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Kurzfassung

In dieser Arbeit werden die Herausforderungen bei der Analyse von Datensätzen aus em-
pirischen Experimenten behandelt, wobei ein besonderer Schwerpunkt auf der Erkennung
von Ausreißern und der Analyse hochdimensionaler Daten liegt. Durch robuste Ansätze
und den Einsatz moderner Optimierungsalgorithmen bietet die Arbeit praktische Lösungen
zur Verbesserung der Zuverlässigkeit und Effizienz von Datenanalysetechniken in komplexen
realen Szenarien und bietet Erkenntnisse und praktische Werkzeuge für die Anwendung in
verschiedenen Bereichen. Beiträge zur robusten und penalisierten Regression, Assoziation
und Dimensionsreduktion werden anhand von Datensätzen aus der Tribologie veranschau-
licht, einem multidisziplinären Gebiet, das Reibung, Verschleiß und Schmierung untersucht.
Diese Daten stammen aus Experimenten mit Motorölen in unterschiedlichen Zuständen
und umfassen Spektral-, Funktions- und Bilddaten mit jeweils nur begrenzter Anzahl von
Beobachtungen. Robuste Methoden, die für niedrigdimensionale Daten entwickelt wurden,
reichen nicht aus, um experimentelle Datensätze im hochdimensionalen Fall zu verarbeiten.
Daher werden in dieser Arbeit geeignete Preprocessing- und Samplingstrategien für robus-
te Regression und Klassifikation unter diesen Bedingungen vorgestellt. Darüber hinaus
wird eine Kombination von robusten statistischen Methoden mit gradientenbasierten Opti-
mierungstechniken untersucht, um die Beziehung zwischen zwei multivariaten Datensätzen
durch robuste und regularisierte CCA (kanonische Korrelationsanalyse) zu quantifizieren.
Weiters wird eine Methode zur Dimensionsreduktion mittels robuster und regularisierter
PCA (Hauptkomponentenanalyse) vorgestellt.





Abstract

In this thesis, challenges inherent to analyzing datasets from empirical experiments are
addressed, with a particular focus on outlier detection and the analysis of high-dimensional
data. By proposing robust approaches and leveraging modern optimization algorithms, the
thesis offers practical solutions for enhancing the reliability and efficiency of data analysis
techniques in complex real-world scenarios, offering valuable insights and practical tools for
researchers and practitioners in various fields. Contributions to robust and sparse regression,
association, and dimension reduction are illustrated on datasets from tribology, a multi-
disciplinary field studying friction, wear, and lubrication. These data result from practical
experiments with engine oils in different conditions and from several degradation pathways
and include spectral, functional, and image data with only a limited number of observations.
Robust methods tailored for low-dimensional data do not suffice for handling experimental
datasets in high-dimensional settings. Therefore, this thesis presents suitable preprocessing
and sampling strategies for robust regression and classification in this challenging setting.
In addition, a combination of robust statistical methods with gradient-based optimization
techniques is proposed for quantifying the relation between two multivariate datasets using
robust and sparse CCA (canonical correlation analysis) and dimension reduction via robust
and sparse PCA (principal component analysis).
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1 Introduction

Datasets derived from empirical experiments often present challenges for (robust) statis-
tical methods. Outliers, i.e. observations deviating from the majority of the data, may
be present, and high-dimensional datasets, referring to the case when more variables than
observations are recorded, need to be analyzed with appropriately designed statistical meth-
ods.

The necessity to systematically examine big sets of potentially noisy data can be seen
as a prominent aspect of modern data analysis (Hastie et al., 2015). Especially in indus-
tries where the data originate from practical experiments, either in a laboratory or from
field or bench tests, and only limited samples are available, efficient prediction methods to
understand underlying mechanisms are crucial. This especially applies to the development
of machinery, which should be sustainable and reliable. In industrial machines, but also in
passenger cars, for example, not only the mechanic parts contribute to these properties, but
also the used lubricants, i.e. engine or hydraulic oils. In the highly interdisciplinary field of
tribology, friction, wear, and lubrication are studied using various analytical methods. The
aim of this thesis is the development of robust statistical methods and algorithms designed
to work with challenging datasets produced from practical experiments. The data obtained
from oils at different degradation stages have been provided by AC2T research GmbH in
Wiener Neustadt and include spectra, functional, compositional, but also image data and
can roughly be grouped as lubricant chemistry, tribofilm and surface characteristics, and tri-
bological behavior. However, tribometrical experiments are expensive and time-consuming,
and often, only a limited number of observations (compared to the number of measured
variables) are available. Furthermore, the data are prone to measurement errors, which
should not influence the resulting models.

Our contribution aims to simplify the analytical work and reduce cost- and time-intensive
tribological experiments. Robust methods and algorithms are developed in a data-driven
way, tailored to problems and questions from tribology. However, the methods are not
limited to tribology, but can be applied to any field where there is a need to extract and
combine relevant information from multivariate high-dimensional data with only limited
numbers of observations.

1.1 Motivation

In collaboration with AC2T research GmbH, we aim to provide answers to questions related
to the condition monitoring of engine oils. The lubricating properties of an engine oil depend
on the oil condition, and quantifying this relation between lubricant chemistry and tribo-
logical performance is an active research topic in tribology (Felkel et al., 2010; Al-Ghouti
et al., 2010; Hirri et al., 2017; Besser et al., 2013). It is also of interest to compare different
degradation pathways of engine oils, i.e. oils altered in the laboratory versus oils used in
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1 Introduction

the field or in test rigs. For this purpose, multivariate datasets originating from different
kinds of experiments have been provided by AC2T research GmbH. As experimental data
is susceptible to inaccuracies, leading to outlying observations and/or cells, robust methods
are needed for their analysis. While many robust methods have been proposed and studied
for the low-dimensional setting (see, e.g., Maronna et al., 2006), there are not as many
robust methods designed for high-dimensional data, both in the sense of many variables as
well as many observations. This especially applies to robust estimators that cannot be de-
rived analytically but via an iterative procedure. Proposed algorithms that rely on finding
optimal subsets of the data or the repeated estimation of regression models do not scale
well to growing dimensions. Optimization techniques based on versions of gradient descent
have been developed for large-scale problems in computer science, and we demonstrate how
they can be effectively applied to different kinds of problems in robust statistics.

Section 1.2 provides an introduction to tribology and the available data, Section 1.3
summarizes some basics of robust statistics, and Section 1.4 gives an overview of gradient-
based optimization. Chapters 2 and 3 present selected sparse and robust regression and
classification techniques and their application to data from tribology for the prediction of
the engine oil condition based on spectral and image data. In Chapter 4, an algorithm for
the efficient computation of sparse and robust maximum association measures to relate two
multivariate datasets is developed, and in Chapter 5 we present an approach to cellwise
robust dimension reduction via PCA. Chapter 6 gives details to the implementation and
guidance for the usage of the developed R package RobSparseMVA (R Core Team, 2023;
Pfeiffer et al., 2024). Finally, the findings are summarized in Chapter 7, and an outlook on
interesting future research topics is given.

1.2 Tribology

The name tribology originates from the Greek word τριβω, meaning “to rub”, and has
been coined by Jost (1966), who described it as “the science and technology of interacting
surfaces in relative motion and of practices related thereto.” Nowadays, it is more commonly
referred to as the science of friction, wear, and lubrication, although it is a much wider
interdisciplinary field including (non-exhaustively) physics, chemistry, materials science,
and mechanics, but also applied mathematics (Bhushan, 2013; Hutchings and Shipway,
2017).

Before describing the available dataset from tribology, we give a short summary of how
the keywords “friction”, “wear”, and “lubrication” are defined in Hutchings and Shipway
(2017):

• Friction refers to “the resistance encountered by one body in moving over another”
(Hutchings and Shipway, 2017). For both rolling and sliding friction, the tangential
force F moves the upper body over a counterface. The frictional force or coefficient
of friction corresponds to the ratio between F and the normal force W .

• Lubricants can be a variety of materials and introduce a layer between the surfaces
to prevent asperity contact and, subsequently, to reduce the frictional force between
surfaces (Hutchings and Shipway, 2017). This is important as a lack of lubrication

2



1.2 Tribology

could lead to high friction forces and therefore frictional energy losses not acceptable
for engineering/industrial applications.

• Wear occurs when two surfaces slide against each other and refers to a complex process
that depends on the materials of the surfaces and the lubricant. Its main effects can
be categorized into stress (causing deformation), damage, thermal effects, and even
chemical reactions or interactions of surfaces. In addition, reaction layers (e.g. oxides
in the case of metals) can be formed.

The understanding of these complex phenomena and how they interact with each other
is crucial for the design of efficient machinery, as has already been recognized by Jost in
1966, who mainly considered financial savings, for example, in maintenance and replacement
costs of mechanical components and extended lifetime of plants. Nowadays, environmental
sustainability is also a prominent topic in tribology (Holmberg and Erdemir, 2017). Espe-
cially in transport, where over 30% of the energy is used to overcome friction, tribological
innovations could reduce energy loss by 18-40%, corresponding to around 8.7% of the global
energy use, as discussed in a study by Holmberg and Erdemir (2019). And while the market
share of electric cars grows, the majority of cars are still powered by internal combustion
engines (IEA, 2023). Thus, the study of engine oils and their tribological performance is
a crucial step in the development of modern, energy-efficient automotive engines (Besser
et al., 2019).

By combining robust statistical methods with efficient optimization algorithms, this the-
sis contributes to a better understanding of how lubricant chemistry and tribological per-
formance are related, specifically in the example of conventional lubricants that are com-
monly used as engine oils. Lubricant chemistry is represented by Fourier-Transform-Infrared
(FTIR) spectra of engine oils, and tribological performance is reflected by images of wear
scar areas that were taken under a microscope after friction and wear tests on a Schwing-
Reib-Verschleiss SRV® tribometer. While the specific datasets used for modeling are de-
scribed in more detail in the respective chapters, the experiments that the given data are
derived from are summarized in the following.

1.2.1 Artificial oil alteration

Besser et al. (2019) motivate the production of engine oils at different degradation stages for
testing components in the development of automotive engines. It has been investigated by
several authors that the oil condition has an influence on its lubricating properties (Ponjavic
et al., 2017; De Feo et al., 2015), and as the engine oil in a passenger car will only be fresh
at the beginning of its lifecycle, it is sensible to also use lubricants with different degrees of
degradation in the development phase, e.g. for bench tests or engine test rigs.

“Used” engine oils can be produced in the laboratory (Agocs et al., 2020) or obtained
from field tests in passenger cars (Agocs et al., 2021). Artificial alteration in the laboratory
has the advantage that degraded oils can be generated in a relatively short time under
well-defined conditions from small (1L) to larger (200L) amounts (Besser et al., 2019).

A rather simple procedure for artificially altering engine oils is a modified version of the
MAN test, described by Dörr et al. (2019b). This test refers to an open-beaker setup, where
the beakers are placed in an oven at temperatures ranging between 120 and 180°C and are
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1 Introduction

Figure 1.1: Alteration example: Open-beaker setup. Source: AC2T research GmbH.

sampled and analyzed according to regular sampling intervals. An example setup is shown
in Figure 1.1.

Thermo-oxidative artificial alteration methods involve oxidative stress in addition to ther-
mal stress. On a small laboratory scale, this can be carried out as suggested by Besser et al.
(2012): The lubricant is contained in a round-bottomed glass flask and placed in a heated
bath. Then dried air flow is applied to the oil via a tube. The schematic on the left-hand
side of Figure 1.2 shows the setup. Again, the oil is regularly sampled and analyzed.

The amounts of altered oils that can be produced by such a small-scale alteration are
still restricted to about 1L, which is why a large-scale alteration that is able to produce up
to 200L of degraded engine oil has been developed by Besser et al. (2019). On this scale, a
chemical reactor with heating, air management, and cooling units and a stirring mechanism
is needed. The setup is described in detail in Besser et al. (2012). The schematic on the
right of Figure 1.2 refers to this large-scale alteration.

1.2.2 Experimental data

The oil samples taken during different time points in either of the artificial alteration proce-
dures are analyzed using different methods. “Conventional” oil analysis refers to the evalua-
tion of oil attributes like the viscosity of the oil, the water content, as well as neutralization
number or total base number (Besser et al., 2019). In addition, oxidative components and
residual components of anti-oxidants and anti-wear additives can be evaluated from specific
absorption bands in FTIR spectra of the respective oils.

FTIR spectroscopy measures the absorption of infrared radiation by a sample. It works
by passing infrared light through a sample and detecting how much of the light is absorbed
at different wavelengths, providing information about the sample’s molecular structure and
composition (Griffiths and de Haseth, 2007). An example of a typical FTIR spectrum of an
engine oil is shown in Figure 1.3. The absorption bands around 3000 cm−1 and 1450 cm−1

correspond to C-H stretching and bending vibrations (Chimeno-Trinchet et al., 2020), which
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1.2 Tribology

Figure 1.2: Left: Schematic for small-scale alteration. Right: Schematic for large-scale
alteration. Source: AC2T research GmbH.

are always high-absorption areas in engine oils and are therefore removed before analysis,
either manually or by filtering procedures (Pfeiffer et al., 2022).

0.0
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1000200030004000
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Figure 1.3: FTIR spectrum of an automotive engine oil.

For the evaluation of tribological performance, friction and wear experiments are per-
formed on an SRV® 3 tribometer, yielding the coefficient of friction. For the datasets used
in this thesis, the experiments were performed under sliding conditions using a ball-on-disc
reciprocating contact with the lubricant in between the surfaces, as shown in the schematic
on the left of Figure 1.4. The condition of the surfaces after the tribometer experiment is
documented by photos taken under a microscope, in the following referred to as wear scar
images. On the right side of 1.4, both the wear scar images of a ball and disc are shown

5



1 Introduction

Figure 1.4: Left: Schematic for tribometer setup. Right: Wear scar areas. Source: AC2T
research GmbH.

after pre-processing. As we are mainly interested in the texture of the wear scar areas, the
original RGB images were converted to greyscale based on brightness and the background of
the wear scars was removed. Then, the images were cut to fit around the wear scars and the
image dimensions unified across the samples. To account for different lighting conditions,
normalization was performed using cv2.normalize from the OpenCV library (Bradski, 2000)
with a reference image of zeros and the MINMAX type, scaling pixel values between 0 and
255.

As the data has been produced in a laboratory with possibly varying conditions and
risk of contamination, the analysis will call for robust methods that can deal with outlying
observations. In Section 1.3, we give a brief introduction to robust statistics, the different
paradigms, and concepts needed for estimation.

1.3 Robust statistics

Classical statistics is based on assumptions such as the normality or linearity of the observa-
tions. However, even if the majority of a dataset satisfies the assumptions, there is often a
small proportion of the data that behaves differently. These observations, not following the
pattern of the bulk of the data, are commonly referred to as outliers (Maronna et al., 2006).
Barnett et al. (1994) have defined these points as “a set of data to be an observation (or
subset of observations) which appears to be inconsistent with the remainder of the dataset.”
The importance of robustness against outliers has already been recognized by Box (1953)
and Tukey (1960), and Huber (1964) and Hampel (1974) contributed the theoretical foun-
dations thereof. In Hampel et al. (1986), robust statistics is defined as follows: “In a broad
informal sense, robust statistics is a body of knowledge, partly formalized into ‘theories of
robustness’, relating to deviations from idealized assumptions in statistics.”

The robust statistical approach aims to develop models that follow the majority of the
data and downweight the influence of outlying observations. In addition, robust diagnostics
provide a more reliable way to identify outliers (Maronna et al., 2006; Hampel et al., 1986).
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1.3 Robust statistics

1.3.1 Casewise versus cellwise outliers

We can distinguish between two paradigms in robust statistics, namely the casewise and
cellwise approaches. In casewise robustness, whole observations are flagged as either outly-
ing or regular data points. Formally, this corresponds to the Tukey-Huber contamination
model which is given as

X = (1−B)Y +BZ, (1.1)

where Y ∼ F with F corresponding to the model distribution, and Z ∼ G with G corre-
sponding to the outlier-generating distribution. B ∼ Bin(1, ε), for a small value ε, can be
interpreted as a contamination indicator (Alqallaf et al., 2009).

In the multivariate setting, this model has been criticized for only allowing rowwise
contamination, when in reality–especially in high-dimensional settings–it is likely that only
a few columns in many rows are affected by outliers.

For this cellwise contamination framework, Alqallaf et al. (2009) have formalized the
independent contamination model as

X = (I −B)Y +BZ, (1.2)

where B = diag(B1, B2, . . . , Bp) are independent Bi ∼ Bin(1, εi), for i = 1, . . . , p.
As pointed out by Raymaekers and Rousseeuw (2023b), the cellwise contamination model

is related to the idea of explaining the outlyingness of an observation by the contributions
of each variable. This includes the SPADIMO algorithm developed by Debruyne et al.
(2019) and the explanation of outliers using Shapley values, as proposed by Mayrhofer and
Filzmoser (2023).

Figure 1.5 illustrates the difference between the contamination paradigms: Both datasets
include the same number of outlying cells, but on the right side (cellwise contamination),
many more rows are affected than on the left side (casewise contamination).

While many robust methods have been developed and studied for the casewise contamina-
tion model (see, e.g., Maronna et al., 2006), the cellwise scenario has been an active research
topic in recent years (Raymaekers and Rousseeuw, 2023b). Raymaekers and Rousseeuw
(2023b) discuss the challenges that come with the cellwise contamination model and summa-
rize the existing literature on cellwise robust estimation of location, correlation, covariance
and precision matrices, regression, principal components analysis (PCA), clustering, and
time series analysis, and generalize theoretical concepts like breakdown points (Maronna
et al., 2006) for the cellwise framework.

In the following sections, we give an overview of (classes of) robust estimators, as well
as strategies for dealing with high-dimensional data, i.e. the scenario when more variables
than observations are present.

1.3.2 Robust estimation

A big class of robust estimators includes the M- and S-estimators, a generalization of max-
imum likelihood estimators for location and scatter (Maronna et al., 2006).
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Figure 1.5: Casewise (left) versus cellwise (right) contamination scenario.

In the univariate case, M- and S-estimators of location and scatter work by re-weighting
the observations based on a non-decreasing function ρ (Huber, 1964). For the multivari-
ate case, the estimators work by applying the ρ-function to the Mahalanobis distances
(Maronna, 1976). For linear regression, the re-weighting is based on the (scaled) residuals.

Trimmed estimators are another class of estimators, already hinting at the applied strat-
egy: A proportion of the smallest and largest values is trimmed from the dataset before
computing the mean, resulting in a trimmed mean. For robust scale, a similar concept
has been introduced with the Qn estimator (Rousseeuw and Croux, 1993), using the k-th
order statistic of the

�
n
2

�
distances, Qn = d{|xi − xj |, i < j}(k). For robust covariance,

the Minimum Covariance Determinant (MCD) - estimator (Rousseeuw, 1984, 1985) is a
popular choice: It is based on finding the subset of observations resulting in the minimum
determinant of the covariance matrix. The resulting location estimator is then the mean
of the selected subset, and the covariance estimator is the sample covariance of the subset,
multiplied by a consistency factor. The idea of trimming observations can also be applied
to regression, resulting in the Least Trimmed Squares (LTS) estimator (Rousseeuw, 1984),
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1.3 Robust statistics

where observations are again down-weighted based on the corresponding residuals.
A more technical introduction to robust regression based on ρ–functions and trimmed

residuals is given in Chapter 3.
Popular ρ–functions are shown in Figure 1.6. In Chapter 3, their application is demon-

strated in regression, and in Chapter 5, different ρ–functions are used for robust matrix
reconstruction.
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Figure 1.6: Different types of ρ-functions. The functions are shown for the parameters
b = 1.5 for the Huber function, c = 1.5 for the Tukey function, and h = 0.5 for
the LTS function for N (0, 1) distributed residuals.

The above methods are casewise robust, but generalizations for cellwise robustness have
been studied: For covariance estimation, the MCD has been extended to cellwise MCD
(Raymaekers and Rousseeuw, 2023b), for regression, the shooting algorithm, operating
variable-wise, has been proposed (Bottmer et al., 2022). Another approach is to first de-
tect cellwise outliers, and continue with estimation on the corrected dataset (Hubert et al.,
2019). For cellwise robust correlation matrices, Öllerer et al. (2015) proposed to use pair-
wise rank-correlation measures. An alternative take on this idea is detailed by Raymaekers
and Rousseeuw (2021), who proposed to use column-wise data transformations.

1.3.3 Dealing with high-dimensional data

High-dimensional datasets, in the sense that there are more variables than observations,
lead to ill-conditioned estimators, even in the classical framework. When the application
additionally requires robustness, this “curse of dimensionality” becomes even worse, as some
observations (or cells) are discarded.
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In order to extract useful information from such datasets, additional assumptions such as
sparsity need to be made or dimension reduction needs to be performed. Hastie et al. (2015)
gives an overview of sparse regression methods, such as the LASSO (Tibshirani, 1996) and
generalizations, as well as sparse multivariate methods. The idea of the LASSO, i.e. adding
a sparsity-inducing constraint via the L1-norm, has been applied to robust regression as
well, yielding, for example, the sparse LTS estimator for regression (Alfons et al., 2013) or
the sparse partial M-estimator (Hoffmann et al., 2015). Some multivariate methods can
also be reformulated in a way that they can be solved via repeated estimation of a (robust)
regression model (see, e.g., Waaijenborg et al., 2008; Wilms and Croux, 2015a; Maronna
and Yohai, 2008). In Chapter 3, we give a more detailed overview of sparse and robust
regression and classification methods that are suitable for high-dimensional datasets and
demonstrate their application to a dataset from tribology.

The computation of reliable covariance estimators in the high-dimensional setting is an-
other challenge that has received a lot of attention, as it is needed for many multivariate
methods. In general, there are three ways to get a well-conditioned covariance matrix in
large dimensions:

1. Regularization: The final estimate is a linear combination of the sample covariance
and a target matrix (Ledoit and Wolf, 2004). This could be an identity matrix, but
generalizations are possible. Boudt et al. (2020) extended this approach to the MCD,
and Ollila et al. (2020) to M-estimators.

2. Thresholding: Under certain structural assumptions, thresholding small values of the
covariance matrix yield consistent estimators (Bickel and Levina, 2008; Wainwright,
2019). In combination with robust M-estimators, Avella-Medina et al. (2018) showed
similar results for a broader class of distributions.

3. Eigenvalue correction: For computational efficiency, an initial robust covariance es-
timate can also be derived from pairwise product-moment-correlations (Raymaekers
and Rousseeuw, 2021). Then, the final covariance is defined as the “nearest” positive
definite matrix in the Frobenius norm. Öllerer et al. (2015) proposed to apply the
algorithm by Higham (2002). The OGK estimator (Maronna and Zamar, 2002) also
relies on a pairwise identity, and an orthogonalization step ensures positive definite-
ness of the resulting covariance matrix.

Note that for some multivariate methods, a regularizing penalty on the coefficients, load-
ings, or directions has an implicit regularization effect on the plug-in covariance estimators.
This phenomenon is similar to the effect of a Ridge-penalty in regression and will be dis-
cussed for Canonical Correlation Analysis (CCA) in Chapter 4.

1.4 Algorithms

For robust problem formulations, there often does not exist an analytical solution and
numerical algorithms are required to get an approximation of the solution. Furthermore,
the solution for a number of multivariate problems requires the eigenvalue decomposition
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or inversion of the covariance matrix. In the high-dimensional setting, these computations
are not possible, and other optimization as well as regularization strategies are required.

Optimization problems arising from multivariate statistical problems often also include
constraints, such as the uncorrelatedness with lower-order loadings in Principal Component
Analysis (PCA), or the restriction to normed directions.

We give a brief overview of algorithms designed for constrained optimization problems,
then we explain how modern gradient-based optimization techniques can be exploited for
efficient computation, both for a growing number of observations as well as variables.

1.4.1 Constrained optimization

Consider the optimization problem

min
x

f(x) (1.3)

x ∈ X , (1.4)

where X ⊂ Rp and f : X → R. The constraint (1.4) can be an equality or inequality,
denoted with the help of a function h : Rp → Rm. Line (1.4) then becomes h(x) = 0 or
h(x) ≤ 0, depending on the application (the equality and inequality are to be understood
elementwise). With small tweaks, these two problems can be treated similarly (Bertsekas,
1996; Boyd and Vandenberghe, 2004; Boyd et al., 2011), and for ease of notation, we will
continue the introduction only for the case h(x) = 0.

The Lagrangian for problem (1.4) is

L(x,λ) = f(x) + λ′h(x), (1.5)

where λ corresponds to the Lagrange multiplier. We say that x∗ is an optimal point of the
primal problem, if there holds

x∗ = argminx L(x, λ∗), (1.6)

where λ∗ maximizes the dual function infx L(x, λ).
Several algorithms use this concept of duality for obtaining a solution to the optimization

problem (1.4), which corresponds to a saddle point of the Lagrangian (1.5) and is therefore
hard to find numerically. The dual ascent method was one of the first approaches (see,
e.g., Boyd et al., 2011, for an overview of the available literature), it consists of alternating
the updates of x and the ascent step of the dual variable λ. The update is shown in the
left flowchart in Figure 1.7. As this algorithm is potentially unstable and only converges
under strict assumptions, the augmented Lagrangian and the corresponding MM (method
of multipliers) algorithm have been developed. The augmented Lagrangian for problem
(1.4) is defined as

Lc(x,λ) = f(x) + λ′h(x) +
c

2
∥h(x)∥2, (1.7)

with the parameter c determining the strength of the regularization. Note that the aug-
mented Lagrangian corresponds to the Lagrangian of problem (1.4) with an added penalty
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of c
2∥h(x)∥2 (Bertsekas, 1996; Boyd et al., 2011). The iterations look very similar to the sim-

ple dual ascent method, see the middle plot of Figure 1.7. A disadvantage of this method is
that the augmented Lagrangian is not decomposable anymore, even if the original objective
function was, i.e. f(x) =

$
i fi(xi). The ADMM (alternating direction method of multipli-

ers) remedies this by suggesting alternating updates in the different directions (Boyd et al.,
2011). The steps are shown in the example of two variables in the right part of Figure 1.7.
Unless the function f is convex, convergence to a global optimum can unfortunately not be
guaranteed, however, the different variants of the algorithm have been successfully applied
in many practical applications, as described by Boyd et al. (2011).

Init λ0,x0

xt+1 ← argminxL(x, λt)

λt+1 ← λt + αth(xt+1)

Init λ0,x0

xt+1 ← argminxLc(x, λ
t)

λt+1 ← λt + ch(xt+1)

Init λ0,x0
1,x

0
2

xt+1
1 ← argminx1

Lc(x1,x
t
2, λ

t)
xt+1
2 ← argminx2

Lc(x
t+1
1 ,x2, λ

t)

λt+1 ← λt + ch(xt+1
1 ,xt+1

2 )

Figure 1.7: Overview of different algorithms exploiting duality. Left: dual ascent, middle:
MM (method of multipliers), right: ADMM.

We could also say that the constrained problem (1.4) has been converted into a series
of unconstrained problems, and now efficient numerical algorithms can be applied to find
the optimum in the x minimization step. In various statistical applications, this corre-
sponds to estimating a series of regression problems (Waaijenborg et al., 2008; Wilms and
Croux, 2015a; Maronna et al., 2019), evaluating a number of projection directions (Croux
and Ruiz-Gazen, 2005; Alfons et al., 2016a; Croux et al., 2013), or performing coordinate
descent (Hastie et al., 2015). When the number of variables grows, these procedures are not
sustainable computationally. What is more, the objective function may have multiple local
minima, and techniques that make it possible to escape these without needing to evaluate a
very large number of initial values. Optimization based on adaptive and stochastic gradient
descent is able to combine both: It has been developed to process huge amounts of data for
deep learning algorithms, and can also be applied for the efficient computation of robust
statistical estimators. In the next section, we give a short introduction to these algorithms,
and how they can be modified to work with different types of constraints.

1.4.2 Adaptive stochastic gradient descent

A natural method for finding a minimizing sequence for a differentiable objective function is
the gradient method, which takes repeated steps in the opposite direction of the gradient of
the function (Boyd and Vandenberghe, 2004). When the entire dataset is used for the com-
putation of the gradient, the method is referred to as deterministic or batch learning, when
one sample at a time is used, it is called online or stochastic gradient descent (Goodfellow
et al., 2016). Minibatch gradient descent uses a subset of the available samples to approx-
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1.4 Algorithms

imate the true gradient of a function and provides a compromise between the two. Let θ
denote the parameters to be optimized. Then, a minibatch x(1), x(2), . . . , x(m) is sampled
from the training data, and the gradient estimate is computed as ĝ ← 1/m∇θ

$
i L(x(i)).

Then, the update step is executed as

θt+1 ← θt − ϵtĝ, (1.8)

with ϵt corresponding to the learning rate. The updates are iterated until a convergence
condition is reached (Goodfellow et al., 2016).

Boyd and Vandenberghe (2004) summarize theoretical properties of gradient descent al-
gorithms and Goodfellow et al. (2016) provides an overview of popular extensions developed
for the use case of big amounts of data and ill-conditioned problems. Two strategies are
commonly applied to avoid the model getting caught in local minima: Using momentum
(exponentially decaying moving averages of gradients, e.g., Nesterov momentum, Nesterov,
1983), or adaptive learning rates, where the ADAM algorithm by Kingma and Ba (2015)
combines both.

Sometimes, it is also useful to apply a learning rate decay, meaning that an initially
higher learning rate is decreased according to a specific rule. Many options exist, and
popular choices are, for example, linear or exponential decay, adjusting the learning rate in
each update step (1.8), see Goodfellow et al. (2016) for an overview.

1.4.3 Gradient descent on manifolds

In Section 1.4.1, the constraints are incorporated with the MM algorithm, but certain types
of constraints can be included more naturally. In the case of PCA, for example, we are
looking for subspaces described by matrices with orthonormal columns, which corresponds
to the Stiefel manifold. When the constraints correspond to a smooth manifold, gradient
algorithms can be modified to stay on the manifold during the update. While the procedure
has already been proposed by Edelman et al. (1998), extensions to adaptive and stochastic
gradient algorithms (Bonnabel, 2013; Bécigneul and Ganea, 2019) make it applicable to
more general problems.

In Chapter 5, we describe an approach that uses Riemannian optimization to compute
a sparse and cellwise robust PCA estimator. The algorithm is described in more detail
there, but the visualization in Figure 1.8 gives an intuition of what happens: The gradient
step is divided into first projecting the “naive” gradient onto the tangent space at the
current parameter value θ, denoted by TθM. This could also be interpreted as a first-order
approximation of the manifold at θ. After the gradient step is executed in the tangent space,
the new parameter value θ′ is mapped to the surface of the manifold M by the exponential
map or a retraction R for improved computational efficiency (Douik and Hassibi, 2019).

1.4.4 Sparsity inducing constraints

So far, we have covered the treatment of differentiable loss functions, but for sparsity-
inducing regularization such as the L1 norm, this assumption does not hold. Several strate-
gies for the application of gradient descent for constrained non-smooth functions have been
developed. In the following, we give a short introduction to a selection.
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M
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Figure 1.8: Visualization of a gradient step on a manifold.

One possible strategy is the application of proximal operators (Parikh et al., 2014). An
example would be the well-known soft-thresholding operator for the L1 norm. Generally,
this approach works by first applying the gradient step to the differentiable part of the
objective function, followed by the projection. This approach is widely used for sparsity-
inducing penalties in statistics, such as the LASSO and variants (Hastie et al., 2015). In
combination with adaptive gradient techniques, however, its application can be tricky, as
averaged moments of previous gradients would need to be updated in a suitable way.

Another option, which is also used in software implementing the backpropagation al-
gorithm and different types of optimizers such as torch (Falbel and Luraschi, 2023), is
resorting to the subgradient. We use this idea in the algorithm presented in Chapter 4 and
give a formal definition there. A visualization of the subgradient of the L1 norm is plotted
in the left part of Figure 1.9.

Alternatively, it is often also possible to approximate a non-differentiable function by a
differentiable one. For the L1 norm, we use |x| ≈ x tanh cx in Chapter 5 (also proposed by
Öllerer et al., 2015), but other options are available. The functions for different values of c
are plotted in the right part of Figure 1.9.

Note that in the case of the L1 norm, for both the approach using the subgradient and the
approximation with a differentiable function, gradient descent does not yield truly sparse
solutions, and a thresholding step is needed. We describe this procedure as part of the
proposed algorithms in Chapters 4 and 5.
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Figure 1.9: Left: Subgradient for L1 penalty. Right: Approximation of L1 penalty with
|x| ≈ x tanh cx, for different values of c.
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1.5 Overview of the contents

In Chapter 2, we present a procedure for the analysis of FTIR spectra from engine oils, we
propose a suitable preprocessing method and model the relation between different degrada-
tion pathways using weighted LASSO regression models. This chapter has been published
as an article in Chemometrics and Intelligent Laboratory Systems, Volume 228, 104617, Pia
Pfeiffer, Bettina Ronai, Georg Vorlaufer, Nicole Dörr, Peter Filzmoser, Weighted LASSO
variable selection for the analysis of FTIR spectra applied to the prediction of engine oil
degradation, Copyright Elsevier (2022). P. Pfeiffer participated in several discussions with
the coauthors to develop the idea and methodology. Furthermore, she performed the data
analysis, implemented the R code and contributed to the overall writing and editing of the
paper as well as the review following discussions and suggestions of the reviewers.

In Chapter 3, we give an overview of robust statistical methods for regression and clas-
sification and discuss their applicability in the high-dimensional setting. We demonstrate
the application of those methods on the example of FTIR spectra and image data from
tribology, illustrating the benefits of robustness. This chapter is a reprint of an article
published in Analytica Chimica Acta, Volume 1279, 341762, Pia Pfeiffer, Peter Filzmoser,
Robust statistical methods for high-dimensional data, with applications in tribology, Copy-
right Elsevier (2023). P. Pfeiffer participated in discussions to develop the ideas, performed
data analysis and contributed to the writing and editing of the paper.

Chapter 4 considers robust and sparse maximum association estimators, a generalization
of CCA. It studies how challenges in the computation of robust estimators can be overcome
by applying efficient algorithms based on gradient descent. A simulation study comparing
the proposed method to competitors indicates superior performance, and high-dimensional
empirical examples are analyzed to underline the usefulness of this approach. This chapter
is available as a preprint on arXiv: Pfeiffer, Pia, Andreas Alfons, and Peter Filzmoser. Effi-
cient Computation of Sparse and Robust Maximum Association Estimators. arXiv preprint
arXiv:2311.17563 (2023). P. Pfeiffer participated in several discussions with the coauthors
to develop the methodology. She implemented the R code, conducted the simulation study,
and performed the data analysis. She also contributed to the overall writing and editing of
the paper.

Chapter 5 considers cellwise robust and sparse PCA based on low-rank matrix approxi-
mation. An algorithm based on Riemannian gradient descent for the resulting optimization
problem is presented, and the superiority of this approach in comparison with existing meth-
ods, both in the cellwise and casewise setting, is shown in a simulation study. An application
to two datasets from tribology illustrates the effectiveness of the proposed method.

In Chapter 6, we give an overview of the R package RobSparseMVA (Pfeiffer et al., 2024)
that has been implemented for the methods in Chapters 4 and 5, demonstrating the usage
of the most important functions, analysis of the results, and possibilities for customization
and tuning of the models.

Finally, Chapter 7 summarizes the contributions and gives an outlook on future research
topics.
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2 Weighted LASSO variable selection for
FTIR spectra

This chapter was published in Chemometrics and Intelligent Laboratory Systems, Volume
228, 104617, Pia Pfeiffer, Bettina Ronai, Georg Vorlaufer, Nicole Dörr, Peter Filzmoser,
Weighted LASSO variable selection for the analysis of FTIR spectra applied to the predic-
tion of engine oil degradation, Copyright Elsevier (2022).

2.1 Introduction

FTIR (Fourier-transform infrared) spectroscopy in combination with chemometric methods
is used in various fields: Applications range from differentiation of document paper types in
forensics and the analysis of ingredients in terms of quality or adulteration in food chemistry
and pharmaceutics to oil condition monitoring in tribology. In tribology, lubrication plays
a crucial role to reduce wear and control friction in machinery, e.g., engines and gears
(Mang and Dresel, 2017). For maintenance of machinery, oil condition monitoring describes
the health status of the lubricant but also the lubricated system by monitoring of one or
more critical parameters to identify a significant change that is indicative of a developing
fault, e.g., temperature, acids, water, and viscosity (Whitby, 2021). In R&D of lubricants,
condition monitoring provides valuable information about the progress of the lubricant‘s
degradation over time or, to express it differently, about its stability. Several authors
investigate how spectroscopic methods can be applied for the efficient assessment of used
engine oils, especially for the prediction of oil attributes such as Viscosity Index (VI),
kinematic viscosity, Total Acid Number (TAN) or Total Base Number (TBN) (Felkel et al.,
2010; Hirri et al., 2017; Macian et al., 2020; Al-Ghouti et al., 2010), and oil adulteration
(Bassbasi et al., 2013). Wolak et al. (2021) model the mileage of engine oils used in cars
as a response to the band area of selected FTIR absorption bands, and Sejkorová (2017)
develops a PLS (Partial Least Squares) regression model to predict diesel contamination
in engine oil. Moreover, Besser et al. (2013) compare engine oils altered in the laboratory
and in a chassis dynamometer by their FTIR spectra using PCA (Principal Component
Analysis). Recently, there have also been advances in the production of "used" engine oils
in the laboratory (Agocs et al., 2020) and the analysis of degradation patterns in field tests
with passenger cars (Agocs et al., 2021).

Artificial alteration methods offer a great benefit: they allow to generate degraded oils
under laboratory-controlled conditions in small to large quantities (Besser et al., 2019) and
in relatively short time. Exemplarily, the condition of an engine oil that is in use for a
year or typically 15 000 km can be reproduced in the laboratory in a week. Furthermore,
control of artificial alteration enables the production of "used" oil at a defined degree of
degradation. However, the choice of artificial alteration parameters and duration is currently
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done empirically based on experts’ knowledge. Therefore, a quantitative association between
alteration parameters, time and mileage in a real car, for example, is highly desirable.

We develop an analysis pipeline for FTIR spectroscopic data that allows to quantify the
relationship between different series of FTIR spectra, and apply these methods to under-
stand how field use and artificial alteration of engine oils are associated. In contrast to
other approaches, we do not aim to predict defined attributes of the oils but relate the oil
condition based on the runtime of artificial alteration methods and mileage of a real car,
respectively. While FTIR absorption bands that are suitable for the analysis are typically
manually selected (Macian et al., 2020; Bassbasi et al., 2013; Wolak et al., 2021, see, for
example,), we present a pre-processing method that can filter non-informative variables
objectively. Moreover, interpretation of the results is simplified, as the applied regression
method yields sparse results, i.e., only a small number of variables is selected for the model.

IR spectroscopy in general is based on the excitation of vibrations and rotations in
molecules by infrared radiation and primarily provides information about the functional
groups of molecules present. Evaluation of characteristic absorption bands enables a qual-
itative and quantitative identification of engine oil components like base oil, additives,
and their degradation products, as well as contaminations like fuel, water, or soot. FTIR
spectroscopy presents a quick and powerful analytical technique that reveals valuable infor-
mation about the oil composition and condition (Wolak et al., 2020).

FTIR spectra are high-dimensional data: the number of variables (wavenumbers) is usu-
ally much larger than the number of observations, as is the case with the given dataset.
However, it can be assumed that only a certain number of variables contribute to explain-
ing oil degradation, which motivates the use of variable selection methods to simplify the
interpretation of the coefficients.

On a high level, the common procedure(see, for example, Felkel et al., 2010; Macian et al.,
2020; Al-Ghouti et al., 2010; Bassbasi et al., 2013) applied when regressing on FTIR spectra
consists of the following steps:

1. manual selection of intervals of wavenumbers that are known to be important

2. removal of non-informative variables: either manual or by application of filters

3. exploratory data analysis using PCA

4. application of regression methods, such as PLS regression

This procedure can be quite subjective and lacks reproducibility.
The proposed data analysis method consists of two steps. In the first step, two types of

pre-processing are performed: an automatic procedure to remove non-informative variables
based on the reconstruction error from PCA, and a baseline correction of the FTIR spectra
to ensure comparability among different methods. Then, the LASSO (least absolute shrink-
age and selection operator) regression estimator (Tibshirani, 1996) with inherent variable
selection is applied, and measures of variable importance are retrieved using post-selection
inference, introduced by Lee et al. (2016). By using a weighted version of the LASSO as de-
scribed by Hastie et al. (2015), expert knowledge can be integrated with the mathematical
model.
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The remainder of the paper is organized as follows: The proposed analysis pipeline is
demonstrated through the example of a dataset of series of FTIR spectra measured on used
and artificially altered engine oils, a detailed description of the data is given in Section
2.2.1. Then, the pre-processing steps involving an automatic filtering method are explained
in Section 2.2.2, followed by a detailed model description in Section 2.3: Variable selection
and suitable statistical tools for inference are discussed in Sections 2.3.1 and 2.3.2 before
different models are estimated. The results are analyzed and interpreted in terms of lubri-
cant chemistry in Section 2.4.2 and the best models applied to relate different degradation
methods in Section 2.4.3. Eventually, an outlook for the application of proposed analysis
methods for tribological research is given in Section 2.5.

2.2 Dataset

The dataset used in this work contains the FTIR spectra of automotive engine oils in differ-
ent conditions. The underlying engine oil is a commercially available SAE 5W-30 engine oil
that meets the specifications of ACEA C3 and API SN. FTIR spectra, elemental analysis
(detecting e.g., Zn, P, S, Ca) and other conventional analyses indicate the application of ad-
ditives commonly used in automotive engine oils, like ZDDP (zinc dialkyldithiophosphates),
antioxidants, detergents with a base reserve, and dispersants. Two batches of this engine
oil were taken as a fresh oil and were subjected to three different treatments:

(a) an artificial small-scale alteration (duration of 288 h, 11 samples)

(b) an artificial large-scale alteration (duration of 143 h, 24 samples)

(c) a field test consisting of two oil change intervals (mileage of 19 800 km, 21 samples)

2.2.1 Data source

Generally, an artificial alteration is used to achieve an accelerated degradation of a lubricant
in the laboratory, in order to obtain an oil condition that is close to reality. The two artificial
alteration methods performed in this study were both thermo-oxidative degradations, i.e.,
involving thermal and oxidative stress.

The small-scale alteration was carried out on a laboratory scale according to Besser et al.
(2012). Here, 300 g of engine oil contained in a round bottom flask were placed in a heating
bath at 180 °C, with a dried air flow of 10 L/h being applied to the oil. Sampling took
place in regular intervals during the total duration of 288 h, yielding 11 artificially altered
small-scale samples.

The principle of the large-scale alteration is based on the mentioned small-scale method.
The device used to artificially alter 100 L of engine oil at a temperature of 180 °C and
with a dried air flow of 2160 L/h is described in detail by Besser et al. (2019). The total
alteration duration was 143 h, producing 24 samples in total. The alteration that provided
the large-scale data used in this work is also described by Agocs et al. (2020).

In the field test, the engine oil was used in a conventional passenger car with a modern
4-cylinder turbocharged internal combustion engine of 1.4 liter displacement powered by
petrol. For the duration of the field test, the car was mainly used for commuting and thus
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2 Weighted LASSO variable selection for FTIR spectra

(a) Original FTIR spectra: large-scale artificial alteration series

(b) (c) (d)

Figure 2.1: Plots of FTIR spectra of large-scale alteration series colored according to du-
ration. For regions of interest, a zoomed view is provided: (a) Phenolic an-
tioxidants, (b) Oxidation, ester, aminic antioxidants and (c) ZDDP (zinc di-
alkyldithiophosphates).

mostly operated on freeways. “Field 1” refers to the first run, where the oil was in use for
19 800 km, and “Field 2” describes the second run, where after an oil change the oil was
used for 10 800 km. During the field test, which is presented by Agocs et al. (2020) and
Dörr et al. (2019a), samples were taken regularly via the engine oil dipstick tube, providing
a total of 21 used oil samples.

FTIR spectra were recorded of all 58 samples (including the 2 fresh oil batches). Each
FTIR spectrum contains the absorbances at 1814 wavenumbers (variables) in the range of
3997 − 500 cm−1. Figure 2.1a shows the FTIR spectra of the large-scale alteration series
before pre-processing methods are applied, Figures 2.1b - 2.1d provide a zoomed-in view
of the absorption bands that reveal important information for the evaluation of the oil
condition.
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2.2.2 Preprocessing: filtering of non-informative variables and baseline
correction

FTIR spectra, such as those shown in Figure 2.1a, represent typical IR spectra of automotive
engine oils. The regions that can be seen around 3030− 2770 cm−1 and 1480− 1430 cm−1

are areas of high or total absorption. The absorption bands found here are typical for the
C-H stretching and bending vibrations of hydrocarbons. Since hydrocarbons form the basis
of engine oils, they are always present to a large extent. Hence, they do not only cause total
absorption, but also do not provide any relevant information and are usually not considered
in evaluation. In the context of statistics, these regions of an FTIR spectrum can therefore
be considered as non-informative variables.

For automatic identification of these non-informative variables, i.e., variables that do not
contribute to a model, we propose to use an approach based on reconstruction error. PCA is
performed on the scaled and centered data, then the data is reconstructed from the number
of principal components needed to explain 95% of the variance. Variables that are charac-
terized by a higher reconstruction error are assumed to not contain relevant information;
these wavenumbers are candidates for removal. An R implementation for the pre-processing
method is available at https://github.com/piapfeiffer/FTIR-filtering.

Let X = (xi)
n
i=1 denote the centered and scaled data matrix, collecting n observations for

a p-dimensional vector of features xi = (xi1, . . . , xip). The p columns of X correspond to the
wavenumbers, the n rows contain the absorbances of the respective wavenumbers for every
observation. PCA, described in more detail for example in Anderson (1958), represents
data by linear combinations of specific components, resulting in the matrix Z of principal
components. The linear transformation Z = XΓ is constructed such that the variance of
the columns of Z is maximized. Furthermore, Γ is an orthogonal matrix (ΓT = Γ−1) and its
columns γj are unitary vectors (γTi γi = 1 and γTi γj = 0 if i ̸= j). The original data matrix
can be reconstructed from the score matrix Z and the loadings matrix Γ via the identity
X = ZΓT . Let zj , j = 1, · · · , p denote the column vectors, or components, of Z. We can
describe the proportion of variance explained by the first k components as

Var(1:k)explained =

$k
j=1 Var(zj)$p
i=1 Var(zi)

(2.1)

We can now choose k such that Var(1:k)explained ≥ 95% and approximate the data matrix using
only the first k components of the scores Z(1:k) and loadings Γ(1:k) matrix for reconstruction:

X̂(1:k) = Z(1:k)Γ
T
(1:k) (2.2)

A plot of the centered and scaled data series is given in Figure 2.2. It can be observed
that apart from the bands with total absorption, there is a logical progress over duration,
this variation can be modelled by the first k principal components, whereas other effects are
not included. When the data matrix is reconstructed using only a part of the components,
the reconstruction error is higher at these absorption bands.

The reconstructed data is back-transformed to its original scaling and the mean recon-
struction error (MRE) is computed for the j-th variable (wavenumber), j = 1, . . . , p by
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2 Weighted LASSO variable selection for FTIR spectra

Figure 2.2: Data preparation for filtering procedure: FTIR spectra (large-scale alteration)
are scaled and centered.

taking the average over the squared differences between the original and reconstructed data
matrices for the observations:

MREj =
1

n

n#
i=1

(xij − x̂ij)
2 (2.3)

In order to achieve a small number of intervals, we propose to smooth the mean reconstruc-
tion error using the Nadaraya-Watson kernel-weighted average, as described in Hastie et al.
(2009):

S(MREj) =

$p
l=1Kλ(j, l)MREl$p

l=1Kλ(j, l)
(2.4)

with Kλ(j, l) = D (|j − l|/λ) and D(t) = 3/4(1 − t)2 if |t| < 1 and 0 otherwise. Kλ

defines the kernel function and λ controls the width of the local neighborhood. A plot of
the smoothed MRE is given in the right plot of Figure 2.3. The threshold to distinguish
between informative and non-informative variables is given by the 95% percentile of the
mean reconstruction error sample distribution and is shown as a red line. For the subsequent
analyses, the variables characterized by an MRE above the 95% percentile were deleted -
these default values were found to work well for the presented analysis. However, several
parameters can be tuned: the number of components used for reconstruction, the smoothing
function, but also the threshold determining the cutoff value.

After this filtering procedure, a baseline correction is applied to the original FTIR spectra
using the standard rubberband-method (Prizer and Sawatzki, 2008; Wartewig, 2006). Due
to the nature of the experiments, there is a baseline shift mostly caused by the presence
of soot for the oils used in the field. Normalizing the baseline ensures that spectra can be
compared among different pathways of degradation.

To base the models on the changes during oil degradation and as an approach to make
the process more generalizable, spectral subtraction was utilized. Difference spectra were
obtained by subtracting the appropriate FTIR spectrum of the fresh oil from those of the
degraded oils. A plot of the resulting dataset is given in Figure 2.3.
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2.3 Model

Figure 2.3: Dataset after pre-processing: The difference spectra for the large-scale alter-
ation are shown in the left plot. In the right plot, the smoothed MRE (mean
reconstruction error) including a threshold to filter non-informative variables is
shown.

2.3 Model

Let us now consider the linear regression model. Given n samples (xi, yi)ni=1, where each xi =
(xi1, . . . , xip) ∈ Rp is a p-dimensional vector of features, the p columns again corresponding
to the wavenumbers, and yi ∈ R is the respective response, given in runtime (h) for artificial
alteration and mileage (km) for use in the field. For simplicity, the number of variables is
again denoted by p, now referring to the filtered set of predictors. The multiple linear
regression model reads: y = Xβ + ε, where X is the n× (p+ 1)-dimensional design matrix
collecting a vector of ones (for the intercept) in the first column and the data (xi)

n
i=1. As

the regressors usually do not describe the response y perfectly, an additive error term ε is
added. The least squares estimator is based on minimizing the residual sum of squares:
β̂LS = argminβ∈Rp ||y−Xβ||22, which is not well-defined in the case p > n. There are several
approaches to address this: PLS, which is done by regressing on latent variables, as well as
penalized approaches such as LASSO (Tibshirani, 1996) or ridge regression. The respective
estimates are given by

β̂LASSO = argminβ∈Rp ||y −Xβ||22 + λ

p#
j=1

|βj | (2.5)

β̂ridge = argminβ∈Rp ||y −Xβ||22 + λ

p#
j=1

β2
j (2.6)

Elastic net Zou and Hastie (2005) combines the LASSO and ridge penalties to reduce
the number of variables. PLS constructs latent variables wk according to the criterion
wk = argmaxwcov(y,Xw), which means the covariance between the response y and a linear
combination of the input variables is maximized. Regression is then performed on the scores
tk = Xwk, for k = 1, . . . ,K, where K < p is an appropriate number of PLS components.
The resulting regression coefficients can be back-transformed to be interpreted in terms of
the original variables. However, one must be careful with interpretation and significance
estimates for PLS results. Generally, interpretation is easier if the resulting model is sparse,
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i.e., only few variables are used for the final model (see, for example, Varmuza and Filzmoser,
2009). Sparse PLS (SPLS) as described by Chun and Keleş (2010) combines the PLS
approach with regularization techniques. Still, inference can only be done using bootstrap,
and there is no straight-forward possibility to integrate domain-experts’ knowledge with the
models.

2.3.1 Variable selection with the (weighted) LASSO

In addition to being hard to interpret, a model using many variables in relation to obser-
vations is prone to overfitting. This means a good fit is achieved on training data, but the
model is not able to generalize well and results in low prediction performance for unseen
data. Hence using all available variables in a model is not advisable, even though methods
like PLS can handle high-dimensional data. Exhaustive search of all possible subsets is not
feasible, but there are several approaches to variable selection. In general, the aim is to
find a (small) subset of predictors that is best for prediction. For example, this can be done
by excluding variables with low potential for prediction, e.g., almost constant or outlying
variables, or searching for variables with high predictive potential, e.g., variables with high
variance. Other strategies are stepwise selection or models based on latent variables de-
rived using PCA or PLS. A practical overview of available strategies is given in Varmuza
and Filzmoser (2009), for example. Penalized regression estimators such as LASSO Tibshi-
rani (1996) and elastic net Hastie et al. (2009) are also very popular methods for variable
selection, as variable selection is inherent to the estimation process and the resulting models
are sparse, i.e. only a small number out of all predictors is selected.

We address the objectives of variable selection and parameter estimation simultaneously
by applying the weighted LASSO regression method (Hastie et al., 2015). The objective
function reads:

β̂wLASSO = argminβ∈Rp ||y −Xβ||22 + λ

p#
j=1

γj |βj | (2.7)

where λ controls the complexity of the solution (number of non-zero coefficients) and γj
allows to modify the penalty for single coefficients to account for expert knowledge. For
standard LASSO, γj = 1 for all j.

Adaptive LASSO was introduced by Zou (2006) and can be considered a special variant of
the weighted LASSO: Let β̂(0) denote an initial estimate for β̂, computed using ordinary LS
in the standard case (n > p) or ridge regression in the case p > n. The penalty modification
can then be defined as γj = 1/|β̂(0)

j |α for an α > 0.

In the case γj ̸= 0, the penalty modification directly corresponds to a rescaling of the
input data if the resulting coefficients are also scaled accordingly. To see this, we re-express
the objective function (2.7) in terms of the KKT-conditions as described in Tibshirani
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(2013). Then, β is a solution to (2.7) if the following equations are satisfied:

−
n#

i=1

xij

yi −
p#

j=1

xijβj

+ λγjsj = 0 (2.8)

−
n#

i=1

xij
γj

��yi −
p#

j=1

xij
γj

(βjγj)� �� �
β̃j

  + λsj = 0 (2.9)

where the subgradient sj is defined as the sign of βj , if βj ̸= 0, or between −1 and 1
otherwise. β̃ is the solution to the rescaled problem and can be computed as for the LASSO
without penalty modification. The original coefficients can be recovered by rescaling with
the penalty vector γ: βj = β̃j/γj .

As certain regions of an FTIR spectrum of an engine oil are known to provide more
specific and interpretable chemical information than others, it is reasonable to include this
knowledge in the model building considerations. Some of the absorption bands that are
usually evaluated (see Besser et al. (2019)) and reveal essential information about the en-
gine oil condition are the ones of oxidation, antioxidants and ZDDP. Oxidation occurs at
elevated temperatures in the presence of atmospheric oxygen and leads to the formation
of undesirable degradation products. Absorption bands of oxidation products like ketones,
aldehydes, carboxylic acids and esters can be seen in the region of 1860 − 1660 cm−1 (see
Figure 2.1c). Antioxidants are additives that protect the engine oil against oxidation. The
absorption band around 3650 cm−1 (see Figure 2.1b) is typical for phenolic antioxidants,
while the one around 1515 cm−1 (see Figure 2.1c) is formed by aminic antioxidants. ZDDP
is a widely used anti-wear and extreme-pressure additive that protects metal surfaces and
reduces wear in the engine. Its typical absorption band can be found in the region of
1050− 900 cm−1 (see Figure 2.1d).

Based on this knowledge, several configurations of the LASSO were estimated and com-
pared. A penalty modifier with γj = 0.1, reducing the penalty for the respective coefficients
by 90%, is applied according to the configurations listed below. The exact value of the
penalty modifier was not found to have a big impact on the selected model. In addition,
the penalty modification derived from an initial ridge estimate, i.e. adaptive LASSO, with
α = 1 was considered. For comparison, a PLS and SPLS regression for achieving a baseline
result were estimated as well. The first model, configuration 0, does not include a penalty
modifier. The other configurations are defined as follows:

1. all regions of interest

2. ZDDP, wavenumbers 990− 950 cm−1

3. phenolic antioxidants, wavenumbers 3651− 3649 cm−1

aminic antioxidants, wavenumbers 1516− 1514 cm−1

4. oxidation, wavenumbers 1860− 1660 cm−1

5. combination oxidation + antioxidants

25
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6. combination ZDDP + antioxidants

7. combination ZDDP + oxidation

Each of the configurations emphasizes different absorption bands of the FTIR spectra by
applying the penalty modifier γj exclusively to the respective absorption bands. The aim
of this setup is to investigate which of these regions can contribute most to achieve good
prediction performance and therefore explain the degree of degradation.

2.3.2 Inference and reliability

For the ordinary least-squares estimator there exist statistical tests to evaluate the impor-
tance of single variables. The same task is much more difficult when variable selection is
inherent to the estimation process on the same data, as this means the target, the coefficients
that are estimated, are changing with the selected model (Berk et al., 2013). Furthermore,
LASSO in general does not have oracle properties: According to Fan and Li (2001), an
oracle procedure is defined as a method that is able to identify the right subset of vari-
ables, or the underlying true model, and in addition fulfills an optimal estimation rate. For
LASSO, Meinshausen and Bühlmann (2006) have discussed the conflict of consistent vari-
able selection and optimal prediction and Zou (2006) has shown that non-trivial conditions
need to be fulfilled for consistent variable selection. Let βM

j denote the coefficient of the
j-th variable in model M and CM

j the respective confidence interval for βM
j . If variable

selection is not consistent, we cannot compare βM
j and βM ′

j over different models M and
M ′, as βM

j is only defined if the j-th variable is selected for model M . Therefore, the
probability P (βM

j ∈ CM
j ) ≥ 1− α may not be defined (Lee et al., 2016). One alternative to

this "traditional" construction of confidence intervals is data splitting and bootstrapping as
discussed in Meinshausen et al. (2009); Dezeure et al. (2015), but is not feasible in the given
context with only a handful of observations. We therefore use the concept of post-selection
inference introduced by Berk et al. (2013), which allows for statistical inference for any
type of variable selection, including the weighted LASSO. Based on this concept, Lee et al.
(2016) construct intervals for the LASSO coefficients by conditioning on the selected model,
i.e. P (βM̂

j ∈ CM̂
j |M̂ = M) ≥ 1− α, and characterizing the selection event of the LASSO as

a union of polyhydra. After model selection, their implementation in the R package "selec-
tiveInference" Tibshirani et al. (2019) was used to derive p-values and confidence intervals
for the selected variables and coefficients.

2.3.3 Estimation

The different model configurations are trained on the data series generated by the artificial
large-scale alteration. This dataset is split into training (2/3) and test (1/3) data randomly,
which are scaled and centered. The response is transformed to (approximate) normality
using a power transform of 2/3. Then the optimal value for λ is selected using 5-fold cross-
validation on the training set as implemented in the R package "glmnet" Friedman et al.
(2010b). Then the predictive ability of the resulting models is compared using the mean
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squared error of prediction (MSEP):

MSEP =
1

n

n#
i=1

(yi − ŷi)
2 (2.10)

The value of λ resulting in minimum MSEP is denoted as λmin, the model resulting from this
parameter is then used for the evaluation on the test set. For estimation of the PLS model,
the R package "pls" Liland et al. (2021) is used, the optimal number of components is found
using cross-validation as implemented in the package. Then, the predictive performance
of this PLS model is evaluated on the test set. Similarly, for SPLS the R package "spls"
Chung et al. (2019) is used, the optimal regularization strength and number of components is
estimated using cross-validation as implemented in the package. The predictive performance
of the model is again evaluated on the test set.

2.4 Results and discussion

The results for different model configurations are given in Table 2.1, the best models are
highlighted: Configurations 1, 3 and 5 reach a low prediction error during estimation, as
well as on the test set. For configuration 4, we are also able to achieve a good prediction
during the estimation process, but the error on the test set is much larger, potentially
due to overfitting, but it might also be an indicator for the presence of outliers in the
test set as the performance during estimation seems to be consistent. For configurations
1 and 2, the error is not stable during estimation, potentially due to inconsistencies. The
results of adaptive LASSO are comparable to weighted LASSO based on experts’ knowledge.
Depending on the configuration, LASSO clearly leads to an improvement compared to PLS.
For the investigation of the association between different oil degradation models, the best
LASSO configurations (1, 3 and 5) and the PLS model are selected. As configuration 1 and
5 result in the same model, i.e., the same wavenumbers are selected (see also Figure 2.4),
adaptive LASSO (as the next best in stable training and good test performance) is also
selected.

2.4.1 Computational results

An overview of the resulting coefficients for λmin including a comparison to the PLS coef-
ficients using two components is given in Figure 2.4. Empirical studies (see, for example,
Zou and Hastie, 2005) show that in the case of high-dimensional data, as FTIR spectra,
the LASSO estimator selects only one predictor in a group of correlated variables. Keeping
this in mind, we interpret a selected wavenumber as a representative of a variable group:
Wavenumbers associated with oxidation, for example, are in the range of 1860− 1660 cm−1

and neighboring variables are highly correlated. The selection of any wavenumber in this in-
terval therefore points to a contribution of oxidation to explaining oil degradation. Among
all models we can observe strong negative contributions of the absorption bands related
with phenolic and aminic antioxidants, as well as positive contributions from the region
associated with oxidation processes.
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Model MSEP (train) MSEP (test)

PLS 0.052 0.055
SPLS 0.014 0.027
Config 0 0.200 ± 0.189 0.006
Config 1 0.005 ± 0.002 0.011
Config 2 0.230 ± 0.017 0.203
Config 3 0.020 ± 0.005 0.008
Config 4 0.016 ± 0.004 0.027
Config 5 0.005 ± 0.002 0.012
Config 6 0.003 ± 0.001 0.025
Config 7 0.017 ± 0.006 0.014
Adaptive LASSO 0.009 ± 0.003 0.017

Table 2.1: Comparison of performance for difference model configurations on the large-scale
alteration series, split into training and test set. For (weighted) LASSO, the error
for λmin is given.

The advantage of a highly sparse solution is apparent in direct comparison to the PLS
and SPLS coefficients: While single wavenumbers act as a representative for the underlying
processes and can be easily interpreted for the different LASSO models, PLS regression
results in a contribution of all available variables. Regions selected by SPLS coincide with
wavenumbers with high contribution for the PLS model. While SPLS is able to reduce
the number of variables, there are still more than 1000 variables left in the model. The
LASSO configurations, in contrast, select only a small number of variables. Moreover, the
different LASSO models agree on certain regions as being important for prediction, even if
no emphasis (in form of a penalty modifier) is put on them.

2.4.2 Interpretation of coefficients

Classical LASSO (configuration 0) already selects some of the variables in regions of the
FTIR spectrum that are important for the description of the engine oil condition, like that
of the phenolic and aminic antioxidants. Moreover, said variables mostly coincide with
the respective band maximum, where also conventional evaluation would be performed and
where penalty modifiers were applied in other configurations. Penalty modifiers that are
automatically determined by the adaptive LASSO also coincide with some of the regions
that would be considered for conventional analysis. Similar to classical LASSO, some of
these selected variables correspond to the respective band maximum.

Adding penalty modifiers based on lubricant chemistry knowledge enhances the model in
terms of MSEP in most cases. Especially the configurations where the regions of antiox-
idants are penalized less, result in lower prediction errors and thus better models. Even
though there is a shift of the phenolic antioxidants’ absorption band towards slightly smaller
wavenumbers in the course of degradation (see Figure 2.1b), the absorption at 3650 cm−1

seems to contribute to good models.
The signs of the coefficients represent how an absorption band in the FTIR spectrum is
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Figure 2.4: Plots of selected coefficients for different models.

associated with oil degradation, in detail whether an increase or decrease of the respective
absorption band is related with an increase in oil degradation. During engine oil degrada-
tion, additives like antioxidants are consumed or decomposed and therefore their absorption
bands decrease. This is reflected in the negative sign of the coefficients of the variables 3650
and 1514 cm−1. In comparison, the coefficients of variables that represent oxidation, have
a positive sign, meaning that an increase at the respective absorption bands corresponds to
an increase of oil degradation. The coefficients of variable 1742 cm−1, which represents the
absorption band of esters, show a negative sign. This absorption band, which can be seen
in Figure 2.1c, decreases at the beginning of the alteration because esters that are present
in the fresh engine oil can be decomposed by degradation processes, before it increases
again due to the formation of oxidation products. The selected variables around the ZDDP
absorption band have coefficients of both negative and positive sign. This can result from
the combination of rapid ZDDP degradation (Dörr et al., 2019b) and the formation of other
compounds that takes place in that region of the FTIR spectrum (see Figure 2.1d). An
interesting observation is that the variables chosen by LASSO in the region of oxidation are
located on the fringe of absorption bands. The conventional evaluation of oxidation values
is usually carried out at 1710 cm−1 DIN (Deutsches Institut für Normung) (2004) or 1720
cm−1 (see Besser et al., 2019), while LASSO selects the wavenumbers 1865, 1863 and 1661
cm−1. They are located on the left fringe of the absorption band at 1780 cm−1, and on the
right fringe of the one at 1710 cm−1, respectively.

Table 2.2 summarizes the results concerning significance of variables that were computed
using the R package selectiveInference (Tibshirani et al., 2019): The significant coeffi-
cients correspond to the wavenumbers 3650, 1661, 1742 and 1514 cm−1 which are therefore
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Model variables confidence interval

Config 1 3650 [-0.727, -0.300]
1661 [0.166, 0.307]
1514 [-0.459, -0.083]

Config 3 3650 [-1.266, -0.734]
1514 [-0.262, 0.276]

Config 5 3650 [-0.727, -0.300]
1661 [0.166, 0.307]
1514 [-0.459, -0.083]

Adaptive LASSO 3650 [-0.956, 0.285]
3648 [-1.279, -0.038]

Table 2.2: Confidence intervals for selected variables. The signs of the coefficients cor-
respond to how the respective FTIR absorption bands are associated with oil
degradation.

especially important for the prediction of the degree of oil degradation. Penalty configura-
tions 1 and 5 result in the same model and significance estimates, while configuration 3 also
selects a wavenumber in the absorption band characteristic for esters. The signs for these
variables again correspond to the underlying chemical processes.

2.4.3 Relating different degradation pathways

The top three models estimated using the large-scale alteration series in Section 2.3.3 are
used to quantify the relation between different degradation pathways. These results are then
interpreted and qualitatively assessed. For reference, the result using the SPLS estimator
is included as well.

Figures 2.5a - 2.5d visualize the relationship between field use and artificial large-scale
alteration. Using the SPLS model and the best three LASSO configurations as given in
Table 2.1, the field data is given as input and the duration in terms of the artificial large-
scale alteration is predicted. Figures 2.6a - 2.6d visualize the relationship between artificial
small-scale and large-scale alteration methods. It can be observed that the prediction for
the field data based on the SPLS model (Figure 2.5a) is not as smooth as the curves
based on different LASSO configurations (Figures 2.5b - 2.5d). While the SPLS model
is able to map the order of degraded oils, it does not cover the same value range as the
predictions based on the other models. For the prediction of small-scale alteration, on the
other hand, the performance of SPLS (Figure 2.6a) covers a similar range as the LASSO
configurations (Figures 2.6b- 2.6d), but the shape of the predictions differ. SPLS (without
additional variable selection measures) is much more vulnerable to overfitting (see, for
example, Varmuza and Filzmoser, 2009) which explains a worse performance of the model
for a more general use case, while the prediction of a similar alteration procedure (artificial
small-scale vs. large-scale) yields reasonable results.

For field use, at the beginning of the process, all LASSO models under investigation agree
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on an almost linear relationship up to about 5 000 km, then the curve starts to flatten.
For all LASSO configurations (Figures 2.5b-2.5d), the curve stops increasing at around
10 000 km. The maximum prediction for configuration 1 is around 125 h, for configuration
3 around 100 h and for adaptive LASSO around 90 h. For a more detailed interpretation, we
can use the significance results from the previous chapter: Adaptive LASSO with important
coefficients at wavenumbers 3650 and 3648 cm−1 results in the lowest prediction range of
the LASSO models, while model 1 with significant coefficients at wavenumbers 3650, 1661
and 1514 cm−1 results in the largest range; model 3 (wavenumbers 3650 and 1514 cm−1)
places in between. Configurations relying on wavenumbers associated with oil components
that are consumed during use (configurations 1 and adaptive LASSO) yield a prediction
that reaches its maximum at around 100 h, as said components are completely decomposed
at this point and the absorption bands associated with them reach a mostly constant state.
This can especially be observed for the phenolic and aminic antioxidants (see Figures 2.1b
and 2.1c) as they are consumed during their use as a protection additive against oxidation.
When looking at the absorption band of the anti-wear additive ZDDP in Figure 2.1d, one
can see that it decreases in height while changing shape in the beginning, whereas for the
remaining time the shape remains mostly unchanged with the overall height increasing in
the respective area of the FTIR spectrum. As already mentioned in Section 2.4.2, the former
originates from the ZDDP degradation and the latter possibly indicates the formation of
other compounds.

However, the configuration also based on oxidation predicts a higher duration, as oxida-
tion processes keep going during the progression of degradation and the respective absorp-
tion bands keep changing. Oxidation processes include very comprehensive and complex
mechanisms that vary in the nature and quantity of the chemical compounds formed, de-
pending on the exact conditions. This influences the position, shape and height of the
respective absorption bands. Despite this variability in terms of the underlying chemical
processes, oxidation seems to make an important contribution to the prediction models,
especially when it comes to oil conditions where additives are depleted to a great extent.

In addition to oxidation processes being different from those during an artificial alteration,
other processes such as nitration play a role in the real-life use of engine oils. Nitration
accounts for one of the biggest differences between oils degraded in a real engine and oils
altered in a classical thermo-oxidative laboratory method (Ronai, 2021). Since the training
of the models in this work is based on a data set generated by the mentioned alteration
method, nitration does not appear in this context.

Regarding the association between small-scale alteration and large-scale alteration, the
resulting curves are much smoother, and all models retain the order of the degradation
samples. In general, the prediction between the artificial alteration methods yields more
consistent results, most likely due to the similarity of the alteration processes as the two
methods are very closely related being based on the same principles but being carried
out on different scales. It should be noted, however, that the timescale of the two artificial
alteration methods is not equivalent, i.e., the large-scale alteration allows a certain degraded
condition to be attained more quickly than the small-scale one. A possible explanation for
this phenomenon is the more intensive mixing that is implemented in the large-scale method
(see Besser et al., 2019), that results in a more extensive contact of the lubricant with the
air that passes through it.
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(a) Prediction using SPLS regression (b) LASSO regression, penalty configuration 1

(c) LASSO regression, penalty configuration 3 (d) Adaptive LASSO regression

Figure 2.5: Models for relationship between field test and artificial large-scale alteration.

(a) Prediction using SPLS regression (b) LASSO regression, penalty configuration 1

(c) LASSO regression, penalty configuration 3 (d) Adaptive LASSO regression

Figure 2.6: Models for relationship between artificial small-scale and large-scale alteration.
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2.5 Conclusion

As FTIR spectroscopy is a popular and widely applied method in analytical chemistry, a
comprehensive procedure to simplify the pre-processing, data cleaning and application of
chemometrical methods to FTIR spectra has been developed. An automatic filtering proce-
dure for non-informative variables was introduced, model estimation and variable selection
were performed simultaneously using the weighted LASSO, and confidence intervals for the
selected wavenumbers were derived using post-selection inference. The analysis pipeline
was demonstrated on a real-world dataset of FTIR spectroscopic data of artificially altered
and used engine oils, our model achieving high predictive performance.

This analysis pipeline offers several advantages: Our reconstruction-error based method
is an objective alternative to manual selection of absorption bands for further analyses. The
combination of weighted LASSO and the post-selection inference methodology provides an
effective tool for the analysis of high-dimensional spectroscopic data: Knowledge of domain
experts can be integrated with the LASSO model, leading to higher predictive power than
PLS and classical LASSO. As the resulting model is sparse, it is easy to interpret and
simplifies subsequent analyses and interpretation. Furthermore, confidence intervals for
the resulting coefficients can be obtained, providing more insight for the interpretation of
selected wavenumbers.

By means of the presented procedure, a mutual correlation of degradation stages of engine
oils from different sources could be quantified. For example, the mileage of a passenger car
could be mapped to an alteration duration in the large-scale laboratory alteration device.
With such correlations at hand, it is possible to develop laboratory-scale alteration meth-
ods tailored to simulate specific field applications where samples of used oils are typically
scarce. The proposed analysis methods can be used to classify unseen samples from the
field according to a scale calibrated on artificially altered engine oil samples. Moreover, al-
teration duration in the laboratory can be directly correlated with mileage in field, e.g., the
alteration duration required to generate a "used" engine oil after 10 000 km. Such lab-to-
field approach allows for bridging the gap between laboratory bench testing and real-world
field applications. Within the domain of lubrication technology, a potential application is
related to green lubricants, where long-term field tests are not yet available.

The most important aspect of the usage of lubricants is related to lubricating performance,
i.e., friction and wear behavior. Currently, tribometrical experiments, such as a steel ball
sliding against a steel disk with the oil of interest in between, are executed to capture
lubricating performance. The knowledge of the oil condition and its relationship with
lubricating performance is also a step to reduce or even make obsolete such time-consuming
and costly experiments.

More general, the here proposed technique allows for building statistical models based
on FTIR spectroscopic data: The presented pre-processing method filters non-informative
variables automatically and especially for small sample sizes, the ability to integrate the
knowledge of domain experts with the popular LASSO model proved to be a powerful
technique to achieve high predictive performance.
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3 Sparse robust regression and
classification with FTIR spectra and
image data

This chapter was published in Analytica Chimica Acta, Volume 1279, 341762, Pia Pfeiffer,
Peter Filzmoser, Robust statistical methods for high-dimensional data, with applications in
tribology, Copyright Elsevier (2023).

3.1 Introduction

The advance of digital technologies has transformed the way data are collected and ana-
lyzed. In tribology, these developments have motivated the use of data-driven methods for
the design and validation of tribological systems. For oil condition monitoring, for example,
several authors investigate the application of spectroscopic methods to monitor the lubri-
cant’s degradation process over time: FTIR (Fourier-transform infrared) spectra can be used
to predict oil attributes (Al-Ghouti et al., 2010; Felkel et al., 2010; Rivera-Barrera et al.,
2020). Other modeling objectives include the comparison of oil degradation in different
laboratory alterations and field settings (Besser et al., 2013; Pfeiffer et al., 2022). Another
aspect linked to oil condition is lubrication performance, i.e. friction and wear behavior.
To investigate lubrication performance, SRV® (Schwing-Reib-Verschleiß) tribometer exper-
iments (a steel ball sliding against a steel disk with the lubricant of interest in between) are
carried out, resulting in a collection of several types of data for one oil, including functions
of the coefficient of friction and optical data of wear scar areas.

However, in data produced from experiments, there may also be observations present that
behave differently from the majority of data points. Those observations are called outliers
in statistics and the data set is said to be contaminated. While for traditional methods one
outlying observation can have a huge impact on the resulting model, robust methods aim
to identify and downweight unusual data points. This way, observations that do not follow
the majority of the data can be uncovered and further investigated.

In addition, high numbers of measured variables make the application of classical sta-
tistical methods difficult. A given data set is called high-dimensional if the number of
variables p exceeds the number of observations n. In this setting, both the classical as
well as robust regression and classification estimators are not well-defined and run into nu-
merical problems. These can be handled by dimension reduction, using PCR (Principal
Component Regression) or PLS (Partial Least Squares), for example. Other approaches for
high-dimensional data are penalized regression or classification estimators such as Ridge
(Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996) or Elastic Net (Zou and Hastie,
2005) regression or penalized discriminant analysis (Witten and Tibshirani, 2011), as well
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as sparse logistic regression, available in the R package glmnet (Friedman et al., 2010c).
These approaches are suitable for high-dimensional data, however, they are not robust in
the presence of outliers.

While there are many robust methods available for the low-dimensional case, the portfolio
of robust methods for a high-dimensional setting is not that rich. In the following, we will
mention some of these approaches, and also put emphasis on sparse methods, which are
based on the underlying assumption that only a few variables of the high-dimensional data
contribute to explaining the response. This work does not aim to give an exhaustive review
of available methods but rather demonstrate the application of selected robust statistical
methods for practitioners.

The remainder of the paper is organized as follows: In Section 3.2, an overview of selected
sparse and robust methods as well as available implementations for regression and classi-
fication tasks is given. Section 3.3 illustrates the application of these statistical methods
using two data sets from lubricant analysis and tribological experiments: FTIR spectra
and image data of wear scar areas resulting from a tribometrical experiment, and Section
3.4 concludes with recommendations for the application of robust statistical methods in
practice.

3.2 Robust statistical methods

First, selected robust regression and classification estimators are introduced for the low-
dimensional setting. Then, approaches to extend robust methods to the high-dimensional
case are discussed. For all mentioned methods, the availability of implementations in R
software packages is indicated.

3.2.1 Robust linear regression

Consider n samples (xi, yi) with i = 1, . . . , n, where xi = (xi1, . . . , xip) contains information
about the measurements on p variables. In a regression setting, the values yi are collected
in the vector y, which is our response, and the information (1,xi) is collected as rows
of the predictor matrix X. The linear regression model is given as y = Xβ + ϵ, where
β = (β0, β1, . . . , βp)

′ are the regression coefficients, with the intercept term β0, and ϵ =

(ϵ1, . . . , ϵn)
′ are the error terms. Let β̂ denote an estimate for the unknown regression

coefficients. Then the residuals r ∈ Rn are given as r(β̂) = (r1(β̂), . . . , rn(β̂))
′ = y −Xβ̂.

The well-known Least Squares (LS) estimator is then defined as

β̂LS = argminβ

n#
i=1

ri(β)
2. (3.1)

The solution can be easily computed in explicit form: β̂LS = (X ′X)−1X ′y. However, this
only holds if the matrix X ′X is invertible, which would not be the case for high-dimensional
settings (n < p).

As the LS estimator is based on the squared residuals, the influence of potential outliers
is not bounded and therefore even one unusual observation can distort the estimation.
One important step towards robustness is to introduce observation weights ωi ∈ [0, 1], for
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i ∈ {1, . . . , n}. Outlying observations will receive a small weight. Outliers in regression
are observations with large residuals, and they could either be outliers in the space of the
x-variables (bad leverage points), or they could be in the normal x-range (vertical outliers).
Observations with abnormal x-values but small residuals are often called good leverage
points, because they could stabilize the regression fit. On the other hand, they could lead
to underestimating the residual scale. For a robust estimator, the objective function (3.1)
can be generalized as

β̂M = argminβ

n#
i=1

ρ

�
ri(β)

σ̂

�
, (3.2)

where ρ denotes an appropriate (bounded) function applied to the residuals and σ̂ the resid-
ual scale estimate (Maronna et al., 2006). The resulting estimator is called M-estimator of
regression and is computed by solving the system of estimating equations

$n
i=1 ωi(ri(β))xi =

0 with a weight function ω(u) = ρ′(u)/u that determines the robustness of the estimator.
This can be accomplished by using an iterative reweighted LS algorithm: For a given β̂t in
iteration step t, the residuals and weights can be computed and the estimating equations
solved for β̂t+1. The starting value β̂0 and the residual scale σ̂ need to be estimated ro-
bustly. A popular choice is the M-estimator of scale or S-estimator, given as the solution σ̂
of

1

n

n#
i=1

ρ
�ri
σ̂

�
= b (3.3)

where ρ denotes an appropriate (bounded) function and b is a constant. Using the S-
estimator (Equation (3.3)) as the initial estimator for the M-estimator leads to the MM-
estimator, leading to a compromise between good efficiency and robustness (Maronna et al.,
2006). It is implemented as lmrob() in the R package robustbase (Maechler et al., 2024).

An intuitive and computationally efficient alternative is given by the Least Trimmed
Squares (LTS) estimator (Rousseeuw, 1984; Rousseeuw and Van Driessen, 2006). It is
defined as

β̂LTS = argminβ

h#
i=1

ri:n(β)
2 (3.4)

with the order statistics of the squared residuals r1:n(β)
2 ≤ · · · ≤ rn:n(β)

2. The efficiency
and robustness of the estimator are determined by the parameter h, which is typically
chosen as half or 3/4 of the number of observations. As for the above regression estimators,
a limitation is that they can only be applied to settings with n > p, here, depending on the
choice of h, even n > 2p. The LTS estimator is also available in the R package robustbase
as ltsReg().

3.2.2 Robust regression for high-dimensional data

For the case p > n, the PLS estimator is often chosen in chemometrics (Varmuza and
Filzmoser, 2009). Several proposals exist to make this estimator robust against outliers:
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They are based on robust covariance estimation (Gil and Romera, 1998) or replace LS re-
gression by a robust estimator (Wakeling and Macfie, 1992; Cummins and Andrews, 1995;
Hubert and Vanden Branden, 2003; Serneels et al., 2005; Xie et al., 2022). A discussion
of robust PLS approaches and respective advantages and disadvantages can be found in
Filzmoser et al. (2020b). In the following, we describe the Partial Robust M (PRM) esti-
mator (Serneels et al., 2005). As for the M-estimator (Equation (3.2)), observation weights
ωi ∈ [0, 1], for i ∈ {1, . . . , n} are introduced to downweight outlying observations. The
weights are collected in the diagonal of the diagonal matrix Ω = Diag(ω1, . . . , ωn), and the
weighted data information is obtained as X̃ = ΩX and ỹ = Ωy. In PLS regression we
construct latent components (or scores), which are linear combinations of the original vari-
ables with weighting vectors. The weighting vectors ah for h ∈ {1, . . . , hmax} are obtained
by the maximization problem

ah = argmax
a

cov2 (y,Xa) , (3.5)

for h ∈ {1, . . . , hmax} under the constraints that

∥ ah ∥= 1 and a′
hX

′Xai = 0 for 1 ≤ i < h. (3.6)

Here, hmax is the maximum number of components we want to retrieve, and it is assumed
that the response, as well as the predictor variables, are mean-centered. In PRM regres-
sion, the centering is done robustly, e.g. by the column-wise median. For estimating the
covariance in Equation (3.5), the sample covariance matrix with the weighted observations
has been proposed, and thus we maximize

cov2
�
ỹ, X̃a

�
=

1

(n− 1)2
a′X̃ ′ỹỹ′X̃a, (3.7)

and the constraints (3.6) are also based on weighted predictors. The resulting weighting
vectors are collected as columns in the matrix A, and thus the matrix of scores is T̃ = X̃A,
with rows t̃i, for i = 1, . . . , n. The crucial point is to obtain the weights. As the name
already suggests, the PRM regression estimator makes use of the concept of the robust
M-estimator, see Equation (3.2), by regressing the weighted response on the robustified
scores,

γ̂ = argmin
γ

n#
i=1

ρ
�
ỹi − t̃′iγ

�
, (3.8)

where ỹi are the elements in ỹ. This yields robust residuals r̃i = ỹi− t̃′iγ̂, and by employing
a robust scale estimator, such as the MAD, a robustly estimated residual scale σ̂ can be
obtained. The weights are defined by

ω2
i = ωR

�
r̃i
σ̂

�
ωT

� ∥t̃i − medj(t̃.j)∥
medi∥t̃i − medj(t̃.j)∥

�
, (3.9)

where t̃.j is the jth column of T̃ , for j = 1, . . . , hmax. The weight function ωR(u) takes care
about downweighting large (scaled) residuals, whereas the weight function ωT (u) down-
weights leverage points. The specific choice of appropriate weight functions, as well as

38



3.2 Robust statistical methods

initial weights to start the iterative algorithm, are discussed in Serneels et al. (2005). More
recently, the effects of different weight functions have been studied in Polat (2020), and
better guidance has been offered to select the most appropriate one.

The PRM method has been extended to a sparse PRM regression procedure by Hoffmann
et al. (2015) which, similar to LASSO regression, yields zeros in the regression coefficient
vector, and thus, in fact, performs variable selection. In the R package sprm (Serneels and
Hoffmann, 2015), both PRM and SPRM regression are available via the functions prms()
and sprms(). In Python, the package direpack (Menvouta et al., 2023) provides robust
dimensionality reduction techniques for high-dimensional data.

Combining the LTS estimator with L1 regularization yields the sparse LTS estimator
Alfons et al. (2013), a robust version of the LASSO. It is given by

β̂sparseLTS = argminβ

h#
i=1

ri:n(β)
2 + n · λP (β), (3.10)

where P (β) =
$p

j=1 |βj |.
Least Angle Regression (LARS) was proposed by Efron et al. (2004) and is closely related

to the LASSO (Tibshirani, 1996). LARS provides an ordered sequence in which the variables
enter the regression model. While this sequence is the same as for the LASSO, it is derived
in a computationally more efficient way from the correlation matrix of the data. Based
on this property, Khan et al. (2007) propose a robustification of LARS by replacing mean,
variance, and correlation with robust location, scatter, and correlation estimators.

Both methods are available in the R package robustHD (Alfons, 2016) as sparseLTS()
and rlars().

3.2.3 Robust classification

It is assumed that a training set of multivariate data observations is available, together with
information about their group membership. The task is to train a classifier which reliably
assigns test set observations to the groups. For linear discriminant analysis consider g
multivariate normally distributed populations πi, i = 1, . . . , g with means µi and the same
covariance Σ. Let pi denote the prior probabilities that an observation belongs to group i.
Then the discriminant values for an observation x are given by

di(x) = µ′
iΣ

−1x− 1

2
µ′
iΣ

−1µi + ln pi, (3.11)

for i = 1, . . . , g Johnson and Wichern (2007). An observation x is assigned to group k, if

dk(x) = max
i

di(x). (3.12)

The discriminant values (3.11) depend on the group means and the joint covariance matrix.
In the classical case, the arithmetic means of the data groups and a pooled sample covariance
can be used as estimators Johnson and Wichern (2007). In order to achieve a robust classifier
in presence of outliers, these estimators can be substituted with robust location and scatter
estimates. In Croux and Dehon (2001), for example, the S-estimator is proposed, while
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in Hubert and Van Driessen (2004) the FastMCD estimator is used. Todorov and Pires
(2007) provide a comparative study between different robust covariance estimators. An
implementation is available as Linda() in the R package rrcov Todorov and Filzmoser
(2009b).

Robust classification can also be performed by applying robust regression estimators for
a logistic regression model, where the posterior class probabilities with the group variable
G are modeled by linear functions,

log
P (G = k|x)
P (G = g|x) = βk0 + β′

kx, for i = 1, . . . , g − 1, (3.13)

with the constraint that the probabilities remain in the interval [0, 1] and that they sum up
to 1. The model parameters are commonly estimated using the maximum likelihood (ML)
method. In the classical case, this corresponds to an iteratively reweighted LS algorithm. In
the R package robustbase (Maechler et al., 2024), several different algorithms for a robust
estimator are implemented in the function glmrob().

3.2.4 Robust classification for high-dimensional data

As discussed in Section 3.2.2, several proposals for robust regression in high dimensions have
been developed. For classification purposes, however, fewer methods are available. One ap-
proach to robust discriminant analysis is by directly plugging in a regularized version of
a robust covariance estimator to compute the discriminant values in (3.11). This can be
done for example by applying the Minimum Regularized Covariance Determinant (MRCD)
estimator from Boudt et al. (2020) to the group-wise robustly centered observations. An-
other approach is based on applying robust regression estimators in logistic or multinomial
regression. Kurnaz et al. (2017) combine a trimmed estimator with the Elastic Net penalty
to achieve a robust estimator suitable for high-dimensional data. An implementation is
available in the R package enetLTS (Kurnaz et al., 2022). Another strategy to perform
robust classification for high-dimensional data is to first reduce the dimensionality before
applying a robust classification method. If the resulting classifier should be adjusted to a
response variable, this can be done by constructing latent variables based on PCR or PLS,
or selecting variables based on a robust and sparse regression method like sparseLTS. An
example for this two-step approach will be given in Section 3.3.1.

The robust methods discussed in the above sections downweight potentially outlying rows
xi of a given data set X. Especially in the high-dimensional case, however, it might be
desirable to consider the concept of cellwise robustness: In contrast to rowwise robustness,
outlying cells xij , not rows xi, are flagged. Rather recent proposals for cellwise robust
estimators have been made by Machkour et al. (2020) and Bottmer et al. (2022), though
unfortunately, their algorithms are not available in R packages yet.

3.3 Examples

3.3.1 Sparse robust regression and classification with FTIR spectra

Some of the methods above are illustrated on a data set consisting of FTIR spectra of ten
automotive engine oils. The underlying engine oils are commercially available SAE 5W-
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30 and SAE 0W-20 engine oils. FTIR spectra and other conventional analyses indicate
the application of additives commonly used in automotive engine oils, like ZDDP (zinc
dialkyldithiophosphates), antioxidants, detergents with a base reserve, and dispersants.The
fresh oils were subjected to an artificial small-scale alteration as described by Dörr et al.
(2019b), once with a temperature of 180°C, and once with 160°C, denoted by Group A
and Group B, respectively. For both groups, samples were taken regularly during the total
duration of 96 hours, yielding a data set of in total 50 samples per group.

For all of these samples, FTIR spectra were recorded, each consisting of the absorbance
at 1814 wavenumbers. The resulting data set contains p = 1814 explanatory variables and
n = 100 observations and includes two types of response: a grouping variable denoting the
membership to Group A or B, respectively, and a numeric response referring to the alteration
duration in hours. Hence, the statistical tasks at hand are classification according to group
membership and regression on the alteration duration for each group separately. In this
application, the interpretability of those models is also of interest: A sparse model with only
few non-zero coefficients corresponding to specific wavenumbers can help to understand the
underlying chemical processes distinguishing the groups or contributing to oil degradation.

As there are only 50 samples per group (the same ten oils in each temperature group, with
varying levels of alteration duration in the groups), we have a high-dimensional setting with
low sample sizes. In order to make the tasks even more challenging, we added 6 samples from
a large-scale artificial alteration series according to Besser et al. (2019) to Group A (same
temperature of 180°C). We will refer to these data as “contaminated” samples. This will call
for robust methods, and their performance will be compared to non-robust counterparts.

The wavenumbers between 3030-2770 cm−1 and 1480-1430 cm−1 are areas of high or total
absorption, i.e. are not reliable measurements. This is caused by vibrations of hydrocarbons
that are always present in engine oils. As a result, these regions not only exhibit total
absorption but also do not provide any useful information and are generally disregarded
during evaluation. These sections are sometimes removed manually by domain experts but
can also be identified as uninformative variable ranges by statistical methods, as proposed
by Pfeiffer et al. (2022). After the filtering process applied in Pfeiffer et al. (2022), the
spectra consist of 1668 out of 1814 wavenumbers.

Sparse regression

Due to the nature of FTIR data, neighboring variables are highly correlated and we can
expect that only a few wavenumbers are sufficient for a reasonable prediction accuracy.
We use the LASSO estimator (Tibshirani, 1996) to perform sparse regression with high-
dimensional data, separately for the Group A and the Group B measurements.

Since Group A has been contaminated by 6 observations, we also fit a LASSO model to
the uncontaminated Group A measurements for comparison. As a robust counterpart, the
sparse LTS estimator, see Equation (3.10 ), is used separately for the contaminated Group
A and for Group B. All methods are applied on randomly selected training sets: When
fitting a model to the uncontaminated Group A and to Group B, about 2/3 of the samples
were selected; when fitting the contaminated Group A, all 6 large-scale samples were added
to the training set. The test sets consist of all remaining samples from both data sets.

Figure 3.1 shows the (selected) FTIR spectra of the training data, here for Group A,
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together with vertical lines indicating the selected variables from the three approaches. All
methods yield only very few variables. The variable selection by the robust method should
not be influenced by the contamination. For the LASSO, however, a rather big difference
in the clean and contaminated training data can be observed: not only the number but also
the position of selected variables is different.
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Figure 3.1: FTIR spectra of the training set of Group A, for robust and non-robust sparse re-
gression on the contaminated data. The vertical lines indicate the wavenumbers
selected by the models. For sparse LTS, the selected wavenumbers are 3836.62,
3815.40, 2449.73, 1720.60, 1635.72, 1055.12, 877.66, 688.62, and 597.96 cm−1.
For LASSO on clean data, the selected wavenumbers are 3223.22, 2451.66,
1720.60, 1635.72, 1057.05, 1055.12, and 877.66 cm−1, and for LASSO on contam-
inated data, the selected wavenumbers are 3690.02, 3688.09, 2440.08, 1932.78,
1635.72, 597.96, and 563.24cm−1.

Figure 3.2 shows the measured (horizontal axes) versus the predicted (vertical axes)
response of Group A, for the three models, with the selected variables shown in Figure 3.1.
The colors correspond to training (half transparent) or test dataset and the symbols show
whether an observation is regular, contaminated, or identified as an outlier by the robust
procedure. The solid line refers to the equality y = ŷ. The plot for the robust method
(Figure 3.2a) reveals that the model does not follow the contaminated samples. This can
also be verified by inspecting the observations flagged as outliers (encoded as squares):
the contaminated samples in the training set, and also some additional observations, were
fully downweighted when fitting the model. In addition to the contaminated samples, two
additional observations are flagged as outlying. These two outliers consist of atypical x-
information, but their prediction is still in a normal range (good leverage points). Since
the procedure also yields a robustly estimated standard deviation, this outlying information
can also be computed for the test set data: here, outliers are defined as observations with
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Figure 3.2: Measured versus predicted response for training (half transparent) and test set,
where the prediction is based on the selected variables from Figure 3.1. (a)
Sparse LTS for contaminated data, (b) LASSO for clean data, (c) LASSO for
contaminated data.The robust method (Figure 3.2a) fully downweights the con-
taminated samples, while the classical method (Figure 3.2c) is severely influ-
enced by those samples.

standardized absolute residuals larger than 2.
Figures 3.2b and 3.2c reveal the effect of contamination on the non-robust LASSO estima-

tor: When contamination is present, the LASSO fit changes significantly, as the model also
tries to accommodate the contaminated samples. This implies that the selected variables
are also influenced by these samples. In Figures 3.2b and 3.2c this difference between a fit
on clean and contaminated data is illustrated.

The presented methods can identify outliers, and if there is the need to further investigate
why an observation is outlying, i.e. which variable(s) contribute most to the outlyingness,
some recently developed algorithms can be applied: In Mayrhofer and Filzmoser (2023),
the outlyingness is decomposed using Shapley values, and in Debruyne et al. (2019), the
outlyingness is regarded as a regression problem. In the latter approach, it is possible to
use the weights, that are output of a robust linear regression fit, as input to the SPADIMO
algorithm, which is implanted in the R package crmReg Filzmoser et al. (2020a). We use
the function spadimo together with the weights from sparse LTS regression and show the
resulting outlyingness scores for each observation that has been identified as outlying in
Figure 3.3. The lines have been colored according to the outlyingness scores, and upon
inspection of the figures the usefulness of robust methods becomes apparent: As several
variables, that are selected for the resulting sparse model, also correspond to variables
with high outlyingness scores, it is crucial to apply a statistical method that can deal with
outliers.

Sparse classification

The second statistical task is to predict the group membership of the samples based on
the wavenumbers. In our high-dimensional setting, a penalized estimator such as sparse
logistic regression (see Friedman et al., 2010a) with a LASSO penalty on the negative log-
likelihood is applied. This yields again variable selection among the wavenumbers. As a
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Figure 3.3: FTIR spectra of the training set of Group A, as well as the outlyingness scores
for each variable resulting from the SPADIMO algorithm Debruyne et al. (2019).
The lines have been colored according to the outlyingness direction and strength.

robust counterpart, the robust version of the Elastic Net estimator for logistic regression
(enetLTS) is used (Kurnaz et al., 2017). We use again the same training data as in Section
3.3.1, and evaluate based on the test data; for the non-robust method, the estimator is also
applied to the clean data set. The resulting misclassification errors are given in Table 3.1.
For computing the misclassification rates in Table 3.1 we used the cutoff value 0.5 for the
probabilities.

Table 3.1: Misclassification errors based on sparse (robust) logistic regression.

Misclassification error in % training set test set

enetLTS for contaminated data 7.46 9.68
Sparse logistic regression for clean data 1.53 0
Sparse logistic regression for contaminated data 4.35 0

In contrast to the results from the regression, outliers do not seem to have a negative
influence on the classical estimators. When inspecting the corresponding plots of group
probability over duration in Figure 3.4, however, it becomes apparent that the misclassifi-
cation error is not evenly distributed over the different values of duration. In Figure 3.4,
the cutoff value is displayed as a horizontal line, the colors refer to group membership and
the symbols distinguish regular, contaminated and observations identified as outliers by
the robust procedure (encoded as a square). The training data are again shown as half
transparent points. While the clean data is classified almost perfectly (Figure 3.4b), the
prediction for the sparse logistic regression model for contaminated data is worst for obser-
vations with duration zero (Figure 3.4c). The resulting plot for enetLTS is given in Figure
3.4a. While the robust method yields more confident predictions, it fails to detect the con-
taminated samples correctly. The misclassification error also seems biased and is worse at
both minimum and maximum duration. This might be due to the enetLTS algorithm that
evaluates all possible subsets of a given size of the explanatory variables. This process can
become instable in the presence of many correlated predictors.
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Figure 3.4: Response variable duration, used in the regression step, against the posterior
probability for Group B, with the cutoff at 0.5. Misclassified observations from
the training (half transparent) and test set are shown “on the wrong side” of
this cutoff. (a) direct enetLTS for contaminated data, (b) direct sparse logistic
regression for clean data, (c) direct sparse logistic regression for contaminated
data.

In order to better adjust the classifier to the response duration, modeling the respective
duration for Group A and Group B can be used as a variable screening step. Using the set
of selected variables resulting from this first step, a classification model can now be fitted to
discriminate the two groups. Again, the same training and test data as for step 1 are used.
Here we did not employ a robust procedure for classification, as the first step as described
in Section 3.3.1 already protected against a variable selection bias due to contamination.
Moreover, a unified framework in this second step makes the effect of robust estimation in
the first step easier identifiable.

The misclassification errors resulting from the different approaches are presented in Ta-
ble 3.2. While the robust procedure yields low errors for both training and test data, the
errors for the classical procedure with the contaminated data are much higher.

Table 3.2: Misclassification errors based on sparse logistic regression with the pre-selected
variables from Section 3.3.1.

Misclassification error in % training set test set

sparseLTS for contaminated data 2.86 3.03
LASSO for clean data 5.88 3.03
LASSO for contaminated data 7.46 6.25

Sparse logistic regression yields estimated posterior probabilities for each sample. Fig-
ure 3.5 shows the posterior probabilities of the samples to belong to Group B, again based
on the models from the robust (Figure 3.5a) and the classical approach (Figure 3.5c for
clean, Figure 3.5b for contaminated data). The horizontal axis in the plots is the response
variable duration, which has been used in the screening step. Again, the colors correspond
to group membership and the symbols refer to regular, contaminated, and identified outly-
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3 Sparse robust regression and classification with FTIR spectra and image data

ing observations. One can see that the non-robust models suffer from bias: for the smallest
value of duration, only Group A observations are misclassified. In fact, this bias can al-
ready be seen in Figure 3.2c. For LASSO on the clean data, the model seems to be too
much adjusted to the training data, as several test set observations are wrongly classified
for small values of duration, see also Table 3.2. The robust procedure seems much more
balanced for the two groups (Figure 3.5a). Here, the outliers as identified in the first step
(see also Figure 3.2a) are indicated by pink squares. All these outliers, including the con-
taminated samples, are clearly assigned to the correct groups by the classifier, indicating
an appropriate pre-selection of the variables.
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Figure 3.5: Response variable duration, used in the regression step, against the posterior
probability for Group B, with the cutoff at 0.5. Misclassified observations from
the training and test set are shown “on the wrong side” of this cutoff. From left
to right, the following methods are compared: (a) sparseLTS for contaminated
data, (b) LASSO for contaminated data, and (c) LASSO for clean data.

3.3.2 Robust regression with image data

The performance of lubricants is measured in terms of friction and wear, and a reliable
model associating the degradation stage of the engine oil with wear would therefore be
useful for practitioners. Wear properties under laboratory conditions can be evaluated in
a tribometrical experiment, where a steel ball and disc with the oil of interest in between
are sliding against each other in a reciprocating contact on an SRV® tribometer (see Agocs
et al., 2022, for a more detailed description of the experiment). For the present data set,
wear scars were created from experiments with oil samples that were used on an engine
test rig (according to ASTM D7484 (2021)) for up to 100 hours, with 38 samples taken at
0 minutes, 20 minutes, 20 hours, 50 hours and 100 hours. Then, images of the wear scars
were recorded with an optical microscope. The statistical task is to predict the duration
the engine oil was used based on the image data of the wear scar areas. For this analysis,
only the wear-scar images of the balls were used. The original image data are recorded as
RGB images in high resolution (2600 × 2000 pixels), and have to be pre-processed before
training a regression model. In a first step, the images were converted to greyscale based
on brightness. Then, the images were annotated to segment two classes: the wear scars in
the foreground and the background, which was discarded. Next, the images were scaled to
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size 128×128 pixels and pixel values were normalized to the same range using the minimax
method, before Histogram of Gradients (HoG) features (see, for example, Prince, 2012) were
extracted using the Python version of opencv (Bradski, 2000). HoG features can encode the
texture of an image and therefore seem to be especially suitable for the presented case. The
input image is first divided into cells, then the gradient magnitude and orientation for each
pixel are computed, before they are normalized and collected in histograms. Depending on
the cell and bin size for the histogram, a certain number of features is extracted from the
input image. Note that there is a variety of textural image features available, with features
based on Deep Learning being the most powerful ones Humeau-Heurtier (2019). However,
training such models on as few as 38 images would only be feasible in combination with
a suitable pre-trained model, while HoG features in combination with robust statistical
models already lead to a good predictive performance.

Figure 3.6 shows example images of the ball as a result of wear experiments with oil at
different degradation stages: from left to right, the duration the oil was used on the engine
test rig is 0 minutes, 20 minutes, 10 hours, 50 hours, and 100 hours. It can be observed
that with a longer duration on the engine test rig (and therefore worse oil condition) there
are more and more artifacts in the images. The visible lines correspond to ridges along the
direction the balls were moved in. Moreover, the shape of the wear scar gets more and more
distorted with the degradation of the oil and the image. The 100 hours experiment also
shows a dark spot, which might be due to soot or other small particles on the wear scar
area.

Figure 3.6: Example images of the wear experiments with varying oil condition. From left
to right, the duration the oil was used is 0 minutes, 20 minutes, 10 hours, 50
hours, and 100 hours.

Since the distortion caused by the experiments is heavily varying (shape of the wear scar,
type of striation, appearance of spots, etc.), the model needs to be robust against such
effects. The method of choice here is linear regression, but there are some challenges for a
robust approach:

• Our data set consists of only n = 38 images, and every image is encoded by p = 7730
variables. With a cell size of 8, bin size of 9, and block size of 2, the HoG feature
extraction initially results in 8100 variables. After the removal of columns with only
zeros due to the border, the final dimension is reached. This number is already much
lower than unfolding the image pixels to 16384 variables, but still, the number of
variables exceeds the number of observations by far. For this “flat” data set, sparse
regression methods such as LASSO regression yield very poor models, because they
can select at most n variables, which seems to be far too low in order to describe the
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3 Sparse robust regression and classification with FTIR spectra and image data

rather complex information of the images. Robust estimators using the Elastic Net
penalty, like implemented in the enetLTS package, could be a compromise. However,
due to the very high number of variables, the robust algorithm is not computationally
feasible anymore.

• 26 out of the 38 images are taken at the beginning of the experiments (duration 0),
and for the remaining durations (20 minutes, 10 hours, 50 hours, and 100 hours) we
only have 3 images per duration time. Since this response variable y is extremely
skewed, we will work with the transformed variable y1/3. Still, robust regression
methods either lead to very poor models, or the procedures even stop with an error.
The reason is the imbalancedness of the response: The robust methods try to fit the
data majority, which is for the group y = 0, and data with duration larger than zero
are treated as outliers. A regression model only for the zero-group is of course useless.

In contrast to robust procedures, non-robust methods such as PLS regression work without
any problem. Thus, the question is whether robustness can still be employed, and whether
it leads to any advantage.

A first naive attempt is to exclude outliers in the x-space, i.e. we perform outlier detection
only for the image data information. However, since we do not want to exclude images for
the small groups with positive values of duration, outlier detection is only applied for the
26 images where the duration is zero. We use the method pcout as described in Filzmoser
et al. (2008), implemented as function pcout() in the R package mvoutlier, which also
works for very high-dimensional data. The algorithm identified 6 out of the 26 observations
as multivariate outliers. PLS regression, as well as PRM regression, can then be applied to
the cleaned data.

In order to evaluate and compare the different strategies, we randomly select around 2/3
of the observations (once for the complete and once for the cleaned data), and fit a model.
We compare PLS regression with PRM, however, for PRM the internal weights are only used
for the group with duration zero, and otherwise the weights are set to 1 in order to avoid
downweighting of the observations for these small groups. The models are evaluated with
the remaining test set observations by the RMSE as the measure of prediction quality. Here
another issue occurs: As the discrete values of the response are very unevenly distributed,
a pure random selection of observations could lead to training data where data groups are
underrepresented or even absent. Therefore, we also compare the results for a stratified
sampling approach: the training sets will consist of about 2/3 of the observations for the
group with duration zero, and 2 out of the 3 randomly selected samples from every of the
other groups. Each experiment is repeated 50 times.

The resulting RMSE values are presented as boxplots in Figure 3.7. There is not much
difference between using all observations or the cleaned data if no stratification is used.
PRM (modified) performs a bit better than PLS. Stratification clearly improves the results,
and for PLS based on the uncleaned data, there are several outliers in the predictions. PRM
on the uncleaned data gives very stable and good results, and the internal weighting seems
to be better than first removing outliers.

More insights can be gained by the plots of the measured versus predicted (transformed)
response, shown in Figure 3.8, for the different strategies and the two estimators. The
predictions are separately shown for the training and test set observations, and for PLS and
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Figure 3.7: Prediction errors for classical (PLS) and robust (PRM) estimation, following
different strategies for data cleaning and training/test sample selection.

PRM. In order to avoid overplotting, the values on the horizontal axis have been slightly
changed in the plots. Overall, all models fit the training data quite well, but the test
set prediction is rather poor, especially for higher values of duration. For all models 3
components were used, but the picture is the same when using e.g. 5 components, and it
would become worse for a higher number.

For the approach with sample stratification we can see a reduction of the variability of
the test set predictions for higher values of duration. This means that the main problem for
these poor predictions is the imbalancedness of the data set. In the groups with duration
zero there is a clear difference whether outliers are removed or not; in the latter case, outliers
are visible in the test set predictions, for PLS as well as for PRM. However, as for PRM one
also obtains a robust scale estimate of the residuals, these observations would be reliably
identified as outliers. The same applies to the deviating predictions for higher values of
duration.

To gain a better understanding of what the three latent components represent, the PRM
and PLS loadings can be shown in the image domain (up to a normalization factor). In Fig-
ure 3.9, the loadings from an exemplary train-test split are shown as sections of the original
images. The color scale ranges from red (negative) to blue (positive), and the intensity can
be interpreted as the importance of the respective sections. While both PLS and PRM rely
on similar features of the images, it can be observed that PRM is more confident, yielding
more intense colorings. This is especially visible in the first, and most important, loading.
Also, the first loading clearly corresponds to wear marks such as horizontal scratches on the
ball’s surface, while higher-order loadings also have contributions from the border of the
wear scars. This emphasizes the usefulness of the presented methods to analyze the given
data, also in terms of interpretation.

Overall, we can conclude that the high-dimensional image information yields good models
for predicting the duration of the experiments, with the exception of the trials with duration
100 hours. A main difficulty here was the imbalancedness of the values of the response, but
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Figure 3.8: Training and test set predictions for all 50 PLS and PRM models, based on
different strategies for data cleaning and selection. (a) All observations, without
stratification, (b) Outliers removed, without stratification, (c) All observations,
with stratification, (d) Outliers removed, with stratification.
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(a) PLS: Loading 1
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(b) PLS: Loading 2
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(c) PLS: Loading 3
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(d) PRM: Loading 1

0 20 40 60 80 100

0

20

40

60

80

100

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(e) PRM: Loading 2
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(f) PRM: Loading 3

Figure 3.9: The loadings traced back to the image domain for both PLS (top row) and PRM
(bottom row) loadings. The loadings that are shown are those from the best-
case scenario when the extracted features were robustly cleaned before applying
stratified sampling and estimating the model. The color scale ranges from red
(negative) to blue (positive) and the intensity corresponds to the respective
section’s contribution. It can be seen that while both methods seem to rely on
similar areas in the original images, PRM is more precise and confident in its
choice.
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outliers also had a negative effect. Outlier cleaning before fitting the models makes almost
no difference, for PLS as well as for PRM, but stratification clearly improves the results. The
robust PRM method performs best in general; only for the stratified version on (robustly!)
cleaned data, PLS can compete.

3.4 Conclusions

Imbalanced and flat data sets with fewer observations than variables pose challenges for
statistical methods, especially for robust estimators, where outlying observations are down-
weighted. In this paper it was demonstrated how robust methods can still be applied, and
that they lead to an improved performance. To handle difficulties in model estimation,
approaches that split the task in two or more steps have been shown to be successful. Es-
pecially for very imbalanced data sets, an appropriate sampling strategy was found to be
crucial for the derivation of a good model as well. For a data set consisting of FTIR spec-
tra of engine oils, a robust and sparse regression estimator was applied for the prediction
of oil degradation, measured in the duration the oil was subjected to alteration. The re-
sulting model was also demonstrated to be useful as a variable screening procedure: The
selected variables, now adjusted to the different degradation stages, were used as input for
a classification model. For very high-dimensional data like textural image features, sparse
estimators like LASSO were found to yield very poor results, as they cannot select enough
variables to represent the image information. PRM, a robust PLS method, could however
be applied in combination with a stratified sampling strategy.

The given examples illustrate that, even when the direct application of robust methods
is not possible, combined approaches with appropriate pre-processing and sampling meth-
ods yield improved results when compared to traditional methods. What is more, they
can identify observations that do not follow the majority of the data and therefore offer
additional insights.
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4 Efficient computation of sparse and
robust maximum association estimators

This chapter has been published as a preprint on arXiv: Pfeiffer, Pia, Andreas Alfons,
and Peter Filzmoser. Efficient Computation of Sparse and Robust Maximum Association
Estimators. arXiv preprint arXiv:2311.17563 (2023).

4.1 Introduction

With the availability of new measurement techniques, various different characteristics can
be acquired from one and the same object. As an example from tribology, an engine oil can
be investigated with respect to its chemical element composition, spectral information can
be derived, or various properties concerning friction and wear of the oil can be measured, in-
cluding image information of the degradation caused by the oil condition. Another example
is biological data, specifically, the association between gene expressions and other variables,
such as hepatic fatty acid concentrations related to a specific diet (see, e.g., Martin et al.,
2007). The quantification of the relationships between different data sources can be very
informative for a deeper understanding of already established mechanisms as well as for the
generation of new hypotheses.

More formally, we are interested in the relationships between a p-dimensional real-valued
random vector x and a q-dimensional real-valued random vector y. We consider the prob-
lem of obtaining coefficient vectors a and b such that the linear combinations a′x and b′y
have maximum association, measured by an appropriate measure of association between
univariate random variables. A widely applied method for this task is canonical correlation
analysis (CCA) (see, e.g., Johnson and Wichern, 2007). The first canonical correlation co-
efficient ρ1 and the first pair of canonical variables (a1, b1) are defined via the maximization
of the correlation coefficient between the two linear combinations (see, e.g., Johnson and
Wichern, 2007), that is,

ρ1 = max
a,b

∥a∥=∥b∥=1

Corr(a′x, b′y), (4.1)

(a1, b1) = argmax∥a∥=1,∥b∥=1Corr(a
′x, b′y). (4.2)

The k-th canonical correlation coefficient ρk and the respective pair of canonical variables
(ak, bk) are obtained similarly as in (4.1), but under the additional constraint that they are
uncorrelated with the previous k− 1 directions, for k ∈ {2, . . . ,min(p, q)}. Expression (4.1)
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can be written in terms of the covariance:

max
a,b

∥a∥=∥b∥=1

Corr(a′x, b′y) = max
a,b

∥a∥=∥b∥=1

Cov(a′x, b′y)"
Var(a′x)

"
Var(b′y)

= max
a,b

∥a∥=∥b∥=1

a′Σxyb√
a′Σxxa

"
b′Σyyb

, (4.3)

where Σxx = Cov(x), Σyy = Cov(y) and Σxy = Cov(x,y). The analytical solution is given
by the eigenvectors and eigenvalues of a combination of (inverse) covariance matrices: ρ2i
are eigenvalues of Σ−1

xxΣxyΣ
−1
yy Σyx with normed eigenvectors ai, and ρ2i are also eigenvalues

of Σ−1
yy ΣyxΣ

−1
xxΣxy with normed eigenvectors bi, for i = 1, . . . ,min(p, q) (see, e.g., Johnson

and Wichern, 2007).
Classically, the involved covariance matrices are estimated by the sample covariances, and

this corresponds to maximizing the Pearson correlation coefficient as measure of association.
However, these estimators are sensitive to outlying observations, and the solution is not
well-defined in the high-dimensional setting, when more variables than observations are
available.

There are several approaches in the literature to derive a robust solution. For the plug-in
approach, the sample covariance is replaced by a robust estimator of the joint covariance
of x and y. Croux and Dehon (2002) propose to use the minimum covariance determinant
(MCD) estimator (Rousseeuw, 1984, 1985), and they derive influence functions for the
canonical correlations and vectors based on this plug-in estimator, revealing their robustness
properties. For a broader class of affine equivariant scatter and shape matrices, influence
functions and limiting distributions of canonical correlations and vectors have been studied
by Taskinen et al. (2006). Langworthy et al. (2020) present theoretical results about using
the transformed Kendall correlation, which is more robust under violation of the normality
assumption, for the estimation of a scatter matrix.

Another approach is to generalize (4.1) to a wider class of association estimators. Alfons
et al. (2016a) define the optimization problem (4.1) in a robust way, and also consider
rank-correlation measures such as the Spearman rank correlation. In that way, the search
for linear relationships, as done with the Pearson correlation, is extended to looking for
non-linear relationships. Results concerning Fisher consistency and the influence function
underline the good theoretical properties of the corresponding robust maximum association
measures, which represent the strongest association between linear combinations of two sets
of random variables. The optimization is done using a grid algorithm (Alfons et al., 2016b)
which, however, has its limitations concerning the dimensionality p and q of the two random
variables.

The high-dimensional case, when more variables than observations are present, is another
scenario where the sample covariance matrix performs poorly. This can be addressed by reg-
ularizing the covariance matrix as in the penalized matrix decomposition (PMD) method of
Witten et al. (2009), where the relationship between the singular value decomposition (SVD)
and the Frobenius norm is exploited and optimization is done via a soft-thresholded power
method. Chen et al. (2013) develop a canonical pair model and a sparse power algorithm
combined with iterative thresholding is applied to estimate the precision matrices. The
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alternating regression approach (Waaijenborg et al., 2008; Wilms and Croux, 2015a) avoids
the computation of covariance matrices and considers problem (4.1) from a predictive point
of view. Wilms and Croux (2015a) derive sparse directions by applying sparsity-inducing
regression estimators like the least absolute shrinkage and selection operator (LASSO) (Tib-
shirani, 1996) or its robustification, sparse least trimmed squares (sparseLTS), introduced
by Alfons et al. (2013). Gu and Wang (2020) combine the alternating regression approach
with an alternating direction method of multipliers (ADMM) algorithm for an L1 penal-
ized setting, and Shu et al. (2020) describe a CCA method suitable for high-dimensional
data based on methods identifying common and distinctive components such as joint and
individual variation explained (JIVE) or simultaneous component analysis with rotation to
common and distinctive components (DISCO-SCA).

To the best of our knowledge, the only robust and sparse method that does not re-
quire the repeated computation and inversion of high-dimensional covariance matrices is
based on alternating regressions (Wilms and Croux, 2015b). For higher-order associations,
however, there is no efficient implementation available. Several authors propose to use de-
flated data matrices for computing higher-order correlations (Alfons et al., 2016a; Wilms
and Croux, 2015b). However, this approach requires solving several regression problems
and can potentially destroy sparsity. Wilms and Croux (2015b) address this by applying a
sparsity-inducing regression estimator.

The optimization problems (4.1)–(4.3) based on robust correlation or estimators of the
covariance matrix lead to highly non-convex objective functions. To obtain a problem formu-
lation that is easier to optimize, the robust estimation and the optimization are decoupled :
In the first step, the covariance is estimated robustly. This estimator of the covariance ma-
trix is then plugged into the subsequent problem formulation, yielding a biconvex problem.
Sparsity can be introduced by adding appropriate constraints. Witten et al. (2009) suggest
a similar formulation of the optimization problem for the non-robust case, and an iterative
method is presented. Our method, however, also considers the denominator in (4.3), and
offers flexibility in the choice of sparsity constraints as well as for the estimator of the co-
variance matrix. Since rank-based estimators of the covariance matrix will be considered
as well, we will use the terminology “(robust) association measure” instead of “canonical
correlation coefficient”, and simply “linear combinations” instead of “canonical vectors” in
the following.

The remainder of the paper is organized as follows: First, the reformulation of the problem
is detailed, and an appropriate algorithm for its numerical solution is introduced. Then,
the results of a simulation study are presented to illustrate the suitability of our approach
for a high-dimensional setting with outliers and to compare its performance to existing
approaches. We conclude with an outlook on other common statistical tasks that can be
solved by applying the algorithm in a similar way.

4.2 Robust and sparse maximum association

4.2.1 Formulation as a constrained optimization problem

The optimization problems stated in Section 4.1 can also be formulated as constrained
optimization problem (see, e.g., Anderson, 1958). This problem formulation has the ad-
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vantage that the conditions for uncorrelatedness for directions of higher order and sparsity-
inducing penalty terms can be stated directly and added as constraints. Starting from
expression (4.3), Σxx,Σyy, and Σxy are substituted with suitable estimators for the covari-
ance, denoted by Cxx,Cyy, and Cxy. Then, the first order maximum association coefficient
ρ1 and the corresponding vectors (a1, b1) can be obtained as a solution to the following
optimization problem:

min
a∈Rp,b∈Rq

−F (a, b) (4.4)

with F : Rp × Rq → R : F (a, b) = a′Cxyb under the constraints

a′Cxxa = 1, (4.5)
b′Cyyb = 1. (4.6)

This problem formulation avoids the repeated evaluation of the correlation measure that
is needed for a projection-pursuit approach as suggested by Alfons et al. (2016a). The
covariance needs to be estimated only once and is then fixed for the optimization process.
For higher-order coefficients ρk and vectors (ak, bk), k ∈ {2, . . . ,min(p, q)}, constraints for
uncorrelatedness with the lower-order directions are needed:

a′
kCxxai = 0, i = 1, . . . , k − 1, (4.7)
b′kCyybi = 0, i = 1, . . . , k − 1. (4.8)

Especially for the high-dimensional setting, where p and/or q are big, it can be desirable to
set some coefficients to zero in the vectors for the linear combinations. Thus, penalty terms
can be added as further constraints in the form of

Pak(ak) ≤ cak , (4.9)
Pbk(bk) ≤ cbk , (4.10)

where cak and cbk denote positive constants. Here, the penalty terms (4.9)–(4.10) are taken
as elastic net penalties

Pak(u) = αak∥u∥1 + (1− αak)∥u∥22, (4.11)

Pbk(u) = αbk∥u∥1 + (1− αbk)∥u∥22, (4.12)

but other (convex) penalties are also applicable.
Witten et al. (2009) also suggest formulating CCA as an optimization problem and derive

the canonical directions via an iterative power method. Our approach is more general in
that (i) there are no additional assumptions imposed on the covariance, and (ii) the penalty
function can be adapted for each order and can also differ for a and b.

4.2.2 Robust estimation of the covariance matrix

The choice of a suitable estimator of the covariance matrix is crucial for obtaining robust
estimators of the canonical vectors (Alfons et al., 2016a). The robustness of the estimator
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of the covariance matrix and its stability in the high-dimensional case will influence the
respective properties of the resulting coefficients and vectors (Taskinen et al., 2006). In
this work, the focus is on the following estimators: For a base result, the sample covariance
matrix is used to estimate Σxx,Σyy, and Σxy, which corresponds to using the Pearson
correlation coefficient as measure of association. To achieve robustness and to allow for the
high-dimensional case, the minimum regularized covariance determinant (MRCD) (Boudt
et al., 2020) and orthogonalized Gnanadesikan-Kettenring (OGK) (Maronna and Zamar,
2002) estimators are used to estimate the joint covariance matrix of x and y, which is
afterward decomposed into the matrices Cxx,Cyy, and Cxy. The MRCD estimator is based
on minimizing the determinant of a regularized covariance matrix over all possible subsets
of a given size h ≤ n, and it can also be seen as a robust version of the Ledoit-Wolf
estimator (Ledoit and Wolf, 2004). The OGK estimator relies on applying the identity
Cov(x, y) = (σ(x + y)2 − σ(x − y)2)/4, where σ is the standard deviation and x and y
denotes a pair of random variables. This identity is applied for the pairwise combinations
of the components in the joint vector of x and y, by using a robust scale estimator. The
final robust estimator of the covariance matrix is obtained after an orthogonalization step.
Note that this result is not necessarily positive definite and eigenvalue correction to obtain
a positive definite estimator of the covariance matrix is applied. For both the MRCD and
the OGK estimator, the implementations in the package rrcov (Todorov and Filzmoser,
2009a) for the statistical computing environment R (R Core Team, 2023) are used. The
OGK estimator is thereby applied with the default settings (using the initial covariance as
proposed by Gnanadesikan and Kettenring (1972) and the τ scale (Yohai and Zamar, 1988)
for univariate location and dispersion). For MRCD, the size of the h subset, controlled by
the parameter α, is set to 75% of the number of observations.

As an alternative, pairwise correlation estimators based on Spearman’s rank and Kendall’s
tau are also investigated. They can easily be computed in the high-dimensional case as well
and have desirable robustness properties (Croux and Dehon, 2010; Alfons et al., 2016a).
Denote R as the resulting correlation matrix of the joint vector of x = (x1, . . . , xp)

′ and
y = (y1, . . . , yq)

′, and D = diag(σ(x1), . . . , σ(xp), σ(y1), . . . ,σ(yq)), where σ corresponds to
a (robust) scale estimate. Then the joint covariance is obtained as DRD. For σ we used
the median absolute deviation (MAD). Note that for asymptotic normality, it is necessary

to apply the transformation sij = 6
π arcsin

�
rSij
2

�
to the raw Spearman’s rank correlation

coefficient rSij , and the transformation τij =
2
π arcsin(rKij ) to the raw Kendall’s tau coefficient

rKij , where the indices i and j refer to a pair of univariate variables. As Langworthy et al.
(2020) point out, a potential issue with those covariance matrices based on pairwise estima-
tion is that they are not necessarily positive definite. Various methods have been proposed
to adjust the estimated covariance matrix so that it is positive definite. Rousseeuw and
Molenberghs (1993), for example, discuss transformations based on shrinkage and eigen-
values. Higham (2002) presents a method to find the nearest correlation matrix in the
Frobenius norm. This algorithm is implemented as the function nearPD() in the R package
Matrix (Bates et al., 2023). While the positive definiteness of the estimator of the covari-
ance matrix is necessary for the existence of a solution, the presented algorithm does not
rely on this property for the computation of the maximum association and corresponding
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linear combinations. However, the results may not be reliable and in our implementation
of the proposed algorithm in the R package RobSparseMVA (see Section 4.3 for more infor-
mation), it is possible to include a check for positive definiteness and apply the nearPD()
transformation in case the assumption is violated before starting the optimization algorithm.

4.2.3 Lagrangian formulation

The Lagrangian function related to the optimization problem (4.4)–(4.10) is given by

L(a, b,λ) = −a′Cxyb+ λ′ ·H(a, b), (4.13)

while the constraints are given by

H : Rp × Rq → R2k+2 : H(a, b) =

������������������

a′Cxxa− 1

b′Cyyb− 1

P1(a)− ca

P2(b)− cb

a′Cxxa1:(k−1)

b′Cyyb1:(k−1)

. (4.14)

For obtaining the first order association coefficients and vectors, the Lagrange multipliers
are λ = (λ1, . . . , λ4)

′, and by setting the derivative of L to 0, we obtain

−Cxyb+ λ1Cxxa+ λ3
∂

∂a
Pa1(a) = 0, (4.15)

−Cxya+ λ2Cyya+ λ4
∂

∂b
Pb1(b) = 0. (4.16)

When Pak
and Pbk are given as elastic net penalties, the derivatives can be written as

∂

∂u
P (u) = αM1u+ (1− α)M2u (4.17)

with M1 = diag(1/|u1|, . . . , 1/|up|) for u ∈ Rp and M2 = 1/∥u∥2I = cI. The derivatives of
the penalty function do not exist at entries ui = 0. Then, the subgradient at this point is
used instead. Let Mu := αM1 + (1 − α)M2 denote the resulting matrix. For a function
f : Rp → R, the subgradient at x ∈ domf is defined as the set of vectors g ∈ Rp, such
that for all z ∈ domf , there holds: f(z) ≥ f(x) + g′(z − x). In the present case, f
corresponds to the absolute value function and g ∈ [−1, 1]p+q for x = 0 (see, e.g., Boyd
and Vandenberghe, 2004).

Substitution in Equations (4.15) and (4.16) followed by applying an inverse transforma-
tion yields 


Cxx +
λ3

λ1
Ma

�−1

Cxy



Cyy +

λ4

λ2
Mb

�−1

Cyxa = λ1λ2a, (4.18)

Cyy +

λ4

λ2
Mb

�−1

Cyx



Cxx +

λ3

λ1
Ma

�−1

Cxyb = λ1λ2b. (4.19)
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It can be seen that in the case of an L2 penalty on a or b, respectively, this formulation
corresponds to a regularization of the estimators of the covariance matrix Cxx and Cyy.

An optimization problem is feasible if there exists at least one point that satisfies the
constraints of the problem. In the following we show that with an appropriate choice of the
sparsity parameters cak and cbk , the stated optimization is feasible, implying that a solution
exists. Let Ω ⊂ Rp × Rq denote the set of points that satisfy the constraints (4.5)–(4.10).
To show that Ω ̸= ∅, first note that Cxx and Cyy are positive definite matrices that induce a
norm on Rp and Rq, respectively. Constraints (4.5) and (4.7) are fulfilled by any basis of Rp

that is orthonormal with respect to the norm induced by Cxx. The same argument can be
applied to constraints (4.6) and (4.8) with the norm induced by Cyy. From the equivalence
of norms, it follows that there exists a positive constant cak ∈ R such that 1/cakPak(ak) ≤
1 = ∥ak∥Cxx , and a positive constant cbk ∈ R such that 1/cbkPbk(bk) ≤ 1 = ∥bk∥Cyy .

It follows that the optimization problem (4.4)–(4.6) attains a global minimum over Ω:
The function F in (4.4) is continuous and the feasible region Ω ⊂ Rp×Rq is non-empty and
compact. Then by Weierstrass’ theorem, the function F attains a global minimum over Ω.

4.3 Algorithm

The conditions (4.5)–(4.6) in the constrained optimization problem (4.4)–(4.10) are not
convex. However, they can be modified to be convex by replacing the equality with an
inequality constraint:

a′Cxxa ≤ 1 (4.5a)
b′Cyyb ≤ 1. (4.6a)

The modified optimization problem is now biconvex (that is, convex in a if b is fixed and
vice versa) and has, under the condition that the constants cak and cbk are chosen such that
a′Cxxa ≥ 1 and b′Cyyb ≥ 1 hold, the same solution as the original problem (see, e.g., Boyd
and Vandenberghe, 2004), as cited by Witten et al. (2009).

Using the augmented Lagrangian or method of multipliers (MM) (see, e.g., Boyd and
Vandenberghe, 2004), the problem can be rewritten as a minimization problem in an un-
constrained form. The MM-algorithm has been studied extensively by Bertsekas (1996),
and the ADMM variation has been brought back more recently due to its potential for dis-
tributed computing (Boyd et al., 2011). The main idea of the MM approach is to convert the
constrained optimization problem to a series of unconstrained problems. The augmented
Lagrangian function is given by

Lc(a, b,λ) = −F (a, b) + λ′ ·H(a, b) +
c

2
∥H(a, b)∥22 , (4.20)
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Algorithm 1 Sparse and robust maximum association
1: Estimate covariance matrices Cxx,Cyy,Cxy

2: Initialize a0
k and b0k

3: for k = 1, 2, . . . ,min(p, q) do
4: λ0 ← H(a0

k, b
0
k,a1:(k−1), b1:(k−1))

5: while ∥λt+1 − λt∥ > δ do
6: (at+1

k , bt+1
k ) ← argminLc(a

t
k, b

t
k;λ

t)
7: λt+1 ← λt + cH(at+1

k , bt+1
k )

8: if 0.25 · |H(at
k, b

t
k)| < |H(at+1

k , bt+1
k )| then

9: c ← 10 · c
10: end if
11: t ← t+ 1
12: end while
13: end for

where F denotes the primal objective. The constraints are given by

H : Rp × Rq → R2k+2 : H(a, b) =

������������������

a′Cxxa− 1

b′Cyyb− 1

a′Cxxa1:(k−1)

b′Cyyb1:(k−1)

P1(a)− ca

P2(b)− cb

. (4.21)

The corresponding Lagrange multipliers are denoted by λ ∈ R2k+2, and the strength
of the regularization term for the equality constraints is given by c ∈ R. This problem
can be solved iteratively: in an alternating fashion, first a and b are updated, then the
dual variable λ is updated. The resulting algorithm for the sparse and robust maximum
association procedure is provided in Algorithm 1.

As the solution to the minimization problem in line 6 of Algorithm 1 cannot be derived
analytically in the general case, the minimization is done by adaptive gradient descent as
introduced by Kingma and Ba (2015) and refined by Reddi et al. (2018). The minimization
step is done using the AMSGrad optimizer, given in Algorithm 2 and implemented in the
R package torch (Falbel and Luraschi, 2023). The maximum and division in lines 7 and 8,
respectively, are executed element-wise, and in the thresholding step in lines 15 – 16, akj
and bkj refer to the components of ak and bk, respectively.

Other gradient-based optimizers could also be applied. Methods using an adaptive learn-
ing rate and momentum such as AMSGrad or Adam are preferred choices, as they are
capable of escaping local optima and are less sensitive to the initial choice of the learning
rate α0. All constraints are subdifferentiable (i.e., for all points in the domain of Lc, at
least one subgradient exists), and the subgradient update as implemented in torch can be
executed. In addition, a thresholding step is included in the algorithm (lines 15–16) to get
true sparsity, which is not possible from the subgradient update alone. Thresholding is
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Algorithm 2 AMSGrad algorithm (Reddi et al., 2018) for the minimization in line 6 of
Algorithm 1, followed by a thresholding step.

1: Input a0
k, b

0
k and η1i, η2, αi

2: Initialize m0 = 0, v0 = 0, v̂0 = 0
3: while ∥∇a,bLc∥ > δ do
4: gi ← ∇a,bLc

5: mi ← η1imi−1 + (1− η1i)gi
6: vi ← η2vi−1 + (1− η2)g

2
i

7: v̂i ← max(v̂i−1,vi)
8: (ai

k, b
i
k) ← (ai−1

k , bi−1
k )− αi

mi√
v̂i

9: dia ← ∥ai
k−ai−1

k ∥
∥ai−1

k ∥

10: dib ←
∥bik−bi−1

k ∥
∥bi−1

k ∥
11: i ← i+ 1
12: end while
13: t̄a ← avg[dma ]i−M+1

m=i + 2sd[dma ]i−M+1
m=i

14: t̄b ← avg[dmb ]i−M+1
m=i + 2sd[dmb ]i−M+1

m=i

15: ak ← [akj if |akj | > t̄a, 0 otherwise]pj=1

16: bk ← [bkj if |bkj | > t̄b, 0 otherwise]qj=1

done using the moving average of the last M step sizes; in practice we were successful with
setting M = 10. Depending on the current value of H, the regularization parameter c is
updated in lines 8–9 of Algorithm 1. The constants 0.25 and 10 in lines 8–9 were already
proposed by Bertsekas (1996) and work well in our simulations.

Biconvex optimization problems are commonly treated in an alternating manner, for
the problem (4.4)–(4.10) that would suggest updating a while fixing b and vice versa
(this course of action would correspond to the ADMM algorithm). Even though the par-
tial problems are convex, in general, there is no guarantee that the ADMM converges
to the global (or even local) optimum in this case. Therefore, instead of alternating
the updates of a and b, we propose to perform the update at the same time with a
gradient-descent-type algorithm. This way, the algorithm converges towards a solution
that satisfies the necessary optimality condition of stationarity of the Lagrange function
L0: via gradient-descent, we are able to identify a stationary point of Lc(a

t
k, b

t
k;λ

t), de-
noted by (at+1

k , bt+1
k ). This point fulfills 0 ∈ ∇Lc(a

t+1
k , bt+1

k ;λt) = −∇F (at+1
k , bt+1

k ) +

λt′∇H(at+1
k , bt+1

k ) + cH(at+1
k , bt+1

k )∇H(at+1
k , bt+1

k ).
With the update λt+1 = λt + cH(at+1

k , bt+1
k ), we then have 0 ∈ ∇L0(a

t+1
k , bt+1

k ;λt+1).

In the optimization problem derived from classical CCA, only the canonical vectors (of
all orders) satisfy the stationarity condition. Theoretically, the algorithm could end up
in a stationary point corresponding to the maximum association and the respective linear
combinations of a different order. However, our simulations indicate that this is not a
problem in practice, as the applied variant of gradient descent is able to escape local optima.
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4.3.1 Hyperparameter optimization

Another important aspect of the algorithm is the choice of the hyperparameters. The mix-
ing parameters αak and αbk of the elastic net penalties in (4.11) and (4.12) are often set
in advance by the user, but the sparsity parameters cak and cbk have to be determined
in a data-driven manner. Grid search in combination with cross-validation quickly be-
comes infeasible if the search space becomes larger, especially in more than one dimension.
An alternative is Bayesian optimization of the given hyperparameters. An introduction
to Bayesian optimization for hyperparameter optimization can be found, for example, in
Frazier (2018). The benefit of using Bayesian optimization instead of grid search is that
the information from previous function evaluations can be used to determine the best next
point to execute the function. This way, a much bigger search space can be covered, and,
in addition, it is less likely to miss a good parameter configuration due to the size of the
grid. For the basic algorithm, it is assumed that there is a budget of in total N function
evaluations. We also need to define a score to be maximized during the hyperparameter
optimization, and an appropriate acquisition function. A Gaussian prior is placed on the
score function, then its value is observed at n0 points. Until N iterations are reached, the
following steps are repeated: (i) update the posterior probability distribution on the score
function, (ii) determine the maximum of the acquisition function, and (iii) observe the score
value at this parameter configuration.
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Figure 4.1: Visualization of the tradeoff product optimization (TPO) criterion (4.22) used
as a score function in Bayesian hyperparameter optimization. The TPO score
corresponds to finding the biggest area under the curve of prediction (robust
association measure) over sparsity.

We used the implementation in the R package ParBayesianOptimization (Wilson, 2022)
with the expected improvement as acquisition function and the tradeoff product optimiza-
tion (TPO) as score function. It is similar to the TPO criterion used by Filzmoser et al.
(2022) and models the tradeoff between sparsity in the estimated linear combinations, âk

and b̂k, and the estimated value ρ̂k of the robust association measure. Figure 4.1 illustrates
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this criterion. The original criterion

score = |ρ̂k| ·
�
2− #{âk ̸= 0}

p
− #{b̂k ̸= 0}

q

�

where #{âk ̸= 0} returns the number of non-zero components in âk, and similar for b̂k, can
be adapted for non-sparse regularization by including the elastic net parameters αak and
αbk :

score = |ρ̂k| ·
�
2− αak

#{ak ̸= 0}
p

− αbk

#{bk ̸= 0}
q

�
. (4.22)

Both the sparsity and elastic net parameters can be chosen differently for each k and
âk or b̂k, respectively. In our simulations, presented in Section 4.4, the chosen elastic
net parameters αak and αbk are assumed to be the same for each k, while the Bayesian
optimization procedure to determine the optimal sparsity parameters is run for each k.
Furthermore, Section 4.4.2 of the simulation study is dedicated to the precision of the
algorithm, i.e., the performance of the algorithm when the true covariance matrix and
theoretically optimal sparsity parameters are provided.

4.3.2 Initialization

For the presented algorithm, suitable starting values a0
k and b0k for the linear combinations

ak and bk, respectively, and for the associated Lagrange multiplier λk are needed. For the
elements of a0

1 and b01, we use the average contribution of the respective row or column in
Cxy = [c(xi, yj)] as a starting value,

a01i =
1

q

q#
j=1

c(xi, yj) for i = 1, . . . , p , (4.23)

b01j =
1

p

p#
i=1

c(xi, yj) for j = 1, . . . , q , (4.24)

and for the Langrange multipliers, the contraints are evaluated at the starting points,

λ0
k = H(a0

k, b
0
k). (4.25)

If a non-robust estimator of the covariance matrix is used, the starting values may already
be influenced by outlying observations. A more detailed investigation of what happens when
the number of outlying observations is increased is given in Section 4.4.2.

For the computation of directions of higher order, the concept of "deflated" data matrices
is often described in the literature (e.g. Branco et al., 2003). However, this step can be
detrimental to the sparsity in the higher-order vectors. In our approach, constraints for
uncorrelatedness to lower-order directions are added to the model. Higher-order directions
need to satisfy Equations (4.7) and (4.8), respectively. Basically, this means that ak is in
the left null space of Cxxa

(i:k−1) and bk is in the left null space of Cyyb
(i:k−1). These affine
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constraints preserve the biconvexity and suggest the following variation for determining the
starting values for higher-order linear combinations: The orthogonal complements A⊥

k :=
{a : a′Cxxa

(i:k−1) = 0} and B⊥
k := {b : b′Cyyb

(i:k−1) = 0} are computed, then the starting
values a0

k and b0k are chosen as the orthogonal projections of a0
1 and b01 on A⊥

k and B⊥
k ,

respectively.
In our simulations, both the naive approach and this "orthogonal" initialization for the

higher-order linear combinations are compared.

4.4 Simulation study

A simulation study was conducted to compare the performance of the proposed method
using different (robust) estimators of the covariance matrix. The comparison is also done
with other approaches already mentioned in Section 4.1, namely PMD by Witten et al.
(2009), and SRAR by Wilms and Croux (2015a). For PMD, the R package PMA (Witten
and Tibshirani, 2020) was used, for SRAR the code available from https://sites.google.
com/view/iwilms/software was used. Our algorithm is implemented in the R package
RobSparseMVA and available online https://github.com/piapfeiffer/RobSparseMVA.

A good sparse and robust method should be efficient when the number of variables grows,
avoid misidentifying important variables, and should attain these properties in the presence
of outliers in the data (see, e.g., Zou, 2006; Todorov and Filzmoser, 2013). In order to check
those requirements, the following performance measures are used. For measuring accuracy,
the angle θa = arccos

�
a′â

∥a∥·∥â∥
�

between the true and estimated canonical variables is
computed. Note that only the results for one of the linear combinations are presented
here as the results for the other are qualitatively similar. The true-positive rate (TPR),
corresponding to the rate of correctly identified non-zero components, together with the
true-negative rate (TNR), or the rate of correctly identified zero components, measure
whether non-zero variables are identified correctly. For studying the scalability, the runtime
for a growing number of variables is measured.

For the computation of above performance measures, the true linear combinations a and b
have to be computed: They can be derived from the true covariance matrices Σxx, Σxy, and
Σyy as eigenvectors of Σ−1

xxΣxyΣ
−1
yy Σyx and Σ−1

yy ΣyxΣ
−1
xxΣxy, respectively, see Section 4.1.

4.4.1 Simulation design

Different simulation settings and contamination scenarios (similar to Wilms and Croux,
2015b) are considered. Clean data are generated from a multivariate normal distribution:
(x,y)′ ∼ Np+q(0,Σ). For the contaminated scenario, cr% contamination is generated from
a multivariate normal distribution with a mean shift: (x,y)′ ∼ Np+q(cs · 1,Σ), where
cs denotes the contamination strength. To simulate a heavy-tailed distribution, data are
generated from a multivariate t-distribution: (x,y)′ ∼ t3(0,Σ). The joint covariance matrix

Σ =



Σxx Σxy

Σ′
xy Σyy

�
is given according to the following simulation settings:
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4.4 Simulation study

1. Low-dimensional, order 2: p = q = 10, n = 100 observations

Σxx = I10

Σyy = I10

Σxy =

 0.9 0 01×8

0 0.7 01×8

08×1 08×1 08×8


The true associations in this setting are ρ1 = 0.9 and ρ2 = 0.7, and the true linear
combinations are a1 = b1 = (1,01×9)

′ and a2 = b2 = (0, 1,01×8)
′.

2. High-dimensional, order 2: p = q = 100, n = 50 observations

Σxx =

 S1
10×10 010×10 010×80

010×10 S2
10×10 010×80

080×10 080×10 I80×80


Σyy = Σxx

Σxy =

 0.910×10 010×10 010×80

010×10 0.510×10 010×80

080×10 080×10 080×80


where S1

ij = 1 if i = j and S1
ij = 0.9 for i ̸= j and S2

ij = 1 if i = j and S2
ij = 0.7

for i ̸= j. The true associations in this setting are ρ1 = 0.989 and ρ2 = 0.685,
and the true linear combinations are a1 = b1 = (0.1051×10,01×90)

′ and a2 = b2 =
(01×10,0.1171×10,01×80)

′.

4.4.2 Simulation results

Precision of the algorithm

For evaluating the precision of the algorithm, we avoid estimating the covariance matrix
but plug in the true covariance matrix Σ into the algorithm. We also compare the preci-
sion when the theoretically optimal sparsity parameters are provided (which can be derived
from the true linear combinations (a, b) as ca = ∥a∥1 and cb = ∥b∥1) and when the sparsity
parameters are estimated via Bayesian optimization. The results of these (deterministic)
computations are presented in Table 4.1. For the first-order association measure, the algo-
rithm always converges to the true solution. For higher-order association measures, it can
be seen that the sparsity parameters need to be chosen with more care and that the orthog-
onal start is necessary for the high-dimensional setting. Furthermore, it can be concluded
that starting with an orthogonal projection for the second-order directions is beneficial.
Therefore, the results of all subsequent simulations are shown for this initialization.
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Table 4.1: Performance measures given the true covariance. The true association measures
for the low-dimensional and high-dimensional setting are ρ1 = 0.9 and ρ2 = 0.7,
and ρ1 = 0.989 and ρ2 = 0.685, respectively.

Setting Sparsity Initialization Order Angle θa TPR TNR Association

Low-dimensional known naive 1 0 1 1 0.9
naive 2 0 1 0.89 0.7
orthogonal 2 0 1 1 0.7

estimated naive 1 0 1 1 0.9
naive 2 0 1 0.89 0.7
orthogonal 2 0 1 1 0.7

High-dimensional known naive 1 0 1 1 0.989
naive 2 1.57 0 0.89 0.989
orthogonal 2 0.23 1 1 0.683

estimated naive 1 0 1 1 0.989
naive 2 1.57 0 0.89 0.989
orthogonal 2 0 1 1 0.685

Comparison to other methods

For the given scenarios and settings, the proposed method using different estimators of the
covariance matrix is compared to SRAR by Wilms and Croux (2015b) and sparse CCA
via PMD by Witten et al. (2009) in terms of estimation accuracy, measured by the angle
θa, and sparsity control, measured by the TPR and TNR. For our algorithm, we used the
orthogonal initialization to compute the second-order association. The naive initialization
leads to worse results (not shown here).

The results over 100 repetitions for estimators of the covariance matrix used in our algo-
rithm (left of the dashed line) with SRAR (Wilms and Croux, 2015b) and PMD (Witten
et al., 2009) are summarized in Figure 4.2. The left column presents the results for the
low-dimensional setting, the right column for the high-dimensional setting. The different
plot symbols encode different contamination scenarios; black presents first-order results,
and gray second-order results. Shown are the mean values over 100 repetitions for the met-
rics, together with error bars representing the standard error range. We present the results
for uncontaminated data, for contamination of 5% of the observations with contamination
strength cs = 2, and for data generated from a multivariate t3 distribution, see Section 4.4.1.

The results for the low-dimensional setting are shown on the left-hand side of Figure 4.2.
The angle, TPR, and TNR are only presented for the estimated canonical variables a1

and a2. For the non-contaminated data, the performance across all methods is similar.
Estimating the second-order component leads to slightly worse results - with the exception
of PMD, where the results are highly precise. The behavior under contamination and heavy
tails is still comparable to the non-contaminated case; only SRAR and PMD have problems
identifying the correct sparsity. For PMD, this is especially apparent in the figures depicting
the TPR and TNR: Both for the first-order and second-order linear combinations, the TNR
is 1, but the TPR is only around 0.5, indicating that the resulting linear combinations are
too sparse.

For the high-dimensional setting (right-hand side of Figure 4.2), more differences can
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be observed: When the data are uncontaminated, our algorithm based on the Pearson
correlation is highly accurate. This can be in part attributed to the regularization effect
on the estimators of the covariance matrix described in Equations (4.18)–(4.19). While the
performance for the high-dimensional setting is overall worse, and all methods suffer from
a decrease in accuracy for the second-order canonical vectors, it can be observed that for
the robust OGK and MRCD estimators, the accuracy level for the second-order component
is the same as it already is for the first-order component for SRAR (Figure 4.2: top-right).
Our algorithm with robust estimators of the covariance matrix shows superior performance
for the TPR. Especially interesting is the good result for the covariance based on Spearman’s
rank and Kendall’s tau in the scenario using the t-distribution. This finding coincides with
the work presented in Langworthy et al. (2020). The TNR is good for all variants of our
algorithm and for PMD in the clean setting. SRAR performs worse, and similarly to the
accuracy, the TNR for the second-order components estimated using our algorithm is on the
same level as the TNR for SRAR in the first-order components. Difficulties with accuracy
and estimating the correct sparsity are also reflected in the resulting association measure.

Increasing contamination

For both the low-dimensional and high-dimensional settings described in Section 4.4.1, the
contamination proportion was increased from cp = 0% to cp = 50%, and again, the same
performance measures were evaluated. The results averaged over 50 repetitions comparing
the different robust estimators are shown in Figure 4.3. On the left side, the performance
metrics for the low-dimensional setting are given, on the right side, the results for the
high-dimensional setting are shown. The different line types correspond to the performance
metrics for our method using different estimators for the covariance matrix (Pearson, Spear-
man, Kendall, OGK, MRCD) and the sparse and robust alternating regressions (SRAR)
technique on the other hand. The results for the penalized matrix decomposition (PMD) are
omitted, as it is already affected by a small proportion of outlying observations. While the
metrics for accuracy show in the low-dimensional setting an advantage for the alternating
regressions approach, the other metrics are comparable across the methods. For the high-
dimensional setting, the results are more distinguished: The proposed method outperforms
the SRAR approach, while the robustness against an increased contamination proportion
depends on the estimator of the covariance matrix. In these plots it is clearly visible that
the h-subset parameter for MRCD was set to α = 0.75, as the performance gets much worse
over a contamination proportion of cp = 25%. The OGK estimator also exhibits interest-
ing behavior: The TPR metric decrease up to a contamination proportion of 40%, then it
jumps to 1. The reason can be observed when analyzing the TNR metric: After a contami-
nation proportion of 40% is reached, all components are identified to be non-zero. Another
interesting observation is that while for all estimators the performance metrics decline, the
predicted association measure still seems to be reliable. The contamination strength (mean
shift) was also varied between cs = 2 and cs = 10, but was not found to have an effect on
the performance of the different estimators. Therefore, these results are omitted here.

67



4 Efficient computation of sparse and robust maximum association estimators

Contamination 0 0.05 t−dist Order 1 2

0.0

0.5

1.0

1.5
Pe

ar
so

n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

A
ng

le
: θ

a

0.0

0.5

1.0

1.5

Pe
ar

so
n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

A
ng

le
: θ

a

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

TP
R

: a

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

TP
R

: a

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

TN
R

: a

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

TN
R

: a

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

A
ss

oc
ia

tio
n:

 ρ

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n

S
pe

ar
m

an

K
en

da
ll

O
G

K

M
R

C
D

S
R

A
R

P
M

D

Method

A
ss

oc
ia

tio
n:

 ρ

Figure 4.2: Comparison of performance measures for the different methods.
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Figure 4.3: Increasing contamination ratio for different (robust) methods.
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Runtime

For evaluating the runtime, the first-order canonical directions and association were com-
puted using our algorithm and SRAR for increasing dimension q = 50, . . . , 10000 while
keeping the dimensionality of the other side, p = 10, and the number of samples, n = 100,

fixed. The joint covariance matrix Σ =



Σxx Σxy

Σ′
xy Σyy

�
is given according to the settings:

Σxx =
�
S1
10×10

�
Σyy =



S1
10×10 010×(q−10)

0(q−10)×10 I(q−10)×(q−10)

�
Σxy =



0.810×10 010×(q−10)

0(q−10)×10 0(q−10)×(q−10)

�
where S1

ij = 1 if i = j and S1
ij = 0.8 for i ̸= j.

To remove the effect of the hyperparameter search, fixed optimal sparsity parameters
were used for all methods. The results are averaged over 10 replications and presented
in Figure 4.4. The increasing dimension q is shown on the horizontal axis on a log scale,
and the CPU runtime of the algorithm is shown on the vertical axis in minutes. It can be
observed that the presented algorithm based on adaptive gradient descent has a comparable
dependence of runtime to problem size to the only other robust and sparse alternative.
However, it is obvious that the runtime heavily depends on the type of association estimator
used, as the joint covariance needs to be estimated fully before starting the optimization.
The covariance matrix only needs to be estimated once, and if it is already available,
gradient descent scales better to high-dimensional data than regression-type algorithms.
In combination with pairwise estimators of the covariance matrix, which are also easy to
compute in high dimensions, the proposed algorithm could also serve as a more time-efficient
alternative to alternating regressions.
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Figure 4.4: Log-log plot of CPU runtime in minutes versus dimensionality q of second vari-
able.

In summary, the simulation results demonstrate the comparable or better performance
of our proposed method, depending on the contamination scenario. Especially for the
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high-dimensional scenario, our method in combination with an appropriate estimator for
the covariance matrix performs well, also for higher-order directions. When runtime is of
concern, the method based on Spearman or Kendall correlation should be considered, as
these measures have better robustness properties than Pearson correlation, while still being
efficient to compute. In general, the OGK estimator seems to be a sensible choice, leading
to good performance metrics in both low-dimensional and high-dimensional settings and for
an increased contamination ratio.

4.5 Examples

In this section, the proposed method will be applied to two data sets from different fields:
biology and tribology. For both, the number of observations is significantly lower than the
number of variables, and the flexibility of choosing the sparsity via the elastic-net penalty
for each side is desirable.

In order to compare the performance of classical and robust estimation, we compare the
out-of-sample performance of the robust and non-robust estimators by randomly splitting
the data into a training and test set and computing the out-of-sample residual score

r =
1

ntest

1

nrep

ntest#
j=1

nrep#
i=1

∥a′
traini

xj − b′traini
yj∥2, (4.26)

where atraini and btraini are the first order linear combinations that are estimated on the i-th
training set, ntest is the number of test set observations, and xj and yj are observations
from the corresponding test sets. The random training and test splits are repeated nrep
times. Since outliers in the test sets could contaminate this residual score measure, we
also use a trimmed version, by trimming the largest 10% of all the squared test residuals
and dividing by the corresponding number of observations. We also report the (in-sample)
association measure, averaged over nrep random training and test splits.

4.5.1 Application to the nutrimouse dataset

The nutrimouse dataset is publicly available via the CCA package in R (González and
Déjean, 2021) and has been discussed in the related literature, for example, by Wilms and
Croux (2015b). It contains n = 40 observations of p = 120 gene expressions and q = 21
concentrations of fatty acids. Martin et al. (2007) provide a detailed description of the
dataset, and investigate the influence of a certain diet on numerous gene expressions in
mice. In this setting, the goal is to identify a set of genes that has a large association with
a set of lipids (cf. Wilms and Croux, 2015b). The two datasets were robustly centered and
scaled with median and MAD before continuing with the analysis. We compare the results
of the sparse CCA method by Witten et al. (2009) with the proposed method by computing
the residual score r, see Equation (4.26) in a leave-one-out cross-validation (CV) setting,
i.e., the i-th training set consists of all observations except i, and the i-th test set only
contains observation i.

The results are given in Table 4.2: The residual score for the robust method is much
lower, the same holds for the trimmed version. The estimated association is 0.76 for PMD
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4 Efficient computation of sparse and robust maximum association estimators

and 0.89 for our method using the OGK estimator. Additionally, the contributions to the
residual scores for both methods are presented as a scatterplot in Figure 4.5. Most of the
points are above the 45◦ line, i.e. smaller for the robust method. Similar to Wilms and
Croux (2015b) we can conclude that the out-of-sample performance of the robust method
is better, and therefore present the estimated linear combinations of this method in Figure
4.6.

Table 4.2: Residual scores and association measure based on data splitting for the
nutrimouse dataset.

Method r r (trimmed) Association

sparse CCA 2.15 1.10 0.76
OGK 0.49 0.18 0.89

Out of the p = 120 gene expressions, 54 are selected by the algorithm, and out of q = 21
fatty acids, 16 are selected. Upon comparison with the selected variables presented by
Wilms and Croux (2015b), we can identify the following sets of fatty acids that have been
selected by both the SRAR method and ours: C.20.1n.9, C.20.2n.6 and C22.4n.6 with the
highest (absolute) coefficients. Among the fatty acids related to the diets of the mice,
namely C22:6n-3, C22:5n-3, C22:5n-6, C22:4n-3, and C20:5n-3 (see Martin et al., 2007),
5 are selected by our method. For the gene expressions, the coefficient values differ more
than for the fatty acids. CYP3A11, which has been found to have a significant influence
by Martin et al. (2007), is selected by both methods. The influence of diet on Lpin1 is also
discussed by Martin et al. (2007) and has the highest absolute coefficient in our model.

4.5.2 Application in tribology

Fourier-transform infrared spectroscopy (FTIR) spectra to monitor a lubricant’s degrada-
tion process and their relation to different indicators for oil condition have been studied by
several authors (see, for example, Pfeiffer et al., 2022). However, the goal is to also un-
derstand the association between lubricant chemistry and lubrication performance. Pfeiffer
and Filzmoser (2023) demonstrated how features from optical data of wear scar areas can
be extracted and used in a robust partial least-squares (PLS) model to relate the wear scar
to oil condition, measured by alteration duration.

We demonstrate that by using the method presented in this paper, the two high-dimensional
datasets can be associated directly. The dataset consists of n = 214 observations, FTIR
spectra with p = 1668 variables, and HoG (histogram of gradients) feature vectors, with
q = 1836 variables, representing the wear scar images. As previous studies have shown,
while sparsity is beneficial for the evaluation of FTIR spectra, it does not yield good results
for HoG image features (Pfeiffer and Filzmoser, 2023). This example also illustrates the
flexibility of our approach, being able to choose a sparsity-inducing penalty on one side,
while applying L2-regularization on the other. Before proceeding with the analysis (inde-
pendent from which estimator of the covariance matrix was used), the HoG feature vectors
were robustly centered and scaled using median and MAD, respectively.
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Figure 4.5: Scatterplot of leave-one-out cross-validation (CV) scores for PMD and the pro-
posed method using the OGK estimator for the nutrimouse dataset. Almost
all points are above the 45◦ line, indicating a better out-of-sample performance
for the robust estimator.

We compute the residual score, see Equation (4.26), for a 90%–10% split, repeated 5 times.
Here we run the algorithm using the Pearson correlation (sample covariance matrix), and
as a robust counterpart we use the OGK estimator of the covariance matrix. The resulting
residual scores are given in Table 4.3. It can be observed that the overall out-of-sample
performance for the robust estimator is clearly better than for the classical one, while the
estimated association is comparable.

Table 4.3: Residual scores and association measure based on data splitting for the tribology
dataset.

Method r r (trimmed) Association

Pearson 138.51 121.14 0.24
OGK 52.7 48.40 0.21

In Figure 4.7 (left), the wavenumbers of the FTIR spectra selected by the non-robust
and the robust procedures are displayed. For the non-robust method, 79 wavenumbers are
selected, and for the robust one 73, with an overlap of 52 non-zero elements in the two
linear combinations. The selected wavenumbers between 1860-1660 cm−1 are known to be
related to oxidation processes, while wavenumbers between 3651-3649 cm−1 correspond to
phenolic antioxidants (Ronai, 2021). The selected wavenumbers are similar for the non-
robust and robust estimators. For the HoG feature vectors, however, a difference in the
size of the coefficients can be observed. The coefficient values for the sample covariance are
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Figure 4.6: Estimated linear combinations using the OGK estimator of the covariance ma-
trix for the nutrimouse dataset.

lower, which can be explained by a stronger regularization parameter being chosen during
hyperparameter optimization. Note that the coefficients shown in Figure 4.7b and Figure
4.7d are normalized such that b′Cb = 1. As the HoG features have been extracted from
images of wear scar areas, outliers can be expected to be present (cf. Pfeiffer and Filzmoser,
2023). While such outliers drive the non-robust method towards over-regularization of these
features, the robust method based on the OGK estimator reduces the influence of outliers
and is able to determine appropriate coefficient values. An example of wear scar images
corresponding to outliers identified by the OGK estimator is given in Figure 4.8.
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(b) Coefficient values for HoG features using the
sample covariance.
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(c) Selected wavenumbers using the OGK esti-
mator.
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(d) Coefficient values for HoG features using the
OGK estimator.

Figure 4.7: Selected wavenumbers (left) using the sample covariance (top, grey) and the
OGK estimator (bottom, green). The plots on the right-hand side show the
coefficient vector for the HoG features (classical on top, robust at the bottom).
For these, no sparsity penalty was included.

Figure 4.8: Wear scar areas on the ball for a duration of 552 hours of oil alteration. The
framed images correspond to HoG features that were identified as outliers by
the OGK estimator.
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4.6 Summary and conclusions

We focused on the problem of maximizing the association between linear combinations of
two sets of random variables (two multivariate data sets referring to the same observations).
If the association measure is taken as the Pearson correlation, this corresponds to the frame-
work of canonical correlation analysis. However, more general association measures can be
considered, even allowing for an identification of monotone rather than just linear relation-
ships. The stated problem can also be formulated as a constrained maximization problem,
where the joint covariance of the two random variables is involved, and the coefficients for
the linear combinations need to be identified. This is the problem considered in this paper,
with two extensions: (i) we aim for robustness of the association measure against outliers
in one or both data sets, and (ii) we want to have sparsity in one or both vectors of the
linear combinations for applications in high dimensions. In this approach, robustness can
easily be achieved by plugging in a robustly estimated covariance matrix. Several proposals
for this purpose exist in the literature, also for high-dimensional data. We also investigated
pairwise estimators of the covariance matrix, e.g., based on Spearman’s rank correlation.

The main contribution of the paper is the development of an efficient algorithm to solve
the optimization problem. The formulation in terms of a Lagrange problem makes the use
of a gradient descent algorithm possible, where constraints for the linear combinations can
easily be incorporated. The minimum requirements for the penalty functions are that they
are convex and that (sub)gradients exist. Other than that, the presented algorithm allows
flexibility in the choice of penalty functions, and—as seen in one of the examples—also
enables to induce sparsity in only one component, while the other is L2 regularized.

From a computational perspective, the main advantage of our approach is the scalability
to a high number of variables. In comparison to solving a regression problem repeatedly
(Wilms and Croux, 2015b), or to scanning a larger and larger search space in circles (Alfons
et al., 2016b), an algorithm based on gradient descent is more efficient, as only the gradient
information needs to be stored. Although the estimation of the plug-in covariance matrix
can be computationally demanding, covariance estimation just needs to be done once. This
is different from approaches, e.g., based on projection pursuit, where pairwise correlations
or association measures need to be computed for all considered projection directions (Alfons
et al., 2016b).

We provided numerical results for the precision and theoretical considerations concerning
the existence of a solution of the optimization problem. For this, positive definiteness of the
joint covariance matrix is a requirement, however, from the simulations we could see that
even when this assumption is violated (high-dimensional setting with pairwise estimators),
our algorithm is able to produce comparable or even better results than the alternative
techniques. The results emphasize how important a good (and robust!) estimator of the
covariance is. As the performance regarding robustness and computation time is depen-
dent on the estimator of the covariance matrix, a sparse and robust estimator could lead
to improvements. Avella-Medina et al. (2018) show that thresholding methods (see, e.g.,
Bickel and Levina, 2008) have desirable properties when a robust initial estimator is used.
Extending the available implementation to exploit the sparsity structure of the covariance
will be explored in our upcoming research.

Examples with high-dimensional data sets from biology and tribology underline the use-
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4.6 Summary and conclusions

fulness of our approach: It offers flexibility concerning penalty functions depending on the
desired sparsity in each of the data sets, desirable robustness properties and maintains
manageable computation times.

The combination of robust estimators and modern optimization techniques yields a pow-
erful toolbox for solving several other common problems in statistics. Especially for robust
procedures, where robust estimation (e.g., of a covariance matrix) and optimization can be
decoupled, the proposed procedure is very promising. Examples of such extensions are ro-
bust principal component analysis and robust linear discriminant analysis, which are topics
of our future research.
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5 Cellwise robust and sparse principal
component analysis

5.1 Introduction

The increasing prevalence of large data sets, especially high-dimensional data in the sense of
many more variables than observations, motivates the use and development of dimension-
reduction techniques. Principal Component Analysis (PCA), dating back to Pearson (1901)
and Hotelling (1933), is one of the oldest and most widely applied dimension-reduction
techniques. The idea of PCA is to find a low-dimensional representation of the data set in
a way that preserves as much variance as possible (e.g. Jolliffe et al., 2003).

Based on a mean-centered (and possibly scaled) data matrix X, with n observations in
the rows, and p variables in the columns, the principal components (PCs) are defined by
the linear combination Z = XV under the constraint that the columns of the p× p matrix
V are normed to length 1 and orthogonal to each other. Since the variances of the columns
of Z have to be maximized, the solution for V can be obtained by the spectral composition
Σ̂ = V̂ ÂV̂ ′, where Σ̂ is the estimated covariance matrix of X, and Â = Diag(â1, . . . , âp) is
the diagonal matrix with the corresponding estimated eigenvalues, arranged in descending
order (Jolliffe et al., 2003). The matrix V̂ is also known as loadings matrix, while Ẑ = XV̂
refers to the PCA score matrix. Traditionally, the sample covariance matrix S = 1

n−1X
′X

is used for Σ̂, resulting in eigenvectors Ṽ , eigenvalues Ã, and classical principal components
Z̃ = XṼ . The identical solution Ṽ can be obtained from a singular value decomposition
(SVD) of X as X = ŨD̃Ṽ ′ (e.g. Jolliffe et al., 2003).

As the main interest is usually in the first k PCs, where k < p, or even k ≪ p for high-
dimensional data, it is not necessary to compute the whole p×p matrix V̂ , but to only focus
on the matrix V̂k ∈ Rp×k with the first k columns, to obtain the first k PCs Ẑk = XV̂k.
Especially for p ≫ n, the approach based on a spectral decomposition of the estimated
covariance matrix is numerically not attractive, and thus SVD is commonly employed in
this case. This leads to a rank-k approximation X̃k = ŨkD̃kṼ

′
k of X, with Ũk ∈ Rn×k and

D̃k ∈ Rn×p with elements d̃ii ≥ 0 for i = 1, . . . , k and d̃ij = 0 otherwise. The rank-k SVD
is the best rank-k approximation in the Frobenius norm (Eckart and Young, 1936),

Ṽk = argminVk
∥X −XVkV

′
k∥2F (5.1)

for any p × k matrix Vk with rank(Vk) ≤ k and V ′
kVk = Ik. We can define the residual

matrix

R = X −XVkV
′
k with elements rij , for i = 1, . . . , n and j = 1, . . . , p, (5.2)

and problem (5.1) is equivalent to minimizing the sum of all squared residuals by using a
matrix Vk as defined above.
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5 Cellwise robust and sparse principal component analysis

It is well known that a sum-of-squares criterion is sensitive to outlying entries (Maronna
et al., 2019). Such outliers, however, refer to single outlying cells in the residual matrix
R, and not necessarily to outlying rows (observations). The latter is traditionally consid-
ered for robustly estimating a covariance matrix (e.g. Maronna, 1976; Rousseeuw, 1985;
Rousseeuw and Leroy, 2005) in order to obtain robust PCs with the help of spectral de-
composition (Maronna et al., 2019), but in the case p > n those estimators cannot be
computed.

The concept of cellwise outliers has been conceptually introduced in Alqallaf et al. (2009),
but already Maronna and Yohai (2008) formulated a cellwise robust PCA version by down-
weighting outlying cells in the residual matrix rather than outlying rows. In fact, they
proposed to replace the Frobenius norm in (5.1) with a more robust loss function. Cellwise
robustness has particular advantages if p ≫ n: Assuming that any data cell has the same
chance to be contaminated, even a small amount of contamination can lead to many row-
wise outliers, which at some point could even form the majority and cause breakdown of
traditional rowwise robust methods (Maronna et al., 2019). A robust PCA method that
cannot only deal with cellwise outliers but also with missing values is MacroPCA (Hubert
et al., 2019). This method combines the DDC algorithm of Rousseeuw and Bossche (2018)
to detect cellwise outliers with a version of ROBPCA (Hubert et al., 2005), a robust PCA
method that can also deal with high-dimensional data.

None of the proposed cellwise robust PCA methods lead to sparse solutions. The contri-
bution of this paper is sparsity: In the high-dimensional case it is desirable to obtain (many)
zeros in the matrix Vk, since this simplifies the interpretation of the PCs. In this paper
we will introduce a cellwise robust and sparse PCA method. We first review robust and
rowwise sparse PCA methods in Section 5.2 before introducing our method in Section 5.3.
An algorithm for its computation based on manifold learning is presented in Section 5.4,
and simulation results in Section 5.5 compare with alternative PCA methods. Applications
in Section 5.6 demonstrate the usefulness of the method. The final Section 5.7 provides a
summary and conclusions.

5.2 Related work

Robust PCA has been a very active research field, and thus many different approaches are
available in the literature (see, e.g., She et al., 2016, for an overview). Since our focus is also
on sparsity, we provide a short and thus possibly incomplete overview of robust and sparse
PCA methods in the following, before discussing cellwise robust methods in this context.

One of the first papers on robust sparse PCA is Candès et al. (2011). However, sparsity
here refers to a sparse residual matrix as the remainder of a robust rank-k approximation.
In this paper, we are more interested in sparsity for the loadings matrix, as this simplifies
the interpretation of the PCs. Although this work is highly visible, the method is intended
to deal with additive outliers, and not with outliers in the orthogonal complement to the
PCA subspace, see She et al. (2016); Hubert et al. (2005).

As PCA can also be seen as a projection-pursuit (PP) problem, with the task to search
for a projection direction that maximizes the variance of the projected observations, Croux
and Ruiz-Gazen (2005) introduced a robust procedure by considering a robust variance
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5.3 Cellwise robust sparse PCA for high-dimensional data

(scale) estimator. Inspired by the SCoTLASS approach which adds a LASSO penalty on
the direction vectors (Jolliffe et al., 2003), this PP approach was also reformulated to include
an L1 penalty, resulting in a robust and sparse PCA method (Croux et al., 2013).

The ROBPCA method by Hubert et al. (2005) combines a PP approach with the plug-in
method by first projecting the data to a low-dimensional subspace and then applying a
robust estimator of the covariance. This method was extended in Hubert et al. (2016), who
proposed ROSPCA by integrating an L1-penalty with the ROBPCA algorithm, which also
leads to sparse solutions.

Zou (2006) suggest reformulating PCA as a regression problem. Then, sparse loadings
can be derived using elastic net (Zou and Hastie, 2003) and LASSO (Tibshirani, 1996)
regression. A robust extension that is based on robust plug-in estimators for the covariance
was proposed by Greco and Farcomeni (2016). In the case p > n they propose to use the
unconstrained ROBPCA solution to obtain a plug-in estimator.

5.3 Cellwise robust sparse PCA for high-dimensional data

Following the ideas outlined in the previous section, the rank-k approximation criterion (5.1)
can be combined with a criterion to obtain sparsity. When using an elastic net penalty, the
modified problem formulation is

V̂k = argminV ′
kVk=Ik

∥X −XVkV
′
k∥2F +

k#
j=1

λj(α∥vj∥22 + (1− α)∥vj∥1), (5.3)

where vj refers to the j-th column of Vk, 1 ≤ j ≤ k < p, the strength of regularization for
each component is controlled by λ = (λ1, . . . , λk)

′, and the elastic net mixing parameter α
controls the sparsity (Zou and Hastie, 2005).

As the least squares loss is highly susceptible to outlying observations, we propose to
substitute it with a robust loss function, similar as suggested in Maronna and Yohai (2008),

V̂k = argminV ′
kVk=Ik

1

np

p#
j=1

σ̂2
j

n#
i=1

ρ

�
rij
σ̂j

�
+

k#
j=1

λj(α∥vj∥22 + (1− α)∥vj∥1), (5.4)

where rij are the residuals from (5.2), and σ̂j is a column-wise estimator of residual scale.
The function ρ corresponds to a robust loss function (Maronna et al., 2019), and popular
choices are the Huber loss, defined as

ρH(r) =

�
r2 for |r| ≤ b,

b|r| otherwise,
(5.5)

the Tukey loss, defined as

ρT (r) =

��
r
c

�2 �
3− 3

�
r
c

�2
+
�
r
c

�4� for |r| ≤ c,

1 otherwise,
(5.6)
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5 Cellwise robust and sparse principal component analysis

or a trimmed version of the least squares loss, defined as

ρLTS(r) =

�
r2 for |r| ≤ |r|(h),
0 otherwise,

(5.7)

where |r|(i) refers to the ordered values of the absolute residuals, i.e. |r|(1) ≤ . . . ≤ |r|(n)
and h ∈ ⌊n/2, n⌋. The trimming is applied column-wise.

The choice of the loss function will also determine the robustness properties of V̂k, see
also Maronna and Yohai (2008) for more detailed discussions. For either of these loss func-
tions, the influence of data points with large scaled residuals is reduced, resulting in a more
robust estimate (Maronna et al., 2019). Appropriate parameter choices for the constant b
in (5.5) and (5.6) are proposed in the literature (Maronna et al., 2019). Throughout our
experiments we will use the parameters b = 1.35, c = 1.35, and h = 0.5.

Note that a multiplication with σ̂2
j in the objective function (5.4) is important, since this

guarantees that for the special choice ρ(r) = r2 one obtains the objective function (5.3) of
the non-robust version. The estimation of the residual scale will be discussed in detail in
the next section.

For outlier diagnostics, i.e. the distinction between regular observations, good and bad
leverage points, and orthogonal outliers, a diagnostic plot can be constructed as proposed by
Hubert et al. (2005). The score distances (SD) and orthogonal distances (SD) are computed
based on the robust PCA result and plotted together with the cutoff values, also described
in detail in Hubert et al. (2005).

5.4 Algorithm

Problem (5.4) is an optimization problem under constraints. The objective function

L(V ) =
1

np

p#
j=1

σ̂2
j

n#
i=1

ρ

�
rij(V )

σ̂j

�
+

k#
j=1

λj(α∥vj∥22 + (1− α)
n#

i=1

∥vij∥1) (5.8)

is minimized under the constraint that V ′V = Ik, which corresponds to the Stiefel Manifold,
defined as the set of orthonormal matrices, i.e. St(p, k) =

�
V ∈ Rp×k : V ′V = Ik

�
.

We can therefore cast this problem in the framework of optimization on manifolds. Gra-
dient methods such as the Newton or Conjugate Gradient algorithm on manifolds have
already been studied in Edelman et al. (1998), and Bonnabel (2013) have extended SGD
(Stochastic Gradient Descent) to the case when the objective function is defined on a Rie-
mannian manifold and derived convergence properties for the algorithm. When the gradient
is calculated on the whole dataset, it is referred to as batch gradient descent in the machine
learning literature, see, e.g., Goodfellow et al. (2016). When big amounts of data have to
be processed, (minibatch) SGD is preferable, this means that the gradient is computed on
each sample, or a minibatch of samples. Mathematically, the true gradient of the objective
function corresponds to the expectation of the gradient over the data-generating distribu-
tion. For batch gradient descent, the true gradient is approximated by the gradient over
the whole training set. When there is a large number of observations, however, computing
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this expectation over the whole dataset is not feasible, therefore it is computed over random
subsamples, which are called minibatches (Goodfellow et al., 2016). Therefore, by applica-
tion of a suitable variant of SGD we can ensure the scalability of the proposed algorithm to
datasets containing a very large number of observations, which would not be possible with
an approach based on alternating regressions, for example. In the following, we describe
the algorithm for batch gradient descent for ease of notation.

5.4.1 Manifold optimization

Given a starting point V0 ∈ St(p, k), subsequent iterations lie on the same manifold. This

is accomplished as follows: First, the gradient at step t, Ht := ∇VtL(Vt) =
�
∂L(Vt)
∂vl

�k

l=1
, is

computed, then the gradient is projected on the tangent space of the manifold at the current
parameter value, denoted by TVtSt(p, k). Let PHt denote the projection of the gradient,
which can be computed as PHt = −γt(Ip − VtV

′
t )Ht, where γt refers to the step size.

Finally, the gradient step is executed on the manifold. This can be done via an expo-
nential map, Vt+1 ← expVt

(−γtPHt), or via a retraction, a first-order approximation of the
exponential map, denoted by Vt+1 ← RVt(−γtPHt). Numerically, the latter is preferable,
and we can use RVt(P ) = qf(P ), where qf() extracts the orthogonal factor from the QR
decomposition. This particular retraction was also studied in Proposition 3 in Bonnabel
(2013) and essentially follows the gradient in the Euclidean space and then orthonormalizes
the matrix at each step.

For the computation of the gradient, the continuous differentiability of the loss function
ρ is a necessary condition. This assumption is fulfilled for the least squares loss without
regularization, for the robust loss functions and different penalties, however, it does not
hold. While the Huber loss (5.5) can be approximated by the differentiable Pseudo-Huber
loss function (Hartley and Zisserman, 2003), ρPH(r) = b2(

"
1 + (r/b)2 − 1), the treatment

of the LTS loss (5.7) requires more thought. It is easy to see though, that a gradient step
in terms of the ρLTS function can be expressed as a re-weighting step: ρLTS is continuously
differentiable on the set of points, for which |r| ≤ |r|(h). Let Ht denote this h-subset
computed based on the current iterate Vt, then L(Vt, Ht) corresponds to the value of the
objective function depending on Ht. After each gradient step, Ht+1 is updated using the
current iterate Vt+1 and we get the inequality

L(Vt+1, Ht+1) ≤ L(Vt+1, Ht) ≤ L(Vt, Ht). (5.9)

Note that for the stochastic variant of the gradient step, the inequality only holds in expec-
tation.

5.4.2 Initialization

As the loss function (5.8) is based on the approximation of the data matrix via rank-k
SVD, it seems natural to consider the first k singular values as starting points. Despite the
desirable properties of Riemannian SGD studied by Bonnabel (2013), however, we cannot
hope to get convergence to a global minimum, as the loss function is not convex on St(p, k).
Therefore, it is crucial to choose an initial estimate V0 that is robust in the presence of
outliers.
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5 Cellwise robust and sparse principal component analysis

We propose first applying a transformation g to the data matrix and then computing
the SVD of Y = g(X), resulting in the first k right-singular vectors of g(X) as the initial
estimate V0. The procedure is inspired by the robust high-dimensional product-moment
correlation, studied in Raymaekers and Rousseeuw (2021) where robustness properties of
different data transformations are investigated. In the following, we consider one of the
following options for the transformation, and later on, compare their results. Both options
involve estimators of location tj and scale cj of the variables (j = 1, . . . , p). Here we use
the median for location and the Qn estimator (Rousseeuw and Croux, 1993) for scale.

1. Rank transformation: The elements of the transformed data matrix Y are given by
yij = g(xij) = 1/n(ranki(xij)− 0.5) · cj + tj .

2. Wrapping transformation: Denote zij =
xij−tj

cj
, for i = 1, . . . , n and j = 1, . . . , p, as

the column-wise robustly standardized data. The elements of the transformed data
matrix Y are given by yij = g(xij) = ψb,c(zij) · cj + tj . The ψ-function is given by

ψb,c(z) =

��
z if 0 ≤ |z| ≤ b,

q1 tanh (q2(c− |z|))sign(z) if b ≤ |z| ≤ c,

0 otherwise,
(5.10)

where the values q1 and q2 can be derived for any combination of 0 < b < c (Raymaek-
ers and Rousseeuw, 2021). We use the default values b = 1.5 and c = 4 as proposed
in Raymaekers and Rousseeuw (2021) and implemented in the function wrap() of the
R package cellWise (Raymaekers and Rousseeuw, 2023a).

5.4.3 Residual scale

Based on an initial estimate V0, we can compute the residuals R(V0) = X −XV0V
′
0 with

the elements rij(V0). The objective function (5.8) needs an estimate of the residual scale,
σ̂j , for the j-th column of this matrix (j = 1, . . . , p). Minimizing the objective function
then yields an updated estimate of V , and thus also new residuals, from which the residual
scale needs to be re-estimated. For estimating this residual scale, Maronna and Yohai
(2008) suggest to use an M estimator of scale. As the proposed algorithm requires repeated
computation of the residual scale, we propose to use the simple least median of squares
estimator, given by σ̂j = mediani|rij |.

5.4.4 Sparsity inducing penalties

When the elastic net parameter in (5.8) is set to α = 0, we get an L1-penalty, a popular
choice for inducing sparsity in the PCA loadings (Croux et al., 2013; Hubert et al., 2016).
While the L1-norm is not continuously differentiable, it can be approximated by a differ-
entiable function, which converges towards the L1-norm. In our implementation we use
|vjl| = vjlsign(vjl) = limc→∞vjltanh(c · vjl), as discussed by Öllerer et al. (2015). The more
the constant c is increased, the better the absolute value function is approximated. In our
implementation, we set c = 1000. Due to this approximation and the nature of gradient-
based updates, this procedure does not lead to true sparsity in the loadings but only shrinks

84



5.4 Algorithm

the elements of the loadings matrix close to zero. In order to get truly sparse results, we
propose to threshold the loadings in the following way: First, we track the relative change
in each of the elements of the loadings matrix between the iterations Vt and Vt+1. Then,
the threshold value is computed as the average change of all elements during the last M
iterations plus two standard deviations. If the absolute value of an entry of V̂ is lower than
the threshold, it is set to 0. In the implementation, we use M = 10.

The complete algorithm is summarized in Algorithm 3.

Algorithm 3 Robust and Sparse PCA via Manifold Optimization
1: Compute transformations Y ← g(X)
2: Initialize V0 as first k right-singular vectors of Y
3: while ∥L(Vt+1)− L(Vt)∥ > δ do
4: Ht ← ∇V L(Vt) ▷ compute gradient H
5: PHt ← projTVtSt(p,k)(Ht) ▷ projection of gradient onto tangent space
6: Vt+1 ← RVt(−γtPHt) ▷ gradient step via retraction
7: if ρ = ρLTS then
8: update Ht+1 based on Vt+1 ▷ update h-subset
9: end if

10: dt+1 ← ∥Vt+1−Vt∥/∥Vt∥ ▷ track relative change
11: end while
12: t̄ ← avg[dm]i−M+1

m=i + 2sd[dm]i−M+1
m=i ▷ compute threshold

13: V̂ ← [vjl if |vjl| > t̄, 0 otherwise]jl ▷ thresholding
14: Ẑ ← XV̂ ▷ compute robust scores
15: â ← Qn2(XV̂ ) ▷ compute robust variances

Step 14 of Algorithm 3 returns the principal components, and Step 15 their variances,
here estimated per component with the Qn-scale estimator (Rousseeuw and Croux, 1993).

5.4.5 Selection of sparsity parameter

While the elastic net mixing parameter α in (5.8) is set in advance by the user, the sparsity
parameter λ is chosen depending on the data. Similarly to Croux et al. (2013), we choose the
tradeoff-product criterion (TPO) that leads to a compromise between explained variance
and sparsity in the loadings. In the following, we denote the columns of the estimate V̂ as
v̂l, for l = 1, . . . , k. The original criterion

score =

k#
l=1

Qn2(Xv̂l) ·
�
1− #{v̂l ̸= 0}

p

�
where #{v̂l ̸= 0} returns the number of non-zero components in v̂l, can be adapted for
non-sparse regularization by including the elastic net parameters α:

score =

k#
l=1

Qn2(Xv̂l) ·
�
1− α

#{v̂l ̸= 0}
p

�
. (5.11)
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The maximum of this score function is now determined using Bayesian optimization:
The advantage of this procedure is that contrary to cross-validation in combination with
grid search, the information from previous function evaluations can be exploited. This
way, a bigger search space can be covered. For the basic algorithm, it is assumed that
there is a budget of in total N function evaluations. A Gaussian prior is placed on the
score function, then its value is observed at n0 points. Until N iterations are reached,
the following steps are repeated: (i) update the posterior probability distribution on the
score function, (ii) determine the maximum of the acquisition function, and (iii) observe
the score value at this parameter configuration. We used the implementation in the R
package ParBayesianOptimization (Wilson, 2022) with the expected improvement as the
acquisition function and the tradeoff product optimization (TPO) as the score function.

The proposed algorithm is called SCRAMBLE (Sparse Cellwise Robust Algorithm for
Manifold-based Learning and Estimation) and implemented in R (R Core Team, 2023),
in the package RobSparseMVA (Pfeiffer et al., 2024), available from https://github.com/
piapfeiffer/RobSparseMVA.

5.5 Simulations

A simulation study was conducted to evaluate the performance of the proposed method
using different loss functions in comparison with other approaches, namely Robust and
Sparse PCA (ROSPCA) (Hubert et al., 2016) for the rowwise contamination model, and
MacroPCA Hubert et al. (2019) for the cellwise contamination model, although this method
cannot induce sparsity.

5.5.1 Simulation settings

Similar to Croux et al. (2013); Hubert et al. (2016, 2019), several different contamination
settings are considered. The casewise Tukey-Huber contamination model (1.1) and the
independent contamination model for the cellwise framework (1.2).

A low- and a high-dimensional simulation setting is considered, and they are adapted
from Croux et al. (2013) and Hubert et al. (2016). Clean data X are generated from a
multivariate normal distribution Np(0,Σ) with zero means and covariance Σ = C1/2RC1/2

given as follows:

1. Low-dimensional, order 2: p = 10, n = 50 observations

R =

 S1
4×4 04×4 04×2

04×4 S2
4×4 04×2

02×4 02×4 I2×2

 ,

where

S1
ij =

�
1 if i = j,

0.9 otherwise,
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and

S2
ij =

�
1 if i = j,

0.7 otherwise.

The matrix C assigns the same scale to all variables of the same group, and it is given
as C = diag(1004,254,42), where ab is a vector with b replicates of the number a.
The true loadings of the first component in this setting are v1 = 1/2(14, 0, . . . , 0), and
of the second component v2 = 1/2(04,14, 0, . . . , 0).

2. High-dimensional, order 2: p = 500, n = 100 observations

R =

 S1
20×20 020×20 020×460

020×20 S2
20×20 020×460

0460×20 0460×20 I460×460

 ,

where S1 and S2 are defined as before. C is given as C = diag(10020,2520,4460).
Similarly, the true loadings for the first 2 components correspond to the vectors v1 =
1/
√
20(120, 0, . . . , 0) and v2 = 1/

√
20(020,120, 0, . . . , 0).

Casewise contaminated data are generated by replacing ε% of rows with data generated
from a p-variate normal distribution N (µout, Ip),
with µout = (2, 4, 2, 4, 0,−1, 1, 0, 1,−1, . . . , 1, 0, 1,−1). For the cellwise contamination set-
ting, data are generated using the generateData(outlierType = "cellwiseStructured")
function in the R package cellWise (Raymaekers and Rousseeuw, 2023a), where ε% of cells
are replaced by multiples of the last eigenvector of Σ, restricted to the dimensions of the
contaminated cells (Agostinelli et al., 2015; Rousseeuw and Bossche, 2018).

5.5.2 Performance measures

To measure the accuracy of the algorithm, we use the principal angles between subspaces,
which are defined as follows: Let V and V̂ be orthonormal bases for the subspaces V and
V̂ , and assume that dim(V) ≤ dim(V̂). Then, the principal angle θ can be computed as
θ = sin−1(σmax((I −V V ′)V̂ )), where σmax corresponds to the largest singular value of the
projected matrix (Björck and Golub, 1973). We report the principal angle scaled to lie in
[0, 1], as implemented in the function angle() in the R package rospca (Reynkens, 2018)
and described in Hubert et al. (2005).

The correct level of sparsity is evaluated by the true-negative rate (TNR) and true-positive
rate (TPR), defined as

TPR(V , V̂ ) =
#{(j, k) : vjk ̸= 0 and v̂jk ̸= 0}

#{(j, k) : vjk ̸= 0} (5.12)

TNR(V , V̂ ) =
#{(j, k) : vjk = 0 and v̂jk = 0}

#{(j, k) : vjk = 0} , (5.13)

where vjk and v̂jk are the corresponding elements of V and V̂ , respectively. TNR and
TPR correspond to the rate of correctly identified non-zero elements and zero elements,
respectively, in the loadings.
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5 Cellwise robust and sparse principal component analysis

The scaled principal angle corresponds to the accuracy of the subspace estimation and
should be controlled at a low level even in the presence of outliers. The TPR and TNR
depict how stable the correct estimation of the sparsity is; these performance measures
should be close to 1.

5.5.3 Simulation results

The proposed method is compared to ROSPCA (Hubert et al., 2016) in the casewise con-
tamination setting, using the implementation in the R package rospca (Reynkens, 2018),
and MacroPCA as implemented in the R package cellWise (Raymaekers and Rousseeuw,
2023a) in the cellwise contamination setting. While the latter does not enforce sparsity
in the loadings, it is the only other cellwise robust PCA method that software is read-
ily available for, and a comparison in terms of accuracy of subspace estimation should be
insightful.

Runtime

In addition to the algorithms ROSPCA and MacroPCA, we also include the PP algorithm
from the pcaPP package (Filzmoser et al., 2022) as another sparse and robust PCA method
for high-dimensional data in the comparison. However, this method is not included in the
performance study, as the detailed comparisons to ROSPCA in Hubert et al. (2016) resulted
in worse performance than the latter. Here we use Setting 1 described above, keeping the
sparsity parameters for all methods fixed and varying p and n. The computation was
repeated 100 times, and in Figure 5.1 the means are reported. In the left part of Figure 5.1,
the number of variables is fixed at p = 10 and the number n of observations increased, on
the right side, the number of observations is fixed at n = 50 and the number of variables p
increased.

Figure 5.1 shows in most situations a higher runtime of the proposed method (SCRAM-
BLE). This is due to the other algorithms being implemented in C++. Still, with growing
n and p, the advantage of the proposed method becomes apparent. If the number of ob-
servations n increases, the runtime even decreases, as the initial estimate is better, leading
to faster convergence. In addition, very large n can also be handled by an appropriate
SGD variant, as the data can be processed in batches of suitable sizes, a clear advantage in
comparison to the repeated subset evaluations that need to be done for the ROSPCA algo-
rithm, for example. When the number of variables p grows, the approach based on gradient
descent also scales better, as several directions can be computed at once and no repeated
cycling of candidate directions is necessary as for PP. While the runtime of MacroPCA as
another cellwise robust PCA method is appealing, it is not able to include a regularization
and produce sparsity in the loadings.

The computational complexity of the proposed algorithm depends on three steps: 1. the
data transformation, 2. the SVD for the starting value, and 3. the gradient algorithm. For
the rank transformation, this results in a complexity of O(n log(n)+npmin(n, p)+tnp+pk2),
and for the wrapping transformation in O(np+ npmin(n, p) + tnp+ pk2), where t refers to
the number of iterations and k to the number of estimated components (refer to Raymaekers
and Rousseeuw (2021) for the complexity of the wrapping transformation and Cunningham
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and Ghahramani (2015) for a discussion of complexity of Riemannian gradient descent).
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Figure 5.1: Comparison of runtime for the different methods. Left: The number of variables
is fixed at p = 10, the number of observations n is increased from 100 to 1000.
Right: The number of observations is fixed at n = 50, and the number of
variables p is increased from 10 to 1000.

Performance

The robustness of the methods for an increasing proportion of casewise and cellwise outliers
is studied. For the proposed method, performance measures of different combinations of the
initial transformation and loss function are evaluated and compared to a suitable alternative
method.

Figure 5.2 presents the results for casewise contamination. The performance results for
the low-dimensional setting (p = 10 and n = 50) are shown in the plots on the left side,
while those for the high-dimensional setting (p = 500 and n = 100) are on the right-hand
side. In both cases, k = 2 is fixed, and ROSPCA is compared to different versions of
SCRAMBLE, with different loss functions ρ (Huber, Tukey, LTS), see Section 5.3, and
different transformations (rank, wrapping) for the initialization, see Section 5.4.2.

In the low-dimensional setting, the SCRAMBLE method clearly performs better than
ROSPCA in all performance measures, especially in estimating the sparsity, described by
the TNR. The increasing contamination has only little effect on the outcome. Also the
different versions of SCRAMBLE show very similar results. For the high-dimensional setting
we can see more effects. In the uncontaminated case, SCRAMBLE outperforms ROSPCA,
particularly for the TNR. Interestingly, the TNR improves for ROSPCA with increasing
contamination, and the same hold for SCRAMBLE based on the rank transformation.
However, here an angle of about 0.75 for 20% contamination already suggests a solution
very different from the target. The best results are achieved by SCRAMBLE initialized
with the wrapping transformation, for the LTS and the Tukey loss function.
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Figure 5.2: Comparison of performance measures for the methods ROSPCA and SCRAM-
BLE (six combinations of loss functions and transformations) for the casewise
setting. Left: low-dimensional (p = 10, n = 50); right: high-dimensional
(p = 500, n = 100).
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The results for the cellwise contamination setting are shown in Figure 5.3, with the
low-dimensional setting on the left and the high-dimensional setting on the right. Here
we compare SCRAMBLE to MacroPCA as an alternative algorithm for cellwise robust
PCA, although this method does not allow for sparsity. Consequently, MacroPCA fails
to accurately predict the sparsity (resulting in a TPR of 1 and a TNR of 0) but yields
very good results for the principal angle in the low-dimensional setting. Note that we
selected the same proportions of contamination as for the casewise setting. However, in the
cellwise setting, these amounts contaminate many more rows of the data matrix, or even
all rows (Raymaekers and Rousseeuw, 2023b), leading to a faster decrease in performance
among all metrics. For the high-dimensional setting, however, the proposed algorithm
yields the best overall results. This is because SCRAMBLE processes the loss function
cellwise, and thus both more rows or more columns yield more training set observations.
As expected, there is a certain decrease in performance for increased contamination. In
this setting, rank-based initialization is more robust than initialization with the wrapping
transformation with default values (Raymaekers and Rousseeuw, 2021). The overall best
results are in combination with the LTS or Tukey loss function.

5.6 Illustration on real data

The usefulness of the approach will be demonstrated on two datasets from tribology, the
study of friction, wear, and lubrication. The presented data originate from chemical analyses
and tribological experiments performed on automotive engine oils after they have been
subjected to a varying duration of artificial alteration in the laboratory, see Dörr et al.
(2019b) and Besser et al. (2019) for a description of the alteration methods. FTIR (Fourier-
transform infrared) spectra consist of absorption values that are measured over about 2000
wavenumbers, with distinctive peaks associated with certain oil attributes. For this data
structure, the sparsity assumption can be justified: It can be assumed that only a small
set of wavenumbers is sufficient to explain most of the variability in the dataset (Pfeiffer
et al., 2022). Another aspect is lubrication performance, which can be measured on an SRV
tribometer experiment (a steel ball sliding against a steel disk with the lubricant of interest
in between, see Dörr et al. (2019b) for a more detailed description of the experiment). One
part of the resulting data consists of optical images (taken under the microscope) of the
wear scar areas, which yield data matrices with n ≪ p when vectorized.

As both types of data are produced in the laboratory, we can expect outliers to be present
in the datasets due to possibly high variability following the alteration process and experi-
mental effects. In addition, the experiments are often costly and time-consuming, resulting
in much fewer observations than variables and wide data matrices. Thus, dimension reduc-
tion is necessary before applying any further analysis. We demonstrate in the following,
how the proposed method can be applied to perform this dimension reduction via robust
PCA, and, in addition, yield sparse loadings, when appropriate.

5.6.1 FTIR spectra

The presented dataset consists of n = 50 FTIR spectra of 10 automotive engine oils.
The fresh oils were subjected to a small-scale alteration in the laboratory as described

91



5 Cellwise robust and sparse principal component analysis

Contamination 0 0.1 cellwise 0.2 cellwise 0.3 cellwise

TPR

TNR

Angle: θ

M
ac

ro
P

C
A

ra
nk

−H
ub

er

ra
nk

−T
uk

ey

ra
nk

−L
TS

w
ra

pp
in

g−
H

ub
er

w
ra

pp
in

g−
Tu

ke
y

w
ra

pp
in

g−
LT

S
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

TPR

TNR

Angle: θ

M
ac

ro
P

C
A

ra
nk

−H
ub

er

ra
nk

−T
uk

ey

ra
nk

−L
TS

w
ra

pp
in

g−
H

ub
er

w
ra

pp
in

g−
Tu

ke
y

w
ra

pp
in

g−
LT

S

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

Figure 5.3: Comparison of performance measures for the methods ROSPCA and SCRAM-
BLE (six combinations of loss functions and transformations) for the cellwise set-
ting. Left: low-dimensional (p = 10, n = 50); right: high-dimensional (p = 500,
n = 100).
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5.6 Illustration on real data

in Dörr et al. (2019b). During the alteration, samples were taken regularly and spectra
were recorded, each containing the absorbance at p = 1668 wavenumbers. The task at
hand is to understand which variables contribute most to the variability in the dataset,
and often classical PCA is applied, see, for example, Besser et al. (2013). To make it more
challenging, we contaminate the dataset with 6 observations originating from a large-scale
alteration (Besser et al., 2019) to imitate a scenario when the origin of a sample may not be
as clear as in the laboratory setting. Our aim is to identify observations that are different
from the majority of the data, and also understand why they are outlying. As mentioned
before, sparsity in the PCA loadings is desirable in this setting to enhance interpretability.

The resulting dataset consists of n = 56 observations and p = 1668 variables. As spectral
data are already on the same scale, the data are not scaled, but only column-wise centered
with the median before applying the methods. We compare the results from ROSPCA
(Hubert et al., 2016) and the proposed SCRAMBLE method with the rank-based data
transformation for the starting value and the Huber loss function. For both methods, the
number of principal components is determined via the cumulative proportion of explained
variance. For ROSPCA, this results in kROSPCA = 10, for SCRAMBLE in kSCRAMBLE = 7
components. Then, hyperparameter optimization for the sparsity parameters is done for
both algorithms. Figure 5.4 shows the original FTIR spectra in gray, together with the
first (left plot) and second (right plot) loadings vectors of both methods. We find that
SCRAMBLE leads to more sparsity, and therefore to results that are easier to interpret.
Some of the selected variables are known to be associated with underlying chemical processes
during oil alteration, like oxidation, conventionally evaluated at wavenumber 1720 cm−1,
or phenolic antioxidants at 3650 cm−1 (Besser et al., 2019).
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Figure 5.4: FTIR spectra of the original data, shown in gray, together with the first (left
plot) and second (right plot) loadings vectors of each method.

Figure 5.5 shows PCA diagnostic plots based on the score distance SD and orthogonal
distance OD, with the outlier cutoff values as dashed lines, see Hubert et al. (2005). A
high value of the OD means that the observations are far away from the estimated PCA
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subspace. The left plot presents the results for ROSPCA, and here almost all outliers, thus
the observations from large-scale alteration, are identified with high OD values. However,
also four regular observations yield high OD values. The right plot for the SCRAMBLE
results corresponds to what we would expect.
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Figure 5.5: Score distance versus orthogonal distance for the FTIR spectra. Results for
ROSPCA (left) and SCRAMBLE (right).

In order to investigate the differences between ROSPCA and SCRAMBLE in more de-
tail, we show plots of the standardized residuals in Figure 5.6 for a selected wavenumber
range and a subset of the observations. The left plot is for ROSPCA, the right plot is for
SCRAMBLE, and each tile represents one element in the scaled residual matrix, with color
according to the legend. The residuals were standardized robustly using the median and
mad of the residual matrix. Note that the residuals scale is very small leading to very large
scaled residuals for some cells. The first six rows correspond to the FTIR spectra of oils
from a different alteration process, and SCRAMBLE clearly reconstructs these worst, mean-
ing they are not as influential to the fit of the PCA subspace. In ROSPCA, on the other
hand, only observation 6 is the only clearly visible observation out of the outlier subset,
and four further observations also show larger residuals. A look at the original spectra with
a zoomed-in view into this wavenumber range in Figure 5.7 explains this behavior: There,
the outliers (first 6 rows) are shown by red dashed curves, and only one (observation 6)
is clearly further away, while the other outliers partially overlap with regular observations.
This overlap around wavenumber 1740 cm−1, thus in a very restricted range, is the reason
why four regular observations are falsely classified as outlying by the ROSPCA algorithm.
The affected wavenumbers lie in the absorption band of oxidation products, ranging from
1860–1660 cm−1, and are of interest in conventional analysis of FTIR spectra (Besser et al.,
2019; Pfeiffer et al., 2022). A cellwise robust method can assist the practitioner in finding
and understanding the differences between outlying and regular observations.

In summary, we can see the benefit of a cellwise robust method in contrast to only
casewise robust estimation. As the differences only show at certain peaks in the spectra, a
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Figure 5.6: Residual plots for a selected range of wavenumbers and for a subset of the
observations. Left: ROSPCA residuals; right: SCRAMBLE residuals.
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Figure 5.7: Zoomed-in view of the FTIR spectra from Figure 5.4 for the selected wavelength
range shown in Figure 5.6. The red dashed lines are outliers with large-scale
alteration.
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Figure 5.8: Classical loadings back-transformed to the image space.

cellwise robust method does not lose as much information as a casewise method, resulting
in a better fit with fewer components. In addition, we can also identify the variables which
contribute most to the outlyingness.

5.6.2 Tribology: wear scar images

Often, the task is not only to derive useful features but also to predict an outcome or
a property. In this example, we demonstrate the flexibility of our approach in a PCR
(Principal Component Regression) setting. As we are dealing with a wide data matrix,
dimension reduction is necessary. In Pfeiffer and Filzmoser (2023), image features were
derived from a similar image dataset, before robust regression methods were applied. For
this demonstration, we derive robust features via SCRAMBLE directly from the vectorized
images before applying a robust regression on the resulting principal components. We do
not use a sparsity-inducing regularization, as we have found that this does not provide an
advantage for images (Pfeiffer and Filzmoser, 2023). In the given setting, n = 220 gray-
scale images of size 64×64, resulting in vectors of size 642 = 4096, together with a response
variable containing the alteration duration (in hours) of the lubricant used in the SRV
experiment, are available. After the removal of all constant columns, p = 3025 columns are
left. As the response variable, the alteration duration is given in hours, which is square-root
transformed before estimating the model.

We compare classical PCA via SVD to the SCRAMBLE algorithm with rank-based pre-
processing and the Huber loss. Therefore, the dataset is randomly split into a 70% training,
a 20% validation, and a 10% test set. The principal components are estimated on the train-
ing set, and then the optimal number of components is evaluated for the validation set via
the mean squared error of prediction (MSEP) using least-squares regression for the classic
estimation and robust regression (the function lmrob() from the robustbase R package
(Maechler et al., 2024)) for robust estimation. Finally, the MSEP is computed for the test
set. The first three estimated loadings are shown in Figure 5.8 for classical PCA and in
Figure 5.9 for robust PCA. We can observe that the first loadings look quite similar, while
the order is different. Both methods distinguish between the border and the interior of the
wear scar, as well as the overall contributions.

The 10% trimmed MSEP for the validation set based on different numbers of components
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Figure 5.9: Robust loadings back-transformed to the image space.
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Figure 5.10: Left: Selection of best number of PCs based on 10% trimmed MSEP computed
on the validation set. Right: Observed vs. predicted alteration duration for
the classical and robust approach.
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is shown on the left side in Figure 5.10 for both classical and robust PCR. For classical
PCR, the error starts at a higher level, possibly indicating that the directions of the first
few components are influenced by outliers, and thus they are not as effective for prediction.

For the optimal number of components, we select that number yielding the smallest
trimmed MSEP, resulting in kclassical = 17 and kSCRAMBLE = 10 components. Thus, the
robust method leads to a smaller number of components, and also to a smaller prediction
error.

In the right plot of Figure 5.10, the observed and predicted values of the alteration
duration are shown for both methods for the test set observations. The predictions for
higher values of duration for both methods are worse than for values in the beginning or
middle of the duration range. In total, the model based on robust PCR performs better,
with a trimmed MSEP of 13.76 for the test set observations, while classical PCR leads to
an error of 17.88 (Figure 5.10).

Using this number of components, we can also reconstruct the data matrices and analyze
the reconstruction errors. In Figure 5.11, the reconstruction errors per variable (pixel) are
visualized for both the classical PCA (on the left) and SCRAMBLE (right). While for
the classical method, no structure is left in these residuals, it is clearly visible that for the
robust method, the border of the wear scars is not reconstructed well. This also makes
sense because the borders of the balls in the wear scar images are not identical. In fact,
the size of the balls in the image can slightly change due to the nature of the experiment,
as the balls are placed manually under a microscope, but also due to preprocessing and
cutting the images. Obviously, for the robust procedure, this change in size is not relevant
for prediction, whereas the classical model takes this variability into account.

While the results for classical and robust PCR are not very different, the example still
illustrates that the robust method is able to perform better for the majority of the data
(in the middle of the duration range), while the classical predictions are influenced by more
extreme values. Furthermore, we can use robust diagnostics to get further insight into why
the prediction quality between certain values of the response differs.

5.7 Discussion and summary

In recent years, cellwise robust methods are becoming increasingly important. This is
mainly due to the increased occurrence of high-dimensional data, as a result of modern
measurement methods and devices. With high-dimensional data it becomes more likely
that an observation contains outliers in single variables, and traditional rowwise (casewise)
methods would no longer work if the majority of observations are contaminated. This is
also an issue for principal component analysis (PCA), where rowwise robust methods could
fail in the presence of many cellwise outliers.

One could think of several different approaches to obtain a cellwise robust PCA method.
A first idea could be the identification of cellwise outliers and the replacement of those cells
by values which would be expected according to some distributional assumptions (Rousseeuw
and Bossche, 2018). With the cleaned data matrix one could proceed with classical PCA.
Even in the casewise robust setting, the approach to detect and correct outlying obser-
vations prior to classical PCA would be a way to obtain a casewise robust PCA version.
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Figure 5.11: Reconstruction errors per variable, visualized in the image dimensions. Left:
PCA via classical SVD, right: PCA via SCRAMBLE. The number of components
corresponds to the number leading to the minimum trimmed MSEP for PCR.

However, outlier detection assumes an underlying model, usually a multivariate normal dis-
tribution, and outlier detection/correction identifies/corrects observations or cells according
to this model assumption. In cellwise or casewise robust PCA, on the other hand, we are
not limited to this distribution. Particularly for PCA based on low-rank approximation,
the interest is rather in a robust data reconstruction, where the error loss function utilizes
information from the single variables rather than from the joint multivariate distribution,
see Equation (5.4).

Another approach to cellwise robust PCA is to use a plug-in estimator for the covari-
ance to determine the principal components, for example, the cellwise robust Minimum
Covariance Determinant (MCD) estimator (Raymaekers and Rousseeuw, 2023b). This is
equivalent to a rowwise robust PCA version where a rowwise robust covariance estimator,
such as the MCD (Rousseeuw, 1985) is plugged in. While such a procedure is straightfor-
ward to implement, it might not be so clear how to include sparsity.

Sparsity, or the natural requirement of interpretability of the principal components is
especially important in a high-dimensional setting. For that reason, sparse (Jolliffe et al.,
2003) and sparse robust (Croux et al., 2013) PCA versions were introduced which maximize
the variance of the components subject to an L1 penalty on the loadings vectors. The gain
in sparsity or explainability leads to a loss in explained variance, and this compromise can
be formalized by an appropriate objective function (Croux et al., 2013).

We have introduced a cellwise robust and sparse PCA method using low-rank matrix
approximation. The objective function can be formulated in a very natural way (Maronna
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and Yohai, 2008; Croux et al., 2013), and it combines a robust loss function for the recon-
struction error of all cells of the data matrix with an elastic net penalty on the loadings.
The specific choice of the loss function determines the robustness properties of the PCA
solution (Maronna and Yohai, 2008). Both the robust loss function and the incorporation
of an L1 or elastic net penalty leads to computational challenges. We have developed an
algorithm based on manifold learning to optimize the objective function. The L1 penalty
was incorporated by the use of a sparsity-inducing penalty, allowing for an approximation
by a differentiable function. The choice of appropriate starting values is important, and we
compared different approaches. Overall, the algorithm leads to an efficient computation,
even for high dimensions p and many observations n. Simulations have demonstrated that
the resulting method, called SCRAMBLE (Sparse Cellwise Robust Algorithm for Manifold-
based Learning and Estimation), has superior properties when compared to alternative
robust PCA approaches, both in the casewise and cellwise settings.

We applied the suggested method to two real data examples from tribology and compared
the performance with existing estimators, illustrating the usefulness of a cellwise robust and
sparse PCA method.

Possible extensions to groupwise PCA or robust data imputation are possible via a mod-
ification of the objective function (5.8). Furthermore, theoretical robustness properties like
the influence function and breakdown point (Maronna et al., 2019) would be interesting
topics for future research.
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6 Implementation and practical use in R

The proposed methods from Chapters 4 and 5 have been implemented in the R pack-
age RobSparseMVA (Pfeiffer et al., 2024), which is currently available from GitHub in the
repository https://github.com/piapfeiffer/RobSparseMVA. It can be installed using the
devtools package (Wickham et al., 2022).

Both implementations rely on the backpropagation algorithm for computing the gradi-
ents of the objective functions, as it is implemented in the R package torch (Falbel and
Luraschi, 2023). The code is structured into a model part, initializing the parameters and
defining the objective function and evaluation. The train part calls the model and contains
the training loops, with calls to the optimizing functions. For hyperparameter optimization,
application-specific wrappers for Bayesian optimization ParBayesianOptimization (Wil-
son, 2022), including the proposed score functions, are implemented. Finally, the compute
function wraps it together, providing the interface for the user and implementing options
for (robust) data standardization, and algorithm-specific settings.

In this chapter, we demonstrate the functionality of the most important functions on
examples and discuss possibilities for customization and fine-tuning.

6.1 Robust and sparse maximum association - ccaMM()

The easiest way to apply the algorithm proposed in Chapter 4 to a given dataset is via the
function ccaMM(). The code for the call is given in Listing 6.1.

Listing 6.1: Arguments for ccaMM()
1 ccaMM <- function(data_x, data_y,
2 method = "Pearson",
3 ..., #keyword arguments for covariance
4 nearPD = FALSE ,
5 alpha_x = NA ,
6 alpha_y = NA ,
7 k = 1,
8 tol = 1e-5,
9 lr = 1e-3,

10 epochs = 2000,
11 lr_decay = 1,
12 criterion = "TPO",
13 penalties = NA)

The function expects the x and y datasets as the first two arguments: The data should
be formatted such that the variables are in the columns and the samples are in the rows,
and the number of rows for both needs to be the same. Using the argument method, the
user can decide on the type of covariance estimator to be used. The default setting, method
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= Pearson, corresponds to the sample covariance (and the Pearson correlation for CCA).
Other options are: Spearman, Kendall, MCD, MRCD, OGK, pairhuber, quadrant, and
Ledoit-Wolf. The fourth argument is a keyword argument to provide options for the co-
variance estimator, for example, setting the size of the subset for the MCD. Spearman and
Kendall are based on the pairwise rank-based correlation matrices, which are then scaled
robustly to derive a covariance. When more variables than observations are present, the
resulting covariance matrices are not positive definite and can be corrected using the nearPD
algorithm (Higham, 2002). While positive definiteness is not strictly necessary for the pro-
posed procedure, it can improve the performance. The αx and αy parameters correspond
to the elastic net parameters for the x and y side and should be numeric vectors of length
k, containing numbers between 0 and 1 (0 for Ridge, 1 for LASSO penalty), where k is the
number of directions that should be computed. The next four parameters in Lines 8-11 are
settings for the gradient descent algorithm, it is possible to adjust the tolerance for con-
vergence (tol), the learning rate (lr), the maximum number of training epochs (epochs),
and the exponential learning rate decay (lr_decay, a positive number lower or equal to
1 the learning rate is multiplied by before the next iteration). The criterion argument
refers to the type of criterion to be used for hyperparameter optimization, the default (and
currently only) option is “TPO”, corresponding to “Tradeoff Product Optimization”. Fi-
nally, the penalties argument can be used to provide the used penalties manually. This
argument should be given as a list with the vectors pen_x and pen_y as entries, containing
the penalty for each order of direction for both sides.

Let us now demonstrate how to use the function in practice. In Listing 6.2, a simple
simulated dataset is generated.

Listing 6.2: Simulated example for CCA.
1 set.seed (123)
2 library(mvtnorm) # only needed for simulated example
3 p <- 10
4 q <- 10
5 n <- 100
6
7 cov_xx <- matrix(0, ncol = p, nrow = p)
8 cov_yy <- matrix(0, ncol = q, nrow = q)
9 cov_xy <- matrix(0, nrow = p, ncol = q)

10
11 diag(cov_xx) <- 1
12 diag(cov_yy) <- 1
13 cov_xy <- matrix(0, nrow = p, ncol = q)
14 cov_xy[1, 1] <- 0.9
15 cov_xy[2, 2] <- 0.7
16
17 sigma <- rbind(cbind(cov_xx , cov_xy),
18 cbind(Matrix ::t(cov_xy), cov_yy)
19 )
20
21 data <- mvtnorm :: rmvnorm(floor(n),
22 mean = rep(0, p + q),
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23 sigma = sigma , checkSymmetry = F
24 )
25
26 x <- as.matrix(data[, 1:p])
27 y <- as.matrix(data[, (p + 1):(p + q)])

We can now compute the classical and a sparse CCA solution by using the default pa-
rameters and setting the elastic net parameters to 0 and 1, respectively. Example code is
shown in Listing 6.3.

Listing 6.3: Classical and sparse CCA (non-robust)
1 n_dir <- 2 # we want to derive the first two directions
2 res_classic <- ccaMM(x, y,
3 k = n_dir ,
4 alpha_x = rep(0, n_dir),
5 alpha_y = rep(0, n_dir))
6 res_sparse <- ccaMM(x, y,
7 k = n_dir ,
8 alpha_x = rep(1, n_dir),
9 alpha_y = rep(1, n_dir))

When no hyperparameter optimization is needed, the penalties to be used can be set
directly. In addition, the robustness can be controlled by changing the method argument,
as demonstrated in Listing 6.4.

Listing 6.4: Classical and sparse CCA (non-robust)
1 res_spearman <- ccaMM(x, y,
2 k = n_dir ,
3 method = "Spearman",
4 alpha_x = rep(1, n_dir),
5 alpha_y = rep(1, n_dir),
6 penalties = list(pen_x = rep(1, n_dir),
7 pen_y = rep(1, n_dir )))

6.1.1 Looking at the results

CCA leads to projections of the data we can look at. The results object of the function
ccaMM() returns the determined directions (linear combinations) in a for the x dataset
and b for the y dataset. The rows of the matrices a and b correspond to the number of
variables in each dataset, while the columns correspond to the number of directions that
were computed (we can also call this the order). The vector measure returns the computed
canonical correlation measure for each order. The resulting projections are returned in the
matrices phi and eta; here, the number of rows corresponds to the number of observations,
and the number of columns again corresponds to the order.

The final used penalties are returned in pen_x and pen_y, and if hyperparameter opti-
mization for sparsity was done, a summary is returned in summary.

The plot function applied to the result object plots the values that were tested for sparsity
parameters, TPO tradeoff curve, and the projections for the respective order. This series of
plots is provided for all orders. For the example above, the plots are shown in Figure 6.1.
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Figure 6.1: Plots generated with the plot() function implemented for the result object
from ccaMM(). Following plots are generated for each order: On the left, the
process of the hyperparameter optimization is visualized. The plot shows the
sampled combinations of pen_x and pen_y and the corresponding score and
prediction values. In the middle plot, the value of the prediction, depending
on the combined sparsity value of x and y, is shown, and on the right, the
projections are plotted.
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6.1.2 Customization

In the ccaMM() function, the different covariance estimators are called with the default
settings proposed by the authors of the respective packages and functions. Their parameters
and options can be adjusted by supplying keyword arguments in the fourth argument.
It is also possible to provide the covariance matrix directly and use another algorithm
for hyperparameter optimization by using the train_CCA() function. This function was
applied to the true covariance matrix in Chapter 4 for the evaluation of the precision of
the algorithm. In addition, this function can be used to compute additional projection
directions. Unlike the ccaMM() function, the order k refers to the specific order to be
computed, and the lower-order projection directions, as well as the penalty values need to
be provided. In Listing 6.5, we show a possible application in combination with Bayesian
hyperparameter optimization, as implemented in bayesian_optimization_CCA, but it could
be exchanged with a grid search or the like as well. The functions expect the covariance
instead of the data matrices, and the lower-order directions need to be provided for the
computation of directions of order larger than 1. The other arguments correspond to the
ones needed for ccaMM().

Listing 6.5: Training loop using any covariance matrix Cov, using Bayesian hyperparameter
optimization and train_CCA() function

1 CORR <- rep(NA , k)
2 PEN_X <- rep(NA , k)
3 PEN_Y <- rep(NA , k)
4
5 alpha_x <- rep(1, k)
6 alpha_y <- rep(1, k)
7
8 for (i in 1:k) {
9 res_param <- bayesian_optimization_CCA(

10 C = Cov ,
11 p = p, q = q, n = n, order = i,
12 alpha_x = alpha_x[i], alpha_y = alpha_y[i],
13 low_a = as.matrix(A[,1:max(1,(i-1))]) ,
14 low_b = as.matrix(B[,1:max(1,(i-1))]) ,
15 tol = 1e-5, lr = 1e-2, epochs = 1000,
16 lr_decay = 1,
17 criterion = "TPO")
18
19 PEN_X[i] <- res_param$best_params$pen_x
20 PEN_Y[i] <- res_param$best_params$pen_y
21
22 SUMMARY [[i]] <- res_param$summary
23
24 res <- train_CCA(C = Cov , p = p, q = q,
25 pen_x = PEN_X[i], pen_y = PEN_Y[i],
26 order = i,
27 alpha_x = alpha_x[i], alpha_y = alpha_y[i],
28 tol = 1e-5, lr = 1e-2, epochs = 1000,
29 lr_decay = 1,
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30 low_a = as.matrix(A[,1:max(1,(i-1))]) ,
31 low_b = as.matrix(B[,1:max(1,(i -1))]))
32
33 A[, i] <- res$best_a
34 B[, i] <- res$best_b
35
36 CORR[i] <- res$best_measure
37 }

Note that as this function only outputs the best measure and directions (best_a, best_b),
the projections have to be computed manually. Many more details can be changed in the
functions themselves. Customization of the gradient optimization algorithm can be done
in the file train_CCA_MM.R, and the settings for Bayesian hyperparameter optimization can
be changed in hp_optim.R.

6.2 Cellwise robust and sparse PCA - pcaSCRAMBLE()

The algorithm proposed in Chapter 5 is also implemented in the R package RobSparseMVA.
The function pcaSCRAMBLE() implements the data transformation, provides a wrapper for
hyperparameter optimization, and performs the optimization of the objective using Rie-
mannian gradient descent. For the computation of the gradient steps on the manifold, a
new optimizer has been implemented for the usage with torch for R (Falbel and Luraschi,
2023), contained in the file optimizer_SGD_Stiefel.R.

Let us first create a simulated example, shown in Listing 6.6.

Listing 6.6: Simulated example for PCA
1 p <- 100
2 n <- 50
3 R <- matrix(0, ncol = p, nrow = p)
4 R[1:4, 1:4] <- 0.9
5 R[5:8, 5:8] <- 0.5
6 diag(R) <- 1
7 V <- diag(c(100, 100, 100, 100, 25, 25, 25, 25, rep(4, p - 8)))
8 C <- sqrt(V) %*% R %*% sqrt(V)
9

10 data <- mvtnorm :: rmvnorm(floor(n),
11 mean = rep(0, p),
12 sigma = C)

In Listing 6.7, the usage of the main function pcaSCRAMBLE() is demonstrated.

Listing 6.7: Usage of the function pcaSCRAMBLE(): arguments and options.
1 res_scramble <- pcaSCRAMBLE(data_x = data ,
2 groups = NA ,
3 transformation = "identity",
4 loss_type = "L2",
5 param = NA ,
6 center = TRUE ,
7 scale = TRUE ,
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8 alpha_x = 0,
9 k = NA ,

10 tol = 1e-5,
11 lr = 1e-3,
12 epochs = 2000,
13 lr_decay = 0.99,
14 criterion = "TPO",
15 bounds = c(1e-3, 10),
16 penalties = NA)

In the first argument, the function expects the data matrix with p variables in the columns
and n observations in the rows. Then, options regarding group structure, the data trans-
formation to be applied, and the loss type can be specified. The second argument refers to
a possible extension to group PCA, which has been implemented, but not investigated in
detail yet. In this group argument, a vector of the same length as the data and containing
the groupings has to be supplied. If left blank, no grouping is considered.

For the transformation argument, the following options are available: identity does
not perform any transformation, spearman refers to the rank-based transformation, and
wrapping to the wrapping transformation described in Chapter 5. The transformed data is
used to obtain a robust initial estimate of the principal components via SVD, and if robust-
ness is desired, it is recommended to use either wrapping or the rank-based transformation.
In addition, the loss function is important for obtaining a robust result. The type of loss
function (see Section 1.3 for an overview) is defined via the loss_type argument. Possible
values are L2, corresponding to a least squares loss, LTS for a least trimmed squares loss, and
Huber and Tukey referring to the well-known robust loss functions of the same name. The
argument param controls the parameters of the loss functions and uses the default values
suggested in Chapter 5 if left blank.

The arguments center and scale control whether the data will be robustly centered
and scaled using the median and Qn estimator, respectively. The elastic net parameter
alpha_x can be set to any value between 0 (Ridge penalty) and 1 (LASSO penalty) and k
corresponds to the number of principal components to be computed, if left blank, it is set
to the minimum of the number of observations and variables.

The arguments in Lines 10-13 of Listing 6.7 are parameters for the training of the gra-
dient descent algorithm, with a tolerance (tol) for convergence, a learning rate (lr), the
maximum number of epochs (epochs), and the learning rate decay (lr_decay, see previous
Section).

The last two arguments concern the hyperparameters: the bounds argument defines the
range for the penalty, and if no hyperparameter optimization is desired, an exact penalty
can be provided as a list to penalties.

6.2.1 Output, fine-tuning, and diagnostics

The algorithm outputs a list containing the estimated loadings in a and the values before
thresholding in a_ortho. The explained variance for each component is returned in measure
and measure_ortho, respectively, and the proportion of explained variance can directly be
seen in explained_var. The returned object also includes the values of the projected data
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in phi and the used penalty in pen_x. Regarding the optimization, the loss is returned to
analyze the convergence of the algorithm. If hyperparameter optimization was done via the
Bayesian optimization procedure, a summary object is returned as well.

As the proposed algorithm estimates a subspace of dimension k directly, it is necessary
to determine the desired number of components beforehand. A straightforward way is
to consider the minimum number of principal components needed to explain a certain
proportion of variance, common choices are an 80% or 90% threshold. Using the simulated
example from Listing 6.6, we determine the necessary number of components from the full
and non-sparse model, where the number of estimated components corresponds to the rank
of the data matrix. In Figure 6.2, the covariance structure for this dataset is shown. With
this block-diagonal structure, we would expect two important principal components, with a
sparsity pattern in a way that the loadings corresponding to the first PC contains non-zero
elements in the first 20 positions, and the second PC corresponding to the second block of
size 20.

Figure 6.2: Covariance matrix of dataset simulated in Listing 6.6.

The plot function for the results class for PCA outputs a barplot for the cumulative
explained variance and the variance per component, as shown in Figure 6.3.

After we have determined the desired number of principal components, we can change
the elastic net parameter to alpha_x = 1, and run the algorithm with the hyperparameter
optimization loop. We can again use the plot function to check the score dependent on
the penalty parameter. It can also be useful to check the convergence of the algorithm by
looking at the loss function and adjusting the parameters for the learning rate, learning
rate decay, or maximum number of epochs if needed (Figure 6.4).

In addition, the first two principal components are shown, and a diagnostic plot for the
identification of outlying observations is provided; see Figure 6.5.
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7 Conclusions

The thesis makes contributions to the field of chemometrics and statistical methodology by
proposing robust approaches for the analysis of high-dimensional datasets, particularly fo-
cusing on FTIR spectra and wear scar images of engine oils. Through the development and
validation of novel methodologies, it addresses challenges associated with outlier detection,
variable selection, and parameter estimation by applying modern optimization algorithms,
offering practical solutions for enhancing the reliability and efficiency of data analysis tech-
niques in complex real-world settings.

In Chapter 2, a methodology for quantifying the relationships between various artificial
oil alteration methods and engine oils obtained from a passenger car through the analysis
of FTIR spectroscopic data was developed. The approach involves reconstructing the spec-
tra to filter out non-informative variables, followed by simultaneous variable selection and
parameter estimation using weighted LASSO. Post-selection inference is then applied to
determine confidence intervals for the selected model coefficients. This procedure, demon-
strated and validated on real-world data, eliminates the need for manual selection of FTIR
absorption bands, allowing for objective filtering of non-informative variables. Integration
of expert knowledge is facilitated by the weighted LASSO, resulting in a robust pipeline for
FTIR spectroscopic analysis.

Chapter 3 addressed the challenges posed by high-dimensional data sets derived from
practical experiments, which often contain outliers and variables that deviate from the ma-
jority structure. Robust regression and classification methods developed for low-dimensional
data are inadequate for high-dimensional cases due to numerical problems. We provided
an overview of robust methods and their implementations, demonstrating their application
with two high-dimensional data sets from tribology. Through appropriate pre-processing
and sampling strategies, robust statistical methods were demonstrated to enhance predic-
tion performance.

In Chapter 4, we explored the computational challenges associated with robust statistical
estimators, particularly in high-dimensional settings. Leveraging optimization procedures
from computer science, the chapter investigates their application to robust sparse association
estimators. A robust estimation step is followed by an optimization process to solve the de-
coupled, biconvex problem, incorporating constraints for inducing sparsity. The augmented
Lagrangian algorithm and adaptive gradient descent are combined to improve precision and
efficiency, with empirical examples highlighting the effectiveness of this approach.

Chapter 5 introduced a cellwise robust method for sparse PCA, enhancing robustness by
substituting the squared loss function with a robust version in low-rank matrix approxima-
tion. Integration of sparsity-inducing penalties offers modeling flexibility, and an algorithm
based on Riemannian stochastic gradient descent enables scalability to high-dimensional
data. Named SCRAMBLE (Sparse Cellwise Robust Algorithm for Manifold-based Learn-
ing and Estimation), the method demonstrates superiority over established approaches in
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terms of casewise and cellwise robustness through simulations and application to real tri-
bology datasets.

The innovative combination of robust estimators and modern optimization techniques of-
fers a versatile toolbox for addressing statistical challenges. By decoupling robust estimation
and optimization, the proposed methodology shows promise for extending to other statisti-
cal problems, such as robust linear discriminant analysis. Additionally, modifications could
enable applications like groupwise PCA or robust data imputation. Investigating theoreti-
cal properties like the influence function and breakdown point presents intriguing avenues
for further research.

Furthermore, the findings described in the thesis have broader implications, particularly in
evaluating lubricant performance. By associating oil condition with lubricating performance
using FTIR spectroscopic data, the proposed technique streamlines and potentially replaces
time-consuming experiments. This advancement accelerates evaluation and reduces costs.
Leveraging the methodology’s robustness and predictive power, future research can extend
its utility to various statistical modeling tasks.
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