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ARTICLE INFO ABSTRACT
Keywords: Laser scanning is an active remote sensing technique applied in many disciplines to acquire state-of-the-art
Virtual laser scanning spatial measurements. Semantic labeling is often necessary to extract information from the raw point cloud.
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Deep learning methods constitute a data-hungry solution for the semantic segmentation of point clouds. In this
work, we investigate the use of simulated laser scanning for training deep learning models, which are applied
to real data subsequently. We show that training a deep learning model purely on virtual laser scanning data
can produce results comparable to models trained on real data when evaluated on real data. For leaf-wood
segmentation of trees, using the KPConv model trained with virtual data achieves 93.7% overall accuracy,
while the model trained on real data reaches 94.7% overall accuracy. In urban contexts, a KPConv model
trained on virtual data achieves 74.1% overall accuracy on real validation data, while the model trained on
real data achieves 82.4%. Our models outperform the state-of-the-art model FSCT in terms of generalization
to unseen real data as well as a baseline model trained on points randomly sampled from the tree mesh
surface. From our results, we conclude that the combination of laser scanning simulation and deep learning is
a cost-effective alternative to real data acquisition and manual labeling in the domain of geospatial point cloud
analysis. The strengths of this approach are that (a) a large amount of diverse laser scanning training data
can be generated quickly and without the need for expensive equipment, (b) the simulation configurations can
be adapted so that the virtual training data have similar characteristics to the targeted real data, and (c) the
whole workflow can be automated through procedural scene generation.

1. Introduction Virtual Laser Scanning (VLS) simulates laser scanning to generate
virtual point clouds (Winiwarter et al., 2022; Dosovitskiy et al., 2017;

Light Detection and Ranging (LiDAR) can be wused for Gastellu-Etchegorry et al., 2016), also called simulated or synthetic
three-dimensional (3D) observation of various environments, making point clouds in other studies. In this work, we compare the performance
it one of the most important geospatial data acquisition technolo- of deep learning (DL) models trained with real-world and virtually
gies (Shan and Toth, 2018). Point clouds are the main representation of scanned and thereby labeled point clouds. While there is a growing
LiDAR measurements. They have unstructured Euclidean data (geomet- interest in deep learning on 3D point clouds, manual labeling is an

ric data) deflmng the spatial coordinates of thg pomt.s (Otepka et al., extremely time-consuming task and is the main bottleneck in this
2013) and may include other data such as radiometric or backscatter .
. . area (Griffiths and Boehm, 2019).
features. Typically, the raw point clouds need to be segmented or . .
We use VLS to generate perfectly annotated virtual point clouds

classified in order to extract meaningful geoinformation or perform . - . . .
further analysis from 3D scenes in a time and cost-efficient way to train deep learning
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models that generalize to real data. The 3D scenes for VLS can be man-
ually designed, often made available in public 3D model repositories,
derived from real data acquired with different sensors (e.g., LiDAR or
photogrammetry), or computed through procedural scene generation
algorithms (Zahs et al., 2023). Thus, VLS can be used to (a) create
huge and diverse synthetic datasets, (b) generate targeted training data
for critical classes or mimic the characteristics of a real dataset by
modifying the scene, platform, and scanner configuration with little
effort, and (c) provide perfectly annotated datasets by transferring
labels from the 3D scene with no need for point cloud annotation or
real data acquisition.

Our experiments focus on two common point-wise point cloud clas-
sification problems: (1) semantic segmentation of urban scenes (Kolle
et al., 2021) and (2) leaf-wood segmentation of trees (Ferrara et al.,
2018; Krisanski et al., 2021b; Han and Sanchez-Azofeifa, 2022). For
(1), we selected the mesh model of the Hessigheim3D urban benchmark
dataset (Kolle et al., 2021) to create the virtual scene for VLS. For (2),
we use computer-generated tree models for a fully virtual scene and
the Wytham Woods 3D forest scene, which was reconstructed from real
data (Calders et al., 2018; Liu et al., 2022).

Our objectives are to:

1. Develop a theoretical definition of the Virtual Laser Scanning
meets Deep Learning (VLS-DL) model.

. Empirically validate the VLS-DL model using state-of-the-art
data and algorithms to train deep learning models on virtual
point clouds that generalize to real point clouds.

. Obtain proof-of-concept by applying the VLS-DL model to promi-
nent and representative classification tasks covering natural and
urban environments.

In doing so, the following research questions will be answered:

1. To what degree do deep learning models trained with virtual
laser scanning data generalize to real point clouds?

. What are the quantitative differences between fitting a DL. model
to virtual or real-world point clouds?

. What is the quantitative difference between using VLS-DL with

meshes derived from real point clouds compared to fully computer-

generated scenes?
2. Related work
2.1. Labeled datasets

Several open-access labeled point cloud datasets in the literature
have been used for benchmarking (Guo et al., 2021). Most of them
are from indoor or urban scenes. For instance, the widely used Stan-
ford 3D Indoor Scene Dataset (S3DIS) (Armeni et al., 2016) and the
outdoor Semantic3D dataset (Hackel et al., 2017) were acquired using
static terrestrial laser scanning (TLS). Point clouds are also acquired
with airborne platforms such as the DALES objects dataset covering
ground, vegetation, vehicles, buildings, fences, and powerlines (Singer
and Asari, 2021). Some state-of-the-art datasets, such as the KITTI
3D Object Detection benchmark (Geiger et al., 2012), are specifically
oriented to robotics, which combines high-resolution video cameras
and laser scanning.

While the availability of high-quality labeled datasets is increas-
ing, they are still limited, e.g., to certain geographic regions, specific
sensor systems, or specific objects (e.g., tree species). Annotating laser
scanning point clouds manually is a cumbersome, time-consuming, and
labor-intensive task. On top of that, interpreter bias and imperfect
human annotation often cause label noise (Kolle et al., 2021; Hackel
et al, 2016), especially for fine-scale structures and in partly oc-
cluded areas. This can influence the success rate of DL-based semantic
segmentation. For example, Gonzalez-Collazo et al. (2023) found a
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correlation (R? = 0.765) between the Fl-score of a PointNet++ model
and the percentage of concordance points (same class assigned by all
annotators) in the training data.

The outdoor Hessigheim benchmark (Koélle et al., 2021), which we
use in our study, is a particularly interesting labeled point cloud dataset
for three reasons: (1) Acquired using an unoccupied aerial vehicle
(UAV), it has a high point density of about 800pts/m? and achieves
state-of-the-art representation of fine-grain features and also vertical
elements, (2) it covers eleven different classes in the broader categories
ground, buildings, vegetation and urban objects, and (3) it contains
multiple epochs, captured in different seasons in 2018 and 2019. There
is an online benchmark with many results for the March 2018 epoch
comparing some well-known models (Gao et al., 2022; Qi et al., 2017b;
Thomas et al., 2019).! Moreover, the Hessigheim 3D (H3D) dataset also
includes annotated 3D meshes derived by combining the point cloud
and oblique images. Table 1 represents the point-wise classification
distribution of the different epochs, split into training and validation
by the benchmark organizers.

For the case of leaf-wood separation, Vicari et al. (2019) have
published the real-world and virtual validation data (Boni Vicari et al.,
2018a,b) for their Python library TLSeparation (14 trees in total). Wang
et al. (2020) provided the 61 labeled tree point clouds from Momo Tak-
oudjou et al. (2018), which they used for validation of the automatic
leaf-wood segmentation tool LeWoS (Wang et al., 2021). The labeled
Quantitative Structure Models (QSMs) obtained from point clouds of
the Wytham Woods research forest (Oxfordshire, UK) used by Calders
et al. (2018) and Liu et al. (2022) to model radiative transfer in forest
stands have also been made openly available. We use the Wytham
Woods dataset for VLS-based model training for leaf-wood classifi-
cation. The main real-world leaf-wood dataset for our experiments
consists of 11 TLS point clouds of different species, which have been
manually labeled (Weiser et al., 2023). The tree point clouds have
between 500,000 and 10,600,000 points and there are always more
leaf points than wood points. Furthermore, we apply our models to
two additional datasets from the literature to investigate how the
models generalize. Appendix B contains a detailed description on the
real-world training and validation point cloud datasets.

We are considering two types of leaf-wood experiments: isolated
and near trees (Appendix A.2, Appendix B). For the “leaf-wood iso-
lated” case, the trees are placed isolated from each other such that
any input neighborhood for the deep learning model will contain points
from a single tree. In the “leaf-wood near* case, the trees are close to
each other, so their crowns overlap. Consequently, input neighborhoods
potentially contain points from different trees.

2.2. Deep learning on point clouds

The PointNet model is generally accepted as the first relevant
milestone of deep learning applied to point clouds because it achieved
permutation invariance concerning input data while capturing the local
structure of neighborhoods (Qi et al., 2017a). It was later extended to
the PointNet++ model, which achieves hierarchical feature extraction
similar to typical convolutional neural networks (CNN) following an
incremental multiscale approach (Qi et al., 2017b). There are also
extensions of PointNet++, such as alsNet, which uses a batching frame-
work strategy to process vast airborne laser scanning (ALS) point
clouds (Winiwarter et al., 2019). Other models, such as Kernel Point
Convolution (KPConv), define the kernel as a finite set of points in
the Euclidean space and a convolution operator based on a linear
correlation where the distance between the kernel’s points and the
input neighborhood’s points weights the contribution of each partic-
ular point to the extracted feature (Thomas et al., 2019). Other deep

L https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/results.aspx
(Accessed on 7 March 2023).
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Table 1
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Percentage of points per class for the Hessigheim datasets. The classes from left to right are low vegetation (C00), impervious surface (C01),
vehicle (C02), urban furniture (C03), roof (C04), facade (CO5), shrub (C06), tree (CO7), soil/gravel (C08), vertical surface (C09), and chimney

(C10).
Dataset Point-wise class distribution percentage (%)

C00 C01 C02 Co3 C04 C05 C06 co7 Co8 C09 C10
March 2018 (training) 35.96 17.53 0.43 1.95 10.56 2.02 1.81 13.60 14.45 1.64 0.04
March 2018 (validation) 25.85 22.21 1.27 3.15 21.10 3.82 2.36 15.34 4.10 0.70 0.11
March 2019 (training) 36.67 18.42 0.71 1.57 19.21 2.63 4.61 14.03 0.85 1.20 0.10
March 2019 (validation) 27.45 18.99 1.18 2.85 26.92 4.27 5.49 10.79 0.99 0.93 0.15

learning proposals aim to solve the problem of point clouds being
unstructured data spaces without topological information by estimat-
ing the implicit topology to improve the representation capabilities
of raw point clouds. For instance, the Dynamic Graph Convolutional
Neural Network (DGCNN) model uses a convolutional operator on the
graph’s edges representing a local neighborhood updated from layer
to layer (Wang et al., 2019). Furthermore, there are models based on
the sparse 3D convolutional neural networks introduced by Graham
(2015). The main idea is to mitigate the dimensionality curse that
arises when generalizing discrete 2D convolutions to 3D by using a
hash table where the keys correspond to non-empty spatial locations,
and the values are the index of the associated row in the input matrix.
These sparse convolutional models have been successfully applied to
point-wise semantic segmentation of point clouds (Graham et al., 2018;
Schmohl and Sorgel, 2019).

The PointNet++ model has been modified to support 20,000 instead
of 1024 points per sample to achieve sensor agnostic segmentation
in forest point clouds (Krisanski et al., 2021b). This PointNet++-like
model is part of the Forest Structural Complexity Tool (FSCT), which
we also use in our work to compare virtual-to-real generalization
with real-to-real generalization for leaf-wood segmentation (Krisanski
et al.,, 2021a). Other works use a point-wise CNN to segment stems
from leaves, e.g., to study maize plants from terrestrial LIDAR point
clouds (Ao et al., 2022). Some approaches combine geometric features
with corrected optical features and achieve 96.20% and 94.98% overall
accuracy (OA) when performing leaf-wood segmentation on broadleaf
and coniferous plants, respectively, and with an 84.26% OA on mixed
vegetation contexts (Wu et al., 2020). The leaf-wood segmentation
problem has also been approached as a time series problem com-
paring CNN, Long Short-Term Memory convolutional neural networks
(LSTMCNN), and Residual Network (ResNet) models (Han and Sanchez-
Azofeifa, 2022). Recent works are thoroughly studying the performance
of PointNet++ for leaf-wood-flower segmentation depending on the
number of scan positions and the amount of noise (Rousseau et al.,
2022).

2.3. Virtual laser scanning

The high cost and inherent errors of point cloud annotation suggest
exploring VLS as an alternative or complement to real data. There
are software solutions to compute laser scanning simulations covering
different scanner and scene configurations. For instance, the Blender
Sensor Simulation Toolbox (BlenSor) modified Blender (Blender Online
Community, 2023) to support casting many simultaneous rays, making
it an efficient unified VLS and scene modeling framework (Gschwandt-
ner et al., 2011). Recent studies used laser scanning simulations within
Blender to create training data for machine learning on 3D point clouds.
For instance, Hildebrand et al. (2022) worked on the classification of
indoor scenes (like office and apartment rooms). However, for virtual
point cloud data of larger outdoor scenes, simulations have to be phys-
ically more sophisticated, i.e., taking into account beam divergence,
multiple returns, and complex sensors while handling large scenes and
high simulated pulse frequencies. Blender-based solutions inherit the
modeling and performance limitations from software oriented to 3D
animation, visual effects, video games, and many more. We argue that
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obtaining the best VLS results demands specific VLS-oriented software.
Consequently, we decided to use the general-purpose high-performance
Heidelberg LiDAR Operations Simulator HELIOS++ (Winiwarter et al.,
2022), to study its potential for successfully training deep learning
models solely from virtual data. This software supports many input
formats, such as triangle meshes, voxels, geographic tagged images
(GeoTIFF) as raster models, and point clouds. Besides, it supports de-
tailed XML specifications for different platforms and scanners. Instead
of a ray tracing implementation similar to the native ray tracing of
computer games such as Grand Theft Auto V (GTA V) and 3D graphics
software such as Blender, HELIOS++ provides an efficient object-aware
ray tracing algorithm that supports the high-performance parallel com-
putation of different physical models on the light ray (Esmoris et al.,
2022).

There has been some previous work using synthetic data to train
DL models. Hurl et al. (2019) achieve a 5% improvement in average
precision when using the Precise Synthetic Image and LiDAR (PreSIL)
dataset to pre-train object detection models validated against the KITTI
3D Object Detection benchmark (Geiger et al., 2012). The PreSIL
dataset includes point clouds generated from GTA V virtual scenes. It
uses an alternative to classical ray casting based on projecting the rays
on an image plane to compute a depth interpolation that leads to more
accurate object representations. Others have implemented an in-game
LiDAR in GTA V to generate virtual 3D point clouds and improve the
performance of CNN-like models at point-wise semantic segmentation.
Enriching real data with virtual data boosted classification intersection
over union (IoU) on real validation data by around 8.9% (Wu et al.,
2018). Furthermore, Bryson et al. (2023) explored a variant of leaf-
wood segmentation using virtual data to train a deep learning model
based on the PointNet++ architecture. Instead of typical leaf and wood
classes, they considered stem (main tree stem and large branches) and
foliage (canopy and small branches). They found that models trained on
virtual data can outperform models trained on real data when there are
not enough labeled real point clouds to achieve convergence. However,
with abundant real data, models trained on real data outperform those
trained on virtual data.

3. Method

Central to our approach is the combination of virtual laser scanning
(VLS) and deep learning (DL) for point cloud semantic segmentation.
In this section, we first consider the main theoretical components of
VLS and DL applied to point clouds. We then present our experimental
framework, where we train our deep learning model with (a) only
real data and (b) only VLS data and then evaluate the performance by
predicting class labels on a withheld validation set of the real data.
The whole workflow is illustrated in Fig. 1. We provide a detailed
description of the virtual scene modeling and the simulated platform
and scanner in Appendix A and the real training and validation point
clouds in Appendix B.

3.1. Theoretical model

The theoretical VLS-DL model illustrates the key components of
a virtually trainable model based on connecting simulation and deep



A.M. Esmoris et al.

1) Urban Virtual urban
Labeled meshes scene
{Hessigheim)
Original mesh
[ —_— o
e, T {Original)
[
\

Mesh with voxel
wvegetation

(Voxel)

|

Labeled point clouds

{Hessighsim)
&

Platform, scanner, ray-scene intersection

i VLS training data ‘

Real training data

Labeled point clouds
{Hessighsim)

Geometry onhy @

'

Labeled point clouds
1} Original
2} Voxel

!

ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 192-213

Virtual leaf-wood
scenes

2) Leaf-wood

Labeled meshes,

; procedurally modeled
Fulty virtual (FVLS) s a

Reconstructed from real
data (VLS) Labeled meshes,
1} Isolated trees reconstructed from
2} Mear trees (full forest) -

HELI2S++
Virtual laser scanning (VLS)

Labeled point clouds

1

2) VLS (isolated)
3) VLS (near + ground)

real point clouds

{(Wytham Woods)

Real training data

Labeled point clouds

J

) FVLS(near) -

Isolated — Mear tress (+ ground)
Geometry — Geometry + Reflectance

! 4

I|II Deep Learning (DL)
Ablation study on - point cloud classification models v
\LS/real data lll
- Rigid Kernel Point Convolutions Mesh baseline Randolm(ljy
Random . (KPConv) < sample
Forest SN with many receptive fizkis point cloud

! !

Evaluation
on different datasets

|

Comparisen with the
FSCT Model

using classification, correlation and agreement metrics, and qualitative assessments

Fig. 1. The workflow summarizes the entire experimental framework. The top shows the generation of 3D scenes, which are virtually scanned with HELIOS++ to create virtual
labeled point clouds for training the VLS-DL models for (1) urban classification and (2) leaf-wood classification. For the urban case, meshes and point clouds from the Hessigheim3D
dataset (Kolle et al., 2021) are used. For the leaf-wood case, synthetic meshes generated with the algorithm by Weber and Penn (1995), and the Wytham Woods 3D model (Calders
et al., 2018; Liu et al., 2022) are used. Real labeled point clouds (Hessigheim for the urban case, point clouds from Weiser et al. (2023) for the leaf-wood case) serve as training
data for the deep learning (DL) models. The performance of the models trained on real data and those trained on virtual data are evaluated and compared quantitatively and
qualitatively. The leaf-wood models are also compared with the FSCT model (Krisanski et al., 2021a) and a mesh sampling baseline model. The ablation study compares the
performance of VLS and real training datasets on many models with different amounts of annotated points.

learning. In this section, we describe the many submodels and how
they are connected from the first (parametric ray generation) to the
last (neural network).

The VLS-DL model on a 3D Euclidean space starts by simulating
a trajectory using a parametric model (Stewart, 2012) with position
(x1 (1), x,(t), x3(1)) and associated direction (¢, (), p,(t), p3(1)). A ray is
defined from an origin point o, and an associated director vector v;
such that {o; +tv; : t >0} (Boyd and Vandenberghe, 2004). However,
for VLS, the travel time of the ray is used to estimate the distance.
Consequently, a ray in VLS context must be defined as {0, + v, : t > €},
where ¢ € R, is the minimum distance threshold defining the scanner.
Thus, it is possible to express the finite set of rays in the simulation such
that v; = {o,— =0 [ti,x](ti), ,(p3(t[)] U =0 [t,-,x](t,-), ,(p3(t[)]}, where
o and v map the parametric model to the final ray. These maps can be
as simple as the identity function or as complicated as the composition
of many reference systems mixed with non-linear deflection models.

Let V be a finite set of points in R? that lie on a common plane
where they define a convex polygon. This convex polygon can be seen
as the feasible region of a linear programming problem (LP) (Solow,
2014). Moreover, as the objective function is null, any solution is
optimal, which means the LP can be seen as a feasibility problem. Let
vV € R>VI be the matrix representing the vertices in ¥ on the local
coordinates of their plane. Since each convex polygon is a convex set,
any convex combination of its vertices ZI,VI Av,; satisfying Z}Vl A =1
and 4; > 0 will be inside the polygon (Boyd and Vandenberghe, 2004),
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where v,; is the row j of matrix V. The convex combination of the
vertices of a convex polygon is illustrated on the left side of Fig. 2 ,
while the finite set of feasible regions is illustrated on the right side.
Any scene point p must belong to the plane defined by a set of vertices
V; and lie inside a feasible region when expressed as the point q in the
local coordinates of this plane. Then, all scene points can be modeled as
belonging to the union of a finite set of planes z; constrained by linear
systems V' 4; = ¢’ subject to A; > 0. Note for any polygon defined by
the vertices V; the constraint ZL‘/’l(/li) ; = 1 is implicit on the definition
of ¥/ and ¢’ given in Eq. (1), both expanded with ones.

=P

To conclude the VLS model, note that the feasible regions contain
infinite points, but the amount of rays is finite. Thus, the intersection
between the rays and the feasible regions leads to a finite set of points
constituting the baseline solution of the ray tracing VLS model. The
final output point set P generated through VLS can be defined as the
set of points that satisfy all the constraints given in Eq. (2). In this
equation, each y, < r; stands for each of the K non-necessarily linear
filters. These filters can be physical-based (e.g., —y is the power of the
reflected light at the sensor and —7; is the minimum power the sensor
can detect) or simulation conveniences (e.g., y; is the distance between
origin and target points and 7, is an arbitrary maximum distance
threshold). The input vector 6 represents other potential simulation

Vi

= ¢b)
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Fig. 2. The left side figures (a) and (b) show how a point (blue) inside a convex set
can be expressed as a convex combination of its vertices (red) understood as vectors
(gray) from the origin (yellow). Note that the blue highlighted segments represent the
magnitude of displacement on the vector for the convex combination. The right figure
(c) shows that many intersections of halfspaces can be seen as many different linear
feasible regions (blue) representing a linear system each. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

parameters (e.g., the wavelength).
p=o0;ttv; €m, 12¢,
I;:{li =q 4; >0,
Ax Vi 7;,¢,1,0) < 7

P={peR’: 2

From now on, the matrix P = [X | F | y] € R"™ will refer to the
output point cloud of m points generated with VLS where X € R"*3
represents the simulated geometric data, F € R"! is a column-vector
matrix of ones to enable feature extraction with deep learning, and
y € Z™! is a column-vector such that y; is an integer representing the
class to which the i-th point belongs. This matrix P can also be seen
as the input to a fitting algorithm where a loss function £ is defined
for an estimator (X, F;®) that uses the parameters @ to predict the
class. Since deep-learning models are based on gradient descent-like
optimization methods (Zhang, 2017; Goodfellow et al., 2016a), the
VLS-DL model can be summarized as Eq. (3), where a represents the
learning rate. Before adventuring forth, it is worth mentioning that the
proposed training data generation where y € Z" can be easily adapted
to regression problems where y € R" (e.g., y can be a point-wise
surface roughness metric).

(€))

@41 =0, —aV,, L (P;a,)

Deep learning applied to point clouds often requires a domain-
specific operator for feature extraction. For example, it is possible
to address this issue using the Kernel-Point Convolution (KPConv)
operator (Thomas et al., 2019) as the feature extraction method for the
estimator j.

First, let 0 = {Q e R W, . Wy € RPw*Pout} represent a
kernel of K points (regularly distributed by solving an energy mini-
mization problem) at a given layer that maps Dy input features to
Doyr output features. For then, any point from the geometric data
x;, € R® can be convolved considering its neighborhood .A/'x,*, e.g.,
.A/'x[* = {x,x Dl =Xl < r} (where r is the radius). The rigid KPConv
operator based on linear correlation is formally described in Eq. (4). In
this equation, g, are the points defining the kernel in the Euclidean
space, i.e., rows from the Q matrix, the W, matrices are the weights
for each kernel point, the f;, vector is the j-th row of the input features
matrix F, and o defines the influence distance.

PxQ)(x)= )

X €N,

K
15 = % = Gl
max{O,l—%*k*}kaj* @
k=1
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3.2. Experimental framework

Our experiments shall be representative of many topographic ap-
plications and thus cover urban (Hessigheim) and natural (leaf-wood)
contexts for which real data is available. We generate virtual point
clouds for those contexts using the VLS software HELIOS++ and assess
the performance of deep learning-based semantic segmentation using
real or virtual data for the training. We also train models using real
data with reflectance for the leaf-wood segmentation cases to compare
them with the real and virtual models using only geometric data. For
evaluation, we use classification quality assessment metrics, correlation
and agreement metrics, expert-based evaluation, and a comparison
with a model trained from randomly sampled points from the scene
meshes. Moreover, we compare the virtual-to-real generalization of
our VLS-DL model with the real-to-real generalization of the FSCT
model (Krisanski et al., 2021a) (Fig. 1).

We specialize our VLS-DL model to work with geometric data.
Signal strength-related features are discarded because they are not well-
standardized for all sensors and are more difficult to compare (Hofle
and Pfeifer, 2007; Jutzi and Gross, 2009; Wang et al., 2015). We
use the grid subsampling strategy proposed in the original KPConv
paper (Thomas et al., 2019) to explore the resolution from the deep
learning model perspective.

Moreover, we use the VL3D framework? to conduct additional ex-
periments to analyze the VLS-DL approach with different models. This
open-source framework allows us to train, use, and evaluate Random
Forest, PointNet++, and KPConv for 3D point cloud classification tasks.
Thus, we compare the performance of the three models through an
ablation study on the amount of training data to find out (1) what the
impact of the amount of simulated data is in terms of generalization
to unseen real data and (2) how the VLS-DL approach performs with
different machine learning models. The ablation strategy is based on
removing annotated points representing entire trees rather than down-
sampling the point cloud. We follow this approach to study the impact
of the number of annotated instances, not the point density.

3.2.1. Virtual laser scanning

For the urban classification experiments, we use virtual 3D scenes
reconstructed from real 3D data, namely from UAV-borne point clouds
and imagery of Hessigheim. Two versions of the virtual Hessigheim
scene (Kolle et al., 2021) are created (Table 2). The first version directly
uses the original labeled meshes from the Hessigheim 3D benchmark.
For the second version, the Hessigheim mesh is modified by replacing
mesh faces labeled as the vegetation classes with voxel models created
from the Hessigheim3D point cloud (Table 2). Our hypothesis is that
voxels, if using an appropriate voxel size, are an adequate object
representation and lead to better classification performance because
the virtual rays can penetrate through gaps in the vegetation (Weiser
et al., 2021b). We use the same training and validation split as in the
Hessigheim 3D benchmark.

Separate materials are assigned to the different classes through
material library files (MTL). We exploit the HELIOS++ functionality
of assigning integer class IDs to the materials by adding the custom
helios_classification attribute (Winiwarter et al., 2022). In the simulation,
the class labels are then transferred from the object intersected by the
virtual ray to the point created through the intersection. In the case of
multiple intersections, each one will lead to a point with a class coming
from the respective intersected object.

With our experiments of leaf-wood classification, we cover two
central ways to generate virtual scenes, namely (1) with procedural 3D
modeling, where objects are fully computer generated, and (2) by re-
constructing real scenes from high-resolution real-world measurements.

2 https://github.com/3dgeo-heidelberg/virtualearn3d (Accessed on 27 May
2024).
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Description of the virtual scenes used in the HELIOS++ laser scanning simulations for the leaf-wood classification and the

urban classification use cases.

Leaf-wood classification

(1) Fully Virtual

Forest Stand

(2) Reconstructed

Virtual Forest Stand
included.

(3) Reconstructed

Isolated Trees

Up to 30 tree models are created using the algorithm by Weber and Penn (1995)
and arranged into a forest stand with overlapping crowns.

The full Wytham Woods 3D forest model is used: Trees are closely spaced, their
crowns are overlapping and terrain in the form of a meshed digital terrain model is

Six synthetic datasets are used, each by manually placing eight randomly selected
3D tree models from the Wytham Woods dataset in a circular plot. Each tree is

isolated, and the tree crowns do not overlap.

Urban scene classification — Hessigheim

(1) Original Mesh
(2) Modified mesh
with voxel
vegetation

The original Hessigheim3D mesh is used as the 3D VLS scene.

Vegetation (Shrub and Tree classes) are removed from the Hessigheim 3D mesh and
modeled from the point clouds using small voxels (5 cm x5 ¢cm X5 c¢m). Furthermore,
the surface below the vegetation is reconstruction to prevent holes. The resulting

hybrid mesh-voxel model serves as the 3D VLS scene.

We refer to point clouds we simulate with the resulting datasets as (1)
fully virtual laser scanning (FVLS) and (2) VLS.

For the fully synthetic scenes, 30 tree models with different leaf and
needle shapes are generated using the algorithm of Weber and Penn
(1995) with different parameter sets. All trees are arranged in a small
forest stand, with their crowns clearly overlapping.

For the scenes reconstructed from real data, we use the synthetic
Wytham Woods scene of quantitative structure models (QSMs) pro-
vided by Calders et al. (2018) and Liu et al. (2022).*

We create two versions of the virtual Wytham Woods scene, one
with selected isolated trees and one with the full forest plot (closely
spaced or “near” trees) (Table 2). The full Wytham Woods forest scene
is spatially divided into training and validation.

Two different 3D parametric platforms and scanner models are used
for the laser scanning simulations of the different scenes.

For the Hessigheim simulations, we use a model of the RIEGL VUX-
1LR scanner (RIEGL Laser Measurement Systems, 2022) and similar
acquisition settings as in the Hessigheim March 2018 epoch (Cramer
et al., 2018). These are summarized in Table A.9 of Appendix A.1. The
parametric model linearly approximates the real trajectory, assuming
a constant speed of 8 m/s. The o map transforms the point position by
composing the platform and the scanner’s reference systems. The v map
transforms the direction considering the scanner head expressed in the
platform’s local reference system, where a rotating mirror deflection
model is solved at each simulation step to determine the ray’s direction.

The 3D tree scenes for leaf-wood classification are scanned with
multiple scan positions using a model of the RIEGL VZ-400 TLS (RIEGL
Laser Measurement Systems, 2017) and similar scan settings as used
in the validation dataset (Table A.10 in Appendix A.2). Since these
are tripod-based simulations, any x;(r) and ¢;(¢) functions are constants
representing the tripod’s static position. The o map is the identity
function, while the v map directly solves a polygon mirror deflection
model matching the scanner specification.

The process of virtual scene generation and virtual laser scanning
for both the urban and the leaf-wood experiments is described in detail
in Appendix A.

Finally, a point cloud obtained by sampling points from the mesh
surface is also generated for the near trees leaf-wood case (full Wytham
Woods forest stand) to quantify the extent to which VLS contributes
to better feature extraction on the DL side. The resulting training
dataset has 69,999,073 points, which is slightly higher but similar to
the 63,297,807 points we use for training with VLS point clouds merged
from different scan positions. This dataset is used to train the baseline
Mesh-DL model.

3 https://bitbucket.org/tree_research/wytham_woods_3d_model/src/add_
dart/DART models/ (Accessed on 19 October 2022).
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3.2.2. Deep learning

For the details regarding the KPConv network architecture, we
would like to refer to Thomas et al. (2019). In the following, we focus
on the main particularities characterizing this work.

First, we explain our training procedure. It consists of training a
model for a fixed number of epochs, then using the model to classify
validation data that has not been seen before and repeating until a
maximum number of training processes has been reached. Each training
process draws a different randomly selected set of neighborhood centers
for training. We use the evaluations on validation data to assess training
evolution and compare virtual training with real training exhaustively.

Instead of using an exponential learning rate decay as usually done
with KPConv models (Thomas et al., 2019; de Gélis et al., 2023), we
use a combination of early stopping and reducing learning rate on the
plateau. We do this to decrease our learning rate smoothly on demand
for each training process instead of a priori deciding on a fixed number
of epochs for the learning rate decay. More concretely, we monitor the
sparse categorical cross-entropy loss function with 50 epochs patience
for the early stopping of a training process and reduce the learning
rate multiplying by 10'/3 with 20 epochs patience and an additional
10 epochs cooldown for consecutive reductions. This configuration can
lead to dividing the learning rate by 10 for every hundred epochs, as
in the original proposal, but it will only trigger the reduction if the
loss function reaches a plateau. The patience count for the learning
rate reduction is preserved among training processes. As in the original
model, we use 400 epochs per training process for the Hessigheim3D
point clouds. We use 200 epochs for leaf-wood point clouds because
they converge much faster. In both cases, we use an initial learning
rate of 1073,

For the experiments on real data that also use reflectance, we
normalize all the reflectance values to lie inside the [0, 1] interval in
a dataset-dependent way. Generalized approaches are impossible since
intensity and reflectance often change between datasets.

As in Thomas et al. (2019), we divide the large point clouds into
small subclouds contained in spheres. We distribute the spheres along
the scene with a regular spacing of 0.5 times the sphere radius. Separa-
tions greater than 2/ /3 times the radius will lead to missing regions for
3D scenes. We selected 0.5 times because it is small enough to increase
classification overlapping (which increases reliability) but not too big
to lead to intractable classifications. After classification, probabilities
for points that appear in multiple spheres are averaged, and the class
with the maximum average probability is assigned.

3.2.3. Evaluation

The model evaluation metrics can be classified into aggregated
metrics and per-class metrics. For the aggregated metrics, we are
computing the Overall Accuracy (OA) (Sokolova and Lapalme, 2009),
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Table 3
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Aggregated evaluation and agreement metrics for the Hessigheim datasets in March 2018 and March 2019. The KPConv model was trained with real or virtual
data. There are two different VLS training datasets. One uses the original triangle mesh, and the other uses a hybrid scene with the original triangle mesh and
voxels to represent vegetation. The metrics from left to right are Overall Accuracy (OA), Precision (P), Weighted Precision (WP), Recall (R), Weighted Recall
(WR), mean Intersection over Union (mloU), Weighted mean Intersection over Union (WIoU), F1 score (F1), Weighted F1 score (WF1), Matthews Correlation

Coefficient (MCC), and Cohen’s Kappa score (K).

Train Validation Metrics (%)
OA P WP R WR mloU WIoU F1 WF1 MCC K

VLS (mesh) March 2018 66.1 44.5 70.4 57.1 66.1 33.6 51.9 46.4 67.1 58.4 58.1
VLS (voxel) March 2018 74.1 52.3 78.5 67.4 74.1 42.6 63.0 55.2 75.7 68.0 67.7
Real March 2018 82.4 72.9 79.9 59.2 82.4 51.0 71.0 63.1 80.5 78.2 78.0
VLS (mesh) March 2019 63.9 44.8 64.1 38.1 64.0 28.0 49.0 39.0 63.6 54.8 54.7
VLS (voxel) March 2019 74.4 47.8 76.1 64.6 74.4 39.1 62.3 50.4 75.0 67.9 67.7
Real March 2019 81.4 54.7 82.4 66.1 81.4 46.0 71.3 57.9 81.7 76.6 76.6

the Jaccard score or Intersection over Union (IoU) (Jaccard, 1901), the
multiclass Precision and Recall, the F1 score (Sokolova and Lapalme,
2009), the Matthews Correlation Coefficient (MCC) (Matthews, 1975),
and Cohen’s Kappa score (Cohen, 1960). The evaluation metrics can
be categorized into classification quality assessment (e.g., OA and
F1) and correlation and agreement assessment (e.g., MCC and Kappa
score). When aggregating the evaluation metrics, both the weighted
and unweighted averages are considered in a non-label-agnostic way
to assess the models with and without accounting for class imbalance.
For a per-class evaluation, we compute the F1 scores, as used by Kolle
et al. (2021) for evaluation of the Hessigheim 3D benchmark. We also
carry out an expert-based visual evaluation for the leaf-wood case.

Furthermore, we design a specific evaluation method to compare
VLS-sensed point clouds with randomly sampled points on the vir-
tual leaf-wood mesh. For this evaluation, we consider the geometric
features of linearity and planarity (Weinmann et al., 2015; Hackel
et al., 2016) to characterize a spherical neighborhood defined by a 5cm
radius. Then, we can compare these quantitative features to analyze the
difference between VLS and mesh sampling.

Finally, concerning our ablation study on the amount of training
data for different models, we compute the experiment five times for
each combination of model and training data percentage and consider
the mean of the five repetitions as the final result. We also compute
the standard deviation because it allows us to understand how stable
a training process is, i.e., how different the model performance can be
depending on the stochastic initialization of the weights. We select the
IoU to evaluate these experiments as a function of the percentage of
training data. Thus, we can fit a line y = ax+p, where y is the mean IoU
(as a percentage), and x is the percentage of training data (where 100%
represents the full training dataset with no ablation). Then, analyzing
the slope of this line will reveal whether using more training data yields
better results (¢ > 0) or not (a <= 0). We also compute the Pearson
correlation coefficient (Pearson, 1895; Stigler, 1989) r to quantify the
correlation between more training data and a better IoU. If r — 1, the
correlation is confirmed; if »r — —1, the correlation is the opposite; and
if r - 0, there is no correlation.

4. Results

In this section, we present the results of our experiments. We start
with an aggregated comparison between models. Then, we provide
detailed results for both the Hessigheim and the leaf-wood experi-
ments. Finally, we present the results of the comparison between mesh
sampling, VLS, and real-world point clouds.

4.1. Aggregated comparison

We compared different versions of the KPConv model, varying the
initial cell size for the grid subsampling, which defines the receptive
field of the finest grain layers. Fig. 3 shows a summary of these results
for the Hessigheim datasets (a, b, ¢, d) and the near trees leaf-wood
case (e, f, g, h). We used one more training process for the leaf-wood
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segmentation experiments because their training requires fewer epochs
than semantic segmentation in urban contexts.

For both the March 2018 and the March 2019 real-world Hes-
sigheim datasets, OAs above 80% and MCCs around 75% were achieved.
These scores derived with real data act as a baseline against which we
evaluate the results of the VLS-DL model. While the OA of the VLS-
DL model based on the original Hessigheim mesh data is only 66.1%,
we can improve this value by 8% up to 74.1% by replacing the mesh
representation of vegetation (C06: shrub and CO07: tree) with a voxel
model, which results in a more realistic synthetic point cloud for these
classes. Larger initial cell sizes in the neural network work better for
real and virtual Hessigheim point clouds. Small receptive fields (2 and
3 cm) perform poorly in these datasets because they barely contain any
information about the global context.

The best models from the Hessigheim experiments are compared in
Table 3. For the geometric KPConv case, this is the model with an initial
cell size of 9 cm, and for the virtual case, this is the model with an initial
cell size of 10cm (Fig. 3). Using the original mesh as the VLS input
scene leads to a 16.3% lower OA for March 2018 and 17.5% lower
OA for March 2019 compared to the real data. Improving the scene
with voxels for vegetation reduces this difference to 8.3% in OA for
March 2018 and 7.0% for March 2019. Compared to the real geometric
model, the original mesh VLS-DL model results in an MCC reduction of
19.8% for March 2018 and 21.8% for March 2019. With the virtual
scene with voxels, the MCC reduction is about 10.2% for the March
2018 epoch and 8.7% for the March 2019 epoch. These results indicate
that improved scene modeling is fundamental for VLS-based multiclass
semantic segmentation in urban point clouds. There are no significant
differences between March 2018 and March 2019 epochs.

For the leaf-wood datasets, Fig. 3 shows that for real models,
a smaller initial cell size (1 and 2cm) works better than a bigger
one. These results suggest that fine-grain information is important to
separate the wood components (trunk and branches) from the leaves.
However, VLS-DL models perform better on real datasets when trained
on bigger initial cell sizes (5 and 6 cm), while they perform better on
virtual datasets with smaller cell sizes. These results suggest that fine-
grain vegetation modeling in the input scene might lead to even better
VLS-DL models for leaf-wood segmentation.

Table 4 presents a quantitative comparison between the best leaf-
wood models (Geometric, Reflectance, VLS-DL, and FVLS-DL) and the
FSCT model (Krisanski et al., 2021a).

For the case of the isolated trees, the model trained on geometric
data achieves only 0.3% more OA and 1.1% higher MCC than the FVLS-
DL model, while considering reflectance leads to 2.2% greater OA and
6.5% greater MCC. The virtual-to-real generalization of the FVLS-DL
model is 9.7% better in OA and 19.7% better in MCC than the real-
to-real generalization of the FSCT model trained on a different dataset
than ours (Krisanski et al.,, 2021a). For the near trees case, the real
model trained on reflectance is not considerably better than the model
trained on just the geometry. Here, the VLS-DL model (trained on the
Wytham Woods synthetic point cloud) has higher accuracy than the
FVLS-DL model, and achieves just 1% lower OA and 3.5% lower MCC
than the real models.
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Table 4

Aggregated evaluation and agreement metrics for the leaf-wood datasets with isolated and near trees, respectively. The KPConv models (KPC) were trained with
real or virtual data. The FSCT model (Krisanski et al., 2021a) is used to quantify the real-to-real generalization with a different model than ours. In the features
column, G means geometric features, and R means reflectance. The VLS model is trained on point clouds simulated with meshes derived from real trees, while
the FVLS model is trained on simulated point clouds of fully synthetic trees. The metrics from left to right are Overall Accuracy (OA), Precision (P), Weighted
Precision (WP), Recall (R), Weighted Recall (WR), mean Intersection over Union (mloU), Weighted mean Intersection over Union (WIoU), F1 score (F1), Weighted
F1 score (WF1), Matthews Correlation Coefficient (MCC), and Cohen’s Kappa score (K).

Model Features Validation Metrics (%)
OA P WP R WR mloU WIoU F1 WF1 MCC K
FVLS KPC G Isolated 93.2 88.2 93.8 92.4 93.2 82.3 87.8 90.0 93.3 80.4 80.1
VLS KPC G Isolated 87.0 84.1 86.7 81.6 87.0 71.5 77.4 82.7 86.8 65.7 65.5
Real KPC G Isolated 93.5 93.2 93.5 88.5 93.5 83.1 87.8 90.5 93.3 81.5 81.1
Real KPC G+R Isolated 95.4 91.0 96.0 96.3 95.4 87.6 91.7 93.3 95.6 87.1 86.6
FSCT G Isolated 83.5 77.6 86.3 83.4 83.5 66.9 73.6 79.5 84.3 60.7 59.3
FVLS KPC G Near 92.6 87.4 92.7 87.8 92.6 78.8 86.9 87.6 92.7 75.2 75.2
VLS KPC G Near 93.7 91.0 93.5 87.0 93.7 80.6 88.4 88.8 93.5 77.8 77.6
Real KPC G Near 94.7 96.0 94.9 86.0 94.7 82.5 89.8 90.0 94.4 81.3 80.0
Real KPC G+R Near 94.8 94.8 94.8 87.0 94.8 83.0 90.0 90.3 94.5 81.4 80.7
FSCT G Near 88.7 80.3 89.5 83.9 88.7 70.9 81.1 81.9 89.0 64.1 63.9
Table 5

Evaluation of different submitted models on the test data from the Hessigheim3D benchmark (https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/results.
aspx). The aggregated metrics are overall accuracy and mean F1 score. The F1 score is also calculated on a per-class basis. The geometric KPConv and VLS-DL
models are our real and virtual models. The classes from left to right are low vegetation (C00), impervious surface (C01), vehicle (C02), urban furniture (C03),
roof (C04), facade (CO5), shrub (C06), tree (CO7), soil/gravel (C08), vertical surface (C09), and chimney (C10).

Model OA(%) F1(%) F1 per-class (%)

C00 C01 C02 Co03 C04 C05 C06 Cco7 Co8 C09 C10
WHU221118 89.8 79.0 92.9 90.2 78.5 57.9 95.7 80.4 68.5 97.2 62.4 73.1 72.5
Shi220705 84.2 63.5 87.6 85.6 52.4 36.7 95.5 69.3 47.4 94.3 25.1 66.0 38.6
Zhan221025 79.7 65.3 84.3 77.9 58.1 42.3 93.3 65.4 53.5 95.3 23.7 59.9 64.7
Gao-PN++210422 68.5 41.2 78.1 72.1 31.8 13.7 74.0 47.8 28.3 71.8 9.7 21.7 4.4
jiabin221114 58.3 43.4 66.2 18.0 34.2 38.0 72.0 69.0 47.7 78.7 9.8 35.9 8.3
VLS-DL 68.8 54.2 71.1 55.8 2.7 25.9 93.7 73.3 39.0 93.2 20.7 70.4 49.8
Geometric KPConv 81.7 63.8 84.8 82.0 19.5 42.4 94.8 77.8 59.1 94.5 3.6 73.8 69.2

Table 6

Evaluation and agreement metrics per class for the Hessigheim datasets in March 2018 and March 2019. The real geometric KPConv model was trained with
real data. There are two different VLS-DL models. One uses the original triangle mesh, and the other uses a hybrid scene with the original triangle mesh and
voxels to represent vegetation. The classes from left to right are low vegetation (C00), impervious surface (CO1), vehicle (C02), urban furniture (C03), roof (C04),
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facade (CO05), shrub (C06), tree (C07), soil/gravel (CO8), vertical surface (C09), and chimney (C10).

Model Validation F1 per-class (%)

C00 Co1 C02 Co3 C04 C05 C06 co7 C08 C09 C10
VLS-DL Original March 2018 65.2 68.3 12.1 31.9 81.1 61.4 25.9 74.4 3.7 46.8 39.6
VLS-DL Voxel March 2018 71.0 70.7 18.7 33.9 90.5 72.7 44.1 88.8 5.1 50.8 61.1
Real Geometric March 2018 83.3 84.2 41.0 50.2 91.6 74.7 51.0 92.9 1.0 52.6 71.3
VLS-DL Original March 2019 62.8 59.7 1.3 29.5 85.4 59.9 35.7 59.5 0 27.3 8.1
VLS-DL Voxel March 2019 70.0 61.8 16.8 35.7 92.9 69.1 69.0 88.8 1.5 25.2 24.1
Real Geometric March 2019 80.7 83.6 32.4 43.0 93.3 78.5 53.5 88.5 1.0 46.3 35.7

4.2. Hessigheim results

We evaluated our models in detail on the Hessigheim3D (Kolle
et al., 2021) public test benchmark. The results of the Hessigheim3D
benchmark in Table 5 show that our real models provide average results
despite using geometric information only. While using real data leads to
similar evaluation on validation and test, the VLS-DL model generalizes
worse to the test dataset than to the validation dataset (12.9% decrease
in OA compared to 8.3% decrease with validation data). However, it
still provides results that match the performance of PointNet++-based
models such as Gao-PN++210422 trained on real data.

Returning to the validation dataset, Table 6 offers the quantitative
evaluation of our models on a per-class basis. While low vegetation and
impervious surfaces give acceptable results, all models have problems
with soil/gravel points. This can be explained by the difficulty of
distinguishing between types of ground points using geometric data
only and no spectral/radiometric information. These results can also be
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analyzed in confusion matrices, shown in Fig. 4 for the real geometric
KPConv model and in Fig. 5 for the VLS-DL model. The confusion
matrices in Fig. 6 are aggregated on the main categories (“ground”
for low vegetation, impervious surface, and soil/gravel; “object” for
vehicles, urban furniture, and vertical surface; “building” for roof,
facade, and chimney; “non-low vegetation” for shrub and tree). Both
models - the geometric KPConv model trained on real data and the
VLS-DL model - offer outstanding performance on point-wise ground
classification when there is no need to distinguish between types of
ground. Quantitatively, the geometric KPConv model trained on real-
world data achieves 92.2% OA and 87.5% MCC in the aggregated
semantic segmentation, while when trained on virtual data, it achieves
90.2% OA and 84.5% MCC, respectively.

The point-wise classification of building and non-ground vegetation
offers promising results for real and virtual models. The many objects
in the Hessigheim point clouds (vehicles, urban furniture, and vertical
surfaces) are the main problem for both models. An explanation could
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Fig. 3. Comparison of many models with different initial cell size configurations leading to different receptive fields. For each model, the overall accuracy (OA) and the Matthews
Correlation Coefficient (MCC) are plotted on the y-axis while the x-axis represents the number of training processes. Each training process picks a new sample of neighborhood
centers. Solid line graphs refer to the Hessigheim datasets, while dashed line graphs refer to the leaf-wood dataset. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

be that these classes highly benefit from reflectance and RGB informa-
tion, which was not included in our VLS-DL models. Moreover, some of
these classes are also underrepresented and have more heterogeneous
geometries than others. With 29% of the points of the class “object”
correctly classified with the VLS-DL model, compared to 44% with the
geometric KPConv model (trained on real data), the results indicate
a suboptimal 3D representation of objects (especially vehicles and
urban furniture). For urban contexts, the VLS scene model can be
significantly improved to fix overly irregular surfaces, missing triangles,
and non-smooth orientation changes on some surfaces.

A top view of the classified validation point clouds is shown in
Fig. 7. Visual inspection reveals some coarse grain issues (e.g., the
problematic roof at the top), which are similar between real and virtual
models. However, the misclassification of small urban objects is a
bigger problem for the VLS-DL model (Fig. 7a). In a post-processing
evaluation, all models perform well when grouping the semantic classes
into aggregated categories (Fig. 7b). The conclusions from the visual
inspection agree with those from the confusion matrices.

We conducted an additional experiment that analyzes the domain
adaptation capabilities of the VLS-DL model from unoccupied laser
scanning (ULS) datasets (Hessigheim3D) to TLS datasets (Semantic3D).
The main result from this experiment is that both real and VLS-DL
achieve high scores for domain adaptation, with average OAs of 90.26%
(real) and 88.53% (VLS-DL). Further details can be found in Appendix
B.

4.3. Leaf-wood results

Table 7 shows that the results of our FVLS-DL and VLS-DL models
are quantitatively within the state-of-the-art (SOTA) interval for leaf-
wood segmentation. The FVLS-DL model is 3% lower in OA than the top
SOTA model (Han and Sanchez-Azofeifa, 2022) whether considering
isolated or near trees, while the VLS-DL model is only 2% below the
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SOTA considering the near trees experiments. Thus, the performance
of both virtual models is near the state-of-the-art when properly tuned.

A general visual impression of point-wise classification on near trees
is given in Fig. 8 together with the corresponding confusion matrices.
All the models give a good approximation of the label reference. The
model trained with reflectance gives the best results and shows the
least confusion. However, the differences are small. More concretely,
the reflectance-based model correctly classifies 3% more wood points
than the virtual model and just 1% more leaf points. The real geometric
KPConv and the VLS-DL model differ when studying their confusion.
More concretely, the geometric KPConv misclassifies more wood points
than the VLS-DL model, but the latter misclassifies more leaf points.

Finally, Table 8 represents the quantitative assessment of the FVLS-
DL, VLS-DL, and real (geometric only) models on different datasets. In
addition to the point clouds created from Weiser et al. (2023) (results
reported in Tables 4 and 7), the classification performance of the
models (Real, VLS-DL and FVLS-DL) was assessed with point clouds
from Wang et al. (2021), for both the isolated and the near trees case,
and for point clouds used in Xi et al. (2020) and Hopkinson (2020) for
just the near trees case (Appendix B). The results reveal that all models
generalize well when tested on different datasets. More specifically,
the FVLS-DL model generalizes as well as the real model to isolated
trees with around 93% OA for Weiser and 95% OA for Wang, while
the VLS-DL model generalizes to near trees with just 1% less OA than
the real model for Weiser and with a negligible difference of 0.4% OA
for Wang. Concerning the Hopkinson point cloud, the virtual models
have around 4% higher OA than the real model. This result can be
explained by the fact that the real model learns more fine-grain details
than the virtual ones, and these details are not present in the Hopkinson
point cloud, which is less dense and has some gaps in the wood areas
compared to the others. These results suggest that using VLS to generate
targeted training data can lead to better classifications by providing
training point clouds that mimic the particular characteristics of the
target dataset.
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Fig. 4. Confusion matrix normalized by expected class for the geometric KPConv model trained on real point clouds from the Hessigheim dataset.

Table 7

Comparison between VLS-DL and selected machine learning models from the literature using distinct approaches for the leaf-wood separation
problem. The FVLS-DL model is the VLS-DL model trained on fully synthetic trees. The overall accuracy is the aggregated evaluation metric,
and the F1 score for leaf and wood is the per-class evaluation metric. The different metrics come from the different datasets used in the
corresponding publications. We evaluated our models on the real datasets built from a subset of the Weiser et al. (2023) dataset (Appendix B).
The Mesh-DL model is used as a baseline solution to quantify to which extent VLS improves the results of a deep learning model compared to
feeding the points from the scene’s meshes directly to the neural network.

Authors Input Model OA F1 (leaf) F1 (wood)
Multiscale geometric Random Forest 94% 97% 81%
Krishna Moorthy et al. (2020) N 8 XGBoost 94% 97% 81%
LightGBM 94% 96% 80%
Vicari et al. (2019) Geometric features Unsupervised 89% 92% 73%
Geometric features FCN 92% 92% 92%
Han and Sdnchez-Azofeifa (2022) (deep learning) LSTM-FCN 96% 96% 96%
P & ResNet 96% 96% 96%
. . FVLS point cloud FVLS-DL 93% 96% 84%

lidated lated t;

Ours (validated on isolated trees) VLS point cloud VLS-DL 87% 91% 74%
FVLS point cloud FVLS-DL 93% 96% 80%
Ours (validated on near trees) VLS point cloud VLS-DL 94% 96% 81%
Points from mesh Mesh-DL 52% 60% 39%

4.4. Mesh sampling, VLS, and real-world point cloud comparison

To determine the realism of the physically-based laser scanning sim-
ulations, we investigate the difference in geometric features between
the real leaf-wood point clouds, VLS point clouds of the Wytham Woods
scene, and point clouds generated by randomly sampling points on the
Wytham Woods mesh. Fig. 9 summarizes the main findings using 2D
histograms to show the density of feature values for different heights
above ground.

First, looking at Fig. 9 (a), (c), and (e), note that the distribution
shown in the two-dimensional histograms characterizing the training
point clouds is significantly different when comparing real or virtual
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point clouds with mesh sampling. Visually, the distribution of planarity
and linearity is more dispersed for mesh sampling, while it has some
relatively high point concentrations for virtual and real point clouds.
While the differences between the real and virtual training datasets can
be explained by the fact that they represent different scenes (mixed
forests in Baden-Wiirttemberg, Germany, and the Wytham Woods re-
search forest in Oxfordshire, United Kingdom, respectively), the VLS
and mesh sampling cases come from the same scene. Furthermore,
the white line representing a linear estimator fitting the feature as a
function of height (z coordinate) has very similar slopes and values for
virtual and real point clouds, while it is notably different for the points
generated by mesh sampling.



A.M. Esmoris et al.

ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 192-213

LowVeget ol oll®) 07 @1 4 00
ImperSurf - 10?2 02 O ot O
Vehicle - odl®  JOL 0L 00 00 00
UrbanFurni 4 SLORN2.6) OB 0L 00 083 FO2)
Roof @ ol Q0 QL | 22
8
2 Facade @0 o5 ﬂun@
£
Shrub- 08 08  l® 0L QL O 08
Tree - (O] uﬂ@ 102} O um
Soil/Gravel 4 00 00 00 00 00
VertSurf - u n n u n E n
Chimney - 00 00 00 Q0
T I I ¢ 3 & ¢ T ¢ &
s 5 ¢ E § 8 %8 ¢ ¥ 5 3
g 0 < g =S [} 5 = [ % £
: a8 > & &8 ¢ =
S E £ 5 O
- wn

Expected

Fig. 5. Confusion matrix normalized by expected class for the VLS-DL model applied to the Hessigheim dataset.
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Fig. 6. Confusion matrices normalized by expected class with aggregated categories for the geometric KPConv and VLS-DL models on the Hessigheim dataset.

Second, the misclassification of geometric KPConv models is shown
with respect to the geometric features in the 2D histograms of in-
correctly labeled points in Fig. 9 (b), (d), and (f). The distributions
for virtual and real point clouds are similar, especially for linearity
and planarity. The distributions of the mesh sampling case have more
obvious misclassification concentrations. The conclusions also hold
for the linear least-squares fit. These findings match the quantitative
evaluation of the deep learning models shown in Table 7. In terms of
performance, the Mesh-DL model is 42% lower in OA than the VLS-DL
model. Moreover, the Mesh-DL model is 36% worse at classifying leaf
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points than the VLS-DL model, while it is 42% worse at classifying wood
points, when measured in terms of F1 score.

4.5. Ablation study on different models

The results of our ablation study to investigate the impact of the
amount of simulated data and the performance of different models are
summarized in Fig. 10. We can clearly see that all models yield worse
results when using only 16% of the available training data. All the
FVLS-DL models achieve the best result when using the full simulation
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Fig. 7. Top view of the reference labels and classification confusion on the validation point cloud. The top row (a) shows the original eleven classes and the confusion from the
Hessigheim3D benchmark (Kolle et al., 2021). The bottom row (b) represents our reduced classes: ground, building, vegetation, and object. The gray color represents successfully

classified points, while the red represents misclassified points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Reference Geometric

Bl Well-classified
B Misclassified

Predicted

Predicted
Predicted

Fig. 8. Visualization of leaf-wood segmentation results on real-world tree point clouds (near trees) for the manual labeling (reference), the geometric KPConv model, the reflectance
KPConv model, and the VLS-DL model. Points labeled as leaves are colored green, and points labeled as wood are colored brown. The gray points represent successful classifications,

while the red ones are misclassifications. The given confusion matrices are normalized by expected class. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

dataset. For the real models, there is a small exception with KPConv model that is not as data-hungry as neural networks, so the difference

that achieves slightly better results (1.1% better) when using 82% of the between the worst and best IoU is smaller than for neural networks.
training data, probably due to a slight overfit to the fine-grain details All ﬂ.le experiments }.1ave a hnea.r Fendency leth a positive slope
of the training dataset when using all the data. The standard deviations (@ > 0), implying that. usmg m.ore tra1n11.1g. data yleld.s better results no

] ] matter the model. This claim is also verified by looking at the correla-
are very small for the Random Forest models, which can be explained

tion coefficients because all of them are clearly positive, i.e., r - 1. The
most noticeable result is that the PointNet++ model trained on 82% of
the data yields worse results than using 44% or 61% of the data. The

because they are an ensemble of many decision trees, making them

robust to noise. Also, Random Forest is a classical machine learning
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Evaluation metrics for the generalization experiments with isolated and near trees, respectively. The real model was trained on real labeled
point clouds from the dataset of Weiser et al. (2022), also used for our other experiments. The VLS-DL and FVLS-DL models were trained on
simulated point clouds. The VLS-DL models used meshes derived from real data for simulation, while the FVLS-DL model used fully synthetic
trees. The validation point clouds are taken from Weiser et al. (2021a), from Hopkinson (2020), and from Wang et al. (2021) and are named

by the first authors of the data publications.

Validation Real VLS-DL FVLS-DL
OA (%) F1 (%) OA (%) F1 (%) OA (%) F1 (%)
Leaf Wood Leaf Wood Leaf Wood
Isolated Weiser 93.5 95.9 85.2 87.0 91.3 74.1 93.2 95.6 84.4
Isolated Wang 95.2 96.5 92.5 87.1 89.8 82.5 95.4 96.5 93.0
Near Weiser 94.7 96.9 83.1 93.7 96.2 81.3 92.6 95.5 79.7
Near Wang 94.7 96.4 90.2 95.1 96.6 91.3 93.8 88.7 96.4
Near Hopkinson 90.1 81.6 93.3 94.5 96.3 88.7 94.5 95.6 89.2
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Fig. 9. Distribution of geometric features along the z axis for mesh sampling, VLS, and real point clouds. The top row shows (a) the feature distribution in the real point cloud
and (b) the feature distribution of misclassified real points for a model trained on real data. The middle row shows (c) the feature distribution in the VLS point cloud and (d) the
feature distribution of misclassified real points for a model trained on VLS data. The bottom row shows (e) the feature distribution in the mesh sampling point cloud and (f) the
feature distribution of misclassified real points for a model trained from the mesh sampling point cloud. The white line is the best linear fit of the feature as a function of the

height (z).

standard deviation for this case is quite high too (14.3%). However,
even for this case, we have a positive slope and correlation coefficient.

5. Discussion

The results shown in this paper prove that VLS can be used to
train DL models without the need for real labeled reference data.
These VLS-based models then generalize to real point clouds. Thus,
VLS-DL can reduce the time and cost associated with industrial and
research projects involving machine learning-based classification of
point clouds. The degree to which costs can be reduced depends on
the complexity of the 3D scene modeling task. Simple scenes will
significantly reduce time and cost, while complex scenes involving
many object types will yield a less significant reduction due to the more
sophisticated 3D modeling required.

The VLS-DL model has been tested for the two broader domains
in the point cloud processing community: urban and natural contexts.
Each study case requires identifying and improving the key components
related to these categories.
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5.1. VLS-DL applied to urban contexts

From the results of the urban experiments, we understand that the
3D input scene is a critical component for VLS simulations and that it is
affecting the specific classification task. Scene representation problems,
such as oversimplification, lead to lower performance as the realism of
the virtual point clouds is reduced. From the results in Table 3, we can
see that a voxelized representation of vegetation reduced the OA gap
between real and virtual training data by 8% compared to using the
original mesh-based scene model for VLS. Further improvements are
expected to close this gap even more.

First, we propose improving VLS with more accurate surface rough-
ness simulation to improve differentiation between natural (e.g., low
vegetation) and artificial (e.g., impervious surface) ground. Second,
we propose two improvements for urban object differentiation: (1)
the simulation of more scene parts with under-represented objects
(e.g., applying VLS many times with different scene rotations and slight
scale changes), and (2) a more accurate representation of vehicles and
urban furniture such as fences and streetlights. Lack of detail problems
were also mentioned by Wu et al. (2018) when using the default GTA-V
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Fig. 10. The results of the ablation experiments on the amount of training data for different models using the VL3D framework. The percentages correspond to the amount of
annotated points in the training dataset with a maximum of 35, 149,732 points for the real dataset and 53,671,632 for the simulated one, with a fixed number of 86,804,388 real
points for the validation dataset. Each represented data percentage is the mean between real and simulated data percentages, which, on average, differ around 3.88%. The top
row shows the mean IoU for the models trained on real data from Weiser et al. (2022), and the bottom row for the models trained on fully virtual laser scanning (FVLS) data.
All the models are validated on real data from Wang et al. (2021). Each column bar represents the mean IoU calculated by training and validating the model five times. The red
caps represent the standard deviation of the five repetitions on the same subset of data. The black dashed line represents the linear tendency. Also, a is the slope of the line, and
r is the Pearson correlation coefficient. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

physics, leading to simplified representations where pedestrians were
treated as cylinders.

Furthermore, some problems must be addressed from the DL side
(e.g., using different neighborhood definitions). For example, differen-
tiating building facades and vertical surfaces is more related to global
context than local neighborhood analysis since both are planar surfaces
with similar orientation.

5.2. VLS-DL applied to leaf-wood segmentation

The FVLS-DL and VLS-DL models achieve near state-of-the art re-
sults for the leaf-wood case (Table 7) and achieve satisfactory virtual-
to-real generalization on point clouds from different datasets (Table 8).
It is expected that training with VLS data from trees of many different
growth forms, leaf shapes and sizes will help to improve the results.
Thus, creating large and diverse training datasets is an advantage of
VLS over real data, for which massive datasets are often unavailable
due to the high effort of point cloud acquisition and annotation. Taking
advantage of fully virtual data (FVLS-DL) improved the leaf-wood
segmentation of isolated trees by 6.2% OA compared to scene meshes
derived from real point clouds (VLS-DL), as shown in Table 4. This may
be due to the higher diversity of the trees in the FVLS scene, which
also includes conifers, compared to the VLS scene, which has only
deciduous trees (mostly sycamore maple, and some ashes and oaks).
Furthermore, some applications lack even small labeled datasets due to
the complexity of manually annotating real point clouds. In these cases,
VLS is a cost-effective approach to obtaining labeled training data for
deep learning models.

5.3. VLS-DL versus mesh sampling

The distribution analysis of geometric features (Fig. 9) represents an
empirical validation of the theoretical VLS-DL model, as VLS provides
a better representation space for feature extraction than sampling
points on meshes. More formally, we show that the interaction of
the parametric model described in Section 3.1, the feasible regions
described in Eq. (1), and the corresponding physical and convenience
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constraints leading to the set of points P described in Eq. (2) give rise
to models that generalize better to real data than those trained using
points randomly sampled from the 3D meshes. This clearly underlines
the importance of laser scanning simulation and the creation of realistic
geographic point clouds.

5.4. VLS-DL hyperparameter tuning

Models trained solely with geometric data have easy-to-understand
and easy-to-tune hyperparameters, as illustrated in the aggregated
model comparisons of Fig. 3. Optimizing the receptive field can be
addressed with a simple linear search governed by the cell size of the
smallest grid subsampling, yet leading to a significant improvement of
the model. The validity of this method holds for both urban and tree
point clouds. Moreover, neighborhood topology can be altered to cover
a wider area when a more global context is required. This is why de
Gélis et al. (2023) used a cylinder-like neighborhood to improve their
Siamese KPConv model. These straightforward modifications have a
drastic impact on the performance of the DL model.

Recall that the input matrix P from Eq. (3) can be expressed as
a function of continuous variables governing the virtual data. Some
variables might be the components of the vector 6 defining the sim-
ulation constraints in Eq. (2). Others might be the variables governing
the parametric ray generation model or transformations and constraints
on the feasible regions defining the scene. Consequently, it must be
possible to optimize the VLS model parameters too.

We argue that the feature extraction operator, especially when
considering classes separable from geometric information, can link the
VLS and the DL models. Therefore, fitting the simulator to maximize
the class separability of the feature extraction operator inside the VLS
model should improve the performance of a DL model using the same
operator. To do this, first, a realistic simulation is needed as a baseline.
Then, the realistic simulation could be optimized to maximize the
adequacy of the VLS point cloud as training data for a particular task.
Loosing too much realism will break the relationship between virtual
training data and real validation data, so the optimization must be
constrained to stick to slight transformations.
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It is possible to quantify and visualize the differences between
virtual and real point clouds using continuous metrics derived from the
geometry of a neighborhood, as shown in Fig. 9. These measurements
are similar to the classification error distribution. Thus, tuning the VLS
model to improve the class-separability of the extracted features while
keeping them realistic should improve the DL model’s performance.

5.5. VLS-DL cost and automation

If an appropriate model of a labeled scene is available, VLS gen-
erates perfectly labeled training data for DL without costly equipment
other than a computer. The performance of a classifier trained with VLS
data can be improved in different ways. On the one hand, improving
the ray-generation model can be done by looking at manufacturer spec-
ifications, often offered as open-access documents at no cost. Also, some
open-access simulators like HELIOS++ provide ways to automatically
derive an accurate parametric platform model through interpolation
from raw trajectory files that can be simulated or reused at no ex-
tra cost. On the other hand, scene modeling is potentially the most
expensive cost for the VLS-DL model, requiring more time and often
human involvement. Nevertheless, it is also crucial to simulate a proper
training dataset, and poor scenes lead to poor point clouds, which
have little to no benefit in training DL models. More particularly,
when complex scene modeling relies on hand-crafted meshes, buying
high-quality meshes or commercial software or hiring a 3D modeling
professional will significantly increase the cost. However, this increased
cost can be amortized for those cases where the same scene can be used
to generate different point clouds.

Fortunately, there are several ways in which the scene modeling
problem can be tackled. Sometimes, high-quality meshes can be auto-
matically derived from real data. For example, using high-resolution
and accurate LiDAR or photogrammetry sensors to obtain reliable input
data for meshing algorithms. Another alternative is to use procedurally
generated meshes. The first benefit of these approaches is that they
keep the cost of VLS-DL low. More importantly, they also open up
the gate to fully automatic workflows. Specifically, when the scene
representing the object for study can be procedurally generated, the
whole VLS-DL model can be fully automated because all the other
parts of the workflow are already available as interaction-free tools. In
general, we believe that the benefits of VLS-DL outweigh the challenges
identified.

6. Future challenges
6.1. VLS-DL for regression

Machine learning problems can be divided into two broad cate-
gories: classification and regression. The VLS-DL model has proven
good enough to solve classification problems on real point clouds. Now,
regression problems are a relevant next milestone. Exploring regression
on point clouds will allow us to study how the VLS-DL model performs
when it must compute continuous values on a point cloud instead of
assigning a discrete class value for each point. For instance, the output
of the leaf-wood segmentation model can be used to train a regression
model on the wood points to compute biomass estimations. Also, the
leaf points can be used to estimate the leaf area index, an important
ecological parameter that can be used to estimate the energy flow in
the leaves and the expected productivity of a tree.

6.2. Tuning virtual laser scanning

In this work, we showed that the VLS-DL model could be seen
as a combined model such that both the simulator and the neural
network can be tuned to improve the overall model performance. We
also showed that changes in VLS imply changes in DL performance.
These changes were characterized using continuous geometric features
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and linear fitting. Future efforts to improve the VLS-DL model should
aim at integrating the feature extractor operator into the simulator
to perform fine-grain tuning to maximize the class separability of the
features or to minimize the difference to a reference point cloud. If the
previously described integration is achieved, starting the optimization
algorithm directly in the VLS model should work as long as (1) the VLS
optimization starts from a realistic simulation and (2) the VLS optimiza-
tion is constrained to avoid drastic transformations that deviate too far
from the realistic baseline.

Furthermore, when procedurally generated 3D scenes are realistic
enough, the VLS tuning can be fully automated. Exploring procedural
generation algorithms for 3D scenes is relevant to future research
towards fully automatic VLS-DL. In this case, hyperparameter tuning
could be fully automated through random and grid search strategies,
genetic algorithms, or particle swarm optimization, as usually done in
automated machine learning (Das and Cakmak, 2018). In this work,
we explored the combination of VLS-DL with procedurally generated
trees with successful results. Other works have explored artificial in-
telligence models like Generative Adversarial Networks (GANs) for
point cloud processing in the context of robotics and autonomous
driving (Goodfellow et al., 2014; Caccia et al., 2019; Triess et al., 2022).

6.3. Dynamic virtual laser scanning

Until now, VLS has typically been computed assuming a static
scene. However, laser scanning is often used in real-world contexts with
changing conditions (e.g., moving vehicles and pedestrians or moving
trees with leaf flutter and branch buffeting due to wind). The VLS-DL
model should also be made compatible with dynamic VLS, i.e., with
simulations in which the scene changes over time. By extending VLS
to support dynamic scenes, the VLS-DL model can be trained on point
distributions explained by motion, including certain scanning artifacts
and motion-caused occlusions. For example, the open-source software
HELIOS++ has recently included support for dynamic VLS, which opens
up the gate for future research in this direction.

7. Conclusions

In this paper, we showed that deep learning models trained solely
with virtual laser scanning (VLS) data can be used to semantically
segment real point clouds with high accuracy. Training with real data
leads to an overall accuracy (OA) 1% higher than training with virtual
data in our leaf-wood experiments and 7% to 8.3% higher in our
urban experiments. We almost closed the gap between VLS and reality
for the leaf-wood segmentation problem, achieving near state-of-the-
art results with full VLS-based training. For semantic segmentation in
urban contexts, we started to close the gap between VLS and reality,
reducing the difference in OA from 16.3% and 17.5% to 8.3% and 7%
for the 2018 and 2019 point clouds, respectively, by improving the 3D
scene with voxel-based vegetation modeling.

Also, we show that fully automatic scene generation and model
training are possible with our FVLS-DL model, which is based on a
fully computer-generated virtual scene. Further experiments comparing
the FVLS-DL approach against real data for different models (Random
Forest, PointNet++, and KPConv) show that the proposed method
works for different neural networks and classical machine learning
models. The ablation study used to compare these models confirmed
that simulating more data leads to better model performance in terms
of intersection over union for all investigated models.

The theoretical description of VLS-DL and the empirical validation
from our experiments suggest that a deeper integration of both models
is possible. Moreover, while our results are satisfactory, improving
them requires human-based manual work to tune the hyperparameters
and design realistic 3D scenes. While this work is not so laborious and
prone to errors as manual labeling, better integration of VLS-DL could
alleviate this burden by automatizing fine-grain tuning and bringing
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optimization from DL to VLS. Furthermore, if procedurally generated
scenes can be computed with sufficient realism, the entire workflow
can be optimized automatically.

We consider there is enough evidence to claim that VLS is a con-
venient solution for training a wide variety of point cloud classifiers
based on supervised training. Furthermore, the time and cost-saving
potential of VLS-DL makes it a viable option for point cloud research
and industrial applications. Typical problems, such as insufficient or
imbalanced data, can be addressed using VLS-generated data. Thus, tak-
ing advantage of virtual laser scanning can revolutionize deep learning
applied to point clouds.
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Appendix A. Virtual scene generation and virtual laser scanning

A.1. Urban scene classification

Creating the virtual scenes

The Hessigheim 3D (H3D) benchmark dataset (Kolle et al., 2021)
is already split into training and validation. We used the training
subsets of the meshes and the point clouds to create two versions
of the 3D scene for our laser scanning simulations. For both ver-
sions, a modified material library (MTL file) with an added he-
lios_classification value was used. An example for one ma-
terial is shown below:

newmtl Low Vegetation

Ka 0.698039 0.796078 0.184314
Kd 0.698039 0.796078 0.184314
Ks 0.698039 0.796078 0.184314
illum 2

Ns 136.430000
helios_classification O

In this way, the simulated returns are automatically assigned the
helios_classification value of the material of the surface
which they hit.

Version 1 of our H3D virtual scene uses the original mesh tiles
from the H3D training dataset. Version 2 of our H3D virtual scene
uses a modified scene representation, where vegetation (classes ‘‘shrub”
and “tree”, as well as all faces labeled as “unlabeled” in the close
vicinity of vegetation classes) have been removed from the mesh and
instead modeled using voxels. For this, vegetation points were filtered
from the H3D training point clouds and transformed into voxel models
with 5 cm X 5 cm X 5 cm voxels using the HELIOS++ xyzloader.*
After removing faces classified as vegetation from the mesh, the 3D
model contains holes (below the now semi-transparent voxel vegetation
representations). To fill these holes, we added a digital terrain model
(DTM) to the scene, which we generated from the ground points
of the H3D point cloud (classes low vegetation, impervious surface,
soil/gravel). This DTM was shifted downwards by 0.2 m to ensure that
it does not cover or intersect with other parts of the scene and assigned
the material (i.e., classification) “low vegetation”. Fig. A.11 compares
the two versions.

Virtual laser scanning configuration

A trajectory of one of the Hessigheim ULS campaigns (columns: X,
Y, Z, roll, pitch, yaw) was provided by colleagues at the Institute for
Photogrammetry and Geoinformatics at the University of Stuttgart. It
consists of three separate flights. The trajectory points were converted
into a line feature and then simplified using the Douglas Peucker
algorithm. The waypoints of the simplified lines were then used in
the survey XML file for the X-Y “leg” positions. The heights of the
waypoints were obtained from the original trajectory point file. For
the 2019 surveys for training, some waypoints were moved further out
along the Y-direction to ensure that the entire mesh is scanned.

Acquisition settings were selected to match the real data acquisition
and are shown in Table A.9.

Resulting VLS point clouds for model training

Fig. A.12 shows the real and the two different VLS point clouds.
The number of intermediate returns is several hundred times lower
when using the original mesh in the simulations than when using
the modified 3D scene with voxel vegetation. Unlike the mesh, the
simulated laser beam can penetrate the voxelized canopies and thus
generate multiple returns, making the simulation more realistic. This
can also be seen visually in Fig. A.12. The number of intermediate
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a) Original mesh

Fig. A.11. Comparison of (a) the original Hessigheim 3D mesh and (b) the modified Hessigheim 3D mesh with voxelized vegetation. Colored by classification.
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b) Mesh with voxel vegetation

(For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

b) VLS Original

Fig. A.12. Images of (a) the training subset of real Hessigheim 3D point cloud, (b) the simulated point cloud using the original Hessigheim3D mesh, and (c) the simulated point
cloud using the modified Hessigheim 3D scene with vegetation represented by voxels (all March 2019 epoch). Colored by classification. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Table A.9

ULS scan settings used for the Hessigheim HELIOS++ simulations.
Setting Value
Scanner RIEGL VUX-1LR
Scan angle +35° off nadir
Pulse frequency 820 kHz
Scan frequency 133 Hz
UAV speed 8 m/s

returns in the VLS point cloud with voxel vegetation is in the same
order of magnitude as in the real point cloud.

Pulse density is lower in the VLS point clouds than in the real point
clouds in both 2018 (VLS original: 720 pts/m?, VLS voxel: 740 pts/m?2,
real: 1050 pts/m?) and 2019 epochs (VLS original: 820 pts/m?, VLS
voxel: 870 pts/m?, real: 910 pts/m?). This may be due to different
reasons: (1) While the publication states 8 m/s as the speed of the

4 https://github.com/3dgeo-heidelberg/helios/wiki/Scene#xyz-point-
cloud-loader (Accessed on 2 October 2023).
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UAV, the UAV does not move with constant speed in reality and might
have been slower due to wind or due to the necessary deceleration and
acceleration in the corners when turning. Due to a lack of the GPS Time
attribute in the real point clouds, or an identifier for the flight strip, in-
depth investigations of these differences were not feasible. (2) The mesh
contains unlabeled faces. As we are not training on the “unlabeled”
class, we removed it from the simulated point cloud, which lowers the
number of points.

A.2. Leaf-wood classification

Creating the virtual scenes

With our experiments on leaf-wood classification using VLS training
data, we cover two central ways of generating virtual scenes: (a) proce-
dural 3D modeling with no real data at all, and (b) the reconstruction
of a real scene from 3D measurements such as photogrammetric and/or
laser scanning point clouds.

The fully synthetic scenes were assembled using procedurally gener-
ated 3D tree models of trees. These were generated using the algorithm
of Weber and Penn (1995), implemented in the add-on “Sapling Tree
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Table A.10
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TLS scan settings used for the HELIOS++ simulations for the leaf-wood experiments. For the fully virtual trees (FVLS) and the isolated Wytham
Woods trees (VLS isolated), a higher resolution was used than for the full Wytham Woods forest stand (VLS near).

Setting Value
Scanner RIEGL VZ-400
Vertical field of view —40°- 60°
Pulse frequency 300 kHz
Effective measurement rate 122 kHz

FVLS, VLS isolated

Horizontal resolution 0.017°
Vertical resolution 0.017°
Vertical point spacing (10 m range) 3 mm
Horizontal point spacing (10 m range) 3 mm

VLS near (Wytham Woods forest)
0.04°
0.04°
7 mm
7 mm

Gen”” in the open-source 3D modeling software Blender (Blender On-

line Community, 2023). 10 different trees were created by modifying
the various parameters. Three were conifers with needles and seven
were broadleaf trees with different leaf shapes. For each tree, two more
trees were created by changing the random seed, resulting in a total of
30 trees. The trees were arranged in a small forest stand, with their
crowns clearly overlapping (Fig. A.13a).

For the second option, scenes reconstructed from real data, we used
the Wytham Woods 3D model, which is openly available® (Calders
et al., 2018; Liu et al., 2022). We used the positions and tree mesh mod-
els (.OBJ files) in the DART _models/3D-explicit model folder in
the branch add_dart.

It is important to note that due to the conversion of the cylindrical
quantitative structure models (QSMs) to triangular meshes, the trunks
and branches of the tree models are angular rather than round. Leaves
are modeled as flat elongated hexagons.

We have modified the material library (.MTL) file to add the
helios_classification, 0 to the material “TrunkAndBranches”,
and 1 to the material “Leaves”. The trees were split spatially into
training and test by manually extracting a quarter of the area to be
used for testing.

Besides the full Wytham Woods forest scene (“near trees”), we
created six scenes, in which eight trees were randomly drawn from
the Wytham Woods dataset (without replacement) and assembled into
a common scene with plenty of space between them (Fig. A.13c). We
call this version “isolated trees” because the crowns of the trees do not
overlap and no input neighborhood of one tree contains any points of
another tree.

Virtual laser scanning configuration

The acquisition settings for all three leaf-wood experiments are
summarized in Table A.10. The synthetic forest stand of fully computer-
generated trees was scanned from six scan positions using a virtual
terrestrial laser scanner of the model RIEGL VZ-400. The scan positions
were regularly distributed on a 60 m radius circle around the trees and
were oriented toward the forest plot center, scanning a horizontal field
of view (FOV) of 90°. The Wytham Woods scene of the full forest stand
was virtually scanned from 15 scan positions. These were manually
distributed on the boundaries and inside the forest plot. The horizontal
FOVs were defined based on the positions, so that a full 360° scan is
performed for the scan positions within the forest plot and smaller FOVs
were used for positions at the boundaries. The simulated training point
cloud is shown in Fig. A.13b. Simulations were carried out the same
way for the smaller validation scene but using only four scan positions.
The scenes with isolated Wytham Woods trees were virtually scanned
from six positions, evenly spaced on a circle of 35 m radius around the
trees. Each scan had a horizontal FOV of 90°.

5 https://docs.blender.org/manual/en/latest/addons/add_curve/sapling.
html (Accessed on 11 August 2023).

6 https://bitbucket.org/tree_research/wytham_woods_3d_model/src/add_
dart/DART models/ (Accessed on 19 October 2022).
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Resulting VLS point clouds

Resulting simulated VLS point clouds for training the VLS-based
leaf-wood classifiers are displayed in Fig. A.13. We refer to the point
clouds of the procedurally modeled trees (Fig. A.13a) as “fully virtual
laser scanning (FVLS)” point clouds and to the models trained with
them as FVLS-DL models.

The point clouds of the Wytham Woods tree models (Fig. A.13b and
c) are referred to as VLS point clouds (near trees and isolated trees,
respectively) and the models are referred to as VLS-DL models.

Appendix B. Real point clouds for training and validation

Data for virtual-to-real generalization studies

The real urban classification models were trained on the real train-
ing point clouds of the Hessigheim 3D benchmark. All models for urban
classification, real, VLS original and VLS voxel, were evaluated using
the validation point clouds in the Hessigheim 3D benchmark.

For leaf-wood classification, two real models were trained, one on
a point cloud of isolated trees and one on a point cloud with near
trees (Fig. B.14) with eight labeled tree point clouds from Weiser
et al. (2023). Each tree was individually normalized by subtracting the
ground elevation at the location of the tree trunk and then re-positioned
in a common point cloud in a local coordinate system.

The isolated trees training point cloud was composed of the tree
point clouds with the IDs AcePse_SP02_04, FagSyl_BR01_01,
FagSyl_BRO5_P8T4, PicAbi_BR0O2_14, PinSyl_KA10_03,
PseMen_BR04_02, QuePet_BRO1_01, and QueRub_KA09_T053
and the point clouds were spread out with a lot of space in between
each tree.

The near trees training point cloud was composed of the tree
point clouds with the IDs AcePse_SP02_04, FagSyl_BR01_01,
PicAbi_BRO2_14, PinSyl_KA09_TO048, PinSyl_KA10_03,
PseMen_BR04_02, QuePet_BR01_01, and QueRub_KA11_09.
They were so closely spaced, that their crowns may touch or overlap
(Fig. B.14a).

The main validation datasets for this study were generated from
the remaining trees of the labeled tree point cloud dataset (Weiser
et al., 2023), respectively. For the isolated trees, these were PicAbi_
BR08_01, PinSyl_KA09_T048, and QueRub_KA11_09.

In addition, we used subsets of the datasets by Wang et al. (2021)
and Hopkinson (2020) as real validation point clouds (Table 8). The
“Isolated Wang” dataset was composed of the point clouds with the
IDs 2, 11, 18, 68, 96, 97, and 102. The “Near Wang” dataset was
composed of the point clouds with the IDs 4, 5, 12, 18, 31, 32, 57,
59, 60, 63, 73, 75, 83, 87, 88, 89, 92 93, 95, 96, 100, 101, and 104.
Finally, the “Near Hopkinson” validation dataset consisted of the point
clouds named MDD04_012, MDDO6_007, MDDO7_010, MDD08_006,
and MDD09_007.
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Number of returns Classification

a) FVLS

c) VLS Isolated
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Fig. A.13. Simulated point clouds of (a) the fully virtual synthetic scenes with procedurally generated tree models, (b) the Wytham Woods scene, and (c) the isolated Wytham
Woods scene. Colored by number of returns (left) and classification (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

a) Training b) Validation

ki
: 10 XY

10

Fig. B.14. Real training and validation point clouds for leaf-wood separation with trees from Weiser et al. (2023). Colored by classification: green=leaf and blue=wood. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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WELL-CLASIFIED

Fig. B.15. Visualization of the domain adaptation results, including the top view of the reference labels and classification confusion on the validation point clouds from the
Semantic3D dataset (Hackel et al., 2017). The top row (a) shows the misclassified points for the Bildstein station 5 point cloud. The bottom row (b) corresponds to the SG27
station 5 point cloud. The classes are ground, building, vegetation, and object. The gray color represents successfully classified points, while the red represents misclassified points.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Domain adaptation experiment

The quantification of the domain adaptation capabilities of a deep
learning model is a relevant question that arises in the context of
representation learning. Domain adaptation refers to the performance
of a model on a given task when applied to a different input distri-
bution (Goodfellow et al., 2016b). Thus, we designed an experiment
to explore how well the VLS-DL model performs regarding domain
adaptation compared to a neural network trained on real data.

Our experiment consisted of training two different KPConv models,
the first with real and the second with simulated point clouds from
the Hessigheim dataset (Kolle et al., 2021). Then, we evaluated their
performance on the 15 labeled point clouds of the TLS Semantic3D
dataset (Hackel et al.,, 2017). Since the two datasets have different
classes, we used the reduced classes of the Hessigheim dataset intro-
duced in the main manuscript. Besides, we also reduced the classes
from the Semantic3D dataset into terrain (man-made terrain and natu-
ral terrain), vegetation (high vegetation and low vegetation), buildings
(buildings), and objects (hardscape, scanning artifacts, and cars). We
argue that this experiment allows us to evaluate domain adaptation
because ULS and TLS correspond to different input distributions.

Table B.11 shows the quantitative evaluation of the experiments
with the two different KPConv models. We computed the OA and the
MCC for each combination of DL model and validation point cloud. In
doing so, we used the official training dataset for validation because
we needed labeled data to quantify the results. Generally, the domain
adaptation capabilities of the VLS-DL model match those of the real
model, which is, on average, only 1.73% better in terms of OA. The
point clouds in Fig. B.15 provide a visual representation of the results.
The results of these experiments demonstrate the great potential of
VLS-DL models to generalize to unseen real data, even when domain
adaptation is required.
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Table B.11

Evaluation metrics for the domain adaptation experiments. One model was trained on
real point clouds (Real KPConv), and the other was trained with VLS point clouds
(VLS-DL KPConv) corresponding to the ULS-based Hessigheim dataset (Kolle et al.,
2021). The evaluations are calculated on the real TLS-based Semantic3D dataset (Hackel
et al.,, 2017). For each KPConv model and each point cloud in the validation dataset,
the overall accuracy (OA) and the Matthews correlation coefficient (MCC) are provided.
The rows highlighted in bold correspond to the scenes with the best domain adaptation
results.

Validation Real KPConv VLS-DL KPConv
Point cloud OA (%) MCC (%) OA (%) MCC (%)
Bildstein station 1 89.0 83.5 87.7 81.2
Bildstein station 3 91.0 85.7 89.6 83.7
Bildstein station 5 96.0 91.4 94.4 88.0
Domfountain station 1 90.1 79.4 89.8 79.8
Domfountain station 2 83.5 71.5 83.3 70.1
Domfountain station 3 95.6 92.3 92.1 86.5
Untermaederbrunnen s1 93.8 90.3 89.6 84.3
Untermaederbrunnen s3 88.3 82.1 78.9 71.3
SG27 station 1 97.1 84.2 95.2 76.6
SG27 station 2 93.1 88.0 91.3 85.1
SG27 station 4 93.1 89.5 93.1 89.3
SG27 station 5 97.3 93.9 96.5 91.9
SG27 station 9 94.3 86.1 93.1 83.1
Neugasse station 1 80.4 69.2 71.1 70.2
SG28 station 4 71.3 60.4 82.2 72.8
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