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Deutsche Kurzfassung
Starke elektronische Korrelationseffekte stellen die Grundlage für eine Großzahl von physikalischen
Phänomenen in Materialien dar, welche sich derzeit im Fokus der Festkörperforschung befinden. Das
Verständnis korrelierter, elektronischer Zustände, deren Modifizierung durch externe Stimulation,
und dadurch entstehende kollektive Anregungen, ist daher ein Leitthema der heutigen Forschung.
Die vorliegende Dissertation beschäftigt sich in diesem Sinne mit zwei „Arten“ von Materialien: (i)
Systeme, in denen starke elektronische Wechselwirkungen zu einer sogenannten Mott Lokalisierung
führen können und (ii) Systeme, in denen die magnetische Kopplung lokaler Momente zu Signaturen
des Kondo Effektes führt.

Da die Merkmale dieser Materialien über das Bild von unabhängigen Teilchen weit hinausgehen,
ist es zuerst notwendig, eine passende quantenfeldtheoretische Beschreibung des Vielteilchenproblems
einzuführen. Mit selbiger wird dann, im ersten Teil dieser Dissertation, das Übergangsmetalloxid
SrVO3 behandelt. Im Kontext jüngster Experimente, durchgeführt mit epitaxialen Kristallwachs-
tumsmethoden, werden zuerst Varianten des für Mott Materialien charakteristischen Metall-Isolator
Übergangs simuliert und diskutiert. Im Speziellen werden, mithilfe der dynamischen Molekular-
feldtheorie, die entsprechenden Ein- und Zweiteilchen Propagatoren analysiert, welche die vorherrschen-
den Korrelationseffekte enkodieren. Diese Einsichten erlauben uns dann, die Spektraleigenschaften,
vorherrschende Quantenfluktuationen und Transportkoeffizienten zu charakterisieren.

Der zweite Teil dieser Dissertation fokussiert sich auf die Korrelationsphänomene, die im, auf
Cerium basierenden, Kondo Isolator Ce3Bi4Pt3 auftreten. Mithilfe eines qualitativen Vergleichs
mit dem periodischen Anderson Modells wird der atomare Aufbau und der daraus folgenden kor-
relierte Elektronenzustand diskutiert. Ausgehend davon wird, erstens, der Einfluss von simuliertem
hydrostatischen Druck analysiert, um das beobachtete, nicht-kanonische Verhalten der Bandlücke im
Experiment zu erklären. Darauffolgend wird, zweitens, ein Kandidaten Mechanismus identifiziert
(Lebensdauer Effekte), welcher in der Lage ist, das bei tiefen Temperaturen beobachtete Phänomen
der Saturierung des Widerstands in Ce3Bi4Pt3 und ähnlichen Isolatoren mit Hybridisierungs Ban-
dlücke zu beschreiben. Basierend auf demselben Mechanismus und darauf zugeschnittener Näherung
werden anschließend alle höhergradigen Transportfunktionen abgeleitet, welche etwa die Grundlage
für thermoelektrische und magnetoelektrische Transportkoeffizienten darstellen. Um die universelle
Gültigkeit unserer entwickelnden Theorie zu bewerten, wird der Formalismus auf eine breite Palette
von Modellen und realistischen Kristallstrukturen angewendet. Zudem stellen wir die entwickelten
Methoden in Form eines Open-Source-Programmpaketes der wissenschaftlichen Gemeinschaft zur
Verfügung.
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Abstract
Strong electronic correlation effects are at the heart of a plethora of physical phenomena in materials
at the forefront of condensed-matter research. Understanding the correlated electronic state and its
modification by external stimuli, including the emergence of collective excitations, are among the
leading topics of interest these days. The present thesis concerns itself with two distinct “types” of
material classes: (i) systems where, through strong electron interactions, the effects of Mott localiza-
tion are prevalent and (ii) systems where the magnetic coupling of local moments leads to signatures
of the (lattice) Kondo effect.

As the emerging characteristics of these materials are, per definition, beyond a free-particle picture,
it is necessary to first introduce an appropriate quantum-field theoretical description of the many-
body problem. Then, the first part of this thesis will mainly focus on the transition-metal oxide
SrVO3: Motivated by recent experiments that employ epitaxial growth methods, we scrutinize the,
for Mott materials characteristic, observed metal-insulator transitions. With the help of dynamical
mean-field theory (and beyond) the corresponding one- and two-particle propagators, encoding the
prevalent correlations effects, are analyzed. These insights allow us to characterize spectral properties,
quantum fluctuations and transport coefficients alike.

The second part of this thesis focuses on the emergent correlation phenomena in the cerium-
based Kondo insulator Ce3Bi4Pt3. By comparison with the prototypical periodic Anderson model, we
scrutinize the crystal structure, its correlated electronic state, and the reason why hydrostatic pressure
leads to a non-canonical behavior in experiment. From there, a candidate mechanism is developed that
supports the phenomenon of resistivity saturation both in Ce3Bi4Pt3 and other related hybridization-
gap insulators. Based on the same underlying premise of lifetime effects, all higher order transport
kernels, that build the foundation of thermoelectric and magnetoelectric transport coefficients, are
derived and benchmarked. To assess the general validity of this formalism, it is applied on a wider
range of models and realistic crystal structures. Furthermore we make the developed methodology
available in the form of an open source program package.
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Chapter 1

Introduction
Solid state physics is the study of rigid, condensed matter whose macroscopic and microscopic physical
properties arise from the electromagnetic forces between the ensemble of atomic nuclei and electrons.
It provides the foundation for a wide range of material classes and is thus closely related with the
adjacent fields of (quantum) chemistry, biophysics, electrical and mechanical engineering.

Due to the astronomic number of degrees of freedom, an exact treatment of the arising many-
body problem is impossible. Through the late nineteenth and early twentieth century, accompanied
by the development of quantum mechanics, huge strides were made in improving our understanding
of both materials and the phenomena they exhibit. The vast number of accessible observables allowed
a wide range of theories to emerge, many of which are nowadays taught in undergraduate classes:
the Boltzmann transport equations, the Drude model, the Sommerfeld theory of metals, the models
of Debye and Einstein to characterize lattice excitations, Bose-Einstein and Fermi-Dirac statistics
within quantum theory, band theory and the concept of Brillouin zones, Bloch theorem, and of
course various developments necessary in describing (macroscopic) magnetism in matter including
the models of Ising, Heisenberg, and Stoner.

Scope
In this thesis we follow the footsteps of Hohenberg and Kohn. Our study will focus on the electronic
state and the emergent phenomena thereof, whose modern-day foundation was created by density
functional theory in 1964. Despite the strong Coulomb interaction between electrons the paradigm
of effectively non-interacting electrons is frequently used to great success. In a lot of crystal environ-
ments, the large kinetic energy, and consequent delocalization, of the electrons allows for a description
of (modified) plane waves throughout the periodic, ionic potential. The resulting electron density of
the ground state and quantities derived thereof then oftentimes match experimental observables quite
accurately. Theoretical treatment becomes more complicated, once (dynamic) correlation effects be-
tween the electrons can no longer be assumed to be negligible. This predominantly occurs in materials
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in which atomic components contribute via highly localized, partially filled sub-shells (orbitals). The
strongest localization can, in principle, be found in transition metals containing (3/4)d orbitals or
lanthanides and actinides containing (4/5)f orbitals.

In transition metals, the manifestation of strong correlation effects beyond the formation of a
Fermi liquid, is the Mott insulating state: The Coulomb repulsion impedes the flow of electrons to
such a degree that they become locked to their respective atomic sites. In the vicinity of this state,
electron renormalizations remain elevated and quantum fluctuations then may lead to a plethora of
novel regimes such as the opening of a pseudogap, (unconventional) superconductivity, and correlation
driven charge ordered or magnetic states. At this moment in time, the poster children of this class
of materials are the copper based high-temperature superconductors. While intriguing in themselves,
the focus of the first part of this thesis will instead be on perovskite structures: In recent times
they gained increased interested as they represent an essential ingredient in the (applied) research of
heterostructures, nanofilms, and superlattices. Recent developments include transparent conductors,
Mott transistors, spintronic devices, absorber materials in solar cells, to name a few.

In rare-earth materials, the atomic-like 4f orbitals frequently lead to the formation of localized
magnetic moments. This in turn, through the (direct or indirect) coupling to the conduction electrons
of the other participating atoms/shells leads to the emergence of the Kondo effect. These so-called
heavy-fermion systems display fluctuations that can magnify the effective electron masses by orders
of magnitude. In extreme cases, even the formation of (Kondo) insulators becomes possible, which
will be the focus of the second part of this thesis. Through the hybridization of the 4f elements,
accompanied by the strong Coulomb repulsion, notably thermoelectric transport properties become
significantly modified which can be exploited in, e.g., thermoelectrica. Similar to Mott materials,
these types of compounds are oftentimes on the brink of ordered states and display a wide range of
exotic phases under minute perturbations.

In order to capture these phenomena, an appropriate quantum-field theoretical framework builds
the foundation of our approaches beyond density functional theory. As external perturbations/excita-
tions are at the heart of all experimental observables, we will introduce and work with apt correlation
functions that intrinsically encode the processes we are interested in. We will compute (i) many-body
Green’s functions to capture excitations generated by, e.g., photoemission spectroscopy, (ii) magnet-
ic/charge susceptibilities to capture the intrinsic spin/density fluctuations, which, e.g., an external
magnetic field couples to, and (iii) current-current susceptibilities to compute transport quantities
that capture the effect of external electric fields and temperature gradients. In a less theoretically
involved way, we will work with experimental methods that are capable of (in)directly probing the
ionic environment of the underlying crystal structure of the employed samples. This includes electron
diffraction, direct imaging based on the tunneling effect, or Fourier imaging via X-ray radiation.



Chapter 1: Introduction 3

Outline
In Chapter 2 we introduce the many-body problem within the solid-state environment and the concept
of the aforementioned density functional theory. After that we lay the ground work for the description
of correlation effects within the dynamical mean-field theory. We present the necessary one-particle
descriptors and interpretations thereof that are necessary to describe the renormalized Fermi liquid
state found within the transition metal perovskite SrVO3. After that our focus remains on SrVO3,
which we use as a launching pad towards the investigation of various metal-insulator transitions.
When put in extreme conditions, e.g., the external deformation of thick film setups as well as geometric
restrictions in thin films, metal-insulator transitions are oftentimes observed in experimental setups.
From there, we move towards a true two-particle description, scrutinize possible correlation-driven
ordered states and analyze the feedback of fluctuation onto the one-particle level in ultrathin SrVO3

monolayers with the help of the dynamical vertex approximation approach employed in AbinitioDΓA.
In this context, we also derive the necessary equations for a description of (multi-orbital) current-
current susceptibilities in the presence of vertex corrections (necessary for optical conductivities) and
benchmark the set of equations for a commonly employed testbed: the two-dimensional Hubbard
model.

In Chapter 3 we focus on Kondo physics in the context of strongly correlated Kondo insulators. We
introduce the Kondo effect within a general quantum impurity and compare the resulting features to
the lattice case present in the periodic Anderson model. The signatures of the latter are then used to
analyze the non-canonical nature of Ce3Bi4Pt3, for which we further compute the full conductivity
tensors. From them, we seek to distill the main ingredients necessary for describing the peculiarity
of the resistivity saturation phenomenon and develop an apt reductionist theory. Based on the
approach of lifetime broadening, we (analytically) derive all higher order transport kernels necessary
for a description of frequently employed thermoelectric and magnetoelectric transport coefficients.
We (numerically) benchmark the derived equations and further apply them in the context of other
correlated hybridization gap insulators to assess the validity of the approach. Finally we showcase
our implementation of the derived transport kernels within LinReTraCe with a focus on the necessary
technical details.

We conclude the thesis at hand by summarizing our results and providing an outlook on future
avenues in Chapter 4. The majority of technical details and derivations, which are not all original to
this thesis, can be found in the Appendices.
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Software
Different software packages were used to analyze, as well as generate data and figures throughout
this thesis: NumPy [13] and SciPy [14] as the main numerical toolkit, Matplotlib [15] for general
data visualization, Engauge digitizer [16] for data digitization, JaxoDraw [17] for Feynman dia-
grams, VESTA [18] for crystal structure generation, FermiSurfacer [19] for Fermi surface visualization,
Mathematica [20] for symbolic transformations and analytic checks, and Keynote for miscellaneous
tasks like creating flowcharts, merging of figures and sketching of lattices.

The external software packages used throughout this thesis, which our results heavily rely on include
the full-electron DFT implementation of Wien2K [21, 22], the pseudopotential DFT implementa-
tion of VASP [23, 24, 25, 26], the crystalline structure visualization of XCrySDen [27], the interface
Wien2Wannier [28] to Wannier90 [29] for maximally localized Wannier functions, the DMFT and two-
particle sampling implementation of w2dynamics [30], the analytic continuation of ana_cont [31], and
the charge self-consistent DFT+DMFT code by Haule [32].

The technical details of the implementation of AbinitioDΓA [2, 33], its extensions towards self-
consistency [4] and optical conductivities, and LinReTraCe [11, 12], are described wherever necessary
in the main text.



Chapter 2

Mott materials and models thereof
In this first of two primary results Chapters, we present those results that fall under the umbrella
of “Mott physics”. Starting off, we begin by introducing the methodologies necessary to describe
signatures that stem from strong electronic correlation effects. Simulating materials in a realistic
fashion, one has to account for their structural, chemical, and orbital complexity. The most common
basis for the modelling of solids is Kohn-Sham density functional theory, providing the necessary
foundation to incorporate strong interactions within dynamical mean-field theory later on. Based
on these techniques, the majority of this Chapter deals with the strongly correlated transition-metal
oxide SrVO3 (SVO) and its tendency to turn insulating when put under certain, extreme conditions.
Starting from a simple bulk description we gradually move towards more complex thin-film setups. We
consider various surface terminations including complications arising from surface oxidization found
in “unprotected” films. At the end of this Chapter we revisit the initial gateway towards strong
correlations, the one-band Hubbard model: Applying our newly developed self-consistent dynamical
vertex approximation to the two-dimensional variant of the model, we are able to calculate optical
spectra and provide insight into the importance of genuine two-particle corrections.

2.1 The relevance of the Hubbard model
The (non-relativistic) physics of an ensemble of atomic ions and electrons can be condensed into a
single Hamiltonian of the form

H = −
Nn,
α

ℏ2∆α

2Mα
+ 1

2
,
α�α′

ZαZα′e2

|Rα − Rα′ |����������������������������������������������������������������������������������������
Hn

−
,
α,µ

Zαe2

|Rα − rµ|������������������������������������������
Hne

−
Ne,
µ

ℏ2∆µ

2me
+ 1

2
,
µ�µ′

e2

|rµ − rµ′ |����������������������������������������������������������������������������������
He

. (2.1)

Mα are the masses of the Nn positively charged nuclei with atomic number Zα. me ≈ 9.10938 ·
10−31kg is the mass of the Ne negatively charged electrons with the elementary charge given by
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e ≈ 1.602176 · 10−19C. The positions of the nuclei Rα and electrons rµ are accounted for via their
respective differences in the Coulomb potential.

In a periodic solid, within the Born-Oppenheimer approximation [34] the nuclei part Hn decouples
from the electronic part He leaving the nuclei-electron interaction Hne as a static, attractive, external
potential within a purely electronic picture. The large number of degrees of freedom (electron density
of the order of 1023/ cm3 in common metals such as copper) makes explicit calculations impossible.
Consequently one typically resorts to a density description based on the Hohenberg-Kohn theorems
that read

◦ The ground-state energy of a system of N indistinguishable particles in an external potential is
a unique functional of the particle density ρ(r).

E0 = min
ρ

{E[ρ(r)]} = E[ρ0(r)] (2.2)

◦ The minimum of the E[ρ] functional can be determined from a variation of the particle density.

δE[ρ(r)]
δρ(r)

.....
ρ0(r)

= 0 (2.3)

These theorems, proven in its original publication, Ref. [35], provide the theoretical pillars upon which
most of modern solid state physics and quantum chemistry is based on. The Hohenberg and Kohn
approach was then carried further by Kohn and Sham in Ref. [36] where they transformed the problem
of determining the ground state density to solving a set of self-consistent one-particle Schrödinger
equations. In the following we will detail this transition to the so-called Kohn-Sham density functional
theory (DFT from here on) and the additions necessary to include strong correlation effects.

2.1.1 Kohn-Sham density functional theory
In Kohn-Sham density functional theory the energy functional is separated into distinct contributions

E[ρ] = T [ρ]������
kinetic energy

+ EH [ρ]����������
Hartree energy

+ Exc[ρ]����������
exchange−correlation energy

+ Vext[ρ],��������������
external potential

(2.4)

where the Hartree term results from the classic Coulomb repulsion of the involved electron density

EH [ρ] = e2

2

�
d3r

�
d3r′ ρ(r)ρ(r′)

|r − r′| (2.5)

and the external potential is provided by the nuclei background, see Eq. (2.1),

Vext[ρ] =
�

d3r vext(r)ρ(r). (2.6)
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Due to their complexity, the kinetic and exchange-correlation (XC) energy, which contains all other
contributions, on the other hand cannot be simply expressed as a single analytic expression. As these
terms are large, their errors must be controlled as best as possible. To this end, the core idea of Kohn
and Sham was the introduction of a non-interacting reference-system whose ground-state density is
identical to the real, interacting one. By transforming the many-body problem to a single-particle
picture one is able to treat the kinetic part exactly, leaving only Exc[ρ] as an unknown. From the
stationary requirement of Eq. (2.3) and the constraint to a fixed electron number

Ne =
�

d3r ρ(r) (2.7)

one obtains the condition

δT [ρ]
δρ(r) +

�
d3r′ ρ(r′)

|r − r′| + δExc
δρ(r) + vext = µ, (2.8)

where µ is the Lagrangian multiplier associated with the chemical potential [37]. It is now easily
recognized that by gathering all non-kinetic terms into the so-called Kohn-Sham potential

vKS =
�

d3r′ ρ(r′)
|r − r′| + δExc

δρ(r) + vext, (2.9)

we obtain an equation for a non-interacting reference system

δT [ρ]
δρ(r) + vKS = µ (2.10)

which can be satisfied by solving the corresponding one-particle Schrödinger equations for particles
indexed by i [36] '

− ℏ
2

2m
∆ + vKS

�
Φi(r) = εiΦi(r) (2.11)

yielding

ρ(r) =
Ne,
i=1

Φ∗
i (r)Φi(r). (2.12)

If the corresponding Kohn-Sham potential (or an adequate approximation thereof) is known, the
ground state density is simply the result of a converged, self-consistent cycle. The various implemen-
tations often only differ in the way the wave functions are constructed (localized basis and/or plane
waves) and the target systems (molecules, periodic solids) [21, 22, 24, 38, 39, 40].

It is important to emphasize that Kohn-Sham DFT, while imitating the real particle density via
an artificial electron system, is per se free of approximations. The only real concern at this current
point is the representability itself: Barring any discontinuities or singularities in the particle density,
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absent in any realistic applications, the solution of the Kohn-Sham equations yields the correct ground
state density, that ultimately can be connected to a single Slater determinant of the reference system.
Of course this statement only holds true if the exact exchange-correlation potential Vxc = ∂Exc/∂ρ

was known.
Strictly speaking, the interpretation of the eigenenergies εi of the auxiliary reference system as

excitation energies is not rigorously justified. In the most extreme case of a half-filled Mott insulator
the Kohn-Sham equations, in principle, still allow an accurate description of the ground-state density
and quantities derived from it. While its electronic compressibility for example would depict the
underlying insulator, clearly however, the one-particle picture in itself breaks down. In particular, the
system is no longer describable by a single Slater determinant. Consequently the auxiliary eigenvalues
become meaningless, as any partially filled band will result in a gapless spectrum within Kohn-Sham
DFT. For most weakly-correlated materials on the other hand, an empirical congruence to the energy
spectrum cannot be denied however [37].

Naturally, the results of the aforementioned procedure are strongly dependent on the exchange-
correlation potential which can only be approximated. As the separation of terms in Eq. (2.4)
represents merely a shift of unknown variables into the exchange-correlation energy, it contains a
plethora of higher-order correlation terms for which no exact expression is known in general. In order
to justify possible approximations of the exchange-correlation potential, it is of great importance to
get a better understanding through limiting cases. Here one typically considers (a) a slowly varying
density and (b) a high density region. In a solid, the former is usually located in the interstitial volume
between the atomic nuclei while the latter is found around the center of the nuclei themselves. In the
slowly varying regime, one might expand the true kinetic and exchange-correlation energy in terms
of densities and gradients thereof [36]

Exc[ρ] =
�

d3r εxc(ρ) +
�

d3r ε(2)
xc (ρ)|∇ρ|2 + . . . (2.13a)

T [ρ] =
�

d3r
3
10(3π2ρ) 2

3 ρ +
�

d3r t(2)[ρ]|∇ρ|2 + . . . (2.13b)

The higher order correction terms whose errors scale with |∇ρ|2 become vanishingly small, for an
almost constant density ρ, allowing us to represent the exchange correlation potential as a local
approximation

ELDA
xc =

�
d3r εLDA

xc (ρ(r)) . (2.14)

In this so-called local density approximation (LDA) certain contributions, e.g., the exchange part,
can by approximated by using the expression for a homogeneous electron gas. Correlation terms can
be approximated and parameterized in a similar fashion. If the corresponding electron density is spin-
polarized, one instead employs the local spin-density approximation (LSDA) whose parametrization
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slightly differs. Beyond this purely local approximation, the natural next step is to take into account
local gradients leading to the generalized gradient approximation (GGA) methods with

EGGA
xc =

�
d3r εGGA

xc (ρ(r), ∇ρ(r)) . (2.15)

Here εGGA
xc can be parameterized in various forms such as PW91 [41] or PBE [23]. For a more

in-depth review about exchange-correlation potentials, please refer to the literature, e.g., Ref. [42].
Unless otherwise specified, DFT calculations in this thesis will be performed with PBE. For our
purposes, i.e. strongly correlated systems, innovations in density functionals, while maybe providing
quantitatively better input, cannot overcome the qualitative flaws discussed above.

In high density systems, the kinetic energy starts to dominate the energy total making the
exchange-correlation energy less important in comparison [36]. As the kinetic part of the Kohn-
Sham equation (2.11) is evaluated without approximation, this limit will become exact. Considering
the different regions in a solid we can surmise that (a) near the atomic nuclei the high densities,
screening the positive charge, are mapped correctly due to the dominance of the kinetic energy and
(b) a slowly varying electronic density in the the interstitial region provides a wide volume where the
local approximations hold. The overlap regions will be hence the main source of error, making differ-
ent atomic compositions more prone to errors than others. Metals and alloys whose relevant bands are
formed by spatially extended s- or p- orbitals will showcase smaller errors than compounds with more
localized d- or f- orbitals, see Fig. 2.1. Owing to their nodeless radial wave functions, bands formed by
3d or 4f bands will produce significant ripples in the density. In a similar vein, problems arise in the
computation of semiconductors whose band gaps are oftentimes not well reproduced [43, 44, 45]. Here
it is argued that the systematic underestimation of the fundamental gap (defined by the difference
between ionization potential and electron affinity) by Kohn-Sham DFT which employs “standard”
LDA/GGA potentials is caused by their missing derivative discontinuity [43, 46, 47]. For this purposes
more sophisticated exchange-correlation potentials, like meta-GGA, hybrid, or semilocal potentials
have been developed, see, e.g., Refs. [48, 49, 50].

2.1.2 Towards strong interactions: Hubbard model
One of the most “basic” models that can rationalize the physics of strongly correlated materials,
inherently difficult depictable in pure DFT, is the Hubbard model (HM). In its simplest one-band
form with spin species σ = ↑ / ↓, it reads

HHM =
,

⟨i,j⟩,σ
tij ĉ

†
i,σ ĉj,σ + U

,
i

n̂i,↑n̂i,↓, (2.16)
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Figure 2.1: Periodic table. Transition metals (green) and inner transition metals (pink) com-
monly have one- or more active d-orbitals or f-orbitals, respectively. Due to their localized radial
wave-functions, materials that contain them are more prone to experience strong electron-electron
interactions and effects thereof. [Adapted from Ref. [51], Public domain (2017).]

encoding the competition between delocalization through inter-site hopping (hopping amplitude tij

connecting the sites sites i and j) and localization through on-site repulsion. While the latter is
diagonal in real space, the former is diagonal in the Fourier transformed momentum space. This
maximal incompatibility makes this innocuous looking model enormously difficult to solve. Analytic
solutions only exist for the one-dimensional model [52], higher dimensions must be treated with
adequate numeric simulations and approximations to capture the essential features. The Coulomb
term U represents an energetic punishment for the simultaneous occupation of two electrons with
opposite spin species on the same site. The desired insulating behavior in the half-filled model, see
Fig. 2.2, is established if the interaction strength is strong enough U ≫ t to “lock” the electrons
into their localized orbitals. The on-site repulsion cannot be overcome via hopping any longer,
an insulating behavior (charge gap) emerges, Mott localization is established. If the interaction
strength on the other hand is weak U ≪ t the single-particle term of the Hamiltonian dominates
and the one-particle description of the underlying DFT energy spectrum remains valid. Through the
added interaction the effectively non-interacting particles of DFT must, however, be adapted towards
renormalized quasi-particle, best described within Fermi liquid theory.
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Figure 2.2: Schematic phase diagram of the half-filled Hubbard model within dynamical mean-field
theory: Temperature kBT vs. interaction U normalized by the band-width W . The characteristics of
the metal to insulator transition is strongly temperature dependent: Below a critical end point, the
MIT is of first order. The resulting hysteresis is bounded by Uc1(T ) and Uc2(T ). Inside the hysteresis
(gray), Uc(T ) marks the interaction strength at which the free energy of both obtainable solutions
are identical [53]. Above the critical point, the phase diagram exhibits a gradual crossover between
the metal and paramagnetic insulator. Please note that the schematically drawn (magnetically)
ordered phase (red) oftentimes occurs at temperatures considerably higher than shown here [54].

One of the first attempts to quantitatively simulate the condition of Mott insulators in materials
was done by Anisimov et al. [55], later on generalized to be basis-set independent in Ref. [56] by
identifying the relevant atomic characters. The generalized functional builds on top of the local
spin-density approximation (LSDA), i.e. LDA with spin dependence,

ELDA+U[ρ] = ELSDA[ρ] + EU[{nσ}] − EDC[{nσ}] (2.17)

adding a correction terms depending on the density matrix nσ = Tr(nσ
mm′) of localized orbitals and a

correction for the double-counting (DC). The necessity of the DC correction stems from terms that
are already partially present within DFT and are added again through the local orbital potential.
In principle there exist no exact expressions for DC, however phenomenological recipes have been
developed among which the most widely used are the fully localized limit (FLL) and the around
mean-field (AMF) solution, see Ref. [57] for a more detailed discussion. Please note that similar DC
expressions are used within dynamical mean-field theory, see Section 2.2.3.

This atomic-like potential is capable of treating spin and orbital polarization on equal footing,
providing an avenue towards correlation-induced insulators with long-range order. The interaction
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parameter can be successfully tuned (or computed, see Section 2.1.3) to describe the ground state
transition to an insulator in ordered phases. LDA+U however fails in reproducing the intricate
phase diagrams of strongly correlated electron systems found, e.g., in transition metal oxides. While
it encodes to most basic ingredients for the insulating state, LDA+U fails to address the finite
temperature behavior of the Fermi liquid / Mott insulating state and their corresponding quasi-
particle lifetimes, the formation of high frequency satellite features, etc. To this end we highlight the
phase diagram of V2O3 sketched in Fig. 2.3.

Figure 2.3: Schematic phase diagram of V2O3 showcasing a correlation induced metal-to-insulator
transitions. Due to the complexity of multi-band systems all relevant energy scales (crystal-field
splittings, orbital deformation, band width, interaction strength) must be considered to distil the
full physical picture. [Reprinted with permission from Hansmann et al., Phys. Status Solidi B 250,
1251-1264 (2013). Copyright (2013) by John Wiley and Sons.] [58]

First, the undoped system (vertical, dashed line) showcases a temperature induced, abrupt metal
to (antiferromagnetically ordered) insulator transition, in combination with a structural transition
from corundum-like to monoclinic. Elementary doping to (CrxV(1−x))2O3 or (TixV(1−x))2O3 induces
chemical pressure, disrupting the initial metal to insulator transition. Titanium doping lowers the
transition temperature whereas chromium doping triggers an insulator transition [59].1

In order to capture these types of effects we need go beyond the approach of solving an effective

1 For effects of chromium doping onto the electronic structure, please refer to Ref. [60].
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non-interacting system in a self-consistently determined effective potential.2 The current state-of-the-
art method going beyond DFT is the dynamical mean-field theory (DMFT), see Section 2.2.2. At first
sight the phase diagram of V2O3 mirrors that of the half-filled Hubbard model in Fig. 2.2: Chemical
pressure increases the orbital overlaps, hopping amplitudes, and thus the bandwidth W ∝ t (note
that this doping does not change the electron filling). However, as the underlying band structure
is of multi-orbital character, a one-to-one comparison is inherently not valid [62]. Insulating and
metallic driving forces strongly dependent on the detailed structural and crystal-field effects induced
by doping through which orbital degeneracies are oftentimes lifted [58, 62].

2.1.3 Localized multi-orbital basis and interaction matrix
Modelling realistic setups requires a strong focus on crystal structure details. In this vein, the
one-band Hubbard model can be generalized to its multi-orbital form in the typical paramagnetic
formulation (equivalence of spins σ = ↑ / ↓) via

HHM =
,
k,σ

,
lm

hk
lmĉ†

kl,σ ĉkm,σ + 1
2

,
i

,
ll′mm′

σσ′

Ulm′ml′ ĉ†
im′,σ ĉ†

il,σ′ ĉim,σ′ ĉil′,σ. (2.18)

The first term is a generalization of the hopping term of Eq. (2.16) whose creation/annihilation
operators have been Fourier transformed to momentum space and whose hopping amplitudes and
distances are encoded in the matrix elements hk

lm of the one-particle Hamiltonian Hk. It describes
the one-particle kinetic energy for an arbitrary number of orbitals, including off-diagonal terms and
can be modified to include the chemical potential via hk

lm → hk
lm − µδlm. The second term encodes

all possible local two-particle interactions that conserve the total spin. In order to retrieve the H and
U matrices for a given material, one first needs to introduce the concept of locality: We can connect
the Hubbard model with the DFT energy spectrum via the field operator representation

H =
,

σ

�
d3rψ̂†

σ(r)
'
− ℏ

2

2me
∆ + vKS

�
ψ̂σ(r) + 1

2
,
σ,σ′

�
d3rd3r′ψ̂†

σ(r)ψ̂†
σ′(r′) e2

|r − r′| ψ̂σ′(r′)ψ̂σ(r).

(2.19)
Here, ψ̂

(†)
σ (r) annihilates (creates) an electron at position r with spin σ. We construct these field

operator from the corresponding Bloch wave functions

ψk,n(r) = eik·ruk,n(r) (2.20)
2 From this technical point of view, connections to mean-field theories are often made. In the traditional sense of the
word (multiple interactions are replaced by an effective interaction), however, the Kohn Sham scheme is not a mean-
field approach [61]. Through the self-consistency the Kohn Sham potential (different on every r-point) is updated
similarly to, e.g. the effective magnetic field of a spin of the Ising model. Conceptually, however, these two approaches
have little in common.
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via
ψ̂(†)

σ (r) = V

(2π)3

�
BZ

d3k
,

n

ψ
(∗)
k,n(r) ĉ

(†)
k,n,σ. (2.21)

where ĉ(†) annihilates (creates) an electron with crystal momentum k, spin σ and orbital n. The
Bloch functions represent modified plane waves, in which the periodicity of the lattice is encoded via
u(r) ≡ u(r + R). The integration is performed over the full Brillouin zone (BZ) and the summation
is done over all possible bands n. Localized orbitals are then introduced via the Wannier basis, the
solid state equivalent of atomic orbitals. Applying a specialized unitary basis transformation onto
the initially delocalized Bloch functions one is able to obtain a maximally localized basis through

|Rn⟩ = V

(2π)3

�
BZ

d3k e−ik·R
J,

m=1
U (k)

mn |ψmk⟩ (2.22a)

wnR(r) = ⟨r|Rn⟩ (2.22b)

whose momentum-dependent unitary transformation matrices U
(k)
mn, spanning the space given by J

bands, are adjusted to minimize the real space spread

Ω =
,

n

�
⟨0n| r2 |0n⟩ − ⟨0n| r |0n⟩2

�
. (2.23)

For a detailed mathematical and practical discussion on the topic of maximally localized Wannier
functions, the relevant localization procedure and the problems arising for entangled bands, please
refer to Ref. [63]. In the remainder of this thesis we will assume that the above procedure, wherever
employed, generates exponentially localized Wannier functions which we then use to rewrite Eq. (2.19)
into

H =
,

R1,R2
lm
σ

hlm(R1, R2)ĉ†
R1l,σ ĉR2m,σ + 1

2
,

R1R2R3R4
ll′mm′

σσ′

U full
lm′ml′ (R1, R2, R3, R4) ĉ†

R3m′,σ ĉ†
R1l,σ′ ĉR2m,σ′ ĉR4l′,σ

(2.24)
with

hlm(R1, R2) =
�

d3rw∗
lR1(r)

'
− ℏ

2

2m
∆ + vKS

�
wmR2(r), (2.25a)

U full
lm′ml′ (R1, R2, R3, R4) =

�
d3rd3r′w∗

m′R3(r)w∗
lR1(r′) e2

|r − r′|wmR2(r′)wl′R4(r). (2.25b)

By applying the Wannierization procedure onto the correlated atomic orbitals we obtain real-space
hopping elements and on-site energy levels. The former can be, via a Fourier transform and exploita-
tion of translation symmetry, transformed into momentum space

hk
lm =

,
R

eik·Rhlm(R, 0), (2.26)
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where the distances R only include unit cell positions and do not include displacements inside the
unit cell [64]. Let us note that this procedure is quite general (exceptions include topological materials
where the minimization is neither rigorously defined, nor achievable) and one is able to project onto
arbitrary, entangled energy windows. Including ligand orbitals in the Wannier basis (e.g., oxygen) is
common practice.

Coulomb interactions, associated with these orbital can be obtained by evaluating the overlap
integral Eq. (2.25b). As we essentially ignore a wide energy range outside our defined subspace, how-
ever, the unscreened Coulomb interaction is no longer a valid descriptor for the “low-energy” Wannier
setup. Since we would indirectly neglect screening effects from other bands, we must first acquire
a properly screened interaction for our chosen subspace. Commonly employed screening approaches
include the constrained random phase approximation (cRPA) [65, 66, 67] and the constrained local
density approximation (cLDA) [68, 69].

2.1.3.1 Constrained random phase approximation

The main idea behind the cRPA is the following: Polarization processes P are separated into two
distinct contributions. Contributions Pd whose initial and final states are fully contained within
our selected subspace and processes which connect to states outside the subspace Pr = P − Pd.
A (downfolded) low-energy model necessarily cannot generate the latter processes, which is why a
pre-screening of the bare Coulomb interaction

V (r, r′) = e2

|r − r′| (2.27)

is required. These screening processes are inherently frequency and energy window-dependent and,
if taken into consideration, generate a dynamical effective electron-electron interaction. Symbolically,
the unscreened interaction V transforms into the screened interaction of the subspace Wd via a
geometric series of polarization Pr insertions

Wd(r, r′, ω) = V + V PrV + V PrV PrV + . . . = V + V PrWd = V

1 − V Pr
(2.28)

which is used as the new interaction in

U full
lm′ml′ (R1, R2, R3, R4, ω) =

�
d3rd3r′w∗

m′R3(r)w∗
lR1(r′)Wd(r, r′, ω)wmR2(r′)wl′R4(r). (2.29)

Within cRPA the polarization is given by a single (virtual) particle-hole excitation. In the downfolded
model, on the bosonic Matsubara axis, this process can be represented via (non-interacting) Green’s
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functions G0, see Appendix A.1,

PcRPA(q, iωm) = + 1
β

,
νn

,
k,a,b

G0(εk
a , iνn)G0(εk−q

b , iνn − iωm)

=
,
k,a,b

fF D(εk−q
b ) − fF D(εk

a)
εk−q

b − εk
a + iωm

(2.30)

where the sum over momenta k and bands a, b are restricted according to the pre-defined window
that generates Pr. The evaluation of the Matsubara sum 1/β

-
νn

, leading to the Lindhard ex-
pression consisting of Fermi functions fF D and energies εk

n of the particle propagation is described
in Appendix A.2. The analytic continuation to real frequencies can be done analytically, e.g., via
iωm → ω + i0+ for the retarded response.

Eq. (2.30) can be evaluated via Bloch or Wannier functions, resulting in equivalent expressions [70].
The RPA concept can also be applied to the susceptibility instead of the polarization, leading to an
enhanced (dampened) magnetic (density) response χM/D, see Section 2.6.3.1 for a more detailed
discussion. In order to extract the most relevant information, one typically restricts the number of
dependencies

U full
lm′ml′ (R1, R2, R3, R4, ω) → U full

lm′ml′ (R, R, 0, 0, ω) (2.31)

allowing for a spatial (on-site versus off-site) and frequency analysis of the screened interaction.
The latter is necessary if one wants to account for collective electron excitations, e.g., plasmons.
Methodologies that intrinsically incorporate them are the GW approach [71] or the GW extension of
dynamical mean-field theory GW+DMFT [72, 73, 74].

In order to connect this full interaction matrix into the initial static interaction problem of
Eq. (2.18) we need to both truncate the spatial as well as the frequency information

Ulm′ml′ = U full
lm′ml′ (0, 0, 0, 0, ω → 0) . (2.32)

Due to the strong spatial screening the former is oftentimes well justified. The frequency dependence
on the other hand is rarely insignificant since the difference of the static value (screening of a slowly
moving particle) is commonly an order of magnitude smaller than the unscreened value (ω → ∞).
For density-density interactions, it is actually possible to include a dynamical U(ω) in DMFT [75],
which is however rarely done in practice.

2.1.3.2 Constrained local density approximation

A conceptually simpler approach is the constrained local density approximation. Here the on-site
repulsion is defined as the energy cost that occurs when moving an electron between two sites,
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initially occupied by n electrons (in this case 3d-electrons) [68]

2(3dn) → (3dn+1) + (3dn−1). (2.33)

As U is an inherently renormalized quantity it contains screening effects from other electrons, i.e. the
change in the number of localized electrons will be fully compensated by the “auxiliary” electrons,
e.g. 4s. To account for this, Eq. (2.33) is usually rewritten into

U =
�
E(3dn+14s0) − E(3dn4s1)

�
��������������������������������������������������������������������������

electron affinity

+
�
E(3dn−14s2) − E(3dn4s1)

�
.������������������������������������������������������������������������������

ionisation energy

(2.34)

With Janak’s theorem, relating the eigenvalues of the DFT to a derivative of the total energy E with
respect to the occupation

εi = dE

dni
, (2.35)

one finds a direct connection to derivative of the relevant ε energies [76]

U = E(3dn+14s0) − 2E(3dn4s1) + E(3dn−14s2) = ∂2E

∂n2
d

= ∂εd

∂nd
. (2.36)

Supercell calculations imitating Eq. (2.36) (variation around the unconstrained occupation numbers)
can then also be used to calculate the exchange interaction J [77]. U and J are then sufficient to
parameterize the full interaction matrix, see Section 2.2.2.

These additions/removals of electrons naturally generate modifications to the Kohn Sham poten-
tial whose influence has be eliminated to achieve a description of U that is as accurate as possible.
There exist different approaches how to handle these corrections. Cococcioni et al. [69] for example
removed this “rehybridization” by explicit subtraction of the curvature changes induced by the band
structure of the non-interacting system. Anisimov et al. [68] instead employed a cut-off method where
the hybridization of the 3d orbitals are explicitly “turned off”. For an application of cLDA in first
principle calculations please refer to Refs. [76, 78, 79].
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2.2 The inconspicuous case of SrVO3

2.2.1 Crystal and band structure of bulk SrVO3

Strontium vanadate plays an important role in the research of transition metal oxides: Owing to its
perfect cubic crystal-structure and its “simple” electronic structure, it is often employed as test-bed
material in both fundamental theoretical and experimental studies. SrVO3 has also been proposed for
use in technological applications as electrode material [80], transparent conductor [81, 82], sacrificial
buffer layer [83], material in spintronic devices [84], and active material in a Mott transistor [85, 86].
Nominally, vanadium is in a d1 configuration as a result of the (idealistic) valence electron transfer

Sr(5s2) + V(3d34s2) + O3(2s22p4) −→ Sr2+ + V4+(3d1) + O2−
3 .

In this ionic picture strontium and oxygen are in their noble gas configuration whereas vanadium
remains in a chemically non-optimal 4+ valence. This has critical consequences when exposing the
material to surface oxygen, a detailed discussion on this topic is presented in in Section 2.4.

The octahedral array of the oxygen atoms in the perovskite structure, see Fig. 2.4, naturally lifts
the five-fold degeneracy of the vanadium d-orbitals realised for isolated atoms. In SrVO3, vanadium’s
eg = {dz2 , d2

x2−y} (t2g = {dxy, dxz, dyz}) orbitals point towards (away from) the surrounding oxygen
ions and thus experience a large (small) Coulomb repulsion. In turn, a large separation of the two
kinds of orbitals emerges. This allows us, for the given d1 occupation, to perform a more reductionist
t2g modelling.

Figure 2.4: Perovskite crystal structure ABO3. In SrVO3 the transition metal vanadium (red)
is surrounded by oxygen (blue), forming a corner shared VO6 octahedron embedded in a cubic
strontium (green) structure. The sphere radii are proportional to the atomic number. Due to the
octahedral oxygen positioning the t2g and eg orbitals split. Figure generated with VESTA [18].

To provide context, we compare the realized octahedral coordination to the closely connected tetra-
hedral arrangement in Fig. 2.5 which yields a reversed crystal-field splitting (cfs). Supported by the
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perfect ligand-crystal alignment, the octahedral setup experiences a local crystal-field splitting, ∆oct,
that is more than twice the size of the alternative tetrahedral splitting ∆tet = 4/9∆oct for identical
ions, ligands and ion-ligand distances, also displayed in Fig. 2.5. Evidently the tetrahedral arrange-
ment is not periodic (the shown cube cannot be a unit cell), making it only available as a purely local
surrounding of the relevant atomic center.

Figure 2.5: Schematic crystal-field splitting of idealistic d-orbitals in a tetrahedral and octahedral
crystal environment. The eg orbitals (dx2−y2 , dz2) are energetically favored in the tetragonal en-
vironment whereas the t2g orbitals (dxy, dxz, dyz) are favored in the octahedral environment. The
overall crystal-field splitting between the two arrangements is connected via ∆tet = 4/9∆oct if one
considers the same ions, ligands and ion-ligand distances. The illustrated d-levels are only meant
to illustrate the splitting as, due to the additional overall electrostatic repulsion in a crystal, the
absolute energy levels will naturally be elevated compared to the free ion case.

Within the PBE exchange correlation potential (used in all following SrVO3 calculations) the
energetically optimal lattice constant of SrVO3 is determined as aSrVO3 = 3.85Å. The resulting band
structure (and eigenvalues of the projected t2g Wannier basis) is illustrated in Fig. 2.6 where the three
aforementioned t2g bands cross the Fermi level. The Fermi surface has the shape of three superposed
cylinder-shaped tubes, as shown in Fig. 2.7.

The energetic separation of these t2g orbitals to the six oxygen p-orbitals below, as well as to the
eg orbitals above, allows for a pristine projection with minimal orbital spatial spread Ω < 2Å2. Strong
orbital hybridization is mostly restricted to vanadium eg with oxygen p. Due to the restricted energy
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Figure 2.6: Density functional theory band structure of SrVO3 along the high-symmetry momen-
tum path Γ-X-M-Γ-R and the corresponding density of states (DOS) N(ε) = -

k δ(εk − ε). The
Fermi level is located at ε = 0. (a) The projected t2g Wannier basis is highlighted in red and is
surrounded by six oxygen p bands (ε < 0) and the vanadium eg states (ε > 0). (b) The zoom onto
the (locally degenerate) t2g states. The density of states is calculated from the projected Wannier
basis, ignoring the (slightly) overlapping V eg states. The DFT calculation was converged with
8 × 8 × 8 k-points while the Wannier Hamiltonian was constructed on 20 × 20 × 20 k-points instead.
The DOS was calculated with 20 × 20 × 20 (a) and 100 × 100 × 100 (b), respectively.

window ∆E ≈ ±1eV, the resulting Wannier orbitals will be transformed from an atomic-like orbital
to a molecular orbital expanding towards their adjacent oxygen atoms. This is a direct consequence
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of the explicit exclusion of the oxygen ligands in the Wannier projection. Some of the oxygen orbital
characteristic is therefore transferred onto the t2g Wannier functions generating lobes on the adjacent
oxygen centers, see, e.g., Ref. [87] for a Wannier function visualization in t2g systems.
With respect to electronic structure calculations, this subspace selection is arbitrary: Any other
energy window selection in combination with its corresponding screened interaction matrix should,
at least in principle, generate the same physical result.3 The t2g projection is popular, and especially
important for our cases, due to the pre-defined integer filling. Introducing more orbitals changes the
molecular orbitals: Nominal filling then does not necessarily result in the desired d1 filling in the
t2g subspace. In, e.g., p-d calculations, that include all vanadium-d and all oxygen-p orbitals in the
basis (total filling N = 19), the double-counting problem and the p-d Coulomb interaction become
relevant [86, 88]. Without these corrective undertakings, the t2g occupation lead to nt2g > 1, see
Supplementary information of Ref. [86].4 There exist various strategies to properly shift the oxygen
levels to their desired position, see the Supplementary information of Ref. [86], be it via a Hartree
self-energy of the p-bands, a double-counting adjustment or a manual shift of orbital position. It
is worth mentioning here, that these procedures are merely a vehicle to mimic a GW-like nonlocal
exchange self-energy, missing in pure DMFT approaches. Since we are interested only in the low-
energy physics and will rely quite heavily on perfect integer filling, we will avoid these problems
altogether and restrict ourselves to the t2g-only model.

Figure 2.7: Three-dimensional Fermi surface of SrVO3. Each of the locally degenerate two-
dimensional xy,xz,yz orbitals results in a cylindrical contribution, perpendicular to one another in
momentum space. Figure created via FermiSurfacer [19].

3 In a broader context, this is however not general: for optical properties, e.g., one would need more orbitals to
capture high frequency features.
4 Comparing photoemission spectroscopy data (Section 2.2.4) with p-d model dynamical mean-field calculations
(Section 2.2.3) one finds a mismatch between the measured and calculated oxygen p position.
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2.2.2 Interaction matrix parametrization
Having established the desired energetic subspace upon which will constitute the basis of our discus-
sion, we now turn to the description of the interaction. We simplify the interaction matrix, introduced
in Sec. 2.1.3, by resorting to a local, static Kanamori parametrization

UKanamori = U
,
m

n̂m↑n̂m↓

��������������������������������
intra−orbital density−density

+ 1
2

,
m�m′

σσ′

[U ′ − δσσ′J ] n̂mσn̂m′σ′

������������������������������������������������������������������������������
inter−orbital density−density

+ J
,

m�m′

�
ĉ†

m↑ĉ†
m′↓ĉm↓ĉm′↑��������������������������������������
spin−flip

+ ĉ†
m↑ĉ†

m↓ĉm′↓ĉm′↑��������������������������������������
pair−hopping

�
,

(2.37)

valid for each site i with interaction parameters U = 5eV, J = 0.75eV and U ′ = U −2J = 3.5eV, based
on cLDA calculations [79]. Let us note that in Ref. [79] the exchange parameter J was overestimated.
For calculations of bulk SrVO3 beyond static-U DMFT, see Refs. [78, 89, 90, 91, 92].
The Kanamori parametrization of Eq. (2.37) can be recovered from the generalized two-particle
interaction term employed in our initial multi-orbital Hubbard model formulation in Eq. (2.18)

U = 1
2

,
ll′mm′

σσ′

Ulm′ml′ ĉ
†
m′σ ĉ†

lσ′ ĉmσ′ ĉl′σ (2.38)

via the mapping

Uiiii = U (2.39a)

Uijij = U ′ (2.39b)

Uijji = J (2.39c)

Uiijj = J. (2.39d)

The last term, Uiijj , can be explicitly ascribed to the pair-hopping contribution, whereas Uijji is neces-
sary to recover both the spin-flip contribution as well as the energy minimizing Hund’s exchange term
in the inter-orbital density-density contribution. This inseparability leads to the critical observation
that any purely density-density interaction necessarily breaks SU(2) ∀J > 0.

2.2.3 Many-body renormalizations: Dynamical mean-field theory
Having introduced the t2g Wannier projection accompanied by the SU(2) symmetric Kanamori inter-
action parametrization, we have built an adequate framework upon which we can construct methods
that capture (strong) local correlation effects beyond the capabilities of commonly employed exchange-
correlation potentials. To this end we resort to the current state-of-the art: dynamical mean-field
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theory (DMFT). In this Section we will both introduce the physical motivation behind the theory
and the corresponding quantum field theoretical description.

2.2.3.1 Concept

The core concept of dynamical mean-field theory can be described as an embedding of a single
impurity Anderson model (SIAM) into an overarching, periodic lattice. This embedding process
(typically accomplished in an iterative procedure) results in a characteristic hybridization function
of the SIAM that accurately reflects the local lattice problem in which the Hubbard interaction
naturally acts. Solving the underlying SIAM (numerically “exact” solutions exist) is therefore the
gateway towards an accurate description of local correlations. As the DMFT algorithm is heavily
relying on the quantum field theory formalism, please refer to Appendix A.1 for a brief introduction
or refer to the relevant literature [93, 94]. In this formulation the propagation of a single electron/hole
through the system is condensed into the (spin-dependent) one-particle Green’s function which on
the imaginary time axis for the orbitals l, m reads

Glm(τ) ≡ Glm,σ(τ) = −
�
Tτ ĉl,σ(τ)ĉ†

m,σ(0)
�

. (2.40)

Here ĉ(†) is the fermionic annihilation (creation) operator with Tτ as the time ordering operator. For
lattice Hamiltonian with orbital indices, described in Eq. (2.18), this then translates to

Gk
lm =

�
(iνn + µlattice) δlm − hk

lm − Σk
lm

�−1
(2.41)

on the (fermionic) Matsubara axis, see Appendix A.1.2. We employ a vector notation where k =
(k, νn) comprises both the momentum k and the corresponding Matsubara frequency, νn = (2n +
1)π/β. All interaction terms are encoded in the one-particle irreducible vertex, the self-energy, readily
connected to the non-interacting Green’s function (Σ ≡ 0) via the Dyson equation

G = G0 + G0ΣG, (2.42)

describing all possible scattering processes, see Fig. 2.8 with possible, internal degrees of freedom.

k, νnl m
Gk

lm = = +
l lm m

Σk
ab

a bk, νn k, νn k, νn

Figure 2.8: Dyson equation: The interacting (fat) and the non-interacting Green’s functions (thin)
are connected via the self-energy: Gk

lm = Gk
0,lm + -

ab Gk
0,laΣk

abG
k
bm. In our drawing convention, the

arrow points from the annihilation operator to the creation operator, see Eq. (2.40).
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The one-particle Green’s function of the single impurity Anderson model

HSIAM =
,
lm,σ

ε̃lmd̂†
l,σd̂m,σ + 1

2
,

ll′mm′
σσ′

Ulm′ml′ d̂†
m′,σd̂†

l,σ′ d̂m,σ′ d̂l′,σ

����������������������������������������������������������������������������������������������������������������������������������������������
impurity

+
,
k,σ

,
lm

hk
lmĉ†

kl,σ ĉkm,σ����������������������������������������������������
bath

+
,
k,σ

,
lm

V k
lmĉ†

kl,σd̂m,σ + (V k
lm)∗d̂†

m,σ ĉkl,σ������������������������������������������������������������������������������������������������������
hybridization

,

(2.43)

on the other hand loses all the momentum information of the lattice and is instead described via

Gνn

lm = [(iνn + µSIAM) δlm − ε̃lm − ∆νn

lm − Σνn

lm]−1 (2.44)

where the hybridization function ∆(iνn) is constructed as orbital matrix via

∆νn =
,

k
(V k)T

�
(iνn + µSIAM)1 − Hk

�−1
V k, (2.45)

see Appendix A.1.2. Physically speaking, the hybridization function ∆νn encodes all processes where
an electron located on the impurity site enters the bath (V k), propagates through the bath (via
the non-hybridizing, bath Green’s function [(iνn + µSIAM)1 − Hk]−1), and finally re-enters the site
((V k)T ). Let us emphasize that we employ two distinct chemical potentials: µlattice for the lattice
Green’s function, and µSIAM for the impurity Green’s function which will be adjusted independently
from one another.

Returning to DMFT: The central point in the embedding scheme is that we require the local
Green’s functions of the lattice to coincide with the local Green’s function of the SIAM

,
k

Gk
lattice

!= Gνn

SIAM. (2.46)

Naturally, for any finite number of lattice dimensions DMFT remains an approximation. The resulting
local self-energy, however, accurately reflects the projected impurity problem, containing all possible
diagrams built from local propagators. As was shown in the earliest publications [95], when scaled
properly, this locality becomes exact in the infinite dimension limit, i.e. the d = ∞ lattice fermions
with local interaction are exactly described by the single-site model embedded by the dynamical
mean-field. Surprisingly however, three dimensional systems, at least in the weak-coupling regime
can be shown to be well approximated by it. Let us also note in the same vein that DMFT becomes
exact in the strong coupling limit U ≫ t.
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2.2.3.2 Algorithm

In order to perform the embedding, one first defines the impurity model via the projection of the
lattice. The energy levels ε̃ of the interacting fermions of Eq. (2.43) then correspond to the local
Hamiltonian

ε̃lm = hlm(R = 0) =
,

k
hk

lm, (2.47)

onto which the identical on-site interaction acts as employed in the lattice model. The DMFT embed-
ding requirement is then achieved by a self-consistency scheme whose chosen starting point is usually
the non-interacting solution, Σ ≡ 0 from which the initial hybridization function is constructed5

∆νn = (iνn + µSIAM)1 − ε̃ −
',

k
Gk

0

�−1

. (2.48)

This defines the first iteration of the SIAM, allowing us to (numerically) compute the corresponding
interacting impurity Green’s function Gν

SIAM via an impurity solver6

G0,SIAM → GSIAM (2.49)

and obtain the impurity self-energy via an inversion of the Dyson equation

Σνn

SIAM = [Gνn
0 ]−1 − [Gνn

SIAM]−1 . (2.50)

Identifying this self-energy, in the DMFT approximation, as the lattice self-energy

Σk
lattice = Σνn

SIAM (2.51)

allows us to compute the local projection of the lattice Green’s function

Gνn

lattice,loc =
,

k

�
(iνn + µlattice)1 − Hk − Σνn

SIAM

�−1
. (2.52)

Applying the DMFT self-consistency condition of Eq. (2.46), we can calculate a new non-interacting
impurity propagator �

Gνn
0,new

�−1
=

�
Gνn

lattice,loc

�−1
+ Σνn

SIAM (2.53)

5 Apart from parameter regimes where a hysteresis region exist, i.e. two solutions are possible for the same parameter
set, there should in principle be no dependence on the starting point.
6 In this thesis we utilize the continuous-time quantum Monte Carlo (CTQMC) approach in the hybridization ex-
pansion (CTHYB) as implemented in w2dynamics [30]. The employed sampling algorithm will depend on the desired
observables (segment, worm, etc.) which we will, for the sake of brevity, not discuss further in this thesis: Please refer
to Ref. [96] for an introduction to worm sampling in higher order correlation functions. For an overview of CTQMC
approaches in quantum impurity models, please refer to Ref. [97].
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and extract a new hybridization function via

∆νn = (iνn + µSIAM)1 − ε̃ −
�
Gνn

0,new

�−1
, (2.54)

circling us back to the beginning. This cycle is then iterated until the self-consistency condition is
fulfilled and the local propagators of the lattice and the SIAM coincide. In a similar vein to density-
functional theory (density ρ, eigenvalues εi), the local propagator G is accompanied by auxiliary
quantities, the lattice propagators Gk. Contrary to DFT, however, these auxiliary descriptors arise
from a controlled approximation of the self-energy where exact limits (d → ∞, U→ ∞, U = 0)
are obeyed. This makes these DMFT propagators physical in nature, oftentimes used to calculate
renormalized band structures via its momentum-resolved spectral function and are an integral part
of almost all diagrammatic extensions of dynamical mean-field theory [93].

Please note that in the so-called charge self-consistent DFT+DMFT approach [98, 99], the result-
ing self-energy can be interpreted as additional contribution to the Kohn-Sham potential, adjusting
the total charge in the system. For some applications this outer feedback is vital to match experiment
with theory. In this Chapter, however, we will restrict ourselves to the above algorithm, i.e. one-shot
DMFT calculations.

2.2.3.3 Application

As a first example and for illustrative purposes, we apply DMFT to the t2g model of bulk SrVO3

which we argued above to contain the relevant low-energy physics. While nowadays, this is a simple
exercise, the initial works [79, 100] were pioneering. The model consists of the three orthogonal t2g

orbitals (dxy, dxz, dyz) spanning the relevant energy subspace around the Fermi level with band width
W ≈ 2eV. Using maximally localized Wannier functions we construct the Hamiltonian, discretized
on a momentum grid of 20 × 20 × 20 k-points in the Brillouin zone and supplement it with a static
Kanamori interaction with the aforementioned parameters (U = 5eV, J = 0.75eV and U ′ = U − 2J =
3.5eV). Due to the orthogonality of the orbitals we may introduce further simplifications in the DMFT
algorithm. Instead of a full orbital matrix we simplify our Green’s function sampling to a diagonal
self-energy (hybridization function)

ΣDMFT
full orb =


Σxy,xy Σxy,xz Σxy,yz

Σxz,xy Σxz,xz Σxz,yz

Σyz,xy Σyz,xz Σyz,yz

 → ΣDMFT
orb diagonal =


Σxy,xy 0 0

0 Σxz,xz 0
0 0 Σyz,yz

 (2.55)

and discard all local inter-orbital contributions. Note however, that in the non-local DMFT lattice
propagators Gk, inter-orbital signatures remain due to the Wannier Hamiltonian.
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The DMFT self-consistent cycle is iterated at room temperature β = 40eV−1 = 290K until
convergence is reached, the resulting local Matsubara Green’s function and self-energy is illustrated
in Fig. 2.9. Please note that with this local viewpoint the t2g orbitals are equivalent. While each of
the three orbitals are considered fully in the DMFT cycle, their local contribution to the self-energy
is identical. Bulk SrVO3 is evidently a prime example of a correlated metal: The imaginary parts of
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Figure 2.9: DMFT Green’s function (top) and self-energy (bottom) of SrVO3, calculated at room
temperature T = 290K. Due to the local degeneracy of the t2g bands in perfect cubic symmetry, all
three orbitals are identical. The imaginary part of the Green’s function around the first Matsubara
frequency can be used as a proxy to gauge the metallicity of the system. The imaginary part of the
self-energy allows for a validation of a Fermi-liquid. For the presented setup we find Γ = 15meV
and Z = 0.5.

the Green’s function extrapolate to finite values for νn → 0+, indicating a metallic spectral function
A(ω = 0) > 0, see Eq. (2.60). Similarly, the self-energy can be interpreted in the framework of
Fermi-liquid theory: In this context the self-energy on the Matsubara axis can be Taylor expanded
in the low-energy regime

ΣFL(iνn) ≈ ℜΣ(iνn → 0+) + iℑΣ(iνn → 0+) + i
∂ℑΣ(iνn)

∂νn
|νn→0+νn + O(ν2

n). (2.56)

Inserting this expression into the initial Green’s function allows for a different viewpoint on the
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quasi-particle renormalization

G =

iνn

�
1 − ∂ℑΣ(iνn)

∂νn
|νn→0

%
+ µ − Hk − ℜΣ(iνn → 0+) − iℑΣ(iνn → 0+) + . . .

�−1

=
�
iνnZ−1 + µ − Hk − ℜΣ(iνn → 0+) + iΓ + . . .

�−1

= Z
�
iνn − Z

�
Hk − µ + ℜΣ(iνn → 0+)

#
+ iZΓ

�−1

������������������������������������������������������������������������������������������������������������������������������������������
GFL

+ . . .����
Gincoherent

(2.57)

where via

ℑΣ(iνn → 0+) = −Γ (2.58a)

∂ℑΣ(iνn)
∂iνn

.....
νn→0+

= 1 − Z−1 (2.58b)

we defined the quasi-particle weight Z (0 < Z ≤ 1) and the bare scattering rate Γ (Γ ≥ 0). Through
the self-energy the energy levels are shifted, compressed, and endowed with a finite life time (inverse
scattering rate).7

The newly introduced Fermi liquid part of the Green’s function GFL describes now only the
coherent quasi-particle excitations with weight Z. Within DMFT this prefactor Z can be regarded
as the inverse of the mass enhancement

m∗
DMFT = m

Z
(2.59)

with respect to the band mass m from DFT. If the self-energy were to gain a momentum depen-
dence, an additional momentum expansion around the corresponding Fermi momentum O(k − kF )
in Eq. (2.56) has to be taken into account.

The non-coherent part of the one-particle propagator Gincoherent contains the remainder of the self-
energy information, describing the non-Fermi liquid weight of 1 − Z. In order to gain access to this
information and to return to the real frequency axis we employ the analytic continuation technique.
The information on the Matsubara axis and the real frequency axis are linked via a Hilbert transform8

G(iνn) = − 1
π

� ∞

−∞
dω

ℑG(ω)
iνn − ω

≡
� ∞

−∞
dω

A(ω)
iνn − ω

. (2.60)

7 The fermionic Matsubara axis is inherently connected to the real frequency axis: Analytic functions X defined in the
upper complex half-plane must coincide at the boundaries X(iνn → 0+) = Xret(ω = 0) and X(iνn → ∞) = Xret(ω →
∞). In turn, the (retarded) self-energy, defined on the real axis, results in equivalent definitions of ℑΣ(ω = 0) = −Γ
and ∂ℜΣ(ω)

ω
|ω=0 = 1 − Z−1. The real part of the latter is the result of the Cauchy-Riemann equations.

8 We define the Hilbert transform with a different sign compared to the definition in mathematics. The Green’s
function defined on the imaginary time axis via Eq. (2.40), requires an additional minus sign, such that the resulting
spectral function is strictly positive, see Appendix A.2.
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whose inversion, i.e. G(iνn) → A(ω) is an inherently ill-posed problem. For this purpose we resort to
the so-called maximum entropy algorithm [101] as implemented in ana_cont [31]. Maximum entropy
introduces the information entropy S as an additional regularization term with respect to a simple
default model D(ω)

S[A] =
� ∞

−∞
dω

�
A(ω) − D(ω) − A(ω) log A(ω)

D(ω)

%
(2.61)

which is used to find the most probable spectral function, commonly achieved by minimizing the
functional

Q[A] = 1
2χ2[A] − αS[A] (2.62)

with a scaling hyperparamter α and the merit function

χ2[A] =
N,

n=1

�
G(iνn) − � ∞

−∞ dω A(ω)
iνn−ω

�2

σ2
n

(2.63)

evaluating the error-scaled (σn) deviation from the numerical data G(iνn) of a limited dataset on
the fermionic Matsubara axis. In this thesis the hyperparameter α is determined via the chi2kink
method [31], in order to fully benefit from the information fitting in Eq. (2.62). For a detailed
mathematical discussion, please refer to the literature [101, 102].

The resulting local DMFT spectral function A(ω) and predicted (we neglect transition elements)
photoemission spectroscopy (PES) signal ∝ A(ω)fF D(ω) is illustrated in Fig. 2.10a. The spectral
function displays the infamous three-peak structure where, as expected from the above consideration,
we find renormalized, metallic features whose quasi-particle (QP) peak remains dominant around the
Fermi level (ω = 0). As the t2g manifold only holds one electron (vanadium d1) the center of the peak
is located above the Fermi level. The lower Hubbard band (LHB) and upper Hubbard band (UHB) are
beyond the Fermi liquid picture. Their weight is (asymmetrically) absorbed from the quasi-particle
peak (weight Z < 1). At the considered temperature of T = 290K we find a quasi-particle peak to
lower Hubbard band ratio of 3.5.

Further, in Fig. 2.10b we also show the renormalized band structure A(k, ω), DMFT’s equivalent
to the DFT band structure: quasi-particle excitations endowed with finite lifetimes and spectral
renormalizations. Each vertical line in Fig. 2.10b represents a separate analytic continuation of Gk

along the high-symmetry momentum path Γ − X − M − Γ − R. For comparison, we have overlain the
resulting heat map with the DFT band structure of Fig. 2.6 (thin, white line). Here the second effect
of the quasi-particle renormalization Z becomes apparent: a compression of the (DFT) band width.
The linearization of the self-energy, see Eq. (2.56), valid around the Fermi level, leads to renormalized
energy levels given by the eigenvalues of Z

�
Hk − µ + ℜΣ(iνn → 0+)

#
and through them, an accurate

capturing of the correlation induced changes to the Fermi surface [64]. Away from the Fermi level,
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the quasi-particle peaks may be shifted in a more nuanced fashion through the frequency dependence
of the self-energy. Nonetheless, the renormalized bandwidth of SrVO3 can be approximated well via
Z · W ≈ 1eV.
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Figure 2.10: Spectral function(s) of SrVO3: (a) local A(ω), (b) A(k, ω) as the renormalized
DMFT band structure. The quasi-particle (QP) peak, slightly off-centered (Fermi level at
ω = 0, is encompassed by the lower and upper Hubbard band, representing the excitations of
N → (N − 1) [ω < 0] and N → (N + 1) [ω > 0], respectively. In order to validate the analytic
continuation we show the back transform A(ω) → G(iνn) via Eq. (2.60) in the inset of (a). Com-
pared to the DFT band structure (thin, white line in b), DMFT endows the eigenstates of the
Hamiltonian with a finite life time and shifts them accordingly. The result is a compressed band
structure with a band width approximated well by 0.5 · WDFT.
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2.2.4 Experimental context
Having established the state-of-the-art DFT+DMFT treatment of strongly correlated materials, in
order to confirm its validity, we must compare these results to experimental measurements. As the
spectral function contains both information of electron (ω > 0) and hole (ω < 0) excitations we will,
however, for a single measurement be restricted to either the negative (photoemission spectroscopy:
PES) or positive part (inverse photoemission spectroscopy: IPES) of the spectrum. This becomes
clear in the context of a discrete system with eigenstates H|n⟩ = En|n⟩ where the spectral function
in its Lehmann representation reads

A(k, ω) ≡ 1
Z

,
n,m

(e−βEn + e−βEm)|⟨n|ĉ†
k|m⟩|2δ(ω − (En − Em)). (2.64)

The (double) sum runs over all possible eigenstate permutations and Z is the partition function
Z =

-
n⟨n|e−βEn |n⟩. In Eq. (2.64)

|⟨n|ĉ†
k|m⟩|2 ≡ ⟨n|ĉ†

k|m⟩⟨m|ĉk|n⟩ (2.65)

connects states from the N to the N ± 1 particle sector. The resulting spectral function then differ-
entiates between an energy gain or loss in this process, i.e. A(k, ω > 0) corresponds to En > Em and
consequently a probing of unoccupied states. A(k, ω < 0) corresponds to Em > En and probes the
occupied states instead.

As the underlying processes generating the photocurrent are identical as the ones described in
Eq. (2.64), the PES signal can be readily connected to the spectral function. Ignoring the electromag-
netic coupling details of the photon-induced excitations, a predictive PES spectrum can be obtained
by multiplying the spectral function with the Fermi function A(ω)fF D(ω), see Fig. 2.10a. Due to
the smearing effect of the temperature, the photoemission spectroscopy also gains access to energies
slightly above the Fermi level, see, e.g., Ref. [103]. Similarly, a predictive IPES spectrum is obtained
via A(ω)(1 − fF D(ω)). For a more detailed derivation and the connection to the Green’s function
please refer to Appendix A.1. For a more detailed discussion on the technique of photoemission
spectroscopy please see Ref. [104].

Qualitative validation
The existence of a lower Hubbard band can be determined by photoemission spectroscopy and its
angle-resolved counterpart. Experimental detection, however, had first to overcome issues related
to bulk sensitivity of the measurement. A second problem are the presence and potential influence
of oxygen vacancies. Backes et al. [105] were able to disentangle the contribution stemming from
oxygen vacancies, obtaining a clear LHB signal, see Fig. 2.11a. They grew pristine SrVO3 in the



32

(001) direction via pulsed laser deposition with Sr2V2O7 as target material in order to minimize
oxygen vacancies. The samples were annealed at 550◦C before being cooled down to 20K where the
measurements, illustrated in Fig. 2.11, were performed with photon energies between 30 − 110eV. By
investigating the systematic effect of the dose-dependent effect of UV light radiation onto the clean
sample, they were able to disentangle the contributions from the correlation effects (lower Hubbard
band) and the impurity effects (oxygen vacancies). Please note that this radiation, confirmed by
Fermi surface measurements, does not change the filling of the vanadium site.

The pristine sample (Fig. 2.11a, blue line and Fig. 2.11b) evidently showcases an LHB position
around E −EF = −1.5eV, consistent with the calculated spectral function in Fig. 2.10, albeit slightly
higher positioned in the experiment (ωLHB

DMFT ≈ −2eV). Comparing the ARPES spectrum (correspond-
ing to only the xy band due to the employed light polarization) with the DMFT band structure, see
Fig. 2.10b, we observe the same band width compression of the (occupied) states ε̃ = Zε (Z ≈ 0.5)
and the identical quasi-particle peak position at k⟨100⟩ = 0 (the Γ-point) around E − EF = −0.5eV.
Please note that the DMFT spectrum was calculated for T = 290K, whereas the PES measure-
ments were performed at T = 20K. In this context, however, this comparison remains valid as the
quasi-particle renormalization Z is typically only weakly temperature dependent (not shown).

Upon UV radiation, the QP:LHB ratio changes from 3:1 towards 1:2, allowing the LHB to domi-
nate both the intensity of the PES and ARPES spectrum.

Figure 2.11: SrVO3 photoemission measurements. (a) PES spectrum around the Fermi level for
varying UV dose (blue line: in situ without radiation). (b-c) ARPES spectrum around the Γ point
for (b) the pristine sample without oxygen vacancies and (c) with induced vacancies. The clear
signature of a lower Hubbard band around E − EF = −1.5eV can be dominated by an extra oxygen
signal. Note that due to the employed linearly polarized light, only the xy-band contributes to the
ARPES signal. [Reprinted with permission from Backes et al., Phys. Rev. B 94, 241110 (2016).
Copyright (2016) by the American Physical Society.] [105]
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Photoemission spectroscopy is a surface technique, i.e. due to the inelastic mean-free path (IMFP)
of the generated photoelectrons, the bulk of the signal stems from the layers close to the surface.
As the penetration length depends strongly on the kinetic energy of the photoelectrons, tuning the
incoming photon energy can be exploited to gain depth information of system. Eguchi et al. [106] used
a photon energy range between 7eV and 21eV. In this energy regime, increased kinetic energies results
in a smaller IMFP (cf. universal curve), i.e. more surface sensitivity. This reduced bulk contribution,
surprisingly, results in a larger QP:LHB ratio. A similar observation will be made in Section 2.4
where a pristine (X-ray cleaned) surface results in a smaller QP peak compared to the native surface,
decorated with apical oxygen (as created by pulsed laser deposition).

The Fermi liquid nature of the metal can be further validated via resistivity [107] and specific heat
measurements [108]. Mass enhancement of the electronic quasi-particles drives an enhanced specific
heat cv ∝ 1/Z = m∗/m. Electron-electron scattering processes on the other hand result in the typical
Fermi liquid signature in the resistivity, showcasing a quadratic temperature behavior

ρ(T ) = ρ0 + AT 2 (2.66)

up to temperatures comparably to the Fermi energy. Ref. [107] illustrated a perfect match up to
T = 200K, above which the resistivity becomes linear.

Towards the quasi-particle breakdown
As evidenced above, pristine, bulk SrVO3 is a moderately correlated metal. Recent experimental
setups however showcased that there exist several ways to push SrVO3 across the Mott transition
and turn it insulating. With the advent of sophisticated deposition technique that allow for a layer-
by-layer growth of samples, it has become possible to investigate effects of reduced dimensionalities
(finite number of layers), geometric constraints (growth on substrates), quantum confinement, etc.
Yoshimatsu et al. [85] were able to trigger an insulator transition by depositing SrVO3 in a layer-by-
layer fashion on a SrTiO3 (STO) substrate. Fig. 2.12 illustrates the observed photoemission spectra,
resolved for samples with various thickness n = 1 . . . 100 layers. Between n = 6 and n = 100 layers
the valence spectrum around the Fermi level EF experiences no significant changes. Below n = 6
a continuous suppression of the QP peak eventually transitions into the opening of a gap (n = 2,
n = 1), rendering the samples insulating.

In this context, quantum well states, induced by the confinement in the (001) growth direction,
have also been detected [109]. Based on this concept, Yukawa et al. [110] realized a wave-function
engineering where a quantum well in a marginal Mott insulating state can be metallized by tuning
the tunneling barrier to a second metallic quantum well. A different approach was taken by Wang
et al. who considered SrVO3 in its bulk form. By implanting helium ions into the sample they were
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able to expand the out-of-plane lattice constant, eventually triggering a metal to insulator transition
beyond a certain critical elongation [111].

Figure 2.12: Photoemission spectra for SrVO3 deposited on a SrTiO3 substrate with a various
number of layers n = 1 . . . 100. (a) PES for the valence band, (b) Zoom around the Fermi level EF

with focus on the quasi-particle peak and the lower Hubbard band. Below n = 6 the quasi-particle
suppression eventually transitions the system into an insulating state. A gap is opened for n = 2
and n = 1. [Reprinted with permission from Yoshimatsu et al., Phys. Rev. Letters 104, 147601
(2010). Copyright (2010) by the American Physical Society.] [85].

All these varying conditions: dimensionality reduction, wave function manipulation, or strain
induction, are therefore capable in triggering a Mott insulating state in the innocuous looking SrVO3.
Pinpointing the underlying mechanism for all theses different concepts has been a hotly debated topic
in recent times. At this moment in time, different viewpoints exist whether correlation effects [111],
disorder [112], or other more intricate crystal structure effects are at the root of it. Uncertainties
stemming from the growth process, including material-to-material interfaces, growth environment,
and air exposure are especially cumbersome when trying to interpret the experimental results.

To this end, in this Chapter, we will try to tackle these various phenomena from the angle of pure
electronic correlations. Analyzing the multi-orbital nature of the different setups, our goal is first to
establish whether the observed Mott insulating states are achievable with a purely correlation driven
mechanism and secondly, if possible, to find common denominators among the transitions to provide
further avenues to advance the current understanding.
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2.3 Triggering the Mott transition
Due to the Pm3m space group symmetry of the cubic SrVO3 crystal, the vanadium t2g (with Oh

point group symmetry) orbitals spanning the low-energy subspace are locally degenerate, i.e. they
can be transformed into each other via the application of crystal symmetries. This is the primary
reason why the system remains in a metallic state even though the interaction strength, more than
twice the size of the band width U/W ≈ 2, would be sufficient to trigger an insulator transition in
the one-band Hubbard model. Indeed in a one-orbital setting these kinds of interactions easily push
the system deep into the insulating regime, see Fig. 2.2.

In orbitally degenerate systems with integer filling, the Mott insulating state can still be estab-
lished [113], however larger interaction strengths are necessary to overcome the additional inter-orbital
charge fluctuations. In recent years, experimental crystal-growth techniques have become more re-
fined, through which different ways have been established to trigger a Mott transition in these types
of perovskite transition metal oxides:

◦ Isovalent change in chemical composition

◦ Ultrathin films / heterostructures

◦ Strain engineering

In the following, we will briefly recapitulate these mechanisms before attempting to advance the
understanding for the latter two.

2.3.1 A perspective on d1 perovskite Mott insulators
2.3.1.1 Isovalent perovskite series

The most fundamental change to a material is the modification of its constituents. In this context
one oftentimes considers the d1 perovskite series

SrVO3������������
Z=0.5

→ CaVO3��������������
Z=0.4

→ LaTiO3����������������
∆=0.2eV

→ YTiO3��������������
∆=1.4eV

where from left to right the systems transitions from correlated metals (SrVO3 and CaVO3: quasi-
particle weight Z < 1) to correlation-induced insulators (LaTiO3 and YTiO3: spectral gap ∆ > 0)
[114, 115, 116]. Generally, this behavior cannot be purely attributed to a change in correlation
strength, as the perovskite structures itself is modified when traversing the series, i.e. one needs to
consider crystal distortions. Indeed, the cubic symmetry seen in SrVO3 requires a particular balance of
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the involved ionic radii which is commonly expressed in terms of the Goldschmidt tolerance factor [117]

t = rA + rO√
2(rB + rO)

(2.67)

with ri being the ionic radius of the i ∈ {A, B, O} ions of the ABO3 structure. If t is far away from 1
the (ideal) perovskite structure will not be formed, resulting instead in a hexagonal or orthorhombic
structure. This reduction in symmetry manifests itself in the above series as a tilting of the octahedra
surrounding the B cation, distorting the crystal into a GdFeO3-type structure [87] in the process.
While the V-O-V bond angle maintains the perfect 180◦ in SrVO3 it is reduced to 160◦ in CaVO3 [116],
necessarily lifting the degeneracy of the t2g states [118] and simultaneously decreasing the relevant
band width, and thus the critical Uc of the Mott transition. This trend is further continued in LaTiO3

and YTiO3 where dynamical mean-field theory studies by Pavarini et al. [119] find that important
orbital fluctuations become suppressed that initially stabilized the metallic behavior in the degenerate
system. Their absence results in an insulating state, an orbitally polarized Mott insulator.

Suffice it to say, a one-to-one mapping to the one band Hubbard model, while oftentimes com-
pelling in order to simplify the enormous complexities of the multi-orbital nature of these materials,
is rarely an accurate representation of the full physical picture. Consequently, a thorough treatment
of all relevant energy scales becomes a necessity.

2.3.1.2 Ultrathin films and heterostructures

Through recent experimental advances in epitaxy, it has become possible to effectively reduce the
dimensionality of grown samples, providing a geometric approach to modify the electronic nature of
materials. Growing crystalline layers in well-defined orientations on top of a pre-prepared substrate
allows for the manufacture of an endless variety of thin films, heterostructures or super-lattices [120].
For insight into the experimental setups and techniques used in the state-of-the-art research please
refer to Refs. [121, 122, 123]. The substrate material is commonly chosen to be electrically insulating
and to be compatible with the epitaxial layers. This compatibility condition is imposed by differences
of the crystal structures if a clean interface connection is supposed to be formed: lattice structures,
lattice sizes, chemical compositions, to name a few. Combining two compounds with massively
different lattice lengths, for example, is likely to introduce crystal defects in the growth process,
preventing pristine samples.

Commonly used substrate materials include SrTiO3, LaAlO3, BaTiO3, KTaO3, NdGaO3, LiNbO3,
LSAT, Al2O3, Si, graphene, to name a few. Perovskite materials that have successfully been deposited
in such ways include SrVO3 [85], SrRuO3 [124], LaNiO3 [125], La1−xSrxMnO3 [126], SrIrO3 [127], etc.
Naturally this type of sample preparation is not only relevant for the study of Mott insulators, as we
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do here, but is commonly used in different contexts, e.g., the study of emergent superconductivity
in thin film pnictides such as FeSe [128]. A common occurrence among different heterostructures is
the observation of a metal-to-insulator transition when the film thickness is reduced below a critical
number of deposited unit cells, typically in the range of O(1) − O(10): SrVO3 | SrTiO3 becomes
insulating below 2-3 layers [85, 129], identical to SrVO3 | LSAT [129, 130]. Introducing a capping
layer, SrTiO3 | SrVO3 | SrTiO3 increases the critical thickness to 6-7 layers [131]. LaNiO3 | LaAlO3

turns insulating below 2-4 layers, with a strong dependence on the final crystal layer termination (NiO2

or LaO) [125]. Schwerwitzl instead found for the same system a critical thickness of 5 layers [132].
SrRuO3 | SrTiO3 turns insulating below 5nm (roughly 10 layers) while simultaneously experiencing
a drop in the ferromagnetic phase transition temperature [133]. Metallization on the other hand is
also feasible: The metal-to-insulator transition temperature of V2O3 can be systematically reduced
if deposited on a silicon substrate [134, 135].

The variety of material combination and the plethora of emergent phenomena naturally makes
finding a common denominator rather difficult, if not impossible. Simply attributing electronic
changes to singular factors such as localization effects, disorder, or band width changes, is not sen-
sible. As each of the above mentioned materials can be classified as strongly correlated, a detailed
case-by-case study is necessary to understand the different behaviors. This includes, but is not limited
to, systematic changes caused by the dimensional reduction, emergence of a modified interface region,
induction of localization effects, as well as experimental complications such as defect formation caused
by non-optimal growth conditions, and other environmental influences.

In this Chapter, we will discuss the most fundamental properties of vanadium’s t2g orbitals allow-
ing us to extract a reductionist view of the underlying structure. Experimental complications that
cause a deviation from these “simplistic” setups naturally complicate things and must be considered
on equal footing. The effect of apical surface oxygen, e.g., will be discussed in Section 2.4.

2.3.1.3 Strain engineering

A complimentary, but linked way to manipulate the electronic structure with the potential to trigger
a metal-insulator transition is strain manipulation. The main idea is simple: deforming the sample /
unit cell necessarily modifies the electronic structure, as the “atomic orbitals” need to adapt to the
new nuclei environment. Depending on the involved orbitals, their symmetry, and the type of strain
applied, a change in band-widths, energetic positions, as well as interactions can be anticipated.
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Strain inducing approaches include

◦ Change in substrate material (or a substrate material in general)

◦ Change in growth conditions

◦ Direct deformation (uniaxial or hydrostatic pressure)

◦ Atom implantation

A change in substrate material can make all the difference between tensile and compressive strain [136,
137, 138], while a change of growth conditions, more specifically growth temperature [139], can sim-
ilarly result in a deformed lattice. While not the most common, another flexible method is atom
implantation: applying ion irradiation onto a bulk material can effectively be used to continuously
modify the lattice parameter, ideally without changing the nominal band filling / valency. Implanted
Helium ions for example, were shown to not bond with the existing lattice, according to X-ray
measurements [140]. Relevant for experimental reproduction, the effect is persistent, i.e. no perpet-
ual external actuation is necessary, contrary to pressure-induced [141] or piezo-induced [142] strain
changes. If the doping is performed in a successive fashion and the crystal structure is monitored via
e.g. X-ray measurements, abrupt changes in the electronic signatures are then a direct reflection of
strain-induced transitions. Besides possibly induced phase transitions this continuous tuning will nat-
urally be accompanied by other “minor” effects like changes in the scattering potential, i.e. modified
quasi-particle life times, especially noticeable in transport measurements.

2.3.2 Distortion phenomena in substrate deposited SrVO3

2.3.2.1 Bulk metal-insulator transition

Wang et al. [111] successfully manipulated the out-of-plane lattice constant of epitaxially grown SrVO3

on a single-crystal SrTiO3 substrate by applying helium ion irradiation. This type of “strain doping”
results in a purely uniaxial lattice expansion, circumventing the Poisson effect, without introducing
local crystal defects as confirmed by a lack of evidence in X-ray diffraction (XRD) measurements.
The process has been found to be invertible by vacuum annealing [140], suggesting that the implanted
helium atoms populate interstitial sites of the lattice without the creation of atomic vacancies. This
effectively provides a route in which the lattice strain can be independently and continuously con-
trolled, providing a unique testing ground for probing electronic structures.
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Figure 2.13: X-ray diffraction (XRD) and transport measurements of various helium irradiated
samples of SrVO3 on a SrTiO3 substrate with 50nm thickness: (a) symmetric (002) XRD reflexes
in the vicinity of the STO (002) signal, (b) corresponding c-axis elongation with increased helium
fluence, (c) asymmetric (103) XRD that signals the proper in-plane locking between SVO and
STO (d) temperature dependent resisitivities (e) low temperature resistivity upturns observed in
the 1.75 · 1015 and 2.5 · 1015 He / cm2 samples fitted via Eq. (2.68). An increased helium fluence
manipulates the c-axis while maintaining the in-plane lock to STO. This strain leads to a deviation
from the Fermi liquid behavior (dashed lines are Fermi liquid extrapolations). [Reprinted with
permission from Wang et al., Phys. Rev. Materials 3, 115001 (2019). Copyright (2019) by the
American Physical Society.] [111]
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The XRD patterns, lattice characterization and resistivity temperature profiles of the irradiated
heterostructures are shown in Fig. 2.13 where the different helium fluences are color-coded. Panel
(a) shows the XRD scan around the (002) reflection, comparing the pristine sample (black) with
the irradiated ones. The “thin” films were prepared with a 50nm thickness (O(100) layers), initially
reflecting the lattice mismatch between SrTiO3 and SrVO3. With increasing fluence the position of
the SVO (002) peak, marked by ∗, systematically shifts to smaller angles. This shift, translated to
a c-axis length is illustrated in panel (b) where a continuous trend between fluence and expansion
can be noted with the largest applied fluence of 3.5 · 1015 He / cm2 resulting in a c-axis expansion to
c = 4.04Å (5% increase compared to bulk). The in-plane locking of SVO to the STO substrate for all
considered samples can be confirmed by investigating the asymmetric (103) XRD reflection in panel
(c). Slightly masked by the strong STO signal, the increased fluence shifts the SVO peak (marked
by the arrow) to smaller L values while the H value, coinciding with STO, remains unchanged. Even
for the largest induced strain, one can confidently conclude that the in-plane locking remains intact.

The electronic properties of the samples are then probed with transport measurements, see pan-
els (d) and (e). The unperturbed, pristine sample exhibits the expected Fermi-liquid behavior with
∂ρ/∂T > 0 for all temperatures. Increased helium fluence is accompanied by an overall increase in
resistivity and the emergence of an upturn in the low temperature resistivity, marked by an arrow.
This deviation from the Fermi-liquid state (dashed lines are extrapolations of the Fermi-liquid charac-
teristics to lower temperatures) occurs at T ≈ 40K and T ≈ 70K in the 1.75 ·1015 (blue) and 2.5 ·1015

He / cm2 samples (green), respectively. In this regime it can be argued (see fit in Fig. 2.13e) that
the data can be interpreted via the equation for so-called quantum corrections to the conductivity
(QCC) in three-dimensional systems [143]

ρ(T ) = 1
σ0 + a1T

P
2 + a2T

1
2

+ bT 2 (2.68)

where in the residual term (accompanied by the standard Fermi-liquid T 2 behavior) σ0 refers to the
Drude conductivity, a1T

P
2 accounts for weak localization in three dimensions (P = 2: electron-electron

scattering, P = 3: electron-phonon scattering) and a2T
1
2 accounts for the “renormalized electron-

electron interaction” (REEI) representing the density of state correction at the Fermi energy. A similar
analysis has previously been performed by Fouchet et al. [144] for SVO layers of varying thicknesses
where it has been argued that mainly the REEI contribution is responsible for the mentioned low-T
upturn. The metal-insulator transition was proposed to be driven by electron-electron interactions
other than weak localization effects. Wang et al. [111] argue similarly with the assistance of a (not
shown) positive magneto resistance to rule out the importance of the weak localization term. Please
note that in this context, Mirjolet et al. [145] showcased that (parts of the) deviations from the perfect
T 2 Fermi liquid behavior could also stem from strong electron-phonon coupling.
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Irradiation induced weak localization (and thus a negative magneto resistance [146]), on the other
hand, was for example found to be the insulator driving force in a similar setup where the rare-earth
nickelates LaNiO3 and PrNiO3 were employed, see Ref. [147].

Going beyond this QCC regime, an additional fluence increase to 3.0 · 1015 and 3.5 · 1015 He / cm2

(pink and yellow, respectively) triggers a qualitative change in the resistivity profile, now displaying
an activated behavior with ∂ρ/∂T < 0 throughout. Notably, the saturation value, ρ(T → 0), between
2.5 · 1015 and 3.0 · 1015 He / cm2 increases tenfold, suggesting an abrupt metal-to-insulator transition.
Similar transitions have been observed in related perovskite setups [125, 131] as well.

2.3.2.2 Tuning the crystal fields

While the authors of the study referenced above [111] performed DFT+DMFT calculations and
attributed the samples’ tendency to turn insulating to electronic correlations, they did not stabilize
insulating solutions in their simulations. In this Section, we will provide a possible perspective for the
hitherto elusive, correlation driven mechanism responsible for the observed trends in samples with
O(100) layers. The interpretation of actual, thin films O(1 − 10) is a more complex endeavor, which
we are going to embark on in Section 2.3.3.

The major simplification that arises when modelling ≥ 50 layers is that, to good approxima-
tion, the crystal can be considered in its (strained) bulk state [144]. Using the PBE [23] exchange-
correlation potential, we find aSrVO3 = 3.85Å and aSrTiO3 = 3.95Å to be the energetically most
optimal bulk values.9 Then, locking the in-plane lattice to the SrTiO3 substrate a = b = 3.95Å we
reduce the degrees of freedom of the system, assuming the tetrahedral symmetry is maintained and
no bond distortions emerge (through, e.g., VO6 octahedron rotations). This allows us, in principle,
to perform a full parameter scan of the system by only having to vary the out-of-plane lattice length.
The localized t2g basis provides a first gauge for the underlying electronic structure. Besides the
relevant (orbital-dependent) band widths W , we will mainly focus on the engineered crystal-field
splitting (cfs)

∆cfs = Exz/yz − Exy (2.69)

as the difference of the local orbital i ∈ {xy, xz, yz} energy levels, captured through the diagonal part
of the Wannier Hamiltonian Hk.10

Ei =
,

k
hk

ii (2.70)

The result of a c-axis scan is illustrated in Fig. 2.14. At a = b = c (solid vertical line), cubic
9 We employ a setup identical to that in Sec. 2.2: The multi-orbital basis is constructed via maximally localized
Wannier function projected on the three vanadium t2g orbitals.
10 The local energy level can be also obtained directly through the density of states: ε(R = 0) =

-
k εk =-

k

�
dε εδ(ε − εk) =

�
dε εN(ε).
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Figure 2.14: Crystal-field splitting (red line, left y-axis) and band widths of the xy and xz/yz
orbitals (blue and green lines, right y-axis) of the deformed SrVO3 unit cell. The in plane lattice
constant is constrained to a = b = 3.95Å of the substrate while the perpendicular c axis is varied.
For c < 3.95Å the xy-orbital is energetically favored (∆cfs > 0), for c > 3.95Å the xz/yz-orbitals
are favored (∆cfs < 0).

symmetry is retained, resulting in local orbital equivalence (Wxz/yz = Wxy) and a vanishing crystal
field splitting ∆cfs ≡ 0. This artificial increase to the STO volume results, through decreased orbital
overlap, in a decreased kinetic energy, Wa=3.95Å = 2.17eV, compared to the base case of bulk SrVO3:
Wa=3.85Å = 2.42eV in Sec. 2.2. Energetically optimizing the volume naturally breaks this symmetry
establishing a tetragonal lattice with a compressed out-of-plane lattice of c = 3.81Å causing a finite
cfs of ∆cfs = +120meV to develop (see vertical, dashed line in Fig. 2.14). In this equilibrium, the in-
plane tensile straining is compensated by an increased out-of-plane xz/yz orbital overlap, increasing
their intra-band hopping amplitudes. This distortion then results in a joint band width increase of
both the xy and xz/yz orbital to Wxy = 2.22eV and Wxz/yz = 2.36eV, respectively. As expected, the
xz/yz band width is more sensitive to c-axis manipulation than the xy band width. On the opposite
end, the effects are reversed: Expanding the out-of-plane axis against its equilibrium tendency results
in an positive crystal field splitting, now energetically favoring the xz/yz orbitals. Further elongating
the vanadium-vanadium bonds away from equilibrium, both band widths decrease in value.

We summarize these changes in more detail in Fig. 2.15 where we plot the full band structure
on a tetragonal high-symmetry path. For the selected examples, the c = 3.65Å, c = 3.95Å, and
c = 4.10Å structures, we find the in-plane range Γ-X-M-Γ to be virtually unaffected. Nonetheless,
the Γ-degeneracy is lifted, and the Fermi surface pocket surrounding the Γ-point is slightly modified.
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Figure 2.15: Band structure comparison of c = 3.65Å (left), c = 3.95Å (middle) and c =
4.10Å (right). Naturally, the majority of the changes occur in the kz direction (k-path along Γ-
A-R-Z-Γ) due to the changes to the out-of-plane orbital hybridization, affecting mostly unoccupied
states. The local levels Exy (blue) and Exz/yz (green) are marked accordingly and showcase the
reversal of the crystal-field splitting.

Most of the structural changes are reflected in the unoccupied states for kz > 0: the xz/yz orbital
compression (elongation) widens (narrows) the dispersion by roughly 20% (10%) for the shown cases
with respect to the cubic case c = 3.95Å.

2.3.2.3 Stabilizing the Mott insulator

In the next step we transition to a dynamical mean-field theory treatment of these c-axis distorted
structures. In order to stay consistent with Sec. 2.2, and for the sake of simplicity, we avoid any
changes to the interaction parameters of the DMFT setup which remain in the Kanamori parametriza-
tion at U = 5eV, J = 0.75eV and U ′ = 3.5eV, designed for SVO’s bulk form. The uni-axial lattice
deformation in principle modifies both the size of on-site and exchange terms [148], and the symmetry
of the interaction parameters connected to the crystal symmetries, i.e. Uxy,xy,xy,xy � Uxz,xz,xz,xz =
Uyz,yz,yz,yz, see, e.g., the supplementary material of Ref. [86]. In this Section we forgo an explicit
analysis of these types of influences. If introduced, we expect only minor quantitative differences to
occur in the DMFT phase diagram.

First, we perform a DMFT c-axis scan at fixed room temperature T = 290K (β = 40eV−1) and
illustrate the resulting orbital occupations in Fig. 2.16. Crucially, we are able to stabilize a metallic
solutions for all considered c-axis values, when initializing the simulations with a metallic starting
point (here Σ = 0). Corresponding to the sign of the crystal-field splitting, the system naturally prefers
occupying the lower-lying energy level(s) resulting in a orbital polarization mirroring the crystal-field.
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Figure 2.16: Orbital and spin resolved DMFT occupations at room temperature (T = 290K –
β = 40eV−1). The sudden jump in orbital polarization signals the transition to polarized, insulating
solutions. In this parameter regime DMFT, starting from the non-interacting solution, always
converges onto the metallic branch. The insulating branches have been obtained by “artificially”
stabilizing the Mott insulator for an increased interaction U = 6eV (J = 0.75eV, U ′ = 4.5eV). Once
obtained we reduced the interaction, step-by-step to return to the standard bulk values U = 5eV
(J = 0.75eV, U ′ = 3.5eV). The dashed (solid) vertical line represents the energetically optimum
(cubic) clattice value for the in-plane a = b = 3.95Å.

Moving away from the cubic c = 3.95Å (ni,σ = 1/6), we find an almost perfect linear variation of
the occupations with c-axis strain. We theorize that this linear dependence results from the interplay
of the crystal-field splitting and the band widths: The faster-than-linear increase (decrease) of ∆cfs

in the compressed (expanded) regime, is counterbalanced with a simultaneous increase (decrease) of
orbital band widths, see Fig. 2.14.

Once metallicity is established in the system, we find that c-axis manipulation is unable to trigger
a transition into an insulating solution, i.e. for the given temperature we are effectively locked onto
the linear occupation branch. This observation might be the reason why the previously performed
calculations [111] were only able to find this metallic branch. Critically, compressing or expanding
the structure beyond specific thresholds, we find that the distorted crystal is capable of supporting an
insulating solution, marked by lighter colors in Fig. 2.16. The regime where multiple solutions exist
for the same input parameters defines a hysteresis, i.e. a first order phase transition occurs. In order to
overpower the metallic solution we resorted to a technical “trick”, based on the inevitability of a Mott
insulating state in integer filled systems above a finite critical interaction [113]. We find that, U ≥ 6eV
(U ′ = 4.5eV) is sufficient to trigger the Mott insulator for c ≤ 3.85Å and c ≥ 4.00Å, irrespective of
the DMFT starting point. Once established, the interaction parameters of these auxiliary, insulating



Chapter 2.3: Triggering the Mott transition 45

solutions are then brought back to the values chosen for the bulk system by reducing U , step-by-
step U = 6.0eV→ 5.9eV→. . . → 5.0eV with each intermediate step representing a fully converged
DMFT solution. The results of this procedure are orbitally polarized Mott insulators, marked by the
separated branches in Fig. 2.16 that deviate from the linear behavior of ni vs. c.

Within DMFT, these Mott insulating solutions represent the extreme case of a quasi-particle
renormalization in the Fermi liquid picture: Z = 0, see Section 2.2.3: The quasi-particle peak of the
three peak structure, see Fig. 2.10, breaks down, “distorting” the spectrum which now only consists
of a lower and upper Hubbard band, separated by a (spectral) gap ∆. Without the presence of weight
at the Fermi level, a finite energy ε is required to add or remove an electron, i.e. the (electron) system
is insulating. From the view of the local impurity, this feat is only achievable by a suppression of
the hybridization function ∆, connecting the local site to the (self-consistently determined) bath.11

Simultaneously, the self-energy must push away the remaining (non-interacting) weight around the
Fermi level for a gap to be opened: In a half-filled, one-band model this is achieved by a diverging,
imaginary part of the self-energy, i.e. ℑΣ(iνn → 0+) → −∞ [64]. In realistic multi-orbital systems,
as is the case in this Section, the situation is more nuanced: through the interplay of the orbitals
spectral weight may be shifted by the (real part of the) self-energy. In turn, the imaginary part may
still behave Fermi-liquid-esque, see Eq. (2.56), even in the Mott insulating state. Naturally, here,
extracted scattering rates Γ and quasi-particle weights Z via the low-energy Fermi-liquid expansion
are no longer meaningful.

The (impurity) characteristics of the orbitally polarized Mott insulators at c = 3.65Å and c =
4.10Å are illustrated in Fig. 2.17a and Fig. 2.17b (right column), respectively, where we show a side-
by-side comparison with the coexisting, metallic solutions (left column). In the metallic solutions
the Green’s function G and self-energy Σ behaves similar to the cubic, bulk case, see Fig. 2.9. The
finite hybridization at the Fermi level ℑ∆(iνn → 0+) > 0 leads to a metallic Green’s function
−ℑG(iνn → 0+) > 0 and a Fermi-liquid signature in the (imaginary part of the) self-energy. Contrary
to the bulk case, the orbital degeneracy is lifted and a slight band shift via the real part of the self-
energy occurs. In the insulator, on the other hand, the imaginary part of the Green’s function G

and the hybridization function ∆ clearly turn to 0 when extrapolated towards iνn → 0+. Even
though the Fermi liquid signature in ℑΣ holds, the cfs-enforced orbital separation in ℜΣ triggers
the Mott insulator. Here a clear distinction occurs between the insulating solutions: The self-energy
shift is restricted to the energetically lower lying orbital(s): xy-band in c = 3.65Å (blue) and the
xz/yz-band in c = 4.10Å (green). Let us note that the commonly referenced “effective crystal-
11 A single impurity Anderson model with finite hybridization will always lead to a metallic spectral function, irre-
spective of the interaction strength U . In this regard, the remaining quasi-particle weight Z = 0+ of a (metallic)
DMFT spectral function, at an interaction slightly below the Mott transition U < Uc, can be viewed as the Kondo
resonance of the underlying impurity, see Section 3.1.
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field splitting” ∆eff = ∆cfs + ℜΣxz/yz(iνn → 0) − ℜΣxy(iνn → 0) [149] can only be used as a
proxy for the Mott insulating phase. Here, the sign of ∆cfs does not coincide with its correction
ℜΣxz/yz(iνn → 0) − ℜΣxy(iνn → 0) establishing the importance of the frequency dependence of
ℜΣ.12

In the compressed structure (c ≤ 3.66Å) we find a state closely resembling the canonical half-
filled one-orbital Mott insulator, hosted by the xy-orbital nxy,σ ⪅ 0.5. In the expanded structure
(c ≥ 4.07Å) we find the system to resemble an ideal two-orbital, quarter filled Mott insulator with
nxz,σ = nyz,σ ⪅ 0.25. On these newly formed branches, see Fig. 2.16, the finite crystal field splitting
is sufficiently large for the stabilization (via the above procedure) of an orbitally polarized DMFT
self-energy. With this stabilized polarization the DMFT is capable of an almost complete occupation
redistribution towards the lower lying orbital(s). The corresponding orbital-resolved spectral func-
tions are illustrated in Fig. 2.18, where for the chosen c-axis values of c = 3.65Å and c = 4.10Å we
find a spectral gap of ∆DMFT = 350meV and ∆DMFT = 250meV, respectively. These are uncharac-
teristically small gaps for Mott insulator where one would typically expect ∆DMFT ∼ U . Even in the
heavily polarized solution, the underlying orbital fluctuations (whose energetic levels are only sepa-
rated minimally in DFT) drive the system towards metallicity when compared to a strict one-band
setup. Furthermore we find that once the coherent, insulating state has been established in either the
compressed (c < 3.95Å) or expanded structure (c > 3.95Å), the DMFT gap ∆DMFT is highly tunable
as it scales linearly with the underlying cfs: ∆DMFT ∝ |∆cfs| (not shown). Whereas the smallest,
expanded structure (c = 4.06Å) leads to an almost vanishingly small gap ∆DMFT = O(10)meV, the
largest, expanded structure (c = 3.66Å) results in ∆DMFT ≈ 300meV (not shown). Due to the dif-
ficulties involving of stabilization of the compressed Mott insulator, we suspect that the insulating
branch at c < 3.95Å, see Fig. 2.16, could possibly extend to a larger c-threshold, beyond c = 3.66Å at
presented T = 290K. Following the observed, linear dependence of ∆DMFT ∝ |∆cfs|, an insulating
solution with a vanishingly small gap could possibly still exist beyond c = 3.70Å.

Similar orbital effects occur in LaTiO3 (Ti with nominal d1 filling) where due to the inter-orbital
fluctuations at the small crystal-field (3 t2g → a1g, 2 degenerate eg through a GdFeO3 distortion),
the observed band gap remains quite small: ∆ = 0.2eV [150].

12 The orbital polarization in the (real part of the) hybridization function ∆ is less important. In the insulating
solutions ℜ∆xz/yz(iνn → 0) − ℜ∆xy(iνn → 0) is an order of magnitude smaller than its self-energy counterpart (not
shown).
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Figure 2.17: Orbital resolved imaginary parts of the (impurity) Green’s function ℑG, imag-
inary parts of the hybridization function ℑ∆ and self-energies Σ of the two coexisting DMFT
solutions (left: metallic, right: insulating) for (a) c = 3.65Å and (b) c = 4.10Å at room tempera-
ture T = 290K. The insulating solutions (−ℑG(iνn → 0+) → 0) show the expected suppression of
the hybridization function at the Fermi level (ℑ∆(iνn → 0+) → 0) and a distinct enhancement of
the cfs-induced orbital polarization in the real-part of the self-energy: |ℜΣxy − ℜΣxz/yz|insulating ≫
|ℜΣxy − ℜΣxz/yz|metallic.



48

−3 −2 −1 0 1 2 3
ω [eV]

0.0

0.2

0.4

0.6

0.8

A(
ω
)[
eV

−1
]

nmetxy,σ=0.283
nmetxz/yz,σ=0.109
n insxy,σ=0.494

n insxz/yz,σ=0.003

c=3.65Å
xy (met)
xz/yz (met)
xy (ins)
xz/yz (ins)

−3 −2 −1 0 1 2 3
ω [eV]

0.0

0.2

0.4

0.6

0.8
nmetxy,σ=0.118

nmetxz/yz,σ=0.191
n insxy,σ=0.047

n insxz/yz,σ=0.226

c=4.10Å

Figure 2.18: Orbital resolved DMFT spectral functions in the coexistence region of uniaxially
distorted bulk SrVO3 with an in-plane lock to a = b = 3.95Å. We compare the metallic and
insulating solutions in the compressed (left: c = 3.65Å) end expanded (right: c = 4.10Å) structure
at room temperature T = 290K. The insulating solutions, with the spectral gap marked in gray,
are characterized by a half-filled (nxy,σ ≈ 0.5) and quarter-filled (nxz/yz,σ ≈ 0.25) Mott insulator
originating from the xy and xz/yz orbital(s), respectively.

2.3.2.4 Crystal-field dichotomy

To further analyze the DMFT solutions we now study the effect of temperature. This process is
illustrated in Fig. 2.19 in the form of orbital occupations, where, starting from the insulating /
metallic branch at room temperature T = 290K we gradually increase the temperature. Each point
represents a converged DMFT solution whose corresponding (total) spectral function is illustrated in
Fig. 2.20 and Fig. 2.21, respectively.

Starting off with the compressed structure (c = 3.65Å): The insulating solution is found to be
stable up to T = 390K, above which the orbital polarization can no longer be maintained. Through
increased thermal fluctuations, metallicity is introduced into the DMFT cycle, abruptly collapsing the
insulating solution. Similarly to the previous c-axis scan, once this metallic solution is established, the
system remains “locked” onto the metallic temperature branch. This is confirmed by starting from a
high-temperature, metallic solution and cooling the system into the coexistence region (see arrows).
Once the system is metallic, further temperature increase then only leads to a minor softening of the
three-peak structure (loss of features in the quasi-particle peak), see Fig. 2.20, and a slight variation
of the orbital occupation. Cooling on the metallic branch leads to a reduction in orbital polarization
nxy,σ −nxz/yz,σ. This is in contrast to the insulating branch, where, once the polarized Mott insulator
is established, further cooling pushes the system towards stronger orbital polarization, eventually
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Figure 2.19: Orbital and temperature resolved DMFT occupations of the c-axis compressed struc-
ture (left: c = 3.65Å) and expanded structure (right: c = 4.10Å). The lines are the result of a
step-by-step increase of the temperature starting from either the insulating or metallic solution (see
arrows). The high-temperature slopes indicate that cooling stabilizes a low-temperature metallic
solution for c = 3.65Å and an insulating solution for c = 4.10Å. The abrupt drop of orbital polar-
ization for c = 3.65Å highlights the difficult-to-stabilize insulating branch.

yielding a fully fledged, half-filled xy-orbital: limT →0 nxy,σ(T ) = 0.5.

The expanded structure (c = 4.10Å) on the other hand exhibits the opposite temperature behavior
to the compressed structure. Both metallic and insulating solutions remain intact up to T = 570K.
Beyond T = 700K the two branches recombine to a single insulating solution with residual weight
around the Fermi level, a so-called bad insulator, see Fig. 2.21. The linear behavior in the orbital oc-
cupation, previously observed for the metal, now occurs for the insulating branch instead. We verified
that cooling from this high temperature solution maintains the bad insulator, eventually stabilizing
the spectral gap of the Mott insulator. Akin to the polarized insulator found at c = 3.65Å, the orbital
polarization eventually yields a complete depopulation of lower lying orbital for T → 0. Here, the
electron is now equally distributed in the quarter filled xz/yz orbitals with limT →0 nxz/yz,σ(T ) = 0.25,
see the slope in Fig. 2.19. Contrary to the compressed system, here the metallic branch is the odd
one out: heating the system beyond the critical threshold temperature (T ≈ 650K), the quasi-particle
peak suddenly collapses, its weight being distributed to the two satellite Hubbard bands.

From these high temperature characteristics we can now easily infer the behavior when varying
the c-axis at elevated temperatures, comparable to those used in the epitaxial growth process. The
hysteresis branches, appearing at lower temperatures in Fig. 2.16 disappear at higher temperatures,
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Figure 2.20: Spectral functions A(ω) for the two branches of the compressed structure c =
3.65Å above T = 290K, corresponding to the orbital occupations in the left panel of Fig. 2.19. Top:
metallic branch. Bottom: insulating branch. The line color indicates the temperature (color map
– red: hot, blue: cold). Cooling the system from the high-temperature solution (red) the system
maintains the well-formed three-peak structure on the metallic branch (as in the top panel). The
onset of the insulating solution corresponds to the temperature at which an orbital polarization can
be (forcefully) generated within DMFT.

eventually resulting in a monotonous c-axis dependence. All compressed structures in the considered
range (3.60Å< c < 3.95Å) should result in a coherent metallic Fermi liquid solution. The expanded
structures on the other hand will at some critical c-axis threshold experience a continuous crossover
from this metallic solution to the showcased bad insulator. This behavior is quantitatively reproduced
in the intermediate temperature scan at T = 770K (β = 15eV−1) in Fig. 2.22a, where we showcase
the orbital-resolved occupations ni,σ, spectral functions A(ω), and the latter’s value at the Fermi level
A(ω = 0).
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Figure 2.21: Spectral function A(ω) for the two branches of the expanded structure c =
4.10Å above T = 290K, corresponding to the orbital occupations in the right panel of Fig. 2.19.
Top: metallic branch. Bottom: insulating branch. Same color coding as Fig. 2.20. Cooling the
system from the high temperature “bad insulator” solution (red) leads to a coherent Mott insulator
(insulating branch). Contrary to the compressed structure, the metallic solution is now the one
that cannot be obtained via a temperature variation.

The cross-over to the high-temperature insulating solution is accompanied by a rather abrupt
quasi-particle destruction. Assuming we are still above the critical end-point (the location of which
will be estimated below), the transition in A(ω = 0) remains continuous. Despite the smooth orbital
redistribution over the full c-axis variation, the quasi-particle peak is destructed almost instanta-
neously above c = 4.01Å, see inset of Fig. 2.22a. Surprisingly, at these elevated temperature the
threshold for the lattice expansion is smaller than for the coexistence region at room temperature
(c = 4.06Å), see Fig. 2.16. Evidently, we find distinct differences when comparing to the metal-
insulator transition of the half-filled one-band Hubbard model, see Fig. 2.2.
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Figure 2.22: (a) Intermediate temperature (β = 15eV−1 – T = 770K) and (b) high temperature
(β = 10eV−1 – T = 1160K) spectral function scan including orbital occupations (left inset). The
transition of the spectral function at the Fermi level A(ω = 0) is plotted in the right inset. At
T = 770K, owing to the orbital redistribution, the system undergoes a minor quasi-particle peak
evolution, but stays firmly metallic up to c = 4.00Å. Beyond, an abrupt metal-insulator transition
occurs, transforming the system into a thermally activated insulator (bad insulator). The drop
in spectral weight occurs at crystal-field values between ∆cfs = −33meV and ∆cfs = −40meV.
A similar feature is missing in the compressed structure c < 3.95Å. At T = 1160K, the system
undergoes a similar, however much more gradual transition from metal (c ≤ 3.90Å) via bad metal
(3.90Å ≤ c ≤ 4.0Å) to bad insulator c ≥ 4.0Å. Whereas the size of the quasi-particle peak is smaller
at T = 1160K, the values at the Fermi level are comparable to T = 770K.
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In the case of distorted SrVO3, the crystal-field splitting and the associated lifting of degeneracy
plays the central role while changes in the band width are merely auxiliary side effects. Above the
positive critical cfs, found at surprisingly small values ∆cfs ≈ −40meV, the three orbitals destabilize
into an effective two-orbital system. In this subsystem, the interaction now effectively acts on two
bands, reducing the critical Uc necessary to trigger the insulator transition.13 Let us note that this
type of mechanism has already been studied for symmetric two-band models in Ref. [151] where
a similar, direct transition from metal to orbitally polarized insulator was observed for small cfs.
Our setup hence generalizes these observation to the case of t2g orbitals that are more commonly
encountered in correlated materials. While a connection to the two-band model is not surprising, the
way this connection is formed, however is.

Let us emphasize again, that the c-axis compressed structure lacks this high-temperature insulator
phase, i.e. the metal-insulator coexistence region has a critical upper temperature. Furthermore the
insulating solution in this coexistence region at room temperature requires a cfs that is roughly three
times larger compared to its expanded counterpart: ∆cfs(c = 3.65Å) = +120meV, ∆cfs(c = 4.10Å) =
−40meV. To some extent, the tendency to turn metallic is brought upon by the band width increase
of the xz/yz orbitals, as they need to be depopulated in order to enforce the polarization. From
this viewpoint, one could argue that the polarization process becomes easier the fewer bands have
to be depopulated, i.e. 3 → 1 orbital (compressed) is more difficult to achieve than 3 → 2 orbitals
(expanded). The resulting, strong polarization is, in this sense misleading, see Fig. 2.19. Despite an
orbital polarization nearly doubling the size of the expanded structure (c = 3.65Å: nxy,σ − nxz/yz,σ ≈
0.5, c = 4.10Å: nxz/yz,σ − nxy,σ ≈ 0.25), the insulating solution is quite fragile. In this context, an
experimental validation may be adequate: Applying uniaxial pressure onto a simple SrVO3 sample
could potentially trigger this insulating solution. Assuming one is able reach the far end of the
hysteresis, see Fig. 2.16, and assuming the DMFT solution thereafter is insulating, such a pressure
experiment would provide direct access to the underlying crystal-field mechanism. Please note that,
while it is clear that for c > 4.15Å the hysteresis will collapse onto an insulating solution, it is a priori
not clear, whether c ≤ 3.6Å will do the same. The increased xy band width of the latter may lead to
a parameter regime where an insulating solution is not viable.

Finally, the first signs of the crystal field dichotomy can already be seen in the high temperature
regime T = 1160K, see Fig. 2.22b. We find the identical, linear behavior of the orbital occupations (see
inset), however, the transition from metal to insulator is now completely smooth. At this temperature
the compressed structures c < 3.95Å still support a firmly metallic solution. Due to the increased
thermal fluctuations, the quasi-particle peak is necessarily slightly suppressed and the Hubbard bands

13 In a degenerate n orbital system with 1 electron per site the critical interaction strengths scales like Uc(n) ∝√
n Uc(n = 1) [113].
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are slightly more broadened. Upon changing the sign of the crystal-field splitting (c ≥ 3.95Å) the
system quickly transitions into an incoherent (bad) insulator. Comparing the evolution of the spectral
function at the Fermi level A(ω = 0) between Fig. 2.22a and Fig. 2.22b, we find an intriguing
temperature dependence. Cooling the expanded structures (c ≥ 3.95Å) a sudden c-value threshold
appears that clearly separates the two emerging regimes. As the band widths showcase only a minor
variation around c = 4.00Å (and the on-site interaction U remains constant throughout), we can
safely conclude that the cfs is the driving force of this behavior.

2.3.2.5 Orbital Widom line

In order to further scrutinize the cfs driving force, relevant for the experimental comparison, we first
illustrate the detailed spectral function evolution along the transition at T = 770K in Fig. 2.23.
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Figure 2.23: Detailed spectral function evolution across the metal-insulator transition at T = 770K
for a step size of ∆c = 0.01Å. Beyond a specific cfs threshold, the metallic solution abruptly
collapses into a bad metal solution (minor quasi particle peak remains). In this regime, the spectral
function slowly transforms where beyond c ≥ 4.06Å it can be interpreted as bad insulator. The best
characterization of this transition is done with either the curvature of the spectral function around
the Fermi level ω = 0 (see inset) or the absence of a local maximum near the Fermi level.

Each spectral function is now separated by a much smaller c-axis step size of ∆c = 0.01Å. We find
that the abrupt drop of the spectral weight at the Fermi level (bad metal: c = 4.01Å) is predated by a
slight suppression of the quasi particle peak at c = 4.00Å. The bad metal regime can be characterized
by an intact, however strongly suppressed, quasi particle peak. Increasing the c-axis further, the local
maximum of the quasi-particle peak is slowly transformed (see zoomed inset) into a local minimum
beyond c = 4.06Å the spectral function, commonly referred to as bad insulator in the literature. The
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quasi particle peak vanishes and is fully transformed into a thermally filled, insulating gap with a
finite A(ω = 0) > 0. Let us note that the marked transition between bad metal (c = 4.05Å) and bad
insulator (c = 4.06Å) is only meant as a guide to the eye. A hard cut-off parameter is difficult to
pinpoint for these non particle-hole symmetric spectral functions.

Cooling the sample, we find the cfs-driven transition to become even sharper, see Fig. 2.24 where
besides the previous T = 770K (black) we also showcase T = 680K (red) and T = 610K (blue).
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Figure 2.24: Evolution of the spectral function along the metal to bad metal / insulator transition
c = 4.00 → 4.05Å (a-f). We illustrate the transition for the temperatures T = 770K, T = 680K and
T = 610K. The corresponding values on the Fermi level A(ω = 0) and the size of the quasi particle
peak max[A(ω)|+0.5eV

−0.5eV] are plotted in panels (g) and (i), respectively. Cooling the system boosts the
quasi-particle peak, for which a larger crystal-field splitting (larger c values) is necessary to turn
the system insulating. The transition is characterized by a sudden change in orbital occupation
nxy,σ, see panel (h) and the resulting maximum of the (symmetric) numerical derivative thereof in
panel (j). Further, the metal-insulator transition is accompanied by a drop-off of the total number of
double occupancies (panel k) and an enhancement of the electronic scattering rate (panel l). For the
necessary precision within DMFT, the total electron occupation is converged to n = 1.000 ± 0.001.
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Besides the spectral function evolution (panels a-f) we show the spectral function at the Fermi level
(panel g), the size of the quasi-particle peak (panel i), the xz orbital occupation (panel h), its derivative
with respect to the c-axis change (panel j), the total number of double occupancies

-
ij

�
ĉ†

i↑ĉi↑ĉ†
j↓ĉj↓

�
(i, j ∈ {xy, xz, yz}) (panel k), as well as the extracted electronic scattering rate Γ = −ℑΣ(iνn → 0+),
see Eq. (2.58a), in panel l.

Overall, cooling leads to an enhancement of the size of the quasi-particle peak with the value
at the Fermi level being hardly affected. Through this stronger metallicity, the system is more
resistant against the lattice deformation: a larger crystal-field splitting is necessary to trigger the
insulating transition at lower temperatures. The drop of the quasi-particle is evidently accompa-
nied by a modification of the orbital occupation, see panel (h). While at T = 770K this is barely
visible in the numerical derivative, see panel (j), the magnitude of the jump is quickly enhanced at
slightly lower temperatures. Inspired by the “ordinary” Widom line in the doped Hubbard model
(maxµ 1/n2dn/dµ), see, e.g., Ref. [152], we are able to characterize the cfs-induced high temperature
insulator transition via

coWL(T ) : max
c

'
dnxz/yz,σ(T )

dc

�
≡ min

c


dnxy,σ(T )

dc

�
(2.71)

which we coin “orbital Widom line” (oWL). We theorize that this line originates from an anticipated
critical end-point of the (coherent) metal-insulator transition, see Fig. 2.25 for a sketch. Moving
towards this critical point via cooling, the size of the peak of dnxz/yz,σ

dc (T ) will quickly grow in size
until it eventually diverges exactly at the end-point. At and below the critical point the metal-
insulator transition is then instead characterized by the emergence of a sharp orbital polarization, see
Fig. 2.16, upholding a firm insulating solution.14 Across the oWL we, unsurprisingly, also find a drop-
off in the total number of double occupancies

-
ij⟨ĉ†

i↑ĉi↑ĉ†
j↓ĉj↓⟩, as well as a strong enhancement of the

electronic scattering rate Γ = −iℑΣ(iνn → 0+) in the xz band. For the latter we employed a third
order polynomial fit on the first 4 data points on the Matsubara axis and plotted the extrapolated
value at iνn → 0+ in Fig. 2.24l. Upon cooling, the drop in double occupancies becomes sharper and
larger in size, where below the (anticipated) critical point the continuous transition must eventually
transform into a kink, mirroring the sharp orbital polarization.

14 An alternative connection to the “ordinary” Widom line is in the signature of the charge channel, see Section
2.5.4: The characteristic electronic compressibility κe = 1/n2dn/dµ can be connected to the charge response χD(Q =
0, iωm = 0), showing a maximum in the doped one-band Hubbard model [153]. In our setting, crossing the orbital
Widom line, we find a maximum of the corresponding eigenvalue of the density channel λD(Q = 0, iωm = 0) which
is however, surprisingly, not reflected in any significant changes of the physical response χD(Q = 0, iωm = 0) (not
shown).
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2.3.2.6 Ordering instabilities

In the previously discussed DMFT solutions we viewed the systems from a purely local point of view
with an enforced SU(2) symmetry. Through the captured local correlations, both the renormalization
of the metallic solutions and the transition to Mott insulators can be captured adequately. Hitherto
ignored, however, were possible ordering instabilities. A priori we would expect that if such instabil-
ities were to exist in our presented data, they would emerge in regimes where anomalies exist. These
are oftentimes divergences in the density of states near the Fermi surface, Fermi surface nesting and
critical for our application: specific orbital configurations that are prone to ordering. In this Section
we briefly surmise (and evidence) such orderings. For a proper technical introduction please refer to
a later part of this thesis in Section 2.5.

In the compressed structure c = 3.65Å the insulating branch observed gives rise to conditions
that are similar to the strong-coupling, one-band Hubbard model, see Fig. 2.2. Superimposed on the
metal-insulator transition, the half-filled Hubbard model displays an antiferromagnetic (AF) phase
transition. For large interaction strengths, Heisenberg superexchange J can lead to processes that
lower the overall energy of the system by ∆E ∝ J = −t2/U if adjacent spins become anti-aligned.
On the lattice points i, corresponding to the lattice position Ri, instead of

(n↑, n↓) : (0.5, 0.5)i−1 → (0.5, 0.5)i → (0.5, 0.5)i+1 → . . .

the system will transition to

(n↑, n↓) : (1.0, 0.0)i−1 → (0.0, 1.0)i → (1.0, 0.1)i+1 → . . .

breaking spin symmetry and leading, e.g., to a checker-board spin order. As the hypercubic lattice
provides the ideal conditions for such alignments, non-local fluctuations begin to proliferate and com-
pete with thermal fluctuations, eventually leading to a second-order magnetic phase transition. Even
away from these idealized conditions, order may emerge. This “non-optimality” is then reflected in
a reduced transition temperature, i.e. a phase transition dome is formed as a function of a pertinent
control-parameter, such as orbital filling. The xy-orbital in the multi-orbital c = 3.65Å structure
represents such a case. The orbital polarization pushes this orbital into the vicinity of half-filling
where we expect antiferromagnetic fluctuations to form. Having analyzed the corresponding two-
particle susceptibilities (not shown) we can confirm these suspicions. Whereas the metallic solution
remains firmly non-magnetic (the largest magnetic response found is χM (Q = (π, π, 0)) = 10eV−1),
the insulating solution appears to be below the critical ordering temperature: Indeed, at room tem-
perature, T = 290K, the leading eigenvalues of the magnetic Bethe-Salpeter equation are found at
Q = (π, π, 0) and Q = (π, π, π) with λM

(π,π,0) = 1.62 and λM
(π,π,π) = 1.68, respectively (ordering sets in



58

for λ > 1). This effectively signals that the massive orbital polarization is necessarily accompanied
by an AF phase transition. Please note that we cannot discern which spin arrangement is preferable
as we cannot approach the phase transition from higher temperatures. Beyond T = 390K, the insu-
lating solution breaks down and only the metallic solution (without any sign of ordering) remains,
see Fig. 2.19.

In a similar vein the expanded structure (c = 4.10Å) provides a setting that is prone to so-called
orbital ordering, similarly promoted by superexchange. Here, the ordering stems, assuming only intra-
orbital hopping, from virtual hopping processes where the energy gain of roughly ∆E ∝ −t2/U ′ is
now proportional to the inter-orbital repulsion. Due to the c-axis elongation and the resulting crystal-
field splitting the orbital occupation is transferred from the xy orbital to the the xz/yz orbitals. Due
to the tetragonal symmetry they retain their local degeneracy, providing ideal conditions for order
[154]. This ordering tendency can already be observed on the metallic branch: despite being relatively
far away from the ideal condition, we find an eigenvalue of the density Bethe-Salpeter equation of
λD

(π,π,π) = 0.92 at room temperature T = 290K. Pushing the system insulating redistributes the
orbital occupation sufficiently to get close to nxz/yz,σ = 0.25. There we can evidence commensurate
ordering through the eigenvalue in the density channel λD

(π,π,π) = 1.5 which becomes larger than 1.
That is, the system will favor an alternating occupation xz and yz orbitals throughout the lattice.
Instead of

(nxz,σ, nyz,σ) : (0.25, 0.25)i−1 → (0.25, 0.25)i → (0.25, 0.25) : i + 1 → . . .

the system will transition to

(nxz,σ, nyz,σ) : (0.5, 0.0)i−1 → (0.0, 0.5)i → (0.5, 0.0)i+1 → . . .

where i, again, corresponds to the lattice position Ri and the alternation is generated along all three
directions, corresponding to Q = (π, π, π). Contrary to the manually suppressed AF order (via spin
symmetrization after each DMFT iteration), signatures of the orbital structure can already be seen
on the one-particle level of DMFT: For low enough temperatures and/or large enough (negative) cfs
(e.g., c = 4.45Å, T = 290K: not shown) the DMFT convergence fails. The orbital occupations (and
self-energy) try to break the (local) symmetry of the Hamiltonian, split asymmetrically and alternate
from iteration n to iteration n + 1, mimicking the order the system wants to, but cannot develop.
Strictly speaking, for this reason we were not able to continue the c-axis scan of Fig. 2.16 to larger c-
values and probe the other side of the indicated hysteresis. There, an explicit symmetry enforcement
of the xz/yz orbitals or a supercell setup would be necessary to converge the DMFT calculation into
its orbitally degenerate or orbitally ordered state, respectively.
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2.3.2.7 Validation to experiment

For the purpose of comparing our result to the experiment of Wang et al. [111], see Fig. 2.13, we restrict
ourselves to the analysis of the expanded structure. We combine the gained insight from DMFT into
a temperature vs. c lattice constant phase diagram, sketched in Fig. 2.25, where we highlight the
calculated parameter variations with gray lines and indicate the estimated phase boundaries. Please
note that the exact positions of latter have not been calculated explicitly. Thus, phase boundaries
are meant as guides to the eye.
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Figure 2.25: Phase diagram sketch of the expanded structure c > a = b = 3.95Å. At elevated tem-
perature, T = 1160K coherence is partially lost (path 1⃝: Fig. 2.22b) where a strong c-dependence
remains and the system smoothly transitions into a bad insulator solution. Below these tempera-
tures we find, at T = 770K (path 2⃝: Fig. 2.22a), a distinct transition from a paramagnetic metal to
a paramagnetic insulating, akin to the one-band Hubbard model. Here, however, the transition of
coherent to bad metal is enforced through the crystal-field splitting (cfs) and occurs rather abruptly.
In the fully coherent regime, at T = 290K (path 3⃝: Fig. 2.16), we find a clear metal-insulator tran-
sition (red, solid), accompanied by a wide coexistence region (red). Depending on the size of the
cfs we are able to enter the coherent metallic (path 4⃝: Fig. 2.26) and the coherent insulating (path
5⃝: Fig. 2.19 and Fig. 2.26) regime via cooling. In both the insulating and metallic regime, owing
to the vicinity of ideal quarter-filling orbital order eventually emerges (orange and purple dome,
respectively), i.e. a spontaneous breaking of the degeneracy of the xz/yz orbitals. Due to the en-
hanced orbital polarization, the ordering of the insulator necessarily occurs at higher temperatures.
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At large temperatures, thermal fluctuations suppress the formation of quasi-particle peaks result-
ing in a partial loss of coherence for all lattice constants c ≥ 3.95Å. This phenomenon is shown at
T = 1160K in Fig. 2.22b: path 1⃝. Note that this temperature is not yet sufficient enough to fully
destabilize the metallic solution for c < 3.95Å, where a modest quasi-particle peak remains. Cooling
the system to intermediate temperatures T = 770K, see Fig. 2.22a, gives rise to the first detectable,
distinctive regime caused by the crystal-field splitting: path 2⃝. Below a critical c = 4.00Å a coherent,
paramagnetic metal forms, displaying the characteristic three-peak structure. Beyond this threshold
(the orbital Widom line; black dashed), a different phase emerges: the quasi-particle peak collapses
giving way to, first, a bad metal, and, beyond, to a bad insulator solution. Within DMFT, this
cross-over is accompanied by a jump in the orbital occupation, through which we can define a critical
c-threshold, see Eq. (2.71).

Cooling further, we anticipate the orbital Widom line to end at a critical end-point (black square),
below which we find the opening of a wide metal-insulator coexistence region. There, the metallic
solution is valid up to surprisingly large c values: path 3⃝. We find two distinct transitions from
the established bad metal/insulator regions. Along path 4⃝ (c = 4.05Å, T = 770K → T = 290K)
the system changes from bad to coherent, paramagnetic metal whereas path 5⃝ (c = 4.10Å, T =
770K → T = 290K) illustrates the entrance into the coherent, insulating regime, cf. Fig. 2.19 and
Fig. 2.26. Once this coherent insulating solution has been established, further cooling naturally
stabilizes the accompanied orbital polarization.15 In turn, the slope of the transition line (red)
between the paramagnetic metal and the coexistence region must be positive. Eventually, in the
insulating state, orbital ordering emerges, breaking the local degeneracy of the xz/yz orbitals. The
shape of the orbitally ordered dome (orange, dashed) is also well founded: larger c-values result in
larger ∆cfs. The increased orbital polarization then pushes to the system closer to the “ideal” quarter-
filling, thus increasing the transition temperature. Please note that we have also theorized that in
the metallic regime of the coexistence region (bounded by the red, dashed line) we also expect orbital
order to set in eventually (λD = 0.92 for c = 4.10Å and T = 290K). Due to the reduced orbital
polarization in the metal, the transition temperature must necessarily be smaller compared to the
insulator, see the purple, dashed boundary.

Due to the hysteresis, the metal-insulator transition at zero temperature is intriguing: crossing the
coexistence region from small to large c, we theorize the persistence of a paramagnetic solution which
we expect to be maintained beyond c = 4.25Å. Due to the orbital order, a quantum critical point
(black square) may emerge. Crossing the coexistence region from large to small c we expect to find

15 In order to further characterize the stability of this behavior, a free energy comparison of the two coexisting solution,
similar to Ref. [155], would be adequate. At this moment, we unfortunately do not yet have access to this expression
within our employed impurity solver.
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a sudden transition from an orbitally polarized insulator to the orbitally unpolarized paramagnetic
metal. Please note that it is a priori not clear whether the orbital-ordering and the metal-insulator-
transition boundaries overlap.

Comparing this extracted phase diagram to the experimental data of Wang et al. [111] we find
overall reasonable agreement. The epitaxial growth process with helium irradiation, performed at
T > 900K, would put the sample close to the incoherent regime in our phase diagram (shaded gray).
According to our DMFT data, cooling the sample would then, depending on c, allow the stabilization
of both the paramagnetic metal and insulator regimes. Quantitatively, the c-axis scan at room
temperature (path 3⃝) reveals a hysteresis onset which is compatible with the 3.0 ·1015 (cexp = 4.03Å)
and 3.5 ·1015 He / cm2 fluence samples (cexp = 4.05Å) of Ref. [111]. The minor quantitative difference
is likely to stem from the DFT setup: Within PBE the lattice constant of SrTiO3 is aPBE

STO = 3.95Å.
This is a slight overestimation compared to the experimental value of aEXP

STO = 3.905Å. In order to
generate the same critical crystal-field splitting in the real sample, the expanded sample would need
a smaller crystal elongation compared to our calculations. This is evident in the smaller experimental
c-values necessary for the onset of an activated behavior in the transport data.

In these two samples with the largest applied fluence, a negative slope ∂ρ
∂T < 0 is observed in

experiment for T < 300K with a thermal activation behavior below T ⪅ 20K

ρ(T ) ∝ exp
� ∆

2kBT

%
(2.72)

with an extracted gap of ∆ = 6meV and ∆ = 20meV, respectively (fit not shown). Interestingly, this
fit can not be extended to larger temperatures. This is, in principle, contradictory to our extracted
DMFT phase diagram. Entering the insulating regime to the right side of the anticipated critical
point, e.g., at c = 4.10Å, the DMFT resistivity would certainly display a thermally activated behavior
up to temperatures where kBT ≈ ∆ (full coherent temperature range for c = 4.10Å). This dispar-
ity, however, could be explained via the effects of the implanted helium atoms and the vicinity to
the metal-insulator transition. The increased scattering, in combination with the almost vanishingly
small gap, could theoretically lead to a lifetime smearing of the spectral gap, that will dominate the
transport characteristic at elevated temperature T > 100K. In this scenario, the true activated behav-
ior (with potential resistivity saturation, see Section 3.4) would then only emerge at low temperatures
where the opened gap is smeared only by the broadening effects of the temperature. Additionally,
we cannot exclude that the cfs-driven DMFT gap has an inherent temperature dependence due to
the decreased inter-orbital fluctuations upon cooling. Please note that weak localization (WL) ef-
fects may also influence the conductivity. Despite having modelled the system as three dimensional,
in experiment there exist only a limited number of unit cells O(100). The “effective reduction to
two dimension”, combined with the orthogonal t2g orbitals, may promote WL effects, enhancing the
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resistivity and modifying its temperature profile.
The (small) size of the extracted gap ∆ = O(10)meV is in line with our expectations: Beyond

the cfs-threshold (metal-insulator transition or the orbital Widom line) arbitrarily small gaps may
be stabilized within DMFT as the DMFT spectral gap scales linearly with the underlying crystal-
field splitting ∆DMFT ∝ |∆cfs| (not shown). The evidenced gaps via the activated behavior of the
resisitivity, see Fig. 2.13d, are then likely caused by the vicinity of the metal-insulator transition, see
Fig. 2.25 (red, solid line).

Samples with less than 3 · 1015 He / cm2 fluence (cexp ≤ 4.00Å), instead exhibit Fermi liquid
behavior, ρ(T ) ∝ T 2, which is only interrupted at very low temperatures, interpreted as an enhanced
renormalized electron-electron interaction contribution [111]. Indeed, this transport data is congruent
with our DMFT phase diagram: Owing to the lattice-deformation induced crystal-field splitting, the
insulating solution exists only above a critical c-axis value. Too little fluence provides no access to
these cfs values, providing only a gateway into the metallic regime, i.e. Fermi liquid behavior emerges.
In this regime the variation of the fluence then mainly affects the static disorder in the system, and
thus the overall size of the resistivity, not its qualitative features.

To finalize this Section, we showcase the evolution of the spectral functions of the two characteristic
solutions, best describing the metallic and insulating samples, in Fig. 2.26. For both cases, the high
temperature solution at T = 770K stabilizes a thermally activated insulator which, upon cooling,
transforms into either a firm, paramagnetic metal (c = 4.05Å) or a coherent insulator (c = 4.10Å).
Adjusting for the SrTiO3 lattice mismatch between PBE and experiment provides us an almost
perfect, quantitative match of the relevant insulating gaps compared to Wang et al. [111].
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Figure 2.26: Spectral function evolution for c = 4.05Å (left) and c = 4.10Å (right) upon cooling.
Separated by the critical point, the former enters the coherent metallic regime while the latter enters
the insulating regime. These two paths correspond to path 4⃝ and path 5⃝, respectively in Fig. 2.25
and illustrate the cfs-induced metal-insulator transition observed by Wang et al. [111].
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2.3.3 Dimensionality reduction in thin films
2.3.3.1 Surface protection and metal-insulator transition

In this Section we transition from thick films, that we were able to effectively simulate with a (dis-
torted) bulk-like setup, to thin films consisting of only a few unit cells (uc). We consider the same
material combination as in the previous Section, i.e. SrVO3 and SrTiO3. Here, SrTiO3 is used both as
substrate as well as capping material to achieve a protection against the environment. This protection
is necessary once samples have to be moved out of the vacuum environment that is initially necessary
for controlled, high quality crystal growth. Without these protecting layers, the surface tends to oxi-
dize, apparent in the qualitative change of the core level spectroscopy signal of vanadium 2p shown
in Fig. 2.27, reproduced from Ref. [131]. If terminated with a VO2 layer, excess oxygen bonds with
the surface vanadium atoms, modifying their valence from 4+ to an inert 5+ noble gas configuration.
This in turn modifies the oxygen 2p states and therefore the photoemission core spectra. A consider-
able number of capping layers, O(10), is necessary to achieve full protection, as demonstrated by the
comparison of in situ and ex situ spectra in Fig. 2.27. For a detailed theoretical and experimental
discussion of the explicit effects of surface oxidization, please refer to Section 2.4.

Figure 2.27: Film protection via capping is necessary if the sample is transferred outside the
vacuum chamber. Given enough protection layers (left: none, middle: 4uc STO, right: 8uc STO) the
core level spectroscopy of the vanadium atom (V 2p) remains unchanged in and ex situ. [Reprinted
with permission from Philipp Scheiderer, PhD thesis: “Spectroscopy of Prototypical Thin Film
Mott Materials”, Universität Würzburg (2019)] [131]

Moving on to transport measurements, the sheet resistivity reveals an interesting thickness de-
pendence in Fig. 2.28: the 75uc sample exhibits Fermi liquid behavior, identical to the pristine films
from Section 2.3.2, see Fig. 2.13. Lowering the number of layers down to 12uc and 10uc, a low-
temperature upturn can be observed, akin to the radiation damaged samples, close to the insulator
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transition from the previous Section. Consequently, a minimum emerges at a characteristic tem-
perature that separates the Fermi liquid from the “quantum regime”, possibly characterizable by
Eq. (2.68). Here, the crossover temperature correlates with the number of layers instead of the irradi-
ation fluence. At 6uc and below, the resistivity profile qualitatively changes to a thermally activated
behavior ρ ∝ exp ( ∆

2kBT ), from which a gap size can be extracted. 6uc, 4uc, and 3uc correspond
to ∆ = 140meV, ∆ = 32meV, and ∆ = 1meV, respectively, see the Arrhenius fit in Fig. 2.28b.
Given that the irradiated bulk-like films exhibit a comparable behavior to these (protected) films

Figure 2.28: Sheet resistance measurements of various x uc thick SrVO3 samples on SrTiO3
substrate with surface capping. (a) Formation of the activated activated behavior below 6 unit cells.
(b) Arrhenius fit for the 3 uc sample. (c) Resistivity upturn below a global resistiviy minimum for
the 10 and 12 uc samples. (d) Fermi liquid behavior of the pristine 75 uc sample. [Reprinted with
permission from Philipp Scheiderer, PhD thesis: “Spectroscopy of Prototypical Thin Film Mott
Materials”, Universität Würzburg (2019)] [131]



Chapter 2.3: Triggering the Mott transition 65

with reduced thickness, it is natural to inquire whether the pertinent driver of the observed insula-
tor transition is identical. In this Section we will therefore analyze the effect of the dimensionality
reduction qualitatively. As the critical thickness of insulating films is in the single digit range, a bulk
description is no longer valid, requiring us to model the full heterostructure explicitly.

2.3.3.2 Heterostructure optimization

As starting point of the heterostructure modelling, we choose an inversion symmetric setup: x unit
cells of SrVO3 are wedged between m unit cells of SrTiO3 on both ends: (SrTiO3)m | (SrVO3)x |
(SrTiO3)m. This structure is padded with sufficient vacuum (≈ 10Å) in the z-direction to avoid
any periodicity-induced end-to-end hybridization within DFT. A single k-point in the non-periodic
z-direction is therefore sufficient to safely capture the two dimensional Brillouin zone. In order to
simulate the interfaces to the substrate and capping layers, we constrain the atoms of the outer most
SrTiO3 unit cells to their bulk positions.16 Given enough SrTiO3 layers, this adequately mimics
the transition to bulk. All other internal atomic positions are then fully force relaxed in order to
determine the energetically most optimal structure. As the outer unit cells, including their absolute
positions in the setup, are constrained, this merely corresponds to a local energy minimum. Indeed,
a scan through the total length cheterostructure in z-direction of the entire heterostructure is required to
find the global minimum.

An exemplary result of this optimization approach for the 5uc structure is illustrated in Fig. 2.29.
We find the typical quadratic energy vs. elongation dependence17 accompanied by a linear dependence
of the internal Vi-Vi±1 distances and the V-Ti interface spacing. The internal V-V distances at optimal
energy roughly correspond to the equilibrium value of bulk SrVO3 cV−V = 3.81Å, see Section 2.3.2,
whereas the V-Ti distance is close to the average of the SrTiO3 and the SrVO3 lattice constants
cV3−Ti = 3.90Å. Consequently, the resulting crystal-field splitting is in line with in-plane constrained
bulk, i.e., around 130meV. The interface vanadium atom V3 represents the only outlier which, due to
its less restricted positioning, experiences an orbital splitting only half the size of its neighbor. Once
an “internal bulk” can be established, changing the number of layers hardly affects the splitting, see
Table 2.2 where we compare the x = 1, 3, 5, 7 structures. In this context, x = 1 can be considered
as a special case where despite the large degeneracy splitting at the Gamma point, see Fig. 2.30, the
overall (k-integrated) crystal-field is quite small. From this point of view, it is apparent that, here,
the band-width effect must play a more dominant role.

16 This most outer SrTiO3 unit cell is terminated with SrO, see Fig. 2.29c. We checked in similar structures that the
switch to the TiO2 termination does not influence the band structure.
17 Let us note that in order to recover this dependence in WIEN2k, the atomic muffin-tin radii must be identical in the
different structures. In the default setup this is not the case, as they are adjusted to fill up the maximal available
space.
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Figure 2.29: Exemplary behavior of the global optimization of the capped 5uc SrVO3 structure:
(a) crystal structure, (b) internal atomic distances, (c) crystal-field splitting as a function of the
overall c-axis length of the heterostructure. The total energy (also plotted in (b) and (c)) showcases
the typical quadratic dependence (dashed line: fit via E ∝ E0 + (c − c)2) on the heterostructure
length. The crystal-field splitting and the internal atomic distances showcase perfect linear behavior
(colored, dashed lines). At the global energy minimum (vertical, gray line), the internal vanadium
atoms mirror the bulk case, see Sec. 2.3.2. Due to the less restrictive crystal environment, the
interface vanadium experiences a reduced crystal-field splitting.
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The Wannier-projected vanadium t2g band structures for these selected layer thicknesses are
illustrated in Fig. 2.30: lacking out-of-plane hopping, the x = 1 structure experiences the largest
band width effect, resulting in Wxz/yz = 1.2eV, half of the xy orbital. Adding additional layers
then provides an increasing number of xz/yz hopping in the z-direction, until eventually, the system
approaches the bulk regime. Please note that only in the infinite limit do we obtain momenta in
z-direction. For any finite number of layers the Brillouin zone remains restricted on the (ky,kz) plane
and showcases overlapping quantum well states. For the out-of-plane xz/yz orbitals, we find the band
widths W tabulated in Table 2.1, compared to W bulk

xz/yz = 2.35eV for the case of bulk constrained to
the in-plane SrTiO3 lattice parameters. The xy orbital on the other hand experiences only limited
dimensionality effects, maintaining W = 2.2eV for all x > 1.

sample thickness 1 3 5 7 bulk
Wxy [eV] 2.05 2.2 2.2 2.2 2.22

Wxz/yz [eV] 1.2 2.0 2.2 2.25 2.35

Table 2.1: Dimensionality induced band width effects of capped SrVO3 wedged between a SrTiO3
substrate and capping. The dimensionality reduction is naturally most prominent in the xz/yz
orbital whose band widths slowly approaches the corresponding bulk value for x → ∞. Bulk in this
case refers to the constrained equilibrium found at a = b = 3.95Å and c = 3.81Å.

sample thickness 1 3 5 7 atom
... 53 V4

... 56 121 V3
... 79 129 121 V2

∆cfs [meV] 20 129 129 118 V1
... 79 129 121 V2

... 56 121 V3
... 53 V4

Table 2.2: Crystal field splitting ∆cfs [meV] of the vanadium atoms Vi, cf. Fig. 2.29, in the
considered samples with x = 1, 3, 5, 7 thickness. Compared to the crystal field splitting at the energy
optimized (constrained) bulk (c=3.81Å, ∆cfs = 120meV), we see virtually no difference except at
the interface layers. (Note that for the x = 1 case, the singular SrVO3 in itself is the interface layer)
There, due to the less restricted positioning, the crystal field effects are less pronounced.
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Figure 2.30: Projected vanadium t2g band structure and its evolution for an increasing number
of SrVO3 layers. A direct band structure comparison to bulk is not helpful, as the (periodic) kz

information of bulk does not translate well to the thin film layer information purely on the kxy plane.
This effective “backfolding” results in the formation of quantum well states (x distinct energy levels
at Γ with an additional dispersion in kx/ky direction).

2.3.3.3 Multi impurity dynamical mean-field theory

Given these heterostructure low-energy models, our first goal is to determine whether the metal-
insulator transition, observed around 6uc, can be simulated in a realistic manner. For this purpose
the DMFT setup looks as follows: the projected, local Wannier basis will in principle contain all
possible orbital and site combinations. If ordered correctly, one can introduce an overarching structure
of the (periodically continued) supercell visualized in Fig. 2.29a, highlighted in Eq. (2.73) in color.
Due to the t2g orbital structure, intra-layer hopping will be mostly restricted to nearest neighbor,
intra-orbital (in-plane: xy ↔ xy, xz ↔ xz, yz ↔ yz) whereas inter-layer hopping will inherit the
out-of-plane hopping that was lost by the missing z-periodicity. Most notably, π-bonds will form
between xz/yz(Vi) ↔ xz/yz(Vi±1) and to some degree, miniscule δ-bonds between xy(Vi) ↔ xy(Vi±1).

Hk
wannier =
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Within DMFT, we will retain the purely on-site Coulomb repulsion, i.e. we apply the same
Kanamori parametrization for each considered vanadium site Vi of the supercell. This effectively
means, that we can simplify the multi impurity problem by sampling each impurity separately. Local
correlations are thus only generated within the intra-layer block, reflected in the self-energy structure
given in Eq. (2.74). Please note that the full structure of the Wannier Hamiltonian still enters into
the DMFT problem via the Dyson equation which integrates over kx and ky.

ΣDMFT
imp diagonal(iνn) =

ΣV1,V1
xy,xy ΣV1,V1

xy,xz ΣV1,V1
xy,yz 0 0 0 . . .

ΣV1,V1
xz,xy ΣV1,V1

xz,xz ΣV1,V1
xz,yz 0 0 0 . . .

ΣV1,V1
yz,xy ΣV1,V1

yz,xz ΣV1,V1
yz,yz 0 0 0 . . .

0 0 0 ΣV2,V2
xy,xy ΣV2,V2

xy,xz ΣV2,V2
xy,yz . . .

0 0 0 ΣV2,V2
xz,xy ΣV2,V2

xz,xz ΣV2,V2
xz,yz . . .

0 0 0 ΣV2,V2
yz,xy ΣV2,V2

yz,xz ΣV2,V2
yz,yz . . .

...
...

...
...

...
...

. . .




(iνn) (2.74)

Due to the orthogonality of the orbitals we can again, identical as in the bulk crystal, reduce the
CTQMC complexity further by assuming an orbital diagonal hybridization function.

ΣDMFT
orb diagonal(iνn) =


ΣVi,Vi

xy,xy ΣVi,Vi
xy,xz ΣVi,Vi

xy,yz

ΣVi,Vi
xz,xy ΣVi,Vi

xz,xz ΣVi,Vi
xz,yz

ΣVi,Vi
yz,xy ΣVi,Vi

yz,xz ΣVi,Vi
yz,yz

 (iνn) →


ΣVi,Vi

xy,xy 0 0
0 ΣVi,Vi

xz,xz 0
0 0 ΣVi,Vi

yz,yz

 (iνn) (2.75)

Starting off with the monolayer case x = 1 and using the previously employed interaction parame-
ters (U = 5eV), DMFT unequivocally stabilizes an insulating solution, see Fig. 2.31a. Indeed, we find
that, here, any initial starting point suffices to drive the system into becoming a Mott insulator. As
the out-of-plane hopping of the xz/yz orbitals are restricted by the SrTiO3 layers, they become fully
one-dimensional and their band width is reduced to Wxz/yz = 1.2eV. With the cfs playing no crucial
part in the setup (∆cfs = 20meV) we find a purely band width driven Mott insulating state. This is
confirmed by similar, out-of-equilibrium setups with larger or smaller total heterostructure lengths.
While the change in crystal-field splitting necessarily affects the resulting DMFT orbital occupation,
it has no defining influence on the insulating solution. Owing to the full dimensionality reduction,
2D orbital → 1D orbital, this behavior is exclusive to the monolayer case.

Larger heterostructures (x > 1) can be, by and large, compared to the compressed bulk structures
from Section 2.3.2. Therefore, contrary to the expanded structures, we will inherit the same type of
“hidden” metal-insulator transition. This insulating dome was neither accessible via a modification
of the c-axis, nor the temperature in the bulk. The heterostructure behaves similarly: Once a
(structurally optimized) x > 1 heterostructure is in a metallic state, it remains there unless artificially
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forced out of it. Naturally, to be able to analyze this possible insulating state, we are forced to apply
the previously employed “technical trick”: first, we stabilize insulating solutions via an enhanced
interaction strength where for all considered structures we found U = 6eV (J = 0.75eV, U ′ = 4.5eV)
to be sufficiently large. After this, we reduce the interaction parameters in a step-by-step fashion to
re-approach the bulk starting point (U = 5eV). The results of this process are listed in Table 2.3.
We find none of the larger heterostructures x > 1 to be able to support a stable Mott insulator for
the bulk interaction parameters. Instead, we find critical interactions Uc, below which the insulating
solution breaks down. This critical Uc gradually increases with the number of layers x.

sample thickness 1 3 5 7 bulk
Uc [eV] < 5.0 5.15 5.25 > 5.5 5.25 < Uc < 5.5

Table 2.3: Dimensionality induced critical interaction parameters, above which the orbitally polar-
ized, insulating solution of the (STO)m| (SVO)x| (STO)m heterostructure can be stabilized within
DMFT.

In this setup, an increasing number of layers x leads to larger average crystal-field splitting as the
inner most (x−2) layers contribute with a bulk-like ∆cfs ≈ 120meV, see Table 2.2. Consequently, the
increased critical interaction evidences the importance of band width changes in the dimensionality
reduction. Please note however, that these band width changes are still secondary to the main
driving force of the insulator, the crystal-field splitting. The critical interaction value is particularly
sensitive beyond 5uc where we find a jump from Uc = 5.25eV to Uc > 5.5eV. Interestingly, the critical
interaction for 7uc is larger than in the bulk (a = b = 3.95Å, c = 3.81Å). Due to the lack of interface
consideration, the bulk crystal is from a cfs as well as a general numerical point of view, much more
stable with respect to its insulating solution.

As pointed out earlier, in this type of fragile Mott solution, any introduction of metallicity will
immediately lead to a break down of the insulator and the convergence toward a Fermi liquid state for
all U values considered. DMFT calculations with multiple impurities in this respect are thus rather
difficult to maneuver, especially when tiny deviations in the setup or the DMFT cycle could collapse
the desired state. Furthermore, when moving to a multiple impurity basis, the double counting
correction becomes important18, adding an additional source of uncertainty.

Attempting to match the experimental data we now empirically choose U = 5.25eV and apply it to
all considered structures x = 1, 3, 5, 7. Through this interaction value we ensure that all structure x ≤
5 remain insulating. One can argue in favor of a slight increase in on-sight repulsion, as dimensionality
reduction is known to slightly enhance interaction values, as shown by cRPA calculations, see, e.g.,
18 For a single impurity t2g basis the double counting correction acts on all three orbitals identically, allowing us to
absorb it into the chemical potential.
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the supplementary information of Ref. [86]. The simulated spectral functions (fat lines: multiplied
with Fermi functions to mimic the photoemission signal, dashed lines: full spectral function) are
illustrated in Fig. 2.31a. The DMFT spectral gaps are surprisingly consistent with the extracted gaps
from the activated behavior of the resistivity measurements of Fig. 2.28. We find DMFT gaps of
∆x=1 = 400meV, ∆x=3 = 200meV, and ∆x=5 = 60meV.
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Figure 2.31: (a) Spectral functions A(ω) (dashed) and the corresponding theoretical PES signal
(A(ω) · fFD(ω)) of the considered heterostructures with thickness x = 1, 3, 5, 7. In these compressed
samples, the polarized, insulating solution can no longer be maintained in the 7uc sample for the
employed U = 5.25eV. There the system stabilizes strong Fermi-liquid features. (b) Soft X-ray
photoemission (PES) measurements for samples with thickness x = 5, 11, 50. In experiment, the
dimensionality induced metal-insulator transition is more gradual where the large lower Hubbard
band peak (around binding energy 1eV) might be influenced by oxygen vacancies. [Reprinted with
permission from Philipp Scheiderer, PhD thesis: “Spectroscopy of Prototypical Thin Film Mott
Materials”, Universität Würzburg (2019)] [131]

As these spectral functions are a summation of x × 3 analytic continuation, the lower Hubbard
band has only minimal features. Increasing the number of bands thus softens the spectrum. For
x = 5, due to the size of the gap ∆ ≈ 2kBT , we find a thermally filled gap at T = 290K. The
transition to the metallic solution at x = 7 is abrupt: Here, the insulating solution fully gives way to
a firmly developed three-peak spectrum, similar to bulk. In the experimental setup, see Fig. 2.31b, this
transition is found to be more gradual, where x ≫ 10 layers are necessary to form a quasi-particle peak
that rivals the size of the LHB.19 As the epitaxy process is sensitive to the given oxygen environment,

19 In order to penetrate the capping, soft X-ray must be be used. Here, only four protecting STO layers were used.
In order to avoid over oxidization, see Fig. 2.27, the SXPES measurements were performed in situ.
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at this moment we cannot discern the purely electronic signal from the oxygen background, that has
been suggested to be positioned roughly at the LHB position [105].

As discussed in Section 2.3.2, this type of orbital polarization induced Mott insulator found
in the compressed structure remains incredibly fragile and it is a priori not clear whether such a
state can realistically develop in the prepared sample. At least in the bulk form, neither c-axis nor
temperature variation is capable of stabilizing the Mott insulator. As we have evidenced, even the
compressed bulk state is found to be close to this envisaged scenario 5.25eV < Uc < 5.50eV compared
to the employed U = 5eV. Transport measurements however reveal a low resistivity with Fermi
liquid behavior, see Fig. 2.28d, with a gradual transition from x = 75 to x = 3. If this “hidden”
(antiferromagnetic) insulator were to emerge, we would instead expect a jump of the resistivity in the
orders of magnitude, as is the case in resistivity profile of the temperature induced insulating state
of V2O3 [156]. Nonetheless, we are able to establish a realistic connection between the thick film
(bulk) insulator mechanism and the dimensionality reduction found in thin films. The cfs mechanism,
supported by band width narrowing in thin films, is evidently able to generate a metal-insulator cutoff
at a surprisingly large number of layers (x = 6) The resistivity measurements of Fig. 2.28 however
suggests that our modelled heterostructures do not paint the full picture of the MIT and additional
experimental information is required.

2.3.3.4 Interface quantification

Indeed, this information comes from X-ray standing wave (XSW) spectroscopy experiments, per-
formed by Judith Gabel, that are capable of directly measuring the atomic positioning, which is at
the heart of our proposed mechanism. The reflex positions, and the derived atomic deviations from
bulk, are illustrated in Fig. 2.32 (full circles).

Not only does the XSW data quantitatively contradict our previous structure assumption (com-
pression of V-V bonds due to the in-plane constraint), it actually suggests that the opposite occurs: a
V-V, V-Ti, and Ti-Ti bond elongation along the z-direction (full circles, in comparison the uncapped
positions are marked with a “+”). This behavior defies naive expectations and, in particular, implies
a negative Poison ratio. High-angle annular dark field scanning transmission electron microscope
(HAADF-STEM) measurements across the interface of 50uc SrVO3 on top of SrTiO3 [112] find a
similar behavior, where the first three interface layers exhibit elongated bonds, before returning to
the compressed bulk values. (a similar effect has been observed in LaNiO3 | LaAlO3 thin films [125])
Simultaneously, the contrast of the obtained images reveal a considerable strontium deficiency in
the affected layers (≈ 10%). Additionally, an elemental concentration mapping concludes that an
interface-diffusion mixing between the V and Ti atoms occurs. The latter was already suggested
previously by Li et al. [157] who argued that this process, potentially accelerated by an enhanced
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growth temperatures, generates confined defects that might cause convoluted changes to the heteroin-
terface. However, Ti L2,3 and V L2,3 electron energy loss spectra (EELS) scans, performed on the
interface, suggest a four peak splitting where the valence state of the diffused Ti remains close to 4+,
maintaining overall charge neutrality.

Figure 2.32: X-ray standing wave (XSW) measurements. (a) The coherent XSW P002 reflex
shows an expansion of the V-V and V-Ti position in the capped samples (full circles). Uncapped
samples (crosses) show virtually no difference to the bulk STO distances. (b) Deviation of the
atomic positions compared to bulk SrTiO3: the V-V bonds are elongated in the range of 0.1 −
0.3Å compared to SrTiO3 positions. This is in stark contrast to the simulated heterostructure
optimization in Section 2.3.3.2. [Printed with permission from Judith Gabel and Michael Sing.
Private communication, not published.]

In this context the strontium deficiency might be a result of the high temperature growth process
in combination with oxygen vacancy diffusion from the substrate itself. Possibly, due to this extreme
local environment, fewer Sr atoms might bond onto the surface, explaining the drop in concentration
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in the first three interface layers. Please note that these deficiencies are not solely based on a specific
material mismatch, but are also observed in homoepitaxial growth of SrTiO3 on itself (SrTiO3 |
SrTiO3) [158]. Lattice expansion, in general, is also a commonly reported effect in bulk an thin films,
resulting from an oxygen deficiency [157, 159, 160, 161].

As expected, for x = O(1 − 10) layers, interface effects play a dominant role in the underlying
structure. For all the thin film calculations so far, none of these extrinsic or local non-stoichiometric
effects were included in our consideration. Super-cell calculations including impurities would be
necessary to treat these effect ab initio, this is however beyond the scope of this thesis. In order
to qualitatively assess this type of interface effect (localized lattice expansion caused by diffusion or
by the strontium / oxygen vacancies causing only lattice irregularities while maintaining the Ti and
V valency) we simply resort to a remodelling that takes into account these on-average structural
consequences and adjust the atomic positions to those which were observed within XSW in Fig. 2.32.

We have to stress here, that deviations from integer filling of the vanadium d-shell are critical in
the context of the many-body theory: doping impairs the stabilization of a Mott insulating solution.
If this type of doping were to exist in the sample (or in the DMFT setup), it would result in an
intermediate valence state, making thin films more likely to be metallic than insulating. Yet, the
exact opposite is observed, implying a localization of defect charges. Within DFT, this has been
discussed for SrVO3 in Ref. [162] where vacancies have been shown to induce only localized changes
to the surrounding vanadium and strontium ions.

Expanded films
Setting up structures with the measured positions of Fig. 2.32 result in the band structure changes
illustrated in Fig. 2.33. Through the bond elongations, the overall band width becomes reduces,
which we previously determined to be a critical auxiliary effect next to crystal-field splitting. The
values cfs of the different vanadium sites are listed in Table 2.4.

sample thickness 3 5 atom index
... -120 V3

-96 -104 V2

∆cfs [meV] -78 -97 V1

-96 -104 V2
... -120 V3

Table 2.4: Crystal field splitting of the expanded capped structures. As the elongation of the
internal atomic distances is largest at the interface, it experiences the largest (negative) cfs. Atomic
indices refer to a structure as illustrated in Fig. 2.29.
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Figure 2.33: Comparison of projected V t2g band structures between the compressed structures
at the global energy minimum and the “artificially expanded” structures whose atomic distances
are modelled after the X-ray standing wave data from Fig. 2.32. Left panel: x = 3 layers, right
panel x = 5 layers. The lattice expansion leads to a compression of the quantum well states around
the Γ-point where the energy of the lowest occupied state is increased and the energy of the highest
unoccupied state is decreased.
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Figure 2.34: Spectral functions A(ω) (dashed) and the corresponding theoretical PES signal
(A(ω) · fFD(ω)) of the heterostructures with thickness x = 3, 5 modelled after the X-ray standing
wave data in Fig. 2.32. Contrary to the compressed heterostructures, this insulating solution can
be acquired via cooling and, for the given atomic distances, does not require an increased Coulomb
interaction, i.e. both heterostructures were simulated with U = 5eV (J = 0.75eV, U ′ = 3.5eV).
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As the interface V-Ti distance is elongated the furthest also its interface crystal field splitting is
the largest. Comparing these values to the previously considered constrained bulk, we find optimal
requirements: ∆cfs = −100meV corresponds to roughly c = 4.10Å, see Fig. 2.25, providing a direct
entrance into the insulating regime via cooling.

Indeed, the heterostructure shows identical behavior: the insulating solution is easily attained
at high temperature and bulk interaction values U = 5eV (J = 0.75eV, U ′ = 3.5eV). At room
temperature the insulating solution is inaccessible from a metallic starting point and must be, again,
forcefully stabilized. This behavior, however, is not at odds with the resistivity profile of Fig. 2.28 as
we can access this solution, via cooling. Given these modifications, we obtain an akin spectral gap of
the x = 3 and x = 5 heterostructure of ∆x=3 = 200meV and ∆x=5 < 50meV, see Fig. 2.34.

General applicability
Insulating behavior which at its heart is caused by a lattice expansion stemming from defects con-
stitutes a much more general mechanism. Crystal-field splitting induced only via substrate strain
requires a significant lattice mismatch which could lead to incompatibility between substrate and
deposition material. Here we have to stress that within our theoretical considerations a mismatch of
∆aPBE = 0.1Å, consistent in the PBE exchange correlation functional [23], was employed. Realistic
bulk SrTiO3 and SrVO3 crystals, however mismatch by only ∆aEXP = 0.05Å, half of the simulated
PBE value. Being one of the most critical input parameter in the simulation of the compression
mechanism of thin films, further reduction of the cfs would lead to an even more fragile, or even
unstable, Mott insulating solution.

From this point of view, a valence maintaining, substrate induced, lattice expansion provides a
much more general avenue towards generalized thin film Mott insulators. Being in principle applicable
to every possible material combination, as well as more generalized super lattices, emphasizes the
importance the crystal-field splitting as (one of) the main driving force(s). Especially in protected
layers a much broader study of distortion and orbital effects of the various insulating thin film states
is appropriate. As the cfs can easily be manipulated by pressure and its effect identified via (linearly
polarized) spectroscopy, this would provide a promising avenue towards a wide range of not-yet-
understood Mott physics.
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2.4 Surface phenomena in SrVO3

◦ This Section is based on “Toward Functionalized Ultrathin Oxide Films: The Impact of
Surface Apical Oxygen” by Judith Gabel, Matthias Pickem, Philipp Scheiderer, Lenart
Dudy, Berengar Leikert, Marius Fuchs, Martin Stübinger, Matthias Schmitt, Julia Küspert,
Giorgio Sangiovanni, Jan M. Tomczak, Karsten Held, Tien-Lin Lee, Ralph Claessen and
Michael Sing [8] and its Supplementary Information. Adopted text passages have been
marked accordingly.

◦ Sample preparations, measurements and validations were performed by our collaborators
Judith Gabel, Philipp Scheiderer, Lenart Dudy, Ralph Claessen, and Michael Sing. For
an overview of the employed experimental techniques and methods, please refer to the
Supplementary Information of Ref. [8].

◦ Density functional theory simulations and interpretation of theoretical results were done in
close collaboration with Marius Fuchs and Giorgio Sangiovanni.

In the preceding Section, the surface of the SrVO3 films was assumed to be sufficiently protected from
external influences. Indeed, in Section 2.3.2 we employed a bulk description of thick films, O(50)nm,
whereas the explicit consideration of capping layers in the modelling of thinner films, O(1 − 5)nm,
in Section 2.3.3 was necessary to treat the substrate and capping interface on equal footing. The
empirical modelling of the observed critical thickness (6 − 7 unit cells) in stoichiometric (nominal
d1 filling) and pristine setups was shown to derive from a crystal-field driven insulating state, akin
to the distortion driven insulator in the bulk crystal. Within this modelling, the limited number of
unit cells in the out-of-plane direction decreases the itinerancy of the electrons, mainly modifying
the band width of the xz/yz orbitals. These band structure effects, accompanied by the relatively
strong on-site repulsion found in vanadium compounds, allow a formation of an insulating ground
state with an unexpectedly large critical thickness. Through the unintuitive interface effects (negative
Poisson’s ratio) observed in X-ray standing wave measurements, questions however remain about the
structural, surface, and electronic modifications in the vicinity of perovskite interfaces.

The observation of 5+ deposited unit cell displaying insulating behavior came initially as a sur-
prise as the first metal-insulator transitions in ultrathin SrVO3 were found to occur at around 2uc
in unprotected structures, see Ref. [85]. The first realistic attempt at understanding this observation
was made in Ref. [86] where an idealized heterostructure was modeled: two layers of SrVO3 on top
of a SrTiO3 substrate (with identical in-plane lattice constants as used in the previous Section 2.3).
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Figure 2.35: SrVO3 | SrTiO3 thin film heterostructure: different SrVO3 surface terminations
resulting from the stacking of SrO and VO2 planes. The SrO termination (a) leads in theory to
a chemically inert surface. The VO2 termination (b) halves the surface adjacent VO6 octahedron
and exposes the inner vanadium atom. Surplus oxygen then is allowed to close this octahedron,
oxidizing the surface (c).

Critically, the epitaxially deposited SrVO3 was modelled with a strontium oxide (SrO) vacuum ter-
mination, see Fig. 2.35a. Similar modelling has been done for other perovskite oxides as well [163].
While not found in pulsed laser deposition (PLD) setups, from a surface protection point of view
this SrO termination would be preferable: The electron transfer (Sr2+O2−) in the ionic picture re-
sults in a chemically inert surface with strontium and oxygen in their noble gas configuration. The
resulting structure, barring surface induced crystal distortions, then closely resembles the previously
considered, protected thin film structures. There, the SrO-VO2-SrO-VO2-. . . layer stacking in the
(001) direction of SrVO3 can be uninterruptedly continued into the SrTiO3 substrate/protection via
SrO-VO2-SrO-TiO2-SrO. Dynamical mean-field calculations reveal that the two-layer system with
the SrO termination is on the verge of the Mott transition, being highly susceptible to external
perturbations such as strain, electric field or temperature [86].

Following experimental guidance from samples produced via PLD (the same technique that was
used in Ref. [85] and Ref. [164]) we will show that this modelling is inherently flawed. Indeed,
direct and indirect surface analysis show that heterostructures instead form the chemically less inert
VO2 surface termination instead, see Fig. 2.35b. In this Section we characterize the effects of this
termination by analyzing various sample thicknesses. Through surface diffraction, core-level, as well
as angle-resolved photoelectron spectroscopy we highlight the drastic effects occurring without surface
protection, even if the samples are kept in situ. Inspired by these insights we will perform realistic
DFT+DMFT calculations to gain a better understanding of the effects onto the electronic structure
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and the resulting formation of a Mott insulating state whose description naturally becomes more
nuanced.

2.4.1 Surface overoxidation of thick SrVO3 films

The nominal 3d1 occupancy of V in SrV4+O3 poses a challenge for the sample preparation, because
the most stable vanadium valence, which corresponds to a noble gas configuration, is not V4+ but
V5+ making SVO films prone to overoxidation. This becomes apparent in Figure 2.36a, where X-
ray photoelectron spectroscopy (XPS) was employed to record the V 2p3/2 core level spectra of an
epitaxial 75 uc thick SVO film grown by pulsed laser deposition (PLD) with a nominal VO2 surface
termination. For the sample exposed to air prior to the XPS measurement the spectrum (labelled ex
situ) is dominated by a strong peak around a binding energy of 518 eV that is assigned to V5+ ions
by comparison to reference data of different vanadium oxide compounds [165]. However, even for
films analyzed immediately after the PLD growth without an exposure to air, pentavalent vanadium
is detected [166], as is seen from the in situ spectra in Figure 2.36a. The spectra were recorded
at different electron emission angles ϑ to check whether this V5+ signal originates from the SVO
film surface. The V5+ component is stronger at higher ϑ, i.e. in more surface sensitive measurement
geometries, which suggests that the over-oxidation occurs near the SVO surface. For a quantitative
account, the angle-dependence of the relative V5+ content I(V5+)/[I(V4+)+I(V5+)] was fitted (see
Figure 2.36b) within a microscopic model taking into account the relative V5+ content in each VO2

layer of the film and the depth-dependent damping of the photoelectrons (see Supporting Information
in Ref. [8]). We found that the V5+ component stems almost exclusively from the topmost layer while
the subsurface layers only contribute to the V4+ component.

Complementary structural information is provided by low-energy electron diffraction (LEED). The in
situ observed diffraction pattern of a thick film in Figure 2.36c exhibits a

√
2× √

2 R(45◦) reconstruc-
tion. The associated reciprocal and direct space surface unit cells are marked in the pattern and in
the structural model of the surface by dashed green and black squares for the cubic perovskite and the
reconstruction, respectively. The same surface reconstruction was reported in the literature for simi-
larly grown SVO films [109, 166, 164], and a recent scanning tunneling microscopy (STM) study by
Okada et al. [164] identifies adsorbed oxygen ions as its microscopic origin. They find that additional
oxygen ions occupy half of the apical sites above the surface vanadium ions, thereby closing every
other VO6 octahedron, see Fig. 2.35c. The oxygen presumably adsorbs during the growth of the sam-
ples which is performed in an oxygen background atmosphere. This microscopic picture is consistent
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with the over-oxidation of the topmost VO2 layer inferred from the modelling in Figure 2.36b since
every excess oxygen ion drains two electrons from the V 3d band and thereby (nominally) generates
two V5+ ions, as sketched in the structural model in Figure 2.36d [164]. Therefore, we conclude that
a complete electronically dead (d0) surface layer forms on a thick SVO film terminated with an apical
oxygen induced superstructure while the rest of the film remains virtually unaffected. This happens
even when the SVO film is only handled in an ultrahigh vacuum environment. Note that the apical
oxygen is chemisorbed and can only be removed by prolonged annealing at high temperatures.

Figure 2.36: a) V 2p3/2 spectra of a 75 uc thick SVO film exposed to air (ex situ) are dominated by
a strong V5+ signal evidencing the oxidation of the SVO film. XPS on in vacuo (in situ) handled
SVO films at different electron emission angles ϑ detects a V5+ signal that emanates from the
surface, even without exposure to air. b) Model fit of the angle-dependent relative V5+ content
I(V5+)/[I(V4+)+I(V5+)]. The best match is achieved with a d1 occupancy throughout the film
except for a single dead layer at the very surface with d0 occupancy. c) Top: The LEED pattern
of a thick SVO film exhibits a

√
2 × √

2 R(45◦) surface reconstruction consistent with the ordered
adsorption of oxygen ions at apical sites as detected in an STM study [164]. Bottom: Structural
model of the SVO film surface decorated with apical oxygen. d) Structural model of the SVO film
showing the additional oxygen ions draining electrons from the film surface.

The observed dead-layer phenomenon in the epitaxially grown (001) direction can only be supported
by a final VO2 termination to vacuum. This is at odds with some of hitherto performed theoretical
studies [86]. Of course, more sophisticated growth setups have been used to manipulate the final ter-
mination of these types of perovskite structures, e.g., alternating deposition of La2O3 and NiO targets
to obtain LaNiO3 films [125] or an explicit selection of the termination using hydroxylation [167]. It
would be an interesting avenue applying the same technique for SVO layers.
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2.4.2 Evolution of apical oxygen coverage with film thickness

With the surface overoxidation essentially only affecting the valence of the topmost SVO layer, it can
be mostly neglected for the physical properties of thick SVO film. When the SVO film thickness is
reduced to only a few unit cells, the adsorbed oxygen ions may, however, have a strong bearing on
the electronic properties of the films. In the next step, we thus investigate ultrathin SVO films of 2 to
6 uc thicknesses in situ immediately after their growth. Figure 2.37a depicts the corresponding XPS
V 2p3/2 spectra together with that of the 75 uc thick film, normalized to the integral V 2p spectral
weight. The spectra exhibit a systematic trend: The intensity of the V5+ component increases with
the film thickness and saturates above 6 uc SVO. To back up the observation in the V 2p spectra, we
present the corresponding LEED patterns in Figure 2.37b, where the

√
2× √

2 R(45◦) reconstruction
ascribed to apical oxygen adsorption is present on all samples. However, compared to the 1 × 1
spots, the fractional order reflections (marked by the arrows) lose their intensity with decreasing
film thickness. This becomes apparent in Figure 2.37c in which the intensity of the LEED pattern
is analyzed along the dotted line in 2.37b. With the line profile normalized to the peak intensity
of the 1 × 1 reflection, the

√
2 × √

2 R(45◦) spots clearly weaken with decreasing SVO thickness,
indicating a declining (ordered) surface coverage with adsorbed oxygen, consistent with the trend
revealed by XPS for the V5+ component in Figure 2.36a. Note that the intensity changes in the
diffraction pattern do not permit a quantitative estimate of the total amount of adsorbed oxygen, as
LEED detects only the ordered apical atoms incorporated in the superstructure and is not sensitive
to oxygen adatoms randomly occupying the remaining apical sites. Nonetheless, since the apparent
trend detected in the LEED patterns mirrors that observed in the V 2p3/2 spectra, we arrive at the
conclusion that the coverage of adsorbed apical oxygen and hence the fraction of V5+ ions gradually
reduce with decreasing SVO film thickness.
We speculate that the dependence of the surface apical oxygen coverage on the film thickness is
related to the impact which the additional oxygen has on the average number of V 3d electrons
in the ultrathin films. A full coverage with surface apical oxygen in an ordered

√
2 × √

2 R(45◦)
arrangement induces one V5+ ion per surface unit cell. A thick film provides a large reservoir of
3d electrons and therefore the average change of the vanadium valence is negligible. When the
film thickness decreases at constant coverage, the relative share of the V5+ ions generated by the
surface apical oxygen increases. For instance, at 2 uc film thickness half of the vanadium ions would
be rendered from tetra- to pentavalent at full coverage with surface apical oxygen in an ordered√

2 × √
2 R(45◦) arrangement. This may not be energetically favorable, as a result a lower coverage

might develop.
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Figure 2.37: a) V 2p3/2 spectra of SVO films with thicknesses across the dimensional crossover
show the V5+ signal decreasing for thinner films. b) Corresponding LEED patterns where the
diffraction pattern of the cubic perovskite unit cell is marked by dashed squares. The

√
2 × √

2
R(45◦) surface reconstruction (see spot highlighted by arrows) is present on every sample. c)
Intensity of LEED spots along the line profile indicated in b). The line profiles are symmetrized
with respect to the (1×1) reflection. At smaller SVO thicknesses the reflections assigned to the
surface reconstruction lose intensity with respect to the diffraction pattern of the cubic perovskite.

2.4.3 Effects of surface overoxidation

To investigate experimentally the effect of the apical oxygen on the electronic structure, a 6 uc
SVO/STO film was probed by soft X-ray photoelectron spectroscopy with the degree of surface
overoxidation being varied in a controlled manner. These measurements were performed with syn-
chrotron radiation for two reasons. First, due to the tunability of the synchrotron light, core levels
and valence band can be probed at the same photoelectron kinetic energy and thus the same probing
depth. We chose low photoelectron kinetic energies around 105 eV, at which the inelastic mean free
path of the photoelectrons amounts to only 3.5Å (see Supplementary of Ref. [8]), ensuring a high
sensitivity to the topmost SVO layers. Second, with the intense hard X-ray beam available at a third
generation synchrotron the apical oxygen can be effectively removed through photon-induced desorp-
tion [168], thereby restoring a clean surface. Using these tactics, we have investigated the sample
in two states: (i) the state immediately after the PLD growth, which is characterized by additional
apical oxygen adsorbing on the VO2-terminated surface during the growth in an oxygen background
pressure and which remains intact through an ultrahigh vacuum transfer to the synchrotron, and
(ii) the state after removal of the apical oxygen by irradiation of hard X-rays. The corresponding
V 2p spectra of the two states are presented in Figure 2.38a, where the presence and removal of api-
cal oxygen for the states before (blue) and after (red) the hard X-ray exposure is confirmed by the
pronounced and nearly quenched V5+ components, respectively, at 518 eV binding energy.
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Figure 2.38: Effect of the surface overoxidation on the electronic structure of a 6 uc SVO film.
The angle-integrated V 2p a) and 3d b) spectra, normalized to integration time, change notably
between the states with and without apical oxygen coverage which signals a pronounced shift in
the average V valence/V 3d occupation. c) The angle-resolved V 3d spectra for a film without (left)
and with (right) apical oxygen hardly differ indicating a barely changing band filling in the metallic
domains. d) The d occupations estimated by different methods indicate that the d occupation is
homogeneous for the clean surface while domains with different d occupation form when apical
oxygen adsorbs as sketched in e).

2.4.3.1 Change in vanadium occupation

To quantify the effect of the apical oxygen on the electronic structure, we determine the V 3d occupa-
tions in both states using three different methods. First, from a decomposition of the V 2p3/2 spectral
weight into the V4+ and V5+ contributions we obtain and indicate in Figure 2.38d what we call the
average d occupation in the probed volume, i.e., the equivalent d occupation of a homogeneous SVO
film. With the V 2p spectrum of the film without apical oxygen not displaying a V5+ feature, we
assume that the film is stoichiometric in this state and is characterized by a d1 occupation. The V 2p

spectrum of the film with apical oxygen is decomposed into a V4+ and a V5+ contribution by a fit.
The V5+ signal is modeled by a single Voigt peak. Due to the V4+ spectrum being dominated by final
state effects, the V4+ reference has a complicated peak shape [169, 170] and has to be determined
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experimentally under identical conditions as the spectrum to be fitted. We thus use the spectrum of
the film without apical oxygen as the V4+ reference. The relative V4+ weight yields the d occupation
subsequently where we find that the average d occupation is lowered to d0.68.

V 2p decomposition : without apical O → d1

V 2p decomposition : with apical O → d0.68

An independent estimate of the average d occupation can be obtained from the total (angle-integrated)
V 3d weights for the two states, normalized to integration time. The corresponding spectra are
depicted in Figure 2.38b. The V 3d valence states span the first 2 eV below the Fermi level and display
the characteristic line shape of a strongly correlated metal, featuring an incoherent lower Hubbard
band (LHB) at about 1.5 eV and a metallic quasiparticle (QP) state at the Fermi level [114]. To
this end, the near Fermi edge spectra are normalized to the X-ray intensity and integrated in angle
over the range of one Brillouin zone. The integral V 3d weight is then estimated by integration
over the QP and LHB energy range. We find that the overall V 3d weight drops by 33% when the
clean surface is compared to that with apical oxygen, in line with the 32% decrease in the average
d occupation inferred from the V 2p spectra (see Supporting Information in Ref. [8]). Note that the
presence or absence of apical oxygen not only affects the total intensity but also the line shape of the
angle-integrated V 3d spectrum.

V 3d integral weight : without apical O → d1

V 3d integral weight : with apical O → d0.67

Yet another way of probing the V 3d band filling utilizes the determination of the Luttinger k-space
volume enclosed by the Fermi surface. For this purpose, we evaluate the momentum-dependent band
structure recorded by angle-resolved photoemission spectroscopy (ARPES). Figure 2.38c shows band
maps measured along the Brillouin zone cut sketched in the inset for the states with and without
apical oxygen. From them, band dispersion was fitted to the peak positions based on the SVO
tight binding model [109]. To determine the Luttinger volume, the total area enclosed by the Fermi
surface has to be estimated. Furthermore, only dxz-like bands could be observed in our measurement
geometry. Based on the Fermi surface of bulk SVO from band-theory [109], we infer the Fermi surface
map for all orbitals over the entire Brillouin zone under the assumption that the FS areas are layer-
independent. Note that three quantum well states form for the dxz- and dyz-like bands while each
SVO layer is assumed to contribute a dxy-like band.



Chapter 2.4: Surface phenomena in SrVO3 85

Assuming a 6 uc homogeneous SVO film, we derive the average d band fillings from the observed
Fermi wavevectors and the known symmetry and shape of the Fermi surface to be d1.01 and d0.85 for
the states without and with apical oxygen, respectively, the values of which are also included in the
table in Figure 2.38d for comparison (see Supporting Information in Ref. [8]).

Luttinger volume : without apical O → d1

Luttinger volume : with apical O → d0.85

For the sample state of a clean surface, the table in Figure 2.38d shows that all three methods yield the
same result, namely, essentially a d1 occupation as expected from the nominal electron configuration
of vanadium in stoichiometric SrVO3 (see top sketch in Figure 2.38e). In contrast, the resulting
d occupations differ noticeably for the state with apical oxygen: while we observe larger than 30%
reductions in the d occupations inferred from the angle-integrated V 3d and V 2p spectra, the Luttinger
volume derived from the angle-resolved V 3d measurements decreases by a much smaller amount of
only 16% upon the addition of surface apical oxygen. In general, such a discrepancy is indicative of an
electronic phase separation into metallic and insulating regions on mesoscopic or microscopic length
scales, as also observed for SrTiO3 [171]. This is because the band filling extracted from ARPES
mapping is only susceptible to the metallic domains (as insulating regions do not contribute to the
Fermi surface), whereas the angle-integrated V 3d and V 2p spectra average the band filling over both
insulating and metallic domains and are insensitive to the spatial distribution of the d electrons.

2.4.3.2 Electronic phase separation

In light of this phase separation scenario, we consider the coexistence of insulating d0 and metallic d1−x

domains for the sample state with apical oxygen in line with the experimental results summarized in
Figure 2.36. We model the SVO film by an inhomogeneous phase separation where laterally scattered
d0 domains are confined to the topmost layer and embedded in a homogeneous metallic matrix of
band filling d1−x that extends 6 uc in depth, as shown in the bottom sketch of Figure 2.38e. We vary
x and the surface coverage of the d0 domains to yield the V5+/V4+ ratio and Luttinger volume that
are consistent with the corresponding measured V 2p spectrum and ARPES band map. Note that,
while modelling the V 2p core level intensity, we take into account the exponential damping of the
photoelectrons from sub-surface layers.
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The contributions of these sub-surface layers to the measured valency dPES is the result of a weighted
sum ranging over all unit cells

dPES =
-6

i=1 die
− ci

λ·cos θ-6
i=1 e− ci

λ·cos θ

, (2.76)

where each layer provides a position dependent signal. ci refers to the depth of the vanadium atom
in the ith layer from the top, i.e., ci = (i − 1) × clattice, di refers to the (average) occupation of the ith

layer, λ = 3.5Å is the inelastic mean free path for the “activated” photoelectrons and θ is the detector
angle. Throughout the modelling the experimentally employed detector angle of θ = 5◦ will be used.
The denominator is necessary to properly normalize the signal. For the considered horizontal phase
separation, as indicated in Fig. 2.38e, the two phases contribute separately, i.e.

dseparation
PES = α

-6
i=1 ddead
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λ·cos θ-6
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+(1 − α)
-6

i=1 dmetal
i e− ci

λ·cos θ-6
i=1 e− ci

λ·cos θ��������������������������������������������������
metallic domains

(2.77)

where α is the proportion of the dead layer domains. Evidently, d1 = 0 in the “dead” domain.

We reproduce the experimental results for the 6 uc SrVO3 film in the state with apical oxygen with
a d0.88±0.05 band filling for its metallic regions and α = (35±7)% of its surface turned into a d0 dead
layer, i.e. ddead

i=1 = 0 and ddead
i>1 = dmetal

i = 0.88 ± 0.05. It should be noted that the probing depth of
our photoemission experiments amounts to about 10.5 Å (3-times the photoelectron inelastic mean
free path), and sets a limit on the depth sensitivity of the angle-integrated measurements, and hence
the above estimates are most relevant to the three topmost SrVO3 layers.

The average d-occupation, as measured via the Luttinger volume, then should coincide with the
d-occupation modelling of Eq. (2.77),

dLuttinger = α · d · 5
6 + (1 − α) · d = d(1 − α

6 ) = 0.83. (2.78)

The homogeneous d-electron distribution, i.e. all metallic vanadium site being equally occupied, is the
simplest model which is able to conform to all acquired occupation measurements in Section 2.4.3.1.
Whereas further simplifications fail to reproduce the required trends, additional vertical phase sepa-
ration cannot be excluded: These additional scenarios are collected and assessed in Table 2.5.
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model assumed layer occupation α dPES dLuttinger LEED V5+

(1) homogeneous
hole doping [8]

ddead = [0,dx,dx,dx,dx,dx]
dmetal = [dx,dx,dx,dx,dx,dx]
x = 0.88

0.35 0.67 0.83 partial

(2) fully ordered
coverage d = [0,1,1,1,1,1] 1 0.34 0.83 full

(3) partially ordered
coverage

ddead = [0,1,1,1,1,1]
dmetal = [1,1,1,1,1,1] 0.5 0.67 0.92 partial

(4) interface induced
separation (3 layers)

ddead = [0,1,1,dx,dx,dx]
dmetal = [1,1,1,dx,dx,dx]
x = 0.87

0.49 0.67 0.85 partial

(5) interface induced
separation (1 layer)

ddead = [0,1,1,1,1,dx]
dmetal = [1,1,1,1,1,dx]
x = 0.60

0.49 0.67 0.85 partial

(6) surface induced
separation (3 layers)

ddead = [0,dx,dx,1,1,1]
dmetal = [dx,dx,dx,1,1,1]
x = 0.89

0.37 0.67 0.85 partial

(7) surface induced
separation (1 layer)

ddead = [0,1,1,1,1,1]
dmetal = [dx,1,1,1,1,1]
x = 0.60

0.17 0.67 0.85 partial

Table 2.5: Different phase separation scenarios. Based on the assumed layer occupation (second
column) the average d occupation (dx) and domain proportion (α) can be fitted to achieve matching
(within error bars) occupation with the PES measurements (dPES) and Fermi surface measurements
(dLuttinger). The LEED columns refers to the size of the

√
2 × √

2 reflex in Fig. 2.37. The 6uc reflex
must be partially suppressed (“partial”) compared to the thick (75uc) sample where the LEED
signal is maximized (“full”). A green cell background color indicates matching data, a red indicates
a data mismatch with experiment. Scenario (1) describes the model described in the main text,
whose predicted observables can be also attained via scenarios (4-7) which include a vertical phase
separation. Scenarios (2-3) are listed to showcase the apparent problems.

For instance, scenario (2), a fully ordered coverage results in a (vertically) d-distribution of d =
[0, 1, 1, 1, 1, 1] and necessarily fulfills the required Luttinger occupation of 5/6. However, this scenario
is incapable of reproducing the dampened vanadium 2p signal, dPES = 0.34, as well as the suppressed√

2 × √
2-R45◦ LEED signal. Scenario (3), a partially ordered coverage (α = 0.5) with nominal d1

occupation on all vanadium sites, except the one that is decorated with additional, apical oxygen
reproduces the correct PES signal. However, the resulting Luttinger volume is largely overestimated
with dLuttinger = 0.92. Additional vertical separation may be introduced in the most sensible way
via an interface-driven or a surface-driven doping: For both scenarios, we consider a one-layer and
a three-layer transition where the brute-force parameter fitting of α and x results in scenarios (4-7)
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listed in Table 2.5. For the case of the one layer surfaced-induced separation, scenario (7), an alternate
interpretation is possible: 17% (α) dead domain (ordered apical oxygen) is accompanied by 50% of
pristine VO2 termination, with the remaining 33% consisting of disordered apical oxygen, causing the
drop of surface d occupation.

One unresolved question remains the observed V5+ signal strength of the 6uc structure, however:
As Fig. 2.37 shows, the (normalized) V 2p spectra of the 6uc sample almost coincides with the 75
uc sample, indicating the proximity to saturation. In this context we consider the top layer of the
75 uc sample to be fully depleted, hence we assume the majority of this observed V5+ signal to
stem from it. Photoelectrons originating from the surface vanadium sites, experience only minimal
dampening, as they don’t have to traverse through other layers before arriving at the detector. In
principle none of the considered thin film scenarios would lead to the evidenced saturation, suggesting
additional (hitherto unknown) difference between the thin and thick film samples. Oka et al. [172],
e.g., revealed through scanning tunneling spectroscopy further structural differences: They observed
a

√
5 × √

5-R26.6◦ reconstruction for films with fewer than 10uc. Instead of apical oxygen in the√
2× √

2-R45◦ reconstruction, the
√

5× √
5 reconstruction is formed by additional strontium adatoms

providing additional surface electrons and modifying the local electronic structure. It is argued that
this formation is caused by oxygen deficiencies in the bulk and the resulting nonstoichiometry of
strontium and titanium atoms near the surface [173], affecting the growth of the overlying SrVO3 film.
Beyond a certain number of layers this effect is minimized and the surface properties are determined
purely by the deposition material SrVO3 and the surrounding atmosphere during the growth process.
The measured differential conductance dI/dV spectrum further showed a large difference between the√

5× √
5 terraces and the

√
2× √

2 terraces at zero bias voltage V = 0. The former shows an almost
gap-like signature around V = 0, indicative of a suppression of the local density of states, while the
latter is firmly metallic. While our LEED pattern, presented in Fig. 2.37 shows no indication of
any longer range order, except for the

√
2 × √

2 reconstruction, we cannot exclude further surface
modification.

In all scenarios, open questions about the surface reconstructions remain. Especially intriguing
are the possible effects onto the observed metal-insulator transition of the unprotected samples. To
gain a better understanding, more thorough surface analysis is necessary.

2.4.3.3 Change in photoemission line shape

Our findings of apical oxygen altering the electronic structure are at variance with the interpretation
put forward by Backes et al. [105] of their synchrotron-based ARPES results on SVO films, see
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also Section 2.2.4. They observe strong changes in the spectral line shape as a function of UV
irradiation and attribute them to beam-induced oxygen vacancies forming in the SVO lattice. This
interpretation is incompatible with our data, where the X-ray induced nearly 50% increase of V 3d

spectral weight (Figure 2.38b) is accompanied by a massive V 2p spectral weight transfer from the V5+

to the V4+ component (Figure 2.38a), rather than any noticeable further reduction of V (from V4+

to V3+) expected for oxygen vacancy formation. Note that their samples showing the large changes
in spectral weight were transferred in air and then annealed in vacuum to recover a clean surface. We
suspect that the annealing process did not remove all the excess surface oxygen, which then desorbed
under the intense UV light, as reported in this work. Despite the different interpretations we observe
essentially the same dependence of the V 3d spectral function on radiation dose.
The V 3d spectral shape clearly begins to evolve upon the desorption of apical oxygen. With the
V 3d weight exclusively originating from the metallic domains, this indicates a variation in their
electronic properties. In particular, the apparent increase in the ratio of the LHB and QP weights
may signal increased correlations in the absence of apical oxygen, which might be partly explained
by the d occupation being driven closer to an integer filling. Furthermore, the topmost layer of the
SVO film can exhibit enhanced correlations due to reduced coordination numbers [79, 174] and thus
a different QP to LHB ratio from the bulk. The presence of d0 domains in the topmost layers of the
film with adsorbed oxygen will suppress this surface contribution and alter the V 3d spectral function.
Alternatively, defects in the topmost layer may lead to enhanced scattering and hence broadening of
the QP feature. When d0 domains develop with the adsorption of apical oxygen, surface defects are
shielded by the dead layer, scattering becomes less important, and the V 3d line shape will feature a
sharper QP peak.

To illustrate this point further, we characterize the quasi-particle peaks of the sample with apical
oxygen (as deposited) and the sample that was treated with UV light (without apical oxygen) in
Fig. 2.39. For this purpose, we fit the PES spectrum of the untreated sample (panels a-b) with two
distinct Lorentzian peaks

L(ω; ω0, Γ) ∝ Γ
(ω − ω0)2 + Γ2 (2.79)

to mimic the lower Hubbard band (LHB) and the quasi-particle peak (QP). Here, ω0 and Γ repre-
sent the center position and the broadening of the Lorentzian, respectively. The total spectrum was
then multiplied with a Fermi function at the measurement temperature T = 50K and additionally
broadened by a convolution with a Gaussian to accurately reflect the measurement process. The char-
acteristic Gaussian broadening σ = 45meV (FWHM = 2

√
2 ln 2σ = 105meV) was chosen such that

the slope around the Fermi level, ω = 0, matches the experiment, see panel (b): solid, blue line vs. dot-
ted, green line. The fit results in (ω0, Γ)LHB = (−1.48eV, 0.91eV) and (ω0, Γ)QP = (0.10eV, 0.3eV).
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Notably, the quasi-particle peak is centered at ω > 0, in accordance with the DMFT spectral function
of bulk SrVO3, cf. Fig. 2.10.
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Figure 2.39: Photoemission spectrum (PES) of the sample with apical oxygen (a,b) and without
apical oxygen (c,d). The PES signal with apical oxygen (blue) was fitted with two distinct Lorentzian
peaks, mimicking the lower Hubbard band (LHB) and the quasi-particle peak (QP). The combined
spectrum was then multiplied with a Fermi function (T = 50K) and broadened with a Gaussian
(σ = 45meV) to take the intrinsic and extrinsic broadening of the measurement into consideration.
The broadening is chosen such that the slope around the Fermi level of the experiment is captured
accurately. The PES signal of the sample without apical oxygen can then be recreated by reusing the
Lorentzians of the sample with apical oxygen and simply broadening the QP peak by an additional
Γ = 0.6eV.

The shape of the PES spectrum of the “cleaned” surface (panels c-d) can then be recovered by
increasing the “scattering rate” of the quasi-particle peak: ΓQP = 0.33eV → ΓQP = 0.93eV. With the
application of the identical Fermi function and Gaussian convolution we find almost perfect agreement
when comparing to the measured PES signal (solid red line). Note that we do not compare directly
to the vanadium 3d spectrum given in Fig. 2.38 that was normalized to integration time. We instead
adjusted the spectral weight of the sample without apical oxygen to match the sample with apical
oxygen which itself was normalized to 1. The disparity is caused by the evidence p-doping in the
samples with apical oxygen, see Fig. 2.38. All other parameters (prefactors, etc.), however, were
unchanged in this procedure.

This line shape characterization thus suggests that the removal of surface oxygen recovers the
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vanadium d1 occupation and simultanesouly alters the coherence of the quasi-particle peak, suppress-
ing the QP:LHB ratio, without affecting the rest of the occupied vanadium d spectrum ω > −2eV.

2.4.3.4 Persistence of the insulator transition

Despite the phase separation complications, ultraviolet photoemission measurements on a set of
SrVO3 samples with different thicknesses confirm the presence of the thickness-induced Mott tran-
sition in our samples. Our valence band spectra measured with unmonochromatized He Iα (hν ≈
21 eV) radiation are depicted in Figure 2.40a and are compared to the results of Yoshimatsu et al. [85]
shown in Figure 2.40b. The main characteristics of the transitions are found to be identical in both
experiments. The thick SrVO3 films exhibit the well-known two peak structure of lower Hubbard
band and quasi-particle peak with a clear Fermi cutoff signaling the correlated metal phase. Upon
decreasing the SrVO3 thickness, spectral weight is transferred from the QP to the LHB and eventually
at a SrVO3 thickness of 2 uc the QP is completely suppressed with only the LHB remaining.

Figure 2.40: a) Photoemission valence band spectra of our SVO films with various thicknesses
x measured with He Iα radiation compared to b) a similar measurement series from Yoshimatsu et
al. [85] collected at a photon energy of 600 eV. In both data sets thick SVO films exhibit a Fermi
cutoff and the typical two peak structure for a correlated metal consisting of QP and LHB while the
QP spectral weight at the Fermi level gradually vanishes for smaller film thicknesses and a crossover
into the Mott insulating phase is observed at a film thickness of 2 uc.
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2.4.4 Structural intricacies of VO2 terminated films

From the theoretical point of view, the complications introduced by apical oxygen makes the task
of pinpointing the exact mechanism of the metal-insulator transition of unprotected, “dirty” samples
quite challenging: Even in the detailed analysis of the 6 uc sample, deep in the metallic regime,
questions about the horizontal and vertical phase separation remain. It is unclear which changes
might occur if one continues to reduce the dimensionality towards the vicinity of the critical insulating
thickness. We are currently not aware of a detailed surface (and interface) analysis for films below 4
unit cells. In order to model these heterostructures to closely resemble realistic samples one would
first need to survey the possible surface rearrangements, tendency towards (self-)doping, the effects
of possible crystal defects, etc. Unfortunately this represents a herculean task outside the scope of
this thesis. To advance the current understanding of the Mott transition in these systems, we will
restrict ourselves to domains where we expect that a pristine model can be upheld, i.e. a clean surface
(or perfect surface reconstruction), nominal filling, and no defects. Systems will be considered with
either a completely flat, VO2 terminated surface or with a fully reconstructed, perfectly ordered apical
surface configuration.

The hetero-structures used here were prepared akin to Sec. 2.3.3: In the (001)-direction n layers
of SrVO3 are layered on top of 5 layers SrTiO3 where the final termination of the surface SrVO3

layer is VO2. The in-plane lattice constants of the structures without apical oxygen are identically
constrained to the bulk value of SrTiO3 (a = b = aSrT iO3). The structures with apical oxygen on the
other hand are represented via a

√
2 × √

2 super cell (a = b =
√

2aSrT iO3) where every other surface
vanadium is connected with an additional oxygen atom. In z-direction the structures are surrounded
by a sufficiently large vacuum layer (roughly 20Å) in the z-direction.

The atomic force relaxation is adjusted for the vacuum termination: With the exception of the
SrTiO3 layer furthest away from the surface SrVO3, whose atomic positions are kept fixed to imitate
the transition to bulk, all atomic positions are completely relaxed using the pseudo-potential code
VASP [23, 24, 25, 26]. The full-electron DFT calculation of these structures are then performed with
WIEN2k [21], where we verified the consistency of the internal forces between the two codes. The
down-folding to a localized vanadium t2g Hamiltonian is done with the Wien2Wannier [28] interface
to Wannier90 [29]. Important to note is that the applied SU(2)-symmetric Kanamori interaction is
chosen to be consistent with the compressed, protected films, i.e. U = Uintra = 5.25eV, J = 0.75eV,
U ′ = Uinter = U − 2J = 3.75eV, which slightly deviates from the more commonly used bulk values in
literature [119] and the ones used for the bulk description in Section 2.3.2.
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2.4.4.1 Surface induced crystal distortions

Both considered surface terminations are illustrated in Fig. 2.41 for the exemplary case of x = 3 layers.
There, the atomic dislocations are directly taken from the atomic force relaxation. For our intents and
purposes our analysis focuses on the resulting (vertical) V-V inter-layer and V-Ti interface distances
and their effect on the residual crystal-field splitting. For all considered structures x = 1 . . . 6 this
data is illustrated in Fig. 2.42 and Fig. 2.43.

Figure 2.41: Considered (force relaxed) surface termination of unprotected thin films:
(SrVO3)3 |(SrTiO3). Green: Sr, Small Red: O, Large Red: V, Blue: Ti. Front and top view
of the (a) flat VO2 termination and (b) the

√
2 × √

2 supercell where every other surface vanadium
atom V1 is connected with an additional apical oxygen atom.

Pristine VO2 termination
Starting off with the pristine VO2 termination: The surface layer (layer 1) relaxes into a concave
shape, i.e. the vanadium site sits slightly below the adjacent oxygen ligands leading to a localized
compression of the V-V[Ti] spacing, irrespective of the number of total SVO layers.20 This results in
20 This is opposite to the force relaxation of the SrO terminated structures. There, the surface layer relaxes into a
convex shape, i.e. the vanadium site is above the adjacent oxygen ligands, elongating the V-V[Ti] spacing instead.
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a surface vanadium vanadium spacing (x ≥ 2) of cV−V ≈ 3.7Å and a comparable vanadium titanium
spacing for the monolayer (x = 1) of cV−Ti ≈ 3.8Å. The offset of 0.1Å between x = 1 and x > 1
at n = 1, see Fig. 2.42a and Fig. 2.43d stems from the lattice constant mismatch between SVO and
STO when simulated/relaxed with DFT using the PBE exchange-correlation potential.
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Figure 2.42: Structure analysis of x = 1 . . . 6 layers (shades from black to yellow) of pristine
SrVO3 on a SrTiO3 substrate with a VO2 termination to vacuum. The layers n are numbered in
order: surface (n = 1) → substrate n = x. (a) Internal atomic distances cV−V[Ti]. (b) Resulting
crystal-field splitting (cfs). Due to the VO2 termination, the out-of-plane apical oxygen of the
VO6 octahedron is severed, resulting in a strong, negative crystal-field splitting. In the inner
structure we find an expected, ’bulk-like’ behavior with a positive cfs, resulting from the in-plane
expansion/compression. Both the surface and interface effects are localized only to the first two
layers.

Due to the severing of the apical oxygen in the VO2 termination, the cfs becomes inverted,
compared to the “strained bulk” case in Section 2.3.2. The missing overlap with the px/py orbitals
of the now lacking oxygen atom, results in less electrostatic repulsion and therefore a lowering of the
xz/yz orbital energies [5]. The monolayer displays ∆surface

cfs = −250meV (black square in Fig. 2.42b)
while the multi-layer structures display a slightly reduced ∆surface

cfs = −150meV caused by the change
of the local layer environment. The latter is more than 5 times the splitting necessary to push
the equivalent bulk state insulating. As more layers are added, we see that the effect of the SrTiO3

interface remains localized to only the adjacent SrVO3 layer. This is manifested in an equidistant out-
of-plane spacing cV−V ≈ 3.8Å for the “inner” layers, recovering the expected bulk value, accompanied
by a modified interface cV−Ti. Similarly, the effect of the vacuum termination is localized to the two
top surface layers. Combining the effects in the vicinity of surface and the substrate, structures with
x ≥ 4 reach a bulk-like inner structure. There, the aforementioned surface, and interface distortions
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lead to a sign switch of the crystal-field splitting: For x = 6, see Fig. 2.42b (orange line) the surface
induced, negative cfs is already reversed in the adjacent layer (n = 2), after which the bulk-like
∆bulk

cfs = 120meV is established (n = 3 . . . 5). Only at the interface (n = 6), akin to the capped layers
(see Section 2.3.3) the crystal distortion is relaxed and a slight reduction in cfs occurs, approaching
∆interface

cfs ≈ 50meV for thick films. We expect this interface effect to be upheld in the x → ∞ limit
due to the lattice mismatch.

Apical oxygen decoration
Decorating the VO2 surface termination with (ordered) oxygen requires the consideration of two
inequivalent vanadium atoms. In order to achieve a perfectly ordered pattern, every other vanadium
site is covered with an additional apical oxygen atom, resulting in a

√
2 × √

2 reconstruction as
described in Section 2.4.1: The vanadium below the added oxygen (V1 ≡ Vapical) and the vanadium
next to it (V2 ≡ Vclean), see Fig. 2.36.
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Figure 2.43: Structure analysis of x = 1 . . . 6 layers (shades of black to yellow) of
√

2× √
2 SrVO3

with apical oxygen coverage. The layers n are numbered in order: surface (n = 1) → substrate
n = x. The internal atomic distances cV−V[Ti] (panels a-b) result in the crystal-field splitting (cfs)
shown in panels c-d. The left column (a,c) describes the vanadium atom below the additional, apical
oxygen (V1) while the right column (b,d) describes the adjacent vanadium site (V2).

The qualitative trends of the pristine sample, panels b,d in Fig. 2.43, are maintained for Vclean

where the aforementioned cfs reversal between surface and inner structure occurs. Minor, quantitative
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differences mainly stem from the adjacency to the oxygen decorated vanadium sites which experiences
surprisingly large distortions in comparison. The apical oxygen “pulls” the vanadium towards the
vacuum, see Fig. 2.41, resulting in a competition between the neighboring convex distortion of the
“clean” vanadium. Akin to the VO2 terminated samples, the structural effects of this bond elongation
is strongly localized, having only a minor effect on the lower SVO layer. The cfs of all vanadium
atoms beneath the apical oxygen is now positive throughout the structure, reaching a massive ∆cfs ≈
1000meV at the surface. With the apical oxygen present, the hybridization of the surface vanadium’s
xz/yz orbitals is no longer severed, increasing their local energies. The enormous orbital separation is
caused by the large disparity of the Coulomb environment between the t2g orbitals: The xz/yz orbitals
now experience a Coulomb repulsion from px/py orbitals of the apical oxygen without the balancing
effect of the (missing) strontium (Coulomb attraction via the Sr2+ ions), that would form the complete
SrO layer. Combined, the surface vanadium site polarizes fully into a purely xy-character. In the
layers below, on the other hand, the normal bulk-like environment is quickly established. Below the
third layer (n = 3) we find no longer any significant difference between the adjacent “apical” and
“clean” vanadium sites.

2.4.4.2 DMFT validation via the 6uc structure

Having established the crystal distortions and crystal-field characteristics in the unprotected, SrVO3

layers, deposited on a SrTiO3 substrate, we now investigate how the electronic structure is affected
by many-body effects, using DMFT. As a starting point, we analyze the structures that approximate
the experimental samples considered in Section 2.4.3: x = 6 layers of SrVO3 with either a “clean”
surface or a fully reconstructed surface with ordered oxygen, i.e. 50% coverage.

The (multi-impurity) DMFT setup for the various layer thickness x is similar to Section 2.3.3:
We employ a slightly enhanced Kanamori interaction with U = 5.25eV (J = 0.75eV, U ′ = U − 2J =
3.75eV) and no inter-impurity interaction, resulting in the self-energy orbital structure, as shown
in Eq. (2.74). The interaction strength is larger than the bulk value, see Section 2.3.2, in order
to compensate for the uncertainty in the Wannierization procedure21 and the difficulties involving
converging insulating DMFT solutions (x < 3, see next Section) with several impurities whose local
levels differ strongly. The results of the DMFT treatment at room temperature T = 290K is shown
in Fig. 2.44.

21 We find strong band entanglement of the unoccupied vanadium d, titanium d and strontium d states. Projecting
onto a purely vanadium t2g basis, the minimization procedure of Wannier90 is highly sensible with respect to the
initial energy window and the number of bands used.
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Figure 2.44: a) Sketch of the calculated 6 uc heterostructure. b) Crystal field splitting ∆cfs of
the vanadium t2g orbitals from DFT. With an apical oxygen (black dot) there are two inequivalent
vanadium sites “V1” and “V2” per layer, without they are equivalent and denoted by “V”. The
corresponding local orbital energy levels are illustrated in the two insets. The crystal field splitting
of “V1” in the two topmost layers is a direct result of the apical oxygen. At the surface layer
the crystal field splitting for “V1” is 1 eV which is outside the drawn energy range. c,d) Layer(i)-
resolved DMFT spectral functions Ai(ω) for 6 uc SVO (c) without and (d) with apical oxygen.
e) Quantized states along the kx direction (ky = 0) in the structures with and without apical
oxygen (lines are obtained from parabolic fits to the second derivative of the shown intensity map).
f) Orbital composition of the different vanadium sites as the percentage of the xy occupation
ηxy= nxy

nxy+nxz+nyz
for the layers from top to bottom. The proportion of the xz/yz orbital can be

obtained via ηxz/yz = (1 − ηxy)/2.

The spectral functions in Figure 2.44c are metallic for all layers with the usual three-peak structure.
All vanadium sites can be roughly described with a nominal d1 configuration (i.e., V4+). However,
because of the layer-dependent crystal field splitting ∆cfs the orbital compositions differ vastly, see
Fig. 2.44f. With apical oxygen, the crystal field splitting for “V2” is quantitatively similar to the case
without oxygen in Fig. 2.44b. The splitting for vanadium ions “V1”, however, is dramatically changed,
even inverted, near the surface. In all, apical oxygen-induced changes in the crystal and electronic
structure are confined to the uppermost two layers, see the DMFT spectral functions in Figure 2.44d
(cf. also Section 5 in the Supporting Information for calculations on films of different thicknesses)
. Whereas the third to sixth layer are practically identical to the case without apical oxygen in
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Figure 2.44c, the top layer shows dramatic qualitative changes: it is insulating and contains only
pentavalent vanadium with a d occupation nV1,2 ≈ 0, i.e., no occupied states below the Fermi level at
0 eV (see Fig. 2.44d, top row). The apical oxygen drains one electron from each of the two vanadium
sites in the top layer, whereas the subsurface layers are again close to a V4+ configuration except for
the V1 site of the second layer which has nV1 = 0.8. With the apical oxygen draining all electrons
from the surface layer, it becomes a dead (insulating) layer. The other layers then essentially behave
as the film without apical oxygen but with one layer –the dead one– less. Because of the confinement
to five layers (six without apical oxygen), quantum well states as shown in Fig. 2.44e develop [109]
which closely mirror the ARPES spectrum shown in Fig. 2.38c.

Let us note, that the observed changes in the photoemission line shape, see Section 2.4.3.3, is
beyond the considered DMFT setup. As a firm, metallic state is recovered for all vanadium sites in
the structure without apical oxygen and all vanadium site below the dead-layer in the structure with
apical oxygen, we find no evidence of a quasi-particle supression between the two scenarios.

2.4.4.3 Metal-insulator transition and dead-layer phenomenon

As DMFT provides a reasonable good description when including strong correlations we now rean-
alyze [86] the critical thickness of the metal-insulator transition: We focus on x = 2, 3, 4 layers of
SrVO3, see Figure 2.45, as a critical thickness of x = 2 has been observed. As alluded to in Section
2.3.3, in the monolayer the xz/yz orbital experience a complete restriction of the out-of-plane hopping,
significantly decreasing their band width to roughly Wxz/yz ≈ 1eV. Irrespective of surface termination
(capping, SrO to vacuum, VO2 to vacuum), the Mott transition in the monolayer is purely band-
width driven. In a similar vein, a complete surface reconstruction, i.e. apical oxygen decoration on
every other vanadium site, on top of the monolayer leads to a complete depopulation of the vanadium
3d states. A DMFT treatment then becomes redundant as the system develops a band gap already
within density functional (∆DFT ≈ 0.3eV, data not shown). The results of the DMFT treatment at
room temperature T = 290K are shown in Fig. 2.45, where we illustrate the layer-dependent spectral
function including their respective vanadium occupation nV . The structures x = 2, 3, 4 are plotted
as the columns whose layers are ordered from surface (top) to interface (bottom).

Pristine VO2 termination

The structures without apical oxygen, see Figure 2.45a, experience a metal-to-insulator transition
between x = 2 and x = 3. The insulating state at x = 2 is characterized by a gap of around
∆ = 0.2eV and essentially a d1 occupation in both layers. This insulating state breaks down for
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Figure 2.45: a) Layer-dependent DMFT valence spectra for the structures without apical oxygen
for x = 2, 3, 4 layers of SVO. b) Layer- and site-dependent DMFT valence spectra for the structures
with apical oxygen for x = 2, 3, 4. Each structure is represented by a vertically ordered array of x
spectral functions, where the top row always represents the surface layer which is also an interface
to the vacuum. The metal-to-insulator transition occurs between 2 and 3 layers for the structures
without apical oxygen and between 3 and 4 for the structures with apical oxygen. Independent of
the overall electronic state we find an electronically dead surface layer for the structures with apical
oxygen.

the x = 3 and x = 4 structures where deviation from the the nominal d1 occupancy occur in the
individual layers.
Adding additional layers causes first and foremost a xz/yz inter-layer hopping induced band width
widening, quantitatively almost identical to capped films. Contrary to the homogeneous crystal-field
splitting observed there (∆cfs(n) > 0 ∀n ∈ {1 . . . x}, x: number of layers), instead a competition
emerges through the cfs inversion along the z-direction: The negative cfs on the surface effectively
reduces the vanadium’s three-orbital state to a two-orbital one which, in combination with the large
on-site interaction, provides the fundamental mechanism that tries to drive the system towards a
Mott insulator. Irrespective of the overall electronic state, the surface layer becomes heavily orbitally
polarized, with nxz/yz,σ close to quarter filling, see Table 2.6.

This surface polarization then “competes” with the lower lying layers as the electronic states
of the different layers heavily influence each other via layer-to-layer hybridization. For x = 2, the
interface layer experiences little to no degeneracy lifting through the cfs, see Fig. 2.42b, establishing
a competition between the fully polarized surface and an, effectively, orbitally degenerate interface.
As Fig. 2.45 illustrates, the metallicity inducing hybridization is overcome and a Mott insulating
state is established. Please note that, similar to Section 2.3.2 at room temperature, the insulating
solution is difficult to stabilize: From a metallic seed (Σ = 0), DMFT always converges into a metallic
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x = 1 [Mott] 2 [Mott] 3 [Metal] 4 [Metal]
surface [0.000|0.250] [0.001|0.246] [0.077|0.200] [0.068|0.198]

... [0.205|0.150] [0.180|0.190] [0.197|0.174]

... [0.192|0.137] [0.233|0.129]
interface [0.218|0.143]

Table 2.6: Site-resolved DMFT orbital occupations [nxy,σ|nxz/yz,σ] in the structures without apical
oxygen, calculated with U = 5.25eV (J = 0.75eV, U ′ = 3.75eV) at room temperature T = 290K.
Structures with x = 1 and x = 2 stabilize a fully polarized, quarter-filled surface vanadium site
nxz/yz,σ ≈ 0.25, pushing the whole system Mott insulating. Metallicity emerges at x = 3 and
beyond, accompanied by a drop of this surface polarization.

solution. In order to overcome this tendency, we stabilized the Mott insulator with an enhanced U = 6
(J = 0.75eV, U ′ = 4.5eV), after which we, step-by-step, reduce the interaction strength in order to
maintain the insulating state. Fig. 2.45a, x = 2 then represents the solution for the aforementioned
U = 5.25eV. Note however, that this is not the upper boundary for the x = 2 heterostructure: we
find Uc ≤ 5.15eV (not shown). For the sake of consistency we have chosen to apply U = 5.25eV for
all considered heterostructures in this Section.

The resulting spectral function with its DMFT spectral gap ∆DMFT = 200meV, resembles the pho-
toemission spectra (∝ A(ω)fF D(ω; T ), fF D(ω; T ): Fermi function at temperature T ) from Fig. 2.40
surprisingly well. Adding a third layer, the additional out-of-plane hybridization becomes too “over-
bearing” and the surface polarization can no longer overcome the pull towards metallicity: The
spectral functions of all layers turn metallic simultanesouly and the strong orbital polarization is
slightly lifted, see Table 2.6. Please note that even for U = 6eV the x = 3 heterostructure without
apical oxygen (and all larger ones x ≥ 4) remains firmly metallic when initializing the DMFT with a
metallic seed (not shown).

Apical oxygen decoration

The heterostructures with apical oxygen, see Figure 2.45b, on the other hand exhibit a metal-to-
insulator transition between x = 3 and x = 4. All considered cases with apical oxygen exhibit an
electronically dead surface layer, independent of the electronic behavior of the SrVO3 layers beneath
it. Please note that this dead layer is not present in DFT, where the surface layer vanadium exhibits
an average filling of n ≈ 0.3. Only through the added interaction is the system able to repel the
rest of this filling and distribute it amongst the lower lying layers. We argue that this dead surface
layer causes an effective reduction of the structure’s thickness, thus increasing the numbers of layers
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necessary to stabilize the metallic solution. Again, the insulating structures (x = 2 and x = 3) display
essentially the ideally expected d1 configuration for all vanadium sites except for the ’dead’ surface.
Similar to the x = 3 structure without apical oxygen, the metallic state for the x = 4 structure is
accompanied by a larger variation of the d-occupation among the layers.
In these structures with apical oxygen, a similar cfs mechanism emerges. For both inequivalent
vanadium sites the surface becomes the primary driver of the insulating state. The orbital polarization
differs between the inequivalent sites: the negative cfs of the clean vanadium is identical to the
VO2 terminated structure, whereas the apical oxygen induces a strong, positive cfs. The electronic
surrounding of the latter is akin to a SrO termination [5, 86, 175]. The insulating driving forces are
hence more nuanced: Having reduced the effective thickness by depopulating the surface layer, the
layer adjacent to the surface now tries to drive the system into an insulating state. The vanadium
sites below the apical oxygen (V1) all polarize strongly towards a one-band state (half-filled xy band:
nxz,σ ≥ 0.47), in accordance with the sign of the crystal-field splitting, see Table 2.7. The “clean”
vanadium sites, on the other hand, prefer the occupation of the xz/yz orbitals, despite the positive cfs
below the surface. We theorize that this is a result of the strong crystal distortions below the apical
oxygen and the electronic interplay between the adjacent vanadium sites in the Mott insulating state.

Once the system is too large x ≥ 4, the strong orbital polarization breaks down at all vanadium
sites and metallicity emerges, see Fig. 2.45b. The layer-dependent spectral functions turn metallic
simultanesouly, except for the surface layer whose vanadium sites remain depleted and the dead-layer
persists. Orbital occupations emerging from this electronic state now more closely reflect the crystal-
field splittings in Fig. 2.43c and Fig. 2.43d, i.e nxy,σ > nxz/yz,σ at all vanadium sites below the surface,
see Table 2.7.

x = 2 [Mott] 3 [Mott] 4 [Metal]

surface [0.001|0.000]—[0.001|0.004] [0.000|0.000]—[0.001|0.004] [0.000|0.001]—[0.000|0.006]
... [0.483|0.003]—[0.022|0.240] [0.480|0.002]—[0.084|0.209] [0.305|0.049]—[0.168|0.155]
... [0.481|0.008]—[0.131|0.188] [0.259|0.133]—[0.201|0.179]

interface [0.257|0.125]—[0.210|0.154]

Table 2.7: Site-resolved DMFT orbital occupations [nxy,σ|nxz/yz,σ]V apical − [nxy,σ|nxz/yz,σ]V clean in
the structures with apical oxygen, calculated with U = 5.25eV (J = 0.75eV, U ′ = 3.75eV) at room
temperature T = 290K. Irrespective of the electronic state, a “dead” surface layer develops with
ni,σ ≈ 0. In the Mott insulating state (x = 2, x = 3), both inequivalent vanadium sites orbitally
polarize: vanadium below the apical oxygen forms a half-filled state in the xy-band nxy,σ ≈ 0.5,
the (lateral) adjacent vanadium is close to quarter-filling nxz/yz,σ ≈ 0.25. Beyond x = 4 metallicity
emerges and the orbital polarization drops at all vanadium sites in the structure. x = 1 is not shown
as the structure is already insulating within DFT.
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2.4.4.4 Metal-insulator transition validity against experiment

Viewed together, the two extreme cases of either a clean surface (VO2 termination) or an ordered
surface with additional apical oxygen in the

√
2 × √

2 formation, theoretically, support a metal-
insulator transition with critical thickness 2 − 3. Contrary to the homogeneous crystal-field splitting
(in combination with a slight band width reduction) observed in protected thin films, see 2.3.3, here the
surface dominates the electronic structure, inducing strong differences between the various vanadium
sites. Evidently, the metal-insulator transition is triggered by a strong polarization stemming purely
from the surface which turns the whole system insulating, at least within DMFT.

As we have established in Section 2.4.3, however, thin films deposited via PLD are more nuanced
and display a wide range of electronic phenomena that we have not taken into consideration. Despite
this, the insulating mechanism evidenced above can be viewed as a reasonable starting point towards
more realistic modelling of unprotected SrVO3 heterostructures: The thin films experience at a min-
imum, a lateral phase separation, see Section 2.4.3, that is strongly dependent on the thickness of
the sample. Revisiting Fig. 2.40, the experimental metal-insulator transition is further accompanied
by a continuous suppression of the ratio QP : LHB when moving from x = 75 to x = 2. This is
possibly a side-effect of the evolution of the reduction of apical oxygen coverage upon reducing the
number of layers, see Section 2.4.2. That is, fewer layers lead to less oxygen absorption which leads
to a more broadened valence spectrum. Indeed, the same analysis performed for x = 3 (comparing
the surface with and without apical oxygen) leads to a similar change of the extracted d-occupation
via the V2p composition or the integral V3d weight (private communication with Judith Gabel; not
shown). However, the change of the shape of the quasi-particle contribution in the PES spectrum
is less severe than in the x = 6 sample. At this x = 3 structure, assuming a coexistence between
areas with and without apical oxygen, it is therefore doubtful that parts of the sample are already
turned insulating as the quasi-particle peak of the UV cleaned sample is less coherent compared to
the sample measured with surface oxidization.

Once both the “clean” and ordered surface turn Mott insulating below x = 2 any potential
doping from the remaining, non-ordered oxygen adatoms may be fully localized, maintaining the d1

occupation on the vanadium sites, vital for the Mott scenario in DMFT. In turn, it is possible for the
system to become insulating on the full macroscopic scale, resulting in a spectral gap determined by
the “clean” surface, see Fig. 2.45, as ∆DMFT(x = 2, clean) < ∆DMFT(x = 2, apical).

This scenario is, however, speculation on our end: Open questions/scenarios that need to be
answered/investigated include

(i) the effect of possible unordered apical oxygen onto the electronic state,

(ii) the influence of the SrTiO3 substrate that include vacancies or (as of yet) unaccounted distor-
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tions as seen in Section 2.3.3,

(iii) the possibility of additional surface reconstructions as seen in Ref. [172], and

(iv) a p-doping analysis for samples with fewer than x = 6 layers, especially in the insulating regime
below x = 3.

2.4.5 Discussion

Viewed together, our theoretical and experimental results provide a detailed picture of the adsorption
of oxygen at the apical sites of SVO films and its impact on their electronic properties. The DMFT
calculations consider the limiting case where every second vanadium in the film surface is decorated
with an apical oxygen. They show that at this coverage the 3d shell of the V atoms in the topmost
layer is completely depleted while the d1 occupation of all layers beneath remains virtually unaffected.
For the 75 uc thick SVO film, whose apical oxygen coverage matches the supposition of the DMFT
calculations, the formation of a complete d0 layer at the surface is indeed observed experimentally in
our depth-dependent XPS measurements.

We also find a d0 phase forming in the surface layer of the 6 uc SVO film when decorated with apical
oxygen. However, it does not cover the entire surface. We observe additionally a slight electron
depopulation of the metallic regions driven by the presence of apical oxygen. The latter observation
is elusive to our calculations which assume a full coverage of apical oxygen in an ordered

√
2 × √

2
R(45◦) arrangement. Here it is interesting to note that the fractional order LEED reflections in Figure
2.37c are weaker for the 6 uc SVO film than for the 75 uc one, suggesting that, unlike the much thicker
film where the coverage of the

√
2 × √

2 R(45◦) reconstruction is more complete, the surface of the
6 uc SVO film should have regions covered by apical oxygen ions that do not follow the same long
range order as well as regions covered by less apical oxygen. There, the local lattice distortion and
thus the crystal field splitting may be reduced and favor light p doping of the film instead of complete
depletion of the d band of the surface layer.

Beside the change in the d occupation, we also observe that the V 3d spectral shape begins to evolve
upon the desorption of apical oxygen. With the V 3d weight exclusively originating from the metallic
domains, this indicates a variation in their electronic properties. In particular, the apparent increase
in the ratio of the LHB and QP weights may signal increased correlations in the absence of apical
oxygen, which might be partly explained by the d occupation being driven closer to an integer filling.
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Furthermore, the topmost layer of the SVO film can exhibit enhanced correlations due to reduced
coordination numbers [79, 174] and thus a different QP to LHB ratio from the bulk. The presence
of d0 domains in the topmost layers of the film with adsorbed oxygen will suppress this surface
contribution and alter the V 3d spectral function. Alternatively, defects in the topmost layer may
lead to enhanced scattering and hence broadening of the QP feature. When d0 domains develop with
the adsorption of apical oxygen, surface defects are shielded by the dead layer, scattering becomes
less important, and the V 3d line shape will feature a sharper QP peak.
We have demonstrated that the presence of apical oxygen has a strong bearing on the electronic
properties of ultrathin SVO films in terms of the layer-dependent crystal-field splitting, d occupation,
number of quantum well states, and orbital composition. In addition, we observe electronic phase
separation, in both lateral and vertical directions, into metallic and insulating domains.
Since the apical oxygen is present also on SVO films only handled in ultrahigh vacuum and changes
the electronic structure in the same thickness range in which also the transition from a correlated
metal into a Mott insulating phase occurs (see Ref. [85]), it is a natural step to link these two
phenomena. While we can safely assert that the metal-insulator transition is influenced in many
ways by surface chemical effects and that a description within a simple Mott type scenario falls short,
a full understanding of the complex interplay between the thickness-dependent electronic transition
and the adsorption of apical oxygen requires further studies and is beyond the scope of the present
work.
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2.5 Non-local signatures in pristine SrVO3 monolayers

◦ This Section combines the results of “Zoology of spin and orbital fluctuations in ultrathin
oxide films” by Matthias Pickem, Josef Kaufmann, Karsten Held, and Jan M. Tomczak [5]
and “Particle-hole asymmetric lifetimes promoted by non-local spin and orbital fluctuations
in SrVO3 monolayers” by Matthias Pickem, Jan M. Tomczak, and Karsten Held [10]. The
adopted text passages are marked accordingly.

◦ The diagrammatic introduction to the (Abinitio) dynamical vertex approximation was ini-
tially published in Ref. [33]. This introduction has been compiled based on an equivalent,
more detailed derivation from my master thesis [176].

◦ Two-particle results beyond DMFT were obtained with the AbinitioDΓA package pub-
lished as “The AbinitioDΓA Project v1.0: Non-local correlations beyond and susceptibilities
within dynamical mean-field theory” by Anna Galler, Patrik Thunström, Josef Kaufmann,
Matthias Pickem, Jan M. Tomczak, and Karsten Held [2].

In this Section we are going to study the quasi two-dimensional SrVO3 monolayer. In the bulk
crystal, the t2g orbitals overlap in 2 spatial directions resulting in a 2D like density of states with its
corresponding van Hove singularity above the Fermi level, see Fig. 2.6b. Truncating these orbitals by
a double-sided termination to vacuum and the SrTiO3 interface leads to qualitative changes to the
density of states of the ouf-of-plane, xz/yz orbitals. The xz/yz orbitals become one-dimensional as
one hopping direction is fully suppressed, fully transforming the shape of the density of states. In
turn, different van Hove singularities are generated, proximity towards which are known to promote
non-local signatures in the self-energy [177].

As we already alluded to above, this geometry-induced quenching of kinetic energy is the primary
driving factor for the insulating state in the SrVO3 monolayer. Here, we are first going to detail the
stability of this bandwidth mechanism, after which we consider the possible emergence of long-range
ordered phases, so far ignored by our DMFT calculations. To this end we transition from the one-
particle to a two-particle description, necessary to study spin and charge responses and, ultimately,
also non-local correlations via the dynamical vertex approximation (DΓA). Indeed, the latter builds
upon DMFT and introduces non-local corrections to the self-energy via momentum dependent two-
particle vertex functions.

For the monolayer system we consider both the VO2 and the SrO surface termination: the former
being the result of the commonly employed SrVO3 epitaxy deposition. The latter has to our knowledge
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hitherto not been achieved experimentally, however would be the preferable configuration due to being
less prone to surface overoxidation.

Both terminations are modelled on top of a substrate of six unit cells of SrTiO3 surrounded by
sufficient vacuum of around 10Å in z-direction. Whereas the SrO termination is modelled with one
unit cell of SrVO3, the VO2 termination is modelled with one half of a unit cell, see insets in Fig. 2.55).
In both setups the transition between SrTiO3 and SrVO3 consists of a TiO2 - SrO - VO2 interface,
consistent with experiment [112, 157], while the other end of the SrTiO3 substrate is terminated
via SrO to vacuum. Identical to all previous SrVO3 | SrTiO3 heterostructures, we initialize the
in-plane lattice constant with the PBE-optimized value for bulk SrTiO3 aSrTiO3 = 3.95Å. To treat
the surface properly the two unit cells of SrTiO3 furthest away from SrVO3 are then constrained to
aSrTiO3 , simulating the transition to the SrTiO3 bulk, while all other internal atomic positions are
fully relaxed, purely within density functional theory.
The DMFT setup is consistent with all previous simulations, i.e. we project onto maximally localized
V-t2g orbitals, using the WIEN2Wannier [28] interface to Wannier90 [29], see Fig. 2.46. These Wannier
Hamiltonians are supplemented with an effective SU(2)-symmetric Kanamori interaction of U = 5eV,
J = 0.75eV, U ′ = 3.5eV. In the following, deviations from the nominal d1 filling are generated purely
by a shift of the chemical potential. The Hamiltonians themselves are kept constant under doping.

2.5.1 Band structure and density of states

Both, SrO and VO2-terminated films result in similarly looking DFT band structures whose rele-
vant orbitals around the Fermi level are of vanadium t2g character, see Fig. 2.46. The densities of
states (DOS) of these orbitals showcase the abrupt surface termination of the sample: While the
xy-projection (blue line) keeps its two-dimensional character (as in bulk SrVO3) the (locally degen-
erate) xz- and yz-projections (green lines) now become one-dimensional and, concomitantly, display
a strongly reduced bandwidth. Consequently a van-Hove singularity emerges, which, at zero doping,
is in close proximity to the Fermi level. Indeed, in the VO2 (SrO) terminated system this singularity
is situated slightly below (above) the Fermi level. On top of this dimensionality reduction we find
the crystal-field splitting (cfs)

∆cfs = Exz/yz − Exy, (2.80)

to have opposite signs for the two different setups: The positive cfs of the SrO terminated monolayer,
∆cfs = +0.13eV, is a direct result of the tensile strain caused by the (in-plane) lattice mismatch
between SrVO3 and SrTiO3 (aSrVO3 < aSrTiO3). The in-plane expansion triggers a structural com-
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(a) VO2-terminated monolayer: ∆cfs < 0
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(b) SrO-terminated monolayer: ∆cfs > 0

Figure 2.46: Band structures and density of states. (a) VO2 and (b) SrO terminated
monolayer. Left: DFT band structure along a momentum path through the Brillouin zone (black
dots) overlain with the t2g-orbital projected Wannier dispersion (red lines). Right: the resulting
density of states (DOS) clearly shows the (quasi–) 2D character of the xy-orbital (blue) and the
1D character of the locally degenerate xz/yz-orbitals (green). The local orbital energy levels are
marked as dashed horizontal lines in the DOS. We find a crystal field splitting of ∆cfs = −0.252eV
for the VO2 terminated layer and ∆cfs = +0.126eV for the SrO terminated monolayer.

pression in the perpendicular direction, so as to keep the volume approximately constant.

This structural anisotropy translates into an electronic anisotropy [178]: The evident breaking of
the cubic symmetry of SrVO3 lifts the three-fold t2g degeneracy, making the xy-orbital energetically
favorable. The same effects take place in the VO2 terminated monolayer as well. There, however, the
geometric distortion gets overcompensated by the missing SrO layer: severing the apical oxygen of the
transition metal coordination octahedron results in a reversed, negative ∆cfs = −0.25eV. The xz/yz

orbitals have their lobes pointing in the z-direction, towards the lobes of the oxygen px/py orbitals.
The missing overlap to the absent apical oxygen leads to less electrostatic repulsion, thus lowering
the energy required to occupy these states. Another contributing factor is the abrupt termination to
vacuum, removing any restriction in the positive z-direction for the structural relaxation: The VO2

(SrO) terminated system results in a concave (convex) final termination, i.e., the last VO2 (SrO)
layer bends inwards (outwards). For both systems we find almost identical xy orbitals with a nearest-
neighbor hopping txy ∼ −230meV, next-nearest-neighbor hopping t′

xy ∼ −70meV and bandwidth
Wxy ∼ 2.1eV. The xz and yz orbitals of both systems, on the other hand, can be described purely
by nearest-neighbor hopping along the x or y direction, respectively: The VO2-terminated monolayer
allows for a large hopping amplitude (txz/yz ∼ −300meV), resulting in a slightly larger bandwidth
Wxz/yz = 1.2eV in Fig. 2.46a, compared to only Wxz/yz = 0.95eV (txz/yz ∼ −200meV) for the SrO-
terminated monolayer in Fig. 2.46b.
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2.5.2 Stoichiometric Mott insulator

Next, we analyze the electronic structure for the stoichiometric samples (n = 1) on the many-
body level, using DMFT at room temperature T = 290K: While in the VO2-terminated monolayer
(Fig. 2.47a) the out-of-plane xz/yz-orbitals realize a quarter-filled Mott insulator with a gap of 0.5eV,
in the SrO terminated monolayer (Fig. 2.47c) the in-plane xy-orbital hosts an essentially half-filled
canonical Mott insulator with a gap of 1.2eV. This difference can be traced back to the bare crystal-
fields. Indeed, DMFT amplifies the effect of the DFT cfs for both terminations, leading to the
depletion of the energetically higher lying orbital(s), i.e., the xy and the xz/yz orbital(s) for the
VO2 and SrO termination, respectively. This correlation-enhanced orbital polarization [62] leads to
an effectively reduced orbital-degeneracy. As a consequence, charge (inter-orbital) fluctuations are
suppressed and the critical interaction for reaching the Mott state diminishes [119, 149, 179]: The
Coulomb interaction is large enough to open a Mott gap in the SrO (VO2) terminated monolayer
with a single (two-fold) degenerate lowest orbital, while three-fold orbitally degenerate bulk SrVO3

is a stable metal. Let us note that the evidenced orbital polarization persists when including charge
self-consistency, which only yields minor corrections because charge is only redistributed between
orbitals, not between sites [99].
However, for both terminations the insulating behavior is actually driven by a combination of the
crystal-field splitting [86] and the reduced band-widths [85]. Whereas the crystal-field splitting is
essential for the bilayer system [86], we find that the bandwidth reduction alone is sufficient to drive
the monolayers insulating. We illustrate this in Fig. 2.47b and Fig. 2.47d where we take the original
Hamiltonians and set the cfs artificially to zero by shifting the local orbital energies. Both systems
remain insulating in DMFT. Unswayed by the cfs, however, the Mott gaps turn out smaller and
orbital occupations (in both cases: nxy,σ > nxz/yz,σ) only reflect the asymmetry of the orbitals’ DOS.
Let us note here that if we instead keep the cfs unchanged and adjust the xz/yz-bandwidths such
that Wxz/yz = Wxy both systems remain firmly metallic.

To investigate the stability of the insulating state further, we perform DMFT calculations for various
intra-orbital interaction strengths U . While keeping the Hund’s coupling J fixed to 0.75eV, we adjust
the inter-orbital interaction strength U ′ according to spherical symmetry (U ′ = U − 2J) [180]. Note
that, in contrast to U , J is hardly screened so that there is much less uncertainty and ambiguity
than for U . Fig. 2.48 shows the orbital occupations depending on the interaction U : Starting from
our standard value U = 5eV (vertical dashed line), going to larger interaction strengths simply
stabilizes the insulating solution further, while also increasing the orbital polarization slightly. Smaller
interaction strengths on the other hand, reduce the orbital polarization until, eventually, the insulating
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Figure 2.47: Mott insulating ground state. DMFT spectral functions A(ω) for (a) the VO2
terminated and (c) the SrO terminated structure at U = 5eV and room temperature (T = 290K). In
both cases a wide Mott gap forms which is accompanied by a strong orbital polarization. Removing
the crystal-field splitting, the reduced bandwidth alone results in a Mott insulator (b,d) with a
slightly smaller band gap.

solution can no longer be stabilized. This metal-to-insulator transition is, as expected within DMFT,
of first order (hysteresis or coexistence regime marked in gray in Fig. 2.48) and manifests itself by
a sudden drop of the orbital polarization. The Mott insulating state is stable down to U = 4.5eV
(U = 4.1eV) for the VO2 (SrO) terminated monolayer.
The stability of the stoichiometric Mott insulating solution is in particular important when doping
away from it, see Sec. 2.5.3. As long as the stoichiometric sample is insulating, we expect that any
variation of the interaction will have no qualitative impact on the DMFT phase diagram. A smaller
on-site repulsion will merely lead to weaker orbital polarizations and shifted boundaries in the phase
diagrams, Fig. 2.55a,b.
On top of the Mott physics discussed here, weak localization through disorder may play an additional
role in the insulating behavior of transport properties [112]. However, the suppression of the one-
particle spectra for thin films [85], magneto-transport results for SrVO3 thin films on an LSAT
substrate [181] as well as SrVO3/SrTiO3 superlattices [182] argue against a dominant weak localization
scenario for the insulator. Similar observations have been made for CaVO3 thin films on SrTiO3

substrate [183].
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Figure 2.48: Stability of Mott insulating state. Spin-dependent orbital occupation niσ

vs. intra-band interaction strength U at room temperature T = 290K; Hund’s coupling J = 0.75eV;
inter-band interaction U ′ = U − 2J . (a) The VO2 terminated monolayer is effectively a two-orbital
quarter-filled system (nxz/yz,σ ∼ 0.25) while (b) the SrO terminated monolayer becomes effectively
a half-filled one-orbital system (nxy,σ ∼ 0.5) at large enough interaction strengths. Both lead to a
Mott localization of carriers which can be upheld even if we reduce the interaction. The transition
to the metallic solution is accompanied by a tight hysteresis after which the orbital polarization
drops rapidly. The calculations under doping in the next figure are performed for U = 5eV (vertical,
dashed black line).

2.5.3 Orbital reconfiguration under doping

We will now discuss the electronic structure of the doped monolayers in their non-symmetry broken
phases: From the information of orbital occupations and degeneracies, we motivate possible ordering
instabilities (that will then be quantitatively assessed in Sec. 2.5.4).

First, the stoichiometric insulating state in Fig. 2.47 and the various orbital occupations in Fig. 2.49,
indicate that our systems are asymmetrical with respect to doping with electrons (n > 1) or holes
(n < 1). The VO2 terminated monolayer (Fig. 2.49a) somewhat upholds its orbital polarization when
holes are introduced to the system. Such orbital occupations of the bipartite lattice system make
the system prone to a staggered, checkerboard orbital ordering (cOO) [184, 185], as two orbitals
may now be occupied alternately on neighboring lattice sites. This is energetically favorable, since
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Figure 2.49: System trends with doping. Spin-dependent orbital occupation at T = 290K,
resolved for the i = xy and xz/yz-orbitals. (a) The VO2 terminated system around nominal
filling (n = 1) can be effectively described by two quarter-filled (xz/yz) orbitals. (b) The SrO
terminated system at and below nominal filling can effectively be described by a single half-filled
(xy) orbital. The former explains the tendency for checkerboard orbital ordering, while the latter
promotes antiferromagnetism in Fig. 2.55. The shaded areas around undoped SrVO3 represent the
doping levels at which we find these checkerboard and antiferromagnetic orderings in DMFT at this
temperature. Inset: Semi-empirical condition where stripe orbital ordering emerges: If we frustrate
the local site enough, we find a transition from checkerboard to stripe orbital-order (indicated by a
change in background color)

a nearest-neighbor hopping then results in a state where different orbitals are occupied so that a
(virtual) hopping process costs only U ′ = U − 2J instead of U .
Doping with more holes, see Fig. 2.49a, the VO2-terminated monolayer quickly moves away from
quarter-filling by redistributing electrons from the xz/yz-orbitals into the xy-orbital, disfavoring
orbital ordering (OO). As we shall see in Sec. 2.5.4, before OO is fully suppressed upon hole doping
the ordering vector changes to stripe orbital ordering (sOO) above a particular filling of the so far
auxiliary xy-orbital. Electron doping on the other hand maintains the quarter-filled state for longer,
where for fillings up to n ∼ 1.2 the additional electrons solely occupy the xy-orbital. Only above
n ∼ 1.3 we see a coincidental increase of all orbital occupations, again disfavoring orbital order.
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The SrO-terminated monolayer (Fig. 2.49b) is even more asymmetrical: Introducing holes does not
affect the effective one-band description of the system and the sparsely filled xz/yz orbitals remain
almost depleted. More interesting is the electron-doped side, where the multi-orbital character is
promoted. In this electron-doped regime, the Hund’s coupling J will promote a parallel spin alignment
of the electrons in the three orbitals. It is natural to expect that the hopping transfers this local
spin alignment into an FM order on the lattice, but other orders such as OO may emerge here
as well [186]. For strong Coulomb interactions and in an insulting state, these competing phases
can be understood by superexchange as in the classical Kugel-Khomskii spin-orbital models [187].
These phases have also been found in early DMFT calculations for a two-band model [184] and
an oversimplified Stoner criterion predicts FM order of the m-fold degenerate Hubbard model for
A(0) (U + (m − 1)J) ≥ 1 [188]. At extremely large dopings around n ∼ 1.5, the physics changes
once again: The system now consists of three quite equally filled orbitals where the xz/yz orbitals
approach quarter-filling. Similarly to stoichiometric filling in the VO2 terminated monolayer, such
degenerate quarter-filled orbitals may lead again to orbital ordering.

2.5.4 DMFT susceptibilities
2.5.4.1 Linear response theory

We now put the above analysis of potentially ordered phases on firm footing: The susceptibility χ

describes the response of a system to an external perturbation. In the vicinity to a continuous (second
order) phase transition the system becomes increasingly sensitive to these perturbations and promotes
the corresponding fluctuations22 The phase transition itself is then characterized by a diverging sus-
ceptibility on an infinite correlation length ξ, the system orders. Please note that no external field
is necessary to trigger the order of the system (spontaneous divergence). Commonly, the resulting
ground state does not exhibit the same (continuous) symmetries determined by the Hamiltonian H0,
a so-called spontaneous symmetry breaking occurs. In a ferromagnet, e.g., the underlying system is
invariant under SU(2) transformation. By the commencement of a finite magnetization, the spins are
no longer rotationally invariant, i.e. the ordered ground state exhibits less symmetry than the system
itself.

From a practical point of view, our goal will be to investigate the tendency towards order via
a numerical evaluation of susceptibilities, including their temperature dependence. Close to the
divergence, the system will display several characteristic critical exponents, e.g. χ ∝ (T − Tc)−γ ,
ξ ∝ (T − Tc)−ν (Tc: critical temperature) that are connected via scaling relations [190].

22 The uniform magnetic susceptibility χM (q = 0, iωm = 0) can, e.g., be connected to the fluctuations of the magne-
tization M via χM (q = 0, iωm = 0) = 1

kBT
⟨(M − ⟨M⟩)2⟩ [189].
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Given a system consisting of a Hamiltonian H0 with one-particle and possibly two-particle terms,
a perturbation a(t), quite generally, couples to a quantum mechanical operator Â

H(t) = H0 − a(t) · Â (2.81)

resulting in a time-dependent Hamiltonian. In this context we are then interested in the out-of-
equilibrium changes of some measurable (bosonic) observables ⟨B⟩

�
B̂

�
a

(t) −
�
B̂

�
a=0

=
� t

−∞
dt′χBA(t − t′)a(t′) + O(a2(t)) (2.82)

Within linear response theory the infinite series of Eq. (2.82) is truncated after the first order. Please
note that time dependent observable must now be evaluated with respect to the corresponding time-
dependent density matrix ρ(t) �

B̂
�

a
(t) =

Tr
�
ρ(t)B̂

#
Tr (ρ(t)) (2.83)

governed by Eq. (2.81). In order to simplify this problem one commonly employs the Kubo formal-
ism [191, 192]. Assuming a slow relaxation of the system (eigenstates of the system do not change)
and slowly varying density matrix, one can derive the Kubo-Nakano expression

χBA(t − t′) = − 1
iℏ

Θ(t − t′)
��

B̂(t), Â(t′)
��

a=0
(2.84)

evaluated with respect to the unperturbed system, H0. As our calculations are performed on the
imaginary time τ or (bosonic) frequency iωm axis, we usually define the associated Matsubara sus-
ceptibility

χBA(τ) =
�
Tτ B̂(τ)Â(0)

�
a=0

(2.85a)

χBA(iωm) =
� β

0
dτeiωmτ χBA(τ) (2.85b)

where Tτ orders the bosonic operators from left to right according to their time arguments τ > 0:
⟨B̂(τ)Â(0)⟩; τ < 0: ⟨Â(0)B̂(τ)⟩. If necessary, the return to real time and frequency is performed
via analytic continuation χ(ω) = χ(iωm → ω + i0+). In the analysis of static responses (pivotal for
ordering) this is not necessary as the full information is encoded in the zeroth frequency iωm = 0.

In this Section, we are first and foremost interested in the responses to an external magnetic field
and the more abstract response to a change of the chemical potential. Electromagnetic fields coupling
to the current operator resulting in an optical response (optical conductivity σ(ω)), will be discussed
in Section 2.6.
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A static, external magnetic field (B) couples to the system via the electronic spins Si arranged
on the lattice

H = H0 − µB g
,

i

Ŝi · B (2.86)

with the Bohr magneton µB = eℏ/(2me) and the gyromagnetic ratio (g ≈ 2 for electrons without
spin-orbit coupling) as coupling constants. The chemical potential µ on the other hand is commonly
already included in the Hamiltonian and couples to the electron numbers, ni, of the lattice sites i

H = H0 − µ
,

i

n̂i (2.87)

In spin-1/2 systems the density and spin operators in this type of coupling can be represented via

n̂ =
�
ĉ†

↑, ĉ†
↓
�
1

ĉ↑
ĉ↓

 = ĉ†
↑ĉ↑ + ĉ†

↓ĉ↓ (2.88a)

⃗̂
S =

�
ĉ†

↑, ĉ†
↓
� ℏ

2 σ⃗

ĉ↑
ĉ↓

 = ℏ2


ĉ†

↑ĉ↓ + ĉ†
↓ĉ ↑

−iĉ†
↑ĉ↓ + iĉ†

↓ĉ↑
ĉ†

↑ĉ↑ − ĉ†
↓ĉ↓

 (2.88b)

where σ⃗ are the Pauli matrices in vector form (σx, σy, σz). Magnetic and density responses, corre-
sponding to the perturbations of Eq. (2.86) and Eq. (2.87), then correspond to

χM (τ) ≡ χSzSz (τ) = g2
�
Tτ Ŝz(τ)Ŝz(0)

�
− g2β

�
Ŝz

� �
Ŝz

�
(2.89a)

χD(τ) ≡ χnn(τ) = ⟨Tτ n̂(τ)n̂(0)⟩ − β ⟨n̂⟩ ⟨n̂⟩ , (2.89b)

respectively. Let us emphasize here that the magnetic response must be identical in all three spin
directions χM = χSxSx = χSySy = χSzSz [193]. In both correlation functions the disconnected
expectation values are not taken into consideration: These terms stem from “non-physical” Feynman
diagrams stemming from the disconnected Wick contractions, see Appendix A.1, and do not contribute
to the physical processes we want to capture. Whereas in Eq. (2.89b) the density density correlation
function is corrected by a density offset, the correction of Eq. (2.89a) is in principle redundant as we
operate under the assumption of an unordered phase, i.e.

�
Ŝz

�
≡ 0.

Employing the Kubo formalism, expectation values occurring in correlation functions such as
Eqs. (2.89b-2.89a) are implicitly always taken from now on with respect to the unperturbed system.
The gyromagnetic prefactor g2 in χM takes into consideration the coupling of the magnetic field
onto the Hamiltonian. Please note that we ignore the µ2

B scaling, which needs to be taking into
consideration when transforming the magnetic susceptibilities into SI units.

Eqs. (2.89a) and (2.89b) encode the purely spin and charge fluctuations as the coupling (A) and
measurement (B) operators are identical. In the following we will restrict the spin considerations
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to the commonly chosen z-axis. This restriction allows for a major simplification of the correspond-
ing diagrammatic considerations as density and magnetic susceptibilities can now be based on the
generalized, spin-dependent density-density correlation function

χσσ′
nn (τ) = ⟨Tτ n̂σ(τ)n̂σ′(0)⟩ − β ⟨n̂σ⟩ ⟨n̂σ′⟩ (2.90)

via

χD = χ↑↑
nn + χ↓↓

nn + χ↑↓
nn + χ↓↑

nn, (2.91a)

χM = χ↑↑
nn + χ↓↓

nn − χ↑↓
nn − χ↓↑

nn. (2.91b)

For our intents and purposes it is customary to Fourier transform the imaginary time axis to (bosonic)
Matsubara frequencies. In the context of DMFT, the impurity responses, allowing for multiple or-
bitals, can be then condensed into

χimp
M (iωm) = g2 ,

ll′

� β

0
dτeiωmτ

�
Tτ Ŝz

l (τ)Ŝz
l′(0)

�
− g2 ,

ll′
βδωm,0

�
Ŝz

l

� �
Ŝz

l′
�

, (2.92a)

χimp
D (iωm) =

,
ll′

� β

0
dτeiωmτ ⟨Tτ n̂l(τ)n̂l′(0)⟩ −

,
ll′

βδωm,0 ⟨n̂l⟩ ⟨n̂l′⟩ . (2.92b)

2.5.4.2 Two-particle diagrammatic content

Inserting the occupation operator into Eq. (2.90) reveals the intrinsic two-particle nature of the
aforementioned correlation functions

χσσ′
nn (τ) = lim

τ1→τ−;τ2=τ
lim

τ3→0−

�
Tτ ĉσ(τ1)ĉ†

σ(τ2)ĉσ′(τ3)ĉ†
σ′(0)

�
������������������������������������������������������������������������������

G
(2)
σσσ′σ′(τ1, τ2, τ3, 0)

−β ⟨n̂σ⟩ ⟨n̂σ′⟩ (2.93)

which are evidently connected to specific spin-combination of the two-particle Green’s function G(2)

on the imaginary time axis. Let us emphasize that the two-particle Green’s function is defined with
a different operator ordering compared to the density density correlation function of Eq. (2.90). The
mismatch can be circumvented by a correct limit of the τ arguments τ1 → τ− < τ , τ3 → 0− < 0. As
this introduction to two-particle diagrammatic is kept (relatively) brief, please refer to Appendix A.1
for a more detailed discussion on the topic.

In order to handle the diagrammatic content of the two-particle Green’s function itself it is common
to first transform G(2) into the frequency space. The resulting frequencies of this Fourier transform are
in principle three arbitrary fermionic Matsubara frequencies which are restricted by the underlying
energy conservation. By introducing specific (frequency) notations, see Appendix A.1.1.5, one is
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able to get a transparent view of the relevant scattering processes. In the context of this thesis we
exclusively employ the so-called particle-hole (ph) notation

Gωνν′
σσσ′σ′ =

� β

0
dτ1

� β

0
dτ2

� β

0
dτ3 eiνnτ1e−i(νn−ωm)τ2ei(ν′

n−ωm)τ3��������������������������������������������������������������������������
ph notation

�
Tτ ĉσ(τ1)ĉ†

σ(τ2)ĉσ′(τ3)ĉ†
σ′(0)

�
, (2.94)

describing processes where a bosonic frequency iωm of a particle-hole excitation is transferred. Nat-
urally, this notation has no influence on the underlying diagrammatic content. The other two com-
monly employed notations include the transversal particle-hole (ph) notation and the particle-particle
notation (pp), see Appendix A.1.1.5.

Performing the Dyson expansion for the interacting system and applying Wick contractions we
are able to separate three distinct terms

Gωνν′
σσσ′σ′ = βGν

σGν′
σ′δωm,0 − βGν

σGν−ω
σ′ δσσ′δνν′������������������������������������������������������������������������������������������

disconnected

+ Gν
σGν−ω

σ F ωνν′
σσσ′σ′Gν′−ω

σ′ Gν′
σ′������������������������������������������������������������������

connected

, (2.95)

see Fig. 2.50. The first two terms stem from a separation of the four-point correlation into two
two-point correlation functions, i.e. interacting one-particle Green’s functions, and describe the inde-
pendent (renormalized) propagation of a particle-hole pair, the so-called disconnected contribution.

Gωνν ′

σσσ′σ′

F ωνν ′

σσσ′σ′

ν, σ

ν − ω, σ ν ′ − ω, σ′

ν ′, σ′

ν, σ ν ′, σ′

ν, σ

ν − ω, σ
= −

+

ν, σ

ν − ω, σ ν ′ − ω, σ′

ν ′, σ′

1

2 3

4

1

2 3

4

Figure 2.50: Diagrammatic content of the two-particle Green’s function, encoding the propagation
of two (renormalized) Green’s function with and without interaction with one another. All possible
particle-hole interactions can be summarized in the full vertex F . Note that while in the two-particle
Green’s function the outer legs are only indicated for their external dependencies, the full vertex
is actually attached with four Green’s functions. The internal enumeration of the vertex F is done
anti-clockwise starting from the upper left corner.
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In the last term all possible diagrams are gathered which are inherently linked, the so-called
connected contribution. These connections are summarized in the full vertex F , which in most
circumstances can be thought of as a generalized scattering matrix, akin to the self-energy Σ on the
one-particle level.

The generalized susceptibility then simply follows by subtracting the “vertical” disconnected con-
tribution

χωνν′
σσσ′σ′ = Gωνν′

σσσ′σ′ − βGν
σGν′

σ′δωm,0

= −βGν
σGν−ω

σ′ δσσ′δνν′��������������������������������������������������
χωνν′

0

+Gν
σGν−ω

σ F ωνν′
σσσ′σ′Gν′−ω

σ′ Gν′
σ′ , (2.96)

which corresponds to the removal of the offset terms appearing in Eq. (2.93).23 The physical suscep-
tibility is obtained by summing over all external fermionic frequencies

χσσ′
nn (iωm) = 1

β2

,
νn,ν′

n

χωνν′
σσσ′σ′

= − 1
β

,
νn

Gν
σGν−ω

σ′ δσσ′����������������������������������������������������
χω

0

+ 1
β2

,
νn,ν′

n

Gν
σGν−ω

σ F ωνν′
σσσ′σ′Gν′−ω

σ′ Gν′
σ′ , (2.97)

corresponding to a connection of the in- and out-going particle-hole pair, see Fig. 2.51.

F ωνν ′

σσσ′σ′χσσ′

nn =
σ

σ σ′

σ′

ν

ν − ω

+
σ σ′

σ σ′

σ σ′

σ σ′

ν

ν − ω

ν ′

ν ′ − ω

1

2 3

4

(iωm)

Figure 2.51: Diagrammatic representation of Eq. (2.97). The bubble diagram (left) contributes
only for identical spins σ = σ′. The internal enumeration of the vertex F is done anti-clockwise
starting from the upper left corner.

From a mathematical point of view, this is identical to setting the imaginary times of the particle-
hole pairs to the same value τ1 = τ2 = τ and τ3 = 0.24

23 The fermionic frequency summation over the disconnected Green’s functions 1/β
-

νn
Gν (with correct Fourier

transform prefactor) results in the Green’s functions evaluated at τ = 0−, mirroring Eq. (2.93). These summations
then reproduce the occupations, see Appendix A.2, cancelling the correction term exactly.
24 This can easily be recognized in the ph notation: The Matsubara sums over the complex ex-
ponential functions results in δ-functions that eliminate one integral each 1

β2
-

νn,ν′
n

Gωνν′ =
1

β2
-

νn,ν′
n

� � �
dτ1dτ2dτ3 eiνnτ1 e−i(νn−ωm)τ2 ei(ν′

n−ωm)τ3 G(2)(τ1, τ2, τ3, 0) =
�

dτ1 eiωmτ1 G(2)(τ1, τ1, 0, 0).
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In summary, the spin-resolved density-density susceptibility describes the excitation of a particle-
hole pair. The corresponding particle and hole propagators can then either travel independently (only
being renormalized by their own respective self-energies) or experience scattering events between them
via the vertex F . We now turn our focus onto exactly this full vertex F and its numerical treatment.

2.5.4.3 Vertex topology

As the main driver of diverging susceptibilities is the full two-particle vertex F , an adequate treatment
is necessary to capture the associated phase transitions. Topologically, the diagrams of the full vertex
can be classified into four different categories via the parquet equation (2.98), illustrated in Fig. 2.52,

F = Λ + Φpp + Φph + Φph. (2.98)

F = Λ + Φpp + Φph + Φph

lowest order:

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

Figure 2.52: Diagram classification according to their topology. Two-particle reducibility sepa-
rates all possible diagrams in four distinct groups: Λ: fully irreducible, Φi: reducible in channel
i ∈ {pp, ph, ph}. The exemplary diagrams show the lowest order in terms of the interaction U
(represented as dot). The dashed propagators imply that they do not contribute to the diagram.

Diagrams that cannot be separated by cutting two internal Green’s function lines (two-particle
fully irreducible vertex Λ) and diagrams that can be separated (two-particle reducible vertices Φ).
Depending on which pair of line this internal separability refers to, one distinguishes between the
so-called:

◦ particle-particle (pp) channel – reducible between the pairs 13 − 24,

◦ particle-hole (ph) channel – reducible between the pairs 12 − 34,

◦ particle-hole transverse (ph) channel – reducible between the pairs 14 − 23.
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Importantly, if a diagram can be separated in one of the three channels, it cannot be separated in
any other channels [93]. This allows for three equivalent reformulations of Eq. (2.98)

F = Γph + Φph (2.99a)

F = Γph + Φph (2.99b)

F = Γpp + Φpp, (2.99c)

the so-called Bethe-Salpeter equations (BSE). The susceptibilities utilized in this thesis can all be
inherently connected to particle-hole excitations (∝ ĉ†ĉ). In this context, the DMFT susceptibilities
are based on an approximation to the full vertex F constructed via the particle-hole Bethe-Salpeter
equation (2.99a).

2.5.4.4 Spins: Channel parametrization

Symbolically within the ph channel, the reducible property of the Φph vertex can be generated if irre-
ducible vertices Γph are connected with one another by (GG)ph propagators. All possible, sequentially
joined reducible contributions lead to the geometric series

Φph =
�

Γph(GG)phΓph +
�

Γph(GG)phΓph(GG)phΓph + . . .

=
�

Γph(GG)phF, (2.100)

connecting Γ, Φ and F . The integral denotes a summation over all possible internal degrees of
freedom. As these quantities represent true two-particle interaction matrices, their spin dependence
requires some consideration. Calculations are performed in the non-symmetry-broken (paramagnetic
phase, SU(2) symmetry maintained), i.e. in- and outgoing spins must conserve the total spin. This
restriction reduces the number of spin permutations from 24 = 16 to 6, encoded in

Fσσ = Γσσ +
� ,

σ′′
Γσσ′′Gσ′′Gσ′′Fσ′′σ (2.101a)

Fσσ′ = Γσσ′ +
� ,

σ′′
Γσσ′′Gσ′′Gσ′′Fσ′′σ′ (2.101b)

Fσσ′ = Γσσ′ +
�

Γσσ′GσGσ′Fσσ′ (2.101c)

with the commonly used spin abbreviation, see Fig. 2.53.

σσ ↔ σσσσ

σσ′ ↔ σσσ′σ′

σσ′ ↔ σσ′σ′σ.
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Fσσσσ

σ

σ σ

σ

1

2 3

4

σ σ′

σ σ′

Fσσσ′σ′

1

2 3

4

σ σ

σ′ σ′

Fσσ′σ′σ

2

1 4

3

Fσσ Fσσ′ Fσσ

Figure 2.53: Spin abbreviation for the six possible spin permutations ↑↑, ↓↓ (left) — ↑↓, ↓↑
(middle) — ↑↓, ↓↑ (right).

Through the internal spin summation Eqs. (2.101a) and (2.101b) become intrinsically coupledF↑↑ F↑↓
F↓↑ F↓↓

 =

Γ↑↑ Γ↑↓
Γ↓↑ Γ↓↓

 +
� Γ↑↑ Γ↑↓

Γ↓↑ Γ↓↓

 G↑G↑ 0
0 G↓G↓

 F↑↑ F↑↓
F↓↑ F↓↓

 (2.102)

whereas the internal spins (via spin conservation) in Eq. (2.101c) become restrictedF↑↓
F↓↑

 =

Γ↑↓
Γ↓↑

 +
� Γ↑↓G↑G↓F↑↓

Γ↓↑G↓G↑F↓↑

 . (2.103)

For the preserved SU(2) symmetry, we are allowed to uncouple the matrix equation (2.102) by “sym-
metrizing” the spin-combinations via

D ≡ ↑↑ + ↑↓ (2.104a)

M ≡ ↑↑ − ↑↓ (2.104b)

resulting in FD

FM

 =

ΓD

ΓM

 +
�  ΓDGGFD

ΓM GGFM

 (2.105)

with G↑ = G↓ = G. We recover expressions that are diagonal in the new (D)ensity and (M)agnetic
“channels”, naturally connected to Eqs. (2.88a) and (2.88b). The symmetrization exactly mirrors the
definition of the density and the (z-component of the) spin operator allowing for an easy translation
between the two-particle vertex description and physical observables. Please note that the magnetic
channel can be further connected to

M ≡ ↑↑ − ↑↓ SU(2)= ↑↓ (2.106)
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via a spin rotation (angle ϕ = π/2) about the y-axis, identifying Eq. (2.103) as the magnetic chan-
nel [193]. Within this reformulation of the particle-hole channel we are thus able to rid ourselves
completely from spin-descriptors with the full information of the ph channel compressed into the two
newly constructed density and magnetic channels.

As the transverse particle-hole channel is deeply connected to the particle-hole channel via the
crossing symmetry the D/M channel not only provides the full information of the ph-channel, but also
of the ph-channel [193]. An explicit treatment is therefore not necessary. This argument no longer
holds, however, when constructing corrections to the self-energy (see Section 2.5.7) as the involved
vertices have to obey crossing symmetry (Pauli principle). There, the ph and the ph channels have
to be treated on equal footing.

Let us note that throughout this thesis we are going to neglect the momentum dependence of the
pp channel, i.e. Φpp is assumed to be local. The particle particle channel encodes observables such
as pair excitations, present, e.g., in the vicinity of superconducting instabilities. Inside the symmetry
broken superconducting phase, the corresponding expectation value ⟨ĉ†

k,↑ĉ†
−k,↓⟩ then becomes finite.

Furthermore, diagrammatic feedback (Γpp = Λ + Φph + Φph) between the channels can however not
be excluded which one has to be mindful about when evaluating pre-selected channels.

2.5.4.5 Frequency: Matrix representation

Before being able to extract information from the aforementioned Bethe-Salpeter equations (2.105),
they need to to be implemented in matrix form to do so in an efficient manner. First, the particle-hole
reducible propagators are rewritten into the bare susceptibility

χωνν′
0 = −Gν

σGν−ω
σ βδνν′ , (2.107a)

χωνν
0 = −Gν

σGν−ω
σ , (2.107b)

where the former appears in the two-particle Green’s function, see Eq. (2.95), with corresponding
units [eV−3]. The latter expression (note the change in the superscript) has units of [eV−2] and is
employed in the Bethe-Salpeter equation

F ωνν′
r = Γωνν′

r + 1
β2

,
ν′′ν′′′

Γωνν′′
r (−Gν′′

σ Gν′′−ω
σ βδν′′ν′′′)F ων′′′ν′

r

= Γωνν′
r + 1

β

,
ν′′

Γωνν′′
r χων′′ν′′

0 F ων′′ν′
r . (2.108)

ensuring the correct dimensionality of the full vertex F (Γ [eV], χωνν
0 [eV−2], F [eV]). The prefactor

1/β [eV] accompanies most Matsubara summations and the minus sign takes the additional fermionic
loop of “GG” into consideration. The internal (fermionic) Matsubara summation

-
ν′′ can then
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be translated into a simple matrix multiplication by constructing the two-particle vertices Xωνν′

(X = F, Γ, χ0, etc.) in the following numerical form

Xωνν′ =
Xν−2ν′

−2 Xν−2ν′
−1 Xν−2ν′

0 Xν−2ν′
1

Xν−1ν′
−2 Xν−1ν′

−1 Xν−1ν′
0 Xν−1ν′

1

Xν0ν′
−2 Xν0ν′

−1 Xν0ν′
0 Xν0ν′

1

Xν1ν′
−2 Xν1ν′

−1 Xν1ν′
0 Xν1ν′

1


(iωm). (2.109)

That is, every transfer frequency is represented by a separate matrix whose first fermionic frequency
spans the rows and whose second fermionic frequency spans the columns. Naturally, one has to
implement a (symmetrical) cutoff frequency ν−n . . . νn−1 (νn = (2n + 1)π/β). It is then easy to see
that multiplying two such matrices

Zωνν′ = 1
β

,
ν′′

Xωνν′′
Y ων′′ν′

, (2.110)

resolves the internal frequency summation. Extending this concept to multiple orbitals, one needs
to adopt a so-called frequency-orbital compound index: ν → (ν, lm), ν ′ → (ν, m′l′) where lmml′ is
the corresponding orbital permutation. The multi-orbital representation of Xωνν′

lmm′l′ then reads for a
two-orbital system

Xωνν′
lmm′l′ =

X
ν−1ν′

−1
1111 X

ν−1ν′
−1

1121 X
ν−1ν′

−1
1112 X

ν−1ν′
−1

1122 X
ν−1ν′

0
1111 X

ν−1ν′
0

1121 X
ν−1ν′

0
1112 X

ν−1ν′
0

1122

X
ν−1ν′

−1
1211 X

ν−1ν′
−1

1221 X
ν−1ν′

−1
1212 X

ν−1ν′
−1

1222 X
ν−1ν′

0
1211 X

ν−1ν′
0

1221 X
ν−1ν′

0
1212 X

ν−1ν′
0

1222

X
ν−1ν′

−1
2111 X

ν−1ν′
−1

2121 X
ν−1ν′

−1
2112 X

ν−1ν′
−1

2122 X
ν−1ν′

0
2111 X

ν−1ν′
0

2121 X
ν−1ν′

0
2112 X

ν−1ν′
0
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X
ν−1ν′

−1
2211 X

ν−1ν′
−1

2221 X
ν−1ν′

−1
2212 X

ν−1ν′
−1

2222 X
ν−1ν′

0
2211 X

ν−1ν′
0

2221 X
ν−1ν′

0
2212 X

ν−1ν′
0

2222

X
ν0ν′

−1
1111 X

ν0ν′
−1

1121 X
ν0ν′

−1
1112 X

ν0ν′
−1

1122 X
ν0ν′

0
1111 X

ν0ν′
0

1121 X
ν0ν′

0
1112 X

ν0ν′
0

1122

X
ν0ν′

−1
1211 X

ν0ν′
−1

1221 X
ν0ν′

−1
1212 X

ν0ν′
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1222 X
ν0ν′

0
1211 X

ν0ν′
0

1221 X
ν0ν′

0
1212 X

ν0ν′
0
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0
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0
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ν0ν′

0
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ν0ν′
0
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X
ν0ν′

−1
2211 X

ν0ν′
−1

2221 X
ν0ν′

−1
2212 X

ν0ν′
−1

2222 X
ν0ν′

0
2211 X

ν0ν′
0

2221 X
ν0ν′

0
2212 X

ν0ν′
0

2222





(iωm). (2.111)

Importantly, the orbital enumeration is different along the rows and columns

along column : 11 → 12 → 21 → 22

along row : 11 → 21 → 12 → 22

in order to correctly capture the order of the orbital summation

Zωνν′
lmm′l′ = 1

β

,
ν′′,ab

Xωνν′′
lmab Y ων′′ν′

bam′l′ . (2.112)
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As seen in Eq. (2.108), when handling propagator insertions the necessary prefactors are not necessar-
ily intuitive. The most “fool-proof” way of determining them is by the aforementioned dimensionality
analysis. For a detailed description of the numerical implementation employed in AbinitioDΓA, used
throughout this thesis, please refer to Ref. [2].

2.5.4.6 Lattice susceptibilities

Having established a framework for the description of genuine two-particle quantities, we now turn our
focus onto an approximation thereof. Within DMFT the above two-particle vertex F is only accessible
via the underlying quantum impurity problem, i.e. we are at first restricted to local susceptibilities and
local vertices. In order to insert lattice information into these local quantities, the Bethe-Salpeter
equations have to be inverted. The momentum-dependence then is generated purely through the
one-particle propagators Gk.

This procedure can be symbolically summarized as:

(i) Calculate the local two-particle full vertex F ω
r

◦ Sample impurity two-particle Green’s function G(2)

◦ Subtract disconnected terms

◦ Amputate external legs

◦ Symmetrize vertex F ω
r , r ∈ {D, M}

(ii) Extract the local two-particle irreducible vertex Γω
r

◦ Inversion via Γω
r = F ω

r (1 + χω
0 F ω

r )−1

(iii) Reconstruct the momentum dependent vertex F q
r :

◦ Inversion via F q
r = (1 − Γrχq

0)−1Γω
r

In the first inversion we employ the local Green’s function

χω
0 = − 1

β

,
νn

Gν
σGν−ω

σ , (2.113)

whereas in the second inversion the non-local lattice Green’s functions are used instead

χq
0 = − 1

β

,
νn

,
k

Gk
σGk−q

σ . (2.114)

Due to the way the “lattice” vertex is constructed in the ph-channel, only a single transfer momentum
q is generated. The internal and external Green’s function momenta are “lost” as we are forced to sum
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over the remaining internal and external momenta to close the diagram. As these irreducible vertices
are known to diverge in certain parameter regimes [194, 195], we try to avoid any numerical represen-
tation of them. Combining the deconstruction and construction of the BSE, allows us to circumvent
this problem while simultanesouly speeding up the computation. The algebraic reformulation looks
as follows

F q
r = (1 − Γω

r χq
0)−1 Γω

r (2.115)

=
�
(Γω

r )−1 − χq
0

�−1

=
�

F ω
r (1 + χω

0 F ω
r )−1

#−1 − χq
0

�−1

=
�
(1 + χω

0 F ω
r ) (F ω

r )−1 − χq
0

�−1

=
�
(F ω

r )−1 + χω
0 − χq

0

�−1

=
�
(F ω

r )−1 − χq,nl
0

�−1

=
��

1 − χq,nl
0 F ω

r

#
(F ω

r )−1
�−1

= F ω
r

�
1 − χq,nl

0 F ω
r

�−1

with r ∈ (D, M) and χq,nl
0 = χq

0 − χω
0 . This newly constructed, momentum dependent vertex

F q
r = F

(q,ω)
r then needs to be inserted back into the form of a generalized susceptibility

χq
r ≡ χr(q, iωm) = − 1

β

,
νn

,
k

Gk
σGk−q

σ + 1
β2

,
νn,ν′

n

,
k,k′

Gk
σGk−q

σ F qνν′
r Gk′−q

σ Gk′
σ , (2.116)

see Fig. 2.54, for which now an internal momentum summation is required. By introducing the lattice
via the non-local propagators, the resulting physical magnetic and density responses now correspond
to

χlattice
M (q, iωm) = g2 ,

ij,ll′
eiq·(Ri−Rj)

� β

0
dτeiωmτ

��
Tτ Ŝz

il(τ)Ŝz
jl′(0)

�
− β

�
Ŝz

il

� �
Ŝz

jl′
��

(2.117a)

χlattice
D (q, iωm) =

,
ij,ll′

eiq·(Ri−Rj)
� β

0
dτeiωmτ [⟨Tτ n̂il(τ)n̂jl′(0)⟩ − β ⟨n̂il⟩ ⟨n̂jl′⟩] (2.117b)

where i, j are indices for the lattice sites Ri(j) and l, l′ are orbital indices.

Eigenvalue decomposition
In order to gain more information about the proximity and the characteristic of the nearby phase
transition, we also decompose the matrix χq,nl

0 F ω
r . Due to the time reversal symmetry (TR), χq,nl

0 F ω
r
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F (q,ω)νν ′

r
χr(q, ω)=

σ

σ σ

σ

k, ν

k− q, ν − ω

+
σ σ

σ σ

σ σ

σ σ

k, ν

k− q, ν − ω

k
′, ν ′

k
′
− q, ν ′ − ω
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Figure 2.54: Lattice susceptibility in the symmetrized channels r ∈ {D, M}, see Eq. (2.116).
Through the symmetrization, the spin dependencies are absorbed into the vertex F qνν′

r . All other
employed one-particle propagators are spin-independent, i.e. G = G↑ = G↓.

is a symmetric matrix in the employed frequency-band compound index, see Section 2.5.4.5, as the
two-particle object (Green’s function X = G, vertex X = F , generalized susceptibility X = χ0, etc.)
obeys

Xqkk′
lmm′l′

σσ′

TR= Xqk′k
l′m′ml

σ′σ
, (2.118)

with the connection between q = (q, iωm) and q = (−q, iωm) and similarly for k and k′ [33]. The
inversion of (1 − χq,nl

0 F ω
r ) is no longer possible if the leading, purely real valued, eigenvalue is equal

or larger to 1. This is easily shown by the eigenvalue decomposition�
1 − χq,nl

0 F ω
r

�−1
=

�
1 − QΛQ−1

�−1
= Q−1 [1 − Λ]−1 Q (2.119)

and the inversion of the n × n diagonal matrix Λ resulting in

[1 − Λ]−1 =


(1 − λ1)−1

(1 − λ2)−1

. . .

 (2.120)

where we assume λ1 > λ2 > . . . λn. In this context the rank of the matrix is n = 2nf · n2
bands

where nf is the number of employed positive, fermionic frequencies and nbands the total number of
considered bands. Please note, that the leading eigenvalue crossing λ1 = 1 does not necessarily lead
to a “physical divergence”, as the eigenvector matrices Q may fully suppress its contribution. This is
however, very rarely the case.

Simplifications via diagonal hybridization functions
Throughout this thesis we have simplified the local problem, underlying the DMFT cycle, by assuming
a diagonal hybridization function resulting in a diagonal self-energy, see Section 2.2.3. This reduction
in complexity of the sampling of the one-particle Green’s function also leads to a massive simplifica-
tion of the sampling of the two-particle Green’s function. As the local one-particle propagators are
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diagonal in the orbital space, i.e. Gl,l′ ∝ δl,l′ , the two-particle Green’s function “inherits” the orbital
composition of the employed interaction matrix, see Section 2.2.2. For the case of the Kanamori
parametrization, this reduces the number of possible spin-orbital combinations from N = (2n)4 to
N = 6(3n2 − 2n), reducing the scaling from O(n4) to O(n2), where n are the number of correlated
bands, that we sample in the impurity problem.25

Consistency
Since the transfer momentum is an arbitrary input parameter when evaluating the non-local vertex,
we are able to perform a full momentum scan and are not restricted to singular q-vectors. Note that
the uniform response (q = 0) can also be determined in DMFT via calculations including an explicit
magnetic field. The susceptibility is then determined by the derivative at 0 magnetic field

χM (q = 0) = ∂M

∂B

.....
B→0

(2.121)

As DMFT is a conserving theory and therefore respects the Ward identities, both methods necessarily
agree with each other [196]. Note that these susceptibilities still are only approximations within
DMFT. Only in the infinite dimension limit does the irreducible vertex Γ of the impurity become
exact, from which the lattice susceptibilities follow.

In the following, the sampling of the two-particle Green’s function is done by continuous-time quantum
Monte Carlo simulations in the hybridization expansion [197, 97] using w2dynamics [30] with worm
sampling [96]. Momentum-dependent DMFT susceptibilities are calculated from the local vertex,
following the aforementioned procedure, using the AbinitioDΓA [2, 33] program package.

2.5.5 Phase diagrams
For the prevailing magnetic and orbital orders, Fig. 2.56a and Fig. 2.56b displays the relevant DMFT
susceptibilities at temperatures above the respective instabilities. Maxima in the shown susceptibili-
ties indicate type and Q-vector of the dominant fluctuations. Fig. 2.56c illustrates, for selected exam-
ples, the critical behavior of the (inverse) susceptibilities and (inverse) correlation lengths emerging
when said maxima turn into instabilities. Magnetic instabilities occur where the static susceptibility
in the magnetic channel χM (Q, iωm = 0) diverges at a critical temperature, indicated by the intercept
of χ−1(Q) with the temperature axis in Fig. 2.56c. Ferromagnetism (FM) and antiferromagnetism
(AF) correspond to the usual ordering vectors Q = (0, 0) and Q = (π, π), respectively. The incom-

25 6 spin combinations (σσ, σσ′, σσ′) and n + 3n(n − 1) orbital combinations: n intra-orbital contributions (iiii) and
3n(n-1) inter-orbital contributions (iijj, ijji, ijij). For the t2g case, n = 3, this leads to a reduction from 1296 to 126
spin-orbit combinations.
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mensurate magnetism (iM), that we find for the VO2-termination, corresponds to an ordering vector
Q with fixed length |Q| = δ ≥ 0, see Fig. 2.56a and Fig. 2.57.
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Figure 2.55: Phase diagrams. (a) VO2 and (b) SrO terminated monolayers of SrVO3 on a
SrTiO3 substrate (see insets) realize various phases as a function of the number of electrons per site
in the low-energy t2g (n; lower x-axis) or gate voltage (VG; upper x-axis): antiferromagnetism (AF:
red), ferromagnetism (FM: blue), incommensurate magnetism (iM: blueish), checkerboard orbital
order (cOO: green), stripe orbital order (sOO: turquoise). The thus colored domes indicate the
formation of long-range order within dynamical mean-field theory (DMFT). The +–signs indicate
points for which many-body calculations were performed (black signs represent non-divergent, white
signs divergent DMFT susceptibilities). Based on the dominant susceptibilities, the color domes
have been drawn as a guide to the eye.

We now assess the instabilities resulting in the phase diagrams, Fig. 2.55a,b. Antiferromagnetic (AF)
order from super-exchange is facilitated by effectively half-filled orbitals. For the d1 configuration
of SrVO3, only the SrO-terminated monolayer provides this favorable condition. Indeed, there, the
positive crystal-field realizes a half-filled, Mott insulating xy-orbital that then hosts AF order, see the
diverging susceptibility in Fig. 2.56c. Note that AF order was also predicted for a SrO-terminated
SrRuO3 monolayer on SrTiO3 around nominal stoichiometry [198]. There, the d4 configuration results
in an essentially fully occupied xy-orbital, and the staggered moment is instead carried by half-filled
xz/xz orbitals. In both cases, doping with either electrons or holes suppresses the AF state.

Doping the SrVO3 monolayer with either termination towards their respective van-Hove singularities,
i.e., hole (electron) doping for the VO2 (SrO) terminated sample (see Fig. 2.46) results in a strongly
increased spectral density around the Fermi level within DMFT. Concomitantly doping generates
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an orbital configuration where all involved orbitals are close to equally filled, promoting energy
minimization through Hund’s exchange J and therefore a parallel alignment of the involved spins.
This situation, leading to ferromagnetism (FM), is found around n = 0.7 in the VO2-terminated
and near n = 1.3 in the SrO-terminated sample. In both cases, ferromagnetism is hosted by the
degenerate xz and yz-orbitals. Subleading non-local AF fluctuations are, however, still present in
the xy-orbital of the SrO-terminated system. Indeed, an antiferromagnetic stripe pattern, Q =
(0, π), and symmetrically related at Q = (π, 0), appears, indicated by additional local maxima
in the susceptibility, see Fig. 2.56b. Quite notably, in the absence of Hund’s rule coupling FM
fluctuations are strongly suppressed and said frustrated AF spin-fluctuations would be on par with
them (additional data, not shown). Moreover, we also find incommensurate magnetic order in the
VO2-terminated system around n = 1.3 in the xz/yz-orbitals (iM at n = 1.3 in Fig. 2.56a). There,
instead of a specific ordering vector Q the magnetic susceptibility is maximal for all vectors Q
with origin (0, 0) and a length of δ = |Q| ≥ 0, i.e., roughly a circle in the q-plane. Upon lowering
temperature, δ increases and in close vicinity to the ordered phase anisotropy develops; the maximum
susceptibility within the circle is found at Q = (±δ, ±δ), see Fig. 2.57. These clear maxima suggest
that a kind of frustrated ferromagnetism develops where the xy-orbital disturbs the alignment of the
xz/yz-orbitals. Doping beyond n = 1.3 further increases δ (data not shown). Let us note here that
throughout the phase diagram we did not find any magnetic instabilities supported by Fermi surface
nesting.
The other prevalent type of instabilities we find are of orbital-ordering type between the degenerate
xz/yz orbitals and can be monitored in the density channel

χxz/yz
oo (Q, iωm = 0) =

,
ijσσ′

eiQ·(Ri−Rj)
�

dτ ⟨Tτ (ni xz,σ − ni yz,σ)(τ)(nj xz,σ′ − nj yz,σ′)(0)⟩

≡ 2χxz,xz
D + 2χyz,yz

D − 2χxz,yz
D − 2χyz,xz

D

(2.122)

Towards quarter-filling (ni,σ = 0.25) of the xz/yz-orbitals, i.e., at and around stoichiometric filling
in the VO2-terminated monolayer and around n ∼ 1.5 in the SrO-terminated setup, the wave-vector
of critical fluctuations is firmly Q = (π, π). As previously alluded to, this leads to a checker-board
orbital-order (cOO), consistent with model expectations [184, 185]. We note that the xy-orbital
does not participate in the ordering, as signaled by susceptibility enhancements being confined to
components of the other two orbitals. The xy orbital can also be passive at larger fillings or valencies:
With one electron more, a t2

2g OO—with xy-orbitals near half-filling and one electron alternating in
the xz and the yz-orbital—can occur in YVO3 (LaVO3) if Y (La) ions are partially replaced by Ca
(Sr) [199], cf. Refs. [200, 201]. An OO with all three t2g-orbitals participating on the other hand is
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Figure 2.56: DMFT susceptibilities and criticality. Momentum-dependence of the suscepti-
bility χr(q) for (a) the VO2 terminated and (b) the SrO terminated SrVO3 monolayer in the vicinity
of the respective phase transitions. The dominating component can be either found directly in the
magnetic channel (r=“M”, Eq.(2.117a)) or be obtained via a linear orbital combination of the den-
sity channel (r=“D”). (c) Temperature-dependence of the inverse DMFT susceptibility χ−1

r (Q) (first
diverging r, Q at selected dopings; circles, left axis) for selected points from (a) and (b); lines are
linear fits. Intersections with the T -axis denote the transition temperature for the respective order.
On the secondary (right) axis the corresponding inverse correlation lengths ξ−1

r are shown (squares,
right axis); dashed lines are fits to mean-field behavior.

highly frustrated for a cubic lattice [202]. Due to the strong asymmetry around nominal filling in our
monolayers, we also find a strong asymmetry of the corresponding cOO-dome in Fig. 2.55a, where
the cOO transition temperature even increases upon electron-doping. If we move too far away from
ideal quarter-filling, the ordering temperature is suppressed rapidly. Despite this suppression of cOO
we find an additional emerging ordering for n ∼ 0.9 in Fig. 2.55a. The corresponding ordering can
again be described via Eq. (2.122) with, however, a characteristic vector Q = (0, π) (and Q = (π, 0)
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Figure 2.57: Incommensurate magnetism (iM). Left: magnetic susceptibility χm(q) along the
high-symmetry path Γ → M for the VO2-terminated monolayer at n = 1.3 at various temperatures.
Right: magnetic susceptibility χm(q) for T = 170K in the planar Brillouin zone. The susceptibility is
maximal roughly on a circle centered around q = (0, 0). Upon lowering temperature the maximum of
the susceptibility moves to larger q-vectors. Close to the transition temperature we find anisotropy
on this circle where the susceptibility is clearly maximal (purple) for q = (±δ, ±δ).

related via symmetry), describing stripe orbital-ordering (sOO). The cOO-to-sOO transition under
hole-doping is not realized by a continuous move of the ordering vector from Q = (π, π) to Q = (0, π).
Instead, increased hole-doping suppresses cOO while simultaneously promoting sOO. We conjecture
that this transition can be ascribed to the “auxiliary” xy-orbital, that does not contribute to the
susceptibility enhancements of either fluctuations. Illustrated in the inset of Fig. 2.49 we find a
semi-empirical condition that links the preference for stripe over checkerboard orbital order to the
filling of the xy-orbital: nxy,σ = (0.25 − nxz/yz,σ)/2) below which checkerboard ordering and above
which stripe ordering is preferred by the system. Effectively, enough dxy occupation frustrates the
local site enough for stripe ordering to be energetically favorable. As for the electron-doped side, the
orbital-ordering domes in both systems disappear when doping too far away from quarter-filling.

2.5.6 Orbital mapping

Depending on the surface termination, SrO or VO2, the monolayer is an effectively half-filled one-
orbital or a quarter-filled two-orbital Mott insulator. This orbital polarization is derived from the
crystal-field splitting having opposite signs for the two terminations and to be significantly en-
hanced by electronic correlations. Electron or hole-doping reveals multi-orbital effects: For the SrO-
termination, AF-fluctuation are dominant around nominal filling. Doping with electrons populates
the xz/yz-orbitals; they order ferromagnetically (n ∼ 1.3) or realize checkerboard orbital orbital or-
der (n ∼ 1.5). For the VO2 termination checkerboard xz/yz orbital-order already dominates around
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nominal filling. Doping then instead promotes the xy-orbital which acts as a mediator for ferro-
magnetism and stripe orbital-order on the hole-doped side and incommensurate magnetism on the
electron-doped side. While the change in magnetic fluctuations and orders could be observed in neu-
tron experiments, experimentally evidencing the orbital fluctuations is only possible indirectly: the
staggered pattern of xz and yz-orbitals will result in a dynamic (potentially static) alternation of the
bond-length in the x and y direction, possibly detectable in future X-ray measurements.
In all, the orbital polarization is the essential driver of the phase diagram of the SrVO3 monolayer
on SrTiO3. We therefore summarize the DMFT results in Fig. 2.58 in form of an orbital occupation
map. The considered surface terminations each realize, under doping, a characteristic trajectory in
the nxy vs. nxz + nyz space. As an outlook, we include a third possibility—a SrVO3 monolayer with
SrTiO3 on both sides: At nominal filling this sandwich is, again, a Mott insulator. However, owing
to the symmetric embedding, the crystal-field is minute (but positive). The computation of ordering
instabilities of capped ultra-thin films, in which quantum confinement effects could be studied in a
more controlled fashion, is left for future work.
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Figure 2.58: Global phase diagram of SrVO3 monolayers on SrTiO3. DMFT orbital
occupations of each setup are mapped into a nxy vs. nxz +nyz graph. Due to the reduced bandwidth
in the monolayer on a SrTiO3 substrate, any orbital occupation repartitioning of the nominal n = 1
filling (orange line) realizes a Mott insulator. Besides the here discussed SrO (black) and VO2 (gray)
termination, as an outlook we showcase the effect of embedding a SrVO3 monolayer in a SrTiO3
sandwich (navy blue, dashed).



132

2.5.7 Non-local self-energy corrections

On the dynamical mean-field level, many-body renormalizations are assumed to be isotropic (i.e.,
independent of momentum). In 3D this is mostly a good approximation (see, however, Ref. [203]).
Yet, when the effective dimensionality is reduced, as in our ultrathin film, renormalizations become
increasingly non-local [178]. The major question we will answer next is: To what extent do the non-
local critical fluctuations—in the vicinity of the associated ordered states—lead to momentum-selective
renormalizations? To elucidate this question, we use the AbinitioDΓA [33, 1, 2] methodology and
scrutinize the electron self-energy Σ(k, iν) in the vicinity of the DMFT ordering instabilities. The
considered points in the phase diagrams are illustrated in Fig. 2.59.
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Figure 2.59: Phase diagrams. (a) SrO- and (b) VO2-terminated SrVO3-monolayer on top of a
SrTiO3 substrate (see insets for crystal structures) exhibit numerous phases as a function of elec-
trons per site (n; lower x-axis) in the low-energy vanadium t2g orbitals or gate voltage (VG; upper x-
axis): antiferromagnetism (AF: red), ferromagnetism (FM: blue), incommensurate magnetism (iM:
blueish), checkerboard orbital order (cOO: green), stripe orbital order (sOO: turquoise). The col-
ored domes mark the occurrence of long-range order within dynamical mean-field theory (DMFT);
adapted from Ref. [5]. The “+”–marks indicate points for which we present DΓA (and DMFT)
data in the present paper.

As a starting point, Fig. 2.60 shows the DMFT Fermi surface for the SrO-terminated SrVO3

monolayer at the four selected dopings (left to right). They are obtained from the Green’s function at
imaginary time τ = β/2 (β = 1/kBT ). This procedure corresponds to a spectral function A(k, ω = 0)
that is averaged over a frequency-interval ∼ kBT around the Fermi level.

The upper panels display the contribution of the xy orbital and the lower panels the xz orbital
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Figure 2.60: SrO-terminated monolayer – DMFT Fermi surface for the points highlighted
in Fig. 2.55a: n = 0.9 (T = 290K) and n = 1.1 (T = 290K) order AF at low T (red box indicating
the color code of Fig. 2.55), FM at n = 1.3 (T = 190K; blue box), and cOO at n = 1.5 (T = 230K;
green box).

(the yz orbital is equivalent to the latter if rotated by 90◦). Doping with 10% electrons or holes,
the system transitions from an orbitally polarized Mott insulator to a metal, where the xz and yz

orbitals are now slightly filled, pushing the AF phase transition to lower T . The aforementioned
orbital reconfiguration and its asymmetry with respect to n = 1 is especially noticeable in the sizes of
the xy Fermi surface, cf. Fig. 2.49. Larger electron doping “activates” the multi-orbital nature of the
system where the increased occupation causes the energetically higher-lying xz and yz orbitals to be
filled at a more rapid pace compared to the xy orbital. The Fermi surface of the xz orbital therefore
transitions from a thin strip (n = 0.9; n = 1.1) to the more usual cylinder-shaped form (n = 1.3;
n = 1.5).

The Fermi surfaces of the selected points of the VO2-terminated SrVO3 monolayer are illustrated in
Fig. 2.61. Inverting the role of the xz/yz and the xy orbitals compared to the SrO-termination, we
now observe a small hole pocket for the xy orbital in Fig. 2.61. Reducing the filling from n = 0.94 to
n = 0.85, this xy Fermi-surface pocket becomes slightly enhanced, albeit it remains small.

Identical to the SrO-terminated monolayer, increasing the beyond n = 1.2 activates the xz/yz.



134

−π 0 π
−π

0

π

A x
y(k
,ω
=
0)

k y

n=0.85

−π 0 π
kx

−π

0

π

A x
z(k
,ω
=
0)

k y

−π 0 π
−π

0

π
n=0.94

−π 0 π
kx

−π

0

π

−π 0 π
−π

0

π
n=1.23

−π 0 π
kx

−π

0

π

−π 0 π
−π

0

π
n=1.3

−π 0 π
kx

−π

0

π

Figure 2.61: VO2-terminated monolayer – DMFT Fermi surface for the points highlighted
in Fig. 2.55b: n = 0.94 (T = 290K) and n = 1.23 (T = 290K) order cOO at low T (green box
indicating the color code of Fig. 2.55), n = 0.85 sOO (T = 210K; turquoise box), and n = 1.3 iM
(T = 190K; blue box).

While for n = 1.23 the cOO still dominates, further doping from n = 1.23 to n = 1.3 instead changes
the DMFT ordered state from cOO to incommensurate magnetism (iM) with a small q-vector in
Fig. 2.55. It has, however, little effect on the the spectral signatures. The sharper Fermi surface for
n = 1.3 can be explained by the slight decrease in the temperature and the fact that local DMFT
correlations get reduced the farther we are away from half-filling.

Note that the “empty” spots in the xz Fermi surface of the VO2-terminated monolayer are not present
in the SrO-terminated monolayer. This behavior stems from the increased band hybridization of the
underlying t2g projection, see Fig. 2.46.

2.5.7.1 Dynamical vertex approximation

In this Section we are going to give a concise (technical) introduction to the ladder variant of the
dynamical vertex approximation employed in AbinitioDΓA. A more detailed discussion of the method
can be found in Refs. [33, 176]. A broader discussion on the different variations of the DΓA can be
found in Section 2.6.
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Provided fluctuations occur mainly in the shape of particle-hole fluctuations we can approximate
the two-particle irreducible vertex Λ and the two-particle reducible vertex in the particle particle
channel as local in the parquet equation via

F qkk′
D = Λωνν′

D + Φωνν′
D,pp + Φqνν′

D,ph + Φqkk′

D,ph

= Λωνν′
D + Φωνν′

D,pp + Φωνν′
D,ph + Φωνν′

D,ph
+

�
Φqνν′

D,ph − Φωνν′
D,ph

#
+

�
Φqkk′

D,ph
− Φωνν′

D,ph

#
= F ωνν′

D +
�
Φqνν′

D,ph − Φωνν′
D,ph

#
+

�
Φqkk′

D,ph
− Φωνν′

D,ph

# (2.123)

By treating the ph and the ph channel on equal footing we are able to enforce the crossing (CR)
symmetry explicitly. Illustrated in Fig. 2.62, exchanging the in- or outgoing legs transforms diagrams
between the ph and ph channel

Φωνν′
ph,lmm′l′

σσ′

CR= −Φ(ν−ν′)ν(ν−ω)
ph,ll′m′m

σσ′
, (2.124a)

CR= −Φ(ν′−ν)(ν′−ω)ν′

ph,m′mll′

σ′σ

. (2.124b)

Through this type of transformation we can express the transversal particle-hole channel in terms of

Φ
ωνν′
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Figure 2.62: Crossing symmetric change from particle-hole transversal reducible (ph), separable
between internal pairs 14 — 23, to particle-hole reducible (ph), separable between internal pairs 12
— 34 by exchanging the outgoing (top line) or incoming lines (bottom line). The additional sign
stems from the fermionic anti commutator where we employ the particle-hole notation throughout,
see Appendix A.1.
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the particle-hole channel
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and identically for the full momentum dependency
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where k = (k, ν), k′ = (k′, ν ′) and q = (q, ω). The non-local corrections to the reducible vertices now
can be rewritten to
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and
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Inserted into the initial parquet equation gives us an expression that can be constructed with purely
ph ladders in the density and magnetic channel
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, (2.129)

The momentum dependent self-energy can be calculated via the Schwinger Dyson equation (equation
of motion) resulting in one-particle Hartree Fock contributions ΣHF and a connection between the
one-particle and two-particle level Σcon
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(2.130)

illustrated in Fig. 2.63 and Fig. 2.64. Please note that the numerical implementation of this equation
is more elaborate and built on the basis of three-leg (boson - fermion) vertices [2]. They allow for a
more efficient evaluation, details thereof (including possible non-local interactions) can be found in
Refs. [33, 176].
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Figure 2.63: Diagrammatic representation of the Hartree and Fock contribution to the self-energy
in Eq. (2.130). In the former, the occupation nln is represented by a fermionic loop from vertex
n to l. In the latter, due to spin conservation the propagator k − q must have the same spin as
the implied incoming and outgoing propagators. The dashed propagators imply that they do not
contribute to the diagram.
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Figure 2.64: Diagrammatic representation of the connected contribution to the self-energy in
Eq. (2.130) containing the full (density) vertex F qk′k

D . The dashed propagators imply that they do
not contribute to the diagram.

The following results were obtained via the AbinitioDΓA package [2]. The local two-particle Green’s
function was sampled at DMFT self-consistency by continuous-time quantum Monte Carlo simulations
in the hybridization expansion [97, 197] using w2dynamics [30] with worm sampling [96]. The DΓA
chemical potential was readjusted to fix the total number of electrons to the considered doping level.
In this study we apply DΓA in a one-shot setting, forgoing λ-corrections or self-consistency, see Ref. [4]
and Section 2.6. Therefore, AbinitioDΓA results can only be obtained where the DMFT is yet to be
ordered λr < 1. The resulting, too large susceptibilities from DMFT, will lead to an overestimation
of spectral renormalizations in DΓA.

One-shot results however remain useful as a first “estimate” of the non-local physics as play. For
example, the momentum selectivity of the pseudogap in the half-filled one-band Hubbard model in
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the weak coupling regime can already be observed in the first DΓA “shot” (not shown).

DΓA Fermi surfaces are obtained from the Green’s function at imaginary time τ = β/2 (β = 1/kBT ).
This procedure corresponds to a spectral function A(k, ω = 0) that is averaged over a frequency-
interval ∼ kBT around the Fermi level, see Appendix A.2. We emphasize that our AbinitioDΓA
calculations are not self-consistent.

2.5.7.2 SrO termination

Fig. 2.65 shows the real and imaginary part of the AbinitioDΓA self-energy in the vicinity of the
DMFT phase transitions where non-local correlations become strong. Shown are the two inequivalent
orbitals, xy (top) and xz (middle panel) as a function of Matsubara frequency νn. The yz orbital is
equivalent to the xz orbital if the momenta are rotated by 90◦ rotated; the DMFT self-energy is shown
for comparison. In the vicinity of half-filling, n = 0.9 and n = 1.1, AF spin fluctuations prevail with
leading eigenvalue λM (π, π) = 0.95 and 0.79, respectively, in the magnetic (M) channel at q = (π, π).
Note, λ = 1 indicates a divergence of the susceptibility, i.e., an ordering instability. These AF spin
fluctuations are driven by the xy orbital that is close to half filling, whereas the xz and yz orbitals
rather act as passive bystanders [5]. Consequently, we see for n = 0.9 and n = 1.1 in Fig. 2.65 a
pronounced momentum differentiation only for the xy orbital. The Matsubara frequency self-energy
has the advantage that it does not require the ill-conditioned analytic continuation. Nonetheless, we
can gain valuable information: The momentum differentiation of the real part of the self-energy in
Fig. 2.65 between unoccupied [k = (0, 0), red] and occupied states [k = (π, π), green] signals that
the quasi-particle poles at ω + µ = ℜΣ + ϵk are pushed further away from the Fermi energy, causing
an overall enhancement of the bandwidth. The momentum differentiation between k = (0, π) (blue)
and k = (π/2, π/2) (orange) that are closer to the Fermi level, indicates a deformation of the Fermi
surface for n = 0.9, but not for n = 1.1 which has a similar self-energy for these two k-points. Indeed
a deformation is observed in Fig. 2.66, where the electron-like DMFT Fermi surface (Fig. 2.60) turns
into a hole-like one in DΓA for n = 0.9. For n = 1.3 with strong FM fluctuations (λM (0, 0) = 0.78) and
n = 1.5 with strong cOO fluctuations in the density (D) channel (λD(π, π) = 0.98), the momentum
differentiation of ℜΣ is less pronounced.
Let us now turn to ℑΣ from which we can read off the scattering rate, as the νn → 0-extrapolated
value. Further, from its slope the quasi-particle renormalization Zk = [1 − ∂ℑΣ(k, iν)/∂ν|ν→0]−1

is accessible for a Fermi liquid phase. A positive slope of ℑΣ(iν → 0) indicates the crossover to a
diverging (Mott-like) self-energy, which splits the spectrum and leads to an insulating gap. Clearly, for
all four fillings shown in Fig. 2.65, there are momenta for which the system exhibits non-Fermi liquid
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Figure 2.65: SrO-terminated monolayer – Momentum differentiation of the DΓA self-
energy. Top 4 rows: real and imaginary parts for the xy and xz orbital at 4 different momenta,
compared to DMFT, for the dopings and temperatures indicated in Fig. 2.55a. Bottom row: Slope
of the imaginary part of the DΓA self-energy for a path through the Brillouin zone. Negative values
correspond to a Fermi-liquid like self-energy, positive values indicate the formation of a (pseudo)gap.

behavior, identifiable by a kink and a downturn in ℑΣ at low energies. In case of AF fluctuations
(n = 0.9 and n = 1.1) this downturn is in the xy orbital, whereas it occurs in the xz (and yz)
orbital which dominates the FM (n = 1.3) and cOO (n = 1.5) fluctuations. These kinks are salient
indicators for the occurrence of a pseudogap state, and they get more pronounced when cooling the
system toward the respective phase transition. Interestingly, in the vicinity of the AF phase, the
structure of the scattering rate is opposite to the cuprates: It is larger for the diagonal (π,π) direction
than for the (0,π) direction. This momentum differentiation on the Fermi surface is, however, much
less pronounced than the momentum dependence perpendicular to the Fermi surface, i.e., comparing
occupied vs. unoccupied states. This can be seen in Fig. 2.65 (bottom), where we plot the slope
between the first two positive Matsubara frequencies, i.e., slope = (ℑΣ(iν1) − ℑΣ(iν0))β/(2π), along
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Figure 2.66: SrO-terminated monolayer – DΓA Fermi surfaces at the same dopings and
T as in Fig. 2.60. The white lines represent isolines of the slope between the first two Matsubara
frequencies of the imaginary part of Σ: Solid, fat lines indicate a positive slope, i.e., a kink in the
self-energy, dashed, thin lines a negative value, suggestive of a Fermi-liquid-like state.

the indicated k-path. Isolines of this slope are superimposed on the DΓA Fermi surfaces in Fig. 2.66,
with the sign indicated by solid, fat (positive) and dashed, thin (negative) lines. In the electron doped
regime, the slope in ℑΣ is always negative on the Fermi surface, i.e., Fermi liquid-like. However, when
moving away from the Fermi energy, we observe positive slopes, which corresponds to the kinks in
Fig. 2.65;: at n = 1.1 for the unoccupied xy states above the Fermi level; and at n = 1.3 and
n = 1.5 for the occupied xz states. In the hole doped regime, at n = 0.9, we find ℑΣ isoline patterns
similar to n = 1.1. However, owing to the larger xy-occupation in combination with the equally
strong reconstruction through ℜΣ, negative slopes of ℑΣ instead appear across the transformed xy

Fermi surface. This insulating-like behavior is found only in the most relevant orbitals, i.e., the xy

orbital for the AF fluctuations around n = 1, and the xz/yz orbitals where FM and cOO long-range
fluctuations are dominant. The ancillary orbitals (xz/yz for n = 1.1 and xy for n = 1.3, 1.5) on the
other hand exhibit only a comparatively minor momentum differentiation (see Fig. 2.65)—implying
also a stark orbital differentiation.
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2.5.7.3 VO2 termination

The corresponding AbinitioDΓA results for the VO2-terminated SrVO3 monolayer for the self-energy
and the Fermi surface are presented in Fig. 2.67 and Fig. 2.68, respectively.
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Figure 2.67: VO2-terminated monolayer – momentum differentiation of the DΓA self-
energy. Top 4 rows: real and imaginary parts for the xy and xz orbital for 4 different momenta
(colors) and, for comparison, the DMFT self-energy (dashed) at the four dopings and T indicated
by the “+” in Fig. 2.55b. Bottom row: Slope of the imaginary part of the DΓA self-energy for a
momentum path through the Brillouin zone.

For cOO fluctuations at n = 1.23 (λD(π, π) = 0.97), the momentum differentiation of the self-energy
and Fermi surface are qualitatively similar to the cOO results at n = 1.5 for the SrO-terminated
layer. But for the cOO at n = 0.94 and sOO at n = 0.85, we only find a minor momentum
differentiation of the self-energy, see Fig. 2.67. Correspondingly, the Fermi surface in Fig. 2.68 is
similar to that of DMFT in Fig. 2.61, and there are no positive non-Fermi-liquid like slopes (solid
lines in Fig. 2.68). This is surprising since the leading eigenvalue λD(0, π) = λD(π, 0) = 0.985 at
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Figure 2.68: VO2-terminated monolayer – DΓA Fermi surfaces at the same dopings and
T as in Fig. 2.61. Isolines are again the low-energy slope of ℑΣ, where the solid, fat lines represent
a positive, and the dashed, thin lines represent a negative value.

n = 0.85 and λD(π, π) = 0.91 at n = 0.94 is similarly close to 1 as for n = 1.23 or the SrO-
termination, indicating that strong orbital ordering fluctuations are present. On the contrary, at
n = 1.3, above iM order, we observe the by far strongest momentum differentiation in Fig. 2.67, even
though λM (δ, δ) = 0.97 with δ ≈ ±π/4 is again comparable to the strength of other fluctuations. A
clear pole develops in the vicinity of the Fermi level not only for the xz and yz orbitals, that drive
the iM ordering, but also for the xy orbital. This pole is so large that the spectrum splits into two
parts, akin to the splitting into upper and lower Hubbard band; and it pushes the Fermi surface to
k = (0, ±π). However, the divergence occurs only for a region of the Brillouin zone that does not
account for the Fermi surface of the respective orbital character.

2.5.8 Binaural fluctuation diagnostics

We now expose the connection between strong non-local two-particle fluctuations and the occurrence
(or not) of large, momentum-selective corrections to one-particle spectral properties. To this end, we
revisit the AbinitioDΓA equation of motion [33]: The self-energy of spin σ consists of the Hartree-
Fock (“HF”) contribution and a term that includes all truly two-particle scattering events by linking
the density vertex FD with the interaction matrix U , the bare susceptibility χ0, and a Green’s function
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G that closes the Feynman diagram

Σk
mm′

σ
= ΣHF

mm′
σ

− 1
β2

,
qk′

lhn,rst

Umlhnχqk′k′
0,nlsrF qk′k

rstm′
D

Gk−q
ht
σ

, (2.131)

see also Eq. (2.130). In this notation, q, k, k′ refer to compound indices consisting of pairs of mo-
menta and Matsubara frequencies, (q, iω), (k, iν), (k′, iν ′). In the ladder approximation employed
in AbinitioDΓA, FD is constructed from the Bethe-Salpeter equations in the particle-hole (“ph”)
channel with an additional enforcement of crossing symmetry via the parquet equation [204, 33]. The
resulting expression

F qkk′
lmm′l′

D

= F ωνν′
lmm′l′

D
+ F qνν′,nl

lmm′l′
D,ph

− 1
2F

(k′−k)(ν′−ω)ν′,nl
m′mll′
D,ph

− 3
2F

(k′−k)(ν′−ω)ν′,nl
m′mll′
M,ph

(2.132)

contains both charge (density, “D”) and spin (magnetic, “M”) fluctuations. The non-local (nl)
particle-hole (ph) vertices are calculated through the Bethe-Salpeter equation, and a local contribution
with only frequency and orbital dependencies is subtracted to avoid a double counting. We can further
decompose Eq. (2.131) into the DMFT self-energy and non-local corrections to it,

Σk
mm′

σ
= Σν,DMFT

mm′
σ

+ Σk,correction
mm′

σ

(2.133)

as the purely local vertex of Eq. (2.132) combines with the Hartree-Fock contribution of Eq. (2.131)
to the DMFT self-energy. The correction term, Σk,correction, then contains all non-local contributions
and is efficiently implemented as a linear combination of various three-leg vertices, see Ref. [2]. For
our purpose, we now transform internal momenta and frequencies in the corrections to DMFT by
substituting k′′ = k − q, leading to

Σk,correction
mm′

σ

= ΣHF
mm′

σ
− Σν,DMFT

mm′
σ

+
,
k′′

Ξmm′(k, k′′) (2.134)

where we lumped all internal summations except that over k′′ into

Ξmm′(k, k′′) = − 1
β2

,
k′

lhn,rst

Umlhnχ
(k′′−k)k′k′
0,nlsr F

(k′′−k),k′k
rstm′

D

Gk′′
ht
σ

. (2.135)

Now, by selecting a specific momentum k of the self-energy correction, Σk,correction, we are able to
identify the contributions stemming from momentum k′′ via Ξ(k, k′′). This analysis allows highlighting
the link between the electronic structure (encoded in Gk′′) and non-local fluctuations (included in
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F ): In the vicinity of spontaneous instabilities, FD will peak at zero (bosonic) energy transfer,
iωm = i(ν ′′

n − νn) = 0, while the characteristic momentum transfer Q = k′′ − k depends on the
dominant type of fluctuations. Since we are interested in renormalizations at low energies, we limit
the discussion to the lowest fermionic Matsubara frequency, νn = ν0 = π/β, implying also ν ′′

n = π/β.
Focusing then on the momentum dependence,

Ξmm′(k, k′′) ≡ Ξmm′((k, iν0), (k′′, iν
′′
0 )), (2.136)

we note that (in the absence of nesting) the bare susceptibility χ0 contributes only minimally to the
k-dependence. The momentum structure is, hence, dominantly generated from the interplay of the
vertex F

(k′′−k)
D and the Greens function Gk′′ . We find a strong momentum variation in the imaginary

part of the self-energy correction to originate from the real part of the vertex and the imaginary part
of the Green’s function. The latter is a direct reflection of the underlying Fermi surface, while the
vertex’s amplitude is driven by the dominant fluctuations. Essentially, large corrections to electronic
lifetimes will be generated at Brillouin zone momenta k if they can be connected to a Fermi surface via
the transfer momentum Q of the existing fluctuations. This connection does not need to be precise:
First, deviations in the transfer momentum that are within the bounds of the (inverse) correlation
length, ξ−1, will still produce a large signature in Ξ [205]. Second, the (DMFT) scattering rate
Γ = ZℑΣ(ω = 0) allows excitations to contribute even if they are at a distance O(Γ/2) away from
the Fermi surface.
Our decomposition of the equation of motion derives from previous approaches for the diagnostics of
fluctuations [206, 207, 208]. Our contribution to the diagnostics tool box is two-fold: First, we supple-
mented the fluctuation diagnostics with a second layer of analysis: We plot the fluctuation diagnostics
together with the Fermi surface, providing a link between the dominant fluctuation momentum Q
and spectral properties at k′′ for the studied momentum k, see Fig. 2.69. This additional layer helps
explaining when and why non-local renormalizations from particular fluctuations become large. We
call this doubled-down analysis that pairs fluctuation diagnostics with spectral information: “bin-
aural fluctuation diagnostics”. Second, we extended the domain of the fluctuation diagnostics from
many-body models to realistic multi-orbital materials.

Using the above “binaural fluctuation diagnostics”, we now analyze the self-energy corrections shown
in the left column of Fig. 2.69 for both surface terminations, various doping levels, hosting orbitals,
and k-points. The positions of three selected k-points are indicated in the Brillouin zone plots in
the three adjacent columns. There, the colored heat maps (blue: negative, red: positive, white: no
correction) illustrate ℑΞmm(k, k′′) from Eq. (2.136). The grey shaded overlay corresponds to the
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Figure 2.69: Binaural fluctuation diagnostics. Left: Self-energy correction to ΣDMFT for
six selected terminations, fillings, k-points and orbitals. Right: Binaural fluctuation diagnostics
for these six cases, consisting of: (i) The corresponding momentum (k′′) fluctuation diagnostics
ℑΞ(k, k′′) from Eq. (2.136) at the first positive fermionic and zeroth bosonic Matsubara frequency
(three columns on the right). (ii) Marking the selected k-points (k1, k2, k3) in the Brillouin zone
plots as colored circles, indicating the dominant wave vector Q (arrows) of a given type of fluc-
tuations, and the Fermi surface (gray shaded area) of the same orbital. Strong corrections are
a product of strong fluctuations (large F Q

D ) where the momentum transfer Q (arrows) connects
the self-energy momentum k to the Fermi surface (gray shaded area) of the same orbital. While
antiferromagnetic fluctuations cause strong corrections at momenta outside the Fermi surface (top
row), ferromagnetism and the observed incommensurate magnetism are prone to corrections inside
the Fermi surface (second and last row). Orbital ordering on the other hand is different (third
and fifth row): checkerboard fluctuations have little to no effect, while stripe ordering promotes
moderate corrections. This analysis reveals that in the SrO-terminated structure at n = 1.5 (third
row) the adjacent ferromagnetism is the root cause of the sizable renormalization, not the orbital
order fluctuations that dominate the susceptibility.
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Fermi surface of the selected orbital m. In close proximity to the antiferromagnetic DMFT phase
transition (SrO termination; n = 1.1; top row) the momenta k1 and k2 display a pronounced kink
in the correction to the xy self-energy. Our momentum diagnostics reveals that these momenta can
indeed be connected to the xy Fermi surface via the AF ordering vector Q = (π, π), generating a
large amplitude in ℑΞ(k1,2, k1,2 − Q). Due to the shape and size of the Fermi surface, momenta—for
which this constructive interplay with the AF fluctuations is possible—naturally lie in unoccupied
regions of the Brillouin zone. Instead, occupied momenta, such as k3, cannot be connected to the
Fermi surface via the AF ordering vector: As a result, there is no kink in k3’s self-energy correction
and the overall shape is Fermi liquid-like. This insight into the momentum-structure of the equation
of motion thus explains the evidenced momentum asymmetry (k >

<kF ) in the scattering rate. While
corrections at k3 are small compared to those at k1 and k2, −ℑΣk3,correction

xy (iν → 0) ∼ O(0.5)eV is
still larger than some of the corrections at other dopings, discussed below. The reason is the large
(DMFT) scattering rate, −ℑΣν=π/β,DMFT

xy ≈ 0.7eV, see Fig. 2.65: It causes incoherent spectral weight
of bands slightly below EF (cf. Fig. 2a in Ref. [5]) to spill to the Fermi level, thus contributing to
Ξ(Γ, M).

Larger electron doping at n = 1.3 favors ferromagnetism hosted by the xz/yz-orbitals (second row in
Fig. 2.69). Here Q = (0, 0) (hence no arrow) naturally causes corrections to appear at the occupied
states within the Fermi surface because it is rather narrow. The extent of the momentum region in
which the FM-driven Ξ is large (see the diameter of the (blue) circular region) owes to the inverse
correlation length ξ−1 that was found to be sizably larger than for dominant fluctuations at other
dopings, see Fig. 6c in Ref. [5] for a comparison. The large ξ−1 enables the Γ-point, which manifestly
is not on the Fermi surface, to significantly contribute to the self-energy corrections. Instead, k3 is
far enough from the Fermi surface for corrections to be suppressed.

Doping further to n = 1.5, the xz/yz orbitals become close to quarter-filling and a checkerboard
orbital ordering instability emerges (third row in Fig. 2.69). Interestingly, the corresponding charac-
teristic vector Q = (π, π) of the cOO fluctuations, only plays a minor role in the lifetime differentia-
tion: For k1 and k2, (π, π) connects to a small region of finite intensity in Ξ far away from the Fermi
surface. However, larger contributions to the self-energy correction manifestly still come from the
high amplitude around Q = (0, 0), i.e., from the direct vicinity of the k1 and k2 momenta in Fig. 2.69:
Spectral renormalizations are dominated by FM fluctuations although, at the current doping level,
these are subleading in the susceptibility. This interpretation is further supported by looking at
k3, where FM contributions are absent: There, self-energy corrections from (π, π)-fluctuations are
largest, as this momentum-transfer directly connects k3 to the Fermi surface. However, the resulting
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corrections are nonetheless very small. One contributing factor is again the inverse correlation length,
ξ−1. It is smaller for cOO than for FM by one order of magnitude (cf. Fig. 6c in Ref. [5]), resulting in
a smaller (k′′

x, k′′
y )-region with finite (blue) intensity to integrate over. We can motivate an additional

factor: The OO susceptibility of two orbitals l � m can be expanded into a linear combination of the
density susceptibilities in which diagonal and offdiagonal components enter with opposite sign

χlm
OO = 2χllll

D + 2χmmmm
D − 4χllmm

D . (2.137)

The entering diagonal and off-diagonal χllmm
D for l, m ∈ {xz, yz} are displayed Fig. 2.70b. While

χlm
OO for fixed l � m is naturally large in an OO regime, we empirically find the density susceptibility,

χD = 2
-

lm χllmm
D , in which the above terms are summed with the same (plus) sign, to be small, see

Fig. 2.70d, suggestive of compensational effects. Similar to χD, also the equation of motion involves
a summation over diagonal and off-diagonal components, this time of F :

Σk
mm

σ
∝

,
qk′

U

�
χqk′k′

0,mmmmF qk′k
mmmm

D
+ χqk′k′

0,llll F qk′k
llmm

D

%
Gk−q

mm
σ

+ O(J) (2.138)

where we omitted terms involving the Hund’s coupling J and restricted G and χ0 to diagonal elements,
Gmm and χ0,lmml, mostly warranted in the systems considered here. Large off-diagonal contributions
are only expected where bands hybridize, e.g., where the xz and yz orbitals cross. The observation
made for χD then suggests that also the orbital summation in the equation of motion results in
an (at least partial) cancellation of terms headed by U . Quite intuitively for orbital fluctuations,
leading corrections will then be driven by a smaller energy scale: the Hund’s coupling J . These
intricacies highlight that strong non-local fluctuations do not always translate 1-to-1 into large non-
local renormalizations in spectral properties.

Similar arguments hold for the cOO regime at filling n = 0.94 for the film with VO2 termina-
tion (fifths panel in Fig. 2.69). Additionally, there is a modulation in the k′′-plane, with positive
contributions compensating part of the self-energy enhancement from around k + Q.
The argument of compensations in FD does not hold for stripe orbital ordering for filling n = 0.85 and
VO2-termination (fourth panel in Fig. 2.69): Similar to the ferromagnetic case, the Q = (0, π) nematic
fluctuation vector supports a strong differentiation between occupied (k1, k2) and unoccupied states
(k3) in the xz orbital. We speculate that the lower symmetry of the sOO state obviates cancellation
effects in the equation of motion. Indeed, compared to the cOO regime, the sOO orbital-summed
density susceptibility, χD, and the partial sum χxz,xz

D + χxz,yz
D that mirrors the orbital combinations

entering the equation of motion, Eq. (2.138), is one order of magnitude larger, cf. Fig. 2.70 panels (c)
and (d). Note also that the sOO data point is much closer to its DMFT ordering temperature than
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the cOO one (Eigenvalues: λsOO = 0.985 > λcOO = 0.91), suggestive of overall larger fluctuations.
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Figure 2.70: Density susceptibilities in the (qx, qy)-plane. (a) and (b): χD-matrix in the xz/yz-
orbital space and the vicinity of stripe orbital ordering and checkerboard orbital ordering found in
the VO2 terminated monolayer at n = 0.85 and n = 0.94, respectively. The sOO response in (a)
displays orbital asymmetry where χxz,xz

D (π, 0) > χxz,xz
D (0, π) and vice versa for the yz orbital. The

cOO response in (b) on the other hand is perfectly symmetric, i.e. χxz,xz
D (π, π) = χyz,yz

D (π, π) =
−χxz,yz

D (π, π) = −χyz,xz
D (π, π). (c) and (d): Orbital-summed density susceptibility χD = 2 -

lm χlm
D

and the non-symmetric sum χxz,xz
D +χyz,xz

D motivated by Eq. (2.138). The aforementioned asymmetry
manifests itself in a—for sOO fluctuations—large remainder in χxz,xz

D + χyz,xz
D , which is strongly

attenuated in the vicinity of the cOO phase (note the different color scales).

Lastly, the incommensurate nature of the magnetic ordering at n = 1.3 in the VO2-terminated
structure is easily seen as the root cause of the massive self-energy corrections in the last row of
Fig. 2.69: The Q = δ × êQ vector is able to perfectly connect onto the Fermi surface for k

′′
x = 0.
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Due to the large δ ∼ π/4 also most other k-points are able to—at least partially—connect onto the
Fermi surface—with zone-boundary momenta, such as k3, being the only exceptions. The momentum
diagnostics hence provides an explanation for the wide range of positive slopes in ℑΣ(iν) throughout
the Brillouin zone, shown in Fig. 2.68. Incidentally, the onset of this magnetism is also the main driver
of the corrections at slightly smaller doping n = 1.23 where, yet again, the cOO fails to contribute.
Consequently both the DΓA Fermi surfaces and low-energy slopes of ImΣ are qualitatively identical
for n = 1.23 and n = 1.3 in Fig. 2.68.
In all, we find that all types of spin fluctuations provide a path to strong non-local renormalizations.
Our analysis further motivates the asymmetry with respect to the Fermi surface to be a direct
consequence of the interplay of shape and size of the Fermi surface and the ordering vector Q of
the driving fluctuations. The impact of orbital fluctuations, instead, is more ambiguous. Our work
suggests that checkerboard orbital fluctuations only produce a weak momentum differentiation in the
self-energy, while stripe-orbital fluctuations have larger signatures. A simpler model should be studied
to further elucidate spectral consequences of orbital fluctuations in the absence of other complications.

2.5.9 Discussion and perspective

Recapitulating, we have studied a SrVO3 monolayer on a SrTiO3 substrate with two different surface
terminations, SrO and VO2, to vacuum within DMFT and AbinitioDΓA. Owing to the out-of-plane
orbital truncation, undoped (n = 1) SrVO3 monolayer is band width driven Mott insulating. De-
pending on the termination and filling we observe strong non-local fluctuations of magnetic and
orbital-order type. These non-local fluctuations will suppress the mean-field DMFT ordering but also
have pronounced effects on the self-energy, possibly deforming the Fermi surface, and quite generally
can lead to a strong enhancement of ℑΣ. Strong non-local fluctuations can even cause the develop-
ment of a pole in the self-energy, signaling the splitting of the spectrum into two parts—here not
because of Mott physics but because of large non-local fluctuations. The latter is particularly strong
for the incommensurate ferromagnetic phase of the VO2-terminated SrVO3 monolayer at n = 1.3
filling. First indications, i.e., downturns of the self-energy at the lowest Matsubara frequency are
however ubiquitous for various dopings and both terminations.
For the cuprates, AF fluctuations lead to pseudogap physics with a momentum differentiation dis-
tinguishing between a Fermi liquid-like self-energy in the nodal direction on the Fermi surface, and
a kink in the self-energy signaling the opening of a gap in the anti-nodal direction. Here, we also
observe the joint presence of these two behaviors in the self-energy. However, the momentum dif-
ferentiation is not realized on the Fermi surface but perpendicular to it: For the SrO-termination in
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the electron-doped regime, AF fluctuations lead to a Fermi liquid-like behavior for momenta on the
occupied side of the Fermi surface (“k < kF ”) and a kink-like insulating behavior in the imaginary
part of the self-energy on the unoccupied side (“k > kF ”). In case of FM fluctuations, the momen-
tum differentiation between occupied and unoccupied momenta is reversed. The tendency towards
checkerboard orbital ordering, however, has no vital influence on the self-energy.
For the VO2 termination, iM fluctuations at n = 1.3 lead to massive non-local correlations and a
pole in the self-energy. In contrast to all other cases not only the xz/yz orbitals—driving the iM
fluctuations—are affected but also the ancillary xy orbital. Around half-filling, again, the cOO fails
to contribute significantly to the self-energy. Instead, sOO fluctuations do generate a momentum
differentiation.
The imaginary part of the self-energy corresponds to the lifetimes and the broadening of the spectral
function. Our results hence show that the lifetimes of an added hole or electron are extremely different.
The hole-lifetime can be measured by angular resolved photoemission spectroscopy (ARPES); the
electron lifetime by inverse photoemission spectroscopy, by ARPES at elevated temperatures, or in
non-equilibrium situations (e.g., pump-probe measurements) in which states above the Fermi level
become populated.
The differentiation between states above and below the Fermi surface that we observe is quite ex-
treme. Technologically this might be exploited for thermoelectrics which rely on a strong electron-hole
asymmetry [209, 210, 211, 212]. Particularly beneficial are sharp peaks in the spectral function on
only one side of the Fermi level [209], as found for the SrO-terminated monolayer, see Fig. 2.60, within
DMFT. There, local electronic correlations can enhance thermoelectricity through energy-dependent
renormalizations that are different for electrons (ω > 0) and holes (ω < 0) [213, 210]. Our finding
of a momentum-selectivity in the scattering rate may provide an additional route: A particle-hole
asymmetry that is driven (or enhanced) by non-local renormalizations. Indeed, looking again at the
SrO-terminated monolayer, dominant (sub-leading) FM fluctuations at n = 1.3 (n = 1.5), drive a
dispersive scattering rate [214] that is larger for occupied momenta (“k < kF ”) then for empty states
(“k > kF ”): Specifically, the downward kinks in the xz-component of ℑΣ, see Fig. 2.65, occur for
k = (0, 0) and k = (0, π) which are inside the (DMFT) xz Fermi surface, see Fig. 2.60. For k = (π, π)
and k = (π/2, π/2), which are outside the Fermi surface, the xz scattering rate instead decreases
when approaching zero frequency. This electron-hole asymmetry of the scattering time will make the
already electron-like DMFT thermopower even more negative, thus increasing its magnitude.
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2.6 Self-consistent ladder dynamical vertex approxima-
tion

◦ The self-consistency and optical conductivity implementation are extensions of the
AbinitioDΓA code. The latter was published as “The AbinitioDΓA Project v1.0: Non-
local correlations beyond and susceptibilities within dynamical mean-field theory” by Anna
Galler, Patrik Thunström, Josef Kaufmann, Matthias Pickem, Jan M. Tomczak, and
Karsten Held [2].

◦ The optical conductivities are computed based on the published DΓA data of “Self-
consistent ladder dynamical vertex approximation” by Josef Kaufmann, Christian Eckhardt,
Matthias Pickem, Motoharu Kitatani, Anna Kauch, and Karsten Held [4] and were obtained
in collaboration with Josef Kaufmann and Anna Kauch. Adopted figures have been marked
accordingly.

◦ The reference parquet DΓA data for U = 4 has been kindly provided by Anna Kauch and
is reproduced from Ref. [215].

Finalizing the Mott Chapter we turn to the two-dimensional one-band Hubbard model, one of the
most studied models in the field of strongly correlated electron physics. We continue building on
the self-consistent ladder dynamical vertex approximation method and extend it towards optical
conductivities. First we briefly recap our newly developed “flavor” of the DΓA method introduced
in Ref. [4], before deriving the multi-orbital (vertex-corrected) current-current correlation function
necessary to compute optical conductivities.

2.6.1 Synopsis
The dynamical vertex approximation (DΓA) [204, 216] is a non-perturbative, diagrammatic exten-
sion [93] of dynamical mean-field theory [94] and presents a natural progression of the diagrammatic
considerations thereof: DMFT considers the one-particle (n = 1) irreducible vertex, i.e. the self-
energy Σ, to be local. DΓA assumes the two-particle (n = 2) irreducible vertex Λ to be local.
Following this “series”, for n → ∞, in principle, the exact solution will be recovered eventually [217].

DMFT is built on the solvability of an embedded impurity problem [97], allowing for an accurate
description of local electronic correlations as all possible diagrams built from local propagators can
be captured through the (numerically exact solution of the) single impurity Anderson model (SIAM).
In the limit of infinite lattice dimensions, with proper scaling of the hopping amplitudes, DMFT
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becomes exact [95]. The local self-energy of the (self-consistently determined) impurity problem
then coincides with the self-energy of the lattice problem which is approximated to be momentum
independent Σ(k, ω) → Σ(ω). Due to DMFT’s construction, non-local correlations on the one-
particle level are per construction out of its reach. To this end, diagrammatic extensions have been
developed that, at their heart, refine the DMFT approximation by instead approximating specific
two-particle vertices. The dynamical vertex approximation, for example, a priori determines specific,
channel-dependent two-particle irreducible vertices to be local (only their frequency structures are
considered). Ladder DΓA approaches commonly approximate Φpp to be local (building block: Γph)
to incorporate predominant spin and charge fluctuations, e.g. in the repulsive U > 0 Hubbard model.
Other variants do however exist that treat the attractive U < 0 Hubbard model, that approximate
Φph instead to be local [218]. A less crude approximation is made in the parquet variant where
only the fully irreducible two-particle vertex Λ is assumed to be local. As a result one is capable of
treating all fluctuations on equal footing without a preliminary exclusion of specific channels. Due
to the massive increase in complexity, the latter has hitherto only been successfully implemented for
one-band models [219].

Non-local two-particle ladder diagrams are then generated using these local vertices as input.
The resulting non-local full vertex F , inserted into the equation of motion, then yields non-local self-
energies, see Section 2.5.7. Contrary to cluster extensions, diagrammatic approaches are not limited
in the range of the incorporated fluctuations. This in principle allows for full compliance with the
Mermin-Wagner theorem [220, 221, 222].

In this thesis we restrict ourselves to the ladder dynamical vertex approximation (Φpp local) [223],
on which the self-consistent ladder dynamical vertex approximation (scDΓA) approach is built upon.
The main building block of the theory is the two-particle irreducible vertex in the particle-hole channel
Γph, allowing for an accurate description of spin and charge fluctuations [93]. In its original formu-
lation, ladder-DΓA relies on either one-shot results or posterior adjustments, e.g., via an application
of so-called λ-corrections [224, 225]. One-shot calculations are sufficient if the resulting self-energies
are close to the DMFT result [33], i.e. non-local correction terms are small or cancel out (as we have
seen in the case of checkerboard orbital ordering in Section 2.5.7). In the vicinity of ordered phases,
where deviations from DMFT tend to be large, one-shot results can only be used to gain information
about qualitative tendencies. Due the increasingly large vertices at the ordering momenta, control
over asymptotic behavior and orbital occupation is partially lost. The high-frequency behavior of
the resulting momentum-dependent self-energies is modified, violating important vital sum rules, see
Eqs. (2.142).
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2.6.1.1 λ corrections

The “standard” ladder DΓA approach relies on so-called λ-corrections to regulate the vertex contri-
butions. At the heart of this regularization are the (physical) lattice susceptibilities χr(q) (channel r
∈ {D, M}) whose static contribution can be approximated by an Ornstein-Zernike form

χr(q, ω = 0) ∼ A

(q − Q)2 + ξ−2 , (2.139)

in the vicinity of ordered phases. A denotes some proportionality factor, q the momentum transfer
vector, ω the transfer frequency and Q the ordering vector of the instability. The coherence length ξ

describes the propagation distance over which the described fluctuations maintain coherence. Natu-
rally, ξ diverges when approaching the ordered phase either via cooling or non-temperature control
parameters, such as a magnetic field or chemical doping. The λ-correction is then introduced as

χλ
r (q, ω) =

�
(χ−1

r (q, ω) + λr

�−1
, (2.140)

providing an upper boundary for the coherence length ξ̃ =
�
ξ−2 + λr

�−1/2 and a suppression of the
predominant fluctuations. Via Eq. (2.140), the relevant susceptibility sum rule can be constrained
such that the summation over the non-local and local (impurity) quantities are identical [226]

1
β

,
q,ωm

χlattice
↑↑ (q, ωm) != 1

β

,
ωm

χimp
↑↑ (iωm) = n

2 (1 − n

2 ). (2.141)

The right side is valid for the one-band case and is connected to the band filling n. Due to the
connection to the density and magnetic channel, “↑↑= 1

2(D + M)”, two separate conditions emerge
(with different λr)

1
β

,
q,ωm

χlattice
D (q, ωm) != 1

β

,
ωm

χimp
D (iωm), (2.142a)

1
β

,
q,ωm

χlattice
M (q, iωm) != 1

β

,
ωm

χimp
M (iωm). (2.142b)

Applied to three dimensional systems, this leads to a reduction of the transition temperature,
e.g., a reduction of the antiferromagnetic Néel temperature in the Hubbard model [193]. In pure
two dimension systems λ-corrections go a step further and are capable of fully suppressing the phase
transition for finite temperatures fulfilling the Mermin-Wagner theorem [224, 225]. In short, systems
of dimensionality d ≤ 2 and with interactions that are sufficiently short-range, continuous symmetries
cannot be spontaneously broken at finite temperatures T > 0. In these cases long range fluctuations
(e.g. antiferromagnetic) proliferate, however never diverge for T > 0. In practice, real samples can
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never resemble a perfect, infinite two dimensional model. Deviations thereof such as weak coupling in
the third dimension, magnetic anisotropies, disorder, lattice defects, finite size effects, etc. eventually
allow the occurrence of a phase transition at finite transition temperatures [227].

Thus far, this technique has only been applied to one-band systems. Once multiple correlated
orbitals are necessary to represent the structure26 the numerical complexity of λ-corrections quickly
increases. As the λ regularization is introduced as susceptibility corrections, they inherit their general
numerical features: A multi-orbital λ correction is therefore, per construction, a matrix with rank
n2 (n: number of correlated bands). Root-finding methods, e.g., applied in Ref. [224], become ill-
conditioned, as the most optimal n2 variables need to be determined in a safe manner. Furthermore,
it is a priori not clear whether susceptibility corrections of the type given in Eq. (2.140) are universally
applicable for a wide range of materials. While this form universally reflects the spin fluctuations
of the one-band Hubbard model, even reproducing the expected critical exponents (the 3D Hubbard
model is described by the 3D Heisenberg universality class, at least at half-filling [228, 229, 230]), a
more complex interplay of fluctuation of different origin might require different modifications.

2.6.1.2 Self-consistent approach

The approach of the self-consistent ladder dynamical vertex approximation circumvents the λ com-
plications altogether by instead allowing for a full feedback of the DΓA self-energy back into the
Bethe-Salpeter equations. The algorithmic flow was first introduced in Ref. [4] and is illustrated in
Fig. 2.71: On top of the converged DMFT calculation we calculate a one-shot two-particle Green’s
function from which the irreducible vertex can be extracted (blue box). As described in Section 2.5.7,
non-local corrections to the self-energy are calculated via the Bethe-Salpeter equations (BSE) and
the Schwinger-Dyson equation (SDE). The main idea of the self-consistent approach is an “inner”
feedback (green box) into the BSE + SDE sequence.27 Here the irreducible vertex Γph, extracted
from the DMFT two-particle Green’s function, remains untouched. The self-energy Σ(k, iνn) and
the adjusted chemical potential µ lead to new momentum dependent propagators Gk which are then
used for the construction of a new self-energy. This cycle is iterated until convergence is reached.
For a more complete description of the method, including the technical details regarding the updates
of local quantities, please refer to Ref. [4] or Ref. [231]. In principle, an “outer” feedback can be
26 Adding uncorrelated bands is less cumbersome as the corresponding sectors in the self-energy and vertices vanish,
see, e.g., Ref. [225] for an application to the periodic Anderson model.
27 If the underlying DMFT calculation shows diverging lattice susceptibilities, this inner feedback cannot be done in a
straight forward way. The non-locality then needs to be introduced step-by-step by replacing the geometric sum F q

r =
F ω

r

�
1 − χq,nl

0 F ω
r

�−1, see Eq. (2.115) with a truncation of the infinite series F q
r = F ω

r

�
1 + χq,nl

0 F ω
r +

�
χq,nl

0 F ω
r

$2 + · · ·
�
.

After the feedback has been introduced, the partial sum can be safely replaced by the geometric sum until convergence
is reached. Evidently, this procedure only makes sense if the iteration cures the susceptibility divergence, i.e., a non-
ordered state is restored.
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introduced (gray arrow) where the converged self-energy leads to a change in the DMFT bath and
consequently a new two-particle Green’s function (and an updated Γph. After the DMFT and the
DΓA are converged in unison outer self-consistency would be reached. This last step is, however,
beyond the scope of this thesis.

Figure 2.71: Flow chart of the self-consistent DΓA (scDΓA) method. The DMFT self-consistent
cycle (blue box) is supplemented via a Hamiltonian h(k) and interaction (matrix) U . The local
two-particle vertex is sampled from the converged DMFT bath function, providing the pivotal input
for the the scDΓA (green box). In principle an outer self-consistency (gray arrow) could be enacted,
updating Γimp. In this Section we stop at the “inner” scDΓA convergence.

2.6.2 Optical conductivity
Motivated by a recent study of optical conductivities in strongly correlated systems we introduce
the capability to compute optical conductivities for generalized multi-orbital systems into the scDΓA
approach: Kauch et al. [215] showcased that the optical spectrum is prone to strong modifications by
vertex corrections corresponding to the newly encountered polariton — the π-ton, see Fig. 2.72. In
the proximity of antiferromagnetism (e.g., half-filling in the two-dimensional Hubbard model), light
(q ≈ 0) couples to the predominant fluctuations with transfer momentum Q = (π, π) in a non-trivial
manner. As this coupling mechanism is intrinsically contained in the ladder DΓA approach (crossing
symmetric ph contribution), we extend the π-ton analysis to the the self-consistent dynamical vertex
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Figure 2.72: Differences between an exciton (a/b) and a π-ton (c/d). The physical process in
energy and k-space is sketched at the top while the corresponding Feynman diagrams are sketched
at the bottom. In order to couple to antiferromagnetic fluctuations the π-tons, due to the vanishing
transfer momentum q of light, must couple to the transversal particle hole channel. [Reprinted
with permission from Kauch et al., Phys. Rev. Letters 124, 047401 (2020). Copyright (2020) by
the American Physical Society.] [215]

approximation. To this end, let us first introduce the optical conductivity.
The complex conductivity tensor σ relates the magnitude and phase of the current (density) J to the
applied electrical field E

J(ω) = σ(ω)E(ω). (2.143)

The Maxwell equations then give rise to the connection to the absolute permittivity ε(ω) via

ε(ω) = ε0 + iσ(ω)
ω

. (2.144)

where ε0 = 1/(µ0c2) is the vacuum permittivity, connected to the vacuum magnetic permeability
µ0 ≈ 4π · 10−7H/m and the speed of light c. The refraction index, which is how one commonly
gains access to the optical conductivity in experiments [232, 233], then combines the (di)electric and
magnetic response χM = µ/µ0 − 1, with µ as the permeability connecting the magnetic flux B and
the magnetizing field H via B = µH

n(ω) =
*

ε(ω)
ε0

µ(ω)
µ0

. (2.145)
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In generalized multi-orbital systems the real part of the conductivity tensor σαβ is directly connected
to the imaginary part of the electronic current-current correlation function χjj on the real frequency
axis where α, β ∈ {x, y, z} represent the Cartesian directions

ℜσαβ(ω) =
ℑχjj

αβ (q = 0, iωn → ω + i0+)
ω

. (2.146)

The current-current correlation function is commonly introduced on the imaginary time axis

χjj
αβ(q = 0, τ) = 1

V
lim
q→0

�
Tτ jα

E(q, τ)jβ
E(−q, 0)

�
(2.147)

with the unit cell volume V and the (electronic) current operators

jα
E(q, τ) = −e

,
k,lm,σ

γ
k−q/2,α
lm ĉ†

k−q,mσ(τ)ĉk,lσ(τ) (2.148)

with a positively defined elementary charge e and the coupling element in the Peierls approxima-
tion [234] in the form of the band velocities via the derivative of the band structure

γk,α
lm = 1

ℏ

∂εk
lm

∂kα
, (2.149)

see Appendix A.3.2.1. The transition to bosonic Matsubara frequencies iωn is performed by a straight
forward Fourier transform

χjj
αβ(q, iωn) =

� β

0
dτχjj

αβ(q, τ)eiωnτ . (2.150)

2.6.2.1 Multi-orbital derivation

The calculation of the optical conductivity via diagrammatic methods is done by calculating the
bosonic correlation function χjj on the imaginary time τ or frequency axis iωm, which is then an-
alytically continued to the real frequency axis ω. The general expression of the current-current
correlation function can be derived by inserting the current operators into the expectation value of
χjj and connecting the resulting expression to the two-particle Green’s function. As is common in
model calculations, in the following we consider natural units, i.e. e ≡ 1 and ℏ ≡ 1.

χjj
αβ(q = 0, τ) =

,
k,lm,σ

,
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�
=

,
k,lm,σ

,
k′,m′l′,σ′

γk,α
lm γk′,β

m′l′ Gq=0 kk′
lmm′l′

σσ′
(τ+, τ, 0+),

(2.151)
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with the infinitesimal expressions τ+ > τ and 0+ > 0. By applying Wick contractions we are able to
separate all two-particle diagrams into their connected and disconnected constituents

χjj
αβ(q = 0, τ) =

,
k,lm,σ

,
k′,m′l′,σ′

γk,α
lm γk′,β

m′l′


Gk

lm
σ
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− δkk′δσσ′Gk
ll′
σ

(τ+ − 0)Gk′
m′m

σ′
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�
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Fourier transforming these three terms leads to� β
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where we employed the momentum dependent, multi-orbital occupation (see Section A.2)
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and employed the frequency notation introduced for AbinitioDΓA in Ref. [33]. Inserting these iden-
tities back into Eq. (2.152) gives us
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which simplifies under the assumed paramagnetic phase to
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− 2
β

,
k,lmm′l′

γk,α
lm γk,β

m′l′
,
νa

G
(k,νa)
ll′
σ

G
(k,νa−ωn)
m′m

σ

+ 2
β2

,
kk′,lmm′l′

γk,α
lm γk′,β

m′l′
,
νa,νb

G
(q=0,ωn) (k,νa) (k′,νb) con
lmm′l′

D

.



160

The first (diamagnetic) term is purely real and hence does not contribute to the conductivity. Ex-
panding the connected Greens function according to Ref. [33] leads to equations that can be evaluated
within AbinitioDΓA:

χjj
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vertex correction

2.6.2.2 Implementation

The (spin-resolved) bubble evaluation is straight forward as only a combination of Green’s functions
and their corresponding optical elements need to be summed over

χjj,0
αβ lmm′l′ σ(q = 0, iωn) = − 1

βNk

,
k,ν

γk,α
lm γk,β

m′l′ G
(k,ν)
ll′
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G
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σ

. (2.158)

In this Section we show the exact numerical equations that have been implemented: For that reason
here, and in the following, when summing over momenta in the Brillouin zone we explicitly denote
the pre-factor that includes the number of k-points Nk. In any other Section this technical detail is
implicitly assumed.

The physical response requires an additional orbital and spin summation such that only the
external frequency and momentum transfer remains

χjj,0
αβ (q = 0, iωn) = 2

,
lmm′l′

χjj,0
αβ lmm′l′(q = 0, iωn), (2.159)

The vertex correction of Eq. (2.156) is still in its most general form, in which an appropriate density
vertex FD must be inserted. Within AbinitioDΓA this vertex is constructed via

F qkk′
lmm′l′

D

= F ωνν′
lmm′l′

D
+ F qνν′,nl

lmm′l′
D,ph

− 1
2F

(k′−k)(ν′−ω)ν′,nl
m′mll′
D,ph

− 3
2F

(k′−k)(ν′−ω)ν′,nl
m′mll′
M,ph

, (2.160)

which was previously derived in Section 2.5.7.
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Horizontal particle-hole channel
The first two terms of Eq. (2.160) are readily available in the AbinitioDΓA implementation and yield
when plugged into Eq. (2.156) the contribution from the particle-hole channel

χjj,ph
αβ lmm′l′ σ(q = 0, iωn) = 1

β2N2
k

,
kk′νν′

,
abcd

γk,α
lm γk′,β

m′l′ (2.161)

G
(k,ν)
la
σ

G
(k,ν−ω)
bm
σ

G
(k′,ν′−ω)
m′c
σ

G
(k′,ν′)
dl′
σ


F ωνν′

abcd
D

+ F
(q=0,ω)νν′,nl
abcd

D

�
,

see Fig. 2.72b. Again, a full orbital and spin summation is required to obtain the physical response

χjj,ph
αβ (q = 0, iωn) = 2

,
lmm′l′

χjj,ph
αβ lmm′l′(q = 0, iωn). (2.162)

In this formulation, the spin summation leads to the same factor 2 as the density vertex is, per
definition, SU(2) symmetric: D ≡ ↑↑ + ↑↓SU(2)= ↓↓ + ↓↑. Let us note that for a one-band model this
quantity must evaluate to zero: Within the Peierls approximation the optical elements are represented
as derivatives of the energy levels γk = 1

ℏ
∂ε(k)

∂k changing sign when moving from k → −k. As the
band structure ε(k) is invariant under the same transformation (for a single band a consequence of
Bloch’s theorem), performing a full Brillouin zone summation necessarily cancels out all terms. In
generalized multi-orbital systems this statement does not necessarily hold.

Transverse particle-hole channel
The last two terms of Eq. (2.160) correspond to the contribution of the transverse particle-hole
channel, stemming from the enforced crossing symmetry of the vertex F . In order to evaluate the
expression

χjj,ph
αβ lmm′l′ σ(q = 0, iωn) = 1

N2
kβ2

,
kk′νν′

,
abcd

γk,α
lm γk′,β

m′l′ (2.163)

G
(k,ν)
la
σ

G
(k,ν−ω)
bm
σ

G
(k′,ν′−ω)
m′c
σ

G
(k′,ν′)
dl′
σ


−1

2F
(k′−k)(ν′−ω)ν′,nl
cbad

D

− 3
2F

(k′−k)(ν′−ω)ν′,nl
cbad
M

�
,

first a variable substitution for the momenta and frequencies (energies) must be performed

◦ k′ − k → q̃,

◦ ν ′ − ν → ω̃.

The new “tilde” variables now correspond to the outer (bosonic) loop of AbinitioDΓA

χjj,ph
αβ lmm′l′(q = 0, iωn) = 1

NkNq̃β2

,
q̃k′ω̃ν′

,
abcd

γk′−q̃,α
lm γk′,β

m′l′ (2.164)

G
(k′−q̃,ν′−ω̃)
la
σ

G
(k′−q̃,ν′−ω̃−ω)
bm
σ

G
(k′,ν′−ω)
m′c
σ

G
(k′,ν′)
dl′
σ


−1

2F
(q̃,ω̃)(ν′−ω)ν′,nl
cbad

D

− 3
2F

(q̃,ω̃)(ν′−ω)ν′,nl
cbad
M

�
,
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which we have easy access to in the numerical implementation. Again, an orbital and spin summation
is required to obtain the contribution to the physical response

χjj,ph
αβ (q = 0, iωn) = 2

,
lmm′l′

χjj,ph
αβ lmm′l′(q = 0, iωn). (2.165)

Let us emphasize that due to the variable transformation the transverse particle-hole contribution
requires a full loop over all possible bosonic transfer frequencies ω̃ and transfer momenta q̃. Fur-
thermore, from a technical point of view, care has to taken when dealing with internal frequencies
summations: To achieve a consistent “box size effect” for all (external) bosonic transfer frequencies,
the frequency range involved in

-
ν′ needs to be selected according to max iωn.

As per Eq. (2.157), the total current-current correlation function is then the sum over all considered
terms

χjj
αβ(q = 0, iωn) = χjj,0

αβ (q = 0, iωn) + χjj,ph
αβ (q = 0, iωn) + χjj,ph

αβ (q = 0, iωn). (2.166)

2.6.2.3 Characteristics of the optical spectrum

Before analyzing the effects of vertex corrections, we first provide a brief introduction to the qualitative
features of optical spectra. To this end we exploit the bubble contribution, which can be interpreted
by rewriting the Green’s function via a Hilbert transformation, connecting the Matsubara axis with
the real frequency axis

Gk(iνn) =
� ∞

−∞
dω

A(k, ω)
iνn − ω

. (2.167)

The resulting current-current correlation function (restricted to the one-orbital case here) evaluates
to

χjj
αβ σ(q = 0, iωm) = − 1

βNk

,
k,νn

γk,αγk,β
� ∞

−∞

� ∞

−∞
dω′dω′′ A(k, ω′)

iνn − ω′
A(k, ω′′)

iνn − iωm − ω′′ (2.168)

which can be simplified by evaluating the Matsubara sum

− 1
β

,
νn

1
iνn − ω′

1
iνn − iωm − ω′′ = fF D(ω′) − fF D(ω′′)

ω′′ − ω′ + iωm
, (2.169)

see Appendix A.2. The optical conductivity then results from the continuation to real frequency
iωm → ω + i0+, see Eq. (2.146), which we can perform analytically

σ(ω) = ℑχ(iωm → ω + i0+)
ω

∝ ℑ 1
ω

� ∞

−∞

� ∞

−∞
dω′dω′′A(ω′)A(ω′′)fF D(ω′) − fF D(ω′′)

ω′′ − ω′ + ω + i0+

= π

ω

� ∞

−∞
dω′A(ω′)A(ω + ω′) [fF D(ω′) − fF D(ω′ + ω)]

(2.170)
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employing
1

ω′′ − ω′ + ω + i0+ = P
� 1

ω′′ − ω′ + ω

%
− iπδ(ω′′ − ω′ + ω, 0) (2.171)

where the Cauchy principal value does not contribute and the frequency constraint eliminates one of
the integrals. In the direct current (DC) limit the selection window simplifies into the derivative of
the Fermi function

lim
ω→0+

fF D(ω′) − fF D(ω′ + ω)
ω

= −∂fF D(ω′)
∂ω′ . (2.172)

Ignoring momentum dependencies for a moment, the optical conductivity can thus be thought of as a
convolution of spectral functions and a corresponding selection window, determined by the excitation
frequency ω. As long as sharp momentum features are lost due to the Brillouin zone averaging,
we are able to schematically understand the qualitative behavior of the optical spectrum σ(ω) from
the local spectral function A(ω). This is presented in Fig. 2.73 where A(ω) and σ(ω) are shown for
the metallic DMFT result of the two-dimensional Hubbard model on a square lattice with nearest
neighbor hopping t ≡ 1, (weak) interaction U = 2 and temperature T = 0.1.

The optical spectrum mirrors the three distinct features of the shown spectral function: (i) The
quasi-particle peak at the Fermi level translates to a dominant Drude peak around σ(ω = 0), natu-
rally only present for metallic spectral functions. Its size provides information of the quasi-particle
coherence at the Fermi level. The name is derived from the Drude model [235] whose steady-state
solution connects the (complex) conductivity tensor to the mean free time τ between collisions of the
excited electrons

σDrude(ω) = ne2τ

me

1
1 − iωτ

. (2.173)

n, e, me refers to the particle density, the electron charge and the electron mass, respectively. The
real part of Eq. (2.173), ℜσ ∝ 1/(1 + ω2τ 2), then displays the same characteristic behavior around
ω = 0 as seen in Fig. 2.73e.

(ii) At intermediate frequencies (ω ≈ 1.5) we observe the so-called mid infrared (MIR) peak
generated by optical transitions between the quasi-particle peak and satellite features, marked in the
top panel. (iii) Finally, transitions between the Hubbard “bands” translate into a miniscule high-
frequency feature, barely visible on a logarithmic scale. Increasing the interaction U will lead to a
stronger renormalization, making the high-energy features more prominent. This simple picture will
be modified by momentum dependencies and vertex corrections, leading to quantitative deviations
and are not as easily interpretable. This demands a more thorough investigation which will be our
task in the following.
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Figure 2.73: Schematic relation between the local electronic spectral function A(ω) (a) and the
conductivity σ(ω) (e) via selection windows according to the equations in the main text (b-d,
arbitrary y-axis scaling). The three distinct peaks of the optical spectrum, stemming from the
features in A(ω), are referred to as Drude peak, mid infrared (MIR) peak and Hubbard peak. In
realistic measurements peaks beyond are usually referred to as high frequency (HF) features. A
particle-hole symmetric (n = 1) DMFT calculation of the two-dimensional Hubbard model with
interaction U = 2 at temperature T = 0.1 was used for the spectral function and the optical
conductivity.

2.6.2.4 Numerical analytic continuation

Once numerical data of Green’s functions and vertex corrections has to be taken into consideration,
conductivities on the real frequency axis must be obtained via a bosonic analytic continuation, similar
to the fermionic continuation of Section 2.2.3. Here, the imaginary and real axis are related via the
Kramers-Kronig relation [236]

ℜ [χ(iωm)] = 2
π

� ∞

0
dω

ω

ω2 + ω2
m

ℑ [χ(ω)] , (2.174)
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resulting in the bosonic spectral function of

Sb(ω) = 2
π

ℑ [χ(ω)]
ω

. (2.175)

Defining a corresponding kernel of

Kb(ω, iωm) = ω2

ω2 + ω2
m

, (2.176)

the connection between imaginary and real frequency axis is

ℜ [χ(iωm)] =
� ∞

0
dωKb(ω, iωm)Sb(ω). (2.177)

Analytic continuation via, e.g., the maximum entropy method then generates the most likely bosonic
spectral function which is directly related to the (real part) of the conductivity, see Eq. (2.146)

ℜσ(ω) = π

2 Sb(ω). (2.178)

Let us note that throughout the rest of this Section we will restrict our discussion to this real part,
which we will simply denote as σ(ω). From the above equations we can deduce that the f-sum rule
of the conductivity can be connected to the static value of the susceptibility� ∞

0
dω σ(ω) =

� ∞

0
dω

ℑ �
χjj(q = 0, ω)

�
ω

= π

2 ℜ
�
χjj(q = 0, iωm = 0)

�
. (2.179)

To illustrate these connections, we present exemplary optical conductivities σ(ω) in Fig. 2.74, modelled
phenomenologically via normal distributions

σ(ω) ∝ exp
�

−1
2

(ω − ω)2

δ2

!
(2.180)

for positive frequencies ω ≥ 0 that are normalized to
� ∞

0 σ(ω) = 1. To illustrate complications from
the interpretation of raw data on the Matsubara axis we look at two scenarios: (i) the formation of an
optical gap by a shift of the center points ω (top row), (ii) the widening of the Drude-like peak (ω = 0)
via a scan over various standard deviations δ (bottom row). The resulting current-current correlation
functions on the Matsubara axis are then calculated via Eq. (2.177). Both scenarios show a distinct
increase of χjj(iωm) at finite frequencies and for the case of a gap formation, a characteristic flattening
of the response at the first two Matsubara frequencies whose slope vanishes once the gap has been
fully formed. The Drude peak widening results in a similar, however way less pronounced, effect on
these first two Matsubara frequencies. With this insight, the effects of vertex corrections onto the
spectrum can then be classified at first glance according to their signatures on the Matsubara axis.
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Figure 2.74: Exemplary behavior of the susceptibility χjj when opening an optical gap (a-b)
and broadening the Drude-like peak (c-d). The optical conductivities σ(ω) (left) are modelled via
normal distributions (panel a: standard deviation δ = 0.5, center points ω = {0, 0.5, 1.0, 1.5, 2.0};
panel c: standard deviations δ = {0.5, 0.75, 1.0, 1.25, 1.5}) normalized to

� ∞
0 dω σ(ω) = 1. The

resulting susceptibilities (β = 30) are the result of the integral given in Eq. (2.177). Due to the
normalization of the Gaussian model σ(ω) the zeroth frequency iωm = 0 is identical for all modelled
conductivities, i.e. χjj(iωm = 0) = 2/π. The opening of the gap (increase of ω) coincides with a
flattening of χjj at the lowest bosonic Matsubara frequencies, accompanied by a response increase
for all finite frequencies. The same effects occur for a widening of the Drude peak, albeit less
pronounced, i.e. a steep slope between zeroth and first Matsubara frequency remains.

Special attention must be given to the low frequency behavior, indicative of a loss/gain of coherence
of the Drude peak and in the most extreme cases: the opening of an optical gap.

Let us note that conductivites must be related to a physical, i.e. positive, current-current cor-
relation function. In order to analyze the effect of the vertex corrections, we therefore perform two
separate continuations

χjj,0
scDΓA(iωm) → σ0

scDΓA(ω) (2.181a)

χjj,0
scDΓA(iωm) + χjj,ph

scDΓA(iωm) → σscDΓA(ω) (2.181b)

from which we consider the correction as the difference

σcorrection
scDΓA (ω) = σscDΓA(ω) − σ0

scDΓA(ω). (2.182)
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From a numerical point of view, this procedure makes the analysis on the real frequency axis slightly
more error prone.

2.6.3 Two-dimensional Hubbard model
Defining the Hubbard model on a two-dimensional square lattice (with lattice vector lengths of a = 1),
restricted to only nearest neighbor hopping

H = −t
,

⟨i,j⟩,σ
ĉ†

iσ ĉjσ + U
,

i

n̂↑,in̂↓,i − µ
,
i,σ

n̂σ,i (2.183)

results in an kinetic energy diagonal in k-space

H =
,
k,σ

εkĉ†
kσ ĉkσ + U

,
i

n̂↑,in̂↓,i − µ
,
i,σ

n̂σ,i (2.184)

with an energy dispersion of
εk = −2t [cos(kx) + cos(ky)] . (2.185)

For the following considerations we set the hopping amplitude to t = 1, resulting in a band width
of W = 8. The particle-hole symmetric, half-filling ⟨n̂↑⟩ = ⟨n̂↓⟩ = 0.5 of the energy dispersion
Eq. (2.185) is generated via µ = 0 in the non-interacting and µ = U/2 in the interacting case28 and
results in a diamond shaped Fermi surface, see Fig. 2.75. Through the cosine dependence of the band
structure, different points in the momentum space relate to each other

εk = ε−k, (2.186a)

εk = −εk+Π, (2.186b)

inducing a perfect nesting condition on the Fermi surface with nesting vector q = Π = (π, π). The
momenta responsible for the van-Hove singularity with its logarithmic divergence at the center of the
density of states (N(ε = 0) → ∞) are located in the antinodal (AN) directions: kAN = (π, 0) ≡
(−π, 0) ≡ (0, π) ≡ (0, −π). In the context of optical spectra, the directional coupling element to the
current operator in the Peierls approximation results in

γk,x = −2t sin(kx), (2.187a)

γk,y = −2t sin(ky), (2.187b)

see Eq. (2.149), modulating the contribution of each momentum to the current-current correlation
function. Most prominently, the contribution of the antinodal direction to the bare response is fully
28 Given the energy dispersion of Eq. (2.185), this statement holds for any hopping amplitude t, temperature T , and
interaction parameter U , and follows from the particle-hole transformation [193] of the Hamiltonian in Eq. (2.184).
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Figure 2.75: Energy distribution and density of states of the two-dimensional Hubbard model as
described in Eq. (2.183) (t ≡ 1). The diamond shaped Fermi surface (left: white) for half-filling
n = 1 causes a perfect nesting condition with Q = (π, π), indicated by arrows. The DOS features the
logarithmic divergence at ε = 0 stemming from the antinodal momenta kAN = (0, π) ≡ (0, −π) ≡
(π, 0) ≡ (−π, 0). We numerically calculated the DOS with 105 × 105 k-points.

suppressed χjj,0
xx (kAN) = χjj,0

yy (kAN) ≡ 0, see Eq. (2.158). In the context of vertex corrections within
scDΓA, see Eq. (2.161) and Eq. (2.164), this momentum selectivity is more nuanced, since a pair
of momenta (k, k′) contributes. Let us note that in all cases, the momentum summed response
must obey the symmetry of the lattice (point group: C4v), resulting in a directional equivalence
of χjj

xx ≡ χjj
yy, whereas the response in the perpendicular direction of the applied field necessarily

vanishes χjj
xy = χjj

yx ≡ 0.
Further, for the special case of these hyper-cubic lattices (square, cubic, etc.) we can connect the

spectral weight of the (longitudinal — jxjx) optical conductivity to [237, 238]� ∞

0
dω σ(ω) = π

2
,

k

,
σ

∂2εk
∂k2

x

⟨nk,σ⟩ , (2.188)

allowing us to retrieve an alternative expression for the static current-current correlation function
through

χjj(q = 0, iωm = 0) =
,

k

,
σ

∂2εk
∂k2

x

⟨nk,σ⟩ . (2.189)

For nearest neighbor hopping (nnh) this expression simplifies further, leading to a proportionality to
the kinetic energy of the lattice fermions

χjj(q = 0, iωm = 0) nnh= −1
2

,
k

,
σ

εk ⟨nk,σ⟩ = −1
2Ekin. (2.190)
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Let us note that in the continuum formulation, that also includes all excitations beyond the low-
energy dispersion, the f-sum rule instead connects the spectral weight to the total charge n in the
system [35, 64] � ∞

0
dω σ(ω) = π

2
ne2

me
(2.191)

where e is the elementary charge and me the mass of the electron. Eq. (2.191) is especially useful
when tracking the redistribution of spectral weight as a function of temperature or pressure, etc.

2.6.3.1 Nesting induced antiferromagnetic instability

In the weak coupling regime the physics in the current setting is dominated by the perfect nesting
condition: The non-interacting (Σ ≡ 0, n = 1 → µ = 0), momentum-dependent bare susceptibility
χ0 can be calculated analytically, see Appendix A.2, resulting in the well-known Lindhard expression

χ0(iωm, q) = − 1
β

,
νn

,
k

1
iνn − εk

1
iνn + iωm − εk+q

= −
,

k

fF D(εk+q) − fF D(εk)
εk+q − εk + iωm

(2.192)

whose static contribution iωm = 0 indeed exhibits fastest divergence for q = (π, π): χ
(π,π)
0 ∝

ln(T )2 [239]. From a technical point of view, this behavior emerges since the (π, π) momentum
transfer minimizes the denominator of Eq. (2.192) connecting every occupied k-point to an unoccu-
pied k + q-point and vice versa. In contrast, for q = (0, 0) these non Fermi-surface contributions
are comparatively suppressed, resulting in a slower divergence: χ

(0,0)
0 ∝ − ln(T ). An affirmation of

this argument can be done in a straight forward manner for all possible q-vectors via a numerical
implementation of Eq. (2.192) (not shown).

Ordering at a finite critical temperature can be introduced via the random phase approximation
(RPA). The Hubbard interaction constrains parts of the (spin-dependent) series to specific orders of
U , resulting in the following geometric series29, diagonal in transfer momentum q and energy iωm

χRPA
↑↑ = χ0 + χ0Uχ0Uχ0 + χ0Uχ0Uχ0Uχ0Uχ0 + . . .

= χ0 + χ0Uχ0Uχ0χRPA
↑↑ = χ0

1 − χ0Uχ0U
(2.193a)

χRPA
↑↓ = −χ0Uχ0 − χ0Uχ0Uχ0Uχ0 + . . .

= −χ0U (χ0 + χ0Uχ0Uχ0 + . . . ) = −χ0UχRPA
↑↑ (2.193b)

29 The sign of the different terms stem from the “standard” consideration of two-particle particle-hole reducible di-
agrams. The bare susceptibility χ0 is defined via −GG, already including the minus sign of the loop. For each
interaction U a separate minus sign must be included.
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which can be combined to

χRPA
D = χRPA

↑↑ + χRPA
↑↓ = χ0

1 + χ0U
(2.194a)

χRPA
M = χRPA

↑↑ − χRPA
↑↓ = χ0

1 − χ0U
(2.194b)

valid in the weak coupling regime, i.e. small U . While the charge fluctuations become screened,
the magnetic fluctuations eventually lead to nesting induced Slater antiferromagnetism, diverging for
χ0U ≥ 1, appearing first for q = (π, π). DMFT susceptibilities then can be thought of as a general-
ization of the RPA concept by replacing the interaction U with the two-particle irreducible vertex in
the ph channel Γr∈{D,M}, see Section 2.5.4.30 A sketch of the resulting DMFT Néel temperature TN ,
accompanied by the metal-insulator transition (MIT) is presented in Fig. 2.76.
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Figure 2.76: Phase diagram of the half-filled two-dimensional Hubbard model of Eq. (2.183).
Blue crosses represent converged scDΓA results of Ref. [215]. DMFT’s antiferromagnetic ordering
temperature TN and the metal-insulator transition line are indicated by a gray and pink line,
respectively. Relevant local vertex divergences are indicated by a red and yellow line. These
divergences mark the points where the local geometric series becomes ill-defined, i.e. the full
vertex F can no longer be represented via F = Γ+Φ. Numerically this is pinpointed by an inability
to perform the inversion Γω

r = F ω
r (1 + χ0F ω

r )−1 [194, 240].

In this context, both RPA and DMFT violate the Mermin-Wagner theorem. The approximation
of a static U or a local Γ as scattering matrices are thus too crude to fully capture the inherent (low
temperature) physics of the model. Techniques beyond DMFT are essential to gain an understanding
30 The irreducible vertex Γph via the parquet decomposition Γph = Λ + Φpp + Φph contains to lowest order the
interaction U itself (via Λ). The interaction contribution in the density and magnetic channel representation therefore
leads to ΓD = +U and ΓM = −U . By absorbing the sign into the vertex the susceptibilities can be written as
χr = χ0/(1 + χ0Γr).
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of the long range (magnetic) fluctuations and their effect onto the one-particle level (self-energy),
present in the current setting.

2.6.3.2 Pseudogap emergence

Once genuine two-particle corrections are considered and properly fed back into the self-energy, as
is the case in the self-consistent dynamical vertex approximation, the prominent antiferromagnetic
fluctuations present in the Hubbard model may trigger the emergence of pseudogap physics. To
illustrate this effect we show the temperature behavior of the self-energy on the Matsubara axis and
the corresponding spectral function in the weak-coupling regime U = 2 for the prominent nodal (N)
kN = (π/2, π/2) and antinodal (AN) kAN = (0, π) direction in Fig. 2.77. At elevated temperature
1/T = 1 the system is in a fully incoherent state. Due to the strong thermal fluctuations a properly
defined quasi-particle peak cannot establish itself. Coherence emerges first in the nodal direction at
1/T ≈ 3, signalled by an upturn of the lowest Matsubara frequency, followed by coherence in the
antinodal direction at slightly lower T . At an intermediate temperature 1/T = 15 the full Fermi
surface becomes metallic. Whereas in DMFT this quasi-particle signature will only ever increase
in coherence upon cooling, the feedback of the emerging antiferromagnetic fluctuations in scDΓA
eventually induces a loss of spectral weight. This first occurs in the antinodal direction at 1/T ∗

AN ≈ 25
in Fig. 2.77, marked by a significant downturn of the self-energy at the first Matsubara frequency, the
signature of a gap opening. At the same temperature the nodal direction shows a similar behavior,
there however, the slope of Σ(iν1) − Σ(iν0) remains negative. Finally at 1/T ∗

N ≈ 30 a (pseudo)gap
is opened for all self-energies on the Fermi surface (for which the nodal momentum point is the
proxy) which however remains quite momentum-selective. Due to long-range spin fluctuations the
antiferromagnetic phase transition, observed in DMFT at finite temperatures, is pushed to T ≡ 0
compliant with Mermin-Wagner theorem and consistent with other diagrammatic methods [241]. The
momentum selectivity, thought to be linked to the van Hove singularity in the antinodal direction,
generates so-called Fermi arcs, similarly observed in copper oxides (cuprates) [242, 243]. Let us note
however, that the underlying settings are different in cuprates: The cuprate parent compounds are
Mott insulators, characterized by embedded CuO2 planes as in LB-CO, YB-CO, BiS-CO, HGBC-CO,
etc. The pseudogap regime is then observed via doping (away from the theoretical half-filled state)
and is located next to the (strong-coupling) antiferromagnetic dome [244].

The momentum selective gap in the half-filled model, supported by diverging fluctuations upon
cooling, eventually fully forms on the entire Fermi surface, transitioning the system to an insulator
for all interaction strengths U , i.e. Uc = 0 at T = 0 [224]. Compared to DMFT, the emergence of
the pseudogap strongly modifies the Fermi surface, and is expected to lead to strong renormalization
of the optical spectrum. In the following, we will analyze the signatures of the pseudogap in optical
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Figure 2.77: Imaginary part of the self-energy ImΣ and corresponding spectral function A(ω)
for the antinodal (k = (0, π), top) and nodal (k = (π/2, π/2), bottom) momenta for U = 2 and
various temperatures. Coherence first emerges in the nodal direction (top) at 1/T = 3 where
throughout the coherence regime it displays less scattering rate than the antinodal direction. This
is characterized by the more prominent quasi-particle peak in the spectral functions in the right
panels. Due to strong antiferromagnetic fluctuations, Fermi surface weight is suppressed through
the self-consistent vertex feedback resulting in a momentum-selective (pseudo)gap opening first
appearing in the antinodal direction at 1/T = 25. This is marked by a downturn of the self-energy
at the first fermionic Matsubara frequency. Eventually, through a diverging correlation length, the
Fermi surface will be fully suppressed and an insulator emerges for T = 0.

spectra and furthermore put an emphasis on the explicit effect of the dominant antiferromagnetic
fluctuations via vertex corrections, as derived in Section 2.6.2.

For a detailed multi-method analysis of the underlying fluctuations and the pseudogap emergence,
let us refer to Ref. [241].

2.6.3.3 Weak-coupling: U = 2

Having established characteristic pseudogap onset temperatures of T ∗
AN ≈ 1/25 and T ∗

N ≈ 1/30 for
an interaction strength of U = 2, see Fig. 2.77, we turn our attention to the optical response. The
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current-current correlation function χjj(iωm) on the Matsubara axis and optical conductivities on the
real frequency axis are depicted in Fig. 2.78, and Fig. 2.79, respectively.
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Figure 2.78: Current-current correlation functions for U = 2 at half-filling n = 1. (a) DMFT, (b)
scDΓA bubble contribution, (c) scDΓA vertex contribution. Lowering the temperature leads to a
monotonous increase of coherence in the DMFT response. The development of the pseudogap and
the overall self-energy dampening reverses this trend in scDΓA data. Cooling the system leads to
a monotonous increase of the vertex corrections. Note that the values at the discrete Matsubara
frequencies have been connected for clarity.

We present three different contributions to the correlation function in Fig. 2.78: In the panel
(a) we show the DMFT bubble, in panel (b) the bubble contribution of scDΓA and in panel (c) the
vertex correction of the transverse particle-hole channel ph. For the smallest shown temperatures
the employed momentum grid was kx × ky = 80 × 80. Note that we connected the values at the
discrete Matsubara frequencies ωm = 2mπ/β for clarity. The scDΓA bubble contribution highlights
the implicit effects of the antiferromagnetic fluctuations through the self-energy, directly comparable
to the purely local correlations of DMFT. The vertex corrections on the other hand show the explicit
effects through the direct evaluation of the transverse particle-hole BSE. Let us reiterate, that in this
context (one band, q = 0), particle-hole vertex corrections do not contribute due to the contrasting
behavior of the band energies ε(k) = ε(−k) and band velocities as coupling elements γk = −γ−k.

Within DMFT, all considered temperatures result in firm, Fermi liquid self-energy signatures
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Figure 2.79: Optical conductivities for U = 2 at half-filling n = 1. (a) DMFT, (b) bare bubble
scDΓA, (c) vertex contribution to scDΓA, (d) full scDΓA. The insets illustrate the temperature
dependence of the respective DC values. Cooling generates an increasingly coherent Drude peak
within DMFT. This trend is broken in scDΓA where a trend reversal is observed, followed by a
continuous suppression of the Drude peak. Vertex correction, overall, lead to a broadening of the
Drude peak by shifting weight toward the inflection point at ω = 0.25.

where the characteristic scattering rate behavior Γ = −ℑΣ(iνn → 0+) ∝ T 2, however, can only be
observed below T = 0.067 (not shown). With only local correlations at play, the current-current
correlation functions and the resulting optical conductivities behave as expected: Upon cooling the
static value χjj(iωm = 0) increases monotonously (see inset), suggesting a kinetic energy increase
through increased coherence, see Eq. (2.190). This is accompanied by a stark steepening of χjj(iωm =
0) − χjj(iωm = 2π/β), due to the temperature behavior of the Matsubara axis: (ω1 − ω0) decreases
in size upon cooling. As the responses for finite transfer frequencies iωm > 0 remain quite small, the
optical spectrum (in real-frequencies) develops a dominant Drude peak contribution containing the
majority of the spectral weight. The increased coherence then necessarily translates into a boost of
the DC conductivity

σDC = lim
ω→0+

σ(ω). (2.195)

This temperature characteristic is plotted in the inset of Fig. 2.79a, mirroring the Fermi liquid sig-
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natures at the lowest temperatures with ρ ∝ T 2 (not shown).
Including non-local self-energies within scDΓA, unsurprisingly, induces significant changes in the

bubble χjj,0: While the high temperature current-current correlation functions and conductivities
for temperatures T = 0.333, T = 0.25, T = 0.2 still quantitatively mirror DMFT, upon cooling
below T ≤ 0.100 deviations become apparent. At these temperatures, the monotonous trend of the
static response (inset of Fig. 2.78b) reverses, signalling the loss of kinetic energy through increased
scattering. This is accompanied by a general broadening of the finite frequency response where
χscDΓA

0 (iωm) > χDMFT
0 (iωm), see Fig. 2.78b, reflects in a broadened optical conductivity σ0

scDΓA(ω)
whose DC value exhibit the same observed trend reversal. The DC value of the conductivity peaks at
T = 1/15 = 0.067, significantly above the characteristic pseudogap temperatures T ∗

AN = 1/25 = 0.040.
In this regime the momentum-selective poles of the self-energy are not yet fully developed. The onset
of the (pseudo)gap opening (see Fig. 2.77) is however significant enough to trigger a suppression of the
states on the Fermi surface, the main contributors to the DC conductivity. Once the pseudogap has
been established below 1/T = 25 = 0.040 at all k−points, the DC conductivity diminishes rapidly,
necessarily being fully suppressed σ(T → 0) → 0 as an optical gap is formed and antiferromagnetic
order sets in.

The ph vertex corrections in panel (c) of Fig. 2.78 are small compared to the bare susceptibility.
In particular, at high temperatures T ≥ 0.200 this contribution displays no significant, distinct
features on the Matsubara axis, correcting the static response by no more than 3%. Cooling down
monotonously boosts the vertex corrections until, eventually, below T = 0.1, a flat “kink” is formed
at the first Matsubara frequency iω1 = 2π/β. For the lowest considered temperature, deep in the
pseudogap regime T = 0.033, vertex corrections result in an increase of the static value of the current-
current correlation function χjj,0(iω0 = 0) by 15% and of the first finite frequency χjj,0(iω1 = 2π/β)
by 40%. That is, the vertex corrections on the Matsubara axis show less frequency dependence than
the bare response, especially at the lowest frequencies.

In the total conductivity in Fig. 2.79 ((d): σ(ω), (c): σ(ω) − σ0(ω)) the vertex correction effects
show a characteristic signature, do not, however, contribute in a major way. The flat “kink” formation
in χjj,ph softens the Drude peak, i.e. weight is shifted from the peak (ω = 0) to its inflection point at
around ω = 0.25. The temperature trend of this DC suppression ∆σDC is illustrated in the inset of
panel (c) and shows a peak at T = 0.05, in between the DC maximum at T = 0.067 and T ∗

AN = 0.04.
Evidently, the vertex corrections are largest at the point where a fine balance is struck between Fermi
surface suppression and the size of the antiferromagnetic fluctuations themselves. Once the self-
energy effects become overwhelming and the development of the (pseudo)gap suppresses a majority
of the Fermi surface states, the fluctuations become less effective. The result is a DC modification
∆σ(ω = 0) that rapidly declines and necessarily vanishes for limT →0 ∆σ(ω = 0) = 0 due to the
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(anticipated) gap formation at zero temperature.
In this regime, effects on the other parts of the spectrum (mainly the inflection of the Drude peak,

less so the mid infrared peak and the Hubbard-to-Hubbard peaks) however remain present: The static
value of the vertex corrections χjj,ph, corresponding to the added spectral weight, continue to grow
through cooling, inevitably affecting purely the satellite features of σ(ω). These type of corrections
to (pseudo)gapped system are not surprising, as they have been shown to be more significant than in
metals [215].

2.6.3.4 Intermediate-coupling: U = 4

Doubling the interaction strength from U = 2 to U = 4 results in the current-current correlation
functions and optical conductivities illustrated in Fig. 2.80 and Fig. 2.81, respectively.
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Figure 2.80: Current-current correlation functions for U = 4 at half-filling n = 1. (a) DMFT, (b)
scDΓA bubble contribution, (c) scDΓA vertex contribution. We observe the same qualitative trends
as for U = 2 where the size of the vertex correction are on par. The kink in the first Matsubara
frequency is, due to the overall higher temperatures, on par.

Within DMFT, increased interaction strengths naturally lead to a stronger renormalization:
The coherence temperature of Σ(iνn) is lowered, accompanied by increased scattering rates, Γ =
−ℑΣ(iνn → 0+), and quasi-particle weights m∗/m = 1/Z. These effects are evident in the re-
sponse data on the Matsubara axis: The static contribution (kinetic energy) is lowered χjj,0(iωm =
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0; U = 4) < χ0,jj(iωm = 0; U = 2) and the response at finite frequencies becomes enhanced
χ0,jj(iωm > 0; U = 4) > χjj,0(iωm > 0; U = 2). This effectively broadens the DMFT optical conduc-
tivity, which necessarily dampens the DC values, see inset of Fig. 2.79a.
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Figure 2.81: Optical conductivities for U = 4 at half-filling n = 1. (a) DMFT, (b) bare bubble
scDΓA, (c) vertex contribution to scDΓA, (d) full scDΓA. At the lowest temperature we see strong
signs of a optical weight redistribution. The pseudogap causes a reshaping of the Drude peak where
the maximum of the optical spectrum is no longer represented by the DC value. As the Drude
peak is suppressed, its vertex induced correction incidentally also become smaller. The mid infrared
correction however remain somewhat large.

Turning to scDΓA, the observed pseudogap phenomena become enhanced with the increased cou-
pling strength. Congruent to expectations, we find larger characteristic pseudogap onset temperatures
T ∗

N = 0.050, T ∗
AN = 0.067 (not shown), boosted by 50% as compared to U = 2. In combination with

the stronger self-energy dampening through stronger antiferromagnetic fluctuations, stark deviations
from DMFT in the bubble χjj,0(iωm) appear already at T = 0.25. Similarly, vertex corrections them-
selves increase in overall size. Despite doubling the interaction strength, however, their effect is less
than naively anticipated: The vertex contributions χjj,ph to the full response χjj = χjj,0 + χjj,ph are
similar between U = 2 and U = 4, see Fig. 2.78 and Fig. 2.80. Most notable, however, is the lack of
features in the correction term. The aforementioned kink at U = 2 is replaced by a much smoother,
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unobtrusive continuation of the high frequency trend.
The optical conductivities in Fig. 2.81 reflect this behavior of Fig. 2.79 (b-d): In conformance

with the enhanced pseudogap temperatures, we find a temperature at which the DC value reaches its
maximum at T peak ≈ 0.14 (compared to U = 2, T peak ≈ 0.07). Contrary to U = 2, we now observe
a second “regime change”: At the lowest temperature T = 0.05 the Drude peak subsides and the
maximum of the optical response is shifted to ω > 0, indicating the onset of the optical gap opening.
This behavior aligns with our expectations of limT →0 σ(ω = 0, T ) = 0.

Vertex corrections, surprisingly, only play a minor role. Whereas at U = 2, the ph correction lead
to a broadening of the Drude peak σscDΓA

correction(ω = 0) < 0, here a different picture emerges: The Drude
peak is slightly enhanced at elevated temperatures T > 0.200, slightly suppressed at intermediate
temperatures, and effectively unchanged by π-ton physics 2.72 at low temperatures. In accordance
with the nearly featureless χjj,ph the main effect of these vertex corrections is an augmentation of the
overall optical weight

� ∞
0 dωσ(ω).

Parquet DΓA reference

In order to contextualize the results for U = 4 we perform a quantitative comparison of the scDΓA
simulations to parquet dynamical vertex approximation calculations from Ref. [215]. As the pDΓA
approximation is less crude (only the fully irreducible vertex Λ is approximated to be local), one
gains access to all channel contributions r∈ {ph, ph, pp} on equal footing. The comparison of the
current-current correlation functions are illustrated in Fig. 2.82, the bare response χ0,jj in the top
row, the vertex corrections in the bottom row. The scDΓA vertex corrections are comprised only
of the transverse particle hole (ph) whereas in pDΓA, through the parquet equation, there are four
contributions: Λ, Φph, Φph, Φpp. As Λ remains local throughout, its contribution to χjj necessarily
vanishes. Due to the self-consistency all other vertices impact one another and gain full momentum
dependencies, contributing to the full vertex F and the optical conductivity σ(ω).

Focusing first on the bare responses, we find a qualitatively different temperature behavior be-
tween the scDΓA and the parquet method. In the given temperature range χjj,0(iωm = 0) becomes
strongly suppressed upon cooling within scDΓA, whereas pDΓA shows an insignificant temperature
dependence, see top row of Fig. 2.82. This is not surprising, as the pseudogap onset temperature in
scDΓA is higher compared to the pDΓA reference data, that was generated with a momentum grid of
kx ×ky = 6×6 in Ref. [215]. Please note that in principle, the characteristic pseudogap temperatures
of scDΓA should be smaller once the pDΓA resolution is improved. Results from truncated unity par-
quet solver with 9 form factors [245], e.g., lead to T ∗

AN,pDΓA = 0.100 compared to T ∗
AN,scDΓA = 0.067.

The latter was generated with a momentum grid of kx × ky = 80 × 80.
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Figure 2.82: Contributions to the current-current correlation functions for U = 4 at half-filling
n = 1. Top panels: bare contribution χjj,0, bottom panels: channel dependent vertex correction
χjj,r. The pseudogap onset temperature within scDΓA is considerably higher than within pDΓA
manifesting itself in a strong differentiation of χ0,jj at low temperatures. Despite of this, the
size of the ph vertex corrections are similar. Due to the other three contributions, the lowest
Matsubara frequencies are altered in a different fashion. As the system is cooled, the particle-
particle contribution of pDΓA becomes increasingly more important.

Despite these differences in the static limit, the vertex corrections stemming from the ph channel
display quantitatively good agreement between the two methods at finite Matsubara frequencies where
the overall size of ℜχjj,ph differs by less than 20%. While the overall corrections are dominated by
the ph channel, within pDΓA the feedback into the pp channel introduces a distinct low frequency
signature, see bottom row of Fig. 2.82 (purple line). As we have ascertained in Section 2.6.2.4, such a
downturn signifies that the current-current correlation function is closer to an “insulating” solution.
In this case the conductivities, illustrated in Fig. 2.83, retain their metallic signature, however, the
pp-correction induces a strong dampening of the Drude peak (bottom row: σcorection).

In the incoherent regime T = 0.5, minor differences in the susceptibilities (top row) have some-
what large effects onto the optical conductivities (middle row). Here we cannot, however, preclude
numerical inaccuracies w.r.t. box sizes and the analytic continuation. Nonetheless, a similar high
temperature behavior has been observed in Ref. [246]. Due to the strong(er) self-energy renormal-
ization in the coherent regime T < 0.5, scDΓA generates total susceptibilities that are consistently
smaller than pDΓA. The additional pp corrections in the pDΓA, however, make these differences less
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Figure 2.83: Current-current correlation functions (top panel) and the corresponding optical con-
ductivities (middle panel) for U = 4 at half-filling n = 1. Vertex contributions to the conductivities
are plotted in the bottom panel. Comparison between self-consistent DΓA and parquet DΓA. Due
to the different characteristic pseudogap temperatures and self-energy dampening effects, the pDΓA
showcases a monotonous DC trend, while the scDΓA already transitions towards the formation of
an optical gap. The additional particle-particle contributions play a pivotal role in the Drude peak
alteration within pDΓA, a contribution completely absent in scDΓA.

pronounced. The dampening of scDΓA is especially noticeable in the vicinity of the pseudogap onset
temperature T = 0.05: Whereas in scDΓA the optical gap is starting to get formed, on the pDΓA
Fermi surface the antiferromagnetic fluctuations can operate more freely resulting in strong(er) cor-
rections. In scDΓA the pseudogap onset gets overshadowed by the increase in scattering, effectively
suppressing the Drude peak. On this smeared-out Fermi surface, antiferromagnetic fluctuations have
a smaller impact.

2.6.3.5 Towards strong-coupling: U = 6

As we increase the interaction further we slowly approach the Mott insulator transition of DMFT,
located at Uc ≈ 9, see Fig. 2.76. Accordingly, DMFT’s antiferromagnetic ordering temperature is
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increased, making the scDΓA more cumbersome to converge. We require a denser momentum grid in
combination with an increasingly large number of iterations in the self-consistency cycle to suppress
the native antiferromagnetic fluctuations. Nonetheless, converged results can be obtained. For these,
the current-current response functions and optical conductivities are illustrated in Fig. 2.84 and
Fig. 2.85, respectively.
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Figure 2.84: Current-current correlation functions for U = 6 at half-filling n = 1. (a) DMFT, (b)
scDΓA bubble contribution, (c) scDΓA vertex contribution. As the interaction is pushed towards
strong coupling qualitative changes yet again occur in the vertex corrections. There, steep “kinks”
appear at lowest energies when linearly connecting the discrete Matsubara data. The increasingly
large spin-fluctuation lead to a strong dampening of the self-energy, reflected in the sizes of the bare
susceptibilities. Vertex corrections are large throughout and reach nearly a quarter of the size bare
response.

The DMFT trends are unbroken towards strong coupling at U = 6 where the coherence temper-
ature is further lowered and the electronic scattering rates are an order of magnitude larger com-
pared to U = 2, see also Fig. 2.89. The increased correlation strength leads to less kinetic energy
(Ekin ∝ χjj(iωm = 0), see Eq. (2.190)) and enhanced finite frequency responses. The increased
renormalization is clearly reflected in the DC values of the optical conductivity, accompanied by an
enhanced mid-infrared peak, stemming from the pronounced three-peak formation in the spectral
function (not shown).

In scDΓA, due to the aforementioned numerical obstacles, our considered temperature range is
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Figure 2.85: Optical conductivities for U = 6 at half-filling n = 1. (a) DMFT, (b) bare bubble
scDΓA, (c) vertex contribution to scDΓA, (d) full scDΓA. The enhanced corrections constitute
half the size of the Drude peak of the optical conductivity. In order to still fulfill the sum rule,
intermediate frequencies become suppressed.

located above the (expected) pseudogap onset temperature T ∗
AN < 0.100. Nonetheless, large devi-

ations from the static DMFT values (iωm = 0) are already visible at T = 0.5 in χscDGA
0 , see inset

of Fig. 2.84b. Evidently, they are the result of the expected dampening of the predominant anti-
ferromagnetic susceptibilities, whose size, in this regime, correlates with the interaction strength U .
Translated to optical conductivites in Fig. 2.85b this, however, does not result in a maximum of
σDC(T ), as we have seen at U = 2 and U = 4. We theorize that the momentum-selective pseudogap
onset in the self-energy, when compared to the overall scattering rate, is too miniscule to be observable
in the bubble contribution, as it involves a Brillouin zone average. The result is a tightening of the
Drude peak, controlled purely by the temperature behavior of the scattering rate. Interestingly, at
the lowest temperature, T = 0.1, the scDΓA self-energy strongly promotes a satellite peak at ω = 1,
centered between the Drude and the mid-infrared peak (ω = 3.5). This peak is already present in
DMFT (barely visible in Fig. 2.85a), corresponding to a satellite feature of the spectral function at
ω = ±0.5eV (not shown). Within scDΓA we find a strong (momentum-selective) enhancement of this
satellite with respect to the quasi-particle peak in A(k, ω) on the Fermi surface (not shown), resulting
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in the prominent satellite in σscDΓA(ω).
Vertex corrections, unsurprisingly, increase in size at these elevated interaction strengths. We find

that the static value of the bare response χjj,0 is altered by almost 25%, see Fig. 2.84. Qualitatively,
the ph signatures are again modified when compared to U = 2 and U = 4. Linearly connecting
the discrete Matsubara data, the slope between zeroth and first Matsubara frequency is almost flat
at U = 2 (kink), slightly negative at U = 4, and steep for U = 6. The resulting corrections of
the conductivities mirror the exemplary trends of Fig. 2.74 and lead to a strong increase of the DC
conductivity ∆σDC, see inset of Fig. 2.85c. At T = 0.333, the full DC conductivity σscDΓA more than
triples in size with respect to the bare contribution σ0

scDΓA, see inset of Fig. 2.85d. At this point,
weight from around the mid-infrared peak ω ≈ 1.5 has been transferred to the Drude peak as the
spectrum augmentation is restricted by

�
dωσcorrection = χjj,ph(iωm = 0). Similar to U = 2 and U = 4,

further cooling results in a stronger feedback of the antiferromagnetic fluctuation into the self-energy,
making the vertex correction less effective, resulting in a trend towards limT →0 ∆σDC = 0.

2.6.3.6 Strong coupling out of half-filling: U = 8

Having established a strong connection between perfect nesting, antiferromagnetic fluctuations and
the pseudogap regime, our next goal is to distill the effect of vertex corrections when venturing away
from half-filling. Hole-doping to n = 0.85 shifts the system away from the perfect nesting condition,
removes the pseudogap phenomenon, and promotes incommensurate antiferromagetism, see Fig. 2.86.
The ordering vector of this (DMFT) magnetic instability takes the form of q = (π − δ, π) with
δ(T ) > 0, and is strongly temperature dependent. Doping away from half-filling also decreases both
the magnitude of the self-energy correlations themselves (smaller scattering, smaller quasi-particle
renormalization: not shown) and the overall amplitude of the resulting spin fluctuations, allowing
us to perform calculations in the strong coupling regime at U = 8. Due to the broken particle-hole
symmetry the Mott insulating conditions are no longer met: The lattice fermions gain itinerancy
without the creation of double occupancies. As the ideal Heisenberg exchange description (in the
strong coupling regime) no longer holds accurately, perfect (π, π) magnetic ordering, along with
the overall (magnetic) susceptibility size is suppressed by doping. The resulting incommensurate
antiferromagnetic response peaks around (3π/4, π) and only reaches values of around 10eV−1 at the
lowest considered temperature T = 0.05. Compared to the half-filled case at similar temperatures,
this corresponds to a susceptibility (and coherence length) decrease by orders of magnitude.
We show the resulting current-current correlation functions and optical conductivities in Fig. 2.87
and Fig. 2.88, respectively.

The DMFT responses are akin to all previous results, where cooling the system leads to increased
coherence. Doping away from half-filling is counterbalanced by the increased interaction strength
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Figure 2.86: Static magnetic susceptibility χm of the hole-doped (n = 0.85, U = 8) one-band
Hubbard model introduced in Eq. (2.183). χm peaks at q = (π, π − δ) with a finite δ ≈ 1/(4π),
commonly referred to as incommensurate magnetic order.
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Figure 2.87: Current-current correlation functions for U = 8 at 15% hole-doping, i.e. n = 0.85.
(a) DMFT, (b) scDΓA bubble contribution, (c) scDΓA vertex contribution. The qualitative features
are similar to the half-filled case at U = 6, where the vertex corrections exhibit a distinct kink at
the first Matsubara frequency. Contrary to the half-filled cases, the slope between zeroth and first
frequency is heavily impacted.

resulting in DC values, comparable to the half-filled case of U = 4. The loss of nesting and the
pseudogap phenomenon makes the differences between the bubbles of DMFT and scDΓA less pro-
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nounced. Still, as a function of temperature, scDΓA exhibits a peak in χjj,0 at T = 0.2, hinting at
effects of the underlying incommensurate magnetic fluctuations. The scDΓA optical conductivities
are naturally very similar to DMFT. Quantitative differences are restricted to the loss of spectral
weight, the decrease of the DC conductivity and a broadening of the Drude peak.

Despite the small magnetic susceptibilities, the vertex corrections are pronounced: Below T = 0.2
a steep slope develops between the zeroth and first Matsubara frequency, see Fig. 2.87c, if plotted
with connecting lines. This results in a boost of the Drude peak by more than 30%, compared to the
bare scDΓA spectrum, see Fig. 2.88(c-d), accompanied by a slight suppression of the mid-infrared
peak.
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Figure 2.88: Optical conductivities for U = 8 at 15% hole-doping, i.e. n = 0.85. (a) DMFT, (b)
bare bubble scDΓA, (c) vertex contribution to scDΓA, (d) full scDΓA. The vertex induced slope
changes have a major impact on the shape of the Drude peak where the DC values of the scDΓA
are boosted beyond its DMFT counterparts. As the relevant pseudogap physics are missing at this
doping level the DC value trend is only slightly softened compared to DMFT.

2.6.3.7 Discussion

At half-filling the self-consistent ladder dynamical vertex approximation is capable of reproducing
the essential phenomena of the two dimensional Hubbard model both on the one- (pseudogap) and
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two-particle (suppression of magnetic phase transition) level. Compared to other (benchmark) dia-
grammatic methods (pDΓA, λ-corrected DΓA, diagrammatic Monte Carlo), scDΓA evidently under-
estimates the onset temperature of the pseudogap and the amplitude of the predominant magnetic
fluctuations [4, 241], the consequences of which are apparent in the optical responses. This can be
traced back to the algorithm itself: As the two-particle irreducible vertex Γ remains fixed, the only
mechanism to suppress fluctuations in scDΓA is via a modification of the self-energy. To elucidate
this mechanism, we illustrate the relevant momentum contributions in Fig. 2.89 where we compare
the imaginary part of the DMFT self-energy (dashed line) with the Fermi surface average of the
scDΓA self-energy (solid line).

In the coherent temperature regime the scDΓA leads to a dampening of the self-energy at the
low to intermediate frequencies, i.e. ℑΣscDΓA(iνn) < ℑΣDMFT(iνn) resulting in enhanced electronic
scattering rates 1/τ = −ℑΣ(iνn → 0+). Despite the Fermi surface averaging, we find a clear evidence
of the pseudogap onset (T ∗

AN) at U = 2 and U = 4, marked by a downturn at the first Matsubara
frequency. At U = 6 the employed temperature range is above T ∗

AN, hence no downturn is visible.
Once fluctuations arise through cooling, merely the onset of the pseudogap in combination with

an overall dampening of the self-energy results in a trend reversal of the DC value of the optical
spectrum (see Fig. 2.79, Fig. 2.81, Fig. 2.85) above the characteristic T ∗

AN. In order to observe strong
vertex corrections within scDΓA a fine balance has to be struck between the amplitude of fluctuations
and their effect onto the self-energy. Depending on the interaction strength, this interplay then may
lead to a Drude peak sharpening (U = 6) or a Drude peak broadening (U = 2). Similar observations
have been made in a study based on the RPA, see Ref. [6].

As we have seen in the comparison with the (more rigorous) pDΓA at U = 4, other methods do not
necessarily suffer from these obstacles, as (magnetic) fluctuations can be influenced by other means.
In λ-corrected DΓA, the vertex itself can be manipulated through a susceptibility regularization.
In pDΓA this can occur via the interplay of the various vertices through the parquet equation.
Benchmarking against the latter, we were thus able to evidence large differences even though the
intrinsic ph corrections were comparable. The comparison thus suggests that the consideration of the
pp channel is vital in order to achieve an adequate description of the vertex corrections. As these
corrections act on the low frequency domain (zeroth and first bosonic Matsubara frequency) they
lead to a strong modification of the Drude peak.

To put these findings on a more technical footing, we analyze the pivotal f-sum rule, given in
Eq. (2.190). The benchmark is illustrated in Fig. 2.90.

Whereas DMFT (left panel) achieves perfect agreement between the calculated kinetic energy and
the one extracted from the static value of the current-current correlation function, strong deviations
appear for the bare response of scDΓA (right panel, dashed line) at half-filling. Once the ph correction
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Figure 2.89: Comparison of the imaginary parts of the DMFT self-energy (dashed lines) and
the DΓA self-energy averaged over the Fermi surface -

k∈FS ΣscDΓA(k) (solid lines). The latter
represents the most dominant contributions to the conductivity and illustrates the over-dampening
of the self-energy in the self-consistency approach. Left column: U = 2, Middle column: U = 4,
Right column: U = 6 for various temperatures, indicated by the line color. The discrete Matsubara
points have been connected to form a continuous line.

term is accounted for (solid line) we find reasonably good agreement for the temperature interval
above the χjj downturn, i.e. where DMFT is not yet ordered T > T DMFT

Nèel and represents a good
approximation. Below that temperature χjj can no longer follow the monotonous increase of the
kinetic energy: scDΓA underestimates the optical spectral weight and violates the f-sum rule. Shifting
away from half-filling (U = 8, n = 0.85), the perfect nesting is destroyed, the magnetic fluctuations
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Figure 2.90: Sum rule benchmark via χjj(q = 0, iωm = 0) = −1
2Ekin, see Eq. (2.190).

Static current-current response are drawn as solid/dashed lines. Kinetic energies, see Eq. (2.190)
Ekin = -

k,σ εknk,σ are marked as open circles. The two terms agree exactly within DMFT (left
panel). In scDΓA (right panel) the vertex correction must be taken into account to get a good ap-
proximation. The static value of χjj clearly exhibits a downturn, setting in at around the pseudogap
onset temperature. Evidently, this behavior is not reflected in the direct evaluation of the kinetic
energy. Without perfect nesting and the accompanied pseudogap phase out of half filling, we find
reasonably good agreement even at a large interaction strength.

become suppressed and we find almost perfect agreement between the two terms of Eq. (2.189), at
least for the considered temperature interval.

Let us note that at this moment, we have not yet properly investigated the convergence of the
current-current correlation function with respect to the momentum grid, nor the frequency box size.
Upon cooling into the pseudogap regime, the (antiferro)magnetic susceptibility quickly increases in
size, accompanied by an increase of the corresponding coherence length ξ. For the lowest consid-
ered temperature at U = 2 (T = 0.033), e.g., we find an almost perfect Ornstein-Zernke fit, see
Eq. (2.139), with a coherence length of roughly 50 unit cells (fit not shown). In this regime, improper
q-discretization, as is most likely the case for our employed momentum grid of kx×ky = 80×80, could
lead to a major underestimation of the vertex contribution to χjj as the magnetic fluctuations are not
sampled properly around the ordering vector Q = (π, π). Similarly, lower temperatures necessarily
require larger (fermionic and bosonic) boxes. As the discrete fermionic frequencies inversely scale with
temperature, a larger number of frequencies are necessary to encode the quintessential two-particle
diagrams in F . Upon proper convergence, both the size and shape of χjj,ph at these low temperatures
could change, leading also to quantitative changes to the presented σcorrection

scDΓA (ω). The same, obvi-
ously, is also true for the pDΓA data shown in Section 2.6.3.4: In the shown pDΓA current-current
correlation functions and optical conductivities, see Fig. 2.82 and Fig. 2.83, a larger (anticipated)
pseudogap temperature, e.g., will lead to a smaller bare response χjj,0(iωm = 0), reducing the impact
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of the vertex correction χjj,r and consequently reducing the magnitude of the corrections to the optical
conductivity σcorrection(ω).

For the case of U = 8, n = 0.85 this problem is absent as neither size, nor coherence length of the
incommensurate magnetic susceptibilities, see Fig. 2.86, are large. As a side remark: the (quantum
Monte Carlo) quality of the (two-particle DMFT) data at U = 6 is worse than for U = 2 and U = 4,
possibly causing deviations also at high temperature, see Fig. 2.90 (green line in the right panel).

Let us note that the response χjj,0(iωm) does not suffer from these numerical problems, as the
Green’s functions can be easily extended to large frequency with an appropriate fit to the asymptotic
behavior of Σ or G. We employed 2000 positive fermionic frequencies for the Matsubara sum, leading
to a flawless compliance of the f-sum rule within DMFT.

Before answering the question whether the scDΓA may be used as a reliable method in parameter
regimes where non-local fluctuations dominate, it is thus important to perform further calculations
that properly analyze the convergence of both the non-local self-energy as well as the contribution
of the transverse particle-hole contribution to χjj. In fact, if the converged result still leads to a
violation of the optical sum rule, the way the method is capable of fulfilling the Mermin-Wagner
theorem has to be questioned. If the optical sum rule however can be fulfilled, the scDΓA (in its
current implementation) may provide an avenue of studying realistic (multi-orbital) systems even in
the vicinity of phase transitions, provided they are of particle-hole nature.

With respect to the optical spectra, the comparison to the pDΓA result has however shown that
the explicit inclusion of the particle-particle channel is vital. Similar to the posterior evaluation of
particle-particle channel with vertices generated from λ-corrected DΓA to detect superconducting
instabilities, see Refs. [247, 248, 249], it may be possible to perform a similar task in the context of
the current-current correlation function. This is left for future work.
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Chapter 3

Kondo materials and models thereof
In this second out of two primary results Chapters, we present those results that fall under the
umbrella of “Kondo physics”. Whereas the previous Chapter was concerned with phenomena best
described via the Hubbard model (quasi-particle renormalization, metal-insulator transition, etc.),
here we will instead focus on the physics of materials which are best described via the so-called
periodic Anderson model (PAM). The methodologies used throughout this Chapter are identical to
the ones introduced in Chapter 2, namely Kohn Sham density functional theory and dynamical mean-
field theory. In the following we first detail the characteristics and properties of the (three dimensional)
PAM, which we will study both on the one- and two-particle level. We will then apply this knowledge
and discuss the electronic structure and transport phenomena of the Kondo insulator Ce3Bi4Pt3. Vis-
à-vis transport measurements, we take a reductionist point of view and focus on gaining qualitative
insights. After that we will flesh out this transport theory, extending it to all higher order transport
kernel functions necessary for the description of (magneto) thermoelectric signatures. Finally, we will
give a brief overview of the Linear Response Transport Centre LinReTraCe [11, 12], a program suite
in which we have implemented this new transport methodology, and showcase some of its capabilities
w.r.t. realistic Kondo materials and beyond.

3.1 Local moments and the formation of Kondo insulators
Materials classified as so-called “heavy-fermion systems” contain lanthanide or actinide elements with
partially filled 4f or 5f orbitals [250], see Fig. 2.1 (pink box). If the corresponding bands are in the
proximity of the Fermi level, various unusual physical phenomena may emerge at low temperature.
Among them are specific heat coefficients that are orders of magnitude larger than expected from
a free electron model, characteristic coherence temperatures observed in the (optical) conductivity,
the emergence of non-Fermi liquid regimes, insulating behavior, magnetism, (unconventional) super-
conductivity, quantum criticality, etc. Typical heavy-fermion (HF) compounds include CeCu6 (a
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metal) [251], UBe13 (a superconductor) [252], Ce3Bi4Pt3 (a Kondo insulator) [253], YbRh2Si2 (with
field-tuned quantum critical point) [254], and SmB6, a mixed valence [255] (topological) insulator [256]
whose Kondo nature is contentious [257].

The following Section presents a brief, and by no means exhaustive, theoretical introduction to
field of Kondo physics with a strong focus towards Kondo insulators from the viewpoint of dynamical
mean-field theory. In this context we will not review topological Kondo insulators. For the requisites
necessary to stabilize a topological state please refer to the literature, e.g., Refs. [258, 259].

3.1.1 Local impurity: Kondo effect
3.1.1.1 Kondo’s explanation

In order to fully appreciate the ramifications of the Kondo effect, we start from a historical point of
view: Contrary to naive expectations, impure metallic systems can showcase a global minimum in their
DC resistivity at finite temperatures T > 0. Ignoring the purely electronic Fermi liquid contribution,
this resistance minimum can be recovered via contributions from residual scattering (constant in
T ), phonon scattering (∝ T 5) and the indispensable Kondo term that, phenomenologically, scales
logarithmically with temperature

ρ(T ) = ρ0����
residual

+ AT 5������
phonons

− B ln (T )����������������
Kondo

. (3.1)

Evidently this description is sufficient at reproducing a resistivity minimum Tmin = (B/(5A))(1/5),
however, as ln(T ) diverges as T → 0, it eventually breaks down. Modifying the impurity concentra-
tion, as well as their intrinsic magnetic moments, e.g., Refs. [260, 261] strongly affects the contribution
of the pivotal Kondo term indicating a complex interplay of electronic and magnetic degrees of free-
dom. Kondo [262] showed that the logarithmic contribution can be rationalized via an s-d exchange
interaction

Hs−d =
,
k,σ

εk ĉ†
k,σ ĉk,σ + 1

2
,
k,k′

Jk,k′
�
S+ĉ†

k,↓ĉk′,↑ + S−ĉ†
k,↑ĉk′,↓ + Sz

�
ĉ†

k,↑ĉk′,↑ − ĉ†
k,↓ĉk′,↓

#�
. (3.2)

Here, the (non-interacting) conduction-band electrons (c(†)) may interact with the spin of a single
impurity level (d(†)) through an exchange-interaction term Jk,k′ . The s-d Hamiltonian of Eq. (3.2)
is conventionally expressed with the z-component of S as the measurement axis. The Sx and Sy

components are then typically rewritten as spin raising and lower operators S± = Sx ± iSy.
The interaction term is oftentimes further abbreviated in the literature in the form of a Heisenberg

term without momentum dependence of the exchange-interaction parameter

HKM =
,
k,σ

εkĉ†
k,σ ĉk,σ + J

⃗̂
S · ⃗̂s (3.3)
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and vectorial spin operators
⃗̂
S = 1

2
,
αβ

d̂†
ασ⃗αβ d̂β ,

⃗̂s = 1
2

,
k,k′

,
αβ

ĉ†
k,ασ⃗αβ ĉk′,β ,

(3.4)

with the Pauli matrices σ⃗ = (σx, σy, σz). The resulting full Hamiltonian is then coined Kondo Model
(KM). Let us note here that given the spin-operator definitions of Eq. (3.4), the factor 1/2 in Eq. (3.2)
is necessary for a match of all considered interaction terms.

Indeed, treating the interaction term of Eq. (3.2) via a perturbation approach, one finds that
for S = ℏ1

2 certain second order Feynman diagrams [263], see Fig. 3.1, give rise to the sought-after
logarithmically diverging (inverse) lifetime τ . Taking all scattering processes up to second order into
consideration, the resistance contribution solely from spin-scattering can be analytically calculated
as [263]

Rsd(T ) = 3πmeJ
2S(S + 1)

2e2ℏεF

�
1 − 4Jρ0(εF ) ln

�
kBT

D

%%
, (3.5)

assuming a band width D considerably larger than the Fermi energy D ≫ εF . The (single) spin scat-
terer contributes both a temperature-independent term and the pivotal “Kondo term” that decreases
the resistance logarithmically for an antiferromagnetic coupling J > 0.

k, ↑
k
′′, ↓

k
′, ↑

↓ ↑ ↓

J J

S+ S−

k, ↑

↑ ↑

k
′, ↑

k
′′, ↓

S− S+↓

Figure 3.1: Lowest order Feynman diagrams for the Hamiltonian in Eq. (3.2), that contribute to
the logarithmic resistivity contribution. The solid line (with conserved spin) denotes the conduction
electron propagator. The dashed line denotes the impurity spin. The Feynman diagrams are inspired
by Ref. [264].

While this perturbative approach encodes the essential scattering mechanisms at finite tem-
peratures, the logarithmic term, contrary to experimental observations, evidently diverges towards
T → 0. This unsurprisingly indicates a break down of perturbation theory at low temperatures.
Abrikosov [265] was able to extend Kondo’s argument by summing up leading logarithmic terms,
pushing the breakdown of the theory to finite temperatures instead. All relevant physical properties
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were shown to diverge at the same temperature, the so-called Kondo temperature

kBTK ∝ D exp
�

− 1
2Jρ0(εF )

%
. (3.6)

Further insight was then obtained from renormalization group calculations [266], with a physical
picture that emphasises a strong energy dependence: At intermediate to high temperatures, the spin of
the impurity is unconstrained (free spin regime), resulting in the validity of the perturbative approach.
Towards low temperatures, due to the suppressed thermal excitations, the exchange interactions
dominate and lead to strong (energy reducing) coherent bonding of the spin with its surrounding
environment (conduction electrons, sz = ±1

2ℏ): a Kondo singlet state is formed. The initial free
spin (Sz = ±1

2ℏ) is completely screened out, becomes confined and effectively behaves as a newly
formed non-magnetic quasi-particle taking up Fermi-liquid behavior [267]. The spin scattering events
leading to this effective bonding manifest themselves as resistivity contribution which, through the
logarithmic temperature dependence, results in a global minimum of ρ(T ). The Kondo temperature
TK then can be thought of a crossover temperature from the unconstrained to the constrained spin
regime also called local moment and strong coupling regime, respectively. The resulting screening
cloud has an approximate radius [268]

ξKondo ∝ ℏvF

kBTK
. (3.7)

with vF as the Fermi velocity vF ∝ ∂εk/∂k|εF
. In general, due to the quite small Kondo tempera-

tures and large Fermi velocities the relevant length scale may exceed several µm which allows for a
macroscopic experimental observation of the phenomenon [269].

The Kondo effect can thus be effectively summarized as scattering events from impurities or ions
which have low-energy quantum mechanical degrees of freedom [263]. In the context of realistic setups
it is important to note that for larger spins S > 1

2ℏ the Kondo effect only emerges when the magne-
tocrystalline anisotropy (energy dependence of the spin orientation w.r.t. its environment) creates a
degenerate ground state [270]. As it turns out, the Kondo effect has more far-reaching ramifications
in solid-state physics as a whole. It is a key concept in understanding the quantitative behavior of
metallic systems with strongly correlated electrons, cf. the three-peak structure in dynamical mean-
field theory spectra in Sec. 2.2.3. In the next Section we will thus focus on a generalization of the
Kondo model: the single impurity Anderson model. The latter encompasses the ingredients of the
Kondo effect and is employed as the underlying impurity model in the DMFT cycle. This will provide
us with the ground work for understanding Kondo materials and give us an alternate point of view
of hitherto obtained DMFT results used to describe strongly correlated materials.
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3.1.1.2 Quantum Monte Carlo treatment

In the context of the study of (Kondo) materials and most relevant to this thesis, we briefly scrutinize
the Kondo effect via the single Anderson impurity model [263]

HSIAM =
,
k,σ

εkĉ†
k,σ ĉk,σ +

,
σ

εdd̂†
σd̂σ + Ud̂†

↑d̂↑d̂†
↓d̂↓ +

,
k,σ

�
Vkĉ†

k,σd̂σ + V ∗
k d̂†

σ ĉk,σ

#
, (3.8)

where, the non-interacting conduction band electrons (c(†)) may only interact with the (localized) in-
teracting impurity electrons (d(†)) through a hybridization term Vk. While we have already discussed
the importance of the SIAM in Section 2.2.3, it was merely treated as a necessary technicality in
DMFT’s embedding scheme. Its introduction hitherto was purely as a tool to compute correlations
from a self-consistently determined (multi-orbital) hybridization function without attention to the
finer details of the impurity itself, barring the local projection of the crystal structure and the accom-
panied crystal-field splitting. Here instead we focus on the behavior of the model itself: The SIAM
and the Kondo model are, at half-filling and strong coupling U , inherently connected via a canonical
Schrieffer-Wolff transformation [271]. The exchange terms of the Kondo model, see Eq. (3.3), are cap-
tured via virtual hopping processes from and to the conduction band, consolidated into an effective
exchange-interaction determined via [263]

Jk,k′ = V ∗
k Vk′

� 1
εd + U − εk′

+ 1
εk − εd

%
. (3.9)

The equivalence of the two models can be obtained for large enough interaction strengths U and/or
small enough hybridization V such that J ∝ V 2/U is sufficiently small. Given these parameters,
the SIAM then must necessarily showcase the identical low temperature anomalies as the Kondo
model. In fact, the pivotal local moment formation necessary for Kondo behavior to occur in the first
place, takes place only for large enough interaction strengths U > Uc = π2ρ0V 2 (within a mean-field,
i.e. Hartree-Fock, context) [239, 263, 272].

For the following considerations we define a half-filled SIAM via εd = −U/2, µ = 0, a constant
hybridization of Vk = V = 2, a conduction band with a constant density of states with band width
of W = 2D = 10: ρ0(ε) = 1/(2D)Θ(D − |ε|) and an interaction strength of U = 5.75. Through
this parameter set we ensure the formation of local moments as U ≫ Uc ≈ 2. For a more thorough
discussion on a wider range of parameters of the SIAM, including different regimes of the (U, V )
phase diagram, let us refer to Ref. [239]. Translated to “DMFT” input parameters, we now require an
impurity hybridization function ∆(iνn), here on the Matsubara axis, to fully define the non-interacting
Green’s function Gνn

0 . For the half-filled case one analytically integrates over the previously defined
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flat density states, discovering a purely imaginary

∆(iνn) =
,

k

V 2

iνn − εk
=

� D

−D
dε ρ0(ε) V 2

iνn − ε
= −i

V 2

D
arctan

�
D

νn

%
. (3.10)

The Kondo temperature of this model has been determined in Ref. [273] to be roughly kBTK = 1/65.
Let us note that this temperature was determined via the method by Krishna-murthy et al. [274, 275],
based on a comparison of the magnetic susceptibility to a universal renormalization group solution
for a Kondo-Hamiltonian. This in turn can be affirmed by a comparison to the analytic result of the
wide-band limit Kondo temperature solved by the Bethe Ansatz [239, 263].

3.1.1.3 Kondo singlet formation

In order to analyze the emerging energy ranges stemming from the Kondo effect we consider a tem-
perature interval that ranges from below the extracted Kondo temperature kBTK ≈ 1/65 up to the
free orbital regime [274, 275]. The two-particle (magnetic and density) susceptibility responses are
illustrated in Fig. 3.2. The formation of the Kondo resonance in the spectral function A(ω) and the
(imaginary part of the) self-energy Σ(iνn) is shown in Fig. 3.3.
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Figure 3.2: Magnetic (Tχimp
M ) and charge (χimp

D ) response of the single impurity Anderson model
(SIAM, blue) compared to the Hubbard atom (HA, gray). (a) Static magnetic susceptibility times
temperature showing a perfect Curie-Weiss behavior for the Hubbard atom (TχM ∝ C) which is
getting screened by the Kondo effect present in the SIAM. (b) Static density susceptibility showing
a full suppression of the charge fluctuations in the HM which are “kept alive” at low temperatures
in the SIAM. The shown data has been kindly provided by Patrick Chalupa-Gantner, see Ref. [273].

At high temperatures, in the local moment regime, the spins are acting free, resulting in a Curie-
like magnetic susceptibility χimp

M (T ) ∝ C/T . The charge fluctuations are on par with the half-filled
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Figure 3.3: Formation of the Kondo resonance. Upon cooling, the system gains coherence sig-
nalled by an “upturn” of the imaginary part of the self-energy (right column). Above the Kondo
temperature kBTK ≈ 1/65, the Kondo resonance is formed by a stabilization of the metallic signa-
ture of the self-energy (reduction in electronic scattering rate), reflected in a strong peak formation
of the spectral function at the Fermi level ω = 0. Below the Kondo temperature, the local impu-
rity becomes fully screened, forming a (non-magnetic) scattering center, resulting in a pronounced
Kondo resonance at the Fermi level down to zero temperature.

Hubbard atom31 (see grey, dashed line). In this regime the coherence of the system is yet-to-be
established signalled by a substantial imaginary part of the self-energy ℑΣ(iνn) on the Matsubara
axis and the strongly broadened spectral function A(ω) on the real frequency axis, see Fig. 3.3a and
Fig. 3.3b, respectively.

Upon cooling into the coherent regime T < Tcoherence, the self-energy turns Fermi-liquid like and a

31 The half-filled Hubbard atom represents the atomic limit of the single impurity Anderson model
and is therefore fully described via HHA = Un↑n↓ − U/2(n↑ + n↓), resulting in the magnetic response
χM (iωm = 0) =

� β

0 dτ ⟨(n̂↑ − n̂↓)(τ)(n̂↑ − n̂↓)⟩ − β(n↑ − n↓)2 = β(1 + e−βU/2)−1, and the density response
χD(iωm = 0) =

� β

0 dτ ⟨(n̂↑ + n̂↓)(τ)(n̂↑ + n̂↓)⟩ − β(n↑ + n↓)2 = β(1 + eβU/2)−1.



198

distinct Abrikosov-Suhl resonance [265, 276, 277, 278], in this context known as the Kondo resonance,
is formed. The spectral function becomes increasingly pronounced around the Fermi level, see inset of
Fig. 3.3c, until the Kondo temperature is reached, see Fig. 3.3e. Below TK we find the characteristic
supression of the magnetic susceptibility in Fig. 3.2a where the free spin becomes gradually screened
by the conduction sea to ultimately form a spinless singlet state. Apparent in Fig. 3.2b, the Kondo
mechanism counteracts the suppression of charge fluctuations as seen in the Hubbard atom. Instead
of a gradual suppression towards limT →0 χimp

D (iωm = 0) = 0, through the screening process the
charge fluctuations are “kept alive” at low temperature leading to a non-monotonous behavior of
χimp

D (iωm = 0).

It is crucial to emphasize that the Kondo temperature does not represent a hard “cut-off” tem-
perature visible in the illustrated one- and two-particle quantities. Instead, from this physical point
of view, the Kondo temperature is best described as a crossover temperature with the Kondo effect
as a primary example of the concept of asymptotic freedom. Below TK the coupling becomes, as
evidenced above, impossible to describe in a perturbative fashion. New quasi-particles are formed,
acting as spinless scattering centers, gaining the properties of a Fermi-liquid. In this regime further-
more, in- [263] and out-of equilibrium [279] response quantities now follow a universal temperature
scaling, with only T/TK as the relevant (dimensionless) energy ratio.

3.1.2 Periodicity: Lattice Kondo effect

The previous considerations are valid for realistic situations that can be approximated by the Hamil-
tonian given in Eq. (3.8), i.e. single impurities and/or systems with an assortment of impurities that
do not interact with one another in a meaningful fashion. The opposite end of this scenario is the
case of an arrangement of free spins on a periodic lattice. This scenario is oftentimes realized once
elements from the lanthanoids or actinoids are involved in the construction of a crystal structure. If
their f-shell remains partially filled, the unpaired electrons may form freely acting moments that “in-
herit” the low temperature signatures of the Kondo effect, but that additionally form narrow bands.
The latter is a direct consequence of the exceptionally localized (4f/5f) radial wave functions and a
resulting suppression of inter-atomic wave function overlap between lattice sites. These compounds
are hence usually referred to as Kondo materials or heavy-fermion systems [280]. Despite these nar-
row f-bands, interaction between the spins may develop indirectly via the interplay of the spins and
separate conduction bands. Discovered by Ruderman, Kittel, Kasuya and Yosida [281, 282, 283] the
so-called RKKY interaction allows, in principle, for long-range magnetic order whose effect we will
discuss later in the context of DMFT.
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3.1.2.1 One-particle considerations

In order to extract the most essential physics of these ubiquitous compounds one commonly employs
a modelling of the underlying electronic structure via the periodic Anderson model (PAM) [272] that
reads

HPAM =
,
k,σ

εkĉ†
k,σ ĉk,σ +

,
i,σ

εf f̂ †
i,σf̂i,σ + U

,
i

n̂f
i↑n̂f

i↓ +
,
i,σ

�
V ĉ†

i,σf̂i,σ + V ∗f̂ †
i,σ ĉi,σ

#
. (3.11)

In this most basic form, the PAM describes the aforementioned localized f-electrons at the various
lattice positions i with fixed energy εf , represented by interacting fermions f̂

(†)
i,σ which are able to

hybridize with non-interacting conduction electrons ĉ
(†)
i,σ whose energy dispersion is given by εk. In

realistic materials these conduction electrons are often provided by surrounding elements with, e.g.,
partially filled d-shells, in the simple equation above both orbitals are implicitly centered on the same
lattice site. Experimentally this is, e.g., the situation for Ce where both 4f and 5d bands originate from
the Ce atoms [284]. The PAM Hamiltonian can—to some degree—also be applied to “light-weight”
systems where interacting d-electrons hybridize with p- or s-electrons, e.g., in FeSi [285].

Upon simultaneous occupation of both f-spins n̂f
iσ = f̂ †

i,σf̂i,σ, an energy penalty in the form of the
on-site repulsion U has to be paid. For the attentive reader it is obvious, that Eq. (3.11) is just a
specialization of the multi-orbital Hubbard model of Eq. (2.18) where the non-interaction part of the
Hamiltonian is given by

HPAM
0 =

,
k,σ

�
ĉ†

k,σ f̂ †
k,σ

� εk V

V ∗ εf


����������������������

HPAM(k)

ĉk,σ

f̂k,σ

 (3.12)

where we employ the Fourier transformed f̂
(†)
k operators. The interaction matrix Ulmm′l′ is then limited

to a single entry at Uffff ≡ U . In order to make the connection to the (single impurity) Anderson
model manifest, it is however customary to introduce the Hamiltonian in the form of Eq. (3.11).

Hybridization gap
The first and foremost observation of the multi-orbital basis Eq. (3.12) is that, as a result of the
hybridization V , the diagonal elements of the Hamiltonian HPAM do not represent the eigenstates
of the non-interacting system. For simplicity and for sake of illustration, we now assume a three-
dimensional, particle-hole symmetric tight-binding Ansatz for the non-interacting conduction band

εk = −2t
,

i∈x,y,z

cos(ki), (3.13)

an energy of the f-sites of
εf = 0. (3.14)
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The “Kohn-Sham” basis of the formerly disconnected energy bands is now formed by two detached
bands with energy dispersions

ε±
k = εk

2 ±
*

ε2
k
4 + V 2, (3.15)

separated by a so-called hybridization gap, see Fig. 3.4.32 Let us note that if the hybridization gains
a momentum dependence, the gap formation can be circumvented through which a nodal Kondo
insulators may develop, see, e.g., Ref. [286]. For this to happen, from a technical point of view, the last
term of Eq. (3.11) needs to be modified to include off-site hybridization terms, i.e.

-
ij,σ Vij ĉ

†
i,σf̂j,σ+h.c.
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Figure 3.4: Band structure and density of states of the Periodic Anderson Model.
Conduction band with a three-dimensional tight-binding Ansatz, see Eq. (3.13), with t = 0.25eV
and a hybridization to the flat band at εf = 0 with V = 0.35eV. The resulting indirect gap
∆indirect is shaded in gray. The smallest direct gap is situated at k = (π/2, π, 0) with size of exactly
∆ = 2V . Through the injection of the f-state, two distinct van Hove singularities emerge on each
of the hybridized bands: a cusp that was already present in the unhybridized conduction band (see
dashed density of state N(ε)) and a newly formed divergence in the vicinity of the band gap. The
density of states was calculated without broadening on a 5000 × 5000 × 5000 k-grid.

Contrary to a structurally directed Bragg gap opening at the edge of the Brillouin zone, a hy-
bridization gap originates from an avoided crossing. In our context the hybridization of the flat f-band

32 With a non particle-hole symmetric positioning of the energy εf , the bands become ε±
k = εf +εk

2 ±)
(εf +εk)2

4 + V 2 − εf εk maintaining an indirect gap of ∆indirect = −6t + εf +
+

9t2 + 3tεf + V 2 + ε2
f /4 ++

9t2 − 3tεf + V 2 + ε2
f /4. (asymmetrically) surrounding εf .
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at εf = 0 and the conduction band εk generates an indirect gap of size

∆indirect = ε+(k = (0, 0, 0)) − ε−(k = (π, π, π))

= −6t + 2
√

9t2 + V 2
(3.16)

with the smallest direct gap found at the intersection of εf = εk, i.e., at momentum k =
�

π
2 , π, 0

$
and all momenta connected to it via symmetry, with size, see vertical bars in Fig. 3.4a,

∆direct = (ε+ − ε−)
�

k =
�

π

2 , π, 0
%%

= 2V. (3.17)

The two newly formed upper (“+”) and lower (“-”) branches maintain the symmetry of the conduction
band Eq. (3.13) and are connected to one another via

ε±
k = −ε∓

k+Π, (3.18)

with Π = (π, π, π) as the transfer vector.

Hybridized density of states
Upon the injection of the localized f-sites into the “conduction sea” (but still neglecting the f-f
interaction), the density of states (DOS) is strongly modified already at the one-particle level: The
new, renormalized, DOS N∗(ε) now reflects the band separation with two distinct contributions

N∗
±(ε) =

,
k

δ(ε − ε±
k ) (3.19)

finite only above and below the indirect gap, see Fig. 3.4b. The hybridization splits the initial (tight-
binding) DOS N(ε) =

-
k δ(ε − εk) and generates additional van Hove singularities in the vicinity of

the gap. The cusp, already present in the conduction band (see dashed density of states) originates
partially from the X-point on the lower branch (N∗

−(ε)) and the M-point for the upper branch (N∗
+(ε)),

respectively. Through the transformation of the bands, displacement of this newly introduced weight
of the flat band leads to the formation of a divergent van-Hove singularity whose k-point origin is
reversed w.r.t. the cusp, i.e. the origin of N∗

−(ε) is the M-point and of N∗
+(ε) is the X-point. Its

position on the energy spectrum then corresponds to

van Hove : N∗
+

�
ε+[k = (0, π, 0)] = −t +

√
t2 + V 2

#
(3.20a)

N∗
−

�
ε−[k = (π, π, 0)] = t −

√
t2 + V 2

#
(3.20b)
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3.1.2.2 Heavy fermions and the Kondo insulating scenario

Within this thesis we will restrict our discussion to the cases where the chemical potential lies inside
the hybridization gap.33 These compounds are commonly referred to in the literature as Kondo
insulators [287, 250, 212]. They are often based on Cerium — Ce3Bi4Pt3 [288, 253] (see Section 3.2),
CeNiSn [289], CeRu4Sn6 [290] — but can also derive from a wide variety of other lanthanoids —
SmB6 [291], YbB12 [292], YbRh2Si2 [293], actinoids — EuCd2Sb2 [294], U2Ru2Sn [295], PuTe [296] or
may be built up from “light-weight” d-elements such as iron — FeSi [297, 212], FeSb2 [298, 299, 300].

Fundamentally, electron interactions in these materials strongly influence the one-particle picture
at hand. Akin to the band width compression introduced in Section 2.2, the hybridization gap will
become heavily renormalized which is accompanied by a Kondo resonance with width kBTK ≪ 2V .
Further, through the Kondo effect the magnetic response will transition from free spin behavior at
high temperatures towards a spin gap (and charge gap) for T ≪ TK . We will discuss these “features”
in the Section below.

Nonetheless the elementary picture painted by the one-particle considerations can be supported
indirectly by various observations:

(i) Since the involved hybridization between the localized and itinerant electrons is oftentimes small,
the resulting band gaps are themselves small, too [301]. One can exploit this circumstance and
show that it is possible to close this gap ∆ with physically feasible magnetic fields, to first
approximation H ≈ ∆/(gJµB) [302, 303].

(ii) Contrary to (most) ordinary semiconductors, hydrostatic pressure canonically leads to a widen-
ing of the hybridization gap (at least for Ce-based Kondo insulators).

(iii) Kondo insulators usually have a fully itinerant semiconducting analog [304]. As these “f -less”
itinerant counterparts have a wider radial extent of the wave function that is involved in the
formation of the band hybridization, they commonly exhibit comparatively larger gaps and
small effective masses. Ce3Bi4Pt3 with a gap of around 10meV, see next Section, for example
is isoelectronic to Th3Sb4Ni3 which has a gap of around 70meV [304].34

(iv) Partial replacement of the magnetic rare-earth ion with its non-magnetic counterpart, e.g., Ce
→ La, leads to an effective electronic doping effect through which a insulator-to-metal transition

33 If the chemical potential lies outside this gap, it is evident that the Fermi surface becomes modified and expands
with respect to the non-interacting conduction band, see hypothetical Fermi surfaces in Fig. 3.4 via horizontal cuts.
Through the strong modification of the DOS and the correlation-induced Abrikosov-Suhl resonance, these heavy-
fermion systems experience strong modifications to their electronic signature with mass renormalizations oftentimes
of the order of O(103).
34 Also the radial-extent of ligand-orbitals can changed by isoelectronic substitutions to manipulate the hybridization
to the f -states and thus the Kondo coupling [305].
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can be enforced [306]. This can be also thought of as a dilution from the Kondo lattice model
towards the (single impurity) Kondo model.

Heavy-fermion metals — to name a few: CeAl3 [307], CeCu2Si2 [308], YbBiPt [309] — display vastly
different characteristics compared to what is naively expected from ordinary metals. Through the
occurrence of the Kondo effect, the low and high temperature behavior are almost fully detached
from one another. At high temperatures, similar to Section 3.1.1, the decoupled magnetic moments
generate magnetic susceptibilities that follow the Curie-Weiss law. Due to the complications of spin-
orbit coupling and the surrounding crystal-field, quantitative predictions are however difficult. At low
temperatures, below the Kondo (coherence) temperature TK the spins become efficiently screened,
leading to a rapid loss of spin entropy [304]. The scattering centres now form a coherent array,
allowing Bloch waves to pass through. In turn, a strong decrease in the resistivity ρ(T ) sets in.
Through the Kondo resonance a universal, highly renormalized, Fermi liquid is formed. For more
detailed discussion on the characteristics and phenomena of heavy-fermion systems, please refer to
the literature, e.g., to Ref. [280].

3.1.2.3 Kondo insulator within DMFT

So far we have discussed the implications of the hybridization of a flat band purely on the one-particle
level, i.e. the modifications to the band structure and density of states. In order to advance towards
realistic setups we now “turn on” the involved interactions and, again, resort to a dynamical mean-
field theory treatment to analyze the many-body effects. At first we will ignore all possible non-local
ordering tendencies.

In this short venture exploring “canonical” Kondo insulators, we will first restrict ourselves to
a fixed on-site interaction U and hybridization strength V and perform a temperature scan similar
to that in Section 3.1.1. The remaining parameters of the PAM Hamiltonian, see Eq. (3.11), are
identical to the ones discussed in Section 3.1.2.1: a hopping amplitude of the (three-dimensional,
nearest-neighbor) tight-binding conduction band of t = 0.25eV, an onsite repulsion of U = 6t = 1.5eV
and a fixed chemical potential µ = 0 to enforce particle-hole symmetry.35

The additional uncorrelated band expands the orbital subspace of the lattice systems, thus mod-
ifying the DMFT embedding self-consistency condition to

Gimp
ff

!= Glattice,loc
ff =

',
k

Gk
�

ff

(3.21)

35 Within DMFT, the necessary shift of the local level εf , necessary for the half-filling constraint of the interacting
Hamiltonian, is performed by a double-counting correction that acts solely on the correlated band with size ΣDC = U/2.
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where the lattice Greens function Gk is defined in the two-orbital space, however only its projection
onto the f-orbital enters the DMFT self-consistency condition. As the interaction terms only acts on
the f-fermions, the self-energy is itself restricted to only the f-subspace

ΣPAM =

0 0
0 Σff

 (3.22)

such that the momentum dependency of the interacting (lattice) Greens function

GPAM(iνn, k) =
�
(iνn + µ)1 − HPAM(k) − ΣPAM(iνn)

�−1
(3.23)

stems purely from the conduction band.

Emerging lattice coherence
The result of the DMFT procedure is summarized for the considered temperature range in Fig. 3.5
where we plot the spectral function on the real-frequency axis and the imaginary part of the underlying
self-energy of the DMFT impurity in the left and right column, respectively.
Similar to Section 3.1.1, we can distinguish three distinct energy (temperature) ranges:

(i) Above the coherence temperature Tcoherence (top row) the slope of the self-energy is clearly pos-
itive for all frequencies, indicating an incoherent state with localized spins. Cooling from the largest
employed temperature (T = 0.43) results in a crossover from a fully incoherent spectral function to
a spectral function with well defined satellites around ω = ±1eV. The electronic scattering rate at
high enough temperatures exceeds the (renormalized) one-particle gap, smearing out all remnants
of the band, resulting in a Gaussian-like spectral function. Below a certain temperature threshold,
the reduced scattering then allows for two split “bands” of the Kondo insulator to emerge, evidently
leading to a drop-off of the spectral weight at the Fermi level A(ω = 0) (see inset).

(ii) Once quasi-particle coherence is reached below T = 0.2eV, the Kondo resonance, similar to the
SIAM, emerges. Let us note that we find a Fermi liquid like upturn in the self-energy −ℑΣ(iνn →
0+) = Γ indicating growing coherence. The underlying spectrum, however, does not yet relate
to a standard Fermi liquid: The four largest temperatures in panels (c-d) of Fig. 3.5 showcase a
Kondo peak, the corresponding self-energy, however, is yet to conform to the “standard” Fermi liquid
expansion on the Matsubara axis ℑΣ(iνn) ∝ −Γ + (1 − Z−1)iνn, cf. Section 2.2.3.

(iii) Whereas in the SIAM the Kondo resonance remains stable down to zero temperature, here
the low temperature behavior is expectedly different. Once the conditions for a fully formed Kondo
resonance are met below T = 0.025eV, a spectral gap starts to open up. Due to the small size of
the gap, at first we find large thermal weight (corresponding to the size of the scattering rate Γ)
which eventually vanishes with limT →0 A(ω = 0) = 0, see left inset in Fig. 3.5. With the employed
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Figure 3.5: Temperature regimes of the (particle-hole symmetric) periodic Anderson model, see
Eq. (3.11), within DMFT with t = 0.25eV, U = 6t = 1.5eV, and V = 0.35eV. The resulting
band structure and density of states is shown in Fig. 3.4. Top panels: Full incoherence to satellite
formation. Middle panels: Kondo peak formation via an upturn of the imaginary part of the
self-energy at the lowest frequency. Bottom panels: Lattice coherence and a stabilization of the
spectral gap. The self-energy (in the ff-sector) shows a (renormalized) Fermi-liquid behavior, which,
in combination with the hybridization, opens a coherent gap in the local spectral function. For
the lowest considered (inverse) temperature β = 200eV−1 the opened DMFT gap, see inset, is
roughly ∆DMFT = 60meV, compressed by a factor of 2.5 when compared to the indirect gap of
∆indirect = 155meV (gray shading).

interaction strength U = 6t, the hybridization gap of the (one-particle) band structure (∆ = 155meV,
cf. Eq.(3.16)), becomes strongly renormalized, resulting in a DMFT band gap compression towards
∆DMFT ≈ Z∆ = 60meV. We find that this renormalization Z is in good agreement with the quasi-
particle weight extracted from the Fermi liquid expansion of the self-energy (fit not shown).

Below the coherence (∝ Kondo) temperature, the self-energy of the DMFT impurity showcases
comparable behavior to the single impurity case with fixed hybridization bath: In both scenarios the



206

self-energy is extraordinarily well described via a Fermi-liquid expansion and a residual scattering
that is rapidly vanishing as we approach T → 0. In the periodic Anderson model, from a technical
point of view, the interplay of the lattice hybridization V and the fully coherent self-energy, see
Eq. (3.23), necessarily opens a gap in the interacting Green’s function. This mechanism is displayed
in more detail via the DMFT band structure in Fig. 3.6: At high temperatures (top panel, 1/T =
4.14eV−1) we recover an in-tact (temperature broadened) conduction band ε(k) with the previously
mentioned satellite formation at around ω = ±1eV. The Kondo resonance formation at 1/T = 10eV−1

is accompanied by an already strong modification of the band crossing which eventually leads to a
partial gap opening at 1/T = 30eV−1. Whereas the gap is fully opened at the smallest direct gap
k = (π, π/2, 0), the resonance remains fully formed at the Γ and R-point. Only below the coherence
temperature 1/T = 30eV−1 do we also find a fully stabilized, indirect gap. Let us note that this
band structure is a result from the analytic continuation of both the diagonal elements of the lattice
Green’s function, i.e. TrA(k, ω) = Acc(k, ω) + Aff(k, ω).

Insulator mechanism and coherence transition
Contrary to the signatures of the insulating solution discussed in Section 2.3.2 (suppression of charge
fluctuations, i.e. a diminishing hybridization function, to achieve a Mott insulator), the canonical
Kondo insulator, modelled via a half-filled periodic Anderson model, behaves quite differently. The
local spectral functions of the DMFT impurity at particle-hole symmetry (where ℜΣ = ℜ∆ ≡ 0) are in
essence only a product of the imaginary part of the self-energy Σ(iνn) and the (DMFT) hybridization
function ∆(iνn)

Gimp(iνn) = 1
iνn − iℑΣ(iνn) − iℑ∆(iνn) . (3.24)

The evidenced “metallic” self-energy renormalizes the non-interacting hybridization gap of Fig. 3.4,
which we illustrate in Fig. 3.7. Along the coherence transition from 1/T = 30eV−1 towards 1/T =
200eV−1 the opening of the spectral gap is directly correlated with a strong upturn of the hybridization
function at the first positive Matsubara point iν0 = iπ/β, see third column. Together, the imaginary
part of the Green’s function turns from metallic (positive slope on the Matsubara axis) to insulating
(negative slope). The insulating gap within DMFT is therefore the consequence of an interplay
between the emerging Kondo resonance and the lattice hybridization via the Dyson equation. For a
classification of correlated insulators along these lines see Sec. 2.5 in Ref. [212].

Finally, before turning our attention towards the signatures encoded in the two-particle responses,
we briefly showcase the behavior of the emergent lattice coherence in more detail in Fig. 3.8. We
illustrate the transition at fixed (inverse) temperature while varying the hybridization strength V .
The “critical hybridization” Vc for the given temperature behaves as expected: Cooling the system
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Figure 3.6: Renormalized (DMFT) band structure changes in the (particle-hole symmetric) pe-
riodic Anderson model upon temperature reduction T = 1/β, see Eq. (3.11) with t = 0.25eV,
U = 6t = 1.5eV, and V = 0.35eV. The emergence of the Kondo peak, see Fig. 3.5, is reflected in a
gain of coherence of the flat f-band (β = 4.14eV−1 → β = 10eV−1). Upon further cooling the Kondo
peak sharpens (β = 10eV−1) before being fully suppressed at low temperatures where instead a
coherent gap is stabilized (β = 100eV−1). The DMFT band structures result from the analytic con-
tinuation of the diagonal elements of the lattice Green’s function, i.e. A(k, ω) = Acc(k, ω)+Aff(k, ω).

(top panels towards bottom panels) reduces the size of the thermal fluctuations, lowering the necessary
strength of the hybridization to the conduction bath in order to form a spectral gap. The affected
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Figure 3.7: Stabilization of the insulating solution of the periodic Anderson model within DMFT.
Rows: various (inverse) temperatures across the coherence temperature. Columns from left to
right: Spectral function A(ω), imaginary part of the Green’s function ℑG(iνn), imaginary part
of the hybridization function ℑ∆(iνn) and imaginary part of the self-energy ℑΣ(iνn). The self-
energy turns metallic upon cooling, perfectly conforming to Fermi-liquid expectations. Through
the hybridization function the Green’s function turns insulating, i.e. a spectral gap forms despite
the “metallic” self-energy.

energy range of the spectral function across the transition (width of the gap formation) becomes
more narrow as we cool the system. Simultaneously, additional spectral satellite features emerge
around ω = ±0.10eV at β = 200eV−1 and ω = ±0.05eV at β = 500eV−1, respectively, most likely
corresponding to the additional van Hove singularity introduced through the coupling to the f-band,
see Fig. 3.4 and Eq. (3.20). Overall, we find that the size of the coherence hybridization Vc necessary to
drive the opening of a satisfactory spectral gap (which can roughly be defined via ∂2A(ω)/∂ω2 > 0 at
ω = 0) to be connected to the temperature T ∝ exp (−A/V 2

c ). This reemphasizes the close connection
between the lattice coherence the and Kondo temperature expected from the single impurity Anderson
Model with TK ∝ exp (−1/J), see Eq. (3.6).
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Figure 3.8: Lattice coherence of the periodic Anderson model via a variation of the hybridization
strength V for a given (inverse) temperature. Lowering the temperature leads to suppression of
the coherence hybridization Vc and a sharpening of spectral features surrounding the gap. Lower
temperatures lead to a reduction of the necessary Vc to open the gap.

Mott vs. Kondo gap characteristic
Having explored the technical intricacies of the (spectral) Kondo gap formation within DMFT, we
find it instructive to highlight the dichotomies between the Mott and Kondo insulating behavior.
Hitherto we identified the opening of the gap via the spectral function A(ω), i.e. via the particle gap

Ep = E0(N↑ + 1, N↓) + E0(N↑ − 1, N↓) − 2E0(N↑, N↓), (3.25)

here explicitly denoted as the (combined) changes in ground-state energy E0 necessary for adding and
removing one particle from the system. Complementary, a powerful tool to differentiate the magnetic
state of (Kondo) materials, is the spin gap

Es = E0(N↑ + 1, N↓ − 1) − E0(N↑, N↓), (3.26)

defined as the energy change necessary for a spin triplet excitation [310].36 Spin gaps are commonly
detected directly via, e.g., inelastic neutron scattering measuring the magnetic structure factor [312,
36 In the literature, see, e.g., Ref. [311] Es is sometimes written in a symmetric fashion via Es = E0(N↑ + 1, N↓ − 1) +
E0(N↑ − 1, N↓ + 1) − 2E0(N↑, N↓), which can then be identified as spin stiffness ∂2E0/∂S2.
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313] or indirectly via the temperature behavior of the response to a static magnetic field [314, 315].
The former is directly connected to spin fluctuations [316, 317] and can be thus calculated via the
magnetic susceptibility on the real frequency axis ℑχM (q, ω) [318], the latter simply corresponds to
the uniform, static magnetic susceptibility χ(q = 0, iωm = 0).

In the absence of magnetic ordering, a spin excitation of a Mott insulators is gapless as the process
does not affect the electronic configuration of the system. This is different in a Kondo insulator where
through the stabilization of the energy gap (already present at the one-particle level), charge and spin
excitations require a finite amount of energy, see e.g., Ref. [288]. Here, Kondo insulators display a
similar behavior when compared to correlated (hybridization-gap) band insulators [319, 320].

In principle, a second avenue of distinguishing the two types of materials is the response to
hydrostatic pressure: all else being equal, pressure leads to a widening of the orbital overlap. In
Mott insulators, the resulting widening of the band width leads to a reduction of the ratio between
interaction strength and band width U/W and therefore a shrinkage of the spectral gap with a
possibility to push the system towards metallicity [321, 322]. In Kondo insulators, increased overlap
leads to an enhancement of the hybridization strength V and thus a widening of the hybridization
gap. Naturally this only holds in the ideal picture: In realistic structures changes to the highly
complex ionic environment may lead to more nuanced outcomes [323].

To extract the spin state of the of the periodic Anderson model, we calculate the magnetic
susceptibility within DMFT: The relevant contributions to the spin-spin correlation function, see
Section 2.5.4, are contained in

χPAM
M =

χcc
M χcf

M

χfc
M χff

M

 . (3.27)

Let us note that Eq. (3.27) only contains contributions relating to the spin operator. Contrary to the
Green’s function or the self-energy definitions, here “cf”, e.g., is an abbreviation for the four-point
orbital combination “ccff”.

In Fig. 3.9 we summarize our results where for a fixed hybridization strength V we varied the
temperature T . We compare the static response of the underlying DMFT impurity, panels (a) and
(b), with the uniform response of the lattice, panels (c) and (d).

In panels (a) and (c) we show the magnetic susceptibility of the ff-sector for which we find the
expected high temperature, Curie-Weiss behavior χM ∝ C/T in the impurity as well as the uniform
lattice response. Cooling the system eventually breaks this trend, a peak is formed at intermediate
temperatures, and a plateau is formed towards zero temperature.37 Due to the small coherence

37 The (inverse) saturation value of the magnetic response of the impurity has previously been used to estimate the
Kondo temperature in the infinite dimension limit [324].
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Figure 3.9: Orbital differentiation of the spin susceptibility χM for fixed hybridization strengths
V (different colors) and varying temperature T . The impurity responses (panels a,b) showcase a
transition from Curie-Weiss towards a plateau at low temperatures. The uniform lattice responses
(panel d), on the other hand, display the anticipated activated behavior once all orbitals that form
the physical response are included. The spin gaps are extracted by fitting the numerical data to
χM ∝ 1/T exp(−∆M /T ), see main text.

temperatures this plateau is not yet fully formed for the smallest, considered hybridization strengths
V = 0.15eV and V = 0.25eV.

Panels (b) and (d) on the other hand show the physical susceptibilities which are constructed
via a full orbital summation χM = 2

-
lm χM,llmm. The full impurity response highlights that the

local correlations are fully captured within the ff-sector, i.e. the orbital sectors containing conduction
electrons only induce a slight (positive) offset. The spin gap signature is exclusively present in the
physical lattice response: Once the underlying fluctuations become suppressed, via the opening of
the Kondo gap, we find an activated behavior that microscopically can be connected to the response
of localized moment whose (non-magnetic) excited state is separated by ∆M [285]. The magnetic
susceptibility then follows as

χM = NAg2
sµ2

B

3kBT

S(S + 1)(S + 2)
2S + 1 + exp(∆M /(kBT )) (3.28)

whose low temperature behavior kBT < ∆M is recovered via

χM ∝ 1
kBT

exp (− ∆M

kBT
). (3.29)
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Here NA is the Avogadro constant, gs is the gyromagnetic ratio, µB is the Bohr magneton and S is
the (total) spin of the local moment. The fits of χlattice

M (q = 0, iωm = 0) via Eq. (3.29) are illustrated
in Fig. 3.9d as overlain, dashed lines.38 We performed the fits on the 6 smallest temperatures, ex-
cluding susceptibilities with values below 10−1eV−1 due to their numerical noise, and find excellent
numerical agreement. From a technical point of view, the exponentially suppressed responses result
from large, negative χcf

M ≡ χfc
M contributions. Additionally, these contributions cause all finite fre-

quencies responses iωm > 0 to vanish for q = 0 (not shown), i.e. the static value encodes the full
spin information of the lattice. In short, this is simply a consequence of the conservation of the total
spin [325].

Finally, one-particle hybridization gaps ∆indirect, see Eq. (3.16), DMFT spectral gaps ∆DMFT

(extracted at β = 100eV−1), and spin gaps ∆M are listed vis-à-vis in Table 3.1.

V [eV] ∆indirect [eV] ∆DMFT [eV] ∆M [eV]
0.35 0.155 0.060 0.042
0.42 0.219 0.130 0.098
0.45 0.249 0.160 0.125
0.55 0.360 0.270 0.222
0.65 0.485 0.400 0.327

Table 3.1: Comparison of the most relevant gaps of the (symmetric) periodic Anderson model
for t = 0.25eV, εf = 0 and U = 6t = 1.5eV at half filling. The indirect gap follows directly
from the band structure, see Eq. (3.16), the DMFT gap was estimated via the spectral function at
β = 100eV−1 (not shown). The extracted spin gap (∆M ), was determined via a fit of Eq. (3.29) to
the uniform magnetic response.

The local correlations included in DMFT are capable of strongly renormalizing the indirect hy-
bridization gap. As we employ the same interaction strength U = 6t throughout, this renormalization
∆DMFT = Z∆indirect is suppressed for large values of V . We find the extracted spin gap to be slightly
smaller than the DMFT gap for all considered hybridization strengths V . Let us note however, that
DMFT gaps extracted via the spectral function are prone to errors due to the thermal spillover.

3.1.3 The complication of magnetic ordering
Concluding the discussion on the periodic Anderson model, we now turn our attention to possible long-
range order that competes with the intrinsic Kondo physics at play. As already alluded to earlier, the
PAM is famous for hosting the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [281, 282, 283].
38 Fits performed with a “semiconductor-esque” spin gap law χM ∝ exp(−∆M /(2kBT )) [212, 285], often employed in
experiment evaluation [314, 315], can only follow the numerical data for the lowest 2 − 3 data points and result in
considerably worse coefficients of determination (not shown).
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Within a metal, a magnetic moment generates Friedel oscillations in the spin density, the quantum
analog to electric charge screening. If a second momentum is in the vicinity of this perturbation,
these oscillations modify the total energy of the involved spins through an indirect spin-coupling. In
the context of the three-dimensional PAM, the RKKY contribution

HRKKY = 1
2

,
i,j

JRKKY(ri, rj) ⃗̂
Si · ⃗̂

Sj (3.30)

with
JRKKY(ri, rj) ∝ J2ρ

cos(2kF |ri − rj |)
|ri − rj |3 (3.31)

is already implicitly encoded via the hybridization terms between the two fermionic “species”.39 J is
therefore the effective exchange-interaction term introduced via the lattice hybridization as J = V 2/U ,
ρ is the conduction electron density of states per spin at the Fermi level and kF is the Fermi wave
vector (radius of the Fermi sphere). Through an indirect exchange via the non-interacting fermions
the f -electrons therefore lower their energy by (anti)aligning their respective spins, depending on the
sign of the exchange interaction.40

In the absence of this long-range RKKY interaction the Kondo effect is screening the local mo-
ments: Below the Kondo temperature (coherence temperature) this screening is fully realized and
the lattice coherent Kondo singlets are formed, stabilizing the gap of the Kondo insulator. Introduc-
ing magnetic fluctuation, a competition emerges: the Kondo effect attempts to form spin singlets,
the RKKY interaction attempts to (anti)align them. This competition is famously encoded in the
Doniach phase diagram [328] which we will reproduce later on.

The relevant energy scales of the two competing effects can be summarized via their critical
temperatures. In second order perturbation theory in J , the RKKY ordering temperature scales via
the square of the exchange-interaction strength [225]

TRKKY = 1
4J2χ0(iωm = 0, Q = (π, π, π)) (3.32)

where χ0 is the non-interacting susceptibility of the conduction bath. The underlying Kondo effect
on the other hand is exponentially suppressed for small J where for the single-site Kondo model TK

scales with
TK ∝ exp

�
− 1

2ρJ

%
. (3.33)

Naturally, at small hybridization strengths the RKKY interaction dominates the system as TRKKY ≫
TK : the system orders at finite T and towards zero temperature an antiferromagnetic insulator is
39 In order to reduce the complexity of the Hamiltonian, oftentimes the Kondo lattice model [326] is employed instead.
Similar to the transformation of the SIAM to the Kondo Model, the hybridization terms are explicitly replaced with
Eq. (3.30).
40 See, e.g., Ref. [327] for an experimental evidence of the magnetic Friedel oscillations on the Fe(001) surface.
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stabilized. At large hybridization strengths the exponential scaling of the Kondo effect overcomes the
magnetic ordering: beyond a critical Vc, a paramagnetic insulator is realized instead.

RKKY through DMFT feedback
In order to examine the RKKY phenomenon, we extend the analysis of the previously discussed
uniform (q = 0) magnetic susceptibilities to the antiferromagnetic ordering vector q = Π = (π, π, π).
As a starting point, we illustrate how the RKKY interaction gets introduced via the DMFT self-
consistency cycle in Fig. 3.10.
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emergence of RKKY magnetism

Figure 3.10: Leading magnetic eigenvalue development along the DMFT self-consistency cycle for
the PAM defined via V = 0.35eV, U = 6t = 1.5eV and β = 40eV−1. Each step of the DMFT cycle
corresponds to a valid impurity for which we calculated the two-particle response and the leading
magnetic eigenvalue corresponding to antiferromagnetic ordering q = (π, π, π). DMFT convergence
is reached at around step 6.

We show the evolution of the leading magnetic eigenvalue corresponding to antiferromagnetic
ordering along the DMFT cycle for V = 0.35eV, U = 6t = 1.5eV and β = 40eV−1. The first iteration
represents a prototypical single impurity Anderson model whose hybridization function is determined
by the periodic model. A one-shot calculation can therefore only include the quintessential Kondo
physics and the leading eigenvalue is, to good approximation, zero. Each additional iteration i → i+1
includes the impurity self-energy from the previous iteration (we employ a full self-energy feedback,
i.e. no mixing) as an ingredient in the determination of the new hybridization bath. Most of the
RKKY feedback is obtained in the first three steps of the DMFT loop beyond which the leading
eigenvalue slowly converges towards λM = 1.026. DMFT convergence is reached beyond iteration 6.
The eigenvalue of λM > 1 signals that the system will order for the given parameter set.

Doniach phase diagram
Performing the same calculation on a wide range of parameter pairs (T, V ) — temperature vs. hy-
bridization strength — we find the phase diagram illustrated in Fig. 3.11. Let us note that in the
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literature this phase diagram is oftentimes plotted with the effective exchange interaction J = V 2/U

as the x-axis instead.
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Figure 3.11: Magnetic phase diagram of the (particle-hole symmetric) periodic Anderson model
with t = 0.25eV, U = 6t = 1.5eV. The competition between the RKKY interaction (T RKKY = αV 4)
and the Kondo effect results in an antiferromagnetic dome (orange: leading magnetic eigenvalue
q = (π, π, π) > 1) and the emergence of a quantum critical point (QCP) at around V = 0.415eV.
Surrounding this AF dome we show the magnitude of λM in the form of a blue color scale (see color
bar). The AF transition points were estimated via extrapolations of the (inverse) susceptibilities
(varying T ) or the eigenvalues (varying V ). The low V RKKY transition (below V = 0.15) is drawn
as a guide to the eye, all other points are connected via straight lines.

Red and bluish circles signal an ordered and unordered solution, respectively. The former cor-
responds to λM > 1 whereas the color scale of the latter can be directly translated to the size of
λM itself. From this data we extracted the magnetic dome (orange area): For small hybridization
strength V , the boundary follows the perturbative result of the RKKY interaction: T RKKY = αV 4.
Beyond V = 0.15eV the Kondo temperature becomes significant enough to compete with the mag-
netic ordering, resulting in a deviation of the polynomial scaling, until, eventually, a temperature
maximum around V = 0.36eV is formed at around β = 40eV−1. Going beyond, a further increase
of the hybridization strength leads to a rapid suppression of the ordering temperature: The Kondo
physics dominates the system and the magnetic dome vanishes. Through the competition of energy
scales a quantum critical [329] point [225] emerges at around V = 0.41eV.41

41 When plotting the phase diagram as temperature vs. hybridization strength, see Fig. 3.11, variations in the interac-
tion strength U have a major effect on the antiferromagnetic dome: increasing (decreasing) U leads to a suppression
(boost) of the effective exchange-interaction strength J = V 2/U which in turn leads to a amplification (diminishment)
of the dome (since the Kondo scale is affected exponentially) in both its extent on the V -axis and T -axis.
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Figure 3.12: Leading magnetic eigenvalue for three (inverse) temperatures along the V-axis. We
find three regimes: Small hybridization strengths V can be fitted via RKKY behavior λM ∝ αV 4, see
inset. At intermediate hybridization a peak is formed formation that can be fitted via a Lorentzian.
Large hybridization can be fitted proportional to Kondo behavior λM ∝ A + exp(−γV 2). Ordered
points are marked with a red outline.

Evaluating the antiferromagnetic tendency in more detail by analyzing them at a fixed temperature
in Fig. 3.12 we distinguish three regimes:

(i) At small hybridization, the leading eigenvalue directly corresponds to the RKKY critical tem-
perature λM ∝ αV 4, see polynomial fit in the top left inset of Fig. 3.12.

(ii) In between the weak and strong hybridization regime, the balance between Kondo and RKKY
physics leads to a smooth peak of Lorentzian form λM ∝ B

(V −V max)2+C2 centered at a crossover
hybridization V max (fit not shown).

(iii) At large hybridization any RKKY ordering is fully suppressed leading to almost temperature
independent eigenvalues beyond V = 0.5 with a V -dependence that can be fitted to λM ∝
A + exp (−γV 2) (“Kondo-esque” behavior).

Quantum critical point
Before discussing realistic Kondo insulators in Section 3.2, we briefly examine the behavior of the
magnetic fluctuations around the quantum critical point. In Fig. 3.13 we show the inverse magnetic
susceptibilities at the ordering vector for a wide temperature range.

In the left panel, we see the same Curie-Weiss behavior as already observed in the uniform (q = 0)
response, see Fig. 3.9. The right panel instead focuses on the low temperature regime for hybridization
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Figure 3.13: Inverse magnetic susceptibility for the ordering vector q = (π, π, π). The apparent
Gaussian fluctuations χ−1 ∝ (T −TNéel)−1 are upheld for all hybridization strength below the critical
Vc = 0.41eV (QCP). Beyond, the fluctuations become bounded and a plateau forms towards T → 0.

strengths up to V = 0.45eV, i.e. a scan over the full magnetic dome going beyond the QCP. The main
message is simple: the quantum critical point does not influence the Gaussian fluctuations expected
from a bosonic mean-field theory such as DMFT [241, 330]. Below the critical Vc these fluctuations
manifest themselves as a linear dependence of the inverse magnetic susceptibility above the finite
Néel temperature: χ−1

M ∝ (T − TNéel)−γ with γ = 1. In the considered regime we find a correlation
between transition temperature and steepness of the χ−1(T ) curves. For a given temperature T , this
implies larger magnetic fluctuations for a lower Néel temperature which could be explained via the
suppression of the Kondo temperature for smaller hybridization values V . Indeed, in order to capture
the effects induced by the QCP, a full two-particle feedback of the antiferromagnetic fluctuations is
necessary, e.g., with the previously introduced dynamical vertex approximation [225].

Minimal deviations away from the QCP, beyond the AF dome (V = 0.42eV > Vc), lead to
susceptibilities that at first come from a similar value at high T . At low enough temperatures the
fluctuations become bounded and, instead of a vanishing χ−1, a plateau forms. Beyond Vc, larger
hybridization strengths V lead to a larger susceptibility boundary. Let us note that due to the
difficulties involved in the sampling of the two-particle vertex at large hybridization strengths, the
low temperature results are somewhat noisy. This noisiness is mostly apparent at V = 0.65eV (black
line in left panel of Fig. 3.13).

Summarizing, the periodic Anderson model represents a minimal multi-orbital model that encodes
the essential ingredients for a Kondo insulator. The intrinsic Kondo effect that, at low enough
temperatures, binds the semi-localized, asymptotically free spins to conduction electrons is also at the
heart of the electronic phenomena in realistic materials with partially filled 4f or 5f shells. Through
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the hybridization between localized and extended states a (one-particle) gap may form which, in
combination with strong correlation effects, generates signatures in both spectral observables and in
the spin (and charge) responses. The emergence of magnetic order through the RKKY interaction,
strong spin-orbit couplings and complex crystal-field splittings provide additional energy scales and
complications, and an overall complex platform for the realization of Kondo materials. To this end
in the next Section, we finally transition to a realistic setup with the aim to describe the Kondo
insulator Ce3Bi4Pt3.
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3.2 Resistivity saturation in Ce3Bi4Pt3

◦ This Section is based on “Resistivity saturation in Kondo insulators” by Matthias Pickem,
Emanuele Maggio, and Jan M. Tomczak [7]. Adopted text passages are marked accordingly
and have been, for the sake of readability, partially modified.

◦ Charge self-consistent DFT+DMFT and Kubo transport calculations have been performed
by Jan M. Tomczak.

◦ Elements of the linear-response methodology that our data interpretation in this Section
builds on, was first proposed in Ref. [331]. This methodology is developed into a compre-
hensive transport formalism in Sec. 3.3.

As introduced in Section 3.1, in Kondo insulators [287] the formation of bound-states between quasi-
localized f -states and conduction electrons leads to the opening of a narrow hybridization gap at
the Fermi level. When this hybridization is coherent, the resistivity exhibits an activation-type
behaviour. This semiconductor-like regime has as upper bound the Kondo lattice temperature, above
which the local f -moments break free, inducing an insulator-to-metal crossover. This Kondo effect
has been exhaustively studied over the last decades [212, 250, 332]. A more recent focus is the
experimental observation of a lower bound to the semiconductor comportment, see Fig. 3.14 for the
example of Ce3Bi4Pt3 [323, 333, 334]: Below an inflection temperature T ∗ the resistivity levels off
from exponential rise and enters a saturation regime—indicative of residual conduction. Possible
explanations include exhaustion regimes (where extrinsic impurities pin the chemical potential), off-
stoichiometry and impurity-band conduction [306, 335], as well as, metallic surface states short-
circuiting the gapped bulk. The latter can be an inevitable consequence of the non-trivial insulating
bulk found in topological Kondo insulators [259].
Here, we develop an alternative mechanism in which residual conduction derives from finite lifetimes of
intrinsic carriers of the (3D) bulk. We show that realistic many-body simulations, supplemented by a
simple treatment for disorder, capture the puzzling resistivity in the (non-topological) Kondo insulator
Ce3Bi4Pt3. We then distil essential ingredients from a reductionist model, establish a microscopic
understanding, and provide a phenomenological form of the resistivity with which experiments can
be readily analyzed.
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3.2.1 Experimental evidence
Cubic intermetallic Ce3Bi4Pt3 is a 4f, 5d, prototypical Kondo insulator [212, 250, 253]: Spectro-
scopic [336, 337] and susceptibility [253] (also in high magnetic field [302, 338]) are consistent with
the Kondo scenario [328, 339], see Section 3.1. While a topological bulk state has been envisaged [340],
experiments argue against surface-dominated transport [323].42

Magnetic susceptibility measurements [341] reveal a peak in χM at around 80K, below which, eventu-
ally, Kondo singlets are formed. Similar to many other Kondo materials [342, 343], Ce3Bi4Pt3 retains
a non-magnetic ground state for all considered temperatures, i.e. TK > TRKKY.

Further constraints for a theory of resistivity saturation in Ce3Bi4Pt3 come from, see Fig. 3.14:

(i) pressure-dependent measurements that show a substantial increase in the crossover temperature
T ∗, accompanied by a decrease of the saturation value ρ(T → 0)

(ii) radiation-damaged samples in which residual conduction is successively suppressed, while T ∗ is
unaffected.
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Figure 3.14: Experimental resistivity saturation in Ce3Bi4Pt3. Below an inflection tem-
perature T ∗ (indicated by small arrows), experimental resistivities ρ(T ) [333, 334, 323] deviate from
activation-like behavior (T > T ∗: ρ ∝ exp(+ ∆

2kBT ) and enter a regime of resistivity saturation
(T < T ∗). Pressure and disorder affect the resistivity and the crossover temperature T ∗ differently,
see main text. Data reproduced from Refs. [333, 334, 344].

42 A topological surface state would lead to residual conduction, short circuiting the bulk, i.e. σtotal = σsurface + σbulk.
Below certain temperatures, the surface conductivity would dominate the thermally activated bulk contribution,
leading to a resistivity saturation.
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Below an inflection temperature T ∗ (indicated by small arrows), experimental resistivities ρ(T ) [333,
334, 323] deviate from activation-like behavior (T > T ∗: ρ ∝ exp(+ ∆

2kBT ) and enter a regime of
resistivity saturation (T < T ∗). Pressure and disorder affect the resistivity differently: under pressure
(black and shades of red; from Cooley et al. [333]) the crossover temperature T ∗ (labeled with colored
triangles and reported in the inset) grows significantly and the saturation value ρ(T → 0) decreases.
Radiation-induced disorder (black and blue to green; from Wakeham et al. [334]) only suppresses
ρ(T → 0), while T ∗ (labeled with colored circles and reported in the inset) remains constant. Also
shown are results at ambient from Katoh et al. [344] (dashed black line). Differences between black
curves (solid and dashed) demonstrate a strong sample dependence. In the inset we illustrate the
dependence of T ∗ on pressure (upper x axis; red-shaded triangles, gray diamonds from Campbell et
al. [323]) and disorder (measured in displacements per atom (DPA); lower x axis; blue to green open
circles) [334].

In the following, we will start off our analysis of Ce3Bi4Pt3 via state-of-the art DFT+DMFT sim-
ulations, as introduced in Section 2.2.3. To this end we will analyze the structural details and the
resulting electronic states of varying (hydrostatic) pressures. From them, we will calculate (dc) re-
sistivities, as first introduced in Section 2.6, which we will use as a guide to construct a minimalist,
microscopic theory.

3.2.2 Many-body corrections
3.2.2.1 Charge self-consistent approach

Using charge self-consistent DFT+DMFT, we simulate the bulk response of Ce3Bi4Pt3 under pressure.
DFT+DMFT [94] calculations are performed with the code of Haule et al. [32], including charge
self-consistency, spin-orbit coupling, and using a continuous-time quantum Monte-Carlo solver. In
the correlated subspace, rotationally invariant interactions for the Ce-4f shell were parametrized
by a Hubbard U = 5.5eV and Hund’s J = 0.68eV in conjunction with the nominal double-counting
scheme [32]; Ce-4f hybridizations were allowed in an energy window of ±10eV around the Fermi level.
At ambient pressure, this setup yielded excellent results for spectral and optical properties [339] (see
also Ref. [345]).

The concept of charge self-consistency extends the “DMFT on top of DFT” approach (employed in the
previous Chapter) and effectively “marries” the two methods into DFT+DMFT. Self-consistency is
reached whenever the self-energy corrected ground-state density of DFT leads to an projected/down-
folded impurity, that generates the self-energy that initially corrects the electron density. That is, on
top of the usual DMFT self-consistency (for the local Green’s function), we require a self-consistency
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on a “global” level (for the ground-state density). In practice this is done via:

(i) Solving of the Kohn Sham equations with given exchange-correlation potential: electron density
ρ(r), Kohn Sham eigenvalues εkn and chemical potential µKS.

(ii) Downfolding onto the correlated subspace: Hamiltonian H(k)43 and computing the non-interacting
impurity Green’s function G0 and corresponding hybridization function ∆.

(iii) Computing the interacting Green’s function of the DMFT impurity with impurity chemical
potential: G0 → G[µDMFT].

(iv) Upfolding of the interacting Green’s function / self-energy into the Kohn-Sham basis and cal-
culating the feedback onto the electron density and updating the chemical potential: ∆ρ(r),
µKS.

(v) Iterating until self-consistency is reached.

For a more technical description of this procedure please refer to the literature, e.g., Refs. [32, 98, 99].
The full charge density can then be written as [346]

ρ(r) = ρKS(r) + ∆ρ(r) = 1
β

,
n

��
r
...ĜKS

...r�
+

�
r
...Ĝ − ĜKS

...r�#
, (3.34)

with ĜKS as the non-interacting Green’s function of the Kohn-Sham eigenvalues and chemical poten-
tial. As the self-consistently determined Kohn-Sham density ρKS already contains the full charge of
the system, the charge correction must fulfill�

d3r∆ρ(r) != 0. (3.35)

Through this scheme, pivotal effects may occur in the crystal- and electronic structure:

(i) Through the electron density feedback the orbital polarization of the correlated impurity and
the electronic structure of the uncorrelated bands may be adjusted.

(ii) Magnetic moments, effective exchange-interactions and total energy may change.

(iii) The crystal structure may relax to a different ground state due to the changes to the electron
density. This can effect both the unit cell volume and its internal atomic positions. Here, we
do not include this effect.

Whereas in high symmetry structures, these effects are mostly minor in nature (strong orbital polar-
ization, e.g., the previously discussed splitting of the t2g orbitals in Section 2.3, tend to be weakened),
they can be crucial when analyzing structural phase transitions [155].
43 The employed code of Haule (and other modern DFT+DMFT packages) does not compute maximally localized
Wannier function and is, instead, based on projection/embedding. For more details, see Ref. [32].
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3.2.2.2 Electronic structure and hybridization gap

We display the non-inversion symmetric crystal structure of Ce3Bi4Pt3 in Fig. 3.15: Ce is bonded in
a 12-coordinate geometry to four equivalent Pt and eight equivalent Bi atoms [288, 347]. We only
highlight the Ce-Pt bond as connected (green-to-blue) lines. Whereas all Ce and Pt ions are spatially
restricted by the symmetry of the I43d space group, Bi is essentially free to move along the internal
(u, u, u) line. This internal parameter was previously assumed to be u = 1/12, see Refs. [339, 348].

Figure 3.15: Crystal structure of cubic Ce3Bi4Pt3 with Bismuth fixed to the u = 1/12 position,
see main text. Cerium: blue, Bismuth: gray, Platinum: green spheres. The hybridization gap of
the band structure stems from the overlap of the Ce 4f states with the 5d states of the neighboring
Pt, indicated by the blue-to-green bond. Figure generated with VESTA [18].

For illustrative purposes, we show the band structure for this exact u-value calculated by a purely
DFT calculation at zero pressure with PBE [23] as the exchange-correlation potential in Fig. 3.16.
Additionally we also show the partial density of states of the most significant atomic character in the
gap formation. The hybridization gap is mostly stemming from a mixture of Ce 4f and Pt 5d states
generating a hybridization gap of size ∆N = 180meV. Cerium states both dominate the conduction
and the valence band character with only a minimal Pt character involved (red). The situation is
more involved around the edges of the (upper boundary) gap, see inset. Due to the additionally
formed Γ-pocket, displaying a heavily mixed orbital character, the hybridization gap is reduced by
almost a factor of 2.

The overall situation is similar to the periodic Anderson model of Section 3.1 in the sense that
turning off the Ce-4f orbital hybridization to surrounding atoms, the band-structure becomes metallic,
see Ref. [212]. Indeed, La3Bi4Pt3 is a metal [253]. Interestingly, the situation is reversed in R3Bi4Au3

with R=La,Ce. There, the one extra electron from the precious metal makes already La3Bi4Au3

band-insulating, and yet another electron from Ce turns Ce3Bi4Au3 (semi)metallic [349].
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Figure 3.16: Exemplary Ce3Bi4Pt3 band structure determined DFT calculation at zero pressure,
Bismuth position at u = 1/12 (see main text) and PBE exchange-correlation potential (left) and
its corresponding partial density of states. The hybridization gap (∝ ∆N ) mostly stems from
an interplay between Ce 4f (blue) and the Pt 5d states (red). The minimal gap ∆ is, however,
defined via the Γ-pocket which displays a heavily mixed orbital character (see inset). In order to
circumvent this “problem” we define the relevant Kondo energy scale via the band gap at the N
point ∆N instead.

At finite pressures we use lattice constants from experimental fits to the third-order Birch-Murnaghan
equation-of-state [323]. While the Wyckoff site 12a (12b) uniquely defines the placement of Ce (Pt)
atoms, we relax the internal positions of Bi in density-functional theory (DFT) as implemented in
WIEN2k [21, 22] using the PBE functional [23]. The essential band structure results are summarized
in Fig. 3.17. The internal atomic position (u, u, u) of Bi (bottom panel) is critical for the (unrenor-
malized) DFT band gap ∆ (top panel) as a function of pressure:

(i) The often assumed position u = 1/12 (blue, used previously in Ref. [339]) leads to a monotonous
increase of both the band gap ∆ as well as the corresponding ∆N that measures the gap from
the valence-band maximum up to the conduction-band minimum at the N -point in the Brillouin
zone, see Fig. 3.16 and also Ref. [305].

(ii) The fully relaxed u(P = 0) (green) applied to the full pressure range unsurprisingly shows
consistent behavior compared to the u = 1/12 case.
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(iii) The fully relaxed u(P ) (red) is qualitatively different: While ∆N increases monotonously with
pressure—indicative of boosted hybridizations—, the fundamental gap ∆ decreases above a
critical pressure of about Pc ∼ 15GPa. Beyond Pc, the centres of mass of conduction and
valence states are still pushed apart, but a new dispersive conduction-band minimum emerges,
that moves towards the Fermi level when increasing pressure further. Therewith the gap ∆
ceases to be a good indicator for the hybridization strength (and hence the Kondo coupling)
in this compound. For this reason, Ref. [305] introduced the gap ∆N as measured up to the
N -point in the Brillouin zone—a region unaffected by the new conduction-band minimum—as
proxy for the Kondo coupling.
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Figure 3.17: Band-gaps of Ce3Bi4Pt3 in density functional theory (DFT). The top panel
shows the DFT (=unrenormalized) band gap ∆ of Ce3Bi4Pt3 as a function of pressure (i.e., a
varying unit-cell volume according to the experimental equation of state [323]) for different internal
atomic positions (u, u, u) of Bi (indicated in the bottom panel): fully relaxed u(P ) (red), fixed to
the relaxation at ambient pressure (green), and the often assumed position u = 1/12 (blue, used
previously in Ref. [339]). Curves with faded colours indicate the corresponding ∆N that measures
the gap from the valence-band maximum up to the conduction-band minimum at the N -point in the
Brillouin zone (see also Ref. [305]). While ∆N increases monotonously with pressure—indicative
of boosted hybridizations—, the fundamental gap ∆ decreases above a critical pressure of about
15GPa.
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3.2.2.3 Spin-orbit coupling and N-fold degeneracy

Due to the large spin-orbit coupling present in rare-earth compounds, the spin (as has been assumed
in Chapter 2) no longer represents a good basis or quantum number. Instead, we have to consider the
total angular moment J . In Ce3Bi4Pt3, cerium obtains a nominal configuration of 4f1 with resulting
total electronic spin S = 1/2, leading to

J = L − S = 5
2 (3.36a)

J = L + S = 7
2 (3.36b)

as “good” quantum numbers. In the absence of an external magnetic field, magnetic ordering or
crystal-field the secondary total angular momentum quantum numbers remain degenerate

mJ=5/2 ∈
�

− 5
2 , −3

2 , −1
2 , + 1

2 , +3
2 , +5

2



(3.37a)

mJ=7/2 ∈
�

− 7
2 , −5

2 , −3
2 , −1

2 , + 1
2 , +3

2 , +5
2 , +7

2



(3.37b)

for each of the two juxtaposed J states. Once crystal-field induced multiplet effects come into play
only the pairs (mJ , −mJ) are, however, certain to be degenerate, assuming that no external field is
applied or internal magnetic order is established.

Besides the obvious complications in the construction of the Hamiltonian and the sampling of
the interacting Green’s function in the DMFT part of the DFT+DMFT approach, the larger number
of 4f states with comparable energies in Kondo materials bring on further complications. Deducing
“PAM-esque” one-particle parameters stemming from the bandwidth of the conduction band W =
O(3−5)eV, and the resulting band gap of ∆ = O(100−300)meV we find the hopping and hybridization
strengths to be in the same energy range V = O(200 − 400)meV. Furthermore, the larger on-site
interaction of U = 5.5eV, should lead to a massive boost of antiferromagnetic fluctuations and and
thus a sizable increase of the AF dome in the temperature vs. hybridization phase diagram, see
Section 3.1. Altogether, naively mapped to a one-orbital model these parameters always lead to an
ordered magnetic state towards zero temperature.

Here is where the multi-orbital nature of cerium comes into play: through possible geometric
frustration caused by the complex ion arrangement in the crystal structure, see Fig. 3.15, and the
large number of involved 4f states, accompanied by strong spin-orbit coupling, the Kondo temperature
may be orders of magnitude larger than what is anticipated from the one-band case. Indeed, systems
displaying an (exact) N-fold degeneracy the exponential factor of the Kondo temperature becomes
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significantly boosted [239]
TK(N) ∝ exp(− 1

NJρ
) (3.38)

where J and ρ are the effective exchange interaction and the density of states of the involved con-
duction band at the Fermi level, respectively. At high temperatures, due to the smearing of the
energy levels modified by the spin-orbit coupling, cerium indeed acts as such an N-fold (N = 6 for
the J = 5/2 states) degenerate ion. For low temperature, the physics is instead dominated by the
lowest lying degenerate state, see next Section. This acts as stabilization of the local-moment lattice
where the naively expected magnetic order is not apparent in experiment [350].

Let us also note, that strong antiferromagnetic fluctuations may also be strongly suppressed for
non-integer filling. There the phenomenon of valence fluctuations leads to the demagnetisation [255].

3.2.2.4 Dynamical mean-field theory results

Having established an overview of the unrenormalized insulating characteristics, we turn our attention
to many-body corrections treated within dynamical mean-field theory.

For illustrative purposes we showcase the imaginary part of the self-energy for varying pressure P

of the dominant J = 5/2, mj = 5/2 component at β = 200 eV−1 in the left panel of Fig. 3.18.
The selected pressures P = 0GPa, P = 5GPa, and P = 10GPa showcase the expected Fermi-
Liquid behavior whose low-energy scattering rate can be extracted via a polynomial fit to iw → 0
(see the zoom in the right panel). This dominant 4f contribution to the electronic state is thus a
direct reflection of the observed flat band signature as observed in the periodic Anderson model in
Section 3.1.2.3.
Naturally, in hybridization gap insulators, a smaller unit cell through increased pressure leads to
stronger orbital hybridization and thus a larger gap opens up, see Eq. (3.16). In this context, the
increased gap sizes are reflected in a smaller scattering rates Γ = −ℑΣ(ω = 0)|J=5/2,mj=5/2 as the
states contributing to the scattering at the Fermi level are pushed further away (Γ ∝ ω2).
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Figure 3.18: Including the impurity scattering rate in DMFT for Ce3Bi4Pt3. For varying
pressure P , we show the impact of including an impurity scattering rate Γimp = 5meV already in
the DMFT self-consistency for the dominant J = 5/2, mJ = 5/2 component of the self-energy at
β = 200/eV. In the left panel we see a small enhancement of ℑΣ(iωn) when impurity scattering is
included (compare dark to light colours). For all pressures the enhancement of scattering is smaller
than the added impurity scattering rate. Further, at low pressure, P = 0, ∆ℑΣ(ω = 0) is small
against the total scattering rate ℑΣ(ω = 0) ≈ 40meV. At larger pressures, both the total scattering
rate and the enhancement shrink drastically, as the gap in the spectral function increases and less
carriers can scatter.

Non-canonical pressure dependence

Next, we briefly turn to Ce3Bi4Pt3 at high pressures, where Campbell et al. [323] found an insulator-
to-metal crossover, cf. Fig. 3.20b. Indeed pressure-induced metallic phases are rather common for
correlated semiconductors, e.g., for SmB6 [351, 352], CeRhSb [353] and FeSi [354]. We consider three
candidate mechanisms: Changes in (1) correlation effects, (2) the valence, (3) structural aspects. (1)
Our many-body calculations reveal that pressure reduces electronic correlations: Effective masses
shrink from m∗/m ∼ 10 at P = 0 (see also Ref. [339]) to a mere ∼ 2 at P = 40GPa. Also
electron-electron scattering becomes less prevalent: The rate Γ is—for all pressures—of the form
γT 2 (see bottom panels of Fig. 3.19), with γ significantly decreasing with pressure. Reduced many-
body renormalizations amplify the pressure enhancement of the non-interacting hybridization (see
point (3), below), leading to larger gaps. In the absence of other factors, this is the canonical
behaviour of Kondo insulators. (2) Changes in the f -valency drive metal-insulator transitions, e.g.,
in rare-earth monochalcogenides [355]. In Ce3Bi4Pt3, congruent with experiment [333, 323], pressure
decreases (increases) the simulated 4f -occupation nf (valence 4−nf ) from nf = 1.05 (P = 0) to 0.96
(P = 40GPa)—while temperature has little influence [356]. 4f0 (J = 0) admixtures augment with
P—accounting for the larger valence. Yet, also 4f2 (and 4f1 with J = 7/2) contributions grow—
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increasing the mixed valence character. Still, the probability of finding the system in a 4f1-state
with J = 5/2 merely decreases quantitatively from 80% (P = 0) to ∼55% (P = 40GPa)—excluding
a dominantly valence-driven metallization. (3) Instead, we unravel the non-monotonic transport to
originate from two counter-acting structural trends within the confines of space group I 4̄3d: Globally,
pressure shrinks the lattice, enhancing hybridization gaps. While the atomic coordinates of Ce and Pt
are dictated by symmetry, the local Bi position (u, u, u) may vary. Minimizing total energies, we find
u = 0.088 at P = 0—in agreement with the experimental u = 0.086 [357]—and predict a much larger
u = 0.097 at P = 40GPa, see Fig. 3.17. This seemingly minute modification drastically changes
inter-atomic hybridizations: Instead of a monotonic increase (realized for u = const), a critical
pressure emerges above which the gap decreases. Hence, Ce3Bi4Pt3 exhibits a peculiar high-pressure
behaviour, not canonical for Kondo insulators in general.

Explicit vs. implicit scattering rate

In order to avoid DMFT calculations for varying impurity scattering, the latter was only added to
the transport simulations in the next Section. Before discussing these transport results however,
we assess this approximation beforehand: We show the impact of including an impurity scattering
rate Γimp = 5meV already in the DMFT self-consistency for the dominant J = 5/2, mJ = 5/2
component of the self-energy at β = 200/eV. In the left panel of Fig. 3.18 we see a small enhancement
of ℑΣ(iωn) when impurity scattering is included (compare dark to light colours). This is expected, as
the impurity scattering leads to more incoherent spectral weight in the gap, which, in turn, provides
carriers for further electron-electron scattering. This cooperation of different scattering rates enhances
the lifetime signatures. The right panel shows a low-energy zoom of the left panel. There, the dotted
black lines are polynomial fits to the Matsubara self-energy from which we extract an enhancement of
low-energy scattering ∆ℑΣ(ω = 0) = |ℑΣΓimp=5meV(ω = 0)| − |ℑΣΓimp=0(ω = 0)| = 3.7/1.5/0.3meV
for P = 0/5/10 GPa, respectively. For all pressures the enhancement of scattering is smaller than
the added impurity scattering rate. Further, at low pressure, P = 0, ∆ℑΣ(ω = 0) is small against
the total scattering rate ℑΣ(ω = 0) ≈ 40meV. At larger pressures, both the total scattering rate and
the enhancement shrink drastically, as the gap in the spectral function increases and less carriers can
scatter. Thus, adding the impurity scattering rate to the DMFT self-consistency slightly enhances
the effects that we are studying, while leaving all qualitative trends intact.

3.2.3 Conductivity tensor
Having established the intricacies of the non canonical Kondo insulating behavior of Ce3Bi4Pt3 under
pressure we finally turn our attention to the transport properties reported in Fig. 3.14 [333, 334, 344].
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To quantitatively simulate the resistivity responses we employ the aforementioned DMFT results and
(i) simulate disorder by an added impurity scattering in the self-energy, (ii) simulate pressure with the
aforementioned crystal structures with reduced volume and optimize Bismuth position. To obtain the
conductivity tensor, as first introduced in Section 2.6, we simply evaluate the corresponding multi-
orbital equation (here expressed directly in terms of spectral functions A(ω)) in the Kubo formalism,
neglecting all vertex correction.

3.2.3.1 Kubo response

Contrary to the previous analysis where we focused on a sub selection of most dominant states, cap-
tured within the one-band Hubbard model, here the conductivity is calculated on the full energy range
used within our DFT+DMFT setup. Neglecting vertex corrections44, the generalized conductivity
tensor in the Kubo formalism (in SI units) reads [64, 358, 359]

ℜσαβ(ω) = 2πe2ℏ

V

,
k

� ∞

−∞
dω′ fF D(ω′) − fF D(ω′ + ω)

ω
Tr [vα(k)A(k, ω′)vβ(k)A(k, ω′ + ω)] . (3.39)

with A(k, ω) corresponding to the spin- and momentum-resolved spectral function, vα as the optical
element in (Cartesian) direction α, and a prefactor consisting of the spin multiplicity 2, the elementary
charge e and the volume of the unit cell V . Here the summation of all (internal and external) orbital
degrees of freedom, as derived in Section 2.6.2, is replaced by an efficient evaluation of a trace over
matrices in the orbital/band basis. Expressed as an Einstein summation the equivalence to the bubble
becomes apparent: ℜσ ∝ -

i=j,a,b,c viaAabvbcAcj . The optical conductivity then simplifies to the DC
contribution in the dynamical limit

ℜσDC
αβ = lim

ω→0+
ℜσαβ(ω)

= 2πe2ℏ

V

,
k

� ∞

−∞
dω′

�
−∂fF D

∂ω′

%
Tr [vα(k)A(k, ω′)vβ(k)A(k, ω′)] .

(3.40)

The resulting resistivities for Ce3Bi4Pt3 are illustrated in Figs. 3.19 for varying (a) disorder and (b)
pressure P and are simulated with the full self-energy Σ(ω) as described in Ref. [320], using dipole
transition matrix elements [360]. The extracted crossover temperature T ∗ and resistivity ratios on the
other hand are illustrated in Fig. 3.20. We mimic the effect of disorder [361] with an added scattering
term Γimp to the full self-energy Σ(ω) which was only included in the evaluation of Eq. (3.40) and

44 We can motivate that, here, vertex corrections do not change the qualitative picture: impurity corrections to the
current vertex of intrinsic carriers via ladder diagrams mainly reduce the decay rate Γ in the response function’s
prefactor by filtering out forward scattering [239], i.e., they do not change the essential physics. Corrections from
crossed diagrams can be important, e.g., in doped semiconductors where they may lead to metal-to-insulator transitions
via localization. Here, instead, we are concerned with metallic signatures in an a priori insulating host.
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not the DFT+DMFT itself.
The scattering rates Γ displayed in Fig. 3.19 (bottom) are obtained from the same self-energy Σ(ω)
by averaging over the J = 5/2 components that dominate spectral weight near the Fermi level:
Γ = −ℑ ⟨Σ(ω = 0)⟩J=5/2. Finding that in all cases Γ(T ) ∝ T 2, we use this dependence to extrapolate
the many-body scattering rate to temperatures beyond the reach of quantum Monte Carlo simulations,
assuming that the frequency-dependence and the real-part do not change.
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Figure 3.19: Simulated resistivity of Ce3Bi4Pt3. Resistivities ρ(T ) (a) at ambient pressure
(P = 0) for varying impurity scattering Γimp and (b) at different pressures P for fixed impurity scat-
tering Γimp = 5meV. Filled (open) circles in ρ(T ) indicate simulation (extrapolated) temperatures
Inflection points T ∗ in ρ(T ) are marked with vertical arrows. The simulations mirror the experi-
mental trends: T ∗ varies significantly with pressure, but depends only weakly on disorder. In the
bottom panels we illustrate the square root of Γ = − ⟨ℑΣ(ω = 0)⟩J=5/2; black and red-shaded lines
are linear fits to Γ1/2 of simulated points, suggesting that for all pressures: Γ = γT 2; γ decreases
notably under compression, indicative of weakening correlation effects.

In all cases we identify an inflection point T ∗ below which a saturation regime emerges: At ambient
pressure, see Fig. 3.19a, a growing disorder (Γimp) causes T ∗ to only marginally increase. The
saturation value ρ(T → 0), however, is notably suppressed as lifetimes shorten—congruent with
experiments (Fig. 3.14). Applying pressure, see Fig. 3.19b, boosts T ∗ significantly, until it saturates
between 20–30GPa. The extracted T ∗, reported in Fig. 3.20a, is in qualitative agreement with
experiment (Fig. 3.14 inset). Also the saturation limit ρ(T → 0) depends strongly on pressure. In
experiments, the trend in ρ(T → 0) varies, however, significantly between samples [333] and setups
[333, 323]. We therefore follow Campbell et al. [323] and reduce systematic errors by plotting in
Fig. 3.20b the ratio ρbase/ρRT of the simulated resistivity at the lowest (base) temperature (T = 1K)
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and at room temperature (RT: T = 290K). In agreement with an experimental ratio at similar
temperatures [323], we see an increase from P = 0 up to P ∼ 3–5GPa—the system becomes more
insulating. For higher pressures, however, the ratio decreases again—mirroring the pressure-driven
crossover to a bad insulator (cf. ρ(T ) in Fig. 3.19b). For this comparison we find the best quantitative
agreement with experiment for Γimp ∼ 7.5meV.
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Figure 3.20: Crossover temperature T ∗ and resistivity ratio. (a) Inflection temperatures
T ∗ as a function of pressure for different impurity-scatterings Γimp (lines shaded blue to green). At
low pressures, T ∗ slightly depends on Γimp; above P = 5GPa, the onset of saturation is insensitive
to the magnitude of impurity scattering. (b) Ratio of the resistivity at base temperature, ρbase,
and at room temperature (RT), ρRT , for different impurity scatterings Γimp (lines shaded blue to
green), compared to experiment (circles; from Ref. [323]). In the simulation (experiment [323]) the
base and room temperatures were 1K and 290K (2K and 300K), respectively. The overall trend of
the resistivity ratio with pressure is independent of the strength of impurity scattering. We find
best quantitative agreement with experiment for Γimp ∼ 7.5meV.

The simulations thus contain the necessary ingredients to account for the observed resistivity satu-
ration in Ce3Bi4Pt3, including its dependence on disorder and pressure.

3.2.3.2 Microscopic theory

In order to gain a better understanding of these Kubo simulations we resort to a minimalist model
treatment with a linear-response conductivity that was first introduced in Ref. [331].
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We consider a half-filled two-band (n = 1, 2) model with hopping t on the cubic lattice separated by
a non-interacting gap ∆0: ϵ0

kn = (−1)n[2t
-

i=1,3 cos(ki) + (6t + ∆0/2)]. We endow these dispersions
with (i) a constant lifetime τ = ℏ/(2Γ0) and (ii) a quasi-particle weight or mass enhancement Z =
m/m∗ ≤ 1. The latter renormalizes the dispersion, ϵkn = Zϵ0

kn, yields the interacting gap ∆ = Z∆0,
and dresses the scattering rate Γ = ZΓ0.

In the absence of particle-hole interactions, Eq. (3.40) still holds and can now be evaluated with the
corresponding coherent part of the spectral function

Akn(ω) = Z

π

Γ
(ω − ϵkn)2 + Γ2 (3.41)

for which the linear-response conductivity can be calculated analytically (based on contour integra-
tion, see next Section 3.3):

σ(T ) = 2πe2ℏ

V

Z2

4π3
β

Γ
,
kn

v2
kn

�
ℜΨ′(z) − βΓ

2π
ℜΨ′′(z)

%
(3.42)

with the inverse temperature β = (kBT )−1, the unit-cell volume V , (derivatives of) the digamma
function ψ(z) evaluated at z = 1

2 + β
2π (Γ + iϵkn), and the Fermi velocities vkn = 1/ℏ∂ϵ0

kn/∂k obtained
by applying the Peierls approximation in the band-basis. Indeed, this only accounts for intra-band
transitions. In a more general framework [362] also inter-band transitions can be included within
the Peierls philosophy. As far as the temperature dependence is concerned, inter- and intra-band
contributions are very similar and the former have been omitted from the model for clarity (their
analytic expressions and analysis can be found in Section 3.3). For a discussion of intra- and inter-
orbital transitions in the realistic simulations for Ce3Bi4Pt3, see the Supplementary information of
Ref. [7].

Despite this minimalist assumptions the above formula is rich in physics: In the coherent limit
Γ → 0, Eq. (3.42) simplifies to the well-known Boltzmann expression in the constant relaxation-time
approximation [363]

σ(T ) Γ→0= e2ℏ

V

Z2

Γ
,
kn

v2
kn (−∂f/∂ω)ω=ϵkn

, (3.43)

with the Fermi function f—albeit with a renormalization Z2 commonly not included. In this semi-
classical regime, the conductivity is simply proportional to the lifetime τ = ℏ/(2Γ). Then, for
kBT ≪ ∆, the resistivity has an activated form ρ(T ) ∝ exp(∆/(2kBT )) that diverges for T → 0.
In fact, here, ∆ is the only relevant energy scale: As epitomized by Arrhenius-plot analyzes, ∆
single-handedly accounts for the archetypal ρ(T ) of semiconductors in the Boltzmann regime. There,
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resistance can be approximately described through electrons with sharply-defined one-particle states
(a band-structure ϵkn) that undergo collisions at a rate Γ, causing the charge current to decay on
a timescale ℏ/(2Γ). For sizable Γ, however, the broadening of the one-particle spectrum itself can
no longer be neglected, see Section 3.3, spilling incoherent weight into the gap that contributes to
conduction. This phenomenon is clearly beyond thermal activation across the gap. Still, Eq. (3.42)
can be seen to retain an effective one-particle description (sharply defined dispersions), with many-
body (lifetime) effects accounted for by a modified (Ψ-based) fermionic distribution function.

(a) resistivity ρ(T ) (b) residual resistivity ρ(T → 0) (c) crossover temperature T ∗

Figure 3.21: Prototypical resistivity in correlated narrow-gap semiconductors. For a
minimal two-band model, the figure shows: (a) The resistivity (lines) as a function of temperature
for different gaps ∆ and scattering rates Γ (both measured in eV). Closed symbols indicate the
saturation limit ρ(T → 0); open symbols mark the inflection point T ∗—the lower (upper) bound
of the semi-classical (quantum) regime. The semi-classical Boltzmann conductivity, Eq. (3.43), is
shown as dashed black line. (b) The saturation limit ρ(T → 0) (coloured map; on a log-scale) as a
function of ∆ and Γ; black lines are iso-curves for indicated values; colored symbols mark the choices
of ∆ and Γ from panel (a). (c) Crossover temperature T ∗ of the quantum regime. The data shows
that T ∗ (ρ(T → 0)) is dominantly controlled by ∆ (Γ). Calculated for a three-dimensional half-filled
two-band model with bare dispersions ϵ0

kn = (−1)n[2t
-

i=1,3 cos(ki) + (6t + ∆0/2)] (n = 1, 2), with
hopping t = 0.25eV, a quasi-particle weight Z = 1, and a lattice constant a = 1Å.

To characterize the transport signatures of Γ > 0, we compute the resistivity ρ(T ) = 1/σ(T ) according
to Eq. (3.42), see Fig. 3.21 within LinReTraCe (see Section 3.5). Akin to Ce3Bi4Pt3, we see the
emergence of a crossover temperature T ∗ below which ρ(T ) tends towards saturation. Since this
phenomenon defies the semi-classical (Boltzmann) picture, we will label its domain the quantum
regime. In conventional semiconductors, deviations from activated behaviour typically occur when
an extrinsic in-gap density pins the chemical potential. In the current scenario, impurity states
influence conduction merely by limiting the lifetime of intrinsic carriers. Importantly, already minute
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scattering rates (mediated by impurities or other defects or couplings) lead to strong signatures
at observable temperatures: In Fig. 3.21b and 3.21c we indicate, respectively, the saturation limit
ρ(T → 0) and the characteristic temperature T ∗ for the resistivities of panel (a). In the relevant
Γ ≪ ∆ regime, T ∗ changes more rapidly with ∆, whereas ρ(T → 0) is more sensitive to changes in
Γ—as observed in experiments and simulations for Ce3Bi4Pt3 (see above).

We can give more precise analytical insight: At low temperatures, the minimum (maximum) of
conduction (valence) states dominates transport. For this leading contribution to Eq. (3.42), we
neglect band-dispersions and consider two levels (2L) ϵn = (−1)n∆/2 (n = 1, 2) separated by a gap
∆. Then, with z = 1/2 + β/(2π)(Γ + i∆/2),

σ2L(T ) ∝ β

Γ


ℜψ1(z) − βΓ

2π
ℜψ2(z)

�
. (3.44)

This phenomenological quantum conductivity depends on two energy scales: ∆ and Γ, and is very
useful for analysing experimental data, as shown below. A low-temperature expansion of Eq. (3.44)
to second order yields

σ2L(T ) ∝ Γ2

(∆2 + 4Γ2)2

�
1 + 8π2

3
5∆2 − 4Γ2

(∆2 + 4Γ2)2 (kBT )2
!

(3.45)

resulting—for finite Γ—in the residual conductivity

σ2L(T = 0) ∝ Γ2

(∆2 + 4Γ2)2 . (3.46)

Unlike conduction by surface states in topological insulators, the quantum-regime conductivity de-
pends on the bulk values ∆ and Γ. Therefore, as a paramount distinction, residual conduction
can be manipulated by pressure, while topological surface conduction is oblivious to it [364]. A di-
rect consequence of Eq. (3.46) is the existence of a temperature T ∗ below which ρ(T ) must depart
from Boltzmann behaviour. Using Eq. (3.45), we can crudely estimate the dependencies of T ∗ via
∂2ρ(T )/∂T 2 = 0, see Fig. 3.22:

kBT ∗ = 1√
10π

�
∆
2 + 11

5
Γ2

∆ + O(Γ4)
!

(3.47)

For Γ ≪ ∆, T ∗ is essentially controlled by ∆—consistent with our numerical results and available
experiments.

The take-away message is this: If Γ/∆ is not vanishingly small, the lifetime of intrinsic charge
carriers manifests as a relevant energy scale. It introduces a coherence temperature T ∗, delimits
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the applicability of Boltzmann theory from below, and leads to an algebraic saturation regime with
residual conduction.

Here, we presented the residual conduction mediated by transitions within the same band (intra-band
transitions). The methodology and implementation advanced in this thesis, however, also includes
inter-band effects that become relevant in metals and solids with a very narrow gap. A particular
case are extended (=finite) systems, such as molecules. There, transport is by construction driven
by inter-orbital transitions. For a study of residual conduction in semi-conducting molecules, that
builds on the methodologies developed here, see Ref. [365].

10-6

10-5

10-4

10-3

10-2

10-1

0 20 40 60 80

O(T2)

full

T*

σ
[a
.u
.]

T [K]

Δ=0.10, Γ=10-5
Δ=0.10, Γ=10-4
Δ=0.15, Γ=10-4

10-6

10-5

10-4

10-3

10-2

10-1

0 20 40 60 80

Figure 3.22: Comparison of Eq. (3.44) and Eq. (3.45): The quantum regime. The
figure shows the regime of validity of the low temperature expansion, Eq. (3.45) (dotted lines), of
the two-level approximation Eq. (3.44) of Eq. (3.42) (solid lines). The algebraic rise of σ(T ) is
neatly captured by the quadratic approximation; higher order terms only become relevant in the
direct vicinity of T ∗ (circles). Computing T ∗ from the approximate form Eq. (4) (squares), severely
overestimates crossover temperatures. Still, the qualitative dependency on the size of the gap ∆
and the scattering rate Γ is similar to the actual behaviour: T ∗ increases only marginally with Γ,
but is strongly enhanced with growing ∆. However, we note that the limit Γ → 0—in which the
true T ∗ vanishes by construction—is violated by the extraction from the derivative of the Taylor
expansion.
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3.2.3.3 The quantum regime in experiments

Returning to Ce3Bi4Pt3, we anatomize the experimental conductivity vis-à-vis the characteristic tem-
perature profile of the quantum regime established above. With the phenomenological conductivity,
Eq. (3.44), we fit in Fig. 3.23 the data of (a) Cooley et al. [333] and (b) Wakeham et al. [334]
and find near perfect agreement: Our Ansatz accurately reproduces the experimental temperature
dependence for varying pressure and disorder.

We analyze trends in the fit parameters: As shown in the inset of Fig. 3.23a, we extract a
gap ∆ ∼ 7.5meV at P = 0, which is largely enhanced for P > 0; also Γ increases with P . We
extract smaller Γs and ∆s for Wakeham et al. ’s sample, see inset of Fig. 3.23b, owing to the overall
smaller conductivity. Consistent with the degree of radiation damage, Γ increases with growing
displacements per atom (DPA). The extracted ∆ is congruent with activation-law fits above T ∗ [334]
and increases only marginally under radiation. Note in Fig. 3.23a, for pressures P > 4GPa and very
low temperatures, deviations from the quantum regime occur. There, as shown in Ref. [333], σ(T )
matches 3D variable-range hopping (VRH) characteristics, ∝ exp[(T/T0)1/4].

(a) pressure dependence (b) influence of disorder

Figure 3.23: Analysis of the quantum regime in Ce3Bi4Pt3. We fit the conductivity σ(T ) =
1/ρ(T ) from (a) Cooley et al. [333] (coloured lines correspond to pressures indicated in the inset) and
(b) Wakeham et al. [334] (coloured lines indicate the degree of disorder quantified in displacements
per atom (DPA)) with the phenomenological quantum conductivity Eq. (3.44) (dashed lines). The
agreement is excellent: From a finite residual value for T → 0, the conductivity grows algebraically
(see the quantum regime formula: Eq. (3.45)) up to the crossover temperature T ∗ (circles). Above,
higher powers in T become relevant as σ(T ) enters the exponential (semi-classical) regime. For
pressures P > 4GPa and very low T , the experimental conductivity deviates from the quantum
regime and instead matches 3D variable-range hopping (VRH) characteristics, ∝ exp[(T/T0)1/4]
[333]. The fit parameters ∆ and Γ are given in the insets.
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In Fig. 3.24 we perform a similar analysis for the bulk conductivity of the mixed-valence insulator
SmB6 [366], finding again excellent agreement. These results will be reviewed in the Discussion
Section.
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Figure 3.24: Quantum regime in the bulk conductivity of SmB6. In this figure we extend
the analysis of the experimental bulk conductivity of SmB6 obtained by Eo et al. [366] (shown
in Fig. 6 of the manuscript for the samples S3 and S4) to their samples S1 and S2. Using the
phenomenological Eq. (3) of the manuscript, we determine the crossover temperature T ∗ and extract
the scattering rate Γ. Experimental data obtained for sample S2 (green) is noisy at low T , and
our fit accordingly less reliable. For the sample S1 (yellow), the scattering rate is so low that the
anticipated T ∗ moves outside the experimentally accessible temperature window. The available
data is then insufficient to determine T ∗. However, admissible combinations of fit parameters (e.g.,
the two yellow circles shown) suggest that T ∗ ∝ Γα for all samples with α ≈ 1/8 (inset). Consistent
with our theory, T ∗ vanishes in (unattainable) pure samples.

3.2.4 Discussion

The above results strongly suggest that electronic scattering is the microscopic driver of the resis-
tivity saturation in Ce3Bi4Pt3. Our mechanism is relevant also for other Kondo insulators. In-
deed, iso-structural Ce3Sb4Pt3 displays a ρ(T ) [367] consistent with our understanding: Different
growth techniques (varying amounts of disorder) lead to largely different ρ(T → 0) while T ∗ changes
little [367]. Ce3Bi4Pd3, has recently been characterized as a semi-metal [368] or a Kondo insula-
tor [341]. That the gap is next to non-existing [368, 341] has been ascribed to spin-orbit [368] or
Kondo [305] coupling effects. Here, we conjecture that under compression a resistivity plateau devel-
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ops in Ce3Bi4Pd3. Future transport and susceptibility measurements could then elucidate whether
pressurized Ce3Bi4Pd3 mimics Ce3Bi4(Pd1−xPtx)3 for small x—(dis)favouring the (spin-orbit) Kondo
scenario. Saturation tendencies have also been found in the Kondo insulators CeFe2Al10 [369]
and pressurized CeRu4Sn6 [370, 371, 372]. However, Kondo physics is not a prerequisite for our
mechanism. What makes these systems natural hosts for the quantum regime are their small
gaps ∆ ∼ O(≲ 50meV). Correlation effects also drive narrow gaps in SmB6 [291, 373, 374, 366],
YbB12 [375], U3Sb4Pt3 [376], or FeSb2 [214], all of which exhibit saturation regimes, while rather
belonging to the class of intermediate-valence insulators or d-electron intermetallics [212].
Yet, how can we ascertain that the presented microscopic scenario is at work in any such compound?
Salient signatures of the quantum regime provide guidance: T ∗ correlates with the bulk gap and
the residual conductivity increases with shrinking lifetimes. In U3Sb4Pt3, the gap is unaffected by
pressure, and—consistently—so is T ∗ [376]. In mixed-valence SmB6, however, the activation gap
shrinks under pressure, while T ∗ is hardly affected [351, 352] and added disorder at first increases
the resistivity [334]. Also in CeRu4Sn6 single crystals, pressure significantly increases activation
energies, while T ∗ remains inert [372]. These observations are incompatible with our scenario and
suggest a different origin to dominate residual conduction. Incidentally, for the latter two compounds
conducting surface states of proposedly topological character [257, 377] have been evidenced [334, 366].
Note, however, that more disordered, polycrystalline samples of CeRu4Sn6 exhibit an additional
inflection point in ρ(T ), which—consistent with our theory—moves up under compression [378]. Also
for SmB6 the situation is more complex: Using a special measurement setup, Eo et al. [366] were able
to disentangle surface and bulk contributions to conduction. Crucially, the isolated bulk conductivity
still exhibits a saturation regime—whose temperature profile defies all previous scenarios [366, 379].
As we demonstrate in Fig. 3.24, the phenomenological quantum conductivity Eq. (3.44) delivers an
accurate description of the experimental data—providing strong evidence that the bulk resistivity in
SmB6 is lifetime-limited. Noteworthy, our theory shares its key ingredient with the scenario of Shen
and Fu [380] that suggests finite lifetimes of Landau levels to account for quantum oscillations, e.g.,
in SmB6 [381, 382].
In conclusion, we pinpoint finite lifetimes of intrinsic bulk carriers as a driver for residual conduction
in semiconductors. Using a simple phenomenology, we demonstrated the characteristic temperature
profile associated with this scenario to accurately match the saturation regimes in several materials.
Possible microscopic sources for a finite scattering amplitude at low-T are impurities, other forms of
disorder, and zero-point fluctuations. Indeed, the resistivity of no semiconductor in practice diverges
for T → 0. In the absence other factors (or, see SmB6, in combination with), signatures of the
presented physics can therefore be expected to be ubiquitous in correlated narrow-gap semiconductors.
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3.3 Thermoelectric transport coefficients generated by
intrinsic life times

◦ This Section is based on the equations/derivations published in “Prototypical many-body
transport phenomena in semiconductors” by Matthias Pickem, Emanuele Maggio, and
Jan M. Tomczak [9] and “The Linear Response Transport Centre” by Matthias Pickem,
Emanuele Maggio, and Jan M. Tomczak [11]. Adopted text passages have been marked
accordingly.

◦ The theory is based on the Kubo methodology of our Ref. [7] which captures (in)coherence
effects beyond the reach of semi-classical Boltzmann approaches.

◦ In this Section, we focus purely on the analytic derivation and the characterization of the
transport kernels and coefficients. Numerical analysis is discussed in Section 3.4.

◦ This Section includes minor sign and prefactor fixes that occur in the published versions of
Refs. [9] and [11]. We adjusted the relevant equations and figures accordingly.

In this Section, we lay out the setting in which we consider transport properties. The main purpose
is to introduce the necessary correlation functions and notation enabling us to derive higher order
(beyond the conductivity) Onsager coefficients. For more detailed derivations, the reader is referred
to specialized literature [211, 358, 383]. The conceptual advances will be presented in Section 3.3.2
including the necessary contour integrations and Matsubara summations. After that, we will restrict
ourselves to a general discussion of this new methodology. Realistic applications will be discussed in
Section 3.4 and Section 3.5.

3.3.1 Methodological context: Onsager coefficients
Transport properties—such as resistivity (ρ), magneto-resistance (MR), thermal conductance (κ),
and the coefficients of Hall, Seebeck and Nernst (RH , S, ν)—are among the most widely investigated
quantities in materials science. They provide essential information for characterizing new materials
and for elucidating physical phenomena. To extract microscopic information from measurements
requires a fundamental understanding of how carriers transport charge, heat and entropy. When
simulating transport properties, an adequate inclusion of scattering processes is particularly crucial.
These limit the lifetime of carriers, lead to a decay of currents, and can have various origins, such as
electron-electron or electron-phonon interactions as well as defects or impurities.
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To this end we are following the introduction to linear response theory (see Section 2.5.4.1) and are
considering transport quantities that are are based on correlation functions that specify measurable
observables of a system in the presence of specific external perturbations (electric field, magnetic
field, temperature gradient, etc.). Physical observables of transport processes are here described by
charge and heat currents

jα
E = Lαβ

11 Eβ + 1
T

Lαβ
12 ∂βT (3.48)

jα
Q = −Lαβ

21 Eβ − 1
T

Lαβ
22 ∂βT, (3.49)

induced by electrons and generated by an external electric field E and a temperature gradient ∇T

perturbing the system. In our case these processes are described, on the imaginary time (τ) axis by

χαβ
jajb

(q, τ) = 1
V

�
Tτ jα

a (q, τ)jβ
b (−q, 0)

�
(3.50)

with the time-ordering operator Tτ , the charge (a, b = 1) and heat (a, b = 2) current operator jα
a

in the Cartesian direction α, β ∈ {x, y, z}, and V indicating the unit cell volume. From them, the
usual (retarded) Onsager coefficients L for dipolar transitions (q = 0) are obtained by first Fourier
transforming Eq. (3.50) into bosonic Matsubara frequencies

χαβ
jajb

(q, iωn) =
� β

0
dτeiωnτ χαβ

jajb
(q, τ), (3.51)

analytical continuation to real frequencies iωn → ω + iδ and then taking the dynamic limit

Lαβ
ab = lim

ω→0+

1
ω

ℑ
�
χαβ

jajb
(q = 0, ω)

�
. (3.52)

In the presence of an external magnetic field B in direction γ ∈ {x, y, z}, one needs to instead evaluate
the expectation value

χB,αβ
jajb

(q, τ) = 1
V

�
Tτ jα

a (q, τ)jβ
b (0, 0)

�
B

(3.53)

for the Hamiltonian that includes the field [384, 385, 386], and the resulting Onsager coefficients will
be denoted as

LB,αβγ
ab = lim

ω→0+

1
ω

ℑ
χB,αβ

jajb
(q = 0, ω)
Bγ

 . (3.54)

The coefficients LB,αβγ
ab are then the linear correction terms in the presence of a magnetic flux (B) in

the γ-direction. Employing the Onsager-Casimir relation

Lαβ
ab (B) = Lβα

ba (−B) (3.55)
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on the expansion
Lαβ

ab (B) = Lαβ
ab + LB,αβγ

ab Bγ + O(B2), (3.56)

which we treat up to linear order in B, one finds the symmetric and antisymmetric connections

Lαβ
ab = Lβα

ba (3.57a)

LB,αβγ
ab = −LB,βαγ

ba (3.57b)

when the B-field is the only source of time-reversal symmetry breaking.45

From the Onsager coefficients, the electrical conductivity (σ), electrical resistivity (ρ), Peltier coeffi-
cient (Π), Seebeck coefficient (S), thermal conductivity (κ), Hall conductivity (σB), Hall coefficient
(RH), Nernst coefficient46(ν), Hall mobility (µH) and its analogue, the thermal mobility (µT ) [214] can
be calculated. Note that, here, we limit the transport kernels to symmetric contributions. Antisym-
metric terms leading to anomalous transport from a non-trivial topological state [388, 389, 390, 391]
are neglected. For a detailed dimensionality analysis of all involved quantities, see the Appendix of
Ref. [11].

σαβ = Lαβ
11 = jα

E

Eβ

...
∆T =0

(3.58)

ραβ =
�
L−1

11

#αβ
= (σ−1)αβ (3.59)

Παβ = −
�
L−1

11

#αi Lβi
21 =

jβ
Q

jα
E

...
∆T =0

(3.60)

Sαβ = − 1
T

�
L−1

11

#αi Liβ
12 = Eα

∆βT

...
jE=0

(3.61)

καβ = 1
T


Lαβ

22 − Lαi
21

�
L−1

11

#ij Ljβ
12

�
=

jα
Q

∆βT

...
jE=0

(3.62)

σB
αβγ = LB,αβγ

11 (3.63)

RH,αβγ =
�
L−1

11

#αi LB,ijγ
11

�
L−1

11

#jβ
= Eα

jβ
EBγ

...
∆T =0

(3.64)

ναβγ = − 1
T

�
L−1

11

#αi �
LB,ijγ

11 Ljk
12 − LB,ijγ

12 Ljk
11

� �
L−1

11

#kβ
= Eα

∆βTBγ

...
jE=0

(3.65)

µH,αβγ =
�
L−1

11

#αi LB,iβγ
11 = RH,αiγ σiβ (3.66)

µT,αβγ =
�
L−1

12

#αi LB,iβγ
12 (3.67)

45 In magnetized materials the Onsager relations take the form of Lβα
ba (H, M) = Lαβ

ab (−H, −M) instead (H: magnetic
field strength; M : magnetization density), leading to the anomalous Hall effect and a linear magneto resistance
[182, 387, 388].
46 We use the historical convention for the sign of the Nernst coefficient [392].
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The connections to the Onsager coefficients are obtained via ratios (right hand side) of physical
observables which include the induced electric current density jα

E , the electric field Eα, measured
as voltage difference along a direction Eα = −∆αV , the induced heat current density jα

Q and the
magnetic field Bγ .

Let us comment on some connections and physical interpretations here: In systems where time
reversal symmetry is maintained the Peltier coefficient simplifies to Παβ = TSαβ since Lβi

21 = Liβ
12, see

Eq. (3.57a), which is commonly known as the second Thomson relation [393]. The Seebeck coefficient
itself can be understood as the entropy transported by the flow of electrons. The Hall coefficient
RH encodes the response to a transverse electric current in the presence of a magnetic field and can
be thought of as a charge build-up perpendicular to an applied magnetic field (indicated by its unit
m3/C). Further it can be used as a direct measurement of the (inverse) concentration of available
carriers. The sign of both the Seebeck and Hall coefficients signal the (dominant) type of charge
carrier in the material: electrons lead to negative while holes lead to positive coefficients. The Nernst
coefficient ν measures the electric response to a transverse thermal gradient and can be thus, similar
to the Seebeck coefficient, understood as a transverse entropy flow [394].

Let us also note that the expressions for the Hall and Nernst coefficients, see Eqs. (3.64-3.65),
correspond to the intrinsically transverse response, i.e. one has to employ the antisymmetric part of
the L11(B) and L12(B) tensors to eliminate the symmetric off-diagonal elements [394, 395].

For model/materials whose unit cell’s axes are orthogonal, as we are considering here, the Einstein
summations over Cartesian directions simplify to a single expression, e.g., for an electric current in
x-direction and a magnetic field in z-direction, the resulting Hall coefficient in y-direction is RH,yxz =�
L−1

11

#yy LB,yxz
11

�
L−1

11

#xx
.

The transport observables, even when featuring one-particle currents jα
a

47 in Eq. (3.50) and Eq. (3.53),
probe multi-particle excitations. Diagrammatically, these can be described as the sum of all possible
two-particle processes, with the leading term corresponding to the independent propagation of a
particle-hole pair (bubble diagram). See Section 2.6 for the explicit consideration of vertex correction
in the context of the optical conductivity. Magneto-transport quantities on the other hand stemming
from Eq. (3.53) can be shown [385, 384, 386] to involve all possible three-particle processes.

Diagrams that (unlike the bubble) contain interconnected propagation lines, are commonly referred
to as vertex-corrections [246, 397, 398, 399]. These can lead to collective phenomena such as excitons,
π-tons [6, 215, 238] and other polaritons. In this derivation, following the spirit of the dynamical
mean-field theory [94], we are neglecting vertex-corrections. In this approximation, which amounts

47 The heat-current jQ = j2 is only of one-particle nature when, as we assume here, interactions are local [359, 396].
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to the infinite dimensional limit, vertex corrections vanish for all considered observables48 [359, 396,
400, 401].
Assuming that the one-particle Green’s function Gk(ω) is diagonal in the chosen band or orbital
basis, the current-current correlation functions entering Equations (3.52) and (3.54) can be evaluated
directly by inserting the current operator

jα
E(q = 0, τ) = −e

,
k,lm,σ

γk,α
lm

�
ĉ†

kmσ ĉklσ

�
(τ) (3.68)

and the heat-current operator

jα
Q(q = 0, τ) = 1

2
,

k,lm,σ

γk,α
lm

�
ĉ†

kmσ
˙̂cklσ − ˙̂c†

kmσ ĉklσ

�
(τ) (3.69)

with e as the (positively defined) elementary charge and γk,α
lm as the coupling elements in both the

charge and the heat current. These current expressions have been derived for the one-band Hubbard
model in Ref. [359], but necessarily also hold under the assumption of a diagonal band/orbital basis.
Let us note here, that we require different prefactors compared to the ones derived in Ref. [359]. We
employ the definition of a positive electric current as the flow of negatively charged electrons, and
the heat-current on the imaginary axis without a factor of i. Only with the definitions of Eqs. (3.68-
3.69) do we find current-current correlation functions, see Appendix A.3, that are consistent with the
definitions of physical observables in Eqs. (3.59-3.67).

One can then follow a similar derivation as shown in Section 2.6 while keeping in mind that the
operator derivative occurring in the heat current must be evaluated like

˙̂c(τ) = ∂τ ĉ(τ) =
�
H, ĉ(τ)

�
(3.70a)

˙̂c†(τ) = ∂τ ĉ†(τ) =
�
H, ĉ†(τ)

�
(3.70b)

in the Heisenberg representation employed in the correlation functions of Eqs. (3.51) and (3.53).
When neglecting vertex-corrections, the resulting current-current correlation functions expressed in
terms of Green’s functions [359, 386] and Appendix A.3, look as follows

χjEjE
(q = 0, iωm) ∝ − 1

β

,
k,νn

G(k, iνn)G(k, iνn + iωm) (3.71)

χjQjE
(q = 0, iωm) ∝ + 1

β

,
k,νn

G(k, iνn)G(k, iνn + iωm)
�

iνn + iωm

2

%
(3.72)

χjQjQ
(q = 0, iωm) ∝ − 1

β

,
k,νn

G(k, iνn)G(k, iνn + iωm)
�

iνn + iωm

2

%2
(3.73)

48 At least in the absence of multi-band effects [64]. For the vanishing of vertex corrections in infinite dimensions for
massless fermions, see Ref. [402].
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χB
jEjE

(q = 0, iωm) ∝ 1
β

,
k,νn

�
G2(k, iνn)G(k, iνn + iωm) − G2(k, iνn)G(k, iνn − iωm)

�
(3.74)

χB
jQjE

(q = 0, iωm) ∝ 1
β

,
k,νn

'
G2(k, iνn)G(k, iνn + iωm)

�
iνn + iωm

2

%

− G2(k, iνn)G(k, iνn − iωm)
�

iνn − iωm

2

% �
(3.75)

χB
jQjQ

(q = 0, iωm) ∝ 1
β

,
k,νn

'
G2(k, iνn)G(k, iνn + iωm)

�
iνn + iωm

2

%2

− G2(k, iνn)G(k, iνn − iωm)
�

iνn − iωm

2

%2
�

(3.76)

Transforming the above expressions on the Matsubara axis into integrals over the real frequencies,
the resulting Onsager coefficients can be written as

Lαβ
ab = πℏe(4−a−b)

V

,
n,m
k,σ

Kab(k, n, m)Mαβ(k, n, m) (3.77)

LB,αβγ
ab = 2π2ℏe(5−a−b)

3V

,
n,m
k,σ

KB
ab(k, n, m)MB,αβγ(k, n, m) (3.78)

with the (positively defined) elementary charge e, and the sums running over band-indices n, m,
Brillouin zone momentum k and spin σ. Here, the M (B) collect the dipolar transition matrix elements
that depend on the Cartesian directions α, β (and γ) and are discussed in Section 3.3.4. The kernel
functions K(B), instead, contain the two(three)-particle expectation value of the fermionic operators
that make up the currents ja. Neglecting vertex corrections (see above), they can be expressed as

Kab(k, n, m) =
� ∞

−∞
dω ω(a+b−2)

�
−∂f

∂ω

%
Akn(ω)Akm(ω) (3.79)

KB
ab(k, n, m) =

� ∞

−∞
dω ω(a+b−2)

�
−∂f

∂ω

%
A2

kn(ω)Akm(ω) (3.80)

where Akn(ω) = −1/πℑGkn(ω) is the spectral function associated with the retarded one-particle
Green’s function. Energies ω are measured with respect to the Fermi level µ. Thus, within our ap-
proximations, many-body (scattering) effects enter the transport properties only through the renor-
malization of the one-particle/hole propagators.
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3.3.2 Kubo transport equations
3.3.2.1 Approximation: Linearized Self-energy
As seen in Eqs. (3.79-3.80), the derivative of the Fermi function assures that transport properties are
dominated by energies close to the Fermi level.49 Then, also in the quantity that encodes many-body
renormalizations—the electron self-energy Σ—only the low-energy behaviour is relevant. Then, for
the purpose of transport properties and in the absence of pole-like structures within several kBT of
the Fermi level, the self-energy can be linearized, cf. Section 2.2.3:

Σkn(ω) ≈ ℜΣkn(0) + (1 − Z−1
kn )ω − iΓ0

kn (3.81)

In other words, the central assumption is that for transport properties the temperature dependence
of renormalizations is more important than that on frequency. An implicit higher frequency depen-
dence can, however, be included by linearizing the self-energy around the band-energies ϵ0

kn. For the
scattering rate, for instance, instead of evaluating Γ0

kn = −ℑΣkn(ω = 0) at the Fermi level, one can
use Γ0

kn = −ℑΣkn(ω = ϵ0
kn).

With Eq. (3.81), the retarded Green’s function evaluates to

Gret
kn(ω) =

�
ω − ϵ0

kn + µ − ℜΣkn(0) − (1 − Z−1
kn )ω + iΓ0

kn

�−1
(3.82)

from which the coherent part of the spectrum

Akn(ω) = − 1
π

ℑGret
kn(ω) (3.83)

results in a Lorentzian form of weight Z

Akn(ω) = Zkn

π

Γkn

(ω − akn)2 + Γ2
kn

(3.84)

with Γkn = ZknΓ0
kn and akn = Zkn(ϵ0

kn − µ + ℜΣkn(0)), the renormalized scattering rate and disper-
sion, respectively. Employing the Hilbert transform of the self-energy

Σkn(iνn) = Σkn(ω → ∞) − 1
π

� ∞

−∞
dω

ℑΣkn(ω)
z − ω

(3.85)

one additionally obtains a useful expression for a constant scattering rate on the Matsubara axis

Σkn(iνn) = Σkn(ω → ∞) − iΓ0
kn sign(νn). (3.86)

49 This is contrary to thermodynamic properties, such as the specific heat, where all energy scales contribute and
self-energy sum rules have to be enforced.
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Let us note however, that the Hilbert transform does not yield the expected (1 − 1/Z)iωn term,
because the linearized self-energy violates the Kramers-Kronig relations. Restoring these relations
requires taking into account the higher-energy, non-linear behaviour in Σ(ω). The restriction to the
linear regime is not a problem for transport properties that only probe low energies.50

3.3.2.2 Transport quantities for finite scattering
The central innovation of this Section is the observation that, in the current setting, the integrals
in Eqs. (3.79-3.80) can be performed analytically—circumventing costly and (for small Γ) unstable
numerical integrations. Indeed, also the evaluation of the particle number simplifies, one finds [331]

N =
,

k,n,σ

� ∞

−∞
dωfF D(ω)Akn(ω) =

,
k,n,σ

�1
2 − 1

π
ℑψ(zkn)

%
(3.87)

with the digamma function ψ evaluated at zkn = 1
2 + β

2π [Γkn + iakn], where β = 1/(kBT ) is the
inverse temperature.51 Finite lifetimes (inverse scattering rate) explicitly enter through the digamma
function—describing the thermal and lifetime smearing of excitations on an equal footing. Con-
sequently, the energy states now obey a Γ-modified Fermi-Dirac statistic, displayed in Fig. 3.25.
Crucially, even for T = 0 this distribution is not step-like—provided that Γ > 0. In Section 3.4.1.2,
we explore the impact of the carrier density behaviour on the chemical potential and all derived
transport properties.
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ω [eV]

0

0.25

0.5

0.75

1

f(ω
)

kBT=0.01 eV
fFD(ω)
1
2 −

1
π Imψ(12 + β

2π (Γ+ iω))

−4 −3 −2 −1
log10 Γ [eV]

−kBT kBT

Figure 3.25: Lifetime enhanced broadening. Comparison between purely thermal broaden-
ing (dashed black line – Fermi function fF D(ω)) and lifetime enhanced broadening described by
Eq. (3.87) for various scattering rates (solid colored lines).

50 In the occupation, the non-decaying behavior of the self-energy leads to lifetime smearing that generates contribu-
tions without an energy cut-off. This absence of a cut-off leads, e.g., to a divergence of the specific heat [403] in our
formalism. Thus, one has to be mindful about this behavior when interpreting the resulting chemical potential.
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The derivation of Eq. (3.87) is straight-forward: instead of an integral over the real frequency axis
ω, we consider the Matsubara sum over the corresponding Green’s function

n = 1
2 + 1

β

,
νm

1
iνm − a + iΓ sign (νm) , (3.88)

where for brevity’s sake we drop all band and momentum indices and consider only the purely
imaginary part of the self-energy, Σ(iνm) = −iΓ sign (νm). That is, we drop the Hartree term Σ(ω →
∞) as we only consider lifetime broadening. Please see Appendix A.3 for a detailed explanation of
the connection of the occupation to the Green’s function and the necessary “convergence term” 1

2 .
The Matsubara sum can now be rewritten into

1
β

,
νm

1
iνm − a + iΓ sign (νm) = 1

β

∞,
m=−∞

1
i(2m + 1)π

β − a + iΓ sign (2m + 1)

= 1
2πi

∞,
m=1

'
1

m − 1
2 + β

2π (Γ + ia)
− 1

m − 1
2 + β

2π (Γ − ia)

�
��������������������������������������������������������������������������������������������������������������������������������������������

−ψ(1
2 + β

2π (Γ + ia)) + ψ(1
2 + β

2π (Γ − ia)))

= − 1
π

ℑψ(1
2 + β

2π
(Γ + ia))

(3.89)

where we used the series representation of the digamma function

ψ(z) =
∞,

m=1

1
m

− 1
m + z − 1 − γ (3.90)

with the Euler-Mascheroni constant γ. To solidify the connection between the Fermi function and
the digamma function, we provide a short proof that in the limit of Γ → 0+ one recovers an exact
identity. The deviation of the Fermi function from 1/2 (on the real axis) can be written as

f(a) − 1
2 = −1

2 tanh (βa

2 )

= −2βa
∞,

k=1

1
(1 − 2k)2π2 + (βa)2

(3.91)

where the last identity only hold if −1
2 + i(βa)

2π is not an integer. Since we deal with arguments connected
to the (inverse) temperature and energies a we can ensure the validity of the series representation at
51 In this expression, the quasi-particle weight Z has been set to one, as, e.g., customary in slave-boson approaches.
This procedure implicitly assumes the transfer of spectral weights, 1−Z, to be symmetrical in the sense that it does not
alter the chemical potential µ. In calculations where µ needs to be determined, we therefore solely employ renormalized
energies and scattering rates in Eq. (3.87). Only in the transport kernels do we consider the full linearization of the
self-energy, i.e. “Z-factors” emerge in the pre-factors of Eqs. (3.94-3.99).
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all times. The deviation of the digamma function from 1/2 on the other hand gives

− 1
π

ℑψ(1
2 + i

βa

2π
) = 1

π
ℑ

∞,
m=1

1
m + 1

2 + iβa
2π − 1

= − 1
π

∞,
m=1

βa

2π

1
(m − 1

2)2 + (βa)2

4π2

= −2βa
∞,

m=1

1
π2(2m − 1)2 + (βa)2 ,

(3.92)

where we again used the series representation of the digamma function. Eq. (3.91) and Eq. (3.92) ev-
idently agree with each other, term-by-term, i.e.

f(a) ≡ 1
2 − 1

π
ℑψ(1

2 + i
βa

2π
). (3.93)

Turning our focus towards transport: For the intra-band kernels (n ≡ m) one finds with the
polygamma function ψn′(z) of order n′ [404] evaluated at z = zkn = 1

2 + β
2π (Γkn + iakn)

K11(k, n) = Z2β

4π3Γ


ℜψ1(z) − βΓ

2π
ℜψ2(z)

�
, (3.94)

K12(k, n) = Z2β

4π3Γ


aℜψ1(z) − aΓβ

2π
ℜψ2(z) − Γ2β

2π
ℑψ2(z)

�
, (3.95)

K22(k, n) = Z2β

4π3Γ


(a2 + Γ2)ℜψ1(z) + β

2π
Γ

�
Γ2 − a2

#
ℜψ2(z) − β

π
aΓ2ℑψ2(z)

�
, (3.96)

KB
11(k, n) = Z3β

16π4Γ2


3ℜψ1(z) − 3Γβ

2π
ℜψ2(z) + Γ2β2

4π2 ℜψ3(z)
�
, (3.97)

KB
12(k, n) = Z3β

16π4Γ2


3aℜψ1(z) − 3aΓβ

2π
ℜψ2(z) − Γ2β

2π
ℑψ2(z) + aΓ2β2

4π2 ℜψ3(z) + Γ3β2

4π2 ℑψ3(z)
�
,

(3.98)

KB
22(k, n) = Z3β

16π4Γ2


(Γ2 + 3a2)ℜψ1(z) − βΓ(Γ2 + 3a2)

2π
ℜψ2(z) − βaΓ2

π
ℑψ2(z)

− β2Γ2(Γ2 − a2)
4π2 ℜψ3(z) + β2aΓ3

2π2 ℑψ3(z)
�
, (3.99)

where ψi is the ith-derivative of the digamma function ψ evaluated at z = 1
2 + β

2π (Γ + ia), with
a = ϵ − µ. Momentum k and band n indices of Z, Γ, and a have been omitted for “brevity”.
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The (non-magnetic) inter-band (n � m) kernels become

K11(k, n, m) = Z1Z2β

2π3 [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]×

×
'
ℜ

� �
(a1 − a2)2 + Γ2

2 − Γ2
1 − 2iΓ1(a2 − a1)

�
Γ2ψ1 (z1)

	

+ℜ
� �

(a2 − a1)2 + Γ2
1 − Γ2

2 − 2iΓ2(a1 − a2)
�

Γ1ψ1 (z2)
	� (3.100)

K12(k, n, m) = Z1Z2β

2π3 [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]×

×
'
ℜ

�
(a1 − iΓ1)

�
(a1 − a2)2 + Γ2

2 − Γ2
1 − 2i (a2 − a1) Γ1

�
Γ2ψ1(z1)

	

+ℜ
�

(a2 − iΓ2)
�
(a2 − a1)2 + Γ2

1 − Γ2
2 − 2i (a1 − a2) Γ2

�
Γ1ψ1(z2)

	� (3.101)

K22(k, n, m) = Z1Z2β

2π3 [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]×

×
'
ℜ

�
(a1 − iΓ1)2

�
(a1 − a2)2 + Γ2

2 − Γ2
1 − 2i (a2 − a1) Γ1

�
Γ2ψ1 (z1)

	

+ℜ
�

(a2 − iΓ2)2
�
(a2 − a1)2 + Γ2

1 − Γ2
2 − 2i (a1 − a2) Γ2

�
Γ1ψ1 (z2)

	�
,

(3.102)

where ψ1(z1/2) is evaluated at z1/2 = 1
2 + β

2π (Γ1/2 + ia1/2). These kernels represent a generalization
of Eqs. (3.94-3.96) and per Eq. (3.79) obey band-swapping symmetry Kab(k, n, m) ≡ Kab(k, m, n).

The magnetic inter-band (n � m) kernels evaluate to

KB
11(k, n, m) = Z1Z2

2Γ1Γ2
2β

2π4 ×
'
ℜ

� 1
Γ1

ψ1(z1) 1
[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

	
−ℜ

� β

4πΓ2
2
ψ2(z2) 1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

+ℑ
� 1

Γ2
2
ψ1(z2) (a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2
	

+ℜ
� 1

2Γ3
2
ψ1(z2) 1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	�

,

(3.103)
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KB
12(k, n, m) = Z1Z2

2Γ1Γ2
2β

2π4 ×
'
ℜ

� 1
Γ1

ψ1(z1) (a1 − iΓ1)
[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

	
−ℑ

� 1
2Γ2

2
ψ1(z2) 1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

−ℜ
� β

4πΓ2
2
ψ2(z2) (a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2]) (a2 − a1 + i(Γ1 − Γ2))
	

+ℑ
� 1

Γ2
2
ψ1(z2) (a2 − iΓ2)(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2
	

+ℜ
� 1

2Γ3
2
ψ1(z2) (a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	�

,

(3.104)

KB
22(k, n, m) = Z1Z2

2Γ1Γ2
2β

2π4 ×
'
ℜ

� 1
Γ1

ψ1(z1) (a1 − iΓ1)2

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2
	

−ℑ
� 1

Γ2
2
ψ1(z2) (a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

−ℜ
� β

4πΓ2
2
ψ2(z2) (a2 − iΓ2)2

[a2 − a1 − i(Γ1 + Γ2)] (a2 − a1 + i(Γ1 − Γ2))
	

+ℑ
� 1

Γ2
2
ψ1(z2) (a2 − iΓ2)2(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2
	

+ℜ
� 1

2Γ3
2
ψ1(z2) (a2 − iΓ2)2

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	�

,

(3.105)

where for clarity we deliberately did not expand the imaginary and real part expressions.

3.3.2.3 Analytic evaluation of the transport kernels

Before discussing the consequences of the lifetime smearing and its effects on the low temperature
behavior, we first give a detailed derivation of the transport kernels. The less technically involved
reader may skip this Section and jump straight to the discussion in Section 3.3.5.

In this detailed derivation we will restrict ourselves to the intra-band case of Eqs. (3.79-3.80). We
will “prove” the correctness of the inter-band expression by constructing the most general intra-band
limit. For brevity we will abridge the notation and drop the full momentum and band dependence of
the spectral function A(ω), quasi-particle weight Z, scattering rate Γ and energy a = ϵ − µ.
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Contour integration

Starting from the generalized transport kernels (a ∈ {1, 2}, b ∈ {1, 2}) from Eq. (3.79)

Kab(k, n) =
� ∞

−∞
dω ω(a+b−2)

�
−∂fF D

∂ω

%
A2(ω) (3.106)

we insert the Matsubara representation of the derivative of Fermi function

−∂fF D

∂ω
= lim

Ω→0+

fF D(ω) − fF D(ω + Ω)
Ω = lim

Ω→0+

1
β

,
m

1
Ω

� 1
iνm − ω

− 1
iνm − ω − Ω

%

as well as the (coherent part of the) spectral function

Akn(ω) = ZΓ
π

1
(ω − a)2 + Γ2

(3.107)

where the fermionic Matsubara frequencies are νm = (2m+1)π
β with m ∈ Z. The resulting expression

Kab(k, n) =
� ∞

−∞
dω

Z2Γ2

π2
ω(a+b−2)�

(ω − a)2 + Γ2
�2 ×

× 1
β

,
m

lim
Ω→0+

1
Ω

� 1
iνm − ω

− 1
iνm − ω − Ω

% (3.108)

can be abbreviated with

Iab(k, n; Ω; iνm) =
� ∞

−∞
dω

(ω − Ω)(a+b−2)�
(ω − a − Ω)2 + Γ2

�2
1

iνm − ω
(3.109)

as

Kab(k, n) = Z2Γ2

π2
1
β

lim
Ω→0+

'
1
Ω

,
m

(Iab(k, n; 0; iνm) − Iab(k, n; Ω; iνm))
�

(3.110)

For finite (positive) scattering rates, Γ > 0, Eq. (3.109) is an integral over a function with three
distinct poles in the complex plane: z = a + Ω + iΓ, z = a + Ω − iΓ, and z = iνm. This function
decays with z → ∞ as O(za+b−7) which for all considered values of a and b is stronger than O(z−2),
ensuring that any infinitely large arc in the complex plain will not contribute. Our desired integral,
located on the real axis, can therefore be extended to a closed loop and thus be expressed as a sum
of residues, see Fig. 3.26.
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ℜz

ℑz

R→∞

akn+Ω+ iΓkn

akn+Ω− iΓkn
⋮

iν−1
iν0

⋮

iνm

(a) I11 (k, n; Ω; iνm > 0)

ℜz

ℑz

R→∞
akn+Ω+ iΓkn

akn+Ω− iΓkn
⋮

iν−1
iν0

⋮

iνm

(b) I11 (k, n; Ω; iνm < 0)

Figure 3.26: Contour integration. a) Extending the desired integral along ω = ℜz (ℑz = 0),
the contour is closed via the lower half-plane for νm > 0 or b) closed via the upper half-plane for
νm < 0. The poles of the Fermi function are located on the imaginary axis z = iνm = iπ

β (2m + 1)
while the poles of the spectral function are located at z = akn + Ω ± iΓkn. Due to functional
decay f(z) = O(za+b−7) (see text) in the limit of R → ∞ the half-circles do not contribute. A
straight-forward residue evaluation (inside the closed contour) is thus sufficient to calculate the
initial integral.

By always choosing the half-circle opposite to the pole of the Matsubara frequency, see Fig. 3.26a
and Fig. 3.26b respectively, we can restrict the evaluation to exactly one (higher order) pole

Iab(k, n; Ω; iνm) =
�

C
dz

(z − Ω)(a+b−2)�
(z − a − Ω)2 + Γ2

�2
1

iνm − z

= − sign(νm) 2πi Resz=(a+Ω−i sign(νm)Γ)
(z − Ω)(a+b−2)�

(z − a − Ω)2 + Γ2
�2

1
iνm − z

.

(3.111)

Due to the different mathematical integration directions, positive and negative fermionic Matsubara
frequencies result in differing prefactor signs.
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Evaluating the residue at z = (a + Ω − i sign(νm)Γ) then results in the expressions

I11(k, n; Ω; iνm) = π

2Γ3

'
iΓ sign(νm)

[iνm − a − Ω + iΓ sign(νm)]2
+ 1

[iνm − a − Ω + iΓ sign(νm)]

�
, (3.112)

I12(k, n; Ω; iνm) = π

2Γ3

'
Γ2 + i (a + Ω) Γ sign(νm)

[iνm − a − Ω + iΓ sign(νm)]2
+ (a + Ω)

[iνm − a − Ω + iΓ sign(νm)]

�
− ΩI11(k, n; Ω; iνm)

, (3.113)

I22(k, n; Ω; iνm) = π

2Γ3

'
i (a + Ω)2 Γ sign(νm) + 2 (a + Ω) Γ2 − iΓ3 sign(νm)

[iνm − a − Ω + iΓ sign(νm)]2

+ Γ2 + (a + Ω)2

[iνm − a − Ω + iΓ sign(νm)]

�
− 2ΩI12(k, n; Ω; iνm) + Ω2I11(k, n; Ω; iνm).

.

(3.114)

Matsubara summations

The second step is to perform the Matsubara sums

Iab(k, n; Ω) = 1
β

∞,
m=−∞

Iab(k, n; Ω; iνm). (3.115)

Using, again, the series representation of the digamma and polygamma functions

ψ(z) = −γ +
∞,

n=1

� 1
n

− 1
n + z

%
(3.116a)

ψm>0(z) = (−1)m+1 m!
∞,

k=0

1
(z + k)m+1 , (3.116b)

the summations appearing in Eqs. (3.112-3.114) result in

1
β

∞,
m=−∞

1
iνm − a + iΓ sign(νm) = − 1

π
ℑψ(z) (3.117)

1
β

∞,
m=−∞

1
[iνm − a + iΓ sign(νm)]2

= − β

2π2 ℜψ1(z) (3.118)

1
β

∞,
m=−∞

sign(νm)
[iνm − a + iΓ sign(νm)]2

= − iβ

2π2 ℑψ1(z) (3.119)

1
β

∞,
m=−∞

1
[iνm − a + iΓ sign(νm)]3

= β2

8π2 ℑψ2(z) (3.120)
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1
β

∞,
m=−∞

sign(νm)
[iνm − a + iΓ sign(νm)]3

= − iβ2

8π3 ℜψ2(z) (3.121)

with z = 1
2 + β

2π (Γ + ia). Then, the transport integrals simplify to

I11(k, n; Ω) = π

2Γ3


βΓ
2π2 ℑψ1

�
z + iβΩ

2π

%
− 1

π
ℑψ

�
z + iβΩ

2π

%�
(3.122)

I12(k, n; Ω) = π

2Γ3

'
− Γ2β

2π2 ℜψ1

�
z + iβΩ

2π

%
+ (a + Ω) Γβ

2π2 ℑψ1

�
z + iβΩ

2π

%

− (a + Ω)
π

ℑψ

�
z + iβΩ

2π

% �
− ΩI11(k, n; Ω)

(3.123)

I22(k, n; Ω) = π

2Γ3

'
(a + Ω)2 Γβ − Γ3β

2π2 ℑψ1

�
z + iβΩ

2π

%
− 2 (a + Ω) Γ2β

2π2 ℜψ1

�
z + iβΩ

2π

%

− Γ2 + (a + Ω)2

π
ℑψ

�
z + iβΩ

2π

% �
− 2ΩI12(k, n; Ω) + Ω2I11(k, n; Ω).

(3.124)

Dynamic limit

Taylor expanding the frequency-dependent di- and polygamma (m > 0) functions around z

ψ

�
z + iβΩ

2π

%
= ψ (z) + iβΩ

2π
ψ1 (z) + O

�
Ω2

#
(3.125a)

ψm

�
z + iβΩ

2π

%
= ψm (z) + iβΩ

2π
ψm+1 (z) + O

�
Ω2

#
(3.125b)

and evaluating the limit

Kab(k, n) = Z2Γ2

π2 lim
Ω→0+

1
Ω [Iab(k, n; 0) − Iab(k, n; Ω)] (3.126)

we finally arrive at the intra-band equations

K11(k, n) = Z2β

4π3Γ


ℜψ1(z) − βΓ

2π
ℜψ2(z)

�
, (3.127)

K12(k, n) = Z2β

4π3Γ

'
aℜψ1(z) − aΓβ

2π
ℜψ2(z) − Γ2β

2π
ℑψ2(z)

�
, (3.128)

K22(k, n) = Z2β

4π3Γ

'
(a2 + Γ2)ℜψ1(z) + β

2π
Γ

�
Γ2 − a2

#
ℜψ2(z) − β

π
aΓ2ℑψ2(z)

�
. (3.129)
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The equivalent calculation is easily performed for the magnetic kernel functions

KB
ab(k, n) =

� ∞

−∞
dω ω(a+b−2)

�
−∂f

∂ω

%
A3

kn(ω) (3.130)

which only differ from their non-magnetic counterparts by an additional spectral function. The
integrals

IB
ab(k, n; Ω; iνm) =

� ∞

−∞
dω

(ω − Ω)(a+b−2)�
(ω − a − Ω)2 + Γ2

�3
1

iνm − ω
(3.131)

evaluate to

IB
11(k, n; Ω; iνm) = iπ

8Γ5

'
2iΓ2

[iνm − a − Ω + iΓ sign(νm)]3
+ 3Γ sign(νm)

[iνm − a − Ω + iΓ sign(νm)]2

+ −3i

[iνm − a − Ω + iΓ sign(νm)]

�
,

(3.132)

IB
12(k, n; Ω; iνm) = iπ

8Γ5

'
2i (a + Ω) Γ2 + 2Γ3 sign(νm)
[iνm − a − Ω + iΓ sign(νm)]3

+ 3 (a + Ω) Γ sign(νm) − iΓ2

[iνm − a − Ω + iΓ sign(νm)]2

+ −3i (a + Ω)
[iνm − a − Ω + iΓ sign(νm)]

�
− ΩIB

11(k, n; Ω; iνm),
(3.133)

IB
22(k, n; Ω; iνm) = iπ

8Γ5

'
2i (a + Ω)2 Γ2 + 4 (a + Ω) Γ3 sign(νm) − 2iΓ4

[iνm − a − Ω + iΓ sign(νm)]3

+ −2i (a + Ω) Γ2 + Γ3 sign(νm) + 3 (a + Ω)2 Γ sign(νm)
[iνm − a − Ω + iΓ sign(νm)]2

+ −iΓ2 − 3i (a + Ω)2

[iνm − a − Ω + iΓ sign(νm)]

�
− 2ΩIB

12(k, n; Ω; iνm) + Ω2IB
11(k, n; Ω; iνm).

(3.134)

Performing the Matsubara sums and taking the dynamical limit, the transport kernels results in the
magnetic transport kernels

KB
11(k, n) = Z3β

16π4Γ2

'
3ℜψ1(z) − 3Γβ

2π
ℜψ2(z) + Γ2β2

4π2 ℜψ3(z)
�

, (3.135)

KB
12(k, n) = Z3β

16π4Γ2

'
3aℜψ1(z) − 3aΓβ

2π
ℜψ2(z) − Γ2β

2π
ℑψ2(z) + aΓ2β2

4π2 ℜψ3(z) + Γ3β2

4π2 ℑψ3(z)
�
,

(3.136)
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KB
22(k, n) = Z3β

16π4Γ2

'
(Γ2 + 3a2)ℜψ1(z) − βΓ(Γ2 + 3a2)

2π
ℜψ2(z) − βaΓ2

π
ℑψ2(z)

− β2Γ2(Γ2 − a2)
4π2 ℜψ3(z) + β2aΓ3

2π2 ℑψ3(z)
�
.

(3.137)

3.3.2.4 Inter- to intra-band limit

Due to the number of involved terms, we only show the Kubo derivation for the intra-band transport
kernels. When considering the inter-band form of Eqs. (3.100-3.102) one has to instead consider the
explicit evaluation of two residues, located at z1 = a1 ± iΓ1 and z2 = a2 ± iΓ2 in the complex plane, as
two distinct spectral functions contribute to the integrals (3.79-3.80). For brevity, we only illustrate
the consistency between all provided inter- and intra-band formulas when taking the degenerate
limit. Later on, we will see that this “trivial” property has critical consequences on approximations
constructed from our new Kubo equations.

The compliance with this limit is especially important when evaluating the inter-band kernels numer-
ically. To this end one has to do thorough checks of the involved energies a1/2 and scattering rates
Γ1/2: If these parameters are too close to each other in the complex plane, the numerical evaluation
becomes unstable.

This is apparent when evaluating, e.g., K11 for a constant scattering rate Γ = Γ1 = Γ2 in the vicinity
of a band crossing, see Eq. (3.100):

K11(k, n, m) = Z1Z2β

2π3(a1 − a2)2 [(a1 − a2)2 + 4Γ2]× (3.138)

×ℜ
� �

(a1 − a2)2 − 2iΓ(a2 − a1)
�

Γψ1 (z1) +
�
(a2 − a1)2 − 2iΓ(a1 − a2)

�
Γψ1 (z2)




which evaluates to something that is close to “0/0”. Naturally this numerical problem can be circum-
vented by instead evaluating the intra-band limit for these edge cases.

To “prove” the consistency, we construct the most general limit via a vectorial difference of the
contributing poles in the upper half of the complex plane stemming from the spectral functions of
Eq. (3.79):

z = (a2 + iΓ2) − (a1 + iΓ1) ≡ ReiΦ (3.139)
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We can now express the “2” variables via the “1” variables

a2 = a1 + R cos(Φ) (3.140a)

Γ2 = Γ1 + R sin(Φ) (3.140b)

ψ1(z2) = ψ1

�1
2 + β

2π
(Γ1 + ia1) + β

2π
R sin(Φ) + i

β

2π
R cos(Φ)

%
. (3.140c)

and expand Eq. (3.140c) around R = 0:

ψ1

�1
2 + β

2π
(Γ2 + ia2)

%
=

ψ1

�1
2 + β

2π
(Γ1 + ia1)

%
+ ψ2

�1
2 + β

2π
(Γ1 + ia1)

%
βR

2π
(sin(Φ) + i cos(Φ)) + O(R2)

(3.141)

Setting Z1 = Z2 = Z, a1 = a, Γ1 = Γ, and expanding K11 then results in

K11(k, n, m) = Z2β

2π3R2 [R2 + 4Γ2 + 4ΓR sin(Φ)]×

×
'
ℜ

� �
R2 + 2ΓR sin(Φ) − 2iΓR cos(Φ)

�
(Γ + R sin(Φ))ψ1 (z)

	
+ℜ

� �
R2(cos2(Φ) − sin2(Φ)) − 2ΓR sin(Φ) + 2iΓR cos(Φ) + 2iR2 sin(Φ) cos(Φ)

�
Γ×

×

ψ1(z) + ψ2(z)βR

2π
(sin(Φ) + i cos(Φ)) + O(R2)

� 	�
.

(3.142)

To lowest order, the prefactor term scales with O(R−2), so in order to recover all non-vanishing terms
we have to check the square bracket for terms up to O(R2):

K11(k, n, m) =
'

Z2β

8π3R2Γ2 + O(R−1)
�

× (3.143)

×
'
R

�
2Γ2 sin(Φ)ℜψ1(z) + 2Γ2 cos(Φ)ℑψ1(z) − 2Γ2 sin(Φ)ℜψ1(z) − 2Γ2 cos(Φ)ℑψ1(z)

	
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

≡0

+R2
�

Γℜψ1(z) + 2Γ sin2(Φ)ℜψ1(z) + 2Γ cos(Φ) sin(Φ)ℑψ1(z)

+ (cos2(Φ) − sin2(Φ))Γℜψ1(z) − 2 sin(Φ) cos(Φ)Γℑψ1(z)

+ −2Γ2 sin2(Φ) β

2π
ℜψ2(z) + 2Γ2 sin(Φ) cos(Φ) β

2π
ℑψ2(z)

− 2Γ2 cos(Φ) sin(Φ) β

2π
ℑψ2(z) − 2Γ2 cos2(Φ) β

2π
ℜψ2(z)

	
+ O(R3)

�
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As expected, the terms scaling with O(R) cancel exactly while the O(R2) terms neatly recover the
intra-band expression

K11(k, n, n) = lim
R→0+

K11(k, n, m) = Z2β

8π3Γ2 × (3.144)

×
'
ℜψ1(z)

�
Γ + 2Γ sin2(Φ) + Γ(cos2(Φ) − sin2(Φ))

�
����������������������������������������������������������������������������������������������������������������

≡2Γ

+ℑψ1(z) [2Γ cos(Φ) sin(Φ) − 2Γ sin(Φ) cos(Φ)]����������������������������������������������������������������������������������������������������
≡0

+ ℜψ2(z)

−2Γ2 sin2(Φ) β

2π
− 2Γ2 cos2(Φ) β

2π

�
��������������������������������������������������������������������������������������������������

≡− Γ2β
π

+ℑψ2(z)

2Γ2 sin(Φ) cos(Φ) β

2π
− 2Γ2 cos(Φ) sin(Φ) β

2π

�
��������������������������������������������������������������������������������������������������������������������������������

≡0

�
.

= Z2β

4π3Γ

'
ℜψ1(z) − βΓ

2π
ℜψ2(z)

�
The other, non-magnetic, kernels follow in a similar fashion, see Appendix of Ref. [11]. For the
inter-band magnetic kernels, the polygamma function has to be expanded to the third order

ψ1

�1
2 + β

2π
(Γ2 + ia2)

%
= ψ1

�1
2 + β

2π
(Γ1 + ia1)

%
+ ψ2

�1
2 + β

2π
(Γ1 + ia1)

%
βR

2π
(sin(Φ) + i cos(Φ)) +

+ ψ3

�1
2 + β

2π
(Γ1 + ia1)

%
β2R2

8π2 (sin(Φ) + i cos(Φ))2 + O(R3).

(3.145)

All generic limits have been also confirmed via Mathematica. The relevant notebook files can be
verified at https://github.com/mpickem/lrtclimit.

3.3.3 Semiclassical Boltzmann limit
Besides providing us with expressions that can be evaluated with arbitrary accuracy at any given
temperature, the expressions Eq. (3.94-3.105) can be exploited to derive the semiclassical Boltzmann
transport equations.

By expanding the polygamma functions of order n around Γ = 0

ψn

�1
2 + β

2π
(Γ + ia)

%
= ψn

�1
2 + iβa

2π

%
+ βΓ

2π
ψn+1

�1
2 + iβa

2π

%
+ O

�
Γ2

#
, (3.146)

https://github.com/mpickem/lrtclimit
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and recognizing that (see Section 3.3.2.2 above)

fFD(a) = 1
2 − 1

π
ℑψ

�1
2 + iβa

2π

%
, (3.147a)

−∂afFD(a) = β

2π2 ℜψ1

�1
2 + iβa

2π

%
. (3.147b)

The Boltzmann intra-band expressions are then recovered from the expansions as the leading terms
in the scattering rate Γ.
The limit for the K11 kernel reads explicitly

K11(k, n) = Z2β

4π3Γ


ℜψ1

�1
2 + β

2π
(Γ + ia)

%
− βΓ

2π
ℜψ2

�1
2 + β

2π
(Γ + ia)

% �
= Z2β

4π3Γ


ℜψ1

�1
2 + iβa

2π

%
����������������������������������������

−2π2

β f ′(a)

+O(β2Γ2)
�

(3.148)

which ignores terms of the order (βΓ)2 and higher. Our quantum mechanical formalism thus contains
the semi-classical description as the coherent (infinite lifetime) limit.

KBoltzmann
11 (k, n) = − Z2

2πΓ∂afFD(a), (3.149)

KBoltzmann
12 (k, n) = −aZ2

2πΓ∂afFD(a), (3.150)

KBoltzmann
22 (k, n) = −

�
a2 + Γ2$

Z2

2πΓ ∂afFD(a), (3.151)

KBoltzmann,B
11 (k, n) = − 3Z3

8π2Γ2 ∂afFD(a), (3.152)

KBoltzmann,B
12 (k, n) = − 3aZ3

8π2Γ2 ∂afFD(a), (3.153)

KBoltzmann,B
22 (k, n) = −

�
3a2 + Γ2$

Z3

8π2Γ2 ∂afFD(a). (3.154)

Let us note that the two Boltzmann kernels describing heat-current-heat-current correlation functions
KBoltzmann,(B)

22 contain terms beyond the leading 1/Γ (1/Γ2) order, see Eqs. (3.151,3.154). These
higher-order terms are necessary, if one wants to ensure that the Boltzmann inter-band kernels reduce
consistently to the Boltzmann intra-band expressions in the limit of degenerate states (with the same
lifetime).

If the Boltzmann approximation only takes into account the leading terms, the limit a1 → a2; Γ1 → Γ2

will yield inconsistent results. To our knowledge this ensemble of inter-band Boltzmann expressions



Chapter 3.3: Thermoelectric transport coefficients generated by intrinsic life times 261

has not been derived previously:

KBoltzmann
11 (k, n, m) = − Z1Z2

π [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]×

×
' �

(a1 − a2)2 + Γ2
2 − Γ2

1

�
Γ2∂a1fFD(a1)

+
�
(a2 − a1)2 + Γ2

1 − Γ2
2

�
Γ1∂a2fFD(a2)

� (3.155)

KBoltzmann
12 (k, n, m) = − Z1Z2

π [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]×

×
' ��

(a1 − a2)2 + Γ2
2 − Γ2

1

�
a1 − 2Γ2

1(a1 − a2)
	

Γ2∂a1fFD(a1)

+
��

(a2 − a1)2 + Γ2
1 − Γ2

2

�
a2 − 2Γ2

2(a2 − a1)
	

Γ1∂a2fFD(a2)
� (3.156)

KBoltzmann
22 (k, n, m) = − Z1Z2

π [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]×

×
' ��

(a1 − a2)2 + Γ2
2 − Γ2

1

�
(a2

1 − Γ2
1) − 4Γ2

1a1(a1 − a2)
	

Γ2∂a1fFD(a1)

+
��

(a2 − a1)2 + Γ2
1 − Γ2

2

�
(a2

2 − Γ2
2) − 4Γ2

2a2(a2 − a1)
	

Γ1∂a2fFD(a2)
� (3.157)

KBoltzmann,B
11 (k, n, m) = − Z1Z2

2
2π2Γ2

×

×
'
ℜ

� 2Γ3
2

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2
	

∂a1fFD(a1)

+ ℑ
� 2Γ1Γ2(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2
	

∂a2fFD(a2)

+ ℜ
� Γ1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

∂a2fFD(a2)
�

(3.158)
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KBoltzmann,B
12 (k, n, m) = − Z1Z2

2
2π2Γ2

×

×
'
ℜ

� 2Γ3
2(a1 − iΓ1)

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2
	

∂a1fFD(a1)

− ℑ
� Γ1Γ2

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

∂a2fFD(a2)

+ ℑ
� 2Γ1Γ2(a2 − iΓ2)(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2
	

∂a2fFD(a2)

+ ℜ
� Γ1(a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

∂a2fFD(a2)
�

(3.159)

KBoltzmann,B
22 (k, n, m) = − Z1Z2

2
2π2Γ2

×

×
'
ℜ

� 2Γ3
2(a1 − iΓ1)2

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2
	

∂a1fFD(a1)

− ℑ
� 2Γ1Γ2(a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

∂a2fFD(a2)

+ ℑ
� 2Γ1Γ2(a2 − iΓ2)2(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2
	

∂a2fFD(a2)

+ ℜ
� Γ1(a2 − iΓ2)2

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]
	

∂a2fFD(a2)
�

(3.160)

To illustrate the problem of an inconsistent intra-band limit, we compare the evaluation of Eq. (3.155)
to the “naive” inter-band expression, where only the leading Γ-terms are considered

KBoltzmann leading
11 (k, n, m) = − Z1Z2

π [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]×

×
' �

(a1 − a2)2
�

Γ2∂a1fFD(a1) +
�
(a2 − a1)2

�
Γ1∂a2fFD(a2)

� (3.161)

in Fig. 3.27, where we employed a1 = 0, Γ1 = 2 · 10−4eV and varied a2 and Γ2 around these fixed
values. Note that we restricted the heatmap to ±2% around the intra-band expression of Eq. (3.149).

When all necessary leading and higher order terms are considered, see Fig. 3.27a, approaching
the degenerate state via Γ2 → Γ1 and a2 → a1 becomes directional-independent: irrespective of how
the limit is performed, the inter-band value approaches the intra-band value in a smooth fashion. If
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only the leading orders are considered, see Fig. 3.27b, one obtains a directional dependence

KBoltzmann leading
11 (k, n, m → n) = Z1Z2

2πΓ cos(Θ)2 (3.162)

when employing the same vectorial difference as used in Eq. (3.139) and taking the R → 0+ limit.
In the leading order formulation of Eq. (3.161) the intra-band limit to Eq. (3.149) is thus only valid
if both scattering rates are identical Γ1 = Γ2 and the limit is taken with respect to the energies
(Θ ∈ {0, π}). Despite the agreement in this specific limit, the two expression differ vastly away from
the degenerate state, see Fig. 3.27: Setting a1 = a2 and approaching the center via Γ2 → Γ1, the
leading order kernel does not seem to approach the white-shaded degenerate limit at all. Further,
even when moving a sizable distant away from the center, considerable differences can be noticed.
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Figure 3.27: Numerical evaluation of the inter-band limit. The heatmaps show the eval-
uation of the Boltzmann inter-band kernels with Γ1 = 2 · 10−4eV and a1 = 0 of a) Eq. (3.155)
and b) Eq. (3.161). Approaching the degenerate state in the centre (Γ2 = Γ1, a2 = a1), we find a
directional independence in the former and a strong directional dependence in the latter.

Following these considerations, the inter-band Boltzmann kernels of Eqs. (3.155-3.160) contain most
terms of the Kubo kernels of Eqs. (3.100-3.105) and a reduction in complexity is nearly impossible.
Furthermore, only when considering non-intuitive higher-order-in-Γ contributions in Eqs. (3.151,3.154)
do we then also find compatibility with the above inter-band kernels. The relevant Mathematica
notebooks showing this analytic connection (for all six inter-band quantities), can be also found at
https://github.com/mpickem/lrtclimit.

https://github.com/mpickem/lrtclimit
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3.3.4 Transition-matrix elements
To finalize the discussion of the Onsager coefficients, a few comments on the transition-matrix elements
are in order.

3.3.4.1 Dipole optical elements
With band-theory (for WIEN2k’s implementation see Ref. [360]), the coupling elements in the eval-
uation of the Onsager coefficients Eqs. (3.77-3.78) can be calculated via the corresponding Fermi
velocities (matrix elements of the momentum operator)

vα
knn′ = 1

m
⟨kn′|Pα|kn⟩ = vα∗

kn′n (3.163)

with α indicating a Cartesian direction, m the electron mass, and ⟨r|kn⟩ = χkn(r) a band-momentum
basis. The amplitude of optical dipole (q = 0) transitions is then given by

Mαβ(k, n, m) = vα∗
knmvβ

kmn (3.164)

3.3.4.2 Peierls approximation
In tight-binding or model settings, in which there is no access to wavefunctions, the above matrix
elements cannot be calculated. Instead, one couples the electromagnetic vector potential directly to
the lattice fermions using the Peierls substitution approach [234]. Following this (approximate) proce-
dure [64, 359, 362, 405], Fermi velocities are momentum-derivatives of the (one-particle) Hamiltonian.
Performing the derivative in the band-basis, there are only intra-band velocities, vα

knm ∝ δnmvα
kn, for

which
vα

kn = 1
ℏ

∂kαεn(k), (3.165)

and

Mαβ(k, n, n) = vα
knvβ

kn. (3.166)

In a more general framework [384, 359] also inter-band transitions can be included in a Peierls-like
fashion.

Using the band-curvatures cαβ
k = 1/ℏ ∂kα∂kβ

ε(k), also the matrix elements for magnetic quantities
can be derived. One finds [386]

MB,αβγ(k, n, n) = εγijv
α
kncβj

knvi
kn (3.167)

with εijk the Levi-Civita symbol in three dimensions.
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Clearly, however, taking momentum-derivatives does not commute with a general basis transforma-
tion U : ∂kU †(k)H(k)U(k) � U †(k)(∂kH(k))U(k). Therefore, transport properties using the Peierls
approach will be basis-dependent [405]. One can show [362] that the Peierls approximation is best
(closest to the true dipole element) the more localized the basis is. In the tight-binding and Wannier
mode, we therefore perform the momentum-derivative in the local/Wannier basis χRl(r) = ⟨r|Rl⟩:

vα
kll′ = 1

ℏ
∂kαH ll′(k) − i(ρα

l′ − ρα
l )H ll′(k) (3.168)

where H(k) is the Fourier transform of H(R). In this generalized Peierls approach [362], the second
term arises for unit-cells with more than one atom, with intra-cell coordinates ρl of the atom hosting
orbital l. This extra-term in particular assures that an arbitrary extension of the unit-cell (conven-
tional cell or equivalent supercells) gives the same result as calculations for the primitive unit-cell.
Velocities evaluated in the local basis (orbitals indexed with l) are then rotated into the band-basis
(band-index n). Because of the mentioned non-commutation of momentum-derivative and basis-
transformation, the generalized Peierls approach may yield inter-band transitions à la Eq. (3.164)
that are absent in Eq. (3.165).

3.3.5 Discussion
The general feature that can be observed when treating thermal (β) and lifetime (Γ) smearing on
equal footing is a departure from a transport description with decoupled energy scales. Within the
Boltzmann approximation, see Section 3.3.3, the kernels scale “trivially” with the (inverse) lifetime
and their selection window is determined purely by the thermal fluctuations. Here instead, we find an
overarching description with highly non-trivial prefactors and functional arguments which no longer
act independently from one another.

The inclusion of finite lifetimes in Eqs. (3.94)-(3.99) leads to

(i) An effectively different statistic: the Fermi function is replaced with a digamma function in
which thermal broadening is supplemented by an energy smearing Γ corresponding to finite
lifetimes (cf. Fig. 3.25).

(ii) All transport kernels have, beyond the explicitly leading terms (e.g., 1/Γ ℜΨ1 in K11), contri-
butions from higher order polygamma functions Ψn.

While the Eqs. (3.94-3.99) are quite involved, they are, in fact, on par with Boltzmann approaches
employing the relaxation time approximation in terms of numerical complexity and evaluation speed.
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In fact, many Boltzmann codes [406, 407, 408, 409, 410, 411, 412] could readily upgrade their electronic
transport capabilities by switching to the kernels presented here.

3.3.5.1 Polygamma functions

The Polygamma functions, naturally occurring through the required (internal, fermionic) Matsubara
summations (see Section 3.3.2.3), are the (m+1)th derivative of the logarithm of the Gamma function

ψm(z) = dm+1

dzm+1 ln Γ(z). (3.169)

The digamma function (m = 0) and its higher order derivatives are thus

ψ(z) = ψ0(z) = Γ′(z)
Γ(z) (3.170a)

ψm>0 = dm

dzm
ψ(z). (3.170b)

Sometimes helpful in numerical libraries, the polygamma functions (m > 0) can be also connected to
the Hurwitz zeta function

ζ(s, a) =
∞,

n=0

1
(n + a)s

(3.171)

(Riemann zeta function: s = 1) via

ψm(z) = (−1)m+1m!ζ(m + 1, z). (3.172)

Through the connection to the Gamma function, the polygamma functions are holomorphic every-
where except at non-positive integers. There, a pole of order m+1 occurs, see Eq. (3.171). Evaluating
the polygamma functions at z = 1/2 + β/(2π)(Γ + ia) avoids any problematic regions in the complex
plane and all functions are well-behaved.

In order to evaluate the low temperature behavior we exploit the Taylor expansion around z = ∞ of
the digamma function

Ψ
�1

2 + z

%
= ln(z) + 1

24z2 − 7
960z4 + O

�
z−6

#
, (3.173)

and all higher order polygamma functions

Ψ1

�1
2 + z

%
= 1

z
− 1

12z3 + 7
240z5 + O

�
z−7

#
, (3.174a)

Ψ2

�1
2 + z

%
= − 1

z2 + 1
4z4 − 7

48z6 + O
�
z−8

#
, (3.174b)

Ψ3

�1
2 + z

%
= 2

z3 − 1
z5 + 7

8z7 + O
�
z−9

#
. (3.174c)
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Eqs. (3.94-3.99) then become

K11 = Z2

π2
Γ2

(a2 + Γ2)2

'
1 + 2π2

3
5a2 − Γ2

(a2 + Γ2)2 (kBT )2 + O(T 4)
�

(3.175)

K12 = 4Z2

3
aΓ2

(a2 + Γ2)3

'
(kBT )2 + 7π2

5
5a2 − 3Γ2

(a2 + Γ2)2 (kBT )4 + O(T 6)
�

(3.176)

K22 = Z2

3
Γ2

(a2 + Γ2)2

'
(kBT )2 + 14π2

5
5a2 − Γ2

(a2 + Γ2)2 (kB)4 + O(T 6)
�

(3.177)

KB
11 = Z3

π3
Γ3

(a2 + Γ2)3

'
1 + π2 7a2 − Γ2

(a2 + Γ2)2 (kBT )2 + O(T 4)
�

(3.178)

KB
12 = 2Z3

π

aΓ3

(a2 + Γ2)4

'
(kBT )2 + 28π2

15
7a2 − 3Γ2

(a2 + Γ2)2 (kBT )4 + O(T 6)
�

(3.179)

KB
22 = Z3

3π

Γ3

(a2 + Γ3)3

'
(kBT )2 + 21π2

5
7a2 − Γ2

(a2 + Γ2)2 (kBT )4 + O(T 6)
�

(3.180)

Therefore for any limT →0 Γ(T ) > 0 the resistivity as well as the Hall coefficient will saturate. Fur-
thermore the Seebeck coefficient, the Nernst coefficient as well as the thermal conductivity will tend
to 0 in a linear fashion, cf. Section 3.3.1.

3.3.5.2 Quasi-particle renormalizations

The above equations also allow for a simple symmetry analysis. For instance, we see that K12 is
odd with respect to a. As a consequence, electron and hole contributions to the Seebeck coefficient,
Eq. (3.61), have opposite signs. KB

11, instead, is even in a. Therefore, the Hall coefficient RH ,
Eq. (3.64), actually does not distinguish electron and hole contributions through their energies (the
sign of a), but thanks to the sign of the dispersion’s curvature entering the matrix element MB

in Eq. (3.167). Manifestly, the above kernel functions are far more complicated than the familiar
expressions of the semi-classical Boltzmann approach in the constant relaxation time approximation
(cf., e.g., Refs. [363, 406, 407, 408, 413]). However, the latter are recovered from the above formulae
as the leading terms in the limit of infinite lifetimes, see Section 3.3.3. Besides the broadening effects,
we also derived renormalization factors that are commonly not included in Boltzmann approaches.

The kernel expressions in Sec. 3.3.2, based on the self-energy linearization Eq. (3.81), clearly exhibit
a non-trivial dependency on the quasi-particle renormalization: Z-factors emerge, both, as part of
the overall prefactor (à la Boltzmann) as well as in the argument of the polygamma functions via a
renormalization of the energy (a) and the scattering (Γ):
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Consider a metallic system with bare dispersion ε0(k) and a bare scattering rate Γ0 at temperatures
where the Boltzmann approximation is accurate. If the same quasi-particle renormalizations is applied
to all states, a partial cancellation of the prefactors in Eqs. (3.149-3.154) occurs due to renormalization
of the scattering rate Γ = ZΓ0. The Boltzmann response kernels then verify

K(B)
ij ∝ Zai+j−2∂afFD(a). (3.181)

The conductivity kernel (i = j = 1) that is even in the energy a = Zϵ0 is to good approximation
unaffected by Z due to a compensation of two effects: Z simultaneously decreases the weights of the
selected states, and pushes more states into the (thermal) selection window through band-narrowing.52

Odd kernels (L12, LB
12) on the other hand distinguish between electron and hole contributions via

the sign of a. Through this differentiation the overall summation will be tilted to either direction
depending on the asymmetry of the system. Energy renormalization in this context then can be
thought of as an amplification of this asymmetry, increasing the non-interacting signal53

K(B)
12 (Z) ∝ 1

Z
K(B)

12 (Z = 1) (3.182)

providing a correlation mechanism to boost the Seebeck [414, 415] and Nernst coefficient, realized,
e.g., in heavy-fermion systems [416]. The above arguments in general do not hold for insulating
systems where we find a more nuanced interplay of band gap, energies, chemical potential and quasi-
particle renormalization. At the very least Z < 1 will result in a band gap reduction ∆ = Z∆0, which
affects thermal activation, and hence conduction, exponentially.

52 This is exact for 0 < Z ≤ 1, in the limit of infinite bandwidth and a flat density of states. In realistic scenar-
ios, however, there can be a notable Z-dependence for strong renormalizations and narrow band-widths, elevated
temperatures, or a strongly energy-dependent density of states.
53 By assuming a linearized density of states centered around the thermal selection window, D(ε) = D0 + αε, it is
apparent that only the linear (constant) term is responsible for finite values of kernels that are odd (even) in the
energy a. Quasi-particle renormalizations drop out for the constant term and amplify the effect of the linear term,
leading to the increase of 1

Z
of Eq. (3.182).
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3.4 Many-body transport phenomena in semiconductors

◦ This Section is based on the results published in “Prototypical many-body transport phe-
nomena in semiconductors” by Matthias Pickem, Emanuele Maggio, and Jan M. Tomczak
[9]. Adopted text passages have been marked accordingly.

◦ In this Section we focus purely on the numerical analysis and characterization of the trans-
port tensors in gapped systems (semiconductors). The present results were computed with
LinReTraCe version 1.0. Here, the aforementioned sign and pre-factor fixes have been
adopted and the relevant figures have been adjusted accordingly.

◦ The implementation details and applications beyond “simple” semiconductors of
LinReTraCe are discussed in Section 3.5.

Here, we establish the prototypical signatures of finite electronic lifetimes in transport properties
of (narrow-gap) semiconductors [212, 363]. To this end, we build on the Kubo methodology of
Section 3.2, based on Ref. [7], which captures (in)coherence effects beyond the reach of semi-classical
Boltzmann approaches [406, 407, 408], while incurring a comparable numerical cost. Our theory
reveals that the scattering is a relevant energy scale: Through its interplay with the gap-energy,
a rich temperature profile emerges in all observables. In this scenario, extrinsic effects only enter
indirectly, by limiting the lifetimes of intrinsic carriers. Previous semi-classical techniques—where
scattering merely scales the amplitude of conduction—often require explicit in-gap states to provide
additional carriers so as to mimic the experimental temperature dependence.
We highlight this insight in Fig. 3.28 for a simple two-band modeling of the colossal-thermopower
material FeSb2 [214, 300, 417, 418]. The large magnitude of its S and ν originates from the phonon-
drag effect [331, 419, 420, 421, 422, 423]54. Here, we focus on the characteristic temperatures that
mark features across various observables [214]: For instance, inflection points in the resistivity ρ

and the Seebeck coefficient S correlate with maxima in the Hall and Nernst coefficient, RH , ν.
This intriguing—but by no means uncommon [212, 424, 425]—temperature profile, was previously
advocated to derive from extrinsic in-gap states [421, 422, 423, 426, 427, 428].

54 The phonon-enhancement of the electron diffusion is expected to be smooth in temperature, i.e., it does not introduce
characteristic features. Further, a suppression of the phonon-drag in polycrystalline samples yields Seebeck coefficients
[419, 420, 429, 430] comparable to our modelling.
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Figure 3.28: Prototypical transport in semiconductors. Comparing an asymmetric
two-band model, ϵ0

kn = − -
i=x,y,z 2tn cos (ki) + (−1)n(6tn+∆0/2), (α = |t2/t1| = 1.06), with

t1=250meV, t2=−265meV, bandgap ∆0 = 60 meV; effective mass Z−1 = 2, scattering rate Γ(T ) =
(5 · 10−5+10−7/K2 · T 2) eV to experiments on FeSb2 [214] (insets): a) resistivity, coefficients of b)
Seebeck, c) Hall, and d) Nernst without impurity in-gap states. Vertical lines mark characteristic
temperatures (from left to right): Saturation onset of the Hall coefficient T ∗

RH
and the resistivity

T ∗
ρ , the maximal Seebeck coefficient T max

S , onset of second activated regime T µ
∆, and the high-

temperature Nernst peak T µ
ν . Dashed black (grey) lines show Boltzmann results using a chemical

potential, µψ (µF D), that accounts for lifetime and thermal (only thermal) broadening.

Here, instead, we reproduce all qualitative temperature features in FeSb2 in the absence of explicit
in-gap levels, exclusively by endowing the intrinsic valence and conduction carriers with a finite scat-
tering rate, Γ(T ) = Γ0 + γT 2. Our findings establish a new phenomenology for transport properties
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in semiconductors: Below a temperature T ∗
ρ , ρ saturates [7] instead of growing exponentially (see

the Boltzmann result (dashed line) in Fig. 3.28). RH also saturates (below T ∗
RH

< T ∗
ρ ), indicating

that residual scattering leads to a finite density of states even at absolute zero. Finite lifetimes also
mend the violation of the 3rd law of thermodynamics of Boltzmann’s relaxation time approxima-
tion: Instead of diverging, the Seebeck coefficient S vanishes linearly for T → 0. Combined to the
powerfactor S2σ and the figure of merit zT , our findings have practical relevance for thermoelectric
applications: In narrow-gap semiconductors, these quantities exhibit large values at intermediate to
low temperatures when scattering processes are properly accounted for. Material surveys based on
Boltzmann approaches for coherent band structure instead fail to even qualitatively describe S2σ and
zT . Finally, in congruence with experiment, a sharp low-T feature emerges in the Nernst coefficient
that, again, has no analogue in the Boltzmann treatment.

Looking at the available experimental literature, we find a number of narrow-gap semiconductors [212]
that exhibit qualitatively similar temperature profiles as the ones displayed in Fig. 3.28. For instance,
other marcasite compounds (FeAs2, RuSb2 [424, 431, 432, 433], CrSb2 [434]), silicides (FeSi [320,
435, 436], RuSi [437, 438, 439]), Heusler systems (e.g., Fe2VAl [440, 441, 442, 443, 444]), other
intermetallic compounds [445] (e.g., FeGa3, RuGa3 [425, 446, 447]), as well as Kondo insulators (e.g.,
Ce3Bi4Pt3 [253, 323, 333, 334, 339, 344])—strongly suggesting that our scenario based on carriers
with finite lifetimes is prototypical for a wide array of different systems.

3.4.1 A new phenomenology of transport in semiconductors
3.4.1.1 Low-temperature expansion
Signatures of finite electronic lifetimes are most pronounced at low-temperatures, where qualitative
deviations from Boltzmann behaviour are especially pronounced. Our first goal therefore is to provide
simple phenomenological formulae for transport observables at low temperatures. To this end we first
expand the polygamma functions ψi(1/2 + z) in the intra-band kernel Eqs. (3.94-3.99), derived in
Section 3.3, around z = ∞, i.e. T = 0. Second, we assume a simplistic electronic structure; indeed,
we note that in metals and semi-metals only states in the direct vicinity of the Fermi level contribute
sizably to conduction of charge and heat. In gapped systems, instead, transport will be dominated
by the conduction (valence) band minimum (maximum). Both constraints effectively limit the parts
of the Brillouin zone relevant to transport. To gain a qualitative insight, we therefore radically forgo
the momentum integration in Eqs. (3.77-3.78): We consider a single non-dispersive level at an energy
ϵ and constant transition matrix elements M (B). Assuming further a scattering rate Γ independent
of temperature, we obtain the following prototypical dependencies
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where a = ϵ − µ indicates the position of the renormalized level ϵ = Zϵ0 with respect to the chemical
potential µ. We now discuss the above asymptotic behavior and compare to Boltzmann approaches
in the relaxation time approximation, see Table 3.2 for a summary of the T → 0 limit. Note that the
above equations describe the low-T response for a single level. If several states are contributing, terms
can be simply added up for the conductivities. For composite quantities, such as the Seebeck or the
Hall coefficient, however, contributions to the Onsager coefficients, Eq. (3.52), have to be summed
before they are combined into the observable quantities.

lim T → 0 LinReTraCe Boltzmann
ρ ρsat ∞
S 0 ∞
κ 0 0
RH RH,sat ∞
ν = ν1 − ν2 0 0
ν1/2 0 ∞

Table 3.2: Zero temperature limits of transport properties in stoichiometric gapped
systems for a finite scattering rate Γ. Eqs. (3.183, 3.186) lead to saturation in the resistivity
and the Hall coefficient, while the Boltzmann signal diverges. Entropy transport complies with the
laws of thermodynamics (Seebeck S → 0 for T → 0), while S unphysically diverges in the relaxation
time approximation. ν1/2 denote the two contributions to the Nernst coefficient, Eq. (3.65). All
limiting behaviors of LinReTraCe are congruent with experiments, see Fig. 3.37 and Fig. 3.28.
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Charge transport

One of the main observations is that in the zero temperature limit T → 0 the electrical (σ) and
Hall conductivity (σB) remain finite in the presence of residual scattering (Γ > 0). In Eqs. (3.79-
3.80) the derivative of the Fermi function becomes increasingly narrow with decreasing temperature.
Alone, this temperature-dependent energy cut-off would lead to the typical activated behavior and
is well-described in Boltzmann theory. However, for Γ > 0, the Lorentzian shape of the spectral
function, Eq. (3.84), allows states away from the Fermi level to still contribute to conduction even at
T = 0, as incoherent spectral weight spills into the gap, see Fig. 3.29b and cf. the effective particle
distribution function in Fig. 3.25. This residual conductivity is at the heart of the resistivity saturation
in (non-topological) Kondo insulators and has been discussed in detail in Ref. [7]. Similarly, the Hall
conductivity in Eq. (3.63) and, hence, the Hall coefficient in Eq. (3.64) saturate for Γ > 0. The
Boltzmann approximation, see Section 3.3.3, on the other hand relies solely on the Fermi function
to select states with sharply defined energies ϵ. Then, conductivities must strictly approach zero
in gapped systems for T → 0. Since the electrical and the Hall conductivity have the identical
temperature scaling, Eq. (3.64) implies a diverging Hall coefficient in Boltzmann’s relaxation time
approximation, see Fig. 3.28c55.

Thermoelectric transport

In essence the Seebeck and Nernst effect can be understood as entropy carried by charged cur-
rents [211, 383, 394]. The third law of thermodynamics states that at zero temperature the entropy
S0 of the system must be minimal. In a perfect crystal lattice without ground state degeneracy this
minimal value must be 0 since there is only one possible microstate (S0 = kB ln(Ω); Ω = 1), requiring
the Seebeck as well as the Nernst coefficient to vanish for T → 0. This is respected in our framework:
Similar to the case of metals [416], we find S ∼ T (T → 0) in a semiconductor with finite lifetimes. As
discussed in more detail in Section 3.4.1.2, it is residual conduction from incoherent states that leads
to a weakly metal-like Seebeck coefficient. In the Boltzmann limit, instead, S unphysically diverges
in a semiconductor: S(T ) ∝ 1

T .

55 The higher order kernels K(B)
12 and K(B)

22 are accompanied by an additional ω- and ω2-factor in Eqs. (3.79-3.80),
respectively. Therefore, the active energy window is additionally suppressed, causing these kernels to vanish for T → 0.
The exact temperature scaling is crucial (see Appendix 3.3.5.1) since an additional 1/T -factor must be considered
for some transport tensors in Eqs. (3.58-3.65). Then, in our formalism, the thermal conductivity κ and the Seebeck
coefficient S vanish for T → 0.
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The Nernst coefficient vanishes in both formalisms. In the Boltzmann case, this is hidden in the two
terms making up Eq. (3.65) (ν = ν1 − ν2): While both νi (i = 1, 2) diverge, they cancel exactly
when combined. In the Kubo formalism, both terms νi separately approach 0. Further, for finite Γ,
ν ∝ T at lowest temperatures—again akin to the behaviour of metals [392] and (see Section 3.4.1.2)
connected to conduction from intrinsic, but incoherent in-gap states.

In all, Eqs. (3.183-3.188) establish a low-temperature phenomenology of transport in semicon-
ductors. The derived asymptotic behavior overcomes limitations of semi-classical descriptions and is
congruent with experimental observations (see Fig. 3.28 above and Fig. 3.37 below).

3.4.1.2 Prototypical transport properties of narrow-gap systems
In this Section we leave the low temperature limit and study the full temperature dependence of
the transport observables from Eqs. (3.58-3.65). Motivated by experimental transport measurements
of intermetallic hybridization-gap semiconductors—such as FeSb2, FeAs2, FeSi, FeGa3, their Ru-
analogues and others—we consider a simple, asymmetric two-band electronic structure

ϵ0
kn = −

,
i=x,y,z

2tn cos (ki) + (−1)n(6tn + ∆0/2) (3.189)

with n = 1, 2 for the valence and conduction band, respectively, and fix the filling to N = 2 (half-
filling). We use a generic lattice constant alattice = 1Å and 60 × 60 × 60 (200 × 200 × 200) k-points
for the Kubo (Boltzmann) calculations to achieve k-grid convergence. Particle-hole asymmetry is
introduced by hopping parameters, tn, that are different for the valence band (VB; n = 1) and the
conduction band (CB; n = 2). We measure the degree of asymmetry via

α =
.... t2
t1

.... . (3.190)

The two bands of the narrow-gap semiconductor are then additionally endowed with the same, finite
and—for the time being—temperature-independent scattering rate Γ, while we set the quasi-particle
weight to unity, Z = 1. This setup generalizes the symmetric (α = 1) two-band model for which we
studied the resistivity in Ref. [7]. An example electronic structure is displayed in Fig. 3.29. Even
though motivated by said materials, we keep the electronic structure deliberately simple, so as to
isolate qualitative trends and the prototypical temperature dependencies of transport properties. A
more realistic setup with a temperature-dependent scattering rate will be introduced in Section 3.4.1.2.
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Figure 3.29: Model electronic structure. (a) Broadened band structure ϵ0
kn =

− -
i=x,y,z 2tn cos (ki) + (−1)n(6tn + ∆0/2) with t1 = 0.25eV, t2 = −0.40eV and ∆0 = 1.0eV.

The broadening Γ = 0.1eV is exaggerated in order to illustrate the effects. (b) Spectral functions at
k = R = (π, π, π) where the direct gap is exactly ∆0. The Lorentzian form, Eq. (3.84), of the spec-
tral functions causes weight to spill-over into the bandgap. As a consequence, for T → 0, transport
properties exhibit metal-like signatures, such as residual conduction (=resistivity saturation) and a
linear-in-T Seebeck coefficient.

The three parameters that describe the transport equations of our model are the bandgap ∆0, the
band asymmetry α and the scattering rate Γ. As a first step we simply scan through each parameter
individually while keeping the other two fixed. The results for these parameter sweeps are shown in
Fig. 3.30. The clear protagonist of transport properties beyond Boltzmann results based on band
structures is the scattering rate Γ. It influences transport in two ways: First, Γ > 0 leads—in a
particle-hole asymmetric system—to a non-trivial temperature dependence of the chemical poten-
tial, which, in turn, influences charge and energy transport. Boltzmann approaches that use band
structures as input fully miss this ingredient as only thermal (not lifetime) broadening is included in
the chemical potential search. Second, contributions to the transport kernels, Eqs. (3.94-3.99), are—
contrary to Boltzmann approaches in the relaxation-time approximation—not simply proportional
to the carrier lifetime, 1/Γ, but exhibit an intricate Γ-dependence that influences the temperature
profile of transport properties. In the following, we will disentangle these two ingredients.
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Figure 3.30: Transport in semiconductors: A parameter scan. Left column: varying
bandgaps ∆0 for fixed hopping t1 = 0.25eV and t2 = −0.30eV (asymmetry α = 1.2) and scattering
rate Γ = 10−4eV; middle column: varying asymmetries α for fixed bandgap ∆0 = 200meV and
scattering rate Γ = 10−4eV; right column: varying scattering rate Γ for fixed ∆0 = 200meV and
α = 1.2. Throughout, a quasi-particle weight Z = 1 is used. From top to bottom we show the
resistivity ρ, the coefficients of Seebeck S, Hall RH , Nernst ν, the activated number of electrons ne

(holes nh = ne), and the chemical potential µ. Notable characteristics: For finite Γ, the asymmetry
α leads to a chemical potential that does not converge to the gap mid-point for T → 0. This
Γ-induced deviation in µ causes the high temperature features at T µ

∆ and T µ
ν . There, the resistivity

transitions between an activated regime corresponding to the fundamental gap ∆0 to one with a
reduced energy ∆1, given by twice the distance between µ(T → 0) and the nearest band edge. The
characteristic T max

S , T ∗
ρ and T ∗

RH
instead are driven by the quantum kernels and the importance

of higher order polygamma functions in them: The resistivity and the Hall coefficient saturate at
T ∗

ρ and T ∗
RH

, respectively. The latter signals a finite density of carriers at the Fermi level even at
absolute zero, congruent with ne > 0. The Seebeck coefficient is suppressed and vanishes for T → 0
in accordance with the laws of thermodynamics. The Nernst coefficient peaks one more time before
also trending to zero for T → 0.
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Chemical potential and activated carriers

For sharply defined valence and conduction states ϵk, i.e. Γ = 0, the position of the chemical potential
µ is driven through the thermal broadening of the Fermi function. In particular, one can show (see,
e.g., Ref. [331]) that µ approaches the middle of the gap for T → 0, with a temperature slope that
depends on the particle-hole asymmetry. If the lifetime of valence and conduction states is finite, this
description is no longer valid. Indeed, determined via Eq. (3.87), the chemical potential is intrinsically
dependent on the scattering rate. Fig. 3.29b, that displays a spectral function at a selected k-point,
illustrates why this is the case: The Lorentzian width of the spectral function results in small but
finite weight of incoherent in-gap states that the chemical potential has to account for. As seen in
the bottom panel of Fig. 3.30, µ follows the result of the Fermi function at high temperatures, where
thermal broadening dominates over the Lorentzian in-gap weight. Below a temperature T µ

ν , however,
µ starts to strongly deviate. In particular, it no longer extrapolates to the midgap point (here set to
zero), but to a finite value that increases with growing particle-hole asymmetry α and bandgap ∆0,
while being only weakly dependent on the residual scattering Γ. This behavior can be rationalized
through the low temperature expansion of the occupation in Eq. (3.87), which, for a state at a = ϵ−µ,
yields

N = 1
2 − 1

π
ℑ ln(Γ + ia) + π

3
aΓ

(a2 + Γ2)2 (kBT )2 + O(T 4). (3.191)

Given that, in a semiconductor, the scattering rate Γ is orders of magnitude smaller than the band
energies, changes in the band structure (a = ϵ − µ) will dominate the chemical potential at low
temperatures. Noteworthy, the evolution of the chemical potential µ shown in the lower panels of
Fig. 3.30—its deviation from the intrinsic Fermi-Dirac result (gray dashed in bottom right panel)
at T µ

ν , its inflection point T µ
∆, and the eventual saturation at a finite position—is reminiscent of the

exhaustion and extrinsic regime in semiconductors with impurity-derived in-gap states [448]. There,
changes in the chemical potential are driven by donated electrons or holes, i.e. a change in the total
number of charge carriers. In our scenario instead, the total number of electrons stays constant, but
the finite lifetimes of intrinsic carriers causes excitations to widen, spilling incoherent spectral weight
into the gap, so that the chemical potential has to adapt. Consequently, even at lowest temperatures,
the number of activated carriers

ne =
,

k,n≥CB,σ

�1
2 − 1

π
ℑψ(zkn)

%
(3.192a)

nh =
,

k,n≤VB,σ

�1
2 + 1

π
ℑψ(zkn)

%
(3.192b)
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must remain finite for Γ > 0, as shown in the Fig. 3.30 (second panel row from the bottom). In
more detail, at any temperature, the number of activated electrons ne and holes nh (per unit-cell)
necessarily balance each other, ne = nh, in the stoichiometric (half-filled) case considered here.
At high temperatures ne follows the result for the coherent (Γ = 0) band structure (indicated in
dashed gray). In this regime, dominated by thermal activation across the gap ∆0, ne is exponentially
suppressed upon cooling; for kBT ≪ ∆0: ne(Γ = 0; T ) ∼ e−∆0/kBT . For finite Γ, the discussed
deviations in the chemical potential reflect in the carriers available for conduction: At the temperature
T µ

ν , ne no longer shrinks exponentially and, at T µ
∆, transitions into a regime in which the number

of available carriers is virtually independent of temperature. In this low-temperature regime the
dominant control parameter for the number of carriers is the scattering rate Γ, whereas asymmetry
and the size of the gap hardly affect ne(T → 0) on the shown exponential scale.

Electric resistivity

Signatures of the described evolution of the number of carriers available for conduction are readily seen
in the resistivity in the top row of Fig. 3.30. The activated behavior above T µ

ν —purely determined
by the bandgap ∆0—transitions into a second activated regime realized below T µ

∆, with an effectively
reduced bandgap ∆1 < ∆0. As indicated in Fig. 3.30 (bottom right panel), ∆1 measures (twice) the
distance between the saturated µ(T ≲ T µ

∆) and the nearest band edge (for α > 1: the conduction
band). Again, this behavior is reminiscent of an impurity-driven extrinsic regime. There, ∆1 would
measure the difference between the extrinsic impurity level on the one hand and the conduction or
valence band on the other. In both scenarios—extrinsic in-gap states vs. intrinsic states with finite
lifetimes—changes in conduction reflect a modification in the chemical potential. Here, our theory
provides a complementary microscopic origin for the appearance of the chemical potential-driven
characteristic temperature scales T µ

ν and T µ
∆. Note that for particle-hole symmetric systems, where

the chemical potential is temperature independent, no such crossover exists and there is only one
activation-like regime [7].

Cooling further, also the second activated regime is bounded from below: At a temperature T ∗
ρ ,

the resistivity enters a saturation regime. Contrary to the features at higher temperatures, T ∗
ρ has

no signature in the chemical potential, but derives entirely from the physics encoded in the kernel
function Eq. (3.94). As discussed in detail in Ref. [7] the crossover temperature T ∗

ρ and the saturation
value ρ(T → 0) strongly depend on the scattering rate and the bandgap. Noteworthy, the influence
of Γ inverts as a function of temperature: At high T , a larger scattering rate increases the resistivity.
This is the conventional behavior, also realized in metals. At low T , however, where conduction is
driven by incoherent spectral weight inside the gap, the resistivity understandably decreases with a
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growing scattering rate (see top right panel in Fig. 3.30). Here, we extend the previous analysis [7] and
demonstrate that also the band asymmetry α has a strong effect on the conduction. In the asymmetric
case, the chemical potential must be positioned closer to the conduction (α > 1) or valence (α < 1)
band so that the correct number of electrons in the system is occupied. Therewith, the majority of
carriers—those that reside in the centres of the Lorentz-broadened peaks in the spectral function—
conduct more and freeze out at a lower temperature, i.e. T ∗

ρ and the corresponding saturation value
ρ(T → 0) decreases with α.

To summarize, the resistivity of an intrinsic narrow-gap semiconductor with a finite scattering
rate has four regimes:

(i) T > T µ
ν : the activated high-temperature region that is well-described in Boltzmann theory.

(ii) T µ
∆ < T < T µ

ν : a narrow regime in which the chemical potential starts to sense the incoherent
spectral weight inside the gap and adjusts accordingly.

(iii) T ∗
ρ < T < T µ

∆: a regime at intermediate temperatures in which the (Γ-imposed) chemical
potential shift has led to a reduced activation energy for valence (α < 1) or conduction (α > 1)
carriers.

(iv) T < T ∗
ρ : a regime of resistivity saturation in which thermal activation is frozen out but a

residual conductivity, driven by incoherent in-gap weight, remains finite.

Seebeck coefficient

The three temperatures, T ∗
ρ < T µ

∆ < T µ
ν , that separate the four regimes in the electrical resistivity also

account for features in the Seebeck coefficient (second row in Fig. 3.30): The increase of S starting
from high temperatures is interrupted by the crossover of the chemical potential at T µ

ν . Depending
on the parameters, the transition to the maximum amplitude at lower temperatures can then either
be smooth (large scattering rate) and monotonous (large gap) or be accompanied by a significant
shoulder (large bandgap, small scattering rates). In extreme cases this shoulder transforms into a
local peak (small gap, strong asymmetry), i.e. the temperature dependence is non-monotonous. The
temperature at which the Seebeck coefficient has its global maximum amplitude Smax is linked to
T ∗

ρ . In fact, S peaks at T max
S , consistently slightly above the onset of the resistivity saturation regime

(T max
S ≳ T ∗

ρ ). Below this global peak temperature, the Seebeck coefficient drops rather abruptly.
In the zero temperature limit, it follows the metal-like linear behavior S(T ) ∼ T , anticipated in
Section 3.4.1.1.

This rich structure is absent when the Boltzmann approach is applied to the band structure ϵ0
kn



280

of Eq. (3.189): The features associated with T µ
∆ and T µ

ν are missed if finite lifetimes are unaccounted
for in the search of the chemical potential; the characteristic features further below are absent owing
to the simple structure of the Boltzmann transport kernels. Indeed, for a momentum- and state-
independent scattering rate Γ, the kernels L11 and L12 in the Boltzmann approximation are both
merely proportional to Γ−1. Then, given by their ratio, Eq. (3.61), Boltzmann’s Seebeck coefficient is
independent of the scattering rate. Manifestly, this approximation is a severe oversimplification even
for extremely small Γ (see Fig. 3.30: right column, second panel from the top).
Next, we will comment on two approximate tools that are popular for the analysis of thermoelectric
measurements or simulations.

The Goldsmid-Sharp gap

Goldsmid and Sharp [449] motivated that the size of a semiconductor’s gap could be gauged from
the peak amplitude of the Seebeck coefficient:

∆ ≈ 2e|Smax| · T max
S . (3.193)

This estimate works decently for both n− and p-type semiconductors [449], although deviations of
the order of a factor of two are not uncommon. The relation is used as a coarse analysis tool [450,
451, 452] in simulations and experiments and even as a descriptor in high-throughput materials
discovery studies [453]. Eq. (3.193) was deduced for a coherent, large gap, particle-hole symmetric
semiconductor in which impurity states move the chemical potential so as to optimize the Seebeck
coefficient [331, 449]. Allowing for particle-hole asymmetry, the Seebeck coefficient can, however,
be larger, while it is always bounded by |S| ≤ |∆/(eT ) + S(∞)|, where S(∞) is the comparatively
small high temperature limit (|S(∞)| = O(kB/e)) [331]. Since the original argument [449] relies on
replacing the Fermi-Dirac with the classical Maxwell-Boltzmann statistics, further deviations occur
if kBT max

S � ∆ [454].

Here, we scrutinize the Goldsmid-Sharp relation, Eq. (3.193), for our two-band model: In Fig. 3.31
we report |Smax| · T max

S extracted from the parameter scans of Fig. 3.30 as well as for an additional
scan for an almost particle-hole symmetric system, α = 1.04 (open circles in the main panel). For
the latter, the Goldsmid-Sharp gap indeed provides a very accurate estimation of the fundamental
gap ∆0. For systems with more asymmetrical electronic structures, however, Eq. (3.193) yields
poor results: |Smax| · T max

S largely underestimates the charge gap (filled circles). Looking at the
corresponding resistivities, Seebeck coefficients and the chemical potential in Fig. 3.30 reveals the
reason: The thermopower is largest at the lower end of the second activated regime of the resistivity,
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Figure 3.31: Goldsmid-Sharp gap. We display the gap-estimate |Smax| · T max
S for scans of the

bandgap ∆0 for asymmetries α = 1.04 (open circles) and α = 1.2 (closed circles). Also shown is a
scan of the asymmetry (open squares) and of the scattering rate (open diamonds), using the same
parameters as in Fig. 3.30. The expression |Smax| · T max

S deviates strongly from ∆0/2 (dashed line)
when the system’s asymmetry is at least moderate. Only in the vicinity of particle-hole symmetry
(α = 1.04, open circles) do we find good agreement for Eq. (3.193). An increase in asymmetry
leads to a suppression of |Smax| · Tmax while different scattering rates have minimal effects. Instead,
plotting |Smax| · Tmax against the effective gap ∆1 (cf. ρ(T ) in Fig. 3.30), the various scans collapse
onto the ∆1/2 line (see inset): The Goldsmid-Sharp gap expression reliably estimates the effective
gap ∆1.

T ∗
ρ ≲ T max

S < T µ
∆. This regime emerges when a finite scattering rate pushes the chemical potential

towards the lighter band (in our case the conduction band). As a consequence, the crucial gap, as
apparent in the resistivity, is the effective ∆1, not ∆0. This observation suggests that the Goldsmid-
Sharp gap does not monitor the bandgap ∆0 but the effective gap ∆1. This hypothesis is confirmed
in the inset of Fig. 3.31: plotted as a function of the emergent ∆1, the scatter plot of |Smax| · T max

S

collapses onto a single line indicating ∆1/2. This statement is largely independent of the scattering
rate: |Smax| · T max

S only slightly increases with Γ, leading to a mild overestimation of ∆1.
In all, in the realistic presence of a scattering rate, the Goldsmid-Sharp expression quite accurately

gauges the effective gap ∆1 that controls transport at intermediate temperatures—but which can be
significantly smaller than the true bandgap ∆0.
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The Mott formula

In metals, conduction is largely dominated by states in the vicinity of the chemical potential. Then,
performing a low temperature Sommerfeld expansion of the conductivity is justified. Doing so for the
Boltzmann relaxation-time approximation, see Section 3.3.3, yields a convenient expression for the
Seebeck coefficient

S ≈ −π2

3e
k2

BT
∂ ln σ(µ)

∂µ
, (3.194)

which is a simplified version of the so-called Mott formula of the thermopower [455, 456]. Here,
σ(µ) is the electrical conductivity for varying chemical potential µ. Clearly, the above approximation
is inaccurate for coherent semiconductors, where conduction is driven by conduction and/or valence
states that are far (more than several kBT ) from the chemical potential. Manifestly, our general kernel
functions therefore do not verify Eq. (3.194). However, as we demonstrated [7], finite lifetimes may
drive residual conduction in semiconductors, leading to resistivity saturation. The incoherent in-gap
states associated with this phenomenon might provide the metalicity required to justify expanding the
derivative of the Fermi function around the chemical potential (Sommerfeld expansion). Therefore,
Eq. (3.194) is expected to hold in the saturation regime, where conduction is dominated by said
incoherent in-gap weight. Evaluating Eq. (3.194) for the residual term of the conductivity given in
Eq. (3.183), indeed yields the lowest-order expression of the low-T Seebeck coefficient, Eq. (3.185).
This validity of the Mott formula for metals in the resistivity saturation regime of a semiconductor
provides a direct link between residual charge conduction (σ(T → 0) > 0) and a metal-like linear-in-T
thermoelectric Seebeck signal (S(T → 0) ∝ T ).

Hall coefficient

From high temperatures down to its maximum, the Hall coefficient RH (third panel in Fig. 3.30)
exhibits a qualitatively similar dependency on ∆0, α, and Γ as the Seebeck coefficient. However,
RH peaks at a slightly smaller temperature that matches T ∗

ρ from the resistivity. Also, instead of
vanishing, RH saturates below a temperature T ∗

RH
(< T ∗

ρ ), in agreement with the low-T expansion
Eq. (3.186) and experiment, see Fig. 3.28 and Fig. 3.37. This temperature arrangement is expected
since the spectral function enters Eq. (3.80) to higher order compared to Eq. (3.79). Therefore, the
KB

11 kernel effectively senses a smaller amount of incoherent in-gap weight than K11. Consequently,
the temperature, below which the thermal selection of valence and conduction carriers via

�
− ∂f

∂ω

#
can be neglected in comparison to the incoherent in-gap weight that drives the residual conduction, is
effectively reduced. At large temperatures (T > T µ

ν , Boltzmann regime), RH is dominantly controlled
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by the bandgap and the particle-hole asymmetry, while the dependence on the scattering rate is weak.
Instead, at low T , it is mostly the scattering rate that controls, both, the peak value and the saturation
limit RH(T → 0).

Nernst coefficient

The Nernst coefficient exhibits the most dramatic features56. Starting from high temperature, ν

increases and reaches a first peak at T µ
ν where the chemical potential starts to transition towards

its saturation regime. The Nernst then quickly drops to zero (unless the asymmetry is very small)
and remains suppressed in the intermediate regime (T ∗

ρ < T < T µ
∆; the second activation regime of

ρ). The transition into the ρ-saturation regime at T ∗
ρ is then accompanied by a second large and

sharp peak in ν before it finally converges linearly to zero for T → 0. Similar to the Hall coefficient,
the biggest changes in the temperature profile of ν are achieved by varying the bandgap and the
asymmetry, while absolute values are mostly controlled by the scattering rate.

Focusing on (a) the large low-temperature peak and (b) the T → 0 limit, we analyze the fabric
of the Nernst coefficient through different representations.

Hall and thermal mobilities

Using the expression Eq. (3.61) of the Seebeck coefficient, we can rewrite the Nernst coefficient
Eq. (3.65) as

ν = S (µH − µT ) (3.195)

where µH = LB
11/L11 is the Hall mobility, and µT = LB

12/L12 its thermal analogue, introduced by
Sun et al. [214]. From this point of view, a finite Nernst signal can only appear when there is a
mismatch in the mobilities. The two mobilities, µH and µT , are shown in Fig. 3.32 for varying
(a) bandgap, (b) asymmetry, and (c) scattering rate. At large T , −µT ≫ −µH , resulting in a
sizeable Nernst coefficient. At intermediate temperatures, both mobilities exhibit a temperature-
and gap-independent plateau of equal magnitude: The Nernst signal vanishes. At low T there is
again a mobility mismatch, −µT > −µH , which is responsible for the pronounced low temperature
peak. Qualitatively, this behavior mirrors the analysis of the experimental mobilities of FeSb2 from
Ref. [214] that we reproduce in the inset of Fig. 3.37h: Also in experiment, the mobility mismatch is
sizable at low and high temperatures, while in between they almost match.

56 Our survey of the Nernst coefficient can be compared to the semi-classical relaxation-time approximation pioneered
recently in Ref. [413] that includes effects to leading order in 1/Γ.
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Figure 3.32: Hall and thermal mobilities. Both mobilities vanish in the zero temperature
limit and coincide with each other at intermediate temperatures, marking the ranges where the
Nernst coefficient vanishes in Fig. 3.30. This transition however takes place at slightly different
temperature between µH and µT giving rise to the low temperature ν-contribution at roughly Tρ∗
(first shaded area). At large temperature the two mobilities diverge from each other. µT increases
drastically while µH gets suppressed, marking the second ν-contribution which is peaked at T µ

ν

(second shaded area).

Mott formula for the Nernst coefficient

Analogous to the Mott formula of the Seebeck coefficient, Eq. (3.194), a Sommerfeld expansion can
be used to obtain an approximate formula for the Nernst coefficient. Using LB

12 ≈ π2k2
B

3e T 2 ∂LB
11(µ)
∂µ ,

valid at low T for Boltzmann-derived Onsager coefficients of metals [457], one finds [458]

ν ≈ −π2

3e
k2

BT
∂µH

∂µ
(3.196)

where µH = LB
11/L11 is again the Hall mobility (This “Mott formula” for the Nernst coefficient

is often written using the Hall angle tan(θH)/B = µH with the magnetic field B.)57. As for the
Seebeck coefficient, we find the link Eq. (3.196) between transport of charge (µH) and entropy (ν)
to hold in the low-T saturation regime (in this case T < T ∗

RH
). In other words, the lowest order

terms in the low temperature expansions, Eqs. (3.183-3.184), fulfill Eq. (3.196). In this sense, the
saturation of both σxx and σB

xy dictates the Nernst coefficient to vanish linearly for T → 0. This
behavior—otherwise typical for metals [392]—is indeed experimentally observed in correlated narrow-
gap semiconductors, see Fig. 3.37h for the example of FeAs2. In metals, however, the variation of
the charge and Hall conductivities with the chemical potential is usually small. Then, Eq. (3.196)
means that also the Nernst coefficient will be very small—a statement referred to as Sondheimer
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cancellation [392, 457, 459]. Instead, as we have seen here, a changing chemical potential can notably
manipulate the residual conductivities of an incoherent semiconductor.

Thermal conductivity and Lorenz ratio

Next, we discuss the electronic contribution to the thermal conductivity κ. In the low temperature
ρ-saturation regime we find the linear behavior from Eq. (3.187). Increasing the temperature results
in various kinks and shoulders. Again, we can separate the influence of a changing chemical potential
from the inner structure of the transport kernel functions: While the pure L22-contribution (first term
in Eq. (3.62); dashed lines in Fig. 3.33) only experiences the transition stemming from the chemical
potential, the shoulders in the intermediate regime derive from the L12-contribution (second term in
Eq. (3.62)). Combined to the Lorenz ratio

L = κ

σT
, (3.197)

we find a complex temperature dependence: In the zero temperature limit L(T ) clearly converges to
the Sommerfeld value of the Lorenz number L0 = π2k2

B

3e2 . This can also be confirmed via the low-T
expansion

L = L0 +
�

kB

e

%2 16π4

45
5a2 − 2Γ2

(a2 + Γ2)2 k2
BT 2 + O(T 4). (3.198)

This result is expected, since in our theory both the electrical and heat current are transported by
the same carriers, subject to the same elastic scattering mechanism. If inelastic scattering effects, e.g.,
via an electron-phonon coupling, were to be included, this unison will be jeopardized [461]. Then,
the Wiedemann-Franz law can be strongly violated at low (but finite) temperatures, with L being
notably suppressed [462].

In the opposite limit, T → ∞, we find L(T → ∞) = 0. Note that this result assumes a
temperature-independent scattering rate. For specific conditions on Γ(T ), the Lorenz ratio converges
to L0 at high temperatures, as will be discussed in Section 3.4.1.2.

57 Alternatively, the temperature-derivative of the Hall mobility can be seen as a source for a finite Nernst signal,
∝ T ∂µH/∂T [460].
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Figure 3.33: Thermal conductivity and Wiedemann Franz law. The same parameter
sets as in Fig. 3.30 are used. In addition to the total thermal conductivity κ (top row) we plot
also the contribution L22/T (dashed) individually. The Lorenz ratio (bottom row) converges to
L(T → 0) = L0 = π2k2

B
3e2 (see text for details).

Power factor and figure of merit

Finally, we consider the thermoelectric power factor S2σ and the figure of merit zT , given by

PF = S2σ (3.199)

and
zT = S2σT

κ
, (3.200)

shown in Fig. 3.34. Furthermore, in order to achieve somewhat realistic zT values we add a (dominant)
phonon contribution to the thermal conductivity κ = κe+κph using an optimistic κph = 10 W

K2·m . First,
we note that S2σ is seemingly large at the upper end of the shown temperature window. However,
this behavior again originates from the temperature-independence of the scattering rate—that we
assume here for illustrative purposes. Indeed, Γ = const. causes (for large T ) a very small resistivity,
see top row of Fig. 3.30, that overcompensates the drop in the Seebeck coefficient. In practice, the
scattering rate itself is typically temperature dependent. As explained below, see Section 3.4.1.2, a
reasonable Γ(T ) causes, both, the powerfactor and zT to vanish quite rapidly at large temperatures,
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see Fig. 3.35 (lowest two panels). We therefore focus on the lower temperature structure in S2σ and
zT in Fig. 3.34, that is equally present when a realistic Γ(T ) is used. The displayed peak in the
powerfactor and zT is the result of the usual compromise [211, 383] between large S and small ρ58.
We find the optimal power factor to occur in the vicinity of T µ

ν , the onset of the high-temperature
crossover from the first into the second activated-ρ regime. Peak temperatures move up (down) for a
growing bandgap (scattering rate), while peak amplitudes benefit from larger gaps, larger asymmetry,
but a smaller scattering rate.
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Figure 3.34: Power factor and figure of merit. The power factor S2σ (top row) is peaked at
the transition of the first into the second activated regime of ρ = 1/σ. For T → 0, S2σ is suppressed
due to the low temperature limit of S(T ) ∼ T . At intermediate temperatures, S2σ develops an
important peak that is undetectable in Boltzmann theory (gray, dashed line). The high temperature
increase in the powerfactor is nonphysical and disappears when a T -dependent scattering is included
(see Section 3.4.1.2). The figure of merit zT (bottom row) shows similar features but—due to the
thermal-conductivity weighing—peak sizes are affected differently. Note: In zT we included a
constant phonon contribution of κph = 10 W

K2·m . Again, the low temperature peak zT , indicative
of potential merit in thermoelectric devices is completely missing in the Boltzmann regime (gray,
dashed line).

As the ratio of powerfactor and thermal conductivity, zT inherits its structure from the former, while
the latter modulates the overall magnitude. Indeed, bandgap variations keep the peak amplitude of
S2σ essentially unchanged but move the peak position. The maximal zT then increases for larger
bandgaps, as the (here: electrical) thermal conductivity dwindles. Variations of the band asymmetry,
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instead, only change the size of the zT maximum, while increasing scattering rates lower the peak
amplitude and shift it to higher temperatures.

Importantly, the just described peak in, both, S2σ and zT is absent when the Boltzmann approach
is applied to the band structure (dashed grey lines in the right panels of Fig. 3.34). Indeed, we find that
maximal thermoelectric performance is realized in the temperature range delimited by T µ

∆ and T µ
ν .

These characteristic scales are driven (see above) by changes in the chemical potential µ, caused by
the finite lifetimes of conduction and valence states—an effect beyond mere thermal activation. As a
consequence, assessing the potential of narrow-gap semiconductors for thermoelectric applications on
the basis of Boltzmann theory applied to coherent electronic band structures is virtually meaningless.
A (high-throughput) screening of materials [463, 464, 465] that neglects finite electronic lifetimes of
intrinsic carriers may miss potentially favorable compounds.

Temperature dependent scattering rate

In the previous Section, we held the scattering rate Γ constant to unravel the prototypical variations
of transport observables with respect to gap, particle-hole asymmetry and the scattering rate itself.
Setting Γ(T ) = Γ0 led to some effects not observed in experiments. In particular, the resistivity
became vanishingly small in the intermediate to high temperature regime ( ρ(T <T ∗

ρ )
ρ(T >T µ

ν ) ∼ 105). Indeed,
only when temperature reaches a value greater than the system’s band-width, the resistivity starts
again to increase (not shown). Experiments probing narrow-gap semiconductors, however, witness
an insulator-to-metal crossover above a temperature that is still small with respect to the charge
gap [212]. In FeSi (∆ ∼ 50meV= kB × 580K), for example, the slope of the resistivity turns positive
above 300K [467], while in optical spectroscopy for FeSb2 (∆ ∼ 30meV=kB × 350K) a Drude-like
peaks starts developing at around 100K [468, 469]. Clearly this metallization is beyond mere thermal
activation of carriers across the charge gap. Theoretically, this phenomenon has been attributed to
incoherent spectral weight spilling into the gap and was advocated to derive from electronic correlation
effects [320] or thermal disorder [470, 471]. In the correlations’ picture, the Hund’s rule coupling drives
a scattering rate that grows quadratically with temperature [320, 439]. Therefore, we will restrict
ourselves in the following to scattering rates with a polynomial temperature dependence.

58 Interestingly, this conventional trade-off was recently found to be broken in an ultra-thin oxide film near its Mott
transition [466].
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General considerations

Without a growing scattering rate the Lorenz ratio L approaches zero in the high temperature limit
and an unreasonably large power factor S2σ appears in the intermediate temperature regimes, see
the high-T upturn in Fig. 3.34. If, instead, we consider a residual scattering rate plus a term with a
polynomial temperature dependence, Γ(T ) = Γ0 + γT η, where γ > 0, η > 0, the argument z of the
polygamma functions ψi(z) becomes

z(T ) = 1
2 +

Γ0 + ia

2πkBT
+ γT η

2πkBT

�
. (3.201)

Scattering rates that increase slower than linearly (η < 1) lead to arguments that converge to z(T →
∞) = 1

2 ; exact linear behavior leads to z(T → ∞) = 1
2 + γ

2πkB
while η > 1 leads to a diverging z(T ).

In the first two cases the Lorenz ratio simplifies in leading order to L(T ) ∼ O(T 2η−2). η < 1
therefore implies a vanishing Lorenz ratio while η = 1 implies some saturation value L(γ), which,
numerically, is generally orders of magnitude smaller than L0. If the scattering rate increases faster
(η > 1), the same Taylor series of the polygamma functions that was applied in the zero temperature
limit (see Section 3.3.5.1) can be employed. Consequently, the high temperature limit is identical to
the low temperature limit and thus L(T → ∞) = L0.

Fermi liquid-like scattering

Dynamical mean-field theory calculations suggest that the scattering rate evolves quadratically with
temperature for, both, Kondo insulators [7] and d-electron-based narrow-gap semiconductors [320,
439]. From here on, we therefore assume a Fermi-liquid-like

Γ(T ) = Γ0 + γT 2. (3.202)

Fig. 3.35 illustrates how the additional scattering term changes the transport for a range of γ-values
(shades green to red) compared to γ = 0 (dashed black line), for a fixed bandgap ∆0 = 200meV,
residual scattering Γ0 = 10−4eV, and asymmetry α = 1.2.
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Figure 3.35: Temperature dependent scattering rate. Effects of Γ(T ) = Γ0 + γT 2, with
residual scattering Γ0 = 10−4eV and varying γ, for fixed bandgap ∆0 = 200meV and asymmetry
α = 1.2. The dashed black lines are results for γ = 0. The additional temperature dependence
causes a resistivity upturn at high temperatures which also results in a smoothed Seebeck and Hall
coefficient. This metallic trend directly removes the nonphysical upturn in the power factor while
simultaneously causing the Lorenz factor L to converge towards L0 (horizontal, dashed, gray line).
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Overall, the increased scattering smoothes all considered quantities. A minimal γ is sufficient to
suppress the high temperature shoulder in ρ at T µ

ν and causes a slight upturn at high temperatures.
The saturation regime is instead stable up to rather large γ. Naturally, the added scattering term
only notably influences transport above temperatures for which γT 2 ∼ Γ0. In this vein the high-
temperature shoulder of the Seebeck coefficient is smoothed out and parts of the signal is pushed
up in temperature. Quite generally, the increased scattering leads to less pronounced peaks which
are shifted to higher temperatures. Since the shoulder in S at T µ

∆ was responsible for the strong
signal in the power factor and the figure of merit (see above), significant qualitative changes are
expected for γ > 0: Besides the suppression of the nonphysical increase of the power factor at
high temperatures, both S2σ and zT are equally attenuated for γ > 0 and their peaks shift up
in temperature, as expected. Again, we included in zT a phonon contribution, κph = 10 W

K2·m , to
the thermal conductivity. As already seen in the Γ0-scan in Fig. 3.30, a noticeable suppression is
observed for the high-temperature peak of the Nernst coefficient. The second, low-T peak in the
Nernst coefficient (that is absent in Boltzmann approaches) is instead relatively stable with γ as it
occurs at low enough temperatures T ∼ T ∗

ρ . As discussed in Section 3.4.1.2 the Fermi-liquid like
scattering rate enforces that the high-temperature limit of the Lorenz ratio converges to L0. This
is evident in Fig. 3.35: For the largest scattering rate, L reaches L0 within the shown temperature
window.

3.4.2 Modeling materials
Having established an understanding of how relevant parameters drive changes in transport observ-
ables, we now turn to material specific simulations. While still focusing on a minimal description,
we attempt to reproduce the temperature profiles of transport properties in selected narrow-gap
semiconductors, as well as trends among them.

3.4.2.1 FeSb2: Characteristic temperature scales without impurity states
First, we discuss the result for FeSb2 shown in the front Fig. 3.28. FeSb2 is a correlated semiconduc-
tor [214, 300, 417, 468] with a narrow gap of ∆ ≳ 30meV, as extracted from activation-law fits of the
resistivity [214, 417] or the magnetic susceptibility [472, 473]. Consistent with GW and GW+DMFT
simulations [331, 418], we model FeSb2 with a non-interacting gap ∆0 = 60meV and an effective
mass enhancement Z−1 = 2. We find that a small asymmetry α = 1.06 mimics the material well.
Finally, we assume a scattering rate of the form Eq. (3.202), where the parameters of the residual
scattering Γ0 and the prefactor γ of the quadratic term are adjusted by hand. We find that best
agreement with experiment is reached for Γ(T ) = 5 · 10−5eV + 10−7 eV

K2 T 2, see Fig. 3.28. This scat-
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tering rate is quite realistic: Dynamical mean-field calculations for the related correlated narrow-gap
semiconductor FeSi [320, 439] yield comparable values. Having optimized the electronic structure
parameters so that the simulated resistivity qualitatively follows the experiment, the temperature
profiles of all other transport observables for FeSb2 automatically fall into place, see Fig. 3.28. The
approach therewith in particular verifies the experimentally observed correlation between features in
different response functions:
At low temperatures, the onset of resistivity saturation at T ∗

ρ is accompanied by a peak in, both,
the Hall and the Nernst coefficient at the identical temperature and a peak in the Seebeck coefficient
at a slightly higher temperature—all of which is congruent with experiment. This low-T behavior
of transport properties is encoded in the linear response kernel functions. Agreement with exper-
iment confirms that our approximations for the kernels—linearized self-energy, omission of vertex
corrections—conserves the essential physics. Instead, in previous modelings of FeSb2, based on semi-
classical approaches [421, 422, 423], resistivities and the Hall coefficient either diverged at low T or
had to be suppressed by impurity states, e.g., by forcing the chemical potential into the conduction
band. An alternative scenario for residual conduction in FeSb2 could be provided by the recent ob-
servation of metallic surface states [418, 474]. Whether these weakly dispersive states can account
for the typical low-T characteristics across all transport observables remains to be seen. We also note
that for the topological insulator SmB6 conduction by surface states and residual bulk conduction
from finite lifetimes coexist [7].
Moving to higher temperatures, the resistivity exhibits two distinct activation regimes. We find the
shoulder in between, T µ

∆ < T < T µ
ν , to be driven by changes in the chemical potential. Therefore, if

the chemical potential only accounts for the thermal broadening of excitations—as commonly done in
the context of Boltzmann approaches for band theory methods—all structure at intermediate temper-
atures is lost (gray, dotted lines in Fig. 3.28). If instead, the chemical potential, e.g., via Eq. (3.87),
accounts for the scattering rate, Boltzmann simulations do capture the intermediate-T features (see
black, dashed lines in Fig. 3.28). Alternatively, the temperature dependence of the chemical po-
tential can be engineered by assuming in-gap impurity states [421, 422, 423]. Given that transport
observables exhibit three to four distinct regimes, phenomenological modellings actually used up to
three impurity levels to properly guide the chemical potential [421]. In our description, no impurity
states are required: According to the presented phenomenology for transport in narrow-gap semi-
conductors, the intriguing temperature dependence in FeSb2 exclusively originates from its intrinsic
electronic structure. Instead of being set by explicit energy levels inside the gap, characteristic tem-
peratures emerge through the interplay of relevant energy scales: the gap, the hopping, temperature,
and—crucially—the scattering rate.
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In the following Section, we investigate the influence of potential impurity states in more detail for
FeSb2. Thereafter, we will see that explicit impurity states are not fully out of the picture for other
materials, but likely account for at least some aspects of conduction at intermediate temperatures in
semiconductors with gaps ∆ > 50meV.
Before, however, a few comments regarding thermoelectricity in FeSb2 are in order. While our
approach neatly captures the temperature profile of transport observables, we do not reproduce the
large amplitude of the Seebeck and Nernst coefficient. In fact, this is expected, as FeSb2 violates the
upper bound, |S| ≤ ∆/T , for a thermopower exclusively driven by electron diffusion [331]. As alluded
to in the introduction, this riddle was successfully solved [331, 419, 420, 421, 422, 423] by attributing
the colossal amplitude to the phonon-drag effect. Simply speaking, the thermal gradient also leads to
a non-equilibrium phonon distribution. Working to equilibrate the thermal gradient, phonons then
scatter with electrons dominantly towards the cold end of the sample, which is also the direction
of the net electronic diffusion. Thereby momentum is constructively injected into the electronic
subsystem, significantly boosting thermoelectric effects. This well-known phenomenon [475] continues
to receive renewed interest, in the context of electronic correlations [212, 421, 423] (the effect is large
when coupling to heavy electrons), the phonon-engineering pathway to efficient thermoelectrics [476],
or both [477]. Crucially for our argument here, this phonon-enhancement of the electric response
is expected to be smooth in temperature, so as to not produce additional features in transport
observables. Indeed, while experimental peak-amplitudes cover almost an order of magnitude, Smax ∼
5 − 45mV

K across different samples [214, 417, 424, 428], the corresponding characteristic temperature
profiles are almost identical. Crucially, Pokharel et al. [419] and Takahashi et al. [420] demonstrated
that the phonon-drag in FeSb2 can be consistently suppressed by geometric constraints. With their
severely limited phonon mean-free path, polycrystalline samples are then expected to yield Seebeck
amplitudes compatible with the purely electronic diffusion simulated here. Indeed, experimental peak-
amplitudes for polycrystalline samples, Smax ∼ O(0.1 − 1)mV

K [419, 420, 429, 430] are comparable
to our modelling, see Fig. 3.28. With the phonon-drag thus mainly scaling the amplitude of the
thermoelectric response, previous modellings including this effect had to explicitly introduce in-gap
impurity levels [421, 422, 423], to generate the experimentally evidenced characteristic temperature
scales. Here, we showed that the electron diffusion part of the Seebeck and Nernst coefficient has the
correct temperature profile without the need for ad hoc in-gap levels—provided that finite lifetimes
of intrinsic carriers are accounted for consistently.
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3.4.2.2 FeSb2: Explicit impurity states?
To strengthen the argument that in-gap impurity states are not crucial for an understanding of
transport properties of FeSb2, we study the explicit inclusion of such states. In Fig. 3.36 (bottom
panel) we compare several ways to obtain the needed chemical potential: (i) µψ (solid blue) indicates
an occupation determined via Eq. (3.87), that accounts for, both, thermal broadening and the finite
lifetimes of valence and conduction states (data reproduced from Fig. 3.28); (ii) µF D (black) that
only includes thermal broadening via the Fermi-Dirac distribution; (iii) µF D + imp (pink dashed) in
which an in-gap impurity level has been designed to mimic µψ; and (iv) µψ + imp (green dashed) in
which the same impurity level is added in the presence of finite lifetimes of intrinsic states.
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Figure 3.36: FeSb2 and impurity in-gap states. Imitation of the chemical potential determined
via Eq. (3.87)—µψ—with the Fermi-Dirac distribution through the presence of an explicit impurity
level—µFD + imp—in the vicinity of the conduction band. We employ the same parameters as in
Fig. 3.28. The impurity is modelled by a donor at ED = 26meV below the conduction band with
density ρD = 5 · 10−6 1

unit cell . For comparison we also show µ solely determined via the Fermi-Dirac
distribution—µFD—and the digamma-computed chemical potential with the impurity—µψ + imp.
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Clearly, the Fermi-Dirac description of the chemical potential (black), in which the chemical potential
converges towards the mid-gap point (origin of energy) for T → 0, yields very different transport
functions (upper panels). Their temperature profiles do not agree with experiment, cf. Fig. 3.28
(insets). Still, the resistivity and the Hall coefficient saturate (albeit at values different than in the
“µψ” scenario) and the Nernst and Seebeck coefficient vanish for T → 0, since these low temperature
properties stem from the employed LinReTraCe kernels, Eqs. (3.94-3.99). As a consequence, if the
chemical potential µψ—that drives both, the features at intermediate temperatures and influences
the saturation values—could be mimicked by other means, transport properties will be very similar
to the intrinsic “µψ” picture. And, indeed, imitating the temperature dependence of µψ through
the inclusion of a single explicit donor level (at an energy ED = 26meV, degeneracy g = 1 and
density ρD = 5 · 10−6 per unit-cell), these “µF D + imp”-results (pink dashed) are very close to the µψ

results. In turn, if we include the same impurity level on top of the lifetime effects that drive µψ (a
combination labelled “µψ +imp” (green dashed) in Fig. 3.36), nothing much happens. In other words:
if finite lifetimes of intrinsic valence and conduction states are properly accounted for, extrinsic in-gap
states have little on transport properties in FeSb2. This finding strengthens our alternative scenario
in which the driver of the characteristic temperature profile in transport properties is the scattering
rate.

3.4.2.3 Related materials: FeAs2, FeGa3, RuSb2

We now extend our transport study to other materials. In the right column of Fig. 3.37 we reproduce
experimental data of various intermetallic semiconductors. In order of increasing gap: FeSb2 [214],
FeAs2 [214], RuSb2 [424] and FeGa3 [425, 446]. For all considered compounds, the charge gap can
be extracted directly from the high-temperature behavior of the resistivity (or optical data). With
the exception of FeSb2 (Z−1 = 2), we do not apply a quasi-particle renormalization (Z = 1). Indeed,
larger hybridization-gap semiconductors are expected to exhibit less correlation signatures [212] and
also the substitution of a 3d transition-metal with its 4d homolog will reduce correlation effects [439],
as explicitly shown for Fe1−xRuxSb2 [433, 478].

While the resistivity of FeSb2 only displays a shoulder at T ∼ T µ
∆ (successfully modelled with Γ(T )),

a distinct peak can be observed in the three other materials. The metallic slope, ∂ρ/∂T > 0,
at temperatures below said peak cannot be replicated with a chemical potential that is driven by
finite lifetimes through Eq. (3.87) alone. Indeed, the transition of the chemical potential must occur
more abruptly in temperature, making explicit impurity states a necessity to achieve agreement
with experiment. We find that deploying a single donor level near the conduction band allows
us to reproduce the qualitative behavior of all considered materials across all considered transport
observables.
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Figure 3.37: Modelling of intermetallic narrow-gap semiconductors. The experimental
temperature profile of transport observables of FeSb2 [214], FeAs2 [214], RuSb2 [424] and FeGa3
([100] orientation) [425, 446] is simulated with finite lifetimes and a single donor level at a distance
ED below the conduction band. Lifetimes dominantly determine transport at intermediate to low
temperatures. Instead, the donor level virtually only affects higher temperatures near T µ

∆ and
T µ

ν . In particular, in congruence with experiment, the level accounts for the metallic slope in the
resistivity seen in all materials other than FeSb2. To limit the number of adjustable parameters,
bandgaps were fixed to experimental values: using Z = 0.5 for ∆FeSb2 = Z × ∆0,FeSb2 = 30meV
and Z = 1 in ∆FeAs2 = 200meV; ∆RuSb2 = 290meV; ∆FeGa3 = 500meV. All modelling parameters
are listed in Table 3.3. Jointly, finite lifetimes and the impurity level yield an accurate description
without the need for other electronic structure details.

Resistivity

For FeSb2 this leads to minor improvements in T µ
∆ and T µ

ν of the initial fit (Fig. 3.28). For Fe/RuAs2

and FeGa3 the engineered chemical potential causes the resistivity to decrease when cooling below
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their T µ
ν (metallic slope), before it rises again to enter the second activated region and, eventually, the

saturation regime below T ∗
ρ . The overall agreement is astounding: with a single impurity level char-

acteristic temperatures, qualitative features and even relative amplitudes between various materials
can be accurately modelled.59

Seebeck coefficient

Unsurprising from the previous analysis and the optimal parameters listed in Table 3.3 the magnitude
of the theoretical Seebeck coefficients (Fig. 3.37b) do not differ significantly in the modelling. For all
materials considered we observe a peak amplitude in the range of |Smax| = 0.8 − 1.3mV

K positioned
at a respective T max

S slightly above the saturation temperatures T ∗
ρ of Fig. 3.37a. While lacking

the phonon-drag boost to the Seebeck magnitude, our treatment still captures quite well, both,
the dominant peak’s position at T max

S and the high temperature shoulder (peak) at T µ
∆ for FeSb2

(FeGa3). Unfortunately, no data for FeAs2 and RuSb2 is available for higher temperatures: For
them, we anticipate an additional Seebeck feature where the respective resistivities are peaked.

Hall coefficient

The agreement to experiment for the Hall coefficient, Fig. 3.37g, is comparable to that of the re-
sistivity: As in the experiments, the position of the peak in RH virtually coincides with the T ∗

ρ

crossover in the resistivity. Equally the hierarchy across materials is captured for the saturation
value, RH(T → 0), and also the decay at higher temperatures mirrors the experiment. Clearly, the
high-temperature shoulder is connected to the resistivity peak at T µ

∆. We therefore expect RH of
RuSb2 to similarly drop if temperatures slightly beyond the shown experimental range were probed.

Nernst coefficient

For the Nernst coefficient less experimental data is available, see Fig. 3.37h. For the cases of FeSb2

and FeAs2 the qualitative agreement between simulation and measurements is reasonably good. Of
course, what has been said about the Seebeck coefficient of FeSb2 also applies to its Nernst signal:
It is substantially boosted by the phonon drag [421, 423], limiting us to discussing the qualitative
temperature profile60. Not suffering from this intricacy, clearer agreement is seen for FeAs2: There,
the experimental low temperature signal neatly follows the linear behavior ν ∝ T (dashed line) as
derived in Eq. (3.188) and illustrated in Fig. 3.37d.

59 The only noticeable deviation constitutes FeGa3 where the chosen experiment exhibits a less clear transition between
an activated and a saturated region. See, however, the c-axis resistivity in Ref. [446].
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For FeSb2, we also indicate the Hall and thermal mobilities of Eq. (3.195) in the insets of
Fig. 3.37d/h. The experimental data [214] qualitatively matches the theoretical prediction: At high
temperatures a divergence between µT and µH is observed, giving rise to FeSb2’s smaller Nernst peak
at T ≈ 40K. Below, at intermediate temperatures, T ≈ 20K, the two mobilities almost coincide (i.e.,
ν is suppressed). At low temperatures, T ≈ 10K, again a slight mismatch occurs, giving rise to the
prominent low temperature peak.

Z ∆0 α Γ0 γ ED ρD

[meV] [eV] [ eV
K2 ] [meV] [ 1

unit cell ]
FeSb2 0.5 60 1.02 1.5 · 10−4 8 · 10−7 20 6 · 10−8

FeAs2 1 200 1.12 1.5 · 10−5 3 · 10−7 15 1.5 · 10−4

RuSb2 1 290 1.12 7 · 10−5 2 · 10−7 18 3.5 · 10−4

FeGa3 1 500 1.04 3 · 10−4 2 · 10−7 40 1.5 · 10−3

Table 3.3: Electronic structure parameters for simulated materials. Quasi-particle
renormalization Z, bandgap ∆0, band asymmetry α = |t2/t1|, scattering rate coefficients in
Γ(T ) = Γ0 + γT 2 and a single donor level of concentration ρD positioned at a distance ED be-
low the conduction band. Gap sizes, ∆ = Z∆0, are kept fixed to experimental values during the
(manual) optimization procedure.

3.4.2.4 Perspective
The previous Section made clear that with reasonable scattering rates and (for larger gap systems)
an explicit impurity in-gap level, all experimental transport coefficients can be qualitatively matched
with an essentially featureless band structure. This emphasizes the notion that most—if not all—of
the relevant transport physics in narrow-gap semiconductors is purely determined by the interplay
of the gap, the chemical potential profile (shaped by temperature, carrier lifetimes and, potentially,
impurity states) and the scattering rate. Electronic structure intricacies, such as details of the band
structure beyond the gap value and optical transition elements, all seem to play only a secondary role.
Further, we evidenced that, at low temperatures (T ∗

RH
< T ∗

ρ < T max
S ), features are controlled by the

scattering rate through the (quantum = beyond-Boltzmann) transport kernels, whereas the higher-
temperature features (T µ

∆ < T µ
ν ) are determined through the behavior of the chemical potential,

which can be driven by the scattering rate of intrinsic carriers as well as by extrinsic impurity in-gap
states.

60 Contrary to S, ν depends on the lattice constant and scales according to ν ∝ alattice, see Appendix of Ref. [9]. Using
instead of our generic a = 1Å, a realistic lattice constant, FeSb2’s Nernst amplitude is, in principle, not out of reach
of the electron diffusion picture.
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Future extensions of the presented formalism (and software package [11]) could include the ability to
describe phonon-drag contributions to thermoelectric observables. This advance could remedy our
current inability to quantitatively match the amplitude of the Seebeck coefficient, in particular of
single crystalline FeSb2. Furthermore, an inclusion of (topological) surface conduction and in-depth
comparisons of their importance vis-à-vis the discussed bulk conduction is desirable, also in view of
FeSb2 [418, 474]. Finally, also anomalous bulk contributions could be included, following, e.g., the
recent Ref. [391].

3.4.3 Summary
Summarizing Section 3.3 and Section 3.4, we conceptualized an efficient linear response transport
formalism: A low-energy expansion of quasi-particle renormalizations enabled performing frequency
integrations in dominant Feynman diagrams analytically which we applied to narrow-gap semicon-
ductors and established a comprehensive phenomenology of their transport properties:

First, we analytically extracted low-temperature characteristics of various transport observables:
In congruence with experiments, both, the resistivity and the Hall coefficient saturate at finite values
for T → 0. The Seebeck and Nernst coefficients, instead, vanish linearly in the zero temperature
limit, consistent with thermodynamic expectations. These behaviours are beyond the reach of semi-
classical approaches like Boltzmann theory in the relaxation time approximation, highlighting the
importance of a fully quantum mechanical description.

Next, we simulated transport properties as a function of temperature for varying bandgap,
particle-hole asymmetry and scattering rate. This survey establishes the prototypical temperature
dependence of transport in narrow-gap semiconductors to be structured by five emergent character-
istic temperatures: T ∗

RH
< T ∗

ρ < T max
S < T µ

∆ < T max
ν : At high temperatures, T > T µ

ν , the shape of all
observables is controlled by the bandgap ∆0 and our equations yield results identical to Boltzmann
approaches. Upon cooling, T µ

∆ < T < T µ
ν , the system experiences a crossover from the activated,

Boltzmann-like regime to a renormalized activation region, T ∗
ρ < T < T µ

∆, with an associated energy
∆1 < ∆0. We find this crossover to be driven by the chemical potential: Finite lifetimes of valence
and conduction states cause incoherent spectral weight to spill into the gap. Below a characteristic
temperature, these incoherent carriers can no longer be neglected with respect to the charges that
are thermally activated across the gap ∆0. In particle-hole asymmetrical systems, the chemical po-
tential then has to adapt to preserve charge neutrality by moving to a position separated by only ∆1

from the top (or bottom) of the valence (or conduction) band. This intrinsic mechanism provides an
explanation alternative to the common extrinsic scenario in which the moving of the chemical poten-
tial (and the associated shoulder in the resistivity) is attributed to the presence of impurity in-gap
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states. Finally, at low enough temperature, T < T ∗
ρ (T < T ∗

RH
) the system enters the aforementioned

lifetime-dominated regimes in which the resistivity (the Hall coefficient) saturates and thermoelectric
observables vanish linearly.
In semi-classical approaches, the lifetime of excitations appears as a mere prefactor of, say, the
conductivity. In the quantum formulation derived here, instead, the scattering rate is a relevant
control parameter that can compete with other energy scales of the problem. Indeed, the emergence
of all characteristic transport features is a direct consequence of the interplay of the charge gap and
the scattering rate. In other words, in our transport equations, thermal and lifetime broadening are
described on an equal footing.

Let us note that recently, Eo et al. [298] provided strong evidence for surface states in FeSb2 and
FeSi (previously also found in Refs. [299, 474]), and, importantly, extracted a bulk resistivity that
rises exponentially over up to 9 orders of magnitude down to lowest temperatures. These results
suggest that topologically protected surface states short-circuit the bulk in a standard four-point
resistivity measurement and lead to the observed residual conduction. To further distinguish the
different scenarios, it will be enlightening to perform measurements on crystals with different types
and concentrations of defects. It could be that our lifetime-scenario only comes to light for less pure
samples.

Nonetheless, our phenomenology seems to be prototypical in a wider context of narrow-gap semi-
conductors [212]. Indeed, all considered hybridization-gap semiconductor showed reasonably good
qualitative agreement where FeAs2 even showcasing the linear temperature dependence of the Nernst
coefficient, one of the hallmarks of residual conduction within our theory, see Fig. 3.37. Further,
in Ce3Bi4Pt3, our other main target material, residual conduction was shown to be indeed a bulk
property [334].

In the next, final results Section, we will give a brief overview of the LinReTraCe package used
to generate the results shown in this Section. In the context of the models and materials studied so
far, we will highlight some important, hitherto ignored, technical details and showcase some potential
future avenues of research.
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3.5 The Linear Response Transport Centre
◦ This Section is based on “LinReTraCe: The linear response transport centre” by

Matthias Pickem, Emanuele Maggio, and Jan M. Tomczak [11]. Adopted text passages
have been marked accordingly.

◦ In this Section we detail the numerical implementation of the methodology introduced in
Section 3.3. To this end we emphasize certain technical details which were necessary in the
applications to narrow gap semiconductors as well as (realistic) applications that go beyond
the insulating scenario. Similar to Section 3.4, the aforementioned sign and pre-factor fixes
have been adopted and the relevant figures have been adjusted accordingly.

◦ For a practical userguide (installation, configuration, execution) of the code package, please
refer to the original publication [11]. The live repository can be found at Ref. [12].

Figure 3.38: LinReTraCe [11]
https://github.com/linretrace

Finalizing our discussion on transport properties of narrow-gap
semiconductors, we detail the implementation of the Linear Re-
sponse Transport Centre LinReTraCe (github.com/linretrace),
a software package that facilitates the computation of a variety
of transport observables. The unique feature of LinReTraCe is
the treatment of thermal and lifetime broadening on an equal
footing [7, 9], while still incurring numerical costs as low as
semi-classical Boltzmann approaches in the relaxation-time ap-
proximation. We exploit that linearizing the dynamics of many-
body renormalizations (self-energy) allows for a semi-analytical
(instead of numerical) evaluation of leading contributions in
Kubo’s linear response theory [7, 9, 331], see the previous Sec-
tions. LinReTraCe’s principle input are electronic excitation
energies and associated quasi-particle weights and lifetimes, as
well as optical transition matrix elements. Being agnostic to
the input’s origin, LinReTraCe can be used in a variety of settings, including electronic structures
from tight-binding or Wannier projections [63], density functional theory (DFT) [479], many-body
perturbation theory [480, 481], dynamical mean-field theory (DMFT) [94, 482], or approaches be-
yond [74, 93]. Scattering amplitudes and many-body renormalizations can be phenomenological,
extracted from electronic self-energies (obtained, e.g., from DMFT), or could incorporate results

https://github.com/linretrace
https://github.com/linretrace
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from electron-phonon codes [409, 410, 412, 483, 484, 485, 486]. In this release we include interfaces to
the DFT codes WIEN2k [21, 22] and VASP [26], the band interpolation tool of BoltzTraP2 [406, 407],
maximally localized Wannier functions of Wannier90 [29], as well as tools for general tight-binding
systems. We further provide templates for the implementation of interfaces to other codes. With an
emphasis on numerical accuracy and scalability, LinReTraCe will be of value also for high-throughput
studies [465, 487, 488, 489, 490, 491] and for tight-binding descriptions of very large unit-cells.

3.5.1 Methodological context
To highlight the merits of LinReTraCe, let us group previous packages for electronic transport proper-
ties of solids into two categories: semi-classical Boltzmann and Kubo linear response codes. Owing to
their numerical efficiency and ease of handling, Boltzmann codes [406, 407, 408, 409, 410] have become
popular tools. Typically, they are used in conjunction with band-theory, i.e., they utilize well-defined
excitation energies. The selection of carriers participating in conduction is then solely determined
from the thermal broadening (activation) via the Fermi function. In the usually employed relaxation-
time approximation (RTA), electron scattering then only results in amplitude-scaling prefactors for a
given momentum k and state n, e.g., for the conductivity σ ∝ -

kn Γ−1
kn × · · · , cf. Eq. (3.149). Often,

the scattering rate Γ is moreover assumed to be equal for all states and momenta. Then, the lifetime
τ = ℏ

2Γ scales the Boltzmann conductivity globally, while the Seebeck and Hall coefficient become
independent of τ . With this assumption, insight into electronic transport can be gained without
explicit knowledge of scattering amplitudes and their physical origin. As a consequence, Boltzmann
transport kernels are relatively simple and the algorithmic complexity of, e.g., BoltzTraP [406, 407]
and BoltzWann [408] (and the difference between them), lies in how they achieve convergence in the
sampling of the Brillouin zone.
There are however circumstances, when the approximations inherent to band theory and the semi-
classical treatment of transport fail. Inadequacies of band-theory for strongly correlated materials are
well-documented: Examples not only include Mott insulators, where correlation effects fully invalidate
the band-picture [59]. Also the electronic structure of correlated metals [416, 492, 493, 494] and
correlated narrow-gap semiconductors [212, 250] are severely altered and have to be accounted for
with methodologies that include dynamical renormalizations (self-energies). However, even if such
many-body corrections are captured on the level of electronic structure theory, plugging them into
a semi-classical transport methodology may still lead to severe pathologies: Irrespective of the size
of the scattering rate, the resistivity, the Seebeck, and the Hall coefficient of a clean semiconductor
diverge in the zero temperature limit within Boltzmann’s relaxation time approximation. A diverging
activation law for the T → 0 resistivity is physically admissible—but it is never observed. A diverging



Chapter 3.5: The Linear Response Transport Centre 303

Seebeck coefficient, |S(T → 0)| → ∞, instead, violates the third law of thermodynamics (there can
be no entropy transport at T = 0 for non-degenerate ground-states).

A quantum mechanical description of transport using Kubo’s linear response theory [191] overcomes
these artefacts by correctly treating effects of finite lifetimes (incoherence) of charge carriers [7, 9,
320]. To allow, beyond the thermal, also for a lifetime broadening of excitations, Kubo formulas
require an integration over energies. This evaluation may become expensive for large systems and is
hazardous at low temperatures and when the scattering rate is small. With LinReTraCe we conquer
this bottleneck by performing frequency integrations analytically instead of numerically. This step
becomes possible after linearizing the dynamics of many-body renormalizations (the self-energy Σ),
yielding the LinReTraCe input: the scattering rate Γ, the quasi-particle weight Z, and possible
static offsets ℜΣ. This approximation is warranted as the self-energy typically varies slowly inside
the narrow energy-window probed by transport (a few kBT ), unless there are relevant pole-like
structures in the self-energy, as is the case in Mott insulators. Following common practice of Kubo
implementations [32, 362, 492, 493, 494, 495, 496, 497, 498, 499, 500], LinReTraCe neglects particle-
hole scattering, so-called vertex corrections. The ensuing analytical transport functions are then
not only numerically inexpensive and stable, they also reveal valuable microscopic information: In
particular they show that the scattering is not a mere prefactor (scaling the amplitude of conduction),
but a relevant energy scale that has a complex interplay with other energies of the system, e.g., the
charge gap in a semiconductor [9]. In all, LinReTraCe combines the best of both (Boltzmann &
Kubo) worlds: an efficient and stable evaluation of transport observables that treats thermal and
lifetime broadening on an equal footing.

3.5.2 Implementation
Programming languages
— Fortran 95 and Python 3
Required dependencies
— HDF5 (≥ 1.12.1), h5py, numpy, scipy, ase (≥ 3.18.0), spglib (≥ 1.9.5)
Optional dependencies
— MPI (Fortran 95), matplotlib, boltztrap2 (≥ 20.7.1), cmake
LinReTraCe calculations follow the flow chart of Fig. 3.39 and require two mandatory files: an energy
file and a config file. The former is a direct result of one of the various interfaces and contains all the
necessary energies ε(k, n), optical elements M (B),αβ(γ), and other auxiliary data. Depending on the
data source only some of these optical elements can be generated, as, e.g., the magnetic field optical
elements require the existence of band velocities and curvatures, not available in stand-alone WIEN2k
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calculations. The transport calculation itself is configured via a config text file for which lconfig
provides a minimal starting point. More elaborate options, e.g., impurity states, need to be added
by hand. In the config file one has access to simplistic scattering rate (and quasi-particle weight)
dependencies, i.e., polynomial behaviors in temperature. More control over these dependencies can be
gained via a scattering file where one has the option to specify all available data points individually.
The results of the transport calculation are then saved in the HDF5 output file containing all the
Onsager coefficients Lαβ

ab , LB,αβγ
ab among other auxiliary information, including the configuration,

structure information, etc. lprint provides easy access to these data containers as well as their
combinations that form the physical transport quantities.

As it does not contribute to this thesis in a significant manner: For a detailed installation instruc-
tions, a thorough discussion on the interfaces (green boxes), the various executables (red boxes), the
resulting files (blue boxes) and the configuration options, please refer to the original publication in
Ref. [11]. Instead, here we will focus purely on technical details relevant to the previously shown
results and advance the discussion towards inter-band contributions and applications to exemplary,
realistic material calculations.

3.5.3 Technical details
3.5.3.1 Matrix elements on irreducible grids
Periodic unit cells can be assigned a point group that is commonly represented by a set of n square
matrices Pi (detPi = ±1) that describe all applicable symmetry operations acting in real space. In
reciprocal space this can be exploited as one can reduce the number of momenta necessary to represent
the full Brillouin zone (for a symmetry reduction algorithm scaling linearly with the number of points
see [501]). Each so-called irreducible k-point kirr then represents a set of momenta {ki} that are all
connected to each other via the transposed matrices P T

i

ki = P T
i kirr. (3.203)

The number of unique momenta generated from kirr is called its multiplicity m, where each point in
the set will be generated exactly n

m times. Naturally, the energies within this set remain unchanged

∀i, kirr : ε(kirr) = ε(P T
i kirr) (3.204)

which then also applies to the kernel functions Eqs. (3.79-3.80). Crucially, owing to their directionality,
this does not hold for the associated optical elements, band velocities and band curvatures, hence
Eqs. (3.77-3.78) must not be evaluated directly on the irreducible grid. Instead, matrix elements have
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Figure 3.39: Flow chart of the LinReTraCe package: The energy file can be generated by interfac-
ing various electronic structure codes or modelling your own dependencies. Combined with a config
file and, optionally, full scattering dependencies, this constitutes the input of the core program
bin/linretrace. The HDF5 output file can either be accessed effortlessly by lprint or via any
external HDF5 library.

to be symmetrized: By averaging over all connected optical elements

M symmetrized
opt (kirr) = 1

n

n,
i=1

Mopt(P T
i kirr) (3.205)

one is able to absorb all the required symmetry information. Please note that these schemes require
the momentum mesh to respect the same point group symmetries as the unit cell itself, e.g., a cubic
crystal structure requires nkx = nky = nkz. If this were not the case, P T

i kirr generates points outside
the initial grid.61
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While density functional theory codes like WIEN2k provide dipole matrix elements on an irreducible
grid, optical elements as listed in Sec. 3.3.4.2 need to be symmetrized explicitly. Since Eq. (3.205) relies
on information from the full Brillouin, the symmetrization is implemented via real-space rotations.
Band velocities then transform as

v(P T
i kirr) =

�
K−1P −1

i K
�

v(kirr) (3.206)

whereas band curvatures c transform as

c(P T
i kirr) =

�
K−1P −1

i K
�

c(kirr)
�
K−1P −1

i K
�T

(3.207)

as they correspond to a single and twofold momentum derivative, respectively. In the same vein the
optical elements M themselves transform as the curvatures in Eq. (3.207). Here K is the matrix
formed by the reciprocal lattice vectors (the rows of K). This transforms the point group matrix
into Cartesian directions and is explicitly necessary for non-orthogonal unit cells. The generated
velocities and curvatures are then combined to optical elements via Eqs. (3.166-3.167), over which
the symmetrization is performed.

Let us emphasize that Eqs. (3.206-3.207) only hold in the band-basis. In the context of (non-diagonal)
Wannier basis (coming from Wannier90 or tight-binding parameters), the symmetrization must be
performed explicitly. That is, one is forced to generate all connected reducible points via P T

i kirr, and
calculate the multi-orbital Hamiltonian and its derivatives (velocities v and curvatures c)62

Hll′(k) =
,
R

eik·RHll′(R), (3.208a)

Hv,α
ll′ (k) = i

,
R

Rαeik·RHll′(R), (3.208b)

Hc,αβ
ll′ (k) = −

,
R

RαRβeik·RHll′(R), (3.208c)

on these connected set of momenta. Here Rα is the Cartesian component α ∈ {x, y, z} of the unit-cell
vector R. One then has to perform the diagonalization to the band basis on each of these momentum
points via

ε(k) = U−1(k)H(k)U(k) (3.209)

separately, as the Hamiltonian matrices do not necessarily have to coincide – only their respective
61 An incommensurate reducible grid could still be reduced, by deselecting invalid momenta. Also an exact symme-
try mapping of every single irreducible k-point to all m connected momenta would solve this issue. Our current
implementation, however, requires the user to make a sensible choice for the grid.
62 In unit cells with more than one atom we employ the Peierls correction as derived in Ref. [362]. The velocities are
corrected by a second term according to vα

kll′ = 1
ℏ
∂kα Hll′ (k) − i(ρα

l − ρα
l′)Hll′ (k).
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eigenvalues. Finally, the symmetrization is then performed over the optical elements M (B),αβ(γ), see
Section 3.3.4, which consist of a combination of velocities and curvatures that have similarly been
transformed to the band basis with the transformation matrices U (−1)(k).

To showcase the validity of these equations and our symmetrization routine we compare a graphene-
inspired honeycomb lattice on a reducible and corresponding irreducible momentum grid, see Fig. 3.40.
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Figure 3.40: Reducible calculations compared to calculations on an irreducible grid with and
without optical element symmetrization. Left: Density of states of the honeycomb lattice with
hopping of tAB = tBA = 1eV and lattice length |a| = 1Å. Middle and right: Onsager coefficients
Lxx

11 and Lyxz
12 performed for 180 × 180 reducible (8191 irreducible) k-points at a constant chemical

potential of µ = 0.20eV (vertical dashed line) and scattering rate Γ = 10−5eV. Only a properly
symmetrized irreducible grid leads to consistent data. Note that for this 2D system, Onsager
coefficients needed to be multiplied with the (fictitious) c-lattice constant to yield proper units, as,
e.g., L11 is linked to a conductance [σ2D] = 1/Ω instead of a conductivity [σ] = 1/(Ωm).

3.5.3.2 Chemical potential search
Determining the chemical potential is a common root finding problem where the numerical search of
µ can be represented by

N −
,
k,n

f(εk,n − µ) != 0. (3.210)

For the case of no band renormalizations (Z ≡ 1) the occupation f(εk,n − µ) is either determined
from the Fermi function

f(εk,n − µ) = fFD(εk,n − µ) = 1
1 + eβ(εk,n−µ) (3.211)
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or from the lifetime-broadened spectrum Eq. (3.84), entailing

f(εk,n − µ) = 1
π

− ℑψ

�1
2 + β

2π
(Γk,n + i(εk,n − µ))

%
. (3.212)

In some cases, employing root-finding algorithms on Eq. (3.210) can lead to severe problems. While
metallic systems suffer mostly from too coarse momentum grids, gapped systems tend to exhibit
massive numerical instabilities.63 Due to the additional Γ-smearing in our formalism, this problem
is absent for reasonably large scattering rates (Γ ≥ 10−6eV) and reasonable band gaps (∆ < 10eV)
at all temperatures when using Eq. (3.212). Using the Fermi-Dirac distribution for insulators, on the
other hand, the root-finding is strongly restricted in the temperatures that can be safely captured,
irrespective of the numerical accuracy, see double and quadruple precision calculations (blue and
green lines) in Fig. 3.41, respectively.
In order to circumvent this problem the root-finding problem can be reformulated to,

k,n≥CB
f(εk,n − µ)

����������������������������������������������
activated electrons

−
,

k,n≤VB
f(−(εk,n − µ))

��������������������������������������������������������
activated holes

!= 0 (3.213)

in fully gapped systems with µ inside the gap: The chemical potential is determined by balancing
the electrons in the conduction bands with the holes in valence bands. As a consequence one is not
limited by machine precision anymore and can exploit the full floating point range. Nonetheless,
due to finite bit length, temperatures are still bounded. The lowest possible achievable temperature
corresponds to resolving density contributions down to the smallest positive number representable in
quadruple precision: 2−16494. If the occupation is determined via the Fermi function and the chemical
potential is in the middle of the band gap ∆, it follows from

1
eβε + 1 ≈ e−βε = e−β ∆

2 (3.214)

that the lowest temperature bound is

T µ
bound[K] = ∆[eV]

2 ln(2)16494kB
≈ 0.5∆[eV]. (3.215)

The chemical potential determined via this refined root-finding problem is also illustrated in Fig. 3.41.

63 Which is why Boltzmann codes typically use a fixed chemical potential instead of searching for it.
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Figure 3.41: Chemical potentials in a gapped system determined via Eq. (3.210) with double (blue)
and quadruple precision (green) compared to the chemical potential via the reformulated Eq. (3.213)
(red). In all three cases the Fermi distribution is used. For the given band gap ∆ = 0.1eV the
“standard” root finding breaks down below T = 40K and T = 10K as the floating point accuracy is
exhausted at double and quadruple precision, respectively. The reformulated problem on the other
hand is stable down to T = 0.05K (below plotted range), see text.

Impurity levels

LinReTraCe allows the inclusion of passive impurity states: Neglecting explicit contributions to the
transport functions, the charge of these extra states affects the transport data merely through the
position of the chemical potential. The above refinement algorithm is especially important when em-
ploying impurity states inside the gap. Without them, one could approximate the chemical potential
obtained via the Fermi function, by extrapolating µ towards the band-gap mid-point at T = 0 [331].
Including impurity states is straight forward:

(i) calculate (intrinsic) electron occupation f(µ) according to Eq. (3.211) or Eq. (3.212)

(ii) calculate (extrinsic) impurity contribution nimp according to Eq. (3.217a) or Eq. (3.217b)

(iii) calculate total occupation: n(µ) = f(µ) − nD
imp + nA

imp (given a donor (acceptor) level, the
chemical potential has to increase (decrease) to compensate)

(iv) determine µ according to Eq. (3.210) or Eq. (3.213)
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Please note that the reformulated root-finding problem of Eq. (3.213) then becomes,
k,n∈CB

f(εk,n − µ) −
,

k,n∈VB
f(−(εk,n − µ)) − nD

imp + nA
imp

!= 0. (3.216)

Here the impurity contribution differs between donor (D) and acceptor (A) levels

nD
imp = ρD

1 + geβ(µ−ED
imp) (3.217a)

nA
imp = ρA

1 + geβ(EA
imp−µ) (3.217b)

where ρD/A is the impurity density, g is the impurity degeneracy and Eimp is the impurity position.
For a donor level in the vicinity of the conduction band edge the chemical potential has to increase to
compensate for the additional impurity occupation. Fig. 3.42 illustrates the effect for varying impurity
densities. Using the Fermi distribution for intrinsic states, the chemical potential approaches the
center point between the impurity level ED

imp and the closest conduction state (instead of the band-gap
middle point, realized for ρD = 0). From a transport perspective the effective band gap transforms
from ∆ = Ec − Ev at high temperatures to ∆ = Ec − Eimp at low temperatures. The transition
temperature is controlled by the impurity density and partially by the degeneracy of the impurity
level. In addition to single impurity levels LinReTraCe also offers finite-size impurity bands with
various shapes including box (constant), half-circle, and squared sine, see the Appendix of Ref. [11].
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Figure 3.42: Comparison of the chemical potential for different impurity densities ρD for a donor
level located at ED

imp inside a semiconducting gap of 100meV. Intrinsic states were chosen to be
described by the Fermi distribution (Γ = 0).



Chapter 3.5: The Linear Response Transport Centre 311

Homogeneous doping

Besides explicit impurity states, LinReTraCe also supports generic doping. Contrary to impurity
levels where the chemical potential converges for T → 0 to a point inside the gap, any global doping
forces the chemical potential eventually to move outside the gap. Leading up to this, the root finding
works identical as in Sec. 3.5.3.2. Here the “impurity contribution” is simply the doping which, now, is
not affected by temperature and the position of the chemical potential. Please note that, technically,
this kind of doping is more nuanced than a simple change of the total electron occupation. For the
refinement algorithm to work inside the gap, an underlying integer filling is mandatory. Thus instead
of changing the filling, one has to employ an explicit Doping keyword in the config, see Appendix of
the original publication [11].
In Fig. 3.43 we showcase the same underlying band-structure as in Sec. 3.5.3.2 with various electron
doping levels. Note the differences to Fig. 3.42: For the largest shown doping level (δe = 10−6) the
crossing into the conduction band (shaded gray) already happens at around T = 100K.

10−1 100 101 102 103
T [K]

−0.04

−0.02

0.00

0.02

0.04

0.06

μ
[e
V]

δe=0

−25.0 −22.5 −20.0 −17.5 −15.0 −12.5 −10.0 −7.5

log10 δe [ 1
unit cell ]

Figure 3.43: Comparison of the chemical potential for different levels of electron doping δe in a
semiconductor. This example uses the Fermi distribution (Γ = 0) to find the chemical potential.

3.5.3.3 Polygamma evaluation
While all Fermi-function related equations can be implemented efficiently with native Fortran func-
tions up to quadruple precision, the evaluation of the digamma and polygamma functions is more
delicate. The digamma function is the derivative of the natural logarithm of the Gamma function
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whose series representation is closely related to the harmonic numbers

ψ(z) = d

dz
ln Γ(z) = Γ′(z)

Γ(z) (3.218a)

ψ(z) = −γ +
∞,

n=1

� 1
n

− 1
n + z − 1

%
(3.218b)

where γ is the Euler–Mascheroni constant. The polygamma function ψm (m > 0) is the mth derivative
of the digamma function whose series expansion follows directly from the differentiation

ψm(z) = dm

dzm
ψ(z) m ∈ N+ (3.219a)

ψm(z) = (−1)m+1m!
∞,

n=1

1
(n + z − 1)m+1 . (3.219b)

Eqs. (3.218b,3.219b) are used extensively in our analytic derivation of the transport kernels [9]. Nu-
merical implementations instead use different expressions depending on the location of the argument
z in the complex plane. In particular, for large ℜ(z), an asymptotic Bernoulli expansion makes the
evaluation very efficient [404]:

ψ(z) = ln(z) − (2z)−1 −
n−1,
k=1

B2k

2k
z−2k + O(z−2n) | arg(z)| ≤ π − ϵ, ϵ > 0 (3.220)

with the Bernoulli numbers B2k. In LinReTraCe, we adapt the cernlib [502] Fortran routine wpsipg
(v1.2) for polygamma functions with complex argument, originally described by Kölbig [503]. We
upgraded the routine to quadruple precision and commensurately increased the Bernoulli expansion
order (to up to k = 16).64

3.5.3.4 Code scaling
As the code is meant to be a hybrid—designed to solve models and large realistic materials—the
scaling behavior of the parallelization is important: LinReTraCe is parallelized over the number of
Brillouin zone momenta nk (see Sec. 3.5.4.1 for a momentum convergence test). The resulting scaling
is illustrated in Fig. 3.44. As expected, a purely linear behavior (runtime t ∝ nk) emerges.65 While
a single core installation experiences almost no overhead, the MPI implementation requires roughly
200 data points per core to become efficient. The quadruple precision evaluation of kernels roughly
doubles the runtime.

64 At T = 5.8K and Γ = 0 this setting reproduces the analytical Fermi function fF D(ω) with an error of less than
10−27 for any ω.
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In intra-band calculations the runtime will necessarily further scale linearly with the number of bands,
while the inter-band portion of the code will scale with the square of the number of bands, as each
band permutation must be evaluated. In normal circumstances, i.e., for small primitive unit cells, the
number of bands is usually limited to between O(10) and O(100) where necessarily the momentum
mesh must remain dense. On the contrary, in super cells one reallocates the computational load from
the momentum mesh to the number of bands. The increased unit cell size requires fewer momenta
to achieve convergence, which is counterbalanced by an increased number of atoms in the cell and
thus an increased number of bands. To combat this intrinsic scaling problem one is encouraged to
truncate the number of bands to a specific energy range around the Fermi level. Super cells especially
benefit from this drastic decrease of the number of bands while maintaining numerical accuracy.
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Figure 3.44: Runtime t of a one-band model over a wide range of momentum grids with nk points.
A clear linear scaling emerges which is somewhat delayed in the MPI runs due to the communication
and input overhead. “quad” and “double” indicate the employed internal precision.

3.5.4 Applications
In this Section we are going to apply the previously described transport methodology. Our aim is
to highlight some of the features implemented in LinReTraCe on systems that cover a wide range
of phenomena, without, however, exhausting the code’s full functionality. We start off with simple
models in Sec. 3.5.4.1, Sec. 3.5.4.3 and Sec. 3.5.4.4 and transition to realistic crystal structures in

65 The calculations contain 100 temperature steps and were performed on a single node of the Vienna Scientific Cluster
4. Each node consists of two sockets with one Intel Xeon Platinum 8174 Processor @ 3.1 GHz (formerly Skylake) on
each socket, leading to 48 physical cores. We used the Intel Fortran compiler ifort and mpiifort (2020 release) for the
single core and multi core installation, respectively, with -O3 optimization.



314

Sec. 3.5.4.5 and Sec. 3.5.4.6. Input and configuration files of all examples can be found in the
github.com/linretrace/linretrace_examples repository.66

3.5.4.1 Convergence: One-band metal
We consider the simple electronic structure

ϵ0
kn = −2t

,
α=x,y

cos (kα) (3.221)

with hopping amplitude t = 0.25eV, lattice spacing ax = ay = 1Å and optical elements determined
with the Peierls approximation. In order to introduce particle-hole asymmetry (to generate a finite
thermopower) we set the system’s charge to N = 1.2 and determine the chemical potential with the
digamma occupation Eq. (3.212). Figure 3.45 shows the conductivity and Seebeck coefficient for a
temperature-independent scattering rate Γ = 10−4eV, no quasi-particle renormalization Z = 1, and
various momentum grids. Once k-convergence is reached, the conductivity is essentially temperature
independent. Then, as expected from the Mott formula [456], see Section 3.4.1.2, a linear-in-T
behaviour appears in the Seebeck coefficient. As the system is above half-filling, the carriers are
of hole-type, and the Seebeck coefficient is positive. Unsurprisingly, a dense momentum grid is
required to reach convergence at low temperatures. For the largest momentum grid employed here
(nk = nkx ×nky = 5000×5000) the results are converged down to approximately Tc = 6K. Please note
that due to the chemical potential search, discrepancies for coarse k-meshes are the results of a mixture
of chemical potential and kernel sampling errors. In all, even if the k-convergence in LinReTraCe
is more stable than in Boltzmann codes, a thorough check of the Brillouin-zone discretization is
mandatory—at least when the response is metallic.

3.5.4.2 Inter-band: Multi-atomic cells

Besides “intrinsic” inter-band contributions, stemming from multi-orbital dipole elements, see Section
3.3.4, inter-band contribution can be artificially brought into play by considering multi-atomic cells
or supercells: We again assume a simple nearest-neighbor hopping setup

ϵ0
kn = −2t cos (kx) , (3.222)

this time only in the x-direction, with an atomic spacing of the primitive unit cell of a = 1Å. Moving to
an equivalent non-primitive unit cell of size n·a, the boundary of the resulting band structure becomes
66 For storage reasons, the hosted HDF5 input files contain data on a coarser momentum mesh than that used for the
results shown here. For the model systems, however, the user can directly reproduce our results by generating their
own HDF5 input files using the number of k-points specified in the text. The same is possible for the material test
cases, but requires performing ones own DFT calculations.

https://github.com/linretrace/linretrace_examples
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Figure 3.45: (a) Resistivity and (b) Seebeck coefficient for the two-dimensional electronic structure
of Eq. (3.221) with Γ = 10−4eV, system charge N = 1.2 and various numbers of k-points nk. The
convergence temperature Tc (inset in (a)) scales as Tc ∝ n−0.5

k = n−1
kx

(fitted, dashed line). A dense
momentum grid is required to reach convergence (fat gray line) for reasonably low temperatures.
There, we observe an almost temperature independent resistivity and a linear-in-T behavior of the
Seebeck coefficient. The identical behavior is observed in the three dimensional equivalent where
instead the convergence temperature scales as Tc ∝ n−0.33

k = n−1
kx

(not shown).

restricted, see Fig. 3.46, which results in a backfolding effect. This is the result of the modified real-
space Hamiltonian where additional “bands” are introduced: The on-site term H(R = 0) becomes a
symmetric, tridiagonal n × n matrix

H(R = 0) =



0 t 0 . . .

t 0 t
. . .

0 t 0 . . .
...

. . .
. . .

. . .

 (3.223)

and the nearest-neighbor matrix is reduced to a single H1n(R = −a) = t, Hn1(R = +a) = t.
Total conductivities now contain intra- and inter-band contributions, see Fig. 3.46b, which were

all calculated with a fixed scattering rate Γ = 10−4eV and no quasi-particle renormalization Z = 1.
Combining intra and inter-band contributions, we find perfect numerical agreement compared to the
intra-band-only contribution of the primitive unit cell: The differences ∆Lxx

11 (T ) are plotted in the
inset and are evidently below the double precision accuracy employed in the calculations. As we chose
a particle-hole symmetric chemical potential µ = 0, we obtain a strong differentiation between even
and odd numbered unit cells: Through the band folding of the unit cells with an even number of
atoms (that occurs exactly at the Fermi level), their inter-band contribution are significantly boosted
compared to their odd numbered counterparts.
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Figure 3.46: Transition from primitive cell (black lines) to a multi-atomic cell via a larger unit
cell (colors). At particle-hole symmetry (µ = 0) the back-folding induces a strong differentiation
between even and odd numbered unit cells. An even number of atoms results in a band crossing
exactly at the Fermi level, boosting the inter-band contribution. Note the different scales of the
plots.

3.5.4.3 Kernels: Two-band insulator
For this Section to be somewhat self-contained we consider the two-band electronic structure used in
Section 3.4

ϵ0
kn = −

,
α=x,y,z

2tn cos (kα) + (−1)n(6tn + ∆0/2) (3.224)

with valence band hopping amplitude t1 = 0.25eV and lattice spacing ax = ay = az = 1Å. Here,
we use the Peierls approach in the band-basis, see Eq. (3.166), to compute matrix elements, limiting
the response to intra-band transitions. For the temperature scan we use a conduction band hopping
t2 = −0.30eV and a band gap of ∆0 = 0.1eV while for the chemical potential scan we use t2 = −0.25eV
and ∆0 = 1eV. On the calculated temperature range, full momentum-grid convergence is achieved
for 60 × 60 × 60 k-points. Contrary to the metallic system, the transport coefficients of this insulator
must be evaluated with quadruple precision for Γ > 0 in order to avoid numeric instabilities in the
polygamma functions at low temperatures. Instead, evaluating the Boltzmann kernels, a much denser
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momentum grid, that scales similarly to the metallic system of Sec. 3.5.4.1 is required for convergence
(not shown). Therefore, the more proper treatment of scattering amplitudes in our formalism actually
facilitates the numerical evaluation with respect to semi-classical approaches.

Temperature scan

The introduced band asymmetry leads to an imbalance of electronic carriers as the chemical potential
lies above µ = 0, see bottom panel of Fig. 3.47a. The thermal activation across the gap is reflected in
all considered physical observables where one finds ρ, RH ∝ e

+ ∆0
2kBT and S, ν ∝ 1

T at high temperatures.
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Figure 3.47: Temperature dependencies in a semiconductor of the resistivity ρ (top), the coef-
ficients of Seebeck S, Hall RH , and Nernst ν (second to fourth panel), as well as the chemical
potential (bottom; band gap delimited by thick black lines): (a) Effects stemming purely from the
occupation distribution (Fermi-Dirac “FD” or digamma “ψ”). (b) Effects achievable by guiding the
chemical potential with impurity states. Red: donor level ED = 0.04eV, ρD = 10−8 1

unit cell ; Blue:
acceptor level EA = −0.02eV, ρA = 10−14 1

unit cell . In all cases ∆0 = 100meV, Γ = 10−4eV; Z = 1.
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At low enough temperatures, however, a saturation regime is observed in ρ and RH , stemming from
the Kubo transport kernels, see Ref. [9] for details. Further, entropy transport is thermodynamically
consistent, as S ∝ T and ν ∝ T towards absolute zero. Taking lifetime broadening into account
also for the occupation, the chemical potential µψ(T ) is necessarily (since |t2| > |t1|) forced towards
the conduction band from which a second activated regime is generated below 100K, see Fig. 3.47a
(top panel). This intrinsic chemical potential behavior can also be achieved, in principle, through
a guidance of µFD(T ) via explicit impurity states, see Fig. 3.47b. Here, sharper transitions between
regimes and even changes in the dominant type of carriers can be generated. Please note the different
plotting scales and the sign changes of the Seebeck and Hall coefficient, consistent with the change
of dominant charge carriers.

Chemical potential scan

The chemical potential scans in Fig. 3.48 illustrate the in-gap behavior of the (intra-band) conduc-
tivity and the (intra-band) Seebeck coefficient. For small scattering rates and elevated temperatures
(Fig. 3.48a), we recover the usual “S”-shaped curve for the Seebeck coefficient: S crosses zero at
µ = 0, where the system is particle-hole symmetric. Slightly above (below) a minimum (maximum)
develops, corresponding to the dominant type of carriers (µ > 0: electrons; µ < 0: holes). In the
“Boltzmann” regime we find perfect agreement with the Goldsmid rule 2eSmaxT = ∆0 [449], relating
the maximal Seebeck coefficient Smax to the system’s gap. At lower temperatures, however, deviations
from this behavior can be observed as a plateau around µ = 0 develops that expands as we lower
the temperature further. This effect stems from the Kubo kernels Eqs. (3.94-3.99) and signals the
transition from the activated to a saturation regime. For a detailed discussion, see Ref. [9]. Larger
scattering rates (Fig. 3.48b) already lead to a deviation from the “Boltzmann” behavior at the highest
temperatures, where we additionally find a strong suppression towards the band edges at µ = ±0.5eV.
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Figure 3.48: Chemical potential scans for the symmetric insulator t1 = −t2 = 0.25 eV for (a)
small Γ = 10−4eV and (b) large Γ = 10−2eV scattering rates. Blue-to-green shades represent
conductivities; red-to-orange shades Seebeck coefficients. In the Boltzmann temperature regime
(Γ = 10−4eV; T > 250K) we find perfect agreement with the Goldsmid rule 2eSmaxT = ∆0.
Lower temperatures and increased scattering leads to a departure of the Boltzmann regime and the
transport responses qualitatively change shape. The white (grey shaded) background indicates the
gap (valence/conduction band region). The gap is ∆0 = 1eV and we used Z = 1.

3.5.4.4 Interplay of band velocities and curvatures

In order to illustrate the effect of velocities and curvatures in a detailed way, we consider tight-binding
Hamiltonians constructed for a honeycomb and kagome lattice, see Fig. 3.49. Both types of lattices are
based on the same underlying hexagonal unit cell, only differentiated from one another by the internal
atomic positions. The honeycomb lattice can be constructed the equivalent (1/3, 1/3) − (2/3, 2/3),
and the kagome lattice via the equivalent (0.25, 0.25) − (0.75, 0.25) − (0.25, 0.75).
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(a) honeycomb (b) kagome

Figure 3.49: Honeycomb and kagome lattice generated by an identical, underlying hexagonal unit
cell with different (equivalent) atomic positions. The A-B positions of the former lie on the long
unit cell diagonal forming a bipartite lattice. The A-B-C positions of the latter form “triangles”.
We draw lines stemming from the central unit cells and connect nearest neighbors.

For both the honeycomb and the kagome we define the identical lattice vectors of length 1Å via

a⃗1 =
�1

0

%
; a⃗2 = 1

2

� 1√
3

%
(3.225)

resulting in the reciprocal lattice vectors

b⃗1 = 2π√
3

� √
3

−1

!
; b⃗2 = 4π√

3

�0
1

%
, (3.226)

fulfilling a⃗i · b⃗j = 2πδi,j . The special points K and K’ (see Fig. 3.52) are then located at

K = 2
3 b⃗1 + 1

3 b⃗2 (3.227a)

K ′ = 1
3 b⃗1 + 2

3 b⃗2 (3.227b)

hence momentum grids that are divisible by three in each direction are required to include them. We
choose nkx × nky = 300 × 300 with nearest neighbor hopping t = 1eV.

The required tight-binding hopping parameters, mirroring the connections drawn from the central
unit cell in Fig. 3.49, can be found in the templates folder of the LinReTraCe repository. The
resulting band structures and density of states are illustrated in Fig. 3.50.
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Figure 3.50: Band structure along a high-symmetry path and corresponding density of states for
the (a) honeycomb lattice and (b) kagome lattice. The dispersive bands (and their contribution to
the density of states) are identical between the two lattices. The latter however also generates a
flat band at the upper edge of the dispersive bands which, due to the (numerical) broadening, spills
slightly into the rest of the density of states.

The relevant band velocities and band curvatures are generated via a rotation of the derivatives
(evaluated analytically in real space) of the multi-orbital Hamiltonian, see Eqs. (3.208a-3.208c),

vα(k) = U−1(k)Hv,α(k)U(k) (3.228a)

cαβ(k) = U−1(k)Hc,αβ(k)U(k) (3.228b)

which results in a peculiar disparity between the two models.

In both the honeycomb and kagome lattice, the particle-hole symmetry of the dispersive bands around
ε = 0 results in symmetric transport properties that only include band velocities, Lαβ

ab (+µ) =
Lαβ

ab (−µ), see Fig. 3.51a and 3.51b.

Indeed, in the band-basis, a flat band yields a vanishing group velocity: ∂εk/∂kα ≡ 0. Although we
compute the velocity in the local Wannier basis before rotating it into the band basis, the flat band of
this model neither contributes itself to conduction, nor does it modify the intra-band conductivities
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Figure 3.51: Effects of evaluating the velocities and curvatures in the Wannier basis before ro-
tating into the band basis. The responses connected purely to the velocities (L11; top row) remain
identical for both models, whereas responses connected to the curvatures (LB

11; bottom row) de-
velop a significant asymmetry in µ in the presence of the flat band. Instead, if the velocities and
curvatures had been evaluated in the band basis, all responses would be symmetric around µ = 0.

of the other bands. Once curvatures come into play, however, the flat band does in fact play a role:
magnetic corrections to the Onsager coefficients LB,yxz

ab obtain a strong asymmetry around µ = 0,
indicating a modification of the (magnetic) matrix elements of the dispersive bands. For a positive
chemical potential, the presence of the flat band strongly suppresses the response in the presence of
a magnetic field as compared to the honeycomb lattice. Instead, for negative chemical potentials, the
response is somewhat enhanced.

Lastly, we illustrate the interplay of the velocities in the momentum space explicitly in Fig. 3.52. The
left column shows the momentum-resolved optical elements Mαβ ∝ vαvβ in and around the Brillouin
zone. Combined with the kernel function K11 (middle), evaluated at µ = 0.8eV we can capture how
each point in the Brillouin zone contributes to the conductivity σαβ =

-
k∈BZ σαβ(k) (right panel).

Via an interplay of symmetry, the sign, and the values of the optical elements we find the anticipated
result: σxx = σyy and σxy = σyx ≡ 0.

Let us note that, through the aforementioned reasoning and observations, Fig. 3.52 reflects both the
honeycomb and the kagome lattice identically.
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Figure 3.52: Momentum analysis of the honeycomb lattice. Left: Optical elements for the xx

(top), yy (middle) and xy (bottom) Cartesian directions in units of [eV2Å2]. Middle: Kernel
function K11, reflecting the Fermi surface at µ = 0.8eV. Right: Momentum resolved conductivity
σ(k) in units of [ 1

Ω ] which is the left and middle column multiplied with each other. The resulting
k-summed quantities result in σxx = σyy and σxy ≡ 0.

3.5.4.5 Material: FeAs2

As a realistic crystal structure we first consider FeAs2, a hybridization-gap semiconductor. Band-
theory yields a gap of around ∆0 = 0.275eV when using the PBE exchange-correlation potential
[331, 504]. The top panel of Fig. 3.53 shows the ensuing density of states (DOS) for a wide energy
range, with the gap centered at µ = 0. The states near the gap edges are dominantly of iron character.
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The bottom panel shows the resulting conductivities σ calculated for T = 300K, using a scattering
rate Γ0 = 10−5eV. Comparing the intra-band conductivity using the WIEN2k dipole matrix elements
(yellow) with that employing group velocities constructed from the BoltzTraP2 band interpolation
(blue) illustrates the accuracy of the Peierls approximation for simple unit cells.67With the full dipole
matrix element, we have access also to inter-band contributions to the conductivity (green). As
expected, inter-band contributions only play a subsidiary role at these elevated temperatures: They
are two orders of magnitude smaller than the intra-band contributions.
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Figure 3.53: Hybridization-gap semiconductor FeAs2 via a WIEN2k calculation (PBE; 20× 20× 40
k-points). The DOS around the gap (∆ = 0.275eV) is dominated by Fe-character. (top) total and
partial density of states (DOS), (bottom) intra- and inter-band conductivities in the x-direction
and as a function of the chemical potential µ. The Peierls approximation to the optical elements
leads to intra-band results (blue) virtually indistinguishable to using the full dipole matrix elements
(yellow). For the given temperature (T = 300K) and scattering rate (Γ = 10−5eV) the intra-band
contributions dominate over inter-band effects (green).

Translating the µ-axis into carrier concentrations n = (N(µ) − N)/V results in the behavior shown
in Fig. 3.54. For the given temperature, the shaded gray area marks the region, where the chemical
potential has moved inside the conduction band. Upon entering said region, the conductivity increases
rapidly, while the Seebeck coefficient has its peak amplitude for µ inside the gap, cf. Figure 3.48.

67 We cross-checked our result with BoltzTraP2: Differences are small. We note that BoltzTraP2 calculates transport
distribution functions that are based on an artificially broadened density of states, leading to a numerical smearing
of the gap edges. At its core, LinReTraCe is designed to stay numerically exact and avoids unphysical broadening of
any transport quantity. If desired, however, the user can apply a Gaussian broadening of a chemical potential scan in
the post-processing. For explicit comparisons, the BoltzTraP2 conductivities σ/τ0 [ 1

Ωms ] have to be multiplied with
τ0 = ℏ

2Γ0
, ℏ = 6.58211956 · 10−16eVs.
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Indeed, the behavior of σ and S is typically [505], but not always [466], antagonistic. The response
is polarization dependent, with the powerfactor S2σ being most sensitive on the crystal orientation.
Note that we only computes thermoelectric properties from pure electron diffusion. Phonon-drag
enhancements—relevant, e.g., for the related narrow-gap semiconductors FeSb2 [421, 422, 423] and
CrSb2 [434, 506]—are not included.
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Figure 3.54: FeAs2: WIEN2k intra-band conductivity (σ), Seebeck coefficient (S) and power factor
(S2σ) for the same temperature (T = 300K) and scattering rate (Γ = 10−5eV) as in Fig. 3.53. Here,
we instead show the dependency on the electron doping n = N(µ)−Nneutral

V . The gray, shaded area
indicates doping levels where the chemical potential has moved inside the conduction band.

Finally, we add an in-gap impurity state and showcase the ensuing temperature behavior of transport
observables in comparison to experiment [214, 431] in Fig. 3.55. Due to the additional electrons
provided by the donor level, located in the vicinity of the conduction band, the system experiences a
transition from activated behavior with the intrinsic gap ∆0 at high temperatures to a second regime
controlled by a reduced gap ∆1, determined by the position of the impurity, cf. Fig. 3.42 and Ref. [9].
At still lower temperatures, and akin to Sec. 3.5.4.3, the prototypical saturation regimes set in: The
resistivity and the Hall coefficient saturate, while the Seebeck and Nernst coefficients tend towards
zero in a linear fashion. Due to the three distinct crystal directions in FeAs2, the Hall and Nernst
coefficients behave differently depending on the direction of the applied magnetic field.
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Figure 3.55: FeAs2: Intra-band resistivity ρ, Seebeck coefficient S, Hall coefficient RH and Nernst
coefficient ν (left) compared to experimental data (right) [214]. We show results for all three
Cartesian directions. The chemical potential was determined by the Fermi Dirac function and
altered by a donor level (at ED = 0.015eV below the conduction band with ρ = 2 · 10−6 1

unit cell),
chosen so that the resistivity approximates the experimental behavior. The scattering rate includes
only polynomial terms: Γ(T ) = 7 · 10−5 + 5 · 10−9T 2 in eV. Note that we underestimate S and
overestimate ν. All shown data use the intra-band Peierls approximation.

3.5.4.6 Material: Tl-doped PbTe
As a final test material we consider Tl-doped PbTe, a prime example for the enhancement of ther-
moelectric transport by resonance states [507]. In a broader context, through the Tl-doping, a
superconductivity instability emerges at T = O(1)K, accompanied by apparent signatures of the
so-called “charge Kondo effect”, thought to be supported by the introduced, degenerate Tl valence
states [508, 509, 510]. Here we restrict ourselves, however, to the for thermoelectricity relevant tem-
perature scale: We model the doping by explicitly constructing a 4 × 4 × 4 supercell of PbTe and
substituting a single Pb atom with a Tl one. Internal positions of the resulting Tl0.004Pb0.996Te are
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then fully relaxed before extracting the LinReTraCe input. In order to gain access to both the See-
beck and the Nernst coefficient, we employ the BoltzTraP2 interpolation scheme to obtain Peierls
velocities. As the prepared super cell does not match the experimental stoichiometry, we are mainly
aiming for qualitative aspects.

Through the Tl-(hole)doping an increase of the density of states in the vicinity of the valence-band
edge appears, see Figure 3.56 and the emerging resonance pins the chemical potential.
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Figure 3.56: Tl-doped PbTe: Density of states using the LDA exchange-correlation potential and
17 × 17 × 17 k-points. Introducing a single Tl⇐⇒Pb substitutional impurity results in a distorted
electronic structure and additional states appear near the valence-band edge, pinning the chemical
potential. The zoomed inset illustrates the non-trivial nature of the resonance to which all three
elements contribute in some part.

Consequently, the Tl-doping cause a semiconductor-to-metal transition. Supplementing the elec-
tronic structure with a phenomenological, band-independent Γ(T ) = 20meV +6 · 10−5meV/K2T 2

results in the resistivity, Seebeck, and Nernst coefficient shown in Fig. 3.57. Comparing to experi-
mental results [507], plotted on the same scale, we find good agreement for the resistivity at elevated
temperature. However, we do not capture the resonance’s signature below 200K. This finding suggests
that the resistivity in that temperature range is not controlled by band-structure effects. Instead, the
scattering rate might be markedly different for the resonance than for other states and display a more
complex temperature dependence. We hence expect that—with scattering rates obtained from more
sophisticated (beyond band-theory) electronic structure methodologies—LinReTraCe could capture
the resistivity also below 200K. Alternatively, a reverse engineering approach could be employed
within LinReTraCe to extract a phenomenological but band-dependent scattering rate that repro-
duces the experimental resistivity.
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The Seebeck and Nernst coefficient, instead, are well reproduced (albeit slightly underestimated)
within our setting without any additional input, suggesting a simple electronic picture of ther-
moelectric transport to hold. Indeed, in the case of metals, the Seebeck coefficient is—to a first
approximation—insensitive to the scattering rate. The congruence to experiment for S then supports
the above claim that the temperature profile of the resistivity below 200K is controlled by an intricate
scattering rate. The metallic nature of the transport poses the previously discussed challenges for the
Brillouin-zone discretization. While the resistivity and the Seebeck coefficient are, for all practical
purposes, convergent with the largest k-mesh used, the Nernst coefficient is notably more sensitive:
The shown data provides a good approximation for the Nernst coefficient above 200K, while below
the result is clearly not yet converged. Indeed, the Nernst coefficient must vanish for T → 0 [9]. We
stress that these limitations regarding the number of usable k-points are on the side of the electronic
structure methodology, while LinReTraCe could handle larger meshes at acceptable costs.
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Figure 3.57: Tl-doped PbTe: Resistivity (top) and coefficients of Seebeck (middle) and Nernst
(bottom) within LinReTraCe (left) compared to experiment [507] (right). Despite the resonance
feature of the resistivity not being reproducible with our phenomenological scattering rate, the
Seebeck and Nernst coefficients are close to the experimental values. There are opposing conventions
for the sign of the Nernst coefficient [392]. Since our Hall signal (not shown) has the same sign as
the experiment [507], but not the Nernst coefficient, we multiplied the experimental ν with (−1).
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3.5.5 Possible extensions
Having established a framework for thermoelectric transport, that can be reasonably well connected to
various electronic structure codes and is capable of producing high precision results for tight-binding
kind of inputs, we mention here future avenues that LinReTraCe can and will be developed towards.

Beyond purely electronic transport
As established in Section 3.4, certain thermoelectric materials such as FeSb2 experience a significant
boost to their thermopower via the help of phonon contributions (phonon-drag effect). Hitherto, all
derived transport equations have been obtained with a purely electron/hole-induced current in mind,
see Section 3.3.1. A first step towards more realistic simulations is therefore the inclusion of phonons.
For a given phonon-mode, electron-phonon contributions to the Hamiltonian can be summarized with
the additional terms

Hph−ph =
,

q
ℏωqâ†

−qâq (3.229a)

He−ph =
,

k,q,σ

gqĉ†
k+q,σ ĉk,σ

�
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(3.229b)

with â
(†)
q as the annihilation (creation) operator of a phonon at momentum q and energy ωq and the

coupling constant gq. The thermal phonon current

jα
Q,ph =

,
q
ℏωq

∂ωq
∂qα

â†
qâq, (3.230)

see, e.g., Refs. [422, 511], then may allow us to perform a similar analytic evaluation of the phonon-
electron correlation function
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The lowest order Feynman diagrams to consider, as derived, e.g., in Ref. [512], stem from the second-
order perturbation expansion in He−ph, which, through Wick contractions, results in an interplay
of phonon propagators, D(q, τ) = −

�
Tτ âq(τ)â†

q

�
(drawn as dashed line), and electron propagator,
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(drawn as solid line),

χαβ
jQjE

(iΩm) ∝
,
q,k

ωg ,νn

g2
qℏ

∂ωq
∂qα

ωqevβ
kD(q,ωg)D(q,ωg−Ωm)×

×
�
G(k,νn)G(k,νn−Ωm)G(k−q,νn−ωg) + G(k,νn−Ωm)G(k,νn)G(k+q,νn+ωm−Ωm)

�
,

(3.232)
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with the bosonic phonon frequency ωg, transfer frequency Ωm and fermionic frequency νn. Here, the
electronic current couples, in the Peierls approximation, via the band velocities vk, see Section 3.3.4.
Eq. (3.232) is illustrated in Fig. 3.58 and highlights the relevant electronic “triangle” diagram, similarly
occurring in linear response in the presence of an external magnetic field, see Appendix A.3.
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Figure 3.58: Lowest order Feynman diagrams contributing to the phonon heat-current, electric
current correlation function, illustrating Eq. (3.232). Dashed (solid) line represents phonon (elec-
tron) propagators. Dots at the left and right hand side of the diagrams correspond to coupling
elements. Diagrams inspired by Ref. [512] which we chose to modify in order to keep a consistent
frequency notation within this thesis.

In a similar vein, contributions of magnons to the thermopower could be treated, see Ref. [513].

Anomalous transport quantities
A different avenue represents anomalous transport. The anomalous Hall conductivity typically occurs
in solids with broken time-reversal symmetry. Its intrinsic contribution to the Hall conductivity
(without the presence of a magnetic field) in the band picture from linear response reads

σαβ = −ϵαβγ
e2

ℏ

,
n

�
d3k

(2π)d
fF D(εk

n)Ωγ
n(k) (3.233)

where ϵαβγ is the Levi-Civita symbol, Ωn(k) = ∇k ×An(k) the Berry curvature, determined from the
Berry connection An(k) = i⟨n, k|∇k|n, k⟩ [514], with n indexing band eigenstates and Greek indices
label Cartesian directions, as before. The same result can be obtained from a semi-classical treatment
of electron transport, where the Berry phase enters through an anomalous (group) velocity of the
wave-package, ℏṙ = ∇εk

n − E × Ωn(k), when an electrical field E is applied. Details can be found,
e.g., in the review by Nagasosa et al. [388] and references therein.

Then, a natural extension of the formalism advanced in this thesis is the inclusion of said anoma-
lous velocities and Berry curvatures. An upgrade along these lines would also allow studying the effect
of finite lifetimes of non-trivial bulk states onto the surface conduction they generate in topologically
non-trivial systems. On the model level, such effects have been studied numerically (i.e., without a
semi-analytical evaluation of transport kernels) in two dimensions, e.g., by Mitscherling et al. [390].
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Conclusion

Summary: Mott materials and models thereof
The state-of-the-art density functional theory + dynamical mean-field approach is capable of repro-
ducing the hallmarks of a strongly correlated metal, the formation of Hubbard bands and the renor-
malization of the quasi-particle peak in the spectral function of bulk SrVO3. Through the quantum
impurity projection and subsequent self-consistent embedding into the lattice itself, local correlations
can be captured in a non-perturbative fashion with DMFT. We employed this DFT+DMFT approach
in the study of materials in both their bulk form and in restricted geometries which have seen a recent
boost in interest due to improvements in modern atomic layer-by-layer deposition techniques.

In a first project, we showcased how a thick film of SrVO3 deposited on a substrate, is capable
of undergoing a metal-to-insulator transition: Deforming the cubic perovskite structure leads to a
reduction in crystal symmetry, causing the formation of a crystal-field splitting between the three
initially degenerate t2g states. Beyond a critical deformation threshold, this splitting, in combination
with the large on-site repulsion present at the vanadium site, triggers a sudden breakdown of the
Fermi-liquid state and the emergence of a Mott insulator. Our simulated temperature vs. out-of-
plane lattice constant phase diagram highlights how such a “simple” setup is capable of yielding a
highly complex separation between metallic and insulating phases. With our approach, we are able
to quantitatively reproduce the characteristics of thick films whose c-axis have been tuned via helium
implantation. To be more precise, transport measurements display a similarly sharp metal-insulator
transition as seen within our DMFT calculations.

In a second project we used this knowledge and applied it to the scenario of thin films protected
by surface passivation. We showed that a similar metal-to-insulator transition can be achieved via
quantum confinement. Reducing the number of deposited layers below a critical threshold, we were
able to reason that the same kind of crystal-field splitting is capable of triggering the Mott transition.
Here we find that the crystal-field splitting, in combination with the auxiliary effects of reduced
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band-widths, is a sufficient ingredient to reproduce the critical thickness of 5 − 6 seen in experiments.
Due to the ideal d1 occupation (V4+ valence) the Mott scenario can be supported despite an almost
bulk-esque electronic state with respect to the band width.

In a third project we revisited the surface phenomena of SrVO3 thin films without passivation,
i.e. where, per se, a clean film termination cannot be provided. Through the pulse-laser deposition
growth process our collaborators found strong evidence for a thickness dependent coverage of excess,
apical surface oxygen. This additional oxygen generates domains on the surface, with a maximal
coverage of one oxygen for every other surface vanadium atom, resulting in a

√
2 × √

2 surface
reconstruction. The resulting, unprotected samples display a massively reduced critical thickness of
2 − 3 instead. In our theoretical efforts, we restricted ourselves to pristine VO2 terminated structures
and supercell structures that possess the aforementioned surface reconstruction. Within DFT+DMFT
above the critical thickness, both scenarios lead to definite metallic solutions. For the structures
mimicking the domains with apical oxygen, however, we find complete neutralization of the outermost
vanadium sites (d0): an electronic dead layer emerges. Through the reduction of actively contributing
layers, a reduction of quantum well state ensues when compared to an identically sized structure
with a clean surface, in agreement with angle-resolve photoemission spectroscopy measurements.
Revisiting the metal-insulator transition [86] with these (remedied) surface terminations, we find a
critical thickness of 2−3 in agreement with PES measurements: Supported by magnified crystal-field
splittings induced by the severing of the surface VO6 octahedrons and accompanied by vacuum-
induced crystal distortions, the Mott insulating state can be found in both considered scenarios:
“Clean” samples turn metallic above 2 layers, samples with a reconstructed surface above 3 layers.
Interestingly, here the dead-layer is kept in tact independently of whether the system turns insulating
or not. Suffice it to say, these simulations only scratch the surface of the physics at play. From the
theoretical point of view, a multitude of questions remain regarding other effects of the apical oxygen
and notably also the influence of the substrate.

In a more theoretically motivated study we discuss non-local fluctuations and their signatures
in pristine SrVO3 monolayers, a scenario that is in fact quite difficult to realize experimentally.
Through the reduction to a (quasi-) two-dimensional system, the shape and kinetic energy of the
involved orbitals is drastically modified leading to an exceptionally stable Mott insulator with respect
to variations of the on-site interaction U . Despite this stability, doping away from the realized d1

Mott insulator is relatively uncomplicated in DMFT: Within our explored range of vanadium site
occupation, in principle achievable by chemical doping or by applying a gate voltage, we find a wide
variety of spin and charge ordered phases: antiferromagnetism, ferromagnetism, incommensurate
magnetism, checkerboard orbital ordering and stripe orbital ordering. We employ the dynamical
vertex approximation, to scrutinize the effect of these various types of fluctuations onto the self-
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energy above the ordering temperatures. In order to refine our evaluation, we developed an improved
“binaural” diagnostic tool, effectively allowing us to pinpoint the origins of self-energy modification
and connect them to the spectral properties of the system.

Finalizing the Mott Chapter, we return to the “basics” and consider the one-band, two-dimensional
Hubbard model. We advance the self-consistent ladder dynamical vertex approximation method for
which we derive and implement a multi-orbital expression for the vertex-corrected optical conductivity.
In the weak to strong coupling regimes, we analyze the effect of the predominant antiferromagnetic
fluctuations, and provide some quantitative comparisons to the parquetDΓA method.

Summary: Kondo materials and models thereof
We started off our discussion on Kondo materials with an analysis of the differences between the
Kondo effect present in the single impurity Anderson model and its pendant, the lattice Kondo effect
in the periodic Anderson model. Whereas the SIAM can be (numerically exactly) solved by an
impurity solver, we employed the aforementioned dynamical mean-field theory for the PAM which, in
the symmetric, half-filled case, can be seen as a “canonical” Kondo insulator. That is, as in Ce-based
systems, hydrostatic pressure leads to a widening of the (hybridization) gap. Upon cooling of the
SIAM, the Kondo effect leads to a screening out of the free, local spin which, through scattering
processes, generates a magnified resonance at the Fermi level. This so-called Kondo resonance is
“kept alive” down to the lowest temperature, leading to a suppression of local moment fluctuations.
Within the half-filled PAM, on the other hand, the hybridization of the f- and the d-levels the Kondo
resonance instead leads to the formation of a (lattice) coherent state in which a (spectral) gap is
eventually stabilized. Beyond the analysis of this coherence transition, we provided further insight in
the mechanism and characteristics of the magnetic fluctuations associated with the RKKY interaction.

In the next step, we turned our attention towards a more realistic manifestation of a Kondo
insulator in the form of Ce3Bi4Pt3. Via a charge self-consistent DMFT treatment we extracted
the intricacies of the atomic make-up of the crystal structure and its resulting electronic structure.
Due to the freedom of the bismuth positioning inside the unit cell the emergent hybridization gap
experiences a “non-canonical” pressure dependence. Moving onto transport properties, we were able to
qualitatively reproduce the phenomenon of resistivity saturation. Employing a full Kubo computation
of the conductivity tensor we find that the trends upon applying pressure and adding disorder is
consistent with experimental transport measurements. With this validation, we developed a minimal,
microscopic theory that is capable of reproducing this behavior: A simple two-band tight-binding
model supplemented with a static scattering rate, solved (analytically) within linear response. We
find that finite lifetimes of intrinsic valence and conduction states spill incoherent weight into the
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gap, introducing a lower bound on the residual conductivity, leading to a saturation of the resistivity.
Within this minimalist model our explored bandgap vs. scattering rate phase diagrams reproduce the
experimental trends of the observed saturation values and crossover temperatures quite well.

Based on the same premise of intrinsic, finite lifetimes, obtained from a linearized self-energy, we
derived the higher order transport kernels that are necessary for the computation of a wider range
of thermoelectric and magnetotransport observables, such as the Seebeck, Hall, and Nernst coeffi-
cient. Using contour integration and Matsubara summation, we obtain semi-analytical expressions
that effectively “interpolate” between a simple relaxation-time approximation within a Boltzmann
approach and the full Kubo response. While leading to qualitative improvements over the former, the
computational precision and speed are essentially identical. From the derived set of intra- and inter-
band expressions, we also show how the Boltzmann kernel functions can be consistently extended to
inter-band transitions (that are not included in some Boltzmann packages).

In the next project we illustrated the transport signatures of many-body phenomena in semicon-
ductors. Analyzing a simple, asymmetric two-band model, encoding the essential features of a wide
range of gapped systems, we performed parameter scans over the band gap, band asymmetry, and
electronic lifetime. We find hard temperature cut-offs, below which the Boltzmann-esque behavior
ceases to be valid. Indeed, at sufficiently low temperatures, the scattering rate associated with the fi-
nite electronic lifetimes becomes a relevant energy scale, in that it determines the temperature profile
of transport observables, leading to drastic modification vis-à-vis semi-classical expectations. Inco-
herence of intrinsic states modifies the chemical potential, seemingly akin to extrinsic in-gap states.
More importantly, however, a residual (Hall) conduction emerges which in turn leads to “metal-like”
Seebeck S(T ) ∝ T and Nernst coefficients ν(T ) ∝ T in the low temperature limit, while the resistivity
ρ(T ) and the Hall coefficient RH(T ) saturate. Contrary to the Boltzmann approximation, in which
S(T ) ∝ 1

T , our theory thus respects the quintessential laws of thermodynamic: S → 0 (T → 0).
Finally, we discussed LinReTraCe, our full-fledged implementation of the derived transport kernels

which is capable of interfacing to modern electronic structure codes and has the ability to handle
generalized tight-binding Hamiltonians. Focusing on technical details that are critical for a stable
and efficient numerical evaluation of observables for models and realistic crystal structures, we provide
an overview of the program structure, explore some of the code’s capabilities, and illustrate future
research avenues.
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Outlook on future avenues
Metal-insulator transitions in transition metal oxides
Starting with potential candidates in the material class of transition-metal oxide heterostructures:
The “ingredient” of crystal-field splitting is a rather generic and easy to realize mechanism in thin
films. Currently, discussions are ongoing whether the metal-to-insulator transitions in thin film setups
should be ascribed to correlation or localization/impurity effects. Having presented a strong argument
towards correlation effects, further experimental confirmation of the painted picture is required. This
may include the effect of uniaxial pressure on the protected thin film layers or polarized (AR)PES
measurements in order to detect the predicted strong orbital polarization. Similarly, theoretical
analyses in related (perovskite) materials are in order: It is yet to see, how easy it is to generalize
the idealized t2g/d1 scenario towards (i) other (integer) fillings, (ii) more complex projections such
as t2g+eg or d+p, (iii) more complex local crystal environments, or (iv) how critical changes to the,
in principle, layer-dependent on-site interaction values are. Potential projects include the study of
CaVO3 (which includes tilting of the VO6 octahedra), SrRuO3, LaNiO3, etc.

In our detailed theoretical and experimental analysis of “unprotected” thin films, we further
revealed a far more intricate surface that has hitherto been modelled within DFT+DMFT approaches.
To gain further insight into this, heavily environmentally influenced, metal-insulator transition further
studies are required. Unanswered questions include: (i) How different surface domains interact with
one another and how possible delocalized apical oxygen may affect the local electronic structure and
the overall insulating (metallic) state found below (above) a critical thickness. (ii) Whether the
hypothesized hole-doping is present below the critical thickness and if so, how does it influence the
theorized Mott insulating state.

Bethe-Salpeter equations
In order to achieve more “realism”, the two-particle analysis via the Bethe-Salpeter equations should
be extended towards (i) general hybridization functions such that spin-orbit coupling may be included
on the susceptibility level and a (ii) general (non-symmetrized) spin description such that a treatment
of symmetry-broken phases becomes possible [236, 515]. In such a framework, explicit computations
of, e.g., the generalized spin/charge susceptibility of Ce3Bi4Pt3 or other related Kondo compounds
would become possible.

Self-consistent dynamical vertex approximation
The developed self-consistent dynamical vertex approximation including its extension towards optical
conductivities shows promising results. One apparent avenue is an extension of the scDΓA approach
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towards outer self-consistency, i.e. one also updates the two-particle irreducible Γph such that not only
the self-energy acts as a “suppressor” of fluctuations. Before that, however, additional benchmarking
and a wider range of test cases are in order: (i) More accurate calculations for the existing two-
dimensional Hubbard model, especially with respect to momentum grid convergence. This is necessary
to achieve properly converged optical conductivities in the employed temperature range shown in this
thesis. In doing so, a quantitative comparison of the vertex contribution to similar methods such as
the parquet DΓA and the λ-corrected DΓA becomes feasible. (ii) The study of critical exponents of
the dominant antiferromagnetic fluctuations of the Hubbard model [228]. (iii) An application towards
the periodic Anderson model [225]: This includes the effect on the antiferromagnetic dome and the
study of optical conductivities in the vicinity said dome and/or the quantum critical point. (iv)
An application to generalized multi-orbital systems that display vastly different orbital fluctuations
(such as the investigated SrVO3 monolayer). In a first step one could, e.g., screen how the self-energy
feedback affects orbital polarization, ordering phases and temperatures.

LinReTraCe
Continuing with the derived transport methodology, further avenues are represented by the possi-
bilities of (i) analyzing anomalous transport effects [388], (ii) the inclusion of phonon [516] and/or
magnon drag [517] contributions in order to gain an improved understanding of the qualitative and
quantitative signatures of colossal thermopowers found in some thermoelectrica [460], (iii) moving
towards non-linear transport by further expanding the magnetoresistance [518] beyond linear or-
der or by considering higher order correlation functions that are necessary to describe high har-
monic generation [519], and (iv) considering higher order Feynman diagrams within the employed
“Γ-approximation” where one could envisage modelling vertex corrections that include e.g., forward
scattering processes [520] that further renormalize transport kernels.
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A.1 Many-body Green’s functions
A.1.1 Matsubara Green’s functions
The general n-particle Green’s function in imaginary time corresponds to the correlation function
measuring the addition and removal of n-particles to a system in thermal equilibrium
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Here, the time-dependent fermionic annihilation / creation operators have specific identifiers i1 . . . i2n

(orbitals, momentum, spin, etc.) and are expressed in the Heisenberg representation

ĉ(†)(τ) = eHτ ĉ(†)e−Hτ (A.2)

with the full Hamiltonian H entering the time evolution operators. When evaluating the Green’s
functions, we employ the grand-canonical expectation value68
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with ρ as the density matrix and Z as the partition function defined by

ρ = e−βH
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, (A.4a)
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respectively. Here the trace corresponds to a sum over all possible eigenstates |n⟩ with corresponding
eigenvalue En via

H |n⟩ = En |n⟩ . (A.5)

Finally, the time ordering operator Tτ orders the fermionic operators from left to right according to
their imaginary time argument (from largest to smallest)
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This ordering is done by switching operator positions which is accompanied by an additional (−1)
for each exchange.

A.1.1.1 Boundaries

Without loss of generality we can assume that the operators are ordered from largest to smallest
imaginary time τ1 > · · · > τ2n
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With the evaluation of the outermost operators one arrives at a pre-factor of e(−β+τ1−τ2n)Em . Since
the eigenvalues Em of an infinitely large system may also become infinitely large, one has to ensure
that this pre-factor is of suppressing nature by requiring

−β + τ1 − τ2n < 0, (A.8)

which can be rewritten into

τ2n + β > τ1 > . . . > τ2n. (A.9)

In other words: All time arguments have to be within an interval of the length of β. Using the cyclic
property of the trace ( Tr [ABCD] = Tr [DABC] = · · · ) one finds
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68 In the grand-canonical ensemble the weighting factor is e−β(H−µN ) and not e−βH. In order to be more concise, we
implicitly mean H − µN when writing H from now on.
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G
(n)
i1,...,i2n

(τ1, . . . , τ2n) = (−1)n

Z

,
m

⟨m| e−βHĉi1(τ1)ĉ†
i2(τ2) . . . ĉi2n−1(τ2n−1)ĉ†

i2n
(τ2n) |m⟩

= (−1)n

Z

,
m

⟨m| e−βHeβHĉ†
i2n

(τ2n)e−βHĉi1(τ1) . . . ĉi2n−1(τ2n−1) |m⟩

= (−1)n

Z

,
m

⟨m| e−βHĉ†
i2n

(τ2n + β)ĉi1(τ1) . . . ĉi2n−1(τ2n−1) |m⟩

= −(−1)n

Z

,
m

⟨m| e−βHĉi1(τ1)ĉ†
i2(τ2) . . . ĉi2n−1(τ2n−1)ĉ†

i2n
(τ2n + β) |m⟩

= −G
(n)
i1,...,i2n

(τ1, . . . , τ2n + β),

(A.11)

the so-called Kubo-Martin-Schwinger (KMS) boundary conditions.

A.1.1.2 Matsubara frequencies

In order to to get a more convenient notation, we exploit the KMS boundary conditions further. Since
G(τ) is restricted to an interval of the size β it can be represented in terms of a Fourier series [521]

G
(n)
i1,...,i2n

(τ1, . . . , τ2n) = 1
β2n

,
{νi}

ei(−ν1τ1+ν2τ2−···+ν2nτ2n)Gn
i1,...,i2n

(ν1, . . . , ν2n). (A.12)

The frequency representation G
(n)
i1,...,i2n

(ν1, . . . , ν2n) therefore reproduces our original time-dependent
Green’s function and the associated properties. Consequently, we get this representation by perform-
ing the Fourier transform

G
(n)
i1,...,i2n

(ν1, . . . , ν2n) =
� β

0
dτ1 · · ·

� β

0
dτ2n ei(ν1τ1−ν2τ2+···−ν2nτ2n)G

(n)
i1,...,i2n

(τ1, . . . , τ2n). (A.13)

Due to the antiperiodicity69 we get the so-called (fermionic) Matsubara frequencies of the form

νn = (2n + 1)π
β

, n ∈ Z. (A.14)

Alongside this definition one defines the bosonic variant, obtained from a periodic function, as the
even multiples of π/β

ωm = 2mπ

β
, m ∈ Z. (A.15)

69 A general antiperiodic function fulfills the condition −f(x) = f(x + np) with n = 1, 3, 5, . . . and the periodicity p.
This property is created by the KMS boundary conditions with a periodicity of p = β.
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A.1.1.3 Symmetries

Given a Hamiltonian that is both time-independent and has an underlying lattice translational invari-
ance, the frequency and momentum dependence of the n-particle Green’s function simplifies: Energy
conservation leads to a restriction of the frequency arguments

G
(n)
i1,...,i2n

(ν1, . . . , ν2n) = βδ(ν1−ν2+···+ν2n−1),ν2n
G

(n)
i1,...,i2n

(ν1, . . . , ν2n−1), (A.16)

requiring us to only list 2n − 1 frequency arguments. In the same way, momentum conservation leads
to a restriction of the momentum arguments

G
(n)
i1,...,i2n

= (2π)d

V
δ(k1−k2+···+k2n−1),k2n

G
(n)
i1,...,i2n

, (A.17)

where V is the volume of the unit cell and d is the dimensionality of the system.
The other commonly employed symmetries in this thesis are the crossing (CR) and the swapping
(SW) symmetry. By exchanging a pair of annihilation or creation operators in the general n-particle
Green’s function

G
(n)
i1,...,i2n

(τ1, . . . , τ2n) = (−1)n
�
Tτ

�
ĉi1(τ1)ĉ†

i2(τ2) . . . ĉi2n−1(τ2n−1)ĉ†
i2n

(τ2n)
��

, (A.18)

we have to perform (2k −1) swapping operations resulting in an additional factor (−1). Subsequently
we get

G
(n)
i1,...,ii,...,ij ,...,i2n

(τ1, . . . , τi, . . . , τj , . . . , τ2n) CR= −G
(n)
i1,...,ij ,...,ii,...,i2n

(τ1, . . . , τj , . . . , τi, . . . , τ2n). (A.19)

Swapping symmetry on the other hand is often used in the context of two-particle Green’s functions.
By applying crossing symmetry on both the incoming and outgoing particles, accompanied with the
pre-factor (−1)2, we get

G
(2)
i1,i2,i3,i4(τ1, τ2, τ3, τ4) SW= G

(2)
i3,i4,i1,i2(τ3, τ4, τ1, τ2). (A.20)

Let us note that from here on out, we omit the superscript denoting the particle-number as the number
of arguments (frequencies or imaginary times) are a sufficient identifier for the given quantity.

A.1.1.4 One-particle properties

The (fermionic) one-particle Green’s function naturally presents the simplest case, while also dis-
playing some interesting features. Gi1,i2(τ) is defined in the time interval (−β, β) while the negative
(positive) arguments can be restored via the KMS condition of Eqs. (A.10-A.11)

−Gi1,i2(τ − β) = Gi1,i2(τ) (A.21a)

−Gi1,i2(β − τ) = Gi1,i2(−τ) (A.21b)
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with τ ∈ [0, β). The function takes, depending on the involved (compound) indices, a step of size 1
when τ changes from negative to positive

Gi1,i2(0+) = −
�
Tτ

�
ĉi1(0+)ĉ†

i2(0)
��

= −
�
ĉi1(0)ĉ†

i2(0)
�

= ni2,i1 − δi1,i2 (A.22a)

Gi1,i2(0−) = −
�
Tτ

�
ĉi1(0−)ĉ†

i2(0)
��

,

=
�
ĉ†

i2(0)ĉi1(0)
�

= ni2,i1 , (A.22b)

resulting in
Gi1,i2(0−) − Gi1,i2(0+) = δi1,i2 . (A.23)

As previously introduced, the Fourier transform to the fermionic Matsubara axis is performed via

Gi1,i2(iνn) =
� β

0
dτeiνnτ Gi1,i2(τ). (A.24)

Since the Green’s function on the imaginary time axis is a purely real quantity, the real (imaginary)
part of the Matsubara Green’s function becomes even (odd) w.r.t. iνn ↔ −iνn. Furthermore, due to
the antiperiodicity of the Green’s function, the integration interval [0, β) can be shifted arbitrarily� β−τ1

−τ1

dτeiνnτ Gi1,i2(τ) =
� β−τ1

0+
dτeiνnτ Gi1,i2(τ) +

� 0−

−τ1

dτeiνnτ Gi1,i2(τ)

=
� β−τ1

0+
dτeiνnτ Gi1,i2(τ) +

� β

β−τ1

dτeiνn(τ−β)Gi1,i2(τ − β)

=
� β−τ1

0+
dτeiνnτ Gi1,i2(τ) +

� β

β−τ1

dτ(−eiνnτ )(−Gi1,i2(τ)) = Gi1,i2(iνn)

(A.25)

with τ1 ∈ [0, β) and e±iνnβ = (−1). Let us note that the same argument holds for bosonic quantities
that are intrinsically periodic along the imaginary time axis, χ(−τ) = χ(β − τ) for τ ∈ [0, β).

A.1.1.5 Two-particle frequency notations

As shown in Appendix A.1.1.2, we are now able to represent a general two-particle Green’s function
in the more convenient frequency notation by performing a Fourier transform from the (imaginary)
time space into the frequency space. This transformation reads

Gν1ν2ν3ν4
ijkl =

�
dτ1dτ2dτ3dτ4 Gijkl (τ1, τ2, τ3, τ4) eiν1τ1e−iν2τ2eiν3τ3e−iν4τ4 . (A.26)

Due to time translational symmetry not all times are independent from each other: We can translate
the Green’s function by τ4 such that the last time argument is 0. Subsequent substitutions

τ ′
i = τi − τ4 with i ∈ {1, 2, 3}
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and an integration over τ4 gives70

Gν1ν2ν3ν4
ijkl =

� β

0
dτ1dτ2dτ3dτ4 Gijkl (τ1 − τ4, τ2 − τ4, τ3 − τ4, 0) eiν1τ1e−iν2τ2eiν3τ3e−iν4τ4

=
� β

0
dτ ′

1dτ ′
2dτ ′

3dτ4 Gijkl (τ ′
1, τ ′

2, τ ′
3, 0) eiν1τ ′

1e−iν2τ ′
2eiν3τ ′

3ei(ν1−ν2+ν3−ν4)τ4

=
� β

0
dτ ′

1dτ ′
2dτ ′

3 Gijkl (τ ′
1, τ ′

2, τ ′
3, 0) eiν1τ ′

1e−iν2τ ′
2eiν3τ ′

3����������������������������������������������������������������������������������������������������������������������������������������
≡ Gν1ν2ν3

ijkl

�
dτ4 ei(ν1−ν2+ν3−ν4)τ4������������������������������������������������������������
βδ(ν1−ν2+ν3−ν4),0

,

(A.27)

These three frequencies ν1, ν2, ν3 are now commonly written as a combination of two fermionic fre-
quencies and one bosonic, transfer frequency. Depending on the way this transfer frequency is em-
ployed, one refers to the frequency notation as particle-hole (ph), transverse particle-hole (ph) and
particle-particle (pp) notation

ν1 = νph = νph = νpp (A.28)

ν2 = νph − ωph = ν ′
ph

= ωpp − ν ′
pp (A.29)

ν3 = ν ′
ph − ωph = ν ′

ph
− ωph = ωpp − νpp (A.30)

ν4 = ν ′
ph = νph − ωph = ν ′

pp (A.31)

and are illustrated in Fig. A.1. Let us note that annihilation (creation) operators correspond to
ingoing (outgoing) arrows.

In the main text, we restrict ourselves to the ph-notation which then explicitly reads

Gωνν′
ijkl =

�
dτ1dτ2dτ3 eiνnτ1e−i(νn−ωm)τ2ei(ν′

n−ωm)τ3 Gijkl (τ1, τ2, τ3, 0) , (A.32)

see Section 2.5.4.2.

70 The substitution also shift the integral interval from [0, β] to [−τ4, β − τ4]. Similar to Appendix A.1.1.4, both the
prefactor eiνj τj and the Green’s function itself is antiperiodic with respect to τj and subsequently any integral of the
length β is equal to the integral from 0 to β.
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νph ν ′ph

ν ′ph − ωphνph − ωph

νph

ν ′
ph

ν ′
ph

− ωph

νph − ωph

νpp ν ′pp

ωpp − νppωpp − ν ′pp

ph

ph

pp

Figure A.1: The three different frequency notations: In the top panel the particle-hole (ph)
notation, in the middle panel the transverse particle-hole (ph) notation and in the bottom panel
the particle-particle (pp) notation. These notations naturally appear when considering the Bethe-
Salpeter equations in the ph, ph and pp channel. Of course, a two-particle Green’s function can be
equivalently represented in all three frequency notations.

A.1.2 Equation of motion
In order to arrive at the Green’s function expressions used in the main text, one starts with the deriva-
tive of the (one-particle) one-particle Green’s function with respect to its imaginary time argument.
For a lattice Hamiltonian separated into a one-particle and a two-particle part via

H =
,
k,σ

,
lm

hk
lmĉ†

kl,σ ĉkm,σ

������������������������������������������������������
H0

+ 1
2

,
qkk′

ll′mm′
σσ′

Ulm′ml′ ĉ†
k′−q,m′σ ĉ†

k,lσ′ ĉk−q,mσ′ ĉk′,l′σ

��������������������������������������������������������������������������������������������������������������������
U

, (A.33)

where we Fourier transformed the on-site interaction term of Eq. (2.18), we exploit the expression of
the derivative of a Heisenberg operator

∂τ ĉk,σ(τ) = ∂τ

�
eτHĉk,σe−τH

#
=

�
H, ĉk,σ(τ)

�
. (A.34)
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Performing the derivative explicitly one finds the so-called Schwinger-Dyson equation

d

dτ
Gk

mm′
σ

(τ) = − d

dτ

�
Tτ

�
ĉkmσ(τ)ĉ†

km′σ(0)
��

= − d

dτ

�
Θ(τ)

�
ĉkmσ(τ)ĉ†

km′σ(0)
�

− Θ(−τ)
�
ĉ†

km′σ(0)ĉkmσ(τ)
��

= −δ(τ)
�
ĉkmσ(τ)ĉ†

km′σ(0)
�

− Θ(τ)
��

H, ĉkmσ(τ)
�

ĉ†
km′σ(0)

�
− δ(τ)

�
ĉ†

km′σ(0)ĉkmσ(τ)
�

+ Θ(−τ)
�
ĉ†

km′σ(0)
�
H, ĉkmσ(τ)

��
= −δ(τ)δmm′ −

�
Tτ

��
H, ĉkmσ(τ)

�
ĉ†

km′σ(0)
��

= −δ(τ)δmm′ −
�
Tτ

��
H0, ĉkmσ(τ)

�
ĉ†

km′σ(0)
��

−
�
Tτ

��
U , ĉkmσ(τ)

�
ĉ†

km′σ(0)
��

������������������������������������������������������������������������������
[ΣG]k

mm′
σ

,

(A.35)

where σ is the spin-index, m, m′ are the orbital indices and k is the momentum vector. In this first
step, we focus on the derivation of the non-interacting Green’s function, i.e. we focus purely on the�
H0, ĉkmσ(τ)

�
commutator.

A.1.2.1 Lattice Green’s function

With the general (anti-)commutator rules

[AB, C] = A [B, C] + [A, C] B

= A {B, C} − {A, C} B, (A.36)

we obtain the two emerging commutator expressions�
ĉ†

1ĉ2, ĉ3

�
= ĉ†

1

�
ĉ2, ĉ3

	
−

�
ĉ†

1, ĉ3

	
ĉ2

= −δ1,3ĉ2

(A.37)

and �
ĉ†

1ĉ†
2ĉ3ĉ4, ĉ5

�
= −

�
ĉ5, ĉ†

1

	
ĉ†

2ĉ3ĉ4 + ĉ†
1

�
ĉ5, ĉ†

2

	
ĉ3ĉ4 − ĉ†

1ĉ†
2

�
ĉ5, ĉ3

	
ĉ4 + ĉ†

1ĉ†
2ĉ3

�
ĉ5, ĉ4

	
= −δ5,1ĉ†

2ĉ3ĉ4 + ĉ†
1δ5,2ĉ3ĉ4.

(A.38)

We can therefore calculate the commutator with H0 from Eq. (2.131)�
H0, ĉkmσ(τ)

�
=

,
a
xy
ρ

ha
xy

�
ĉ†

a,xρĉayρ, ĉkmσ (τ)
�

= −
,

a
xy
ρ

hk
xyδa,kδx,mδρ,σ ĉayρ (τ) = −

,
y

hk
my ĉkyσ (τ) .

(A.39)
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Inserting this relation back in (2.131) we get
d

dτ
Gk

0,mm′
σ

(τ) = −δ(τ)δmm′ −
�
Tτ

��
H0, ĉkmσ(τ)

�
ĉ†

km′σ(0)
��

= −δ(τ)δmm′ +
,

y

hk
my

�
Tτ

�
ĉkyσ (τ) ĉ†

km′σ(0)
��

= −δ(τ)δmm′ −
,

y

hk
myGk

0,ym′
σ

(τ).

(A.40)
Applying the Fourier transform with respect to the imaginary time τ to both sides of the equation
we get to an explicit expression for the Green’s function. The derivative is transformed by

F


d

dτ
Gk

mm′
σ

(τ)
�

=
� β

0
eiνnτ d

dτ

�
Gk

mm′
σ

(τ)
%

dτ =

eiνnτ Gk

mm′
σ

(τ)
�β−

0−
−

� β

0

d

dτ

�
eiνnτ

#
Gk

mm′
σ

(τ) dτ

= −Gk
mm′

σ
(β) − Gk

mm′
σ

�
0−$

������������������������������������������������������������������
≡ 0 (KMS)

−iνn

� β

0
eiνnτ Gk

mm′
σ

(τ) dτ = −iνn F

Gk

mm′
σ

(τ)
�

= −iνn Gk
mm′

σ

(A.41)
and we finally arrive at

−iνn Gk
0,mm′

σ
= −δmm′ −

,
y

hk
myGk

0,ym′
σ

(A.42)

which reads in matrix form ,
y

�
(iνn + µ) δmy − hk

my

�
Gk

0,ym′
σ

= δmm′ . (A.43)

We expanded εkmy → εkmy − µδmy in conformance with the abbreviated grand canonical form of
H → H − µN and arrived at the non-interacting Green’s function G0 in the orbital basis. For the
sake of illustration, the matrix equation for two orbitals readsiνn + µ 0

0 iνn + µ

 −
hk

11 hk
12

hk
21 hk

22

 ×
Gk

11 Gk
12

Gk
21 Gk

22


0

=

1 0
0 1

 . (A.44)

A.1.2.2 Self-energy via ΣG

From the Dyson equation
G = G0 + G0ΣG (A.45)

we can deduct that the hitherto ignored interaction term, see Eq. (2.131), represents the self-energy
contribution [ΣG]kmm′

σ

−iνn Gk
mm′

σ
= −δmm′ −

,
y

hk
myGk

ym′
σ

− [ΣG]kmm′
σ������������������

from U commutator

=⇒
,

y

�
(iνn + µ) δmy − hk

my − Σk
my
σ

�
Gk

ym′
σ

= δmm′ .

(A.46)
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With U expressed in a general, local, multi-orbital form, see Section 2.2.2, let us now explicitly
calculate this contribution. With the emerging commutator simplified via Eq. (A.38)�

U , ĉkmσ(τ)
�

= 1
2

,
abb′

xx′yy′
ρρ′

Uxy′yx′
�
ĉ†

b′−a,y′ρĉ†
bxρ′ ĉb−a,yρ′ ĉb′x′ρ, ĉkmσ (τ)

�
,��������������������������������������������������������������������������������������������������������

−δb′−a,kδy′,mδρ,σ ĉ†
bxρ′ ĉb−a,yρ′ ĉb′x′ρ

+ ĉ†
b′−a,y′ρ

δb,kδx,mδρ′,σ ĉb−a,yρ′ ĉb′x′ρ

(A.47)

the first term of the commutator simplifies to

−1
2

,
abb′

xx′yy′
ρρ′

Uxy′yx′
�
δb′−a,kδy′,mδρ,σ ĉ†

bxρ′ ĉb−a,yρ′ ĉb′x′ρ

#
(τ) = −1

2
,
ab

xx′y
ρ′

Uxmyx′
�
ĉ†

bxρ′ ĉb−a,yρ′ ĉk+a,x′σ

#
(τ)

= −1
2

,
qk′
lhn
σ′

Ulmnh

�
ĉ†

k′−q,lσ′ ĉk′nσ′ ĉk−q,hσ

#
(τ)

= −1
2

,
qk′
lhn
σ′

Umlhn

�
ĉ†

k′−q′,lσ′ ĉk′nσ′ ĉk−q,hσ

#
(τ) ,

(A.48)
where in the second line we renamed x → l, y → n, x′ → h, a → −q, b → k′ − q and ρ′ → σ′ and
in the third line exploited Ulmhn ≡ Umlnh. The second term of the commutator simplifies to

1
2

,
abb′

xx′yy′
ρρ′

Uxy′yx′
�
ĉ†

b′−a,y′ρδb,kδx,mδρ′,σ ĉb−a,yρ′ ĉb′x′ρ

#
(τ) = 1

2
,
ab′

x′yy′
ρ

Umy′yx′
�
ĉ†

b′−a,y′ρĉk−a,yσ ĉb′x′ρ

#
(τ)

= 1
2

,
qk′
lhn
σ′

Umlhn

�
ĉ†

k′−q,lσ′ ĉk−q,hσ ĉk′nσ′

#
(τ) ,

(A.49)
where in the last line we renamed a → q, b′ → k′, y′ → l, y → h, x′ → n and ρ → σ′. Thus, we find
two identical terms that can be directly inserted into our initial equation

[ΣG]kmm′
σ

(τ) =
,
qk′
lhn
σ′

Umlhn

�
Tτ

�
ĉ†

k′−q′,lσ′
�
τ+$

ĉk−q,hσ (τ) ĉk′nσ′ (τ) ĉ†
km′σ(0)

��

=
,
qk′
lhn
σ′

Umlhn

�
Tτ

�
ĉk′nσ′ (τ) ĉ†

k′−q′,lσ′
�
τ+$

ĉk−q,hσ (τ) ĉ†
km′σ(0)

��

= lim
τ ′→τ+

,
qk′
lhn
σ′

UmlhnGqk′k
nlhm′

σ′σ
(τ, τ ′, τ) , (A.50)
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where we employed the SU(2) symmetric notation of the two-particle Green’s function Gσ′σ ≡ Gσ′σ′σσ.
We also introduced the imaginary time limit in order to perform a separate evaluation of the discon-
nected terms

[ΣG]kmm′
σ

(τ) = lim
τ ′→τ+

,
qk′
lhn
σ′

Umlhn

'
Gqk′k con

nlhm′
σ′σ

(τ, τ ′, τ)

+ δq0Gk′
nl
σ′

(τ − τ ′)Gk
hm′

σ
(τ) − δkk′δσσ′Gk′

nm′
σ

(τ)Gk−q
hl
σ′

(τ − τ ′)
�

=
,
qk′
lhn
σ′

Umlhn


Gqk′k con

nlhm′
σ′σ

(τ, τ, τ) + δq0nk′
ln
σ′

Gk
hm′

σ
(τ) − δkk′δσσ′Gk′

nm′
σ

(τ)nk−q
lh
σ′

�
, (A.51)

where we used the relation to the occupation number

lim
τ ′→τ+

Gk′
nl
σ′

(τ − τ ′) = − lim
τ ′→τ+

�
Tτ

�
ĉk′nσ′(τ)ĉ†

k′lσ′(τ ′)
��

= lim
τ ′→τ+

�
ĉ†

k′lσ′(τ ′)ĉk′nσ′(τ)
�

= nk′
ln
σ′

.
(A.52)

When applying the Fourier transform to both sides of the equation we exploit the fact that transform-
ing the equal-time object is equivalent to a summation over one fermionic and the bosonic frequency.

� β

0
dτeiνnτ Gqk′k con

nlhm′
σ′σ

(τ, τ, τ) = Gqk′k con
nlhm′

σ′σ
= 1

β2

,
ωmν′

n

Gqk′k con
nlhm′

σ′σ
. (A.53)

Thus, we get the expression

[ΣG]kmm′
σ

= 1
β2

,
qk′
lhn
σ′

UmlhnGqk′k con
nlhm′

σ′σ
+

,
qk′
lhn
σ′

Umlhn


δq0nk′

ln
σ′

Gk
hm′

σ
− δkk′δσσ′Gk

nm′
σ

nk−q
lh
σ′

�
,

(A.54)

from which we can extract the connected (first line) and the Hartree-Fock self-energy contribution
(second line) by dividing off the right hand Green’s function (the term “connected” originates from
the connected part of the two-particle Green’s function which might be misleading at first glance)

Σk
mm′

σ
=

,
l′

[ΣG]kml′
σ

�
G−1

�k
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σ

= Σk con
mm′

σ
+ Σk HF

mm′
σ

(A.55)
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with
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=
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and
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, (A.57)

where we employed the “β-notation” χqkk
0 = −GkGk−q, as introduced in Section 2.5.4.5. Let us note

that in the more commonplace one-orbital derivation, the interaction term of the Hamiltonian U is
set up as Un↑n↓ which results in an expression for the connected part of the self-energy with full
vertex F↑↓, see, e.g., Ref. [93]. In the one-orbital case, the numerical evaluation of the F↑↑ part of the
density vertex FD cancels due to crossing symmetry. Furthermore, for one orbital (without non-local
interaction V q), the Hartree-Fock contributions collapse onto a single term ΣHF

σ = Unσ.

A.1.2.3 Impurity Green’s function

In this derivation of the impurity Green’s function we rely on the Hamiltonian of the single impurity
Anderson model, used in the main text

HSIAM =
,
lm,σ

ε̃lmd̂†
l,σd̂m,σ + 1

2
,
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+
,
k,σ

,
lm

hk
lmĉ†
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,
lm

V k
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(A.58)
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The different “fermionic” species generate four distinct Green’s function

Gdd
mm′

σ
(τ) = −

�
Tτ

�
d̂mσ(τ)d̂†

m′σ(0)
��

, (A.59)

Gk,cd
mm′

σ

(τ) = −
�
Tτ

�
ĉkmσ(τ)d̂†

m′σ(0)
��

, (A.60)

Gk,dc
mm′

σ

(τ) = −
�
Tτ

�
d̂mσ(τ)ĉ†

km′σ(0)
��

, (A.61)

Gk,cc
mm′

σ

(τ) = −
�
Tτ

�
ĉkmσ(τ)ĉ†

km′σ(0)
��

. (A.62)

Exploiting the equation of motion we find

d

dτ
Gdd
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(τ) = −δ(τ)δmm′ −
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��
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�
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, (A.63)
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d
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��
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�
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d
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mm′
σ

(τ) = −δ(τ)δmm′ −
�
Tτ

��
H, ĉkmσ(τ)

�
ĉ†

km′σ(0)
��

, (A.66)

where δ(τ) is only generated for the “operator diagonal” Green’s function through the anticommutator
{ĉk,mσ, ĉ†

k,m′σ} = {d̂mσ, d̂†
m′σ} = δmm′ , which necessarily vanishes for any other permutation. The

commutator with the non-interacting part of the Hamiltonian results in

�
H0, d̂m,σ(τ)

�
= −

,
y

ε̃myd̂y,σ (τ) −
,
ky

(V k
ym)∗ĉk,yσ(τ), (A.67)

�
H0, ĉk,mσ(τ)

�
= −

,
y

hk
my ĉk,yσ (τ) −

,
y

V k
myd̂yσ(τ). (A.68)

Inserted in the original set of equations and applying a Fourier transform on both sides of the equations
generates an interconnected set of non-interacting Green’s functions

−iνnGνn,dd
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= −δmm′ −
,
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−
,
ky

(V k
ym)∗Gk,cd

0,ym′
σ

, (A.69)
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−
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, (A.70)
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, (A.71)
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= −δmm′ −
,
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hk
myGk,cc
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σ

−
,

y

V k
myGk,dc

0,ym′
σ

, (A.72)
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from which we calculate the (non-interacting) impurity Green’s function Gdd
0 . This is easier done in

matrix form (ε̃lm → ε̃, hlm → H, Gmm′ → G, Vlm → V ) which reads

[(iνn + µ)1 − ε̃] Gνn,dd
0 = 1 +

,
k

(V k)T Gk,cd
0 , (A.73)�

(iνn + µ)1 − Hk
�

Gk,cd
0 = V kGνn,dd

0 . (A.74)

Here (V k)T is the conjugate transpose of V k and µ is the chemical potential that acts on both species
of electrons simultaneously and was thus added to both the local energy levels ε̃lm → ε̃lm − µδlm as
well as the bath hk

lm → hk
lm − µδlm. Combining Eqs. (A.73-A.74) then results in

Gνn,dd
0 =

(iνn + µ)1 − ε̃ −
,

k
(V k)T

�
(iνn + µ)1 − Hk

�−1
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����������������������������������������������������������������������������������������������
∆(iνn)



−1
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In the single orbital case (Hk → εk), this gives the well-known expression for the hybridization
function

∆(iνn) =
,

k

|V k|2
iνn + µ − εk

. (A.76)

Finalizing the discussion on Green’s functions, let us emphasize that the impurity self-energy is
derived identically to the lattice self-energy. For brevity’s sake, we forgo the detailed derivation, as it
does not provide further information. The commutator of the interaction matrix with the impurity
annihilation operator leads to

[ΣG]mm′
σ

(τ) =
�
Tτ

��
U , d̂mσ(τ)

�
d̂†

m′σ(0)
��

(A.77)

which naturally results in a connection of the momentum-independent self-energy with the purely
local, impurity two-particle Green’s function

[ΣG]mm′
σ

(τ) = lim
τ ′→τ+

,
lhn
σ′

UmlhnGnlhm′
σ′σ

(τ, τ ′, τ) , (A.78)

which can be, again, separated into its disconnected parts (Hartree and Fock) and its connected part.
Expanding Eq. (A.63) with ΣG, modifies Eq. (A.69) to

−iνnGνn,dd
mm′
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= −δmm′ −
,
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−
,
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−
,
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Σmy
σ

Gνn,dd
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σ

, (A.79)

which recovers the Dyson equation of the impurity propagator in the resolved matrix expression

Gνn,dd = [(iνn + µ)1 − ε̃ − Σνn − ∆νn ]−1 ≡
�

Gνn,dd
0

�−1 − Σνn

�−1
. (A.80)
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A.2 Matsubara summation technique
In this Section we go over the basic properties of Green’s functions used throughout the main text of
this thesis. Furthermore we showcase the technique of Matsubara summations, including its pitfalls,
that lead to some of the “shorthand transformations” used throughout the main text.

A.2.1 Spectral function
The purely real valued, one-particle Green’s function in imaginary times

G(τ) = 1
β

,
νn

e−iνnτ G(iνn), (A.81)

see Fig. A.2 for an example, can be connected to the spectral function A(ω) via the Hilbert transform

G(z) = − 1
π

� ∞

−∞
dω

ℑG(ω)
z − ω

(A.82)

resulting in

G(τ) = 1
β

,
νn

e−iνnτ
� ∞

−∞
dω

A(ω)
iνn − ω

. (A.83)

In order to generate the Matsubara sum in Eq. (A.83) we exploit the Fermi function fFD whose poles
are all possible fermionic Matsubara frequencies. We define two distinct, generating functions�

R→∞+
dz

e−zτ

z − ω
fF D(z) != 0 τ < 0 (A.84a)�

R→∞+
dz

e−zτ

z − ω
fF D(−z) != 0 τ > 0 (A.84b)

which, following Jordan’s lemma, necessarily have to possess a sufficient decay behavior, such that the
integral

�
R→∞+ vanishes: For negative imaginary times the Fermi function delivers the exponential

suppression in z → ∞+ while e−zτ delivers the suppression towards z → ∞−. For positive imaginary
times, the roles are reversed: the Fermi function delivers the exponential supression in z → ∞− while
e−zτ results in exponential suppression towards z → ∞+.
Applying the residue theorem by evaluating all residues of the complex plane we find for τ < 0

�
R→∞+

dz
e−zτ

z − ω
fF D(z) != 0 = 2πi

'
− 1

β

,
νn

e−iνnτ

iνn − ω
+ e−ωτ fF D(ω)

�
(A.85a)

G(τ < 0) =
� ∞

−∞
dωA(ω)e−ωτ fF D(ω), (A.85b)



352

and for τ > 0 �
R→∞+

dz
e−zτ

z − ω
fF D(−z) != 0 = 2πi

'
1
β

,
νn

e−iνnτ

iνn − ω
+ e−ωτ fF D(−ω)

�
(A.86a)

G(τ > 0) = −
� ∞

−∞
dωA(ω)e−ωτ fF D(−ω), (A.86b)

where we employed ResfF D(z) = limz→iνn(z − iνn)fF D(z) = −1/β and similarly, ResfF D(−z) = 1/β.
Eqs. (A.85b) and (A.86b) can be validated via the KMS boundary conditions (see Section A.1.1) of
the Green’s function

G(β − τ) = −G(−τ) τ > 0 (A.87)

yielding
G(β − τ) = −

� ∞

−∞
dωA(ω)e−ω(β−τ)fF D(−ω)

= −
� ∞

−∞
dωA(ω)eωτ fF D(ω) = −G(−τ).

(A.88)

Properties of the imaginary time axis
The integral identities can be exploited to determine the curvature of the Green’s function in imaginary
times

d2G(τ)
dτ 2

.....
τ<0

=
� ∞

−∞
dωA(ω)ω2e−ωτ fF D(ω) ≥ 0, (A.89a)

d2G(τ)
dτ 2

.....
τ>0

= −
� ∞

−∞
dωA(ω)ω2e−ωτ fF D(−ω) ≤ 0. (A.89b)

The occupation of the band/orbital described via the Green’s function can be read off directly from
the imaginary axis through

n = G(τ = 0−) = −
�
Tτ

�
ĉ(0−)ĉ†(0)

��
=

� ∞

−∞
dωA(ω)fF D(ω). (A.90)

On the other hand, the Green’s function evaluated in the limit τ → 0+ leads to to the expected
discontinuity with step size 1

n − 1 = G(τ = 0+) = −
�
Tτ

�
ĉ(0+)ĉ†(0)

��
= −

� ∞

−∞
dωA(ω)fF D(−ω). (A.91)

Besides the exact connection to the occupation, one can employ the Green’s function to directly check
for metallic/insulating behavior. Evaluated for τ = −β/2 one finds

G(τ = −β

2 ) =
� ∞

−∞
dωA(ω)eωβ/2fF D(ω)

=
� ∞

−∞
dω A(ω) 1

2 cosh(βω
2 )

= π

β
A(ω = 0).

(A.92)
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−β −β/2 0 β/2 β
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−0.5
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G
(τ
) n

1−n

G(0− )−G(0+ )=1d 2G(τ)/dτ2≥0

d 2G(τ)/dτ2≤0−G(τ−β)=G(τ)

Figure A.2: Exemplary, metallic Green’s function on the imaginary time axis τ with (spin-
depdendent) occupation n = 0.167. Through the KMS boundary condition, the Green’s function is
antiperiodic w.r.t. τ ↔ τ − β. The metallicity can be ascertained via the finite G(τ = −β/2) > 0.

That is, the Green’s function evaluated at imaginary time τ = −β
2 is representative of the thermal

average of the spectral function around the Fermi level. In the zero temperature limit (T → 0,
β = 1

kBT → ∞) this relation becomes exact

lim
β→∞

� ∞

−∞
dω A(ω) 1

2 cosh(βω
2 )

β

π
=

� ∞

−∞
dω A(ω)δ(ω) = A(ω = 0). (A.93)

A summary of these properties are illustrated in an exemplary (weakly metallic) Green’s function
G(τ) in Fig. A.2.

A.2.2 Occupation
While the connection of the occupation to the imaginary time axis and the spectral function is useful
in principle, more often than not we determine the occupation via a Matsubara sum over numerical
data. To this end one has to perform the sum

n = G(τ = 0−) = 1
β

,
νn

e−iνn0−
G(iνn). (A.94)

Numerically this is quite challenging, if not impossible, given the slow decay behavior of the Green’s
function (1/n with increasing Matsubara frequency). In order to circumvent numerical instabilities,
one resorts to the workaround

n = 1
β

,
νn

e−iνn0−

G(iνn) − 1

iνn

�
+ 1

β

,
νn

e−iνn0− 1
iνn

= 1
β

,
νn

[ℜG(iνn)] + fF D(0).
(A.95)

By removing and adding an identical 1/iνn term one splits the summation into two terms: (i) A
numerically, stable term (∝ 1/n2) that now no longer requires the explicit inclusion of the exponential
factor. Through the functional evenness (oddness) of the real (imaginary) part of the Matsubara
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Green’s function, it is sufficient to only consider the real part in the summation. (ii) A numerically,
unstable term that we evaluate analytically. To this end, one integrates over the contour

0 !=
�

R→∞
dzfF D(z)e−z0− 1

z − ε
= 2πi

,
Res

fF D(z)e−z0− 1
z − ε

= 2πi

'
fF D(ε) − 1

β

,
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e−iνn0− 1
iνn − ε

�
,

(A.96)

illustrated in Fig. A.3a, which provides the (more generalized) Matsubara sum

1
β

,
νn

e−iνn0− 1
iνn − ε

= fF D(ε). (A.97)

The combined terms of Eq. (A.96) are here sufficiently suppressed in all directions such that the
circular integral

�
dz in the infinite radius limit vanishes. Let us emphasize that convergence is only

upheld with e−z0− ≡ ez0+ . The suppression for ℜz < 0 is then naturally accompanied by an ordinary
complex phase via

ez0+ = eR cos(Φ)0+
eiR sin(Φ)0+ with Φ ∈

�
π

2 ,
3π

2

%
, R > 0. (A.98)

The Matsubara sum of Eq. (A.97) can then be used in the expanded term of Eq. (A.95), generating
a “correction term” of fF D(0) = 1/2. Evidently, Eq. (A.97) provides the expression for the occupation
of a non-interacting Green’s function, as G0(iνn) = (iνn − ε)−1, see Eq. (A.94).

A.2.3 Bare susceptibility
Another commonly employed “shorthand transformation” concerns the bare susceptibility

χ0(q, iΩm) = − 1
β

,
k,νn

G(k,νn)G(k−q,νn−Ωm)

= − 1
β

,
k,νn

1
iνn − εk

1
iνn − iΩm − εk−q

.
(A.99)

Given non-interacting Green’s functions G, the term in the Matsubara sum can be generated via
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dzfF D(z) 1

z − εk

1
z − iΩm − εk−q

= 2πi
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,
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1
iνn − εk

1
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� (A.100)
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⋮

∮ dz=0

fFD(z)e−z0−

(a)
�

dzfF D(z)e−z0− 1
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εk−q+ iΩ3
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iν0

⋮
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z−2z−2

(b)
�

dzfF D(z) 1
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1
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Figure A.3: Exemplary contour integration that generates the (a) occupation and (b) bare sus-
ceptibility. The (grayish= background color corresponds to the absolute value of employed complex
functions, see Eqs. (A.96) and (A.100), with poles marked by “x”. For the evaluation of the oc-
cupation, the “convergence factor” e−z0− is essential to ensure a functional decay larger than the
required z−2.

which we illustrated in Fig. A.3b. Employing fF D(εk−q + iΩm) = fF D(εk−q), since eiβΩm ≡ 1, we
find the well-known Lindhard expression

χ0(q, iΩm) =
,

k
− fF D(εk)

εk − iΩm − εk−q
− fF D(εk−q)

εk−q + iΩm − εk

= −
,

k

fF D(εk−q) − fF D(εk)
εk−q − εk + iΩm

.

(A.101)

Let us emphasize here that Eq. (A.99) must not be decomposed in a partial sum. In doing so, one
would separate a convergent sum (∝ 1/(iνn)2) into two terms whose Matsubara sum

-
νn

1/(iνn − ε)
maps to the Green’s function evaluated at exactly τ = 0. As we have previously ascertained, G(τ) is
only defined in the limit of G(τ = 0+) and G(τ = 0−), see Eq. (A.95), constituting this “shortcut”
as flawed.
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A.3 Two-particle correlation functions
In this Section, we provide more insights into correlation functions that have not hitherto been
derived in the main text (for the connection of the current-current correlation function to the optical
conductivity via the spectral representation of the Green’s function, see Section 2.6). We focus on
correlation functions including heat-currents (relevant for the Seebeck and Nernst coefficients) and
the effect of a weak, static magnetic field describable within linear response theory.

A.3.1 Heat currents
For the following we consider the heat-current [359]

jα
Q(q = 0, τ) = 1

2
,

k,lm,σ

γk,α
lm

�
ĉ†

kmσ
˙̂cklσ − ˙̂c†

kmσ ĉklσ

�
(τ), (A.102)

and the electric current on the imaginary axis

jα
E(q = 0, τ) = −e

,
k,lm,σ

γk,α
lm

�
ĉ†

kmσ ĉklσ

�
(τ) (A.103)

with e as the (positively defined) elementary charge and γk,α
lm as the transition element in the Cartesian

α direction. With the equation of motions

˙̂ckσ(τ) = [H0, ĉkσ(τ)] = −εkĉkσ(τ) (A.104a)
˙̂c†
kσ(τ) =

�
H0, ĉ†

kσ(τ)
�

= εkĉ†
kσ(τ), (A.104b)

we can evaluate the operator derivative for a non-interacting Hamiltonian H0. Without loss of
generality we take one specific time derivative of the two-particle Green’s function�

Tτ ĉ1(τ1)ĉ†
2(τ2) ˙̂c3(τ3)ĉ†

4(τ4)
�

= 1
Tr [e−βH0S(β)]Tr

�
e−βH0Tτ ĉ1(τ1)ĉ†

2(τ2) ˙̂c3(τ3)ĉ†
4(τ4)S(β)

�
= −ε3

Tr [e−βH0S(β)]Tr
�
e−βH0Tτ ĉ1(τ1)ĉ†

2(τ2)ĉ3(τ3)ĉ†
4(τ4)S(β)

� (A.105)

and exploit the S-matrix to rewrite the two-particle Green’s function into an expectation value
w.r.t. the non-interacting system. Here S(β) is the S-matrix defined by S(τ) = S(τ1 − τ2) =
eH0τ1eH(τ1−τ2)e−H0τ2 that builds the theoretical basis upon which one is able generate all possible
Feynman diagrams in a perturbation approach.71

In this expectation value with respect to the non-interacting system, we are allowed to evaluate
the derivatives of the operators and perform the necessary Wick contractions that ultimately generate
71 This is done by “solving” the S-matrix via S(τ) = Tτ exp(− � τ

0 dτ ′(H − H0)(τ ′)), expanding the exponential inside
the expectation value and evaluating the expectation value with respect to the non-interacting system [522, 523].
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the dressed bubble diagram we are interested in. After this separation of terms we may “reabsorb”
the generated energies of Eqs. (A.104) to restore the operator derivative. In short, Wick contractions
may be applied to operator derivatives in the same way as “regular” creation/annihilation operators.

A.3.1.1 Heat-current-current

With this property in mind the heat-current-current correlation function can be expanded to

χαβ
21 (q = 0, τ) =

�
Tτ jα

Q(q = 0, τ1)jβ
E(q = 0, τ2)

�
= −e

2
,
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�

−
�
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k′,l′σ′(τ2)ĉk′,m′σ′(τ2)
� �

(A.106)

where the time argument τ is short form for τ = τ1 − τ2. Employing the aforementioned Wick
contractions to generate (dressed) bubble diagrams we find

χαβ
21 (q = 0, τ) = −e
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+ ∂τ1Gk
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�
(A.107)

where we neglected the δ(τ) terms stemming from the Green’s function derivatives

∂τ1Gk
lm,σ(τ1, τ2) = −δ(τ1 − τ2)δlm −

�
Tτ ∂τ1 ĉk,lσ(τ1)ĉ†

k,mσ(τ2)
�

, (A.108a)

∂τ2Gk
lm,σ(τ1, τ2) = δ(τ1 − τ2)δlm −

�
Tτ ĉk,lσ(τ1)∂τ2 ĉ†

k,mσ(τ2)
�

, (A.108b)

allowing us to only consider the physically relevant (dressed) bubble diagrams. The δ terms would
lead to corrections corresponding to orbital occupations since G(τ = 0±) ∝ n. Strictly speaking, these
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processes do not contribute as they are purely real valued and the Onsager coefficient corresponds to
ℑχ. Finally, the Fourier transform results in

χαβ
21 (q = 0, iΩm) =
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0
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where we re-inserted the condition τ = τ1 − τ2 with ∂τ1 = ∂τ and ∂τ2 = −∂τ , respectively.
The current-heat-current correlation function does not require a full calculation as its connected via
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k,mσ(τ)ĉk,lσ(τ)
�
ĉ†
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The Fourier transform then instead reads
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(A.111)

A.3.1.2 Heat-current-heat-current

In the same vein, the heat-current-heat-current correlation functions with imaginary time argument
τ = τ1 − τ2 results in
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Tτ ĉklσ(τ1) ˙̂c†
k′l′σ′(τ2)

� �

= 1
4

,
k,k′,σ,σ′
lmm′l′

γk,α
lm γk′,β

m′l′ δk,k′δσ,σ′

'
− ∂τ2Gk

m′m,σ(τ2 − τ1)∂τ1Gk
ll′,σ(τ1 − τ2) + Gk

m′m,σ(τ2 − τ1)∂τ1∂τ2Gk
ll′,σ(τ1 − τ2)

+ ∂τ1∂τ2Gk
m′m,σ(τ2 − τ1)Gk

ll′,σ(τ1 − τ2) − ∂τ1Gk
m′m,σ(τ2 − τ1)∂τ2Gk

ll′,σ(τ1 − τ2)
�

(A.112)

where we, again, neglected all δ(τ) terms stemming from the Green’s function derivatives and consider
only bubble diagrams. To be more precise, here we also neglect the double derivative

∂τ1∂τ2Gk
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. (A.113)

Finally we Fourier transform to Matsubara frequencies where we re-insert τ = τ1 − τ2 with ∂τ1 = ∂τ

and ∂τ2 = −∂τ
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A.3.1.3 Integral equations

The translation of the Matsubara sums to an integral spanning the real-frequency axis, can either
be done by the spectral representation of the Green’s function, see Section 2.6 or follow the contour
integration sketched in Ref. [359]. The Matsubara sum occurring in the expression for the Onsager
coefficients Lab with a, b ∈ {1, 2}72 can be connected to the integral73
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(A.115)
Through a deformation of the (anticircular) integral such that possible branch cuts stemming from
the Green’s functions G(z) and G(z + iΩm) are avoided, see Fig. A.4 we find
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72 To be more precise, the integral form of Eq. (A.115) works for L11, L21 and L22. For L12, see Eq. (A.111),
the complex integral is instead performed over fF D(z)G(z)G(z − iΩm)(z − iΩm/2). After performing the analytic
continuation and taking the DC limit, one however finds the identical end result as for L21 (with reversed directional
dependence).
73 The resulting Matsubara sum is not strictly convergent for all a and b values due to the insufficient decay behavior
for a + b > 3. We however still follow this “symbolic” transformation, also commonly used in the literature, see, e.g.,
Ref. [359, 456]. What is saving the day is that, in the end, we are only interested in the imaginary part of χ on the
real-axis, for which the expression turns out to be convergent.



Appendix A.3: Two-particle correlation functions 361

where we used

Gret(ε) = G(ε + i0+), (A.117a)

Gadv(ε) = G(ε − i0+) = G∗
ret(ε), (A.117b)

A(ε) = −1/πℑGret(ε). (A.117c)

ℜz

ℑz

R→∞

⋮

iν−1

iν0

⋮

∮ dzfFD(z)G(z)G(z+ iΩm)

ε+ i0+

ε− i0+

ε− iΩm+ i0+

ε− iΩm− i0+

Figure A.4: Contour integration that generates the Matsubara sum occurring in various Onsager
coefficients. The anticircular integral is rewritten into four integrals that avoid possible branch cuts
of the Green’s functions G(z) and G(z + iΩm) at ε and ε − iΩm, respectively.

We can now perform the analytic continuation iΩm → ω + i0+ and taking the limit towards
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, (A.118)

which results in
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In a system responding to a temperature gradient, the resulting Onsager coefficient Lαβ
21 = Lβα

12

will therefore be positive for negative charge carriers. Consider a thermally filled band above the
Fermi level where ε > 0 with a negative temperature gradient along a chosen axis α: The resulting,
positive L12 will generate an electric current that will generate a displaced charge distribution until
an energetic counter-balance is created that opposes to the externally applied temperature gradient
exactly. Once this steady-state is achieved, the corresponding Seebeck coefficient will then be, per
definition, negative, see Eq. (3.61).

A.3.2 Linear response in magnetic field
This Section follows the derivation of the Hall conductivity of Ref. [386]. Since minor typos and
errors occur throughout the referenced text, we include the full verbose derivation with its notation
adapted to this thesis. The derivations of the higher order linear response terms follow in a similar
vein, are however beyond the scope of this Appendix.
Our goal is to calculate the magnetic correction term to the Onsager coefficient

LB,αβγ
11 = lim

ω→0+

1
ω

ℑ
χB,αβ

jEjE
(q = 0, ω)
Bγ

 (A.120)

through the correlation function
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jEjE (q, τ) = 1
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E(0, 0)

�
B

(A.121)

where the expectation value is taken in the presence of an external, static, magnetic field B.

A.3.2.1 Vector potential expansion

Our starting point is the minimal coupling approach where the (magnetic) vector potential corrects
the kinetic term of the Hamiltonian: In the lattice notation within the Peierls approximation, this
procedures translates to a modification of the hopping term74

tij → tij exp
�

− ie

ℏ

� i

j
A(r) · dr

%
(A.122)

which results in a geometric sum for the quadratic part of the Hamiltonian

Ht =
,
⟨i,j⟩

tij

∞,
n=0

1
n!

�
ie

ℏ

%n

(A(Rij) · rij)n ĉ†
iσ ĉjσ (A.123)

74 This procedure holds only for unit cells with one atom. If the unit cell is of multi-atomic nature, the substitution
must account for inter-atomic hopping [64, 362]. This is done by a modification of the integration boundaries. Per
construction, the Peierls approximation always neglects intra-atomic optical transitions [405].
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with the (positively defined) elementary charge e, the vector potential A evaluated at the center point
Rij = (ri + rj)/2 and the integral length as the lattice difference rij = (rj − ri). Let us note that
this kind of integral evaluation is only justified in the long wavelength limit, i.e. the vector potential
is varying slowly in space (transfer momentum q is small).

Now we Fourier transform the kinetic term into momentum space by inserting

ĉ†
iσ =

,
p

eipri ĉ†
p,σ, (A.124a)

ĉjσ =
,

p
e−iprj ĉp,σ, (A.124b)

A(Rij) =
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resulting in
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(A.125)
where for each term we can recognize the momentum conservation via p = q +

-
i qi for all occurring

Aqi and where we employed the energy dispersion (in a band-diagonal basis)

εp =
,
rij

tije
−ip·rij (A.126)

with its derivatives in short-form notation

εα
p = ∂εp

∂pα
(A.127a)

εαβ
p = ∂2εp

∂pα∂pβ
, (A.127b)

and so on. Let us note that the sign convention of Eq. (A.126) is consistent with the main text, see
Eq. (2.26), due to the definition of rij . The (spin-dependent) current operator is now calculated via
the functional derivative

Jγ
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ĉ†
p−q̃+q1,σ ĉp,σεγα
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which we consider up to linear order in the vector potential A. Here A encodes both the external
magnetic B = ∇ × A and electric field E = −∂tA.
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A.3.2.2 Current-current correlation function

Having derived the current operator, we are now able to compute the correlation function
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q̃ (τ)Jβ
0

�
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(A.129)

where we consider the three contributions that are of linear order in A
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, (A.130)
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, (A.131)
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. (A.132)

In χ3 the vector potential is introduced via the correction term in the action

S1 =
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which stems from the path integral reformulation χ ∝ �
D[cc]e−SB Jα

q̃ (τ)Jβ
0 (0)/

�
D[cc]e−SB . Here,

one expands the action SB = S0 + S1 where S0 is the action in the absence of the external magnetic
field. Let us emphasize here, that the evaluation of Eqs. (A.130-A.132) now follows the usual Kubo
procedure, where we take the expectation value with respect to the unperturbed system.

χ1 evaluation
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The last line vanishes due to the involved band structure derivatives: An inversion of the (internal)
momentum p leads to an sign change −εγα

−pεβ
−p (the Green’s functions Gp are unaffected by this trans-

formation), assuming a band-diagonal basis. In the first line we only consider the Wick contractions
leading to the dressed bubble diagram and disregard “non-physical” equal-time density corrections.
We also neglect vertex corrections. In the second line we performed the momentum selection and in
the last line we computed the Fourier transform from imaginary time to the Matsubara frequencies.
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This is the result of the following transformation� β

0
dτeiΩmτ Gp(τ)Gp(−τ) =

� β

0
dτeiΩmτ 1

β

,
νn

e−iνnτ G(p,νn) 1
β

,
ν′

n

eiν′
nτ G(p,ν′

n) (A.135)

= β
,

νn,ν′
n

δΩm−νn+ν′
n,0

1
β

G(p,νn) 1
β

G(p,ν′
n) = 1

β

,
νn

G(p,νn+Ωm)G(p,νn).

Let us note, that all future Fourier transforms are performed similarly. For brevity’s sake we will
however skip the explicit calculation and simply show the end result.

χ2 evaluation

χB,αβ
2 (q̃, iΩm) = −e3
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,
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p′+q1
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−Gp(τ)δp,p′+q1 Gp′ (−τ)δp′,p−q̃

= e3
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1
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,
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G(p+q̃,νn+Ωm)G(p,νn) (A.136)

In the first line we performed the Wick contraction to the bubble diagram, in the second line we
performed the momentum selection, in the third line shifted the momentum sum p → p + q̃, and in
the fourth line we performed the Fourier transform.
Now we expand all terms in q̃ up to linear order in q̃ via

εα
p+q̃/2εβγ

p+q̃/2G(p+q̃,νn+Ωm) →
'
εα

p + εαδ
p

q̃δ

2

� '
εβγ

p + εβγδ
p

q̃δ

2

� 
G(p,νn+Ωm) +

�
G(p,νn+Ωm)

�2
εδ

pq̃δ

�
where the Green’s function expansion (in the band basis) employs

G(p,νn) = (iνn + µ − εp − Σ(p,νn))−1,
∂

∂pδ
G(p,νn) = (iνn + µ − εp − Σ(p,νn))−2 ∂εp

∂pδ
=

�
G(p,νn)

�2
εδ

p

where we neglect the correction induced by the momentum derivative of the self-energy. Inserted into
χ2, we only consider terms up to linear order in q̃

χB,αβ
2 (q̃, iΩm) = e3

ℏ3β
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'
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pεβγ
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p Aγ
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+ εα
pεβγδ

p
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2 Aγ
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pq̃δG(p,νn) + O(q̃2)
�
,
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where the first term vanishes due to its antisymmetry with respect to p in the band-diagonal basis.
Integrating the third term by parts with respect p

,
p

εα
pεβγδ

p
q̃δ

2 Aγ
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allows us to cancel most terms. The combined result is then
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where we exploited a fermionic frequency shift of iνn → iνn − iΩm in the first term.

χ3 evaluation
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= e3
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(A.140)

In the first line we performed the necessary Wick contractions to generate the physically relevant
triangle diagrams (see Ref. [524] for their importance in nonlinear responses), in the second line
we performed the momentum selection stemming from the delta-functions and in the third line we
performed the Fourier transform. Finally, to generate the “symmetric” expression in the fourth line
we shifted the (internal) momentum sum of both terms via p → p − q̃/2 and shifted the fermionic
Matsubara frequencies of the second term via νn → νn − Ωm.
We again expand all terms in q̃ up to linear order in q̃ via

εβ
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and similarly for the second line where the sign of the transfer momentum q̃ is reversed.
The zeroth order expansion of χ3 in q̃ vanishes as εα
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. (A.141)

χ evaluation
Finally, the total correlation function χ can now be summed resulting in
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(A.142)

where we introduced the abbreviation

Πp(iΩm) = 1
β

,
νn

�
G(p,νn)

�2
G(p,νn+Ωm), (A.143)

which is illustrated in Fig. A.5. In Eq. (A.142) we employ the Maxwell equation B(q̃) = iq̃ × Aq̃ in
tensor notation. In order to calculate the magnetic correction to the Onsager coefficients, as defined
in the main text

Lαβ
ab (B) = Lαβ

ab + LB,αβγ
ab Bγ + O(B2), (A.144)

we need to consider the dynamic limit

LB,αβj
11 = lim

ω→0+

1
ω

'ℑχB,αβ
jEjE

(q̃ = 0, iΩm → ω + i0+)
Bj

�
, (A.145)

where we remove the explicit contribution of the magnetic field Bj . The direction of the B-field
however remains encoded in the correlation function via the optical elements, cf. Section 3.3.4.2,

MB,αβj
p = ϵjδγεα

pεβγ
p εδ

p (A.146)

For an applied current in β = x direction with a static magnetic field in j = z direction, the resulting
response in α = x direction then corresponds to the transversal conductivity with coupling element

MB,yxz
p = εy

pεxy
p εx

p − εy
pεxx

p εy
p. (A.147)

On the other hand, the correction to the response in the same longitudinal β = x direction, corre-
sponding to magneto resistance, the coupling elements correspond to

MB,xxz
p = εx

pεxy
p εx

p − εx
pεxx

p εy
p. (A.148)

The antisymmetry of MB,xxz
p with respect to an inversion of px implies that magnetic corrections to

the conductivity are only captured for higher order B-terms, at least if time reversal symmetry is
maintained.
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A.3.2.3 Matsubara sum

To finalize the derivation, we convert the Matsubara sum of Eq. (A.143), into an integral over real
frequency, see Section 3.3. We consider

Πp(iΩm) − Πp(−iΩm) = 1
β

,
νn

�
G(p,νn)

�2
G(p,νn+Ωm) −

�
G(p,νn)

�2
G(p,νn−Ωm) (A.149)

as the starting point, where from here on we will drop all momentum subscripts for clarity’s sake. Let
us emphasize, that this quantity is evidently not properly defined for the static limit iΩm = 0. By
taking a full (anticlockwise) circular integral centered around z = 0 we restore the Matsubara sum

Π(iΩm) = − 1
2πi

�
dzfF D(z)G2(z)G(z + iΩm) != 1

β

,
νn

G2(iνn)G(iνn + iΩm). (A.150)

We can now deform the integral in such a way that we may circumvent possible branch cuts of the
Green’s function located at z = ε and z = ε − iΩm. By doing this, we generate “horizontal cuts” in
the complex plane, see Figure A.4, corresponding to real-axis integrals�
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where we employed the connections of Eqs. (A.117). Now we can compute the difference and perform
the analytic continuation

[Π(iΩm) − Π(−iΩm)]iΩm→ω+i0+ =
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�
. (A.153)



370

We only have to consider the real part of Eq. (A.153). To this end we now fully expand all Green’s
functions into their real and imaginary parts Gret = ℜGret + iℑGret, Gadv = ℜGret − iℑGret yielding
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Combining all pre-factors, the (spin dependent) Onsager coefficient results in

LB,αβj
11 = 2π2

3V
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pεβγ

p εδ
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� ∞
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%
A3

p(ε), (A.156)

where one additional ℏ factor is added to account for the energy integration. In the main text the ℏ
pre-factors are absorbed into the band derivatives which serve as Fermi velocities / curvatures. For a
detailed dimensionality analysis of the Onsager coefficients, please refer to the Appendix of Ref. [11].

Jα
E

p, νn + Ωm p, νn

p, νn

J
β

E

Bj

−

Bj
Jα
E

J
β

E

p, νn − Ωm p, νn

p, νn

Πp(iΩm)− Πp(−iΩm)

=

Figure A.5: Lowest order Feynman diagrams contributing to the Hall conductivity, see
Eq. (A.142). Contrary to the electric field, the static, magnetic field does not induce a bosonic
frequency transfer. The vertices signal the non-trivial coupling: ϵjδγεα

pεβγ
p εδ

p.
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