Finite-volume approximation of cross-diffusion systems for tumor growth

Sara Xhahysa ongoing work with Ansgar Jüngel

Model

We present an implicit Euler finite volume scheme for the mechanical tumor growth model proposed by Jackson and Byrne in [1], which is a system of nonlinear cross-diffusion equations for the volume fractions of tumor cells, u_1 , and the extracellular matrix, u_2 , written in terms of $u = (u_1, u_2)^T$:

 $\partial_t u - \nabla \cdot (A(u)\nabla u) = f(u) \quad \text{in } \Omega, \quad t > 0.$ (1)

Here $\Omega = (0, 1)^2$, the diffusion matrix A is given by

 $A(u_1, u_2) = \begin{pmatrix} 2u_1(1 - u_1) - \beta \theta u_1 u_2^2 & -2\beta u_1 u_2(1 + \theta u_1) \end{pmatrix}$

Existence of Discrete Solutions

Theorem 1: [Jüngel - Xh., Work in Progress 2024] There exists a solution $u^k = (u_1^k, u_2^k)$ with

$$u_i^k \in \mathcal{H}_{\mathcal{T}} = \left\{ v : \Omega \to \mathbb{R} : \exists (v_K)_{K \in \mathcal{T}} \subset \mathbb{R}^2, v(x) = \sum_{K \in \mathcal{T}} v_K \mathbf{1}_K(x) \right\}$$

to the finite volume scheme, satisfying $u_{i,K}^k \ge 0$ for all $K \in \mathcal{T}$, $k \ge 1$, and i = 1, 2.

Outline of proof.

$$\prod_{n=1}^{n} (u_1, u_2) = \left(-2u_1u_2 + \beta\theta(1-u_2)u_2^2 - 2\beta u_2(1-u_2)(1+\theta u_1) \right),$$

and the reaction term

$$f(u_1, u_2) = \begin{pmatrix} \gamma u_1(1 - u_1 - u_2) - \lambda u_1 \\ \alpha u_1 u_2(1 - u_1 - u_2) \end{pmatrix}.$$

The equations are subjected to Neumann boundary and initial conditions

 $(A(u)\nabla u)\cdot\nu = 0$ on $\partial\Omega$, t > 0, $u(0) = u^0$ in Ω . (2)

The nonnegative parameters describe:

- γ : water fraction rate;
- α : ECM production rate;

• λ : tumor cell death rate;

• β, θ : pressure coefficients.

Discrete Boundedness-by-Entropy Method

The entropy of the model is defined by

$$H(u) = \int_{\Omega} h(u) dx = \int_{\Omega} \sum_{i=0}^{2} u_i (\log u_i - 1),$$

where h(u) is the entropy density, as in [2]. In order to apply the Discrete Boundedness-by-Entropy Method the inequality After adding artificial diffusion, (3) is satisfied with s = 1/2 and we can apply the Discrete Boundedness-by-Entropy Method. Additionally, we obtain a discrete entropy inequality:

 $(1 - C_f \Delta t) H[u^k] + c_A \Delta t \sum_{i=1}^n \sum_{\sigma \in \mathcal{E}} \tau_\sigma (D_\sigma u_i^k)^2 \le H[u^{k-1}] + C_f \Delta t.$ (4)

Convergence of the Scheme

Theorem 2: [Jüngel - Xh., Work in Progress 2024]

Let $(\mathcal{D}_m)_{m \in \mathbb{N}}$ be a family of admissible meshes and let $(u_m)_{m \in \mathbb{N}}$ be a family of finite-volume solutions to scheme constructed in **Theorem 1**. Then there exists a function

 $u = (u_1, u_2) \in L^2(0, T; H^1(\Omega; \mathbb{R}^2)),$

satisfying $u(x,t) \in \overline{\mathcal{O}}$ for a.e. $(x,t) \in \Omega_T$, where $\mathcal{O} := \{u = (u_1, u_2) \in (0,1)^2 : \sum_{i=1}^2 u_i < 1\}$ is an open simplex, such that, up to a subsequence,

$$z^{\top}h''(u)A(u)z \ge c_A \sum_{i=1}^n u_i^{2(s-1)} z_i^2$$
(3)

should be satisfied, for some $0 < c_A$ and 0 < s < 1. However the matrix $A(u_1, u_2)$ only fulfills (3) for s = 1, see [2].

This can be overcome by adding an artificial diffusion term of the form $\delta \Delta u_i$ with $\delta > 0$ in both equations. Then (3) is satisfied with s = 1/2 and, formally,

$$\frac{dH}{dt} \ge \sum_{i=1}^{2} c \int_{\Omega} |\nabla u|^2 + \delta |\nabla \sqrt{u}|^2 + f(u) \cdot h'(u).$$

Numerical Scheme

The implicit Euler finite-volume scheme is given by

$$\mathrm{m}(K)\frac{u_{i,K}^{k}-u_{i,K}^{k-1}}{\Delta t} + \sum_{\sigma\in\mathcal{E}_{K}}\mathcal{F}_{i,K,\sigma}^{\delta} = \mathrm{m}(K)f_{i}\left(u_{K}^{k}\right),$$

where the fluxes \mathcal{F}^{δ}_{i} are defined as

 $u_{i,m} \rightarrow u_i$ strongly in $L^p(\Omega_T)$, $1 \le p < \infty$,

 $\nabla^m u_{i,m} \rightharpoonup \nabla u_i \quad \text{weakly in } L^2(\Omega_T),$

for $m \to \infty$ as well as i = 1, 2 and u is a weak solution to (1) and (2).

Outline of proof.

We deduce uniform estimates from the entropy inequality (4) and the compactness result from [3], giving a.e. convergence of a subsequence of (u_m) . In the final step, we show that the limit satisfies (1) in the weak sense, i.e.

$$\int_0^T \int_\Omega u_i \partial_t \psi_i \, \mathrm{d}x \, \mathrm{d}t + \int_\Omega u_i^0 \psi_i(0) \mathrm{d}x = \int_0^T \int_\Omega \sum_{j=1}^2 (A_{ij}(u) + \delta u_j) \nabla u_j \cdot \nabla \psi_i \, \mathrm{d}x \\ + \int_0^T \int_\Omega f_i(u) \psi_i \, \mathrm{d}x \, \mathrm{d}t$$

holds for all $\psi_i \in C_0^{\infty}(\Omega \times [0,T))$ and i = 1, 2.

Further Topics

• Numerical Simulations;

$$\mathcal{F}_{i,K,\sigma}^{\delta} = -\sum_{j=1}^{n} \tau_{\sigma} (A_{ij}(u_{\sigma}^{k}) + \delta u_{j}^{k}) \mathcal{D}_{K,\sigma} u_{j}^{k} \quad \text{for } K \in \mathcal{T}, \sigma \in \mathcal{E}_{K}$$

and \mathcal{T} is a family of open polygonal control volumes, \mathcal{E}_K is the set of edges of K. Moreover τ_{σ} is the transmissibility coefficient and $D_{K,\sigma}v := v_{K,\sigma} - v_K$.

- Uniqueness of Discrete Solution: via the Relative Entropy Method;
- Stability Analysis for system without artificial diffusion: the approach allows for the examination of the stability of equilibrium solutions by analyzing the eigenvalues of the linearized matrix A(u).

References

- [1] T. Jackson and H. Byrne, A mechanical model of tumor encapsulation and transcapsular spread, Math. Biosci. 180, 2002
- [2] A. Jüngel, A. Zurek, A discrete boundedness-by-entropy method for finite-volume approximations of cross-diffusion systems, IMA Journal of Numerical Analysis (2021) 43, 560–589.
- [3] T. Gallouët, J.-C. Latché, *Compactness of discrete approximate solutions to parabolic PDEs—application to a turbulence model,* Commun. Pure Appl. Anal., 2012.

CONTACT

Sara Xhahysa TU Wien Institute of Analysis and Scientific Computing

sara.xhahysa@asc.tuwien.ac.at