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Model
We present an implicit Euler finite volume scheme for the mechanical tumor
growth model proposed by Jackson and Byrne in [1], which is a system of
nonlinear cross-diffusion equations for the volume fractions of tumor cells, u1,
and the extracellular matrix, u2, written in terms of u = (u1, u2)

T :

∂tu−∇·(A(u)∇u) = f(u) in Ω, t > 0. (1)

Here Ω = (0, 1)2, the diffusion matrix A is given by

A(u1, u2) =

(
2u1(1− u1)− βθu1u

2
2 −2βu1u2(1 + θu1)

−2u1u2 + βθ(1− u2)u
2
2 2βu2(1− u2)(1 + θu1)

)
,

and the reaction term

f(u1, u2) =

(
γu1(1− u1 − u2)− λu1
αu1u2(1− u1 − u2)

)
.

The equations are subjected to Neumann boundary and initial conditions

(A(u)∇u)·ν = 0 on ∂Ω, t > 0, u(0) = u0 in Ω. (2)

The nonnegative parameters describe:

• γ: water fraction rate;

• λ: tumor cell death rate;

• α: ECM production rate;

• β, θ: pressure coefficients.

Discrete Boundedness-by-Entropy Method
The entropy of the model is defined by

H(u) =

∫
Ω

h(u)dx =

∫
Ω

2∑
i=0

ui (log ui − 1) ,

where h(u) is the entropy density, as in [2].
In order to apply the Discrete Boundedness-by-Entropy Method the inequality

z⊤h′′(u)A(u)z ≥ cA

n∑
i=1

u
2(s−1)
i z2i (3)

should be satisfied, for some 0 < cA and 0 < s < 1. However the matrix
A(u1, u2) only fulfills (3) for s = 1, see [2].
This can be overcome by adding an artificial diffusion term of the form δ∆ui
with δ > 0 in both equations. Then (3) is satisfied with s = 1/2 and, formally,

dH

dt
≥

2∑
i=1

c

∫
Ω

|∇u|2 + δ|∇
√
u|2 + f(u) · h′(u).

Numerical Scheme
The implicit Euler finite-volume scheme is given by

m(K)
uki,K − uk−1

i,K

∆t
+

∑
σ∈EK

Fδ
i,K,σ = m(K)fi

(
ukK

)
,

where the fluxes Fδ
i,K,σ are defined as

Fδ
i,K,σ = −

n∑
j=1

τσ(Aij(u
k
σ) + δukj )DK,σu

k
j for K ∈ T , σ ∈ EK ,

and T is a family of open polygonal control volumes, EK is the set of edges of
K. Moreover τσ is the transmissibility coefficient and DK,σv := vK,σ − vK .

Existence of Discrete Solutions
Theorem 1: [Jüngel - Xh., Work in Progress 2024]

There exists a solution uk =
(
uk1 , u

k
2

)
with

uki ∈ HT =
{
v : Ω → R : ∃ (vK)K∈T ⊂ R2, v(x) =

∑
K∈T

vK1K(x)
}

to the finite volume scheme, satisfying uki,K ≥ 0 for all K ∈ T , k ≥ 1, and
i = 1, 2.

Outline of proof.
After adding artificial diffusion, (3) is satisfied with s = 1/2 and we can apply
the Discrete Boundedness-by-Entropy Method.
Additionally, we obtain a discrete entropy inequality:

(1− Cf∆t)H[uk] + cA∆t

n∑
i=1

∑
σ∈E

τσ(Dσu
k
i )

2 ≤ H[uk−1] + Cf∆t. (4)

Convergence of the Scheme
Theorem 2: [Jüngel - Xh., Work in Progress 2024]

Let (Dm)m∈N be a family of admissible meshes and let (um)m∈N be a family
of finite-volume solutions to scheme constructed in Theorem 1.
Then there exists a function

u = (u1, u2) ∈ L2
(
0, T ;H1(Ω;R2

)
),

satisfying u(x, t) ∈ O for a.e. (x, t) ∈ ΩT ,

where O := {u =
(
u1, u2) ∈ (0, 1)2 :

∑2
i=1 ui < 1

}
is an open simplex, such

that, up to a subsequence,

ui,m → ui strongly in Lp (ΩT ) , 1 ≤ p <∞,

∇mui,m ⇀ ∇ui weakly in L2 (ΩT ) ,

for m→ ∞ as well as i = 1, 2 and u is a weak solution to (1) and (2).

Outline of proof.
We deduce uniform estimates from the entropy inequality (4) and the com-
pactness result from [3], giving a.e. convergence of a subsequence of (um).
In the final step, we show that the limit satisfies (1) in the weak sense, i.e.∫ T

0

∫
Ω

ui∂tψi dx dt+

∫
Ω

u0iψi(0)dx =

∫ T

0

∫
Ω

2∑
j=1

(Aij(u) + δuj)∇uj ·∇ψi dx

+

∫ T

0

∫
Ω

fi(u)ψi dx dt

holds for all ψi ∈ C∞
0 (Ω× [0, T )) and i = 1, 2.

Further Topics
• Numerical Simulations;

• Uniqueness of Discrete Solution: via the Relative Entropy Method;

• Stability Analysis for system without artificial diffusion: the approach al-
lows for the examination of the stability of equilibrium solutions by ana-
lyzing the eigenvalues of the linearized matrix A(u).


