
DISSERTATION

Model Order Reduction
of Redundant

Multibody System Dynamics

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften (Dr. techn.)

eingereicht an der TU Wien, Fakultät für Maschinenwesen und Betriebswissenschaften von

Dipl.Ing. Daniel Stadlmayr

Mat.Nr.: 0530880

unter der Leitung von

Priv. Doz. Dipl.-Ing. Dr. Wolfgang Steiner

Institut für Mechanik und Mechatronik

Abteilung für Mechanik fester Körper

begutachtet von

Ao.Univ.Prof. Dipl.-Ing. Dr. Alois Steindl

Technische Universtät Wien

Institut für Mechanik und Mechatronik

Getreidemarkt 9, 1060 Wien

Univ.-Prof. Dr.-Ing. habil. Alexander Lion

Universität der Bundeswehr München

Institut für Mechanik

Werner-Heisenberg-Weg 39, 85577 Neubi-
berg

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 



Diese Arbeit wurde von der Österreichischen Forschungsförderungsgesellschaft mbH

(FFG) im Rahmen des Projekts ProtoFrame (Projektnr. 839074) unterstützt.

Ich nehme zur Kenntnis, dass ich zur Drucklegung meiner Arbeit unter der Bezeich-

nung Dissertation nur mit Bewilligung der Prüfungskommission berechtigt bin.

Eidesstaatliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grund-

sätzen für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle

verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser

Arbeit genannt und aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen,

sind als solche kenntlich gemacht.

Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland einer

Beurteilerin/einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsar-

beit vorgelegt. Diese Arbeit stimmt mit der von den Begutachterinnen/Begutachtern

beurteilten Arbeit überein.

Wien, 17. Mai 2018

Daniel Stadlmayr



... to my wife Tanja:
Forse per il mondo sei solo una persona, ma per qualche persona sei tutto il

mondo. (Gabriel García Márquez)



Danksagung

Diese Arbeit wäre ohne die Unterstützung meiner Betreuer, Mentoren, Kollegen,
und nicht zuletzt meiner Familie nicht denkbar gewesen.

Mein Dank gilt Herrn Priv.Doz. Dipl.-Ing. Dr.techn Wolfgang Steiner, welcher es
mir ermöglicht hat diese Arbeit am Institut für Mechanik und Mechatronik an der
Technischen Universität Wien anzufertigen. Seine konstruktive Unterstützung und
wissenschaftliche Leitung haben wesentlich zum Gelingen dieser Arbeit beigetra-
gen.

Besonders Bedanken möchte ich mich ebenso bei Herrn Dipl.-Ing. Dr.techn. Wolf-
gang Witteveen, der mir über die vergangenen Jahre die wissenschaftlich/akademische
Welt eröffnet, und maßgeblich zum Abschluss dieser Arbeit beigetragen hat.

Großer Dank gebührt ebenso meiner Familie, welche mich stets unterstützt und
ermutigt haben.

iv



Kurzfassung

Ein Grund für die zunehmende Bedeutung der Mehrkörpersimulation (MKS) im
virtuellen Entwicklungsprozess ist die Verfügbarkeit automatisierter Modellerzeu-
gungsverfahren. Die so erstellten mathematischen Modelle verwenden redundante
Freiheitsgrade und Zwangsbedingungen zur Beschreibung des MKS Modells. Im
Vergleich zu einer Minimalkoordinatenbeschreibung ist die Simulationsdauer, be-
dingt durch die größere Anzahl zu lösender Gleichungen, in der Regel deutlich
höher. Ziel der vorliegenden Arbeit ist die Ableitung eines Modellreduktionsver-
fahrens für die MKS zum Zwecke der Effizienzsteigerung.
Aufgrund der geforderten Anwendbarkeit an beliebige Mehrkörpermodelle wurde
ein datengestütztes Reduktionsverfahren, basierend auf der „Proper Orthogonal
Decomposition“ (POD), ausgewählt. Das Verfahren wurde in folgenden Punkten
an die Besonderheiten der MKS adaptiert: (1) Verwendung von Geschwindigkeits-
daten anstatt der üblichen Positionsdaten. (2) Trennung der Koordinaten hinsicht-
lich ihrer physikalischen Bedeutung (anstatt der üblichen, gemischten Berücksich-
tigung). (3) Erweiterung der Projektion um ein Residuum, welches die korrekte
Abbildung der Anfangsbedingungen sicherstellt.
Der durch die adaptierte POD erzeugte Unterraum enthält bereits Informationen
über die Zwangsbedingungen des MKS Systems. Aus diesem Grund wird in dieser
Dissertation ein Verfahren vorgestellt, welches redundante Zwangsbedingungen im
reduzierten Modell erkennt und eliminiert. Im Gegensatz zu den bisherigen Vor-
schlägen in der Literatur ist das auf diese Weise reduzierte Gleichungssystem immer
lösbar und gut konditioniert.
Die Effizienz der Methode wird anhand praxisrelevanter Beispiele demonstriert.
Unter Einhaltung einer hohen Ergebnisqualität kann die Anzahl der zu lösenden
Gleichungen um bis zu 90% Prozent reduziert werden. Abschließend wird die Me-
thode auch im Rahmen der Parameteridentifikation angewandt. Hierbei wird der
aufgespannte Unterraum auch zur Reduktion von adjungierten Gleichungen ver-
wendet.
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Abstract

Multibody system (MBS) simulations see an increasing relevance in the field of
automated modeling strategies due to several reasons. A redundant set of coordi-
nates in combination with constraint coordination equations are required for such
modeling strategies. Consequently, the numerical challenge of solving such models
is much higher than it might be if a minimal set of coordinates representation is
used. The current dissertation will explain the development of a model order re-
duction (MOR) technique, which allows to decrease the number of equations, and
increase the numerical efficiency of such redundant multibody systems.
A databased MOR approach has been chosen since the focus is on a general ap-
plicability to arbitrary multibody systems. It is based on the Proper Orthogonal
Decomposition (POD), which is adapted to the special needs of multibody systems
by: (1) Using velocity data of the MBS (instead of the commonly used position
data). (2) Separate handling of each coordinate type due to its physical meaning
(instead of the commonly used mixed coordinate approach). (3) Adding a residual
term to the applied projection which ensures the initial conditions to be met.
Due to the use of a data-driven reduction approach, the resulting reduction sub-
space includes constraint information of the original MBS model. Therefore, the
present dissertation introduces a constraint reduction method, which determines
and eliminates redundant constraint equations of the reduced order model. In
contrast to known literature regarding MBS reduction, the herein derived coor-
dinate and constraint reduced order model is therefore always solvable and well-
conditioned.
The efficiency of the MOR approach is outlined by several practical numerical
examples, evolving from automotive tasks. The results underline the efficiency
of the novel approach, which ensures high result consistency, while at the same
time, the dimension of the mathematical model is reduced up to 90+%. Finally,
the approach is also applied to parameter identification tasks in the context of
multibody systems. In addition to the previous mentioned reduction, the adjoint
equations are reduced as well, by projecting them onto the same subspace as the
original MBS model.
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CHAPTER 1
Introduction

In the last two decades, multibody system simulation have been established as a
scarcely replaceable tool in the product development process in various fields like
the automotive industry, aerospace, training simulators, and several more. Com-
mercial multibody system (MBS) software emphasize on the automated modeling
of a broad variety of multibody systems based on user input of joints and body
orientations. Per today, to achieve results of these simulations redundant coordi-
nate formulations are commonly used, which are typically of much higher degree
of freedom (DOF) dimension than with a minimal set of coordinates description.
Rigid and flexible MBS simulation have become state of the art these days. De-
formable bodies are typically derived from Finite Element (FE) models, and im-
ported into the MBS model by well known modal reduction processes like Com-
ponent Mode Synthesis, cf. [22, 23]. Thus, the set of rigid DOFs is extended by
flexible coordinates, originating from the modal reduction. As the FE body import
is highly dependent on the user’s knowledge of the system, too large a number of
flex-body modes are often chosen resulting in a large set of flex DOFs.
In contrast to the minimal set of coordinates representation, the equations of
motion for a redundant formulation of the underlying dynamical system do not
include joint information. Therefore, the redundant MBS model includes a set of
constraint equations, to represent such coordinate interactions. The MBS under
consideration is therefore represented by a set of second order differential algebraic
equations (DAEs) with differential index three. Such MBS formulation is due to
its definition in most cases computationally less efficient than a minimal set of
coordinate model.
For this reason, this dissertation aims to derive a model order reduction (MOR)
method, which allows to reduce the number of rigid and flexible coordinates, as
well as the number of constraint equations. Ideally, this MOR approach allows to
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reduce the MBS model into a system with a minimal set of coordinates. In fact,
the present MBS formulation is nonlinear as well as time and state dependent
which makes a priori MOR method not applicable. Therefore, the character of
MOR methods is most likely limited to an a posteriori approach, which allows to
reduce the MBS model based on collected model data. This data must be collected
along a time history of the original results from MBS models simulation. The class
of reducible MBS models is naturally limited to repetitive simulation tasks which
need to be carried out at least twice.
The following examples for typical repetitive MBS simulations can be considered
within the automotive industry:

• Load data acquisition for follow-up investigations like finite element compu-
tations and component design

• parameter identification of production-related uncertainties like inertia pa-
rameters, body mass or the exact location of the center of mass (CoM),

• optimal control tasks

• control unit design

• part design studies.

From these circumstances, an application to the parameter identification of produc-
tion related uncertainties will be given in this dissertation. Several MBS reduction
methods have been proposed to handle available computational resources in the
last decades and can be roughly divided into two groups of reduction methods. The
first group includes methods that eliminate the Lagrange’s multipliers and thereby
reduce the DAEs into ordinary differential equations (ODEs), cf. [82]. This group
of reduction methods is in the need of severely changing the system of DAEs. It
is hence not considered in this work since the focus is on automated modeling
strategies and the possible application to commercial MBS software. The second
group reduces the index of the governing equations of motion into index-one dif-
ferential equations, but keeps the algebraic equations and therefore preserves the
DAE manner, cf. [60]. A potential method of this group is the Proper Orthog-
onal Decomposition (POD), also known as Karhunen-Loeve Decomposition, cf.
[56, 18, 54, 109]. It has been proposed as a reduction method to index-one DAEs
evolving from MBS by Ebert [30]. Further, Ersal et al. [31] applied DOF-type
sensitive POD reduction to bond-graph models of MBS, and Masoudi et al. [69]
recently applied POD model reduction to automotive suspension systems in ODE
representation. Furthermore, Smooth Orthogonal Decomposition (SOD) has been
presented as a model reduction method for linear mechanical systems subject to
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1.1. Dissertation Objectives and Outline

local nonlinearities, cf. [20, 21, 19, 51, 52], recently. While POD and SOD model
reduction are usually applied by linear (flat) Galerkin projection, Heirman et al.
[48, 49] presented a nonlinear model reduction method based on the Global Modal
Parametrization (GMP), cf. [14]. GMP may be related to the first group of re-
duction methods. In contrast to POD and SOD the therein presented method
projects the MBS onto a curvilinear instead of a fixed vector space to reduce the
number of generalized coordinates and eliminate the constraints. As a matter of
fact, none of the known MOR approaches are applied to the present mathematical
representation of the MBS. The set of DAEs is, at least, transformed into a first
order system or, by reducing the differential index, into a system of ODEs.
The processing of constraint equations has been and is still an open field of research
by various authors. Originating from overdeterminacy, constraint miss-modeling
and several other intentions, constraint reduction in terms of the singular value
decomposition was discussed intensely, cf. [45, 26, 115, 116]. Nevertheless, when
dealing with the special case of the MOR of redundantly formulated MBS, the re-
duction of constraint equations has, to the best knowledge of the author, not been
addressed yet. It is only Ebert [30] who deals with this topic. He therein states
that due to the loss of physical phenomena MBS reduction must be restricted to
the differential part only (the system DOFs). The algebraic part (the constraint
equations) must not be touched.

1.1 Dissertation Objectives and Outline

This dissertation aims to derive a novel model order reduction approach which al-
lows to improve redundantly formulated multibody systems, as generated by MBS
software like MSC.Adams [75] or FreeDyn [41]. Focusing repetitive simulation
tasks, the novel approach allows to significantly reduce the number of physical
coordinates (DOFs) and the number of constraint equations. This results in a con-
siderable reduction of simulation time, without the need of reducing the system’s
order or the differential index.
It is assumed, that the multibody system modeling part has already been per-
formed by an automated pre-processor. As a consequence, this dissertation does
not focus on the modal reduction of flexible bodies. For deep insight into the topic
of flexible body import into the multibody system the interested reader is referred
to Besselink et al. [11], Lehner [62], Koutsovasilis et al. [57] and Witteveen [114].
The dissertation is outlined as follows:

• Chapter 2 : Introduction to the multibody system under considera-
tion
The set of DAEs describing a redundantly formulated MBS model is briefly

3



1.1. Dissertation Objectives and Outline

summarized. The mathematical model presented in this chapter forms the
MBS basis and is referred to as the original or full model throughout this
dissertation.

• Chapter 3 : Characterization of applicable model order reduction
methods
This chapter presents an overview of commonly used model order reduction
approaches without entitlement to completeness. Suitable approaches are
identified and investigated on their applicability to the present mathematical
model. The outcome of this applicability study forms the basis of the derived
novel model order reduction approach.

• Chapter 4 : Derivation of the novel model order approach
In this chapter a novel model order reduction approach is derived, based
on the findings of Chapter 3. The approach takes into account the special
nature of the mathematical model under consideration. It further allows to
reduce both, the number of DOFs and the number of constraint equations,
based on ideas of POD and principal component analysis. The approach is
outlined in detail based on academical examples, allowing insight into the
approaches nature.

• Chapter 5 : Application of the novel approach to large scale multi-
body systems
The novel model order reduction approach is tested based on large-size nu-
merical examples, pointing out the approaches potential and capabilities.

• Chapter 6 : Application of the novel approach to parameter identifi-
cation tasks in multibody system dynamics
The novel model order reduction approach is applied to parameter identifica-
tion tasks in multibody system dynamics, utilizing a reduced order adjoint
system.

• Chapter 7 : Summary and conclusion

4



CHAPTER 2
Multibody System Dynamics

This chapter briefly reviews the set of DAEs, which characterizes the MBS for-
mulation used in the software package FreeDyn. Such software bear much of the
burden of modeling multibody systems. Still, they are not able to identify a mini-
mum set of coordinates representation but introduce a redundant set of generalized
coordinates. Body interactions (boundary conditions, joints, etc.) are represented
by constraint equations. In combination with the equations of motion they set up
the previously introduced redundant and nonlinear system of second order differ-
ential algebraic equations with differential index three. The chapter is outlined as
follows:
First, the description of rotational degrees of freedom by a set of four Euler param-
eters is summarized. The equations of motion of a single rigid body are introduced
next. As the MBS under consideration may consist of rigid and flexible bodies,
the equations of motion of a single flexible body are reviewed thereafter. Follow-
ing up, the unconstrained MBS in terms of several acting bodies is derived. The
chapter concludes by introducing constraint equations which enable us to define
the constrained multibody system.

2.1 Euler Parameter

For the kinematics of a rigid body, several formulations of a body’s motion in space
exist. While the description of the three translational degrees of freedom is rather
facile, describing body rotations is more complex.
In order to avoid a singular Jacobian matrix, the MBS formulation considered in
FreeDyn utilizes four rotational coordinates to this end. These four coordinates
are called Euler parameters or Quaternions, cf. [27, 81]. They basically describe
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2.1. Euler Parameter

a rotation in 3D space by a unit vector u ∈ R
3, representing the axis of rotation,

and by the angle of rotation Φ around this vector. As depicted in Fig. 2.1, the
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y

z

u

u (us′)

u × s′

PP ′

s
s′

Φ

Figure 2.1: Vector diagram for derivation of rotation formula [81, p. 158]

rotation formula from an arbitrary point P to it’s actual position P ′ is described
by Nikravesh [81, pp. 158-159] as

s = s′ cos Φ + u (u · s′) (1 − cos Φ) + u × s′ sin Φ. (2.1)

By using the trigonometric relations

1 − cos Φ = 2 sin2 Φ

2
and (2.2)

sin Φ = 2 sin
Φ

2
cos

Φ

2
, (2.3)

the rotation formula in Eq. (2.1) can be re-expressed. In terms of the four Euler
parameters e0, e1, e2, e3 it reads

s =
(
2e2

0 − 1
)

s′ + 2e (e · s′) + 2e0e × s′, (2.4)
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2.1. Euler Parameter

with

e = [e1, e2, e3]
T = u sin

Φ

2
, (2.5)

and

e0 = cos
Φ

2
. (2.6)

In matrix notation the rotation formula (2.4) reduces to

s = Bs′, (2.7)

with the rotation matrix

B =



e2

0 + e2
1 − e2

2 − e2
3 2e1e2 − 2e0e3 2e1e3 + 2e0e2

2e1e2 + 2e0e3 e2
0 + e2

2 − e2
3 − e2

1 2e2e3 − 2e0e1

2e1e3 − 2e0e2 2e2e3 + 2e0e1 e2
0 + e2

3 − e2
1 − e2

2


 . (2.8)

Where the constraint

e2
0 + e2

1 + e2
2 + e2

3 = 1 (2.9)

must be satisfied. The Euler parameter constraint is needed to overcome the issue
of non-independent rotational coordinates. Each single body of the MBS intro-
duces such a constraint, which will be denoted as the "inner" constraint throughout
this work.
Finally, the matrix

G = 2




−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0


 ∈ R

3×4 (2.10)

maps the vector of generalized rotational velocities q̇r to the angular velocity vector
[81]

Ω = Gq̇r. (2.11)

Therein, q̇r is the time derivative of the vector of rotational coordinates qr =
[e0, e1, e2, e3]

T. Concluding, Euler parameters not only allow to overcome issues
arising from singular system configurations. They also enable efficient numerical
simulations as no trigonometric functions must be evaluated to describe B.

7



2.2. Equations of Motion of an Unconstrained Rigid Body

2.2 Equations of Motion of an Unconstrained

Rigid Body

As indicated by its name, a multibody system consists of several bodies, which are
somehow interacting with each other and/or the ground. We start off by reviewing
the motion of a single unconstrained rigid body in 3D space. This section details
its equations of motion (EoM) due to the Euler parameter description, following
[92]. Later on in this chapter we will combine several of such rigid bodies into a
multibody system. According to Fig. 2.2 the position of each material point of a

 
 

  

 

 

 

 

 

 

x
y

z

xbody

ybody

zbody

reference point

r

S

ā0

Figure 2.2: Definition of a body fixed coordinate system

rigid body, with respect to the body’s reference point, is given by

r = S + Bā0. (2.12)

Quantities described in the body fixed coordinate system are denoted with an
overbar. The vector ā0 represents the position vector of a material point with
respect to the bodies reference point, which is typically the Center of Gravity
(CoG). Further, S is the position vector from the global time-invariant origin in
the global coordinate system to the body origin in the body fixed coordinate system.
Time dependencies will be omitted due to better readability. The orientation of the
body fixed coordinate system is represented by the unit vectors xbody,ybody, zbody,
which are combined in the global rotation matrix B in terms of Euler parameters.
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2.2. Equations of Motion of an Unconstrained Rigid Body

The vector of seven generalized coordinates of a rigid body reads

q =
[
qt,qr

]
T

, (2.13)

with qt ∈ R3 as the vector of translational coordinates and qr ∈ R3 (or qr ∈ R4

in the case of Euler parameters) representing the vector of rotational coordinates.
In the general, unconstrained case, the equations of motion of a single rigid body
read Mq̈ = Q or

[
mI 0
0 GTJG

](
q̈t

q̈r

)
=

nforces∑

j=1

(
fj

ˆ̄aF jB
Tfj

)
+

(
0

1
2
GĠTJĠqr

)
(2.14)

The body mass matrix of the i-th rigid body is defined as

M =

[
Mtt 0

0 Mrr

]
=

[
mI 0
0 GTJG

]
. (2.15)

Here, m holds the body mass and J ∈ R3×3 is the body inertia tensor

J =
∫

m

ˆ̄aT

0
ˆ̄a0 dm. (2.16)

Therein, the skew symmetric matrix

ˆ̄a0 =




0 −Z Y
Z 0 −X

−Y X 0


 (2.17)

represents the cross product ā0 × ( ) in terms of a matrix product. The body
inertia tensor is mapped to the angular velocity vector by the matrix G. Note the
use of the rotation matrix B ∈ R3×3, as introduced in Sec. 2.1.
A rigid body is, in any case, subject to gyroscopic, centrifugal and Coriolis forces,
and further perhaps to applied, external forces. These forces are collected in the
force vector

Q =

[
Qt

Qr

]
= Qgeneralized + QV

=
nforces∑

j=1

(
fj

ˆ̄aF jB
Tfj

)

︸ ︷︷ ︸
generalized force vector

+

(
0

1
2
GĠTJĠqr

)

︸ ︷︷ ︸
quadratic velocity vector

. (2.18)

It is subdivided into the vector of generalized forces, and into the vector of gy-
roscopic, centrifugal and Coriolis force terms. This vector is referred to as the
quadratic velocity vector QV . Therein, fj represents an external force in vector
notation, and nforces is the total number of external forces acting on the body.
Further, ˆ̄aF j denotes a skew symmetric matrix representing the force application
point of the j-th force with respect to the body fixed coordinate system.
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2.3. Equations of Motion of an Unconstrained Flexible Body

2.3 Equations of Motion of an Unconstrained

Flexible Body

If the simulation of a body is expected to result in notable deformations, the rigid
body formulation introduced before is insufficient. This section summarizes the
EoM of a single unconstrained flexible body in 3D space, as presented in detail by
Sherif and Nachbagauer [94].
Flexibility can be introduced to the EoM by describing the deformations of the
body with respect to a floating reference frame (FRF). Investigating Fig. 2.3 the

 
 

  

 

 

 

 

 r

S

ā

ā0

āf

undeformed state
with body fixed CoSy

Figure 2.3: Floating reference frame description of a flexible body

absolute position vector of a material point of the flexible body, with respect to
the global coordinate system is given by

r = S + B · ā = S + B (ā0 + āf ) . (2.19)

Quantities described in the body fixed coordinate system are again denoted with an
overbar. Vector ā represents the position vector of a material point. It is split into
the undeformed part ā0, and into the deformable part āf . S is again the position
vector from the global, time-invariant model-origin in the global coordinate system,
to the body origin in the body fixed coordinate system. B holds the orthogonal
rotation matrix in terms of Euler parameters.
As we are dealing with a flexible body, the deformable part is expanded by the

10



2.3. Equations of Motion of an Unconstrained Flexible Body

Ritz approximation

āf = Θqf. (2.20)

The matrix of shape functions Θ ∈ R7×nflex discretizes the displacement field of the
flexible body. Θ is typically derived by modal reduction approaches, and scaled
by coefficients qf ∈ Rnflex, denoted as flexible coordinates.
Using this formulation, the vector of state variables reads

q =
[
qt,qr,qf

]
T ∈ R

(7+nflex). (2.21)

The rigid body coordinates qt and qr describe the position of the reference frame,
and the flexible coordinates qf describe the deformation of the body.
The FRF formulation results in the mass matrix

M =




Mtt Mtr Mtf

Mrr Mrf

sym. Mff


 ∈ R

(7+nflex)×(7+nflex), (2.22)

introducing the terms

Mtt = mI, (2.23)

Mrr = GT

[∫

m

ˆ̄aTˆ̄a dm
]

G, (2.24)

Mff =
∫

m
ΘTΘ dm, (2.25)

Mtr = −B
[∫

m

ˆ̄a dm
]

G, (2.26)

Mtf = B
∫

m
Θ dm, (2.27)

Mrf = −GT

∫

m

ˆ̄aTΘ dm. (2.28)

A detailed derivation and explanation of the single submatrices is presented in
[94].
As for the mass matrix, also the force vector

Q = Qgeneralized + QV =




Qt

Qr

Qf


 ∈ R

(7+nflex) (2.29)

is extended by a subvector of generalized forces Qf ∈ Rnflex. It comprises stiffness
and damping forces of the flex body, as well as possibly acting external forces.
Further, the quadratic velocity vector

QV =
[
Qt

V ,Q
r
V ,Q

f
V

]
T

(2.30)

11



2.4. Unconstrained Multibody Systems

is extended by

Qt
V = −Ṁtrq̇

r − Ṁtfq̇
f (2.31)

Qr
V = −

(
Ṁtr

)
T

Ṡ − Ṁrrq̇
r − Ṁrfq̇

f +

(
∂T

∂qr

)
T

(2.32)

Qf
V = −

(
Ṁtf

)
T

Ṡ −
(
Ṁrf

)
T

q̇r − Ṁffq̇f +

(
∂T

∂qf

)
T

. (2.33)

Therein, T holds the body’s kinetic energy. For a detailed review on the single
terms, the interested reader is again referred to [94]. The mass and force vector
of a flexible body are rather complex. Thus, special FRF formulations, like the
combination of a Buckens frame together with the free-free mode description cf.
[93], are commonly used. By using a free-free mode formulation the modes are
mass-orthogonal to the translational and to the rotational rigid modes. They are
further mass-orthogonal to each other. If the origin of the body coordinate system
is congruent with the body’s undeformed CoG, the mass matrix of a single flexible
body simplifies into

M =




Mtt 0 0
Mrr Mrf

sym. Mff


 . (2.34)

The related quadratic velocity vector reduces to

QV =
[
0,Qr

V ,Q
f
V

]
T

, (2.35)

which can be further simplified to

Qr
V = −Ṁrrq̇

r − Ṁrfq̇
f +

(
∂T

∂qr

)
T

(2.36)

Qf
V = −

(
Ṁrf

)
T

q̇r − Ṁffq̇f +

(
∂T

∂qf

)
T

. (2.37)

2.4 Unconstrained Multibody Systems

Next, we set up the unconstrained multibody system

Mq̈ = Q. (2.38)

In the present context the term "unconstrained" indicates, that the bodies interact
with each other via applied forces. There are no constraint equations introduced

12
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yet.
In Eq. (2.38), q ∈ Rn holds the vector of the n generalized coordinates in the
global coordinate system. It is arranged in the body wise manner

q = [q1,q2, . . . ,qb]
T . (2.39)

qi denotes the coordinate sub vector related to the i-th body, and b = brigid + bflex

holds the number of rigid and flexible bodies. As Euler parameters are in need
of the already introduced internal Euler constraints, such a formulation is not
suitable here. Therefore, we switch to a Euler angle formulation in this section.
The number of generalized coordinates is n = 6 · b if bflex = 0, and n = 6 · b+ nflex

if bflex > 0.
Q (q, q̇) ∈ R

n holds the vector of generalized and gyroscopic forces, which is
arranged similarly to q. Generalized forces may act between a body and ground,
or between two bodies. M (q) ∈ Rn×n represents the block-diagonal global mass
matrix

M (q) =




M1 (q) 0
0 M2 (q) 0

0
. . . 0
0 Mb (q)



. (2.40)

Therein, Mi again denotes the sub mass matrix related to the i-th body.
Depending on the rigid or flexible nature of each body, the terms qi,Mi and Qi

are as introduced in sections 2.2 and 2.3.
In the literature, cf. [74], it is suggested to omit constraint equations by intro-
ducing very stiff force elements. Due to the use of such force elements, Eq. (2.38)
represents the final set of equations of the MBS. It consists of ordinary differential
equations only.

2.5 Constrained Multibody Systems

The final section of this chapter introduces the redundantly formulated constrained
MBS, as implemented in the herein utilized simulation software FreeDyn.
The redundant formulation under consideration is characterized by constraint equa-
tions, which represent joints, body interactions and inner constraints. Possible
constraint equations are classified into holonomic and non-holonomic constraints.
Holonomic constraint equations are typically of the form

C = C(q, t) = 0. (2.41)

13



2.5. Constrained Multibody Systems

Non-holonomic constraints involve the derivative of the generalized coordinates,
and typically read

C = C(q, q̇, t) = 0. (2.42)

Note that this characterization does not necessarily hold in general. If the time
derivative of the constraint equation is eliminable through integration, the resulting
constraint equation is again holonomic.

Further, the class of holonomic constraints is subdivided into scleronomic and rheo-
nomic constraints, depending on their explicit time-dependence. For the MBS un-
der consideration, only scleronomic constraints are investigated, which are purely
algebraic equations.

Now, the n physical coordinates q are subject to m scleronomic constraint equa-
tions

C (q) = [C1 (q) , C2 (q) , . . . , Cm (q)]T = 0. (2.43)

They represent joints (e.g. a hinge, a ball joint, etc.) between two bodies, between
a single body and ground. The inner constraint of each body, due to the Euler
parameter description, see Eq. (2.9), is another type of constraint. Note that
m < n must hold at any time as otherwise the MBS would be overconstrained.
The impact of constraints on the EoM is accounted for by extending the equations
of motion by generalized constraint forces. As it is shown in [92] the constraint
forces are perpendicular to the constraint equations. Therefore, the direction of
the j-th constraint Cj is denoted by

Cj,q =

[
∂Cj

∂q1

∂Cj

∂q2
. . .

∂Cj

∂qn

]
T

. (2.44)

The generalized constraint force related to Cj is obtained by multiplying the con-
straint force direction Cj,q with the generalized amplitude λj, called the Lagrangian
multiplier. Note that λj is an additional unknown of the system and hence has to
be calculated during simulation.
In order to account for all m constraint equations, the constraint Jacobian

CT

q (q) =




∂C1(q)
∂q1

. . . ∂Cm(q)
∂q1

...
...

∂C1(q)
∂qn

. . . ∂Cm(q)
∂qn


 ∈ R

n×m (2.45)

is introduced. Therein, the j-th column holds the direction of the generalized con-
straint force related to the j-th constraint equation. Accordingly, all m Lagrangian
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2.5. Constrained Multibody Systems

multipliers are collected in the vector λ ∈ R
m, introducing m additional unknowns

to the system.
By adding the constraint equations C = 0 to the unconstrained MBS in Eq. (2.38)
the redundant and nonlinear second order differential algebraic system

M (q) q̈ = Q (q, q̇) − CT

q (q)λ

C (q) = 0 (2.46)

with differential index three arises. Note that Eq. (2.46) holds n + m equations
necessary to solve for the n +m unknowns q and λ.
A FreeDyn specific issue is that constraint equations acting on a flexible body
are of different structure than for a rigid body. In order not to define each type
of constraint equation in terms of rigid and flexible bodies separately, FreeDyn
introduces a rigid zero mass and inertia body (ZIB) to the MBS. ZIBs are used as
coupling elements, which are glued to the interaction nodes of a flexible body, by
a special flexible body fixed joint. The ZIB itself is a rigid body and the actual
joint is then established between the ZIB and the joint’s counterpart (a rigid body,
another ZIB or the ground) by rigid body constraints.
Due to the use of these ZIBs a flexible body fix joint had to be derived only. Any
other type of joint is described in terms of interacting rigid bodies.
Note that as the ZIB is of zero mass and zero inertia, it does not influence the
behavior nor the energy of the MBS. Still, it adds a set of seven rigid coordinates
to the vector of generalized coordinates q. Further, each ZIB introduces a set
of six external constraint equations due to the fix joint, and an inner constraint
equation.
Concluding, each flexible body interaction adds seven rigid body coordinates and
seven constraint equations to the MBS.

2.5.1 HHT solver algorithm

The resulting MBS model is solved utilizing a Hilber-Hughes-Taylor (HHT) solver
algorithm, cf. [79]. The HHT method may be seen as an extension to the class
of Newmark solvers, cf. [80]. It has been extended to the present nonlinear MBS
formulation in [79], and is used as the standard solver algorithm in FreeDyn.
This section briefly summarizes the HHT solver algorithm, as implemented in
FreeDyn [41]. It is used to compute the numerical MBS examples presented in
this dissertation.
In order to solve the MBS system in Eqs. (2.46), Newmark integration formulas
are used. They express q and q̇ as a function of q̈ at time tn+1 from the values at
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2.5. Constrained Multibody Systems

tn:

qn+1 = qn + hq̇n +
h2

2
[(1 − 2β)q̈n + 2βq̈n+1] (2.47)

q̇n+1 = q̇n + h[(1 − γ)q̈n + γq̈n+1]. (2.48)

Therein, the parameters

β =
(1 − α)2

4
γ =

1 − 2α

2
, (2.49)

are determined from the parameter α ∈ [−1
3
, 0]. Furthermore, h is the (variable)

time step size.
The equations of motion are discretized such that

(Mq̈)n+1 + (1 + α)(CT

qλ− Q)n+1 − α(CT

qλ− Q)n = 0. (2.50)

Introducing the scaling factor 1
1+α

, which is due to implementation reasons, the
discretized system reads

1

1 + α
(Mq̈)n+1 + (CT

qλ− Q)n+1 − α

1 + α
(CT

qλ− Q)n = 0 =: e1

C(qn+1, tn+1) = 0 =: e2. (2.51)

By utilizing Newton’s method, the correction terms ∆q̈n+1 and ∆λn+1 are com-
puted from [

Mext CT

q

Cq 0

]

︸ ︷︷ ︸
Jacobian J

[
∆q̈n+1

∆λn+1

](k)

=

[
−e1

−e2

](k)

. (2.52)

Where Mext = 1
1+α

M +
(

1
1+α

(Mq̈)q + (CT

qλ)q − Qq

)
βh2 − Qq̇hγ.

Including the corrections of the Jacobian matrix, the system is solved and the
numerical solution is improved after each iteration by

q̈
(k)
n+1 = q̈

(k)
n+1 + ∆q̈

(k)
n+1,

λ
(k)
n+1 = λ

(k)
n+1 + ∆λ

(k)
n+1. (2.53)
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CHAPTER 3
Model Order Reduction

This chapter introduces typical projection based model order reduction methods.
It further investigates their applicability to the redundantly formulated multibody
system, introduced in Chapter 2. The chapter is outlined as follows:
After an introduction to the fundamental idea of model order reduction, projection
based model order reduction approaches are reviewed first. Second, commonly
used projection based model order reduction subspace generation methods are
summarized. They can be roughly divided into a priori and a posteriori methods
depending on whether the method is in need of collected simulation data or not.
Finally, the presented methods are investigated on their applicability to the second
order, nonlinear, index three DAE system, we are dealing with.

3.1 The Idea of Model Order Reduction

Numerical modeling techniques often result in a large number of mathematical
equations. The intention of model order reduction is to significantly reduce the
number of equations, and the simulation time. The model order reduction method
further has to ensure, that the approximation error in the simulation results is
small. From a mathematical point of view, the aim of model order reduction is to
approximate a set of differential equations

ẋ = f(x), (3.1)

with x ∈ Rn unknowns, by some smaller set

ẋr = g(xr). (3.2)
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Here, xr ∈ R
r denotes the new unknowns. If we set

x = h(xr) + e ≈ h(xr), (3.3)

with r ≪ n and e as approximation error, the task of model order reduction
approach is to find an efficient representation of h(xr).
Within this dissertation, the focus is on projection based model order reduction
approaches. They define h(xr) as a projection to a flat or curvilinear subspace.
Several approaches will be considered in the subsequent sections of this chapter.
Nevertheless, the interested reader is referred to the books by Antoulas [6], Qu
[84] and Schilders et al. [89] for a vast review on this extensive topic.

3.2 Projection Based Model Order Reduction

In the field of (nonlinear) dynamical systems, a computationally efficient model is
typically given by the system’s minimal set of coordinate representation. This de-
scription is usually not derivable in a straightforward manner for complex systems.
Therefore, the actually available redundant description of the underlying dynami-
cal system is enhanced by projection based model order reduction approaches.
The fundamentals of these approaches are reviewed by investigating the linear and
time-invariant system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Dx(t), (3.4)

subject to initial conditions x (0) = x0. Here, x ∈ Rn is the vector of unknown
state variables, and A ∈ Rn×n represents the system matrix. B ∈ Rn×u maps the
vector of input signals u ∈ Ru to the particular state. Further, D ∈ Ry×n maps
the state vector to the vector of system outputs y ∈ Ry.

Recalling Eq. (3.3), model order reduction is based on a sufficient representation
of the term h(xr). To this end the Galerkin transformation

x = Vxr + Uxn−r, (3.5)

is considered. Note that this is simply a transformation of the original state vector.
In a mathematical sense we try to construct an orthogonal subspace Y1 of the
original space H, which is typically not described by a set of orthogonal basis
vectors. Y1 is further split into Zr and Zn−r, which are spanned by the orthogonal
bases V ∈ Rn×r and U ∈ Rn×(n−r). This approach is also-called flat projection, as
V and U are time-invariant and hence

d

dt
V = 0 and

d

dt
U = 0. (3.6)
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The related variables are xr ∈ R
r and xn−r ∈ R

n−r.

3.2.1 Flat Projection

The main task of a projection based model order reduction method is to generate
the reduction subspace. Therefore, an introduction to the most frequently used
subspace generation methods is presented in the upcoming sections. The flat
(Petrov-)Galerkin projection neglects the second term of Eq. (3.5). Hence, the
transformation is of the form

x ≈ h(xr) = Vxr (3.7)

with V ∈ Rn×r and xr ∈ Rr, r ≪ n.
Due to neglecting the subspace spanned by U, the method looses its exactness. It
turns into an approximation on the subspace Zr. The system therefore reduces to

Vẋr = AVxr + Bu(t) + e

y(t) = DVxr, (3.8)

including the residual term e.
By choosing a suitable test-subspace Y2 on which we force e = 0, we get an
orthogonal basis W ∈ Rn×r of Y2, with WTe = 0. This method with V 6= W is
called flat Petrov-Galerkin projection and the related reduced order model reads

WTVẋr = WTAVxr + WTBu

y = DVxr. (3.9)

In the case of using Y1 as the test-subspace (V = W), the method is called flat
Galerkin projection, and the related reduced order model reads

VTVẋr = VTAVxr + VTBu

y = DVxr. (3.10)

A geometric interpretation of the flat (Petrov-)Galerkin projection in a 3D space is
shown in Fig. 3.1. The flat projection is the most commonly used projective model
order reduction method as it is applicable in a very straight-forward manner.
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H

Zr

xr,1

xn−r,1

xr,2

Figure 3.1: Geometric interpretation of the linear Galerkin projection in R3 fol-
lowing [71]

3.3 A Priori Model Order Reduction

A priori methods mostly predict the reduced order model utilizing the system’s
mass, stiffness and damping matrices, as well as the vector of applied forces. This
class of approaches is typically applied to (nonlinear) systems of ODEs, like dy-
namical FEM models. In order to characterize these methods we introduce the
linear system

Mẍ + Kx = Bu

y = Dx. (3.11)

x ∈ Rn is the vector of DOFs and M ∈ Rn×n is the time-invariant mass matrix.
K ∈ Rn×n holds the time-invariant stiffness matrix, and the matrix B ∈ Rn×u

maps the load vector u ∈ Ru to the corresponding DOFs. Further, matrix D ∈
R

y×n maps the DOFs to the vector of outputs y ∈ R
y. The system is considered

symmetric with M = MT and K = KT.
We now apply the flat (Petrov-)Galerkin projection to generate the corresponding
reduced order models. The Petrov-Galerkin projected reduced order model reads

WTMVẍr + WTKVxr = WTBu

y = DVxr, (3.12)

and the Galerkin projected reduced order model evaluates to

VTMVẍr + VTKVxr = VTBu

y = DVxr, (3.13)

with V ∈ Rn×r, W ∈ Rn×r, xr ∈ Rr and r ≪ n. The three most commonly
used projection approaches Component Mode Synthesis (CMS), Balanced Trunca-
tion (BT) and Moment Matching (MM) will be introduced in this section. CMS
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represents the class of modal model order reduction approaches. The according
reduced order model is built of vibration modes and static displacement fields of
the original system. BT and MM originate from control theory and are based on
rather mathematical considerations. While BT is based on the Gramian controlla-
bility and observability matrices of the original system, MM tries to approximate
the system’s transfer function by a set of Krylov vectors. For a comprehensive
comparison of this class of methods, see [32, 114].
Further, the curvilinear Global Modal Parametrization (GMP) approach, which
may be seen as a kind of a-priori approach, is reviewed.

3.3.1 Component Mode Synthesis

Component mode synthesis describes a class of modal model order reduction meth-
ods which utilize the Eigenvalue decompositions (EVD) and static displacement
fields of the original model. This method is typically used to approximate the
flexible behavior of finite element bodies for multibody system simulation. It may
be assigned to the class of Galerkin projections, as W = V. A commonly used
CMS method, also known as the Craig-Bampton method [24], is presented here.
We assume a linear FEM body, subject to constraints and external forces. The
according linear system is depicted in Eq. (3.11). This type of model order reduc-
tion is based on a combination of statical condensation, called Guyan reduction,
and modal reduction. To this end, the vector of FEM degrees-of-freedom is sorted,
such that

x =
[

xm,xs

]
T

. (3.14)

Therein, xm ∈ Rnm are nm master coordinates, and xs ∈ Rns are ns slave coordi-
nates, with n = nm + ns. We want to describe the deformation of the FEM body
by the displacements of the master coordinates. The displacements of the slave co-
ordinates are then expressed by the master coordinates. Due to this classification
of coordinates, the linear system in Eq. (3.11) is rearranged into

[
Mm,m Mm,s

Ms,m Ms,s

] [
ẍm

ẍs

]
+

[
Km,m Km,s

Ks,m Ks,s

] [
xm

xs

]
=

[
Fm

Fs

]
. (3.15)

Therein, F = [Fm,Fs]
T is the vector of applied forces. In order to generate the

reduced order model, a combination of static modes and vibration modes is used:
First, the vector of slave coordinates xs is processed by a Guyan reduction. It
estimates the displacements of the slave coordinates by considering the static de-
formation of the master coordinates. Unit loads are applied to each master coor-
dinate separately while, at the same time, all other master coordinates are fixed.
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The according static problem reads

[
Km,m Km,s

Ks,m Ks,s

] [
xm

xs

]
=

[
Fm

0

]
. (3.16)

The motion of the slave coordinates is then directly computed from

xs = Vstatxm

= −K−1
s,s Ks,mxm, (3.17)

and the full vector of coordinates is given by

x =

[
Im,m

Vstat

]
xm =

[
Im,m

−K−1
s,s Ks,m

]
xm. (3.18)

Second, Eigenvectors φ of the dynamical system are computed from the Eigenvalue
decomposition

Ks,sφ = λMs,sφ, (3.19)

where all master coordinates xm are locked. Each Eigenvector φi is related to the
Eigenvalue λi explicitely. Furthermore, the Eigenvalues of the FEM body under
consideration are directly related to the body’s Eigenfrequencies by ω2

i = λi.
Hence, the number of vibration modes φi used to describe the dynamical behavior
of the FEM body is due to a user-defined Eigenfrequency bound ωmax. All Eigen-
vectors φi up to ωmax are collected as column vectors in the vibration mode matrix
Vvib.
Finally, by combining the static modes and the vibration modes the Craig-Bampton
model order reduction matrix reads

V =

[
Im,m 0
Vstat Vvib

]
. (3.20)

The Galerkin projection is given by

[
xm

xs

]
≈

[
Im,m 0
Vstat Vvib

] [
xm

qvib

]
= Vxr, (3.21)

where qvib are modal coordinates, related to the vibration modes Vvib and xr is
the vector of r = nm + nvib reduced coordinates.

During the last decades several improvements and variations of the above method
have been proposed. For an extensive review on the method, the interested reader
is referred to [24, 22, 23, 25, 114, 84] and references therein.
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3.3.2 Moment Matching

Moment matching determines a reduced order model which approximates the sys-
tem transfer function with sufficient accuracy. Thereby, not only the input/output
behavior is approximated but also the complete time-history of the state variables
in x(t). The method is of the group of flat Petrov-Galerkin projection, as in gen-
eral V 6= W. It is briefly summarized, following [64, 62]:
Let us assume the first order ODE system

Eẋ = Ax + Bu

y = Dx. (3.22)

The Laplace transformed transfer function of the first order system reads

H(s) =
Y(s)

U(s)
= D (sE − A)−1 B, (3.23)

with s holding the Laplace variable. The transfer function is approximated by the
power series

H(s) =
∞∑

j=0

Ts0

j (s0 − s)j, (3.24)

around an expansion point s0 ∈ C, which must not be a pole of the the transfer
function. Here, Ts0

j represents the j-th moment

Ts0

j = D
(
(s0E − A)−1 E

)j
(s0E − A)−1 B (3.25)

of the transfer function around s0.
Now, the moment matching method determines a reduced order model by pro-
jecting the original system to a Krylov subspace, which is again spanned by the
column vectors of matrices W and V. One approach is to choose W and V as

W =
[
Pr−1

V QV . . . P1
V QV QV

]
(3.26)

V =
[
Pr−1

W QW . . . P1
W QW QW

]
, (3.27)

with

PV = (s0E − A)−1 E, QV = (s0E − A)−1 B (3.28)

PW = (s0E − A)−T ET, QW = (s0E − A)−T DT. (3.29)

It can be shown, cf. [64], that thereon the first 2r moments of the reduced system
hold

Ts0

j = T̃s0

j j = 1, . . . , 2r. (3.30)
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Note that for equal input/output matrices, and for symmetric mass and stiffness
matrices, W evaluates to V.

Originating from control theory, the method was adapted for second order sys-
tems and (flexible) FEM discretized multibody systems within the last couple of
years. Furthermore, advanced algorithms for the construction of V and W were
introduced, cf. [10, 66, 88, 6, 64, 63, 62, 89].

3.3.3 Balanced Truncation

Balanced Truncation constructs the projection subspaces due to the controllability
and observability of the underlying system, cf. [6, 84].
For simplicity, we transform the first order system in Eqs. (3.22) such that E = I:

ẋ = Ax + Bu

y = Dx (3.31)

The system is investigated on its observability and controllability, utilizing the
Ljapunov equations

AWC + WCAT = −BBT

ATWO + WOA = −DTD. (3.32)

The system is controllable on the interval t ∈ [0, T ], if the controllability Gramian

WC(T ) =
∫ T

0
eAtBBTeATtdt (3.33)

is nonsingular. The system is further observable on the interval t ∈ [0, T ], if the
observability Gramian

WO(T ) =
∫ T

0
eATtDTDeAtdt (3.34)

is nonsingular. A stable system is called balanced, if

WC = WO = diag(σ1, . . . , σn), (3.35)

holds. This means that each state in the system is equally controllable and observ-
able.
In general, the BT method first balances the system via a state-space transforma-
tion. This transformation rearranges the state vector in descending order, based
on each state’s controllability and observability. In a second step, states which are
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negligible due to their controllability and observability are truncated.
For the first step, the Cholesky factors

STS = WC (3.36)

RTR = WO (3.37)

of the Gramians WC and WO are computed. Next, the singular value decomposi-
tion of

SRT = ΦΣΨT = [Φ1 Φ2]

[
Σ1 0
0 Σ2

] [
ΨT

1

ΨT

2

]
, (3.38)

with Σ1 = diag (σ1, . . . , σr) and Σ2 = diag (σr+1, . . . , σn) is computed. Therefrom,
the left and right projection matrices

WT = Σ
−

1
2

1 ΨT

1 R, (3.39)

V = STΦ1Σ
−

1
2

1 (3.40)

of the Petrov-Galerkin projection are derived. Equation (3.38) is already subdi-
vided such that matrices with the subindex ( · )1 hold the dominant part. Matrices
with the subindex ( · )2 hold the truncated part. Therefore, Σ1 = diag(σ1, . . . , σr),
consists of the r dominant singular values. Accordingly, Σ2 holds the set of the
2n−r truncated singular values. Thus, the omitted projection matrix U holds the
truncated part ( · )2 of the singular value decomposition.
The derived reduced order model consists of those states only, which require little
energy to be controlled by the inputs and, at the same time, forward a lot of energy
to the outputs. As a special feature of this method, the a priori error bound

‖y − ỹ‖2 ≤ 2
2n∑

j=r+1

σj (3.41)

exists. As r is the number of the considered singular values, the error bound is
the sum of the energy which is included in the truncated part of Eq. (3.38).

Balanced Truncation is extensively used in terms of control systems. As for the
moment matching method, BT has been expanded to various fields of application.
It was further proposed for (flexible) FEM discretized multibody systems and
for second-order dynamical systems. For further insight into the method, the
interested reader is referred to [70, 113, 10, 84, 6, 62, 117, 89].
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3.3.4 Coordinate Partitioning

According to [82], the goal of coordinate partitioning is, to represent a redundantly
formulated MBS

M (q) q̈ = Q (q, q̇) − CT

q (q)λ

C (q) = 0, (3.42)

by an ODE system of the form

M̂q̈ind = Q̂, (3.43)

with M̂ and Q̂ obtained from the partitioning strategy. The vector of Lagrange’s
multipliers λ is eliminated, and the original MBS system is described in terms of
so-called independent coordinates qind only. Coordinate partitioning approaches
have been studied intensely in the 1980s, by, amongst others, Haug and Wehage
[46, 112]. The coordinate partitioning strategy is summarized, following mainly
[82] and [60]:
First, a novel set of independent coordinates qind ∈ Rf , with f < n is introduced.
In order to establish a connection between these and the original set of generalized
coordinates q ∈ R

n, additional constraint equations

Cind(q,qind) = 0 (3.44)

are introduced. These, together with the original set of constraints equations, are
then combined in the novel vector of constraint equations

C̄(q,qind) =

(
C(q)

Cind(q,qind)

)
= 0, (3.45)

with C̄ ∈ R(m+f)×1. In order to achieve the ODE representation of the present
system under consideration, constraint orthogonalization is applied. It is based on
the idea of constructing the null space Γ to the constraints C̄, which dates back
to G.A. Maggi, cf.[82, 60]. Due to the definition of the null space of a matrix the
orthogonality condition

C̄qΓ = 0 (3.46)

holds for time-independent constraint equations. Note that as the constraints
are in general state dependent, its null space has to be computed repetitively as
Γ = Γ(q,qind) ∈ R(n×f).
The ODE representation of the original system

ΓTMΓq̈ind = ΓQ − ΓTC̄q

T

λ
︸ ︷︷ ︸

0

(3.47)
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is then derived by projection onto the constructed null space utilizing the linear
projection q̈ = Γq̈ind. It must be noted, that this is the case for constant Γ only.
By setting M̂ = ΓTMΓ and Q̂ = ΓQ, the system finally reads

M̂q̈ind = Q̂, (3.48)

consisting of f unknowns only.
The difficulty of the coordinate partitioning approach is the computation of the
null space matrix Γ. Several possible algorithms allowing to compute Γ for various
types of problems are summarized in [82, 60]. The Global Modal Parametrization
(GMP), an approach explicitly concerning the multibody system formulation of
the present thesis, is detailed exemplarily.
It was introduced in the early 2000s in terms of a model order reduction approach
for controlled (flexible) multibody dynamics by Brüls et al., cf. [15, 14]. Later,
Heirman et al., cf.[48, 49], extended the method to MBS acting close to singular
configurations. It is outlined following the work of Heirman et al. [49] and Bruels
et al. [14].
Let us consider the MBS with b bodies, as shown at the beginning of this subsection.
The vector of state variables q is expanded into rigid and flexible coordinates

q = qrgd + qf. (3.49)

Therein, qrgd denotes the vector of rigid coordinates, and qf holds the vector of
flexible coordinates, which are treated as small deviations from the rigid movement.
Let us first deal with the rigid coordinates:
The vector q is sorted such that

qrgd =
[

qrgd
r qrgd

dep

]
T

. (3.50)

Therein, a set of r independent coordinates qrgd
r , with qrgd

r ⊂ qrgd and r < n exists.
Hence, there exists some mapping

qrgd
r 7→ qrgd = ρ

(
qrgd

r

)
(3.51)

which allows to compute the full vector of rigid coordinates based on the indepen-
dent coordinates. The mapping ρ may be chosen such that its Jacobian can be
interpreted as the systems rigid body modes

∂ρ
(
qrgd

r

)

∂qrgd
r

= Φ
(
qrgd

r

)
. (3.52)

The dependent set of n − r remaining coordinates qrgd
dep is derived by evaluating

algebraic equations, which describe the coordinate dependency.

27



3.3. A Priori Model Order Reduction

Accordingly, in terms of the flexible part qf an equivalent set of independent coor-
dinates q̂f

s, with q̂f
s ⊂ qf and s < n exists. As deformations are treated as small

deviations from the rigid movement, the flexible coordinates

qf = qf
(
qrgd

r , q̂f
s

)
(3.53)

are also a function of the rigid behavior. In the case of a purely rigid motion the
flexible coordinates hold

qf = qf
(
qrgd

r , 0
)

= 0. (3.54)

Flexible coordinates are subject to the series expansion

qf
(
qrgd

r , q̂f
s

)
≅
∂qf

∂q̂f
s

(
qrgd

r , 0
)

q̂f
s = Ψ̂

(
qrgd

r

)
q̂f

s, (3.55)

following the concept of small deviations. Therein, Ψ̂
(
qrgd

r

)
holds the configu-

ration dependent flexible mode shape matrix, and q̂f
s holds the according modal

coordinates. The construction of this mode shape matrix is supposed to be car-
ried out by methods like the CMS approach, the Hurty approach cf. [14], or the
approach presented in [49].
As we want to generate a reduced order model, the vector of modal coordinates
and the created mode matrix are further investigated. To this end, the mode
matrix Ψ̂ is split into its dominant and higher-order modes

Ψ̂
(
qrgd

r

)
=
[

Ψ
(
qrgd

r

)
Ψ̃
(
qrgd

r

) ]
. (3.56)

Therein, Ψ holds the dominant modes (in its columns) and Ψ̃ holds the higher-
order modes. Accordingly, the vector of modal coordinates is split into dominant
and higher-order coordinates

q̂f
s =

[
qf

s q̃f
s

]
T

. (3.57)

In this notation the deformation reads

qf = Ψ
(
qrgd

r

)
qf

s + Ψ̃
(
qrgd

r

)
q̃f

s. (3.58)

Finally, by projecting the flexible coordinates to a subspace on which q̃f
s = 0 holds,

the flexible coordinates are approximated by

qf ≈ Ψ
(
qrgd

r

)
qf

s. (3.59)

Including this strategy the mapping of the full vector of coordinates q reads
(
qrgd

r ,qf
s

)
7→ q ≅ ρ

(
qrgd

r

)
+ Ψ

(
qrgd

r

)
qf

s. (3.60)
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The differentiation of the mapping with respect to qrgd
r and qf

s generates the non-
linear projection matrix

V(qrgd
r ,qf

s) =
∂q

∂
(
qrgd

r ,qf
s

)

=
[

Φ
(
qrgd

r

)
+ ∂

∂q
rgd
r

(
Ψ(qrgd

r )qf
s

)
Ψ(qrgd

r )
]
. (3.61)

In the case of an undeformed state
(
qf

s = 0
)
, the projection matrix reads

V(qrgd
r , 0) =

[
Φ
(
qrgd

r

)
Ψ(qrgd

r )
]
. (3.62)

As pointed out by this equations, the reduction subspace V = V(qrgd
r ,qf

s) (includ-
ing the null space to the constraints) is configuration dependent. As it will be
outlined in the upcoming section of this chapter, this may be an issue concerning
the methods efficiency and applicability.
For deep insight into the GMP method, the interested reader is referred to [15, 14,
48, 49] and references therein.

3.3.5 Nonlinear Galerkin Projection

The nonlinear Galerkin projection x ≈ V · xr + U · xn−r, in contrast to the flat
Galerkin projection x ≈ V ·xr, further accounts for the truncated (high frequency)
Eigenvectors U. The system is no longer projected to a flat subspace, but to a
manifold of the original space. Thereby, the behavior of the truncated coordinates
xn−r is approximated and accounted for by projection onto the center manifold

xn−r ≈ h (xr) . (3.63)

Applying this relation, the nonlinear Galerkin projection changes to

x = V · xr + U · h (xr) . (3.64)

In Fig. 3.2, the nonlinear Galerkin projection to M is geometrically interpreted in
the 3D space, obeying the non flat behavior.

3.3.5.1 Center Manifold Theory

This section briefly introduces the idea of the center manifold theory. Let us
assume the nonlinear differential system

ẋ = F (x) , with F : Rn → R
n, x ∈ R

n (3.65)
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H

Y

M

xr,1

xn−r,1

xr,2

Figure 3.2: Geometric interpretation of the linear and nonlinear (Petrov-)Galerkin
projection

and F (0) = 0. Applying the Taylor series expansion

ẋ = A · x + f (x) , (3.66)

the system is split into the linear part A · x, with A as the resulting coefficient
matrix, and into the nonlinear part f (x).
We first deal with the linear part ẋ = A·x, and assume the algebraic and geometric
multiplicities of the Eigenvalues of A to be equal. In such a case, the system matrix
A is transformable into a system

˙̃x = T−1AT︸ ︷︷ ︸
Ã

x̃, (3.67)

with the block-diagonal coefficient matrix

Ã =




Ac 0 0
0 As 0
0 0 Au


 , (3.68)

using the similarity transformation x = Tx̃. This system is then separable into
three differential systems

ẋc = Ac · xc, (3.69)

ẋs = As · xs, (3.70)

ẋu = As · xu. (3.71)

Investigating the Eigenvalues of Ã, Ac is characterized by purely imaginary Eigen-
values, As holds Eigenvalues with Re < 0 only, and Au only holds Eigenvalues
with Re > 0. The according linear Eigenspaces Ec, Es and Eu, are called the center,
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stable and unstable Eigenspaces of Ã.
Accounting for the nonlinear part f (x), Ec, Es and Eu are deformed into nonlinear
manifolds. By investigating the behavior of these manifolds it can be shown that,
if the unstable manifold Eu is empty, every trajectory living in Es will be attracted
by the center manifold Ec in an exponential way. Therefore, all components living
in Es will decay exponentially. Now, according to [58], two remarkable properties
exist:

1. Trajectories starting on the center manifold stay on it for all positive
times (the manifold is said to be invariant under the flow).

2. All trajectories starting off the manifold are attracted to it at an
exponential rate, cf. [38]

This implies, that for the long-term behavior of the system only the dynamics
restricted to the center manifold need to be investigated. We assume the system
to be of that kind, and the set of nonlinear differential equations read

ẋc = Ac · xc + fc (xc,xs) (3.72)

ẋs = As · xs + fs (xc,xs) . (3.73)

Close to the equilibrium point, and for sufficiently small δ, the center manifold
h (xc) can be assumed as

M = {(xc,xs) ∈ R
c × R

s|xs = h (xc) , |xc| < δ,h (0) = 0,Dh (0) = 0}, (3.74)

with

D h (0) =
∂h (xc)

∂xc

∣∣∣∣∣
xc=0

. (3.75)

Introducing these relations into the original system in Eq. (3.72), the resulting
differential equations

ẋc = Ac · xc + fc (xc,h (xc)) (3.76)

describe the dynamics of the original system close to the equlibrium point of the
system. Therefrom, the center manifold is derived by combining the above relations
into

ẋs = As · h (xc) + fs (xc,h (xc))

=̂
∂h (xc)

∂xc
· ẋc = As · h (xc) + fs (xc,h (xc))

=̂
∂h (xc)

∂xc

· [Ac · xc + fc (xc,h (xc))] = As · h (xc) + fs (xc,h (xc)) , (3.77)
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and solving the differential equation (3.77) for h (xc). This center manifold can
then be used to solve the reduced system in Eq. (3.76). As a matter of fact, the
derivation of the center manifold is a non-trivial task, which is not necessarily
successful for any type of differential equations. This is mainly due to the term
∂h(xc)

∂xc

· Ac · xc in Eq. (3.77), which may become critical in terms of large systems.
One possible approach is to set

∂h (xc)

∂xc
· Ac · xc = 0, (3.78)

as the insignificant modi xs are typically assumed as quasi-static. Due to this sim-
plification, the derivation of the approximated center manifold becomes a purely
algebraic operation.
Another approach, presented in Garcia-Archilla et al. [43], proposes the Post-
processed Galerkin method, which utilizes the linear Galerkin projection for time
integration and switches to a nonlinear Galerkin projection only at time-instances
worth evaluating. Several more methods for approximating the center manifold
were proposed by e.g. Foias or Titi, cf. [38, 39, 106]. Finally, for a detailed dis-
course on the center manifold theory, the interested reader is referred to, amongst
others, the work of Carr, Foias, Robinson, Temam, Reit, Fuchs [104, 87, 40, 17,
86, 42] and references therein.

3.3.6 Applicability of A Priori Methods

The original intention of CMS, BT, and MM was to reduce first and second order
ODE systems like FEM models. The strength of these approaches relies on the fact
of constant system matrices, which allow to directly reduce a model a priori without
any need of generating system information. The nonlinear Galerkin approach,
utilizing center manifold theory, is well suited to deal with ordinary and partially
differential equations. Detached from these stands the GMP approach. It has
been introduced to explicitly handle the present state-dependent MBS system
under consideration.
This section first discusses the applicability of the GMP approach. Secondly, it
characterizes the CMS, MM and BT model order reduction methods due to the
present MBS representation. The section closes with remarks to the nonlinear
Galerkin projection.

Global Modal Parametrization
According to Heirman et al. [49, p.7], the major benefit of the GMP is: ’(...)as
the elastic deformation is approximated by a limited set of configuration dependent

modes, the number of degrees of freedom
[
qrgd

r qf
s

]
T

is much smaller than the num-
ber of initial coordinates q and Lagrange multipliers λ.’
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and further on in the same paragraph:
’The reduced dimension of the problem, as well as the switch from DAE to ODE,
make the projected system equations much cheaper to solve. However, assem-

bling the reduced system equations requires a considerable effort and

can generally only be done numerically. The cost of this assembly can out-
weigh the advantage of the small resulting set of equations.’

The bold depicted statement has to be discussed, as it may be seen as a bottleneck
of the GMP approach.
Both, the MBS system and the projection matrix are state dependent. Therefore,
a costly offline preparation phase has to be taken into account. In this phase, one
has to compute a sufficient set of valid system configurations qs and (qrgd

r )s, respec-
tively. From these, an according set of projection matrices Vs , and a collection of
the according reduced MBS system elements Ms and Qs have to be constructed.
During the online phase of the reduced simulation these previously constructed
reduced MBS system elements have to be interpolated due to the actual config-

uration
[
qrgd

r qf
s

]
T

. In a second step the ODE involving the interpolated MBS

elements is solved for a new set qrgd
r . These two steps are carried out repetitively

throughout the simulation time.
Summing up, the GMP is mainly an interpolation task of locally linearized and
reduced MBS systems which are then solved by a sufficient ODE solver algorithm.
This might bring up difficulties, mainly concerning the interpolation routine. Al-
though it is stated in [49, p.7], that ’(.,.)all elements of the projected model equa-
tions are defined by smooth functions using inputs that vary smoothly with qrgd

r

(...)’ and therefor ’(...)the elements of the projected model equations are continu-
ous themselves.’, the following issues may arise:

1. The set of independent coordinates qrgd
r may not be unique within the space

of valid system configurations:
According to [14, 49], dead points of the MBS lead the reduced system into
a singular configuration.
Therefore, Heirman et al. [49] suggest to apply the GMP approach if the
MBS is ensured to act in regular areas of the configuration space only.

2. Evolving from real time implementations and control design, Bruls et al. [14]
suggest to choose all controller-relevant actuated coordinates as part of the
set qrgd

r . By doing so, a back transformation of the reduced system solution
into the original coordinates q is obsolete. The needed control parameters
are qrgd

r .
Beside this suggestion to control problems, the choice of qrgd

r is left to the
user. In principle, the number of independent coordinates is given by the
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number of constraint equations

nind = n − ndep, (3.79)

with m = ndep. Hence, each constraint equation correlates with one depen-
dent coordinate. Still, the actual identification of independent and dependent
coordinates may become a non-trivial task. This is especially the case, when
dealing with more complex constraint equations, see [92].

3. The offline preparation phase may involve in-depth user knowledge:
The configuration space may become high dimensional in the case of several
unconstrained coordinates. Therefore, the user probably has to estimate
the MBS motion a priori. Otherwise, the configuration space may not be
screened sufficiently, resulting in an incomplete set of projection matrices
Vs. In such a case, the online phase may not be able to find corresponding
projection matrices. This most likely causes the reduced simulation to fail.

4. The switch from one reduced order model to another may not necessarily be
smooth, but depends on the interpolation algorithm:
Bruls et al. [14] point out, that the used interpolation algorithm actually
determines the accuracy, efficiency and smoothness/continuity of the inter-
polation. Hence, reduced simulation instabilities and discontinuities may not
be negligible in general. Furthermore, these algorithms may be again in need
of in-depth knowledge of the upcoming MBS motion, cf. [14].

Concluding the discussion of the GMP approach, the method seems to be highly
efficient in terms of control design of well known MBS structures. In the light of a
general and simple applicability to industry-used MBS packages, the approach is
considered as too advanced. This is, on the one hand, due to the excessive offline
phase, which is highly dependent of

• the identifiability of singular configurations of the MBS under consideration,

• the therewith related user-ability to choose the correct set of valid MBS
configurations,

• the dimensionality of the MBS, which is the number of independent coordi-
nates, and

• the therewith related user-ability to pick a sufficient set of independent co-
ordinates qrgd

r .
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On the other hand, the online phase of the reduced simulation rests on a new set
of ODEs which are in need of

• the user’s ability to choose a proper interpolation strategy, which ensures
smooth interpolation, and

• a special ODE solver algorithm, which, most likely, has to interact with the
interpolation algorithm, and ensures smooth time integration.

Consequently, it can not be taken for granted that the GMP approach is applica-
ble and usable in combination with an industry-used MBS package and non-expert
users.

Component Mode Synthesis, Moment Matching and Balanced Truncation
As stated in the beginning of this section, CMS, MM and BT are defined in terms
of first and second order ODE systems. Due to this fact, these methods are not able
to handle the present MBS description. However, it seems possible to apply the
CMS, BT and MM approaches to locally linearized model configurations, following
the GMP approach. This idea is briefly outlined and afterwards reasons are given,
why this approach is dismissed within this dissertation.
First, the redundant MBS model would have to be transformed into the d-index
one ODE system

[
M CT

q

Cq 0

]

︸ ︷︷ ︸
Mext

[
q̈
λ

]
=

[
Q
γ

]
. (3.80)

The already introduced term

γ = −Ċqq̇ = − (Cqq̇)
q

q̇ (3.81)

evolves from differentiation of the constraint equations. Pre-multiplication with
the inverse of the extended mass matrix Mext yields

[
q̈
λ

]
=

[
M CT

q

Cq 0

]
−1 (

Q
γ (q, q̇)

)
. (3.82)

This system can be solved for the generalized coordinates q without evaluating
the Lagrange’s multipliers. Note that this is only possible in the case of Mext

being invertible. The ODE system in Eq. (3.82) may therefore be seen as the
new "orginal" MBS model, subject to model order redution based on the CMS,
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MM and BT approach. By applying the flat Galerkin projection q = Vqr, the
corresponding reduced order model would be of the form

[
q̈r

λ

]
=

[
VT

Im×1

] [
M CT

q

Cq 0

]
−1 (

Q
γ

)
. (3.83)

This means a huge change in the mathematical model, and a considerable increase
in the numerical effort. Arising derivatives and Jacobian matrices (e.g. Ċq) may
not be provided by the MBS software and therefore, have to be computed numer-
ically. But, even by accepting these additional numerical costs, the system is still
highly state dependent (M = M(q), etc.)
Although a priori model order reduction methods have been extended to systems
with local nonlinearities, cf. [97], they are based on assumptions handling constant
system matrices. Actually, with the GMP approach in mind, one could carry on
by locally linearizing the ODE system in Eq. (3.82) and applying the CMS, MM
or BT approach to this system.
To this end, a large number of system states qs, q̇s, which comply with the con-
straint equations, is constructed. Next, the MBS elements Ms,Cs

q,Q
s are evalu-

ated, and afterwards the corresponding reduction subspaces Vs are generated.
The online phase of the reduced simulation could then be carried out analogously
to the GMP approach. Unfortunately, this would bring up the same issues as
already summarized for the GMP approach. These issues include system regu-
larity and complexity, solver stability and user knowledge. Therefore, in-depth
investigations of this scenario will not be carried out.

Nonlinear Galerkin Projection
The nonlinear Galerkin projection, as presented in this chapter, is based on non-
linear differential equations represented as first order systems. The present set of
differential algebraic equations, which describe the redundant set of coordinates
for the mulitbody system, differs vastly from this definition. Similar to the pre-
viously described approaches, an index- and order reduction of the multibody
system are necessary, in order to transform the mathematical model into a suit-
able description. To this end, constraint enforcement methods, like the Baumgarte
stabilization, would have to be introduced, reducing the perfomance and determi-
nacy of the multibody model. As the center manifold description is valid within
a certain region around an equilibrium point, issues similar to the global modal
parametrization occur, when dealing with smooth transition from one center man-
ifold to another. This, in combination with the complex procedure to derive an
(approximated) center manifold to the underlying multibody modeling approach
excludes the nonlinear Galerkin projection from further considerations.

As a result, the whole group of a priori methods is dismissed for all upcoming
considerations.
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3.4 A Posteriori Model Order Reduction

The a posteriori model order reduction methods presented in this section do not
investigate the original system itself but data originating from it. They are there-
fore also-called data-driven methods. This data is generated by solving the original
system, and collecting the time history of e.g. the system states. The application
of these methods makes sense if simulation tasks are run repetitively, like in pa-
rameter identification or control engineering.
This section reviews the flat projection approaches Proper Orthogonal Decomposi-
tion (POD) and its generalization the Smooth Orthogonal Decomposition (SOD).
These approaches utilize the Singular Value Decomposition (SVD) and the Gen-
eralized Singular Value Decomposition (GSVD) in order to investigate the input
data. Alternatively, the POD and SOD can also be computed in terms of the
(generalized) Eigenvalue decomposition of covariance matrices. The methods are
applicable to ODEs, partially differential equations, and systems of DAEs.
This section starts with a brief summary on the main features of the singular value
decomposition, generalized singular value decomposition, and covariance before fo-
cusing on the POD and SOD in detail.

3.4.1 Singular Value Decomposition

Numerical linear algebra utilizes the so-called big six matrix decompositons [102]

• the Cholesky decomposition,

• the LU decomposition,

• the QR algorithm,

• the Spectral decomposition,

• the Schur decomposition,

• the singular value decomposition decomposition,

to efficiently handle matrix computations. The goal is to factorize a given matrix
into simpler matrices, which can be treated more efficiently. The present subsection
reviews the singular value decompositon, following [6, 109, 68, 102]:

Given an arbitrary matrix A ∈ Rn×m with n ≤ m, the singular value decomposi-
tion of this input-matrix, is the factorization of A into the product

A = Φ︸︷︷︸
n×n

Σ︸︷︷︸
n×m

ΨT

︸︷︷︸
m×m

. (3.84)
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The column vectors φi of Φ ∈ R
n×n, called left singular vectors, span the column

space of the input matrix A. Accordingly, the column vectors ψi of Ψ ∈ Rm×m,
called right singular vectors, span the row space of the input matrix.
The left and right singular vectors are orthonormal (ΦTΦ = I, ΨTΨ = I). They
are further connected by the n × m matrix Σ. If n = m, Σ is of diagonal form
Σ = diag (σ1, . . . , σn), with the n singular values σi. In the case of n < m, Σ is of
the form

Σ =







σ1 0
σ2

. . .

0 σn




︸ ︷︷ ︸
n×n

[0]
︸︷︷︸

n×m−n




(3.85)

The singular value decomposition is related to the Eigenvalue decomposition (EVD)
of A. The left singular vectors φi are the Eigenvectors of

(
AAT − λiI

)
φi = 0. (3.86)

The right singular vectors ψi are the Eigenvectors of
(
ATA − λiI

)
ψi = 0, (3.87)

respectively.
The singular value decomposition of a matrix can be used for various matrix in-
vestigations:

1. The 2-norm of matrix A equals the largest corresponding singular value

σ1 = ||A||2. (3.88)

2. In the case of a rank deficient input matrix A, the singular value decompo-
sition can be expanded into

A = Φ Σ ΨT = [Φind Φdep]

[
Σind 0

0 0

] [
(Ψind)T

(Ψdep)T

]
. (3.89)

Therein, Σind ∈ R
l×l = diag(σ1, . . . , σl) holds the independent, singular val-

ues of A. Accordingly, Φind ∈ Rn×l holds the non-zero left singular vectors,
and Ψind ∈ Rl×m holds the independent right singular vectors.
The rank of the input matrix is given by

rank(A) = dim(Σind) = l. (3.90)
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Without loosing exactness, Eq. (3.89) can be rewritten in terms of the inde-
pendent components as

A = Φind Σind (Ψind)T. (3.91)

3. The singular value decomposition can be utilized to find a low rank approx-
imation Ã ∈ Rn×m of an arbitrary input-matrix A ∈ Rn×m such that it is
optimal in the 2-norm.
Suppose rank A = r < n < m and rank Ã = k < r. Then, we ask the
2-norm of the error matrix F = A − Ã, to be minimized. According to the
Schmidt-Eckart-Young-Mirsky Theorem[6], this is

min
Ã, rank Ã=k

||A − Ã||2 = σk+1(A). (3.92)

The rank-k approximation is then given by

Ã = σ1φ1ψ
T

1 + · · · + σkφkψ
T

k . (3.93)

If we suppose A ∈ Rn×m as n points in an m-dimensional space, optimality
in the 2-norm can be interpreted as follows:
The above theorem finds the k-dimensional subspace to which the orthogonal
distances of the n points are minimal.

The singular value decomposition has become a very important model reduction
tool in terms of the POD method [18, 109, 78]. This method uses the matrix of
left singular vectors Φ for model order reduction purposes.

3.4.1.1 The Generalized Singular Value Decomposition

The Generalized Singular Value Decomposition (GSVD) has also been utilized as
a potential model order reduction method recently. Hence, it is reviewed briefly
following [107, 1, 3, 7, 65]:

It allows to decompose arbitrary input matrices A ∈ Rm×n and B ∈ Rm×n both
with m > n, by

A = ΦIΣIΨT

B = ΦIIΣIIΨT. (3.94)

Both lines in Eq. (3.94) may be seen as singular value decompositions. But the
input matrices are decomposed such that the row space Ψ is equal for both input
matrices. As a result, the matrices ΦI ,ΣI ,ΦII ,ΣII ,Ψ are of the same structure
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as in the case of a singular value decomposition:
The right singular vectors are column vectors ψi of the matrix Ψ ∈ Rm×m. They
again span the row space of the input matrices. The m generalized singular values
σi are computed by the term-by-term diversion of diag(ΣT

I ΣI) and diag(ΣT

IIΣII).
The generalized left singular vectors are unique for A and B. Their column vectors
φi span the respective column space. They are collected in matrices ΦI ∈ Rn×n

and ΦII ∈ Rn×n respectively.
The generalized singular value decomposition can also be formulated in terms of
the Generalized Eigenvalue Decomposition (GEVD)

(
1

m
ATA − λi

1

m
BTB

)
ψi = 0. (3.95)

Note that this Eigenvalue decomposition is scaled by the factor 1
m

, with m as the
number of lines in A and B. This scaling will become important when dealing with
auto-correlation matrices. The matrix of generalized right singular vectors is re-
lated to the Eigenvector matrix. Furthermore, the Eigenvalues directly correspond
to the generalized singular values (λi = σi).

An interpretation of this decomposition and the characterization of the impact of
B depends on the actual field of application. Following Abdi [1], the generalized
singular value decomposition gives a least square estimate of A by the low-rank
approximation Ã. This estimation is quite similar to the classical singular value
decomposition approach. But in contrast to that, the estimate Ã is a weighted
estimation, with the rows of the "constraint"-matrix B acting as weights.
The generalized singular value decomposition method has also been used in terms
of the Smooth Orthogonal Decomposition by Chelidze et al. [20, 21], which is an
extension to the POD method. The relevant model order reduction subspace is
spanned by the generalized right singular vectors Ψ. An interpretation in terms
of the Smooth Orthogonal Decomposition (from an engineers point of view) will
be presented in the upcoming section.
The following relations are of special interest in the upcoming part of this chapter:

• For the choice B = I, the generalized singular value decomposition reduces
to the classical singular value decomposition approach

(
ATA − λiI

)
ψi = 0. (3.96)

• In the case of a quadratic, regular and invertible matrix B ∈ R
n×n, the

generalized singular value decomposition is replaceable by the singular value
decomposition

B−1A = Φ Σ ΨT. (3.97)
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It is further describable by the Eigenvalue problem

B−1Aψi = λiψi. (3.98)

• As pointed out in literature, cf. [101, 37, 20], the generalized singular value
decomposition approach is ill-conditioned if the "constraint"-matrix B is sin-
gular. As it will turn out later in this work that is a critical issue in terms
of the present MBS formulation.

3.4.2 (Auto)-Covariance Matrices

As reviewed in the preceeding section the singular value decomposition of an input
matrix A ∈ Rm×n can be formulated in terms of the Eigenvalue decomposition

ΣAψi = λiψi. (3.99)

Therein, ΣA = 1
m

ATA. Moreover, the generalized singular value decomposition of
input matrices A ∈ Rm×n and B ∈ Rm×n is equivalent to the generalized singular
value decomposition

ΣAψi = λiΣBψi, (3.100)

with ΣA = 1
m

ATA, and ΣB = 1
m

BTB.
Matrices of the form ΣA = 1

m
ATA are called auto-covariance matrices. Their

properties are briefly summarized and interpreted from the dynamicist’s point of
view.

The auto-covariance ΣA gives the covariance of a stochastic process (e.g.A) with
itself at given instances of time. An entry of the covariance matrix holds informa-
tion about direct or indirect proportionality of two variables.
Let us consider a matrix X ∈ Rm×n which holds the time history of a dynamical
system. n holds the number of coordinates, and m is the number of collected time
samples. Then, the auto-covariance matrix ΣX = 1

m
XTX ∈ Rn×n gives the impact

of the change of one coordinate to all others. In other words, the auto-covariance
matrix is a kind of sensitivity matrix. It highlights linear inter-coordinate rela-
tions, due to the time decay of the mechanical system. This interpretation as a
sensitivity matrix is justified (at least for linear systems) next.

From the perspective of a dynamicist, one has to distinguish between

• positive valued entries of ΣX. These are due to a positive change in qi

resulting in a positive change in qj , and
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• negative valued entries of ΣX, which are due to a positive change in qi

resulting in a negative change in qj.

Hence, the signs of the single matrix elements show the tendency of the inter-
coordinate relation. The magnitude of an (auto)-covariance matrix is not as easy to
interpret. But, at least for the normalized case of (auto)-covariance, the magnitude
represents the strength of the linear inter-coordinate relation.

An illustrative example is presented by van Wynsberghe and Cui in [108]. Therein,
covariance is detailed in terms of the bilinear two mass oscillator shown in Fig. 3.3.
The example consists of two bodies with equal mass m1 = m2 = 1. They are

kc kk

x1 x2

m m

Figure 3.3: Bilinear two mass oscillator, following [108, p.1648]

interconnected by a linear spring with spring stiffness kc. Both masses are coupled
to ground by linear springs with spring stiffness k. The potential energy of this
bilinear two mass oscillator reads

V =
1

2
kx2

1 +
1

2
kx2

2 +
1

2
kc (x1 − x2)2 . (3.101)

Therein, xi is the deviation from the corresponding mass equilibrium. The Eigen-
values λi and Eigenvectors Φi are calculated from the Hessian matrix

H =

[
k + kc −kc

−kc k + kc

]
. (3.102)

They read

λ =

[
k

k + 2kc

]
, and (3.103)

Φ =

[
1 −1
1 1

]
. (3.104)
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The Eigenvector matrix contains one symmetric mode Φ1, which is the first column
vector of Φ. Further, Φ2 represents the antisymmetric mode related to the second
Eigenvalue λ2 = k + 2kc.
By individually investigating the Eigenvector Φ2, which is related to Eigenvalue λ2,
and further assuming kc 6= 0, the Eigenvector suggests a perfectly antisymmetric
behavior. Accordingly, in the case of investigating Φ1, a perfectly symmetric
behavior is pointed out. Hence, in order to represent the actual behavior of the
two mass oscillator, which is neither perfectly symmetric nor antisymmetric, both
Eigenvectors have to be taken into account.
This is in contrast to the investigation of the covariance matrix ΣX. Without
detailing the derivation in [108], the normalized position covariance matrix reads

ΣX =

[
1 kc

k
kc

k
1

]
. (3.105)

Therein, the off-diagonal term kc/k represents the motion correlation of the two
masses in Fig. 3.3. The masses are positively correlated. The magnitude of cor-
relation is linearly depending on the linear coupling spring kc. This is crucial
information, which is not directly predictable from the Eigenvectors.
Next, by applying a constant force F at the left mass the new mass equilibria are
statically computed from

H

[
x1,F

x2,F

]
−
[
F
0

]
= 0. (3.106)

The new equilibrium points are

x1,F =
kF

k2 − k2
c

, and (3.107)

x2,F =
kcF

k2 − k2
c

. (3.108)

The sensitivity of x2,F , due to a change in x1,F , is

x2,F

x1,F
=
kc

k
, (3.109)

see [108]. In other words, the force F indirectly affects the second mass with the
deflection magnitude depending on kc.
At this point it should be recalled that kc/k is the off-diagonal entry of ΣX. This
enforces the consideration, that the position and velocity covariance matrices may
be interpreted as kind of sensitivity matrices.
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The assumption of the (auto)-covariance matrix being a kind of sensitivity matrix
is further strengthened by the modal representation of an undamped, linear me-
chanical system.
Consider a system of the form

ẍ + Kx − f(t) = 0. (3.110)

x ∈ R
n is the vector of DOFs, the constant mass matrix reads M = I ∈ R

n×n, and
the constant stiffness matrix is of the form K ∈ Rn×n. Further, f(t) ∈ Rn holds
the vector of external forces . The n Eigenvectors vi ∈ Rn, are computed from

(
K − ω2

i I
)
vi = 0. (3.111)

They are the vibration modes of the system, and ω2
i are the according Eigenfre-

quencies. The system in Eq. (3.110) is approximated by a subset of r relevant
modes (r < n), which are chosen due to the Eigenfrequencies. Hence, the DOFs
are approximated by the Galerkin projection

x ≈ Vq. (3.112)

Therein, V = [v1,v2, . . . ,vr] ∈ Rn×r and q ∈ Rr.
We again collect a matrix X ∈ Rn×m which holds the time history of the n DOFs
at m time points. The time history of the DOFs is reformulated as

X︸︷︷︸
n×m

≈ V︸︷︷︸
n×r

Q︸︷︷︸
r×m

, (3.113)

with

Q =



q1(t0) q1(t1) . . . q1(tm)
q2(t0) q2(t1) . . . q2(tm)
qn(t0) qn(t1) . . . qn(tm)


 . (3.114)

The according auto-covariance matrix, reads

ΣX = XXT

=




ΣX,11 ΣX,12 . . . ΣX,1n
...

...
...

...
ΣX,n1 ΣX,n2 . . . ΣX,nn




= [v1, . . . ,vr] QQT [v1, . . . ,vr]
T . (3.115)

Therein, qj(t) is the time history of the j−th modal coordinate. Obviously, each
column in Eq. (3.115) consists of the system modes, scaled by some weighting
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factors. As indicated in [35], for the present case of a linear system with M = I,
the matrix elements of ΣX follow the summation rule

{ΣX}jk =
r∑

l=1

vjlvklηl, (3.116)

with

ηi =
m∑

i=1

qk(ti)qk(ti). (3.117)

Therefrom, the following characteristics can be deduced:

1. The auto-covariance matrix is symmetric.

2. The matrix element {ΣX}jk connects the physical DOFs xj and xk.

3. Each column of ΣX represents a weighted sum of the r modes. Therefore, the
system modes should be detectable by e.g. a principal component analysis.

4. Let us consider the transfer function matrix H(iω) = [Hjk(iω)] in the fre-
quency domain, with i as the imaginary unit. The summation rule of the
covariance matrix is then similar to the definition of the single transfer func-
tion matrix elements

Hjk(iω) =
r∑

l=1

vjlvklhl(ω). (3.118)

Therein, hl(ω) represents the transfer function of the l-th mode in the fre-
quency domain. Further, the element Hjk(iω) gives the coupling between
the j-th and the k-th DOF of the system. The connection is achieved by the
term vjlvkl which can be interpreted as the strength of the coupling. This
again strengthens the assumption of the covariance matrix being a kind of
sensitivity matrix of the system.

3.4.3 POD - Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition was introduced repeatedly by several re-
searches, in various scientific fields. Probably the first author describing the
ideas of POD was Kosambi [56] in 1943. Depending on the particular scientific
field, the method’s basic intention is also known as Principal Component Anal-
ysis ([110, 67, 95]), Karhunen–Loéve Expansion [111] or Empirical Orthogonal
Functions [73]. POD is utilized to generate low-dimensional approximations of
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high-fidelity data in fluid dynamics [96, 61, 103, 13], vibration systems [36, 53, 35],
control theory [2], micro electro-mechanical systems [105] and multibody dynamics
[31, 30, 69, 100, 99]. This section presents the POD method following [18, 54, 109]:
In terms of projection based model order reduction, POD is used to identify an
orthogonal subspace Y1 to the original space H. This subspace is split into its
dominant part spanned by V ∈ Rn×r with r << n, and into its less important
(and truncated) part spanned by U ∈ Rn×(n−r).
Hence, in analogy with Sec. 3.2.1, POD is applied in terms of a flat Galerkin
projection

q ≈ Vz1. (3.119)

For the application of the POD method the original space H is depicted by measure
signals. Consider a time-continuous system of which we take n measures/signals at
m discrete instances of time. These are collected in a matrix X = [x1, . . . , xm] ∈
Rn×m with m > n, called the snapshot matrix. Following Sec. 3.4.1, POD utilizes
the singular value decomposition

X = ΦΣΨT, (3.120)

to decompose the input matrix X. It thereby generates an orthogonal subspace
Y1 based on the signal energy. This subspace is spannend by Proper Orthogonal
Modes (POMs), which are basis vectors φi ∈ Rn. They are collected in the matrix
Φ ∈ Rn×n. The signal energy is represented by Proper Orthogonal Values (POVs)
σi. These are the singular values, which are collected in the diagonal matrix
Σ ∈ Rn×m = diag(σ1, . . . , σn) in decreasing order. The m × m matrix Ψ holds
the (in terms of the POD model order reduction unused) right singular vectors.
In analogous manner to the underlying singular value decomposition principles, the
POD of the snapshot matrix X can also be calculated by solving the Eigenproblem

(
XXT − λI

)
φi = 0. (3.121)

Note that XXT is an auto-covariance matrix, as introduced in Sec. 3.4.2. In
this case, proper orthogonal modes are directly computed as the Eigenvectors of
Eq. (3.121). POVs are given by the square-roots of the Eigenvalues (σi =

√
λi).

Hence, the POD may be seen as the maximization problem, cf. [109],

max
Φ

{
λ(Φ) = ‖XΦ‖2

}
= max

Φ

{
λ(Φ) = ΦTXXTΦ

}
. (3.122)

Its goal is to find basis vectors Φi which include the maximum of the signal energy
of X.
The model order reduction subspace is spanned by a subset of r proper orthogonal
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modes. These are collected in Φr ∈ R
n×r, and hence V = Φr.

Each POM φi is uniquely related to its corresponding proper orthogonal value
σi. According to [53], the energy measured in the direction of a specific proper
orthogonal mode is equal to the related squared proper orthogonal value. Hence,
the decay of POVs is used to define a set of proper orthogonal modes which spans
the model order reduction subspace for the flat Galerkin projection. To this end,
the error-measure

εsignal-energy = 1 −
r∑

k=1

σ2
k, (3.123)

based on the truncated normalized signal energy, can be utilized, cf. [109]. Note
that such absolute error bounds are highly system dependent. Therefore, absolute
maximum error values cannot be stated in general. Quantifying the proper orthog-
onal value decay by plotting them in a logarithmic scale may be a more intuitive
method.
The POD method is illustrated by the example of a planar two mass oscillator,
depicted in Fig. 3.4. The model consists of two bodies with mass m. The first

k 100k

F

mm

x1

y1

x2

y2

Figure 3.4: Two mass oscillator

body is coupled to ground by a linear spring with spring stiffness k1 = k. Both
bodies are connected by another linear spring with spring stiffness k2 = 100k. The
mechanism consists of the n = 4 DOFs

q(t) = [x1(t), y1(t), x2(t), y2(t)]
T . (3.124)

It is actuated by an external force F (t) acting at the first body’s center of gravity.
The mass is forced to move in x direction only. Hence, the system is subject to
the constraint equations

C = [y1, y2]
T = 0 (3.125)
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with the according constraint Jacobian

Cq =

[
0 1 0 0
0 0 0 1

]
. (3.126)

Initial conditions are set to

q0 = [x1,0, y1,0, x2,0, y2,0]
T = 0. (3.127)

Summing up, the model consists of n = 4 differential equations, subject to m = 2
algebraic equations.
The system is solved in the time interval t ∈ [t0, tend], and h equally spaced snap-
shots of the model DOFs are collected as column vectors in the snapshot matrix

X =




q1(t0) . . . q1(tend)
q2(t0) . . . q2(tend)
q3(t0) . . . q3(tend)
q4(t0) . . . q4(tend)


 =




0 . . . x1,h

0 . . . 0
0 . . . x2,h

0 . . . 0


 ∈ R

n×h. (3.128)

As long as the excitation does not correlate with the Eigenfrequencies of the second
mode (the out of phase mode), the motion of the second mass is dominated by the
first mass. This is due to the choice of k2 = 100k1. The POD method is applied
to X, utilizing the singular value decomposition approach

X = ΦΣΨT.

For the present example, it reads



x1,0 . . . x1,h

0 . . . 0
x2,0 . . . x2,h

0 . . . 0




︸ ︷︷ ︸
X

=




φ11 . . . φ14

φ21 . . . φ24

φ31 . . . φ34

φ41 . . . φ44




︸ ︷︷ ︸
Φ




σ1 0 0 0 . . . 0
0 σ2 0 0 . . . 0
0 0 σ3 0 . . . 0
0 0 0 σ4 . . . 0




︸ ︷︷ ︸
Σ

ΨT

h×h.

(3.129)

The normalized and squared singular values compute to

Σ2 =




0.897 0 0 0
0 4.0E − 8 0 0
0 0 0 0
0 0 0 0


 , (3.130)

and the matrix of right singular vectors reads

Φ =




−0.707 −0.707 0 0
0 0 1 0

−0.707 0.707 0 0
0 0 0 1


 . (3.131)
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In accordance with Sec. 3.2, the POD constructs a subspace Y1 to the original
space H. It is spanned by the orthogonal column vectors (POMs) φi ∈ Rn, of
Φ ∈ Rn×n.
Investigating the normalized and squared singular values (POVs) σ2

i in Eq. (3.130),

• one large (dominant) proper orthogonal value σ2
1 = 0.897,

• one small POV σ2
2 = 4.0E − 8, and

• two zero valued (irrelevant) POVs σ2
3 and σ2

4 are examined.

Each proper orthogonal mode is explicitly related to one proper orthogonal value,
(e.g. φ1 ∼ σ1). Therefore, it can be deduced from Eq. (3.131) that

• the dominant part of Y1 is represented by the first proper orthogonal mode
φ1. It points out an equal motion of both masses, due to the very stiff
coupling k2 = 100k1.

• the less important part of Y1 is represented by the second proper orthogonal
mode φ2, which is the reciprocal to the first.

• the irrelevant part of Y1 is represented by the third and fourth proper orthog-
onal modes φ3,φ3, which are the (constrained) y− motions of both masses.

Hence, Y1 is split by choosing only the first proper orthogonal value σ2
1 as relevant.

The matrix of POMs Φ is split accordingly. The submatrix of dominant proper
orthogonal modes is of dimension Φr ∈ Rn×r with r = 1.
The model order reduction matrix finally reads

Φr = [−0.707, 0,−0.707, 0]T . (3.132)

POD has been investigated intensely in the last two decades. Amongst other, the
following interesting properties were identified:

1. Centering the input data
Consider a snapshot matrix X ∈ Rn×m of n measure signals taken at m
equally spaced instances of time. According to Chatterjee, cf. [18], it is
common to subtract the row mean from each row of this matrix X in a
preconditioning step. This preconditioning should ensure the data in X
to be centered around the data origin (mean-centered). Furthermore, as
a subspace basis vector (POM) has to pass through the origin POMs are
sensitive to such preconditioning, as depicted in Fig. 3.5.
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original data

original POM

centered data

centered POM

Figure 3.5: Centering the input data, following [18, p.812]

On the other hand, following [72], it can not be clearly stated whether such
data-centering is advantageous in general. Therein it is suggested that the
user should decide case-sensitively.

From the dynamicist’s point of view, this data centering is judged critically.
Assume the n rows of X as the q coordinates of a body in space measured
at m equally spaced instances of time. The proposed row-preconditioning
would correspond to calculating the time average of each coordinate qi and
subtracting it from the corresponding coordinate time decay. Hence, any
constant offset or steady component of the coordinate time decay would be
included in the time average. As a result, such steady components would be
lost. The outcome would be an MBS behavior different to the actual.

As an example, consider the two mass oscillator in Fig. 3.6. Both mass
positions are measured from the same point ([0; 0]). Due to this point of

k 100k

F

mm

x

y

x2,0 = 1

Figure 3.6: Two mass oscillator
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measurement, the initial conditions change into

q0 = [x1,0, y1,0, x2,0, y2,0]
T = [0, 0, 1, 0]T . (3.133)

The snapshot matrix reads

X =




q1(t0) . . . q1(tend)
q2(t0) . . . q2(tend)
q3(t0) . . . q3(tend)
q4(t0) . . . q4(tend)


 =




0 . . . x1,h

0 . . . 0
1 . . . x2,h

0 . . . 0


 ∈ R

n×h. (3.134)

On the one hand, if this snapshot data is decomposed directly (without
mean-centering), the POD of Eq. (3.134) computes to

Σ2 =




0.9969 0 0 0
0 0.0031 0 0
0 0 0 0
0 0 0 0


 , (3.135)

and

Φnc =




−0.193 −0.981 0 0
0 0 1 0

−0.981 0.193 0 0
0 0 0 1


 . (3.136)

On the other hand, mean-centering of these snapshots is equivalent to sub-
tracting the initial conditions at each time step. The POD results of the
mean centered snapshots are equivalent to Eq. (3.131) and read

Φc =




−0.707 −0.707 0 0
0 0 1 0

−0.707 0.707 0 0
0 0 0 1


 . (3.137)

Nevertheless, both proper orthogonal mode matrices correctly represent the
original data. It is only the interpretation of the proper orthogonal modes,
which may be easier or not. For the present MBS models under consideration,
taken snapshots are naturally not mean-centered. Within this dissertation,
mean-centering will not be carried out, as the risk of violating constraint
equations appears as too high.

2. Correlation of Proper Orthogonal Modes with Vibration Modes
POMs can be related to normal vibration modes of discrete vibration systems
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with constant mass matrices, cf. [36]. This property is briefly outlined for
the undamped, linear system

Mẍ + Kx = 0. (3.138)

We assume symmetric, positive definite mass and stiffness matrices M ∈
Rn×n,K ∈ Rn×n. x ∈ Rn holds the vector of DOFs. The system can be
transformed into

¨̂x + M−1/2KM−1/2x̂ = 0, (3.139)

with I as the effective mass matrix using the relation x = M−1/2x̂. For such
a system, the normalized normal modes vi satisfy the orthogonality property
vT

i vj = δij . The motion of all DOFs can be expressed by the series of normal
modes

x(t) = a1(t)v1 + · · · + an(t)vn. (3.140)

Therein,



a1(t0) a1(t1) . . . a1(tm)
a2(t0) a2(t1) . . . a2(tm)
an(t0) an(t1) . . . an(tm)


 (3.141)

represents the time modulus of the normal modes. The snapshot matrix of
this system reads

X = [x(t1) . . .x(tm)] =


 v1︸︷︷︸

n×1

aT

1︸︷︷︸
1×m

+ · · · + vnaT

n


 ∈ R

n×m, (3.142)

with m as the number of time samples. According to [36] the proper orthog-
onal modes of the snapshot matrix can be related to the normal modes. To
this end, the POD approach is applied in terms of the Eigendecomposition

(ΣX − λI)φ = 0 (3.143)

of the covariance matrix ΣX = (1/m)XXT. In order to show that a proper
orthogonal mode φi converges to a modal vector of the underlying mechanical
system, the covariance matrix ΣX is multiplied with a modal vector vj from
the right

ΣXvj =
1

m

[
v1aT

1 + · · · + vnaT

n

] [
v1aT

1 + · · · + vnaT

n

]
T

vj . (3.144)
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Recalling the orthogonality relation vT

i vj = δij , Eq. (3.144) reduces to

ΣXvj =
1

m

[
v1aT

1 aj + · · · + vnaT

n aj

]
. (3.145)

Let us assume distinct Eigenfrequencies of the mechanical system. Then,
due to the orthogonality of the system’s normal modes vi, the according
time moduli vectors ai are orthogonal to each other. Therefore, in the case
of an infinite set of time samples (m → ∞)

1

m
via

T

i aj → 0, (3.146)

if i 6= j, cf. [36]. The term 1
m

vja
T

j aj , which is proportional to vj is the only
one remaining. Hence, a proper orthogonal mode φi of XXT converges to a
modal vector vj of the vibrating mechanical system.
For further insight into this topic and analogies to nonlinear systems, the
interested reader is referred to [36, 35, 53, 55]

3. POD is snapshot-sensitive
POD is very powerful in investigating given input matrices on their essential
content. Nevertheless, the quality of the POD approach is related to the
quality of the collected snapshots. For instance, in the case of mixing physical
coordinates with strain measures of the system, one has to ensure proper
scaling of these different input variables. Otherwise, the outcome of the
POD method may not be meaningful.

4. POD and cyclic coordinates
As already mentioned, the POD method reproduces an input matrix by a
linear combination of proper orthogonal modes, see Eq. (3.93). This brings
up limitations, as in the following case:
Consider an arbitrary set of (unnecessary) points on a plane. Further, con-
sider one (meaningful) circle on the same plane, as depicted in Fig. 3.7. The
according POD input matrix is of the form X ∈ Rn×m, with n = 2 rows con-
sisting of the x and y coordinates of all m points. Let us assume, we would
like to extract the circle out of the set of arbitrary points and represent it by
the one coordinate (the angle) it is characterized by.
The POD of such an input matrix delivers one large valued proper orthogonal
value σ2

1, and one small valued POV σ2
2. Actually, POD is not able to distin-

guish between the coordinates of the arbitrary points and the circle, cf. [18].
This is pointed out in Fig. 3.7 which shows an insufficient representation

X ≈ X̃ = σ1φ1ψ1 (3.147)
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of the circle due to the use of the first (red colored) proper orthogonal mode
only. In order to correctly reproduce the circle all proper orthogonal modes
have to be included into

X = X̃ = σ1φ1ψ1 + σ2φ2ψ2. (3.148)

As it is pointed out, the mentioned data can not be approximated by a
low-dimensional representation, as Eq. (3.148) is an exact operation.
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Figure 3.7: POD and cyclic coordinates

To cut a long matter short, POD is (in general) not able to identify trigono-
metric functions.

5. POD signal energy
The present section reviewed POD as a method which investigates the signal
energy of the input matrix. In terms of dynamical systems, it would be
wishful to relate the signal energy to the kinetic energy of the underlying
system. Although this is not possible in general, see [18], the signal energy
can be related to the deformation energy of some systems. This approach is
called the weighted POD method [109]:
For systems with a constant, symmetric and positive definit stiffness matrix
K ∈ Rn×n, like Eq. (3.138), the weighted POD method in terms of the
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Eigenvalue decomposition reads

XTKXψ̄i = λiψ̄i. (3.149)

Instead of decomposing the classical correlation matrix XTX, the weighted
correlation matrix XTKX is processed. Note that variables denoted with an
overbar describe weighted results, like the weighted proper orthogonal value
σ̄2

i = λ̄i, or the weighted right singular vector ψ̄i. The unweighted proper
orthogonal modes of the original input matrix can be computed therefrom
by

φi = K−1/2φ̄i

=
1√
λ̄i

K−1/2K1/2Xψ̄i

=
1√
λ̄i

Xψ̄i. (3.150)

Hence, the derived proper orthogonal modes φi correspond to the original
input data - to the actual mechanical model. But in this case, the proper
orthogonal modes are characterized in terms of weighted singular values σ̄i,
which characterize the deformation energy of the dynamical system. There-
fore, the model order reduction subspace is selectable due to an energy mea-
sure, which is well-known in the field of mechanics.

3.4.4 SOD - Smooth Orthogonal Decomposition

The Smooth Orthogonal Decomposition (SOD) was introduced by Chelidze &
Zhou [20] only a few years ago. The method’s original intent was to overcome
POD related limitations in the vibration mode identification of (un-)damped free
vibration systems. It is shown therein, that the SOD approach allows to identify
the normal vibration modes without any knowledge of the underlying mass matrix
of the system. In that sense, SOD is a data analysis method, which allows to
extract linear normal modes of vibration systems.
The method was extended to systems with local nonlinearities in [19, 9, 34], and
it was further applied in terms of biomedical engineering in [91]. Applications
as a model reduction tool can be found in [8, 51, 52, 98]. Chelidze and Ilbeigi
[19, 51, 52] pointed out that SOD is able to outperform POD in the construction
of reduced order models for linear dynamical systems subject to concentrated and
state dependent forces.
The upcoming introduction to SOD follows the work of [20, 21, 19], and is related
to the reviews of the generalized singular value decomposition and covariance in
Sec. 3.4.1.1 and Sec. 3.4.2.
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SOD is closely related to the POD method and also applied in terms of a flat
Galerkin projection. Similar to POD, snapshots are decomposed and ranked due
to their implied signal energy. In contrast to the POD approach, SOD investigates
not only position snapshots X ∈ Rm×n, but also the velocity snapshot matrix Ẋ ∈
Rm×n. In terms of the present field of application n is the number of coordinates,
and m is the number of time points. Hence, a column of X holds the time decay
of a single position coordinate. Accordingly, a column of Ẋ represents the time
decay of a single velocity coordinate.
The SOD is computed by the generalized singular value decomposition

X = CDΦT

Ẋ = EFΦT. (3.151)

For the SOD method it is explicitly stated by Chelidze [21], that the column vectors
of X and Ẋ have to be mean-centered.
The SOD is characterized in terms of the generalized singular value decomposition
approach first. Recalling Sec. 3.4.1.1, both input matrices are decomposed such
that their row space Φ ∈ Rn×n is equal.
The model order reduction subspace V is spanned by a subset of Smooth Projection
Modes (SPM), which are column vectors vi of the inverse of the transposed matrix
of right basis vectors Φ−T ∈ R

n×n. The right basis vectors φi itself are called
Smooth Orthogonal Modes (SOM). Smooth proper modes and smooth orthogonal
modes are characterized by so-called Smooth Orthogonal Values (SOV).
Note that D = diag(σX,1, . . . , σX,n) and F = diag(σẊ,1, . . . , σẊ,n) hold singular
values to the corresponding input matrix, but the actual smooth orthogonal values
σ2

i are derived from the term-by-term division of diag(DTD) and diag(FTF). SOD
may also be carried out by solving the generalized Eigenvalue decomposition

(ΣX − λiΣẊ) vi = 0. (3.152)

The used position and velocity auto-correlation matrices read ΣX = 1
m

XTX and

Σ = 1
m

ẊTẊ. In terms of the generalized Eigenvalue decomposition, smooth or-
thogonal modes are the Eigenvalues λi, and SPMs are the Eigenvectors vi.
According to Chelidze [21], the SOD may be interpreted as the maximum variance
problem

max
Φ




λ(V) =

‖XV‖2

∥∥∥ẊV
∥∥∥

2





= max
Φ

{
λ(V) =

VTΣXV

VTΣẊV

}
. (3.153)

This maximization problem may be again interpreted as to find basis vectors vi

which include the maximum of the signal energy of X. But, at the same time, the
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basis vectors should be as smooth in time as possible. This is indicated by the
minimization problem

min
Φ

∥∥∥ẊV
∥∥∥

2
, (3.154)

which is the denominator of Eq. (3.153).

When talking about an interpretation of the SOD, the following statements are
helpful:
According to Cheldize [21, p.462]:
’The idea [of SOD] is that given noisy multivariate measurements that contain some
deterministic (i.e., smooth in time) signals one needs to look for the projections that
are smooth in time to identify deterministic trends. At the same time one needs
to require the maximum possible variance of the projections to eliminate constant
projections.’

Furthermore, Ilbeigi [51, p. 4] defines the magnitude of a smooth orthogonal value
as:
’The degree of smoothness of the coordinates is described by the magnitude of the
corresponding SOV. Thus, the greater in magnitude the smooth orthogonal value,
the smoother in time is the corresponding coordinate.’

Both statements highlight the importance of the minimization problem in Eq. (3.154).
The motion of an unforced linear system, subject to free vibration, typically com-
bines two aspects:

1. A smooth motion combines large deflections with slow dynamics.

2. A non-smooth (rough) motion combines small deflections with high dynam-
ics.

SOD emphasis on processes of the first kind. The basis vectors are chosen such that
the signal energy of the motions subject to low (smooth) dynamics is maximized.
Motions with high dynamics are treated as subordinate. This is the case for linear
systems, which are describable by the Eigenvalue problem

Kvi = ω2
i Mvi. (3.155)

The covariance matrix ΣX is related to Kvi, which may be seen as a displacement
term that is somehow connected to the potential energy of the linear system. Fur-
ther, the covariance matrix ΣẊ is related to ω2

i Mvi, which may be seen as somehow
connected to the kinetic energy of the linear system. Hence, SOD performs well if
the underlying system is linear and representable by the above Eigenvalue problem.
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Its performance is also pointed out by its outstanding ability to identify vibration
modes of linear systems, cf. [20]. On the other hand, for the MBS systems under
consideration such a connection is not clearly drawable. This is due to MBS being
typically configuration dependent, nonlinear, and furthermore, commonly subject
to large body motions.
In the upcoming section, the performance of the SOD approach is compared to
the POD method, based on a redundantly formulated MBS example.

3.4.5 Applicability of A Posteriori Methods

The presented a posteriori model order reduction methods originate from measure-
ment data analysis. As long as the collected snapshot data is chosen sufficiently,
model order reduction subspace generation is possible for ODEs, partial differen-
tial equations, and DAEs.
Nevertheless, the universal applicability to arbitrary snapshot data is also a draw-
back. In order to collect the mandatory snapshots, the original system has to be
computed forward in time at least once. This circumstance reduces the applicabil-
ity of the presented a posteriori methods to repetitive simulation tasks like control
engineering, parameter identification, wear monitoring, etc.
MOR of the redundant MBS model in Eqs. (2.46) utilizing the POD approach has
been introduced by Ebert [30]. Therein, the POD approach is applied to position
level snapshots. It is further stated explicitly, that only the number of physical co-
ordinates is reducible. Ebert points out, that a reduction of the algebraic equations
(the constraint equations) is not allowed as this may lead to unphysical phenom-
ena.
Another application to redundant MBS systems can be found in Masoudi et al.
[69]. Therein, the system of DAEs is reduced into a Baumgarte stabilized set of
ODEs, which is an intense change in the systems character.

The appliance of the SOD approach to a redundant MBS model was first formu-
lated by the author in Stadlmayr & Witteveen [98]. Other applications of the SOD
approach to the present MBS are, to the best knowledge of the author, not known.
This section compares the POD and SOD approach to the system of DAEs under
consideration, following [98].
Starting from the original MBS system

M (q) q̈ + CT

q (q)λ = Q (q, q̇) (3.156)

C (q) = 0,

the reduced order model

VTM (q̃) Vq̈r + VTCT

q (q̃)λ = VTQ
(
q̃, ˙̃q

)
(3.157)

C (q̃) = 0,
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is generated utilizing the flat Galerkin projection

q ≈ q̃ = Vqr. (3.158)

The reduction subspace V ∈ R
n×r is spanned by proper orthogonal modes or

SPMs, respectively. The POD and SOD subspace generation will be compared
by the numerical example of a cart-pendulum system, utilizing the above reduced
order model.

Example:
The MBS model of the rigid cart-pendulum presented in Fig. 3.8 is generated using
the open source tool FreeDyn, cf. [41]. The FreeDyn modeling strategy utilizes a
redundant set of three translational coordinates and four rotational Euler parame-
ters. Since the example consists of two bodies, the present MBS model is described
by n = 14 physical coordinates. The MBS model is forced by a sinusodial force
F (t) = sin(4πt)[N] at the carts CoG. It is further coupled to ground by a linear
spring with spring stiffness k = 1[N/mm]. The MBS model is subject to gravity,
which acts in negative y-direction.
The cart is constrained to a 1D movement along the diagonal of the x − y plane.
Furthermore, the pendulum is coupled to the cart by a hinge-joint around the
z-axis. In total mext = 8 external constraints and minner = 2 Euler constraints
are introduced. The MBS model is solved in the open source program Scilab [90]

x

y

π
2

F (t)

Figure 3.8: Original cart-pendulum model

utilizing an HHT-solver [50] algorithm in the time-interval t ∈ [0, 10] seconds. The
time step size is set to ∆t = 0.01 [s]. Therefore, h = 1001 equally spaced posi-
tion and velocity snapshots of all n = 14 physical coordinates are collected in the
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snapshot matrices X ∈n×h and Ẋ ∈n×h. The time history of the pendulums rota-
tional e3 parameter is representatively shown in Fig. 3.9. The snapshot matrices
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Figure 3.9: Time history of the pendulum’s rotational e3 coordinate

are used to compute proper orthogonal values and smooth orthogonal values, fol-
lowing Sec. 3.4.1. The POD method points out a major decrease in signal energy
(about 1010 in magnitude) from σ6 to σ7. This is indicated by the vertical blue
dashed lines in Fig. 3.10. Hence, the projection matrix V ∈ Rn×r consists of the
first six column vectors (POMs) of Φ. Figure 3.11 points out the high consistency
of the original MBS model and the POD-reduced MBS model. As SOD is closely
related to POD, its model order reduction ability is expected to be of similar qual-
ity. Investigating the decay of smooth orthogonal values in Fig. 3.10, a tremendous
drop in magnitude from σ1 to σ2 is recognized first. Another drop is found from
σ8 to σ9, indicated by the vertical red dashed lines. According to these drops, the
first potential SOD subspace, is spanned by the first SOM only.
Simulation results point out, that the one dimensional SOD subspace is insufficient
to correctly approximate the original system behavior, as the HHT solver is not
able to meet its internal error bounds and therefore aborts the simulation.
The simulation of the reduced order model is repeated, utilizing the SOD subspace
related to the second drop from σ8 to σ9. This subspace is spanned by the first
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Figure 3.10: Proper orthogonal values - Reduced cart-pendulum model

eight smooth orthogonal modes. Unfortunately, the HHT solver is again not able
to successfully solve the resulting reduced order model.
Interestingly, when looking at Fig. 3.10, there is hardly any similarity between
the smooth orthogonal value and proper orthogonal value decay. Therefore, the
snapshot covariance matrices ΣX = XXT and ΣẊẊẊT are investigated on their
regularity.
Although the MBS model consists of n = 14 DOFs, numerical rank computation
points out

rank(ΣX) = rank(ΣẊ) = 5. (3.159)

Due to the applied constraint equations the system snapshots consist of five in-
dependent and nine dependent measure signals, regardless whether we consider
position or velocity DOFs.
As noted in Sec. 3.4.1.1, the generalized singular value decomposition approach
struggles in terms of a singular "constraint"-matrix Ẋ. This is pointed out by the
related generalized Eigenvalue value decomposition

ΣXψi = λiΣẊψi. (3.160)

It is computed in Scilab, utilizing the LAPACK package, cf. [4]. The generalized
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Figure 3.11: Superposition of the cart movement in the original and the POD
reduced model

Eigenvalues λi, and the generalized singular values σi read

λ =




∞
4.0 × 10−2

3.0 × 10−3

1.0 × 10−3

4.865 × 10−8

−2.128 × 10−7

−1.459 × 10−5

−3.211 × 10−5

−1.391 × 10−5

−1.511 × 10−4

−2.05 × 10−1

−9.5 × 10−2

NaN
NaN




, σ =




1.924 × 1037

3.444 × 102

6.059
1.2 × 10−2

2.1 × 10−3

1.4 × 10−3

1.35 × 10−3

6.6 × 10−4

3.77 × 10−8

3.39 × 10−8

2.82 × 10−8

2.49 × 10−8

2.20 × 10−8

4.20 × 10−33




. (3.161)

Note that due to the rank-deficient "constraint"-matrix Ẋ, the numerical general-
ized Eigenvalue value decomposition approach, included in LAPACK, computes
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infinte, negative and even non-defined Eigenvalues. The actual Eigenvalues λi are
computed as

λi =
αi

βi
, (3.162)

where αi and βi are generalized Eigenvalues, computed by the internal LAPACK
routine. In the case of a singular Ẋ, terms βi = 0 result and, due to

λi =
αi

0
= ∞, (3.163)

they are interpreted as infinite Eigenvalues.
Further, in the case of

λi =
0

0
, (3.164)

the Eigenvalue is not defined and depicted as not-a-number (NaN). Hence, there
exist one infinite Eigenvalue, seven negative Eigenvalues, two undefined Eigenval-
ues and four small positive generalized Eigenvalues.

Based on these theoretical considerations, conclusions on the SOD and its under-
lying mathematical methods are drawn. In terms of the generalized singular value
decomposition and generalized Eigenvalue value decomposition, the following is-
sues refuse the applicability to the present MBS formulation:

• In the case of a singular "constraint"-matrix Ẋ, the generalized Eigenvalue
value decomposition may compute negative, infinite and undefined Eigenval-
ues.
It should be noted that due to the numerical Eigenvalue decomposition very
large Eigenvalues may also represent infinite Eigenvalues due to roundoff
errors.

• The generalized singular value decomposition approach does not highlight a
singular "constraint" matrix as clear as the generalized Eigenvalue value de-
composition does. Though, it still suffers from the singularity, as implausibly
high generalized singular values are computed.

• An infinite generalized Eigenvalue corresponds to a very large generalized
singular value.

• For a singular "constraint" matrix, the generalized Eigenvalues do not co-
incide with the generalized singular values, as it is the case for a regular
"constraint" matrix.
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The following issues make the applicability of SOD to the present MBS formulation
questionable:

• In the case of a singular "constraint" matrix, smooth orthogonal modes span
a singular subspace which is not applicable for model order reduction.

• MBS snapshots are typically singular and the identification of singular rows
and columns might become an inconclusive non-trivial task. Preconditioning
the snapshot matrices could easily become a bottle neck in terms of the
applicability and efficiency.

• As pointed out in Sec. 3.4.4, the SOD approach emphasis on processes, which
are smooth in time. It performs well in terms of linear free vibration systems,
for which a clear connection between the system’s Eigenmodes and the SOD
modes can be drawn. Unfortunately, the present nonlinear MBS systems
can not be ensured to follow this behavior. MBS models might be forced to
large motions, and these motions might be chosen such that the system is
no longer subject to its free vibrations. This might be a drawback in such
a sense that the position and velocity snapshots no longer follow the nature
as in the linear case but result in uncorrelated behavior.

Summarizing the findings of this section, the SOD method is not able to handle
singular system snapshots as they arise with MBS under consideration. In contrast,
the POD approach is directly applicable to the present type of MBS. Furthermore,
POD highlights the dimension of the reduction subspace by reasonable drops in
the computed proper orthogonal values. Thus, the classical POD approach is cho-
sen as basis for the model order reduction method developed in this dissertation.
It will be advanced, concerning the special structure and properties of the MBS
under consideration.
The formulation of the reduced order model according to Ebert [30] brings up
further issues. By restricting the model order reduction to physical coordinates
(DOFs) only, the resulting reduced order model consists of r < n reduced DOFs
subject to m constraint equations. Depending on the actual MBS model under
consideration, the number of reduced coordinates may be r < m. Such a reduced
order model is over-constrained and most likely ill-conditioned. Hence, the limita-
tion to reduce the DOFs only, has to be relativized such that the resulting reduced
order model is well determined. This issue concerning over-constrained reduced
order models is also investigated and solved in the upcoming chapter.
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CHAPTER 4
Physical and Constraint

Coordinate Reduction of
Redundantly Formulated Flexible

Multibody Systems Based on
Adapted POD

The upcoming Chapter introduces a novel flat projection based model order reduc-
tion method, which takes into account the pointed out limitations of the preceding
Chapter. To this end, the novel model order reduction approach combines both,
a physical coordinate reduction and a constraint coordinate reduction.
The physical coordinate reduction is based on the principles of proper orthogonal
decomposition. It is specialized such that it takes into account different coordi-
nate scales. As it will be pointed out, it is based on velocity coordinate snapshots.
Furthermore, the issue of centered snapshot data is accounted for by introducing
an extension to the flat Galerkin projection.
As the resulting reduced order model is probably overconstrained, a constraint
coordinate reduction is presented next. Thereby, a null space to the constraints
is constructed, which takes into account the reduced physical coordinates. This
allows to reduce the set of constraint equations to those, which are not directly
met by the extended flat Galerkin projection of the physical coordinates.
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4.1. Different Coordinate Scales

4.1 Different Coordinate Scales

One special feature of the redundant MBS formulation in FreeDyn is the use of
Euler parameters. These describe the three rotational DOFs of a body in 3D space
by a set of four parameters. As Euler parameters are subject to the constraint
equation

e2
0 + e2

1 + e2
2 + e2

3 − 1 = 0, (4.1)

the magnitude of e0, e1, e2, e3 is within ±1. Hence, when dealing with large body
translations together with small body rotations, the classical proper orthogonal
decomposition snapshot approach may interpret rotations as insignificant. This
issue can be outlined by the following illustrative example:

Example: Single mass under constant rotation and large translational movement
The MBS model consists of one body with mass m. The six body DOFs are

x

y

F
ω0

m

Figure 4.1: Single mass under constant rotation and large translational movement

represented by three translational and four rotational coordinates. As shown in
Fig. 4.1, the body is rotating with a constant rotational velocity ω0 around its
z-axis. The body is further actuated by a constant external force F at its center
of gravity. The initial conditions are set to

q0 = [x0, y0, z0, e0,0, e1,0, e2,0, e3,0]
T

= [0, 0, 0, 1, 0, 0, 0]T . (4.2)

The applied constraint equations force the body to move in x−direction only.
While the rotational velocity is constant, the body is constantly accelerating due
to the applied force.
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4.1. Different Coordinate Scales

Collected position snapshots are of the form

X =




x(t0) . . . x(tend)
y(t0) . . . y(tend)
z(t0) . . . z(tend)
e0(t0) . . . e0(tend)
e1(t0) . . . e1(tend)
e2(t0) . . . e2(tend)
e3(t0) . . . e3(tend)




=




0 . . . x(tend)
0 . . . 0
0 . . . 0
1 . . . e0(tend)
0 . . . 0
0 . . . 0
0 . . . e3(tend)




. (4.3)

By utilizing the classical proper orthogonal decomposition approach, see Chapter 3,
a scaling issue due to the large translational movement arises.
The Euler parameters are forced to reside within the numerical range of ±1. As a
result, the normalized proper orthogonal values

Σ =
[
1, (∗) × 10−8, (∗) × 10−10, (∗) × 10−12, (∗) × 10−45, 0, 0

]
T

(4.4)

point out a major drop from POV one to POV two. The proper orthogonal mode
related to this first proper orthogonal value reads

φ1 = [1, 0, 0, 0, 0, 0, 0]T . (4.5)

As it is pointed out, the reduced order model will consist of the original x−coordinate
only. Hence, the different scales of translational and rotational coordinates degrade
the rotations, although the body is rotating at a high rotational velocity.

4.1.1 Coordinate-Type Sensitive POD

In order to overcome this issue, the coordinate scale sensitive proper orthogonal
decomposition approach is introduced. It was first proposed by the author in
Stadlmayr et al. [100]. The approach is inspired by the work of Ersal et al.
[31], who introduced a body-coordinate-frame orientation approach for bond-graph
models. As stated by Ersal et al., POD is used to achieve a structural simplification
of the bond-graph model. This is due to re-orienting the given body-coordinate-
frames such that their axes point into the direction of motion.
To this end, snapshots

Ẋ = [vx,vy,vz,ωx,ωy,ωz, ] =
[
Ẋt Ẋr

]
(4.6)

are collected at velocity level, cf. [31]. They are then split into their translational
content Ẋt ∈ Rm×3 and into their rotational content Ẋr ∈ Rm×3, respectively.
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4.1. Different Coordinate Scales

These separated observation spaces are processed by the singular value decompo-
sitions

Ẋt = ΦtΣtΨtT and Ẋr = ΦrΣrΨrT. (4.7)

Possible simplifications in the orientation of a body’s body-fixed-coordinate-frame
are indicated by zero valued proper orthogonal values.
Due to this separated proper orthogonal decompositions, the following conclusion
can be drawn:
Any motion (translational/rotational) along a proper orthogonal mode associated
with a zero valued proper orthogonal value is zero. Hence, the body-coordinate-
frame orientation is marginal in terms of the acting motion, and the singular values
may indicate a more significant frame orientation. For instance, a 3D motion
may be reducible into a pure rotation around a directional vector defined by the
associated proper orthogonal mode.
The approach by Ersal et al. [31] is described in terms of bond-graph models. The
following limitations to the therein proposed approach can be deduced:

• Each body in the model has to be treated separately. This results in a large
set of k = 2b possible reduction subspaces, with b as the number of bodies.

• It is not possible to identify equal body motion. This is due to the body wise
re-orientation of the according body-coordinate-frames.

• There is no concept to efficiently connect and/or combine the resulting k
reduction subspaces. It is rather suggested, to choose either the translational
or rotational reduction subspace for each body separately. This choice is left
to the user.

• The topic of constraint equations is not covered, as the method is designed
for bond-graph models. Hence, issues arising from redundant constraint
equations are not addressed at all.

• The approach does not account for flexible bodies.

The physical coordinate reduction approach accounts for the above mentioned
limitations. It puts special attention on the characteristics of the redundantly for-
mulated MBS under consideration.
We now want to compare the classical proper orthogonal decomposition approach
with the coordinate-type sensitive approach as introduced in this dissertation.
Again, consider the simple rotational example from Sec. 4.1. When splitting the
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collected snapshots in Eq. 4.3 into

Xt =




0 . . . x(tend)
0 . . . 0
0 . . . 0


 and Xr =




1 . . . e0(tend)
0 . . . 0
0 . . . 0
0 . . . e3(tend)


 , (4.8)

the coordinate-type sensitive POD results in

Σt = [1, 0, 0]T and Σr = [0.72, 0.69, 0, 0]T . (4.9)

These results point out two reduced order models consisting of one translational
and two rotational reduced coordinate respectively. The following conclusions can
be drawn from the above evaluation of the approach by Ersal et al. [31]: Handling
different coordinate types separately is an appropriate method to ensure physical
transformations. It is further a suitable approach to account for different snapshot
scales.
Besides these features, the following extension is derived within this dissertation:
Two or more rigidly coupled bodies should be representable by a common set of
reduced coordinates.
MBS position snapshot data is typically not mean-centered by nature. As it fur-
thermore should not be mean-centered at all, see Chapter 4, velocity snapshot
data seems to be more sophisticated. This is due to

• static coordinates, which should be of zero velocity (at least within the com-
putational accuracy). Position level snapshots are not ensured to be zero-
valued, as static coordinates might be subject to non-zero initial conditions.

• directly connected coordinates, which are subject to constant offsets. Due
to not mean-centered snapshot data, such connections should be identifiable
more easily investigating velocity data.

• velocity coordinate data being somehow connected to the kinetic energy and
therefore the dynamics of the MBS. By investigating velocity data the proper
orthogonal decomposition is supposed to be closer connected to the dynamics
of the multibody system.

Due to these reasons, velocity data based POD is supposed to identify the reduced
order model more easily and precisely. Therefore, the model order reduction ap-
proach developed in this dissertation is based on velocity snapshot data. The
choice of velocity data will be numerically justified due to a comparison with po-
sition based data in Chapter 5.
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4.2. Deviation of Initial Conditions

Snapshots of the MBS model are collected such that the translational velocity
coordinates of all bodies are combined in one translational-velocity-coordinate-
snapshot matrix

Ẋt =




ẋ1(t0) . . . ẋ1(tend)
ẏ1(t0) . . . ẏ1(tend)
ż1(t0) . . . ż1(tend)

... . . .
...

ẋb(t0) . . . ẋb(tend)
ẏb(t0) . . . ẏb(tend)
żb(t0) . . . żb(tend)




. (4.10)

Rotational and flexible velocity coordinate snapshots are collected in Ẋr ∈ Rnrot×h

and Ẋf ∈ R
nflex×h accordingly.

The proper orthogonal decomposition approach

Ẋt = ΦtΣtΨtT (4.11)

Ẋr = ΦrΣrΨrT (4.12)

Ẋf = ΦfΣfΨfT (4.13)

is applied to each snapshot matrix separately. The reduction subspaces Φt
r ∈

Rntrans×rtrans , Φr
r ∈ Rnrot×rrot and Φf

r ∈ Rnflex×rflex are derived from investigating the
proper orthogonal values in Σt, Σr and Σf.
The final global model order reduction matrix is derived by combining Φt

r, Φr
r and

Φf
r to

V =




Φt
r 0

Φr
r

0 Φf
r


 ∈ R

n×r. (4.14)

Therein, n = ntrans + nrot + nflex and r = rtrans + rrot + rflex and r < n.
This global projection matrix allows to project all model coordinates at once. It
further accounts for different coordinate scales by utilizing regarding coordinate
type reduction subspaces. These are derived from velocity-level snapshots.

4.2 Deviation of Initial Conditions

The proposed model order reduction strategy is based on velocity data of the MBS,
which includes initial velocity conditions only. Therefore, it is in lack of information
concerning the initial conditions on position level, resulting in a physical offset of
the reduced order model. This issue is solved by an extension of the applied
Galerkin projection, which has to be taken into account throughout the whole
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4.3. Reducing Constraint Equations

reduced order simulation:
In order to compensate the lack of information, the initial conditions of the original
MBS model are first projected to the reduction subspace

qr,0 = VT · q0. (4.15)

They are then projected back into the full space

q̃0 = V · qr,0. (4.16)

Therefrom, the deviation
R0 = q0 − q̃0 (4.17)

is computed. By combining these steps

q̃0 = VVT · q0 (4.18)

is a function of the projection matrix and the full model’s initial conditions. Note
that although the orthogonality criteria (ATA = AAT = I) holds for quadratic
matrices, this is not the case for the present rank deficient projection matrix V ∈
Rn×r. Hence, the term VVT · q0 equals to zero for all initial conditions which are
not covered by the velocity proper orthogonal modes.
Rewriting Eq. (4.17) and inserting the above relations, the residuum vector R0 is
defined as

R0 = q0 − VVT · q0. (4.19)

In order to account for the actual initial conditions, the novel Galerkin projection
rule, reads

q ≈ q̃ = V · qr + R0. (4.20)

As q0 and V are time-invariant, R0 is a constant shift from the origin. It is, hence,
convenient to identify the residuum vector R0 once at t = t0.
This approach accounts for possible residua in the initial conditions, by including
a constant offset to the projection rule. Note that this novel Galerkin approach
has to be applied throughout the whole reduced order simulation.

4.3 Reducing Constraint Equations

When dealing with multibody systems modeled in 3D MBS software packages,
the number of constraint equations is often larger than actually necessary. Take,
for instance, a pure planar motion of some mechanism. Due to the general 3D
modeling approach, out-of-plane constraints are typically defined. These are the-
oretically unnecessary for the actual behavior of the mechanism, but relate to the
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4.3. Reducing Constraint Equations

3D modeling approach. Moreover, depending on the actual excitation, physical
body joints (hinges, ball-joints, etc.) may restrict non-actuated coordinates of the
MBS.
Besides these modeling-related issues the reduction of physical DOF may cause
constraint equations to become irregular and redundant. In order to shade light
on this issue, consider the following: By definition, any valid full model simulation
fulfills its constraint equations. Therefore, any snapshot matrix X or Ẋ collected
from such a simulation contains constraint information. Therein, constraints de-
scribing dependencies between two DOFs (e.g. x − y = 0) may appear as equal
snapshot lines. Further, coordinate restrictions may appear as zero or constant
valued lines in the snapshot matrices.
As a natural extension, constraint information included in the snapshot matrix X
or Ẋ is also contained in the global reduction matrix V, which is built from these
snapshots. In fact, by reducing the physical coordinates the flat projection ensures
constraints which are covered by V to be met. This is, because the flat Galerkin
projection acts as a kind of constraint itself. Hence, covered constraint equations
would appear redundantly in the physical coordinate reduced reduced order model

VTMVq̈r + VTCT

qλ = VTQ

C = 0. (4.21)

Therefore, reducing the constraint equations is a critical but necessary task. Oth-
erwise, the reduced order model may be overconstrained.
From a more mathematical point of view: If the vector of generalized coordinates
q ∈ Rn is reduced to qr ∈ Rr, without reducing the vector of constraint equa-
tions C ∈ R

m, the resulting system of DAEs might become overdetermined and
ill-conditioned, if m > r.

4.3.1 A Simple Projection Approach

A first attempt to handle the issue of overdetermined reduced order models is
presented by the author in Stadlmayr et al. [100]. It is based on the assumption:

A constraint equation is removable if the corresponding Jacobian line Cq,j evaluates
to zero when projected by V.

A smaller set of constraint equations Cl (q) ∈ Rl, with l < m, is found if any line
of CqV equals to zero for all instances of time. As C is in general non-constant the
projection must be carried out repeatedly in an offline-phase for each time-step.
To this end, Algorithm 4.1 is defined. It computes the vector isNeeded which high-
lights regular constraint equations by value one. Due to this algorithm constraint
equations are removable
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4.3. Reducing Constraint Equations

Algorithm 4.1: A Simple Constraint Reduction Procedure

function isConstraintNeeded(V,Cq, t) with;
Cq = [Cq(t0), ...,Cq(ti), ...,Cq(tend)]
isNeeded = zeros(m, 1);
for t = t0 : ∆t : tend do
for j = 1 : m do

if Cq(:, j)V(:, j) 6= 0 then
isNeeded(j) = 1;

end

end

end

(a) if they are not acting during simulation, or

(b) if they are fulfilled by the Galerkin projection.

The constraint DOF reduction method is outlined by the initial value problem in
Fig. 4.2.
-
Example: Rigid Pendulum - Initial Value Problem
To this end, we switch from Euler parameters to an Euler Angle description (three
rotational coordinates) for illustration reasons. The undamped system consists of
one body, a pendulum with length l = 1, which is modeled in 3D space, see Fig. 4.2.
Therefore, the vector of physical coordinates consists of three translational coordi-
nates x, y, z, and the corresponding three rotational coordinates ϕ, ψ, θ. It defines
the pendulum’s behavior relative to the global coordinate system, which is located
in the hinge joint. The pendulum is subject to the five constraint equations, which
force the pendulum to a planar movement within the x − y plane. We further
assume ϕ < 2π, as we do not want to deal with 2π discontinuity issues.

C(q) = [z, ψ, θ, sin(ϕ) − x, cos(ϕ) − y]T = 0. (4.22)

The corresponding constraint Jacobian reads

Cq(q) =




0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 cos(ϕ) 0 0
0 −1 0 − sin(ϕ) 0 0



. (4.23)
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x

y

ϕ

Figure 4.2: Rigid pendulum

Initial conditions are set to satisfy the initial angular deflection ϕ(t0). The velocity
snapshots read

Ẋ =

[
Ẋt

Ẋr

]

=




cos(ϕ0)ϕ̇0 cos(ϕ1)ϕ̇1 ... cos(ϕend)ϕ̇end

− sin(ϕ0)ϕ̇0 − sin(ϕ1)ϕ̇1 ... − sin(ϕend)ϕ̇end

0 0 ... 0
ϕ̇0 ϕ̇1 ... ϕ̇end

0 0 ... 0
0 0 ... 0




, (4.24)

where ϕ0 = ϕ(t0), ϕ̇0 = ϕ̇(t0), ϕ1 = ϕ(t1) = ϕ(t1), etc. We apply the proposed
proper orthogonal decomposition method to the translational velocity snapshot
matrix Ẋt. Two major proper orthogonal values corresponding to the x and y
direction and one zero valued proper orthogonal value corresponding to the z
direction are found.
Hence, the first two proper orthogonal modes

Φt
r =




1 − ǫ 0 + ǫ
0 + ǫ 1 − ǫ

0 0


 (4.25)

are chosen as the translational part of the reduction matrix V. The small deviation
ǫ between a unit vector and the actual proper orthogonal modes originates from
the numerical calculation of the kinematic relationship between x, y and ϕ, and
the therewith related trigonometric functions.
Applying the proper orthogonal decomposition method to Ẋr one major proper
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orthogonal value corresponding to the rotation around ϕ is found. The other two
proper orthogonal values are equal to zero. Hence, the rotational part of V consists
of the proper orthogonal mode

Φr
r = [1, 0, 0]T . (4.26)

The global projection matrix reads

V =

[
Φt

r 0
0 Φf

r

]
=




1 − ǫ 0 + ǫ 0
0 + ǫ 1 − ǫ 0

0 0 0
0 0 1
0 0 0
0 0 0




. (4.27)

Note that for this example, the initial conditions are met directly. Therefore, the
residual vector R0 = VVTq0 equals to zero.
In order to identify removable constraints, the proposed constraint reduction algo-
rithm is applied. According to Alg. (4.1), Eq. (4.28) shows entries equal to zero
for all instances of time which correspond to the first three constraint equations

CqV = [0, 0, 0, ∗, ∗]T . (4.28)

The fourth and fifth constraint equations, representing the pendulum’s joint, are
unequal to zero (denoted by an asterisk in Eq. (4.28)). This is due to the kine-
matic relation between x, y and φ being not detectable. The first three constraint
equations do not act during simulation (also indicated by the zero entries in V).
Thus, the constraint reduction vector evaluates to

isNeeded = [0, 0, 0, 1, 1]T . (4.29)

In conclusion, the reduced order model, projected by V, can be solved sufficiently
using r = 3 instead of n = 6 DOFs. Due to this choice, three out of five constraint
equations have to be neglected.

The connection between unnecessary non-moving physical DOFs and the corre-
sponding proper orthogonal values and proper orthogonal modes is pointed out
by the outcome of the above constraint reduction process. But it is also observ-
able that the method suffers from the lack of identifying kinematic relations be-
tween translational and rotational DOFs. Therefore, the constructed reduced order
model may be seen as the minimal derivable representation of the present example.
However, this method tends to fail if the constraint equations are defined in any
direction other than the global axes directions. Numerical tests have shown, that
in terms of a more complex MBS model hardly any constraint equations might
be identified as reducible by this approach. This is especially the case for models
which consist of boundary conditions in arbitrary directions in space.
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4.3.2 A Generalized Projection Approach

This section presents a generalized constraint reduction approach. It is based on
the singular value decomposition of the projected constraint Jacobian Cq,r = CqV.
This approach has been first published by the author in [99], and is closely related
to the Principal Component Analysis [67, 95, 110]. It allows to reduce the set of
constraint equations even if the constraint’s axes directions are chosen arbitrarily.

First, recall that the rank of any matrix Y ∈ Rm×n is calculated by the singular
value decomposition

Y = Φ · Σ · ΨT

=
[
Φi Φd

] [ D 0
0 0

] [
ΨiT ΨdT

] . (4.30)

The rank of Y is given by the number of non-zero entries in Σ ∈ Rm×n, which is
the row/ column size of the quadratic matrix D ∈ Rl×l. The matrix of left singular
vectors Φ ∈ Rm×m spans the column-space of Y. It can be split into independent
(superscript i) and dependent (superscript d) left singular vectors. The matrix of
right singular vectors ΨT ∈ Rn×n spans the row-space and can be split accordingly.
With no loss of precision, Eq. (4.30) can be rewritten in terms of the independent
components as

Y = Φi · D · ΨiT. (4.31)

Therein, the independent column space Φi ∈ Rm×l spans a subspace solely consist-
ing of the unique column information from Y.
The matrix of independent left singular vectors is denoted as Γ = Φi from now.
By pre-multiplying Y with ΓT the original redundant data is re-expressed as a
linear combination of its independent basis vectors:

Yunique = ΓTY, (4.32)

Therein, Yunique ∈ Rl×m contains, in its columns, only the essential (unique) infor-
mation of Y .

The method is applied to the constraint Jacobian Cq,r ∈ Rm×r in an offline phase
of the simulation procedure. The number of original constraint equations is again
denoted by m and r is the number of reduced physical coordinates.
By setting Y = Cq,r and proceeding as proposed, independent left singular vectors
Γ ∈ Rm×l and non-zero singular values D ∈ Rl×l are computed. The constraint
Jacobian is re-expressed as a linear combination of its independent basis vectors

Cq,r,l = ΓTCq,r. (4.33)
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Now, Cq,r,l ∈ R
l×r, with l ≤ r, consists of the regular constraint information only.

The proposed projection is also applied to the vector of constraint equations

Cl = ΓTC, (4.34)

to ensure consistency. Note that if the algebraic constraint equations (C = 0) hold
true for the original system any linear combination of these terms, in the sense of
Eq. (4.34), meets the zero-condition Cl = 0 as well.

Finally, the physical and constraint DOF reduced model is defined as

VTMVq̈r + VTCT

q,r,lλl = VTQ

ΓTC = 0. (4.35)

Note that in Eq. (4.35), one could set

CT

q,r,lλl = CT

q,rΓλl = VTCT

qΓλl (4.36)

and argue that the last part is similar to a Galerkin projection of the vector
of Lagrangian multipliers λ ≈ λ̃ = Γλl. In fact, this term arises due to the
consequent application of the constraint reduction method and is not intended as
a Galerkin projection. Nevertheless, the vector of Lagrangian multipliers has to
change its dimension according to the remaining number of constraint equations
Cl.
In the case of l = r the reduced MBS model is fully constrained, as the number
of remaining constraints equals the number of reduced DOFs. To overcome this
issue, the singular values in D should be investigated similar to the physical DOF
reduction in Sec. 3.4.3. Again, a smaller set of reduced constraint equations is
indicated by a drop in the singular value decay.
Furthermore, the constraint reduction method introduced in Sec. 4.3.1 is a special
case of the present method. Any constraint equation evaluating zero in the sense
of the projection CqV is equivalent to a redundant column in Cq. It therefore
results in a zero valued singular value in Σ.

4.4 Model Order Reduction Scheme

Summarizing this Chapter, a model order reduction method is introduced which
reduces physical and constraint coordinates. The physical coordinate reduction
approach is based on coordinate-scale sensitive proper orthogonal decomposition,
applied to velocity data. It further rests on an extended flat projection approach.
This extension takes into account possible residuals resulting from non-zero initial
conditions.
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The constraint coordinate reduction approach is based on the principal component
analysis. It extracts redundant constraint information from the reduced order
model. The final reduced order model is ensured to be regular and determined
within the chosen ROM subspace:

1. Solve the original MBS model

M (q) q̈ + Cq (q)T
λ = Q (q, q̇)

C (q) = 0 (4.37)

forward in time, collecting velocity snapshot data in the snapshot matrix Ẋ.

2. Subdivide the velocity snapshot data into Ẋt, Ẋr, and Ẋf.

3. Process each coordinate-type-velocity snapshot data separately, using the
proper orthogonal decomposition approach

Ẋt = ΦtΣtΨtT (4.38)

Ẋr = ΦrΣrΨrT (4.39)

Ẋf = ΦfΣfΨfT. (4.40)

4. Characterize the regarding reduced subspaces of dimension rtrans < ntrans,
rrot < nrot, and rflex < nflexs, by investigating the proper orthogonal value
decay in Σt, Σr, and Σf.

5. Combine the chosen subspaces into the global reduction subspace

V =




Φt
r 0

Φr
r

0 Φf
r


 . (4.41)

6. Identify redundant constraints by investigating the constraint Jacobian due
to the proposed principal component analysis

CqV = ΦiDΨiT. (4.42)

The unique constraint data is derived from the projection onto the subspace
spanned by the l left singular vectors Ψi, collected in Γ. The set of unique
constraints and the corresponding constraint Jacobian are derived from

Cl = ΓTC (4.43)

and
Cq,r,l = ΓTCqV. (4.44)
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7. For upcoming simulations, utilize the reduced order model

VTMVq̈r + VTCT

q,r,lλl = VTQ

Cl = 0 (4.45)

in an iterative scheme. In order to evaluate the actual configuration depen-
dent system matrices and vectors M,Q,C,Cq the reduced coordinates qr

have to be transformed into the approximated full coordinates

q̃ = V · qr + R0. (4.46)

4.5 Comments with Respect to the Constraint

Forces in the Reduced Model

The model order reduction to physical and constraint coordinates allows to con-
struct a reduced order model, which reproduces the original system motion with
high consistency. Nevertheless, as the proper orthogonal mode matrix is trun-
cated, the advantage of finding a smaller set of coordinates by a weighted linear
combination of the original coordinates, goes hand in hand with a loss of system
information.
To ensure correct constraint forces is still an open field of research. Several authors
deal with the problem of redundant constraint equations. In [45, 26, 115, 116] and
references therein, constraint redundancy resulting from singular configurations,
over-constrained modeling (as in the case of a rigid door being modeled using
both hinges), etc. is covered.
In the present case, the constraint forces of the reduced order model turn out to
differ from the constraint forces of the original system. As a consequence, the
reduced order model can not be used to generate load data in joints, as it might
be needed for special FEM simulations and fatigue analysis. It can be shown, that
the change in the constraint forces is caused by the physical coordinate reduction.
If any original coordinate is weighted with factor zero in the reduced order model,
which is a zero entry in all related entries of the projection matrix V, forces act-
ing on this coordinate no longer enter the reduced order model. Therefore, the
according constraint force VCT

qλ equals to zero.
This issue can be simply demonstrated by the single mass oscillator with mass m,
which was already introduced in Chapter 3. It is coupled to ground by a linear
spring with spring stiffness k. It is further actuated by an external force F in (x, y)
direction. The example is again depicted in Fig. 4.3. Let the original model consist
of two degrees of freedom, which are the (x, y) movement of the cart. The model
is subject to one constraint equation which reads C1 = y = 0. Hence, the mass is
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k
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Figure 4.3: Single mass oscillator

forced to move in x direction only. The constraint Jacobian of this example is of
the form

Cq =
[

0 1
]
. (4.47)

The velocity result file Ẋ ∈ R2×h reads

Ẋ =

[
ẋ(t0) . . . ẋ(tend)
ẏ(t0) . . . ẏ(tend)

]
=

[
∗ . . . ∗
0 . . . 0

]
. (4.48)

Hence, the singular value decomposition of this data matrix delivers one non-zero
and one zero valued proper orthogonal value. The global projection matrix reads

V =

[
1
0

]
. (4.49)

It reduces the system into a one-DOF reduced order model, as all zero valued
proper orthogonal values are omitted. Due to this choice, which is also the mini-
mal set of coordinates representation, the constraint Jacobian is projected to the
reduction subspace as

CqV =
[

0 1
] [ 1

0

]
= 0. (4.50)

When transforming the reduced system solution back into the full space, the move-
ment of the single mass oscillator is equal to the original system. This is due to
the reduced order model consisting of the acting x DOF only. Nevertheless, the
constraint force VTCT

qλ equals to zero for all instances of time as VTCT

q = 0.
Therefore, this model order reduction method is not usable for simulations con-
cerning the original MBS’s constraint forces as important results.
Finally, it must be taken into account, that omitted constraints may become im-
portant in the case of critically changing excitation directions or model parameters.
It might then be necessary to collect a new set of snapshots to renew the reduction
subspace and the set of unique constraints.
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4.6 Effect of the Reduction Approach on the

HHT-Solver

The example presented in Sec. 4.5 points out the necessity to process the con-
straint equations to ensure regularity and certainty of the reduced order model.
In addition, the constraint reduction and the overall reduction process affect the
HHT-solver algorithm in Sec. 2.5.1.
Recall the Jacobian matrix

J =

[
Mext CT

q

Cq 0

]
, (4.51)

which is used to compute correction terms ∆q̈ and ∆λ during simulation. Therein,
the extended mass matrix reads

Mext =
1

1 + α
M +

(
1

1 + α
(Mq̈)q + (CT

qλ)q − Qq

)
βh2 − Qq̇hγ.

The Jacobian matrix has to be projected onto the reduction subspace as follows:

Jr =

[
Mext,r VTCT

qΓ
ΓCqV 0

]
, (4.52)

with

Mext,r =
1

1 + α
VTMV

+
( 1

1 + α
VT(Mq̈)qV + VT(CT

qλ)qV − VTQqV
)
βh2

− VTQq̇Vhγ. (4.53)

The individual sub-Jacobians (Mq̈)q, (CT

qλ)q, etc. are assembled analytically in
FreeDyn in a preprocessing step. Therefore, these matrices must be evaluated by
the approximated full coordinates q̃ = Vqr + R0 in each reduced order model
iteration.
In terms of a reduced order model which is only reduced in its physical coordinates,
single lines up to the whole matrix Cq would become singular. This would cause
the solver to abort immediately in the case of redundant constraints. Consider Cq

as a zero matrix, which is all constraint equations are redundant. Further consider
this circumstance as Cq = 0 for illustrative reasons. Then, the according physical
coordinate reduced system Jacobian would be of the form

J =

[
Mext,r 0

0 0

]
(4.54)
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and, hence, singular.
By applying the introduced generalized constraint reduction approach, the singular
value decomposition of the reduced constraint Jacobian identifies such redundant
constraints. In the present case all constraint equations would be covered by
V. Therefore, the constraints C, the constraint Jacobian Cq and the according
Lagrangian multipliers λ are completely eliminated from the solver algorithm. The
reduced order model is then regular and well-conditioned again, as the system
Jacobian reduces to

J = [Mext,r] . (4.55)
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CHAPTER 5
Application to Large Scale

Multibody Systems

The developed model order reduction method is applied to MBS models consisting
of a reasonably large number of bodies, DOFs and constraints. These examples
originate from automotive optimization tasks and represent typical complexity
faced by industrial users.
The examples are modeled using the FreeDyn software package. They are solved
in Scilab [90] utilizing the FreeDyn-Scilab interface. FreeDyn is used for modeling
tasks and for computing the system matrices of the MBS according to the actual
state vectors. The system matrices are then handed through to Scilab by the
FreeDyn-Scilab interface. Scilab is used to solve both, the full and the reduced
order MBS. It therefore utilizes the HHT solver algorithm introduced in Chapter 2.
It is further used to compute the ROM necessities. These are the global projection
matrix, the constraint reduction matrix, and the initial condition residuum.
The numerical examples point out strengths but also limitations of the proposed
method.

5.1 A Rigid V8 Crank Drive

The in-plane V8 crank drive shown in Fig. 5.1 is set up in 3D space with a V-
angle of 90◦. The MBS model consists of 17 rigid bodies. Each connecting rod
is connected to the crankshaft by a spherical joint (three constraint equations)
and by rotational restrictions (two constraint equations). An equivalent set of five
constraint equations is introduced in order to connect the piston rod to the piston.
Each piston is further constrained against ground by one translational and one
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T
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Figure 5.1: V8 crank drive

rotational restriction to its lateral axis at its COG. Thus, each cylinder introduces
a set of twelve constraint equations.
Another set of five constraint equations is introduced by the crankshaft at its COG.
It is restrained by a spherical joint and two rotational restrictions to its lateral axis.
Finally, 17 internal constraints are introduced by the rigid bodies. Summing up,
the MBS model consists of b = 17 bodies, n = 119 physical coordinates and
m = 118 constraint equations. Detailed model data is summarized in Tab. 1.
The frictionless system is revved up by an idle torque T = 20 [Nm] acting on the
crankshaft’s longitudinal axis. After 1.5 seconds of simulation time, the crankshaft
is further revved up to a peak velocity of 4000 [RPM] by a second torque Tpeak =
200 [Nm]. This peak torque is deactivated after another 1.5 seconds, allowing the
crank drive to slow down to idle speed again. The applied torques are opposed
by a rotational damping element acting on the crankshaft, in order to achieve
constant engine speeds. The acting torques and forces are summarized in Tab. 2.
The resulting engine speed curve is shown in Fig. 5.2.

5.1.1 Results

The rigid V8 crank drive is simulated in Scilab, utilizing the FreeDyn-Scilab inter-
face. The derived model order reduction method is applied to the velocity results
of the full model simulation. The number of constraint equations is reduced accord-
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Figure 5.2: V8 RPM plot

ing to the choice of reduced physical coordinates. This new approach is compared
to the POD of combined position snapshots. It is also compared to the POD
of combined velocity snapshots. Figures 5.3 and 5.4 show the decay of the
calculated proper orthogonal values according to the herein derived model order
reduction method. The plotted proper orthogonal values are normalized such that

n∑

i=1

σ2
i = 1, (5.1)

for each type of coordinates. The decay of translational proper orthogonal values
in Fig. 5.3 clearly points out a drop by several orders of magnitude below 1E-16
after POV four. Hence, the four proper orthogonal modes corresponding to the
first four POVs span the reduced subspace to the translational part of this model.
Consequently, the number of reduced translational coordinates is four.
As it will be pointed out by all upcoming examples in this Chapter, an absolute
proper orthogonal value value of 1E-16 seems to represent a sufficient limit for the
POV selection criteria. Note, that this is only valid for the present examples, and
only in the case of applying the coordiante-scale sensitive POD. This is not the
case for the "classical" POD with combined coordinate snapshots, as under- and
overestimations on the impact of single coordinates happen. The herein used limit
should therefore not be taken as a general selection criteria.

In analogous manner, the proper orthogonal value decay of the rotational velocity
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Figure 5.3: Translational velocity coordinate POVs - Rigid V8 crank drive
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Figure 5.4: Rotational velocity coordinate POVs - Rigid V8 crank drive
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Figure 5.5: Constraint singular values - Rigid V8 crank drive
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Figure 5.6: Combined position and velocity snapshot POD - Rigid V8 crank drive
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Figure 5.7: Zoom into the first 15 POVs - Combined position and velocity snapshot
POD - Rigid V8 crank drive

coordinates, cf. Fig 5.4, point out a drop below 1E-16 after POV number six. As
a result, the reduced order model consists of six rotational coordinates only.

Due to this choice of ten reduced coordinates, the constraint singular values in
Fig 5.5 are computed. It points out a drop below 1E-16 after nine singular values.
Thus, the reduced order model consists of nine reduced constraint equations. Note
that the constraint singular values are normalized similar to the coordinate proper
orthogonal values.

In contrast to these findings, the POD of combined position snapshots and the
POD of combined velocity snapshots point out larger ROMs, see Fig. 5.6 and
Fig. 5.7. Drops below approximately 1E-16 are found after POV nine in the case
of position snapshot data, and after POV eight in the case of velocity snapshot
data. Unfortunately, the corresponding sets of proper orthogonal modes do not
span sufficient subspaces to the full model. Hence the reduced simulations fail due
to excessive physical coordinate error, as soon as the high-RPM area is reached.
Valid subspaces, in terms of combined position data and combined velocity data,
are in need of more than these eight or nine proper orthogonal modes. In the case
of combined position snapshots a reasonable drop in magnitude is found after POV
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Figure 5.8: Time history of the relative position error - Rigid V8 crank drive

number twelve. For combined velocity data a reasonable drop is found after proper
orthogonal value number eleven. Although the corresponding ROMs perform well
in terms of the reduced order simulation, they are of larger dimension than the
ROM computed by the new approach. They therefore take more computational
time.
It should be noted that the reduced MBS is solvable only if the proposed constraint
reduction is applied. This is regardless of the actual dimension of the classical POD
subspace.

The results of the ROM derived by the new separated model order reduction
approach are compared to the results of the full model simulation. Their validity
is evaluated based on the relative position errors of several body coordinates. These
are:

• the rotational e0 parameters of the crankshaft and the connecting rod, and

• the y coordinate of the first cylinder’s connecting rod and piston.

The relative position error plots in Figs. 5.8 and 5.9 point out that a maximum
error of about 5E-8% arises. Hence, the accuracy of the reduced order model is
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Figure 5.9: Time history of the relative e0 error - Rigid V8 crank drive

high.
Summing up the findings of the separated POD approach, the number of trans-
lational coordinates is reduced by more than 92%. The number of rotational
coordinates is reduced by more than 91%, and the number of constraint equations
is also reduced by more than 92%.
The online simulation time is reduced from about 355s to approximately 179s.
This is a reduction of roughly 50%.

5.2 A Rigid V8 Crank Drive in Mounting

Condition

The former crank drive, depicted in Fig. 5.10, is extended by an engine housing.
It is no longer fixed to the ground but supported by engine and gearbox mounts,
as well as one torque roll restrictor. The engine supports are modeled by virtual
spring and damper elements. These are indicated by three red colored coordinate
systems in Fig. 5.10. Spring and damping parameters of the supports are chosen
such that the static sinking is less than five millimeters. Furthermore, the rotation
in the crank’s longitudinal axis is less than five degrees at maximum rotation
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Figure 5.10: V8 crank drive in mounting condition

speed. The supports are built by a total of nine linear spring elements and nine
linear damping elements. The support stiffness is csupport spring = 75000 [N/m] and
the damping ratio is dsupport damper = 0.05 [N · m · s]. The crank drive is dragged
as presented in Sec. 5.1. Due to this setup the engine experiences superimposed
vibrations.

5.2.1 Results

The results of the full system simulation are again investigated by the herein de-
rived model order reduction method. By investigating the proper orthogonal
value plot in Fig. 5.11 a drop in magnitude below 1E-16 can be found after proper
orthogonal value 22. This border is further highlighted by a flat spot. In the case
of rotational POVs, see Fig. 5.12, the magnitude drops below 1E-16 after proper
orthogonal value 22. Hence, the coordiante-type sensitive POD approach suggests
a reduced order model consisting of nr,trans = 22 translational and nr,rot = 22 rota-
tional reduced coordinates.
Investigating the constraint singular value plot in Fig. 5.13, the magnitude drops
rapidly after POV 37. Thus, the reduced order model consists of mr = 37 con-
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Figure 5.11: Translational velocity coordinate POVs - Rigid V8 crank drive in
mounting condition

straint equations.

In contrast to these findings, the combined POD approach, see Fig 5.14, points
out a drop below 1E-16 after proper orthogonal value 31. This is a clearly smaller
subspace than in the separated POD case. But, this set of proper orthogonal modes
does not span a proper subspace to the full model, similar to the first numerical
example in Sec. 5.1. The simulation fails due to excessive error in the physical
coordinates, as soon as the high-RPM area is reached. Furthermore, a clear drop
in magnitude is not found within a reasonable number of proper orthogonal values.
Thus, a sufficient subspace to the original MBS is not directly derivable using the
combined POD approach. The results of the reduced order model, consisting of
ten reduced coordinates and nine reduced constraint equations, is compared to the
results of the full model simulation. The relative position error measures are:

• the x, y, z coordinates of the crankshaft and the first cylinder’s piston, and

• the rotational e0 parameters of the crankshaft and the first cylinder’s con-
necting rod and piston.

Investigating the relative position error plots in Figs. 5.15 to 5.17, the accuracy of
the reduced order model is high. The maximum error is about 8E-6% compared
to the solution of the original system.
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Figure 5.12: Rotational velocity coordinate POVs - Rigid V8 crank drive in mount-
ing condition

In conclusion, the number of translational coordinates is reduced by almost 60%.
The number of rotational coordinates is reduced by more than 69%. The number
of constraint equations is also reduced by almost 69%.
Finally, the online simulation time is reduced from about 407s to approximately
311s. This is a reduction of about 24%.
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Figure 5.13: Constraint singular values - Rigid V8 crank drive in mounting condi-
tion
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Figure 5.14: Position data POD - Plot of POVs computed from combined trans-
lational and rotational velocity information - Rigid V8 crank drive in mounting
condition
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Figure 5.15: Time history of the relative crankshaft position error of the rigid V8
crank drive in mounting condition
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Figure 5.16: Time history of the relative piston position error of the rigid V8 crank
drive in mounting condition
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Figure 5.17: Time history of the relative e0 error of the rigid V8 crank drive in
mounting condition
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5.3 A Partially Flexible Front Suspension

The front suspension in Fig. 5.18 originates from an offroad racing vehicle as used in
the European Autocross Championship in 2016. The double wishbone suspension
consists of the rigid parts

• steering knuckle, upper wishbone, steering rod and relay lever.

It further includes the flexible components

• lower wishbone and pushrod.

Figure 5.18: Double wishbone front suspension

Flexibility is introduced by a set of CMS modes which are computed in a prepro-
cessing step utilizing a suitable FEM code.
This example should point out that the separated POD approach is able to reduce
not only rigid but also flexible coordinates. To this end, the chosen mode bases,
which describe the flexibility of the regarding bodies, consist of too many modes
(flexible coordinates). The mode base describing the lower wishbone’s flexibility
covers the eigenfrequencies in Tab. 3. The mode base describing the pushrod’s flex-
ibility covers the eigenfrequencies in Tab. 4. As already mentioned in a previous
Chapter, flexible bodies bring up the need of so-called zero inertia bodies (ZIB).
These act as coupling elements between a flexible body’s coupling point and the
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rest of the MBS model. In the present case, the flexible lower wishbone consists
of four coupling points. One allowing to establish a connection to the steering
knuckle, one to connect to the flexible pushrod, and another two in the rear, allow-
ing to connect to ground. Therefore, it introduces nrigid = 7 rigid coordinates, and
a set of nflex = 30 flexible coordinates. Further, another 28 rigid coordinates are
introduced which describe the ZIBs. Therefore, the flexible wishbone introduces a
total of 64 coordinates to the MBS model.
In analogous manner, the flexible pushrod consists of two coupling points allowing
to establish the connection to the flexible lower wishbone and to the relay lever. It
introduces nrigid = 7 rigid coordinates, and a set of nflex = 26 flexible coordinates.
Another 14 rigid coordinates are again introduced by the ZIBs. Therefore, the
flexible pushrod introduces a total of 47 coordinates to the MBS model.
Moreover, the number of constraint equations increases. This is due to the ZIBs,
which are coupled to the flexible body by a fix joint. Each of these couplings
introduces six additional constraint equations.
Concluding, the MBS model consists of b = 12 bodies, n = 140 physical coordi-
nates and m = 84 constraint equations. Detailed model data is summarized in
Tab. 5.
The model is forced by vertical loading in the steering knuckle, according to the
force time history in Fig. 5.19. A linear spring/damper element which acts on
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Figure 5.19: Vertical forcing acting on the steering knuckle - Partially flexible front
suspension

the top eye of the relay lever opposes this force. The linear damping element is

99



5.3. A Partially Flexible Front Suspension

designed such that the flexible bodies are allowed to reach high frequency areas
and possibly cross eigenfrequencies. Force data are summarized in Tab. 6.

5.3.1 Results

The results of the full system simulation are again processed by the herein derived
model order reduction method. By investigating the proper orthogonal value
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Figure 5.20: Translational velocity coordinate POVs - Partially flexible front sus-
pension

plot in Fig. 5.20, a drop in magnitude below 1E-16 can be found after POV 22. It
is further highlighted by a flat spot. In the case of rotational POVs, see Fig. 5.21,
the magnitude drops below 1E-16 after proper orthogonal value 26. As for the
rotational proper orthogonal value plot, the flexible POV plot does not indicate
the reduced order model directly. Nevertheless, the flexible POV magnitude drops
below 1E-16 after proper orthogonal value 13. The coordiante-type sensitive POD
approach therefore suggests a reduced order model consisting of nr,trans = 22 trans-
lational, nr,rot = 26 rotational and nr,flex = 13 flexible reduced coordinates.
Investigating the constraint singular value plot in Fig. 5.23, the magnitude drops
rapidly after proper orthogonal value 48. The reduced order model therefore con-
sists of mr = 48 constraint equations.

In contrast, the combined POD approach does not point out any drop. Still, the
absolute proper orthogonal value value drops below 1E-16 after POV 20. This
is a clearly smaller subspace than in the separated POD case. Again, this set
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Figure 5.21: Rotational velocity coordinate POVs - Partially flexible front suspen-
sion

of proper orthogonal modes does not span a proper subspace to the full model.
The simulation fails due to excessive error in the physical coordinates. Still, by
sticking with the 20 proper orthogonal modes and artificially reducing the number
of remaining constraint equations to twelve a vaguely approximating subspace can
be spanned, see Figs. 5.25 to 5.27.

The results of the separated POD approach and the results of the (classical) com-
bined snapshot POD approach are compared to the results of the full model sim-
ulation of several body coordinates. The relative position error measures are:

• the y coordinate of the steering knuckle, pushrod and lower wishbone,

• the rotational e0 parameters of the relay lever, the pushrod and lower wish-
bone,

• the first two dominant flexible coordinates of the pushrod and the first dom-
inant flexible coordinate of the lower wishbone.

Investigating Figs. 5.25 to 5.27, the separated POD approximate the original model
with high accuracy. In contrast, the classical POD approach results in an insuffi-
cient reduced order model.
Summing up the findings of the separated POD approach, the number of transla-
tional coordinates is reduced by almost 39%. The number of rotational coordinates
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Figure 5.22: Flexible velocity coordinate POVs - Partially flexible front suspension

is reduced by nearly 16% and the number of flexible coordinates is reduced by al-
most 77%. Accordingly, the number of constraint equations reduces by almost
43%.
The online simulation time is reduced from about 615s to approximately 436s.
This is a reduction of more than 29%.
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Figure 5.23: Constraint singular values - Partially flexible front suspension
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Figure 5.24: Classical POD approach - Plot of POVs computed from combined
translational, rotational and flexible velocity information - Partially flexible front
suspension
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Figure 5.25: Time history of the relative y coordinate error of the partially flexible
front suspension
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Figure 5.26: Time history of the relative e0 error of the partially flexible front
suspension
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Figure 5.27: Time history of the relative flexible coordinate error of the partially
flexible front suspension
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5.4. A Rigid Junior Dirtbike

5.4 A Rigid Junior Dirtbike

This example introduces the electrical junior dirtbike depicted in Fig. 5.28. The
model consists of ten bodies, which are

• the frame,

• the front and the rear wheel,

• the battery,

• the swing arm including the eletric motor,

• the upper and the lower part of the shock,

• the upper and the lower part of the fork including the handlebar, and

• a point mass, representing the physical properties of a dummy rider.

Figure 5.28: Electrical junior dirtbike

Detailed physical data is summarized in Tabs. 7 and 8. The model is subject to
two linear spring/damper elements which represent the shock and fork behavior.
The dirtbike is put on a virtual MBS test bench (two post test bench), in order
to apply force measurements taken from test rides. One spring/damper element
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5.4. A Rigid Junior Dirtbike

is applied to each wheel, allowing the dirtbike to set into riding position at the
beginning of the simulation. Afterwards, two time dependent forces are applied
to the front and rear wheel, see Fig. 5.29. Detailed model data is summarized in
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Figure 5.29: Vertical forcing acting on the wheels - Electrical junior dirtbike

Tab. 9.

5.4.1 Results

The results of the full system simulation are again investigated by the herein
derived model order reduction method. By investigating the proper orthogonal
value plot in Fig. 5.30, a huge drop in magnitude, even below approximately 1E-16,
can be found after POV nine. In the case of rotational proper orthogonal values,
the proper orthogonal value magnitude drops significantly after proper orthogonal
value six. Hence, the coordinate-type-sensitive POD approach suggests a reduced
order model consisting of nr,trans = 9 translational and nr,rot = 6 rotational reduced
coordinates.
Investigating the constraint singular value plot shown in Fig. 5.32, the magnitude
drops rapidly after POV 11. Therefore, the reduced order model consists of mr =
11 constraint equations.

In contrast, the combined snapshot data POD approach, cf. Fig. 5.33, points out
a huge drop after proper orthogonal value ten. This is a smaller subspace than in
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Figure 5.30: Translational coordinate POVs - Electrial junior dirtbike

the separated POD case.

The results of the separated POD approach, and the results of the classic POD
approach are compared to the results of the full model simulation. The relative
position error measures are:

• the x coordinate of the frame and shock,

• the z coordinate of the swing arm, and

• the rotational e0 parameters of the rider dummy, the swing arm and the
shock.

The subspace spanned by the combined snapshot data POD approach does not
span a proper subspace to the full model. The simulation fails due to excessive
error in the physical coordinates.
In contrast, the accuracy of the separated POD approach is again high with a
maximum relative error of about 0.1%.
Summing up the findings of the separated POD approach, the number of trans-
lational coordinates is reduced by 70%. The number of rotational coordinates is
reduced by 85%. Accordingly, the number of constraint equations decreases by
more than 83%.
The online simulation time is reduced from about 1972s to approximately 971s.
This is a reduction of more than 50%.
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Figure 5.31: Rotational coordinate POVs - Electrial junior dirtbike
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Figure 5.32: Constraint singular values - Electrial junior dirtbike
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Figure 5.33: Combined snapshot data POD approach - Electrial junior dirtbike
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Figure 5.34: Time history of relative translational coordinate errors - Electrical
junior dirtbike
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Figure 5.35: Time history of the relative e0 error - Electrical junior dirtbike
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5.4.2 Discussion

The large scale examples presented in this Chapter point out the performance of
the derived model order reduction approach.
As it becomes obvious a general indicator for the dimension of the ROM can not
be ensured. For the standard POD approach, which processes all coordinate snap-
shots in once, it is often necessary to try different promising-looking sets of proper
orthogonal modes.
For the coordinate-scale sensitive approach the choice of a sufficient number of
reduced coordinates seems to be easier. Due to taking into account the differ-
ent scales of translational, rotational and flexible coordinates, each motion-type is
handled without under- or overestimation. The novel approach seems to allow an
absolute proper orthogonal value value as indicator of the reduced order model.
This seems to be due to the data which is always of the same scale. The indicator
is in the range of approximately 1E-16 for the numerical examples in this Chapter.
Still it must be emphasized that this value is only applicable to the presented ex-
amples. It must not be thought of as a general indicator at all. The determination
of the ROM is mainly due to user experience in "reading" the proper orthogonal
values of a single set of snapshots.
In terms of the constraint coordinate reduction, the numerical examples show the
ability to identify the set of regular constraint equations. The singular value plots
point out a minimal set of constraint equations by drops in magnitude. There-
fore, the singular values of the constraint coordinate reduction can be interpreted
similar to proper orthogonal values. A choice on the number of unique constraint
equations due to large drops or a drop below 1E-16 is possible.
Talking about performance, a maximum reduction of more than 50% in the sim-
ulation time is achieved. Further, coordinate savings up to 90% and more are
possible. The saving in physical and constraint coordinates is a hard fact. In
contrast, time-savings of the former examples should not be taken as absolute val-
ues. This is due to the implementation of the MBS code in Scilab. Scilab is, in
contrast to e.g. C++, an interpreted programming language. The reduced order
model has to switch from the reduced to the approximated full space in every
iteration, as all system matrices are built in terms of the full state vector. Due to
the interpreter-like nature of the Scilab environment, back and forth projection of
the reduced system takes excessive time. Therefore, absolute time savings could
be further improved by switching from Scilab to a C++ implementation, which is
planned in future work.
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CHAPTER 6
Application to Parameter

Identification Tasks in Multibody
Systems

The derived MOR method was developed under the long-term perspective of a
parameter identification environment. As the MBS system has to be solved repet-
itively it is a suitable field of application to the derived MOR.
The computation of the gradient of the cost function is usually the most time con-
suming task, and the adjoint method is a highly efficient strategy to handle it in
the field of multibody dynamics. It was used in the sensitivity analysis of systems
of partial differential equations or systems of differential algebraic equations (DAE)
by authors such as [47, 12, 29, 83, 16]. Nachbagauer et al. [76, 77] presented how
to directly apply the adjoint method to redundantly formulated multibody system
dynamics.

In terms of the parameter identification of unknown model parameters, the MBS
model is enhanced by the unknown parameters u:

M (q,u) q̈ + Cq (q)T
λ = Q (q, q̇,u)

C (q) = 0. (6.1)

Note that in Eq. (6.1), unknown parameters are supposed to appear in the mass
matrix and in the vector of applied forces.
The identification of unknown model parameters is represented by an optimiza-
tion problem. Here, the goal is to minimize the root mean square error between
(real) measured values and calculated simulation results. The cost function to be
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6.1. Parameter Identification utilizing the Adjoint Method

minimized takes the general form

J =
∫ T

0
h (q,v, t) dt, (6.2)

with v = q̇. In our case, h is given by the root mean square error

h (q,v, t) =
N∑

i=1

1

2
(s̄i (t) − si (q,v))2 . (6.3)

Therein, s̄i are the measured signals and si are the system outputs of the simula-
tion.
The gradient of this cost function is efficiently calculated using the adjoint method.

6.1 Parameter Identification utilizing the

Adjoint Method

According to Nachbagauer et al. [76], the cost function is enhanced by the multi-
body model in Eq. (6.1):

J =
∫ T

0

{
h (q,v,u, t) + pT (q̇ − v) + wT

[
Mv̇ − Q + CT

qλ
]

+ µTC
}

dt. (6.4)

p ∈ Rn,w ∈ Rn,µ ∈ Rm are the adjoint variables, which are arbitrary at this
point. The variation of the function reads

δJ =
∫ T

0



hqδq + hvδv + huδu + pT (δq̇ − δv)

+wT

[
(Mv̇)q δq + Mδv̇ − Qqδq − Qvδv − Quδu +

(
CT

qλ
)

q
δq + CT

qδλ
]

+µTCqδq



 dt. (6.5)

After applying partial integration to terms including δq̇ and δv̇ (cf. [76]), the
adjoint variables are finally defined by the equations

ṗ = hT

q +
(

(Mv̇)q − Qq +
(
CT

qλ
)

q

)
T

w + CT

qµ

d

dt
(Mw) = hT

v − p − QT

vw

0 = Cqw (6.6)

0 = p (T )

0 = M (T ) w (T )
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such that if Eqs. (6.6) are satisfied, the variation in Eq. (6.5) reduces to

δJ =
∫ T

0
hu − wTQuδu dt =



∫ T

0

(
hu − wTQu

)
dt


δu. (6.7)

Hence, the gradient of J with respect to u is given by

δJ

δu
=
∫ T

0
[hT

u − QT

uw]dt. (6.8)

For the adjoint gradient computation one first has to solve the original system in
Eq. (6.1) forward in time. Secondly, by using the system information generated
by the forward simulation (the snapshot data), the linear set of adjoint equations
in Eqs. (6.6) is solved. Third, the gradient of the cost function in Eq. (6.8) is
calculated. The gradient information is then processed by a suitable optimization
strategy, e.g. the BFGS algorithm (see for instance [85]).
The literature deals with reduced order adjoint systems to ordinary and partial
differential equations, c.f. [33, 28, 5, 44, 59]. But, the reduction of the adjoint
system in the sense of [76] has, to the best knowledge of the author, not been
investigated yet.

6.1.1 The Adjoint Method in the Context of Reduced
Order Multibody Systems

This section presents the derivation of the adjoint system for a reduced multibody
system by applying the introduced flat projection. The subspace on which the
adjoint system is projected to, is the same as for the reduced forward simulation.
The cost function in reduced coordinates takes the form

J =
∫ T

0
h (q̃, ṽ,u, t) dt =

∫ T

0
h (Vqr,Vvr,u, t) dt. (6.9)

Enhanced by the reduced multibody system in Eq. (4.35), the cost function reads

J =
∫ T

0

{
h (q̃, ṽ,u, t) + pT

r (q̇r − vr)

+wT

r VT
[
M (q̃) Vv̇r − Q (q̃, ṽ,u) + CT

q (q̃) ΓTλl

]

+µT

l ΓC (q̃)
}

dt. (6.10)
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The adjoint variables pr ∈ R
r,wr ∈ R

r,µl ∈ R
l are again arbitrary at this point.

The variation of the reduced model’s cost function is given by

δJ =
∫ T

0



hqr

δqr + hvr
δvr + huδu + pT

r (δq̇r − δvr)

+wT

r VT

[
(MVv̇r)qr

δqr + MVδv̇r − Qqr
δqr − Qvr

δvr − Quδu

+
(
CT

qΓTλl

)
qr

δqr + CT

qΓTδλl

]

+µT

l (ΓC)qr

δqr



 dt. (6.11)

In order to eliminate the time derivatives, the integration by parts for the terms
including δq̇r and δv̇r is computed:

∫ T

0
pT

r δq̇r dt = −
∫ T

0
ṗT

r δqr dt+ pT

r δqr

∣∣∣∣
t=T

(6.12)

∫ T

0
wT

r

(
VTMVδv̇r

)
dt = −

∫ T

0

d

dt

(
wT

r VTMV
)
δvr dt

+wT

r VTMVδvr

∣∣∣∣
t=T

. (6.13)

Rearranging Eq. (6.11) and taking into account Eqs. (6.12-6.13), the variation of
the cost function is given by

δJ =
∫ T

0





[
hqr

− ṗT

r + wT

r VT

(
(MVv̇r)qr

− Qqr
+
(
CT

qΓTλl

)
qr

)

+µT

l (ΓC)qr

]
δqr

+
[
hvr

− pT

r − wT

r VTQvr
− d

dt

(
wT

r VTMV
) ]
δvr

+wT

r VTCT

qΓTδλl +
[
hu − wT

r VTQu

]
δu



 dt

+pT

r δqr

∣∣∣∣
t=T

+ wT

r VTMVδvr

∣∣∣∣
t=T

. (6.14)

Due to the reduced order model under investigation, the Jacobians in Eq. (6.14)
differ from the full model’s equivalent. They may be rearranged in order to corre-
spond to the full model Jacobians. By taking into account the flat projection, and
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recalling that V and Γ are constant, terms of the form ( · )qr

can be rearranged as

( · )qr

=
∂ ( · )

∂q

∣∣∣∣q=q̃
v=ṽ

· ∂q

∂qr
= ( · )q · V. (6.15)

Using Eq. (6.15), Eq. (6.14) reads

δJ =
∫ T

0





[
hqV − ṗT

r + wT

r VT

((
M ˙̃v

)
q

− Qq +
(
CT

qΓTλl

)
q

)
Φ

+µT

l ΓCqV
]
δqr

+
[
hvV − pT

r − wT

r VTQvV − d

dt

(
wT

r VTMV
) ]
δvr

+
[
wT

r VTCT

qΓT

]
δλl +

[
hu − wT

r VTQu

]
δu



 dt

+pT

r δqr

∣∣∣∣
t=T

+ wT

r VTMVδvr

∣∣∣∣
t=T

. (6.16)

Terms depending on δqr and δvr are eliminated due to a special choice of the
adjoint variables pr,wr and µl. Therefore, the set of adjoint equations is defined
by equating the expressions in square brackets to zero:

dpr

dt
= VThT

q + VT

( (
M ˙̃v

)
q

− Qq +
(
CT

qΓTλl

)
q

)
T

Vwr + VTCT

qΓTµl

d

dt

(
VTMVwr

)
= VThT

v − pr − VTQT

vVwr

0 = ΓTCqVwr (6.17)

Moreover, the boundary conditions

0 = pr (T )

0 = VTM (T ) Vwr (T )

are used to eliminate the variations δqr(T ) and δvr(T ) in Eq. (6.16). Next, suppos-
ing Eqs. (6.17) are fulfilled, the variation of the cost function in Eq. (6.16) reduces
to

δJ =
∫ T

0

[
hu − wT

r VTQu

]
δu dt =

(∫ T

0

[
hu − wT

r VTQu

]
dt

)
δu. (6.18)

This fully reduced parameter identification approach uses both, the reduction of
the forward simulation, and the reduced gradient computation. Not only are the
number of DAEs reduced, but also the number of adjoint equations in Eq. (6.17)
is downsized.
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6.1.2 Numerical Example

The reduced adjoint system is tested by the rather academical example of the cart-
pendulum chain shown in Fig. 6.1. The test example consists of two carts with four
pendula each. For simplicity, an Euler angle representation of the roational DOFs
is used, resulting in n = 60 DOFs. The system is subject to m = 28 algebraic
constraint equations, which force the system to a planar behavior.
While the left cart is actuated by an external force (F(t)) the right cart is connected
to ground by a linear spring (k2). Furthermore, the carts are interconnected by
a linear spring (k1). Each pendulum is subject to a damping element with linear
damping coefficients (dP 1, ..., dP 8) acting on the joints.
The parameters to be identified are:

• the linear damping coefficients dP 1, . . . , dP 4,

• the four masses mP 1, . . . ,mP 4 of the four pendula connected to the left cart,
and

• the mass mC1 of the left cart.

Initial and target values of the unknown parameters are summarized in Tab. 10.
The parameter identification is based on fictitious measurement signals. These are
generated by a forward simulation using the target parameters. The measured
signals are:

• the oscillating angles ϕP 1(t), . . . , ϕP 4(t),

• the oscillating angular velocities ωP 1(t), . . . , ωP 4(t),

• the first cart’s position xC1(t),

• and the first cart’s translational velocity ẋC1(t).

The model data is summarized in Tab. 10.
The system starts from its static equilibrium. The left cart is actuated by a ten
second sinusodial signal. It acts at a frequency of three hertz and an amplitude
of 25 [N]. After ten seconds, the actuating force is deactivated and the system is
allowed to oscillate for another five seconds. The example is run in Scilab [90]
using the HHT-solver for the forward simulation. A BDF-solver, together with a
BFGS optimization algorithm, is used to solve the adjoint system.
In Figs. 6.2 - 6.5 the cart positions and the oscillating angle of the first pendulum
are shown exemplarily. The proposed MOR approach is applied to snapshtos
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collected from the forward simulation of the original system. The POV plots in
Figs. 6.6 and 6.7 indicate a reduced order model consisting of 18 translational and
eight rotational DOFs. The number of reduced DOFs correlates with the active
DOFs in the model. These are one translational DOF for each cart, and two
translational as well as one rotational DOF for each pendulum.
The constraint reduction approach computes the singular value decay shown in
Fig. 6.8. It points out a set of 16 unique constraint equations. Using this setup,
the online solver time of the forward simulation reduces from 29s to 22s, which is
a reduction of more than 24%.
Next, the adjoint method is used to determine the gradient of the cost function in
Eq. (6.2) and Eq. (6.10) respectively. The plots in Figs. 6.9 - 6.12 show:

• the decay of the cost function,

• the variation of the pendula damping parameters,

• the pendula mass parameters, and

• the first cart’s mass parameter.

The plots show a congruent behavior, regardless of whether the identification is
run in reduced form or not. Therefore, the reduction process does not change the
information content of the measured signals or the cost functional. The parameter
variation plots, see Figs. 6.10 - 6.12, indicate the correct parameter values after
25 iterations. Due to the cost function plot, shown in (Fig. 6.9), the final cost
value reduces to about 10−4. The parameter identification process takes 2655s for
the original model. The simulation time reduces to 2247s in the case of reduced
forward simulation only. In the case of reducing both, the forward and the adjoint
system, the overall simualation time reduces to 2183s. This is a reduction of about
18%.
Figures 6.13 and 6.14 show the relative error plots of the first cart and the first pen-
dulum, for the final parameter iteration. The error plots point out high consistency
between the final trajectory of the original parameter identification procedure and
the reduced parameter identification.
As the set of linear adjoint equations is of a good nature (in a computational sense),
the numerical effort to solve this set of equations is small. The overall time savings
presented by the numerical results is dominated by the reduction of the forward
simulations. They male up about 97% of the time-saving while the reduced adjoint
system results in about three percent only.
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6.1.3 Discussion

The application of the proposed model order reduction approach to parameter
identification tasks shows the close connection between the forward system reduc-
tion and the adjoint system reduction.
The subspace on which the set of adjoint equations is projected to is spanned
by POD modes which also span the subspace for the forward simulation. The
performance of the fully reduced parameter identification is compared to the per-
formance of the non-reduced parameter identification method.
As the linear adjoint equations are of good nature (in a computational sense), the
numerical effort to solve this set of equations is small. Hence, the overall time-
saving is dominated by the reduced forward simulation. The computation of the
reduced adjoint system enhances the simulation time saving only slightly.
As for any model order reduction its quality and validity is only as good as the
system information contained in the basis vectors which span the reduction sub-
space. Hence, crucial changes in the system configuration must be detected and
handled. One possibility to handle this is to compute the original MBS from time
to time and check the validity of the reduced order model. Still, the question of
how to automatically detect the switch from a meaningful reduced subspace to a
useless one remains open.
Finally, as already mentioned in the preceeding chapter, the time benefit gained
by the model reduction procedure may be overridden by the Scilab scripting envi-
ronment.
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Figure 6.1: Cart-Pendulum chain
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Figure 6.2: Time history of the left cart - Cart-pendulum chain
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Figure 6.3: Time history of the right cart - Cart-pendulum chain
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Figure 6.4: Time history of the first pendulum - Cart-pendulum chain

124



6.1. Parameter Identification utilizing the Adjoint Method

0 102 4 6 8 12 14 16

0

−0.1

0.1

−0.05

0.05

Figure 6.5: Time history of the fifth pendulum - Cart-pendulum chain
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Figure 6.6: Translational velocity coordinate POVs - Cart-pendulum chain
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6.1. Parameter Identification utilizing the Adjoint Method
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Figure 6.7: Rotational velocity coordinate POVs - Cart-pendulum chain
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Figure 6.8: Constraint singular values - Cart-pendulum chain
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6.1. Parameter Identification utilizing the Adjoint Method
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Figure 6.9: Cost Function decay - Cart-pendulum chain
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Figure 6.10: Pendula damping parameter variation - Cart-pendulum chain
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6.1. Parameter Identification utilizing the Adjoint Method
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Figure 6.11: Pendula mass parameter variation - Cart-pendulum chain
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Figure 6.12: Cart mass parameter variation - Cart-pendulum chain
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6.1. Parameter Identification utilizing the Adjoint Method
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Figure 6.13: Relative position error of the left cart - Cart-pendulum chain
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Figure 6.14: Relative angular error of the first pendulum - Cart-pendulum chain
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CHAPTER 7
Conclusion

The intention of this dissertation was to derive an efficient model order reduction
approach to redundantly formulated general flexible multibody systems.
Due to the highly nonlinear state and time dependent character of the MBS, a
data-driven model order reduction approach was chosen. Consequently, such a
MOR method is meaningful in the context of repetitive simulation tasks, like pa-
rameter identification or design studies. Two circumstances, which evolve from the
redundant formulation, are considered as crucial in terms of MOR: (1) the number
of DOFs (and therefore differential equations) is typically larger than actually nec-
essary, and (2) due to the redundant formulation, algebraic constraint equations,
which describe the inter-DOF behavior of the MBS, have to be considered.
The herein derived model order reduction approach may be split into (a) the task
of how to reduce the number of physical coordinates (DOFs) and (b) the task of
how to reduce the number of algebraic equations (constraints).
Concerning the reduction of physical coordinates, the derived approach is based
on a special set of POD modes, which is built from velocity coordinate data. The
physical coordinate reduction matrix consists of POD submatrices, which are gen-
erated for translational, rotational and flexible DOF data separately. Therefore,
the derived approach accounts for different snapshot scales evolving from e.g. small
valued coordinates as in the case of Eulerparameters. Although the focus was not
put on the question how to implement FEM bodies, the modal basis of flexible
bodies is checked and, if necessary/possible, reduced. In order to overcome initial
value issues the projection is expanded by a residual vector.
It has been shown, that the reduction of constraint equations is crucial to ensure
the ROM to be determined and non-singular. By not reducing the constraint
equations, as suggested in the literature [30], the resulting ROM could be overde-
termined. This is the case if the number of reduced physical coordinates is smaller
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than the number of algebraic constraint equations. As the physical coordinate
POD subspace encloses constraint information, it spans at least a partially orthog-
onal subspace to the constraint equations. These constraint equations introduce
redundant information to the ROM, and hence, have to be removed. To this
end, a constraint reduction approach based on the principal component analysis
has been developed. The reduced constraint Jacobian is investigated on its unique
constraints, resulting in a unique-constraint-subspace. In order to ensure the ROM
to be determined, the constraints and the constraint Jacobian are then projected
onto this subspace.
It should be noted that the level of reduction is highly case sensitive. The level
of reduction varies between 50% and 90% for the presented numerical examples.
It was also shown that the approach is basically even able to reduce the set of
redundant coordinates to the minimal set of coordinates.
It must be stated that the constraint forces of the ROM are no longer comparable
to the original system, although the reduced order models show high consistency
in the system states. Therefore, the method is not suitable to deliver the same
joint reaction forces as the original MBS model. Hence, FEM simulations based
on these joint reaction forces are to be handled with care. Moreover, the overall
accuracy of the reduced order models is closely related to the processed snapshots.
The used projection space may become insufficient in cases with critically changing
excitation directions or model parameters. In such a case, it will become necessary
to collect a new set of snapshots, renewing the reduction subspace and the set of
unique constraints. This becomes especially important in terms of the presented,
reduced parameter identification.
In conclusion, due to the derived MOR method the set of DAEs is reducible in
its number of differential and algebraic equations. Furthermore, in terms of the
reduced parameter identification the adjoint system is also reducible, utilizing the
same reduction subspace. The simulation of a ROM takes less computational effort,
and offers a considerable saving in coordinates and simulation time.
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Appendix

crankshaft

value/direction unit

mcrank 9.5 [kg]
PAIx (1, 0, 0) [−]
PAIy (0, 1, 0) [−]
PAIz (0, 0, 1) [−]
Ix 0.015 [kg ·m2]
Iy 0.128 [kg ·m2]
Iz 0.138 [kg ·m2]

PAI Principal Axis of Inertia
in the global coordinate system

connecting rod (1st cyl.) piston (1st cyl.)

value/direction unit value/direction unit

mcon rod 0.9 [kg] mpiston 0.7 [kg]
PAIx (0, 0.571, 0.821) [−] PAIx (1, 0, 0) [−]
PAIy (0,−0.821, 0.571) [−] PAIy (0, 0.71,−0.71) [−]
PAIz (1, 0, 0) [−] PAIz (0, 0.71, 0.71) [−]
Ix 0.00031 [kg ·m2] Ix 0.00066 [kg ·m2]
Iy 0.0031 [kg ·m2] Iy 0.00068 [kg ·m2]
Iz 0.0033 [kg ·m2] Iz 0.00068 [kg ·m2]

Table 1: Physical properties - V8 crank drive
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value unit

Tidle 20 [N ·m]
Tpeak 200 [N ·m]
dcrank,rot 500 [N ·m · s]

Table 2: Forces/torques - V8 crankshaft

value unit

f1 60.9 [Hz] f16 2141.3 [Hz]
f2 247.9 [Hz] f17 2498.4 [Hz]
f3 317.5 [Hz] f18 2651.6 [Hz]
f4 375.1 [Hz] f19 2879.5 [Hz]
f5 393.2 [Hz] f20 3063.2 [Hz]
f6 696.6 [Hz] f21 3233.2 [Hz]
f7 894.7 [Hz] f22 3335.9 [Hz]
f8 1022.9 [Hz] f23 3780.0 [Hz]
f9 1092.8 [Hz] f24 4294.9 [Hz]
f10 1206.8 [Hz] f25 4518.2 [Hz]
f11 1379.9 [Hz] f26 4985.1 [Hz]
f12 1651.7 [Hz] f27 5117.6 [Hz]
f13 1838.1 [Hz] f28 5267.9 [Hz]
f14 1952.8.1 [Hz] f29 5627.28 [Hz]
f15 2006.8 [Hz] f30 5718.3 [Hz]

Table 3: Eigenfrequencies of the flexible lower wishbone - Partially flexible front
suspension
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value unit

f1 564.3 [Hz] f14 7260.6 [Hz]
f2 565.0 [Hz] f15 7277.75 [Hz]
f3 1510.8 [Hz] f16 8437.1 [Hz]
f4 1517.9 [Hz] f17 9441.3 [Hz]
f5 2791.0 [Hz] f18 9530.3 [Hz]
f6 2819.3 [Hz] f19 9738.1 [Hz]
f7 3094.7 [Hz] f20 10126.1 [Hz]
f8 4217.7 [Hz] f21 10132.8 [Hz]
f9 4277.6 [Hz] f22 10168.9 [Hz]
f10 4969.5 [Hz] f23 10539.5 [Hz]
f11 5684.1 [Hz] f24 11515.1 [Hz]
f12 5752.9 [Hz] f25 11698.1 [Hz]
f13 5958.0 [Hz] f26 12359.6 [Hz]

Table 4: Eigenfrequencies of the flexible pushrod - Partially flexible front suspen-
sion
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steering knuckle steering rod

value/direction unit value/direction unit

m 4.4 [kg] m 0.4 [kg]
PAIx (0.86, 0.37, 0.33) [−] PAIx (0.02, 0.99,−0.03) [−]
PAIy (0.44,−0.27,−0.84) [−] PAIy (0.83, 0.0, 0.55) [−]
PAIz (−0.22, 0.88,−0.40) [−] PAIz (0.55,−0.04,−0.83) [−]
Ix 0.014 [kg ·m2] Ix 0.00048 [kg ·m2]
Iy 0.030 [kg ·m2] Iy 0.0055 [kg ·m2]
Iz 0.035 [kg ·m2] Iz 0.0055 [kg ·m2]

lower wishbone upper wishbone

value/direction unit value/direction unit

m 1.68 [kg] m 1.07 [kg]
PAIx (1, 0, 0) [−] PAIx (−0.50, 0.85,−0.03) [−]
PAIy (0, 1, 0) [−] PAIy (−0.85,−0.50, 0.10) [−]
PAIz (0, 0, 1) [−] PAIz (0.06, 0.08, 0.99) [−]
Ix 0.050 [kg ·m2] Ix 0.016 [kg ·m2]
Iy 0.030 [kg ·m2] Iy 0.026 [kg ·m2]
Iz 0.00060 [kg ·m2] Iz 0.042 [kg ·m2]

pushrod relay lever

value/direction unit value/direction unit

m 0.58 [kg] m 1.1 [kg]
PAIx (1, 0, 0) [−] PAIx (0.49, 0.57, 0.64) [−]
PAIy (0, 1, 0) [−] PAIy (−0.81, 0.57, 0.11) [−]
PAIz (0, 0, 1) [−] PAIz (−0.30,−0.58, 0.75) [−]
Ix 0.012 [kg ·m2] Ix 0.0021 [kg ·m2]
Iy 0.0036 [kg ·m2] Iy 0.0036 [kg ·m2]
Iz 0.0094 [kg ·m2] Iz 0.0056 [kg ·m2]

Table 5: Physical properties - Partially flexible front suspension
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value unit

cspring 80000 [N/m]
dspring 0.1 [N ·m · s]

Table 6: Forces/torques - Partially flexible front suspension
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frame battery

value/direction unit value/direction unit

m 11.3 [kg] m 2.2 [kg]
PAIx (0.98, 0.0,−0.21) [−] PAIx (0, 1, 0) [−]
PAIy (−0.21, 0.0,−0.98) [−] PAIy (1, 0, 0) [−]
PAIz (0.0, 1.0, 0.0) [−] PAIz (0, 0, 1) [−]
Ix 0.197 [kg ·m2] Ix 0.0039 [kg ·m2]
Iy 0.339 [kg ·m2] Iy 0.0039 [kg ·m2]
Iz 0.475 [kg ·m2] Iz 0.005 [kg ·m2]

front wheel rear wheel

value/direction unit value/direction unit

m 4.4 [kg] m 4.4 [kg]
PAIx (0.31, 0.0,−0.95) [−] PAIx (1, 0, 0) [−]
PAIy (−0.95, 0.0,−0.31) [−] PAIy (0, 0, 1) [−]
PAIz (0.0, 1, 0.0) [−] PAIz (0,−1.0) [−]
Ix 0.072 [kg ·m2] Ix 0.072 [kg ·m2]
Iy 0.072 [kg ·m2] Iy 0.072 [kg ·m2]
Iz 0.140 [kg ·m2] Iz 0.140 [kg ·m2]

swing arm rider dummy

value/direction unit value/direction unit

m 4.0 [kg] m 30 [kg]
PAIx (0.96,−0.0, 0.26) [−] PAIx (1, 0, 0) [−]
PAIy (−0,−1, 0) [−] PAIy (0, 1, 0) [−]
PAIz (0.27, 0.0, 0.96) [−] PAIz (0, 0, 1) [−]
Ix 0.011 [kg ·m2] Ix 0.5 [kg ·m2]
Iy 0.036 [kg ·m2] Iy 0.6 [kg ·m2]
Iz 0.044 [kg ·m2] Iz 0.2 [kg ·m2]

Table 7: Physical properties part 1 - Electrical junior dirtbike
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shock prt.1 shock prt.2

value/direction unit value/direction unit

m 0.49 [kg] m 0.15 [kg]
PAIx (0.74, 0.0, 0.67) [−] PAIx (0.74, 0.0, 0.67) [−]
PAIy (0,−1, 0) [−] PAIy (0.67, 0.0,−0.74) [−]
PAIz (0.67, 0.0, 0.74) [−] PAIz (0.1.0) [−]
Ix 0.0001 [kg ·m2] Ix 0.00002 [kg ·m2]
Iy 0.00018 [kg ·m2] Iy 0.00009 [kg ·m2]
Iz 0.00018 [kg ·m2] Iz 0.00009 [kg ·m2]

fork prt.1 fork prt.2

value/direction unit value/direction unit

m 2.7 [kg] m 2.4 [kg]
PAIx (−0.17, 0.0, 0.98) [−] PAIx (−0.30, 0.0, 0.96) [−]
PAIy (0,−1, 0) [−] PAIy (0,−1, 0) [−]
PAIz (0.98, 0.0, 0.17) [−] PAIz (0.95, 0.0, 0.3) [−]
Ix 0.043 [kg ·m2] Ix 0.0081 [kg ·m2]
Iy 0.057 [kg ·m2] Iy 0.021 [kg ·m2]
Iz 0.098 [kg ·m2] Iz 0.028 [kg ·m2]

Table 8: Physical properties part 2 - Electrical junior dirtbike

value unit

cshock 50000 [N/m]
dshock 1000 [N ·m · s]
cfork 8000 [N/m]
dfork 1000 [N ·m · s]
ctestbench 50000 [N/m]
dtestbench 500 [N ·m · s]

Table 9: Forces/torques - Electrical junior dirtbike
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value unit value unit

mC1,initial 2.3 [kg] k2 1000 [N/m]
mC1,target 2.12 [kg] JC1 = JC2 0.02 [kg m2]
mC2 4.6 [kg] JP 1 = ... = JP 8 0.00079 [kg m2]
mP 1,initial = ... = mP 4,initial 0.12 [kg] lP 1 = ... = lP 8 0.22 [m]
mP 1,target 0.15 [kg] dP 1,initial = ... = dP 4,initial 0.2 [Nms]
mP 2,target 0.2 [kg] dP 1,target 0.25 [Nms]
mP 3,target 0.19 [kg] dP 2,target 0.17 [Nms]
mP 4,target 0.17 [kg] dP 3,target 0.24 [Nms]
mP 5 = ... = mP 8 0.12 [kg] dP 4,target 0.16 [Nms]
k1 1000 [N/m] dP 5 = ... = dP 8 0.2 [Nms]

Table 10: Cart-Pendulum chain - model data
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