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Abstract

A geodetic datum describes the origin, orientation and scale of a station network, typi-
cally with respect to a reference frame. In the analysis process of Very Long Baseline
Interferometry (VLBI) observations, the introduction of a geodetic datum is inevitable for
the determination of precise reference frames and Earth orientation parameters (EOP). In
general, several methods of datum definition exist within the VLBI community, including
Helmert rendering and the no-net-translation/no-net-rotation (NNT/NNR) approach. While
the first introduces conditions with quasi-infinite weight, the NNT/NNR method can be
controlled by the selection of formal errors. Evaluations of the CONT17 legacy-1 campaign
and a longer time series of IVS 24-hour sessions show that the variance information (formal
errors) of the estimated terrestrial reference frames based on the different methods can differ
in the mm to almost cm range. Neglecting this issue could lead to potential issues when
combining or comparing solutions from different analysis centers.
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1 Introduction

Very Long Baseline Interferometry (VLBI) observations,
which are the difference in arrival time of signals from
extragalactic radio sources at radio telescopes on Earth,
enable the determination of precise terrestrial (TRF) and
celestial reference frames (CRF) as well as of Earth orienta-
tion parameters (EOP). Besides inter-technique combination,
which combines the advantages of all space-geodetic tech-
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niques, e.g., in the realization of the International Terrestrial
Reference Frame (ITRF; Altamimi et al. (2022)), VLBI-only
global solutions, both single analysis center and combined
multi analysis center combinations, are a necessary step
for internal quality control and data interpretation. Global
solutions are constructed from as many observing sessions
as possible. In the context of datum definition, it does not
matter whether the global solution is derived from data of
a single analysis center alone or by a combination of data
from several analysis centers, e.g., the combined solutions by
the International VLBI Service for Geodesy and Astrometry
(IVS). As an example for a single analysis center product,
the most recent VIE2023sx global solution provided by the
Vienna IVS analysis center (VIE) consists of over 7300
sessions and over 20 million observations (Kraśná et al.
2023).

For the construction of a global solution, datum-free nor-
mal equation systems (NEQs) are stacked. These are derived
from single-session analyses and are stored in solution inde-
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pendent exchange (SINEX) format. Typically parameters
that are time-dependent (e.g., clocks, atmospheric parame-
ters, EOP) are reduced session-wise, whereas global param-
eters, that are constant over several sessions, are kept in the
NEQ system. Subsequently, the NEQ of the sessions are
stacked, i.e., common parameters are added, forming one
global NEQ system. By the inversion of the global NEQ
system, the global parameters (e.g., station coordinates and
source positions) and their corresponding variance informa-
tion can be estimated.

However, since VLBI observations are relative and only
describe the network geometry (configuration) of a three-
dimensional VLBI station network with no origin or ori-
entation, the global NEQ is singular and hence not yet
invertible. The geodetic datum contains all the definitions
needed (three translations and three rotations) to locate this
stiff station network at an origin and with a specific orien-
tation by applying a Helmert transformation. Since VLBI
observations rely on the propagation of microwave signals
and consequently on the speed of light, no external infor-
mation on the seventh parameter of this three-dimensional
similarity transformation, the scale, is necessary. Note that
transformation does not, in this case, mean that the form of
the network is distorted since we only consider rigid transfor-
mations (Nothnagel 2023). Therefore, six datum constraints
are introduced in the adjustment process to compensate for
the degree of freedom of the VLBI NEQ and to make the
NEQ system regular and solvable (minimum constraints;
Sillard and Boucher (2001)). Hence, this process is often
referred to as the regularization of the NEQ. In the case of
determining a kinematic solution, the transformation model
is extended by the rates of the datum parameters, leading to
twelve necessary constraints.

Within the VLBI community, different methods of ter-
restrial datum realization exist, which will be presented in
Sect. 2. Differences between the methods lead to results
that are in general not identical and could lead to potential
issues when comparing results from different VLBI analysis
or combination centers. On the basis of two datasets (see
Sect. 3), TRFs are computed using different methods and are
compared in Sect. 4.

2 Terrestrial Datum Realization

It must be noted that the geodetic datum can be introduced in
multiple ways and referred to any reference frame. However,
in VLBI analysis, the datum is mostly applied using a con-
ventional reference frame (e.g., ITRF). Since the reference
frame is assumed to be accurate and only small changes
due to potential new and better observations and models are
expected, the vectorial residuals �x of the transformation

from the VLBI network frame x to the reference frame Qx
should generally be close to zero for most of the stations.
However, in the event of earthquakes occurring after an ITRF
release, these differences can become significantly large.

Furthermore, usually, a subset of stations is used to define
the datum (partial inner constraints; Blaha (1971); Dermanis
(1994)) which will be referred to as datum stations. These
stations should have a long observation history and are
chosen to provide relatively consistent global coverage. Note
that for the sake of simplicity, any usage of x in the following
Sects. 2.1 and 2.2 only refers to station positions and that the
NEQ solely carries information for determining these global
parameters. As already mentioned, when determining a kine-
matic reference frame, the transformation model is extended
by the rates of the datum parameters. The corresponding
equations can be found in Nothnagel (2023).

In general, there are two expressions used in the fol-
lowing, conditions strictly force the model onto the VLBI
configuration (they have quasi-infinite weight; see Sect. 2.1),
whereas constraints can be controlled by formal errors,
which are used to populate a covariance matrix for the gen-
eration of a regular NEQ system (see Sect. 2.2, Eqs. 8, 11).

2.1 Helmert Rendering

The Helmert similarity transformation is a widely used
approach to relate two frames by shifting along and rotat-
ing around the coordinates axis. The coordinates of the N
selected datum stations in the VLBI network frame x and the
coordinates in the reference frame Qx are related as follows
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Setting up these equations per datum station i and verti-
cally stacking them, B is the Jacobi matrix of the Helmert
parameters with dimensions 3N � 6. Finally, B is used to
render the datum-free normal equation matrix Nf ree , by
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the expansion of the NEQ system and forcing the Helmert
parameters to be zero (� = 0).
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The corresponding covariance matrix of the estimated
parameters is

Cx;HR D �
2N�1f ree (4)

with �2 being the a posteriori variance of unit weight. The
subscript HR denotes the method, Helmert rendering. This is
the classical way of adding conditions to the adjustment, also
known as Gauss-Markov model with restrictions/conditions.

2.2 NNT/NNR

A currently widely used approach includes the introduction
of no-net-translation (NNT) and no-net-rotation (NNR) con-
straints (see Eqs. 5 and 6 respectively) to N datum stations,
which are used to map a set of telescopes to a conventional
reference set. r represents the position vector in Cartesian
three-dimensional coordinates.

NX
iD1

�x D
NX
iD1

0
@
�xi
�yi
�zi

1
A D

0
@
0

0

0

1
A (5)

NX
iD1

.r ��x/ D
NX
iD1

0
@
0
@
Qxi
Qyi
Qzi

1
A �

0
@
�xi
�yi
�zi

1
A
1
A D

0
@
0

0

0

1
A (6)

By forming the partial derivatives of the translation and
rotation constraints, they can be combined into one compos-
ite constraint

NX
iD1

0
BBBBBB@

1 0 0

0 1 0

0 0 1

0 �Qzi Qyi
Qzi 0 � Qxi
� Qyi Qxi 0

1
CCCCCCA
�

0
@
�xi
�yi
�zi

1
A D 0 !

NX
iD1

BT ��x D 0

(7)

leading to the constraint matrix B with dimensions 3N � 6
which is a vertically concatenated matrix of the individual Bi
values and is used to resolve the rank defect of the datum-
free normal equation matrix Nf ree . When comparing the
condition/constraint matrices from Eq. 2 (Helmert rendering)
and Eq. 7 (NNT/NNR), it can be noted that they are identical
and should lead to the same results. However, as stated in
the beginning, in comparison to the Helmert rendering, it
is possible to incorporate formal errors for the constraints.
Hence, a covariance matrix † with dimensions 6 � 6, which

specifies the impact of datum constraints on the solution, is
applied to generate a regular normal equation matrix forming
the datum matrix NB , whereas the right-hand side vector of
the datum bB is zero:

NB D B†�1BT : (8)

The datum matrix can also be determined in another
way by forming the solution equation for the transformation
parameters �

� D .BTB/�1BT�x (9)

and imposing the constraints by

0 D H�x (10)

which leads to a new constraint matrix H D .BTB/�1BT

with the dimensions 6� 3N which can be again used to gen-
erate a weighted regular datum matrix using the covariance
matrix †:

NH D HT†�1H: (11)

In both cases, so-called pseudo-observations are intro-
duced and new regular NEQ systems are compiled (Eq. 12).
Numerically, these two approaches should lead to the same
results (Kotsakis 2012), however, the implementation of
Eq. 11 is preferred due to better numerical stability. The
NEQ systems of the pseudo-observations are then added to
the NEQ of the real VLBI observations:

N D Nf ree C NB=H : (12)

As further shown in Kotsakis (2012), the estimated param-
eters of the minimal constrained NEQ system are indepen-
dent of the introduced covariance matrix from a mathemati-
cal point of view. However, the covariance matrix of the final
NEQ system shows a dependency (see Eq. 13).

Cx;B=H D �
2.Nf ree C NB=H /

�1Nf ree.Nf ree C NB=H /
�1

(13)

For more details, see Kotsakis (2012, 2013). Nevertheless,
in the case of an over-constrained NEQ system, the choice of
† has an impact on the estimated parameters (Kotsakis and
Chatzinikos 2017).

To summarize, there are three possible approaches to
introduce a terrestrial geodetic datum. For obvious reasons,
we exclude the 3-2-1 method where six coordinate compo-
nents of three stations are simply fixed to their a priori value
(Nothnagel 2023). First, by enlarging the datum-free normal
equation matrix system with conditions (Helmert rendering,
see Eq. 3) or second, by adding the squared and weighted
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constraint matrix B (NNT/NNR, see Eq. 8) to the singular
NEQ system or third, by using the discussed H (NNT/NNR,
see Eq. 11).

3 Data

In the following, VLBI-only TRFs using the three different
terrestrial datum realization methods are estimated based on
two datasets:
– dataset #1: 24-hour sessions (1108 sessions, 66 stations,

time frame: January 01 2015–December 31 2020)
– dataset #2: CONT17 legacy-1 sessions (15 sessions, 14

stations, time frame: November 28–December 12 2017)
(Behrend et al. 2020)

Hence, the differences caused by the different datum meth-
ods imposed on a VLBI network over a short time frame
can be compared to a combination of many global sessions
over a longer time period. Furthermore, due to the longer
time frame of dataset #1, station velocities are estimated
using the transformation model extended by the rates of
the datum parameters (Nothnagel 2023). It has to be stated
here again, that typically, global solutions combine the data
of thousands of VLBI sessions, however, the combination
process is computationally expensive and the focus of the
study is on highlighting the differences of the datum methods
on the TRF determination rather than calculating highly
precise reference frames. Thus, only the differences between
the estimated station positions dx and their formal errors
mx as well as between the estimated station velocities dvx
and their formal errors mvx (in the case of dataset #1) are
displayed in Sect. 4.

In this study, the list of datum stations is taken from
the most recent VIE solution (Kraśná et al. 2023) in the
case of both datasets. In Fig. 1, the station network of both
experiments is displayed. The most recent ITRS realization,
ITRF2020 (Altamimi et al. 2022), is selected as the a priori
reference frame in the process of regularization and potential
station position discontinuities have been adopted. Source
positions are fixed to their ICRF3 position (Charlot et al.

Fig. 1 Station networks of dataset #1 (green) and dataset #2 (orange).
Datum stations are represented as diamonds, reduced stations as pen-
tagons and remaining stations as circles. If a station occurs in both
networks, the marker is split in two

2020). Furthermore, EOP, clocks and atmospheric param-
eters as well as baseline-dependent clock offsets (Krásná
et al. 2021) are reduced session-wise. In general, by using the
same input data for all solutions, the analysis directly shows
the impact of the different datum realization methods on the
TRF determination.

4 Results

Since Helmert rendering is the strictest approach through
application of conditions and since we routinely use this
method in our VLBI single-session and multi-session anal-
ysis at VIE with the Vienna VLBI and Satellite Software
(VieVS) (Böhm et al. 2018), these solutions are chosen
as a reference and are compared to the two NNT/NNR
approaches in the following.

In Figs. 2 and 3 the reference solution is compared to the
NNT/NNR approach using the datum matrix from Eq. 8 and
in Figs. 4 and 5 it is compared to the NNT/NNR method
using the H from Eq. 11. As already mentioned, due to
the differences in the magnitude of the elements of B and
H, different formal errors must be introduced to achieve a
comparable strength of datum realization. Therefore, a for-
mal error of 10 mm has been incorporated in the NNT/NNR
method using B and 1 mm when using H. When considering
the rates of datum parameters, formal errors of 10 mm/yr
and 1 mm/yr are introduced respectively. In both cases, the
resulting differences of dataset #1 are displayed on the left
and those of dataset #2 on the right of the following figures.
No station velocities are estimated for dataset #2. Stations
marked with a star are used to define the datum in the global
adjustment.

As expected, no differences are visible in the estimated
corrections to the a priori values shown in Fig. 2. Differences
only show up in the formal errors of the coordinate com-
ponents. Figure 3 shows comparable results with regard to
the impact of the datum realization methods on the estimated
station velocities and their formal errors. In general, the
southern VLBI stations of dataset #1 show significantly
larger differences in formal errors mx and mvx, which
may indicate that the selection of stations contributing to
the datum realization is not optimal for the stations in the
southern hemisphere, which is a well-known issue within the
VLBI community.

When comparing the second NNT/NNR approach (see
Figs. 4 and 5) with the reference solution, again no dif-
ferences in the estimated corrections to the a priori values
are visible. However, in this case, the formal errors mx
and mvx are more uniform than in Figs. 2 and 3. This
method seems to provide greater stability across all stations,
which appears reasonable, as this method exhibits greater
numerical stability. In general, by introducing tighter con-
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Fig. 2 Heatmap of differences in station coordinates dx and formal
errors mx comparing the NNT/NNR approach using the B matrix and a
formal error of 10 mm with the reference solution (Helmert rendering).

The left column shows the results of dataset #1 and the right column of
dataset #2. Stations marked with a star are datum stations. The repeated
listing of stations is due to discontinuities where each occurrence relates
to a different interval

Fig. 3 Heatmap of differences in station velocities dvx and formal
errors mvx comparing the NNT/NNR approach using the B matrix
and a formal error of 10 mm/yr with the reference solution (Helmert

rendering). The left column shows the results of dataset #1. No station
velocities are estimated for dataset #2. Stations marked with a star are
datum stations. The repeated listing of stations is due to discontinuities
where each occurrence relates to a different interval

straints and therefore respectively increasing the weight of
the constraints, the formal errors of the NNT/NNR method
can be further decreased.

To sum up, the influence of the datum realization methods
on the TRF solution depends on the selection of datum sta-
tions and the formal error chosen in the NNT/NNR approach.
However, the covariance matrix of the constraints only influ-
ences the covariance matrix of the estimated parameters, and
therefore their formal errors, and not the values themselves.
Tighter constraints push the results towards those of the
strict Helmert rendering conditions. The dependency of the

formal errors of the estimated parameters in the case of
minimal constraints on the chosen method and introduced
formal errors makes the comparison of solutions a potential
problem and demonstrates the importance of transparency in
the VLBI community. To show the influence of the chosen
formal error, the maximum absolute differences of the formal
errors mx and mvx using the H matrix are presented in
Table 1 which emphasizes that reducing the formal errors
of the constraints pushes the results towards those of the
Helmert rendering conditions.
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Fig. 4 Heatmap of differences in station coordinates dx and formal
errors mx comparing the NNT/NNR approach using the H matrix and
a formal error of 1 mm with the reference solution (Helmert rendering).

The left column shows the results of dataset #1 and the right column of
dataset #2. Stations marked with a star are datum stations. The repeated
listing of stations is due to discontinuities where each occurrence relates
to a different interval

Fig. 5 Heatmap of differences in station velocities dvx and formal
errors mvx comparing the NNT/NNR approach using the H matrix
and a formal error of 1 mm/yr with the reference solution (Helmert

rendering). The left column shows the results of dataset #1. No station
velocities are estimated for dataset #2. Stations marked with a star are
datum stations. The repeated listing of stations is due to discontinuities
where each occurrence relates to a different interval

Table 1 Maximum absolute differences in the formal errors mx and
mvx comparing the NNT/NNR approach using the H matrix and
different formal errors for the datum constraints (values and rates) with
the reference solution (Helmert rendering) given in mm. No station
velocities are estimated for dataset #2

Dataset #1 Dataset #2
Formal error mx mvx mx mvx
1 mm 1 mm/yr 6.9 7.6 1.8 –
0.1 mm 0.1 mm/yr 0.3 0.5 0.1 –

5 Conclusion

The introduction of a geodetic datum is inevitable when
analyzing VLBI sessions. Different methods of datum real-
ization do not lead to significant differences in the com-
puted TRFs when introducing minimal constraints. These
findings are in agreement with the theoretical investigation
by Kotsakis (2012). For both datasets, large differences in
the formal errors of the estimated parameters of almost up
to one cm between the methods can be seen when using
a formal error of 10 mm (10 mm/yr) in the case of B
and respectively 1 mm (1 mm/yr) in the case of H. This
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indicates that tighter constraints need to be imposed in the
NNT/NNR approach to achieve the same effect as when the
Helmert rendering is performed. In general, the NNT/NNR
method utilizing H is always preferable to using B. It not
only demonstrated superior stability across all stations in
the current investigation but is also considered more stable
numerically. However, until now it is not reported by VLBI
analysis centers which method and whether formal errors
are applied to the datum constraints. This study aims to
demonstrate the importance of transparency in the VLBI
community, as comparing solutions, especially their variance
information, can be problematic due to the use of different
methods.
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Kraśná H, Baldreich L, Böhm J, et al (2023) VLBI celestial and
terrestrial reference frames VIE2022b. Astron Astrophys 679:A53.
https://doi.org/10.1051/0004-6361/202245434

Nothnagel A (2023) Elements of geodetic and astrometric very
long baseline interferometry. Tech. rep., Technische Universität
Wien, Austria. https://www.vlbi.at/data/publications/Nothnagel_
Elements_of_VLBI.pdf

Sillard P, Boucher C (2001) A review of algebraic constraints in
terrestrial reference frame datum definition. J Geodesy 75:63–73.
https://doi.org/10.1007/s001900100166

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

https://ivscc.gsfc.nasa.gov/program/cont17/
https://doi.org/10.5194/egusphere-egu22-3958
https://doi.org/10.1007/s00190-020-01436-x
https://doi.org/10.1007/s00190-020-01436-x
https://doi.org/10.1088/1538-3873/aaa22b
https://doi.org/10.1051/0004-6361/202038368
https://doi.org/10.1051/0004-6361/202038368
https://doi.org/10.1016/0924-2716(94)90053-1
https://doi.org/10.1016/0924-2716(94)90053-1
https://doi.org/10.1007/s00190-012-0555-6
https://doi.org/10.1007/s00190-013-0637-0
https://doi.org/10.1007/s00190-013-0637-0
https://doi.org/10.1007/s00190-016-0989-3
https://doi.org/10.1007/s00190-021-01579-5
https://doi.org/10.1007/s00190-021-01579-5
https://doi.org/10.1051/0004-6361/202245434
https://www.vlbi.at/data/publications/Nothnagel_Elements_of_VLBI.pdf
https://www.vlbi.at/data/publications/Nothnagel_Elements_of_VLBI.pdf
https://doi.org/10.1007/s001900100166
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Terrestrial Datum Definition Methods in VLBI Global Solutions
	1 Introduction
	2 Terrestrial Datum Realization
	2.1 Helmert Rendering
	2.2 NNT/NNR

	3 Data
	4 Results
	5 Conclusion
	References


