated in Ref. [120] and recently in [121]. In contrast to HLbL, holographic
QCD is not precise enough to help with the unresolved discrepancy between lattice
and data-driven approaches, which differ by only 2%. Further discussion and possible
ways to improve the holographic models will be discussed in Ref. [122].
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Part IV

Holographic Glueballs

In this part of the thesis, we will extend the holographic SS model to include
glueballs, which allows us to study their effect on the anomalous magnetic moment
of the muon. We will start with a general introduction to glueballs in the SS model
and calculate the spectrum. Next, we will in detail consider the pseudoscalar glueball
and its role in the Witten-Veneziano mechanism, leading to an interesting mixing
with the singlet component of the η mesons which introduces otherwise absent
interactions such as photon couplings. Finally, we calculate radiative glueball decays
and give an estimate on the contribution to HLbL.





Glueballs in the
Sakai-Sugimoto Model

9

„Don’t underestimate the force.

— Darth Vader
Star Wars: Episode IV - A New Hope

P to this point in the thesis, we have concentrated on the physics
of flavor degrees of freedom, but as it turns out, there are also a
multitude of interesting observables in the color sector. Since the
strong force is self-interacting, gluons may bind together to form
particles known as glueballs [123, 124, 125]. However, the strong

coupling makes it difficult to study these states from first principles. Mathematically,
glueballs manifest in the spectrum of pure Yang-Mills theory as a mass gap. Proving
the existence of this mass gap is an important open issue and is one of the Millennium
Problems formulated by the Clay Mathematics Institute [126].

Not only is the theoretical description of glueballs difficult, but also, experimentally,
no glueball state has been identified unambiguously. One difficulty is that glueball
states are difficult to distinguish from other meson states with which they can mix.
Since the states are characterized by their mass and decay products, one depends
upon theoretical predictions of these quantities to identify whether the state is a
glueball or not. Future experiments, such as the PANDA experiment at FAIR [127],
will provide new data and will hopefully make it possible to identify glueballs more
clearly.

Besides lattice QCD, a promising description of glueballs is given by holographic
QCD, where glueballs are dual to fluctuations of the geometry. In this chapter, we will
review glueballs in the Sakai-Sugimoto model, where they are given as fluctuations
of the Witten background, which determines the spectrum. By considering the D-
brane action in this fluctuating background, glueball-meson interactions can be
calculated. Using VMD, this fixes the interaction of glueballs with photons and
correspondingly the contribution to HLbL [128].
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States from GMN States from AMNL

Gµν Gµ,11 G11,11 Eq. Aµν,11 Aµνρ Eq.
Gij Ci φ Bij C123
2++ 1++

(−) 0++ T4 1+− 0+−
(−) N4

Giτ Cτ Biτ Cijτ

1−+
(−) 0−+ V4 1−−

(−) 1−− M4
Gττ Gα

α State
0++ S4 0++ L4

Table 9.1. – Classification of glueball fluctuations following Ref. [129]. Quantum numbers
correspond to JP C , with Pτ = −1 indicated as subscript.

This chapter is structured as follows: First we will construct the possible glueball
states in the Witten background, find the corresponding mode equations, and assign
parity and charge conjugation quantum numbers. After a comparison of the resulting
glueball spectrum to lattice QCD, we will finish this chapter with a review of some
selected glueball interactions. The presentation will follow the study of Brower,
Mathur, and Tan [129], with some notation and results from Ref. [72] and Refs.
[V, VII].

9.1 The Glueball Spectrum in Witten’s Background

As discussed in Chapter 4, the Sakai-Sugimoto model is based on 10-dimensional
supergravity. Even though the background (4.1) looks relatively simple, with only a
dilaton, a metric and a 3-form field, studying its fluctuations involves many other
fields. By reformulating this background in terms of 11-dimensional supergravity,
as described in Appendix D, the calculation simplifies significantly. In this higher-
dimensional theory, the field content is given by a single multiplet: the supergraviton,
whose two bosonic fields are the graviton GMN and a 3-form field AMNL. Upon
compactifying the 11th direction, we get back to 10-dimensional supergravity. The
11-dimensional graviton then gives rise to a dilaton φ and a Ramond-Ramond 1-form
field C1. The 11-dimensional 3-form field yields a Kalb-Ramond 2-form field B2 and
a Ramond-Ramond 3-form field C3. This classification is presented in Table 9.1 for
the specific case of an AdS7 × S4 spacetime.

In studying fluctuations of these fields, we will ignore Kaluza-Klein excitations in
the compactified directions since they would correspond to charges and quantum
numbers not realized in nature; therefore, fluctuations depend solely on their 4-
momentum and the radial coordinate.
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Metric Fluctuations

Let us start with fluctuations of the 11-dimensional geometry. As discussed in Ap-
pendix D, the Witten background can be given by the 11-dimensional line-element

ds2 = r2

L2 f(r)dx2
4 + ηµνdxµdxν + dx2

11 + L2

r2
dr2

f(r) + L2

4 dΩ2
4. (9.1)

It is useful to classify the metric fluctuations

GMN → GMN + δGMN (9.2)

by the form of their polarization tensor hMN at r → ∞, where the dual field theory
is living. Constructing the polarization tensor in the rest frame of the graviton, the
indices can take values among (x1, x2, x3, τ, x11). Considering that the polarization
tensor should be traceless, we can count (5×6)/2−1 = 14 independent components
of the polarization tensor.

The warp factor f(r) in the line-element (9.1) singles out the τ -direction, and we can
divide the polarization tensor’s 14 independent components into 9+4+1 components,
which correspond to the irreducible representations of SO(4). The mode equations
of the metric fluctuations follow this classification, and the corresponding radial
wave equations are called T4, V4 and S4, respectively.

Since the 11th direction is compactified, the identification of the spin is only due
to the SO(3) symmetry in (x1, x2, x3). This breaks the representations further, and
results in degenerate spectra for fields with different spin [129]:

• the 9-dimensional representation breaks into 5 + 3 + 1 under SO(3),

Gij : hij − 1
3δijhkk = 0 → spin-2,

Ci : hi,11 = h11,i = 0 → spin-1,

φ : h11,11 = −3h11 = −3h22 = −3h33 = 0 → spin-0, (9.3)

• the 4-dimensional representation breaks into 3 + 1 under SO(3),

Giτ : hτi = hiτ = 0 → spin-1,

Cτ : hτ,11 = h0τ = 0 → spin-0, (9.4)
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• the 1-dimensional representation is singlet under SO(3),

Gττ : hττ = −4h11 = −4h22 = −4h33 = −4h11,11 = 0 → spin-0.

(9.5)

Additionally, there is the volume fluctuation of the S4 sphere given by Gα
α with mode

equation L4.

3-Form Fluctuations

For fluctuations of the antisymmetric 3-form field AMNL, a similar counting gives
ten independent components, which split into 4 + 6 components under SO(4). The
corresponding mode equations are called N4 and M4, respectively. Identifying the
spin, we find [129]:

• a 4-dimensional representation which breaks into 3 + 1 under SO(3),

Bij : Aij,11 = 0 → spin-1,

C123 : Aijk = 0 → spin-0, (9.6)

• a 6-dimensional representation which breaks into 3 + 3 under SO(3),

Biτ : Aiτ,11 = 0 → spin-1 ,

Cijτ : Aijτ = 0 → spin-1 . (9.7)

Mode Equation and Spectrum

For the glueball fields we make a similar separation ansatz as for the mesonic degrees
of freedom considered in the previous chapters. The exact form of this ansatz is
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Mode S4 T4 V4 N4 M4 L4
JP C 0++ 0++/2++ 0−+ 1+− 1−− 0++

n = 0 7.30835 22.0966 31.9853 53.3758 83.0449 115.002
n = 1 46.9855 55.5833 72.4793 109.446 143.581 189.632
n = 2 94.4816 102.452 126.144 177.231 217.397 277.283
n = 3 154.963 162.699 193.133 257.959 304.531 378.099
n = 4 228.709 236.328 273.482 351.895 405.011 492.171

Table 9.2. – Glueball spectrum in the Witten background in units of M2
KK/9, according to

Ref. [72].

presented in Appendix E. According to the counting of representations, we get six
distinct eigenvalue equations1, which read

d

dr
(r7 − r r6

KK) d

dr
T4(r) + L4m2r3T4(r) = 0 ,

d

dr
(r7 − r r6

KK) d

dr
V4(r) + L4m2r3 − 9 r12

KK
r(r6 − r6

KK) V4(r) = 0 ,

d

dr
(r7 − r r6

KK) d

dr
S4(r) + L4m2r3 + 432r5r12

KK
(5r6 − 2r6

KK)2 S4(r) = 0 ,

d

dr
(r7 − r r6

KK) d

dr
N4(r) + L4m2r3 − 27r5 + 9r6

KK
r

N4(r) = 0 ,

d

dr
(r7 − r r6

KK) d

dr
M4(r) + L4m2r3 − 27r5 − 9r5r6

KK
r6 − r6

KK
M4(r) = 0 ,

d

dr
(r7 − r r6

KK) d

dr
L4(r) + (L4m2r3 − 72r5)L4(r) = 0 . (9.8)

With normalizable boundary conditions, the six distinct towers of eigenvalues can
be calculated. The resulting spectra are displayed in Table 9.2.

Parity and Charge Conjugation Assignment

In Table 9.1, we have already assigned the quantum numbers JP C corresponding to
spin, parity, and charge conjugation to the glueball fluctuations. In the following,
we will motivate this assignment. We start by defining the action of symmetry

1Three follow from the AdS7-metric, one from the S4-metric, and two from the 3-form field fluctua-
tions.
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transformations on the gauge fields. Usual 3-dimensional parity transformation acts
as

P : A0 x0, xi, τ → A0 x0, −xi, τ ,

P : Ai x0, xi, τ → −Ai x0, −xi, τ ,

P : Aτ x0, xi, τ → Aτ x0, −xi, τ . (9.9)

There is also a parity transformation in the compactified τ direction. It is defined
by

Pτ : A0 x0, xi, τ → A0 x0, xi, −τ ,

Pτ : Ai x0, xi, τ → Ai x0, xi, −τ ,

Pτ : Aτ x0, xi, τ → −Aτ x0, xi, −τ . (9.10)

As stated before, we are truncating our fluctuations to fluctuations independent of
the compactified directions. Fluctuations with Pτ = −1 quantum numbers should
therefore be excluded [129, 71]. Finally, charge conjugation is defined by

C : A0 x0, xi, τ → −AT
0 x0, xi, τ ,

C : Ai x0, xi, τ → −AT
i x0, xi, τ ,

C : Aτ x0, xi, τ → −AT
τ x0, xi, τ . (9.11)

Using these definitions, we can determine the quantum numbers P and C of a
glueball fluctuation by requiring that the D4 brane action at r → ∞

SD4 = −STr d5x −det Gab + e− φ
2 (Bab + Fab)

+ d5x (C1 ∧ F ∧ F + C3 ∧ F + C5) , (9.12)

is invariant. By expanding this action in terms of fluctuations we find, among others,
the term

habTr F acF b
c = hijTr F icF j

c . (9.13)

It is invariant for the quantum numbers

hij → 2++ (Pτ = +) . (9.14)

The results for the other fluctuations are collected in Table 9.1.
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Figure 9.1. – Comparison of the lattice glueball spectrum of Ref. [130] to the holographic
glueball spectrum of Ref. [129].

9.2 Comparison to the Lattice Glueball Spectrum

At this point, it is interesting to compare the glueball spectrum of the Witten
background to results from lattice QCD. In Fig. 9.1 we compare the lattice result of
Ref. [130] to the holographic result of Ref. [129], where the tensor glueball mass is
used to fix the mass scale. Both spectra begin with a scalar glueball and are followed
by a tensor glueball and a pseudoscalar glueball. While the second-lightest scalar
glueball on the lattice is an excited state, the holographic model’s second-lightest
scalar glueball is an independent mode. As one can see from Table 9.2, most of the
glueball spectrum is above the Kaluza-Klein mass scale and is therefore in a region
where the holographic model begins to show its higher-dimensional nature. The two
spectra deviate correspondingly. In addition to this disagreement, the lattice result
also contains higher-spin modes and other quantum number combinations that are
absent in the holographic spectrum. This is due to the supergravity approximation;
higher-spin modes could be included by considering stringy excitations.

9.2 Comparison to the Lattice Glueball Spectrum 105



9.3 Glueball Interactions

Even though the SS model uses the probe approximation for the flavor branes in
which the background does not feel the flavor branes, the reverse is certainly not
true. Fluctuating the background does change the flavor brane action given by the
DBI and CS action (4.9). This induces interactions of glueball states with mesons.
To study this effect, we have to first reduce the 11-dimensional glueball fluctuations
to ten dimensions. As described in Appendix D, this is achieved by

ds2 = GM̂N̂ dxM̂ dxN̂ = e−2φ/3gMN dxM dxN + e4φ/3dx2
11, (9.15)

where 11D and 10D indices are denoted with and without hats, respectively. For the
Witten background (4.1), this gives the relation

gµν = r3

L3 1 + L2

2r2 δG11,11 ηµν + L2

r2 δGµν ,

g44 = r3f

L3 1 + L2

2r2 δG11,11 + L2

r2f
δG44 ,

grr = L

rf
1 + L2

2r2 δG11,11 + r2f

L2 δGrr ,

grµ = r

L
δGrµ,

gΩΩ = r

L

L

2
2

1 + L2

2r2 δG11,11 ,

e4φ/3 = r2

L2 1 + L2

r2 δG11,11 . (9.16)

Using these identities with the explicit glueball fluctuations given in Appendix E, we
can calculate the induced metric on the D8 brane action (4.9) to obtain interaction
terms between glueballs and mesons.

As a specific example, let us study scalar glueball decays into two pions as calculated
in Ref. [72]. From Table 9.2 one can see that the SS model has three towers of
0++ glueballs. The L4 scalar, arising from fluctuations of the 4-sphere volume,
is quite heavy and is usually neglected. The T4 and S4 scalars come from two
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distinct polarizations of the AdS7 metric: the dilatonic (D) and an “exotic” [131] (E)
polarization.2 For the former, we obtain the relevant interaction Lagrangian

LGD→ππ = 1
2d1Tr ∂µπ∂νπ ηµν − ∂µ∂ν

M2
D

GD, (9.17)

where the coupling constant is given by

d1 = dZ
HD

πK
. (9.18)

For the exotic polarization, we get interactions

LGE→ππ = −Tr
1
2c1∂µπ∂νπ

∂µ∂ν

M2
E

GE + 1
2 c̆1∂µπ∂µπ GE , (9.19)

where the two coupling constants are given by

c1 = dZ
1
4 + 3

5K − 2
HE

πK
, c̆1 = dZ

HE

4πK
. (9.20)

From these interaction Lagrangians, we can easily calculate the corresponding
amplitudes in the center of mass frame

|MD| = |d1p · q| = |d1|M
2
D

4 , (9.21)

|ME | = |(c1 + c̆1)p0q0 − c̆1p · q| = |c1 + 2c̆1|M
2
E

4 , (9.22)

where pµ and qµ are the four-momenta of the pions with p0 = q0 = |p| = |q| =
MD,E/2. The decay widths then read

ΓGD,E→ππ = 3|p|
16πM2

D,E

|MD,E |2, (9.23)

with the numerical results

ΓGE→ππ/ME = 3|c1 + 2c̆1|2M2
E

512π
≈ 13.79

λN2
c

≈ 0.092 (ME ≈ 855MeV),

ΓGD→ππ/MD = 3|d1|2M2
D

512π
≈ 1.359

λN2
c

≈ 0.009 (MD ≈ 1487MeV), (9.24)

where we have used the usual parameters λ = 16.63 and MKK = 949.

2The term “exotic” mode was introduced in Ref. [131] and refers to its holographic origin as a metric
fluctuation dominated by δGττ and not to any exotic JP C quantum numbers.
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Similarly, one can calculate decays of the scalar glueball into other mesons, or one
can study decay rates of the other glueball fluctuations listed in Table 9.1. Some
results and observations are summarized in the following:

Scalar Glueball (0++)

The experimental status of the lightest scalar glueball state is ambiguous. There
are phenomenological models which identify the isoscalar meson f0(1500) as pre-
dominantly a glueball state and the f0(1710) as a qq̄ state, and other models with
a reverse identification [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142].
Comparing the results for the scalar glueball decay rates to the experimental data of
the two scalar glueball candidates, Ref. [72] finds that the exceedingly light exotic
glueball does not agree well with the experimental candidates. After an artificial
increase of the glueball mass, this still holds true, and it is suggested that one should
exclude the exotic glueball state from the physical spectrum.

The dilaton glueball state has a mass of around 1.5 GeV and only needs a slight
extrapolation to be compared to the experimental candidate states. The decay rates
are found to agree better with f0(1710) than with f0(1500), and it is concluded that
f0(1710) should be considered as a glueball state. This conclusion is corroborated by
the studies [143, 144], where effects of finite quark masses are considered. Radiative
scalar glueball decays are presented in Chapter 11.

Tensor Glueball (2++)

In the SS model, the tensor glueball has the same mass of 1487 MeV as the dilaton
glueball. Unfortunately, this is far too light compared to the lattice value of 2.4 GeV
and the experimental candidates around 2 GeV [145, 146]. Extrapolating the tensor
glueball mass to 2 GeV, Ref. [72] finds a marginal agreement with the potential
glueball candidate f2(1950). When increasing the mass to 2.4 GeV, the glueball state
turns out to be very broad. Decays including one or two photons are discussed in
Chapter 11. In Ref. [III] and Appendix F, we use the tensor glueball fluctuation
to study central exclusive production of the f1 meson in proton-proton collisions.
There the pomeron, the Regge trajectory starting with the tensor glueball, plays an
important role.
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Pseudoscalar Glueball (0−+)

The pseudoscalar glueball fluctuation plays a crucial role in the identification of
the QCD theta term and in generating the Witten-Veneziano mass, as demonstrated
in Ref. [V]. The crucial anomalous mixing of the Ramond-Ramond C1 field with
the singlet component of the pseudoscalar meson also induces new decay rates of
the pseudoscalar glueball previously missed in Ref. [147]. After extrapolating the
glueball mass to 2.6 GeV, as indicated by (quenched) lattice results, the pseudoscalar
glueball fluctuation is a rather broad resonance. The pseudoscalar glueball will be
discussed in more detail in Chapter 10 and 11.

Pseudovector Glueball (1+−)

Decay rates of the pseudovector glueball are calculated in Ref. [VII] and will be
presented in Appendix G. The main observation is that holographic QCD predicts a
very broad state (Γ/M ≈ 1) for which establishing experimental evidence will be
difficult.
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Pseudoscalar Glueball and
Witten-Veneziano Mechanism

10
„Shaken, not stirred.

— James Bond
Goldfinger

HE U(1)A part of the QCD flavor symmetry U(Nf )L × U(Nf )R plays
an important role in the generation of the η mass. Since this
part is broken by the axial anomaly, only the remaining U(1)V ×
SU(Nf )L × SU(Nf )R → U(Nf )V symmetry can be spontaneously
broken and therefore lead only to N2

f − 1 pseudoscalar Goldstone
bosons whose masses are proportional to the quark mass according to the Gell-
Mann–Oakes–Renner relation.1 The U(1)A pseudoscalar meson, regarded as the
η meson, is too heavy to be a Goldstone boson [148]. The explanation of ’t Hooft
[149, 150] that this mass is due to instantons does not work in the large-Nc limit,
where these effects are exponentially suppressed. Instead, Veneziano [151] and
Witten [152] proposed a mechanism using the nontrivial θ-dependence of large-Nc

pure Yang-Mills theory to generate the mass term m2
0 = 2Nf χg/f2

π , proportional to
the chiral susceptibility χg, for the singlet η0.

In the Witten model [13], the background of the SS model, this mechanism is indeed
realized and was first discussed in Ref. [153] using a model with flavor D6 branes
and later by Sakai and Sugimoto [11, 12] for the SS model. A detailed derivation
of the Witten-Veneziano mechanism in the SS model is given in Ref. [154]. In this
chapter, we will review the alternative derivation of Ref. [V] and its implications
on the mixing of the singlet η0 with the pseudoscalar glueball. Compared to the
very narrow pseudoscalar glueball resonance of Ref. [147], this mixing leads to
additional interaction terms and a rather broad resonance.

This chapter is structured as follows: First, we will review the realization of the θ pa-
rameter and the pseudoscalar glueball fluctuation in the Witten model. Next, we will

1In the strict large-Nc limit, the U(1)A anomaly is a subleading effect in the 1/Nc expansion. We
therefore consider only large but finite Nc.
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include flavor degrees of freedom and study how the U(1)A anomaly generates the
Witten-Veneziano mass of the η0 meson. Considering the most general pseudoscalar
glueball fluctuation, we will derive an effective action with a mixed kinetic term
whose diagonalization introduces a mixing of the η0 meson with the pseudoscalar
glueball. We will finish this chapter by calculating the resulting decay rates of the
pseudoscalar glueball.

10.1 Theta Parameter

To start, let us look at the Witten model [13] of low-energy pure Yang-Mills theory,
as introduced in Chapter 9. It is based on a stack of Nc D4 branes in type IIA
supergravity, described by the D4 brane action

SD4 = −T4Tr d4xdτe−φ −g(5)(1 + 1
2(2πα )2|FYM|2 + . . .)

+T4(2πα )2 C1 ∧ FYM ∧ FYM + . . . . (10.1)

Through compactifying the theory on the supersymmetry breaking circle Sτ with
radius M−1

KK it is dual to pure (3 + 1)-dimensional YM-theory. Taking the UV limit
U → ∞, we get

L = − 1
2g2

YM
Tr |FYM|2 + θ

8π2 Tr FYM ∧ FYM, (10.2)

where we have used the D4 brane tension T4 = (2π)−4l−5
s and α = l2s to define

g2
YM = 2πgslsMKK, θ + 2πk = 1

ls Sτ

C1. (10.3)

The θ parameter is therefore fixed2 by the one-form field Cτ dτ , which in the Witten
background vanishes. However, non-normalizable fluctuations of Cτ can give rise to a
local spacetime dependent θ parameter. Normalizable modes are usually interpreted
as pseudoscalar glueballs [129].

These fluctuations are described by the quadratic action

SR ⊃ − 1
4κ2

10
d10x

√−g |F2|2

= − 2πR4V4
64κ2

10
d4x

∞

rKK

dr
r3L

f(r)ηµν∂µCτ ∂νCτ + r7

L3 (∂rCτ )2 , (10.4)

2Up to 2πk, where k is an integer. We will work in the k = 0 branch.
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which directly follows from type IIA supergravity in the Ramond-Ramond sector. By
varying this action, we easily find the mode equation3

∂r
r7

L3 ∂rCτ + r3L

f(r)M2
GCτ = 0, (10.5)

which is solved by the massless non-normalizable mode

C(0)
τ = ls

2πR4
f(r)ϑ(x), (10.6)

where the prefactor is chosen such that the action evaluated on this solution reads

SR = −χg

2 d4x θ2, χg = λ3M4
KK

4(3π)6 , (10.7)

and χg is the topological susceptibility. In the current case of pure Yang-Mills theory,
we have set ϑ(x) = θ. However, after including flavor fields, this identification will
be modified.

The normalizable solutions C
(2)
τ , with normalizable boundary conditions C

(2)
τ (r =

∞) = C
(2)
τ (r = rKK) = 0, of the mode equation (10.5) are only available numerically.

The obtained spectrum agrees with the one listed in Table 9.2 where the lightest
state has a mass of 1789 MeV when using the usual parameter fit.

10.2 Witten-Veneziano Mechanism and the U(1)A

Anomaly

In this section, we will see how the identification of the θ parameter changes after
including flavor degrees of freedom in the Witten model. To demonstrate this, we
will start with the 9-dimensional CS term

SCS = T8 Tr
D8

e2πα F2 ∧
j

C2j+1. (10.8)

In the Witten model only the 3-form field F4 = dC3 is nonzero; it gives rise to the
Wess-Zumino-Witten term crucial for almost every preceding chapter. In studying
the pseudoscalar glueball fluctuations in C1 also other terms are relevant.

3For pseudoscalar glueball fluctuations it is easier to study 10-dimensional supergravity instead of
using the 11-dimensional formulation. Up to an overall factor, this equation of motion is related to
the 11-dimensional one in Eq. (9.8) by the substitution Cτ (r, x) → f(r)1/2V4(r)G(x).
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We will describe the C1 field in terms of C7 by making use of the Hodge duality
dC7 = F8 = F2, to find

SCS ⊃ T82πα
D8

Tr (F2 ∧ C7)

= T82πα Tr (A1) ∧ F2 ∧ ωτ

= T82πα dx10 |g10| [δ (τ) + δ (τ − π)]

× (Tr (Ar) grrgττ ∂rCτ + gµνgττ Tr (Aµ) ∂νCτ ) , (10.9)

where we have defined ωτ = [δ (τ) + δ (τ − π)] dτ to extend the 9-dimensional
worldvolume integral of the D8 brane to the entire 10-dimensional bulk spacetime.
From this bilinear term, we see that the bulk field Cτ mixes with the Abelian part of
the flavor field Â := N−1

f Tr A.

The equations of motion for Cτ get an additional term

1
32κ2

10
∂r

r7

L3 ∂rCτ = 2πα T8∂r
√−ggrrgττ Tr (Ar) (δ (τ) + δ (τ − π))

= 2πα T8∂r
r7

24L3 Nf Âr (δ (τ) + δ (τ − π)) , (10.10)

which we solve by an additional localized fluctuation, satisfying

∂rC(δ)
τ = 4πα κ2

10T8Nf Âr (δ (τ) + δ (τ − π)) , (10.11)

and C
(δ)
τ = 0.

Similar to the previous section, we can identify the θ parameter by

θ = l−1
s

Sτ

C1 = l−1
s drdτ ∂r(C(0)

τ + C(δ)
τ )

= ϑ(x) + 2πα 4κ2
10T8 Nf√
2fπls

η0(x) = ϑ(x) + 2Nf

fπ
η0(x), (10.12)

where now an additional term proportional to η0 appears.

We are only interested in the θ = 0 case, corresponding to

ϑ(x) = − 2Nf

fπ
η0(x). (10.13)

This is a fundamental result in the realization of the Witten-Veneziano mechanism
in the SS model. It states that to have a vanishing θ parameter, the meson field η0
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has to appear in the non-normalizable mode of C
(0)
τ . Again evaluating the action on

this non-normalizable solution, we get the extra mass term

m2
0 = 2Nf

f2
π

χg, (10.14)

in agreement with the Witten-Veneziano formula [152, 151].

10.3 Pseudoscalar Glueball-Meson Mixing

Using the most general fluctuation Cτ = C
(0)
τ +C

(δ)
τ +C

(2)
τ , we see that the η0 meson

also mixes with the pseudoscalar glueball G̃. At leading order in Nf /Nc we get the
mixed kinetic terms4

S
(kin.)
R = d4x ζ1∂µη0∂µη0 + ζ2∂µη0∂µG̃ − 1

2∂µG̃∂µG̃ , (10.15)

and the effective mass terms

S
(mass)
R = − 1

2m2
0η2

0 − 1
2M2

GG̃2. (10.16)

The coupling constants are defined by

ζ1 = − π3

12κ2
10MKK

∞

rKK

dr
r3L

f(r) C(0)
τ + 2C(δ)

τ C(0)
τ /η2

0 =: Nf

Nc
ζ̄1, (10.17)

and

ζ2 = − π3

12κ2
10MKK

∞

rKK

dr
r3L

f(r) C(0)
τ + C(δ)

τ C(2)
τ / η0G̃

≈ 0.011180 Nf

Nc
λ. (10.18)

The Witten-Veneziano mass of the η0 meson reads

m2
0 = πV4

κ2
10MKK

∞

rKK

dr
1
24

r7

L3 ∂rC(0)
τ /η0

2
= λ2Nf

27π2Nc
M2

KK, (10.19)

in agreement with Refs. [11, 12, 154]. An important observation is the scaling
behavior ζ2 ∝ Nf /Nc and ζ1, m2

0 ∝ Nf /Nc.

4By evaluating the contribution of (C(δ)
τ )2 we obtain divergent terms proportional to δ(0) analogous

to the calculation of Hořava and Witten [155]. These divergences may presumably be canceled by
going beyond the probe approximation and will therefore be dropped in the following.
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To diagonalize the action, we perform a non-unitary field redefinition

η0 → (1 + ζ1) η0 + ζ2G̃,

G̃ → 1 + 1
2ζ2

2 G̃, (10.20)

resulting in

L(bilin.)
η0,G̃

= −1
2(∂µη0)2 − 1

2(∂µG̃)2 − 1
2M2

G(1 + ζ2
2 )G̃2 − 1

2m2
0η2

0

+O(N3/2
f /N3/2

c ). (10.21)

The mass of the lightest pseudoscalar glueball is therefore changed by

M2
G = (1789.0 MeV)2 → 1 + (0.01118 λ)2Nf /Nc M2

G

= (1819.7 . . . 1806.5 MeV)2 (10.22)

for λ = 16.63 . . . 12.55.

10.4 Decay Modes

An important feature of the field redefinition (10.20), is that it mixes the η0 meson
with the pseudoscalar glueball G̃. The pseudoscalar glueball therefore inherits all
kinds of decays from the η0 meson. To derive these interactions, it suffices to consider
the leading-order transformation

η0 → η0 + ζ2 G̃ = η0 + 0.01118 Nf

Nc
λ G̃,

G̃ → G̃. (10.23)

Decay into two vector mesons

The pseudoscalar glueball decay is dominated by the decay channel into two vector
mesons which is obtained from the Chern-Simons term and mediated through the
η0 mixing. The interaction reads

SD8
CS ⊃ k1G̃ µνρσTr∂µvν∂ρvσ, (10.24)
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Γp(MG = 1813 ± 7 MeV) Γp(MG = 2600 MeV)
ρρ 36.8 . . . 45.0 190 . . . 248
ωω 11.4 . . . 13.8 62 . . . 81
K∗K̄∗ 2.7 . . . 1.8 189 . . . 246
φφ - 29 . . . 38
a1a1 - 3.1 . . . 4.0

vv 51 . . . 61 473 . . . 618

Table 10.1. – Partial decay widths in MeV for pseudoscalar glueball into two vector mesons,
with model parameters λ = 16.63 . . . 12.55 and on the left with MG of Eq.
(10.22), and on the right extrapolated to 2600 MeV. Table from Ref. [V].

with the coupling

k1 = ζ2
1
Nf

UKKT8
(2πα )3

2gs
L3π2 dZφ0ψ2

1

= 9.8092 M−1
KK N−1

c λ− 1
2 . (10.25)

After summing over the vector meson polarizations the amplitude squared reads

1, 2

M(G̃ → vv)
2

= 8k2
1M2 M2

4 − m2 . (10.26)

The resulting partial decay widths are displayed in Table 10.1. Also presented is
an extrapolation of the pseudoscalar glueball mass to the lattice prediction of 2600
MeV, where we have assumed that the relevant coupling parameters ζ2 scales, like
its inverse mass dimension, as M−1

G . Overall, the mixing-induced vertices give bigger
contribution than considered in Ref. [72], where the pseudoscalar glueball was
found to be a narrow resonance.

Decay into three pseudoscalar mesons

Introducing quark masses to the SS model, one obtains the usual pseudoscalar
meson mass term

Tr (M(U + U †)) → Tr (M(U + U †)) + iζ2f−1
π 2/Nf G̃ Tr (M(U − U †)), (10.27)

where the second term gives rise to vertices of the pseudoscalar glueball with
KK̄π, KK̄η( ), η( )3 and η( )ππ. Using the mass matrix in the form

M = diag m2
π, m2

π, 2m2
K − m2

π , (10.28)
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Γp(MG = 1813 ± 7 MeV) Γp(MG = 2600 MeV)
KK̄π (w/o KK∗) 0.398 . . . 0.387 0.558 . . . 0.550
KK̄η (w/o f0(1710)η etc.) 0.0263 . . . 0.0064 0.1092 . . . 0.0285
KK̄η - 0.3303 . . . 0.3570
ππη 0.0048 . . . 0.0061 0.0049 . . . 0.0061
ππη 0.0011 . . . 0.0007 0.0021 . . . 0.0013
ηηη 0.0039 . . . 0.0007 0.0337 . . . 0.0064
ηηη - 0.0564 . . . 0.0277
ηη η - 0.0047 . . . 0.0048
PPη( ) (w/o f0(1710)η( )) 0.036 . . . 0.014 0.540 . . . 0.431
f0(1710)η( ) → PPη( ) [147] 0.0068 . . . 0.015 2.5 . . . 4.3

Table 10.2. – Partial decay widths in MeV for pseudoscalar glueball decays into three pseu-
doscalar mesons with λ = 16.63 . . . 12.55. Note that these results do not yet
include vector-meson resonances like G̃ → KK∗ → KK̄π. Table from Ref.
[V].

one can easily see that the coupling is directly proportional to the pseudoscalar
meson mass and is therefore enhanced, e.g., in KK̄π as compared to η( )ππ. The re-
sulting decay rates are collected in Table 10.2 and the total decay width is visualized
in Fig. 10.1.

Decay into a pseudoscalar and one or two vector mesons

The quark mass term further induces a tiny mixing of the pseudoscalar glueball
with the η8 meson, neglected so far. This tiny effect is however the leading-order
contribution to decays like

G̃ → KK∗, πK∗K∗, KK∗ρ, KK∗ω, KK∗φ, η( )K∗K∗, (10.29)

coming from the commutator terms in the DBI action Tr (∂µΠ, [V µ, Π]). The partial
decay widths are collected in Table 10.3.
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Γp(MG = 1813 ± 7 MeV) Γp(MG = 2600 MeV)
KK∗ 0.381 . . . 0.288 0.302 . . . 0.225
πK∗K∗ - 0.0113 . . . 0.0112
KK∗ρ - (2.50 . . . 2.47) × 10−3

KK∗ω - (0.799 . . . 0.787) × 10−3

KK∗φ - (0.253 . . . 0.249) × 10−3

ηK∗K∗ - (0.097 . . . 0.026) × 10−3

Table 10.3. – Partial decay widths in MeV for pseudoscalar glueball decays into one pseu-
doscalar meson and one or two vector mesons with λ = 16.63 . . . 12.55. Table
from Ref. [V].

1.8 2.0 2.2 2.4 2.6
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0.1
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M[GeV]

Γ
/M

Figure 10.1. – Relative pseudoscalar glueball decay width Γ/M (blue: λ = 16.63, orange:
λ = 12.55, full line: ζ2 fixed, dashed line: ζ2 decreasing like M−1

KK ). Figure
from Ref. [V].
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Radiative Glueball Decays 11
„There is nothing like looking, if you want to find

something. You certainly usually find something,
if you look, but it is not always quite the
something you were after.

— J.R.R. Tolkien
The Hobbit

N interesting feature of the SS model is that one can naturally
combine glueball interaction vertices with VMD to determine the
interactions with photons. Particularly interesting are decays into
two photons following from the interaction with two vector mesons.
This allows us to calculate the TFF of glueballs and to estimate

their contribution to g − 2.

This chapter is organized as follows: First, we will construct radiative interaction
terms of the scalar and tensor glueball and calculate the decay widths. Next, we will
perform a similar study for the pseudoscalar glueball before estimating the glueball
contribution to HLbL.

11.1 Radiative Scalar and Tensor Glueball Decays

Interactions of scalar and tensor glueballs with photons follow straightforwardly, by
combining the glueball interactions obtained in Ref. [72] with VMD as discussed
in Chapter 4. For simplicity, we will start with the dilatonic glueball GD and its
2-vector-meson interaction [72]

LGDvmvn = Tr dmn
3 ηρσF m

µρF n
νσ + dmn

2 M2
KKvm

µ vn
ν ηµν − ∂µ∂ν

GD, (11.1)

where the coupling constants are given by

dmn
2 = κ dz Kψ2n−1ψ2m−1HD, dmn

3 = κ dz K−1/3ψ2n−1ψ2m−1HD, (11.2)
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which for the lightest vector meson take the values

dmm
2 ≈ {4.3714, ...} 1

λ
1
2 NcMKK

, dmm
3 ≈ {18.873, ...} 1

λ
1
2 NcMKK

. (11.3)

After applying VMD to one of the two vector mesons to replace it with a photon, we
obtain the effective interaction term

LGDVvm = 2dmV
3 ηρσTr F m

µρF V
νσ ηµν − ∂µ∂ν

GD, (11.4)

with the coupling constant

dmV
3 ≡ κ dz K−1/3ψ2m−1HD ≈ {0.468951, ...} 1

MKK
√

Nc
. (11.5)

The other coupling dmV
2 vanishes for on-shell photons since it involves dJ (0, z)/dz

with J (0, z) ≡ 1, similar to the holographic realization of the Landau-Yang theorem
in Chapter 7.

Replacing also the second vector meson with a photon, we obtain the 2γ-interaction

LGDVV = 2dVV
3 ηρσTr F V

µρF V
νσ ηµν − ∂µ∂ν

GD, (11.6)

with the coupling constant

dVV
3 ≡ κ dz K−1/3HD ≈ 0.0130195λ1/2M−1

KK . (11.7)

A similar derivation for the exotic scalar glueball GE , where we have five coupling
constants instead of the two in Eq. (11.1), is presented in Appendix H.

A comparison of the resulting decay rates for the two holographic scalar glueball
modes extrapolated1 to the two glueball candidate states f0(1500) and f0(1710) is
presented in Table 11.1.

The interaction vertices for the tensor glueball GT according to the derivation in
Appendix H result in decay rates collected in Table 11.2. For the tensor glueball
mass, we follow Ref. [72] in considering the model mass of 1487 MeV, 2000 MeV
close to the glueball candidate f2(1950), and the lattice prediction of 2400 MeV.

1To extrapolate the glueball mass, we rescale the mass scale MKK of the theory and the coupling
constants according to their scaling with MKK. This rescaling was also used in Ref. [V] and is mostly
consistent with Ref. [72] except for the exotic scalar glueball since its coupling constants scale with
different powers of MKK.
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M exp[MeV] ΓGE
[keV] ΓGD

[keV]
f0 (1500) → ργ 1505 58.3 183
f0 (1500) → ωγ 1505 6.62 21.0
f0 (1500) → φγ 1505 2.92 13.7
f0 (1500) → γγ 1505 0.306 . . . 0.231 6.97 . . . 5.26
f0 (1710) → ρρ 1722 (90.5 . . . 120) · 103 (55.9 . . . 74.1) · 103

f0 (1710) → ωω 1722 (28.4 . . . 37.6) · 103 (17.4 . . . 23.0) · 103

f0 (1710) → ργ 1722 99.0 280
f0 (1710) → ωγ 1722 11.4 32.3
f0 (1710) → φγ 1722 7.98 29.4
f0 (1710) → γγ 1722 0.350 . . . 0.264 7.98 . . . 6.02

Table 11.1. – Decay rates of radiative scalar glueball decays for λ = 16.63. . . 12.55.

ΓGT
[keV] ΓGT

[keV] ΓGT
[keV]

(MG = 1487MeV) (MG = 2000MeV) (MG = 2400MeV)
GT → ρρ - (270 . . . 358) · 103 (382 . . . 507) · 103

GT → ωω - (88.2 . . . 117) · 103 (127 . . . 169) · 103

GT → K∗K∗ - (240 . . . 318) · 103 (417 . . . 552) · 103

GT → φφ - - (76.7 . . . 102) · 103

GT → ργ 260 522 716
GT → ωγ 29.9 60.7 83.6
GT → φγ 24.0 78.8 123
GT → γγ 7.35 . . . 5.55 9.89 . . . 7.46 11.9 . . . 8.95

Table 11.2. – Decay rates of radiative tensor glueball decays for λ = 16.63. . . 12.55.

In the literature, such as the PDG, one sometimes finds arguments that glueball
candidates should have a small 2-photon width somewhere below 1 eV, see also
Refs. [156, 157, 135, 145]. For example, the f2(2200) and the f0(1710) mesons were
ruled out as glueball states due to their large 2γ-coupling by the Belle collaboration
in Ref. [158].

The holographic results presented in this chapter, however, indicate the possibility of
large 2-photon widths in the keV range for glueballs, which are actually comparable
in size to the π0 → 2γ width of roughly 7.7 keV [159]. Additional results and a
detailed discussion will be given in Ref. [128].
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11.2 Radiative Pseudoscalar Glueball Decays

Couplings of the pseudoscalar glueball to two vector mesons were absent in the
considerations of Ref. [147] and only appear through the mixing with the η0 meson
as derived in Ref. [V] and reviewed in Chapter 10.

The coupling was obtained in Eq. (10.24) and reads

SGP Svmvn = kvnvm

1 GP S
µνρσTr ∂µvm

ν ∂ρvn
σ , (11.8)

with the coupling constant2

kv1v1
1 ≈ 0.00462289M−1

KK λ1/2 dzK−1ψ1ψ1

≈ 19.6184M−1
KK N−1

c λ−1/2, (11.9)

where the numerically derived mixing angle appears.

The corresponding photon interactions are obtained by applying VMD resulting in

SGP SVvm = 2kVvm

1 GP S
µνρσTr ∂µvm

ν ∂ρVσ, (11.10)

and
SGP SVV = 2kVV

1 GP S
µνρσTr ∂µVν∂ρVσ, (11.11)

with the coupling constants

kVv1
1 ≈ 0.00462289M−1

KK λ1/2 dzK−1ψ1

≈ 0.493557M−1
KK N−1/2

c , (11.12)

and

kVV
1 ≈ 0.00462289M−1

KK λ1/2 dzK−1

≈ 0.0145232M−1
KK λ1/2. (11.13)

In Table 11.3, we collect the resulting decay widths, which are again in the keV
range.

2The numerical value differs from Eq. (10.25) due to the different convention of Tr T aT b.
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ΓGP S
[keV] ΓGP S

[keV]
(MG = 1813 ± 7MeV) (MG = 2600MeV)

GP S → ρρ (36.8 . . . 45.0) · 103 (190 . . . 248) · 103

GP S → ωω (11.3 . . . 13.8) · 103 (62.2 . . . 81.3) · 103

GP S → φφ − (29.2 . . . 38.1) · 103

GP S → K∗K∗ (2.69 . . . 1.81) · 103 (188 . . . 246) · 103

GP S → ργ 272 . . . 263 536 . . . 528
GP S → ωγ 31.5 . . . 30.5 62.5 . . . 61.6
GP S → φγ 34.6 . . . 33.2 92.7 . . . 91.4
GP S → γγ 6.98 . . . 5.16 9.98 . . . 7.42

Table 11.3. – Decay rates of radiative pseudoscalar glueball decays for λ = 16.63 . . . 12.55.

11.3 Contribution to aHLbL
µ

Given the surprisingly large 2γ-decay width of holographic glueballs in the SS model,
the question arises whether they may have a larger contribution to aHLbL

µ than ex-
pected. As discussed in Part II, the SS model does not do too well in predicting the
pion and axial-vector contribution to HLbL, mainly due to its wrong UV-asymptotics.
However, compared to the bottom-up models, it has the advantage of a clear imple-
mentation of glueballs, which allows us to study their contribution to g − 2. Since
the SS model predicts only rough values for the whole axial sector (25% too small
judging from the π0 contribution), we will only estimate the maximal positive value
of the allowed glueball contribution, which, we assume, is given by the pseudoscalar
glueball while neglecting the presumably negative contribution from scalar and
tensor glueballs.3

The pseudoscalar glueball TFF can be easily calculated from the Lagrangian 11.11,
and due to the mixing with the η0 meson is proportional to the pion TFF

FGP Sγγ(Q1, Q2) = 4
3kVV

1 Kπγγ(Q1, Q2). (11.14)

Using the techniques presented in Chapter 6 we can calculate the contribution4

aGP S
µ = 0.155396 · 10−11, (11.15)

3While a comparison to the contribution of pseudoscalars, and scalar and tensor mesons in the SM
prediction, see Table 2.2, indicates an in absolute numbers smaller contribution of scalar and tensor
glueballs, the radiative glueball decays calculated in this chapter hint at them having a comparable
size.

4To calculate the maximal holographic prediction, we use the model mass of 1789 MeV without the
NLO mass correction (10.22) and λ = 16.63.
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which is only about 0.2% of the current SM prediction aHLbL
µ = 92(18) · 10−11.

We can therefore conclude that at current precision goals, glueballs can be safely
neglected.
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Conclusion 12
“What does holographic QCD tell us about the anomalous

magnetic moment of the muon?”

HIS was the question posed at the very beginning of this thesis. While
there are certainly many more aspects on which holographic QCD
can provide valuable insights and that need further research, we
were able to shed some light on a few of them. Most importantly,
we used holographic QCD to study the hadronic light-by-light scat-

tering contribution to the anomalous magnetic moment of the muon, where we were
able to resolve an open question on the implementation of the Melnikov-Vainshtein
short-distance constraint.

To study this contribution, we made use of the Sakai-Sugimoto model as well as vari-
ous bottom-up models. While the former is tightly constrained by its 10-dimensional
string-theoretic construction, which actually turned out to be a disadvantage in
fitting the UV-asymptotics, the latter allow for more freedom in their construction,
which makes them in principle less predictive. We therefore only considered some of
the simplest models: one soft-wall and two hard-wall models. One of the hard-wall
models turned out to form the first hadronic model where the Melnikov-Vainshtein
short-distance constraint can be implemented consistently in the chiral limit.

Since all considered holographic QCD models use some approximations and are not
exactly dual to real QCD, one cannot expect that their quantitative predictions are
very precise. However, as we have seen, they often lie close to experimental values,
which is quite surprising given the simplicity of these models. Without introducing
additional free parameters, it is also possible to predict quantities for which there
are currently no clear experimental values, such as glueball decay rates, or to predict
quantities with relatively large experimental or theoretical uncertainties. One such
quantity is the hadronic light-by-light scattering contribution to the anomalous
magnetic moment of the muon, where the current error of the Standard Model
prediction is roughly 20% and even 100% for the contribution of the axial-vector
meson.
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To calculate the pseudoscalar and axial-vector meson contribution, one crucial input
is the transition form factor, which we have holographically calculated. By comparing
its low and high-energy behavior to experimental data and results from perturbative
QCD, we found good agreement and in some cases could even do better than other
hadronic models. An additional advantage of holographic models is that they contain
an infinite tower of excited axial-vector mesons. By summing their contributions to
the hadronic light-by-light four-point function, we were able to show that they nicely
saturate the Melnikov-Vainshtein short-distance constraint. Since away from the
chiral limit it could also be possible to satisfy this constraint with an infinite tower
of excited pseudoscalar mesons, we also considered holographic QCD models with
quark masses. While we found a certain enhancement of the asymptotic behavior
by summing the infinite pseudoscalar tower, it was not enough to contribute at
the leading order. The final holographic predictions for (g − 2)µ agree well with
the Standard Model prediction for the pseudoscalar sector, but hint at an extra
contribution of roughly 20 × 10−11 in the axial-vector meson sector.

Finally, we performed an estimate of the more exotic glueball contribution. To this
end, we considered radiative glueball decays in the Sakai-Sugimoto model and
found surprisingly large decay rates in the keV range. This is in stark contrast to the
literature, where decay rates above some eV are interpreted as hinting at a large
quark admixture. However, even with such large decay rates, we estimated that
glueballs will only increase the hadronic light-by-light scattering contribution by
0.2%.
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Part V

Appendix

In these appendices, we will collect additional formulas not given explicitly in the
main text of this thesis and briefly present the results of Ref. [VII] and [III]. In the
first appendix, we will give the effective interaction Lagrangian of the SS model with
a definition of the coupling constants. Subsequently, we will state the full expression
for the master integral of the pion contribution to HLbL. Third, additional results of
the HW models will be presented. In the fourth appendix, we will turn to glueballs
and show the relation between 10 and 11-dimensional supergravity. Explicit glueball
fluctuations will be given next before presenting the results of Ref. [VII] and [III].
Lastly, we give the photon-glueball couplings of the exotic scalar glueball and the
tensor glueball.





Meson Couplings in the
Sakai-Sugimoto Model

A

In this appendix, we briefly present the effective 4-dimensional interaction La-
grangian and coupling constants of the SS model, as obtained in Refs. [12].

Let us start with the DBI action (4.9)

SDBI
D8 = κ d4xdZ Tr

1
2K−1/3F 2

µν + KF 2
µZ , (A.1)

with

κ ≡ λNc

216π3 , K(Z) ≡ 1 + Z2 . (A.2)

After the field redefinitions (4.36) and (4.37) the first term yields

κ dZ Tr
1
2K−1/3F 2

µν

= Tr
1

2e2 (F AL
µν )2 + (F AR

µν )2

+1
2(∂µvn

ν − ∂νvn
µ)2 + 1

2(∂µan
ν − ∂νan

µ)2

+(∂µvn
ν − ∂νvn

µ)([vpµ, vqν ] gvnvpvq + [apµ, aqν ] gvnapaq )
+(∂µan

ν − ∂νan
µ)([vpµ, aqν ] − [vqν , apµ]) gvpanaq

+1
2[vm

µ , vn
ν ][vpµ, vqν ] gvmvnvpvq + 1

2[am
µ , an

ν ][apµ, aqν ] gamanapaq

+ [vm
µ , vn

ν ][apµ, aqν ] + [vm
µ , ap

ν ][vnµ, aqν ] − [vm
µ , ap

ν ][vnν , aqµ] gvmvnapaq ,

(A.3)

while the second term reads

κ dZ Tr KF 2
Zν = Tr m2

vn(vn
µ − aVvnVµ)2 + m2

an(an
µ − aAanAµ)2 + (i∂µΠ + fπAµ)2

+2igamvnπ am
µ [Π, vnµ] − 2gvnππ vn

µ [Π, ∂µΠ]

−canam [Π, an
µ][Π, amµ] − cvnvm [Π, vn

µ ][Π, vmµ] . (A.4)
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As discussed in Chapter 4 there are no direct couplings to Vµ or Aµ, only mixing
terms realizing VMD. The masses

m2
vn ≡ λ2n−1M2

KK , m2
an ≡ λ2nM2

KK , (A.5)

are determined by the eigenvalues of the differential equation (4.13), while the
eigenmodes appear in the integrals defining the mixing angles

aVvn ≡ κ dz K−1/3ψ2n−1 , aAan ≡ κ dz K−1/3ψ2nψ0 . (A.6)

The normalization of the photon kinetic term

e−2 ≡ κ

2 dz K−1/3ψv

is divergent and needs some further treatment [12]. However, as we are anyway
only interested in the structure of the photon interactions and not the dynamics of
the external gauge fields we can simply ignore this issue. The coupling constants are
defined by

gvmππ ≡ κ dz Kφ2
0ψ2m

= 1
π

dz K−1ψ2m, (A.7)

gamvnπ ≡ 2κ dz Kφ0ψ2m∂zψ2n−1

= fπ

MKK
dz ψ2m∂zψ2n−1 , (A.8)

canam ≡ κ dz Kφ2
0ψ2nψ2m

= 1
π

dz K−1ψ2nψ2m , (A.9)

cvnvm ≡ κ dz Kφ2
0ψ2n−1ψ2m−1

= 1
π

dz K−1ψ2n−1ψ2m−1 , (A.10)
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and

gvnvpvq ≡ κ dz K−1/3ψ2n−1ψ2p−1ψ2q−1 ,

gvnapaq ≡ κ dz K−1/3ψ2n−1ψ2pψ2q ,

ganvpvq ≡ κ dz K−1/3ψ0ψ2nψ2p−1ψ2q−1 ,

ganapaq ≡ κ dz K−1/3ψ0ψ2nψ2pψ2q ,

gvmvnvpvq ≡ κ dz K−1/3ψ2m−1ψ2n−1ψ2p−1ψ2q−1 ,

gamanapaq ≡ κ dz K−1/3ψ2mψ2nψ2pψ2q ,

gvmvnapaq ≡ κ dz K−1/3ψ2m−1ψ2n−1ψ2pψ2q . (A.11)

The CS term containing only the flavor gauge fields reads

SCS
D8 = Nc

24π2
M4×R

ω5(A) , (A.12)

with the 5-form

ω5(A) = Tr AF 2 − 1
2A3F + 1

10A5 . (A.13)

Using the same field redefinitions as for the DBI action, the effective 4-dimensional
action reads

SCS
D8 = − Nc

4π2
i

fπ M4
Tr Π dBndBm cnm

+Π (dBmBnBp + BmBndBp) cmnp + Π BmBnBpBq cmnpq

+ Nc

24π2
M4

Tr BmBndBp dmn|p − 3
2BmBnBpBq dmnp|q , (A.14)

where the fields are conveniently collected to B2n−1 ≡ vn, B2n ≡ an. The coupling
constants are defined by

cmn ≡ 1
π

dz K−1ψmψn , cmnp ≡ 1
π

dz K−1ψmψnψp ,

cmnpq ≡ 1
π

dz K−1ψmψnψpψq ,

dmn|p ≡ dz (ψn∂zψm − ψm∂zψn) ψp , dmnp|q ≡ dz ψmψnψp ∂zψq .

(A.15)
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The HLbL Master Integral B
In this appendix, we give additional expressions for the pseudoscalar and axial-vector
HLbL master integral as used in Part III, following Refs. [101, 94, 17] and [IV].

B.1 Master Integral for Pseudoscalar Mesons

The kinematic functions in Eq. (6.11) take the explicit form [101]

T̃1(q1, q2; p) = (−64π6) 16
3 (p · q1) (p · q2) (q1 · q2) − 16

3 (p · q2)2 q2
1

− 8
3 (p · q1) (q1 · q2) q2

2 + 8(p · q2) q2
1 q2

2 − 16
3 (p · q2) (q1 · q2)2

+ 16
3 m2

µ q2
1 q2

2 − 16
3 m2

µ (q1 · q2)2 , (B.1)

T̃2(q1, q2; p) = (−64π6) 16
3 (p · q1) (p · q2) (q1 · q2) − 16

3 (p · q1)2 q2
2

+ 8
3 (p · q1) (q1 · q2) q2

2 + 8
3 (p · q1) q2

1 q2
2

+ 8
3 m2

µ q2
1 q2

2 − 8
3 m2

µ (q1 · q2)2 . (B.2)

After using the method of Gegenbauer polynomials, the master integrals (6.14) and
(6.15) use the weight functions [94, 17]

w1(Q1, Q2, τ) = −2π

3 1 − τ2 Q3
1Q3

2
Q2

2 + m2
π

I1(Q1, Q2, τ), (B.3)

w2(Q1, Q2, τ) = −2π

3 1 − τ2 Q3
1Q3

2
(Q1 + Q2)2 + m2

π

I2(Q1, Q2, τ), (B.4)
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with the functions

I1(Q1, Q2, τ) = X(Q1, Q2, τ) 8 P1 P2 (Q1 · Q2) − 2 P1 P3 (Q4
2/m2

µ − 2 Q2
2)

−2 P1 (2 − Q2
2/m2

µ + 2 (Q1 · Q2) /m2
µ) + 4 P2 P3 Q2

1

−4 P2 − 2 P3 (4 + Q2
1/m2

µ − 2 Q2
2/m2

µ) + 2/m2
µ

−2 P1 P2 (1 + (1 − Rm1) (Q1 · Q2) /m2
µ)

+P1 P3 (2 − (1 − Rm1) Q2
2/m2

µ) + P1 (1 − Rm1)/m2
µ

+P2 P3 (2 + (1 − Rm1)2 (Q1 · Q2) /m2
µ) + 3 P3 (1 − Rm1)/m2

µ,

(B.5)

and

I2(Q1, Q2, τ) = X(Q1, Q2, τ) 4 P1 P2 (Q1 · Q2) + 2 P1 P3 Q2
2 − 2 P1 + 2 P2 P3 Q2

1

−2 P2 − 4P3 − 4/m2
µ

−2 P1 P2 − 3 P1 (1 − Rm2)/(2m2
µ) − 3 P2 (1 − Rm1)/(2m2

µ)
−P3 (2 − Rm1 − Rm2)/(2m2

µ)
+P1 P3 (2 + 3 (1 − Rm2) Q2

2/(2m2
µ) + (1 − Rm2)2 (Q1 · Q2) /(2m2

µ))
+P2 P3 (2 + 3 (1 − Rm1) Q2

1/(2m2
µ) + (1 − Rm1)2 (Q1 · Q2) /(2m2

µ)),
(B.6)

where the integration variables

Q2
3 = (Q1 + Q2)2 = Q2

1 + 2Q1 · Q2 + Q2
2, (B.7)

Q1 · Q2 = Q1Q2τ, (B.8)

τ = cos θ, (B.9)

the photon propagators P 2
1 = 1/Q2

1, P 2
2 = 1/Q2

2, P 2
3 = 1/Q2

3 and the definitions

X(Q1, Q2, τ) = 1
Q1Q2 x

arctan zx

1 − zτ
, (B.10)

x = 1 − τ2, (B.11)

z = Q1Q2
4m2

µ

(1 − Rm1) (1 − Rm2) , (B.12)

Rmi = 1 + 4m2
µ/Q2

i , i = 1, 2, (B.13)

were used.
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B.2 Master Integral for Axial-Vector Mesons

The master integral for the axial-vector contribution to HLbL takes a similar but
more complicated form and was derived independently in Refs. [IV, 61].

As a 3-dimensional integral the master integral may be written as

aAV
µ = − 2α3

3π2

∞

0
dQ1dQ2

+1

−1
dτ 1 − τ2Q3

1Q3
2 (K1 + K2) , (B.14)

with the s-channel integration kernel

K1 =
A(Q2

3, 0) Q2
1A(Q2

1, Q2
2) + Q2

2A(Q2
2, Q2

1)
2Q1Q2Q2

3m2
µM2

A

τ Q2
2(4σE

2 + σE
2

2 − 5) − 8m2
µ

−4Q2Q1 −4 τ2 − 1 Xm2
µ + 2Q2

2X − σE
1 − σE

2 + 2 − 8Q2Q3
1X + Q2

1τ −16Q2
2X + 4σE

1 + σE
1

2 − 5

+ A(Q2
1, Q2

2)A(Q2
3, 0)

2Q1Q2
2Q2

3m2
µ (M2

A + Q2
3) Q3

2Q2
1τ −8Q2

2X + 2σE
1 + σE

1
2 − 2σE

2 τ2 + 8σE
2 + σE

2
2

τ2 + σE
2

2 + τ2 − 12

−4m2
µ Q3

2τ + Q3
1 1 − 4Q2

2τ2X + Q2
2Q1 4Q2

2X + τ2 − 4Q2Q4
1τX + Q2Q2

1τ 4Q2
2X + 3

+2Q4
2Q1 −2Q2

2X + σE
1 − σE

2 τ2 + 2σE
2 + σE

2
2

τ2 − 3 + 2Q2
2Q3

1 −6Q2
2X + σE

1 + 2σE
2 − 3

−4Q2Q4
1τ 4Q2

2X − σE
1 + 1 + Q5

1 −8Q2
2X + 2σE

1 − 2 + Q5
2( σE

2
2 − 1)τ

+ A(Q2
2, Q2

1)A(Q2
3, 0)

2Q2
1Q2Q2

3m2
µ (M2

A + Q2
3) 2Q2

1 −2Q2τ2m2
µ + Q3

2 8τ2Xm2
µ + 2σE

1 + σE
2 − 3 − 4Q5

2X − 4Q2Q6
1X

−2Q2Q4
1 8Xm2

µ + 6Q2
2X + σE

1 τ2 − 2σE
1 − σE

1
2

τ2 − σE
2 + 3

Q3
1τ Q2

2 −16Q2
2X − 2σE

1 τ2 − 4 + σE
1

2
τ2 + 1 + 2σE

2 + σE
2

2 + τ2 − 12 − 4m2
µ 4Q2

2X + 1

−2Q3
2 2m2

µ − Q2
2(σE

2 − 1) + 4Q2
2Q1τ m2

µ 4Q2
2X − 3 + Q2

2(σE
2 − 1) − Q5

1τ 8Q2
2X − σE

1
2 + 1 ,

(B.15)

and the combined t and u-channel integration kernel,
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K2 =
A(Q2

2, 0) Q2
3A(Q2

3, Q2
1) + Q2

1A(Q2
1, Q2

3)
Q1Q2Q2

3m2
µM2

A

×

−4τm2
µ − 4Q1Q2 τ2 − 1 −4Xm2

µ + 2Q2
2X − Rm1 + 1 + Q2

1((Rm1)2 − 1)τ

+ A(Q2
1, Q2

3)A(Q2
2, 0)

Q1Q2Q2
3m2

µ (M2
A + Q2

2) 2Q2Q3
1 4Q2

2 τ2 + 1 X − 4Rm1τ2 + (Rm1)2 τ2 − Rm2 + 3τ2 + 1

+Q2
2Q2

1τ(−2Rm1 + (Rm1)2 − 6Rm2 − (Rm2)2 + 8) + Q4
1τ 16Q2

2X − 6Rm1 + (Rm1)2 + 5

−4m2
µ Q2

2τ + 4Q2Q3
1 τ2 + 1 X + 2Q2

1τ 6Q2
2X − 1 + Q2Q1 4Q2

2X − 1

+2Q3
2Q1 −2Q2

2X + Rm1 − 3Rm2 + 2 + Q4
2((Rm2)2 − 1)τ + 4Q2Q5

1X

− A(Q2
2, 0)A(Q2

3, Q2
1)

Q2
1Q2Q2

3m2
µ (M2

A + Q2
2) 10Q4

2Q1(Rm2 − 1)τ + 2Q5
2(Rm2 − 1) − 4Q2Q6

1X

+4m2
µ 4Q2Q4

1 τ2 + 1 X + 2Q3
1τ 2Q2

2 2τ2 + 3 X − 1

+Q2Q2
1 4Q2

2 3τ2 + 1 X − 4τ2 − 1 + 2Q2
2Q1τ 2Q2

2X − 1 − Q3
2

−Q2
2Q3

1τ 16Q2
2 τ2 + 1 X − 2Rm1 5τ2 + 2 + (Rm1)2 τ2 + 1 − 10Rm2 − (Rm2)2 + 9τ2 + 14

−Q5
1τ 24Q2

2X − 6Rm1 + (Rm1)2 + 5 + 2Q3
2Q2

1 τ2 −4Q2
2X + 2Rm1 − 9 + Rm2 6τ2 + 2 + (Rm2)2 τ2 − 2

−2Q2Q4
1 2Q2

2 10τ2 + 1 X − 8Rm1τ2 + (Rm1)2 τ2 − Rm2 + 7τ2 + 1 . (B.16)
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Single Mode Contributions to
aHLbL

µ from HW Models
C

In this appendix, we list some data of the single HW modes and their contributions
to HLbL as discussed in Chapter 8 and obtained in Ref. [II].

Model PS n = 1 n = 2 n = 3
HW1 (chiral) mπn [MeV] 0 135 1899 2887
M2

X = −3 fπn [MeV] 92.4∗ 0 0
Fπnγγ [GeV−1] 0.274 −0.202 0.153
aπn

µ · 1011 65.2 0.7 0.1
HW1m mπn [MeV] 135∗ 1892 2882
M2

X = −3 fπn [MeV] 92.4∗ 1.56 1.25
Fπnγγ [GeV−1] 0.276 −0.203 0.154
aπn

µ · 1011 66.0 0.7 0.1
HW1m’ mπn [MeV] 135∗ 1591 2564
M2

X = −3.837 fπn [MeV] 92.4∗ 1.59 0.950
Fπnγγ [GeV−1] 0.277 −0.250 0.194
aπn

µ · 1011 64.3 1.5 0.3
HW3m mπn [MeV] 135∗ 1715 2513
M2

X = −3 fπn [MeV] 92.4∗ 1.56 1.34
Fπnγγ [GeV−1] 0.277 −0.196 0.0797
aπn

µ · 1011 66.6 0.8 0.04
HW3m’ mπn [MeV] 135∗ 1300∗ 2113
M2

X = −3.841 fπn [MeV] 92.4∗ 1.92 1.29
Fπnγγ [GeV−1] 0.278 −0.206 0.0474
aπn

µ · 1011 66.0 1.5 0.01

Table C.1. – Comparison of the various HW model results in the pseudoscalar sector, where
∗ indicates fitted values and the manual raising of the pion mass in the chiral
limit. Table from Ref. [II].
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Model AV n = 1 n = 2 n = 3 n = 4 n = 5
HW1 (chiral) mAn [MeV] 1375 2154 2995 3939 4917
M2

X = −3 FAn/mAn [MeV] 177 204 263 311 351
A(0, 0) [GeV−2] −21.04 −2.93 0.294 −2.16 0.400

aAn
µ · 1011 31.4 4.7 1.8 1.2 0.5

HW1m mAn [MeV] 1367 2141 2987 3934 4914
M2

X = −3 FAn/mAn [MeV] 175 204 263 311 351
A(0, 0) [GeV−2] −21.00 −3.21 0.328 −2.16 0.376

aAn
µ · 1011 31.4 4.9 1.8 1.2 0.5

HW1m’ mAn [MeV] 1230∗ 1977 2901 3879 4873
M2

X = −3.837 FAn/mAn [MeV] 148 208 266 312 351
A(0, 0) [GeV−2] −19.95 −7.29 0.678 −2.18 0.341

aAn
µ · 1011 29.8 8.7 2.0 1.3 0.5

HW3m mAn [MeV] 1431 2421 3398 4387 5384
M2

X = −3 FAn/mAn [MeV] 195 244 291 332 369
A(0, 0) [GeV−2] −21.27 0.310 −2.09 −0.299 −0.514

aAn
µ · 1011 32.7 3.4 1.7 0.7 0.4

HW3m’ mAn [MeV] 1380 2355 3345 4345 5350
M2

X = −3.841 FAn/mAn [MeV] 186 242 291 332 369
A(0, 0) [GeV−2] −21.29 −0.841 −1.76 −0.440 −0.476

aAn
µ · 1011 33.2 4.1 1.8 0.8 0.4

Table C.2. – Comparison of the various HW model results in the axial-vector sector, where ∗

indicates fitted values. Table from Ref. [II].
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Reduction of 11-dimensional
Supergravity to 10D

D

In this appendix, we want to present the relation between 10 and 11-dimensional
supergravity, as it is crucial for the glueball classification in Chapter 9.

Since we are only interested in the bosonic degrees of freedom, we will drop the
fermionic fields and write the 11-dimensional supergravity Lagrangian as [160]

2κ2
11L(b)

11 =
√−gR −

√−g

2 · 4! F M̂1M̂2M̂3M̂4FM̂1M̂2M̂3M̂4

+ 1
6 · 3! · (4!)2

M̂1...M̂11AM̂1M̂2M̂3
FM̂4...M̂7

FM̂8...M̂11
. (D.1)

As a solution, the Witten model [13] considers the line-element

ds2 = r2

L2 f(r)dx2
4 + ηµνdxµdxµ + dx2

11 + L2

r2
dr2

f(r) + L2

4 dΩ2
4, (D.2)

which for f(r) = 1 reduces to AdS7 × S5, the M5 brane solution [161]. With the
blackening factor

f(r) = 1 − r6
KK
r6 , (D.3)

the solution describes a doubly Wick-rotated1 black hole in AdS7 × S5.

The equations of motion following from the Lagrangian (D.1)

√−g

2κ2
11

RM̂N̂ − 1
2R gM̂N̂ =

√−g

2κ2
112 · 4! 4F M̂1M̂2M̂3

M̂
FN̂M̂1M̂2M̂3

− 1
2F M̂1M̂2M̂3M̂4FM̂1M̂2M̂3M̂4

gM̂N̂ , (D.4)

are not solved by the line-element (D.2) alone, but additionally need the field-
strength

Fαβγδ = 6
L

√
gS4 αβγδ, (D.5)

proportional to the volume-form of the unit S4 sphere.

1The blackening factor is not in front of the time coordinate, but is moved to the spatial coordinate
x4 by using two Wick rotations.
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To get to 10-dimensional supergravity, we use the dimensional reduction

x11 x11 + 2πR11, R11 = gsls, l2s = α (D.6)

and rewrite the line-element in the string-frame

ds2 = GM̂N̂ dxM̂ dxN̂ = e−2φ/3gMN dxM dxN + e4φ/3dx2
11, (D.7)

where the M, N indices are 10-dimensional and φ is the dilaton, which for the
Witten model is given by eφ = (r/L)3/2.

This leads to the type IIA supergravity action

S =SNS + SR + SCS, (D.8)

where the Neveu-Schwarz, Ramond-Ramond and Chern-Simons term are given by
[161]

SNS = 1
2κ2

10
d10x

√−ge−2φ R + 4 ∂M φ∂M φ − 1
2 |dB2|2 ,

SR = − 1
4κ2

10
d10x

√−g |F2|2 + |F4|2 , |Fp|2 = 1
p!FM...F

M...,

SCS = − 1
4κ2

10
B2 ∧ F4 ∧ F4, (D.9)

with the field identification in Table 9.1 and the coupling constant 2κ2
10 = 2κ2

11/(2πR11).2

2As explained in Ref. [V], it is possible to rescale the fields F2,4 → gsF2,4, e−Φ → gse−Φ and the
coupling constant κ10 → gsκ10 to obtain the standard D-brane action.
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Explicit Glueball Fluctuations E

In this appendix, let us write out explicitly all glueball fluctuations considered in
this thesis and not presented in the main text, i.e., the two scalar and the tensor
glueball. The pseudoscalar and pseudovector glueball fluctuations are presented in
Chapter 10 and Appendix G, respectively. The vector and L4 scalar glueball are not
considered due to their high masses and not yet calculated decay rates. We follow
the notation of Ref. [72].

E.1 Scalar and Tensor Glueball

As can be seen in Table 9.1, the 2++ tensor glueball is degenerate with a 0++ glueball.
The tensor glueball is simply given by transverse traceless polarizations of δGµν such
as

δG11 = −δG22 = − r2

L2 HT (r)GT (x), (E.1)

while the scalar is given by the combination

δG11,11 = −3 r2

L2 HD(r)GD(x)

δGµν = r2

L2 HD(r) ηµν − ∂µ∂ν
GD(x). (E.2)

This scalar glueball is often called dilaton glueball, the reason being that it is
essentially given by δG11,11, which upon dimensional reduction becomes the dilaton.
Plugging the mode expansion back into the supergravity action

S = 1
2κ2

11
(L/2)4Ω4 d7x

√− det G R(G) + 30
L2 (E.3)
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we obtain the quadratic action1

d7x
√− det G R(G) + 30

L2
H2

E

= −CD,T dx11 d4x dx4 1
2 (∂µGD,T )2 + M2

D,T G2
D,T , (E.4)

where MD = MT and

CD,T =
∞

rKK

dr r3

L3
6HD(r)2

HT (r)2 . (E.5)

In the derivation we have used partial integration and the mode equations (9.8),
with HD = HT = T4. Unless stated otherwise, we require the boundary conditions
H (rKK) = 0 and limr→∞ H(r) = 0. For the lowest eigenmode we obtain

CT = 0.22547 [HT (rKK)]2 r4
KK

L3 , (E.6)

where the overall scale HT (rKK) has to be set by requiring CD,T dx11 dx4 = 1,
leading to

[HD,T (rKK)]−1 = λ1/2 Nc MKK
0.033588
0.013712 . (E.7)

E.2 Exotic Scalar Glueball

The second scalar glueball on the left side of Table 9.1 has the more involved
ansatz

δG44 = − r2

L2 fHE(r)GE(x)

δGµν = r2

L2 HE(r) 1
4ηµν − 1

4 + 3r6
KK

5r6 − 2r6
KK

∂µ∂ν

M2
E

GE(x),

δG11,11 = r2

L2
1
4HE(r)GE(x),

δGrr = −L2

r2 f−1 3r6
KK

5r6 − 2r6
KK

HE(r)GE(x),

δGrµ = 90 r7r6
KK

M2
EL2(5r6 − 2r6

KK)2 HE(r)∂µGE(x), (E.8)

1For tensor mesons, this describes only single polarizations. The general form is 1
4 Tµν( − M2

T )T µν .
Note also that the tensor polarization is normalized to 2 here.
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where the dominant contribution δG44 has no counterpart in real QCD; this fluc-
tuation is therefore labeled “exotic” scalar glueball [131]. A similar calculation as
before with HE = S4 yields

CE =
∞

rKK

dr r3

L3
5
8HE(r)2, (E.9)

where for the lowest eigenmode we obtain

CE = 0.057395 [HE(rKK)]2 r4
KK

L3 (E.10)

and
[HE(rKK)]−1 = 0.0069183 λ1/2 Nc MKK. (E.11)
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Central Exclusive Production
of Axial-Vector Mesons

F
N the main parts of this thesis, we have encountered the impor-
tant short and long-distance regimes of QCD. In this appendix,
we will turn to a soft high-energy scattering process with high
center-of-mass energy s but small momentum transfer t, which has
contributions from both regimes. A description of many such soft

high-energy scattering processes can be given by the Regge model, whose origin is
connected to string theory.

As a special example, we want to look at the central exclusive production (CEP) of
an f1 meson in proton-proton scattering

p + p → p + f1 + p, (F.1)

which at high s and low t is mediated by a pomeron P as depicted in Fig. F.1. As
argued in Ref. [III], we treat the pomeron as a rank-2 symmetric tensor, with the
lightest particle on its trajectory being the JP C = 2++ glueball.

IP

f1 (k)
IP

p (pa)
p (p1)

p (pb)
p (p2)

q1

q2

Figure F.1. – CEP of an f1 meson with double-pomeron exchange [III].
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In this appendix, we will briefly present the results obtained in Ref. [III]. First, we
will introduce the formalism and the tensor-pomeron approach of Ref. [162] to
study CEP. Next, we will construct the crucial pomeron-pomeron-f1 coupling using
either angular-momentum algebra arguments or the holographic Sakai-Sugimoto
model. Finally, we will present a comparison of our results with the data points from
the WA102 experiment.

F.1 Formalism

In this section, we present the formalism we use to study central exclusive production
of f1 mesons in proton-proton collisions. The process in question is written as

p(pa, λa) + p(pb, λb) → p(p1, λ1) + f1(k, λ) + p(p2, λ2) , (F.2)

where pa,b, p1,2 and λa,b, λ1,2 = ±1
2 are the momenta and helicities of the protons,

and k and λ = 0, ±1 the corresponding quantities of the f1 meson. This meson is an
axial-vector meson with JP C = 1++; we will consider f1(1285) or f1(1420).

The main process we are considering is the PP-fusion mechanism, shown at the
Born level in Fig. F.1. Other processes, like the f2R reggeon exchange, which are sub-
dominant in the high-energy limit, are neglected here. The corresponding kinematic
variables are

q1 = pa − p1, q2 = pb − p2, k = q1 + q2,

t1 = q2
1, t2 = q2

2, m2
f1 = k2,

s = (pa + pb)2 = (p1 + p2 + k)2,

s1 = (pa + q2)2 = (p1 + k)2,

s2 = (pb + q1)2 = (p2 + k)2 . (F.3)

The amplitude can be written in the form

M(PP→f1)
µ, λaλb→λ1λ2f1

= (−i) ū(p1, λ1)iΓ(Ppp)
µ1ν1 (p1, pa)u(pa, λa)

×iΔ(P) µ1ν1,α1β1(s1, t1) iΓ(PPf1)
α1β1,α2β2,µ(q1, q2) iΔ(P) α2β2,µ2ν2(s2, t2)

×ū(p2, λ2)iΓ(Ppp)
µ2ν2 (p2, pb)u(pb, λb) , (F.4)
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where Δ(P) and Γ(Ppp) are the effective propagator and proton vertex function for
the tensor-pomeron exchange. According to Ref. [162], they are written as

iΔ(P)
µν,κλ(s, t) = 1

4s
gµκgνλ + gµλgνκ − 1

2gµνgκλ (−isαP)αP(t)−1 ,

iΓ(Ppp)
µν (p , p) = −i3βPNN F1(t) 1

2 γµ(p + p)ν + γν(p + p)µ − 1
4gµν(p + p) ,

(F.5)

where t = (p − p)2, βPNN = 1.87 GeV−1 and F1(t) is the electromagnetic Dirac form
factor of the proton. The pomeron trajectory αP(t) has the standard linear form

αP(t) = αP(0) + αP t , (F.6)

αP(0) = 1.0808 , αP = 0.25 GeV−2 . (F.7)

All of these quantities are well known from other CEP reactions like

p+p → p+X+p , where X = η, η , f0, f2, π+π−, 4π, pp̄, KK̄, KK̄KK̄, ρ0, φ, φφ ,

(F.8)
studied in Refs. [163, 164, 165]. The main new ingredient in the study of Ref.
[III] is the pomeron-pomeron-f1 vertex Γ(PPf1), which will be presented in more
detail in the next section. We find two bare couplings Γ and Γ , which for realistic
applications should be multiplied by a form factor according to

iΓ(PPf1)
κλ,ρσ,α(q1, q2) = iΓ (PPf1)

κλ,ρσ,α(q1, q2) |bare +iΓ (PPf1)
κλ,ρσ,α(q1, q2) |bare F̃PPf1(q2

1, q2
2, k2) . (F.9)

For the form factor we make the factorized ansatz

F̃ (PPf1)(q2
1, q2

2, k2) = FM (q2
1)FM (q2

2)F (PPf1)(k2) , (F.10)

where on-shell mesons have F (PPf1)(m2
f1

) = 1 and we use

FM (t) = 1
1 − t/Λ2

0
, (F.11)

with Λ2
0 = 0.5 GeV2 [162, 166]. As an alternative to the factorized ansatz (F.10) we

also consider the exponential form

F̃ (PPf1)(t1, t2, m2
f1) = exp t1 + t2

Λ2
E

, (F.12)

with k2 = m2
f1

and a cutoff constant ΛE to be fitted to the experimental data.
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IPρσ

f1α

IPκλ

q1

q2

k

Figure F.2. – Fictitious “real” pomeron coupling to an f1 meson [III].

To calculate the full amplitude, we also include absorption effects to the Born
amplitude in the one-channel-eikonal approach

Mpp→ppf1 = MBorn
pp→ppf1 + Mpp−rescattering

pp→ppf1
, (F.13)

where the second term are “soft” pp-rescattering corrections. The results are pre-
sented in Section F.3.

F.2 Pomeron-Pomeron-f1 Coupling

The strategy used in Refs. [163, 164, 167, 168, 169, 170, 171] to construct pomeron-
pomeron-meson couplings is to look at the corresponding couplings of two fictitious
“real” pomerons and use the same coupling for CEP. As for an f1 meson, the fictitious
reaction reads

P (m, 1) + P (m, 2) → f1 (mf1 , ) , (F.14)

where P are “real pomerons” of mass squared t > 01, with polarization tensors (1)

and (2), see also Fig. F.2.

Couplings from Angular-Momentum Algebra

As a first approach, we construct the couplings by using elementary angular-
momentum algebra [163], where for a given meson we use the orbital angular
momentum l and total PP spin S as guiding principle. According to Ref. [163], the
production of a JP = 1+ meson can have

(l, S) = (2, 2) , (4, 4) , (F.15)

1In the CEP process (F.2) the two pomerons have invariant masses t1 < 0 and t2 < 0.
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and no other values. To construct the coupling, the spin-2 pomeron fields are
represented by Pκλ, while the f1 vector field Uα is represented by the antisymmetric
second-rank tensor field ∂αUβ − ∂βUα. Using some heuristic principles the couplings
can be constructed as

L(2,2)
PPf1

=
gPPf1
32M2

0
Pκλ

↔
∂µ

↔
∂ν Pρσ ∂αUβ − ∂βUα Γ(8) κλ,ρσ,µν,αβ ,

L(4,4)
PPf1

=
gPPf1

24·32·M4
0

Pκλ

↔
∂µ1

↔
∂µ2

↔
∂µ3

↔
∂µ4 Pρσ ∂αUβ − ∂βUα Γ(10) κλ,ρσ,µ1µ2µ3µ4,αβ ,

(F.16)

where the asymmetric derivative
↔
∂µ=

→
∂µ − ←

∂µ and M0 = 1 GeV are used. The rank
8 and rank 10 tensors Γ(8) and Γ(10) are combinations of the metric and Levi-Civita
symbol, realizing the symmetries of the couplings. Explicitly they read

Γ(8)
κλ,ρσ,µν,αβ = gκρgµσελναβ + gλρgµσεκναβ + gκσgµρελναβ + gλσgµρεκναβ

+gκρgµλεσναβ + gσκgµλερναβ + gρλgµκεσναβ + gσλgµκερναβ

−gκλgµρεσναβ − gκλgµσερναβ − gκµgρσελναβ − gλµgρσεκναβ

+(µ ↔ ν) (F.17)

and

Γ(10)
κλ,ρσ,µ1µ2µ3µ4,αβ = gκµ1gλµ2 − 1

4gκλgµ1µ2 gρµ3εσµ4αβ − 1
4gρσεµ3µ4αβ

+(κ ↔ λ) + (ρ ↔ σ) + (κ ↔ λ, ρ ↔ σ) + (κ, λ) ↔ (ρ, σ)
+ all permutation of µ1, µ2, µ3, µ4 . (F.18)

Note however that this construction of couplings is not unique.

Couplings from Holographic QCD

As a second approach, we construct the fictitious PPf1 couplings in the holographic
framework of the Sakai-Sugimoto model [11, 12]. Analogous to the coupling of a
singlet pseudoscalar to two tensor glueballs in Ref. [172], we can derive the coupling
of a singlet axial-vector meson from the gravitational CS action

SCS ⊃ Nc

1536π2 d5x MNP QRTr(AM )RNP ST R T S
QR , (F.19)
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where RNP ST is the induced Riemann tensor on the D8 branes. Using the singlet
component of the axial-vector meson Tr(Aµ) = A

(0)
µ = Uµ(x)ψ(Z), we can simplify

the action to

SCS ⊃ Nc

384π2
Nf

2 d5x µνρσA(0)
µ RZνST R T S

ρσ . (F.20)

Evaluating the Riemann tensors to second order in the metric perturbations dual
to tensor glueballs and integrating over the radial direction we obtain the coupling
Lagrangian

LCS = κ Uα εαβγδ Pµ
β ∂δPγµ

+ κ Uα εαβγδ ∂νPµ
β ∂δ∂µPν

γ − ∂δ∂νPγµ , (F.21)

with the couplings

κ = −4.872 N Nf

N3
c λ3 , (F.22)

κ = 27.434 N Nf

M2
KK N3

c λ3 . (F.23)

Due to ambiguities in the reggeization of the tensor glueball [172], we leave the
normalization constant N undetermined and consider only the ratio of the two
couplings

κ
κ

= −5.631
M2

KK
(F.24)

as holographic prediction. As explained in Chapter 4 the parameter MKK is usually
fixed by fitting the ρ meson mass, such that MKK = 949 MeV. This choice, however,
leads to a tensor glueball mass of MT ≈ 1487 MeV, which is too low compared to
the standard pomeron trajectory with MT ≈ 1917.5 MeV. Lattice gauge theory even
predicts MT 2400 MeV [130]. We therefore consider changing MKK to reproduce
the tensor glueball mass as an alternative fit. Respectively these choices lead to
κ /κ = −{6.25, 3.76, 2.44} GeV−2.
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Comparison of Couplings

To compare the two coupling Lagrangians in Eq. (F.16) and Eq. (F.21), we consider
the fusion of two “real” pomerons of mass m in the process

P(q1, (1)) + P(q2, (2)) → f1(k, ) ,

q1 + q2 = k , q2
1 = q2

2 = m2 . (F.25)

If the two descriptions are equivalent we expect the equivalence relation

LCS = L(2,2) + L(4,4). (F.26)

After some calculation we indeed find a relation between the coupling parameters

gPPf1 = −κ
M2

0
k2 − κ

M2
0 (k2 − 2m2)

2k2 ,

gPPf1 = κ
2M4

0
k2 . (F.27)

Note however that the relation involves the invariant mass squared k2 of the
resonance f1. Assuming a narrow resonance, we can set k2 = m2

f1
= const. to

get a momentum independent linear relation between the couplings (κ ,κ ) and
(gPPf1

, gPPf1
). Otherwise, the relation includes form factors depending on k2. For

small and negative invariant masses of the pomerons t1,2, we expect the approximate
relation

gPPf1 ≈ −κ
M2

0
k2 − κ

M2
0 (k2 − t1 − t2)

2k2 ,

gPPf1 ≈ κ
2M4

0
k2 . (F.28)

F.3 Results for the WA102 Experiment

In this section, we present some selected results of Ref. [III] for the pp → ppf1(1285)
and pp → ppf1(1420) reactions, at relatively low c.m. energy

√
s = 29.1 GeV such

that we can compare our results to the WA102 experimental data from Ref. [173].
In Ref. [III], we have also performed similar calculations to make predictions for the
LHC experiments at

√
s = 13 TeV and the STAR experiment at RHIC at

√
s = 200 GeV

[174] and at
√

s = 510 GeV, which however will not be presented here. With a cut
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on the meson’s Feynman variable |xF | 0.2 2 the WA102 experiment obtains the
total cross-sections

f1(1285) : σexp. = (6919 ± 886) nb ,

f1(1420) : σexp. = (1584 ± 145) nb . (F.29)

Furthermore they give distributions in t and φpp, the azimuthal angle between the
transverse momentum vectors of the outgoing protons. In Figs. F.3 and F.4 we
compare these distributions with different fits of our model parameters. The best fits
are found to be

(l, S) = (2, 2) term only : gPPf1 = 4.89 , gPPf1 = 0,

(l, S) = (4, 4) term only : gPPf1 = 0 , gPPf1 = 10.31,

CS terms : κ = −8.88 , κ /κ = −1.0 GeV−2 . (F.30)

For the first two fits it suffices to use either gPPf1
or gPPf1

, while the third fit uses both
κ and κ , where the best-fit ratio κ /κ = −1.0 GeV−2 is outside the estimated
ratio −(6.25 · · · 2.44) GeV−2. This could indicate that the holographic prediction
needs a better understanding of how to reggeize the tensor glueball propagator,
as discussed for CEP of η and η mesons in Ref. [172]. By using the relation (F.28)
with k2 = m2

f1
= (1282 MeV)2 and t1 = t2 = −0.1 GeV2 we find that the third fit

corresponds approximately to

gPPf1 = 0.42 , gPPf1 = 10.81 , (F.31)

which agrees closely with the second fit of only fitting gPPf1
.

2This Feynman variable is defined by xF,M = 2pz,M /
√

s, where pz,M is the longitudinal momentum
of the outgoing meson in the c.m. frame.
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Figure F.3. – Fit to the WA102 data for |t| in the left panels and for φpp in the right panels,
normalized to the total cross-section. The upper panels correspond to the fit
with only a (2, 2) term and |gPPf1
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| = 10.31. Figures from Ref. [III].
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A Broad Pseudovector
Glueball

G

N Chapter 9, we have discussed the glueball spectrum of the SS
model based on the Witten background. By studying the bosonic
sector of 11-dimensional supergravity, we obtained towers of glue-
ball states with quantum numbers JP C = 0++, 2++, 0−+, 1+−, 1−−.
In this appendix, we will present the results of Ref. [VII] on decay

rates of the 1+− pseudovector glueball. We will start this appendix by introducing
the explicit solution of the pseudovector glueball fluctuation. Next, we will construct
the dominant interaction vertices contained in the CS term, and we will conclude
by presenting predictions for the pseudoscalar glueball decay rates. Finally, the
derivation of the negligible vertices from the DBI action will be presented.

G.1 Pseudovector Glueball Fluctuation

As discussed in Ref. [129] and Chapter 9, pseudovector glueballs with quantum
numbers 1+− are contained in fluctuations of the three-form field A3 with one
index in the 11th direction. After dimensional reduction, this field reduces to the
Kalb-Ramond two-form field B2 of type IIA string theory, see Table 9.1. The explicit
solution of the pseudovector glueball was worked out in Ref. [VII] and reads

Bµν = Aµν11 = r3N4(r)B̃µν(x0, x),

Aρ4r = 6r2N4(r) αβγδηρα
∂β

B̃γδ, (G.1)

where B̃µν is antisymmetric and satisfies ηρµ∂ρB̃µν = 0. Using this ansatz in the
relevant terms of the 11D supergravity action

2κ2
11L(b)

11 ⊃ −
√−g

2 · 4! F a1...a4Fa1...a4

+
√

gS4

2 · 4!L
a1...a7Aa1...a3Fa4...a7 , (G.2)
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where ai are AdS7 indices, with the same mode equation as mentioned in Eq. (9.8)

d

dr
r(r6 − r6

KK) d

dr
N4(r) − (L4M2r3 − 27r5 + 9r6

KK
r

)N4(r) = 0, (G.3)

we obtain the mass and kinetic term of the 4-dimensional effective Lagrangian

L4 = −1
4CBηρµησνB̃µν M2 − B̃ρσ + . . . . (G.4)

The constant CB is defined by an integral over the radial modes

CB = R11R4L7 π4

3κ2
11

dr r3N4(r)2, (G.5)

and to get canonically normalized fields, it has to be set to CB = 1. This fixes the
normalization of the radial mode of the ground state with M ≈ 2311 MeV to

[N4(rKK)]−1 ≈ 0.00983838 L3λ
1
2 NcMKK. (G.6)

An alternative form of the action can be derived by expressing the field B̃µν as

B̃µν = 1√ ηλρηκσ
µνλκ ερ∂σG

(ε)
P V (x), (G.7)

where ερ is a polarization vector. The glueball field G
(ε)
P V (x) is then canonically

normalized with L4 = −1
2G

(ε)
P V M2 − G

(ε)
P V + . . . .

G.2 Dominant Decays from the CS Term

To calculate interactions of the pseudovector glueball with quark-antiquark states
in the SS model, we have to induce the background Kalb-Ramond fluctuation to
the D8-D8-brane system described by the DBI and CS action. The dominant decays
follow from the CS action [175]

SCS = T8 Tr
D8

eF2 ∧
j

C2j+1, (G.8)

where the field FMN ≡ 2πα FMN + BMN contains the U(Nf ) field strength FMN

and the Kalb-Ramond field BMN . Using the non-vanishing C3 field and integrating
over the S4 sphere, we obtain the relevant 5-dimensional action

S
(B2)
CS = 1

2(2πα )2 T8 L3π2g−1
s Tr A1 ∧ F2 ∧ B2. (G.9)
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Inserting the pseudovector fluctuation (G.1), we obtain the interaction terms

LCS
4,int ⊃ b1(Πa∂µva

µ + va
µ∂νΠa) B̃µν

−ib2Tr(T a[T b, T c]) Πavb
µvc

ν B̃µν , (G.10)

where we use B̃µν ≡ 1
2

µνρσB̃ρσ and the U(Nf ) fields as introduced in Chapter 4:
the pseudoscalar mode Π and the lowest vector meson mode vµ ≡ v1

µ. The coupling
constants are defined by1

b1 ≡ 4C r3φ0ψ1N4dZ = 56.027 N−1
c λ− 1

2 , (G.11)

and
b2 ≡ 6C r3φ0ψ2

1N4dZ = 2571.72 N
− 3

2
c λ−1, (G.12)

with C = T8(2πl2srKKLπ)2/(16gs). The interaction terms from the DBI action are
derived in the next section, where we also show that they are negligible compared
to the CS interaction terms.

To calculate decay rates into physical mesons, we use the relation

η = η8 cos θP − η0 sin θP

η = η8 sin θP + η0 cos θP , (G.13)

with the mixing angle [144]

θP = 1
2 arctan 2

√
2

1 − 3
2m2

0/(m2
K − m2

π)
, (G.14)

obtained by considering bare quark masses (realized in the SS model via world-
sheet instantons [176, 177, 178]) and the Witten-Veneziano mass m0. The Witten-
Veneziano mass in the SS model is discussed in more detail in Chapter 10, and reads
[11]

m2
0 = Nf

27π2Nc
λ2M2

KK. (G.15)

For the vector mesons ω and φ, we assume ideal mixing θV = arctan(1/
√

2) [179].
The resulting 2 and 3-body decay rates are summarized in Table G.1. Combining
the results, we conclude that the pseudovector glueball is a very broad state with
Γ/M ≈ 1. This suggests that it will be very difficult to experimentally identify this
state.

1In this appendix, we follow Refs. [VII, 72] in using the convention Tr T aT b = δab.
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decay channel Γ/M

πρ 0.3624 . . . 0.4803
KK∗ 0.1945 . . . 0.2578
ηω 0.0530 . . . 0.0941
ηφ 0.0086 . . . 0.0076
η ω 0.0168 . . . 0.0203
η φ 0.0020 . . . 0.0079
πρρ 0.2595 . . . 0.4556

πK∗K∗ 0.0213 . . . 0.0375
KK∗ρ 0.0032 . . . 0.0056
KK∗ω 0.0011 . . . 0.0019
total 0.9225 . . . 1.3685

Table G.1. – Predictions for the pseudoscalar glueball decay rates into pseudoscalar and
vector mesons using λ = 16.63 . . . 12.55. Table from Ref. [VII].

G.3 Subleading Pseudovector Glueball Decays from
the DBI Action

In this section, we consider pseudovector glueball decays from the DBI action, and
show that the resulting couplings are subleading and can be neglected. We start by
expanding the square root of the DBI action as

SDBI = − T8 d9xe−φ STr −det (gMN + FMN )

= − T8 d9xe−φ√−g STr 1 + 1
2 tr −1

2 g−1F 2

+ 1
3 g−1F 3 − 1

4 g−1F 4

+ 1
32 tr g−1F 2 2

+ O F5 . (G.16)

After a similar calculation as was performed for the CS term, we obtain the interac-
tion terms

LDBI
4,int ⊃ b̄1F νρFρσF σµB̃µν + b̄2F ρσFρσF µνB̃µν

b̄3∂ρΠ∂ρΠF µνB̃µν + b̄4V ρ∂ρΠF µνB̃µν

+b̄5V ρVρF µνB̃µν , (G.17)
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with coupling constants

b̄1 = 36D dZK− 5
6 ψ3

1N4

= 0.0000375351 N
− 3

2
c λ−2,

b̄2 = −b̄1/4,

b̄3 = − D

18M6
KKL6 dZK

1
2 N4φ2

0ψ1

= −0.0000168453 N
− 3

2
c λ−2,

b̄4 = 2DM4
KKL3 dZK

1
2 N4φ0∂Zψ1

= −0.00875721 N
− 3

2
c λ−2,

b̄5 = −18DM2
KK dZK

1
2 N4ψ1 (∂Zψ1)2

= −1.78464 N
− 3

2
c λ−2, (G.18)

where D = L3Nc/(576M2
KKπ2). All the obtained interactions contain three U(Nf )

fields and one pseudovector glueball. Comparing the coupling constants to the
coupling b2 in Eq. (G.12), we see that the contributions from the DBI action are
suppressed by an additional factor of λ−1 as well as by their numerical value.
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Photon-Glueball Interactions H
In this appendix, we collect the interaction terms of the exotic scalar and the tensor
glueball with up to two vector mesons and the corresponding photon interactions
following from VMD.

H.1 Exotic Scalar Glueball

Following Ref. [72], the exotic scalar glueball GE has the 2-vector-meson interaction
terms

LGEvmvn = −Tr cmn
2 M2

KK vm
µ vn

ν

∂µ∂ν

M2
E

GE + 1
2vm

µ vnµ 1 −
M2

E

GE

+cmn
3 ηρσF m

µρF n
νσ

∂µ∂ν

M2
E

GE − 1
4F m

µνF nµν 1 +
M2

E

GE +

+cmn
4

3
M2

E

vn
µF mµν∂νGE

+c̆mn
2 M2

KKvm
µ vnµGE + 1

2 c̆mn
3 F m

µνF nµνGE , (H.1)

with the five coupling constants

cmn
2 = κ dzKψ2m−1ψ2n−1HE ,

cmn
3 = κ dzK−1/3ψ2m−1ψ2n−1HE

cmn
4 = κM2

KK dz
20zK

(5K − 2)2 ψ2m−1ψ2n−1HE ,

c̆mn
2 = κ

4 dzKψ2m−1ψ2n−1HE

c̆mn
3 = κ

4 dzK−1/3ψ2m−1ψ2n−1HE , (H.2)

where we have defined
HE = 1

4 + 3
5K − 2 HE . (H.3)
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Applying VMD once, only three coupling constants survive, and we get

LGEVvm = −Tr cmV
3 2ηρσF m

µρF V
νσ

∂µ∂ν

M2
E

GE − 1
2F m

µνF Vµν 1 +
M2

E

GE

+cVn
4

3
M2

E

vn
µF Vµν∂νGE +c̆mV

3 F m
µνF VµνGE , (H.4)

with the couplings

cmV
3 = κ dzK−1/3ψ2m−1HE = {1.551, ...} 1

MKKN
1
2

c

,

cVm
4 = κM2

KK dz
20ZK

(5K − 2)2 ψ2m−1HE = {−0.262, ...} MKK

N
1
2

c

,

c̆mV
3 = κ

4 dzK−1/3ψ2m−1HE = {0.425, ...} 1

MKKN
1
2

c

. (H.5)

The 2-photon interaction reads

LGEVV = −Tr cVV
3 2F V

µρF Vρ
ν

∂µ∂ν

M2
E

GE − 1
2F V

µνF Vµν 1 +
M2

E

GE

+c̆VV
3 F V

µνF VµνGE , (H.6)

where the two coupling constants are defined by

cVV
3 = κ dzK−1/3HE = 237.587κ

MKKNcλ1/2 = 0.0355 λ
1
2

MKK
, (H.7)

and

c̆VV
3 = κ

4 dzK−1/3HE = 71.18κ

MKKNcλ1/2 = 0.0106 λ
1
2

MKK
. (H.8)

H.2 Tensor Glueball

For the tensor glueball, we start with the interaction [72]

LGT vmvn = Tr tmn
2 M2

KKvm
µ vn

ν Gµν
T + tmn

3 F m
µρF nρ

ν Gµν
T , (H.9)

where the coupling constants

tmn
2 = dzKψ2m−1ψ2n−1HT = 2

√
3dmn

2 , (H.10)
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and
tmn
3 = dzK−1/3ψ2m−1ψ2n−1HT = 2

√
3dmn

3 , (H.11)

are related to the couplings of the dilaton scalar glueball.

The photon interactions are given by

LGT vnV = 2tVn
3 Gµν

T Tr F V
µρF nρ

ν , (H.12)

and
LGT VV = 2tVV

3 Gµν
T Tr F V

µρF Vρ
ν , (H.13)

with the coupling constants

tVn
3 = dzK−1/3ψ2n−1HT = 2

√
3dVn

3 , (H.14)

and
tVV
3 = dzK−1/3HT = 2

√
3dVV

3 . (H.15)
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