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Abstract

Empirical integral transform methods are powerful yet relatively little-known tools of
statistical inference. They offer a framework for designing estimators and tests in para-
metric and non-parametric settings. The procedures typically rely on a distance measure
between the transform of a model and its empirical counterpart, or employ empirical ver-
sions of some unique transform properties that hold under null hypotheses.

This work advances parametric estimation of probability distributions using their Laplace
transforms and characteristic functions. Specifically, differential equations satisfied by
the transforms are used to construct estimators that are both robust and explicit, while
retaining comparatively high efficiency - a rare feature among diverse types of existing
estimators. A method is presented for deriving the equations, enabling applications to
distributions with intractable transform expressions.

The main analytical effort lies in establishing the asymptotic normality and robustness
theory of the proposed estimators, with robustness examined through influence functions.
Expressions for asymptotic covariance matrices and influence functions often involve in-
tricate integrals, which appears to be the cost for achieving explicitness in the estimators
themselves.

The thesis places equal emphasis on empirical evidence. Extensive simulations are con-
ducted to compare the proposed estimators with popular robust and non-robust tech-
niques. Various distribution types are considered, including symmetric and skewed ones,
with light and heavy tails, further in the presence of outliers and model misspecifications.
The combination of experiments and theoretical analysis reveals a crucial finding: an
optimal trade-off between efficiency and robustness of the estimators, along with their
numerical reliability, can be consistently achieved by pre-estimating the scale of the es-
timators’ weight function from the sample. The author contends that this aspect has
been overlooked in early constructions of transform-based and other minimum distance
estimators relying on weighted integrated distances.

The transform methods, especially based on the differential-equations, moreover en-
able inference for a variety of non-standard distributions. Prominent instances include
mixed, compound, and non-normalized distributions encountered across diverse appli-
cation fields. In addition, families of distributions, such as the Pearson or Katz family,
are often characterized by differential equations, either in the variable’s or transform do-
mains. Therefore, the presented methods support estimation and identification within
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entire families. While non-standard models and the families are not our primary fo-
cus, numerous examples are given to demonstrate a wider spectrum of applications and
motivate further research.

A separate chapter is dedicated to goodness-of-fit testing, introducing a novel test for
the log-normal distribution based on the Laplace transform. In particular, the proce-
dure utilizes a functional differential equation satisfied by the transform. The test com-
pares well in terms of power with several famous tests (e.g., Shapiro-Wilk, Jarque-Bera,
Anderson-Darling). Importantly, it tends to be uniformly powerful across distributional
alternatives and remains quite stable concerning its tuning parameter’s value. Aspects
such as consistency, asymptotic distribution of the test statistic, and bootstrap-based
determination of critical points, are addressed.



Kurzfassung

Empirische Integraltransformationstechniken sind leistungsstarke, jedoch vergleichswei-
se wenig bekannte Werkzeuge der statistischen Inferenz. Sie bieten einen Rahmen für
die Entwicklung von Schätzern und Tests in parametrischen und nicht-parametrischen
Szenarien. Die Verfahren stützen sich in der Regel auf ein Distanzmaß zwischen der
Transformation eines Modells und ihrer empirischen Entsprechung oder verwenden em-
pirische Versionen einiger Transformationseigenschaften, die unter der Nullhypothese
gelten.

Diese Arbeit zielt darauf ab, die parametrische Schätzung voranzutreiben, indem sie spe-
ziell die Differentialgleichungen nutzt, die von den Transformationen von Wahrschein-
lichkeitsverteilungen erfüllt werden, insbesondere der Laplace-Transformation und der
charakteristischen Funktion. Der Ansatz liefert Schätzer, die sowohl robust als auch ex-
plizit sind und dabei eine relativ hohe Effizienz beibehalten - eine seltene Eigenschaft
unter verschiedenen Arten von bestehenden Schätzern. Es wird eine Methode zur Ablei-
tung der Gleichungen präsentiert, die Anwendungen auf Verteilungen ermöglicht, deren
Transformationen keine Ausdrücke in geschlossener Form aufweisen.

Unser primärer analytischer Fokus liegt darauf, die asymptotische Normalität und Ro-
bustheitstheorie der vorgeschlagenen Schätzer zu etablieren, wobei die Robustheit durch
Einflussfunktionen untersucht wird. Ausdrücke für asymptotische Kovarianzmatrizen
und Einflussfunktionen beinhalten oft aufwendige Integrale, was als Preis für die Ex-
plizitheit der Schätzer selbst erscheint.

Die Dissertation legt gleichen Wert auf empirische Evidenz. Umfangreiche Simulatio-
nen werden durchgeführt, um die Leistung der vorgeschlagenen Schätzer mit bekannten
robusten und nicht-robusten Schätztechniken zu vergleichen. Verschiedene Verteilungsty-
pen werden berücksichtigt, darunter symmetrische und schief verteilte, mit leichten und
schweren Rändern, außerdem in Anwesenheit von Ausreißern und bei Modellspezifikati-
onsfehlern. Die Kombination von Experimenten und theoretischer Analyse enthüllt eine
wichtige Erkenntnis: Ein optimaler Ausgleich zwischen Effizienz und Robustheit sowie
die numerische Zuverlässigkeit der Schätzer können durch vorherige Schätzung der Ska-
lierung der Gewichtsfunktion der Schätzer konsequent erreicht werden. Der Autor räumt
ein, dass dieser Aspekt bei früheren Konstruktionen von transformationsbasierten und
anderen Minimum-Abstands-Schätzern, die auf gewichteten integrierten Abständen be-
ruhen, übersehen wurde.
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Die Transformationsmethoden, insbesondere jene, die auf Differentialgleichungen basie-
ren, ermöglichen zudem Schlussfolgerungen für verschiedene weniger gebräuchliche Ver-
teilungen. Prominente Beispiele umfassen gemischte, zusammengesetzte und nichtnorma-
lisierte Verteilungen, die in verschiedenen Anwendungsbereichen vorkommen. Darüber
hinaus werden Verteilungsfamilien wie die Pearson- oder Katz-Familie oft durch Diffe-
rentialgleichungen charakterisiert, entweder im Verteilungs- oder im Transformationsbe-
reich. Daher unterstützen die vorgestellten Methoden Schätzungen und Identifikationen
innerhalb ganzer Familien. Obwohl nicht-standard Modelle und Familien nicht unser
Hauptaugenmerk sind, werden zahlreiche Beispiele präsentiert, um ein breiteres Anwen-
dungsspektrum zu veranschaulichen und weitere Forschung zu motivieren.

Ein eigenes Kapitel ist Anpassungstests gewidmet und führt einen neuartigen Test für
die log-normale Verteilung ein. Dieser Test schneidet in Bezug auf die Teststärke gut ab
im Vergleich zu mehreren etablierten Tests (z. B. Shapiro-Wilks, Jarque-Bera, Anderson-
Darling). Besonders wichtig ist, dass er dazu neigt, gleichmäßig leistungsstark über ver-
schiedene Verteilungsalternativen zu sein und stabil in Bezug auf den Wert seines Ein-
stellparameters bleibt. Aspekte wie Konsistenz, asymptotische Verteilung und bootstrap-
basierte Bestimmung von kritischen Werten werden behandelt.
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CHAPTER 1
Introduction

Let (Ω, F , Pθθθ) be a family of probability spaces indexed by a vector of parameters
θθθ ∈ ΘΘΘ ⊆ R

p. Let X be a random variable defined on one (but unspecified) member of
this family, described by the distribution function Fθθθ(x) = Pθθθ(X ≤ x).

One of the fundamental goals of mathematical statistics is to estimate θθθ from a random
sample X1, ..., Xn of independent copies of X, assuming a specific distribution1. This
is accomplished by computing a statistic �θθθn = Tn(X1, ..., Xn), called an estimator of θθθ.
A closely related question involves determining whether a sample X1, ..., Xn stems from
a member of the postulated distributional family Fθθθ(x) for some θθθ ∈ ΘΘΘ. Testing such
a hypothesis is referred to as a goodness-of-fit test (GoF). In practice, the test often
includes the estimation of θθθ because its value is unknown a priori.

Many methods for deriving estimators rely on the aforementioned distribution function
or the associated density fθθθ(x). Specifically, the maximum likelihood estimator (ML) is
the value of parameter that maximizes the joint density of an i.i.d. sample, that is

�θθθ ML

n = argmax
θθθ ∈ΘΘΘ

n(
j=1

fθθθ(Xj)

= argmax
θθθ ∈ΘΘΘ

n1
j=1

log fθθθ(Xj) . (1.1)

1The mode of statistical inference in which a parametric model of a distribution (or other function
of data) is assumed to be known before estimation is termed the Fisherian paradigm, due to the famous
British statistician R.A. Fisher (1890-1962). In turn, the paradigm that treats the parameters as con-
stants is referred to as frequentism, contrasting with the Bayesian paradigm that treats them as random
variables. While this thesis avoids delving into the philosophical foundations of statistics, it is crucial
to clarify that our work is exclusively embedded within the Fisherian and frequentist paradigms. For
in-depth comparisons of these and other paradigms see Barnett (1999) or Spanos (2019).
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1. Introduction

In turn, the minimum distance estimators (MD) are constructed as minimizers of var-
ious integral divergences involving Fθθθ(x) or fθθθ(x) and their non-parametric estimates,
denoted by �Fn(x) and �fn(x); see Cao et al. (1995), Henze and Klar (2002), Scott (2001)
or Basu et al. (2011). One well-known example of this class is the minimum Cramér-von
Mises distance estimator expressed as

�θθθ CM

n = argmin
θθθ ∈ΘΘΘ

� �
Fθθθ(x) − �Fn(x)

�2
dFθθθ(x) , (1.2)

where �Fn(x) = 1
n

2n
j=1I(Xj ≤ x) represents the empirical distribution function. Other

types of the distribution-based estimators encompass the maximum spacing estimators,
introduced by Ranneby (1984), and estimators the leverage certain distributional char-
acterizations, see e.g. Betsch et al. (2021).

Yet other popular estimators rest on partial characteristics of the distributions. For
example, the method-of-moments estimator (MM), denoted by �θθθ MM

n , is defined as the
parameter value that equates the first p theoretical and sample moments of X. That is,�θθθ MM

n is the solver of ����������������

Eθθθ[X] =

�
x dFθθθ(x) =

1

n

n1
j=1

Xj ,

...

Eθθθ[Xp] =

�
xp dFθθθ(x) =

1

n

n1
j=1

Xp
j ,

(1.3)

where p = dim(θθθ). Extensions and modifications of this approach, including the general-
ized method of moments and probability-weighted moments, as well as similar techniques
matching the quantiles have been developed, especially in econometrics and risk man-
agement; see, e.g., Hansen (1982), Hosking et al. (1985), Hosking and Wallis (1987),
McNeil et al. (2015).

All the distribution-based estimators come with their pros and cons in terms of precision
(bias and variance), robustness, and computational costs. For example, the ML estima-
tors are often preferred for their asymptotic optimality and, quite frequently, for their
explicit expressions. The MM estimators, while also often explicit, tend to have higher
variances and be less efficient asymptotically. In contrast, the MD and quantile-based
estimators are nearly never explicit and necessitate numerical procedures. However, they
are typically robust against data contamination and outliers.

An alternative and fairly general estimation method, being subject of this thesis, is
offered by integral transforms of the probability distributions. Such (parametric) trans-
forms are defined generally through the following Lebesque-Stieltjes integral:

Tθθθ(s) =

�
K(s, x)dFθθθ(x) , (1.4)
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where K(s, x) is a real or complex-valued kernel, and s is the transform variable. The
interval of s-values D ⊆ R for which the integral converges (i.e. is finite) is called the
interval of convergence.

The three most popular choices for the kernels are

• K(s, x) = e−sx, yielding the Laplace transform (LT);

• K(s, x) = eisx, (i2 = −1), yielding the characteristic function (CF);

• K(s, x) = sx, yielding the probability generating function (PGF).

These three transforms2 are primarily powerful tools in probability theory, each with
slightly different domain of application3. Firstly, as known from probability textbooks,
they are used to prove fundamental convergence theorems for sums of random variables;
see e.g. Feller (1968) and Feller (1971). Secondly, they aid in solving diverse distribu-
tional problems that arise in the algebra of random variables, as seen in Springer (1979),
and in more complex stochastic models such as counting, compound and mixed distri-
butions, queueing systems, flow-graphs, and risk models. Numerous related references
include Cox (1970), Kleinrock (1975), Kleinrock (1976), Prabhu (1980), Grandell (1997),
Rolski et al. (1999), Huzurbazar (2005) or Trivedi (2016). Noteworthy applications can
also be found in the field of mathematical statistics. Specifically, the famous saddle-
point approximation, which provides approximations for distributions of estimators and
test statistics in finite samples, is based on LT; see Field and Ronchetti (1990) or Butler
(2007). In turn, CF, in form of the Fourier transform, enables the spectral analysis of
time series; see, e.g., Box and Jenkins (1970), Madsen (2007).

In all these applications, the transforms play a highly important yet auxiliary role. How-
ever, in this thesis, we employ the transforms as the direct tool of statistical inference. To

2Note that the transform qualitatively identical with LT (with kernel K(s, x) = esx) is referred to in
the literature as the moment generating function (MGF). In turn, the transform with K(s, x) = e−isx

is widely known in probability and engineering as the Fourier transform. Also, any r-th raw moment
of a random variable X also fits within the framework of transforms with kernel K(r, x) = xr. Putting
r = s ∈ R gives the Mellin transform, applied in studying products of independent random variables; see
Springer (1979). Transforms with non-exponential kernels, such as the Hilbert or Laguerre transform,
are covered in Ditkin and Prudnikov (1965), Sumita and Kijima (1988) and Poularikas (2010).

3As discussed in more detail later, the CF is the most universal transform, existing for any distribution
for all s ∈ R. In contrast, the LT and PGF, used for either continuous or discrete distributions, have
typically a restricted interval of existence or even may not exist for some two-sided distributions with
heavy tails, e.g. the Cauchy distribution. Interested readers are referred to excellent sources on theory
of these three integral transforms that go beyond the scope of this thesis, including Widder (1959),
Feller (1968), Lukacs (1970), Feller (1971), Kawata (1972), Ushakov (1999), Abate and Whitt (1996). A
large body of literature is devoted to the important problem of transform inversion; for a comprehensive
overview see Cohen (2007), and for applications in probability refer to Abate and Whitt (1992) and
Abate and Whitt (1995).
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1. Introduction

achieve this, the notion of an empirical integral transform of a probability distribution
is required. Given a random sample (X1, . . . , Xn), it is defined as

�Tn(s) =

�
K(s, x)d �Fn(x) =

1

n

n1
j=1

K(Xj , s) , (1.5)

being a non-parametric and unbiased estimator of the model version (1.4).

With the model transform and its empirical counterpart, the transform-based estimator
of a distribution parameter θθθ is defined, in its most general form, as

�θθθ T

n = argmin
θθθ ∈ΘΘΘ

ρ
�
Tθθθ(s), �Tn(s)

!
, (1.6)

where ρ(·, ·) �→ R
+
0 is a suitable divergence measure in s-domain. This measure can be

computed over an interval of D (as an integral) or over a finite grid of points s1, ..., sk ∈ D
(as a sum).

Statistical problems that motivate the transform-based estimators include (but are not
limited to) the three following situations:

1. The density and/or distribution function is unknown but, instead, the correspond-
ing transform is available. This commonly arises in financial and actuarial statis-
tics, particularly with stable and compound distributions. Relevant estimators
were developed, among others, by Press (1972), Paulson et al. (1975), Koutrouvelis
(1980), Csörgő (1984), Epps and Pulley (1985), Koutrouvelis and Meintanis (2002),
Braun et al. (2008), Marcheselli et al. (2008) and Van Zyl (2016).

2. The density is known but the likelihood has singularities and the ML estimator
breaks down. The best known example of this situation occurs in estimating
finite mixtures of Gaussian distributions; see Quandt and Ramsey (1978), Schmidt
(1982), Titterington et al. (1985), Besbeas and Morgan (2003) and Xu and Knight
(2011) for several variants of transform-based estimators proposed in this scenario.

3. The support of the distribution depends on the estimated parameter. In this case
the ML estimator may not be asymptotically optimal whereas the MD estima-
tors, like (1.2), are hard to implement due to unknown limits of integration; see
Koutrouvelis and Canavos (1997) and Koutrouvelis et al. (2005).

1.1 Motivation and objectives of the thesis

Naturally, the transform-based estimators also apply to the standard distributions for
which the traditional approaches (likelihood-, moment- and quantile-based) are fully fea-
sible. One motivating factor is their robustness to outliers. As a result, researchers have
examined this quality and others in more general settings, by considering the type of
transform (LT/CF/PGF) and functional forms of the divergence ρ(·, ·); see Heathcote
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1.1. Motivation and objectives of the thesis

(1977), Feuerverger and McDunnough (1984), Campbell (1993) and Jiménez-Gamero et al.
(2016) for the CF- and LT-based estimators, and Chergui (1996), Dowling and Nakamura
(1997), Sharifdoust et al. (2016), Jiménez-Gamero and Batsidis (2017) and Hołyński
(2019a) for the PGF-based ones.

However, a wider use of the transform-based estimators seems to inhibited by compu-
tational problems which we now explain. Namely, most of them (considered so far in
literature) have form of weighted L2-type estimators that can be written as

�θθθ T

n = argmin
θθθ ∈ΘΘΘ

�
D′

333Tθθθ(s) − �Tn(s)
3332dW (s) , (1.7)

where D′ ⊆ D and W (s) is a weight function that makes the integral finite and controls
the estimator’s properties. Note that very rarely this L2 distance is explicitly computable
so that the estimates (as the minimizers) could be obtained in closed forms. The problem
is even worse when the transform itself has no tractable analytical expression. And this
happens quite often, for example for the popular distributions with non-exponential
tails like Pareto, Weibull, Fréchet or log-normal, which have intractable LT and CF; see,
e.g., Nadarajah and Kotz (2006), Penson and Górska (2014) or Asmussen et al. (2016).
Computing the estimates turns then into an intensive and nested procedure, in which
both the transform and the distance must be computed by numerical integrations for
every iteration of the optimization loop. All this makes the estimators of type (1.7)
computationally demanding, prone to numerical errors (particularly at the boundaries of
the parameter space and/or in the presence of outliers), difficult to re-sample (whether
for bootstrap or jacknife) or and challenging to simulate extensively by Monte Carlo
method.

The computational efforts may be smaller if for W (s) we take a stepwise function
mapping D′ to [0,1] and having k (equal or unequal) steps at several points s1, ..., sk.
Then, (1.7) becomes a weighed least-squares type estimator. In addition, if one takes
k = p = dim(θθθ), computation of �θθθ T

n reduces to solving for θθθ the system of equations����
Tθθθ(s1) = �Tn(s1) ,
...

Tθθθ(sp) = �Tn(sp) .

(1.8)

The resultant M-estimator can be called the transform-matching estimator since it
matches (equates) the model- and the empirical transform at a set of points. How-
ever, even if a tractable expression for the transform is available, then, typically, the
above system also requires a numerical solution due to non-linearity of Tθθθ(s) in θθθ.

One of the main goals of this thesis is to alleviate these computational problems by
developing transform-based estimators which admit explicit expressions for a wide range
of standard and derived distributions. For this purpose, instead of using the direct L2

distances as in (1.7), we base the estimators on differential equations satisfied by specific
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1. Introduction

transforms. To illustrate the approach, suppose that a transform satisfies the first-order
differential equation

Tθθθ(s) + h(θθθ, s)T ′
θθθ (s) = 0 , (1.9)

where T ′
θθθ (s) denotes derivative w.r.t. to s and h(θθθ, s) is a known function. Replac-

ing the transform and the derivative by their sample versions, �Tn(s) and �T ′
n(s) =

1
n

2n
j=1K ′(Xj , s), we obtain �Tn(s) + h(θθθ, s) �T ′

n(s) ≈ 0. The L2 estimator may be now
defined as the minimizer of the left side of such empirical differential equation, namely

�θθθ T

n = argmin
θθθ ∈ΘΘΘ

�
D′

333 �Tn(s) + h(θθθ, s) �T ′
n(s)

3332dW (s) . (1.10)

Thanks to the differential equation the possibly complicated or unavailable expression
for Tθθθ(s) is not needed any more. Inference about the parameter is now conducted solely
through the function h(θθθ, s) - typically having a simpler form. Moreover, if h(θθθ, s) is a
linear function of the elements of θθθ, or it is a quotient of such functions, then, upon ap-
propriate choice of W (s), the estimator admits explicit formulas. Similar considerations
hold for the ’transform-matching’ version of (1.10), that is for the M-estimator defined
by

����
�Tn(s1) + h(θθθ, s1) �T ′

n(s1) = 0 ,
...�Tn(sp) + h(θθθ, sp) �T ′

n(sp) = 0 .

(1.11)

It should be acknowledged that the use of differential equations of transforms is not novel
in statistical applications. For example, the integrated statistics based on such equa-
tions have already been used in several goodness-of-fit tests, as seen in Henze and Klar
(2002), Henze et al. (2012), Batsidis et al. (2020) and Goffard et al. (2022). Also, esti-
mating equations of type (1.11), employing PGF as the transform, have been proposed
in Kemp and Kemp (1988) and Dowling and Nakamura (1997) for the estimation of dis-
crete distributions. However, the two latter papers are rather limited in studying the
estimators’ properties and simulations. Importantly, they did not cover the general case
of (1.10) with continuous weight function W (s). Notably, there has been neither follow-
up research concerning continuous distributions in terms of LTs and CFs, which we focus
on in the present work.

An important contribution of this thesis also lies in how the differential equations (and,
consequently, the estimators) are derived. All the papers cited herein utilized the differ-
ential equations only for distributions with explicitly known transforms, often expressed
in terms of elementary functions. In those cases, the equations could readily be found
by differentiating the transform expression w.r.t. s. But, among the continuous distri-
butions, this is possible only for several such as the normal, Cauchy, gamma, inverse
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1.1. Motivation and objectives of the thesis

Gaussian and logistic distributions. Here we go beyond this limited collection. Moti-
vated by the proof in Gaunt (2021)4, we present a method for deriving the equations
when transform expressions are unknown in closed forms, such as those for beta of 1st
and 2nd kind, Pareto, Rayleigh, Maxwell and distributions of the inverted variables.
Equations obtained using this method can have order higher than one, may involve
more than two derivatives, and may be non-homogenous. To apply these equations for
statistical purposes, we must examine uniqueness of their solutions, as this aspect will
condition consistency of the resulting estimators and tests.

The primary focus of this thesis is on continuous distributions estimated or tested using
LTs and CFs. Due to space limitations, we do not cover inference for the discrete laws
by means of the PGF transform. Nevertheless, it is worth emphasizing that during
preparatory research some PGF-based estimators were also derived and demonstrated
promising results in simulations. Besides, one should keep in mind that a PGF-based
differential equation (if available) can be converted into the LT- or CF-based forms, by
applying the change of variables s = e−z or s = eiz. Thus, the presented theory extends
to discrete scenarios as well.

The main analytical effort of the work is to prove the consistency and asymptotic nor-
mality of the new estimators in the L2 settings. The proofs require asymptotic results
from the theory of V- and U-statistics. Upon obtaining the asymptotic variances or co-
variance matrices of the estimators, we can compute their asymptotic relative efficiencies
w.r.t. to the ML and other estimators.

Our second motivation for pursuing the new estimators is their robustness to outliers.
We will derive their influence functions which are the most popular theoretical measures
of robustness; see Hampel et al. (1986), Jurečková et al. (2019). Despite being in com-
plicated integral forms, these functions exhibit a crucial characteristic - they decay to
zero at infinity. This feature is ideally required for robust estimators. In contrast, the
influence functions of the already studied transform-based L2 estimators of type (1.7)
are bounded but do not fall to zero at infinity, as shown by Campbell (1993).

Having obtained the influence functions, we can study the robustness-efficiency trade-
offs of the proposed estimators. Interestingly, we discover that, for specific distributions,
their high robustness can be often coupled with significant efficiency. However, achieving
this desired quality uniformly across the parameter space requires the weight function
W (s) to be driven by the sample. We discuss how to control this function by pre-
estimating its scale parameter. In the author’s view, the necessity of the data-driven
tuning of the transform-based estimators was possibly overlooked in the early studies
such as Heathcote (1977) or Campbell (1993). Our objective is to investigate thoroughly
this issue by both analysis and simulation.

An important yet often neglected practical aspect of parameter estimators is their be-
havior under model misspecification. This occurs when estimation is performed despite

4Available as preprint since December 2019.
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1. Introduction

the assumed distribution Fθθθ(x) is different from the true one that generates the sam-
ple. Unfortunately, assessing the impact of wrong assumptions in analytical way is very
hard, except for simple functionals like the sample mean or median. Also in our case the
complexity of the proposed estimators precludes such analyses, even in the asymptotic
conditions. We therefore resort to Monte Carlo simulations to examine performances
under misspecification.

Goodness-of-fit testing

The latter, shorter portion of the thesis is devoted to goodness-of-fit (GoF) testing. The
classical GoF tests utilize the distribution function Fθθθ(x) = F (x|θθθ). The test statistic,
say Tn, takes usually the form of a divergence between the empirical distribution �Fn(x)
and its parametrically estimated version F (x|�θθθn), where �θθθn is a consistent estimator of
the parameter. A large realized value of Tn rejects the hypothesis that given sample
originates from F (x|θθθ); see D’Agostino and Stephens (1986) and Thas (2010).

The three most popular distribution-based GoF procedures are the Kolmogorov-Smirnov
(KS), the Cramér-von Mises (CM) and the Anderson-Darling (AD) tests. Their test
statistics are given by

T KS
n = n sup

x

333F (x|�θθθn) − �Fn(x)
333 , (1.12)

T CM
n = n

� �
F (x|�θθθn) − �Fn(x)

�2
dF (x|�θθθn) , (1.13)

T AD
n = n

�
[F (x|�θθθn) − �Fn(x)]2

F (x|�θθθn)[1 − F (x|�θθθn)]
dF (x|�θθθn) . (1.14)

The transform-based GoF tests, like the transform-based estimators, employ either the
direct L2 distances or the L2 norms of the empirical differential equations. That is, the
normalized test statistics are

Tn = n

�
D′

333T (s|�θθθn) − �Tn(s)
3332dW (s) , (1.15)

or, for example,

Tn = n

�
D′

333 �Tn(s) + h(�θθθn, s) �T ′
n(s)

3332dW (s) . (1.16)

The role of the weight function W (s) in the testing context is to control the power of the
procedure against specific distributional alternatives. In case of using LT and CF, the
choice of W (s) relies on the well-known Tauberian theorems saying that the behavior
of the transform T (s) as s → 0 reflects that of F (x|θθθ) as x → ∞, and vice versa. In
addition, W (s) should be chosen so that Tn has a closed-form expression.
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1.1. Motivation and objectives of the thesis

The transform-based tests serve as flexible omnibus procedures and have already been
proposed for many continuous and discrete laws. The CF-based tests, utilizing the statis-
tic of type (1.15) trace back to the normality test by Epps and Pulley (1983). Later,
Gürtler and Henze (2000), Matsui and Takemura (2005) and Pudełko (2012) continued
the approach to test the Cauchy hypothesis, while Epps (2005) and Jiménez-Gamero et al.
(2009) extended the method to various location-scale families, incorporating distributions
such as exponential, uniform, Laplace, logistic, and extreme-value. Along the same lines,
tests have beed constructed using LT, basing either on (1.15) or on (1.16), for the fol-
lowing distributions: normal by Zghoul (2010) and Henze and Koch (2020), exponential
by Baringhaus and Henze (1991) and Henze (1992), inverse Gaussian by Henze and Klar
(2002), gamma by Henze et al. (2012) and continuous compound Poisson by Goffard et al.
(2022). Additionally, the PGF-based tests with (1.15) or (1.16) were developed by
Rueda et al. (1991), Baringhaus and Henze (1992), Meintanis (2003), Meintanis (2008),
Jiménez-Gamero and Alba-Fernández (2019) and Batsidis et al. (2020) for the following
discrete laws: Poisson, generalized Poisson, negative binomial, Poisson-Tweedie and Bell.

Simulations conducted in the mentioned papers show that, very often, the empirical
power of the transform-based tests is higher than that of the KS, CM or AD counter-
parts. Encouraged by this fact, we also develop a new LT-based test for the log-normal
distribution. Its density is expressed by

fθθθ(x) =
1√

2πσx
exp

�
− (log x − µ)2

2σ2

$
, x, σ > 0, µ ∈ R, (1.17)

where θθθ = (µ, σ)⊤ stands for the mean and standard deviation of the underlying normal
variable.

This test has been hindered by the absence of tractable expression for the associated
LT or CF; see Asmussen et al. (2016). In fact, our test exploits a functional differential
equation satisfied by the transform, which may be written in general as

Tθθθ(s · g(θθθ, s)) + h(θθθ, s)T ′
θθθ (s) = 0 . (1.18)

Equations of this form are obviously not in the class of ordinary differential equations
which we will use to obtain the estimators. In particular, Leipnik (1991) showed that
for the log-normal distribution the LT of (1.17) satisfies

L(seσ2

) + exp{−µ − σ2/2}L′(s) = 0 , (1.19)

and so h(θθθ, s) = e−µ−(σ)2/2 and g(θθθ, s) = eσ2

.

The proposed procedure is based on the weighted L2 statistic of the type (1.16) that
employs sample version of (1.19) and is derived in a closed form. We discuss the aspects
of the test including consistency, distribution of the statistic under null-hypothesis and
bootstrap-based estimation of the critical points. We conduct finite-sample simulations
where we compare it with the CM and AD tests as well with the famous Shapiro-Wilk
and Jarque-Bera tests for normality applied to log-transformed samples.
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1. Introduction

1.2 Organization of the thesis

The remainder of the thesis consists of five chapters, structured as follows. Chapter
2 provides an overview analytical and stochastic properties of LT and CF and their
empirical counterparts. While this constitutes a broad subject, we focus only on the
properties relevant to statistical inference. The chapter also includes a brief introduction
to robustness and influence functions in the context of transform functionals.

The subject of Chapter 3 is differential equations satisfied by LTs and CFs of various
probability distributions. This chapter explains how to derive the equations for particular
standard distributions, with special attention given to cases where the transforms are not
known explicitly. The aforementioned alternative method of differentiation, necessary to
handle these cases, is described and illustrated. Subsequently, the chapter addresses the
requirements related to the uniqueness of solutions for the equations, which, in a slightly
different manner, govern the consistency of resulting estimators and goodness-of-fit tests.
Finally, the chapter explores several examples of non-standard (mixed and compound)
distributions to demonstrate the applicability of the differential equation approach in
broader modeling contexts.

Chapter 4 first deals with the asymptotic and robustness theories of the proposed L2

estimators. The related theorems, which prove the asymptotic normality (with specific
forms of covariance matrices) and establish the influence functions, pertain to three
specific forms of the differential equations of LTs and CFs. In the remaining and most
extensive portion of the chapter, we apply the theory to the estimators derived for
five standard distributions (normal, exponential, Rayleigh, gamma, Pareto) and one
mixed distribution (normal variance-gamma). These distributions are carefully selected
to cover: (i) estimators based on all the three forms of differential equations considered
in the proofs, (ii) various families of distributions, including two two-sided location-
scale family, two one-sided scale families, and two one-sided scale-shape families, (iii)
distributions whose transform is known explicitly and/or given through its differential
equation, (iv) a distribution whose density is unknown but the associated transform is
available, and (v) robustness against two kinds of outliers (large and small). Closed-form
expressions are derived for nearly all of the studied estimators. A detailed robustness-
efficiency analysis is provided and a data-driven tuning of the weight function is proposed
in each case. Also, for each distribution, extensive simulations and comparisons with
traditional robust and non-robust estimators are conducted. For the normal and gamma
distributions, we also study the impact of model misspecification on our estimators
and their popular competitors. The wealth of empirical evidence provides a foundation
for drawing detailed, practice-oriented findings and recommendations which close this
chapter.

Chapter 5 presents the GoF test for the log-normal distribution which was already
outlined above.

Chapter 6 concludes the thesis, providing a high-level summary of key observations and
comparisons between the proposed methods and conventional approaches. It outlines as-
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pects that demand further analysis. Finally, it discusses statistical models and problems
not covered in this thesis, to which, however, the differential equations of transforms can
be applied, at least potentially. These include estimation of discrete and non-normalized
distributions, estimation within the Pearson’s family of distributions, regression models,
along with multivariate and non-parametric problems. Some further research directions
are suggested, with consideration to literature.

The thesis also includes four appendices. Appendix A summarizes important results
from the theory of V- and U-statistics, primarily utilized in Chapters 4 and 5. Ap-
pendix B outlines the derivations of various formulas and expressions obtained in this
thesis. Appendix C compiles the improper definite integrals used throughout the text.
Appendix D enumerates mathematical symbols and abbreviations. Most of the standard
probability distributions studied or mentioned in the thesis are consolidated in Tables
2.1 and 2.2 on p. 16 and 17, and in sec. 5.4.3 on p. 148.

1.2.1 Notational conventions

All vectors and matrices are emphasized using a bold font. The derivatives of transforms
w.r.t. transform variable s are denoted by prime notation. That is, for example, the

first four derivatives of Lθθθ(s) w.r.t. s are denoted as L′
θθθ(s), L′′

θθθ(s), L′′′
θθθ (s) and L

(4)
θθθ (s). In

contrast, the derivatives of the same functions w.r.t. distribution parameter are denoted

by partial derivative operators, such as ∂Lθθθ(s)
∂θ , ∂2Lθθθ(s)

∂θ2 , ∂2Lθθθ(s)
∂θi∂θj

, and so on. An exception

is made in the sec. 6.1.5 of the last chapter where partial derivatives of multivariate
characteristic functions are discussed: they are denoted by, for instance, ∂φθθθ(sss)

∂s1
, where

sss = (s1, ..., sd)⊤ is a vector of transform variables.

To simplify notation, we omit the dependence of distributions, densities, and transforms
on θθθ unless necessary. This convention is followed in Chapter 2 and parts of Chapter 3.

Given the multitude of functions, constants, parameters, and indices employed, it was
inevitable that certain symbols are occasionally reused at various places (for example, p,
q, α, γ, ψ, k, K, c, C, w(·)). However, their meanings remain clear from the context.
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CHAPTER 2
Integral transforms and their

empirical counterparts

2.1 Integral transforms

2.1.1 Laplace transforms and their properties

The Laplace transform (LT) of a probability distribution F (x) is defined as

L(s) = E[e−sX ] =

� ∞

−∞
e−sxdF (x) . (2.1)

Its analytical properties, which we describe below, depend on the support of F (x) and
heaviness of the tails.

2.1.1.1 Existence, uniqueness

For any distribution the LT exists (converges) on interval D of the form (σ−, σ+), [σ−, σ+],
(σ−, σ+] or [σ−, σ+), where −∞ ≤ σ− ≤ σ+ ≤ ∞. In any case, D contains s = 0 and
L(0) = 1. The values of σ− and σ+ are determined by the limits of esxF (x) as x→∞ and
esx(1−F (x)) as x→−∞, respectively. For distributions with exponential tails we have
−∞ < σ− < 0 and 0 < σ+ < ∞, while for those with sub-exponential tails σ− = −∞
and σ+ = ∞. If either the positive or negative tail is heavy, then σ− = 0 or σ+ = 0.
Finally, if σ− = σ+ = 0 we say that LT does not exist (e.g. Cauchy distribution).

Distinct probability distributions have unique LTs, and any distribution is uniquely
determined by values of its LT on some interval I ∈ D; see Feller (1971).
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2.1.1.2 Convexity, boundedness, monotonicity

As expectation of a convex and positive function, L(s) is always convex and positive.
Regarding boundedness and monotonicity, the two following cases can be observed:

• F (x) is supported both on the positive and the negative real axis. Then L(s) is
unbounded for all s ∈ D except for s = 0 and lims → σ−

L(s) = lims → σ+
L(s) = ∞.

Moreover, if F (x) is symmetric about x = 0, then L(s) is even and has minimum at
s = 0.

• F (x) is supported only on the positive (resp. negative) real axis. In this case, 0 ≤
L(s) ≤ 1 for s ≥ 0 (resp. s ≤ 0) and L(s) is monotone decreasing (resp. increasing)
and lims → ∞ L(s) = 0 (resp. lims → −∞ L(s) = 0). Moreover, L(s) is completely
monotone on (0, ∞) (resp. on (−∞, 0)), which means that derivatives L(k)(s) of all
orders k = 1, 2, ... exist on this interval and (−1)kL(k)(s) ≥ 0; see Feller (1971) or
Abate and Whitt (1996).

2.1.1.3 Affine transformations

Let X be a random variable with LT LX(s). For any two a, b ∈ R the LT of aX + b is
given by

LaX+b(s) = e−sbLX(as) . (2.2)

This holds since LaX+b(s) = E[e−s(aX+b)] = E[e−saXe−sb] = E[e−saX ]E[e−sb].

2.1.1.4 Moment generation

If X has moments of all orders, that is E[Xk] < ∞, k ≥ 1, then L(s) admits the Taylor
expansion about s = 0,

L(s) =
∞1

k=0

sk

k!
E[Xk] , |s| < min(|σ−|, σ+), (2.3)

with E[X0] = 1. If σ− or σ+ = 0, the expansion is not possible, although moments of all
orders may exist. Moreover,

E[Xk] = lim
s → 0

(−1)kL(k)(s) , (2.4)

meaning that finite k-th derivative of LT at s = 0 implies finiteness of E[Xk].
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2.1.1.5 Tauberian relations

The so-called Tauberian theorems stand for various theorems describing the asymptotic
behavior of a distribution in terms of the asymptotic behavior of its transforms; see e.g.
Widder (1959) and Feller (1971). For most statistical applications, qualitative under-
standing of these relations is sufficient. In particular, when using LTs, it is important to
keep in mind that

(i) the tail behavior of F (x) as |x| → ∞ reflected by the behavior of L(s) as |s| → 0;

(ii) the behavior of L(s) for large |s| describes that of F (x) at small values of |x|.

This is explained as follows: when |s| is small it is only when |x| is large that variations
in s significantly change the values of e−sx and thus of L(s) =

�
e−sxdF (x). On the other

hand, for large |s|, L(s) is greatly influenced by changes of F (x) close to x = 0. Moreover,
(2.4) is in agreement with (i) since the values of the moments (or their non-existence)
also reflect the tail behavior of F (x).

2.1.2 Examples of Laplace transforms

The properties discussed above are now demonstrated through examples. Tables 2.1 and
2.2 on p. 16 and 17 list the most popular continuous distributions and their LTs. The
tables include both two-tailed (symmetric) and one-tailed (skewed) distributions, with
tails of different heaviness and LTs converging on different intervals. Included is also the
Cauchy distribution whose LT does not exist except for s = 0. We see that in some cases
the LTs admit closed form expressions, while in others, they do not. Elegant expressions
in terms of elementary functions are, in fact, available only for the normal, Laplace,
logistic, uniform, gamma and inverse Gaussian laws. In yet other cases, the transforms
may be expressed with the help of a special function (as seen for the Gumbel and Pareto
distributions), or, if all the moments exist, represented by the Taylor expansion (as in
case of the beta distribution of 1st kind). Nevertheless, for the remaining distributions
(and many more not listed in the table), tractable expressions are unknown. This fact is
an important motivation behind the differential-equation methodology proposed in this
thesis.

Fig. 2.1 plots the LTs for eight selected distributions, each under three parameter settings.
The normal and logistic distributions demonstrate the cases with unbounded LTs. In
contrast, for the gamma, inverse Gaussian, Pareto, log-normal, and (one-sided) uniform
distributions, we observe that 0 < L(s) ≤ 1 for all s ∈ [0, ∞], no matter if D coincides
with that interval (the heavy-tailed cases) or if D extends on some values negative s-
values (the exponentially-tailed cases). Additionally, note that, as indicated by (2.4), the
steepness of L(s) near s = 0 is higher for parameter settings that yield larger moment
values.
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2. Integral transforms and their empirical counterparts

Table 2.1: Standard probability distributions and their Laplace transforms.

distribution density f(x) Laplace transform L(s) i.o.c D

normal(µ, σ2)
x, µ ∈R, σ2 > 0

1√
2πσ

exp

�−(x−µ)2

2σ2

�
exp{−µs + σ2s2/2} R

Laplace(µ, β)
x, µ ∈R, β > 0

1

2β
exp

�−|x − µ|
β

�
exp{−µs}
1 − β2s2

�
-
1

β
,

1

β

!

logistic(µ, β)
x, µ ∈R, β > 0

exp

�−(x−µ)

β

�
β

�
1+exp

�−(x−µ)

β

�$2

exp{−µs}πβs

sinh(πβs)

�
-
1

β
,

1

β

!

exponential(λ)
x ≥ 0 ,λ > 0

λ exp{−λx} λ

λ + s
(-λ, ∞)

gamma(α, β)
x ≥ 0 α, β > 0

β α

Γ(α)
xα−1 exp{−βx}

�
β

β + s

$α

(-β, ∞)

inv.Gauss.(λ, µ)
x, λ, µ > 0

-
λ

2πx3
exp

�−λ(x−µ)2

2µ2x

�
exp

�
λ

µ

�
1−

+
1+

2µ2s

λ

$� �
-

λ

2µ2
,∞

!

uniform(a, b)
x ∈ (a,b), a,b ∈R, b > a

1

b − a

exp{−as} − exp{−bs}
s(b − a)

R

triangular(a,b,c)
x ∈ (a, c), a, b, c ∈R,

c > b > a

����������

2(x−a)

(b−a)(c−a)
a<x<b

2/(c − a) x=b
2(c−x)

(c−a)(c−b)
b<x<c .

�
(c−b)e−as − (c−a)e−bs

+(b−a)e−cs

�
(c−a)(b−a)(c−b)s2/2

R
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2.1. Integral transforms

Table 2.2: Standard probability distributions and their Laplace transforms (cont.)

distribution density f(x) Laplace transform L(s) i.o.c D

Gumbel(µ, β)
x, µ ∈R, β>0

exp

�
−

�
x−µ

β
+e−(x−µ)/β

$�
Γ(1 + βs) exp{−µs}

�
-
1

β
, ∞

!
Pareto(α, β)∗

x ≥ 0 α, β > 0

αβα

(x + β)α+1
α(βs)α exp{sβ}Γ(βs, −α) [0, ∞)

Rayleigh(ϑ)∗∗
x, ϑ > 0

x

ϑ2
exp{−x2/2ϑ2} 1 − sϑ

+
π

2
exp

�
ϑ2s2

2

$
erfc

�
ϑs

√
2

2

$
R

Beta(α, β)
0 < x < 1, α, β > 0

xα−1(1 − x)β−1

B(α, β)
1+

∞1
k=1

(-s)k

k

k−1(
r=0

α+r

α+β+r
R

Beta-2(α, β)
x ≥ 0, α, β > 0

xα−1(1 + x)−α−β

B(α, β)
no tractable form [0, ∞)

log-normal(µ, σ)
x, σ > 0, µ ∈R

1√
2πσx

exp

�
− (log x − µ)2

2σ2

�
no tractable form [0, ∞)

Weibull(λ, c)
x ≥ 0, λ, c > 0

λc(λx)c−1 exp{−(λx)c} no tractable form [0, +∞)
for c < 1

Maxwell(σ)
x, σ > 0

-
2

π

x2

σ3
exp{−x2/2σ2} no tractable form R

GIG(λ, µ, p)∗∗∗
x, λ, µ > 0, p ∈R

µpxp−1

2Kp(λ/µ)
exp

�−λ(x − µ)2

2µ2x

�
no tractable form R

Cauchy(µ, β)
x, µ ∈R, β > 0

1

πβ

�
β2

β2 + (x − µ)2

$
does not exist −

B(·,·) - beta function; Γ(·) - gamma function; Γ(·,·) - lower incomplete gamma functions;
erfc(·) - complementary error function; Kp(·) - modified Bessel function of the 2nd kind.

∗ Pareto type II (Lomax); this LT expression is derived in Nadarajah and Kotz (2006).
∗∗ This LT expression is given in Meintanis and Iliopoulos (2003b).

∗∗∗ GIG = generalized inverse Gaussian distribution; see sec. 3.2.1.2 for details.
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2. Integral transforms and their empirical counterparts

Figure 2.1: Laplace transforms of selected probability distributions.
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2.1. Integral transforms

2.1.3 Characteristic functions and their properties

The problems related to unboundedness, various convergence regions or non-existence
of LTs are resolved by employing the characteristic function (CF). The CF is defined as

φ(s) = E[eisX ] =

� ∞

−∞
eisxdF (x) , i2 = −1 , (2.5)

and exists for any distribution for all s ∈ R. However, this convenience comes at the
cost of working with a complex-valued quantity. Namely, CF must be decomposed into
the real and imaginary part, that is φ(s) = Re{φ(s)} + iIm{φ(s)} = u(s) + iv(s), where

u(s) = E[cos(sX)] =

� ∞

−∞
cos(sx)dF (x) , (2.6)

and
v(s) = E[sin(sX)] =

� ∞

−∞
sin(sx)dF (x) . (2.7)

Alternatively, CF can be represented in the polar form as φ(s) = |φ(s)|ei arg φ(s), where
|φ(s)| =

,
u2(s) + v2(s) is the complex modulus and arg φ(s) = arctan(v(s)/u(s)) stands

for the polar argument. Often, it is easier to work with the squared modulus, namely

|φ(s)|2 = u2(s) + v2(s) . (2.8)

In this thesis, we refer to u(s), v(s) and |φ(s)|2 as the CF components.

2.1.3.1 Boundedness, monotonicity, uniqueness

CF of any distribution is a uniformly continuous function and has the following proper-
ties:

(i) φ(0) = 1, u(0) = 1 and v(0) = 0;

(ii) |φ(s)| ≤ 1 for all s ∈ R;

(iii) φ(−s) = φ(s) .

The properties (i) and (iii) follow directly from the definition (2.5), whereas (ii) results
from boundedness of the sine and cosine functions. Moreover, if F (x) is symmetric about
x=0 then

(iv) v(s) = 0,

so that |φ(s)|2 = u2(s). This property may be applied to test symmetry of a distribution.

A certain drawback of CF (when compared to LT) is that |φ(s)|, u(s) and v(s) are non-
monotone due to periodic factors. Specifically, for any CF φ(s) there exists s0 > 0 such
that φ(s0) = 1 and s0 is period of φ(s); see Epps (1993), Ushakov (1999).
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2. Integral transforms and their empirical counterparts

Regarding the behavior of |φ(s)| away from zero, there are two cases: if F (x) is absolutely
continuous then lim|s|→∞ |φ(s)| = 0, whereas if F (x) is discrete lim sup|s|→∞ |φ(s)| = 1.

The values of φ(s) on the entire real s-line uniquely determine the underlying distribution.
However, unlike for LT, CFs of two different distributions may coincide over finite interval
(−a, a), a ∈ R. Still, such cases are exceedingly rare and remain of purely academic
interest. For examples, see Ushakov (1999) p. 263-264, and Feller (1971) p. 506.

2.1.3.2 Affine transformations

Let X be a random variable with CF φX(s). Then, for any two a, b ∈ R, the CF of
aX + b is given by

φaX+b(s) = eisbφX(as) , (2.9)

which follows from the expectation property.

Another important and useful fact is the invariance of the modulus to changes of location
of X. Setting a = 1 in (2.9), it is not difficult to show that for any b ∈ R

|φX+b(s)| = |φX(s)| . (2.10)

2.1.3.3 Moment generation. Tauberian relations

Similarly to LT, we now highlight the connection between CF to moments and tails
of distributions. If the k-th moment of F (x) exists, then φ(s) is k times differentiable
around zero, allowing for the Taylor expansion,

φ(s) =
k1

j=0

(is)j

j!
E[Xj ] + o(|s|j) , as |s| → 0 , (2.11)

where

E[Xk] = (−i)kφ(k)(0) . (2.12)

The Tauberian relations for CFs and the underlying distributions are qualitatively iden-
tical to those for LT and have the same implications for statistical procedures. Namely,
the tail behavior of F (x) is determined by the behavior of φ(s) near the origin s = 0,
and vice versa, the behavior of φ(s) for large s reflects that of F (x) in the neighborhood
of x = 0. The specific theorems on these relations can be found, for example, in Pitman
(1968).
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2.1. Integral transforms

2.1.4 Examples of characteristic functions

Finally, we exemplify CFs of some concrete parametric distributions. Symbolic com-
putation of CF is usually as easy or difficult as the computation of the corresponding
LT. Expressions for CF in particular cases follow from LT by the change of variable
s → −is, i2 = −1. Lack of a tractable expression for LT means the same for CF. An
important exception is the Cauchy(µ,β) model whose CF is known and expressed as
φ(s) = exp{µis − β|s|}, although the LT does not exist.

Unfortunately, the use of CF poses analytical problems because in statistical applications
one often needs the expressions for |φ(s)|, |φ(s)|2, u(s) and v(s), and these are not always
derivable. For example, the CFs of the gamma(α,β) distribution,

φ(s) =

�
β

β − is

$α

, (2.13)

cannot be decomposed into the real and imaginary parts due to non-integer power α. The
same applies to the inverse Gaussian, Pareto and Gumbel distributions. This limitation
diminishes usefulness of CF for several life-time distributions and favors LT.

Table 2.3 on p. 22 lists standard distributions for which all the CF components have
tractable expressions. The table also includes the discrete Poisson(λ) distribution, with
probability mass function, p(k) = λke−λ/k!, k = 0, 1, 2..., to exemplify a CF which is
purely periodic.

Fig. 2.2 plots the functions |φ(s)|2, u(s) and v(s) in four representative cases: normal,
Cauchy, exponential and Poisson. We have there examples of distributions symmetric
around x = 0, i.e. normal(0,1) and Cauchy(0,1), in which case always v(s) = 0 for all
s ∈ R. The Cauchy examples, in general, demonstrate the scenario where CF is not
differentiable at s = 0, indicating a lack of moments for that random variable. In turn,
for the Poisson law, as just mentioned, all the CF components are periodic. Finally, the
exponential distribution is an instance of skewed distributions for which |φ(s)|2 = u(s).
Refer to Meintanis and Iliopoulos (2003a) for more details on this interesting property
of exponentiality and its statistical uses.

21



2. Integral transforms and their empirical counterparts

Table 2.3: Characteristic functions of standard probability distributions; s ∈ R

distribution CF and squared modulus real and imaginary part

normal(µ, σ2)
x, µ ∈R, σ2 > 0

φ(s) = exp{iµs − σ2s2/2} u(s) = cos(µs) exp{−σ2s2/2}
|φ(s)|2 = exp{−σ2s2} v(s) = sin(µs) exp{−σ2s2/2}

Laplace(µ, β)
x, µ ∈R, β > 0

φ(s) =
eiµs

1 + β2s2
u(s) =

cos(sµ)

1 + β2s2

|φ(s)|2 =
1

(1 + β2s2)2
v(s) =

sin(sµ)

1 + β2s2

logistic(µ, β)
x, µ ∈R, β > 0

φ(s) =
exp{isµ}πβs

sinh(πβs)
u(s) =

cos(sµ)πβs

sinh(πβs)

|φ(s)|2 =
(πβs)2

sinh2(πβs)
v(s) =

sin(sµ)πβs

sinh(πβs)

Cauchy(µ, β)
x, µ ∈R, β > 0

φ(s) = exp{µis − β|s|} u(s) = cos(µs)e−β|s|

|φ(s)|2 = exp{−β|s|} v(s) = sin(µs)e−2β|s|

stable(µ, γ, α)
x, µ ∈R, γ > 0, α ∈ (0,2]

φ(s) = exp{µis − γ|s|α} u(s) = cos(µs)e−γ|s|α

|φ(s)|2 = exp{−2γ|s|α} v(s) = sin(µs)e−γ|s|α

uniform(a, b)
x ∈ (a,b), a,b ∈R, b > a

φ(s) =
exp{ibs} − exp{ias}

is(b − a)
u(s) =

sin(sb) − sin(sa)

s(b − a)

|φ(s)|2 =
4 sin2(s(b − a)/2)

s2(b − a)2
v(s) =

cos(sa) − cos(sb)

s(b − a)

exponential(λ)
x ≥ 0, λ > 0

φ(s) =
λ

λ − is
u(s) =

λ2

λ2 + s2

|φ(s)|2 =
λ2

λ2 + s2
v(s) =

λs

λ2 + s2

Poisson(λ)
k = 0,1,2,... , λ > 0

φ(s) = exp{−λ(1 − eis)} u(s) = e−λ(1−cos(s)) cos{λ sin(s)}

|φ(s)|2 = exp{−2λ(1 − cos(s))} v(s) = e−λ(1−cos(s)) sin{λ sin(s)}
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2.1. Integral transforms

Figure 2.2: Components of CF, |φ(s)|2, u(s) and v(s), for selected standard distribu-
tions.
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2. Integral transforms and their empirical counterparts

2.2 Empirical integral transforms

The empirical integral transform is defined as

�Tn(s) =

�
K(s, x)d �Fn(x) =

1

n

n1
j=1

K(s, Xj) , (2.14)

where �Fn(x) = 1
n

2n
j=1 I{Xj ≤ x} is empirical distribution function of the sample

X1, ..., Xn. Under i.i.d. assumption it is an unbiased non-parametric estimator of the
model, that is

E[ �Tn(s)] = T (s) , (2.15)

and, by the Strong Law of Large Numbers (SLLN),

�Tn(s)
a.s.−→T (s) . (2.16)

The variance of the empirical transform for any n is

V[ �Tn(s)] =
E[K(s, X)2] − E

2[K(s, X)]

n
. (2.17)

If E[K(s, X)2] is finite, the Central Limit Theorem (CLT) implies asymptotic normality
of the functional as n → ∞, namely

√
n

� �Tn(s) − T (s)
!

d−→ N
�
0 ,E[K(s, X)2] − E

2[K(s, X)]
!
. (2.18)

Then, considered as a random variable indexed by s, �Tn(s) is a non-stationary continuous-
time random process converging to a Gaussian process with certain covariance function.

2.2.1 Empirical Laplace transform

The empirical counterpart of (2.1), called the empirical Laplace transform (ELT), is

�Ln(s) =
1

n

n1
j=1

e−sXj . (2.19)

While L(s) exists often only on some interval D ⊆ R, �Ln(s) exists and is differentiable
always for all s ∈ R. Also, in any case, �Ln(0) = L(0) = 1, and, according to (2.4),

(−1)k �L(k)
n (0) = 1

n

n2
j=1

Xk
j , k ≥0.
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2.2. Empirical integral transforms

2.2.1.1 Finite-sample and asymptotic behavior

We have obviously E[�Ln(s)] = L(s), and, using (2.17), we obtain

V[�Ln(s)] =
L(2s) − L2(s)

n
. (2.20)

Note that the variance is finite for all s such that 2s ∈ D. That is, it is finite for all s ≥ 0
for the distributions on R+ or R

0
+ (e.g. gamma, Pareto). However, for the distributions

supported on R+, whose LT exists on a bounded interval (σ−, σ+) (e.g. Laplace, logistic),
the variance is finite merely for s ∈ (σ−/2, σ+/2). For these s-points, by CLT,

√
n

��Ln(s) − L(s)
!

d−→ N
�
0 , L(2s) − L2(s)

!
. (2.21)

For any two points s1 and s2 such that s1 + s2 ∈ D, �Ln(s) converges to a Gaussian
process with mean L(s) and covariance

Cov[�Ln(s1), �Ln(s2)] =
L(s1 + s2) − L(s1)L(s2)

n
. (2.22)

Derivation of (2.22) is shown in Appendix B.

Finally, by SLLN we have that �Ln(s)
a.s.−→ L(s) point-wise. However, as proved by Csörgő

(1982), the strong convergence holds also uniformly, that is sups∈DI |�Ln(s)−L(s)| a.s.−→ 0 ,
where DI is the interior of D.

2.2.1.2 Finite-sample behavior: examples

The accuracy of �Ln(s) as an estimator of L(s) is now illustrated in two cases: (i) for a
one-tailed skew distribution on R+, and (ii) for a two-tailed symmetric distribution on
R, taking the exponential(λ) and normal(µ,σ2) distributions as examples. For these two
distributions, from (2.20) we obtain

V[�Ln(s)] =
λs2

n(λ + 2s)(λ + s)2
, (2.23)

and
V[�Ln(s)] = exp{−2µs + σ2s2}(exp{σ2s2} − 1)/n , (2.24)

respectively. Fig. 2.3 displays the two variances and simulated 95% confidence bands of�Ln(s), as an estimator of L(s), for n = 50. We see that in both cases the precision of
the estimation is highest around s = 0. At any other s-point, boundedness of V[�Ln(s)]
is contingent on the boundedness of L(s).
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2. Integral transforms and their empirical counterparts

Figure 2.3: Variances and simulated 95% confidence bands of �Ln(s) as estimator of
L(s) for the normal and exponential distributions; sample size n = 50, 3000 replications.

2.2.2 Empirical characteristic function

The sample counterpart of (2.5), called the empirical characteristic function (ECF), is
given by

�φn(s) =
1

n

n1
j=1

eisXj . (2.25)

Its real and imaginary parts are given, respectively, by

�un(s) =
1

n

n1
j=1

cos(sXj) , and �vn(s) =
1

n

n1
j=1

sin(sXj) . (2.26)

The squared modulus of CF is by definition

|�φn(s)|2 = �u2
n(s) + �v2

n(s) . (2.27)
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2.2. Empirical integral transforms

Applying trigonometric identities, it can also be expressed as

|�φn(s)|2 =
1

n2

n1
j=1

n1
k=1

cos(s(Xj − Xk)) , (2.28)

which is a degree-2 V-statistic with symmetric kernel; see Lee (1990) and Appendix A.

Since Fn(x) is a legitimate probability distribution, it follows from sec. 2.1.3.1 that:

(i) �φn(0) = 1; (ii) |�φn(s)| ≤ 1, s∈R; (iii) �φn(−s) = �φn(s); and (iv) lim sup
|s|→∞

|�φn(s)| = 1.

2.2.2.1 Finite-sample and asymptotic behavior

We will now examine some stochastic properties of the ECF components. Of course,
E[�un(s)] = u(s) and E[�vn(s)] = v(s). The finite-sample variances

V[�un(s)] =
1/2 + u(2s)/2 − u2(s)

n
, (2.29)

V[�vn(s)] =
1/2 − u(2s)/2 − v2(s)

n
, (2.30)

are obtained from (2.17) by applying trigonometric power-reduction formulas. By CLT,
we have then

√
n

��un(s) − u(s)
!

d−→ N
�
0 , 1/2 + u(2s)/2 − u2(s)

!
, (2.31)

and

√
n

��vn(s) − v(s)
!

d−→ N
�
0 , 1/2 − u(2s)/2 − v2(s)

!
, (2.32)

both of which hold for all s ∈ R due to boundedness of u(s) and v(s).

The squared modulus of ECF, as a degree-2 V-statistics, is only asymptotically unbiased:

E[|�φn(s)|2] = |φ(s)|2 +
1 − |φ(s)|2

n
, (2.33)

which is derived in Appendix B. Also, its variance has more complicated expression,
namely

V[|�φn(s)|2] =
2(n − 1)(n − 2)

n3

�
Re{φ2(s)φ(2s)} + |φ(s)|2 − 2|φ(s)|4

!
+

n − 1

n3

�
|φ(2s)|2 − 2|φ(s)|4 + 1

!
. (2.34)

This expression was initially derived in Thaler (1974); see also Koutrouvelis (1980).

27



2. Integral transforms and their empirical counterparts

The asymptotic normality of the squared modulus does not appear to be reported in the
literature. By using the theory of U-statistic, see Appendix A, we can show that

√
n

�
|�φn(s)|2 − |φ(s)|2

!
d−→ N

�
0 ,V

AS

!
, (2.35)

where

V
AS

= 2u(2s)[u2(s) − v2(s)] + 4v(2s)u(s)v(s) + 2|φ(s)|2 − 4|φ(s)|4 . (2.36)

The statistics �un(s), �vn(s) and |�φn(s)|2 are asymptotically Gaussian processes in s. Their
covariance functions for any finite n are given in Koutrouvelis (1980) and Ushakov (1999).
The cross-covariance between �un(s) and �vn(s), which will be needed later, is

Cov[�un(s1), �vn(s2)] =
1

2n

�
v(s1 + s2) − v(s1 − s2) − 2u(s1)v(s2)

!
. (2.37)

Let us now look at the limiting behavior of the ECF components as |s| → 0 and |s| → ∞,
for fixed n. By unbiasedness of �un(s) and �vn(s) and by (2.29), (2.30), (2.33) and (2.34),
it follows that for any distribution������������

lim
|s|→0

�
E[�un(s)],E[�vn(s)]

!
= (1, 0) ,

lim
|s|→0

�
V[�un(s)],V[�vn(s)]

!
= (0, 0) ,

lim
|s|→0

E[|�φn(s)|2] = 1, lim
|s|→0

V[|�φn(s)|2] = 0 .

(2.38)

As |s| → ∞, the situation is more involved. For absolutely continuous distributions,
based on the properties discussed in sec. 2.1.3.1 and given that lim|s|→∞ u(s) = 0,
lim|s|→∞ v(s) = 0, one finds that������������

lim
|s|→∞

�
E[�un(s)],E[�vn(s)]

!
= (0, 0) ,

lim
|s|→∞

�
V[�un(s)],V[�vn(s)]

!
= (1/2n, 1/2n) ,

lim
|s|→∞

E[|�φn(s)|2] = 1/n, lim
|s|→∞

V[|�φn(s)|2] = (n − 1)/n3 .

(2.39)

However, if the distribution is discrete (or has discrete masses), the finite-sample means
and variances of �un(s), �vn(s) and |�φn(s)|2 oscillate in s and have no limits; see Koutrouvelis
(1980).

Finally, we should mention the strong stochastic convergence of ECF as n → ∞. Accord-
ing to SLLN, we know that �φn(s)

a.s.−→ φ(s) point-wise. However, unlike for ELT, this
property does not hold uniformly for all s ∈ R. The strong convergence holds uniformly
only over a fixed interval, i.e., sup|s|≤s0

|�φn(s) − φ(s)| a.s.−→ 0 for any s0 < ∞, as proved
in Feuerverger and Mureika (1977). See also Marcus (1981) and Epps (1993).
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2.3. Robustness of empirical transforms

2.2.2.2 Finite-sample behavior: examples

We now illustrate the variances of �un(s), �vn(s) and |�φn(s)|2 taking as examples the
exponential(λ) and normal(µ,σ2) distributions. The variances are plotted in Fig. 2.4 for
n = 50 along with simulated 95% confidence bands. To compute them, we used the
formulas (2.29), (2.30) and (2.34) and inserted there relevant expressions for u(s), v(s)
and |φ(s)|2 from Table 2.2. We observe that the components of ECF are most precise
as estimators of the CF near s = 0. The variance curves of |�φn(s)|2 for both types of
distributions resemble those of �Ln(s) for one-tailed distributions; see Fig. 2.3. Namely,
as |s| → ∞, |�φn(s)|2 attains a maximum and drops to a very low level: (n−1)/n3. In
contrast, the variances of �un(s) and �vn(s) monotonically increase from zero to a higher
level: 2/n. This suggests that, at least for continuous distributions, |�φn(s)|2 is more
reliable inference tool than �un(s) or �vn(s) when they are used alone.

2.3 Robustness of empirical transforms

Robustness in statistics refers to the resistance of a statistical functional against con-
tamination of the (postulated) model distribution. Typically, interest lies in robustness
against outliers which are excessively large or small observations in the sample. These
untypical or erroneous observations can disrupt the outcomes of estimation or testing. In
this thesis, we specifically analyze the robustness of estimators based on empirical trans-
forms. Therefore, we first address robustness of the empirical transforms themselves as
estimators of the model transforms. It must be stressed that robustness is a very multi-
faceted area, covered broadly, on a different level of mathematical abstraction, in mono-
graphs such as Hampel et al. (1986), Staudte and Sheather (1990), or Jurečková et al.
(2019). For a special discussion on the nature and sources of outliers in statistical data,
the reader is referred to Barnett and Lewis (1994). This thesis places emphasis on the
infinitesimal robustness of the estimators, expressed by their influence function, which
is by far the most popular robustness measure.

2.3.1 Influence function

Influence function (IF) describes the impact of infinitesimal contamination at point x
exerted on a statistical functional T (F ), where F = F (x) is the model distribution.
Specifically, the IF is defined as

IF[x; T (F )] = lim
ǫ→0+

T
�
(1 − ǫ)F + ǫ∆x

!
− T (F )

ǫ
, (2.40)

where ∆x is the distribution function assigning probability 1 to single point x. The IF
is thus a special case of the Gâteau derivative; see Jurečková et al. (2019).

Although one often says ’IF of an estimator’ (that is of a function of data), the IF
refers to the corresponding functional. In other words, when studying robustness of an
estimator �θn = T ( �Fn) we consider IF[x; θ] where θ = T (F ).
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2. Integral transforms and their empirical counterparts

Figure 2.4: Variances and 95% confidence bands of |�φn(s)|2, �un(s) and �vn(s) (dashed)
as estimators of |φ(s)|2, u(s) and v(s), for the normal and exponential distributions.
Sample size n = 50, 3000 replications.
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2.3. Robustness of empirical transforms

For the mean and variance functionals (corresponding to sample mean and sample vari-
ance) one easily finds that IF[x;E[X]] = x −E[X] and IF[x;V[X]] = (x −E[X])2 −V[X].
These IFs are unbounded in x, which means that the effect of the contamination at x
may be arbitrarily large. Functionals (estimators) with unbounded IFs are termed as
unrobust. For a robust functional one requires bounded IF, ideally decaying to zero as
x → ±∞.

IFs have two important properties. Firstly,

EF [IF[X; T (F )]] =

�
IF[x; T (F )]dF (x) = 0 . (2.41)

Secondly, if T (F ) is Fréchet differentiable (see Jurečková et al. (2019) for details) and if
VF [IF(X, T (F ))] < ∞, we have

√
n

�
T ( �Fn) − T (F )

!
d−→ N

�
0 ,VF [IF[X; T (F )]]

!
. (2.42)

For a vector of p such functionals TTT (F ) = [T1(F ), ..., Tp(F )]⊤ one defines the joint
influence function, IF[x;TTT (F )] = [IF[x; T1(F )], ..., IF[x; Tp(F )]]⊤, for which we have

√
n

�
TTT ( �Fn) − TTT (F )

!
d−→ Np

�
000 ,ΣΣΣ

!
, (2.43)

where the asymptotic covariance matrix is given by

ΣΣΣ =

�
IF[x;TTT (F )] IF[x;TTT (F )]⊤dF (x). (2.44)

Thus, in addition to diagnosing robustness, the IF also provides an alternative method
for deriving the asymptotic variance or covariance matrix of statistics associated with
the underlying functional.

2.3.1.1 Empirical influence

One may also define the empirical version of IF based on a realized sample (x1, ..., xn)
with �Fn(x). For this purpose, consider a contaminated the sample (x1, ..., xn, xc) where
xc a contaminating observation, and denote its distribution function by �F c

n+1(x). Then,
the empirical influence (EI) associated with T (F ) is

EI[xc; T (F )] = T ( �F c
n+1) − T ( �Fn). (2.45)

It can be shown that

IF[x; T (F )] = lim
n→∞ (n + 1) EI[x; T (F )] . (2.46)

With large sample size n, EI allows for Monte Carlo simulation of IF. This can be ben-
eficial when the derivation of IF is difficult or requires validation; see Nasser and Alam
(2006).
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2. Integral transforms and their empirical counterparts

2.3.1.2 Functions of functionals

In robustness analysis, we often seek the IF of a function applied to a functional with
known IF. That is, we seek IF[x; Y ], where Y = g(T (F )) and IF[x; T ] is known. If g(·)
is differentiable, the chain rule for derivatives applies, and

IF[x; Y ] =
dg(T (F ))

dT (F )
· IF[x; T (F )] . (2.47)

If Y is a differentiable function of p functionals, Y = g(T1(F ), ..., Tp(F )), described by a
joint influence function [IF[x; T1(F )], ..., IF[x; Tp(F )]]⊤, then the multivariate version of
chain rule yields

IF[x; Y ] =
p1

k=1

∂g(T1(F ), ..., Tp(F ))

∂Tk(F )
· IF[x; Tk(F )] , (2.48)

see Campbell (1993). This formula will be extensively used to compute IFs of new
estimators constructed in this thesis.

2.3.2 Influence functions for transforms

Robustness and influence functions of integral transforms and their functionals have been
studied in several works, including Luong and Thompson (1987), Campbell (1993) and
Meintanis and Donatos (1996). For an integral transform T (s) = EF [K(s, x)], it follows
easily from (2.40) that

IF[x; T (s)] = K(s, x) − T (s) . (2.49)

Hence, boundedness of the transform (in s) and the kernel (in s and x) ensures a bounded
IF of the transform. For the transforms used in this thesis, we have then

IF[x; L(s)] = e−sx − L(s) , (2.50)

IF[x; u(s)] = cos(sx) − u(s) , (2.51)

IF[x; v(s)] = sin(sx) − v(s) . (2.52)

Applying (2.48) to (2.8), we also obtain

IF[x; |φ(s)|2] = 2[u(s) cos(sx) + v(s) sin(sx)] − 2|φ(s)|2 . (2.53)

Let us analyze the properties of these IFs. Regarding the IF of LT in (2.50), two
cases arise. For distributions on R+ or R

0
+ (e.g. Pareto or gamma), we clearly have

|IF[x; L(s)]| ≤ 1, limx→0 IF[x; L(s)] = 1 − L(s) and limx→∞ IF[x; L(s)] = −L(s) for all
s ≥ 0. Therefore, estimation of L(s) using �Ln(s) becomes increasingly robust as s → ∞.
However, for two-sided distributions (e.g. normal, logistic), where L(s) is unbounded,
the estimation is completely unrobust for any s �= 0. In contrast, the IFs of the CF
components (2.51), (2.52) and (2.53) are bounded for all s, x ∈ R for any distribution
and exhibit oscillations. Moreover, for continuous distributions, we find that for fixed x

lim
|s|→0

IF[x; |φ(s)|2] = 0, and lim
|s|→∞

IF[x; |φ(s)|2] = 0 . (2.54)
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2.4. Derivatives of integral transforms

2.4 Derivatives of integral transforms

Since the estimators proposed in this thesis rely on differential equations of transforms,
we will also overview the properties of the derivatives of transforms and their sample
counterparts. For generality, we consider the m-th derivative of T (s), namely

T (m)(s) =

� ∞

−∞
K(m)(s, x)dF (x) . (2.55)

In particular, the m-th derivatives of LT, CF and its real and imaginary part are

L(m)(s) =

� ∞

−∞
(−x)me−sxdF (x) = E[(−X)me−sX ] , (2.56)

φ(m)(s) =

� ∞

−∞
(ix)meisxdF (x) = E[(iX)meisX ] , (2.57)

u(m)(s) =

� ∞

−∞
xm cos(sx + 1

2mπ)dF (x) = E[Xm cos(sX + 1
2mπ)] , (2.58)

v(m)(s) =

� ∞

−∞
xm sin(sx + 1

2mπ)dF (x) = E[Xm sin(sX + 1
2mπ)] , (2.59)

and

|φ(m)(s)|2 = [u(m)(s)]2 + [v(m)(s)]2 . (2.60)

The interval of convergence of T (m)(s) may not be the same as that of T (s). In case of
LT and CF, these intervals may differ by the inclusion of s = 0, depending on existence
of E[Xm]. For example, consider L(s) of the Pareto(α,β) distribution (Table 2.2) with
α = 1.5, so that E[X] exists but E[X2] does not. Then, L(s) and L′(s) exists on
D=[0, ∞) but L(m)(s) exists only on (0, ∞) for m≥2.

What distinguishes the m-th derivatives from their original LT or CF is the boundedness,
which depends on the value and existence of the m-th moment.

2.4.1 Derivatives of empirical transforms

The empirical counterparts of (2.56)-(2.60), associated with sample X1, ..., Xn, are

�L(m)
n (s) =

1

n

n1
j=1

(−Xj)me−sXj , (2.61)

�φ(m)
n (s) =

1

n

n1
j=1

(iXj)meisXj , (2.62)

�u(m)
n (s) =

1

n

n1
j=1

Xm
j cos(sXj + 1

2mπ) , (2.63)

�v(m)
n (s) =

1

n

n1
j=1

Xm
j sin(sXj + 1

2mπ) , (2.64)
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2. Integral transforms and their empirical counterparts

and

|�φ(m)
n (s)|2 = [�u(m)

n (s)]2 + [�v(m)
n (s)]2 =

1

n2

n1
j=1

n1
k=1

(XjXk)m cos(s(Xj − Xk)) . (2.65)

We have of course E[�L(m)
n (s)] = L(s), E[�u(m)

n (s)] = u(s), E[�v(m)
n (s)] = v(s) and, by steps

similar to those for (2.33), we find that

E[|�φ(m)
n (s)|2] = |φ(m)(s)|2 +

E[X2m] − |φ(m)(s)|2
n

. (2.66)

Using (2.17), we also obtain

nV[�L(m)
n (s)] = L(2m)(2s) − [L(m)(s)]2 , (2.67)

nV[�u(m)
n (s)] = 1

2E[X2m] + 1
2u(2m)(2s) − [u(m)(s)]2 , (2.68)

nV[�v(m)
n (s)] = 1

2E[X2m] − 1
2u(2m)(2s) − [v(m)(s)]2 . (2.69)

Notice that the behavior of �L(m)
n (s) is desirable: it has no bias and finite variance for all

s where L(2m)(2s) is finite. In contrast, the bias of |�φ(m)
n (s)|2, as well as the variances

of �u(m)
n (s) and �v(m)

n (s), depends on the value (and finiteness) of E[X2m]. Assuming
finiteness of the above variances, we deduce from (2.18) that

√
n

��L(m)
n (s) − L(s)

!
d−→ N

�
0 ,V[�L(m)

n (s)]
!

,
(2.70)

√
n

��u(m)
n (s) − u(s)

!
d−→ N

�
0 ,V[�u(m)

n (s)]
!

,
(2.71)

√
n

��v(m)
n (s) − v(s)

!
d−→ N

�
0 ,V[�v(m)

n (s)]
!

. (2.72)

The derivation of the finite-sample variance of |�φ(m)
n (s)|2 is very tedious and does not

produce a useful expression. However, the asymptotic variance can be obtained by
considering the corresponding U-statistic. By applying (A.9) and (A.10) from Appendix
A, we obtain after a lengthy yet straightforward derivation that

√
n

�
|�φ(m)

n (s)|2 − |φ(m)(s)|2
!

d−→ N
�
0 , 2σ2

1

!
, (2.73)

where

σ2
1 = E[X2m]|φ(m)(s)|2−|φ(m)(s)|4

+ u(2m)(2s)
�
[u(m)(s)]2 − [v(m)(s)]2

!
+ v(2m)(2s)u(m)(s)v(m)(s). (2.74)

We conclude, therefore, that the derivatives of ECF are statistically applicable only to
distributions with finite 2m-th moment.
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2.5. Summary

2.4.2 Influence functions of the derivatives

Finally, we shall compute IFs of the derivatives of transforms. By (2.49), we have in
general

IF[x; T (m)(s)] = K(m)(s, x) − T (m)(s) , (2.75)

and in particular

IF[x; L(m)(s)] = (−x)me−sx − L(m)(s) , (2.76)

IF[x; u(m)(s)] = xm cos(sx + mπ
2 ) − u(m)(s) , (2.77)

IF[x; v(m)(s)] = xm sin(sx + mπ
2 ) − v(m)(s) . (2.78)

By the chain rule (2.48), we also obtain

IF[x; |φ(m)(s)|2] = 2xm[u(m)(s) cos(sx+ mπ
2 ) + v(m)(s) sin(sx+ mπ

2 )]−2|φ(m)(s)|2. (2.79)

Notice that the IFs of the transforms’ derivatives are unbounded both in x and in s.
However, for suitably large s their absolute value is smaller than that of IFs (2.50)-(2.53)
of the original transforms for x → ∞ and/or x → 0 (that is, for x representing the two
types of outlying contamination). It is so because for any m≥1, L(m)(s) and |φ(m)(s)|2
decay faster than L(s) and |φ(s)|2 as s → ∞ (for distributions on R+ and continuous
distributions on R+ or R, respectively). This issue is illustrated in Fig. 2.5, where we
plotted IF[x; L(m)(s)] and IF[x; |φ(m)(s)|2] for m = 0, 1, 2, setting either s=0.5 or s=3.
The underlying distribution is exponential(λ) with λ = 1.

In summary, when employing the derivatives of transforms for statistical purposes we
can maintain robustness. This, in turn, extends to the robustness of resulting estimators.
The expressions (2.76)-(2.79) will be used in Chapter 4 to derive more intricate IFs for
our new estimators.

2.5 Summary

This chapter gave a comparative review of LTs and CFs along with their sample coun-
terparts. We highlighted distinctions in the transform properties in connection with
types of continuous distributions (one- versus two-sided). Boundedness emerged as a
fundamental property, ensuring both bounded IF and bounded variance of the empirical
transform. In this context, CF is a more universal tool than LT which is not unbounded
for two-sided distributions. On the other hand, considering the analytical difficulties as-
sociated with the complex-valued CF and the oscillation of its components, LT appears
to be more useful for one-sided (life-time) models. The LT holds an additional advantage
in terms of derivatives: the derivatives of ELT are unbiased and consistently exhibit fi-
nite variance for some s ∈ D. In contrast, the bias and variance of the squared modulus
of the m-th derivative of CF depend on the 2m-th moment, and, thus, may be infinite.
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2. Integral transforms and their empirical counterparts

Figure 2.5: IFs of L(m)(s) and |φ(m)(s)|2, with s = 0.5 or s = 3 for the exponential(1)
distribution; m = 0, 1, 2. For fixed contamination x, the robustness of the transforms’
derivatives decreases with the derivative order m.

With the introduction of the derivatives of LTs and CFs, the inherent boundedness of
transforms is completely lost. Nevertheless, as demonstrated in the last section, the IF
of any order derivative has lower magnitude compared to the IF of the transform itself
as s → ∞ (for LT) or as |s| → ∞ (for the squared modulus of CF).

The reviewed properties determine the construction of the estimators in next chapters
and help explain their performance.
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CHAPTER 3
Differential equations satisfied by

transforms

This chapter explores methods of obtaining the differential equations of LTs and CFs of
probability distributions and their usability for statistical inference.

3.1 Direct differentiation

We begin by noting that for transforms with closed-form expressions, differential equation
can be derived by direct differentiation. This method applies as long as the result of
differentiation contains the transform expression as a factor or summand. Let us consider
some examples.

3.1.1 Examples

3.1.1.1 Gamma distribution

The LT of the gamma distribution is given by

L(s) =

�
β

β + s

$α

, s > −β. (3.1)

By taking derivative of both sides w.r.t to s, we obtain

L′(s) = −α

�
β

β + s

$α−1 β

(β + s)2
, (3.2)

which implies

(β + s)L′(s) + αL(s) = 0 . (3.3)
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3. Differential equations satisfied by transforms

Repeated differentiation leads to higher order equations. In particular, equations involv-
ing only the k-th and (k − 1)-th derivatives can be written in general as

(β + s)L(k)(s) − (α + k − 1)L(k−1)(s) = 0 , (3.4)

whereas those consisting only of the k-th derivative and the transform itself are

(β + s)kL(k)(s) +
k−1(
j=0

(α + j)L(s) = 0 . (3.5)

3.1.1.2 Normal distribution

To illustrate equations satisfied by CFs, we consider that of the normal distribution

φ(s) = exp{iµs − σ2s2/2} , s ∈ R. (3.6)

Taking derivative of both sides leads to

φ′(s) − (iµ − σ2s)φ(s) = 0, (3.7)

and, by doing it k times, we find that

φ(k)(s) − (iµ − σ2s)φ(k−1)(s) + (k − 1)σ2φ(k−2)(s) = 0. (3.8)

Generalizing similar to (3.5) in this case is challenging.

3.1.1.3 Rayleigh distribution

The final example concerns a transform expressed in terms of a special function but with
a manageable derivative. In Meintanis and Iliopoulos (2003b), we can find that LT of
the Rayleigh(ϑ) distribution is

L(s) = 1 − sϑ

+
π

2
exp

�
ϑ2s2

2

$
erfc

�
ϑs

√
2

2

$
, s ∈ R. (3.9)

Given the derivative of the complementary error function, erfc′(s) = −2 exp{−s2}/
√

π,
it is not difficult to show that

sL′(s) − (1 + s2ϑ2)L(s) + 1 = 0. (3.10)

For the CF, φ(s) = L(−is), we obtain in a similar manner

sφ′(s) − (1 − s2ϑ2)φ(s) + 1 = 0. (3.11)

The first order ODEs which can be obtained throught direct differentiation of the trans-
forms listed in Tables 2.1-2.2 and 2.3 are compiled in Table 3.1 on p. 45.

38



3.2. Alternative method of deriving the differential equations

3.2 Alternative method of deriving the differential

equations

This section explores distributions with LTs and CFs lacking closed-form expressions,
making direct computation of their derivatives impractical or impossible. Examples
falling into this category occurred in Table 2.2. Fortunately, in quite many such cases, the
desired equations can be found by an ’indirect’ differentiation approach recently proposed
by Gaunt (2021) (who presented it for CF of the Student-t distribution). We will refer
to this approach as the alternative method. Its somewhat generalized description is
provided below.

The method starts by first identifying the differential equation satisfied by the density
f(x) in question, and, it applies when the equation has coefficients being polynomials in
x. The process involves the following steps:

1. Differentiate the density f(x) = f(x|θθθ) w.r.t. x and obtain a differential equation.

2. Rewrite the equation in the following form:

m1
k=0

wk(θθθ)xkf(x) +
r1

k=0

ξk(θθθ)xkf ′(x) = 0 , (3.12)

where w0(θθθ), ..., wm(θθθ) and ξ0(θθθ), ..., ξr(θθθ) are some functions of the parameter.

3. Compute the LT or CF of both sides.

In case of LT, this computation leads to

m1
k=0

wk(θθθ)

∞�
0

(-∞)

xkf(x)e−sxdx +
r1

k=0

ξk(θθθ)

∞�
0

(-∞)

xkf ′(x)e−sxdx = 0 , (3.13)

whereas in the case of CF it gives

m1
k=0

wk(θθθ)

∞�
0

(-∞)

xkf(x)eisxdx +
r1

k=0

ξk(θθθ)

∞�
0

(-∞)

xkf ′(x)eisxdx = 0 , (3.14)

(where the lower limits of integration are set to 0 for one-sided distributions and
−∞ for the two-sided ones).

Now, computing the first integrals in (3.13) and (3.14) is straightforward using

∞�
0

(-∞)

xkf(x)e−sxdx = (−1)kL(k)(s) , (3.15)
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3. Differential equations satisfied by transforms

and ∞�
0

(-∞)

xkf(x)eisxdx = (−i)kφ(k)(s) , (3.16)

the well-known properties of the Laplace and Fourier transforms; see e.g. Poularikas
(2010) and recall secs. 2.1.1.4 and 2.1.3.3.

The second integrals in (3.13) and (3.14) can be computed by parts, as follows:

∞�
0

(-∞)

xkf ′(x)e−sxdx =

�
xkf(x)e−sx

�∞

0
(-∞)� �� �

A
LT

− k

∞�
0

(-∞)

xk−1f(x)e−sxdx + s

∞�
0

(-∞)

xkf(x)e−sxdx,

and

∞�
0

(-∞)

xkf ′(x)eisxdx =

�
xkf(x)eisx

�∞

0
(-∞)� �� �

A
CF

− k

∞�
0

(-∞)

xk−1f(x)eisxdx − is

∞�
0

(-∞)

xkf(x)eisxdx.

The derivations will be successful if the terms A
LT

or A
CF

in the above two lines
are finite. This condition may impose some restrictions on the parameter space, or
the proof of validity of the final equation may necessitate additional arguments for
parameter values where A

LT
= ∞ and/or A

CF
= ∞). However, it is noteworthy

that, for most distributions studied in this thesis, the terms A
LT

or A
CF

not only
turned out to be finite but they equal zero over the entire parameter space. This
is demonstrated by examples given in the next section.

4. If A
LT

and/or A
CF

are indeed zero, we can leverage (3.15) and (3.16), along with
the derivative properties of both transforms, to obtain

∞�
0

(-∞)

xkf ′(x)e−sxdx =

����
sL(s) − f(0+), k = 0 and support of f(x) is R+ or R

0
+

sL(s), k = 0 and support of f(x) is R ,

(−1)k[sL(k)(s) + kL(k−1)(s)], k = 1, 2, ... in any case ;

(3.17)

and

∞�
0

(-∞)

xkf ′(x)eisxdx =

����
−isφ(s) − f(0+), k = 0 and support of f(x) is R+ or R

0
+

−isφ(s), k = 0 and support of f(x) is R ,

(−1)kik−1[sφ(k)(s) + kφ(k−1)(s)], k = 1, 2, ... in any case .

(3.18)
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3.2. Alternative method of deriving the differential equations

5. Substituting (3.15) and (3.17) into (3.13) or (3.16) and (3.18) into (3.14), yields
the desired differential equations satisfied by either LT or CF.

If the differential equation satisfied by f(x) is not polynomial in x, unfortunately, the
method cannot be applied, at least in the present version. This limitation arises, for
instance, in the case of the Weibull(c, λ) distribution with a non-integer c or for the
log-normal distribution. The following examples illustrate situations where the method
can be effectively employed.

3.2.1 Examples

3.2.1.1 Pareto-Lomax distribution

The Pareto(α,β) distribution of the Lomax type has the density

f(x) =
αβα

(x + β)α+1
, x ≥ 0 , α, β > 0 . (3.19)

Differentiating it w.r.t x we get

f ′(x) = −f(x)

�
α + 1

x + β

$
, (3.20)

which leads to the following differential equation

(α + 1)f(x) + βf ′(x) + xf ′(x) = 0 , (3.21)

whose coefficients are polynomials in x. Comparing the structure of this equation with
(3.12), we observe that here m = 0, w0(θθθ) = (α + 1), and r = 1, ξ0(θθθ) = β, ξ1(θθθ) = 1.
Now, computing LT of both sides yields

(α + 1)

� ∞

0
f(x)e−sxdx + β

� ∞

0
f ′(x)e−sxdx +

� ∞

0
xf ′(x)e−sxdx = 0 . (3.22)

We utilize (3.15) to compute the first integral and (3.17) to compute the second and
third ones. Since the term of the type A

LT
is zero, we can apply (3.17), and we have� ∞

0 f ′(x)e−sxdx = sL(s) − f(0) and
� ∞

0 xf ′(x)e−sxdx = −L(s) − sL′(s); we also have
f(0) = α/β. By combining these results and rearranging, we arrive at

(α + βs)L(s) − sL′(s) − α = 0 . (3.23)

The differential equation satisfied by CF is found in a similar manner. First, by taking
the CF of both sides of (3.21), we obtain

(α + 1)

� ∞

0
f(x)eisxdx + β

� ∞

0
f ′(x)eisxdx +

� ∞

0
xf ′(x)eisxdx = 0 . (3.24)
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3. Differential equations satisfied by transforms

Given that the terms of the type A
CF

are zero, we can use (3.18), where we have� ∞
0 f ′(x)eisxdx = −isφ(s) − f(0) and

� ∞
0 xf ′(x)e−sxdx = −φ(s) − sφ′(s). Rearranging

the terms gives

(α − iβs)φ(s) − sφ′(s) − α = 0 . (3.25)

3.2.1.2 Generalized inverse Gaussian distribution

The density of this three-parameter distribution is

f(x) =
µpxp−1

2Kp(λ/µ)
exp

�
− λ(x − µ)2

2µ2x

�
, x, λ, µ > 0, p ∈ R, (3.26)

where Kp(·) stands for the modified Bessel function of 2nd kind. Note that, usually,
authors work with a different parametrization; see Jørgensen (1982) or sec. 9.3 in
Johnson et al. (1994) for details. Putting p = −1/2 yields the classical inverse Gaus-
sian law, as presented in Table 2.1. Upon differentiating both sides of (3.26), we obtain

λf(x) + 2(p − 1)xf(x) − (λ/µ2)x2f(x) − 2x2f ′(x) = 0 . (3.27)

Computing the LT of both sides, we apply (3.15) with k = 0, 1, 2, as well as (3.17) with
k = 2 (allowed as the term of type A

LT
is zero). This yields

(2s+λ/µ2)L′′(s) + 2(p + 1)L′(s) − λL(s) = 0. (3.28)

Similarly, taking CF of both sides of (3.27) and using (3.16) along with (3.18) for the
same k-values, leads to

(2is+λ/µ2)φ′′(s) + 2i(p + 1)φ′(s)−λφ(s) = 0. (3.29)

3.2.1.3 Beta distributions of 1st and 2nd kind

By differentiating the density of the beta distribution of the 1st kind, namely

f(x) =
xα−1(1 − x)β−1

B(α, β)
, 0 ≤ x ≤ 1 , α, β > 0 , (3.30)

we find that it satisfies

(1 − α)f(x) + (α + β − 2)xf(x) + xf ′(x) − x2f ′(x) = 0 . (3.31)

After taking LT or CF of both sides, all the integrals can be shown to be finite (even for
0 < β < 1). Following the previously established steps, we obtain

sL′′(s) + (α + β + s)L′(s) + αL(s) = 0 , (3.32)
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3.3. Remarks on the differential equations

and

sφ′′(s) + (α + β − is)φ′(s) − iαφ(s) = 0 . (3.33)

Since the density of X ∼ beta(α,β) satisfies a differential equation with coefficients that
are polynomials in x, the same should hold for the distribution of X/(1 − X), which is
the beta distribution of the 2nd kind. Its density is expressed as

f(x) =
xα−1(1 + x)−α−β

B(α, β)
, x ≥ 0 , α, β > 0 , (3.34)

and, indeed, by differentiation w.r.t x, we find that

(1 − α)f(x) + (1 + β)xf(x) + xf ′(x) + x2f ′(x) = 0 . (3.35)

The established steps lead to

sL′′(s) + (1 − s − β)L′(s) − αL(s) = 0 , (3.36)

and

sφ′′(s) + (1 + is − β)φ′(s) + iαφ(s) = 0 . (3.37)

Table 3.2 presents differential equations of transforms derived by the alternative method
for a group of standard distributions. The table also includes equations for the Student-t,
Maxwell, Rayleigh, inverted Rayleigh, inverted Maxwell and inverted gamma distribu-
tions. Derivations thereof are similar to those given in the above examples. We notice
that if a transform of distribution of X can be handled by the method, then, in principle,
the transform related to the inverted variable 1/X can be handled too. The derivation of
the equation for CF of the Student-t(ν), which requires additional arguments for degrees
of freedom ν = 1 and 2, is given in the already cited work of Gaunt (2021). All the
presented equations have been validated by Monte Carlo simulations.

3.3 Remarks on the differential equations

As seen in the above examples, the differential equations satisfied by LTs and CFs are
linear ordinary differential equations (ODEs) of order k ≥ 1. Their scope of validity
is identical with D (the interval of convergence of the particular transform) if E[Xk] is
finite, or the scope equals D\{0} if this moment does not exist. Inclusion of s = 0 may
depend, in some cases, on the parameter value (e.g., the Pareto case).

All the equations derived by direct differentiation (Table 3.1) are generically of first
order. In contrast, those produced by the alternative method (Table 3.2) vary in order,
with each determined by the highest power of x present in the formula of the underlying
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3. Differential equations satisfied by transforms

density. All the obtained equations are homogenous, except for the uniform, Pareto and
Rayleigh cases, where free terms (independent of s) are involved1.

Finally, note that the coefficients of the equations may be linear or non-linear in θθθ and s.
As we will see, linearity in θθθ guarantees closed-form expressions for the estimators to be
defined in the next chapter. In turn, the GoF statistics based on these equations (which
do not require a solution for θθθ but a substitution of its independent estimate) may admit
closed forms without linearity in θθθ.

3.4 Conditions for consistency in statistical applications

Consistency of statistical procedures based on the presented differential equations will
depend on uniqueness of their solutions. However, it is crucial to carefully differentiate
this requirement with respect to GoF testing and parameter estimation.

3.4.1 Consistency of testing

To ensure the consistency of a GoF test (carried out with an independent consistent
estimator �θθθn, such as ML or MM), we should require that the transform of the tested
distribution is the only solution to the particular equation within the class of all prob-
ability transforms of that type (LT/CF), subject to specific initial conditions. Among
the LT-based equations in Tables 3.1 and 3.2, such uniqueness is guaranteed for all the
distributions with finite moments of the appropriate order. This assurance stems from
the well-known Existence and Uniqueness Theorem for linear ODEs with continuous
coefficients; see, for instance, Farlow (1994) p. 189. In particular, the initial conditions
for the k-th order equations of that type are as follows:

L(0) = 1,

L(1)(0) = −E[X],
...

.
(3.38)

L(k−1)(0) = (−1)k−1
E[Xk−1] .

As the theory for the solvability and uniqueness of solutions to linear ODEs holds con-
sistently whether the functions and coefficients are real or complex, the above consid-
erations also extend to CF-based equations. Proving the uniqueness for both the LT
and CF-based equations when (some) moments of the distributions are infinite is a more
intricate task.

This uniqueness in most general sense turns the corresponding GoF test into an omnibus
test, meaning it is consistent against all distributional alternatives. Consistency of a test
in a smaller class of distributions requires, understandably, more refined analysis.

1The case of the Rayleigh distribution was the only one where we managed to obtain differential equa-
tions using both methods. Specifically, the second-order equations obtained via the alternative method
(see Table 3.2) follow from differentiation of the first-order ones, obtained by the direct differentiation
approach in (3.11).
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3.4. Conditions for consistency in statistical applications

Table 3.1: Differential equations of transforms obtained by direct differentiation.

distribution differential equation

normal(µ, σ2)
x, µ ∈R, σ2 > 0

L′(s) + (µ − σ2s)L(s) = 0, s ∈ R

φ′(s) − (iµ − σ2s)φ(s) = 0, s ∈ R

exponential(λ)
x ≥ 0, λ > 0

(λ + s)L′(s) + L(s) = 0, s ∈ (−1/λ, ∞)

(iλ + s)φ′(s) + φ(s) = 0, s ∈ R

gamma(α, β)
x > 0, α, β > 0

(β + s)L′(s) + αL(s) = 0, s ∈ (−β, ∞)

(iβ + s)φ′(s) + αφ(s) = 0, s ∈ R

inv.Gauss.(λ, µ)
x, λ, µ > 0

*
1 + 2µ2s/λ L′(s) + µL(s) = 0, s ∈ [−λ/2µ, ∞)*
1 − 2µ2is/λ φ′(s) + iµφ(s) = 0, s ∈ R

Rayleigh(ϑ)
x ≥ 0, ϑ > 0

sL′(s) − (1 + s2ϑ2)L(s) + 1 = 0, s ∈ R

sφ′(s) − (1 − s2ϑ2)φ(s) + 1 = 0 s ∈ R

Laplace(µ, β)
x, µ ∈R, β > 0

(1 − β2s2)L′(s) + [µ(1 − β2s2) − 2β2s]L(s) = 0, s ∈ (− 1
β , 1

β )

(1 + β2s2)φ′(s) − [iµ(1 + β2s2) − 2β2s]φ(s) = 0, s ∈ R

logistic(µ, β)
x, µ ∈R, β > 0

L′(s) + [µ + cot(πβs)πβ − 1/s]L(s) = 0, s ∈ (−1/β, 1/β)

φ′(s) − [iµ − coth(πβs)πβ + 1/s]φ(s) = 0, s ∈ R

uniform(a, b)
x ∈ (a,b), a,b ∈R, b > a

sL′(s) + L(s) − (be−sb − ae−sb)/(b − a) = 0, s ∈ R

sφ′(s) + φ(s) − (beisb − aeisa)/(b − a) = 0, s ∈ R

Cauchy(µ, γ)
x, µ ∈R, β > 0

φ′(s) − (iµ + β)φ(s) = 0 s < 0

φ′(s) − (iµ − β)φ(s) = 0, s > 0

stable(µ,γ,α)
x, µ ∈R, γ > 0, α ∈ (0,2]

φ′(s) − (iµ − γαsα−1)φ(s) = 0, s < 0

φ′(s) − (iµ + γαsα−1)φ(s) = 0, s > 0

Poisson(λ)
x = 0,1,2,..., λ > 0

φ′(s) − iλeisφ(s) = 0, s ∈ R

45



3. Differential equations satisfied by transforms

Table 3.2: Differential equations of transforms obtained by the alternative method.

distribution differential equation

Pareto(α, β)
x ≥ 0, α, β > 0

sL′(s) − (α + βs)L(s) + α = 0, s > 0 ∗

sφ′(s) − (α − iβs)φ(s) + α = 0, s ∈ R\{0} ∗

Beta(α, β)
0 < x < 1, α, β > 0

sL′′(s) + (α+β+s)L′(s) + αL(s) = 0, s ∈ R

sφ′′(s) + (α+β−is)φ′(s) − iαφ(s) = 0, s ∈ R

Beta-2(α, β)
x ≥ 0, α, β > 0

sL′′(s) + (1−s−β)L′(s) − αL(s) = 0, s > 0 ∗

sφ′′(s) + (1+is−β)φ′(s) + iαφ(s) = 0, R\{0} ∗

inv.Gauss.(λ, µ)
x, λ, µ > 0

(2s+λ/µ2)L′′(s) + L′(s) − λL(s) = 0, s ∈ [- λ
2µ , ∞)

(2is−λ/µ2)φ′′(s) + iφ′(s) − λφ(s) = 0, s ∈ R

GIG(λ, µ, p)
x, λ, µ > 0, p ∈R

(2s+λ/µ2)L′′(s)+2(p + 1)L′(s) − λL(s) = 0, s ∈ [- λ
2µ , ∞)

(2is+λ/µ2)φ′′(s)+2i(p+1)φ′(s)−λφ(s) = 0, s ∈ R

Rayleigh(ϑ)
x ≥ 0, ϑ > 0

L′′(s) − ϑ2sL′(s) − 2ϑ2L(s) = 0, s ∈ R

φ′′(s) + ϑ2sφ′(s) + 2ϑ2φ(s) = 0, s ∈ R

Maxwell(σ)
x, σ > 0

3σ2L(s) + σ2sL′(s) − L′′(s) = 0, s ∈ R

3σ2φ(s) + σ2sφ′(s) + φ′′(s) = 0, s ∈ R

inv.Rayleigh(ϑ)
x, ϑ > 0

sϑ2L′′′(s) + L(s) = 0, s > 0 ∗

inv.Maxwell(σ)
x, σ > 0

sL′′′(s) − L′′(s) − (1/σ2)L(s) = 0, s > 0 ∗

inv. gamma(α, β)
x > 0, α, β > 0

sL′′(s) − (α − 1)L′(s) − βL(s) = 0, s > 0 ∗

Student-t(ν)
x ∈R, ν>0

sφ′′(s) − (ν − 1)φ′(s) − νsφ(s) = 0, s ∈ R\{0} ∗

∗ In these cases, the domain of the differential equation may include s = 0, provided the
moment of the order equal to the order the equation exists.
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3.4. Conditions for consistency in statistical applications

3.4.2 Uniqueness within the model and estimation consistency

Consistency of estimators based on the differential equations relies on slightly different
reasoning. Namely, when constructing such an estimator (in the way outlined in the
introduction and further developed in the upcoming Chapter 4), we need to verify that
our equation is satisfied by the transform of the assumed distribution for only a single
value of the parameter, regardless of the initial conditions. It is not necessary to prove
that the transform of no other distribution satisfies this equation, as the estimation is
conducted solely within the presumed distributional family Fθθθ(x), θθθ ∈ ΘΘΘ.

This narrower sense of uniqueness certainly holds for all the two-term homogenous equa-
tions of the form

h(θθθ, s)L(r)(s) + L(m)(s) = 0 . (3.39)

To see this, let us consider the same equation also satisfied for some θθθ∗ �= θθθ, which is

h(θθθ∗, s)L(r)(s) + L(m)(s) = 0 , (3.40)

and subtract it from the above one. We obtain�
h(θθθ, s) − h(θθθ∗, s)

�
L(r)(s) = 0 , (3.41)

which implies either that θθθ∗ = θθθ (contradiction) or that L(r)(s) = 0, which is impossible
for any probability LT.

However, for equations involving three or more derivatives, the uniqueness may not
hold in general. As a counter-example, consider the following (artificially constructed)
second-order equation with scalar parameter θθθ = λ > 0,

(2λ + s)(λ + s)L′′(s) + 2(3λ + 2s)L′(s) + L(s) = 0 . (3.42)

We can easily check that it is satisfied both by L(s) = λ/(λ + s) and L(s) = 2λ/(2λ + s),
representing the LTs of the exponential distribution with means 1/λ and 1/2λ, re-
spectively. Of course, by specifying concrete initial conditions, such as L(0) = 1 and
L′(0) = −E[X] = −1/λ or L(0) = 1 or L′(0) = −E[X] = −1/2λ, the solution becomes
unique. Note, however, that in a real-world situation, an estimator obtained from the
empirical version of (3.42), does not ’know’ this condition. In result, some realizations in
the sample X1, ..., Xn will pull the estimator towards λ, while others pull it towards 2λ,
yielding an in-between limiting value as n → ∞ and, hence, leading to an inconsistent
behavior.

Therefore, the condition discussed here, which we term parameter-uniqueness within
the model, must be individually examined for each distribution and specific equation
intended for constructing estimators. Let us now examine two additional examples from
Table 3.2 in this context.
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3. Differential equations satisfied by transforms

The three-term equation satisfied by the Rayleigh(ϑ) LT is

L′′(s) − ϑ2sL′(s) − 2ϑ2L(s) = 0 . (3.43)

Let us assume that it is satisfied by a Rayleigh LT with a different ϑ∗ �= ϑ, so that

L′′(s) − ϑ2
∗ sL′(s) − 2ϑ2

∗ L(s) = 0 . (3.44)

Subtracting (3.44) from (3.43), we get

(ϑ2 − ϑ2
∗ )[sL′(s) + 2L(s)] = 0 . (3.45)

This shows that either ϑ = ϑ∗, as we wish, or that

sL′(s) + 2L(s) = 0 . (3.46)

The last line, however, implies that L(s) = ks−2, for some constant k, which is im-
possible because for any probability distribution L(0) = 1. This verifies the parameter
uniqueness within the Rayleigh model regarding the Eq. (3.43). By the same argument
the uniqueness holds for the corresponding third-order ODE, namely

L′′′(s) − ϑ2sL′′(s) − 3ϑ2L′(s) = 0 . (3.47)

Both equations will be considered in sec. 4.5.3 for the construction of estimators of ϑ.

As the second example, consider the Pareto(α, β) LT satisfying the non-homogenous
equation

sL′(s) − (α + βs)L(s) + α = 0. (3.48)

Assume that the equation is also satisfied by the Pareto LT with another pair of param-
eters, α∗ and β∗, namely

sL′(s) − (α∗ + β∗s)L(s) + α∗ = 0. (3.49)

The difference of the two gives

(α∗ − α)L(s) + (β∗ − β)sL(s) = α∗ − α, (3.50)

which holds when α∗ = α and β∗ = β. If α∗ �= α and β∗ �= β, then

L(s) =
α∗ − α

α∗ − α + (β∗ − β)s
, (3.51)
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3.5. Differential equations for non-standard distributions

which is not the LT of the Pareto but LT of the exponential distribution, and, in addition,
it satisfies neither (3.48) nor (3.49). Hence, the parameter uniqueness is verified in the
Pareto case as well.

Verification of the CF-based versions of the above equations follows analogously.

3.5 Differential equations for non-standard distributions

The integral transforms discussed so far were associated with the standard probability
distributions like normal, exponential, Pareto, inverse Gaussian. However, as explained
in the introduction, the crucial role of transforms in probability is to cope with non-
standard distributions for which densities and, hence, likelihood functions are either ex-
ceptionally complex or non-derivable. Many such distributions, encountered especially
in fields of risk, insurance, queueing or inventory management, involve summation, com-
pounding, and mixing of standard random variables. We now explore several examples
to signal the broader potential of the transform methods, with a particular emphasis on
those utilizing differential equations.

3.5.1 Lagged-normal distribution

Only a few probability distributions are closed under variable summation, implying
that X1 + ... + Xk shares the same distribution as the summands Xj ’s, with possibly
altered parameters. This property holds, for example, in cases of the Poisson and normal
variables, as well as the gamma variables with the same scale parameter. In most
other cases, however, the analytical form of the sum density, resulting from multiple
convolutions of the summands’ densities, cannot be explicitly computed. The same
challenge applies to sums of variables distributed heterogeneously.

In connection with the former scenario, consider the sum

Z = X + Y,

where X ∼ normal(µ, σ2) with density fX(x|µ, σ2), and Y ∼ gamma(α, β) with density
fY (y|α, β). The distribution of Z is called the lagged-normal distribution. If X and Y
are independent, the density of Z can be expressed by a convolution integral,

fZ(z|µ, σ2, α, β) =

� ∞

0
fX(z − y|µ, σ2)fY (y|α, β)dy

=
βα

√
2πσΓ(α)

� ∞

0
yα−1 exp

�−[(z−y−µ)2 + 2βσ2y]

2σ2

�
dy , (3.52)

which does not admit a tractable expression.
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3. Differential equations satisfied by transforms

On the other hand, according to the convolution property (see e.g. Feller (1971)), the
LT (or CF) of Z is simply the product of LTs (or CFs) of X and Y ,

LZ(s|µ, σ2, α, β) = L(s) = exp{−µs + σ2s2/2}
�

β

β + s

$α

, s > −β. (3.53)

While the expression is explicit, statistical inference based on it is challenging from a
computational viewpoint. Working with the associated differential equation, however, is
more convenient. By taking derivatives of both sides of (3.53), we arrive at

L′(s) + [µ − σ2s + α/(β + s)]L(s) = 0 . (3.54)

This ODE is of the form we obtained for a series of standard distributions, namely
L′(s) + h(θθθ, s)L(s) = 0, with θθθ = (σ2, µ, α, β)⊤, and may be utilized to derive estimators
of the parameters from a sample {Z1, ..., Zn}. The estimators can be of the L2 type, as
defined in (1.10), or of the transform-matching type defined in (1.11). However, as the
coefficient in front of L(s) is not linear in the elements of θθθ, the estimators will not be
explicit. Rather, to obtain explicit estimates one must use a set of differential equations
satisfied by log L(s) (or, in the CF-based setting, by log φ(s)); see ch. 4 of Campbell
(1992) for full derivation.

3.5.2 Normal variance-gamma distribution

Many non-standard distributions are derived through randomization (mixing) of their
parameters. In this process, a parameter is treated as a random variable, and the
resultant density is obtained by integrating the original one over that of the parameter.
The usual goal of mixing is to enhance the model’s flexibility.

An important example arises with the normal(µ,σ2) distribution in which the variance
σ2 is treated as a gamma(α,β) variable, forming the so-called normal variance-gamma
mixture. Such distribution features longer tails than a regular normal model, providing
an alternative to the Student t-distribution while maintaining finiteness of all moments
and closure under summation. Applications include finance, where it is employed to
model log returns of stock indices; see, e.g., Fergusson and Platen (2006).

The density of the mixture can be written as

f(x|µ, α, β) =
βα

√
2πΓ(α)

� ∞

0
exp

�−(x−µ)2

2σ2

�
(σ2)α−3/2 exp{−βσ2}dσ2 , (3.55)

which, similarly to the convolution integral (3.52), does not yield a closed-form expres-
sion.

Fortunately, it is far easier to perform the mixing in transform domain. By integrating
the normal LT, L(s) = exp{−µs + σ2s2/2}, with respect to the distribution of σ2, we
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3.5. Differential equations for non-standard distributions

obtain

L(s|µ, α, β) = L(s) = exp{−µs}
� ∞

0
exp{σ2s2/2} β α

Γ(α)
(σ2)α−1 exp{−βσ2}dσ2. (3.56)

The remaining integral can be interpreted as the LT of the gamma density with transform
variable −s2/2, so that we can write

L(s) = exp{−µs}
�

β

β − s2/2

$α

, |s| <
,

2β . (3.57)

By taking derivative w.r.t. s, we obtain the differential equation

(β − s2/2)L′(s) + [µ(β − s2/2) − αs]L(s) = 0 , (3.58)

which is more computationally useful for inference than the transform (3.57) itself, being
highly non-linear as a function of the parameters.

The corresponding CF and its differential equation are obtained in a similar vein. We
have

φµ,α,β(s) = φ(s) = exp{iµs}
�

β

β + s2/2

$α

, (3.59)

and
(β + s2/2)φ′(s) − [iµ(β + s2/2) − αs]φ(s) = 0 , (3.60)

s ∈ R. If we fix β, then µ and α can be computed explicitly in order to derive explicit
estimators. This example will be continued in sec. 4.5.6.

3.5.3 Compound distributions

Compound distributions refer to summation of a random number of i.i.d. random vari-
ables:

Z = X1 + X2 + ... + XK .

In such models, Xj ’s ∼ fX(x|θθθ) are typically positive and continuous whereas K is
non-negative and discrete, with probability mass function p(k). Compounding with K
being Poisson, binomial or negative binomial is popular in insurance-related modeling to
characterize claims aggregated over periods of time. Often, we observe only realizations
of Z and, perhaps, frequencies of K, but have no access to sizes of particular Xj ’s. We
need, however, to infer about the distribution of X given a sample of Z, (Z1, ..., Zn).

Deriving the distribution of Z is virtually impossible. Its density is a (possibly infinite)
weighted sum of multiple self-convolutions of the density of X, namely

fZ(z|θθθ) =
∞1

k=0

p(k)[fX(x|θθθ)]k⊛ , (3.61)
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3. Differential equations satisfied by transforms

whereby [fX(x|θθθ)]0⊛ ≡ 0. Fortunately, formulation of the problem in terms of transforms
is straightforward. By taking the LT of both sides of (3.61), we obtain

LZ(s|θθθ) =
∞1

k=0

p(k)[LX(s|θθθ)]k . (3.62)

We recognize then that
LZ(s|θθθ) = G(LX(s|θθθ)) , (3.63)

where G denotes the probability generating function (PGF) of K. Depending on the
structure and parametrization of G and L, we can use (3.63) in various ways - working
with it directly or deriving the corresponding differential equations.

The latter approach brings the advantage of finding relations between the moments of
X, K, and Z, and thus deriving the MM estimators defined in (1.3). For example, if
θθθ = (θ1, θ2), we compute the first and second derivatives of (3.63),

L′
Z(s|θθθ) = G′(LX(s|θθθ))L′

X(s|θθθ) , (3.64)

and
L′′

Z(s|θθθ) = G′′(LX(s|θθθ))[L′
X(s|θθθ)]2 + G′(LX(s|θθθ))L′′

X(s|θθθ) , (3.65)

and set s = 0. By the known transform properties, LX(0) = 1, L
(ℓ)
X (0) = (−1)ℓ

E[Xℓ],
ℓ = 1, 2, ..., G′(1) = E[K], and G′′(1) = V[K], we obtain the relations:

E[Z] = E[K]Eθθθ[X], (3.66)

E[Z2] = V[K]E2
θθθ[X] + E[K]Eθθθ[X2] . (3.67)

Now, replacing the means and variances of Z and K by their sample counterparts, yields
the following system:�

Zn = Kn Eθθθ[X] ,�Vn[Z] = �Vn[K](Eθθθ[X])2 + Kn Eθθθ[X] − (Zn)2 ,

a solution to which for θθθ yields the MM estimator, �θθθ MM

n = (�θ MM

1,n , �θ MM

2,n )⊤.

To perform the transform-based inference in this model, we first need to specify the
(typically parametric) distribution of K. As mentioned above, a popular and analytically
convenient choice is with K ∼ Poisson(λ), so that

LZ(s|θθθ, λ) = exp{−λ[1 − LX(s|θθθ)]}. (3.68)

The differential equation has then the general form

L′
Z(s|θθθ, λ) = λLZ(s|θθθ, λ)L′

X(s|θθθ). (3.69)
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3.5. Differential equations for non-standard distributions

Given a sample of Z, we now want to estimate or test the hypothesized distribution of
X. While explicit estimation of θθθ may not be feasible for many standard choices of X,
the goodness-of-fit test statistic is computable explicitly quite often. For example, to
test whether X ∼ Exponential(β), meaning that L′

X(s|θθθ) = −β/(β + s)2, we can use the
empirical version of the equation

(β + s)2L′
Z(s|θθθ, λ) + λβLZ(s|θθθ, λ) = 0, (3.70)

in which λ, β and the transforms are replaced by their consistent estimators, �λn, �βn,�Ln(s) and �L′
n(s). Specifically, the resulting weighted L2 test statistic of the type (1.16),

based on (Z1, ..., Zn), will be

Tn = n

� ∞

0

�
(Kn/Zn + s)2 �L′

n(s) + K
2
n/Zn

�Ln(s)
�2

dW (s) , (3.71)

with �Ln(s) = 1
n

2n
j=1 e−sZj and �L′

n(s) = − 1
n

2n
j=1 Zje−sZj , Kn = �λn and Kn/Zn = �βn.

The reader also is referred to the recent work by Goffard et al. (2022), who derive more
complicated but computationally feasible test statistics based on differential equations
like (3.64). In their more general assumptions, K belongs to the entire Katz family2,
while X follows the gamma or inverse Gaussian distribution.

2The Katz family is characterized by the fact that its PGF G(s) satisfies (1 − βs)G′(s) − αG(s) = 0,
α > 0, β < 1, subject to G(1) = 1. The family encompasses the binomial, negative binomial, and Poisson
distributions as special cases; see Johnson et al. (1993), Fang (2003) and sec. 6.1.3.
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CHAPTER 4
Estimators based on differential

equations

As already explained, the parameter estimation in our approach is done by replacing the
model transforms, namely Lθθθ(s) or φθθθ(s), and their derivatives present in a differential
equation by the empirical counterparts, namely �Ln(s), �L′

n(s), ... or �φn(s), �φ′
n(s), ... and so

on. The estimator of θθθ is then defined as the minimizer of certain norm of this empirical
version of the equation over the parameter space. In this thesis, we exclusively focus
on estimators defined by weighted L2 norms. Other choices, such as (weighted) Lq or
infimum norms, are possible as well. However, opting for these alternatives would not
lead to explicit estimators, and exploring their properties, which is already complicated
in the L2 setting, would become intractable.

4.1 Transform-based L2 estimators

Given the variety of forms of the differential equations derived in the previous chapter,
we confine our attention to the following estimators. Among the LT-based estimators,
these will be

�θθθ LT r,m

n = argmin
θθθ ∈ΘΘΘ

� ∞

0

�
h(θθθ, s)�L(r)

n (s) + �L(m)
n (s)

�2
dW (s) , (4.1)

and

�θθθ LT r,m,ℓ

n = argmin
θθθ ∈ΘΘΘ

� ∞

0

�
h(θθθ, s)�L(r)

n (s) + g(θθθ, s)�L(m)
n (s) + �L(ℓ)

n (s)
�2

dW (s) , (4.2)

which are suitable for one-sided (life-time) distributions.
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4. Estimators based on differential equations

Among the CF-based estimators, we will analyze the estimators of the form

�θθθ CF r,m

n = argmin
θθθ ∈ΘΘΘ

� ∞

−∞

333h(θθθ, s)�φ(r)
n (s) + �φ(m)

n (s)
3332dW (s) , (4.3)

which are suitable for both one- and two-sided distributions.

In the above definitions, r, m and ℓ denote the orders of the derivatives. The coefficients
h(θθθ, s) and g(θθθ, s) are real or complex functions, found by appropriate rewriting of the
particular equation in use. With (4.1)-(4.3), we can provide estimators for nearly all dis-
tributions listed in Tables 3.1 and 3.2. Due to space limitations, we neither consider the
estimator of the type (4.2) based on CF nor the LT- and CF-based estimators employing
non-homogeneous equations (as in the uniform and Pareto examples). Nonetheless, the
theory presented below easily extends to those cases.

4.1.1 Choice of the weight function

The role of the user-defined weight function W (s) in (4.1)-(4.3) is threefold:

(i) to render the integrals finite;

(ii) to control the properties of the estimators;

(iii) to provide closed-form expressions for the L2 measure (and eventually for the
estimators).

The following sections, 4.2 and 4.3, present theorems on asymptotic normality and influ-
ence functions of (4.1)-(4.3). For generality, these theorems do not specify the form of
W (s), assuming only integrability of the weighted expression. In further sections, how-
ever, we will apply the estimators to concrete distributions using specific differentiable
weight functions, dW (s) = w(s)ds. In particular, for the LT-based estimators (4.1) and
(4.2), we will choose W (s) such that

w(s) = sγ exp(−as) , s > 0, a > 0, γ = 0, 1, 2, ... . (4.4)

For the CF-based estimator (4.3) in turn, it will be

w(s) = sγ exp(−as2) , s ∈ R, a > 0, γ = 0, 2, 4, ... , (4.5)

which is always an even function.

Both choices will fulfill the requirements (i) and (iii) in the distributional cases we aim to
consider. Additionally, both are also suitable concerning (ii), as they can simultaneously
control efficiency and robustness to outliers. Note that if our sole objective were max-
imum efficiency, then pure exponential and Gaussian functions, namely exp(−as) and
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4.1. Transform-based L2 estimators

exp(−as2), would suffice. In fact, these functions are sufficient for the LT- and CF-based
GoF tests employing the ’traditional’ L2 distances such as

Tn = n

� ∞

0

�
L(s|�θθθn) − �Ln(s)

�2
dW (s) , (4.6)

and

Tn = n

� ∞

−∞

333φ(s|�θθθn) − �φn(s)
3332dW (s) , (4.7)

used by many authors, e.g., Henze and Klar (2002), Epps (2005), Henze et al. (2012)
or Henze and Koch (2020). In these tests, the analyst’s goal is to upweight the most
informative region of the transform domain, the neighborhood of s = 0. However,
for conducting robust estimation of parameters using the derivatives of transforms, we
need the opposite action - the ability to downweight the vicinity of s = 0, where the
empirical derivatives have the highest absolute IFs and tend to be unrobust; recall the
findings in sec. 2.4.2 and refer to Fig. 2.5. Therefore, we need weight functions such that
lims→0 w(s) = 0, and the user-controlled factor sγ in (4.4) and (4.5) serves this purpose.

4.1.2 Estimators with stepwise weight function

Before delving into the general theory, let us discuss the important case when W (s) is
a stepwise function, mapping R or R+ to [0,1]. As mentioned in the introduction, such
a weight function is generally not favored from a computational perspective because it
does not lead to explicit estimators. However, with k = p = dim(θθθ) and equal-size steps
of W (s), the resulting estimator can be an explicit solver of a system of p equations. For
example, for the estimator (4.1) with such a stepwise W (s) the system is����

h(θθθ, s1)�L(r)
n (s1) + �L(m)

n (s1) = 0 ,
...

h(θθθ, sp)�L(r)
n (sp) + �L(m)

n (sp) = 0 ,

(4.8)

and has an explicit solution if h(θθθ, s) is linear in elements of θθθ (or in invertible functions

thereof), expressed in terms of �L(r)
n (sj) and �L(m)

n (sj), j = 1, ..., p.

We denote such an estimator as �θθθn
LT r,m

(s1, ..., sp) and refer to it as the transform-
matching estimator. Its properties, like variance and robustness, will depend on the
choice of s1, ..., sp. To simplify this choice and control the properties through a single
tuning variable s, a limit form can be derived,

�θθθ LT r,m

n (s) = lim
s1→,...,→sp→s

�θθθ LT r,m

n (s1, ..., sp) . (4.9)

However, the routine application of d’Hospital’s rule, necessary to compute the limit,
typically results in an increase in the orders of transform derivatives in the final estimator
formulas (here m and r).
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4. Estimators based on differential equations

The same considerations hold in the CF setting, whereby the estimating equations are
obtained after decomposition of CF into the real and imaginary part and/or modulus.

The transform-matching estimators are special cases of (4.1)-(4.3) and, clearly, do not
require separate asymptotic and robustness theory. Either way, when estimators of this
kind are explicit, their asymptotic normal distribution can be found by the standard
Delta Method, while their IFs are derivable by the chain rule (2.48). Several examples
will be studied in secs. 4.5.2, 4.5.3 and 4.5.5, for the exponential(λ), Rayleigh(ϑ) and
Pareto(α,β) distributions (that is with parameter dimension p = 1 or 2).

4.2 Asymptotic normality of the estimators

In this section, we establish the asymptotic normality of the L2 estimators (4.1), (4.2)
and (4.3). This is covered by the Theorems 1, 2 and 3, respectively. The proof of
Theorem 2 is similar to that of Theorem 1 and can be omitted. The proofs exploit the
theory of V- and U-statistics summarized in Appendix A to which we refer at relevant
points.

The proofs make use of the following general assumptions:

I. The random sample {X1, ..., Xn} is i.i.d.

II. The underlying differential equations

h(θθθ, s)L
(r)
θθθ (s) + L

(m)
θθθ (s) = 0 ,

h(θθθ, s)L
(r)
θθθ (s) + g(θθθ, s)L

(m)
θθθ (s) + L

(ℓ)
θθθ (s) = 0,

h(θθθ, s)φ
(r)
θθθ (s) + φ

(m)
θθθ (s) = 0,

are uniquely solved by Lθθθ(s) or φθθθ(s) in the sense of sec. 3.4.2.

III. The functions h(θθθ, s) and g(θθθ, s) and their derivatives with respect to θθθ up to the
second order are square integrable w.r.t. W (s) for all θθθ.

IV. The moment E[X2k] where k = max(r, m) or k = max(r, m, ℓ) is finite.

Remark. For the Laplace transform-based estimators this moment condition may
be relaxed in special cases. Namely, if W (s) and h(θθθ, s) and g(θθθ, s) avoid 0 like
this: assume dW (s) = w(s)ds, and, for s → 0

w(s) = O(|s|γ),

h(θθθ, s),
∂

∂θi
h(θθθ, s),

∂2

∂θi∂θj
h(θθθ, s) = O(|s|δ),

g(θθθ, s),
∂

∂θi
g(θθθ, s),

∂2

∂θi∂θj
g(θθθ, s) = O(|s|η),
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4.2. Asymptotic normality of the estimators

i, j = 1, ..., p, with γ, δ, η ≥ 0. Then we only need that E(|X|k) is finite, where k
is given by k = max(2r − 2δ − γ − 1, 2m − γ − 1, 0), resp. k = max(2r − 2δ − γ −
1, 2m − 2η − γ − 1, 2ℓ − γ − 1, 0).

Therefore, for h(θθθ, s) and g(θθθ, s) being polynomials in s (which is the case for most
of the LT-based differential equations we use), and for the special form of the
weight we proposed, namely w(s) = sγ exp(−as), γ = 0, 1, ..., the assumption may
be relaxed.

Theorem 1. Let �θθθ LT r,m

n be the weighted L2 estimator of the parameter θθθ ∈ ΘΘΘ ⊆ R
p of

a one-sided distribution, based on linear ODE involving the r-th and m-th derivative of
its LT (r, m ≥ 0, r �= m):

�θθθ LT r,m

n = argmin
θθθ ∈ΘΘΘ

� ∞

0

�
h(θθθ, s)�L(r)

n (s) + �L(m)
n (s)

�2
dW (s) . (4.10)

Under the assumptions I-IV, the estimator is strongly consistent and converges in distri-
bution to a p-variate normal random vector, that is

√
n

� �θθθ LT r,m

n − θθθ
!

d−→ Np

�
000,ΩΩΩ−1(θθθ)ΣΣΣ(θθθ)ΩΩΩ−1(θθθ)

!
, (4.11)

where ΣΣΣ(θθθ) is the p × p symmetric matrix whose (i,j)-th element is

σ2
i,j(θθθ) = 4

∞�
0

∞�
0

∂h(θθθ, s)

∂θi

∂h(θθθ, t)

∂θj

��
2h(θθθ, s)L

(r)
θθθ (s) + L

(m)
θθθ (s)

��
2h(θθθ, t)L

(r)
θθθ (t) + L

(m)
θθθ (t)

�
L

(2r)
θθθ (s+t)

+
�
2h(θθθ, s)L

(r)
θθθ (s) + L

(m)
θθθ (s)

�
L

(r)
θθθ (t)L

(r+m)
θθθ (s+t)

+
�
2h(θθθ, t)L

(r)
θθθ (t) + L

(m)
θθθ (t)

�
L

(r)
θθθ (s)L

(r+m)
θθθ (s+t)

+ L
(r)
θθθ (s)L

(r)
θθθ (t)L

(r+m)
θθθ (s+t)

�
dW (s)dW (t) , (4.12)

and ΩΩΩ(θθθ) is the p × p symmetric matrix whose (i,j)-th element is expressed by

ωi,j(θθθ) = 2

∞�
0

�
∂2h(θθθ, s)

∂θi∂θj

�
h(θθθ, s)[L

(r)
θθθ (s)]2 + L

(r)
θθθ (s)L

(m)
θθθ (s)

�
+

∂h(θθθ, s)

∂θi

∂h(θθθ, s)

∂θj
[L

(r)
θθθ (s)]2

�
dW (s) .

(4.13)
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4. Estimators based on differential equations

Proof. First, note that the estimator �θθθ LT r,m

n can be written as the p-dimensional mini-
mizer of a degree-2 V-statistic, namely

�θθθ LT r,m

n = argmin
θθθ

1

n2

n1
j=1

n1
k=1

ψθθθ(Xj , Xk),

whose kernel is given by

ψθθθ(Xj , Xk)=

∞�
0

�
h(θθθ, s)(-Xj)re−sXj +(-Xj)me−sXj

!�
h(θθθ, s)(-Xk)re−sXk +(-Xk)me−sXk

!
dW (s).

Let us denote this V-statistic by

Jn(θθθ) =
1

n2

n1
j=1

n1
k=1

ψθθθ(Xj , Xk),

and by J(θθθ) denote the underlying expectation functional, that is J(θθθ) = EF [ψθθθ(X1, X2)].
When differentiation under integration sign is permitted, consider the following gradient

∇Jn(θθθ) =

�
∂Jn(θθθ)

∂θ1
, .... ,

∂Jn(θθθ)

∂θp

$⊤
,

with i-th element

∂Jn(θθθ)

∂θi
=

1

n2

n1
j=1

n1
k=1

∂ψθθθ(Xj , Xk)

∂θi

=
1

n2

n1
j=1

n1
k=1

� ∞

0

�
2

∂h(θθθ, s)

∂θi
h(θθθ, s)(XjXk)re−s(Xj+Xk) (4.14)

+
∂h(θθθ, s)

∂θi
(-Xj)r(-Xk)me−s(Xj+Xk) +

∂h(θθθ, s)

∂θi
(-Xj)m(-Xk)re−s(Xj+Xk)

�
dW (s).

Note that each element of ∇Jn(θθθ) is also a V-statistic because
∂ψθθθ(Xj ,Xk)

∂θi
is symmetric

in Xj and Xk. The value of the estimator is the solver of the set of p equations

∇Jn( �θθθ LT r,m

n ) = 000. (4.15)

Consider also the Hessian of Jn(θθθ), that is

∇2Jn(θθθ) =

��������

∂2Jn(θθθ)

∂θ2
1

. . .
∂2Jn(θθθ)

∂θ1∂θp

...
. . .

...

∂2Jn(θθθ)

∂θp∂θ1
. . .

∂2Jn(θθθ)

∂θ2
p

&&&&&&&&
.
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4.2. Asymptotic normality of the estimators

The asymptotic normality of the estimator is shown by expanding ∇Jn( �θθθLT r,m

n ) into the
first order multivariate Taylor expansion about the true value of the vector parameter
θθθ, namely

∇Jn( �θθθ LT r,m

n ) = ∇Jn(θθθ) + ∇2Jn(θθθ)( �θθθ LT r,m

n − θθθ ) + ... .

Because of (4.15), the right side vanishes and we can rewrite the expansion as

√
n( �θθθ LT r,m

n − θθθ ) ≈ √
n

�
∇2Jn(θθθ)

�−1∇Jn(θθθ) + ... . (4.16)

We first need to establish the asymptotic normality of ∇Jn(θθθ). We know that each
element of ∇Jn(θθθ) is a degree-2 V-statistic with finite second moment, and, as explained
in Appendix A, each of them alone can be proved to be asymptotically normal based
on the asymptotic normality of the corresponding U-statistic; see (A.9) in Appendix
A. The joint asymptotic normality follows by applying the Crámer-Wold theorem; see
e.g. Staudte and Sheather (1990) p. 292. The entries of the asymptotic covariance
matrix equal the asymptotic covariances of the corresponding U-statistics, see (A.14) in
Appendix A. That is, we have

√
n(∇Jn(θθθ) − ∇J(θθθ))

d−→ Np(000,ΣΣΣ(θθθ)) , (4.17)

where ΣΣΣ(θθθ) is the p × p symmetric covariance matrix whose (i,j)-th element equals

σ2
i,j(θθθ) = 4Cov

�
E

�
∂ψθθθ(x1, X2)

∂θi

�
x1=X1

, E

�
∂ψθθθ(x1, X2)

∂θj

�
x1=X1

�
. (4.18)

Given (4.17), to show the multivariate normality of the product [∇2Jn(θθθ)]−1∇Jn(θθθ) in
(4.16), we apply the multivariate version of the Slutsky theorem (see e.g. Hunter (2014),
sec. 2.3.3). This gives

√
n

� �θθθ LT r,m

n − θθθ
!

d−→ Np

�
000,ΩΩΩ−1(θθθ)ΣΣΣ(θθθ)ΩΩΩ−1(θθθ)

!
, (4.19)

where the (i,j)-th element of the p × p matrix ΩΩΩ(θθθ) is expressed by

ωi,j(θθθ) = E

�
∂2ψθθθ(X1, X2)

∂θi∂θj

�
,

and proves the main statement of the theorem.
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4. Estimators based on differential equations

What remains is to derive the entries of the matrices ΣΣΣ(θθθ) and ΩΩΩ(θθθ). First, consider the
covariance matrix ΣΣΣ(θθθ). Note that, for all i, j = 1, ..., p,

E

�
E

�
∂ψθθθ(x1, X2)

∂θi

�
x1=X1

�
= E

�
E

�
∂ψθθθ(x1, X2)

∂θj

�
x1=X1

�
= 0 .

Therefore, the computation of the covariance term (4.18) boils down to finding the cross
expectation

σ2
i,j(θθθ) = 4E

�
E

�
∂ψθθθ(x1, X2)

∂θi

�
x1=X1

· E
�

∂ψθθθ(x1, X2)

∂θj

�
x1=X1

�
.

For this purpose, let us compute

E

�
∂ψθθθ(x1, X2)

∂θi

�
x1=X1

=

� � ∞

0

∂ψθθθ(x1, X2)

∂θi
dF (x)

�
x1=X1

=

∞�
0

� ∞�
0

�
2

∂h(θθθ, s)

∂θi
h(θθθ, s)(x1X2)re−s(x1+X2)

+
∂h(θθθ, s)

∂θi
(-x1)r(-X2)me−s(x1+X2)

+
∂h(θθθ, s)

∂θi
(-x1)m(-X2)re−s(x1+X2)

�
dF (x)

�
dW (s)

3333
x1=X1

.

Recognizing that
� ∞

0 (-x)re−sxdF (x) = L
(r)
θθθ (s) and rearranging, we obtain

E

�
∂ψθθθ(x1, X2)

∂θi

�
x1=X1

=

∞�
0

∂h(θθθ, s)

∂θi

��
2h(θθθ, s)L

(r)
θθθ (s) + L

(m)
θθθ (s)

�
(-X1)re−sX1 +L

(r)
θθθ (s)(-X1)me−sX1

�
dW (s).

With this result, the (i, j)-th element of the covariance matrix ΣΣΣ(θθθ), as defined by (4.18),
is the product of two integrals which can be expressed as the following double integral:

σ2
i,j(θθθ) = 4E

� ∞�
0

∞�
0

∂h(θθθ, s)

∂θi

��
2h(θθθ, s)L

(r)
θθθ (s)+L

(m)
θθθ (s)

�
(-X1)re−sX1 +L

(r)
θθθ (s)(-X1)me−sX1

�
∂h(θθθ, s)

∂θi

��
2h(θθθ, t)L

(r)
θθθ (t)+L

(m)
θθθ (t)

�
(-X1)re−tX1 + L

(r)
θθθ (t)(-X1)me−tX1

�
dW (s)dW (t)

�
.

Taking the expectation in the way shown just above yields (4.12) in the theorem.

Computation of the matrix ΩΩΩ(θθθ) is easier due to independence of X1 and X2 in the
kernel of the U-statistic. Its (i,j)-element is

62



4.2. Asymptotic normality of the estimators

ωi,j(θθθ) = E

�
∂2ψθθθ(X1, X2)

∂θi∂θj

�
=

� ∞

0

∂2ψθθθ(X1, X2)

∂θi∂θj
dF (x)

=

∞�
0

� ∞�
0

�
2

�
∂2h(θθθ, s)

∂θiθj
h(θθθ, s) +

∂h(θθθ, s)

∂θi

∂h(θθθ, s)

∂θj

�
(X1X2)re−s(X1+X2)

+
∂2h(θθθ, s)

∂θi∂θj
(-X1)r(-X2)me−s(X1+X2)+

∂2h(θθθ, s)

∂θi∂θj
(-X1)m(-X2)re−s(X1+X2)

�
dF (x)

�
dW (s)

= 2

∞�
0

�
∂2h(θθθ, s)

∂θi∂θj

�
h(θθθ, s)[L

(r)
θθθ (s)]2 + L

(r)
θθθ (s)L

(m)
θθθ (s)

�
+

∂h(θθθ, s)

∂θi

∂h(θθθ, s)

∂θj
[L

(r)
θθθ (s)]2

�
dW (s),

which is (4.13) of the theorem.

Theorem 2. Let �θθθ LT r,m,ℓ

n be the weighted L2 estimator of the parameter θθθ ∈ ΘΘΘ ⊆ R
p of

a one-sided distribution, based on ODE involving the r-th, m-th and ℓ-th derivative of
LT (r, m, ℓ ≥ 0, r �= m �= ℓ):

�θθθ LT r,m,ℓ

n = argmin
θθθ ∈ΘΘΘ

� ∞

0

�
h(θθθ, s)�L(r)

n (s) + g(θθθ, s)�L(m)
n (s) + �L(ℓ)

n (s)
�2

dW (s) . (4.20)

Under the assumptions I-IV, the estimator converges in distribution to a p-variate normal
random vector, that is

√
n

� �θθθ LT r,m,ℓ

n − θθθ
!

d−→ Np

�
000,ΩΩΩ−1(θθθ)ΣΣΣ(θθθ)ΩΩΩ−1(θθθ)

!
, (4.21)

where ΣΣΣ(θθθ) is the p × p symmetric matrix whose (i,j)-th element is

σ2
i,j(θθθ) = 4

∞�
0

∞�
0

�
Ai(s)Aj(t)L

(2r)
θθθ (s+t)+Bi(s)Bj(t)L

(2m)
θθθ (s+t) + Ci(s)Cj(t)L

(2ℓ)
θθθ (s+t)

+
�
Ai(s)Bj(t)+Bi(s)Aj(t)

�
L

(r+m)
θθθ (s+t)+

�
Ai(s)Cj(t)+Ci(s)Aj(t)

�
L

(r+ℓ)
θθθ (s+t)

+
�
Bi(s)Cj(t)+Ci(s)Bj(t)

�
L

(m+ℓ)
θθθ (s+t)

�
dW (s)dW (t) , (4.22)

with

Ai(s) =
∂h2(θθθ, s)

∂θi
L

(r)
θθθ (s) +

∂{h(θθθ, s)g(θθθ, s)}
∂θi

L
(m)
θθθ (s) +

∂h(θθθ, s)

∂θi
L

(ℓ)
θθθ (s),

Bi(s) =
∂g2(θθθ, s)

∂θi
L

(m)
θθθ (s) +

∂{h(θθθ, s)g(θθθ, s)}
∂θi

L
(r)
θθθ (s) +

∂g(θθθ, s)

∂θi
L

(ℓ)
θθθ (s),

Ci(s) =
∂h(θθθ, s)

∂θi
L

(r)
θθθ (s) +

∂g(θθθ, s)

∂θi
L

(m)
θθθ (s) ,
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4. Estimators based on differential equations

and ΩΩΩ(θθθ) is the p × p symmetric matrix whose (i,j)-th element is expressed by

ωi,j(θθθ) =

� ∞

0

�
∂2

∂θi∂θj

�
h(θθθ, s)L

(r)
θθθ (s) + g(θθθ, s)L

(m)
θθθ (s)

�2
+

+ 2

�
∂2h(θθθ, s)

∂θi∂θj
L

(r)
θθθ (s)L

(ℓ)
θθθ (s) +

∂2g(θθθ, s)

∂θi∂θj
L

(m)
θθθ (s)L

(ℓ)
θθθ (s)

$�
dW (s) .(4.23)

Proof. The proof is similar that of Theorem 1 but involves more complicated algebra.

Theorem 3. Let �θθθ CF r,m

n be the weighted L2 estimator of the parameter θθθ ∈ ΘΘΘ ⊆ R
p,

based on differential equation involving the r-th and m-th (r, m ≥ 0, r �= m) derivative
of CF φθθθ(s) of a distribution on R, R+ or R

0
+:

�θθθ CF r,m

n = argmin
θθθ ∈ΘΘΘ

� ∞

−∞

333h(θθθ, s)�φ(r)
n (s) + �φ(m)

n (s)
3332dW (s) . (4.24)

Under the assumptions I-IV, the estimator converges in distribution to a p-variate normal
random vector, that is

√
n

� �θθθ CF r,m

n − θθθ
!

d−→ Np

�
000, 4ΩΩΩ−1(θθθ)ΣΣΣ(θθθ)ΩΩΩ−1(θθθ)

!
, (4.25)

where ΣΣΣ(θθθ) is the p × p symmetric covariance matrix of the random vector

σj(θθθ, X) =

∞�
−∞

��
∂|h(θθθ, s)|2

∂θj
u

(r)
θθθ (s)+

∂Re h(θθθ, s)

∂θj
u

(m)
θθθ (s)+

∂Im h(θθθ, s)

∂θj
v

(m)
θθθ (s)

$
Xr cos(sX + rπ

2 )

+

�
∂|h(θθθ, s)|2

∂θj
v

(r)
θθθ (s) +

∂Re h(θθθ, s)

∂θj
v

(m)
θθθ (s) − ∂Im h(θθθ, s)

∂θj
u

(m)
θθθ (s)

$
Xrsin(sX + rπ

2 )

+

�
∂Re h(θθθ, s)

∂θj
u

(r)
θθθ (s) − ∂Im h(θθθ, s)

∂θj
v

(r)
θθθ (s)

$
Xmcos(sX + mπ

2 ) (4.26)

+

�
∂Re h(θθθ, s)

∂θj
v

(r)
θθθ (s) +

∂Im h(θθθ, s)

∂θj
u

(r)
θθθ (s)

$
Xmsin(sX + mπ

2 )

�
dW (s), j =1, ..., p ,

and ΩΩΩ(θθθ) is the p × p symmetric matrix whose (i,j)-th element is expressed by

ωi,j(θθθ) =

� ∞

−∞

�
∂2|h(θθθ, s)|2

∂θi∂θj
|φ(r)

θθθ (s)|2 + 2
∂2Reh(θθθ, s)

∂θi∂θj

�
u

(r)
θθθ (s)u

(m)
θθθ (s) − v

(r)
θθθ (s)v

(m)
θθθ (s)

�
+ 2

∂2Imh(θθθ, s)

∂θi∂θj

�
u

(r)
θθθ (s)v

(m)
θθθ (s) − u

(m)
θθθ (s)v

(r)
θθθ (s)

��
dW (s). (4.27)
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4.2. Asymptotic normality of the estimators

Proof. The proof utilizes the same idea as used for the LT-based estimators. Namely,
we take the first order multivariate Taylor expansion of the gradient of the V-statistic
Jn(θθθ), associated with the estimator, about the true value of the parameter. This yields

√
n( �θθθ CF r,m

n − θθθ ) ≈ √
n

�
∇2Jn(θθθ)

�−1∇Jn(θθθ) + ... ,

where ∇Jn(θθθ) is the gradient and ∇2Jn(θθθ) is the Hessian of that V-statistic.

In analogy to the proof of Theorem 1, the multivariate Slutsky theorem, given the
asymptotic multivariate normality of ∇Jn(θθθ), asserts that

√
n

� �θθθ CF r,m

n − θθθ
!

d−→ Np

�
000, 4ΩΩΩ−1(θθθ)ΣΣΣ(θθθ)ΩΩΩ−1(θθθ)

!
,

where both ΣΣΣ(θθθ) and ΩΩΩ(θθθ) are p × p matrices to be determined.

For this purpose, we write the estimator as

�θθθ CF r,m

n = argmin
θθθ

� ∞

−∞

���u(r)
n (s)Re h(θθθ, s) − �v(r)

n (s)Im h(θθθ, s) + �u(m)
n (s)

!2

+
��v(r)

n (s)Re h(θθθ, s) + �u(r)
n (s)Im h(θθθ, s) + �v(m)

n (s)
!2

�
dW (s)

= argmin
θθθ

Jn(θθθ)

= argmin
θθθ

1

n2

n1
j=1

n1
k=1

ψθθθ(Xj , Xk).

After multiplications and cancellations in the integrand, the kernel of the associated
V-statistic becomes

ψθθθ(Xj , Xk) =

� ∞

−∞

�
Xr

j Xr
k cos(sXj + rπ

2 ) cos(sXk + rπ
2 )Re2h(θθθ, s) + Xr

j Xm
k cos(sXj + rπ

2 ) cos(sXk + mπ
2 )Reh(θθθ, s)

Xr
j Xr

k sin(sXj + rπ
2 ) sin(sXk + rπ

2 )Im2h(θθθ, s) − Xr
j Xm

k sin(sXj + rπ
2 ) cos(sXk + mπ

2 )Imh(θθθ, s)

Xm
j Xr

k cos(sXj + mπ
2 ) cos(sXk + rπ

2 )Reh(θθθ, s) − Xm
j Xr

k cos(sXj + mπ
2 ) sin(sXk + rπ

2 )Imh(θθθ, s)

Xr
j Xr

k sin(sXj + rπ
2 ) sin(sXk + rπ

2 )Re2h(θθθ, s) + Xr
j Xm

k sin(sXj + rπ
2 ) sin(sXk + mπ

2 )Reh(θθθ, s)

Xr
j Xr

k cos(sXj + rπ
2 ) cos(sXk + rπ

2 )Imh2(θθθ, s) + Xr
j Xm

k cos(sXj + rπ
2 ) sin(sXk + mπ

2 )Imh(θθθ, s)

Xm
j Xr

k sin(sXj + mπ
2 ) sin(sXk + rπ

2 )Reh(θθθ, s) + Xm
j Xr

k sin(sXj + mπ
2 ) cos(sXk + rπ

2 )Imh(θθθ, s)

Xm
j Xm

k cos(sXj + mπ
2 ) cos(sXk + mπ

2 ) + Xm
j Xm

k sin(sXj + mπ
2 ) sin(sXk + mπ

2 )�
dW (s). (4.28)
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4. Estimators based on differential equations

Now, the i, j-th element of the matrix ΩΩΩ(θθθ) is obtained by taking

ωi,j(θθθ) = E

�
∂2ψθθθ(X1, X2)

∂θi∂θj

�
.

By recognizing that E[Xm cos(sXj + mπ
2 )] = u

(m)
θθθ (s) and E[Xm sin(sXj + mπ

2 )] = v
(m)
θθθ (s),

we obtain (4.27). In turn, the elements of the matrix ΣΣΣ(θθθ) are the covariances of the
vector

σi(θθθ, X) = E

�
∂ψθθθ(x1, X2)

∂θi

�
x1=X

, i = 1, .., p,

and this leads to the expression (4.26).

4.3 Influence functions of the estimators

In this section, we derive IFs of the estimators (4.1), (4.2) and (4.3).

Theorem 4. Let �θθθ LT r,m

n be the weighted L2 estimator of the parameter θθθ ∈ ΘΘΘ ⊆ R
p

defined in (4.1). Under the assumptions I-IV, the joint influence function of the corre-
sponding functional is

IF(x;θθθ LT r,m) = KKK−1(θθθ)ννν(x;θθθ) ,

where KKK(θθθ) is the p × p symmetric matrix whose (i,j)-th element is

κi,j(θθθ) =

∞�
0

��
∂2h(θθθ, s)

∂θi∂θj
h(θθθ, s) +

∂h(θθθ, s)

∂θi

∂h(θθθ, s)

∂θj

�
[L

(r)
θθθ (s)]2 +

∂2h(θθθ, s)

∂θi∂θj
L

(r)
θθθ (s)L

(m)
θθθ (s)

�
dW (s),

and ννν(x;θθθ) is the p × 1 vector whose j-th element is

νj(x;θθθ) =

∞�
0

�
2

∂h(θθθ, s)

∂θj
h(θθθ, s)L

(r)
θθθ (s)IF[x; L

(r)
θθθ (s)] +

∂h(θθθ, s)

∂θj
IF[x; L

(r)
θθθ (s)L

(m)
θθθ (s)]

�
dW (s),

with

IF[x; L
(r)
θθθ (s)] = (−x)r exp(−sx)−L

(r)
θθθ (s) ,

IF[x; L
(r)
θθθ (s)L

(m)
θθθ (s)] = L

(m)
θθθ (s)(−x)r exp(−sx)+L

(r)
θθθ (s)(−x)m exp(−sx)−2L

(r)
θθθ (s)L

(m)
θθθ (s).
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4.3. Influence functions of the estimators

Proof. We know that the estimator solves the set of equations

0 =
∂

∂θj

� ∞

0

�
h(θθθ, s)�L(r)

n (s) + �L(m)
n (s)

�2
dW (s), j = 1, ..., p.

It is defined implicitly, and, thus, its IF must be obtained by implicit differentiation.
Assuming that differentiation under integration sign is justified, we have

0 =

� ∞

0
2
�
h(θθθ, s)�L(r)

n (s) + �L(m)
n (s)

�∂h(θθθ, s)

∂θj

�L(r)
n (s)dW (s)

=

� ∞

0

�∂h(θθθ, s)

∂θj
h(θθθ, s)[�L(r)

n (s)]2 +
∂h(θθθ, s)

∂θj

�L(r)
n (s)�L(m)

n (s)
�
dW (s) , j = 1, ..., p.

Replacing the empirical quantities by their corresponding functionals, we compute the
IF of both sides applying the product rule for derivatives. Namely, for j = 1, ..., p, we
obtain

0 =

� ∞

0

�
∂h(θθθ, s)

∂θj
h(θθθ, s)IF

�
x; [L(r)(s)]2

�
+ [L(r)(s)]2IF

�
x;

∂h(θθθ, s)

∂θj
h(θθθ, s)

�
(4.29)

+
∂h(θθθ, s)

∂θj
IF

�
x; L(r)(s)L(m)(s)

�
+ L(r)(s)L(m)(s)IF

�
x;

∂h(θθθ, s)

∂θj

��
dW (s) .

Two of the IFs in the expression above can be computed using the chain rule. We obtain

IF

�
x;

∂h(θθθ, s)

∂θj
h(θθθ, s)

�
=

p1
i=1

∂

∂θi

�
∂h(θθθ, s)

∂θj
h(θθθ, s)

$
IF[x; θi]

=
p1

i=1

�
∂2h(θθθ, s)

∂θiθj
h(θθθ, s) +

∂h(θθθ, s)

∂θi

∂h(θθθ, s)

∂θj

�
IF[x; θi],

IF

�
x;

∂h(θθθ, s)

∂θj

�
=

p1
i=1

∂

∂θi

�
∂h(θθθ, s)

∂θj

$
IF[x; θi] =

p1
i=1

∂2h(θθθ, s)

∂θi∂θj
IF[x; θi] .

Putting both results back into (4.29) and rearranging, we obtain

p1
i=1

IF[x; θi]

∞�
0

��
∂2h(θθθ, s)

∂θi∂θj
h(θθθ, s)+

∂h(θθθ, s)

∂θi

∂h(θθθ, s)

∂θj

�
[L

(r)
θθθ (s)]2+

∂2h(θθθ, s)

∂θi∂θj
L

(r)
θθθ (s)L

(m)
θθθ (s)

�
dW (s)

=

∞�
0

�
2

∂h(θθθ, s)

∂θj
h(θθθ, s)L

(r)
θθθ (s)IF[x; L

(r)
θθθ (s)]+

∂h(θθθ, s)

∂θj
IF[x; L

(r)
θθθ (s)L

(m)
θθθ (s)]

�
dW (s) ,
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4. Estimators based on differential equations

which is nothing but
p2

i=1
κi,j(θθθ)IF[x; θi] = νj(θθθ), j = 1, ..., p (4.29), and finishes the

derivation.

Theorem 5. Let �θθθ LT r,m,ℓ

n be the weighted L2 estimator of the parameter θθθ ∈ ΘΘΘ ⊆ R
p

defined in (4.2). Under the assumptions I-IV, the joint influence function of the corre-
sponding functional is

IF(x;θθθ LT r,m,ℓ) = KKK−1(θθθ)ννν(x;θθθ) ,

where KKK(θθθ) is the p × p symmetric matrix whose (i,j)-th element is

κi,j(θθθ) =

∞�
0

�
1

2

∂2h2(θθθ, s)

∂θi∂θj
[L

(r)
θθθ (s)]2+

1

2

∂2g2(θθθ, s)

∂θi∂θj
[L

(m)
θθθ (s)]2+

∂2{h(θθθ, s)g(θθθ, s)}
∂θi∂θj

L
(r)
θθθ (s)L

(m)
θθθ (s)

+
∂2h(θθθ, s)

∂θi∂θj
L

(r)
θθθ (s)L

(ℓ)
θθθ (s) +

∂2g(θθθ, s)

∂θi∂θj
L

(m)
θθθ (s)L

(ℓ)
θθθ (s)

�
dW (s),

and ννν(x;θθθ) is the p × 1 vector whose j-th element is

νj(x;θθθ) =

� ∞

0

�
1

2

∂h2(θθθ, s)

∂θj
IF

�
x; [L

(r)
θθθ (s)]2

�
+

1

2

∂g2(θθθ, s)

∂θj
IF

�
x; [L

(m)
θθθ (s)]2

�
+

∂{h(θθθ, s)g(θθθ, s)}
∂θj

IF
�
x; L

(r)
θθθ (s)L

(m)
θθθ (s)

�
+

∂h(θθθ, s)

∂θj
IF

�
x; L

(r)
θθθ (s)L

(ℓ)
θθθ (s)

�
+

∂g(θθθ, s)

∂θj
IF

�
x; L

(m)
θθθ (s)L

(ℓ)
θθθ (s)

��
dW (s),

with

IF
�
x; [L

(r)
θθθ (s)]2

�
= 2L

(r)
θθθ (s)

�
(−x)r exp(−sx)−L

(r)
θθθ (s)

�
,

IF
�
x; L

(r)
θθθ (s)L

(m)
θθθ (s)

�
= L

(m)
θθθ (s)(−x)r exp(−sx)+L

(r)
θθθ (s)(−x)m exp(−sx)−2L

(r)
θθθ (s)L

(m)
θθθ (s).

Proof. The proof parallels that of Theorem 4 but with more intricate algebra.

Theorem 6. Let �θθθ CF r,m

n be the weighted L2 estimator of the parameter θθθ ∈ ΘΘΘ ⊆ R
p

defined in (4.3). Under the assumptions I-IV, the joint influence function of the corre-
sponding functional is

IF(x;θθθ CF r,m) = KKK−1(θθθ)ννν(x;θθθ) ,

where KKK(θθθ) is the p × p symmetric matrix whose (i,j)-th element is expressed by
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κi,j(θθθ) =

∞�
−∞

�
1

2

∂2|h(θθθ, s)|2
∂θi∂θj

|φ(r)
θθθ (s)|2

+
∂2Re h(θθθ, s)

∂θi∂θj
Re

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

�
+

∂2Im h(θθθ, s)

∂θi∂θj
Im

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

��
dW (s),

and ννν(x;θθθ) is the p × 1 vector whose j-th element is

νj(x;θθθ) =

∞�
−∞

�
1

2

∂|h(θθθ, s)|2
∂θj

IF
�
x; |φ(r)

θθθ (s)|2
�

+
∂Re h(θθθ, s)

∂θj
IF

�
x; Re

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

��
+

∂Im h(θθθ, s)

∂θj
IF

�
x; Im

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

���
dW (s),

with

IF
�
x; |φ(r)

θθθ (s)|2
�

= 2xr[u
(r)
θθθ (s) cos(sx + rπ

2 ) + v
(r)
θθθ (s) sin(sx + rπ

2 )] − 2|φ(r)
θθθ (s)|2 , (4.30)

IF
�
x; Re

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

��
= u

(m)
θθθ (s)xrcos(sx+ rπ

2 ) + u
(r)
θθθ (s)xmcos(sx+ mπ

2 ) − 2u
(m)
θθθ (s)u

(r)
θθθ (s)

+ v
(m)
θθθ (s)xrsin(sx+ rπ

2 ) + v
(r)
θθθ (s)xmsin(sx+ mπ

2 ) − 2v
(m)
θθθ (s)v

(r)
θθθ (s),(4.31)

IF
�
x; Im

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

��
= v

(m)
θθθ (s)xrcos(sx+rπ

2 ) + u
(r)
θθθ (s)xmsin(sx+ mπ

2 ) − 2u
(r)
θθθ (s)v

(m)
θθθ (s)

− v
(r)
θθθ (s)xmcos(sx+ mπ

2 ) − u
(m)
θθθ (s)xrsin(sx+ rπ

2 ) + 2u
(m)
θθθ (s)v

(r)
θθθ (s).(4.32)

Proof. The estimator can be written as

�θθθ CF r,m

n = argmin
θθθ

� ∞

−∞

���u(r)
n (s)Re h(θθθ, s) − �v(r)

n (s)Im h(θθθ, s) + �u(m)
n (s)

�2

+
��v(r)

n (s)Re h(θθθ, s) + �u(r)
n (s)Im h(θθθ, s) + �v(m)

n (s)
�2

�
dW (s) ,

and, hence, it is the solution to the following set of p estimating equations:

0 =

∞�
−∞

���u(r)
n (s)Re h(θθθ, s)−�v(r)

n (s)Im h(θθθ, s)+�u(m)
n (s)

���u(r)
n (s)

∂Re h(θθθ, s)

∂θj
−�v(r)

n (s)
∂Im h(θθθ, s)

∂θj

�

+
��v(r)

n (s)Re h(θθθ, s)+�u(r)
n (s)Im h(θθθ, s)+�v(m)

n (s)
���v(r)

n (s)
∂Re h(θθθ, s)

∂θj
+�u(r)

n (s)
∂Im h(θθθ, s)

∂θj

��
dW(s),
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for j = 1, ..., p. Multiplying, canceling some terms, and rearranging the remaining ones
yield

0 =

∞�
−∞

��∂Re h(θθθ, s)

∂θj
Re h(θθθ, s) +

∂Im h(θθθ, s)

∂θj
Im h(θθθ, s)

��
[�u(r)

n (s)]2 + [�v(r)
n (s)]2

�

+
∂Re h(θθθ, s)

∂θj

��u(r)
n (s)�u(m)

n (s) + �v(r)
n (s)�v(m)

n (s)
�

(4.33)

+
∂Im h(θθθ, s)

∂θj

��u(r)
n (s)�v(m)

n (s) − �v(r)
n (s)�u(m)

n (s)
��

dW (s) , j = 1, ..., p.

Note that the following equalities arise from complex number algebra:

∂Re h(θθθ, s)

∂θj
Re h(θθθ, s)+

∂Im h(θθθ, s)

∂θj
Im h(θθθ, s) =

1

2

∂
�
[Re h(θθθ, s)]2+[Im h(θθθ, s)]2

!
∂θj

=
1

2

∂|h(θθθ, s)|2
∂θj

,

[�u(r)
n (s)]2 + [�v(r)

n (s)]2 = |�φ(r)
n (s)|2,

�u(r)
n (s)�u(m)

n (s) + �v(r)
n (s)�v(m)

n (s) = Re
� �φ(r)

n (s)�φ(m)
n (s)

�
,

�u(r)
n (s)�v(m)

n (s) − �v(r)
n (s)�u(m)

n (s) = Im
� �φ(r)

n (s)�φ(m)
n (s)

�
,

and, thus, the set of p estimating equations (4.33) can be more compactly represented
as

0 =

∞�
−∞

�
1

2

∂|h(θθθ, s)|2
∂θj

|�φ(r)
n (s)|2 +

∂Re h(θθθ, s)

∂θj
Re

� �φ(r)
n (s)�φ(m)

n (s)
�

+
∂Im h(θθθ, s)

∂θj
Im

� �φ(r)
n (s)�φ(m)

n (s)
��

dW (s), j = 1, ..., p.

As in the proof of Theorem 4, the implicit definition of the estimator requires obtaining
the IF through implicit differentiation. Substituting the empirical quantities with the
corresponding functionals, and computing the IF of both sides via the chain rule (2.48),
we get

0 =

∞�
−∞

�
1

2

p1
i=1

∂2|h(θθθ, s)|2
∂θi∂θj

IF[x; θi]|φ(r)
θθθ (s)|2+

1

2

∂|h(θθθ, s)|2
∂θj

IF
�
x; |φ(r)

θθθ (s)|2
�

+
p1

i=1

∂2Re h(θθθ, s)

∂θi∂θj
IF[x; θi]Re

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

�
+

∂Re h(θθθ, s)

∂θj
IF

�
x; Re

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

��
+

p1
i=1

∂2Im h(θθθ, s)

∂θi∂θj
IF[x; θi]Im

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

�
+

∂Im h(θθθ, s)

∂θj
IF

�
x; Im

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

���
dW(s).
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Rearranging the above gives

p1
i=1

IF[x; θi]

� ∞

−∞

�
1

2

∂2|h(θθθ, s)|2
∂θi∂θj

|φ(r)
θθθ (s)|2 +

∂2Re h(θθθ, s)

∂θi∂θj
Re

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

�
+

∂2Im h(θθθ, s)

∂θi∂θj
Im

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

��
dW (s)

=

� ∞

−∞

�
1

2

∂|h(θθθ, s)|2
∂θj

IF
�
x; |φ(r)

θθθ (s)|2
�

+
∂Re h(θθθ, s)

∂θj
IF

�
x; Re

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

��
+

∂Im h(θθθ, s)

∂θj
IF

�
x; Im

�
φ

(r)
θθθ (s)φ

(m)
θθθ (s)

���
dW (s) ,

which is equivalent to
2p

i=1 κi,j(θθθ)IF[x; θi] = νj(θθθ), j = 1, ..., p expressed by (4.30). The
expressions for the component IFs (4.30), (4.31) and (4.32) follow from the chain rule
(2.48).

4.4 Practical implications of the theory

Theorems 1-6 reveal that the general expressions for the asymptotic covariance matrices
and influence functions of the proposed estimators are intricate, requiring laborious
computations of single or double integrals. However, such complexity is not unique to
our estimators; many minimum distance estimators based on integrated distances and
divergences exhibit similar intricacies, as can be seen in relevant theorems in Basu et al.
(2011) or Duchesne et al. (1997). Fortunately, as shown in the upcoming sections, these
expression may be simplified or even lead to closed forms. For instance, in the case of
the CF based estimators for the normal distribution equipped with a Gaussian weight
function.

It is crucial to emphasize yet another difficulty: the integrals involve the transforms
themselves and their higher-order derivatives. In the worst case, as discussed already at
several points, we may not have an analytical formula for the transform (LT or CF). This
necessitates the use of a special function (when available in the computational package)
or numerical computation. Of course, the derivatives can be then obtained via recursion
derived from the differential equation in use. This will be demonstrated in sec. 4.5.3
devoted to estimation of the Rayleigh distribution.

But let us consider the implications for practical usage of the proposed estimators. In
statistical practice, the asymptotic variance (or covariance matrix) is needed to deter-
mine the approximated confidence interval (or p-dimensional confidence elipsoid) of the
estimate for a realized sample (x1, x2, ..., xn); see Casella and Berger (2002). The above
mentioned computational costs may be indeed prohibitive in applications where estima-
tor is employed frequently (e.g. many samples are estimated sequentially, possibly in an
automated manner). On the other hand, according to the current computer-based trends,
we also can bootstrap the confidence intervals; see Efron and Hastie (2016). Note that
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4. Estimators based on differential equations

bootstrapping is even more appropriate in smaller samples, for which the asymptotic nor-
mality may not hold. Fortunately, explicit formulas for our estimators facilitate the use
of bootstrapping, distinguishing them from various minimum distance estimators based
on distribution or density function that lack explicit representations. Examples of the lat-
ter can be found in Basu et al. (2011). In a simulation study by Hołyński and Haneczok
(2018) on various minimum distance estimators from that monograph, it was observed
that numerical problems often arise when optimizing the non-linear distances, especially
in non-typical settings of the distribution parameters or in the presence of large outliers.
This makes these estimators challenging to simulate and resample.

The complexity of IFs is less problematic in practical terms. IFs are theoretical measures,
typically evaluated for illustrative purposes. Therefore, the potential computational
burden associated with them does not significantly impact the usability of the estimators,
regardless of the application context or sample sizes.

4.5 Estimation in specific distributions

In the six following sections, we construct and thoroughly examine the proposed estima-
tors for five standard distributions and one non-standard distribution, namely

1. normal(µ,σ2), using CF;

2. exponential(λ), using CF and LT;

3. Rayleigh(ϑ2), using LT;

4. gamma(α,β), using LT;

5. Pareto(α,β), using LT;

6. normal variance-gamma(µ,α,β) using CF.

We apply either the weight function (4.4) or (4.5), controlled by shape and scale param-
eters (γ and a), or the step-wise weight function, which results in estimators controlled
by a single transform variable s (the transform-matching estimators).

For each distribution, we

• compute ARE w.r.t. the ML estimator in function of a and γ or s;

• analyze the robustness-efficiency trade-off;

• propose data-driven selection of the parameters a or s;

• conduct simulations to compare the proposed estimators with several standard ro-
bust and non-robust estimators, including the ML, MM, median-based and selected
minimum distance estimators.
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4.5. Estimation in specific distributions

For the normal and gamma distributions, we also study the effect of model misspecifica-
tion.

4.5.1 Normal distribution

The normal distribution has the following density and CF:

fθθθ(x) =
1√
2πσ

exp

�−(x − µ)2

2σ2

�
, (4.34)

φθθθ(s) = exp{iµs − σ2s2/2} , (4.35)

x, µ, s ∈ R, σ2 > 0. The unknown parameter is θθθ = (µ, σ2)⊤. The CF satisfies the first
order ODE,

(sσ2 − iµ)φθθθ(s) + φ′
θθθ(s) = 0 , s ∈ R. (4.36)

To ensure the consistency of estimation, we must verify the parameter-uniqueness in the
sense of sec. 3.4.2. For there could be a normal CF with different values of parameters,
µ∗ and σ2∗, satisfying (4.36) as well. To exclude this possibility, we suppose that indeed
(sσ2∗ − iµ∗)φθθθ(s) + φ′

θθθ(s) = 0 . Subtracting this from (4.36), we obtain [s(σ2 − σ2∗) −
i(µ − µ∗)]φθθθ(s) = 0 , meaning that either µ = µ∗ and σ2 = σ2∗ (which contradicts the
assumption) or φθθθ(s) = 0 (which is impossible).

4.5.1.1 Considered L2 estimators

We consider the estimator of the type (4.3) employing W (s) = w(s)ds, w(s) = sγe−as2

,
a > 0, that is

�θθθ CF 0,1

n =
��µ CF 0,1

n , �σ2
n

CF 0,1!⊤
= argmin

µ ∈ (−∞,∞)
σ2>0

∞�
−∞

333(sσ2 − iµ)�φn(s) + �φ′
n(s)

3332sγe−as2

ds, (4.37)

where γ = 0 or γ = 2.

The estimator admits the following closed-form expressions:
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�µ CF 0,1
n =

��������������������������������

n1
j,k=1

(Xj +Xk) exp
�
−(Xj −Xk)2/4a

!
2

n1
j,k=1

exp
�
−(Xj −Xk)2/4a

! γ = 0

n1
j,k=1

(Xj +Xk) exp
�
−(Xj −Xk)2/4a

!�
(Xj −Xk)2/a − 2

�
2

n1
j,k=1

exp
�
−(Xj −Xk)2/4a

!�
(Xj −Xk)2/a − 2

� γ = 2 ,

(4.38)

�σ2
n

CF 0,1
=

��������������������������������

−
n1

j,k=1

(Xj −Xk)2 exp
�
−(Xj −Xk)2/4a

!
n1

j,k=1

�
(Xj −Xk)2/a−2

�
exp

�
−(Xj −Xk)2/4a)

! γ = 0

−
n1

j,k=1

(Xj −Xk)2
�
(Xj −Xk)2 − 6a

�
exp

�
−(Xj −Xk)2/4a

!
4a

n1
j,k=1

�
(Xj −Xk)4/4a2 − 3(Xj −Xk)2/a + 3

�
exp

�
−(Xj −Xk)2/4a

! γ = 2 .

(4.39)

The derivation is sketched in Appendix B.3.

4.5.1.2 Asymptotic normality and influence functions

Asymptotic normality of the aforementioned estimator is asserted by Theorem 3, from
which the covariance matrix can be computed. However, it is somewhat more straightfor-
ward to derive this matrix from the corresponding IF using the relation (2.44). Therefore,
based on Theorem 6, we first present and prove the following theorem.

Theorem 7. The functional corresponding to the L2-type estimator �θθθ CF 0,1

n = (�µ CF 0,1
n , �σ2

n

CF 0,1
)⊤

defined by (4.37) has the following joint IF for γ = 0

� IF
�
x; µ CF 0,1

�
IF

�
x; σ2 CF 0,1

�
& =

����
(x − µ) exp

� −(x−µ)2

4(a+σ2/2)

$�
a+σ2

a+σ2/2

$3/2

�
(x−µ)2

a+σ2

a+σ2/2
− σ2

$
exp

� −(x−µ)2

4(a+σ2/2)

$�
a+σ2

a+σ2/2

$3/2

&&&&,
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whereas for γ = 2 this IF is

�IF
�
x; µ CF 0,1

�
IF

�
x; σ2 CF 0,1

�
&=

����
(x − µ)

�
(x−µ)2

2(a+σ2)

(2a+σ2)2
− 2(a+2σ2)

2a+σ2

$
exp

�
−(x−µ)2

4(a+σ2/2)

$�
a+σ2

a+σ2/2

$3/2

�−(x−µ)4(a+σ2)

6(a+σ2/2)2
+

(x−µ)2(a+3σ2)

a+σ2/2
− σ2

$
exp

�
−(x−µ)2

4(a+σ2/2)

$�
a+σ2

a+σ2/2

$5/2

&&&&.

Proof. (Derivation of IF). We use Theorem 6 putting r = 0 and m = 1, which gives

|φ(r)
θθθ (s)|2 = |φθθθ(s)|2 = e−s2σ2

, and

h(θθθ, s) = sσ2 − iµ, Re h(θθθ, s) = sσ2,

|h(θθθ, s)|2 = s2σ4 + µ2, Im h(θθθ, s) = −µ.

The partial derivatives required in the theorem are:

∂ Reh(θθθ, s)

∂µ
= 0,

∂ Reh(θθθ, s)

∂σ2
= s,

∂2 Reh(θθθ, s)

∂µ∂σ2
= 0,

∂ Imh(θθθ, s)

∂µ
= −1,

∂ Im h(θθθ, s)

∂σ2
= 0,

∂2 Im h(θθθ, s)

∂µ∂σ2
= 0,

∂ |h(θθθ, s)|2
∂µ

= 2µ,
∂ |h(θθθ, s)|2

∂σ2
= 2s2σ2,

∂2 |h(θθθ, s)|2
∂µ∂σ2

= 0,

∂2 Reh(θθθ, s)

∂µ2
= 0,

∂2 Reh(θθθ, s)

∂(σ2)2
= 0,

∂2 |h(θθθ, s)|2
∂µ2

= 2,

∂2 |h(θθθ, s)|2
∂(σ2)2

= 2s2,
∂2 Imh(θθθ, s)

∂µ2
= 0,

∂2 Imh(θθθ, s)

∂(σ2)2
= 0.

Since most of the above terms are zero, the integral formulas in Theorem 6 simplify very
much. In particular, the entries of the 2 × 2 matrix KKK(θθθ) are κ1,2(θθθ) = κ2,1(θθθ) = 0 and

κ1,1(θθθ) =

� ∞

−∞
sγe−(a+σ2)s2

ds, κ2,2(θθθ) =

� ∞

−∞
sγ+2e−(a+σ2)s2

ds.

Using the integrals (C.2), (C.5) and (C.7) from Appendix C, we find that

KKK(θθθ) =

�����

+
π

a+σ2
0

0
1

2

+
π

(a+σ2)3

&&&&& , and KKK(θθθ) =

�����
1

2

+
π

(a+σ2)3
0

0
3

4

+
π

(a+σ2)5

&&&&&
for γ = 0 and γ = 2, respectively.
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As KKK(θθθ) is diagonal in both cases, the sought expression for the IF vector is

� IF
�
x; µ CF 0,1

�
IF

�
x; σ2 CF 0,1

�
& = KKK−1(θθθ)ννν(x;θθθ) =

κ−1
1,1(θθθ)ν1(x;θθθ)

κ−1
2,2(θθθ)ν2(x;θθθ)

 ,

Computation of the terms expressing the shape of IFs, namely ν1(x;θθθ) and ν2(x;θθθ), is
more complicated. The relevant formulas in Theorem 6 turn into

ν1(x;θθθ) =

� ∞

−∞

�
2µ

�
uθθθ(s) cos(sx) + vθθθ(s) sin(sx) − e−s2σ2

!
−v′

θθθ(s) cos(sx) − uθθθ(s)x cos(sx) + 2uθθθ(s)v′
θθθ(s)

+vθθθ(s)x sin(sx) + u′
θθθ(s) sin(sx) − 2u′

θθθ(s)vθθθ(s)

�
sγe−as2

ds ,

and

ν2(x;θθθ) =

� ∞

−∞

�
2σ2s2

�
uθθθ(s) cos(sx) + vθθθ(s) sin(sx) − e−s2σ2

!
+s

�
u′

θθθ(s) cos(sx) − uθθθ(s)x sin(sx) − 2u′
θθθ(s)uθθθ(s)

+v′
θθθ(s) sin(sx) + vθθθ(s)x cos(sx) − 2v′

θθθ(s)vθθθ(s)
!�

sγe−as2

ds ,

where uθθθ(s) = e−s2σ2/2 cos(sµ) and vθθθ(s) = e−s2σ2/2 sin(sµ). By applying the ’product-
to-sum’ trigonometric identities and integrating using (C.9), (C.10), (C.11), and (C.12),
we obtain the desired expressions. The validity of the IFs was confirmed through simu-
lations.

Notice that the shape of the IFs of both estimators depends only on σ2 but not on the
location µ, as required for estimators in a location-scale family. In Fig. 4.1, the IFs are
plotted for a = 0.3, 1 and 3, in an exemplary setting with µ = 5 and σ2 = 2. They
are compared with the IFs of the unrobust ML estimators, namely the sample mean�µ ML

n = Xn and sample variance �σ2 ML

n = S2
n. These simple and well-known IFs are

IF[x; µ ML ] = x − µ

IF[x; σ2 ML] = (x − µ)2 − σ2 . (4.40)
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Figure 4.1: Estimation in the normal(µ,σ2) distribution for µ = 5 and σ2 = 2: IFs
of the estimators of mean and variance from Theorem 7 compared with IFs of the ML
estimators.

Observe that our estimators have three desired properties of robust estimators, see
Hampel et al. (1986), namely:

1. their IFs are bounded, i.e. the gross error sensitivity of the estimators expressed
generally by sup

x
IF[x; T (F )] is finite;

2. their IFs are smooth, meaning that the estimators are protected against rounding
errors (local shift sensitivity);

3. their IFs redescend to zero as x → ∞, meaning that influence of more and more
extreme outliers diminishes to zero.
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When it comes to the third property, the robustness expressed in terms of IF is stronger
for γ = 0 than for γ = 2. Therefore, the former setting is preferable in applications.
Regardless, as a → 0, the rate at which the IF descends to zero increases. Therefore,
users can adjust the robustness level by manipulating the parameter a.

We now turn to the asymptotic distribution and efficiency of the estimator. Its asymp-
totic normality is asserted by the following theorem.

Theorem 8. The L2 estimator given by (4.37) converges in distribution to the bivariate
normal random variable, that is

√
n

� �θθθ CF 0,1

n − θθθ
!

d−→ N2

�
000,ΣΣΣ(σ2)

!
,

where the asymptotic covariance matrix for γ = 0 is

ΣΣΣ(σ2) =

����
8σ2

�
a+σ2

2a+σ2

$3�
2a+σ2

2a+3σ2

$3/2

0

0
σ4(9σ4+16aσ2+8a2)(2a+σ2)1/2(a+σ2)3

(2a+3σ2)5/2(a+σ2/2)3

&&&& ,

whereas for γ = 2 it is

ΣΣΣ(σ2)=

����
32σ2(15σ8+36aσ6+34a2σ4+16a3σ2+4a4)

(a+σ2)−3[(2a+σ2)(2a+3σ2)]7/2
0

0
64σ4(97σ8+284aσ6+334a2σ4+192a3σ2+48a4)

3(a+σ2)−5[(2a+σ2)(2a+3σ2)]9/2

&&&& .

Proof. (Derivation of the covariance matrix). We use (2.44), which in the present
example is

ΣΣΣ(σ2) =

� ∞

−∞
IF

�
x;θθθ CF 0,1

�
IF

�
x;θθθ CF 0,1

�⊤
dFθθθ(x). (4.41)

Note that upon change of variables y = x − µ, the cross-terms of the sought matrices for
γ = 0 and γ = 2 comprise only the Gaussian-type integrals

A

� ∞

−∞
yn exp(−By2)dy, n odd, (4.42)

(where A and B are some constants dependent on a, σ2 and π). All these integrals equal
zero due to oddity of integrands. Therefore, Σ1,2(σ2) = Σ2,1(σ2) = 0 for γ = 0, 2. On
the other hand, integrals of the same type occurring in diagonal variance terms, Σ1,1(σ2)
and Σ2,2(σ2), have all even integrands, and can be computed using

A

� ∞

−∞
yn exp(−By2)dy =

A

2
B−(n+1)/2 Γ

�
n + 1

2

$
, (4.43)
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with Γ(1/2) =
√

π, Γ(3/2) =
√

π/2, Γ(5/2) = 3
√

π/4, ... .

As Theorem 8 guarantees asymptotic normality with zero correlation, the estimators are
also asymptotically independent.

We now examine the limiting forms of the covariance matrices as the parameter of the
weight function a → ∞ and a → 0. For γ = 0, we obtain

lim
a→∞ ΣΣΣ(σ2) =

�
σ2 0

0 2σ4

"
, lim

a→0
ΣΣΣ(σ2) =

 8
√

3
9 σ2 0

0 8
√

27
9 σ4

 ,

whereas for γ = 2,

lim
a→∞ ΣΣΣ(σ2) =

�
σ2 0

0 2σ4

"
, lim

a→0
ΣΣΣ(σ2) =

 160
√

27
81 σ2 0

0 6208
√

3
729 σ4

 .

Note that as a → ∞, the matrices tend to that of the ML estimator. This implies that
for both γ = 0 and γ = 2, the estimators attain full asymptotic efficiency in this limit.
On the other hand, as a → 0, ARE w.r.t. ML estimator (defined as the ratio of their
limiting variances) drops to a constant non-zero value. In particular, for γ = 0, we
obtain

lim
a→0

ARE
��µ CF 0,1

n , �µ ML
n

�
=

3
√

3

8
≈ 65% , lim

a→0
ARE

��σ2 CF 0,1
n , �σ2 ML

n

�
=

√
27

12
≈ 43% ,

whereas for γ = 2,

lim
a→0

ARE
��µ CF 0,1

n , �µ ML
n

�
=

3
√

27

160
≈ 10% , lim

a→0
ARE

��σ2 CF 0,1
n , �σ2 ML

n

�
=

243
√

3

3104
≈ 13% .

We also derive the joint ARE, which for γ = 0 is

ARE
��θθθ CF 0,1

n , �θθθ ML

n

�
=

det[ΣΣΣML(σ2)]

det[ΣΣΣ(σ2)]
=

(2a+3σ2)4(a+σ2/2)3(2a+σ2)

4(9σ4+16aσ2+8a4)(a+σ2)6
,

whereas for γ = 2

3[(2a+σ2)(2a+3σ2)/(a+σ2)]8/1024

(15σ8+36aσ6+34a2σ4+16a3σ2+4a4)(97σ8+284aσ6+334a2σ4+192a3σ2+48a4)
.

The limits of the joint AREs as a → ∞ equal 1 in both cases, while as a → 0 they equal
9/32 ≈ 28% and 6561/496640 ≈ 1% for γ = 0 and γ = 2, respectively. For intermediate
a, the individual and joint AREs are complicated functions of a and σ2, as plotted in
Fig. 4.2.
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4. Estimators based on differential equations

Figure 4.2: Estimation in the normal(µ,σ2) distribution: Individual and joint asymp-
totic relative efficiencies (AREs) of the proposed estimators, �µ CF 0,1

n and �σ2 CF 0,1
n , with

respect to the ML estimators.
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4.5.1.3 Robustness-efficiency trade-offs

The above graphs reveal that a blind choice of the scale parameter of the weight function
a w.r.t. the true σ2 may degrade the efficiency of the proposed estimators. For the set-
ting γ = 0, the consequences are not that drastic: the efficiency may be then, at worst,
comparable with that of sample median for µ and the squared median absolute deviation
(MAD) for σ (these are popular robust estimators of location and scale having, respec-
tively, 63% and 37% ARE at the normal distribution; see, e.g., Rousseeuw and Croux
(1993)). However, for γ = 2, the degradation of our estimators may be far more severe.
Of course, we may set a extremely large to get ARE close to 1 with high probability, but,
according to IFs in Fig. 4.1, this would produce estimates completely unrobust against
large outliers.

Fortunately, a combined analysis of Figs. 4.1 and 4.2 suggests a solution. A reasonable
trade-off between efficiency and robustness can be achieved by setting a as linearly
proportional to σ2, that is

a = kσ2 , (4.44)

where k is a proportionality constant. In this way, the estimator can operate along the
lines of constancy of ARE, which can be seen in Fig. 4.2. For example, observe the top
left panel of Fig. 4.2 to note that, with a = σ2 (k = 1), the estimator �µ CF 0,1

n with γ = 0
has efficiency equal to about 90%. On the other hand, the top left panel of Fig. 4.1
(where σ2 = 2) shows that setting a = 2 produces a very satisfactory IF. Putting k > 1
increases efficiency but sacrifices some robustness, and vice versa.

Since σ2 is unknown, we propose using an ancillary estimator of it to find good value of a.
This estimator must be neither very precise nor robust and should provide only a rough
idea about the value of σ2. Instead, it should be easily computable so that the effort
associated with computing (4.38) and (4.39) is not significantly increased. Consequently,
we consider two variants:

a = kS2
n , (4.45)

with S2
n being the sample variance, and

a = k(MADn)2 . (4.46)

Here, MADn stands for the median absolute deviation computed by

MADn = b · med
�
|X1 − �medn|, ... , |Xn − �medn|

!
, (4.47)

where �medn is the sample median and b is a consistency factor equal to 1.483 for the
normal distribution.

The constant k remains controlled by the user and decides about the degree of the
trade-off.
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4. Estimators based on differential equations

4.5.1.4 Finite-sample performance: simulation analysis

The usefulness of data-driven tuning of the estimators designed in asymptotic setting
must be now confirmed by simulations in finite samples. Figs. 4.3 and 4.4 show results of

estimation of µ and σ2 using �µ CF 0,1
n , in (4.38), and �σ2

n
CF 0,1

, in (4.39), for 5000 samples1

of size n = 50, with and without outliers, and for two very different values of σ2 = 0.01
and σ2 = 100, whereby µ = 0 in each case. Fig. 4.3 reports the case when a is estimated
by sample variance (4.45), while Fig. 4.4 reports situation when a is estimated by MAD
(4.46), each with k = 1, 2 and 3.

The proposed estimators are compared with ML estimators and with two robust alter-
natives. For µ these alternatives are: 1) the sample median and 2) the Hodges-Lehmann
estimator2 defined as the median of the averages of the n(n − 1)/2 possible pairs of
observations; see Hodges and Lehmann (1963) and Hampel et al. (1986). The Hodges-
Lehmann estimator is a universal non-parametric estimator of median with 97% ARE
at the normal model. For σ2, the two robust alternatives are: 1) the square of MAD
given in (4.47) and 2) the square of the so-called Qn estimator3 expressed by

Qn = 2.222 ·
�

|Xi − Xj |, i < j
�

(r)
, (4.48)

where r =
�⌊n/2⌋+1

2

#
and {·}(r) denotes the r-th order statistic of the set. The Qn

estimator, introduced by Rousseeuw and Croux (1993), has 82% ARE at the normal
distribution.

Each estimator is represented by two box plots. The right one refers to pure samples,
while the left one corresponds to the same samples contaminated by a single outlier X0 =
µ + 5�σn, where �σn is the sample standard deviation of the original sample X1, ..., X50

(X0 replaces X1 in each sample).

Let us analyze the results. In general, the proposed data-driven estimators exhibit a good
robustness-variance trade-off. Their spread is comparable to that of ML estimators, and
their bias is not greater than that of the robust alternatives when an outlier is present.
As anticipated previously, γ = 0 gives higher robustness than γ = 2. Additionally, as
we observe now, γ = 2 introduces a slight negative bias, unrelated to contamination.
However, this effect is also observed for sample median and the Qn estimator. Moreover,
we notice that differences in performance of our estimators when driven by (4.45) or
(4.46) are minor. The latter makes the estimator with γ = 0 more slightly more robust
when k is increased from 1 to 3. A particularly good performance occurs for γ = 0,
a = k(MADn)2 and k = 1. For the estimation of µ, this estimator emerges as a strong
competitor to the celebrated Hodges-Lehmann estimator.

1To provide reproducible results, the simulation seed in R was fixed using set.seed(1). This seed was
used for all simulations in the thesis.

2To compute the Hodges-Lehmann estimator, we used the function HodgesLehmann(·) from the R
package DescTools.

3To compute the Qn estimator, we used the function Qn(·) from the package robustbase in R.
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4.5. Estimation in specific distributions

Fig. 4.5 presents the estimation of µ = 0 and σ2 = 100 under more severe contamination.
In this case, samples now contain three outliers: X0,1 = µ + 3�σn, X0,2 = µ + 4�σn and
X0,3 = µ + 5�σn. We employed tuning with a = k(MADn)2. The resistance of the
proposed estimators to such a batch of outliers remains very good, especially with γ =0
and k =1.

4.5.1.5 Estimation under misspecification

The previous section addressed point contamination of the normal model. Now, we
investigate the behavior of estimators under full misspecification of the model, meaning
that the sample comes from a completely different distribution.

Typically, the impact of misspecification on estimator is assessed analytically by com-
puting the loss of its efficiency caused by the wrong assumption (this is reasonable if the
parameter is shared by the true model and the wrongly assumed one). Due to complexity
of our estimators, such analysis is not tractable. Therefore, we assess the effect through
simulations, focusing only the estimator of location �µ CF 0,1

n with γ = 0. We apply the
estimator to samples generated from the following symmetric unimodal distributions:
normal(µ, σ2), Laplace(µ, β), logistic(µ, β), Cauchy (µ, β), all with µ = 0 and σ2, β = 1
as well as Student-t(ν) with ν = 3 degrees of freedom. In simulations, the variance of
our estimator is compared with that of ML, sample median and the Hodges-Lehmann
estimators used in the same scenarios for sample sizes from n = 30 to 500. The results
are displayed in Table 4.1, where bold font indicates the best result (smallest empirical
variance) per sample size.

We observe that our estimator performs very well in case of the light-tailed models
(Laplace, logistic, Student-t) across all sample sizes. Notably, in the Student-t case, it
even performs slightly better than the Hodges-Lehmann estimator in small samples. Con-
versely, for the heavy-tailed Cauchy data, the estimator is clearly suboptimal compared
to the sample median and the Hodges-Lehmann estimator, although it still outperforms
the sample mean, which is inconsistent in this scenario. This arises because �µ CF 0,1

n is
partially based on the first derivative of CF near s = 0 which may take extreme values
due to the lack of the mean in the Cauchy distribution. Fig. 4.6 displays kernel-smoothed
densities of the estimators for the Laplace and Cauchy models, illustrating more extreme
realizations of �µ CF 0,1

n in the Cauchy case.
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4. Estimators based on differential equations

Figure 4.3: Estimation of µ and σ2 in the normal(µ,σ2) model for µ = 0 and σ2 = 0.01 or

σ2 = 100, without and with one outlier x0 = µ + 5�σn (right and left box plot, resp.); n = 50;

a = kS2
n
, k = 1, 2, 3.84
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Figure 4.4: Estimation of µ and σ2 in the normal(µ,σ2) model for µ = 0 and σ2 = 0.01
or σ2 = 100, without and with one outlier x0 = µ + 5�σn (right and left box plot, resp.);
n = 50; a = k(MADn)2, k = 1, 2, 3. 85
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Figure 4.5: Estimation of µ and σ2 in the normal(µ,σ2) model for µ = 0 and σ2 = 100,
without and with three outliers x0,1 = µ + 3�σn, x0,2 = µ + 4�σn, x0,3 = µ + 5�σn (right
and left box plot, resp.); n = 50; a = k(MADn)2, k = 1, 2, 3.

Figure 4.6: Smoothed densities of the estimators of µ and σ2 for the normal(µ,σ2)
distribution under model misspecification. True models: Cauchy(0,1) and Laplace(0,1).
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Table 4.1: Variances of the estimators of location µ under model misspecification.

True model: Normal(0,1)

n sample mean sample median Hodges-Lehmann �µ CF 0,1
n , (γ = 0)

30 0.033 0.050 0.035 0.037
50 0.020 0.031 0.022 0.023
70 0.014 0.022 0.015 0.015
100 0.010 0.016 0.011 0.011
200 0.005 0.008 0.005 0.006
500 0.002 0.003 0.002 0.002

True model: Laplace(0,1)

n sample mean sample median Hodges-Lehmann �µ CF 0,1
n , (γ = 0)

30 0.033 0.021 0.023 0.023
50 0.020 0.012 0.014 0.014
70 0.014 0.008 0.010 0.010
100 0.010 0.006 0.007 0.007
200 0.005 0.003 0.003 0.003
500 0.002 0.001 0.001 0.001

True model: Logistic(0,1)

n sample mean sample median Hodges-Lehmann �µ CF 0,1
n , (γ = 0)

30 0.109 0.131 0.101 0.104
50 0.064 0.076 0.059 0.061
70 0.048 0.057 0.044 0.045
100 0.033 0.040 0.031 0.031
200 0.016 0.020 0.015 0.015
500 0.007 0.008 0.006 0.006

True model: Student-t(3)

n sample mean sample median Hodges-Lehmann �µ CF 0,1
n , (γ = 0)

30 0.095 0.062 0.055 0.053
50 0.059 0.037 0.032 0.031
70 0.043 0.026 0.023 0.022
100 0.029 0.019 0.016 0.016
200 0.016 0.009 0.008 0.008
500 0.006 0.004 0.003 0.003

True model: Cauchy(0,1)

n sample mean sample median Hodges-Lehmann �µ CF 0,1
n , (γ = 0)

30 7026 0.086 0.123 25.46
50 2115 0.051 0.071 3.350
70 28083 0.036 0.050 20.42
100 1524 0.025 0.034 0.530
200 69222 0.012 0.017 6.340
500 12731 0.005 0.007 0.174
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4. Estimators based on differential equations

4.5.2 Exponential distribution

The exponential distribution has density

fθθθ(x) = λe−λx , x ≥ 0, (4.49)

where λ > 0 is the rate parameter.

For this distribution, we analyze an entire family of estimators based on differential equa-
tions satisfied by both LT and CF. In deriving these estimators, we make use of equations
up to the second order, including the ’zero-order’ equation representing the transform ex-
pression itself. In addition to the L2 estimators, we also consider the transform-matching
estimators of the form (4.8).

Recall that LT and CF of the exponential distribution are

Lθθθ(s) =
λ

λ + s
, φθθθ(s) =

λ

λ − is
, (4.50)

and the real and imaginary parts of the latter are given by

uθθθ(s) =
λ2

λ2 + s2
, vθθθ(s) =

λs

λ2 + s2
.

The LT and CF satisfy the following differential equations: for s > −λ,

Lθθθ(s) − λ/(λ + s) = 0 , (4.51)

(λ + s)L′
θθθ(s) + Lθθθ(s) = 0 , (4.52)

(λ + s)L′′
θθθ(s) + 2L′

θθθ(s) = 0 , (4.53)

(λ + s)2L′′
θθθ(s) − 2Lθθθ(s) = 0 , (4.54)

and, for s ∈ R,

φθθθ(s) − λ/(λ − is) = 0 , (4.55)

(s + iλ)φ′
θθθ(s) + φθθθ(s) = 0 , (4.56)

(s + iλ)φ′′
θθθ(s) + 2φ′

θθθ(s) = 0 , (4.57)

(s + iλ)2φ′′
θθθ(s) − 2φθθθ(s) = 0 . (4.58)
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4.5.2.1 Considered L2 estimators

Using the eight equations mentioned above, we define the L2 estimators of the types
(4.1) and (4.3), incorporating the weight functions (4.4) and (4.5), as follows:

�λ LT 0
n = argmin

λ > 0

� ∞

0

��Ln(s) − λ

λ + s

�2
sγe−asds , (4.59)

�λ LT 1,0
n = argmin

λ > 0

� ∞

0

�
(λ + s)�L′

n(s) + �Ln(s)
�2

sγe−asds , (4.60)

�λ LT 2,1
n = argmin

λ > 0

� ∞

0

�
(λ + s)�L′′

n(s) + 2�L′
n(s)

�2
sγe−asds, , (4.61)

�λLT 2,0
n = argmin

λ > 0

� ∞

0

�
(λ + s)2 �L′′

n(s) − 2�Ln(s)
�2

sγe−asds , (4.62)

for γ = 0, 1, 2, ..., and

�λ CF 0
n = argmin

λ > 0

� ∞

−∞

333 �φn(s) − λ/(λ − is)
3332sγe−as2

ds , (4.63)

�λ CF 1,0
n = argmin

λ > 0

� ∞

−∞

333(s + iλ)�φ′
n(s) + �φn(s)

3332sγe−as2

ds , (4.64)

�λ CF 2,1
n = argmin

λ > 0

� ∞

−∞

333(s + iλ)�φ′′
n(s) + 2�φ′

n(s)
3332sγe−as2

ds , (4.65)

�λ CF 2,0
n = argmin

λ > 0

� ∞

−∞

333(s + iλ)2 �φ′′
n(s) − 2�φ(s)

3332sγe−as2

ds , (4.66)

for γ = 0, 2, 4, ..., with a > 0 in all the cases.

The estimators (4.59) and (4.63) do not admit closed-form expressions for any γ. For
γ = 0, integration can be performed in (4.59) to obtain

�λ LT 0
n = argmin

λ > 0

�
λ − 2λ

n

n1
j=1

eλ(Xj+a)E1(λ(Xj + a)) − aλ2eλaE1(λa)
�

, (4.67)

where E1(z) =
� ∞

z e−t/t dt is the exponential integral.

In turn, the integrand in the estimator (4.63) can also be written in somewhat simpler
form, so that

�λ CF 0
n = argmin

λ > 0

∞�
−∞

�� n1
j=1

cos(sXj)− λ2

λ2+s2

�2
+

� n1
j=1

sin(sXj)− λs

λ2+s2

�2
�
sγe−as2

ds. (4.68)
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The remaining L2-type estimators can be represented as follows:

�λ LT 1,0
n =

n1
j,k=1

X2
j + X2

k − 2γXjXk + a(Xj + Xk)

(Xj + Xk + a)γ+2

n1
j,k=1

2XjXk

(Xj + Xk + a)γ+1

, (4.69)

�λ LT 2,1
n =

n1
j,k=1

XjXk[X2
j + X2

k + a(Xj + Xk) + (1 − γ)XjXk]

(Xj + Xk + a)γ+2

n1
j,k=1

X2
j X2

k

(Xj + Xk + a)γ+1

, (4.70)

�λ LT 2,0
n = argmin

λ>0

�
λ4

n1
j,k=1

γ!X2
j X2

k

(Xj + Xk + a)γ+1
+ λ3

n1
j,k=1

4(γ + 1)!X2
j X2

k

(Xj + Xk + a)γ+2

+ λ2
n1

j,k=1

6(γ + 2)!X2
j X2

k − 2γ!(X2
j + X2

k)(Xj + Xk + a)2

(Xj + Xk + a)γ+3

+ 4λ
n1

j,k=1

(γ + 3)!X2
j X2

k − (γ + 1)!(X2
j + X2

k)(Xj + Xk + a)2

(Xj + Xk + a)γ+4

�
, (4.71)

all for γ = 0, 1, 2, ..., and

�λ CF 1,0
n =

��������������������������������

n1
j,k=1

(Xj +Xk) exp
�
−(Xj −Xk)2/4a

!
2

n1
j,k=1

XjXk exp
�
−(Xj −Xk)2/4a

! , γ = 0 ,

n1
j,k=1

(Xj +Xk) exp
�
−(Xj −Xk)2/4a

!�
(Xj −Xk)2/a − 2

�
2

n1
j,k=1

XjXk exp
�
−(Xj −Xk)2/4a

!�
(Xj −Xk)2/a − 2

� , γ = 2 ,

(4.72)
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�λ CF 2,1
n =

��������������������������������

n1
j,k=1

(X2
j Xk +XjX2

k) exp
�
−(Xj −Xk)2/4a

!
n1

j,k=1

X2
j X2

k exp
�
−(Xj −Xk)2/4a

! , γ = 0 ,

n1
j,k=1

(X2
j Xk +XjX2

k) exp
�
−(Xj −Xk)2/4a

!�
(Xj −Xk)2/a − 2

�
2

n1
j,k=1

X2
j X2

k exp
�
−(Xj −Xk)2/4a

!�
(Xj −Xk)2/a − 2

� , γ = 2 ,

(4.73)

�λ CF 2,0
n = argmin

λ > 0

�
λ4

n1
j,k=1

X2
j X2

k exp
�
−(Xj −Xk)2/4a

!

+
λ2

2a2

n1
j,k=1

�
2(2a2+X3

j X3
k) − X2

j (2a2+X4
k) − X2

k(2a2+X4
j )

�
exp

�
−(Xj −Xk)2/4a

!

− 2λ

a

n1
j,k=1

(Xj +Xk)(Xj −Xk)2 exp
�
−(Xj −Xk)2/4a

!�
, γ = 0 . (4.74)

Derivations of (4.70) and (4.72) are shown in Appendix B.4.

4.5.2.2 Considered transform-matching estimators

Based on the same differential equations, we also consider the LT-based transform-
matching estimators of the type (4.8) (with p = 1), being the solvers of

�Ln(s) − λ

λ + s
= 0 , (4.75)

(λ + s)�L′
n(s) + �Ln(s) = 0 , (4.76)

(λ + s)�L′′
n(s) + 2�L′

n(s) = 0 , (4.77)

(λ + s)2 �L′′
n(s) − 2�Ln(s) = 0 , (4.78)
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for s > 0. These are:

�λ LT 0
n (s) =

s�Ln(s)

1 − �Ln(s)
, (4.79)

�λ LT 1,0
n (s) = −

�Ln(s)�L′
n(s)

− s , (4.80)

�λ LT 2,1
n (s) = −2�L′

n(s)�L′′
n(s)

− s , (4.81)

�λ LT 2,0
n (s) =

/00.2�Ln(s)�L′′
n(s)

− s , (4.82)

whereby �λ LT 2,0
n (s) is the larger (and always positive) solver of the quadratic equation

(4.78).

Among the CF-based estimators, we consider only the solver of

�φn(s) − λ

λ − is
= 0 , (4.83)

which, by separation of the real and imaginary parts, is expressed as

�λ CF 0
n (s) = s

�un(s)�vn(s)
, s �= 0. (4.84)

4.5.2.3 Asymptotic normality

We begin with the asymptotic normality of the transform-matching estimators.

Theorem 9. The transform-matching estimators expressed by (4.79)-(4.82) and (4.84)
are strongly consistent and asymptotically normal, whereby

√
n

��λ LT 0
n (s) − λ

!
d−→ N

�
0,

λ(λ+s)2

λ+2s

$
, (4.85)

√
n

��λ LT 1,0
n (s) − λ

!
d−→ N

�
0 ,

(λ+s)4(λ2+2λs+2s2)

λ(λ+2s)3

$
, (4.86)

√
n

��λ LT 2,1
n (s) − λ

!
d−→ N

�
0 ,

2(λ+s)6(λ2+λs+s2)

λ(λ+2s)5

$
, (4.87)

√
n

��λ LT 2,0
n (s) − λ

!
d−→ N

�
0 ,

(λ+s)4(5λ4+20λ3s+34λ2s2+32λs3+14s4)

4λ(λ+2s)5

$
,(4.88)

√
n

��λ CF 0
n (s) − λ

!
d−→ N

�
0 ,

λ6+4λ4s2+5λ2s4+2s6

λ2(λ2+4s2)

$
. (4.89)
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4.5. Estimation in specific distributions

Proof : The estimators of λ are continuous functions of the empirical transforms, which
are strongly consistent non-parameteric estimators of the model transforms. Therefore,
by the Continuous Mapping Theorem, the estimators of λ are also strongly consistent.
Their asymptotic variances can be determined using the multivariate Delta Method,
Casella and Berger (2002). To illustrate, let us consider �λ,LT,1,0

n (s). From the preceding
chapter, we are aware that

√
n

��Ln(s) − L(s)
!

d−→ N
�

0,
λs2

(λ+s)2(λ+2s)

$
, (4.90)

√
n

��L′
n(s) − L′(s)

!
d−→ N

�
0,

λ(λ4+2λ3s+2s4)

(λ+s)4(λ+2s)3

$
. (4.91)

Let us denote the two asymptotic variances above as Vas[�Ln(s)] and Vas[�L′
n(s)], respec-

tively. Applying the Delta Method, we can find the asymptotic variance of �Ln(s)/�L′
n(s)

as n → ∞,

Vas

� �Ln(s)�L′
n(s)

�
=

�
L(s)

L′(s)

$2�
Vas[�Ln(s)]

[L(s)]2
+

Vas[�L′
n(s)]

[L′(s)]2
− Cov[�Ln(s), �L′

n(s)]

L(s)L′(s)

$
, (4.92)

where the covariance term, computed in a similar way as (B.1), equals L′(2s)−L(s)L′(s).
Inserting L(s) = λ/(λ + s) and L′(s) = −λ/(λ + s)2 gives then

Vas

� �Ln(s)�L′
n(s)

�
=

(λ+s)4(λ2+2λs+2s2)

(λ+2s)3
. (4.93)

The derivations of the other asymptotic variances follow a similar procedure. The covari-
ance term necessary for computing the variance in (4.89) is obtained using (2.37).

The next theorem asserts the asymptotic normality of the L2 counterparts.

Theorem 10. The L2 LT-based estimators defined in (4.59)-(4.62) are asymptotically
normal, such that

√
n

��λ LT 0
n − λ

!
d−→ N

�
0, σ2

LT 0

!
, (4.94)

√
n

��λ LT 1,0
n − λ

!
d−→ N

�
0, σ2

LT 1,0

!
, (4.95)

√
n

��λ LT 2,1
n − λ

!
d−→ N

�
0, σ2

LT 2,1

!
, (4.96)

√
n

��λ LT 2,0
n − λ

!
d−→ N

�
0, σ2

LT 2,0

!
, (4.97)
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where

σ2
LT 0 =

λ

� ∞

0

� ∞

0

(st)γ+2e−a(s+t) ds dt

(λ+s)3 (λ+t)3 (λ+s+t)� � ∞

0

sγ+2e−as

(λ+s)4
ds

$2 ,

σ2
LT 1,0 =

� ∞

0

� ∞

0

λ2 + λ(s + t) + 2st

(λ+s)2 (λ+t)2 (λ+s+t)3
(st)γe−a(s+t) ds dt

λ

� � ∞

0

sγe−as

(λ+s)4
ds

$2 ,

σ2
LT 2,1 =

� ∞

0

� ∞

0

2λ2 + λ(s + t) − (s2 − 4st + t2)

(λ+s)3 (λ+t)3 (λ+s+t)5
(st)γe−a(s+t) ds dt

λ

� � ∞

0

sγe−as

(λ+s)6
ds

$2 ,

σ2
LT 2,0 =

� ∞

0

� ∞

0

6(λ+s)2(λ+t)2 + (2st−λ2)(λ+s+t)2

(λ+s)3 (λ+t)3 (λ+s+t)5
(st)γe−a(s+t) ds dt

4λ

� � ∞

0

sγe−as

(λ+s)4
ds

$2 .

Proof. For the estimators �λ LT 1,0
n , �λ LT 2,1

n , and �λ LT 2,0
n , the theorem follows from Theo-

rem 1 in a scalar setting, i.e. with θθθ = λ. In particular, in Theorem 1

• for �λ LT 1,0
n we put r = 1, m = 0 and h(θθθ, s) = λ + s;

• for �λ LT 2,1
n we put r = 2, m = 1 and h(θθθ, s) = 1

2(λ + s);

• for �λ LT 2,0
n we put r = 2, m = 0 and h(θθθ, s) = −1

2(λ + s)2.

The asymptotic normality of �λ LT 0
n requires a separate proof. This proof is simpler as

it uses only CLT along with Taylor expansion; it does not necessitate V-statistic theory,
and we omit it.
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Finally, we have the theorem concerning the asymptotic distribution of the L2 CF-based
estimators.

Theorem 11. The L2 CF-based estimators defined by (4.63)-(4.66) are asymptotically
normal, whereby

√
n

��λ CF 0
n − λ

!
d−→ N

�
0, σ2

CF 0

!
, (4.98)

√
n

��λ CF 1,0
n − λ

!
d−→ N

�
0, σ2

CF 1,0

!
, (4.99)

√
n

��λ CF 2,1
n − λ

!
d−→ N

�
0, σ2

CF 2,1

!
, (4.100)

√
n

��λ CF 2,0
n − λ

!
d−→ N

�
0, σ2

CF 2,0

!
, (4.101)

where

σ2
CF 0 =

� ∞

−∞

� ∞

−∞

λ2(λ4 + 2λ2s2 + 2λ2t2 + s2 + t2)(st)γ+2e−a(s2+t2) ds dt

(λ2+s2)2 (λ2+t2)2 (λ2+(s+t)2) (λ2+(s−t)2)� � ∞

−∞

sγ+2e−as2

(λ2+s2)2
ds

$2
,

σ2
CF 1,0 =

� ∞

−∞

� ∞

−∞

2P1(s, t) (st)γe−a(s2+t2) ds dt

(λ2+s2)2 (λ2+t2)2 (λ+(s+t)2)3 (λ+(s−t)2)3� � ∞

0

sγe−as2

(λ+s)4
ds

$2
,

σ2
CF 2,1 =

� ∞

−∞

� ∞

−∞

P2(s, t) (st)γe−a(s2+t2) ds dt

(λ2+s2)3 (λ2+t2)3 (λ+(s+t)2)5 (λ+(s−t)2)5� � ∞

0

sγe−as2

(λ2+s2)3
ds

$2
,

σ2
CF 2,0 =

� ∞

−∞

� ∞

−∞

64P3(s, t) (st)γe−a(s2+t2) ds dt

(λ2+s2)3 (λ2+t2)3 (λ2+(s+t)2)5 (λ2+(s−t)2)5� � ∞

0

3s2−2λ2

(λ2+s2)3
sγe−as2

ds

$2 ,

and

P1(s, t) = λ14+λ12(6s2+6t2) + λ10(15s4+31s2t2+15t4)+λ8(20s6+59s4t2+59s2t4+20t6)

+ λ6(15s8+46s6t2+110s4t4+46s2t6 + 15t8)

+ λ4(6s10+4s8t2+94s6t4 + 94s4t6+4s2t8+6t10)

+ λ2(s12−13s10t2+19s8t4+50s6t6+19s4t8−13s2t10+t12)

− 5s12t2−9s10t4+14s8t6+14s6t8−9s4t10−5s2t12,
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4. Estimators based on differential equations

while P2(s, t) and P3(s, t) are even polynomials of yet higher orders.

Proof. As for the estimators �λ CF 1,0
n , �λ CF 2,1

n , and �λ CF 2,0
n , the theorem follows from

Theorem 3 in the scalar setting with θθθ = λ. In particular, to obtain the limiting variances
in (4.99), (4.100) and (4.101), we put respectively the following:

• for �λ CF 1,0
n : r=1, m=0 and h(θθθ, s) = s+iλ, Reh(θθθ, s)=s, Imh(θθθ, s)=λ;

• for �λ CF 2,1
n : r=2, m=1 and h(θθθ, s) = 1

2(s + iλ), Reh(θθθ, s) = 1
2s, Imh(θθθ, s) = 1

2λ;

• for �λ CF 2,0
n : r = 2, m = 0 and h(θθθ, s) = −1

2(s + iλ)2, Reh(θθθ, s) = 1
2(λ2 − s2),

Imh(θθθ, s) = −λs.

As for the estimator �λ CF 0
n , its asymptotic normality and the variance expression follow

from sec. 2 of Heathcote (1977).

We see that the asymptotic variances of the CF-based estimators are more compli-
cated than those of the LT-based counterparts. These expressions become less and
less tractable as the order of a differential equation increases.

4.5.2.4 Asymptotic relative efficiencies

Given the asymptotic variances of our estimators, we can compute their AREs w.r.t. the
ML estimator �λ ML

n = Xn, in case of which

√
n

��λ ML
n − λ

!
d−→ N

�
0, λ2

!
. (4.102)

Hence, the AREs are generally expressed by

ARE
��λ ∗

n ; �λ ML
n

�
=

λ2

Vas[�λ ∗
n ]

, (4.103)

where for Vas[�λ ∗
n ] we put the asymptotic variances in (4.85)-(4.89), (4.94)-(4.97) and

(4.98)-(4.101). The results are complicated functions of the true λ and the tuning pa-
rameters s or a and γ. Despite this complexity, we can identify lines of constant AREs
by analyzing their three-dimensional plots. The AREs of the transform-matching esti-
mators (4.79)-(4.82) and (4.84) are depicted in Fig. 4.7. We observe that such lines are
determined by linear relations between s and λ on the s-λ-plane. As for L2 estimators,
Fig. 4.8 plots AREs for the LT-based ones (4.59)-(4.62) for γ = 0, 1, 2. Here, in turn, we
see that the lines of constancy of ARE lines are determined by a inversely proportional
relation between a and λ on the a-λ-plane, irrespectively of the value of γ. The same
was found in case of the CF-based estimators whose AREs are qualitatively similar for
γ = 0, 2, 4 (the plots are omitted). These observations will be used in sec. 4.5.2.6 for
data-driven selection of the s- and a-values.
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4.5. Estimation in specific distributions

Figure 4.7: Estimation in the exponential(λ) distribution: asymptotic relative efficien-
cies (AREs) of the transform matching estimators (4.79)-(4.82) and (4.84) w.r.t. the ML
estimator.
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4. Estimators based on differential equations

Figure 4.8: Estimation in the exponential(λ) distribution: asymptotic relative efficien-
cies (AREs) of the L2 LT-based estimators (4.59)-(4.62) w.r.t. the ML estimator.
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4.5. Estimation in specific distributions

4.5.2.5 Influence functions

In this section, we derive and analyze the IFs of the proposed estimators of λ. The
results are summarized in the three following theorems. The first one is:

Theorem 12. The functionals corresponding to the transform-matching estimators (4.79)-
(4.82) and (4.84) have the following influence functions

IF
�
x; λ LT 0(s)

�
=

λ + s

s
[(λ + s)e−sx − λ] , (4.104)

IF
�
x; λ LT 1,0(s)

�
=

(λ + s)2

λ
[1 − (λ + s)x]e−sx , (4.105)

IF
�
x; λ LT 2,1(s)

�
=

(λ + s)3

2λ
[2 − (λ + s)x]xe−sx , (4.106)

IF
�
x; λ LT 2,0(s)

�
=

(λ + s)2

4λ
[2 − (λ + s)2x2]e−sx , (4.107)

IF
�
x; λ CF 0(s)

�
=

λ2 + s2

λs
[s cos(sx) − λ sin(sx)] . (4.108)

Proof. These IFs are obtained from the univariate or multivariate chain rule, as given
in (2.47) and (2.48). In the latter variant, we set p = 2 and replace T1(F ) and T2(F )
with either L(s) and L′(s), or L(s) and L′′(s), or L′(s) and L′′(s), or u(s) and v(s).

The second proposition refers to the IFs of their L2 counterparts.

Theorem 13. The functionals corresponding to the L2 LT-based estimators (4.59)-
(4.62) have the following influence functions:

IF
�
x; λ LT 0

�
= −

� ∞

0

s

(λ + s)2

�
e−sx − λ

λ + s

$
sγe−as ds� ∞

0

s2

(λ + s)4
sγe−as ds

, (4.109)

IF
�
x; λ LT 1,0

�
= −

� ∞

0

λ

λ + s
e−sx

�
x − 1

λ + s

$
sγe−as ds� ∞

0

λ2

(λ + s)4
sγe−as ds

, (4.110)

IF
�
x; λ LT 2,1

�
= −

� ∞

0

λ

λ + s
xe−sx

�
x

2
− 1

λ + s

$
sγe−as ds� ∞

0

λ2

(λ + s)6
sγe−as ds

, (4.111)

IF
�
x; λ LT 2,0

�
= −

� ∞

0
e−sx

�
λx2 − 2λ

(λ + s)2

$
sγe−as ds� ∞

0

4λ2

(λ + s)4
sγe−as ds

. (4.112)
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4. Estimators based on differential equations

Proof. IFs (4.110)-(4.112) follow from Theorem 4, where the values of r, m and h(θθθ, s)
are set as in the proof of Theorem 10. The IF (4.109) requires a separate derivation
which is similar.

Finally, we present the statement concerning the L2 counterparts based on CF.

Theorem 14. The functionals corresponding to the L2 CF-based estimators (4.63)-
(4.66) have the following influence functions:

IF
�
x; λ CF 0

�
=

∞�
−∞

s[(s2 − λ2) sin(sx) − sλ(1 − 2 cos(sx))]

(λ2 + s2)2
sγe−as2

ds

∞�
−∞

s2

(λ2 + s2)2
sγe−as2

ds

, (4.113)

IF
�
x; λ CF 1,0

�
=

λ

∞�
−∞

s[2λ − (3λ2−s2)x]sin(sx) + [λ2−s2−λ(λ2−3s2)x]cos(sx)

(λ2 + s2)2
sγe−as2

ds

∞�
−∞

λ2

(λ2+s2)2
sγe−as2

ds

,

(4.114)

IF
�
x; λ CF 2,1

�
=

∞�
−∞

S2,1(s, λ) sin(sx) + C2,1(s, λ) cos(sx)

(λ2+s2)2
sγe−as2

ds

∞�
−∞

λ2

(λ2+s2)3
sγe−as2

ds

, (4.115)

IF
�
x; λ CF 2,0

�
=

∞�
−∞

λ
�
S2,0(s, λ) sin(sx) + C2,0(s, λ) cos(sx) + 8λ3s2

�
(λ2 + s2)3

sγe−as2

ds

∞�
−∞

4λ4

(λ2 + s2)3
sγe−as2

ds

,

(4.116)

where

S2,1(s, λ) = [3λ2 − s2 − (2λ2 − 2s2)λx]xsλ ,

C2,1(s, λ) = 1
2 [2λ3 − 6λs2 − (λ4 − 6λ2s2 + s4)x]xλ ,

S2,0(s, λ) = 4sλ[(3s2x2 + 1)λ2 + s2 − λ4x2] ,

C2,0(s, λ) = (9s2x2 + 2)λ4 − (λ6 + 7λ2s4 + s6)x2 − 2s4 .
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Proof. The IFs (4.114)-(4.116) result from Theorem 6, wherein the values of r, m and
h(θθθ, s) are set as in the proof of Theorem 11. The IF (4.113) is derived using the theorem
given in sec. 3 of Campbell (1993). Note that with γ = 0, 2 and 4, all the integrands are
even functions of s and this fact saves time when integrating numerically.

Figs. 4.9, 4.10 and 4.11 display the IFs from Theorems 12, 13 and 14 for λ = 2 and
various settings of s, a and γ. The IF of the ML estimator is plotted on each graph as
a reference.

We begin by analyzing the IFs of the transform-matching estimators shown in Fig. 4.9.
Note that IF of �λ CF 0

n (s) is bounded in x but oscillating. Such IF shape is not desirable,
implying that a large outlier may exert a greater impact on the estimator than a smaller
one. As for the LT-based estimators of this group, we can easily compute the following
limits:

lim
x→0

IF
�
x; λ LT 0(s)

�
= λ + s, lim

x→∞ IF
�
x; λ LT 0(s)

�
= −λ(λ + s)

s
,

lim
x→0

IF
�
x; λ LT 1,0(s)

�
=

(λ + s)2

λ
, lim

x→∞ IF
�
x; λ LT 1,0(s)

�
= 0,

lim
x→0

IF
�
x; λ LT 2,1(s)

�
= 0, lim

x→∞ IF
�
x; λ LT 2,1(s)

�
= 0,

lim
x→0

IF
�
x; λ LT 2,0(s)

�
=

(λ + s)2

2λ
, lim

x→∞ IF
�
x; λ LT 2,0(s)

�
= 0.

Upon examining them as x → ∞, we observe the advantages of constructing estimators
based on differential equations of the transform. While the IF of the estimator based
on LT alone, that is λ LT 0(s), is only bounded in this direction, the IFs of the three
estimators based on differential equations of LT asymptotically tend to zero. Examining
the limits as x → 0, we also observe the advantage of employing equations of order higher
than one. Specifically, the limiting value of the IF for λ LT,2,0(s) is twice as small as that
for λ LT,1,0(s), and the IF of λ LT,2,1(s) exhibits an ’ideal’ shape, rapidly approaching zero
in both limits. It is important to note that, of course, the rates of this decay depend on
the user-chosen parameter s and the true value of λ.

Now, let us inspect the IFs of the L2 estimators in Figs. 4.10 and 4.11. The above
described effect of the order of equation carries over here. That is, estimators based on LT
and CF alone have IFs only bounded as x→∞, while those based on differential equations
manifest IFs descending to zero in this limit. And, similarly, equations involving the first
and second derivatives of LT or CF yield estimators with zero IFs as x→0

Regarding the choices of a and γ, note that their different settings result in more or less
robust estimates. Generally, selecting a smaller a causes all the IFs to stabilize more
quickly as x → ∞. The impact of γ is more nuanced. For the LT-based estimators,
increasing γ (for a fixed a) accelerates the drop of IFs to zero as x→∞. However, this
increase also enlarges the IFs of λ LT 1,0 and λ LT 2,1 as x → 0. In the case of CF-based
estimators, a larger γ does not result in more favorable IFs as x → ∞ (they oscillate
more rapidly before stabilizing). However, a larger γ does not degrade IFs as x→ 0.
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4. Estimators based on differential equations

In view of the IF plots and computational advantages, some of the proposed estimators
are clearly preferred. For further study we select:

• the transform-matching LT-based estimators �λ LT 0
n (s), �λ LT 1,0

n (s), �λ LT 2,1
n (s) and�λ LT 2,0

n (s);

• the L2 LT-based estimators �λ LT 1,0
n with γ = 1, �λ LT 2,1

n with γ = 2, �λ LT 2,0
n with

γ = 1, and the L2 CF-based estimator �λ CF 1,0
n with γ = 0.

4.5.2.6 Robustness-efficiency trade-offs

We now combine our findings of secs. 4.5.2.4 and 4.5.2.5 to propose a data-driven choice
of s or a, providing a compromise between efficiency and robustness. From Figs. 4.7 and
4.8 we know that to keep the ARE approximately constant over the space of λ, we should
set s = k�λn or a = k/�λn, where �λn is some auxiliary, easily computable, estimator of λ.
Suitable candidates are the ML estimator �λ ML

n = 1/Xn and the median-based estimator�λ med
n = log(2)/ �medn; see Staudte and Sheather (1990). The constant k gives control

over the robustness-efficiency trade-off. To ensure good trade-offs, based on the above
ARE and IFs plots, along with some initial simulations, we recommend using: k = 0.3
for �λ LT 0

n (s), k = 0.3 for �λ LT 1,0
n (s), k = 0.7 for �λ LT 2,1

n (s), k = 0.5 for �λ LT 2,0
n (s), k = 1

for �λ LT 1,0
n , �λ LT 2,1

n , �λ LT 2,1
n and �λ CF 1,0

n .

4.5.2.7 Finite-sample performance: simulation analysis

The above asymptotic considerations are now validated by finite-sample simulations.
We present results only for the median-driven choices of s and a, which provide slightly
more robust estimates. The proposed estimators are compared with the sample mean-
and median-based estimators defined above. Fig. 4.12 displays box plots of estimates
drawn from 5000 simulated samples of size n = 50, considering λ = 0.01 and λ = 100.
For each estimator, the left box plot pertains to estimation from pure sample. The
middle and right box plots depict estimation in presence of one large and two small
outliers, respectively. The large outlier is generated by X0 = Xn + 10/λ (replacing
X1 in the original sample). Meanwhile, the two small outliers are X0-1 = Xn/100 and
X0-2 = Xn/1000 (replacing X1 and X2).

We make here the following observations. Firstly, the proposed data-driven choice of
s and a adapts all the estimators to changes in the scale of data. Namely, when λ
changes by factor 105, the box plots stretch accordingly. Secondly, all the transform-
based estimators compare well with the ML estimator in pure samples. In the presence
of outliers, our estimators can be more biased than the median-based estimator �λ med

n ,
but, simultaneously, they have greater precision. The L2 estimator �λ LT,1,0

n stands out
as an exception, being highly sensitive to small outliers. The estimators based on the
second-order equations of LT are more robust against small outliers, consistently with
expectations from their IFs. It is of interest that the transform-matching estimators tend
to be more reliable then their L2 counterparts. The estimator �λ LT 2,1

n (s) emerges as a
clear winner in this comparison, remaining nearly unbiased for the two types of outliers.
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4.5. Estimation in specific distributions

Figure 4.9: IFs of the transform-matching estimators of λ in the exponential(λ) distri-
bution from Theorem 12, for λ = 2 and s = 3, 1 and 0.3.
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4. Estimators based on differential equations

Figure 4.10: IFs of the L2 LT-based estimators of λ in the exponential(λ) distribution
from Theorem 13, for λ = 2 and combinations of γ = 0, 1, 2 with a = 0.3, 1, 3.
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Figure 4.11: IFs of the L2 CF-based estimators of λ in the exponential(λ) distribution
from Theorem 14, for λ = 2 and combinations of γ = 0, 2, 4 with a = 0.3, 1, 3.
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Figure 4.12: Estimation of λ in the exponential(λ) model for λ = 0.01 (the two
upper panels) and λ = 100 (the two lower panels) under mild contamination; n = 50,
5000 replications. Comparisons of the ML, median-based and selected transform-based
estimators. Left box plot: pure sample; middle box plot: sample with one large outlier;
right box plot: sample with two small outliers.
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Figure 4.13: Estimation of λ in the exponential(λ) model under strong contamination;
λ = 100 for n = 30 (the two upper panels) and n = 100 (the two lower panels); 5000
replications. Comparisons of the ML, median-based and selected transform-based esti-
mators. Left box plot: pure sample; middle box plot: sample with three large outlier;
right box plot: sample with four small outliers.
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4.5.3 Rayleigh distribution

We now deal with a distribution that lacks closed-form expression for the transforms
(in terms of elementary functions) but for which estimation based on the differential
equations satisfied by the transforms is a viable alternative.

The Rayleigh cumulative distribution and its density function are given by:

Fθθθ(x) = 1 − exp(−x2/2ϑ2) ,
(4.117)

fθθθ(x) =
x

ϑ2
exp(−x2/2ϑ2) , (4.118)

x ≥ 0 and ϑ2 > 0. It is a unimodal scale family with E[X]=ϑ
,

π/2, V[X]=ϑ2(4 − π)/2,
Med[X]=ϑ

√
2 log 2 and the mode located at x = ϑ.

In fact, the corresponding LT is expressible as

Lθθθ(s) = Lϑ(s) =

� ∞

0
e−sxdF (x) = 1 − sϑ

-
π

2
exp

�
ϑ2s2

2

$
erfc

�
ϑs

√
2

2

$
, (4.119)

s ∈ R, where erfc(·) is the complementary error function; see Meintanis and Iliopoulos
(2003b). But this representation requires a fully numerical approach if we would like to
estimate the parameter directly from it.

On the other hand, by the method described in sec. 3.2, we can show that

L′′
θθθ(s) − ϑ2sL′

θθθ(s) − 2ϑ2Lθθθ(s) = 0 , (4.120)

and
L′′′

θθθ (s) − ϑ2sL′′
θθθ(s) − 3ϑ2L′

θθθ(s) = 0 . (4.121)

The next sections analyze two estimators of θθθ = ϑ2 based on (4.120) and two based
on (4.121). The parameter-uniqueness within the model, ensuring consistency of the
estimators, has already been verified in sec. 3.4.2.

In this example, we do not consider the corresponding CF-based estimators. Instead,
we carry out comparisons with a greater number of traditional robust and non-robust
estimators.

4.5.3.1 Considered estimators

The empirical versions of (4.120) and (4.121) yield the following transform-matching
estimators: �ϑ2

n

LT 2,1,0
(s) =

�L′′
n(s)

2�Ln(s) + s�L′
n(s)

, (4.122)
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and �ϑ2
n

LT 3,2,1
(s) =

�L′′′
n (s)

3�L′
n(s) + s�L′′

n(s)
. (4.123)

In turn, the corresponding L2 estimators are given by

�ϑ2
n

LT 2,1,0
= argmin

ϑ2 > 0

� ∞

0

��L′′
n(s) − ϑ2s�L′

n(s) − 2ϑ2 �Ln(s)
�2

sγe−asds , (4.124)

�ϑ2
n

LT 3,2,1
= argmin

ϑ2 > 0

� ∞

0

��L′′′
n (s) − ϑ2s�L′′

n(s) − 3ϑ2 �L′
n(s)

�2
sγe−asds . (4.125)

and, for any γ = 0, 1, 2, ..., they admit the explicit expressions

�ϑ2
n

LT 2,1,0
=

n1
j, k=1

2(X3
j +X3

k) + 2a(X2
j +X2

k) + (1 − γ)XjXk(Xj +Xk)

(Xj +Xk+a)γ+2

2
n1

j, k=1

(γ2−γ+6)XjXk + 2(1−γ)(X2
j +X2

k) + 2a(3−γ)(Xj +Xk) + 4a

(Xj +Xk+a)γ+3

,

�ϑ2
n

LT 3,2,1
=

n1
j, k=1

3(X2
j +X2

k)(Xj +Xk+a) − (γ+1)XjXk(Xj +Xk)

(Xj +Xk+a)γ+2/XjXk

2
n1

j, k=1

(γ2−3γ+14)XjXk + 3(2−γ)(X2
j +X2

k) + 3a(5−γ)(Xj +Xk) + 9a2

(Xj +Xk+a)γ+3/XjXk

.

Derivations of the two expressions are tedious but similar to those for the exponential
distribution, sketched in Appendix B.4.

4.5.3.2 Asymptotic normality

Asymptotic normality of the estimators (4.122) and (4.123) follows from the multivariate
Delta Method. It is addressed in the following theorem:

Theorem 15. The transform-matching estimators (4.122) and (4.123) are strongly con-
sistent and asymptotically normal, whereby

√
n

��ϑ2
n

LT 2,1,0
(s) − ϑ2

!
d−→ N

�
0, σ2 LT 2,1,0(s)

!
, (4.126)

√
n

��ϑ2
n

LT 3,2,1
(s) − ϑ2

!
d−→ N

�
0, σ2 LT 3,2,1(s)

!
, (4.127)

where

σ2 LT 2,1,0(s) = ϑ4
�

L
(4)
ϑ (2s)−[L′′(s)]2

[L′′
ϑ(s)]2

− 4L′′
ϑ(2s)+2sL′′′

ϑ (2s) − 2L′′
ϑ(s)[2Lϑ(s)+sL′

ϑ(s)]

L′′
ϑ(s)[2Lϑ(s) + sL′

ϑ(s)]

+
4Lϑ(2s)+4sL′

ϑ(2s)+s2L′′
ϑ(2s) − [2Lϑ(s)+sL′

ϑ(s)]2

[2Lϑ(s) + sL′
ϑ(s)]2

�
,
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and

σ2 LT 3,2,1(s) = ϑ4
�

L
(6)
ϑ (2s)−[L′′′

ϑ (s)]2

[L′′′
ϑ (s)]2

+
9L′′

ϑ(2s)+6sL′′′
ϑ (2s)+s2L

(4)
ϑ (2s) − [3L′

ϑ(s)+sL′′
ϑ(s)]2

[3L′
ϑ(s) + sL′′

ϑ(s)]2

− 6L
(4)
ϑ (2s)+2sL

(5)
ϑ (2s) − 2L′′′

ϑ (s)[3L′
ϑ(s)+sL′′

ϑ(s)]

L′′′
ϑ (s)[3L′

ϑ(s) + sL′′
ϑ(s)]

�
.

The asymptotic variances require derivatives of LT up to the sixth order. Since Lϑ(s) is
numerically available from (4.119), we can calculate the required derivatives recursively.
By routine calculations, we obtain

L′
ϑ(s) = ϑ2s − (1+ϑ2s2)Kϑ(s),

L′′
ϑ(s) = ϑ2(2+s2ϑ2) − ϑ2s(3+ϑ2s2)K0(s),

L′′′
ϑ (s) = ϑ4s(5+s2ϑ2) − ϑ2(3+6ϑ2s2+ϑ4s4)Kϑ(s),

L
(4)
ϑ (s) = ϑ2(8ϑ2+9ϑ4s2+ϑ6s4) − ϑ2(15ϑ2s+10ϑ4s3+ϑ6s5)Kϑ(s),

L
(5)
ϑ (s) = ϑ6s(14ϑ2s2+ϑ4s4+33) − ϑ4(15+45ϑ2s2+15ϑ4s4+ϑ6s6)Kϑ(s),

L
(6)
ϑ (s) = ϑ6(87ϑ2s2+20ϑ4s4+ϑ6s6+48) − ϑ6s(105+105ϑ2s2+21ϑ4s4+ϑ6s6)Kϑ(s),

where Kϑ(s) = (1 − Lϑ(s))/sϑ.

Asymptotic normality of the L2 estimators (4.124) and (4.125) is asserted by Theorem
2 with p = 1. However, the resulting asymptotic variances are overly complicated. It is
easier to compute them numerically from the associated IFs derived below.

4.5.3.3 Influence functions

The first theorem concerning the abovementioned IFs is as follows:

Theorem 16. The influence functions of the functionals corresponding to the transform-
matching estimators (4.122) and (4.123) are given by:

IF
�
x; ϑ2 LT 2,1,0(s)

�
=

−L′′
ϑ(s)[(2 − sx)e−sx−2L(s)−sL′(s)][2Lϑ(s)+sL′

ϑ(s)]+x2e−sx−L′′(s)

[2Lϑ(s)+sL′
ϑ(s)]2

,

(4.128)

IF
�
x; ϑ2 LT 3,2,1(s)

�
=

L′′′
ϑ (s)[3L′

ϑ(s)+sL′′
ϑ(s)][(3 − sx)xe−sx+3L′(s)+sL′′(s)]−x3e−sx−L′′′(s)

[3L′
ϑ(s)+sL′′

ϑ(s)]2
.

(4.129)

Proof. These IFs are obtained from the multivariate chain rule (2.48) with p = 3.
There, for T1(F ), T2(F ) and T3(F ) we have to put L(s), L′(s) and L′′(s) in the case of
the estimator (4.122), or L′(s), L′′(s) and L′′′(s) in the case of the estimator (4.123).

The second theorem, concerning the IFs of the L2 counterparts, is the following:
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Theorem 17. The influence functions of the functionals corresponding to the L2 esti-
mators (4.124) and (4.125) are given by:

IF
�
x; ϑ2 LT 2,1,0

�
=

� ∞

0

� �
2ϑ2L0(s)−L′′

ϑ(s)
�
(2−sx)e−sx

− L0(s)
�
x2e−sx−2L′′

ϑ(s)+2ϑ2L0(s)
� �

sγe−asds

� ∞

0
L2

0(s)sγe−asds
, (4.130)

where L0(s) = 2Lϑ(s)+sL′
ϑ(s), and by

IF
�
x; ϑ2 LT 2,1,0

�
=

� ∞

0

� �
2ϑ2L0(s)−L′′′

ϑ (s)
�
(sx−3)xe−sx

+ L0(s)
�
x3e−sx+2L′′′

ϑ (s)−2ϑ2L0(s)
� �

sγe−asds

� ∞

0
L2

0(s)sγe−asds
, (4.131)

where L0(s) = 3L′
ϑ(s)+sL′′

ϑ(s).

Proof. We apply Theorem 5. For the estimator (4.124), we have to put r = 2, m = 1,
ℓ = 0 with h(θθθ, s) = −1/2ϑ2, g(θθθ, s) = s/2, while for the estimator (4.125) r = 3, m = 2,
ℓ = 1 with h(θθθ, s) = −1/3ϑ2, g(θθθ, s) = s/3. Routine calculations and rearrangements
lead then to (4.130) and (4.131).

The IFs from Theorems 16 and 17 are visualized in Figs. 4.14 and 4.15 for ϑ = 1. Their
shapes resemble those of the LT-based estimators of the parameter λ in the exponential
distribution. Namely, smaller s in (4.122) and (4.123), as well as larger γ but smaller a in
(4.124) and (4.125), cause all the IFs to drop more rapidly to zero as x → ∞. Conversely,
these settings lead to less favorable IFs when x → 0 for the estimators involving the zero-
order derivative, i.e., (4.122) and (4.124). The estimators based on third-order equation
that do not employ the zero-order derivative, namely (4.123) and (4.125), are the most
attractive in terms of infinitesimal robustness: their IFs drop to zero as x → 0 for any s,
or γ and a.

4.5.3.4 Alternative estimators

The four new estimators will be compared with the following distribution-based estima-
tors of ϑ2:

• the ML estimator

�ϑ2
n

ML
=

1

2n

n1
j=1

X2
j ; (4.132)
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• the method-of-moments (MM) estimator

�ϑ2
n

MM
=

2

π

�
1

n

n1
j=1

Xj

$2

; (4.133)

• the median-based estimator

�ϑ2
n

med
=

�med
2

n

2 log 2
; (4.134)

• the minimum Cramér-von Mises distance estimator (CM)

�ϑ2
n

CM
= argmin

ϑ2>0

� ∞

0

��Fn(x)−Fϑ(x)
!2

dFϑ(x) ; (4.135)

• the L2-type minimum distance estimator based on the density

�ϑ2
n

Sc
= argmin

ϑ2>0

� � ∞

0
[fϑ(x)]2dx − 2

n

n1
j=1

fϑ(Xj)

�
, (4.136)

introduced by Scott (2001). It is a special case of the so-called minimum density
power divergences estimator; see Basu et al. (2011).

All the five alternative estimators are asymptotically normal. In particular,

√
n (�ϑ2

n

ML − ϑ2)
d−→ N

�
0, ϑ4

!
, (4.137)

√
n (�ϑ2

n

MM − ϑ2)
d−→ N

�
0, 4ϑ4(4 − π)/π

!
, (4.138)

√
n (�ϑ2

n

Med − ϑ2)
d−→ N

�
0, ϑ4/ log2 2

!
, (4.139)

√
n (�ϑ2

n

CM − ϑ2)
d−→ N

�
0, 657ϑ4/500

!
, (4.140)

√
n (�ϑ2

n

Sc − ϑ2)
d−→ N

�
0,

16ϑ4

49

� 512

27π
− 1

!!
. (4.141)

The asymptotic variances of the ML and MM estimators are derived using the Delta
Method, see Casella and Berger (2002). The asymptotic variance of the median-based
estimator is obtained by leveraging the asymptotic variance of the empirical q-quantile,
namely Vas[X(nq)] = q(1 − q)/f(F −1(q)); see Staudte and Sheather (1990). The asymp-
totic normality of the CM and the Scott’s estimators was established by Duchesne et al.
(1997) and Scott (2001), respectively. The variance in (4.140) was obtained using eq. 2.28
of Duchesne et al. (1997), while that in (4.141) from Proposition 3.1 of Scott (2001).
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Taking ratios of the asymptotic variances (4.138)-(4.141) to that of ML in (4.137), we
obtain:

ARE
��ϑ2

n

MM
, �ϑ2

n

ML�
=

π/4

(4 − π)
≈ 91.5% , (4.142)

ARE
��ϑ2

n

Med
, �ϑ2

n

ML�
= log2(2) ≈ 48.0% , (4.143)

ARE
��ϑ2

n

CM
, �ϑ2

n

ML�
=

500

657
≈ 76.1% , (4.144)

ARE
��ϑ2

n

Sc
, �ϑ2

n

ML�
=

1323π

16(512 − 27π)
≈ 60.8% . (4.145)

Note that these AREs are uniform over the parameter space.

Regarding robustness, we obtain the following IFs of the alternative estimators:

IF
�
x; ϑ2 ML

�
= x2/2 − ϑ2 , (4.146)

IF
�
x; ϑ2 MM

�
= 2xϑ

*
2/π − 2ϑ2 , (4.147)

IF
�
x; ϑ2 Med

�
=

��������������

− ϑ2

log 2
, x < ϑ

,
2 log 2 ,

0, x = ϑ
√

2 log 2 ,

ϑ2

log 2
, x > ϑ

,
2 log 2 ,

(4.148)

IF
�
x; ϑ2 CM

�
=

15ϑ2

8
− 27ϑ2

8

�
1 +

x2

ϑ2

$
exp

�−x2

ϑ2

$
, (4.149)

IF
�
x, ϑ2 Sc

�
=

64

7

�
ϑx√

π

�
x2

2ϑ2
− 1

$
exp

�−x2

ϑ2

$
+

ϑ2

16

�
. (4.150)

The IFs (4.146) and (4.147) are straightforward to obtain, and for (4.148), refer to eq.
3.2.3 of Staudte and Sheather (1990). The IF of the CM estimator was computed using
eq. 2.16 in Duchesne et al. (1997), whereas that of the Scott’s estimator was obtained by
eq. 9.22 in Basu et al. (2011). All the IFs are visualized on the left panel of Fig. 4.14. It
is evident that the median-based, CM, and the Scott’s estimators are robust against large
outliers, whereas ML and MM, based on sample moments, completely lack robustness.
Note that the robust alternatives have significantly lower ARE w.r.t. ML than MM.

4.5.3.5 Asymptotic relative efficiency

Given the asymptotic variance of the ML estimator, equal to ϑ4/n, we also compute
ARE of our proposed estimators. Firstly, for the transform-matching estimators, we
obtain

ARE
��ϑ2

LT 2,1,0

n (s), �ϑ2
ML

n

�
=

ϑ4

σ2 LT 2,1,0(s)
, ARE

��ϑ2
LT 3,2,1

n (s), �ϑ2
ML

n

�
=

ϑ4

σ2 LT 3,2,1(s)
,
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Figure 4.14: Estimation of ϑ2 in the Rayleigh(ϑ) model. Left panel: IFs of the ML, MM,
median-based, Cramér-von Mises and Scott estimators given, respectively, by (4.146)-
(4.150). Middle and right panels: IFs (4.128) and (4.129) of the transform-matching
estimators from Theorem 16 for s = 0.5 and 1.5; ϑ = 1 in all the cases.

Figure 4.15: Estimation of ϑ2 in the Rayleigh(ϑ) model: IFs (4.130) and (4.131) of the
L2 estimators from Theorem 17 for combinations of a = 0.3, 1.5 and γ = 0, 3, 6; ϑ = 1
in all the cases.
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where σ2 LT 2,1,0(s) and σ2 LT 3,2,1(s) are given by (4.128) and (4.128), respectively.

Secondly, for the L2 estimators, we have

ARE
��ϑ2

LT 2,1,0

n , �ϑ2
ML

n

�
=

ϑ4� ∞

0
IF

�
x; ϑ2 LT 2,1,0

�2
dFϑ(x)

, (4.151)

ARE
��ϑ2

LT 3,2,1

n , �ϑ2
ML

n

�
=

ϑ4� ∞

0
IF

�
x; ϑ2 LT 3,2,1

�2
dFϑ(x)

, (4.152)

where the integrated IFs are given in Theorem 17. These AREs are displayed in Figs. 4.16-
4.18.

The ARE behaves similarly to that of the LT-based estimators in the exponential model,
as illustrated in Figs. 4.7 and 4.8. (Note that the shapes of the ARE surfaces differ
due to the Rayleigh scale being ϑ2 while the exponential scale is 1/λ). Specifically,
AREs decrease to zero as s → ∞ or as a → 0 while integer γ increases. Also, for the
estimators that do not employ zero-order derivatives, the AREs reach a maximum for
some intermediate value of s or a within the interval (0, ∞), considering a fixed ϑ2.

Figure 4.16: Estimation of ϑ2 in the Rayleigh(ϑ) model: AREs of the transform-
matching estimators (4.122) and (4.123) w.r.t. the ML estimator in function of ϑ2 and
s.
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Figure 4.17: Estimation of ϑ2 in the Rayleigh(ϑ) model: AREs of the L2 estimator
(4.124) w.r.t. to the ML estimator in function of ϑ2 and a, for γ = 0, 3, 6.

Figure 4.18: Estimation of ϑ2 in the Rayleigh(ϑ) model: AREs of the L2 estimator
(4.125) w.r.t. to the ML estimator in function of ϑ2 and a, for γ = 0, 3, 6.

4.5.3.6 Robustness-efficiency trade-offs

Analyzing the IFs and lines of constancy of ARE observed in Figs. 4.16-4.18 (determined
by linear or inversely proportional relations on the s-ϑ2- and a-ϑ2-planes), we recommend
the following data-driven choice of s or a.

For the transform-matching estimators, we recommend putting

s = k/Xn , or s = k/ �medn ,

where k = 0.75 for �ϑ2
n
LT 2,1,0

(s) and k = 1.5 for �ϑ2
n
LT 3,2,1

(s).

As for the L2 estimators, we find that using �ϑ2
n
LT 2,1,0

with γ = 3 and �ϑ2
n
LT 3,2,1

(s) with
γ = 6 provides robust yet relatively precise estimates over the entire parameter range.
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Specifically, in this setting, we recommend selecting

a = kXn , or a = k �medn,

with k = 1 in both cases.

The median-driven selection of s or a yields slightly more robust estimates then the
mean-driven.

4.5.3.7 Finite-sample performance: simulation analysis

We now simulate the four LT-based estimators in the median-driven variants and com-
pare them with the five competitors described in sec. 4.5.3.4. In Fig. 4.19, we present
box plots of estimates drawn from 5000 samples of size n = 50, for ϑ2 = 0.1 and 10.
The box plots for the Scott’s estimator for ϑ2 = 0.1 is missing due to numerical prob-
lems in optimizing of its loss function for such a small parameter value. All the es-
timators are computed for: 1) pure samples; 2) samples contaminated with one large
outlier X0 = Xn + 2max(X1, ..., Xn); 3) samples contaminated with two small outliers
X0-1 = Xn/10 and X0-2 = Xn/100.

Let us examine the results in pure samples first. The data-driven selection of s or a
ensures that our estimators are invariant to changes in scale. The ratios of the sample
variance of the ML estimator to the sample variances of the MM, median-based, CM and
Scott’s estimator were 0.91, 0.48, 0.74 and 0.59, respectively, indicating that the ARE
results (4.142)-(4.145) hold nearly exactly in this finite-sample setting. The correspond-

ing ratios for �ϑ2
n
LT 2,1,0

(s), �ϑ2
n
LT 3,2,1

(s), �ϑ2
n
LT 2,1,0

, and �ϑ2
n
LT 3,2,1

were 0.7, 0.68, 0.72 and
0.64, respectively. Thus, the loss of precision of the proposed estimators in pure samples
(traded for robustness) is average as compared to the standard robust alternatives.

Considering the estimation with outliers, the robustness of �ϑ2
n
LT 2,1,0

(s) and �ϑ2
n
LT 2,1,0

against small outliers is the weakest among all the considered estimators (as could be
anticipated from shape of their IFs in Figs. 4.14 and 4.15 as x → 0). On the other hand,

the estimators �ϑ2
n
LT 3,2,1

(s) and �ϑ2
n
LT 3,2,1

clearly outperform all the competitors in terms

of robustness to the two types of outliers. Between these two estimators, �ϑ2
n
LT 3,2,1

(s)
has slightly smaller bias than its L2 counterpart. In view of the quite simple expression

and the potential numerical problems of the Scott’s estimator, �ϑ2
n
LT 3,2,1

(s) emerges as
the winner of the comparison.
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Figure 4.19: Estimation of ϑ2 in the Rayleigh(ϑ) model from 5000 simulated samples
of size n = 50, for ϑ2 = 0.1 (upper panel) and ϑ2 = 10 (lower panel). Comparison of
the four LT-based and five standard estimators. Left box plot: pure sample; middle box
plot: sample with one large outlier; right box plot: sample with two small outliers.
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4.5.4 Gamma distribution

The three distributions estimated so far were either a location-scale or a scale family.
The model considered in this section, the gamma distribution, is a shape-scale family.
We estimate its both parameters deriving L2 estimators based on the first- and second-
order differential equations of the associated LT. Due to space limitation, we do not go
into details of the efficiency-robustness analysis. Instead, we focus on performance of
the estimators under model misspecification.

The density of the distribution is

fα,β(x) =
βα

Γ(α)
xα−1 exp(−βx) , x ≥ 0, (4.153)

where α, β > 0 are the shape and rate parameters, respectively. The mean and variance
are given by E[X] = α/β and V[X] = α/β2.

The ML estimation (1.1) is problematic in this case since the likelihood equations����
1

n

n1
j=1

log Xj = − log �β ML
n + ψ(�α ML

n ),

Xn = �α ML
n / �β ML

n ,

(4.154)

involve the digamma function and require a numerical solution. Therefore, one often
prefers the explicit, though less efficient, MM estimators,��α MM

n , �β MM
n

!⊤
=

� X
2
n

S2
n

,
S2

n

Xn

!
. (4.155)

A large body of literature is devoted to the properties and computational aspects of
these ML and MM estimators and their modifications; see Bowman and Shenton (1988),
sec. 17.7 of Johnson et al. (1994), or Hwang and Huang (2002) and reference therein.
Useful approximate formulas for the ML estimators are used by Henze et al. (2012) and
Ye and Chen (2017). Robust method for fitting the gamma model has been studied, for
example, by Clarke et al. (2012). However, their estimator (a B-optimal M-estimator)
is not explicit and also necessitates a numerical algorithm.

Explicit LT-based estimators can be obtained from

L(s) =

�
β

β + s

$α

, s > −β , (4.156)

which satisfies the two differential equations:

(β + s)L′(s) + αL(s) = 0, (4.157)

(β + s)L′′(s) + (α + 1)L′(s) = 0 . (4.158)

Based on the considerations in sec. 3.4.2, both equations are solved by the gamma LT
with a unique setting of α and β, and therefore, can provide consistent estimators.
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4. Estimators based on differential equations

4.5.4.1 Considered estimators

We consider only the integrated L2 estimators, based on (4.157) and (4.158), namely

��α LT 1,0
n , �β LT 1,0

n

!⊤
= argmin

α, β > 0

� ∞

0

�
(β + s)�L′

n(s) + α�Ln(s)
�2

sγe−asds , (4.159)

��α LT 2,1
n , �β LT 2,1

n

!⊤
= argmin

α, β > 0

� ∞

0

�
(β + s)�L′′

n(s) + (α + 1)�L′
n(s)

�2
sγe−asds , (4.160)

a > 0, γ = 0, 1, ... . They admit the following closed-form expressions:

�α LT 1,0
n =

C2
nDn − 2AnCnEn

2An(4AnBn − C2
n)

+
Dn

2An
, (4.161)

�β LT 1,0
n =

CnDn − 2AnEn

4AnBn − C2
n

, (4.162)

where

An =
n1

j,k=1

γ!

(Xj +Xk+a)γ+1
, Bn =

n1
j,k=1

γ!XjXk

(Xj +Xk +a)γ+1
,

Cn =
n1

j,k=1

γ!(Xj +Xk)

(Xj +Xk+a))γ+1
, Dn =

n1
j,k=1

(γ+1)!(Xj +Xk)

(Xj +Xk +a)γ+2
,

En =
n1

j,k=1

2(γ+1)!XjXk

(Xj +Xk+a)γ+2
,

and

�α LT 2,1
n =

2AnCnDn + BnC2
n

2An(C2
n − 4AnEn)

− Bn

2An
, (4.163)

�β LT 2,1
n =

2AnDn + BnCn

C2
n − 4AnEn

, (4.164)

where

An =
n1

j,k=1

γ!

(Xj +Xk +a)γ+1
, Bn =

n1
j,k=1

γ!XjXk[(1−γ)(Xj +Xk)+2a]

(Xj +Xk +a)γ+2
,

Cn =
n1

j,k=1

γ!XjXk(Xj +Xk)

(Xj +Xk+a)γ+1
, Dn =

n1
j,k=1

γ!XjXk[2γXjXk − X2
j −X2

k −a(Xj +Xk)]

(Xj +Xk+a)γ+2
,

En =
n1

j,k=1

γ!X2
j X2

k

(Xj +Xk +a)γ+1
.

These expressions are obtained as unique minimizers of certain quadratic target functions.
The derivations are tedious but routine.
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4.5. Estimation in specific distributions

4.5.4.2 Finite-sample simulations

Joint asymptotic normality and joint IFs of (4.159) and (4.160) follows from Theorems 1
and 4. The analysis of ARE and IFs reveals that a larger value of a makes the estimators
more efficient, while a larger value of γ increases their robustness against tail outliers.
Similar to the previous models, a data-driven choice of a is needed to achieve robustness-
efficiency trade-off and invariance to the scale of data. We found that setting a = α/β
works very well for this purpose. Since α/β = E[X], we estimate a using the sample
mean directly, that is, we set a = Xn.

Fig. 4.20 presents simulations of (4.159) with γ = 2 and (4.160) with γ = 4, compared
to the ML and MM estimators. We consider samples of size n = 50 in three variants: 1)
pure samples, 2) samples contaminated by one large outlier X0 = 2max(X1,...,Xn), and,
3) sample contaminated with one small outlier X0 = 0.01Xn. Three settings of (α, β)
were examined: (3, 0.1), (3, 10) and (0.3, 0.1).

We note that the estimator (4.160), based on the equation with first and second derivative
of LT (but not including the LT itself), exhibits greater robustness against small outliers
compared to (4.159). Therefore, our earlier observation concerning the robustness of
estimators within scale families (exponential, Rayleigh) persists within the shape-scale
gamma family.

For α > 1, the estimator (4.160) performs optimally when aiming for low variance and
robustness simultaneously, irrespective of the presence and type of outliers. The scenario
differs when α < 1. While all the LT-based estimators are little biased, three of them,�β LT 1,0

n , �α LT 2,1
n and �β LT 2,1

n , display relatively large variances. Moreover, as indicated by
the box plots, these estimates may even become negative, yielding meaningless results.
To quantify this effect, the top part of Table 4.4 shows the percentages of negative
estimates for sample sizes n = 30, 50, 70, 100. It is observed that the fraction of negative
realizations is approximately 10 percent in very small samples and decreases as the
sample size grows.

Based on this simulation, we recommend �α LT 2,1
n and �β LT 2,1

n when density is known to
be modal (α > 1) prior to estimation. If the shape is unknown, then using �α LT 1,0

n alone
still performs quite well. Notably, for α < 1, it is more precise than the MM estimator in
pure samples and more robust against large outliers. In addition, it competes favorably
with the ML estimator due to its closed-form expression.
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4. Estimators based on differential equations

Figure 4.20: Simultaneous estimation of α and β in the gamma(α, β) model from
5000 simulated samples of size n = 50 for three combinations of the parameters. The
L2 LT-based estimators are compared with the ML and MM estimators. Left box plot:
pure sample; middle box plot: sample with one large outlier; right box plot: sample with
one small outlier.
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4.5. Estimation in specific distributions

4.5.4.3 Estimation under misspecification

The assumption regarding the gamma model may be incorrect if the sample actually
originates from another one-sided distribution with a similar shape. Common examples
of such distributions include the log-normal, Weibull, Rayleigh, and inverse Gaussian.
Assessing the impact of misspecification on estimators in skewed distributions differs
from symmetric location-scale models, where the gain in the variance of the estima-
tors can be computed analytically or simulated. In skewed models, the parameters do
not have the same ’meaning’ across different distributions. Therefore, we quantify the
misspecification effect here using three non-parametric measures:

1. Mean integrated squared error (MISE)

MISE = E

� ∞

0

�
ftrue(x) − f(x|�αn, �βn)

�2
dx; (4.165)

2. Mean integrated absolute error (MIAE)

MIAE = E

� ∞

0

333ftrue(x) − f(x|�αn, �βn)
333 dx; (4.166)

3. Mean Kullback-Leibler divergence (MKLD)

MKLD = E

� ∞

0
ftrue(x) log

�
ftrue(x)

f(x|�αn, �βn)

$
dx. (4.167)

In these definitions, ftrue(x) denotes the true density that generates data, whereas
f(x|�αn, �βn) is the wrongly assumed gamma density, estimated using some estimators
of α and β. In addition, we explore the impact of misspecification on the parametric
estimation of median and 0.9-quantile of the true distribution, using the mean squared
error (MSE)

MSE[xq] = E

�
F −1

true(q) − F −1(q|�αn, �βn)
�2

(4.168)

= F −1
true(q) − E

�
F −1(q|�αn, �βn)

�
+ V

�
F −1(q|�αn, �βn)

�
, q = 0.5, 0.9.

Unfortunately, none of the four aforementioned measures is analytically computable,
even in asymptotically as n → ∞. Therefore, we resort to simulations of the estimators
and numerical computations of the measures. In these simulations, we employed 5000
samples drawn from the following true distributions:
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4. Estimators based on differential equations

1. Rayleigh(ϑ2) with ϑ2 = 0.5 and 3,

2. log-normal(µ,σ) with σ = 0.5 and 1.5 (µ = 0),

3. Weibull(c, λ) with c = 0.5 and 2 (λ = 0),

4. inverse Gaussian(µ, λ) with µ = 1, λ = 3 and µ = 3, λ = 1.

Considered were small and moderate sample sizes, n = 30, 50, 70 and 100 (for which
misspecification is more likely to happen than for large samples). We found that our
LT-based estimators may occasionally have negative realizations; this happened for the
log-normal(0,1.5), Weibull(0.5,1) and inverse Gaussian(3,1) cases for smaller samples.
Since negative estimates of α and β hinder the computation of the misspecification mea-
sures, the samples which produced negative estimates were excluded from the ongoing
simulation. In particular, every sample for which at least one of the considered estima-
tors was negative was replaced with a new one, and the estimates were computed afresh.
The exact percentages of negative realizations (and replaced samples) are reported in
Table 4.4.

The results of simulation conducted in this way are presented in Tables 4.2 and 4.3. Bold
font is used to indicate the best fit to the particular true model (log-normal, Weibull,
Rayleigh and inverse Gaussian) in terms of each measure. An analysis of the tables
suggest the following. When the true distribution is modal (Rayleigh, inverse Gaussian
and Weibull with c = 2), none of the estimators is superior. The proposed LT-based
estimators tend to provide a better fit despite misspecification, as indicated by the
smallest values of MISE, MIAE, and MSE of the median. On the other hand, the ML
estimator performs best regarding MKLD. This aligns with expectations, as the ML
estimators minimize Kullback-Leibler divergences. In turn, the ML and MM estimators
generally yield better estimations of the 0.9-quantile, although there are exceptions (see
the log-normal case). The LT-based estimators certainly fail for the long-tail variant of
the Weibull distribution with c = 0.5, that is when f(0+) = ∞. Note that the gamma
density can adapt to this shape with α < 1, but, as we know from Fig. 4.20, the LT-
based estimators have quite large variances in this parameter setting. This explains large
MISE and MSE of 0.9-quantile relative to ML and MM in this particular scenario.

The presented study is not exhaustive, but its goal was to demonstrate that the proposed
estimators generally do not fail under misspecification. On the contrary, we can conclude
that they are competitive and exhibit robustness in this context as well.
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.

Table 4.2: Loss due to misspecification under assumption of the gamma model.

True model: Rayleigh(ϑ2) with ϑ2 = 0.5 (left) and ϑ2 = 3 (right)

measure n ML MM (�α LT 1,0
n , �β LT 1,0

n ) (�α LT 2,1
n , �β LT 2,1

n )

MISE 30 0.031 0.013 0.033 0.014 0.031 0.012 0.029 0.011
50 0.021 0.009 0.024 0.010 0.020 0.009 0.019 0.008
70 0.017 0.007 0.020 0.008 0.016 0.007 0.015 0.006
100 0.015 0.005 0.017 0.007 0.013 0.005 0.012 0.005

MIAE 30 0.202 0.202 0.205 0.205 0.217 0.217 0.203 0.203
50 0.171 0.171 0.175 0.175 0.182 0.182 0.167 0.167
70 0.156 0.156 0.160 0.160 0.164 0.164 0.148 0.148
100 0.146 0.145 0.151 0.151 0.152 0.152 0.137 0.137

MKLD 30 0.056 0.058 0.067 0.067 0.066 0.066 0.062 0.062
50 0.039 0.039 0.048 0.048 0.046 0.046 0.043 0.043
70 0.031 0.032 0.040 0.040 0.038 0.038 0.035 0.035
100 0.027 0.027 0.036 0.036 0.033 0.033 0.030 0.030

MSE[x0.5] 30 0.008 0.047 0.008 0.050 0.008 0.049 0.008 0.049
50 0.005 0.029 0.006 0.033 0.005 0.029 0.005 0.029
70 0.004 0.021 0.004 0.026 0.003 0.020 0.003 0.020
100 0.003 0.017 0.004 0.021 0.003 0.116 0.002 0.115

MSE[x0.9] 30 0.020 0.124 0.024 0.145 0.074 0.442 0.043 0.260
50 0.012 0.072 0.015 0.088 0.052 0.311 0.028 0.170
70 0.008 0.050 0.010 0.064 0.042 0.252 0.023 0.130
100 0.006 0.037 0.008 0.050 0.035 0.211 0.018 0.107

True model: log-normal(µ,σ) with σ = 0.5 (left) and σ = 1.5 (right), for µ = 0

measure n ML MM (�α LT 1,0
n , �β LT 1,0

n ) (�α LT 2,1
n , �β LT 2,1

n )

MISE 30 0.027 0.049 0.035 0.130 0.027 0.039 0.026 0.154
50 0.019 0.045 0.026 0.140 0.017 0.030 0.017 0.144
70 0.016 0.053 0.023 0.180 0.014 0.032 0.014 0.175
100 0.013 0.053 0.020 0.194 0.012 0.030 0.011 0.178

MIAE 30 0.208 0.353 0.230 0.491 0.205 0.296 0.202 0.507
50 0.177 0.320 0.200 0.500 0.174 0.248 0.170 0.435
70 0.163 0.376 0.186 0.628 0.159 0.280 0.153 0.494
100 0.152 0.376 0.174 0.666 0.146 0.270 0.140 0.476

MKLD 30 0.064 0.091 0.073 0.247 0.075 0.046 0.068 0.026
50 0.045 0.084 0.054 0.284 0.055 0.021 0.050 0.206
70 0.037 0.101 0.046 0.378 0.046 0.015 0.041 0.218
100 0.032 0.101 0.040 0.419 0.040 0.007 0.035 0.198

MSE[x0.5] 30 0.010 0.318 0.011 0.518 0.010 0.175 0.010 0.391
50 0.006 0.387 0.008 0.504 0.006 0.204 0.006 0.410
70 0.005 0.310 0.006 0.379 0.005 0.043 0.004 0.290
100 0.004 0.344 0.005 0.348 0.003 0.029 0.003 0.276

MSE[x0.9] 30 0.071 17.19 0.053 17.23 0.056 11.30 0.053 23.81
50 0.046 16.75 0.034 17.92 0.040 13.58 0.036 16.58
70 0.034 9.145 0.024 10.34 0.032 7.409 0.027 8.028
100 0.024 7.467 0.017 7.993 0.026 7.196 0.021 7.407
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.

Table 4.3: Loss due to misspecification under assumption of the gamma model (2).

True model: Weibull(c, λ) with c = 0.5 (left) and c = 2 (right) for λ = 1

measure n ML MM (�α LT 1,0
n , �β LT 1,0

n ) (�α LT 2,1
n , �β LT 2,1

n )

MISE 30 0.245 0.031 1.407 0.033 0.378 0.031 2.354 0.029
50 0.187 0.021 1.677 0.024 0.296 0.021 2.612 0.019
70 0.166 0.017 1.858 0.020 0.266 0.016 2.691 0.015
100 0.148 0.014 2.037 0.017 0.235 0.013 2.738 0.012

MIAE 30 0.216 0.201 0.271 0.205 0.244 0.217 0.374 0.204
50 0.190 0.171 0.253 0.175 0.197 0.182 0.343 0.167
70 0.180 0.156 0.251 0.160 0.176 0.164 0.319 0.150
100 0.173 0.146 0.253 0.150 0.160 0.152 0.298 0.137

MKLD 30 0.046 0.057 0.114 0.067 0.091 0.065 0.308 0.062
50 0.031 0.039 0.116 0.048 0.054 0.046 0.268 0.043
70 0.027 0.032 0.124 0.040 0.039 0.038 0.240 0.035
100 0.024 0.027 0.130 0.036 0.029 0.033 0.204 0.030

MSE[x0.5] 30 0.108 0.008 0.110 0.008 0.712 0.008 0.370 0.008
50 0.072 0.005 0.071 0.005 0.050 0.005 0.199 0.005
70 0.061 0.004 0.056 0.004 0.028 0.003 0.108 0.003
100 0.058 0.003 0.049 0.004 0.019 0.002 0.097 0.002

MSE[x0.9] 30 5.581 0.020 5.540 0.024 195.8 0.074 206.5 0.043
50 3.412 0.012 3.377 0.015 8.084 0.052 116.4 0.028
70 2.588 0.008 2.505 0.011 16.60 0.042 12.60 0.022
100 2.021 0.006 1.879 0.008 3.376 0.035 6.555 0.017

True model: inverse Gaussian(µ, λ) with µ = 1, λ = 3 (left) and µ = 3, λ = 1 (right)

measure n ML MM (�α LT 1,0
n , �β LT 1,0

n ) (�α LT 2,1
n , �β LT 2,1

n )

MISE 30 0.034 0.088 0.043 1.341 0.034 0.055 0.033 1.745
50 0.026 0.088 0.034 1.567 0.024 0.049 0.023 1.397
70 0.022 0.088 0.030 1.682 0.020 0.046 0.019 1.246
100 0.020 0.087 0.027 1.798 0.018 0.044 0.016 0.982

MIAE 30 0.222 0.440 0.240 0.524 0.226 0.394 0.218 0.508
50 0.196 0.432 0.213 0.540 0.198 0.375 0.186 0.482
70 0.183 0.430 0.199 0.551 0.183 0.366 0.171 0.476
100 0.173 0.428 0.188 0.562 0.173 0.360 0.160 0.457

MKLD 30 0.072 0.132 0.080 0.274 0.089 0.133 0.079 0.286
50 0.052 0.124 0.061 0.299 0.067 0.099 0.058 0.235
70 0.044 0.122 0.053 0.315 0.057 0.085 0.050 0.218
100 0.039 0.121 0.048 0.330 0.050 0.075 0.044 0.200

MSE[x0.5] 30 0.009 0.268 0.011 0.572 0.009 0.137 0.009 0.343
50 0.006 0.219 0.007 0.482 0.006 0.082 0.005 0.283
70 0.004 0.197 0.006 0.443 0.004 0.055 0.004 0.255
100 0.003 0.188 0.005 0.419 0.003 0.040 0.003 0.222

MSE[x0.9] 30 0.064 8.998 0.052 6.605 0.066 10.24 0.059 10.46
50 0.041 6.210 0.033 4.007 0.049 9.674 0.041 8.321
70 0.030 5.098 0.024 2.899 0.041 9.422 0.032 7.692
100 0.021 4.267 0.017 2.070 0.036 9.297 0.026 7.246
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Table 4.4: Percentages of negative realizations of the LT-based estimators in 5000
samples.

distribution n �α LT 1,0
n

�β LT 1,0
n �α LT 2,1

n
�β LT 2,1

n

gamma(3,0.1) 30 – – – –
50 – – – –
70 – – – –
100 – – – –

gamma(3,10) 30 – – – –
50 – – – –
70 – – – –
100 – – – –

gamma(0.3,10) 30 – 7.92 10.5 13.4
50 – 2.46 4.68 6.14
70 – 1.04 2.46 3.44
100 – 0.26 0.88 1.38

log-normal(0,0.5) 30 – – – –
50 – – – –
70 – – – –
100 – – – –

log-normal(0,1.5) 30 – – 4.8 0.74
50 – – 1.64 0.06
70 – – 0.84 –
100 – – 0.18 –

Weibull(0.5,1) 30 – 0.96 13.52 9.02
50 – 0.08 7.0 3.16
70 – 0.02 3.36 1.26
100 – – 1.62 0.44

Weibull(2,1) 30 – – – –
50 – – – –
70 – – – –
100 – – – –

inv. Gaussian(1,3) 30 – – – –
50 – – – –
70 – – – –
100 – – – –

inv. Gaussian(3,1) 30 – – 1.26 0.10
50 – – 0.44 –
70 – – 0.06 –
100 – – – –
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4.5.5 Pareto-Lomax distribution

In this example, we demonstrate the transform-based estimation for a distribution which
may not have finite moments. In such cases, due to the assumptions of Theorems
1-3, we cannot employ the L2 estimators since these would not be consistent over the
entire parameter space. However, we can still apply the ’transform-matching’ estimators
computed at a single s-point.

As a popular example, we consider the Pareto-Lomax distribution (also known as Pareto
Type II), which is widely used to model heavy-tailed phenomena in economics, actuarial
science, and operations research; see Arnold (2015) or chapter 20 of Johnson et al. (1994).
Its cumulative distribution and density functions are given by

Fα,β(x) = 1 −
�

β

x + β

$α

, (4.169)

and

fα,β(x) =
αβα

(x + β)α+1
, (4.170)

where x ≥ 0, α, β > 0. Depending on the value of the shape parameter α, the distribution
may lack moments of certain orders. Specifically, the mean and the variance, expressed
by

E[X]=
β

α − 1
, (4.171)

and

V[X]=
αβ2

(α − 1)2(α − 2)
, (4.172)

exist when α > 1 and α > 2, respectively.

The traditional methods of estimation encounter difficulties in this case. Firstly, due the
potential divergence of sample moments, using the MM estimators yields poor results
unless α is relatively large. In turn, the ML estimators, defined in (1.1) as the maximizers
of the log-likelihood function

n1
j=1

log fα,β(Xj) = n log α + nα log β − (α + 1)
n1

j=1

log(Xj + β) , (4.173)

satisfy the following system:��������������

�α ML
n =

n
n1

j=1

log
�
1 + Xj/ �β ML

n

!
n�α ML

n = (�α ML
n + 1)

n1
j=1

�β ML
n

Xj + �β ML
n

,

(4.174)
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which necessitates a numerical solution; see, e.g., Rytgaard (1990).

Among the classical robust estimators, the minimum distance CM estimator takes the
following specific form:

(�α CM
n , �β CM

n )⊤ = argmin
α, β > 0

n1
j=1

�
1 −

�
β

β + X(j)

$α

− 2j − 1

2n

�2

, (4.175)

The estimator has been recently applied to the Pareto-Lomax distribution and studied
via simulations in Nombebe et al. (2022). While it requires a numerical approach, it
appears to be numerically stable over the parameter space.

4.5.5.1 Considered estimators

According to Nadarajah and Kotz (2006), the LT of the distribution can be expressed
with the help of the lower incomplete gamma function:

L(s) = α(βs)α exp{sβ}Γ(βs, −α) , s ≥ 0. (4.176)

While this expression is difficult to work with, in secs. 3.2.1.1 and 3.4.2 it was proved
that it uniquely satisfies

sL′(s) − (α + βs)L(s) + α = 0, s > 0. (4.177)

The same is true for the corresponding second order equation,

sL′′(s) − (α + βs − 1)L′(s) − βL(s) = 0, s > 0. (4.178)

We can use their empirical versions to obtain closed-form estimators. According to the
approach outlined in sec. 4.1.2, the estimators solve the following systems:

�
s1

�L′
n(s1) − (α + βs1)�Ln(s1) + α = 0

s2
�L′

n(s2) − (α + βs2)�Ln(s2) + α = 0 ,
(4.179)

and �
s1

�L′′
n(s1) − (α + βs1 − 1)�L′

n(s1) − βL(s1) = 0

s2
�L′′

n(s2) − (α + βs2 − 1)�L′
n(s2) − βL(s2) = 0 .

(4.180)

The corresponding solvers, �α LT 1,0
n (s1, s2), �β LT 1,0

n (s1, s2) and �α LT 2,1,0
n (s1, s2), �β LT 2,1,0

n (s1, s2),
can be presented in limiting form as s1 → s2 → s. This leads to more compact estimators,
controlled at a single s-point. After some calculus, we obtain

�α LT 1,0
n (s) =

s[ �β LT 1,0
n (s)�Ln(s) − �L′

n(s)]

1 − �Ln(s)
,

�β LT 1,0
n (s) =

[�L′
n(s) + s�L′′

n(s)][1 − �Ln(s)] + s[�L′
n(s)]2

[�Ln(s) + s�L′
n(s)][1 − �Ln(s)] + s[�Ln(s)�L′

n(s)]
, (4.181)
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and

�α LT 2,1,0
n (s) = 1 + s

�L′′
n(s)�L′
n(s)

− �β LT 2,1,0
n (s)

� �Ln(s)�L′
n(s)

+ s

$
,

�β LT 2,1,0
n (s) =

s[�L′′
n(s)]2 − �L′

n(s)�L′′
n(s) − s�L′

n(s)�L′′′
n (s)�Ln(s)�L′′

n(s) − 2[�L′
n(s)]2

. (4.182)

Based on the Delta-Method, the obtained estimators are consistent and asymptotically
normal, however, due to the special function in (4.176), the expressions for asymptotic
covariance matrices are not tractable.

Like for the previously studied distributions, we need to apply a data-driven selection
of the s-point to ensure a satisfactory trade-off between accuracy and robustness. Nu-
merous trials have shown that, for the estimator (4.181), a good trade-off occurs when
s is inversely proportional to the sample median, i.e. s = k/ �medn, with k > 0 selected
by the user. Unfortunately, no appropriate rule has been found for selecting s for the
second estimator (4.182). Nevertheless, since this estimator turns out to be much less
precise than (4.181), it is not recommended for practical use and is excluded from the
simulations presented below.

4.5.5.2 Finite-sample simulations

This simulation evaluates the performance of �α LT 1,0
n (s) and �β LT 1,0

n (s) with s = k/ �medn

for k = 1, by comparing them with the corresponding ML and CM estimators4.

Considered are samples of size n = 70 in three variants: 1) pure samples, 2) samples
contaminated by two large outliers, X0-1 = 5max(X1,...,Xn), X0-2 = 10max(X1,...,Xn),
and, 3) samples contaminated with two small outliers, X0-1 = 0.1min(X1,...,Xn) and
X0-2 = 0.01min(X1,...,Xn). The magnitudes of the large outliers reflect heavy-tailedness
of the distribution.

The box plots in Fig. 4.21 illustrate the results for two combination of the parameters:
α = 1.5, β = 2.0 (light tail) and α = 0.5, β = 1.0 (heavy tail). The performance of our
estimators varies with respect to the ML and CM estimators, depending on the parameter
values and contamination scenario. In pure samples, they are clearly outperformed by
ML and slightly surpassed by CM in terms of variance. However, their robustness is
comparable to that of CM in both contamination scenarios and far higher than of ML
in the presence of large outliers. In Fig. 4.22, we fix β = 1.0, and, we examine only�α LT 1,0

n (s) for extremely heavy tails, that is for α < 1 (α = 0.2, 0.4, 0.6, 0.8). Our
observation from the previous figure hold true here as well. Therefore, we can certainly
recommend �α LT 1,0

n (s) for applications where explicitness is desired, keeping in mind that
the cost lies in somewhat increased variance of the estimation.

4In this example, the ML estimators were computed using the function flomax from R-package
Renext, whereas the CM estimation was implemented by using the R-function optim with the Nelder-
Mead method.
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4.5. Estimation in specific distributions

Figure 4.21: Estimation of α and β in the Pareto-Lomax distribution from 5000 gen-
erated samples of size n = 70, for two combinations of the parameters: α = 1.5, β = 2.0
and α = 0.5, β = 1.0. Left box plot: pure sample; middle box plot: sample with two
large outliers; right box plot: sample with two small outliers.
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4. Estimators based on differential equations

Figure 4.22: Estimation of the shape parameter α in the Pareto-Lomax distribution
from 5000 generated samples of size n = 70, for four settings of α = 0.2, 0.4, 0.6, 0.8;
β = 1.0. Left box plot: pure sample; middle box plot: sample with two large outliers;
right box plot: sample with two small outliers.
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4.5. Estimation in specific distributions

4.5.6 Normal variance-gamma distribution

The final example in this chapter explores a case when the cumulative distribution and
density functions are unknown, however, the corresponding LT or CF has an explicit
and tractable form.

A prominent example possessing this property is the mixed normal variance-gamma
distribution, detailed already in sec. 3.5.2. As the distribution is supported on the entire
real line, we utilize its CF to formulate the estimators. Recall that the CF is expressed
as

φ(s) = exp{iµs}
�

β

β + s2/2

$α

, (4.183)

and satisfies

(β + s2/2)φ′(s) − [iµ(β + s2/2) − αs]φ(s) = 0 , (4.184)

where i2 = −1, s, µ ∈ R, α, β > 0.

4.5.6.1 Considered estimators

Epps and Pulley (1985), who studied this case, proposed estimation of the parameters
directly from the CF expression (4.183), using the classical L2 estimator of the type (1.7)
evaluated numerically. Our objective is to obtain explicit estimates, and for this reason,
we work with (4.184). Unfortunately, using the equation, we cannot derive closed-form
estimators of all three parameters due to the product of β with µ. But, note that, for
modeling purposes, we may consider β as a constant5.

We consider then the following L2 estimator of µ and α (as function of β):

� �µ CF 1,0
n , �α CF 1,0

n

!⊤
= argmin

µ ∈R, α > 0

∞�
−∞

333(β+s2/2)�φ′
n(s)−[iµ(β+s2/2)−αs]�φn(s)

3332e−as2

ds .

(4.185)

Since the underlying distribution has moments of all orders, Theorem 3 from sec. 4.2
implies that the estimator is consistent and asymptotically jointly normal.

Tedious but routine calculations yield the following formulas:

�α CF 1,0
n =

2
n1

j,k=1

(Xj −Xk)2
� 1

8a2

�
(Xj −Xk)2−6a

�
−β

�
exp

�
−(Xj −Xk)2/4a

!
n1

j,k=1

�
(Xj −Xk)2/a − 2

�
exp

�
−(Xj −Xk)2/4a

! , (4.186)

5The mean and variance of the mixing gamma(α, β) random variable, say Y , are E[Y ] = α/β and
V[Y ] = α/β2. Therefore, they may be controlled only via α if one sets β = 1.
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and

�µ CF 1,0
n =

n1
j,k=1

(Xj +Xk)A(Xj , Xk)

n1
j,k=1

A(Xj , Xk)

, (4.187)

where A(Xj , Xk) equals��
β2 − β

4a
[
(Xj −Xk)2

a
−2]

�
+

1

16a2

�(Xj −Xk)4

4a2
− 3(Xj −Xk)2

a
+ 3

�
exp

�
− (Xj −Xk)2

4a

$
.

As in all the previous sections, to operationalize the estimator we need to estimate the
value of a > 0 from the sample. Since the distribution in question is similar to the
normal distribution, we suppose that a good trade-off between efficiency and robustness
occur with a = k �Sn, that is with a proportional to the sample variance where k > 0
remains user-controlled; recall sec. 4.5.1.3. As in the normal distribution case, this choice
provides numerical stability of the estimators by preventing from the large exponents.

This case also provides an opportunity to discuss the CF-based estimator computed at
single s-point for a two-sided distribution (the one not considered with the normal dis-
tribution in sec. 4.5.1). Upon decomposing the equation (4.184) into real and imaginary
part, the estimator is defined as the solver of

 Re
�

(β + s2/2)�φ′
n(s) − [iµ(β + s2/2) − αs]�φn(s)

�
= 0 ,

Im
�

(β + s2/2)�φ′
n(s) − [iµ(β + s2/2) − αs]�φn(s)

�
= 0 .

(4.188)

We obtain then

�µn(s) =

n2
j,k=1

Xj sin
�
s(Xj − Xk)

!
s

n2
j,k=1

cos
�
s(Xj − Xk)

! , (4.189)

�αn(s) =

(β + s2/2)
n2

j,k=1
Xj sin

�
s(Xj − Xk)

!
s

n2
j,k=1

cos
�
s(Xj − Xk)

! . (4.190)

Although this estimator is expected to perform very poorly and be hard to control, it is
interesting to note that �µn(s) (as estimator of location) is independent of the other two
parameters and that

lim
s→0

�µn(s) =
1

n

n1
j=1

Xj = Xn . (4.191)

134



4.5. Estimation in specific distributions

Figure 4.23: Estimation of µ = 0 and α = 3 in the normal variance-gamma mixed
model for varying k and s. In each case β = 1.
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Figure 4.24: Estimation of µ = 0 and α = 3 in the normal variance-gamma mixed
model for varying β. In each case k = 1 and s = 1.
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4.5. Estimation in specific distributions

Figure 4.25: Estimation of µ = 81 and α = 0.3; µ = −1278 and α = 0.05; µ = −1278
and α = 345 in the normal variance-gamma mixed model. In each case β = 1, k = 1
and s = 1.
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4. Estimators based on differential equations

4.5.6.2 Finite-sample simulations

In simulations, we compare (4.186), (4.187) and (4.189), (4.190) with the method-of-
moments estimators,

�µMM
n = Xn , �αMM

n = β �Sn . (4.192)

Figs. 4.23-4.25 show box plots of estimates drawn from 3000 simulated i.i.d. samples of
size n = 70, for different settings of the parameters µ, α and β and the tuning constants
s and k. (In the figures, the L2 estimators �µ CF 1,0

n and �α CF 1,0
n computed at a = k �Sn are

denoted just by �µn(k �Sn) and �αn(k �Sn)).

Each time the left box plot represents estimation in pure samples, whereas the right
one refers to samples contaminated by two large outliers. Concretely, the contamination
follows by replacing the two first observations, X1 and X2, by X0-1 = Xn + 5

,
S2

n and
X0-2 = Xn + 7

,
S2

n.

We see that while the single s-point estimators are virtually useless, the sample-driven
L2 estimators behave excellently. They have smaller or much smaller variance that the
MM counterparts while retaining very high robustness against extreme outliers over wide
range of parameters. The complicated construction process really pays off in this case.

4.6 Summary

This chapter integrated the theory of the proposed estimators with empirical studies,
focusing on six selected distributions. While the examples could be expanded to en-
compass additional distributions in Tables 3.1 and 3.2, the current set already provides
adequate material for drawing some general conclusions about the estimators’ properties
and performance.

Remark 1: Types of distributions, transforms and parameters

Utilizing both LT and CF, we can construct effective estimators for all types of con-
tinuous distributions, excluding only the two-sided (two-tailed) ones with infinite mo-
ments, such as the Cauchy or Student-t distributions. In these exceptional instances,
the weighted L2 estimators lack consistency as n → ∞ across the entire parameter
space. The transform-based estimation of these distributions may become feasible by
employing transforms with alternative kernels that would not impose restrictions on
moments.

For two-sided light-tailed distributions (possessing all moments), the CF-based weighted
L2 estimator is the suitable and only choice, as exemplified in cases like the normal
and normal variance-gamma distributions. The weighted LT-based counterpart is not
appropriate here due to unboundedness of the transform and its derivatives as s → ∞. In
the realm of one-sided (life-time) distributions, such as exponential, gamma or Rayleigh,
more options are available. These can be successfully estimated using both the CF-
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4.6. Summary

and LT estimators in the weighted L2 version, as well as using the single s-point LT-
based estimator, whereby the former option also applies to distributions lacking certain
moments, as demonstrated in the Pareto case.

We can also conclude that the proposed estimators are most appropriate for location and
scale parameters. Namely, for all the studied location and location-scale families (normal,
exponential, Rayleigh and normal variance-gamma) one or more of our proposals were
competitive or outperforming the established estimators if the three criteria of relatively
low variance, high robustness and explicitness were evaluated jointly. On the other hand,
our estimators of shape parameters (α in the gamma and Pareto models), while robust,
could be suboptimal in terms of variance in certain ranges.

Remark 2: Orders of differential equations

The factor we expected to play a role, namely the order of the employed differential equa-
tion, was indeed proven in simulations. However, the observations are not unambiguous.
We initially anticipated that the orders should be kept as low as possible because involv-
ing higher derivatives should result in a larger variance of the empirical derivatives in
certain regions of the s-domain.

As observed for the exponential distribution, this expectation holds true for the estima-
tors based on CF. On the contrary, for the LT-based counterparts, higher orders need
not degrade the estimators but may even increase robustness; recall the comparisons
between �λ LT 1,0

n , �λ LT 2,1
n , and �λ LT 2,0

n in Fig. 4.12 and 4.13 for the exponential model,

and between �ϑ2
LT 2,1,0

n and �ϑ2
LT 3,2,1

n in Fig. 4.19 for the Rayleigh case. It appears to be
a rule that the LT differential equations not employing zero-order derivatives produce
the most robust estimators.

Remark 3: Sample-driven weight functions

When dealing with the L2 estimators, our choice of the weight function was primarily
guided by the simultaneous need to obtain a closed-form expressions and control over
estimators properties. Therefore, no comparisons were made across weight functions of
various functional forms. Nevertheless, during simulations, the author occasionally ex-
perimented by switching between the weights with Gaussian and exponential tail, both
in the case of LT and CF-based estimators (with the estimates computed then numeri-
cally). Interestingly, the differences in results were marginal, leading to nearly identical
box-plot outcomes. Provided that the weight function w(s) was selected to tend to zero
as s → 0 and s → ∞, it was rather its scale than shape that conditioned the performance.
A crucial finding was that the scale should be pre-estimated by an auxiliary estimator,
suggested by analysis of ARE and IFs. Among considered examples, such analyses were
tractable for the normal, exponential, Rayleigh models. When these measures were
not easily derivable, the auxiliary estimators could be heuristically determined through
simulations and a trial-and-error principle (as we did in the gamma and Pareto cases).

However, finding the auxiliary estimator in either way may become increasingly chal-
lenging as the dimension of θθθ grows. Then, and especially when working with real-world
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4. Estimators based on differential equations

datasets, where the model distribution typically only approximates the true generating
mechanism, it may be more effective to determine the scale by assessing the model’s
predictive power, for example, through cross-validation. This should not be hard if the
distribution function is available. If robust estimation is our goal, then, in the author’s
view, cross-validation should also employ a ’robust’ loss criterion. A good candidate
would be the Cramér-von Mises distance, chosen also for its relative simplicity. Specif-

ically, if �θθθ T
n (a) is the transform-based estimator with the weight function parameter a,

the k-fold cross-validatory choice of the latter can be

a
CV

= argmin
a > 0

k1
i=1

�
1

12ni
+

ni1
ji=1

�
F

�
X(ji) | �θθθ T (−i)

(a)
!

− 2j − 1

2n

�2 �
, (4.193)

where the outer sum runs over k folds of the original sample, i.e. (X1, ..., Xn1
), ...,

(X1, ..., Xnk
), n1 + ... + nk = n, ji is the index within the i-th fold, and for each i the

estimator �θθθ T (−i)
(a) is drawn from all the observations without the i-th fold. The final

estimate �θθθ T
n (a

CV
) is drawn from the full sample; see Hastie et al. (2008).

If robustness is not of interest, then other loss criteria based on, for example, likelihood
or Kullback-Leibler divergence can be used. The procedure would apply in the same
manner for selecting the single s-point in the transform-matching estimators.
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CHAPTER 5
Goodness-of-fit test for the

log-normal distribution

5.1 Transform-based testing

This chapter concerns goodness-of-fit (GoF) testing of the hypothesis that a random
sample X1, ..., Xn comes from a specific parametric distribution. We develop a new test
for the log-normal distribution based on LT. The test has been initially reported by the
author in Hołyński (2019b).

As explained in sec. 1.1, the transform-based GoF tests utilize either

(i) a weighted L2 norm of the difference between the parametrically and non-parametrically
estimated transform; or

(ii) a weighted L2 norm of empirical differential equation satisfied by the transform.

In context of LT of one-sided distributions, the test statistics corresponding to (i) and
(ii) are, respectively:

Tn = n

� ∞

0

�
L(s|�θθθn) − �Ln(s)

�2
dW (s) , (5.1)

and, for example,

Tn = n

� ∞

0

��Ln(s) + h(�θθθn, s)�L′
n(s)

�2
dW (s) , (5.2)

where �θθθn is some consistent estimator of θθθ.
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5. Goodness-of-fit test for the log-normal distribution

A large realization of Tn leads to the rejection of the null-hypothesis H0. A non-trivial
aspect of any GoF test is to determine the distribution of Tn under H0, say F0(t), which
enables to reject H0 at a precise level of significance 1−α (typically, α = 0.05 or 0.1).
Specifically, H0 is rejected if Tn > F −1

0 (1 − α); otherwise, it is accepted. The value
F −1

0 (1 − α) is referred to as the critical point. The power P of the test against an alter-
native hypothesis (distribution) is the probability of rejecting H0 when the alternative
is true. The test is said to be consistent (against any alternative) if P → 1 as n → ∞ in
the presence of any alternative.

5.2 Laplace transform property of log-normality

The log-normal random variable is characterized by the following distribution and density
functions:

F (x|µ, σ) =
1

2
erfc

�
− log x − µ

σ
√

2

$
, (5.3)

f(x|µ, σ) =
1√

2πσx
exp

�
− (log x − µ)2

2σ2

$
, (5.4)

x, σ > 0, µ ∈ R. If we wish to test for log-normality using (5.1) or (5.2), two problems
arise. First, the log-normal LT,

L(s|µ, σ) =

� ∞

0

1√
2πσx

exp

�
− (log x − µ)2

2σ2

$
exp(−sx)dx , (5.5)

has no closed-form expression. Although various approximations were proposed for
this integral, they are either difficult to implement or not uniformly accurate in s; see
Asmussen et al. (2016) and the references therein. Consequently, computation of the
integral in (5.1) is troublesome. Secondly, differentiating the density w.r.t. x results in
the linear differential equation

(log x − µ + σ2)f(x|µ, σ) + σ2xf ′(x|µ, σ) = 0, (5.6)

whose coefficients are not polynomials in x. Therefore, we cannot apply the method
from sec. 3.2 to obtain the differential equation satisfied by the transform and construct
the statistic of the type (5.2).

However, we can obtain a functional differential equation by taking derivative w.r.t. s
in (5.5) under integration sign.

Theorem 18. Let X be a log-normal random variable with density (5.4). The corre-
sponding Laplace transform L(s|µ, σ) satisfies the following k-th order functional differ-
ential equation

L(k)(s|µ, σ) − (−1)k exp
�
kµ + (kσ)2/2

!
L(sekσ2 |µ, σ) = 0 . (5.7)
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5.2. Laplace transform property of log-normality

Proof. We know that X = eY , where Y ∼Normal(µ, σ2). It follows then that X = eY0+µ,
where Y0 ∼ Normal(0, σ2), and, by the property of expectation,

L(s|µ, σ) = E[e−sX ] = E[exp(−seY )] = E[exp(−seY0+µ)] = E[exp(−seµeY0)] . (5.8)

Therefore, for any log-normal random variable, we can write

L(s|µ + b, σ) = L(seb|µ, σ) , b ∈ R. (5.9)

Knowing this, let us substitute y = log x in (5.5); we obtain

L(s|µ, σ) =
1√
2πσ

� ∞

−∞
exp

�
− sey − (y − µ)2

2σ2

$
dy . (5.10)

Taking derivative w.r.t. s of both sides gives

L′(s|µ, σ) =
1√
2πσ

� ∞

−∞
∂

∂s
exp

�
−sey − (y − µ)2

2σ2

$
dy

= − 1√
2πσ

� ∞

−∞
exp

�
− sey + y − (y − µ)2

2σ2

$
dy . (5.11)

The expression in the exponent of the integrand can be written as

y − (y − µ)2/2σ2 = −(y − µ − σ2)2/2σ2 + [(µ + σ2)2 − µ2]/2σ2 , (5.12)

and this gives

L′(s|µ, σ) = − exp(µ + σ2/2)
1√
2πσ

� ∞

−∞
exp

�
− sey − (y − µ − σ2)2

2σ2

$
dy . (5.13)

The integrand above differs from the integrand in (5.10) only by the term −σ2. Hence,
in consideration of (5.9), (5.7) holds for k = 1, namely

L′(s|µ, σ) = − exp
�
µ + σ2/2

!
L(seσ2 |µ, σ) . (5.14)

Taking k-th derivative in (5.10) and repeating the steps yields (5.7) for k ≥ 2. The
proof follows Leipnik (1991), who derived a similar equation satisfied by the log-normal
CF.

Ideally, for the purpose of GoF testing, the converse of Theorem 18 should also hold. In
other words, the LT of the log-normal distribution should be the only solution of (5.7)
with the boundary condition L(0|µ, σ) = 1. This would elevate (5.7) from just being a
property to a characterization of that distribution, leading to a test consistent against
any alternative. Unfortunately, it is not the case. Kato and McLeod (1971), who studied
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5. Goodness-of-fit test for the log-normal distribution

general solutions of this type of functional differential equations, proved that (5.7) with
k = 1 has an infinite number of solutions for s∈(0, ∞). Thus, we cannot be sure that the
proposed test is consistent. Nonetheless, we may suppose that within the narrower class
of LTs of one-sided probability distributions, this property characterizes a sufficiently
rich subclass of functions to make the test consistent against standard distributions
encountered in applied statistics.

5.3 The test statistic

Our test will utilize the aforementioned property only with k = 1. Notice that to test for
the log-normal(µ,σ) distribution, it suffices to test for the log-normal(0,1) distribution
after standardizing the sample using (some) estimators of µ and σ. Consequently, the
form of (5.7) we use hereafter simplifies to

L′(s|0, 1) + e1/2L(se|0, 1) = 0 . (5.15)

To test H0 that X1, ..., Xn ∼ F (x|µ, σ) with unspecified parameters, we compute

Tn = n

� ∞

0

��L′
n(s) + e1/2 �Ln(se)

�2
w(s)ds , (5.16)

where �L′
n(s) = 1

n

2n
j=1exp(−sYj), �L′

n(s) = − 1
n

2n
j=1Yj exp(−sYj), Yj = exp{(log(Xj) −�µn)/�σn}, w(s) is a weight function and �µn and �σn are the ML estimators,

�µn =
1

n

n1
j=1

log(Xj) , �σn =

/00. 1

n

n1
j=1

[log(Xj) − �µn]2 . (5.17)

5.3.1 Choice of estimators and weight function

Naturally, we could employ other estimators to standardize the sample. Specifically, we
might use the LT-based estimators that minimize the same L2 distance utilized by the
test, ��µ LT

n , �σ LT
n

!⊤
= argmin

µ ∈ (−∞,∞)
σ > 0

� ∞

0

��L′
n(s) + exp(µ + σ2/2)�Ln(seσ2

)
�2

w(s)ds . (5.18)

However, this is not a good idea due to numerical problems associated with large ex-
ponents. While these estimators might exhibit robustness against outliers, our current
objective is not to create a robust procedure that disregards outliers. Rather, the pro-
posed test should be sensitive to deviations from log-normality, particularly in the tail
region. Hence, we decide to use the non-robust but efficient and easily computable ML
estimators.
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5.3. The test statistic

Following the LT-based tests for one-sided distributions, such as Henze (1992), Henze et al.
(2012) or Henze and Klar (2002), we equip the test statistic with the exponential weight
function,

w(s) = e−as , a > 0. (5.19)

Utilizing the Tauberian relations for LTs, the user-chosen rate a controls the power
against specific distributional alternatives. A larger a should render the test more pow-
erful against the alternatives that differ from the log-normality in the tail, while a smaller
a should sensitize it to the discrepancies near the origin. Additionally, this weight func-
tion provides a closed-form expression for (5.16), which we denote by Tn(a) to stress its
dependence on the constant a. After some algebra, we obtain

Tn(a) =
1

n

n1
j,k=1

�
e

e(Yj + Yk) + a
− e1/2Yk

eYj + Yk + a
− e1/2Yj

eYk + Yj + a
+

YjYk

Yj + Yk + a

$
. (5.20)

5.3.2 Distribution of the test statistic

We shall discuss now F0(t), the distribution of Tn under null-hypothesis H0. Both the
finite-sample and asymptotic distribution of the statistic are highly non-trivial. It is
evident that Tn represents a (normalized) degree-2 V-statistic with the kernel

ψ(Yj , Yk) =

� ∞

0

�
e1/2−seYj − Yje

−sYj

!�
e1/2−seYk − Yke−sYk

!
w(s)ds , (5.21)

and, as a consequence, its asymptotic distribution is the same as that of the correspond-
ing U-statistic; see Appendix A. Since E[ψ(yj , Yk)] = 0, the first variance component of
Tn computed by (A.5) is σ2

1 = 0. However, the second component σ2
2 > 0. Hence, this

U-statistic has first-order degeneracy and

nTn
d−→

∞1
j=1

λjZ2
j , (5.22)

where Z1, Z2, ... are independent unit normal variables, and the λj are the eigenvalues
of the integral equation (A.17). Unfortunately, solution of this eigenproblem in our
case seems impossible. Even if λj could be found, obtaining F0(t) would necessitate a
numerical inversion of CF or LT of the infinite mixture of chi-squared variables. Finally,
there is no guarantee that this asymptotic distribution would be accurate enough to give
a good approximation of the critical points for small samples.

Another approach would be to approximate the finite sample version of F0(t) using
some standard skewed distribution through the moment-matching technique. However,
computing, the mean and variance of Tn (let alone the higher moments) involves intricate
integrals that depend on the unknown log-normal LT (5.5).
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5.4 Simulations of the power

We observe that the challenge of determining an exact form of F0(t) remains unsolved
for most of the transform-based GoF tests in the literature. A common solution is to
either simulate F0(t) or apply parametric bootstrap to estimate critical points; see, for
instance, Henze and Klar (2002), Meintanis (2005), Zghoul (2010), Henze et al. (2012)
and Batsidis et al. (2020). Given that we are working with a skewed distribution, we
opt for the latter approach. Below, we describe how the bootstrap is used in simulating
the power of the test.

5.4.1 Parametric bootstrap

We generate r independent samples XXX = (X1, ..., Xn) from an alternative distribution
such as gamma, exponential, inverse Gaussian and so on. To estimate the power of our
test against this alternative (for given n and a significance level of 1 − α), we perform
these steps:

1. For each of the r samples XXX, compute the ML estimators �µn and �σn using (5.17).
Standardize the sample to obtain YYY = {Y1, ..., Yn}, where Yi = exp{(log(Xi) −�µn)/�σn}.

2. For each of the r standardized samples YYY , compute Tn(a) using (5.20).

3. For each YYY , generate B bootstrap samples XXX∗(1), ...,XXX∗(j), ...,XXX∗(B) of size n from
the log-normal distribution with parameters equal to the corresponding estimates�µn and �σn.

4. For each j-th bootstrap sample XXX∗(j) compute the ML estimators �µ∗(j)
n , �σ∗(j)

n us-

ing (5.17) and standardize them taking Y
∗(j)

i = exp{(log(X
∗(j)
i ) − �µ∗(j)

n )/�σ∗(j)
n }.

In this way, obtain B standardized bootstrap samples {YYY ∗(1), ...,YYY ∗(j), ...,YYY ∗(B)}
and for each j-th of them compute the test statistic T

∗(j)
n (a) using (5.20). The or-

der statistic T ∗
[(1−α)B](a) of so obtained vector estimates the critical value of Tn(a)

at significance level of 1−α. If Tn(a) > T ∗
[(1−α)B](a), reject H0; otherwise, retain it.

The power P of the test against an alternative for sample size n is then estimated by

�Pn =
# { H0 rejected }

r
. (5.23)

5.4.2 Competitive tests

In simulations, our test is compared in terms of the power with the four classical GoF
procedures:

• Cramér-von Mises (CM) test,
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• Anderson-Darling (AD) test,

• Shapiro-Wilk (SW) test,

• Jarque-Bera (JB) test.

The CM and AD tests utilize distribution function and are consistent against any al-
ternative. The SW and JB tests are famous tests for normality that can be applied to
our problem after log-transformation of the sample. They are inconsistent but powerful.
The CM and AD test statistics, mentioned already in the introduction chapter, can also
be expressed as

T CM
n =

1

12n
+

n1
j=1

�
F (X(j)|�µn, �σn) − 2j − 1

2n

$2

, (5.24)

and

T AD
n =−n− 1

n

n1
j=1

�
(2j−1) log F (X(j)|�µn, �σn) + [2(n−j)+1] log[1−F (X(j)|�µn, �σn)]

$
,(5.25)

where �µn and �σn are, for example, the ML estimators (5.17).

The SW statistic, used to test for log-normality, is given by

T SW
n =

� n2
j=1

cj,nY(j)

!2

n2
j=1

(Yj − Y n)2
, (5.26)

where Yj = log Xj and the coefficients cj,n can be found in D’Agostino and Stephens
(1986).

Finally, the JB statistic is

T JB
n =

n

6

� �Sk
2

n +
1

4
(�Kn − 3)2

$
, (5.27)

where �Skn =
1
n

2n
j=1(Yj − Y n)3�

1
n

2n
j=1(Yj − Y n)2

!3/2
and �Kn =

1
n

2n
j=1(Yj − Y n)4�

1
n

2n
j=1(Yj − Y n)2

!2

are the sample skewness and sample kurtosis, respectively, and Yj = log Xj .

For more details on all the four tests see, e.g., D’Agostino and Stephens (1986), Thas
(2010), Shapiro and Wilk (1965), and Jarque and Bera (1987). In simulations, the criti-
cal points for the CM and AD tests were also determined using bootstrap. The SW and
JB tests were conducted by using the shapiro.test(·) and jb.norm.test(·) functions from
the R-packages stats and normtest, respectively.
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5.4.3 Alternative distributions

In the simulations, we examine the power of the four tests against several two-parameter
life-time distributions1. These alternatives include Weibull(λ, c), gamma(α, β), Pareto(α, β)
and inverse Gaussian(λ, µ) with densities given in Table 2.1; the other alternatives are:

• Fréchet(λ, c): f(x|λ, c) =
cλc

xc+1
exp{−(λx)−c}, x, c, λ > 0;

• Burr(α, c): f(x|α, c) =
αcxc−1

(1 + xc)α+1
, x, α, c > 0;

• Inv. gamma(α, β): f(x|α, β) =
β α

Γ(α)
x−α−1 exp{−β/x}, x, α, β > 0;

• Gompertz(α, β): f(x|α, β) = αβ exp{α + βx − αeβx}, x ≥ 0, α, β > 0.

To verify whether the tests accurately recover the nominal level of significance 1 − α, we
conduct simulations of power for log-normal samples, expecting �Pn ≈ 5% for any sample
size n.

5.4.4 Results

The simulations were conducted for sample sizes n = 20, 30, 50, 70, 100, with α = 0.05,
for all five tests. All the alternative distributions were considered in four distinct settings
of their parameters. The power of our test was simulated for six values of the weight
function parameter a, specifically a = 0.01, 0.1, 0.5, 1, 2, 5, 10. In the bootstrap procedure,
we used r = 3000 and B = 200. The results are reported by the graphs placed in Tables
5.1-5.5, where the estimated power �Pn is plotted as function of n. The power of our test
is plotted for the value of a that provided the highest average power across sample sizes
from n = 20 to 100. The powers estimated for the log-normal samples are approximately
0.05 (= α) for any n, indicating that all the tests are well calibrated and implemented
correctly.

We observe that the performance of our test is very satisfactory in comparison with all
the competitors. It usually has higher or slightly higher power than the SW and JB tests
and much higher than AD and CM (even by around 20% for n = 100). Exceptions do
occur in the case of the Burr and Pareto alternatives where JB appears more powerful
for two combinations of parameters (by about 5% in large samples). Of course, this
performance is so good with the optimal choice of a (which may be unknown when
testing against any alternative). However, notice that in nearly all cases, the optimal
a is very low, i.e. a = 0.01 and 0.1. This is not surprising, as most of the alternatives

1The parameter α of these distributions should not be confused with α denoting here also the test
level significance.
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here differ from log-normality in the tail area (rather than in shape as x → 0), and, as
discussed earlier, the choice of a small a should enhance the test’s power in this regard.

We should still check if and how the power drops when a suboptimal a is chosen. Table
5.6 displays powers (rounded to second decimal place) for all a in the case of n = 50.
We see that the powers do not drop by more than 5% for the worst choices (the Fréchet
and inverse gamma cases). For most alternatives, they remain at a fairly stable level.
This feature distinguishes our proposal from some of the existing transform-based tests
where the choice of a is rather crucial and typically changes the power by 10 to 40%; see
the power plots in Baringhaus et al. (2000) and Tenreiro (2009) demonstrating this fact
for several LT- and CF-based tests.
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5. Goodness-of-fit test for the log-normal distribution

Table 5.1: Estimated power �Pn against the log-normal(µ, σ) and Weibull(λ, c)
alternatives.
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Table 5.2: Estimated power �Pn against the gamma(α, β) and Fréchet(λ, c)
alternatives.
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Table 5.3: Estimated power �Pn against the Burr(α, c) and Pareto(α, β) alternatives.
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Table 5.4: �Pn against the inv. Gauss.(λ, µ) and inv. gamma(α, β) alternatives.
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5. Goodness-of-fit test for the log-normal distribution

Table 5.5: Estimated power �Pn against the Gompertz(α, β) alternative.

154



5.4. Simulations of the power

Table 5.6: Estimated power �Pn of the proposed test in function of the weight function
parameter a for n = 50. Comparison with the Shapiro-Wilk and Jarque-Bera tests.

a value
alternative 0.01 0.1 0.5 1.0 2.0 5.0 10 SW JB

log-normal(0,0.25) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
log-normal(0,0.5) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04
log-normal(0,1) 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.04 0.04
log-normal(1,2) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04

Weibull(1.5,1) 0.73 0.72 0.73 0.73 0.73 0.72 0.70 0.70 0.62
Weibull(5,1) 0.72 0.72 0.73 0.73 0.72 0.72 0.70 0.69 0.62

Weibull(0.5,1) 0.71 0.71 0.72 0.72 0.71 0.70 0.70 0.68 0.61
Weibull(3,2) 0.71 0.71 0.71 0.72 0.72 0.70 0.70 0.68 0.61

gamma(2,1) 0.47 0.47 0.45 0.46 0.46 0.44 0.44 0.43 0.40
gamma(5,0.2) 0.24 0.23 0.23 0.23 0.22 0.20 0.21 0.21 0.20
gamma(20,0.1) 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08
gamma(0.5,1) 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.83

Fréchet(1,1) 0.71 0.72 0.70 0.69 0.68 0.67 0.65 0.68 0.61
Fréchet(2,1) 0.73 0.72 0.71 0.70 0.70 0.68 0.67 0.69 0.63
Fréchet(4,1) 0.72 0.72 0.71 0.70 0.70 0.68 0.66 0.70 0.62

Fréchet(0.5,1) 0.72 0.73 0.71 0.70 0.70 0.68 0.67 0.70 0.63

Burr(1,2) 0.21 0.21 0.21 0.20 0.19 0.19 0.20 0.19 0.25
Burr(1,3) 0.22 0.22 0.21 0.21 0.20 0.20 0.21 0.19 0.26
Burr(2,2) 0.33 0.31 0.29 0.30 0.28 0.26 0.27 0.28 0.32
Burr(5,1) 0.55 0.54 0.53 0.53 0.52 0.51 0.52 0.51 0.49

Pareto(1,1) 0.22 0.22 0.21 0.21 0.20 0.21 0.20 0.19 0.26
Pareto(1,3) 0.21 0.21 0.20 0.21 0.19 0.19 0.19 0.20 0.26
Pareto(2,1) 0.32 0.32 0.30 0.29 0.28 0.26 0.27 0.29 0.32

Pareto(3,0.5) 0.45 0.44 0.43 0.42 0.41 0.39 0.40 0.40 0.41

inv. gamma(3,1) 0.34 0.35 0.35 0.35 0.35 0.35 0.34 0.30 0.29
inv. gamma(2,1) 0.46 0.46 0.45 0.45 0.45 0.45 0.43 0.41 0.39
inv. gamma(2,2) 0.48 0.48 0.47 0.46 0.47 0.46 0.45 0.43 0.39
inv. gamma(1,1) 0.72 0.72 0.70 0.70 0.69 0.68 0.66 0.69 0.61

inv. Gaussian(0.5,1) 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.05 0.02
inv. Gaussian(1,1) 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.06 0.02
inv. Gaussian(1,3) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03
inv. Gaussian(3,1) 0.14 0.15 0.13 0.12 0.11 0.09 0.08 0.16 0.06

Gompertz(5,0.1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97
Gompertz(1,3) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97

Gompertz(2,0.1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
Gompertz(1,0.1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97
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CHAPTER 6
Comments and further research

The thesis aimed to advance statistical inference based on empirical integral transforms,
specifically by utilizing their differential equations. This goal appears to be accomplished,
particularly in the area of parameter estimation. The pursued differential equation
approach has, to a great extent, alleviated computational burdens, which, in the author’s
opinion, impede the more widespread use of the existing transform-based paradigm. A
broad family of estimators has been developed that are explicit, robust, and, at the same
time, can maintain relatively low variances. While detailed observations and conclusions
have already been given in Chapters 4 and 5, some general remarks are in order.

First, it must be stressed that the author’s overall intention was to strike a balance
between theory and empirical evidence of the estimators, at least in the form of extensive
simulations, along with an account of computational aspects. This motivation arose
from the fact that quite often literature of the subject emphasizes theoretical aspects
(mostly in asymptotic settings), rather than providing sufficient, comprehensive empirical
evidence, and addressing practical and methodological considerations. For instance,
the monograph Statistical Inference: The Minimum Distance Approach, see Basu et al.
(2011), by far the most extensive source on various minimum distance estimators to date,
presents nearly no empirical results. Of course, many small-scale simulations exist in
paper contributions. Nevertheless, these are often selective in the choice of distributions
and conducted for parameter settings that do not pose numerical problems or reveal out-
of-bound estimates. Contamination or misspecification scenarios, if considered at all,
are very arbitrary too. Consequently, the scattered partial results make it challenging to
compare techniques and draw confident conclusions regarding their (average) superiority
over one another.

In this context, and to avoid overly optimistic statements about the proposed estimators,
it must be admitted that the constructions presented in the thesis involve at least five
’degrees of freedom’: 1) the type of transform (kernel), 2) the order of the employed
differential equation, 3) the degree of the Lq-norm, 4) the type of the weight function
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and its parametrization, and 5) an auxiliary estimator of the weight function scale. In
the parlance of statistical learning, these can be considered as ’hyperparameters’ of the
estimation algorithm. And, as we have seen, despite general hints provided by the theory
of the transforms, the performance relies strongly on the settings and interplay of these
hyperparameters.

Therefore, instead of making generalizations about the entire class of estimators, the
author’s main recommendation for further research would be a deeper exploration of the
optimal settings for particular distributions. This involves conducting more extensive
simulations and making comparisons with other types of estimators. Yet other aspects,
such as the impact of dependent observations or breakdown behavior, can be investigated.
In practical applications, where modeling assumptions are rarely met, cross-validation
could be helpful in tuning the hyperparameters and is purposeful especially if repeated
estimation in similar situations is planned. This suggestion was already discussed in
sec. 4.6 for the parameters of the weight functions. Ultimately, a valuable estimator
should demonstrate its usefulness over the long term when applied to real data sets.
Here, feedback from practitioners in specific domains would be very valuable.

The proposed estimators and the related GoF tests, certainly require and deserve further
explorations. Even if they may not be fully trusted at this stage of research as the
primary tool of inference, they can certainly play important roles in complementing other
techniques. For instance, being explicitly computable, the estimators offer good starting
points for optimization procedures needed for the non-explicit estimators. Additionally,
some of them can function as rapidly computable, robust alternatives. A significant
discrepancy between these estimators and, for example, the ML or MM estimators, may
indicate the presence of outliers.

6.1 Further research

The remainder of this chapter provides insights into statistical models and problems
not addressed in this thesis, where the principles of differential equations of transforms
can be applied or show potential applications. We explore suggestions, ideas, and open
questions for further research, drawing connections with past and recent literature.

6.1.1 Discrete distributions

As explained in the introduction, our work focused solely on inference for the continuous
distributions. However, there is no obstacle to applying the estimation methodology
to the discrete probability laws. The transform traditionally considered as the most
appropriate in discrete settings is the PGF. For a discrete variable K with probability
mass function pθθθ(k), defined on some subset of integers K, the PGF is given by

Gθθθ(s) =
1
K

pθθθ(k)sk , (6.1)
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while its non-parametric counterpart, based on the sample (K1, ..., Kn), is

�Gn(s) =
n1

j=1

sKj . (6.2)

In fact, as evident in many sources on discrete distributions, PGF plays a pivotal
role in characterizing these type of models, often providing much simpler represen-
tation than the mass function. In this regard, readers are directed to distinguished
monographs such as Univariate Discrete Distributions, see Johnson et al. (1993) or
Johnson et al. (2005), or Lagrangian Probability Distributions, see Consul and Famoye
(2006). Interestingly, while long passages on various distributions are devoted there
to parameter estimation problems, the authors do not mention the possibility of ob-
taining estimates through PGFs, although it was shown already by Kemp and Kemp
(1988) and Dowling and Nakamura (1997), and then continued in more recent papers like
Sim and Ong (2010), Sharifdoust et al. (2016) and Jiménez-Gamero and Batsidis (2017).
In particular, estimation employed in the two monographs is consistently based on mo-
ments and likelihood. And quite often, these do not yield explicit estimates, whether for
the mass function expressed through a special function or for the parameters trapped
inside binomial coefficients.

Examining Tables 2.1-2.3 in Consul and Famoye (2006), where PGFs of over forty dif-
ferent, overlapping, or nested discrete families are compiled, one can check that most
of them satisfy certain differential equations. Therefore, the approach proposed in this
work should apply in many cases and prove especially useful for less popular models such
as Borel, Haight, Felix, Sunil or Teja. But, in order not to consider such niche examples,
let us briefly exemplify the benefits of our approach in the case of the standard binomial
distribution. Its probability mass function, given by

pθθθ(k) =

�
m

k

"
qk(1 − q)m−k , k = 0, 1, ..., m , (6.3)

expresses the probability of k successes in m independent trials with probability of a
single success q. If m is known, estimation of q from the sample is straightforward: the
ML estimator, coinciding with the MM one, is given by �q ML

n = �q MM
n = (1/nm)

2n
j=1 Kj .

However, when both parameters are to be estimated, then, as discussed in the examples
7.2.2, 7.2.9 and 7.2.13 in Casella and Berger (2002), both the explicit MM estimators
and non-explicit ML estimators may be unstable. Additionally, the minimum distance
estimators involving pθθθ(k), such as the CM or Scott’s estimators, are difficult to construct
as the support of the distribution is not fixed.

However, the binomial PGF,

Gθθθ(s) = (1 − q + qs)m, (6.4)
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s ∈ R, opens the way for an alternative approach. Specifically, explicit estimates become
feasible with help of the associated differential equation. By differentiating (6.4) w.r.t. s
and replacing the transform and its derivative by their empirical counterparts, we obtain

(1 − q + qs) �G′
n(s) − mq �Gn(s) = 0. (6.5)

From this, the estimators of m and 1/q can be explicitly derived either in form of the
L2 estimators or the transform matching estimators operating at a single s-point.

Equivalently, we can work with the associated LT or CF and so stay in line with the
theory elaborated in this thesis. For example, the LT would be Lθθθ(s) = (1 − q + qe−s)m

with the following differential equation:

(1 − q + qe−s)L′
θθθ(s) + mqe−sLθθθ(s) = 0. (6.6)

To apply Theorem 1 or 4 to the resulting L2 estimators, additional considerations on
the weight function are needed. Moreover, an appropriate data-driven tuning of that
function must be designed.

Of course, a PGF- or LT-based estimator can also be used to estimate q when m known.
The following estimator,

�qn(s) =

m

* �Gn(s) − 1

s − 1
, (6.7)

which stems directly from (6.4), was studied in Hołyński (2019a). The estimator was
found to be highly robust for small success (or failure) probabilities. Hence, it may be
of interest in certain applications where, for example, a ’true’ error rate needs to be
estimated in presence of batch errors (interpreted as outliers in the sense of binomial
model).

6.1.2 Non-normalized distributions

An interesting estimation problem to which our approach can be applied arises with
non-normalized distributions. These distributions are analytically known up to a nor-
malization constant. That is, their density with parameter θθθ can be represented as

fθθθ(x) = C(θθθ)g(x,θθθ) , (6.8)

where C(θθθ) is the constant (independent of x) such that

C(θθθ)−1 =

�
g(x,θθθ)dx . (6.9)

Since the constant can only be approximated numerically, the maximum likelihood
method requires an intensive numerical approach, both for computing the likelihood and
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optimizing it. The same obstacle pertains, of course, to other density or distribution-
based approaches, making the non-normalized distributions not really usable in statistics.

However, if a suitable differential equation satisfied by fθθθ(x) can be found (in the way
described in sec. 3.2), the problematic constant can be eliminated from the derivation of
estimators. As an example, consider the family of the polynomial-exponential models,
with p-dimensional parameter θθθ = (θ1, ..., θp)⊤, with the density

fθθθ(x) = C(θθθ) exp
�
θ1x + θ2x2 + ... + θpxp

!
, (6.10)

where x > 0 or x ∈ R. This family includes, as the simplest cases, the exponential and
normal distributions for p = 1 and p = 2, respectively. However, when higher powers of
x are involved, the analytical forms of C(θθθ) remain unknown.

By applying the method from sec. 3.2, we obtain

f ′
θθθ(x) = fθθθ(x)(θ1 + 2θ2x... + θppxp−1) , (6.11)

so that the corresponding differential equations satisfied by LT and CF are respectively

Lθθθ(s) + (s − θ1)L′
θθθ(s) +

p1
k=2

(−1)kkθkL
(k)
θθθ (s) = 0, (6.12)

and

φθθθ(s) + (s − θ1)φ′
θθθ(s) +

p1
k=2

(−i)kkθkφ
(k)
θθθ (s) = 0. (6.13)

We note that, by using the empirical versions of the equations, the derivation of explicit
estimators for these models for any p is possible thanks to linearity in parameter.

The non-normalized distributions has been recently addressed by Betsch et al. (2021),
who devised yet other estimation technique coping with the problem of normalization.
Specifically, the authors build on the so-called Stein characterization, to show that, under
certain regularity conditions, the cumulative distribution function Fθθθ(x) and density
fθθθ(x) of a positive random variable X satisfy the following relation:

Fθθθ(z) = E

�
− f ′

θθθ(X)

fθθθ(X)
min(X, z)

�
, z > 0. (6.14)

With that, the estimator of θθθ can be constructed as a minimizer of an integrated dis-
crepancy between the sample counterparts of the two sides of the equality. For example,
the weighted L2 estimator of this type can be defined as

�θθθ Stein

n = argmin
θθθ ∈ΘΘΘ

� ∞

0

�
1

n

n1
j=1

f ′
θθθ(Xj)

fθθθ(Xj)
min(Xj , z) + �Fn(z)

�2

e−azdz, (6.15)
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where the exponential weight function controls the properties by user’s setting of a >
0. As the parametric information is present here through the ratio f ′

θθθ(x)/fθθθ(x), the
unwanted normalization constants always cancel out. As shown in Betsch et al. (2021),
these estimators admit complicated yet closed expressions involving double sums of order
statistics.

It would be of interest to compare the performance of this method with estimators that
can be derived from transforms using equation like (6.12) and (6.13). In the context of
the polynomial exponential models, the author derived his own L2 LT-based estimators
and conducted comparative simulations for the two-parameter case

fθ1,θ3
(x) = C(θ1, θ3) exp

�
θ1x + θ3x3

!
, (6.16)

x > 0, θ1 ∈ R and θ3 ∈ (−∞, 0), estimated in sec. 9 of Betsch et al. (2021) by their
method. It was found that the own derived estimator is simpler and tends to be more
robust against large outliers. Also, we note the estimators built on the Stein’s charac-
terization apply only to distributions on positive axis while the transform-based ones do
not suffer from this limitation when based on CFs.

In connection with non-normalized distributions, it is important to mention the saddle-
point approximation; see Daniels (1954), Butler (2007). This technique is a universal
method for approximating the density or cumulative distribution function based on the
corresponding Laplace transform L(s), or more precisely, the cumulant generating func-
tion (CGF) Ψθθθ(s) = log Lθθθ(−s). In particular, the saddlepoint approximation of a
density is given by the following formula:

f̃θθθ(x) =
1*

2πΨ′′
θθθ(so)

exp{Ψθθθ(so) − sox} , (6.17)

where so = so(x) is called the saddlepoint and is the unique solution of the equation

Ψ′
θθθ(so) = x , (6.18)

on the interval of existence of the transform. Thus, it can be viewed as either an ana-
lytical or numerical method for transform inversion, depending on whether the equation
can be solved analytically or requires a numerical approach.

The key idea behind this technique is to provide simpler expressions compared to the
original (possibly unknown) density. However, the saddlepoint density is usually not a
proper density because

�
f̃θθθ(x)dx �= 1. Therefore, it requires a normalization constant,

computed using (6.9) with g(x,θθθ) = f̃θθθ(x). If, for some reason, we wish to use the
approximation as the basis for statistical inference, the need for normalization can be
a prohibitive obstacle. In such cases, our proposed method of differential equations,
applied to the approximated density (6.17), may enable this line of approach.
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6.1.3 System of Pearson’s distributions

Researchers with an interest in the historical foundations of mathematical statistics may
observe that the technical aspects of our differential equation approach share similarities
with the early parametric inference methodology developed by Karl Pearson. In Pearson
(1895), it was demonstrated that numerous standard probability densities satisfy the
following differential equation:

f ′(x)

f(x)
=

x − a

b0 + b1x + b2x2
. (6.19)

They constitute the so-called Pearson’s system of ’frequency curves’. Depending on the
values of the four parameters, the system generates, for example, the normal, gamma, the
Gamma, Laplace, or Pareto distributions, which, according to existence and number of
the solutions of b0 +b1x+b2x2 = 0 are categorized into one of the twelve Pearson’s types
and subtypes. The associated statistical idea was to use (6.19) to find the recurrence
relationship between the raw moments of the distributions. Rearranging the equation,
multiplying both sides by xk, and integrating by parts over the range of x, say (x1, x2),
leads to

�
(b0 + b1x + b2x2)xkf(x)

�x=x2

x=x1

−
� x2

x1

[kb0xk−1 + (k + 1)b1xk + (k + 2)b2xk+1]f(x)dx

=

� x2

x1

xk+1f(x)dx − a

� x2

x1

xkf(x)dx , (6.20)

and, provided that the first term is zero, we have

−kb0E[Xk−1] − (k + 1)b1E[Xk] − (k + 2)b2E[Xk] = E[Xk+1] − aE[Xk] . (6.21)

Putting k = 1, 2, 3, we obtain the system that can be solved for a, b0, b1, and b2.
Finally, given a sample X1, ..., Xn we replace the theoretical moments with their sample
counterparts, 1

n

2n
j=1 Xk

j , and estimate the four parameters; for the explicit though
complicated solution see e.g. Thompson and Tapia (1990). This is the Pearson’s method
of moments in its very original form.

The distinction between these and the ’modern’ MM estimators, utilized throughout
this work, lies in the underlying inferential paradigm. Specifically, the MM estimators
introduced in eq. (1.3) align with the inductive (Fisherian) paradigm originated by R.A.
Fisher (see also the footnote on p. 1). They are derived under a narrowly postulated
distributional model, in the same way as the ML or MD estimators. Optionally, they
can be employed later in a GoF test to verify the adequacy of the initially hypothesized
model. In contrast, Pearson’s concept directly utilizes the realized values of the moment
estimators of a, b0, b1, and b2 to specify the model from a broad spectrum of possibilities
that satisfy his equation, without assuming any concrete one a priori. For example, the
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realization �b0 < 0, �b1 ≈ 0, and �b2 ≈ 0 suggest that the sample is generated by the normal
distribution; see sec. 1.3 of Thompson and Tapia (1990) or sec. 13.4.1 of Spanos (2019)
for detailed and interesting expositions.

Although the Pearson’s approach is rarely used nowadays, we should note that its core
derivation relies on the same principle as the alternative method of differential equations
presented in sec. 3.2. With the difference that there we took an integral transform of
both sides instead of computing moments. Because the members of the Pearson’s system
can be two-tailed, CF becomes the appropriate transform to treat the problem in our
way and, hopefully, to define consistent estimators. So, beginning with

(b0 + b1x + b2x2)f ′(x) = (x − a)f(x) , (6.22)

we compute CF of both sides. Next, utilizing (3.18), we derive the differential equation

b2isφ′′(s) + [(2b2+1)i−b1s]φ′(s) + (a−isb0−b1)φ(s) − b0f(x1) = 0, (6.23)

where x1 is the lower end-point of the distribution’s support. The challenge in working
with this equation is in necessity of determining f(x1), as the system encompasses distri-
butions with diverse shapes and supports. One approach could involve anticipating and,
if necessary, estimating f(x1) from a histogram or kernel-density estimator. Of course,
we may get rid of the term by taking the one order higher equation:

b2isφ′′′(s) + [(3b2+1)i−b1s]φ′′(s) + (a−isb0−2b1)φ′(s) − ib0φ(s) = 0. (6.24)

The weighted L2 estimators of θθθ = (a, b0, b1, b2)⊤ based on these equations will be

�θθθ CF 2,1,0

n = argmin
θθθ

� ∞

−∞

333b2is�φ′′
n(s) + [(2b2+1)i−b1s]�φ′

n(s)

.
+(a−isb0−b1)�φn(s) − b0

�fn(x1)
3332w(s)ds, (6.25)

and

�θθθ CF 3,2,1,0

n = argmin
θθθ

� ∞

−∞

333b2is�φ′′′
n (s) + [(3b2+1)i−b1s]�φ′′

n(s)

.
+(a−isb0−2b1)�φ′

n(s) − ib0
�φn(s)

3332w(s)ds, (6.26)

with the weight function, for example, w(s) = sγe−as2

, a > 0, γ = 0, 2, ... . The
derivation of four explicit estimators in both cases should follow a similar, albeit more
tedious, process to that outlined for the two-parameter normal distribution in Appendix
B.3. With such expressions in hand, it would be of interest to investigate how the CF-
based estimators perform in comparison to Pearson’s MM estimators, particularly in
terms of robustness.
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Finally, it is worth mentioning that the Pearson family does not exhaust the families
which encompass a number of popular distributions as special cases, and which are
characterized by some sort of differential (or difference) equations in the space of distri-
bution and/or the related transform. In the realm of discrete distributions, analogues
has been developed such as the Katz-, Sund and Jewell-, Ord- and Kemp families;
see ch. 2 of Johnson et al. (1993). For example, the Katz family is described by the
following recursion for its probability mass function

p(k + 1)

p(k)
=

α + βk

1 + k
, k = 0, 1, 2... . (6.27)

The standard binomial-, Poisson- and negative binomial distributions are members of
this family for β < 0, β = 0, and β > 0, respectively. Therefore, discrimination between
the members based on a sample, can be accomplished, in the spirit of Pearson’s approach,
through parameter estimation.

The PGF of the family

G(s) =

�
1 − βs

1 − β

$−α/β

, (6.28)

is not convenient for constructing the estimators. On contrary, the associated differential
equation

(1 − βs)G′(s) − αG(s) = 0, (6.29)

or the differential equation of the corresponding LT

(1 − βe−s)L′(s) − αe−sL(s) = 0, (6.30)

where the parameters appear in a linear relationship, make the task much easier and
lead to closed-form expressions.

Thanks to its flexibility, the Katz family finds important applications in actuarial sci-
ence, where the model has to accommodate under- and overdispersion of certain discrete
quantities with respect to the Poisson model. Therefore, a specialized alternative and
robust estimation technique for this family would be valuable.

6.1.4 Regression models

While empirical transform methods have primarily been applied to the estimation of
distribution parameters, some researchers have investigated their applicability to para-
metric regression models. Estimators in these settings can be formulated in at least two
ways:

1. as minimum distance estimators based on the distributional assumptions about
residuals, see Paulson and Nicklin (1983);
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2. as minimum distance estimators minimizing the distance between the model and
the empirical transform of the regression function (and disregarding the assumption
about residuals).

The second approach is more flexible and better suits the methodology of our work. It
was proposed by Leedow and Tweedie (1983), Feigin et al. (1983), and Laurence and Morgan
(1987) with application to specific biological experiments. Subsequently, a more com-
prehensive theoretical foundation was provided by Yao and Morgan (1999). All these
authors worked with the Laplace transform.

To this end, consider a classical univariate regression model

Y = η(x|θθθ) + ǫ , (6.31)

with zero-mean observation error, E[ǫ] = 0. Given a sample of n observations (x1, Y1), ...,
(xn, Yn), forming

Yj = η(xj |θθθ) + ǫj , (6.32)

j = 1, ..., n, our goal is to estimate the vector of parameters θθθ = (θ1, ..., θp)⊤, and with

the estimate �θθθn at hand, fit the regression line�E[Y |x] = η(x|�θθθn) , (6.33)

which predicts the response for all the values of the predictor x.

Parameter estimation requires computation of the model LT,1

L (s|θθθ) =

�
η(x|θθθ)e−sxdx , (6.34)

and construction of the empirical transform from the sample. The latter process is by
far not unique, but the most obvious option is to use the Riemann-sum approximation of
(6.34). In particular, we sort the sample, (x1, Y1), ..., (xn, Yn), so that x1 < x2 < ... < xn,
and partition the x-axis with n + 1 points cj , computed via the mid-point rule,

cj =
xj + xj+1

2
, j = 2, 3, ..., n − 1 . (6.35)

For the end-points, we take c1 = x1 and cn+1 = xn.

Using this partition, we can form a discrete approximation of the function

η(x|θθθ) ≈

����������

η(x1|θθθ) for c1 ≤ x < c2

η(x2|θθθ) for c2 ≤ x < c3

...

η(xn|θθθ) for cn ≤ x < cn+1 ,

(6.36)

1To avoid confusion with LTs of probability distribution, we use here the stylish letter L to denote
LTs of the regression functions.
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as shown in Fig. 6.1, and approximate (6.34) by the Riemann sum,

L (s|θθθ) ≈
n1

j=1

η(xj |θθθ)

� cj+1

cj

e−sxdx

=
n1

j=1

η(xj |θθθ)
e−scj − e−scj+1

s
. (6.37)

Finally, the empirical LT is obtained by replacing η(xj |θθθ) by its unbiased estimate Yj ,
that is �Ln(s) =

n1
j=1

Yj
e−scj − e−scj+1

s
. (6.38)

Now, in spirit of the transform-matching approach proposed for distributions, the esti-
mator of θθθ may be defined as the p-dimensional solver of����������

L (s1|θθθ) = �Ln(s1)

L (s2|θθθ) = �Ln(s2)
...

L (sp|θθθ) = �Ln(sp) ,

(6.39)

computed at set of p s-points inside the transform’s region of convergence. Alternatively,
as advocated by Yao and Morgan (1999), the limiting estimator as s1 → ... → sp → s
is preferred for easier controllability; obtaining this version of the estimator amounts to
solving ����������

L (s|θθθ) = �Ln(s)

L ′(s|θθθ) = �L ′
n(s)

...

L (p−1)(s|θθθ) = �L (p−1)
n (s).

(6.40)

The mentioned authors also pointed out that the so-defined estimator can be strongly
biased when sample data is available only for a part of the region over which η(x|θθθ) is
non-zero. To overcome this problem, the model LT should be computed only in that
range, just as the empirical version is. That is, instead of (6.34), one should use the
end-corrected transform,

Lec(s|θθθ) =

� xn

x1

η(x|θθθ)e−sxdx , (6.41)

(and its derivatives), where x1 and xn are the smallest and largest x-coordinates in
the sorted sample. Although not explicitly mentioned by the authors, the correction is
crucial for another important reason: it liberates us from the issues related to transform
convergence and boundedness - problems we consistently encountered when working with
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distribution functions. In fact, over a finite interval of x, transforms with any kernel
can be computed. Of course, the end-corrected transforms will have more complicated
expressions than those without corrections.

The author of this thesis has explored the approach, as outlined above, for several pop-
ular regression models. Explicit and effective estimators have been obtained for linear,
polynomial, exponential, and sinusoidal regression functions. This encourages further
work because explicit regression estimators are known only in case of the least-squares
approach applied to linear models. Nevertheless, certain aspects of the methodology
published until now merit reconsideration or modification.

First, despite reducing the dimension of the transform variable from p to 1, the issue of
choosing a single s-point on the real line remains essentially unresolved. The data-driven
selection of this point, so successful in distribution estimation, seems unfeasible in the
regression scenario, possibly due to the different properties of the Laplace transform. In
these circumstances, we propose a different selection strategy that aims to maintain the
(asymptotic) variance of the estimator at a low level. Note that each element of the

estimator �θθθn(s) = {�θ (1)
n (s), ..., �θ (p)

n (s)}⊤ that solves (6.40) can expressed as

�θ (i)
n (s) = gi

� �Ln(s), �L ′
n(s), ..., �L (p−1)

n (s)
!
, i = 1, ..., p. (6.42)

for some function gi. The Delta Method, Casella and Berger (2002), indicates that its
asymptotic variance is linearly proportional to the variances of the empirical LT and its
derivatives at s. Although achieving low variance by putting s close to zero would be
desirable, an examination of (6.38) reveals the opposite effect: the variance is maximized
as s → 0. Therefore, we recommend working with the transform with a modified kernel,
namely

Lec(s|θθθ) =

� xn

x1

η(x|θθθ)ske−sxdx , (6.43)

k = 1, 2, ..., so that its empirical counterpart is

�Ln(s) =
n1

j=1

Yj sk−1[e−scj − e−scj+1 ] . (6.44)

The variances of (6.44) and its derivatives exhibit now the desired behavior as s → 0.
Importantly, the modification of the kernel does not complicate the computation of the
end-corrected model LT in any way.

It is the author’s consistent experience that the precision (bias and variance) of estima-
tors constructed in this modified manner is very close to that of the non-linear least
squares in the respective model. Of course, the question arises: How small should s be?
The answer is that it should be the smallest possible within the constraints that ensure
the numerical stability of computing the terms e−sc1 and e−scn+1 . Alternatively, the
search for an appropriate s in the vicinity of zero may be supported by cross-validation.
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Yet another option is to employ L2 estimator of the form

�θθθn = argmin
θθθ

� ∞

0

�
Lec(s|θθθ) − �Ln(s)

�2
e−asds , a > 0, (6.45)

which does not require the derivatives of transforms and avoids the numerical problems
connected with exponentials. Also, this type of estimator is going to be robust against
outliers in the Y variable, as opposed to (6.40), which, remarkably, does not show
this property in regression settings. However, the explicitness of the estimates is not
guaranteed unless Lec(s|θθθ) is linear in θθθ.

Of course, as with probability distributions, we may encounter cases where the regres-
sion model has no explicit or sufficiently tractable transform computed by (6.34), (6.41)
or (6.43), for example, if η(x|θθθ) is a rational function of x. In such instances, however,
we may resort to our methodology and find a differential equation satisfied by η(x|θθθ) to
derive the one satisfied by Lec(s|θθθ). The relations between the derivatives are slightly
more involved than for the probability distributions because of end-corrections. Never-
theless, as examined already by the author, the approach described in sec. 3.2 generally
applies to regression problems as well.

The presented methodology, along with all its modifications and potential L2 variants of
the estimators, require separate asymptotic distribution- and robustness theories. Both
offer fruitful topics for future research.

Figure 6.1: Riemann-sum approximation of the regression function η(x|θθθ).
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6.1.5 Multivariate and non-parametric problems

While this thesis addressed univariate distributions, it is crucial to emphasize that empir-
ical transform methods are also applicable to vectors of random variables. In fact, recent
developments in this area of statistics are primarily driven by multivariate settings. How-
ever, when it comes to strictly parametric problems, the transform approach encounter
here limitations, as very few multivariate distributions admit tractable expressions for
CFs, LTs and PGFs (yet even fewer than the univariate ones do); consider, for instance,
the table of standard bivariate distributions in Spanos (2019) or consult various chapters
on the multivariate distributions in Kotz et al. (2000).

For this discussion, consider a d-dimensional continuous random vector XXX = (X1, ..., Xd)⊤,
described by the joint cumulative distribution F (xxx|θθθ) = P (X1 ≤ x1, ..., Xd ≤ xd) with
parameter θθθ = (θ1, ..., θp)⊤. The corresponding multivariate LT and CF are defined as

L(sss|θθθ) = E[e−sss⊤XXX ] =

�
Rd

e−sss⊤xxxdFθθθ(xxx) , (6.46)

and

φ(sss|θθθ) = E[eisss⊤XXX ] =

�
Rd

eisss⊤xxxdFθθθ(xxx) , (6.47)

where sss = (s1, ..., sd)⊤ is the vector of transform variables.

Given a random sample of n realizations, (XXX1,XXX2, ...,XXXn), where XXXj = (Xj1, Xj2, ..., Xjd),

with corresponding empirical distribution �Fn(xxx) = 1
n

2n
j=1

)d
k=1 I{Xjk ≤ xk}, the em-

pirical non-parametric counterparts of (6.46) and (6.47) are expressed as

�Ln(sss) =
1

n

n1
j=1

e−sss⊤XXXj . (6.48)

and �φn(sss) =
1

n

n1
j=1

eisss⊤XXXj , (6.49)

Whereas the multivariate ELT rarely occurs in literature, extensive treatments on the
properties and applications of multivariate ECF are available in several monographs
and overviews such as Csörgő (1981), Kankainen (1995), Ushakov (1999) or Meintanis
(2016).

Multivariate distributions that possess explicit and tractable model transforms are nearly
limited the elliptical families. Among these, the CFs of the d-variate normal, stable and
Laplace distributions are expressed, respectively, by

φ(sss|µµµ,ΣΣΣ) = exp
�
isss⊤µµµ − 1

2
sss⊤ΣΣΣsss

!
, (6.50)
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φ(sss|µµµ,ΣΣΣ) = exp
�
isss⊤µµµ − 1

2
(sss⊤ΣΣΣsss)α/2

!
, (6.51)

and

φ(sss|µµµ,ΣΣΣ) =
isss⊤µµµ

1 + 1
2sss⊤ΣΣΣsss

, (6.52)

where i2 = −1, 0 < α ≤ 2, µµµ ∈ R
d is the d × 1 vector of location parameters and ΣΣΣ is a

d × d symmetric, positive definite scale matrix.

But even in these favorable cases, parameter estimation directly from the transforms is
often difficult. Rather, the available expressions have been used to construct goodness-
of-fit statistics computed for standardized data (by means of alternative estimators of
location and scale), thereby rendering the parameters irrelevant; see the tests proposed by
Henze and Wagner (1997), Fragiadakis and Meintanis (2011) or Meintanis et al. (2015).

Explicit estimators for the stable distribution family, derived directly from (6.51), were
proposed by already by Press (1972) and, later by Zolotarev (1981); see also sec. 3.4.1.
of Ushakov (1999) for an overview. However, these estimators were computed at a single
d-dimensional sss point. Given our unsatisfactory experiences with so-defined CF esti-
mators in univariate scenarios, such as (4.83) or (4.189) and (4.190), their multivariate
counterparts are also anticipated to be weak. Notably, neither of the two mentioned
papers provide empirical results in this respect.

More reliable estimation is expected with multidimensional integrated L2-type estima-
tors. To our best knowledge, the only such estimator was developed for the normal
distribution by Paulson and Lawrence (1982). Using (6.50), it was defined as

��µµµn, �ΣΣΣn

!
= argmin

µµµ,ΣΣΣ

n1
j=1

�
Rd

333 exp
�
isss⊤µµµ − 1

2
sss⊤ΣΣΣsss

!
− exp

�
isss⊤XXXj

!3332dW (sss) , (6.53)

that is, as the minimizer of sums the weighted L2 distances between CF and ECF of
each single observation XXXj (rather than as the minimizer of the weighted L2 distance
between CF and ECF of all n observations). Upon applying a d-variate Gaussian weight
function, the definition resulted in a set of estimating equations where µµµ and ΣΣΣ are
coupled implicitly. Consequently, the estimator necessitates a numerical approach and,
despite having proven robustness, has not gained popularity.

However, explicit counterparts of (6.53) appear to be derivable by resorting to partial
differential equations satisfied by (6.50). For simplicity, let us consider the bivariate
normal case,

φ(s1, s2) = exp
�
i(s1µ1 + s2µ2) − 1

2(σ2
1s2

1 + σ2
2s2

2 + 2σ12s1s2)
!

, (6.54)
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where σ2
1, σ2

2, and σ12 stand for the variances and the covariance. By taking the partial
derivatives, we obtain����

∂φ(s1, s2)

∂s1
= φ(s1, s2)(iµ1 − σ2

1s1 − 2σ12s2)

∂φ(s1, s2)

∂s2
= φ(s1, s2)(iµ2 − σ2

2s2 − 2σ12s1) .
(6.55)

Then, eliminating φ(s1, s2) and replacing the derivatives by their estimates, we arrive
at the empirical equality on which we may base the estimator �θθθn = (�µ1, �µ2, �σ2

1, �σ2
2, �σ12)⊤.

That is, our candidate for the weighted L2 estimator, computable in closed form, is

�θθθn = argmin
µ1, µ2, σ2

1
, σ2

2
, σ12

∞�
-∞

∞�
-∞

3333∂ �φn(s1, s2)

∂s1
(iµ2 − σ2

2s2 − 2σ12s1)

.
−∂ �φn(s1, s2)

∂s2
(iµ1 − σ2

1s1 − 2σ12s2)

33332w(s1, s2)ds1ds2 , (6.56)

where w(s1, s2) = sγ1

1 sγ2

2 exp(−a1s2
1 − a2s2

2), γ1, γ2 = 0, 2, ..., and a1, a2 > 0.

An important question for further research is whether the differential approach could
be extended to models whose multivariate transform is unknown or too complicated,
but a partial differential equation satisfied by it is derivable from the corresponding
equation of the density. This would require a generalization of our alternative method
from sec. 3.2 to multivariate settings. In view of complexity of the formulas for Laplace
transforms of partial derivatives of a just two-variable function, as presented in Cohen
(2007), extending these derivations to an arbitrary dimension d appears to be a laborious
task.

While multivariate parametric models present certain challenges for empirical transform
methods, these methods flourish in non-parametric multivariate procedures. One ap-
plication area involves tests for total independence among a group of random variables.
Such tests rely on the premise that, in the case of total independence, the joint CF of
the vector, say X1, X2 ..., Xd, equals the product of the CFs of the marginals:

φX1,...,Xd
(sss) =

d(
k=1

φXk
(sk). (6.57)

Therefore, upon replacing the CFs by their empirical versions, i.e. φX1,...,Xd
(sss) by �φn(sss)

and φXk
(sk) by �φk,n(sk), the independence can be tested via realization of the following

statistic:

Tn = n

�
Rd

333 �φn(sss) −
d(

k=1

�φk,n(sk)
3332dW (sss) . (6.58)
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Statistics of this type were studied by Kankainen (1995). More recently, they have been
applied to non-parametric regression and time-series models to test for independence be-
tween the residuals (innovations) and the regressors (past observations); see Hlávka et al.
(2011) and Hušková et al. (2019), respectively.

The second group of non-parametric procedures deals with change-point detection; see,
e.g., Tan et al. (2016) and Hlávka et al. (2017). Consider a time series of d-dimensional
vector observations XXX1, XXX2, ..., XXXn, each having distribution function Fj(xxx), j = 1, ..., n.
It is assumed that the distribution changes at some point, i.e.

F1 = ... = Fk �= Fk+1 = ... = Fn−1 = Fn (6.59)

where k is called the change point.

Taking the d-variate ECFs,

�φk(sss) =
1

k

k1
j=1

eisss⊤XXXj , (6.60)

and �φ 0
k (sss) =

1

n − k

n1
j=k+1

eisss⊤XXXj , (6.61)

we can adopt the following statistic

Tn(k) =

�
k(n − k)

n2

$γ k(n − k)

n

�
Rd

333 �φk(sss) − �φ 0
k (sss)

3332dW (sss) , (6.62)

γ ∈ (0, 1], that measures the divergence between successive subsamples (XXX1, ..., XXXk) and
(XXXk+1, ..., XXXn). The estimator of the change-point is then

�k = argmax
1 ≤ k < n

Tn(k) . (6.63)

Notice that such distance statistics can also be used for cluster analysis. For example,
assuming that each of the observations (XXX1, ..., XXXn) belongs to one of two clusters, one
calculates (6.62) for every division of the sample into two sets. The division that maxi-
mizes the statistic is considered as the one indicating the strongest separation between
the two populations, and determines the cluster assignment. This approach, used to
multiclass clustering in the context of the support vector machines, has been presented
by Cubiles-de-la Vega et al. (2012).

Given a couple of fundamental applications of the non-parametric statistics such as
(6.58) or (6.62), it raises an interesting question whether basing them on derivatives of
the transforms would be beneficial in some way, as it turned out to be in the parametric
settings of this thesis.
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APPENDIX A
Results from theory of V- and U-

statistics

We review the properties of V- and U-statistics exploited in this thesis to analyze asymp-
totic distribution of L2 estimators and statistics based on transforms. For more details
the reader is referred to Serfling (1980), Lee (1990) or van der Vaart (2000).

In many statistical models, quantities of interest can be represented by an m-degree
expectation functional acting on a distribution function F = F (x) = P (X ≤ x), namely

T (F ) = EF [ ψ(X1, ..., Xm)] . (A.1)

The function ψ : Rm → R, called kernel, is permutation symmetric in its arguments and
integrable w.r.t to F . Such functional usually refers to a parameter of F , or to some
non-parametric characteristic (mean, median, quantile).

A natural way of estimating T (F ) from random sample of n ≥ m i.i.d. observations,
{X1, ..., Xn}, is by the plug-in estimator

T ( �Fn) = Vn =
1

nm

n1
i1=1

...
n1

im=1

ψ(Xi1
, ..., Xim) , (A.2)

called the V-statistic of degree m.

Since for m > 1 the sum contains some terms i1, ..., im which are not distinct, Vn is a
biased estimator of T (F ), that is E[Vn] �= T (F ). Moreover, the asymptotic normality
of Vn cannot be shown by the Central Limit Theorem which assumes independence of
the summands. However, the asymptotic distribution of Vn can be determined by the
corresponding U-statistic

Un =

�
n

m

"−1 1 1
...

1
1≤i1<i2...<im≤n

ψ(Xi1
, ..., Xim) , (A.3)
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A. Results from theory of V- and U- statistics

in which no duplicates occur. Un is an unbiased estimator of T (F ), E[Un] = T (F ), since
it is an average of

�n
m

#
terms, each with expectation EF [ψ(X1, ..., Xm)].

Variance of U-statistics

Combinatorial arguments lead to the following exact expression for variance of U-statistic:

Var[Un] =

�
n

m

"−1 m1
c=1

�
m

c

"�
n − m

m − c

"
σ2

c , (A.4)

with

σ2
c = Var[ψ(c)(X1, ..., Xc)] , (A.5)

where

ψ(c)(x1, ..., xc) =

�
E[ψ(x1, ..., xc, Xc+1, ..., Xm)] , 1 ≤ c ≤ m − 1 ,

ψ(x1, ..., xm) , c = m .
(A.6)

For proof see Lee (1990), sec. 1.3.

Asymptotic normality of V- and U-statistics

By the method of projection due to Hoeffding (1948) and Hájek (1968), it can be shown
that if E2[ψ(X1, ..., Xm)] < ∞ and σ2

1 > 0, then

√
n(Un − T (F ))

d−→ N (0, m2σ2
1) , (A.7)

for proof see van der Vaart (2000), sec. 12.1.

Also, if Er[ψ(X1, ..., Xm)] < ∞, r = 1, 2, ..., it can be proved that

E|Un − Vn|r = O(n−r) , (A.8)

as shown in sec. 5.7.3 of Serfling (1980). Therefore, with r = 2 it follows that the
corresponding U- and V-statistic have the same asymptotic distribution, namely

√
n(Vn − T (F ))

d−→ N (0, m2σ2
1) . (A.9)

In this thesis, we work only with U- and V- statistics of degree m = 2. According to
(A.5) and (A.6), we can write compactly

σ2
1 = Var

�
E[ψ(x1, X2)]

333
x1=X1

�
. (A.10)
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The result of main importance to us is the asymptotic multivariate normality of a vector
of p degree-2 V-statistics, each with different kernel ψi(X1, X2), i = 1, ..., p, but based
on the same i.i.d sample (X1, ..., Xn), namely

VVV n =
�
V 1

n , V 2
n , ..., V p

n

!⊤
, (A.11)

where

V i
n =

1

n2

n1
j=1

n1
k=1

ψi(Xj , Xk). (A.12)

VVV n is considered as an estimator of a vector of functionals

TTT (F ) =
�
T (1), T (2), ..., T (p)

!⊤
, (A.13)

acting on the same distribution function F . The joint asymptotic normality of VVV n is
established on the ground of the Cramér-Wold theorem; see Sen and Singer (1993). We
have then

√
n(VVV n − TTT (F ))

d−→ Np(000,ΣΣΣ) , (A.14)

where ΣΣΣ is the p × p symmetric covariance matrix whose (i, j)-th entry equals

σi,j = 4Cov
�
E[ψi(x1, X2)]

333
x1=X1

,E[ψj(x1, X2)]
333
x1=X1

�
. (A.15)

First-order degeneracy

If the formula (A.5) yields σ2
1 = 0 but σ2

2 > 0, then the U-statistic is said to possess
the first order degeneracy. The asymptotic distribution of such U-statistic is not nor-
mal. In particular, for degree-2 U-statistic based on kernel ψ(x1, x2) = f(x1)f(x2) with
E[ψ(x1, X2)] = 0 (hence σ2

1 = 0), E2[ψ(X1, X2)] < ∞ and E[ψ(X1, X2)] = 0 it can be
shown that

n(Un − T (F ))
d−→

∞1
j=1

λj(Z2
j − 1) , (A.16)

where Z1, Z2, ... are independent standard normal random variables, and λj are the
eigenvalues of the integral equation�

ψ(x1, x2)f(x2)dF (x2) = λf(x1) . (A.17)

For proof see Lee (1990), sec. 3.2.

This means that nUn is asymptotically distributed as an infinite linear combination of
chi-squared variables with one degree of freedom.
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APPENDIX B
Derivations of selected results

B.1 Covariance function of the ELT process

The covariance function (2.22) of the empirical Laplace transform of i.i.d. sample com-
puted at two points s1 and s2 is derived as follows

Cov[�Ln(s1), �Ln(s2)] = E[�Ln(s1)�Ln(s2)] − E[�Ln(s1)]E[�Ln(s2)]

= 1
n2E

� 2n
j=1 e−s1Xj

2n
k=1 e−s2Xk

�
− L(s1)L(s2)

= 1
n2E

� 2n
j=1

2n
k=1 e−s1Xj e−s2Xk

�
− L(s1)L(s2)

= 1
n2

2n
j=1 E[e−(s1+s2)Xj ] + 1

n2

2
j =k E[e−s1Xj e−s2Xk ] − L(s1)L(s2)

= 1
n L(s1 + s2) + 1

n2

2
j =k E[e−s1Xj ]E[e−s2Xk ] − L(s1)L(s2) ,

= 1
n [L(s1 + s2) − L(s1)L(s2)] ,

where we use independence of Xj and Xk for i �= j.
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B. Derivations of selected results

B.2 Mean of the squared modulus of ECF

The expected value of the squared modulus of ECF (2.33) is derived as follows

E[|�φn(s)|2] = E

�
1

n2

n1
j=1

n1
k=1

cos(s(Xj − Xk))

�

= E

�
1

n2

n1
j=1

cos(0)

�
+ E

�
2

n2

1 1
1≤j<k≤n

cos(s(Xj − Xk))

�

=
1

n
+

n − 1

n
E

�
cos(sXj) cos(sXk) + sin(sXj) sin(sXk)

�
=

1

n
+

n − 1

n
[�u2

n(s) + �v2
n(s)]

= |φ(s)|2 +
1 − |φ(s)|2

n
.

B.3 Derivation of the L2 estimators for the normal

distribution

We obtain the expressions for the estimators (4.38) and (4.39) as follows.

By Jn(µ, σ2) denote the integral in (4.37) to be minimized. Using the definition of the
complex modulus we can write

Jn(µ, σ2)=

� ∞

−∞

�
Re2

�
(sσ2−iµ)�φn(s) − �φ′

n(s)
�

+ Im2
�
(sσ2−iµ)�φn(s) − �φ′

n(s)
��

sγe−as2

ds.

After some algebra we find that

Re2
�
(sσ2−iµ)�φn(s) + �φ′

n(s)
�

=
� 1

n

n1
j=1

sσ2 cos(sXj) + (µ − Xj) sin(sXj)
�2

,

Im2
�
(sσ2−iµ)�φn(s) + �φ′

n(s)
�

=
� 1

n

n1
j=1

sσ2 sin(sXj) − (µ − Xj) cos(sXj)
�2

.

Taking both squares, we obtain two double sums. Putting them back into the first
equation and applying the "product-to-sum" trigonometric identities, we find that several
terms cancel, and we obtain

Jn(µ, σ2) =
1

n2

� ∞

−∞

� n1
j,k=1

s2σ4 cos
�
s(Xj − Xk)

!
− sσ2(Xj − Xk) sin

�
s(Xj − Xk)

!
+ (µ − Xj)(µ − Xk) cos

�
s(Xj − Xk)

!�
sγe−as2

ds .
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B.3. Derivation of the L2 estimators for the normal distribution

Now, we integrate analytically both for γ = 0 and γ = 2 using the formulas (C.8), (C.9),
(C.11), (C.10) and (C.12) in Appendix C; we obtain

n2Jn(µ, σ2) = Anµ2 + Bnµ + Cnσ4 + Dnσ2 + En ,

whereby for γ = 0 we have

An =
n1

j,k=1

-
π

a
exp

�
− (Xj −Xk)2

4a

$
,

Bn = −
n1

j,k=1

-
π

a
(Xj +Xk) exp

�
− (Xj −Xk)2

4a

$
,

Cn = −
n1

j,k=1

1

4

-
π

a3

�
(Xj −Xk)2

a
− 2

$
exp

�
− (Xj −Xk)2

4a

$
,

Dn = −
n1

j,k=1

1

2

-
π

a3
(Xj −Xk)2 exp

�
− (Xj −Xk)2

4a

$
,

while for γ = 2 we have

An = −
n1

j,k=1

1

4

-
π

a3

�
(Xj −Xk)2

a
− 2

$
exp

�
− (Xj −Xk)2

4a

$
,

Bn =
n1

j,k=1

1

4

-
π

a3
(Xj +Xk)

�
(Xj −Xk)2

a
− 2

$
exp

�
− (Xj −Xk)2

4a

$
,

Cn =
n1

j,k=1

1

4

-
π

a5

�
(Xj −Xk)4

4a2
− 3

(Xj −Xk)2

a
+ 3

$
exp

�
− (Xj −Xk)2

4a

$
,

Dn =
n1

j,k=1

1

8

-
π

a7
(Xj −Xk)2 exp

�
− (Xj −Xk)2

4a

$�
(Xj −Xk)2 − 6a

�
.

The term En is in both cases independent of µ and σ2.

Jn(µ, σ2) has a unique minimizer being the solver of������
∂Jn(µ, σ2)

∂σ2
= 2Anµ + Bn = 0,

∂Jn(µ, σ2)

∂µ
= 2Cnσ2 + Dn = 0,

so that the estimator (4.37) equals

�µ CF 0,1
n = − Bn

2An
, �σ2

n

CF 0,1
= − Dn

2Cn
,

yielding the final forms (4.38) and (4.39).
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B. Derivations of selected results

B.4 Derivation of the L2 estimators for the exponential

distribution

First, we show how to derive the estimator �λ LT 2,1
n in (4.70) from (4.61). By Jn(λ) let

us denote the integral in (4.61) to be minimized. Write it as follows

Jn(λ) =

� ∞

0

�
(λ + s)

1

n

n1
j=1

X2
j e−sXj − 2

n

n1
j=1

Xje−sXj

�2
sγe−asds

=

� ∞

0

1

n2

� n1
j=1

(λ + s)X2
j e−sXj −2Xje−sXj

�2
sγe−asds

=

� ∞

0

1

n2

n1
j,k=1

�
(λ+s)X2

j e−sXj −2Xje−sXj

��
(λ+s)X2

ke−sXk −2Xke−sXk

�
sγe−asds .

Multiplying and collecting terms according to powers of s gives

Jn(λ) =
1

n2

n1
j,k=1

[λ2X2
j X2

k − 2λ(XjX2
k + X2

j Xk)]

� ∞

0
sγe−asds

+
1

n2

n1
j,k=1

[2λX2
j X2

k − 2λ(XjX2
k + X2

j Xk)]

� ∞

0
sγ+1e−asds

+
1

n2

n1
j,k=1

[X2
j X2

k − 4XjXk]

� ∞

0
sγ+2e−asds . (B.1)

By using the integral
� ∞

0 ske−csds = k!
ck+1 , k = 0, 1, 2, ..., c > 0, rearranging and

dropping the terms which do not depend on λ, we find that

�λ LT 2,1
n = argmin

λ > 0

�
λ2

n1
j,k=1

γ!X2
j X2

k

(Xj +Xk+a)γ+1� �� �
An

+λ
n1

j,k=1

�
2(γ+1)!X2

j X2
k

(Xj +Xk+a)γ+2
− 2γ!(X2

j Xk +XjX2
k)

(Xj +Xk+a)γ+1� �� �
Bn

$�
.

The unique minimizer is −Bn/2An and is equivalent to final form (4.70).

Next, we sketch how �λ CF 1,0
n in (4.72) is derived from (4.64). With

�φn(s) =
1

n

n1
j=1

cos(sXj) + i
1

n

n1
j=1

sin(sXj) ,

�φ′
n(s) = − 1

n

n1
j=1

Xj sin(sXj) + i
1

n

n1
j=1

Xj cos(sXj) ,
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B.4. Derivation of the L2 estimators for the exponential distribution

the squared modulus in the integrand of (4.64) can be written as

333 ·
3332 =

� 1

n

n1
j=1

(1 − λXj) cos(sXj) − sXj sin(sXj)
�2

+
� 1

n

n1
j=1

(1 − λXj) sin(sXj) + sXj cos(sXj)
�2

.

Taking squares, grouping the terms, and applying the trigonometric "product-to-sum"
identities leads to convenient cancellations after which we have333 ·

3332 =
1

n2

n1
j,k=1

(1−λXj)(1−λXk) cos
�
s(Xj − Xk)

!
+ s2XjXk cos(sXj) cos(sXk) .

We drop the second term in the above sum (which is not a function of λ) and we find
that (4.64) equals

�λ CF 1,0
n = argmin

λ > 0

n1
j,k=1

(1−λXj)(1−λXk)

� ∞

−∞
cos

�
s(Xj − Xk)

!
sγe−as2

ds� �� �
An

.

The function to be minimized is quadratic in λ. Hence

�λ CF 1,0
n =

n2
j,k=1

(Xj +Xk)An

2
n2

j,k=1
XjXkAn

. (B.2)

To compute An for γ = 0 and γ = 2, we apply integrals (C.8) and (C.10) from Ap-
pendix C. They yield, respectively,

An =

-
π

a
exp

�
−(Xj −Xk)2/4a

!
, for γ = 0 ,

An = −1

4

-
π

a3
exp

�
−(Xj −Xk)2/4a

!�
(Xj −Xk)2/a − 2

�
, for γ = 2 .

Putting these expressions into (B.2) gives the final expressions for the estimator in
(4.72).
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APPENDIX C
Definite integrals used in the

thesis

For any a, γ > 0, b ∈ R, k = 0, 1, 2, ...

� ∞

0
xke−axdx =

k!

ak+1
. (C.1)

� ∞

−∞
e−ax2

dx =

-
π

a
. (C.2)

� ∞

−∞
e−ax2+bxdx =

-
π

a
exp

�
b2

4a

$
. (C.3)

� ∞

−∞
xe−ax2+bxdx =

b

2

-
π

a3
exp

�
b2

4a

$
. (C.4)

� ∞

−∞
x2e−ax2

dx =
1

2

-
π

a3
. (C.5)

� ∞

−∞
x2e−ax2+bxdx =

(2a + b2)

4

-
π

a5
exp

�
b2

4a

$
. (C.6)

� ∞

0
xke−axγ

dx =
1

γ
a−(k+1)/γ Γ

�
k + 1

γ

$
. (C.7)
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C. Definite integrals used in the thesis

� ∞

−∞
cos(bx)e−ax2

dx =

-
π

a
exp

�
− b2

4a

$
. (C.8)

� ∞

−∞
x sin(bx)e−ax2

dx =
b

2

-
π

a3
exp

�
− b2

4a

$
. (C.9)

� ∞

−∞
x2 cos(bx)e−ax2

dx = −1

4

-
π

a3
exp

�
− b2

4a

$�
b2

a
− 2

$
. (C.10)

� ∞

−∞
x3 sin(bx)e−ax2

dx = −1

8

-
π

a7
exp

�
− b2

4a

$
b(b2 − 6a) . (C.11)

� ∞

−∞
x4 cos(bx)e−ax2

dx =
1

4

-
π

a5
exp

�
− b2

4a

$�
b4

4a2
− 3b2

a
+ 3

$
. (C.12)

The formulas can be found in Gradshteyn and Ryzhik (2015) and Poularikas (2010).

186



APPENDIX D
Mathematical symbols and

abbreviations

D.1 Mathematical symbols

Ω sample space
F σ-algebra of events
P (A) probability of event A
I{ · } indicator function
X, Y, Z, K random variables
n sample size
Xj j-th element of the random sample (X1, ..., Xn)
X(j) j-th order statistic

XXX random vector
XXXj j-th element of the random sample (XXX1, ...,XXXn)
θθθ vector of parameters�θθθn estimator of θθθ
F (x), Fθθθ(x), F (x|θθθ) cumulative distribution function (cdf) with parameter θθθ
f(x), fθθθ(x), f(x|θθθ) probability density function (pdf) with parameter θθθ
fX(x), fX(x|θθθ), fY (y), fY (y|θθθ) probability density functions of specific variables X, Y
p(k), pθθθ(k) probability mass function (pmf) of a discrete variable K�Fn(x) empirical distribution function�fn(x) estimated density function

F (x|�θθθn) parametrically estimated cumulative distribution function

f(x|�θθθn) parametrically estimated density function
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D. Mathematical symbols and abbreviations

Fθθθ(xxx) multivariate cumulative distribution function of a vector XXX�Fn(xxx) multivariate empirical distribution function
E[X],Eθθθ[X] expectation of a random variable X
E[Xk],Eθθθ[Xk] k-th raw moment of a random variable X
E[Y |x] conditional expectation of Y given X = x
Med[X] median of a random variable X
V[X] variance of a random variable X
Vas[ · ] asymptotic variance (of a statistic or estimator)
Cov[ · , · ] covariance

ΣΣΣ, �ΣΣΣn covariance matrix, estimated covariance matrix
T (F ) functional of a distribution function F
IF[x; T ] influence function of a functional T at point x
T (s) integral transform
K(s, x) kernel of an integral transform
s, t transform variable
sss vector of transform variables
D interval of convergence of a transform
D′, DI subinterval of D, interior of D�Tn(s) empirical integral transform

T (s|�θθθn) parametrically estimated integral transform
L(s), Lθθθ(s), L(s|θθθ), Laplace transform (LT) of Fθθθ(x)
σ−, σ+ abscissa of convergence of Laplace transform�Ln(s) empirical Laplace transform (ELT)

L(s|�θθθn) parametrically estimated Laplace transform
φ(s), φθθθ(s), φ(s|θθθ) characteristic function (CF) of Fθθθ(x)
u(s), uθθθ(s) real part of characteristic function
v(s), vθθθ(s) imaginary part of characteristic function
|φ(s)|2 squared modulus of characteristic function�φn(s) empirical characteristic function (ECF)�un(s) real part of empirical characteristic function�vn(s) imaginary part of empirical characteristic function

|�φn(s)|2 squared modulus of empirical characteristic function
φ(sss) multivariate characteristic function�φn(sss) multivariate empirical characteristic function
G(s), Gθθθ(s) probability generating function (PGF) of pmf pθθθ(k)�Gn(s) empirical probability generating function (EPGF)
Ψθθθ(s) cumulant generating function (CGF)
η(x|θθθ) regression function
L (s|θθθ) Laplace transform of a regression function
Lec(s|θθθ) end-corrected Laplace transform of a regression function
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D.1. Mathematical symbols

�Ln(s) empirical Laplace transform of a regression function
Tn statistic, test statistic
Re{z} real part of a complex number z
Im{z} imaginary part of a complex number z
z complex conjugate of z
i imaginary unit
ρ( · , · ) distance or divergence measure

d−→ convergence in distribution
a.s.−→ strong convergence
O(·) big ’Oh’, f(x) = O(g(x)) if limx → 0 f(x)/g(x) = const.
N normal distribution
B number of bootstrap replications
dim( · ) dimension of a vector
Xn, Zn, Kn, sample means�medn sample median

S2
n, �Vn[Z], �Vn[K] sample variances�Skn sample skewness�Kn sample kurtosis

MADn median absolute deviation
Qn the Qn estimator
Vn, Un V-statistic, U-statistic
An, Bn, Cn, Dn, En, Jn auxilary V-statistics
ψ(X1, ..., Xm) kernel of a degree-m V- or U-statistic
µ, σ, λ, α, β, ϑ, γ, a, b, c, q parameters of probability distributions
µµµ vector of means or location parameters
σ2

1, σ2
2, ... auxiliary variances / variance components

ΩΩΩ, KKK, ννν auxiliary matrices and vectors
i, j, k, ℓ, r, m, c, p, d integer constants, indices, dimensions
γ, δ, η, a, b, k, q, C real constants
W (s) weight function of L2 distances in transform domain
a, γ scale and shape parameters of W (s)
h( · ), g( · ), w( · ), ξ( · ) auxiliary functions�θθθ LT r,m

n estimator based on a differential equation of LT
involving its r-th and m-th derivative�θθθ CF r,m

n estimator based on a differential equation of CF
involving its r-th and m-th derivative�θθθ LT r,m,ℓ

n estimator based on a differential equation of LT
involving its r-th, m-th and ℓ-th derivative

H0 null-hypothesis
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D. Mathematical symbols and abbreviations

P power of a test�Pn estimated power for sample size n
R, R+, R0

+ real numbers, positive and non-negative real numbers
N

0
+, K non-negative integers, subset of integers

erfc( · ) complementary error function
B( · , · ) beta function
Γ( · ), Γ( · , · ) gamma function, lower incomplete gamma function
Kp(·) modified Bessel function of 2nd kind
ψ(·) digamma function
E1(·) exponential integral
[f(x)]k⊛ k-fold self-convolution a function

f̃(x) saddlepoint approximation of density function f(x)
so, so(x) saddlepoint
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D.2. Abbreviations

D.2 Abbreviations

AD Anderson-Darling (test)
ARE asymptotic relative efficiency
CF characteristic function
CGF cumulant generating function
ch. chapter
CLT Central Limit Theorem
CM Crámer-von Mises (test, estimator)
CV cross-validation
ECF empirical characteristic function
EI empirical influence
ELT empirical Laplace transform
EPGF empirical probability generating function
GoF goodness-of-fit (test)
i.i.d. independent identically distributed
i.o.c. interval of convergence
IF influence function
JB Jarque-Bera (test)
KLD Kullback-Leibler divergence
KS Kolmogorov-Smirnov (test)
LT Laplace transform
MAD median absolute deviation
MGF moment generating function
MISE mean integrated squared error
MIAE mean integrated absolute error
MKLD mean Kullback-Leibler divergence
ML maximum likelihood (estimator)
MD minimum distance (estimator)
MM method-of-moments (estimator)
MSE mean squared error
ODE ordinary differential equation
PGF probability generating function
sec. section, subsection
SLLN Strong Law of Large Numbers
s.t. such that
SW Shapiro-Wilk (test)
w.r.t. with respect to
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