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Abstract. Proof by induction is commonplace in modern mathematics
and computational logic. This paper overviews and discusses our recent
results in turning saturation-based first-order theorem proving into a
powerful framework for automating inductive reasoning. We formalize
applications of induction as new inference rules of the saturation process,
add instances of appropriate induction schemata to the search space, and
use these rules and instances immediately upon their addition for the
purpose of guiding induction. Our results show, for example, that many
problems from formal verification and mathematical theories can now be
solved completely automatically using a first-order theorem prover.

1 Introduction

Proof by induction is commonplace in modern mathematics and computational
logic. Many number-theoretic arguments rely upon mathematical induction over
the natural numbers, while showing correctness of software systems typically
requires structural induction over inductively-defined data types, to only name
two examples. The wider automation of mathematics, logic, verification and
other efforts therefore demands automating induction.

Induction can be automated by reducing goals to subgoals [1,11], so that
proving a goal ∀x.F (x) can be proved by induction on x. However, splitting
goals into subgoals and organizing proof search accordingly requires expert guid-
ance. As an alternative, inductive reasoning has recently appeared in SMT
solvers [13] and first-order theorem provers [3,12,14], complementing strong
support for reasoning with theories and quantifiers. These approaches do not
reduce goals to subgoals but instead implement tailored instantiations of induc-
tion schemas [3,12,14], adjust the underlying calculus with inductive generaliza-
tions [4] and function rewriting [6], extend theory reasoning for proving induc-
tive formulas [8], and integrate induction with rewriting for generating auxiliary
inductive properties during proof search [5].

This paper describes our recent efforts in these directions, entering new
grounds in the automation of inductive reasoning. The distinctive feature of
our work comes with mechanizing mathematical induction in saturation-based
first-order theorem proving, turning thus saturation-based proof search into a
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powerful framework to reason about software technologies, in particular about
inductive properties of functional and imperative programs.

2 Induction in Saturation - In a Nutshell

Our work combines very efficient superposition-based equational reasoning with
inductive reasoning, by extending superposition with new inference rules cap-
turing inductive steps within saturation. We refer to these inference rules as
induction rules and consider them in addition to superposition inferences dur-
ing proof-search. Following the approach of [12], we capture the application of
induction via the following general induction rule:

L[t] ∨ C

F → ∀x.L[x]
(Ind),

where L[t] is a ground literal, C is a clause, and F → ∀x.L[x] is a valid induction
schema. Further, L[t] denotes the negation of L[t].

In our work, we consider extensions and variants of the induction rule Ind, in
order to add instances of appropriate induction schemata over inductive formulas
to be proved. We call these instances induction axioms and automate induction
in saturation via the following two, inter-connected steps:

(i) devise new induction rules;
(ii) optimize the saturation process with induction.

For step (i), we pick up a formula G in the search space and use induction
rules to add new induction axioms Ax to the search space, aiming at proving
¬G, or sometimes a formula more general than ¬G. While our inference rules
implement inductive reasoning upon G using Ax, adding only these inference
rules to superposition-based proof search would be insufficient for efficient the-
orem proving. Modern saturation-based theorem provers are very powerful not
just because of the logical calculi they are based on, such as superposition. What
makes them powerful and efficient are redundancy criteria and pruning of the
search space; strategies for directing proof search, mainly by clause and inference
selection; and theory-specific reasoning, for built-in support for data types [8].
Therefore, in addition to devising new induction rules in (i), in (ii) we bring
redundancy elimination, proof search options and theory axioms/rules to satu-
ration with induction.

As a result of the combined efforts of (i)–(ii), induction in saturation main-
tains efficiency of standard saturation and is not limited to induction over specific
(well-founded) theories. Such a genericity is particularly important for applying
our results in the formal analysis of system requirements. For example, proving
that every element in the computer memory is initialized or that no execution of
a user request interferes with another user request, typically requires inductive
reasoning with integers and arrays.

In the rest of the paper, we illustrate the automation of induction in satura-
tion within the following three use-cases:
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Fig. 1. Inductive reasoning with integers.

– proving arithmetical properties in Sect. 3;
– enforcing safety assertions of array-manipulating programs in Sect. 4;
– reasoning about the functional correctness of programs over lists in Sect. 5.

3 Induction and Arithmetic

We first discuss our work in proving inductive properties over (sums of) integers.
While integers with the standard <-ordering are not well-founded, we show that
we can apply, and automate, induction over any integer interval with a finite
bound [7].

In the sequel, we assume a distinguished integer sort, denoted by Z. When we
use standard integer predicates <, ≤, >, ≥, functions +,−, . . . and constants
0, 1, 2, . . . , we assume that they denote the corresponding interpreted integer
predicates and functions with their standard interpretations. All other symbols
are uninterpreted. We will write quantifiers like ∀x ∈ Z to denote that x has the
integer sort.

Example of Induction over Integers. Consider the recursive function sum of
Fig. 1(a), computing the sum of the integers from the integer interval [0, n]. We
aim to prove the assertion of Fig. 1(a), denoted via assert and stating that the
value computed by sum is the closed-form expression describing the sum of the
first n positive integers.

In order to prove the assertion of Fig. 1(a) within saturation-based proof
search, we proceed as follows. We convert the function definition of sum into
first-order axioms and negate the assertion of Fig. 1(a), skolemizing n as σ. We
obtain the following unit clauses, with each clause being implicitly universally
quantified:

sum(0) = 0 (1)
n = 0 ∨ sum(n) = n + sum(n − 1) (2)

σ ≥ 0 (3)
2 · sum(σ) �= σ · (σ + 1) (4)

Clauses (1)–(2) result from the functional definition of sum, whereas clauses (3)–
(4) yield the clausified negation of the assertion of Fig. 1(a). We then continue
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by applying inference rules on these clauses with the goal of refuting the negated
assertion by deriving the empty clause, corresponding to a contradiction.

Induction Rule over Integers. When considering integers, we adjust the
general induction rule Ind by considering induction over well-founded (integer)
intervals. In particular, for proving property (4) of Fig. 1(a), we use the following
extension of the Ind rule, where b is a ground term of integer sort:

L[t] ∨ C t ≥ b

L[b] ∧ ∀y.(y ≥ b ∧ L[y] → L[y + 1]) → ∀x.(x ≥ b → L[x])
(IntInd≥)

To refute the negated assertion (4), we instantiate the IntInd≥ rule with L[σ]
being 2 ·sum(σ) = σ · (σ +1) and b set to 0, deriving thus the following induction
axiom as an instance of the induction schema of IntInd≥:

(
2 · sum(0) = 0 · (0 + 1)

∧ ∀y ∈ N.(y ≥ 0 ∧ 2·sum(y) = y ·(y+1) =⇒ 2·sum(y+1) = (y+1)·((y+1)+1))
)

=⇒ ∀x ∈ N.(x ≥ 0 → 2 · sum(x) = x · (x+ 1))

(5)

Recall that saturation-based provers work with clauses, rather than with arbi-
trary formulas. Therefore, the induction axiom (5) is clausified and its clausal
normal form (CNF) given below is added to the search space, where y is skolem-
ized as σ′:

2·sum(0) �= 0·(0+1) ∨ 2·sum(σ′) = σ′ ·(σ′+1) ∨ ¬(x ≥ 0) ∨ 2·sum(x) = x·(x+1) (6)
2·sum(0) �= 0·(0+1) ∨ 2·sum(σ′+1) �= (σ′+1)·((σ′+1)+1) ∨ ¬(x ≥ 0) ∨

2·sum(x) = x·(x+1)
(7)

Optimizing Induction in Saturation. Simply instantiating IntInd≥ and
adding the corresponding induction axiom for any clause L[t] ∨ C in the search
space would however be inefficient: considering L[t]∨C just like any other clause
in saturation may trigger the application of too many inferences. Therefore, we
treat premises L[t] ∨ C of induction rules differently in order to guide the satu-
ration algorithm in two ways.

First, we ensure that an application of Ind or IntInd≥ is followed by a binary
resolution step in which the conclusion of an induction rule is resolved with (induc-
tive) premise(s). For example, to derive a refutation from (6) and (7), we apply
binary resolution on (6) and (7) with (3) and (4), resolving away the last two liter-
als of (6) and (7). Refutation of (4) is then easily derived, by using the axioms (1)–
(2) defining sum together with arithmetic reasoning over integers. For example, our
theorem prover Vampire [9] finds a refutation of (4) in almost no time1.

Second, induction can be very explosive – i.e., it may generate many conse-
quences of which few lead to refutation. Therefore, in practice, we implement
additional requirements on the premises of Ind and IntInd≥, with these require-
ments to be used during saturation. Among others, we use heuristics on whether
1 Empirical data reported in this paper have been obtained on computers with AMD
Epyc 7502 2.5GHz processors and 1TB RAM.



Induction in Saturation 25

Fig. 2. Inductive reasoning with arrays, with valA(j) denoting A[j].

the term t must contain a symbol from the conjecture we are trying to prove;
whether we apply induction on non-unit clauses; or whether (in the case of inte-
ger induction) we allow L[t] to be a comparison or equality literal, and if yes,
how many times and on which positions it can contain the term t.

Induction and Theories. We note that the sum function and the correspond-
ing assertion of Fig. 1(a) can also be encoded using natural numbers as induc-
tively defined data types. While the resulting encoding of Fig. 1(a) holds over
naturals, proving Fig. 1(a) over naturals becomes very complex in practice, as
natural numbers do not have built-in arithmetic axioms but rely on term alge-
bra axioms [8]. As a result, when proving Fig. 1(a) over naturals, we are faced
with the challenge of proving addition and multiplication properties of naturals,
which require induction as well, making efficient proof search challenging. Our
work therefore advocates the combination of inductive reasoning with theory-
specific inference rules, in the case of Fig. 1(a) this being the application of
induction over integers.

Application of induction over integers becomes especially beneficial when
proving complex, non-linear arithmetic conjectures. Figure 1(b) shows such a
use-case of a function sum evsq that recursively computes the sum of squares
of the first n positive even integers. The assertion of Fig. 1(b) is the well-known
closed form formula for the sum computed by sum evsq. Proving this assertion,
we follow a similar recipe as for Fig. 1(a): instantiate induction inferences over
integers with the equality from the assertion, resolve the conclusion of the induc-
tion axiom with the literals of the assertion, and then prove the base case and the
step case using arithmetic reasoning combined with the definition of sum evsq.
Thanks to theory-specific reasoning together with induction, Vampire proves
Fig. 1(b) in no time (in less than 1 s).

4 Induction over Arrays

We next describe applications of induction in saturation while proving the func-
tional correctness of array-manipulating programs.



26 L. Kovács et al.

Example of Induction over Arrays. Consider the imperative program of
Fig. 2, annotated with pre-condition (assume), post-condition (assert) and loop
invariant (invariant).

Given the pre-condition and the invariant, we aim to prove that, upon loop
termination, each A[j] will hold the sum of the first j positive integers. Note that
the assumed termination of the loop implies the negation of the loop condition:
¬(i < A.size). With this additional formula, the assertion of Fig. 2 clearly holds.
Yet, proving it automatically, inductive reasoning is needed.

Induction Rule over Arrays of Integers. We consider the following variant
of the IntInd≥ rule, using induction over a finite integer interval:

L[t] ∨ C t ≥ b1 t ≤ b2

L[b1] ∧ ∀x.(b1 ≤ x < b2 ∧ L[x] → L[x+ 1]) → ∀y.(b1 ≤ y ≤ b2 → L[y])
(IntInd[≥]),

where L[t] is a ground literal, and b1, b2 are ground terms. We instantiate IntInd[≥]

based on the negated, skolemized and clausified assertion of Fig. 2; for doing so,
we set L[σ] to be 2 · valA(σ) = σ · (σ + 1) and consider b1 to be 0 and b2
to be A.size − 1. We further clausify the resulting induction axiom; resolve the
clausified axiom against the premises of IntInd[≥]; and finally refute the rest of
the literals using the invariant, pre-condition and negated loop condition of Fig. 2
within integer arithmetic.

Note that, unlike in the examples of Fig. 1, one of the bounds of the interval
upon which we are applying induction is symbolic – an uninterpreted constant.
This is a powerful generalization which allows us to reason with arrays regardless
of their specific length. In practice, induction over arrays of integers in Vampire
proves the assertion of Fig. 2 (using around 1 s of time).

5 Induction over Lists

We finally present our efforts towards proving inductive properties of functional
programs, using combination of inductively defined data types. We use two
datatypes, natural numbers and lists over natural numbers, denoted respectively
by N and L. We assume that these datatypes are axiomatised by the distinctive-
ness, exhaustiveness and injectivity axioms of term algebras [8].

Example of Induction over Lists. Consider the functional program of Fig. 3.
We aim to prove the assertion (assert) expressing that reversing a list an
even number of times results in the same list; doing so, we use an assump-
tion (assume) corresponding to an inductive lemma. For proving the assertion
of Fig. 3, we translate the function definitions and assumption of Fig. 3 into first-
order axioms, negate the assertion of Fig. 3, and clausify the resulting formulas.
As a result, the following two clauses are obtained from the negated assertion,
respectively introducing Skolem constants σ1 and σ2 for n and xs:

even(σ1) (8)
revN(σ2, σ1) �= σ2 (9)
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Fig. 3. Inductive reasoning with natural numbers and list datatypes.

Induction Rule over Lists. A suitable induction formula that refutes
clause (9) is generated in two steps. A formula generated solely from clause (9)
may be too strong. Hence, we generate an induction formula that takes clause (8)
into account as well. Doing so, we use a generalization of the Ind rule that works
on an arbitrary number of premises. Namely, we use the following induction rule
with two premises:

L[t] ∨ C L′[t] ∨ C ′

F → ∀x.(L[x] ∨ L′[x])
(Ind′),

where L[t] and L′[t] are ground literals, C and C ′ are clauses, and F → ∀x.(L[x]∨
L′[x]) is a valid induction schema.

Second, to generate a suitable antecedent for the induction schema (i.e. F ),
we notice that the recursion used in the definition of even suggests an induc-
tion principle different from standard structural induction over natural numbers.
These insights lead us to generate following induction axiom:
(
(¬even(0) ∨ revN(σ2, 0) = σ2) ∧ (¬even(s(0)) ∨ revN(σ2, s(0)) = σ2)

∧ ∀n.
(
(¬even(n) ∨ revN(σ2, n) = σ2) →

(¬even(s(s(n))) ∨ revN(σ2, s(s(n))) = σ2)
))

→ ∀m.(¬even(m) ∨ revN(σ2, m) = σ2)

After clausifying this axiom and resolving the conclusion literals with the
premises (8) and (9), a first-order refutation using the term algebra axioms and
the clausified function definitions and assumption of Fig. 3 is straightforward;
Vampire finds a refutation almost immediately.

Optimizing Induction in Saturation. Note that Fig. 3 uses an auxiliary
inductive lemma (assume), in order to prove the assertion of Fig. 3. An addi-
tional challenge in automating the proof of the assertion of Fig. 3 comes therefore
with the task of generating and proving auxiliary inductive lemmas during sat-
uration.

Proving the lemma of Fig. 3 needs further induction steps; however, the gen-
eration of a suitable induction formula is only triggered by an instance of the
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respective lemma. Since the superposition calculus is optimized to avoid generat-
ing clauses unnecessary for first-order reasoning, either (i) we tweak the param-
eters of superposition such that the generation of an instance of the lemma is
necessary for first-order reasoning, or (ii) we perform additional sound inferences
(on top of superposition and induction inferences) to derive these instances.

Addressing these challenges, we develop different term ordering families (e.g.
KBO or LPO), parameterized by various symbol precedences or weight func-
tions; and devise literal selection functions to vary the inferred consequences of
a subgoal [5]. As a result, we select different inductive lemmas during satura-
tion. Further, we use function definitions not as axioms but as rewrite rules, in
order to ensure that recursively defined functions are expanded/rewritten into
their (likely much larger) definitions [6]. With such optimizations at hand, Vam-
pire proves the assertion of Fig. 3 without using the asserted inductive lemma
(assume), but by generating the respective inductive lemma of Fig. 3 completely
automatically.

6 Conclusions and Outlook

Automated reasoning about system requirements is one of the most active areas
of formal methods [2,10]. Our work addresses recent reasoning demands in the
presence of induction, needed for example in proving safety and security require-
ments over software systems or establishing mathematical conjectures. In par-
ticular, we turn saturation-based first-order theorem proving into a powerful
workhorse for automating induction. When we integrate induction in saturation,
the choice of possibilities to exploit is very large. As such, should one approach
fail to bring considerable improvements, one may quickly study and investigate
other approaches, allowing thus for further improvements and advancements in
mechanizing induction. As saturation-based first-order theorem proving is not
yet fully integrated in the tech-chain of ensuring software reliability, we believe
automating induction in saturation will bring significant further advances in the
theory and practice of both automated reasoning and formal verification.
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