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A B S T R A C T

Kinematic laser scanning is a widely-used surveying technique based on light detection and ranging (LiDAR)
that enables efficient data acquisition by mounting the laser scanner on a moving platform. In order to
obtain a georeferenced point cloud, the trajectory of the moving platform must be accurately known. To
this end, most commercial laser scanning systems comprise an inertial measurement unit (IMU) and a global
navigation satellite system (GNSS) receiver and antenna. Trajectory estimation is then the task of determining
the platform’s position and orientation by integrating measurements from the IMU, GNSS, and possibly the laser
scanner itself. Here, we present a comprehensive approach to trajectory estimation for kinematic laser scanning,
based on batch least-squares adjustment incorporating pre-processed GNSS positions, raw IMU data and plane-
based LiDAR correspondences in a single estimation procedure. In comparison to the classic workflow of
Kalman filtering followed by strip adjustment, this is a holistic approach with tight coupling of IMU and
LiDAR. For the latter, we extend the data-derived stochastic model for the LiDAR plane observations with
prior knowledge of the LiDAR measurement process. The proposed trajectory estimation approach is flexible
and allows different system configurations as well as joint registration of multiple independent kinematic
datasets. This is demonstrated using as a practical example a combined dataset consisting of two independent
data acquisitions from crewed aircraft and uncrewed aerial vehicle. All measurements from both datasets are
jointly adjusted in order to obtain a single high-quality point cloud, without the need for ground control. The
performance of this approach is evaluated in terms of point cloud consistency, precision, and accuracy. The
latter is done by comparison to terrestrially surveyed reference data on the ground. The results show improved
consistency, accuracy, and precision compared to a standard workflow, with the RMSE reduced from 7.43 cm
to 3.85 cm w.r.t. the reference data surfaces, and the point-to-plane standard deviation on the surfaces reduced
from 3.01 cm to 2.44 cm. Although a direct comparison to the state-of-the-art can only be made with caution,
we can state that the suggested method performs better in terms of point cloud consistency and precision,
while at the same time achieving better absolute accuracy.
1. Introduction

Kinematic laser scanning is a standard surveying technique, allow-
ing for efficient acquisition of highly accurate 3D point clouds. Laser
scanning is based on measuring the range to a target via light detection
and ranging (LiDAR), while simultaneously varying the direction of
the laser beam. Laser scanning measurements are thus made in polar
coordinates (range and one or two angles), which are then trans-
formed into scanner-referenced Cartesian coordinates. In kinematic
laser scanning, the laser scanner is mounted on a moving carrier
platform (e.g., car, drone, or airplane). The platform’s motion must
be accounted for in order to reference the point cloud to a well-
defined earth-fixed coordinate system. This requires knowledge of the
platform trajectory (position and orientation over time), which may be
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obtained by integrating data from auxiliary navigation systems. Almost
all survey-grade kinematic mapping systems therefore comprise at least
a global navigation satellite system (GNSS) receiver/antenna and an
inertial measurement unit (IMU). These technologies complement each
other, as GNSS provides absolute positioning and the IMU provides
relative position and orientation through strap-down inertial naviga-
tion. Inertial sensors suffer from time-varying measurement errors,
which result in drift in the trajectory if not properly accounted for.
Some errors may be compensated in-run by fusing the IMU and GNSS
measurements in a Kalman filter. Depending on the platform motion
and the characteristics of the sensors involved, the resulting trajectory
often still contains significant errors. These errors manifest in the point
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clouds as discrepancies in areas which are scanned multiple times, and
as discrepancies w.r.t. reference data.

1.1. Related & previous work

The industry standard for kinematic data processing in surveying is
Kalman filtering of GNSS/IMU data, followed by an integrated sensor
orientation (Toth and Jóźków, 2016), specifically bundle adjustment
in photogrammetry or strip adjustment in laser scanning. In a bundle
or strip adjustment the imaging sensor data is used, possibly together
with ground control, to improve the sensor orientation. Building on
stand-alone strip adjustment and bundle adjustment approaches, hybrid
approaches combine LiDAR and camera measurements in a single
adjustment (e.g., Glira et al., 2019; Jonassen et al., 2023). This cor-
responds to a tight coupling of camera and laser scanning data. Recent
works have presented holistic integration methods, incorporating the
laser scanning data into the trajectory estimation, thereby simultane-
ously estimating the trajectory and system calibration with the goal
of improving point cloud quality. In such approaches, all available
measurements are incorporated into a single estimation procedure.
This integrated approach to sensor fusion has recently seen increasing
use, especially in robotics (e.g., Chang et al., 2019; Beuchert et al.,
2023), but also in remote sensing. Here, it has been successfully ap-
plied to bundle adjustment (Cucci et al., 2017b) and airborne laser
scanning (Brun et al., 2022; Mouzakidou et al., 2024).

The term trajectory estimation refers here to all such methods that
attempt to recover position and orientation from noisy measurements.
Pöppl et al. (2023b) gives an overview of trajectory estimation methods
and establishes a common framework for different approaches. It is
instructive to differentiate trajectory estimation methods on the basis
of (a) trajectory model and (b) estimation procedure. The trajectory is
often parametrized discretely, with position and orientation provided
at given points in time (epochs). In this case, the state needs to be
ither estimated for each measurement time, or suitably interpolated.
ecently, continuous-time representations have gained traction due to

heir inherent interpolation capability (Furgale et al., 2015; Cioffi et al.,
022). As a continuous-time function, the trajectory can be evaluated at
ny given time therefore allowing straightforward integration of asyn-
hronous measurements. Two main types of continuous-time trajectory
epresentations are Gaussian process-based models and spline-based
odels, a comparison of which is given in Johnson et al. (2024).
ere, we use spline-based continuous-time trajectories. In addition

o being continuous, higher-order splines are also differentiable al-
owing the analytic computation of acceleration and angular velocity
s required for forming the inertial measurement equations. The es-
timation itself may be performed sequentially or in batch, i.e., using
filtering or optimization-based approaches. On the one hand, filters
process measurements sequentially, and these measurements are used
epoch-by-epoch to update the estimated parameters. Filters may be
run forwards and backwards to obtain a smoothed estimate incor-
porating both past and future information. For non-linear problems,
this is generally not optimal as the linearization is consequently also
only performed sequentially. On the other hand, one may consider
all epochs simultaneously. Specifically, the estimation is posed as a
Bayesian maximum a-posteriori (MAP) problem (cf. Barfoot, 2017).
Assuming Gaussian errors, this further simplifies to a batch non-linear
least-squares (NLS) problem. In this case, linearization is performed
iteratively and repeatedly for all epochs, thus reducing linearization
errors (cf. Strasdat et al., 2012). The drawback is the drastically in-
creased computational effort, as the batch approach involves repeated
solving of very large systems of equations. For some applications, the
size of the system can quickly become prohibitive. Performance may
be improved by employing IMU pre-integration (Forster et al., 2015)
to reduce the number of measurements, and by selectively marginal-
izing certain parameters in a sliding-window (Lv et al., 2023) or key
63

frame approach (Leutenegger et al., 2015) to reduce the number of 2
parameters which are optimized simultaneously. For continuous-time
trajectories, Lv et al. (2021) propose a hybrid approach where the
trajectory is locally parametrized by splines, but global optimization
is performed only for selected keyframe poses.

These techniques are popular in simultaneous localization and map-
ping (SLAM), where runtime efficiency is paramount due to limited
available computational resources and the inherent requirements for
near real-time processing. However, both pre-integration and marginal-
ization trade off accuracy in return for processing speed. Generally,
above-mentioned SLAM approaches focus on typical robotics platforms
(e.g., handheld devices, wheeled robots, cars or small multicopters
and consumer- or industrial-grade sensors). Here, in contrast to SLAM
techniques, we explicitly target post-processing workflows, mapping
applications with cm-level accuracy requirements, and the platforms
typically used in this context (e.g., larger uncrewed aerial vehicles or
crewed fixed-wing aircraft together with survey-grade laser scanners
and navigation sensors).

To this end, we propose a holistic methodology for GNSS/IMU/
LiDAR-based trajectory estimation, which aims to be rigorous in terms
of modelling, yet flexible in terms of application. Through formulation
of all measurement equations within a common adjustment framework,
it is easily adapted to various system configurations and different
combinations of sensors. Our approach is based on tight coupling of
LiDAR and IMU, with loose coupling of GNSS. Integration of raw GNSS
code and carrier-phase measurements in a similar fusion architecture
has also been demonstrated (Li et al., 2023), but this significantly
increases model complexity and computational effort. While the loose
coupling is less robust to signal outages and possibly less accurate
than tightly coupled GNSS, it is significantly less complex and through
decoupling of the GNSS processing allows usage of different existing
GNSS processing software and processing strategies (RTK, PPK, PPP).

The pre-processed GNSS position measurements are incorporated in
a single model, together with raw measurements from the IMU, and
LiDAR-derived geometric measurements (see Fig. 1). The differences
between modelled measurements and observed measurements are min-
imized in a MAP-derived NLS estimation. This is done globally, i.e., for
the full batch of parameters with no marginalization of parameters. No
IMU pre-integration is used, because we require the trajectory at the
highest possible frequency in order to accurately represent all trajectory
dynamics, including vibrations. Any unresolved vibrations would imply
trajectory errors, and through georeferencing these errors propagate
and negatively impact the quality of the point cloud.

Various applications have already been demonstrated for different
use cases with different sensor configurations, from mobile (Pöppl
et al., 2023d,e), to airborne (Pöppl et al., 2023a,c; Mandlburger et al.,
2023a,b) laser scanning. Compared to a traditional georeferencing
workflow of Kalman filtering followed by strip adjustment, the flexi-
bility of the proposed method stems from the formulation of all ob-
servations as measurements with additive errors.1 Together with the
continuous-time trajectory model, this allows a combined adjustment of
data from different sensors with possibly asynchronous measurements,
including multi-GNSS, multi-IMU or multi-scanner set-ups. Also, data
acquisitions from multiple independent platforms can be rigorously
co-registered in one joint trajectory estimation.

1.2. Main contributions

In this article, we present the methodology itself and provide func-
tional and stochastic models for GNSS, IMU and LiDAR measurements,
including both instantaneous and integrated IMU measurements, sup-
port for dynamic GNSS lever-arms (e.g., for usage with gyro stabi-
lization or gimbal mounts), and with improved stochastic modelling

1 Kalman filter-based GNSS/IMU integration usually treats the IMU mea-
urements as input in the process model. Strip adjustment (e.g., Glira et al.,
016) then considers only the LiDAR-derived observations in a separate step.
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Fig. 1. Proposed trajectory estimation workflow.
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f LiDAR-derived tie-plane observations. We extend the results from
revious work and demonstrate a multi-platform adjustment approach
or a combined ALS (airborne laser scanning) and ULS (uncrewed or
nmanned laser scanning) dataset. Accuracy, precision and the impact of
he LiDAR stochastic model are evaluated through analysis of strip dif-
erences and through comparison to independent terrestrially surveyed
eference data on the ground.

Apart from the unified presentation of the estimation problem and
easurement equations, the methodological contributions of this ar-

icle are thus (1) tightly-coupled co-registration of kinematic laser
canning data from multiple platforms and without ground control,
nd (2) stochastic modelling of the LiDAR plane observations based on
iDAR measurement characteristics.

The rest of this paper is structured as follows: Section 2 presents the
nderlying methodology, including a brief mathematical background,
etails on the trajectory model and the measurement equations, and a
iscussion on numerical aspects. Section 3 then introduces the practical
xample, the specific structure of the multi-platform trajectory estima-
ion and the processing workflow, and then analyses the results in terms
f point cloud accuracy, precision, and consistency. Finally, a summary,
oncluding remarks and outlook are given in Section 4.

. Methodology

.1. Generic estimation methodology

The sensor fusion approach presented here was developed specifi-
ally for fusion of GNSS, IMU and LiDAR data. This is the primary focus
f this work, but the estimation problem may be posed in a generic
ay (Pöppl et al., 2023b); similar methodology has also been used with
ifferent sensors (e.g., camera, odometer). The statistical framework is
aximum a-posteriori estimation (MAP), where GNSS, IMU and LiDAR
easurements are considered simultaneously, and all parameters are

stimated jointly.
Consider the goal of estimating unknown parameters 𝒙 ∈ R𝑛 from

𝑚 noisy measurements 𝒚 ∈ R𝑚. The true values 𝒚 are modelled as a
function of the unknown parameters 𝒙, so that

𝒚 ∶= 𝑓 (𝒙), (2.1)

and the measurements 𝒚 ∶= 𝒚 + 𝝐 are 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 of the modelled true
alue tainted by an additive measurement error

𝒚
⏟⏟⏟
easurement

= 𝑓 (𝒙)
⏟⏟⏟
model

+ 𝝐
⏟⏟⏟

error

.
(2.2)

f the conditional probability density function 𝑝(𝒚|𝒙) is known, this
llows inference based on the posterior 𝑝(𝒙|𝒚), i.e., the probability

density of the parameters 𝒙 given the measurements 𝒚. Using Bayes
theorem, the posterior density is written as

𝑝(𝒙|𝒚) =
𝑝(𝒚|𝒙)𝑝(𝒙)

, (2.3)
64

𝑝(𝒚)
where the a-priori density 𝑝(𝒙) contains any prior knowledge (belief)
about 𝒙. The maximum a-posteriori (MAP) estimate 𝒙∗MAP is obtained by
maximizing the posterior density 𝑝( ⋅ , 𝒚)

𝒙∗MAP = argmax
𝒙

𝑝(𝒙|𝒚) (2.4)

= argmax
𝒙

𝑝(𝒚|𝒙)𝑝(𝒙)
𝑝(𝒚)

(2.5)

= argmax
𝒙

𝑝(𝒚|𝒙)𝑝(𝒙). (2.6)

he parameters obtained by MAP estimation are thus the mode of the
osterior density, in other words the parameters 𝒙 most likely given

the measurements 𝒚. Under the assumption of Gaussian measurement
errors, the MAP estimate is identical to the non-linear least squares
(NLS) estimate. Gaussian priors in the MAP framework may be included
as additional observations in the NLS formulation. For Gaussian errors
with zero mean and variance 𝜮, the NLS estimator 𝒙∗NLS is given by

𝒙∗NLS = argmin
𝒙

(𝒚 − 𝑓 (𝒙))𝑇 𝜮−1 (𝒚 − 𝑓 (𝒙)). (2.7)

n our specific problem, we assume that the full measurement vector 𝒚
s partitionable into 𝑘 individual measurements (𝒚𝑖)𝑘𝑖=1 = (𝒚1, 𝒚2,… , 𝒚𝑘)
ith 𝒚𝑖 ∈ R𝑚𝑖 , 𝑖 ∈ 1,… , 𝑘 and

𝑖 = 𝑓𝑖(𝒙), 𝑖 ∈ 1,… , 𝑘. (2.8)

urther assuming the respective errors 𝝐𝑖 = 𝒚𝑖 − 𝒚𝑖 are uncorrelated
ith V(𝝐𝑖, 𝝐𝑗 ) = 𝟎, 𝑖 ≠ 𝑗 and V(𝝐𝑖) = 𝜮𝑖, the NLS estimator 𝒙∗NLS is
btained by minimizing the sum of squared residuals (SSR) over all 𝑘
easurements
∗
NLS = argmin

𝒙
SSR(𝒙)

= argmin
𝒙

𝑘
∑

𝑖=1
(𝒚𝑖 − 𝑓𝑖(𝒙))𝑇 𝜮−1

𝑖 (𝒚𝑖 − 𝑓𝑖(𝒙)).
(2.9)

he relations 𝑓𝑖 are referred to as the functional model, and the co-
ariances 𝜮𝑖 = V(𝝐𝑖) of the zero-mean errors 𝝐𝑖 as the stochastic
model.

Based on the above abstract problem description, we now present
the specific functional and stochastic models for trajectory estimation
using GNSS, IMU and LiDAR data. In this estimation, all parameters are
jointly estimated: the platform position and orientation, IMU biases and
scale factors, GNSS antenna lever-arms, LiDAR mounting parameters,
and object parameters that model the physical environment.

2.2. Coordinate systems and transformations

Following Groves (2013), a coordinate system 𝛼 refers to coor-
dinates 𝒙𝛼 = (𝑩𝛼)𝑇 𝒙 of a vector 𝒙 ∈ R3 w.r.t. the orthonormal,
right-handed basis 𝑩𝛼 =

(

𝑏𝛼1 , 𝑏
𝛼
2 , 𝑏

𝛼
3
)

∈ SO(3) of a corresponding three-
dimensional Cartesian frame with origin 𝒐𝛼 ∈ R3, where R3 is itself
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Fig. 2. The coordinate systems of the sensor platform components. Here, the body
oordinate system is identical to the IMU coordinate system. This simplification is not
ecessary, but any transformation between 𝑏- and 𝑠-system is required to be rigid.

nterpreted as Cartesian frame with canonical basis and origin 𝒐 = 𝟎.
he frames 𝛼, 𝛽 and 𝛾 are related by
𝛾
𝛽𝛼 ∶= (𝑩𝛾 )𝑇 (𝒐𝛼 − 𝒐𝛽 ) the position of frame or

point 𝛼 w.r.t. frame 𝛽,
resolved in frame 𝛾, and

𝛽
𝛼 ∶= 𝑩𝛽 (𝑩𝛼)𝑇 the rotation from 𝛼-frame

to 𝛽-frame.

he coordinate systems used are:
• 𝑖 . . . earth-centered inertial coordinate system,
• 𝑒 . . . earth-centered, earth-fixed coordinate system,
• 𝑚 . . . mount coordinate system,
• 𝑏 . . . body coordinate system,
• 𝑠 . . . inertial sensor coordinate system,
• 𝑙 . . . laser scanner coordinate system.

The body coordinate system is in our case in reference to the
aser scanner system body, not the platform itself (see Fig. 2). A
ount coordinate system is explicitly introduced here, rigid w.r.t. the
latform, in order to allow modelling a gimbal or gyro stabilization
ount. When the laser scanner system (including the IMU) is mounted

n a stabilization mount, the platform’s rotating motion is partially
ompensated for, but the 𝑚-system’s orientation changes w.r.t. the 𝑏-,
- and 𝑙- systems and as a consequence the GNSS antenna is subject to
ynamic motion relative to the body coordinate system. Note that the
ector from body origin to mount origin 𝒙𝑏𝑏𝑚 is constant, as the origin
f the 𝑚-system is exactly the centre of rotation for 𝑹𝑏

𝑚.
For ease of presentation, we use only one earth-fixed system. In

ractical application, this system would be replaced by a local Cartesian
oordinate system to keep the coordinate values reasonably small.
nless otherwise specified, vectors 𝒙 without a superscript will refer

o geo-referenced coordinates in the 𝑒-system.

.3. Trajectory model

For the purpose of processing and georeferencing the imaging sen-
or measurements, the platform trajectory is required at least for the
ime of each LiDAR measurement or camera exposure. Since trajec-
ory data is commonly available as timestamped discrete samples, it
s accordingly interpolated to obtain position and orientation for all
easurements. Here, instead of such a discrete representation, the

rajectory of the sensor platform is modelled using standard Euclidean
-splines (de Boor, 1980) in R3 for position, and rotation B-splines in
O(3) ⊆ R3×3 for orientation (Kim et al., 1995).

The use of rotation B-splines instead of, e.g., Euler-angle B-splines
s advantageous as they are gimbal-lock- and singularity-free (cf. Haar-
ach et al., 2018), and invariant to coordinate system changes (Sommer
t al., 2016). For a time interval [𝑡𝑥, 𝑡𝑥 ] containing 𝑛 nodes ordered by
65

1 𝑛𝑥 𝑥
time 𝑡𝑥1 < 𝑡𝑥2 < ⋯ < 𝑡𝑥𝑛𝑥 , the Euclidean position B-spline 𝒙𝑒𝑒𝑏(𝑡) of degree
𝑥 is defined by
𝑒
𝑒𝑏(𝑡) ∶ [𝑡𝑥1 , 𝑡

𝑥
𝑛𝑥
] → R3

𝑡 ↦
𝑛𝑥+𝑘𝑥−1
∑

𝑖=1
𝒙𝑖𝐵𝑥

𝑖 (𝑡),
(2.10)

ith coefficients 𝒙𝑖 ∈ R3 and basis functions 𝐵𝑥
𝑖 , 1 ≤ 𝑖 ≤ 𝑛𝑥 + 𝑘𝑥 − 1.

imilarly, for a time interval [𝑡𝑅1 , 𝑡
𝑅
𝑛𝑅
] containing 𝑛𝑅 nodes with 𝑡𝑅1 <

𝑅
2 < ⋯ < 𝑡𝑅𝑛𝑅 , the rotation B-spline 𝑹𝑏

𝑒 of degree 𝑘𝑅 is defined by

𝑏
𝑒(𝑡) ∶ [𝑡𝑅1 , 𝑡

𝑅
𝑛𝑅
] → SO(3)

𝑡 ↦ 𝑹0

𝑛𝑅+𝑘𝑅−1
∏

𝑖=2
exp(log(𝑹𝑇

𝑖−1𝑹𝑖)�̃�𝑅
𝑖 (𝑡)),

(2.11)

ith coefficients 𝑹𝑖 ∈ SO(3), 1 ≤ 𝑖 ≤ 𝑛𝑅 + 𝑘𝑅 − 1. The cumulative basis
functions �̃�𝑅

𝑖 are obtained by summing up each basis function 𝐵𝑅
𝑖 and

all following basis functions (𝐵𝑅
𝑗 )𝑗>𝑖

�̃�𝑅
𝑖 (𝑡) ∶=

𝑛𝑅+𝑘𝑅−1
∑

𝑗=𝑖
𝐵𝑅
𝑗 (𝑡), 1 ≤ 𝑖 ≤ 𝑛𝑅 + 𝑘𝑅 − 1. (2.12)

he first cumulative basis function does not appear in Eq. (2.11),
ecause the B-splines form a partition of unity on [𝑡𝑅1 , 𝑡

𝑅
𝑛𝑅
] and therefore

̃𝑅
1 =

∑𝑛𝑅+𝑘𝑅−1
𝑖=1 𝐵𝑅

𝑖 ≡ 1.
The functions exp and log in Eq. (2.11) are the exponential and

ogarithmic maps between R3 and SO(3). The exponential exp ∶ R3 →
O(3) ⊂ R3×3 maps a vector 𝝎 to the corresponding rotation matrix,
hich represents a rotation of angle ‖𝝎‖ around the axis 𝝎

‖𝝎‖ . It is a
composition of the hat operator [ ⋅ ]∧ ∶ R3 → R3×3

[𝝎]∧ =
⎛

⎜

⎜

⎝

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

⎞

⎟

⎟

⎠

. (2.13)

and the matrix exponential. The inverse of the hat operator [ ⋅ ]∧
s denoted by [ ⋅ ]∨ ∶

[

R3]
∧ ⊆ R3×3 → R3. While the above describes

bstract rotation splines in SO(3), in practice unit quaternions are used
o compactly and efficiently represent the rotations 𝑹𝑖.

The locality of classical B-splines carries over to the cumulative
ormulation: when B-splines of degree 𝑘 are chosen as basis functions
𝐵𝑥
𝑖 and 𝐵𝑅

𝑖 , all but 𝑘+1 terms in the sum and product above vanish. The
B-splines provide a continuous-time representation of the trajectory,
which may be evaluated at any measurement time. For a given spline
degree 𝑘, the spline trajectory is 𝑘−1 times continuously differentiable.
Derivatives of position and orientation are required to compute the
inertial measurement predictions. Thus, the spline degree must be
high enough to allow computing the required derivatives. Velocity
and acceleration are obtained simply by linear combination of the
derivatives of the respective basis functions

�̇�𝑒𝑒𝑏(𝑡) =
𝑛𝑥+𝑘𝑥−1
∑

𝑖=1
𝒙𝑖�̇�𝑥

𝑖 (𝑡),

�̈�𝑒𝑒𝑏(𝑡) =
𝑛𝑥+𝑘𝑥−1
∑

𝑖=1
𝒙𝑖�̈�𝑥

𝑖 (𝑡).

(2.14)

or computing the B-spline basis functions 𝐵𝑥
𝑖 , 𝐵

𝑅
𝑖 and their derivatives,

the standard recursively defined Cox-de-Boor formulas (de Boor, 1980)
are used. In the case of uniformly spaced spline nodes, more efficient
matrix-based formulas exist, but we do not make this assumption. For
the orientation splines, recursive algorithms for the time-derivatives are
given in Sommer et al. (2020), enabling the efficient computation of
angular velocity and angular acceleration

𝝎𝑏
𝑒𝑏(𝑡) =

[

𝑹𝑏
𝑒(𝑡)�̇�

𝑒
𝑏(𝑡)

]

∨ , (2.15)

�̇�𝑏
𝑒𝑏(𝑡) =

[

�̇�𝑏
𝑒(𝑡)�̇�

𝑒
𝑏(𝑡) +𝑹𝑏

𝑒(𝑡)�̈�
𝑒
𝑏(𝑡)

]

∨

=
[

−
[

𝝎𝑏 (𝑡)
]2 +𝑹𝑏(𝑡)�̈�𝑒(𝑡)

]

.
(2.16)
𝑒𝑏 ∧ 𝑒 𝑏 ∨
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The spline-based trajectory theoretically allows for a representation
with a reduced number of parameters compared to a discrete state
representation as it automatically provides interpolation. However, for
the purpose of LiDAR georeferencing, it is imperative to retain the
full frequency spectrum of inertial measurements. Even small but high
frequency vibrations, which are not represented properly, will lead to
high frequency (wave-like) errors in the georeferenced point cloud. For
this reason, we place spline nodes at the IMU sample times, in order to
resolve trajectory dynamics at the full bandwidth provided by the IMU.
For the results presented in Section 3, the spline degree is fixed to 𝑘𝑥 =
3 and 𝑘𝑅 = 2, i.e., cubic splines for position and quadratic splines for
orientation. This is, respectively, the minimum degree necessary for a
continuous linear acceleration and angular velocity. Since spline nodes
are already placed at all measurement times of the IMU (the navigation
sensor with the most frequent observations), we expect no benefit in
using higher spline degrees. Even with less frequent spline nodes, the
simulation analysis performed in Johnson et al. (2024) indicates the use
of higher spline degrees does not generally improve trajectory accuracy
but does increase time required for solving the equation systems.

Given the spline coefficients for position and orientation, together
with calibration and object parameters, model predictions can be de-
rived for all measurements: GNSS, IMU, LiDAR. The differences be-
tween model predictions and actual measurements are minimized in
a least-squares optimization to obtain a set of best-fitting parameters.

2.4. Measurement models: Overview & priors

Due to the assumption of Gaussian errors with no correlation be-
tween different measurement types, the MAP problem reduces to a
non-linear least-squares (NLS) problem. The general NLS formulation
Eq. (2.7) is split up into the respective contributions to the overall
SSR, which is made up of prior assumptions, GNSS position observa-
tions, IMU accelerometer and gyroscope observations, and LiDAR plane
observations

𝒙∗
(2.9)
= argmin

𝒙
SSRPriors(𝒙)

+ SSRGNSS(𝒙)
+ SSRIMU(𝒙)
+ SSRLiDAR(𝒙).

(2.17)

Each residual is the discrepancy between functional model and mea-
surement, weighted according to the stochastic model. Note that for
each residual, only a subset of all parameters (see Table 1) is relevant.
In the following subsections, we provide functional and stochastic
models for the four types of residuals.

Following the Bayesian approach, existing prior knowledge of the
stochastic characteristics of a parameter may be introduced into the
estimation. This is not strictly done for all parameters; some parameters
are introduced without prior (or, rather, with a prior that is constant
over the parameter’s range). The introduction of priors allows account-
ing for, e.g., lever arms previously measured with known accuracy, or
time-varying sensor errors with known stochastic properties.

For time-constant parameters 𝒙, fictional observations may be intro-
duced observing 𝒙 with a certain value �̃�, and an error 𝝐 following a
Gaussian distribution with (known) covariance matrix 𝜮

�̃� = 𝒙 + 𝝐, 𝝐 ∼ 𝑁(𝟎,𝜮). (2.18)

Thus, for each constant parameter with associated prior, a fictional
observation with functional model 𝑓 (𝒙) = 𝒙 and stochastic model 𝜮
is added as part of Eq. (2.17).

For time-varying parameters, the fictional observations for parameters
are derived by assuming the parameter follows a certain stochastic pro-
cess model (see also Cucci et al., 2017a). We consider only first-order
processes of the form

�̇�(𝑡) = −𝜌𝒙(𝑡) +𝒘(𝑡), (2.19)
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where 𝜌 ∈ [0,∞) is the reciprocal of the process correlation time,
and 𝒘(𝑡) is a white noise process with known power spectral density
𝑸𝑤 = diag(𝑄1,…). This may be written in discrete form as

𝒙(𝑡𝑖+1) = 𝛽𝒙(𝑡𝑖) +𝒘𝑖,
where 𝛽 ∶= 𝑒−𝜌(𝑡𝑖+1−𝑡𝑖),

𝒘𝑖 ∼ 𝑁
(

𝟎,𝜮𝑖
)

, and
(2.20)

𝑖 ∶=

⎧

⎪

⎨

⎪

⎩

𝑸𝑤(𝑡𝑖+1 − 𝑡𝑖), 𝜌 = 0,
𝑸𝑤
2𝜌

(

1 − 𝑒−2𝜌(𝑡𝑖+1−𝑡𝑖)
)

, 𝜌 > 0.

For 𝜌 = 0, this is a random walk process, for 𝜌 ∈ (0,∞) a stationary
first-order Gauss–Markov process. The random processes are modelled
here in their discrete form and represented as linear splines 𝒙(𝑡), with
fictional observations

𝟎 = 𝛽𝒙(𝑡𝑖) − 𝒙(𝑡𝑖+1) + 𝒘𝑖, (2.21)

added for every spline node 𝑡𝑖. Note that for these priors, the functional
model also encodes a stochastic assumption, namely the correlation
time of the process. Conversely, the stochastic model 𝜮𝑖 = V(𝒘𝑖)
epends on the choice of spline nodes 𝑡𝑖 of the stochastic process
odel (cf. Eq. (2.20)). Due to the Markovian property of the processes

onsidered here, each term of the prior only depends on epoch 𝑖+1 and
poch 𝑖. Other types of Gaussian processes may be considered for mod-
lling certain errors, but possibly destroy the sparsity of the equation
ystem (cf. Dong et al., 2018). As an extension to the first-order Gauss–
arkov process model, one may consider higher-order Gauss–Markov

rocesses or specifically constrain higher-order derivatives of certain
arameters. The latter is often used to stochastically model the motion
f the platform if no IMU data is available, e.g., by assuming a zero-
cceleration or zero-jerk motion model. Inclusion of such motion priors
s analogous to the first-order Gauss–Markov model described above.
owever, in contrast to a Kalman filter, where inertial measurements
re interpreted as an input to the motion model (Farrell et al., 2022),
ur formulation does not necessarily need motion priors in any form.

The above refers to priors in the stochastic sense. Often, prior infor-
ation about parameters is also encoded deterministically, through the

hoice of parametrization of a given quantity. Specifically, any time-
ontinuous quantity needs to be parametrized discretely. The decision
ow to perform this discretization is a sort of functional prior. In a
lassical Kalman filter, parameters may have different values at any
iven time as their estimate is updated and becomes more accurate over
ime as additional measurements arrive, even if the underlying physical
uantity is constant. Here, we model all parameters as splines of arbi-
rary degree with arbitrary nodes, which allows both for discretization
t any epoch (linear spline with nodes at all epochs) and fully constant
constant spline with only one node). But more importantly, it allows
educing the parameter count of the estimation by suitably choosing
pline degree and spline node based on prior knowledge of the relevant
hysical quantities and measurement processes and considerations with
espect to their estimability.

.5. GNSS measurement model

The GNSS measurement model uses pre-processed GNSS positions,
.e., a loose coupling of GNSS. The modelled position of the GNSS
ntenna may be derived from the platform position 𝒙𝑒𝑒𝑏(𝑡), the platform
rientation 𝑹𝑏

𝑒(𝑡), and the GNSS antenna lever arm 𝒙𝑚𝑚𝑎 together with
he mount orientation 𝑹𝑏

𝑚(𝑡). In case multiple GNSS antennas/receivers
re used, the GNSS position measurements of the different receivers
ay not arrive simultaneously, depending on the internal receiver clock

ampling time and how receiver time offsets are applied to the output
easurement timestamps. Apart from possibly different timing and the

espective antenna lever arms, the measurement equation itself remains

he same, regardless of whether one, two, or even more antennas are
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used. At time 𝑡, the modelled position of the GNSS antenna is derived
from platform trajectory, antenna lever arm, and mount orientation by

𝒑(𝑡) = 𝒙𝑒𝑒𝑏(𝑡) +𝑹𝑒
𝑏(𝑡) (𝒙

𝑏
𝑏𝑚 +𝑹𝑏

𝑚(𝑡)𝒙
𝑚
𝑚𝑎). (2.22)

The rotation 𝑹𝑏
𝑚(𝑡) from the stabilization mount (𝑚-system) to the

body frame (𝑏-system) is considered known; practically, it is obtained
from angular encoders in the stabilization mount (or gimbal), which
are assumed to provide measurements of high enough frequency and
accuracy that they may be used directly, possibly with linear interpo-
lation, but without needing to explicitly model interpolation errors or
measurement noise. Note also that the accuracy requirements for this
orientation are lower than for the trajectory itself, since it is only used
to correctly reference the GNSS antenna position and the GNSS lever
arm is generally orders of magnitude smaller than the laser ranging
distances. Thus, for a GNSS position measurement �̃� at time 𝑡, the
observation equation is simply

�̃�
⏟⏟⏟

measurement

= 𝒑(𝑡)
⏟⏟⏟
model

+ 𝝐𝑝
⏟⏟⏟

error

. (2.23)

The position measurement errors 𝝐𝑝 are assumed zero-mean and nor-
mally distributed with covariance 𝜮𝑝. Standard GNSS processing pro-
vides an estimate of 𝜮𝑝 along with each position measurement. Mea-
surements of different epochs are assumed uncorrelated, but this as-
sumption is not always appropriate. In such a case, the error model
should be adapted to account for time-correlation (see also Crespillo
et al., 2020), e.g., by including an additional error term modelled as a
Gauss–Markov process. In our formulation, the error term in Eq. (2.23)
is in this case split up into the explicitly modelled time-correlated bias
and uncorrelated additive white noise (Pöppl et al., 2023c)

𝝐𝑝
⏟⏟⏟

error

∶= 𝒃𝑝
⏟⏟⏟

time-correlated error
(= ‘bias’)

+ 𝒘𝑝
⏟⏟⏟

uncorrelated error
(= white noise)

. (2.24)

Conceptually, both the time-correlated bias and the uncorrelated white
noise are stochastic assumptions. However, the time-correlated bias 𝒃𝑝
is modelled explicitly as described in Section 2.4 and its stochastic
properties are considered as part of the prior observations (Eq. (2.21)).
Practically, 𝒃𝑝 becomes part of the functional relation for the GNSS
measurement model

�̃�
⏟⏟⏟

measurement

= 𝒑(𝑡) + 𝒃𝑝(𝑡)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

model

+ 𝒘𝑝
⏟⏟⏟

uncorrelated error

, (2.25)

and 𝜮𝑝 = V(𝒘𝑝) is used for weighting the residuals. Whether mod-
elling of the time-correlation is necessary may be decided either based
on expectations regarding the quality of the GNSS measurements
(environment, satellite visibility, etc.) and the specifics of the GNSS
processing algorithm, or by statistical analysis of the GNSS residuals.
Alternatively, or additionally, one may use robust loss functions such
as the Huber loss (cf. Crespillo et al., 2018) to account for outliers in
the GNSS measurements, which consequently also reduces the impact
of large time-correlated errors. Most GNSS processing software also
outputs velocity estimates. Because the GNSS velocity estimates are
computed as part of the internal GNSS processing’s Kalman filter, they
will be highly correlated with the GNSS positions. Therefore, while
velocity measurements could be integrated in the same way as position
measurements, this is not done here.

2.6. Inertial measurement model

The measurement model uses standard strap-down inertial naviga-
tion equations. However, in this approach the inertial measurements
are not numerically integrated to obtain position and orientation; rather
the measurement model is derived directly from the spline trajectory
(i.e., forward model). This allows treating the IMU measurements in
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a statistically appropriate way, and does not require propagating the
measurement uncertainties as in the Kalman filter prediction step.

The IMU, made up of an accelerometer and a gyroscope, provides
measurements 𝒇 and �̃� of specific force 𝒇 and angular velocity 𝝎.
Specific force and angular velocity depend on platform position and
orientation, and may be computed using the strap-down inertial nav-
igation equations (cf. Groves, 2013). For an ideal IMU, the measured
angular velocity and specific force is calculated from platform position
and orientation as
𝝎𝑏
𝑖𝑏(𝑡) = 𝝎𝑏

𝑖𝑒(𝑡) + 𝝎𝑏
𝑒𝑏(𝑡)

= 𝑹𝑏
𝑒(𝑡)𝝎

𝑒
𝑖𝑒 +

[

𝑹𝑏
𝑒(𝑡)�̇�

𝑒
𝑏(𝑡)

]

∨ ,
(2.26)

𝒇 𝑏
𝑖𝑏(𝑡) = 𝒂𝑏𝑖𝑏(𝑡) − 𝜸𝑏𝑖𝑏(𝑡)

= 𝑹𝑏
𝑖 (𝑡)�̈�

𝑖
𝑖𝑏(𝑡) −𝑹𝑏

𝑒(𝑡)𝜸
𝑒
𝑖𝑏(𝑡)

= 𝑹𝑏
𝑒(𝑡)

(

[

𝝎𝑒
𝑖𝑒
]2
∧ 𝒙

𝑒
𝑒𝑏(𝑡) + 2

[

𝝎𝑒
𝑖𝑒
]

∧ �̇�
𝑒
𝑒𝑏(𝑡)

+ �̈�𝑒𝑒𝑏(𝑡) − 𝜸𝑒𝑖𝑏(𝑡)
)

,

(2.27)

here 𝝎𝑒
𝑖𝑒 is the angular velocity of the 𝑒-frame with respect to the

nertial frame (i.e., the Earth’s rotation), and 𝜸𝑒𝑖𝑏 is the acceleration due
o gravitational force.

The measurements of angular velocity and acceleration are with
espect to the inertial sensor frame, the 𝑠-frame. In most applications,
he trajectory will be referenced to the axes and centre of the IMU, in
hich case the 𝑏-frame and 𝑠-frame coincide and the above equations
re used directly. In case multiple IMUs are used, this is of course not
ossible and measurements for at least one of the IMUs have to be
ransformed from the 𝑏-frame, to which the trajectory is referenced,
o the inertial sensor’s 𝑠-frame. This is easily done since 𝑏- and 𝑠-frame
re related by a constant rotation and translation; angular velocity and
cceleration are then given by

𝝎𝑠
𝑖𝑠 = 𝑹𝑠

𝑏𝝎
𝑏
𝑖𝑠 = 𝑹𝑠

𝑏
(

𝝎𝑏
𝑖𝑏 + 𝝎𝑏

𝑏𝑠
⏟⏟⏟

=0

)

= 𝑹𝑠
𝑏𝝎

𝑏
𝑖𝑏, (2.28)

𝒇 𝑠
𝑖𝑠 = 𝑹𝑠

𝑒

(

[

𝝎𝑒
𝑖𝑒
]2
∧ 𝒙

𝑒
𝑒𝑠 + 2

[

𝝎𝑒
𝑖𝑒
]

∧ �̇�
𝑒
𝑒𝑠 + �̈�𝑒𝑒𝑠 − 𝜸𝑒𝑖𝑠

)

, (2.29)

with 𝒙𝑒𝑒𝑠 = 𝒙𝑒𝑒𝑏 +𝑹𝑒
𝑏𝒙

𝑏
𝑏𝑠,

�̇�𝑒𝑒𝑠 = �̇�𝑒𝑒𝑏 + �̇�𝑒
𝑏𝒙

𝑏
𝑏𝑠,

�̈�𝑒𝑒𝑠 = �̈�𝑒𝑒𝑏 + �̈�𝑒
𝑏𝒙

𝑏
𝑏𝑠.

(2.30)

Most IMUs do not output measurements of angular velocity and spe-
cific force at certain time instants (i.e., instantaneous measurements),
but rather output averaged or integrated increments (i.e., delta mea-
surements). For higher-end IMUs, these integrated measurements are
typically internally corrected for coning and sculling errors (cf. Groves,
2013; Al-Jlailaty and Mansour, 2021). In this case, or if using pre-
integrated IMU measurements, equations Eq. (2.26) and Eq. (2.27) are
replaced with the corresponding integrated delta-𝑣 and delta-𝜃 measure-
ments. The exact method with which the integrated measurements are
computed is often not known to the user of the IMU, but we assume
standard coning and sculling corrections (Savage, 1998a,b) are applied.
For a measurement at time 𝑡𝑖, integrated from 𝑡𝑖−1 to 𝑡𝑖 = 𝑡𝑖−1 + 𝛥𝑡, the
corresponding integrated measurement equations are given by

𝛥𝜽𝑠𝑖𝑠(𝑡𝑖) = log
(

𝑹𝑠
𝑒(𝑡𝑖−1) exp

(

𝝎𝑒
𝑖𝑒𝛥𝑡𝑖

)

𝑹𝑒
𝑠(𝑡𝑖)

)

, (2.31)

𝛥𝒗𝑠𝑖𝑠(𝑡𝑖) = 𝑹𝑠
𝑒(𝑡𝑖−1)

(

(

�̇�𝑒𝑒𝑠(𝑡𝑖) − �̇�𝑒𝑒𝑠(𝑡𝑖−1)
)

+𝛥𝑡𝑖
(

[

𝝎𝑒
𝑖𝑒
]2
∧ 𝒙

𝑒
𝑒𝑠(𝑡𝑖−1)

+ 2
[

𝝎𝑒
𝑖𝑒
]

∧ �̇�
𝑒
𝑒𝑠(𝑡𝑖−1)

− 𝜸𝑒𝑖𝑠(𝑡𝑖−1)
))

.

(2.32)

qs. (2.31)–(2.32) are still ideal measurements without errors, albeit
n integrated form. In practice, the measurements are disturbed by a

umber of stochastic and deterministic errors (Groves, 2013; Farrell
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et al., 2022). We use a standard error model, where the measured
values are tainted by additive white noise 𝝐⋆, biases 𝒃⋆ and scale factors
𝑺⋆ = diag(𝑠𝑥⋆, 𝑠𝑦⋆, 𝑠𝑧⋆). The measurement model for specific force and
angular velocity at a time 𝑡 is thus given by

𝛥𝒗𝑠𝑖𝑠
1
𝛥𝑡

𝛥𝜽𝑠𝑖𝑠
1
𝛥𝑡

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
measurement

=
=

(𝑰 + 𝑺𝑣)𝛥𝒗𝑠𝑖𝑠(𝑡)
1
𝛥𝑡 + 𝒃𝑣(𝑡)

(𝑰 + 𝑺𝜃)𝛥𝜽𝑠𝑖𝑠(𝑡)
1
𝛥𝑡 + 𝒃𝜃(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
model

+
+

𝝐𝑣
𝝐𝜃

⏟⏟⏟
noise

. (2.33)

The delta measurements are scaled by their time interval, so that
the magnitude of bias and noise is the same as when using instan-
taneous measurements. The biases and scale factors cause errors in
the trajectory which compound in time, but may be calibrated in-
run if sufficiently redundant information is available from GNSS or
LiDAR. Biases and scale factors are made up of a time-constant and
a time-varying component. The time-varying components are modelled
as stochastic processes with known characteristics (Farrell et al., 2022).
While it is possible to experimentally derive the accelerometer and
gyroscope bias’ process parameters from statically acquired data via
Allan Variance Analysis (AVA), such a procedure is not readily avail-
able for the scale factors errors. Additionally, scale factor errors are
only determinable if sufficient input signal is present for the respec-
tive sensor. In situations with limited platform dynamics, this is not
the case and the time-varying biases and scale factors are hard to
distinguish. Thus, although scale factors can theoretically also vary
in time, we find it beneficial to model them as constant within each
data acquisition. The error processes of accelerometer and gyroscope
biases are represented using linear splines, with spline nodes set at
GNSS measurement times, and interpolated in between. Stochastically,
the biases are modelled using first-order Gauss–Markov process pri-
ors, as described in Section 2.4. Note that albeit being a stochastic
quantity, the time-varying biases become part of the functional model
in Eq. (2.33). Their stochastic properties are considered through prior
observations as in Eq. (2.21) and the noise covariances 𝜮𝑣 = V(𝝐𝑣) and

𝜃 = V(𝝐𝜃), derived from AVA, are used to weight the residuals.

.7. LiDAR measurement model

The integration of LiDAR measurements of some form in a trajectory
stimation may be done in many ways. In a loosely coupled integra-
ion, position and orientation may be derived from LiDAR odometry
e.g., Zhang and Singh, 2014), which is then integrated with the
ther sensor data. The approach presented here however employs tight
oupling of LiDAR and IMU. Note that the laser scanners considered
ere are single-beam single-channel time-of-flight LiDAR systems com-
only used in surveying applications. Thus, each LiDAR point possesses

ts own timestamp, and measurements are acquired with very high
requency (often >1 MHz). To obtain useful spatial information for the
rajectory measurements, a number of individual points are aggregated
nd assigned a single timestamp. Such an aggregation of LiDAR points
ill be termed feature, with multiple data-derived features correspond-

ng to one physical object. This object may be modelled explicitly, with
he features forming observations of that object, in which case the mod-
lled planes are analogous to tie points in bundle adjustment. Or, the
eature-object correspondences may be used implicitly to form pairwise
onstraints between features corresponding to the same object, as is
one in ICP-based approaches (iterative closest point, cf. Glira et al.,
015). As no pre-existing knowledge of the environment is assumed
nd no ground control required, the LiDAR measurements must be
ssociated with other LiDAR measurements to form the observations
r constraints, based on the assumption that the environment largely
emains static during data acquisition.
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t

Fig. 3. Points are rasterized and clustered by time. In standard airborne acquisitions,
time clusters usually contain points from a single flight strip, but generally there is no
requirement for the acquisition pattern.

Fig. 4. For each cell and time-cluster, a PCA is computed. All feature planes belonging
to a single cell are combined into a corresponding object plane.

2.7.1. Feature extraction and matching
Cheng et al. (2018) classify LiDAR registration techniques into

point-based, line-based and surface-based methods. Here, we focus on
the most basic type of surfaces, namely planes, which have proven ver-
satile and effective in various scenarios, especially airborne acquisitions
and have been widely used for a long time (Kager, 2004; Skaloud and
Lichti, 2006).

We divide the processing into two parts, (1) feature extraction
and (2) feature matching, and outline a simple and fast procedure for
extracting and matching planar features from point clouds. The tasks of
feature extraction and feature matching are independent of the general
trajectory estimation problem. The feature extraction and matching
procedure was presented previously in Pöppl et al. (2023c), and is
based on spatial rasterization and temporal clustering of the LiDAR
points together with standard principal component analysis (PCA). This
approach is somewhat similar to the normal distributions transform
(NDT, Biber and Strasser, 2003) often used for point cloud registration,
a variant of which has also been used recently for hybrid bundle/strip
adjustment (Jonassen et al., 2023). Instead of a purely data-driven
stochastic model obtained from the 3D point covariances, our approach
uses a stochastic model which augments the data-driven uncertainty
estimates derived from the geometric properties of the plane fit with
prior knowledge of the laser scanning measurement process.

For the feature extraction, all LiDAR points are placed into their
espective raster cells of a rasterization with cell size (ℎ𝑥, ℎ𝑦, ℎ𝑧). The
ell size should be chosen according to (average) point density and
xpected size of the planar features. The points in each cell are greedily
lustered together according to their acquisition time, so that points in
ach cluster are never further than 𝑡max seconds apart. The maximum
luster duration 𝑡max is set to approximately the time it takes the
latform to move two cells further. For example, a velocity of 50 m∕s and
cell size of 2 m result in 𝑡max = 0.08 s. Clustering is done separately

or each laser scanner, so that points from different scanners are never
ggregated into the same feature. This means that the data acquisition
oes not necessarily need to be split into separate strips beforehand, as
he feature extraction relies only on inherent properties of the points

hemselves. As points are added to each cluster, the cluster’s sample
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covariance is incrementally built up, and a PCA is then computed to
obtain a best-fit plane (see Fig. 3 and Fig. 4). Cells with a bad fit
(i.e., smallest eigenvalue is above threshold, larger two eigenvalues are
below given threshold) are discarded. A feature plane serves as mea-
surement in the course of the least-squares adjustment, but is actually
an aggregate of a number of individual LiDAR point measurements. To
tie the feature plane to the trajectory, it needs to be associated with a
timestamp. Here, each feature plane is assigned the interval midpoint
of the timestamps 𝑡1,… , 𝑡𝑛 of all its contributing points �̃�1,… , �̃�𝑛 ∈ R3

∶=
max(𝑡1,… , 𝑡𝑛) + min(𝑡1,… , 𝑡𝑛)

2
. (2.34)

The feature matching procedure is then very simple: All feature planes
associated with a cell are combined into an object plane, which rep-
resents the actual physical object. This requires that the cell size is
chosen so that it exceeds the georeferencing errors, as otherwise no
correspondences can be established with this scheme. In extreme cases
with exceptionally large initial georeferencing errors (>2 m), the fea-
ture extraction, matching, adjustment and georeferencing (cf. Fig. 1)
may be repeated iteratively with successively smaller cell sizes.

In previous work (Pöppl et al., 2023d,e), we have also used a
different extraction method based on hierarchically traversing an octree
representation of the point cloud to perform robust plane-fit similar
to Nurunnabi et al. (2015). While this is computationally more inten-
sive, it has some advantages in mobile laser scanning applications, as
it is capable of extracting both small-scale (e.g., curbs) and large-scale
features (e.g., facades). As long as the model geometry (in our case:
planar) remains the same, different feature extraction and matching
algorithms and implementations may be employed depending on the
given application requirements.

2.7.2. Plane measurement model
From now on, we simply assume that some procedure is available

for planar feature extraction and matching. Specifically, we consider
a feature plane made up of point measurements �̃�1,… , �̃�𝑛 ∈ R3. The
matrix �̃� ∈ R𝑛×3 is obtained by transposing and stacking all points �̃�𝑖
from which the planar feature was derived. Then, the de-meaned data
matrix 𝑴 is computed by subtracting the data mean �̃� from �̃�

�̃� ∶= 1
𝑛

𝑛
∑

𝑖=1
�̃�𝑖, 𝑴 =

⎛

⎜

⎜

⎝

𝒎𝑇
1
⋮
𝒎𝑇

𝑛

⎞

⎟

⎟

⎠

∶=
⎛

⎜

⎜

⎝

�̃�𝑇1 − �̃�𝑇

⋮
�̃�𝑇𝑛 − �̃�𝑇

⎞

⎟

⎟

⎠

(2.35)

The eigenvalue decomposition of the unscaled covariance matrix 𝑪 =
𝑴𝑇𝑴 is given by 𝑪 = 𝑽 diag(𝜆1, 𝜆2, 𝜆3)𝑽 𝑇 , where the eigenvalues are
assumed to be sorted in descending order, i.e., 𝜆1 ≥ 𝜆2 ≥ 𝜆3. The
matrix 𝑽 contains the eigenvectors of 𝑪 in its columns. The feature
plane’s coordinate system is then defined by 𝑽 , specifically by plane
axes �̃�1, �̃�2, and plane normal �̃�, so that

𝑽 = (�̃�1 �̃�2 �̃�), and

𝑽 𝑇𝑴𝑇𝑴 𝑽 =
⎛

⎜

⎜

⎝

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞

⎟

⎟

⎠

.
(2.36)

Note that while the above computations are carried out in the earth-
referenced 𝑒-system, the centroid, axes, and normal are stored in
laser scanner coordinates �̃�𝑙 , �̃�𝑙1, �̃�

𝑙
2, �̃�

𝑙 and transformed into the earth-
referenced coordinate system using the georeferencing equations

�̃� ∶= �̃�𝑒 = 𝒙𝑒𝑒𝑏(𝑡) +𝑹𝑒
𝑏(𝑡)(𝒙

𝑏
𝑏𝑙 +𝑹𝑏

𝑙 �̃�
𝑙)

�̃�1 ∶= �̃�𝑒1 = 𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑙 �̃�

𝑙
1,

�̃�2 ∶= �̃�𝑒2 = 𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑙 �̃�

𝑙
2,

�̃� ∶= �̃�𝑒 = 𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑙 �̃�

𝑙 ,

(2.37)

where 𝑹𝑏
𝑙 and 𝒙𝑏𝑏𝑙 are the laser scanner boresight and lever arm. Position

𝒙𝑒𝑒𝑏(𝑡) and orientation 𝑹𝑒
𝑏(𝑡) = (𝑹𝑏

𝑒(𝑡))
𝑇 are evaluated at the feature’s

associated time 𝑡.
69
Fig. 5. Illustration of the feature-object plane observations.

An object plane is defined by centroid 𝝁 and normal 𝒏. The initial
entroid 𝝁0, normal 𝒏0 and (orthonormal but otherwise arbitrary)
xes 𝒌01,𝒌

0
2 are computed by combining the means and covariances of

ll corresponding feature planes. During the adjustment, the plane’s
osition and orientation is optimized with three degrees of freedom, an
ffset 𝑜 along the normal vector and slopes 𝑧1, 𝑧2 so that the effective
entroid and (scaled) normal is given by

∶= 𝝁0 + 𝑜𝒏0, 𝒏 ∶= 𝒏0 + 𝑧1𝒌01 + 𝑧2𝒌02. (2.38)

The feature-object measurement equations are made up of normal
istance between the planes and the slopes of object plane w.r.t. the
eature plane axes (Fig. 5)

𝑑 = (𝝁 − �̃�) ⋅ �̃�
⏟⏞⏞⏞⏟⏞⏞⏞⏟

normal distance 𝑑

+ 𝜖𝑑 , (2.39)

̃1 =
𝒏 ⋅ �̃�1
𝒏 ⋅ �̃�

⏟⏟⏟
slope 𝑠1

+ 𝜖𝑠1 , (2.40)

�̃�2 =
𝒏 ⋅ �̃�2
𝒏 ⋅ �̃�

⏟⏟⏟
slope 𝑠2

+ 𝜖𝑠2 . (2.41)

ote that we do not model the errors of plane mean �̃� and normal �̃�,
but rather specify the measurement equations in each feature plane’s
coordinate systems. Instead of performing linearized error propagation,
the stochastic model for the above errors is derived directly from the
PCA results: Following Quinn and Ehlmann (2019), standard deviations
for 𝜖𝑑 , 𝜖𝑠1 , 𝜖𝑠2 are computed by interpreting the PCA as an ordinary least
quares (OLS) fit. In the coordinate system defined by 𝑽 , the normal
istance 𝑑 and slopes �̃�1, �̃�2 correspond to the least-squares solution of

𝒎𝑖 ⋅ �̃�1)𝑠1 + (𝒎𝑖 ⋅ �̃�2)𝑠2 + 𝑑 = (𝒎𝑖 ⋅ �̃�) + 𝜀𝑖, 1 ≤ 𝑖 ≤ 𝑛, (2.42)

here V(𝜀𝑖) ∶= 𝜎. Defining 𝑨 ∶= (𝟏, 𝑴�̃�1, 𝑴�̃�2) and 𝒃 ∶= 𝑴�̃�, the
olution 𝒙 ∶= (𝑨𝑇𝑨)−1𝑨𝑇 𝒃 to the OLS problem is simply 𝑑 = �̃�1 = �̃�2 =
, because

𝑇 𝒃 =

⎛

⎜

⎜

⎜

⎝

∑𝑛
𝑖=1 𝒎

𝑇
𝑖 �̃�

�̃�𝑇1 𝑴
𝑇𝑴�̃�

�̃�𝑇2 𝑴
𝑇𝑴�̃�

⎞

⎟

⎟

⎟

⎠

(2.35)
(2.36)=

⎛

⎜

⎜

⎝

0
0
0

⎞

⎟

⎟

⎠

. (2.43)

imilarly, the sample covariance for 𝑑, �̃�1, �̃�2 may be stated in terms of
igenvalues of 𝑪

iag(𝜎2𝑑 , 𝜎
2
𝑠1
, 𝜎2𝑠2 ) = 𝜎2(𝑨𝑇𝑨)−1 (2.44)

= 𝜎2diag
(

1
𝑛
, 1
𝜆1

, 1
𝜆2

)

. (2.45)

The standard OLS estimate 𝑠2 of 𝜎2 is

𝜎2 =̂ 𝑠2 =
‖𝑨𝒙 − 𝒃‖22 = �̃�𝑇𝑴𝑇𝑴 �̃� (2.36)

=
𝜆3 , (2.46)
𝑛 − 3 𝑛 − 3 𝑛 − 3
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Fig. 6. Impact of ranging and angular accuracy on plane measurement accuracies.

from which the variances of the measurement errors in Eqs. (2.39)–
(2.41) are derived as

V(𝜖𝑑 ) = 𝜎2𝑑 = 𝑠2

𝑛
,

(𝜖𝑠1 ) = 𝜎2𝑠1 = 𝑠2

𝜆1
= 𝜎2𝑑

𝑛
𝜆1

,

(𝜖𝑠2 ) = 𝜎2𝑠2 = 𝑠2

𝜆2
= 𝜎2𝑑

𝑛
𝜆2

.

(2.47)

This is a purely geometric interpretation which assumes statistical inde-
pendence of the individual points 𝒙𝑖 and thus disregards any correlated
r systematic measurement errors. Growing point densities, especially
n mobile laser scanning, and high point measurement precision cause
he uncertainty of feature plane measurements to become unrealis-
ically small. As an example, a perfectly planar surface made up of
00 points measured with a precision of 5 mm results in a standard
eviation of approximately 𝜎𝑑 ≈ 0.5 mm. However, this is purely an

uncertainty estimate based on local precision under the assumption of
uncorrelated measurements, and thus does not take into account any
effects which similarly impact all points of the plane.

2.7.3. Extended stochastic model
To account for (1) scanner ranging accuracy 𝜎𝑟, angular accuracy

𝜎𝜙 and (2) the effect of angle of incidence (AOI) 𝜉 and beam footprint
iameter 𝑓 on the measurement error, we extend the geometrically
erived stochastic model and replace Eq. (2.47) with

V(𝜖𝑑 ) = 𝜎2𝑑 ∶= 𝜎2𝑑 + 𝜎𝑛(𝜉, 𝑟)2,

V(𝜖𝑠1 ) = 𝜎2𝑠1 ∶= 𝜎2𝑑
𝑛
𝜆1

+ 𝜎2𝜙,

V(𝜖𝑠2 ) = 𝜎2𝑠2 ∶= 𝜎2𝑑
𝑛
𝜆2

+ 𝜎2𝜙.

(2.48)

1. Scanner ranging and angular accuracy
The laser scanner performs ranging and angular measurements,
with an accuracy of 𝜎𝑟 and 𝜎𝜙, respectively. Making a small angle
approximation and assuming angular uncertainty is isotropic,
this may be interpreted as the accuracy of a point in a scanner-
referenced coordinate system aligned to the laser beam direction
𝛴beam =̂ diag(𝜎2𝑟 , (𝑟𝜎𝜙)

2, (𝑟𝜎𝜙)2). This covariance is transformed
into the feature plane coordinate system, to obtain the standard
deviation along the normal direction 𝜎𝑛 (see Fig. 6)

𝜎𝑛(𝜉, 𝑟) =
√

(

𝜎𝑟 cos(𝜉)
)2 +

(

𝜎𝜙𝑟 sin(𝜉)
)2. (2.49)

Additionally, the angular accuracy causes an uncertainty in the
slopes of tan(𝜎𝜙) ≈ 𝜎𝜙.

2. Angle of incidence and beam footprint
70
At low range, the normal distance standard deviation is now
predominantly determined by 𝜎𝑟, even though the ranging mea-
surement may be expected to significantly degrade for high
angles of incidence 𝜉. In the extreme case of the laser beam being
parallel to the plane, no sensible measurement is possible. Addi-
tionally, as 𝜉 increases, a nominally circular laser footprint with
diameter 𝑓 becomes elliptical with increasingly large diameter
𝑓𝜉 = 𝑓

cos 𝜉 . This may lead to differing measurements when the
same plane is observed from different angles.
Based on these two observations, we introduce empirical scale
factors of the LiDAR ranging and angular accuracies. Assuming
that the ranging accuracy depends on the ability to correctly
time the return signal, the ranging accuracy deteriorates with
increasing return pulse duration and thus with incidence an-
gle (Pfeifer and Briese, 2007). Here, this effect is modelled by
scaling the nominal ranging accuracy 𝜎𝑟, assumed to be valid for
orthogonal incidence, with the ratio of the return pulse duration
𝑤𝜉 at incidence angle 𝜉 to the nominal pulse duration 𝑤0. Under
a Gaussian beam assumption, the return pulse duration 𝑤𝜉 may
be approximated by convolving the signal Gaussian with the
sloped-plane Gaussian, yielding

𝑤𝜉 ≈

√

𝑤0
2 +

(𝑓𝜉 sin (𝜉)
𝑐

)2

, (2.50)

where 𝑐 is the speed of light. Furthermore, the power of the
return signal for a Lambertian surface reduces with the cosine of
the angle of incidence (Soudarissanane et al., 2009), leading to
a corresponding deterioration in signal-to-noise ratio. This effect
is considered by scaling the ranging accuracy with 1∕ cos(𝜉). The
final standard deviation of the ranging measurements is thus
given as a function of the incidence angle 𝜉 and the nominal
ranging accuracy 𝜎𝑟

𝜎𝑟(𝜉) ∶=
1

cos(𝜉)
𝑤𝜉

𝑤0
𝜎𝑟. (2.51)

Note that the adjusted accuracies correspond to the nominal ac-
curacies at orthogonal incidence, but are asymptotically infinite
for small angles of incidence (Fig. 7), as

𝜎𝑛(𝜉, 𝑟) ≥ 𝜎𝑟, ∀𝜉 ∈ [0, 𝜋∕2],

lim
𝜉→0

𝜎𝑛(𝜉, 𝑟) = 𝜎𝑟(0) and

lim
𝜉→𝜋∕2

𝜎𝑛 = ∞.

(2.52)

At smaller ranges, the ranging uncertainty 𝜎𝑟 dominates, but at
larger ranges 𝑟, the angular accuracy 𝜎𝜙 is responsible for most
of the uncertainty in the normal direction.

It should be emphasized that these are not corrections, which
would require knowledge of the exact measurement mechanisms and
methods of echo detection, but rather an attempt to stochastically
account for such effects in a generic but still model-based manner.
Notably, the AOI-adapted ranging accuracy 𝜎𝑟(𝜉) does not depend on
measurement range, and it is assumed the nominal ranging accuracy
𝜎𝑟 is approximately valid throughout the operating range of the LiDAR
system.

The complete LiDAR observation equation is obtained by plugging
Eq. (2.37) and Eq. (2.38) into Eqs. (2.39)–(2.41). For a LiDAR object
plane described by 𝝁0,𝒌01,𝒌

0
2,𝒏

0 and modelled by (𝑜, 𝑧1, 𝑧2), observed
by a feature plane described by �̃�𝑙 , �̃�𝑙1, �̃�

𝑙
2, �̃�

𝑙 at time 𝑡, it is given
y Eqs. (2.53)–(2.55) (see Box I). The observations are weighted ac-
ording to the (adjusted) error variance 𝜮𝑙 ∶= diag(𝜎2𝑑 , 𝜎

2
𝑠1
, 𝜎2𝑠2 ). This

stochastic model still relies on the assumptions that the associated
feature planes actually represent the same object plane. As robust
data association is a challenging problem (Cadena et al., 2016) and
we cannot rule out invalid correspondences, we rely instead on ro-
bust statistics by replacing the squared loss function for the LiDAR
measurements in Eq. (2.17) with the Huber loss function (Huber, 1964).
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⏟⏟⏟

=0

=
((

𝝁0 + 𝑜𝒏0
)

−
(

𝒙𝑒𝑒𝑏(𝑡) +𝑹𝑒
𝑏(𝑡) (𝒙

𝑏
𝑏𝑙 +𝑹𝑏

𝑙 �̃�
𝑙)
))

⋅
(

𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑙 �̃�

𝑙)
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normal distance

+ 𝜖𝑑 (2.53)

�̃�1
⏟⏟⏟

=0

=
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𝒏0 + 𝑧1𝒌01 + 𝑧2𝒌02
)

⋅
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𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑙 �̃�

𝑙
1

)

(

𝒏0 + 𝑧1𝒌01 + 𝑧2𝒌02
)

⋅
(

𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑙 �̃�𝑙

)
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slope for axis 1

+ 𝜖𝑠1 (2.54)

�̃�2
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=0

=

(

𝒏0 + 𝑧1𝒌01 + 𝑧2𝒌02
)

⋅
(
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𝑏(𝑡)𝑹

𝑏
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𝑙
2

)

(

𝒏0 + 𝑧1𝒌01 + 𝑧2𝒌02
)

⋅
(

𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑙 �̃�𝑙

)
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slope for axis 2

+ 𝜖𝑠1 (2.55)

Box I.
Fig. 7. Standard deviation in plane normal direction 𝜎𝑛(𝜉, 𝑟) for the extended stochastic
odel Eq. (2.48). Shown for parameter combinations of different scanners, namely a

errestrial laser scanner (TLS, RIEGL VZ-600i) and for the infrared (IR) and green (GR)
aser channels of the topo-bathymetric dual-wavelength airborne laser scanner used in
ection 3 (ALS, RIEGL VQ-880-GH).

ontrol information
Point cloud data from other sources may be introduced into the

djustment as control information. In this case, planes are extracted
rom the control point cloud as described above, but the planar object
arameters are not optimized and stay fixed to their initial value.
ontrol planes derived by other means, e.g. by fitting of checkerboard
argets, may be integrated in the same way by matching them to data-
erived object planes. The use of control information is of course useful
or referencing to a given datum defined by the ground control, but also
or boresight calibration with challenging scan geometries (Pöppl et al.,
023e).

.8. Solving the non-linear optimization

The trajectory and calibration parameter estimates are obtained
y solving the non-linear least squares estimation posed by Eq. (2.9),
.e., minimizing the SSR consisting of prior observations (2.18),
2.21), GNSS observations (2.25), IMU observations (2.33) and LiDAR
bservations (2.53)–(2.55). Table 1 recaps the full set of parameters
hich occur in these equations. Note that this is a non-linear optimiza-

ion, which requires suitable initial values and may not converge to the
ought minimum otherwise. In previous work (Pöppl et al., 2023a,e),
e used a Kalman filter for obtaining an initial trajectory estimate.
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Although the filter itself is computationally efficient, the initial trajec-
tory has to be converted to the corresponding spline coefficients, as
spline coefficients are not identical to the function values for spline
degrees 𝑘 > 1. To avoid this, we employ the GNSS/IMU adjustment as
described above in a sliding-window fashion, where only parameters
in a certain time window (here: 60 s) are optimized, and the trajectory
is incrementally built up while the optimization window advances in
time. Although slower in terms of runtime compared to the filter, this
approach provides more suitable initial values for the batch adjustment
as it re-uses the exact same observation models and implementation
thereof.

The full optimization involves a very large number of parameters, as
the trajectory is modelled at the frequency of the IMU measurements
in order to preserve high frequency components. Thus, the resulting
Jacobian and Hessian matrices occurring in the NLS optimization are
also large, with up to multiple millions of rows and columns. However,
both Jacobian and Hessian are sparse in nature, as all observation
equations depend only on a small subset of parameters due to the local
nature of the splines. As discussed in Cucci and Skaloud (2019), the
GNSS/IMU-derived linear least-squares sub-problem is ill-conditioned
for some combinations of IMU and GNSS measurement frequencies and
noise characteristics, and iterative sparse solvers will converge only
slowly if at all. This is especially the case when starting with a bad
initial estimate for some or all parameters, and in the presence of large
outliers, which cause correspondingly large entries in the Jacobian
matrix. The latter part is partially mitigated by using a robust loss func-
tion (e.g., Huber loss), as is done for LiDAR and GNSS measurements.
Though possibly ill-conditioned, these sparse problems can still be
solved with sufficient precision using direct sparse methods, specifically
Cholesky decomposition. The effort required for direct decomposi-
tion depends on the variable ordering. This may be done manually
by time-sorting the trajectory variables to obtain a band-diagonal or
arrow-shaped Hessian matrix, or automatically by using a suitable
sorting algorithm. In our experience, the nested dissection (NESDIS)
sorting in SuiteSparse’s Cholesky factorization (CHOLMOD, Chen et al.,
2008) performs best. The CERES solver (Agarwal et al., 2022) is used to
solve the NLS optimization using the Levenberg–Marquardt algorithm,
relying on CHOLMOD internally to solve the least-squares sub-problem.

3. Applications & results

To practically demonstrate the proposed trajectory estimation
methodology, we apply the adjustment procedure to a real-world
laser scanning dataset. This dataset consists of two airborne data
acquisitions, one with a crewed fixed-wing aircraft (airborne laser
scanning, ALS) and one with an uncrewed multicopter (uncrewed laser
scanning, ULS). The two datasets, obtained from different platforms,

are co-registered in a joint adjustment of all available data from both
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Table 1
Parameters occurring in the trajectory estimation. Not all calibration parameters are
always estimated; in case some parameters are precisely known (e.g., lever arms
previously measured using geodetic techniques), in which case they are held constant
in the adjustment. In case no stabilization mount is used, 𝒙𝑏

𝑏𝑚 = 𝟎,𝑹𝑚
𝑏 = 𝑰3×3 and 𝒙𝑚

𝑚𝑎 =
𝒙𝑏
𝑏𝑎.

Trajectory Position 𝒙𝑒
𝑒𝑏

Orientation 𝑹𝑏
𝑒

Mount Origin 𝒙𝑏
𝑏𝑚

GNSS Lever arm 𝒙𝑚
𝑚𝑎

Position bias 𝒃𝑝

IMU

Accelerometer bias 𝒃𝑣
Accelerometer scale factor 𝒔𝑣
Gyroscope bias 𝒃𝜃
Gyroscope scale factor 𝒔𝜃

LiDAR Lever arm 𝒙𝑏
𝑏𝑙

Boresight 𝑹𝑏
𝑙

Objects Plane parameters 𝑜, 𝑧1 , 𝑧2

platforms: GNSS positions, IMU inertial measurements and LiDAR plane
observations. The joint adjustment ensures a common datum for the
ALS and ULS point clouds, while still accounting for the underlying
measurements and their stochastic properties. This is done without use
of any ground control information (i.e., direct georeferencing), and the
absolute accuracy is verified by comparison to independently acquired
reference data on the ground. This reference data consists of 106 planar
reference surfaces, with 58 horizontal surfaces on the ground and 48
sloped surfaces on building roofs. Comparison of the ALS point cloud to
the reference data is done by fitting a plane to all points within 1 m of a
reference surface centre and computing the average distance from point
cloud to surface centre w.r.t. the estimated surface normal direction.
The sloped surfaces are oriented in sufficiently different directions, and
a possible 3D datum shift vector is determined by simple least-squares
adjustment. Only two reference targets are situated in the area covered
by the ULS data acquisition. These are not large surfaces but rather
small photogrammetric checkerboard targets. Thus, they are suitable
only for evaluation of the ULS point cloud and not of the ALS point
cloud, due to insufficient point density and too large beam footprint of
the latter in comparison to the size of the target.

Both kinematic datasets were acquired almost concurrently on the
same day in March 2021 in the area of the Pielach river in Lower
Austria (Mandlburger et al., 2023b). The ALS dataset is an airborne
laser bathymetry dataset acquired with a RIEGL VQ-880-GH laser scan-
ner, featuring both an infrared (1064 nm) and a green (532 nm) laser
channel. The laser scanner is integrated with an Applanix AV 510
navigation system with a type 46 IMU. Point cloud and trajectory are
shown in Fig. 8 together with the locations of the reference surfaces.
The ALS dataset contains in total 770 million points acquired in 8
flight strips, with simultaneous acquisition in each strip of infrared
and green wavelength LiDAR channels. At the same time, a UAV-
borne data acquisition was done with a RIEGL VQ-840-G bathymetric
laser scanner with a green (532 nm) LiDAR unit, integrated with an
Applanix APX-20 navigation system with a type 82 IMU. The ULS
dataset, shown in Fig. 9 together with the two reference targets, con-
tains approximately 340 million points, acquired in 27 flight segments
flown in irregular pattern along the Pielach river. Although this is a
topo-bathymetric data acquisition, we filter out non-ground points by
using only last echos with sufficiently high reflectance, in order to
avoid dealing with refraction effects and to focus on evaluating the
georeferencing quality.

The full processing pipeline is shown in Fig. 10 and includes sepa-
rate ALS processing, ULS processing, and the joint processing. The gen-
eral steps for the separate processing are identical: After pre-processing
the raw GNSS data to obtain a position solution, a GNSS/IMU integra-
tion is performed to obtain an initial trajectory. The nodes for the cubic
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Fig. 8. ALS point cloud coloured by reflectance (dark/bright = low/high reflectance),
with the trajectory overlaid in red. The red rectangle marks the subset of the ALS
point cloud selected for visualization of the results below, which covers the Loosdorf
village centre. The blue rectangle marks the ULS study area (Fig. 9). The green
circles indicate horizontal reference points, the green triangles indicate sloped reference
surfaces (i.e., rooftops). The reference points and surfaces were measured in a standard
RTK survey, directly in the first case and via total station for the latter. (Reference
surfaces are slightly offset from their true location for better visibility).

Fig. 9. ULS point cloud coloured by reflectance, with the trajectory overlaid in blue.
The ULS study area is located along the Pielach river, as indicated with a blue rectangle
in Fig. 8. The green squares represent two photogrammetric targets, square 2 × 2
checkerboards with side length 30 cm, used for evaluation of the ULS point cloud.

position splines and quadratic orientation splines are placed at the sam-
ple times of the respective IMUs, which have a measurement frequency
of 200Hz. The initial trajectory together with the nominal LiDAR
mounting calibration is used to preliminarily georeference the point
cloud. Based on this initial point cloud, planar features are extracted
and matched to obtain the LiDAR plane observations, using cells of size
ℎ𝑥 = ℎ𝑦 = ℎ𝑧 = 2m. Note that the same rasterization (and thus cell size)
is used for both the ALS and the ULS point clouds. For georeferencing
and adjustment of the ALS data, all sensors, specifically both LiDAR
channels, are referenced to the same trajectory. To reduce the number
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Fig. 10. Workflow for joint boresight calibration and trajectory estimation of ALS and
ULS data acquisitions. Note that the boresight for the ALS system is initially unknown,
causing discrepancies of up to 1 m in the initial georeferencing. For this reason, the
feature matching and extraction process is first done separately for the two datasets,
but this step is otherwise optional. It is not necessary to further iterate the feature
extraction and matching process, and the same cell size of 2 m is used for all three
plane extractions.

of LiDAR plane observations and parameters, we spatially subsample
the ALS raster, keeping only those planes with the best fit. Specifically,
we first subsample all planes by 5 × 5 × 5, then the horizontal planes by
0 × 20 × 20. This is done to ensure a large number of non-horizontally
riented planes, which are essential in constraining lateral shifts. The
LS dataset was acquired with an uncalibrated test system (i.e., fully
nknown boresight angles). To empirically account for a non-constant
oresight between the two laser scanners, the boresight angles of the
reen laser channel had to be modelled as a linear function. The LiDAR
bservations are now also considered in the adjustments, allowing
oresight calibration within the trajectory estimation procedure. The
esulting trajectory and boresight calibration is used to re-georeference
he point cloud. The GNSS/IMU/LiDAR adjustment may be done (a)
ompletely separately, or (b) in a joint adjustment. To understand
he differences and possible benefits, we first compare the individual
oint clouds resulting from (a), i.e., fully decoupled processing of both
atasets, and then evaluate the results of (b), the joint processing.

For the GNSS processing of both datasets, the GNSS positions are
omputed in post-processing kinematic (PPK) mode using the RTKLIB
oftware (Takasu and Yasuda, 2009). The GNSS base station is located
pproximately 40 km away in Amstetten, Lower Austria, resulting in
relatively long baseline. In previous work (Pöppl et al., 2023a), we

ave observed difficulties with ambiguity resolution with RTKLIB for
ong baselines and expect this to significantly impact the quality of the
NSS solution, especially for the UAV platform, which has a lower-
rade GNSS receiver and antenna in comparison to the ALS system. This
ecomes immediately apparent in the separate processing, as there is a
arge discrepancy between the ALS and the ULS point cloud. Fig. 12(a)
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p

Fig. 11. Graphical representation of the parameters and measurements occurring in the
joint adjustment. Specifically, each type of observation is connected to the parameters
occurring in the respective measurement equation. The fictional observations derived
from the stochastic priors are not shown here.

shows the height differences between the ALS block and the ULS block,
which indicate at least a vertical offset of about 7 cm. This is confirmed
by comparison with the reference data: The ALS data achieves an RMSE
of 3.85 cm with an estimated offset below 1.5 cm horizontally and 1 cm
ertically. On the other hand, comparison of the two available reference
argets to the ULS data again shows errors of 7 cm in the vertical
omponent, which is notably larger than the expected accuracy of the
eference data.2

The relative fit of both datasets and the – so far unsatisfactory
– absolute accuracy of the ULS datasets is expected to improve in a
joint processing of both datasets, without needing to introduce any
ground control. To this end, not only do we consider the navigation
data and LiDAR data together, but also both datasets simultaneously,
which further improves the redundancy and allows the ULS dataset to
be non-rigidly co-registered with the ALS dataset. Fig. 11 illustrates
the interdependency of parameters and observations in this combined
processing approach, where both platforms are included in a single
adjustment, effectively coupled to each other through the object space
parameters. With this approach, the ULS point cloud’s datum is de-
fined through the ALS data, or more specifically through the object
space plane parameters. Through the joint adjustment, the discrepancy
between the ALS and ULS block is reduced to a maximum of a few
centimeters (Fig. 12(b)). The height discrepancy between ULS point
cloud and the two reference targets is now 0.56 cm and 1.67 cm,
well within the specified accuracy of the reference targets. Fig. 13
shows the maximum strip height differences for this block, which are
below 3 cm for areas which are approximately planar (i.e., specifically
excluding vegetation), with standard deviations largely below 2 cm for
those areas. The residual errors in the height differences are caused by
high-frequency errors in the orientation, which are especially visible
here as data recording was active throughout the flight, including in
turns where the UAV turns and de/accelerates very quickly. The errors
are likely either due to inaccurate time synchronization between IMU
and LiDAR, or simply due to the high-frequency dynamics not being
resolved correctly by the IMU’s 200 Hz sampling rate.

For the ALS dataset, strip differences for all strips and a selected
study area in the Loosdorf village centre are given in Fig. 14. The
strip differences show good consistency between the infrared point
clouds from all strips, with discrepancies below 3 cm. However, slightly
larger discrepancies are visible in the strip differences of the green laser

2 RTK measurements with 4 cm accuracy according to the RTK service
rovider.
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Fig. 12. Height difference between the ALS and ULS blocks before and after joint adjustment. Computed with a grid size of 1 m.
Fig. 13. Maximum residual height differences of all strips to the height average, and standard deviations of the ULS strips. Computed with a grid size of 1 m.
channel, and also in the combined infrared and green strip differences.
These differences mostly occur at smaller scales, such as for building
roofs (especially edges) and in vegetated areas, due to the differ-
ent beam characteristics between the infrared channel (smaller beam
footprint, longer pulse duration) and the green channel (larger beam
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footprint, shorter pulse duration). In addition, some higher frequency
trajectory errors are present, again likely caused by insufficient IMU
sampling frequency compared to the frequency of platform vibrations.
This causes errors in individual scan lines, while neighbouring scan
lines fit well.
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Fig. 14. Maximum normal differences (left, middle) and standard deviations (right) of the ALS strips, infrared (IR) and green (GR) channel separately and combined (IR+GR).
Normal differences are distances of each strip’s average to the combined average w.r.t. the combined surface normal. Only last echos are used, and points with low reflectance or
high pulse shape deviation are filtered out beforehand. To account for e.g. vegetation, the overall precision is reported using the robust median absolute deviations of the IR, GR
and IR+GR strip differences. Computed with a grid size of 1 m.
To evaluate absolute accuracy, the estimated root mean square error
(RMSE), and standard deviation (SD) of the normal distances of the ALS
point cloud w.r.t. the 106 reference surfaces is computed and given in
Table 2, together with the corresponding robust statistics.

As a baseline, we also provide the respective value of an industry-
standard georeferencing solution, computed using the Applanix POSPac
software for GNSS/IMU integration via Kalman filter and RIEGL Ri-
PRECISION for strip adjustment. Our solution achieves a notably lower
RMSE of 3.85 cm compared to 7.43 cm, which is largely due to a con-
stant datum error. The reason for this shift is unknown and may include
either software or user error at some point during processing. As in our
solution we have full control over the whole georeferencing pipeline,
great care was taken to ensure the correct datum is used throughout. In
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conjunction with the redundancy introduced by the overlapping flight
strips, constant positioning errors are avoided and time-dependent
positioning errors may be corrected for in the combined adjustment.
As a measure of precision, we also include the standard deviation
(point spread) of all points-to-target normal distances in Table 2.
Again, the proposed solution performs slightly better, with a standard
deviation of 2.44 cm, which is consistent with the standard deviations
of approximately planar surfaces shown in Fig. 14 (IR+GR.c).

The LiDAR stochastic model introduced in Section 2.7.3 is essential
in avoiding block deformation while still allowing enough flexibility in
the models to correct moderate time-varying GNSS errors and ensure
good consistency between different flight strips. Fig. 15(a) shows the
height difference between the point clouds from the two processing
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Fig. 15. Differences between (1) the purely data-driven stochastic model Eq. (2.47) and (2) the adapted stochastic model Eq. (2.48) of the two point clouds (a), and of the
respective distances between point cloud and reference surface (b). (Reference surfaces are slightly offset from their true location for better visibility.)
Table 2
Computed datum shift, root mean square error (RMSE), median absolute error (MAE),
standard deviation (SD), median absolute deviation (MAD), and point spread w.r.t.
to the reference surfaces. These values are provided both for the baseline solution,
processed with the manufacturer software, and our proposed solution. Shift, RMSE,
MAD and SD are derived by fitting the point clouds to the reference targets. Spread
is the combined standard deviation of all points’ residuals w.r.t. their corresponding
plane fit.

[cm] Baseline Proposed

East −3.26 1.12
Shift North 3.25 −1.17

Up −6.80 −0.63

RMSE 7.43 3.85
MAE 6.22 2.46

SD 4.54 3.83
MAD 3.06 2.36

Spread (1𝜎) 3.01 2.44

runs: (1) with the purely data-driven LiDAR stochastic model Eq. (2.47)
and (2) with the proposed LiDAR stochastic model Eq. (2.48) that
accounts for measurement errors which are correlated for points be-
longing to the same feature plane. Although only the LiDAR stochastic
model differs in the processing of (1) and (2), the resulting point clouds
exhibit systematic deformation compared to each other. The differences
are most visible in the centre, where the strips overlap and thus the
most LiDAR correspondences are present, and at the beginning and
end of the strips, where the opposite is the case. Fig. 15(b) shows
the difference of the absolute distances between point cloud and the
reference surfaces: A green marker indicates that block (1) has a larger
absolute error w.r.t. the reference surface, and a pink marker indicates
that block (2) has a larger absolute error. The systematic behaviour
seen in Fig. 15(a) is not as obvious in Fig. 15(b), where we compare
both blocks to the reference surfaces, which are themselves also only
accurate at the cm-level. Also, only few or no horizontal reference
surfaces are available at the northernmost and southernmost ends of the
strips — where the difference between the two blocks reaches 10 cm.
Nonetheless, the use of the adapted stochastic model in block (2) results
in an overall reduced RMSE of 3.85 cm compared to 4.42 cm for block
(1). In case (1), the LiDAR correspondences are weighted much higher
compared to case (2), and also weighted higher in comparison to the
navigation data. This different weighting leads to deformation of the
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whole trajectory and thus point cloud. Although absolute accuracy of
the laser scanning data can only be judged where reference data is
available and to the level of accuracy of this reference data, our results
show the LiDAR stochastic model has a notable impact on the final
point cloud, and strongly indicate that the adapted stochastic model
does in fact improve georeferencing accuracy.

In summary, the result of the joint adjustment is a combined point
cloud which is consistent both within the acquisition type (i.e., strip
differences for ALS and ULS separately), with respect to each other
(block difference between the ALS and ULS datasets) and accurate in
comparison to reference data. The initial discrepancy between both
datasets is corrected by the co-registration as part of the GNSS obser-
vation error budget. Note again that the adjustments use no ground
control, and the reported absolute accuracy is verified using completely
independent terrestrially surveyed data.

The multi-platform adjustment is of course more complex and re-
quires more computational effort compared to stand-alone adjustments
followed by rigid co-registration. Table 3 reports the runtimes for the
different stages of processing. Even though the various adjustments are
computationally expensive, the total runtime is dominated by the Li-
DAR georeferencing, simply due to the large amount of points involved.
Similarly, while Kalman filtering might be a faster way of obtaining an
initial solution, the runtime of the sliding-window adjustment approach
is still negligible compared to the combined runtime of the full adjust-
ments and georeferencing. Nevertheless, adjustment runtime and also
memory requirements are expected to increase at the very least linearly
with acquisition time, and further work is both needed and planned in
order to allow efficient processing of large datasets.

4. Conclusion

In this contribution, we have presented a comprehensive methodol-
ogy for integrating navigation sensors with the payload LiDAR sensor
in kinematic mapping applications. As a practical demonstration, the
methodology is applied to direct georeferencing of airborne crewed and
uncrewed data acquisitions without ground control. The result of this
joint ALS and ULS adjustment procedure is a combined point cloud that
is both consistent and accurate: Through analysis of strip differences,
both within each dataset and compared to each other, we show con-
siderable improvements (a) in absolute accuracy and relative precision
when comparing the ALS results from our methodology to a standard
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Table 3
Runtimes in seconds and memory usage in GiB for the different stages of processing,
as shown in Fig. 10. The reported memory usage is the maximum of each step. LiDAR
georeferencing is done using RIEGL software. The Kalman filtering solution is processed
sing a quaternion unscented Kalman filter with forward–backward smoothing; the
alman filter runtime is mentioned here only to provide additional context, the
esulting smoothed GNSS/IMU trajectory is not used further. Processing was done on

Linux workstation with an AMD Ryzen 7 2700X CPU, 64 GiB RAM and an NVMe
drive.

ALS ULS

GNSS/IMU smoother 0:48 min 0:14 min

GNSS/IMU 2:39 min 1:09 min
initialization 0.90 GiB 2.04 GiB

GNSS/IMU 1:41 min 1:00 min
adjustment 7.15 GiB 4.45 GiB

Georeferencing 8:13 min 5:05 min
6.41 GiB 4.68 GiB

Plane extraction 3:49 min 1:19 min
and matching 21.23 GiB 11.77 GiB

GNSS/IMU/LiDAR 4:01 min 0:53 min
adjustment 11.04 GiB 4.90 GiB

Georeferencing 8:04 min 4:58 min
6.30 GiB 4.44 GiB

Plane extraction 5:40 min
and matching 21.23 GiB

GNSS/IMU/LiDAR 8:12 min
ALS/ULS adjustment 15.09 GiB

Georeferencing 8:08 min 4:40 min
6.63 GiB 4.41 GiB

processing workflow and (b) in absolute accuracy when comparing the
jointly processed ULS dataset to the individually processed ULS dataset.
For the ALS dataset, an absolute accuracy with an RMSE of below 4 cm
is achieved. In terms of precision, the point spread on planar surfaces
shows a standard deviation also below 4 cm for the combined infrared
and green dataset, both for the reference surfaces themselves and for
other planar surfaces such as roads and building roofs.

The proposed framework is highly flexible and allows for vari-
ous sensor configurations, e.g., multiple laser scanners with different
wavelengths (in this article), a laser scanner on a gyro stabilization
mount (Mandlburger et al., 2023b), multiple GNSS antennas (Pöppl
et al., 2023e) and non-standard kinematic scanning platforms such
as a terrestrial laser scanner (Pöppl et al., 2023d). Using appropri-
ate stochastic models, both consumer-grade navigation sensors (Pöppl
et al., 2023e) and survey-grade navigation sensors (in this article, Pöppl
et al., 2023a) are processed with the same functional model and
implementation, achieving high quality trajectories even for low-cost
navigation components but without sacrificing accuracy for high-end
systems. The proposed method can be seen as an extension to stan-
dard strip adjustment and used as such, i.e., without IMU and GNSS
measurements. While there is little advantage to do so in cases where
the navigation data is available, missing GNSS and IMU measurements
may be replaced with stochastic priors, which function as fictional time-
correlated measurements and constrain the corrections to position and
orientation (Mandlburger et al., 2024).

In any case, the main focus is on the LiDAR data itself, with the
LiDAR measurements being in this context not just an additional input
for navigation purposes but rather the final product. The LiDAR mea-
surement model is based on planar surfaces as geometric primitives for
constructing LiDAR correspondences. The stochastic model is extended
here to account for measurement effects dependent on sensor charac-
teristics such as ranging and angular accuracy as well as pulse duration,
footprint size and incidence angle on the target. So far, we have relied
exclusively on extracting and matching planar surfaces. However, the
general methodology could be adapted for different observation types
(point-to-point, or higher-order surfaces) in the future, with no impact
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on the rest of the estimation procedure. Different feature types, for
example for forest environments, may be straightforwardly integrated
as the feature extraction and matching procedures are conceptually and
practically decoupled from the rest of the processing pipeline.

While the results shown in Section 3 are promising, the com-
putational effort required for the full adjustment, especially when
simultaneously processing multiple datasets, is high. This is especially
the case since our method relies on processing inertial measurement
data at full output rate, in order to capture any motion which may
impact the LiDAR measurements. Reducing the computational effort
becomes even more relevant as newer IMU generations output measure-
ments at higher rates. In the future, IMU pre-integration could be used
together with a trajectory reconstruction scheme which ensures the
full fidelity is restored after adjustment. Additionally, parallelization
schemes such as domain decomposition, or split-optimization methods
such as the alternating direction method of multipliers (ADMM) are
candidates for improving runtime performance as for many applications
the problem is relatively easily decomposable into smaller problems,
e.g., different platforms or strips, coupled together through the object
space parameters.
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