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Abstract

Linear economics and the generation of many by- and waste products in huge quan-
tities contribute to a resource inefficient and environmentally harmful economy. By
recycling sulfide spend liquor (SSL), a waste stream from the pulp mill process, and
spruce hydrolysate, a byproduct from Borregaards advanced lignin process (BALI™),
as alternative carbon sources for bioprocessing, the development of more sustainable
and economical processes is further pushed. However, due to complex composition
and possible inhibitory effects, bioprocessing on SSL and BALI™ is, despite their high
sugar concentrations, challenging. Therefore, advanced model-based approaches for
both process understanding and process control are needed to ensure reproducible,
efficient and stable processes.

In this thesis, a model-based control strategy is designed with the method of feedback
linearization. A process model and parameter-set derived from recent literature are
used to examine the suitability of process control of a continuous bioprocess with cell
retention. C. glutamicum is processed with SSL, BALI™ and a nutrient solution. The
novelty of this thesis is the design, implementation and testing of a nonlinear model-
based control strategy with state estimation that enables the control of biomass, sugar
and nutrient concentration as well as the volume by adapting three feeds, harvest
rate and bleed rate while minimizing measurement expenses.

Within a feasibility study, possible setpoints as well as physical and biochemical
limitations are shown. The influence of process parameters on the resulting control
law is examined in a robustness analysis. Two different control strategies based on the
feedback linearized system, a feedforward controller and a model predictive controller
(MPC) including a state observer, are proposed and analysed. It can be seen, that
the control of the biological states with two independent carbon-sources enables the
possibility to control the process in a dynamic way. By choosing different setpoints,
the ratio between the added SSL and BALI™ can be influenced. Especially when the
concentrations in the feeds vary, the suggested control strategies show their potential
- by adapting the input variables of the process accordingly, a stable state can be
maintained.





Kurzfassung

Lineare Produktionsprozesse und die Erzeugung vieler Neben- und Abfallprodukte in
großen Mengen tragen zu einer ressourcenineffizienten und umweltschädlichen Wirt-
schaft bei. Der Einsatz alternativer Kohlenstoffquellen, wie Sulfidablauge (SSL) und
Fichtenhydrolysat, ein Nebenprodukt aus Borregaards fortschrittlichem Ligninpro-
zess (BALI™), ermöglicht die Entwicklung nachhaltiger und wirtschaftlicher Biopro-
zesse. Aufgrund komplexer Zusammensetzung und möglicher hemmender Inhaltss-
toffe ist die biologische Verarbeitung von SSL und BALI™ eine Herausforderung. Es
werden fortschrittliche modellbasierte Ansätze sowohl für das Prozessverständnis als
auch für die Prozesssteuerung benötigt, um reproduzierbare, effiziente und stabile
Prozesse zu gewährleisten.

In dieser Arbeit wird eine modellbasierte Regelungsstrategie mit der Methode der
Feedback Linearisierung entworfen. Ein Prozessmodell und Parametersatz aus der
Literatur werden verwendet um den kontinuierlichen Prozess mit Zellrückhaltung zu
beschreiben. C. glutamicum wird mit SSL, BALI™ und einer Nährlösung fermentiert.
Die Forschungslücke, welcher sich in der Arbeit angenommen wird, ist der Entwurf
und die Implementierung einer nicht linearen modellbasierten Regelungsstrategie mit
Zustandsschätzung, welche die Regelung der Biomasse-, Zucker-, Nährstoffkonzen-
tration und des Volumens durch Anpassung der Zu- und Abläufe bei gleichzeitiger
Minimierung des Messaufwands ermöglicht.

Mögliche Sollwertkombinationen, physikalische und biochemische Grenzen und der
Einfluss der Prozessparameter werden untersucht. Mithilfe des Feedback linearisierten
Modells werden zwei Regelstrategien, ein Feedforwardregler und ein Modell Prädik-
tiver Regler mit Zustandsbeobachtung, entworfen und analysiert. Es zeigt sich, dass
durch die Verwendung von zwei unabhängigen Kohlenstoffquellen der Prozess dy-
namisch gesteuert werden kann. Durch die Wahl der Sollwerte kann das Verhältnis
zwischen SSL und BALI™ beeinflusst werden. Insbesondere bei schwankenden Kon-
zentrationen der Zuläufe zeigen die vorgeschlagenen Regelungsstrategien ihr Poten-
zial - durch entsprechende Anpassung der Prozessführung kann ein stabiler Zustand
aufrechterhalten werden.
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ṁi,R production or consumption rate of component i g/h
OUR oxygen uptake rate mol/h
qi biomass-specific glucose uptake rate of component i g/gh
Qi volumetric reaction rate of component i g/Lh
V volume L
VR liquid reactor volume L
V̇air,in volumetric air flow into the reactor Nm3/h
V̇air,out volumetric air flow out of the reactor Nm3/h
V̇B BALI™ feed rate L/h
V̇BL bleed rate L/h
V̇H harvest rate L/h
V̇N nutrient feed rate L/h
V̇S SSL feed rate L/h
yi,j molecular concentration of component i in in-/outflow

k

mol/Nm3

µ biomass-specific growth rate 1/h



List of abbreviations, variables and parameters xi

Parameters of kinetic model

Parameter Explanation Value Unit Source
DoRO2 degree of reduction of oxygen -4 mole−/Cmol [1]
DoRs degree of reduction of sugars 4 mole−/Cmol [1]
DoRX degree of reduction of

biomass
4.18 mole−/Cmol [1]

KS,G glucose saturation constant 0.0948 g/L [1]
KS,M mannose saturation constant 0.104 g/L [1]
MW,s molecular mass of sugars 30.03 g/Cmol [1]
MW,X molecular mass of biomass 27.78 g/Cmol [1]
qG,max maximal biomass-specific glu-

cose uptake rate
0.640 g/gh [2]

qM,max maximal biomass-specific
mannose uptake rate

0.0692 g/gh [2]

YX/G yield glucose to biomass 0.527 g/g [2]
YX/M yield mannose to biomass 0.377 g/g [2]
YX/T yield nutrients to biomass 0.0066 g/g -

Variables in control theory

Variable Explanation
a(x) vector field
A, Ad system matrix of linearized system (continuous/discrete time)
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Chapter 1

Introduction

The manufacturing of products through biotechnological processes is indispensable
nowadays. [3] Microorganisms are widely used in the pharmaceutical industry for the
production of vaccines, hormones, antibiotics and antibodies, in the energy sector
for the production of bio-fuel and renewable energy, in sewage plants and in the
food, chemical and agricultural industry [4]. Often, biotechnological processes are a
more cost-, energy- and resource-efficient alternative to chemical synthesis or physical
processes. Furthermore, a variety of products is not producible by humans without
the cultivation of microorganisms [3].

However, the carbon sources required for many biotechnological processes are widely
obtained from high-value sugar- and starch-containing plant material, which is also
used in the production of food [5]. Therefore, there is a high demand in alternative
carbon-sources, which are mainly sought in the waste products of other processes [6].
The usage of secondary raw materials is of great interest, because the recycling of
waste products could lead to more cost-efficient and ecological processes with prod-
ucts that have improved live cycles making their contribution to an overall circular
economy [5]. Nevertheless, due to the complex composition of the waste streams as
well as possible inhibitory components a good understanding of their effects on the
microorganism and production process is inevitable [2].

Current research focuses on lignocellulosic waste streams from the paper and pulping
industry due to their high total sugar concentrations [7] as well as their large annual
production volumes [8]. Around sixty percent of the world’s paper and pulp demand
is produced in the sulfite process with the waste stream spent sulfite liquor (SSL) [8],
leading to an annual production of around ninety billion liters [9]. Although used in
the production of some high-value products, such as Xylitol, Xylanase and Vanillin
as well as low-value Ethanol [8], around three-quarters of SSL are incinerated [10].
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Finding further applications for the production of high-value products is therefore
highly desirable [7]. However, bioprocessing with SSL is challenging due to its com-
plex composition [11], including various sugar compounds, such as arabinose, glucose,
galactose, mannose and xylose, and potentially growth-inhibiting compounds, such
as sulfite, furfural and hydroxy-methyl-furfural (HMF) [2].

To achieve good efficiency of the promising high total sugar amount, it is necessary
to process with microorganisms that can efficiently metabolize several of the sugar
components [7]. Due to its ability to consume different sugars available in the SSL
[12] as well as its high tolerance for organic acids such as acetate [5], the soil bacteria
Corynebacteria glutamicum has shown promising results when processed with SSL
[1, 2, 11]. Several production routs of C. glutamicum have been established for the
production of more than seventy high-value compounds [12], making C. glutamicum
an important expression host in biotechnology [5].

However, for effective and economically favourable production with SSL as a complex
substrate and C. glutamicum as host organism, composition and possible inhibitory
effects of SSL on the production process must be identified and analysed [2]. By using
model-based approaches for systematic and target-oriented process development, the
influence of critical process parameters (CPP) on critical quality attributes (CQA)
can be identified [13]. Additionally, a better process understanding can be obtained
which provides a sound basis for the design of a complex control strategy and conse-
quently the development of cost-efficient, optimized and ecological processes [14].

Using secondary raw materials as cultivation media, the composition of the complex
media is predetermined by the preceding process and its raw materials [8]. Varying
concentrations of sugars in the SSL can be dynamically compensated by adding
other carbon sources. Spruce hydrolysate from Borregaards advanced lignin process
(BALI™) is such a suitable alternative with high glucose concentrations [10]. In
addition, undesirable interactions between the medium and needed nutrients or low
solubility of nutrients in the medium can occur. A separate addition of these nutrients
can be a possibility to ensure stable and productive processes [15]. Multiple feeds are
therefore needed to control such a process in a sufficient way, leading to a complex,
nonlinear multiple input multiple output control problem.

The optimal control to obtain and maintain beneficial growth conditions is of high
importance. Productivity loss and cell death due to under-feeding or extensive by-
product formation as well as nutrient and inhibitor accumulation due to over-feeding
can be avoided by accurate process development [16]. Nowadays, bioprocesses are
controlled with both conventional control strategies in open and closed loop and
modern control strategies, such as neural network-based control, fuzzy logic, adap-
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tive control and model predictive control (MPC) [14]. However, the processes within
the bioreactor are complex and nonlinear [17]. Conventional control strategies are not
able to account for these nonlinearities [14]. Nevertheless, in industry, simple feedfor-
ward control with constant feed rates [13] as well as conventional control strategies
[17] are still commonly used. Consequently the development, implementation and
realisation of advanced control strategies are necessary to ensure stable, productive
and beneficial processes [16]. Furthermore, due to relatively large time constants of
the processes, the implemented control strategies may be computationally intensive,
enabling the usage of advanced and complex nonlinear control strategies.

Nonlinear feedback linearization has been studied for the control of bioprocesses for
simple process models with promising results [16, 17, 18, 19, 20, 21, 22, 23]. A
linear and decoupled system is obtained from the nonlinear model by an invertible
nonlinear coordinate transformation [20]. Well-known linear methods can be applied
to the linear model [24] and by transforming the system back, a nonlinear control
law is obtained that compensates all nonlinearities of the model [25]. Combining the
advantages of linear and nonlinear control methods, feedback linearization enables
robust and accurate control [25].

When designing a process controller for a bioprocess, ecological aspects must be part
of the strategy. The choice of setpoints or trajectories, process parameters and input
levels should be optimized in order to lead to a resource- and energy-efficient process
while minimizing by- and waste product formation [14]. Minimal usage of feedstocks
and sufficiently low sugar concentrations at the end of continuous bioprocesses are
aspects that have to be considered when implementing control strategies [16].

Furthermore, the availability of data and real-time measurements during bioprocesses
is a big challenge. Some biological key variables can be obtained only by offline,
cost- and time-intensive measurements [14]. For example, sugar concentrations in
the broth are usually measured by high pressure liquid chromatography (HPLC) and
are therefore not available in real-time. To address this problem, state observers can
be implemented - using online measurements in combination with the process model,
states, that are not or hard to measure with sufficient sampling time, can be esti-
mated. Therefore, the total cost for measuring can be reduced while simultaneously
improving the process observation [16]. During fermentation, offgas measurements
are usually available in real time and can be used to calculate the amount of oxygen
consumed and the carbon dioxide produced, known as the oxygen uptake rate OUR
and carbon dioxide evolution rate CER, which are proven to reflect the processes
taking place inside the reactor [11].
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In this thesis, a control strategy for a given process is designed and experimentally
validated. C. glutamicum is fermented in a continuous stirred tank reactor (CSTR)
and fed with the waste streams SSL and BALI™ from the pulping industry and a
solution providing nutrients. After the fermentation reactor, a membrane module
is installed for cell retention, enabling an increase of biomass concentration in the
reactor and continuous harvesting. By controlling the three feeds, the harvest and
the bleed rate the objective of a beneficial and stable process is achieved. Based on a
nonlinear process model derived from literature [1, 2] with state coupling, a nonlinear
control law is found by the method of feedback linearization for the multiple input
multiple output (MIMO) system, enabling a model-based control strategy, that incor-
porates the non-linearities of the identified model. The feedback linearized model is
used to design a feedforward controller and an MPC with state estimation to handle
the poor measureability of sugar and biomass concentration.

Furthermore, a feasibility analysis of various setpoints is made with the feedback
linearized system in order to identify beneficial process settings. The process and the
control strategies are examined for stability when parameter deviations occur. Con-
sequently, the possible influence of certain uncertainties and model-plant mismatches
on the process are examined. Different possible measurement scenarios for the MPC
are compared. The results from experimental runs at laboratory scale are analysed
to show the the quality and potential of the proposed control strategy.

The thesis is structured as follows. In chapter 2 the cultivation process is described,
the bacteria and used materials are defined and the environmental beneficial aspects
are discussed. Additionally, the experimental setup is described. The nonlinear
process model is identified and parametrized in chapter 3. In chapter 4 the necessary
theory for the development of the control strategy is given, namely the method of
feedback linearization, the basics of feedforward control and the principle of model
predictive control with state estimation. The theory is then applied in chapter 5
to the previous established model. Beneficial setpoint combinations are identified,
the system behaviour for varying parameters is examined and different measurement
scenarios for the MPC are studied in chapter 6. The results of the experiments carried
out in the laboratory reactor with the introduced control strategy are presented in
chapter 7. In chapter 8 the outcomes of the work are summarized, analyzed and
discussed. Finally, a short conclusion is given in chapter 9 along with an outlook on
the further potential of the applied method.



Chapter 2

Fermentation process and
experimental setup

Wild type C. glutamicum ATCC13032 is fermented with two lignocellulosic waste
waters from the pulp industry in a continuous fermentation process with cell reten-
tion. Due to its ability to grow on different carbon sources and its high tolerance for
organic acids such as acetate, C. glutamicum is a good candidate for bioprocessing on
raw materials containing non-native carbon sources [12]. With over seventy different
products such as L-Lysine, L-Glutamate and L-Valine [2], C. glutamicum has become
one of the workhorses of white biotechnology [2]. In addition, it is an extensively
studied organism with a variety of genetically engineered strains for better media
usage [12]. The soil bacteria has shown its potential when fermented with SSL in
recent studies [1, 2, 11]. During the continuous process, mCherry production induced
by IPTG is analysed. mCherry is a red fluorescence protein, which can be detected
clearly by fluorescence spectroscopy due to its unique color [26].

Lignocellulosic waste products from the pulp industry are promising alternative car-
bon sources for bioprocessing [7] due to the high sugar concentrations [8]. Recycling
these waste streams, which are currently mostly combusted [10], allows low-value
materials to be turned into high-value products [6] and helps to create a circular
economy by reducing pollution [7]. However, different raw materials and conditions
of the pulp production result in varying compositions in the waste waters making
the valorization of SSL challenging [8]. By using an additional carbon source concen-
tration deviations in the SSL can be compensated and the problem of raw material
uncertainty can be tackled. SSL, with an annual production of over ninety billion
liters [9], is used as the main carbon source. By adding small amounts of the higher
valued BALI™ to the broth, the process is controlled so that a stable and beneficial
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state is maintained. The recycling of SSL and BALI™ can be done efficiently while
reducing the composition requirements. Furthermore, low solubility of nutrients in
the SSL and BALI™ can be counteracted by adding an additional feed containing
these limiting components.

The fermentation is carried out in a continuously stirred tank reactor (CSTR) with a
working volume of 7.5L (Labfors 5, Infors HT, Bottmingen, Switzerland) with baffles
at the facilities of TU Wien - Institute of Chemical, Environmental and Bioscience
Engineering. The broth is mixed with a disk impeller stirrer (800 to 1200 rpm).
Clean compressed air is added to the reactor with a gasing rate of 0.5vvm. The SSL
is mixed with supplemental glucose and mannose to achieve a concentration profile
during the fermentation in the SSL tank with a working volume of 3.6L (Labfors 5,
Infors HT, Bottmingen, Switzerland). The SSL tank, BALI™, nutrition feed as well
as acid and base for pH control are connected to the reactor. Two hollow fiber micro-
filtration modules (Microza PSP-113, Asahi Kasei, Chiyoda, Japan), with a polyolefin
membrane, a pore size of 0.1 µm, a fiber diameter of 1.9 mm and a membrane area
of 0.1 m2, for cell retention are connected to the reactor and operated with a loop
pump (V6-3L, SHENCHEN, Baoding, China) at 1.5 L/min. The permeate side
of the membrane modules are connected with the harvest tank. Furthermore, the
bleed tank is connected to the reactor. Samples for offline analysis are taken from
the reactor using an automated sampling system (custom made by the Institute of
Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria)
every three hours and at refill from SSL tank. The samples are stored at 4◦C using a
fraction collector (FC 203B, Gilson, Middleton, USA) for later analysis. The process
flow chart of the system is displayed in Figure 2.1.

The temperature was kept at 30◦C. The culture pH was hold constant at 7 by adding
2.5 M KOH and 2.5 M H2SO4 accordingly. The used SSL with 44 g/L glucose
and 138 g/L mannose and BALI™ with 504 g/L glucose and 26 g/L mannose are
diluted to 25% of their undiluted concentration. Varying concentrations of the SSL
were achieved by adding glucose and mannose. All media were supplemented with
antibiotics (50 µg/mL kanamycin sulfate). The ultra-filtered SSL, autoclaved BALI™
and ultra-filtered nutrient solution containing urea as nitrogen source and KH2PO4
as phosphorous source are added with the calculated feed rates. The process is
inoculated with a preculture so that an initial optical density at 600 nm of one is
obtained. After 100h, mCherry production is induced with IPTG.

The online measurements are taken continuously and stored in the process infor-
mation management system (Lucullus, Securecell, Urdorf, Switzerland). The offgas
analyzer (Blue in One, Blue Sence, Heidelberg, Germany) measures the O2 content
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Figure 2.1: Flow chart of experimental setup. The equipment
used and the measurements made during the process are represented.
Glucose, mannose and SSL are premixed in the SSL tank. BALI™,
nutrients, acid and base are connected directly to the fermentation re-
actor. The membrane modules for cell retention are attached to the
harvest tank on the permeate side. Points of weight (WR), concentra-
tion (XR) and temperature (TR) measurements are labeled (see also
Table 2.1).

(XR06) based on galvanic cells and the CO2 content (XR05) with infrared sensor
modules continuously. The weights of the reactor and storage tanks (Glucose, Man-
nose, SSL, BALI™, nutrients, acid, base, SSL tank, fermentation reactor, harvest,
bleed (WR01-11)) are measured continuously for the calculation of the reactor volume
and volumetric rates. Temperature (TR01), pH (XR04) and pO2 (XR03) are mea-
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sured inline with a thermometer, pH electrode (Hamilton, Bonaduz, Switzerland)
and DO electrode (Hamilton, Bonaduz, Switzerland) respectively. The online sig-
nals are transferred via the open platform communication server (OPC server) from
the process information management system (PIMS) to MATLAB 2020a (MATALB
2020a, MathWorks, Natick, USA) for online data processing. The processed data
and calculated signals, such as the feedrates, are send back to the PIMS, which can
then adjust the physical properties of the process equipment accordingly. The main
components of the experimental setup are displayed in Figure 2.2.

Figure 2.2: Flow of information between components of the
experimental setup. The results from the online measurements are
stored in the process information management system (PIMS) and send
to MATLAB 2020a for online data processing via an open platform
communication (OPC) server. The online signals are processed and the
resulting signals are written to the PIMS which can then communicate to
corresponding reactor equipment to obtain the desired process behavior.

From the offline samples, biomass was measured gravimetrically (XR07) as dry cell
weight by centrifuging 1.8 ml broth (14000 g, 4°C, 10 min) and drying the resulting
pellet in an oven (95°C, 72 h). Concentrations of sugars, namely glucose, man-
nose, xylose and arabinose (XR08-11), urea (XR12) and inhibitory compounds fur-
fural (XR13) and HMF (XR14) were measured form the resulting supernatant by
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HPLC (UltiMate 3000, thermo fischer scientific, Waltham, USA) with a isocratic
flow of 0.4 ml/min of ultra pure water on a lead column (NUCLEOGEL SUGAR
Pb 719530, Macherey-Nagel, Düren, Germany) using a RI-Detector (Shodex RI-101,
Showa Denko, Tokio, Japan). Furthermore the glucose (XR01) and mannose (XR02)
concentrations in the SSL were measured with the same HPLC procedure. Using
an enzyme assay pipetting robot (Cedex BioHT, Roche, Basel, Switzerland), the
concentration of organic acids acetate, lactate and glutamate (XR15-17) as well as
the concentration of nutrients ammonia and phosphate (XR18-19) were measured
from the supernatant. For the measurement of mCherry (XR20), the earlier de-
scribed cell pellets were resuspended in 0.9% NaCl and fluorescence was measured
(TECAN SPARK, Tecan, Männedorf, Switzerland) with an excitation at 560 nm and
an emission at 610 nm. The measurements conducted during the process are listed
in Table 2.1.

Table 2.1: Online and offline measurements during process. The
temperature (TR), weight (WR) and concentration (XR) measurements
conducted during the process are listed.

Code Measurement Code Measurement
TR01 temperature reactor XR05 CO2 offgas
WR01 weight glucose XR06 O2 offgas
WR02 weight mannose XR07 biomass concentration
WR03 weight SSL XR08 glucose concentration
WR04 weight BALI™ XR09 mannose concentration
WR05 weight nutrients XR10 xylose concentration
WR06 weight acid XR11 arabinose concentration
WR07 weight base XR12 urea concentration
WR08 weight SSL tank XR13 furfural concentration
WR09 weight fermentation reactor XR14 HMF concentration
WR10 weight harvest XR15 acetate concentration
WR11 weight bleed XR16 lactate concentration
XR01 glucose concentration SSL XR17 glutamate concentration
XR02 mannose concentration SSL XR18 ammonia concentration
XR03 pO2 broth XR19 phosphate concentration
XR04 pH broth XR20 mCherry concentration





Chapter 3

Modelling and parameterization

For better process understanding and the ability to implement an advanced model-
based control strategy, a mathematical model of the process is identified and param-
eterized. In order to describe the biochemical reactions, the kinetic model and the
corresponding parameters (section 3.1), which mathematically describe the reaction
rates, are based on published models and parameters, which are obtained from ex-
periments with the same bacterial strain and SSL as carbon source [1, 2]. Inhibitory
glucose and mannose consumption is modelled. The model is extended to include
nutrient demand. Additionally, the differential equations are derived from the mass
balances around the reactor (section 3.2).

3.1 Kinetic model

The biomass in the reactor consumes substrate, grows and produces protein and
byproducts. In order to describe the processes within the system, an unstructured
kinetic model is established. Unstructured models, which are characterized by a
macroscopic approach [3], consider the mass concentration of the biomass as only
biological state variable [16]. Processes within the cells, the molecular composition
of the cell and the size and age of the organisms are considered to be homogeneous in
all cells [27]. Using these assumptions, simple but accurate models can be established
that are widely used in both industry [19] and research [20].

The sugars glucose and mannose are fed to the biomass and burned aerobically.
Furthermore, nutrients are needed for biomass growth and protein production. The
consumption of sugar as carbon source, oxygen O2 and nutrients T leads to the
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production of biomass X and CO2. This processes can be summarized with the
reaction equation

Sugar + O2 + T
X−→ X + CO2.

Glucose uptake. The biomass-specific glucose uptake is described by the Monod
kinetic

qG = qG,max
cG

cG + KS,G

(3.1)

where qG is the biomass specific glucose uptake rate in g/gh, qG,max is the maximum
biomass specific glucose uptake rate in g/gh, cG is the glucose concentration in g/L
and KS,G is the glucose saturation constant in g/L. The course of qG as function
of the glucose concentration is displayed in Figure 3.1. Mannose uptake. The

Figure 3.1: Biomass specific glucose uptake. The biomass specific
glucose uptake is described by a Monod kinetic. High glucose concen-
tration lead to high substrate uptake (cG >> KS,G −→ qG ≈ qG,max).
However, Controllability over the system is only given at low glucose
concentrations (qG << qG,max).

mannose uptake is modelled with the Monod kinetic including an inhibitory effect of
the glucose concentration on the mannose uptake

qM = qM,max
cM

cM + KS,M

KS,G
cG + KS,M

(3.2)

where qM is the biomass specific mannose uptake rate in g/gh, qM,max is the maximum
biomass specific mannose uptake rate in g/gh, cG is the glucose concentration in g/L,
cM is the mannose concentration in g/L, KS,G is the glucose saturation constant in



3.1. Kinetic model 13

g/L and KS,M is the mannose saturation constant in g/L. The course of qM as function
of the glucose and mannose concentration is displayed in Figure 3.2. It can be seen,
that small changes at low glucose concentrations do influence the mannose uptake
significantly.

Figure 3.2: Biomass specific mannose uptake. (a) Due to the
inhibitory effects of the glucose concentration on the mannose uptake,
the biomass specific mannose uptake decreases quickly with increasing
glucose concentrations. (b) For constant glucose concentrations, the
mannose uptake follows Monod kinetic. The biomass specific mannose
uptake and consumption can consequently be controlled by varying the
glucose and mannose concentrations.

Biomass growth. The specific biomass growth rate is described by the biomass
specific sugar uptake rates and the constant yields

µ = YX/GqG + YX/MqM (3.3)

where µ is the biomass specific growth rate in 1/h, qG is the biomass specific glucose
uptake rate in g/gh, qM is the biomass specific mannose uptake rate in g/gh, YX/G

is the constant yield from glucose to biomass in g/g and YX/G is the constant yield
from mannose to biomass in g/g. The course of µ as function of the glucose and
mannose concentration is displayed in Figure 3.3.
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Figure 3.3: Specific biomass growth. (a) The lines for cM =
const are almost on top of each other, despite the large differences
(cM = {0.01, 10} g/L). (b) This effect becomes also visible by the almost
parallel lines for cG = const. Consequently, biomass growth strongly de-
pends on the glucose concentration.

Nitrogen and phosphor demand. The nitrogen and phosphor demand for biomass
growth is proportional to the biomass specific growth µ and is therefore described by

qT = µ

YX/T

(3.4)

with the biomass specific nitrogen and phosphor demand qT in g/gh and the constant
demand of nutrients for biomass growth YX/T . Consequently, the biomass specific
nutrient demand correlates directly with µ.

Oxygen uptake and carbon dioxide formation. The oxygen uptake rate

OUR = cXVR

DoRO2


DoRs

qG + qM

MW,s

− DoRX
µ

MW,X

�
(3.5)

and carbon dioxide formation rate

CER = cXVR


qG + qM

MW,s

− µ

MW,X

�
(3.6)

are modelled as function of the reactor volume VR in L, the biomass concentration cX

in g/L and the biomass specific rates (qS, qM , µ). Furthermore the molecular weights
of the sugars MW,s and the biomass MW,X in g/Cmol and the Degree of Reduction
of oxygen DoRO2 , sugar DoRs and biomass DoRX in mole−/Cmol are needed. [1]
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3.2 Mass balance and differential equations

The system differnetial equations are derived from the mass balance around the
reactor. In Figure 3.4 the in- and outflows of the reactor and modelled states are
displayed.

VR, cX , cG,
cM , cT

cG,S ,
cM,S

cG,B ,
cM,B

cT,N

cG, cM ,
cT

cX , cG,
cM , cT

M

V̇S

V̇B

V̇N

V̇BL

V̇H

V̇air,in,
yO2,in,
yCO2,in

V̇air,out,
yO2,out,
yCO2,out

Figure 3.4: Schematic model of bioreactor with cell retention.
The scheme of the continuous stirred tank reactor is displayed with all
the modelled inputs, outputs and states. The system boundaries (dashed
line) for the mass balance are displayed. By adapting the SSL feed V̇S

with the glucose cG,S and mannose concentration cM,S, the BALI™ feed
V̇B with the glucose cG,B and mannose concentration cM,B, the nutrient
feed V̇N with the nutrient concentration cT,N , the harvest rate V̇H and
the bleed rate V̇BL the states in the reactor, namely the reactor volume
VR, the biomass cX , glucose cG, mannose cM and nutrient concentration
cT can be influenced. Furthermore the airflow in V̇air,in and out V̇air,out

of the reactor with the corresponding oxygen and carbon dioxide molar
concentrations (yO2,in, yCO2,in, yO2,out, yCO2,out) is monitored.

The liquid feeds SSL (V̇S in L/h), BALI™ (V̇B in L/h) and nutrients (V̇N in L/h),
the harvest (V̇H in L/h) and bleed rate (V̇BL in L/h) as well as the airflow in (V̇air,in
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in Nm3/h) and out (V̇air,out in Nm3/h) of the reactor are considered. The following
model assumptions and simplifications are made

Ideally stirred tank reactor. The reactor is assumed to be an ideally stirred tank
reactor. Therefore the mass concentrations are independent of the position in the
reactor (dci/dx = 0).

Cell Retention. The membrane module for the cell retention holds back the biomass
and lets all other components of the broth pass. The sugar and nutrient concentra-
tions in the harvest are therefore equal to the concentrations within the reactor.

Inlets and Outlets. All mass-flows in and out of the reactor are described by the
modelled in- and outlets (V̇S, V̇B, V̇N , V̇H , V̇BL, V̇air,in, V̇air,out). O2 and CO2 are
the only volatile components of the modelled system. The balance around the liquid
reactor volume becomes

dVR

dt
= V̇S + V̇B + V̇N − V̇H − V̇BL. (3.7)

Concentrations in Inlets and Outlets. In Table 3.1 the mass and molecular
concentrations in the feeds, outlets and air flow are displayed.

Table 3.1: Concentrations of components in in- and outlets:
The mass ci,k in g/L and molecular concentrations yi,k in mol/Nm3 of
the components i in the in- and outlets k are listed. No occurrence of the
component in the corresponding flow is displayed as empty cell (ci,k = 0
g/L or respectively yi,k = 0 mol/Nm3).

Feeds Outlets air flow
S B N H BL in out

Biomass X cX

Glucose G cG,S cG,B cG cG

Mannose M cM,S cM,B cM cM

Nutrients T cT,N cT cT

Oxygen O2 yO2,in yO2,out

Carbon dioxide
CO2

yCO2,in yCO2,out
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The mass balance for a single compound i of the liquid phase is

dmi

dt
= ṁi,R +

�
k={S,B,N}

ṁi,k − �
k={H,BL}

ṁi,k (3.8)

with the absolute rate of mass change dmi/dt in g/h, the production or consumption
rate ṁi,R in g/h and the mass flows in and out of the reactor ṁi,k in g/h of component
i. With m = cV , partial deviation and Equation 3.7 the concentration balance for
an ideally stirred tank reactor and one component i

dci

dt
= Qi +

�
k={S,B,N}

V̇k

VR

(ci,k − ci) − �
k={H,BL}

V̇k

VR

(ci,k − ci) (3.9)

with the volumetric reaction rate Qi = ṁi,R/VR can be formulated. With the con-
centrations in Table 3.1, Qi = qicX , the concentration balances for X, G, M and T

as well as Equation 3.7, the needed differential equations

dVR

dt
= V̇S + V̇B + V̇N − V̇H − V̇BL (3.10a)

dcX

dt
= µcX − cX

V̇S + V̇B + V̇N − V̇H

VR

(3.10b)

dcG

dt
= − qGcX − cG

V̇S + V̇B + V̇N

VR

+ cG,S
V̇S

VR

+ cG,B
V̇B

VR

(3.10c)

dcM

dt
= − qMcX − cM

V̇S + V̇B + V̇N

VR

+ cM,S
V̇S

VR

+ cM,B
V̇B

VR

(3.10d)

dcT

dt
= − qT cX − cT

V̇S + V̇B + V̇N

VR

+ cT,N
V̇N

VR

(3.10e)

(3.10f)

for the reactor volume VR, the biomass X, glucose G, mannose M , and nutrients T

are obtained.

The oxygen uptake rate OUR and carbon dioxide evolution rate CER can be calcu-
lated with the molecular balance for the volatile components and the assump-
tion dyi/dt = 0, leading to

OUR = V̇air,outyO2,out − V̇air,inyO2,in (3.11a)
CER = V̇air,outyCO2,out − V̇air,inyCO2,in (3.11b)

with the volumetric air flow in V̇air,in and out of the reactor V̇air,out in Nm3/h and
the molecular concentrations in the inflow yi,in and outflow yi,out for the components
oxygen and carbon dioxide in mol/Nm3 [28].
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3.3 Parameterization

The model parameters and structure for biomass growth on glucose and mannose,
namely for qG, qM and µ are derived from [2], where the parameters are fitted on
data obtained from experiments with the same C. glutamicum strain processed with
full defined media with SSL as sole carbon source. The parameters for the OUR
and CER are derived from [1]. The parameters for nutrient demand are based on
complementary experiments ensuring sufficient nutrient concentration and preventing
precipitation due to low solubility. All numeric values for the parameters as well as
the corresponding literature are listed in the List of Abbreviations, Variables and
Parameters.



Chapter 4

Control theory

In the following chapter, the used methodology for the establishment of the con-
trol strategies is given. The method of feedback linearization (section 4.1), that
transforms the nonlinear system into a linear system via an invertible nonlinear co-
ordinate transformation, the fundamentals of feedforward control (section 4.2) and
the principle of model predictive control (MPC) with state estimation (section 4.3)
are defined.

4.1 Feedback linearization of MIMO systems

By the method of feedback linearization a nonlinear system can be transformed into
a linear system with a nonlinear coordinate transformation. Then, a linear controller
can be designed using well established linear control methods. By transforming the
system back to the original coordinates, a nonlinear control law is obtained that
incooperates all non-linearities of the system. The described method is therefore
fundamentally different from Jacobian linearization that approximates the nonlinear
behaviour around a point of operation [24]. The necessary definitions and equations
of the method are given, the full method including mathematical proof can be found
in [25].

The input affine system
ẋ = f(x) + g(x)u
y = h(x)

(4.1)

with the state vector x ∈ Rnm of system order nm, the time derivative of the state
vector ẋ = dx/dt, the system function vector f(x) ∈ Rnm×1, the input function
vector g(x) = [g1(x), . . . , gnu

(x)] ∈ Rnm×nu for the nu inputs u = [u1, . . . , unu ]T ∈
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Rnu×1, the output function vector h(x) = [h1(x), . . . , hny(x)]T ∈ Rny×1 for the ny

system outputs y ∈ Rny , that is linear in all inputs can be linearized by the nonlinear
coordinate transformation. For the following considerations, the correlation m =
nu = ny is valid.

By defining the Lie-Derivative

Laλ = ∂λ(x)
∂x

a(x) = gradT λ(x)a(x). (4.2)

of a scalar function λ(x) along a vector field a(x), the time derivative of a single
output yj = hj(x)

ẏj = dhj(x)
dt

= ∂hj(x)
∂x

∂x

dt
= ∂hj(x)

∂x
ẋ

= ∂hj(x)
∂x

f(x) + ∂hj(x)
∂x

g1(x)u1 + · · · + ∂hj(x)
∂x

gm(x)um

= Lfhj(x) + Lg1hj(x)u1 + · · · + Lgm
hj(x)um

(4.3)

can be obtained. The input affine system (Equation 4.1) has the vector relative
degree {δ1, δ2, . . . , δm} with the relative degree δ = �m

i=1 δi ≤ n if

(A) Lgj
Lk

fhi(x) = 0, j = 1, . . . , m, i = 1, . . . , m, k = 0, . . . , δi − 2 for all x in the
neighbourhood N of x̄,

(B) Lgj
Lδi−1

f hi(x) ̸= 0, j = 1, . . . , m, i = 1, . . . , m for at least one j and all x in
the neighbourhood N of x̄ and

(C) the (m × m) decoupling matrix

D(x) =


Lg1Lδ1−1

f h1(x) Lg2Lδ1−1
f h1 . . . Lgm

Lδ1−1
f h1(x)

Lg1Lδ2−1
f h2(x) Lg2Lδ2−1

f h2 . . . Lgm
Lδ2−1

f h2(x)
... ... . . . ...

Lg1Lδm−1
f hm(x) Lg2Lδm−1

f hm . . . Lgm
Lδm−1

f hm(x)

 (4.4)

is non-singular for x = x̄.
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The time derivatives of a single output yj are

yj = hj(x)
ẏj = Lfhj(x) + Lg1hj(x)� �� �

=0

u1 + · · · + Lgm
hj(x)� �� �
=0

um

ÿj = L2
fhj(x) + Lg1Lfhj(x)� �� �

=0

u1 + · · · + Lgm
Lfhj(x)� �� �

=0

um

...

y
(δj−1)
j = L

δj−1
f hj(x) + Lg1L

δj−2
f hj(x)� �� �

=0

u1 + · · · + Lgm
L

δj−2
f hj(x)� �� �
=0

um

y
(δj)
j = L

δj

f hj(x) + Lg1L
δj−1
f hj(x)u1 + · · · + Lgm

L
δj−1
f hj(x)um.

(4.5)

For all outputs, one obtains


y

(δ1)
1
...

y
(δm−1)
m−1
y(δm)

m

 =


L

(δ1)
f h1(x)

...
L

(δm−1)
f hm−1(x)
L

(δm)
f hm(x)


� �� �

b(x)

+D(x)


u1
...

um−1
um


� �� �

u

.
(4.6)

Furthermore, the synthetic input

v =


v1
...

vm−1
vm

 =


y

(δ1)
1
...

y
(δm−1)
m−1
y(δm)

m

 . (4.7)

has to be defined for complete input-output linearization. This leads to a linear
system with m integrator chains of lengths δj, where j = 1, . . . , m. After designing
a controller for the feedback linearized system and the synthetic input v with well-
established linear control methods, the real input u is obtained by transforming the
the system back. This can be achieved by inverting Equation 4.6, thus

u = D−1(x)(v − b(x)). (4.8)
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A system has full relative degree, if δ = �m
j=1 δj = n, then the transformed system

with the transformed states z becomes

z =


z1
...

zn

 =



ξ1,1
ξ1,2
...

ξ1,δ1

ξ2,1
...

ξ2,δ2
...

ξm,1
...

ξm,δm



= t(x) =



h1(x)
Lfh1(x)

...
Lδ1−1

f h1(x)
h2(x)

...
Lδ2−1

f h2(x)
...

hm(x)
...

Lδm−1
f hm(x)



(4.9)

with the diffeomorphism t(x) and the external linearizable states ξi,j. If the system
does not have full relative degree, functions for the internal states {ηδ+1, . . . , ηn} have
to be found, so that t(x) becomes a local diffeomorphism. Then, the system can be
separated in the external linearizable and controllable states ξi,j and the internal non-
controllable states ηi. For the internal states, that describe the internal dynamics of
the system, stability has to be examined.

The linearized system for the states [z1, . . . , zδ]Tcan be written in the form

ż = Az + Bv

y = Cz
(4.10)

with the system matrix A, the input matrix B and the output matrix C.

4.2 Feedforward control

For feedforward control, the ideal input u to obtain the desired system behavior is
calculated by simulating the plant behaviour with the system model and the desired
trajectories y∗. No feedback from the physical plant is given to the controller. Con-
sequently no model-plant mismatch can be considered. The block diagram of the
feedforward controller is displayed in Figure 4.1.
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SYSTEM
Feedforward
Controller

u yrealy∗

Figure 4.1: Block diagram for feedforward control. The desired
output trajectories y∗ are given to the controller and the ideal input u is
calculated only by simulation. No feedback is given to the controller from
the real plant. Therefore model-plant mismatch can not be accounted
for.

4.3 Model predictive control with state estimation

The optimal input sequence for the finite controlled time horizon is found by an online
minimization of a cost function based on predictions obtained by a process model.
In general, model predictive control (MPC) leads to highly efficient control systems
and is therefore used in various industrial fields and applications. The needed theory
for the implementation of the MPC is given, a thorough definition can be found in
[29]. The MPC is designed for a linear, time-discrete system in the form

z(k + 1) = Adz(k) + Bdv(k)
y(k) = Cdz(k)

(4.11)

with the time-discrete state vector z(k) at time k, the system matrix Ad, the input
matrix Bd, the time-discrete input vector v(k) at time k and the output matrix
Cd. Consequently the linear, time-invariant system obtained with the method of
feedback linearization, must be discretized (subsection 4.3.1). The theory for the
MPC algorithm (subsection 4.3.2) is given. The constraints on the physical inputs u

must be mapped on the virtual inputs v (subsection 4.3.3). Furthermore, due to the
difficulty to obtain real time data with high time resolution of the outputs and the
states during the process, the basics of state estimation (subsection 4.3.4) are given.

4.3.1 Forward Euler method for discretizing continuous LTI
state space models

The feedback linearized continuous LTI state space models must be discretized. The
feedback linearized system consists of m integrator chains of length δi. Therefore the
forward Euler method for discretizing is chosen, where every complex variable s of
the Laplace-transformed continuous transfer function is replaced with z−1

Ts
with the

sampling time Ts and the complex variable z of the z-transform. Consequently, the
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linearized transfer function Gd is obtained from the continuous transfer function G

by

G = Yi(s)
Vi(s)

= 1
sδi

−→ Gd = Yi(z)
Vi(z) =

�
Ts

z − 1

�δi

=


Tsz−1

1 − z−1

�δi

(4.12)

with the Laplace transformed synthetic input Vi, the Laplace transformed output Yi.
If all δi = 1, then

(1 − z−1)Yi(z) = Tsz−1Vi(z) −→ yi(k + 1) = yi(k) + vi(k) (4.13)

and the time-discrete LTI system becomes
z1(k + 1)

...
zm(k + 1)

 = Im


zi(k)

...
zm(k)

 + Im


vi(k)

...
vm(k)




y1(k)
...

ym(k)

 = Im


zi(k)

...
zm(k)

 .

(4.14)

4.3.2 MPC algorithm and objective function

The algorithm chosen for the design and implementation of the MPC is general-
ized predictive control (GPC) in state-space formulation. For the MIMO system in
Equation 4.11 with m inputs, m outputs and n states can be transformed in the
augmented state space model�

∆z(k + 1)
y(k + 1)



=

�
Ad 0T

CdAd Im×m


 �
∆z(k)
y(k)



+

�
Bd

CdBd



∆v(k)

y(k) =
�
0 Im×m

	 �
∆z(k)
y(k)


 (4.15)

with the m × m identity matrix Im×m, the m × n zero matrix 0, the n × n system
matrix Ad, the n × m input matrix Bd and the m × n output matrix Cd. The
augmented state space model can be written in the form

z̃(k + 1) = Ãz̃(k) + B̃∆v(k)
y(k) = C̃z̃(k)

(4.16)

with the the augmented state vector z̃, the augmented system Ã, input B̃ and output
matrices C̃. By defining the output matrix

Y =
�
y(k + 1|k)T y(k + 2|k)T . . . y(k + Np|k)T

	T
(4.17)
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with the prediction horizon Np, and the synthetic input matrix

∆V =
�
∆v(k)T ∆v(k + 1)T . . . ∆v(k + Nc − 1)T

	T
(4.18)

with the control horizon Nc, one obtains

Y = F z̃(k) + Φ∆V (4.19)

with the MPC system matrix

F =
�
C̃Ã C̃Ã

2
. . . C̃Ã

Np
	T (4.20)

and the MPC input matrix

Φ =


C̃B̃ 0 0 . . . 0

C̃ÃB̃ C̃B̃ 0 . . . 0
... ... ... . . . ...

C̃Ã
Np−1

B̃ C̃Ã
Np−2

B̃ C̃Ã
Np−3

B̃ . . . C̃Ã
Np−Nc

B̃

 . (4.21)

The cost function
J =(Y ∗ − Y )TQy(Y ∗ − Y ) + ∆V TR∆V

=(Y ∗ − Y )TQy(Y ∗ − Y )
− 2∆V TΦTQy(Y ∗ − Y ) + ∆V T(ΦTQyΦ + R)∆V

(4.22)

with the output reference matrix Y ∗, the output weight matrix Qy and the input
weight matrix R, can be formulated. By deriving the cost function with respect to
∆V and setting it zero, the optimal input can be found by evaluating

∆V (Y ∗, Y ) = (ΦTQyΦ + R)−1ΦTQy(Y ∗ − Y ). (4.23)

4.3.3 Mapping of constraints

Possible constraints on the discrete system, such as

rate constraints ∆vmin ≤ ∆v ≤ ∆vmax,

input constraints vmin ≤ v ≤ vmax

and output constraints ymin ≤ y ≤ ymax,

must be identified and considered by the MPC. For constrained problems, the ob-
jective of the MPC is to minimize the cost function while fulfilling the implemented
inequalities leading to a quadratic programming problem. Constraints on the real
inputs, namely
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rate constraints ∆umin ≤ ∆u ≤ ∆umax

and input constraints umin ≤ u ≤ umax,

must be mapped on the synthetic inputs v so that the physical boundaries of the sys-
tem are considered. With Equation 4.8 and v(k) = v(k −1)+∆v(k), the constraints
on u can be expressed as constraints on ∆v(k). Consequently

max(0, D(x))umin + b(x) − v(k − 1) ≤ ∆v(k) ≤ min(0, D(x))umax + b(x) −
v(k − 1) and

max(0, D(x))∆umin + b(x) ≤ ∆v(k) ≤ min(0, D(x))∆umax + b(x)

must be fulfilled.

4.3.4 State estimation

For the suggested control of the process, the outputs y of the system as well as the
state vector x have to be known. However, all variables might not be measured
or measurable. Therefore, by using an observer, the missing measurements can be
estimated. The state estimator is implemented and designed independently of the
MPC.

For the design of an extended Luenberger observer, the observability matrix

Q(x) = [h1, . . . , Lm1−1
f h1, . . . , hm, . . . , Lmm−1

f hm]T (4.24)

with the observability indices �m
i=1 mi = n, must have rank n. Furthermore, the

model of the observer

˙̂x = f(ymeas, x̂, uk) + g(h−1(ymeas, uk) − x̂) (4.25)

with the measured part ymeas and the unmeasured part x̂ can be formulated. With
time, the estimation error shall approach zero, hence

lim
t→∞ |x̂ − x| = 0. (4.26)

4.3.5 Block diagram

The block diagram for the MPC with state estimation is displayed in Figure 4.2.
The control error e is the difference of the the desired output trajectories y∗ and the
measured or estimated output variables ŷ. The optimization solver tries to minimize
the objective function (Equation 4.22) by finding the optimal control sequence vk.
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Furthermore, the physical constraints on uk are considered by the nonlinear mapping
on the synthetic input vk. After transforming the optimized synthetic input vk into
the real input uk with the nonlinear transformation (Equation 4.8), the real inputs
uk can be applied to the physical plant. In the state estimator, the states and outputs
that are not measured are estimated.

cost function

optimization
solver

nonlinear
transformation

SYSTEM

constraints
mapping

state
estimation

y∗ e

ŷ

-

vk uk yreal

ymeasx̂

Figure 4.2: Block diagram for model predictive control. The
control error e is calculated as the difference of the desired output tra-
jectory y∗ and the measured or estimated output vector ŷ. The cost
function is minimized while simultaneously considering the constraints
of the system by the optimization solver. The resulting control sequence
of the synthetic input vk is transformed into the real input vector uk,
which is then applied to the plant. States and outputs that are not
measured are estimated in the state estimator.





Chapter 5

Control applied

The state space model

ẋ =



0
µcX

−qGcX

−qMcX

−qT cX


� �� �

f(x)

+



1 1 1 −1 −1
− cX

VR
− cX

VR
− cX

VR

cX

VR
0

cG,S−cG

VR

cG,B−cG

VR

−cG

VR
0 0

cM,S−cM

VR

cM,B−cM

VR

−cM

VR
0 0

− cT

VR
− cT

VR

cT,N −cT

VR
0 0


� �� �

g(x)



V̇S

V̇B

V̇N

V̇H

V̇BL


� �� �

u

y = h(x) = [VR, cX , µ, cM , cT ]T

(5.1)

with the state vector x = [VR, cX , cG, cM , cT ]T and the inputs u = [V̇S, V̇B, V̇N , V̇H , V̇BL]T
can be derived from the equations in chapter 3. With

the biomass specific glucose uptake qG = qG,max
cG

cG+KS,G
,

the biomass specific mannose uptake qM = qM,max
cM

cM +
KS,M
KS,G

cG+KS,M

,

the biomass specific growth rate µ = YX/GqG + YX/MqM

and the biomass specific nutrient uptake qT = µ
YX/T

the system is fully defined. With the theory given in chapter 4, the nonlinear, time
continuous system is feedback linearized and a feedforward controller and an MPC
with state estimation are designed.
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5.1 Feedback linearized model

Based on the theory given in section 4.1, the state space model is linearized. The
system has full relative degree δ = 5 = {1, 1, 1, 1, 1} and the decoupling matrix
becomes

D(x) = 1
VR



VR VR VR −VR −VR

−cX −cX −cX cX 0
∆M,Sa1 − ∆G,Sa2 ∆M,Ba1 − ∆G,Ba2 cGa2 − cMa1 0 0

∆M,S ∆M,B −cM 0 0
−cT −cT (cT,N − cT ) 0 0


(5.2)

with
a1 = YX/M

qM,max − qM

KS,M + cM + KS,M

KS,G
cG

a2 = KS,M

KS,G

YX/M
qM

KS,M + cM + KS,M

KS,G
cG

− YX/G
qG,max − qG

KS,G + cG

(5.3)

and
∆G,S = (cG,S − cG) ∆M,S = (cM,S − cM)
∆G,B = (cG,B − cG) ∆M,B = (cM,B − cM).

(5.4)

The external dynamics of the linearized system

ż =



0
µcX

(a2qG − a1qM)cX

−qMcX

−qT cX


� �� �

b(x)

+D(x)u
(5.5)

with the state vector z = y = [VR, cX , µ, cM , cT ]T are obtained. With the definition of
the synthetic input v = y = [V̇R, ċX , µ̇, ċM , ċT ]T, the input-output linearized system

ż = I5v

y = I5z
(5.6)

is obtained with the 5×5 identity matrix I5. The real inputs are obtained with

u = D−1(x)(v − b(x)). (5.7)
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5.2 Feedforward control

In analogy to the block diagram for feedforward control (Figure 4.1), the controller
is implemented with the feedback linearized model.

5.3 MPC with feedback linearization and state
estimation

The linearized system
ż = I5v

y = I5z
(5.8)

is discretized to
z(k + 1) = I5z(k) + I5v(k)

y(k) = I5z(k)
(5.9)

with Ts = 1h for which the MPC is implemented according to the given theory in
section 4.3. The constraints on the physical inputs u and the states z are formulated
(Table 5.1) with a control horizon Nc of five hours and a prediction horizon Np of ten
hours. For the MPC strategy, measurements or estimations of the reactor volume
VR, the biomass concentration cX , the biomass specific growth rate µ, the glucose
concentration cG, the mannose concentration cM and the nutrient concentration cT

are needed. Different measurements scenarios are examined.

By increasing the amount of estimated state variables, measurement expenses can be
reduced. Especially the concentrations of the liquid phase inside the reactor, namely
the biomass, glucose, mannose and nutrient concentration, can be difficult to mea-
sure with a sufficiently small sampling time. Depending on the experimental setup,
different measurement strategies and sampling times may be possible. The following
three measurement scenarios for the control of the process with MPC are examined,
whereas the measurement expenses decrease with increasing strategy number.

Measurement strategy MPC1. All states and outputs are directly measurable.
Although providing the most accurate information to the control algorithm, this
strategy has the highest measurement expenses. The measurement vector can be
written as

ymeas = [VR, cX , cG, cM , cT , µ, OUR, CER]. (5.10)
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Table 5.1: Implemented constraints on the inputs and the lin-
earized states. The constraints on the physical inputs and the lin-
earized states are formulated. Due to their definition and the experi-
mental setup, only positive values are valid.

Lower Bound Upper Bound
V̇S 0 0.5 L/h
V̇B 0 0.3 L/h
V̇T 0 0.3 L/h
V̇H 0 0.5 L/h
V̇BL 0 0.5 L/h
VR 0 5 L
cX 0 ∞ g/L
µ 0 0.3 g/L

cM 0 max(cM,S, cM,B) g/L
cT 0 cT,N g/L

Measurement strategy MPC2. The reactor volume, offgas signal and sugar
concentrations can be measured. The biomass concentration, the biomass specific
uptake and the nutrient concentration are estimated. The measurement vector can
be written as

ymeas = [VR, cG, cM , OUR, CER]. (5.11)

Measurement strategy MPC3. To minimize measurement expenses, only the
reactor volume and the offgas measurements are measured. The biomass, sugar and
nutrient concentration as well as the biomass specific uptake rate are estimated. The
measurement vector can be written as

ymeas = [VR, OUR, CER]. (5.12)



5.4. Implementation and integration into process control 33

5.4 Implementation and integration into process
control

The algorithms described are implemented in MATLAB 2020a to provide an indepen-
dent simulation environment. In this environment, the system behaviour, controller
performance and stability of the system can be examined (chapter 6). Furthermore
the process control strategy is implemented and integrated in the existing online data
processing tool in MATLAB 2020a. Via an OPC server, the measurements stored at
the process information management system (PIMS) are obtained. Then the data is
processed in MATLAB 2020a and the inputs for the next time steps are calculated.
The calculated inputs are then given back to the PIMS so that the pumps for the
feed can be adjusted accordingly. A more detailed explanation of the process control
structure can be found in chapter 2. The implemented control strategy is then used
for the conducted experiments in chapter 7.





Chapter 6

Simulations

By simulating the system behaviour in combination with the control algorithm, the
system and controller performance is examined. First, possible and beneficial set-
points for the continuous process are identified under the assumption of a perfect
model and constant feed concentrations (section 6.1). The resulting feed, harvest
and bleed rates are discussed. The influence of changing kinetic parameters, feed
concentrations and setpoitns are examined and visualized in section 6.2. The per-
formance of the feedforward controller for varying kinetics and feed concentration
deviations is examined (section 6.3). Furthermore the three different measuring and
state estimation scenarios for the MPC as well as the feedforward controller are
examined and analysed (section 6.4).

6.1 Setpoints, trajectory planning and
controllability

As shown in chapter 5, the control of the system with five different inputs enables the
control of five different outputs. However, due to the nonlinearities and the coupling
of the states, not all setpoints are beneficial and certain setpoint combinations may
not be feasible, for example very high sugar concentrations and small biomass growth
rates contradict each other. Furthermore, the choice of the state of operation is also
based on economical aspects during process design. The ratio of used SSL and
BALI™ is of special interest in the examined process as the investment costs can be
significantly reduced by minimizing BALI™ usage. Beneficial and feasible setpoints
have to be identified.
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Figure 6.1: Possible setpoint combinations for cM∗, µ∗ and cX∗.
Limited by V̇B = 0 L/h, V̇S = 0 L/h and the maximal possible biomass
growth rate µ, the feasibility plane for constant feed concentrations
and cT ∗ = 0.025 g/L is displayed, whereas cX∗ indicates the minimum
biomass setpoint, so that V̇H > 0 L/h. The chosen setpoint combination
for µ∗ and cM∗ is labeled. In subfigure (a) the whole plane is represented.
In subfigure (b) the region of interest is enlarged.

The feasibility analysis for possible setpoint combinations is done under the assump-
tion of a stable state and perfect model. By varying the setpoints against each other,
namely the reactor volume VR∗, the biomass concentration cX∗, the specific growth
rate µ∗, the mannose concentration cM∗ and the nutrient concentration cT ∗, and in-
serting in the control law (Equation 4.8), the feed, harvest and bleed rates in stable
state are obtained. Note that the setpoint of the reactor volume is independent of
the other setpoints and is solely a scaling factor. A setpoint combination is feasible
if all system inputs assume positive values. Further limitations, such as a maximal
dilution rate, a maximum flux thought the membrane module or maximal absolute
biomass growth per hour due to limitations of the cooling system, can be considered
for experimental design based on the characteristics of the experimental setup. In
Figure 6.1 possible setpoint combinations for cX∗, µ∗ and cM∗ are displayed for a
given setpoint cT ∗. The possible setpoint combinations are limited by V̇B and V̇S
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becoming zero and the general possible kinetic behaviour (maximal possible µ due
to model structure and parameters). The chosen setpoint combination for the subse-
quent simulations and studies is marked in Figure 6.1. The numerical values as well
as the resulting feed rates in stable state can be found in Table 6.1.

Table 6.1: Identified beneficial setpoint combination and cor-
responding feedrates.

y∗ Value u Value

VR∗ 4 L V̇S 170 mL/h
cX∗ 30 g/L V̇B 1 mL/h
µ∗ 0.025 1/h V̇T 25 mL/h

cM∗ 0.25 g/L V̇H 96 mL/h
cT ∗ 0.025 g/L V̇BL 100 mL/h

6.2 Influence of parameters, feed concentrations
and setpoints

The system behavior is described by the model structure and the kinetic parameters
and can be influenced by the feed, harvest and bleed rates as well as the concen-
trations in the feed. All these factors are coupled with each other. The influence
of changing kinetic parameters and feed concentrations as well as the impact of the
choice of the setpoints is examined. By varying the parameters to ±25% and ±10%
of their original value, their influence is displayed.

Influence of setpoints (Figure 6.2). Changing the setpoint for the reactor volume
VR∗ increases and decreases the inputs accordingly. However, the ratios between
the different feeds stay constant. A higher biomass setpoint leads to an increased
demand of sugars and nutrients. As the kinetics are biomass specific, the three feeds
increase. The bleed rate can be kept constant and the harvest rate must be changed
accordingly. The change in demand of sugars for varying µ∗ is mainly accounted for
by changing the BALI™ feedrate and consequently increasing glucose consumption.
Changes of cM∗ are realised by changing ratios of the SSL and BALI™ feed. Changes
of cT ∗ correspond to small changes in the inputs.
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Figure 6.2: Influence of setpoint choice on feed, harvest and
bleed rates. The relative influence of changing a single setpoint to ±
25% and ± 10% of its value in Table 6.1 on the feed, harvest and bleed
rates (SSL, BALI, NUTR, HARV and BLEED) is examined.

Influence of feed concentrations (Figure 6.3). Changes of the glucose concen-
trations in the SSL are accounted for by changes in the BALI™ feed. If the mannose
concentration in the SSL changes significantly, the BALI™ as well as the harvest rate
have to be adjusted so that the process can maintain the same setpoint. Changes of
the concentrations in BALI™ have less impact on the process, however to use BALI™
effectively, the glucose concentration in BALI™ is of high importance. Changes in
the nutrient solution mainly influence the addition of nutrients.
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Figure 6.3: Influence of feed concentrations on feed, harvest
and bleed rates. The influence of varying feed concentration (± 25%
and ± 10%) on the feed, harvest and bleed rates (SSL, BALI, NUTR,
HARV and BLEED) is examined.

Influence of kinetic parameters (Figure 6.4). Changing the kinetic parameters
for the glucose uptake (qG,max, KS,G) has little effect on the calculated ideal input
rates compared to the parameters for mannose uptake. With increased maximal
mannose uptake, the ratio between BALI™ and SSL becomes smaller, making the
process more economical. If the mannose uptake is decreased, more BALI™ must be
added to achieve the desired setpoints. Discrepancies of all yields have a significant
effect on the process and therefore must be determined precisely.
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Figure 6.4: Influence of kinetic parameters on feed, harvest and
bleed rates. The influence of changing kinetic parameters (± 25% and
± 10%) on the feed, harvest and bleed rates (SSL, BALI, NUTR, HARV
and BLEED) is examined.

6.3 Feedforward control

For feedforward control, the feed, harvest and bleed rates for the ideal controller (Ta-
ble 6.1) are applied to the system. The system behavior is simulated with deviating
parameters. A stable state for all simulations with the deflected system was reached.
However in general, the outputs of the system deviate from the chosen setpoints.
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Figure 6.5: Influence of feed concentrations on outputs for feed-
forward control. The influence of changing feed concentrations (±
25% and ± 10%) on the outputs for feedforward control is examined.

Influence of feed concentrations (Figure 6.5). VR and µ are not influenced
by changing feed concentrations. However, the concentrations in the reactor vary.
Especially the concentrations in the SSL are of special interest. Increasing sugar
concentrations lead to higher biomass concentrations. If the glucose concentration in
the SSL is increased, the higher biomass leads to more mannose consumption and the
mannose concentration in the reactor decreases. Higher mannose concentration in the
feed lead to higher mannose concentrations in the bioreactor due to accumulation.



42 Simulations

Figure 6.6: Influence of kinetic parameters on outputs for feed-
forward control. The influence of changing kinetic parameters (± 25%
and ± 10%) on the outputs for feedforward control is examined.

The nutrient concentration drops, if the biomass concentration increases as more
nutrients are consumed.

Influence of single parameters (Figure 6.6). VR and µ are not influenced by
changing kinetic parameters. Changing kinetics for the glucose uptake have little
impact on the system. Especially a decrease of the maximal mannose uptake qM,max

would lead to a significant accumulation of mannose. Decreasing yields lead to smaller
biomass concentration and therefore a smaller sugar demand. The mannose accumu-
lates.
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6.4 Comparison of measuring strategies for the
MPC

In order to estimate the control performance as well as the accuracy of the state
estimation under real conditions for the MPC measuring scenarios and the feedfor-
ward controller, the system behavior is simulated with deviating kinetic parameters
(multiplied with random normally distributed factors where µ = 1 and σ = 0.05). In
Table 6.2, the measurement and state estimation scenarios are summarized.

Table 6.2: Examined measurement and state estimation strate-
gies. For the different strategies, namely feedforward control (FF) and
MPC1, MPC2 and MPC3, different quantities are measured and pro-
cessed during the fermentation. While no feedback is given to the con-
trol algorithm for feedforward control, different signals are evaluated for
the MPC strategies.

VR cX cG cM cT µ OUR CER

FF × × × × × × × ×
MPC1 ■ ■ ■ ■ ■ ■ ■ ■
MPC2 ■ □ ■ ■ □ □ ■ ■
MPC3 ■ □ □ □ □ □ ■ ■

× unknown ■ measured □ estimated

In Figure 6.7 the results of five hundred simulations per strategy are shown. For
feedforward control (FF), the reactor volume VR and the biomass specific growth
rate µ can be controlled with little to no control error. However deviations from
the concentrations in the reactor, namely the biomass concentration cX , the man-
nose concentration cM and the nutrient concentration cT , are not measured and are
therefore not accounted for. Furthermore, since no feedback is given to the control
algorithm, other deviations and disturbances are not considered.

With minimal measurements as for MPC3 (VR, OUR and CER), the control errors
for the biomass concentration can be reduced significantly. Moreover, system dis-
turbances are detected and the control action can be adapted accordingly. However,
control errors for mannose and nutrient concentration are approximately the same for
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Figure 6.7: Performance of control strategies for deviating sys-
tem behavior. Deviating system behavior is simulated with deviat-
ing kinetic parameters, which are multiplied with random normally dis-
tributed factors (µ = 1 and σ = 0.05). The distribution of the obtained
outputs are presented for the five output variables as well as for the
implemented control strategies.

FF and MPC3. By including further measurements of the mannose concentration in
the reactor (MPC2), the control error for the mannose concentration can be reduced
significantly compared to MPC3. Measuring all state variables and output variables
(MPC1) leads to the smallest control errors. However, the measuring expenses are
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the highest. In Table 6.3 the root mean square errors (RMSE) for the estimation
and control errors are calculated.

Table 6.3: Results of simulation for Feedforward control and
MPC. The kinetic parameters of the system are deviated (with a nor-
mally distributed factor with µ = 1 and σ = 0.05). The results of
500 simulations per control strategies are quantified by the RMSE (root
mean square error) for the estimation and control performance.
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l)2 VR 0.0 0.1053 0.1178 0.2366
cX 1.125 0.6144 0.6853 1.0100
µ 0.0 0.0181 0.0162 0.0188

cM 0.1531 0.0275 0.0303 0.1172

cT 0.0080 0.0002 0.0051 0.0068

× no feedback to controller ■ measured variable





Chapter 7

Experiments

A first experimental run with feedforward control was carried out to test the real
system behaviour as well as the potential of the suggested control strategy at the
facilities of TU Wien - Institute of Chemical, Environmental and Bioscience Engi-
neering. The bioreactor and equipment is set up according to chapter 2. By adapting
the feed, harvest and bleed rates, the examined system shall be controlled so that a
stable state is reached. The five controlled variables, namely the reactor volume, the
biomass, mannose and nutrition concentration as well as the biomass specific growth
rate, shall be kept constant. The system behavior for varying sugar concentrations in
the SSL is examined by supplementing and dissolving additional sugars in the feed.
The different phases of the fermentation and the needed control actions are planned
and simulated in section 7.1. The measurements obtained from the experimental run
are plotted in section 7.2.

7.1 Experimental planning

The fermentation can be separated into four phases. The extended batch in the
first 48 hours of the process is started with one liter batch media. After 18 and 26
hours, additional media is added so that the reactor volume is doubled at each step.
The batch phase is followed by the deacellerostat and a stabilizing phase, where
the cell retention is started. The continuous phase is started subsequently. The
timeline of the different phases can be found in Table 7.1.

During the continuous phase, the SSL media is supplemented with additional glucose
and mannose in order to obtain an understanding on the process behaviour for varying
feed concentrations resulting in the concentration profile displayed in Figure 7.1.
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Table 7.1: Timeline of fermentation phases. The fermentation can
be separated into four phases. During the extended batch phase, the
deacellerostat and the stabilizing phase, media is added to the process
with predefined trajectories based on simulations to obtained the desired
system behavior. The procedure is analog for harvest and bleed rate.
During the continuous phase, the feed, harvest and bleed rates are set
dynamically.

Starting time of phase
after process start

Duration of phase

Extended Batch 0 hours 48 hours
Deacellerostat 48 hours 24 hours
Stabilizing phase 72 hours 18 hours
Continuous phase 90 hours ´200+ hours

Figure 7.1: Experimental planning - concentration profile of
SSL feed. During the continuous phase SSL is supplemented with glu-
cose and mannose to obtain varying concentrations during the process.
By adapting the feed, harvest and bleed rates, the process is kept in a
stable state.

In the first three phases of the process, the applied feed, harvest and bleed rates
are predefined. During the continuous phase, the rates are calculated by the con-
troller so that the desired setpoints of the outputs are reached. The expected system
behaviour is plotted in Figure 7.2 which is achieved by the predefined and calcu-
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Figure 7.2: Experimental planning - output trajectories for the
four experimental phases. The simulated system behaviour (black
line) for the different phases is displayed. During the batch, deaccelero-
stat and stabilizing phase the process is started up. A stable state with
the desired setpoints (dotted line) can be reached and maintained during
the continuous phase.

lated rates in Figure 7.3. Nutrients are added by an exponential trajectory for V̇N

during the batch phase. The transition from the extended batch phase, which is
characterised by high sugar concentrations, low biomass concentrations as well as
uncontrolled and maximal biomass specific growth rates, to the continuous phase
with low sugar concentrations, high biomass concentrations and controlled biomass
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Figure 7.3: Experimental planning - volumetric flows for the
four experimental phases. The predefined (batch, deaccelerostat,
stabilizing phase) and calculated (continuous phase) feed, harvest and
bleed rates are plotted. By varying rates during the continuous phase,
variations of the sugar concentrations in the SSL can be accounted for.

growth, is done by the deacellerostat and the stabilizing phase. SSL and nutrients
are added with predefined feed rates. After 72 hours, the stabilizing phase is started
and the cell retention is turned on. The biomass concentration increases further.
90 hours after inoculation, the continuous phase is started. Feed, bleed and harvest
rates are calculated by the control algorithm and send to the corresponding pumps.
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7.2 Results from experimental run

In the following, the results of the experiment controlled with the feedforward strat-
egy are presented, analyzed and discussed. The expected values from simulation and
measured data of the experimental run are compared. In Figure 7.4, the glucose and
mannose concentration profiles in the SSL can be seen. The expected and measured
courses are almost identically.

Figure 7.4: Experimental data - concentration profile of SSL
feed. The measured (red) concentration profiles for glucose and man-
nose in the SSL are almost identical to the planned (black) course.

The measurements of the reactor volume, the mannose concentration in the broth
and the OUR and CER are plotted in Figure 7.5. Clogging of harvest and bleed pipes
led to a considerable deviation of the reactor volume from the expected course. If
these can be eliminated, a constant reactor volume during the continuous phase can
be obtained. However, the measured mannose concentrations deviate considerably
from the simulated values, which is also reflected in the offgas signals, suggesting
considerable model-plant mismatch. Further parameter optimisation and the inclu-
sion of the consumption of other sugars present in the media could lead to a better
model and therefore to an improved process understanding. Nevertheless, OUR and
CER signals with small fluctuations around a constant level starting at 150 hours
suggest that the process transitioned to a stable and continuous phase.

Using the continuous measurements of the weights of the storage tanks for SSL, BALI,
nutrients, harvest and bleed as well as their densities, the feed, harvest and bleed
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Figure 7.5: Experimental data - output trajectories. The mea-
sured (red) and planned (black) signals are compared. (VR) Clogging of
the bleed pipes led to deviations from the reactor volume setpoint. (cM)
Significant deviations from the calculated course suggest considerable
model-plant mismatch. Small changes in the maximal mannose uptake
rate lead to significant accumulation of mannose in the broth as shown
in chapter 6. Further experiments for improved parameter fit should
be considered. (OUR, CER) Despite the considerable model-plant mis-
match, constant signals after 150 hours were obtained suggesting that
the process was in a continuous phase.

rates are calculated (Figure 7.6). Considerable differences from the desired rates can
be seen. The SSL feed was adjusted well. Due to the very low feed rates, the BALI™
feed could not be adjusted accurately. By using a pump for smaller pumping rates,
the addition of the BALI™ feed can be improved. The nutrient feed was added
with sufficient accuracy, especially in the continuous phase, as no limitation and
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Figure 7.6: Experimental data - volumetric flows. Significant
deviations from the planned (black) feed, harvest and bleed rates are
observed during the experimental run (red). SSL and nutrition feed was
added with sufficient accuracy. The very small feed rates of BALI™
were not added accurately. Due to sedimentation and clogging in the
harvest and bleed pipes, the rates dropped periodically.

immoderate precipitation was observed during the process. Problems with clogging
occurred both in the harvest and bleed pipes resulting in rates periodically close
to zero. Larger piping and periodic flushing should minimize sedimentation and
clogging. The proposed minimal changes are expected to resolve problems with
accuracy of feed addition and harvesting.
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Discussion

A new fermentation process for C. glutamicum with two independent alternative car-
bon sources including a MIMO model-based control strategy was established. The
valorization of two lignocellulosic waste streams from the paper and pulp industry
as secondary raw materials for bioprocessing was shown. Establishment of the pro-
cess can contribute to an overall circular economy by reducing waste and pollution.
However further research for both the process and the control strategy are needed to
ensure stable and economic processes.

C. glutamicum has shown its potential as expression host by consuming different
sugars available in the added carbon sources. Despite being not genetically modified
for improved mannose consumption, the used wild strain has shown promising re-
sults. The parameter analysis showed that for an increased maximal mannose uptake
qM,max, the harvest rates as well as time-space yield can be significantly increased.
Consequently, examination of strains with improved mannose consumption is of high
interest.

The challenge of varying concentrations in the complex and recycled media is tackled
by adding two different carbon sources with federates calculated by the model-based
control strategy. It was shown, that by using the method of feedback linearization,
changes in the media composition are compensated proactive and the process can
be maintained in a stable state. Due to the fact that SSL is added as the main
carbon source, changes in the SSL influence the process significantly. By developing
real-time analysis strategies for measuring the varying sugar concentration in the
feeds, the feeds, harvest and bleed rates can be adjusted by the obtained feedback
linearized control law.

In the feasibility study it was shown that due to the coupling of the states, the choice
of a single setpoint can not be done independently of the other setpoints. With
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the feasibility space that considers the chemical and physical limits of the system,
beneficial setpoint combinations can be identified. By adapting the setpoints for
the biomass concentration and the specific biomass growth rate, the ratio between
harvest and bleed rate can be adjusted. Adaptations of the setpoints for the specific
growth rate and the mannose concentrations changes the ratio of added SSL and
BALI™.

By simulating the system behavior with deviating process parameters, the examined
control strategies were compared. With increasing knowledge over the system, the
control errors were reduced. However, measurement expenses increase. Promising
results for the estimation of the biomass concentration, the specific biomass growth
rate and the nutrient concentration are obtained suggesting that the process can be
controlled with small control errors while minimizing measurement expenses. Due
to relatively large estimation errors for the mannose concentration as suggested for
MPC3, measurements of the mannose concentration in the broth is of interest for the
control action. However compared to the control errors for the mannose concentration
obtained by the experiment with feedforward control, a significant improvement with
MPC3 is expected.

Despite the promising results obtained both from simulation and the experimen-
tal run, considerable model-plant mismatch was observed. The kinetic parameters
from [2] were fitted to measurements from experiments with full defined medium
supplemented with SSL as sole carbon source. During the conducted experiment,
the culture was grown on pure diluted SSL utilizing existing amounts of vitamins
and trace elements present in the SSL from the pulp mill process to decrease media
costs and increase sustainability. Only compounds that were found to be not present
in sufficient quantities were added separately by the nutrient feed. Consequently,
further experiments for both parameter fitting and improvement of control strategy
are of interest. Including a kinetic description of additional components available
in the SSL and BALI™, such as acetate and xylose, could further improve process
understanding and control accuracy.

As shown in the first experimental run, the process was successfully controlled and
a continuous process was obtained with feedforward control. By including feedback
from the plant in the control algorithm further improvement of the process control
can be expected. For MPC1 with the highest measurement expenses, major adap-
tations of the experimental setup have to be performed and analytical methods for
online measurement of the biomass and nutrient concentration have to be established.
For MPC2, the measuring procedure for the glucose and mannose concentration in
the broth has to be automated to provide reliable feedback signals with constant
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sampling frequency. MPC3 can be implemented and tested for process control with
the current experimental setup as all measurement signals needed are taken with
sufficient sampling frequency.

However, significant improvements in process understanding and process control can
be expected through further steps in process monitoring, modelling, optimization
and automation. Improving the control algorithm for multi-rate measurement sig-
nals can further improve the control action and reduce the problem introduced due
to the omnipresent difficulties of measuring broth concentrations in bioprocessing.
As shown for the different measurement scenarios, including further information ob-
tained during the process improves process control and reduces control errors.

By simulating the system behavior in the different phases of the experiment with the
planned feedrates, it was possible to show, how the process must be controlled so
that a stable state can be reached. The combination of the four experimental phases,
namely the batch phase, the deaccelerostat, the stabilizing phase and the continuous
phase, showed, what different measures have to be taken in order to achieve a stable
and beneficial state of the process for the given experimental setup.





Chapter 9

Conclusion

In this thesis, a model-based control strategy for a multiple input, multiple output
system was developed and analysed. It was shown that the continuous bioprocess
with cell retention can be controlled and a stable state can be reached by adapting the
five input variables, namely the harvest rate, the bleed rate, a nutrient solution and
the two alternative carbon sources SSL and BALI™, two waste water streams from
the pulping industry. Recycling by- and waste products from established processes
as secondary raw materials a contribution to an overall circular economy by enabling
ecological and environmental friendly production processes is made. However, due
to the complex composition of the waste water streams, bioprocessing is challenging
and advanced control strategies are needed. By the method of feedback linearization
a control strategy was found, where all nonlinearities of the model are considered.
A stable state with constant volume and constant concentrations in the reactor was
reached and maintained. Varying concentrations in the feed were accounted for in a
proactive way by adaptation of the feed, harvest and bleed rates.

Despite the physical and biochemical limits of the process, the high flexibility and
potential of the control of the bioprocess was shown. Beneficial setpoint combinations
were identified in the feasibility study under the assumption of a perfect model.
The influence of changing kinetic parameters, feed concentrations and setpoints was
examined. For feedforward control, it was shown that for varying parameters a stable
state can be reached. The control action was further improved with the suggested
MPC. The influence of different measurement scenarios was examined.

The high potential of the suggested process and control strategy was shown by the
data obtained from the experimental run. However, significant model-plant mismatch
was observed. Additional experiments to improve the model structure and parameter
fit are needed. An improvement of the setup for further experiments was discussed.
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To summarize, the promising results from simulations and first experimental run,
a limited number of publications on the control of bioprocesses with multiple car-
bon sources, the overall demand for good process understanding, which is based on
model-based approaches, and possible positive effects on waste management and en-
vironment, ask for further studies regarding the suggested control strategy in order
to design an ecological, stable, resource efficient and overall beneficial process.



Appendix A

Mathematical definitions

Diffeomorphism

A diffeomorphism is an unambiguous function that is continuously differentiable and
whose inverse is also continuously differentiable, meaning

z = t(x) (A.1)

x = t−1(z) = t−1(t(x)). (A.2)

The inverse function t−1(x) exists, if the Jacobian matrix ∂t(x)
∂x

is non-singular.

Lie derivative

The derivative of a scalar function λ(x) along a vector field a(x) is defined by

Laλ = ∂(λ(x))
∂x

a(x) = gradT λ(x)a(x). (A.3)

Note that Rn → R. Furthermore, the following applies

L0
aλ = λ(x) (A.4)

and
Li

aλ = ∂(Li−1
a λ)

∂x
a(x). (A.5)
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