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Model

We present an implicit Euler finite volume scheme for the mechanical tumor
growth model proposed by Jackson and Byrne in [1], which is a system of
nonlinear cross-diffusion equations for the volume fractions of tumor cells, u1,
and the extracellular matrix, uo, written in terms of v = (uq, us)?:

ou — V-(A(u)Vu) = f(u)

nQ, t>0. (1)

Here 2 = (0,1)?, the diffusion matrix A is given by
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The equations are subjected to Neumann boundary and initial conditions

(A(w)Vu)r =0 ondQ, t >0, u(0)=u" inQ. (2)

The nonnegative parameters describe:

 ~: water fraction rate; * . ECM production rate;

* \:tumor cell death rate; * 3,0 pressure coefficients.

Discrete Boundedness-by-Entropy Method
The entropy of the model is defined by

H (1) = /Q h(w)da = /Q ﬁ;u (logu; — 1),

where h(u) is the entropy density, as in [2].
In order to apply the Discrete Boundedness-by-Entropy Method the inequality

2 W (u)A(u)z > cqa Z u?(s_l)z? (3)

1=1

should be satisfied, for some 0 < ¢4 and 0 < s < 1. However the matrix
A(uq,us) only fulfills (3) for s = 1, see [2].

This can be overcome by adding an artificial diffusion term of the form 0Auw;
with & > 0 in both equations. Then (3) is satisfied with s = 1/2 and, formally,

The implicit Euler finite-volume scheme is given by
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where the fluxes 7, . , are defined as

for K € T,0 € &k,

}-Z'CS,K,J - = ZTJ(Aij (ug) + 5“§)DK,0“§
j=1

and 7 is a family of open polygonal control volumes, £ is the set of edges of
K. Moreover 7, Is the transmissibility coefficient and D ,v := vk » — VK.
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Existence of Discrete Solutions

Theorem 1: [Jingel - Xh., Work in Progress 2024]

There exists a solution u* = (uf, u%) with

uy € Hr = {v Q= R: I (k) ger C R v(2) :Z UKlK(:(:)}
KeT

to the finite volume scheme, satisfying u; ,, > O forall K € 7, k > 1, and

i=1,2.

Qutline of proof.

After adding artificial diffusion, (3) is satisfied with s = 1/2 and we can apply
the Discrete Boundedness-by-Entropy Method.

Additionally, we obtain a discrete entropy inequality:

(1 —CyAt) Hu"] + cAAtZ Z To(Douf)? < Hu" '+ CrAt.  (4)

1=1 c€E

Convergence of the Scheme

Theorem 2: [Jingel - Xh., Work in Progress 2024]

Let (D), b€ a family of admissible meshes and let (u., ), o
of finite-volume solutions to scheme constructed in Theorem 1.
Then there exists a function

be a family

u = (u1,uz) € L* (0, T; H (;R?)),
satisfying u(x,t) € O for a.e. (z,t) € Qr,
where O = {u = (ul,u2) e (0,1)%: Z?Zl Ui < 1} IS an open simplex, such

that, up to a subsequence,

Ui m — Ui strongly in L? (Qr), 1 <p < o0,

V™ Ui m — Vu; weaklyin L (Qr),
form — occaswellas: = 1,2 and u Is a weak solution to (1) and (2).

Outline of proof.

We deduce uniform estimates from the entropy inequality (4) and the com-
pactness result from [3], giving a.e. convergence of a subsequence of (u,, ).
In the final step, we show that the limit satisfies (1) in the weak sense, i.e.

T o o9
/0 /QUiatwi do dt + /Q u,; Y;(0)dz = /0 /{2;(14@] (u) + 6u;)Vu;-Vip; do

T

holds for all v; € C3° (€2 x [0,T")) and i = 1, 2.

Further Topics

* Numerical Simulations;
» Uniqueness of Discrete Solution: via the Relative Entropy Method,;

 Stability Analysis for system without artificial diffusion: the approach al-
lows for the examination of the stability of equilibrium solutions by ana-
lyzing the eigenvalues of the linearized matrix A(u).
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