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Abstract

The research done in the course of this thesis is located in several scientific fields. On the one hand,

this thesis contains methodological advancements in the field of parameter estimation methods, statistical

tests and reliability. On the other hand, algorithms specific to pedestrian indoor positioning and especially

orientation estimation are developed. Nevertheless, it is possible to transfer these concepts to other fields

of research and applications.

The progress in parameter estimation methods is related to the Gauss-Helmert model (GHM), which

consists of general condition equations, implicitely containing the parameters or states to be estimated

as well as the observations. The measures of inner reliability are derived in the GHM and are general-

ized, such that they can be used for any kind of systematic deviation parameterized in the observation

model. The minimum detectable bias (MDB) and the correlation coefficients between test statistics are

identified to be sufficient in order to assess inner reliability. Through a proper analysis of the least-square

adjustment (LSA) solutions in the GHM and the corresponding statistical tests, main factors influencing

the inner reliability measures are identified. The findings with regard to inner reliability in LSA are

consequently transferred to the extended Kalman filter (EKF). The GHM is also applied to the EKF. In

the common formulation of the EKF, the system equation unambiguously determines the state vector and

the measurement equation exhibits the Gauss-Markov model. Both of the prementioned aspects are not

mandatory in the newly formulated EKF update equations. Espically the possibility to use redundant

condition equations in the system equation enables the fusion of information from multiple sub-systems

in an overall EKF.

Two algorithms are introduced in this thesis, which can be used in indoor positioning applications. On

the example of orientation estimation in pedestrian indoor positioning with smartphones, the approach

of using an overdetermined system equation in the EKF is applied. It is shown, that this approach leads

to a higher precision of the estimated states and improved inner reliability. The approach of fusing the

information from multiple pedestrians leads to lower MDBs and greatly reduced correlation coefficients

between the corresponding test statistics. The findings regarding inner reliability act as guideline for

the development of another algorithm for orientation determination based on the accelerometer, gyro-

scope and magnetometer contained in a smartphone. Together with some heuristics, an algorithm is

introduced, which exhibits robustness to magnetic anomalies affecting the smartphones’s magnetometer.

The proposed approach is tested in small scale experiments with high accuracy ground truth data. It is

compared to three other algorithms introduced in related publications regarding orientation estimation

in indoor positioning and outperforms them by at least 40%.
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1 INTRODUCTION 1

1 Introduction

Many applications require a proper location information of pedestrians in buildings. When guiding

pedestrians to certain locations [29, 132, 136] or gaining insights about pedestrian behavior in buildungs

[82, 123, 76][B5], it is necessary to estimate the position as well as attitude and velocity. As nearly

all people carry smartphones, which contain multiple sensors providing position information, it is the

commonly used device to accomplish these tasks. The lack of accurate global navigation satellite system

(GNSS) positions in buildings due to GNSS signal degradation, requires the use of other smartphone

sensors for positioning. There are indoor positioning approaches using GNSS in the outdoor-indoor

transition [62, 198] or high-sensitivity GNSS [155, 99], but the major effort in research and development

for indoor positioning is on other techniques.

Pedestrian dead reckoning (PDR) relies on the self-contained inertial measurement unit (IMU), com-

posed of an accelerometer and a gyroscope and is widely used in different combinations with other

approaches for the positioning. It provides relative position information, by detecting steps of the user

carrying the smartphone and propagating the orientation of the phone as well as the user heading [183].

PDR suffers from drift effects due to summing up orientation and position changes leading to an increase

of the errors with time [70]. That’s the reason, why PDR is commonly combined with absolute position-

ing techniques such as Wi-Fi lateration [146, 197] or fingerprinting [80, 64][B2]. Wi-Fi positions exhibit

a measurement noise of several meters [77, 146]. In order to increase the precision, Wi-Fi positions are

fused with the short-time stable PDR. This leads to a smoother Wi-Fi position and in return, the absolute

information from Wi-Fi stabilizes the PDR outcome [26, 140]. Absolute position can be also derived from

other radio signals [3]. Another source of information is the building plan, which can help to stabilize

PDR [102] or can further refine the PDR-Wi-Fi fusion [131, 120]. Both approaches, the radio positioning

as well as map-matching based on building plans, require additional hardware infrustructure or external

information. Beside the IMU, there are other self-contained sensors which can be used for the fusion

with PDR. The barometer provides information about the height which is mainly used for floor detection

[130, 30] and the smartphone camera also provides relative information about position and orientation

[148, 143]. Big potential for indoor positioning is upcoming now with LiDAR, which is integrated only

in a few smartphone models until now [161, 19]. The magnetometer senses the magnetic flux density of

the earth magnetic field and can be used to compute the heading with respect to the magnetic north

direction [83] pp. 147 ff. It provides absolute information on the heading and it is therefore commonly

fused with the IMU which is also known as magnetic, angular rate and gravity (MARG) sensor array. The

magnetometer’s main drawback is, that it cannot distinguish between the earth magnetic field and other

ambient magnetic fields produced either from the carrier platform or the environment [37, 144, 86]. [115]

provide an overview on magnetometer integration approaches for navigation applications and calibration

procedures to mitigate systematic deviations. Ambient magnetic fields or magnetic anomalies must not

necessarily be disadvantageous as they can be used in the fingerprinting approach for indoor positioning

[111, 17][B1] or in other applications like airborne navigation [15, 14].

Herein, only the computation of the absolute 3D orientation of the smartphone is considered based

on the integration of IMU and magnetometer. The focus on the orientation arises due to the chosen

sensors (accelerometer, gyroscope and magnetometer), which do not provide an overdetermination for

the translation or velocity. Orientation determination with the prementioned sensors is a challenging

task in indoor environments, especially with low-cost devices such as smartphones. Thus, the aim of this

thesis is, to provide algorithmic developments, which support the mitigation of systematic deviations in a

MARG sensor array affecting the device or platform orientation. On the one hand, the novel approaches
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with strong focus on detectability of systematic deviations presented herein, may be interesting for devel-

opers looking for robust estimation procedures in indoor positioning. This work contains methodological

concepts which can be integrated to extend existing algorithms but also an stand-alone algorithm to

reliably fuse the observations from MARG sensor arrays. On the other hand, the research on the mathe-

matical methods behind these approaches (i.e. parameter estimation and statistical testing of computed

quantities), are useful for different scientific disciplines. The further developments in observation models

and sequential estimation, extend the methodological base in parameter estimation problems indepently

from the specific application. Scientists and developers with an interest in this field of research, can find

new concepts herein, supporting their work and raise new research questions.

The methodological progress in parameter estimation is narrowed down to the extended Kalman

filter (EKF). The functional model of the EKF is extended to the Gauss-Helmert model (GHM) which

allows the use of condition equations implicitely containing the parameters and observations. This leads to

EKF-update equations which are very similar to the ones formulated in the common Gauss-Markov model

(GMM), enabling the use of overdetermined system or state propagation equations. Overdetermination

in the prediction step of the EKF means, that the overall system which the EKF describes, consists

of multiple sub-systems each having its own process of state-propagation. It may be possible to solve

this in the common EKF structure but the introduction of an overdetermined system equation enables a

higher flexibility in the formulation of the functional model. The fusion of multiple sub-systems sharing

common states in one EKF is a novel approach which has been developed in the course of this thesis.

This methodological advancement is applicable to any field of research which is based on estimating

time-varying parameters or states.

Inner reliability and its corresponding measures are a common analysis tool in geodetic applications

and especially in the field of engineering geodesy. As it is possible to derive the EKF from least-squares

adjustment (LSA), the theory of reliability can be used to analyze if unmodeled systematic deviations

are present in the observations (inner reliability) and, if so, to quantify their influence on the estimated

parameters (outer reliability). Herein, the inner reliability measures and corresponding test statistics are

derived for the GHM and are consequently further applied to the results of the EKF based on the GHM.

Emphasis is on the analysis of the extended or more general measures of inner reliability (in contrast to the

common approach of data snooping) such as statistical tests and corresponding minimum detectable bias

(MDB) as well as their correlation coefficients. As inner reliability is mainly based on one-dimensional

biases in the scientific literature, this thesis also aims to generalize the MDB and correlation coefficients

of test statistics to any kind of multi dimensional systematic deviations. The structure of the resulting

equations in the GHM are very similar to the results in the GMM. Nevertheless, drawing conclusions

about improving the measures of inner reliability is more difficult. The reason is, that the observations do

not represent the equations of the functional model as in the GMM. Instead, the condition equations to

compute the misclosures implicitely contain the parameters and the observations, leading to an additional

aspect to be considered in reliability analysis.

Based on the methodological advancements, two novel algorithms specific to orientation determination

are introduced. First, data from multiple pedestrians walking the same trajectory are fused within

one EKF which estimates the orientation parameters. This necessitates the use of an overdetermined

system equation in the EKF where the pedestrians represent the sub-systems. The algorithm is analyzed

on a conceptual base herein but it exhibits promising properties, such as a more reliable detection of

systematic deviations in the MARG sensor array and higher precision of the estimated states. The second

algorithm is developed based on the findings of the analysis of inner reliability and contains heuristic

elements. Separating the inclination and heading computation and using an EKF with a reformulated
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magnetometer observation model to suppress the influence of magnetic anomalies are its main concepts.

This algorithm has been applied to small-scale experiments and exhibits an improved performance in

these cases, compared to other established algorithms from relevant publications on pedestrian indoor

positioning.

This thesis is structured as follows. In section 2, the scientific context of the provided work is

outlined. Section 3 contains the theoretic foundations which are necessary for the presentation of the

published research and further considerations. The main outcomes of the articles which have been

published in the course of this research are presented in section 4 and the articles itself are attached

in appendix A. Publication [A1] (section 4.1) elaborates on the derivation of the EKF in the GHM,

using an overdetermined system equation to improve inner reliablity in indoor orientation estimation. In

publication [A2] (section 4.2), the analysis of inner reliability in the GHM is deepened and publication [A3]

(section 4.3) outlines an algorithm for robust heading determination by mitigating magnetic anomalies.

The aim of section 5 is, to merge the insights from the published research. A thorough derivation of inner

reliability in the GHM and also for the EKF is provided in section 5.1. The numeric example in section

5.2 concludes the further developments by showing the advantages of the algorithmic developments based

on the inner reliability measures.
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2 Scientific context

The reseach and findings of this thesis are categorized into pure mathematical or statistical aspects and

specific applications to orientation determination for indoor positioning. The next sub-sections follow

this rationale, where gaps between published literature and needed solutions are identified to motivate

the developments of this thesis. In section 2.1, sequential parameter estimation based on the extended

Kalman filter (EKF) and the Gauss-Helmert model (GHM) with the corresponding statistical tests are

outlined. Further research is necessary in several aspects of this topic in order to enable the reliable

estimation of the orientation in indoor positioning. Multiple linked systems have to be fused in one EKF

to enhance the detection of systematic deviations leading to the mandatory usage of the GHM. Scientific

literature lacks a thorough derivation of the test statistics which describe inner reliability in the GHM

and also multi-dimensional statistical tests have to be considered.

The basic ideas of the developed algorithms for orientation determination in indoor positioning are

twofold: on the one hand fusing the information of multiple pedestrians (which applies to the field of crowd

sourcing and collaborative navigation) and on the other hand using the measures from inner reliability

as guidelines for the EKF model design. Section 2.2, points out, that algorithms using these principles

are rare in scientific literature.

2.1 Reliability in parameter estimation methods

In this thesis, special emphasis is on the GHM as it enables the connection of parameters and observations

in any kind of nonlinear condition equations in the functional model of an estimator based on least-squares

adjustment (LSA). It is possible to derive the update equations of the EKF in the context of LSA [150] and

therefore, they can be also represented in the GHM. The first part of the methodological advancements in

section 2.1.1 is on the formulation of the EKF in the GHM. It especially elaborates on the necessity to use

these equations to represent multiple subsystems. The second methodological aspect is about statistical

hypothesis testing in LSA and EKF leading to the concept of reliability, which is not a unique term in

statistics. Herein, reliability means the ability to detect and identify systematic deviations with a certain

probability (inner reliability) and quantifying their influence on estimated quantities (outer reliability)

when using parameter estimation methods [164] pp. 74. Contrary to that, is the reliability engineering

which aim is to describe the durability and security of systems [199, 200] or [55] pp. 745 ff. In section

2.1.2, the literature about geodetic reliability is screened which shows, that this concept is not directly

introduced for the GHM.

2.1.1 EKF in the GHM and distributed systems

The EKF is the nonlinear extension of the Kalman filter which is first introduced by [81] and its measure-

ment equation usually exhibits the structure of the GMM, i.e it is possible to compute the observations

from the quantities in the state vector. Thus, the filter innovation are represented by the predicted resid-

uals which are directly available from the difference of the actual observations and computed observations

using the predicted state [39] pp. 102 or [163] pp. 214. Herein, the GHM is used in the measurement

equation which first appears in [160]. This EKF formulation is then used e.g. in the self-calibration

of stereocameras [23, 24] or in the georeferencing of laserscanner-based multi-sensor systems [174] and

unmanned aerial system [13]. [173] extend the GHM-EKF by including nonlinear state constraints. In

[58] pp. 302 ff., it is shown, that the GHM is also necessary in the standard formulation of the EKF

to derive the residuals and redundancy numbers for the observation groups or random quantities in the
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system equation. Total least-squares (TLS), which is a possible solution algorithm for errors-in-variables

(EIV) models, is a special case of the nonlinear GHM, which is shown in [135] on the example of similarity

transformation. The total LSA can be transferred to the EKF, as e.g. shown in [153, 126, 127]. [49]

derive an optimal filtering solution for EIV models with the minimal variance criterion.

The crowd-sourcing approach for orientation determination in indoor positioning (section 2.2.1) re-

quires the consideration of EKF-variants which are able to handle the information from multiple systems.

Each considered entity (e.g. pedestrians in the context of indoor positioning) represents such a system,

which in sum describe an overall system to be monitored (e.g. all pedestrians moving inside a building).

The systems composing the overall system are commonly known as agents in literature and herein they

are called subsystems from here on. In order to fuse the information from multiple subsystems the dis-

tributed or decentralized Kalman filter (DKF) and its variants are commonly used [128, 169]. A special

case is, that systems are based upon each other which is called cascaded subsystems and the cascaded

Kalman filter can be used to solve such state estimation problems [108]. Another variant of a DKF is

the federated Kalman filter, where the subsystems are evaluated by an EKF. These results are fused in

a centralized algorithm (information fusion) and the knowledge gain is distributed back to the subsys-

tems (information distribution) [122]. [57, 186] use the federated Kalman filter for indoor localization of

mobile robots. [32] uses a weighted robust DKF for sensor systems to determine the components of auto-

correlated and cross-correlated noises. DKFs are also used for collaborative localization and navigation.

[185] derives a message passing DKF and applies it to a multi-agent system, where the individual agent

observations correspond to odometry and landmark coordinates. Random sample consesus can be used

in conjunction with DKFs to detect faulty subsystems [149]. In collaborative localization also centralized

Kalman filters are used which process all observations from the multiple subsystems in the measurement

equation to estimate common states [27, 178].

The problem appears, when the subsystems compose the system equation (i.e. control input quantities

from multiple subsystems) of a centralized EKF. In this case, the system equation is overdetermined which

is not covered in the literature. In this thesis this gap is closed, by using the GHM to derive the EKF

update equations for such cases.

2.1.2 Reliability in the GHM

Geodetic reliability is based on the research of Baarda [5, 6]. Baarda’s investigations about statistical tests

in geodetic networks contain many aspects of today’s perspective on reliability, such as the separation into

inner and outer reliability, derivation of the minimum detectable bias (MDB) and also the consideration

of separability of multiple alternative hypothesis. These concepts are an indispensible part of quality

control in geodetic applications such as geodetic networks [192, 61, 28, 110], laserscanning applications

[93, 72], computer vision and photogrammetry [34, 21]. The statistical tests to identify or locate erroneous

observations based on the observation residuals are extended and adapted to different cases such as

correlated observations [71] pp. 192, n-dimensional outliers [96] and a-posteriori variance factor [139]

leading to different test distributions. N-dimensional outliers necessitate the further development of

the MDB because only in the 1-dimensional case it is a scalar value. Otherwise it is a vector with

an infinite number of solutions describing a n-dimensional shape, such as an ellipse for 2D coordinate

observations or an ellipsoid for 3D observations (known as threshold-ellipse or threshold-ellipsoid) as e.g.

outlined in [71] pp. 296 ff. [87, 192] show a derivation of n-dimensional MDBs. Another extension to

statistical tests is shown in [105], who derive more powerful statistical tests based on the generalized

chi-square distribution. The Type III error due to multiple alternative hypothesis (i.e. choosing the

wrong alternative hypothesis) [56], is early adapted by [34], who extended it to multiple n-dimensional
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alternative hypothesis. It is mainly influenced by the correlation coefficient of test statistics which can

be described as the cosine of the angle between two vectors describing two 1-dimensional test statistics

or the maximum eigenvalue of a matrix relating the column spaces of two n-dimensional test statistics.

Further research on this topic is done by [188], who introduces upper bounds for the type I, type II and

type III error in the 1-dimensional case. [142, 187, 68] extended the MDB by considering the type III

error (i.e. separability), leading to another measure which equals the MDB only in the optimal case

(i.e. zero correlation). Otherwise it is higher, depending on the correlation coefficient of the used test

statistics. Further development of reliability theory is also done in the case of correlated observations

[141] or singular variance-covariance matrices (VCM) [177].

In many references, it is assumed, that observations are affected by outliers in contrary to systematic

deviations concerned in this contribution. [107] outlines, that outliers (or gross errors) are stochastic

quantities, but they can be treated as deterministic biases (i.e. systematic deviations) which leads to

the mean shift model. Reliability theory belongs to this type of approaches, because the shift of the test

distribution by the non-centrality parameter (which is the basic assumption, see section 3.1.3) is nothing

else but a mean shift. Another mean shift approach which deals with outliers is e.g. shown in [92]. The

alternative is to use variance inflation approaches, where the outliers are modeled as stochastic quantities.

[94, 91, 95] estimate weights for observations within the expectation maximization method to downweight

outlying observations (i.e. increase the variance of such observations). A comparison between the variance

inflation model and the mean shift model is outlined in [106]. Variance inflation is closely related to rboust

estimation, which is based on influence functions, describing the influence of one additional observation

on a statistic with corresponding underlying distribution [52] pp. 41 ff. Robust estimation goes back

to [67, 51], who introduced robust M-estimators. The classical minimization of squared errors leads to

unbounded influence functions and therefore to non-robust estimators, but they show other optimality

properties, i.e. minimum variance and unbiasedness. The most basic and most famous robust estimator

is the median, which tolerates up to 49.9̇ % of erroneous observations. Robust estimation is also used

in recent years in different types of geodetic networks [50, 85, 193]. The least median square algorithm

[147], can be seen also as a robust estimator (in fact it is also introduced as such) due to the usage of

the minimization of the median of the sum of squared residuals. But it is also a combinatorial method

(because of the necessity of building sub-groups of observations and compare these estimation results),

which is another approach of dealing with outliers. Other combinatorial methods are the maximum

subsample method [134], the information criterion [107] or to use sub-groups of observations which are

compared by using statistical tests [8, 12]. Baysian statistics are not treated herein. Nevertheless, the

same approaches, statistical tests [41], robust estimation [90] pp. 99 ff. or variance inflation [48], are

used. Statistical tests [166, 150] and reliability [175, 176][B4] are also applied in the EKF and their

applications are outlined in the next section. There are also many variants of robust EKFs, e.g. based

on the M-estimator [88, 125] or the H-infinity filter (estimator derived from using the H∞-norm) [73] or

[159] pp. 333 ff.

Reliability theory is developed mainly in the GMM. [35] states on pp. 166, that outliers in the

observations can be reduced to outliers in the constraints and can be treated in the same way as in

the GMM. [98] derived the statistical tests for additional parameters in the GHM but doesn’t extend

the results to inner reliability. Thus, the derivation of the reliability theory in the GHM and possible

additional considerations for implicit functional models are a major motivation of this work.
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2.2 Systematic deviations in navigation applications

There are different approaches to handle or treat systematic deviations in sensors for navigation appli-

cations, including smartphone sensors for orientation determination. Figure 1 serves as guideline for this

section and shows two possibilities to categorize these approaches. One way to categorize is, at which

point in the process of localization the treatment of systematic deviations is done. The other way of

categorization is the methodological approach on how the systematic deviations are computed or treated.

Both point of views are concisely outlined in the next paragraphs. Figure 1 indicates, that the following

considerations are narrowed down to the detection of systematic deviations in inrun applications. The

two algorithms developed herein are assigned to this field of research.

point in localization

user-level

instruction inrunlaboratory

methodological approach

calibration parameterization detection

Figure 1: Treatment of systematic deviations in navigation applications. The focus is on the detection
of systematic deviations in inrun methods herein.

Regarding the point in localization, where systematic deviations are determined, there are two sub-

categories: Under laboratory conditions with special equipment [168] pp. 219 ff. or at the time of

intended usage of the sensors. The second case is the treatment at user-level, which can be further

split into instruction-based methods and inrun methods [129]. In the instruction-based methods, the

sensors have to undergo special movements or maneuvers prior to the localization process, which enables

the computation of systematic deviations. In smartphone applications, the ellipsoid-fitting method is

commonly used for the calibration of the magnetometer [37, 144, 172, 86, 118]. With the constraint, that

the magnetometer observations ideally are located on a sphere with known radius, i.e. the known value

of the magnitude of the earth magnetic field (EMF), it is possible to determine the sensor and platform

errors. [115] give an overview on magnetometer calibration but the presence of magnetic anomalies

requires the use of inrun methods, where systematic deviations are treated beside the computation of the

quantities which are necessary for the current navigation application. Section 2.2.2 further elaborates on

inrun methods to detect magnetic anomalies in indoor positioning.
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Regarding the methodological approach of computing systematic deviations, three sub-categories are

considered (figure 1). Calibration means, to determine values representing the systematic deviations in

separate routines and use these values in the subsequent localization algorithm. This approach is already

covered by the laboratory calibration and instruction-based methods in the previous paragraph and is

not in the scope of this work.

Parameterization in inrun methods subsumes the approaches, where quantities are included in the set

of parameters to be estimated, which account for the influence of systematic deviations. [137, 121] directly

integrate biases for the accelerometer and gyroscope in the state vector in the coupling of GNSS/INS

coupling. This is also done in the fusion of IMU and magnetometer to compute orientation (e.g. estimation

of accelerometer and gyroscope biases [38, 54, 114], magnetometer errors [22, 170, 53]) or in indoor

positioning in genaral [191]. In such applications, observability and estimability measures are used to

assess if these biases (or in general any state in the state vector) can be reasonably estimated [63, 133, 158].

In observability, one analyzes, if the initial state vector can be unambiguously determined from a given

batch of observations [75, 182]. Estimability is defined differently and it says, that a state is estimable if

its variance at a certain timestamp is lower than the initial variance [7]. Still both concepts are connected,

as stated in [43] and estimability is sometimes also called stochastic observability [45] pp. 104-105. [154]

show how to model outliers in total Kalman filtering by additionally estimating them beside the actual

quantities of interest. An inrun approach based on cascaded EKF to treat biases is shown in [11].

In the detection approach of figure 1, the presence of systematic deviations in the sensor observations is

determined and if necessary appropriate actions are performed to mitigate them. Detection, identification

and adaption (DIA) is commonly used and relies on the statistical tests from reliability theory [166, 150].

In GNSS positioning, it is better known as receiver autonomous integrity monitoring (RAIM) used to

locate faulty satellite observations [162, 101] and is also extended to DIA by excluding or isolating

them [181, 180]. RAIM is usually based on the computed residuals which especially helps to improve

the accuracy in harsh environments, such as urban canyons and buildings [100, 109]. Another RAIM

approach is the solution separation, which is a combinatorial approach based on different subsets of

satellite observations [78, 79]. An overview on RAIM and further aspects in GNSS integrity is e.g. shown

in [25]. The approach of DIA is also implemented in the coupling of GNSS and inertial navigation system

(INS) for detecting unmodeled deviations [40, 74] and spoofing [84]. The GNSS/INS coupling provides

similar advantages as the fusion of Wi-Fi positioning with INS in indoor applications. The GNSS positions

help to stabilize the INS drift and the INS solution is used to propagate the position and orientation in

the time between GNSS observations and when it is not available.

Contributions, which use the classical concept of DIA in indoor navigation applications are rare. DIA

and integrity monitoring is e.g. used in the positioining with bluetooth [189] or in the fusion of Wi-Fi

fingerprinting with PDR in an unscented Kalman filter [190]. In indoor applications, it is more common

to use robust approaches for treating outliers but also hardware failures [103]. The term robust does not

necessarily mean to perform a robust estimation method but can also mean that an indoor positioning

system works in challenging environments and heterogeneous scenarios [184]. The most common approach

to reduce the influence of outliers or systematic deviations in indoor positioning is, to analyze the sensor

observations and check if they meet certain conditions. [36, 66] weight the rssi observations by signal

analysis to exclude observations which are likely subject to non-line-of-sight (NLOS) conditions. Set-

membership is e.g. used for fault detection in indoor localization of robots [2].

The development of the two novel algorithms in this thesis is based on adjusting the functional model of

an EKF, such that inner reliability measures are improved (i.e. increasing the performance of the detection

and identification of systematic deviations). The following subsections outline the literature being the
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basis for the adjustments in the functional model. Section 2.2.1, elaborates on crowd sourcing to motivate

the introduction of the algorithm which is based on fusing the information from multiple pedestrians.

Section 2.2.2 focuses on inrun-approaches to detect systematic deviations in the magnetometer as this is

the most critical sensor for orientation determination in indoor positioning. It is shown, that the there

is the potential to design an algorithm based on statstical tests for magnetic anomaly mitigation which

is closely related to inner reliability.

2.2.1 Crowd sourcing in indoor positioning

The progress in smartphone technology and Internet of Things (IoT), enables the collection of data from

many pedestrians which is called crowd sourcing. Crowd sourcing is mostly used to collect radio signals

(e.g. Wi-Fi or Bluetooth Low Energy) to create radio maps for indoor positioning which are the basis

for different fingerprinting methods [47]. A trend in current literature is to refine this approach by using

methods from machine learning and deep learning [18, 157, 156]. It is also common to collect PDR

trajectories computed for each pedestrian and use these data to create the radio maps [46, 117, 196, 194].

Another variant is to use crowd sourced radio signals as landmarks and recursively support the online

PDR solution and improve the landmark coordinates [179]. Ambient magnetic fields must not necessarily

be disadvantageous as they can be used as location-specific features in the magnetometer data. [116] use

crowd sourced magnetometer data to improve the creation of radio maps and [4] generate magnetic field

maps for fingerprinting. Beside radio maps it is also possible to derive floor plans [112] or use the crowd

sourced data to predict pedestrian motion in a building [119][B5]. [195] exploits the turn behavior of

pedestrians on specific points in the building to aid the PDR heading computation.

There is no literature about using the smartphone sensor observations from multiple pedestrians in

real-time or postprocessing to compute the corresponding trajectories. Simultaneous localization and

mapping (SLAM) for multiple robots [16, 167] as well as the robotic applications in section 2.1.1 could

be also applied to the pedestrian case. Buildings commonly exhibit a very constrained motion pattern of

pedestrians especially in corridors. The idea is to use the data from pedestrians walking e.g. in a corridor

and evaluate these data in one EKF. This requires the temporal as well as spatial synchronization of the

crowd sourced observations, which is not considered herein. The focus is on the development of an EKF

which is capable of fusing multi-pedestrians smartphone sensor observations in order to improve the inner

reliability and therefore the estimation of orientation.

2.2.2 Detection of magnetic anomalies in indoor positioning

A common approach is to fuse the gyroscope, accelerometer and magnetometer (i.e. the MARG sensors)

in an extended Kalman filter (EKF) to estimate the smartphone orientation [38, 54][B3]. The critical

point in these approaches is, that magnetic anomalies also influence the inclination component of orien-

tation (roll φ and pitch θ angles in Euler angle parameterization). [124, 171] try to avoid this by using

complementary filters where the change in the inclination is computed from accelerometer and the change

in the heading component of orientation (the yaw angle ψ in Euler angle parameterization) is computed

from the magnetometer. A possibility for mitigation is, to use the known quantities of the EMF to

determine if magnetic anomalies are present. There are many variants in the literature, exploiting this

information: [20] use this knowledge to compute adaptive variances for the magnetometer observations.

[145, 104] only perform the EKF update if certain conditions are kept, such as the deviation of the mag-

nitude of the magneotometer observations and the known magnitude of the EMF being beyond a preset

threshold. [1] use statistical tests as detectors for perturbations in the magnetometer observations. A
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fuzzy infrerence system rule set takes the output of the statistical tests and determines the mean value

as well as the standard deviation of the heading deviation. Another approach is to parameterize the

systematic deviations in an EKF (i.e. include them in the state vector). It is not common to estimate

each type of systematic deviation separately in the EKF but to subsume them in a bias and an affine

transformation parameterized with a symmetric matrix [144, 86]. [22] includes this bias and the elements

of the symmetric matrix in the state vector of an EKF and an unscented Kalman filter. [53] addition-

ally integrate the EMF in the sensor frame to the state vector and propagates it with the gyroscope

observations.

From this recherche it becomes apparent, that inner reliability could be a promising approach to detect

the presence of systematic deviations in order to improve orientation estimation algorithms. Especially,

the magnetometer is subject to multiple sources of deviation and therefore, the measures from inner

reliability will be used to develop an EKF which robustly determines the smartphone orientation. In

publication [A3], the focus is on the performance with respect to heading accuracy. Section 5 extends

this research by analyzing additionally the inner reliability measures of this algorithm.
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3 Theoretic foundations

3.1 Parameter estimation and reliability

3.1.1 LSA in the GHM

In the GHM, the functional model consists of condition equations f(l,x) = 0 ∈ Rb×1 implicitly containing

the observations l ∈ Rn×1 and parameters x ∈ Ru×1, where the more common ”Gauss-Markov” model

(GMM) is just a special case of. l is derived or available from measurements and therefore, it is treated

as a random quantity. It is split into a deterministic part (for now the expectation E{}) and a random

part

l = E{l} − v, v ∼ N(0,Σll), (1)

in which the residuals v ∈ Rn×1 represent the randomness of the observations which are assumed

to be Gaussian or normally distributed. 0 corresponds to the first moment of the distribution (i.e. the

expectation) and Σll is the Variance-Covariance matrix (VCM) and describes the second moment (i.e. the

dispersion). The parameters x are assumed to be non-random respectively deterministic. The estimated

parameters x̂ (the hat sign ”ˆ” will be used throughout this thesis to mark estimated quantities) are

random because of using the random observations for estimation.

As indicated above, l and x have to equate the functional model to result in the zero-vector. In

general only special sets of these quantities fulfill this condition. Obviously, the theoretic true quantities

l̃ = l+ ṽ and x̃ have to fulfill f (̃l, x̃) = 0. In reality, these quantities are not available, which necessitates

the use of the estimated quantities

f (̂l, x̂) = f(l+ v̂, x̂) = 0

f(l+ v̂(i), x̂(i)) ≈ f(l+ v̂(i−1), x̂(i−1)) +
∂f

∂v̂(i)
|l+v̂(i−1),x̂(i−1)(v̂(i) − v̂(i−1))

+
∂f

∂x̂(i)
|l+v̂(i−1),x̂(i−1)(x̂(i) − x̂(i−1))

≈ f(l+ v̂(i−1), x̂(i−1))−B(i)v̂(i−1) +B(i)v̂(i) +A(i)(x̂(i) − x̂(i−1))

≈ w(i) +B(i)v̂(i) +A(i)dx̂(i)

(2)

where the linearization with Taylor series expansion corresponds to the equality constraint of Lagrange

optimization (e.g. [10] page 67 ff.), which is used to compute x̂ and v̂. Due to the linearization, the

estimated quantities from iteration step i− 1 are used as development point in the subsequent iteration

step. w(i) ∈ Rb×1 is the misclosure vector, B(i) ∈ Rb×n is the observation matrix and A(i) ∈ Rb×u

is the design matrix. For the sake of readability, the iteration superscripts are omitted from here on.

The squared and weighted sum of residuals v̂TQ−1
ll v̂ corresponds to the main condition of Lagrange

optimization which should be minimized. Qll is the cofactor matrix, which results when extracting the a

priori variance of unit weight or variance factor σ2
0 from the VCM of the observations Σll = σ2

0Qll. The

solutions of x̂ and v̂ (with corresponding cofactor matrices) in the GHM are
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Qww = BQllB
T

Qx̂x̂ = (ATQ−1
wwA)−1

A+ = Qx̂x̂A
TQ−1

ww

B+ = QllB
TQ−1

ww

dx̂ = −A+w

Qv̂v̂ = B+(Qww −AQx̂x̂A
T )(B+)T

v̂ = −B+(I−AA+)w,

(3)

where A+ and B+ are the pseudo-inverses of A and B (see e.g. [89] pp. 57 for their properties). The

details on these derivations can be found e.g. in [35] pp. 164 ff. or [58] pp. 187 ff.

3.1.2 EKF

Herein, the EKF quantities and equations are outlined in the LSA notation to connect the statistical

tests from LSA and reliability theory (section 3.1.3) to the EKF. The propagation model fx̄ ∈ Ru×1 is

also known as system equation (k indicates the epochs) which provides the predicted state vector x̄k

x̄k = fx̄(x̂k−1,υk|k−1, ζk|k−1) (4)

including three input quantities, the previously estimated state x̂k−1, the system control υk|k−1 ∈
Rnυ×1 and the system noise ζk|k−1 ∈ Rnζ×1. The system equation is the time-discrete solution of a

system of partial differential equations (i.e. time-continuous description of the state propagation) [44]

pp. 31 ff., [31] pp. 125 ff. υk|k−1 and ζk|k−1 are quantities which describe the deterministic and

stochastic propagation respectively of the state from epoch k − 1 to epoch k and both are treated as

random variables. ζk|k−1 subsumes the imperfections of the propagation model, which are assumed to

be Gaussian distributed with zero-mean ζk|k−1 ∼ N(0,Σζζ). The system control quantities υk|k−1 =

E{υk|k−1}−vυ,k|k−1 are modeled in a similar way as the observations in section 3.1.1. Thus, they consist

of a deterministic part (i.e. the expectation E{υk|k−1}) and a random part vυ,k|k−1 ∼ N(0,Συυ). The

VCM of x̄k is computed with variance propagation and the assumption, that x̂k−1, υk|k−1 and ζk|k−1

are uncorrelated [163] pp. 216

Σx̄x̄,k = BsΣll,sB
T
s =

�
Tk|k−1 Yk|k−1 Zk|k−1

Σx̂x̂,k−1 0 0

0 Συυ,k|k−1 0

0 0 Σζζ,k|k−1


T

T
k|k−1

YT
k|k−1

ZT
k|k−1


= Tk|k−1Σx̂x̂,k−1T

T
k|k−1 +Yk|k−1Συυ,k|k−1Y

T
k|k−1 + Zk|k−1Σζζ,k|k−1Z

T
k|k−1

Tk|k−1 =
∂fx̄

∂x̂k−1
|x̂k−1,υk|k−1,ζk|k−1

Yk|k−1 =
∂fx̄

∂υk|k−1
|x̂k−1,υk|k−1,ζk|k−1

Zk|k−1 =
∂fx̄

∂ζk|k−1

|x̂k−1,υk|k−1,ζk|k−1
.

(5)

As it is more common in literature to use the VCMs for the EKF equations, this notation is also
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applied herein. The index s indicates quantities which belong to the system equation and therefore,

Bs contains the Jacobian matrices and Σll,s the VCMs of the random quantities appearing in the state

propagation process. The observations lm,k at epoch k are used to update or correct x̄k. The equations

fm ∈ Rnm×1 which link lm,k and x̂k are called measurement equation

wm,k = lm,k − fm(x̄k), (6)

where wm,k ∈ Rbm×1 is called the filter innovation (in contrast to the misclosure vector in section

3.1.1) and x̄k is used as approximate solution (i.e. linearization point) for x̂k. The update equations are

(see e.g. [39] pp. 107 ff. or [159] pp. 121 ff.)

Am,k =
∂fm
∂x̂k

|x̄k

Σww,m,k = Σll,m,k +Am,kΣx̄x̄,kA
T
m,k

Km,k = Σx̄x̄,kA
T
m,kΣ

−1
ww,m,k

Σx̂x̂,k = (I−Km,kAm,k)Σx̄x̄,k

x̂k = x̄k +Km,kwk.

(7)

The index m marks all quantities belonging to the measurement equation. The index k marking

the current epoch, is omitted from here on for the sake of better readability. Thus, only the previously

estimated state x̂k−1 and its VCM exhibit a time index in the context of the EKF for the rest of this

work.

3.1.3 Inner reliability

The validity of the assumptions in the functional model in (2), the stochastic model assumptions in Σll

and the corresponding solutions of LSA (fifth and seventh equation in (3)) have to be controlled given the

observed values in l. These equations represent the null hypothesis H0 which is accepted or rejected based

on statistical tests. The only assumption, which one can control, is the zero-mean of the expectation

value of the residuals (1). This leads to the global test [165] pp. 90 ff.

TG = v̂TΣ−1
ll v̂

�
H0 : TG ≤ TG,c(α) → TG ∼ χ2

r

HA : TG > TG,c(α) → TG ∼ χ2
r,λG

(8)

which uses the chi-square distribution χ2 as test distribution. If the test value TG is not significant (i.e.

less or equal than the critical value TG,c(α), where α is the type I error or significance number), there is

no reason to reject H0. In this case the test value follows a central χ2
r-distribution with r = b−u degrees

of freedom. Otherwise, it follows a non-central χ2-distribution with additional non-centrality parameter

λG. The global test just detects discrepancies in the model assumptions of H0, the localization of sources

for the discrepancies has to be done in a subsequent procedure. The reason for the rejection of H0 in the

global test can be either an insufficient stochastic model Σll or unmodeled effects in the functional model

(2). Throughout this thesis, it will be assumed, that the reasons are unmodeled effects and especially

systematic deviations in the observations.

Systematic deviations in the observations, are introduced by extension of (1)
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l = E{l}+C∇− v (9)

with a deterministic vector ∇ ∈ Ru∇×1 and known coefficient matrix C ∈ Rn×u∇ [164] pp. 57 ff. ∇
is included in the functional model of an GMM in the overall parameter vector x̂O = [x̂A, ∇̂]T , where

the original parameters x̂ are numerically not equal anymore to x̂A due to the incorporation of ∇̂. [71]

pp. 184 ff. show the detailed derivation of the extended functional model in the GMM and the a brief

summary of the solutions is

Q∇̂∇̂ = (CTQ−1
ll Qv̂v̂Q

−1
ll C)−1

d∇̂ = Q∇̂∇̂CTQ−1
ll v̂

dx̂A = dx̂−Qx̂x̂A
TQ−1

ll Cd∇̂
Qx̂x̂,A = Qx̂x̂ +A+Q∇̂∇̂(A+)T

v̂A = v̂ −Qv̂v̂Q
−1
ll Cd∇̂

Qv̂v̂,A = Qv̂v̂ −Qv̂v̂Q
−1
ll CQ∇̂∇̂CTQ−1

ll Qv̂v̂,

(10)

where again the cofactor matrices are used for the computation of the estimated quantities (contrary

to the other equations of the test statistics where it is necessary to use the VCMs). Quantities without the

index A belong to the H0 model, as this is the originally evaluated and tested model in (8). Consequently,

the inclusion of ∇̂ leads to the model of the alternative hypothesis HA (with corresponding quantities

marked with index A). The advantage of this procedure is, that all quantities from HA can be computed

from the quantities of H0 without the need of an additional estimation step. The derivation of the global

test in HA

TG,A = v̂T
AΣ

−1
ll v̂A = v̂TΣ−1

ll v̂ − d∇̂T
Σ−1

∇̂∇̂d∇̂ (11)

shows, that in the case, that ∇̂ equals the unmodeled systematic deviations, the term d∇̂T
Σ−1

∇̂∇̂d∇̂
equals the non-centrality parameter in (8). Thus, one can directly use the statistical test (also called

local test)

TA = d∇̂T
Σ−1

∇̂∇̂d∇̂
�
H0 : TA ≤ TA,c(α) → TA ∼ χ2

u∇

HA : TA > TA,c(α) → TA ∼ χ2
u∇,λA

(12)

to check if ∇̂ is the reason for rejection of H0 in the global test (i.e. a possible sysyematic deviation

in the observation vector). The statistical tests (8), (11) and (12) are only valid when σ2
0 is used in the

computation of the VCMs from the corresponding cofactor matrices. Using the estimated or aposteriori

variance factor σ̂2
0 = v̂TQ−1

ll v̂/r, leads to other underlying distributions, which are e.g. shown in [71] pp.

182 ff. or [139].

In real applications, multiple local tests TA,i, i = 1, ..., nA are performed to identify the reason for the

discrepancy in the global test. This has two main implications. First, one cannot use α in (12) as this

results in different sensitivities of TG and TA,i for a certain choice of ∇̂i. A common choice to overcome

this issue is to use the Bonferroni correction αA = α/nA [107]. There are also other approaches, in which

for each TA,i a corresponding αA,i is computed, leading to a lower type II error β of the testing procedure

[60, 9]. The second implication of multiple local tests is, that one has to choose among all significant TA,i.
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There is a probability of choosing the wrong HA,i and this probability is already introduced in section

2.1.2 as type III error γ [56] pp. 13 ff. For u∇-dimensional ∇̂ an approach of assessing the type III error

is shown in [33] and more literature is available for the 1-dimensional case [188, 187, 142, 68].

The type II error β corresponds to the probability of erroneously rejecting HA (and implicitely adopt-

ing H0) in (8). It is a preset value and an important quantity for the computation of the MDB

d∇̂0,i =

�
λA,χ2(αA, β, u∇ = 1)

cTi Σ
−1
ll Σv̂v̂Σ

−1
ll ci

(13)

where the vector ci results from the consideration of only one-dimensional d∇̂0,i. The computation

of λA,χ2(αA, β, 1) is e.g. described in [164] pp. 66. (13) is just the rearrangement of (12) in the one-

dimensional case and replacing TA,i with the non centrality parameter. The MDB is the main quantity

for the assessment of inner reliability and it is the threshold, systematic deviations or outliers have to

exceed, such that they can be detected with a preset probability of 1− β (i.e. the power of a statistical

test) given the type I error αA. It is also defined for the u∇-dimensional case [87, 192], which will be

also treated herein in section 5.1. The special case of setting cTi = [0, ..., 1, ..., 0] with only the entry

at position i leads to the approach of data snooping [165] pp. 103 ff. It is one of the most frequently

used testing procedures in geodetic applications. The redundancy numbers rii being the main diagonal

elements of the redundancy matrix

R = Qv̂v̂Q
−1
ll (14)

are also commonly used measures for the assessment of controllability and localization of outliers in

single observations.

3.2 Orientation estimation for indoor positioning

3.2.1 Coordinate frames

The aim of orientation determination is to align the smartphone body frame (B-frame) with the navigation

frame (N-frame). The local-level frame (L-frame) is an intermediate frame which results, when the z-axis

of the B-frame is aligned with the z-axis of the N-frame (from which it only differs by a rotation around

the z-axis). All frames are right handed and the rotation angles (i.e. the Euler angles φ, θ and ψ) are

counted positive along the short rotation of the x- into the y-axis, the y-axis into the z-axis and the z-axis

into the x-axis. The x-axis of the N-frame is aligned with geographic north, the z-axis with the direction

of the gravity vector and the y-axis completes the frame by pointing into the east direction. The used

coordinate frames are summarized in figure 2 and are adopted from [45] pp. 23 ff.
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Figure 2: Frames for orientation determination.

The Euler angles are already mentioned which represent one way to parameterize the orientation.

Each angle performs the rotation around its corresponding axis and the full rotation from the N-frame

into the B-frame (and vice versa) is done with the rotation matrices

RB
N = Rx(φ)Ry(θ)Rz(ψ)

RN
B = Rz(−ψ)Ry(−θ)Rx(−φ)

= RT
z (ψ)R

T
y (θ)R

T
x (φ)

Rx(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ


Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 .

(15)

The Euler angles can be determined when sensing the gravity vector gN with the accelerometer and

the earth magnetic field hN with the magnetometer. Both quantities are known and the numeric value

for gN = [0.0, 0.0, 9.81]T [m/s2] which is accurate enough provided that a low-cost accelerometer is used.

The EMF values [20.9, 0.0, 44.3]T [µT ] are available in a coordinate frame which x-axis is aligned with

the magnetic north pole (z-axis is the same as in the N-frame). In order to derive hN , these values have
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to be rotated into the N-frame by using the magnetic declination Rz(hD = 4.99◦) (according to figure 2).

The numeric values are derived from an earth magnetic field model for Vienna, Austria1. One decimal is

also accurate enough considering a standard deviation of the magnetometer noise of 0.5− 3.0 µT

3.2.2 Sensor observation models

In the static and noise-free case, the accelerometer provides the gravity vector in the B-frame gB =

Rx(φ)Ry(θ)g
N , and the roll angle φ and the pitch angle θ (i.e. the inclination angles) are computed

with

φ = arctan
−gBy
gBz

θ = arctan
gBx

gBy · sinφ+ gBz · cosφ.

(16)

With known inclination angles, the yaw angle ψ is derived in the same manner. In the non-perturbated

and noise-free case, the magnetometer provides hB = RB
NhN , which is rearranged hL = Ry(−θ)Rx(−φ)hB =

Rz(ψ)h
N such that

ψ = arctan
hL
y

hL
x

. (17)

A more detailed derivation of these equations can be found e.g. in [138].

The gyroscope provides the rate of change of the B-frame from epoch k − 1 to k, which is expressed

as angular velocities around the B-frame axes. According to [168] pp. 42, the angular velocities of the

Euler angles are computed with

φ̇ = (ωB
y · sinφ+ ωB

z · cosφ) tan θ + ωB
x

θ̇ = ωB
y cosφ− ωB

z sinφ

ψ̇ =
1

cos θ
(ωB

y · sinφ+ ωB
z · cosφ).

(18)

When using the Euler angle paremeterization, the gimbal lock problem has to be considered. It

appears when the pitch angle takes the value of ±90◦. In this case, there is an infinite number of

combinations of φ and ψ, describing the same rotation from the N-frame into the B-frame (and vice

versa). Mathematically, this appears as divisions by zero in (16) and (18). The orientation quaternion is

a parameterization which doesn’t exhibit this behavior. The computation of the orientation quaternion

from accelerometer and magnetometer is e.g. shown in [171] and the propagation with the gyroscope as

well as the conversions to Euler angles and rotation matrix elements can be found in [97] pp. 264 ff. and

pp. 167 ff.

As mentioned, the equations to derive orientation information from accelerometer, magnetometer and

gyroscope are only valid in the case of a static sensor, no noise and no systematic deviations. In reality,

each sensor observation contains a number of systematic deviations and the sensor noise ϵi which is

always treated as Gaussian distributed with zero-mean. The observation models for accelerometer and

gyroscope are

1ngdc.noaa.gov/geomag/calculators/magcalc.shtml?model=igrf#igrfwmm, retrieved 03.08.2022
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aB = RB
NgN + δBa + ϵa

ωB = RB
NωN

ie + δBω + ϵω,
(19)

where δBa and δBω are the bias vectors. Herein, they are treated as deterministic quantities but it is

also common to model them stochastically (especially when they are included in the state vector), e.g. as

first-order Gauss-Markov process [31] pp. 355 ff. ωN
ie is the earth rotation in the B-frame which can be

neglected (i.e. set to zero) as this quantity can only be reasonably determined with exhaustive calibration,

careful alignment and a static sensor with very long observation duration [69]. When these sensors are

carried by pedestrians, additional effects appear in (19). For the accelerometer, these accelerations due

to user motion show a periodic pattern and can be modeled as additional states [151, 65] or they can

be mitigated by fusing accelerometer and gyroscope to propagate the gravity vector in the B-frame gB

[152]. The magnetometer is subject to multiple systematic deviations [86, 144] and the full observation

model is

mB = (I+∆sn)[(I+∆si)R
B
N (hN + δNa ) + δBhi] + δBb + ϵm, (20)

where ∆sn and ∆si are matrices to account for the sensor scale plus non orthogonality as well as

soft-iron influences (magnetization due to earth magnetic field of components on the sensor platform

which are fixed with respect to the magnetometer). δBhi is the hard iron bias, which subsumes the

magnetic flux density due to magnetic components on the sensor platform (also fixed with respect to the

magnetometer). δNa represents magnetic anomalies in the sensor’s environment and δBb is the sensor bias

of the magnetometer. The magnetometer observation model (20) corresponds to the one used in [45] pp.

221 with the difference, that also sensor scale and non orthogonality (I+∆sn) is considered.
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4 Publications and main results

In this section, the main outcomes of the publications [A1], [A2] and [A3] are outlined which build the core

of this thesis. [A1] contains the derivations of the EKF in the GHM with a focus on an overdetermined

system equation. Thus, it is possible to fuse the smartphone sensor observations from multiple pedestrians

heading into the same direction within one EKF, which is conceptually implemented in this publication.

Additionally, inner reliability is assessed, based on the redundancy numbers (14) in [A1]. [A2] contains

further analysis of inner reliability in the GHM. On the one hand, the different measures for the assessment

of inner reliability are outlined and on the other hand, the main factors which influence these measures are

identified. Numerical examples of plane fitting and yaw computation with multiple static magnetometers

are evaluated to strengthen the theoretic considerations. In [A3], an algorithm is designed for orientation

determination with a MARG sensor array which can be used in real scenarios. Implicitely, the design

of this algorithm is guided by the aim of improving inner reliability. Together with some heuristics, this

algorithm exhibits robustness to magnetic anomalies and outperforms other algorithms from relevant

publications in a small-scale pedestrian indoor positioning experiment.

Beside the three main publications, also other work has been published in the course of this thesis,

which is partially closely related to the topics covered herein. [B1] elaborate on the absolute positioning in

indoor environments using Wi-Fi, RFID and ambient magnetic fields. In [B2], further indoor positioning

experiments are performed with regard to RFID. Publication [B3] can be seen as the starting point of this

thesis. An EKF for indoor orientation estimation with a MARG sensor array is presented with a focus on

statistical tests on the filter innovation to detect turns and suppress the influence of systematic deviations.

In [B4], the redundancy numbers for the individual sensor observations are derived and analyzed - for the

same implementation of the EKF as in [B3] - by using the GHM. The analysis of building utilization with

a mobility graph is the focus of [B5]. [B6] use the robot operating system (ROS) in different applications

of engineering geodesy to point out its advantages.

The next three subsections contain the main ideas and outcomes of the main publications. The

publications itself are included in appendix A.

4.1 Publication A1

The motivation of [A1] are the results from [B3], where systematic effects appear in the determined

smartphone orientation. An EKF with Euler angles used as direct observations has been applied in

[B3] which leads to the problem, that inner reliability cannot be directly analyzed for the smartphone

observations (i.e. gyroscope, accelerometer and magnetometer). Thus, the EKF update equations are

derived in the GHM and overdetermination in the system equation is considered in [A1].

The overall functional model of the EKF in the GHM consists in a first step of the state propagation

model fx̄ as introduced in (4) and the observation model fm implicitely containing x̂ and lm (i.e. the

functional model of the GHM (2)). In order to consider the overdetermination of the system equation,

another function vector f∗s ∈ Rb∗s×1 is included in the overall functional model

0 =

fx̄(x̂k−1 + v̂x̂k−1
, υ + v̂υ, ζ + v̂ζ)− x̂

f∗s (x̂, x̂k−1 + v̂x̂k−1
, υ + v̂υ, ζ + v̂ζ)

fm(x̂, lm + v̂lm)

 =

�
fs(x̂k−1 + v̂x̂k−1

,υ + v̂υ, ζ + v̂ζ , x̂)

fm(x̂, lm + v̂lm)

�
. (21)

f∗s implicitely contains the states of the previous and current epoch x̂k−1 and x̂ as well as the system

control υ and system noise ζ (note that the index k for the current epoch is again omitted). For



4 PUBLICATIONS AND MAIN RESULTS 20

convenience, fx̄ and f∗s are joined into one function vector fs ∈ Rbs×1 in (21), where bs = u + b∗s. The

linearization of (21) leads to the same structure as in LSA based on the GHM

0 ≈

 0

w∗
s

wm

+

−I

A∗
s

Am

 (x̂− x̄) +

T Y Z 0

T∗ Y∗ Z∗ 0

0 0 0 Bm



v̂x̂k−1

v̂υ

v̂ζ

v̂lm


≈

�
ws

wm

�
+

�
As

Am

�
dx̂+

�
Bs 0

0 Bm

��
v̂ls

v̂lm

�
≈ w +Adx̂+Bv̂

A∗
s =

∂f∗s
∂x̂

|x̄,x̂k−1,υ,ζ

T∗ =
∂f∗s

∂v̂x̂k−1

|x̄,x̂k−1,υ,ζ

Y∗ =
∂f∗s
∂v̂υ

|x̄,x̂k−1,υ,ζ

Z∗ =
∂f∗s
∂v̂ζ

|x̄,x̂k−1,υ,ζ .

(22)

It can be seen in the first line of (22), that the overdetermined part of the system equation results

in an additional misclosure vector w∗
s ∈ Rb∗s×1. As x̂ is implicitely included in f∗s , the corresponding

design matrix A∗
s ∈ Rb∗s×u is not equal to the identity matrix anymore (compared to the common state

propagation model fx̄). Therefore, the system equation as a whole, exhibits a more complex structure

compared to the common EKF, because the quantities belonging to the overall system equation, i.e.

misclosure vector ws ∈ Rbs×1 and design matrix As ∈ Rbs×u, differ from the zero vector and identity

matrix. v̂ls = [v̂x̂k−1
, v̂υ, v̂ζ ]

T ∈ Rns×1 contains the residuals of the observation groups belonging to the

system equation, where ns = u+nυ+nζ . The quantities in (22) are inserted into (3) to derive the update

equations for x̂ and its VCM Σx̂x̂

Σx̂x̂ = (AT
s (BsΣllsB

T
s )

−1As +AT
m(BmΣllmBT

m)−1Am)−1

x̂ = x̄−Ksws −Kmwm

Ks = Σx̂x̂A
T
s (BsΣllsB

T
s )

−1

Km = Σx̂x̂A
T
m(BmΣllmBT

m)−1.

(23)

Σx̂x̂ clearly differs from the common EKF (fourth line in (7)), because As ̸= I and the inversion

of the whole term in the first line of (23) does not lead to a comparably simple structure. The state

update (second line in (23)) exhibits an additional term due to the overdetermined system equation,

where Ks ∈ Ru×bs is the corresponding Kalman gain matrix.

In [A1], this novel EKF formulation is used in an attempt to improve inner reliability in orientation

estimation for indoor positioning of pedestrians. The assumption is, that two ore more persons walk in

the same direction, each carrying a MARG sensor array equipped smartphone. Thus, the yaw angle ψ

is the same for all considered pedestrians but the roll φ and pitch θ angles still have to be determined

individually. For two pedestrians, the linearized system equation has the following structure
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fs(x̄, x̂k−1,ω
B , ζ) = ws =



0

0

0

0

0

w∗
s


=



φ̂k−1,1 + dt · ζφ,1 − φ̄1

θ̂k−1,1 + dt · ζθ,1 − θ̄1
φ̂k−1,2 + dt · ζφ,2 − φ̄2

θ̂k−1,2 + dt · ζθ,2 − θ̄2
ψ̂k−1 +

1
cos θ̂k−1,1

· (ωB
y,1 · sin φ̂k−1,1 + ωB

z,1 · cos φ̂k−1,1)− ψ̄

ψ̂k−1 +
1

cos θ̂k−1,2
· (ωB

y,2 · sin φ̂k−1,2 + ωB
z,2 · cos φ̂k−1,2)− ψ̄.


(24)

As already mentioned, φ and θ have to be estimated for both considered pedestrians which is indicated

by the numbers 1 and 2 in the index. ψ does not exhibit this subscript as it is assumed to be the same for

both pedestrians. Still, two condition equations can be set up, as both smartphones provide gyroscope

observations (i.e. ωB
y and ωB

z with corresponding indices 1 and 2) which represent the system control

quantities. From the fifth line in (24), the predicted yaw angle ψ̄ is directly computed, leading to a

zero entry at the fifth position of ws. The sixth line in (24) is redundant and therefore a discrepancy

w∗
s appears at the sixth position of ws. The measurement equation consists of both equations in (16)

as well as (17) for both pedestrians (i.e. in sum there are six condition equations). The observation

vector lm = [aB1 ,a
B
2 ,m

B
1 ,m

B
2 ] contains the accelerometer and magnetometer observations from both

smartphones. The redundancy numbers are partially increased by using this approach (see appendix

A.1). Still, there are observations, in which systematic deviations cannot be reasonably detected. That

is the reason for the further analysis of inner reliability in [A2] in the following section. Additionally,

the influence of adjustments in the stochastic model on the redundancy numbers is analyzed in [A1] (see

appendix A.1).

In the application of pedestrian indoor navigation, there are some critical steps, in order to realize

the approach of fusing the smartphone sensor observations from multiple pedestrians. Crowd-sourcing

requires, that pedestrians share their smartphone data via a local network or the internet, such that a

centralized algorithm can fuse these observations. It is also necessary to detect, if several pedestrians are

heading in the same direction, which would be the case e.g. in corridors. In the case that the algorithm

should provide the smartphone orientation in real-time, the pedestrians should be at the same time in

such areas. Despite this implementation problems, the approach of fusing the observations from multiple

pedestrians in one EKF is very promising with its ability to increase redundancy and therefore improve

inner reliability (which is stated in section 5.2). This could be a possible field of future research, especially

when considering other applications such as robotics or autonomous driving.

4.2 Publication A2

The results from [A1] show, that increasing the redundancy and adjusting the stochastic model, are not

per se effective actions to improve the localization of biases. [A2] aims to provide the derivation of inner

reliability in the GHM from scratch. Alternative hypothesis with one dimensional additional parameters

are introduced in the GHM and the corresponding statistical tests (i.e. local tests) are derived. Beside

assessing the detectability of systematic deviations with the MDB, also the separability of the alternative

hypothesis (identifiability) is considered in [A2]. Therefore, the correlation coefficient ρij of the local test

values is used which equals its computation in the GMM.

For a better understanding of the inner reliability in the GHM, the equation of the residuals is analyzed

v̂ = −B+(I−AA+)w. (25)
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The difference to the GMM is the mapping from the observations space (with dimension n) into the

condition space where the misclosures w are defined (i.e. the dimension is b) with the Jacobian matrix B.

The reverse mapping is done with the pseudo-inverse B+ given in (3). If one axis of the observation space

is located in the null space of B (and therefore also B+), systematic deviations affecting it, cannot be

detected. In this case, systematic deviations are not mapped into the condition space and the misclosures

do not reflect their presence. A consequence could be, that in this case, systematic deviations can be

neglected as they will have no effect on the estimated parameters either. Still, this is not a satisfying

solution. On the one hand, one has to determine a threshold from which on it is necessary to control such

observations and on the other hand, the influence of an observation on the misclosures is time-varying

when using an EKF (in general). Thus, functional models exhibiting such a property should be avoided.

Column vectors of B which are close to the zero vector, or with components being much smaller than

the components of the other column vectors, are a rough indicator for such defects if the variances of the

observations are very similar.

The second important mapping is the one from the condition space into the parameter space (and

back again) which is the same situation as in the GMM. This mapping mainly defines the orthogonal

decomposition of w into ŵ = AA+w and v̂w = (I − AA+)w. Hence, misclosures which are located

mainly (or even fully) in the parameters space do not contribute to the computation of v̂w (i.e. they are

located in the null space of the matrix I−AA+). Consequently, it is hardly possible to detect systematic

deviations in such observations.

These findings are stated based on numeric examples of plane fitting and static yaw computation with

a magnetometer in [A2] (see appendix A.2). Possibilities on introducing additional condition equations in

the functional model to improve inner reliability are also outlined. The static yaw computation should be

concisely recapitulated, as it is closely related to the evaluations in section 5.2 of this thesis. The idea is,

using multiple, leveled and aligned magnetometers to estimate the yaw angle ψ with respect to magnetic

north in a LSA. The functional model contains equation (17) for each magnetometer with standard

deviation for both components being 0.1 µT and the known value of ψ is 0◦. There is one alternative

hypothesis containing a one dimensional bias for each observation (i.e. for all x- and y-components of

the magnetometers). The MDBs of the x-components are unlimited in this case, as they have no effect

on the misclosures as long as the y-components are zero. Thus, the corresponding column vectors in B

equal approximately the zero vector. Additionally, it is not possible to correctly assign a detected bias

as the local tests for the x- and y-component of one magnetometer are one-to-one correlated (figure 3

left). This means, that if only evaluating the global test and consecutive local tests, it is not possible to

correctly assign a bias.
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Figure 3: ρij for the local tests of one dimensional biases in the static yaw computation. Left: only

using the yaw condition equations (17). Right: additional condition equation on the magnitude of

magnetometer observations.

In order to solve this issue, an additional condition equation is introduced for each magnetometer

which controls the magnitude of the observed magnetic field by comparing it with the corresponding

known value (see section 3.2). The MDBs are now equal for all x- and y-components (approximately four

times the standard deviation) and also the alternative hypothesis or local tests are decorrelated (figure 3

right).

The analysis of inner reliability in the GHM in [A2] is based on one dimensional additional parameters

in the alternative hypothesis. In the appendix of [A2], the estimation of any kind of systematic deviations

in the observations is introduced. Still, this publication does not contain the test statistics and measures

for inner reliability of multi dimensional additional parameter vectors. The intention of section 5.1 of

this thesis is to close this gap and provide the MDB and correlation cefficient of local tests in the general,

multi-dimensional case.

4.3 Publication A3

In publication [A3], an algorithm is developed, which provides the absolute smartphone orientation being

robust to magnetic anomalies. Instead of fusing the observations from IMU and magnetometer in one

estimation procedure (e.g. an EKF), the computation of inclination and heading as well as the magnetic

anomaly detection are separated from each other. Pedestrian trajectories vary more or less only in the

xy-plane of the N-frame (see section 3.2) as the user walks through the environment (i.e. rotations

only appear around the vertical z-axis). Variations or rotations around the x- or y-axis of the N-frame

occur only if the smartphone holding mode changes. Thus, pedestrian trajectories do not exhbit enough

information to fully decorrelate the orientation states as well as parameterized sensor errors if they would

be estimated within one EKF. Systematic deviations therefore would spread on all states and negatively

influence all states.

Magnetic anomalies cause the highest magnitudes of systematic deviations in the computed orientation

in indoor environments based on the coupling of IMU and magnetometer. Thus, the focus in [A3] is on the

reliable detection of magnetic anomalies and use magnetometer observations for the heading computation
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only in their absence. Magnetic anomaly detection is done with the global test values computed from the

bias-EKF which is based on the magnetometer observation model

mB = RB
NhN + δBs + δBf + ϵm

δBs = (I+∆sn)δ
B
hi + δBb

δBf = RB
NδNa + (∆sn∆si +∆sn +∆si)R

B
N (hN + δNa )

(26)

derived from (20). The state vector of the bias-EKF only contains the slow varying magnetometer

bias δBs . This quantity subsumes the sensor errors varying slowly in time in the B-frame. Contrary to

this quantity, is the fast varying magnetometer bias δBf which exhibits a high variability in the B-frame.

The assumption behind using the global test value from the bias EKF is, that if it is significant, δBf is

present which cannot be represented by δBs . In such time spans magnetometer observations should not

be used to update the absolute heading. The heading is propagated with the gyroscope and is used as

observation in the bias-EKF. Thus, undetected magnetometer errors cannot spread on the heading which

would negatively affect the performance of the overall orientation estimation algorithm.

The developed algorithm requires an accurately known initial heading or the initial calibration of

the magnetometer (e.g. with ellipsoid fitting) to provide an accurate heading. In order to relax this

requirement, the magnetometer observations are monitored in an independent module with conditions

derived from the known quantities of the EMF. With this additional procedure it is possible to detect

discrepancies in the initial heading.

Beside the magnetic anomalies and other magnetometer related errors, systematic deviations have to

be considererd for the the accelerometer and gyroscope too. As both sensors are sensitive to accelerations,

the effects due to the user motion have to be considered, which is done in the inclination computation

module according to [152, 65]. It is a challenging task to perfectly separate user motion from the remaining

accelerometer signal. This is also the reason for not considering sensor biases for the accelerometer,

because their magnitude is usually much lower than the user-motion-induced accelerations. The gyroscope

bias only becomes apparent if the angular rates are integrated over a longer period of time. Thus, if

regular updates for the inclination (from the accelerometer) and the heading (from the magnetometer)

are available, the influence of the bias remains small or even negligible and it is not parameterized in the

proposed approach.

The purposed orientation estimation algorithm is mainly heuristic as it neglects accelerometer and

gyroscope biases and it requires a priori decisions of the developer (e.g. relying on the initial heading or on

the additional conrol procedure of the magnetometer observations). Still, it exhibits a good performance

as it is shown on the basis of numeric examples and a small scale experiment with a highly accurate

ground truth of the smartphone orientation. Figure 4 shows the deviations of the estimated heading

from the ground truth value for twelve trajectories (4 specific trajectories walked with three different

smarthpones). The smartphones are carried in texting mode in all trajectories. In the trajectories 1 and

2 the user walked in the whole experiment area because the corresponding magnetometer observations

are used to compute magnetic field maps by using spatial interpolation. That is the reason why they

are much longer compared to trajectories 3 and 4, where the user walks straight through the experiment

area and is closely passing a magnet which causes a heavy magnetic anomaly.

The developed algorithm (called ”own” in figure 4) is compared to three other well established algo-

rithms: the complementary filter ”madgw” from [124], the EKF ”magyq” from [145] and the EKF ”han”

from [53]. The overall root mean square error of the estimated heading from the developed algorithm is
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≈ 40 % lower compared to the other algorithms.

Figure 4: Deviations ∆ψ of the estimated heading or yaw from the corresponding ground truth values.

The developed algorihtm ”own” is compared to three other algorithms from literature.

Due to the chosen measurement setup, larger scale experiments are not possible. Nevertheless, these

experiments indicate the potential of the developed algorithm to be integrated into indoor positioning

systems to further elaborate on the orientation performance.
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5 Summarizing consideration and analysis

In this section, the insights from the publications for this thesis about inner reliability in the GHM are

further elaborated. Section 5.1 provides the general equations to formulate alternative hypothesis in

LSA and EKF in the GHM as well as the equations to compute the corresponding measures of inner

reliability. In section 5.2, a simulation study is performed on the two newly developed algorithms for

orientation determination in indoor positioning. Focus is on the analysis of inner reliability measures and

their comparison to a baseline algorithm, to show, the potential of application of these algorithms. The

whole chapter serves as a wrap-up to properly connect the publications and also raises further gaps and

questions, which could be the topic of future research.

5.1 Inner reliability in the GHM

5.1.1 LSA

In this section, the statistical tests and corresponding measures of inner reliability for any non-linear

systematic deviations in the observations are derived. The starting point is appendix A of [A2] with the

generalized observation model

fl(l, ∇̃) = E{l} − v, (27)

where fl ∈ Rn×1 is a function vector which provides calibrated but still noisy observations. It is im-

portant, to have a numeric value ∇∗ for the additional parameters representing the systematic deviations,

such that fl(l,∇∗) = l. This enables major simplifications in the functional model

0 = f(x̂A, fl(l, ∇̂) + v̂A)

≈ f(x̂(0), fl(l, ∇̂(0)
) + v̂(0))

+
∂f

∂v̂A
|
fl(l,∇̂(0)

)+v̂(0),x̂(0)(v̂A − v̂(0))

+
∂f

∂x̂A
|
fl(l,∇̂(0)

)+v̂(0),x̂(0)(x̂A − x̂(0))

+
∂f

∂fl
|
fl(l,∇̂(0)

)+v̂(0),x̂(0) ·
∂fl

∂∇̂ |
l,∇̂(0)(∇̂− ∇̂(0)

)

(28)

of the alternative hypothesis. When setting ∇̂(0)
= ∇∗, the importance of fl(l,∇∗) = l becomes

apparent, because many quantities of (28) are equal to the quantities of H0. Together with v̂(0) =

0, ∂f
∂v̂A

= ∂f
∂fl

= B and ∂fl
∂∇̂ = C the linearized functional model of HA becomes

0 ≈ w +Bv̂A +Adx̂A +BCd∇̂ = w +Bv̂A +
�
A BC

 �dx̂A

d∇̂

�
= w +Bv̂A +AOdx̂O, (29)

which can be solved with (3). This is outlined in detail in appendix C.1. The overall parameter vector

with corresponding cofactor matrix is
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Qx̂x̂,O =

�
Qx̂x̂,A Qx̂∇̂
QT

x̂∇̂ Q∇̂∇̂

�
=

�
Qx̂x̂ +A+BCQ∇̂∇̂CTBT (A+)T −A+BCQ∇̂∇̂

−Q∇̂∇̂CTBT (A+)T (CTQ−1
ll Qv̂v̂Q

−1
ll C)−1

�

dx̂O =

�
dx̂A

d∇̂

�
=

�
dx̂−A+BCd∇̂
Q∇̂∇̂CTQ−1

ll v̂

�
.

(30)

Due to the inclusion of ∇̂ in the overall parameter vector, the cofactor matrix Qx̂x̂,A of the original

parameters in theHA-model is increased compared to theH0-model. This is reasonable, as each additional

parameter reduces the redundacy by one. The incorporation of ∇̂ also leads to a shift A+BCd∇̂ of the

parameters of the H0-model wich is the basic equation for the outer reliability (i.e. replacing d∇̂ with

the corresponding MDB). In the same manner also the residuals with corresponding cofactor matrix are

derived in the HA-model

Qv̂v̂,A = Qv̂v̂ −Qv̂v̂Q
−1
ll CQ∇̂∇̂CTQ−1

ll Qv̂v̂

v̂A = v̂ −Qv̂v̂Q
−1
ll Cd∇̂.

(31)

These are the same equations as in the GMM. As outlined in 4.2, the difference is in the computation

of v̂ and Qv̂v̂, as here the additional mapping from the observation space into the condition space occurs.

Because of the same structure of v̂A in the GHM and the GMM, the same statistical tests described in

section 3.1.3 can be used for the assessment of inner reliability. Contrary to section 3.1.3, from here on,

the restriction to the case of u∇ = 1 should be omitted. This leads to a more complex MDB, as it is not

a scalar value anymore, but the equation

λA,χ2(αA, β, u∇) = d∇̂T

0 Σ
−1

∇̂∇̂d∇̂0 (32)

describes an u∇-dimensional hyper-ellipsoid (in [71] pp. 301 it is also called threshold-ellipsoid). d∇̂0

is not a unique vector but a set of vectors lying on the surface of the hyper-ellipsoid. It is possible to

derive a condition on the euclidean norm ∥d∇̂0∥2 (which is shown in detail in appendix C.2)

∥d∇̂0∥2 ≤
�

λA,χ2(αA, β, u∇) · √emax, (33)

where emax is the maximum eigenvalue of Σ∇̂∇̂. The square root of the maximum eigenvalue corre-

sponds to the spectral norm. This is also a reasonable choice for inner reliability, as it represents the

MDB with the maximum norm among all vectors described by (32). A vector quantity can be derived

by using the eigenvector umax which corresponds to emax

d∇̂0 =
�

λA,χ2(αA, β, u∇) · √emax · umax. (34)

The computation of λA,χ2(αA, β, u∇) is done iteratively by increasing λi until (1−ϕχ2(TA,c(αA), u∇, λi)) >

(1−β) exceeds the preset power of the statistical test (where ϕχ2() is the cumulative distribution function

of the non-central chi-square distribution with u∇ degrees of freedom). The final λi equals the required

λA,χ2(αA, β, u∇).

Until now, only one alternative hypothesis is considered in this section. In the case of multiple alter-

native hypothesis HA,i, i = 1, ..., nA, one has to consider the type III error, which is already introduced

in section 3.1.3. [187] state that it is dependent on αA, β and the correlation coefficients ρij of the
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test statistics (12) for each considered alternative hypothesis. As α, β and the number of considered

alternative hypothesis nA are preset values (and therefore αA is also fixed), the correlation coefficients

ρij are the quantities of interest. If only one-dimensional alternative hypothesis are considered, the ρij
can be directly computed from the elements sij , i, j = 1, ..., nA of Q−1

∇̂∇̂ (for details see appendix C.3)

ρij =
sij√
sii · sij . (35)

If there are more than one additional parameter in the alternative hypothesis, it is necessary to extend

the derivation of the correlation coefficient. [33] is the only publication, which could be found, describing

this case and it states that ρij corresponds to the minimum angle between all possible vector pairs from

the two vector spaces Hi and Hj belonging to HA,i and HA,j . Herein, ρij is derived based on another

reasoning, which leads to very similar results. The additional parameter vectors d∇̂i and d∇̂j from two

alternative hypothesis are computed from the residuals v̂ of H0

d∇̂O =

�
d∇̂i

d∇̂j

�
=

�
Σ∇̂i∇̂i

CT
i Σ

−1
ll

Σ∇̂j∇̂j
CT

j Σ
−1
ll

�
v̂ = Fv̂ (36)

where the VCM of the overall additional parameter vector d∇̂O is computed with variance propagation

law

Σ∇̂O∇̂O
= FΣv̂v̂F

T =

�
Σ∇̂i∇̂i

Σ∇̂i∇̂j

ΣT
∇̂i∇̂j

Σ∇̂j∇̂j

�
Σ∇̂i∇̂j

= Σ∇̂i∇̂i
CT

i Σ
−1
ll Σv̂v̂Σ

−1
ll CjΣ∇̂j∇̂j

.

(37)

The covariance matrix Σ∇̂i∇̂j
describes the influence of the random variable d∇̂j on the distribution

of the random variable d∇̂i. This relation can be seen in the equation of the conditional expectation

(e.g. in [89] pp. 131)

E{d∇̂i|d∇̂j} = E{d∇̂i}+Σ∇̂i∇̂j
Σ−1

∇̂j∇̂j
(d∇̂j − E{d∇̂j}). (38)

In the optimum case, d∇̂i and d∇̂j are independent (i.e. not correlated) which is the case if Σ∇̂i∇̂j
=

0. One way to assess the correlation is, to compute the correlation matrix from Σ∇̂O,∇̂O
and analyze

the corresponding correlation coefficients. Herein, the spectral norm (see also appendix C.2) of Σ∇̂i∇̂j

is used as scalar measure for the correlation, which corresponds to the maximum singular value (i.e. the

square root of the maximum eigenvalue). The formulation of the eigenvalue problem of a rectangular

matrix (e.g. [42] pp. 70 ff.)

√
emax · ui,max = Σ∇̂i∇̂j

uj,max (39)

indicates, that
√
emax describes the correlation.

√
emax is the length of the image of the eigenvector

uj,max in the vector space Hi. If it is zero, a change along the direction of uj,max has no influence in

Hi, i.e. there is no correlation. The bigger
√
emax, the bigger gets the influence of a change along the

direction of uj,max in Hi, i.e. the correlation increases. To ensure, that
√
emax describes ρij (i.e. it has

to be in the range of [−1, 1]), the additional parameter vectors are standardized with ([71] pp. 99)
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d∇̂′
i = Σ

− 1
2

∇̂i∇̂i
d∇̂i

d∇̂′
j = Σ

− 1
2

∇̂j∇̂j
d∇̂j .

(40)

Thus,
√
emax is computed with singular value decomposition of the matrix Σ

− 1
2

∇̂i∇̂i
Σ∇̂i∇̂j

Σ
− 1

2

∇̂j∇̂j
and

it is used as measure for the correlation of test statistic ρij herein.

5.1.2 EKF

In section 4.1, the EKF is formulated as the linearized functional model of LSA. Thus, the equations

from section 5.1.1 can be directly applied to the description of inner reliability in the EKF, considering

that

Σll =


Σx̂x̂,k−1 0 0 0

0 Συυ 0 0

0 0 Σζζ 0

0 0 0 Σll,m


A =

−I

A∗
s

Am


B =

T Y Z 0

T∗ Y∗ Z∗ 0

0 0 0 Bm

 .

(41)

Inner reliability is analyzed for the system control υ and the observations of the measurement equation

lm, as these are the quantities possibly being affected by systematic deviations. Statistical tests (and

therefore inner reliability) on the residuals of the previously estimated state x̂k−1 are not considered

herein, as this is the quantity which should be improved in the EKF update anyway. Another reason

is, that the variance or VCM of the state should decrease with time in order to have a filter effect (i.e.

stochastic observability - see section 2.1.1). Hence, it is very unlikely, that local tests (12) for systematic

deviations in x̂k−1 are the most significant ones when searching for the reason of discrepancy in the

identification step. One can also consider HA-models for the system noise ζ as analysis tool to check if

the propagation model of the system equation describes reality appropriately. Herein, inner reliability is

only analyzed for υ and lm.

The general form of the two considered obsevation models for υ and lm are

fl(l,∇υ) =
�
x̂T
k−1 fυ(υ,∇υ)

T ζT lTm

T
fl(l,∇l,m) =

�
x̂T
k−1 υT ζT fl,m(lm,∇l,m)T

T (42)

with corresponding Jacobi matrices
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Cυ =
�
0T ( ∂fυ

∂∇̂υ
)T 0T 0T

T
Cl,m =

�
0T 0T 0T (

∂fl,m

∇̂l,m
)T

T (43)

Thus, the analysis of inner reliability is in principle the same as in LSA.

In the field of assessing inner reliablity in the EKF exist approaches for further research. In EKF-

applications, one has to consider the temporal extent of systematic deviations too as they are not restricted

to one epoch in general. For example a sensor bias in smartphone observations is present from the first

EKF epoch on or becomes apparent after a certain duration (change of battery charge or temperature).

Another example are magnetic anomalies which are present in certain areas in a building (see section

4.3). Thus, the matrices in (43) can be extended to cover a certain time window with an arbitrary

number of epochs. The strict way to compute the global test and local tests for multiple epochs is,

to formulate the considered epochs in an LSA and compute the corresponding residuals with its VCM.

This does not lead to an efficient computation because also intertemporal VCMs appear which is also

stated in [150] on page 17. Especially for long trajectories and low-cost or edge devices with limited

capablities on processing and battery performance, this approach becomes intractable. An alternative

is, to neglect intertemporal correlations and stack the residuals from the considered epochs vertically

and the corresponding VCMs diagonally as e.g. done in [175, 176]. Still, this approach fastly becomes

complicated, as not all systematic deviations are constant with time. Sensor biases can be modeled as

constant parameters in the B-frame and the stacking approach could help to detect its presence. Other

deviations such as magnetic anomalies heavily vary with time (to be more precise: they vary with the

change of the sensor position and attitude with respect to the source of anomaly). In such cases, the

functional model of the alternative hypothesis considering multiple epochs becomes very complicated (if

it is expressable at all) and the valuable property of a simple computation of inner reliability measures

gets lost. A shaping filter (e.g. outlined in [113]) can be used in these scenarios to handle auto-correlated

observations. Another approach could be, to use distributed EKFs (see section 2.1.1), i.e. process each

hypothesis within a separate filter and use the results, where the global test is lowest. This approach can

be also classified as a combinatorial method (see section 2.1.2). The risk here is, that the state vectors of

the alternative hypothesis become unobservable. As these approaches are out of scope of this thesis, the

inner reliability measures are only analyzed for each epoch in the next section. But these considerations

represent aspects in further research.

5.2 EKF example for summary

In this section, the methodologic advancements from this thesis are combined with the developed al-

gorithms for orientation estimation in indoor positioning. Based on a simulated indoor scenario, the

outcomes and findings from [A1], [A2] and [A3] are connected to provide a concise summary.

The approach to create a simulated trajectory with corresponding smartphone sensor observations is

basically the same as in [A3]. Figure 5 shows the trajectory and the indoor environment with magnetic

anomalies. The only difference to the evaluations done in [A3] is, that only the 2D-case is considered

which means, that the rotation from the B-frame into the L-frame is already solved. Thus, the only

orientation parameter is the yaw angle ψ and the observations are mL = [mL
x ,m

L
y ]

T and ψ̇. A baseline

algorithm as well as the two algorithms developed in the course of this thesis are used to estimate ψ

and the magnetometer bias δLs (the index s indicates, that the slow-varying systematic deviations are
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subsumed within this quantity, for a detailed discussion see [A3]). Due to the focus of the thesis on inner

reliability, the analysis of the results is restricted to the MDBs d∇̂0,i and the correlation coefficients ρij
with corresponding statistical tests (i.e. global test and local tests). This also means, that in the context of

DIA, only the detection of sysyematic deviations in the observations and the corresponding identification

(i.e. the correct allocation) are investigated. Adaptation strategies are not considered herein although

the algorithm from [A3] implicitly contains measures for mitigating the systematic deviations induced by

magnetic anomalies. In the first step, d∇̂0,i and ρij are computed with unbiased observations, i.e. the

magnetic anomalies (red spots in figure 5) are not considered in the computation of the observations. In

the second step, the magnetic anomalies affect the computed observations and the global test TG (8) as

well as the local tests TA,i (12) are used to assess the detection and identification performance.

Figure 5: Simulated scenario with colormap showing the observed magentometer magnitude (green being

areas where only the EMF is sensed, i.e. the unaffected case). The blue triangle marks the starting point

of the trajectory (blue line).

The EKF acting as baseline algorithm (called ”standard EKF”), exhibits the functional model

system equation: 0 =

ψ̂k−1 + dt · ψ̇ + 0.5 · dt2 · ζψ − ψ̄

δ̂Ls,x,k−1 + dt · ζx − δ̄Ls,x
δ̂Ls,x,k−1 + dt · ζy − δ̄Ls,y


measurement equation: wm =

�
hNx · cos ψ̄ + δ̄Ls,x −mL

x

−hNx · sin ψ̄ + δ̄Ls,y −mL
y

� (44)

which can be evaluated with the common EKF update equations in the GMM. dt is the time interval

and ζi are the system noise components for each state. hN
x is the x-component of the earth magnetic field

vector hN and it is assumed, that the x-axis of the N-frame coincides with the magnetic north direction

(i.e. hN
y = 0). hN

x is a deterministic quantity which value is derived from the magnetic field model

already mentioned in section 3.2.1. The stochastic model equals a block diagonal matrix (see (41)) with
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the sub-matrices for the EKF-observations in the system and measurement equation

Συυ =
�
σ2
ψ̇


Σζζ =

σ2
ζ,ψ 0 0

0 σ2
ζ,x 0

0 0 σ2
ζ,y


Σll,m =

�
σ2
m,x 0

0 σ2
m,y

�
.

(45)

The assumption is, that systematic deviations can be present in ψ̇ or in mL. Thus, the alternative

hypothesis with corresponding observation models are

HA,1 : fυ(υ,∇ψ̇) = ψ̇ +∇ψ̇

HA,2 : fl,m(lm,∇m) = mL +∇m.
(46)

Note the difference between the indexes. The italic m stands for ”measurement equation” whereas the

normal m indicates the additional parameter for the magnetometer bias (i.e. the systematic deviations

which are not subsumed in δLs ). The algorithm from [A1] (called ”multi-user EKF”) requires, that multiple

pedestrians walk in the same direction (which could be the case e.g. in corridors). Each pedestrian

represents a sub-system which shares the same heading or yaw angle with the other pedestrians. δLs has

to be estimated for each of the pedestrian’s smartphone magnetometer independently. In this simulated

scenario two pedestrians are considered and the functional model is

overdetermined system equation: ws =



0

0

0

0

0

w∗
s


=



δ̂Ls,x,1,k−1 + dt · ζx,1 − δ̄Ls,x,1
δ̂Ls,x,1,k−1 + dt · ζy,1 − δ̄Ls,y,1
δ̂Ls,x,2,k−1 + dt · ζx,2 − δ̄Ls,x,2
δ̂Ls,x,2,k−1 + dt · ζy,2 − δ̄Ls,y,2

ψ̂k−1 + dt · ψ̇1 + 0.5 · dt2 · ζψ,1 − ψ̄

ψ̂k−1 + dt · ψ̇2 + 0.5 · dt2 · ζψ,2 − ψ̄



measurement equation: wm =


hNx · cos ψ̄ + δ̄Ls,x,1 −mL

x,1

−hNx · sin ψ̄ + δ̄Ls,y,1 −mL
y,1

hNx · cos ψ̄ + δ̄Ls,x,2 −mL
x,2

−hNx · sin ψ̄ + δ̄Ls,y,2 −mL
y,2

 ,

(47)

where the assumption is, that both pedestrians walked exactly the same trajectory. The stochastic

model is derived by stacking the VCMs from (45) diagonally according to the number of considered

pedestrians. For the sake of comparability with the other algorithms, systematic deviations are only

considered for the first pedestrian
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HA,1 : fυ(υ,∇ψ̇) =

�
ψ̇1 +∇ψ̇

ψ̇2

�

HA,2 : fl,m(lm,∇m) =

�
mL

1 +∇m

mL
2

�
.

(48)

The algorithm from [A3] (called ”mag-bias EKF”) consists of several submodules, which, in sum,

provide ψ being robust or less sensitive to the influence of magnetic anomalies. Inner reliability is analyzed

for the bias-EKF (a submodule of the mag-bias EKF) from [A3], whose state vector only contains δLs

system equation: 0 =

�
δ̂Ls,x,k−1 + dt · ζx − δ̄Ls,x
δ̂Ls,y,k−1 + dt · ζy − δ̄Ls,y

�

measurement equation: wm =

�
hNx · cosψ + δ̄Ls,x −mL

x

−hNx · sinψ + δ̄Ls,y −mL
y

� (49)

and ψ is included in lm (propagated with ψ̇ outside of the EKF - see [A3]). As there is no control

input, Συυ is not present in the stochastic model and σ2
ψ is computed with variance propagation (i.e. it

is a time-variable quantity)

Σζζ =

�
σ2
ζ,x 0

0 σ2
ζ,y

�

Σll,m =

σ2
ψ 0 0

0 σ2
m,x 0

0 0 σ2
m,y

 .

(50)

The observation models for the two considered alternative hypothesis are

HA,1 : fl,m(lm,∇ψ) =

�
ψ +∇ψ

mL

�

HA,2 : fl,m(lm,∇m) =

�
ψ

mL +∇m

�
.

(51)

∇ψ is divided by dt in the following analyis in order to be comparable to ∇ψ̇ from the standard and

multi-user EKF.

The main difference of the multi-user EKF compared to the standard EKF is, that there are more

equations in the system and measurement equation, i.e. the redundancy is increased. The mag-bias EKF

stands out, because of the exclusion of ψ from the state vector, i.e. the number of states is decreased

whilst redundancy stays the same as in the standard EKF.

The EKFs are all initialized by using the known heading at k = 0 and setting δ̂
L

s,0 = 0 (with

corresponding variances σ2
ψ̂,0

, σ2
δ̂,x,0

and σ2
δ̂,y,0

). Table 1 shows the values for all quantities which are set

before the execution of the three considered algorithms.
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Table 1: Preset values for the simulated scenario.

quantity value

dt 0.02 s
σψ̂,0 10.0 ◦

σδ̂,x,0, σδ̂,y,0 3.0 µT

σζ,ψ 0.05 ◦/s2

σζ,x, σζ,y 0.1 µT/s
σψ̇ 0.1 ◦/s
σm,x, σm,y 1.0 µT

Figure 6 shows the MDBs computed by applying the three previously described algorithms to the

trajectory from figure 5 neglecting the magnetic anomalies.

Figure 6: MDBs for the considered additional parameters. The y-axis of the top plot is logarithmically

scaled. The orange vertical areas indicate the timespans where the pedestrian is turning.

For the standard EKF as well as for the mag-bias EKF, ψ̇ is the problematic observation as the

corresponding MDB is some hundred degree per second. Only with the multi-user EKF it is possible

to reasonably detect gyroscope biases due to a MDB of approximately 0.4 ◦/s. The MDBs of the

magnetometer observations are more or less the same for the standard EKF and the multi-user EKF.

When using the mag-bias EKF, ∇̂0,m is considerably higher compared to the other two algorithms until

approximately 25 s. From there on, the pattern of ∇̂0,m is very similar for all three algorithms. It is

also apparent, that the magnitudes of ∇̂0,m,x and ∇̂0,m,y change when the user is turning (i.e. they are

dependent upon the pedestrian heading). The mathematical reason for this behavior is the computation

of ψ with the arctangent (17). Let us consider the last part of the trajectory, where the pedestrians
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head towards south (figure 5). In this case, mL
y solely determines the heading, whereas mL

x can be any

value as long mL
y is zero. Thus, it is much harder to detect systematic deviations in mL

y than in mL
x ,

which can also be seen in figure 6 after the last turn (i.e. ∇̂0,m,x is smaller than ∇̂0,m,y and very close

to zero). These conclusions differ from the ones in the analysis of the numerical example of multiple,

static magnetometers in [A2] (section 4.2 or appendix A.2). The reason is, that the system equation

acts as additional observation here, which is not present in the case of evaluating the multiple, static

magnetometers with LSA. In the chosen setup the additional redundancy in the multi-user EKF by fusing

the observations from multiple users only affects ∇̂0,ψ̇. The MDBs for the magnetometer observations are

more or less the same as for the standard EKF. Figure 7 reveals, that the reason for this is the stochastic

model which is determined by the preset standard deviations.

Figure 7: MDBs for the multi-user EKF when changing the number of pedestrians whose observations

are fused to five and ten. In change 1 of Σll, σψ̇ and σζ,ψ are doubled and σm,x, σm,y, σζ,x and σζ,y are

halved. In change 2 of Σll, σψ̇ and σζ,ψ are multiplied by ten and σm,x, σm,y, σζ,x and σζ,y are divided

by ten.

The effect of increasing the redundancy by fusing the observations from more users is very small for all

MDBs. Changing the stochastic model (i.e. varying the standard deviations of the observations, system

control and system noise) leads to more intense changes in the MDBs. The problem with adjusting the

stochastic model is, that ideally the standard deviations of the observation groups are carefully chosen

to represent the sensor and system noise components appropriately. In the present case of orientation

determination for indoor navigation, the need of a further reduction of ∇̂0,m,x and ∇̂0,m,y from figure 6

is questionable. As outlined in [A3], ∇̂0,m represents the fast-varying systematic deviations (which more

or less correspond to the magnetic anomalies). These systematic deviations can be much higher than the

computed MDBs and therefore they can be detected anyway. Still, small and undetected deviations can

bias the estimated heading which is hard to avoid without any other source of information or other kinds

of observations.
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The mag-bias EKF achieves a good performance in the sense of accuracy of the computed heading

in [A3] as it contains (heuristic) measures to reduce the influence of magnetic anomalies. The idea

of removing ψ from the state vector and include it as an observation obviously does not lead to an

improved inner reliability (figure 6). In the beginning of the trajectory, the MDBs are significantly higher

compared to the standard EKF and the multi-user EKF. The reason is, that the standard deviation of ψ

only decreases when the absolute heading is updated (at approximately 9 s and 25 s). This is also shown

in figure 8, where ∇̂0,ψ̇ and the magnitude of ∇̂0,m clearly decrease when σψ decreases. This figure shows

the normalized values in order to visualize these three quantities in one plot (i.e. each time series of data

is divided by the corresponding first value). Additionally, the relative levels (i.e. the changes with respect

to the first value) of ∇̂0,ψ̇ and ∥∇̂0,m∥ behave exactly the same in this case.

Figure 8: Relative changes of the yaw variance and MDBs compared to the value at time k = 0.

ρ1−2 is the measure to assess identifiablity (i.e. separability of HA,1 and HA,2). In the present scenario

it is nearly constant for all three algorithms but its extent is different between the algorithms. Here, also

the multi-user EKF stands out as ρ1−2 is approximately 0.0005 whereas it is 1.0 for the standard EKF

and the mag-bias EKF. When considering the magnetic anomalies (figure 5) in the computation of the

simulated magnetometer observations, the statistical tests in figure 9 state this finding. The local test

for the gyroscope bias does not get significant in the presence of the magnetic anomalies and indicates,

that the reason for the significant global test value is due to systematic deviations in the magnetometer

observations. A desired property of the mag-bias EKF is, that even if δ̂
L

s gets distorted by magnetic

anomalies, it converges back fast to the correct value after passing them. This is also the case in figure

9, as the test values of the mag-bias EKF are below the corresponding critcal values earlier compared to

the other two algorithms.
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Figure 9: Global test and local tests of the considered alternative hypothesis. The light red area marks the

timespan, where the magnitude of the magnetic anomalies exceed 1.0 µT . All y-axes are logarithmically

scaled. The dashed line represent the critical values (top plot: the critical values for the standerd EKF

and the mag-bias EKF are equal).

The analysis in this section reveal the high potential of the multi-user EKF respectively the approach

of fusing systems sharing common states in one EKF. Clearly, this approach is more complicated to

implement but e.g. in robotic applications or autonomous driving the circumstances are much more

predictable than in pedestrian indoor navigation. Thus, further research on this approach in different

applications or scenarios seems promising.
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6 Conclusions and outlook

The advancements obtained in this thesis can be summarized as follows:

• The solution of the EKF update equations with an overdetermined system equation due to multiple

sub-systems

• The derivation of inner reliability measures for the GHM based on a general formulation of system-

atic deviations in the observation model

• Fusing the smartphone sensor observations of multiple pedestrians in one EKF for orientation

estimation

• Development of an orientation estimation algorithm being robust to magnetic anomalies.

The first two tasks are methodological advancements in the field of parameter estimation methods.

The EKF update equations with overdetermined system equation are derived in [A1]. Another update

term appears due to the redundant equations in the state propagation (beside the update term from

the measurement equation). This framework or extended functional model is applicable to any kind

of estimation problem and offers the flexibility to include system control quantities from multiple sub-

systems in one state propagation step.

Inner reliability in the GHM is the main methodological topic of this thesis and it is subject of the three

main publications [A1,A2,A3]. In [A1], the influence of adaptions in the functional and stochastic model of

an EKF in the GHM on the redundancy numbers (as a measure for inner reliability) is analyzed. It turns

out, that additional aspects have to be considered when using inner reliability measures in the GHM. Thus,

[A2] focuses on a theoretical analysis of inner reliability in the GHM. Beside the orthogonal decomposition

of the misclosures with regard to the parameter space, also the mapping between the observation and

condition space plays an important role. The MDB together with the correlation coefficient of the local

tests are the two measures to assess inner reliability regarding detectability and separability. These

two measures are analyzed based on the numerical examples of plane fitting and magnetometer based

yaw computation in [A2] and actions to improve inner reliability are outlined. Section 5.1 of this thesis

contains a thorough summary on inner reliability in the GHM for LSA as well as the EKF. The local

tests, the MDB and the correlation coefficients are derived for any kind of systematic deviation affecting

the observations. Especially, the extension to multi-dimensional additional parameters in the alternative

hypothesis describing systematic deviations is an important step forward in geodetic reliability analysis.

[A3] does not directly include inner reliability considerations, but the global test used for magnetic

anomaly detection also belongs to this field of research.

The latter two challenges are about the implementation of specific algorithms for orientation esti-

mation in indoor positioning. The estimation of smartphone orienation based on the observations from

multiple pedestrians is closely related to the first research question. An EKF model is developed which

fuses the smartphone sensor observations such that the inclination is determined for each pedestrian, but

the yaw angle is the same for all of them. This is simulated in [A1] by using the data from an experiment

with one pedestrian and introducing the observations a second time with different smartphone inclination.

Inner reliability could be improved, but only for observations with satisfactory redundancy numbers. In

section 5.2 of this thesis, the EKF model from [A1] has been modified with respect to the yaw angle. It

exhibits superior properties regarding inner reliability. The MDBs of the gyroscope bias can be greatly

reduced and the local tests for gyroscope and magnetometer biases are decorrelated. Thus, it is possible
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to reasonably detect and identify sensor biases in EKF models for smartphone orientation determination

based on the data from multiple pedestrians.

In [A3] a heuristic orientation estimation algorithm for indoor positioning has been developed. The

computation of inclination and heading as well as magnetic anomaly detection is separated in different

modules. Thus, the influence of magnetic anomalies does not appear in the outcoming inclination and

due to the bias-EKF model, they also do not spread on the heading. The residuals from the bias-EKF are

used to compute the global test which is used for the detection of magnetic anomalies. Based on small-

scale experiments with high-accuracy ground truth for the smartphone orientation, the performance is

evaluated and compared to other algorithms from relevant publications on indoor positioning. The RMSE

of the computed heading is ≈ 40 % lower compared to the comparison algorithms. Still, an accurate initial

heading as well as temporarily error-free magnetometer observations are necessary conditions for the

developed algorithm in order to provide reasonable results for the smartphone orientation. Additionally,

the good performance has to be also stated in larger scale experiments with multiple users and different

smartphone holding modes.

Concluding this thesis, challenges remain which have to be tackled in future research. From a method-

ological point of view, this thesis lacks the temporal modeling of systematic deviations in the alternative

hypothesis EKF models. On the one hand, the observations can be subject to autocorrelated noise and

on the other hand, systematic deviations usually do not appear in only one epoch. As it would be nec-

essary to evaluate the alternative hypothesis model for different epochs at once, the real-time capability

may get lost and also the computational burden increases. It seems worthwile to analyze the impact on

inner reliability when using such extended and more complex models for the detection and identification

of systematic deviations. On the example of magnetic anomalies, there is a clear dependency on the

position and attitude of the smartphone with respect to the anomaly source. Modeling such influences is

challenging but has the potential of enabling the creation of magnetic anomaly maps in postprocessing

routines. Such maps can be used in turn for the real-time positioning of pedestrians within buildings,

e.g. by using these maps for fingerprinting.

The other open question is the implementation of the multi-user approach in an indoor positioning

system. Herein, only the EKF model has been developed but not used in multi-user experiments. A real-

time application is only possible, if the smartphone sensor observations from the persons in a building

are available to a central algorithm. Additionally, the question arises if users are indeed heading in the

same direction. This is obviously the case in corridors and narrow parts of a building but it requires the

detection of pedestrians being in such areas. Thus, a post-processing implementation of this algorithm

seems more promising for pedestrian indoor positioning. Nevertheless, there are other fields of application

which are more constrained or exhibit a more controlled pattern of motion, such as robotic/UAV navi-

gation or autonomous driving. Here it is also easier to establish the connection between the sub-systems

in order to share the observations. The application of EKFs with an overdetermined state propagation

to process such systems seems promising and offers new research perspectives.
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Abstract: The topic of indoor positioning and indoor navigation by using observations from
smartphone sensors is very challenging as the determined trajectories can be subject to significant
deviations compared to the route travelled in reality. Especially the calculation of the direction
of movement is the critical part of pedestrian positioning approaches such as Pedestrian Dead
Reckoning (“PDR”). Due to distinct systematic effects in filtered trajectories, it can be assumed that
there are systematic deviations present in the observations from smartphone sensors. This article
has two aims: one is to enable the estimation of partial redundancies for each observation as well as
for observation groups. Partial redundancies are a measure for the reliability indicating how well
systematic deviations can be detected in single observations used in PDR. The second aim is to analyze
the behavior of partial redundancy by modifying the stochastic and functional model of the Kalman
filter. The equations relating the observations to the orientation are condition equations, which do
not exhibit the typical structure of the Gauss-Markov model (“GMM”), wherein the observations
are linear and can be formulated as functions of the states. To calculate and analyze the partial
redundancy of the observations from smartphone-sensors used in PDR, the system equation and
the measurement equation of a Kalman filter as well as the redundancy matrix need to be derived
in the Gauss-Helmert model (“GHM”). These derivations are introduced in this article and lead
to a novel Kalman filter structure based on condition equations, enabling reliability assessment of
each observation.

Keywords: Kalman filter; Gauss-Helmert model; reliability; partial redundancy; orientation determination;
indoor navigation

1. Introduction

Determining the orientation in pedestrian navigation with geometric-based approaches is
an essential step for positioning. There are several possibilities to mathematically parameterize
the orientation. In [1] three possibilities are given: the direction-cosine-matrix, Euler angles and
quaternions. Discussion on the advantages and disadvantages of these concepts can be found in [2].
In this article the Euler angles—roll, pitch and yaw—are used as it is the yaw angle that is especially
necessary for calculating the 2D-Position in pedestrian navigation approaches like Pedestrian Dead
Reckoning (“PDR”). The orientation can be calculated directly by the use of an accelerometer and
a magnetometer respectively a gyroscope, which are nowadays integrated in most of the available
smartphones. Each of these sensors is subject to specific systematic effects [3], which have to be
considered in detail when integrating low-cost sensors in smartphones. These systematic deviations
clearly can have a noticeable impact on the resulting position of PDR, which makes determining the
orientation the critical part.

Sensors 2018, 18, 414; doi:10.3390/s18020414 www.mdpi.com/journal/sensors
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Several approaches exist to fuse and improve the calculated orientation from the individual
sensors. In [4] linear combinations are used, to calculate the yaw angle of the individual results
from magnetometer and gyroscope. Using a Kalman filter to fuse accelerometer, magnetometer
and gyroscope measurements [5–7] is the most common approach. Fusing these sensors offers the
opportunity to detect and correct for systematic deviations in the observations. In [8] a Kalman filter
is developed which uses the observed gravity and Earth magnetic field as well as the orientation
quaternion which are propagated by means of the gyroscope. If static acceleration or magnetic
flux is detected, systematic sensor deviations can be determined. In [9] or [10] the gyroscope is
used to detect when the user is turning. If the user walks straight, systematic sensor deviations are
derived. The same approach is used in [11] to smooth the resulting trajectory. A method to minimize
systematic effects in acceleration measurements resulting from the steps of pedestrians by adapting
the measurement noise can be found in [2]. Using additional data can improve the ability to detect
systematic effects. One possibility to retrieve additional position and attitude information is to use
pictures from the smartphone camera [12]. Also building plans can be used to support the calculation
of the orientation [13]. The previously mentioned approaches only use observations from one
device. Especially in pedestrian navigation, much data is produced from many different smartphones,
which can be used for positioning in various ways. This crowd-sourced data is mainly used to support
Wi-Fi fingerprinting [14,15] by extending and updating radio maps [16–18]. In the context of PDR,
in [19] for example, trajectories from multiple users are used to minimize the influence of magnetic
perturbations inside buildings.

Combining positions from signal strength observations with PDR is done, for example,
in [20]—with an adaptive Kalman filter—or in [21]—with a particle filter–to improve positioning
accuracy. Such signal strength observations or “Received Signal Strength” (RSS) can be used in
geometric-based approaches or in feature-based approaches and require external infrastructure.
Adding such positioning techniques—for example Wi-Fi [22,23], “radio-frequency identification”
(RFID) [24] or artificial magnetic fields [25]—will increase the redundancy and minimize the influence
of systematic effects. Geometric- and feature-based approaches are combined in [26], where also
measures are derived to quantify accuracy independently from the distribution of the observations.

This paper focuses on determining the orientation for PDR with accelerometer, magnetometer
and gyroscope in a Kalman filter. The focus is on analyzing the reliability of the observations from
smartphone-sensors, which are non-linearly included in condition equations. The Kalman filter is
commonly used to estimate states in a Gauss-Markov model (“GMM”—model with observation
equations), wherein the observations of the measurement equation are linear and can be formulated as
functions of the states [27,28]. However, the equations for the orientation determination in PDR are
condition equations, containing implicit relations between states and observations. Thus, reliability
analysis based on condition equations, necessitates a new derivation of the system equation and the
measurement equation of a Kalman filter as well as the redundancy matrix in the Gauss-Helmert model
(“GHM”—model with condition equations). The formulation of the system equation in the GHM can
be found in [29,30], wherein the measurement equation and corresponding redundancy matrix are
still assumed to satisfy the GMM. Hence, an important novelty of this article is the derivation of the
whole Kalman filter structure in the GHM, enabling the possibility to calculate reliability measures for
observations which are non-linearly included in the condition equations.

Section 2 contains the explanation of the existing approach and subsequent problem description of
reliability, as well as the derivation of the update-equations and redundancy matrix of the reformulated
Kalman filter. The data of a measured trajectory will be used to estimate the Euler angles as well
as the reliability measures. These results are presented in Section 3 whereas Section 4 concludes
this contribution.
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2. Orientation Determination

2.1. Existing Approach

In the Kalman filter used for orientation determination in this article, the state parameters are
the Euler angles roll ϕ, pitch θ and yaw ψ. Based on the assumption that roll and pitch are constant
while the user is walking, they are predicted at actual epoch k with a random-walk model (1) and (2).
The yaw angle is predicted with two different system equations, whereby (3) will be used if the user
is walking straight and (4) will be used at detected turns. In the second case the observed turn rates
from gyroscope gy,k and gz,k are included as control quantities summed in the vector uk. By doing
this, the predicted yaw should immediately follow the user’s turn. The noise components of the
state parameters are ck−1,ϕ, ck−1,θ , ck−1,ψ and Δt is the time interval between two consecutive Kalman
updates:

f1 : ϕk = ϕk−1 + ck−1,ϕ (1)

f2 : θk = θk−1 + ck−1,θ (2)

f3 : ψk = ψk−1 + ck−1,ψ (3)

f3 : ψk = ψk−1 +
Δt

cos θk−1

�
gy,k sin ϕk−1 + gz,k cos ϕk−1

�
+ ck−1,ψ (4)

Turn detection is done by applying a statistical test on the filter innovations of the yaw angle
dψ,i [29,31]. The null hypothesis H0 of this statistical test says that the vector dψ containing the
filter innovations dψ,i from the last n epochs is equal to the zero vector (5), whereas the alternate
hypothesis HA states that dψ is significantly different to the zero vector (6). If the test value exceeds
the corresponding quantile of the chi-square distribution (7), (4) will be used to predict the yaw angle.
Dψ is the variance-covariance matrix (VCM) of the innovation vector dψ and only contains variances
on the diagonal belonging to the corresponding dψ,i. This is a simplification, as auto-covariances may
be present. The use of random-walk (3) results in smoother trajectories in sections when the user walks
straight. By neglecting the observations from gyroscope in the random-walk model, the influence of
systematic sensor deviations (gyro-drift) on the filter result is minimized:

H0 : E(dψ) = E
��

dψ,1 dψ,2 · · · dψ,n

T
�
= 0 (5)

HA : E(dψ) ̸= 0 (6)

P{dT
ψD−1

ψ dψ ≤ χ2
n;1−α|H0} = 1 − α (7)

For the update equations also the VCM of the predicted state is needed (8):

∑xx,k = Tk,k−1 ∑x̂x̂,k−1 TT
k,k−1 + Uk,k−1 ∑uu,k UT

k,k−1 + Ck,k−1 ∑cc,k CT
k,k−1 (8)

Therein, Σii,k—with the index i = x̂k−1, u, c—are the VCMs of the corresponding observation
groups in epoch k. Tk,k−1 is the state transition matrix, Uk,k−1 the control matrix and Ck,k−1 is the noise
matrix, each referred to epoch k. These system matrices are Jacobi matrices and in general contain
the derivatives of the system equations with respect to the corresponding observation group [27–29].
Equations (9)–(11) show the system matrices for the approach presented in this section where E is the
identity matrix.

Tk,k−1 =

 1 0 0
0 1 0

∂ f3
∂ϕk

∂ f3
∂θk

1

 (9)
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Uk,k−1 =

 0 0 0
0 0 0
0 ∂ f3

∂gy,k

∂ f3
∂gz,k

 (10)

Ck,k−1 = Δt · E3×3 (11)

The observations in the measurement equation are directly observed Euler angles, as also shown
in [32]. Therefore, the design matrix Am,k of the Kalman filter equals the identity matrix. They are
calculated outside of the Kalman filter ((12)–(14)) by using observed accelerations ax,k, ay,k, az,k and
magnetic flux densities mx,k, my,k, mz,k [33]. The accelerations are filtered in a separate Kalman filter to
remove high-frequency components due to the movement of the user [2]:

f4 : ϕk = tan−1
� ay,k

az,k

�
(12)

f5 : θk = tan−1

�
−ax,k

ay,k sin(ϕk) + az,k cos(ϕk)

�
(13)

f6 : ψk = tan−1

�
mz,k sin(ϕk)− my,k cos(ϕk)

mx,k cos(θk) + my,k sin(θk) sin(ϕk) + mz,k sin(θk) cos(ϕk)

�
(14)

The yaw angle calculated with (14) can be subject to magnetic perturbations, especially inside
buildings. The redundant determination of the Euler angles in the Kalman filter by using the
system equation and the measurement equation dampens the influence of magnetic perturbations.
Additionally, the standard deviation of the magnetometer measurements σm will be increased if the
magnitude of the measured magnetic field ∥mk∥ is not stable (15), leading to an adaptive standard
deviation σm,k for each Kalman filter epoch. As the geomagnetic field should be constant related to the
dimensions of a building, it will be assumed that magnetic perturbations are present if the measured
magnitude changes:

σm,k = σm + |∥mk∥ − ∥mk−1∥| (15)

Using the covariance propagation law, the VCM belonging to the directly observed Euler angles
Σϕθψ,k is derived (16), wherein Hk is a Jacobi matrix containing the derivatives of (12)–(14) with respect
to the accelerometer and magnetometer measurements.

∑ϕθψ,k = Hk

�
∑aa,k 03×3

03×3 σm,kE3×3

�
HT

k

Hk =


0 ∂ f4

∂ay,k

∂ f4
∂az,k

0 0 0
∂ f5

∂ax,k

∂ f5
∂ay,k

∂ f5
∂az,k

0 0 0
∂ f5

∂ax,k

∂ f5
∂ay,k

∂ f5
∂az,k

∂ f5
∂mx,k

∂ f5
∂my,k

∂ f5
∂mz,k


(16)

2.2. Problem Description

To determine the user’s position, the step length is also estimated and will be used with fixed
variance in PDR. Figure 1 shows a trajectory calculated with PDR, whereby the yaw is estimated with
the Kalman filter mentioned in Section 2.1. Additionally, the 95% confidence ellipses as well as the
reference trajectory are part of Figure 1. This measured trajectory will also be used to analyze the
partial redundancy in Section 3. During the measurements, the user held the smartphone in portrait
mode (Figure 2 left, ϕk ~0◦). The reference trajectory is calculated from the measurements of the TS16
total station (Leica Geosystems, Heerbrugg, Switzerland) which is tracking the user by the help of a
360◦-mini-prism on a helmet (Figure 2 right).
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Figure 1. PDR Trajectory. Ground truth in magenta, estimated steps in blue with 95% confidence ellipses.

Figure 2. Used sensors and measurement setup: Samsung Galaxy S7 (Samsung, Seoul, Korea),
smartphone running indoo.rs Mobile ToolkitTM to collect sensor observations (left). Helmet with
360◦-mini-prism (middle) and Leica TS16 tracking the user (right).

In PDR, the yaw angle is responsible for the shape of the trajectory and the step length for the
scale. Hence in Figure 1, the estimated orientation causes the deviations between the estimated and
the reference trajectory. As these deviations are not captured by the confidence ellipses—which are
a measure for the precision [34]—there are two possible reasons for their appearance: systematic
deviations in the observed data or non-Gaussian distributed data. Because of the obvious systematics
in the estimated trajectory, it is assumed that systematic deviations are present in the observed data.

Reliability theory deals with the detection of large systematic deviations (inner reliability) and their
effect on the estimated quantities (outer reliability) [35,36]. To identify the measurements responsible
for the systematic deviations of the orientation between estimated and reference trajectory, the inner
reliability is used. Here the partial redundancies ri play a key role. According to [29,37,38], all quantities
with stochastic information can be treated as observations.

Observations related to the system equation are the estimated state from the previous epoch x̂k−1,
the control variables u and the noise variables c. The observations of the measurement equation are
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summed in the vector lm, where m labels quantities of the measurement equation. With (17)–(20) the
partial redundancy can be calculated for the previously mentioned observations according to [29]:

nx

∑
j=1

rx̂k−1,k,j =
nx

∑
j=1

eT
j ∑x̂x̂,k−1 TT

k,k−1AT
m,kD−1

k Am,kTk,k−1ej (17)

nu

∑
j=1

ru,k,j =
nu

∑
j=1

eT
j ∑uu,k UT

k,k−1AT
m,kD−1

k Am,kUk,k−1ej (18)

nw

∑
j=1

rc,k,j =
nw

∑
j=1

eT
j ∑cc,k CT

k,k−1AT
m,kD−1

k Am,kCk,k−1ej (19)

nl

∑
j=1

rlm ,k,j =
nl

∑
j=1

eT
j ∑ll,m,k D−1

k ej (20)

Therein, ni is the number of observations in each observation group and Dk is the VCM of the
filter innovation [27–29]. ej is the unity vector to select the corresponding ri respectively diagonal
element. In the above formulation of the Kalman filter, the ri can only be calculated for the directly
observed angles in the measurement equation but not for the original observations from accelerometer
and magnetometer due to the structure of (12)–(14).

2.3. Kalman Filter in the Gauss-Helmert Model

In the GMM, the true observations�l can be modeled as a function of the true parameters �x—which
also holds for the estimated observations l̂ and estimated parameters x̂ (21). As mentioned above,
the measurement Equations (12)–(14) have another structure, which matches the GHM [39] shown
in (22). Hence, the update equations of the Kalman filter have to be derived in the GHM, to directly use
the observations from smartphone-sensors. Afterwards, the corresponding ri need to be derived for
this case. In [30] the GHM is also used to estimate variance components for the system noise. Though,
there is still the assumption of using the GMM in the measurement equation and the results cannot be
used in this article. �l − f(�x) = l̂ − f(x̂) = 0 (21)

f
��l,�x� = f

�
l̂, x̂

�
= 0 (22)

As the functional relations (22) are non-linear in general—and especially in this article—they have
to be linearized. Neither the real observations and parameters, nor their estimated values are known a
priori. Hence, to do Taylor linearization, approximate values l0 and x0 have to be used which also have
to satisfy the non-linear relations [34]. In least-squares, especially x0 is assumed to be non-stochastic.
According to [40], l0 can be replaced by the observed data l after linearization, which results in the
linearized, functional model (23):

f(l, x0) + A(x̂ − x0) + B(l̂ − l) = 0 (23)

The first term corresponds to the misclosure vector w, the bracketed expression in the second term
equals the stochastic additions Δx̂ to the approximate parameters x0 and the bracketed expression in
the third term equals the residuals v. Formula (23) is only valid for the first iteration of least-squares
estimation, because linearization of the functional model necessitates an iterative approach. In the
subsequent iterations, the functional model is always linearized at the previously estimated observations
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and parameters [40]. Formulas (24)–(27) show, how the searched quantities with corresponding VCM
are calculated in the GHM in the context of least-squares [41]:

∑Δx̂Δx̂ =

�
AT

�
B ∑ll BT

�−1
A
�−1

(24)

Δx̂ = −∑Δx̂Δx̂ AT
�

B ∑ll BT
�−1

w (25)

v = −∑ll BT
�

B ∑ll BT
�−1

�
E − A ∑Δx̂Δx̂ AT

�
B ∑ll BT

�−1
�

w (26)

∑vv = ∑ll BT
�

B ∑ll BT
�−1

�
E − A ∑Δx̂Δx̂ AT

�
B ∑ll BT

�−1
�

B ∑ll (27)

B is the observation matrix, ΣΔx̂Δx̂ is the VCM of the estimated additions, Σll the VCM of the
observations and Σvv is the VCM of the residuals. It is important that A and B are column-regular
matrices. Otherwise the inverse matrices cannot be calculated. To avoid singular matrices, the functional
relations have to be chosen, such that there will be no linearly dependent columns in these matrices.

The Kalman filter is based on sequential least-squares with an additional state transition model.
The state transition model respectively system equation is described in general by non-linear, stochastic,
vector-matrix differential equations. We assume, that such differential equations have the form shown
in (28) after linearization, which is also basis for deriving the system equation in [27–29]:

.
x(t) = Fx(t) + Lu(t) + Gc(t) (28)

t is the continuous time variable. The system matrix F, control-input matrix L and noise-input
matrix G are assumed to be time-invariant. Solving such differential equations in the state space—also
shown in [27–29]—unambiguously defines the state parameters at time k and gives the approximate
formulation (29):

xk ≈ Tk,k−1xk + Uk,k−1uk + Ck,k−1ck (29)

As mentioned in [27], the predicted parameter vector xk should be calculated from the original
set of functions (30) in the non-linear case to avoid linearization errors. Equation (29) is necessary for
calculating the VCM of xk with the covariance propagation law (8).

xk = f(x̂k−1, uk, ck) (30)

The system can also be described by several sub-systems which yields in an over-determined
system equation. This will be dealt with in the next section, where one yaw angle will be estimated
from multiple trajectory data. Thus, the system equation decomposes into two sets of equations.
The first set unambiguously defines the predicted parameters by using x̂k−1, uk and ck which is already
shown in (29) respectively (30). This set of equations will be—analogue to [29]—formulated in the
GHM, such that it contains the residuals belonging to x̂k−1, uk and ck (31). The derivation of (31) can
be found in the Appendix A:

xk − x̂k + vx,k = −EΔx̂k +
�

Tk,k−1 Uk,k−1 Ck,k−1

 vx̂k−1,k
vu,k
vc,k

 = 0 (31)

The second set consists of condition equations, having the same structure like (23). These condition
equations contain the same quantities like the first set of equations and can therefore be formulated
as shown in (32). w*

s,k are the misclosures, arising because of the overdetermined system equation
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respectively condition equations. A*
s,k is the design matrix and T*

k.k−1, U*
k,k−1 and C*

k,k−1 are the
observation matrices which belong to the condition equations of the system equation:

w∗
s,k + A∗

s,kΔx̂k +
�

T∗
k,k−1 U∗

k,k−1 C∗
k,k−1

 vx̂k−1,k
vu,k
vc,k

 = 0 (32)

The functional model of the measurement equation has the structure (23). Fusing the system
equation and the measurement equation leads to the functional model of a Kalman filter formulated in
the GHM with additional condition equations in the system Equation (33):

 0
w∗

s,k
wm,k

+

 −E
A∗

s,k
Am,k

Δx̂k +

 Tk,k−1
T∗

k,k−1
0

Uk,k−1
U∗

k,k−1
0

Ck,k−1
C∗

k,k−1
0

0
0

Bm,k




vx̂k−1,k
vu,k
vc,k
vlm ,k

 =

�
ws,k
wm,k

�
� �� �

w

+

�
As,k
Am,k

�
� �� �

A

Δx̂k +

�
Bs,k,k−1 0

0 Bm,k

�
� �� �

B

�
vls ,k
vlm ,k

�
� �� �

v

= 0 (33)

Now the formulas of the GHM in least-squares can be applied and the parameters with
corresponding VCM can be calculated. Equation (34) shows the VCM of the estimated parameters,
which is derived by inserting A and B into (24):

∑x̂x̂,k =

�
AT

s,k

�
Bs,k,k−1 ∑ll,s,k BT

s,k,k−1

�−1
As,k + AT

m,k

�
Bm,k ∑ll,m,k BT

m,k

�−1
Am,k

�−1
=

�
∑−1

x̂x̂,s,k +∑−1
x̂x̂,m,k

�−1
(34)

Σx̂x̂,s,k is the VCM of the parameters which would be the result of a Kalman filter only considering
the system equation. Similarly, Σx̂x̂,m,k is the VCM of the parameters if only the measurement equation
would be considered in the Kalman filter. Σx̂x̂,k is the inverse of the sum of these two matrices.
To further process (34), the Woodbury formula for matrix inversion—according to [42]—is applied (35),
where M, N, O and P are arbitrary matrices and not related to the derivations made in this section:

(M + NOP)−1 = M−1 − M−1N
�

O−1 + PM−1N
�−1

PM−1 (35)

Depending on which term of the sum in (34) is chosen to be the matrix M in the Woodbury
formula (35), results will show two equivalent representations (36) and (37) of the VCM of the estimated
parameters. It has to be mentioned, that this VCM corresponds to x̂k and not to Δx̂k. The reason is that
x0 equals xk, which is stochastic and its stochastic information is implicitly integrated by adding its
calculation to the functional model ((31) and (33)). Whereas in least-squares x0 is non-stochastic and
therefore Σx̂x̂ equals ΣΔx̂Δx̂.

∑x̂x̂,k =

�
E − ∑x̂x̂,s,k AT

m,k

�
Bm,k ∑ll,m,k BT

m,k + Am,k ∑x̂x̂,s,k AT
m,k

�−1
Am,k

�
∑x̂x̂,s,k (36)

∑x̂x̂,k =

�
E − ∑x̂x̂,m,k AT

s,k

�
Bs,k,k−1 ∑ll,s,k BT

s,k,k−1 + As,k ∑x̂x̂,m,k AT
s,k

�−1
As,k

�
∑x̂x̂,m,k (37)

By comparing (36) with the update equation for the VCM of the estimated parameters in the
GMM (see [29] or [27]), the VCM of the filter innovation Dm,k and the gain matrix Km,k—belonging to
the measurement equation—can be found ((39) and (41)). In the same manner, the VCM of the filter
innovation Ds,k of and the gain matrix Ks,k belonging to the system equation are derived ((38) and (40)):

Ds,k = Bs,k,k−1 ∑ll,s,k BT
s,k,k−1 + As,k ∑x̂x̂,m,k AT

s,k (38)

Dm,k = Bm,k ∑ll,m,k BT
m,k + Am,k ∑x̂x̂,s,k AT

m,k (39)

Ks,k = ∑x̂x̂,m,k AT
s,kD−1

s,k (40)
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Km,k = ∑x̂x̂,s,k AT
m,kD−1

m,k (41)

The estimated additions to the approximate parameters are derived by using (25) and (33).
Formula (42) shows these additions, where the results from the previous paragraph are already
considered. Hence, it includes corrections respectively updates for the system equation as well as for
the measurement equation:

Δx̂k = −Ks,kws,k − Km,kwm,k = −
�

Ks,k Km,k

� ws,k
wm,k

�
(42)

If the system equation is not overdetermined, (32) will not be used in the functional model (33),
which leads to simplifications in the update equations. The classical Kalman filter update equations as
well as the two GHM variants are summarized in Table 1.

Table 1. Comparison of the Kalman filter update equations.

Gauss-Markov Gauss-Helmert (Simplification) Gauss-Helmert

d lm − fm(x) −wm = −fm(lm, x)
	 −ws

−wm

�
=

	 −fs(ls, x)
−fm(lm, x)

�

D Am ∑xx AT
m Bm ∑ll,m BT

m + Am ∑xx AT
m

	
Ds 0
0 Dm

�
=

=

	
Bs ∑ll,s BT

s + As ∑x̂x̂,m AT
s 0

0 Bm ∑ll,m BT
m + Am ∑x̂x̂,s AT

m

�
K ∑xx AT

mD−1 �
Ks Km

�
=

�
∑x̂x̂,m AT

s D−1
s ∑x̂x̂,s AT

mD−1
m

�
∑x̂x̂ (E − KAm)∑xx (E − KmAm)∑x̂x̂,s = (E − KsAs)∑x̂x̂,m

x̂ x + Kd

Approaches whose aim is to detect systematic deviations in the observations respectively
to quantify the inner reliability in the GMM, are often based on the disturbed residuals v [43].
The error-term ∇v in (43) is caused by the systematic deviations in the observations, summed in
the error-vector ∇l:

v = v +∇v (43)

ri is the factor which specifies how an observation deviation ∇li influences the corresponding
residual vi (44). Hence, high ri are desirable to detect systematic deviations [29]:

∇vi = −ri∇li (44)

Transferring these thoughts to the GHM, (26) has to be used to derive R, containing the ri on its
diagonal. R is an idempotent matrix, whose trace equals the overall redundancy of the estimation
problem [34]. Formula (26) only contains the misclosures w, which can be linearized by Bl according
to [34]. If ∇l is taken into account, results show the disturbed model (45):

v = −∑ll BT
�

B ∑ll BT
�−1

�
E − A ∑Δx̂Δx̂ AT

�
B ∑ll BT

�−1
�

B(l +∇l) (45)

Thus, there is a direct relation between observations and residuals and the redundancy matrix for
the GHM is now available (46):

R = ∑ll BT
�

B ∑ll BT
�−1

�
E − A ∑x̂x̂ AT

�
B ∑ll BT

�−1
�

B (46)

By using (27), (46) equals the matrix product ΣvvΣ−1
ll , whereby the analogy to the GMM is stated

again [34]. The proof that the trace of R equals the overall redundancy can be found in Appendix B.



Sensors 2018, 18, 414 10 of 21

3. Results

In this section the results of the trajectory shown in Section 2.2. will be analyzed by applying
the simplified GHM (Table 1) on the approach described in Section 2.1. In a first step, the influence
of the observation groups—accelerometer a, magnetometer m, estimated parameters of the previous
epoch x, system noise c and gyroscope g—on the estimated orientation will be assessed by means of
the ri. Figure 3 shows a representative section of the calculated group redundancies for two different
specifications of the sensor- and system noise standard deviations.

Figure 3. Redundancies of the observation groups used in the Kalman filter. (Left) Calculation with
the original standard deviations; (Right) Calculation with adapted standard deviations.

For the beginning the focus lies on the left part of Figure 3, where the original standard deviations
are used (Table 2). These are derived for each observation in the trajectory parts where the user walked
straight. Using these standard deviations leads to a small partial redundancy of the observation
groups (x, c, g) of the system equation in comparison to the ones of the measurement equation (a, m).
This means that the estimated orientation mainly relies on the system equation. The reason for the high
weight of the system equation is that the resulting trajectory should be smoothed [32]. The problem is
that if the model assumptions made in the system equation do not capture the reality, the resulting
deviations have high influence on the estimated orientation. There are mainly two possibilities to
intervene in the partial redundancy respectively the inner reliability, which will be covered in the next
two sections.

Table 2. Standard deviations used for the sensor measurements and system noise.

Standard Deviations Gyroscope System Noise Accelerometer Magnetometer

Original 30◦/s 10◦/s 1 m/s2 5 µT
Adapted 60◦/s 20◦/s 0.5 m/s2 2.5 µT

3.1. Adaption of the Stochastic Model

Adaption of the stochastic model means to change the standard deviations of the different
observations. To align the group redundancies of the observation groups (Figure 3 left), the standard
deviations of the sensors and system noise are changed until an improvement is visible. This leads to
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the group redundancies in the right part of Figure 3, where the adapted standard deviations of Table 2
were used. The weight of the system equation in comparison to the measurement equation is now
reduced, whereas the ri of the gyroscope and the system noise are now clearly higher. The ri of the
magnetometer get close to the ones of the gyroscope if it is used when the user is turning, which yields
in good mutual controllability.

To identify the critical observations, the ri of the individual observations are analyzed. Figure 4
shows, that the ri of the accelerometer are continuously higher than 0.2, which means that controllability
is sufficient. Calculating the thresholds from which deviations can be—statistically justified—detected
(according to [29]), gives ~1.4 m/s2 for the y-component of the accelerometer and ~2 m/s2 for the x- and
z-component. The user’s motion causes systematic deviations which exceeds these thresholds. Hence,
accelerometer observations which should not be used for calculating pitch and roll can be detected.

Figure 4. Partial redundancy of the accelerometer, magnetometer, previously estimated parameter,
system noise and gyroscope (top to bottom).

The ri of the magnetometer show a remarkable, alternating behavior. In the trajectory parts
where the user walks straight, the ri of my are close to zero. Whereas in parts where the user turns,
controllability of mx and mz is bad. If there are systematic deviations in these observations, they cannot
be detected and have a high influence on the estimated orientation angles. The ri of xϕ and xθ are again
continuously higher than 0.2 and therefore sufficiently controlled. The same findings hold for cϕ and
cθ , whereas cψ is totally uncontrolled. Generally the ri of the previously estimated parameters and the
system noise behave in a similar manner. gy is also uncontrolled as its ri is very close to zero. The ri of
gz are again higher than 0.2. The behavior of the ri of the previously estimated yaw angle is interesting,
as they go up to 0.25 if the gyroscope measurements are used in the system equation. If the gyroscope
is not used in the following epochs the ri decrease.

From the analysis of Figure 4 it can be concluded that there are uncontrollable observations
in this approach, even if the standard deviations are adapted. To better understand the behavior
of the ri, the influence of the change of the standard deviation σi of one observation on the partial
redundancy of the other observations is analyzed. This analysis should support an aimed change of
the standard deviations to improve the ri. Table 3 shows how the ri change, if the standard deviation
of one observation is multiplied with the factor 10 (left sign in Table 3) respectively 0.1 (right sign
in Table 3). The standard deviation of all the observations was varied, except for the ones of the
previously estimated parameters, as they are a direct result of the Kalman filter.
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Table 3. Influence of the change of the standard deviation of one observation on the partial redundancy
of the other observations. “+” indicates a raise and “−” a reduction of the partial redundancy. At the
left sign, the standard deviation was increased by the factor 10 and at the right sign it was decreased by
the factor 0.1. Grey shaded cells show the change in the corresponding observation and green means
that the observations are functionally related.

σg-y σg-z σc-ϕ σc-θ σc-ψ σa-x σa-y σa-z σm-x σm-y σm-z

rx-ϕ −|− −|+
rx-θ −|− −|+ −|+
rx-ψ +|− +| −|+ −|+ −|+
rg-y +|
rg-z +|− −|+ −|+ −|+
rc-ϕ +|− −|+ |+
rc-θ +|− −|+ −|+ |+
rc-ψ +|−
ra-x −|+ +|− −|+
ra-y −|+ +|−
ra-z −|+ −|+ +|− |+
rm-x −|+ +|− −|+ −|+
rm-y −|+ −|+ +|− −|+
rm-z −|+ −|+ −|+ +|−

The grey shaded cells show the influence of a change of σi of one observation on the corresponding
ri. If σi is increased, the weight of the observation will be less in state estimation. Hence the corresponding
ri should also be increased. A reduction of σi should cause a smaller ri on the contrary. This is the case for
most of the observations, except for gy. The reason therefore is that its ri are already close to zero and a
reduction of σi has no effect.

Green shaded cells show a direct functional relation of the corresponding observations (see (1)–(4)
and (12)–(14)). The change of σi of one observation influences also the partial redundancy of other
observations. A raise of one σi should cause a reduction of partial redundancy of other observations,
as they get more weight in the state estimation. A reduction of one σi should raise the partial
redundancy of other observations on the contrary. Though, the change of σi of cϕ and cθ , show another
behavior. By increasing as well as decreasing σc-ϕ and σc-θ , the rx-ϕ and rx-θ are reduced. A raise of σi
of gz respectively of cψ causes also a raise of the ri of the previously estimated yaw angle.

A relation which is not expected from the system equations respectively the measurement
equations, appears at the accelerometer measurements. ay is only related to xϕ and cϕ, whereas
ax and az are related to xθ and cθ . The change of σi of one of the magnetometer measurements
influences the ri of xψ, gz and the other two magnetometer components. my stands out, as a reduction
of σi positively influences the ri of cϕ and cθ and the ri of az. Hence, a reduction of σi of my would
have the most positive influence on the ri. As the controllability of this observation is bad, a further
reduction is not advisable.

Changing the stochastic model clearly has an impact on the inner reliability but it also has
limitations. As shown in Table 3, gy as well as cψ are not controlled by any of the other observations
(i.e., changing the standard deviation of any other observation does not influence rg-y and rc-ψ). The only
way left in the stochastic model is to increase the standard deviation of such observations. In this case
it is very likely, that the raised standard deviations cover the systematic deviations which actually
should be detected.

3.2. Adaption of the Functional Model

In general, the functional model can be adapted by changing respectively extending the system
equations and the measurement equations. As seen in the previous section, the y-component of the
gyroscope and the system noise of the yaw angle stay problematical observations, as their controllability
cannot be improved by changing σi of other observations. Through the example of the ri of the
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gyroscope, the functional influences should be analyzed. (47) and (48) show the formulas to calculate
the ri of the gyroscope:

rg−y = sin2 ϕ · σ2
g−y · d∗33 · Δt2

cos2 θ
(47)

rg−z = cos2 ϕ · σ2
g−z · d∗33 · Δt2

cos2 θ
(48)

These equations are derived by evaluating (18), which is shown in Appendix C. d33* corresponds
to the third diagonal element of the inverse of D. The difference of (47) and (48) is the trigonometric
function of the roll angle ϕ (σ2

g-y and σ2
g-z are assumed to be equal). As the roll angle is close to zero

in the considered trajectory, also rg-y will be close to zero even when changing σi of other observations
(which influences d33*). Hence, the smartphone orientation during the trajectory measurements
has a huge impact on the calculated ri—not only the ones from gyroscope, but also the ones from
accelerometer and magnetometer ((12)–(14)). This seems reasonable if a closer look is taken on the
quantities used to determine the smartphone orientation. The accelerometer should sense the gravity
vector and the magnetometer the Earth magnetic field, which are both a vector quantity. The more
sensor components sense these quantities, the better the mutual controllability should be. This should
be the same for the gyroscope, which should sense the rotation of the user around the z-axis of the
reference respectively navigation coordinate frame.

To check whether the assumptions made above are true, the recorded sensor data from the
trajectory are rotated with the rotation matrix R given in (49):

R = RxRyRz

Rx =

 1 0 0
0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ

, Ry =

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

, Rz =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (49)

ϕ is chosen to be 45◦ and θ and ψ are 0◦. Evaluating the rotated sensor data in the same Kalman
filter as used above, gives the partial redundancies shown in Figure 5. The ri of the previously
estimated parameters, the system noise as well as the x-components of the sensors are not affected by
the rotated data, when comparing the results with Figure 4. The y- and z-components of the sensors
are more balanced now, leading to a better mutual controllability. Especially the mean level of the ri of
the gyroscope y-component are now approximately 0.1, which is clearly higher compared to Figure 4.

The idea of the following approach is to use multiple trajectory data, to determine the actual
smartphone’s orientation. If one thinks of scenarios in crowded environments, it could be that multiple
users have already taken the same path as the actual user does. If this data from the users who have
taken the same path is stored, it could be used in a multiple trajectory data approach to determine the
actual yaw angle, which equals the situation outlined in Section 2.3 where several sub-systems are
used to determine the overall-system. Hence, the Gauss-Helmert Kalman filter which incorporates
(32) in its functional model (33) has to be used now. In the case of orientation determination, the set of
equations which unambiguously determine the state vector (31) are equal to (1), (2) and (3) respectively
(4) for the actual trajectory. Now, for every additionally used trajectory, (1) and (2) have to be added
to the unambiguous set of equations, as the smartphone’s orientation could be different (the only
assumption is that there is the same path, e.g., the same yaw angle). Thus—if Ntr is the number of
used trajectories—Ntr roll angles, Ntr pitch angles and one yaw angle have to be estimated. If there is a
turn detected in the actual trajectory, gyroscope measurements from multiple smartphones have to
be processed. Hence, every additional trajectory contributes with a formula of type (4) to the system
equation, which leads to Ntr−1 condition Equations (32) in the system equation. The measurement
equation consists of Ntr triples of (12)–(14).
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Figure 5. Partial redundancy of the rotated trajectory.

In this article additional trajectories are simulated, which means that they are retrieved from
the trajectory considered in this section by performing rotations in the same manner as done in (49).
This is a simplification respectively a synthetical example whose aim is to retrieve more insights into
how additional observations affect the partial redundancy. Before using additional rotated trajectories,
the effect of using the same trajectory data two times will be analyzed. The reason is that no additional
roll and pitch angles have to be estimated and therefore the results for the partial redundancy can
be directly compared to the results from Section 3.1 respectively Figure 4. The results of the partial
redundancy of the observations from the actual trajectory are shown in Figure 6.

Figure 6. Partial redundancy of the actual trajectory when using two times the same trajectory data.

The most obvious effect can be seen in the turn detection. The gyroscope is used less in the straight
trajectory parts, which leads to slightly different appearance of the ri. Nevertheless, the height of the ri
can be compared. The ri of the previously estimated roll and pitch angel has not changed. It can be
seen, that the ri of the accelerometer, the system noise components and the previously estimated yaw
angle are raised by using additional observations, which is especially important for the system noise
of the yaw angle. The controllability of this quantity is now slightly improved. The components of the
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magnetometer and the gyroscope, which already had quite high ri are now also raised, whereas an
effect on the low ri during turns is not visible.

This is not a surprise, as trajectory data is used two times where the controllability of these quantities
is suboptimal. Figure 7 shows the partial redundancy of the observations from the actual trajectory by
using one additional trajectory, where the smartphone’s orientation is different. This additional trajectory
comes from rotating the trajectory data as mentioned above (49), which is a simplification respectively
simulation. In a real-life application some sort of search-algorithm would have to be performed on the
stored trajectories, to find the ones where users took the same path as in the actual trajectory. The only
thing that has changed, are the ri of the previously estimated roll and pitch angles, as they are clearly
reduced now. The reason could be that the overall redundancy has not changed from the scenario in
Figure 6 to the scenario in Figure 7 but more parameters have to be estimated. The remaining ri have not
changed. Especially rg-y is still close to zero, despite using an additional trajectory where the smartphone’s
orientation is different. The functional relation of the four gyroscope measurements—resulting from using
the actual and the simulated trajectory (i.e., the two formulas of type (4))—doesn’t lead to an improved
mutual controllability. The same holds for the ri of the magnetometer measurements which are close
to zero.

Figure 8 shows the ground truth from total station (see Section 2.2), the raw result from the
magnetometer and different variants of the estimated yaw angle. For better visibility, again a
representative section of the trajectory is chosen. Estimation variant 1 clearly differs from the rest of
the estimation variants as it is much smoother. In this variant the original standard deviations from
Table 2 are used, whereas in the other variants the adapted ones are used. The differences between
variant 2 and 3 are negligible. This is reasonable, as the additional trajectory data of variant 3 is just
rotated in comparison to the original trajectory data. Thus, the additional trajectory data used in this
article does not contribute to the state estimation process but to the improvement of the inner reliability.
In future experiments, real multiple trajectory data has to be collected from different smartphones
and users to further evaluate the approach presented in this section. In this article, variant 1 performs
slightly better with the drawback of worse inner reliability. In the beginning of the trajectory section
shown in Figure 8, the raw result from magnetometer as well as the estimated yaw angles are shifted
due to undetected systematic deviations. The aim of future research will be to detect such systematic
deviations based on improved inner reliability, enabling better performance of a Kalman filter used for
orientation determination.

Figure 7. Partial redundancy of the actual trajectory when using additional data from one simulated,
rotated trajectory.
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Figure 8. Different results for the yaw angle compared to ground truth from total station. In estimation
variant 1 the original standard deviations from Table 2 are used. Variant 2 uses the adapted standard
deviations. Variant 3 uses one simulated additional trajectory (equal to the one of Figure 7).

4. Discussion

The main novelty of this article is the formulation of the Kalman filter and the redundancy
matrix in the GHM. Depending on the system description in the system equation two different sets of
update equations are derived, which are both applied to orientation determination as well as to partial
redundancy calculation. The results of these derivations are used to analyze the inner reliability based
on the partial redundancy. Analyzing the partial redundancy shows that in the Kalman filter used in
Section 2.1 the system equation contribute disproportionately highly to the estimation of the orientation
compared the measurement equation. This means that the observations of the system equation are
nearly uncontrolled. Two general ways are considered to intervene into the inner reliability respectively
partial redundancy.

First, effects of changes in the stochastic model are analyzed. By adapting the standard deviations,
the group redundancies can be improved. Analyzing the partial redundancy of the individual
observations shows that observations which crucially determine the orientation are still badly
controlled. Systematic deviations in such observations can cause huge disturbances in the estimated
quantities. By increasing and decreasing the standard deviations, their influence on the partial
redundancy was analyzed. It appears that reducing the standard deviation of the magnetometer’s
y-component, could increase many partial redundancies but its controllability is bad. The y-component
of the gyroscope as well as the system noise of the yaw angle cannot be controlled by observations
of the actual trajectory. It has to be mentioned that the resulting insights are in a way limited to the
considered trajectory. Such adaptions in the stochastic model have to be also tested in other trajectories
and different devices.

Furthermore, effects of changes in the functional model on the partial redundancy are considered.
In a first step the influences of the smartphone’s orientation on the partial redundancy were analyzed.
Rotating the trajectory data shows that if more than one sensor axis is sensing the quantity of interest,
the controllability will be improved. Using multiple trajectory data should take advantage of this
behavior. The formulation of the Kalman filter update equations in the GHM enables processing
multiple trajectory data in a Kalman filter. Partial redundancy is improved through this approach
but still there are critical observations, such as the y-components of the gyroscope and magnetometer.
Just using more data does not mandatory lead to better controllability in the GHM. Additionally,
improving inner reliability does not lead to better accuracy of the estimated quantities. These questions
respectively challenges will be addressed in future studies.
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Appendix A

Formula (31) will be derived by rearranging (30):

0 = f(x̂k−1, uk, ck)− xk (A1)

This is the approximate solution of the following least squares parameter estimation problem:

0 = f( ˆ̂xk−1, ûk, ĉk)− x̂k (A2)

This is a special case of the GHM (22). Using the approximate solution for Taylor linearization—and
neglecting second and higher order terms—yields:

0 = f(x̂k−1, uk, ck)− xk − E(x̂k − xk) +
∂f

∂x̂k−1

� ˆ̂xk−1 − x̂k−1
�
+

∂f
∂uk

(ûk − uk) +
∂f

∂ck
(ĉk − ck) (A3)

Taking (30) into account, the first two terms are equal to zero. The next step is to insert the
following quantities in the linearized functional model above:

∂f
∂x̂k−1

= Tk,k−1

∂f
∂uk

= Uk,k−1

∂f
∂ck

= Ck,k−1

ˆ̂xk−1 − x̂k−1 = vx̂k−1,k

ûk − uk = vu,k

ĉk − ck = vc,k

Δx̂k = x̂k − xk

(A4)

Insertion gives:
0 = −EΔx̂k + Tk,k−1vx̂k−1,k + Uk,k−1vu,k + Ck,k−1vc,k (A5)

The last step is to summarize Tk,k−1, Uk,k−1 and Ck,k−1 in one matrix and vx̂,k−1,k, vu,k and vc,k in
one vector:

− EΔx̂k +
�

Tk,k−1 Uk,k−1 Ck,k−1

 vx̂k−1,k
vu,k
vc,k

 = 0 (A6)

Appendix B

The following calculation rules will be used to calculate the overall redundancy [42]:

tr(AB) = tr(BA)

tr(A + B) = tr(A) + tr(B)
(A7)
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Calculation of the trace of R:

tr(R) = tr
�

∑ll BT�B ∑ll BT�−1
�

E − A ∑x̂x̂ AT�B ∑ll BT�−1
�

B
�
=

tr
��

B ∑ll BT�−1
�

E − A ∑x̂x̂ AT�B ∑ll BT�−1
�

B ∑ll BT
�
=

tr
��

B ∑ll BT�−1�B ∑ll BT − A ∑x̂x̂ AT�� = tr(E)− tr
��

B ∑ll BT�−1A ∑x̂x̂ AT
� (A8)

The identity matrix comes from the matrix product BΣllBT and its inverse. B contains the
derivatives of the condition equations with respect to the observations. Therefore, its dimension is
b × n, where n equals the number of observations and b equals the number of condition equations.
Hence, the identity matrix has dimension b × b and its trace corresponds to the number of condition
equations:

tr(R) = b − tr
��

B ∑ll BT�−1A ∑x̂x̂ AT
�
= b − tr

�
AT�B ∑ll BT�−1A ∑x̂x̂

�
=

b − tr
�

AT�B ∑ll BT�−1A
�

AT�B ∑ll BT�−1A
�−1

�
= b − tr(E)

(A9)

As A contains the derivatives of the condition equations with respect to the parameters, the
identity matrix has dimension u × u, where u equals the number of parameters. Thus, the trace
of R equals the number condition equations minus the number of parameters, which is the overall
redundancy in the GHM [34].

tr(R) = b − u = r (A10)

Appendix C

To derive (47) and (48), the following quantities are used to evaluate (18):

∑uu,k =

 σ2
g−x 0 0
0 σ2

g−y 0
0 0 σ2

g−z

 = σ2
gE

Uk,k−1 =

 0 0 0
0 0 0
0 sin ϕ Δt

cos θ cos ϕ Δt
cos θ


Am,k = −E

D−1
k =

 d∗11 d∗12 d∗13
d∗21 d∗22 d∗23
d∗31 d∗32 d∗33



(A11)

Uk,k−1 contains the derivatives of (1), (2) and (4) with respect to the gyroscope measurements. Am,k
contains the derivatives of (12)–(14) with respect to the parameters respectively the Euler angles and
therefore equals the negative identity matrix The variances of the three gyroscope axes are assumed to
be equal. Inserting these quantities into (12) gives:

nu
∑

j=1
ru,k,j =σ2

g ·
nu
∑

j=1
eT

j E

 0 0 0
0 0 sin ϕ Δt

cos θ

0 0 cos ϕ Δt
cos θ

(−E)

 d∗11 d∗12 d∗13
d∗12 d∗22 d∗23
d∗13 d∗23 d∗33

(−E)

 0 0 0
0 0 0
0 sin ϕ Δt

cos θ cos ϕ Δt
cos θ

ej (A12)

Evaluating the expression between the identity vectors ej gives:

nu

∑
j=1

ru,k,j =
σ2

g · d∗33 · Δt2

cos2 θ
·

nu

∑
j=1

eT
j

 0 0 0
0 sin2 ϕ sin ϕ · cos ϕ

0 sin ϕ · cos ϕ cos2 ϕ

ej (A13)
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Abstract: In this contribution, the minimum detectable
bias (MDB) as well as the statistical tests to identify dis-
turbed observations are introduced for the Gauss-Helmert
model. Especially, if the observations are uncorrelated,
these quantities will have the same structure as in the
Gauss-Markov model, where the redundancy numbers
play a key role. All the derivations are based on one-
dimensional and additive observation errors respectively
offsets which are modeled as additional parameters to be
estimated. The formulas to compute these additional pa-
rameters with the corresponding variances are also de-
rived in this contribution. The numerical examples of
plane fitting and yaw computation show, that the MDB is
also in the GHM an appropriate measure to analyze the
ability of an implemented least-squares algorithm to de-
tect if outliers are present. Two sources negatively influ-
encing detectability are identified: columns close to the
zero vector in the observation matrix B and sub-optimal
configuration in the design matrix A. Even if these issues
can be excluded, it can be difficult to identify the correct
observation as being erroneous. Therefore, the correlation
coefficients between two test values are derived and ana-
lyzed. Togetherwith theMDB these correlation coefficients
are anuseful tool to assess the inner reliability – and there-
fore the detection and identification of outliers – in the
Gauss-Helmert model.

Keywords: Least-Squares Adjustment, Gauss-Helmert
model, Inner Reliability

1 Introduction
The aim of many geodetic tasks is to determine unknown
quantities (i. e. parameters) from redundant observations
by using Least-Squares (LS). Most of the functional mod-
els in use equal the Gauss-Markov model (GMM) (e. g. [30]
p. 129 ff.), explicitely relating the observations to functions
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of parameters. Possible variants of the GMM are to use ad-
ditional condition equations only containing the param-
eters ([14] pp. 184–185) or transferring it to an adjustment
model with condition equations only containing the ob-
servations ([33] p. 61 ff.). Nevertheless, there are also tasks
where the functional model can’t be formulated just using
observation equations, e. g. surface fitting based on point
clouds [20]. Such applications necessitate using condition
equations implicitely containing the unkonwn parameters
as well as the observations, which leads to the most gen-
eral adjustment model, the Gauss-Helmert model (GHM),
originally proposed in [13]. Kinematic applications (e. g.
different navigation tasks) require the use of sequential es-
timation algorithms.When additionally using a state tran-
sition model, one arrives at the well known Kalman filter
which is formulated in the GMM ([10] p. 103 ff.). [6] derived
the equations for sequential estimation in the GHM (in-
cluding a state transition model) to solve the task of ori-
entation determination with inertial sensors and magne-
tometer. It is possible to solve the GHM by the help of the
errors-in-variables model leading to the approach of total
Least-Squares [29], which is an extension to the GMM [11].
This contribution focuses on the solution of the GHM us-
ing an optimization approach based on Lagrangian multi-
pliers with previously linearized condition equations.

Observations are not only subject to random errors,
but also to systematic errors respectively outliers [23].
There are twomain approaches to deal with outliers in the
observation data: one can locate the erroneous observa-
tions and eliminate them from the error-free observations
or one can use estimation procedures which are less sensi-
tive to erroneous observations by reducing their influence
on the estimated parameters.

In the first approach, very often statistical hypothesis
tests are used to decide whether an observation is erro-
neousornot. Themost popular approach is data snooping,
leading to the concept of reliability, introduced to geodesy
by Baarda [1, 2]. The assumption in Baarda’s data snoop-
ing is, that there is one outlier present in the set of ob-
servations. Therefore, a one dimensional local hypothesis
test is performed on each observation to identify the out-
lier. From this procedure the well known measures for in-
ner reliability (theminimumdetectable bias (MDB) and re-
dundancy number) as well as outer reliability (influence
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of not detected outliers on estimated parameters) are de-
rived [8]. DIA (Detection – Identification – Adaption) is
a more general approach of using multiple statistical hy-
pothesis tests for handling outliers [35]. In the detection
step, a global test is performed by using the LS results, in-
dicating if outliers are present. In the identification step,
local tests are used to identify erroneous observations and
in the adaption step, these observations are removed or
additional parameters for compensating outliers are esti-
mated. The concepts of data snooping, reliability and DIA
are also used in sequential LS respectively Kalman filter-
ing,where kinematic GNSSpositioning is an important ap-
plication [36, 26]. Combinatorial methods are another way
of identifying erroneous observations by adjusting many
different subsets of observations. The optimal set of ob-
servations can then be chosen by using the same statis-
tical hypothesis test as in the detection step of DIA [3, 5].
Other variants are to use themaximumsubsamplemethod
to find the subset in the data with maximum number of
consistent observations for the adjustment of geodetic net-
works [28] or to use the information criteria for model se-
lection to determine outliers as well as their number [24].
The Least-Median of Squares (LMS) method [32] – which
actually belongs to the field of robust estimation – can also
be seen as a combinatorial method.

The other approach of dealing with outliers is to use
estimators which have a bounded influence function to re-
duce the impact of outliers on the parameters which is the
key property in robust estimation [15, 12]. Especially the
robust M-estimators are commonly used and the idea is
to iteratively solve the adjustment where in each iteration,
the weights of the observations are updated and therefore
the influence of outliers is reduced. There are many differ-
ent variants to compute the weights, see for example [17]
pp. 281–284 or [16] pp. 117–129. In geodesy this is e. g. im-
plemented in kinematic GNSSpositioning [22] or similarity
transformation based on total LS [27].

The prementioned methods for outlier handling are
mainly developed in the GMM. However, they are not
limited to be used only in the GMM but can also be
transferred to the GHM. [18, 19] developed an approach
reducing the influence of outliers in the GHM by iter-
atively down-weighting the corresponding observations,
where the weights are computed with the Expectation-
Maximization (EM) algorithm. This method is applied to
laser scanning to detect outliers in the surface fitting pro-
cess [20] but also in the external calibration together with
digital cameras [31] which both require the GHM to solve
the adjustment. In the latter one, also local tests (of obser-
vation groups) based on standardized residuals are con-
sidered. As it will be shown in section 2, these tests are

only valid, if the observations (or observation groups) are
not correlated. [21] already introduced hypothesis tests for
additionally estimated parameters in the GHM but didn’t
extend this approach to the context of reliability and iden-
tification of outliers. Hence, the aim of this article is to de-
rive the measures for inner reliability as well as to assess
an implemented LS approach regarding the detection and
identification of outliers. This will be done by analyzing
the results of two numerical examples. The paper is or-
ganized as follows: in section 2 we derive inner reliability
measures and test statistics for the GHM. Section 3 shows
the application of the derived body of equations to plane
fitting. Section 4 starts with a theoretical discussion of de-
tecting and identifying outliers in the GHMand afterwards
extends the numerical example of plane fitting by analyz-
ing the previously introduced matrices and measures. Ad-
ditionally, a second numerical example, namely the com-
putation of the yawangle usingmagnetometers, will be in-
vestigated.

2 Inner reliability in the
Gauss-Helmert model

The main condition in LS is to minimize the weighted sum
of squared residuals

f (v̂) = v̂TQ−1ll v̂, (1)

with v̂ ∈ Rn×1 being the residuals and Qll being a positive-
definite cofactor matrix. This matrix results when extract-
ing the variance of unit weight σ2

0 from the variance-
covariance matrix (VCM) Σll of the observations l ∈ Rn×1

Σll = σ2
0Qll. (2)

The secondary condition equals the functional model
of the GHM

h(x̂, l + v̂) = h(x̂, ̂l) = 0, (3)

where x̂ ∈ Ru×1 are the parameters to be estimated. As the
functional model (3) is non-linear in general, it has to be
linearized with Taylor series expansion

h(x̂, ̂l) ≈ h(x(0), l(0)) + �h(x̂, ̂l)�x̂ |x(0) ,l(0) (x̂ − x(0))+ �h(x̂, ̂l)� ̂l |x(0) ,l(0) ( ̂l − l(0)), (4)

using approximate values l(0) and x(0) for the observa-
tions and the parameters. This linearization necessitates
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to solve the adjustment iteratively, where the functional
model is always linearized at the previously estimated
parameters and observations [25]. The partial derivatives
with respect to x̂ form the entries of the design matrix
A ∈ Rb×u, the partial derivatives with respect to ̂l form the
entries of the observation matrix B ∈ Rb×n and x̂ − x(0)
corresponds to dx̂, the estimated additions to the approx-
imate values of the parameters. According to [18], the last
bracketed term is expanded

h(x̂, ̂l) ≈ h(x(0), l(0)) + Adx̂ + B( ̂l − l) + B(l − l(0)), (5)

where ̂l−l equals the estimated residuals v̂. By introducing
themisclosure vectorw ∈ Rb×1 andneglectinghigher order
terms, one arrives at the final formulation of the linearized
functional model

h(x̂, ̂l) ≈ w + Adx̂ + Bv̂
withw = h(x(0), l(0)) + B(l − l(0)). (6)

As mentioned above, the adjustment has to be solved
iteratively, where in the first iteration step, l(0) is set to l.
The minimization of (1) under consideration of (6), can
now be formulated as an optimization problem (see e. g.
[4] p. 66 ff.)

L(dx̂, v̂, k̂) = v̂TQ−1ll v̂ − 2k̂T (w + Adx̂ + Bv̂). (7)

Solving this optimization problem, gives the results
for dx̂, k̂ and v̂ and their corresponding cofactor matrices

Qx̂x̂ = (ATN−1A)−1 (8)
dx̂ = −Qx̂x̂ATN−1w (9)

Qk̂k̂ = N−1(I − AQx̂x̂ATN−1) (10)
k̂ = −Qk̂k̂w (11)

Q ̂v ̂v = QllBTQk̂k̂BQll (12)
v̂ = QllBT k̂, (13)

in which k̂ ∈ Rb×1 are the Lagrangian multipliers, I is the
identitymatrix andN = BQllBT . It is important tomention,
that rank(A) = u and rank(B) = b. Otherwise, the matri-
ces to be inverted get singular and the LS problem (respec-
tively the normal equation system resulting from (7)) is not
unambiguously solvable.

Reliability is based on Baardas’ data snooping, which
aim is to detect outliers in the observations with statistical
hypothesis tests. It will be assumed that there is only one
outlier ∇i, i = 1, ..., n which will be modeled as bias and
treated as a deterministic parameter to be estimated. The
vector ci ∈ Rn×1 specifieswhichobservation is disturbedby

∇i, containing a 1 on the i-th position andelsewhere zeroes.
The observation model becomes

l = E{l} − ci∇i − v
with l ∼ N(E{l}, Σll) and v ∼ N(0, Σll), (14)

where E{} is the expectation operator and l as well as v
are random variables which are both normally distributed
with the same variance (2). If ∇i = 0, one arrives at the ob-
servation model (3) used in the GHM. Using the linearized
functional model (6), one can formulate two equivalent
null hypothesis

H0 : ∇i = 0 ≡ w + Adx̂ + Bv̂ = 0. (15)

(14) is a special case of the more general observation
model (43) shown in appendix A, where gl(l,∇) = l + ci∇i.
Thus, A∇ (the Jacobi matrix containing the partial deriva-
tives of gl(l,∇) with respect to ∇) equals the vector ci and
the matrix product BA∇ (appearing in (45)–(52)) can be
replaced with bi, the i-th column of B. Thus, the alterna-
tive hypothesis can be explicitly formulated if ∇i ̸= 0 by
adapting the linearized functional model (45) derived in
appendix A

HA,i : ∇i ̸= 0 ≡ w + Adx̂
 + Bv̂
 + bi∇̂i = 0. (16)

Due to the incorporation of ∇̂i, the quantities dx̂
 and
v̂
 are numerically different from the corresponding quan-
tities in H0, which can be seen in the equations (48) and
(50) of appendix A.w, A and B are unchanged, compared
to the functional model of H0, because ∇(0)i is set to zero.
From now on it will be assumed, that the error due to the
linearization is negligible compared to the systematic de-
viation caused by ∇̂i. Hence, all following deductions re-
garding inner reliability will be done with respect to the
first step of iteration.

The validity ofH0 has to be verified by using an appro-
priate statistical test. According to [16] pp. 187–197, there
are several valid test values depending on the chosen vari-
ance of unit weight. In this article, the a priori variance
of unit weight σ2

0 from (2) will be used, leading to the test
value

TF(∇i) = ∇̂2iσ2
0 ⋅ q∇̂i ∼ F1,∞|H0

TF(∇i) = ∇̂2iσ2
0 ⋅ q∇̂i ∼ F1,∞,λFi |HAi

, (17)

which follows the central F-distribution F1,∞ with the de-
grees of freedom 1 and ∞ in case of H0 is true. Other-
wise, this test value follows the non-central F-distribution
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F1,∞,λFi with the non-centrality parameter λFi . One can also
use the square root of√TF(∇i). This test value

TN (∇i) = ∇̂i
σ0 ⋅√q∇̂i ∼ N(0, 1)|H0

TN (∇i) = ∇̂i
σ0 ⋅√q∇̂i ∼ N(λN ,i, 1)|HAi

(18)

follows the central standardized normal distribution
N(0, 1) in case of H0 is true and otherwise it follows
thenon-central standardizednormal distributionN(λN ,i, 1)
with non-centrality parameter λN ,i. Using the estimated
variance of unit weight σ̂2

0 from (29) in (17), one would ar-
rive at a test value following the F-distribution F1,r−1 with
degrees of freedom1 and r−1with r = b−ubeing the redun-
dancy of the adjustment. The square root of this test value
is then t-distributed tr−1 with degree of freedom r − 1 (see
[16] p. 180).Using equation (52) and (51) of appendixA, one
can compute the test values TF(∇i) and TN (∇i) for the i-th
observation

TF(∇i) = k̂TbibT
i k̂

σ2
0 ⋅ bT

i Qk̂k̂bi
= v̂TBTN−1bibT

i N−1Bv̂
σ2
0 ⋅ bT

i N−1BQ ̂v ̂vBTN−1bi
(19)

TN (∇i) = bT
i k̂

σ0 ⋅√bT
i Qk̂k̂bi

= bT
i N−1Bv̂

σ0 ⋅√bT
i N−1BQ ̂v ̂vBTN−1bi

.

(20)

For the derivation of the minimum detectable bias
(MDB) ∇̂0,i, TN (∇i) will be used. It is an important mea-
sure of inner reliability and states how big an outlier in
the i-th observation has to be, such that it can be detected
by using a statistical test with preset significance number
α0 and power β0. Setting α0 and β0, implies a fixed λ0,N as
these three quantities are not independent of each other
[14] p. 247. According to [2, 8], λ0,N can be calculated with

λ0,N ≈ ϕ−1(1 − α0/2) + ϕ−1(β0), (21)

where ϕ−1 is the inverse of the density function of the
standard normal distribution. If an outlier causes a non-
centrality (i. e. a test value TN (∇i)) bigger than λ0,N , it can
be detected at the level of α0 and β0. This threshold equals
the MDB∇̂0,i = λ0,N ⋅ σ0 ⋅√q∇̂i = λ0,N ⋅ σ0√bT

i Qk̂k̂bi
= λ0,N ⋅ σ0√bT

i N−1BQ ̂v ̂vBTN−1bi
(22)

which is derived by rearranging equation (18), using equa-
tion (52) of appendix A and setting TN (∇i) = λ0,N .

The observations are often assumed to be uncorre-
lated. In this caseQll is a diagonalmatrix and the formulas
to calculate ∇̂i, q∇i , TN (∇̂i) and ∇̂0,i can be further simplified

q∇̂i = qlirii (23)∇̂i = vi
rii

(24)

TF(∇i) = v2i
σ2
0 ⋅ qli ⋅ rii (25)

TN (∇i) = vi
σ0 ⋅√qli ⋅ rii (26)

∇̂0,i = λ0,N ⋅ σ0√qlirii , (27)

giving the same results as in the GMM (see e. g. [2, 8] or
[16] pp. 193–194). Here, rii are the diagonal elements of the
redundancy matrix

R = Q ̂v ̂vQ−1ll = QllBTN−1(I − A(ATN−1A)−1ATN−1)B (28)

also called redundancy numbers [8]. R has the same im-
portance as in the GMM, which can be illustrated by an-
alyzing equation (50), as the matrix controlling the influ-
ence of ∇̂i on the residuals v̂ of H0 equals R (e. g. shown
in [6]).

Until now, itwas assumed that there is only one outlier
affecting one observation. In general it is not knownwhich
observation is disturbed. Thus, every observation has to
be tested, leading to n local tests respectively alternative
HypothesisHA,i. To transfer the previous thoughts into the
context of DIA, the detection step has to be defined. Every
adjustment task should be followed by a global test

TF(σ2
0) = σ̂2

0
σ2
0
= v̂TQ−1ll v̂(b − u) ⋅ σ2

0
∼ Fb−u,∞|H0

TF(σ2
0) = σ̂2

0
σ2
0
∼ Fb−u,∞,λF,i |HA,i, (29)

which states, whether the assumptions made in the func-
tional and/or stochastic model are correct (see e. g. [16]
p. 182). According to [34] pp. 182–183, the global test can
also be seen as the detection step, indicating whether out-
liers are present in the observations or not. The signifi-
cance number α of the global test TF(σ2

0) as well as the sig-
nificance numbers α0 of the n local tests TN (∇i) (or TF(∇i))
have to be matched by using the Bonferroni equation

α0 ≈ αn , (30)

such that all the tests have similar sensitivity to an outlier
[23].
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3 Numerical example: plane fitting
In the following application the equations derived in sec-
tion 2 will be applied. The focus will be on the analysis of
the LS approach to detect if outliers are present (detection
step of DIA) and to locate respectively identify the erro-
neous observation (identification step of DIA). Therefore,
the MDB ∇0,i and the local tests TN (∇i)will be evaluated in
this section.

Fitting a plane into a point cloud is a typical applica-
tion of the GHM. If the points pj ∈ R3×1, j = 1, ..., b are given
in Cartesian coordinates, the plane can be parameterized
by using the components of the (normalized) normal vec-
tor n ∈ R3×1 and the distance to the origin d1

0 = nxd px,j + nyd py,j + nzd pz,j − 1. (31)

By summarizing the coordinates of the points pj in
the observation vector l and setting the parameter vector
x = [ nxd ny

d
nz
d ]T , one obtains the non-linear functional

model of the GHM (3). Hence, there are b condition equa-
tions of the form (31) for each observed point, n = 3b obser-
vations (i. e. the coordinates of the observed points) and
u = 3 parameters. Introducing an approximate parame-
ter vector x(0), gives the misclosure vector w. x(0) can be
calculated by first using three arbitrary (but not colinear)
points, calculating a vector which is normal to these three
pointswith the cross product andnormalizing it. Choosing
another arbitrary point and calculating the scalar product
with the predetermined normal vector, yields the distance
to the origin. A contains the point coordinates and B is a
block-diagonal matrix, where the diagonal “elements” are
equal to (x(0))T .

The application of plane fitting will be simulated. It
will be assumed, that the plane is represented by nine,
equally spaced points (2m × 2m) which serve as observa-
tions in the LS problem (p1 −p9 in figure 1). The distance of
the plane to the origin dwill always be set to 10m. Random
Gaussian noise with zero mean and standard deviation of
σp = 0.05m is added to the 3D coordinates of the observed
points (Σll = σp ⋅ I). For better interpretation (i. e. not look-
ing at results perturbed by the observation noise), this LS
problemwill be repeated 1000 times and the resultswill be
visualized with boxplots (in which the box represents the
values between the lower and upper quartile with a line at
the median). The significance number of the global test is
set to α = 0.05 and the power to β = 0.80. The significance
1 There are several methods to solve the plane adjustment, e. g. SVD.
However, the GHM-approach is in our focus in this article.

Figure 1: Plane representation with observed points (including the
leverage point p10).

number of the n local tests α0 is then computed with (30)
and the power is also set to β0 = 0.80.

In a first step the plane will be assumed to be paral-
lel to the yz-plane of an arbitrary 3D Cartesian coordinate
system. Figure 2a shows the results for the MDBs obtained
with (22) or (27) respectively. It is obvious, that the y- and
z-coordinates of the observed points are uncontrolled, as
the corresponding MDBs are exorbitantly high. Also when
adding an outlier to e. g. py,8 of 0.45m, the global test does
not indicate that an outlier is present as the mean value
0.948 of the 1000 repetitions is clearly below the critical
value of 2.099. As the mean of the global tests is easily dis-
torted by high test values, additionally the rejection rate
of H0 in the 1000 repetitions is computed, which is 4.7%
in the current case. The reason for not detecting the out-
lier is, that the condition equations (31) do not act as con-
straints on py,j and pz,j if the plane is parallel to the yz-
plane of the coordinate system. This can also be shown an-
alytically: the normal vector of the considered plane has
only a component in x-direction. Hence, the column vec-
tors bi belonging to the observations py,j and pz,j are equal
(or close) to the zero vector, which leads to a division by
zero in (22).

The plane is now rotated such that the components of
the normal vector are equal. By doing this, the inner reli-
ability should be homogeneous for all observations. This
can be seen in figure 2b. Themedian values of the MDBs of
all coordinates are now approximately the same, whereas
the dispersion differs between the coordinate axes. The
MDBs of the x-coordinates are now clearly higher, as all
observations contribute to the redundancy of 6 compared
to the plane parallel to the yz-plane. Analyzing ∇̂0,i in the
x-, y- and z-coordinates, leads to the conclusion that geom-
etry is also an issue. The coordinates of p5 in the middle of
the plane are the best controlled ones, as its median MDB
is the smallest with ∼ 0.37m. On the contrary, p1, p3, p7
and p9 (the corners of the plane) have the highest median
MDBswith∼ 0.46m. The question is, if there is an exposed
point (“leverage point”), will the corresponding MDB be
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Figure 2: MDBs of observed point coordinates. Whiskers span the whole range of data.

Figure 3: MDBs of observed point coordinates with one leverage point - plane is rotated.

higher than the other ones – what one would expect in
the GMM. Therefore, the observation configuration will be
changed according to figure 1. Now, there are ten observed
points, where one point is clearly exposed from the others
(2m away from p9). The corresponding MDBs are shown
in figure 3. The MDBs of the coordinates of p10 are clearly
higher at ∼ 0.88m. As the redundancy is increased by one,
it is also apparent that MDBs of the other points got lower
or at least stayed at the same level. Especially the inner re-
liability of p1 and p9 has improved considerably (MDBs are
now below 0.4m).

Again an outlier of 0.45mwill be inserted to py,8 to test
the ability of correctly detecting and identifying the erro-
neous observation (without the leverage point). The mean
value of the global tests of the 1000 repetitions equals
4.535, which now clearly exceeds the corresponding criti-
cal value of 2.099 and also the rejection rate ofH0 is 95.1%.
Hence, the global test correctly detects, that an outlier is
present in the observations. Figure 4 shows the test val-

ues TN (∇i) of the n local tests for identifying the erroneous
observations. It can be seen, that the erroneous point is
correctly identified but not specifically the perturbed y-
coordinate. All three coordinates are identified as being
subject to an outlier. Hence, in this configuration it is not
possible to correctly locate the outlier in py,8.
4 Discussion of the results
In the previous section it has been shown, that there are
several factors negatively influencing inner reliability in
general. Regarding detectability, there are two issues: on
the one hand there is the impact of an observation on the
misclosure vectorw and on the other hand it is the geome-
try. Additionally, also identification respectively separabil-
ity is an issue. Before making a proposal on how to assess
an implemented LS approach regarding detectability and



A. Ettlinger and H. Neuner, Assessment of inner reliability in the Gauss-Helmert model | 19

Figure 4: Local tests with corresponding critical values (red horizontal lines). The values exceeding α0/2 and 1 − α0/2 are marked with blue
crosses.

Figure 5: GHM overview: the three involved spaces (observation-,
condition- and parameter space marked with different colors) and
important matrices.

separability, the algebraic situation of the GHMwill be an-
alyzed to locate important matrices and measures.

4.1 Important matrices
There are three spaces involved in the GHM, namely the
observation space L, the condition space W and the pa-
rameter space X . B and A describe the linear mapping
from L and X toW respectively (see figure 5). The inverse
linearmappings fromW toL andX can be performedwith
the corresponding pseudo-inverses

A+ = (ATN−1A)−1ATN−1 (32)
B+ = QllBT (BQllBT )−1. (33)

The general structure of pseudo-inverses from rectan-
gular matrices is shown in [9] p. 780 and an explanation of
the special choice of weightingmatricesN−1 andQll can be
found e. g. in [33] pp. 82–84. Using these matrices simpli-
fies the further analysis.

As already explained in section 3, the matrix B is im-
portant for the ability to detect if outliers are present. As
B is a Jacobian matrix, the columns are gradients describ-
ing how a change in one observation – more accurate: a

change along one axis of L – affects the basis vectors of
W defined by the chosen conditions. Hence, if a column
vector is close to the zero vector this means that the cor-
responding axis of L is orthogonal toW. As mentioned in
section 2, it will be assumed that the rank of B equals the
number of conditions b (i. e. there are no linear dependent
row vectors in B).

Another issue regarding detectability in section 3 is
the geometry determined by the observed points respec-
tively thematrixA (as it contains the observed coordinates
in the example of plane fitting). When only consideringW
and X and assuming w as being in the role of the obser-
vations (with corresponding cofactor matrix N), equation
(9) shows the same structure as in the GMM. Similarly,w is
split by orthogonal projection (orthogonality with respect
to themetric inducedbyN) into apart lying inX specifying
the adjusted misclosures

ŵ = −AA+w (34)

and another part lying in the null space of A orthogonal to
X specifying the residuals of the misclosures

v̂w = −(I − AA+)w = −RWw. (35)

The orthogonal projector I−AA+ can be seen as the re-
dundancy matrix RW of w with respect to the estimation
of dx̂. As this contribution aims to detect and identify out-
liers in the observations l, v̂w has to be transformed from
W to L using B+ (36) in order to obtain v̂

v̂ = B+v̂w = −B+RWw. (36)

This shows that the configuration reflected in A has to
be considered when analyzing the inner reliability (based
e. g. on the MDB). It has to bementioned, that themain di-
agonal elements of RW must not be in the range from 0 to
1, because the components of w are correlated in general
(N = BQllBT ). In the correlated case, one has to analyze the
whole structure ofRW : if themain diagonal element is the
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one with the highest absolute value among the elements
of the corresponding row (or column as RW is symmet-
ric), this still indicates a good detectability, because the
disturbed component of w has the biggest impact on the
corresponding component of v̂w.

The numerical example in section 3 shows that even
if detectability is good, it can be difficult to exactly iden-
tify the erroneous observation. [37] extend the MDB in the
GMM to the minimum separability bias (MSB). Therefore,
they use the error of type 3 (“wrong exclusion”), which is
the probability of identifying the wrong observation as be-
ing erroneous (i. e. selecting the wrong HA,i). This proba-
bility is a function of α0, β0 and ρij, the latter being the
correlation coefficient between two test values TN (∇i) and
TN (∇j). According to [7], ρij can be calculated from the ele-
ments of thematrixQ−1ll Q ̂v ̂vQ−1ll . By using equation (12) and
(28), this matrix can be reformulated

Q−1ll Q ̂v ̂vQ−1ll = BTQk̂k̂B = Q−1ll R = Q−1ll B+RWB = (Q−1∇̂∇̂)n,
(37)

where (Q−1∇̂∇̂)n is the resulting inverse of the cofactor ma-
trix when estimating one bias (i. e. additional parameter)
for each observation. In this case, the vector ci in equation
(14) becomes the n × n identity matrix. The correlation ρij
of every combination of estimated and afterwards tested
offsets can be determined from this matrix

ρij = (Q−1∇̂∇̂)ij√(Q−1∇̂∇̂)ii(Q−1∇̂∇̂)jj . (38)

This only holds for additional parameters defined as
shown in equation (14), as the full matrix B occurs in ev-
ery alternative hypothesis. ci and cj select the correspond-
ing covariance element of (Q−1∇̂∇̂)n. This approach can also
be extended to two different multi-dimensional HA,i and
HA,j, with mi and mj being the number of additional pa-
rameters in the corresponding alternative hypothesis. If
the additional parameters in HA,i and HA,j are defined as
shown in equation (14), Ci ∈ Rn×mi and Cj ∈ Rn×mj will
select a sub-matrix (Q−1∇̂∇̂)ij from (Q−1∇̂∇̂)n with size mi × mj

(see equation (39)). In this case, the correlation can be
assessed by analyzing the eigenvalues of the similar ma-
trix [(Q−1∇̂∇̂)ji(Q−1∇̂∇̂)−1ii (Q−1∇̂∇̂)ij(Q−1∇̂∇̂)−1jj ] [7]. Note that these four
sub-matrices are computed with(Q−1∇̂∇̂)ij = CT

i (Q−1∇̂∇̂)nCj. (39)

In conclusion, there are three important matrices,
which give insight into the structure of inner reliability of
an implementedLSalgorithm,namely theobservationma-
trix B, the redundancy matrix of the conditions RW and
the inverse cofactormatrix of the additional parameters re-
spectively biases to be estimated (Q−1∇̂∇̂)n.
4.2 Plane fitting continued
In this section, the resulting matrices of the plane fitting
example identified as being important for the assessment
of inner reliability, will be analyzed. Figure 6a shows the
observation matrix B for the plane parallel to the yz-plane
of the coordinate system. In this case the columns belong-
ing to the y- and z-coordinates are equal to the zero vector.
As alreadymentioned in theprevious sections, thismeans,
that the corresponding observation has no influence onw.
This is somehow intuitive, as an outlier in py,j or pz,j does
not cause a deviation from zero in w. The columns of B
of the rotated plane (figure 6b) have all the same length,
as the components of the normal vector are now nearly
equal. This results in homogeneously distributed redun-
dancy over all observations (and therefore homogeneous
MDBs – see figure 2b).

RW will be analyzed to assess the geometry in the
plane fitting example. As the components ofw are uncor-
related (one can verify be evaluating σp ⋅ BBT ), the focus
is on the main diagonal elements. Figure 7a shows RW
for the rotated plane. The same conclusions can be drawn
as in section 3: p5 is the best controlled one (and there-
fore the corresponding x-, y- and z-coordinates) with a re-
dundancy number of 0.89. The corner points are the ones

Figure 6: Observation matrix B.
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Figure 7: Redundancy matrices of the conditions RW .

with the lowest redundancy numbers being 0.56 – which
still indicates good controllability of the correspondingob-
served coordinates. The redundancy number of the lever-
age point (lower right corner of figure 7b) is clearly lower
at 0.16 which results in higher MDBs of the corresponding
observed coordinates (see figure 3).

The analysis of separability will be based on the cor-
relation coefficients ρij (calculated with equation (38)) for
all possible pairs of test values TN (∇i) and TN (∇j), where
only one dimensional HA,i will be considered as specified
by the observation model (14). Figure 8a shows the ab-
solute values of the correlation coefficients of the rotated
plane. In the 1000 repetitions of the LS algorithm, it hap-
pens, that the sign of ρij is changing but the value itself
stays the same. That is the reason for plotting the absolute
values of ρij. It can be seen, that the x-, y- and z-coordinates
of one point are highly correlated, explaining the results
of the local tests (figure 4). There are also correlations be-
tween the points due to geometry, which is – as previously
mentioned – defined by RW . The correlation structure of
the different points (i. e. the correlation of the observed co-

ordinates of different points) in figure 8a is similar to the
structure of the correspondingRW (figure 7a). The correla-
tion coefficients of observations in one point respectively
condition are 1, which means, that in the present configu-
ration it is not possible to correctly locate an outlier.

One possibility to intervene, is to change the func-
tional model (i. e. add linear independent conditions). Es-
pecially in plane fitting it could be, that the distance di−j
between two points pi and pj is known (e. g. points signal-
ized by reflective target marks) and conditions of the form

0 = √(px,i − px,j)2 + (py,i − py,j)2 + (pz,i − pz,j)2 − di−j (40)

can be added. In a first step, it will be assumed that the
distance d4−8 is known (not as observation but determin-
istic). The resulting ρij can be seen in figure 8b. The cor-
relations between px,4 and py,4 respectively pz,4 are now
considerably lower, whereas the correlation between py,4
and pz,4 is still high (the same holds for p8). As the addi-
tional condition acts as constraint between p4 and p8, cor-
relations between the corresponding coordinates arise. In

Figure 8: Absolute values of correlation coefficients (without the outlier in py,8).
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Figure 9: Local tests when using two additional conditions (d4−8 and d6−8) with corresponding critical values (red horizontal lines). The
values exceeding α0/2 and 1 − α0/2 are marked with blue crosses.

particular, the correlation of the x-coordinates is clearly in-
creased. Adding another condition – namely d6−8 – nearly
decorrelates the coordinate observations of p8 (figure 8c).
The effect on the coordinates ofp6 is similar to the previous
scenario: the correlations of py,6 to px,6 and pz,6 are now
considerably lower, whereas px,6 and pz,6 are still highly
correlated. Again, additional correlations arise between p6
and p8 (especially in the y-coordinates), due to the incor-
poration of the additional condition.

In the last scenario (two additional conditions d4−8
and d6−8), py,8 will be again perturbed by an offset of
0.45m and the test values for the local tests TN (∇i) will be
computed (figure 9). py,8 is now clearly indicated to be the
erroneous observation. Also py,6 exceeds the critical value
but as suggested in data snooping, one has to take care of
the observation with the highest test value. After remov-
ing (or compensatingby anadditional parameter) the erro-
neous observation, the other test values should staywithin
the critical values.

It is theoretically possible to include many conditions
of the form (40) to the plane fitting example and therefore
improving inner reliability. One can mount reflective tar-
get marks on the plane of interest and measure them with
an instrument having superior accuracy. However, such a
procedure is possibly limited to special applications (e. g.
calibration of terrestrial laser scanners). In practice, one
has to consider the physical realization of such conditions
and in general it can be a tricky task to find and formu-
late such additional conditions, improving inner reliabil-
ity. The conclusion of this numerical example is, that the
MDB (22) together with ρij (38) are useful tools to assess
the inner reliability respectively the detection and identi-
fication step of DIA in the GHM.

Another numerical example has been worked out
and investigated, namely the 2D similarity transformation
where the coordinates of the points in the two considered
coordinate systems are introduced as the observations.
The behavior of the MDB and the correlation coefficients

as well as the influence of the translation parameters and
the rotation parameter on the inner reliability has been
analyzed. The MDB is not dependent neither on a trans-
lation nor on a rotation and its structure is similar to the
plane fitting example as points which are surrounded by
others show lower MDBs than points in the border area.
When just applying a translation, the two corresponding
coordinates of one point in both systems are one-to-one
correlated (i. e. outliers in these coordinates are not sep-
arable), whereas the rotation parameter causes a correla-
tion of a coordinate in one system with both coordinates
of the same point in the other system. The details on the
numerical example as well as the results can be found in
appendix B.

4.3 Numerical example: yaw computation
The derived body of equations can also be applied to the
Kalman filter which is a sequential implementation of the
LS estimator. In [6], the Euler angles rollφ, pitch θ and yaw
ψ are estimated with a Kalman filter which is formulated
in the GHM to directly introduce the smartphone-sensor
readings as observations. As a preparatory step for analyz-
ing the inner reliability of such Kalman filter implementa-
tions, a simplified numerical example will be considered
in this chapter. The yaw angle ψ is assumed to be static
and should be estimated from b consecutive magnetome-
ter observations. As a further simplification it will be as-
sumed that the originally 3Dmagnetometer readings sens-
ing the earth magnetic field are already leveled. Hence, ψ
can be computed with the two horizontal componentsmx,j
and my,j (j = 1, ..., b) and one can set up b condition equa-
tions

0 = arctan(−my,j
mx,j ) − ψ. (41)

For the numerical example, we will assume to have
b = 5 such pairs of observationswhich should be adjusted,
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Figure 10: MDBs of magnetometer observations. Whiskers span the whole range of data.

Figure 11: Absolute values of correlation coefficients.

where themagnetometers’ x-axis points towardsmagnetic
north (expected value of ψ is 0∘). An approximate value
ψ(0) for the yaw angle can be calculated from one of the
five pairs of observations, yielding exactly zero in the cor-
responding condition equation. The procedure will be the
same as in section 3: the LS algorithm will be repeated
1000 times and every time random Gaussian noise with
zero mean and standard deviation σm = 0.1µT will be
added to the observationsmx,j andmy,j.

Figure 10a shows the resulting MDBs of the magne-
tometer observations. The mx,j are uncontrolled and the
reason is the same as in the application of plane fitting:
the corresponding columns of B are equal to the zero vec-
tor. Or analytically: changingmx,j in equation (41) does not
influence the corresponding component of w as long as
my,j is zero (what should be the case if the magnetometer

points towards magnetic north). As suggested in the end
of section 4.2, one should also analyze the correlation of
the test statistics TN (∇i) to assess the inner reliability. Fig-
ure 11a shows the corresponding correlation coefficients
ρij. Again, the situation is similar to the plane fitting ex-
ample, as the observations appearing in the same condi-
tion equation are one to one correlated. In the case of yaw
estimation, A equals the negative identity matrix. There-
fore, the correlation betweenobservations of different con-
dition equations is now uniform (in contrast to plane fit-
ting).

To improve this sub-optimal configuration, one can
formulate conditions on the observations. If there are no
magnetic perturbations present (neither instrumental nor
environmental effects), the Euclidean distance of a pair of
magnetometer observations should be equal to the hori-
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Figure 12: Local tests with corresponding critical values (red horizontal lines). The values exceeding α0/2 and 1 − α0/2 are marked with blue
crosses.

zontal component MH of the earth magnetic field, which
will be treated as a deterministic value. Thus, there will be
one additional condition for every pair of leveled magne-
tometer observations

0 = √m2
x,j +m2

y,j −MH , (42)

increasing the overall redundancy as there are no addi-
tional parameters to be estimated. Solving the LS problem
with these additional conditions, yields MDBs of the mx,j
which are now considerably lower (figure 10b). The MDBs
of my,j stay approximately the same but the dispersion is
much smaller. Also the ρij are now clearly lower, especially
the ones between the individual mx,j and my,j (figure 11b).
To test if outliers in observations are correctly detected and
identified, a bias of 0.5µT is added to observationmx,3. The
global test indicates that an outlier is present, as its mean
test value 3.7001 is considerably higher than the critical
value 1.8799 and also the rejection rate of H0 is 97%. The
erroneous observation is correctly identified by the local
tests (figure 12).

The example of determining the yaw angle with mag-
netometer measurements confirmed that the MDB ∇̂0,i to-
gether with the correlation coefficients of the test statis-
tics ρij are appropriate tools to assess the inner reliability
of an implemented LS algorithm. Additionally, it could be
shown, that including condition equations solely between
the observations in the functionalmodel, considerably im-
proves the ability to detect and identify outliers.

5 Conclusions
In this contribution, the theory of inner reliability is intro-
duced for the Gauss-Helmert model (GHM). This includes
the derivation of the minimum detectable bias (MDB) ∇̂0,i
as well as the test values TF(∇i) and TN (∇i) for the local
tests to identify disturbed observations. Especially, if the
observations are uncorrelated, these measures for inner

reliability will have the same structure as in the Gauss-
Markov model, where the redundancy numbers rii (main
diagonal elements of redundancy matrix R) play a key
role. All derivations for the inner reliability are based on
one-dimensional and additive observation errors respec-
tively offsets which are modeled as additional parame-
ters ∇i to be estimated. The formulas to compute these
additional parameters with the corresponding variances
q∇̂i are also derived in this contribution. Appendix A in-
cludes the results of the GHM for a more general obser-
vation model, containing multiple systematic observation
errors non-linearly.

The numerical example of plane fitting showed that
theMDB is also in theGHManappropriatemeasure to ana-
lyze the ability of an implemented least-squares algorithm
to detect if outliers are present in the observations. A high
MDB value indicates, that an outlier in the corresponding
observation cannot be detected. Two sources negatively
influencing detectability are identified: columns close to
the zero vector in the observation matrix B and sub-
optimal geometry in the designmatrixA (which can be as-
sessed by the redundancy matrix of the condition space
RW ). Even if these issues can be excluded, it can be diffi-
cult to identify the correct observation as being erroneous.
Therefore, the correlation coefficients ρij of two test values
TN (∇i) and TN (∇j) are calculated from the matrixQ−1ll R and
analyzed. High values for ρij indicate, that the erroneous
observation cannot be correctly identified. The numerical
example of determining the yaw angle withmagnetometer
measurements confirmed these findings. As the MDB and
the ρij are convenient measures to illustrate detectability
and separability, they should be used to assess the inner
reliability of an implemented LS approach in the GHM. If
there are problems one should further analyze B and RW
to choose appropriate additional conditions which will fix
(or at least improve) sub-optimal configurations. Finding
such additional conditions is not a trivial task, as it highly
depends on the desired application.
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An obvious extension to the inner reliability in the
GHM, is the outer reliability (influence of not detected out-
liers on the parameters), which is not considered in this
contribution. However, one basic equation for outer reli-
ability is already derived in appendix A, namely the in-
fluence of additional parameters on the parameters of the
null hypothesis (48). As mentioned in section 4.3, the nu-
merical example of yaw computation served as prepara-
tory step to analyze the inner reliability of sequential GHM
estimators. The measures introduced in this contribution,
can support the implementation of algorithmsused innav-
igation tasks (e. g. dead reckoning) being less sensitive to
several systematic errors occurring in the used sensors.

Appendix A. General formulation of
systematic observation errors
The observation model with non-linear systematic obser-
vation errors can be formulated as

gl(l,∇) = E{l} − v. (43)

gl() is a function which gives calibrated observations
depending on the – in general – non-linearly included
systematic observation errors ∇ ∈ Rm×1, treated as deter-
ministic additional parameters to be estimated. By setting∇ = ∇∗ such that gl(l,∇∗) = l, one arrives at the linearized
functional model of the GHM (6). Hence, a GHM adjust-
ment based on l can be solved with the equations (8)–(13)
if the null hypothesis

H0 : ∇ − ∇∗ = 0 (44)

is correct. To derive appropriate test values for checking
the validity of H0, the estimated additional parameters ∇̂
have to be computed. This is done with Lagrangian opti-
mization (as also done in section 2), which corresponds to
the procedure of deriving ∇̂ in the GMM (as shown in [16]
p. 184 ff.). The linearization of the functional model with
additional parameters is done with

0 = h(x̂
, ̂l
) = h(x̂
, gl(l, ∇̂) + v̂
)≈ h(x(0), gl(l,∇(0)) + v(0)) + �h(x̂
, ̂l
)�x̂
 |x(0) ,gl(l,∇(0))+v(0) ⋅ dx̂
+ �h(x̂
, ̂l
)�v̂
 |x(0) ,gl(l,∇(0))+v(0) ⋅ (v̂
 − v(0))+ �h(x̂
, ̂l
)�∇̂ |x(0) ,gl(l,∇(0))+v(0) ⋅ (∇̂ − ∇(0))≈ h(x(0), gl(l,∇(0)) + v(0)) + �h(x̂
, ̂l
)�x̂
 |x(0) ,gl(l,∇(0))+v(0) ⋅ dx̂


+ [ 	h(x̂� , ̂l�)	 ̂l� ⋅ 	 ̂l�	v̂� ] |x(0) ,gl(l,∇(0))+v(0) ⋅ (v̂
 − v(0))+ [ 	h(x̂� , ̂l�)	 ̂l� ⋅ 	 ̂l�	gl(l,∇̂) ⋅ 	gl(l,∇̂)	∇̂ ] |x(0) ,gl(l,∇(0))+v(0) ⋅ (∇̂ − ∇(0))≈ h(x(0), gl(l,∇(0)) + v(0)) + A
dx̂
+ B
I ⋅ (v̂
 − v(0)) + B
IA∇d∇̂≈ w
 + A
dx̂
 + B
v̂
 + B
A∇d∇̂
withw
 = h(x(0), gl(l,∇(0)) + v(0)) − B
v(0). (45)

In (45) A∇ ∈ Rb×m is the Jacobi matrix, resulting from
the partial derivatives of gl(l, ∇̂)with respect to ∇̂ and hav-
ing full column rank. By using quotation marks as super-
scripts, it should be clarified, that w
, A
 and B
 are dif-
ferent to the corresponding quantities in section 2, as the
partial derivatives are evaluated now additionally at the
approximate, additional parameters∇(0). By setting∇(0) =∇∗ (what will be assumed from here on), one can again set
w
 = w, A
 = A and B
 = B. x̂
 and v̂
 (and therefore dx̂

and ̂l
) aswell as k̂
will differ from its corresponding quan-
tities in section 2, due to the incorporation of ∇̂.

The extended normal equation system becomes:[[[ N A BA∇
AT 0 0

AT∇BT 0 0
]]][[[ k̂



dx̂

d∇̂]]] = [[[−w00 ]]] (46)

As stated e. g. in [16] p. 185, d∇̂ is not unambiguously
estimable if m exceeds the redundancy r = b − u, i. e.
overall more parameters (m + u) have to be estimated
than conditions are given and the LS-problem gets under-
determined. The Lagrangianmultipliers k̂
 are determined
from the first row of (46)

k̂
 = −N−1(w + Adx̂
 + BA∇d∇̂). (47)

Inserting (47) into the second rowof (46) and rearrang-
ing this expression gives

dx̂
 = −(ATN−1A)−1ATN−1(w + BA∇d∇̂)= dx̂ − (ATN−1A)−1ATN−1BA∇d∇̂. (48)

Now one can insert this into (47), which equals

k̂
 = −N−1(w + Adx̂ + (I − A(ATN−1A)−1ATN−1)BA∇d∇̂)= k̂ − N−1(I − A(ATN−1A)−1ATN−1)BA∇d∇̂ (49)

After setting I − A(ATN−1A)−1ATN−1 = I − AA+ = RW
for convenience, the residuals are calculated with

v̂
 = QllBT k̂
= QllBT (k̂ − N−1RWBA∇d∇̂)= v̂ − QllBTN−1RWBA∇d∇̂. (50)
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Figure 13: MDBs of point coordinates when applying translation of 200 m in x- and y-direction.

The result for d∇̂ is obtained by inserting (49) into the
third row of (46) and can be expressed in terms ofw, k̂ or v̂

d∇̂ = −(AT∇BTN−1RWBA∇)−1AT∇BTN−1RWw= (AT∇BTN−1RWBA∇)−1AT∇BT k̂= (AT∇BTN−1RWBA∇)−1AT∇BTN−1Bv̂. (51)

As N corresponds to the cofactor matrix of w, Q∇̂∇̂ is
derived by using error propagation, the fact that RW is
idempotent and the identity NRT

WN−1 = RW . It can also
be expressed in terms of Qk̂k̂ or Q ̂v ̂v
Q∇̂∇̂ = (AT∇BTN−1RWBA∇)−1AT∇BTN−1RWNR

�T
WN−1BA∇⋅ (AT∇BTN−1RWBA∇)−1= (AT∇BTN−1RWBA∇)−1= (AT∇BTQk̂k̂BA∇)−1= (AT∇BTN−1BQ ̂v ̂vBTN−1BA∇)−1. (52)

Appendix B. Numerical example:
2D similarity transformation
In the numerical example of 2D similarity transformation,
nine points ps,j = [ys,j xs,j]T are considered which are
arranged in the same way as in the plane fitting exam-
ple. s = 1, 2 is the index for the coordinate system and
j = 1, . . . , 9 specifies the point-ID. In 2D similarity transfor-
mation, the transformation parameters are the translation
vector components ty and tx, the rotation ψ and the scale

m. For each point, one can set up a pair of condition equa-
tions

0 = y2,j − ty − (1 +m)(y1,j cosψ + x1,j sinψ)
0 = x2,j − tx + (1 +m)(y1,j sinψ − x1,j cosψ) (53)

to estimate the transformation parameters in a GHM ad-
justment. For the numerical evaluations, the adjustment
procedure is repeated again 1000 times,where in each rep-
etition white Gaussian noise with zero mean and standard
deviation of σp = 0.25m is added to the point coordinates
(i. e. the observations) in both systems.

In the first evaluation, only a translation of 200m in
both coordinate directions is applied. The resulting MDBs∇̂0,i are shown infigure 13. The structure is the same inboth
coordinate systems as well as in the plane fitting example.
The point in themiddle is the best controlled one, whereas
theMDBs of the corner points are considerably higher. The
correlation coefficients ρij of the test statistics TN (∇i) in fig-
ure 14a show, that the corresponding coordinates in both
coordinate systems are highly correlated. Hence, by only
using the condition equations (53), one can’t distinguish if
the outlier influences the coordinate in system 1 or 2.

In another evaluation only a rotation of 45∘ is applied.
The MDBs show the same structure as in the first evalu-
ation (figure 13) but the behavior of the ρij is slightly dif-
ferent (figure 14b). Because of the rotation of 45∘, an out-
lier in one coordinate in system 1 appears to be an outlier
with equal extent in both coordinate directions in system
2. Varying the scale parameterm from 1 ppm to 1000 ppm,
shows no influence on the MDBS and the correlation coef-
ficients.
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Figure 14: Absolute values of correlation coefficients.
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1  INTRODUCTION

The computation of smartphone orientation is an important step in the process 
of pedestrian indoor localization, for example, when providing navigation to a 
certain location (Ehrlich & Blankenbach, 2018; Moder et al., 2018) or using the 
movement behavior of persons to gain insight into building utilization (Burgess 
et al., 2018; Kanda et al., 2007). We propose a new orientation-estimation algorithm 
(OEA) based on self-contained sensors, with a focus on magnetometer integration 
to provide robust absolute smartphone heading information.
The magnetometer observation model exhibits classical internal sensor errors 
such as those related to bias, scale factor, and misalignment (Renaudin et al., 2010) 
as well as platform- and environment-dependent errors such as hard-iron bias, 
soft-iron scaling, and magnetic anomaly bias (Groves, 2013). These latter errors 
are the primary reason that magnetometer integration in OEAs can cause large 
deviations in heading estimations. Routines for determining and mitigating these 
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elty of this approach lies in the use of an extended Kalman filter (EKF), based 
on a state vector that contains only the slow-varying systematic deviation com-
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systematic deviations are mandatory, and herein, we consider only procedures that 
are directly applied in the indoor localization process (i.e., on-site). There are two 
main approaches for on-site determination or mitigation of systematic deviations, 
namely, instruction-based procedures and in-run procedures (Martin et al., 2016). 
In instruction-based procedures, the smartphone must undergo special movements 
or trajectories prior to the localization process; in in-run procedures, sensor errors 
are determined during localization. The classic instruction-based approach for 
smartphones is the ellipsoid-fitting approach, in which the smartphone is rotated 
around its three main axes to determine sensor errors. With the constraint that 
magnetometer observations are ideally located on a sphere with known radius, i.e., 
the known value of the magnitude of the earth’s magnetic field (EMF), it is possible 
to determine sensor and platform errors (Gebre-Egziabher et al., 2006; Klingbeil 
et al., 2014; Renaudin et al., 2010; Vasconcelos et al., 2011).
The obvious problem is that environment-dependent errors (i.e., magnetic anom-
alies) cannot be captured with the above-described approach. Thus, it is necessary 
to apply an in-run procedure in the OEA to determine the presence of magnetic 
anomalies in magnetometer observations. A common approach is to fuse the gyro-
scope, accelerometer, and magnetometer in an extended Kalman filter (EKF) to 
estimate the smartphone orientation (Gebre-Egziabher et al., 2004; Han & Wang, 
2011). In these approaches, it is critical to note that magnetic anomalies also influ-
ence the inclination component of the orientation (roll ϕ  and pitch θ  in Euler 
angle parameterization). Madgwick et al. (2011) and Valenti et al. (2015) attempted 
to avoid this effect by using complementary filters, where the change in inclination 
is computed via the accelerometer sensor and the change in yaw (ψ  in Euler angle 
parameterization) is computed via the magnetometer sensor. A possibility for mit-
igation is to use the known quantities of the EMF to determine whether magnetic 
anomalies are present. The literature contains many proposed solutions exploiting 
this information: Costanzi et al. (2016) used this knowledge to compute adaptive 
variances for magnetometer observations. Renaudin & Combettes (2014) and Lee 
et al. (2018) performed the EKF update only if conditions on the magnetometer 
observations were met, and Afzal et al. (2011) used statistical tests and fuzzy infer-
ence to determine the resulting heading error due to magnetic anomalies. Another 
approach is to parameterize the systematic deviations in an EKF (i.e., include them 
in the state vector). It is not common to estimate each type of systematic deviation 
separately in the EKF but to subsume them in a bias and an affine transforma-
tion parameterized with a symmetric matrix (Klingbeil et al., 2014; Renaudin et al., 
2010). Crassidis et al. (2005) included this bias and the elements of a symmetric 
matrix in the state vector of an EKF and an unscented Kalman filter. Han et al. 
(2017) additionally integrated the EMF in the state vector and propagated it with 
the gyroscope observations.
Each of the previously mentioned approaches exhibits at least one of the fol-
lowing problems: On the one hand, systematic deviations in magnetometer obser-
vations cannot be sharply separated from the desired signal; rather, they can only 
be separated to a certain extent. When orientation parameters are included in the 
state vector of an EKF, small amounts of systematic deviations that cannot be 
detected influence the estimated states. On the other hand, trajectories from pedes-
trians do not usually contain sufficient information to decorrelate the state vector 
components, including orientation parameters and different types of systematic 
deviations.
Consequently, biased estimates arise in the presence of unmodeled effects 
such as magnetic anomalies. We propose an OEA that reduces these problems 
under some loose restrictions. The computation of the inclination, heading, and 
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systematic deviations is divided into separate modules to avoid undesired effects 
due to correlated parameters. Instead of absolutely computing the heading in every 
epoch, the algorithm propagates the heading with the gyroscope, and the absolute 
part is updated periodically when good conditions for EMF sensing prevail. The 
update of the absolute heading is triggered by an EKF, whose state vector consists 
only of the magnetometer bias subsuming the systematic deviations with low tem-
poral variance (i.e., related to the sensor and its platform). This algorithm enables 
the reliable detection of rapidly varying systematic deviations (i.e., magnetic anom-
alies and their secondary effects); therefore, the update of the absolute heading 
can be suppressed in such phases. However, an OEA based solely on an inertial 
measurement unit and magnetometer is dependent on the condition that error-free 
magnetometer observations are available in at least some time windows (ideally in 
the initial phase of the algorithm). For edge cases in which magnetometer observa-
tions are faulty all the time, it is necessary to integrate additional observation types 
into the OEA.
In Section 2, we introduce the proposed OEA in detail. For convenience, a list 
of symbols used in the extensive equations is provided in Appendix B. We validate 
our OEA in Section 3.1 with simulated data to show that the OEA exhibits the 
proposed properties. In Section 3.2, we use measured smartphone sensor data and 
ground truth data from a laser tracker to compare our OEA with three of the OEAs 
mentioned above.

2  PROPOSED ALGORITHM

The coordinate frames and smartphone sensor observations are shown in 
Figure 1. We assume that the observations from the gyroscope ωωB ,  accelerome-
ter aB ,  and magnetometer mB  are available in the common smartphone body 
frame (B-frame). The aim of smartphone orientation determination is to link the 
B-frame with the navigation frame (N-frame), which corresponds to the coordi-
nate system in which the pedestrian motion is described. To describe the rota-
tions needed to link the B-frame with the N-frame, Euler angle parameterization 
is used herein. All frames are right-handed, and all angles are counted positive 
in the counter-clockwise direction. We use an intermediate frame, the local-level 

F I G U R E  1  Visualization of the used coordinate frames
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frame (L-frame), to separate the computation of the inclination from the computa-
tion of the heading.
The inclination computation (i.e., computing ϕ  and θ ) with ωωB  (angular veloc-
ity around the B-frame axes) and a B  (components of the gravity vector g N  in the 
B-frame) links the B-frame with the L-frame. The heading describes the rotation 
around the vertical z-axis and links the L-frame with the N-frame. The heading is 
computed by using mB  (components of the EMF vector h N  in the B-frame), the 
vertical angular velocity ψ ,  and the magnetic declination hD .  Values for hN  and 
hD  are derived from an EMF model.1
Figure 2 shows an overview of the proposed OEA for determining smartphone 
orientation. The inputs are the sensor observations ωωk

B ,  ak
B ,  and mk

B  as well as 
an initial smartphone heading ψ 0  at time k = 0.  The algorithm consists of four 
modules: The computation of the inclination follows the algorithms from Särkkä 
et al. (2015) and Hostettler & Särkkä (2016), as outlined in Appendix A. Heading 
propagation is conducted with ψ k  derived from the inclination-EKF (Section 2.1). 
The bias-EKF in Section 2.2 is based on a novel functional model. Its state vector 
contains the slow-varying systematic deviations in the magnetometer observations 
and uses k k k, ,  as well as mB  as observations. In the heading update module 
(Section 2.3), the results from the bias-EKF are collected in time windows. If these 

1World Magnetic Model (WMM), online calculator: https://www.ngdc.noaa.bov/geomag/calculators/magcalc.shtml? 
model=wmm, accessed: 28.05.2022

F I G U R E  2  Overview of the proposed OEA

A

(1)

(4)
(5)
(6)
(7)

(8)
(9)
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data exhibit certain properties, the absolute heading is updated. Additionally, a 
one-time check of ψ 0  is performed in the heading update.
It is not necessary for the user to carry the smartphone in a certain mode. The 
smartphone can be carried in a pocket or bag but can also be held by the user 
in texting or calling mode. One of the following two conditions must be met for 
the proposed OEA to provide useful results: Either ψ 0  must be accurately known 
or the first couple of seconds of magnetometer observations must be free from 
systematic deviations (e.g., ensured by magnetometer calibration with ellipsoid 
fitting). We favor the second case, as it is common in several smartphone appli-
cations, requiring the user to perform certain rotations of the phone in order to 
trigger a built-in magnetometer calibration procedure. Still, the calibration with 
ellipsoid fitting must not result in an unbiased yaw angle. When ellipsoid fitting 
fails, there should be at least some time windows without magnetic anomalies in 
order to have an opportunity to improve an initial heading that is most likely erro-
neous. The proposed algorithm is dependent on this fact. If magnetic anomalies 
are present all the time, the smartphone heading can only be propagated with the 
relative changes derived from the gyroscope. In this case, drift effects due to the 
summation of gyroscpe bias must be considered, and additional observations are 
needed to stabilize the resulting smartphone heading. These limitations must be 
considered when the proposed algorithm is applied.

2.1  Heading Propagation

The heading ψ  for the current epoch k is derived by integrating ψ k  with the 
constant time interval between observations dt:
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This integration is performed from the epoch κ  on, at which the absolute head-
ing has been previously updated, where d |k  is the accumulated heading change. 
The computation of  is outlined in Section 2.3. The variance 2  is derived with 
variance propagation, neglecting temporal correlations (i.e., autocorrelation). The 
propagated heading is the outcome of the proposed OEA but is also used as an 
observation in the bias-EKF, as described in the following section.

2.2  Bias-EKF

We reformulate the magnetometer model (Groves, 2013) to develop a functional 
model of the bias-EKF:

 ( )[( ) ( ) ]B B N N B B
sn si N a hi b m= + + + + + +m I I R h δδ δδ δδ∆∆ ∆∆   (2)

sn∆∆  is a matrix that accounts for scaling and non-orthogonality of the magne-
tometer. B

bδδ  and B
hiδδ  are the sensor bias and hard-iron bias, and N

aδδ  accounts for 
magnetic anomalies in the sensor’s environment. si∆∆  contains the soft-iron effects, 
which are dependent on smartphone position and orientation with respect to mag-
netic anomalies. m  is the magnetometer white noise, and I  is the identity matrix. 
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RN
B  is the rotation matrix linking the N-frame and B-frame; this term is computed 
from ϕ,  θ ,  and ψ .  We rearrange Equation (2) such that two new terms summa-
rize the systematic deviations:

 ( )
( ) ( )

B B N B B
N s f m

B B B
s sn hi b
B B N B N N
f N a sn si sn si N a

= + + +

= + +

= + + + +

m R h
I

R R h

δδ δδ
δδ δδ δδ
δδ δδ δδ

∆∆

∆∆ ∆∆ ∆∆ ∆∆



 (3)

B
sδδ  subsumes the deviations that are related only to the magnetometer and its 

carrier platform (i.e., the smartphone). This term is treated as a slow-varying bias. 
B
fδδ  is the bias that exhibits rapid changes upon movement through the environ-
ment when magnetic anomalies are present.
As mentioned in Section 1, we choose a minimum parameterization of the state 
vector for the bias-EKF, which equals .B

sδδ  The prediction is performed with a ran-
dom walk model:

 , ,k 1
ˆB B

s k s dt δ−= + ⋅δδ δδ ζζ  (4)

where ,
B

s kδδ  is the predicted state, ,k 1
ˆB
s −δδ  is the previously estimated state, and δζζ  is 

the system noise. For better readability, we omit the index k  from here on. Only the 
quantities related to the previously estimated state are indexed with k −1.  The fil-
ter innovation w m  is computed by using m B  and the Euler angles as observations:

 ( , , )B B B N
m s N ϕ θ ψ= − −w m R hδδ  (5)

Here, we use a slightly different formulation of the innovation computation that 
does not exhibit the common structure of “observed minus computed.” Ettlinger 
et al. (2018) and Vogel et al. (2018) provided a detailed explanation of this EKF vari-
ant. In the presence of magnetic anomalies, mB  contains B

fδδ  (see Equation (3)), 
which is absorbed by ˆBsδδ  only to a certain extent depending on the preset variances 
of mB  and δζζ  (Table 1). Consequently, ˆBsδδ  becomes biased, and the remaining 
influence of B

fδδ  affects the residuals 12 1
ˆ
,k 1

ˆ ˆ ˆ ˆ ˆ[ , , , ]Tms ζ ϕθψδ δ
×

−
= ∈v v v v v   of the 

bias-EKF. We use v̂  and the corresponding variance-covariance matrix (VCM) 
ˆ ˆvvΣΣ  to formulate a statistical test (global model test):
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We use the above equation to verify the compliance between the observed data 
and the model assumptions of the bias-EKF. In the null hypothesis H0 ,  the expec-
tation of the residuals is assumed to be zero =ˆ{ } ,E v 0  and therefore, TG  follows 
a chi-square distribution with three degrees of freedom (DoFs) (i.e., the dimen-
sion of w m ).  In the presence of magnetic anomalies, B

fδδ  also affects ˆ ,v  leading 
to ≠ˆ{ } ;E v 0  therefore, TG  should become significant (i.e., larger than the corre-
sponding critical value TG c, ( )α ,  where α  is the type I error). In this case (i.e., 
under the alternative hypothesis HA ),  TG  follows a non-central chi-square distri-
bution 3,

2  with non-centrality parameter λ.
Finally, we rotate mB  and ˆBsδδ  into the L-frame:

 
ϕ θ

ϕ θ

=

=

( , )
ˆ ˆ( , )

L L B
B

L L B
s B s

m R m
Rδδ δδ

 (7)

which we use in the following heading update step.
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2.3  Heading Update

The heading update step of the proposed OEA contains two actions: the update 
of ψ  when certain conditions are met and the one-time check of ψ 0 .  The follow-
ing equations describe the update:
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We collect m L ,  ˆ ,L
sδδ  and TG  in non-overlapping time windows with length 

dtW u, .  To update ,  two conditions must be fulfilled (first line in Equation (8)). 
The percentage pT  (second line in Equation (8)) is computed from the number of 
test values TG i,  that exceed the corresponding critical value TG c, ( )α  (third line in 
Equation (8)). If pT >α ,  we assume that magnetic anomalies are present, which 
cannot be absorbed by ˆ ,B

sδδ  leading to a bias in the computed heading. The second 
condition d d|k  suppresses the update of  if the user is turning within a 
time window because, in this case, the values in the time windows are not valid 
for the current epoch k. d  is a preset threshold, and the accumulated heading 
change d |k  from Equation (1) is used as an indicator for user turns.
Up to this point, the proposed OEA relies on the the unbiasedness of ψ 0 ,  as it is 
used for the heading propagation and in the initialization of the bias-EKF. We use 
the following procedure only one time at the beginning of the trajectory to verify 
the compliance between ψ 0  and the magnetometer observations:
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This value is independent from the results of the bias-EKF, and if the conditions 
are fulfilled,  is updated accordingly and the bias-EKF is re-initialized. We col-
lect only m L  in a time window with length dtW ,0  starting from k = 0.  First, the 
difference | |>k m  between the propagated heading ψ k  from Equation (1) 
and ψm  must exceed the predefined threshold  (otherwise, there is no reason for 
an update). The second condition is equivalent to the condition in Equation (8) and 
suppresses an update if the user turns within the time window. The third condition 
pm m> γ  requires that the percentage pm  (second line in Equation (9)) of mi

L ,  
which fulfills two additional requirements c1  and c2  (third line in Equation (9)), 
is higher than the predefined threshold γm .  Because we want to use the heading 
computed from raw magnetometer observations in this control procedure (i.e., ˆBsδδ  
is not used in the first line of Equation (9)), the observations must be checked for 
systematic deviations. c1  requires that the magnitude of m L  be equal to the mag-
nitude of the EMF vector h N  (also derived from the EMF model in Section 2). This 
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condition is too sparse, as all accepted solutions theoretically lie on a sphere. Thus, 
c2  requires that the z-component of m L  be equal to the z-component of h N .  All 
acceptable solutions of c2  lie on a plane, and the intersection with the sphere from 
c1  results in a circle in the three-dimensional (3D) space of solutions that fulfill 
both conditions. Because of measurement noise, these conditions cannot be met 
exactly but must be fulfilled within the threshold m m ,  where σm  is the stan-
dard deviation of m  and m  is a predefined multiplier.
In the next section, we use simulated data and experiments performed with a 
high-accuracy 6-DoF reference measurement system to analyze the properties of 
the proposed OEA. Additionally, the results from the experiments are compared 
with the results of three other OEAs from the literature.

3  EVALUATION

3.1  Validation with Simulated Data

In this section, we use simulated data to validate the proposed OEA in different 
controlled conditions, where the influence of different systematic deviations affect-
ing the magnetometer is exactly known. The smartphone sensor observations aB ,  
ωωB ,  and mB  are determined from a straight trajectory, as shown in Figure 3, where 
the orientation of the coordinate frame equals the orientation of the N-frame. The 
trajectory also determines the heading or yaw angle  61.0°,  and the inclina-
tion angles are constant  0.0 , 30.0° °.  Thus, the rotation matrix RN

B  is avail-
able (~ indicates known quantities), and aB  and mB  are computed as follows:
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where  a m, ,  and ω  are the noise vectors of the accelerometer, magnetometer, 
and gyroscope. The components of the noise vectors are modeled as zero-mean 
uncorrelated Gaussian noise with a corresponding standard deviation (see Table 1). 

F I G U R E  3  Map with trajectories and magnetic anomalies used in the simulation scenarios
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The standard deviations are derived from the smartphones used in Section 3.2 
when lying static for several minutes. As we do not model stride or step accel-
erations, the state of the inclination-EKF only consists of ˆ .Bg  All settings of the 
proposed algorithm are summarized in Table 1.
We investigate six scenarios with different systematic deviations affecting the 
magnetometer observations. Additionally, a baseline scenario (scenario 0) is cho-
sen, in which no systematic deviations are introduced. Magnetic anomalies are 
modeled in all scenarios (except scenario 2), representing .B

fδδ  The anomalies 
are shown in Figure 3, modeled as a magnetic dipole according to previous work 
(Afzal, 2011). In scenarios 1, 3, and 4, there is only one magnetic anomaly, which 
occurs in the middle of the trajectory, and in scenario 5, there is one anomaly at the 
beginning of the trajectory. Scenario 6 contains six magnetic anomalies to imitate 
a more realistic indoor scenario. A slow-varying bias is modeled in scenarios 2 and 
3, representing .B

sδδ  The bias [2.0, 0.0, 0.0] [ ]B T
s Tµ=δδ  is added to m B  from 15.0 s  

on (see Figure 4(a)). A linear increase starting from 0.0 µT  in the x-component is 
modeled from 10.0 s  to 15.0 s,  at which point 2.0 µT  is reached. Both deviations 
are deterministic quantities, i.e., no noise is added. ψ 0  is drawn from a Gaussian 
distribution with zero mean and standard deviation ,0 ,  according to Table 2. To 
analyze the influence of the accuracy of ψ 0 ,  ,0  is increased in scenario 4. All 
scenarios are evaluated 3000 times. We investigate the results of the proposed algo-
rithm from these six scenarios and compare them with the results for scenario 0.
Figure 4 shows the deviations ∆ ˆBsδδ  of the estimated slow-varying bias from the 
corresponding known values for scenarios 1, 2, and 6. The results of scenario 4 do 
not differ from those shown in Figure 4(a), except during the first 3 s before the 

TA B L E  1
Settings of the Proposed Algorithm 

a i j, ,  and a i j, ,  are only relevant for the measured data containing user motion in Section 3.2.

inclination-EKF bias-EKF heading update 
σa  0.1 / 2m s  σm  2.0 µT  d  10.0°  

 0.1 /° s   0.5 /µT s   5.0°  

g i,  0.02 / 2m s  α  0.1  γm  0.95  

a i j, ,  0.02 / 2m s  m  3.0  

a i j, ,  0.02 / 3m s  dtW u,  5.0 s  

dtW ,0  3.0 s  

TA B L E  2
Mean and Standard Deviation of ψ∆ ˆ  (Deviation of Estimated ψ̂  from Reference Value) from 
3000 Evaluations 
The bias column indicates whether a sensor bias is added to the simulated observations, and ,0  
is the standard deviation of the distribution from which ψ 0  is drawn.

scenario anomaly bias ,0 [ ]°  °ψ∆ ˆ [ ]  °ψσ∆ ˆ [ ]  

0 no no 10.0 −0.02 3.72
1 yes (one) no 10.0 0.02 3.76
2 no yes 10.0 0.15 3.80
3 yes (one) yes 10.0 0.03 3.77
4 yes (one) no 20.0 0.20 5.37
5 yes (start) no 10.0 −0.12 4.55
6 yes (multiple) no 10.0 −0.06 3.81
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one-time check (Equation (9)) of ψ 0  is performed. The bias-EKF exhibits the pro-
posed behavior. ˆBsδδ  does not absorb the magnetic anomaly, which spreads on the 
residuals; therefore, TG  becomes significant (Figure 4(a)). An update of  is not 
performed near the magnetic anomaly, as the heading angle would be biased and 
ˆB
sδδ  takes on the correct value only a couple of seconds after the magnetic anomaly 
is passed. In scenario 2 with the sensor bias, ˆBsδδ  requires several seconds to follow 
the bias. Even if TG  never becomes significant (i.e.,  is updated with slightly 
biased values in Equation (8)), ∆ ˆBsδδ  approaches zero again after the appearance of 
the bias. Moreover, in the case of multiple anomalies (Figure 4(c)), the bias-EKF 
exhibits the desired behavior. The global test values are significant in the vicinity of 
magnetic anomalies and converge back to zero after approximately 5 s.
The mean deviations of the resulting heading and their standard deviations are 
summarized in Table 2 for all scenarios. The mean deviation is slightly increased in 
scenarios 2, 4, and 5 compared with the other scenarios, which provide mean devi-
ations similar to that of scenario 0. The issue with the sensor bias in scenario 2 was 
discussed in the previous paragraph. Scenarios 4 and 5 represent problematic con-
ditions at the beginning of the trajectory (i.e., poor accuracy of ψ 0  or systematic 

F I G U R E  4  Mean deviations ∆ ˆBsδδ  for three systematic deviation scenarios with the 
corresponding standard deviation (dotted line) (a) Scenario 1 (b) Scenario 2 (c) Scenario 6
The orange areas in scenarios 1 and 6 indicate the influence of magnetic anomalies, the yellow 
area in scenario 2 indicates the influence of the constant bias, and the blue areas indicate 
significant global tests according to Equation (6).
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deviations in mB ).  These two scenarios also exhibit considerably higher values of 
δψσ ˆ .  This result indicates that problematic conditions in the initialization phase 
of the proposed OEA have the greatest impact on the achievable heading accuracy.
This simulation study is not all-encompassing, and real conditions have only 
been partially modeled. Yet, the results in this section indicate that the proposed 
OEA exhibits the desired properties. The OEA provides reasonable results for 
smartphone orientation when strong magnetic perturbations are present in the 
environment. In the next section, we analyze results from a small-scale experiment 
with high-accuracy ground truth values for smartphone orientation to further 
demonstrate the potential of the proposed OEA.

3.2  Comparison with Measured Data

We performed experiments in the measurement laboratory of the Department 
of Geodesy and Geoinformation, TU Wien with three smartphones (Samsung 
Galaxy S10, LGE Nexus 5X, and Google Pixel 5) to evaluate the achievable orienta-
tion accuracy of the proposed algorithm. The reference values of the Euler angles 
  , ,  are determined with a Leica LTD800 laser tracker. The laser tracker pro-
vides observations in its local coordinate frame, which we denote as the Lt-frame. 
Pillars in the laboratory have known coordinates in a local north–east–up coordi-
nate system, which is used to visualize the trajectories in Figure 6. The N-frame is 
oriented in the same way as the local north–east–up coordinate system. The coor-
dinates of these pillars in the Lt-frame are derived from laser tracker observations 
to a corner cube reflector placed on the pillars. The rotation matrix RLt

N  linking 
the Lt-frame to the N-frame is computed with an overdetermined similarity trans-
formation. We assembled a platform with a 3D printer that can be carried by the 

F I G U R E  5  Experimental setup 
The top row of images shows the measurement area with the laser tracker and magnet. The 
bottom row of images shows the 3D-printed platform with the rigidly mounted T-probe and 
smartphone and how the platform was held during the measurements.
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user and that holds the smartphone as well as the T-probe (see Figure 5). With this 
device, the laser tracker provides the six DoF parameters linking the T-probe coor-
dinate frame (Tp-frame) with the Lt-frame. The T-probe is mounted with known 
angular offsets from the smartphone body coordinate frame (B-frame) such that 
the rotation matrix RB

Tp  is available. The overall rotation matrix is composed from 
the previously described rotation steps:

 R R R RN
B

Lt
N

T p
Lt

B
Tp T= ( )  (11)

The standard deviation of the angles linking the N-frame with the Lt-frame from 
the overdetermined similarity transformation is , [0.001, 0.02, 0.001] [ ]N Lt

T ° .  
The standard deviation of the angles linking the Lt-frame with the Tp-frame is 

, [0.002, 0.002, 0.002] [ ]Lt Tp
T ° ,  which is determined with the T-probe being 

static. Because these angles are measured kinematically, we assume that ,Lt Tp  
is increased by a factor of 10. Still, the uncertainty is clearly beyond a tenth of 
a degree for the “cumulated” angles linking the N-frame with the Tp-frame. The 
largest source of uncertainty is the mounting of the smartphone on the 3D-printed 
platform ( ),Tp B  and the realization of the B-frame in/on the smartphone. By 
carefully aligning the longitudinal side and back side of the smartphone with plas-
tic screws (see Figure 5) to the 3D-printed platform, we ensure a precise alignment. 
From the numeric simulations in Section 3.1, we know that the accuracy of the 
resulting heading from the proposed algorithm is 4 5− °  under ideal conditions. 
We assume that this value increases by a factor of at least 2  under real conditions 
(platform and sensor imperfections, user motion, etc.). Thus, the chosen reference 
measurement system should be sufficient to provide reference values for the exper-
iments and the following analysis.
The smartphone sensor observations a mB B B, ,ωω and  as well as the rotation 
matrix RTp

Lt  are collected kinematically. Time synchronization between the smart-
phone and tracker data is conducted by using cross-correlation. The two signals 
for cross-correlation are ωωB  and ωωB ,  which is derived according to previous work 
(Titterton & Weston, 2004):
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Figure 6 shows trajectories 2, 3, and 4 (trajectory 1 is the same as trajectory 2) as 
well as the magnet (blue square), which was positioned in the experiment area. The 
colormap represents the magnitude of the deviation vector m m hB B

N
B NR ,  

computed from trajectory 2 by two-dimensional interpolation. Trajectory 1 was 
obtained in the same manner as trajectory 2 but without the magnet. Each phone 
is rotated around its three main axes to trigger the hard-iron bias calibration before 
trajectory 1 begins. We use a magnet with a known position to have at least one 
magnetic anomaly influencing the magnetometer observations. As shown in 
Figure 6, there is another magnetic anomaly present in the upper right region of 
the experiment area. This pattern could be reproduced with each phone for trajec-
tories 1, 2, and 4 (at the beginning of the trajectory).
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We compute the Euler angles for all 12 trajectories with the proposed OEA. 
To initialize the Euler angles, we compute ϕ  and θ  with aB  at time k = 0  
(Appendix A), and 0 0  is derived from Equation (11) via the laser tracker 
measurements. Figure 7 (top) shows the deviations of the computed EMF in the 
B-frame with respect to the known values for the LGE Nexus 5X and trajectory 2. 
Figure 7 (bottom) presents the deviations of the computed Euler angles from the 
corresponding known quantities. The influence of the magnet and the anomaly 
in the upper right region of the experiment area on the components of hB  (and 
therefore on ψ )  is very weak. Noticeable deviations of up to 25°  occur in a few 
cases (e.g., after the initial check with Equation (9) and approximately 110 s),  but 
they rapidly decrease to zero. The deviations of ϕ  and θ  basically have a zero 
mean, with a maximum of ±7°.
We use three algorithms for comparison: the complementary filter from 
Madgwick et al. (2011) (called Madgwick or “madgw” in some plots), the EKF 
from Renaudin & Combettes (2014) (called Magyq), and the EKF from Han et al. 
(2017) (called Han). Madgwick and Magyq fuse a mB B, ,  and ωωB  in one algorithm 
and deliver the quaternion, which describes the 3D rotation from the N-frame into 
the B-frame. Thus, in contrast to the algorithm proposed herein, the computations 
of the inclination and heading component are not totally separated in these two 
approaches. Han does not estimate orientation parameters; instead, it estimates the 
EMF in the B-frame hB  together with a magnetometer bias and symmetric matrix 
elements subsuming sn∆∆  and .si∆∆  The estimation of the EMF (implicitly contain-
ing the heading information) and two categories of systematic deviations is the 
main difference of the proposed algorithm, which has minimal parameterization 
in the bias-EKF. The inclination angles are computed in the same way for the Han 
algorithm as in the proposed algorithm. We use these three algorithms to compute 
, ,  and ψ  for all trajectories.

F I G U R E  6  Trajectories 2, 3, and 4 plotted on a colormap representing the magnitude of the 
deviation vector ∆mB 
Trajectory 1 is not plotted, as it is nearly the same as trajectory 2. The blue square represents the 
magnet, which is positioned in the experiment area.
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Each algorithm has at least one variable that can be used for tuning. We attempted 
to optimize the algorithms on the basis of the root mean square error (RMSE) of the 
computed heading. In the Madgwick algorithm, the maximum gyroscope measure-
ment error can be adjusted; we set this term to 0.01 /° s.  Renaudin & Combettes 
(2014) estimated the accelerometer bias (beside the orientation quaternion q  and 
the gyroscope quaternion bias qb,ω ),  which we omit herein. Thus, there are two 
system noise components for q  and qb,ω ,  whose standard deviations are set to 

q 0.001  and q s,
10.001 .  Additionally, Magyq performs static period detec-

tion and outlier rejection of aB  and mB  by comparing their magnitudes with the 
nominal values. The number of observations (aB  and mB )  used for static period 
detection is set to 20, and the corresponding thresholds are set to 1,

20.3 /a m s  
and 1, 1.0m T.  The thresholds for outlier rejection are set to 2,

21.0 /a m s  
and 2, 3.0m T.  Han provides one tuning variable, which is a dimensionless 
multiplier for controlling the influence of the system noise; this term is set to 100.0.
The resulting deviations  are shown in Figure 8, and the respective RMSE 
values are given in Appendix B (Table B1). Madgwick performs best in trajec-
tory 3, which exhibits the most preferable properties (no anomaly in the begin-
ning and short duration of only 12 s).  The results from the other trajectories are 
significantly worse. For Han, the results from trajectory 1 (without the magnet) 
are clearly better than those for the other three trajectories. In the provided exper-
imental setup, heavy magnetic anomalies cannot be reasonably estimated by using 
functional models containing several parameters for systematic deviations (i.e., 
bias and symmetric matrix). Due to the very low standard deviations of the sys-
tem noise obtained when using Magyq, this algorithm performs better in the short 
trajectories 3 and 4. Trajectory 1 contains only two very high RMSE values for the 
Samsung Galaxy S7 and LGE Nexus 5X. If one neglected these two values, the 

F I G U R E  7  Deviations of hB  (top) and , ,  (bottom) for trajectory 2 and LGE Nexus 5X 
The durations for which the phone is closer than 1.0 m  to the magnet are marked in orange 
(denoted “magnet” in the legend), and those for which the phone is closer than 2.0 m  to 
the anomaly in the upper right region of the experiment area are marked in yellow (denoted 
“anomaly” in the legend). The turquoise line marks the initial check with Equation (9), and the 
purple lines mark the updates of  with Equation (8).
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overall RMSE would be very close to that of the proposed OEA. The drawback of 
Magyq (and therefore of all algorithms that compute the 3D orientation within 
one EKF) is that the magnetic anomalies also influence the inclination angles (see 
Table 3). Because Madgwick is based on a complementary filter, the RMSE values 
of the inclination angles are considerably smaller, even if all smartphone observa-
tions are fused in one algorithm. The proposed OEA delivers the lowest RMSE for 
the computed heading given an unbiased value of ψ 0  (Table 3).
We perform the evaluations again for biased values of ψ 0 ,  as shown in Figure 9, 
where 0  is the deviation from the correct value. The RMSE values are com-
puted for each value 0  in the same way as in Table 3. Over the whole range 
of 0 ,  the proposed OEA delivers the lowest RMSE values of the computed 
heading on average (with worse performance toward 0 90°  compared with 
the other algorithms). It is counterintuitive that the minima of the graphs are not 
exactly at the correct value of ψ 0  (i.e., 0 0°).  Our explanation is that the shift 
in ψ 0  partially compensates for systematic deviations contained in the magnetom-
eter observations. The low variation in headings when the magnet is passed leads 
to additional experiment-specific effects because the summation of the magnetic 
anomaly and sensor-related biases is similar for all trajectories. Still, this experi-
ment with high-accuracy ground truth values for 3D orientation reveals the poten-
tial of the proposed OEA within smartphone or pedestrian localization systems.

TA B L E  3
RMSE Values of Euler Angles Over All Trajectories and Phones in [°] 
Han and the proposed OEA use the same inclination computation procedure. Thus, these 
algorithms have the same RMSE values for ϕ  and θ .

Madgwick Magyq Han Proposed OEA 
RMSE ϕ  7.0 31.4 1.7 1.7 

RMSE θ  9.7 13.6 2.6 2.6 

RMSE ψ  65.8 36.5 29.2 17.4 

F I G U R E  8  Deviation of the smartphone heading computed from the known quantities  
for all trajectories, phones, and algorithms
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4  CONCLUSION

We developed an OEA that provides the absolute 3D orientation of a 
consumer-grade device such as a smartphone. The proposed OEA exhibits the fol-
lowing properties:

• reliable detection of magnetic anomalies, 
• fast convergence of the estimated bias back to the correct value after a magnetic 
anomaly is passed, and 

• minimal/reduced influence of magnetic anomalies on the computed heading. 

The limiting condition is that magnetometer observations that are free from sys-
tematic deviations must be available for at least certain time spans of the trajectory. 
Otherwise, the heading determination can only be performed in a relative manner 
by using the gyroscope or additional information from other sensors. We validated 
and analyzed the proposed OEA by using numerical simulations. We modeled 
magnetic anomalies, sensor biases, and two levels of accuracy of the initial head-
ing in different scenarios. The scenarios with problematic conditions in the initial-
ization phase of the proposed OEA led to slightly worse results. Nevertheless, the 
proposed OEA provides an estimated smartphone orientation with low deviation 
from the correct value.
We evaluated the performance of the proposed OEA based on experiments with 
high-accuracy ground truth values for 3D smartphone orientation. The proposed 
OEA was compared with three other algorithms from the literature that also use a 
magnetometer. If the initial heading is unbiased, the RMSE of the computed head-
ing is 40% lower for the proposed OEA compared with the “second-best” algorithm 
over all trajectories (Tables 3 and B1). For a wide range of biased initial headings, 
the proposed OEA also delivers the lowest RMSE values for the computed head-
ing (Figure 9). Although these small-scale experiments with laboratory conditions 
exhibit some limitations, the results indicate that the proposed OEA has potential 
to be included in positioning systems. In future work, the performance must be 

F I G U R E  9  RMSE values of the computed heading for a biased initial heading
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evaluated in large-scale experiments with diverse data (more DoFs in the trajec-
tories, multiple users, more smartphone holding modes, etc.). A by-product of the 
proposed OEA with a potentially high benefit is a global test for magnetic anom-
aly detection. This approach can be used to detect and locate magnetic anomalies, 
which can be used as features to aid in indoor positioning, e.g., with fingerprinting.

The authors acknowledge TU Wien Bibliothek for financial support through its 
Open Access Funding Program.
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APPENDIX

A  INCLINATION-EKF

In the inclination-EKF, the gravity vector in the B-frame ˆ Bg  is estimated; this 
vector is used later to compute ϕ  and θ .  aB  and ωωB  are smartphone sensor 
observations utilized as input in the inclination-EKF, in which the calibrated val-
ues delivered by the smartphone are used. ωωB  is the control input in the prediction 
of gB :

ω ω
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and gζζ  is the system noise of gB .
The state vector of the inclination-EKF also contains stochastic resonators 
(Hostettler & Särkkä, 2016; Särkkä et al., 2015), which compensate for accelera-
tions due to user motion. We include resonators for stride a a i x y zi str

B
i str
B

, ,, , , , =  and 
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step acceleration a a i x y zi stp
B

i stp
B

, ,, , , , =  for each coordinate axis (where ai jB,  are the 
corresponding derivatives). These terms are propagated as follows:
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where f0  is the base frequency, which we set to the stride frequency, and the ζ  
terms are the system noise components of the stochastic resonators.

aB  equals the observation vector in the filter update (i.e., measurement equa-
tion) for computing the filter innovations:

w a gI
B B

str
B

stp
Ba a

In the Euler angle representation, the roll angle ϕ  and pitch angle θ  describe 
the inclination; these terms are computed from ˆ Bg  as follows:
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The angular velocity around the z-axis of the L-frame or N-frame is computed 
as follows:

 = 1 ( )
cos

sin cosy
B

z
B

To avoid the gimbal-lock problem ( 2 ),  one can also derive the orientation 
quaternion from ˆ Bg  (Valenti et al., 2015), which describes the same rotation as 
ϕ  and θ .  The gimbal-lock problem does not appear in the simulation study in 
Section 3.1 or in the experiments in Section 3.2; thus, we utilized only the Euler 
angle representation.

B  ADDITIONAL MATERIAL

TA B L E  B 1
RMSE Values of Computed Heading in [°] 
The RMSE per trajectory was computed by using the deviations of all phones and one trajectory, 
and the RMSE per phone was computed by using the deviations of all trajectories and one phone. 
The bold RMSE numbers were computed from the deviations over all phones and trajectories.

Samsung 
Galaxy S7 

LGE Nexus 5X Google Pixel 5 RMSE per trajectory 

Madgwick 
trj-1 68.5 86.5 43.6 67.5 
trj-2 64.6 45.9 85.9 67.7 
trj-3 20.1 15.7 10.9 15.7 
trj-4 38.5 47.7 58.2 49.9 
RMSE per phone 64.5 67.2 65.6 65.8 (overall RMSE)

(Continued)
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TA B L E  B 2
Symbols Introduced in Sections 2 and 3

sensor observations and rotations 
ωωB  gyroscope observations in the B-frame 
aB  accelerometer observations in the B-frame 
mB  magnetometer observations in the B-frame 
ψ  angular rate around the z-axis of the N- or L-frame 

gN  gravity vector in the N-frame 
hN  EMF vector in the N-frame 
hD  magnetic declination 
, ,  Euler angles roll, pitch, and yaw describing rotation from N- into the B-frame 

RN
B  rotation matrix describing rotation from N- into the B-frame 
  sensor white noise (index marks sensor) 
σ  standard deviation of white noise component (index marks quantity) 

heading propagation 
ψ 0  initial heading 
 last updated absolute heading 

d k|  accumulated heading change 
k  or κ  time indices indicating epochs or timestamps 
dt  time interval 

bias-EKF 

sn∆∆  matrix representing sensor scale and non-orthogonality of magnetometer

si∆∆  matrix representing soft-iron effects of platform in the magnetometer 
N
aδδ  vector representing magnetic anomalies 
B
hiδδ  vector representing hard-iron effects of platform in the magnetometer 

(Continued)

Samsung 
Galaxy S7 

LGE Nexus 5X Google Pixel 5 RMSE per trajectory 

Magyq 
trj-1 70.6 52.5 22.8 50.5 
trj-2 9.2 25.8 13.4 17.8 
trj-3 7.5 2.7 4.4 5.3 
trj-4 9.4 5.5 16.8 12.0 
RMSE per phone 47.5 39.8 18.4 36.5 (overall RMSE)

Han 
trj-1 16.1 11.0 14.3 13.8 
trj-2 25.0 32.2 52.5 38.8 
trj-3 20.1 15.2 30.4 23.8 
trj-4 19.4 33.4 42.1 34.1 
RMSE per phone 21.1 24.4 37.7 29.2 (overall RMSE)

Proposed OEA 
trj-1 7.8 25.7 19.8 19.6 
trj-2 25.0 9.4 10.2 16.2 
trj-3 6.7 6.8 3.6 5.7 
trj-4 7.8 5.8 10.7 8.5 
RMSE per phone 18.3 18.7 15.4 17.4 (overall RMSE)

TA B L E  B 1  (Continued)
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B
bδδ  vector representing sensor bias of the magnetometer 
B
sδδ  vector subsuming slow-varying systematic deviations of the magnetometer 
B
fδδ  vector subsuming fast-varying systematic deviations of the magnetometer 
ˆ,B B

s sδδ δδ  predicted and estimated B
sδδ  (EKF) 

δζζ  system noise of B
sδδ  (EKF) 

w m  filter innovation of bias-EKF 
Σ ˆ ˆˆ , vvv EKF residuals (index marks quantity) with VCM 

TG ,  TG c, ( )α  global test value and its critical value 
α  type I error of global test 
χ3
2  chi-square distribution (index indicates three DoFs) 

λ  non-centrality parameter of chi-square distribution 
H0 ,  HA  null and alternative hypothesis 
E{}  expectation of random variable 

heading update 
dtW u, ,  nW u,  length of time window for updating ψ  and number of values contained
dtW ,0 ,  nW ,0  length of time window for controlling ψ 0  and number of values contained
nT ,  pT  number of TG i,  values exceeding TG c, ( )α  and corresponding percentage 
nm ,  pm  number of mi

L  fulfilling conditions c1  and c2  and corresponding percentage 
c1  condition that the magnitudes of mi

L  and hN  must be the same 
c2  condition that the vertical components of mi

L  and hN  must be the same 

d  preset threshold of maximum heading change in time window 
 preset threshold for difference in propagated and magnetometer heading 

γm  preset threshold of mi
L  values that must fulfill c1  and c2  

m  preset multiplier for σm  acting as a threshold for c1  and c2  

TA B L E  B 2  (Continued)
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C Supplementary material

C.1 Solution of the alternative hypothesis model in the GHM

First, the solutions for the overall parameter vector dx̂O and its cofactor matrix Qx̂x̂,O are derived in the

model of HA

Qx̂x̂,O = (AT
OQ

−1
wwAO)

−1 = (

�
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CTBT

�
Q−1

ww

�
A BC


)−1

=
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�
and (A+)TATQ−1

ww = Q−1
wwAA+ are used. Before the derivation of the residuals v̂A and its cofactor

matrix Qv̂v̂,A, the term AOQx̂x̂,OA
T
O is evaluated
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With the identity (I−AA+)B = (QwwQ
−1
ww−AQx̂x̂A

TQ−1
ww)BQllQ

−1
ll = (Qww−AQx̂x̂A

T )(B+)TQ−1
ll ,

the residuals and its cofactor matrix become

Qv̂v̂,A = B+(Qww −AOQx̂x̂,OA
T
O)(B

+)T

= B+(Qww −AQx̂x̂A
T )(B+)T −B+(I−AA+)BCQ∇̂∇̂CTBT (I−AA+)T (B+)T

= Qv̂v̂ −Qv̂v̂Q
−1
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C.2 n-dimensional MDB

The aim is to derive the equation of the u∇-dimensional MDB d∇̂0. The necessary condition for these

derivations is, that Σ∇̂∇̂ (and therefore also Σ−1

∇̂∇̂) is positive definite, so eigenvalue decomposition can

be done Σ∇̂∇̂ = UTΛU. The column vectors u of U represent the eigenvectors and the diagonal of Λ

contains the sorted eigenvalues emax, ..., emin. The first step is to compute the square root of (32)

�
λA,χ2(αA, βA, u∇) =

�
d∇̂T

0 Σ
−1
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2
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− 1

2

∇̂∇̂d∇̂0.

where the identity UTU = I is used, which holds, because U from eigenvalue decomposition is an

orthogonal matrix.

The last expression is the vector norm
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2
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0 Σ
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2
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− 1

2

∇̂∇̂d∇̂0,

where the index 2 means the euclidean norm, which is necessary later on for the defintion of the

matrix norm. Further developing this expression gives

�
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2
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∥Σ 1
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1
2U∥2 ·

�
λA,χ2(αA, βA, u∇) ≥ ∥d∇̂0∥2.

The norm ∥...∥2 of a matrix is called the spectral norm and it equals the square root of the maximum

eigenvalue of the matrix [59] pp. 37-4. Thus, an upper bound for the magnitude of the MDB is available
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∥d∇̂0∥2 ≤
�

λA,χ2(αA, βA, u∇) · √emax

The inequality appears because of the submultiplicative property

∥Σ 1
2
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2
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2
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2
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of the spectral norm [59] pp. 18-6.

C.3 VCM of nA one-dimensional test statistics

The square root of the Fisher-distributed test statistic

TA =
d∇̂T

Σ−1

∇̂∇̂d∇̂
r

�
H0 : TA ≤ TA,c(α) → TA ∼ Fu∇,∞
HA : TA > TA,c(α) → TA ∼ Fu∇,∞,λA

follows a normal distribution considering that there is only one additional parameter d∇̂ = d∇̂ ∈ R1×1

in the alternative hypothesis. The test statistic becomes

TA =
1√
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· d∇̂
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2
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ll v̂

σ∇̂
=
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r
· cTQ−1

ll v̂

in which the results from (30) are used for d∇̂. The test statistics TA,i, i = 1, ..., nA for all considered

alternative hypothesis are collected in a vector

tA =


TA,1

TA,2

...

TA,nA

 =
1√
r


σ∇̂1

· cT1
σ∇̂2

· cT2
...

σ∇̂nA
· cTnA

Σ−1
ll v̂ =

1√
r
· diag(σ∇̂i

)CTΣ−1
ll v̂ = Fv̂.

diag(σ∇̂i
) =


σ∇̂1

0 . . . 0

0 σ∇̂2
. . . 0

...
...

. . .
...

0 0 . . . σ∇̂nA


This shows, that the test statistics for all considered one-dimensional alternative hypothesis are a

linear imaging of the estimated residuals from H0. Thus, the VCM of all test statistics is derived by

using variance propagation
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Σtt,A = FΣv̂v̂F
T =

1

r
· diag(σ∇̂i

)CTΣ−1
ll Σv̂v̂Σ

−1
ll C diag(σ∇̂i

)

=
1

r
· diag(σ∇̂i

)Σ−1

∇̂∇̂ diag(σ∇̂i
)

=
1

r
· diag(σ∇̂i

)


s11 s12 . . . s1nA

s21 s22 . . . s2nA

...
...

. . .
...

snA1 snA2 . . . snAnA

 diag(σ∇̂i
).

The main- and off-diagonal elements of Σtt,A can be written in the following form

σ2
ii =

sii · σ2
∇̂i

r

σij =
sij · σ∇̂i

· σ∇̂j

r
.

When computing the correlation coefficients for the different test statistics from Σtt,A

ρij =
σij�
σ2
ii · σ2

jj

=
sij√

sii · sjj

only the elements from Σ−1

∇̂∇̂ remain.
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[65] Roland Hostettler and Simo Särkkä. Imu and magnetometer modeling for smartphone-based pdr.
In 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de
Henares, Spain, 2016. IEEE, Piscataway, New Jersey, USA.

[66] Baichuan Huang, Jingbin Liu, Wei Sun, and Fan Yang. A robust indoor positioning method based
on bluetooth low energy with separate channel information. Sensors, 19(3487), 2019.

[67] Peter J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics,
35(1):73–101, 1964.



BIBLIOGRAPHY 111

[68] D. Imparato, Peter J.G. Teunissen, and C.C.J.M. Tiberius. Minimal detectable and identifiable
biases for quality control. Survey Review, 51(367):289–300, 2019.

[69] Lucian Ioan Iozan, Martti Kirkko-Jaakkola, Jussi Collin, Jarmo Takala, and Cornelius Rusu. Using
a mems gyroscope to measure the earth’s rotation for gyrocompassing applications. Measurement
Science and Technology, 46(6), 2012.

[70] Robert Jackermeier and Bernd Ludwig. Exploring the limits of pdr-based indoor localisation sys-
tems under realistic conditions. Journal of Location Based Services, 12(3-4):231–272, 2018.
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