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1. Introduction 

The IPCC's 6th Assessment Report clearly shows that 
humans and the technologies they use have an impact on 
climate change [1]. In addition, numerous sustainability, 
circular economy and climate protection studies and strategies 
highlight the need to respond appropriately to these climate 
challenges [2]. Meanwhile, industry and business are 
increasingly competing in a volatile environment with scarce 
resources, a lack of skilled labour and inefficient use of 
industrial data [3]. In addition, the shortening of product life 
cycles has led to more reconfigurations in production systems 
to adapt to fluctuating customer demands. The increased 
complexity of modern production systems due to the multitude 
of production steps leads to an increased susceptibility to errors.

These challenges highlight the need to develop advanced 
quality management strategies to address these issues [4].

One particularly compelling approach is Zero Defect 
Manufacturing (ZDM), which focuses on reducing defects in a 
proactive, preventive and reactive manner [5].

There are two approaches to ZDM: product-based ZDM, 
which evaluates the quality of the product and its relationship 
to process parameters, and process-based ZDM, which 
evaluates the condition of the machines and their impact on 
quality. 

How such an extension can be designed for future 
production is the central motivation of this paper. Furthermore, 
the research objective of this paper is to discuss a sustainability 
extension of the traditional ZDM definition by presenting a new 
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approach based on the Zero3-Dimensions: i) Zero Resource
Loss (improving resources and emissions) ii) Zero Human 
Potential Loss (improving productivity and stability) iii) Zero
Data Gap (improving efficiency of data use).

2. Application of the literature analysis

The prevention and repair aspect of ZDM already 
demonstrates how it contributes to sustainability. On this basis, 
the concept can be further developed. Therefore, the research 
methodology of this paper is to identify a representative sample 
of the literature on ZDM and to analyse this sample in terms of 
its relation to sustainable development. In particular, the issues 
of resource loss, human potential loss and data loss in ZDM are 
highlighted through a targeted selection of keywords. 

For this research, a systematic literature search was carried 
out according to [6]. Vom Brocke et al [6] present a five-phase 
model for systematic literature searches, which also 
incorporates applications from Cooper [7]. The phases 
suggested by [6] can be summarised as follows:

• Phase 1: Scope of the literature review: For this phase 
the taxonomy according to Cooper [7] is applied and
presented as a morphological box in figure 1.

• Phase 2: Conceptualization: The keywords and its 
combination for this literature search are: ("Zero 
Defect Manufacturing" AND "Resource") OR ("Zero 
Defect Manufacturing" AND "Human") OR ("Zero 
Defect Manufacturing" AND "Data")

• Phase 3: Literature search: For this research the 
database from www.scopus.com is used, which covers 
a large amount of research literature. A Total of 278 
publication can be found on 18.07.2023 for the 
keyword “Zero Defect Manufacturing” in which 152 
were found with our keyword combination.

• Phase 4: Evaluation: After the evaluation of the title 
and abstract of the 152 publication 21 are found 
relevant for this review.

• Phase 5: Analysis: The relevant literature is analysed
in the next phase, which conducts in chapter “3 
Results”. 

3. ZDM in perspective of the Zero3 Dimensions

To address the current challenges of resource scarcity, skills 
shortage and efficient use of industry data within ZDM, this 
section presents 23 scientific publications from the applied 
systematic literature review [6]. This chapter is structured 
according to the state of the art of resource loss, human 

potential loss, data loss within ZDM and the identified research 
gaps.

3.1 Continuing resource loss reduction in ZDM

In an effort to contribute to more sustainable production, 
resource efficiency remains a key focus in ZDM, with the aim 
of moving more towards a circular economy. Furthermore, 
resource utilisation is closely linked to production costs in the 
manufacturing industry, as increased human intervention leads 
to lower optimal resource utilisation costs [8].

Publications have highlighted the importance of quality 
management in achieving resource efficiency in ZDM [9]. By 
prioritising quality planning, control and improvement, 
manufacturers can contribute to the reduction of resource 
waste, resulting in improved operational, financial and 
environmental performance [10]. In addition, an emphasis on 
minimising (reducing) resource use is consistent with the goals 
of ZDM [11]. Furthermore, green strategies in manufacturing 
have multiple perspectives, which means that they are highly 
diversified in terms of resource management [11]. For this 
reason, it is crucial that future work focuses on defining an 
approach to describe the relationship between the key 
performance indicators (KPIs) of different green strategies and 
to elaborate the impact of this transformation on workflows and
in particular on manufacturing processes [12].

When implementing ZDM strategies, it is critical to consider 
resources such as legacy machinery and technology investment 
constraints [13]. Recognition of these factors is essential for 
effective resource management and optimisation. 

Research gaps identified in this chapter are still in the 
transition to a circular economy, the implementation of more 
than just an r-strategy (repair), and the application of ZDM 
strategies, methods and tools that significantly increase 
production performance towards less needed resources [4].

3.2 ZDM as a strategy against planned obsolescence

Brooks Stevens, a prominent American designer in the 
furniture, automotive and railway industries, introduced the 
concept of planned obsolescence into business practice. He 
defined planned obsolescence as business strategies designed 
to maintain sales in saturated and stagnating markets by 
stimulating the consumer's desire to buy something slightly 
newer, better and sooner than strictly necessary [14].

The fixation with maximising sales can be traced back to the 
19th century. However, it was not until the advent of the first 
'disposable' products that deliberate obsolescence planning 
began to take shape. It was during this period that the conscious 

Fig. 1: Taxonomy of the conducted literature review following Cooper [7].
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use of techniques to deliberately shorten the life of products 
became part of the logic of business economics [15].

On the contrary, the idea of ZDM is the prevention of 
defects in industrial production in order to eliminate avoidable 
extra costs, including inspection time, rework time, wasted 
material and labour, lost revenue and the cost of consumer 
dissatisfaction [15]. 

However, by extending the boundaries of ZDM, linking 
planned obsolescence with the new principles of zero resource 
loss, zero human potential loss and zero data gap could 
potentially align these seemingly disparate concepts. By 
minimising waste, optimising human potential and ensuring 
complete data integrity throughout a product's lifecycle, 
manufacturers can achieve a balance where product 
development is sustainable and in line with the principles of 
ZDM. This can lead to a more responsible approach to 
manufacturing in the context of global competition.

3.3 Human potential and ZDM

Human potential in manufacturing processes is critical to 
achieving high quality products due to the high manual content 
of assembly processes, stress, safety and unique human skills. 
This comprehensive literature review aims to synthesise 
findings from a variety of sources to provide insights into the 
diverse role of humans in the context of ZDM.

Psarommatis et al. [16] highlight the evolving role of 
humans as strategic decision makers and problem solvers. They 
emphasise the importance of upskilling, continuous learning 
and bi-directional relationships with machines to improve 
performance and efficiency. In line with human-centricity, 
Caiazzo [8] presents a monitoring platform that integrates 
human strengths and expertise into anomaly detection 
algorithms. This approach recognises the importance of human 
factors in problem solving and decision making, fostering a 
symbiotic relationship between humans and automation. 
Schmidbauer et al [17] show how the introduction of cobot 
technology can disrupt traditional work processes. The study of 
task allocation also suggests that participants prefer to assign 
cognitive tasks, such as checking to themselves and manual 
tasks, such as handling, to the cobot [17]. 

Silva et al [18] present a human-in-the-loop approach that 
combines human judgement and artificial intelligence (AI) to 
improve real-time quality prediction and process improvement. 
This integration of human expertise increases accuracy, reduces 
downtime and decreases non-conforming parts. 

To achieve ZDM, Wan and Leimo [19] emphasise the 
collaborative efforts of managers, engineers and operators. 
Knowledge sharing, assistive technologies and 
interdisciplinary research are identified as essential to achieve 
human-centred zero-defect practices. Collaborative robots, 
software agents and intelligent user interfaces assist workers in 
complex tasks, enabling better human-machine cooperation, 
social partnerships and inclusive job creation. 

Machine vision systems in the automotive industry are 
explored by Serrano-Ruiz et al. [20], highlighting their 
application in quality related tasks and automation. The 
integration of AI techniques and the development of self-
adaptive capabilities are identified as future directions to 
improve vision systems and achieve zero-defect manufacturing. 

Konstantinidis et al. [21], Fragapane et al. [4] and 
Psarommatis et al. [5] address the challenges of inspection cost 
and process optimisation. They propose the use of machine 
learning techniques and decision support systems to reduce 
pseudo defects, improve inspection efficiency and enhance 
data-driven optimisation strategies.

Future research that relies on human potential within ZDM 
should further investigate augmented worker support systems 
to prevent production defects and take more into account human 
factors such as safety, stress and skill development [8].

3.4 Data gap and ZDM

The presence of a data gap in ZDM can significantly hinder 
the ability to identify and address potential defects, leading to 
compromised product quality and increased risk of customer 
dissatisfaction. A comprehensive and accurate data collection 
system is essential in ZDM to bridge the data gap and enable 
effective monitoring, analysis and quality control measures that 
ultimately contribute to achieving defect-free products and 
operational excellence. The collection and automatic analysis 
of data in a multi-stage manufacturing process was investigated 
in Lughofer et al. [23], where a whole range of topics related to 
machine learning were explored, including the interpretability 
of adaptive structures [23], the detection of anomalies in 
production processes [24], and online learning methods [25] for 
automatic model fitting.

The state of the art (SOTA) also includes research on data 
retrieval through the development of digital twins of products 
[26], computational methods for optimising the flow of parts in 
a ZDM manufacturing environment [27], and sensor data 
analysis methods based on deep learning and neural networks 
for managing large data sets [28]. 

The development of robust situation awareness systems 
requires the availability of high quality and structured data. This 
often leads to a reluctance to share sensitive data. 

Furthermore, Isaja et al. [29] introduce the Product-Process 
-Data trusted framework, which uses distributed ledger 
technology to enable the exchange of trusted and traceable 
quality data between factories in a product supply chain. 
Research gaps covering data-related issues in ZDM should be 
investigated in deep learning-based anomaly detection and 
reduction of unnecessary data collection for overall more 
efficient data processing.

3.4 Environmental impact of ZDM

The application of the ZDM strategy approach offers several 
benefits. These include lower costs, shorter lead times, 
improved planning and a reduced environmental impact of 
industrial production, resulting in less energy consumption and 
waste of resources [30]. 

Reducing the number of defective products in a 
manufacturing process leads to less scrap, which has an impact 
on the amount of waste generated. It also reduces the amount 
of emissions and possible harmful by-products from 
unnecessary rework. In the context of zero resource loss and 
zero loss of human potential, there is potential for improved 
defect detection and therefore improved sustainability in 
manufacturing due to the availability of the technological tools 
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of Industry 5.0 [31]. 
In a broader context, if durable and high-quality products 

are prioritised to reach the consumer, this will also reduce the 
return rate, leading to a reduction in transport emissions and 
resource waste.

3.5 Zero3-Dimensions

Structured in the state of the art of Resource Loss, Human 
Potential Loss and Data Loss within ZDM, this chapter 
concludes with Table 1 and an approach to extend the 
traditional ZDM definition to include the Zero3 dimensions of 

Table 1 Extended approach for ZDM to meet current research gaps.

Identified SOTA and ZDM research gaps categorised within Zero3-Dimensions

Zero Human 
Potential Loss

Sustainable ZDM 
Extension  
Dimensions 
(Zero3-
Dimensions)

ZDM aims to reduce waste caused by imperfect production processes, resulting in environmental benefits [8] as 
well as financial and operational improvements [10]. 

Both academics and practitioners need to increase their focus on all R-strategies (reduce, reuse, recover, etc.). In 
the transition from a linear to a circular economy, this strategy can strongly support the move towards a zero-
defect, zero-waste paradigm. Therefore, future research should investigate repair and remanufacturing methods 
[9].

Many of the respondents experienced a neutral impact on production performance after applying ZDM strategies 
and methods. The use of ZDM strategies, methods and tools should significantly improve production performance 
in the future and lead to a shift towards the efficient use of resources [4]. 

Zero Resource 
Loss

Human-centred approaches are still lacking in ZDM. Future research should therefore investigate how to further 
support and augment the operator in working towards zero defects [9]. 

It has been shown that humans are still responsible for a significant amount of product rework [16]. 

It has also been shown that humans prefer to delegate cognitive tasks to cobots [17], which in combination with 
human skills contribute to quality and process optimisation in production. This effect can be further enhanced by 
the addition of AI technologies [18]. However, the influence of human skills is a relevant issue, as the results of 
automated technologies still depend on the cognitive inputs of the operators [4].  

According to our comprehensive analysis, human factors such as safety, stress and skill development should be 
considered when developing maintenance plans and decision-making procedures. This may involve the 
development of human-centred models and tools that take into account the health and job satisfaction of workers, 
as well as the impact of human factors on the effectiveness of maintenance operations and the reliability of 
systems [10]. 

Many studies have introduced AI methods for ZDM, but these methods are still less applied in practice. Future 
research should further invest in prediction methods that adapt to the different sudden events that can occur in an 
industrial process, especially in the presence of anomalies [11].

Recent studies show that data generation and the use of digital twins [26] for the optimisation of intralogistics 
processes in production [27] and the use of incomplete data sets by AI technologies [28] make a comprehensive 
contribution to a ZDM.

The identification of anomalies, supported by the application of online learning methods [23] and predictive models 
for quality detection [25], makes it possible to identify and sort out parts at an early stage in the production 
process, thus avoiding the waste of resources and time in subsequent processes [23].

Companies need support to increase the use of data to gain more insight and reduce defects at a larger scale [9]. 

Companies need to reduce not only physical waste, but also digital waste. Future research must provide methods 
to move from inefficient 'offline' rework to efficient 'online' defect prevention [9].

The challenges associated with limited data availability and big data analytics in Industry 4.0 maintenance should 
be addressed. This may involve innovative thinking on how to collect, store and process data, as well as improving 
methods for using data-driven modelling to make diagnoses, predictions and decisions [11].

Zero Data Loss
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Zero Resource Loss, Zero Human Potential Loss and Zero Data 
Loss to address the currently identified research gaps.

4. Conclusions

This publication examines ZDM from a sustainability 
perspective, with a particular focus on current developments in 
resource loss, human potential loss and data loss. For this 
purpose, 152 scientific publications were searched and 
analysed using the systematic literature analysis method of 
vom Brocke et al [6].  The main claim that the traditional 
definition of ZDM needs to be reconsidered results from the 
current research gaps highlighted in Table 1.

This research is limited to the methodology applied by vom 
Brocke [6]. Another limitation is the database scopus.com, 
where the literature search was carried out, and the literature 
available on the database until July 2023, when the search was 
applied.

Furthermore, this research includes the different methods of 
the searched articles themselves. The results of the searched 
articels are generated by methods of systematic literature 
analysis, expert interviews, mathematical models and industrial 
use cases. This study only considers the results from the articles 
and does not differentiate how they were obtained. 

This study is also limited by the filtering process of the 
articles in the literature search. For this purpose, the scientific 
articles found are subjectively categorised by the researchers as 
relevant or irrelevant according to their title and abstract. The 
articles are then searched for keywords from the three Zero3

dimensions (resource loss, human potential loss, data loss). If 
the corresponding text passages are recognised as relevant, the 
article is considered relevant overall and included in this study. 
As a result, this publication approaches an extension of the
traditional ZDM definition to include the Zero3 dimensions of 
"Zero Resource Loss", "Zero Human Potential Loss" and "Zero 
Data Loss".

Zero Resource Loss continues to ensure the success of 
ZDM, with quality management playing a key role in reducing 
waste and improving overall performance. Using tools such as 
those proposed by Psarommatis et al [5], stakeholders can 
identify reusable, adaptable and combinable resources, 
ultimately optimising the ZDM approach. 

Zero Human Potential Loss emphasises the multiple roles of 
human potential in manufacturing and production processes. It 
highlights the evolving responsibilities of humans as decision 
makers, problem solvers and operators. It concludes that the 
integration of human expertise, continuous learning and 
collaboration with technology is essential to achieve zero 
defect manufacturing and avoid any loss of human potential.

Zero Data Loss integrates the challenges associated with 
limited data availability and big data analytics, which still 
require innovative thinking on how to collect, store and process 
data, as well as improving methods for diagnosis, prognosis 
and decision making in ZDM.

For the future, ZDM platforms that integrate more than one 
company could accelerate the implementation of sustainable 
dimensions. Sharing best practices on these platforms would 
help to minimise implementation errors. In addition, integrated 

decision support systems could be installed and trained on such 
platforms to further develop existing ZDM systems. 

All in all, this publication contributes to the current 
challenges of resource scarcity, lack of skilled labour and 
efficient use of industry data within ZDM by systematically 
analysing the state of the art and arguing for maintaining and 
developing ZDM for more sustainable production.
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