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Abstract

Three-dimensional documentation of natural and cultural geosites is gaining increasing attention

as an indicative tool for environmental change. However, the entities therein pose a challenge to

current extraction schemes due to their varying dimensions, complex shape, and most importantly,

their seamless embedding in the surrounding topography. It is common to approach the extraction

of these entities by developing landform-specific methods which are applied in a localized manner.

Nonetheless, these methods hardly generalize, and different entities are dealt with independently,

even when located at the same site. We propose in this paper a general, content-driven frame-

work for the detection of smoothly embedded entities that, unlike prevalent approaches, seeks no

specific form. We focus on salient entities, which attract visual attention within the point cloud

and develop a new detection scheme, driven by homogeneity in the entities’ saliency. We show

how such formulation requires no approximate location or starting points and does not suffer from

weak responses. Therefore, our framework can be readily applied to a multitude entities in various

scenes, regardless of type or acquisition technique. We demonstrate our solution on airborne and

terrestrial laser scans and detect entities of different types and shapes that feature in both natu-

ral and culturally-important sites. As we show, the proposed framework yields improved results

compared to state-of-the-art counterparts.
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1. Introduction1

Three-dimensional documentation of geosites, natural and heritage-related, is becoming a sub-2

ject of greater attention because of their role as proxies for environmental change on the land3

(Sofia, 2020; Viles, 2016). The study of the entities therein presents a challenge to existing extrac-4

tion schemes as the shape they wear is complex and does not conform to closed-parametric forms,5

they appear in varying dimensions, and more importantly they are embedded within the surround-6

ing topography (Jaboyedoff and Derron, 2020; Oguchi, 2019; Telling et al., 2017). It is likely that7

for such reasons studies still resort to the manual delineation of objects of interest (e.g., Čeru et al.,8

2017; Kobiałka, 2018; Niculiţă et al., 2020; Peña-Villasenín et al., 2019). However, these analyses9

are limited in scope while repeated studies have proven that such a manner of extraction is prone10

to perception bias and degrades the detection accuracy (Hillier et al., 2014; Scheiber et al., 2015;11

Vinci et al., 2016).12

To improve the detection performance, designated frameworks have been suggested, where en-13

tities are targeted based on prior knowledge of their shape characteristics at their study site. For14

example, Yu et al. (2015) utilized the flat surroundings of their study site to differentiate drumlins15

from their bases. Nenonen et al. (2018) applied a similar approach to inselbergs. The observation16

that moraines and liquefaction spread in a drumlin field share common orientation and dimensions17

has led Middleton et al. (2020) to create designated Gabor filter maps that are used in conjunction18

with curvature maps in a deep neural network. Such site-specific approaches are also prevalent in19

channel and gully detection. There, sink identification is followed by computation of flow accumu-20

lation and finalized by setting thresholds according to the features of interest (Dong et al., 2020;21

Stavi et al., 2018; Wu et al., 2018; Yang et al., 2018).22

Detection in a more generalized manner, designed per entity but not per site, follows geomor-23

phological characteristics and infers on points that belong to the feature of interest. As an example,24

Filin and Baruch (2010), and later on Rahimi and Alexander (2013), considered pit-like responses as25

sinkhole-related seeds and applied energy-based optimization to develop their boundaries. Wu et al.26

(2016) used the sinkhole concentric-contour forms to detect 1-m or deeper entities. Entity-based27

strategies are also prevalent in gully extraction schemes. Passalacqua et al. (2010) and Passalac-28

qua et al. (2012) extracted gully thalwegs by utilizing flow accumulation and curvature measures29

as weights for the shortest path computation between two manually selected endpoints. Pelletier30

(2013) observed that gully-related points have higher contour curvature. Following the contour31
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computation, high curvature valued regions were thinned into pixel-wide entities that were repre-1

sented gullies. Xu et al. (2017) extracted gullies by differencing the normal and curvature values2

when computed by two different radii at each point. These were marked as gullies if their size3

surpassed a preset threshold. Additional applications that make use of localized and designated4

methods are found in abundance: Seers and Hodgetts (2016) extracted rock fractures and derived5

fracture network properties based on phase-congruency edge detection in image sequences; Djuricic6

et al. (2016) applied an openness index to extract oyster fossils, and Fanos et al. (2018), Mezaal7

and Pradhan (2018), and Mezaal et al. (2018) sought potential landslide zones by incorporating8

landslide-inventory rasters and slope, aspect, and curvature maps into hybrid machine learning9

(support vector machine and random forest) application. Geomorphometric features are also ap-10

plied to reveal entities. As an example, Florinsky and Bliakharskii (2018) and Ishalina et al. (2021)11

searched for crevasses by using different curvature measures and texture variables. Pawłuszek et al.12

(2019) applied morphometric measures to map landslides in moderate relief agricultural regions,13

and ; Rahmati et al. (2019) used geomorphomteric variables and machine learning to predict snow14

avalanche hazards. Nonetheless, morphometric approaches tend to be entity-specific and rely on15

grid representation. This introduces biases and inaccuracies to the acquired point cloud (Florinsky,16

2017). Lastly, an alternative framework that does seek specific entities applies change detection for17

geomorphological entity extraction (Anders et al., 2020; Hayakawa and Obanawa, 2020; Mayr et al.,18

2020; Williams et al., 2021). For example, Anders et al. (2020) recorded a sandy beach every hour19

for eleven days. After assessing the surface changes through time, the authors grouped neighboring20

locations that share similar change history. Such a framework requires sequential analysis, while21

the challenge of detecting entities within single epoch point clouds remains unsolved.22

The variety of models and their specified nature allude to the complexity involved in entity23

extraction when embedded within open (non-urban) topography (Mayr et al., 2017; Roelens et al.,24

2018). Nonetheless, and as has been recently observed (Lague, 2020; Oguchi, 2019; Sofia, 2020),25

the development of more generalized frameworks is desirable, especially as the 3D documentation26

of geosites becomes a common practice. In this paper, we propose a novel approach for smoothly27

embedded entity extraction from 3D point clouds that is driven by content rather than by entity.28

Our approach requires no initialization or approximate locations as starting points. Additionally,29

it does not require a prerequisite training dataset and it does not suffer from weak responses that30

require additional algorithmic solutions for misidentifications. Our proposed model is based on the31
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observation that the sought entities attract the visual attention within the point cloud and therefore1

can be regarded as locally salient. For their identification we develop a new measure that is not2

limited to small and confined point clouds and demonstrate its improved performance compared to3

state-of-the-art methods. In deriving the saliency measure we examine surface features suited for4

that purpose. We then test their application to our scheme and demonstrate that when curvature5

is concerned, a direct first-order evaluation by a non-parametric form performs better than more6

advanced forms. We then develop an optimality-driven detection solution, enabling the extraction7

of entities with smooth and continuous boundaries based on geometric homogeneity criteria. As the8

notion of saliency has never been utilized in such a framework (unlike gradients or curvature), we9

propose a model that can be integrated by a variational form. We demonstrate its applicability on10

two fundamentally different datasets: a dataset acquired by an airborne laser scanner that features11

different types of landforms; and a dataset acquired by a terrestrial laser scanner that captures a12

prehistoric formation composed of small stones that are fixated to a textured ground. We show13

that the proposed saliency metric marks entities of interest even in relatively smooth scenes while14

maintaining high performance and response to cluttered environments. Comparative analysis shows15

better performance in detection and extraction.16

2. Methods17

2.1. Detection and extraction framework18

We consider visual saliency as a framework to localize on elements of interest and describe a19

variational extraction framework in which they are embedded. Later, we evaluate surface features20

that better reflect the notion of conspicuousness.21

2.1.1. Salient entities22

We seek to highlight smoothly embedded entities within the open terrain. The vague object-to-23

background transition (c.f. Dilo et al., 2007; Molenaar and Cheng, 2000; Stein et al., 2004, for this24

definition) suggests that direction-based methods are insufficiently sensitive to detect them. For25

that, we develop a saliency-driven approach. To define, visual saliency is an attentional mechanism26

that is based on the observation that neurons in the retina (center) are sensitive to regions that27

locally stand out from their surroundings and enables to focus the limited perceptual resources28

on pertinent subsets (Frintrop et al., 2010). Here, we seek a model that marks salient entities in29
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point clouds of open terrain. To derive it we note that 3D point clouds are generally large and1

that the saliency estimation itself is only a preliminary stage. Therefore, our aim is to compute2

saliency with the least information required to generate a distinction. Our framework follows the3

center-surround notion (Abouelaziz et al., 2020; Itti et al., 1998; Wang et al., 2019) and develops4

an operator according to which distinctness is measured by the deviation of features in the area5

surrounding the point compared to the center. Our saliency metric is controlled by surface normals6

and curvature, where the local surface is defined by the neighborhood of a point and follows the7

center-surround principle, which seeks points with unique geometric attributes compared to their8

surrounding. A consideration when dealing with topography is that the surface varies continuously9

and smoothly. Therefore, uniqueness would not be reflected in the immediate nearby neighborhood,10

but rather in reference to farther regions. Accordingly, for the saliency metric computation, we lower11

the weights of nearby points while assigning higher ones to the surrounding regions. The weights12

assignment is dictated by a Gaussian-form-based radial function whose center is at ρ (minimal13

object size) and σ controls the breadth of the surrounding (Fig. 1).14

w(x, y) =
1√
2πσ

exp






−

(

√

x2 + y2 − ρ
)2

2σ2






(1)

Under such setup, the center point would have a zero weight, while the maximal would be at ρ.15

Setting ρ and σ, and by using w(x, y), we measure:16

dn(q) =

∫∫

S
||n(q) − n(x, y)|| · w(x, y)dxdy

∫∫

S
w(x, y)dxdy

(2)

dκ(q) =

∫∫

S
[κ(q) − κ(x, y)] · w(x, y)dxdy

∫∫

S
w(x, y)dxdy

(3)

where q is the analyzed point, S is the surface such that S(x, y) : R2 → R, n(·) is the normal, κ(·) is17

the curvature, and dn and dκ express the weighted mean difference between q and the surface for the18

normal and curvature, respectively. The value of dn is a function of the vector difference between19

n(q) and the surrounding normal directions n(x, y), reflecting the angular difference between the20

normal vectors. As an abundance of forms exist for defining both surface normal and curvature, we21

propose a set for their evaluation in Sec. (2.2). With the normalization of the two measures, the1

5

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Figure 1: Weighting function for saliency detection: a center-surround filter that emphasizes regions at a distance ρ

while suppressing closer and distant features.

saliency is given by:2

S(q) = 2 − [exp (−dn(q)) + exp (−dκ(q))] (4)

where the exponents act as a normalization operator. Note that textured areas and noise are3

expressed in low variance by the saliency measures. Therefore, for each point, the variances of dn4

and dκ are tested statistically using the χ2-test. Statistically insignificant responses are marked as5

zero and are not considered in the overall saliency estimation.6

2.1.2. Saliency-driven detection7

To integrate the saliency map into an extraction framework, we seek boundaries that are con-8

tinuous and smooth in shape and adhere to the edges of the salient region. The first two properties9

reflect our preference for simple forms, contrasting overly intricate ones, while the third reflects10

optimality of the boundary placement according to consistency principles that we outline in the11

following. To obtain these objectives, we formulate the extraction framework as an optimization12

problem such that the boundary quality can be quantified and targeted. The parametric energy-13

based models, such as the active-contour model, offer such a formulation. However, their application14

requires an initial estimate to secure convergence and the curve evolution requires reparametriza-15

tion with each iteration. Moreover, given a set of curves, each curve is optimized independently16

and locally. Therefore, topological changes are not accommodated, and optimization is carried1

sequentially per curve.2

For a more general approach, we develop a representation that operates directly on the data. For3

this, we use a level set formulation and turn it from a parametric representation of a curve into an4

6
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implicit one. In such a form, a curve is regarded as the zero-level locus of an arbitrary, continuous,5

and smooth surface ϕ(x), where x = [x, y] are coordinates in a Euclidean frame. According to this6

representation, the surface is divided into three regions:7

ϕ(x) =























ϕ(x) > 0 x ∈ ω

ϕ(x) < 0 x /∈ ω

ϕ(x) = 0 x ∈ C

, ϕ : Ω ⊂ IR2 → IR. (5)

where Ω is a 2-D domain. The surface is unimportant as our interest lies in the zero-level curve.8

Differing from the parametric contour evolution, here the surface is the one that evolves according9

to the internal and external forces, and the level set defines the contour form. In that respect, the10

geodesic active contour (GAC; Caselles et al., 1997) is considered the state-of-the-art. There, an11

equivalence of the active contour problem to a physical one is established such that the optimal12

curve is the path of least action (namely, the geodesic). By embedding the sought curve in a surface,13

the solution becomes the steady-state solution (ϕt = 0) to the evolution equation:14

ϕt = g(I)κ + c · g(I) + ∇g(I)∇ϕ (6)

where c is a constant, κ = ∇ · ∇ϕ(x)
|∇ϕ(x)| is the curvature of the embedded curve at point x, I is the15

image, and g(I) is an edge function. The first two terms in Eq. (6) are contour related, while the16

third is an external static force driven by the data. This formulation is advantageous on several17

counts: i) there is no need for advanced knowledge of the number of existing features and their18

whereabouts, suggesting that it allows topological change; ii) simultaneous evolutions rather than19

sequential one – unlike the active contours model, where each curve must be updated by its own, the20

parametric model updates all curves simultaneously as all curves are represented by a single surface;21

and iii) no need for reparametrization of the curve to arc-length at every iteration, as the surface22

updates in its entirety. However, we demonstrate that the application of this formulation to detect23

embedded entities is bound to fail from the start (Sec. 3). The reason is the smooth background-to-24

object transition, which is the main geometric characteristic of the embedded objects, which leads1

to weak edges. Specifically, it yields g(I) ≪ 1, which translates to ϕt → 0, suggesting that the2

steady-state solution is reached from the onset. In the present case, the saliency defines objects3
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whose boundaries are not defined by gradients. Therefore, the concept of gradients and edges4

cannot be cast here. Instead, we consider the saliency map as regions towards which boundaries5

we wish to attract the curves to, and as a solution framework we follow Chan and Vese (2001). Let6

S̄in, and S̄out denote the mean saliency values of each region, and |C| the length of the curve C, the7

energy functional is expressed by:8

E(C, S̄in, S̄out) =µ1

∫

inside(C)

∣

∣S(x) − S̄in

∣

∣

2
dx

+ µ2

∫

outside(C)

∣

∣S(x) − S̄out

∣

∣

2
dx + ν0 · |C|

(7)

where ν0, µ1, µ2 are constant non-negative weighting scalars. This functional formulates the condi-9

tions for the curve we seek by means of a level-set function. The value of the energy E(C, S̄in, S̄out)10

depends on the curve, and its minimum is achieved when the curve is optimal. The data terms11
∣

∣S(x) − S̄in

∣

∣

2
and

∣

∣S(x) − S̄out

∣

∣

2
ensure the approximation to the saliency map, while the regular-12

ization term, |C|, guarantees that the boundary between salient/non-salient regions has a minimal13

length. The statistic nature of this formulation, in the form of minimum variance, implies that no14

preliminary smoothing is needed. In essence, it also translates into little dependence on the curve15

initialization.16

Solving this minimization problem through a level-set formulation requires defining the curve C17

as a function of the surface ϕ. For that we utilize the Heaviside function:1

H(x) =











1, x ≥ 0

0, x < 0
, (8)

as a means to define the interior ω. Similarly, we use 1 − H(x) to define the exterior, and the Dirac2

δ, such that d
dx

H(x) = δ(x), to define the boundary itself. The energy equation then becomes:3

E(ϕ, S̄in, S̄out) = + µ1

∫

Ω

∣

∣S(x) − S̄in

∣

∣

2
H(ϕ(x))dx

+ µ2

∫

Ω

∣

∣S(x) − S̄out

∣

∣

2
(1 − H(ϕ(x)) dx + ν0

∫

Ω

δ(ϕ(x))|∇ϕ(x)|dx

(9)

with ϕ the embedding function. This functional is similar to Eq. (7), with the distinction that4

the energy is computed over the entire domain while the Heaviside function controls the influence5
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of the “inside” and “outside” terms. The definition of the Heaviside function readily enables the6

computation of the mean saliency values inside and outside the curve:7

S̄in =

∫

Ω
S(x)H(ϕ)dx
∫

Ω
H(ϕ)dx

S̄out =

∫

Ω
S(x) (1 − H(ϕ)) dx
∫

Ω
(1 − H(ϕ)) dx

. (10)

Practically, regions where both the Heaviside function and the Dirac δ are zero will result in8

zero-motion, and will not propagate from the initial function. Instead, it is common to utilize a9

regularized form of both the Heaviside function and the Dirac δ, while upholding δϵ = H ′
ϵ(x):10

Hϵ(x) =
1
2

[

1 +
2
π

arctan
(x

ϵ

)

]

(11)

and,11

δϵ(x) = H ′
ϵ(x) =

1
π

· ϵ

ϵ2 + x2
, (12)

where ϵ is a small threshold. Keeping Sin, Sout fixed and minimizing Eq. (9) with respect to ϕ, we12

obtain the Euler-Lagrange equations for ϕ:13

ϕt = δ(ϕ)

[

−µ1

[

S(x) − S̄in

]2
+ µ2

[

S(x) − S̄out

]2
+ ν0∇ · ∇ϕ

|∇ϕ|

]

, (13)

that define the evolution of the level-set function towards optimum, i.e., ϕi+1 = ϕ(i) + ϕt, with14

i being the iteration index. One sees that Eq. (13) is of a region competition form: if the local15

saliency S(x) at point x is more similar to the average of the interior, then x is assigned to the16

interior (the curve moves outwards) and vice versa. The solution is reached by the curves that are17

formed at the minimum when ϕt = 0. As δ(ϕ) reacts only at the level set, a rescaling is made by18

replacing δ(ϕ) with |∇ϕ|, which yields:19

ϕt = |∇ϕ|
[

−µ1

[

S(x) − S̄in

]2
+ µ2

[

S(x) − S̄out

]2
+ ν0∇ · ∇ϕ

|∇ϕ|

]

. (14)

Whereas µ1 and µ2 control the smoothness of the curve, ν0 sets its minimal length, measured by20

the dataset units. We use µ1 = µ2 > 1 and ν0 > 0 in all our computations. Note that the saliency1

is based on geometric properties of the surface, and therefore the model is still geometric.2
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2.2. Surface features3

We describe the features used for computing the saliency measures, beginning with normal4

computation and turning to curvature. For surface normal computation we use the principal com-5

ponent analysis (PCA). Given a point q and its set of k neighbors p, such that pi ∈ p, we define6

p̄i = pi − q, and the covariance matrix, C, by:7

C =
1
k

k
∑

i=1

p̄i · p̄T
i ; Cvj = λjvj , j ∈ {1, 2, 3} (15)

where vj and λj are the eigenvector and values, respectively. As C is positive semi-definite (0 ≤8

λ3 ≤ λ2 ≤ λ1) we have v3, corresponding to λ3, as the estimate of nq, the surface normal. We9

apply a closed-form solution to the third-degree characteristic polynomial for direct computation10

of the eigenvalues and henceforth of v3 (Appendix A). Notably, to disambiguate the normal sign,11

all normals are oriented toward a single viewpoint, vp, such that:12

nq =











nq, if nq · (vp − q) ≥ 0

−nq, otherwise.
(16)

By contrast, the estimation of surface curvature is more complex, due to its directionality13

and second-order form which exhibits a greater sensitivity to noise and surface texture. Among14

the different values, the two principal curvatures (the maximal and minimal) locally characterize15

the terrain, and according to Euler theorem, they facilitate the description of every other normal16

curvature value (Kreyszig, 1991). Even though immense literature has focused on their estimation17

in an unknown surface from point clouds, there is still no convention as to its estimation (e.g.,18

Gois et al., 2006; Guerrero et al., 2018; Kalogerakis et al., 2009; Khameneifar and Ghorbani, 2018;19

Mérigot et al., 2011). Therefore, we consider three approaches: numerical, parametric, and non-20

parametric, with a focus on data characteristics, specifically noise and texture.21

Numerical curvature estimation. Here, we utilize the Monge patch reparametrization, where S =22

[x, y, z(x, y)] (Kreyszig, 1991). Assuming that first-order derivatives of terrain features are relatively23

small, we approximate the principal curvature values by the eigenvalues of the Hessian matrix, H,24

namely λmin,max ≈ κmin,max, where λ and κ are the eigenvalues and curvature values, respectively.25

For a computationally efficient approach, adaptable to a variety of sizes, shapes, and forms, the26
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approximation of the second-order derivatives of H is computed numerically. As the effect of1

noise and surface roughness may be documented within the curvature values, the response must2

be dominant enough. A lower response-level bound can be learned by examples or estimated3

theoretically by deriving an accuracy estimate σκ for the principal values. This is computed as a4

function of the range measurement accuracy, m0 and by the minimal object response, ∆Z, defined5

by the terrain’s surface roughness and relates to the curvature computation by ε = 2∆Z/d2 where d6

is half the window size used for the numerical derivative estimation. Using propagation of variance,7

it can be shown the standard deviation of the eigenvalues, essentially of the principal curvature8

values, is σκ = ±m0

√
6/d2. Assuming a normal distribution, i.e., N ∼ (ε, σκ), we establish a Z -test9

to determine if the computed curvature is statistically insignificant, meaning that only significant10

estimates are assigned a non-zero curvature value.11

Parametric curvature estimation. For a parametric estimation we consider the bi-quadratic surface12

form that locally captures surface variation up to a second-order,13

z(x, y) = α0x2 + α1y2 + α2xy + α3x + α4y + α5 (17)

where αi, i ∈ {0, 1, . . . 5} are the fitted bi-quadratic surface coefficients.1 Since our interest lies14

only in the second-order term, and for computational efficiency, we transform the points in the15

neighborhood p to a local-horizon frame, thereby reducing the surface fitting to a three-parameter16

problem. Using nq, we compute the minimal rotation to transform the points to z-axis aligned17

normal direction. In such a form the axis of rotation is t = N
([

−nq
y, nq

x, 0
])T

, where again N () is18

a normalization operator and the angle of rotation is θ = cos−1(nq
z). Rotating the local normal so19

it points towards the global z−direction, we set R = nq
z · I +

√

1 − (nq
z)2[t]× + (1 − nq

z)
(

t · tT
)

, we20

have,1

p
q
local = Rp̄i. (18)

As the normal to the surface at q becomes n
q
local = [0, 0, 1]T , and since Sx × Sy = n

q
local, where2

Sx = [1, 0, zx]T ; Sy = [0, 1, zy]T , we have that zx = zy = 0. Using Eq. (17) we can conclude that3

1For a complete 3D point set, a local parametric form can be fitted using an implicit form (e.g., of a quadratic
surface). If the quadratic surface is a sphere, the fitting reduces to a four-parameter linear estimation problem, but
a sphere is limited in characterizing local curvature. A more global solution would involve an estimation of a fully
quadratic surface which entails estimating ten parameters for each point.
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Figure 2: Convexity measure: the neighboring points are projected onto the center point normal direction n
q .

α3 = α4 = 0, and consequently, the transformed neighborhood of q reduces the fitting problem to4

three parameters (α0, α1, α2) instead of six. Through this approach, we simplify the computation5

of the principal curvature values to:6

κmin,max = α0 + α1 ±
√

(α0 + α1)2 + α2
2. (19)

To ensure that the fitted surface is not flat, an F-test is used to evaluate if the adjusted coefficients7

α0, α1, α2 are statistically equal to zero. Note that as the test is for the planarity, no further tests8

are required to check that the curvature is significantly larger than the noise or roughness.9

Non-parametric curvature estimation. Finally, the non-parametric approach is the simplest of the10

three and quantifies the convexity of the surface at each point by examining the characteristics of11

the points’ distribution around it. To do so, we sum the projections of neighboring points on nq,12

and with that curvature is measured:13

κ =
1
k

k
∑

i=1

nqT
p̄i (20)

Non-viable points, whose distribution around q is uneven, e.g., at the point cloud edges or near14

large areas of occlusions, are eliminated by projecting the neighborhood points to the tangent plane15

at q, and analyzing the barycenter deviation from q1

dq =
1
k

k
∑

i=1

(

I − nqnqT
)

p̄i (21)

12
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By contrast to the first two approaches, the noise and roughness effect on the curvature accuracy2

is estimated directly from the measurement accuracy, i.e., σκ = m0. Similar to the numerical case,3

we use the Z-test to determine if a projection is a noise. This way, only significant projections are4

used for the non-parametric curvature estimation.5

3. Results and Discussion6

To evaluate the performance of our proposed detection framework we test it on airborne and7

terrestrial laser scans, where each dataset features entities at various dimensions, scales, forms,8

and densities. As our proposed model is point-based no preprocessing is required for the surface9

features and curvature computations. The model was implemented in Python 3.8, using Ubuntu10

20.04 operating system on an 11th Gen Intel®Core™ i7 CPU@2.80GHz, with 16GB RAM.11

Our quantitative evaluations of the extraction were performed in reference to manually de-

lineated entities, which were extracted by a user not associated with the research. The detection

results are classified into three categories: true-positive (TP), false-positive (FP), and false-negative

(FN) (Xu et al., 2018). It is also customary to introduce another category of true-negative (TN)

that relates to non-entities that are identified as such. In the present case, TN refers to all points

in the scan where no detection was made, so that their quantification may bias the analysis and

add irrelevant information. Therefore, they are left out of the analyses, and accordingly, common

quality measures that consider false-negative detection (e.g., sensitivity, accuracy, etc.) are omitted

as well. The three quality measures that utilized and relate to our classification categories are:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
(22)

F1 = 2 · precision · recall
precision + recall

where precision quantifies the rate of identified TP for all positive results, recall, quantifies the12

percentage of correct detection in reference to ground-truth data, and the F1-test, also known as13

the Sørensen-Dice coefficient, that balances the precision and recall by computing their harmonic1

mean. As another metric, we use the Jaccard-index (mean Intersection over Union metric, IoU) to2

13

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



evaluate the delineation accuracy, which is defined by:3

J(A, B) =
1
N

N
∑

i=1

|A ∩ B|
|A ∪ B| (23)

with N the number of detected entities; A the coordinates of the automatically delineated polygon;4

and B the coordinates of the manually delineated one (Cortinhal et al., 2020).5

3.1. Natural entity detection in airborne laser scans6

Figure 3: The alluvial fan dataset. A hillshaded depiction of the analyzed area, showing the intertwined gullies and
sinkholes. This image is created from a 0.25 m grid DSM using the Natural Neighbor and Hillshade tools in ArcMap
10.1.

The first dataset is of the Ze’elim alluvial fan (lat. 31◦22′, long. 35◦24′), which lies along the7

Dead Sea coast and features a diverse set of geomorphic entities in different dimensions and forms8

(Fig. 3). Due to accelerated desiccation of the Dead Sea lake, at a rate that exceeds 1 m/yr level,9

the stability of the surrounding geomorphic system has been undermined, leading to a chain of10

reactions with disastrous effects on the natural environment. The more notable processes are the11

incisions of gullies and the accelerated development of sinkholes, the latter may form in large fields12

of 100 entities or more per site. Due to this rapid development and its hazardous nature, airborne13

scans are carried out on an annual basis to monitor such development (Arav et al., 2020). Our14

focus here is on an area of 300 × 250 m2 within the fan that was scanned at a point density of 8 ± 315

pt/m2. This section features two main gullies at widths of 5 and 9 m and depths ranging 2-6 m16

14
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Figure 4: Surface classification and detection of dataset #2 based on Baruch (2011) model: a) classification; b)
detection.

and three channels of 3 m wide and 0.5 m deep that fork from them. Additionally, 60 sinkholes are17

featured in the data, ranging from 0.5-4.5 m in depth, and 2-10 m in their radii.1

Complete characterization in such complex environments is rare and usually focuses on a single2

entity, mostly detected using gradient-based methods that seek the breaklines they create in rela-3

tively homogeneous regions. However, the smooth transition, in this case, makes the applicability4

of such methods limited. Baruch (2011) developed a more general, multi-resolution, classification5

scheme which also accounts for measurement noise and surface texture. The classification of a6

point using this approach is according to its maximal responses among categories and resolutions.7

Application of the classification scheme to the Ze’elim dataset (Fig. 4a) shows that most gullies8

were classified as ‘pit’, rather than the expected ‘valley’. Moreover, the banks of the gullies were9

classified either as ridges or as peaks. As this map is processed according to the classification, it10

leads to misclassification of entities.11

Fig. (4b) shows the detection results when using the parametric-based snake evolution using the12

‘pit’ map as an initialization phase. Note that as the evolution is carried per entity, a large portion13

of the gully banks was misidentified. As the curve is processed individually, it searches for the14

optimum based on the initial guess, which includes wrongful identifications. Quantitative analysis15

of the sinkhole detection shows a high F1-score value of 93%, as most sinkhole entities have been16

indeed identified. Nonetheless, the visual inspection demonstrates that the extraction is far from17
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Figure 5: Result of GAC and a GAC-GVF on the alluvial fan dataset after 1500 iterations. The black dashed circle
represents the initialization of the level-set contour: a) GAC application; b) an integration of GVF with GAC to
enhance results.

satisfactory. The Jaccard-score is low (78%) as the detected boundary does not reach the correct18

rims or bank (having ridge-like properties). This dependence of the detection model on the initial1

classification processes highlights a key problem of such bottom-up schemes. It further stresses the2

need for direct detection.3

In order to detect the entities regardless of class, we evaluate the performance of the classical4

geodesic active contour model (GAC, Eq. 6). We utilize the gradient-strength map (essentially a5

product of an edge map) as the driving force and initialize the level-set function at the center of the6

scan, closer to the southern gully. Fig. (5a) shows that the GAC has managed to expand towards7

the closest gully banks, but is mainly concentrated in the initial vicinity, with only a few curves8

farther away. To improve its performance, we integrated the gradient-vector-flow field (GVF) into9

the level-set form. Application of this form (Fig. 5b) has managed to drive the contours farther10

from the center, and to detect more of the gullies, yet leaving most entities undetected. In both11

forms, there are at least two contours for each entity: inside and outside the edge. Also, in both12

forms the forces are too weak to drive the detection farther than its initial shape. This is due to13

the weak gradients that surround the initial contour (essentially the fan surface) in conjunction14

with internal forces that confine the level-set to its initial area. These results may explain the need15

for initial seeds and the local expansion that follows (e.g., Baruch and Filin, 2011; Griffiths and16

Boehm, 2019). We conclude that the use of Eq. (6) alone has limited application in regions with17

homogeneous surroundings, also demonstrating the limitation of applying gradient-based solutions18
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Figure 6: Normals and curvature maps. a) normal estimation with 1 m radius, represented as dip direction; b)
numerical mean curvature with 5 m window; c) parametric mean curvature, with 4 m neighborhood radius; and d)
non-parametric curvature, 4 m neighborhood radius. Note that shallower entities are more apparent in curvature
maps than in the normal-based evaluation.

as a general framework to detect entities of this kind (e.g., Goodwin et al., 2016; Noto et al., 2017).1

3.1.1. Evaluation of curvature computation methods2

The introduction of curvature measures highlights the entities regardless of their depth (Fig. 6).3

While the normal-based evaluation emphasizes the entities’ banks, the curvature highlights the4

entities. We test all three curvature estimation forms, with the parameters set following the minimal5

object size of ~2 m. Fig. (6) shows that all three measures have managed to identify the dominant6

entities within the scan. However, a more detailed inspection reveals that the non-parametric form7

has a more accurate characterization and better response for shallower entities (see focus boxes in8

Fig. 6b-c in comparison with Fig. 6d). This is because both numeric and parametric forms attempt9

to quantify a physical measure, either the eigenvalue or the second-order derivative. When the10

surrounding window for a point is inhomogeneous and mixes entity related points with ones in the11

surrounding region, the physical measures tend to underestimate the curvature related values. In12

17
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contrast, the non-parametric form that requires a mere summation of the elevation differences with13

respect to the given point is unaffected and exhibits no sensitivity to this kind of distribution. As14

our evaluation is of entity related points concerning the surrounding region, the non-parametric15

form fairs better and becomes the preferable choice. This result is also evident when translating16

and incorporating the curvature measures into saliency maps (Fig. 7, column a). The addition of17

normals to the saliency estimation enables a better differentiation between entity and background,18

as the normals accentuate the banks. Notice that in the numeric and parametric estimations19

shallow sinkholes are not marked as salient. However, in the non-parametric estimation, shallow20

sinkholes, even those that lie within gullies, are marked as salient. The consequent detection21

responds to that fact (Fig. 7, column b). The non-parametric-based detection results in a more22

detailed characterization. More sinkholes and channels are identified while finer details of the23

gullies are better characterized (see arrows for specific examples). As the non-parametric curvature24

outperformed the other methods, we used its values to evaluate the proposed saliency measure.25

3.1.2. Comparison of saliency computation methods26

To compare our saliency measures, we tested them against common approaches. In the supple-1

mentary material a comparative evaluation for a watertight pointset is presented against point-based2

models proposed by Guo et al. (2018); Shtrom et al. (2013); Tasse et al. (2015), and in Sec. (3.2),3

a comparative evaluation against a terrestrial point cloud is given. Here, the span of the data over4

a wide region at a lower resolution than that of terrestrial or table scanners, has made point-based5

approaches difficult to apply. To generate comparative evaluations, we examined the application6

of two image-based saliency approaches proposed in Achanta et al. (2008, 2009). One is global7

in nature (Achanta et al., 2009), whereas the second is local (Achanta et al., 2008). The global8

approach estimates the saliency by:9

ζ(x, y) = |z̄µ − ẑσ| (24)

where z̄µ is the mean value of the elevations before Gaussian smoothing, and ẑσ is a band-pass10

filtered version of the elevation map, computed by the difference of (Gaussian) smoothed elevation11

values, i.e., ẑσ = zσ1
− zσ2

, where the ratio of σ1 and σ2 is 1.6. The local approach computes the12
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Figure 7: (a) Saliency estimations based on the different curvature evaluations. The arrows point to regions that are
more salient in the non-parametric evaluation; (b) detection based on respective saliency maps. The arrows point to
regions that are better characterized by the non-parametric based saliency.
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saliency by local difference of sub-regions within the data, i.e.,13

ζi,j = D

[(

1
N1

N1
∑

p=1

zp

)

,

(

1
N2

N2
∑

q=1

zq

)]

(25)

where D is a Euclidean distance function; zq, zp are the elevation values; and N1, N2 are local14

neighborhoods.15

Saliency maps based on each of these methods and the consequent detection are shown in16

Fig. (8.) The global approach, estimated here with four levels of σ (as proposed by the authors)17

results in emphasis on the eastern part on the fan and several sinkholes (Fig. 8a1). This can be18

attributed to their depth, as the saliency here is estimated according to features’ elevation with19

respect to the global one. Deeper entities appear more salient than others. This fact is reaffirmed by20

the detection: deep sinkholes, as well as deeper parts of the gullies, attract the detection towards21

them and are extracted correctly (Fig. 8b1). Yet, the eastern part of the fan is detected as a22

separate region, due to some curvadness of the fan, which truly exists, but is not salient. This23

region overshadows the shallower entities within it, leaving many undetected.24

The second row of Fig. (8) shows the saliency estimations using the local approach (Achanta25

et al., 2008). Here the saliency is estimated locally, based on small neighborhoods, making most26

gullies and sinkholes salient. However, clusters of sinkholes are detected as low saliency regions27

– since they are not salient compared to their immediate surrounding (see white arrows in col.28

(a)). The detection corresponds to that fact and shows that saliency-based extraction detects most1

entities in the scene. However, shallow parts that are close to deeper ones are not detected (yellow2

arrows). Our saliency measure (Sec. 2.1.1) applies a local concept, only instead of changes in3

depth, it measures the variation in both normal direction and curvature. Fig. 8 (third row) depicts1

the proposed saliency estimation and the detected entities using ρ = 4 m and σ = 1.5 m. Here,2

shallow entities are extracted, regardless of their neighboring features (yellow arrows). Note that3

the detection presented here is geometric in nature, as the saliency itself is computed according to4

both normals and convexity values. Additionally, the saliency measures are not binary by nature,5

but rather continuous. Therefore, they reflect locational vagueness, where no sharp boundaries6

exist (c.f., Dilo et al., 2007; Molenaar and Cheng, 2000; Stein et al., 2004) in the transition of the7

embedded features to the surrounding surface. In that respect, the detection phase seeks an optimal8

border in the mathematical/geometrical sense between two homogeneous groups: salient and non-9
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Figure 8: Entities extraction based on saliency estimations in the alluvial fan dataset: Columns: (a) saliency
estimation; (b) detection using the proposed method. Rows:(1) saliency estimated according to global approach
(Achanta et al., 2009) using σ =

1

16
with four levels: σ, 4σ, 6σ, σ; (2) local approach (Achanta et al., 2008), with sub-

region size of 5 m. White arrows mark examples of individual sinkholes that are detected as clusters; (3) proposed
approach (Sec. 2.1.1), with ρ = 4 cm, σ = 1.5 m. The yellow arrows mark examples to shallow entities that are
detected only by the proposed method.

salient. This homogeneity is computed as a deviation from each area’s mean saliency value (Eq. 7),10

and thus may accommodates the vagueness. Finally, we note that the total computation time for1

21
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Precision (%) Recall (%) F1 (%) Jaccard (%)

Achanta et al. (2009) (global) 65 32 43 18
Achanta et al. (2008) (local) 85 84 84 66

Ours 92 100 96 92

Table 1: Performance analysis of different saliency estimations as the driving forces of the detection in the alluvial
fan dataset. The global saliency estimation (Achanta et al., 2009) yielded the lowest F1-score of 43% and the lower
Jaccard-index(18%). Overall, the F1-score and Jaccard-index of the proposed method were decidedly higher than
the other methods (96% and 92%, respectively).

the saliency was 227 seconds. As the code was not optimized, faster runtime would be achieved2

without much effort. This can be useful for other downstream applications based on saliency, such3

as point cloud downsampling, registration, visualization, etc.4

Figure 9: Detection results in the Ze’elim alluvial fan: detected gullies’ banks are marked in blue, while sinkholes
are colored. A recall of 100%, and precision of 92% due to false detection.

Fig. (9) shows the final detection results following the separation of sinkholes from gullies based5

on circularity (Appendix B), removal of shapes that lie within the boundaries of detected gullies,6

and filterization of small segments. Sixty sinkholes were correctly detected as individuals, while7

five local depressions were misidentified. The two dominant gullies were detected in full together8

with the three shallow channels.9

Quantitative analysis shows 92% precision using the proposed saliency as region, compared to10

85% and 65% based on the saliency estimations by Achanta et al. (2008) and Achanta et al. (2009),11

22

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



respectively (Table 1). The recall was lower, as false negatives were detected, which lead to F1-score12

of 96%. In comparison, the local approach by Achanta et al. (2009) reached an F1-score of 84%,13

while the global approach yielded only 43%. Notice that even though Achanta et al. (2008) achieved14

a high F1-score, the delineation accuracy described by the Jaccard-index was lower, reaching a mean15

value of 66% intersection over union. Here, again, the proposed method reached the highest score16

of 92%.17

3.2. Cultural entity detection in terrestrial laser scans18

In addition, we apply of the proposed method on point clouds that were acquired by a terrestrial19

laser scanner in an archaeological setting. Unlike airborne scans, terrestrially acquired point clouds20

document small-sized entities that may differ from the background only by a slight change in the21

geometry. Our evaluation is of an archaeological site, The Leopard Temple, located in the ‘Uvda22

Valley, Southern Israel (lat. 29◦57′, long. 34◦58′). The site, studied in the early 1980’s, is dated to23

7500 BP (based on C14 evaluation) and is considered to have been in use for ~4000 years (Avner,24

2002). In its vicinity lies a unique specimen of 16 animal-like figures, made of small stones affixed25

to the ground, and arranged along a 15 m stretch (Fig. 10). The figures were identified as leopards,26

due to their raised tails and the dark stones that symbolize their spots (Fig. 10a). One figure was27

identified as an antelope.28

The site was scanned as part of a documentation campaign in the ‘Uvda Valley (Arav et al.,29

2016). Scans were acquired by the Leica c10 terrestrial laser scanner and because of technical30

limitations was measured only from a single position. The angular resolution was set to 0.1◦,1

yielding a point cloud of 1,300,000 points, with an average point density of 40 ± 11 pts/cm22

(Fig. 10b). The smallest stones are 1-3 cm long, with a 7 cm space between the stones. The larger3

stones are 10-30 cm long, positioned less than 4 cm apart. Most stones are no more than 2 cm4

above the ground, ranging up to 10 cm, with one reaching 20 cm above the ground. Here we focus5

on a characteristic detail from the entire site, which features 3-10 cm long stones, 1-5 cm high, and6

one exemption, 30 × 20 × 15 cm stone (Fig. 11). Note, the terrain, though flat, is not smooth.7

The surface roughness, calculated by the standard deviation σ of the orthogonal residual distances8

of points to a fitted plane (Mills and Fotopoulos, 2013), was estimated as 0.01 m. This made the9

detection of the site stones a challenge (see also cross-section in Fig. 11).1

Aiming to delineate the stones that compose the leopards and to autonomously produce a2
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Figure 10: The Leopard Temple dataset: a) site map (with permission of Israel Antiquities Authority ©); b) scanned
point cloud. Note the small differences in elevation, making the distinction between entity and background almost
unnoticeable. The rectangle represents the analyzed region.

detailed map similar to that of Fig. (12a), we examine the application of energy-based models.3

First, we test the GAC with the embedded GVF model based on gradient maps. Fig. (12b) shows4

that only several of the larger stones were detected, though mostly inaccurately. As expected,5

the existing forces were insufficient to drive the curve much farther than its initial state. Trying6

to overcome the initialization phase, Filin and Baruch (2010), as well as Rahimi and Alexander7

(2013), proposed to first classify the data into geographic entities (i.e., flat, pit, peak ridge, and8

valley) using a multi-scale approach. Then, the active contour propagates from the convex-hull of9

the class of interest. Our detection concerns ridges since the stones that are laid upon the surface10

are similar to small ridges within the topography. However, it is noticeable that only large and11
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Figure 11: Detail of the Leopard Temple: a) a close look at the analyzed region; b) photograph focusing on the
analyzed region; bottom: cross-section showing the elevation differences.

elongated stones are classified, leaving smaller stones out (Fig. 12c). This is a result of the scale-12

based classification which considers only strong responses in each scale. Though an improvement13

to the use of gradients, they are insufficient for a full description of the site, highlighting again the14

limitations of a bottom-up strategy.1

Turning to saliency-based detection, Shtrom et al. (2013) proposed to measure global and local2

differences of features based on the uniqueness of normals in the immediate surrounding, while also3

assuming that salient regions make nearby areas salient. When this method is applied the stones’4

wider surrounding is emphasized, making it hard to distinguish, and consequently to delineate5

the details (Fig. 12d). Additionally, soil clods are also marked as salient, suggesting the existence6

of bigger entities than in reality. These results do not allow the construction of meaningful cues7

for accurate detection. Next, we evaluate our proposed saliency measures. As previously shown8

(Sec. 3.1), the non-parametric curvature fits better to the current application. Moreover, as the9

entities of interest are stones that form concave shapes on an approximately flat surface, and10

thus will respond better to the non-parametric curvature estimation, which essentially evaluates1
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Figure 12: Application of state-of-the-art detection approaches to the Leopard Temple: a) detail from the site-map;
b) application of GAC with embedded GVF, beginning from a circle at the middle of the point cloud; c) application
of surface classification using Baruch (2011), roughness estimation set to 1 cm; d) application of saliency estimation
as proposed by (Shtrom et al., 2013).

convexity. The neighborhood size is set to 3 cm, in accordance with the minimum object size. It2

should be noted that Shtrom et al. (2013) approach required 157 seconds to complete, while our3

approach needed only 33 seconds.4

Aiming to examine the effect of surface roughness on curvature estimation, we first evaluated5

the curvature without attuning it to surface texture. This led to the modeling of the surface6

roughness and consequently, to the detection of soil clods (Fig. 13a-b). In order to assess the7

contribution of the curvature-based saliency to the detection, we used only curvature (Eq. 3) for8

the saliency estimation and consequent detection, at an effective distance of ρ = 7 cm (according9

to space between stones), and σ = 2.3 cm. We then applied the detection using the homogeneity10

criteria (Eq. 9). The results show that the saliency-based analysis eliminated some of the soil clods1
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(Fig. 13c-d). However, a few clods still remain, in addition to noisy contours and clusters of stones.2

Figure 13: Non-parametric curvature computed with a neighborhood of 3 cm and consequent detection, using
homogeneity criteria: a) non-parametric curvature estimation without roughness considerations and b) consequent
detection based solely on curvature saliency; c) non-parametric curvature attuning for surface roughness, as proposed
in Sec. (2.2); (d) consequent detection based solely on curvature saliency.

An addition of the normal-based saliency (Eq. 2) by using Eq. (4) yielded a result that empha-3

sizes the leopard stones while suppressing ground-related regions (Fig. 14a). This is a direct result4

of the normal-based analysis. Since the normal changes only slightly at the presence of soil clods, it5

suppresses the salient signature produced by the change in curvature. Furthermore, the addition of6

normal-based saliency accentuates the boundaries of the stones so that a better separation between7

them is achieved. This response is similar to the one seen in the alluvial fan example (Fig. 7),8

where incorporating normals enabled a better characterization of fine details, highlighting the value9

of the proposed saliency map. The distinctness in relatively convex-wise homogeneous regions is10

improved by the combination of normal- and curvature-based saliency.11
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Figure 14: Saliency and detection results in the Leopard’s Temple dataset: a) saliency-based on both normals and
non-parametric curvature (with surface roughness considerations); and b) detection using the proposed method,
setting the effective distance to 7 cm.

4. Conclusions12

This paper presented a new method for visual saliency based detection model in 3D point13

clouds of open terrain. The proposed model, driven by homogeneity criteria, extracts a variety14

of smooth and continuous entities. Utilizing a new point-based visual saliency, which encapsulates15

geometric cues, we enable a direct extraction of entities from the data, without the need to reach16

optimal classification. We show that the proposed saliency measure marks regions of interest17

even in relatively smooth scenes while maintaining high performance and response to cluttered18

environments. Additionally, we evaluate the utility of numeric, parametric, and non-parametric19

methods for curvature computation, while analyzing their significance over surface texture. We show20

that of the three, the non-parametric representation of the surface, which involves only summation1

of the neighboring point projections, is most suited for saliency estimation.2

Contrasting existing detection methods, the proposed model is not object-specified. It does3

not require an approximate initialization, a massive training dataset, or predefinition of geometric4

features. The extracted entities presented in this paper were acquired with different laser scanning5

techniques, wore linear and closed-shaped forms, have risen above the surface or laid below it,6

and were spread over a few centimeters or a few meters. All these point to the flexibility of7

the proposed model. Furthermore, results show localization of high level, which allows accurate8

detection of the phenomena borders, with a 92% Jaccard-score. The results show 96% F-1 score9

for detecting geomorphological entities. Compared to current variational detection models, our10
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method facilitates a high extraction rate both in terrestrial and airborne scans of both natural11

and cultural entities with widths that range from a few centimeters to a few meters. Moreover,12

the scheme developed here was carried without imposing any shape constraints on the extracted13

contour shapes. Therefore, the application of the proposed method on other geomorphological14

entities, such as coastal dunes or snow landscapes, would be of interest in future research. Besides15

its direct application for detecting smoothly embedded and confined entities in open terrain, and16

as it requires no prior information for the extraction, the proposed method opens a new avenue for17

large scale detections, where it can be utilized as the initial engine to establish a labeled benchmark18

for complex entities in non-trivial applications.19
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Appendix A. Direct computation of surface normal7

We take advantage of the fact that a closed form solution exists to the third degree characteristic8

polynomial, and instead of applying a general computation of the roots, we compute the eigenvalues9

as follows (Kopp, 2008):10

λ1 = µ + 2ν · cos θ

λ2 = µ + 2ν · cos (θ + 120◦)

λ3 = 3µ − λ1 − λ2

(A.1)

where:11

µ =
1
3

tr (C)

ν =

√

√

√

√

tr
(

(µ · I − C)2
)

6

θ =
1
3

cos−1

(

det

(

C − µI

2ν

))

(A.2)

and I is a 3 × 3 identity matrix. As our interest is only in v3, we compute it directly as the cross-12

product between two rows of C − λ3I, further reducing the runtime. The small set of computations13
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readily lends itself to parallel computation of the normals for the whole point set, as was done in14

the present case.726

Appendix B. Separation of sinkholes from gullies727

To signal out sinkholes we follow Filin and Baruch (2010), who proposed simple and efficient

measures to reflect the circular 2-D shape and the concave 3-D form of the sinkholes, with respect

to the surrounding surface. Each of the extracted contours is evaluated according to the entrapped

area (A) and the shape compactness (C),

A =
1
2

∥

∥

∥

∥

∥

n
∑

i=1

xi (yi+1 − yi−1)

∥

∥

∥

∥

∥

(B.1)

C =
ℓ2

4πA
(B.2)

with n the number of boundary points; xi, yi, their coordinates; and ℓ, the perimeter. The area728

evaluation ensures that contours did not collapse unto themselves. Boundary and compactness729

measures similarity (and deviation) of the outer shape to circular form, which sinkholes tend to730

exhibit. The 3-D shape is evaluated by analyzing how detected sinkholes are embedded in their731

surroundings. This test is performed by fitting a local bi-quadratic surface (Eq. 17) to the points732

surrounding the sinkhole and comparing the relative depth of each inner point to the adjusted733

surface. As sinkhole points can be regarded as surface anomalies, the fitted surface is expected to734

“fail” in predicting their actual height. For “false” detections, which exhibit no anomalous surface735

behavior, the deviations are expected to have a relatively small predication error. To normalize the736

deviation error with respect to the varying sinkhole size, the mean difference, δ̄ , is estimated737

δ̄ =

n
∑

i=1

(

zadjusted
i − zmeasured

i

)

n
(B.3)

where zadjusted
i the adjusted surface height, zmeasured

i the original measured height, and n the738

number of points. For actual sinkholes, the adjusted surface should be relatively flat and the739

majority of points lying underneath. Candidates with mean difference close to zero either alter signs740

(cancels the relative difference), or have an indistinct depth relative to the surrounding surface.741
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