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Kurzfassung

Designoptimierung befasst sich mit der Minimierung (Maximierung) einer gegebenen Formfunktion, die
Teilmengen von Rd auf reelle Zahlen abbildet, in Bezug auf die Designvariable. Dabei unterscheidet man
zwischen den Begriffen Formoptimierung, die sich mit glatten Verformungen eines gegebenen Designs be-
fasst, und Topologieoptimierung, die topologische Veränderungen anspricht. Im Kontext des Ingenieurwe-
sens bezeichnen wir beide Themen als Strukturoptimierung. Fortschritte in der Fertigungstechnik haben
eine Vielzahl von Gestaltungsmöglichkeiten hervorgebracht. Folglich hat die Nachfrage nach optimalen
Designs und geeigneten Optimierungsmethoden signifikant zugenommen.
Zunächst folgen wir dem Ansatz der klassischen Formoptimierung. Wir wenden die etablierte Theo-
rie rund um die Formableitung auf ein Modellproblem im Rahmen der linearen Elastizität mit punk-
tweisen Spannungseinschränkungen an. Diese Einschränkungen werden dann kompakt formuliert durch
die Maximumnorm, was zu einem nichtglatten Optimierungsproblem führt. Wir verwenden Methoden
der nichtglatten Analysis, um Optimalitätsbedingungen herzuleiten und eine Verbindung zum Clarke-
Subgradienten herzustellen. Zusätzlich betrachten wir drei einfache Geometrien, um die numerische
Anwendbarkeit unserer Methodik zu erörtern.
Als Nächstes untersuchen wir topologische Sensitivitäten im Rahmen der Topologieoptimierung. Wir ver-
gleichen drei verschiedene adjungierte Methoden, um die erste und zweite Topologieableitung herzuleiten.
Wir wenden diese Methoden auf ein durch partielle Differentialgleichungen beschränktes Problem im
Rahmen der linearen Elastizität an und heben die Unterschiede hinsichtlich Anwendbarkeit und Effizienz
hervor.
Basierend auf unseren Beobachtungen verwenden wir dann die gemittelte adjungierten Methode, um
die vollständige topologische asymptotische Entwicklung für ein durch partielle Differentialgleichungen
beschränktes Modellproblem zu berechnen; einschließlich des Laplace-Operators und einer Störung auf
der rechten Seite. Wir stellen fest, dass die asymptotische Analyse der adjungierten Variablen je nach
Zielfunktion komplizierter sein kann. Tatsächlich erfordert eine Kostenfunktion vom L2-Trackingtyp die
Einführung der Fundamentallösung der biharmonischen Gleichung.
Schließlich nutzen wir den Begriff der topologischen Zustandsableitungen, um numerische Verfahren
im Kontext der Topologieoptimierung zu untersuchen. Wir approximieren einen modernen Level-Set-
Algorithmus und führen ein steilstes-Abstiegs Verfahren im Rahmen von One-Shot-Typ Methoden ein.



Abstract

Design optimisation deals with the minimisation (maximisation) of a given shape functional, which maps
subsets of Rd to the real numbers, with respect to the design variable. Therein, one distinguishes between
the terminology shape optimisation, which is concerned with smooth deformations of a given shape and
topology optimisation, which addresses topological changes. Put into the context of mechanical engineer-
ing, we refer to both topics as structural optimisation. Recent advances in the manufacturing process gave
rise to a large variety of design possibilities. Consequently, the demand for optimal designs and appro-
priate optimisation methodologies has increased significantly.
We first follow the approach of classical shape optimisation. We apply the well established theory revolv-
ing around the shape derivative to a model problem in the framework of linear elasticity with pointwise
stress constraints. These constraints are then compactly formulated by the maximum norm, which results
in a nonsmooth optimisation problem. We employ methods from nonsmooth analysis to derive optimal-
ity conditions and draw a connection to the Clarke subgradient. Additionally, we consider three simple
geometries to address the numerical applicability of our methodology.
Next, we investigate topological sensitivities in the framework of topology optimisation. We compare
three different adjoint based methods to derive the first and second order topological derivative. We ap-
ply these methods to a PDE constrained problem in the framework of linear elasticity and highlight the
differences in view of applicability and efficiency.
Based on our observations, we then employ the averaged adjoint method to compute the complete topo-
logical asymptotic expansion for a PDE constrained model problem including the Laplacian and a per-
turbation of the right hand side. We observe that, depending on the objective functional, the asymptotic
analysis of the adjoint variable can be more involved. In fact, a L2 tracking-type cost functional requires
the introduction of the fundamental solution of the biharmonic equation.
Finally, we utilise the notion of topological state derivatives to investigate numerical schemes in the
context of topology optimisation. We approximate a state of the art level-set algorithm and introduce a
steepest descend scheme in the context of one-shot type methods.
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1 Introduction

Design optimisation deals with the minimisation (maximisation) of a given shape functional with re-
spect to a design variable. In this context, the shape functional (or objective functional) denotes a map
� : 	ad → R, where 	ad , a subset of the powerset of Rd , contains the admissible design variables
(shapes). Depending on the composition of the set 	ad , the wide topic of design optimisation ranges
from parameter optimisation, where the design is described by a parameter of an object, to shape optimi-
sation, where the optimal design is searched inside a set of homeomorphic sets, to topology optimisation,
where topological changes are considered as well. While the notion of parameter optimisation allows to
carry over a linear structure to the set of design variables, the set of admissible shapes in the framework
of shape and topology optimisation cannot directly be endowed with a vector space structure.
Recent advances in manufacturing technologies gave rise to a great variety of design possibilities and thus
the demand for design optimisation algorithms increased significantly. This introduction aims at provid-
ing a general overview of various state of the art methodologies and their applications in the framework
of shape and topology optimisation. More specific literature revolving around the contributions of this
thesis can be found in the introductions of the according parts.

1.1 Shape optimisation

The terminology "shape optimisation" often combines two branches: parametric shape optimisation and
non-parametric shape optimisation. Parametric shape optimisation refers to the previously mentioned
parameter optimisation, where the design is described by a finite dimensional variable. Whilst classical
examples of this type are the thickness or the height of an object, this notion can be extended to capture
irregular shapes. That is, optimising a shape in terms of its boundary, which consists of splines with a
finite number of control points, can be classified as parametric shape optimisation as well. More insights
on this topic can be found in [37].
On the contrary, in non-parametric shape optimisation one is interested in more general design options.
The main ingredient of this branch is the notion of “shape derivative”, which measures the sensitivity of
the shape functional with respect to smooth boundary variations of the shape. This method circumvents
the lack of vector space structure from shapes by starting from an initial shape and inherits the required
structure by considering deformations of the initial shape in terms of vector fields. To formalise this idea
let

� :	ad → R, (1.1)

be a shape functional and Ω ∈ 	ad an admissible shape. The shape derivative is defined as the limit

D� (Ω)(X ) := lim
t↘0

� (Ωt)−� (Ω)
t

. (1.2)

Here, Ωt = Ft(Ω) denotes the transformation of Ω with respect to the flow Ft defined by the vector field
X : Rd → Rd . Of course, one needs to assume that the transformations are compatible with the admissible
set, i.e. Ft(Ω) ∈ 	ad. There are two commonly used approaches in this context. The first one, the so-
called velocity method introduced in [100], considers for each Lipschitz vector field X ∈ W 1,∞(Rd)d

1



1 Introduction

and x0 ∈ Rd the flow t !→ θX (t, x0) solution of

∂ θX

∂ t
(t, x0) = X (θX (t, x0)), θ (0, x0) = x0. (1.3)

By the Picard-Lindelöf theorem (1.3) admits a unique solution and thus one defines the deformation of
an initial set Ω0 in direction X by

Ωt = θX (t,Ω0). (1.4)

A second approach is the so-called perturbation of the identity method introduced in [98]. It is based
on the idea to construct the deformation of an initial shape Ω0 as the sum of the identity map and an
additional vector field X ∈ W 1,∞(Rd)d with a small weighting factor. To be precise, one considers the
deformation in direction X

Ωt = (Id+ tX )(Ω0). (1.5)

While these approaches coincide in terms of the first order shape derivative, differences occur in the case
of the second order shape derivative, which is a natural extension of (1.2) [44]. It has been found that
Lipschitz vector fields are the most general choice of such deformation fields, which allow a rigorous
sensitivity analysis. For more details on this topic we refer to [69]. This framework has been employed
intensely in the literature and found various applications, many including optimisation problems con-
strained by partial differential equations (PDEs).
One key property of the shape sensitivity analysis is the possibility to reformulate the governing equa-
tions on a fixed domain Ω for sufficiently small transformations Ft . While the perturbation of the identity
method suffices in this aspect in many applications, some problem settings require different techniques.
In [62] the authors studied the optimisation of a viscous incompressible fluid governed by Stokes equa-
tion. Special care had to be taken of the vector field transformations in order to preserve the divergence-
free property of the solution space. This has been achieved by introducing the Piola transformation. A
similar issue occurred in [72], where the authors investigated the inverse problem occurring in magnetic
induction tomography, which describes the reconstruction of the conductivity given a sample of reference
measurements.
It is notable that in some cases not only the final shape needs to be optimised. In fact, sometimes also
the manufacturing process should be taken into consideration. In [2,3] the authors applied the method
of shape optimisation to a compliance minimisation problem in the context of linear elastic materials.
Additionally, they incorporated the manufacturability of the object via an additive manufacturing process
as a penalty term into the optimisation problem. In this context, additive manufacturing labels a variety
of different manufacturing methodologies that share the common scheme of layer-by-layer construction.
Examples of these are material extrusion methods and powder bed fusion strategies [2, Figure 2]. Previ-
ous works detect overhangs, the main issue in additive manufacturing, by means of geometric constraints
involving the surface normal of the domain (see e.g. [40]). In contrast, the authors of [2, 3] mimicked
the layer-by-layer production and introduced the self-weight manufacturing compliance as a penalty.
The works previously mentioned can be classified as smooth shape optimisation. That is, the objective
functional, combined with a possible constraint, admits a one-sided derivative that is linear with respect
to the vector field. Of course, there is also a large variety of works on nonsmooth shape optimisation in
the literature. In [54] the authors considered the shape optimisation of an obstacle type problem. This
naturally led to an variational inequality (VI) as a constraint. In order to apply the well established opti-
misation techniques for smooth shape optimisation, the authors incorporated the VI as an equality using
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the nonsmooth maximum function and regularised the term to obtain differentiability.
In contrast, in [104] the author studied the pointwise maximum of a smooth function depending on
the state variable, the solution to a quasilinear elliptic PDE. Here, the author resorted to a Danskin type
theorem to deal with the nonsmooth objective functional and used results from nonsmooth analysis to
characterise the resulting “differential” as well as optimality criteria.
The notion of "shape derivative" naturally gives rise to gradient based optimisation algorithms. Identify-
ing a descend direction, i.e. a vector field X such that D� (Ω)(X ) is negative, one can use this information
implicitly to guide a levelset function [7] or explicitly to deform control points; e.g. mesh nodes [61].
In this context, there is also literature targeting the numerical aspects of shape optimisation. In [49] the
authors modelled an air foil as a star-shaped domain and optimised the shape with respect to a given
pressure distribution. They computed first and second order shape derivatives and used significant parts
of the shape Hessian to increase the convergence rate of the gradient based optimisation algorithm. The
contribution [66] aims at controlling the numerical error introduced during the computation of the shape
gradient. In the context of an inverse problem occurring in electrical impedance tomography (EIT) the
authors introduced an a posteriori error estimator to guarantee a decrease of the objective functional
along the direction of the approximated shape gradient. Furthermore, the shape sensitivity encoded in
the first and second order shape derivative can be used in Newton-type methods. For an example of this
idea we refer to [103].

1.2 Topology optimisation

In contrast to smooth deformations considered before, topology optimisation allows topological changes
during the optimisation process. There is a great variety of methodologies to tackle this task analytically
and numerically. In the following we are going to introduce some of these. We start with a sensitivity
based method, that is comparable to the shape sensitivity in some aspects. Since Part II and Part III
employ this methodology, we are going to address this approach in more detail.

Topological sensitivity analysis This method is based on the notion of the topological derivative, which
measures the sensitivity of a given objective functional with respect to the inclusion of a small hole.
Similarly to (1.2) the first order topological derivative of a shape functional

� :	ad → R, (1.6)

denotes the limit

d� (Ω,ω)(x0) := lim
ϵ↘0

� (Ωϵ)−� (Ω)
ℓ(ϵ)

, (1.7)

where ℓ : R+→ R+ is function vanishing at 0 that encodes the asymptotic order. Contrary to (1.2) how-
ever, Ωϵ denotes a singularly perturbed set Ω at x0 with the perturbation shape ω. Again, we have to
assume that Ωϵ ∈ 	ad to obtain a well-defined expression. This quantity is able to capture a variety of
physical interpretations such as the removal or addition of material, the replacement of different mate-
rials or the placement of a rivet, to name a few. The topological derivative was first introduced in [50]
and later mathematically justified in [63] in the context of linear elasticity. Since then, the asymptotic
expansion with respect to singular perturbations has been derived for various PDE constraint design op-
timisation problems.

3
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In [32] the authors used the elastostatic Green’s tensor to derive a fourth order asymptotic expansion
regarding the inclusion of a small inhomogeneity in an elastic material. A fourth order differential oper-
ator has been considered in [18], where the authors computed the topological derivative for a Kirchhoff
plate bending problem.
Semilinear problems have been discussed in [105] via the averaged adjoint equation and in [14] in a dif-
ferent adjoint framework. In the latter work, the author considered a general class of semilinear equations
and prescribed Dirichlet boundary conditions on the inclusion boundary. Instead of poking a hole, this
can be interpreted as the addition of a rivet at a particular position. Topological asymptotics of semilinear
problems were also addressed in [87, Section 10]. Further works covering the derivation of topological
sensitivities for semilinear problems are [29,75].
Additional complications arise when nonlinearities of the operator occur. In [58] the authors addressed
a quasilinear transmission problem. They used a projection trick to circumvent the absence of a funda-
mental solution, which is often required to derive an asymptotic expansion.
There are various ways to incorporate the local information given by the topological derivative into a
numerical optimisation scheme. In [70] the authors investigated the EIT problem with constant conduc-
tivities. They used the topological derivative in a one-shot type approach to find an initial set and used
the shape derivative as well as sensitivity with respect to the conductivities to further optimise the result.
In [71] the authors extended the idea of [70] by deriving a higher order topological expansion, which
increased the accuracy of the initialisation.
Another approach was introduced in [17], where the optimality criteria of the topological gradient is
used to guide the evolution of a level-set. This idea was further investigated in [15] and extended to
capture multi-material problems in [56]. In [31] the authors interpreted the optimality criteria of the
topological gradient in a different way. Their observations gave rise to quasi-Newton methods for PDE
constrained topology optimisation problems.

Homogenisation method The homogenisation method is based on the idea to fill the domain with pe-
riodic cells attaining a microstructure, which depend on a number of parameter. These cells are assumed
to consist of two different regions; material and void. Now, the goal is to find an optimal alignment of
these cells in terms of a cost function. This leads to a large number of degrees of freedom. By construction,
the resulting optimum consists of a microstructure and thus is not very feasible in real life applications.
A remedy to get rid of these can be the introduction of a threshold for solid material. Therefore, one fills
cells that surpass a given threshold in terms of their microstructure with material, and sets the remaining
cells to void. A more subtle approach, called dehomogenisation, was introduced in [91].
Applications of the homogenisation method in structural optimisation can be found in [28]. For more
details regarding this approach we refer to [1].

Density methods The distribution of material in a domain can be associated with a characteristic func-
tion. That is, regions where material is present correlate to the value 1, and void is marked by 0. The
idea of density methods is the relaxation of the discrete value set {0,1} to the continuous interval [0,1].
That is, one allows intermediate values, which do not relate to physical interpretations. Thus, the design
variable in this context is a density function ρ. Additionally, one enforces a black and white solution by
penalisation. This is usually achieved in combination with a volume constraint. For more insights on this
topic we refer to [27]. Applications of this method will be given in the introduction of Part I in the context
of stress-constrained optimisation.
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Phase-Field method Phase-field methods or diffuse interface methods stem from physics and can be
classified as density based methods as well. Similarly to the previous methodology, the structural domain
is identified with a density function ρ. The difference lies in the method to get rid of intermediate densi-
ties. In this method, the density is driven towards the value set {0,1} with the help of the Van der Waals
free energy functional [4]

Fϵ(ρ) =

�
D

�
ϵ2|∇ρ|2 + ϵ−2W (ρ)

!
d x .

Here, W : R → R is a double well functional with minima W (0) = W (1) = 0 and positive values else-
where. Thus, the second term encourages a black and white behaviour as ϵ ↘ 0, while the first term
becomes less oppressive and thus allows jumps. This functional is then incorporated as a penalty term
into the problem formulation. For an application of this methodology we refer to [30] and references in
the introduction of the upcoming parts.

1.3 Existence theory

In the previous discussion we focussed our attention on methods that are capable to guide numerical op-
timisation algorithms. A more detailed overview of such methods can be found in the work [4]. Of course
there is also a wide theoretical framework targeting the existence and regularity of optimal shapes. The
foundation is built by the notion of shape continuity, which allows to construct a topology on the set
of admissible shapes. With the addition of an appropriate compactness result, which suits the underly-
ing notion of continuity, one can formulate existence results for general design optimisation problems.
Further details including concrete techniques to introduce the notion of shape continuity and existence
results for optimal shapes can be found in the exhaustive manuscripts [44,100].

1.4 Outline of the thesis

This thesis is concerned with the sensitivity analysis in the context of shape- and topology optimisation.
Our main contributions are the following:

• The incorporation of pointwise stress constraints into the objective functional in a nonsmooth way.

• We perform the sensitivity analysis for the material derivative in the context of shape optimisation
in a generalised way and compute the first order semi shape derivative for the nonsmooth objective
functional. We further connect the object to the Clarke subgradient.

• We compare three different adjoint based methods to perform topological sensitivity analysis. We
highlight the differences in view of applicability and efficiency for various objective functionals in
dimension two and three.

• We incorporate the fundamental solution of the biharmonic equation to compute the complete
topological asymptotic expansion for a tracking-type objective functional constrained by Poisson’s
equation.

• We introduce a steepest descend approach to combine topological- and shape-sensitivities on a
numerical level.
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Structure of the thesis The rest of this thesis is structured as follows: in Part I we investigate the min-
imisation of peak stresses in the context of shape optimisation. Therein we derive a nonsmooth method-
ology in the analytical setting, which we then apply to three model problems in a numerical scheme.
The results of this part stem from the article [26]. Part II is concerned with topology optimisation in the
framework of linear elasticity. Based on the article [25], we compare three adjoint based methods to com-
pute topological sensitivities up to order two and compare these methods in terms of their applicability
and efficiency. In Part III we employ a suitable adjoint approach to investigate topological derivatives of
arbitrary order for certain objective functionals subject to a PDE constraint in terms of Poisson’s equation.
Based on the results of [23], we observe that the asymptotic analysis of the adjoint variable necessitates
the fundamental solution of the biharmonic equation. Finally, in Part IV we address the numerical treat-
ment of the topological derivative. We therefore introduce the topological state derivative based on the
article [24] and utilise this generalised notion to construct two numerical schemes.
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1 Introduction

List of symbols

Notation Description
Operators
Id identity map on a given set
Id d-dimensional identity matrix on Rd

A tensor, i.e. linear map Rd×d → Rd×d

A⊤ transpose of a matrix A
A−1 inverse of a quadratic matrix A
a · b Euclidean scalar product of two vectors a, b ∈ Rd

|a| Euclidean norm of a vector a ∈ Rd

A : B Frobenius scalar product of two matrices A, B ∈ Rd×d

tr(A) trace of a quadratic matrix A∈ Rd×d

(v′, v)� ′×� duality product on � ′ ×�
〈u, v〉� inner product on a Hilbert space�
∥ · ∥� canonical norm on a Hilbert space� , i.e. ∥u∥2� = 〈u, u〉�
uk→ u strong convergence
uk � u weak convergence
f ◦ g composition of two functions
f −1 inverse of a function
∂ ϕ Jacobian or associated weak derivative of a function ϕ : Rd → Rm

∂γ partial derivative with respect to the vector γ= (γ1, ...,γd)⊤, i.e.

∂γ f = ∂ |γ| f
∂ γ1 x1···∂ γd xd

, with |γ|= γ1 + · · ·+ γd

∂ν normal derivative of a function f : Ω→ R, i.e. ∂ν f =∇ f · n
∇ϕ gradient or associated weak derivative of a function ϕ : Rd → R
ϵ(ϕ) symmetrised gradient of a function ϕ : Rd → Rd , i.e. ϵ(ϕ) = 1

2

�
∂ ϕ + (∂ ϕ)⊤
!

div(X ) divergence of a vector field X ∈ C1(D)d

∆ϕ divergence of a function, i.e. ∆ϕ = div((∇ϕ))
supp(ϕ) support of a function ϕ on Rd , i.e. {x ∈ Rd | ϕ(x) ̸= 0}
trΓ (ϕ) trace of a function ϕ on Ω with respect to Γ ⊂ ∂Ω
ϕ|K restriction of a function ϕ to the set K
ϕ|Γ formal abbreviation for trΓ (ϕ)
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1 Introduction

Notation Description
Function spaces
C(Ω) space of continuous functions from Ω into R
Ck(Ω) space of k-times differentiable functions from Ω into R
Ck

c (Ω) space of functions f ∈ Ck(Ω) such that supp( f ) ⊂ Ω
Lp(Ω) space of p-integrable functions from Ω into R for 1≤ p <∞
W k,p(Ω) Sobolev space of k-times weakly differentiable functions from Ω into R

with derivatives in Lp(Ω) for 1≤ p <∞, 0≤ k <∞
Hk(Ω) Sobolev space W k,2(Ω)
H1
Γ (Ω) {ϕ ∈ H1(Ω)| ϕ|Γ = 0} for Γ ⊂ ∂Ω

H1
0(Ω) abbreviation for H1

∂Ω
(Ω)

∥ · ∥C(Ω̄) supremum norm defined by ∥ϕ∥C(Ω̄) = supx∈Ω |ϕ(x)|
∥ · ∥Ck(Ω̄) supremum norm defined by ∥ϕ∥Ck(Ω̄) =

-k
j=0 sup|γ|=k supx∈Ω

��∂γϕ(x)��
∥ · ∥Lp(Ω) Lp norm defined by ∥ϕ∥Lp(Ω) =

��
Ω
|ϕ|p d x
! 1

p , 1≤ p <∞
∥ · ∥L∞(Ω) essential supremum norm ∥ϕ∥L∞(Ω) = ess supx∈Ω| f (x)|
∥ · ∥W k,p(Ω) standard Sobolev norm, i.e. ∥ϕ∥W k,p(Ω) =

�-
|γ|≤k ∥∂γϕ∥pLp(Ω)

# 1
p
,

for 1≤ p <∞
∥ · ∥W k,∞(Ω) Sobolev norm defined by ∥ϕ∥W k,∞(Ω) =

-
|γ|≤k ∥∂γϕ∥L∞(Ω)| · |

H
1
2 (Ω)

Sobolev-Slobodeckij seminorm defined for a bounded set Ω ⊂ Rd by

|ϕ|
H

1
2 (Ω)
=
��
Ω

�
Ω

|ϕ(x)−ϕ(y)|2
|x−y|d+1 d xd y

" 1
2

Ck(Ω̄) functions ϕ ∈ Ck(Ω) such that ∥ϕ∥Ck(Ω̄) is finite

Remark 1.1. We denote the vector valued counterparts of Ck(Ω), Lp(Ω), W k,p(Ω),... by Ck(Ω)d , Lp(Ω)d ,
W k,p(Ω)d ,... . Similarly, we proceed with matrix valued function spaces and the according norms.
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Part I

Nonsmooth shape optimisation with an
application to minimise peak stresses
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The content of this part stems from the following article, which is submitted for publication:

[26] P. Baumann and K. Sturm. Minimsation of peak stresses with the shape derivative. 2024.
arXiv:2402.12978.
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2 Introduction to stress-constrained shape optimisation

Stress describes the internal force present during deformation of an elastic medium. By their nature
stresses are a great measure for longevity and stability of a device. Thus, considering stresses in the de-
sign process has become to play a crucial part in structural optimisation. A common failure criterion in
this context is the maximum distortion energy criterion or von Mises yield criterion. It predicts yielding
of a material when the von Mises stress, a scalar quantity depending on the Cauchy stress tensor, ex-
ceeds a critical value [77]. The yield point on the strain-stress curve indicates the point where the linear
behaviour governed by Hooke’s law switches to nonlinear behaviour. Stresses below this point cause an
elastic deformation of the material and are therefore reversible. In contrast, stresses that exceed the yield
point cause a plastic deformation. This property underlines the importance of stress constraints in the
context of structural optimisation. For this reason, various methods to include stresses into the optimi-
sation process have been developed and a great variety of tools in the framework of design optimisation
has been used to tackle these problems.
One possibility revolves around density based methods, where the shape dependence of the underlying
problem is first identified with a characteristic function and then relaxed to a density function with val-
ues in the interval [0,1]. In [95] the authors used the solid isotropic material with penalisation (SIMP)
approach to minimise the volume of a material subject to pointwise constraints on the von Mises stress.
First, they reformulated the pointwise constraint as a single constraint on the maximum of the von Mises
stress. Then the authors included the constraint into the optimisation formulation as a smooth penalty
term by approximating the maximal von Mises stress in terms of a regularised ramp function.
In [34] the authors addressed a similar problem in the framework of phase field methods. Contrary to [95]
the authors considered a constraint on the total stress but clarified that the same method can be applied
to von Mises stress constraints. In their work they lifted the pointwise constraint on the stress tensor
in terms of characteristic functions and relaxed the problem by allowing intermediate densities. They
further introduced the Cahn-Hillard term to penalise intermediate densities and encourage a “black and
white” representation of the optimal domain. Additionally, the authors derived qualification constraints
and first order optimality conditions for a discrete finite element formulation of their problem.
The SIMP approach has been further employed in [78], where the authors considered localised stress
measure as well as a global stress measure in terms of the p-norm. They further introduced an iterative
normalization to approximate the maximum stress. Other works highlighting the usefulness of the SIMP
approach in the context of stress optimisation are [33,74,107,108], to name only a few.
As an alternative to the density based SIMP approach, the authors of [6] addressed stress optimisation
in the context of the homogenisation method. Their objective functional consists of the L2 norm of the
stress tensor with an additional weight factor, which is able to capture global as well as localised stress
constraints.
Even though the previously mentioned approaches have been proven promising, we are going to follow
a different route. That is, we are going to utilise the shape gradient in this work. This approach falls into
the class of gradient methods based on topological and shape sensitivities, which has been employed in
various studies revolving around structural optimisation with stress constraints.
Focusing on topological sensitivites, the authors of [19] employed the topological derivative to address
von Mises stress constraints in the framework of linear elasticity. They introduced a smooth regularisa-
tion of the maximum function to capture peak stresses. Furthermore, they extended their method in [20]
to target constraints on the Drucker-Prager stress. In a similar fashion, [106] employs the topological
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2 Introduction to stress-constrained shape optimisation

derivative as well.
In [5] the authors addressed an objective functional similar to [6] with an additional volume term to reg-
ularise the problem. They computed both, the topological and shape gradient, and used these to guide a
level-set function in a numerical scheme. This enabled the flexibility to alternate between smooth bound-
ary variations and the nucleation of holes, which leads to topological changes.
As shown in [47], the choice of the method to deal with stress constraints is not black and white. The
authors combined the previously described branches to improve their optimisation process. First, they em-
ployed the density based SIMP approach to find an initial design. Next, they performed smooth boundary
variations to further optimise their shape. Contrary to [5], they computed shape sensitivities on a discrete
level based on the position of nodes describing the boundary.
Aside from the choice of shape presentation and identification, the integration of the stress constraint into
the optimisation problem plays a crucial role. The physical interpretation of elastic deformation usually
calls for a pointwise constraint on the stress on the whole body to guarantee that failure does not occur.
Included as a penalty term into the optimisation process, this translates to the maximum norm. Since
this generally describes a nonsmooth functional, a common strategy is to regularise this problem and
deal with a smooth approximation. A well established approach in this context is the so-called p-norm
approach, which replaces the maximum norm with the Lp norm. Indeed this method is reasonable, as the
Lp norm mimics the maximum norm for sufficiently large p. This method was employed in [92], where
the p-norm approach is used to capture peak von Mises stresses. The authors first discretised both, the
underlying PDEs built of the equations of linear elasticity as well as the stress constraints. Next, they
computed sensitivities in the context of shape optimisation on the discrete level. They further used these
to guide a level-set function describing their design variable. The interchangeable nature of the problem
formulation with a penalty term allowed them to consider stress constraints as well as stress minimisa-
tion in their numerical examples. The authors extended their work in [93] to cover stress constraints in
subregions of the domain as well.
A similar approach was investigated in [84], where the authors used hexahedral meshes to increase
the accuracy of stress estimations and shape sensitivities near the boundary. They first introduced their
method in [83], where the authors employed hexahedral meshes to improve the level-set approach for a
compliance minimisation problem in the context of shape optimisation.
In this part of the thesis we discuss stress and volume control of a physical material governed by the
equations of linear elasticity. Contrary to the previously mentioned works, we follow a direct route and
consider the maximum norm of the von Mises stress in our problem formulation. This naturally leads to
a nonsmooth optimisation problem. We tackle this problem with techniques derived in [104] to compute
shape sensitivities. Opposed to [92], we derive these results on a continuous level. Due to the nature of
the maximum norm, the resulting derivative is in general nonlinear with respect to deformation vector
fields. We therefore take a short detour to the notion of generalised derivatives introduced by Clarke [39]
and connect our resulting object to the Clarke subgradient. Finally, we employ our results in a numer-
ical setting to tackle three model problems. We therefore utilise the moving mesh approach guided by
shape gradients. We compare our approach to the usual p-norm regularisation and highlight the differ-
ences in terms of stress values as well as designs. The content of this part stems from the article [26] in
collaboration with Kevin Sturm.
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2 Introduction to stress-constrained shape optimisation

Problem formulation

We consider the following model problem. Let D ⊂ Rd , an open and bounded Lipschitz domain, denote
the hold-all domain and Γ ⊂ D be a smooth d − 1 dimensional Lipschitz manifold with |Γ | > 0. We
introduce the set of admissible shapes by

	ad := {Ω ⊂ D| Ω is open, Lipschitz and Γ ⊂ ∂Ω}. (2.1)

The elastic body is clamped at Γ . Additionally, we seek an elastic body with target volume V > 0. Thus,
we introduce the shape functional

�vol(Ω) := (|Ω| − V )2 . (2.2)

The global minimum 0 of (2.2) is attained for |Ω|= V . Hence, such Ω are feasible designs for the elastic
body. Furthermore, we consider a constraint on the von Mises stress

σ2
M (uΩ)≤ δ in Ω \ω, (2.3)

where uΩ ∈ H1
Γ (Ω)

d is the unique solution of the equation of linear elasticity on Ω, that is�
Ω

Aϵ(uΩ) : ϵ(ϕ) d x =

�
Ω

f ·ϕ d x +

�
Γ N

g ·ϕ dS for all ϕ ∈ H1
Γ (Ω)

d . (2.4)

Here, H1
Γ (Ω)

d := {u ∈ H1(Ω)d | u|Γ = 0}, Γ N := ∂Ω \ Γ , ω ⊂ D open such that Γ ⊂ ω, f ∈ H1(D)d ,
g ∈ H2(D)d , δ > 0 is a given stress threshold and ϵ(u) denotes the symmetrised gradient, i.e.

ϵ(v) :=
1
2

�
∂ v + ∂ v⊤
!

for all v ∈ H1(D)d . (2.5)

Additionally, we define the elasticity tensor A in terms of Lamé coefficients λ,µ > 0 by

AM := 2µM +λtr(M)Id for all M ∈ Rd×d , (2.6)

where Id denotes the identity matrix and the squared von Mises stress is given by

σ2
M (u) := Bϵ(u) : ϵ(u), (2.7)

with the constant tensor

B(M) := 6µM + (λ− 2µ)tr(M)Id for all M ∈ Rd×d . (2.8)

We include this pointwise constraint on the von Mises stress as a penalty to the objective functional �vol.
Therefore, we introduce the cost functional

�σ(Ω) :=max{ max
x∈Ω\ω

σ2
M (uΩ)(x)−δ, 0}, (2.9)

where uΩ ∈ H1
Γ (Ω)

d solves (2.4). One readily checks that the global minimum �σ(Ω) = 0 is attained if

and only if σ2
M (uΩ)≤ δ, in Ω \ω. These observations lead to the introduction of the cost functional

� (Ω) := �vol(Ω) +α�σ(Ω), (2.10)
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for a penalty parameter α > 0. Note that we omitted a factor 1
2 in our definition of the von Mises tensor

(2.8), which is no restriction for the upcoming work. In the following we study the shape derivative of
the function � , i.e. the limit

lim
t↘0

� (Ωt)−� (Ω)
t

,

where Ωt is a smooth deformation of the initial set that tends to Ω for t ↘ 0. We are going to introduce
such deformations in the next section and give a rigorous definition of the shape derivative in Section 4.

Remark 2.1. We want to emphasize that our problem formulation and upcoming analysis focuses on
the integration of stress constraints into a shape optimisation problem. Naturally, a similar methodology
could be employed to tackle more involved problem settings. In this context we want to mention an im-
portant application of stress constraints; that is an electric motor. The two dimensional cross-section of
an electric motor D can be modelled by three mutually disjoint subdomains: an inner part Drotdenoting
the rotor, an outer part Dstat denoting the stator and an intermediate gap Dgap. The motor is built of
different materials, these are a ferromagnetic material ΩFe, permanent magnets ΩPM, copper coils ΩCU
and air Ωair. The interaction of different parts is governed by a system of partial differential equations.
These are the equation of magnetoquasistatics, the heat equation, and the previously introduced equa-
tion of linear elasticity. Since each material is endowed with a different set of material parameter, one
could generally address the design optimisation of various parts of the electric motor, as long as each
physical requirement is met. A typical example is depicted in Figure 1, where the interface between the
ferromagnetic material and the air subdomain is subject to optimisation.
Possible objectives in this context can be the tracking of a target torque or the minimisation of electro-
magnetic losses. Nonetheless, one should keep in mind that thermal expansion of the material, as well
as the rotation of the rotor can lead to high stresses in specific regions of the motor. In order to keep the
involved stresses below a certain failure-related threshold, a constraint is desirable. This underlines the
importance of our upcoming methodology.

Figure 1: Visualisation of the cross-section of an electric motor [55].

14



3 Shape sensitivity analysis of the state variable

3 Shape sensitivity analysis of the state variable

As we have mentioned in the introduction, the general method of computing sensitivities with respect to
deformations of the boundary is based on the idea to identify such deformations with vector fields and
inherit a vector field structure that way. In what follows we are going to employ the perturbation of the
identity approach (cf. Section 1.1). We are going to add an additional perturbation to the deformation
map, which allows us to perform differentiation in the context of Clarke in Section 6. It should be noted
that this is a generalisation of the usual setting and thus won’t result in any problems during the classical
shape sensitivity analysis. Even though it has been shown that Lipschitz vector fields are the most general
ones to perform the upcoming analysis in a rigorous way, we are going to use smooth vector fields for
the sake of simplicity.
Recall the notations introduced in the problem setting. That is, let D ⊂ Rd be open, bounded and Lips-
chitz, Ω ∈ 	ad be an initial shape with boundary ∂Ω = Γ ∪Γ N and fix an open setω ⊂ D such that Γ ⊂ω.
In order to deduce a derivative consistent with our problem formulation, i.e. compatible with (2.9), we
consider deformation vector fields X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄). On the one hand, this ensures
that the region ω remains fixed. By our assumption this includes the portion of the boundary Γ , which
denotes the part where the material is clamped. Hence, this is a feasible assumption. Additionally, this
choice allows us to avoid the region of low regularity, that is the intersection of both boundary parts.
This is crucial to obtain sufficient regularity of the state variable uΩ in view of the point evaluation of the
gradient in (2.9). We will elaborate on this matter further in a later part of this section.
In the following we are going to study the shape sensitivity of the state variable uΩ. Therefore, we fix
a vector field X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄). Furthermore, we introduce the generalised trans-
formation FY,t := Id+ Y + tX , for t ≥ 0 and Y ∈ C1(D̄)d with supp(Y ) ⊂ (D \ ω̄). This transformation
gives rise to the definitions ΩY,t := FY,t(Ω) and Γ N

Y,t := FY,t(Γ N ). For t = 0 we introduce the abbreviations
FY := FY,0, ΩY := ΩY,0 and Γ N

Y := Γ N
Y,0.

Remark 3.1. We observe that FY,t coincides with the transformation defined in (1.5) in the special case
Y ≡ 0. This simplification is sufficient to allow a rigorous computation of the shape derivative. In fact, we
are going to recall the special case throughout the next section, where the shape derivative is computed.
Nonetheless, we require the more general case and the associated sensitivity results to deal with the
derivative in terms of the Clarke subgradient [39].

First, we introduce the perturbed state variable uY,t ∈ H1
Γ (ΩY,t)d as the unique solution to the per-

turbed state equation (i.e. the state equation formulated on the deformed domain)�
ΩY,t

Aϵ(uY,t) : ϵ(ϕ) d x =

�
ΩY,t

f ·ϕ d x +

�
Γ N

Y,t

g ·ϕ dS for all ϕ ∈ H1
Γ (ΩY,t)

d , (3.1)

and similarly for t = 0 we obtain the unperturbed state variable uY ∈ H1
Γ (ΩY )d as the unique solution to

the unperturbed state equation�
ΩY

Aϵ(uY ) : ϵ(ϕ) d x =

�
ΩY

f ·ϕ d x +

�
Γ N

Y

g ·ϕ dS for all ϕ ∈ H1
Γ (ΩY )

d . (3.2)

Remark 3.2. Note that we defined uY as the unperturbed state variable even though a perturbation Y
is present. This is reasonable, because the perturbation does not play an important role in terms of the
derivation of the shape derivative.
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3 Shape sensitivity analysis of the state variable

One key property of the transformation is the following: for sufficient small t > 0 and Y sufficiently
close to 0, i.e. ∥Y ∥C1(D̄)d sufficiently small, FY,t is a bi-Lipschitz transformation field on Rd . According
to [110, Theorem 2.2.2] there holds

ϕ ∈ H1
Γ (Ω)

d iff ϕ ◦ FY,t ∈ H1
Γ (F
−1
Y,t (Ω))

d .

This property allows us to reformulate the perturbed (and unperturbed) state variable on the fixed do-
main Ω. Indeed, a change of variables entails that uY,t := uY,t ◦ FY,t ∈ H1

Γ (Ω)
d satisfies�

Ω

ξY,tAϵY,t(u
Y,t) : ϵY,t(ϕ) d x =

�
Ω

ξY,t f ◦FY,t ·ϕ d x+

�
Γ N

νY,t g◦FY,t ·ϕ dS for all ϕ ∈ H1
Γ (Ω)

d , (3.3)

where ξY,t := det(∂ FY,t), νY,t := det(∂ FY,t)|(∂ FY,t)−⊤n| and ϵY,t(ϕ) := 1
2

�
∂ ϕ(∂ FY,t)−1 + (∂ FY,t)−⊤∂ ϕ⊤

!
.

In this context n denotes the normal vector on Γ N . Similarly, we deduce that uY := uY ◦ FY ∈ H1
Γ (Ω)

d

satisfies�
Ω

ξY AϵY (u
Y ) : ϵY (ϕ) d x =

�
Ω

ξY f ◦ FY ·ϕ d x +

�
Γ N

νY g ◦ FY ·ϕ dS for all ϕ ∈ H1
Γ (Ω)

d , (3.4)

where ξY := det(∂ FY ), νY := det(∂ FY )|(∂ FY )−⊤n| and ϵY (ϕ) := 1
2

�
∂ ϕ(∂ FY )−1 + (∂ FY )−⊤∂ ϕ⊤

!
. One

readily checks that (3.4) coincides with (2.4), if Y ≡ 0. Since this equation admits a unique solution, this
further entails uY = u in this case. In the following we are interested in the limit

lim
Y→0
t↘0

uY,t − uY

t
, (3.5)

where here, and throughout the rest of Part I the notation Y → 0 is understood with respect to the norm
on C1(D̄)d , that is ∥Y ∥C1(D̄)d → 0. Before we focus on the limit in (3.5), we state the following auxiliary
results. For the sake of brevity we introduce the notations

f Y,t := f ◦ FY,t , gY,t := g ◦ FY,t , f Y := f ◦ FY , gY := g ◦ FY , (3.6)

which we are going to use throughout the rest of this part.

Lemma 3.3. Let Ω ∈ 	ad be a Lipschitz domain. Furthermore, let f ∈ H1(D)d , g ∈ H2(D)d and the
deformation vector field X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄). Then there holds

(i) lim
Y→0
t↘0

�� f Y,t − f Y
��

L2(D)d
= 0,

(ii) lim
Y→0
t↘0

���� f Y,t − f Y

t
− ∂ f X

����
L2(D)d

= 0,

(iii) lim
Y→0
t↘0

��gY,t − gY
��

L2(∂Ω)d
= 0,

(iv) lim
Y→0
t↘0

���� gY,t − gY

t
− ∂ gX

����
L2(∂Ω)d

= 0.
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3 Shape sensitivity analysis of the state variable

Proof. ad (i): First, note that for ϕ ∈ C∞(D)d there holds

ϕ ◦ FY,t(x)−ϕ ◦ FY (x) = t

� 1
0

∂ ϕ(x + Y (x) + stX (x))X (x) ds. (3.7)

Since the integrand is bounded, we observe |ϕ ◦ FY,t(x)−ϕ ◦ FY (x)| ≤ C t and thus further

∥ϕY,t −ϕY ∥L2(D)d ≤ C t, (3.8)

where here and throughout the rest of the proof C ∈ R denotes a constant independent of t and Y . Next,
we consider f ∈ H1(D)d and choose a smooth approximation. That is, for each ϵ > 0 we choose a smooth
function fϵ ∈ C∞(D)d such that ∥ fϵ − f ∥H1(D)d ≤ ϵ. An application of the triangle inequality yields

∥ f Y,t − f Y ∥L2(D)d ≤ ∥ f Y,t − f Y,t
ϵ ∥L2(D)d + ∥ f Y,t

ϵ − f Y
ϵ ∥L2(D)d + ∥ f Y

ϵ − f Y ∥L2(D)d . (3.9)

A change of variables now shows that

∥ f Y,t − f Y,t
ϵ ∥2L2(D)d

=

�
D

| f Y,t − f Y,t
ϵ |2 d x =

�
D

det(I + ∂ Y + t∂ X )−1| f − fϵ|2 d x . (3.10)

Since det(I + ∂ Y + t∂ X )→ 1 as Y → 0 in C1(D̄)d and t ↘ 0, there holds det(I + ∂ Y + t∂ X )−1 ≤ C for
t > 0 and ∥Y ∥C1(D̄)d sufficiently small. The same argument can be applied to the third term on the right
hand side of (3.9). Thus, choosing ϵ = t and inserting (3.8) with ϕ = fϵ into (3.9), we conclude

∥ f Y,t − f Y ∥L2(D)d ≤ C t, (3.11)

which shows (i).
ad (ii): We start again with a smooth function ϕ ∈ C∞(D)d . Using Lebesgue’s dominated convergence
theorem, we deduce from equation (3.7) that

ϕY,t(x)−ϕY (x)
t

→ ∂ ϕ(x)X (x) for all x ∈ D. (3.12)

Since X has compact support, there further holds |ϕY,t (x)−ϕY (x)
t | ≤ C for all x ∈ D. Now, as D has finite

measure, we can employ dominated convergence to extend the convergence (3.12) to L2. That is,

∥ϕY,t −ϕY

t
− ∂ ϕX∥L2(D)d → 0. (3.13)

For f ∈ H1(D)d we use a smooth approximation, i.e. for each ϵ > 0 let fϵ ∈ C∞(D)d such that

∥ fϵ − f ∥H1(D)d ≤ ϵ.
Now a splitting similar to the previous proof entails

∥ f Y,t − f Y

t
− ∂ f X∥L2(D)d ≤1

t
∥ f Y,t − f Y,t

ϵ ∥L2(D)d +
1
t
∥ f Y − f Y

ϵ ∥L2(D)d

+ ∥( f Y,t
ϵ − f Y

ϵ )/t − ∂ fϵX∥L2(D)d + ∥∂ fϵX − ∂ f X∥L2(D)d .
(3.14)
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Hence, choosing ϵ = t2 and using the same arguments as in the proof of item (i) to estimate the first,
second and fourth term gives

∥ f Y,t − f Y

t
− ∂ f X∥L2(D)d ≤ C t + ∥ f Y,t

ϵ − f Y
ϵ

t
− ∂ fϵX∥L2(D)d . (3.15)

Finally, equation (3.13) applied to ϕ = fϵ shows (ii).
The proof of item (iii) and (iv) follows from similar arguments, employing the continuity of the trace
operator ∥ϕ∥L2(∂Ω)d ≤ C∥ϕ∥H1(D)d , for all ϕ ∈ H1(D)d . The higher regularity is used to approximate ∂ g
in the H1 norm.

In addition to the asymptotic behaviour with respect to the transformation of the forces, we also need
to study the sensitivity associated with the transformation of the differentials ξY,t ,ϵY,t ,νY,t . This topic is
addressed in the following auxiliary lemma. Note that we split the symmetrised gradient ϵY,t therein and
rather investigate the Jacobian (∂ FY,t)−1. This is sufficient due to the underlying linear structure.

Lemma 3.4. Let Ω ∈ 	ad and X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄). Furthermore, for Y ∈ C1(D̄)d

with supp(Y ) ⊂ (D \ ω̄) and ∥Y ∥C1(D̄)d , t > 0 sufficient small recall the notations ξY,t := det(∂ FY,t),
ξY := det(∂ FY ), νY,t := det(∂ FY,t)|(∂ FY,t)−⊤n|, νY := det(∂ FY )|(∂ FY )−⊤n|. Additionally we introduce
the perturbed and unperturbed Jacobian αY,t := (∂ FY,t)−1, αY := (∂ FY )−1. Then the following limits
hold.

(i) lim
Y→0
t↘0

ξY,t − ξY

t
= div(X ) in C0(D),

(ii) lim
Y→0
t↘0

αY,t −αY

t
= −∂ X in C0(D)d×d ,

(iii) lim
Y→0
t↘0

νY,t − νY

t
= div(X )− (∂ X n) · n in C0(∂Ω).

Proof. ad (i): Employing an asymptotic expansion of det(I + ∂ Y + t∂ X ) with respect to the parameter t
yields

det(I + ∂ Y + t∂ X ) = det(I + ∂ Y ) + t det(I + ∂ Y )tr((I + ∂ Y )−1∂ X ) + � (t2;∂ X ;∂ Y ), (3.16)

where the remainder satisfies lim
Y→0
t↘0

� (t2;∂ X ;∂ Y )
t

→ 0 uniformly in D. Hence, we conclude that

lim
Y→0
t↘0

ξY,t − ξY

t
= lim

Y→0
t↘0

det(I + ∂ Y )tr((I + ∂ Y )−1∂ X ) +
� (t2;∂ X ;∂ Y )

t
= tr(∂ X ) = div(X ), (3.17)

holds uniformly in D, which shows (i).
ad (ii): First, we expand the terms in a Neumann series: for sufficiently small ∥Y ∥C1(D̄)d and t > 0 there
holds

(I + ∂ Y )−1 =
∞,
ℓ=0

(−1)ℓ(∂ Y )ℓ, (3.18)
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3 Shape sensitivity analysis of the state variable

and

(I + ∂ Y + t∂ X )−1 =
∞,
ℓ=0

(−1)ℓ(∂ Y + t∂ X )ℓ =
∞,
ℓ=0

(−1)ℓ
ℓ,

k=0

(∂ Y )k tℓ−k(∂ X )ℓ−k. (3.19)

Hence, we observe

αY,t −αY

t
=
∞,
ℓ=0

(−1)ℓ
ℓ−1,
k=0

(∂ Y )k tℓ−k−1(∂ X )ℓ−k

=(−∂ X ) +
∞,
ℓ=2

(−1)ℓ
ℓ−2,
k=0

(∂ Y )k tℓ−k−1(∂ X )ℓ−k +
∞,
ℓ=2

(−1)ℓ(∂ Y )ℓ−1

=(−∂ X ) + t
∞,
ℓ=2

(−1)ℓ
ℓ−2,
k=0

(∂ Y )k tℓ−k−2(∂ X )ℓ−k + (∂ Y )
∞,
ℓ=0

(−1)ℓ(∂ Y )ℓ.

Since both series on the right hand side converge uniformly in D, passing to the limit Y → 0 in C1(D̄)d ,
t ↘ 0 shows

lim
Y→0
t↘0

αY,t −αY

t
= −∂ X in C0(D)d×d , (3.20)

which shows (ii).
ad (iii): Expanding the difference yields

νY,t − νY

t
=

det(∂ FY,t)− det(∂ FY )

t
|∂ FY,t n|+ det(∂ FY )

|∂ FY,t n| − |∂ FY n|
t

. (3.21)

Employing item (i) and taking into account |n|= 1, we can pass to the limit in the first term on the right
hand side of (3.21). This shows

lim
Y→0
t↘0

det(∂ FY,t)− det(∂ FY )

t
|∂ FY,t n|= div(X ), (3.22)

uniformly on ∂Ω. Regarding the limit of the remaining term we observe

det(∂ FY )
|∂ FY,t n| − |∂ FY n|

t
=det(∂ FY )

|∂ FY,t n|2 − |∂ FY n|2
t

�|∂ FY,t n|+ |∂ FY n|!−1

=det(∂ FY )
(∂ FY,t n− ∂ FY n) · (∂ FY,t n+ ∂ FY n)

t

�|∂ FY,t n|+ |∂ FY n|!−1

=det(∂ FY )

�
∂ FY,t − ∂ FY

t
n

%
· (∂ FY,t n+ ∂ FY n)

�|∂ FY,t n|+ |∂ FY n|!−1
.

Now, item (ii) yields the uniform limit

lim
Y→0
t↘0

det(∂ FY )
|∂ FY,t n| − |∂ FY n|

t
= (−∂ X n) · n, (3.23)

on ∂Ω.
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3 Shape sensitivity analysis of the state variable

We have thus gathered all necessary tools to investigate the material derivative, i.e. the limit (3.5).
We are going to tackle this limit in several steps.

Lemma 3.5. Let Ω ∈ 	ad and X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄). Furthermore, for Y ∈ C1(D̄)d with
supp(Y ) ⊂ (D\ ω̄) and ∥Y ∥C1(D̄)d , t > 0 sufficient small let uY,t ∈ H1

Γ (Ω)
d be defined in (3.3). Then there

is a constant C ∈ R independent of t and Y such that

∥uY,t∥H1(Ω)d ≤ C .

Proof. Testing (3.3) with ϕ = uY,t yields�
Ω

ξY,tAϵY,t(u
Y,t) : ϵY,t(u

Y,t) d x =

�
Ω

ξY,t f Y,t · uY,t d x +

�
Γ N

νY,t gY,t · uY,t dS.

Thus, due to the differentiability results of Lemma 3.3, Lemma 3.4 and Hölder’s inequality, we deduce

∥ϵ(uY,t)∥2L2(Ω)d
≤ C∥uY,t∥H1(Ω)d .

Now the result follows from Korn’s inequality (cf. [88]).

Lemma 3.6. With the assumptions of Lemma 3.5 let uY,t and uY be defined in (3.3) and (3.4), respec-
tively. Then there is a constant C ∈ R independent of Y and t such that

∥uY,t − uY ∥H1(Ω)d ≤ C t. (3.24)

Proof. Subtracting equations (3.3) and (3.4) yields�
Ω

ξY AϵY (u
Y,t − uY ) : ϵY (ϕ) d x =

�
Ω

ξY,tA[ϵY (u
Y,t)− ϵY,t(u

Y,t)] : ϵY (ϕ) d x

+

�
Ω

[ξY − ξY,t]AϵY (u
Y,t) : ϵY (ϕ) d x

+

�
Ω

ξY,tAϵY,t(u
Y,t) : [ϵY (ϕ)− ϵY,t(ϕ)] d x

+

�
Ω

(ξY,t − ξY ) f
Y,t ·ϕ d x +

�
Ω

ξY ( f
Y,t − f Y ) ·ϕ d x

+

�
Γ N

(νY,t − νY )g
Y,t ·ϕ dS +

�
Γ N

νY (g
Y,t − gY ) ·ϕ dS,

(3.25)

for all ϕ ∈ H1
Γ (Ω)

d . Now testing with ϕ = uY,t−uY ∈ H1
Γ (Ω)

d and using similar arguments as in the proof
of Lemma 3.5 shows (3.24).

Theorem 3.7. With the assumptions of the previous lemma there holds

lim
Y→0
t↘0

∥uY,t − uY

t
− u̇∥H1(Ω)d = 0, (3.26)
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3 Shape sensitivity analysis of the state variable

where u̇ ∈ H1
Γ (Ω)

d is the unique solution to�
Ω

Aϵ(u̇) : ϵ(ϕ) d x =
1
2

�
Ω

A[∂ u∂ X + ∂ X⊤∂ u⊤] : ϵ(ϕ) d x

−
�
Ω

div(X )Aϵ(u) : ϵ(ϕ) d x

+
1
2

�
Ω

Aϵ(u) : [∂ ϕ∂ X + ∂ X⊤∂ ϕ⊤] d x

+

�
Ω

div(X ) f ·ϕ d x +

�
Ω

∂ f X ·ϕ d x

+

�
Γ N

(div(X )− (∂ X n) · n)g ·ϕ dS +

�
Γ N

∂ gX ·ϕ dS,

(3.27)

for all ϕ ∈ H1
Γ (Ω)

d .

Proof. First, consider sequences tn ↘ 0 and Yn ∈ C1(D̄)d with supp(Yn) ⊂ (D \ ω̄), Yn → 0 in C1(D̄)d

starting sufficiently close to 0. From Lemma 3.6 we know that V Yn,tn := uYn ,tn−uYn

tn
is bounded in H1(Ω)d .

Hence, there exists V ∈ H1
Γ (Ω)

d such that, up to a subsequence denoted the same, V Yn,tn � V in H1(Ω)d .
Now, dividing (3.25) by tn, using an arbitrary testfunction ϕ ∈ H1

Γ (Ω)
d and passing to the limit according

to Lemma 3.4 and Lemma 3.3, entails that V satisfies�
Ω

Aϵ(V ) : ϵ(ϕ) d x =
1
2

�
Ω

A[∂ u∂ X + ∂ X⊤∂ u⊤] : ϵ(ϕ) d x

−
�
Ω

div(X )Aϵ(u) : ϵ(ϕ) d x

+
1
2

�
Ω

Aϵ(u) : [∂ ϕ∂ X + ∂ X⊤∂ ϕ⊤] d x

+

�
Ω

div(X ) f ·ϕ d x +

�
Ω

∂ f X ·ϕ d x

+

�
Γ N

(div(X )− (∂ X n) · n)g ·ϕ dS +

�
Γ N

∂ gX ·ϕ dS,

(3.28)

for all ϕ ∈ H1
Γ (Ω)

d . By uniqueness we conclude that V = u̇ and thus also that uY,t−uY

t � u̇ in H1(Ω)d .
In order to deduce strong convergence in H1, we work with the underlying PDEs and use the same
arguments as in the proof of Lemma 3.6. Subtracting (3.25) divided by t and (3.27) yields
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3 Shape sensitivity analysis of the state variable

�
Ω

ξY AϵY (V
Y,t − u̇) :ϵY (ϕ) d x =

�
Ω

(1− ξY )AϵY (u̇) : ϵY (ϕ) d x

+

�
Ω

A[ϵ− ϵY ](u̇) : ϵY (ϕ) d x +

�
Ω

Aϵ(u̇) : [ϵ− ϵY ](ϕ) d x

+

�
Ω

A

�
ϵY,t(uY,t)− ϵY (uY,t)

t
− 1

2
[∂ uY,t∂ X + ∂ X⊤(∂ uY,t)⊤]

%
: ϵY (ϕ) d x

+

�
Ω

ξY,tA
1
2
[∂ (uY,t − u)∂ X + ∂ X⊤(∂ (uY,t − u))⊤] : ϵY (ϕ) d x

+

�
Ω

(ξY,t − 1)A
1
2
[∂ u∂ X + ∂ X⊤(∂ u)⊤] : ϵY (ϕ) d x

+

�
Ω

A
1
2
[∂ u∂ X + ∂ X⊤(∂ u)⊤] : [ϵY (ϕ)− ϵ(ϕ)] d x

+

�
Ω

�
ξY − ξY,t

t
+ div(X )

%
Aϵy(u

Y,t) : ϵY (ϕ) d x

+

�
Ω

div(X )AϵY (u
Y,t) : [ϵ(ϕ)− ϵY (ϕ)] d x

+

�
Ω

div(X )AϵY (u− uY,t) : ϵ(ϕ) d x +

�
Ω

div(X )A[ϵ(u)− ϵY (u)] : ϵ(ϕ) d x

+

�
Ω

ξY,tAϵY,t(u
Y,t) :

�
ϵY,t(ϕ)− ϵY (ϕ)

t
− 1

2
[∂ ϕ∂ X + ∂ X⊤∂ ϕ⊤]

%
d x

+

�
Ω

(ξY,t − 1)AϵY,t(u
Y,t) :
�

1
2
[∂ ϕ∂ X + ∂ X⊤∂ ϕ⊤]

$
d x

+

�
Ω

AϵY,t(u
Y,t − u) :
�

1
2
[∂ ϕ∂ X + ∂ X⊤∂ ϕ⊤]

$
d x

+

�
Ω

A[ϵY,t(u)− ϵ(u)] :
�

1
2
[∂ ϕ∂ X + ∂ X⊤∂ ϕ⊤]

$
d x

+

�
Ω

�
ξY,t − ξY

t
− div(X )

%
f ·ϕ d x

+

�
Ω

ξY

�
f Y,t − f Y

t
− ∂ f X

%
·ϕ d x +

�
Ω

(ξY − 1)∂ f X ·ϕ d x

+

�
Γ N

�
νY,t − νY

t
− (div(X )− (∂ X n) · n)

$
g ·ϕ dS

+

�
Γ N

νY

�
gY,t − gY

t
− ∂ gX

%
·ϕ dS +

�
Γ N

(νY − 1)∂ gX ·ϕ dS,

for all ϕ ∈ H1
Γ (Ω)

d , where V Y,t = uY,t−uY

t . Note that the lengthy expression is a consequence of the
differing coefficients in terms of perturbations. Now, we can apply Hölder’s inequality to each integral on
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the right hand side to isolate ∥ϕ∥H1(Ω)d . Similarly to the proof of Lemma 3.6, Lemma 3.3, Lemma 3.4 as
well as the bounds on uY,t entail

∥V Y,t − u̇∥H1(Ω)d ≤ cY,t , lim
Y→0
t↘0

cY,t = 0.

This concludes the proof.

Remark 3.8. Due to the symmetry properties of the elasticity tensor A we can simplify equation (3.27)
as follows �

Ω

Aϵ(u̇) : ϵ(ϕ) d x =

�
Ω

A[∂ u∂ X ] : ϵ(ϕ) d x

−
�
Ω

div(X )Aϵ(u) : ϵ(ϕ) d x

+

�
Ω

Aϵ(u) : [∂ ϕ∂ X ] d x

+

�
Ω

div(X ) f ·ϕ d x +

�
Ω

∂ f X ·ϕ d x

+

�
Γ N

(div(X )− (∂ X n) · n)g ·ϕ dS +

�
Γ N

∂ gX ·ϕ dS,

(3.29)

for all ϕ ∈ H1
Γ (D)

d . This simplification will be advantageous for numerical implementations of the ex-
pression, as it appears in an adjoint formulation for certain cost functionals.

Assumption A. There hold the stronger results uY,t ∈ C1(K)d ,

lim
Y→0
t↘0

∥uY,t − u∥C1(K)d = 0, (3.30)

as well as

lim
Y→0
t↘0

∥uY,t − uY

t
− u̇∥C1(K)d = 0, (3.31)

where K := Ω \ω.

Remark 3.9. In this remark we want to elaborate on Assumption A. We would like to highlight that this
assumption is of reasonable nature, since the results obtained in [38] and further literature mentioned
therein ensure that similar estimates can be obtained in terms of the stronger convergence W 2,p(Ω)d ,
p > d which continuously embeds into C1(Ω̄)d (cf. [82]). Unfortunately, this only holds true for pure
traction or pure Dirichlet problems, where the involved data satisfies sufficient regularity assumptions.
It is well known that the intersection of different boundary conditions lacks regularity. Since we are
interested in a mixed boundary problem, the strong regularity result obtained in [38] cannot directly be
recast on our problem. Nonetheless, the set ω ensures that the region of low regularity, i.e. the vicinity
of Γ ∩ Γ N , is not considered. Since the results obtained in Lemma 3.5, Lemma 3.6 and Theorem 3.7 rely
on a priori estimates in H1(Ω)d , it is reasonable that these can be recast in W 2,p(Ω̃)d , p > d for Ω̃ ⊂ Ω, if
the problematic region is avoided.
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4 Shape derivative

4 Shape derivative

In this section we compute the first order shape derivative of � . In view of the different properties of the
smooth volume term �vol and the nonsmooth penalty term �σ we split the cost functional accordingly
and address each part separately. We are now going to give a precise meaning to the term shape derivative.
Let X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄) denote a deformation vector field and t > 0 sufficiently small.
In analogy to Section 3 we define the perturbed identity Ft := Id+ tX (cf. (1.5)) and let Ωt := Ft(Ω).

Definition 4.1. With the previous notation we define the first order shape derivative of the functional
� :	ad → R at Ω ∈ 	ad in direction X ∈ C1

c (D)
d by

D� (Ω)(X ) := lim
t↘0

� (Ωt)−� (Ω)
t

. (4.1)

Even though we only need to consider deformations X that vanish on ω in this section, we defined
the shape derivative for more general deformation fields X . This allows us to return to this definition in
the last part of this thesis.

Remark 4.2. Note that the notion of shape derivative and the corresponding limit in Definition 4.1 is
not uniquely used throughout the literature. Usually, this quantity is required to be both, linear and
continuous with respect to the deformation vector field X . Whilst these are desirable properties to deduce
further results, such as the identification of a gradient with respect to a Hilbert space (cf. Section 5), we
do not want to prescribe them. This allows us to use a unified terminology throughout this section.
Additionally, we want to mention the notion of Eulerian semiderivative (cf. [43, Definition 3.1]), which
usually refers to the analogous quantity defined in Definition 4.1 following the velocity method (1.3).

For the sake of simplicity, we introduce the notion of perturbed and unperturbed state variables for
Y ≡ 0. That is, let ut := u0,t and u := u0, where u0,t and u0 are defined by (3.1) and (3.2), respectively.
Similarly, we denote the lifted perturbed state variable ut := ut ◦ Ft . We first address the volume term of
the cost functional.

Lemma 4.3. Let �vol : 	ad → R be defined in (2.2) and X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄) and
Ω ∈ 	ad . Then there holds

D�vol(Ω)(X ) = 2 (|Ω| − V )

�
Ω

div(X ) d x . (4.2)

Proof. Let t > 0 small. By definition we have to investigate the term

�vol(Ωt)−�vol(Ω)
t

. (4.3)

Expanding the nominator yields

�vol(Ωt)−�vol(Ω) =(|Ωt | − V )2 − (|Ω| − V )2 = (|Ωt | − |Ω|) (|Ωt |+ |Ω| − 2V ) . (4.4)

Taking into account

|Ωt |=
�
Ωt

d x =

�
Ω

det(Id+ t∂ X ) d x , (4.5)
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we can employ Lemma 3.4 item (i) with Y ≡ 0 to deduce

D�vol(Ω)(X ) = lim
t↘0

�vol(Ωt)−�vol(Ω)
t

= lim
t↘0

|Ωt | − |Ω|
t

(|Ωt |+ |Ω| − 2V )

=2 (|Ω| − V )

�
Ω

div(X ) d x ,

(4.6)

which finishes the proof.

We observe that the shape derivative of �vol is linear and continuous with respect to the deformation
field X . Next we address the second part of the cost functional, that is�σ. The derivation of an analogous
result for the penalty term strongly relies on the following Danskin type result (cf. [104]).

Lemma 4.4. Let K ⊂ Rd be compact, τ > 0 and g : [0,τ]×K → R some function. Additionally, define for
t ∈ [0,τ] the set Rt := {z ∈ K | maxx∈K g(t, x) = g(t, z)} with the convention R := R0. Further assume
that

(A1) for all x ∈ R the partial derivative ∂t g(0+, x) exists,

(A2) for all t ∈ [0,τ] the function x !→ g(t, x) is upper semicontinuous,

(A3) for all real nullsequences (tn), tn↘ 0 and all sequences (ytn
) converging to some y ∈ R we have

lim
n→∞

g(tn, ytn
)− g(0, ytn

)

tn
= ∂t g(0+, y). (4.7)

Then
∂

∂ t

�
max
x∈K

g(t, x)
#

t=0
=max

x∈R
∂t g(0+, x). (4.8)

Proof. For a proof we refer to [104, Lemma 2.19].

Next, we investigate the interior part of the penalty term, which refers to the function g(t, x) in
Lemma 4.4. In view of the stronger regularity assumption (cf. Assumption A) we can treat this functional
in a similar fashion to �vol.

Lemma 4.5. Let the compact set K be defined in Assumption A. For x ∈ K and t ≥ 0 let

� x
σ (Ωt) := σ2

M (ut)(x t)−δ, (4.9)

where x t := Ft(x) and δ ∈ R denotes the stress threshold. Additionally, fix a deformation vector field
X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄) and Ω ∈ 	ad . Then there holds

D� x
σ (Ω)(X ) = 2Bϵ(u)(x) : ϵ(u̇)(x)− B[∂ u∂ X + (∂ X )⊤(∂ u)⊤](x) : ϵ(u)(x), (4.10)

with the constant tensor B defined in (2.8) and u̇ solving (3.27).
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Proof. We first perform a change of variables to obtain

� x
σ (Ωt) = Bϵt(u

t)(x) : ϵt(u
t)(x)−δ. (4.11)

Next, we can expand the quotient

� x
σ (Ωt)−� x

σ (Ω)

t
=B

ϵt(ut)(x)− ϵ(ut)(x)
t

: ϵt(u
t)(x)

+ Bϵ(
ut − u

t
)(x) : ϵt(u

t)(x)

+ Bϵ(u)(x) :
ϵt(ut)(x)− ϵ(ut)(x)

t

+ Bϵ(u)(x) : ϵ(
ut − u

t
)(x).

(4.12)

Due to Assumption A we are able to pass to the limit and deduce

D� x
σ (Ω)(X ) =− 1

2
B[∂ u∂ X + (∂ X )⊤(∂ u)⊤] : ϵ(u)(x) + Bϵ(u̇)(x) : ϵ(u)(x)

− Bϵ(u)(x) :
1
2
[∂ u∂ X + (∂ X )⊤(∂ u)⊤] + Bϵ(u)(x) : ϵ(u̇)(x).

(4.13)

By symmetry of the inner product we conclude (4.10).

Again, we want to highlight that the shape derivative of the interior part is a continuous and linear
functional with respect to the deformation field X .

Remark 4.6. The symmetric tensor B allows the simplified expression

D� x
σ (Ω)(X ) = 2B (ϵ(u̇)(x)− [∂ u∂ X ](x)) : ϵ(u)(x). (4.14)

Now, we are able to prove the main result regarding the derivative of the penalty term. We will proceed
in two steps.

Lemma 4.7. Let �̃σ :	ad → R be defined as

�̃σ(Ω) :=max
x∈K
� x
σ (Ω), (4.15)

where X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄) and Ω ∈ 	ad . Then there holds

D�̃σ(Ω)(X ) = max
x∈A(u)

2Bϵ(u)(x) : ϵ(u̇)(x)− B[∂ u∂ X + (∂ X )⊤(∂ u)⊤](x) : ϵ(u)(x), (4.16)

where A(u) := {z ∈ K | σ2
M (u)(z) =maxx∈K σ

2
M (u)(x)}.

Proof. First note that we can rewrite the functional as

�̃σ(Ωt) =max
x∈K
� x
σ (Ωt). (4.17)
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Now our goal is to apply Lemma 4.4 to

g : [0,τ]× K → R, (t, x) !→ � x
σ (Ωt), (4.18)

where τ > 0 is a sufficiently small constant. In order to apply the lemma, we need to check assumptions
(A1)-(A3). Since R = A(u) ⊂ K , Lemma 4.5 shows that (A1) is satisfied. To show (A2), note that due to
Assumption A, ut ∈ C1(K)d and thus the mapping x !→ g(t, x) is continuous for t ∈ [0,τ]. The proof
of (A3) follows the lines of Lemma 4.5, where we further use the uniform convergence ut−u

t → u̇ in
C1(K)d .

Theorem 4.8. Let�σ :	ad → R be defined as in (2.9), X ∈ C1(D̄)d with supp(X ) ⊂ (D\ω̄) andΩ ∈ 	ad .
Then there holds:

D�σ(Ω)(X ) =
��

maxx∈A(u)Φ(x) if σ2
M (u)|A(u) > δ,

max{maxx∈A(u)Φ(x), 0} if σ2
M (u)|A(u) = δ,

0 if σ2
M (u)|A(u) < δ,

(4.19)

where A(u) := {z ∈ K | σ2
M (u)(z) =maxx∈K σ

2
M (u)(x)} and

Φ(x) := 2Bϵ(u)(x) : ϵ(u̇)(x)− B[∂ u∂ X + (∂ X )⊤(∂ u)⊤](x) : ϵ(u)(x). (4.20)

Proof. The proof is another application of Theorem 4.4. Let the compact set K denote a two valued index
set. That is, K = {1,2} and

g(t, x) =

	�̃σ(Ωt) if x = 1,

0 if x = 2.
(4.21)

Now the result follows similarly to the previous lemma, where we note that the active set R of the two
valued set correlates to the three cases as follows:��

R= {1} if σ2
M (u)|A(u) > δ,

R= {1,2} if σ2
M (u)|A(u) = δ,

R= {2} if σ2
M (u)|A(u) < δ.

(4.22)

5 Hilbert space setting

In this section we study optimality conditions and steepest descent directions for the penalised objective
functional�vol+α�σ. We therefore formulate the results of the previous section in a Hilbert space setting.
This allows us to recast some well-known results of nonsmooth analysis (cf. [45]). The key observation
in this context is the following: Let� be a Hilbert space such that

� ⊂ {X ∈ C1(D̄)d | supp(X ) ⊂ (D \ ω̄)},
and point evaluation of the gradient is continuous. A possible approach to construct such a Hilbert space
involves the notion of reproducing kernel Hilbert spaces. More details on this topic can be found in the
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5 Hilbert space setting

article [48]. For now we just assume such a Hilbert space exists. Since the mappings X !→ D�vol(Ω)(X )
and X !→ D� x

σ (Ω)(X ), for x ∈ A(u) are linear and by our assumption also continuous, the Riesz repre-
sentation theorem entails that there are elements∇�vol ∈� and ∇� x

σ ∈� , such that

D�vol(Ω)(X ) = 〈∇�vol, X 〉� , D� x
σ (Ω)(X ) = 〈∇� x

σ , X 〉� , (5.1)

for all x ∈ A(u) and X ∈� . Utilising these Riesz representatives allows us to formulate the statement of
Theorem 4.8 as follows:

D� (Ω)(X ) =
��

maxx∈A(u)〈∇�vol +α∇� x
σ , X 〉� if σ2

M (u)|A(u) > δ,

max{maxx∈A(u)〈∇�vol +α∇� x
σ , X 〉� , 〈∇�vol, X 〉� } if σ2

M (u)|A(u) = δ,

〈∇�vol, X 〉� if σ2
M (u)|A(u) < δ.

(5.2)

Introducing the set


 :=

��
{∇�vol +α∇� x

σ | x ∈ A(u)} if σ2
M (u)|A(u) > δ,

{∇�vol +α∇� x
σ | x ∈ A(u)} ∪ {∇�vol} if σ2

M (u)|A(u) = δ,

{∇�vol} if σ2
M (u)|A(u) < δ,

(5.3)

this further simplifies to
D� (Ω)(X ) =max

L∈
 〈L, X 〉� . (5.4)

The following lemma are classical results in the context of nonsmooth analysis. For the sake of complete-
ness, we are going to add the proof nonetheless. First, we show that one can extend (5.4) to the closed
convex hull of 
 .

Lemma 5.1. Let � := conv(
 ). Then there holds

D� (Ω)(X ) =max
L∈� 〈L, X 〉� , (5.5)

for all X ∈� .

Proof. Fix X ∈� . Since 
 ⊂� , it readily follows that

max
L∈
 〈L, X 〉� ≤max

L∈� 〈L, X 〉� . (5.6)

For the converse let L ∈ � . Thus, there exist Zn =
-Nn

k=0λ
n
kAn

k such that An
k ∈ 
 ,
-Nn

k=0λ
n
k = 1 for n ∈ N

and k ∈ {0, .., Nn} and Zn→ L in� . Next we observe that

〈Zn, X 〉� = 〈
Nn,

k=0

λn
kAn

k, X 〉� =
Nn,

k=0

λn
k〈An

k, X 〉� ≤
Nn,

k=0

λn
k D� (Ω)(X ) = D� (Ω)(X ). (5.7)

Hence, passing to the limit yields 〈L, X 〉� ≤ D� (Ω)(X ) and thus the result follows.

With this result we are able to characterise steepest descend directions (cf. [45, Lemma 3.3])
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Lemma 5.2. Assume 0 /∈ � . Then there holds

min∥X∥� =1
D� (Ω)(X ) = −∥X ∗∥� , (5.8)

where X ∗ = − Z∗
∥Z∗∥� and Z∗ = argminZ∈� ∥Z∥� .

Proof. First note that Z∗ = P� (0), where P� denotes the projection onto the closed and convex set � .
Thus, we deduce by the properties of the projection map (cf. [64, Theorem 2.18])

〈P� (0)− 0, Z − P� (0)〉� ≥ 0 for all Z ∈ � , (5.9)

which is equivalent to
〈Z∗, Z∗〉� ≤ 〈Z , Z∗〉� for all Z ∈ � . (5.10)

Next we observe that for each Z ∈ � there holds

〈Z , X ∗〉� = − 1
∥Z∗∥� 〈Z , Z∗〉� ≤ − 1

∥Z∗∥� 〈Z
∗, Z∗〉� . (5.11)

Hence, taking the maximum yields

D� (Ω)(X ∗) =max
Z∈� 〈Z , X ∗〉� = − 1

∥Z∗∥� 〈Z
∗, Z∗〉� = −∥Z∗∥� . (5.12)

Additionally, for each X ∈� , ∥X∥� = 1 there holds by the Cauchy-Schwarz inequality

−∥Z∗∥� ≤ 〈Z∗, X 〉� ≤max
Z∈� 〈Z , X 〉� = D� (Ω)(X ). (5.13)

Thus we conclude
D� (Ω)(X ∗) = min∥X∥� =1

D� (Ω)(X ), (5.14)

which finishes the proof.

The previous lemma entails the following optimality condition.

Corollary 5.3. The set Ω ∈ 	ad is a local minimiser of the penalised objective functional � if and only
if 0 ∈ � . In this context Ω is said to be a local minimum of � if there is a constant ρ > 0 such that
� (Ω)≤ � ((Id+ X )(Ω)) for all X ∈� , ∥X∥� < ρ.

Proof. From Lemma 5.2 we know that D� (Ω)(X ∗) < 0 if 0 /∈ � . Hence a descend in direction X ∗ is
possible for a sufficiently small step size. In contrast, if 0 ∈ � there holds D� (Ω)(X ) ≥ 〈0, X 〉� = 0 for
all X ∈� .

Remark 5.4. In view of the definition of 
 in (5.3), the optimality conditions read as follows: if the
stress constraint is strictly not violated, i.e. if σ2

M (u)(x) < δ for all x ∈ K , then � = {∇�vol} and thus
the optimality condition reads ∇�vol = 0. Furthermore, if the stress threshold is surpassed, i.e. if there
is x ∈ K such that σ2

M (u)(x) > δ, the optimality condition entails 0 ∈ conv(
 ). Finally, if the stress
constraint is active, i.e. if there is x ∈ A(u) such that σ2

M (u)(x) = δ, the optimality condition reads

0 ∈ conv(
 ). By definition this includes the previous case ∇�vol = 0 as well as the second case.
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6 Clarke subgradient

6 Clarke subgradient

In this section we are going to take a short detour to the framework of Clarke differentiation. Our goal
is to connect the set � defined in Lemma 5.1 to the Clarke subgradient [39]. This section strongly relies
on the generalised approach of the perturbation of the identity introduced in Section 3. We begin with
the following central definition.

Definition 6.1. Let (� ,∥ · ∥) be a Banach space and f : � → R a function. The generalised directional
derivative of f at x ∈ � in direction v ∈ � is defined as

D◦ f (x; v) := limsup
y→x
t↘0

f (y + t v)− f (y)
t

. (6.1)

Furthermore, the Clarke subgradient (generalised gradient) at x0 ∈ � is defined as the set

∂ ◦ f (x0) := {x ′ ∈ � ′| D◦ f (x0; v)≥ x ′(v), for all v ∈ �}. (6.2)

Remark 6.2. In the pioneering work [39] F. H. Clarke introduced the notation f ◦(x; v) for the gener-
alised directional derivative. It has been shown in [39, Proposition 2.1.1] that, given a locally Lipschitz
function f , the function v !→ D◦ f (x; v) is finite, subadditive, positively homogeneous and Lipschitz on
� . Furthermore, the author has shown [39, Proposition 2.1.2] that locally Lipschitz functions admit a
nonempty, convex and weak∗-compact Clarke subgradient.

For the sake of completeness we recall the notion of a directional derivative at this point.

Definition 6.3. Let � be a vector space and f : � → R a function. The directional derivative of f at
x ∈ � in direction v ∈ � is defined as

D+ f (x; v) := lim
t↘0

f (y + t v)− f (y)
t

. (6.3)

In general, this limit does not have to exist. Yet, it is well known that convex functions entail sufficient
properties to make sense of this definition (cf. [64]). In order to fit into the Clarke framework, we redefine
the objective functional � as follows.

Definition 6.4. Let Ω ∈ 	ad fix and � denote the Hilbert space introduced in the previous section.
Furthermore, let ρ > 0 be sufficiently small. The function G : Bρ(0)→ R is defined as

G(X ) := � ((Id+ X )(Ω)) for all X ∈ Bρ(0), (6.4)

where Bρ(0) denotes the ball of radius ρ centered at 0 with respect to the norm ∥ · ∥� . Additionally, we
define for x ∈ K the pointwise function G x : Bρ(0)→ R by

G x(X ) := �vol((Id+ X )(Ω)) +α� x
σ ((Id+ X )(Ω)) for all X ∈ Bρ(0), (6.5)

where α > 0 denotes the penalty parameter.
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6 Clarke subgradient

Remark 6.5. Note that the functions are indeed well defined for ∥X∥� sufficiently small. Furthermore,
there holds

D+G(0; X ) = D� (Ω)(X ) =max
L∈� 〈L, X 〉� , (6.6)

where D+G(0; X ) denotes the directional derivative of G at 0 ∈ � in direction X ∈ � . Similarly, we
observe that

D+G x(0; X ) = 〈∇�vol +α∇� x
σ , X 〉� . (6.7)

In contrast to [39], our definition of the generalised directional derivative does not require G to be
locally Lipschitz. The next lemma shows that the quotient is finite nonetheless. This further entails that
the generalised directional derivative is well-defined.

Lemma 6.6. Let Y ∈� sufficiently close to 0 ∈� and t > 0 small. Then there exists C ∈ R independent
of Y and t such that ����G(Y + tX )− G(Y )

t

����≤ C . (6.8)

Proof. Let xY,t ∈ A(uY,t). Then there holds by the maximising property of the set A(uY,t)

G(Y + tX )− G(Y )
t

≤G xY,t
(Y + tX )− G xY,t

(Y )
t

=
BϵY,t(uY,t)(xY,t) : ϵY,t(uY,t)(xY,t)− BϵY (uY )(xY,t) : ϵY (uY )(xY,t)

t

=B[
ϵY,t − ϵY

t
](uY,t)(xY,t) : ϵY,t(u

Y,t)(xY,t)

+ BϵY (
uY,t − uY

t
)(xY,t) : ϵY,t(u

Y,t)(xY,t)

+ BϵY (u
Y )(xY,t) : [

ϵY,t − ϵY

t
](uY,t)(xY,t)

+ BϵY (u
Y )(xY,t) : ϵY (

uY,t − uY

t
)(xY,t).

(6.9)

Assumption A entails uY,t−uY

t → u̇, uY,t → u and uY → u in C1(K). Furthermore, Lemma 3.4 item (ii)

yields the uniform convergences of
αY,t−αY

t , αY,t and αY . Thus, we conclude that for sufficiently small
Y ∈ � and t > 0 the right-hand side of equation (6.9) remains bounded. Using xY ∈ A(uY ) in a similar
way shows that

G(Y )− G(Y + tX )
t

≤ C . (6.10)

This concludes the proof.

The next lemma constitutes the central result of this section. It states that for our objective function
under consideration, both notions of directional derivative coincide.

Lemma 6.7. Let X ∈� . Then there holds

D+G(0; X ) = D◦G(0; X ). (6.11)
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6 Clarke subgradient

Proof. We show this result in two steps. For the inequality “≤” note that by the definition of the gener-
alised directional derivative there holds

D+G(0; X ) = lim
t↘0

G(tX )− G(0)
t

≤ lim sup
Y→0
t↘0

G(Y + tX )− G(Y )
t

= D◦G(0; X ). (6.12)

For the converse note that by Lemma 6.6 the quotient appearing in the generalised direction derivative
remains bounded. Hence, there are Yk ∈� , tk > 0 such that Yk→ 0, tk↘ 0 for k→∞ and

D◦G(0; X ) = lim sup
Y→0
t↘0

G(Y + tX )− G(Y )
t

= lim
k→∞

G(Yk + tkX )− G(Yk)
tk

. (6.13)

Next we pick for each k ∈ N a point xk ∈ A(uYk ,tk) ⊂ K . Since K is compact, there exists a subsequence,
which we denote the same, and x ∈ K such that xk→ x . This yields

D◦G(0; X ) = lim
k→∞

G(Yk + tkX )− G(Yk)
tk

≤ lim
k→∞

G xk(Yk + tkX )− G xk(Yk)
tk

. (6.14)

Now expanding the right-hand side as in (6.9) and using the same arguments to pass to the limit, shows

D◦G(0; X )≤ lim
k→∞

G xk(Yk + tkX )− G xk(Yk)
tk

= D+G x(0; X ). (6.15)

Next we note that for each y ∈ K there holds G y(Yk + tkX )≤ G xk(Yk + tkX ). Hence, passing to the limit
k→∞ yields

G y(0)≤ G x(0), (6.16)

i.e. x ∈ A(u). Hence, putting our observations together yields

D◦G(0; X )≤ D+G x(0; X )≤ max
z∈A(u)

D+Gz(0, X ) = D+G(0; X ), (6.17)

which concludes the proof.

As a result we obtain the desired characterisation of � .

Theorem 6.8. Let� be defined in Lemma 5.1 and ∂ ◦G(0) denote the Clarke subgradient of G at 0 ∈� .
Then there holds

� = ∂ ◦G(0). (6.18)

Proof. First note that by the definition of the generalised directional derivative and Lemma 6.7 there
holds for every X ∈�

〈L, X 〉� ≤max
L∈� 〈L, X 〉� = D+G(0; X ) = D◦G(0; X ) for all L ∈ � . (6.19)

Thus, we conclude � ⊂ ∂ ◦G(0). For the converse let Z ∈ � c . By the Hahn-Banach separation theorem
there exists a linear continuous functional µ and a constant c ∈ R such that µ(Z) > c > µ(L) for all
L ∈ � . By the Riesz-representation we can identify µ with an element X̄ ∈� . Hence, it follows

〈Z , X̄ 〉� > c > 〈L, X̄ 〉� for all L ∈ � . (6.20)
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Taking the maximum over L ∈ � now shows

〈Z , X̄ 〉� > D◦G(0; X̄ ), (6.21)

where we used again that the directional derivative and the generalised directional derivative coincide.
Hence, we deduce Z /∈ ∂ ◦G(0), which concludes the proof.

7 Numerical implementation

In this section we address the application of the previously derived results in a numerical scheme. There-
fore, we extend the initial problem formulation by adding a weighting factor to the volume term �vol.
On the one hand this enables a more sensitive numerical treatment of both parts of the cost functional.
On the other hand, scaling this factor allows to treat �vol as a penalty term and thus interpret the given
task as a stress minimisation problem with a volume constraint. Before we specify the formulation of our
model problem, we describe the general methodology.

Shape derivative and shape gradient In Section 5 we have seen that a Riesz-representation can be
used to identify linear and continuous shape derivatives with gradients in a given Hilbert space � . In
the numerical scheme we obtain such gradients by solving a sub-problem. To specify, given a linear and
continuous shape derivative D�̃ (Ω)(·) we define ∇�̃ ∈ H1

Γ∪Γ N (Ω)d as the unique solution of�
Ω

ϵ(∇�̃ ) : ϵ(X ) + B∇�̃ · BX +ρlow∇�̃ · X d x = D�̃ (Ω)(X ) for all X ∈ H1
Γ∪Γ N (Ω)d . (7.1)

Here, ρlow > 0 is a constant and the term

B =

�−∂x ∂y
∂y ∂x

%
, (7.2)

incorporates the Cauchy-Riemann equations and thus encourages the solution to be a conformal mapping,
which accounts for a good mesh quality. It is noteworthy that due to this approach ∇�̃ is merely in
H1
Γ∪Γ N (Ω)d . This is a definite conflict to the analytic setting, where higher regularity of the deformation

fields is necessary to compute the shape derivatives. Nevertheless, this does not cause any problems in
the numerical realm.

Remark 7.1. Recall that the derivative of the maximum norm is by its nature nonlinear. Nonetheless, we
can utilise this approach to identify gradients∇J x

σ for x ∈ A(u), since the interior functionals (cf. Lemma
4.5) satisfy sufficient properties. These gradients can further be used according to Section 5.

Moving mesh method and mesh quality We realise deformations of the shapeΩ following the “moving
mesh” approach. That is, in each iteration we move the mesh according to a vector field. This underlines
the importance of the Cauchy-Riemann term. Nonetheless, it is still possible that the mesh quality declines
after a certain number of iterations. We therefore introduce the quantity

min
E∈El(Ω)

rE
i

rE
o

,
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where El(Ω) denotes the set of triangular elements constituting the finite element space on Ω and rE
i ,

rE
o denote the inner radius and outer radius of each element E, respectively. Whenever this quantity falls

below a certain threshold, i.e. when some elements are too thin, a remeshing is performed.

Differences to the analytic setting To conclude our general methodology, we want to highlight some
simplifications we impose in the numerical setting. Contrary to the initial problem formulation, we do
not consider the subsetω for the numerical implementation. Recall that the main purpose of this set was
the avoidance of the low regularity area. This can be justified, since we are working in a finite dimen-
sional finite element space. Additionally, we only consider deformation vector fields that vanish on the
boundary Γ N , where the force is applied, as well. This ensures, that the algorithm behaves appropriately.
In fact, without this assumption the algorithm would try to shrink the boundary part Γ N , since this leads
to a decrease of the applied force and thus also minimises the present stresses. This behaviour would be
further reinforced, since we do not consider a volume force for the numerical implementation. Nonethe-
less, we would like to point out that we consider an additional free boundary. Therefore, the assumption
X ≡ 0 on Γ ∪ Γ N does not fix the whole body. Finally, we want to mention that, in contrast to the initial
problem formulation, the domains occurring in the upcoming numerical examples include corners on the
boundary and thus lack some regularity that is required in the analytical setting.

7.1 max-norm approach

Our goal is to minimise the functional

� (Ω) := γ1 (|Ω| − V )2 + γ2 max{max
x∈Ω̄ σ

2
M (uΩ)−δ, 0}, (7.3)

where Ω ∈ 	ad , uΩ ∈ H1
Γ (Ω)

2 solves (2.4), γ1,γ2 ∈ R+ are given weights and δ = 0 denotes the stress
threshold. Here, |Ω| denotes the volume of Ω and the constant V ∈ R is a given target volume. In view
of an efficient numerical implementation it is feasible to have access to the associated adjoint variable.
Since the state variable uΩ solely appears in the stress term, we only need to investigate the penalty term
�σ. In view of Lemma 4.5 we seek adjoint variables qx , x ∈ A(u) such that�

Ω

Aϵ(ϕ) : ϵ(qx) d x = 2Bϵ(u)(x) : ϵ(ϕ)(x) for all ϕ ∈ H1
Γ (D)

d . (7.4)

Unfortunately, equation (7.4) is not well defined, since point evaluation of the gradient is generally not
possible in H1. As a remedy, we introduce for given r > 0 the approximation qx ,r ∈ H1

Γ (D)
d as the unique

solution of �
Ω

Aϵ(ϕ) : ϵ(qx ,r) d x =
2
|Br(x)|
�

Br (x)
Bϵ(u) : ϵ(ϕ) d x for all ϕ ∈ H1

Γ (D)
d . (7.5)

Here, Br(x) denotes the ball centered at x with radius r. A possible workaround could be the introduction
of so-called very-weak solutions. In our setting however, the formulation is not straightforward and thus
requires further research. Nonetheless, we want to point out that a thorough study of the numerical
treatment of this adjoint equation could improve the efficiency of our approach.
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Remark 7.2. At this point, we require the adjoint variable to enable an efficient numerical treatment of
the state-dependent derivative. In Part II of this thesis we elaborate further on various adjoint equations
in the context of sensitivity analysis.

We observe that for each x ∈ A(u) and r > 0, employing the approximated adjoint variable qx ,r yields

D� x
σ (Ω)(X )≈− B[∂ u∂ X + (∂ X )⊤(∂ u)⊤] : ϵ(u)(x)

+
1
2

�
Ω

A[∂ u∂ X + ∂ X⊤∂ u⊤] : ϵ(qx ,r) d x −
�
Ω

div(X )Aϵ(u) : ϵ(qx ,r) d x

+
1
2

�
Ω

Aϵ(u) : [∂ qx ,r∂ X + ∂ X⊤(∂ qx ,r)⊤] d x

+

�
Ω

div(X ) f · qx ,r d x +

�
Ω

∂ f X · qx ,r d x

+

�
Γ N

(div(X )− (∂ X n) · n)g · qx ,r dS +

�
Γ N

∂ gX · qx ,r dS.

(7.6)

In the numerical scheme we realise the point evaluation on the right hand side of (7.6) in the same
fashion utilising an averaging. Keeping minor notational conflicts in mind, we continue to use the notation
un := uΩn

for the sake of brevity. With this, we introduce the steepest descend approach (Algorithm 1)
that builds on the results of Section 5.

Remark 7.3. Note that there are various alternatives to tackle nonsmooth optimisation problems numer-
ically. In this context we would like to mention subgradient methods, cutting plane methods and bundle
methods, which rely on the set� (or a generalisation, c.f. [64, Section 6.6]) as well. For more details on
this topic we refer to [64].

Remark 7.4. In order to identify the active set A(un), we iterate over all mesh vertices and choose nodes
that maximise the von Mises stress up to a given tolerance ϵ > 0. This tolerance captures the numerical
error of the exact value due to the representation of floats in python. Hence, the active set A(un) is finite
in each iteration. Nonetheless, a high computational effort is possible, since we have to compute adjoint
variables qx ,r and gradients ∇� x

σ for each active point. This can necessitate to solve a large number
of sub problems in each iteration. Fortunately, we observed in our algorithm that A(un) is a singleton
throughout the majority of iterations, which entails a feasible runtime.
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Algorithm 1 Steepest descend algorithm - max-norm approach

Require: initial shape Ω0 ⊂ R2, Nmax ∈ N
while n≤ Nmax do

choose Hilbert space�n = H1
Γ∪Γ N (Ωn)2.

check mesh quality and remesh if required.
compute state un by solving state equation (2.4) on Ωn.
compute active set A(un) = {x1, ..., xk}
compute adjoint states qx i ,r

n (7.5), i ∈ {1, ..., k} on domain Ωn with state un.
compute gradients ∇�vol,∇� x i

2 ∈�n, for x i ∈ A(un).
assemble A∈ Rk×k with ai j := (γ1∇�vol + γ2∇� x i

σ ,γ1∇�vol + γ2∇� x j
σ )�n

for i, j ∈ {1, . . . , k}.
solve minα∈Rk Aα ·α subject to

-k
i=1αi = 1.

Zn :=
-k

i=1αi vi , where vi = γ1∇�vol + γ2∇� x i
σ .

descent direction Xn := −Zn.
choose step size sn > 0.
if � ((Id+ snXn)(Ωn))> � (Ωn) and no remeshing occurred in the previous step then

remesh.
else

deform shape Ωn+1 := (Id+ snXn)(Ωn).
end if
iterate n+ = 1.

end while

7.2 p-norm approach

In order to validate our method we compare our results to the following p-norm approach, which includes
a smooth regularisation of the stress term:

� (Ω) := γ1 (|Ω| − V )2 + γ2

��
Ω

|σM (uΩ)|p d x

% 1
p

, (7.7)

for p ≥ 2. The shape derivative of �p(Ω) :=
��
Ω
|σM (uΩ)|p d x
! 1

p , for 2 ≤ p <∞ can be computed by
various techniques as reported in [102]. We are omitting the proof here and only state the derivative. For
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X ∈ C1(D̄)d with supp(X ) ⊂ (D \ ω̄) we have

D�p(Ω)(X ) =cΩ

�
Ω

div(X )|σM (uΩ)|p d x +

�
Ω

div(X ) f · q d x +

�
Ω

∂ f X · q d x

− cΩ
p
2
(Bϵ(u) : ϵ(u))

p
2−1 B[∂ u∂ X + (∂ X )⊤(∂ u)⊤] : ϵ(u) d x

+
1
2

�
Ω

A[∂ u∂ X + ∂ X⊤∂ u⊤] : ϵ(q) d x −
�
Ω

div(X )Aϵ(u) : ϵ(q) d x

+
1
2

�
Ω

Aϵ(u) : [∂ q∂ X + ∂ X⊤(∂ q)⊤] d x

+

�
Γ N

(div(X )− (∂ X n) · n)g · q dS +

�
Γ N

∂ gX · q dS,

(7.8)

where cΩ =
1
p

��
Ω
|σM (uΩ)|p d x
! 1−p

p and q ∈ H1
Γ (Ω)

d solves�
Ω

Aϵ(ϕ) : ϵ(q) d x = cΩp (Bϵ(u) : ϵ(u))
p
2−1 Bϵ(u) : ϵ(ϕ) d x for all ϕ ∈ H1

Γ (Ω)
d . (7.9)

Remark 7.5. Note that the previous result incorporates the adjoint variable q. In contrast to the nons-
mooth approach, the adjoint equation associated with the regularised cost functional �p is well-defined
and does not require additional treatment. Furthermore, we want to mention that the functional �p ap-
proximates the maximal von Mises stress. Contrary, �σ captures the squared von Mises stress. Nonethe-
less, we are able to compare these methods, since both lead to a decrease of the von Mises stress. Addi-
tionally, we would like to point out that we omitted the stress threshold δ in the regularised approach.
This is reasonable, since we are going to address the special case δ = 0 in our numerical examples.

Algorithm 2 Basic gradient algorithm - p-norm approach

Require: initial shape Ω0 ⊂ R2, Nmax ∈ N
while n≤ Nmax do

choose Hilbert space�n = H1
Γ∪Γ N (Ωn)2.

check mesh quality and remesh if required.
compute state un by solving state equation (2.4) on Ωn.
compute adjoint state qn by solving adjoint state equation (7.9) on Ωn with state un.
compute gradients ∇�vol,∇�p ∈�n.
descent direction Xn := − �γ1∇�vol + γ2∇�p

!
.

choose step size sn > 0.
if � ((Id+ snXn)(Ωn))> � (Ωn) and no remeshing occurred in the previous step then

remesh.
else

deform shape Ωn+1 := (Id+ snXn)(Ωn).
end if
iterate n+ = 1.

end while
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7 Numerical implementation

7.3 Numerical results

We implemented both algorithms in the software NGSolve [96]. In order to achieve comparable results,
we normalised the respective stress gradients in each iteration and moved a fixed step size. Throughout
our numerical experiments we chose the material parameter as follows: the Poisson ratio ν = 0.3 and
the Young modulus E = 1. These in turn yield the Lamé coefficients

λ =
νE

(1+ ν)(1− 2ν)
, µ=

E
2(1+ ν)

. (7.10)

Additionally we consider the absence of a volume force, i.e. f ≡ 0, which allows a simplified representa-
tion of the involved terms and neglect the stress threshold, i.e. δ = 0.

7.3.1 L-bracket

For the first example we considered the L-bracket problem. Here, the initial set is given as

Ω = (0,100)× (0,100) \ [40,100]× [40,100]. (7.11)

The bracket is fixed on the upper part of the boundary Γ = [0, 40] × {100} and the boundary force
g = (0,−3)⊤ is applied at the corner of the rightmost boundary part, i.e.

Γ N = {100} × [35,40]∪ [95, 100]× {40}. (7.12)

Furthermore, the target volume was fixed as 70% of the initial volume. The setting is depicted in Figure
2. The remaining unknowns were chosen as follows: p = 6, γ1 = 10−4, γ2 = 1, ρlow = 10−2, r = 100,
the initial mesh size h= 5 and finite elements of order 3.

100

55 5

60

100

35

Γ

Γ N

g

Ω

Figure 2: Visualisation of the L-bracket [26].

The resulting deformations of the shape are visualised in Figure 3 and the corresponding evolution
of the cost functionals is given in Figure 4.
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(a) max-norm - It: 0 (b) max-norm - It: 10 (c) max-norm - It: 100 (d) max-norm - It: 560

(e) p-norm - It: 0 (f) p-norm - It: 10 (g) p-norm - It: 100 (h) p-norm - It: 560

Figure 3: Deformation of the L-bracket [26].

(a) max-norm: volume cost (b) max-norm: stress cost (c) max-norm: total cost

(d) p-norm: volume cost (e) p-norm: stress cost (f) p-norm: total cost

Figure 4: Cost evolution for the L-bracket problem [26].

To compare both methods in terms of the pointwise stress optimisation, we deduced the minimal mesh
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7 Numerical implementation

sizes hmin
p-norm, hmin

max-norm of both algorithms after a given number of iterations. We then chose the minimum

hmin =min{hmin
p-norm, hmin

max-norm} and remeshed both final shapes with the minimal mesh size hmin. Finally,
we solved the PDE on both domains and compared the resulting maximum von Mises stress. This uniform
mesh size is necessary, since the maximum stress highly depends on the underlying mesh size. The results
for some iterations are listed in Table 1.

max-norm approach p-norm approach

10 iterations 1258 1466
30 iterations 691 771
50 iterations 464 615

100 iterations 384 391
140 iterations 262 330

Table 1: Comparison of the maximal von Mises stress σ2
M [26].

Comparing the final results (Figure 3d, Figure 3h) we observe that visually both algorithms yield
similar results. These in fact coincide with the results obtained in [92], where the p-norm problem for-
mulation was investigated with a different numerical approach. While both approaches approximate the
target volume within a few iterations (Figure 4a, Figure 4d), the stress-cost evolves differently. In the p-
norm approach, the value of the stress functional shows a steady decrease until the deformation causes
some minor artificial fluctuations towards the end (see Figure 4e). In contrast, the maximum stress curve
in the max-norm approach (see Figure 4b) shows a number of peaks. These are linked to the occurrence
of remeshes, as the refined mesh yields higher stress values. Finally, Table 1 shows that both algorithms
yield a decrease of the maximal von Mises stress, yet the max-norm approach seems to perform slightly
better in this regard.

7.3.2 Bridge

For the second example we consider a bridge with vertical load placed in the center of the upper boundary.
To be precise, the initial set is given as

Ω = (0, 5)× (0, 5) \ [1,4]× [0,2]. (7.13)

The bridge is fixed at the bottom boundary Γ = ([0,1]× {0})∪([4,5]× {0}) and the force g = (0,−3)⊤ is
applied on Γ N = [2,3]×{5}. Again, the target volume was fixed as 70% of the initial volume. A schematic
of the setting can be seen in Figure 5. For this example we chose the regularisation p = 2. Furthermore,
the remaining parameter were set γ1 = 10−2, γ2 = 1, ρlow = 10, r = 7.5, the initial meshsize h = 0.5
and finite elements of order 3.
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Figure 5: Visualisation of the bridge [26].

The resulting deformations of the shape are visualised in Figure 6 and the corresponding evolution
of the cost functionals is given in Figure 7.

(a) max-norm - It: 0 (b) max-norm - It: 20 (c) max-norm - It: 40 (d) max-norm - It: 80

(e) p-norm - It: 0 (f) p-norm - It: 20 (g) p-norm - It: 40 (h) p-norm - It: 80

Figure 6: Deformation of the bridge [26].
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(a) max-norm: volume cost (b) max-norm: stress cost (c) max-norm: total cost

(d) p-norm: volume cost (e) p-norm: stress cost (f) p-norm: total cost

Figure 7: Cost evolution for the bridge problem [26].

Again, we solved the PDE on the deformed domains after a fixed number of iterations with the iden-
tical mesh size hmin = min{hmin

p-norm, hmin
max-norm} and computed the maximal von Mises stress. The results

for some iterations are listed in Table 2.

max-norm approach p-norm approach

10 iterations 92 86
20 iterations 52 76
40 iterations 214 593
80 iterations 964 1417

Table 2: Comparison of the maximal von Mises stress σ2
M [26].

In this example we are able to observe different behaviours of our approaches. While the p-norm
approach yields a steady decline of the stress cost (Figure 7e), the max-norm cost functional is vulnerable
to remeshes and thus the associated curve shows some peaks (Figure 7b). Furthermore, we observe that
the volume cost in the max-norm approach is monotone decreasing until it reaches a steady behaviour at
approximately 40 iterations (Figure 7a). Contrary, the p-norm approach shows a slightly faster decrease
of the volume cost during the first few iterations (Figure 7d). Yet, the minimisation of the stress functional
causes a minor increase of the volume cost. This can also be seen in the final shapes (Figure 6h, Figure 6d),
where the p-norm approach yields slightly wider bridge piers. Furthermore, the corners of the Dirichlet
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boundaries, i.e. the corners of the lower part of the bridge piers, attain a smoother appearance in the
max-norm approach. This is also reflected by the last entry of Table 2, which shows a decrease of the
maximal von Mises stress of 32%. In addition the averaging parameter p had to be reduced compared to
the previous example, since the p-norm approach did not manage to smoothen the interior corners for
larger p.

7.3.3 L-bracket with hole

For the third example we considered the L-bracket problem from the first example with an additional
square shaped hole. Hence, the initial set is given as

Ω = (0, 100)× (0,100) \ �[40,100]× [40,100]∪ [15, 25]× [70, 80]
!
. (7.14)

The bracket is fixed on the upper part of the boundary Γ = [0, 40] × {100} and the boundary force
g = (0,−3)⊤ is applied at the corner of the rightmost boundary part, i.e.

Γ N = {100} × [35,40]∪ [95,100]× {40}. (7.15)

Again, the target volume was fixed as 70% of the initial volume. The setting is depicted in Figure 8. The
remaining unknowns were chosen as follows: p = 4, γ1 = 10−4, γ2 = 1, ρlow = 10−2, r = 100, the initial
mesh size h= 5 and finite elements of order 3.

25 75
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Ω

Figure 8: Visualisation of the L-bracket with hole.

The resulting deformations of the shape are visualised in Figure 9 and the corresponding evolution
of the cost functionals is given in Figure 10.
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(a) max-norm - It: 0 (b) max-norm - It: 10 (c) max-norm - It: 40 (d) max-norm - It: 140

(e) p-norm - It: 0 (f) p-norm - It: 10 (g) p-norm - It: 40 (h) p-norm - It: 140

Figure 9: Deformation of the L-bracket with hole.

(a) max-norm: volume cost (b) max-norm: stress cost (c) max-norm: total cost

(d) p-norm: volume cost (e) p-norm: stress cost (f) p-norm: total cost

Figure 10: Cost evolution for the L-bracket with hole problem.

Similarly to the first two examples, we solved the PDE on the deformed domains after a fixed number
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of iterations with the identical mesh size hmin = min{hmin
p-norm, hmin

max-norm} and computed the maximal von
Mises stress. The results for some iterations are listed in Table 3.

max-norm approach p-norm approach

10 iterations 697 753
40 iterations 397 332

100 iterations 3839 4799
140 iterations 8064 33952

Table 3: Comparison of the maximal von Mises stress σ2
M .

At a first glimpse, the deformations obtained during this experiment resemble the ones obtained in the
first exercise. That is, both methods deform the outer boundary of the L-bracket into a smooth hook-like
shape. Additionally, the interior sharp corners of the hole are smoothened during this deformation. In
fact, the max-norm approach seems to slightly outperform the p-norm approach in this context, since the
hole in Figure 9d has a smoother and more symmetric appearance compared to Figure 9h. Furthermore,
we observe that the p-norm approach introduces an artificial wave-like structure of the boundary in the
vicinity of the top-right corner, which causes higher stresses. This problem does not occur during the
max-norm approach. This also reflects in the direct comparison of the von Mises stress values in Table 3,
where the maximal stress of the p-norm approach increases significantly towards the last iterations.
The cost functionals in turn show the typical, previously described behaviour. While the target volume
is attained after the first few steps in both approaches likewise (see Figure 10a, Figure 10d), the stress
terms behave differently. The stress functional of the p-norm approach shows a steady decline until some
minor fluctuations occur towards the end (see Figure 10e). In contrast, the stress functional of the max-
norm approach is characterised by some intermediate peaks (see Figure 10b). These are a consequence
of the lack of stability with respect to remeshes.

8 Conclusion and outlook

In this part of the thesis we investigated the shape sensitivity of a nonsmooth objective functional in the
framework of linear elasticity. We computed the first order term and put the object into the context of
Clarke subgradients. Lending tools from nonsmooth analysis, we further derived optimality conditions
as well as steepest descend directions. These gave rise to a nonsmooth methodology to address the min-
imisation of peak stresses. Our numerical implementations suggest that the nonsmooth approach entails
a faster minimisation of the maximal von Mises stress compared to the regularised p-norm approach.
This heavily relied on the fact that for our model problems, the active set was small. Otherwise high
computational efforts are to be expected.
For future research it would be interesting to study the adjoint variable corresponding to the low regu-
larity functional � x

σ , x ∈ A(u) on an analytic level as well as in the numerical setting. Whilst very-weak
solutions could entail an appropriate adjoint formulation corresponding to the problematic point evalu-
ation of the gradient, an efficient numerical treatment of these is not known yet.
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Part II

Adjoint based methods to compute
topological derivatives
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The content of this part stems from the article:

[25] P. Baumann and K. Sturm. Adjoint based methods for the computation of higher order topological
derivatives with an application to linear elasticity. Engineering Computations, 39(1), 2021.
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9 Introduction to adjoint based topological sensitivity analysis

In this part of the thesis we are going to dive into the framework of topology optimisation employing
the notion of topological derivatives. The main idea of the topological derivative is to introduce a sin-
gular perturbation to the design variable and study the sensitivity of the shape functional with respect
to the size of the perturbation. Thus, the topological derivative encodes information about the optimal
topology of the design variable. This information can be used in a numerical scheme via one-shot type
methods [70,99] or to guide the evolution of a level-set function in an iterative process [17].
A large variety of design optimisation problems stemming from applications can be classified as state con-
strained optimisation problems, where the state variable is governed by a partial differential equation.
It is well known from shape optimisation and optimal control (see e.g. [73, 76]) that adjoint variables
constitute an efficient approach to the numerical treatment of these problems. In fact, for the special case
when the governing PDEs are linear and the inclusions are ball-shaped, the first order topological deriva-
tive can be expressed solely in terms of the state and adjoint state variable [99]. Higher order topological
derivatives usually require additional corrector terms, solutions to exterior partial differential equations.
Even though in general these correctors give rise to numerical expenses, in some cases they can be ex-
plicitly computed [70]. Aside from the numerical advantages, adjoint variables have been proven to be
an useful tool to compute the topological derivative for state constraint design optimisation problems.
One well established method in this context is the method of Amstutz [12]. It is based on the sensitivity
analysis of an adjoint state that only depends on the unperturbed state variable. This method has been
proven versatile and thus found application in various works such as [13, 14, 68, 79] to only mention a
few. It is advantageous over the direct computation of the topological derivative via a Taylors’ expansion
as it simplifies the analysis significantly.
Another adjoint based method to compute topological derivatives we want to highlight relies on the
averaged adjoint state [101]. In contrast to Amstutz’ approach, the adjoint variable in this setting addi-
tionally depends on the perturbed state variable. This entails some difficulties towards the study of the
asymptotics for the adjoint state and thus results in a more challenging analysis. Yet, once the asymptotic
expansion of the averaged adjoint state is known, the computation of the topological derivative is straight
forward and can easily be extended to compute higher order topological derivatives. For applications of
the averaged adjoint approach we refer to [58,105].
A third method we want to mention in this context was introduced in [41]. Contrary to the previous ap-
proaches, this method only depends on the unperturbed adjoint state and therefore does not necessitate
a sensitivity analysis of the adjoint state variable. This results in a faster computation of the topological
derivative, but unfortunately seems to come with the shortcoming that this method is not applicable to
specific cost functionals [58].
In the following we study a model problem in the framework of linear elasticity, where we consider per-
turbations of the material coefficients as well as perturbations of the applied volume forces. We apply
these three adjoint based methods to compute the first and second order topological derivative for a
versatile cost functional and compare them in view of applicability and efficiency.
Before we introduce the problem formulation we would like to mention that the computation of topologi-
cal derivatives for state constrained design optimisation problems does not solely rely on the introduction
of adjoint variables. In [85] the authors used the singular limit of a shape derivative to compute the topo-
logical derivative. Even though this method is not always applicable, it provides an efficient scheme to
compute even higher order topological derivatives [97].
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9 Introduction to adjoint based topological sensitivity analysis

In this part of the thesis our focus lies on the differences between adjoint based methods to perform
sensitivity analysis and to compute the topological derivative. We thoroughly study and review the first
three methods mentioned and apply them to the model problem of linear elasticity. We first exam the
asymptotic behaviour of the underlying state variable up to order two and then study the asymptotic
behaviour of Amstutz’ perturbed adjoint variable and the averaged adjoint variable. We then employ the
three methods to compute first and second order topological derivatives for three types of cost functions,
the compliance, a boundary tracking-type cost function and a tracking-type cost function of the gradient.
The content of this part stems from the article [25] in collaboration with Kevin Sturm.
Before we introduce the concrete setting for our model problem, we specify the notion of "topological
derivative" (cf. Section 1.2) in the following definition. Note that this quantity plays a central role in the
remainder of this thesis.

Definition 9.1. Let D ⊂ Rd be a bounded, smooth domain and Ω ⊂ D open and Lipschitz. Furthermore,
let ω ⊂ Rd be an open, bounded and connected set with C1 boundary containing the origin. We define
for x0 ∈ D \ ∂Ω and ϵ > 0 sufficiently small the perturbed set

Ωϵ :=

	
Ω \ωϵ if x0 ∈ Ω,

Ω∪ωϵ else,
(9.1)

where ωϵ := {x0 + ϵz| z ∈ω}. Furthermore, consider a shape functional

� :	ad → R, (9.2)

where 	ad , a subset of the powerset of D, denotes the admissible shapes. With the assumption that
Ω ∈ 	ad and Ωϵ ∈ 	ad for ϵ > 0 sufficiently small we define the first order topological derivative of �
at x0 as

d� (Ω,ω)(x0) := lim
ϵ↘0

� (Ωϵ)−� (Ω)
ℓ1(ϵ)

, (9.3)

where ℓ1 : R+→ R+ is a continuous function vanishing at 0. Furthermore, given a sequence of continuous
functions ℓk : R+→ R+, k ≥ 1 vanishing at 0 such that

lim
ϵ↘0

ℓk+1(ϵ)
ℓk(ϵ)

= 0 for k ≥ 1, (9.4)

we define the n−th order topological derivative for n≥ 2 iteratively by

dn� (Ω,ω)(x0) := lim
ϵ↘0

� (Ωϵ)−� (Ω)−-n−1
k=1 ℓk(ϵ)dk� (Ω,ω)(x0)

ℓn(ϵ)
. (9.5)

Remark 9.2. Note that the topological derivative depends on a large variety of parameters. In the context
of directional derivatives, Ω and x0 can bee seen as the evaluation point, while the inclusion shape
ω resembles a given direction. Yet, we avoid the use of a semicolon to emphasise that the topological
derivative is no directional derivative according to Definition 6.3. Furthermore, we would like to highlight
the dependence on the sequences ℓk. Even though this dependence is not directly visible in the notation
of the topological derivative, it is of great importance nonetheless, as it gives rise to the question "when
a topological derivative vanishes". To specify, one could always introduce a "slower" decreasing function
ℓ to a given formulation leading to a vanishing topological derivative.
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Problem formulation

LetD ⊂ Rd , d ∈ {2,3} be a bounded and smooth domain. Our goal is to compute the topological derivative
of the cost functional

� (Ω) = γ f

�
D

fΩ · uΩ d x + γg

�
D

|∂ uΩ − ∂ ud |2 d x + γm

�
Γm

|uΩ − um|2 dS, (9.6)

where γ f ,γg ,γm ∈ R, ud ∈ H1(D)d , um ∈ L2(Γm)d subject to a design region Ω ⊂ D. Here, the displace-
ment field uΩ ∈ H1(D)d solves the equation of linear elasticity (cf. (2.4))�

D

AΩϵ(uΩ) : ϵ(ϕ) d x =

�
D

fΩ ·ϕ d x +

�
Γ N

gN ·ϕ dS for all ϕ ∈ H1
Γ (D)

d , (9.7)

uΩ =gD on Γ . (9.8)

where Γ ⊂ ∂D, |Γ |> 0, ΓN := ∂D\Γ , H1
Γ (D)

d := {ϕ ∈ H1(D)d : ϕ = 0 on Γ }, gD ∈ L2(Γ )d , gN ∈ L2(Γ N )d

and
AΩ = A1χΩ +A2χD\Ω, fΩ = f1χΩ + f2χD\Ω. (9.9)

Here, χΩ,χD\Ω denote characteristic functions on their respective sets, A1,A2 : Rd×d → Rd×d are sym-
metric stress tensors given in terms of characteristic material parameters (cf. Lamé coefficients in (2.6)),
f1, f2 ∈ H1(D)d ∩ C2(Bδ(x0))d for a given δ > 0 and ϵ(u) denotes the symmetrised gradient of u, that is,
ϵ(u) = 1

2(∂ u+ ∂ u⊤).

Remark 9.3. In some parts of this work we require the assumption γg = 0 in dimension d = 2. We will
elaborate further on this detail in the course of this work.

In contrast to the model problem in Part I we assume that the whole domain D is filled with two
different materials as well as two different volume forces acting on these, respectively. We are thus inter-
ested in the optimal distribution of these materials within the hold-all domain D in terms of the versatile
objective functional (9.6). In what follows, we are only going to discuss the topological derivative of a
singularly perturbed domain by adding material 1 and force 1, respectively. That is, we are interested in
perturbations Ωϵ = Ω ∪ωϵ with ωϵ ⊂ Ω̄c (cf. Definition 9.1). The remaining case Ωϵ = Ω \ωϵ, ωϵ ⊂ Ω
can be treated identically and merely leads to a change of sign in the final formula. Additionally, for the
sake of simplicity, we are going to restrict ourselves to the special case Ω = �. The general setting can
be treated in a similar fashion and we will highlight the passages in the upcoming sensitivity analysis,
where special care has to be taken in this case.

10 Lagrangian techniques to compute the topological derivative

Before we dive into the sensitivity analysis, we want to give an overview of the three methods mentioned
in the introduction. We therefore reformulate these approaches in a general Lagrangian setting. While it
is well-established in optimisation algorithms to compute derivatives of PDE constrained problems with
the help of Lagrangians, it seems rather new to the topology optimisation community.
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10 Lagrangian techniques to compute the topological derivative

10.1 Abstract setting

Let � be a real Hilbert space, � ⊂ � a subspace and ū ∈ � a fixed element. We further define the
affine space 
 := ū+� . For all parameter ϵ ≥ 0 small consider a function uϵ ∈ 
 solving the variational
problem of the form

aϵ(uϵ, v) = fϵ(v) for all v ∈ � , (10.1)

where aϵ is a bilinear form on � ×� and fϵ is a linear form on� , respectively. Throughout we assume
that this abstract state equation admits a unique solution uϵ ∈ 
 for all ϵ ≥ 0. Consider now a cost
function

j(ϵ) = Jϵ(uϵ), (10.2)

where for all ϵ ≥ 0 the functional Jϵ : 
 → R is differentiable at u0. In the following sections we review
methods how to obtain an asymptotic expansion of j(ϵ) at ϵ = 0. For this purpose we introduce the
Lagrangian function

� (ϵ, u, v) = Jϵ(u) + aϵ(u, v)− fϵ(v) for all u ∈ 
 , v ∈ � . (10.3)

We observe that we can indeed use this Lagrangian to express the quantity of interest

j(ϵ) =� (ϵ, uϵ, v) for all v ∈ � . (10.4)

Additionally, we would like to mention that the rather uncommon choice of 
 as an affine space is a direct
consequence of our problem formulation. To specify, the inhomogeneous Dirichlet boundary condition
(9.8) necessitates the use of an affine space instead of a Hilbert space.

10.2 Amstutz’ method

We first review the approach of Amstutz [12] (cf. [13, Proposition 2.1]). This approach has been applied
to various problems and thus has been proven to be a versatile method. For instance in [13] a linear
transmission problem was examined and its first order topological derivative was computed. In [21] the
topological derivative of elliptic differential equations including a differential operator of order 2m was
derived. In [14] the topological derivative for a class of certain nonlinear equations has been studied.
The following proposition states the central result of Amstutz’ method:

Proposition 10.1 ( [13, Proposition 2.1]). Assume the following hypotheses hold.

(1) There exist numbers δa(1) and δ f (1) and a function ℓ1 : R+→ R+ with lim
ϵ↘0
ℓ1(ϵ) = 0, such that

(aϵ − a0)(u0, pϵ) = ℓ1(ϵ)δa(1) + o(ℓ1(ϵ)), (10.5)

( fϵ − f0)(pϵ) = ℓ1(ϵ)δ f (1) + o(ℓ1(ϵ)), (10.6)

where pϵ ∈ � is the adjoint state satisfying

aϵ(ϕ, pϵ) = −∂ Jϵ(u0)(ϕ) for all ϕ ∈ 
 . (10.7)
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(2) There exist two numbers δJ (1)1 and δJ (1)2 , such that

Jϵ(uϵ) = Jϵ(u0) + ∂ Jϵ(u0)(uϵ − u0) + ℓ1(ϵ)δJ (1)1 + o(ℓ1(ϵ)), (10.8)

Jϵ(u0) = J0(u0) + ℓ1(ϵ)δJ (1)2 + o(ℓ1(ϵ)). (10.9)

Then the following expansion holds

j(ϵ) = j(0) + ℓ1(ϵ)(δa−δ f (1) +δJ (1)1 +δJ (1)2 ) + o(ℓ1(ϵ)). (10.10)

Next, we reformulate and generalise the previous result in terms of a Lagrangian function � (ϵ, u, v).
Additionally, we state an analogous extension addressing the second order derivative.

Proposition 10.2. Let ℓ1,ℓ2 : R+→ R+ be functions with

lim
ϵ↘0
ℓ1(ϵ) = 0, and lim

ϵ↘0

ℓ2(ϵ)
ℓ1(ϵ)

= 0. (10.11)

(i) Assume that the limits

� (1)(u0, p0) := lim
ϵ↘0

� (ϵ, uϵ, pϵ)−� (ϵ, u0, pϵ)
ℓ1(ϵ)

, (10.12)

∂
(1)
ℓ
� (0, u0, p0) := lim

ϵ↘0

� (ϵ, u0, pϵ)−� (0, u0, pϵ)
ℓ1(ϵ)

, (10.13)

exist. Then we have the following expansion:

j(ϵ) = j(0) + ℓ1(ϵ)(� (1)(u0, p0) + ∂
(1)
ℓ
� (0, u0, p0)) + o(ℓ1(ϵ)). (10.14)

In particular
� (1)(u0, p0) + ∂

(1)
ℓ
� (0, u0, p0) = δa(1) −δ f (1) +δJ (1)1 +δJ (1)2 ,

where δa(1),δ f (1), δJ (1)1 ,δJ (1)2 are as in Proposition 10.1.

(ii) Assume that the assumptions under (i) hold and that the limits

� (2)(u0, p0) := lim
ϵ↘0

� (ϵ, uϵ, pϵ)−� (ϵ, u0, pϵ)− ℓ1(ϵ)� (1)(u0, p0)
ℓ2(ϵ)

, (10.15)

∂
(2)
ℓ
� (0, u0, p0) := lim

ϵ↘0

� (ϵ, u0, pϵ)−� (0, u0, pϵ)− ℓ1(ϵ)∂ (1)ℓ � (0, u0, p0)

ℓ2(ϵ)
, (10.16)

exist. Then we have the following expansion

j(ϵ) = j(0)+ℓ1(ϵ)(� (1)(u0, p0) + ∂
(1)
ℓ
� (0, u0, p0))

+ℓ2(ϵ)(� (2)(u0, p0) + ∂
(2)
ℓ
� (0, u0, p0)) + o(ℓ2(ϵ)).
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Proof. ad (i): since � (ϵ, uϵ, 0) =� (ϵ, uϵ, pϵ) and � (0, u0, pϵ) =� (0, u0, 0), we get

j(ϵ)− j(0) =� (ϵ, uϵ, 0)−� (0, u0, 0) (10.17)
=� (ϵ, uϵ, pϵ)−� (ϵ, u0, pϵ) (10.18)
+� (ϵ, u0, pϵ)−� (0, u0, pϵ). (10.19)

Dividing by ℓ1(ϵ) for ϵ > 0 and passing to the limit yields

lim
ϵ↘0

j(ϵ)− j(0)
ℓ1(ϵ)

=� (1)(u0, p0) + ∂
(1)
ℓ
� (0, u0, p0), (10.20)

in view of our assumptions. Hence, (10.20) entails

j(ϵ)− j(0)− ℓ1(ϵ)
�� (1)(u0, p0) + ∂

(1)
ℓ
� (0, u0, p0)
"

= ℓ1(ϵ)
�

j(ϵ)− j(0)
ℓ1(ϵ)

−� (1)(u0, p0)− ∂ (1)ℓ � (0, u0, p0)
$

= o(ℓ1(ϵ)),

(10.21)

which shows (i).
ad (ii): the same arguments yield

lim
ϵ↘0

j(ϵ)− j(0)− ℓ1(ϵ)
�� (1)(u0, p0) + ∂

(1)
ℓ
� (0, u0, p0)
"

ℓ2(ϵ)
=� (2)(u0, p0) + ∂

(2)
ℓ
� (0, u0, p0). (10.22)

Now the result follows from

j(ϵ)− j(0)− ℓ1(ϵ)
�� (1)(u0, p0) + ∂

(1)
ℓ
� (0, u0, p0)
"− ℓ2(ϵ)�� (2)(u0, p0) + ∂

(2)
ℓ
� (0, u0, p0)
"

= ℓ2(ϵ)

 j(ϵ)− j(0)− ℓ1(ϵ)
�� (1)(u0, p0) + ∂

(1)
ℓ
� (0, u0, p0)
"

ℓ2(ϵ)
−� (2)(u0, p0)− ∂ (2)ℓ � (0, u0, p0)


= o(ℓ2(ϵ)),

in view of (10.22).

In order to compare this approach to the upcoming methods, we want to formulate the adjoint variable
in the Lagrangian framework as well. Therefore, it is readily checked that (10.7) reads

find pϵ ∈ � such that ∂u� (ϵ, u0, pϵ)(ϕ) = 0 for all ϕ ∈ � . (10.23)

Remark 10.3. Checking the expansions (10.13),(10.16) in applications usually requires some regularity
of the state u0 and knowledge of the asymptotics of the adjoint state pϵ on a small domain of size ϵ. This
limit additionally necessitates higher regularity of the volume force (we assumed that f1, f2 admit C2

regularity in the vicinity of the perturbation).
The computation of the asymptotic expansions (10.12),(10.15) requires the study of the asymptotic be-
haviour of uϵ on the whole domain D. This often causes problems, especially in dimension two. The
reader will find an application of this method in Section 14.1.
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10.3 Averaged adjoint method

Another approach to compute topological derivatives was proposed in [105], applied to nonlinear prob-
lems in [58,60,105] and used for the optimisation on surfaces in [59]. Recall the Lagrangian function

� (ϵ, u, v) = Jϵ(u) + aϵ(u, v)− fϵ(v) for all u ∈ 
 , v ∈ � . (10.24)

We henceforth assume that for all (ϕ, q) ∈ 
 ×� and ϵ ≥ 0 the function

s !→ ∂u� (ϵ, suϵ + (1− s)u0, q)(ϕ), (10.25)

is continuously differentiable on [0,1]. Note that this function is indeed well defined since convex combi-
nations remain in the affine space, i.e. suϵ+(1− s)u0 ∈ 
 for s ∈ [0, 1]. With the Lagrangian we are able
to define the averaged adjoint equation associated with state variables uϵ (solution of (10.1) for ϵ > 0)
and u0 (solution of (10.1) for ϵ = 0): find qϵ ∈ � , such that� 1

0

∂u� (ϵ, suϵ + (1− s)u0, qϵ)(ϕ) ds = 0 for all ϕ ∈ � . (10.26)

It is noteworthy that the affine setting again restricts us to only use derivatives in direction � . These
details might seem irritating in this general setting, but we will see that they resolve naturally in the
applied formulation later on. Testing (10.26) with ϕ = uϵ − u0 ∈ � and employing the fundamental
theorem of calculus yields

� (ϵ, uϵ, qϵ) =� (ϵ, u0, qϵ) for ϵ ≥ 0, (10.27)

for the averaged adjoint variable qϵ ∈ � . This is the central property of this approach and will be used
in the following proposition. We henceforth assume that the averaged adjoint equation admits a unique
solution.

Proposition 10.4. Let ℓ1,ℓ2 : R+→ R+ be functions with

lim
ϵ↘0
ℓ1(ϵ) = 0, and lim

ϵ↘0

ℓ2(ϵ)
ℓ1(ϵ)

= 0. (10.28)

(i) Assume that the limits

� (1)(u0, q0) := lim
ϵ↘0

� (ϵ, u0, qϵ)−� (ϵ, u0, q0)
ℓ1(ϵ)

, (10.29)

∂
(1)
ℓ
� (0, u0, q0) := lim

ϵ↘0

� (ϵ, u0, q0)−� (0, u0, q0)
ℓ1(ϵ)

, (10.30)

exist. Then we have the following expansion

j(ϵ) = j(0) + ℓ1(ϵ)(� (1)(u0, q0) + ∂
(1)
ℓ
� (0, u0, q0)) + o(ℓ1(ϵ)). (10.31)

(ii) Assume that the assumption under (i) holds and the limits

� (2)(u0, q0) := lim
ϵ↘0

� (ϵ, u0, qϵ)−� (ϵ, u0, q0)− ℓ1(ϵ)� (1)(u0, q0)
ℓ2(ϵ)

, (10.32)

∂
(2)
ℓ
� (0, u0, q0) := lim

ϵ↘0

� (ϵ, u0, q0)−� (0, u0, q0)− ℓ1(ϵ)∂ (1)ℓ � (0, u0, q0)

ℓ2(ϵ)
, (10.33)
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exist. Then we have the following expansion

j(ϵ) = j(0)+ℓ1(ϵ)(� (1)(u0, q0) + ∂
(1)
ℓ
� (0, u0, q0))

+ℓ2(ϵ)(� (2)(u0, q0) + ∂
(2)
ℓ
� (0, u0, q0)) + o(ℓ2(ϵ)).

Proof. ad (i): employing property (10.27), we deduce

j(ϵ)− j(0) =� (ϵ, uϵ, 0)−� (0, u0, 0)
=� (ϵ, u0, qϵ)−� (0, u0, q0)
=� (ϵ, u0, qϵ)−� (ϵ, u0, q0) +� (ϵ, u0, q0)−� (0, u0, q0).

Hence, we observe

lim
ϵ↘0

j(ϵ)− j(0)
ℓ1(ϵ)

=� (1)(u0, q0) + ∂
(1)
ℓ
� (0, u0, q0), (10.34)

in view of our assumptions. This in turn yields

j(ϵ)− j(0)− ℓ1(ϵ)
�� (1)(u0, q0) + ∂

(1)
ℓ
� (0, u0, q0)
"

= ℓ1(ϵ)
�

j(ϵ)− j(0)
ℓ1(ϵ)

−� (1)(u0, q0)− ∂ (1)ℓ � (0, u0, q0)
$

= o(ℓ1(ϵ)),

(10.35)

which shows (i).
ad (ii): the proof follows the same lines as Proposition 10.1 item (ii).

The previous result can readily be generalised to compute the n-th order topological derivative (cf.
Definition 9.1). We will employ this generalisation in the last part of this thesis, where we tackle higher
order topological derivatives. However, instead of stating an abstract result, we are going to employ an
analogous splitting directly in the asymptotic analysis (cf. Theorem 19.2, Theorem 21.1).

Remark 10.5. Similarly to Amstutz’ method, checking the expansions (10.30),(10.33) in applications
usually requires some regularity of the state u0, adjoint state q0 and forces f1, f2 in the vicinity of the
perturbation. However, the computation of this expansion is a straight forward application of Taylor’s
formula. An application is given in Section 14.2.
The computation of the asymptotic expansions (10.29),(10.32) requires the study of the asymptotic be-
haviour of qϵ and therefore also of uϵ. This is the most difficult part and can be done by the compound
layer expansion involving corrector equations (see for instance [81], [80]) as is presented in Section 13.2.

10.4 Delfour’s method

In this section we discuss a method proposed by M.C. Delfour in [41, Theorem 3.3]. The definite advan-
tage is that it uses the unperturbed adjoint equation and thus only requires the asymptotic analysis of
the state equation. Yet, it seems to come with the shortcoming that it is only applicable to certain cost
functions; see [58]. As before we let � be a Lagrangian function and denote by uϵ ∈ 
 the perturbed
state variable (solution to (10.1) for ϵ ≥ 0) and p0 ∈ � the unperturbed adjoint variable (solution to
(10.7) for ϵ = 0). Using these variables, Delfour proposed the following result for computing the first
topological derivative, where we also incorporated the second order topological derivative.
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Proposition 10.6 ( [41]). Let ℓ1,ℓ2 : R+→ R+ be functions with

lim
ϵ↘0
ℓ1(ϵ) = 0, and lim

ϵ↘0

ℓ2(ϵ)
ℓ1(ϵ)

= 0. (10.36)

(i) Assume that the limits

� (1)1 (u0, p0) :=lim
ϵ↘0

1
ℓ1(ϵ)

[� (ϵ, uϵ, p0)−� (ϵ, u0, p0)− ∂u� (ϵ, u0, p0)(uϵ − u0)] , (10.37)

� (1)2 (u0, p0) :=lim
ϵ↘0

1
ℓ1(ϵ)

(∂u� (ϵ, u0, p0)− ∂u� (0, u0, p0))(uϵ − u0), (10.38)

∂
(1)
ℓ
� (0, u0, p0) := lim

ϵ↘0

1
ℓ1(ϵ)

(� (ϵ, u0, p0)−� (0, u0, p0)), (10.39)

exist. Then the following expansion holds:

j(ϵ) = j(0) + ℓ1(ϵ)((� (1)1 (u0, p0) +� (1)2 (u0, p0) + ∂
(1)
ℓ
� (0, u0, p0)) + o(ℓ1(ϵ)). (10.40)

(ii) Assume that the assumptions under (i) hold and that the limits

� (2)1 (u0, p0) := lim
ϵ↘0

1
ℓ2(ϵ)

�
� (ϵ, uϵ, p0)−� (ϵ, u0, p0)− ∂u� (ϵ, u0, p0))(uϵ − u0)

− ℓ1(ϵ)� (1)1 (u0, p0)
�
, (10.41)

� (2)2 (u0, p0) := lim
ϵ↘0

1
ℓ2(ϵ)

�
(∂u� (ϵ, u0, p0)− ∂u� (0, u0, p0))(uϵ − u0)

− ℓ1(ϵ)� (1)2 (u0, p0)
�
, (10.42)

∂
(2)
ℓ
� (0, u0, p0) := lim

ϵ↘0

1
ℓ2(ϵ)

�� (ϵ, u0, p0)−� (0, u0, p0)− ℓ1(ϵ)∂ (1)ℓ � (0, u0, p0)
�

, (10.43)

exist. Then we have the following expansion:

j(ϵ) = j(0) + ℓ1(ϵ)(� (1)1 (u0, p0) +� (1)2 (u0, p0) + ∂
(1)
ℓ
� (0, u0, p0))

+ ℓ2(ϵ)(� (2)1 (u0, p0) +� (2)2 (u0, p0) + ∂
(2)
ℓ
� (0, u0, p0)) + o(ℓ2(ϵ)).

(10.44)

Proof. ad (i): firstly note that by definition the unperturbed adjoint state p0 satisfies

∂u� (0, u0, p0)(ϕ) = 0 for all ϕ ∈ � .

Thus, we can rewrite j(ϵ)− j(0) in the following way:

j(ϵ)− j(0) =� (ϵ, uϵ, 0)−� (0, u0, 0)
=� (ϵ, uϵ, p0)−� (0, u0, p0)
=� (ϵ, uϵ, p0)−� (ϵ, u0, p0)− ∂u� (ϵ, u0, p0)(uϵ − u0)
+ ∂u� (ϵ, u0, p0)(uϵ − u0)− ∂u� (0, u0, p0)(uϵ − u0)
+� (ϵ, u0, p0)−� (0, u0, p0).

(10.45)
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Dividing by ℓ1(ϵ), ϵ > 0 and passing to the limit yields

lim
ϵ↘0

j(ϵ)− j(0)
ℓ1(ϵ)

=� (1)1 (u0, p0) +� (1)2 (u0, p0) + ∂
(1)
ℓ
� (0, u0, p0). (10.46)

Thus we deduce

j(ϵ)− j(0)− ℓ1(ϵ)
�� (1)1 (u0, p0) +� (1)2 (u0, p0) + ∂

(1)
ℓ
� (0, u0, p0)
"

= ℓ1(ϵ)
�

j(ϵ)− j(0)
ℓ1(ϵ)

−� (1)1 (u0, p0)−� (1)2 (u0, p0)− ∂ (1)ℓ � (0, u0, p0)
$

= o(ℓ1(ϵ)),

(10.47)

which shows (i).
ad (ii): the proof follows the same lines as Proposition 10.1 item (ii).

Remark 10.7. Similarly to Amstutz’ method and the averaged adjoint method, Delfour’s method re-
quires the asymptotic behaviour of uϵ on the whole domain to compute (10.37),(10.41). This may be
challenging in the analysis in dimension two for some cost functionals. Additionally, (10.38),(10.42) can
be checked by smoothness assumptions on p0 and u0 and the knowledge of the asymptotics of uϵ on
a small subset of size ϵ. The remaining terms (10.39),(10.43) usually are computed making use of a
Taylor’s expansion of u0, p0 and f1, f2, respectively.

Overview of the adjoint equations To conclude the abstract setting we give a short overview of the
employed adjoint variables. In total, we can detect three different adjoint equations governing the adjoint
variables within the previous section.

• The method of Amstutz [13] uses an adjoint equation which depends on the unperturbed state
variable:

find pϵ ∈ � such that ∂u� (ϵ, u0, pϵ)(ϕ) = 0 for all ϕ ∈ � . (10.48)

• The averaged adjoint method employs the averaged adjoint equation:

find qϵ ∈ � such that

� 1
0

∂u� (ϵ, suϵ + (1− s)u0, qϵ)(ϕ) ds = 0 for all ϕ ∈ � . (10.49)

• Finally, Delfour’s method is based on the usual adjoint equation

find vϵ ∈ � such that ∂u� (ϵ, uϵ, vϵ)(ϕ) = 0 for all ϕ ∈ � . (10.50)

It should be noted though that in the unperturbed setting, i.e. ϵ = 0, all three adjoint variables coincide.
That is,

p0 = q0 = v0. (10.51)

We use this equality in Defour’s method, which is only based on the unperturbed adjoint variable, to
justify the notational choice p0 instead of v0 within this subsection. Hidden within the assumptions of
the according propositions, we see that the asymptotic expansions of the state and adjoint variables play
a central role in the computation of the derivatives.
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11 Auxiliary results

Before we dive into the analysis of the state and adjoint variables, we formulate some auxiliary results
that are necessary for a rigorous derivation. Their function in the upcoming analysis compares to the role
of Lemma 3.4 and Lemma 3.3 within the derivation of the material derivative in the previous part. Since
we need these results in the last part of this thesis as well, we devote a whole section to it. Throughout
this section we fix a point x0 ∈ D.

11.1 Scaling of inequalities

In this section, we discuss the influence of a parametrised affine transformation Tϵ : Rd → Rd onto norms
and the scaling behaviour of some well-known inequalities with respect to that parameter. To specify, we
consider the following set of transformations:

Definition 11.1. Let D ⊂ Rd be an open and bounded Lipschitz domain and ϵ > 0. We define the affine
transformation

Tϵ : Rd → Rd , x !→ x0 + ϵx . (11.1)

Since Tϵ is a bi-Lipschitz continuous map, there holds

ϕ ∈ H1
Γ (D)

d if and only if ϕ ◦ Tϵ ∈ H1
T−1
ϵ (Γ )
(T−1
ϵ (D))

d ,

see [110, p.52, Theorem 2.2.2]. For the sake of readability, we introduce the following notation:

Notational convention Let D ⊂ Rd be an open and bounded Lipschitz domain, Γ ⊂ ∂D and Γ N =
∂D \ Γ . Then we denote, for ϵ > 0 sufficiently small, the scaled quantities

• Dϵ := T−1
ϵ (D),

• Γϵ := T−1
ϵ (Γ ),

• Γ N
ϵ := T−1

ϵ (Γ
N ),

where Tϵ is defined in Definition 11.1.
The action of the transformation T−1

ϵ on D is depicted in Figure 11. While the domain Dϵ is inflated
as ϵ → 0, the small inclusion ωϵ is scaled to unit size ω and centered around the origin. Furthermore,
the inflated initial shape, denoted Ωϵ, is pushed towards the boundary of Dϵ. The scaled H1 norm will
occur throughout the rest of this thesis. This motivates the next definition.

Definition 11.2. Let D ⊂ Rd be an open and bounded Lipschitz domain and ϵ > 0. For ϕ ∈ H1(Dϵ)d we
define

∥ϕ∥ϵ := ϵ∥ϕ∥L2(Dϵ)d + ∥∂ ϕ∥L2(Dϵ)d×d . (11.2)

Remark 11.3. Even though the fixed point x0 might get lost in the previous definitions, as it is not high-
lighted in the notation we are using, it plays a prominent role in the analytic setting. In fact, x0 denotes
the point, where a singular perturbation is performed. It will appear explicitly again in the asymptotic
analysis of the state and adjoint state as well as in the final formulas of the topological derivatives.
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Figure 11: Visualisation of the transformation D→ Dϵ (cf. [105, Figure 1]).
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Lemma 11.4. Let D ⊂ Rd be an open and bounded Lipschitz domain and let ϵ > 0 sufficiently small.

(i) For 1≤ p <∞ and ϕ ∈ Lp(Dϵ)d there holds

ϵ
d
p ∥ϕ∥Lp(Dϵ)d = ∥ϕ ◦ T−1

ϵ ∥Lp(D)d . (11.3)

(ii) For 1≤ p <∞ and ϕ ∈W 1
p (Dϵ)

d there holds

ϵ
d
p−1∥∂ ϕ∥Lp(Dϵ)d×d = ∥∂ (ϕ ◦ T−1

ϵ )∥Lp(D)d×d . (11.4)

(iii) For ϕ ∈ H1(Dϵ)d there holds
∥ϕ ◦ T−1

ϵ ∥H1(D)d = ϵ
d
2−1∥ϕ∥ϵ. (11.5)

Proof. (i) A change of variables yields

∥ϕ∥p
Lp(Dϵ)d

= ϵ−d

�
D

|ϕ ◦ T−1
ϵ |p d x = ϵ−d∥ϕ ◦ T−1

ϵ ∥pLp(D)d
, (11.6)

where we used |det(∂ T−1
ϵ )|= ϵ−d .

(i) Taking into account that by the chain rule ∂ (ϕ ◦ T−1
ϵ ) = ϵ

−1∂ ϕ ◦ T−1
ϵ , a change of variables yields

∥∂ ϕ∥p
Lp(Dϵ)d×d = ϵ

−d

�
D

|∂ ϕ ◦ T−1
ϵ |p d x

= ϵ−dϵp

�
D

|∂ (ϕ ◦ T−1
ϵ )|p d x = ϵp−d∥∂ (ϕ ◦ T−1

ϵ )∥pLp(D)d×d .
(11.7)

(iii) This follows from item (i) and (ii).

Lemma 11.5. Let D ⊂ Rd be an open and bounded Lipschitz domain, Γ ⊂ ∂D, with |Γ |> 0 and let ϵ > 0.
Then the following results hold:

(i) For d ≥ 2 and 1≤ p ≤ q <∞ there is a constant C > 0 independent of ϵ such that

∥ϕ∥Lp(Dϵ)d ≤ Cϵ
d
q− d

p ∥ϕ∥Lq(Dϵ)d for all ϕ ∈ Lq(Dϵ)
d . (11.8)

(ii) Let d ≥ 3 and 2∗ denote the Sobolev conjugate of 2. There is a constant C > 0 independent of ϵ
such that

∥ϕ∥L2∗ (Dϵ)d ≤ C∥ϕ∥ϵ for all ϕ ∈ H1(Dϵ)
d . (11.9)

(iii) Let d = 2 and α > 0 small. There is a constant C > 0 independent of ϵ and δ > 0 small such that

∥ϕ∥L(2−δ)∗ (Dϵ)d ≤ Cϵ−α∥ϕ∥ϵ for all ϕ ∈ H1(Dϵ)
d . (11.10)
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(iv) There is a constant C > 0 independent of ϵ such that

∥ϕ∥L2(Γϵ)d ≤ Cϵ− 1
2 ∥ϕ∥ϵ for all ϕ ∈ H1(Dϵ)

d . (11.11)

(v) Given a smooth, connected part of a Lipschitz boundary Γ ⊂ ∂D with positive measure, there is a
continuous extension operator ZΓϵ : H

1
2 (Γϵ)d → H1(Dϵ)d , such that

∥ZΓϵ(ϕ)∥ϵ ≤ C(ϵ
1
2 ∥ϕ∥L2(Γϵ)d + |ϕ|H 1

2 (Γϵ)d
) for all ϕ ∈ H

1
2 (Γϵ)

d , (11.12)

where C > 0 is independent of ϵ.

(vi) There is a constant C > 0 independent of ϵ such that

∥ϕ∥L2(Dϵ)d ≤ Cϵ−1∥∂ ϕ∥L2(Dϵ)d×d for all ϕ ∈ H1
Γϵ
(Dϵ)

d . (11.13)

Proof. (i) Let ϕ ∈ Lq(Dϵ)d . By the inclusion of Lp-spaces we observe ϕ ∈ Lp(Dϵ)d , for p ≤ q. Now
Lemma 11.4 item (i) yields

∥ϕ∥Lp(Dϵ)d = ϵ
− d

p ∥ϕ∥Lp(D)d ≤ Cϵ−
d
p ∥ϕ∥Lq(D)d = Cϵ

d
q− d

p ∥ϕ∥Lq(Dϵ)d , (11.14)

where the constant C solely depends on the domain D and p, q.

(ii) We use Lemma 11.4 item (i) and (ii), and apply the Gagliardo-Nirenberg inequality [51, p. 279,
Theorem 2] to the bounded domain D to obtain

∥ϕ∥L2∗ (Dϵ)d = ϵ
− d

2∗ ∥ϕ ◦ T−1
ϵ ∥L2∗ (D)d

≤ Cϵ− d
2∗ ∥ϕ ◦ T−1

ϵ ∥H1(D)d

= Cϵ
d
2− d

2∗ −1∥ϕ∥ϵ.
(11.15)

Since the Sobolev conjugate is given by

2∗ :=
2d

d − 2
, (11.16)

there holds d
2 − d

2∗ = 1. Hence, the result follows.

(iii) We apply the Gagliardo-Nirenberg inequality with respect to p := 2−δ < 2 and use the continuous
embedding L2(D)d 	→ L2−δ(D)d on the bounded domain D:

∥ϕ∥L(2−δ)∗ (Dϵ)d = ϵ−
2

(2−δ)∗ ∥ϕ ◦ T−1
ϵ ∥L(2−δ)∗ (D)d

≤ Cϵ−
2

(2−δ)∗ (∥ϕ ◦ T−1
ϵ ∥L(2−δ)(D)d + ∥∂ (ϕ ◦ T−1

ϵ )∥L(2−δ)(D)d×d )

≤ Cϵ−
2

(2−δ)∗ (∥ϕ ◦ T−1
ϵ ∥L2(D)d + ∥∂ (ϕ ◦ T−1

ϵ )∥L2(D)d×d )

= Cϵ−
2

(2−δ)∗ ∥ϕ∥ϵ.

(11.17)

Now the asymptotic behaviour

lim
δ↘0
(2−δ)∗ = lim

δ↘0

(2−δ)2
δ

=∞, (11.18)

shows (iii).
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(iv) A change of variables (cf. Lemma 11.4) and the continuity of the trace operator entail

∥ϕ∥L2(Γϵ)d = ϵ
− d−1

2 ∥ϕ ◦ T−1
ϵ ∥L2(Γ )d

≤ Cϵ− d−1
2 ∥ϕ ◦ T−1

ϵ ∥H1(D)d

= Cϵ− 1
2 ∥ϕ∥ϵ,

(11.19)

for all ϕ ∈ H1(Dϵ)d . This shows (iv).

(v) From [109, p. 129, Theorem 8.8] we know there exists a continuous extension operator
ZΓ : H

1
2 (Γ )d → H1(D)d . Thus, a scaling argument similar to the previous one yields the result.

(vi) An application of Friedrich’s inequality combined with Lemma 11.4 item (i) and (ii) yields the
result.

11.2 Remainder estimates

This section is dedicated to the estimation of remainders on the boundary of an inflated domain Dϵ. We
will use them to extract an asymptotic behaviour of layer potentials.

Lemma 11.6. Let V : Rd → Rd ∈ H1
loc(R

d)d satisfy

|V (x)|= c1|x |−m + � (|x |−m−1), |∂ V (x)|= c2|x |−m−1 + � (|x |−m−2), (11.20)

for x ∈ Bρ(0)c as |x | →∞, where ρ > 0 is fixed, m ∈ R and c1, c2 > 0 are constants. Furthermore, let
D ⊂ Rd be an open and bounded Lipschitz domain. Then there is a constant C > 0 independent of ϵ,
such that for Γ ⊂ ∂D, |∂D|> 0 and ϵ > 0 sufficiently small the following estimates hold:

(i) ∥V∥L2(Γϵ)d ≤ Cϵ
2m+1−d

2 ,

(ii) |V |
H

1
2 (Γϵ)d
≤ Cϵ

2m+2−d
2 ,

(iii) ∥∂ V∥L2(Γϵ)d×d ≤ Cϵ
2m+3−d

2 ,

(iv) ∥∂ V∥L2(Rd\Dϵ)d×d ≤ Cϵ
2m+2−d

2 , if m> d
2 − 1.

Proof. (i) Let M := inf
x∈Γ |x − x0|> 0 and ϵ > 0 sufficiently small, such that the leading term of V dom-

inates the remainder for x ∈ Γϵ. This is possible, since x0 /∈ Γ and therefore the inflated boundary
Γϵ tends to infinity for ϵ↘ 0. We thus conclude

∥V∥2L2(Γϵ)d
=

�
Γϵ

|V |2 dS ≤ |Γϵ|(ϵ−1M)−2m ≤ Cϵ1−d+2m. (11.21)

Now taking the square root shows the result.
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(ii) Let 0 < r1 < r2 such that ∂ D ⊂ S, where S := Br2
(x0) \ Br1

(x0). Additionally, let ϵ > 0 sufficiently
small, such that ρ < ϵ−1r1. Now we apply a change of variables to integrate over the fixed do-
main and split the norm into two terms, which are treated separately. Therefore, fix some δ > 0
sufficiently small. Then

|V |2
H

1
2 (∂Dϵ)d

=

�
∂Dϵ

�
∂Dϵ

|V (x)− V (y)|2
|x − y |d dSy dSx

=ϵ2−2d

�
∂ D

�
∂ D

|V (T−1
ϵ (x))− V (T−1

ϵ (y))|2
|T−1
ϵ (x)− T−1

ϵ (y)|d dSy dSx

=ϵ2−d

�
∂ D

�
∂ D

|V (T−1
ϵ (x))− V (T−1

ϵ (y))|2
|x − y|d dSy dSx

=ϵ2−d

�
∂ D

�
∂ D\Bδ(x)

|V (T−1
ϵ (x))− V (T−1

ϵ (y))|2
|x − y|d dSy dSx (11.22)

+ ϵ2−d

�
∂ D

�
∂ D∩Bδ(x)

|V (T−1
ϵ (x))− V (T−1

ϵ (y))|2
|x − y |d dSy dSx . (11.23)

In order to compute the first term (11.22), we consider for each pair (x , y) ∈ ∂D× ∂D a smooth
path ϕx ,y : [0,1] → S satisfying ϕx ,y(0) = x and ϕx ,y(1) = y . Since V is smooth in T−1

ϵ (S), we
can apply the mean value theorem to the function F(t) := V (T−1

ϵ (ϕx ,y(t))). Taking into account
∂ (T−1

ϵ ) = ϵ
−1 Id entails

V (T−1
ϵ (y))− V (T−1

ϵ (x)) =

� 1
0

ϵ−1∂ V (T−1
ϵ (ϕx ,y(s)))ϕ

′
x ,y(s) ds. (11.24)

Thus, by Hölder’s inequality we conclude

|V (T−1
ϵ (y))− V (T−1

ϵ (x))| ≤ ϵ−1∥∂ V (T−1
ϵ (ϕx ,y(·)))∥L∞(0,1)d×d∥ϕ′x ,y∥L1(0,1)d . (11.25)

Since this inequality holds for every smooth path ϕx ,y connecting x and y , the estimate holds
for dS(x , y) := inf

ϕx ,y [0,1]→S
∥ϕ′x ,y∥L1(0,1)d . Furthermore, since S is bounded and path connected, the

following estimate holds (see [44, Theorem 5.8]):

dS(x , y)≤ C |x − y| for x , y ∈ S̄, (11.26)

for some constant C > 0 that only depends on S. Additionally, considering the representation
formula of V , we have |∂ V (x)| = c2|x |−m−1 + � (|x |−m−2). Hence, choosing ϵ > 0 small enough,
such that the leading term dominates the remainder, we get

∥∂ V (T−1
ϵ (ϕx ,y(s)))∥L∞(0,1)d×d ≤max

z∈S̄
|∂ V (T−1

ϵ (z))| ≤ Cϵm+1. (11.27)
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As a result, we conclude

ϵ2−d

�
∂D

�
∂D\Bδ(x)

|V (T−1
ϵ (y))− V (T−1

ϵ (x))|2
|x − y |d dSy dSx

≤ ϵ−d

�
∂D

�
∂D\Bδ(x)

Cϵ2m+2|x − y |2
|x − y|d dSy dSx

≤ ϵ−d

�
∂D

�
∂D\Bδ(x)

Cϵ2m+2

δd−2
dSy dSx

≤ Cϵ2m+2−d .

(11.28)

The key here was to choose the set S such that T−1
ϵ ◦ϕx ,y([0, 1]) ⊂ Bρ(0)c for every path ϕx ,y .

The second term (11.23) can be estimated using a straight line, which connects x ∈ ∂D and y ∈
∂D. Therefore, let ϕx ,y(t) := x + t(y − x), for t ∈ [0,1]. Since we only need to consider (x , y) ∈
∂D × ∂D such that |x − y| < δ, T−1

ϵ ◦ ϕx ,y([0,1]) ⊂ Bρ(0)c can be guaranteed by choosing δ
sufficiently small. Again, an application of the mean value theorem yields

|V (T−1
ϵ (x))− V (T−1

ϵ (y))|2 ≤ ϵ−2 max
z∈S̄δ
|∂ V (T−1

ϵ (z))|2|x − y |2, (11.29)

where Sδ :=
/

x∈∂D Bδ(x). Furthermore, an estimate similar to (11.27) yields

max
z∈S̄δ
|∂ V (T−1

ϵ (z))|2 ≤ Cϵ2m+2. (11.30)

Plugging this estimate into (11.23) yields

ϵ2−d

�
∂D

�
∂D∩Bδ(x)

|V (T−1
ϵ (x))− V (T−1

ϵ (y))|2
|x − y|d dSy dSx

≤ ϵ−d

�
∂D

�
∂D∩Bδ(x)

max
z∈S̄δ
|∂ V (T−1

ϵ (z))|2
|x − y|d−2

dSy dSx

≤ Cϵ2m+2−d

�
∂D

�
∂D∩Bδ(x)

1
|x − y|d−2

d yd x .

(11.31)

To finish our proof, we need to show that the integral on the right hand side is finite. Therefore,
let A j(x) := B2(1− j)δ(x) \ B2− jδ(x), for j ∈ N. Hence,

Bδ(x) =
.
j≥1

A j(x).
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Now we can split the inner integral into layers according to these sets:�
∂D∩Bδ(x)

1
|x − y|d−2

d y =
,
j≥1

�
∂D∩A j(x)

1
|x − y |d−2

d y

≤,
j≥1

�
∂D∩A j(x)

1
[2− jδ]d−2

d y

≤,
j≥1

2 jd−2 jδ2−d |A j(x)|

= δ2−d
,
j≥1

2 jd−2 j[C(2(1− j)dδd − 2− jdδd)]

= δ2C
,
j≥1

2 jd−2 j− jd[2− 1] = C
,
i≥1

�
1
4

$ j
<∞.

(11.32)

Hence, combining (11.28) and (11.31) and using monotonicity of the seminorm, i.e.

A⊂ B⇒ |V |2
H

1
2 (A)d
≤ |V |2

H
1
2 (B)d

, (11.33)

the result follows.

(iii) Similarly to (i), let M := inf
x∈Γ |x − x0|> 0 and ϵ > 0 sufficiently small, such that the leading term of

∂ V dominates the remainder for x ∈ Γϵ. This yields

∥∂ V∥2L2(Γϵ)d×d =

�
Γϵ

|∂ V |2 dS ≤ |Γϵ|(ϵ−1M)−2m−2 ≤ Cϵ1−d+2m+2. (11.34)

Hence, we conclude (iii).

(iv) For ϵ > 0 sufficiently small we have�
Rd\Dϵ
|∂ V |2 d x ≤
�

Rd\Bϵ−1 r (0)
|∂ V |2 d x ≤ C

� ∞
ϵ−1R

rd−2m−2 dr = ϵ2m+2−d , (11.35)

where R> 0 is a fixed radius such that Bϵ−1r(0) ⊂ Dϵ. This shows (iv) and thus finishes the proof.

12 Analysis of the perturbed state equation

In this section we derive an asymptotic expansion of the state variable. Therefore, recall the setting:

• D ⊂ Rd is an open and bounded Lipschitz domain,

• Γ ⊂ Rd with |Γ |> 0,

• ω ⊂ Rd open, bounded and connected, with C1 boundary contains the origin,
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• Ω = �,
• x0 ∈ D,

• for ϵ > 0 sufficiently small Tϵ(x) = x0 + ϵx for all x ∈ Rd .

With these notations, the perturbed set (cf. (9.1)) is given as

Ωϵ =ωϵ := Tϵ(ω). (12.1)

We denote the perturbed state variable uϵ ∈ H1(D)d as the unique solution to (9.7) with Ω =ωϵ, i.e.�
D

Aωϵϵ(uϵ) : ϵ(ϕ) d x =

�
D

fωϵ ·ϕ d x +

�
Γ N

gN ·ϕ dS for all ϕ ∈ H1
Γ (D)

d ,

uϵ =gD on Γ .
(12.2)

Similarly, we denote the unperturbed state variable u0 ∈ H1(D)d as the unique solution to (9.7) with
Ω = �, i.e. �

D

A2ϵ(u0) : ϵ(ϕ) d x =

�
D

f2 ·ϕ d x +

�
Γ N

gN ·ϕ dS for all ϕ ∈ H1
Γ (D)

d ,

u0 =gD on Γ .
(12.3)

Assumption B. We henceforth assume that u0 ∈ C3(Bδ(x0))d for a small radius δ > 0.

Note that this can be achieved by assuming enough regularity on the data. In what follows, we are
going to derive the asymptotic expansion of uϵ using the compound layer method; see [81], [80]. We
note that this expansion has already been computed in [32] by means of a Green’s function and earlier
in [11] for fΩ = 0.
The compound layer method is based on the strategy to approximate the perturbed variable uϵ by u0
and introduce a sequence of corrector variables; boundary layer correctors and regular correctors.
While boundary layer correctors aim to approximate the error in the vicinity of the perturbation x0,
they introduce an error on the boundary. This error in turn is corrected by regular correctors, which are
homogeneous solutions to the underlying PDE. Hence an alternating interplay between both corrector
types will increase the accuracy of the approximation.
While regular correctors are solutions to PDEs on the fixed domain D, boundary layer correctors solve
exterior problems on the whole domain Rd . In order to guarantee solvability of these equations we need
to introduce an appropriate function space:

Definition 12.1. For d ≥ 1 and 1< p <∞ we define

BLp(R
d)d := {v ∈W 1,p

loc (R
d)d | ∂ v ∈ Lp(R

d)d×d}. (12.4)

The Beppo-Levi space
�
ḂLp(Rd)d ,∥ · ∥BLp

"
is defined by

ḂLp(R
d)d :=BLp(R

d)d \Rd , (12.5)

∥v∥BLp
:=∥∂ v∥L2(Rd )d×d for all v ∈ ḂLp(R

d)d . (12.6)
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Here, \Rd indicates that we quotient out the constant functions. It can be shown that for p = 2
the Beppo-Levi space is a Hilbert space and C∞c (Rd)d \ Rd is dense in ḂLp(Rd)d (cf. [22, 46, 89]). An
alternative to tackle the exterior problem are weighted Sobolev spaces. For more details we refer to [105].
With these introductory notes we are now able to move on to the asymptotic analysis.

Lemma 12.2. Let uϵ, u0 be defined in (12.2) and (12.3), respectively. Then there is a constant C > 0
independent of ϵ, such that for ϵ > 0 sufficiently small there holds

∥uϵ − u0∥H1(D)d ≤ Cϵ
d
2 . (12.7)

Proof. Subtracting (12.2) for ϵ > 0 and (12.3) yields�
D

Aωϵϵ(uϵ − u0) : ϵ(ϕ) d x =

�
ωϵ

(A2 −A1)ϵ(u0) : ϵ(ϕ) d x

+

�
ωϵ

( f1 − f2) ·ϕ d x for all ϕ ∈ H1
Γ (D)

d .
(12.8)

Therefore, testing with ϕ := uϵ − u0 ∈ H1
Γ (D)

d , applying Korn’s inequality to the gradient term on the
left hand side followed by Friedrich’s inequality and using Hölder’s inequality to estimate the right hand
side, leads to

∥uϵ − u0∥2H1(D)d ≤ C
�∥(A2 −A1)ϵ(u0)∥L2(ωϵ)d×d + ∥ f1 − f2∥L2(ωϵ)d

!∥uϵ − u0∥H1(D)d , (12.9)

for a positive constant C > 0. In view of Assumption B, we have u0 ∈ C3(Bδ(x0)) for δ > 0 small enough
and thus (12.9) can be further estimated to obtain

∥uϵ − u0∥H1(D)d ≤ C
)
ωϵ(∥(A2 −A1)ϵ(u0)∥C(ωϵ)d×d + ∥ f1 − f2∥C(ωϵ)d ). (12.10)

Now, the result follows from
*|ωϵ|=*|ω|ϵ d

2 .

Definition 12.3. For almost every x ∈ D and ϵ > 0 small we define the first variation of the state uϵ by

U (1)ϵ (x) :=
�uϵ − u0

ϵ

#
◦ Tϵ(x). (12.11)

The second variation of uϵ is defined by

U (2)ϵ (x) :=
U (1)ϵ (x)− U (1)(x)− ϵd−1u(1) ◦ Tϵ

ϵ
for ϵ > 0. (12.12)

More generally, we define the (i + 1)-th variation of uϵ for i ≥ 2 by

U (i+1)
ϵ (x) :=

U (i)ϵ (x)− U (i)(x)− ϵd−2u(i) ◦ Tϵ
ϵ

for ϵ > 0. (12.13)
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Here, U (i) : Rd → Rd are the previously mentioned boundary layer correctors and u(i) : D→ Rd are
regular correctors. Extending uϵ and u0 outside of D by a continuous extension operator E : H1(D)d →
H1(Rd)d , one can view U (1)ϵ as an element of the Beppo-Levi space BL2(Rd)d . This is a consequence of
the estimate

∥∂ U (1)ϵ ∥L2(Rd )d×d ≤ ∥∂ U (1)ϵ ∥L2(Dϵ)d×d ≤ ∥U (1)ϵ ∥ϵ ≤ C , (12.14)

which is based on Lemma 12.2 and the continuity of the extension operator. Here, as well as in the
upcoming analysis we omit the extension operator E to allow a clearer notation. Note that in the special
case Γ = ∂D, an extension of U (1)ϵ by 0 outside of D is sufficient.
In the following, we show that the first variation of the state converges to a function U ∈ BL2(Rd)d and
determine an equation satisfied by this limit. The next Lemma helps us to handle the inhomogeneous
Dirichlet boundary condition on Γϵ.

Lemma 12.4. Let A : Rd×d → Rd×d be uniformly positive definite, Fϵ : H1
Γϵ
(Dϵ)d → R be a linear and

continuous functional with respect to ∥ · ∥ϵ and gϵ ∈ H
1
2 (Γϵ)d . Then there exists a unique Vϵ ∈ H1(Dϵ)d ,

such that �
Dϵ

Aϵ(Vϵ) : ϵ(ϕ) d x = Fϵ(ϕ) for all ϕ ∈ H1
Γϵ
(Dϵ)

d , (12.15)

Vϵ|Γϵ = gϵ. (12.16)

Furthermore, there exists a constant C > 0 such that

∥Vϵ∥ϵ ≤ C(∥Fϵ∥+ ϵ 1
2 ∥gϵ∥L2(Γϵ)d + |gϵ|H 1

2 (Γϵ)d
). (12.17)

Proof. Let aϵ(u, v) :=
�
Dϵ

Aϵ(u) : ϵ(v) d x , for u, v ∈ H1(Dϵ)d . Thanks to our assumption, A is uniformly

positive definite and thus one readily checks that aϵ is an elliptic and continuous bilinear form on H1
Γϵ
(Dϵ)d

endowed with the scaled norm ∥ · ∥ϵ. Furthermore, let ZΓϵ denote the right-inverse extension operator of
the trace operator TΓϵ and define Gϵ := ZΓϵ(gϵ) ∈ H1(Dϵ)d . Now consider F̃ϵ(ϕ) := Fϵ(ϕ) − aϵ(Gϵ,ϕ).
Since

|F̃ϵ(ϕ)| ≤ |Fϵ(ϕ)|+ |aϵ(Gϵ,ϕ)|
≤ C∥Fϵ∥∥ϕ∥ϵ + C∥Gϵ∥ϵ∥ϕ∥ϵ ≤ C∥ϕ∥ϵ for all ϕ ∈ H1

Γϵ
(Dϵ)

d ,
(12.18)

for a constant C > 0, F̃ϵ is continuous with respect to ∥ · ∥ϵ. Thus, by the Lax-Milgram theorem, there
exists a unique uϵ ∈ H1

Γϵ
(Dϵ)d , such that

aϵ(uϵ,ϕ) = F̃ϵ(ϕ) for all ϕ ∈ H1
Γϵ
(Dϵ)

d . (12.19)

Hence, we conclude that Vϵ := uϵ + Gϵ satisfies (12.15) and (12.16). Uniqueness is guaranteed by the
ellipticity of aϵ. Applying the triangle inequality and using the continuity of ZΓϵ to estimate ∥Gϵ∥ϵ yields

∥Vϵ∥ϵ ≤ ∥uϵ∥ϵ + ∥Gϵ∥ϵ ≤ C(∥F̃ϵ∥+ ∥Gϵ∥ϵ)≤ C(∥Fϵ∥+ ∥Gϵ∥ϵ)
≤ C(∥Fϵ∥+ ϵ 1

2 ∥gϵ∥L2(Γϵ)d + |gϵ|H 1
2 (Γϵ)d

),

which shows (12.17) and thus finishes the proof.
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The subsequent analysis heavily relies on the knowledge of the fundamental solution Γγ,µ of the Lamé
system. We thus recall that Γγ,µ admits the following representation [8], [9, Lemma 3.3.2]

Γγ,µ(x)i j =



γ+3µ

4πµ(γ+2µ)

�− log |x |δi j +
γ+µ
γ+3µ

x i x j

|x |2
"

for d = 2,
γ+3µ

8πµ(γ+2µ)

�
1
|x |δi j +

γ+µ
γ+3µ

x i x j

|x |3
"

for d = 3.
(12.20)

Lemma 12.5. There exists a unique solution [U] ∈ ḂL2(Rd)d to�
Rd

Aωϵ([U]) : ϵ(ϕ) d x =

�
ω

(A2 −A1)ϵ(u0)(x0) : ϵ(ϕ) d x for all ϕ ∈ ḂL2(R
d)d . (12.21)

Moreover, there exists a representative U (1) ∈ [U], which satisfies pointwise for |x | →∞:

U (1)(x) = R(1)(x) + � (|x |−d), (12.22)

where R(1) : Rd → Rd satisfies

|R(1)(x)|=
	

b2|x |−1 for d = 2,

b3|x |−2 for d = 3,
(12.23)

for some constants b2, b3 ∈ R.

Proof. Since the domain of integration is bounded, the right hand side of (12.21) is continuous with
respect to ∥ · ∥ḂL2

. Hence, unique solvability follows from the Lemma of Lax-Milgram. The only thing left
to show is the asymptotic behaviour (12.22) of U (1). Therefore, we first note that U (1) can be characterised
by the following set of equations:

−div(A1ϵ(U
(1))) = 0 in ω, (12.24)

−div(A2ϵ(U
(1))) = 0 in ω̄c, (12.25)

[U (1)]+ = [U (1)]− on ∂ω, (12.26)

[A1ϵ(U
(1))n]+ − [A2ϵ(U

(1))n]− = (A2 −A1)ϵ(U
(1))(x0)n on ∂ω, (12.27)

where n denotes the normal vector on ∂ω. In [9, p.76, Theorem 3.3.8] it is shown that there are f , g ∈
L2(∂ω)d such that

[� 1
ω f ]+ − [� 2

ω g]− = 0 on ∂ω,

[A1ϵ(� 1
ω f )n]+ − [A2ϵ(� 2

ω g)n]− = (A2 −A1)ϵ(U
(1))(x0)n on ∂ω,

(12.28)

where � i
ω f denotes the single layer potential on ∂ω with respect to the fundamental solution Γi , i.e.

� i
ωh(x) :=

�
∂ω

Γi(x − y)h(y) dS(y), (12.29)

for i ∈ {1, 2} and a function h ∈ L2(∂ω)d . Additionally, since
�
∂ω
(A2−A1)ϵ(U (1))(x0)n dS = 0, it follows

that
�
∂ω

g dS = 0 (cf. [9, p.76, Theorem 3.3.8]). Thus,

U (1) :=

	� 1
ω f in ω,

� 2
ω g in ω̄c,
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12 Analysis of the perturbed state equation

satisfies (12.24)-(12.27). Furthermore, considering
�
∂ω

g dS = 0 and the asymptotic behaviour of the
fundamental solution Γ2, a Taylor expansion of Γ2(x− y) in y = 0 yields the desired asymptotic behaviour
(12.22).

The next result covers the first order asymptotic expansion of the state variable.

Theorem 12.6. Let U (1)ϵ be as in Definition 12.3 and α ∈ (0, 1). There exists a constant C > 0 independent
of ϵ such that

∥U (1)ϵ − U (1)∥ϵ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3,
(12.30)

for ϵ > 0 sufficiently small.

Proof. We start by deriving an equation for U (1)ϵ . For this purpose, we change variables in (12.8) to obtain�
Dϵ

Aωϵ(U
(1)
ϵ ) : ϵ(ϕ) d x =

�
ω

(A2 −A1)ϵ(u0) ◦ Tϵ : ϵ(ϕ) d x

+ ϵ

�
ω

( f1 − f2) ◦ Tϵ ·ϕ d x for all ϕ ∈ H1
Γϵ
(Dϵ)

d .

(12.31)

Splitting the integral on the left hand side of (12.21), integrating by parts and using div(A2ϵ(U (1))) = 0
in ω̄c yields�

Dϵ

Aωϵ(U
(1)) : ϵ(ϕ) d x =

�
ω

(A2 −A1)ϵ(x0) : ϵ(ϕ) d x −
�

Rd\Dϵ
A2ϵ(U

(1)) : ϵ(ϕ̃) d x

=

�
ω

(A2 −A1)ϵ(x0) : ϵ(ϕ) d x −
�
Γ N
ϵ

A2ϵ(U
(1))ñ · ϕ̃ dS

+

�
Rd\Dϵ

div(A2ϵ(U
(1))) · ϕ̃ d x

=

�
ω

(A2 −A1)ϵ(x0) : ϵ(ϕ) d x +

�
Γ N
ϵ

A2ϵ(U
(1))n ·ϕ dS,

(12.32)

where ϕ ∈ H1
Γϵ
(Dϵ)d , ϕ̃ denotes an extension to the whole domain and ñ denotes the outer normal vector

on the boundary of Rd \Dϵ. Subtracting (12.31) and (12.32) results in�
Dϵ

Aωϵ(U
(1)
ϵ − U (1)) : ϵ(ϕ) d x =

�
ω

(A2 −A1)[ϵ(u0) ◦ Tϵ − ϵ(u0)(x0)] : ϵ(ϕ) d x

+ ϵ

�
ω

( f1 − f2) ◦ Tϵ ·ϕ d x

−
�
Γ N
ϵ

A2ϵ(U
(1))n ·ϕ dS,

(12.33)
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12 Analysis of the perturbed state equation

for all ϕ ∈ H1
Γϵ
(Dϵ)d . Next, we apply Lemma 12.4 to Vϵ := U (1)ϵ − U (1), gϵ := −U (1)|Γϵ and F1

ϵ defined as
the right hand side of (12.33). Thus, we conclude that there exists a constant C > 0, such that

∥U (1)ϵ − U (1)∥ϵ ≤ C(∥F1
ϵ ∥+ ϵ 1

2 ∥U (1)∥L2(Γϵ)d + |U (1)|H 1
2 (Γϵ)d

). (12.34)

To finish our proof, we need to estimate the norms of F1
ϵ and U (1), which appear in (12.34). For the sake

of clarity, we split the functional F1
ϵ according to (12.33) and treat each term separately.

Let ϕ ∈ H1
Γϵ
(Dϵ). Throughout this proof, C ∈ R denotes a positive constant independent of ϵ.

• At first, we consider
�
ω
(A2 −A1)[ϵ(u0) ◦ Tϵ − ϵ(u0)(x0)] : ϵ(ϕ) d x . Since u0 ∈ C3(Bδ(x0)), we get

ϵ(u0)(x0 + ϵx) = ϵ(u0)(x0) + ∂ ϵ(u0)(x0)ϵx + o(ϵx). (12.35)

Combined with an application of Hölder’s inequality, we conclude�����
ω

[ϵ(u0) ◦ Tϵ − ϵ(u0)(x0)] : ϵ(ϕ) d x

����≤ C∥ϵ(u0) ◦ Tϵ − ϵ(u0)(x0)∥L2(ω)∥ϵ(ϕ)∥L2(ω)d×d

≤ Cϵ∥ϵ(ϕ)∥L2(ω)d×d ≤ Cϵ∥ϕ∥ϵ.
(12.36)

• Next, we consider ϵ
�
ω
( f1 − f2) ◦ Tϵ · ϕ d x . Since we want to apply the Gagliardo-Nirenberg in-

equality, we need to distinguish between dimensions d = 2 and d = 3.
For d = 3 an application of Hölder’s inequality with respect to p = 2∗ and Lemma 11.5, item (ii)
yield ����ϵ�

ω

( f1 − f2) ◦ Tϵ ·ϕ d x

����≤ Cϵ∥ϕ∥ϵ. (12.37)

For d = 2 we apply Hölder’s inequality with respect to p = (2−δ)∗ for δ > 0 sufficiently small and
Lemma 11.5, item (iii) to obtain����ϵ�

ω

( f1 − f2) ◦ Tϵ ·ϕ d x

����≤ Cϵ1−α∥ϕ∥ϵ. (12.38)

for a constant C > 0 and α > 0 arbitrarily small.

• Finally, the last term can be estimated using Hölder’s inequality and the scaled trace inequality
(Lemma 11.5 item (iv)):�����

�
Γ N
ϵ

A2ϵ(U
(1))n ·ϕ dS

�����≤ C∥ϵ(U (1))∥L2(∂Dϵ)d×d∥ϕ∥L2(∂Dϵ)d (12.39)

≤ Cϵ− 1
2 ∥ϵ(U (1))∥L2(∂Dϵ)d×d∥ϕ∥ϵ. (12.40)

Thus, Lemma 11.6, item (iii) with m= d − 1 yields�����
�
Γ N
ϵ

A2ϵ(U
(1))n ·ϕ dS

�����≤ Cϵ
d
2 ∥ϕ∥ϵ. (12.41)
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Combining these estimates results in

∥F1
ϵ ∥ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3,
(12.42)

for a constant C > 0 and α > 0 small. Furthermore, Lemma 11.6 item (i) and (ii) with m= d − 1 entail

∥U (1)∥L2(Γϵ)d ≤ Cϵ
d−1

2 , |U (1)|
H

1
2 (Γϵ)d
≤ Cϵ

d
2 . (12.43)

Now plugging (12.42) and (12.43) into (12.34) finishes the proof.

Note that for the first order approximation, boundary layer correctors are sufficient to achieve an
appropriate approximation of the state variable. Yet, as it is visualised in the proof (cf. (12.43) and the
last term in (12.33)), these introduce an error on the boundary. Even though this error is sufficiently small
for the time being, it will reappear in the second order approximation, where two regular correctors are
required.

Remark 12.7. At this point, we want to address some differences that occur, when the general case Ω ̸= �
is considered. Whilst the boundary layer corrector is defined identically in the general case, it introduces
an additional error in the domain Ωϵ := T−1

ϵ (Ω). Since by our assumption x0 /∈ Ω̄, Ωϵ is shifted to the
exterior as ϵ ↘ 0 (cf. Figure 11). Hence, remainder estimates for volume terms of U (1) in the exterior
domain similarly to Lemma 11.5 enable an analogous analysis of the generalised problem.

Corollary 12.8. There holds
lim
ϵ↘0

U (1)ϵ = U (1) in L1(ω)
d . (12.44)

Proof. Let α ∈ (0, 1) for d = 2 and α= 0 for d = 3. Furthermore, for p ∈ (1,∞) let p′ denote the Hölder
conjugate, i.e. p′ = p

1−p . Hölder’s inequality and Lemma 11.5 item (ii), (iii) imply

∥U (1)ϵ − U (1)∥L1(ω)d ≤ ∥U (1)ϵ − U (1)∥L(2−α)∗ (ω)d∥1∥L[(2−α)∗]′ (ω)d ≤ Cϵ−α∥U (1)ϵ − U (1)∥ϵ, (12.45)

since ω is bounded. Choosing α sufficiently small, the result follows from Theorem 12.6.

Remark 12.9. Reformulating the expression U1
ϵ − U1 leaves us with the first order expansion

uϵ(x)≈ u0(x) + ϵU
1(T−1

ϵ (x)),

where

∥uϵ − [u0 + ϵU
1 ◦ T−1

ϵ ]∥H1(D)d =

	� (ϵ d
2+1−α) for d = 2,

� (ϵ d
2+1) for d = 3.

(12.46)

We continue with the second order asymptotic expansion of uϵ. We therefore require a boundary layer
corrector U (2), which acts similarly to U (1) but on a higher order. Furthermore, as we have just mentioned,
we need to introduce two regular correctors. One for each boundary layer corrector, respectively. We
specify their definition in the next lemma.
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12 Analysis of the perturbed state equation

Lemma 12.10. We have the following existence results:

• There is a unique solution u(1) ∈ H1(D)d with u(1)(x) = −R(1)(x − x0) on Γ , such that�
D

A2ϵ(u
(1)) : ϵ(ϕ) d x = −

�
Γ N

A2ϵ(R
(1))(x − x0)n ·ϕ dS, (12.47)

for all ϕ ∈ H1
Γ (D)

d .

• There is a solution [U] ∈ ḂLp(Rd)d to�
Rd

Aωϵ([U]) : ϵ(ϕ) d x =

�
ω

(A2 −A1)[∂ ϵ(u0)(x0)x] : ϵ(ϕ) d x , (12.48)

for all ϕ ∈ ḂLp′(Rd)d , where

p =

	
2+δ for d = 2,

2 for d = 3,

and δ > 0 small. Moreover, there exists a representative Û (2) ∈ [U], which satisfies pointwise for
|x | →∞:

Û (2)(x) = R̂(2)(x) + � (|x |1−d), (12.49)

where R̂(2) : Rd → Rd satisfies

|R̂(2)(x)|=
	

ĉ2 ln(|x |) for d = 2,

ĉ3|x |−1 for d = 3,
(12.50)

for some constants ĉ2, ĉ3 ∈ R.

• There exists a solution [U] ∈ ḂLp(Rd)d to�
Rd

Aωϵ([U]) : ϵ(ϕ) d x =

�
ω

[( f1(x0)− f2(x0))] ·ϕ d x , (12.51)

for all ϕ ∈ C1
c (R

d)d , where

p =

	
2+δ for d = 2,

2 for d = 3,

and δ > 0 small. Moreover, there exists a representative Ũ (2) ∈ [U], which satisfies pointwise for
|x | →∞:

Ũ (2)(x) = R̃(2)(x) + � (|x |1−d), (12.52)

where R̃(2) : Rd → Rd satisfies

|R̃(2)(x)|=
	

c̃2 ln(|x |) for d = 2,

c̃3|x |−1 for d = 3,
(12.53)

for some constants c̃2, c̃3 ∈ R.
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12 Analysis of the perturbed state equation

• There is a unique solution u(2) ∈ H1(D)d with u(2)(x) = −R(2)(x − x0) on Γ , such that�
D

A2ϵ(u
(2)) : ϵ(ϕ) d x = −

�
Γ N

A2ϵ(R
(2))(x − x0)n ·ϕ dS, (12.54)

for all ϕ ∈ H1
Γ (D)

d , where R(2) = R̂(2) + R̃(2).

Proof. Unique solvability of (12.47) and (12.54) follows from the Lax-Milgram theorem. In order to show
the existence and the desired representation formula of Ũ (2), we use single layer potentials. Note that a
solution U ∈ BLp(Rd)d of (12.51) can be characterised by the following set of equations:

−div(A1ϵ(U)) = f1(x0)− f2(x0) in ω, (12.55)
−div(A2ϵ(U)) = 0 in ω̄c, (12.56)

[U]+ = [U]− on ∂ω, (12.57)
[A1ϵ(U)n]

+ = [A2ϵ(U)n]
− on ∂ω. (12.58)

Now consider the volume potential u(x) :=
�
ω
Γ1(x− y)[( f1(x0)− f2(x0))] d y , for x ∈ω, which satisfies

the inhomogeneous equation inside ω. By [9, p.76, Theorem 3.3.8] there are f , g ∈ L2(∂ω)d , such that

[� 1
ω f ]+ − [� 2

ω g]− = −u|∂ω on ∂ω, (12.59)

[A1ϵ(� 1
ω f )n]+ − [A2ϵ(� 2

ω g)n]− = −(A1ϵ(u)n)|∂ω on ∂ω. (12.60)

Finally,

Ũ (2) :=

	
u+� 1

ω f in ω,

� 2
ω g in ω̄c,

satisfies (12.55)-(12.58) and a Taylor expansion of � 2
ω g shows the asymptotic representation of (12.52).

The proof for Û (2) is similar and therefore omitted.

Based on this lemma we introduce

U (2) := Û (2) + Ũ (2), R(2) := R̂(2) + R̃(2). (12.61)

Remark 12.11. Note that the requirement for p to be greater than 2 in dimension two is necessary to
guarantee that the gradients of Ũ (2) and Û (2) are in Lp(Rd)d×d , which is not true for p = 2. In fact,
there is a solution [U] ∈ ḂL(R2)2 of (12.48), but no representative U ∈ [U] has the desired asymptotic
representation. Furthermore, it is noteworthy that Ũ (2) and Û (2) have a lower order asymptotic behaviour
compared to U (1). This is a consequence of the vanishing average

�
∂ω

g dS = 0 for the underlying
function of the single layer potential corresponding to U (1). This in turn is directly linked to the fact that
the right hand side in (12.27) is a constant. We will see in Part III of this thesis, which deals with higher
order expansions, that indeed the first order expansion for transmission problems is a special case in this
regard.

Remark 12.12. As a consequence of the equivalence relation defining the Beppo-Levi space, the function
U (2) is defined up to a constant. Thus, we are allowed to add arbitrary constants to the boundary layer
corrector U (2). As a result of the additive property of the leading term R(2)(x) = ln(x), we need to add the
ϵ dependent constant c ln(ϵ), with a suitable constant c ∈ R in dimension d = 2. In dimension d = 3 this
problem does not appear since the leading term |x |−1 is multiplicative and therefore can be compensated
by the factor ϵd−2 found in Definition 12.3.
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12 Analysis of the perturbed state equation

Remark 12.13. A possible approach to approximate the solution Ũ (2) of (12.51) numerically is to con-
sider for each ϵ > 0 the unique solution Kϵ ∈W 1,p

0 (D)d satisfying

ϵ2

�
D

Aωϵϵ(Kϵ) : ϵ(ϕ) d x =

�
ωϵ

[( f1(x0)− f2(x0))]ϕ d x , (12.62)

for all ϕ ∈W 1,p
0 (D)d . Applying Hölder’s inequality and the Gagliardo-Nirenberg inequality for functions

with vanishing trace (cf. [51, p. 279, Theorem 3]) entails�����
�
ωϵ

[( f1(x0)− f2(x0))]ϕ d x

�����≤ |ωϵ| 1
((p′)∗)′ ∥∂ ϕ∥Lp′ (D)d×d . (12.63)

Lemma 11.4 item (ii) yields

ϵ2∥∂ Kϵ∥Lp(D)d×d = ϵ
d
p+1∥∂ (Kϵ ◦ Tϵ)∥Lp(Dϵ)d×d .

Furthermore, a detailed computation shows

|ωϵ|
1

((p′)∗)′ = Cϵ
d+p

p ,

for a constant C > 0. Hence, Kϵ◦Tϵ is bounded in ḂLp and therefore has a weakly convergent subsequence
with limit [U] satisfying (12.51).

We are now able to state the main theorem covering the second order asymptotic expansion (cf.
Theorem 12.6).

Theorem 12.14. Let U (2)ϵ be as in Definition 12.3 and α ∈ (0,1).

(i) There is a constant C > 0 independent of ϵ such that

∥U (2)ϵ − U (2) − ϵd−2u(2) ◦ Tϵ − c ln(ϵ)∥ϵ ≤ Cϵ1−α for d = 2, (12.64)

∥U (2)ϵ − U (2) − ϵd−2u(2) ◦ Tϵ∥ϵ ≤ Cϵ for d = 3, (12.65)

for ϵ > 0 sufficiently small and a suitable constant c ∈ R.

(ii) There holds
lim
ϵ↘0
∥ϵ−1(∂ U (1)ϵ − ∂ U (1))− ∂ U (2)∥L2(ω)d×d = 0. (12.66)

Proof. ad (i): Similarly to the estimation of the first order expansion, we aim to apply Lemma 12.4 in
order to handle the inhomogeneous Dirichlet boundary condition on Γϵ. Hence, we start by deriving an
equation satisfied by ϵU (3)ϵ = U (2)ϵ −U (2)−ϵd−2u(2) ◦Tϵ(x). Dividing (12.33) by ϵ > 0, changing variables
in (12.47) and (12.54), and integrating by parts in the exterior domain of (12.48) and (12.51) yields�

Dϵ

Aωϵ(ϵU
(3)
ϵ ) : ϵ(ϕ) d x = F2

ϵ (ϕ) + F3
ϵ (ϕ) for all ϕ ∈ H1

Γϵ
(Dϵ), (12.67)
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12 Analysis of the perturbed state equation

where

F2
ϵ :=

�
ω

[( f1 ◦ Tϵ − f2 ◦ Tϵ)− ( f1(x0)− f2(x0))] ·ϕ d x

+

�
ω

(A2 −A1)[ϵ
−1(ϵ(u0) ◦ Tϵ − ϵ(u0)(x0))− ∂ ϵ(u0)(x0)x] : ϵ(ϕ) d x

+ ϵd−1

�
ω

(A2 −A1)[ϵ(u
(1) ◦ Tϵ) + ϵ(u(2) ◦ Tϵ)] : ϵ(ϕ) d x ,

(12.68)

F3
ϵ :=− ϵ−1

�
Γ N e
[A2ϵ(U

(1))− ϵdA2ϵ(R
(1))(ϵx)]n ·ϕ dS

−
�
Γ N e
[A2ϵ(U

(2))− ϵd−1A2ϵ(R
(2))(ϵx)]n ·ϕ dS.

(12.69)

Since the bilinear form only depends on the symmetrised gradient of U (3)ϵ , one readily checks that ϵU (3)ϵ +
c ln(ϵ) satisfies�

Dϵ

Aωϵ(ϵU
(3)
ϵ + c ln(ϵ)) : ϵ(ϕ) d x = F2

ϵ (ϕ) + F3
ϵ (ϕ) for all ϕ ∈ H1

Γϵ
(Dϵ). (12.70)

Now we can apply Lemma 12.4 to

Vϵ :=

	
ϵU (3)ϵ + c ln(ϵ) for d = 2,

ϵU (3)ϵ for d = 3,
(12.71)

Fϵ := F2
ϵ + F3

ϵ , (12.72)

and

gϵ :=

	
(ϵd−2R(1)(ϵx)− ϵ−1U (1))|Γϵ + (ϵd−2R(2)(ϵx)− U (2) + c ln(ϵ))|Γϵ for d = 2,

(ϵd−2R(1)(ϵx)− ϵ−1U (1))|Γϵ + (ϵd−2R(2)(ϵx)− U (2))|Γϵ for d = 3.
(12.73)

Hence, we get the a priori estimate

∥Vϵ∥ϵ ≤ C(∥Fϵ∥+ ϵ 1
2 ∥gϵ∥L2(Γϵ)d + |gϵ|H 1

2 (Γϵ)d
). (12.74)

Due to the similarity between d = 2 and d = 3, we will discuss both cases together and only highlight
the terms that have to be treated separately. Thus, if not further specified, let d ∈ {2, 3}. Again, we start
by estimating ∥Fϵ∥. Let ϕ ∈ H1

Γϵ
(Dϵ).

• A Taylor expansion of ( f1(Tϵ(x))− f2(Tϵ(x))) at x0, Hölder’s inequality and Lemma 11.5, item (ii),
(iii) entail�����

ω

[( f1 ◦ Tϵ − f2 ◦ Tϵ)− ( f1(x0)− f2(x0))] ·ϕ d x

����≤ 	Cϵ1−α∥ϕ∥ϵ for d = 2,

Cϵ∥ϕ∥ϵ for d = 3,
(12.75)

for a constant C > 0 and α > 0.
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12 Analysis of the perturbed state equation

• Since u0 is three times continuously differentiable in a neighbourhood of x0, there is a constant
C > 0, such that |ϵ−1(ϵ(u0) ◦ Tϵ − ϵ(u0)(x0)) − ∂ ϵ(u0)(x0)x | ≤ Cϵ, for x ∈ ω. Hence, Hölder’s
inequality yields�����

ω

(A2 −A1)[ϵ
−1(ϵ(u0) ◦ Tϵ − ϵ(u0)(x0))− ∂ ϵ(u0)(x0)x] : ϵ(ϕ) d x

����≤ Cϵ∥ϕ∥ϵ. (12.76)

• Furthermore, by Hölder’s inequality we get����ϵd−1

�
ω

(A2 −A1)[ϵ(u
(1) ◦ Tϵ) + ϵ(u(2) ◦ Tϵ)] : ϵ(ϕ) d x

����≤ Cϵ∥ϕ∥ϵ, (12.77)

for a constant C > 0.

Next we consider the boundary integral terms:

• We note that ϵ(U (1))−ϵdϵ(R(1))(ϵx) cancels out the leading term of U (1) on ∂D. Thus we can apply
Hölder’s inequality, Lemma 11.6 item (iii) with m= d and the scaled trace inequality (Lemma 11.5
item (v)) to conclude����ϵ−1

�
Γ N e
[A2ϵ(U

(1))− ϵdA2ϵ(R
(1))(ϵx)]n ·ϕ dS

����≤ Cϵ
d
2 ∥ϕ∥ϵ, (12.78)

for a constant C > 0.

• Similarly, we deduce from Lemma 11.6, item (iii) with m = d − 1 that there is a constant C > 0,
such that �����

Γ N e
[A2ϵ(U

(2))− ϵd−1A2ϵ(R
(2))(ϵx)]n ·ϕ dS

����≤ Cϵ
d
2 ∥ϕ∥ϵ. (12.79)

Combining the previous estimates yields

∥Fϵ∥ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3,
(12.80)

for a constant C > 0 and α > 0 small. In order to estimate the boundary term, we recall that gϵ is defined
in (12.73). Therefore, we choose the constant c ∈ R such that

R(2)(x) = R(2)(ϵx) + c ln(ϵ) in d = 2.

Then, by Lemma 11.6, item (i), (ii) with m = d and m = d − 1 respectively, there is a constant C > 0,
such that

ϵ
1
2 ∥gϵ∥L2(Γϵ)d + |gϵ|H 1

2 (Γϵ)d
≤ Cϵ

d
2 . (12.81)

Now we can plug (12.80) and (12.81) into the a priori estimate (12.74), which shows (12.64).
ad (ii): By the triangle inequality, we have

∥ϵ−1(∂ (U (1)ϵ )− ∂ (U (1)))−∂ (U (2))∥L2(ω)d×d

≤∥∂ (U (2)ϵ − U (2) − ϵd−2u(2) ◦ Tϵ)∥L2(ω)d×d

+ ϵd−1∥∂ (u(1)) ◦ Tϵ∥L2(ω)d×d + ϵd−1∥∂ (u(2)) ◦ Tϵ∥L2(ω)d×d

≤Cϵ1−α,

(12.82)

for a positive constant C and α > 0 small. This shows (ii) and thus finishes the proof.
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Corollary 12.15. In dimension d = 3 there holds

∥ϵ−1(U (1)ϵ − U (1))− U (2)∥ϵ ≤ Cϵ
1
2 , (12.83)

for ϵ > 0 sufficiently small.

Proof. The triangle inequality entails

∥ϵ−1(U (1)ϵ − U (1))− U (2)∥ϵ ≤∥U (2)ϵ − U (2) − ϵd−2u(2) ◦ Tϵ∥ϵ + ∥ϵd−2u(1) ◦ Tϵ∥ϵ
+ ∥ϵd−2u(2) ◦ Tϵ∥ϵ.

By Theorem 12.14 the first term on the right hand side can be bound by Cϵ. Furthermore, Lemma 11.4
item (iii) and Theorem 12.14 show

∥ϵd−2u(i) ◦ Tϵ∥ϵ = ϵd−2− d
2+1∥u(i)∥H1(D)d for i ∈ {1,2}. (12.84)

Now the result follows since d − 2− d
2 + 1= 1

2 .

Remark 12.16. Note that the result solely remains true in dimension 3. For d = 2 the exponent vanishes
and thus only yields uniform boundedness, but not convergence of the boundary layer correctors. Corol-
lary 12.15 states that the correctors u(1), u(2) are not necessary to achieve convergence of ϵ−1(U (1)ϵ −U (1))
in dimension d = 3. In fact, sparing the correctors results in a slower convergence of order ϵ

1
2 compared

to the increased order ϵ. We are going to make use of this result in Section 14 to compute the topological
derivatives following Amstutz’ and Delfour’s methods.

13 Analysis of the perturbed adjoint equations

In this section we examine the asymptotic behaviour of the adjoint variables. Since Delfour’s method
is based on the unperturbed adjoint equation, no further analysis is required in view of this approach.
Hence, we only have to study the asymptotic expansion of the averaged adjoint variable (10.49) and
Amstutz’ adjoint variable (10.48). In what follows, we shall start with the latter.
Nonetheless, before we start we want to recast our problem formulation in the abstract setting (cf. Section
10). With the notations therein introduced, we have the following identifications of spaces:� = H1(D)d ,
� = H1

Γ (D)
d , ū ∈ � such that ū|Γ = gD is a fixed element that realises the inhomogeneous Dirichlet

boundary conditions on Γ and thus


 = {u ∈ H1(D)d | u|Γ = gD}. (13.1)

Furthermore, we have for ϵ > 0 small and Ωϵ = Ω∪ Tϵ(ω) = Tϵ(ω)
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13 Analysis of the perturbed adjoint equations

aϵ(u, v) =

�
D

AΩϵϵ(u) : ϵ(v) d x for all u ∈ 
 , v ∈ � ,

(13.2)

fϵ(v) =

�
D

fΩϵ · v d x +

�
Γ N

gN · v dS for all v ∈ � ,

(13.3)

Jϵ(u) =γ f

�
D

fΩϵ · u d x + γg

�
D

|∂ u− ∂ ud |2 d x + γm

�
Γm

|u− um|2 dS for all u ∈ 
 .

(13.4)

13.1 Amstutz’ adjoint equation

We now investigate Amstutz’ adjoint variable. With the previous notations Amstutz’ perturbed adjoint
equation (10.48) reads: Find pϵ ∈ H1

Γ (D)
d such that�

D

Aωϵϵ(ϕ) : ϵ(pϵ) d x =− γ f

�
D

fωϵ ·ϕ d x − 2γm

�
Γm

(u0 − um) ·ϕ dS

− 2γg

�
D

[∂ u0 − ∂ ud] : ∂ ϕ d x ,

(13.5)

for all ϕ ∈ H1
Γ (D)

d and ϵ > 0 sufficiently small. Similarly, Amstutz’ unperturbed adjoint equation reads:
Find p0 ∈ H1

Γ (D)
d such that�

D

A2ϵ(ϕ) : ϵ(p0) d x =− γ f

�
D

f2 ·ϕ d x − 2γm

�
Γm

(u0 − um) ·ϕ dS

− 2γg

�
D

[∂ u0 − ∂ ud] : ∂ ϕ d x ,

(13.6)

for all ϕ ∈ H1
Γ (D)

d . Since the elastic tensors A1,A2 are symmetric, we have�
D

Aωϵϵ(ϕ) : ϵ(pϵ) d x =

�
D

Aωϵϵ(pϵ) : ϵ(ϕ) d x , (13.7)

�
D

A2ϵ(ϕ) : ϵ(p0) d x =

�
D

A2ϵ(p0) : ϵ(ϕ) d x . (13.8)

Nevertheless, we will stick to the initial formulation. This allows an easier adaptation to nonsymmetric
problems. We just observe that the elasticity tensors are self adjoint and thus A⊤i = Ai , for i ∈ {1,2}.
Remark 13.1. It is noteworthy that the ϵ dependence of Amstutz’ perturbed adjoint variable pϵ is solely
given via the coefficients Aωϵ and fωϵ . This allows an asymptotic analysis similarly to the previous section.
Indeed, the reduced ϵ dependence is a definite advantage over the averaged adjoint variable, which
requires a more delicate asymptotic treatment.
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13 Analysis of the perturbed adjoint equations

We now compute an asymptotic expansion of pϵ in a similar fashion to the direct state uϵ. Therefore
we define the variation of the adjoint state P(i)ϵ for i ≥ 1 in analogy to the definition of the variation of the
direct state (Definition 12.3), where we replace the boundary layer correctors U (i) by similar correctors
P(i) adapted to the new inhomogeneity and the regular correctors u(i) are replaced by correctors p(i)

matching P(i).

Definition 13.2. For almost every x ∈ D and ϵ > 0 small we define the first variation of the state pϵ by

P(1)ϵ (x) :=
� pϵ − p0

ϵ

#
◦ Tϵ(x). (13.9)

The second variation of pϵ is defined by

P(2)ϵ (x) :=
P(1)ϵ (x)− P(1)(x)− ϵd−1p(1) ◦ Tϵ

ϵ
for ϵ > 0. (13.10)

More generally, we define the (i + 1)-th variation of pϵ for i ≥ 2 by

P(i+1)
ϵ (x) :=

P(i)ϵ (x)− P(i)(x)− ϵd−2p(i) ◦ Tϵ
ϵ

for ϵ > 0. (13.11)

Lemma 13.3. There is a solution [P] ∈ ḂL2(Rd)d to�
Rd

Aωϵ(ϕ) : ϵ([P]) d x =

�
ω

(A2 −A1)ϵ(ϕ) : ϵ(p0)(x0) d x , (13.12)

for all ϕ ∈ ḂL2(Rd)d . Moreover, there exists a representative P(1) ∈ [P], which satisfies pointwise for
|x | →∞:

P(1)(x) = S(1)(x) + � (|x |−d), (13.13)

where S(1) : Rd → Rd satisfies

|S(1)(x)|=
	

b2|x |−1 for d = 2,

b3|x |−2 for d = 3,
(13.14)

for some constants b2, b3 ∈ R.

Proof. Using the adjoint tensor A⊤ω : Rd×d → Rd×d , we can rewrite (13.12) to get�
Rd

ϵ(ϕ) : A⊤ωϵ([P]) d x =

�
ω

ϵ(ϕ) : (A⊤2 −A⊤1 )ϵ(p0)(x0) d x . (13.15)

Thus, using single layer potentials, the proof follows the lines of Lemma 12.5.

Theorem 13.4. For α ∈ (0, 1) and ϵ > 0 sufficiently small there is a constant C > 0 independent of ϵ
such that

∥P(1)ϵ − P(1)∥ϵ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3.
(13.16)
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13 Analysis of the perturbed adjoint equations

Proof. Similarly to the analysis of the state variable, we derive an equation of the form�
Dϵ

Aωϵ(ϕ) : ϵ(P(1)ϵ − P(1)) d x = G1
ϵ (ϕ) for all ϕ ∈ H1

Γϵ
(Dϵ)

d . (13.17)

In order to compute G1
ϵ , we subtract (13.5) and (13.6) to obtain�

D

Aωϵϵ(ϕ) : ϵ(pϵ − p0) d x =

�
ωϵ

(A2 −A1)ϵ(ϕ) : ϵ(p0) d x

+ γ f

�
ωϵ

( f2 − f1) ·ϕ d x ,
(13.18)

for all ϕ ∈ H1
Γ (D)

d . Next we change variables according to the transformation y = Tϵ(x), multiply with
ϵ1−d and subtract�

Dϵ

Aωϵ(ϕ) : ϵ(P(1)) d x =

�
ω

(A2 −A1)ϵ(ϕ) : ϵ(p0)(x0) d x +

�
Γ N
ϵ

A⊤2 ϵ(P(1))n ·ϕ dS, (13.19)

to conclude �
Dϵ

Aωϵ(ϕ) : ϵ(P(1)ϵ − P(1)) d x = G1
ϵ (ϕ), (13.20)

for all ϕ ∈ H1
Γϵ
(Dϵ)d with

G1
ϵ (ϕ) =

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ(p0) ◦ Tϵ − ϵ(p0)(x0)] d x

+ ϵγ f

�
ω

( f2 − f1) ◦ Tϵ ·ϕ d x

−
�
Γ N
ϵ

A⊤2 ϵ(P(1))n ·ϕ dS.

(13.21)

Now we can find a constant C > 0, such that the following estimates hold:�����
ω

(A2 −A1)ϵ(ϕ) : [ϵ(p0) ◦ Tϵ − ϵ(p0)(x0)] d x

����≤ Cϵ∥ϕ∥ϵ, (13.22)

which follows from a Taylor’s expansion of ϵ(p0) ◦ Tϵ in x0 and Hölder’s inequality.����ϵγ f

�
ω

( f2 − f1) ◦ Tϵ ·ϕ d x

����≤ 	Cϵ1−α∥ϕ∥ϵ for d = 2,

Cϵ∥ϕ∥ϵ for d = 3,
(13.23)

which is a consequence of Hölder’s inequality and Lemma 11.5 item (ii) and (iii), respectively.�����
�
Γ N
ϵ

A⊤2 ϵ(P(1))n ·ϕ dS

�����≤ Cϵ
d
2 ∥ϕ∥ϵ, (13.24)
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13 Analysis of the perturbed adjoint equations

which follows from Hölder’s inequality, Lemma 11.5 item (iv) and Lemma 11.6, item (iii) with m= d−1.
Combining the previous estimates entails

∥G1
ϵ∥ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3.
(13.25)

In view of Lemma 12.4, we now estimate the boundary integral terms. Since P(1)ϵ |Γϵ = 0 we follow from
Lemma 11.6 item (i), (ii) with m= d − 1 that there is a constant C > 0, such that

ϵ
1
2 ∥P(1)ϵ − P(1)∥L2(Γϵ)d + |P(1)ϵ − P(1)|

H
1
2 (Γϵ)d
≤ Cϵ

d
2 . (13.26)

Thus, combining (13.25) and (13.26), an application of Lemma 12.4 shows (13.16), which finishes our
proof.

Corollary 13.5. There holds
lim
ϵ↘0

P(1)ϵ = P(1) in L1(ω)
d . (13.27)

Proof. The proof follows the lines of Corollary 12.8.

It should be noted that again, the first boundary layer corrector P(1) admits a better asymptotic decline
and thus did not necessitate a regular corrector in the previous result. We now continue with the second
order expansion. Similarly to the asymptotic expansion of the state variable, we therefore introduce a
number of correctors in the following Lemma, which approximate the first order expansion inside ωϵ
and on the boundary ∂D, respectively.

Lemma 13.6. The following results hold:

• There is a unique solution p(1) ∈ H1(D)d with p(1)(x) = −S(1)(x − x0) on Γ , such that�
D

A2ϵ(ϕ) : ϵ(p(1)) = −
�
Γ N

A⊤2 ϵ(S(1))(x − x0)n ·ϕ dS, (13.28)

for all ϕ ∈ H1
Γ (D)

d .

• There is a solution [P] ∈ ḂLp(Rd)d to�
Rd

Aωϵ(ϕ) : ϵ([P]) d x =

�
ω

(A2 −A1)ϵ(ϕ) : [∂ ϵ(p0)(x0)x] d x , (13.29)

for all ϕ ∈ ḂLp′(Rd)d , where

p =

	
2+δ for d = 2,

2 for d = 3,

and δ > 0 small. Moreover, there exists a representative P̂(2) ∈ [P], which satisfies pointwise for
|x | →∞:

P̂(2)(x) = Ŝ(2)(x) + � (|x |1−d), (13.30)
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13 Analysis of the perturbed adjoint equations

where Ŝ(2) : Rd → Rd satisfies

|Ŝ(2)(x)|=
	

ĉ2 ln(|x |) for d = 2,

ĉ3|x |−1 for d = 3,
(13.31)

for some constants ĉ2, ĉ3 ∈ R.

• There is a solution [P] ∈ ḂLp(Rd)d to�
Rd

Aωϵ(ϕ) : ϵ([P]) d x = γ f

�
ω

[ f2(x0)− f1(x0)] ·ϕ d x , (13.32)

for all ϕ ∈ C1
c (R

d)d , where

p =

	
2+δ for d = 2,

2 for d = 3,

and δ > 0 small. Moreover, there exists a representative P̃(2) ∈ [P], which satisfies pointwise for
|x | →∞:

P̃(2)(x) = S̃(2)(x) + � (|x |1−d), (13.33)

where S̃(2) : Rd → Rd satisfies

|S̃(2)(x)|=
	

c̃2 ln(|x |) for d = 2,

c̃3|x |−1 for d = 3,
(13.34)

for some constants c̃2, c̃3 ∈ R.

• There is a unique solution p(2) ∈ H1(D)d with p(2)(x) = −S(2)(x − x0) on Γ , such that�
D

A2ϵ(ϕ) : ϵ(p(2)) = −
�
Γ N

A⊤2 ϵ(S(2))(x − x0)n ·ϕ dS, (13.35)

for all ϕ ∈ H1
Γ (D)

d , where S(2) = Ŝ(2) + S̃(2).

Proof. Rewriting these equations with the help of the adjoint operator A⊤ω leads to a proof similar to
Lemma 12.10.

We henceforth use the notation

P(2) := P̂(2) + P̃(2), S(2) := Ŝ(2) + S̃(2). (13.36)

Now we are able to state our main result regarding the second order expansion of Amstutz’ adjoint
variable pϵ.
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13 Analysis of the perturbed adjoint equations

Theorem 13.7. For ϵ > 0 sufficiently small let P(2)ϵ as in Definition 13.2 and α ∈ (0, 1).

(i) There is a constant C > 0 independent of ϵ such that

∥P(2)ϵ − P(2) − ϵd−2p(2) ◦ Tϵ − c ln(ϵ)∥ϵ ≤ Cϵ1−α for d = 2, (13.37)

∥P(2)ϵ − P(2) − ϵd−2p(2) ◦ Tϵ∥ϵ ≤ Cϵ for d = 3, (13.38)

for a suitable constant c ∈ R.

(ii) For d ∈ {2,3}, there holds

lim
ϵ↘0
∥ϵ−1(∂ (P(1)ϵ )− ∂ (P(1)))− ∂ (P(2))∥L2(ω)d×d = 0. (13.39)

Proof. ad (i): In view of the auxiliary result Lemma 12.4, we seek a governing equation for the quantity
ϵP(3)ϵ = P(2)ϵ −P(2)−ϵd−2p(2)◦Tϵ. Such an equation can be found using similar techniques to the analysis of
the direct state. We start by dividing (13.20) by ϵ and subtract (13.28), (13.35), which can be formulated
on the domain Dϵ by a change of variables. Next we subtract (13.29) (13.32), whereas these equations
can be restricted to the domain Dϵ by splitting the integral over Rd and integrating by parts in the exterior
domain. These operations leave us with�

Dϵ

Aωϵ(ϕ) : ϵ(ϵP(3)ϵ ) d x = G2
ϵ (ϕ) + G3

ϵ (ϕ), (13.40)

for all ϕ ∈ H1
Γϵ
(Dϵ)d where

G2
ϵ (ϕ) =

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ−1(ϵ(p0) ◦ Tϵ − ϵ(p0)(x0))− ∂ ϵ(p0)(x0)x] d x

+ γ f

�
ω

[( f2 − f1) ◦ Tϵ − ( f2(x0)− f1(x0))] ·ϕ d x

+ ϵd−1

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ(p(1)) ◦ Tϵ + ϵ(p(2)) ◦ Tϵ] d x ,

G3
ϵ (ϕ) =− ϵ−1

�
Γ N
ϵ

[A⊤2 ϵ(P(1))− ϵdA⊤2 ϵ(S(1))(ϵx)]n ·ϕ dS

−
�
Γ N
ϵ

[A⊤2 ϵ(P(2))− ϵd−1A⊤2 ϵ(S(2))(ϵx)]n ·ϕ dS.

(13.41)

One readily checks that, similarly to proof of the state variable, we can smuggle in a constant to adjust
the boundary approximation in d = 2. This won’t affect the interior estimates, as they depend on the
gradient. Thus we aim to apply Lemma 12.4 to

Vϵ :=

	
ϵP(3)ϵ + c ln(ϵ) for d = 2,

ϵP(3)ϵ for d = 3,
(13.42)

Fϵ := G2
ϵ + G3

ϵ , (13.43)
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13 Analysis of the perturbed adjoint equations

and

gϵ :=

	
(ϵd−2S(1)(ϵx)− ϵ−1U (1))|Γϵ + (ϵd−2S(2)(ϵx)− P(2) + c ln(ϵ))|Γϵ for d = 2,

(ϵd−2S(1)(ϵx)− ϵ−1P(1))|Γϵ + (ϵd−2S(2)(ϵx)− P(2))|Γϵ for d = 3.
(13.44)

We start by estimating the norm ∥Fϵ∥. Therefore, let ϕ ∈ H1
Γ (Dϵ)

d .

• Since p0 is three times differentiable in a neighbourhood of x0, there is a constant C > 0, such that
|ϵ−1(ϵ(p0) ◦ Tϵ(x)− ϵ(p0)(x0))− ∂ ϵ(p0)(x0)x | ≤ Cϵ, for x ∈ω. Hence, Hölder’s inequality yields�����

ω

(A2 −A1)ϵ(ϕ) : [ϵ−1(ϵ(p0) ◦ Tϵ − ϵ(p0)(x0))− ∂ ϵ(p0)(x0)x] d x

����≤ Cϵ∥ϕ∥ϵ. (13.45)

• A Taylor expansion of ( f2 − f1) ◦ Tϵ at x0, Hölder’s inequality and Lemma 11.5 item (ii), item (iii)
entail����γ f

�
ω

[( f2 − f1) ◦ Tϵ)− ( f2(x0)− f1(x0))] ·ϕ d x

����≤ 	Cϵ1−α∥ϕ∥ϵ for d = 2,

Cϵ∥ϕ∥ϵ for d = 3,
(13.46)

for a constant C > 0.

• Furthermore, by Hölder’s inequality we conclude����ϵd−1

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ(p(1)) ◦ Tϵ + ϵ(p(2)) ◦ Tϵ] d x

����≤ Cϵ∥ϕ∥ϵ, (13.47)

for a constant C > 0.

Combining the previous results leaves us with

∥G2
ϵ∥ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3,
(13.48)

for a constant C > 0. Next we consider the boundary integral terms:

• Hölder’s inequality, Lemma 11.6 item (iii) with m= d and the scaled trace inequality entail�����ϵ−1

�
Γ N
ϵ

[A⊤2 ϵ(P(1))− ϵdA⊤2 ϵ(S(1))(ϵx)]n ·ϕ dS

�����≤ Cϵ
d
2 ∥ϕ∥ϵ, (13.49)

for a constant C > 0.

• Similarly, we deduce from Lemma 11.6 item (iii) with m = d − 1 that there is a constant C > 0,
such that �����

�
Γ N
ϵ

[A⊤2 ϵ(P(2))− ϵd−1A⊤2 ϵ(S(2))(ϵx)]n ·ϕ dS

�����≤ Cϵ
d
2 ∥ϕ∥ϵ. (13.50)
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These estimates show ∥G3
ϵ∥ ≤ Cϵ for a constant C > 0. Collecting the previous results entails

∥Fϵ∥ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3.
(13.51)

In view of Lemma 12.4 we now address the error on the Dirichlet boundary. Since

ϵP(3)ϵ |Γϵ = (ϵd−2S(1)(ϵx)− ϵ−1P(1))|Γϵ + (ϵd−2S(2)(ϵx)− P(2))|Γϵ ,
Lemma 11.6 item(i), (ii) with m= d − 1 and m= d, respectively entail

ϵ
1
2 ∥ϵP(3)ϵ ∥L2(Γϵ)d + |ϵP(3)ϵ |H 1

2 (Γϵ)d
≤ Cϵ

d
2 . (13.52)

Hence, considering (13.51) and (13.52), Lemma 12.4 shows (13.37).
ad (ii): By the triangle inequality we have

∥ϵ−1(∂ (P(1)ϵ )− ∂ (P(1)))− ∂ (P(2))∥L2(ω)d×d

≤∥∂ (P(2)ϵ − P(2) − ϵd−2p(2) ◦ Tϵ)∥L2(ω)d×d

+ ϵd−1∥∂ (p(1)) ◦ Tϵ∥L2(ω)d×d + ϵd−1∥∂ (p(2)) ◦ Tϵ∥L2(ω)d×d

≤Cϵ1−α,

(13.53)

for a positive constant C . This shows (ii) and therefore finishes the proof.

13.2 Averaged adjoint equation

We now investigate the averaged adjoint variable. For the sake of simplicity we choose γg = 0 in this sec-
tion. We will address this specific choice within the upcoming analysis. With the according formulations
introduced in the beginning of Section 13, the perturbed averaged adjoint equation (10.49) reads: Find
qϵ ∈ H1

Γ (D)
d such that�
D

Aωϵϵ(ϕ) : ϵ(qϵ) d x =− γ f

�
D

fωϵ ·ϕ d x − γm

�
Γm

(u0 + uϵ − 2um) ·ϕ dS, (13.54)

for all ϕ ∈ H1
Γ (D)

d and ϵ > 0 sufficiently small. Similarly, the unperturbed averaged adjoint equation
reads: Find q0 ∈ H1

Γ (D)
d such that�

D

A2ϵ(ϕ) : ϵ(q0) d x =− γ f

�
D

f2 ·ϕ d x − 2γm

�
Γm

(u0 − um) ·ϕ dS, (13.55)

for all ϕ ∈ H1
Γ (D)

d . One readily checks that (13.55) and (13.6) coincide. Since this equation admits a
unique solution, it follows that p0 = q0 (cf. (10.51)). Furthermore, we want to highlight the occurrence of
the perturbed state variable uϵ on the right hand side of (13.54). As we will see in the upcoming analysis,
this term leads to some difficulties. As a result, we need more corrector terms in this asymptotic expansion.
This is a definite disadvantage compared to Amstutz’ adjoint variable. For the sake of completeness, we
define the variation of the averaged adjoint variable:
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13 Analysis of the perturbed adjoint equations

Definition 13.8. For almost every x ∈ D and ϵ > 0 small we define the first variation of the state qϵ by

Q(1)ϵ (x) :=
�qϵ − q0

ϵ

#
◦ Tϵ(x). (13.56)

The second variation of qϵ is defined by

Q(2)ϵ (x) :=
Q(1)ϵ (x)−Q(1)(x)− ϵd−1q(1) ◦ Tϵ

ϵ
for ϵ > 0. (13.57)

More generally, we define the (i + 1)-th variation of qϵ for i ≥ 2 by

Q(i+1)
ϵ (x) :=

Q(i)ϵ (x)−Q(i)(x)− ϵd−2q(i) ◦ Tϵ
ϵ

for ϵ > 0. (13.58)

Lemma 13.9. There is a solution [Q] ∈ ḂL2(Rd)d to�
Rd

Aωϵ(ϕ) : ϵ([Q]) d x =

�
ω

(A2 −A1)ϵ(ϕ) : ϵ(q0)(x0) d x , (13.59)

for all ϕ ∈ ḂL(Rd)d . Moreover, there exists a representative Q(1) ∈ [Q], which satisfies pointwise for
|x | →∞:

Q(1)(x) = T (1)(x) + � (|x |−d), (13.60)

where T (1) : Rd → Rd satisfies

|T (1)(x)|=
	

b2|x |−1 for d = 2,

b3|x |−2 for d = 3,
(13.61)

for some constants b2, b3 ∈ R.

Proof. Similarly to Lemma 12.5, a single-layer potential yields the result.

Theorem 13.10. For α ∈ (0,1) and ϵ > 0 sufficiently small there is a constant C > 0 independent of ϵ,
such that

∥Q(1)ϵ −Q(1)∥ϵ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3.
(13.62)

Proof. We start by deriving an equation of the form�
Dϵ

Aωϵ(ϕ) : ϵ(Q(1)ϵ −Q(1)) d x = G4
ϵ (ϕ), (13.63)
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13 Analysis of the perturbed adjoint equations

for all ϕ ∈ H1
Γϵ
(Dϵ)d . Therefore, subtracting (13.54), (13.55) and a change of variables with respect to

Tϵ entail

G4
ϵ (ϕ) =

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ(q0) ◦ Tϵ − ϵ(q0)(x0)] d x

+ ϵγ f

�
ω

( f2 ◦ Tϵ − f1 ◦ Tϵ) ·ϕ d x

− ϵγm

�
Γm
ϵ

(U (1)ϵ ) ·ϕ dS

−
�
Γ N
ϵ

A⊤2 ϵ(Q(1))n ·ϕ dS,

(13.64)

where the last term stems from a partial integration of the exterior term Q(1) on Rd \ Dϵ. In view of
Lemma 12.4 we start with an estimation of ∥G4

ϵ∥. Therefore fix ϕ ∈ H1
Γϵ
(Dϵ)d . Then we have

•
���
ω
(A2 −A1)ϵ(ϕ) : [ϵ(q0) ◦ Tϵ − ϵ(q0)(x0)] d x

��≤ Cϵ∥ϕ∥ϵ, which can be seen by a Taylor’s expan-
sion of q0 in x0 and Hölder’s inequality.

• Furthermore there holds����ϵγ f

�
ω

( f2 ◦ Tϵ − f1 ◦ Tϵ) ·ϕ d x

����≤ 	Cϵ1−α∥ϕ∥ϵ for d = 2,

Cϵ∥ϕ∥ϵ for d = 3,
(13.65)

which is a consequence of Hölder’s inequality and Lemma 11.5 item (ii) and item (iii), respectively.

• To estimate the third term, we introduce an intermediate term as follows

ϵγm

�
Γm
ϵ

(U (1)ϵ ) ·ϕ dS = ϵγm

�
Γm
ϵ

(U (1)ϵ − U (1)) ·ϕ dS + ϵγm

�
Γm
ϵ

(U (1)) ·ϕ dS. (13.66)

Now Hölder’s inequality, the scaled trace inequality, Theorem 12.6 and Lemma 11.6 item (i) with
m= d − 1 entail�����ϵγm

�
Γm
ϵ

(U (1)ϵ ) ·ϕ dS

�����≤Cϵ
�∥U (1)ϵ − U (1)∥L2(Γϵ)d + ∥U (1)∥L2(Γϵ)d

!∥ϕ∥L2(Γϵ)d

≤C
�∥U (1)ϵ − U (1)∥ϵ + ϵ 1

2 ∥U (1)∥L2(Γϵ)d
"∥ϕ∥ϵ

≤C
�
ϵ1−α + ϵ d

2

"∥ϕ∥ϵ
≤Cϵ1−α∥ϕ∥ϵ,

(13.67)

where α ∈ (0, 1) for d = 2 and α= 0 for d = 3. This is a consequence of Theorem 12.6.

• The last term can be addressed with the remainder estimate Lemma 11.6 item (iii) with m= d −1
to conclude�����
�
Γ N
ϵ

A⊤2 ϵ(Q(1))n ·ϕ dS

�����≤ C∥ϵ(Q(1))∥L2(Γ N
ϵ )d×d∥ϕ∥L2(Γ N

ϵ )d×d ≤ Cϵ
d
2 ∥ϕ∥ϵ. (13.68)
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13 Analysis of the perturbed adjoint equations

These estimates yield

∥G4
ϵ∥ ≤
	

Cϵ1−α for d = 2,

Cϵ for d = 3.
(13.69)

Next, we deal with the error on the Dirichlet boundary. Since Q(1)ϵ |Γϵ = 0 we deduce from Lemma 11.6
item (i), (ii) with m= d − 1 that there is a constant C > 0 satisfying

ϵ
1
2 ∥Q(1)ϵ −Q(1)∥L2(Γϵ)d + |Q(1)ϵ −Q(1)|

H
1
2 (Γϵ)d
≤ Cϵ

d
2 . (13.70)

Thus, combining (13.69) and (13.70), an application of Lemma 12.4 shows (13.62).

Corollary 13.11. There holds
lim
ϵ↘0

Q(1)ϵ =Q(1) in L1(ω)
d . (13.71)

Proof. The proof follows the lines of Corollary 12.8.

It should be noted that the corrector term Q(1) used in the previous result coincides with the correc-
tor P(1) introduced in the previous section. Nonetheless, the proof of Theorem 13.10 indicates that the
analysis of both adjoint variables differs. Indeed, these differences will be highlighted in the second order
expansion, where the regular correctors need to deal with the error on Γm as well.

Lemma 13.12. The following results hold:

• There is a unique solution q(1) ∈ H1(D)d with q(1)(x) = −T (1)(x − x0) on Γ , such that�
D

A2ϵ(ϕ) : ϵ(q(1)) d x = −
�
Γ N

A⊤2 ϵ(T (1))(x − x0)n ·ϕ dS, (13.72)

for all ϕ ∈ H1
Γ (D)

d .

• There is a solution [Q] ∈ ḂLp(Rd)d to�
Rd

Aωϵ(ϕ) : ϵ([Q]) d x =

�
ω

(A2 −A1)ϵ(ϕ) : [∂ ϵ(q0)(x0)x] d x , (13.73)

for all ϕ ∈ ḂLp′(Rd)d , where

p =

	
2+δ for d = 2,

2 for d = 3,

and δ > 0 small. Moreover, there exists a representative Q̂(2) ∈ [Q], which satisfies pointwise for
|x | →∞:

Q̂(2)(x) = T̂ (2)(x) + � (|x |1−d), (13.74)

where T̂ (2) : Rd → Rd satisfies

|T̂ (2)(x)|=
	

ĉ2 ln(|x |) for d = 2,

ĉ3|x |−1 for d = 3,
(13.75)

for some constants ĉ2, ĉ3 ∈ R.
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13 Analysis of the perturbed adjoint equations

• There is a solution [Q] ∈ ḂLp(Rd)d to�
Rd

Aωϵ(ϕ) : ϵ([Q]) d x = γ f

�
ω

[ f2(x0)− f1(x0)] ·ϕ d x , (13.76)

for all ϕ ∈ C1
c (R

d)d , where

p =

	
2+δ for d = 2,

2 for d = 3,

and δ > 0 small. Moreover, there exists a representative Q̃(2) ∈ [Q], which satisfies pointwise for
|x | →∞:

P̃(2)(x) = T̃ (2)(x) + � (|x |1−d), (13.77)

where T̃ (2) : Rd → Rd satisfies

|T̃ (2)(x)|=
	

c̃2 ln(|x |) for d = 2,

c̃3|x |−1 for d = 3,
(13.78)

for some constants c̃2, c̃3 ∈ R.

• There is a unique solution q(2) ∈ H1(D)d with q(2)(x) = −T (2)(x − x0) on Γ such that�
D

A2ϵ(ϕ) : ϵ(q(2)) d x =− γm

�
Γm

R(1)(x − x0) ·ϕ dS − γm

�
Γm

u(1) ·ϕ dS

− γm

�
Γm

R(2)(x − x0) · dS − γm

�
Γm

u(2) ·ϕ dS

−
�
Γ N

A⊤2 ϵ(T (2))(x − x0)n ·ϕ dS,

(13.79)

for all ϕ ∈ H1
Γ (D)

d , where
T (2) := T̂ (2) + T̃ (2).

Proof. The proof follows the lines of Lemma 12.10.

We continue with the main result covering the second order asymptotic expansion of the adjoint
variable qϵ.

Theorem 13.13. For ϵ > 0 sufficiently small let Q(2)ϵ as in Definition 13.8 and α ∈ (0,1).

(i) There is a constant C > 0 independent of ϵ such that

∥Q(2)ϵ −Q(2) − ϵd−2q(2) ◦ Tϵ − c ln(ϵ)∥ϵ ≤ Cϵ1−α for d = 2, (13.80)

∥Q(2)ϵ −Q(2) − ϵd−2q(2) ◦ Tϵ∥ϵ ≤ Cϵ for d = 3, (13.81)

for a suitable constant c ∈ R.
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13 Analysis of the perturbed adjoint equations

(ii) There holds
lim
ϵ↘0
∥ϵ−1(∂ (Q(1)ϵ )− ∂ (Q(1)))− ∂ (Q(2))∥L2(ω)d×d = 0. (13.82)

Proof. ad (i): We first derive a governing equation for each term contained in

ϵQ(3)ϵ = ϵ
−1
�
Q(1)ϵ −Q(1)
!−Q(2) − ϵd−2q(1) − ϵd−2q(2). (13.83)

This can be achieved by a change of variables for the regular correctors q(1), q(2). The boundary layer
correctors can be reformulated on Dϵ by splitting the integral and a partial integration. For a given
ϕ ∈ H1

Γϵ
(D)d we thus obtain the following set of equations�

Dϵ

Aωϵ(ϕ) : ϵ(ϵ−1(Q(1)ϵ −Q(1))) d x =

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ−1(ϵ(q0) ◦ Tϵ − ϵ(q0)(x0))] d x

+ γ f

�
ω

( f2 ◦ Tϵ − f1 ◦ Tϵ) ·ϕ d x

− γm

�
Γm
ϵ

(U (1)ϵ ) ·ϕ dS

−
�
Γ N
ϵ

A⊤2 ϵ−1ϵ(Q(1))n ·ϕ dS,

(13.84)

�
Rd

Aωϵ(ϕ) : ϵ(Q(2)) d x =

�
ω

(A2 −A1)ϵ(ϕ) : [∂ ϵ(q0)(x0)x] d x

+ γ f

�
ω

[ f2(x0)− f1(x0)] ·ϕ d x ,

+

�
Γ N
ϵ

A⊤2 ϵ(Q(2))n ·ϕ dS,

(13.85)

�
Dϵ

A2ϵ(ϕ) : ϵ(ϵd−2q(1) ◦ Tϵ) d x = −ϵd−1

�
Γ N
ϵ

A⊤2 ϵ(T (1))(ϵx)n ·ϕ dS, (13.86)

�
Dϵ

A2ϵ(ϕ) : ϵ(ϵd−2q(2) ◦ Tϵ) d x =− ϵd−1γm

�
Γm
ϵ

R(1)(ϵx) ·ϕ dS − ϵγm

�
Γm
ϵ

(ϵd−2u(1) ◦ Tϵ) ·ϕ dS

− ϵd−1γm

�
Γm
ϵ

R(2)(ϵx) · dS − ϵγm

�
Γm
ϵ

(ϵd−2u(2) ◦ Tϵ) ·ϕ dS

− ϵd−1

�
Γ N
ϵ

A⊤2 ϵ(T (2))(ϵx)n ·ϕ dS.

(13.87)
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Recall the degrees of homogeneity

R(1)(ϵx) =ϵ1−dR(1)(x),

ϵ(T (1))(ϵx) =ϵ−dϵ(T (1))(x),

ϵ(T (2))(ϵx) =ϵ1−dϵ(T (2))(x),

(13.88)

and

R(2)(ϵx) =

	
R(2)(x) + c ln(ϵ) for d = 2,

ϵ2−dR(2)(x) for d = 3,
(13.89)

where we note that the constant c ∈ R occurring in (13.89) coincides with the constant introduced in
Theorem 13.10. Combining the above equations entails�

Dϵ

Aωϵ(ϕ) : ϵ(ϵQ(3)ϵ ) d x = G5
ϵ (ϕ), (13.90)

with

G5
ϵ (ϕ) =

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ−1(ϵ(q0) ◦ Tϵ − ϵ(q0)(x0))− ∂ ϵ(q0)(x0)x] d x

+ γ f

�
ω

[( f2 ◦ Tϵ − f1 ◦ Tϵ)− ( f2(x0)− f1(x0))] ·ϕ d x

− ϵγm

�
Γm
ϵ

(ϵ−1(U (1)ϵ − R(1))− ϵd−2u(1) ◦ Tϵ − R(2) − ϵd−2u(2) ◦ Tϵ) ·ϕ dS

−
�
Γ N
ϵ

A⊤2 ϵ−1
�
ϵ(Q(1))− ϵ(T (1))�n ·ϕ dS

−
�
Γ N
ϵ

A⊤2
�
ϵ(Q(2))− ϵ(T (2))�n ·ϕ dS,

(13.91)

for d = 3 and

G5
ϵ (ϕ) =

�
ω

(A2 −A1)ϵ(ϕ) : [ϵ−1(ϵ(q0) ◦ Tϵ − ϵ(q0)(x0))− ∂ ϵ(q0)(x0)x] d x

+ γ f

�
ω

[( f2 ◦ Tϵ − f1 ◦ Tϵ)− ( f2(x0)− f1(x0))] ·ϕ d x

− ϵγm

�
Γm
ϵ

(ϵ−1(U (1)ϵ − R(1))− ϵd−2u(1) ◦ Tϵ − R(2) − ϵd−2u(2) ◦ Tϵ − c ln(ϵ)) ·ϕ dS

−
�
Γ N
ϵ

A⊤2 ϵ−1
�
ϵ(Q(1))− ϵ(T (1))�n ·ϕ dS

−
�
Γ N
ϵ

A⊤2
�
ϵ(Q(2))− ϵ(T (2))�n ·ϕ dS,

(13.92)

for d = 2. In view of Lemma 12.4 we seek an estimate for ∥G5
ϵ∥. We only show the result for d = 2. The

remaining case d = 3 can be proven employing the same methods.
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• A Taylor’s expansion and Hölder’s inequality yield

|
�
ω

(A2 −A1)ϵ(ϕ) : [ϵ−1(ϵ(q0) ◦ Tϵ − ϵ(q0)(x0))− ∂ ϵ(q0)(x0)x] d x | ≤ Cϵ∥ϕ∥ϵ, (13.93)

for a constant C > 0.

• Similarly, Lemma 11.5 item (iii) yields

|γ f

�
ω

[( f2 ◦ Tϵ − f1 ◦ Tϵ)− ( f2(x0)− f1(x0))] ·ϕ d x | ≤ Cϵ1−α∥ϕ∥ϵ, (13.94)

for a constant C > 0 and α ∈ (0, 1).

• Smuggling in the missing terms U (1), U (2) further entails

|ϵγm

�
Γm
ϵ

(ϵ−1(U (1)ϵ − R(1))− ϵd−2u(1) ◦ Tϵ − R(2) − ϵd−2u(2) ◦ Tϵ − c ln(ϵ)) ·ϕ dS|
≤Cϵ∥ϵ−1(U (1)ϵ − U (1))− ϵd−2u(1) ◦ Tϵ − U (2) − ϵd−2u(2) ◦ Tϵ − c ln(ϵ)∥L2(Γm

ϵ )d
∥ϕ∥L2(Γm

ϵ )d

+ C
�∥U (1) − R(1)∥L2(Γm

ϵ )d
+ ϵ∥U (2) − R(2)∥L2(Γm

ϵ )d
"∥ϕ∥L2(Γm

ϵ )d

≤C∥ϵ−1(U (1)ϵ − U (1))− ϵd−2u(1) ◦ Tϵ − U (2) − ϵd−2u(2) ◦ Tϵ − c ln(ϵ)∥ϵ∥ϕ∥ϵ
+ C
�∥U (1) − R(1)∥L2(Γm

ϵ )d
+ ϵ∥U (2) − R(2)∥L2(Γm

ϵ )d
"
ϵ− 1

2 ∥ϕ∥ϵ
≤C
�
ϵ1−α + ϵ d

2 + ϵ
d
2

"∥ϕ∥ϵ,
(13.95)

for a constant C > 0 and α ∈ (0,1). Here, we used the scaled trace inequality (cf. Lemma 11.5 item
(iv)), Theorem 12.14 and the remainder estimate Lemma 11.6 item (i) with m= d and m= d−1,
respectively.

• We employ the remainder estimates further to conclude

|
�
Γ N
ϵ

A⊤2 ϵ−1
�
ϵ(Q(1))− ϵ(T (1))�n ·ϕ dS+

�
Γ N
ϵ

A⊤2
�
ϵ(Q(2))− ϵ(T (2))�n ·ϕ dS| ≤ Cϵ

d
2 ∥ϕ∥ϵ, (13.96)

for a positive constant C .

Combining these estimates shows
∥G5
ϵ∥ ≤ Cϵ1−α, (13.97)

for α ∈ (0, 1). With the same techniques employed in the proof of Theorem 13.7, one checks that

ϵ
1
2 ∥ϵP(3)ϵ − c̄ ln(ϵ)∥L2(Γϵ)d + |ϵP(3)ϵ − c̄ ln(ϵ)|

H
1
2 (Γϵ)d
≤ Cϵ

d
2 , (13.98)
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for a suitable constant c̄ ∈ R. Hence, taking into account (13.97), (13.98), Lemma 12.4 yields the result.
ad (ii): By the triangle inequality we have

∥ϵ−1(∂ (Q(1)ϵ )− ∂ (Q(1)))− ∂ (Q(2))∥L2(ω)d×d

≤∥∂ (Q(2)ϵ −Q(2) − ϵd−2q(2) ◦ Tϵ)∥L2(ω)d×d

+ ϵd−1∥∂ (q(1)) ◦ Tϵ∥L2(ω)d×d + ϵd−1∥∂ (q(2)) ◦ Tϵ∥L2(ω)d×d

≤Cϵ1−α,

(13.99)

for a positive constant C . This shows (ii) and therefore finishes the proof.

Remark 13.14. Before we conclude this section, we want to address the simplification γg = 0. Similarly
to the boundary term of the cost functional, this contributes to the right hand side of the variation of the
adjoint state as follows:�

Dϵ

Aωϵ(ϕ) : ϵ(Q(1)ϵ ) d x = γg

�
Dϵ

∂ U (1)ϵ · ∂ ϕ d x for all ϕ ∈ H1
Γϵ
(D)d . (13.100)

Contrary to the previous analysis however, we cannot correct this error solely by regular correctors,
since the error is attained on the whole domain Dϵ and thus the asymptotic behaviour of U (1) − R(1)

is not sufficient to achieve convergence. Instead, one has to introduce a boundary layer corrector Q̃(1)

with an appropriate right hand side. Unfortunately, this generalisation is not straight forward, since a
similar asymptotic behaviour of Q̃(1) is not known. In fact, it has been shown in [25, Section 4.2] that a
similar analysis can be carried out for γg ̸= 0 in dimension d = 3, where a slower declining asymptotic
behaviour of Q̃(1) is shown. Nonetheless, the special case d = 2 remains an open problem. This highlights
the complexity of the asymptotic analysis of the averaged adjoint variable.

14 Computation of the topological derivatives

In this section we compute the first and second order topological derivative of the elasticity problem
introduced in (9.6), namely,

� (Ω) = γ f

�
D

fωϵ · u d x + γg

�
D

|∂ u− ∂ ud |2 d x + γm

�
Γm

|u− um|2 dS, (14.1)

subject to u ∈ H1(D)d solves u|Γ = gD and�
D

AΩϵ(u) : ϵ(ϕ) =

�
D

fΩ ·ϕ d x +

�
Γ N

gN ·ϕ dS for all ϕ ∈ H1
Γ (D)

d . (14.2)

In view of Definition 9.1, we fix the following parameter throughout this section: Ω = �, ω ⊂ Rd and
x0 ∈ D. Furthermore, we introduce for ϵ > 0 small the asymptotic orders (cf. Remark 9.2)

ℓ1(ϵ) = |ωϵ|= ϵd |ω|, ℓ2(ϵ) = ϵ|ωϵ|= ϵd+1|ω|. (14.3)
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14 Computation of the topological derivatives

Remark 14.1. Note that the more general case Ω ̸= �, x0 ∈ D \ Ω̄ and Ωϵ = Ω ∪ωϵ can be treated in
a similar fashion. The main difference is that the unperturbed state equation and unperturbed adjoint
state equation respectively depend on Ω and therefore u0 and p0 vary. Furthermore, as the boundary
layer correctors coincide in both cases, a volume error is introduced in the exterior domain. This can
be overcome by formulating remainder estimates for volume terms similar to Lemma 11.6. At last, the
computation of the topological derivative for x0 ∈ Ω and Ωϵ = Ω \ωϵ can be done analogously to the
presented one and only results in a change of sign.

Since each adjoint based method was introduced in the abstract Lagrangian framework, we want to
recall the following notations:

aϵ(u, v) =

�
D

AΩϵϵ(u) : ϵ(v) d x for all u ∈ 
 , v ∈ � ,

(14.4)

fϵ(v) =

�
D

fΩϵ · v d x +

�
Γ N

gN · v dS for all v ∈ � ,

(14.5)

Jϵ(u) =γ f

�
D

fΩϵ · u d x + γg

�
D

|∂ u− ∂ ud |2 d x + γm

�
Γm

|u− um|2 dS for all u ∈ 
 ,

(14.6)

where the spaces 
 ,� are defined in (13.1).

14.1 Amstutz’ method

We first follow Amstutz’ approach. In view of Proposition 10.2 item (i), the first order topological deriva-
tive is given by

d� (Ω,ω)(x0) =� (1)(u0, p0) + ∂
(1)
ℓ
� (0, u0, p0), (14.7)

where

� (1)(u0, p0) = lim
ϵ↘0

� (ϵ, uϵ, pϵ)−� (ϵ, u0, pϵ)
ℓ1(ϵ)

, (14.8)

∂
(1)
ℓ
� (0, u0, p0) = lim

ϵ↘0

� (ϵ, u0, pϵ)−� (0, u0, pϵ)
ℓ1(ϵ)

, (14.9)

if the above limits exist. Thus, we start with the first quotient � (1)(u0, p0):
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14 Computation of the topological derivatives

� (ϵ, uϵ, pϵ)−� (ϵ, u0, pϵ)
ℓ1(ϵ)

=
1
|ωϵ|[Jϵ(uϵ) + aϵ(uϵ, pϵ)− fϵ(pϵ)− Jϵ(u0)− aϵ(u0, pϵ) + fϵ(pϵ)]

=
1
|ωϵ|[Jϵ(uϵ)− Jϵ(u0) + aϵ(uϵ − u0, pϵ)]

=
1
|ωϵ|γm

�
Γm

[|uϵ − um|2 − |u0 − um|2 − 2(u0 − um)(uϵ − u0)] dS

+
1
|ωϵ|γg

�
D

�|∂ uϵ − ∂ ud |2 − |∂ u0 − ∂ ud |2 − 2(∂ u0 − ∂ ud)(∂ uϵ − ∂ u0)
�

d x

=
1
|ωϵ|γm

�
Γm

|uϵ − u0|2 dS +
1
|ωϵ|γg

�
D

|∂ uϵ − ∂ u0|2 d x ,

(14.10)

where we invoked (13.5). A change of variables with respect to Tϵ entails

� (ϵ, uϵ, pϵ)−� (ϵ, u0, pϵ)
ℓ1(ϵ)

=
ϵ

|ω|γm∥U (1)ϵ ∥2L2(Γm
ϵ )d
+

1
|ω|γg∥∂ U (1)ϵ ∥2L2(Dϵ)d×d . (14.11)

On the one hand, we have

ϵ

|ω|γm∥U (1)ϵ ∥2L2(Γm
ϵ )d
≤ γm

|ω|(ϵ∥U
(1)
ϵ − U (1)∥2L2(Γm

ϵ )d
+ ϵ∥U (1)∥2L2(Γm

ϵ )d
)

≤ C(∥U (1)ϵ − U (1)∥2ϵ + ϵd)≤ Cϵ2−α,
(14.12)

for α > 0 arbitrarily small and a constant C > 0. Here, we used Lemma 11.5, item (iv), Lemma 11.6 item
(i) with m= d −1 and Theorem 12.6. On the other hand, Theorem 12.6 and Lemma 11.6 item (iv) with
m= d − 1 entail

∥∂ U (1)ϵ − ∂ U (1)∥L2(Rd )d×d = ∥∂ U (1)ϵ − ∂ U (1)∥L2(Dϵ)d×d + ∥∂ U (1)ϵ − ∂ U (1)∥L2(Rd\Dϵ)d×d

≤ ∥U (1)ϵ − U (1)∥ϵ + ∥∂ U (1)ϵ ∥L2(Rd\Dϵ)d×d + ∥∂ U (1)∥L2(Rd\Dϵ)d×d

≤ Cϵ1−α + ∥∂ U (1)ϵ ∥L2(Rd\Dϵ)d×d .

(14.13)

for a positive constant C ∈ R and α ∈ (0,1). Since U (1)ϵ ∈ ḂL2(Rd)d there holds

lim
ϵ↘0
∥∂ U (1)ϵ ∥L2(Rd\Dϵ)d×d = 0.

This entails ∂ U (1)ϵ → ∂ U (1) in L2(Rd)d×d for ϵ↘ 0. Now passing to the limit in (14.11) shows

� (1)(u0, p0) =
1
|ω|γg

�
Rd

|∂ U (1)|2 d x . (14.14)
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Next, we consider ∂ (1)
ℓ
� (0, u0, p0). Splitting the quotient one observes

� (ϵ, u0, pϵ)−� (0, u0, pϵ)
ℓ1(ϵ)

=
1
|ωϵ|[Jϵ(u0) + aϵ(u0, pϵ)− fϵ(pϵ)− J0(u0)− a0(u0, pϵ) + f0(pϵ)]

=
1
|ωϵ|
�
ωϵ

�
γ f ( f1 − f2)u0 + (A1 −A2)ϵ(u0) : ϵ(pϵ)− ( f1 − f2)pϵ

�
d x

=
γ f

|ω|
�
ω

( f1 ◦ Tϵ − f2 ◦ Tϵ) · u0 ◦ Tϵ d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(P(1)ϵ ) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(p0) ◦ Tϵ d x

− ϵ|ω|
�
ω

( f1 ◦ Tϵ − f2 ◦ Tϵ) · (P(1)ϵ ) d x

− 1
|ω|
�
ω

( f1 ◦ Tϵ − f2 ◦ Tϵ) · p0 ◦ Tϵ d x .

(14.15)

Thus Theorem 13.4 and Corollary 13.5 entail

∂
(1)
ℓ
� (0, u0, p0) =

1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(P(1)) d x

+ γ f ( f1(x0)− f2(x0)) · u0(x0)
+ (A1 −A2)ϵ(u0)(x0) : ϵ(p0)(x0)
− ( f1(x0)− f2(x0)) · p0(x0).

(14.16)

Therefore, the first order topological derivative is given by

d� (Ω,ω)(x0) =
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(P(1)) d x + (A1 −A2)ϵ(u0)(x0) : ϵ(p0)(x0)

+ γ f ( f1(x0)− f2(x0)) · u0(x0)− ( f1(x0)− f2(x0)) · p0(x0)

+
1
|ω|γg

�
Rd

|∂ U (1)|2 d x ,

(14.17)

with P(1) defined in (13.12) and U (1) defined in (12.21).
Next, we compute the second order topological derivative. By Proposition 10.2, item (ii), we have

d2� (Ω,ω)(x0) =� (2)(u0, p0) + ∂
(2)
ℓ
� (0, u0, p0), (14.18)

where

� (2)(u0, p0) = lim
ϵ↘0

� (ϵ, uϵ, pϵ)−� (ϵ, u0, pϵ)− ℓ1(ϵ)� (1)(u0, p0)
ℓ2(ϵ)

,

∂
(2)
ℓ
� (0, u0, p0) = lim

ϵ↘0

� (ϵ, u0, pϵ)−� (0, u0, pϵ)− ℓ1(ϵ)∂ (1)ℓ � (0, u0, p0)

ℓ2(ϵ)
,
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if the above limits exist. Dividing (14.11) by ϵ and subtracting (14.14) it follows that

� (2)(u0, p0) = lim
ϵ↘0

γg

ϵ|ω|
��

Dϵ

|∂ U (1)ϵ |2 − |∂ U (1)|2 d x −
�

Rd\Dϵ
|∂ U (1)|2 d x

�
= lim
ϵ↘0

γg

|ω|
��

Dϵ

(∂ U (1)ϵ + ∂ U (1)) : (ϵ−1[∂ U (1)ϵ − ∂ U (1)]) d x − ϵ−1

�
Rd\Dϵ
|∂ U (1)|2 d x

�
.

(14.19)

In order to pass to the limit in (14.19), we need to assume γg = 0 for d = 2. This is necessary, since
Corollary 12.15 is only applicable in dimension 3. Hence, with this assumption we obtain

� (2)(u0, p0) =
2γg

|ω|
�

Rd

∂ U (1) : ∂ U (2) d x . (14.20)

To conclude this section we need to investigate ∂ (2)
ℓ
� (0, u0, p0). Similarly to the previous computation,

we obtain

� (ϵ, u0, pϵ)−� (0, u0, pϵ)− ℓ1(ϵ)∂ (1)ℓ � (0, u0, p0)

ℓ2(ϵ)
=

γ f

|ω|
�
ω

ϵ−1[( f1 ◦ Tϵ − f2 ◦ Tϵ)− ( f1(x0)− f2(x0))] · u0 ◦ Tϵ d x

+
γ f

|ω|
�
ω

( f1(x0)− f2(x0)) · ϵ−1[u0 ◦ Tϵ − u0(x0)] d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(ϵ−1[P(1)ϵ − P(1)]) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ
−1[ϵ(u0) ◦ Tϵ − ϵ(u0)(x0)] : ϵ(P(1)) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ−1[ϵ(p0) ◦ Tϵ − ϵ(p0)(x0)] d x

+
1
|ω|
�
ω

(A1 −A2)ϵ
−1[ϵ(u0) ◦ Tϵ − ϵ(u0)(x0)] : ϵ(p0)(x0) d x

− 1
|ω|
�
ω

( f1 ◦ Tϵ − f2 ◦ Tϵ) · (P(1)ϵ ) d x

− 1
|ω|
�
ω

( f1 ◦ Tϵ − f2 ◦ Tϵ) · ϵ−1[p0 ◦ Tϵ − p0(x0)] d x

− 1
|ω|
�
ω

ϵ−1[( f1 ◦ Tϵ − f2 ◦ Tϵ)− ( f1(x0)− f2(x0))] · p0(x0) d x .

(14.21)
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Hence, invoking regularity of f1, f2, u0, p0, Theorem 13.7 item (ii) and Corollary 13.5, we can pass to the
limit

∂
(2)
ℓ
� (0, u0, p0) =

γ f

|ω|
�
ω

[∂ f1(x0)− ∂ f2(x0)]x · u0(x0) d x +
γ f

|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ u0(x0)x d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(P(2)) d x +
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(P(1)) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : [∂ (ϵ(p0))(x0)x] d x

+
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(p0)(x0) d x

− 1
|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ p0(x0)x d x − 1
|ω|
�
ω

[∂ f1(x0)− ∂ f2(x0)]x · p0(x0) d x

− 1
|ω|
�
ω

( f1(x0)− f2(x0)) · (P(1)) d x .

(14.22)

Thus, the second order topological derivative is given by

d2� (Ω,ω)(x0) =
2γg

|ω|
�

Rd

∂ U (1) : ∂ U (2) d x

+
γ f

|ω|
�
ω

[∂ f1(x0)− ∂ f2(x0)]x · u0(x0) d x +
γ f

|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ u0(x0)x d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(P(2)) d x +
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(P(1)) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : [∂ (ϵ(p0))(x0)x] d x

+
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(p0)(x0) d x

− 1
|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ p0(x0)x d x − 1
|ω|
�
ω

[∂ f1(x0)− ∂ f2(x0)]x · p0(x0) d x

− 1
|ω|
�
ω

( f1(x0)− f2(x0)) · (P(1)) d x ,

(14.23)

with P(1) defined in (13.12), U (1) defined in (12.21), P(2) defined in (13.29),(13.32) and U (2) defined in
(12.48),(12.51).
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14.2 Averaged adjoint method

In this section we follow the averaged adjoint approach. In view of Proposition 10.4 item (i) we have

d� (Ω,ω)(x0) =� (1)(u0, q0) + ∂
(1)
ℓ
� (0, u0, q0), (14.24)

where

� (1)(u0, q0) = lim
ϵ↘0

� (ϵ, u0, qϵ)−� (ϵ, u0, q0)
ℓ1(ϵ)

,

∂
(1)
ℓ
� (0, u0, q0) = lim

ϵ↘0

� (ϵ, u0, q0)−� (0, u0, q0)
ℓ1(ϵ)

,

if the above limits exist. Thus, we start with the computation of � (1)(u0, q0):

� (ϵ, u0, qϵ)−� (ϵ, u0, q0)
ℓ1(ϵ)

=
1
|ωϵ|[Jϵ(u0) + aϵ(u0, qϵ)− fϵ(qϵ)− Jϵ(u0)− aϵ(u0, q0) + fϵ(q0)]

=
1
|ωϵ|[aϵ(u0, qϵ − q0)− fϵ(qϵ − q0)]

=
1
|ωϵ|
��
ωϵ

(A1 −A2)ϵ(u0) : ϵ(qϵ − q0) d x −
�
ωϵ

( f1 − f2) · (qϵ − q0) d x

�
=

1
|ω|
�
ω

(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(Q(1)ϵ ) d x − ϵ 1
|ω|
�
ω

( f1 − f2) ◦ Tϵ(Q
(1)
ϵ ) d x .

(14.25)

Since u0 ∈ C3(Bδ(x0))d for δ > 0 small and by Theorem 13.10 ϵ(Q(1)ϵ )→ ϵ(Q(1)) in L2(ω)d×d as ϵ tends
to zero, we have

lim
ϵ↘0

�
ω

(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(Q(1)ϵ ) d x =

�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(Q(1)) d x . (14.26)

Furthermore, Corollary 12.8 entails

lim
ϵ↘0
ϵ

�
ω

[( f1 − f2) ◦ Tϵ] ·Q(1)ϵ d x = 0. (14.27)

Hence, it follows that

� (1)(u0, q0) =
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(Q(1)) d x . (14.28)

Next, we compute ∂ (1)
ℓ
� (0, u0, q0). We note for ϵ > 0
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� (ϵ, u0, q0)−� (0, u0, q0)
ℓ1(ϵ)

=
1
|ωϵ|[(Jϵ(u0)− J0(u0)) + (aϵ(u0, q0)− a0(u0, q0))− ( fϵ(q0)− f0(q0))]

=
1
|ωϵ|
�
γ f

�
ωϵ

( f1 − f2) · u0 d x +

�
ωϵ

(A1 −A2)ϵ(u0) : ϵ(q0) d x

−
�
ωϵ

( f1 − f2) · q0 d x
�

=
γ f

|ω|
�
ω

( f1 − f2) ◦ Tϵ · u0 ◦ Tϵ d x −−
�
ω

( f1 − f2) ◦ Tϵ · q0 ◦ Tϵ d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(q0) ◦ Tϵ d x .

(14.29)

Passing to the limit yields

∂
(1)
ℓ
� (0, u0, q0) =
�
γ f ( f1 − f2) · u0 + (A1 −A2)ϵ(u0) : ϵ(q0)− ( f1 − f2) · q0

�
(x0), (14.30)

where we employed regularity of f1, f2, u0 and q0. Combining (14.28) and (14.28) results in

d� (Ω,ω)(x0) =
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(Q(1)) d x + (A1 −A2)ϵ(u0)(x0) : ϵ(q0)(x0)

+ γ f ( f1(x0)− f2(x0)) · u0(x0)− ( f1(x0)− f2(x0)) · q0(x0),
(14.31)

with Q(1) defined in (13.59).
Next we compute the second order topological derivative. By Proposition 10.4 item (ii) we have

d2� (Ω,ω)(x0) =� (2)(u0, q0) + ∂
(2)
ℓ
� (0, u0, q0), (14.32)

where

� (2)(u0, q0) = lim
ϵ↘0

� (ϵ, u0, qϵ)−� (ϵ, u0, q0)− ℓ1(ϵ)� (1)(u0, q0)
ℓ2(ϵ)

,

∂
(2)
ℓ
� (0, u0, q0) = lim

ϵ↘0

� (ϵ, u0, q0)−� (0, u0, q0)− ℓ1(ϵ)∂ (1)ℓ � (0, u0, q0)

ℓ2(ϵ)
,

if the above limits exist. We start by computing � (2)(u0, q0). Using (14.25) we deduce
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� (2)(u0, q0) = lim
ϵ↘0

�
1
|ω|
�
ω

(A1 −A2)[ϵ
−1(ϵ(u0) ◦ Tϵ − ϵ(u0)(x0))] : ϵ(Q(1)ϵ ) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(ϵ−1(Q(1)ϵ −Q(1))) d x

− 1
|ω|
�
ω

( f1 − f2) ◦ Tϵ · (Q(1)ϵ ) d x
�

=

�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(Q(1)) d x +
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(Q(2)) d x

− 1
|ω|
�
ω

( f1(x0)− f2(x0)) · (Q(1)) d x ,

(14.33)

where we used Q(1)ϵ → Q(1) in L1(ω)d by Corollary 13.11, ϵ(Q(1)ϵ ) → ϵ(Q(1)) in L2(ω)d and by Theo-

rem 13.13 ϵ−1(ϵ(Q(1)ϵ )− ϵ(Q(1)))→ ϵ(Q(2)) in L2(ω)d . Next, we compute ∂ (2)
ℓ
� (0, u0, q0):

∂
(2)
ℓ
� (0, u0, q0) = lim

ϵ↘0

� γ f

|ω|
�
ω

ϵ−1[( f1 − f2) ◦ Tϵ · u0 ◦ Tϵ − ( f1(x0)− f2(x0)) · u0(x0)] d x

+
1
|ω|
�
ω

ϵ−1[(A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(q0) ◦ Tϵ − (A1 −A2)ϵ(u0)(x0) : ϵ(q0)(x0)] d x

− 1
|ω|
�
ω

ϵ−1[( f1 − f2) ◦ Tϵ · q0 ◦ Tϵ − ( f1(x0)− f2(x0)) · q0(x0)] d x
�

=
γ f

|ω|
�
ω

∂ [( f1 − f2)](x0)x · u0(x0) d x +
γ f

|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ u0(x0)x d x

+
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(q0)(x0) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : [∂ (ϵ(q0))(x0)x] d x

− 1
|ω|
�
ω

[∂ ( f1 − f2)(x0)]x · q0(x0) d x − 1
|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ q0(x0)x d x ,

(14.34)

where again we used the smoothness of u0, q0, f1, f2 in the vicinity of x0 in the last step. Furthermore,
combining (14.33) and (14.34), we obtain the final formula for the second order topological derivative:
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d2� (Ω,ω)(x0) =

�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(Q(1)) d x +
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : ϵ(Q(2)) d x

− 1
|ω|
�
ω

( f1(x0)− f2(x0)) · (Q(1)) d x

+
γ f

|ω|
�
ω

∂ [( f1 − f2)](x0)x · u0(x0) d x +
γ f

|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ u0(x0)x d x

+
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(q0)(x0) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : [∂ (ϵ(q0))(x0)x] d x

− 1
|ω|
�
ω

[∂ ( f1 − f2)(x0)]x · q0(x0) d x − 1
|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ q0(x0)x d x .

(14.35)

14.3 Delfour’s method

At last, we consider Delfour’s method to compute the topological derivative. Therefore, recall that by
Proposition 10.6 item (i) we have

d� (Ω,ω)(x0) =� (1)1 (u0, p0) +� (1)2 (u0, p0) + ∂
(1)
ℓ
� (0, u0, p0), (14.36)

where

� (1)1 (u0, p0) = lim
ϵ↘0

� (ϵ, uϵ, p0)−� (ϵ, u0, p0)− ∂u� (ϵ, u0, p0)(uϵ − u0)
ℓ1(ϵ)

, (14.37)

� (1)2 (u0, p0) = lim
ϵ↘0

(∂u� (ϵ, u0, p0)− ∂u� (0, u0, p0))(uϵ − u0)
ℓ1(ϵ)

, (14.38)

∂
(1)
ℓ
� (0, u0, p0) = lim

ϵ↘0

� (ϵ, u0, p0)−� (0, u0, p0)
ℓ1(ϵ)

. (14.39)

We now compute the limit of each term. Plugging in the definition of � (ϵ, u, v), we get for ϵ > 0

� (ϵ, uϵ, p0)−� (ϵ, u0, p0)− ∂u� (ϵ, u0, p0)(uϵ − u0)
ℓ1(ϵ)

=
1
|ωϵ| (Jϵ(uϵ)− Jϵ(u0)− ∂uJϵ(u0)(uϵ − u0))

=
γg

|ωϵ|
�
D

|∂ uϵ − ∂ u0|2 d x +
γm

|ωϵ|
�
Γm

|uϵ − u0|2 dS

=
γg

|ω|
�
Dϵ

|∂ U (1)ϵ |2 d x + ϵ
γm

|ω|
�
Γm
ϵ

|U (1)ϵ |2 dS.

(14.40)

Hence, passing to the limit ϵ↘ 0 (cf. (14.11)) yields

� (1)1 (u0, p0) =
γg

|ω|∥∂ U (1)∥2L2(Rd )d×d . (14.41)
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Furthermore, we have

1
ℓ1(ϵ)

(∂u� (ϵ, u0, p0)− ∂u� (0, u0, p0))(uϵ − u0) =
1
|ωϵ|γ f

�
ωϵ

( f1 − f2) · (uϵ − u0) d x

+
1
|ωϵ|
�
ωϵ

(A1 −A2)ϵ(uϵ − u0) : ϵ(p0) d x

=ϵ
γ f

|ω|
�
ω

( f1 ◦ Tϵ − f2 ◦ Tϵ) · (U (1)ϵ ) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(U
(1)
ϵ ) : ϵ(p0) ◦ Tϵ d x .

(14.42)

Hence, Theorem 12.6 and Corollary 12.8 entail

� (1)2 (u0, p0) =
1
|ω|
�
ω

(A1 −A2)ϵ(U
(1)) : ϵ(p0)(x0) d x . (14.43)

Similarly to the previous approaches, regularity of f1, f2, u0 and p0 yields

∂
(1)
ℓ
� (0, u0, p0) = lim

ϵ↘0

� (ϵ, u0, p0)−� (0, u0, p0)
ℓ1(ϵ)

=
1
|ωϵ|
�
ωϵ

�
γ f ( f1 − f2) · u0 + (A1 −A2)ϵ(u0) : ϵ(p0)− ( f1 − f2) · p0

!
d x

=
1
|ω|
�
ω

�
γ f ( f1 − f2) ◦ Tϵ · u0 ◦ Tϵ + (A1 −A2)ϵ(u0) ◦ Tϵ : ϵ(p0) ◦ Tϵ

!
d x

− 1
|ω|
�
ω

( f1 − f2) ◦ Tϵ · p0 ◦ Tϵ d x

=γ f ( f1(x0)− f2(x0)) · u0(x0) + (A1 −A2)ϵ(u0)(x0) : ϵ(p0)(x0)
− ( f1(x0)− f2(x0)) · p0(x0).

(14.44)

Combining these limits results in

d� (Ω,ω)(x0) =
1
|ω|
�
ω

(A1 −A2)ϵ(U
(1)) : ϵ(p0)(x0) d x + (A1 −A2)ϵ(u0)(x0) : ϵ(p0)(x0)

+ γ f ( f1(x0)− f2(x0)) · u0(x0)− ( f1(x0)− f2(x0)) · p0(x0)

+
γg

|ω|
�

Rd

|∂ U (1)|2 d x ,

(14.45)

with U (1) defined in (12.21).
Next, we compute the second order topological derivative. In view of Proposition 10.6, item (ii), we first
show that the following limits exist:
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14 Computation of the topological derivatives

� (2)1 (u0, p0) = lim
ϵ↘0

� (ϵ, uϵ, p0)−� (ϵ, u0, p0)− ∂u� (ϵ, u0, p0)(uϵ − u0)− ℓ1(ϵ)� (1)1 (u0, p0)

ℓ2(ϵ)
,

(14.46)

� (2)2 (u0, p0) = lim
ϵ↘0

(∂u� (ϵ, u0, p0)− ∂u� (0, u0, p0))(uϵ − u0)− ℓ1(ϵ)� (1)2 (u0, p0)

ℓ2(ϵ)
, (14.47)

∂
(2)
ℓ
� (0, u0, p0) = lim

ϵ↘0

� (ϵ, u0, p0)−� (0, u0, p0)− ℓ1(ϵ)∂ (1)ℓ � (0, u0, p0)

ℓ2(ϵ)
. (14.48)

Invoking the assumption γg = 0 in dimension d = 2, we can deduce

� (2)1 (u0, p0) = 2
γg

|ω|
�

Rd

∂ U (1) : ∂ U (2) d x , (14.49)

in a similar fashion to (14.19). Furthermore, we have

1
ℓ2(ϵ)

(∂u� (ϵ, u0, p0)− ∂u� (0, u0, p0))(uϵ − u0)− ℓ1(ϵ)� (1)2 (u0, p0)

=
γ f

|ω|
�
ω

( f1 ◦ Tϵ − f2 ◦ Tϵ) · U (1)ϵ d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(ϵ
−1[U (1)ϵ − U (1)]) : ϵ(p0) ◦ Tϵ d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(U
(1)) : [ϵ−1(ϵ(p0) ◦ Tϵ − ϵ(p0)(x0))] d x .

(14.50)

Hence we obtain the limit

� (2)2 (u0, p0) =
γ f

|ω|
�
ω

( f1(x0)− f2(x0)) · U (1) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(U
(2)) : ϵ(p0)(x0) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(U
(1)) : ∂ (ϵ(p0))(x0) d x .

(14.51)

To conclude the computation of the second order derivative we observe that, similarly to (14.44), (14.21),
we get
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∂
(2)
ℓ
� (0, u0, p0) =

γ f

|ω|
�
ω

∂ [ f1(x0)− f2(x0)]x · u0(x0) d x +
γ f

|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ u0(x0)x d x

+
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(p0)(x0) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : [∂ (ϵ(p0))(x0)x] d x

− 1
|ω|
�
ω

∂ [ f1(x0)− f2(x0)]x · p0(x0) d x − 1
|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ p0(x0)x d x .

(14.52)

Combining the limits (14.49), (14.51), (14.52) entails

d2� (Ω,ω)(x0) =2
γg

|ω|
�

Rd

∂ U (1) : ∂ U (2) d x +
γ f

|ω|
�
ω

( f1(x0)− f2(x0)) · U (1) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(U
(2)) : ϵ(p0)(x0) d x +

1
|ω|
�
ω

(A1 −A2)ϵ(U
(1)) : ∂ (ϵ(p0))(x0) d x

+
γ f

|ω|
�
ω

∂ [ f1(x0)− f2(x0)]x · u0(x0) d x +
γ f

|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ u0(x0)x d x

+
1
|ω|
�
ω

(A1 −A2)[∂ (ϵ(u0))(x0)x] : ϵ(p0)(x0) d x

+
1
|ω|
�
ω

(A1 −A2)ϵ(u0)(x0) : [∂ (ϵ(p0))(x0)x] d x

− 1
|ω|
�
ω

∂ [ f1(x0)− f2(x0)]x · p0(x0) d x − 1
|ω|
�
ω

[ f1(x0)− f2(x0)] · ∂ p0(x0)x d x ,

(14.53)

with U (1) defined in (12.21) and U (2) defined in (12.48),(12.51). This finishes the computation of the
second order topological derivative using Delfour’s method.

Remark 14.2. We would like to point out that, using the defining equations of the boundary layer cor-
rectors, one can show that all three expressions of the topological derivative coincide and therefore all
methods lead to the same result. To get an idea, we show that the first order topological derivative of
Amstutz’ approach and Delfour’s method are the same. Testing (12.21) with ϕ = P(1) yields�

ω

(A1 −A2)ϵ(u0)(x0) : ϵ(P(1)) d x = −
�

Rd

Aωϵ(U
(1)) : ϵ(P(1)) d x .

Invoking symmetry of the elasticity tensors, we further deduce�
Rd

Aωϵ(U
(1)) : ϵ(P(1)) d x =

�
ω

(A2 −A1)ϵ(U
(1)) : ϵ(p0)(x0) d x .

Hence, we conclude that both derivatives coincide. To obtain equivalence for the averaged adjoint method,
one has to recall our assumption γg = 0 in Section 13.2.
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15 Conclusion

In this part of the thesis we reviewed three different methods to compute the second order topologi-
cal derivative and illustrated their methodologies by applying them to a linear elasticity model. To give
a better insight into the differences of these methods, the cost functional consists of three terms: the
compliance, a L2 tracking-type over a part of the Neumann boundary and a gradient tracking-type over
the whole domain, whereas the first one is linear and the latter two are quadratic. We observed that all
three methods shared some similarities, as they rely on the asymptotic analysis of the state variable. Yet
differences occur, whose magnitude is based on the specific cost functional.
Amstutz’ method requires the asymptotic analysis of the adjoint state pϵ. Since pϵ depends on the unper-
turbed state variable uϵ, the ϵ dependence solely stems from the underlying cost functionals. This leads
to a straight forward analysis of the adjoint state pϵ, which in our case resembled the analysis of the state
variable uϵ closely. Hence we would like to point out that, even though an additional asymptotic expan-
sion is required in this approach, this does not require a lot of extra work. Contrary, the averaged adjoint
method requires the asymptotic analysis of the averaged adjoint state qϵ, which is more technically in-
volved. These challenges arise, since qϵ additionally depends on the perturbed state variable uϵ. In this
context Delfour’s method is advantageous, as it only depends on the unperturbed adjoint state variable
p0 and thus does not necessitate an additional asymptotic analysis. This advantage seems to come with
the shortcoming, that this method is only applicable to a selective set of cost functions.
The varying difficulties of each cost functional arise at different parts of the analysis. While the com-
putation of the topological derivative for the linear compliance term is straight forward, the nonlinear
nature of the tracking-type cost functionals introduces additional difficulties. Following Amstutz’ and
Delfour’s approach, this leads to limits on the whole space Rd during the computation of the topological
derivative. This is especially problematic for the second order topological derivative. Contrary, employing
the averaged adjoint method, the computation of the topological derivative solely involves limits on the
bounded domain ω. This comes at a cost of a strictly more involved analysis of the adjoint variable. In
fact, the averaged adjoint method shifts the work from the computation of the topological derivative to
the asymptotic analysis of the adjoint variable. Compared to Amstutz’ and Delfour’s method this leads
to a slightly more challenging computation in total. Yet we want to highlight that, once the complete
asymptotic expansion is known, this allows a straightforward schematic derivation of higher order topo-
logical derivatives. We will utilise this behaviour in the next part of this thesis.
To recapitulate, each method proposed in this work has some advantages and disadvantages over the
others. The decision on which method fits the actual problem setting the best, greatly depends on the
actual cost function as well as the properties of the underlying partial differential equation.
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Part III

Complete topological asymptotic
expansion
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The content of this part stems from the following article, which is submitted for publication:

[23] P. Baumann, P. Gangl, and K. Sturm. Complete topological asymptotic expansion for L2 and H1

tracking-type cost functionals in dimension two and three. 2021. arXiv:2111.08418.
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16 Introduction to higher order topological sensitivities

In this part of the thesis we are going to continue the investigation of topological derivatives. To specify,
we are interested in the complete asymptotic expansion of a shape functional � subject to topological
perturbations. This naturally involves the notion of higher order topological derivatives beyond the sec-
ond order, which were introduced in the previous part. While the first order topological derivative can be
used in gradient based methods (cf. [15,17,56] and further references found in the previous part), higher
order topological derivatives give rise to higher order topology optimisation algorithms. Since these are
noniterative, they are very robust with respect to noisy data.
For instance let us mention the work [86, Chapter 10] where the authors used second order topological
derivatives to develop an one-shot Newton-type algorithm. The methodology of this algorithm is based
on the idea to simultaneously consider m singular inclusions ωi

ϵ and compute their topological expan-
sion. This expansion is further used to solve a Newton-type equation leading to an efficient and robust
way to detect geometric subsets (inhomogeneities, obstacles, anomalies). Hence, this algorithm has been
extensively used to solve inverse reconstruction problems.
We refer to [71], where the authors utilised this one-shot approach to obtain a good initial shape, which
they further improved in an iterative shape optimisation algorithm. Further applications of this algo-
rithm to electrical impedance tomography can be found in [53] and [86, Chapter 11]. Furthermore, this
idea was employed in an inverse potential reconstruction problem [35] and in an inverse source recon-
struction problem [36]. In this context we would also like to mention obstacle reconstruction, which is
addressed in [94]. For further applications, such as inverse conductivity and electromagnetic casting we
refer to [86] and references therein.
In what follows we are going to target the foundation of these methodologies. That is, we study gen-
eral formulas for higher order topological derivatives in two and three space dimensions for a simple
PDE constrained model problem. This topic has already been considered in [10], where the authors in-
vestigated the higher order asymptotic expansion of a steady state voltage potential subject to singular
perturbations of the conductivity. While their analysis addresses the case of a single perturbation, the
authors argue that an analogous analysis can be carried out to deal with a finite number of simultaneous
perturbations. In this regard, we also want to mention the recent work [52], where the authors studied
the asymptotic expansion of the solution of Poisson’s equation subject to a small perturbation attaining
homogeneous Dirichlet boundary conditions.
In order to obtain an asymptotic expansion of the state variable, we employ the compound layer method
(cf. [80,81]). Furthermore, we incorporate the cost functionals via the averaged adjoint method (cf. Sec-
tion 14.2). This approach enables an iterative and systematic way to compute higher order topological
derivatives with no additional effort as long as the complete asymptotic expansion of the averaged adjoint
variable is known. We are going to study two kinds of tracking-type functionals, a gradient and an L2
tracking-type functional. Similarly to the previous section, we observe a large gap in technical difficulties.
In fact, we see that the analysis of the L2 tracking-type functional is more involved and even includes the
fundamental solution of the biharmonic equation. The content of this part stems from the article [23] in
collaboration with Peter Gangl and Kevin Sturm. In this part of the thesis we investigate the following
model problem:
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Problem formulation

Let D ⊂ Rd be an open and bounded Lipschitz domain, Γ ⊂ ∂D with |Γ | > 0, Γ N := ∂D \ Γ and consider
the minimisation problem

minimise � (Ω) := α1

�
D

(uΩ − ud)
2 d x +α2

�
D

|∇(uΩ − ud)|2 d x , α1,α2 ≥ 0, (16.1)

subject to Ω ⊂ D and uΩ ∈ H1(D), uΩ|Γ = gD, such that�
D

∇uΩ · ∇ϕ d x =

�
D

fΩϕ d x + (gN ,ϕ)
H− 1

2 (Γ N )×H
1
2 (Γ N )

for all ϕ ∈ H1
Γ (D), (16.2)

where fΩ(x) := f1(x)χΩ(x) + f2(x)χΩc (x) with f1, f2 ∈ L2(D) ∩ C∞(D), gD ∈ H
1
2 (Γ ), gN ∈ H− 1

2 (Γ N ),
ud ∈ H1(D) and (·, ·)

H− 1
2 (Γ N )×H

1
2 (Γ N )

denotes the duality product.

For a given inclusion ω ⊂ Rd open, bounded and connected, with C1 boundary, such that 0 ∈ ω and
x0 ∈ D \Ω, we derive for the cases α1 = 0 and α2 = 0 an arbitrary order topological derivative formula
for this problem of the form

� (Ω∪ωϵ) = � (Ω) +
N,

k=1

ℓk(ϵ)d
k� (Ω,ω)(x0) + o(ℓN (ϵ)), N ≥ 1,

where ωϵ = {x0 + ϵ y | y ∈ ω} (cf: (9.1)) denotes the domain perturbation and ℓk : R+ → R+ are
continuous functions satisfying

lim
ϵ↘0
ℓk(ϵ) = 0 and lim

ϵ↘0

ℓk+1(ϵ)
ℓk(ϵ)

= 0 for k ≥ 1.

Here, R+ := (0,∞) denotes the set of positive real numbers. Furthermore, the real number dk� (Ω,ω)(x0)
denotes the k-th order topological derivative at Ω evaluated for the inclusion shape ω and the point of
perturbation x0. The explicit form of the functions ℓk depends for our problem on the space dimension
and will differ significantly in dimension d = 2 vs. d = 3.

Remark 16.1. Note that this is just a reformulation of Definition 9.1. Again, we want to highlight that our
assumptionΩϵ = Ω∪ωϵ is not a restriction. The other case, x0 ∈ Ω,Ωϵ = Ω\ωϵ can be treated analogously
and merely results in a change of sign of the final formulas. Additionally, we want to mention that the
first order topological derivative is denoted by d1� (Ω,ω)(x0). Even though this is a minor notational
conflict in view of (9.3), we are going to employ this notation throughout this part. This allows a schematic
representation of the results.

17 Analysis of the state equation

Let Ω ⊂ D be an open and bounded Lipschitz set and ω ⊂ Rd be an open, bounded and connected set
with C1 boundary ∂ω. We assume that ω contains the origin 0 ∈ ω and we let x0 ∈ D \ Ω̄ be a fixed
spatial point. Furthermore, we recall the affine transformation Tϵ(x) = x0+ ϵx (cf. Definition 11.1) and
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17 Analysis of the state equation

setωϵ := Tϵ(ω) for ϵ ≥ 0. In the following we will derive an asymptotic expansion of the perturbed state
variable uϵ, which is the unique solution to (16.2) subject to the perturbed domain Ωϵ := Ω ∪ωϵ, for
ϵ > 0. That is, uϵ ∈ H1(D) satisfies uϵ|Γ = gD and�

D

∇uϵ · ∇ϕ d x =

�
D

fΩϵϕ d x + (gN ,ϕ)
H− 1

2 (Γ N )×H
1
2 (Γ N )

for all ϕ ∈ H1
Γ (D). (17.1)

Similarly, the unperturbed state variable u0 ∈ H1(D) satisfies u0|Γ = gD and�
D

∇u0 · ∇ϕ d x =

�
D

fΩϕ d x + (gN ,ϕ)
H− 1

2 (Γ N )×H
1
2 (Γ N )

for all ϕ ∈ H1
Γ (D). (17.2)

Remark 17.1. Note that, contrary to the previous section, we do not consider a transmission problem
here. That is, we do not introduce a perturbation to the differential operator of the partial differential
equation. This improves the regularity of the solution, since transmission problems lack regularity on the
boundary of Ω, i.e. where a jump occurs. Furthermore, this increases the first order approximation speed
of the variation of the state U (1)ϵ . To obtain a cohesive definition nonetheless, we reformulate Definition
12.3 with some minor modifications.

Definition 17.2. For almost every x ∈ Dϵ we define the first variation of the state uϵ by

U (1)ϵ (x) :=
�uϵ − u0

ϵ

#
◦ Tϵ(x) for ϵ > 0. (17.3)

More generally, we define the (k+ 1)-th variation of uϵ for k ≥ 1 and ϵ > 0 by

U (k+1)
ϵ :=



U (k)ϵ −U (k)−ϵd−2u(k)◦Tϵ−ln(ϵ)b(k)

ϵ for d = 2,
U (k)ϵ −U (k)−ϵd−2u(k)◦Tϵ

ϵ for d = 3.
(17.4)

Remark 17.3. Note that, contrary to Definition 12.3, we introduce the first order scaling ϵd−2 for the
corrector u(1). In the previous part we obtained a faster decay of the first boundary layer corrector U (1)

(cf. Remark 12.11), which allowed us to use a higher order ϵd−1. In our problem setting we do not have
access to this special behaviour of the boundary layer corrector. Nonetheless, we will see that, due to the
nature of our problem at hand, the corrector U (1) is not even necessary to achieve convergence. This is
reflected by the property that (12.21) only depends on the operator perturbation.

In this part of the thesis we require similar scaling arguments and remainder estimates as in Part
II. Even though the problem setting differs slightly, as we are working with scalar functions, we will not
recast these result here. Instead we are going to keep this minor inaccuracy in mind whenever we employ
Lemma 11.4, Lemma 11.5 and Lemma 11.6. For convenience we recall that the fundamental solution of
the Laplace operator (−∆) in dimension two and three is given for x ̸= 0 by (cf. [90])

E(x) :=

� − 1
2π ln(|x |) for d = 2,

1
4π

1
|x | for d = 3.

(17.5)

In order to allow a schematic representation and derivation of higher order derivatives, we introduce the
compact notation of derivatives.
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17 Analysis of the state equation

Definition 17.4. Let f ∈ Ck(Ω), k ≥ 0 and x0 ∈ Ω. We define

∇k f (x0)[x]
k :=

d,
j1=1

· · ·
d,

jk=1

∂ k

∂ x j1 · · · ∂ x jk

f (x0)x j1 · · · x jk , (17.6)

with the convention ∇0 f (x0)[x]0 := f (x0).

Remark 17.5. Note that this definition captures the Taylor expansion of a sufficiently smooth function
f . The first terms read as

∇1 f (x0)[x]
1 =∇ f (x0) · x , ∇2 f (x0)[x]

2 = x⊤H( f )(x0)x ,

where H( f ) denotes the Hessian of f .

Remark 17.6. In the subsequent analysis we often omit the index k = 1. That is, we introduce

∇ f (x0)[x] :=∇1 f (x0)[x]
1.

Yet, we need the notation including the first index to allow a uniform representation in terms of sequences.

In the following lemma we introduce the boundary layer correctors U (k) used in the definition of U (k)ϵ .

Lemma 17.7. Define for k ≥ 2:

U (k)(x) =

�
ω

E(x − y)F (k)(y) d y, (17.7)

where F (k)(y) := 1
(k−2)!∇k−2( f1 − f2)(x0)[y]k−2. Then U (k) satisfies:�

Rd

∇U (k) · ∇ϕ d x =

�
ω

F (k)ϕ d x for all ϕ ∈ C1
c (R

d), (17.8)

and admits the following asymptotic expansion as |x | →∞
U (k)(x) = R(k)1 (x) + · · ·+ R(k)N (x) + � (|x |−(d−2+N)), (17.9)

where R(k)
ℓ+1 : Rd → R are given for k ≥ 2 and ℓ≥ 0 by

R(k)
ℓ+1(x) =

1
ℓ!

�
ω

∂ ℓt E(x − t y)|t=0F (k)(y) d y. (17.10)

Proof. It is clear that U (k) satisfies (17.8), since U (k) is given by the Newton potential. The asymptotic
expansion (17.9) follows from a Taylor expansion of y !→ E(x − y).

Remark 17.8. The functions F (k) denote a Taylor’s expansion of the error term f1− f2. Thus, the sequence
U (k) aims to approximate the error up to an increasing order. The functions R(k)

ℓ+1 in turn describe the
different error-levels introduced by U (k) on the boundary. These will therefore guide the construction of
the regular correctors u(k).
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17 Analysis of the state equation

For the sake of completeness we give the following definition

Definition 17.9. For k = 1 let
U (1) ≡ 0, u(1) ≡ 0, (17.11)

and for ℓ≥ 1 let
R(1)
ℓ
≡ 0. (17.12)

Furthermore we define b(1) := 0 and more generally

b(k) := − 1
2π

�
ω

F (k)(y) d y for k ≥ 2, (17.13)

where F (k)(y) := 1
(k−2)!∇k−2( f1 − f2)(x0)[y]k−2.

Remark 17.10. In view of R(k)1 (x) = E(x)
�
ω

F (k)(y) d y we have for k ≥ 2

R(k)1 (ϵx) =

	
R(k)1 (x) + ln(ϵ)b(k), for d = 2,
1
ϵR
(k)
1 (x), for d = 3,

(17.14)

which explains the definition of b(k) in dimension two. Additionally, there holds

R(k)
ℓ
(ϵx) =ϵ−(d−2)ϵ−(ℓ−1)R(k)

ℓ
(x), (17.15)

∂νR
(k)
ℓ
(ϵx) =ϵ−(d−2)ϵ−ℓ∂νR(k)ℓ (x), (17.16)

for k ≥ 1, ℓ≥ 2.

Example 17.11. We may compute the derivatives (17.10) explicitly for ℓ= 1, 2,3, 4 and obtain for d = 2

R(k)1 (x) = − 1
2π

ln(|x |)
�
ω

F (k)(y) d y, (17.17)

R(k)2 (x) =
1

2π
x
|x |2 ·
�
ω

yF (k)(y) d y, (17.18)

R(k)3 (x) = − 1
4π

1
|x |2
�
ω

�
|y|2 − 2

(x · y)2
|x |2
%

F (k)(y) d y, (17.19)

R(k)4 (x) = − 1
12π

1
|x |4
�
ω

�
6|y|2(x · y)− 8

(x · y)3
|x |2
%

F (k)(y) d y, (17.20)

and for d = 3

R(k)1 (x) =
1

4π
1
|x |
�
ω

F (k)(y) d y, (17.21)

R(k)2 (x) =
1

4π
x
|x |3 ·
�
ω

yF (k)(y) d y, (17.22)

R(k)3 (x) =
1

8π
1
|x |3
�
ω

�
−|y|2 + 3

(x · y)2
|x |2
%

F (k)(y) d y. (17.23)

(17.24)
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17 Analysis of the state equation

We will also need remainder estimates for the expansion (17.9) of U (k) in various norms:

Lemma 17.12. Let Γϵ ⊂ ∂Dϵ, k ≥ 2 and N ≥ 1. Then there is a constant C > 0, such that

• ϵ
1
2 ∥U (k) −-Nℓ=1 R(k)

ℓ
∥L2(Γϵ) ≤ Cϵ

d
2+N−1,

• |U (k) −-Nℓ=1 R(k)
ℓ
|
H

1
2 (Γϵ)
≤ Cϵ

d
2+N−1,

• ∥∂νU (k) −-Nℓ=1 ∂νR
(k)
ℓ
∥L2(Γϵ) ≤ Cϵ

d−1
2 +N .

Proof. In view of (17.9) and (17.10) we have for x ∈ Rd :�����U (k)(x)− N,
ℓ=1

R(k)
ℓ
(x)

�����≤ C |x |−m + � (|x |−m−1),

with m= d − 2+ N . Thus, an application of Lemma 11.6 yields the result.

Next we introduce the regular corrector functions, which compensate the error introduced by the
functions U (k).

Definition 17.13. We define for k ≥ 2 the corrector u(k) ∈ H1(D) as the unique solution to

u(k)(x) = −
k,

j=1

R(k− j+1)
j (x − x0) on Γ , (17.25)

�
D

∇u(k) · ∇ϕ d x =

�
Γ N

� k,
j=1

∂νR
(k− j+1)
j (x − x0)
$
ϕ dS for all ϕ ∈ H1

Γ (D). (17.26)

Remark 17.14. Note that unique solvability of (17.25),(17.26) can be shown by the Lemma of Lax-
Milgram, and therefore u(k) are well-defined. A change of variables entails that (17.26) can be equiva-
lently written as u(k) ◦ Tϵ(x) = −-kj=1 R(k− j+1)

j (ϵx) on Γϵ and�
Dϵ

∇(ϵd−2u(k) ◦ Tϵ) · ∇ϕ d x = ϵd−1

�
Γ N
ϵ

� k,
j=1

∂νR
(k− j+1)
j (ϵx)
$
ϕ dS for all ϕ ∈ H1

Γϵ
(Dϵ). (17.27)

Later on we also need the following auxiliary result.

Lemma 17.15. Let ϵ > 0 be fixed. We have for all k ≥ 2 and d = 2:

U (1)ϵ − ϵk−1U (k)ϵ =
k−1,
ℓ=1

ϵℓ−1
�
U (ℓ) + ϵd−2u(ℓ) ◦ Tϵ + ln(ϵ)b(ℓ)

!
on Dϵ, (17.28)

with b(ℓ) defined in (17.13). Furthermore, we have for all k ≥ 2 and d = 3:

U (1)ϵ − ϵk−1U (k)ϵ =
k−1,
ℓ=1

ϵℓ−1
�
U (ℓ) + ϵd−2u(ℓ) ◦ Tϵ

!
on Dϵ. (17.29)
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17 Analysis of the state equation

Proof. This follows from Definition 17.2 and an induction proof.

Similarly to Lemma 12.4, the next lemma helps us to compactly handle the inhomogeneous Dirichlet
boundary conditions on Γϵ:

Lemma 17.16. Let Fϵ : H1
Γϵ
(Dϵ) → R be a linear and continuous functional with respect to ∥ · ∥ϵ and

gϵ ∈ H
1
2 (Γϵ). Then there exists a unique Vϵ ∈ H1(Dϵ), such that�

Dϵ

∇Vϵ · ∇ϕ d x = Fϵ(ϕ) for all ϕ ∈ H1
Γϵ
(Dϵ), (17.30)

Vϵ|Γϵ = gϵ. (17.31)

Furthermore, there is a constant C > 0 independent of ϵ such that

∥Vϵ∥ϵ ≤ C(∥Fϵ∥ϵ + ϵ 1
2 ∥gϵ∥L2(Γϵ) + |gϵ|H 1

2 (Γϵ)
). (17.32)

Proof. The proof follows the lines of Lemma 12.4.

We first address the boundary term gϵ in the previous lemma.

Corollary 17.17. Let k ≥ 2 and d = 2. There is a constant C > 0 such that for all ϵ > 0 small enough:

ϵ
1
2 ∥U (k)ϵ − U (k) − ϵd−2u(k) ◦ Tϵ − ln(ϵ)b(k)∥L2(Γϵ) ≤ Cϵ

d
2 , (17.33)

|U (k)ϵ − U (k) − ϵd−2u(k) ◦ Tϵ − ln(ϵ)b(k)|
H

1
2 (Γϵ)
≤ Cϵ

d
2 . (17.34)

Let k ≥ 2 and d = 3. There is a constant C > 0 such that for all ϵ > 0 small enough:

ϵ
1
2 ∥U (k)ϵ − U (k) − ϵd−2u(k) ◦ Tϵ∥L2(Γϵ) ≤ Cϵ

d
2 , (17.35)

|U (k)ϵ − U (k) − ϵd−2u(k) ◦ Tϵ|H 1
2 (Γϵ)
≤ Cϵ

d
2 . (17.36)

Proof. Let ϵ > 0 be sufficiently small. For the sake of simplicity we restrict ourselves to the proof for
d = 3. Employing the additive property of the logarithm (17.14), the proof for d = 2 follows the same
lines. First note that by definition U (k)ϵ −U (k)−ϵd−2u(k)◦Tϵ = ϵU (k+1)

ϵ and that we have in view of Lemma
17.15

ϵU (k+1)
ϵ = ϵ−(k−1)U (1)ϵ +

k,
ℓ=1

ϵℓ−k(U (ℓ) + ϵ(d−2)u(ℓ) ◦ Tϵ) on Dϵ. (17.37)

Moreover, since R(k− j+1)
j (ϵx) = ϵ−(d−2)ϵ−( j−1)R(k− j+1)

j (x) for 1≤ j ≤ k (cf. (17.15)), we have for x ∈ Γϵ

u(ℓ) ◦ Tϵ(x) = −ϵ−(d−2)
ℓ,

j=1

ϵ−( j−1)R(ℓ− j+1)
j (x), (17.38)
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17 Analysis of the state equation

and thus

k,
ℓ=1

ϵℓ−kϵ(d−2)u(ℓ) ◦ Tϵ(x)
(17.38)
= −ϵ−k

k,
ℓ=1

ℓ,
j=1

ϵℓ− j+1R(ℓ− j+1)
j (x) (17.39)

= −
k,
ℓ=1

ϵℓ−k
k−ℓ+1,

j=1

R(ℓ)j (x), (17.40)

where in the last step we reordered the sum as illustrated in Figure 12 with ai j = R( j)i . Therefore, plugging
this into (17.37) yields

ϵU (k+1)
ϵ = ϵ−(k−1)U (1)ϵ +

k,
ℓ=1

ϵℓ−k

�
U (ℓ) −

k−ℓ+1,
j=1

R(ℓ)j

'
on Dϵ, (17.41)

and since U (1)ϵ = 0 on Γϵ, it follows that there is a constant C > 0, such that

ϵ
1
2 ∥ϵU (k+1)

ϵ ∥L2(Γϵ) ≤
k,
ℓ=1

ϵℓ−k ϵ
1
2

�����U (ℓ) − k−ℓ+1,
j=1

R(ℓ)j

�����
L2(Γϵ)� �� �

≤Cϵ
d
2 +k−ℓ, Lemma 17.12

≤ Cϵ
d
2 . (17.42)

In the same way, using the H
1
2 estimate of Lemma 17.12, one can show |ϵU (k+1)

ϵ |
H

1
2 (Γϵ)
≤ Cϵ

d
2 .
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Figure 12: Visualisation of the reordering of the sums in (17.39),(17.40) [23].

We are now able to state the main result regarding the asymptotic expansion of the state uϵ (cf.
Theorem 12.14).

Theorem 17.18. Let k ≥ 1 and α ∈ (0, 1). There is a constant C > 0, such that

∥U (k)ϵ − U (k) − ϵd−2u(k) ◦ Tϵ − ln(ϵ)b(k)∥ϵ ≤ Cϵ1−α for d = 2, (17.43)

∥U (k)ϵ − U (k) − ϵd−2u(k) ◦ Tϵ∥ϵ ≤ Cϵ for d = 3. (17.44)
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17 Analysis of the state equation

Proof. Again, we are only going to provide a proof for the estimate in dimension d = 3. The proof for
d = 2 follows the same lines. Subtracting (17.1), (17.2) we obtain�

D

∇(uϵ − u0) · ∇ϕ d x =

�
D

( fΩϵ − fΩ)ϕ d x for all ϕ ∈ H1
Γ (D), (17.45)

and thus, a change of variables with respect to Tϵ entails�
Dϵ

∇U (1)ϵ · ∇ϕ d x = ϵ

�
ω

( f1 − f2) ◦ Tϵϕ d x =: F (1)ϵ (ϕ), (17.46)

for all ϕ ∈ H1
Γϵ
(Dϵ). An application of Lemma 11.5, item (ii) shows ∥F (1)ϵ ∥ϵ ≤ Cϵ. Since U (1)ϵ vanishes on

the boundary Γϵ, U (1) = 0 and u(1) = 0, Lemma 17.16 yields the desired estimate (17.44) for k = 1. Next
we divide by ϵ and subtract the equation for U (2), that is, equation (17.8) for k = 2 and the rescaled
equation for ϵd−2u(2) ◦ Tϵ, that is, equation (17.27) for k = 2 from (17.46) to obtain�

Dϵ

∇(U (2)ϵ − U (2) − ϵd−2u(2) ◦ Tϵ) · ∇ϕ d x =

�
ω

�
( f1 − f2) ◦ Tϵ − ( f1(x0)− f2(x0))

$
ϕ d x (17.47)

+

�
Γ N
ϵ

�
∂νU

(2) − ϵd−1∂νR
(2)
1 (ϵx)
"
ϕ dS, (17.48)

for ϕ ∈ H1
Γϵ
(Dϵ). Recalling ϵU (k+1)

ϵ = U (k)ϵ − U (k) − ϵd−2u(k) ◦ Tϵ and continuing this process we obtain
more generally for k ≥ 3:�

Dϵ

∇(ϵU (k+1)
ϵ ) · ∇ϕ d x =

�
ω

ϵ−(k−2)
�
( f1 − f2) ◦ Tϵ − ( f1(x0)− f2(x0))

$
ϕ d x

−
�
ω

k−2,
ℓ=1

ϵ−(k−2)+ℓ∇ℓ
�

f1 − f2
!
(x0)[x]ℓ

ℓ!
ϕ d x

+

�
Γ N
ϵ

k,
ℓ=2

ϵℓ−k

�
∂νU

(ℓ) −
k−ℓ+1,

j=1

ϵd−1+ j−1∂νR
(ℓ)
j (ϵx)

'
ϕ dS =: F (k)ϵ (ϕ),

(17.49)

for ϕ ∈ H1
Γϵ
(Dϵ). A Taylor expansion of ( f1 − f2) ◦ Tϵ at ϵ = 0 shows for all ϵ small enough:�����

ω

ϵ−(k−2)
�
( f1− f2)◦Tϵ−( f1(x0)− f2(x0))

$
ϕ d x−
�
ω

k−2,
ℓ=1

ϵ−(k−2)+ℓ∇ℓ
�

f1 − f2
!
(x0)[x]ℓ

ℓ!
ϕ d x

����≤ Cϵ∥ϕ∥ϵ,
(17.50)

for a constant C > 0. Furthermore, taking into account that

∂νR
(ℓ)
j (ϵx) = ϵ−(d−2+ j)∂νR

(ℓ)
j (x) for all ℓ, j ≥ 1,
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17 Analysis of the state equation

(cf. (17.16),(17.14)) it follows from Lemma 17.12 and Hölder’s inequality that�����
Γ N
ϵ

k,
ℓ=2

ϵℓ−k

�
∂νU

(ℓ) −
k−ℓ+1,

j=1

ϵd−1+ j−1∂νR
(ℓ)
j (ϵx)

'
ϕ dS

����≤ k,
ℓ=2

ϵℓ−k

�����∂νU (ℓ) − k−ℓ+1,
j=1

∂νR
(ℓ)
j (x)

�����
L2(Γ N

ϵ )

∥ϕ∥L2(Γ N
ϵ )

≤Cϵ
d+1

2 ∥ϕ∥L2(Γ N
ϵ )

≤Cϵ
d
2 ∥ϕ∥ϵ,

(17.51)

for a constant C > 0, where in the last step we used the continuity of the trace operator (cf. Lemma
11.5, item (iv)). Combining (17.50) and (17.51) we get ∥F (k)ϵ ∥ϵ ≤ Cϵ for a constant C > 0 and k ≥ 2.
Additionally, we deduce from Corollary 17.17 that

ϵ
1
2 ∥ϵU (k+1)

ϵ ∥L2(Γϵ) + |ϵU (k+1)
ϵ |

H
1
2 (Γϵ)
≤ Cϵ

d
2 ,

for a positive constant C > 0. Thus, Lemma 17.16 yields (17.44) and therefore finishes the proof.

Example 17.19 (Spherical inclusion). We now assume that the inclusion ω = B1(0) is the unit ball in
Rd centered at the origin and f1, f2 ∈ R are constant. In this case we see that U (2) ̸= 0 and U (k) = 0 for
all k ≥ 3. Moreover, we have

U (2)(x) = ( f1 − f2)

�
B1(0)

E(x − y) d y. (17.52)

Now we note that y !→ E(x − y) is harmonic for all x ∈ Rd \ B1(0) and thus by the mean value theorem
for harmonic functions

U (2)(x) = ( f1 − f2)|B1(0)|E(x) for x ∈ Rd \ B1(0). (17.53)

This means that R(2)1 (x) = ( f1 − f2)|B1(0)|E(x) and R(2)
ℓ
(x) = 0 for all ℓ ≥ 2. Moreover, as mentioned

before, we have U (k) = 0 for all k ≥ 3, which implies that R(k)
ℓ
(x) = 0 for all ℓ≥ 1 and k ≥ 3. Therefore

k,
j=1

R(k− j+1)
j (x) =

	
R(2)1 (x), for k = 2,

0, for k ≥ 3.
(17.54)

This implies in particular that u(k) = 0 for all k ≥ 3. Hence it follows from (17.18) that

U (2)ϵ − U (2) − u(2) ◦ Tϵ − ln(ϵ)b(2) = 0 for d = 2, (17.55)

U (2)ϵ − U (2) − ϵu(2) ◦ Tϵ = 0 for d = 3, (17.56)

or equivalently

uϵ = u0 + ϵ
2
�
U (2) ◦ T−1

ϵ + u(2) + ln(ϵ)b(2)
!

, for d = 2, (17.57)

uϵ = u0 + ϵ
3
�
ϵ−1U (2) ◦ T−1

ϵ + u(2)
!

, for d = 3. (17.58)
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We finally show that U (2) can be explicitly computed. In fact, U (2) solves

−∆U (2) = ( f1 − f2)χB1(0) in Rd . (17.59)

But since U (2)(x) = ( f1 − f2)|B1(0)|E(x) for all x ∈ Rd \ B1(0) and since U (2) is continuous it follows
that U (2)(x) = ( f1 − f2)|B1(0)|E(x) on ∂ B1(0) and thus U (2) must be a solution to the inhomogeneous
Dirichlet problem: find U (2) ∈ H1(B1(0)), such that U (2)(x) = ( f1 − f2)|B1(0)|E(x) on ∂ B1(0) and

−∆U (2) = ( f1 − f2) in B1(0). (17.60)

Employing polar coordinates, it is readily checked that the solution is given for d = 2 by

U (2)(x) =

	−( f1 − f2)
1
4(|x |2 − 1) for x ∈ B1(0),

−( f1 − f2)
1
2 ln(|x |) for x ∈ R2 \ B1(0),

(17.61)

and in dimension d = 3 using spherical coordinates leads to:

U (2)(x) =

	−( f1 − f2)
1
6(|x |2 − 3) for x ∈ B1(0),

( f1 − f2)
1
3

1
|x | for x ∈ R3 \ B1(0).

(17.62)

Note that, according to Example 17.11 and the fact that F (2)(x) = f1 − f2 and |B1(x0)| is equal to π for
d = 2 and equal to 4π

3 for d = 3, we have

R(2)1 (x) =

	− f1− f2
2 ln(|x |), for d = 2,

f1− f2
3|x | , for d = 3.

(17.63)

Furthermore, the function u(2) was defined in (17.26) and is given by

−∆u(2) = 0 in D, (17.64)

u(2) = −R(2)1 (x − x0) on Γ , (17.65)

−∂νu(2) = R(2)1 (x − x0) on Σ. (17.66)

For a general domain D its solution cannot be explicitly computed. However, we know U (2) explicitly and
thus can write the expansion of uϵ as follows

uϵ = u0 + ϵ
2


�− f1− f2
4 (ϵ−2|x − x0|2 − 1) + u(2) − f1− f2

2 ln(ϵ)
"

for x ∈ Bϵ(x0),�− f1− f2
2 ln(|x − x0|) + u(2)

"
for x ∈ D \ Bϵ(x0),

(17.67)

and in dimension d = 3:

uϵ = u0 + ϵ
3

	�−( f1 − f2)
1
6(ϵ
−3|x − x0|2 − 3) + u(2)

!
for x ∈ Bϵ(x0),�

f1− f2
3

1
|x−x0| + u(2)
"

for x ∈ D \ Bϵ(x0).
(17.68)

Note that the ln(ϵ) term in d = 2 disappears outside of Bϵ(0) and that indeed uϵ − u0 = 0 on ∂D.
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18 Analysis of the averaged adjoint equation for the H1 tracking-type cost function

18 Analysis of the averaged adjoint equation for the H1 tracking-type cost
function

Since the analysis of the averaged adjoint variable for the L2 tracking-type cost functional differs signif-
icantly from the analysis of the H1 tracking-type cost functional, we split the cost functional � defined
in (16.1) into two parts and treat each one separately. Thus, in this section we derive the asymptotics of
the averaged adjoint state qϵ for the H1 tracking-type part of (16.1). The L2 tracking-type part of (9.6)
is treated in Section 20.
Hence, in this section we are interested in the cost function

�2(Ω) := α2

�
D

|∇(uΩ − ud)|2 d x , (18.1)

where α2 ≥ 0 and uΩ ∈ H1(D) satisfies uΩ|Γ = gD and�
D

∇uΩ · ∇ϕ d x =

�
D

fΩϕ d x + (gN ,ϕ)
H− 1

2 (Γ N )×H
1
2 (Γ N )

for all ϕ ∈ H1
Γ (D). (18.2)

The associated Lagrangian is given by

� (ϵ, u, v) := α2

�
D

|∇(u−ud)|2 d x+

�
D

∇u·∇v− fΩϵ v d x−(gN , v)
H− 1

2 (Γ N )×H
1
2 (Γ N )

for all u ∈ 
 , v ∈ � ,

(18.3)
where� = H1

Γ (D) and 
 = ū+� with an element ū ∈ H1(D) satisfying the boundary condition ū|Γ = gD.
For more details regarding such an affine setting we refer to Section 10. In view of (10.49) we deduce
the perturbed averaged adjoint equation: for ϵ > 0 small find qϵ ∈ H1

Γ (D), such that� 1
0

∂u� (ϵ, suϵ + (1− s)u0, qϵ)(ϕ) ds = 0 for all ϕ ∈ H1
Γ (D). (18.4)

Or explicitly, evaluating the ds-integral, the perturbed averaged adjoint equation reads: find qϵ ∈ H1
Γ (D),

such that �
D

∇ϕ · ∇qϵ d x = −α2

�
D

∇(uϵ + u0 − 2ud) · ∇ϕ d x for all ϕ ∈ H1
Γ (D). (18.5)

Similarly, we deduce the unperturbed adjoint equation: find q0 ∈ H1
Γ (D), such that�

D

∇ϕ · ∇q0 d x = −2α2

�
D

∇(u0 − ud) · ∇ϕ d x for all ϕ ∈ H1
Γ (D). (18.6)

Analogously to the definition of the variation of the state, we introduce the variation of the averaged
adjoint state.

Definition 18.1. For almost every x ∈ Dϵ we define the first variation of the averaged adjoint state qϵ by

Q(1)ϵ (x) :=
�qϵ − q0

ϵ

#
◦ Tϵ(x) for ϵ > 0. (18.7)
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More generally, we define the (k+ 1)-th variation of qϵ for k ≥ 1 and ϵ > 0 by

Q(k+1)
ϵ :=



Q(k)ϵ −Q(k)−ϵd−2q(k)◦Tϵ−ln(ϵ)c(k)

ϵ for d = 2,
Q(k)ϵ −Q(k)−ϵd−2q(k)◦Tϵ

ϵ for d = 3.
(18.8)

Subtracting (18.5), (18.6) changing variables with respect to Tϵ and dividing the results by ϵ > 0
shows that the first variation of the averaged adjoint state satisfies�

Dϵ

∇Q(1)ϵ · ∇ϕ d x = −α2

�
Dϵ

∇U (1)ϵ · ∇ϕ d x for all ϕ ∈ H1
Γϵ
(Dϵ). (18.9)

Since Q(1)ϵ ∈ H1
Γ (D), it follows that Q(1)ϵ = −α2U (1)ϵ . Hence, one readily checks that we have the following

asymptotic expansion.

Theorem 18.2. For k ≥ 1 let Q(k) := −α2U (k), q(k) := −α2u(k) and c(k) := −α2 b(k), with U (k) defined in
Lemma 17.7, u(k) defined in (17.26) and b(k) defined in (17.13). Additionally, let k ≥ 1 and α ∈ (0,1).
Then there is a constant C > 0, such that for all ϵ > 0 sufficiently small:

∥Q(k)ϵ −Q(k) − ϵd−2q(k) ◦ Tϵ − ln(ϵ)c(k)∥ϵ ≤ Cϵ1−α for d = 2, (18.10)

∥Q(k)ϵ −Q(k) − ϵd−2q(k) ◦ Tϵ∥ϵ ≤ Cϵ for d = 3. (18.11)

Proof. Since Q(1)ϵ = −α2U (1)ϵ the result follows from Theorem 17.18.

Analogously to Lemma 17.15 we deduce the following recursion:

Lemma 18.3. Let ϵ > 0 be fixed. We have for all k ≥ 2 and d = 2:

Q(1)ϵ − ϵk−1Q(k)ϵ =
k−1,
ℓ=1

ϵℓ−1
�
Q(ℓ) + ϵd−2q(ℓ) ◦ Tϵ + ln(ϵ)c(ℓ)

!
on Dϵ, (18.12)

with c(ℓ) defined in Theorem 18.2. Furthermore, we have for all k ≥ 2 and d = 3:

Q(1)ϵ − ϵk−1Q(k)ϵ =
k−1,
ℓ=1

ϵℓ−1
�
Q(ℓ) + ϵd−2q(ℓ) ◦ Tϵ

!
, on Dϵ. (18.13)

19 Complete topological expansion - H1 tracking-type

In this section we compute the n-th topological derivative of the H1 tracking-type part of the cost function
defined in (18.1). That is, we are deriving an asymptotic expansion of the form

�2(Ωϵ) = �2(Ω) +
n,

k=1

ℓk(ϵ)d
k�2(Ω,ω)(x0) + o(ℓn(ϵ)), (19.1)
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19 Complete topological expansion - H1 tracking-type

with�2(Ω) defined as in (18.1). Here dk�2(Ω,ω)(x0) denotes the k-th topological derivative with respect
to the initial domain Ω for the perturbation shape ω at the point x0 and ℓk : R+ → R+ are continuous
functions satisfying

lim
ϵ↘0
ℓk(ϵ) = 0 and lim

ϵ↘0

ℓk+1(ϵ)
ℓk(ϵ)

= 0 for k ≥ 1.

As we will see, the logarithmic term ln(ϵ)c(k) in the asymptotic expansion of the adjoint state variable
in d = 2 leads to a differing topological derivative compared to dimension d = 3. Thus, we will distin-
guish between both scenarios and derive a general formula of the topological derivative for both cases
separately.

The following lemma helps us compute the product of two finite sums in view of the asymptotic
behaviour with respect to ϵ > 0.

Lemma 19.1. For N ≥ 0, x ∈ω and ϵ > 0 small let

fϵ(x) :=
N,

n=0

ϵnan(x) + � (ϵN+1; x), gϵ(x) :=
N,

n=0

ϵn bn(x) + � (ϵN+1; x),

where an, bn :ω→ R, n≥ 0 are functions independent of ϵ. Then

fϵ(x)gϵ(x) =
N,

n=0

ϵn
n,

j=0

a j(x)bn− j(x) + � (ϵN+1; x). (19.2)

Proof. Let an(x) = bn(x) = 0 for n> N . The Cauchy product yields�∞,
n=0

ϵnan(x)

&�∞,
n=0

ϵn bn(x)

&
=
∞,
n=0

ϵn
n,

j=0

a j(x)bn− j(x),

which finishes the proof.

19.1 General formula for higher order topological derivatives in dimension two

In this section we address the topological derivatives in dimension d = 2. The next theorem states the
main result of this section:

Theorem 19.2. Let ℓ1(ϵ) := |ωϵ|, ℓ2n(ϵ) = ϵn ln(ϵ)|ωϵ| and ℓ2n+1(ϵ) = ϵn|ωϵ|, for n≥ 1. The topological
derivative of �2 at x0 ∈ D \ Ω̄ and ω ⊂ R2 with 0 ∈ω in dimension d = 2 is given by

d1�2(Ω,ω)(x0) =
�
( f2 − f1)q0

!
(x0), (19.3)

d2n�2(Ω,ω)(x0) =
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�

f2 − f1
!
(x0)[x]

jc(n− j) d x

'
, (19.4)
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19 Complete topological expansion - H1 tracking-type

d2n+1�2(Ω,ω)(x0) =
1
|ω|

1
n!

�
ω

∇n
�
( f2 − f1)q0

!
(x0)[x]

n d x

+
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�

f2 − f1
!
(x0)[x]

jQ(n− j)(x) d x

'

+
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)q

(n− j)
!
(x0)[x]

j d x

'
,

(19.5)

for n≥ 1, where for ℓ≥ 1 q(ℓ),Q(ℓ) and c(ℓ) are defined in Theorem 18.2.

Proof. Recall the Lagrangian introduced in (18.3). Let ϵ ≥ 0. In view of (10.27) we have

�2(Ωϵ) =� (ϵ, uϵ, qϵ) =� (ϵ, u0, qϵ), (19.6)

so that the cost function can be written only in terms of the averaged adjoint variable. Therefore, we
deduce

�2(Ωϵ)−� (Ω) =� (ϵ, u0, qϵ)−� (ϵ, u0, q0) +� (ϵ, u0, q0)−� (0, u0, q0). (19.7)

Using Theorem 18.2, we now derive an expansion for both differences on the right hand side. Note that
this splitting resembles the methodology of the proof of Proposition 10.4.

Expansion of � (ϵ, u0, q0)−� (0, u0, q0): We have

� (ϵ, u0, q0)−� (0, u0, q0) = −
�
ωϵ

( f1 − f2)q0 d x

= ϵd

�
ω

�
( f2 − f1)q0

! ◦ Tϵ� �� �
=:q̂0◦Tϵ

d x ,
(19.8)

where we used a change of variables in the last step. Hence, a Taylor expansion of ϵ !→ q̂0 ◦ Tϵ in ϵ = 0
yields

q̂0 ◦ Tϵ(x) = q̂0(x0) +
N,

k=1

ϵk∇kq̂0(x0)[x]k

k!
+ � (ϵN+1). (19.9)

Now plugging the Taylor expansion (19.9) into (19.8) we get

� (ϵ, u0, q0)−� (0, u0, q0)
|ωϵ| = q̂0(x0) +

N,
k=1

ϵk 1
|ω|

1
k!

�
ω

∇kq̂0(x0)[x]
k d x + � (ϵN+1), (19.10)

where |ωϵ| denotes the volume of ωϵ. Thus, we have discovered one part of the n-th order topological
derivative.
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19 Complete topological expansion - H1 tracking-type

Expansion of � (ϵ, u0, qϵ)−� (ϵ, u0, q0): We proceed in several steps. First, we compute

� (ϵ, u0, qϵ)−� (ϵ, u0, q0) =

�
D

∇u0 · ∇(qϵ − q0)− fΩϵ(qϵ − q0) d x − (gN , qϵ − q0)H− 1
2 (Γ N )×H

1
2 (Γ N )

=

�
D

∇u0 · ∇(qϵ − q0)− fΩ(qϵ − q0) d x − (gN , qϵ − q0)H− 1
2 (Γ N )×H

1
2 (Γ N )� �� �

=0, in view of (17.2)

−
�
D

( fΩϵ − fΩ)(qϵ − q0) d x

=ϵd

�
ω

( f2 − f1) ◦ TϵϵQ
(1)
ϵ d x ,

(19.11)

where in the last step we used a change of variables with respect to the transformation Tϵ and the
definition ϵQ(1)ϵ = (qϵ − q0) ◦ Tϵ. We now substitute ϵQ(1)ϵ by the recursion formula of Lemma 18.3 and
obtain �

ω

( f2 − f1) ◦ TϵϵQ
(1)
ϵ d x =

N,
n=1

�
ω

( f2 − f1) ◦ Tϵϵ
nQ(n) d x (19.12)

+
N,

n=1

�
ω

( f2 − f1) ◦ Tϵϵ
nq(n) ◦ Tϵ d x (19.13)

+
N,

n=1

�
ω

( f2 − f1) ◦ Tϵϵ
n ln(ϵ)c(n) d x (19.14)

+

�
ω

( f2 − f1) ◦ Tϵϵ
N+1Q(N+1)

ϵ d x . (19.15)

Next we can expand all four terms:

• First term (19.12): We use Taylor’s expansion to write:

( f2 − f1) ◦ Tϵ(x) =
N,

j=0

ϵ ja j(x) + � (ϵN+1; x), a j(x) :=
∇ j
�

f2 − f1
!
(x0)[x] j

j!
. (19.16)

For the proof we set Q(0) := 0. Then, by Lemma 19.1 we have

( f2 − f1) ◦ Tϵ(x)

� N,
n=1

ϵnQ(n)(x)

&
=

N,
n=0

ϵn

�
n,

j=0

a j(x)Q
(n− j)(x)

'
+ � (ϵN+1; x) (19.17)

and further, taking into account that Q(0) =Q(1) = 0,

N,
n=1

�
ω

( f2 − f1) ◦ Tϵϵ
nQ(n) d x =

N,
n=2

ϵn

�
ω

�
n−2,
j=0

a j(x)Q
(n− j)(x)

'
d x + � (ϵN+1). (19.18)
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• Second term (19.13): Again we use Taylor’s formula to expand the functions ϵ !→ q̂(n) ◦ Tϵ at ϵ = 0
with q̂(n) := ( f2 − f1)q(n), n≥ 1 to deduce

q̂(n)(x) =
N,

j=0

ϵ j b(n)j (x) + � (ϵN+1; x), b(n)j (x) :=
∇ j q̂(n)(x0)[x] j

j!
. (19.19)

Hence, a similar computation as in the first bullet point and an application of Lemma 19.1 yield

N,
n=1

�
ω

ϵn
�
( f2 − f1)q

(n)
! ◦ Tϵ d x =

N,
n=1

ϵn

�
N,

j=0

ϵ j

�
ω

b(n)j (x) d x

'
+ � (ϵN+1),

=
N,

n=2

ϵn

�
n−2,
j=0

�
ω

b(n− j)
j (x) d x

'
+ � (ϵN+1),

(19.20)

where we took into account q(1) = 0 and therefore b(1)j = 0 for j ≥ 0 as well.

• Third term (19.14): In view of the terms a j(x), j ≥ 0 introduced above in (19.16) we have

N,
n=1

�
ω

ϵn ln(ϵ) ( f2 − f1) ◦ Tϵc
(n) d x =

�
N,

j=0

ϵ j ln(ϵ)

�
ω

a j(x) d x

'� N,
n=1

ϵnc(n)
&
+ o(ϵN+1)

=
N,

n=2

ϵn ln(ϵ)

�
n−2,
j=0

�
ω

a j(x)c
(n− j) d x

'
+ o(ϵN ),

(19.21)

where we took into account that c(1) = 0.

• Fourth term (19.15): Applying Lemma 11.5, item (iii), to the last term and using the asymptotics
derived in Theorem 18.2 entails�����

ω

( f1 − f2) ◦ Tϵϵ
N+1Q(N+1)

ϵ d x

����≤CϵN−α∥ϵQ(N+1)
ϵ ∥ϵ ≤ CϵN+1−2α, (19.22)

for a constant C > 0 and α ∈ (0, 1) sufficiently small.

Combining (19.18) - (19.22) leaves us with the expansion

L(ϵ, u0, qϵ)−L(ϵ, u0, q0)
|ωϵ| =

1
|ω|

N,
k=2

ϵk

�
k−2,
j=0

�
ω

a j(x)Q
(k− j)(x) d x

'
(19.23)

+
1
|ω|

N,
k=2

ϵk

�
k−2,
j=0

�
ω

b(k− j)
j (x) d x

'
(19.24)

+
1
|ω|

N,
k=2

ϵk ln(ϵ)

�
k−2,
j=0

�
ω

a j(x)c
(k− j) d x

'
+ o(ϵN ). (19.25)

From this formula, together with (19.10), we see that the n-th topological derivative is given by (19.3)-
(19.5).
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19 Complete topological expansion - H1 tracking-type

Remark 19.3. In the context of the previous part of this thesis (cf. Section 14.2), the first expansion we
considered in the proof correlates to the terms ∂ (1)

ℓ
� (0, u0, q0),∂

(2)
ℓ
� (0, u0, q0). Similarly, the second

part matches the terms� (1)(u0, q0),� (2)(u0, q0). We observe that in both cases the latter require a more
involved analysis.

Corollary 19.4. The first five topological derivatives in dimension d = 2 read as follows:

d1�2(Ω,ω)(x0) =
�
( f2 − f1)q0

!
(x0), ℓ1(ϵ) = |ω|ϵ2, (19.26)

d2�2(Ω,ω)(x0) =0, ℓ2(ϵ) = |ω|ϵ2(ϵ ln(ϵ)), (19.27)

d3�2(Ω,ω)(x0) =
1
|ω|
�
ω

∇�( f2 − f1)q0

!
(x0)[x] d x , ℓ3(ϵ) = |ω|ϵ3, (19.28)

d4�2(Ω,ω)(x0) =α2[ f1 − f2](x0)b
(2), ℓ4(ϵ) = |ω|ϵ3(ϵ ln(ϵ)), (19.29)

d5�2(Ω,ω)(x0) =
1

2|ω|
�
ω

∇2
�
( f2 − f1)q0

!
(x0)[x]

2 d x ℓ5(ϵ) = |ω|ϵ4, (19.30)

+
α2

�
f1 − f2
!
(x0)

|ω|
�
ω

U (2) d x (19.31)

+α2

�
( f1 − f2)u

(2)
!
(x0). (19.32)

19.1.1 Special cases

In this section we consider some special cases for our input data in dimension d = 2 and discuss how
this influences the topological derivative. At first, let the inhomogeneity be piecewise constant, that is,
assume f1, f2 ∈ R. Thus, it follows from (17.8) that U (k) = 0 for k ̸= 2. Additionally, we have Q(k) = 0
and b(k) = c(k) = 0, for k ̸= 2. Since a j(x) denotes the j-th term of the Taylor’s expansion of ( f2 − f1)◦Tϵ,
we further deduce that a j(x) = 0 for j > 0. These observations yield the following result:

Corollary 19.5. Assume that f1, f2 ∈ R. Let ℓ1(ϵ) := |ωϵ|, ℓ2n(ϵ) := ϵn ln(ϵ)|ωϵ| and ℓ2n+1(ϵ) = ϵn|ωϵ|,
for n ≥ 1. The topological derivative of �2 at x0 ∈ D \ Ω̄ and ω ⊂ Rd with 0 ∈ ω in dimension d = 2 is
given by

d1�2(Ω,ω)(x0) = ( f2 − f1)q0(x0), d2�2(Ω,ω)(x0) = 0, (19.33)

d3�2(Ω,ω)(x0) =
f2 − f1
|ω|
�
ω

∇q0(x0)[x] d x , d4�2(Ω,ω)(x0) = ( f2 − f1)c
(2), (19.34)

d5�2(Ω,ω)(x0) =
1
|ω|

f2 − f1
2

�
ω

∇2q0(x0)[x]
2 d x

+
f2 − f1
|ω|
�
ω

Q(2)(x) d x

+ ( f2 − f1)q
(2)(x0),

(19.35)

d2n�2(Ω,ω)(x0) = 0, (19.36)
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d2n+1�2(Ω,ω)(x0) =
f2 − f1
|ω|

1
n!

�
ω

∇nq0(x0)[x]
n d x

+
f2 − f1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ jq(n− j)(x0)[x]
j d x

'
,

(19.37)

for n≥ 3, where q(ℓ),Q(ℓ) and c(ℓ), ℓ≥ 1 are defined in Theorem 18.2.

Next we consider a symmetric inclusion ω ⊂ R2. To be precise, we assume that ω can be written as
the union ω+ ∪ (−ω+), where ω+ is a subset of ω. Additionally, we require this union to overlap only
on a set of zero measure, i.e. |ω+ ∩ (−ω+)| = 0. For example the square (−1,1)× (−1, 1) and the unit
sphere satisfy this property. One readily checks that�

ω

∇kh(x0)[x]
k d x = 0 for k odd, (19.38)

for a sufficiently smooth function h, since the integrand is an odd function. As a result, the odd numbered
boundary layer correctors and the corresponding logarithmic terms vanish. That is,

U (k) =Q(k) = 0 for k odd,

b(k) = c(k) = 0 for k odd.

Additionally, since we derived the topological derivative by expanding q0, f2 − f1 and q(k), k ≥ 2 with
the help of Taylor’s expansion, some terms in the general formula can be skipped by the same argument.
These considerations yield the following corollary:

Corollary 19.6. Assume that f1, f2 ∈ R and the perturbation shape ω is symmetric. Let ℓ1(ϵ) := |ωϵ|,
ℓ2n(ϵ) = ϵn ln(ϵ)|ωϵ| and ℓ2n+1(ϵ) = ϵn|ωϵ|, for n ≥ 1. The topological derivative of �2 at x0 ∈ D \ Ω̄
and ω ⊂ R2 with 0 ∈ω in dimension d = 2 is given by

d1�2(Ω,ω)(x0) = ( f2 − f1)q0(x0), d2�2(Ω,ω)(x0) = 0, (19.39)

d3�2(Ω,ω)(x0) = 0, d4�2(Ω,ω)(x0) = ( f2 − f1)c
(2), (19.40)

d5�2(Ω,ω)(x0) =
1
|ω|

f2 − f1
2

�
ω

∇2q0(x0)[x]
2 d x

+
f2 − f1
|ω|
�
ω

Q(2)(x) d x

+ ( f2 − f1)q
(2)(x0),

(19.41)

d2n�2(Ω,ω)(x0) = 0, (19.42)

d2n+1�2(Ω,ω)(x0) =
f2 − f1
|ω|

1
n!

�
ω

∇nq0(x0)[x]
n d x

+
f2 − f1
|ω|

 n−2
2,

j=0

1
(2 j)!

�
ω

∇2 jq(n−2 j)(x0)[x]
2 j d x

 for n even,

(19.43)
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d2n+1�2(Ω,ω)(x0) =
f2 − f1
|ω|

 n−3
2,

j=0

1
(2 j)!

�
ω

∇2 jq(n−2 j)(x0)[x]
2 j d x

 for n odd, (19.44)

for n≥ 3, where q(ℓ),Q(ℓ) and c(ℓ), ℓ≥ 1 are defined in Theorem 18.2.

Let us finish this section by computing the first five topological derivatives for the unit ball perturba-
tion shape and constant functions f1, f2 ∈ R. Note that, in view of Example 17.19, we have an explicit
formulation of the corrector U (2).

Corollary 19.7. For the inclusionω := B1(0) the unit ball in R2 centered at the origin and f1, f2 ∈ R, the
first five topological derivatives in dimension d = 2 read:

d1�2(Ω,ω)(x0) =( f2 − f1)q0(x0), ℓ1(ϵ) = |ω|ϵ2,

d2�2(Ω,ω)(x0) =0, ℓ2(ϵ) = |ω|ϵ2(ϵ ln(ϵ)),

d3�2(Ω,ω)(x0) =0, ℓ3(ϵ) = |ω|ϵ3,

d4�2(Ω,ω)(x0) =− α2( f1 − f2)2

2
, ℓ4(ϵ) = |ω|ϵ3(ϵ ln(ϵ)),

d5�2(Ω,ω)(x0) =
( f2 − f1)

2π

�
ω

∇2q0(x0)[x]
2 d x ℓ5(ϵ) = |ω|ϵ4.

+
α2( f1 − f2)2

8
+α2( f1 − f2)u

(2)(x0),

Proof. Following Example 17.19, we have U (2) = −( f1 − f2)
1
4 (1− |x |) for x ∈ B1(0). Hence, we can

compute the integral of U (2) explicitly and obtain�
ω

U (2) d x = ( f1 − f2)
π

8
.

Taking into account vanishing terms due to the symmetry of the inclusion, the result follows from Corol-
lary 19.4.

19.2 General formula for higher order topological derivatives in dimension three

Similarly to the previous section one can derive the following result regarding the topological derivative
of the H1 tracking-type part of the cost functional in dimension d = 3.

Theorem 19.8. Let ℓ1(ϵ) := |ωϵ| and ℓn(ϵ) = ϵn−1|ωϵ|, for n ≥ 2. The topological derivative of �2 at
x0 ∈ D \ Ω̄ and ω ⊂ R3 with 0 ∈ω in dimension d = 3 is given by

d1�2(Ω,ω)(x0) =
�
( f2 − f1)q0

!
(x0), d2�2(Ω,ω)(x0) =

1
|ω|
�
ω

∇�( f2 − f1)q0

!
(x0)[x] d x , (19.45)
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dn+1�2(Ω,ω)(x0) =
1
|ω|

1
n!

�
ω

∇n
�
( f2 − f1)q0

!
(x0)[x]

n d x

+
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�

f2 − f1
!
(x0)[x]

jQ(n− j)(x) d x

'

+
1
|ω|
�

n−3,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)q

(n−1− j)
!
(x0)[x]

j d x

'
.

(19.46)

for n≥ 2, where q(ℓ),Q(ℓ) and c(ℓ), ℓ≥ 1 are defined in Theorem 18.2.

Proof. This can be shown similarly to the proof in dimension d = 2. The main difference is the shift in the
third term of (19.46), which is a result of the factor ϵd−2 = ϵ1 in Lemma 18.3. Additionally, the absence of
the logarithmic terms leads to a clearer representation of the general formula of the topological derivative
compared to the two dimensional case.

Similarly to Corollary 19.4, we deduce the following result.

Corollary 19.9. The first five topological derivatives in terms of the correctors of U (1)ϵ in dimension d = 3
read

d1�2(Ω,ω)(x0) =
�
( f2 − f1)q0

!
(x0), ℓ1(ϵ) = |ω|ϵ3,

d2�2(Ω,ω)(x0) =
1
|ω|
�
ω

∇�( f2 − f1)q0

!
(x0)[x] d x , ℓ2(ϵ) = |ω|ϵ4,

d3�2(Ω,ω)(x0) =
1

2|ω|
�
ω

∇2
�
( f2 − f1)q0

!
(x0)[x]

2 d x ℓ3(ϵ) = |ω|ϵ5,

+
α2

�
f1 − f2
!
(x0)

|ω|
�
ω

U (2) d x ,

d4�2(Ω,ω)(x0) =
1

6|ω|
�
ω

∇3
�
( f2 − f1)q0

!
(x0)[x]

3 d x ℓ4(ϵ) = |ω|ϵ6,

+
α2

�
f1 − f2
!
(x0)

|ω|
�
ω

U (3) d x

+
α2

|ω|
��
ω

∇� f1 − f2
!
(x0)[x]U

(2)(x) d x

%
+
α2

|ω|
��
ω

�
( f1 − f2)u

(2)
!
(x0) d x

%
,
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d5�2(Ω,ω)(x0) =
1

24|ω|
�
ω

∇4
�
( f2 − f1)q0

!
(x0)[x]

4 d x ℓ5(ϵ) = |ω|ϵ7.

+
α2

�
f1 − f2
!
(x0)

|ω|
�
ω

U (4) d x

+
α2

|ω|
��
ω

∇� f1 − f2
!
(x0)[x]U

(3)(x) d x

%
+
α2

2|ω|
��
ω

∇2
�

f1 − f2
!
(x0)[x]

2U (2)(x) d x

%
+
α2

|ω|
��
ω

�
( f1 − f2)u

(3)
!
(x0) d x

%
+
α2

|ω|
��
ω

∇�( f1 − f2)u
(2)
!
(x0)[x] d x

%
,

20 Analysis of the averaged adjoint equation for the L2 tracking-type cost
function

In this section we derive the asymptotic expansion of the averaged adjoint state qϵ for the L2 tracking-type
part of (16.1). The analysis differs significantly from the H1 tracking-type cost function and involves the
fundamental solution of the biharmonic equation. Since the fundamental solution is not homogeneous
in dimension d = 2, the analysis in this case is more complicated and requires the introduction of several
regular corrector equations. In this section, our objective function is

�1(Ω) := α1

�
D

(uΩ − ud)
2 d x , (20.1)

where α1 ≥ 0 and uΩ ∈ H1(D) satisfies uΩ|Γ = gD and�
D

∇uΩ · ∇ϕ d x =

�
D

fΩϕ d x + (gN ,ϕ)
H− 1

2 (Γ N )×H
1
2 (Γ N )

for all ϕ ∈ H1
Γ (D). (20.2)

In analogy to (18.3) the associated Lagrangian is given by

� (ϵ, u, v) := α1

�
D

(ϕ − ud)
2 d x +

�
D

∇u · ∇v − fΩϵ v d x − (gN , v)
H− 1

2 (Γ N )×H
1
2 (Γ N )

for all u ∈ 
 , v ∈ � ,

(20.3)
where� = H1

Γ (D) and 
 = ū+� with an element ū ∈ H1(D) satisfying the boundary condition ū|Γ = gD.
Now, the averaged adjoint equation reads: for ϵ > 0 find qϵ ∈ H1

Γ (D), such that� 1
0

∂u� (ϵ, suϵ + (1− s)u0, qϵ)(ϕ) ds = 0 for all ϕ ∈ H1
Γ (D). (20.4)
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Or explicitly, evaluating the ds-integral, the perturbed averaged adjoint equation reads: find qϵ ∈ H1
Γ (D),

such that �
D

∇ϕ · ∇qϵ d x = −α1

�
D

(uϵ + u0 − 2ud)ϕ d x for all ϕ ∈ H1
Γ (D). (20.5)

Similarly, the unperturbed averaged adjoint equation reads: find q0 ∈ H1
Γ (D), such that�

D

∇ϕ · ∇q0 d x = −α1

�
D

(2u0 − 2ud)ϕ d x for all ϕ ∈ H1
Γ (D). (20.6)

Due to the differing boundary layer correctors occurring in the analysis of the averaged adjoint state
variable associated with this specific cost functional, some modifications of the variation of the averaged
adjoint state compared to the direct state have to be considered. We will introduce them in the following:

Definition 20.1. For almost every x ∈ Dϵ we define the first variation of the averaged adjoint state qϵ by

Q(1)ϵ (x) :=
�qϵ − q0

ϵ

#
◦ Tϵ(x) for ϵ > 0. (20.7)

More generally, we define the (k+ 1)-th variation of qϵ for k ≥ 1 and ϵ > 0 by

Q(k+1)
ϵ :=



Q(k)ϵ −ϵ2Q(k)−ϵd−2 L(k)ϵ ◦Tϵ−ϵdq(k)◦Tϵ−ϵd−2m(k)◦Tϵ−ln(ϵ)n(k)◦Tϵ

ϵ for d = 2,
Q(k)ϵ −ϵ2Q(k)−ϵd−2 L(k)ϵ ◦Tϵ−ϵdq(k)◦Tϵ−ϵd−2m(k)◦Tϵ

ϵ for d = 3.
(20.8)

Here, Q(k), m(k) and n(k) aim to approximate U (k), u(k) and b(k), respectively, whereas L(k) and q(k) correct
the error on the boundary, which is introduced by Q(k).

As a result of Definition 20.1, we get the following analogue to Lemma 17.15.

Lemma 20.2. We have for k ≥ 2 and d = 2

Q(1)ϵ − ϵk−1Q(k)ϵ =
k−1,
ℓ=1

ϵℓ−1
�
ϵ2Q(ℓ) + ϵd−2 L(ℓ)ϵ ◦ Tϵ + ϵ

dq(ℓ) ◦ Tϵ + ϵ
d−2m(ℓ) ◦ Tϵ + ln(ϵ)n(ℓ) ◦ Tϵ

!
, (20.9)

and for k ≥ 2 and d = 3

Q(1)ϵ − ϵk−1Q(k)ϵ =
k−1,
ℓ=1

ϵℓ−1
�
ϵ2Q(ℓ) + ϵd−2 L(ℓ)ϵ ◦ Tϵ + ϵ

dq(ℓ) ◦ Tϵ + ϵ
d−2m(ℓ) ◦ Tϵ
!

. (20.10)

Proof. Similarly to Lemma 17.15, this follows from induction arguments.

In the following we introduce the corrector variables appearing in Definition 20.1. The methodology
resembles our approaches utilised in the previous sections of this thesis covering asymptotic expansions.
Nonetheless, we will proceed with more detailed steps, since the number of correctors is significantly
larger.
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20 Analysis of the averaged adjoint equation for the L2 tracking-type cost function

Lemma 20.3. For k ≥ 2 let Q(k)(x) := −α1

�
ω
φ(x − y)F (k)(y) d y , where

φ(x) :=

	
1

8π

�|x |2 ln(|x |)− |x |2! for d = 2,

− 1
8π |x | for d = 3,

(20.11)

denotes the fundamental solution of the biharmonic equation (see [65, Section 4.2, pp. 201]) and F (k)

is defined in Lemma 17.7. Then Q(k) satisfies�
Rd

∇Q(k) · ∇ϕ d x = −α1

�
Rd

U (k)ϕ d x for all ϕ ∈ C1
c (R

d). (20.12)

Moreover, in dimension d = 2, Q(k) has the asymptotic behaviour

Q(k)(x) =A(k)2 (x) ln(|x |) + A(k)1 (x) ln(|x |) + A(k)0 (x) ln(|x |)
+ B(k)2 (x) + B(k)1 (x) + B(k)0 (x) +

N,
ℓ=1

S(k)
ℓ
(x) + � (|x |−(d−2+N+1)),

(20.13)

and in dimension d = 3, we have

Q(k)(x) = A(k)1 (x) + A(k)0 (x) + A(k)−1(x) +
N,
ℓ=1

S(k)
ℓ
(x) + � (|x |−(d−2+N+1)), (20.14)

for |x | →∞, where N ≥ 1, A(k)i , B(k)i are homogeneous of degree i and S(k)i are homogeneous of degree
−(d − 2+ i).

Proof. Similarly to [67, Lemma 4.1, pp. 54], one can show that Q(k) ∈ C2(Rd) and

∂ 2

∂ x i∂ x j
Q(k) = −α1

�
ω

∂ 2

∂ x i∂ x j
φ(x − y)F (k)(y) d y.

Since −∆φ = E, where E denotes the fundamental solution of the Laplace equation introduced in (17.5),
one readily follows

−∆Q(k) = α1

�
ω

∆φ(x − y)F (k)(y) d y = −α1

�
ω

E(x − y)F (k)(y) d y = −α1U (k) on Rd ,

where in the last step we used (17.7). This shows (20.12). Now, the asymptotic behaviour (20.13),(20.14)
follows from a Taylor’s expansion of φ.

Example 20.4. The terms S(k)
ℓ

: Rd → R are given for k ≥ 2 and ℓ≥ 1 by

S(k)
ℓ
(x) =

1
(ℓ+ 2)!

�
ω

∂ ℓ+2
t φ(x − t y)|t=0F (k)(y) d y, (20.15)
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20 Analysis of the averaged adjoint equation for the L2 tracking-type cost function

with F (k)(y) := 1
(k−2)!∇k−2
�

f1− f2
!
(x0)[y]k−2. Additionally, the leading terms can be explicitly computed

for d = 2 as

A(k)2 (x) =− α1

8π
|x |2
�
ω

F (k)(y) d y, (20.16)

A(k)1 (x) =
α1

4π

�
ω

x · yF (k)(y) d y, (20.17)

A(k)0 (x) =− α1

8π

�
ω

|y|2F (k)(y) d y, (20.18)

B(k)2 (x) =
α1

8π
|x |2
�
ω

F (k)(y) d y, (20.19)

B(k)1 (x) =− α1

8π

�
ω

x · yF (k)(y) d y, (20.20)

B(k)0 (x) =− α1

8π

�
ω

�
(x · y)2
|x |2 −

|y|2
2

%
F (k)(y) d y, (20.21)

and similarly for d = 3 the leading terms are given as

A(k)1 (x) =
α1

8π
|x |
�
ω

F (k)(y) d y, (20.22)

A(k)0 (x) =− α1

8π

�
ω

x · y
|x | F (k)(y) d y, (20.23)

A(k)−1(x) =
α1

16π

�
ω

� |x |2|y |2 − (x · y)2
|x |3
%

F (k)(y) d y. (20.24)

Next we will look at the remaining components of (20.8).

Definition 20.5. For k ≥ 3 we define the corrector q(k) ∈ H1(D) as the unique solution to

q(k) = −
k,
ℓ=1

S(k−ℓ)
ℓ

(x − x0) on Γ , (20.25)

�
D

∇q(k) · ∇ϕ d x =

�
Γ N

� k,
ℓ=1

∂νS
(k−ℓ)
ℓ

(x − x0)

&
ϕ dS for all ϕ ∈ H1

Γ (D), (20.26)

where we introduce S(0)
ℓ
= S(1)

ℓ
= 0 for ℓ≥ 1. Additionally, we define for k ≥ 2 the corrector m(k) ∈ H1

Γ (D)
as the unique solution to�

D

∇m(k) · ∇ϕ d x = −α1

�
D

u(k)ϕ d x for all ϕ ∈ H1
Γ (D), (20.27)

and n(k) ∈ H1
Γ (D) as the unique solution to�

D

∇n(k) · ∇ϕ d x = −α1 b(k)
�
D

ϕ d x for all ϕ ∈ H1
Γ (D). (20.28)
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20 Analysis of the averaged adjoint equation for the L2 tracking-type cost function

For the sake of completeness we introduce the remaining correctors.

Definition 20.6. We define
Q(1) ≡ 0,

as well as
q(1) ≡ 0, q(2) ≡ 0, m(1) ≡ 0, n(1) ≡ 0.

The function Q(k) approximates Q(k)ϵ insideω but introduces an error on the boundary ∂Dϵ in analogy
to the approximation of the variation of the state U (k)ϵ by the boundary layer correctors U (k). The main
difference now is that the asymptotic behaviour of Q(k) (see (20.13), (20.14)) requires the first six terms
in dimension d = 2 and the first three terms in dimension d = 3 to be corrected during each step. This
can readily be done for homogeneous terms, whereas the logarithm occurring in dimension two causes
some issues that require special attention. We illustrate the procedure for the Dirichlet boundary Γϵ in the
following. In view of the expansion (20.13) of Q(k) in dimension d = 2, we can correct the error produced
by Q(k) on the boundary part Γϵ, by correcting the terms ln(| · |)A(k)i (·), B(k)i (·), i = 0,1, 2 individually.

In order to correct a term f (x) (e.g. f (x) = B(k)1 (x)) on the boundary Γϵ, which we assume is homo-
geneous of degree r, we introduce a regular corrector s ∈ H1(D) defined on the fixed domain D, such
that s|Γ = − f (x − x0). Now rescaling s to the domain Dϵ yields s ◦ Tϵ|Γϵ = − f (ϵx). Hence, since f is
homogeneous of degree r, we just need to scale s by the factor ϵ−r to obtain

ϵ−rs ◦ Tϵ|Γϵ = −ϵ−r f (ϵx) = − f (x).

Utilising this method, we can correct the terms B(k)i , i = 0,1, 2. Unfortunately, the terms ln(|x |)A(k)i (x),
i = 0, 1,2 are not homogeneous, since the natural logarithm admits the additive property

ln(|ϵx |) = ln(ϵ) + ln(|x |) for all ϵ > 0.

Thus, correcting a term f (x) ln(|x |) (e.g. f (x) = A(k)1 (x)), where f is homogeneous of degree r, with a
function s defined on the fixed domain and boundary values s|Γ = − f (x − x0) ln(|x − x0|) yields

ϵ−rs ◦ Tϵ|Γϵ = − f (x) ln(|x |)− f (x) ln(ϵ). (20.29)

Hence, the scaled function s corrects f (x) ln(|x |), but also introduces the new error − f (x) ln(ϵ) on the
boundary Γϵ. Fortunately, this term can be corrected by another function s′ ∈ H1(D)with boundary values
s′|Γ = f (x − x0) scaled by the factor ϵ−r ln(ϵ):

ϵ−rs ◦ Tϵ|Γϵ + ln(ϵ)ϵ−rs′ ◦ Tϵ|Γϵ = − f (x) ln(|x |).
In this way we can correct every function A(k)i , B(k)i appearing in (20.13), (20.14). Summarising, for d = 2,

we need to introduce one corrector equation for each function B(k)0 , B(k)1 , B(k)2 and two corrector equations

for each function ln(| · |)A(k)0 (·), ln(| · |)A(k)1 (·), ln(| · |)A(k)2 (·), which makes a total of 9 corrector equations.
This motivates the following definition.

Definition 20.7. For k ≥ 2 and d = 2 let

L(k)ϵ := s(k)1 + ln(ϵ)s(k)2 + ϵs
(k)
3 + ϵ ln(ϵ)s(k)4 + ϵ

2s(k)5 + ϵ
2 ln(ϵ)s(k)6 + s(k)7 + ϵs

(k)
8 + ϵ

2s(k)9 , (20.30)

where s(k)i ∈ H1(D), i ∈ {1, ..., 9} are the unique solutions to the following set of equations:
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20 Analysis of the averaged adjoint equation for the L2 tracking-type cost function

(i) corrector equations for A(k)2 (x) ln(|x |)
▷ s(k)1 = −A(k)2 (x − x0) ln(|x − x0|) on Γ and�

D

∇s(k)1 · ∇ϕ d x =

�
Γ N

∂ν

�
A(k)2 (x − x0) ln(|x − x0|)

"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.31)

▷ s(k)2 = A(k)2 (x − x0) on Γ and�
D

∇s(k)2 · ∇ϕ d x = −
�
Γ N

∂ν

�
A(k)2 (x − x0)
"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.32)

(ii) corrector equations for A(k)1 (x) ln(|x |)
▷ s(k)3 = −A(k)1 (x − x0) ln(|x − x0|) on Γ and�

D

∇s(k)3 · ∇ϕ d x =

�
Γ N

∂ν

�
A(k)1 (x − x0) ln(|x − x0|)

"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.33)

▷ s(k)4 = A(k)1 (x − x0) on Γ and�
D

∇s(k)4 · ∇ϕ d x = −
�
Γ N

∂ν

�
A(k)1 (x − x0)
"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.34)

(iii) corrector equations for A(k)0 (x) ln(|x |)
▷ s(k)5 = −A(k)0 (x − x0) ln(|x − x0|) on Γ and�

D

∇s(k)5 · ∇ϕ d x =

�
Γ N

∂ν

�
A(k)0 (x − x0) ln(|x − x0|)

"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.35)

▷ s(k)6 = A(k)0 (x − x0) on Γ and�
D

∇s(k)6 · ∇ϕ d x = −
�
Γ N

∂ν

�
A(k)0 (x − x0)
"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.36)

(iv) corrector equation for B(k)2 (x)

▷ s(k)7 = −B(k)2 (x − x0) on Γ and�
D

∇s(k)7 · ∇ϕ d x =

�
Γ N

∂ν

�
B(k)2 (x − x0)
"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.37)

(v) corrector equation for B(k)1 (x)
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20 Analysis of the averaged adjoint equation for the L2 tracking-type cost function

▷ s(k)8 = −B(k)1 (x − x0) on Γ and�
D

∇s(k)8 · ∇ϕ d x =

�
Γ N

∂ν

�
B(k)1 (x − x0)
"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.38)

(vi) corrector equation for B(k)0 (x)

▷ s(k)9 = −B(k)0 (x − x0) on Γ and�
D

∇s(k)9 · ∇ϕ d x =

�
Γ N

∂ν

�
B(k)0 (x − x0)
"
ϕ dS for all ϕ ∈ H1

Γ (D). (20.39)

Since the three leading terms of Q(k), k ≥ 2 in dimension d = 3 are homogeneous functions, we
deduce that each one can be treated by a single corrector equation. This makes a total of three corrector
equations, which we introduce in the following definition.

Definition 20.8. For k ≥ 2 and d = 3 let

L(k)ϵ := s(k)1 + ϵs
(k)
2 + ϵ

2s(k)3 , (20.40)

where s(k)i ∈ H1(D), i ∈ {1,2, 3} are the unique solutions to the following set of equations:

(i) corrector equation for A(k)1 (x)

▷ s(k)1 = −A(k)1 (x − x0) on Γ and�
D

∇s(k)1 · ∇ϕ d x =

�
Γ N

∂νA
(k)
1 (x − x0)ϕ dS for all ϕ ∈ H1

Γ (D). (20.41)

(ii) corrector equation for A(k)0 (x)

▷ s(k)2 = −A(k)0 (x − x0) on Γ and�
D

∇s(k)2 · ∇ϕ d x =

�
Γ N

∂νA
(k)
0 (x − x0)ϕ dS for all ϕ ∈ H1

Γ (D). (20.42)

(iii) corrector equation for A(k)−1(x)

▷ s(k)3 = −A(k)−1(x − x0) on Γ and�
D

∇s(k)3 · ∇ϕ d x =

�
Γ N

∂νA
(k)
−1(x − x0)ϕ dS for all ϕ ∈ H1

Γ (D). (20.43)

Remark 20.9. Note that contrary to the asymptotic expansion of the state variable, where u(2) ̸= 0, the
corresponding corrector q(2) vanishes in our expansion (cf. Definition 20.6). This is possible, since the
additional corrector L(2)ϵ addresses the leading order terms of Q(2). This behaviour can also be observed

for k ≥ 3, where the correctors L(k)ϵ allow a shift in the sum of the leading terms S(k)
ℓ

(cf. (20.25) vs.
(17.25)).
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20 Analysis of the averaged adjoint equation for the L2 tracking-type cost function

Lemma 20.10. Let k ≥ 2 and ϵ > 0 small. Then there holds

ϵ2Q(k) + ϵd−2 L(k)ϵ ◦ Tϵ = ϵ
2

� N,
ℓ=1

S(k)
ℓ
+ � (|x |−(d−2+N+1))

&
on Γϵ, (20.44)

for N ≥ 1.

Proof. We restrict our proof to dimension d = 2. The three dimensional case follows from similar argu-
ments. Since A(k)i , B(k)i , i ∈ {0, 1, 2} are homogeneous of degree i, Definition 20.7 entails that

L(k)ϵ ◦ Tϵ = −ϵ2
�
A(k)2 (x) ln(|x |) + A(k)1 (x) ln(|x |) + A(k)0 (x) ln(|x |) + B(k)2 (x) + B(k)1 (x) + B(k)0 (x)

"
, (20.45)

on Γϵ. Hence, the asymptotic behaviour (20.13) of Q(k) yields the desired result.

As a result of this pointwise behaviour of Q(k), we get the following boundary estimates in the L2

norm and H
1
2 semi-norm:

Corollary 20.11. For k ≥ 2 and d = 2 we have

ϵ
1
2 ∥Q(k)ϵ − ϵ2Q(k) − ϵd−2 L(k)ϵ ◦ Tϵ − ϵdq(k) ◦ Tϵ − ϵd−2m(k) ◦ Tϵ − ln(ϵ)n(k) ◦ Tϵ∥L2(Γϵ) ≤Cϵ

d
2+2, (20.46)

|Q(k)ϵ − ϵ2Q(k) − ϵd−2 L(k)ϵ ◦ Tϵ − ϵdq(k) ◦ Tϵ − ϵd−2m(k) ◦ Tϵ − ln(ϵ)n(k) ◦ Tϵ|H 1
2 (Γϵ)
≤Cϵ

d
2+2, (20.47)

∥ϵ2∂νQ
(k) + ϵd−2∂νL(k)ϵ ◦ Tϵ∥L2(Γ N

ϵ )
≤Cϵ

d+1
2 +2. (20.48)

Similarly, we have for k ≥ 2 and d = 3

ϵ
1
2 ∥Q(k)ϵ − ϵ2Q(k) − ϵd−2 L(k)ϵ ◦ Tϵ − ϵdq(k) ◦ Tϵ − ϵd−2m(k) ◦ Tϵ∥L2(Γϵ) ≤Cϵ

d
2+2, (20.49)

|Q(k)ϵ − ϵ2Q(k) − ϵd−2 L(k)ϵ ◦ Tϵ − ϵdq(k) ◦ Tϵ − ϵd−2m(k) ◦ Tϵ|H 1
2 (Γϵ)
≤Cϵ

d
2+2, (20.50)

∥ϵ2∂νQ
(k) + ϵd−2∂νL(k)ϵ ◦ Tϵ∥L2(Γ N

ϵ )
≤Cϵ

d+1
2 +2. (20.51)

Proof. First, we observe that m(k) = n(k) = 0 on Γ . Hence, employing the recursion in Lemma 20.10
and (20.25), we can follow the steps of the proof of Corollary 17.17 to obtain the desired boundary
estimates. The increased order of ϵ2 stems from the occurrence of the corresponding factor in front of
each contributing corrector in the asymptotic expansion.

We have now gathered all ingredients to prove the following main result establishing the remainder
estimate for the asymptotic behaviour of Q(k)ϵ .

Theorem 20.12. Let k ≥ 1, ϵ > 0 small and α ∈ (0, 1). There is a constant C > 0, such that

∥Q(k)ϵ − ϵ2Q(k) − ϵd−2 L(k)ϵ ◦ Tϵ − ϵdq(k) ◦ Tϵ − ϵd−2m(k) ◦ Tϵ − ln(ϵ)n(k) ◦ Tϵ∥ϵ ≤ Cϵ1−α for d = 2,
(20.52)

∥Q(k)ϵ − ϵ2Q(k) − ϵd−2 L(k)ϵ ◦ Tϵ − ϵdq(k) ◦ Tϵ − ϵd−2m(k) ◦ Tϵ∥ϵ ≤ Cϵ for d = 3, (20.53)

where we further introduce L(1)ϵ ≡ 0.
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Proof. We shall only give a sketch of the proof for d = 2, as the idea is similar to the proof of Theorem
17.18. At first, we note that there holds�

Dϵ

∇Q(1)ϵ · ∇ϕ d x = −ϵ2α1

�
Dϵ

U (1)ϵ ϕ d x for all ϕ ∈ H1
Γϵ
(Dϵ). (20.54)

Thus, an application of Hölder’s inequality and the estimate ∥U (1)ϵ ∥ϵ ≤ Cϵ1−α yield

∥Q(1)ϵ ∥ϵ ≤ Cϵ1−α, (20.55)

for a positive constant C > 0. Here, we additionally used that Q(1)ϵ has homogeneous boundary values on
Γϵ. Next, we seek a governing equation for V (2)ϵ :=Q(2)ϵ −ϵ2Q(2)−ϵd−2 L(2)ϵ ◦Tϵ−ϵd−2m(2)◦Tϵ−ln(ϵ)n(2)◦Tϵ.
Reformulating the respective equations on the scaled domain Dϵ entails�

Dϵ

∇V (2)ϵ · ∇ϕ d x =− ϵ2α1

�
Dϵ

�
U (2)ϵ − U (2) − ϵd−2u(2) ◦ Tϵ − ln(ϵ)b(2)

!
ϕ d x (20.56)

+

�
Γ N
ϵ

∂ν
�
ϵ2Q(2) + ϵd−2 L(2) ◦ Tϵ

!
ϕ dS, (20.57)

for all ϕ ∈ H1
Γϵ
(Dϵ). Now we can deduce from Lemma 17.16, Corollary 20.11 and Theorem 17.18 that

there is a positive constant C > 0, such that

∥V (2)ϵ ∥ϵ ≤ Cϵ1−α, (20.58)

which shows the estimate (20.52) for k = 2. Now successively dividing by ϵ > 0 and subtracting the
respective terms, one can check that the estimate holds for k ≥ 3.

21 Complete topological expansion - L2 tracking-type

In this section we compute the n-th topological derivative of the L2 tracking-type part of the cost function
defined in (18.1). That is, we are deriving an asymptotic expansion of the form

�1(Ωϵ) = �1(Ω) +
n,

k=1

ℓk(ϵ)d
k�1(Ω,ω)(x0) + o(ℓn(ϵ)), (21.1)

with �1(Ω) defined in (20.1). Here dk�1(Ω,ω)(x0) denotes the k-th topological derivative with respect
to the initial domain Ω and perturbation shape ω at the point x0 and ℓk : R+ → R+ are continuous
functions satisfying

lim
ϵ↘0
ℓk(ϵ) = 0 and lim

ϵ↘0

ℓk+1(ϵ)
ℓk(ϵ)

= 0 for k ≥ 1.

As we will see, the terms of logarithmic order, which occur in the asymptotic expansion of the adjoint
state variable in d = 2, lead to a differing topological derivative compared to dimension d = 3. Thus,
we will distinguish between both scenarios and derive a general formula of the topological derivative for
both cases separately.
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21 Complete topological expansion - L2 tracking-type

21.1 General formula for higher order topological derivatives in dimension two

In this section we restrict ourselves to dimension d = 2 and present the following result:

Theorem 21.1. Let ℓ1(ϵ) := |ωϵ|, ℓ2n(ϵ) = ϵn ln(ϵ)|ωϵ| and ℓ2n+1(ϵ) = ϵn|ωϵ|, for n≥ 1. The topological
derivative of �2 at x0 ∈ D \ Ω̄ and ω ⊂ R2 with 0 ∈ω in dimension d = 2 is given by

d1�1(Ω,ω)(x0) =
�
( f2 − f1)q0

!
(x0), d2�1(Ω,ω)(x0) = 0, (21.2)

d2n+1�1(Ω,ω)(x0) =
1
|ω|

1
n!

�
ω

∇n
�
( f2 − f1)p0

!
(x0)[x]

n d x

+
1
|ω|
�

n−4,
j=0

1
j!

�
ω

∇ j
�

f2 − f1
!
(x0)[x]

jQ(n−2− j)(x) d x

'

+
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n− j)
1

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−3,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−1− j)
3

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−4,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−2− j)
5

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n− j)
7

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−3,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−1− j)
8

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−4,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−2− j)
9

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−5,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)q

(n−2− j)
!
(x0)[x]

j d x

'

+
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)m

(n− j)
!
(x0)[x]

j d x

'
,

(21.3)
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21 Complete topological expansion - L2 tracking-type

d2n�1(Ω,ω)(x0) =
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n− j)
2

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−3,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−1− j)
4

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−4,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−2− j)
6

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−2,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)n

(n− j)
!
(x0)[x]

j d x

'
,

(21.4)

for n ≥ 1, where for ℓ ≥ 1, i ∈ {1, ..., 9}, Q(ℓ) are defined in Lemma 20.3, s(ℓ)i in Definition 20.7 and
q(ℓ), m(ℓ), n(ℓ) are defined in (20.26), (20.27) and (20.28), respectively.

Proof. We follow a similar approach to the proof of Theorem 19.2. Therefore, recall the Lagrangian
introduced in (20.3). Let ϵ ≥ 0. We first observe by testing (20.4) with ϕ = uϵ − u0 that

�1(Ωϵ) =� (ϵ, uϵ, qϵ) =� (ϵ, u0, qϵ), (21.5)

so that the cost function can be written only in terms of the averaged adjoint variable. Thus, we have

�1(Ωϵ)−�1(Ω) =� (ϵ, u0, qϵ)−� (ϵ, u0, q0) +� (ϵ, u0, q0)−� (0, u0, q0). (21.6)

Employing Theorem 20.12, we now derive an expansion for both differences on the right hand side.

Expansion of � (ϵ, u0, q0)−� (0, u0, q0): The expansion of this difference is obtained by a Taylor ex-
pansion as shown in (19.8)-(19.10):

� (ϵ, u0, q0)−� (0, u0, q0)
|ωϵ| = q̂0(x0) +

N,
n=1

ϵn 1
|ω|

1
n!

�
ω

∇nq̂0(x0)[x]
n d x + � (ϵN+1), N ≥ 1, (21.7)

where q̂0 = ( f2 − f1)q0.

Expansion of � (ϵ, u0, qϵ) − � (ϵ, u0, q0): We proceed as in (19.11) and obtain with the definition
ϵQ(1)ϵ (x) = (qϵ − q0) ◦ Tϵ and a change of variables:

� (ϵ, u0, qϵ)−� (ϵ, u0, q0) = ϵ
d

�
ω

( f2 − f1) ◦ TϵϵQ
(1)
ϵ d x . (21.8)
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Substituting ϵQ(1)ϵ by the recursion formula of Lemma 20.2 leads to�
ω

( f2 − f1) ◦ TϵϵQ
(1)
ϵ d x =

N,
n=1

�
ω

( f2 − f1) ◦ Tϵϵ
n+2Q(n) d x (21.9)

+
N,

n=1

�
ω

( f2 − f1) ◦ Tϵϵ
n L(n)ϵ ◦ Tϵ d x (21.10)

+
N,

n=1

�
ω

( f2 − f1) ◦ Tϵϵ
n+2q(n) ◦ Tϵ d x (21.11)

+
N,

n=1

�
ω

( f2 − f1) ◦ Tϵϵ
nm(n) ◦ Tϵ d x (21.12)

+
N,

n=1

�
ω

( f2 − f1) ◦ Tϵϵ
n ln(ϵ)n(n) ◦ Tϵ d x (21.13)

+

�
ω

( f2 − f1) ◦ Tϵϵ
N+1Q(N+1)

ϵ d x . (21.14)

Now we can expand all six terms:

• First term (21.9): We use a Taylor’s expansion to write:

( f2 − f1) ◦ Tϵ =
N,

j=0

ϵ ja j(x) + � (ϵN+1; x), a j(x) :=
∇ j
�

f2 − f1
!
(x0)[x] j

j!
. (21.15)

For the proof we let Q(0) := 0, and Q( j) := 0 and a j := 0 for all j > N . Then, by Lemma 19.1 we
have

( f2 − f1) ◦ Tϵ

� N,
n=1

ϵn+2Q(n)
&
=

N−2,
n=0

ϵn+2

�
n,

j=0

a j(x)Q
(n− j)(x)

'
+ � (ϵN+1; x), (21.16)

and therefore
N,

n=1

�
ω

( f2 − f1)ϵ
n+2Q(n) d x =

N,
n=4

ϵn

�
ω

�
n−4,
j=0

a j(x)Q
(n−2− j)(x)

'
d x + � (ϵN+1), (21.17)

where we took into account Q(0) =Q(1) = 0.

• Second term (21.10): In order to derive the correct formula, we first need to split the corrector L(ℓ)ϵ
into its components. That is, we have

L(k)ϵ := s(ℓ)1 + ln(ϵ)s(ℓ)2 + ϵs
(ℓ)
3 + ϵ ln(ϵ)s(ℓ)4 + ϵ

2s(ℓ)5 + ϵ
2 ln(ϵ)s(ℓ)6 + s(ℓ)7 + ϵs

(ℓ)
8 + ϵ

2s(ℓ)9 . (21.18)

Next, we use Taylor’s formula to expand the functions ϵ !→ ŝ(n)
ℓ
◦ Tϵ with ŝ(n)

ℓ
:=
�
( f2 − f1)s

(n)
ℓ

"
,

n≥ 1 and ℓ ∈ {1, ..., 9} to deduce

ŝ(n)
ℓ
◦ Tϵ(x) =

N,
j=0

ϵ j b(n)
ℓ, j (x) + � (ϵN+1; x), b(n)

ℓ, j (x) :=
∇ j ŝ(n)

ℓ
(x0)[x] j

j!
. (21.19)
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Hence, a similar computation to the previous one yields

N,
n=1

�
ω

ϵn
�
( f2 − f1)s

(n)
1

" ◦ Tϵ(x) d x =
N,

n=1

ϵn

�
N,

j=0

ϵ j

�
ω

b(n)1, j (x) d x

'
+ � (ϵN+1)

=
N,

n=2

ϵn

�
n−2,
j=0

�
ω

b(n− j)
1, j (x) d x

'
+ � (ϵN+1),

(21.20)

where we took into account that s(1)1 = 0 and therefore b(1)1, j = 0 for j ≥ 0 as well. With the same
arguments we get

N,
n=1

�
ω

ln(ϵ)ϵn
�
( f2 − f1)s

(n)
2

" ◦ Tϵ d x =
N,

n=2

ln(ϵ)ϵn

�
n−2,
j=0

�
ω

b(n− j)
2, j (x) d x

'
+ o(ϵN ), (21.21)

N,
n=1

�
ω

ϵn+1
�
( f2 − f1)s

(n)
3

" ◦ Tϵ d x =
N,

n=3

ϵn

�
n−3,
j=0

�
ω

b(n−1− j)
3, j (x) d x

'
+ � (ϵN+1), (21.22)

N,
n=1

�
ω

ln(ϵ)ϵn+1
�
( f2 − f1)s

(n)
4

" ◦ Tϵ d x =
N,

n=3

ln(ϵ)ϵn

�
n−3,
j=0

�
ω

b(n−1− j)
4, j (x) d x

'
+ o(ϵN ), (21.23)

N,
n=1

�
ω

ϵn+2
�
( f2 − f1)s

(n)
5

" ◦ Tϵ d x =
N,

n=4

ϵn

�
n−4,
j=0

�
ω

b(n−2− j)
5, j (x) d x

'
+ � (ϵN+1), (21.24)

N,
n=1

�
ω

ln(ϵ)ϵn+2
�
( f2 − f1)s

(n)
6

" ◦ Tϵ d x =
N,

n=4

ln(ϵ)ϵn

�
n−4,
j=0

�
ω

b(n−2− j)
6, j (x) d x

'
+ o(ϵN ), (21.25)

N,
n=1

�
ω

ϵn
�
( f2 − f1)s

(n)
7

" ◦ Tϵ d x =
N,

n=2

ϵn

�
n−2,
j=0

�
ω

b(n− j)
7, j (x) d x

'
+ � (ϵN+1), (21.26)

N,
n=1

�
ω

ϵn+1
�
( f2 − f1)s

(n)
8

" ◦ Tϵ d x =
N,

n=3

ϵn

�
n−3,
j=0

�
ω

b(n−1− j)
8, j (x) d x

'
+ � (ϵN+1), (21.27)

N,
n=1

�
ω

ϵn+2
�
( f2 − f1)s

(n)
9

" ◦ Tϵ d x =
N,

n=4

ϵn

�
n−4,
j=0

�
ω

b(n−2− j)
9, j (x) d x

'
+ � (ϵN+1). (21.28)

• Third term (21.11): Employing a Taylor’s expansion of ϵ !→ q̂(n) ◦ Tϵ at ϵ = 0 where we denote
q̂(n) := ( f2 − f1)q(n) entails

q̂(n) ◦ Tϵ(x) =
N,

j=0

ϵ j q̂(n)j (x) + � (ϵN+1; x), q̂(n)j (x) :=
∇ j q̂(n)(x0)[x] j

j!
, (21.29)
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for n≥ 1. Hence, one analogously computes

N,
n=1

�
ω

ϵn+2
�
( f2 − f1)q

(n)
! ◦ Tϵ d x =

N,
n=5

ϵn

�
n−5,
j=0

�
ω

q̂(n−2− j)
j (x) d x

'
+ � (ϵN+1), (21.30)

where we took into account that q(1) = q(2) = 0, which explains the index shift.

• Fourth term (21.12): Similarly, the expansion of ϵ !→ m̂(n) ◦ Tϵ at ϵ = 0 with m̂(n) := ( f2 − f1)m(n)

reads

m̂(n) ◦ Tϵ(x) =
N,

j=0

ϵ jm̂(n)j (x) + � (ϵN+1; x), m̂(n)j (x) :=
∇ jm̂(n)(x0)[x] j

j!
, (21.31)

for n≥ 1 and yields

N,
n=1

�
ω

ϵn
�
( f2 − f1)m

(n)
! ◦ Tϵ d x =

N,
n=2

ϵn

�
n−2,
j=0

�
ω

m̂(n− j)
j (x) d x

'
+ � (ϵN+1). (21.32)

• Fifth term (21.13): Again, we have by a Taylor’s expansion of ϵ !→ n̂(n) ◦ Tϵ at ϵ = 0 with the
notation n̂(n) := ( f2 − f1)n(n) that

n̂(n) ◦ Tϵ(x) =
N,

j=0

ϵ j n̂(n)j (x) + � (ϵN+1; x), n̂(n)j (x) :=
∇ j n̂(n)(x0)[x] j

j!
, (21.33)

for n≥ 1 and therefore it follows that

N,
n=1

�
ω

ln(ϵ)ϵn
�
( f2 − f1)n

(n)
! ◦ Tϵ d x =

N,
n=2

ln(ϵ)ϵn

�
n−2,
j=0

�
ω

n̂(n− j)
j (x) d x

'
+ o(ϵN ). (21.34)

• Sixth term (21.14): Applying Lemma 11.5 item (iii) to the last term and using the asymptotics
derived in Theorem 20.12, gives�����

ω

( f1 − f2) ◦ Tϵϵ
N+1Q(N+1)

ϵ d x

����≤CϵN−α∥ϵQ(N+1)
ϵ ∥ϵ ≤ CϵN+1−2α, (21.35)

for a constant C > 0 and α ∈ (0, 1) sufficiently small.

Now combining (21.17) - (21.35) shows the formula given in Theorem 21.1.

We finish the section by stating the first five topological derivatives.

144
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Corollary 21.2. The first five terms of the topological expansion in dimension d = 2 read:

d1�1(Ω,ω)(x0) =
�
( f2 − f1)q0

!
(x0), ℓ1(ϵ) = |ω|ϵ2,

d2�1(Ω,ω)(x0) =0, ℓ2(ϵ) = |ω|ϵ2(ϵ ln(ϵ)),

d3�1(Ω,ω)(x0) =
1
|ω|
�
ω

∇�( f2 − f1)q0

!
(x0)[x] d x , ℓ3(ϵ) = |ω|ϵ3,

d4�1(Ω,ω)(x0) =
�
( f1 − f2)s

(2)
2

!
(x0) +
�
( f1 − f2)n

(2)
!
(x0), ℓ4(ϵ) = |ω|ϵ3(ϵ ln(ϵ)),

d5�1(Ω,ω)(x0) =
1

2|ω|
�
ω

∇2
�
( f2 − f1)q0

!
(x0)[x]

2 d x ℓ5(ϵ) = |ω|ϵ4.

+
�
( f1 − f2)s

(2)
1

!
(x0) +
�
( f1 − f2)s

(2)
7

!
(x0)

+
�
( f1 − f2)m

(2)
!
(x0),

21.2 General formula for higher order topological derivatives in dimension three

In this section we give an analogous result to Theorem 21.1 in three space dimensions.

Theorem 21.3. For n ≥ 1 let ℓn(ϵ) := ϵn−1|ωϵ|. The topological derivative of �1 at x0 ∈ D \ Ω̄ and
ω ⊂ R3 with 0 ∈ω in dimension d = 3 is given by

dn+1�1(Ω,ω)(x0) =
1
|ω|

1
n!

�
ω

∇n
�
( f2 − f1)q0

!
(x0)[x]

n d x

+
1
|ω|
�

n−4,
j=0

1
j!

�
ω

∇ j
�

f2 − f1
!
(x0)[x]

jQ(n−2− j)(x) d x

'

+
1
|ω|
�

n−3,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−1− j)
1

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−4,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−2− j)
2

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−5,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)s

(n−3− j)
3

!
(x0)[x]

j d x

'

+
1
|ω|
�

n−6,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)q

(n−3− j)
!
(x0)[x]

j d x

'

+
1
|ω|
�

n−3,
j=0

1
j!

�
ω

∇ j
�
( f2 − f1)m

(n−1− j)
!
(x0)[x]

j d x

'
,

(21.36)

for n ≥ 0, where for ℓ ≥ 1, i ∈ {1, ..., 3}, Q(ℓ) are defined in Lemma 20.3, s(ℓ)i in Definition 20.8 and
q(ℓ), m(ℓ) are defined in (20.26) and (20.27), respectively.

Similarly to Corollary 21.2, we deduce the following result.
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Corollary 21.4. The first five terms of the topological derivative of the L2 cost functional for dimension
d = 3 are given as

d1�1(Ω,ω)(x0) =
�
( f2 − f1)q0

!
(x0), ℓ1(ϵ) = |ω|ϵ3,

d2�1(Ω,ω)(x0) =
1
|ω|
�
ω

∇�( f2 − f1)q0

!
(x0)[x] d x , ℓ2(ϵ) = |ω|ϵ4,

d3�1(Ω,ω)(x0) =
1

2|ω|
�
ω

∇2
�
( f2 − f1)q0

!
(x0)[x]

2 d x , ℓ3(ϵ) = |ω|ϵ5,

d4�1(Ω,ω)(x0) =
1

6|ω|
�
ω

∇3
�
( f2 − f1)q0

!
(x0)[x]

3 d x , ℓ4(ϵ) = |ω|ϵ6,

+
�
( f1 − f2)s

(2)
1

!
(x0) +
�
( f1 − f2)m

(2)
!
(x0),

d5�1(Ω,ω)(x0) =
1

24|ω|
�
ω

∇4
�
( f2 − f1)q0

!
(x0)[x]

4 d x ℓ5(ϵ) = |ω|ϵ7.

+
�
( f1 − f2)s

(2)
2

!
(x0) +

�
f2 − f1
!
(x0)

|ω|
�
ω

Q(2) d x

+
�
( f1 − f2)s

(3)
1

!
(x0) +
�
( f1 − f2)m

(3)
!
(x0)

+
1
|ω|
�
ω

∇�( f2 − f1)s
(2)
1

!
(x0)[x] d x

+
1
|ω|
�
ω

∇�( f2 − f1)m
(2)
!
(x0)[x] d x ,

22 Conclusion

In this part of the thesis we investigated the complete topological expansion of two kinds of tracking-type
cost functionals, a gradient tracking and a L2 tracking cost functional, subject to a PDE constraint in terms
of Poisson’s equation. We observed that the averaged adjoint approach presented in the previous part
entailed beneficial properties in view of a schematic derivation of arbitrary order topological derivatives.
Contrary to the observations gathered in the previous part, the analysis of the averaged adjoint variable
associated with the gradient cost functional did not lead to any complications. In fact, the corresponding
averaged adjoint equation entailed a linear correlation between the state variable uϵ and the averaged
adjoint state qϵ. Thus, the asymptotic expansion was a direct consequence of the according results for the
state variable. On the other hand, the analysis of the averaged adjoint variable for the L2 tracking-type
cost functional was more involved, as it included the fundamental solution of the biharmonic equation.
This complexity was further extended by the non-homogeneity of the first few terms of the fundamental
solution in dimension d = 2, which necessitated 9 different corrector equations. Nonetheless, we obtained
a schematic formula for both cost functionals which allowed further simplification by assumptions on the
right hand side of the state equation and the inclusion shape.
For future research it would be interesting to study the complete topological asymptotic expansion of
a PDE constrained cost functional, where a perturbation of the principal operator is considered. Since
the topological expansion mainly depends on the knowledge of the asymptotics of the averaged adjoint

146



22 Conclusion

variable qϵ, we assume that a similar analysis can be carried out as long as the dependence of qϵ on the
state variable uϵ is well understood.
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Part IV

Numerical results in the context of
topology optimisation
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23 Topological state derivative

To conclude this thesis, we want to address the numerical aspects of topology optimisation. We therefore
follow a novel approach introduced in [42], which involves generalised singular perturbations - so-called
dilatations. In contrast to the previously discussed point perturbations, these allow to consider "higher
order" perturbations, e.g. a curve or a closed surface. This methodology was further addressed on an
analytical level in [24]. Based on the notion of the topological state derivative the authors investigated
the first order asymptotic expansion of a PDE constrained shape functional subject to such higher order
dilatations. In this context, the topological state derivative acts as the "interior" derivative of the state
variable and can be utilised in a chain rule approach to compute the first order expansion for various
shape functionals.
In what follows we are going to employ the topological state derivative in two different numerical
schemes. On the one hand, we are going to utilise this method in an approximated level-set approach and
compare its efficiency to the original level-set method introduced in [17]. Furthermore, we employ the
shape derivative discussed in Part I to mimic a steepest descend approach for the topological derivative
in the context of generalised dilatations. Since we put our focus on the numerical aspects in this section,
we are going to state the main results revolving around the topological state derivative without proofs.
For more insights on this topic, we refer to the article [24]. We are interested in the following problem
setting:

Problem formulation

Let D ⊂ Rd denote an open and bounded Lipschitz domain. Furthermore we define the admissible set

	ad := {Ω ⊂ D| Ω is Lipschitz }.
Our goal is

min
Ω∈	ad

� (Ω) =
�
D

|uΩ − ud |2 d x , (23.1)

where ud is a given target and uΩ ∈ H1
0(D) solves�

D

∇uΩ · ∇ϕ +ρΩ(x , uΩ)ϕ d x =

�
D

fΩϕ d x for all ϕ ∈ H1
0(D). (23.2)

Here, fΩ = f1χΩ + f2χD\Ω̄ with f1, f2 ∈ R and the nonlinearity ρΩ satisfies

ρΩ(x , u) := g1(u)χΩ(x) + g2(u)χD\Ω̄(x),

where g1, g2 are C1, increasing and globally bounded in R+. For the sake of simplicity we introduce the
shape-to-state operator

S :� → H1
0(D), Ω !→ uΩ.

Note that by our assumptions (23.2) admits a unique solution and thus S is well defined. We are interested
in the sensitivity analysis with respect to the following perturbations:
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23 Topological state derivative

Definition 23.1. Let Ω ∈� (D) and E ⊂ D be a compact set such that ∂Ω∩ E = �. Furthermore, denote
by Eϵ := {x ∈ Rd : dE(x) < ϵ} the tubular neighbourhood of E of width ϵ > 0. We define the perturbed
set Ω(Eϵ) ⊂ D by

Ω(Eϵ) :=

	
Ω∪ Eϵ E ⊂ D \Ω,

Ω \ Eϵ E ⊂ Ω.
(23.3)

Definition 23.2 (Topological state derivative). Let Ω ∈ � (D) and consider a compact set E ⊂ D \Ω or
E ⊂ Ω. For ϵ > 0 we introduce

Uϵ := UΩ(Eϵ) :=
uΩ(Eϵ) − uΩ
|Eϵ| , (23.4)

where uΩ(Eϵ), uΩ solve (23.2) on their respective sets. The topological state derivative of the shape-to-state
operator S at Ω in direction E is defined by

S′(Ω)(E) := U0 := UE,0 := lim
ϵ↘0

Uϵ, (23.5)

where the limit has to be understood in an appropriate function space.

We have the following result covering the topological state derivative:

Theorem 23.3. Let E ⊂ Ω or E ⊂ D\Ω be either a point, a d−1-dimensional Lipschitz surface with finite
perimeter or a 1< k < d−1 dimensional compact and smooth submanifold without boundary. Then, for
every q ∈ [1, d

d−1),
Uϵ →
ϵ↘0

U0 in W 1,q
0 (D),

where U0 is the unique solution to U0 = 0 on ∂D and

−∆U0 + ∂uρΩ(x , uΩ)U0 = sgnΩ(E) {(g2(uΩ)− g1(uΩ)) + ( f1 − f2)}µE in D,

and

µE :=

��
δx0

if E = {x0},
1

Per(E)(� d−1⌊E) if E is a d − 1 dimensional Lipschitz surface ,
1

� k(E)(� k⌊E) else.

Here,� n denotes the n-dimensional Hausdorff measure.

Proof. A proof can be found in [24, Theorem 2.7].

Note that the PDE governing U0 involves a measure on the right hand side. This topic is addressed
in [24, Section 2] in more detail.

Remark 23.4. A similar analysis can be carried out for linear PDEs including a point perturbation of the
operator (cf. [24, Section 3]). The limitation to point perturbations is a result of the first variation of the
state occurring in the analysis. This has not yet been studied with respect to generalised perturbations.
Furthermore, the topological state derivative of these transmission problems necessitates the introduction
of very-weak solutions and leads to a weaker convergence in Lq(D), q ∈ [1, d

d−1).
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Definition 23.5. In analogy to Definition 9.1 we define the (generalised) first order topological derivative
of � at Ω ∈� in direction E ⊂ Ω or E ⊂ D \Ω by

Dtop� (Ω)(E) := lim
ϵ↘0

� (Ω(Eϵ))−� (Ω)
|Eϵ| .

Remark 23.6. Note that this definition assumes that the first order of the topological expansion is of
order |Eϵ|. In view of the results obtained in Part II and Part III of this thesis, this assumption seems
reasonable. Yet we want to highlight that this does not constitute a general rule. In fact there are problem
formulations, which involve lower order terms. Such an example is given in the article [16], where
Dirichlet conditions are enforced on the boundary of the inclusion.

Remark 23.7. In order to avoid any notational conflict, we denoted the derivative Dtop� compared to
the previously introduced notation d� . In fact, one readily checks that for E = {x0} we have

Dtop� (Ω)(E) = d� (Ω,ω)(x0),

with the first order ℓ1 = |ωϵ| and the special deformation shape ω = B1(0).

Employing Theorem 23.3 we can readily compute the first order topological derivative of the cost
functional introduced in (23.1).

Theorem 23.8. Let Ω ∈ � and E ⊂ Ω or E ⊂ D\Ω be either a point, a d − 1-dimensional Lipschitz
surface with finite perimeter or a 1 < k < d − 1 dimensional compact and smooth submanifold without
boundary. Then there holds

Dtop� (Ω)(E) =
�
D

2U0(uΩ − ud) d x .

Proof. The Sobolev embedding entails W 1,q(D) 	→ L2(D) for q < d
d−1 sufficiently large (cf. [82]). Thus

we obtain

Dtop� (Ω)(E) = lim
ϵ↘0

�
D

Uϵ(uΩ(Eϵ) + uΩ − 2ud) d x =

�
D

2U0(uΩ − ud) d x ,

where in the last step we utilised the convergence uΩ(Eϵ)→ uΩ in L2(D).

We now have gathered all necessary tools to continue with the numerical investigation.

24 Approximated level-set approach

For the first application of the the topological state derivative we want to address the well established
level-set method introduced in [17]. Therefore, we consider the following model problem. Let the hold-all
domain denote a square, i.e. D = (−2,2)× (−2, 2) ⊂ R2, g1 ≡ g2 ≡ 0, f1 = 10 and f2 = 1. Furthermore,
we define the target function ud as the solution of (23.2) with respect to the target shapeΩ∗, i.e. ud = uΩ∗ .
Here, Ω∗ denotes the clover shape defined as the sub level-set of a specific function [57]. That is

Ω∗ = {(x , y) ∈ D| Ψ(x , y)≤ 0}, (24.1)
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24 Approximated level-set approach

where

Ψ(x , y) = c1((
+
(x − a)2 + b y2−1)(

+
(x + a)2 + b y2−1)(

+
bx2 + (y − a)2−1)(

+
bx2 + (y + a)2−1)−c2),

with a = 5
4 , b = 2, c1 = 10−1 and c2 = 10−3. The shape is depicted in Figure 13.

Figure 13: Visualisation of the target shape Ω∗ (red).

24.1 Standard level-set algorithm

We first employ the classical level-set approach (cf. [17]). Since this algorithm employs the usual topo-
logical derivative introduced in Part II we recall the following result.

Lemma 24.1. For Ω ⊂ D open and Lipschitz let � (Ω) = �
D
|uΩ − ud |2 d x , where uΩ ∈ H1

0(D) solves�
D

∇uΩ · ∇ϕ d x =

�
D

fΩϕ d x for all ϕ ∈ H1
0(D). (24.2)

Then there holds

d� (Ω,ω)(x0) =

	
( f2 − f1)qΩ(x0) if x0 ∈ D \ Ω̄,

−( f2 − f1)qΩ(x0), if x0 ∈ Ω,
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24 Approximated level-set approach

where the unperturbed adjoint variable q0 ∈ H1
0(D) satisfies�

D

∇ϕ · ∇qΩ d x = −
�
D

2(uΩ − ud)ϕ d x for all ϕ ∈ H1
0(D). (24.3)

Proof. This follows from Theorem 21.1.

We further define the quantity

gΩ(x) = χΩ(x) (−d� (Ω,ω)(x)) +χD\Ω̄(x)d� (Ω,ω)(x) = ( f2 − f1)q0(x), (24.4)

which measures the sign affected sensitivity of the functional � with respect to singular changes of the
constant force. This definition entails the sufficient local minimality condition (cf. [17, Section 3.1]).	

gΩ(x)> 0 in D \ Ω̄,

gΩ(x)< 0 in Ω.
(24.5)

Based on the ideas of [17], we introduce the following level-set algorithm.

Algorithm 3 Level-set algorithm

Require: initial level-set function Ψ0, Nmax ∈ N, Nfix ∈ N, κ,β ∈ (0, 1)
while n≤ Nmax do

identify set Ωn = {x ∈ R2| Ψn(x)< 0}.
compute state uΩn

as the solution of (24.2).
compute adjoint state qΩn

by solving the adjoint state equation (24.3).
compute the generalised topological gradient gΩn

.
initialise iteration count k = 0.
while k ≤ Nfix do

compute new level-set function Ψnew = (1− κ) Ψn∥Ψn∥L2(D)
+ κ

gΩn∥gΩn∥L2(D)
.

identify shape Ωnew = {x ∈ R2| Ψnew(x)< 0}.
if � (Ωnew)> � (Ωn) then

set κ= βκ and k+ = 1.
else

step size accepted, exit inner while loop.
end if

end while
Ψn+1 = Ψnew.
κ=min{1, 6

5κ}.
n+ = 1.

end while

We want to highlight that this setting allowed us to use continuous P1 elements for the function space
containing the level-set functions Ψn and the topological gradients gΩn

. This enables a smooth represen-
tation of the level-set and this is definitely a preferable choice. Nonetheless we are going to exclude this
property on purpose in the next approach.
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24 Approximated level-set approach

24.2 Averaged level-set algorithm

In this section we aim to utilise the topological state derivative as follows. Instead of working with a
continuous topological gradient, we seek gΩ ∈ Lpwc

2 (D), where Lpwc
2 (D) denotes the set of piecewise

constant functions on D. Therefore, we define for each triangular element E ⊂ D in analogy to (24.4)

ḡΩ(E) = χΩ(x)
�−Dtop� (Ω)(∂ E)

!
+χD\Ω̄(x)Dtop� (Ω)(∂ E). (24.6)

Remark 24.2. Note that the boundary ∂ E intersects the boundary ofΩ for a selected number of elements.
This contradicts the assumptions of Theorem 23.3. On an analytical level this can be overcome by splitting
the boundary of an element E into three separate edges. For each edge e that intersects ∂Ω and ϵ > 0
sufficiently small we define e−ϵ = {x ∈ e| x ∈ Ω, d∂Ω > ϵ}, e+ϵ = {x ∈ e| x ∈ D \ Ω̄, d∂Ω > ϵ} and
e0
ϵ = {x ∈ e| d∂Ω ≤ ϵ} and treat those parts accordingly. Nonetheless, in the numerical realm we can

neglect the problematic part e0
ϵ as it only contributes a small portion.

In view of (24.3) and Theorem 23.8, sufficient regularity of the variables entails

ḡΩ(E) =
1
|∂ E|
�
∂ E
( f2 − f1)qΩ dS. (24.7)

Hence, the piecewise constant topological gradient indeed denotes an averaging of the topological gra-
dient defined in (24.4). This result gives rise to the following algorithm.

Algorithm 4 Approximated level-set algorithm

Require: initial level-set function Ψ0, Nmax ∈ N, Nfix ∈ N, κ,β ∈ (0, 1)
while n≤ Nmax do

identify set Ωn = {x ∈ R2| Ψn(x)< 0}.
compute state uΩn

as the solution of (24.2).
compute adjoint state qΩn

by solving the adjoint state equation (24.3).
compute the averaged topological gradient ḡΩn

.
initialise iteration count k = 0.
while k ≤ Nfix do

compute new level-set function Ψnew = (1− κ) Ψn∥Ψn∥L2(D)
+ κ

ḡΩn∥ ḡΩn∥L2(D)
.

identify shape Ωnew = {x ∈ R2| Ψnew(x)< 0}.
if � (Ωnew)> � (Ωn) then

set κ= βκ and k+ = 1.
else

step size accepted, exit inner while loop.
end if

end while
Ψn+1 = Ψnew.
κ=min{1, 6

5κ}.
n+ = 1.

end while

In order to compare our results to the classical level-set approach, we projected the final level-set ΨNmax

into the continuous finite element space P1.
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24 Approximated level-set approach

24.3 Results

For our example we used the following set of parameters. Number of iterations Nmax = 100, maximal
number of linesearch Nfix = 10, linesearch control parameter κ = 0.05, β = 0.8 and the initial level-set
function

Ψ0(x , y) = x2 + y2 − 1
16

.

Hence, the initial guess Ω0 denotes a ball with radius 1
4 centered at the origin. The resulting shapes and

level-set functions are depicted in the following figures. Note that we additionally used a continuous
version of the piecewise constant function fΩ to achieve a clearer visualisation.

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 14: Visualisation of fΩ for the final shape Ω and mesh size m= 0.3.

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 15: Visualisation of fΩ for the final shape Ω and mesh size m= 0.2.
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24 Approximated level-set approach

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 16: Visualisation of fΩ for the final shape Ω and mesh size m= 0.1.

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 17: Visualisation of fΩ for the final shape Ω and mesh size m= 0.05.
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24 Approximated level-set approach

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 18: Visualisation of the final level-set function ΨNmax
for the mesh size m= 0.3.

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 19: Visualisation of the final level-set function ΨNmax
for the mesh size m= 0.2.
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24 Approximated level-set approach

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 20: Visualisation of the final level-set function ΨNmax
for the mesh size m= 0.1.

(a) Standard level-set algorithm (b) Averaged level-set algorithm

Figure 21: Visualisation of the final level-set function ΨNmax
for the mesh size m= 0.05.

We observe that both algorithms achieve an increasingly accurate result with respect to a declining mesh
size (cf. Figures 14a-17a and Figures 14b-17b, respectively). Nonetheless, the standard level-set algo-
rithm outperforms the approximated one in some aspects. On the one hand, the classical level-set algo-
rithm yields a rough guess of the optimal shape even for a very coarse discretisation (cf. Figure 14a),
which the approximated level-set algorithm fails to do (cf. Figure 14b). On the other hand, the standard
level-set algorithm yields a closer guess of the target shape (cf. Figure 13) than the approximated level-
set algorithm (cf. Figure 17a vs. Figure 17b) even subject to a fine discretisation. Furthermore, another
deficit of the averaged algorithm can be observed in view of its runtime. That is, the difference of the
respective runtimes increases significantly as the mesh size declines (cf. Table 4). However, we want to
point out that the large gap of the according runtimes is a result of a very simplistic implementation
approach involving loops in python. Hence improvements in this regard are plausible.
Furthermore, we want to emphasize that the averaged level-set algorithm yields appropriate results for
a sufficiently small mesh size. Additionally, the algorithm does not necessitate point evaluation of the
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topological gradient. This could be advantageous in cases, where low regularity issues occur.

standard averaged

mesh size = 0.3 5 s 10 s
mesh size = 0.2 10 s 20 s
mesh size = 0.1 33 s 110 s

mesh size = 0.05 137 s 1054 s

Table 4: Comparison of the runtime for the classical level-set algorithm and the averaged level-set algo-
rithm.

25 Steepest descent approach

In this section we want to address another application of the topological state derivative, which combines
methods of Part I and Part IV. The main observation that motivates the upcoming algorithm is as follows.
Given a fixed hold-all domain D ⊂ R2,Ω ⊂ D open and Lipschitz and w.l.o.g. E ⊂ D\Ω̄ a smooth curve. By
definition D� (Ω)(E) captures the sensitivity of the cost functional with respect to a E-shaped inclusion.
One way to incorporate this information in an algorithm would be to compute the quantity D� (Ω)(E)
for various shapes, e.g. a number of line segments and use this information in a one-shot type approach.
We want to follow a different route. To specify, we consider D� (Ω)(E) as a directional derivative and
seek a deepest descend direction Ē. To achieve this goal we view E as a design variable for the objective
functional D� (Ω)(·). Therefore, we choose an initial direction E and perform a shape optimisation of
the functional E !→ D� (Ω)(E) with the tools developed in Part I of this thesis. Therefore, we need the
following result.

Lemma 25.1. Let D ⊂ R2 be an open and bounded Lipschitz domain and E ⊂ D a piecewise smooth
curve. Furthermore, fix X ∈ C1

c (D)
2 and recall the notation Ft = Id+ tX , for t > 0. For f ∈ H2(D) there

holds

lim
t↘0

1
t

�
1
|Ft(E)|
�

Ft (E)
f dS − 1

|E|
�

E
f dS

&
=|E|−1

�
E
(div(X )− ∂ X n · n) f dS + |E|−1

�
E
∇ f · X dS

− |E|−2

��
E

f dS

%��
E

div(X )− ∂ X n · n dS

%
,

Proof. To abbreviate the notation let Et := Ft(E) for t > 0 small. We can expand the difference quotient
as follows:�

1
|Ft(E)|
�

Ft (E)
f dS − 1

|E|
�

E
f dS

&
=

1
|Et ||E|
�
|E|
��

Et

f dS −
�

E
f dS

&
− (|Et | − |E|)
�

E
f dS

�
.

(25.1)

In view of |Et |=
�

Et
dS we observe that both quantities�

Et
f dS − �E f dS

t
,
|Et | − |E|

t
,
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25 Steepest descent approach

can be handled by Lemma 3.3 and Lemma 3.4. Thus, dividing (25.1) by t > 0 and passing to the limit
t ↘ 0 entails

lim
t↘0

1
t

�
1
|Ft(E)|
�

Ft (E)
f dS − 1

|E|
�

E
f dS

&
=
|E|
|E|2
�

E
(div(X )− ∂ X n · n) f dS +

|E|
|E|2
�

E
∇ f · X dS

− 1
|E|2
��

E
f dS

%��
E

div(X )− ∂ X n · n dS

%
,

which finishes the proof.

In order to visualise these ideas, we consider the following model problem. Let

D= (−2, 2)× (−2,2) ⊂ R2,

g1(u) = 10u, g2(u) = u3, f1 = 10 and f2 = 1. Furthermore, we define the target function ud as the
solution of (23.2) with respect to the target shape Ω∗ := {x ∈ D| 0.8 ≤ |x | ≤ 1.2}. For the sake of
simplicity we consider the initial shape Ω = �. The optimal shape is depicted in Figure 22.

Figure 22: Visualisation of the target shape Ω∗ (red).

This setting entails the state equation: Find u0 ∈ H1
0(D) such that�

D

∇u0 · ∇ϕ + u3
0ϕ d x =

�
D

f2ϕ d x for all ϕ ∈ H1
0(D). (25.2)
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25 Steepest descent approach

Furthermore, we deduce the unperturbed adjoint equation: Find q0 ∈ H1
0(D) such that�

D

∇ϕ · ∇q0 + 3u2
Ωq0ϕ d x = −
�
D

2(u0 − ud)ϕ d x for all ϕ ∈ H1
0(D). (25.3)

Note that, similarly to the averaged topological gradient (cf. (24.7)), we deduce

Dtop� (�)(E) = 1
|E|
�

E
[( f2 − f1) + (g1(u0)− g2(u0))]q0 dS for each admissible set E.

Corollary 25.2. For a smooth curve E ⊂ D in R2 let � (E) = 1
|E|
�

E [( f2 − f1) + (g1(u0)− g2(u0))]q0 dS.
Then there holds for X ∈ C1

c (D)

D� (E)(X ) =|E|−1

�
E
(div(X )− ∂ X n · n) [( f2 − f1) + (g1(u0)− g2(u0))]q0 dS

+ |E|−1

�
E
∇ ([( f2 − f1) + (g1(u0)− g2(u0))]q0) · X dS

− |E|−2

��
E
[( f2 − f1) + (g1(u0)− g2(u0))]q0 dS

%��
E

div(X )− ∂ X n · n dS

%
,

where the left hand side denotes the shape derivative introduced in Definition 4.1.

Proof. This follows from an application of Lemma 25.1.

Note that we can expand the function � introduced in the previous corollary to obtain

D
�
Dtop� (�)(E)! (X ) =|E|−1

�
E
(div(X )− ∂ X n · n) [( f2 − f1) + (g1(u0)− g2(u0))]q0 dS

+ |E|−1

�
E
∇ ([( f2 − f1) + (g1(u0)− g2(u0))]q0) · X dS

− |E|−2

��
E
[( f2 − f1) + (g1(u0)− g2(u0))]q0 dS

%��
E

div(X )− ∂ X n · n dS

%
.

Similarly to the methodology presented in Section 7, the deformation of the shape is based on the moving-
mesh approach. Hence, during each iteration, we move the nodes according to a specific vector field.
Additionally, we use a bilinear form to identify shape gradients. That is, for each linear and continuous
shape derivative D�̃ we define the shape gradient ∇�̃ ∈ H1

0(D)
2 as the solution to the sub-problem�

Ω

∂ (∇�̃ ) : ∂ (X ) +αB∇�̃ · BX +∇�̃ · X d x = D�̃ (Ω)(X ) for all X ∈ H1
0(D)

2. (25.4)

Here, α ∈ {0,1} and

B =

�−∂x ∂y
∂y ∂x

%
, (25.5)
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25 Steepest descent approach

accounts for the Cauchy-Riemann conditions, which encourage conformal deformation fields. Since we
do not integrate a remeshing process into our algorithm, we observe that the specific choice of the bilinear
greatly impacts the result. To visualise this behaviour, we compare our results for the bilinear form with
α= 1 and α= 0. Based on these ideas we present the following algorithm

Algorithm 5 Steepest descend algorithm

Require: initial curve function E0, Nmax ∈ N, Nfix ∈ N, step size s0 ∈ R+, line search parameter β ∈ (0,1)
Hilbert space� = H1

0(D)
compute state u0 as the solution of (25.2).
compute adjoint state q0 by solving the adjoint state equation (25.3).
define � (cf. Corollary 25.2).
while n≤ Nmax do

compute shape derivative D� (En)(·).
compute associated shape gradient ∇� .
compute the averaged topological gradient ḡΩn

.
initialise iteration count k = 0 and s = s0.
while k ≤ Nfix do

choose descend direction Xn = −s∇� .
if � ((Id+ Xn)(E))> � (En) then

set s = βs and k+ = 1.
else

step size accepted, exit inner while loop.
end if

end while
update shape En+1 = (Id+ sXn)(En).
n+ = 1.

end while

25.1 Results

For the initialisation of the algorithm we used the following set of parameters: maximal number of iter-
ations Nmax = 600, maximal number of linesearches Nfix = 15, s = 10−1, β = 1

2 and the initial curve E0

denotes the boundary of the rectangle [−3
2 , 3

2]× [−3
2 , 3

2]. The initial shape E0 is depicted in Figure 23b.
Furthermore, we visualised the function f := [( f2 − f1) + (g1(u0)− g2(u0))]q0 in Figure 23a.
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25 Steepest descent approach

(a) Visualisation of the function f . (b) Initial shape E0.

Figure 23: Initial conditions.

The initial shape (cf. Figure 22) and the function f (cf. Figure 23a) both suggest that the optimal shape
E∗ is attained approximately as the boundary of the unit ball B1(0). The results of the algorithm agree
with this idea (cf. Figure 24)

(a) Optimised shape ENmax
for α= 0. (b) Optimised shape ENmax

for α= 1.

Figure 24: Visualisation of the optimised shape.

We observe that the algorithm without the Cauchy-Riemann condition (i.e. α = 0) manages to attain
a circular shape (cf. Figure 24a), which was anticipated. Contrary, the algorithm including the Cauchy-
Riemann condition behaves similarly but fails to completely smoothen the corners (cf. Figure 24b). This
is a result of the elements close to the corners of the initial rectangle being stretched in the optimisation
process. Without any remeshing in the optimisation algorithm, this stretching is necessary to achieve a
circular shape. Yet, the Cauchy-Riemann condition aims to prevent extensive stretching of the elements
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25 Steepest descent approach

and thus fails to achieve the task. To visualise the behaviour, we depicted the according deformed meshes
in Figure 25a, Figure 25b.

(a) Deformed mesh for α= 0. (b) Deformed mesh for α= 1.

Figure 25: Deformation of the mesh.

This issue is also reflected in terms of the value of the cost functional � (E), which decreases when
Cauchy-Riemann conditions are not prescribed (cf. Figure 26).

Figure 26: Visualisation of the function value � (E).
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